RECEIVED

APR 0 2 1999

NYSDEG - REG. 9

X_REL_UNREI

Semi-Annual Report #4

Frontier Chemical - Pendleton Site Order on Consent (#B9-0270-89-05) Pendleton, New York

Prepared by Pendleton PRP Group March 1999

Table of Contents Semi-Annual Report #4 March 1999

Conclusion	
Discussion	
Background	
Introduction	

Attachments

Attachment A - Quarry Lake Level Plot versus Time

- Attachment B Niagara County Sewer District #1 Submittals, Niagara County Sewer District Discharge Permit, and Operation, Maintenance and Monitoring Activities
- Attachment C Frontier Chemical Pendleton Site; Semi-Annual Ground Water Monitoring Report; March 1999; Frontier Chemical Pendleton Site; Town fo Pendleton, Niagara County, NY, Water Samples Vloume 1 of 3 February 3,4, and 5, 1999.

Attachment D – Field Observation Reports

Introduction

This is the fourth semi-annual report from the Frontier Chemical - Pendleton Site PRP Group (PRP Group) for the Frontier Chemical - Pendleton Site located in Pendleton, New York. This report summarizes the activities performed since September 1998 for Post-Closure Operation. Maintenance, and Monitoring of the Closure Components of the Frontier Chemical-Pendleton Site by the Pendleton PRP Group.

Background

The Frontier Chemical-Pendleton Site is located on Town Line Road in the Town of Pendleton, Niagara County, New York. The total site comprises approximately 22 acres of the 75-acre Frontier Chemical property. Prior to remediation activities, Quarry Lake, a flooded quarry that resulted from the excavation of clay for use in clay brick and tile manufacturing at an on-site facility, occupied 15 acres of the 22-acre site. The remaining 7 acres, identified as the former Process Area, were utilized by Frontier Chemical Waste Process, Inc. (Frontier) when the site was operated as an industrial waste treatment facility from 1958 to 1974. Plating wastes, pickle liquors and other liquid acid wastes from plating and metal finishing industries were treated at the site, with residuals from the waste treatment process being discharged into Quarry Lake. Much of the former Process Area was filled and graded following termination of waste treatment operations.

The site remediation project with remedial designed by O'Brien & Gere Engineers, Inc. and remedial action by Sevenson Environmental Services, Inc. included the following major components:

- 1. Dewatering Quarry Lake to allow drying and consolidation of sediments
- 2. Excavation and relocation of sediments from Quarry Lake after dewatering operations to within the limits of the capped area
- 3. Excavation and relocation of surface soils, fill or debris to within the limits of the capped area
- 4. Capping of consolidated sediments, previously dredged materials, and surface soils with a low-permeability cap
- 5. Installation, in conjunction with a cap, of a low-permeability barrier to ground water flow
- 6. Construction of a ground water collection trench along the eastern shore of Quarry Lake and the southern portion of the capped area
- 7. Reconstruction of the berm around Quarry Lake and installation of a new outlet structure
- 8. Construction of a ground water pumping station consisting of a wet well and dry vault
- 9. Installation of a ground water pre-treatment system within the dry vault
- 10. Conveyance of collected and pre-treated ground water to the local Publicly Owned Treatment Works (POTW)
- 11. Creation of new wetlands at the site
- 12. Construction of a surface water swale adjacent to the cap access road to direct surface water away from the capped area
- 13. Installation of piezometers inside and outside the capped area and a standpipe within the ground water collection trench
- 14. Installation of a chain link fence around the capped area and pump station to limit access.

Discussion

Post-closure operation, maintenance, and monitoring of the closure components of the Frontier Chemical-Pendleton Site are the responsibility of the Pendleton PRP Group. Operation, maintenance, and monitoring activities performed by the Pendleton PRP Group during this reporting period includes the following five elements:

1. Routine inspection and maintenance of constructed features, including the capped area, ground water collection and conveyance system, surface water runoff facilities, constructed wetlands, access road, perimeter and containment berms, and outlet weir,

Regarding routine inspection and maintenance of constructed features, no site inspections were conducted during this reporting period. Site inspections are normally performed during April and September.

Relocated wetlands inside the perimeter berm will be inspected and reported in the next semiannual report.

The relocated wetlands inside the Quarry Lake levee have elevations of 574 feet for aquatic bed species (Zone A), 575 feet for non-persistent emergent species (Zone B), and 576 feet for persistent emergence species (Zone C). A water elevation chart is included as Attachment A-2. This water level chart shows the history of the lake elevation starting in April 1996 until present.

2. Operation and maintenance of the ground water pre-treatment system, as described in the Pre-Treatment System Operations Plan,

Regarding Operation and maintenance of the ground water pre-treatment system, the monthly submittals to the Niagara Country Sewer District #1 detailing analytical and flow data for this reporting period are included in Attachment B. Six months (October 1998 through March 1999) of submittals as shown in Table 2-1 are included with this report.

Table 2-1 Niagara County Sewer District #1 Submittals			
Submittal Date Sampling Date			
October 13, 1998	September 24, 1998		
November 5, 1998	October, 1998		
December 10, 1998	November 5, 1998		
January 6, 1999	December 4, 1998		
February 10, 1999 January 8, 1999			
March 11, 1999 February 4, 1999			

Also included in Attachment B is Table 2-2 which summarizing Operation, Maintenance, and Monitoring Activities for the site during this reporting period.

3. Performance of a ground water monitoring program to monitor ground water conditions at the site and to verify the inward hydraulic gradient within the capped area,

Regarding performance of a ground water monitoring program, the report "Frontier Chemical - Pendleton Site, Semi-Annual Ground Water Monitoring Report" dated March 1999 is included as Attachment C-2.

4. Evaluation of operation, maintenance, and monitoring activities and identification of proposed changes to the O&M Manual or site procedures and policies which would provide a safer and/or more cost-effective operation, and

Regarding evaluation of operation, maintenance, and monitoring activities and identification of proposed changes, a letter detailing the status of the maintenance work completed in April 1998 is include in Attachment D-1.

5. Recordkeeping

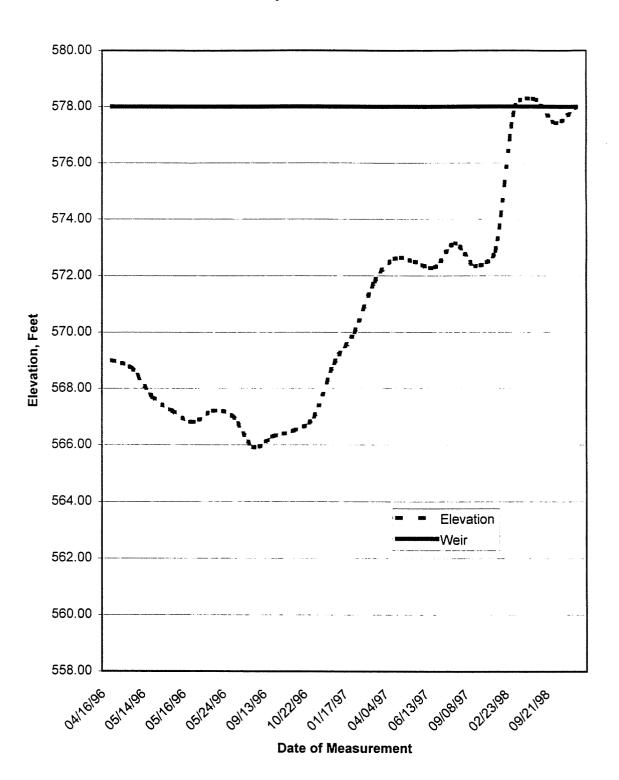
Regarding recordkeeeping activities, Ben Brayley who has replaced Jim Reed, maintains site records both at the Site and at Olin's Niagara Falls Plant including daily and weekly logs and charts. Glynn Geotechnical (Jesse Grossman) provides assistance to Ben Brayley and updates O&M documentation. O'Brien & Gere Engineers (Steve Anagnost) provide ground water level measurement, sampling, monitoring, and analytical field and office support. John Burns maintains analytical results and reports to NCSD #1 and NYSDEC from Olin's Charleston Plant. All these records are available for review and inspection upon reasonable notice.

6. Miscellaneous

The PRP Group's discharge permit, #96-11, with the Niagara County Sewer District #1 was renewed during this reporting period. The new discharge permit, #98-11 is included in the attachments. There were no changes in reporting requirements.

Conclusion

The work performed for the Site from September 1998 to March 1999 was reviewed and found to be in accordance with the approved O&M Manual for the Site.


Attachment A –Quarry Lake Level Plot versus Time

1 Quarry Lake Level - February 2, 1999

- 1 Quarry Lake Level February 2, 1999
 - Table A-1 Quarry Lake Level Plot versus Time
 - Chart A-1 Quarry Lake Water Elevationsa

Table A-1				
Frontier Chemical – Pendleton Site				
Quarry Lake Level Plot versus Time				
Date	Elevation			
4/16/96	569.00			
5/9/96	568.70			
5/14/96	567.70			
5/15/96	567.20			
5/16/96	566.80			
5/21/96	567.20			
5/24/96	567.00			
8/19/96	565.92			
9/13/96	566.30			
9/30/96	566.50			
10/22/96	567.00			
11/13/96	568.90			
1/17/97	570.00			
3/7/97	571.80			
4/4/97	572.60			
4/16/97	572.50			
6/13/97	572.30			
6/24/97	573.15			
9/8/97	572.34			
10/28/97	572.88			
2/23/98	578.00			
4/30/98	578.26			
9/21/98	577.42			
2/4/99	577.97			

Chart A-1
Frontier Chemical - Pendleton Site
Quarry Lake Water Elevations

Mr. Frank Nerone Chief Operator Niagara County Sewer District #1 7346 Liberty Drive Niagara Falls, NY 14304

Subject:

Analytical Sampling Results (9/24/94 Samples)

Groundwater Discharge Through Pre-Treatment System

Pendleton (Frontier Chemicai) Site

Dear Mr. Nerone:

Enclosed for your review are analytical results from the September 24, 1998, monthly sampling event for discharge of collected groundwater from the pre-treatment system at the Pendleton Site. The sample taken on September 3, 1998 was not picked up by the laboratory and was discarded. Analytical results for this sampling event are compared against the Permit (#96-11) requirements on the attached Analytical Summary and Daily Flow sheets.

A review of the energice and flow data shows that all permit parameters are significantly below the stated permit requirements.

This date is being provided for your review and concurrence that all permit parameters are well within their limits. If, following review of the enclosed information, you are not in agreement with the above stated conclusion, please contact me at 423-336-4057 as soon as possible so we may discuss any future monitoring requirements.

Sincerely,

John W. Euros

for the Fruntier Chemical - Pendiaton Site PRP Group

Enclosures: as stated co: D. Kummer

Pendleton Site Technical Committee

DAILY FLOW DATA - PENDLETON SITE SEPTEMBER 1998

	TOTALIZER	DAILY	
DATE	READING	FLOW	
9/1/98	291268	158	avg.
9/2/98			avg.
9/3/98	291583	104	
9/4/98	291687	155	
9/5/98	291842	104	
9/6/98	291946	101	
9/7/98	292047	155	
9/8/98	292202	104	
9/9/98	292306	104	
9/10/98	292410	105	
9/11/98	292515		avg.
9/12/98			avg.
9/13/98			avg.
9/14/98	292881	102	
9/15/98	292983	155	
9/16/98	293138	104	
9/17/98	293242	156	
9/18/98	293398		avg.
9/19/98		181	avg.
9/20/98	293759	103	
9/21/98	293862	102	avg.
9/22/98	293964	121	
9/23/98		121	
9/24/98	294206	104	
9/25/98	294310	104	
9/26/98	294414	104	
9/27/98	294518	158	1
9/28/98	294676	. 157	
9/29/98	294833	102	
9/30/98	294935		
AVERACE DAILY	FLOW IN GALLONS	126	

AVERAGE DAILY FLOW IN GALLONS 126

= DRY VAULT GROUNDWAT	ER RELIEF
	gallons
	gallons
	gallons
	gallons
TOTAL GALLONS	0

avg =flow between data points divided by days of missing data avg =(291583-291268)/2 or 158 gallons per day for data between 9/1/98 and 9/3/98

Frontier Chemical - Pendleton Site Analytical Summary for WS 001 Permit # 96-11

Groundwater Discharge Point: D 002

287 717 Gallons Discharged Prior To 8/5/98
6 489 Gallons Since Last Report 132 Average Daily Flow Based on 49 days Between Samples

Parameters	Permit	Detection	9/24/98 Sample
<u> </u>	Limit	Limits	Results
reatment System Discharge	GPD		GPD
Discharge Rate(1)	662		
24 Analytes	ug/L	ug/L	ug/L
Toluene	10.0	1.0	
1,2-Dichloroethane	10.0	1.0	}
4-Methyl-2-Pentanone	10.0	5.0	1
Vinyl Chloride	10.0	2.0	
Methylene Chloride	10.0	2.8	i
trans-1,2-Dichloroethene	10.0	1.0	
1.1.1-Trichloroethane	10.0	1.0	
Trichloroethene	10.0	1.0	1
Benzene	10.0	1.0	
Chloromethane		2.0	
Bromomethane		2.0	- 1
Chloroethane		2.0	i
Chioroform	1	1.0	
Carbon Tetrachloride	1	1.0	i
1,1-Dichloroethene	1	1.0	
Trichlorofluoromethane	ł	2.0	
1,1-Dichloroethane	1	1.0	
1,2-Dichloropropane	1	1.0	
Bromodichloromethane	1	1.0	
2-Chloroethylvinyi ether	1	2.0	
cis-1,3-Dichloropropene	1	1.0	
trans-1,3-Dichloropropens	1	1.0	
1,1,2-Trichloroethane	1	1.0	
Tetrachioroethene		1.2	
Dibromochloromethane		1.0	ļ
Chiorobenzene		1.0	
Ethylbenezene	1	1.0	
Bromoform		1.0	
1,1,2,2-Tetrachioroethane		1.0	
1,3-Dichlorobenzene		1.0	
1.4-Dichlorobezene		1.0	
1,2-Dichlorobenzene		1.0	
Sum of 624 Analytes		100.0	0.0
508 Pesticides(2)	ug/L		ug/L
alpha BHC	10.0	1 1	
beta BHC	20.0	1 '	
delta BHC .	10.0		
gamme BHC	10.0		
Heptachlor	8.0		
Aldrin	8.0	1	
Heptachlor Epoxide	9.0		
4,4-DDE	20.0	1	
Methoxychior	18.0	0.007	
Metals	mg/L	. mg/L	mg/L
Antimony	0.1	, ,	< 0.009
Boron	4.00	0.012	0.826
Chromium	5.33	0.005	0.007
Cyanide(T)	2.0	0.005	< 0.005
Other Total Phenolics	mg/L NA		
		0.005	< 0.005

- Legend:
 (1) Permit limit @ 662 GPD with maximum daily discharged @ 2500 GPD
 (2) Discontinue per April 14, 1997 Letter from F. Narrone to PRP Group
- (a) Detected in blank
- NA Not applicable
- (*) Resampled date due to laboratory not picking up sample taken on 9/3/98

WASTE STREAM TECHNOLOGY, INC.

302 Grote Street Buffalo, NY 14207 (716) 876-5290 RECEIVED

OCT 5 1998

JOHN DIIRNS

Analytical Data Report

Report Date: 09/29/98

Group Numbers: 9801-1290, 1309

Prepared For:
Mr. John Burns
Olin Corporation
P.O. Box 248
1186 Lower River Road NW
Charleston, TN 37310

Site: Frontier Chemical - Pendelton

Field and Laboratory Information

Client Id	WST Lab #	Matrix	Date Sampled	Date Received	Time
GAC II	WS45593	Aqueous	9/3/98	9/22/98	1300
GAC II	WS45647	Aqueous	9/24/98	9/25/98	1155
Trip Blank	WS45648	Aqueous	9/24/98	9/25/98	1155
Sample Status Upon Rec	eipt : No irregular	rities.			-

	Analytical Services	
Analytical Parameters	Number of Samples	Turnaround Time
624	2	Standard
Metals	1	Standard
Cyanide	1	Standard
Phenol	1	Standard
Total Suspended Solids	· 1	Standard

Report Released By:

Daniel Vollmer, Laboratory QA/QC Officer

METHODOLOGIES

The specific methodologies employed in obtaining the analytical data reported are indicated on each of the result forms. The method numbers shown refer to the following U.S. Environmental Protection Agency Reference:

Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020, March 1979, Revised 1983, U.S. Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268.

Federal Register, 40 CFR Part 136: Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act. Revised July 1992.

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. Third Edition, Revised December 1996, U.S. EPA SW-846.

Annual Book of ASTM Standards, Volume II. ASTM, 100 Harbor Drive, West Conshohocken, PA 19428-2959.

Standard Methods for the Examination of Water and Wastewater. (18th Edition). American Public Health Association, 1105 18th Street, NW, Washington, D.C. 20036.

ORGANIC DATA QUALIFIERS

- U Indicates compound was analyzed for but not detected.
- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicates the presence of a compound that meets indentification criteria, but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank as well as the sample.
- E This flag identifies all compounds whose concentrations exceed the calibration range of the GC/MS instrument of that specific analysis.
- D This flag identifies all compounds identified in an analysis at a secondary dilution factor.
- G Matrix spike recovery is greater than the expected upper limit of analytical performance.
- L Matrix spike recovery is less than the expected lower limit of analytical performance.
- # Indicates that a surrogate recovery was found to be outside the expected limits of analytical performance.
- \$ Indicates that the surrogate compound was diluted out. The sample had to be diluted to obtain analytical results and a recovery could not be calculated.
- (%) Indicates that the compound is a surrogate and that the value reported for this compound is in percent recovery. The quality control recovery limits (QC Limits) are indicated in the detection limit column.

waste Stream Technology, Inc. Wet Chemistry Result Report

Site: Frontier Chemical - Pendelton

Date Sampled: 9/03/98

Date Received: 9/22/98

Client ID: GAC II Lab ID: WS45593 Group Number: 9801-1290

Matrix: Aqueous

Parameter	Units	Detection Limit	Result	Analysis Date	Analysis Method
Phenol	mg/l	0.005	< 0.005	9/25/98	EPA 420.1

Waste Stream Technology, Inc. Metals Analysis Result Report

Site: Frontier Chemical - Pendelton

Date Sampled: 9/03/98

Date Received: 9/22/98

Group Number:9801-1290

Report Units: mg/L

Matrix: Aqueous

Lab ID Number	WS45593
Client ID	GAC II
Date Digested	9/29/98

	Detection		Date	Analysis
Analyte	Limit	Result	Analyzed	Method
Boron by ICP	0.012	0.826	9/29/98	EPA 200.7
Antimony by GFAA	0.009	< 0.009	9/29/98	EPA 200.9
Chromium by ICP	0.005	0.007	9/29/98	EPA 200.7

Waste Stream Technology, Inc. Wet Chemistry Result Report

Site: Frontier Chemical - Pendelton

Group Number: 9801-1309
4/98 Matrix: Aqueous

Date Sampled: 9/24/98 Date Received: 9/25/98

Client ID: GAC II Lab ID: WS45647

Parameter	Units	Detection Limit	Result	Analysis Date	Analysis Method
TSS	mg/L	4.0	< 4.0	9/28/98	EPA 160.2
Cyanide	mg/L	0.005	< 0.005	9/29/98	EPA 335.2

Waste Stream Technology, Inc Volatile Organics Analysis 40 CFR 136 Method 624

Site: Frontier Chemical - Pendelton

Date Sampled: 9/24/98 Date Received: 9/25/98 Group Number: 9801-1309

Report Units: ug/L Matrix: Aqueous

WST Lab ID	WS45647	-
Client ID	GAC II	
Analysis Date	9/29/98	

	Analysis Data	0/20/00	
	Analysis Date	9/29/98	
	Detection Limit/	Dte	•
Compound	QC Limits (%)	Result	<u>Q</u>
chloromethane	2.0	2.0	U
bromomethane	2.0	2.0	U
vinyl chloride	2.0	2.0	Ŭ
chloroethane	2.0	2.0	U
methylene chloride	2.8	2.8	U
trichlorofluoromethane	2.0	2.0	U
1,1-dichloroethene	1.0	1.0	U
1,1-dichloroethane	1.0	1.0	U
trans-1,2-dichloroethene	1.0	1.0	U
chloroform	1.0	1.0	U
1,2-dichloroethane	1.0	1.0	U
1,1,1-trichloroethane	1.0	1.0	U
carbon tetrachloride	1.0	1.0	U
bromodichloromethane	1.0	1.0	U
1,2-dichloropropane	1.0	1.0	U
cis-1,3-dichloropropene	1.0	1.0	U
trichloroethene	1.0	1.0	U
benzene	1.0	1.0	U
dibromochloromethane	1.0	1.0	U
trans-1,3-dichloropropene	1.0	1.0	U
1,1,2-trichloroethane	1.2	1.2	U
2-chloroethylvinyl ether	2.0	2.0	U
bromoform	1.0	1.0	U
tetrachloroethene	1.0	1.0	U
1,1,2,2-tetrachloroethane	1.0	1.0	U
toluene	1.0	1.0	U
chlorobenzene	1.0	1.0	U
ethylbenzene	1.0	1.0	U
1,3-dichlorobenzene	1.0	1.0	U
1,4-dichlorobenzene	1.0	1.0	U
1,2-dichlorobenzene	1.0	1.0	U
4-methyl-2-pentanone	5.0	5.0	U
1,2-Dichloroethane-d4 (%)	76 - 114	82	
Toluene-d8 (%)	88 - 110	90	
Bromofluorobenzene (%)	86 - 115	96	

Dilution Factor

1

Waste Stream Technology, Inc Volatile Organics Analysis 40 CFR 136 Method 624

Site: Frontier Chemical - Pendelton

Date Sampled: 9/24/98 Date Received: 9/25/98 Group Number: 9801-1309

Report Units: ug/L Matrix: Aqueous

WST Lab ID	WS45648	
Client ID	Trip Blank	
Analysis Date	9/29/98	

	A seed seed a Donate	0/20/08	
	Analysis Date	9/29/98	
	Detection Limit/		0
Compound	QC Limits (%)	Result	<u>Q</u>
chloromethane	2.0	2.0	U
bromomethane	2.0	2.0	U
vinyl chloride	2.0	2.0	U
chloroethane	2.0	2.0	U
methylene chloride	2.8	2.8	U
trichlorofluoromethane	2.0	2.0	U
1,1-dichloroethene	1.0	1.0	U
1,1-dichloroethane	1.0	1.0	Ų
trans-1,2-dichloroethene	1.0	1.0	U
chloroform	1.0	1.0	U
1,2-dichloroethane	1.0	1.0	U
1,1,1-trichloroethane	1.0	1.0	Ú
carbon tetrachloride	1.0	1.0	U
bromodichloromethane	1.0	1.0	U
1,2-dichloropropane	1.0	1.0	U
cis-1,3-dichloropropene	1.0	1.0	U
trichloroethene	1.0	1.0	U
benzene	1.0	1.0	U
dibromochloromethane	1.0	1.0	U
trans-1,3-dichloropropene	1.0	1.0	U
1,1,2-trichloroethane	1.2	1.2	U
2-chloroethylvinyl ether	2.0	2.0	U
bromoform	1.0 ·	1.0	U
tetrachloroethene	1.0	1.0	U
1,1,2,2-tetrachloroethane	1.0	1.0	U
toluene	1.0	1.0	U
chlorobenzene	1.0	1.0	U
ethylbenzene	1.0	1.0	U
1,3-dichlorobenzene	1.0	1.0	U
1,4-dichlorobenzene	1.0	1.0	U
1,2-dichlorobenzene	1.0	1.0	U
4-methyl-2-pentanone	5.0	5.0	U
1,2-Dichloroethane-d4 (%)	76 - 114	81	
Toluene-d8 (%)	88 - 110	87	#
Bromofluorobenzene (%)	86 - 115	94	

Dilution Factor

Waste Stream Technology, Inc VOCs Method Blank Analysis 40 CFR 136 Method 624

Site: Frontier Chemical - Pendelton

Date Sampled: NA Date Received: NA

Group Number: 9801-1309

Report Units: ug/L

WST Lab ID	IB092998	**********
Client ID	NA	
Analysis Date	9/29/98	

	Analysis Date	9/29/98	
	Detection Limit/	9/23/38	
Comment	QC Limits (%)	Result	a
Compound chloromethane	2.0	2.0	Ü
	2.0	2.0	Ü
vinyl chloride	2.0	2.0	U
chloroethane	2.0	2.0	Ü
methylene chloride	2.8	2.8	Ü
trichlorofluoromethane	2.0	2.0	U
1,1-dichloroethene	1.0	1.0	Ü
1,1-dichloroethane	1.0	1.0	Ü
trans-1,2-dichloroethene	1.0	1.0	Ū
chloroform	1.0	1.0	U
1,2-dichloroethane	1.0	1.0	Ü
1,1,1-trichloroethane	1.0	1.0	U
carbon tetrachloride	1.0	1.0	U
bromodichloromethane	1.0	1.0	U
	1.0	1.0	Ü
1,2-dichloropropane	1.0	1.0	Ü
cis-1,3-dichloropropene	1.0	1.0	U
trichloroethene	1.0	1.0	l Ü
benzene	1.0	1.0	U
dibromochloromethane	1.0	1.0	l Ü
trans-1,3-dichloropropene	1.2	1.0	U
1,1,2-trichloroethane	2.0	2.0	U
2-chloroethylvinyl ether	1.0	1.0	Ü
bromoform	1.0	1.0	Ü
tetrachloroethene	1.0	1.0	U
1,1,2,2-tetrachloroethane	1.0	1.0	U
toluene	1.0		U U
chlorobenzene		1.0	U
ethylbenzene	1.0	1.0	U
1,3-dichlorobenzene	1.0	1.0	U
1,4-dichlorobenzene	1.0	1.0	
1,2-dichlorobenzene	1.0	1.0	U
4-methyl-2-pentanone	5.0	5.0	U
1,2-Dichloroethane-d4 (%)	76 - 114	87	
Toluene-d8 (%)	88 - 110	89	
Bromofluorobenzene (%)	86 - 115	92	

Dilution Factor

IB Denotes Instrument Blank

NA Denotes Not Applicable

TECHNOLOGY

302 GROTE STREET BUFFALO, NY 14207 (716) 876-5290

CHAIN OF CUSTODY RECORD

RECEIVED BY (SIGNATURE) RECEIVED BY (SIGNATURE) REMARKS PAESERVATIVES 12 46 12 40 DATE/TIME Mach. DATE/TIME HW03 0801-1220 REUNQUISHED BY (SIGNATURE) RELINCUISHED BY CAIGNATURE 1 1 07-1 1-LO Amba SIZE & NO. OF TAINERS 5000 L CON RECEIVED BY (SIGNATURE) RECÉIVED BY (SIGNATURE) SAMPLE LOCATION Frontier Pendelton GAC II SITE NAME: DATE/TIME SAMPLE DATE TIME COMP GRAB MATRIX NO. 9 T. 9/4 1/34 DATE/TIME H_{L^0} RELINCOUSHED BY (SIGNATURE) REINPOOSHED BY SIGNATURE) SPECIAL INSTRUCTIONS: SAMPLERS (SIGNATURE): (TURNAROUND TIME 4/3 10MM PROJECT NO. 38 03608 03610 11960 03609 0 561I 46 16 4

SHELF #.

GROUP #.

DUE DATE.

REFRIGERATOR #.

LAB

REUNDINSHEDBY (SIGNATURE) DATE MARE REUNDINSHEDBY (SIGNATURE) DATE MARE REUNDINSHEDBY (SIGNATURE) DATE MARE REUNDINSHEDBY (SIGNATURE) DATE MARE RECEIVED BY (SIGNATURE) DATE MARE RECEIVED BY (SIGNATURE)

November 5, 1998

Mr. Frank Nerone Chief Operator Niagara County Sewer District #1 7346 Liberty Drive Niagara Falls, NY 14304

Subject:

Analytical Sampling Results (10/8/98 Samples)

Groundwater Discharge Through Pre-Treatment System

Pendleton (Frontier Chemical) Site

Dear Mr. Nerone:

Enclosed for your review are analytical results from the October 10, 1998, monthly sampling event for discharge of collected groundwater from the pre-treatment system at the Pendleton Site. Analytical results for this sampling event are compared against the Permit (#96-11) requirements on the attached Analytical Summary and Daily Flow sheets.

A review of the analytical and flow data shows that all permit parameters are significantly below the stated permit requirements.

This data is being provided for your review and concurrence that all permit parameters are well within their limits. If, following review of the enclosed information, you are not in agreement with the above stated conclusion, please contact me at 423-336-4057 as soon as possible so we may discuss any future monitoring requirements.

Sincerely,

John M. Burns

for the Frontier Chemical - Pendleton Site PRP Group

Enclosures: as stated cc: D. Kummer

Pendleton Site Technical Committee

DAILY FLOW DATA - PENDLETON SITE OCTOBER 1998

	TOTALIZER	DAILY	
DATE	READING	FLOW	
10/1/98	295038	135	
10/2/98	295173	105	
10/3/98	295278	105	
10/4/98	295383	104	
10/5/98	295487	104	
10/6/98	295591	117	
10/7/98		117	
10/8/98	295825	203	
10/9/98	296028	106	
10/10/98	296134	102	
10/11/98	296236	107	
10/12/98	296343	103	
10/13/98	296446	104	
10/14/98	296550	106	
10/15/98	296656	107	
10/16/98	296763	79	
10/17/98		79	
10/18/98	296921	105	
10/19/98	297026	211	
10/20/98	297237	106	
10/21/98	297343	103	
10/22/98	297446	104	
10/23/98	297550	54	
10/24/98		54	
10/25/98		54	
10/26/98	297711	105	
10/27/98	297816	101	
10/28/98	297917	100	
10/29/98	298017	53	
10/30/98		53	
10/31/98	298123		
41/5040504411	ELOWIN GALLONS	103	

AVERAGE DAILY FLOW IN GALLONS 103

= DRY VAULT GRO	UNDWATER RELIE	E F
		gallons
TOTAL GALLONS	0	

avg =Flow between data points divided by days of missing data.

avg =(295591-295825)/2 or 117 gallons per day for data between 10/6/98 and 10/8/98.

Frontier Chemical - Pendleton Site Analytical Summary for WS 001 Permit # 96-11

Groundwater Discharge Point: D 002

 294
 206
 Gallons Discharged Prior To
 9/24/98

 1
 519
 Gallons Since Last Report
 4 days Between Samples

 116
 Average Daily Flow Based on 14 days Between Samples

	T		10/8/98
0	Permit	Detection	
Parametera	Limit		Sample
Tarana and Surana Binahana	GPD	Limits	Results GPD
Treatment System Discharge	662		GFU
Discharge Rate(1)	902		
624 Analytes	ug/L	ug/L	ug/L
Toluene	10.0	1.0	
1,2-Dichloroethane	10.0	1.0	1
4-Methyl-2-Pentanone	10.0	5.0	1
Vinyl Chloride	10.0	2.0	i i
Methylene Chioride	10.0	2.8	
trans-1,2-Dichloroethene	10.0	1.0	ł i
1,1,1-Trichloroethane	10.0	1.0	[]
Trichloroethene	10.0	1.0	1
Benzene	10.0	1.0	
Chloromethane		2.0	
Bromomethane		2.0	
Chloroethane		2.0	1
Chloroform		1.0	i
Carbon Tetrachloride		1.0	
1,1-Dichloroethene		1.0	
Trichlorofluoromethane		2.0	
1,1-Dichloroethane		1.0	
1,2-Dichloropropane		1.0	
Bromodichloromethane		1.0	
2-Chloroethylvinyl ether		2.0	
cis-1,3-Dichloropropene		1.0	
trans-1,3-Dichloropropene	1	1.0	
1,1,2-Trichloroethane		1.0	
Tetrachloroethene		1.2	
Dibromochloromethane		1.0	
Chlorobenzene		1.0	
Ethylbenezene		1.0	
Bromoform		1.0	
1,1,2,2-Tetrachloroethane		1.0	
1,3-Dichlorobenzene		1.0	
1,4-Dichlorobezene	l	1.0	
1,2-Dichlorobenzene		1.0	
Sum of 624 Analytes		100.0	0.0
608 Pesticides(2)	ug/L	ug/L	ug/L
alpha BHC	10.0	0.003	T
beta BHC	20.0	0.006	
delta BHC	10.0	0.010	
gamme BHC	10.0	0.003	
Heptachior	8.0	0.022	1
Aldrin	8.0	0.018	
Heptachlor Epoxide	9.0	0.009	
4,4-DDE	20.0	0.005	
Methoxychlor	18.0	0.007	
Metals	mg/L	mg/L	mg/L
Antimony	0.1	0.009	< 0.009
Boron	4.00	0.009	0.811
Chromium	5.33	0.012	< 0.005
3	2.0		0.005
Cyanide(T)		0.003	0.000
Other	mg/L	mg/L	mg/L
Other Total Phenolics TSS	mg/L NA 300	mg/L 0.005 4.000	mg/L < 0.005 < 4.000

- Legend:
 (1) Permit limit @ 662 GPD with maximum daily discharged @ 2500 GPD
 (2) Discontinue per April 14, 1997 Letter from F. Narrone to PRP Group.
 (a) Detected in blank
 NA Not applicable

WASTE STREAM TECHNOLOGY, INC.

302 Grote Street Buffalo, NY 14207 (716) 876-5290 REDENTED

1998

Analytical Data Report

Report Date: 10/26/98 Group Number: 9801-1383

Prepared For:
Mr. John Burns
Olin Corporation
P.O. Box 248
1186 Lower River Road NW
Charleston, TN 37310

Site: Frontier - Pendelton

Field and Laboratory Information

Client Id	WST Lab #	Matrix	Date Sampled	Date Received	Time
GAC II	WS46135	Aqueous	10/8/98	10/9/98	1300
Sample Status Upon Receipt : No irregularities.					

Analytical Services						
Analytical Parameters	Number of Samples	Turnaround Time				
Total Metals	1	Standard				
Cyanide	1	Standard				
Phenol	1	Standard				
Total Suspended Solids	1	Standard				

Report Released By:

Daniel Vollmer, Laboratory QA/QC Officer

METHODOLOGIES

The specific methodologies employed in obtaining the analytical data reported are indicated on each of the result forms. The method numbers shown refer to the following U.S. Environmental Protection Agency Reference:

Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020, March 1979, Revised 1983, U.S. Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268.

Federal Register, 40 CFR Part 136: Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act. Revised July 1992.

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. Third Edition, Revised December 1996, U.S. EPA SW-846.

Annual Book of ASTM Standards, Volume II. ASTM, 100 Harbor Drive, West Conshohocken, PA 19428-2959.

Standard Methods for the Examination of Water and Wastewater. (18th Edition). American Public Health Association, 1105 18th Street, NW, Washington, D.C. 20036.

Metals Analysis Result Report

Site: FRONTIER-PENDELTON

Date Sampled: 10/08/98 Date Received: 10/09/98

Matrix:

Group Number: 9801-1383

Report Units: mg/L

AQUEOUS

Lab ID Number	WS46135
Client ID	GAC II
Date Digested	10/14/98

Analyte	Detection Limit		Result	Date Analyzed	Analysis Method
Boron by ICP	0.012		0.811	10/14/98	EPA 200.7
Chromium by ICP	0.005	<	0.005	10/14/98	EPA 200.7
Antimony by GFAA	0.009	<	0.009	10/19/98	EPA 200.9

Traste Sucam recimology, Inc. **Analysis Result Report**

Site: FRONTIER-PENDELTON

Date Sampled: 10/08/98

Date Received: 10/09/98

Group Number: 9801-1383

Report Units: mg/L Matrix: AQUE

AQUEOUS

Lab ID Number: WS46135 Client ID: GAC II

Analyte	Detection Limit		Result	Date Analyzed	Analysis Method
Total Recoverable Phenol	0.005	<	0.005	10/13/98	EPA 420.1
Cyanide in Water	0.005		0.006	10/21/98	EPA 335.2

Total Suspended Solids EPA 160.2

Site: FRONTIER-PENDELTON

Date Sampled: 10/08/98 Date Received: 10/09/98

Group Number: 9801-1383

Report Units: Matrix:

mg/L AQUEOUS

	WST Lab ID	Client ID	Analysis Date	Detection Limit	Result
Ì	WS46135	GAC II	10/13/98	4.0	< 4.0

WASTE STREAM TECHNOLOGY

BUFFALO, NY 14207 (716) 876-5290 302 GROTE STREET

9 861-1383

CHAIN OF CUSTODY RECORD

RECEIVED BY (SIGNATURE) RECEIVED BY (SIGMATURE) D.v. polity REMARKS WSHLT PAESERVATIVES H_SOW O/C/ DATE/TIME NaOH DATE/TIME HNO Ø RELINQUISHED BY (SIGNATURE) REJINGUISHED BY (STGNATURE) **TAINERS** SIZE & NO. OF 1. CON-RECEIVED BY (SIGNATURE) RECEIVED BY (SKGNATURE) SAMPLE LOCATION GAC II Frontier - Pendelton 1 0081 610 SAMPLERS (SIGNATURE): James Reed DATE/TIME DATE/TIME SAMPLE DATE TIME COMP GRAB MATRIX $H^{r}o$ TURNAROUND TIME /C PC RELINQUISHED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) SPECIAL INSTRUCTIONS: 7 105 10/ 10m. ` PROJECT NO: ~ 21980 Ostelle 08617 107 105

SHELF #_

GROUP #.

DUE DATE __

REFRIGERATOR #. LAB U

December 10, 1998

Mr. Frank Nerone Chief Operator Niagara County Sewer District #1 7346 Liberty Drive Niagara Falls, NY 14304

Subject:

Analytical Sampling Results (11/5/98 Samples)

Groundwater Discharge Through Pre-Treatment System

Pendleton (Frontier Chemical) Site

Dear Mr. Nerone:

Enclosed for your review are analytical results from the November 5, 1998, monthly sampling event for discharge of collected groundwater from the pre-treatment system at the Pendleton Site. Analytical results for this sampling event are compared against the Permit (#96-11) requirements on the attached Analytical Summary and Daily Flow sheets.

A review of the analytical and flow data shows that all permit parameters are significantly below the stated permit requirements.

This data is being provided for your review and concurrence that all permit parameters are well within their limits. If, following review of the enclosed information, you are not in agreement with the above stated conclusion, please contact me at 423-336-4057 as soon as possible so we may discuss any future monitoring requirements.

Sincerely.

for the Frontier Chemical - Pendleton Site PRP Group

Enclosures: as stated cc: D. Kummer

Pendleton Site Technical Committee

Frontier Chemical - Pendleton Site Analytical Summary for WS 001 Permit # 96-11

Groundwater Discharge Point: D 002

295.825	Gallons Discharged Prior To	10/8/98
2 788	Gallons Since Last Report	
57	Average Daily Flow Based on	23 days Between Samples

	1		11/5/98
Parameters	Permit	Detection	Sample
r diametris	Limit	Limits	Results
Treatment System Discharge	GPD	- LEG	GPD
Discharge Rate(1)	662		
• •			
624 Analytes	ug/L	ug/L	ug/L
Toluene	10.0	1.0	
1,2-Dichloroethane	10.0	1.0	
4-Methyl-2-Pentanone	10.0	5.0	
Vinyl Chloride	10.0	2.0	
Methylene Chloride	10.0	2.8	
trans-1,2-Dichloroethene	10.0	1.0	
1,1,1-Trichloroethane Trichloroethene	10.0	1.0	
i richioroemene Benzene	10.0	1.0	
Chloromethane	10.0	1.0 2.0	
Bromomethane		2.0	
Chioroethane		2.0	
Chioroform		1.0	
Carbon Tetrachioride	j	1.0	l l
1,1-Dichioroethene]	1.0	
Trichlorofluoromethane		1.0 2.0	1
1,1-Dichioroethane		1.0	
1,2-Dichloropropane		1.0	
Bromodichioromethane		1.0	
2-Chioroethylvinyl ether		2.0	
cis-1,3-Dichloropropene	1 1	1.0	l l
trans-1,3-Dichloropropene		1.0	
1,1,2-Trichloroethane	l 1	1.0	l l
Tetrachioroethene		1.2	
Dibromochloromethane		1.0	
Chlorobenzene	1 1	1.0	ŀ
Ethylbenezene		1.0	ł
Bromoform		1.0	
1,1,2,2-Tetrachioroethane		1.0	
1,3-Dichlorobenzene		1.0	
1,4-Dichlorobezene		1.0	
1,2-Dichlorobenzene		1.0	
Sum of 624 Analytes		100.0	0.0
608 Pesticides(2)		1100	
alpha BHC	ug/L 10.0	ug/L 0,003	ug/L
beta BHC	20.0	0.003	ļ
delta BHC	10.0	0.006	
gamme BHC	10.0	0.010	l
Heptachior	8.0	0.003	1
Aldrin	8.0	0.022	
Heptachlor Epoxide	9.0	0.009	1
4.4-DDE	20.0	0.005	
Methoxychior	18.0	0.007	
Metals	mg/L	mg/L	mg/L
Antimony	0.1	0.009	< 0.009
Boron	4.00	0.012	0.725
Chromium	5.33	0.005	< 0.005
Cyanide(T)	2.0	0.005	< 0.005
Other	mo/L	mg/L	mg/L
Total Phenolics	NA NA	0.005	< 0.005
	300	4.000	< 4.000

- Legend:
 (1) Permit limit @ 662 GPD with maximum daily discharged @ 2500 GPD
 (2) Discontinue per April 14, 1997 Letter from F. Narrone to PRP Group.
 (a) Detected in blank
 NA Not applicable
 (*) Resampled date due to laboratory not picking up sample taken on 9/3/98

DAILY FLOW DATA - PENDLETON SITE NOVEMBER 1998

	TOTALIZER	DAILY	
DATE	READING	FLOW	
11/1/98	298229	106	
11/2/98	298335	53	
11/3/98	298388		avg.
11/4/98		113	avg.
11/5/98	298613	106	Sampled
11/6/98	298719	71	avg.
11/7/98		71	
11/8/98		71	avg.
11/9/98	298933	107	
11/10/98	299040	105	
11/11/98	299145	107	
11/12/98	299252	108	
11/13/98	299360	53	
11/14/98	299413	105	
11/15/98	299518	107	
11/16/98	299625	53	
11/17/98	299678	107	
11/18/98	299785	81	avg.
11/19/98		81	avg.
11/20/98	299947	105	
11/21/98	300052	82	avg.
11/22/98		82	avg.
11/23/98	300215	53	
11/24/98	300268	53	
11/25/98	300321	105	
11/26/98	300426	106	
11/27/98	300532	53	
11/28/98	300585	106	
11/29/98	300691	52	
11/30/98	300743		
	FLOW IN GALLONS	87	

AVERAGE DAILY FLOW IN GALLONS 87

= DRY VAULT GROUNDWATER RELIEF			
		gallons	
		galions	
		gallons	
		gallons	
TOTAL GALLONS	0		

avg =flow between data points divided by days of missing data avg =(298613-298388)/2 or 113 gallons per day for data between 11/3/98 and 11/5/98

WASTE STREAM TECHNOLOGY, INC.

302 Grote Street Buffalo, NY 14207 (716) 876-5290

Analytical Data Report

Report Date: 11/23/98 Group Number: 9801-1532

Prepared For:
Mr. John Burns
Olin Corporation
P.O. Box 248
1186 Lower River Road NW
Charleston, TN 37310

Site: Frontier - Pendelton

Field and Laboratory Information

Client Id	WST Lab #	Matrix	Date Sampled	Date Received	Time
GAC II	WS46988	Aqueous	11/5/98	11/6/98	1220
Sample Status Upon Receipt	: No irregular	ities.			

	Analytical Services	
Analytical Parameters	Number of Samples	Turnaround Time
Total Metals	1	Standard
Cyanide	1	Standard
Phenol	1	Standard
Total Suspended Solids	1	Standard

Report Released By

Daniel Vollmer, Laboratory QA/QC Officer

METHODOLOGIES

The specific methodologies employed in obtaining the analytical data reported are indicated on each of the result forms. The method numbers shown refer to the following U.S. Environmental Protection Agency Reference:

Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020, March 1979, Revised 1983, U.S. Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268.

Federal Register, 40 CFR Part 136: Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act. Revised July 1992.

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. Third Edition, Revised December 1996, U.S. EPA SW-846.

Annual Book of ASTM Standards, Volume II. ASTM, 100 Harbor Drive, West Conshohocken, PA 19428-2959.

Standard Methods for the Examination of Water and Wastewater. (18th Edition). American Public Health Association, 1105 18th Street, NW, Washington, D.C. 20036.

Waste Stream Technology, Inc. Metals Analysis Result Report

Site: FRONTIER-PENDELTON

Date Sampled: 11/05/98 Date Received: 11/06/98 Group Number: 9801-1532

Report Units: mg/L

Matrix:

AQUEOUS

Lab ID Number	WS46988
Client ID	GAC II
Date Digested	11/19/98

Analyte	Detection Limit		Result	Date Analyzed	Analysis Method
Antimony by GFAA	0.009	<	0.009	11/20/98	EPA 200.9
Chromium by ICP	0.005	<	0.005	11/19/98	EPA 200.7
Boron by ICP	0.012		0.725	11/19/98	EPA 200.7

vvaste Stream Technology, Inc. Total Suspended Solids EPA 160.2

Site: FRONTIER-PENDELTON

Date Sampled: 11/05/98

Date Received: 11/06/98

Group Number: 9801-1532

Report Units:

Matrix:

mg/L AQUEOUS

WST Lab ID	Client ID	Analysis Date	Detection Limit	F	Result
WS46988	GAC II	11/09/98	4.0	<	4.0

vvaste Stream Technology, Inc. Total Recoverable Phenol **EPA 420.1**

Site: FRONTIER-PENDELTON

Date Sampled: 11/05/98 Date Received: 11/06/98

Group Number: 9801-1532

Report Units:

mg/L

Matrix:

AQUEOUS

WST Lab ID	Client ID	Analysis Date	Detection Limit	F	Result
WS46988	GAC II	11/18/98	0.005	<	0.005

vvaste stream rechnology, inc. Cyanide in Water EPA 335.2

Site: FRONTIER-PENDELTON

Date Sampled: 11/05/98 Date Received: 11/06/98 Group Number: 9801-1532

Report Units:

mg/L

Matrix:

AQUEOUS

WST Lab ID	Client ID	Analysis Date	Detection Limit	ı	Result
WS46988	GAC II	11/17/98	0.005	<	0.005

MASTE STREAM
TECHNOLOGY

61:n 302 GROTE STREET BUFFALO, NY 14207 (716) 876-5290

764 -1000

CHAIN OF CUSTODY RECORD

PROJECT NO:	414		Fro	וולופנ	SITE NAME	Frontier - Pendelton	SIZE &		95' 2	\sim	\ \ \ !		SANILES	\	
SAMPLERS (SIGNATURE):	S (SIGN	ATUR		Ame)	Keef		NO. OF CON- TAINFRS	10000		5/ //	<u></u>	<u></u>	N _{ESEU} N	KEMAKKS	
SAMPLE	DATE	TIME	COMP	GRAB	SAMPLE DATE TIME COMP GRAB MATRIX	SAMPLE LOCATION							40		
11K 05618	Ny og	10 PM	`\		14°0	GAC IT	1-1 my	1				H250v	λ,	636 aprica	
11 K 05 619	`	٤	``		-		7-1	7				1100,),	966	B
11K 05610		"			11	•	7-1		\ <u>\</u>			NaUH)#(90-00	~
11K 0561	,	``	`\			1,	1-500hu			_		Ø)	J MIC	68
		-								,,					
						-									
NE PER PER PER PER PER PER PER PER PER PE	QUISHE Que	Dece	RELANGUISHED BY (SIGNATURE)		DATE/TIME 116/98 11:104	REGEIVED BY (SHONATURE)	TURE)	RELINGU	RELINQUISHED BY (SIGNATURE)	KSIGNA	TURE)	DATE/TIME	/IIME	RECEIVED BY SIGNATURE)	ATURE)
RELIN	QUISH	ED BY (5	RELINGUISHED BY (SIGNATURE)		DATE/TIME	RECE	MJGRE)	RELINGA	RELINGÚISHED BY (SIGNATURE)	(SIÓNA	.TURE)	DATE/TIME	N N	RECEIVED BY (SIGNATURE)	ATURE)
SPECIAL INSTRUCTIONS:	AL INS	TRUC	TIONS:					-							

∴ REFRIGERATOR #_ LAB

TURNAROUND TIME

SHELF #.

GROUP #.

DUE DATL

January 6,1999

Mr. Frank Nerone Chief Operator Niagara County Sewer District #1 7346 Liberty Drive Niagara Falls, NY 14304

Subject:

Analytical Sampling Results (12/4/98 Samples)

Groundwater Discharge Through Pre-Treatment System

Pendleton (Frontier Chemical) Site

Dear Mr. Nerone:

Enclosed for your review are analytical results from the December 4, 1998, monthly sampling event for discharge of collected groundwater from the pre-treatment system at the Pendleton Site. Analytical results for this sampling event are compared against the Permit (#96-11) requirements on the attached Analytical Summary and Daily Flow sheets.

A review of the analytical and flow data shows that all permit parameters are significantly below the stated permit requirements.

This data is being provided for your review and concurrence that all permit parameters are well within their limits. If, following review of the enclosed information, you are not in agreement with the above stated conclusion, please contact me at 423-336-4057 as soon as possible so we may discuss any future monitoring requirements.

Sincerely,

for the Frontier Chemical - Pendleton Site PRP Group

Enclosures: as stated cc: D. Kummer

Pendleton Site Technical Committee

Distribution: Niagara County Sewer District Monthly Report

Frank Nerone Original Copy of all documents; express mailed for next day delivery.

Dan Kummer Copy of all information; include Dan's copy with Frank Nerrone Copy.

PRP Group from Distribution labels; send copy of cover letter, daily flow data and analytical summary via regular mail.

Tom Morris IBM Corporation Building #2 Route #100 Somers, NY 10589 Phone: 914-766-2739 FAX: 914-766-2824

David Cook, Esq. Nixon, Hargrave, Devans & Doyle 900 Clinton Square P.O. Box 1051 Rochester, NY 14604 Phone: 716-263-1596 FAX: 716-263-1600

Ted Hadzi-Antich, Esq. Key Center Suite 1230 50 Fountain Plaza Buffalo, NY 14202-2212 Phone: 716-852-3300 FAX: 716-852-4174

Mark Piazza Elf AtoChem 2000 Market Street Philadelphia, PA 19103 Phone: 215-419-5884 FAX: 215-419-5670 Tracy Goad Walter, Esq. Dow Chemical Company 2030 Dow Center Midland, MI 48674 Phone: 517-638-9511 FAX: 517-638-9564

Dennis McCanna SIVACO New York P.O. Box 646 3937 River Road Tonawanda, NY 14151-0646 Phone: 716-j874-5681 FAX: 716-874-4440

David Paley AlliedSignal, Inc. 101 Columbia Road P.O. Box 1139 Morristown, NJ 07962-1139 Phone: 201-455-3302 FAX: 201-455-4835

Bill Witt Radian International, LLC 304 West Wackerly Street Midland, MI 48640 Phone: 517-636-2264 FAX: 517-636-8612

Frank Nerone, Chief Operator Niagara County Sewer District #1 7346 Liberty Drive Niagara Falls, NY 14304 Phone: 716-693-0001 FAX: 726-693-8759

Dan Kummer, Laboratory Director Niagara County Sewer District #1 7346 Liberty Drive Niagara Falls, NY 14304 Phone: 716-693-0001

FAX: 716-693-8759

DAILY FLOW DATA - PENDLETON SITE DECEMBER 1998

	TOTALIZER	DAILY]
DATE	READING	FLOW	
12/1/98	300861	114	avg.
12/2/98		114	avg.
12/3/98	301088		Sampled
12/4/98	301157	93	
12/5/98	301250		avg.
12/6/98		108	avg.
12/7/98	301465	107	
12/8/98	301572	57	
12/9/98	301629	107	
12/10/98	301736	53	
12/11/98	301789		avg.
12/12/98			avg.
12/13/98	302001	54	
12/14/98	302055	53	
12/15/98	302108	53	
12/16/98	302161	105	
12/17/98	302266	53	
12/18/98	302319	106	
12/19/98	302425	106	
12/20/98	302531	53	
12/21/98	302584	105	
12/22/98	302689	394	
12/23/98	303083	220	
12/24/98	303303	110	avg.
12/25/98			avg.
12/26/98	303523	107	
12/27/98	303630	53	
12/28/98	303683	105	
12/29/98	303788	52	
12/30/98	303840	108	
12/31/98	303948		
AVERAGE DAILY	FLOW IN GALLONS	103	

 = DRY VAULT GROUNDWAT	
	gallons
	gallons
	gallons
	gallons
TOTAL GALLONS	0

avg =flow between data points divided by days of missing data avg =(301088-300861)/2 or 114 gallons per day for data between 12/1/98 and 12/3/98

DAILY FLOW DATA - PENDLETON SITE DECEMBER 1998

	TOTAL 1===		
DATE	TOTALIZER READING		
12/1/98	300861		avg.
12/2/98			avg.
12/3/98	301088		Sampled
12/4/98	301157	93	
12/5/98	301250		avg.
12/6/98		108	avg.
12/7/98	301465	107	
12/8/98	301572	57	
12/9/98	301629	107	
12/10/98	301736	53	
12/11/98	301789	106	avg.
12/12/98			avg.
12/13/98	302001	54	
12/14/98	302055	53	
12/15/98	302108	53	
12/16/98	302161	105	
12/17/98	302266	53	
12/18/98	302319	106	
12/19/98	302425	106	
12/20/98	302531	53	
12/21/98	302584	105	
12/22/98	302689	394	
12/23/98	303083	220	
12/24/98	303303	110	avg.
12/25/98		110	avg.
12/26/98	303523	107	
12/27/98	303630	53	
12/28/98	303683	105	
12/29/98	303788	52	
12/30/98	303840	108	
12/31/98	303948		
AVERAGE DAIL'	Y FLOW IN GAL	103	

= DRY VAULT G	ROUNDWATER RELIEF
	gallons
	gallons
	gallons
	gallons
TOTAL GALLONS	n

avg =flow between data points divided by days of missing data avg =(301088-300861)/2 or 114 gallons per day for data between 12/1/98 and 12/3/98

WASTE STREAM TECHNOLOGY, INC.

302 Grote Street Buffalo, NY 14207 (716) 876-5290

Analytical Data Report

Report Date: 12/18/98 Group Number: 9801-1687

Prepared For:
Mr. John Burns
Olin Corporation
P.O. Box 248
1186 Lower River Road NW
Charleston, TN 37310

Site: Frontier-Pendelton

Field and Laboratory Information

Client Id	WST Lab #	Matrix	Date Sampled	Date Received	Time
GAC II	WS47803	Aqueous	12/04/98	12/04/98	1300
Sample Status Upon Receipt	: No irregular	ities.			

	Analytical Services	
Analytical Parameters	Number of Samples	Turnaround Time
Total Metals	1	Standard
Cyanide	1	Standard
Phenol	1	Standard
Total Suspended Solids	1	Standard

Report Released By :_

Daniel Vollmer, Laboratory QA/QC Officer

METHODOLOGIES

The specific methodologies employed in obtaining the analytical data reported are indicated on each of the result forms. The method numbers shown refer to the followong U.S. Environmental Protection Agency Reference:

Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. March 1979, Revised 1983, U.S. Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268.

Federal Register, 40 CFR Part 136: Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act. Revised July 1992.

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. Third Edition, Revised December 1996, U.S. EPA SW-846.

Annual Book of ASTM Standards, Volume II. ASTM, 100 Harbor Drive, West Conshohocken, PA 19428-2959.

Standard Methods for the Examination of Water and Wastewater. (18th Edition). American Public Health Association, 1105 18th Street, NW, Washington, D.C. 20036.

Wet Chemistry Analyses

Site: Frontier-Peridelton Date Sampled: 12/04/98 Date Received: 12/04/98

Group Number: 9801-1687

Matrix: Aqueous

WST ID: WS47803 Client ID GAC II

Analysis	Method Reference	Detection Limit	Result	Units	Date Analyzed
Cyanide in Water	EPA 335.2	0.005	0.007	mg/L	12/09/98
Total Suspended Solids	EPA 160.2	4.0	Not detected	mg/L	12/08/98
Total Recoverable Phenol	EPA 420.1	0.005	Not detected	mg/L	12/11/98

waste Stream Technology, Inc. Metals Analysis Result Report

Site: Frontier-Pendelton Date Sampled: 12/04/98 Date Received: 12/04/98 Group Number: 9801-1687

Units: mg/L Matrix: Aqueous

WST ID: WS47803 Client ID: GAC II Digestion Date: 12/10/98

Analyte	Detection Limit	Result	Date Analyzed	Analysis Method
Antimony by GFAA	0.009	Not detected	12/15/98	EPA 200.9
Boron by ICP	0.012	0.765	12/16/98	EPA 200.7
Chromium by ICP	0.005	Not detected	12/16/98	EPA 200.7

302 GROTE STREET BUFFALO, NY 14207 (716) 876-5290

T E C H N O L O	ار الاستان الاستان الاستان	6	3()	(7.16) 876-5290		~			CHAIL	CHAIN OF CUSTODY RECORD
PROJECT NO:	11/11 H	111	1	SITE NAME:		0121		W/	13/10/	\$3,
SAMPLERS (SIGNATURE): (GNATU		(1.1. 1.1.)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		NO. OF			WILL THE STATE OF	REMARKS
SAMPLE D	DATE IIMI	TIME COMP		MATRIX	SAMPLE LOCATION	TAINERS		//6/~		_
12 6 12	1.3/k	ź		140	21 24 8	1 L				2 46.11.30.41
126		1		-	11	1005			0,711	
12 L 1	_	. 7		-	,,	7/	>		16.01	SVIII
13 6		Ž		-		1 003			Meerin	
12.		`~		11	1.1	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		>-	D	M. H. A. L. O. G.
02027 "		`_		į,	. /	2 40%		>	1 2 2	Matter 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12.6.		Z		-	-	1-46100			0	11547917 C
						,				
- Canada	-		-							`
SID NIMES		KERING COSHED BY (BRENATURE)	第	DATE/TIME	RECEIVED BY (SIGNATURE)	ATURE)	RELINGUISHED BY (SIGNATURE)	NATURE)	DATE/TIME	RECEIVED BY (SIGNATURE)
RELINGUIS	HED BY (RELINQUISHED BY (SIGNATURE)		DÁTE/HME	RECEIVED BY (SIGNATURE)	ATURE)	RELINQUISHED BY (SIGNATURE)	NATURE)	1≧	RECEIVED BY (SIGNATURE)
SPECIAL INSTRUCTIONS:	ISTRUC	TIONS:								

I AB I ICE. BEFBICEBATOB#

TURNAROUND TIME

כוזבו ב א

February 10, 1999

Mr. Frank Nerone Chief Operator Niagara County Sewer District #1 7346 Liberty Drive Niagara Falls, NY 14304

Subject:

Analytical Sampling Results (1/8/99 Sample)

Groundwater Discharge Through Pre-Treatment System

Pendleton (Frontier Chemical) Site

Dear Mr. Nerone:

Enclosed for your review are analytical results from the January 8, 1998, monthly sampling event for discharge of collected groundwater from the pre-treatment system at the Pendleton Site. Analytical results for this sampling event are compared against the Permit (#96-11) requirements on the attached Analytical Summary and Daily Flow sheets.

A review of the analytical and flow data shows that all permit parameters are significantly below the stated permit requirements.

This data is being provided for your review and concurrence that all permit parameters are well within their limits. If, following review of the enclosed information, you are not in agreement with the above stated conclusion, please contact me at 423-336-4057 as soon as possible so we may discuss any future monitoring requirements.

Sincerely,

John M. Burns

for the Frontier Chemical - Pendleton Site PRP Group

Enclosures: as stated cc: D. Kummer

Pendleton Site Technical Committee

Frontier Chemical - Pendleton Site Analytical Summary for WS 001 Permit # 98-11

Groundwater Discharge Point: D 002

301 088 Gallons Discharged Prior To 12/4/98 3.546 Gallons Since Last Report 96 Average Daily Flow Based on 37 days Between Samples

Parameters	8/99 mple suits GPD
Limit Limits Res	GPD
Treatment System Discharge	GPD
Discharge Rate(1) SE2 S24 Analytes Ug/L U	
Toluene	19/L
Toluene	19/L
Toluene	J/Qr.
1.2-Dichloroethane 10.0 1.0 4-Methyl-2-Pentanone 10.0 5.0 Vinyl Chloride 10.0 2.0 Methylene Chloride 10.0 2.8 trans-1,2-Dichloroethene 10.0 1.0 1,1,1-Trichloroethane 10.0 1.0 Trichloroethane 10.0 1.0 Benzene 10.0 1.0 Chloromethane 2.0 Chloromethane 2.0 Chloroform 2.0 Chloroform 2.0 Chloroform 1.0 Carbon Tetrachloride 1.0	
4-Methyl-2-Pentanone 10.0 5.0 Vinyl Chloride 10.0 2.0 Methylene Chloride 10.0 2.8 trans-1,2-Dichloroethene 10.0 1.0 1.0 1.1-Trichloroethene 10.0 1.0 Trichloroethene 10.0 1.0 Enzene 10.0 1.0 Chloromethane 2.0 Chloromethane 2.0 Chloroethane 2.0 Chloroform 2.0 Chloroform 1.0 Chloroform 1.0 Chloroform 1.0 Chloroform 1.0 Chloroform 1.0 Carbon Tetrachloride 1.0 1.0 1.0 Chloroethane 1.0 Chloroform 1.0 Carbon Tetrachloride 1.0 1.0 1.0 Chloroethane 1.0 Chloroethane 1.0 1.0 Chloroethane	
Vinyl Chloride	
Methylene Chloride 10.0 2.8 trans-1,2-Dichloroethene 10.0 1.0 1.0 1.1.1-Trichloroethene 10.0 1	
trans-1,2-Dichloroethene 10.0 1.0 1,1,1-Trichloroethene 10.0 1.0 Trichloroethene 10.0 1.0 Benzene 10.0 1.0 Chloromethane 2.0 Bromomethane 2.0 Chloroethane 2.0 Chloroform 2.0 Carbon Tetrachloride 1.0	
1,1,1-Trichloroethane	
Trichloroethene	- 1
Benzene 10.0 1.0 1.0	
Chloromethane 2.0	- 1
Bromomethane	
Chlorosthane	T
Chloroform 2.0 1.0 Carbon Tetrachloride 1.0	
Carbon Tetrachloride 1.0	
1. Dighlamathana	
Triphianduran	- 1
4.4 Dishipment and	- 1
1.2 Dieblessessesses	
Permanental and a second secon	f
2 Obtains the Land	- 1
aie 4.9 Diebters	
tone 4.3 Stationers	
449 ***********************************	
Total	
6.2	
Chlorebease	
Ethydhanasa	
5	\bot
1.0	
1.0	
1.4 Dieblassbaren	- 11
4.2 Pileblasshannan	
Sup of \$24 Application	
Sum of 524 Analytes 100.0	0.0
608 Pesticides(2) ug/L ug/L ug/L ug/L	
	VL.
had BUC	
20.0 0.006	
10.0 0.010	
Hannahia-	-
Aidela	
Heatenhan Francis	
4,4-DDE 9.0 0.009 4,4-DDE 20.0 0.005	
Methoxychior 18.0 0.007	
10.0 0.007	
Metals mg/L mg/L mc	البي
Animon ing ing	
Borne	
4.00 0.012 0.61	
Chromium 5.33 0.005 - 0.00	1
Cycelde(7)	<i>7</i> 0
Chromium 5.33 0.005 < 0.00 Cyanide(T) 2.0 0.005 0.00	
Cyanide(T) 2.0 0.005 0.00	
Cyanide(T) 2.0 0.005 0.00 Other mg/L mg/L mg/L mg	
Cyanide(T) 2.0 0.005 0.00	05

- Legend:
 (1) Permit limit @ 662 GPD with maximum daily discharged @ 2500 GPD
 (2) Discontinue per April 14, 1997 Letter from F. Narrone to PRP Group.
 (a) Detected in blank
 NA Not applicable

DAILY FLOW DATA - PENDLETON SITE DECEMBER 1998

	TOTALIZER	DAILY	
DATE	READING	FLOW	
12/1/98	300861	114	avg.
12/2/98		114	avg.
12/3/98	301088	69	Sampled
12/4/98	301157	93	
12/5/98	301250	108	avg.
12/6/98		108	avg.
12/7/98	301465	107	
12/8/98	301572	57	
12/9/98	301629	107	
12/10/98	301736	53	
12/11/98	301789	106	avg.
12/12/98		106	avg.
12/13/98	302001	54	
12/14/98	302055	53	
12/15/98	302108	53	
12/16/98	302161	105	
12/17/98	302266	53	
12/18/98	302319	106	
12/19/98	302425	106	
12/20/98	302531	53	
12/21/98	302584	105	
12/22/98	302689	394	
12/23/98	303083	220	
12/24/98	303303	110	avg.
12/25/98			avg.
12/26/98	303523	107	
12/27/98	303630	53	
12/28/98	303683	105	
12/29/98	303788	52	
12/30/98	303840	108	
12/31/98	303948		
AVERAGE DAILY	FLOW IN GALLONS	103	•

= DRY VAULT GROUNDWAT	ER RELIEF
	gallons
	gallons
	gallons
	gallons
TOTAL GALLONS	0

avg =flow between data points divided by days of missing data avg =(301088-300861)/2 or 114 gallons per day for data between 12/1/98 and 12/3/98

DAILY FLOW DATA - PENDLETON SITE JANUARY 1999

	TOTALIZER	DAILY	
DATE	READING	FLOW	
1/1/99		80	avg.
1/2/99			avg.
1/3/99	304161	54	
1/4/99	304215	53	
1/5/99	304268	108	
1/6/99	304376	45	
1/7/99	304421	0	
1/8/99	304421	213	
1/9/99	304634	0	Sampled
1/10/99	304634	108	
1/11/99	304742	108	
1/12/99	304850	54	
1/13/99	304904	108	
1/14/99	305012	83	avg.
1/15/99		83	avg.
1/16/99	305178	109	
1/17/99	305287	105	
1/18/99	305392	107	
1/19/99	305499	109	
1/20/99	305608	107	
1/21/99	305715	51	
1/22/99	305766	105	
1/23/99	305871	348	avg.
1/24/99			avg.
1/25/99	306567	107	
1/26/99	306674	53	
1/27/99	306727	106	
1/28/99	306833	54	
1/29/99	306887	80	avg.
1/30/99			avg.
1/31/99	307047		-
AVERAGE DAILY	FLOW IN GALLONS	102	

AVERAGE DAILY FLOW IN GALLONS 102

= DRY VAULT GRO	DUNDWATER RELIEF
	gallons
	galions
	gallons
	gallons
TOTAL GALLONS	0

avg =flow between data points divided by days of missing data avg =(304161-303840)/4 or 80 gallons per day for data between 12/30/98 and 1/3/99

WASTE STREAM TECHNOLOGY, INC.

302 Grote Street Buffalo, NY 14207 (716) 876-5290

Analytical Data Report

Report Date: 01/22/99 Group Number: 9901-023

Prepared For:
Mr. John Burns
Olin Corporation
P.O. Box 248
1186 Lower River Road NW
Charleston, TN 37310

Site: Frontier - Pendleton

Field and Laboratory Information

,						
Client Id	WST Lab #	Matrix	Date Sampled	Date Received	Time	
GAC II		Aqueous		01/08/99	1300	
Sample Status Upon Receipt : No irregularities.						

	Analytical Services	
Analytical Parameters	Number of Samples	Turnaround Time
Metals	1	Standard
Cyanide	1	Standard
Phenol	1	Standard
Total Suspended Solids	1	Standard

Report Released By:

Daniel Vollmer, Laboratory QA/QC Officer

METHODOLOGIES

The specific methodologies employed in obtaining the analytical data reported are indicated on each of the result forms. The method numbers shown refer to the following U.S. Environmental Protection Agency Reference:

Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. March 1979, Revised 1983, U.S. Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268.

Federal Register. 40 CFR Part 136: Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act. Revised July 1992.

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. Third Edition, Revised December 1996, U.S. EPA SW-846.

Annual Book of ASTM Standards, Volume II. ASTM, 100 Harbor Drive, West Conshohocken, PA 19428-2959.

Standard Methods for the Examination of Water and Wastewater. (18th Edition). American Public Health Association, 1105 18th Street, NW. Washington, D.C. 20036.

Waste Stream Technology, Inc. Metals Analysis Result Report

Site: Frontier-Pendleton Date Sampled: 01/08/99 Date Received: 01/08/99

Group Number: 9901-023

Units: mg/L Matrix: Aqueous

WST ID: WS48623 Client ID: GAC II Digestion Date: 01/11/99

Analyte	Detection Limit	Result	Date Analyzed	Analysis Method
Antimony by GFAA	0.009	Not detected	01/19/99	EPA 200.9
Boron by ICP	0.012	0.691	01/19/99	EPA 200.7
Chromium by ICP	0.005	Not detected	01/19/99	EPA 200.7

waste Stream Technology, Inc. Wet Chemistry Analyses

Site: Frontier-Pendleton Date Sampled: 01/08/99 Date Received: 01/08/99

Group Number: 9901-023

Matrix: Aqueous

WST ID: WS48623 Client ID GAC II

Analysis	Method Reference	Detection Limit	Result	Units	Date Analyzed
Total Suspended Solids	EPA 160.2	4.0	Not detected	mg/L	01/13/99
Cyanide in Water	EPA 335.2	0.005	0.005	mg/L	01/20/99
Total Recoverable Phenol	EPA 420.1	0.005	Not detected	mg/L	01/18/99

302 GROTE STREET BUFFALO, NY 14207 (716) 876-5290

RECEIVED BY (SIGNATURE) RECEIVED BY (SIGNATURE) CHAIN OF CUSTODY RECORD # WS46633 REMARKS SAVITAVABZAPA HN03 1000 11,504 DATE/TIME DATE/TIME - t. RELINQUISHED BY (STGNATURE) RELINQUISHED BY (SIGNATURE) 100 vd TAINERS SIZE & NO. OF CON-RECEIVED BY (SIGNATURE) RECEIVED BY (SIGNATURE) Town War FRONTIER FRANKETON SAMPLE DATE TIME COMP GRAB MATHIX SAMPLELDCATION DATE/TIME DATE/TIME 1-8-11 RELINGUISHED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) SPECIAL INSTRUCTIONS: = PROJECT NO: 300% JA08 108 63

REFRIGERATOR #.

SHELF #_

GROUP #.

DUE DATE

TURNAROUND TIME

March 11, 1999

Mr. Frank Nerone **Chief Operator** Niagara County Sewer District #1 7346 Liberty Drive Niagara Falls, NY 14304

Subject:

Analytical Sampling Results (2/4/99 Sample)

Groundwater Discharge Through Pre-Treatment System

Pendleton (Frontier Chemical) Site

Dear Mr. Nerone:

Enclosed for your review are analytical results from the February 4, 1999, monthly sampling event for discharge of collected groundwater from the pre-treatment system at the Pendleton Site. Analytical results for this sampling event are compared against the Permit (#98-11) requirements on the attached Analytical Summary and Daily Flow sheets.

A review of the analytical and flow data shows that all permit parameters are significantly below the stated permit requirements.

This data is being provided for your review and concurrence that all permit parameters are well within their limits. If, following review of the enclosed information, you are not in agreement with the above stated conclusion, please contact me at 423-336-4057 as soon as possible so we may discuss any future monitoring requirements.

Sincerely,

John M. Burns

for the Frontier Chemical - Pendleton Site PRP Group

Enclosures: as stated CC:

D. Kummer

Pendleton Site Technical Committee

Frontier Chemical - Pendleton Site Analytical Summary for WS 001 Permit # 98-11

Groundwater Discharge Point: D 002

304.634	Gallons Discharged Prior To	1/8/99
2.572	Gallons Since Last Report	
95	Average Daily Flow Based on	27 days Between Samples

			2/5/99
<u>Parameters</u>	Permit	Detection	Sample
Treatment System Discharge	Limit	Limits	Results
Discharge Rate(1)	GPD 662		GPD
624 Analytes	ug/L	ug/L	ug/L
Toluene	10.0	1.0	
1,2-Dichioroethane	10.0	1.0	
4-Methyl-2-Pentanone Vinyl Chloride	10.0	5.0	1
Methylene Chioride	10.0 10.0	2.0 2.8	
trans-1,2-Dichloroethene	10.0	1.0	
1,1,1-Trichioroethane	10.0	1.0	
Trichioroethene	10.0	1.0	
Benzene	10.0	1.0	
Chloromethane		2.0	
Bromomethane	1 1	2.0	
Chloroethane	1	2.0	
Chloroform	1 1	1.0	I
Carbon Tetrachloride 1.1-Dichloroethene]]	1.0	1
1,1-Dichloroethene Trichloroffuoromethane	1 1	1.0	1
1,1-Dichloroethane	1	2.0	
1,2-Dichloropropane	1 1	1.0 1.0	1
Bromodichioromethane		1.0	
2-Chloroethylvinyl ether		2.0	Į į
cis-1,3-Dichloropropene		1.0	i i
trans-1,3-Dichloropropene		1.0	1
1,1,2-Trichloroethane		1.0	11
Tetrachioroethene		1.2	
Dibromochioromethane		1.0	11
Chlorobenzene		1.0	1 1
Ethylbenezene		1.0	
Bromoform		1.0	
1,1,2,2-Tetrachloroethane		1.0	11
1,3-Dichlorobenzene 1,4-Dichlorobezene		1.0	11
1.2-Dichlorobenzene		1.0	11
Sum of 624 Analytes		1.0	
Out of ear Analytes		100.0	0.0
608 Pesticides(2)	ug/L	ug/L	ug/L
alpha BHC	10.0	0.003	
beta BHC	20.0	0.006	11
delta BHC	10.0	0.010	11
gamme BHC	10.0	0.003	11
Heptachior Aldrin	8.0	0.022	11
Alarin Heptachior Epoxide	8.0	0.018	11
4.4-DDE	9.0 20.0	0.009	
Methoxychlor	18.0	0.005	11
•			
Metals	mg/L	mg/L	mg/L
Antimony	0.1	0.009	< 0.009
Boron	4.00	0.012	0.581
Chromium	5.33	0.005	< 0.005
Cyanide(T)	2.0	0.005	0.005
Other			
	mg/L	mg/L	mg/L
Total Phenolics	NA	0.005	< 0.005
TSS	300	4.000	5,200

- Legend;
 (1) Permit limit @ 662 GPD with maximum daily discharged @ 2500 GPD
 (2) Discontinue per April 14, 1997 Letter from F. Narrone to PRP Group.
 (a) Detected in blank
 NA Not applicable

DAILY FLOW DATA - PENDLETON SITE FEBRUARY 1999

5,	TOTALIZER	DAILY	
DATE	READING	FLOW	
2/1/99	307101	51	
2/2/99	307152	54	
2/3/99	307206	512	avg.
2/4/99		512	Sampled
2/5/99	308229	441	
2/6/99	308670	364	avg.
2/7/99		364	avg.
2/8/99	309397	331	
2/9/99	309728	372	
2/10/99	310100	373	
2/11/99	310473	371	avg.
2/12/99			avg.
2/13/99		371	avg.
2/14/99	311585	337	
2/15/99	311922	272	
2/16/99	312194	273	
2/17/99	312467	275	
2/18/99	312742	319	
2/19/99	313061	285	
2/20/99	313346	224	
2/21/99	313570	173	
2/22/99	313743	218	
2/23/99	313961	165	
2/24/99	314126	109	
2/25/99	314235	165	
2/26/99	314400	135	avg.
2/27/99		135	avg.
2/28/99	314670		
	FLOW IN GALLONS	280	

 = DRY VAULT GROUNDWA	TER RELIEF
	gallons
	gallons
	gallons
	gallons
TOTAL GALLONS	0

avg =flow between data points divided by days of missing data avg =(308229-307206)/2 or 80 gallons per day for data between 2/3/99 and 2/5/99

WASTE STREAM TECHNOLOGY, INC.

302 Grote Street Buffalo, NY 14207 (716) 876-5290

Analytical Data Report

Report Date: 02/19/99 Group Number: 9901-161

Prepared For:
Mr. John Burns
Olin Corporation
P.O. Box 248
1186 Lower River Road NW
Charleston, TN 37310

Site: Frontier - Pendleton

Field and Laboratory Information

Client ld	WST Lab#	Matrix	Date Sampled	Date Received	Time
GAC II	WS49332	Aqueous	02/04/99	02/05/99	12:20
Sample Status Upon Receipt	: No irregular	ities.			

	Analytical Services	
Analytical Parameters	Number of Samples	Turnaround Time
Total Metals	1	Standard
Cyanide	1	Standard
Phenol	1	Standard
Total Suspended Solids	1	Standard

Report Released By:

Daniel Vollmer, Laboratory QA/QC Officer

METHODOLOGIES

The specific methodologies employed in obtaining the analytical data reported are indicated on each of the result forms. The method numbers shown refer to the following U.S. Environmental Protection Agency Reference:

Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. March 1979, Revised 1983, U.S. Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268.

Federal Register, 40 CFR Part 136: Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act. Revised July 1992.

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. Third Edition, Revised December 1996, U.S. EPA SW-846.

Annual Book of ASTM Standards, Volume II. ASTM, 100 Harbor Drive, West Conshohocken, PA 19428-2959.

Standard Methods for the Examination of Water and Wastewater. (18th Edition). American Public Health Association, 1105 18th Street, NW, Washington, D.C. 20036.

Waste Stream Technology, Inc. Wet Chemistry Analyses

Site: Frontier - Pendelton Date Sampled: 02/04/99 Date Received: 02/05/99 Group Number: 9901-161

Matrix: Aqueous

WST ID: WS49332 Client ID GAC II

Analysis	Method Reference	Detection Limit	Result	Units	Date Analyzed
Total Suspended Solids	EPA 160.2	4.0	5.2	mg/L	02/09/99
Cyanide in Water	EPA 335.2	0.005	0.005	mg/L	02/15/99
Total Recoverable Phenol	EPA 420.1	0.005	Not detected	mg/L	02/11/99

Waste Stream Technology, Inc. Metals Analysis Result Report

Site: Frontier - Pendelton Date Sampled: 02/04/99 Date Received: 02/05/99 Group Number: 9901-161

Units: mg/L Matrix: Aqueous

WST ID: WS49332 Client ID: GAC II Digestion Date: 02/10/99

Analyte	Detection Limit	Result	Date Analyzed	Analysis Method
Antimony by GFAA	0.009	Not detected	02/19/99	EPA 200.9
Boron by ICP	0.012	0.581	02/11/99	EPA 200.7
Chromium by ICP	0.005	Not detected	02/11/99	EPA 200.7

WASTE STREAM
TECHNOLOGY

302 GROTE STREET BUFFALO, NY 14207 (716) 876-5290

19/1-106/

CHAIN OF CUSTODY RECORD

Continuence steenantine Continuence stee	PROJECT N	Ö,	-	; ⁷	SITE NAN	AE:	1	/ n / n / o /	22/	.55
S GISCHARURE: DATE THAT COMP GRAB MATHEX SAMPLE LOCATION TAINERS TAINERS	IJ	. 41,		1802	110,2	rendle ton		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	14	_
1	SAMPLERS (SIGNAT	ä) B.R. 9. 14	Tall of	than an	CON-	10/2/2/2/	M4383	
1	SAMPLE C	ATE TI	ME COM	P GRAB	MATRIX	SAMPLE LOCATION	I MINERS	/ \c\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	9604 2		8_		μо	GACT	71		111103	1349891-40
1. 1. 200ml 1. 1. 200ml 200ml 300ml	1804 634				-	1.1	1		Hisoy	00000000
CAUISHED BY (SIGNATURE) ACHIOSTRUCTIONS: AL INSTRUCTIONS:	 		2		-	- 1	11		NAOH	/*/ O. 1. 10. 1
COUISHED BY (SIGNATURE) C. H.C. M.C. M.C. M.C. M.C. M.C. M.C. M.	7804 636	-	7		-	1 -	500ml			
E) DATE/TIME RECEIVED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) DATE/TIME RELINQUISHED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) DATE/TIME RECEIVED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) DATE/TIME RECEIVED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) DATE/TIME										
E) DATE/TIME RECEIVED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) DATE/TIME RELINQUISHED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) DATE/TIME RECEIVED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) DATE/TIME										
E) DATE/TIME RECEIVED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) DATE/TIME (E) DATE/TIME RECEIVED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) DATE/TIME (E) DATE/TIME RECEIVED BY (SIGNATURE) DATE/TIME										
E) DATE/TIME RECEIVED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) DATE/TIME POTE/TIME RECEIVED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) DATE/TIME POTE/TIME RECEIVED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) DATE/TIME										
E) DATE/TIME RECEIVED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) DATE/TIME DATE/TIME RECEIVED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) DATE/TIME DATE/TIME										
E) DATE/TIME RECEIVED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) DATE/TIME RECEIVED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) DATE/TIME RECEIVED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) DATE/TIME										
E) DATE/TIME RECEIVED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) DATE/TIME TO BE THE PROBREME D										
E) DATE/TIME RECEIVED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) DATE/TIME TO BE THE DATE/TIME DATE/TIME DATE/TIME DATE/TIME TO BE THE DATE/TIME DATE/TIME DATE/TIME DATE/TIME DATE/TIME DATE/TIME DATE/TIME										
E) DATE/TIME RECEIVED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) DATE/TIME RELINQUISHED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) DATE/TIME				-		-				
REUNQUISHED BY (SIGNATURE) REUNQUISHED BY (SIGNATURE) DATE/TIME	RELINGL		NY (SIGNA)	<u> </u>	DATE/TIME		ATURE)	RELINQUISHED BY (SIGNATURE		RECEIVED BY (SIGNATURE)
SPECIAL INSTRUCTIONS:	RELING	UISHED	3Y (SIGNA	, (g)	DATE/TIME		ATURE)	RELINCAUISHED BY (SIGNATURE		RECEIVED BY (SIGNAȚÜRE)
	SPECIAL	INSTR	UCTIONS	-	-					

LAB

TURNAROUND TIME_

Distribution:

Frank Nerrone Original Copy of all documents; express mailed for next day delivery.

Copy of all information; include Dan's copy with Frank Nerrone Copy.

PRP Group from Distribution labels; send copy of cover letter, daily flow data and analytical summary via regular mail

Frontier Chemical - Pendleton Site March 1999

B-2 Niagara County Sewer District #1 Permit

NIAGARA COUNTY SEWER DISTRICT NO. 1

WATER POLLUTION CONTROL CENTER

7346 Liberty Drive Niagara Falls. NY 14304-3762 Phone 716-693-0001 FAX 716-693-8759

January 11, 1999

STEVEN C. RICHARDS

STEVEN C. RICHARDS Vice-Chairman

WRIGHT H. ELLIS

Chairman

FRANK A. NERONE Chief Operator

Pendleton Site PRP Group c/o Olin Corporation P.O. Box 248 Charleston, TN 37310-0248

ATTN: Mr. John Burns

Re: PRP Group Industrial Waste Permit Pendleton (Frontier Chemical) Site

Gentlemen:

Enclosed is a renewed permit for the discharge of contaminated groundwater.

Please review the permit carefully. If there are any questions, please feel free to contact me.

Very truly yours,

NIAGARA COUNTY SEWER DISTRICT #1

Frank A. Nerone, P.E. Chief Operator

onier opera

Enclosure

IPDIX/IWPFCG9811

FAN/dm

Niegara County Sewer District #1

Industrial Waste Permit

Industrial User:	Pendleton Site PRP Group (Permittee)
Division Name (if Applicable):	c/o Olin Corporation
Mailing Address:	P.O. Box 248 Street or P.O. Box
	Charleston, TN 37310-0248 City, State and Zip Code
Site Address:	Pendleton Site Townline Road Street Address
	Pendleton, New York City, State

The above Industrial User is authorized to discharge contaminated ground-water to the Niagara County Sewer District #1 sewer system in compliance with the District's Sewer Use Law, Local Law No.1, Resolution No. 7-94, any applicable provisions of Federal or State law or regulation, and in accordance with discharge points(s), effluent limitations, monitoriing requirements, and other conditions set forth herein.

Effective Date: August 28, 1998

Expiration Date: August 28, 2000

(Application for renewal shall be submitted 90 days prior to expiration)

District Permit No. 98-11

Date: 1/11/44 Signed:__

(Authorized Signature)

Schedule A - Listing of Discharged Wastestreams

Industry	Name:	Pendleton	(Frontier	Chemical)	Site
-		Groundwate	er Remedia	tion	

The following wastestreams are discharged to sanitary sewer system tributary of Niagara County Sewer District #1.

Waste-	Nature Of Waste	Volume	Discharge
<u>Streams</u>		gallons per day	Point
WS 001	Groundwater Remediation	250	D 002

PART I - WASTEWATER DISCHARGE LIMITATIONS AND MONITORING REQUIREMENTS

Industry Name: Pendleton (Frontier Chemical) Site

Sample Point A:

Sample Point: Groundwater Pump Station Discharge

Description : <u>Contaminated Groundwater</u>

Monitoring Requirements

Parameter	Disc	narge Lim	tations(1)	Sampling Frequency	Sample Type
Flow a.) Groundwa	***			Conti	nuous
Remedia		2500 GPD,	Daily Maximum		
			Discharge		
<u>Pollutants</u>		-	<u>Limit</u>		
624			0.100 mg/T.	Semi-Annual	24C(2)

624	0.100 mg/L	Semi-Annual	24C(2)
	(Sum of all EPA 624 cmpds.)		
Antimony	0.1 mg/L	Monthly	24C
Boron	4.0 mg/L	Monthly	24C
Chromium	5.33 mg/L	Monthly	24C
Cyanide (T)	2.0 mg/L	Monthly	24C
Total Phenolics (4AAP)	Surveillance Only	Monthly	
Total Suspended Solids	300 mg/L	Monthly	24C

These Limitations shall be effective <u>immediately</u>

- (1) All other limitations as set forth in the District's Sewer Use Law shall also apply.
- (2) 24-hour composite samples for volatile (624) organics to consist of a minimum of four (4) grabs within a 24-hour period. (See Sampling Measurement & Analytical Guidelines, Section 9, Paragraph 2.)
- (3) Pesticides shall be analyzed by Method 608.

PART II - SPECIAL CONDITIONS/COMPLIANCE SCHEDULE

1. Compliance Schedules: If additional pretreatment and/or operation and maintenance are required to meet discharge limitation and/or Pretreatment Regulations, the User will immediately advise District of the shortest schedule by which the User will provide such additional pretreatment or reduction in flow discharged. The completion date in this schedule shall not be later than the compliance date established for any applicable Pretreatment Regulations.

PART III - REPORTING REQUIREMENTS

- 1. The Industrial User shall notify the District immediately upon any accidental or slug discharge to the sanitary sewer system. Formal written notification discussing circumstances of the event and remedies to prevent recurrence shall be submitted to the District within 3 days of occurrence.
- 2. The Industrial User shall notify the District and apply for a revised permit 30 days prior to the introduction of new wastewater or pollutants or any substantial change in the volume or characteristics of the wastewater being introduced into the POTW from the User's industrial processes.
- 3. Any upset experienced by the Industrial User of its treatment that places it in a temporary state of non-compliance with wastewater discharge limitations contained in this permit or other limitations specified in the District's Sewer Use Law shall be reported to the District within 24 hours of first awareness of the commencement of the upset. A detailed report shall be filed within 5 days.
- 4. Self-monitoring reports are due at the NCSD #1 office within 30 days of sampling. When reporting results, the following information shall be provided:
 - a.) 1. The date, exact place, and time of sampling or measurements;
 - 2. The individual(s) who performed the sampling or measurements;
 - The date(s) analyses were performed;
 - 4. The individual(s) who performed the analyses;
 - 5. The analytical techniques or methods used;
 - 6. The results of such analyses
 - b.) A copy of the original lab report(s) as provided by the certified testing lab(s), including properly completed chain(s) of custody.
 - c.) The original data from the lab report shall be transcribed into a table comparing the permit requirements to the obtained results. In cases where the permit contains requirements for daily maximum and maximum monthly average, columns for both of these shall be included in the table. When a single value applies to both daily max. and max. mo. avg. (because monitoring was only performed once during a month), separate columns shall still be included in the table, clearly indicating that the value is both the daily maximum and the monthly average.
 - d.) All daily flows obtained since the previous reporting period, as well as the maximum and average daily flow for each month.
 - e.) A certification statement as to whether the Industrial User is in compliance with the permit limitations. If the permit contains limitations for both daily max. and max. mo. avg., the statement must specify whether the User is in compliance with both limitations.
 - f.) A certification statement that all normally operated (applicable) processes were operating (and discharging) during the monitoring period. Any processes not in operation shall be cited together with a listing of pollutants which might normally be present in said process discharge.

PART III - REPORTING REQUIREMENTS (cont'd.)

- 5. Additional Monitoring by Permittee If the permittee monitors any pollutants at the location(s) designated herein more frequently than required by this permit, using approved analytical methods as specified herein, the results of such monitoring shall be included in the calculation and reporting of values required under Part I. Such increased frequency shall also be indicated.
- 6. All self-monitoring reports prepared shall be submitted to:

Frank A. Nerone, Chief Operator
Niagara County Sewer District #1 Water Pollution Control Center
7346 Liberty Drive
Niagara Falls, New York 14304

- 7. Signatory Requirements All reports required by this permit shall be signed by an authorized representative of the Industrial User.
- 8. If sampling performed by the Industrial User indicates a violation, the Industrial User is required to repeat the sampling and analysis and submit the results to the District within thirty (30) days after becoming aware of the violation.

Additionally, applicable quality control is mandatory in cases where the Industrial User is conducting additional self-monitoring as a result of non-compliance. (See Sampling Measurement and Analytical Guidelines, Item #19 "Quality Control.")

9. Toxic Organic Management Plan - For Industrial Users who are required to monitor for Total Toxic Organics (TTO), and who are implementing a District-Approved, Toxic Organic Management Plan in lieu of this monitoring, the following certification shall be included with each self-monitoring report:

"Based on my inquiry of the person or persons directly responsible for managing compliance with the permit limitation for total toxic organics, I certify that, to the best of my knowledge and belief, no dumping of concentrated toxic organics into the wastewaters has occurred since filing of the last discharge monitoring report. I further certify that this facility is implementing the toxic organic management plan submitted to the control authority."

PART IV - STANDARD CONDITIONS

1. PROHIBITED DISCHARGES

The Industrial User shall comply with all the general prohibitive discharge standards.

2. INSPECTION/RIGHT-OF-ENTRY

The administrator and/or other duly authorized employees of the District, NYSDEC and/or USEPA, bearing proper credentials and identification, shall be permitted to enter all industrial properties without advance notice for the purpose of inspection, observation, measurement, sampling, monitoring, and testing in accordance with the provisions of its Sewer Use Law. The District shall also have the right to inspect and copy records pertaining to the Industry's self-monitoring procedures.

PART IV - STANDARD CONDITIONS (cont'd.)

3. RECORDS RETENTION

The Industrial User shall retain and preserve for no less than (3) years, any records, books, documents, memoranda, reports, correspondence, records of calibration and maintenance of instrumentation, recordings from continous monitoring instrumentation, and any summaries thereof, relating to monitoring, sampling and chemical analysis made by or in behalf of the user in connection with its discharge. All records that pertain to matters that are the subject of special orders, or any other enforcement or litigation activities brought by the District, shall be retained and observed by the Industrial User until all enforcement activities have concluded and all periods of limitation with respect to any and all appeals have expired.

4. CONFIDENTIAL INFORMATION

Except for data determined to be confidential under Section 5.15 of the District's Sewer Use Law, all reports required by this permit shall be available for public inspection at the office of the Pretreatment Administrator, 7346 Liberty Drive, Niagara Falls, New York 14304.

5. DILUTION

No Industrial User shall increase the use of potable or process water or, in any way, attempt to dilute a discharge as a partial or complete substitute for adequate treatment to achieve compliance with the limitations contained in this permit.

6. PROPER DISPOSAL OF PRETREATMENT SLUDGES AND SPENT CHEMICALS

The disposal of sludges and spent chemicals generated shall be done in a manner such as to prevent the pollutants from such material from entering the NCSD #1 sewer system. Said disposal shall also conform to all applicable State/Federal regulations.

7. REVOCATION OF PERMIT

The permit issued to the Industrial User by the District may be revoked when after inspection, monitoring or analysis, it is determined that the discharge of wastewater to the sanitary sewer is in violation of Federal, State, or local laws, ordinances, or regulations. Additionally, falsification or intentional misrepresentation of data or statements pertaining to the permit application or any other required reporting form, shall be cause for permit revocation, revocation of sewer discharges privileges, and/or imposition of criminal penalties.

8. LIMITATION ON PERMIT TRANSFER

Wastewater discharge permits are issued to a specific user for a specific operation and are not assignable to another user or transferrable to any other location without the prior written approval of the District. Sale of a facility by a User shall obligate the purchaser to seek prior written approval of the District for continued discharge to the sewerage system.

9. PERMIT AVAILABILITY

The original signed permit must be available upon request at all times for review at the Industrial User's address stated on the first page of this permit.

PART IV - STANDARD CONDITIONS (cont'd.)

10. MODIFICATION OR REVISION OF THE PERMIT

- a. The terms and conditions of this permit may be subject to modification by the District at any time as limitations or requirements, as identified in the District Sewer Use Law, are modified or other just cause exists.
- b. This permit may also be modified to incorporate special conditions resulting from the issuance of a special order by NYSDEC or EPA.
- c. The terms and conditions may be modified as a result of EPA promulgating a new federal pretreatment standard. If a pretreatment standard or prohibition (including Schedule of Compliance specified in such pretreatment standard or prohibition) is established under Section 807 (b) of the Act for a pollutant which is present, the discharge and such standard or prohibition is more stringent than any limitation for such pollutant in permit, this permit shall be revised or modified in accordance with such pretreatment standard or prohibition.
- d. The terms and conditions of this permit shall remain in effect until the permit is terminated or replaced by a subsequent permit.

11. DUTY TO REAPPLY

Within ninety (90) days of the expiration, the User shall reapply for reissuance of the permit. Application forms are available from the District upon request.

12. SEVERABILITY

The provisions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstance is held invalid, the application of such provision to other circumstances, and the remainder of this permit shall not be affected thereby.

13. ENFORCEMENT AND PENALTIES

Any violation of Section 2 or 3 of the Niagara County Sewer Use Law (adopted January 18, 1994) is declared a violation except as otherwise provided by law. Any violation of Section 4, 5 or 6 of the Niagara County Sewer Use Law is thereby a misdemeanor except as otherwise provided by law. A User who is found to have violated any provision of the Niagara County Sewer Use Law (or permits and orders issued thereunder) and/or applicable pretreatment standards and requirements, shall be subject to applicable civil and criminal penalties including but not limited to fines not to exceed five thousand dollars (\$5,000) per violation per day for each day on which non-compliance shall occur or continue.

PART V - SPECIFIC CONDITIONS

NONE

NIAGARA COUNTY SEWER DISTRICT #1

SAMPLING MEASUREMENT AND ANALYTICAL GUIDELINES

- 1. Prior to implementing the self-monitoring sampling and analyses, the Industrial User must submit the following information to the District.
 - a. The name(s) and address(es) of the laboratory or laboratories proposed to perform each of the chemical analyses.
 - b. A description of the equipment and test methods proposed for the chemical analyses for each parameter.
 - c. A list of the lower level of detectability expected for each parameter.
 - d. A description of the overall recovery efficiency of the prepared sample, where applicable.
 - e. A description of the quality control procedures used by the laboratory or laboratories to ensure reliable test results.
 - f. A description of the sample collection point and sample collection procedures.
 - g. A description of the compositing technique and equipment.
 - h. A description of the sample preservation methods used for each parameter.
- 2. Before commencement of any sampling or flow monitoring, Niagara County Sewer District #1 Water Pollution Control Center shall be notified in writing at least seventy-two (72) hours in advance by the firm or designee. The District will give a twenty-four (24) hour verbal notification to the firm or District designee of whether split sampling will be initiated.
- 3. Before sampling is done, the sample points must be approved by the District.
- 4. All discharge lines from one (1) building, or all discharge lines from only one (1) single process must be sampled at the same time.
- 5. Sampling record must be used and submitted with monitoring reports. The sampling report shall contain the following minimum information:
 - a. Date of each sample day.
 - b. Exact location of sampling points attach drawing for reference.
 - c. If done manually, time of each grab sample with sampler's inititals each time.
 - d. Type of auto-sampler used. Size and type of tubing and sampling interval.
 - e. Record all physical observation (sight, smell etc.) of the discharge at start-up, during inspections and changing of samples.
 - f. Note weather conditions.
 - g. Signature of immediate sampling supervisor at the bottom of page.
- 6. If an auto-sampler is used, new tubing must be at least 1/4 I.D. If visibly contaminated after sampling, it must be cleaned with detergent or methanol and deionized water each day. Proper refrigeration of the sample must be maintained during entire sampling period, when necessary. The intake hose velocity must be at least 2.0 f.p.s. with a maximum lift of twenty (20)
- 7. All sampling shall be taken at the highest velocity, greatest turbulence and center of flow.
- 8. All sampling must be done on <u>normal</u> work days. If there is a process discharge after normal working hours, sampling must continue until no further discharge.
- 9. "COMPOSITE SAMPLE" "Composite" shall mean a combination of individual (or continuously taken) samples obtained at regular intervals over the entire discharge day. The volume of each sample shall be proportional to the discharge flow rate, when possible. For a continuous discharge, a minimum of forty-eight (48) individual grab samples (at half hour intervals shall be collected and combined to constitute a twenty-four (24) hour composite sample. For intermittent discharges of less than four hours duration, grab samples shall be taken at a minimum of fifteen (15) minute intervals.

SAMPLING MEASUREMENT AND ANALYTICAL GUIDELINES (cont'd.)

Composite samples for purgeable halocarbons (Method 601/8010), purgeable aromatics (Method 602/8020), acrolein/acrylonitrile (Method 603), or volatile organics (Method 624/8240), shall be lab composited from grab samples taken at regular intervals over the entire discharge day utilizing the appropriate special sample vials and collection techniques. The number of grabs collected is dependent on the length of the sampling period, and shall be determined the following:

For a 24-hour sampling period, a minimum of four (4) grabs will be taken at regular intervals. If the collection period is 12 hours or less, a minimum of two (2) grabs shall be collected over the period. If the duration is longer than 12 hours but less than 24 hours, a minimum of one grab for every 6-hour period, or fraction thereof, shall be collected (i.e., a 14-hour period requires a minimum of three (3) grabs.)

"SPLIT SAMPLE" - must be done on site with both parties present before preservatives are added.

"DAILY" - each operating day

"DAILY MAXIMUM" - shall mean the highest allowable discharge of a pollutant and/or flow measured during any twenty-four (24) hour sampling period. For pollutants with limitations expressed in units of mass, the daily discharge is calculated as the total mass of the pollutant discharged over the day. For pollutants with limitations expressed in other units of measurements, the daily discharge is calculated as the average measurement of the pollutant over the day.

"GRAB" - shall mean an individual sample which is taken from a wastestream on a one (1) time basis with no regard to the flow in the wastestream and without consideration of time.

"MONTHLY" on day each month (the same day each month) and a normal operating day (i.e. the 2nd Tuesday of each month).

"MONTHLY AVERAGE" - discharge limitation means the highest allowable average of daily discharges over a calendar month, calculated as the sum of all daily discharges measured during a calendar month, divided by the number of daily discharges measured during that month.

"WEEKLY" - every seventh day (the same day each week) and a normal operating day.

- 10. Total water consumption shall be recorded for each day's composite using the water meters. Water consumption method must be explained in report.
- 11. All discharges shall be flow-monitored whenever possible. If flow monitoring cannot be done, flow determination should be a best practical engineering estimate without being economically burdensome to the firm involved. Results and procedure used to determine flow must be included with the analysis report.

12. Sample Collection Techniques for Single Discharge Lines

On single discharge lines (all regulated wastes discharge through one outlet), sample collection for the required parameters will be collected according to the following:

a. The following parameters should only be analyzed on manually taken grab samples:

pH
Temperature
Chlorine Residual
Dissolved Oxygen
Fecal Coliforms

SAMPLING MEASUREMENT AND ANALYTICAL GUIDELINES (cont'd.)

Sample Collection Techniques for Single Discharge Lines (cont'd.)

b. The following parameters should only be analyzed on composite samples made from manually collected grab samples:

> Oil and Grease Purgeable Halocarbons (EPA 601) Purgeable Aromatics (EPA 602) Acrolein/Acrylonitrile (EPA 603) Purgeables (EPA 624)

(For a 24-hour sampling period, a minimum of four (4) grabs will be taken at regular intervals when testing for the above parameters. Proper sample collection containers and techniques must be used. Where applicable, grab samples must be lab composited only.)

c. The following parameters should be analyzed on an automatically collected composite sample or, if an auto sampler is unavailable, a manually collected composite sample:

Metals
Phenol-4AAP
BOD
Total Suspended Solids
Total Phosphorus
TKN/Ammonia
Cyanide
Base/Neutral Acids (EPA 625)
EPA Methods 604-614

(For a continuous discharge, a minimum of forty-eight (48) individual grab samples (at half-hour intervals) shall be collected and combined to constitute a twenty-four (24) hour composite sample. For intermittent discharges of less than four (4) hours duration, grab samples shall be taken at a minimum of fifteen (15) minute intervals.)

13. Sample Collection Techniques for Multiple Discharge Lines

For multiple discharge lines (all regulated wastes discharge through more than one outlet), sample collection for the required parameters will be collected according to the following:

a. The following parameters must be analyzed separately from each discharge line's individual grab samples:

pH
Temperature
Chlorine Residual
Dissolved Oxygen
Fecal Coliforms

b. For the following parameters, a composite made from manually collected grab samples must be used. A separate composite must be made from each discharge line. The composites from the different discharge lines cannot be combined for analysis.

> Oil and Grease Purgeable Halocarbons (EPA 601) Purgeable Aromatics (EPA 602) Acrolein/Acrylonitrile (EPA 603) Purgeables (EPA 624)

(For a 24-hour sampling period, a minimum of four (4) grabs will be taken at regular intervals, from each discharge line, when testing for the above parameters. Proper sample collection containers and techniques must be used. Where applicable, grab samples must be lab composited only.)

SAMPLING MEASUREMENT AND ANALYTICAL GUIDELINES (cont'd.)

Sample Collection Techniques for Multiple Discharge Lines (cont'd.)

c. For the following parameters, composites from each discharge line may be combined proportional to their flow only if physical flow measurement can be done.

Metals
Phenol-4AAP
BOD
Total Suspended Solids
Total Phosphorus
TKN/Ammonia
Cyanide
Base/Neutral Acids (EPA 625)
EPA Methods 604-613

(For a continuous discharge, a minimum of forty-eight (48) individual grab samples (at half-hour intervals) shall be collected from each discharge line and combined to constitute a twenty-four (24) hour composite sample. For intermittent discharges of less than four (4) hours duration, grab samples shall be taken at a minimum of fifteen (15) minute intervals.)

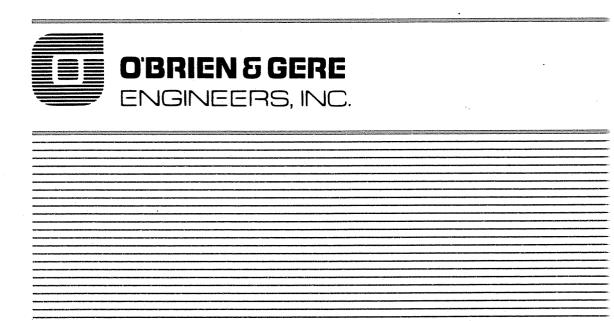
- 14. A chain of custody log sheet is required to be used for all sampling and analysis of each sample and attached to the report.
- 15. The handling, storage preservation and analytical procedures for each parameter shall follow Environmental Protection Agency Guidelines published in the Federal Register, pursuant to 40 CFR 136, dated October 26, 1984, or as subsequently revised.
- 16. The monitoring results report, sampling record(s), and chain of custody log sheet must be sent by the industry to the District and not by the consulting firm.
- 17. If any exemptions or changes have to made due to unique situations, the District must be notified immediately for approval. When approved, a written explanation of the change must accompany the analysis sheet.
- 18. Any split samples that indicate a discrepenancy of greater than 20% may be grounds for requring resampling and analyses.
- 19. "QUALITY CONTROL" All additional analyses which were run along with self-monitoring samples as a quality control measure, such as field blanks, duplicates or matrix spikes, etc., must be included in the self-monitoring report submitted to the District. Applicable quality control is mandatory in cases where the industrial user is conducting additional self-monitoring as a result of non-compliance.
- 20. All analyses conducted pursuant to this permit shall be performed by a laboratory certified for said analyses by the New York State Department of Health.

Frontier Chemical - Pendleton Site March 1999

B-3 Operation, Maintenance and Monitoring Activities

Frontier Chemical - Pendleton Site March 1999

Table B-3 Operation, Maintenance, and Monitoring Activities Frontier Chemical - Pendleton Site March 1999


Date	Event	Response
September 3, 1998	NCSD Monthly Sampling; Pressure Problem.	Completed; Changed 25 micro filter bag due to hole.
September 24, 1998	NCSD Monthly Sampling	Needed to do complete analysis; inspected site.
October 8, 1998	NYSDEC Site Inspection	No items to report.
October 8, 1998	NCSD Monthly Sampling	Completed.
October 29, 1998	Pressure Problems	Changed filter bags.
November 5, 1998	NCSD Monthly Sampling	Completed.
November12, 1998	Exhaust Fan Failed.	Replaced.
December 12, 1998	Pressure Problems.	Changed filter bags.
December 4, 1998	NCSD Monthly Sampling	Completed.
January 8, 1999	NCSD Monthly Sampling; Pressure Problem.	Completed; Changed filter bag.
February 4, 1999	NCSD Monthly Sampling	Completed.

REPORT

Frontier Chemical - Pendleton Site Semi-Annual Ground Water Monitoring Report

Pendleton Site PRP Group

March 1999

REPORT

Frontier Chemical - Pendleton Site Semi-Annual Ground Water Monitoring Report

Pendleton Site PRP Group

James R. Heckathorne, P.E. Vice President

March 1999

5000 Brittonfield Parkway Syracuse, NY 13221

Contents

	1. Introduction11.1. Piezometer/monitoring well inspection11.2. Hydraulic evaluation of capped area and collection trench21.3. Ground water sampling and chemistry4
	2. Conclusions
	References
List of Tables	
	1-1 Ground water analytical methods
	 Tables located at end of report Piezometer ground water elevation summary table Monitoring well ground water elevation summary table Quarry Lake surface water elevation summary table Summary of ground water analytical data
List of Figures	1 Hydraulic potential map
List of Appendices	
	 A Piezometer/monitoring well inspection forms B Ground water sampling logs C Data validation report (Volume 1 of 3 of the validated analytical data is separately bound)

i

1. Introduction

This document is the second 1998/1999 Semi-Annual Ground Water Monitoring Report for the Frontier Chemical - Pendleton Site (Site), located on Town Line Road in the Town of Pendleton, Niagara County, New York. This report is prepared based on the New York State Department of Environmental Conservation (NYSDEC)-approved Operation & Maintenance (O&M) Manual for the Site (O'Brien & Gere Engineers, 1997), which addresses, among other items, long-term ground water monitoring at the Site. This Semi-Annual Ground Water Monitoring Report presents a discussion of the following:

- Piezometer/monitoring well inspection
- Hydraulic evaluation of the capped area and collection trench
- Evaluation of ground water chemistry in the intermediate and deep ground water zones.

These items are described in the following sections.

1.1. Piezometer/monitoring well inspection

The piezometer/monitoring well inspection was conducted on February 3, 1999, and included the piezometers (P-1 through P-8), standpipe (SP-1), and ground water monitoring wells (85-5R, URS-5D, 85-7R, URS-7D, URS-9I, URS-9D, 88-12C, 88-12D, URS-14I, and URS-14D) identified as the Site monitoring network in the O&M Manual for the Site.

Results of the inspection indicated that each piezometer and monitoring well was in an acceptable condition for collecting water elevation measurements and sampling. Similar maintenance issues to those identified in previous inspection reports were noted at the Site:

- Piezometer P-6 is currently angled 20 to 30 degrees from vertical.
- Monitoring wells URS-14I and URS-14D should have fill material installed around the concrete pads.

In addition, the following maintenance issues were identified during the February 3, 1999 inspection event:

Standing water was observed in the annular space of piezometers P-2, P-6, and P-7 and monitoring wells URS-14I and URS-14D.

It should be noted that at this time these issues are not affecting the integrity of the piezometers or monitoring wells. February 1999 inspection forms are included in Appendix A.

1.2. Hydraulic evaluation of capped area and collection trench

In accordance with the O&M Manual, a complete round of static ground water elevations was collected from the piezometers (P-1 through P-8), standpipe (SP-1), and ground water monitoring wells (85-5R, URS-5D, 85-7R, URS-7D, URS-9I, URS-9D, 88-12C, 88-12D, URS-14I, and URS-14D). The ground water elevation measurements were collected on February 3, 1999. The surface water elevation of Quarry Lake was measured on February 4, 1999, by Glynn Geotechnical Engineering, Inc. The ground water elevations measured in the piezometers and standpipe, and in the monitoring wells, are summarized on Tables 1 and 2, respectively. Quarry Lake surface water elevations are summarized on Table 3. As shown on Table 3, Quarry Lake is slightly below the outlet weir elevation of 578.0 ft.

The water level measurements collected on February 3, 1999 are illustrated on Figure 1. These measurements are the sixth round collected since remedial construction was substantially completed in August 1996. The water elevation data was used to evaluate the following:

 Whether an inward hydraulic gradient exists at the site by comparing water level measurements within the capped area (P-2, P-3, P-4, P-6, and P-7) to those measured outside the capped area (P-1, P-5, P-8, SP-1, and Quarry Lake)

- The ground water flow potential inside the capped area
- Whether the ground water collection trench is effectively controlling ground water migration away from the capped area.

The data indicates that a slight outward hydraulic gradient exists in the eastern and southern portions of the capped area. The ground water elevations in piezometers P-2 and P-6 located inside the capped area are higher than the ground water elevations at piezometers P-1 and P-5, installed outside the capped area. An inward hydraulic gradient exists in the northern portion of the capped area, as the ground water elevation inside the capped area (P-7) is less than the ground water elevation outside the capped area (P-8). Along the western portion of the site, the ground water elevation at P-4 is higher than the elevation in the ground water collection trench (SP-1). The ground water elevation in piezometer P-3, installed within the center of the capped area, is greater than ground water elevations collected in piezometers P-1, P-5, and P-8, installed outside the capped area.

Although the data indicates a slight outward hydraulic gradient within the eastern and southern portions of the capped area, the ground water elevations collected in the piezometers installed within the capped area (P-2, P-3, P-4, P-6, and P-7) are lower than originally measured in June 1997. In addition, the water elevations in the piezometers installed within the capped area have decreased since the September 1998 monitoring event, with the exception of piezometer P-3. The slight fluctuations in water elevations within piezometer P-3 may be attributed to: barometric pressure changes during sampling events; the movement of water within the capped area; or the low-permeability of the materials. In addition, the water levels in the piezometers located outside the capped area (P-1, P-5, and P-8) are lower than have been previously measured, due to seasonal variations.

The contrasting fluctuations of ground water levels within and outside the capped area demonstrate that ground water within the capped area has been isolated. In addition, the ground water elevation in the standpipe (SP-1) in the ground water collection trench is less than the surface water elevation of Quarry Lake, indicating that Quarry Lake is isolated from the capped area.

Ground water elevations of piezometers installed within the capped area along the northern (P-7), western (P-4), eastern (P-2), and southern (P-6) portions of the Site are higher than the invert elevations (bottom) of the ground water collection trench. The invert elevations of the ground water collection trench vary from 568.80 ft to 563.37 ft. This information indicates that the overall hydraulic gradient is to the west toward the ground water collection trench. In summary, the data indicates that the ground water

collection trench is effectively removing shallow ground water from within the capped area.

Engineers, 1998), based on an average daily flow rate to the ground water collection trench of 170 gallons/day and a hydraulic conductivity adjacent to the ground water collection trench of 3.3 x 10⁻⁶ cm/sec, it is estimated that approximately 110 years will be required to dewater the containment area. However, the amount of water present within the capped area and the time to dewater beneath the capped area has minimal impact on the effectiveness of the containment, since hydraulic isolation within the capped area and the time to dewater beneath the capped area has minimal impact on the effectiveness of the containment, since hydraulic isolation within the capped area. the ground water collection trench.

1.3. Ground water sampling and chemistry

Between February 3 and 5, 1999, the fourth round of post-closure ground water samples was collected in accordance with the protocols presented in the O&M Manual. Ground water samples were obtained from the ten ground water monitoring wells identified for sampling in the O&M Manual (85-5R, URS-5D, 85-7R, URS-7D, URS-9I, URS-9D, 88-12C, 88-12D, URS-14I, and URS-14D).

Following sample collection, the ground water samples were submitted to O'Brien & Gere Laboratories, Inc., for analysis of the parameters shown in Table 1-1.

Table 1-1. Ground water analytical methods.

Parameter	Method
VOCs	USEPA Method 8260
Inorganics	USEPA Methods 6010/7470/7841
Cyanide	USEPA Method 9010
Source: O'Brien & Gere Engineers	•

Ground water sampling logs and chain of custody forms are included in Appendix B.

Misery Some

In accordance with the O&M Manual and as approved by the NYSDEC, sampling and analysis for target compound list (TCL) semi-volatile organic compounds (SVOCs) and polychlorinated biphenyls (PCBs)/pesticides were discontinued for the second through fifth years of monitoring. Sampling will be continued semi-annually for TCL volatile organic compounds (VOCs) and target analyte list (TAL) metals during the second through fifth years of monitoring. In accordance with the NYSDEC-approved O&M Manual, the required sampling frequency will be re-evaluated after the fifth year of monitoring.

Purge water generated during sampling was contained, passed through a 25-micron bag filter, and discharged to manhole MH-3. The water in manhole MH-3 was conveyed through the pre-treatment system prior to discharge to the Niagara County Sewer District (NCSD) interceptor system at manhole MH-16.

The laboratory analytical data was validated by Data Validation Services of North Creek, New York. The validation was performed in accordance with guidance from the most current editions of the United States Environmental Protection Agency (USEPA) Contract Laboratory Procedures (CLP) National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA Standard Operating Procedures (SOPs) HW-2 and HW-6. Results of the validation indicated that the samples were processed and analyzed in compliance with protocol requirements, and with adherence to quality criteria. All of the analytical results are useable, although minor qualifications are needed for some of the results. A copy of the data validation report is included in Appendix C.

Results of the ground water analyses, along with a comparison of the results with New York State Class GA Standards, are summarized on Table 4. The New York State Class GA Standards presented on Table 4 have been revised to reflect revisions to the New York State water quality standards (NYSDEC, 1998). In general, the February 1999 ground water chemistry is similar to previous sampling events.

Detected constituents exceeding New York State Class GA Standards included: chromium at one location (88-12D); iron at four locations (URS-9I, 88-12C, 88-12D, and URS-14I); and sodium at ten locations (85-5R, URS-5D, 85-7R, URS-7D, URS-9I, URS-9D, 88-12C, 88-12D, URS-14I, and URS-14D). Concentrations of chromium have previously been detected in monitoring well 88-12D at concentrations slightly below the New York State Class GA Standards. In addition, chromium has previously been detected above the New York State Class GA Standards in background monitoring well URS-14I. Concentrations of iron have previously been

detected in the background wells URS-14I and URS-14D at similar concentrations. Concentrations of sodium have also been detected above the New York State Class GA Standards in background wells URS-14I and URS-14D. It is likely that the elevated concentrations of sodium are naturally occurring and are not related to previous site activities. VOCs were not detected above the New York State Class GA Standards. The data base will be updated with data from future sampling events, and ground water standards will be reviewed annually to evaluate whether standards have been revised.

Statistical analytes.

As specified in the O&M Manual, statistical analyses of the ground water chemistry data have been completed. A preliminary exploratory data analysis, using univariate statistics in SAS®, was performed for twelve analytes that have been detected a total of nine or more times in various monitoring wells since the initial post-construction sampling event in July 1997. Based on the results of the preliminary exploratory data analysis, concentrations for the twelve analytes (at $\alpha=0.10$) do not appear to be normally distributed.

The February 1999 data represents the results of the fourth baseline data collection effort. A t-test analysis was conducted based on the data collected from the post-construction sampling events, between June 1997 and February 1999, to evaluate whether downgradient concentrations exceed upgradient concentrations, based on a comparison of downgradient wells with the appropriate upgradient wells, URS-14I or URS-14D. Table 1-2 presents a summary of locations where constituent concentrations in downgradient wells exceeded concentrations at the appropriate upgradient comparison well, at a confidence level (α) equal to 0.05.

Table 1-2. Results of the t-test analysis.

Monitoring Well	Analyte
85-5R	Calcium, Magnesium
URS-5D	Calcium, Magnesium, Sodium
85-7R	Calcium, Magnesium, Sodium
URS-7D	Magnesium, Manganese, Sodium
URS-9I	Barium, Calcium, Magnesium
88-12C	Arsenic, Calcium, Magnesium
88-12D	Calcium, Magnesium, Manganese, Potassium

Source: O'Brien & Gere Engineers

It should be noted that there are currently no New York State Class GA Standards for calcium, magnesium, or potassium. Concentrations of arsenic, barium, and manganese have not been detected above the New York State Class GA Standards during the post-construction sampling. In addition, as discussed, it is likely that elevated concentrations of sodium are naturally occurring and are not related to previous site activities.

Results of the t-test analysis also indicate that cis-1,2-dichloroethene concentrations are greater in upgradient well URS-14I than in 85-7R, at a confidence level at the statistical significance threshold of α =0.05, and concentrations of cis-1,2-dichloroethene in 85-7R are below the New York State Class GA Standard.

Results of the t-test analysis also indicate that concentrations of iron and chromium, although detected above the New York State Class GA Standards, are not statistically higher downgradient than upgradient at the Site, indicating that the capped area is not impacting ground water.

2. Conclusions

Based on the data contained in this semi-annual report, the following conclusions are presented:

- The isolation of ground water within the capped area has been established.
- The ground water elevation data indicates that ground water within the capped area is migrating to the west toward the ground water collection trench.
- The ground water elevation data indicates that the ground water collection trench is effectively removing shallow ground water from within the capped area.
- The February 1999 ground water chemistry is similar to previous sampling events.
- Results of the t-test analysis indicate that concentrations of arsenic (88-12C), barium (URS-9I), calcium (85-5R, URS-5D, 85-7R, URS-9I, 88-12C, and 88-12D), magnesium (85-5R, URS-5D, 85-7R, URS-7D, URS-9I, 88-12C, and 88-12D), manganese (URS-7D and 88-12D), potassium (88-12D), and sodium (URS-5D, 85-7R, and URS-7D) exceed upgradient concentrations, based on a comparison of downgradient wells with the appropriate upgradient wells, URS-14I or URS-14D. There are currently no New York State Class GA Standards for calcium, magnesium, or potassium. Concentrations of arsenic, barium, and manganese have not been detected above the New York State Class GA Standards during the post-construction sampling. In addition, it is likely that elevated concentrations of sodium are naturally occurring and are not related to previous site activities
- Results of the t-test analysis indicate that cis-1,2-dichloroethene concentrations are greater in upgradient well URS-14I than in 85-7R, at a confidence level at the statistical significance threshold of α=0.05. Concentrations of cis-1,2-dichloroethene in 85-7R are below the New York State Class GA Standard.

References

- New York State Department of Environmental Conservation, 1998. *Title 6, Chapter X, Subchapter A, Article 2, Part 703.5, Table 1, Water Quality Standards Surface Waters and Groundwater*, March 1998.
- O'Brien & Gere Engineers, 1997. Operation and Maintenance Manual, Frontier Chemical Pendleton Site, Town of Pendleton, Niagara County, New York, Pendleton Site PRP Group, March 1997.
- O'Brien & Gere Engineers, 1998. Frontier Chemical Pendleton Site, Semi-Annual Ground Water Monitoring Report, Pendleton Site PRP Group, March 1998.

Piezometer Ground Water Elevation Summary Table Frontier Chemical - Pendleton Site Table 1

		- And the state of	Top of Riser To	Top of Cover	Depth (ft	Screened		Gro	Ground water elevation (ft)	elevation	(ft)	
Piezometer		Location	Elev. (ft)	Elev. (ft)	below riser)	Elev. (ft)	6/24/97	9/30/97	2/23/98	4/28/98	9/17/98	2/3/99
P-1	0	(O) East portion of	583.21	583.30	16.4	576.8 - 566.8	579.54	577.09	579.25	979.60	575.62	572.97
P-2	_≘	capped area	582.90	583.20	15.7	577.2 - 567.2	579.60	579.24	578.20	578.37	578.76	96.92
P-3	€	(I) Center of capped	606.33	606.64	39.7	586.6 - 566.6	580.36	580.38	580.06	579.94	579.80	579.96
		area									- Assertment system of	
Р-4	Ξ	(I) Adjacent to	582.31	583.85	15.6	576.7 - 566.7	577.15	577.43	576.70	575.11	575.96	574.58
SP-1	<u>E</u>	(T) Quarry Lake	579.86	580.07	15.0	bop = 564.9	<564.9	<564.9	<564.9	<564.9	<564.9	<564.9
P-5	0	(O) Southern portion	583.05	583.55	15.5	577.6 - 567.6	576.87	577.25	578.57	579.31	576.13	574.70
P-6	Ξ	(I) of capped area	584.45	584.60	16.2	578.3 - 568.3	578.77	579.17	578.14	578.20	578.63	577.94
p-7	€	(I) Northern portion	580.97	582.00	15.9	575.0 - 565.0	578.33	578.62	576.45	576.17	577.15	574.43
P-8	<u>0</u>	(O) of capped area	582.83	583.00	17.3	575.5 - 565.5	577.76	578.87	578.75	579.61	576.90	574.72

- 1. Elevation based on USGS Datum.
- 2. bop = bottom of pipe.
- 3. O = piezometer located outside of capped area.
- 4. I = piezometer located inside capped area.
- 5. T = standpipe located within the ground water collection trench.
- 6. The top of riser of piezometer P-4 was modified on 4/28/98 from 583.68 ft to 582.31 ft to allow clearance for the installation of a locking expansion plug beneath the flush-mounted cover.
 - 7. The top of riser of piezometer P-7 was modified on 4/28/98 from 581.84 ft to 580.97 ft to allow clearance for the installation of a locking expansion plug beneath the flush-mounted cover.

Table 2
Frontier Chemical - Pendleton Site
Monitoring Well Ground Water Elevation Summary Table

Well URS-14I Upgradie		Top of Riser Ground	Ground	Depth (ft	Screened		Gro	Ground water elevation (ft)	levation (ft)		
	Location	Elev. (ft)	Elev. (ft)	below riser)	Elev. (ft)	6/24/97	9/30/97	2/23/98	4/28/98	9/17/98	2/3/99
	Upgradient well nest	581.14	580.84	31.0	550.1 - 555.1	577.15	578.77	580.24	580.14	574.76	577.35
URS-14D in church parking lot	parking lot	580.71	580.85	41.5	539.2 - 544.2	575.50	574.28	575.87	576.05	573.94	572.89
URS-9I Southern	Southern well nest	581.68	579.90	46.0	535.6 - 540.6	575.38	574.22	575.69	575.91	573.76	572.67
URS-9D along Tov	along Town Line Road	580.80	579.00	46.5	534.3 - 539.3	575.36	574.21	575.68	575.89	573.64	572.66
85-5R Middle well nest	ell nest	580.84	578.70	40.0	540.9 - 542.9	574.70	573.97	575.39	575.70	574.98	572.78
URS-5D along Tov	along Town Line Road	580.60	578.00	49.9	530.8 - 535.8	574.73	574.02	575.42	575.74	573.80	572.12
85-7R North well nest	ll nest	577.90	576.60	27.8	550.2 - 552.2	675.09	574.21	575.53	575.87	573.74	572.30
URS-7D along Tov	along Town Line Road	579.35	576.50	39.9	539.5 - 544.5	575.15	574.35	575.60	575.99	573.75	572.40
88-12C Well nest	Well nest outside northeast	583.12	583.70	31.3	551.8 - 553.8	576.60	574.03	. 576.53	90'11'9	572.79	571.72
88-12D portion of	portion of capped area	582.87	583.28	54.5	528.4 - 533.4	575.72	574.54	576.17	576.33	574.00	572.97

1. Elevation based on USGS Datum.

Table 3
Frontier Chemical - Pendleton Site
Quarry Lake Surface Water Elevation Summary Table

1. Elevation based on USGS Datum.

Table 4 Frontier Chemical-Pendleton Site Summary of Ground Water Analytical Data February 1999

	Standard	85-5R							
Parameter	ug/L (ppb)	7/86	8/90	2/91	10/92	6/97	2/98	9/98	2/99
VOCs (ppb)			<u> </u>		<u> </u>		L		1
Acetone		NA	R	ND	ND	ND	ND	ND	ND
Benzene	1	ND	15	ND	ND	ND	0.34 J	ND	ND
2-Butanone		NA	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		NA	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	NA	NA	NA	ND	0.28 J	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	5	NA	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	0.24 J	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		NA	2J	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	2J	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	0.14 J	ND	ND
Total Xylenes	5	NA	ND	ND	ND	ND	0.96	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)									
Aluminum		1,060	214	37.8B	153	ND	300	ND	ND
Antimony	3	NA	ND	42.4B	ND	ND	ND	ND	ND
Arsenic	25	NA	1B	ND	ND	ND	ND	ND	ND
Barium	1000	20	73.5B	23.4B	15	40	80	50J	ND
Beryllium		ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	5	ND	ND	ND	ND	ND	ND	ND
Calcium		380,000	355,000	378,000	321,000	270,000	220,000	220,000	130,000
Chromium	50	40	7.5B	ND	ND	ND	30	10	ND
Cobalt		20	ND	ND	ND	ND	ND	ND	ND
Copper	200	10	ND	ND	11	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	ND	ND	ND	ND	ND
Iron	300	1,020	669	915	419	140	2,300	190	ND
Lead	25	150	ND	1.2B	ND	ND	ND	ND	ND
Magnesium		179,000	106,000	170,000	139,000	130,000	85,000	110,000	59,000
Manganese	300	100	40	57.5	42	50	260	40	ND
Nickel	100	10	48.1	ND	ND	ND	ND	ND	ND
Potassium		9,500	60,700	6,280	6,400	ND	ND	ND	ND
Selenium	10	NA 20	ND	ND	ND	ND	ND	ND	ND
Silver	50	30	ND 100,000	ND 100,000	ND	ND	ND	ND	ND
Sodium	20,000	126,000	132,000	120,000	100,000	93,000 J	58,000	87,000	52,000
Thallium		NA 05	ND 4D	ND	ND	ND	8	ND	ND
Vanadium		35	4B	ND	ND	ND	ND	ND	ND
Zinc		75	12.9B	17.6B	ND	ND	ND	ND	ND

Notes:

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, and 2/99 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

i:\div71\5829\22038\4\9.wb2

Table 4
Frontier Chemical-Pendleton Site
Summary of Ground Water Analytical Data
February 1999

	Standard				URS-5D			
Parameter	ug/L (ppb)	8/90	2/91	10/92	6/97	2/98	9/98	2/99
VOCs (ppb)					•			
Acetone		250	R	ND	ND	ND	ND	ND
Benzene	1	ND	ND	1	ND	0.25 J	0.11 J	ND
2-Butanone		ND	R	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	NA	NA	NA	ND	0.31 J	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	0.32 J	ND	ND
Methylene Chloride	5	ND	R	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	1J	ND	ND	0.19 J	ND	ND
Total Xylenes	5	ND	0.5J	ND	ND	1.5	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)						MII	<u>*************************************</u>	
Aluminum		ND	ND	ND	ND	ND	ND	ND
Antimony	3	ND	31.5B	ND	ND	ND	ND	ND
Arsenic	25	1.3B	1B	ND	ND	ND	ND	ND
Barium	1000	224	71.7B	32	20	ND	ND	ND
Beryllium		ND	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND	ND
Calcium		378,000	407,000	387,000	440,000	300,000	490,000	510,000
Chromium	50	3B	ND	ND	ND	ND	ND	ND
Cobalt		ND	ND	ND	ND	61	210	850
Copper	200	ND	ND	8	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	ND	ND	ND	ND
Iron	300	188	143	25	ND	120	ND	ND
Lead	25	ND	1.3B	12	ND	ND	ND	ND
Magnesium		33,300	2450B	570,000	100,000	24,000	87,000	76,000
Manganese	300	8.8B	3.5B	ND	50	10	70	70
Nickel	100	11.4B	ND	ND	90	ND	180	90
Potassium		22,700	16,900	8,500	ND	ND	ND	5,000
Selenium	10	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	192,000	194,000	114,000	88,000	93,000	94,000	120,000
Thallium		ND	ND	ND	ND	ND	ND	ND
Vanadium		3.8B	ND	ND	ND	ND	ND	ND
Zinc		19.9B	14.7B	ND	ND	10	ND	ND

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, and 2/99 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

Table 4 Frontier Chemical-Pendleton Site Summary of Ground Water Analytical Data February 1999

	Standard	85-7R							1
Parameter	ug/L (ppb)	7/86	8/90	2/91	10/92	6/97	2/98	9/98	2/99
VOCs (ppb)			- 						
Acetone		NA	ND	R	ND	ND	ND	ND	ND
Benzene	1	ND	6	ND	ND	ND	ND	ND	ND
2-Butanone		NA	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		71	ND	ND	ND	ND	ND	ND	0.93 J
Chlorobenzene	5	ND	NA	NA	NA	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	5	NA	ND	ND	ND	0.14J	0.19 J	0.14 J	0.21 J
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		NA	ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	1J	ND	ND	ND	ND	ND
Total Xylenes	5	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)									
Aluminum		1,200	277	265	249	ND	ND	ND	ND
Antimony	3	NA	28.3B	ND	ND	ND	ND	ND	ND
Arsenic	25	NA	1.4B	1.7B	ND	ND	ND	ND	ND
Barium	1000	30	91B	143B	106	100	80	50J	ND
Beryllium		ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	5	ND	ND	ND	ND	ND	ND	ND
Calcium		490,000	354,000	298,000	389,000	350,000	350,000	420,000	400,000
Chromium	50	20	ND	ND	ND	ND	ND	ND	10
Cobalt		20	ND	. ND	ND	ND	ND	ND	ND
Copper	200	10	ND	ND	8	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	ND	ND	ND	ND	ND
Iron	300	920	586	820	435	190	310	270	170
Lead	25	120	ND	2.6B	ND	ND	ND	ND	ND
Magnesium		131,000	119,000	42,600	124,000	120,000	120,000	140,000	140,000
Manganese	300	110	40.5	31.5	30	70	80	90	80
Nickel	100	ND	7.4B	ND	ND	ND	ND	ND	ND
Potassium		28,000	5,540	5,770	6,700	5,000	5,000	6,000	6,000
Selenium	10	NA	ND	ND	ND	ND	ND	ND	ND
Silver	50	10	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	107,000	67,900	38,900	73,100	66,000 J	67,000	75,000	74,000
Thallium		NA	ND	ND	ND	ND	6	ND	ND
Vanadium		35	ND	ND	ND	ND	ND	ND	ND
Zinc		65	ND	21.5	ND	ND	ND	ND	ND.

Notes:

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, and 2/99 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

i:\div71\5829\22038\4\9.wb2

Table 4
Frontier Chemical-Pendleton Site
Summary of Ground Water Analytical Data
February 1999

	Standard	ard URS-7D						
Parameter	ug/L (ppb)	8/90	2/91	10/92	6/97	2/98	9/98	2/99
VOCs (ppb)							*	
Acetone		120	R	ND	ND	ND	61	6.0 J
Benzene	1	ND	ND	ND	ND	0.11 J	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		0.5J	ND	ND	ND	ND	ND	1.3 J
Chlorobenzene	5	NA	NA	NA	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	5	ND	ND	ND	ND	0.37 J	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)								
Aluminum	*****	167B	52.5B	ND	ND	ND	ND	ND
Antimony	3	20.5B	36.3B	ND	ND	ND	ND	ND
Arsenic	25	ND	ND	ND	ND	ND	ND	ND
Barium	1000	20.3B	47.2B	29	30	40	ND	ND
Beryllium		ND	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND	ND
Calcium		277,000	333,000	403,000	360,000	300,000	480,000	400,000
Chromium	50	ND	ND	ND	ND	ND	10	10
Cobalt		ND	ND	ND	ND	ND	ND	ND
Copper	200	ND	ND	8	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	ND	ND	ND	ND
Iron	300	387	283	63	ND	70	ND	100
Lead	25	ND	ND	ND	ND	ND	ND	ND
Magnesium		96,200	115,000	140,000	120,000	89,000	140,000	130,000
Manganese	300	71.2	140	86	40	30	40	50
Nickel	100	23.5B	ND	ND	ND	ND	ND	ND
Potassium		5,990	8,550	8,300	5,000	ND	6,000	ND
Selenium	10	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	82,700	68,900	78,900	66,000 J	54,000	79,000	74,000
Thallium		ND	ND	ND	ND	ND	ND	ND
Vanadium		4.2B	6.7B	ND	ND	ND	ND	ND
Zinc		5.6B	12.2B	ND	ND	ND	ND	ND

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, and 2/99 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

Table 4 Frontier Chemical-Pendleton Site Summary of Ground Water Analytical Data February 1999

<u> </u>	Standard	URS-91						
Parameter	ug/L (ppb)	8/90	2/91	10/92	6/97	2/98	9/98	2/99
VOCs (ppb)					I			
Acetone	1	R	R	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	0.12J	0.29 J	ND	ND
2-Butanone		ND	2J	ND	ND	ND	ND	ND
Bromodichloromethane	1	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	—	ND	ND	ND	ND	ND	0.13 J	ND
Chlorobenzene	5	NA	NA	NA	ND	0.20 J	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	1	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	0.14 J	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND
Toluene	5	0.7J	ND	ND	ND	0.11 J	ND	ND
Total Xylenes	5	ND	ND	ND	0.29J	0.54	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)								
Aluminum		221	197	110	ND	ND	ND	200
Antimony	3	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	1.7B	ND	ND	ND	ND	ND	ND
Barium	1000	30.1B	22.8B	14	30	ND	ND	ND
Beryllium		ND	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND	ND
Calcium		106,000	143,000	123	170,000	150,000	160,000	160,000
Chromium	50	8.6B	10.1	ND	ND	ND	10	10
Cobalt		ND	ND	ND	ND	ND	ND	ND
Copper	200	12.7B	ND	ND	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	ND	ND	ND	ND
Iron	300	1,020	1,170	808	460	440	290	590
Lead	25	ND	1B	ND	ND	ND	ND	ND
Magnesium		54,500	71,300	63,500	70,000	69,000	77,000	70,000
Manganese	300	67.5	80	75	50	30	40	50
Nickel	100	7.6B	ND	ND	ND	ND	ND	ND
Potassium		3,910B	4,250B	2,900	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	34,500	54,000	52,400	43,000 J	45,000	49,000	39,000
Thallium		ND	ND	ND	ND	11	ND	ND
Vanadium		ND	9.6B	ND	ND	ND	ND	ND
Zinc		19.3B	34.6	ND	ND	ND	20	ND

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, and 2/99 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

Table 4
Frontier Chemical-Pendleton Site
Summary of Ground Water Analytical Data
February 1999

	Standard	d URS-9D						
Parameter	ug/L (ppb)	8/90	2/91	10/92	6/97	2/98	9/98	2/99
VOCs (ppb)			·	k			·····	
Acetone		R	R	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	ND	1.9	ND	ND
2-Butanone		ND	6J	ND	ND	ND	ND	ND
Bromodichloromethane		4J	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	NA	NA	NA	ND	0.79	ND	ND
Chloroform	7	8	ND	ND	ND	ND	ND	ND
Dibromochloromethane		1J	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	0.7	0.37J	0.34 J	0.17 J	0.16 JN
1,2-Dichloroethene	5	ND	ND	1	0.66	0.59	0.33 J	0.35 J
Ethylbenzene	5	ND	ND	ND	ND	0.44 J	ND	ND
Methylene Chloride	5	ND	ND	2	ND	ND	ND	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND
Toluene	5	0.6J	ND	ND	ND	0.51	ND	ND
Total Xylenes	5	ND	ND	ND	ND	1.8	ND	ND
Trichloroethene	5	ND	ND	0.6	0.36J	0.24 J	0.20 J	0.21 J
Vinyl Chloride	2	ND	ND	ND	0.26J	0.44 J	0.11 JN	ND
Metals (ppb)								
Aluminum		128	64.2B	ND	ND	ND	ND	ND
Antimony	3	ND	28B	ND	ND	ND	ND	ND
Arsenic	25	1.6B	ND	ND	ND	ND	ND	ND
Barium	1000	110B	38.2B	23	ND	ND	ND	ND
Beryllium		ND	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND	ND
Calcium		56,500	146,000	120,000	200,000	190,000	190,000	200,000
Chromium	50	ND	ND	ND	ND	ND	10	ND
Cobalt		ND	ND	ND	ND	ND	ND	ND
Copper	200	5.2B	ND	ND	ND	ND	ND	ND
Cyanide	200	ND	11.1B	ND	ND	ND	ND	ND
Iron	300	127	506	252	ND	70	80	70
Lead	25	ND	ND	ND	ND	ND	ND	ND
Magnesium		29,900	70,200	60,000	58,000	73,000	71,000	72,000
Manganese	300	20.1	25.5	9	ND	ND	10	10
Nickel	100	15.3B	ND	ND	ND	ND	ND	ND
Potassium	=	9,880	4,170B	3,600	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	27,400	37,000	42,800	48,000 J	52,000	41,000	38,000
Thallium		ND	ND	ND	ND	14	ND	ND
Vanadium		10.7B	ND	ND	ND	ND	ND	ND
Zinc	<u> </u>	50.5	16.7B	ND	ND	ND	ND	ND

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, and 2/99 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

Table 4
Frontier Chemical-Pendleton Site
Summary of Ground Water Analytical Data
February 1999

	Standard				88-12C			
Parameter	ug/L (ppb)	8/90	2/91	10/92	6/97	2/98	9/98	2/99
VOCs (ppb)						·		
Acetone	1	ND	ND	ND	ND	ND	ND	ND
Benzene	1 1	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	NA	NA	NA	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	5	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)							-	
Aluminum		481	187B	453	ND	900	ND	600
Antimony	3	19.2B	28B	ND	ND	ND	ND	ND
Arsenic	25	10	12.3B	14	9	7	10	12
Barium	1000	11.4B	17.3	14	ND	ND	ND	ND
Beryllium		ND	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND	ND
Calcium		62,600	68,500	68,900	73,000	70,000	71,000	76,000
Chromium	50	21	4.6B	ND	ND	10	10	20
Cobalt		ND	ND	ND	ND	ND	ND	ND
Copper	200	4.2B	ND	5	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	ND	ND	ND	ND
Iron	300	1,530	1,040	1,560	ND	2,200	330	1,600
Lead	25	1.5B	1.2B	ND	ND	ND	ND	ND
Magnesium		88,500	103,000	92,500	110,000	98,000	110,000	100,000
Manganese	300	45.4	37.8	54	10	70	10	40
Nickel	100	14.6B	ND	ND	ND	ND	ND	ND
Potassium		2,520B	3,200B	3,000	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	34,600	41,100	41,300	47,000 J	43,000	40,000	42,000
Thallium	—	ND	ND	ND	ND	13	ND	ND
Vanadium		22.1B	10B	ND	ND	ND	ND	ND
Zinc	<u> </u>	10.1B	15.7B	ND	20	20	ND	ND

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, and 2/99 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

Table 4
Frontier Chemical-Pendleton Site
Summary of Ground Water Analytical Data
February 1999

	Standard	rd 88-12D					
Parameter	ug/L (ppb)	8/90	2/91	6/97	2/98	9/98	2/99
VOCs (ppb)							
Acetone	 	ND	ND	ND	ND	ND	ND
Benzene	1 1	1J	0.9J	ND	0.13 J	0.13 J	ND
2-Butanone		ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	6	ND	ND	0.56	0.70 J
Chlorobenzene	5	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	5	ND	2J	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	0.11 J	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND
Toluene	5	R	13	ND	ND	ND	ND
Total Xylenes	5	ND	ND	ND	0.48 J	ND	ND
Trichloroethene	5	ND	6	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND
Metals (ppb)							
Aluminum		ND	172B	ND	ND	ND	ND
Antimony	3	50.7B	56.1B	ND	ND	ND	ND
Arsenic	25	ND	1.3BW	ND	ND	ND	ND
Barium	1000	2.9B	7.9B	ND	ND	ND	ND
Beryllium		ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND
Calcium		464,000	623,000E	490,000	480,000	630,000	630,000
Chromium	50	7.6B	27.8E	10	30	30	90
Cobalt		ND	ND	ND	ND	ND	ND
Copper	200	ND	ND	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	ND	ND	ND
Iron	300	168	250	180	480	110	650
Lead	25	ND	1.8BW	ND	ND	ND	ND
Magnesium		109,000	199,000E	130,000	110,000	180,000	160,000
Manganese	300	33.9	696	90	60	40	50
Nickel	100	11.5B	25.5B	ND	ND	ND	70
Potassium		5,310	12,000E	600	6,000	10,000	9,000
Selenium	10	ND	ND	ND	ND	6	ND
Silver	50	ND	ND	ND	ND	ND	ND
Sodium	20,000	66,400	474,000	140,000 J	100,000	330,000	250,000
Thallium		ND	ND	ND	ND	ND	ND
Vanadium		51.6	2.4B	ND	ND	ND	ND
Zinc		7.9B	ND	ND	10	ND	ND

Notes:

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, and 2/99 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

Table 4
Frontier Chemical-Pendleton Site
Summary of Ground Water Analytical Data
February 1999

	Standard	URS-14I					
Parameter	ug/L (ppb)	2/91	10/92	6/97	2/98	9/98	2/99
VOCs (ppb)				······	***************************************		
Acetone		ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	1	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND
Chlorobenzene	5	NA	NA	ND	0.81	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	0.13 J	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone	I	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	0.15 J	ND	ND
Total Xylenes	5	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND
Metals (ppb)							
Aluminum		7,140	1,170	1300	400	ND	300
Antimony	3	ND	ND	ND	ND	ND	ND
Arsenic	25	7.2B	ND	ND	ND	ND	5
Barium	1000	115B	47	50	40	40J	40
Beryllium		1.2B	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	1	ND	ND
Calcium		73,900	35,200	28,000 J	21,000	23,000	26,000
Chromium	50	30.9	ND	ND	160	ND	ND
Cobalt	***	5.8B	ND	ND	ND	ND	ND
Copper	200	18.5B	8	ND	10	ND	ND
Cyanide	200	ND	ND	ND	ND	ND	ND
Iron	300	10,400	2,060	1,800	2,300	ND	320
Lead	25	7.5	ND	ND	ND	ND	ND
Magnesium		32,800	22,300	21,000	17,000	21,000	23,000
Manganese	300	484	145	70	60	ND	ND
Nickel	100	30.4B	ND	ND	170	ND	ND
Potassium		17,100	5,500	ND	25,000	8,000	6,000
Selenium	10	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND
Sodium	20,000	44,700	42,500	58,000 J	48,000	48,000	54,000
Thallium		ND	ND	ND	6	ND	ND
Vanadium		16.1B	ND	ND	ND	ND	ND
Zinc		52.3	ND	10	30	ND	ND

Notes:

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, and 2/99 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

Table 4 Frontier Chemical-Pendleton Site Summary of Ground Water Analytical Data February 1999

	Standard	ard URS-14D				}	
Parameter	ug/L (ppb)	2/91	10/92	6/97	2/98	9/98	2/99
VOCs (ppb)			<u> </u>				
Acetone		ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	ND	ND	ND
2-Butanone	—	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND
Carbon Disulfide	—	ND	ND	ND	ND	0.47 J	1.1 J
Chlorobenzene	5	NA	NA	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND
Methylene Chloride	5	R	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND
Total Xylenes	5	ND	ND	0.11J	0.21 J	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND
Metals (ppb)							
Aluminum		99.8	ND	ND	ND	ND	ND
Antimony	3	32.1B	ND	ND	ND	ND	ND
Arsenic	25	2B	ND	ND	ND	ND	ND
Barium	1000	25.5B	23	20	ND	ND	40
Beryllium		ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND
Calcium		255,000	292,000	210,000	250,000	310,000	280,000
Chromium	50	10.3	7	ND	ND	10	ND
Cobalt		ND	ND	ND	ND	ND	ND
Copper	200	ND	8	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	10	10	ND
Iron	300	357	193	ND	ND	ND	80
Lead	25	1.1B	ND	ND	ND	ND	ND
Magnesium		75,200	78,000	61,000	66,000	81,000	71,000
Manganese	300	30.8	27	ND	ND	ND	ND
Nickel	100	ND	ND	ND	ND	ND	ND
Potassium		4,250B	3,700	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND
Sodium	20,000	40,700	38,700	52,000 J	49,000	50,000	48,000
Thallium		ND	ND	ND	ND	ND	ND
Vanadium		ND	ND	ND	ND	ND	ND
Zinc		26.8	ND	ND	10	10	ND

Notes:

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, and 2/99 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

i:\div71\5829\22038\4\9.wb2

FIGURE 1

LEGEND

URS-7D P-1 ♦ (579.61)

Θ

MONITORING WELL

PIEZOMETER

WATER ELEVATION

GRADE ELEVATION CONTOUR
GROUND WATER COLLECTION

TRENCH & CLEAN OUT

STANDPIPE

Ø UTILITY POLE

FRONTIER CHEMICAL PENDLETON SITE TOWN OF PENDLETON, NIAGARA COUNTY, NY

HYDRAULIC POTENTIAL MAP (FEBRUARY 3, 1999)

SCALE IN FEET

DATE: MARCH 1999 FILE NO. 5829.22038.001

400

Piezometer/monitoring well inspection forms

Site Name:

Frontier Chemical

Well Identification:

Personnel:

Peter Bogardus/Chawn O'Dell

Date: 2/3/99

WELL SPECIFICATIONS

Protective Casings

Above Ground
PVC

Flush Mounted

Well Construction

2-inch

Stainless Steel

Well Diameter

2 men

4- inch

Depth to Ground Water

10 24

Well Depth

16,28

WELL INTEGRITY

1. Well identification clearly mark	ea:
-------------------------------------	-----

Yes No

2. Well covers and locks in good condition and secure?

No

3. Is the well stand pipe vertically aligned and secure?

No

4. Is the concrete pad and surface seal in good condition?

Yes

No

5. Are soils surrounding the well pad eroded?

Yes

No

6. Is the well casing in good condition?

Yes

No

7. Is the measuring point on casing well marked?

Yes

No

8. Is there standing water in the annular space?

Yes

(Ng)

9. Is the standpipe vented at the base to allow drainage?

Yes

No

Site Name:

Frontier Chemical

Well Identification: P2

Personnel:

Peter Bogardus/Chawn O'Dell

Date: 2/3/99

WELL SPECIFICATIONS

Protective Casings

Above Ground

Flush Mounted

Well Construction

PVC ?

Stainless Steel

Well Diameter

2-inch

4- inch

Depth to Ground Water

Well Depth

WELL INTEGRITY

1.	Well identification clearly marked?

Yes No

2. Well covers and locks in good condition and secure?

No

3. Is the well stand pipe vertically aligned and secure?

No Yes

4. Is the concrete pad and surface seal in good condition?

Yes No

5. Are soils surrounding the well pad eroded?

6. Is the well casing in good condition?

7. Is the measuring point on casing well marked?

Yes No

Yes

No

8. Is there standing water in the annular space?

No

9. Is the standpipe vented at the base to allow drainage?

Yes

No NA

Site Name:

Frontier Chemical

Well Identification: P3

Personnel:

Peter Bogardus/Chawn O'Dell

Date: 2/3/99

WELL SPECIFICATIONS

Protective Casings

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4- inch

Depth to Ground Water

26.37

Well Depth

39.96

WELL INTEGRITY

1. Well identification clearly marked?	Yes	No
2. Well covers and locks in good condition and secure?	Yes	No
3. Is the well stand pipe vertically aligned and secure?	Yes	No
4. Is the concrete pad and surface seal in good condition?	Yes	No
5. Are soils surrounding the well pad eroded?	Yes	No
6 Is the well easing in good condition?	Ves	No

6. Is the well casing in good condition?

7. Is the measuring point on casing well marked?

8. Is there standing water in the annular space?

Yes

9. Is the standpipe vented at the base to allow drainage?

Yes

Site Name:

Frontier Chemical

Well Identification: P-4

Personnel:

Peter Bogardus/Chawn O'Dell

Date: 2/3/99

WELL SPECIFICATIONS

Protective Casings

Above Ground

Flush Mounted

Well Construction

PVC)

Stainless Steel

Well Diameter

2-inch

4- inch

Depth to Ground Water

7.73

Well Depth

WELL INTEGRITY

1. Well identification clearly marked?

Yes

No

2. Well covers and locks in good condition and secure?

3. Is the well stand pipe vertically aligned and secure?

No

4. Is the concrete pad and surface seal in good condition?

Yes Yes

No No

5. Are soils surrounding the well pad eroded?

Yes

(No

6. Is the well casing in good condition?

Yes

No

7. Is the measuring point on casing well marked?

Yes

No

8. Is there standing water in the annular space?

Yes

9. Is the standpipe vented at the base to allow drainage?

Yes

No NA

Site Name:

Frontier Chemical

Well Identification: 8-5

(Yes)

Personnel:

Peter Bogardus/Chawn O'Dell

9. Is the standpipe vented at the base to allow drainage?

Date: 2/3/99

WELL SPECIFICATIONS

Protective Casings

Above Ground

Flush Mounted

Well Construction

Stainless Steel

Well Diameter

2-inch

4- inch

Depth to Ground Water

Well Depth

15.68

WELL INTEGRITY

1. Well identification clearly marked?	(Yes)	No
2. Well covers and locks in good condition and secure?	Yes	No
3. Is the well stand pipe vertically aligned and secure?	Yes	No
4. Is the concrete pad and surface seal in good condition?	Yes	No
5. Are soils surrounding the well pad eroded?	Yes	No
6. Is the well casing in good condition?	Yes	No
7. Is the measuring point on casing well marked?	Yes	No
8. Is there standing water in the annular space?	Yes	No

Site Name:

Frontier Chemical

Well Identification: P-6

Personnel:

Peter Bogardus/Chawn O'Dell

Date: 2/3/99

WELL SPECIFICATIONS

Protective Casings

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4- inch

Depth to Ground Water

6.51

Well Depth

16.23

WELL INTEGRITY

- 1. Well identification clearly marked?
- 2. Well covers and locks in good condition and secure?
- 3. Is the well stand pipe vertically aligned and secure?
- 4. Is the concrete pad and surface seal in good condition?
- 5. Are soils surrounding the well pad eroded?
- 6. Is the well casing in good condition?
- 7. Is the measuring point on casing well marked?
- 8. Is there standing water in the annular space?
- 9. Is the standpipe vented at the base to allow drainage?

Yes)

No

No

No)

No

Yes

Yes

No

No

Comments:

* Standpipe at surface is learning 20°-30°.

Site Name:

Frontier Chemical

Well Identification: P. 7

Personnel:

Peter Bogardus/Chawn O'Dell

Date: 2/3/99

WELL SPECIFICATIONS

Protective Casings

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4- inch

Depth to Ground Water

6.54

Well Depth

WELL INTEGRITY

1. Well identification clearly marked?

No

2. Well covers and locks in good condition and secure?

No

3. Is the well stand pipe vertically aligned and secure?

Yes

No

4. Is the concrete pad and surface seal in good condition?

Yes

No

5. Are soils surrounding the well pad eroded?

Yes

6. Is the well casing in good condition?

Yes

No

7. Is the measuring point on casing well marked?

Yes

No

8. Is there standing water in the annular space?

No

9. Is the standpipe vented at the base to allow drainage?

Yes

No NA

Site Name:

Frontier Chemical

Well Identification: Pg

Personnel:

Peter Bogardus/Chawn O'Dell

Date: 2/3/99

WELL SPECIFICATIONS

Protective Casings

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4- inch

Depth to Ground Water

8,11

Well Depth

17.28

WELL INTEGRITY

1. Well identification clearly marked?

Yes

No

2. Well covers and locks in good condition and secure?

No

3. Is the well stand pipe vertically aligned and secure?

Yes

No

4. Is the concrete pad and surface seal in good condition?

Yes

No

5. Are soils surrounding the well pad eroded?

Yes

No

6. Is the well casing in good condition?

Yes

7. Is the measuring point on casing well marked?

Yes

No

8. Is there standing water in the annular space?

Yes

9. Is the standpipe vented at the base to allow drainage?

No

Site Name:

Frontier Chemical

Well Identification: $5\rho-1$

Personnel:

Peter Bogardus/Chawn O'Dell

Date: 2/3/99

WELL SPECIFICATIONS

Protective Casings

Above Ground

Flush Mounted

Well Construction

HDPE

Stainless Steel

Well Diameter

6-inch

Depth to Ground Water

Well Depth

WELL INTEGRITY

1. Well id	dentification	clearly	marked?
------------	---------------	---------	---------

Yes)

No

2. Well covers and locks in good condition and secure?

No

3. Is the well stand pipe vertically aligned and secure?

No

4. Is the concrete pad and surface seal in good condition?

Yes

No

5. Are soils surrounding the well pad eroded?

Yes

6. Is the well casing in good condition?

Yes

No

7. Is the measuring point on casing well marked?

Yes

No

8. Is there standing water in the annular space?

Yes

9. Is the standpipe vented at the base to allow drainage?

Yes

Site Name:

Frontier Chemical

Well Identification: 85-5R

Personnel:

Peter Bogardus/Chawn O'Dell

Date: 2/3/99

WELL SPECIFICATIONS

Protective Casings

Above Ground

Flush Mounted

Well Construction

Well Diameter

2-inch

4- inch

Depth to Ground Water

8,60 8.06

Well Depth

38.05

WELL INTEGRITY

1. Well identification clearly marked?

No

2. Well covers and locks in good condition and secure?

No

3. Is the well stand pipe vertically aligned and secure?

Yes

No

4. Is the concrete pad and surface seal in good condition?

Yes

No

5. Are soils surrounding the well pad eroded?

Yes

6. Is the well casing in good condition?

Yes

No

7. Is the measuring point on casing well marked?

Yes

8. Is there standing water in the annular space?

Yes

9. Is the standpipe vented at the base to allow drainage?

Yes

No

Site Name:

Frontier Chemical

Well Identification: URS-50

Personnel:

Peter Bogardus/Chawn O'Dell

Date: 2/3/99

WELL SPECIFICATIONS

Protective Casings

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4- inch

Depth to Ground Water

8,48

Well Depth

49.93

WELL INTEGRITY

1. Well i	identification	clearly	marked?
-----------	----------------	---------	---------

(Yes)

No

2. Well covers and locks in good condition and secure?

Yes

No

3. Is the well stand pipe vertically aligned and secure?

Yes

No

4. Is the concrete pad and surface seal in good condition?

Yes

No

5. Are soils surrounding the well pad eroded?

Yes

No

6. Is the well casing in good condition?

Yes

No

7. Is the measuring point on casing well marked?

Yes

No

8. Is there standing water in the annular space?

Yes

No

9. Is the standpipe vented at the base to allow drainage?

Yes

No

Site Name:

Frontier Chemical

Well Identification: 85-7R

Personnel:

Peter Bogardus/Chawn O'Dell

Date: 2/3/99

WELL SPECIFICATIONS

Protective Casings

Above Ground

Flush Mounted

Well Construction

Stainless Steel

Well Diameter

2-inch

4- inch

Depth to Ground Water

5,60

Well Depth

27.78

WELL INTEGRITY

1. Well identification clearly marked?

No

2. Well covers and locks in good condition and secure?

No

3. Is the well stand pipe vertically aligned and secure?

Yes

No

4. Is the concrete pad and surface seal in good condition?

Yes

No

5. Are soils surrounding the well pad eroded?

Yes

6. Is the well casing in good condition?

Yes

No

7. Is the measuring point on casing well marked?

Yes

No

8. Is there standing water in the annular space?

Yes

9. Is the standpipe vented at the base to allow drainage?

No

Site Name:

Frontier Chemical

Well Identification: URS-7D

Personnel:

Peter Bogardus/Chawn O'Dell

Date: 2/3/99

WELL SPECIFICATIONS

Protective Casings

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4- inch

Depth to Ground Water

6.95

Well Depth

39.89

WELL INTEGRITY

1.	Well	identification	clearly	marked?
----	------	----------------	---------	---------

Yes

No

2. Well covers and locks in good condition and secure?

Yes

No

3. Is the well stand pipe vertically aligned and secure?

Yes

No

4. Is the concrete pad and surface seal in good condition?

Yes

No

5. Are soils surrounding the well pad eroded?

Yes

No

6. Is the well casing in good condition?

Yes

No

7. Is the measuring point on casing well marked?

Yes

No

8. Is there standing water in the annular space?

Yes

No

9. Is the standpipe vented at the base to allow drainage?

Yes

No

Site Name:

Frontier Chemical

Well Identification: UAS- II

Personnel:

Peter Bogardus/Chawn O'Dell

Date: 2/3/99

WELL SPECIFICATIONS

Protective Casings

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4- inch

Depth to Ground Water

9.01

Well Depth

46.40

WELL INTEGRITY

1. Well identification clear	rly marked?
------------------------------	-------------

Yes

No

2. Well covers and locks in good condition and secure?

No

3. Is the well stand pipe vertically aligned and secure?

Yes

No

4. Is the concrete pad and surface seal in good condition?

Yes

No

5. Are soils surrounding the well pad eroded?

Yes

6. Is the well casing in good condition?

Yes

7. Is the measuring point on casing well marked?

Yes

8. Is there standing water in the annular space?

Yes

9. Is the standpipe vented at the base to allow drainage?

Yes

No

Site Name:

Frontier Chemical

Well Identification: URS - 9D

Personnel:

Peter Bogardus/Chawn O'Dell

Date: 2/3/99

WELL SPECIFICATIONS

Protective Casings

(Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4- inch

Depth to Ground Water

8,14

50.99

Well Depth

WELL INTEGRITY

- 1. Well identification clearly marked?
- 2. Well covers and locks in good condition and secure?
- 3. Is the well stand pipe vertically aligned and secure?
- 4. Is the concrete pad and surface seal in good condition?
- 5. Are soils surrounding the well pad eroded?
- 6. Is the well casing in good condition?
- 7. Is the measuring point on casing well marked?
- 8. Is there standing water in the annular space?
- 9. Is the standpipe vented at the base to allow drainage?

Yes)

No

No

Yes

No No

Yes Yes

No

Yes

No

Yes

No

Yes

No

Site Name:

Frontier Chemical

Well Identification: 88-12C

Personnel:

Peter Bogardus/Chawn O'Dell

Date: 2/3/99

WELL SPECIFICATIONS

Protective Casings

Above Ground

Flush Mounted

Well Construction

Well Diameter

PVC

Stainless Steel)

Depth to Ground Water

2-inch 11.40

4- inch

Well Depth

31.37

WELL INTEGRITY

1.	Well identification	clearly	marked?
----	---------------------	---------	---------

2. Well covers and locks in good condition and secure?

No

No

3. Is the well stand pipe vertically aligned and secure? 4. Is the concrete pad and surface seal in good condition?

Yes Yes

No No

5. Are soils surrounding the well pad eroded?

Yes

(No

6. Is the well casing in good condition?

Yes

No

7. Is the measuring point on casing well marked? 8. Is there standing water in the annular space?

Yes

No

Yes

No

9. Is the standpipe vented at the base to allow drainage?

No

Comments:

Concrete pad noter gravel.

Site Name:

Frontier Chemical

Well Identification: 88-120

Personnel:

Peter Bogardus/Chawn O'Dell

Date: 2/3/99

WELL SPECIFICATIONS

Protective Casings

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4- inch

Depth to Ground Water

9.90

Well Depth

53.36

WELL INTEGRITY

1. Well identification clearly marked?

(Yes)

No

2. Well covers and locks in good condition and secure?

No

3. Is the well stand pipe vertically aligned and secure?

Yes

No

4. Is the concrete pad and surface seal in good condition?

Yes

No

5. Are soils surrounding the well pad eroded?

6. Is the well casing in good condition?

Yes Yes

No

7. Is the measuring point on casing well marked?

Yes

No

8. Is there standing water in the annular space?

Yes

9. Is the standpipe vented at the base to allow drainage?

No

Comments:

Concrete pad unter gravel.

Site Name:

Frontier Chemical

Well Identification: URS-14I

Personnel:

Peter Bogardus/Chawn O'Dell

Date: 2/3/99

WELL SPECIFICATIONS

Protective Casings

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4- inch

Depth to Ground Water

3.79

Well Depth

31.18

WELL INTEGRITY

1. Well identification clearly marked?

(Yes)

No

2. Well covers and locks in good condition and secure?

Yes

No

3. Is the well stand pipe vertically aligned and secure?

Yes)

No

4. Is the concrete pad and surface seal in good condition?

V

5. Are soils surrounding the well pad eroded?

Yes

6. Is the well casing in good condition?

Yes

No

7. Is the measuring point on casing well marked?

Yes

No

8. Is there standing water in the annular space?

Yes

9. Is the standpipe vented at the base to allow drainage?

The second

No NA

Site Name:

Frontier Chemical

Well Identification: URS-14D

Personnel:

Peter Bogardus/Chawn O'Dell

Date: 2/3/99

WELL SPECIFICATIONS

Protective Casings

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4- inch

Depth to Ground Water

7.82

Well Depth

41.68

WELL INTEGRITY

1.	Well	identi	fication	clearly	mar	ked?
----	------	--------	----------	---------	-----	------

Yes)

No

2. Well covers and locks in good condition and secure?

Yes

No

3. Is the well stand pipe vertically aligned and secure?

Yes

No

4. Is the concrete pad and surface seal in good condition?

Yes

No

5. Are soils surrounding the well pad eroded?

Yes

(No

6. Is the well casing in good condition?

Yes

No

7. Is the measuring point on casing well marked?

Yes

No

8. Is there standing water in the annular space?

Yes

No

9. Is the standpipe vented at the base to allow drainage?

Yes

No NA

Ground water sampling logs

O'Brien & Gere Engi	neers Inc		Standard Group	nd Water Sampli	ing Log
	neers, me.		Otandard Groun	id Water Campi	ing Log
Date 02/04/99			Weather 00	EDINETA 4	14
Site Name Frontier Chemica	<u> </u>		Well#	1 <u>ERCAST:</u> 24 85-5R	<u> </u>
Location Pendleton, NY				_	
Project No 22038	<u></u>		Evacuation Method		
Personnel C. O'Dell/P. Boga	ardus		Sampling Method	S. S. BRILER	
Well Information:	20 NS				
Depth of Well *	<u>38.05</u> ft.	Water	Volume /ft. for:		
Depth to Water *	<u> </u>		_2" Diameter Well = 0.1	163 X LWC	
Length of Water Column	29.99 ft.		_4" Diameter Well = 0.6	553 X LWC	
Volume of Water in Well	4,89 gal.(s	s)	6" Diameter Well = 1.4	169 X LWC	
3X Volume of Water in Well		s)		<i>A 1</i>	
			e removed before samp ell go dry?	11ng - 1/2	gal.(s)
			g ,	-/	
* Measurements taken from	Well	Casing	Protective Ca	sing	(Other, Specify)
					
Instrument Calibration:	pH Buffer Readings		Conductivity Standard	Readings	
	4.0 Standard		84 S Standard	, touchige	
	7.0 Standard		1413 S Standard		
	10.0 Standard				
Water parameters:			* 		
Gallons	Temperature	рН		nductivity	1 /1
Removed	Readings	Readi		adings uS/cm	Innewitt (nty) 9.6 nt n 102 nt a
	•			•	
initial 0,3	initial 9.7	initial 8.4	initial 6	60	9.6 nta
5,0	96	80	$\frac{1}{4}$	58	102nta
73-280	9.6	79	7 9	7.0	3 75
15.00RY					3/3
15157		 			
	•				
					
Water Sample: //					·
Time Collected /6/	<u> </u>				
Physical Appearance at Start	ត		Physical Appe	earance at Sampling	
1 Trysloar 7 ppourarioe ut otari			[[Tiysical Appe		
Color	Coppless	_	Color	_BA	sun
Odor	None	_	Odor	<u></u>	/3
Turbidity (> 100 NTU)	7,6° 17V1	-	Turbidity (> 10		5 clu
Sheen/Free Product		_	Sheen/Free P	roduct	<u> </u>
Samples collected:					
Container Size	Container Type	# Collected	Field Filtered	Preservative	Container pH
40 ml	vial	2	no	Hol	<2
1 liter	plastic plastic	1 1	yes	HNO3 Na2SO4	<2 >10
	piasuc	<u> </u>	110	1482504	
Notes:					
}					

LAM preidw7R/admin/4 notes/stadQing

O'Brien & Gere Engi	neers, Inc.		Standard Ground	d Water Samplir	ng Log
Date 02/04/99 Site Name Frontier Chemical Location Pendleton, NY Project No 22038 Personnel C. O'Dell/P. Boga				ERCASTIN 40 RS-5D S.S. Barler S.S. Barler.	
Well Information: Depth of Well * Depth to Water * Length of Water Column Volume of Water in Well 3X Volume of Water in Well	49.93 ft. 8.48 ft. 41.45 ft. 6.76 gal.(s) 20.28 gal.(s)) Volume	/olume /ft. for: 2" Diameter Well = 0.16 4" Diameter Well = 0.65 6" Diameter Well = 1.46 removed before sampling dry?	33 X LWC	2_gal.(s)
* Measurements taken from Instrument Calibration:	pH Buffer Readings 4.0 Standard 7.0 Standard 10.0 Standard	Casing	Conductivity Standard F 84 S Standard 1413 S Standard	Readings	(Other, Specify)
Water parameters: Gallons Removed initial 0.3 7.0 7.0 74.012.0 21.0 DRY	Temperature Readings initial 9, 9 9, 3 9, 3	initial 3.4		ductivity dings uS/cm	TurbioiTi(hty) 15,1 mtu 47,2 65,4
Physical Appearance at Star Color Odor Turbidity (> 100 NTU) Sheen/Free Product	Colorless Sulfan 15, Intu	-	Physical Appea Color Odor Turbidity (> 10 Sheen/Free Pr		
Container Size 40 ml 1 liter 1 liter Notes:	Container Type vial plastic plastic	# Collected 2 1	Field Filtered no yes no	Preservative Hcl HNO3 Na2SO4	Container pH <2 <2 <2 >>10

14N ereldis/76/armin/d_mites/stad9/or

O'Brien & Gere Engine	ers, Inc.		Standard Groun	d Water Sampling	g Log
Date 02/04 /99 Site Name Frontier Chemical Location Pendleton, NY Project No 22038 Personnel C. O'Dell/P. Bogard	us		Weather OFE Well # Evacuation Method S Sampling Method S		
Well Information: Depth of Well * Depth to Water * Length of Water Column Volume of Water in Well 3X Volume of Water in Well	27,78 ft. 5,60 ft. 22,19 ft. 3,62 gal.(s) 10,86 gal.(s)	Volume	olume /ft. for: 2" Diameter Well = 0.1 4" Diameter Well = 0.6 6" Diameter Well = 1.4 removed before sampling odry?	53 X LWC 69 X LWC	_gal.(s) _ (Other, Specify)
* Measurements taken from	Well C	asing [Protective Ca	sing	(Other, Specify)
	pH Buffer Readings 4.0 Standard 7.0 Standard 10.0 Standard		Conductivity Standard 84 S Standard 1413 S Standard	Readings	
Gallons Removed initial 0.3 4.0 7.5 11.0	Temperature Readings initial 99 9,4 9,6	pH Readin 7.8 7.4 7.3	gs Real	nductivity adings uS/cm 24/0 240 2/0	6.2ntu 574 473
Water Sample: Time Collected Physical Appearance at Start Color Odor Turbidity (> 100 NTU) Sheen/Free Product	Colorless No 6.2 No	operate and control of the state of the stat	Physical Appr Color Odor Turbidity (> 1 Sheen/Free F	00 NTU) 47	o 3nfu
Samples collected:				I Proposicitive	Container pH
Container Size 40 ml 1 liter 1 liter Notes:	Container Type vial plastic plastic	# Collected 2 1 1	Field Filtered no yes no	Preservative Hcl HNO3 Na2SO4	<2 <2 >10

idata profesionale incresistad@lon

D'Brien & Gere Engi	neers, Inc.		Standard Ground Water Sampling Log				
Date 02/04 /99				_	. —		
Site Name Frontier Chemical			Weather 0V	ERCAST - 45°, URS-7D	<u>E</u>		
ocation Pendleton, NY			Well#	URS-7D			
Project No 22038			Evacuation Method		····		
Personnel C. O'Dell/P. Bogar	rdus		Sampling Method				
Vell Information:							
Depth of Well *	<i>39,89</i> ft.	Water	Volume /ft. for:				
Depth to Water *	6,95 ft.		2" Diameter Well = 0.	163 X LWC			
ength of Water Column	32,94 ft.	:	- 4" Diameter Well = 0.	653 X LWC			
/olume of Water in Well	5.37 gal.((s)	6" Diameter Well = 1.	į.			
X Volume of Water in Well	/6,// gal.(O Diamotor Won 1.				
or volume or vvalor in vvol	gan.	Volum	e removed before sam ell go dry?	oling /6.	- <u>5</u> gal.(s)		
		_			(Other, Specify		
Measurements taken from	Well Y	Casing	Protective Ca	asing			
nstrument Calibration:							
	pH Buffer Readings 4.0 Standard		Conductivity Standard 84 S Standard				
	7.0 Standard		1413 S Standard				
	10.0 Standard						
Vater parameters:	Temperature	рН		onductivity			
Gallons Removed	Readings	Readi		eadings uS/cm			
initial <i>0</i> , <u>3</u>	initial 9./	initial 78	initial	706 ush	10.4 ntg		
	94	7.0	<u> </u>	2510	7/7		
110	90	74	<u> </u>				
THE DOWN	95	75	<u> </u>		41, Z		
11.5	43	7.7	$\frac{\Delta}{2}$	010 5	7,/		
18,5			<u> </u>	,070	′//		
***************************************	44444		·				
Vater Sample: Time Collected	45						
Physical Appearance at Start]		Physical App	earance at Sampling			
Color	Calcalina		Calar	ch	indy		
Color Odor	No-Sulfur		Color Odor	<u></u>	ic.		
Turbidity (> 100 NTU)	10 4 ndn		Turbidity (> 1	00 NTIN 5	71		
Sheen/Free Product	No		Sheen/Free I		5		
meenn ree moduct							
Samples collected:							
Samples collected:	Container Type	# Collected	Field Filtered	Preservative	Container pH		
	Container Type vial	# Collected	Field Filtered	Preservative Hcl	Container pH <2		
Samples collected:							

O'Brien & Gere Engil	neers, Inc.		Standard Gr	ound Water S	Sampling Lo	og
Date 02/ ე3 /99						
Site Name Frontier Chemical			Weather	Partly Sunny	-45°F	
Location Pendleton, NY			Well #	urs?	<i>1</i>	
Project No 22038			Evacuation Meth	od Grundfos	Pump	
Personnel C. O'Dell/P. Bogar	dus			Grundfos	~ ~	
Well Information:	111.00					
Depth of Well *	<u>46.40</u> ft.	Wate	r Volume /ft. for:			
Depth to Water *	<u>9,01</u> ft.	***************************************	2" Diameter Well	= 0.163 X LWC		
Length of Water Column	<u>37.39</u> ft.		4" Diameter Well	= 0.653 X LWC		
Volume of Water in Well	6.09 gal.(s	s)	6" Diameter Well	= 1.469 X LWC]	
3X Volume of Water in Well		Volur	ne removed before : ell go dry?	ampling	18,5 gal	.(s)
* Measurements taken from	X Well	Casing	Protectiv	e Casing	(Ot	her, Specify
Instrument Calibration:						
	pH Buffer Readings	o/ľ	Conductivity Star			
	4.0 Standard 4.0	0 <u>7</u> 00				
		00	1413 S Standard			
	<u> 10.0 0,0.10.0 </u>					
Water parameters:						
Gallons	Temperature	рН		Conductivity	7	
Removed	Readings	Read	ings	Readings uS/cr	n Turu	31017
						310177 30117n
initial	initial 10.0°C	initial 7.5	8 initia	1352456	m >10	sonta
6.5	7.7	7.2	<u> </u>	1791		
13.0	93	7,2		1262	- 314	
195	40	77.		1753	31,4 16,1	
10.0	_ /,	1,2	<u> </u>	1233	_ /6,/	

Water Sample: Time Collected	05_					
Physical Appearance at Start]		Physical	Appearance at Sa	ımpling	
Color	Gray-brown		Colo	•	Colorless	•
	Gray-brown Sulfur 71,000 nfa	-	Odo		Sulfur	
Odor	7/1000 nta	_		(> 100 NTU)	16 diete	
Odor Turbidity (> 100 NTU)				ee Product	NO	
Turbidity (> 100 NTU)	No		Sileen/r			
Turbidity (> 100 NTU) Sheen/Free Product	No	_	Sileen/r	·		
Turbidity (> 100 NTU) Sheen/Free Product Samples collected:	<i>N</i> o	_				
Turbidity (> 100 NTU) Sheen/Free Product Samples collected: Container Size	Container Type	# Collected	Field Filtered	Preservativ		ntainer pH
Turbidity (> 100 NTU) Sheen/Free Product Samples collected: Container Size 40 ml	Container Type	2	Field Filtered	Ho	ol l	<2
Turbidity (> 100 NTU) Sheen/Free Product Samples collected: Container Size	Container Type	1	Field Filtered		3	

IAM ers/div76/admin/4_notes/stad9log

O'Brien & Gere Engineers, Inc.				Standard Ground Water Sampling Log				
Date (02/03/99				_			
-	Frontier Chemical			Weather	PARTLY SUNN	v=45°F		
-	Pendleton, NY			Well#	VARTLY SUAN URS-9D			
Project No					d Grundfos			
		rdue			Grund fos			
	C. O'Dell/P. Bogai	uus		——————————————————————————————————————	BI MAG 102	<u> </u>		
Veli inforn		<i>50,99</i> ft.	10/-1	N (- 1 (ft. f		1		
Depth of W	'ell *	7 .11	vvater	Volume /ft. for:				
Depth to W	ater *	<u>3 /2</u> ft.		_2" Diameter Well:	= 0.163 X LWC			
ength of V	Vater Column	42,85 ft.		_4" Diameter Well	= 0.653 X LWC			
	Water in Well	gal.	(s)	6" Diameter Well	= 1.469 X LWC]		
3X Volume	of Water in Well		(s)	e removed before s	ampling	2/ gal.(s)		
				ell go dry?	amping	<u>NO</u>		
						(Other, Specify)		
Measuren	nents taken from	⋉ We	II Casing	Protective	e Casing	(Other, opecity)		
	t Calibration:							
nstrumen	t Cambration.	pH Buffer Readings /	1 411	Conductivity Stan	dard Readings			
		4.0 Standard	04			_		
			00	1413 S Standard		-		
		10.0 Standard //	,00					
Nater para	ameters:							
					O do - divido	1		
	Gallons Removed	Temperature Readings	pH Readi	ngs	Conductivity Readings uS/cm	Turkidity		
L	Kemoveu	readings	Ittua		rtoudings devois	J / M/ D/ G/ / /		
		12 - 00	~ ·	7.2	idan 1	Turbidity My 24 ntu		
initial		initial 19,5°C	initial $\frac{7.2}{}$		1 1,290 usle	m $4,27$ nTu		
_	7.0	10.1	7.2		1980	0.73		
_	14.0	10:1	7,19		1452	0.56		
_	21.0	10.0	<u>7.18</u>		1,446	0.51		
_						_		
•			-			_		
-			****			-		
Water San	nple:	10						
Time Colle	cted <u>//</u>	<u>/0</u>						
Physical A _l	ppearance at Star	t		Physical	Appearance at Sar	mpling		
Color		Coorless		Colo	r	Colorless		
Odor		No	-	Odo		N'0		
	> 100 NTU)	4.24 ntu			(> 100 NTU)	0.51 nfn		
Sheen/Fre		NO			ree Product	<u> 15</u>		
Samples of			with the second					
-		Container Type	I# Collected	Field Filtered	Preservativ	e Container pH		
Container	Size 40 ml	Container Type vial	# Collected	no	Preservativ			
	1 liter	plastic	1	yes	HNO3			
								
	1 liter	plastic	1	no	Na2SO4	>10		

O'Brien & Gere Engi	neers, Inc.		Stan	dard Gro	und Water S	ampling Log
Date 02/64 /99						
Site Name Frontier Chemica	<u></u>		Weath	ier ,	U. rain'n 4 88-12C	10%
ocation Pendleton, NY			Well#	·	98-12C	
Project No 22038			Evacu		Grandfos	
Personnel C. O'Dell/P. Boga	rdus				Grundfos	
Well Information:						
Depth of Well *	3/,37ft.	V	Vater Volume	/ft. for:		
Depth to Water *	11.40 ft.		2" Diar	meter Well =	0.163 X LWC	
_ength of Water Column	19,97 ft.				0.653 X LWC	
Volume of Water in Well	3,26 ga	ıl.(s)			1.469 X LWC	
3X Volume of Water in Well	0 20	(s) I.(s)	0 0101	1.0.0. 1.0	1.100 / 2110	l
		V	olume remove id well go dry		mpling	<u>/のう</u> gal.(s)
Measurements taken from	W	ell Casing		Protective	Casing	(Other, Specify
nstrument Calibration:	•					
	pH Buffer Readings				ard Readings	
	4.0 Standard		84 \$	S Standard		
	7.0 Standard 10.0 Standard		1413 S	Standard		
	10.0 Clandard					
Vater parameters:						
Gallons	Temperature	E	Н	¬ г	Conductivity	
Removed	Readings		eadings		Conductivity Readings uS/cm	
•			_			
initial 0,5	initial 9.6°C	imitimi	745	:-:4:-1	1111 melo.	462 ntin
3 2	111tda 1.6	initial	7,13	_ initial _	/// HS/Em	27.3
<u> </u>	10.5		7,42		1070	171
105	10,1	-	7,76	_ 4	1.020	19,6 3,34
10.5	10,6		1,43	_ 4	1,020	3,34
		-				
***************************************	***************************************					
Vater Sample:						
ime Collected	45					
hysical Appearance at Start				Physical A	opearance at Sam	pling
Color	Colonless NO 462 NHn			Color	-	Colorless
Odor	NO			Odor	-	1/.
urbidity (> 100 NTU)	462 ntn			Turbidity (>	- 100 NTU)	3.84
Sheen/Free Product	NO			Sheen/Free	-	No
amples collected:						
	Container Type	# Collect	ed Field	Filtered	Preservative	Container pH
**************************************					Hcl	T -0
Container Size 40 ml	vial	2		no		<2
······································		1 1		no yes no	HNO3 Na2SO4	<2 <2 >10

1311 amidw78/pdminld instac/ctpd9lon

ວ'Βrien & Gere Engin	eers, Inc.	s	tandard Ground	Water Sampling	g Log
Date 02/04 /99 Site Name Frontier Chemical Location Pendleton, NY Project No 22038 Personnel C. O'Dell/P. Bogard		W W E S	/eather OV 6 /ell # \$8 TM vacuation Method &/ ampling Method &/	ERCASTINGUSF 25-12D rundfos famf rundfos fumf	
Well Information: Depth of Well * Depth to Water * Length of Water Column Volume of Water in Well 3X Volume of Water in Well	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 4 6	-	3 X LWC 9 X LWC ng /2.0 Ycs	gal.(s) (Other, Specify)
* Measurements taken from	⋉ Well Ca	sing	Protective Casi	ng	
Instrument Calibration:	pH Buffer Readings 4.0 Standard 7.0 Standard 10.0 Standard		Conductivity Standard F 84 S Standard 413 S Standard		
Water parameters: Gallons Removed initial 9.32.0 7.0 7.0 74.012.0 24.0 DR1	Temperature Readings initial 10,5 10,6 10,7	pH Reading initial 7, 06 6, 34 6, 75	Read	ductivity dings uS/cm 7 0/0 5,630 7 220	URBIPITY(ntu) 18.4 ntu 13.6 2.1
Water Sample: Time Collected Physical Appearance at Star Color	Colorless		Physical Appe Color Odor	arance at Sampling Co/s	ntes Fm
Odor Turbidity (> 100 NTU) Sheen/Free Product	Sulfur 18,4 n+n NO		Turbidity (> 10 Sheen/Free P		Inter 6
Samples collected:				IDroson estivo	Container pH
Container Size 40 ml 1 liter	Container Type vial plastic	# Collected 2 1	Field Filtered no yes	Preservative Hcl HNO3	<2 <2 <2

7	ineers, Inc.		Standard Greu	ind water Sa	ampling Log
Date 02/03/99 03	2/04/99				
Site Name Frontier Chemica	•		Weather 2	Partly Clian	~40°F
Location Pendleton, NY			Well#	NOS-147	
	A		Evacuation Method	1165 195	tool bo les
Project No 22038			Evacuation Method	3/2/1/(3) 3/	1 1 1
Personnel C. O'Dell/P. Boga	ardus		Sampling Method _	Stan 1855 Fo	ec/ bailen
Well Information:	<i>31,18</i> ft	1.47-1	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
Depth of Well *	2:77		Volume /ft. for:		
Depth to Water *	3./9 ft	-	2" Diameter Well = 0).163 X LWC	
Length of Water Column	_ <i>27,39</i> ft		4" Diameter Well = 0	0.653 X LWC	
Volume of Water in Well	<u> 4,46</u> 9	al.(s)	6" Diameter Well = 1	.469 X LWC	
3X Volume of Water in Well	_/3.38g		ne removed before samell go dry?	npling _	9.5 gal.(s)
* Measurements taken from	<i>□</i>	Vell Casing	Protective 0	tasing [(Other, Spe
		ven odomig		, ao ing	
Instrument Calibration:	pH Buffer Readings		Conductivity Standar	rd Poodings	
	4.0 Standard	4.04	84 S Standard	u Readings	
	7.0 Standard	7.50	1413 S Standard		
	10.0 Standard	10.00			
Water parameters: Evo	acnated 2/3/	164.			
Gallons Removed	Temperature Readings	ا د _ا د _{ا .} pH Readi	ngs C	onductivity eadings uS/cm	Tunblo17
Gallons Removed initial 5,3 4,5	Temperature	pH Readi	-	onductivity eadings uS/cm 46/ 45/6n 436	Turbili7 13,2 nti
Gallons Removed	Temperature Readings	pH Readi	-	1172	Tunblo17 13.2 nti
Gallons Removed initial 5,3 4,5	Temperature Readings	pH Readi	-	1172	Tunblo17 13,2 nti
Gallons Removed initial 5,3 4,5	Temperature Readings	pH Readi	-	1172	Tunbl017 13.2 nti
Gallons Removed initial 5,3 4,5	Temperature Readings	pH Readi	-	1172	Tunbilit 13,2 nti
Gallons Removed initial 5,3 4,5 7,0 Water Sample: Time Collected 9;	initial 8,6 9,7 9,7 215 99	pH Readi	<u> </u>	422	
Gallons Removed initial 5,3 4,5 7,0	initial 8,6 9,7 9,7 215 99	pH Readi	<u> </u>	1172	
Gallons Removed initial 5,3 4,5 7,0 Water Sample: Time Collected 9;	initial 8.6 7.1 7.2 Solution 2/5 99.	pH Readi	Physical Ap	422	pling
Gallons Removed initial 5,3 4,5 7,0 Water Sample: Time Collected 9,1 Physical Appearance at Star	initial 8,6 9,7 9,7 215 99	pH Readi	Physical Ap Color	422	pling Ue ar
Gallons Removed initial 5,3 4,5 7,0 Water Sample: Time Collected 9; Physical Appearance at Star Color Odor	Temperature Readings	pH Readi	Physical Ap Color Odor	pearance at Sam	pling
Gallons Removed initial 5,3 4,5 7,0 Water Sample: Time Collected 9,1 Physical Appearance at Star	initial 8.6 7.1 7.2 Solution 2/5 99.	pH Readi	Physical Ap Color	pearance at Sam	pling Ue ar
Gallons Removed initial 5,3 4,5 7,0 Water Sample: Time Collected 9; Physical Appearance at Star Color Odor Turbidity (> 100 NTU) Sheen/Free Product	Temperature Readings	pH Readi	Physical Ap Color Odor Turbidity (>	pearance at Sam	pling Le ar None 12
Gallons Removed initial 5,3 4,5 7,0 Water Sample: Time Collected 9; Physical Appearance at Star Color Odor Turbidity (> 100 NTU)	Temperature Readings	pH Readi	Physical Ap Color Odor Turbidity (>	pearance at Sam	pling Le ar None 12
Gallons Removed initial 5,3 4,5 7,0 Water Sample: Time Collected 9; Physical Appearance at Star Color Odor Turbidity (> 100 NTU) Sheen/Free Product Samples collected: Container Size 40 ml	Temperature Readings	initial 8.3	Physical Ap Color Odor Turbidity (> Sheen/Free	pearance at Sam 100 NTU) Product Preservative Hcl	pling Cle ar None 12 No Container p
Gallons Removed initial 5,3 4,5 7,0 Water Sample: Time Collected 9; Physical Appearance at Star Color Odor Turbidity (> 100 NTU) Sheen/Free Product Samples collected: Container Size	Initial 8,6 9,1 9,1 9,2 IS Z/5 99 Tolor/655 13.2 n+4 13.2 n+4	initial 8.3 8.2 9.7	Physical Ap Color Odor Turbidity (> Sheen/Free	pearance at Sam 100 NTU) Product Preservative	pling Le ar None 12 No Container p

O'Brien & Gere Engir	neers, Inc.		Standard Grou	ınd Water Sam	pling Log
Date 02/ 0 5/99				2	
Site Name Frontier Chemical			Weather £	with Clean a	.20°F
Location Pendleton, NY			Well#	URS-140	
Project No 22038			Evacuation Method	Grundfos F	PumP
Personnel C. O'Dell/P. Bogar	dus		Sampling Method	Grund fos fo	ing
Well Information:					
Depth of Well *	<u>41,6,8</u> ft.	Water	Volume /ft. for:		
Depth to Water *	<u>7,82</u> ft.		2" Diameter Well = 0	.163 X LWC	
Length of Water Column	<u>33.86</u> t.		4" Diameter Well = 0	0.653 X LWC	
Volume of Water in Well		s)	6" Diameter Well = 1	.469 X LWC	
3X Volume of Water in Well	16.56 gal.(Volum	ne removed before sam ell go dry?	npling /	8.0 gal.(s)
* Measurements taken from	Well	Casing	Protective C	Casing	(Other, Specify)
nstrument Calibration:					
	pH Buffer Readings		Conductivity Standar		
	4.0 Standard 7.0 Standard		84 S Standard 1413 S Standard		
	10.0 Standard		1413 3 Standard		
Water parameters:					
Gallons	Temperature	рН		onductivity	
Removed	Readings	Read		eadings uS/cm	
initial <u>0, 5</u>	initial <u>10,5</u>	initial 7.	initial	315 45/cm	132nta 3.85
6.0	10, 5	(C) 7	<u> </u>	770	
12,0	19.1	E,/1		910	1.77
<u> 18.0 </u>	10./	6.1	5	930	1.40

Water Sample: Time Collected 09	<i>8</i> 0			·	
Physical Appearance at Start]		Physical Ap	pearance at Sampli	ng ,
Color	Cloudy		Color		dorless
Odor	Sul fur		Odor		Sul-cur
Turbidity (> 100 NTU)	132n tu	_	Turbidity (>		1.70
Sheen/Free Product	NO		Sheen/Free		N' 3
Samples collected:					
Container Size	Container Type	# Collected	Field Filtered	Preservative	Container pH
40 ml	vial	2	no	Hcl	<2
1 liter	plastic	1 1	yes	HNO3	<2
1 liter	plastic	1	no	Na2SO4	>10

1214 contditi7815dmints notaeletadOton

J'brien α Gere Laporatories, Inc.

5000 Brittonfield Parkway

Chain of Custody

East Syracuse, New York 13057 (315) 437-0200

		1 (010)	(212) 431-0200					
Client: OBLING FOLKE FIRM	WEEKS I) V				Analys	Analysis/Method	
Project: FRONTIFE CHEMING -	2-1400C	W 81.	Section Control of the Control of th					
Sampled by: CHUL OFU		,				Q.	\	\ \ \
Client Contact: John, Let Smith	j Pl	hone #(5/2)4/5,	457-6100				\ \ \	\
Samulo Description	oe crintion			\.			\ \	\
Sample Location	Date Time	Sample	mp. No. of			7	\	
Cample Eccanoli	Collected Collected	Matrix	or Grab Containers			\ !	\ \	/ Comments
URS-9D	0191 6420/20	WATER GRAS	,	1				
URS-92	2011 17050/20	WRIFR GR	5 8443	À	<i>\\</i>			
BLIND BUPLICATE	b6/E9/za	WATER GRAB	AB 5	1	7			
88-120	Shell by popul		8mb 5	+	入			
98 - 12 C	SHII SAMPOTO	WATER OF	3 81118	+	>			
45-7R	08416649tz	WATE CA	5 10	+	1			FIELD FUTEDEN
4125-70	SHH/Vshighza	Mayor Ch	5 8)	\\	7			TENTATED EN
85-5R	5/9/ 66/notic	WKT LOKA	2 3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7			14.00 64.7060
MRS-5D	02/04/43 1635	WANT C	SMB 5	1	<i>\(\)</i>			03011110111
Egwarint black	02,644,0830	WATER S	5 90	7	<u>\</u>			
11/25-140	DEC 1920/20	19 1/2/1/11 C	5 8	+	À			
MRS-140 MATER SPIKE	226 H 090	1 14 1 St. St.	10 5	-	ン			
Relinquished by: Myress (2008)	Date: 03/39	022/30mily 350	Received by:	by:			Date:	Time:
Relinquished by:	Date:	Time:	Received by:	by:			Date:	Time:
Relinquished by:	Date:	Time:	Received	Received by Lab: Milly L. L. F. M.	1. Laf.		Date: 1 < /5 9	4 Time 12: 50
Shipment Method:			Airbill Number:	nber:				

Turnaround Time Required:

Comments:

Routine______Rush (Specify)__

101 Cooler Temperature:_

Original-Laboratory Copy-Client

.. atories, Inc.

5000 Brittonfield Parkway

Chain of Custody

East Syracuse, New York 13057 (315) 437-0200

SCRE EN	CWFFR	N							Analy	Analysis/Method	poq		
Project: Flow TIFE CHIMICELL	1200	10177		14				\	\	\	\	\	
Sampled by: CHAN OPEN											\	\ \ \	
Client Contact: Tennifer SM, FM		日	ارکی# anou _c	12/4/5	00/9		1			\ \	\	\	
Sample Description	cription												
Sample Location	Date Collected	Date Time	Sample	Comp.	No. of Containers				\			Commente	
11165-140 MOTO 18 SOLE BAD	Pal 22/5/29	all	14.17.2	30.86	5	1			}	-			T
URS-14I	126:49		14911	11100 B	5	1	+						T
TAIR BLANK	66759720		110 120		17	X							
	, ,												
													.
											i		
I				4									
Relinquished by: Jelly (1924)	Da	Date: 02/05/	199 Time: 1550		Received by:	by:]	Date:	Time:	
Relinquished by:	Da	Date:	Time:		Received by:	by:]	Date:	Time:	
Relinquished by:	De	Date:	Time:		Received by Lab: Wheel	by Lab:	W.	10000	والمراء		Date: 2/5/9	199 Time. 12. C	(
Shipment Method:					Airbill Number:	ıber:							
													Ī

Turnaround Time Required:
Routine
Rush (Specify)

Comments:

Job Cooler Temperature:_

Original-Laboratory Copy-Client

Appendix C

Data validation report

Data Validation Services

120 Cobble Creek Road P. O. Box 208

North Creek, N. Y. 12853

Phone 518-251-4429

March 10, 1999

Jennifer Smith O'Brien & Gere Engineers 5000 Brittonfield Parkway P. O. Box 4873 Syracuse, NY 13221

RE: Validation of Frontier Chemical Site Data Packages OBG Labs Report of 2/17/99

Dear Ms. Smith:

Review has been completed for the data package generated by OBG Laboratories, pertaining to samples collected at the Frontier Chemical Site. Eleven aqueous samples were analysed for TCL volatiles and TAL metals/cyanide parameters. Matrix spikes/duplicates, and field and trip blanks were also processed. Methodologies utilized are those of the USEPA SW846.

Data validation was performed with guidance from the most current editions of the USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review and the USEPA SOPs HW-2 and HW-6. The following items were reviewed:

- * Data Completeness
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Instrumental Tunes
- * Calibration Standards
- * Instrument IDLs
- * Method Compliance
- * Sample Result Verification

Those items showing deficiencies are discussed in the following sections of this report. All others were found to be acceptable as outlined in the above-mentioned validation procedures, and as applicable for the methodology. Unless noted specifically in the following text, reported results are substantiated by the raw data, and generated in compliance with protocol requirements.

In summary, sample processing was primarily conducted with compliance to protocol requirements and with adherance to quality criteria, and most reported results are usable with minor qualification. Certain edits to, and qualification of, reported results are indicated. These issues are discussed in the following analytical sections.

The laboratory summary data package, with recommended qualifiers applied in red ink to the sample result forms is attached to this narrative, and should be reviewed in conjunction with this text.

Data Completeness

The laboratory data packages were not directly in compliance with the required NYSDEC ASP Category B deliverables, but the information needed for validation of the data was present. The laboratory NYSDEC Sample Preparation and Analysis Summary Forms were not provided, and no verbatim certification statement was made in the case narrative.

Volatile Analyses

Carbon disulfide was detected in the field blank at a level of 0.10 ug/L. Due to possible contamination contribution, the reported results for that analyte in the project samples which reported detection below 0.50 ug/L should be edited to reflect nondetection at the CRDL (i.e. "<0.50").

Sample URS-14D produced a slightly low recovery for surrogate standard d8-toluene (76%, below required limit of 84%). Sample results (which were nondetection) are therefore considered estimated ("J").

Matrix spikes of URS-14D involved evaluation of recoveries of all target analytes. Carbon disulfide produced elevated recoveries of (231% and 211%), which indicates that the detected result for that analyte in the sample should be considered estimated ("J" qualifier). In consideration of the presence of this analyte in the field blank, detected results for this analyte in samples which were not edited to nondetection (see above) should also be considered estimated ("J"). Other spiked compounds also produced elevated recoveries, but the samples do not contain these components, and results are therefore not affected. Three compounds produced low recoveries (34% to 59%) which indicate that those analyte results should be considered estimated ("J"), possibly biased low in the sample. They are cis-1,3-dichloropropene, trans-1,3-dichloropropene, and sytrene. The laboratory case narrative discussion cites that the presence of sulfur in the sample may be responsible for the depressed recoveries. This sample also exhibited low recovery for surrogate standard d8-toluene, and all reported results for this sample are qualified as estimated ("J"). Other of the project samples also showed sulfur compounds present (reported as Tentatively Identified Compounds (TICs), but surrogates showed acceptable recoveries, and those results are not recommended for qualification. Duplicate correlation, and spiked blank recoveries were acceptable.

Due to poor spectral quality, the identification of 1,1-dichloroethane in URS-9D should be considered tentative ("N" qualifier). It is noted that this analyte spectrum in the blind duplicate of that sample was acceptable for identification.

Field duplicate correlation between Blind Duplicate and URS-9D was acceptable.

Metals/CN Analyses

Four of the samples were filtered prior to the metals/cyanide analyses.

The filtered sample results for antimony, which were all nondetection, were reported to an incorrect detection limit of 0.06 mg/L. Raw data supports editing the detection limits to be those of the other samples (and the QAPP reporting level), 0.005 mg/L.

Accuracy and precision evaluations for URS-14D were acceptable, with the exception of the recoveries of selenium, which were 32% and 37%. Therefore the sample selenium results should be considered estimated ("J").

The serial dilution determinations for URS-14D produced acceptable correlations.

The IDLs for thallium are outdated (11/97) and should be regenerated.

Field duplicate correlation between URS-9D and Blind Duplicate was acceptable.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

NARRATIVE

INTRODUCTION/ANALYTICAL RESULTS

This report summarizes the laboratory results for samples from Frontier Chemical - Pendleton Site, Town of Pendleton, Niagara County, NY. Immediately following the narrative is the Cross Reference Table that lists the site descriptions, sample numbers, dates collected, dates received and package numbers.

CONDITION UPON RECEIPT/CHAIN OF CUSTODY

The coolers were received intact. When the coolers were received by the laboratory, the sample custodian(s) opened and inspected the shipments for damage, custody inconsistencies and proper preservation. The chain of custody forms documenting receipt are presented in the chain of custody section. Each sample was assigned a unique laboratory number and a custody file created. The samples were placed in a secured walk-in cooler and signed in and out by the chemists performing the tests. The sign out record, or lab chronicle, is presented in the chain of custody section.

No discrepancies were noted upon receipt. The cooler temperature upon receipt was 5°C.

METHODOLOGY

The following methods were used to perform the analyses:

PARAMETER METHOD REFEREN Volatile Organics 8260B 1 ICP Metals 6010B 1 Mercury 7470A 1 Thallium 7841 1 Cyanide 9010B/9014 1	
--	--

Test Methods for Evaluating Solid Wastes, SW-846 Third Edition, Final Update III, December 1996. 1)

QUALITY CONTROL

The quality control for this program includes internal standards, surrogates, matrix spike (MS), matrix spike duplicate (MSD), laboratory duplicate (D), equipment blank, blind duplicate, laboratory control sample (LCS), prep blank and QC trip blank samples. QA/QC results are summarized in the Sample Data Summary Package and are also included in the raw data.

Volatile Organics

The GC/MS Volatile instruments used a J&W DB-VRX, 60 m x 0.25 mm ID capillary column and a Vocarb 3000 trap.

Holding Times and Sample Preservation

All samples were prepared and analyzed within the method and/or QAPP specified holding time requirements. Samples had a pH of less than 2.

Laboratory Control Sample

All spike recoveries met method and/or project specific QC criteria.

MS/MSD

The following compound(s) did not meet matrix spike/matrix spike duplicate percent recovery criteria:

Sample Description	Sample #	Compound	Corrective Action
URS-14D	K5554	1,1-Dichloroethene	1
		Carbon disulfide	1
		trans-1,2-Dichloroethene	1
		1,1,1-Trichloroethane	i
		Carbon tetrachloride	1
		Bromodichloromethane	i
		cis-1,3-Dichloropropene	1
		trans-1,3-Dichloropropene	1
		Dibromochloromethane	1
		Bromoform	1
		Styrene	1

 Sulfur was detected in the sample. The failed recovery is attributed to sulfur interference. The MS/MSD met RPD criteria. LCS criteria was met for this compound. No corrective action was taken.

Surrogate

The following sample(s) did not meet surrogate recovery criteria:

Sample Description URS-14I	Sample # K5555	Surrogate	Corrective Action
0103-141	ככככא	Toluene-d8	1

1. Sulfur was detected in the sample. The failed recovery may be attributed to sulfur interference. The sample was not reanalyzed due to holding time constraints. There were no compounds detected above the PQL. No corrective action was taken.

Internal Standards

All internal standard areas met method and/or project specific QC criteria.

Calibrations

All calibrations and calibration verifications met method and/or project specific QC criteria.

For calibration check standard compounds that had a linear regression performed, a % drift was calculated between the true value of the calibration check standard and the calculated value. For compounds using an average response factor, the % difference between the average response factor and the daily response factor was calculated. Summary sheets for both calculations are included in the raw data section.

Preparation Blanks

All preparation blanks met method and/or project specific QC criteria.

Trace Metals

Holding Times

All samples were prepared and analyzed within the method and/or QAPP specified holding time requirements.

Laboratory Control Sample

All spike recoveries met method and/or project specific QC criteria.

D/MS/MSD

The following analyte(s) did not meet matrix spike/matrix spike duplicate percent recovery and/or duplicate RPD criteria:

Sample Description	Sample #	Analyte	% REC	RPD	Corrective Action
UR: -14D	K5554	Calcium	X		1
		Selenium	X		2
		Iron		X	3

- 1. The concentration of the analyte in the sample was much greater than the concentration of the spike added. A post-digestion spike was performed. No further corrective action was taken.
- 2. The failing matrix spike is likely due to matrix interference. A post-digestion spike was performed. No further corrective action was taken.
- 3. The sample result is <5x the PQL and the difference between sample/duplicate is less than the PQL. No further corrective action was taken.

ICP Serial Dilution

All percent differences met method and/or project specific QC criteria.

Graphite Furnace Analysis

The following analytes did not meet furnace analytical spike percent recovery criteria:

Sample Description	Sample #	Analyte	Corrective Action
Laboratory Control Sample	L021899W2	Thallium	1

The percent recovery was over 60%. No corrective action was required.

Calibrations

All calibrations and calibration verifications met method and/or project specific QC criteria.

Preparation Blanks

All preparation blanks met method and/or project specific QC criteria.

Wet Chemistry

There were no excursions to note. All QC results were within established control limits.

The raw data is organized in a format similar to the US EPA Contract Laboratory Program order of data requirements.

CROSS REFERENCE TABLE

Site	Sample Number	Date Collected	Date Received	Pkg
URS-9D	K5544	02/03/99	02/05/99	704
URS-9I	K5545	02/03/99	02/05/99	704
Blind Duplicate	K5546	02/03/99	02/05/99	704
88-12D	K5547	02/04/99	02/05/99	704
88-12C	K5548	02/04/99	02/05/99	704
85-7R	K5549	02/04/99	02/05/99	704
URS-7D	K5550	02/04/99	02/05/99	704
85-5R	K5551	02/04/99	02/05/99	704
URS-5D	K5552	02/04/99	02/05/99	704
Equipment Blank	K5553	02/05/99	02/05/99	704
URS-14D	K5554	02/05/99	02/05/99	704
URS-14D	K5554MS	02/05/99	02/05/99	704
URS-14D	K5554MSD	02/05/99	02/05/99	704
URS-14D	K5554D	02/05/99	02/05/99	704
URS-14I	K5555	02/05/99	02/05/99	704
QC Trip Blank	K5556	02/03/99	02/05/99	704
85-7R (Field Filtered)	K5557	02/04/99	02/05/99	704
URS-7D (Field Filtered)	K5558	02/04/99	02/05/99	704
85-5R (Field Filtered)	K5559	02/04/99	02/05/99	704
URS-5D (Field Filtered)	K5560	02/04/99	02/05/99	704

Volume 1 of 3 of the validated analytical data is separately bound.

Laboratory Report

Frontier Chemical
Pendleton Site
Town of Pendleton
Niagara County, NY
Water Samples

Volume 1 of 3

February 3, 4, and 5, 1999

ANALYTICAL PACKAGE

for

Frontier Chemical Pendleton Site Town of Pendleton Niagara County, NY

Samples collected: February 3, 4, and 5, 1999

Volume 1 of 3

Prepared for:

O'Brien & Gere Engineers, Inc.

5000 Brittonfield Parkway

P.O. Box 4873

Syracuse, NY 13221

Prepared by:

O'Brien & Gere Laboratories, Inc.

5000 Brittonfield Parkway Suite 300, P.O. Box 4942 Syracuse, NY 13221

Authorized

Date

Reviewed

Date

7/26/99

2/26/99

TABLE OF CONTENTS

Volume 1 o	f3	Page No.
SAMPLE I	DATA SUMMARY PACKAGE	
Narrative		1 - 4
Cross Refer	ence Table	5
Analytical R	Res ults	6 - 60
Quality Con	atrol Results	61 - 85
Chain of Cu	sstody	
Ext	ernal Chain of Custody	86 - 88
Inte	ernal Chain of Custody	89 - 90
Volume 2 o	f3	
SAMPLE D	DATA PACKAGE	
Narrative		91 - 94
Cross Refere	ence Table	95
Section 1	GC/MS Volatile Organics Data	96 - 334
Volume 3 o	f3	
Section 2	Trace Metals Data	335 - 645
Section 3	Wet Chemistry Data (Total Cyanide)	655 - 658

Sample Data Summary Package

NARRATIVE

INTRODUCTION/ANALYTICAL RESULTS

This report summarizes the laboratory results for samples from Frontier Chemical - Pendleton Site, Town of Pendleton, Niagara County, NY. Immediately following the narrative is the Cross Reference Table that lists the site descriptions, sample numbers, dates collected, dates received and package numbers.

CONDITION UPON RECEIPT/CHAIN OF CUSTODY

The coolers were received intact. When the coolers were received by the laboratory, the sample custodian(s) opened and inspected the shipments for damage, custody inconsistencies and proper preservation. The chain of custody forms documenting receipt are presented in the chain of custody section. Each sample was assigned a unique laboratory number and a custody file created. The samples were placed in a secured walk-in cooler and signed in and out by the chemists performing the tests. The sign out record, or lab chronicle, is presented in the chain of custody section.

No discrepancies were noted upon receipt. The cooler temperature upon receipt was 5°C.

METHODOLOGY

The following methods were used to perform the analyses:

PARAMETER	METHOD	REFERENCE
Volatile Organics	8260B	1
ICP Metals	6010B	1
Mercury	7470A	ī
Thallium	7841	î
Cyanide	9010B/9014	1

1) <u>Test Methods for Evaluating Solid Wastes</u>, SW-846 Third Edition, Final Update III, December 1996.

QUALITY CONTROL

The quality control for this program includes internal standards, surrogates, matrix spike (MS), matrix spike duplicate (MSD), laboratory duplicate (D), equipment blank, blind duplicate, laboratory control sample (LCS), prep blank and QC trip blank samples. QA/QC results are summarized in the Sample Data Summary Package and are also included in the raw data.

Volatile Organics

The GC/MS Volatile instruments used a J&W DB-VRX, 60 m \times 0.25 mm ID capillary column and a Vocarb 3000 trap.

Holding Times and Sample Preservation

All samples were prepared and analyzed within the method and/or QAPP specified holding time requirements. Samples had a pH of less than 2.

Laboratory Control Sample

All spike recoveries met method and/or project specific QC criteria.

MS/MSD

The following compound(s) did not meet matrix spike/matrix spike duplicate percent recovery criteria:

Sample Description	Sample #	Compound	Corrective Action
URS-14D	K5554	1,1-Dichloroethene	1
		Carbon disulfide	1
		trans-1,2-Dichloroethene	1
		1,1,1-Trichloroethane	1
		Carbon tetrachloride	1
		Bromodichloromethane	1
		cis-1,3-Dichloropropene	1
		trans-1,3-Dichloropropene	1
		Dibromochloromethane	1
		Bromoform	1
		Styrene	1

1. Sulfur was detected in the sample. The failed recovery is attributed to sulfur interference. The MS/MSD met RPD criteria. LCS criteria was met for this compound. No corrective action was taken.

Surrogate

The following sample(s) did not meet surrogate recovery criteria:

Sample Description	Sample #	Surrogate	Corrective Action
URS-14I	K5555	Toluene-d8	1

1. Sulfur was detected in the sample. The failed recovery may be attributed to sulfur interference. The sample was not reanalyzed due to holding time constraints. There were no compounds detected above the PQL. No corrective action was taken.

Internal Standards

All internal standard areas met method and/or project specific QC criteria.

Calibrations

All calibrations and calibration verifications met method and/or project specific QC criteria.

For calibration check standard compounds that had a linear regression performed, a % drift was calculated between the true value of the calibration check standard and the calculated value. For compounds using an average response factor, the % difference between the average response factor and the daily response factor was calculated. Summary sheets for both calculations are included in the raw data section.

Preparation Blanks

All preparation blanks met method and/or project specific QC criteria.

Trace Metals

Holding Times

All samples were prepared and analyzed within the method and/or QAPP specified holding time requirements.

Laboratory Control Sample

All spike recoveries met method and/or project specific QC criteria.

D/MS/MSD

The following analyte(s) did not meet matrix spike/matrix spike duplicate percent recovery and/or duplicate RPD criteria:

Sample Description	Sample #	Analyte	% REC	RPD	Corrective Action
URS-14D	K5554	Calcium	X		1
		Selenium	X		2
		Iron		X	3

- 1. The concentration of the analyte in the sample was much greater than the concentration of the spike added. A post-digestion spike was performed. No further corrective action was taken.
- 2. The failing matrix spike is likely due to matrix interference. A post-digestion spike was performed. No further corrective action was taken.
- 3. The sample result is <5x the PQL and the difference between sample/duplicate is less than the PQL. No further corrective action was taken.

ICP Serial Dilution

All percent differences met method and/or project specific QC criteria.

Graphite Furnace Analysis

The following analytes did not meet furnace analytical spike percent recovery criteria:

Sample Description	Sample #	Analyte	Corrective Action
Laboratory Control Sample	L021899W2	Thallium	1

1. The percent recovery was over 60%. No corrective action was required.

Calibrations

All calibrations and calibration verifications met method and/or project specific QC criteria.

Preparation Blanks

All preparation blanks met method and/or project specific QC criteria.

Wet Chemistry

There were no excursions to note. All QC results were within established control limits.

RAW DATA

The raw data is organized in a format similar to the US EPA Contract Laboratory Program order of data requirements.

CROSS REFERENCE TABLE

Site	Sample Number	Date Collected	Date Received	Pkg
URS-9D	K5544	02/03/99	02/05/99	704
URS-9I	K5545	02/03/99	02/05/99	704
Blind Duplicate	K5546	02/03/99	02/05/99	704
88-12D	K5547	02/04/99	02/05/99	704
88-12C	K5548	02/04/99	02/05/99	704
85-7R	K5549	02/04/99	02/05/99	704
URS-7D	K5550	02/04/99	02/05/99	704
85-5R	K5551	02/04/99	02/05/99	704
URS-5D	K5552	02/04/99	02/05/99	704
Equipment Blank	K5553	02/05/99	02/05/99	704
URS-14D	K5554	02/05/99	02/05/99	704
URS-14D	K5554MS	02/05/99	02/05/99	704
URS-14D	K5554MSD	02/05/99	02/05/99	704
URS-14D	K5554D	02/05/99	02/05/99	704
URS-14I	K5555	02/05/99	02/05/99	704
QC Trip Blank	K5556	02/03/99	02/05/99	704
85-7R (Field Filtered)	K5557	02/04/99	02/05/99	704
URS-7D (Field Filtered)	K5558	02/04/99	02/05/99	704
85-5R (Field Filtered)	K5559	02/04/99	02/05/99	704
URS-5D (Field Filtered)	K5560	02/04/99	02/05/99	704

Analytical Results

O'Brien & Gere Laboratories, Inc.

Client: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

Sample: K5544

Samp. Description: URS-9D

Instrument: HP5973 GCMS#3

Units: ug/L

Number of analytes: 38

Analytical Results Method: 8260

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/03/99

Matrix: Water

Received: 02/05/99 Prepared: 02/12/99

QC Batch: 021299W1 %Solids:

Purge volume: 25 mL

		Surrog	
Parameter	Result	Limits Dilution	
Chloromethane	<1.0	1	02/12/99
Vinyl chloride	<1.0	1	02/12/99
Bromomethane	<1.0	1	02/12/99
Chloroethane	<1.0	1	02/12/99
Acetone	<10.	1	02/12/99
1,1-Dichloroethene	<.50	1	02/12/99
Methylene chloride	<.50	1	02/12/99
Carbon disulfide	<0,50 J10	1	02/12/99
trans-1,2-Dichloroethene	<.50	1	02/12/99
1,1-Dichloroethane	J .16 №	1	02/12/99
2-Butanone	<10.	1	02/12/99
cis-1,2-Dichloroethene	J .35	1	02/12/99
Chloroform	<.50	1	02/12/99
1,2-Dichloroethane	<.50	1	02/12/99
1,1,1-Trichloroethane	<.50	1	02/12/99
Carbon tetrachloride	<.50	1	02/12/99
Benzene	<.50	1	02/12/99
1,2-Dichloropropane	<.50	1	02/12/99
Trichloroethene	J .21	1	02/12/99
Bromodichloromethane	<.50	1	02/12/99
cis-1,3-Dichloropropene	<.50	1	02/12/99
4-Methyl-2-pentanone	<5.0	1	02/12/99
trans-1,3-Dichloropropene	<.50	1	02/12/99
1,1,2-Trichloroethane	<.50	1	02/12/99
Toluene	<.50	1	02/12/99
Dibromochloromethane	<.50	. 1	· . · .
2-Hexanone	<5.0	1	· · · · · · · · · · · · · · · · · · ·
Z-Hexanone Tetrachloroethene	<.50	1	
Chlorobenzene	<.50	1	

- Outside control limits J-Estimated value

Date: February 17,1999

Thomas Alexander

O'Brien & Gere Laboratories, Inc.

lient: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

Sample: K5544

Samp. Description: URS-9D astrument: HP5973 GCMS#3

Jnits: ug/L

Number of analytes: 38

Analytical Results Method: 8260

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/03/99

Received: 02/05/99

Matrix: Water

QC Batch: 021299W1

Prepared: 02/12/99 % Solids:

Purge volume: 25 mL

1 02/12/99

77-117

Surrog Result Limits Dilution Analyzed Notes Parameter < .50 1 02/12/99 Ethylbenzene 1 02/12/99 <.50 Bromoform 02/12/99 < .50 Xylene (total) 1 02/12/99 < .50 Styrene <.50 1 02/12/99 1,1,2,2-Tetrachloroethane 1 02/12/99 90.% 1,2-Dichloroethane-d4 (surrogate) 80-135 1 02/12/99 95.% 61-136 Dibromofluoromethane (surrogate) 1 02/12/99 Toluene-d8 (surrogate) 95.% 84-114

90.%

Notes:

Outside control limits J-Estimated value

Bromofluorobenzene (surrogate)

Authorized: Date: February 17,1999

Thomas Alexander

Tentatively Identified Compound (LSC) summary

Operator ID: SG Date Acquired: 12 Feb 1999 15:18

ta File: C:\HPCHEM\1\DATA\J3673.D

me: K5544 Misc: URS-9D

Method: C:\HPCHEM\1\METHODS\J212TCLW.M (RTE Integrator)

tle: VOC's w/J & W DB-VRX: 0.25 mm x 60 m

Library Searched: C:\DATABASE\NBS75K.L

TIC Top Hit name RT EstConc Units Area IntStd ISRT ISArea ISConc rbonyl sulfide 5.91 1.6 ug/L 270536 ISTD01 14.97 1673850 10.0

J3673.D J212TCLW.M Tue Feb 16 08:21:06 1999

O'Brien & Gere Laboratories, Inc.

Client: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

Sample: K5545

Samp. Description: URS-9I Instrument: HP5973 GCMS#3

Units: ug/L

Number of analytes: 38

Analytical Results Method: 8260

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/03/99

Received: 02/05/99

Matrix: Water

QC Batch: 021299W1

Prepared: 02/12/99

%Solids:

Purge volume: 25 mL

		Surrog	
Parameter	Result	Limits Dilution	
Chloromethane	<1.0	1	02/12/99
Vinyl chloride	<1.0	1	02/12/99
Bromomethane	<1.0	1	02/12/99
Chloroethane	<1.0	1	02/12/99
Acetone	<10.	1	02/12/99
1,1-Dichloroethene	<.50	1	02/12/99
Methylene chloride	<.50	1	02/12/99
Carbon disulfide	< 150 J-15	1	02/12/99
trans-1,2-Dichloroethene	<.50	1	02/12/99
1,1-Dichloroethane	<.50	1	02/12/99
2-Butanone	<10.	1	02/12/99
cis-1,2-Dichloroethene	<.50	1	02/12/99
Chloroform	<.50	1	02/12/99
1,2-Dichloroethane	<.50	1	02/12/99
1,1,1-Trichloroethane	<.50	1	02/12/99
Carbon tetrachloride	<.50	1	02/12/99
Benzene	<.50	1	02/12/99
1,2-Dichloropropane	<.50	1	02/12/99
Trichloroethene	<.50	1	02/12/99
Bromodichloromethane	<.50	1	02/12/99
cis-1,3-Dichloropropene	<.50	1	02/12/99
4-Methyl-2-pentanone	<5.0	1	02/12/99
trans-1,3-Dichloropropene	<.50	1	02/12/99
1,1,2-Trichloroethane	<.50	1	02/12/99
Toluene	<.50	1	02/12/99
Dibromochloromethane	<.50	. 1	02/12/99
2-Hexanone	<5.0	1	02/12/99
Tetrachloroethene	<.50	1	02/12/99
Chlorobenzene	<.50	1	02/12/99

- Outside control limits J-Estimated value

Authorized:

Date: February 17,1999

Thomas Alexander

Elits 90000

O'Brien & Gere Laboratories, Inc.

lient: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

Sample: K5545

Samp. Description: URS-9I

astrument: HP5973 GCMS#3

_nits: ug/L

Number of analytes: 38

Analytical Results Method: 8260

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/03/99

onected: 02/05/99

Matrix: Water

Received: 02/05/99 QC Batch: 021299W1

Prepared: 02/12/99 %Solids:

Purge volume: 25 mL

Surrog

Parameter	Result	Limits Dilution	Analyzed Notes
Ethylbenzene	<.50	1	02/12/99
Bromoform	<.50	1	02/12/99
Xylene (total)	<.50	1	02/12/99
Styrene	<.50	1	02/12/99
1,1,2,2-Tetrachloroethane	<.50	1	02/12/99
1,2-Dichloroethane-d4 (surrogate)	89.%	80-135 1	02/12/99
Dibromofluoromethane (surrogate)	91.%	61-136 1	02/12/99
Toluene-d8 (surrogate)	93.%	84-114 1	02/12/99
Bromofluorobenzene (surrogate)	87.%	77-117 1	02/12/99

Notes:

Outside control limits J-Estimated value

Authorized:

Date: February 17,1999

Thomas Alexander

Tentatively Identified Compound (LSC) summary

Operator ID: SG Date Acquired: 12 Feb 1999 15:56

ita File: C:\HPCHEM\1\DATA\J3674.D

ime: K5545
Misc: URS-9I

Method: C:\HPCHEM\1\METHODS\J212TCLW.M (RTE Integrator)

.tle: VOC's w/J & W DB-VRX: 0.25 mm x 60 m

__brary Searched: C:\DATABASE\NBS75K.L

TIC Top Hit name RT EstConc Units Area IntStd ISRT ISArea ISConc lfur dioxide 5.94 5.7 ug/L 1021560 ISTD01 14.98 1780270 10.0

J3674.D J212TCLW.M Tue Feb 16 08:21:16 1999

O'Brien & Gere Laboratories, Inc.

Client: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

Sample: K5546

Samp. Description: Blind Duplicate Instrument: HP5973 GCMS#3

1,2-Dichloroethane

Benzene

Toluene

2-Hexanone

Chlorobenzene

1,1,1-Trichloroethane

Carbon tetrachloride

1,2-Dichloropropane

Bromodichloromethane

4-Methyl-2-pentanone

1,1,2-Trichloroethane

Dibromochloromethane

Tetrachloroethene

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

Trichloroethene

Units: ug/L

Number of analytes: 38

Parameter

Analytical Results Method: 8260

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/03/99

Received: 02/05/99

Matrix: Water

Limits Dilution Analyzed Notes

1 02/12/99

1 02/12/99

1 02/12/99

1 02/12/99

1 02/12/99

1 02/12/99

1 02/12/99

1 02/12/99

1 02/12/99

1 02/12/99

1 02/12/99

1 02/12/99

1 02/12/99

1 02/12/99

1 02/12/99

02/12/99

QC Batch: 021299W1

Prepared: 02/12/99 %Solids:

Surrog

Purge volume: 25 mL

·	
<1.0	1 02/12/99
<1.0	1 02/12/99
<1.0	1 02/12/99
<1.0	1 02/12/99
<10.	1 02/12/99
<.50	1 02/12/99
<.50	1 02/12/99
<0.50 J14	1 02/12/99
<.50	1 02/12/99
J .18	1 02/12/99
<10.	1 02/12/99
J .38	1 02/12/99
<.50	1 02/12/99
	<1.0 <1.0 <1.0 <10. <.50 <.50 <.50 J.14 <.50 J.18 <10. J.38

Result

< .50

<.50 <.50

< .50

< .50

< .50

< .50

<5.0

< .50

< .50

<.50

< .50

< 5.0

< .50

< .50

J .19

Eliko 74-79

- Outside control limits J-Estimated value

Authorized:_

Date: February 17,1999

Thomas Alexander

O'Brien & Gere Laboratories, Inc.

Client: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

Sample: K5546

Samp. Description: Blind Duplicate

nstrument: HP5973 GCMS#3

Jnits: ug/L

Number of analytes: 38

Analytical Results Method: 8260

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/03/99

Matrix: Water Received: 02/05/99

Prepared: 02/12/99

OC Batch: 021299W1

% Solids:

Purge volume: 25 mL

		Surrog		
Parameter	Result	Limits	Dilution	Analyzed Notes
Ethylbenzene	<.50		1	02/12/99
Bromoform	<.50		1	02/12/99
Xylene (total)	<.50		1	02/12/99
Styrene	<.50		1	02/12/99
1,1,2,2-Tetrachloroethane	<.50		1	02/12/99
1,2-Dichloroethane-d4 (surrogate)	92.%	80-135	1	02/12/99
Dibromofluoromethane (surrogate)	95.%	61-136	1	02/12/99
Toluene-d8 (surrogate)	97.%	84-114	1	02/12/99
Bromofluorobenzene (surrogate)	90.%	77-117	1	02/12/99

Notes:

Outside control limits J-Estimated value

Date: February 17,1999

Tentatively Identified Compound (LSC) summary

Operator ID: SG Date Acquired: 12 Feb 1999 16:33

ta File: C:\HPCHEM\1\DATA\J3675.D

me: K5546

Misc: Blind Duplicate

Method: C:\HPCHEM\1\METHODS\J212TCLW.M (RTE Integrator)

tle: VOC's w/J & W DB-VRX: 0.25 mm x 60 m

Library Searched: C:\DATABASE\NBS75K.L

TIC Top Hit name		EstConc						
lfur dioxide	5.95	7.4	ug/L	1304300	ISTD01	14.98	1770520	10.0
J3675 D J212TCLW.M	,	Tue Feb :	16 08:	21:30 19	99			

O'Brien & Gere Laboratories, Inc.

Client: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

Sample: K5547

Samp. Description: 88-12D Instrument: HP5973 GCMS#3

Jnits: ug/L

Number of analytes: 38

Analytical Results Method: 8260

Job No.: 5829.001.517 Certification NY No.: 10155

Matrix: Water

Collected: 02/04/99

Received: 02/05/99

QC Batch: 021299W1

Prepared: 02/12/99 %Solids:

Purge volume: 25 mL

		Surrog	
Parameter	Result	Limits Dilution	
Chloromethane	<1.0	1	02/12/99
Vinyl chloride	<1.0	1	02/12/99
Bromomethane	<1.0	1	02/12/99
Chloroethane	<1.0	1	02/12/99
Acetone	<10.	1	02/12/99
1,1-Dichloroethene	<.50	1	02/12/99
Methylene chloride	<.50	1	02/12/99
Carbon disulfide	.70 J	1	02/12/99
trans-1,2-Dichloroethene	<.50	1	02/12/99
1,1-Dichloroethane	<.50	1	02/12/99
2-Butanone	<10.	1	02/12/99
cis-1,2-Dichloroethene	<.50	1	02/12/99
Chloroform	<.50	1	02/12/99
1,2-Dichloroethane	<.50	1	02/12/99
1,1,1-Trichloroethane	<.50	1	02/12/99
Carbon tetrachloride	<.50	1	02/12/99
Benzene	< .50	1	02/12/99
1,2-Dichloropropane	<.50	1	02/12/99
Trichloroethene	<.50	1	02/12/99
Bromodichloromethane	<.50	1	02/12/99
cis-1,3-Dichloropropene	<.50	1	02/12/99
4-Methyl-2-pentanone	<5.0	1	02/12/99
trans-1,3-Dichloropropene	<.50	1	02/12/99
1,1,2-Trichloroethane	<.50	1	02/12/99
Toluene	<.50	1	02/12/99
Dibromochloromethane	<.50	. 1	02/12/99 ·
2-Hexanone	<5.0	1	02/12/99
Tetrachloroethene	<.50	1	02/12/99
Chlorobenzene	<.50	1	02/12/99

- Outside control limits J-Estimated value

Authorized:

Date: February 17,1999

Thomas Alexander

O'Brien & Gere Laboratories, Inc.

Client: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

Sample: K5547

Samp. Description: 88-12D

Instrument: HP5973 GCMS#3

Units: ug/L

Number of analytes: 38

Analytical Results Method: 8260

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/04/99

Received: 02/05/99

Matrix: Water

QC Batch: 021299W1

Prepared: 02/12/99 % Solids:

Purge volume: 25 mL

Surrog

Parameter	Result	Limits 1	Dilution	Analyzed Notes		
Ethylbenzene	<.50		1	02/12/99		
Bromoform	<.50		1	02/12/99		
Xylene (total)	<.50		1	02/12/99		
Styrene	<.50		1	02/12/99		
1,1,2,2-Tetrachloroethane	<.50		1	02/12/99		
1,2-Dichloroethane-d4 (surrogate)	93.%	80-135	1	02/12/99		
Dibromofluoromethane (surrogate)	98.%	61-136	1	02/12/99		
Toluene-d8 (surrogate)	102.8	84-114	1	02/12/99		
Bromofluorobenzene (surrogate)	96.%	77-117	1	02/12/99		

Notes:

- Outside control limits J-Estimated value

Authorized:

Date: February 17,1999

Thomas Alexander

Tentatively Identified Compound (LSC) summary

Date Acquired: 12 Feb 1999 Operator ID: SG

ta File: C:\HPCHEM\1\DATA\J3676.D

me: K5547 Misc: 88-12D

Method: C:\HPCHEM\1\METHODS\J212TCLW.M (RTE Integrator)

.tle: VOC's w/J & W DB-VRX: 0.25 mm x 60 m

Library Searched: C:\DATABASE\NBS75K.L

TIC Top Hit name		RT	EstConc	Units	Area	IntStd	ISRT	ISArea	ISConc
- [2-(2-Hydroxyethyl	1	5.61	1.5	ug/L	263364	ISTD01	14.98	1725540	10.0
Propane /		5.84		ug/L	2726840	ISTD01	14.98	1725540	10.0
Sulfur dioxide 🗸		5.94		ug/L	3112330	ISTD01	14.98	1725540	10.0
obutane	4	6.47 6.96	5.0	ug/L	866621	ISTD01	14.98	1725540	10.0
Lutane /	5	6.96	2.8	ug/L	477550	ISTD01	14.98	1725540	10.0

J3676.D J212TCLW.M Tue Feb 16 08:21:48 1999

i Unknown

2 /

4 Unknown Hydrocarbon

O'Brien & Gere Laboratories, Inc.

Client: Frontier Chemical Project: Pendleton Site

^proj. Desc: Niagara County, NY

Sample: K5548

Samp. Description: 88-12C nstrument: HP5973 GCMS#3

Jnits: ug/L

Number of analytes: 38

Analytical Results Method: 8260

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/04/99

Received: 02/05/99

Matrix: Water QC Batch: 021299W1

Prepared: 02/12/99 %Solids:

Purge volume: 25 mL

Surrog

	parrog		
Parameter	Result	Limits Dilution	Analyzed Notes
Chloromethane	<1.0	1	02/12/99
Vinyl chloride	<1.0	1	02/12/99
Bromomethane	<1.0	1	02/12/99
Chloroethane	<1.0	1	02/12/99
Acetone	<10.	1	02/12/99
1,1-Dichloroethene	<.50	1	02/12/99
Methylene chloride	<.50	1	02/12/99
Carbon disulfide	<.50	1	02/12/99
trans-1,2-Dichloroethene	<.50	1	02/12/99
1,1-Dichloroethane	<.50	1	02/12/99
2-Butanone	<10.	1	02/12/99
cis-1,2-Dichloroethene	<.50	1	02/12/99
Chloroform	<.50	1	02/12/99
1,2-Dichloroethane	<.50	1	02/12/99
1,1,1-Trichloroethane	<.50	1	02/12/99
Carbon tetrachloride	<.50	1	02/12/99
Benzene	<.50	1	02/12/99
1,2-Dichloropropane	<.50	1	02/12/99
Trichloroethene	<.50	1	02/12/99
Bromodichloromethane	<.50	1	02/12/99
cis-1,3-Dichloropropene	<.50	1	02/12/99
4-Methyl-2-pentanone	<5.0	1	02/12/99
trans-1,3-Dichloropropene	<.50	1	02/12/99
1,1,2-Trichloroethane	<.50	1	02/12/99
Toluene	<.50	1	02/12/99
Dibromochloromethane	<.50	1	02/12/99
2-Hexanone	<5.0	1	02/12/99
Tetrachloroethene	<.50	1	02/12/99
Chlorobenzene	<.50	1	02/12/99

- Outside control limits J-Estimated value

Authorized:

Date: February 17,1999

Thomas Alexander

O'Brien & Gere Laboratories, Inc.

Client: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

Sample: K5548

Samp. Description: 88-12C

nstrument: HP5973 GCMS#3

Jnits: ug/L

Number of analytes: 38

Analytical Results Method: 8260

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/04/99

Received: 02/05/99

Matrix: Water

QC Batch: 021299W1

Prepared: 02/12/99 % Solids:

Purge volume: 25 mL

Surrog

Parameter	Result	Limits Dilution	Analyzed Notes
Ethylbenzene	<.50	1	02/12/99
Bromoform	<.50	1	02/12/99
Xylene (total)	<.50	. 1	02/12/99
Styrene	<.50	1	02/12/99
1,1,2,2-Tetrachloroethane	<.50	1	02/12/99
1,2-Dichloroethane-d4 (surrogate)	95.%	80-135 1	02/12/99
Dibromofluoromethane (surrogate)	95.%	61-136 1	02/12/99
Toluene-d8 (surrogate)	93.%	84-114 1	02/12/99
Bromofluorobenzene (surrogate)	91.%	77-117 1	02/12/99

Notes:

- Outside control limits J-Estimated value

Authorized:

Date: February 17,1999 Thomas Alexand

Operator ID: SG Date Acquired: 12 Feb 1999 17:48

ta File: C:\HPCHEM\1\DATA\J3677.D

me: K5548 Misc: 88-12C

Method: C:\HPCHEM\1\METHODS\J212TCLW.M (RTE Integrator)

tle: VOC's w/J & W DB-VRX: 0.25 mm x 60 m

Library Searched: C:\DATABASE\NBS75K.L

TIC Top Hit name RT EstConc Units Area IntStd ISRT ISArea ISConc Ifur dioxide 5.94 6.5 ug/L 1134940 ISTD01 14.98 1750760 10.0 J3677.D J212TCLW.M Tue Feb 16 08:21:59 1999

Client: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

Sample: K5549

Samp. Description: 85-7R Instrument: HP5973 GCMS#3

Units: ug/L

Number of analytes: 38

Analytical Results Method: 8260

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/04/99

Received: 02/05/99 Prepared: 02/12/99 Matrix: Water QC Batch: 021299W1

%Solids:

Purge volume: 25 mL

Surrog	urrog	
--------	-------	--

Parameter	Result	Limits Dilution	Analyzed Notes
Chloromethane	<1.0	1	02/12/99
Vinyl chloride	<1.0	1	02/12/99
Bromomethane	<1.0	1	02/12/99
Chloroethane	<1.0	1	02/12/99
Acetone	<10.	1	02/12/99
1,1-Dichloroethene	<.50	1	02/12/99
Methylene chloride	<.50	1	02/12/99
Carbon disulfide	.93 J	1	02/12/99
trans-1,2-Dichloroethene	<.50	1	02/12/99
1,1-Dichloroethane	<.50	1	02/12/99
2-Butanone	<10.	1	02/12/99
cis-1,2-Dichloroethene	J .21	1	02/12/99
Chloroform	<.50	1	02/12/99
1,2-Dichloroethane	<.50	1	02/12/99
1,1,1-Trichloroethane	<.50	1	02/12/99
Carbon tetrachloride	<.50	1	02/12/99
	<.50	1	02/12/99
Benzene	<.50	1	02/12/99
1,2-Dichloropropane Trichloroethene	<.50	1	02/12/99
	<.50	1	02/12/99
Bromodichloromethane	<.50	1	02/12/99
cis-1,3-Dichloropropene	<5.0	1	02/12/99
4-Methyl-2-pentanone	<.50	1	·
trans-1,3-Dichloropropene	<.50	1	· · · · · · · · · · · · · · · · · · ·
1,1,2-Trichloroethane	<.50	1	·
Toluene	<.50		02/12/99
Dibromochloromethane	<5.0		02/12/99
2-Hexanone	<.50	1	
Tetrachloroethene		1	02/12/99
Chlorobenzene	<.50	T	02/12/00

Elitho 8

- Outside control limits J-Estimated value

Authorized:

Date: February 17,1999

lient: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

sample: K5549

Samp. Description: 85-7R astrument: HP5973 GCMS#3

Jnits: ug/L

Number of analytes: 38

Analytical Results Method: 8260

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/04/99

Received: 02/05/99 Prepared: 02/12/99

Matrix: Water

QC Batch: 021299W1 % Solids:

Purge volume: 25 mL

Parameter		Surrog	
Parameter	Result	Limits Dilution	Analyzed Notes
Ethylbenzene	<.50	1	
Bromoform		1	02/12/99
<pre>Xylene (total)</pre>	<.50	1	02/12/99
-	<.50	1	02/12/99
Styrene	<.50	7	02/12/99
1,1,2,2-Tetrachloroethane	<.50	1	•
1,2-Dichloroethane-d4 (surrogate)		Δ.	02/12/99
Dibromofluoromethane (surrogate)	93.8	80-135 1	02/12/99
	97.%	61-136 1	02/12/99
Toluene-d8 (surrogate)	99.%	84-114 1	02/12/99
Bromofluorobenzene (surrogate)	90.%	77-117	02/12/99

Notes:

Outside control limits J-Estimated value

Authorized:

Date: February 17,1999 Thomas Alexander

Operator ID: SG Date Acquired: 12 Feb 1999 18:25

ta File: C:\HPCHEM\1\DATA\J3678.D

me: K5549 4isc: 85-7R

Method: C:\HPCHEM\1\METHODS\J212TCLW.M (RTE Integrator)

tle: VOC's w/J & W DB-VRX: 0.25 mm x 60 m

ulprary Searched: C:\DATABASE\NBS75K.L

TIC Top Hit name	RT	EstConc	Units	Area	IntStd	ISRT	ISArea	ISConc
lfur dioxide 🗸	5.94	9.5	ug/L	1645900	ISTD01	14.97	1732960	10.0
J3678.D J212TCLW.M	,	Tue Feb :	16 08:2	24:46 19	999			

Client: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

Sample: K5550

Samp. Description: URS-7D Instrument: HP5973 GCMS#3

Units: ug/L

Number of analytes: 38

Analytical Results Method: 8260

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/04/99

Received: 02/05/99

Matrix: Water

QC Batch: 021299W1

Prepared: 02/12/99 %Solids:

Purge volume: 25 mL

Surrog

Parameter	Result	Limits Dilution	Analyzed Notes
Chloromethane	<1.0	1	02/12/99
Vinyl chloride	<1.0	1	02/12/99
Bromomethane	<1.0	1	02/12/99
Chloroethane	<1.0	1	02/12/99
Acetone	J 6.0	1	02/12/99
1,1-Dichloroethene	<.50	1	02/12/99
Methylene chloride	<.50	1	02/12/99
Carbon disulfide	1.3 ブ	1	02/12/99
trans-1,2-Dichloroethene	<.50	1	02/12/99
1,1-Dichloroethane	<.50	1	02/12/99
2-Butanone	<10.	1	02/12/99
cis-1,2-Dichloroethene	<.50	1	02/12/99
Chloroform	<.50	1	02/12/99
1,2-Dichloroethane	<.50	1	02/12/99
1,1,1-Trichloroethane	<.50	1	02/12/99
Carbon tetrachloride	<.50	1	02/12/99
Benzene	<.50	1	02/12/99
1,2-Dichloropropane	<.50	1	02/12/99
Trichloroethene	<.50	1	02/12/99
Bromodichloromethane	<.50	1	02/12/99
cis-1,3-Dichloropropene	<.50	1	02/12/99
4-Methyl-2-pentanone	<5.0	1	02/12/99
trans-1,3-Dichloropropene	<.50	1	02/12/99
1,1,2-Trichloroethane	<.50	1	02/12/99
Toluene	<.50	1	02/12/99
Dibromochloromethane	<.50	1	02/12/99 ·
2-Hexanone	<5.0	1	02/12/99
Tetrachloroethene	<.50	1	02/12/99
Chlorobenzene	<.50	1	02/12/99

- Outside control limits J-Estimated value

Authorized:

Date: February 17,1999

Client: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

Sample: K5550

Samp. Description: URS-7D Instrument: HP5973 GCMS#3

Jnits: ug/L

Number of analytes: 38

Analytical Results Method: 8260

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/04/99

Matrix: Water

Received: 02/05/99 Prepared: 02/12/99

QC Batch: 021299W1

% Solids:

Purge volume: 25 mL

Parameter		Surrog		
	Result	Limits Dilu	ion	Analyzed Notes
Ethylbenzene	<.50		1	02/12/99
Bromoform	<.50		_	• • • •
Xylene (total)			1	02/12/99
Styrene	<.50		1	02/12/99
1,1,2,2-Tetrachloroethane	<.50		1	02/12/99
	<.50		1	02/12/99
1,2-Dichloroethane-d4 (surrogate)	94.%	80-135	1	02/12/99
Dibromofluoromethane (surrogate)	96.%		_	
Toluene-d8 (surrogate)		61-136	1	02/12/99
Bromofluorobenzene (surrogate)	98.%	84-114	1	02/12/99
(surrogate)	92.%	77-117	1	02/12/99

Notes:

· Outside control limits J-Estimated value

Authorized:

Date: February 17,1999

Operator ID: SG Date Acquired: 12 Feb 1999 19:02

ta File: C:\HPCHEM\1\DATA\J3679.D

me: K5550 Misc: URS-7D

Method: C:\HPCHEM\1\METHODS\J212TCLW.M (RTE Integrator)

tle: VOC's w/J & W DB-VRX: 0.25 mm x 60 m

___brary Searched: C:\DATABASE\NBS75K.L

TIC Top Hit name	RT	EstConc	Units	Area	IntStd	ISRT	ISArea	ISConc
lfur dioxide 🗸	5.94	11.7	ug/L	2033860	0 ISTD01	14.97	1740160	10.0
J3679.D J212TCLW.M	7	Tue Feb :	16 08:2	26:43 19	999			

Client: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

Sample: K5551

Samp. Description: 85-5R instrument: HP5973 GCMS#3

Units: ug/L

Number of analytes: 38

Analytical Results Method: 8260

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/04/99

Received: 02/05/99

Matrix: Water

QC Batch: 021299W1

Prepared: 02/12/99 %Solids:

Purge volume: 25 mL

Surrog

B	Result	Limits Dilution	Analyzed Notes
Parameter Chloromethane	<1.0	1	02/12/99
	<1.0	1	02/12/99
Vinyl chloride	<1.0	1	02/12/99
Bromomethane	<1.0	1	02/12/99
Chloroethane	<10.	1	02/12/99
Acetone		1	02/12/99
1,1-Dichloroethene	<.50	1	02/12/99
Methylene chloride	<.50	1	02/12/99
	< .50 J16	-	· ·
trans-1,2-Dichloroethene	<.50	1	02/12/99
1,1-Dichloroethane	<.50	1	02/12/99
2-Butanone	<10.	1	02/12/99
cis-1,2-Dichloroethene	<.50	1	02/12/99
Chloroform	<.50	1	02/12/99
1,2-Dichloroethane	<.50	1	02/12/99
1,1,1-Trichloroethane	<.50	1	02/12/99
Carbon tetrachloride	<.50	1	02/12/99
Benzene	<.50	1	02/12/99
1,2-Dichloropropane	<.50	1	02/12/99
Trichloroethene	<.50	1	02/12/99
Bromodichloromethane	<.50	1	02/12/99
cis-1,3-Dichloropropene	<.50	1	02/12/99
4-Methyl-2-pentanone	<5.0	1	02/12/99
trans-1,3-Dichloropropene	<.50	1	02/12/99
1,1,2-Trichloroethane	<.50	1	02/12/99
Toluene	<.50	1	02/12/99
Dibromochloromethane	<.50	. 1	02/12/99
2-Hexanone	<5.0	1	02/12/99
		1	02/12/99
			· · · · · · · · · · · · · · · · · · ·
Tetrachloroethene Chlorobenzene	<.50 <.50	1	02/12/99 02/12/99

- Outside control limits J-Estimated value

Authorized:

Date: February 17,1999

Client: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

Sample: K5551

Samp. Description: 85-5R Instrument: HP5973 GCMS#3

Jnits: ug/L

Number of analytes: 38

Analytical Results Method: 8260

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/04/99

Matrix: Water Received: 02/05/99

QC Batch: 021299W1

Prepared: 02/12/99 % Solids:

Purge volume: 25 mL

Surrog

Parameter	Result	Limits D	ilution	Analyzed Notes
Ethylbenzene	<.50		1	02/12/99
Bromoform	<.50		1	02/12/99
Xylene (total)	<.50		1	02/12/99
Styrene	<.50		1	02/12/99
1,1,2,2-Tetrachloroethane	<.50		1	02/12/99
1,2-Dichloroethane-d4 (surrogate)	95.%	80-135	1	02/12/99
Dibromofluoromethane (surrogate)	93.%	61-136	1	02/12/99
Toluene-d8 (surrogate)	99.%	84-114	1	02/12/99
Bromofluorobenzene (surrogate)	90.%	77-117	1	02/12/99

Notes:

- Outside control limits J-Estimated value

Date: February 17,1999

Operator ID: SG Date Acquired: 12 Feb 1999 19:40

ta File: C:\HPCHEM\1\DATA\J3680.D

me: K5551 Misc: 85-5R

Method: C:\HPCHEM\1\METHODS\J212TCLW.M (RTE Integrator)

tle: VOC's w/J & W DB-VRX: 0.25 mm x 60 m

Library Searched: C:\DATABASE\NBS75K.L

TIC Top Hit name RT EstConc Units Area IntStd ISRT ISArea ISConc lfur dioxide 5.94 5.7 ug/L 985458 ISTD01 14.97 1716360 10.0

J3680.D J212TCLW.M Tue Feb 16 08:26:53 1999

llient: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

Jample: K5552

Samp. Description: URS-5D nstrument: HP5973 GCMS#3

Jnits: ug/L

Number of analytes: 38

Analytical Results Method: 8260

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/04/99

Received: 02/05/99

Matrix: Water

QC Batch: 021299W1

Prepared: 02/12/99 %Solids:

Purge volume: 25 mL

		Surrog	
Parameter	Result	Limits Dilution	
Chloromethane	<1.0	1	02/12/99
Vinyl chloride	<1.0	1	02/12/99
Bromomethane	<1.0	1	02/12/99
Chloroethane	<1.0	1	02/12/99
Acetone	<10.	1	02/12/99
1,1-Dichloroethene	<.50	1	02/12/99
Methylene chloride	<.50	1	02/12/99
Carbon disulfide <0.5	0 J14	1	02/12/99
trans-1,2-Dichloroethene	<.50	1	02/12/99
1,1-Dichloroethane	<.50	1	02/12/99
2-Butanone	<10.	1	02/12/99
cis-1,2-Dichloroethene	<.50	1	02/12/99
Chloroform	<.50	1	02/12/99
1,2-Dichloroethane	<.50	1	02/12/99
1,1,1-Trichloroethane	<.50	1	02/12/99
Carbon tetrachloride	<.50	į	02/12/99
Benzene	<.50	1	02/12/99
1,2-Dichloropropane	<.50	1	02/12/99
Trichloroethene	<.50	1	02/12/99
Bromodichloromethane	<.50	1	02/12/99
cis-1,3-Dichloropropene	<.50	1	02/12/99
4-Methyl-2-pentanone	<5.0	1	02/12/99
trans-1,3-Dichloropropene	<.50	1	02/12/99
1,1,2-Trichloroethane	<.50	1	02/12/99
Toluene	<.50	1	02/12/99
Dibromochloromethane	<.50	1	02/12/99
2-Hexanone	<5.0	1	02/12/99
Tetrachloroethene	<.50	1	02/12/99
Chlorobenzene	<.50	1	02/12/99

- Outside control limits J-Estimated value

31099

Authorized:

Date: February 17,1999

llient: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

sample: K5552

Samp. Description: URS-5D

astrument: HP5973 GCMS#3

Inits: ug/L

Number of analytes: 38

Analytical Results Method: 8260

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/04/99

Received: 02/05/99

Matrix: Water

QC Batch: 021299W1

Prepared: 02/12/99 %Solids:

Purge volume: 25 mL

Surrog

Parameter	Result	Limits	Dilution	Analyzed Notes
Ethylbenzene	<.50		1	02/12/99
Bromoform	<.50		1	02/12/99
Xylene (total)	<.50		1	02/12/99
Styrene	<.50		1	02/12/99
1,1,2,2-Tetrachloroethane	<.50		1	02/12/99
1,2-Dichloroethane-d4 (surrogate)	95.%	80-135	1	02/12/99
Dibromofluoromethane (surrogate)	94.%	61-136	1	02/12/99
Toluene-d8 (surrogate)	97.%	84-114	1	02/12/99
Bromofluorobenzene (surrogate)	90.%	77-117	1	02/12/99

Notes:

Outside control limits J-Estimated value

Authorized:

Date: February 17,1999

Thomas Alexander

homas A. Alefande

Operator ID: SG Date Acquired: 12 Feb 1999 20:17

ta File: C:\HPCHEM\1\DATA\J3681.D

me: K5552 Misc: URS-5D

"ethod: C:\HPCHEM\1\METHODS\J212TCLW.M (RTE Integrator)

tle: VOC's w/J & W DB-VRX: 0.25 mm x 60 m

__brary Searched: C:\DATABASE\NBS75K.L

TIC Top Hit name		EstConc Units					
lfur dioxide	5.94	4.6 ug/L	779480	0 ISTD01	14.97	1709520	10.0
J3681.D J212TCLW.M	,	Tue Feb 16 08:2	7:04 19	999			

Client: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

Jample: K5553

Samp. Description: Equipment Blank

nstrument: HP5973 GCMS#3

Jnits: ug/L

Number of analytes: 38

Analytical Results Method: 8260

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/05/99

oived: 02/05/00 OC Batch:

Received: 02/05/99 Prepared: 02/17/99 Matrix: Water OC Batch: 021799W1

%Solids:

Purge volume: 25 mL

	Surrog		
Parameter	Result Limits	Dilution	Analyzed Notes
Chloromethane	<1.0	1	02/17/99
Vinyl chloride	<1.0	1	02/17/99
Bromomethane	<1.0	1	02/17/99
Chloroethane	<1.0	1	02/17/99
Acetone	<10.	1	02/17/99
1,1-Dichloroethene	<.50	1	02/17/99
Methylene chloride	<.50	1	02/17/99
Carbon disulfide	7 3-10 T .10 J .10	1	02/17/99
trans-1,2-Dichloroethene	100 edit <.50	1	02/17/99
1,1-Dichloroethane	<.50	1	02/17/99
2-Butanone	<10.	1	02/17/99
cis-1,2-Dichloroethene	<.50	1	02/17/99
Chloroform	<.50	1	02/17/99
1,2-Dichloroethane	<.50	1	02/17/99
1,1,1-Trichloroethane	<.50	1	02/17/99
Carbon tetrachloride	<.50	1	02/17/99
	<.50	1	02/17/99
Benzene	<.50	1	02/17/99
1,2-Dichloropropane	<.50	1	02/17/99
Trichloroethene	<.50	1	02/17/99
Bromodichloromethane	<.50	1	02/17/99
cis-1,3-Dichloropropene	<5.0	1	·
4-Methyl-2-pentanone	<.50	1	
trans-1,3-Dichloropropene	<.50	1	
1,1,2-Trichloroethane	<.50	1	
Toluene	<.50	1	·
Dibromochloromethane	<5.0	1	·
2-Hexanone	<.50	1	· . · .
Tetrachloroethene		1	02/17/99
Chlorobenzene	<.50	1	02/11/00

- Outside control limits J-Estimated value

Edits 716-99

Authorized:

Date: February 19,1999

lient: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

Sample: K5553

Samp. Description: Equipment Blank

istrument: HP5973 GCMS#3

nits: ug/L

Number of analytes: 38

Analytical Results Method: 8260

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/05/99

Matrix: Water

Received: 02/05/99

QC Batch: 021799W1

Prepared: 02/17/99 % Solids:

Purge volume: 25 mL

	Surrog	
Result	Limits Dilution	Analyzed Notes
<.50	1	. 02/17/99
<.50	1	. 02/17/99
<.50	1	. 02/17/99
<.50	1	. 02/17/99
<.50	1	. 02/17/99
94.%	80-135	. 02/17/99
94.%	61-136	. 02/17/99
92.%	84-114	02/17/99
90.%	77-117	02/17/99
	<.50 <.50 <.50 <.50 <.50 94.% 94.%	<.50 <.50 <.50 <.50 <.50 <.50 <.50 <.50

Notes:

Outside control limits J-Estimated value

Authorized:_

Date: February 19,1999

operator ID: SG Date Acquired: 17 Feb 1999 17:14

_a File: C:\HPCHEM\1\DATA\J3699.D

ñe: K5553

Misc: Equipment Blank

!ethod: C:\HPCHEM\1\METHODS\J217TCLW.M (RTE Integrator)

le: VOC's w/J & W DB-VRX: 0.25 mm x 60 m

.morary Searched: C:\DATABASE\NBS75K.L

TIC Top Hit name RT EstConc Units Area IntStd ISRT ISArea ISConc

J3699.D J217TCLW.M Fri Feb 19 09:07:41 1999

lient: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

sample: K5554

Samp. Description: URS-14D strument: HP5973 GCMS#3

nits: ug/L

Number of analytes: 38

Analytical Results Method: 8260

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/05/99

Received: 02/05/99

Surrog

Matrix: Water

OC Batch: 021799W1

Prepared: 02/17/99 %Solids:

Purge volume: 25 mL

	Durr	
Parameter	Result Limit	ts Dilution Analyzed Notes
Chloromethane	<1.0 J	1 02/17/99
Vinyl chloride	<1.0 J	1 02/17/99
Bromomethane	<1.0 丁	1 02/17/99
Chloroethane	<1.0	1 02/17/99
Acetone	<10.	1 02/17/99
1,1-Dichloroethene	<.50 ⋾	1 02/17/99
Methylene chloride	<.50 J	1 02/17/99
Carbon disulfide	1.1	1 02/17/99
trans-1,2-Dichloroethene	<.50 J	1 02/17/99
1,1-Dichloroethane	<.50 ₹	1 02/17/99
2-Butanone	<.50 J <10. J	1 02/17/99
cis-1,2-Dichloroethene	<.50 J	1 02/17/99
	<.50 J	1 02/17/99
Chloroform	<.50 J	1 02/17/99
1,2-Dichloroethane	<.50 J	1 02/17/99
1,1,1-Trichloroethane	<.50 J	1 02/17/99
Carbon tetrachloride	<.50 J	1 02/17/99
Benzene	<.50 J	1 02/17/99
1,2-Dichloropropane	<.50 J	1 02/17/99
Trichloroethene	<.50 J	1 02/17/99
Bromodichloromethane	<.50 J	1 02/17/99
cis-1,3-Dichloropropene	<5.0 J	1 02/17/99
4-Methyl-2-pentanone	<.50 J	1 02/17/99
trans-1,3-Dichloropropene	<.50 J	1 02/17/99
1,1,2-Trichloroethane		1 02/17/99
Toluene	<.50 J	1 02/17/99
Dibromochloromethane	<.50 ∫	1 02/17/99
2-Hexanone	<5.0 J	1 02/17/99
Tetrachloroethene	<.50 J	1 02/17/99

- Outside control limits J-Estimated value

Chlorobenzene

Authorized:

<.50 J

Date: February 19,1999

Thomas Alexander

1 02/17/99

Client: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

Sample: K5554

Samp. Description: URS-14D

Instrument: HP5973 GCMS#3

Units: ug/L

Number of analytes: 38

Analytical Results Method: 8260

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/05/99

Received: 02/05/99

Matrix: Water

QC Batch: 021799W1

Prepared: 02/17/99 %Solids:

Purge volume: 25 mL

Surrog

Parameter	Result	Limits	Dilution	Analyzed Notes
Ethylbenzene	<.50 J		1	02/17/99
Bromoform	<.50 J		1	02/17/99
Xylene (total)	<.50 J		1	02/17/99
Styrene	<.50 J		1	02/17/99
1,1,2,2-Tetrachloroethane	<.50 J		1	02/17/99
1,2-Dichloroethane-d4 (surrogate)	90.%	80-135	1	02/17/99
Dibromofluoromethane (surrogate)	90.8	61-136	1	02/17/99
Toluene-d8 (surrogate)	89.%	84-114	1	02/17/99
Bromofluorobenzene (surrogate)	83.%	77-117	1	02/17/99

Notes:

2 12 - 99 3-10-99

- Outside control limits J-Estimated value

Authorized:

Date: February 19,1999

Operator ID: SG Date Acquired: 17 Feb 1999 17:51

ta File: C:\HPCHEM\1\DATA\J3700.D

me: K5554 Misc: URS-14D

Method: C:\HPCHEM\1\METHODS\J217TCLW.M (RTE Integrator)

tle: VOC's w/J & W DB-VRX: 0.25 mm x 60 m

Library Searched: C:\DATABASE\NBS75K.L

TIC Top Hit name		RT	EstConc Un	nits A	rea I	IntStd	ISRT	ISArea	ISConc
drochloric Acid- Sulfur dioxide	2	5.94	3.9 ug	g/L 6	38502	ISTD01 ISTD01 ISTD01	14.97	1630620	10.0

J3700.D J217TCLW.M Fri Feb 19 09:07:59 1999

1 Unknown

lient: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

Sample: K5555

Samp. Description: URS-14I astrument: HP5973 GCMS#3

Jnits: ug/L

Number of analytes: 38

Analytical Results Method: 8260

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/05/99

Received: 02/05/99

Matrix: Water

QC Batch: 021799W1

Prepared: 02/17/99 %Solids:

Purge volume: 25 mL

Surrog

Parameter	Result	Limits Dilution	Analyzed Notes
Chloromethane	<1.0	1	02/17/99
Vinyl chloride	<1.0	1	02/17/99
Bromomethane	<1.0	1	02/17/99
Chloroethane	<1.0	1	02/17/99
Acetone	<10.	1	02/17/99
1,1-Dichloroethene	<.50	1	02/17/99
Methylene chloride	<.50	1	02/17/99
	46.50 -J-28	1	02/17/99
trans-1,2-Dichloroethene	<.50	1	02/17/99
1,1-Dichloroethane	<.50	1	02/17/99
2-Butanone	<10.	1	02/17/99
cis-1,2-Dichloroethene	<.50	1	02/17/99
Chloroform	<.50	1	02/17/99
1,2-Dichloroethane	<.50	1	02/17/99
1,1,1-Trichloroethane	<.50	_ 1	02/17/99
Carbon tetrachloride	<.50	1	02/17/99
Benzene	<.50	1	02/17/99
1,2-Dichloropropane	<.50	1	02/17/99
Trichloroethene	<.50	1	02/17/99
Bromodichloromethane	<.50	1	02/17/99
cis-1,3-Dichloropropene	<.50	1	02/17/99
4-Methyl-2-pentanone	<5.0	1	02/17/99
trans-1,3-Dichloropropene	<.50	1	02/17/99
1,1,2-Trichloroethane	<.50	1	02/17/99
Toluene	<.50	1	02/17/99
Dibromochloromethane	<.50	. 1	02/17/99 ·
2-Hexanone	<5.0	1	02/17/99
Tetrachloroethene	<.50	1	02/17/99
Chlorobenzene	<.50	1	02/17/99

Edits 9W-5 340-99

- Outside control limits J-Estimated value

Authorized:

Date: February 19,1999

lient: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

Sample: K5555

Samp. Description: URS-14I strument: HP5973 GCMS#3

_ nits: ug/L

Number of analytes: 38

Analytical Results Method: 8260

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/05/99

Matrix: Water

Received: 02/05/99

QC Batch: 021799W1

Prepared: 02/17/99 % Solids:

Purge volume: 25 mL

Surrog

	Result	Limits Dilution	Analyzed Notes
Parameter	<.50	1	02/17/99
Ethylbenzene	<.50	1	02/17/99
Bromoform	<.50	1	02/17/99
Xylene (total)	<.50	1	02/17/99
Styrene	<.50	1	02/17/99
1,1,2,2-Tetrachloroethane	85.%	80-135 1	02/17/99
1,2-Dichloroethane-d4 (surrogate)	89.%	61-136 1	02/17/99
Dibromofluoromethane (surrogate)		# 84-114 1	02/17/99
Toluene-d8 (surrogate) Bromofluorobenzene (surrogate)	81.%	77-117 1	02/17/99

Notes:

Authorized:

Date: February 19,1999

Thomas Alexander

Outside control limits J-Estimated value

Date Acquired: 17 Feb 1999 18:29 Operator ID: SG

ta File: C:\HPCHEM\1\DATA\J3701.D

me: K5555 Misc: URS-14I

Method: C:\HPCHEM\1\METHODS\J217TCLW.M (RTE Integrator)

tle: VOC's w/J & W DB-VRX: 0.25 mm x 60 m

Library Searched: C:\DATABASE\NBS75K.L

TIC Top Hit name	RT	EstConc	Units	Area	IntStd	ISRT	ISArea	ISConc
TIC Top Hit name	5.94	2.5	ug/L	40605	0 ISTD01	14.97	1609470	10.0
J3701.D J217TCLW.M		Fri Feb						

'lient: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

sample: K5556

Samp. Description: QC Trip Blank astrument: HP5973 GCMS#3

Jnits: ug/L

Number of analytes: 38

Analytical Results Method: 8260

Job No.: 5829.001.517 Certification NY No.: 10155

%Solids:

Collected: 02/03/99

Matrix: Water OC Batch: 021799W1 Received: 02/05/99

Prepared: 02/17/99

Purge volume: 25 mL

Surrog

	Result	Limits Dilution	
Parameter	<1.0	1	02/17/99
Chloromethane	<1.0	1	02/17/99
Vinyl chloride	<1.0	1	02/17/99
Bromomethane	<1.0	1	02/17/99
Chloroethane	<10.	1	02/17/99
Acetone	<.50	1	02/17/99
1,1-Dichloroethene	<.50	1	02/17/99
Methylene chloride	<.50	1	02/17/99
Carbon disulfide	<.50	1	02/17/99
trans-1,2-Dichloroethene	<.50	1	02/17/99
1,1-Dichloroethane	<10.	1	02/17/99
2-Butanone	<.50	1	02/17/99
cis-1,2-Dichloroethene	<.50	1	02/17/99
Chloroform	<.50	1	02/17/99
1,2-Dichloroethane	<.50	1	02/17/99
1,1,1-Trichloroethane	<.50	1	02/17/99
Carbon tetrachloride	<.50	1	02/17/99
Benzene	<.50	1	
1,2-Dichloropropane	<.50	1	
Trichloroethene	<.50	. 1	
Bromodichloromethane		1	
cis-1,3-Dichloropropene	<.50	1	·
4-Methyl-2-pentanone	<5.0	1	
trans-1,3-Dichloropropene	< .50	1	
1,1,2-Trichloroethane	<.50	1	
Toluene	<.50	. 1	
Dibromochloromethane	<.50	1	
2-Hexanone	<5.0	_	
Tetrachloroethene	<.50	_	
Chlorobenzene	<.50	1	02/11/33

- Outside control limits J-Estimated value

Authorized:

Date: February 19,1999 Thomas Alexander

lient: Frontier Chemical Project: Pendleton Site

'roj. Desc: Niagara County, NY

ample: K5556

Samp. Description: QC Trip Blank strument: HP5973 GCMS#3

nits: ug/L

Jumber of analytes: 38

Analytical Results Method: 8260

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/03/99

Matrix: Water

Received: 02/05/99

QC Batch: 021799W1

Prepared: 02/17/99 % Solids:

76 SOLIUS.

Purge volume: 25 mL

<u>Parameter</u>		Surrog	
Ethylbenzene	Result	Limits Dilution	Analyzed Notes
Bromoform	<.50]	02/17/99
Xylene (total)	<.50	1	. 02/17/99
Styrene	<.50	1	02/17/99
1,1,2,2-Tetrachloroethane	<.50	1	02/17/99
1,2-Dichloroethane-d4 (surrogate)	<.50	1	02/17/99
Dibromofluoromethane (surrogate)	105.%	80-135 1	02/17/99
Toluene-d8 (surrogate)	108.%	61-136 1	02/17/99
Bromofluorobenzene (surrogate)	107.%	84-114 1	02/17/99
(Surroyale)	99.%	77-117 1	02/17/99

Notes:

Outside control limits J-Estimated value

Authorized:

Date: February 19,1999

perator ID: SG Date Acquired: 17 Feb 1999 16:37

ta File: C:\HPCHEM\1\DATA\J3698.D

ne: K5556

.sc: QC Trip Blank

thod: C:\HPCHEM\1\METHODS\J217TCLW.M (RTE Integrator)

tle: VOC's w/J & W DB-VRX: 0.25 mm x 60 m

orary Searched: C:\DATABASE\NBS75K.L

TIC Top Hit name RT EstConc Units Area IntStd ISRT ISArea ISConc ______ J3698.D J217TCLW.M Fri Feb 19 09:07:28 1999

ient: Frontier Chemical roject: Pendleton Site

oj. Desc: Niagara County, NY

ample: K5544

amp. Description: URS-9D

iits: mg/L

Analytical Results Trace Metals

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/03/99

Matrix: Water

Received: 02/05/99

%Solids:

Number of analytes: 23

Parameter	Result	Method		Prepared	Analyzed	QC Batch	Dilut. Note
Aluminum	<.1	6010		02/18/99	02/18/99	021899W1	1
Antimony	<.005	6010		02/18/99	02/18/99	021899W1	1
Arsenic	<.005	6010		02/18/99	02/18/99	021899W1	1
Barium	<.02	6010		02/18/99	02/18/99	021899W1	1
Beryllium	<.003	6010		02/18/99	02/18/99	021899W1	1
Cadmium	<.001	6010		02/18/99	02/18/99	021899W1	1
Calcium	200.	6010		02/18/99	02/18/99	021899W1	1
Chromium	<.01	6010		02/18/99	02/18/99	021899W1	1
Cobalt	<.025	6010		02/18/99	02/18/99	021899W1	1
Copper.	<.01	6010		02/18/99	02/18/99	021899W1	1
Iron	.07	6010		02/18/99	02/18/99	021899W1	1
Lead	<.005	6010		02/18/99	02/18/99	021899W1	1
Magnesium	72.	6010		02/18/99	02/18/99	021899W1	1
Manganese	.01	6010		02/18/99	02/18/99	021899W1	1
Mercury	<.0002	7470		02/17/99	02/17/99	021799W1	1
Nickel	<.05	6010		02/18/99	02/18/99	021899W1	1
Potassium	<5.	6010		02/18/99	02/19/99	021899W1	1
Selenium	<.005	6010	J	02/18/99	02/18/99	021899W1	1
Silver	<.01	6010		02/18/99	02/18/99	021899₩1	1
Sodium	38.	6010		02/18/99	02/18/99	021899W1	1
	<.001	7841		02/18/99	02/18/99	021899W2	1
Thallium	<.05	6010		02/18/99	02/18/99	021899₩1	1
Vanadium	<.01	6010		02/18/99	02/18/99	021899W1	1
Zinc	2.01	0010		02/10/55	,,		

Notes:

ELJ 69

J-Estimated value

Authorized:

Date: February 19,1999

lient: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

ample: K5545

Samp. Description: URS-9I

Jnits: mg/L

Analytical Results Trace Metals

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/03/99

Matrix: Water

Received: 02/05/99 %Solids:

Number of analytes: 23

Parameter	Result	Method	Prepared	Analyzed	QC Batch	Dilut. Note
Aluminum	. 2	6010	02/18/99	02/18/99	021899W1	1
Antimony	<.005	6010	02/18/99	02/18/99	021899W1	1
Arsenic	<.005	6010	02/18/99	02/18/99	021899W1	1
Barium	<.02	6010	02/18/99	02/18/99	021899W1	1
Beryllium	<.003	6010	02/18/99	02/18/99	021899W1	1
Cadmium	<.001	6010	02/18/99	02/18/99	021899W1	1
Calcium	160.	6010	02/18/99	02/18/99	021899W1	1
Chromium	.01	6010	02/18/99	02/18/99	021899W1	1
Cobalt	<.025	6010	02/18/99	02/18/99	021899W1	1
Copper	<.01	6010	02/18/99	02/18/99	021899W1	1
Iron	.59	6010	02/18/99	02/18/99	021899W1	1
Lead	<.005	6010	02/18/99	02/18/99	021899W1	1
Magnesium	70.	6010	02/18/99	02/18/99	021899W1	1
Manganese	.05	6010	02/18/99	02/18/99	021899W1	1
Mercury	<.0002	7470	02/17/99	02/17/99	021799W1	1
Nickel	<.05	6010	02/18/99	02/18/99	021899W1	1
Potassium	<5.	6010	02/18/99	02/19/99	021899W1	1
Selenium	<.005	6010 J	02/18/99	02/18/99	021899W1	1
Silver	<.01	6010	02/18/99	02/18/99	021899W1	1
Sodium	39.	6010	02/18/99	02/18/99	021899W1	1
Thallium	<.001	7841	02/18/99	02/18/99	021899W2	1
Vanadium	<.05	6010	02/18/99	02/18/99	021899W1	1
Zinc	<.01	6010	02/18/99	02/18/99	021899W1	1

Notes:

Elix 3-10-019

Estimated value

Authorized:

Date: February 19,1999

llient: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

_ample: K5546

Samp. Description: Blind Duplicate

Jnits: mg/L

Analytical Results Trace Metals

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/03/99

Matrix: Water

Received: 02/05/99 %Solids:

Number of analytes: 23

Parameter	Result	Method		Prepared	Analyzed	QC Batch	Dilut. Note
Aluminum	<.1	6010		02/18/99	02/18/99	021899W1	1
Antimony	<.005	6010		02/18/99	02/18/99	021899W1	1
Arsenic	<.005	6010		02/18/99	02/18/99	021899W1	1
Barium	<.02	6010		02/18/99	02/18/99	021899W1	1
Beryllium	<.003	6010		02/18/99	02/18/99	021899W1	1
Cadmium	<.001	6010		02/18/99	02/18/99	021899W1	1
Calcium	200.	6010		02/18/99	02/18/99	021899W1	1
Chromium	<.01	6010		02/18/99	02/18/99	021899W1	1
Cobalt	<.025	6010		02/18/99	02/18/99	021899W1	1
Copper	<.01	6010		02/18/99	02/18/99	021899W1	1
Iron	.07	6010		02/18/99	02/18/99	021899W1	1
Lead	<.005	6010		02/18/99	02/18/99	021899W1	1
Magnesium	72.	6010		02/18/99	02/18/99	021899W1	1
Manganese	.01	6010		02/18/99	02/18/99	021899W1	1
Mercury	<.0002	7470		02/17/99	02/17/99	021799W1	1
Nickel	<.05	6010		02/18/99	02/18/99	021899W1	1
Potassium	<5.	6010		02/18/99	02/19/99	021899W1	1
Selenium	<.005	6010	ゴ	02/18/99	02/18/99	021899W1	1
Silver	<.01	6010		02/18/99	02/18/99	021899W1	1
Sodium	38.	6010		02/18/99	02/18/99	021899W1	1
Thallium	<.001	7841		02/18/99	02/18/99	021899W2	1
: Vanadium	<.05	6010		02/18/99	02/18/99	021899W1	1
Zinc	<.01	6010		02/18/99	02/18/99	021899W1	1

Notes:

Flit 11-5

. Estimated value

Authorized:

Date: February 19,1999

lient: Frontier Chemical Project: Pendleton Site

²roj. Desc: Niagara County, NY

sample: K5547

Samp. Description: 88-12D

nits: mg/L

Analytical Results Trace Metals

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/04/99 Received: 02/05/99 Matrix: Water

%Solids:

Number of analytes: 23

Parameter	Result	Method	Prepared	Analyzed	QC Batch	Dilut. Note
Aluminum	<.1	6010	02/18/99	02/18/99	021899W1	1
Antimony	<.005	6010	02/18/99	02/18/99	021899W1	1
Arsenic	<.005	6010	02/18/99	02/18/99	021899W1	ı
Barium	<.02	6010	02/18/99	02/18/99	021899W1	1
Beryllium	<.003	6010	02/18/99	02/18/99	021899W1	1
Cadmium	<.001	6010	02/18/99	02/18/99	021899W1	1
Calcium	630.	6010	02/18/99	02/18/99	021899W1	1
Chromium	.09	6010	02/18/99	02/18/99	021899W1	1
Cobalt	<.025	6010	02/18/99	02/18/99	021899W1	1
Copper	<.01	6010	02/18/99	02/18/99	021899W1	1
Iron	.65	6010	02/18/99	02/18/99	021899W1	1
Lead	<.005	6010	02/18/99	02/18/99	021899W1	1
Magnesium	160.	6010	02/18/99	02/18/99	021899W1	1
Manganese	.05	6010	02/18/99	02/18/99	021899W1	1
Mercury	<.0002	7470	02/17/99	02/17/99	021799W1	1
Nickel	.07	6010	02/18/99	02/18/99	021899W1	1
Potassium	9.	6010	02/18/99	02/19/99	021899W1	1
Selenium	<.005	6010 J	02/18/99	02/18/99	021899W1	1
Silver	< .01	6010	02/18/99	02/18/99	021899W1	1
Sodium	250.	6010	02/18/99	02/18/99	021899W1	1
Thallium	<.001	7841	02/18/99	02/18/99	021899W2	1
Vanadium	<.05	6010	02/18/99	02/18/99	021899W1	1
Zinc	<.01	6010	02/18/99	02/18/99	021899W1	1

Notes:

3-10-49

-Estimated value

Authorized:

Date: February 19,1999

lient: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

Sample: K5548

Samp. Description: 88-12C

nits: mg/L

Analytical Results Trace Metals

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/04/99 Received: 02/05/99 Matrix: Water

%Solids:

Number of analytes: 23

Parameter	Result	Method		Prepared	Analyzed	QC Batch	Dilut. Note
Aluminum	.6	6010		02/18/99	02/18/99	021899W1	1
Antimony	<.005	6010		02/18/99	02/18/99	021899W1	1
Arsenic	.012	6010		02/18/99	02/18/99	021899W1	1
Barium	<.02	6010		02/18/99	02/18/99	021899W1	1
Beryllium	< .003	6010		02/18/99	02/18/99	021899W1	1
Cadmium	< .001	6010		02/18/99	02/18/99	021899W1	1
Calcium	76.	6010		02/18/99	02/18/99	021899W1	1
Chromium	. 02	6010		02/18/99	02/18/99	021899 W 1	1
Cobalt	<.025	6010		02/18/99	02/18/99	021899W1	1
Copper	<.01	6010		02/18/99	02/18/99	021899W1	1
Iron	1.6	6010		02/18/99	02/18/99	021899W1	1
Lead	<.005	6010		02/18/99	02/18/99	021899W1	1
Magnesium	100.	6010		02/18/99	02/18/99	021899W1	1
Manganese	.04	6010		02/18/99	02/18/99	021899W1	1
Mercury	<.0002	7470		02/17/99	02/17/99	021799W1	1
Nickel	<.05	6010		02/18/99	02/18/99	021899W1	1
Potassium	<5.	6010		02/18/99	02/19/99	021899W1	1
Selenium	< .005	6010	J	02/18/99	02/18/99	021899W1	1
Silver	<.01	6010		02/18/99	02/18/99	021899W1	1
Sodium	42.	6010		02/18/99	02/18/99	021899W1	1
Thallium	<.001	7841		02/18/99	02/18/99	021899W2	1
Vanadium	<.05	6010		02/18/99	02/18/99	021899W1	1
Zinc	<.01	6010		02/18/99	02/18/99	021899W1	1

Notes:

Edut 5 3-10-99

.-Estimated value

Authorized:

Date: February 19,1999

ent: Frontier Chemical roject: Pendleton Site

oj. Desc: Niagara County, NY

imple: K5553

amp. Description: Equipment Blank

its: mg/L

Analytical Results Trace Metals

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/05/99

Matrix: Water

Received: 02/05/99 %Solids:

Number of analytes: 23

Parameter	Result	Method	l Prepare	ed Analyzed	QC Batch	Dilut. Note
Aluminum	<.1	6010	02/18/	99 02/18/99	021899W1	1
Antimony	<.005	6010	02/18/	99 02/18/99	021899W1	1
Arsenic	<.005	6010	02/18/	99 02/18/99	021899₩1	1
Barium	< . 02	6010	02/18/	99 02/18/99	021899W1	1
Beryllium	< .003	6010	02/18/	99 02/18/99	021899W1	1
Cadmium	<.001	6010	02/18/	99 02/18/99	021899W1	1
Calcium	<.1	6010	02/18/	99 02/18/99	021899W1	1
Chromium	< .01	6010	02/18/	99 02/18/99	021899W1	1
Cobalt	<.025	6010	02/18/	99 02/18/99	021899W1	1
Copper	<.01	6010	02/18/	99 02/18/99	021899W1	1
Iron	<.05	6010	02/18/	99 02/18/99	021899W1	1
Lead	<.005	6010	02/18/	99 02/18/99	021899W1	1
Magnesium	<.3	6010	02/18/	99 02/18/99	021899W1	1
Manganese	<.01	6010	02/18/	99 02/18/99	021899W1	1
Mercury	<.0002	7470	02/17/	99 02/17/99	021799W1	1
Nickel	<.05	6010	02/18/	99 02/18/99	021899W1	1
Potassium	<5.	6010	02/18/	99 02/19/99	021899W1	1
Selenium	<.005	6010	J 02/18/	99 02/18/99	021899W1	1
Silver	<.01	6010	02/18/	99 02/18/99	021899W1	1
Sodium	<.3	6010	02/18/	99 02/18/99	021899W1	1
Thallium	<.001	7841	02/18/	99 02/18/99	021899W2	1
Vanadium	<.05	6010	02/18/	99 02/18/99	021899W1	1
Zinc	<.01	6010	02/18/	99 02/18/99	021899W1	1

Notes:

Edul 71-69 8-10-49

-Estimated value

Authorized:

Date: February 19,1999

ient: Frontier Chemical Project: Pendleton Site

roj. Desc: Niagara County, NY

ample: K5554

Samp. Description: URS-14D

nits: mg/L

Analytical Results Trace Metals

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/05/99

Matrix: Water

Received: 02/05/99 %Solids:

Number of analytes: 23

Parameter	Result	Method	l	Prepared	Analyzed	QC Batch	Dilut. Note
Aluminum	<.1	6010		02/18/99	02/18/99	021899W1	1
Antimony	<.005	6010		02/18/99	02/18/99	021899W1	1
Arsenic	<.005	6010		02/18/99	02/18/99	021899W1	1
Barium	.04	6010		02/18/99	02/18/99	021899W1	1
Beryllium	<.003	6010		02/18/99	02/18/99	021899W1	1
Cadmium	<.001	6010		02/18/99	02/18/99	021899W1	1
Calcium	280.	6010		02/18/99	02/18/99	021899W1	1
Chromium	<.01	6010		02/18/99	02/18/99	021899W1	1
Cobalt	<.025	6010		02/18/99	02/18/99	021899W1	1
Copper	<.01	6010		02/18/99	02/18/99	021899W1	1
Iron	.08	6010		02/18/99	02/18/99	021899W1	1
Lead	<.005	6010		02/18/99	02/18/99	021899W1	1
Magnesium	71.	6010		02/18/99	02/18/99	021899W1	1
Manganese	<.01	6010		02/18/99	02/18/99	021899W1	1
Mercury	<.0002	7470		02/17/99	02/17/99	021799W1	1
Nickel	<.05	6010		02/18/99	02/18/99	021899W1	1
Potassium	<5.	6010		02/18/99	02/19/99	021899W1	1
Selenium	<.005	6010	J	02/18/99	02/18/99	021899W1	1
Silver	<.01	6010		02/18/99	02/18/99	021899W1	1
Sodium	48.	6010		02/18/99	02/18/99	021899W1	1
Thallium	<.001	7841		02/18/99	02/18/99	021899W2	1
Vanadium	< . 05	6010		02/18/99	02/18/99	021899W1	1
Zinc	<.01	6010		02/18/99	02/18/99	021899W1	1

Notes:

Elit 6 3-10-99

-Estimated value

Authorized:

Date: February 19,1999

Client: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

Lample: K5555

Samp. Description: URS-14I

Jnits: mg/L

Analytical Results Trace Metals

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/05/99 Received: 02/05/99 Matrix: Water

%Solids:

Number of analytes: 23

Parameter	Result	Method	Prepared	Analyzed	QC Batch	Dilut. Note
Aluminum	.3	6010	02/18/99	02/18/99	021899W1	1
Antimony	<.005	6010	02/18/99	02/18/99	021899W1	1
Arsenic	.005	6010	02/18/99	02/18/99	021899W1	1
Barium	.04	6010	02/18/99	02/18/99	021899W1	1
Beryllium	<.003	6010	02/18/99	02/18/99	021899₩1	1
Cadmium	<.001	6010	02/18/99	02/18/99	021899W1	1
Calcium	26.	6010	02/18/99	02/18/99	021899W1	1
Chromium	<.01	6010	02/18/99	02/18/99	021899W1	1
Cobalt	<.025	6010	02/18/99	02/18/99	021899W1	1
Copper	<.01	6010	02/18/99	02/18/99	021899W1	1
Iron	.32	6010	02/18/99	02/18/99	021899W1	1
Lead	<.005	6010	02/18/99	02/18/99	021899W1	1
Magnesium	23.	6010	02/18/99	02/18/99	021899W1	1
Manganese	<.01	6010	02/18/99	02/18/99	021899W1	1
Mercury	<.0002	7470	02/17/99	02/17/99	021799W1	1
Nickel	<.05	6010	02/18/99	02/18/99	021899W1	1
Potassium	6.	6010	02/18/99	02/19/99	021899W1	1
Selenium	<.005	6010	J 02/18/99	02/18/99	021899W1	1
Silver	<.01	6010	02/18/99	02/18/99	021899W1	1
Sodium	54.	6010	02/18/99	02/18/99	021899W1	1
Thallium	<.001	7841	02/18/99	02/18/99	021899W2	1
Vanadium	<.05	6010	02/18/99	02/18/99	021899W1	1
Zinc	<.01	6010	02/18/99	02/18/99	021899W1	1

Notes:

Edit (3-10-90)

,-Estimated value

Authorized:

Date: February 19,1999

Client: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

Sample: K5557

Samp. Description: 85-7R (Field Filtered)

Jnits: mg/L

Analytical Results Trace Metals

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/04/99

Matrix: Water

Received: 02/05/99

%Solids:

Number of analytes: 23

Parameter	Result	Metho	d	Prepared	Analyzed	QC Batch	Dilut. Note
Aluminum, filtered	<.1	6010		02/18/99	02/18/99	021899W1	1
Antimony, filtered < 1005	-2-06-	- 6010		02/18/99	02/18/99	021899W1	1
Arsenic, filtered	<.005	6010		02/18/99	02/18/99	021899W1	1
Barium, filtered	<.1	6010		02/18/99	02/18/99	021899W1	1
Beryllium, filtered	<.01	6010		02/18/99	02/18/99	021899W1	1
Cadmium, filtered	<.01	6010		02/18/99	02/18/99	021899W1	1
Calcium, filtered	400.	6010		02/18/99	02/18/99	021899W1	1
Chromium, filtered	.01	6010		02/18/99	02/18/99	021899W1	1
Cobalt, filtered	<.05	6010		02/18/99	02/18/99	021899W1	1
Copper, filtered	<.01	6010		02/18/99	02/18/99	021899W1	1
Iron, filtered	.17	6010		02/18/99	02/18/99	021899W1	1
Lead, filtered	<.005	6010		02/18/99	02/18/99	021899W1	1
Magnesium, filtered	140.	6010		02/18/99	02/18/99	021899W1	1
Manganese, filtered	.08	6010		02/18/99	02/18/99	021899W1	1
Mercury, filtered	<.0002	7470		02/17/99	02/17/99	021799W1	1
Nickel, filtered	< .05	6010		02/18/99	02/18/99	021899W1	1
Potassium, filtered	6.	6010		02/18/99	02/19/99	021899W1	1
Selenium, filtered	<.005	6010	J	02/18/99	02/18/99	021899W1	1
Silver, filtered	<.01	6010		02/18/99	02/18/99	021899W1	1
Sodium, filtered	74.	6010		02/18/99	02/18/99	021899W1	1
Thallium, filtered	<.001	7841		02/18/99	02/18/99	021899W2	1
Vanadium, filtered	<.05	6010		02/18/99	02/18/99	021899W1	1
Zinc, filtered	<.01	6010		02/18/99	02/18/99	021899W1	1

Notes:

2 1 Da

Edito 911-8 3-10-99

.-Estimated value

Authorized:

Date: February 19,1999

llient: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

sample: K5558

Samp. Description: URS-7D (Field Filtered)

Jnits: mg/L

Analytical Results Trace Metals

> Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/04/99 Received: 02/05/99 Matrix: Water

%Solids:

Number of analytes: 23

Parameter	Result	Method	Prepared	Analyzed	QC Batch	Dilut. Note
Aluminum, filtered	<.1	6010	02/18/99	02/18/99	021899W1	1
Antimony, filtered < .005	<.06	6010	02/18/99	02/18/99	021899W1	1
Arsenic, filtered	<.005	6010	02/18/99	02/18/99	021899W1	1
Barium, filtered	<.1	6010	02/18/99	02/18/99	021899W1	1
Beryllium, filtered	<.01	6010	02/18/99	02/18/99	021899W1	1
Cadmium, filtered	< .01	6010	02/18/99	02/18/99	021899W1	1
Calcium, filtered	400.	6010	02/18/99	02/18/99	021899W1	1
Chromium, filtered	.01	6010	02/18/99	02/18/99	021899W1	1
Cobalt, filtered	< .05	6010	02/18/99	02/18/99	021899W1	1
Copper, filtered	<.01	6010	02/18/99	02/18/99	021899W1	1
Iron, filtered	.10	6010	02/18/99	02/18/99	021899W1	1
Lead, filtered	<.005	6010	02/18/99	02/18/99	021899W1	1
Magnesium, filtered	130.	6010	02/18/99	02/18/99	021899W1	1
Manganese, filtered	.05	6010	02/18/99	02/18/99	021899W1	1
Mercury, filtered	<.0002	7470	02/17/99	02/17/99	021799W1	1
Nickel, filtered	<.05	6010	02/18/99	02/18/99	021899Wl	1
Potassium, filtered	<5.	6010	02/18/99	02/19/99	021899W1	1
Selenium, filtered	<.005	6010 J	02/18/99	02/18/99	021899W1	1
Silver, filtered	< .01	6010	02/18/99	02/18/99	021899W1	1
Sodium, filtered	74.	6010	02/18/99	02/18/99	021899W1	1
Thallium, filtered	<.001	7841	02/18/99	02/18/99	021899W2	1
Vanadium, filtered	<.05	6010	02/18/99	02/18/99	021899W1	1
Zinc, filtered	<.01	6010	02/18/99	02/18/99	021899W1	1

Notes:

- JA - 619

Authorized:_

Date: February 19,1999

Thomas Alexander

J-Estimated value

lient: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

Jample: K5559

Samp. Description: 85-5R (Field Filtered)

Jnits: mg/L

Analytical Results Trace Metals

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/04/99

Matrix: Water

Received: 02/05/99

%Solids:

Number of analytes: 23

Parameter	Result	Method	d Prepared	Analyzed	QC Batch	Dilut. Note
Aluminum, filtered	<.1	6010	02/18/99	02/18/99	021899W1	1
	< ,005 4.06	6010	02/18/99	02/18/99	021899W1	1
Arsenic, filtered	<.005	6010	02/18/99	02/18/99	021899W1	1
Barium, filtered	<.1	6010	02/18/99	02/18/99	021899W1	1
Beryllium, filtered	<.01	6010	02/18/99	02/18/99	021899W1	1
Cadmium, filtered	<.01	6010	02/18/99	02/18/99	021899W1	1
Calcium, filtered	130.	6010	02/18/99	02/18/99	021899W1	1
Chromium, filtered	< .01	6010	02/18/99	02/18/99	021899W1	1
Cobalt, filtered	<.05	6010	02/18/99	02/18/99	021899W1	1
Copper, filtered	<.01	6010	02/18/99	02/18/99	021899W1	1
Iron, filtered	<.05	6010	02/18/99	02/18/99	021899W1	1
Lead, filtered	<.005	6010	02/18/99	02/18/99	021899W1	1
Magnesium, filtered	59.	6010	02/18/99	02/18/99	021899W1	1
Manganese, filtered	<.05	6010	02/18/99	02/18/99	021899W1	1
Mercury, filtered	<.0002	7470	02/17/99	02/17/99	021799W1	1
Nickel, filtered	<.05	6010	02/18/99	02/18/99	021899W1	1
Potassium, filtered	<5.	6010	02/18/99	02/19/99	021899W1	1
Selenium, filtered	<.005	6010	J 02/18/99	02/18/99	021899W1	1
Silver, filtered	<.01	6010	02/18/99	02/18/99	021899W1	1
Sodium, filtered	52.	6010	02/18/99	02/18/99	021899W1	1
Thallium, filtered	<.001	7841	02/18/99	02/18/99	021899W2	1
Vanadium, filtered	<.05	6010	02/18/99	02/18/99	021899W1	1
Zinc, filtered	<.01	6010	02/18/99	02/18/99	021899W1	1

Notes:

J-Estimated value

Authorized:

Date: February 19,1999

llient: Frontier Chemical Project: Pendleton Site

Proj. Desc: Niagara County, NY

sample: K5560

Samp. Description: URS-5D (Field Filtered)

Inits: mg/L

Analytical Results Trace Metals

Job No.: 5829.001.517 Certification NY No.: 10155

Collected: 02/04/99 Received: 02/05/99 Matrix: Water

%Solids:

Number of analytes: 23

Parameter	Result	Method	Prepared	Analyzed	QC Batch	Dilut. Note
Aluminum, filtered	< .1	6010	02/18/99	02/18/99	021899W1	1
Antimony, filtered < .005	<06	6010	02/18/99	02/18/99	021899W1	1
Arsenic, filtered	< .005	6010	02/18/99	02/18/99	021899W1	1
Barium, filtered	< . 1	6010	02/18/99	02/18/99	021899W1	1
Beryllium, filtered	< .01	6010	02/18/99	02/18/99	021899W1	1
Cadmium, filtered	<.01	6010	02/18/99	02/18/99	021899W1	1
Calcium, filtered	510.	6010	02/18/99	02/18/99	021899W1	1
Chromium, filtered	<.01	6010	02/18/99	02/18/99	021899W1	1
Cobalt, filtered	.85	6010	02/18/99	02/18/99	021899W1	1
Copper, filtered	< .01	6010	02/18/99	02/18/99	021899W1	1
Iron, filtered	<.05	6010	02/18/99	02/18/99	021899W1	1
Lead, filtered	<.005	6010	02/18/99	02/18/99	021899W1	1
Magnesium, filtered	76.	6010	02/18/99	02/18/99	021899W1	1
Manganese, filtered	.07	6010	02/18/99	02/18/99	021899W1	1
Mercury, filtered	<.0002	7470	02/17/99	02/17/99	021799W1	1
Nickel, filtered	.09	6010	02/18/99	02/18/99	021899W1	1
Potassium, filtered	5.	6010	02/18/99	02/19/99	021899W1	1
Selenium, filtered	<.005	6010	02/18/99	02/18/99	021899W1	1
Silver, filtered	<.01	6010	02/18/99	02/18/99	021899W1	1
Sodium, filtered	120.	6010	02/18/99	02/18/99	021899W1	1
Thallium, filtered	<.001	7841	02/18/99	02/18/99	021899W2	1
Vanadium, filtered	<.05	6010	02/18/99	02/18/99	021899W1	1
Zinc, filtered	< .01	6010	02/18/99	02/18/99	021899W1	1

Notes:

FAT 69

-Estimated value

Authorized:

Date: February 19,1999

Thomas Alexander

Analytical Results Wet Chemistry

Client: Frontier Chemical Project: Pendleton Site

roj. Desc: Niagara County, NY

Job No.: 5829.001.517 Certification NY No.: 10155

Cample: K5544

amp. Description: URS-9D

Collected: 02/03/99

Matrix: Water

Received: 02/05/99 13:50

Result Units Parameter Method Prepared Analyzed QC Batch Note Total cyanide

<.01 mg/L

9010B/9014

02/12/99 02/16/99

021299W21

Notes:

sample: K5545

Samp. Description: URS-91

Collected: 02/03/99

Matrix: Water

Received: 02/05/99 13:50

Result Units Parameter Prepared Analyzed QC Batch Note

Total cyanide

<.01 mg/L

9010B/9014

02/12/99 02/16/99

021299W21

Notes:

umple: K5546

ump. Description: Blind Duplicate

Collected: 02/03/99

Matrix: Water

Received: 02/05/99 13:50

Parameter Result Units Method Prepared Analyzed QC Batch Note Total cyanide <.01 mg/L 9010B/9014 02/12/99 02/16/99 021299W21

Notes:

-Estimated value

Date: February 21,1999

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Wet Chemistry

Client: Frontier Chemical Project: Pendleton Site

roj. Desc: Niagara County, NY

Job No.: 5829.001.517 Certification NY No.: 10155

ample: K5547

amp. Description: 88-12D

Collected: 02/04/99

Matrix: Water

Received: 02/05/99 13:50

 Parameter
 Result Units
 Method
 Prepared Analyzed
 QC Batch
 Note

 Total cyanide
 <.01 mg/L</td>
 9010B/9014
 02/12/99 02/16/99
 02/12/99 02/16/99
 021299W21

Notes:

sample: K5548

Samp. Description: 88-12C

Collected: 02/04/99

Matrix: Water

Received: 02/05/99 13:50

 Parameter
 Result Units
 Method
 Prepared Analyzed
 QC Batch
 Note

 Total cyanide
 < .01 mg/L</td>
 9010B/9014
 02/12/99 02/16/99
 02/12/99 02/16/99
 021299W21

Notes:

imple: K5549

mp. Description: 85-7R

Collected: 02/04/99

Matrix: Water

Received: 02/05/99 13:50

 Parameter
 Result Units
 Method
 Prepared Analyzed
 QC Batch
 Note

 Total cyanide
 <.01 mg/L</td>
 9010B/9014
 02/12/99 02/16/99
 02/1299W21

Notes:

Estimated value

Authorized:

Date: February 21,1999

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Wet Chemistry

Client: Frontier Chemical Project: Pendleton Site

roj. Desc: Niagara County, NY

Job No.: 5829.001.517 Certification NY No.: 10155

Cample: K5550

amp. Description: URS-7D

Collected: 02/04/99

Matrix: Water

Received: 02/05/99 13:50

Result Units Parameter Method Prepared Analyzed QC Batch Note Total cyanide <.01 mg/L 9010B/9014 02/12/99 02/16/99 021299W21

Notes:

sample: K5551

Samp. Description: 85-5R

Collected: 02/04/99

Matrix: Water

Received: 02/05/99 13:50

Result Units Method Prepared Analyzed QC Batch Note Total cyanide <.01 mg/L 9010B/9014 021299W21

02/12/99 02/16/99

Notes:

ample: K5552

imp. Description: URS-5D

Collected: 02/04/99

Matrix: Water

Received: 02/05/99 13:50

Parameter Result Units Method Prepared Analyzed QC Batch Note Total cyanide <.01 mg/L 9010B/9014 02/12/99 02/16/99 021299W21

Notes:

·Estimated value

Authorized:

Date: February 21,1999

thomas a Clefande

Analytical Results Wet Chemistry

client: Frontier Chemical Project: Pendleton Site

roj. Desc: Niagara County, NY

Job No.: 5829.001.517 Certification NY No.: 10155

Sample: K5553

amp. Description: Equipment Blank

Collected: 02/05/99

Matrix: Water

Received: 02/05/99 13:50

Parameter Result Units Method Prepared Analyzed QC Batch Note Total cyanide <.01 mg/L9010B/9014 02/12/99 02/16/99 021299W21

Notes:

sample: K5554

Samp. Description: URS-14D

Collected: 02/05/99

Matrix: Water

Received: 02/05/99 13:50

Result Units Method Prepared Analyzed QC Batch Note Total cyanide <.01 mg/L 9010B/9014 021299W21

02/12/99 02/16/99

Notes:

imple: K5555

mp. Description: URS-14I

Collected: 02/05/99

Matrix: Water

Received: 02/05/99 13:50

Parameter Result Units Method Prepared Analyzed QC Batch Note Total cyanide <.01 mg/L 9010B/9014 02/16/99 02/16/99 021299W21

Notes:

Estimated value

Authorized:

Date: February 21,1999

Quality Control Results

Quality Control Summary Matrix Spike/Matrix Spike Duplicate Method: 8260

Sample: K5554				Matrix: Water	Vater					
Samp. Description: URS-14D Units: ug/L				%Solids:						
instrument: HP5973 GCMS#3				Number	Number of analytes:	ss: 38				
								% ጸ	RPD	
Parameter	Dilution	Regult	Spike Added	MS Value	%R	MSD Value	% X	Limits	RPD Limits	its Note
Thloromethane	r	<1	10	8.72	8.7	9.33	93	78-122	7 0-	0-13
/inyl chloride	н	<1	10	60.6	91	9.31	93	85-123	2 0-	0-13
{romomethane	н	<1	10	8.87	8 9	9.61	96	71-127	-0 8	0-16
hloroethane		<1	10	8.87	8 9	8.97	90	88-121	1 0-	0-13
Nettone	Т	<10	20	18.89	94	20.71	104	46-151	-0 6	0-28
1,1-Dichloroethene	г	<.5	10	7.84 #	78	8.3 #	83	85-124	-0 9	0-10
lethylene chloride	г	<.5	1.0	9.05	91	9.52	95	81-116	5 0-	0-10
arbon disulfide	П	1.11	10	24.21 #	231	22.24 #	211	80-130	8 0-	0-10
rans-1,2-Dichloroethene	1	<.5	10	8.7 #	8.7	9.21	92	90-118	-0 9	0-10
1,1-Dichloroethane	ਜ	۸.5	10	9.12	91	9.51	95	91-120	4 0-	0-11
:-Butanone	r.	<10	20	19.17	96	21.01	105	77-129	-0 6	0-25
is-1,2-Dichloroethene	1	<.5	10	9.1	91	9.46	95	88-118	4 0-	0-12
hloroform	г	<.5	1.0	8.8	88	9.18	92	87-116	4 0-	0-10
, 2-Dichloroethane	1	۸.5	10	8.83	88	9.43	94	82-115	-0 4	0-12
1,1,1-Trichloroethane	1	<.5	10	8.94 #	68	9.43	94	91-120	5 0-	0-11
arbon tetrachloride	T.	<.5	10	12.45 #	125	12.9 #	129	93-120	4 0	0-10
enzene	Т	<.5	10	9.38	94	78.6	66	89-118	-0 -2	0-10
,2-Dichloropropane	1	<.5	10	9.25	93	6.67	76	90-113	4 0-	0-10
richloroethene	П	<.5	10	8.91	8.9	9.55	96	84-120	-0 4	0-11
!romodichloromethane	1	<.5	10	16.78 #	168	17.64 #	176	87-117	5 0-	0-10
is-1,3-Dichloropropene	г	<.5	10	5.88 #	59	5.57 #	56	87-117	-0 -5	0-10
-Methyl-2-pentanone	T	< 5	20	17.66	88	18.75	94	67-137	-0 9	0-16

J-Estimated value #-Outside limits

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Sample: K5554 Samp. Description: URS-14D

Units: ug/L

Quality Control Summary Matrix Spike/Matrix Spike Duplicate Method: 8260

Matrix: Water

%Solids:

Instrument: HP5973 GCMS#3				Number of analytes: 38	f analyte	ss: 38					
								%	4	RPD	
Parameter	Dilution	Result	Spike Added	MS Value	%R	MSD Value	%R	Limits	RPD I	RPD Limits	Note
trans-1,3-Dichloropropene	-	۸.5	10	5.25 #	53	5.03 #	50	84-122	4	0-12	
1,1,2-Trichloroethane	н	۸.5	10	9.36	94	99.6	97	84-123	М	0-12	
roluene	н	۸.5	10	9.74	26	10.35	104	88-120	9	0-10	
Dibromochloromethane	н	۸.5	10	17.03 #	170	17.52 #	175	84-119	m	0-11	
:-Hexanone	н	< 5 5	20	17.95	9.0	20.21	101	63-143	12	0-16	
etrachloroethene	н	۸.5	10	9.34	93	9.85	66	88-119	ស	0-11	
hlorobenzene	r,	۸.5	10	60.6	91	9.63	96	85-116	9	0-10	
<pre>?thy1benzene</pre>	н	۸.5	10	9.29	93	9.77	98	89-119	ហ	0-10	
}romoform	н	<.5	10	19.55 #	196	19.5 #	195	72-126	0	0-13	
(ylene (total)	г	۸.5	30	28.44	95	30.01	100	88-118	ស	0-10	
tyrene		۲. ۶	10	3.41 #	34	3.61 #	36	86-116	9	0-10	
1,1,2,2-Tetrachloroethane		<.5	10	9.11	91	9.82	98	76-132	€0	0-13	
1,2-Dichloroethane-d4 (surrogate)	П	89.63%			91		92	80-135			
bromofluoromethane (surrogate)	Т	\$ 06			93		97	61-136			
Foluene-d8 (surrogate)	r	89.06%			93		66	84-114			
<pre>!romofluorobenzene (surrogate)</pre>	ਜ	82.56			91		95	77-117			

e 8 :

J-Estimated value #-Outside limits

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Laboratories, Inc. O'Brien & Gere

Quality Control Summary Matrix Spike/Matrix Spike Duplicate Trace Metals

Sample: K5554 Samp. Description: URS-14D

Matrix: Water Units: mg/L % Solids: Number of analytes: 23

victorintary Result Added Added <th></th> <th>MS</th> <th>Sample</th> <th>Spike</th> <th>MSD</th> <th>¥.</th> <th>MSD</th> <th>MS/MSD</th> <th></th> <th>RPD</th> <th></th> <th></th>		MS	Sample	Spike	MSD	¥.	MSD	MS/MSD		RPD		
.9342 <.1	arameter	Result	Result	Added	Result	χ,	%R		RPD	Limits	Method	Note
1922 <.005	\tuminum	.9342	·.	1.000	.9426		76		-	0-15	6010	
1917 <.005 .224 94 97 83-109 1 0-10 6010 .2247 .0367 .200 .2248 94 94 81-104 0 0-10 6010 .1848 <.003	Intimony	.1922	<.005	.200	.1904		95		-	0-10	6010	
.12247 .0367 .200 .2248 94 94, 81-108 0 0-10 6010 .1848 <.0.03 .200 .1849 92 92 91,114 0 0-10 6010 .1789 <.0.01 .200 .1789 89 90 75-104 1 0-10 6010 285,0000 276.1 10.000 .282,0000 89 \$ 59 65-123 1 0-10 6010 .1935 97 77-112 0 0-10 6010 .1782 97 77-112 0 0-10 6010 .1784 97 77-112 0 0-10 6010 .2002 .0773 .1000 .2888 92 94 10-10 6010 .1845 97 87-110 0 0-10 6010 .1846 97 64-111 1 0-10 <	rsenic	.1917	<.005	.200	.1937		67		-	0-10	6010	
1848 <.003 .200 .1849 92 92 81-114 0 0-10 6010 1.789 <.001	(arium	.2247	.0367	.200	.2248		76		0	0-10	6010	
1789 <.001 .200 .1789 89 90 75-104 1 0-10 6010 285.0000 276.1 10.000 282.0000 89 \$ 56-123 1 0-10 6010 .1935 <.01	}eryllium	.1848	<.003	.200	.1849		25		0	0-10	6010	
285.0000 276.1 10.000 282.0000 89 59 65-123 1 0-10 6010 .1935 <.01	admium	.1789	<.001	.200	.1799		90		-	0-10	6010	
.1935 <.01	alcium	285.0000	276.1	10,000	282,0000		# 29		-	0-10	6010	35
.1782 <.025	hromium	. 1935	<.01	.200	.1938		4		0	0-10	6010	
2002 ***.01 200 .200 100 87-110 0 0-10 6010 .9865 .0773 1.000 .9888 92 91 70-17 1 0-10 6010 .1845 <.005	obalt	.1782	<.025	.200	.1792	89	8		-	0-10	6010	
.9965 .0773 1.000 .9888 92 91 70-117 1 0-10 6010 .1845 <.005	opper	.2002	<.01	.200	.2000	100	100		0	0-10	6010	
1845 <.005 .200 .1855 92 93 81-111 1 0-10 6010 80.6600 71.11 10.000 79,9700 96 89 69-119 1 0-10 6010 .1969 <.01	Iron	5966	.0773	1.000	.9888	36	2		_	0-10	6010	
80.6600 71.11 10.000 79.9700 96 89 69-119 1 0-10 6010 .1969 <.01	ead	.1845	<.005	.200	.1855	85	93		-	0-10	6010	
.1969 <.01 .200 .1970 98 99 76-110 0 0-10 6010 .0011 <.0002	lagnesium	80,6600	71.11	10.000	79.9700	96	8		-	0-10	6010	
.0011 <.0002 .001 .0010 111 101 73-131 9 0-19 7470 .1819 <.05	langanese	.1969	·.01	.200	.1970	88	&		0	0-10	6010	
1819 <.05 .200 .1840 91 92 80-110 1 0-10 6010 13.3930 J3.1926 10.000 13.5880 102 104 71-130 1 0-10 6010 .0642 <.005	fercury	.0011	<.0002	.001	.0010	11	101	73-131	٥	0-19	2470	
13.3930 J3.1926 10.000 13.5880 102 104 71-130 1 0-10 6010 .0642 <.005	lickel	.1819	<.05	.200	.1840	91	35		-	0-10	6010	
.0642 <.005	otassium	13.3930	J3.1926	10.000	13.5880	102	104	71-130	-	0-10	6010	
.0468 <.01	selenium	7,90	<.005	.200	# 9520.	32	# 37	78-115	15	0-19	6010	2
57.9300 47.71 10.000 57.3000 102 96 70-143 1 0-10 .0452 <.001	Silver	.0468	<.01	.050	.0471	76	76		-	0-10	6010	
. 0452 < .001 . 050 . 0431 90 86 64-122 5 0-10 . 1883 . 1883 < .05 . 200 . 1888 94 94 80-110 0 0-10 . 1926 < .01 . 200 . 1931 96 97 82-105 0 0-10	3odium	57.9300	47.71	10.000	57.3000	102	%	•	-	0-10	6010	
.1883 <.05 .200 .1888 94 94 80-110 0 0-10 .1926 <.01 .200 .1931 96 97 82-105 0 0-10	rhallium	.0452	<.001	.050	.0431	8	88		5	0-10	7841	
.1926 <.01 .200 .1931 96 97 82-105 0 0-10	/ə adium	.1883	<.05	.200	.1888	76	76		0	0-10	6010	
	Zinc	.1926	. .01	.200	.1931	96	26		0	0-10	6010	

^{2:} Low recovery due to matrix interference.

^{35:} Sample concentration was much greater than the concentration of the analyte in the spike.

¹⁻Estimated value #-Outside limits

Quality Control Summary Post Digestion Spike Trace Metals

ample: K5554

np. Description: URS-14D

Matrix: Water Units: mg/L

% Solids:

s: Number of analytes: 22

	MS	Sample	Spike	MS		
Parameter	Result	Result	Added	%R	%R Limits	Method
A. uminum	.9848	<.1	1.000	98	82-116	6010
Artimony	.1978	<.005	.200	99	78-110	6010
Arsenic	.1957	<.005	.200	98	83-109	6010
Barium	.2271	.0367	.200	95	81-108	6010
Beryllium	.1970	<.003	.200	93	81-114	6010
Cadmium	.1803	<.001	.200	91	75-104	6010
Calcium	281.6000	276.1	10.000 #	55	65-123	6010
Chromium	.1970	< .01	.200	5 .	79-112	6010
Cobalt	.1820	<.025	.200	9ī	81-106	6010
Copper	.2023	<.01	.200	101	87-110	6010
Iron	1.0232	.0773	1.000	95	70-117	6010
Lead	.1888	<.005	.200	94	81-111	6010
Magnesium	80.0800	71.11	10.000	90	69-119	6010
Manganese	.2001	< .01	.200	100	76-110	6010
Nickel	.1854	<.05	.200	93	80-110	6010
Potassium	13.8480	J3.1926	10.000	107	71-130	6010
Selenium	.1878	<.005	.200	94	78-115	6010
Silver	.0478	<.01	.050	96	82-103	6010
Sodium	57.8900	47.71	10.000	102	70-143	6010
Thallium	.1897	<.005	.200	95	85-110	6010
Janadium	.1913	<.05	.200	96	80-110	6010
Zinc	.1974	<.01	.200	99	82-105	6010

¹-Estimated value #-Outside limits

Sample: K5554 Samp. Description: URS-14D

Matrix: Water %Solids:

Units: mg/L Number of analytes: 23

Quality Control Summary Duplicates Trace Metals

	Note	
	Method	0,00
RPD	Limits	
	RPD	
Duplicate	Result RPD Limits Method	,
Sample	Result	,
	rameter	

Result	Sample	Duplicate		RPD		
<pre></pre>	Result		RPD	Limits	Method	Note
<pre> <.005 <.005 <.005 .0367 .0364 <.003 <.001 275.2 <.01 276.1 275.2 <.01 <.025 <.01 <.025 <.01 .0773 .0974 # <.005 71.11 70.88 <.01 <.006 <.01 <.007 </pre>	<.1	<.1			6010	
<pre></pre>	<.005	<.005			6010	
.0367 .0364 <.003 <.001 276.1 276.1 276.1 275.2 <.01 <.025 <.025 <.01 .0773 .0974 # <.005 71.11 70.88 <.01 <.005 <.01 <.006 <.01 <.007 <.01 <.007 <.01 <.007 <.01 <.007 <.01 <.007 <.01 <.007 <.01 <.01 <.02 <.03 <.04 <.05 <.05 <.07 <.07 <.07 <.08 <.08 <.09 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.0	<.005	<.005			6010	
<pre><.003 <.001 276.1 276.1 276.1 275.2 <.01 <.025 <.025 <.01 .0773 .0974 # <.005 71.11 70.88 <.01 <.0002 <.005 <.01 <.0002 <.05 <.05 4.01 47.71 47.89 <.05 <.06</pre>	.0367	.0364	۲H	0-11	6010	
<pre><.001 276.1 276.1 275.2 <.01 <.025 <.025 <.01 .0773 .0974 # <.005 71.11 70.88 <.01 <.0002 <.005 <.01 <.0002 <.05 4.01 47.71 47.89 <.005 <.005 <.001 </pre>	<.003	<.003			6010	
276.1 275.2 <.01 <.025 <.01 .0773 .0974 # <.005 71.11 70.88 <.01 <.0002 <.01 <.0002 <.05 5.01 <.005 <.05 73.1926 <.05 73.1926 <.05 74.71 47.89 <.001 <.001	<.001	<.001			6010	
01	276.1	275.2	0	0-10	6010	
<pre> <.025 <.01 .0773 .0974 # <.005 <.005 <.005 <.01 <.01 <.0073 0974 # <.005 <.005 <.01 <.007 <.01 <.01 <.01 <.01 <.05 </pre> <pre> .01 .02 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03</pre>	<.01	<.01			6010	
<pre>0107730974 # <00500500601011 70.88010100201002050505050606010101010101</pre>	<.025	<.025			6010	
.0773 .0974 # <.005 <.005 ae	<.01	<.01			6010	
<pre>c.005 se</pre>	.0773	# 4/60.	23	0-16	6010	42
71.11 8e	<.005	<.005			6010	
3.01 <.0002 <.05 a	71.11	70.88	0	0-10	6010	
<pre> <.0002 <.05</pre>	<.01	<.01			6010	
	<.0002	<.0002			7470	
m	<.05	<.05			6010	
<.005 <.01 47.71 <.001 <.05	J3.1926	<5			6010	
<.01 47.71 1m <.001 1m <.05	<.005	<.005			6010	
47.71 um <.001 um <.05	<.01	<.01			6010	
ım <.001	47.71	47.89	0	0-10	6010	
<.05	<.001	<.001			7841	
	<.05	<.05			6010	
	<.01	<.01			6010	

42: Sample result is less than 5xPQL and the difference between sample/duplicate is less than PQL Notes:

J-Estimated value #-Outside limits

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Laboratories, Inc. O'Brien & Gere

Quality Control Summary Matrix Spike/Matrix Spike Duplicate Wet Chemistry

Sample: K5554 Samp. Description: URS-14D							Matriy Numb	datrix: Water Jumber of ana	Matrix: Water Number of analytes:	_		
	MS	Sample	Spike	MSD		MS/MSD	MSD		RPD			
Parameter	Result	Result	Added	Result	%R	%R Limits	8R	RPD	%R RPD Limits Units	Units	Method	Note
lotal cyanide	.0630	<.01	.050		126	126 70-131				. T/bw	9010B/9014	

lotes:

Quality Control Summary Duplicates Wet Chemistry

Sample: K5554 Samp. Description: URS-14D

Number of analytes: 1

	Sample	Duplicate		RPD		
Parameter	Result	Result RPD Limits Units	RPD	Limits	Units	Note
Total cyanide	<.01	< .01			mg/L	

Votes:

3rien & Gere oratories,Inc.

aple: L021299W1 alyzed: 02/12/99

Quality Control Summary Laboratory Control Sample GC/MS Volatile Organics

QC Batch: 021299W1

Instrument: HP5973 GCMS#3

Number of analytes: 38

	LCS	Spike				Ç)C	
Parameter	Result	Added	Uni	ts	%R	Lin		Note
Chloromethane	3.5400		4	ug/L		89	63-122	
0	3.8400		4	ug/L		96	62-134	
Vinyl chloride	3.6600		4	ug/L		92	52-141	
Bromomethane	3.9100		4	ug/L		98	74-128	
Chloroethane	4.6300		4	ug/L	1	16	42-155	
Acetone	4.0200		4	ug/L	1	01	89-135	
1,1-Dichloroethene	3.7900			ug/L		95	82-125	
Methylene chloride	4.2100			ug/L	1	.05	74-133	
Carbon disulfide	3.9900			ug/L	1	00	84-147	
trans-1,2-Dichloroethene	4.1200			ug/L		.03	84-129	
1,1-Dichloroethane	3.4500			ug/L		86	62-135	
2-Butanone	4.0700			ug/L		.02	70-131	
cis-1,2-Dichloroethene				ug/L		99	84-123	
Chloroform	3.9400			ug/L		.09	80-124	
1,2-Dichloroethane	4.3400			ug/L		.06	85-137	
1,1,1-Trichloroethane	4.2500			ug/L		.06	88-134	
Carbon tetrachloride	4.2400					103	84-126	
Benzene	4.1000			ug/L			86-122	
1,2-Dichloropropane	4.1600			ug/L		104	87-131	
Trichloroethene	4.1400			ug/L		104	86-123	
Bromodichloromethane	4.0900			ug/L		102		
cis-1,3-Dichloropropene	4.2300			ug/L		106	76-139	
-Methyl-2-pentanone	3.3000)		ug/L		83	62-131	
rans-1,3-Dichloropropene	4.0800)		ug/L		102	73-146	-
2-Trichloroethane	3.9300)		ug/L		98	80-126	
1. Nene	4.2500)	4	ug/L		106	87-126	
Diblemochloromethane	3.9900)	4	ug/L		100	79-122	
2-Hellanone	3.7800)	4	ug/L	,	95	58-12	
Tetrachloroethene	4.2100)	4	ug/I	ı	105	82-13	2
	4.0700)	4	ug/I	J	102	86-12	2
Chlorobenzene	4.1900		4	ug/I	ı	105	80-12	7
Ethylbenzene	3.9400			ug/I		99	75-12	8
Bromoform	13.0200			ug/I		109	78-12	8
Xylene (total)	3.6600			ug/I		92	79-12	4
Styrene	4.120			ug/I		103	71-12	8
1,1,2,2-Tetrachloroethane	4.120	O	-	%	-	96	80-13	
1,2-Dichloroethane-d4 (surrogate)				%		97	61-13	_
Dibromofluoromethane (surrogate)				6 0\6		102	84-11	
Toluene-d8 (surrogate)				%		97	77-11	
Bromofluorobenzene (surrogate)				6		<i>31</i>	,, 11	•

Notes:

- Outside control limits

000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Quality Control Summary Laboratory Control Sample Trace Metals

Sample: L021899W1 Analyzed: 02/18/99

Units: mg/L

QC Batch: 021899W1 Number of analytes: 26

	LCS	Spike		QC	
Parameter	Result	Added	%R	Limits	Instrument Note
Aluminum	.9177	1	92	86-117	ICAP-61
Antimony	.9608	1	96	85-108	ICAP-61
Arsenic	.9672	1	97	89-105	ICAP-61
Barium	.9841	1	98	90-104	ICAP-61
Beryllium	.9564	1	96	90-111	ICÁP-61
Boron	.9568	1	96	88-108	ICAP-61
Cadmium	.9594	1	96	89-104	ICAP-61
Calcium	9.5650	10	96	88-106	ICAP-61
Chromium	.9724	1	97	91-104	ICAP-61
Cobalt	.9702	1	97	91-107	ICAP-61
Copper	.9999	1	100	92-108	ICAP-61
Iron	.9722	1	97	89-108	ICAP-61
Lead	.9635	1	96	91-107	ICAP-61
Magnesium	9.5780	10	96	89-103	ICAP-61
Manganese	.9841	1	98	91-104	ICAP-61
Molybdenum	1.0069	1	101	91-107	ICAP-61
Nickel	.9797	1	98	91-107	ICAP-61
Selenium	.9218	1	92	88-108	ICAP-61
Silver	.1918	.2	96	84-106	ICAP-61
Sodium	9.5870	10	96	92-106	ICAP-61
Strontium	.9901	1	99	90-105	ICAP-61
Thallium	.9566	1	96	91-107	ICAP-61
Tin	.9977	1	100	81-117	ICAP-61
Titanium	.9931	1	99	92-107	ICAP-61
Vanadium	.9915	1	99	93-106	ICAP-61
Zinc	.9575	1	96	90-105	ICAP-61

Quality Control Summary Laboratory Control Sample Trace Metals

Sample: L021899W1 Analyzed: 02/19/99

Units: mg/L

QC Batch: 021899W1 Number of analytes: 1

	LCS	Spike		QC	
Parameter	Result	Added	%R	Limits_	Instrument Note
Potassium	9.5791	10	96	88-106	ICAP-61

Quality Control Summary Laboratory Control Sample Trace Metals

Sample: L021899W2 Analyzed: 02/18/99

Units: mg/L

QC Batch: 021899W2 Number of analytes: 1

	LCS	Spike		QC	
Parameter	Result	Added	%R	Limits	Instrument Note
Thallium	.8924	1	89	82-108	PE5100

Quality Control Summary Laboratory Control Sample Trace Metals

Sample: L021799W1 Analyzed: 02/17/99

Units: mg/L

QC Batch: 021799W1 Number of analytes: 1

	LCS	Spike		QC	
Parameter	Result	Added	%R	Limits	Instrument Note
Mercury	.0055	.005	110	81-114	PE3100

Quality Control Summary Laboratory Control Sample Wet Chemistry

Sample: L021299W21 Analyzed: 02/16/99 QC Batch: 021299W21 Number of parameters: 1

	LCS	Spike		QC	
Parameter	Result	Added Units	%R	Limits	Instrument Note
Total cyanide	.3940	$.4~{ m mg/L}$	99	80-120	SPEC 21

Sample: PB021299W1 Analyzed: 02/12/99

Quality Control Summary Preparation Blank GC/MS Volatile Organics

Instrument: HP5973 GCMS#3 Number of analytes: 38

	Sample	Surrog	Det.		
Parameter	Result	Limits	Limit	Units	QC Batch
Chloromethane	<1.			ug/L	021299W1
Vinyl chloride	<1.			ug/L	021299W1
Bromomethane	<1.		1	ug/L	021299W1
Chloroethane	<1.		1	ug/L	021299W1
Acetone	<10.		10	ug/L	021299W1
1,1-Dichloroethene	<.50		.5	ug/L	021299W1
Methylene chloride	J .12		.5	ug/L	021299W1
Carbon disulfide	<.50		.5	ug/L	021299W1
trans-1,2-Dichloroethene	<.50			ug/L	021299W1
,1-Dichloroethane	<.50		.5	ug/L	021299W1
2-Butanone	<10.		10	ug/L	021299W1
cis-1,2-Dichloroethene	<.50		.5	ug/L	021299W1
Chloroform	<.50		.5	ug/L	021299W1
1,2-Dichloroethane	<.50		.5	ug/L	021299W1
1,1,1-Trichloroethane	<.50		.5	ug/L	021299W1
Carbon tetrachloride	<.50		.5	ug/L	021299W1
Benzene	<.50		.5	ug/L	021299W1
1,2-Dichloropropane	<.50		.5	ug/L	021299W1
Trichloroethene	<.50		.5	ug/L	021299W1
Bromodichloromethane	<.50		.5	ug/L	021299W1
cis-1,3-Dichloropropene	<.50		.5	ug/L	021299W1
4-Methyl-2-pentanone	<5.0		5	ug/L	021299W1
trans-1,3-Dichloropropene	<.50		.5	ug/L	021299W1
1,1,2-Trichloroethane	<.50		.5	ug/L	021299W1
Toluene	<.50		.5	ug/L	021299W1
Dibromochloromethane	<.50		.5	ug/L	021299W1
2-Hexanone	<5.0		5	ug/L	021299W1
Tetrachloroethene	<.50		.5	ug/L	021299W1
Chlorobenzene	<.50		.5	ug/L	021299W1
Ethylbenzene	<.50		.5	ug/L	021299W1
Bromoform	<.50		.5	ug/L	021299W1
Xylene (total)	<.50		.5	ug/L	021299W1
Styrene	<.50		.5	ug/L	021299W1
1,1,2,2-Tetrachloroethane	<.50		.5	ug/L	021299W1
1,2-Dichloroethane-d4 (surrogate)	93.	80-135	.1	%	021299W1
Dibromofluoromethane (surrogate)	97.	61-136	.1	%	021299W1
Toluene-d8 (surrogate)	100.	84-114	.1	%	021299W1
Bromofluorobenzene (surrogate)	94.	77-117	.1	00	021299W1

^{# -} Outside control limits J - Estimated value

Tentatively Identified Compound (LSC) summary

perator ID: SG Date Acquired: 12 Feb 1999 14:41

ta File: C:\HPCHEM\1\DATA\J3672.D

me: PB021299W1 isc: V4286, 87

ethod: C:\HPCHEM\1\METHODS\J212TCLW.M (RTE Integrator)

tle: VOC's w/J & W DB-VRX: 0.25 mm x 60 m

_brary Searched: C:\DATABASE\NBS75K.L

TIC Top Hit name RT EstConc Units Area IntStd ISRT ISArea ISConc

J3672.D J212TCLW.M Tue Feb 16 08:20:45 1999

Sample: PB021799W1 Analyzed: 02/17/99

Quality Control Summary Preparation Blank GC/MS Volatile Organics

Instrument: HP5973 GCMS#3 Number of analytes: 38

	Sample	Surrog	Det.		
Parameter	Result	Limits	Limit	Units	QC Batch
Chloromethane	<1.			ug/L	021799W1
Vinyl chloride	<1.			ug/L	021799W1
Bromomethane	<1.			ug/L	021799W1
Chloroethane	<1.			ug/L	021799W1
Acetone	<10.			ug/L	021799W1
1,1-Dichloroethene	<.50			ug/L	021799W1
Methylene chloride	<.50			ug/L	021799W1
Carbon disulfide	<.50			ug/L	021799W1
rans-1,2-Dichloroethene	<.50			ug/L	021799W1
1-Dichloroethane	<.50			ug/L	021799W1
Butanone	<10.			ug/L	021799W1
s-1,2-Dichloroethene	<.50			ug/L	021799W1
hloroform	<.50			ug/L	021799W1
1,2-Dichloroethane	<.50			ug/L	021799W1
1,1,1-Trichloroethane	<.50			ug/L	021799W1
Carbon tetrachloride	<.50			ug/L	021799W1
Benzene	<.50			ug/L	021799W1
1,2-Dichloropropane	<.50			ug/L	021799W1
Trichloroethene	<.50			ug/L	021799W1
Bromodichloromethane	<.50			ug/L	021799W1
cis-1,3-Dichloropropene	<.50			ug/L	021799W1
4-Methyl-2-pentanone	<5.0			ug/L	021799W1
rans-1,3-Dichloropropene	<.50			ug/L	021799W1
1,1,2-Trichloroethane	<.50			ug/L	021799W1
[Coluene	<.50			ug/L	021799W1
Dibromochloromethane	<.50			ug/L	021799W1
-3-Hexanone	<5.0			ug/L	021799W1
Tetrachloroethene	<.50			ug/L	021799W1
Chlorobenzene	<.50			ug/L	021799W1
Ethylbenzene	<.50			ug/L	021799W1
3romoform	<.50			ug/L	021799W1
Aylene (total)	<.50			ug/L	021799W1
Styrene	<.50			ug/L	021799W1
.,1,2,2-Tetrachloroethane	<.50			ug/L	021799W1
,2-Dichloroethane-d4 (surrogate)	86.	80-135	.1		021799W1
Dibromofluoromethane (surrogate)	91.	61-136	.1		021799W1
'oluene-d8 (surrogate)	95.	84-114	.1		021799W1
<pre>}romofluorobenzene (surrogate)</pre>	89.	77-117	.1	•	021799W1
				•	

lotes:

i000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

^{# -} Outside control limits J - Estimated value

Tentatively Identified Compound (LSC) summary

perator ID: SG Date Acquired: 17 Feb 1999 15:59

ta File: C:\HPCHEM\1\DATA\J3697.D

me: PB021799W1 isc: V4286, 87

ethod: C:\HPCHEM\1\METHODS\J217TCLW.M (RTE Integrator)

tle: VOC's w/J & W DB-VRX: 0.25 mm x 60 m

rbrary Searched: C:\DATABASE\NBS75K.L

TIC Top Hit name RT EstConc Units Area IntStd ISRT ISArea ISConc

J3697.D J217TCLW.M Fri Feb 19 09:07:13 1999

Quality Control Summary Preparation Blank Trace Metals

Sample: PB021899W1

Units: mg/L

Date analyzed: 02/18/99

QC Batch: 021899W1 Number of analytes: 26

	Sample	Dat.	
Parameter	Result	imit	Instrument Note
Aluminum	<.1	.1000	ICAP-61
Antimony	<.005	.0050	ICAP-61
Arsenic	<.005	.0050	ICAP-61
Barium	<.02	.0200	ICAP-61
Beryllium	<.003	.0030	ICAP-61
Boron	<.05	.0500	ICAP-61
Cadmium	< .001	.0010	ICAP-61
Calcium	<.1	.1000	ICAP-61
Chromium	<.01	.0100	ICAP-61
Cobalt	<.025	.0250	ICAP-61
Copper	<.01	.0100	ICAP-61
Iron	<.05	.0500	ICAP-61
Lead	<.005	.0050	ICAP-61
1agnesium	<.3	.3000	ICAP-61
Manganese	<.01	.0100	ICAP-61
Molybdenum	<.05	.0500	ICAP-61
\ickel	<.05	.0500	ICAP-61
Selenium	<.005	.0050	ICAP-61
Silver	< .01	.0100	ICAP-61
Sodium	<.3	.3000	ICAP-61
3trontium	<.05	.0500	ICAP-61
Thallium	<.005	.0050	ICAP-61
ſin	<.05	.0500	ICAP-61
ſitanium	<.05	.0500	ICAP-61
/anadium·	<.05	.0500	ICAP-61
Zinc	<.01	.0100	ICAP-61

Quality Control Summary Preparation Blank Trace Metals

Sample: PB021899W1

Units: mg/L

Date analyzed: 02/19/99

QC Batch: 021899W1 Number of analytes: 1

Sample Det.

Parameter Result Limit Instrument Note

Potassium <5. 5.000 ICAP-61

Quality Control Summary Preparation Blank Trace Metals

Sample: PB021899W2

Units: mg/L

Date analyzed: 02/18/99

QC Batch: 021899W2 Number of analytes: 1

Sample Det.

Parameter Result Limit Instrument Note

Thallium <.001 .0010 PE5100

Quality Control Summary Preparation Blank Trace Metals

Sample: PB021799W1

Units: mg/L

Date analyzed: 02/17/99

QC Batch: 021799W1 Number of analytes: 1

Sample Det.

Parameter Result Limit Instrument Note

Mercury <.0002 .0002 PE3100

Quality Control Summary Preparation Blank Wet Chemistry

Sample: PB021299W21 Analyzed: 02/16/99 Number of analytes: 1

	\mathtt{Sample}	Det.		
Parameter	Result	Limit Units	QC Batch	Instrument Note
Total cyanide	<.01	.0100 mg/L	021299W21	SPEC 21

O'BRIEN & GERE Laboratories, Inc.

Volatile Organics Method 8260

Internal Standard Summary

Client:

Frontier Chemical CCC Data File:

J3668.D

Inst. I.D.:

#3MS10

Job No.:

5829.001.517

Date Analyzed:

2/12/99

Matrix:

WATER

Site:

	Data File	IST	D 1	ISTI	2	IST	D 3
		Area	R.T.	Area	R.T.	Area	R.T.
CCC STD	J3668.D	834779	14.97	· 633169	20.52	376371	25.66
Upper Limit		1669558	15.47	1266338	21.02	752742	26.16
Lower Limit		417390	14.47	316585	20.02	188186	25.16
Sample No.							
L021299W1	J3671.D	822984	14.97	628686	20.52	369710	25.67
PB021299W1	J3672.D	821341	14.98	603331	20.52	354526	25.67
K5544	J3673.D	778298	14.97	583308	20.52	348439	25.67
K5545	J3674.D	819714	14.98	596296	20.52	346372	25.67
K5546	J3675.D	826913	14.98	603011	20.52	348598	25.67
K5547	J3676.D	800328	14.98	590939	20.52	347742	25.67
15548	J3677.D	817529	14.98	589996	20.52	339057	25.67
€,65349	J3678.D	796369	14.97	591720	20.52	339071	25.67
K5550	J3679.D	808092	14.97	586204	20.52	336375	25.67
K5551	J3680.D	806471	14.97	578313	20.52	327950	25.67
K5552	J3681.D	805777	14.97	582237	20.52	328952	25.67
						,	
					·		

ISTD 1

Fluorobenzene

ISTD 2

Chlorobenzene-d5

ISTD 3

1,4-Dichlorobenzene-d4

O'BRIEN & GERE Laboratories, Inc.

Volatile Organics Method 8260

Internal Standard Summary

Client:

Frontier Chemical CCC Data File:

J3692.D

Inst. I.D.:

#3MS10

Job No.:

5829.001.517

Date Analyzed:

2/17/99

Matrix:

WATER

Site:

	Data File	IST	D 1	ISTI	D 2	IST	D 3
		Area	R.T.	Area	R.T.	Area	R.T.
CCC STD	J3692.D	713526	14.98	551954	20.52	323931	25.6
Upper Limit		1427052	15.48	1103908	21.02	647862	26.17
Lower Limit		356763	14.48	275977	20.02	161966	25.17
Sample No.							
L021799W1	J3696.D	793794	14.98	600086	20.51	356501	25.67
PB021799W1	J3697.D	783170	14.97	572286	20.52	325824	25.67
K5556	J3698.D	777579	14.98	566560	20.52	317676	25.67
K5553	J3699.D	757390	14.97	544031	20.52	308175	25.67
K5554	J3700.D	761046	14.97	547724	20.52	307412	25.67
K5555	J3701.D	739871	14.97	530362	20.52	295794	25.67
15554MS	J3702.D	766634	14.98	581208	20.51	349506	25.67
€ .5554MSD	J3703.D	760151	14.97	581091	20.52	337508	25.67

ISTD 1

Fluorobenzene

ISTD 2

Chlorobenzene-d5

ISTD 3

1,4-Dichlorobenzene-d4

Chain of Custody

External Chain of Custody

J'E en Gen Limoranie, Inc.

(315) 437-0200

East Syracuse, New York 13057

		East Syracuse, (315) 437-0200	East Syracuse, New York (315) 437-0200	w York	13057	•	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2.1 5891.00	
ERE	ENGINEERS 2	Zh.C.				Analy	Analysis/Method		Г
Project: FRONTIEN CHEMICK	1-PENDLE	JU 517	111						N
Sampled by: CHULL OF U		•			V.	0,	\ \ !	\ \ \	
Client Contact: Jonn' Fer Smith	Р	hone #(5/5)457-6	157-4100		3		\ \	\ \ \	
Sample Description	escription			7	3				
Sample Location	Date Time Collected	Sample Matrix	Comp. No. of or Grab Containers	令			\ \ \	Common	
URS-9D	0191 1450/20	WATER	1	1	7		+	Comments	T
URS-9I	2011 19/20/20	WYDER GRAB	36 5	+	\ \-\				
BLINO BUPLICATE		WINTER GRAB	5 9	+	1				Т
88-120	5401 leghopio	WATER GOAD	5	+	\ \ \				Τ
771-88	3411 PAproper	WATER GIAB	5 8	7	×				1
711	02/1/66/20	WATER GARB	B S	7	7			FIEW FITEDES	1.5
485-10	544/bb/hc/zo	WATER GRAB	68 5	+	1			CIELD FILTEDEN	7 0
85-5K	5191 66/2010	WATERSAND	8 5	+	7			(1ELO FITERE)	10
MRS-5D	02/01/99/635	UNITED GRA	8 5	+	7			MELD FILTERED	16
Equipment blank	02809930	WATER GIN	5 5	7	7				i i
1125-140	060 infection	WHER SD	8 5	ナイ	+				T
URS-140 MATRIX SOIKE	Och bysopia	WATER SAM	W 5	ナナ	×				1
Relinquished by: Chause My	Date: 02/09	5997 Time: 1350	C Received by:	by:			Date:	Time:	T
Relinquished by:	Date:	Time:	Received by:	by:			Date:	Time:	Τ
Relinquished by:	Date:	Time:	Received by Lab:	1 (Mark	1.7	Date: 2 < / י	5/54 Time. 12.50	[-
Shipment Method:			Airbill Number:					7	E
				***************************************					_

Turnaround Time Required:
Routine
Rush (Specify)

Sol Cooler Temperature:__

Comments:

Original-Laboratory Copy-Client

86

Ge Lesorantic, Inc. ť J.E

JOOC Duftonied Parrway

Cnain of Custony

East Syracuse, New York 13057 (315)437-0200

Time. 13. SO Comments Time: Time: Date: 7/5/99 Analysis/Method Date: Date: Received by Lab: (\\u00e4u\beloop\-Airbill Number: Received by: Received by: Comp. No. of or Grab Containers Phone #(3/5)/437-6(0) Date: 02/05/1991 Time: 1350 Time: Time: Sample Matrix Date Time Collected Date: Date: Client: OBLEW &GFRE, ENCHEERS Sample Description Client Contact: Jennifer Smith MATRIX SPIKE Project: FloatTER CHEMIL Sample Location Sampled by: CHAWA Relinquished by: Chaum Shipment Method: Relinquished by: Relinquished by:

Turnaround Time Required:

Comments:

Rush (Specify)_

87

700 Cooler Temperature:_

Original-Laboratory Copy-Client

SAMPLE CONTROL RECORD

DATE RECEIVED: O20819	SAMPLE NUMBER(S): KSS44 >5560	Date and Time Returned	2-12-93	66-21-21	12-17-99	2.17.99 16.60	2.17.49 16:00	2.17.94 H:00	1/8/23 (1:00 #W		
JOB #: 5829-001-517 DAT	TAA	Reason	Cyan. de	8260	8260	μ́ζ	174	116	ICAP & GFAA digestien		
went	PROJECT MANAGER:	Date and Time Removed	27-21-51 0845	1130	66-11-21	2.17.99 13.00	00:21 66.61.2	13:00 m	2/18/89 10:00 -		
Fantier Chemical	404	Removed By	D. Saiot Amair	S Good	J. G. J	D ACBENTS	D. RUBERIS	D. POBERIS	C. Tlan		
CLIENT:		Laboratory Sample Number	1554-1-5554	75-44557	K5562-56	5644- 48	5553 - 55	07-1885	5744-48 KIJI3.57, KIJ72-6	ଦ୍ରନ	

Internal Chain of Custody

ICP METALS SAMPLE CONTROL LOG

QC Batch #: 021893601

Date Digested:

56/31/2

Client/Job Number	Laboratory Sample Number Range	Laboratory Sample Numbers Removed	Removed	Date Removed	Time	Time
FRONTER CHEMICAL	K5544_48 K5553_55	155744.48, 5553.557, 15552.60	2 Ta	2/18/93	15.30	mg:2:4/
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	K5757 - 60	KUTHY, BY KITTS OF KUTH-60	= True		9:00 Am	11:30 74
8						
39						

OC Batch #: 0 २ 18 प्रता र

	Laboratory Sample	Laboratory Sample Numbers	Removed	Date	Time	Time
Client/Job Number	Number Range	Removed	by	Removed	Removed	Returned
FRONTIEN clum , cal	2544 - 4 <i>9</i>	16 3544-44, 6 5553-55 255312.60	۲. ا-	113 (94	15.00	14.63
418 100 NTS	15553 - 55					
	// SSS + : LO					
			-			
			_			
			-			
90						

Frontier Chemical - Pendleton Site March 1999

 $Attachment \ D-Site \ Maintenance \ Work \ Items \ and \ Field \ Observation \ Reports$

D-1 Field Observation Reports

Frontier Chemical - Pendleton Site March 1999

- 1 Field Observation Reports
 - Field Observation Report Dated February 12, 1999

LETTER OF TRANSMITTAL

TO:				DATE		
10.				DATE:	February 12, 1999	
01:	C1 · 1			ATTENTION:	Mr. John Burns	
1	Chemicals	_		SUBJECT:		
1	Lower River Road	d				
	Box 248			Pendl	eton (Frontier Chemical) Si	te
Charl	leston, Tennessee	37310			·	
				GGE PROJECT	NO: 94 - 1014 O	
		WE	ARE SENDIN	G ATTACHED:		
LAB	ORATORY TEST	ΓDATA	X FIELD	REPORT	REPORT	
					renorm	
ENG	INEERING DRA	WINGS				
			<u> </u>			
<u> </u>						
COPIES	DATE	REPORT NO.	DESCRIP	TION		
1	02/04/99	99 - 01				•
	02/01///	77-01	Fleid Obse	rvation Report		
		Tt	IESE ARE BEIN	IG SENT:		
X FOR	YOUR USE		PER YC	OUR REQUEST		
SINCERELY,					DISTRIBUTION	
GLYNN GE	OTECHNICAL I	ENGINEERING		Ms. Jennifer Smith	n - O'Brien & Gere Engineer	
				·	. O Drien & Oele Engineer	3
Ann Bake	er , <i>L</i>	July 1				
Secretary						
	111111	They was a second				
		/				

6503 Campbell Bivd., Lockport, New York 14094 (716) 625-6933 / fax (716) 625-6983

FIELD OBSERVATION REPORT

PROJECT NO.:	94-1014-0	REPORT NO.:	99-01	DATE:	4-Feb-99	PAGE	: 1	c	x≠ 1	
PROJECT :	Pendleton (Front	tier Chemical) Site Rem	ediation		DAY:	Thu	rsday	***	
SUBJECT:	On Site Superviso	r's Report				PROJECT TIME:	1:00 p	m - 2	:30 pm	
CLIENT:	Pendleton Site PR	P Group				SITE TIME:	1:15 p	m - 2	:15 pm	
WEATHER:	Cool, Overcast (3	5° F)				PHOTOS:	YES	x	NO	
										

- On site per O'Brien & Gere notification to record lake water elevation coincidental with semi-annual groundwater sampling event.
- Record Quarry Lake water surface elevation via level survey. Lake is ice covered. The ice surface elevation is 578.12'. The free water surface elevation is 577.97'.
- The O'Brien & Gere sampling team is also on site for sample collection.
- Site accessibility is limited due to snow / ice on the access road.
- Observe general site conditions and no major problems are noted. The pump vault is not accessed.

PERSONNEL ON SITE / CONTACTED:	DISTRIBUTION: John Burns - PPRP Jen Smith - O'B&G				
Peter Bogardus, Shawn O'Dell - O'B&G					
<u> </u>	Man-hours: 1.5				
REPORTED BY: Jesse E Tossman, Porest Manager	REVIEWED BY: Mark M Glynn, P.E.				
DOCFILE:996v9901					