32NBH.6W73

NOV 1 8 2010

MM May do

Robert Bucci, Consultant 3344 Wildwood Dr. Niagara Falls, New York 14304 Phone 716 297-6772 Cell & 716 628-8208 Email: nia3344@verizon.net

November 15, 2010

Mr. Mark Hans, PE Regional Solid Materials Engineer NYS Department of Environmental Conservation 270 Michigan Avenue Buffalo, New York 14203-2999

SUBJECT: UCAR Republic Landfill #32NO3

Dear Mr. Hans,

Please find enclosed a copy of the sampling results that were sent to Mary E. McIntosh, Engineering Geologist II of the New York State Department of Environmental Conservation Region 9 Office.

If you have any questions please feel free to call me at (716 628-8208.

Very truly yours,

Robert Bucci Consultant

R. Bucci enc.

.

ا المنطقة الم

**

١

Robert Bucci, Consultant 3344 Wildwood Dr. Niagara Falls, New York 14304 Phone 716 297-6772 Cell & 716 628-8208

Email: nia3344@verizon.net

November 15, 2010

Reference No. 005513

Ms. Mary F. McIntosh
Engineering Geologist II
NEW YORK STATE DEPARTMENT OF
ENVIRONMENTAL CONSERVATION
270 Michigan Avenue
Buffalo, NY 14203-2999

Dear Ms. McIntosh:

Re:

Annual Monitoring Event 2009 UCAR Republic SWMF #32N03

The annual monitoring event for the above-referenced Site was conducted on Sept. 07, 2010. The Site groundwater monitoring program was modified in November 2005 and currently consists of the following (excerpt from letter from C. Barron (CRA) to M. McIntosh (NYSDEC) dated November 4, 2005.):

Annual sampling of seven wells (BW-1, BW-2, BW-3, BW-4, MW-3, GW-8B, and GW-9B) with analysis of the samples for Part 360 volatiles, ammonia, iron (total and soluble), potassium (total and soluble), zinc (total and soluble), nitrite, total kjeldahl nitrogen (TKN), turbidity, groundwater elevation, pH, specific conductance, and temperature. Monitoring is rotated between the spring and fall seasons such that one year sampling is conducted in the spring and the next year it will be conducted in the fall. Sampling is conducted once in each calendar year and reporting is submitted annually following receipt and review of the groundwater analytical data.

The sample collection and analyses were performed in accordance with the program outlined in the letters from M. McIntosh (NYSDEC) to R. Bucci (UCAR), dated January 18, 2000 and February 23, 2000. A sample collection and analysis summary is presented in Table 1 and water level elevations measured prior to well purging are presented in Table 2. The analytical laboratory report for this sampling event is enclosed and the data are summarized in Table 3.

November 15, 2010

Reference No. 005513

The analytical data from this monitoring event are consistent with the historical data.

The next groundwater monitoring event at the Site will be conducted in March of 2011. Should you have any questions or require additional information, please do not hesitate to contact the undersigned at 716-628-8208.

Yours truly,

Robert Bucci Site Consultant

Encl.

c.c.: M. Hans

M. Hinton

J. M. Bursley

2055 Niagara Falls Blvd., Suite #3 Niagara Falls, New York 14304

Telephone: (716) 297-6150 Fax: (716) 297-2265

www.CRAworld.com

MEMORANDUM

To:

Jim Kay

REF. No.:

005513

FROM:

Sheri Finn/bjw/3

DATE:

October 22, 2010

E-Mail and Hard Copy If Requested

RE:

Analytical Results and QA/QC Review
Annual Groundwater Monitoring Program

UCAR Carbon Company, Inc. Niagara Falls, New York

September 2010

INTRODUCTION

Eight groundwater samples, including one field duplicate sample were collected during September 2010 in support of the annual monitoring program at the UCAR Carbon Site in Niagara Falls, New York (Site). The samples were submitted to Columbia Analytical Services (CAS), located in Rochester, New York, and analyzed for the following:

Parameter	Methodology
Volatile Organic Compounds (VOCs)	SW-846 8260B1
Total & Dissolved Iron, Potassium, and Zinc	SW-846 6010B1
Ammonia	USEPA 350.12
Nitrite	USEPA 353.22
Total Kjeldahl Nitrogen (TKN)	USEPA 351.22

A sampling and analysis summary is presented in Table 1. The analytical results are summarized in Table 2. The quality assurance/quality control (QA/QC) criteria by which the data have been assessed are outlined in the respective methods and the following documents:

- "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review", October 1999, United States Environmental Protection Agency (USEPA) 540/R-99/008
- "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review", February 1994, USEPA 540/R-94/013

[&]quot;Test Methods for Solid Waste Physical/Chemical Methods", SW-846, 3rd Edition, September 1986 (with all subsequent revisions).

^{*}Methods for Chemical Analysis of Water and Wastes", United States Environmental Protection Agency (USEPA) 600/4-79-220, March 1983 (with all subsequent revisions).

Full Contract Laboratory Program (CLP) equivalent raw data deliverables were provided by the laboratory. The data quality assessment and validation presented in the following subsections were performed based on the sample results, supporting QA/QC and raw data provided.

HOLDING TIME PERIOD AND SAMPLE ANALYSIS

The holding time periods are presented in the analytical methods. All samples were properly preserved and cooled to 4°C (±2°C) after collection. All samples were prepared and analyzed within the method-required holding times with the exception of nitrite analysis, which has a 48 hour holding time. The samples were received at the laboratory 2 days after collection. All associated nitrite results were qualified as estimated (see Table 3).

GAS CHROMATOGRAPHY/MASS SPECTROMETER (GC/MS) MASS CALIBRATION

Prior to analysis, GC/MS instrumentation is tuned to ensure optimization over the mass range of interest. To evaluate instrument tuning, the volatile organic compound (VOC) method requires the analysis of the specific tuning compound bromofluorobenzene (BFB). The resulting spectra must meet the criteria cited in the method before analysis is initiated. Analysis of the tuning compound must then be repeated every 12 hours throughout sample analysis to ensure the continued optimization of the instrument.

Instrument tuning data were reviewed. The tuning compound was analyzed at the required frequency throughout the VOC analysis periods. All tuning criteria were met for the analyses, indicating proper optimization of the instrumentation.

INITIAL CALIBRATION - GC/MS ANALYSES

To quantify compounds of interest in samples, calibration of the GC/MS over a specific concentration range must be performed. Initially, a minimum of a five-point calibration curve containing all compounds of interest is analyzed to characterize instrument response for each analyte over a specific concentration range.

Calibration data were reviewed for all samples. Linearity of the calibration curve and instrument sensitivity were evaluated against the following criteria:

- All relative response factors (RRFs) for the GC/MS must be greater than or equal to 0.05.
- ii) Percent relative standard deviation (%RSD) values for the GC/MS must not exceed 30 percent, or if linear regression is used, the correlation coefficient (R2) value must be at least 0.990.

Initial calibration standards were analyzed as required and the data showed acceptable sensitivity and linearity.

INITIAL CALIBRATION - METALS ANALYSES

To calibrate the inductively coupled plasma (ICP), a calibration blank and at least one standard must be analyzed at each wavelength to establish the analytical curve. After calibration, an initial calibration

verification (ICV) standard must be analyzed to verify the analytical accuracy of the calibration curves within a method-specific percent recovery of the accepted or true value. A Contract Required Detection Limit (CRDL) standard is analyzed before and after sample analyses to verify instrument sensitivity.

A review of the data showed that all metals calibration curves, ICVs and CRDL were analyzed at the proper frequencies and were within the acceptance criteria.

INITIAL CALIBRATION - GENERAL CHEMISTRY ANALYSES

The general chemistry analyses of ammonia, nitrite, and TKN were calibrated in accordance with the methods and all calibration criteria were met.

CONTINUING CALIBRATION - GC/MS

To ensure that instrument calibration is acceptable throughout the sample analysis period, continuing calibration standards must be analyzed and compared to the initial calibration curve every 12 hours.

The following criteria were employed to evaluate continuing calibration data:

- i) All RRF values for the GC/MS must be greater than or equal to 0.05.
- ii) Percent difference (%D) values must not exceed 25 percent.

Continuing calibration standards were analyzed at the required frequency and the results met the above criteria for instrument sensitivity and linearity of response.

CONTINUING CALIBRATION - INORGANICS

Continuing calibration criteria for inorganic analyses were the same criteria as used for assessing the initial calibration data. All continuing calibration verification data were within the acceptance criteria.

SURROGATE COMPOUND RECOVERIES

Surrogates were added to all samples, blanks, and QC samples prior to analysis of VOCs. All recoveries met the method criteria.

METHOD BLANK SAMPLES

Method blanks were analyzed for all parameters. All results were non-detect, indicating that contamination during analysis was not a concern.

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

The LCS serves as a measure of overall analytical performance. LCSs are prepared with all analytes of interest and analyzed with each sample batch.

LCSs were prepared and analyzed for all parameters at the proper frequency. The LCS recoveries were within the control limits for all analytes of interest, indicating acceptable analytical accuracy.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) ANALYSES

The recoveries of MS analyses are used to assess the analytical accuracy achieved on individual sample matrices. MS/MSD analyses were performed on the sample submitted for metals and VOC analysis. All MS/MSD recoveries and relative percent differences (RPDs) were within laboratory control limits for all analytes of interest, indicating good analytical accuracy and precision.

LABORATORY DUPLICATE ANALYSES

Laboratory duplicates were performed for inorganic analyses. All results were within laboratory control limits showing acceptable analytical precision with the exception of dissolved iron analysis. The associated sample results were qualified as estimated (see Table 4).

INDUCTIVELY COUPLED PLASMA (ICP) INTERFERENCE CHECK SAMPLE (ICS) ANALYSIS

To verify that proper inter-element and background correction factors have been established by the laboratory, ICSs are analyzed. These samples contain high concentrations of aluminum, calcium, magnesium, and iron and are analyzed at the beginning and end of each sample analysis period.

ICS analysis results were evaluated for all samples. All ICS recoveries were within the established control limits of 80 to 120 percent.

SERIAL DILUTION - METALS ANALYSES

The serial dilution determines whether significant physical or chemical interferences exist due to sample matrix. A minimum of one per 20 investigative samples is analyzed at a five-fold dilution. For samples with sufficient analyte concentrations, the serial dilution results must agree within 10 percent of the original results.

Serial dilution analyses were performed and all results were within the method criteria.

INTERNAL STANDARD (IS) SUMMARIES

To correct for changes in GC/MS response and sensitivity, IS compounds are added to investigative samples and QC samples prior to VOC analyses. All results are calculated as a ratio of the IS response. The criteria by which the IS results are assessed are as follows:

- i) IS area counts must not vary by more than a factor of two (-50 percent to +100 percent) from the associated calibration standard.
- ii) The retention time of the IS must not vary more than ±30 seconds from the associated calibration standard.

All sample IS results met the above criteria and were correctly used to calculate sample results.

TRIP BLANKS - VOCS

Trip blanks are transported, stored, and analyzed with the investigative samples to identify potential cross-contamination of VOCs. A trip blank was collected as shown on Table 1. All results were non-detect for the analytes of interest, indicating that contamination during transport and storage was not an issue.

FIELD DUPLICATES

Samples were collected in duplicate as summarized in Table 1 and submitted "blind" to the laboratory for analysis. All sample results outside of estimated ranges of detection showed acceptable sampling and analytical precision.

CONCLUSION

Based on the preceding assessment, the data were acceptable for use with the qualifications noted.

2055 Niagara Falls Blvd., Suite #3 Niagara Falls, New York 14304

Telephone: (716) 297-6150 Fax: (716) 297-2265

www.CRAworld.com

MEMORANDUM

Sent via email

To:

Jim Kay

REF. No.:

005513

FROM:

Dave Tyran/adh/2

DATE:

September 8, 2010

RE:

Annual Groundwater Sampling

INTRODUCTION

In accordance with Conestoga-Rovers & Associates (CRA) Field Sampling Plan (FSP) Post-Closure Monitoring Program for UCAR Carbon's Solid Waste Management Unit (SWMU) No. 32NO3, the Annual groundwater sampling event was performed on September 7, 2010. Activities associated with this sampling event are described in this memo.

HYDRAULIC MONITORING

Prior to sampling, a complete round of water level measurements and well soundings were taken. Table 1 presents the water level information in addition to comparing the sounded depths to the installed depths.

GROUNDWATER MONITORING

A total of seven monitoring wells were visited during this sampling round. All seven wells had sufficient recharge to purge three to five well volumes.

Purging of wells was accomplished by the use of either a battery operated submersible pump or Teflon bailer. Samples were obtained with a dedicated bottom loading Teflon bailer. Table 2 provides the pertinent groundwater data.

WELL INSPECTIONS

Well inspections were performed at each of the monitoring wells. No problems were noted during this round.

FUTURE MONITORING

The next scheduled groundwater sampling round will be performed in March 2011.

9-7.10 Calibrate YSINFO4441 DATE pH (4) pH (7) Cond(1.413) Turb(100) Calibrate Honba NF05036 cond 4.49 Turb 0 0755 DIT on-site met Bob. Buch get keys Mosty Sunny 10-85 very windy 0825 start w/k Round 0920 Complete W/L Round Dry out NW-3 Purge & Sample BW-Z, GWBB Trip Blank = 7B-55/3-090710 BWI, BW4, BW3, Sample MW3 Durge & Sample GW9B Clean up.

HYBRAULIC MONITORING CREW

WELL # TIME WIL SOLKOWD DEPTH MW 3 0848 12.62 15.25 BW 1 0826 1844 5.44 25.93 BW 2 0921 14.13 24.76 BW 3 0836 1396 23.48 BW 4 0833 13.36 21.49 GW 8B 0822 11.07 29.53 GW 9B 0909 1451 32.03 MW 1 0830 11.86 23.44 MW 2 0918 17.59 24.73 BW 5 0844 10.44 26.00

NF 04308

BW 6 0912 17.16

Dave J'yean

26.23

DATE PROJECT CONDITION DEPTH INITIAL VOL CAI METHOD PLINGE RE 18852 0850 0900 INITIAL FINAL FINAL	551: N 21: N 2: N 3: N 4: N 5: N 6: N 6: N 7: N 6: N 7: N 7:	12.62 12.62 25-12 cated 5.48 6.20 6.21	62- Z Teflon 0.5/3 0.487 0.477 0.473	15.52	0.4 TURB 535 800 OR OR	SAMPLE RECORD DATE 9-7-10 CREW DOT METHOD dedicated Teflon Beile VOL/ANALYSIS See PO 28C) SAMPLE TIME: 1350 SAMPLE ID: WG-5513-090710 007 PH COND TEMP TURB G99 0488 17.45 736 COFCE 24518 INST CONTROL #S W/L METER NF04368 HOUGE NF05036
FINAL	WIL	- 1:710 -				OR over range Dave Jugar

	NITIAL!	9.7.1 N GO 4"0- WL 1 C. 20	20 9	3" 2 0 = 2,46	r.65=1.6	, 9 s+5,6	SAMPLE RECORD DATE 19-7-10 CREW DJT METHOD DEdicated Teflon Bartu VOL/ANALYSIS See p. 28°C SAMPLE TIME 1155 SAMPLE TIME 1155 SAMPLE ID: WG-5573-090710 COY
1	URGE A TIME 1140 1144 148	VOL 72 14.4	PH 688 680 659	COND 1.42 1.44 1.46	TEMP 16-10 14.72 12.67	51.8	all Cloudy Light Brown
F	INAL Y	W/L	Cloud Clear, 2011	Color			PH COND TEMP TURB 6.82 1147 14.05 179 COC# 24518 INST. CONTROL BS W/L METER. NF04308 HOTIL NF 05036 Dave Japan

BW-2 DATE 9.7.10 PROJECT # 55/3 CONDITION GOOD DEPTH 4"0-21.1 3" 21.1 -37.1 INITIAL W/L 14.13 VOL CALC. 21.1-14.13=6.97x.65=4.5+5.9=	DATE SAMPLE RECORD DUP CREW DJT METHOD Dedicated Teflon Backer VOLY ANALYSIS Pg 28 © X Z
METHOD Monsoon Rmp 10.4	0 10 7 10 10 10 10 10
PURGE RECORD TIME VOL PH COND TEMP TURB 0934 10,4 6.23 2.24 13.71 19.9 0939 208620 233 12.52 0.0 0944 31.26.21 2.34 11.72 0.0	SAMPLE TIME: 1000 SAMPLE ID: WG-5513-090710-001 Blind Dup WG-5513-090710-002 (1200) W/P Cloudy green/Brown
INITIAL W/Q Clark Brown	PH COND TEMP TURB 6-29 2-34 13.52 152
FINAL W/P Clear Light Green Tint FINAL W/L 14.50	COFC# 245/8 INST. CONTROL #58 W/L METER NF04308 Hornbe NF0.5036 37.1-21.1= 16×-37=5.9 Due Jugan

ir-4 1

.

DATE: 9.7.1 PROJECT # 5 CONDITION G DEPTH 41"0- INITIAL W/L VOL CALC 73 METHOD NO	513 700d 97 3 1396 45-13	3" 9.7- 96=9.4	X/6 37		SAMPLE RECORD DATE 9-7-10 CREW DJT METHOD Dedicated Teflon Bailer VOL/ANALYGIS See pg 28 © SAMPLE TIME: 1330 SAMPLE IDI WG-5513-090710 006
1309 7.0	PH 7.11			TURB 0.0 00	W/OP Clear, colorless PH COND TEMP TURB
	Clear, Same 13.83		r655		COFC= 24518 INST. CONTROL #S W/L Meter NF04308 Horiba NF05036 Dave J'year

INITIAL WL 13.36 VOL CALC 13.9-13.	CREW DJF	METHOD Dedicated Teflon Bailer VOL/ANALYSIS See Pg 280
FURGE RECORD TIME YOU PH 1222 5.4 6.7 1225 10.8 6.3 1228 16.2 6.3	5 1.66 14.63 77 9 1.68 12.84 5.2	7 W/O Cloudy Light Brown PH COND TEMP TURB
INITIAL W/P Close HNITIAL @ FINAL W FINAL W/L 14.	√ φ	COPC# 24518 INST CONTROL #3 WILL METER: NF04308 Hor.b. NF05036 27.5-13.9=13.6 × .37=5 Duce year

4.4

	No. of Control of Cont	0					SAMPLE RECORD MSIMSD
	DATE	9-7-1			CREW	אנס	DATE
And a second second	PROJECT?	N Good	d				METHOD Dedicated Teflon Back
	DEPTH	WL 1	1,07		777	p Q	VOL/ANALYSIS See B ZEC X 3
The state of the s	VOL CAL METHOD				\$ <u>X : 3</u> /= .	٠.٥	SAMPLE TIME WG - 55/3-09070-003
And the second s	,	The state of the s		-			SAMPLE 101 1100
	PURGE P	VOL	PH		TEMP	TURB	
a Maria de Propinsion de La California d	1041	136	6.64		12.85	140 34Z	W/P Clas, colorless
	1020	20.9	6.51	1.63	12.48	266	Will courses
				0.1			PH COND TEMP TURB 6.45 1.62 18.30 10.4
	INITIAL					and a second	6.70 1/62
	FINAL				15 gra	7	COFC # 24518 INST. CONTROL #3
	FINAL	W(L	28.60				W/LMETER
	170 - , -						Dave Jugar
						F.	

	DATE PROJECT	9-7-10 ¥ 55	13	C	rew D	5	DATE 9-7-10 CREW DJT METHOD Dedicated Teflon Bailer
	CONDITION DEPTH INITIAL VOL CA METHOD	W/L C.31	14.51 .7 -14	51=17	519x.3	7=6.7	VOL/ANALYSIS Soe P. 280
indianalangia Nataka matawa katawa katawa matawa	PURGE R TIME 1414		PH 6.80	COND 7.18	TEMP 14.18	TURB 17.8	SAMPLE TIME 1430 SAMPLE ID: 606,5513 090710 008
	1417 i421	12.8 19.Z		2.27	1278 R.Ob	0.0	W/P Clear, Colorless PH COND TEMP TURB
	INITIAL	Wlp	Clear	, Colo	r655		PH COND TEMP TURB 642 Z.31 1395 92
	FINAL V		Sam				COFC# 24518 INST. CONTROL #3 WIL METER. NF04308
The second secon	FINAL	W/2_	23.	10		-	Horiba NF05036
				-			Dave J Zyran

TABLE 1 Page 1 of 1

HYDRAULIC MONITORING POST-CLOSURE MONITORING PROGRAM UCAR REPUBLIC SWMU #32NO3 NIAGARA FALLS, NEW YORK SEPTEMBER 2010

			Water			
*** #* **	TOC	Depth to	Level	Sounded	Installed Depth	
Well I.D.	Elevation	Water	Elevation	Depth		
	(Ft. AMSL)	(Ft. BTOC)	(Ft. AMSL)	(Ft. BTOC)	(Ft. BTOC)	
MW-3	601.89	12.62	589.27	15.25	14.4	
BW-1	610.72	15.44	595.28	25.93	35.9	
BW-2	608.43	14.13	594.30	24.76	37.1	
BW-3	604.72	13.96	590.76	23.48	22.7	
BW-4	607.08	13.36	593.72	21.49	27.5	
GW-8B	603.90	11.07	592.83	29.53	29.5	
GW-9B	603.40	14.51	588.89	32.03	31.7	
			*			

Notes:

AMSL Above Mean Sea Level. BTOC Below Top of Casing.

Ft. Feet.

NM Not Measured.

TABLE 2 Page 1 of 1

SAMPLE COLLECTION AND ANALYSIS SUMMARY POST-CLOSURE MONITORING PROGRAM UCAR REPUBLIC SWMU #32NO3 NIAGARA FALLS, NEW YORK SEPTEMBER 2010

			One	Total		Anal	ytical Par	ameters		
Well I.D.	Purge Date	Sample Date	Well Volume (Gallons)	Volume Purged (Gallons)	Turbidity (NTU)	VOCs	Total Metals	Dissolved Metals	Misc. ⁽¹⁾ Parameters	Comments
MW-3	09/07/10	09/07/10	0.4	1.6	736	x	x	x	x	
BW-1	09/07/10	09/07/10	7.2	21.6	179	x	x	x	x	
BW-2	09/07/10	09/07/10	10.4	31.2	152	x	x	x	x	
BW-3	09/07/10	09/07/10	3.5	10.5	0.0	x	x	x	x	
BW-4	09/07/10	09/07/10	5.4	16.2	64.9	x	x	x	x	
GW-8B	09/07/10	09/07/10	6.8	20.4	10.4	x	x	x	x	MS/MSD
GW-9B	09/07/10	09/07/10	6.4	19.2	9.2	x	x	x	x	

Notes:

Nitrite, nitrogen, NO₂, ammonia, total kjeldahl nitrogen.

MS Matrix Spike.

MSD Matrix Spike Duplicate.

NM Not measured, insufficient volume for final reading.

NTU Nephelometric Turbidity Unit. VOCs Volatile Organic Compounds.

TABLE 3

ANALYTICAL RESULTS SUMMARY ANNUAL GROUNDWATER MONITORING UCAR CARBON COMPANY, INC. NIAGARA FALLS, NEW YORK SEPTEMBER 2010

	Location ID: Sample Date:	BW-2 09/07/10	BW-2 09/07/10	GW-8B 09/07/10	BW-1 09/07/10	BW-4 09/07/10	BW-3 09/07/10	MW-3 09/07/10	GW-9B 09/07/10
Parameters	Units								
Volatile Organic Compounds									
1,1,1-TRICHLOROETHANE (TCA)	μg/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1,2,2-TETRACHLOROETHANE	μg/L	5.0 U	5.0 U	5.0 U	5.0 U	2.9 J	5.0 U	5.0 U	5.0 U
1,1,2-TRICHLOROETHANE	μg/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1-DICHLOROETHANE (1,1-DCA)	μg/L	5.0 U	5.0 U	5.0 U	0.20 J	5.0 U	5.0 U	5.0 U	5.0 U
1,1-DICHLOROETHENE (1,1-DCE)	μg/L	5.0 U	5.0 U	0.41 J	5.0 U	4.1 J	5.0 U	5.0 U	5.0 U
1,2-DICHLOROETHANE	μg/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-DICHLOROETHENE, TOTAL	µg/L	10 U	10 U	20	0.94 J	74 0	2.2 J	10 U	10 U
1,2-DICHLOROPROPANE	μg/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2-BUTANONE (MEK)	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-HEXANONE	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4-METHYL-2-PENTANONE	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
ACETONE	μg/L	20 U	20 U	20 U	2.9 J	3.2 J	20 U	20 U	20 U
BENZENE	μg/L	5.0 U	5.0 U	5.0 U	5.0 U	0.48 J	5.0 U	5.0 U	5.0 U
BROMODICHLOROMETHANE	μg/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
BROMOFORM	μg/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
BROMOMETHANE	μg/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
CARBON DISULFIDE	μg/L	0.60 J	0.74 J	10 U	10 U	0.66 J	10 U	10 U	10 U
CARBON TETRACHLORIDE	μg/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
CHLOROBENZENE	μg/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
CHLOROETHANE	μg/L	5.0 U	5.0 U	5.0 U	6.8	5.0 U	5.0 U	5.0 U	5.0 U
CHLOROFORM	μg/L	5.0 U	5.0 U	5.0 U	5.0 U	9.6	5.0 U	5.0 U	5.0 U
CHLOROMETHANE	μg/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
CIS-1,3-DICHLOROPROPENE	μg/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
DIBROMOCHLOROMETHANE	μg/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
ETHYLBENZENE	μg/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
METHYLENE CHLORIDE	μg/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
STYRENE	μg/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
TETRACHLOROETHENE (PCE)	μg/L	5.0 U	5.0 U	5.0 U	5.0 U	97	5.0 U	5.0 U	5.0 U

CRA 005513Memo-3-Tbls

TABLE 3

ANALYTICAL RESULTS SUMMARY ANNUAL GROUNDWATER MONITORING UCAR CARBON COMPANY, INC. NIAGARA FALLS, NEW YORK SEPTEMBER 2010

	Location ID: Sample Date:	BW-2 09/07/10	BW-2 09/07/10	GW-8B 09/07/10	BW-1 09/07/10	BW-4 09/07/10	BW-3 09/07/10	MW-3 09/07/10	GW-9B 09/07/10
Parameters	Units								
Volatile Organic Compounds (Cont'd.)									
TOLUENE	μg/L	5.0 U	5.0 U	5.0 U	5.0 U	0.51 J	5.0 U	5.0 U	5.0 U
TRANS-1,3-DICHLOROPROPENE	μg/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
TRICHLOROETHENE (TCE)	μg/L	5.0 U	5.0 U	8.8	5.0 U	300	5.0 U	5.0 U	5.0 U
VINYL CHLORIDE	μg/L	5.0 U	5.0 U	3.5 J	1.6 J	170	6.4	5.0 U	5.0 U
XYLENES, TOTAL	μg/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Metals									
IRON	μg/L	6240	8930	272	10000	8480	982	35800	199
POTASSIUM	μg/L	5720	5640	5400	5650	18200	3360	7710	3580
ZINC	μg/L	2900	3850	1350	30600	3340	66.8	221	9.7 J
Metals (Dissolved)									
IRON (Diss.)	μg/L	1140 J	1410 J	265 J	1700 J	4350 J	806 J	6350 J	133 J
POTASSIUM (Diss.)	μg/L	5560	5590	5680	5780	19300	3420	. 2930	3680
ZINC (Diss.)	μg/L	135	163	303	1400	143	8.1 J	33.4	5.0 J
Wet Chemistry									
AMMONIA AS NITROGEN	mg/L	0.522	0.529	0.050 U	0.927	3.32	0.482	0.099	0.461
NITRITE AS NITROGEN	mg/L	0.010 UJ	0.010 UJ	0.010 UJ	0.010 UJ	0.010 UJ	0.010 UJ	0.015 J	0.010 UJ
NITROGEN, TOTAL KJELDAHL (TKN)	mg/L	1.26	1.20	0.41	1.76	4.24	0.80	1.46	0.89

Service Request No: R1004897

September 30, 2010

Ms. Susan Scrocchi Conestoga-Rovers & Associates, Inc. 2055 Niagara Falls Blvd., Suite 3 Niagara Falls, NY 14304

Laboratory Results for: UCAR Annual GE/5513-20

Dear Ms. Scrocchi:

Enclosed are the results of the sample(s) submitted to our laboratory on September 9, 2010. For your reference, these analyses have been assigned our service request number R1004897.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 131. You may also contact me via email at DPatton@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Deb Patton
Project Manager

Page 1 of $_{\mathcal{S}}$

Client:

Conestoga Rovers and Associates

Service Request No.:

R1004897

Project: Sample Matrix: UCAR Water Date Received:

9/7/10

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier IV. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Eight water samples and one Trip Blank were received for analysis at Columbia Analytical Services on 9/9/10. The samples were received in good condition consistent with the accompanying chain of custody form enclosed. The samples were received at 2.1°C within the 0-6°C temperature guidelines.

Wet Chemistry & Metals

Dissolved metals were field filtered.

The Nitrite analysis for all samples was received outside of the 48hour holding time. These were analyzed as soon as possible upon receipt into the laboratory.

Site QC was requested on sample WG-5513-090710-003 R1004897-005 and -006). The RPD for the sample Duplicate was outside of the control limits for Dissolved Iron. Iron has been flagged with a "*" on all samples. All other QC was within limits for the day.

No other analytical or quality control problems were encountered during analysis.

Volatile Organics

The Initial Calibration exceeded 15%RSD for Bromomethane and this compound has been placed on a linear regression. The response factor for Acetone was outside of the control limits low for the Initial Calibration but appropriate sensitivity has still been achieved.

Several samples exceeded the calibration range of the instrument and have been flagged with an "E". The samples were repeated at a dilution and flagged with a "D". Both sets of data have been reported.

No other analytical or quality control problems were encountered during analysis.

	١.,
Approved by Nouten	Date (Ollin)
Approved by 10 Famor	DateOfffff}

CAS ASP/CLP Batch...g Form/Login Sheet

Client Proj #: 5513-20 Batch Complete: Yes Date Revised: Submission: R1004897 Diskette Requested: No Date Due: 9/30/10

Client: Conestoga-Rovers & Associates, | Date: 9/30/10 Protocol: SW846
Client Rep: DPATTON Custody Seal: Present/Absent: Shipping No.:

Project: UCAR Annual GE Chain of Custody: Present/Absent: SDG #:

CAS Job #	Client/EPA ID	Matrix	Requested Parameters	Date	Date	pH	%	Remarks
54004007.004	U10 5510 000010 001			Sampled	Received	(Solids)	Solids	Sample Condition
R1004897-001	WG-5513-090710-001	Water	8260B, 351.2, 353.2, 350.1, 6010B	9/7/10	9/9/10			
R1004897-002	WG-5513-090710-001 DISSOLVED	Water	6010B	9/7/10	9/9/10			
R1004897-003	WG-5513-090710-002	Water	8260B, 351.2, 353.2, 350.1, 6010B	9/7/10	9/9/10			
R1004897-004	WG-5513-090710-002 DISSOLVED	Water	6010B	9/7/10	9/9/10			
R1004897-005QC	WG-5513-090710-003	Water	8260B, 351.2, 353.2, 350.1, 6010B	9/7/10	9/9/10	_		
R1004897-006QC	WG-5513-090710-003 DISSOLVED	Water	6010B	9/7/10	9/9/10			
R1004897-007	WG-5513-090710-004	Water	8260B, 351.2, 353.2, 350.1, 6010B	9/7/10	9/9/10			
R1004897-008	WG-5513-090710-004 DISSOLVED	Water	6010B	9/7/10	9/9/10			
R1004897-009	WG-5513-090710-005	Water	8260B, 351.2, 353.2, 350.1, 6010B	9/7/10	9/9/10			
R1004897-009.R01	WG-5513-090710-005	Water	8260B	9/7/10	9/9/10			
R1004897-010	WG-5513-090710-005 DISSOLVED	Water	6010B	9/7/10	9/9/10			
R1004897-011	WG-5513-090710-006	Water	8260B, 351.2, 353.2, 350.1, 6010B	9/7/10	9/9/10			
R1004897-012	WG-5513-090710-006 DISSOLVED	Water	6010B	9/7/10	9/9/10			
R1004897-013	WG-5513-090710-007	Water	8260B, 351.2, 353.2, 350.1, 6010B	9/7/10	9/9/10		_	
R1004897-014	WG-5513-090710-007 DISSOLVED	Water	6010B	9/7/10	9/9/10			
R1004897-015	WG-5513-090710-008	Water	8260B, 351.2, 353.2, 350.1, 6010B	9/7/10	9/9/10			
SR1004897-016	WG-5513-090710-008 DISSOLVED	Water	6010B	9/7/10	9/9/10			
SR1004897-017	TRIP BLANK	Water	8260B	9/7/10	9/9/10			

Folder Comments: September; metals field filtered; EDD on web site

REPORT QUALIFIERS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- Indicates that a quality control parameter has exceeded laboratory limits.
- # Spike was diluted out.
- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% (25% for CLP) difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.

CAS/Rochester Lab ID # for State Certifications¹

NELAP Accredited
Delaware Accredited
Connecticut ID # PH0556
Florida ID # E87674
Illinois ID #200047
Maine ID #NY0032
Nebraska Accredited

Navy Facilities Engineering Service Center Approved

Nevada ID # NY-00032 New Jersey ID # NY004 New York ID # 10145 New Hampshire ID # 294100 A/B Pennsylvania ID# 68-786 Rhode Island ID # 158 West Virginia ID # 292

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable, except as noted in the laboratory case narrative provided. For a specific list of accredited analytes, refer to the certifications section at www.caslab.com.

CHAIN OF CUSTODY RECORD

	\sim (ONESTO	NGA_BOVERS & ASSOCIATES	SHIPPED TO (Labo	-	Name):							JMBE	ER: 、	5513	
		VONE 310	OGA-ROVERS & ASSOCIATES	Columbi	اع				1.)Ct		_	,	_	ľ	
-		<u> </u>							A	mny	al,	<u> </u>	<u>Ų</u> ;	<u> Vir</u>	npling	
SAN	IPLER'S		er yan PRINTE	David Tyra	n	ners				NO .	N	//	//	//	REMARKS	
SEQ. No.	DATE	TIME	SAMPLE No.		SAMPLE TYPE	No. of Containers	Q R. Land			D'A		//	//		NEWMING	
							3	<i>y </i>		7 1		\leftarrow				
-	1.40	1200	WG-5513-090710-0	21	Witer	+ - (+	<u>3</u>		-			\vdash			·	
			66-3513-090710-00			14	वि	2	7 7	2		\vdash				
		1155				14	3	7	1 2	1	+					
			WE-SE13- C90710- COS			7	3	1		1	1		-			
			64-5513-090710.006			7	3	i	111	1						
	11		WE-5513-090710-607		W	7	3	ì	1 1							
	V_{-}	1430	WG-5513-090710-00F		A	7	3	1								
<u> </u>			7B-5513-090710	<u> </u>	hater	3	3			<u> </u>						
-									_	-		1				
											-					
							-					\vdash				
					—				_	-		┼ <u>╶</u> ┴	_			
						-			+-			R	100	489	7 .ssociates , inc.	_
											-					_
		. •	TOTAL NUMBER OF CONTAI	NERS		69		Н	EALTH	I/CHE	MICA					
REL	INQUIS	HED BY		DATE: 9-7-10			ED BY:								DATE:	
10-			how you	— TIME: 1630		<u> D</u>									TIME:	
REL	INQUIS	HED BY	/ :	DATE:			ED BY:								DATE:	
2 _				TIME:		<u>ව</u>									TIME:	
1	INQUIS	HED B	Y:	DATE:			ED BY:								DATE:	
<u> </u>				TIME:	(<u> 3</u>									TIME:	
METI	HOD OF	SHIPM	MENT: Courier			WAY BII										
White			—Fully Executed Copy	SAMPLE TEAM:	- X		RECE	IVED	FOR	LABO	RATO	RY E	3Y:	3.70	0.4740	
Yellov	٧		—Receiving Laboratory Copy	D. Tyran			RECE	lim	au					N	CRA 24518	
Pink Golde	enrod		—Shipper Copy —Sampler Copy				DATE:			TIM	E: <u>16</u>	15_				

000005

Cooler Receipt And Preservation Check Form

Project	Client CR	/				_Sul	mission Nu	mber_{	20.489		211
Cooler	received o	n <u>9191</u>	10	by:00w	_CC	URI	er: cas	_ UPS	FEDEX	VELOC	ITY CLIENT
2. 3. 4. 5. 6.	Were cust Did all bot Did any V Were 1ce (Where did	ody parties a OA vor Ice	aper rriverials pac pottle	on outside of coors properly filled of a in good condition have significant* ks present? es originate? ler(s) upon receip	out (n (u air	ink, s inbro	ken)? les?		VES	NO NO NO NO OC, EII	
	Is the temp	eratu	re w	rithin 0° - 6° C?:		⊘ e	ية Yes	3	Yes	Yes	Yes
	If No, Exp	olain	Belo	VV		No	No		No	No	No
	Date/Time	Tem	рега	tures Taken: 9/9	1101	/16	25				
				RGUN#3 / IR G				rom: T	enfo Blank	/ Sampl	e Bottle
If out o	f Tempera	ature	, not	te packing/ice co			_		_	-	
				Show	_						
				S complete (i.e. an		Time			_by:	BD NO	
				and tags agree wi				610.)!	YES	NO	
				ers used for the t					TES	NO	_
	-			ettes / Tubes Intac	ct	Car	nisters Press	urized	Tedlar®	Bags Inf	lated N/A
Explain	any discre	panci	es: _								
pН	Reagent	YES	NO	Lot Received	E	хр	Sample ID	Vol. Added	Lot Added	Final pH	Yes = All samples OK
≥12	NaOH	<u> </u>			ļ.,						_
≤2	HNO ₃	1		8085791234		11					No = Samples
S2	H ₂ SO ₄	/		WC 92228D	8					[were
Residual Chlorine	For TCN and			If present, contact add ascorbic acid	LIVI	ıo		}			preserved at
(-)	Phenol				_						lab as listed
	Na ₂ S ₂ O ₃	-	-						re analysis - p		PM OK to
	Zn Aceta	-	•				on a separate	-	/VOAs or Ge	nChem	Adjust:
	HCI	*	*	4110020	8						
Bottle lot Other Cor	numbers:(nments:	Mo o	nt fth bble	e vials for the	+n'p	blan	9-2TT, C K had sign	1-132-1 1: Ricont	002	1, 1,	

PC Secondary Review:

*significant air bubbles are greater than 5-6 mm

Analytical Report

Client: Conestoga-Rovers & Associates, Incorporated

Project: UCAR Annual GE/5513-20

Sample Matrix: Sample Name:

Lab Code:

Water

WG-5513-090710-001 R1004897-001 12

Service Request: R1004897

Date Collected: 9/7/10 1000

Date Received: 9/9/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

				Dilution	Date	Date	Extraction Analysis
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot Lot
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	0.16	1	NA	9/15/10 01:32	216527
1,1,2,2-Tetrachloroethane	5.0 U	5.0	0.20	1	NA	9/15/10 01:32	216527
1,1,2-Trichloroethane	5.0 U	5.0	0.28	1	NA	9/15/10 01:32	216527
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	0.13	1	NA	9/15/10 01:32	216527
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	0.37	1	NA	9/15/10 01:32	216527
1,2-Dichloroethane	5.0 U	5.0	0.15	1	NA	9/15/10 01:32	216527
1,2-Dichloroethene, Total	10 U	10	0,38	1	NA	9/15/10 01:32	216527
1,2-Dichloropropane	5.0 U	5.0	0.66	1	NA	9/15/10 01:32	216527
2-Butanone (MEK)	10 U	10	1.0	1	NA	9/15/10 01:32	216527
2-Hexanone	10 U	10	0.40	1	NA	9/15/10 01:32	216527
4-Methyl-2-pentanone	10 U	10	0.34	1	NA	9/15/10 01:32	216527
Acetone	20 U	20	1.6	1	NA	9/15/10 01:32	216527
Benzene	5.0 U	5,0	0.31	1	NA	9/15/10 01:32	216527
Bromodichloromethane	5.0 U	5.0	0.41	1	NA	9/15/10 01:32	216527
Bromoform	5.0 U	5.0	0.30	1	NA	9/15/10 01:32	216527
Bromomethane	5.0 U	5.0	0.40	1	NA	9/15/10 01:32	
Carbon Disulfide	0.60 J	10	0.35	1	NA	9/15/10 01:32	
Carbon Tetrachloride	5.0 U	5.0	0.36	1	NA	9/15/10 01:32	216527
Chlorobenzene	5.0 U	5.0	0.26	1	NA	9/15/10 01:32	
Chloroethane	5.0 U	5.0	0.25	1	NA	9/15/10 01:32	216527
Chloroform	5.0 U	5.0	0.20	1	NA _	9/15/10 01:32	216527
Chloromethane	5.0 U	5.0	0.46	1	NA	9/15/10 01:32	216527
Dibromochloromethane	5.0 U	5.0	0.20	1	NA	9/15/10 01:32	
Methylene Chloride	5.0 U	5.0	0.27	1	NA	9/15/10 01:32	216527
Ethylbenzene	5.0 U	5.0	0.42	1	NA	9/15/10 01:32	216527
Styrene	5.0 U	5.0	0.35	1	NA	9/15/10 01:32	216527
Tetrachloroethene (PCE)	5.0 U	5.0	0.42	1	NA	9/15/10 01:32	216527
Toluene	5.0 U	5.0	0.21	1	NA	9/15/10 01:32	
Trichloroethene (TCE)	5.0 U	5.0	0.19	1	NA	9/15/10 01:32	
Vinyl Chloride	5.0 U	5.0	0.28	1	NA	9/15/10 01:32	216527
Xylenes, Total	5.0 U	5.0	1.2	1	NA	9/15/10 01:32	216527
cis-1,3-Dichloropropene	5.0 U	5.0	0.18	1	NA	9/15/10 01:32	216527
trans-1,3-Dichloropropene	5.0 U	5.0	0.17	1	NA	9/15/10 01:32	216527

Analytical Report

Client:

Conestoga-Rovers & Associates, Incorporated

Project:

UCAR Annual GE/5513-20

Sample Matrix:

Water

WG-5513-090710-001

Sample Name: Lab Code:

R1004897-001

Service Request: R1004897

Date Collected: 9/7/10 1000

Date Collected: 9/7/10 Date Received: 9/9/10

> Units: Percent Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85-122	9/15/10 01:32	
Dibromofluoromethane	102	89-119	9/15/10 01:32	
Toluene-d8	102	87-121	9/15/10 01:32	

Analytical Report

Client:

Conestoga-Rovers & Associates, Incorporated

Project:

UCAR Annual GE/5513-20

Sample Matrix:

Water

Sample Name: Lab Code: WG-5513-090710-002

R1004897-003

Service Request: R1004897

Date Collected: 9/7/10 1200 **Date Received:** 9/9/10

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

					Dilution	Date	Date	Extraction Analysis
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot Lot
1,1,1-Trichloroethane (TCA)	5.0	U	5.0	0.16	1	NA	9/15/10 01:59	216527
1,1,2,2-Tetrachloroethane	5.0	U	5.0	0.20	1	NA	9/15/10 01:59	216527
1,1,2-Trichloroethane	5.0	U	5.0	0.28	1	NA	9/15/10 01:59	216527
1,1-Dichloroethane (1,1-DCA)	5.0		5.0	0.13	1	NA	9/15/10 01:59	216527
1,1-Dichloroethene (1,1-DCE)	5.0	U	5.0 ·	0.37	1	NA	9/15/10 01:59	216527
1,2-Dichloroethane	5.0	U	5.0	0.15	1	NA	9/15/10 01:59	216527
I,2-Dichloroethene, Total	10	U	10	0.38	1	NA	9/15/10 01:59	216527
1,2-Dichloropropane	5.0	U	5.0	0.66	1	NA	9/15/10 01:59	216527
2-Butanone (MEK)	10	U	10	1.0	1	NA	9/15/10 01:59	216527
2-Hexanone	10	U	10	0.40	1	NA	9/15/10 01:59	216527
4-Methyl-2-pentanone	10	U	10	0.34	1	NA	9/15/10 01:59	216527
Acetone	20	U	20	1.6	1	NA	9/15/10 01:59	216527
Benzene	5.0	U	5.0	0.31	1	NA	9/15/10 01:59	216527
Bromodichloromethane €	5.0	U	5.0	0.41	1	NA	9/15/10 01:59	216527
Bromoform	5.0	U	5.0	0.30	1	NA	9/15/10 01:59	216527
Bromomethane	5.0		5.0	0.40	1	NA	9/15/10 01:59	
Carbon Disulfide	0.74		10	0.35	1	NA	9/15/10 01:59	
Carbon Tetrachloride	5.0	U	5.0	0.36	1	NA	9/15/10 01:59	216527
Chlorobenzene	5.0		5.0	0.26	I	NA	9/15/10 01:59	
Chloroethane	5.0		5.0	0.25	1	NA	9/15/10 01:59	
Chloroform	5.0	U	5.0	0.20	1	NA	9/15/10 01:59	216527
Chloromethane	5.0		5.0	0.46	1	NA	9/15/10 01:59	
Dibromochloromethane	5.0		5.0	0.20	1	NA	9/15/10 01:59	
Methylene Chloride	5.0	U	5.0	0.27	1	NA	9/15/10 01:59	216527
Ethylbenzene	5.0		5.0	0.42	1	NA	9/15/10 01:59	
Styrene	5.0		5.0	0.35	1	NA	9/15/10 01:59	
Tetrachloroethene (PCE)	5.0	U	5.0	0.42	1	NA	9/15/10 01:59	216527
Toluene	5.0		5.0	0.21	1	NA	9/15/10 01:59	
Trichloroethene (TCE)	5.0		5.0	0.19	1	NA	9/15/10 01:59	
Vinyl Chloride	5.0		5,0	0.28	1	NA	9/15/10 01:59	216527
Xylenes, Total	5.0		5.0	1.2	1	NA	9/15/10 01:59	
cis-1,3-Dichloropropene		U	5.0	0.18	1	NA	9/15/10 01:59	
trans-1,3-Dichloropropene	5.0	U	5.0	0.17	1	NA	9/15/10 01:59	216527

Analytical Report

Client:

Conestoga-Rovers & Associates, Incorporated

Project:

UCAR Annual GE/5513-20

Sample Matrix:

Water

Service Request: R1004897 **Date Collected: 9/7/10 1200**

Date Received: 9/9/10

Units: Percent Basis: NA

Sample Name:

WG-5513-090710-002

Lab Code:

R1004897-003

Volatile Organic Compounds by GC/MS

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85-122	9/15/10 01:59	
Dibromofluoromethane	106	89-119	9/15/10 01:59	
Toluene-d8	102	87-121	9/15/10 01:59	

Analytical Report

Client:

Conestoga-Rovers & Associates, Incorporated

Project:

Lab Code:

UCAR Annual GE/5513-20

Sample Matrix:

Water

Sample Name:

WG-5513-090710-003

R1004897-005

Service Request: R1004897

Date Collected: 9/7/10 1100 Date Received: 9/9/10

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result (Q MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1-Trichloroethane (TCA)	5.0 U	J 5.0	0.16	1	ŇA	9/15/10 02:26	216527
1,1,2,2-Tetrachloroethane	5.0 T		0.20	1	NA	9/15/10 02:26	216527
1,1,2-Trichloroethane	5.0 T	J 5.0	0.28	1	NA	9/15/10 02:26	216527
1,1-Dichloroethane (1,1-DCA)	5.0 T	J 5.0	0.13	1	NA	9/15/10 02:26	216527
1,1-Dichloroethene (1,1-DCE)	0.41	5,0	0.37	1	NA	9/15/10 02:26	216527
1,2-Dichloroethane	5.0 (J 5.0	0.15	1	NA	9/15/10 02:26	216527
1,2-Dichloroethene, Total	_ 20	10	0.38	1	NA	9/15/10 02:26	216527
1,2-Dichloropropane	5.0 U	J 5.0	0.66	1	NA	9/15/10 02:26	
2-Butanone (MEK)	10 τ	IJ 10	1.0	1	NA	9/15/10 02:26	216527
2-Hexanone	10 (J 10	0.40	1	NA	9/15/10 02:26	216527
4-Methyl-2-pentanone	10 T	J 10	0.34	1	NA	9/15/10 02:26	216527
Acetone	20 T	J 20	1.6	1	NA	9/15/10 02:26	216527
Benzene	5.0 T	J 5.0	0.31	1	NA	9/15/10 02:26	216527
Bromodichloromethane	5.0 U	J 5.0	0.41	1	NA	9/15/10 02:26	216527
Bromoform	5 .0 T	J 5.0	0.30	1	NA	9/15/10 02:26	216527
Bromomethane	5,0 T	J 5.0	0.40	1	NA	9/15/10 02:26	216527
Carbon Disulfide	10 U		0.35	1	NA	9/15/10 02:26	
Carbon Tetrachloride	5.0 T	J 5.0	0.36	1	NA	9/15/10 02:26	216527
Chlorobenzene	5.0 T	J 5.0	0.26	1	NA	9/15/10 02:26	216527
Chloroethane	5.0 U	J 5.0	0.25	1	NA	9/15/10 02:26	216527
Chloroform	5.0 U	J 5.0	0.20	1	NA	9/15/10 02:26	216527
Chloromethane	5.0 T		0.46	1	NA	9/15/10 02:26	216527
Dibromochloromethane	5.0 T		0.20	1	NA	9/15/10 02:26	
Methylene Chloride	5.0 T	J 5.0	0.27	1	NA	9/15/10 02:26	216527
Ethylbenzene	5.0 T		0.42	1	NA	9/15/10 02:26	
Styrene	5.0 T		0.35	1	NA	9/15/10 02:26	
Tetrachloroethene (PCE)	5.0 U	J 5.0	0.42	1	NA	9/15/10 02:26	216527
Toluene	5.0 T		0.21	1	NA	9/15/10 02:26	
Trichloroethene (TCE)	8.8	5.0	0.19	1	NA	9/15/10 02:26	
Vinyl Chloride			0.28	1	NA	9/15/10 02:26	
Xylenes, Total	5.0 T		1.2	1	NA	9/15/10 02:26	
cis-1,3-Dichloropropene	5.0 T		0.18	1	NA	9/15/10 02:26	
trans-1,3-Dichloropropene	5.0 U	J 5.0	0.17	1	NA	9/15/10 02:26	216527

Analytical Report

Client:

Conestoga-Rovers & Associates, Incorporated

Project:

UCAR Annual GE/5513-20

Sample Matrix: Sample Name: Water

Water

Lab Code:

WG-5513-090710-003 R1004897-005 Service Request: R1004897

Date Collected: 9/7/10 1100

Date Received: 9/9/10

Units: Percent Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name %1	Cont Rec Limi			
4-Bromofluorobenzene 103	85-12	22 9/15/10 02	2:26	
Dibromofluoromethane 106	89-1	19 9/15/10 02	2:26	
Toluene-d8 103	87-12	21 9/15/10 02	2:26	

Analytical Report

Client:

Conestoga-Rovers & Associates, Incorporated

Project:

UCAR Annual GE/5513-20

Sample Matrix:

Water

WG-5513-090710-004

Sample Name: Lab Code:

R1004897-007

Service Request: R1004897

Date Collected: 9/7/10 1155 Date Received: 9/9/10

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

					Dilution	Date	Date	Extraction Analysis
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot Lot
1,1,1-Trichloroethane (TCA)	5.0	U	5.0	0.16	1	NA	9/15/10 02:53	216527
1,1,2,2-Tetrachloroethane	5.0	U	5.0	0.20	1	NA	9/15/10 02:53	216527
1,1,2-Trichloroethane	5.0	U	5.0	0.28	1	NA	9/15/10 02:53	216527
1,1-Dichloroethane (1,1-DCA)	_ 0.20	J	5.0	0.13	1	NA	9/15/10 02:53	216527
1,1-Dichloroethene (1,1-DCE)	5.0	U	5.0	0.37	1	NA	9/15/10 02:53	216527
1,2-Dichloroethane	5.0	U	5.0	0.15	1	NA	9/15/10 02:53	216527
1,2-Dichloroethene, Total	0.94	J	10	0.38	1	NA	9/15/10 02:53	216527
1,2-Dichloropropane	5.0	U	5.0	0.66	1	NA	9/15/10 02:53	216527
2-Butanone (MEK)	10	U	10	1.0	1	NA	9/15/10 02:53	216527
2-Hexanone	10	U	10	0,40	1	NA	9/15/10 02:53	216527
4-Methyl-2-pentanone	10	U	10	0.34	1	NA	9/15/10 02:53	216527
Acetone	_ 2.9	J	20	1.6	1	NA	9/15/10 02:53	216527
Benzene	5.0	U	5.0	0.31	1	NA	9/15/10 02:53	216527
Bromodichloromethane	5.0	U	5.0	0.41	1	NA	9/15/10 02:53	216527
Bromoform	5.0	U	5.0	0.30	1	NA	9/15/10 02:53	216527
Bromomethane	5.0	U	5.0	0.40	1	NA	9/15/10 02:53	216527
Carbon Disulfide	10	U	10	0.35	1	NA	9/15/10 02:53	216527
Carbon Tetrachloride	5.0	U	5.0	0.36	1	NA	9/15/10 02:53	216527
Chlorobenzene	5.0	U	5.0	0.26	1	NA	9/15/10 02:53	216527
Chloroethane	6.8		5.0	0.25	1	NA	9/15/10 02:53	216527
Chloroform	5.0	U	5.0	0.20	1	NA	9/15/10 02:53	216527
Chloromethane	5.0		5.0	0.46	1	NA	9/15/10 02:53	216527
Dibromochloromethane	5.0		5.0	0.20	1	NA	9/15/10 02:53	216527
Methylene Chloride	5.0	U	5.0	0.27	1	NA	9/15/10 02:53	216527
Ethylbenzene	5.0		5.0	0.42	1	NA	9/15/10 02:53	216527
Styrene	5.0		5.0	0.35	1	NA	9/15/10 02:53	216527
Tetrachloroethene (PCE)	5.0	U	5,0	0.42	1	NA	9/15/10 02:53	216527
Toluene	5.0		5.0	0.21	1	NA	9/15/10 02:53	216527
Trichloroethene (TCE)	5.0		5.0	0.19	1	NA	9/15/10 02:53	216527
Vinyl Chloride	1.6		5.0	0.28	1	NA	9/15/10 02:53	216527
Xylenes, Total	5.0		5.0	1.2	1	NA	9/15/10 02:53	216527
cis-1,3-Dichloropropene	5.0		5.0	0.18	1	NA	9/15/10 02:53	216527
trans-1,3-Dichloropropene	5.0	U	5.0	0.17	1	NA	9/15/10 02:53	216527

Analytical Report

Client:

Conestoga-Rovers & Associates, Incorporated

Project:

UCAR Annual GE/5513-20

Sample Matrix: Sample Name: Water

WG-5513-090710-004

Lab Code:

R1004897-007

Service Request: R1004897

Date Collected: 9/7/10 1155

Date Received: 9/9/10

Units: Percent Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85-122	9/15/10 02:53	
Dibromofluoromethane	108	89-119	9/15/10 02:53	
Toluene-d8	104	87-121	9/15/10 02:53	

Analytical Report

Client: Conestoga-Rovers & Associates, Incorporated

Project: UCAR Annual GE/5513-20

Sample Matrix: Water

Sample Name: WG-5513-090710-005

Lab Code: R1004897-009

Service Request: R1004897

Date Collected: 9/7/10 1240

Date Received: 9/9/10

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	0	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1-Trichloroethane (TCA)	5.0		5.0	0.16	1	NA	9/15/10 03:21	
1,1,2,2-Tetrachloroethane	2.9		5.0	0.10	1	NA	9/15/10 03:21	
1,1,2-Trichloroethane	5.0		5.0	0.28	1	NA.	9/15/10 03:21	
1,1-Dichloroethane (1,1-DCA)	5.0		5.0	0.13 0.37	1	NA NA	9/15/10 03:21 9/15/10 03:21	
1,1-Dichloroethene (1,1-DCE) 1,2-Dichloroethane	4.1 5.0		5.0 5.0	0.37	1	NA NA	9/15/10 03:21	
					1			
1,2-Dichloroethene, Total	830		10	0.38	1	NA	9/15/10 03:21	
1,2-Dichloropropane	5.0		5.0	0.66	1	NA	9/15/10 03:21	
2-Butanone (MEK)	10	U	10	1.0	1	NA	9/15/10 03:21	216527
2-Hexanone	10	U	10	0.40	1	NA	9/15/10 03:21	
4-Methyl-2-pentanone	10	U	10	0.34	1	NA	9/15/10 03:21	216527
Acetone	3.2	J	20	1.6	1	NA	9/15/10 03:21	216527
Benzene	0.48	J	5.0	0.31	1	NA	9/15/10 03:21	216527
Bromodichloromethane	5.0	U	5.0	0.41	1	NA	9/15/10 03:21	216527
Bromoform	5.0	U	5.0	0.30	1	NA	9/15/10 03:21	216527
Bromomethane	5.0	U	5.0	0.40	1	NA	9/15/10 03:21	216527
Carbon Disulfide	0.66	J	10	0.35	1	NA	9/15/10 03:21	216527
Carbon Tetrachloride	5.0	U	5.0	0.36	1	NA	9/15/10 03:21	216527
Chlorobenzene	5.0	U	5.0	0.26	1	NA	9/15/10 03:21	216527
Chloroethane	5.0	U	5.0	0.25	1	NA	9/15/10 03:21	
Chloroform	9.6		5.0	0.20	1	NA	9/15/10 03:21	216527
Chloromethane	5.0	U	5.0	0.46	1	NA	9/15/10 03:21	216527
Dibromochloromethane	5.0	U	5.0	0.20	1	NA	9/15/10 03:21	216527
Methylene Chloride	5.0	U	5.0	0.27	1	NA	9/15/10 03:21	216527
Ethylbenzene	5.0	U	5.0	0.42	1	NA	9/15/10 03:21	216527
Styrene	5.0	U	5.0	0.35	1	NA.	9/15/10 03:21	
Tetrachloroethene (PCE)	97		5.0	0.42	1	NA	9/15/10 03:21	216527
Toluene	9.51		5.0	0.21	1	NA	9/15/10 03:21	
Trichloroethene (TCE)	340	E	5.0	0.19	1	NA	9/15/10 03:21	
Vinyl Chloride	170		5.0	0.28	1	NA	9/15/10 03:21	216527
Xylenes, Total	5.0		5.0	1.2	1	NA	9/15/10 03:21	216527
cis-1,3-Dichloropropene		U	5.0	0.18	1	NA	9/15/10 03:21	
trans-1,3-Dichloropropene	5.0	U	5.0	0.17	1	NA	9/15/10 03:21	216527

Analytical Report

Client:

Conestoga-Rovers & Associates, Incorporated

Project:

UCAR Annual GE/5513-20

Sample Matrix: Sample Name: Water

WG-5513-090710-005

Lab Code:

R1004897-009

Service Request: R1004897

Date Collected: 9/7/10 1240

Date Received: 9/9/10

Units: Percent Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85-122	9/15/10 03:21	
Dibromofluoromethane	106	89-119	9/15/10 03:21	
Toluene-d8	103	87-121	9/15/10 03:21	

Analytical Report

Client:

Conestoga-Rovers & Associates, Incorporated

Project:

UCAR Annual GE/5513-20

Sample Matrix:

Water

Service Request: R1004897 **Date Collected:** 9/7/10 1240

Date Received: 9/9/10

Sample Name: Lab Code:

WG-5513-090710-005

R1004897-009

Run Type:

Dilution

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	0	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1-Trichloroethane (TCA)	50		50	1.6	10	NA	9/15/10 14:08	
1,1,2,2-Tetrachloroethane	3.2		50	2.0	10	NA	9/15/10 14:08	
1,1,2-Trichloroethane	50		50	2.9	10	NA	9/15/10 14:08	
1,1-Dichloroethane (1,1-DCA)	50		50	1.3	10	NA	9/15/10 14:08	216695
1,1-Dichloroethene (1,1-DCE)	50		50	3.7	10	NA	9/15/10 14:08	
1,2-Dichloroethane	50		50	1.5	10	NA	9/15/10 14:08	
1,2-Dichloroethene, Total	740	D	100	3.8	10	NA	9/15/10 14:08	216695
1,2-Dichloropropane	50	U	50	6.7	10	NA	9/15/10 14:08	216695
2-Butanone (MEK)	100	U	100	10	10	NA	9/15/10 14:08	216695
2-Hexanone	100	Ū	100	4.0	10	NA	9/15/10 14:08	216695
4-Methyl-2-pentanone	100	U	100	3.5	10	NA	9/15/10 14:08	216695
Acetone	200	U	200	16	10	NA	9/15/10 14:08	216695
Benzene	50	U	50	3.1	10	NA	9/15/10 14:08	216695
Bromodichloromethane	50	U	50	4.1	10	NA	9/15/10 14:08	216695
Bromoform	50	U	50	3.0	10	NA	9/15/10 14:08	216695
Bromomethane	50		50	4.0	10	NA	9/15/10 14:08	216695
Carbon Disulfide	100		100	3.5	10	NA	9/15/10 14:08	
Carbon Tetrachloride	50	U	50	3.6	10	NA	9/15/10 14:08	216695
Chlorobenzene	50		50	2.6	10	NA	9/15/10 14:08	
Chloroethane	50		50	2.5	10	NA	9/15/10 14:08	
Chloroform	7.8	DJ	50	2.0	10	NA	9/15/10 14:08	216695
Chloromethane	50		50	4.7	10	NA	9/15/10 14:08	216695
Dibromochloromethane	50		50	2.0	10	NA	9/15/10 14:08	216695
Methylene Chloride	50	U	50	2.7	10	NA	9/15/10 14:08	216695
Ethylbenzene	50		50	4.2	10	NA	9/15/10 14:08	
Styrene	50		50	3.5	10	NA	9/15/10 14:08	
Tetrachloroethene (PCE)	79	D	50	4.2	10	NA	9/15/10 14:08	216695
Toluene	50		50	2.1	10	NA	9/15/10 14:08	
Trichloroethene (TCE)	300		50	1.9	10	NA	9/15/10 14:08	
Vinyl Chloride	140		50	2.9	10	NA	9/15/10 14:08	216695
Xylenes, Total	50		50	12	10	NA	9/15/10 14:08	
cis-1,3-Dichloropropene	50		50	1.8	10	NA	9/15/10 14:08	
trans-1,3-Dichloropropene	50	U	50	1.8	10	NA	9/15/10 14:08	216695

Analytical Report

Client:

Conestoga-Rovers & Associates, Incorporated

Project:

UCAR Annual GE/5513-20

Sample Matrix:

Water

.....

Sample Name: Lab Code: WG-5513-090710-005

R1004897-009

Run Type:

Dilution

Service Request: R1004897

Date Collected: 9/7/10 1240

Date Received: 9/9/10

Units: Percent Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85-122	9/15/10 14:08	
Dibromofluoromethane	107	89-119	9/15/10 14:08	
Toluene-d8	105	87-121	9/15/10 14:08	

Analytical Report

Client: Conestoga-Rovers & Associates, Incorporated

Project: UCAR Annual GE/5513-20

Sample Matrix: Water

Sample Name: WG-5513-090710-006

Lab Code: R1004897-011

Service Request: R1004897

Date Collected: 9/7/10 1330

Date Received: 9/9/10

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	0	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1-Trichloroethane (TCA)	5.0		5.0	0.16	1	NA	9/15/10 13:14	The state of the s
1,1,2,2-Tetrachloroethane	5.0		5.0	0.10	1	NA	9/15/10 13:14	
1,1,2-Trichloroethane	5.0		5.0	0.28	i	NA	9/15/10 13:14	
1,1-Dichloroethane (1,1-DCA)	5.0		5.0	0.13	1	NA	9/15/10 13:14	
1,1-Dichloroethene (1,1-DCE)	5.0		5.0	0.37	1	NA	9/15/10 13:14	
1,2-Dichloroethane	5.0		5.0	0.15	ī	NA	9/15/10 13:14	
1,2-Dichloroethene, Total	2.2		10	0.38	1	NA	9/15/10 13:14	
1,2-Dichloropropane	5.0		5.0	0.66	ì	NA	9/15/10 13:14	
2-Butanone (MEK)	10		10	1.0	1	NA	9/15/10 13:14	
2-Hexanone	10	IJ	10	0.40	1	NA	9/15/10 13:14	
4-Methyl-2-pentanone	10		10	0.34	i	NA	9/15/10 13:14	
Acetone	20		20	1.6	1	NA	9/15/10 13:14	
Benzene	5.0	U	5.0	0.31	1	NA	9/15/10 13:14	216695
Bromodichloromethane	5.0		5.0	0.41	ī	NA	9/15/10 13:14	
Bromoform	5.0	U	5.0	0.30	1	NA	9/15/10 13:14	
Bromomethane	5.0	U	5.0	0.40	1	NA	9/15/10 13:14	216695
Carbon Disulfide	10	U	10	0.35	1	NA	9/15/10 13:14	216695
Carbon Tetrachloride	5.0	U	5.0	0.36	1	NA	9/15/10 13:14	216695
Chlorobenzene	5.0	U	5.0	0.26	1	NA	9/15/10 13:14	216695
Chloroethane	5.0		5.0	0.25	1	NA	9/15/10 13:14	
Chloroform	5.0	U_	5.0	0.20	1	NA	9/15/10 13:14	216695
Chloromethane	5.0	U	5.0	0.46	1	NA	9/15/10 13:14	216695
Dibromochloromethane	5.0		5.0	0.20	1	NA	9/15/10 13:14	216695
Methylene Chloride	5.0	U	5.0	0.27	1	NA	9/15/10 13:14	216695
Ethylbenzene	5.0		5.0	0.42	1	NA	9/15/10 13:14	
Styrene	5.0		5.0	0.35	1	NA	9/15/10 13:14	
Tetrachloroethene (PCE)	5.0		5.0	0.42	1	NA	9/15/10 13:14	216695
Toluene	5.0		5.0	0.21	1	NA	9/15/10 13:14	
Trichloroethene (TCE)	5.0	U	5.0	0.19	1	NA	9/15/10 13:14	
Vinyl Chloride	6.4		5.0	0.28	1	NA	9/15/10 13:14	
Xylenes, Total	5.0		5.0	1.2	1	NA	9/15/10 13:14	
cis-1,3-Dichloropropene	5.0		5.0	0.18	I	NA	9/15/10 13:14	
trans-1,3-Dichloropropene	5.0	U	5.0	0.17	1	NA	9/15/10 13:14	216695

Analytical Report

Client:

Conestoga-Rovers & Associates, Incorporated

Project:

UCAR Annual GE/5513-20

Sample Matrix:

Water

Sample Name: Lab Code:

WG-5513-090710-006

R1004897-011

Service Request: R1004897

Date Collected: 9/7/10 1330

Date Received: 9/9/10

Units: Percent Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85-122	9/15/10 13:14	
Dibromofluoromethane	104	89-119	9/15/10 13:14	
Toluene-d8	102	87-121	9/15/10 13:14	

Analytical Report

Client:

Conestoga-Rovers & Associates, Incorporated

Project:

UCAR Annual GE/5513-20

Sample Matrix:

Water

Sample Name: Lab Code:

WG-5513-090710-007

R1004897-013

N1 1 2

Service Request: R1004897

Date Collected: 9/7/10 1350

Date Received: 9/9/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

				Dilution	Date	Date	Extraction Analysis
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot Lot
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	0.16	1	NA	9/15/10 13:41	
1,1,2,2-Tetrachloroethane	5.0 U 📝	5.0	0.20	1	NA	9/15/10 13:41	216695
1,1,2-Trichloroethane	5.0 U	5.0	0.28	1	NA	9/15/10 13:41	216695
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	0.13	1	NA	9/15/10 13:41	216695
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	0.37	1	NA	9/15/10 13:41	216695
1,2-Dichloroethane	5.0 U	5.0	0.15	1	NA	9/15/10 13:41	216695
1,2-Dichloroethene, Total	10 U	10	0.38	1	NA	9/15/10 13:41	216695
1,2-Dichloropropane	5.0 U	5.0	0.66	1	NA	9/15/10 13:41	216695
2-Butanone (MEK)	10 U	10	1.0	1	NA	9/15/10 13:41	216695
2-Hexanone	10 U	10	0.40	1	NA	9/15/10 13:41	216695
4-Methyl-2-pentanone	10 U	10	0.34	1	NA	9/15/10 13:41	216695
Acetone	20 U	20	1.6	1	NA	9/15/10 13:41	216695
Benzene	5.0 U	5.0	0.31	1	NA	9/15/10 13:41	216695
Bromodichloromethane	5.0 U	5.0	0.41	l	NA	9/15/10 13:41	216695
Bromoform	5.0 U	5.0	0.30	1	NA	9/15/10 13:41	216695
Bromomethane	5.0 U	5,0	0.40	1	NA	9/15/10 13:41	216695
Carbon Disulfide	10 U	10	0.35	1	NA	9/15/10 13:41	216695
Carbon Tetrachloride	5.0 U	5.0	0.36	1	NA	9/15/10 13:41	216695
Chlorobenzene	5.0 U	5.0	0.26	1	NA	9/15/10 13:41	216695
Chloroethane	5.0 U	5.0	0.25	1	NA	9/15/10 13:41	216695
Chloroform	5.0 U	5.0	0.20	1	NA	9/15/10 13:41	216695
Chloromethane	5.0 U	5.0	0.46	1	NA	9/15/10 13:41	216695
Dibromochloromethane	5.0 U	5.0	0.20	1	NA	9/15/10 13:41	216695
Methylene Chloride	5.0 U	5.0	0.27	1	NA	9/15/10 13:41	216695
Ethylbenzene	5.0 U	5.0	0.42	1	NA	9/15/10 13:41	216695
Styrene	5.0 U	5.0	0.35	1	NA	9/15/10 13:41	216695
Tetrachloroethene (PCE)	5.0 U	5.0	0.42	1	NA	9/15/10 13:41	216695
Toluene	5.0 U	5.0	0.21	1	NA	9/15/10 13:41	216695
Trichloroethene (TCE)	5.0 U	5.0	0.19	1	NA	9/15/10 13:41	216695
Vinyl Chloride	5.0 U	5.0	0.28	1	NA	9/15/10 13:41	216695
Xylenes, Total	5.0 U	5.0	1.2	1	NA	9/15/10 13:41	216695
cis-1,3-Dichloropropene	5.0 U	5.0	0.18	1	NA	9/15/10 13:41	216695
trans-1,3-Dichloropropene	5.0 U	5.0	0.17	1	NA	9/15/10 13:41	216695

Analytical Report

Client:

Conestoga-Rovers & Associates, Incorporated

Project:

UCAR Annual GE/5513-20

Sample Matrix:

Water

Sample Name: Lab Code: WG-5513-090710-007

R1004897-013

Service Request: R1004897

Date Collected: 9/7/10 1350

Date Received: 9/9/10

Units: Percent Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	107	85-122	9/15/10 13:41	
Dibromofluoromethane	107	89-119	9/15/10 13:41	
Toluene-d8	107	87-121	9/15/10 13:41	

Analytical Report

Client: Conestoga-Rovers & Associates, Incorporated

Project: UCAR Annual GE/5513-20

Sample Matrix: Water

Sample Name: WG-5513-090710-008

Lab Code: R1004897-015

Service Request: R1004897

Date Collected: 9/7/10 1430

Date Received: 9/9/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot
1,1,1-Trichloroethane (TCA)	5.0	U	5.0	0.16	1	NA	9/15/10 04:42	216527
1,1,2,2-Tetrachloroethane	5.0	U	5.0	0.20	1	NA	9/15/10 04:42	216527
1,1,2-Trichloroethane	/ 5.0	U	5.0	0.28	1	NA	9/15/10 04:42	216527
1,1-Dichloroethane (1,1-DCA)	5.0	U	5.0	0.13	1	NA	9/15/10 04:42	216527
1,1-Dichloroethene (1,1-DCE)	5.0		5.0	0.37	1	NA	9/15/10 04:42	
1,2-Dichloroethane	5.0	U	5.0	0.15	1	NA	9/15/10 04:42	216527
1,2-Dichloroethene, Total	10	U	10	0.38	1	NA	9/15/10 04:42	216527
1,2-Dichloropropane	5.0		5.0	0.66	1	NA	9/15/10 04:42	
2-Butanone (MEK)	10	U	10	1.0	1	NA	9/15/10 04:42	216527
2-Hexanone	10	U	10	0.40	1	NA	9/15/10 04:42	216527
4-Methyl-2-pentanone	10	U	10	0.34	1	NA	9/15/10 04:42	216527
Acetone	20	U	20	1.6	1	NA	9/15/10 04:42	216527
Benzene	5.0	U	5.0	0.31	1	NA	9/15/10 04:42	216527
Bromodichloromethane	5.0	U	5.0	0.41	1	NA	9/15/10 04:42	216527
Bromoform	5.0	U	5.0	0.30	1	NA	9/15/10 04:42	216527
Bromomethane	5.0	U	5.0	0.40	1	NA	9/15/10 04:42	216527
Carbon Disulfide	10		10	0.35	1	NA	9/15/10 04:42	216527
Carbon Tetrachloride	5.0	U	5.0	0.36	1	NA	9/15/10 04:42	216527
Chlorobenzene	5.0	U	5.0	0.26	1	NA	9/15/10 04:42	216527
Chloroethane	5.0	U	5.0	0.25	1	NA	9/15/10 04:42	216527
Chloroform	5.0	U	5.0	0.20	1	NA	9/15/10 04:42	216527
Chloromethane	5.0	U	5.0	0.46	1	NA	9/15/10 04:42	216527
Dibromochloromethane	5.0	U	5.0	0.20	1	ÑΑ	9/15/10 04:42	216527
Methylene Chloride	5.0	U	5.0	0.27	1	NA	9/15/10 04:42	216527
Ethylbenzene	5.0	U	5.0	0.42	1	NA	9/15/10 04:42	216527
Styrene	5.0		5.0	0.35	1	NA	9/15/10 04:42	
Tetrachloroethene (PCE)	5.0	U	5.0	0.42	1	NA	9/15/10 04:42	216527
Toluene	5.0		5.0	0.21	1	NA	9/15/10 04:42	
Trichloroethene (TCE)	5.0		5.0	0.19	1	NA	9/15/10 04:42	
Vinyl Chloride	5.0	U	5.0	0.28	1	NA	9/15/10 04:42	216527
Xylenes, Total	5.0		5.0	1.2	1	NA	9/15/10 04:42	
cis-1,3-Dichloropropene		U	5.0	0.18	1	NA	9/15/10 04:42	
trans-1,3-Dichloropropene	5.0	U	5.0	0.17	1	NA	9/15/10 04:42	216527

Analytical Report

Client:

Conestoga-Rovers & Associates, Incorporated

Project:

UCAR Annual GE/5513-20

Sample Matrix:

Water

WG-5513-090710-008

Sample Name: Lab Code:

R1004897-015

Service Request: R1004897

Date Collected: 9/7/10 1430

Date Received: 9/9/10

Units: Percent Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85-122	9/15/10 04:42	
Dibromofluoromethane	105	89-119	9/15/10 04:42	
Toluene-d8	103	87-121	9/15/10 04:42	

Contract: R1004897

Lab Code: _____

METALS

Case No.:

COVER PAGE - INORGANIC ANALYSIS DATA PACKAGE

sow No.: SW84	6 CLP-M			
	Sample ID.	Lab Sample No.		1
	WG-5513-090710-001	R1004897-001		
	WG-5513-090710-001 DISSOLVED	R1004897-002		
	WG-5513-090710-002	R1004897-003		
	WG-5513-090710-002 DISSOLVED	R1004897-004		
	WG-5513-090710-003	R1004897-005		
	WG-5513-090710-003D	R1004897-005D		
	WG-5513-090710-003S	R1004897-005S		
	WG-5513-090710-003 DISSOLVED	R1004897-006		
	WG-5513-090710-003 DISSOLVEDD	R1004897-006D		
	WG-5513-090710-003 DISSOLVEDS	R1004897-006S		
	WG-5513-090710-004	R1004897-007		
	WG-5513-090710-004 DISSOLVED	R1004897-008		
	WG-5513-090710-005	R1004897-009		
	WG-5513-090710-005 DISSOLVED	R1004897-010		
	WG-5513-090710-006	R1004897-011		
	WG-5513-090710-006 DISSOLVED	R1004897-012		
	WG-5513-090710-007	R1004897-013		
	WG-5513-090710-007 DISSOLVED	R1004897-014		
	WG-5513-090710-008	R1004897-015		
	WG-5513-090710-008 DISSOLVED	R1004897-016		
Were ICP intere	element corrections applied?		Yes/No	YES
Were ICP backgr	round corrections applied?		Yes/No	YES
If yes-we	re raw data generated before		· ·	
applicati	on of background corrections?		Yes/No	NO
Comments:	See Attatched Case Narrative			
Signature:	Michael & Peny Nam	e: Michael Perry		
Date:	10 (01 (10 Tit	le: Laboratory Dire	ctor	

SAS No.: WG-5513-090

Columbia Analytical Services

METALS

-1-INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

Contract:	R1004897						WG-5513	-090710-001
Lab Code:		Case	No.:	SAS No.:		SD	G NO.:	WG-5513-0907
Matrix (soi	.l/water):	WATER		Lab	Sample ID:	R1004	897-001	
Level (low/	med): I	LOW		Date	e Received:	9/9/2	2010	

CAS No.	Analyte	Concentration	С	Õ	м
7439-89-6	Iron	6240		*	P
7440-09-7	Potassium	5720			P
7440-66-6	Zinc	2900			P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
•					
-					

-1-

INORGANIC ANALYSIS DATA SHEET

c	7	M	ומ	r E	:	NT	$\overline{}$	
Э.	A	м	۲,	يري		N	u	•

WG-	55:	L3-	090.	710-	001	DISS

Contract: R1004897

Lab Code:

Case No.:

SAS No.:

SDG NO.:

WG-5513-0907

Matrix (soil/water):

WATER

Lab Sample ID:

R1004897-002

Level (low/med):

LOW

Date Received:

9/9/2010

CAS No.	Analyte	Analyte Concentration		Q	м
7439-89-6	Iron	1140		*	P
7440-09-7	Potassium	5560			P
7440-66-6	Zinc	135			P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

W	G-551	3-090710	0-002	

Contract:	R1004897				WG-5513	-090710-002
Lab Code:		Case No.:	SAS No.:		SDG NO.:	WG-5513-0907
Matrix (soi	1/water):	VATER	Lab (Sample ID:	R1004897-003	
Level (low/	med): LOW		Date	Received:	9/9/2010	

CAS No.	Analyte	Concentration	С	Q	М
7439-89-6	Iron	8930		*	P
7440-09-7	Potassium	5640			P
7440-66-6	Zinc	3850			P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
-				· · · · · · · · · · · · · · · · · · ·	

-1-INORGANIC ANALYSIS DATA SHEET

			INOROPE (IO PENEDED DITTIBLE)	SAMPLE NO.
				WG-5513-090710-002 DISS
Contract:	R1004897			
Lab Code:		Case No.:	SAS No.:	SDG NO.: WG-5513-0907
Matrix (soi	l/water):	WATER	Lab Sample ID:	R1004897-004
Level (low/	med): LO	DW .	Date Received:	9/9/2010
	•			

CAS No.	Analyte	Concentration	С	Q	м
7439-89-6	Iron	1410		*	P
7440-09-7	Potassium	5590			P
7440-66-6	Zinc	163			P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE	NO	
--------	----	--

Contract: R1004897

Lab Code:

Case No.:

SAS No.:

SDG NO.:

WG-5513-0907

Matrix (soil/water):

WATER

Lab Sample ID:

R1004897-005

Level (low/med):

LOW

Date Received:

9/9/2010

CAS No.	Analyte	Concentration	С	Q	м
7439-89-6	Iron	272	 	*	P
7440-09-7	Potassium	5400			P
7440-66-6	Zinc	1350			P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
_					

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

WG-5513-090710-003	DISS

Contract: R1004897

Lab Code:

Case No.:

SAS No.:

SDG NO.:

WG-5513-0907

Matrix (soil/water):

WATER

Lab Sample ID:

R1004897-006

Level (low/med):

LOW

Date Received:

9/9/2010

CAS No.	AS No. Analyte Concentration		С	Q	М
7439-89-6	Iron	265	\vdash	*	P
7440-09-7	Potassium	5680			P
7440-66-6	Zinc	303			P

Color Befor	e: COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After	: COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

WG-5513-090710-004	
--------------------	--

12

Contract:	R1004897				WG-5513	-090710-004
Lab Code:		Case No.:	SAS No	.:	SDG NO.:	WG-5513-0907
Matrix (so	oil/water):	WATER		Lab Sample ID:	R1004897-007	
Level (lov	w/med):	LOW		Date Received:	9/9/2010	

CAS No.	Analyte	Concentration		Q	м
7439-89-6	Iron	10000		*	P
7440-09-7	Potassium	5650			P
7440-66-6	Zinc	30600	!		P

Color Before:	YELLOW	Clarity Before:	CLOUDY	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

WG-5513-090710-004	DISS

Contract:	R1004897

Lab Code:

Case No.:

SAS No.:

SDG NO.:

WG-5513-0907

Matrix (soil/water):

WATER

Lab Sample ID:

R1004897-008

Level (low/med):

TOW

Date Received:

9/9/2010

CAS No.	Analyte	Concentration	С	Q	м
7439-89-6	Iron	1700		*	P
7440-09-7	Potassium	5780			P
7440-66-6	Zinc	1400			P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	-
Comments:					

METALS -1-

	INORGANIC	ANALYSIS DATA SHEET	SAMPLE NO.
			WG-5513-090710-005
Contract: R1004897			
Lab Code:	Case No.:	SAS No.:	SDG NO.: WG-5513-0907
Matrix (soil/water):	VATER	Lab Sample ID: R	1004897-009
Level (low/med): LOW		Date Received: 9	/9/2010
		_	

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	М
7439-89-6	Iron	8480	+	*	P
7440-09-7	Potassium	18200	Ī		P
7440-66-6	Zinc	3340			P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					

P "

1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

WG-5513-090710-005	DIS
--------------------	-----

Contract: R1004897

Lab Code:

Case No.:

SAS No.:

SDG NO.:

WG-5513-0907

Matrix (soil/water):

WATER

Lab Sample ID:

R1004897-010

3313 030

Level (low/med):

LOW

Date Received:

9/9/2010

CAS No.	Analyte	Concentration	С	Q	м
7439-89-6	Iron	4350		*	P
7440-09-7	Potassium	19300	1		P
7440-66-6	Zinc	143		1	P

Color Before	: COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

Contract:	R1004897			WG-5513	-090710-006
Lab Code:		Case No.:	SAS No.:	SDG NO.:	WG-5513-0907
Matrix (soi	il/water):	WATER	Lab Sample ID:	R1004897-011	_
Level (low,	/med): LOW	ī	Date Received:	9/9/2010	

CAS No.	Analyte	Concentration	С	Q.	м
7439-89-6	Iron	982	 	*	P
7440-09-7	Potassium	3360	1	}	P
7440-66-6	Zinc	66.8	Γ		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
_					

Columbia Analytical Services

METALS

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

WG-5513-090710-006 DIS	WG-5513-090710-0	06	DIS
------------------------	------------------	----	-----

Contract:	R1004897

Case No.:

SAS No.:

SDG NO.:

WG-5513-0907

Matrix (soil/water):

WATER

Lab Sample ID:

R1004897-012

Level (low/med):

Lab Code:

LOW

Date Received:

9/9/2010

CAS No.	Analyte	Concentration	C	Q	м
7439-89-6	Iron	806	1	*	P
7440-09-7	Potassium	3420	1	1	P
7440-66-6	Zinc	8.1	J		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

1110 -

Contract:	R1004897			WG-5513-090710-007
Lab Code:		Case No.:	SAS No.:	SDG NO.: WG-5513-0907
Matrix (soi	1/water):	WATER	Lab Sample ID:	R1004897-013
Level (low/	med):	LOW	Date Received:	9/9/2010

CAS No.	Analyte	Concentration	С	Q	м
7439-89-6	Iron	35800	1	*	P
7440-09-7	Potassium	7710	1		P
7440-66-6	Zinc	221	1		P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					

Columbia Analytical Services

METALS

1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

₩G-5	513~	09071	0-007	DIS
------	------	-------	-------	-----

Contract:	R1004897
contract.	VT00#02/

K1004897

Case No.:

SAS No.:

SDG NO.:

WG-5513-0907

Matrix (soil/water):

WATER

Lab Sample ID:

R1004897-014

Level (low/med):

Lab Code:

LOW

Date Received:

9/9/2010

CAS No.	Analyte	Concentration	С	Q	м
7439-89-6	Iron	6350		*	P
7440-09-7	Potassium	2930			P
7440-66-6	Zinc	33.4			P

Color Before:	YELLOW	Clarity Before:	CLOUDY	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

Contract:	R1004897					WG-5513	3-090710-008
Lab Code:		Case No.:	SAS No.:		SI	G NO.:	WG-5513-0907
Matrix (soi	.1/water):	WATER	Lab	Sample ID:	R100	4897-015	5
Level (low/	med): <u>L</u>	OW	Date	Received:	9/9/	2010	

CAS No.	Analyte	Concentration	C	Q	м
7439-89-6	Iron	199	1	*	P
7440-09-7	Potassium	3580	1	Ì	P
7440-66-6	Zinc	9.7	J		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
-					

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

₩G-551	3-090710-008	B DISS

Contract: R1004897

Lab Code:

Case No.:

SAS No.:

SDG NO .:

WG-5513-0907

Matrix (soil/water):

WATER

Lab Sample ID:

R1004897-016

Level (low/med):

LOW

Date Received:

9/9/2010

CAS No.	Analyte	Concentration	С	Ω	м
7439-89-6	Iron	133		*	P
7440-09-7	Potassium	3680			P
7440-66-6	Zinc	5.0	J	1	P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
_					
_					

Analytical Report

Client:

Conestoga-Rovers & Associates, Incorporated

Project:

UCAR Annual GE/5513-20

Sample Matrix:

Water

Service Request: R1004897

Date Collected: 9/7/10 1000

Date Received: 9/9/10

Basis: NA

Sample Name:

WG-5513-090710-001

Lab Code:

R1004897-001

4 - 2 5

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.522	mg/L	0.050	1	NA	9/22/10 11:47
Nitrite as Nitrogen	353.2	0.010 U	mg/L	0.010	1	NA	9/9/10 18:27
Nitrogen, Total Kjeldahl (TKN)	351.2	1.26	mg/L	0.20	1	9/13/10	9/14/10 11:40

Analytical Report

Client:

Conestoga-Rovers & Associates, Incorporated

Project:

UCAR Annual GE/5513-20

Sample Matrix: Sample Name:

Water

R1004897-003

Lab Code:

WG-5513-090710-002

Service Request: R1004897 Date Collected: 9/7/10 1200

Date Received: 9/9/10

Basis: NA

P. 2 6/ ;

Analyte Name	Method	Result	Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.529		mg/L	0.050	1	NA	9/22/10 11:48
Nitrite as Nitrogen	353.2	0.010	U	mg/L	0.010	1	NA	9/9/10 18:27
Nitrogen, Total Kjeldahl (TKN)	351.2	1.20		mg/L	0.20	1	9/13/10	9/14/10 11:42

Analytical Report

Client:

Conestoga-Rovers & Associates, Incorporated

Project:

UCAR Annual GE/5513-20

Sample Matrix:

Water

Service Request: R1004897 Date Collected: 9/7/10 1100

Date Received: 9/9/10

Sample Name:

Lab Code:

R1004897-005

WG-5513-090710-003

Basis: NA

			_	/		Dilution	Date	Date
Analyte Name	Method	Result	Q´	Units	MRL	Factor	Extracted	Analyzed
Ammonia as Nitrogen	350.1	0.050	U	mg/L	0.050	1	NA	9/22/10 11:49
Nitrite as Nitrogen	353.2	0.010	U	mg/L	0.010	1	NA	9/9/10 18:27
Nitrogen, Total Kjeldahl (TKN)	351.2	0.41		mg/L	0.20	1	9/13/10	9/14/10 11:43

Analytical Report

Client:

Conestoga-Rovers & Associates, Incorporated

Project:

UCAR Annual GE/5513-20

Sample Matrix:

Water

Service Request: R1004897

Date Collected: 9/7/10 1155

Date Received: 9/9/10

Sample Name:

WG-5513-090710-004

Lab Code:

R1004897-007

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.927	mg/L	0.050	1	NA	9/22/10 11:52
Nitrite as Nitrogen	353.2	0.010 U	mg/L	0.010	1	NA	9/9/10 18:27
Nitrogen, Total Kjeldahl (TKN)	351.2	1.76	mg/L	0.20	1	9/13/10	9/14/10 11:45

Analytical Report

Client:

Conestoga-Rovers & Associates, Incorporated

Project:

UCAR Annual GE/5513-20

Sample Matrix:

Water

Service Request: R1004897 Date Collected: 9/7/10 1240

Date Received: 9/9/10

Sample Name:

WG-5513-090710-005

Lab Code:

R1004897-009

Basis: NA

General Chemistry Parameters

11

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	3.32	mg/L	0.10	2	NA	9/22/10 12:38
Nitrite as Nitrogen	353.2	0.010 U	mg/L	0.010	1	NA	9/9/10 18:27
Nitrogen, Total Kjeldahl (TKN)	351.2	4.24	mg/L	0.20	1	9/13/10	9/14/10 11:46

Analytical Report

Client:

Conestoga-Rovers & Associates, Incorporated

Project:

UCAR Annual GE/5513-20

Sample Matrix:

Water

WG-5513-090710-006

Sample Name: Lab Code:

R1004897-011

Service Request: R1004897

Date Collected: 9/7/10 1330

Date Received: 9/9/10

Basis: NA

Analyte Name	Method	1	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed
Ammonia as Nitrogen	350.1	7	0.482	mg/L	0.050	1 NA 9/22/10 11:54
Nitrite as Nitrogen	353.2		0.010 U	mg/L	0.010	1 NA 9/9/10 18:27
Nitrogen, Total Kjeldahl (TKN)	351.2		0.80	mg/L	0.20	1 9/13/10 9/14/10 11:47

Analytical Report

Client:

Conestoga-Rovers & Associates, Incorporated

Project:

UCAR Annual GE/5513-20

Date Collected: 9/ 7/10

Date Received: 9/ 9/10

Service Request: R1004897

Date Collected: 9/7/10 1350

Sample Matrix: Sample Name: Water

WG-5513-090710-007

Lab Code:

R1004897-013

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.099	mg/L	0.050	1	NA	9/22/10 11:55
Nitrite as Nitrogen	353.2	0.015	mg/L	0.010	1	NA	9/9/10 18:27
Nitrogen, Total Kjeldahl (TKN)	351.2	1.46	mg/L	0.20	1	9/13/10	9/14/10 11:51

Analytical Report

Client: Conestoga-Rovers & Associates, Incorporated

Project: UCAR Annual GE/5513-20

Sample Matrix: Water

Sample Name: WG-5513-090710-008

Lab Code: R1004897-015

Service Request: R1004897

Date Collected: 9/7/10 1430 Date Received: 9/9/10

Basis: NA

General Chemistry Parameters

(71-

Analyte Name	Method	Result	Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Ammonia as Nitrogen	350.1	0.461		mg/L	0.050	1	NA	9/22/10 11:58
Nitrite as Nitrogen	353.2	0.010	U	mg/L	0.010	1	NA	9/9/10 18:30
Nitrogen, Total Kjeldahl (TKN)	351.2	0.89		mg/L	0.20	1	9/13/10	9/14/10 11:53