

2055 Niagara Falls Blvd., Suite #3 Niagara Falls, New York 14304

Telephone: (716) 297-6150 Fax: (716) 297-2265

www.CRAworld.com

English and the state of the	Tell		RANSMITTAL	
DATE:	Augus	t 28, 2012	REFERENCE NO.:	009954 (#16)
			PROJECT NAME:	Love Canal Site
то:		ian Sadowski ork State Department of E vation		
	270 Mi	chigan Avenue		
	Buffalo	o, NY 14203-2999		
Please find enclosed: Draft Final Originals Originals Prints Final Hard Copy and CD				
Sent via:		☐ Mail ☐ Overnight Courier	Same Day Co	urier
QUAN	TITY		DESCRIPT	TION
1			ance Manual, Love Car	nal Site, Niagara Falls, New York
1 C	D	Revised May 2011		
				RECEIVED NYSDEC HESTON O
	equested	Fc	or Review and Comment	AUG 2 9 7 (117) Fon.
For Y	our Use			REL
COMME	NTS:			
Copy to:	 d by: <u></u>	. P. Polovich [Please Print]	Signed: /	P. Polovick /adh
Filing: C	Correspor	ndence File		

ISO 9001

OPERATIONS AND MAINTENANCE MANUAL

LOVE CANAL SITE NIAGARA FALLS, NEW YORK

Prepared For: Glenn Springs Holdings, Inc.

MARCH 2010 REV. MAY 2011 REF. NO. 009954 (16)

TABLE OF CONTENTS

			<u>Page</u>
1.0	INTROF	DUCTION	1
1.0	1.1	PURPOSE AND SCOPE OF O&M MANUAL	
	1.2	DEFINITIONS	
	1.3	BUILDING AND EQUIPMENT NOMENCLATURE	
	1.3.1	BUILDINGS	
	1.3.2	SPILL CONTAINMENT AREAS	
	1.3.3	VESSELS	
2.0	SITE DE	SCRIPTION	7
	2.1	HISTORY	
	2.2	SITE BACKGROUND	
	2.2.1	SITE DESCRIPTION	
	2.2.2	SITE GEOLOGY	
	2.2.3	SITE HYDROGEOLOGY	
3.0	COLLEC	CTION SYSTEMS	10
	3.1	BARRIER DRAIN SYSTEM	
	3.2	COLLECTION SYSTEM (PUMP CHAMBERS)	
	3.2.1	PROCESS DESCRIPTION	
	3.2.1.1	SOUTHERN COLLECTION SYSTEM	
	3.2.1.2	NORTHERN/CENTRAL COLLECTION SYSTEM	
	3.2.2	EQUIPMENT DESCRIPTION	
	3.2.3	INSTRUMENT/CONTROL OVERVIEW	
4.0	LEACH	ATE TREATMENT SYSTEM	15
	4.1	RAW WATER TANK	
	4.1.1	PROCESS DESCRIPTION	
	4.1.2	EQUIPMENT DESCRIPTION	
	4.1.3	INSTRUMENT/CONTROL OVERVIEW	
	4.2	CLARIFIER	
	4.2.1	PROCESS DESCRIPTION	
	4.2.2	EQUIPMENT DESCRIPTION	
	4.2.3	INSTRUMENT/CONTROL DESCRIPTION	
	4.3	FILTER FEED TANK	
	4.3.1	PROCESS DESCRIPTION	
	4.3.2	EQUIPMENT DESCRIPTION	
	4.3.3	INSTRUMENT/CONTROL OVERVIEW	
	4.4	BAG FILTERS	
	4.4.1	PROCESS DESCRIPTION	
	4.4.2	EQUIPMENT DESCRIPTION	
	4.4.3	INSTRUMENT/CONTROL OVERVIEW	

TABLE OF CONTENTS

			<u>Page</u>
	4.5	LIQUID PHASE CARBON ADSORPTION	20
	4.5.1	PROCESS DESCRIPTION	
	4.5.2	EQUIPMENT DESCRIPTION	21
	4.5.3	INSTRUMENT/CONTROL OVERVIEW	
	4.6	SOLIDS HANDLING	
	4.6.1	PROCESS DESCRIPTION	22
	4.6.2	EQUIPMENT DESCRIPTION	22
	4.6.3	INSTRUMENT/CONTROL OVERVIEW	
	4.7	VAPOR PHASE CARBON ADSORBERS	23
	4.7.1	PROCESS DESCRIPTION	23
	4.8	WASTE DISPOSAL	23
	4.8.1	SLUDGE DISPOSAL	23
	4.8.2	BAG FILTER DISPOSAL	23
	4.8.3	MAIN CARBON	23
	4.8.4	VAPOR CARBON DRUMS	24
5.0	CONTRO	OL SYSTEMS	
	5.1	CONTROL COMPONENTS	25
	5.1.1	PROGRAMMABLE LOGIC CONTROLLER (PLC)	
	5.1.2	HUMAN MACHINE INTERFACE (HMI)	25
	5.2	ALARMS	26
	5.3	OPERATIONAL CONTROLS AND SEQUENCES	
	5.3.1	OPERATIONAL CONTROLS	26
	5.3.1.1	PUMP CHAMBERS	27
	5.3.2	SEQUENCES	
	5.3.2.1	SHUTDOWN SEQUENCES	28
	5.3.2.2	ROUTINE SEQUENCES	28
	5.3.3	SEQUENCE OVERRIDE	28
	5.4	REMOTE ACCESS	29
6.0	MONITO	ORING	
	6.1	ROUTINE OPERATIONS INSPECTION / MONITORING	
	6.1.1	DAILY INSPECTION / MONITORING	
	6.1.2	MONTHLY INSPECTION/MONITORING	
	6.1.3	SEMI-ANNUAL INSPECTION/MONITORING	
	6.1.3.1	BARRIER SYSTEM/PUMP CHAMBER INSPECTIONS	
	6.1.4	ANNUAL INSPECTION/MONITORING	
	6.1.4.1	BACK FLOW PREVENTER INSPECTIONS	32
	6.1.4.2	SLUDGE STORAGE TANK FARM CONTAINMENT DIKE	
		INSPECTIONS	
	6.2	ENVIRONMENTAL MONITORING	32

TABLE OF CONTENTS

			<u>Page</u>
	6.3	TREATMENT PERFORMANCE MONITORING	33
	6.3.1	CARBON TREATMENT PERFORMANCE MONITORING	
	6.4	ANALYTICAL PROGRAM	
	6.4.1	SAMPLING SCHEDULE	33
	6.4.2	REQUIRED EFFLUENT QUALITY	33
7.0	SYSTEM	И UTILITIES	35
	7.1	EMERGENCY SHUTDOWN	35
	7.2	UTILITIES	
	7.2.1	ELECTRICAL SYSTEMS	35
	7.2.2	PLANT WATER	36
	7.2.2.1	SAFETY SHOWER SYSTEM	37
	7.2.3	NATURAL GAS	37
	7.2.4	COMPRESSED AIR SYSTEM	37
	7.2.5	HVAC	38
8.0	REPOR'	TS	
	8.1	QUARTERLY/ANNUAL REPORTS	39
9.0	PERSON	NNEL	40
	9.1	ORGANIZATIONAL CHART	
	9.2	STAFFING REQUIREMENTS	
	9.3	TRAINING	40
	9.3.1	DETAILED JOB TRAINING	
	9.3.2	TRAINING DOCUMENTATION	41
10.0		DS	
	10.1	OPERATING INSPECTION	
	10.2	MAINTENANCE/CALIBRATION	42
11.0	REFERE	ENCES	
	11.1	LOVE CANAL DOCUMENTS	
	11.1.1	CONSENT ORDERS	43
	11.1.2	MANUALS	
	11.1.3	HEALTH AND SAFETY	43
	11.2	DRAWINGS	
	11.3	EQUIPMENT VENDOR MANUALS	44

LIST OF FIGURES (Following Text)

FIGURE 2.1	SITE MAP
FIGURE 2.2	SITE PLAN
FIGURE 2.3	SITE GEOLOGICAL COLUMN
FIGURE 3.1	BARRIER DRAIN AND COLLECTION SYSTEM
FIGURE 3.2	TYPICAL BARRIER COLLECTION SYSTEM CROSS-SECTION
FIGURE 3.3	TYPICAL PUMP CHAMBER
FIGURE 4.1	PROCESS SCHEMATIC
FIGURE 4.2	ADSORBER SEQUENCING SCHEMATIC
FIGURE 6.1	TYPICAL LONG-TERM MONITORING WELL CROSS-SECTION
FIGURE 6.2	PROCESS SCHEMATIC
FIGURE 7.1	WATER MODULE SCHEMATIC
FIGURE 7.2	PLANT WATER SCHEMATIC
FIGURE 7.3	AIR MODULE SCHEMATIC
FIGURE 7.4	COMPRESSED AIR SCHEMATIC
FIGURE 7.5	FLOOR PLAN/EMERGENCY EQUIPMENT/COMMUNICATION LOCATIONS

LIST OF TABLES

TABLE 1.1 SITE CONTACT LIST

LIST OF APPENDICES

APPENDIX A SAMPLE HMI SCREENS

APPENDIX B ALARMS

APPENDIX C DRAWINGS

APPENDIX D SEQUENCES

APPENDIX E CITY OF NIAGARA FALLS DISCHARGE PERMIT NO. 44

CITY OF NIAGARA FALLS LETTER TO CEASE DISCHARGE

APPENDIX F SYSTEM SETPOINTS

APPENDIX G POTENTIAL OPERATING PROBLEMS / TROUBLESHOOTING

APPENDIX H PROCEDURES INDEX

APPENDIX I OWNERS MANUALS INDEX

APPENDIX J DAILY INSPECTION LOG

APPENDIX K OPERATOR TRAINING ACKNLOWEDGMENT FORM

1.0 INTRODUCTION

This Operations and Maintenance Manual (O&M Manual) was prepared for Glenn Springs Holdings, Inc. (GSH) by Conestoga-Rovers & Associates (CRA) for the Love Canal Leachate Treatment Facility (LCLTF). The LCLTF is located adjacent to the Love Canal Landfill (Site).

This is an update of the October 2002 manual which replaced the prior manual written by (CRA) in 1984 for the New York State Department of Environmental Conservation (NYSDEC) and revised by the NYSDEC in 1988 and 1994. That manual consisted of three separate volumes:

Volume I Operations & Maintenance Manual

Volume II Equipment Lists & Operation/Maintenance Manuals

Volume III Operation and Maintenance Procedures

Volume II was a compilation of individual manuals and has been integrated into the GSH maintenance system; it no longer exists as a separate volume (an index of the manuals is provided in Appendix I). Volume III consisted of O&M procedures for specific unit operations. These procedures have been reviewed and incorporated as LCLTF operating procedures. These procedures augment this O&M Manual but are no longer included as a separate volume. (A list of the procedures is included in Appendix H.)

The Love Canal Treatment Facility is located in the southeast corner of the City of Niagara Falls, New York, and is approximately one-quarter mile north of the Niagara River. Operations at the Site involve collecting and treating of leachate, sediment, and non-aqueous phase liquids (NAPL) collected from the landfill for subsequent disposal.

Remedial operational responsibility has been assigned by Occidental Chemical Corporation (OCC) to GSH, an affiliate of OCC. CRA has been retained by GSH to operate the Site. A list of Site contacts for the management activities of the Leachate Treatment Facility at Love Canal is provided in Table 1.1.

1.1 PURPOSE AND SCOPE OF O&M MANUAL

The purpose of this operating manual is to provide operating personnel with:

- a description of the collection system
- a description of the leachate treatment system
- an understanding of the unit operations and control parameters inherent in system operation
- the location of system start-up, normal operating and shutdown procedures
- the operator actions required in the event of alarm notifications

The Love Canal Collection and Treatment Systems operate under the substantive provisions of the State of New York Treatment Storage and Disposal Facility Permitting Requirement Regulations (6 NYCRR 373). Within these regulations the Site fits two exemption categories:

- 373-1.1(d)(1)(iii), Storage of hazardous waste that is generated on-site in containers or tanks for a period not exceeding 90 days. Other than the storage of liquid hazardous waste over the designated sole source aquifers.
- 373-1.1(d)(1)(xii), Elementary neutralization Units or wastewater treatment unit.

These exemptions require compliance with the following sections of NYCRR 373:

- Personnel Training (g).
- Preparedness and Prevention.
- Contingency Plans and Emergency Procedures.
- Use and Management of Containers.
- Tank Systems.

and:

- A label or sign stating "Hazardous Waste" must identify all areas, tanks, and containers used to accumulate hazardous waste. In addition, tanks and containers must be marked with other words to identify their contents.
- Each container is properly labeled and marked according to sections 372.2(a)(5) and 372.2(a)(6) of this title.

• The date on which the container is full is clearly marked and visible for inspection on each container.

Additionally GSH complies with other applicable laws governing the identification and handling of hazardous wastes including but not limited to:

Hazardous Waste Management System: General
Hazardous Waste Management System: General
Hazardous Waste Manifest System
Hazardous Waste Manifest System
Hazardous Waste Manifest System
Land Disposal Restrictions

These regulations are referenced in the appropriate sections of the manual.

As previously noted, equipment operating procedures and manuals provided by the manufacturers or suppliers have been integrated into the GSH maintenance system, and are maintained in the Love Canal File Room in the Administration Building. As-built drawings for various sections of the site are also on file in the Love Canal File Room.

A thorough review and understanding of this manual and other designated reports is essential for safe, environmentally sound, efficient operation of the facility. Designated reports consist of the following:

- Love Canal Landfill Collection and Aqueous Phase Liquid (APL) Treatment System Operation and Maintenance Manual (this O&M Manual)
- Love Canal Long Term Monitoring Manual
- Health and Safety Plan
- Integrated Contingency Plan including an Emergency Response Plan

This O&M Manual will be updated as significant modifications are made to the system. A formal internal review of the Love Canal Collection and Leachate Treatment System will be performed a minimum of every five years. Revisions of the manual will be distributed to the Site and appropriate operating personnel.

1.2 DEFINITIONS

A brief description of terms used in this manual follows:

APL Aqueous Phase Liquid

CRA Conestoga-Rovers & Associates

DCF Dewatering Containment Facility

EPA United States Environmental Protection Agency

FRP Fiberglass Reinforced Plastic

GPM Gallons Per Minute

GSH Glenn Springs Holdings, Inc.

HMI Human Machine Interface

LCLTF Love Canal Leachate Treatment Facility

MCC Motor Control Center

MH Manhole

NAPL Non-Aqueous Phase Liquid

NYSDEC New York State Department of Environmental Conservation

OCC Occidental Chemical Corporation

PC Pump Chamber

PID Proportional-Integral-Derivative

PLC Programmable Logic Controller

P&ID Piping and Instrumentation Diagram

psi Pounds Per Square Inch

RCRA Resource, Conservation, and Recovery Act

ROD Record of Decision

TDH Total Dynamic Head

VFD Variable Frequency Drive

VOC Volatile Organic Compound

WAN Wide Area Network

1.3 BUILDING AND EQUIPMENT NOMENCLATURE

The equipment and buildings associated with the Site are listed below.

1.3.1 **BUILDINGS**

A list of the buildings is as follows:

- Administration Building
- Treatment Building
- Drum Barn

1.3.2 SPILL CONTAINMENT AREAS

A list of the spill containment areas is as follows:

- Treatment Building
- Loading Pads
 - East Adjacent LCLTF (Carbon Loading)
 - South Adjacent LCLTF (Sludge Loading)
- Sludge Storage Dike
- Drum Barn

1.3.3 VESSELS

A list of vessels is as follows:

- Raw Water Tank (LC-106)
- Filter Feed Tank (LC-107)
- Sludge Holding Tank (LC-105)
- South Sector Collection System Storage Tank (PC3) (LC-201)
- North/Central Sector Collection System Storage Tank (six chambers) (PC3A) (LC-211)
- Clarifier (LC-101)
- Bag Filter No. 1A (LC-102A)
- Bag Filter No. 1B (LC-102B)

- Bag Filter No. 2A (LC-103A)
- Bag Filter No. 2B (LC-103B)
- Carbon Tank V-1 (LC-131)
- Carbon Tank V-2(LC-132)
- Carbon Transfer Tank V-3 (LC-133)

2.0 SITE DESCRIPTION

2.1 <u>HISTORY</u>

The Love Canal was one of two initial excavations designed to provide inexpensive hydroelectric power for industrial development around the turn of the 20th century. Between 1942 and 1952, Hooker Chemical and Plastics Corporation (now OCC) disposed of over 21,000 tons of various chemicals into Love Canal. The solid and liquid wastes deposited into the Canal include acids, chlorides, mercaptans, phenols, toluenes, pesticides, chlorophenols, chlorobenzenes, and sulfides.

The remedial program at Love Canal has been extensive. Construction was initiated in 1978 for a project designed to contain leachate migration from the Canal; this project involved the operation of two temporary leachate treatment plants. The permanent treatment plant has been in operation since December 7, 1979. A forty-mil synthetic membrane cap was installed in 1984 to decrease infiltration over the Canal and to enhance inward migration of groundwater from the surrounding area.

In October 1994, a Consent Judgement between OCC and the State of New York was approved by the court. This judgement discussed required operation and maintenance activities for the Love Canal Site. Responsibility for site operations and control passed from NYSDEC to OCC on January 5, 1995. On January 12, 1995, the NYSDEC reclassified the site to a Class 4 site.

Since initiation of remedial activities, responsibility for operation of the Site has been transferred from OCC to its affiliate, GSH.

2.2 <u>SITE BACKGROUND</u>

2.2.1 SITE DESCRIPTION

The Site occupies approximately 70 acres in the southeast corner of the City of Niagara Falls and is approximately one-quarter mile north of the Niagara River. The location of the Site is shown on Figure 2.1, and the Site plan is shown on Figure 2.2. The Site is bounded by Colvin Boulevard to the north, 95th Street to the west, Frontier Avenue to the south, and 100th Street to the east.

2.2.2 SITE GEOLOGY

The geology of the Site, with increasing depth below ground surface, is as follows:

- Fill (1.8 to 2.5 feet thick outside of the Canal and 10 to possibly 35 feet within the Canal), overlying
- Alluvium (1.5 to 3.7 feet thick), overlying
- Clay (13.5 to 23.0 feet thick), overlying
- Till (at depth of 19 to 27 feet), overlying
- Lockport Formation Bedrock

The Site geological column is shown on Figure 2.3.

The first bedrock unit in this area is the Lockport Formation, ranging in thickness from 160 to 180 feet from the north to south. The Lockport Formation is a dolomitic rock grouping consisting of several discrete rock units, the uppermost and largest being the Oak Orchard Member. The Eramosa, Goat Island, Gasport, and Decew Members directly underlie the Oak Orchard Member.

The Clinton Formation lies beneath the Lockport Formation and is a primarily limestone rock grouping generally about 100 feet in thickness. The major rock unit within the Clinton Formation is the Rochester Shale Member, which is about 60 feet in thickness. The Rochester Shale is a regionally present vertical barrier.

The Irondequoit and Reynales Members are lower portions of the Clinton Formation that lie directly beneath the Rochester Shale Unit.

2.2.3 SITE HYDROGEOLOGY

Due to the primarily clayey nature of the subsurface soils at and surrounding the Love Canal, there is very little overburden groundwater movement. The clays act as an aquitard and restrict vertical and horizontal groundwater migration. The measured hydraulic conductivity of the clay layer is on the order of 1×10^{-8} cm/sec. There is a perched water table in the thin alluvium layer overlying the clay. However, this layer is very shallow and would be expected to respond to seasonal variations fairly quickly (i.e., wet in rainy periods and drier in hot dry weather). The hydraulic conductivity of the alluvium layer is estimated to be on the order of 1×10^{-4} cm/sec.

The fill layer within the Canal would typically be saturated due to the excavation into the tight clay and the more permeable nature of most fill materials. In essence, prior to remedial construction, the Canal acted as a "bathtub." Surface water would enter the Canal through areas of the soil cap layer removed by construction of the 99th Street School and other residential activities. The Canal would fill with water to the top of the clay layer and spill over the edges into the adjacent fill and alluvium layers carrying chemicals that came in contact with the water.

The clay/till layers beneath the Canal act as an aquitard and have prevented chemicals from seeping from the Canal into the underlying bedrock. This is evident from the ongoing hydraulic and chemical monitoring performed at the Site.

The bedrock hydrogeologic description was obtained from the results of investigative activities performed at the 102nd Street Landfill Site, located immediately south of the Canal.

The Bedrock is comprised of several bedrock stratigraphic units. The uppermost Bedrock formation encountered is the dolomite of the Oak Orchard Formation, which is massive and dense. Although some porosity and permeability is present within the rock mass, the majority of the porosity and permeability occurs along fracture surfaces, bedding planes, partings, and joints. Distribution of these features is irregular and unpredictable. The nature of the Bedrock is also evidenced by the wide range of hydraulic conductivities determined by the in situ response tests. These values vary between 6.9×10^{-6} and 9.4×10^{-2} cm/sec. The geometric mean hydraulic conductivity is 1.0×10^{-3} cm/sec.

The groundwater flow is toward the Niagara River with a very shallow gradient.

Waterbearing zones exist only within the upper portion of the Oak Orchard Formation. No waterbearing zones were found at depth. In fact, no waterbearing intervals were found below a depth of 75 feet into the Bedrock.

3.0 COLLECTION SYSTEMS

Implementation of the Site remedial systems, designed to prevent the off-Site migration of chemical contaminants from the Site, began in October 1978 with the installation of a barrier drain along the east and west sides of the south section of the Canal followed later with the central and north sections. The Barrier Drain and associated Collection System are shown schematically on Figure 3.1.

Start-up and shutdown procedures for the collection system are maintained in the GSH LCLTF operating procedures. The following is a detailed description of the components of the Collection System.

The remedial collection systems for the Site are the systems defined in the 1987 Record of Decision (ROD) and the Consent Judgement from 1994. These systems have been periodically modified to attain the objectives of the ROD. Presently, the remedial collection system is composed of the following programs:

- Barrier Drain System (Section 3.1)
- Collection System (Pump Chambers) (Section 3.2)
- Long Term Monitoring Wells

The remedial program for Love Canal was executed in a phased approach and divided into two segments: the southern sector and the central/northern sectors. These segments were designed and constructed as discrete systems and interface only at certain points.

The objectives and current components of the programs are discussed below.

3.1 <u>BARRIER DRAIN SYSTEM</u>

The barrier drain system surrounds Love Canal and is intended to intercept the shallow lateral groundwater flow and maintain an inward gradient towards the barrier drain, thus containing any lateral migration of chemically contaminated groundwater (leachate) emanating from the disposal area. It consists of a trench that is 15 to 25 feet deep (into the till, about 2-3 feet above the bedrock) and 4 feet wide surrounding the Site. Installed within the trench is either a 6-inch or an 8-inch diameter perforated vitrified clay tile drain pipe centered in 2 feet of uniformly sized gravel (or crushed stone) which is overlain to the surface with coarse sand. Migrating leachate is

intercepted by the highly permeable granular fill in the trench and collected in the perforated pipe. Lateral trenches filled with sand were dug perpendicular to the barrier drain in the direction of the Canal at select locations. The total Love Canal barrier drain system consists to 6,800 feet of collection tile and an additional 2,100 feet of laterals.

Pump chambers, located at low points on the gravity drain lines, collect leachate. The leachate collected in these chambers is intermittently pumped to large underground holding tanks (see Section 3.2). Leachate is then be transferred on demand to the treatment facility by pumping from the storage tanks.

A conceptual cross-section of the Barrier Drain System is provided as Figure 3.2.

3.2 <u>COLLECTION SYSTEM (PUMP CHAMBERS)</u>

3.2.1 PROCESS DESCRIPTION

The collection system consists of two sectors, the Northern/Central (PC3A) and the Southern (PC3) Collection Systems. The pump chambers in the Southern Collection System sectors were originally designed to utilize a wet well (manhole) providing leachate storage capacity with an adjacent dry well containing a self-priming horizontal end suction lift pump. GSH replaced all the suction lift pumps with submersible pumps and the dry wells are no longer utilized. The Northern/Central collection system was originally designed (and continues to operate) with two Gould's 3171 vertical pumps at all wet pump chambers (1A, 2A & 3A).

In both the Northern/Central and the Southern Collection System, the leachate flows by gravity from the Barrier Drain System to the Pump Chambers. The leachate is then pumped to the two underground holding tanks where it is pumped to the process Raw Water Tank on demand.

A typical pump chamber detail is provided as Figure 3.3. (For details on specific pump chambers, see the drawings on file in the Administration Building file room).

3.2.1.1 SOUTHERN COLLECTION SYSTEM

The tile drain is graded for gravity flow toward a series of pump chambers (manholes) where the leachate is collected: on the east to Manhole 7 (MH-7) and Pump Chamber 1 (PC-1) and on the west to MH-8 and PC-2. Each pump chamber has a 1,500 gallon

leachate storage capacity. The leachate is pumped from the manholes through a 4-inch diameter furan-coated steel forcemain to an underground holding tank. PC-3 South, located on the west side of the Canal where leachate is held prior to being pumped on demand (through a 4-inch diameter furan-coated steel forcemain) to the treatment facility. PC-3 also accepts water from the 102nd Street Landfill. PC-3 is vented to atmosphere through a carbon Vent Sorb drum to remove VOC emissions.

3.2.1.2 NORTHERN/CENTRAL COLLECTION SYSTEM

The tile drain is graded for gravity flow toward a series of pump chambers where the leachate is collected: on the east to PC-1A and on the west to PC-2A. Each pump chamber has a 1,100 gallon leachate storage capacity. The leachate from PC-1A is pumped across the Canal through a 4-inch diameter furan-coated steel forcemain, which discharges into an 8-inch diameter vitrified clay pipe adjacent to PC-2A. The leachate from PC-2A is also pumped from the well into the adjacent pipe. The leachate in the pipe gravity flows to an underground holding tank located east of the LCLTF where it is held prior to being pumped through PC-3A to the treatment facility. PC-3A also accepts water from the dewatering containment facility (DCF), the sump in the drum barn, the floor drains within the treatment facility, and the two loading pads adjacent to the LCLTF (the sludge storage tank loading area and the carbon trailer loading pad). PC-3A is vented to atmosphere through a carbon Vent Sorb drum to remove VOC emissions.

3.2.2 EQUIPMENT DESCRIPTION

The Northern/Central Collection Holding Tank is a 30,000-gallon concrete holding tank with an 8-foot width, 12-foot length, and 6-foot depth. This tank is constructed from six individual 5,000-gallon tanks connected by furan-coated steel pipe. PC3A is connected to the storage tank by three 4-inch diameter furan-coated steel pipes and has the same liquid level as the tank. PC3A is designed to overflow to Manhole No. 8 (PC2) in the South Sector (via manholes MH-2, MH-4, and MH-6 of the west manhole collection system) where the leachate will be contained if the capacity in PC3A is exceeded.

The Southern Collection Holding Tank is constructed of furan-coated steel with a 25,000-gallon capacity. This cylindrical tank (former rail tank car) has an 11-foot diameter and a 34-foot length. Pump Chamber 3 is located south of and adjacent to the storage tank.

In the Northern/Central Collection System, the three pump chambers (PC-1A, PC-2A, and PC-3A) each contain two Gorman-Rupp pumps (Model S2B65-E2). These pumps are rated at 50 gpm @ 35 total dynamic head (TDH). The pumps operate on an as needed basis (individually or simultaneously).

In the Southern Collection System, MH-7 and MH-8 each hold one Gorman-Rupp pump (Model S2B65-E2). These pumps are rated at 100 gpm @ 40 TDH. Pump Chamber 3 contains two Gorman-Rupp pumps (Model S2B65-E2). These pumps are each rated at 50 gpm @ 50 TDH. The pumps operate on an as needed basis (individually or simultaneously).

There is one pump station associated with the DCF. Water collected from the DCF drains to a 10,000 gallon underground storage tank (UST). The UST, or pump chamber #4, contains a Groman-Rupp stainless steel vertical sump pump (Model S2B65-E3, 2 hp, 115 v, 3,450 rpm), which pumps the water to PC3A. A second pump station for the DCF (MH-6B) is no longer in service and has been removed.

Water is also collected in a grated trench surrounding the drum barn. A trench also runs through the middle of the drum barn. This trench empties into a sump outside and adjacent to the drum barn. The sump houses duplex Gorman-Rupp stainless steel (Model S2B65-E2) submersible pumps (2hp, 115 volt, 3,450 rpm). These pumps pump the water to PC3A.

3.2.3 <u>INSTRUMENT/CONTROL OVERVIEW</u>

All pump chamber pumps may be operated in either automatic or manual mode. For manual control, the remote switch at the pump must be set in the HAND position. For automatic control, this switch must be set to AUTO.

Automatic operation also requires that the pump be set to ENABLE at the Intellution Human-Machine Interface (HMI). When the remote switch is in AUTO and the HMI control is set to ENABLE, the pump will be controlled directly through the Programmable Logic Controller (PLC). When the water level reaches a pump start (high level) permissive elevation, the pump chamber pump energizes and begins operation. The pump will shut down when the pump stop (low level) permissive elevation is reached. These start/stop permissives are also set on the HMI screen by the operator.

In addition to the start/stop elevation control, the PLC also monitors downstream levels in the system to prevent system overflows. For example, both Pump Chambers 1A and

2A pump into chamber 3A. Therefore, the operator must set level permissives at the HMI which allow the pumps in chambers 1A and 2A to operate only if the level in 3A is not above the operator selected setpoint. This same level permissive requirement is required for the pumping of MH-7 and MH-8 (Pump Chambers 1 and 2) to Pump Chamber 3 and the pumping of Pump Chamber 3A and 3 to the process Raw Water Tank.

The one pump in the DCF runs off of two level switches in the pump chambers. The pump starts at the high level permissive switch and pump down to the low level permissive switch. The flow from the DCF is measured with an ultrasonic flow meter, which is displayed on the DCF control panel on the northwest corner of the control room and on the HMI. The pump status for each pump and high level alarms from high level switches in each of the pump chambers is also displayed on the HMI.

The two pumps in the drum barn run off of three level switches in the sump. The pumps stop at the low level permissive switch, which is at the lowest point in the sump. As the water rises to the high level permissive switch, the primary pump will turn on. If the level continues to rise to the next level switch (second pump level permissive) the second pump will turn on. The pumps will continue to run until the level reaches the low level permissive. At this point, the pumps will alternate, and the primary pump will become the secondary pump for the next cycle. A sump high level alarm from a fourth level switch in the sump is displayed with an audio and visual alarm on the local control panel. The two switches for the pumps at the panel must both be in the ON position in order for the pumps to operate.

Normal operating permissive levels for the pumps in the collection system are listed in Appendix F.

4.0 LEACHATE TREATMENT SYSTEM

The treatment process, shown schematically in the Process Flow Diagram (PFD) and the Process and Instrumentation Diagrams (P&IDs) (located in Appendix C), consists of several process steps for the removal of various constituents prior to discharge into the City of Niagara Falls Sanitary Sewer System. The primary steps in the treatment process are process feed, clarification, filtration, and carbon treatment (Figure 4.1).

The Raw Water Feed Pump pumps leachate to the Clarifier from the Raw Water Tank for the first stage of solids removal. Leachate overflows from the Clarifier to the Filter Feed Tank and is then pumped to the series of bag filters.

After solids removal using the clarifier and the bag filters, the flow stream enters a train of two carbon beds in series. The carbon system is utilized to reduce the concentration of organic contaminants to below required discharge limits. After passing through the carbon beds, the water is directed to the City of Niagara Falls Sanitary Sewer System and ultimately the City of Niagara Falls POTW (see Appendix E for a copy of the Discharge Permit).

To bring the treatment system on-line, both treatment system pumps (Raw Water Feed Pump and Filter Feed Tank Discharge Pump) must be enabled by pushing the PROCESS START button located on the HMI screen. The discharge valve (FCV-107) is opened automatically when the PROCESS START button is pressed. This can also be done manually at the valve or by pushing the VALVE OPEN button that is also located on the HMI screen. Treatment system pumps may be operated manually without selecting PROCESS START or opening the discharge valve.

The facility contains a solids handling system to handle solids generated during settling in the clarifier. Solids removed in the clarifier are transferred to the Sludge Holding Tank. Excess water throughout the solids handling system is returned to the system at the Filter Feed Tank. Solids removed from the Sludge Holding Tank are disposed of off-Site.

The treatment facility also has a vapor carbon adsorption system for the treatment of vent gases from process equipment.

Start-up and shutdown procedures for the treatment system are maintained in the LCLTF operating procedures.

4.1 RAW WATER TANK

4.1.1 PROCESS DESCRIPTION

The Raw Water Tank, located within the Treatment Building, collects leachate through a 4-inch diameter forcemain from Pump Chambers 3A and 3. The Tank is vented through a vapor carbon drum to prevent any organic vapors (VOCs) from escaping into the Treatment Building. Leachate is then transferred from the Raw Water Tank to the Clarifier via the Raw Water Tank Discharge Pump.

4.1.2 EQUIPMENT DESCRIPTION

The Raw Water Tank is constructed of fiberglass with a diameter of 12 feet and a height of 7 feet. The tank has a capacity of 6,000 gallons.

The Raw Water Feed Pump which pumps from the Raw Water Tank to the Clarifier is a Goulds 3196 model 2x3-6 STX capable of pumping 150 gpm @ 115 TDH. The pump is controlled with a Variable Frequency Drive (VFD).

4.1.3 INSTRUMENT/CONTROL OVERVIEW

The influent flow to the treatment system is monitored with a flow indicator and transmitter. This flow is monitored using flow transmitter FIT-106 and is displayed both locally and on the HMI screen. The flow transmitter is also used to control the flow rate into the treatment system using flow control valve FV-106. The system flow rate is selected on the HMI screen by the operator. Using this setpoint, the signal from the flow transmitter, and a proportional-integral-derivative (PID) control block, the PLC continuously adjusts the flow control valve to maintain the flow setpoint. The valve will close completely if the PROCESS STOP button is selected from the HMI screen.

The Raw Water Tank is equipped with a level indicator and transmitter (LIT-106) which monitors the depth of liquid within the tank. This level is displayed both locally and on the HMI screen. The level transmitter is also used to control the level in the tank using the Raw Water Feed Pump's VFD. Using a level setpoint of 50 percent, the signal from the level transmitter, and a PID control block, the PLC continuously adjusts the frequency of the pump to maintain the level setpoint. If flow to the process Raw Water Tank stops, and the tank level reaches 40 percent, the PLC will shutdown the pump to prevent any damage. The pump will also shutdown if the downstream level in the Filter

Feed Tank (overflow from the Clarifier) rises above 70 percent. The pump will automatically restart when the Raw Water Tank level reaches 50 percent and the level in the Filter Feed Tank is below 60 percent. At this point, the PID block will adjust the pump frequency to maintain the 50 percent setpoint. This level control is only available if the process Raw Water Feed Pump selector switch is turned to AUTO. If the switch is turned to OFF, the pump can only be controlled manually using the variable frequency drive control, which is located in the motor control center (MCC) room, across from the control room. Manual control from the drive will also override any automatic controls, even if the switch is in AUTO. To switch from automated control (via the HMI screen and the PLC) to a manual control of the pump, toggle the F2 button on the VFD control pad located in the MCC room. The manual control mode will enable the pump to be turned on and off along with the ability to set the speed (0-60 hertz) at which the pump is to be operated. At zero (0) hertz the pump will be stopped, and at sixty (60) hertz the pump will operate at maximum capacity.

PID loops control the treatment pumps (Raw Water and Filter Feed Pumps) and the Influent Control Valve. Each piece of equipment is controlled by a different process variable. The position of the valve is based on flow rate into the system, and the speeds of the pumps are based on the level in their respective tanks. The pumps will stop and the valve will close if permissives in the system require them to do so, but the loops are independent from each other. However, if the flow into the system increases, the pump PID loops will compensate by increasing the frequency on the variable frequency drives. This will maintain the level in the tanks, and will compensate for the increased flow.

Level alarms are displayed on the HMI screen to alert the operator if the level in the tank exceeds the high setpoint, or the PLC receives a bad quality signal from the transmitter for an extended period of time. A bad quality signal alarm occurs when the 4-20 mA signal from the transmitter is out of range.

The Raw Water Feed Pump is followed by a pressure gauge (remote read only). This gauge can be used to monitor pump performance and aid in troubleshooting any pump problems.

4.2 CLARIFIER

4.2.1 PROCESS DESCRIPTION

Leachate from the Raw Water Tank is pumped via the Raw Water Feed Pump to the Clarifier. The Clarifier is designed to facilitate the settling and the removal of solids, sludge and chemical precipitates from the leachate stream. The design retention time of the leachate stream is approximately two hours. Leachate flows over a weir and falls by gravity from the Clarifier to the Filter Feed Tank.

Solids are collected at the bottom of the Clarifier. The solids are then raked into sludge hoppers at the influent end of the tank by redwood collector flights driven by a one-quarter horsepower motor. The solids/NAPL sludge is transferred with the use of air from the treatment plant air compressor to a vacuum truck or the Sludge Holding Tank (which was designed to allow the sludge to thicken).

4.2.2 EQUIPMENT DESCRIPTION

The Clarifier is constructed of epoxy coated steel with a 15,633 gallon capacity as manufactured by Pure Stream, Inc.

4.2.3 INSTRUMENT/CONTROL DESCRIPTION

Sludge is transferred from the Clarifier to the Sludge Holding Tank at the operator's control using air from the air compressor. The operator can enable the sequence at the HMI screen to start the transfer of sludge.

4.3 FILTER FEED TANK

4.3.1 PROCESS DESCRIPTION

Leachate gravity flows from the Clarifier to the Filter Feed Tank. The Filter Feed Tank may also collect water from the Sludge Holding Tank based on system valving. From the Filter Feed Tank, water is pumped into the Bag Filters using the Filter Feed Tank Discharge Pump.

4.3.2 EQUIPMENT DESCRIPTION

The Filter Feed Tank is constructed of Fiberglass with a 9-foot diameter, a height of 6.5-feet, and a capacity of 3,000 gallons.

The Filter Feed Tank Discharge Pump is a Goulds 3196 model 2x3-6 STX capable of pumping 150 gpm @ 115 TDH. The pump is controlled with a Variable Frequency Drive (VFD).

4.3.3 INSTRUMENT/CONTROL OVERVIEW

The Filter Feed Tank is equipped with a level indicator and transmitter (LIT-107) which monitors the depth of liquid within the tank. This level is displayed both locally and on the HMI screen. The level transmitter is also used to control the level in the tank using the Filter Feed Tank Discharge Pump's variable frequency drive. Using a level setpoint of 50 percent, the signal from the level transmitter, and a PID control block, the PLC continuously adjusts the frequency of the pump to maintain the level setpoint. If flow to the Filter Feed Tank stops, and the tank level reaches 40 percent, the PLC will shutdown the pump to prevent any damage. The pump will automatically restart when the tank level reaches 50 percent. At this point, the PID block will adjust the pump frequency to maintain the 50 percent setpoint. This level control is only available if the Filter Feed Tank Discharge Pump switch is turned to AUTO. If the switch is turned to OFF, the pump can only be controlled manually using the variable frequency drive control, which is located in the MCC room, across from the control room. Manual control from the drive will also override any automatic controls, even if the switch is in AUTO. To switch from automated control via the HMI screen and the PLC to a manual control of the pump, toggle the F2 button on the VFD control pad located in the MCC room. The manual control mode will enable the pump to be turned on and off along with the ability to set the speed (0-60 hertz) at which the pump is to be operated. At zero (0) hertz, the pump will be stopped, and at sixty (60) hertz, the pump will operate at maximum capacity.

Level alarms are displayed on the HMI screen to alert the operator if the level in the tank exceeds the high setpoint, or the PLC receives a bad quality signal from the transmitter for an extended period of time. A bad quality signal alarm occurs when the 4-20 mA signal from the transmitter is out of range.

The Filter Feed Tank Discharge Pump is followed by a pressure gauge (remote read only). This gauge can be used to monitor pump performance and aid in troubleshooting any pump problems.

4.4 BAG FILTERS

4.4.1 PROCESS DESCRIPTION

The Filter Feed Tank Discharge Pump transfers water from the Filter Feed Tank to one of two series of Bag Filters. The Bag Filters are designed to capture any particles that were not removed from the leachate in the Clarifier, thus protecting the carbon bed. Particle loading in the carbon vessels will decrease the efficiency of the carbon to adsorb organic contaminants. From the Bag Filters, the leachate flows directly into the carbon beds.

4.4.2 EQUIPMENT DESCRIPTION

The Bag Filtration System consists of two parallel trains of GAF stainless steel bag filtration units (only one train is used at a time). Each train has two bag filter housings piped in series. Each housing holds a polypropylene bag filter rated at 50 microns.

4.4.3 INSTRUMENT/CONTROL OVERVIEW

Differential pressure transmitters are located around each train of bag filters. The differential pressure is displayed on the HMI screen. A high differential pressure drop across a running filter train of greater than 15.0 pounds per square inch (psi) indicates the filter elements are plugging. This indicates that the operator is required to manually switch between the bag filter trains. The used filters are then drummed for disposal, and new filters are placed in the housings. The stand-by filters are then placed online, and the filters with the newly replaced bags are on standby.

Pressure gauges are also located at the inlet and outlet to each of the bag filter trains. This allows for local indication of the differential pressure.

4.5 LIQUID PHASE CARBON ADSORPTION

4.5.1 PROCESS DESCRIPTION

Leachate, now free of any solids, passes through a series of Carbon Beds. The Carbon Beds are designed to remove organic compounds from the leachate. The system consists of two carbon adsorbers in series, designated the lead and polish beds. The leachate enters the top of the first or lead adsorber and flows downward through the carbon bed;

the surface area of the activated carbon adsorbs the organic chemicals in the leachate stream. The interstage water is collected in the bottom of the lead adsorber by an internal header system and conveyed to the top of the second or polish adsorber.

The quality of the leachate after the lead bed is monitored quarterly for chlorobenzenes. A carbon change is required when the leachate sample shows evidence of significant breakthrough after the first interstage. The carbon bed monitoring sampling program is detailed in Section 6.3.1.

When breakthrough of chlorobenzenes occurs, the spent carbon in the lead bed is replaced with fresh carbon, and the lead bed is then placed in service as the polish bed. The former polish bed becomes the lead bed. A third vessel, the Transfer Tank V-3, is maintained empty until a carbon change is required. This allows fresh carbon delivery to occur independently of the removal of the spent carbon. The spent carbon from the lead bed is either drummed, or transferred to a 30 cubic yard container lined with a geo mesh membrane. The container is equipped with drain plugs for dewatering. The spent carbon is then shipped off Site and incinerated.

Treated leachate gravity drains from the Carbon Adsorption System to the city sewer through an effluent valve and flowmeter.

4.5.2 EQUIPMENT DESCRIPTION

The Carbon Adsorption System, as manufactured by Calgon, consists of three epoxy lined carbon steel vessels designated V1, V2, and V3 (transfer storage). Each 8,000-gallon vessel has a capacity to hold 20,000 pounds of activated carbon.

4.5.3 <u>INSTRUMENT/CONTROL OVERVIEW</u>

To prevent over-pressurization, all vessels have a rupture disc with a pressure rating of 75 psi. All vessels also have remote pressure gauges to allow the operator to troubleshoot the process. A sight glass is available at all beds to aid the operator when transferring carbon.

The effluent valve will automatically open when the PROCESS START button on the HMI is pressed, and will close when the PROCESS STOP button is pressed. The effluent flow is displayed locally and on the HMI.

4.6 <u>SOLIDS HANDLING</u>

4.6.1 PROCESS DESCRIPTION

Due to the minimal amount of sludge accumulated, the sludge is generally removed directly from the clarifier sludge hopper. Sludge can be transferred to the Sludge Holding Tank from the Clarifier in the event sludge volumes increase. The outside Sludge Storage Tanks are not in service.

Sludge disposal is scheduled as needed by the Operator based on clarifier effluent quality. The operator determines that the clarifier effluent quality is deteriorating when the duration between bag filter change-outs decreases. The frequent changing of the bag filters is a direct indication that the sludge in the clarifier needs to be transferred.

The Sludge/NAPL is removed with a vacuum truck. The sludge, after it has been transferred to the vacuum truck, will be allowed to settle. Any water will then be decanted off of the top of the sludge and recycled through the system for retreatment. After the sludge is dewatered, it is drummed for off-Site disposal. The quantity of sludge/NAPL shipped off-Site and the manifests are kept in the GSH office. Procedures detailing the sludge transfer process are available in the GSH LCLTF Operating Procedures.

4.6.2 EQUIPMENT DESCRIPTION

The Sludge Holding Tank is a fiberglass reinforced plastic (FRP) 1,600 gallon tank. The tank has a 7-foot diameter and a height of 6 feet.

The Sludge Holding Tank Discharge Pump is a Warren Rupp Sandpiper diaphragm pump capable of pumping 90 gpm at pressures up to 125 psi. The pump uses air from the air compressor for operation.

4.6.3 <u>INSTRUMENT/CONTROL OVERVIEW</u>

The level in the Sludge Holding Tank is monitored using level transmitter LIT-105. This level is displayed both locally and on the HMI screens.

4.7 VAPOR PHASE CARBON ADSORBERS

4.7.1 PROCESS DESCRIPTION

Vapor phase carbon adsorption is used for the removal of any volatile organics stripped from the water during tank breathing.

All indoor process tanks are connected to tank vent carbon adsorbers. The Raw Water Tank and the Clarifier both vent to a carbon drum. The Filter Feed Tank and the Sludge Holding Tank vent to the Clarifier. The Clarifier has a second vent, which discharges to a pair of carbon drums in parallel. The Filter Feed Tank and the Sludge Holding Tank are also tied to an accumulator. The carbon is replaced as necessary based on volatile organic monitoring (see Section 6.1.2). Spent vapor carbon is drummed in preparation for off-Site disposal.

4.8 WASTE DISPOSAL

4.8.1 <u>SLUDGE DISPOSAL</u>

Sludge collected either from the Clarifier or the Sludge Holding Tank is sent off Site for incineration. This is accomplished by transferring the sludge to a vacuum truck, dewatering, and drumming the sludge.

4.8.2 BAG FILTER DISPOSAL

Spent bag filters are drummed and coded as such, and then shipped off Site for incineration.

4.8.3 MAIN CARBON

Spent carbon from the main adsorbers is drummed and/or bulk loaded into a 30-yard container and sent off Site for incineration. Procedures detailing the carbon transfer process are available in the LCLTF Operating Procedures. An adsorber sequencing schematic is provided as Figure 4.2.

4.8.4 <u>VAPOR CARBON DRUMS</u>

Spent vapor carbon drums are sent off Site for disposal.

5.0 CONTROL SYSTEMS

Love Canal Collection and Treatment Systems involve a variety of manual and automatic controls. As discussed in this Section, automatic controls turn on and off pumps, close valves, and act to provide safe, efficient operation of the collection and treatment systems. In addition, the control system initiates alarms and notifies personnel in the event of critical situations.

5.1 CONTROL COMPONENTS

5.1.1 PROGRAMMABLE LOGIC CONTROLLER (PLC)

A PLC is used as the primary control device. The PLC receives a series of digital inputs and analog inputs, and interprets them based on a written program. The PLC then sends a series of digital outputs and analog outputs to control pumps, valves, and a variety of other equipment. The PLC program is designed to operate the collection and treatment systems in a fail-safe manner. The PLC also serves to trigger alarms for the process.

There are seven PLCs which control the collection and treatment system at the Love Canal Site: one Allen-Bradley (A-B) SLC-505 (master PLC), one A-B SLC-504 (PLC for PC3) and five A-B Micrologix 1500. Of the seven PLCs there are six remote PLCs (one located at each of the pump chambers (PC1, PC2, PC3, PC1A, PC2A, and PC3A)), and one master PLC located in the main control room. The remote PLCs control the equipment and monitor the conditions at their respective pump chambers. Data is passed from the remote PLCs to the master PLC and vice versa. The main PLC is connected to the HMI.

The 102nd Street PLC (A-B SLC-504) is tied into the Love Canal system at the PC3 PLC via a DH+ (Data Highway Plus) communication network.

System setpoints for the PLC program are detailed in Appendix F.

5.1.2 HUMAN MACHINE INTERFACE (HMI)

The PLC is tied in to an Intellution HMI software package that allows the operator to view the Collection and Treatment process from a computer screen. This system offers flexibility in process control and allows the operator efficient management of the

collection and treatment processes. Alarms that are triggered by the PLC are displayed on the HMI screen.

In addition the interface allows the operator to change pertinent operational setpoints and enable/disable well pumps from the control room. System setpoints for the PLC program are detailed in Appendix F.

The operator is provided with all critical process information through the PLC/HMI interface. The HMI screen printouts are included in Appendix A.

The HMI prints a daily report detailing pumping volume for each well, average water level for each well, and process tank levels.

5.2 ALARMS

Alarms are set to advise the operator when conditions are not within the normal limits. The alarms are displayed on the HMI.

Appendix B provides a list of alarm messages for the Collection and Leachate Treatment Systems. These are the messages that will be displayed on the HMI alarm screen.

Potential operating problems and troubleshooting guides are detailed in Appendix G. (Control sequences described in Section 5.3 are meant to complement the troubleshooting section.)

5.3 OPERATIONAL CONTROLS AND SEQUENCES

The automated control of each piece of equipment is a combination of operational controls and sequences.

5.3.1 OPERATIONAL CONTROLS

Operational controls manage parameters that change within selected ranges during routine operation of a piece of equipment. These controls are typically used as part of the normal automated operation of the equipment. As an example, the level in a well is used to routinely start and stop a pump. In the Collection System, the pump chamber

pumps are designed to operate in a routine manner without impacting critical alarms. Alarms are set to advise the operator when conditions are not within the normal limits.

The operator is provided with all critical process information in the control room. Equipment can be started and shut down from the control room through the HMI. The pump chambers demonstrate a type of operational control as follows:

5.3.1.1 PUMP CHAMBERS

The pump chambers all operate in a similar fashion. Each chamber is equipped with a variety of instrumentation to monitor and control operation of the pump.

The pump chambers are equipped with fixed level probes. If the HAND-OFF-AUTO switch local to the pump is in AUTO, the pump is enabled at the HMI, downstream levels permit pumping, and the level is above the high level setpoint, the pump will start. The pump will continue to operate until the level drops below the low level setpoint. The pump will also stop if the local switch is switched OFF, it is disabled through the HMI/PLC or levels downstream are too high. The pump will continue to cycle on and off as the level in the pump chamber changes.

A more detailed description of the operational controls can be found in the Collection System and Leachate Treatment System sections above.

5.3.2 SEQUENCES

Sequences can be broken down into two types of sequences: routine and shutdown sequences.

Shutdown sequences are designed to provide failsafe operation of the treatment plant. Shutdown sequences are parameters or a series of parameters that indicate that equipment is operating out of normal limits or may be contributing to an undesirable condition. A shutdown sequence triggers an alarm and locks out the designated equipment without operator intervention. The equipment can not be restarted until an operator resets the shutdown sequence alarm.

When any of the shutdown sequences are tripped, an alarm statement will be posted on the HMI computer screen and specific automated control actions will occur. Routine sequences are normal operating parameters or a series of parameters that define the normal operation of equipment. No alarms are associated with routine sequences.

Full shutdown and routine sequence descriptions are included in Appendix D. The system sequences are listed in the following two sections.

5.3.2.1 SHUTDOWN SEQUENCES

Shutdown Treatment Plant: When the level in the floor drain is above the high level switch, the Treatment System will shutdown. The pumps that will be inhibited from running include the Raw Water Feed Pump, and the Filter Feed Pump. The above pumps will be enabled for normal operation when all applicable levels and conditions are cleared.

5.3.2.2 ROUTINE SEQUENCES

- Inhibit Manhole #7 Pump From Running
- Inhibit Manhole #8 Pump From Running
- Inhibit Pump Chamber #3 Pump A From Running
- Inhibit Pump Chamber #3 Pump B From Running
- Inhibit 102nd Street Well Pumps From Running
- Inhibit Pump Chamber #1A Pump A From Running
- Inhibit Pump Chamber #1A Pump B From Running
- Inhibit Pump Chamber #2A Pump A From Running
- Inhibit Pump Chamber #2A Pump B From Running
- Inhibit Pump Chamber #3A Pump A From Running
- Inhibit Pump Chamber #3A Pump B From Running
- Inhibit Raw Water Feed Pump From Running
- Inhibit Filter Feed Pump From Running

5.3.3 SEQUENCE OVERRIDE

The control system is not designed to permit a shutdown sequence override. If necessary, the system must be run in manual until the condition is corrected.

5.4 REMOTE ACCESS

The HMI system is part of a Wide Area Network (WAN) that connects several GSH Sites. This network allows for full control and alarming capabilities of the Love Canal Collection System and the Love Canal Treatment Facility from any of the other connected GSH Sites (Durez North Tonawanda, Hyde Park Landfill, and S-Area).

6.0 MONITORING

The operator is responsible for day-to-day operations of the facility including system monitoring, record keeping (records are maintained in the control room), and ensuring that potential problems are addressed through necessary maintenance. Monitoring requirements are described in general as follows:

6.1 ROUTINE OPERATIONS INSPECTION / MONITORING

The operator is responsible for day-to-day operations of the facility including system routine, preventive and required maintenance. These maintenance and monitoring procedures are designed to maintain compliance with the 5NYCRR 373-3.9 Container Management and 373-3.10 Tank Systems. Maintenance of the collection and treatment system components will be performed in accordance with the manufacturer's recommendations. Monitoring requirements and intervals are described subsequently in general.

6.1.1 <u>DAILY INSPECTION / MONITORING</u>

An inspection of system operation will be made on a seven day per week basis. This will consist of the following:

- A) A visit to the site to perform an inspection, including viewing of the HMI data. The inspection should verify the operation of each component of the Collection and Treatment System.
- B) Perform a visual check; walk through the entire treatment building and tank farm area; check for leaks, overflows, malfunctioning equipment or signs of vandalism. Document visual check and findings on daily inspection sheet and if needed forward any work orders to maintenance group.
- C) Inspection of the Sludge Storage Tank Farm Dike for leakage into the secondary containment system.
- D) Inspection of aboveground transfer lines and piping; includes inspection for leaks, corrosion, and excessive stress.
- E) Inspection of process vessels and tanks; includes inspection for leaks, corrosion or cracks.
- F) Check drum warehouse fuel oil storage tank and dike for leaks. Check stored drums for corrosion/leakage. Check sump levels.

- G) Check security system. (administration building, treatment building, and drum barn).
- H) Check telephone system for proper operation.
- I) Check sample refrigerator for proper operations (4 degree C).
- J) Check vehicles.
- K) Check precipitation reading.
- L) Inspect fence perimeter, landfill cap, and signs for damage.

A daily inspection log used by the operator is provided as Appendix J. Repairs and/or replacements will be performed as necessary.

6.1.2 MONTHLY INSPECTION/MONITORING

The following will be performed on a monthly basis:

- a. Inspection of Fire Extinguishers
- b. Check for breakthrough of carbon vent scrubbers (with HNU)

Repairs and/or replacements will be performed as necessary.

6.1.3 SEMI-ANNUAL INSPECTION/MONITORING

6.1.3.1 BARRIER SYSTEM/PUMP CHAMBER INSPECTIONS

An inspection of each pump chamber will be conducted semi-annually (spring and fall). This inspection will include:

- A) Visual inspection of chamber piping
- B) Verification of level probe performance
- C) Inspection of pump chamber integrity
- D) Inspection of pump chamber security

6.1.4 <u>ANNUAL INSPECTION/MONITORING</u>

6.1.4.1 BACK FLOW PREVENTER INSPECTIONS

An inspection of the backflow preventers will be conducted annually. The backflow preventers will be replaced as needed.

6.1.4.2 SLUDGE STORAGE TANK FARM CONTAINMENT DIKE INSPECTIONS

A Professional Engineer will assess the physical integrity of the containment dike. This inspection will identify any cracks, gaps or other structural anomalies that may impact the performance of the containment dike. The inspection reports are maintained in the Love Canal Landfill office.

6.2 <u>ENVIRONMENTAL MONITORING</u>

Every day an operator is required to verify operation of the components of the collection system. This is intended to verify that the well systems are providing adequate drawdown to provide containment of the various APL and NAPL plumes. This may be accomplished through either a visit to the site or examination of the HMI data through the WAN or dialup.

The Long Term Monitoring Wells are used to verify proper operation of the collection system. These monitoring wells are in located in strategic areas that provide pertinent monitoring information regarding the contaminant plume within the site. A typical monitoring well detail is provided as Figure 6.1.

Water levels are collected from the monitoring wells on a quarterly basis, and the wells are sampled for chemistry annually. The annual water chemistry monitoring involves the sampling of wells that are scheduled to be sampled annually, wells that are scheduled to be sampled bi-annually, and wells that are selected by the NYSDEC.

Additional monitoring of surface water, groundwater, groundwater levels, leachate, gas, or sediment is beyond the scope of this manual. Monitoring of these parameters is covered by the "Long-Term Monitoring Manual," dated January 1996 prepared by CRA and an e-mail from the NYSDEC dated March 25, 2009.

6.3 TREATMENT PERFORMANCE MONITORING

A performance log is printed out automatically by the HMI software every morning.

6.3.1 CARBON TREATMENT PERFORMANCE MONITORING

To ensure that organics are being removed by the Main Carbon Beds, samples are taken quarterly for chlorobenzenes between, and after the beds, as summarized below.

Item/Indicator	Criteria Response(S) If Hi/Lo				
Interstage: chlorobenzenes (mono-, tri-, and tetra-), ethylene (tri- and tetra-), monochlorotoluene, hexachlorocyclohexanes, and hexachlorobenzene	>5 μg/L	Commence Process for carbon change			
Effluent: chlorobenzenes (mono-, tri-, and tetra-), ethylene (tri- and tetra-), monochlorotoluene, hexachlorocyclohexanes, and hexachlorobenzene	>10 μg/L	Process Shutdown			

6.4 ANALYTICAL PROGRAM

The effluent discharge criteria for the LCLTF has been established in accordance with all terms and conditions of Chapter 250 of the City of Niagara Falls Municipal Code, Sewer Use Ordinance and The City of Niagara Falls Permit No. 44 for the facility. Periodic testing of the effluent discharge is required as summarized in the following section. In addition, GSH and the City have agreed to cease discharge to the city sewer during high rain conditions to avoid overloading the system. The letter outlining this agreement is included in Appendix E.

6.4.1 SAMPLING SCHEDULE

Sampling and process monitoring is summarized as a process schematic presented as Figure 6.2.

6.4.2 REQUIRED EFFLUENT QUALITY

The effluent limitations specified in the facility's sewer discharge permit (44) from the City of Niagara Falls are as follows:

	Annual Avg	Daily Max	
Parameter	Limit	Limit	Units
Flow	0.3	0.3	MGD
TSS	25	50	lbs/day
Soluble Organic Carbon	50	75	lbs/day

7.0 **SYSTEM UTILITIES**

7.1 <u>EMERGENCY SHUTDOWN</u>

This process is designed to automatically shutdown in a safe manner in the event of an electrical utility failure. In the event of a power failure all process equipment will shutdown. The operating ranges for the treatment plant are set to accommodate any gravity drain that would occur on system shutdown.

7.2 <u>UTILITIES</u>

7.2.1 <u>ELECTRICAL SYSTEMS</u>

Treatment Plant

The power supply to the electrical room in the Treatment Plant is a 400 amp, 480 volt, 3 phase, 4 wire service from Niagara Mohawk on 95th Street. Electricity to all or parts of the treatment building can be shutoff in the electrical room across from the control room in the treatment building. The treatment building floor plan is shown on Figure 7.5. The electrical room includes the following equipment:

- 1. Main disconnect enclosure
- 2. 400A/600V (3 phase, 4 wire) SN safety switch
- 3. 400 A/600V power panel
- 4. 75 KVA transformer (480V primary, 120/208V secondary)
- 5. 120/240V lighting panel
- 6. High level interlock system fuse panel for process and sludge storage tanks plus motorized operated valve for sludge pump discharge
- 7. 120/208V (3 phase, 4 wire) 225A main circuit breaker (Power Panel A)
- 8. Clarifier motor disconnect and starter
- 9. Dewatering Containment Facility Pump Station No. 3 disconnect and starter
- 10. Dewatering Containment Facility Pump Station No. 4 disconnect and starter
- 11. Security/Fire Logic Control Panel
- 12. Variable Frequency Drives

North, Central and South Sectors

The North, Central and Southern Sectors have power supplies that originate from the Treatment Facility's Electrical Room. A main distribution panel (277/480V) feeds a 75 KVA Transformer (480V primary – 120/208V secondary). From there a 3-inch diameter, 4-wire cable feeds Power Panel-A (PP-A). PP-A, located in the Electrical Room, has a 120/208 volt, 225 amp main circuit breaker. PP-A feeds the MDCP pump logic controller, PP-N1 located at Pump Chamber 2A, PP-N2 located at Pump Chamber 1A, PP-C located at Pump Chamber 3A behind the Treatment Facility, PP-S1 located at Pump Chamber 2 and PP-S2 located at Pump Chamber 1.

7.2.2 PLANT WATER

City water enters the facility at the south end of the treatment building. A shutoff valve is located on the riser at this location. The water is supplied by a 4-inch diameter connection to the 8-inch diameter city main in 97th Street, and is used for carbon transfers, compressor cooling, personal hygiene and safety. A backflow preventer has been installed in this line.

This plant water system has an 80 psi service rating and is connected to the following by copper lines:

- 1. Two (2) stationary air compressors
- 2. Electric water heater
- 3. Washroom facilities; shower, sink, toilet and urinal
- 4. Three (3) emergency shower and eyewash stations
- 5. Hose used for washdowns
- 6. Carbon service module
- 7. Two (2) main back-flow preventers

Schematic diagrams of the service module and water lines are provided on Figures 7.1 and 7.2.

Plant water, supplied to the service module by a 3-inch diameter copper line, is flow and pressure regulated as detailed on Figures 7.1 and 7.2. Water from the module is used for the following carbon transfer operations:

- 1. Water rinsing of the spent carbon
- 2. Preparing a carbon slurry in the hopper trailer
- 3. Introducing water cushions to the carbon vessels
- 4. Washing down the carbon heel from the adsorber, and transfer and delivery tanks

7.2.2.1 SAFETY SHOWER SYSTEM

The emergency shower system is comprised of the three emergency shower and eyewash systems. The emergency shower and eyewash systems are fed by the city water lines. The following is a summary of the safety shower and eyewash station locations.

Station	Location
1	Treatment Building, northeast of the clarifier
2	Treatment Building, south of the clarifier
3	Drum Barn

7.2.3 NATURAL GAS

Natural gas enters the administration building at the southeast corner of the building, and enters the treatment facility in the compressor room. A meter and shutoff valve are located at both points, and are inspected annually by the gas company.

7.2.4 COMPRESSED AIR SYSTEM

The compressed air system consists of two (2) stationary Worthington compressors, a Model RS-25-100 and a Model Rollair 40-100, which are located in the compressor room next to the MCC room in the treatment building. The compressors provide air required by the Sludge Holding Tank Discharge Pump, for transfer of sludge from the Clarifier to the Sludge Holding Tank (two (2) vacuum air-lift sludge lines), and for carbon changeouts. A Van Air refrigerated air dryer system dries the air prior to use in the system.

Because of the infrequent use, the Compressed Air System requires manual starting. Pressure gauges, switches, and temperature gauges function internally to protect the unit from over-pressurization.

Air is supplied on demand for the sludge pump and sludge transfer by copper lines pressurized to 100 psi. The pressure in the air lines for carbon transfer is regulated by control valves and gauges on the service module.

The air module schematic and compressed air schematic are detailed on Figures 7.3 and 7.4.

7.2.5 **HVAC**

The electrical and mechanical rooms are heated by 500 and 1750 watt wall baseboard heaters respectively. Ventilating in the electrical and mechanical rooms is provided by a Penn Dome BB45 roof exhaust fan. A Penn Dome XQ60 roof exhaust fan provides ventilation for the washroom.

The plant area is heated by a Dravo Hastings LU-215 gas roof top unit. Temperature adjustment is accomplished by rotating a burner flame control at the unit. There is also a switch in the control room to change between summer and winter mode. The same area is ventilated by two (2) floor level exhaust fans located on the east and west walls of the bay area (each fan is rated at 1185 rpm at 4100 cfm). In addition, there are six (6) roof top fans. Three of the fans (rated at 1650 rpm and 795 cfm each) are connected to the raw tank, the clarifier/filter feed tank and sludge holding tank. These are two speed fans. The remaining three (3) fans are located on the roof at the south end, middle and southeast ends of the plant. These fans are rated at 475 rpm/9035 cfm, 945 rpm/4070 cfm, and 945 rpm/4070 cfm respectively. Exhaust fan and roof fan controls are located on the west wall of the air compressor room. Operation of fans during plant operations are detailed in the LCLTF operating procedures.

8.0 REPORTS

8.1 QUARTERLY/ANNUAL REPORTS

The quarterly reports summarize the effluent sewer sampling that occurs. The quarterly reports are submitted to the City of Niagara Falls in accordance with the City of Niagara Falls Discharge Permit #44. Copies of the report are provided to NYSDEC.

An Operations and Monitoring Report is issued annually to the NYSDEC to summarize the activities that occurred at the Site over the past year. This report includes:

- Operations of the barrier drain and well collection systems
- Groundwater treatment including the treatment system, the effluent discharge, sampling, the annual precipitation and the quantity of sludge removed and sent off-Site to a permitted facility (noting location) for incineration
- Groundwater monitoring including groundwater quality, chemical monitoring, and hydraulic containment
- Process and non-process activities
- Community outreach including beautification, tours, and communications
- Evaluation of overall performance and chemical containment
- Institutional and engineering certification

Per the NYSDEC's request, the Operations and Monitoring Report will be entitled "Site Management Periodic Review Report" beginning in 2010.

A separate Love Canal annual report is submitted to the NYSDEC pursuant to Section 2.C. of Appendix B of the Consent Judgement between OCC and the State of New York, effective October 7, 1994. It is a condensed version of the Operations and Monitoring Report, and covers those developments and activities that occurred throughout the calendar year. As per Section 4 of Appendix B of the Consent Judgement, GSH makes the annual report available to the public at a location accessible to local residents. The annual report is also mailed to individuals on a regular short mailing list (not to exceed 50 copies). This list is maintained by GSH.

Any other necessary recipients of the above reports are also maintained on the GSH mailing list.

9.0 <u>PERSONNEL</u>

9.1 ORGANIZATIONAL CHART

The organizational structure for GSH WNY operating personnel is posted in the Love Canal Control Room.

9.2 STAFFING REQUIREMENTS

The Love Canal Collection and Treatment Systems is designed to operate with minimal staffing. The site is designed to operate automatically (unmanned) with the exception of routine inspections and maintenance activities. According to the consent order and due to the historically high visibility of operations at the Site, GSH requires one operator to be on-Site while the Treatment System is in operation.

9.3 TRAINING

Training for the Operations Staff is covered in Section 4 (Training Program) of the "Site Specific Health and Safety Plan for Operation and Maintenance Activities at the Love Canal Treatment Facility." This Manual is kept in the Love Canal Control Room.

9.3.1 DETAILED JOB TRAINING

The on-the-job training required for a Love Canal Operator includes:

- 1. Review of other environmental and safety regulations applicable to operation of the Collection and APL Treatment Facility
- Detailed study and understanding of the "Love Canal Landfill Collection and Aqueous Phase Liquid (APL) Treatment System Operation and Maintenance Manual"
- 3. Satisfactory performance of all required record keeping
- 4. Demonstration of proficiency with Love Canal operating procedures

9.3.2 TRAINING DOCUMENTATION

Upon completion of formal training to operate the facility, acknowledgement is documented on a sign-off sheet, Appendix K, and placed on file.

10.0 RECORDS

10.1 <u>OPERATING INSPECTION</u>

Operations inspection sheets are filed in the Love Canal Control Room. Operations logbooks are used to record activities performed while on-Site. Active logbooks are stored in the Love Canal Control Room. Logbooks are archived in the Love Canal files located in the office building.

10.2 <u>MAINTENANCE/CALIBRATION</u>

Maintenance and calibration records for each piece of equipment are filed in the Love Canal Control Room.

11.0 REFERENCES

11.1 LOVE CANAL DOCUMENTS

11.1.1 CONSENT ORDERS

- Partial Consent Decree 1989
- Consent Judgement 1994

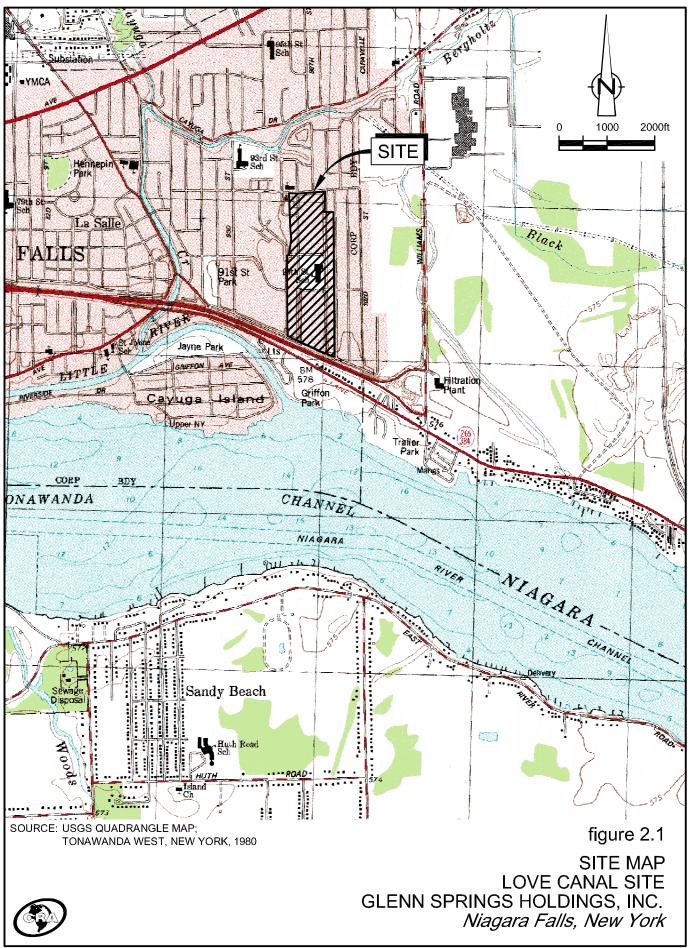
The above Consent Orders (Civil Action No. 79-990C) are between the United States of America, the State of New York, and UDC-Love Canal, Inc. (Plaintiffs), and Occidental Chemical Corporation, City of Niagara Falls, New York, and the Board of Education of the City of Niagara Falls (Defendants).

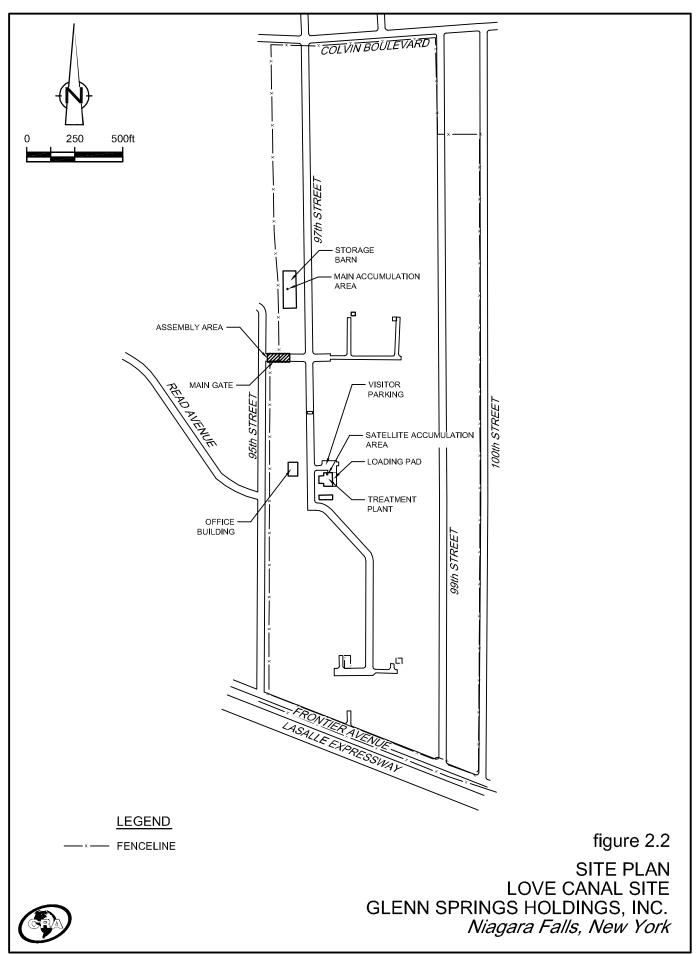
In 1995, GSH/GSH assumed responsibility for the O&M requirements set forth in the above Consent Orders.

11.1.2 MANUALS

- The following manuals can be found in the GSH office building
- Love Canal Landfill Collection and Aqueous Phase Liquid (APL) Treatment System Operation and Maintenance Manual

11.1.3 **HEALTH AND SAFETY**

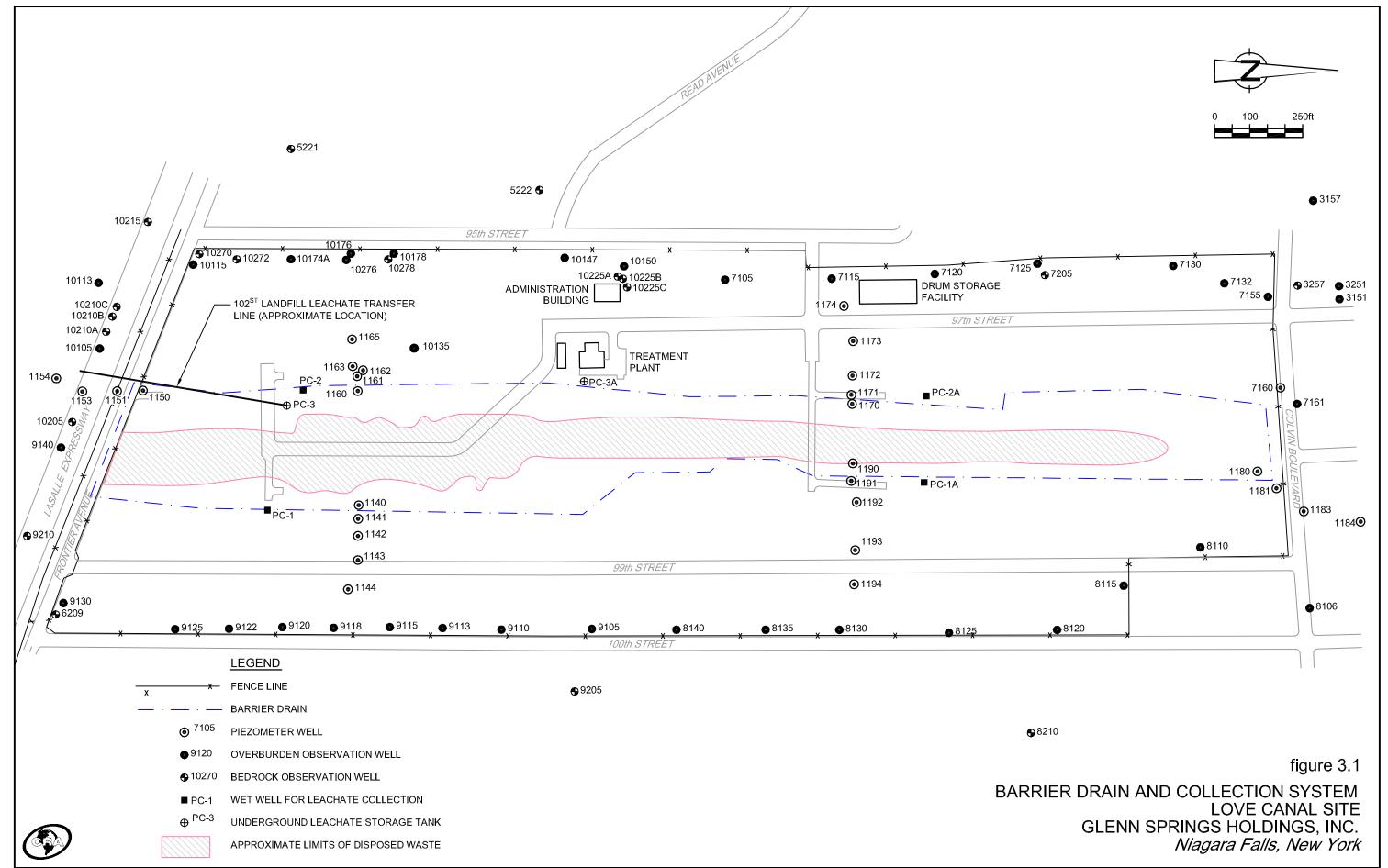

Site Specific Health and Safety Plan for Operation and Maintenance Activities at the Hyde Park Treatment Facility, Love Canal Treatment Facility, Durez North Tonawanda Treatment Facility, and Durez NT Inlet Cove.


11.2 DRAWINGS

Process and Instrumentation Diagrams together with PLC Schematics for the Collection and Treatment System are attached as Appendix C. Significant equipment, instrumentation and process lines are depicted on these drawings as a reference for operating personnel.

11.3 <u>EQUIPMENT VENDOR MANUALS</u>

Manuals for	r individual equ	iipment are st	ored in the L	ove Canal fil	e room.	



FORMATION	COLUMNAR SECTION	THICKNESS IN FEET	CHARACTER
FILL		0.1-3	LOCAL SOIL MATERIAL, INDUSTRIAL WASTE, CONSTRUCTION RUBBLE
GLACIOLACUSTRINE CLAY		6-29	REDDISH BROWN TO GRAY, SILTY, VARVED, IN UPPER PART GRADING TO VERY PLASTIC, MOIST TO WET, IN LOWER PART
TILL		1-25	REDDISH BROWN SILTY TO SANDY CLAY, GRAVEL AND COBBLES, SANDY ZONES, FIRM, MOIST
BEDROCK		160-180	LOCKPORT DOLOMITE
BEDROCK		~60	ROCHESTER SHALE

figure 2.3

SITE GEOLOGICAL COLUMN LOVE CANAL SITE GLENN SPRINGS HOLDINGS, INC. Niagara Falls, New York

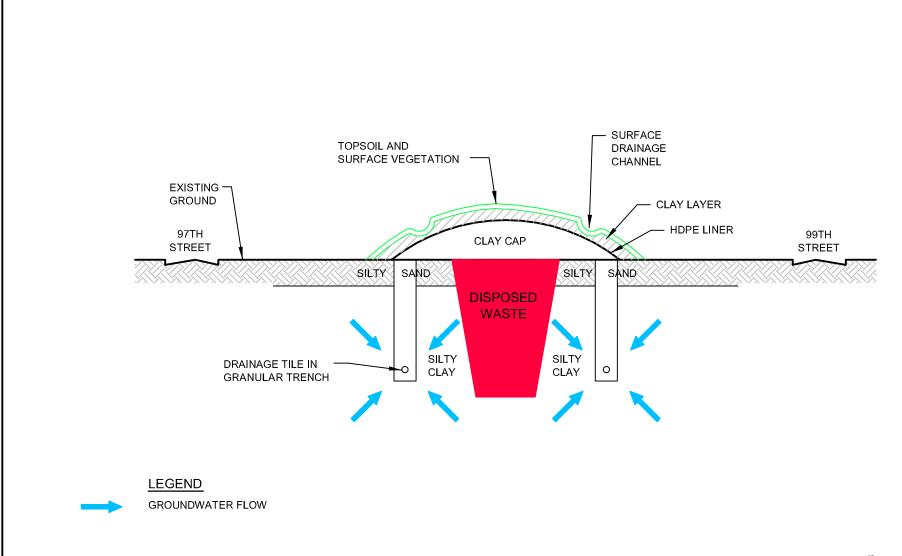
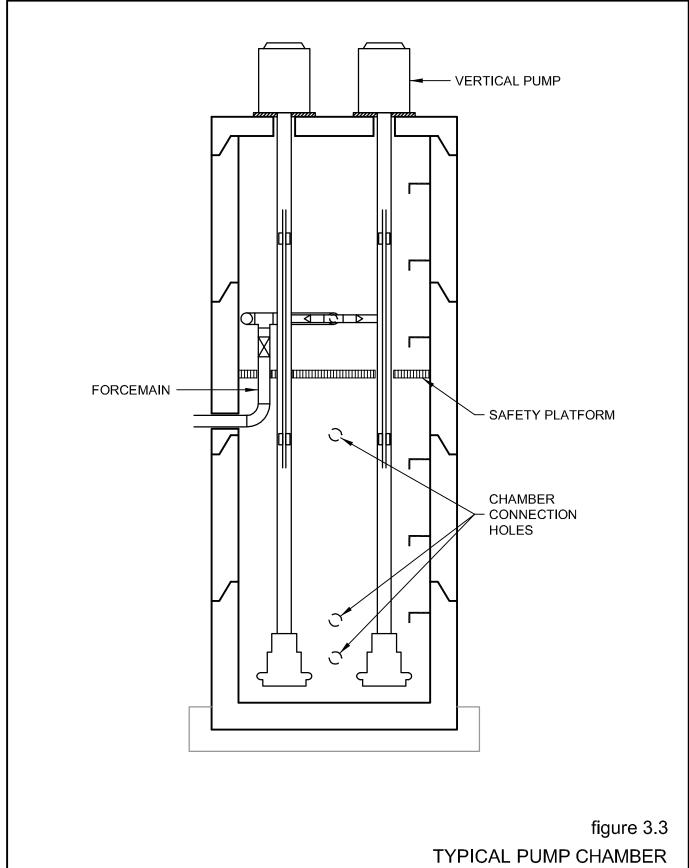
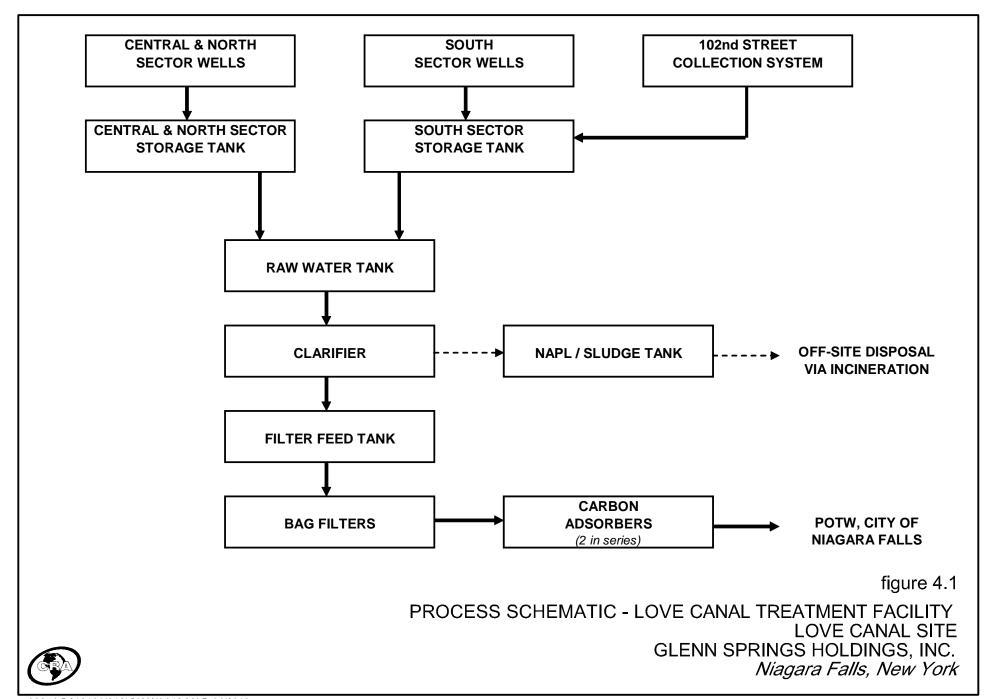
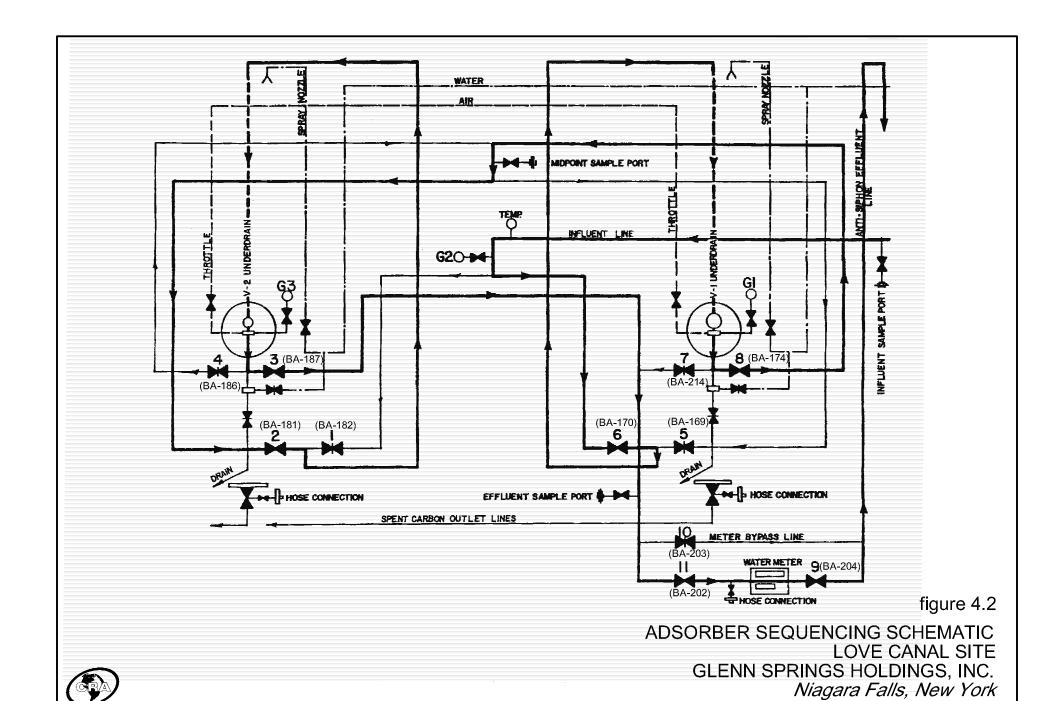



figure 3.2


TYPICAL BARRIER COLLECTION SYSTEM CROSS-SECTION LOVE CANAL SITE GLENN SPRINGS HOLDINGS, INC. Niagara Falls, New York



TYPICAL PUMP CHAMBER LOVE CANAL SITE GLENN SPRINGS HOLDINGS, INC. Niagara Falls, New York

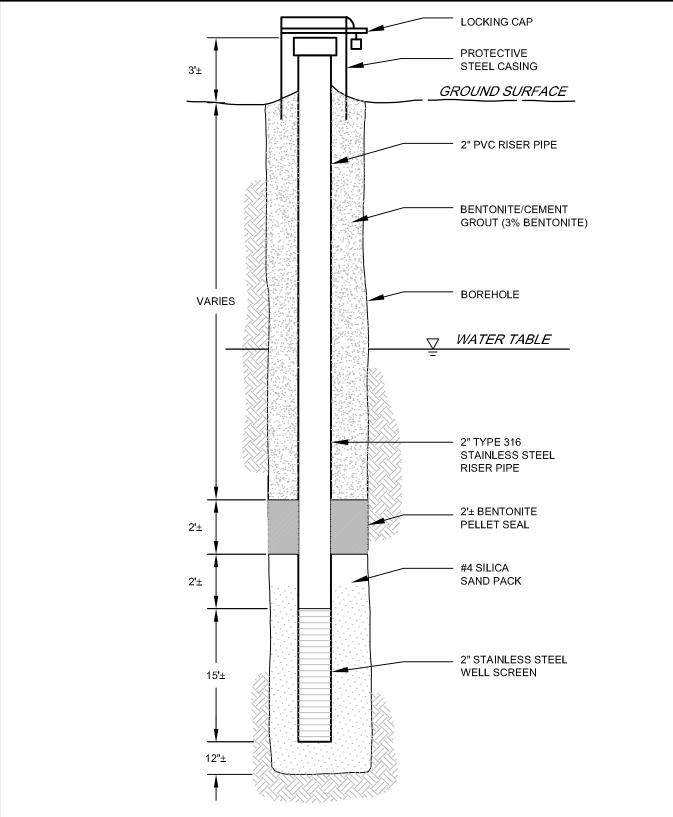
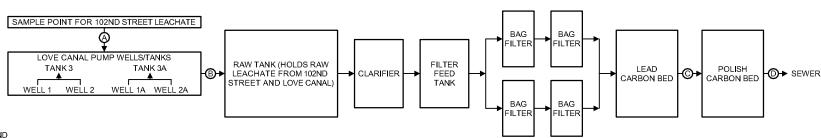



figure 6.1

TYPICAL OVERBURDEN MONITORING WELL INSTALLATION LOVE CANAL SITE GLENN SPRINGS HOLDINGS, INC. Niagara Falls, New York

LEGEND

(A) SAMPLE LOCATION

Frequency	Sample Location	Sample type	Sampler	Laboratory, T/A	<u>Analyses</u>	Sample Method	<u>Driver</u>	Permit/Action Levels
Monthly	D - Effluent	NA	Operator	NA	Flow, pH, Temperature	1	Flow - SIU Permit #44 pH, Temperature - Internal	Daily Max Discharge Limitations
Quarterly	A - 102nd Street	Grab	Operator	TA-Pitts STD	VOCs, SVOCs, Pesticides, SOC, TSS, Pheno	d 2	Internal Use Only	Process Information
	D - Effluent	Lab Composite	Operator	TA-Pitts STD	SIU Permit #44 (1), SIU Permit #44 (2)	3	SIU Permit #44	Daily Max Discharge Limitations, Quarterly Treatment Levels
	B - Influent	Grab	Operator	TA-Pitts STD	VOCs, SVOCs, Pesticides, SOC, TSS, Pheno	d 2	Internal Use Only	Process Information
	C - Interstage	Composite	Operator	TA-Pitts STD	VOCs, SVOCs, Pesticides, SOC, TSS, Pheno	d 4	Internal Use Only	Process Information

SIU Permit #44 (1) - Quarterly Analytes

TSS, SOC, PPL VOCs, PPL Acid Extractables, PPL Base/Neutral, Hexachlorocyclohexanes, Total Phenols

SIU Permit #44 (2) - Quarterly Treatment System Check

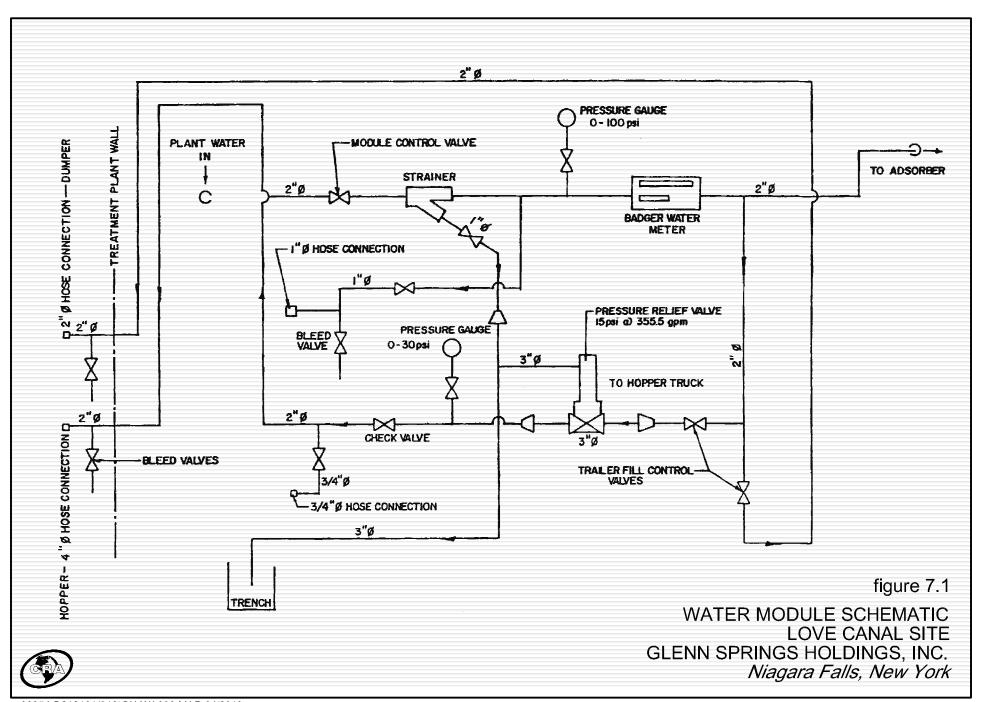
Trichloroethene, Tetrachloroethene, Monochloroethene, Monochlorobenzenes
Trichlorobenzenes, Tetrachlorobenzenes, Hexachlorobenzenes, Hexachlorobenzene

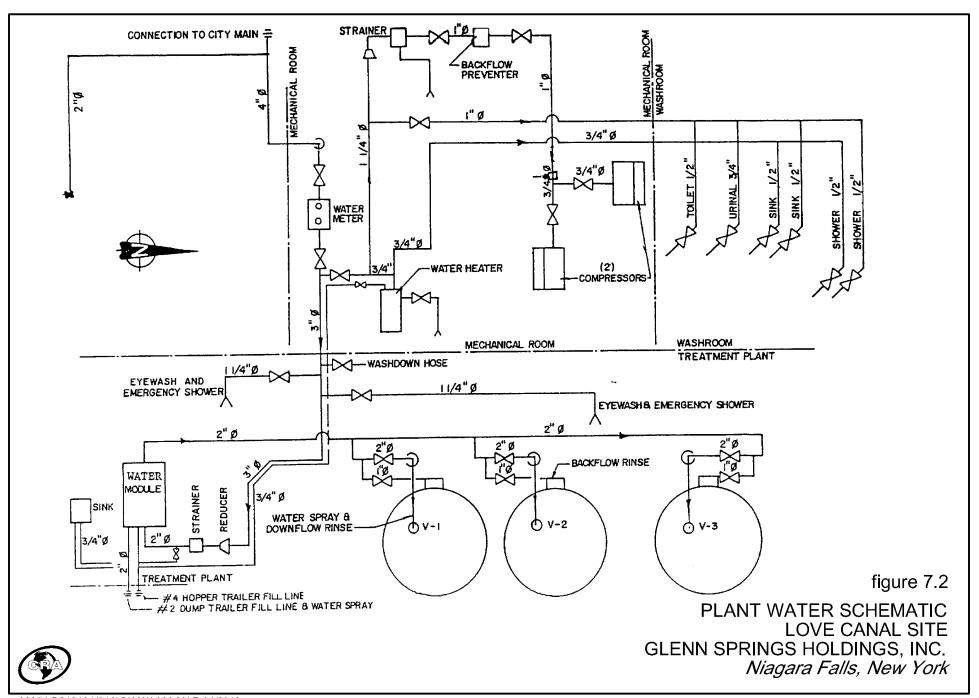
<u>Daily Max Discharge Limitations</u> - Flow - 0.3 MGD, TSS - 50 lbs/d, SOC - 75 lbs/d, PPL VOCs (monitor only), PPL Acid Extractables (monitor only), PPL Base/Neutral (monitor only), Hexachlorocyclohexanes (monitor only), Total Phenols (monitor only)

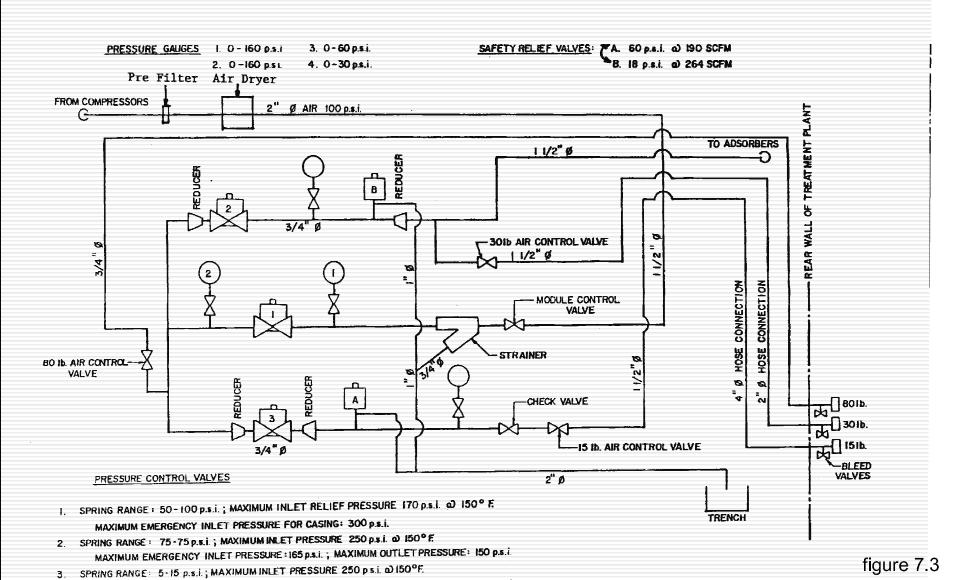
<u>Process Information</u> - TSS, SOC, PPL VOCs, PPL Acid Extractables, PPL Base/Neutral, Hexachlorocyclohexanes, Total Phenols

Quarterly Treatment Levels - 10 µg/L

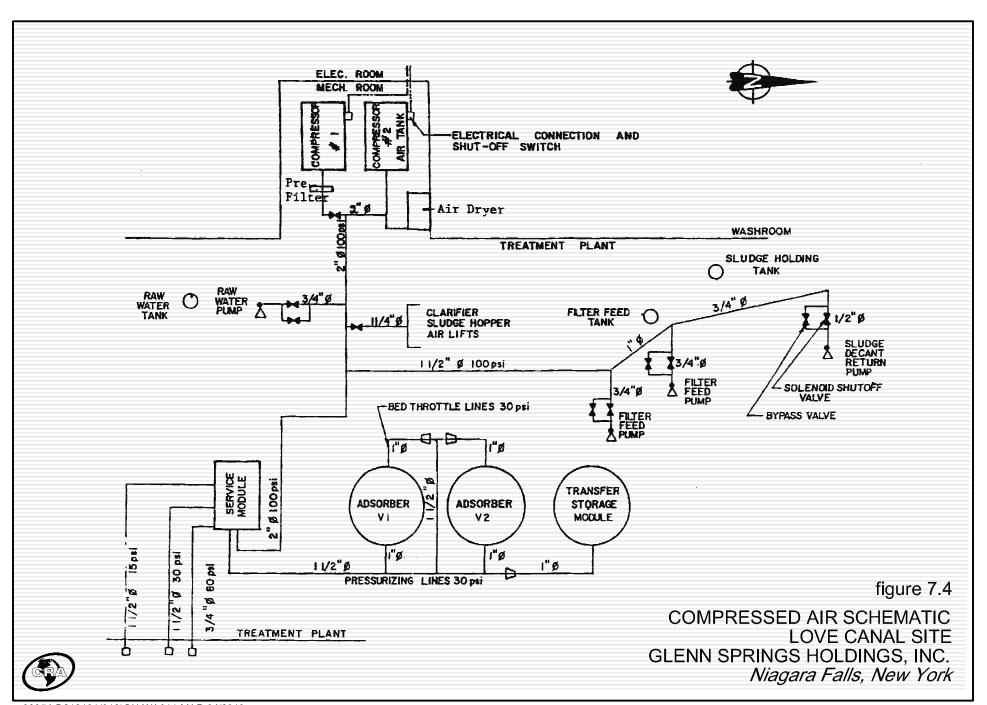
Notes:

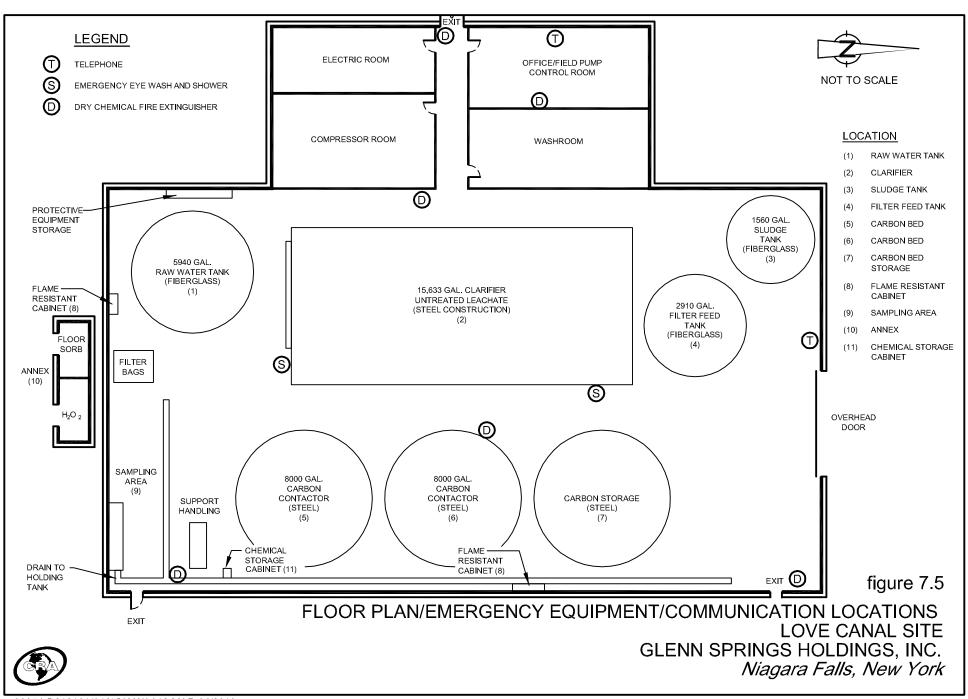

- Location A (102nd Street sample) is collected from PC3.
- Location B (Influent) is collected before the Raw Tank.
- Location C (Interstage) is collected between the Lead Carbon Bed and the Polish Carbon Bed.
- Location D (Effluent) is collected from MS #1.
- Flow will be continuously monitored with the use of a water meter or another acceptable flow metering device.
- 2. Grab sample.
- 3. Each sample will consist of four (4) grabs collected spaced throughout the batch discharge, such that they are representative of the effluent being discharged pursuant to 40CFR 403.12.b5iii. The four (4) grabs will be composited in the laboratory and analyzed as one sample.
- 4. Composite sample over a 24-hour period. Composited by operator.


If any part of the groundwater treatment system is inoperable (down) for a period of more than three (3) days consecutively or five (5) days in a 30-day period, the NYSDEC shall be notified.


figure 6.2

PROCESS SCHEMATIC LOVE CANAL SITE GLENN SPRINGS HOLDINGS, INC. Niagara Falls, New York





AIR MODULE SCHEMATIC LOVE CANAL SITE GLENN SPRINGS HOLDINGS, INC. Niagara Falls, New York

MAXIMUM EMERGENCY INLET PRESSURE: 35 p.s.i.; MAXIMUM OUTLET PRESSURE: 30 p.s.i

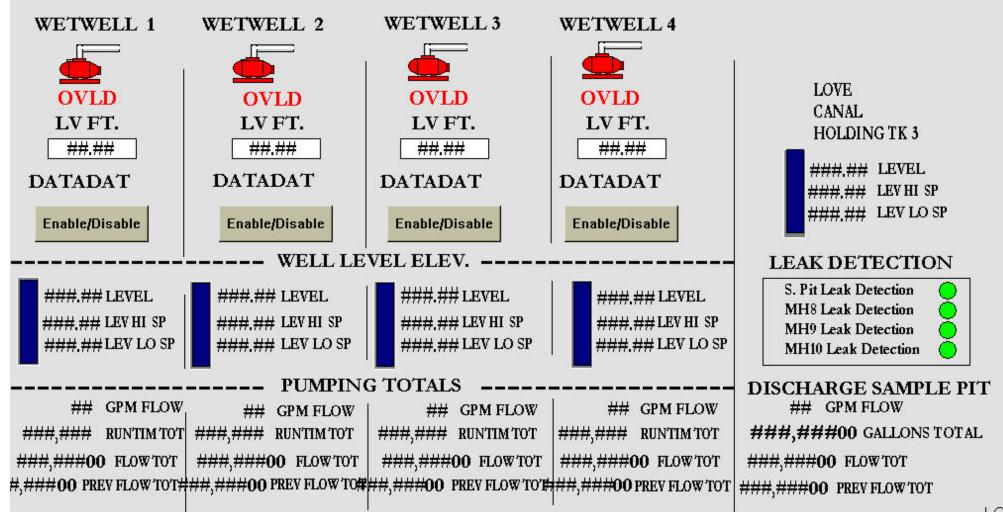
TABLE 1.1

SITE CONTACT LIST LOVE CANAL LANDFILL SITE NIAGARA FALLS, NEW YORK

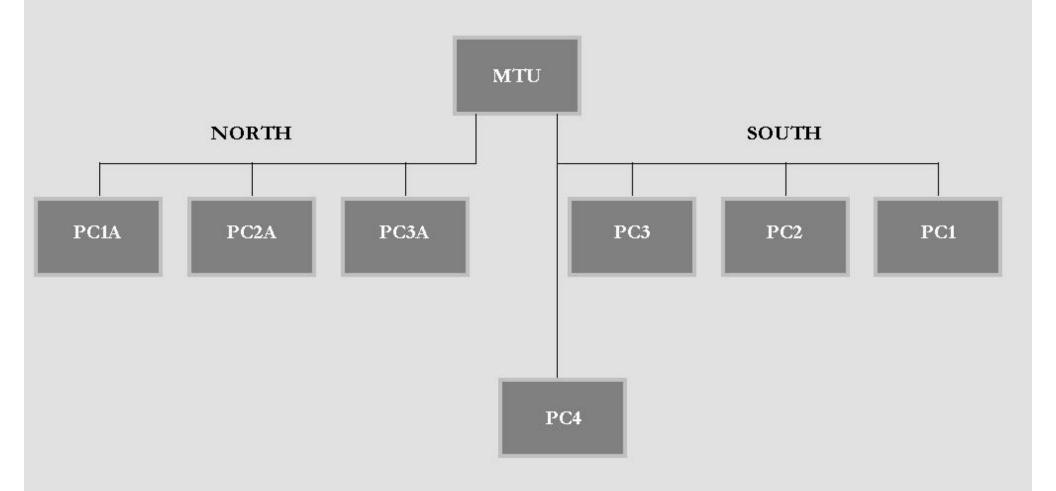
Joseph Branch (GSH) Western New York Operations Manager (WNYOM) cell – 231-670-6809

Clint Babcock (GSH) Western New York Operations Coordinator (WNYOC) 972-687-7506; cell – 972-687-7524

John Pentilchuk (Conestoga-Rovers & Associates [CRA]) Project Manager, reports to GSH 519-884-0510; cell - 519-572-5644


> Dennis Hoyt (CRA) Project Coordinator, reports to GSH 716-297-6150; cell – 716-583-5718

Darrell Crockett (CRA)
Facility Coordinator, reports to CRA PM/PC
cell 716-998-5804


APPENDIX A

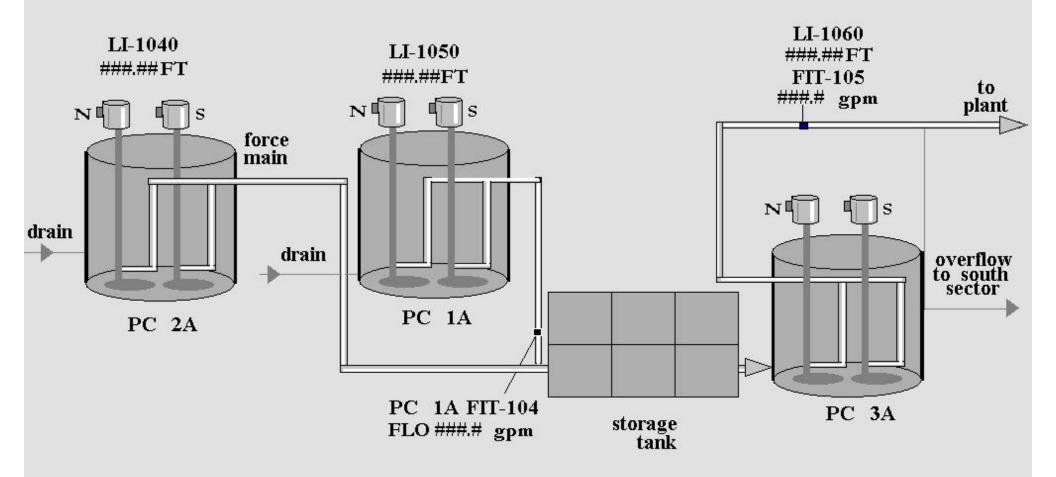
SAMPLE HMI SCREENS

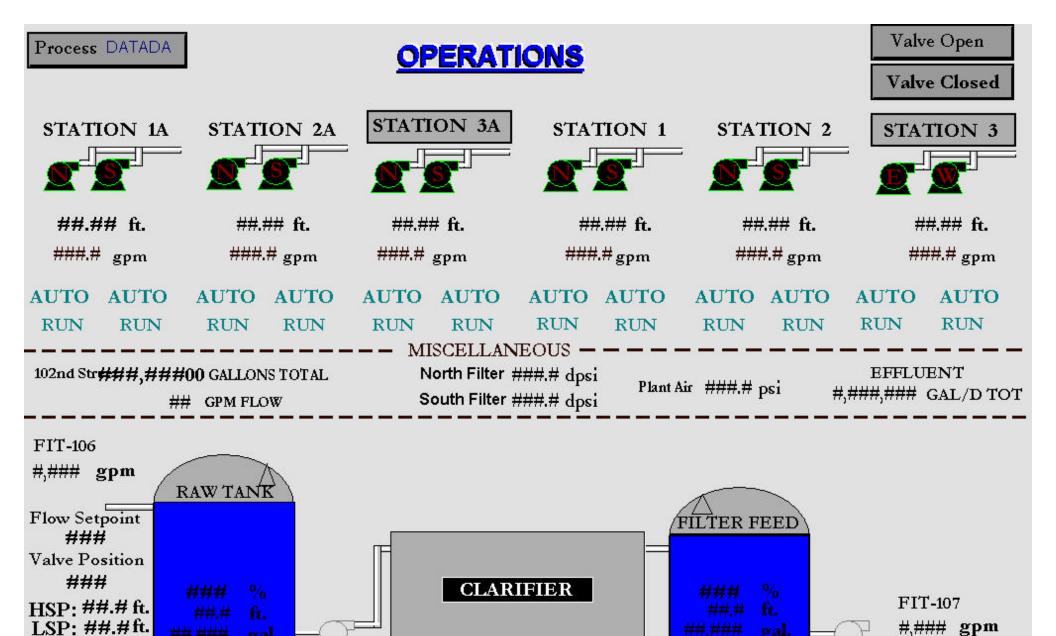
102nd STREET

COMMUNICATION DISPLAY

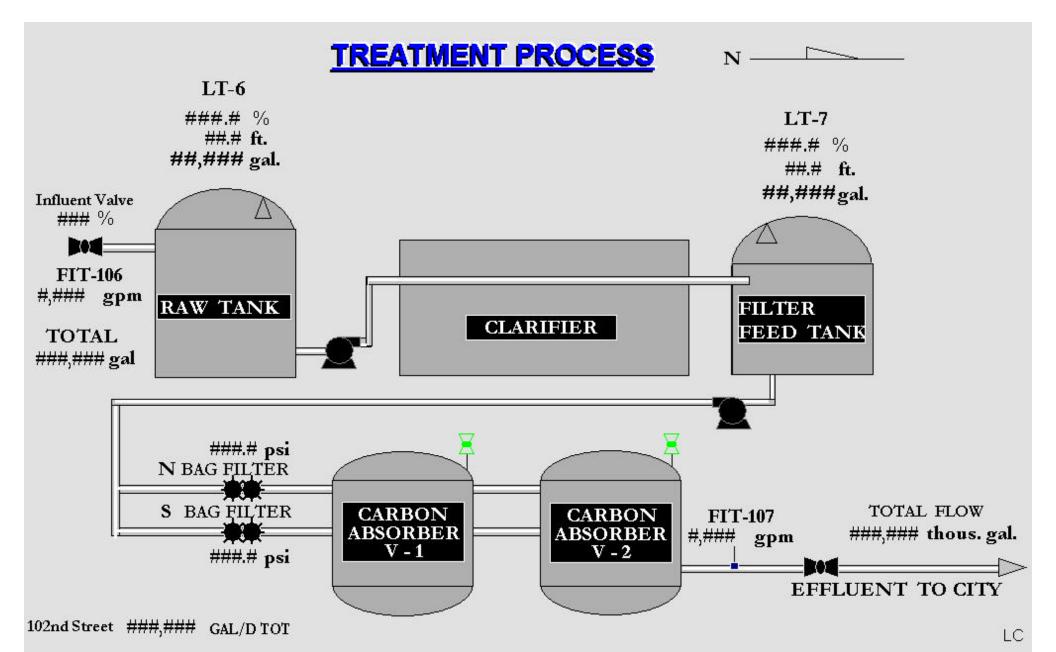


FLOW TOTALS

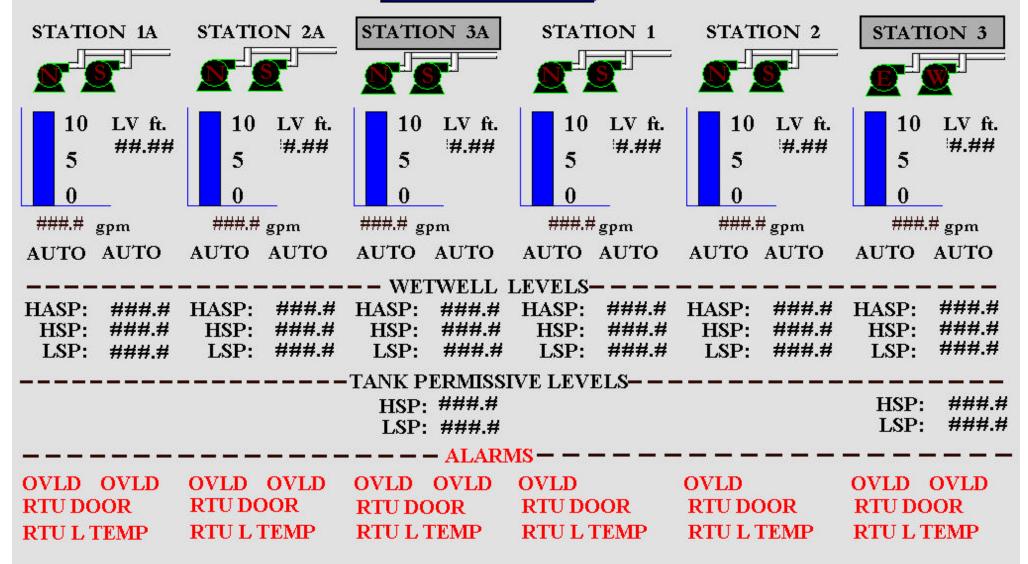

FUN	CTIONS	STATION PC1	STATION PC2	STATION PC3	STATION PC1A	STAT PC2	T. (T. (T. (T. (T. (T. (T. (T. (T. (T. (STATION PC3A	TREATME! PLANT	NT DCF
LEVEL	FT.	##.##	##.##	##.##	##.##	###.	.##	##.##	##.##	
FLOW	GPM	###.#	###.#	###.#	###.#			###.#	###.#	###.#
FLOW TO	T CDAY#	###,###	###,###	###,### #	###,###	(Hours.I ##,##	Minutes) ##,##	###,###	###,###	###,### Gal
FLOW TO	T PDAY#	##,###	###,###	###,### #	##,###	##,##	##,##	###,###	###,###	###,### Gal


PDAY = PREVIOUS DAY CDAY = CURRENT DAY

LOVE CANAL FLOW MENU

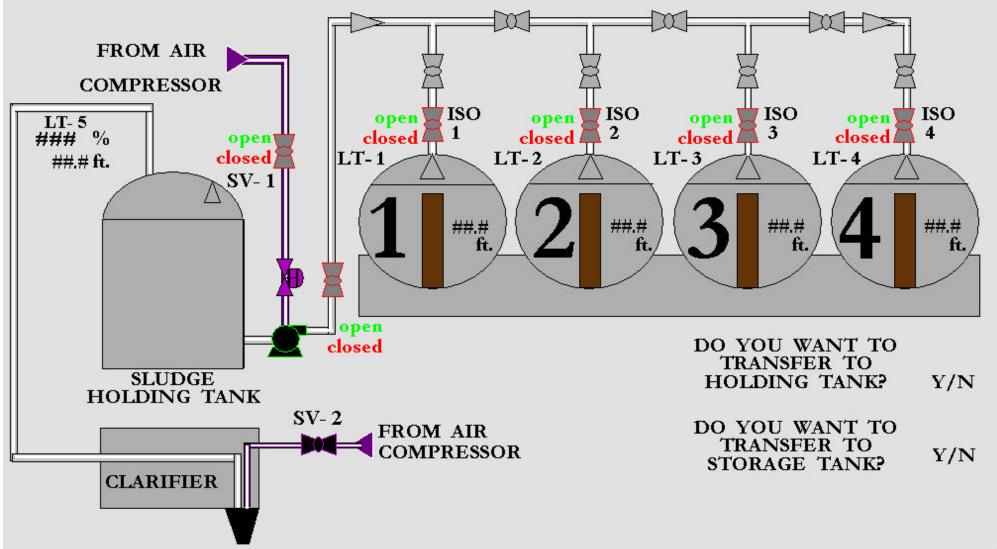


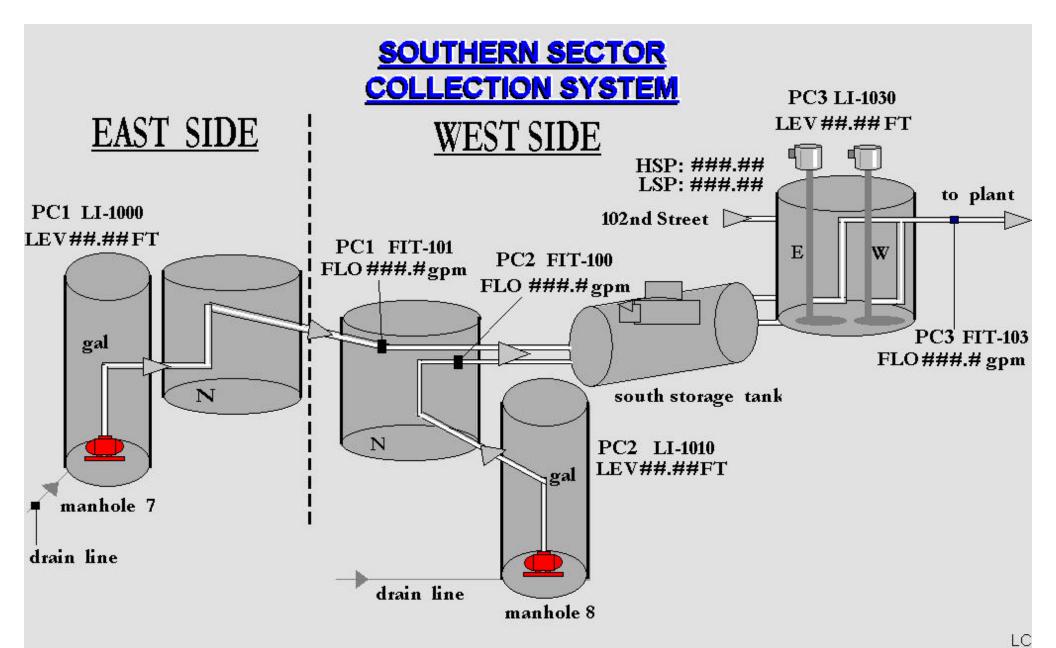
NORTHERN AND CENTRAL SECTOR COLLECTION SYSTEM



LC

PUMP DISPLAY




RUNTIME/MAINTENANCE DISPLAY

PC	1 1A	PC	2A	PC	:3A
PUMP N	PUMP S	PUMP N	PUMP S	PUMP N	PUMP S
##.##	##.##	##.##	##.##	##.##	##.##
##.##	##.##	##.##	##.##	##.##	##.##
##.##	##.##	##.##	##.##	##.##	##.##
ALRM	ALRM	ALRM	ALRM	ALRM	ALRM
DATA	DATA	DATA	DATA	DATA	DATA
s s	##.## ##.## ##.## ALRM	##.## ##.## ##.## ##.## ##.## ##.## ALRM ALRM	##.## ##.## ##.## ##.## ##.## ##.## ALRM ALRM ALRM	##.## ##.## ##.## ##.## ##.## ##.## ##.## ##.## ALRM ALRM ALRM ALRM	S ##.## ##.## ##.## ##.## ##.## S ##.## ##.## ##.## ##.## ##.## ##.## ##.## ##.## ##.## ##.## ALRM ALRM ALRM ALRM ALRM

	PC1	PC2	P(C3
FUNCTIONS	PUMP N	PUMP N	PUMP E	PUMP W
CURRENT DAY HRS	##.##	##.##	##.##	##.##
PREVIOUS DAY HRS	##.##	##.##	##.##	##.##
AMP	##.##	##.##	##.##	##.##
OVERLOAD	ALRM	ALRM	ALRM	ALRM
RUN STATUS	DATA	DATA	DATA	DATA

SLUDGE TRANSFER

APPENDIX B

ALARMS

Love Canal Alarm List

Filter Feed Tank (LIT-107) Level (Ft), identified as LT-1 on HMI screen North Bag Filter Differential Pressure Station PC1 Pump Amp 1

Station PC1A Pump A Amp 1

Station PC2 Pump Amp 1

Station PC2A Pump A Amp 1

Station PC3 Pump A Amp 1

Station PC3A Pump A Amp 1

Station PC1A Pump B Amp 1

Station PC2A Pump B Amp 1

Station PC3 Pump B Amp 1

Station PC3A Pump B Amp 1

Raw Tank (LT-6) Level (Ft)

Sludge Holding Tank (LIT-105) Level (Ft), identified as LT-5 on HMI screen Raw Water Tank (LTI-106) Level (Ft), identified as LT-6 on HMI screen

South Bag Filter Differential Pressure

Station PC1 Wetwell Level

Station PC1A Wetwell Level

Station PC2 Wetwell Level

Station PC2A Wetwell Level

Station PC3 Wetwell Level

Station PC3A Wetwell Level

102nd Street Com Panel Intrusion Alarm

102nd Street S.Pit Leak Detected Alarm

102nd Street MH8 Leak Detected Alarm

102nd Street MH9 Leak Detected Alarm

102nd Street MH10 Leak Detected Alarm

102nd Street Pump 1 Failed

102nd Street Pump 1 Overload Alarm

102nd Street Pump 2 Failed

102nd Street Pump 2 Overload Alarm

102nd Street Pump 3 Failed

102nd Street Pump 3 Overload Alarm

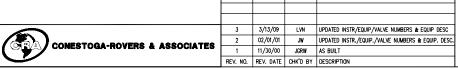
102nd Street Pump 4 Failed

102nd Street Pump 4 Overload Alarm

RTU L Temp PC1

RTU L Temp PC1A

RTU L Temp PC2


RTU L Temp PC2A

RTU L Temp PC3 RTU L Temp PC3A Station PC1 Intrusion Alarm Station PC1A Intrusion Alarm Station PC2 Intrusion Alarm Station PC2A Intrusion Alarm Station PC3 Intrusion Alarm Station PC3A Intrusion Alarm Station PC1 Pump Overload Alarm Station PC1A Pump A Overload Alarm Station PC2 Pump Overload Alarm Station PC2A Pump A Overload Alarm Station PC3 Pump A Overload Alarm Station PC3A Pump A Overload Alarm Station PC1A Pump B Overload Alarm Station PC2A Pump B Overload Alarm Station PC3 Pump B Overload Alarm Station PC3A Pump B Overload Alarm Filter Feed Tank Level BQA Floor Drain Level High

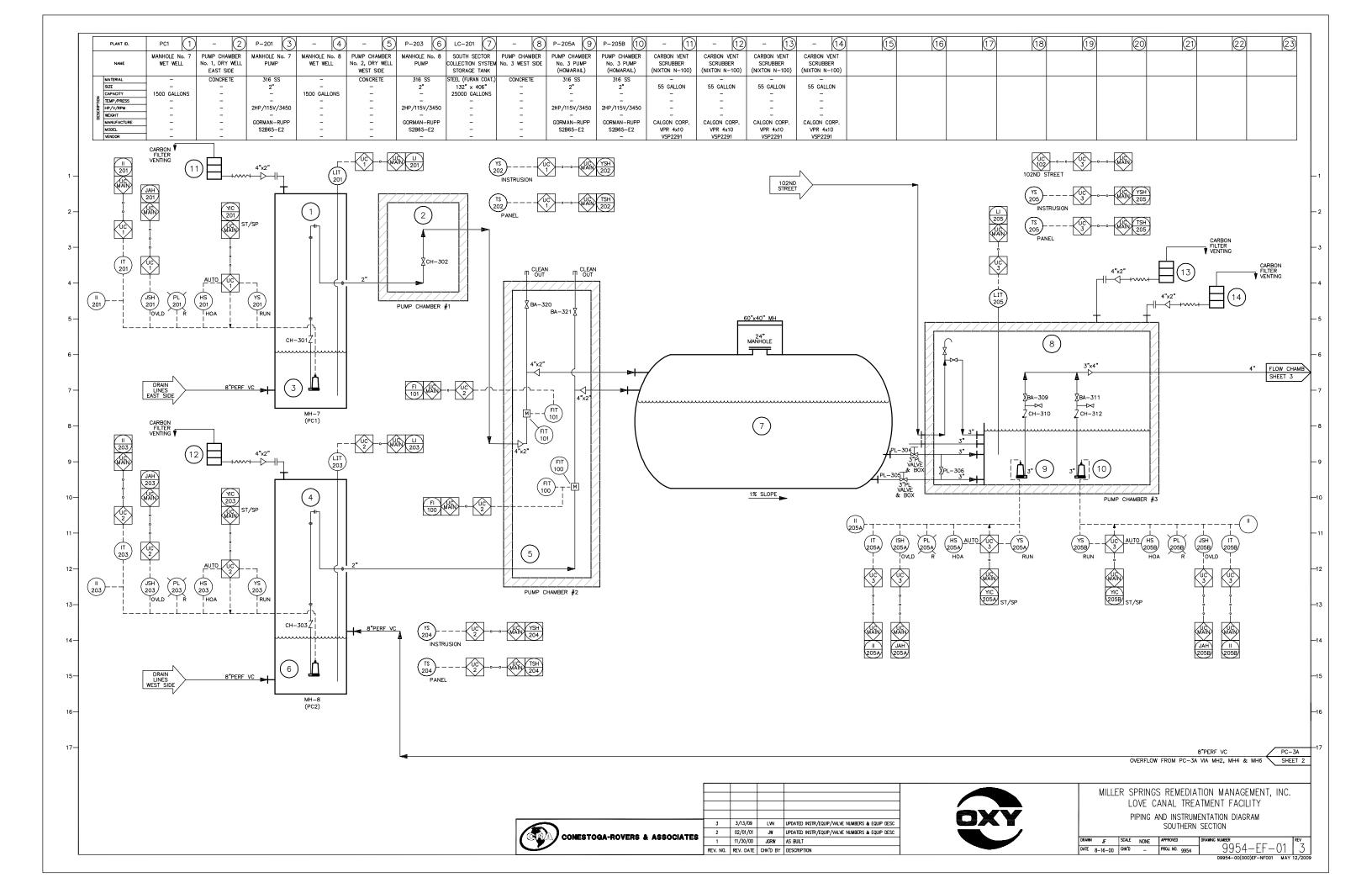
APPENDIX C

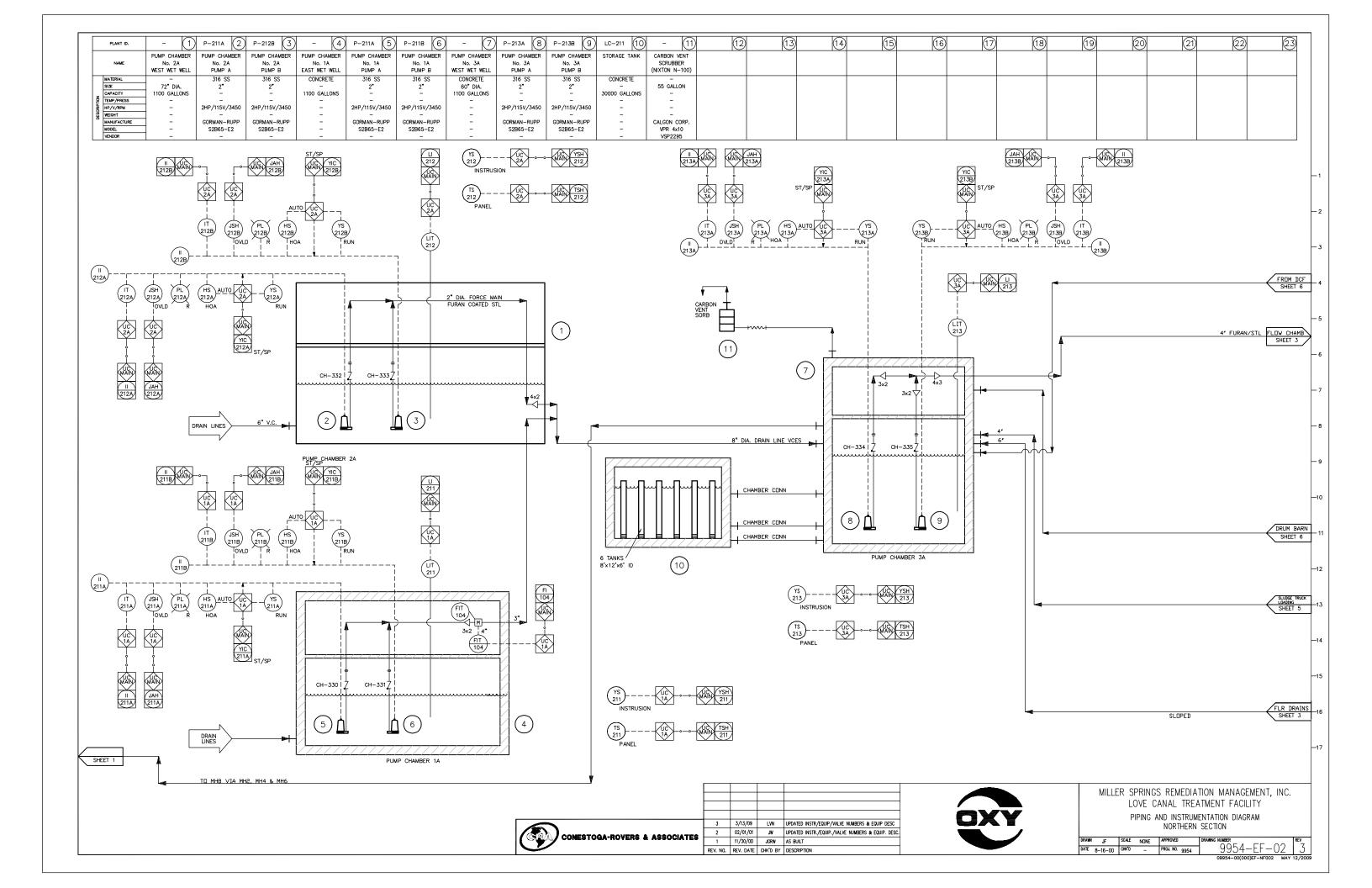
DRAWINGS

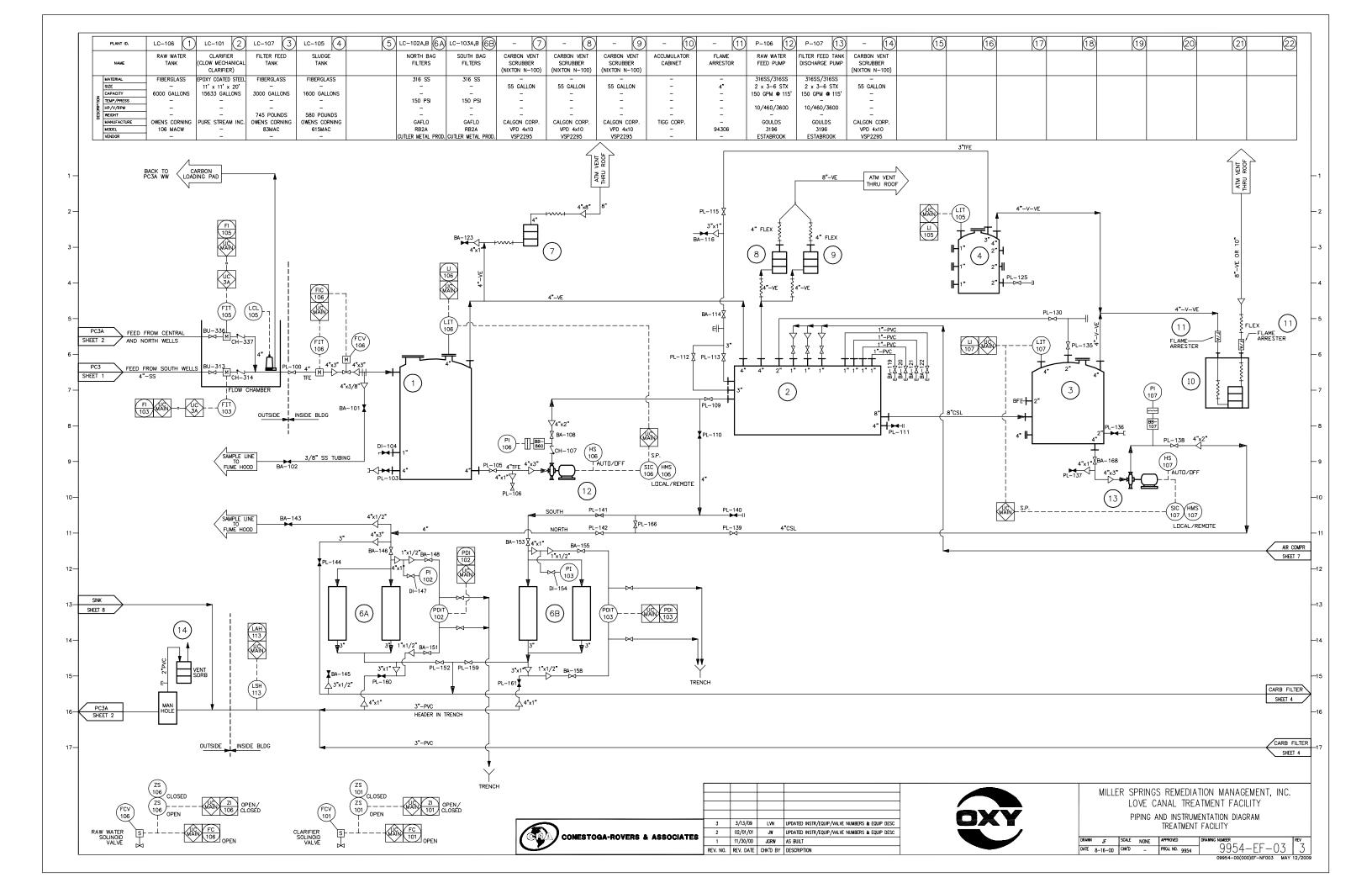
PROCESS / INS	TRUMENT LINES	8	FILTER/REGULATOR		TARGET T	YPE FLOW S	SENSOR							TYF	PICAL	ISA LE	TTER	СОМВ	INATION	<u>15</u>						
	MAIN PROCESS LINE		DAMPER OR LOUVER	— "	SINGLE PC	ORT PITOT TI	'UBE					Co	ontrollers	Self-	Readout I	Devices		hes and Devices *		Transmitters	Sal	lenoids,			\mathrew	
	SECONDARY PROCESS LINE UNDEFINED SIGNAL			— -	AVFRAGIN [,]	G PITOT TUB	aF		First- Letters	Initiating or Measured Variable	Record	ding Indicat	ting Blind	Actuated Control Valves	Recording I	ndicating H	igh ⊷ Lo	ow Com	nb Recordin	g Indicating	Cor	lays, mputing Pri vices Ele	mary Test ment Point	or Probe	Viewing Device, Sa Glass De	afety Fi evice E
	PNEUMATIC SIGNAL ELECTRICAL SIGNAL	x"	EQUIPMENT INSULATED WITH X" OF INSULATION	M		FLOWMETER			A B	Analysis Burner/Combustion	ARC BRC	C AIC						SL ASI		AIT BIT			AE AP	AW BW	BG	
	CAPILLARY TUBE ELECTROMAGNETIC OR SONIC SIGNAL	1		— <u>B</u>	TURBINE (OR PROPELL	ER FLOWMETER		C	User's Choice User's Choice																
~ ~	(GUIDED) ELECTROMAGNETIC OR SONIC SIGNAL	$\stackrel{\longleftarrow}{\Box}$	PULSATION DAMPER	_					E	Voltage	ERC	EIC	EC		ER	EI E	SH E	SL ESH	HL ERT	EIT	ET E	EY E	Œ			
oo	(NOT GUIDED) INTERNAL SYSTEM LINK	₩		— 	POSITIVE-I	DISPLACEME	ENT FLOWMETER		F FQ	Flow Rate Flow Quantity		FIC RC FQIC		FCV, FICV	FR FQR		SH F QSH F	SL FSH QSI	HL FRT	FIT FQIT			E FP		FG	
	HYDRAULIC SIGNAL MECHANICAL LINK	INSTRUMENT	SYMBOLS	—(FI)	VARIABLE	AREA FLOW	METER		FF	Flow Ratio		C FFIC					FSH F			. 4			E			
__\	ELECTRICAL BINARY SIGNAL		LOCALLY MOUNTED INSTRUMENTS	PI					G H	User's Choice Hand		HIC	нс					HS								
—	MAIN PROCESS FLOW INDICATION		PANEL MOUNTED INSTRUMENTS A = PANEL No. WHEN MORE THAN ONE	*					1	Current	IRC				IR			SL ISH		IIT		Y II				
TO / FROM	SECONDARY PROCESS FLOW INDICATION	PNL A	PANEL IS PRESENT		DIAPHRAM LEAD LINE	SEAL WITH	PRESSURE		J K	Power Time	JRC KRC		KC	KCV				SL JSH :SL KSH		JIT KIT	.		E E			
SHEET No.	OFF PAGE CONNECTOR	\leftarrow	BEHIND BOARD MOUNTED INSTRUMENTS						L	Level	LRC	LIC	LC	LCV	LR	u L	SH L	SL LSH	HL LRT	LIT	LT L	_Y L	E	LW	LG	
	LITHITY IN COLUT		IN LINE INSTRUMENTS AS INDENTIFIED	PI					M N	User's Choice User's Choice																
UTILITY	UTILITY IN/OUT		IN LINE INSTRUMENTS AS INSERTINES	*	DIAPHRAM	SEAL (LINE	E-MOUNTED)		0 P	User's Choice	550	. DIO	DO	DOW	PR	D	icu b	ici Dei	HL PRT	DIT	DT	DY F	E PP			DCV
LINE SYMBOLS		—(SG)—	SIGHT GLASS						PD	Pressure/Vacuum Pressure, Differential		C PIC		PCV PDCV			'SH P 'DSH P	SL PSI DSL		PIT PDIT		· '	PE PP			PSV, PSE
_⋈ .	BALL VALVE	<u></u>	RUPTURE DISC	XY **			(INPUT/OUTPUT) - PNFUMATIC		Q	Quantity Radiation	QRC RRC		RC					ISL QSI		QIT RIT			E RE	RW		
BA- " ⋈	BUTTERFLY VALVE	<u></u>	NOT TOKE DISC	\vee		URRENT B	- BINARY (MOI	DBUS, R5232)	s	Speed/Frequency	SRO		sc	scv				SL SSI	-	SIT			SE	""		
BU- " ⊠ DI- "	DIAPHRAM VALVE	- \\$ <u></u>	PRESSURE RELIEF VALVE	PL COLOR	PILOT LIGH A — AMBE	FR			Т	Temperature Temperature, Different	TRO tial TDR	TIC	TC TDC	TCV TDCV	TR TDR			SL TSF DSL	HL TRT	TIT			E TP	TW		TSE
	GATE VALVE	- ≰	VACUUM RELIEF VALVE		G – GREEI R – RED	N			U	Multivariable				,,,,,	UR	UI					l	JY		'''		
⊠ GL− "	GLOBE VALVE	V_B_P	CONSERVATION VENT	FI FCTRI	RICAL SYMB	2015			v w	Vibration/Machinery A Weight/Force	nalysis WR(c wic	wc	WCV	VR WR			'SL VSH <i>V</i> SL WSI		VIT WIT			Æ VE			
A B	THREE WAY VALVE (FAIL OPEN TO PATH A-C)	₹ 47			R AT PANEL		NOMENCLATU	<u>RE</u>	WD	Weight/Force, Differen	tial WDF	RC WDIC	C WDC		WDR	WDI W	WDSH W		WDRT	WDIT	WDT V		VE.			
1 🔐	FOUR WAY VALVE	\ _	PRESSURE REDUCING REGULATOR (SELF CONTAINED)	•	•	-	START - MOM	MENTARY CONTACT	X	Unclassified Event/State/Presence		YIC	YC		YR	YI Y	'SH Y	'SL			YT Y	_{YY} \	E			
c B	(FAIL OPEN TO PATH A-C AND B-D)	Ì	BACKPRESSURE REGULATOR		\boxtimes	- X	BUT	EN ILLUMINATED ITON	Z	Position/Dimension		ZIC		ZCV				SL ZSH					E E			
CH- "	CHECK VALVE		(SELF CONTAINED)	NGS O		•s		MENTARY CONTACT	ZD Note: Thi	Gauging/Deviation is table is not all—inclusive.			C ZDC		ZDR Possible C		DSH Z	DSL	ZURT	ZDIT	ZDT Z	ZDY Z	.DE			
→	REDUCER		LEVEL REGULATOR WITH MECHANICAL LINKAGE	DRAWIN S	⊠ _s •	Æs ■		TON	fashion	m, the annunciating device, may as S, switch, the actuating dev	ice.			FO FRK, FX	HIK (Contro	ction Orifice) ol Stations) sories)		LLH (Pil	anning Recor lot Light) wel Control H			o) ning Time I cating Cour		HMS (H	ate-of-Weight and Momentary evel Control Lo	ry Switch)
——————————————————————————————————————	FLEXIBLE PIPE BLIND FLANGE			AICAL .	•				** Ine le	tters H and L may be omitted in					,	,		•		• ,	,			·		,
— E	HOSE CONNECTION SCREWED CAP, CLEANOUT	(TE)	TEMPERATURE ELEMENT WITH THERMOWELL	₹ 📓			START/STOP	 GREEN & RED ILLUMINATED BUTTONS 		DISTRIBUTED CO									<u>UMENT</u>					GNA IIC	<u> 2NC</u>	
 X	Y-LINE STRAINER	<u>*</u>		P ⊠ R	\boxtimes_{R}	₩ _R	PILOT LIGHT L	ENS			INDICATOR, POINTS - DISPLAY	USUALLY	Y USÉD T	O INDICA	ATE VIDEO			XXX		PROCE	GROUND II SS INSTRU	JMENTS				
	SPECIFICATION CHANGE		DIAPHRAM ACTUATOR, SPRING-OPPOSED		P		START — STO RUNNING PILO	P W/GREEN T LIGHT			* NORMALI DISTRIBUTE CONTROLLE	D CONT	ROL INTE	RCONNEC	CTING LOC	SIC		xxx			R SUPPLIE 'INSTRUM		RUMENTS			
	LEVEL DEVICE, FLOAT TYPE	#		# F0	•	•	START - STO	P W/GREEN			LOGIC FUN * NORMALI	CTIONS LY ACCE	SSIBLE T	O OPERA	TOR	NIIAL		0000			GROUND L	LINES				
ВВ	BLOCK & BLEED VALVE SETUP	M M	CYLINDER ACTUATOR SPRING — OPPOSED	ILS AR		Ä	RUNNING PILO	T LIGHT P PILOT LIGHT		AH AL P/dT XAL d/dT	INPUT ALA PAH — HIC	3H		OUTPUT A	lIGH			1000 2000		VENDO	SS LINES R SUPPLIE	ED LINES	;			
TP/1	TIE POINT TO EXISTING SYSTEM			SYMBO	•		05,50700,000		P	DA PR	PAL - LOY dP/dT - F PDA - DE	RATE CH		d/dT — I		ANGE		3000 CS			' LINES N STEEL I	DIDF				
	RESTRICTION ORIFICE	- \$	ROTARY MOTOR ACTUATOR		2.	-2.		ITCH 2 POSITION			MISCELLAN PR - TREI	ND						CSVD DVW		CARBO	N STEEL ' VENT WAS	VENT DU		AUGE)		
\	DRAIN	\bowtie	SOLENOID ACTUATOR		• • •	-] •	SELECTOR SWI	ITCH 3 POSITION			* NORMALI							HDPE		HIGH [ENSITY P			3		
	FLOW STRAIGHTENING VANE	Ţ	HAND ACTUATOR OR HANDWHEEL	' (\bigoplus	\bigoplus	PUSHBUTTON	WITH MUSHROOM HEAD		OLC SP	OA - OPE SP - STO	RATIONA P/INHIBIT	L ALARM T FUNCTI	STATUS ON FROM	S) I CRT			KYA PDE		KYNAR CPVC,	SOLID					
SP 4	SPECIALITY PART					SUBSCRIPTS					ST - STAF A - AUTO O - OFF F	ÓN/OFF	F FUNCTION FROM (ON FROM ORT	CRT			PVC PVE		POLYV	NYL CHLO NYL CHLO	RIDE PI	PE SCHED	JLE 80		
l	CTATIO MINED	——————————————————————————————————————	AIR ACTUATED VALVE W/POSITIONER		HTS AMBER		PUSHBUTTO ES = EME	<u>NS</u> ERGENCY STOP			H - HAND							PPL SS			ROPYLENE ESS STEEI		LINED DUC	TILE PIPE		
	STATIC MIXER	-	VALVE FAIL SYMBOLS	B = C =	CLEAR		J = JOG L = LOC	CAL PANEL			NORMALLY * NOT NOR	RMALLY	ACCESSIE	LE TO O	PERATOR			TFD B		TEFLOI BARE	١					
	AIR VENT, AUTOMATIC	ATO/FC	ATO – AIR TO OPEN ATC – AIR TO CLOSE FO – FAIL OPEN FC – FAIL CLOSED	G = R = W =	RED		LO = LOC SP = STC ST = STA	OP .			DISTRIBUTE	D CONT	ROL INTE	RCONNEC	CTING LOC	SIC		l J		INSULA	TED AND I	TA III PINI	FN			
Tet	FILTER/REGULATOR/LUBRICATOR		FL – FAIL LOCKED (LAST POSITION) FI – FAIL INDETERMINATE		YELLOW					99	CONTROLLE LOGIC FUN SEQUENCE	CTIONS I NUMBER	NUMBER	IN DIAMO	ND REFE	RS TO		TE			RICALLY TE			ATED		
																				<u> </u>					ION MAN	
									+ +				1							1		LOVE	CANAL	TRF A	TMENT F	ACILI

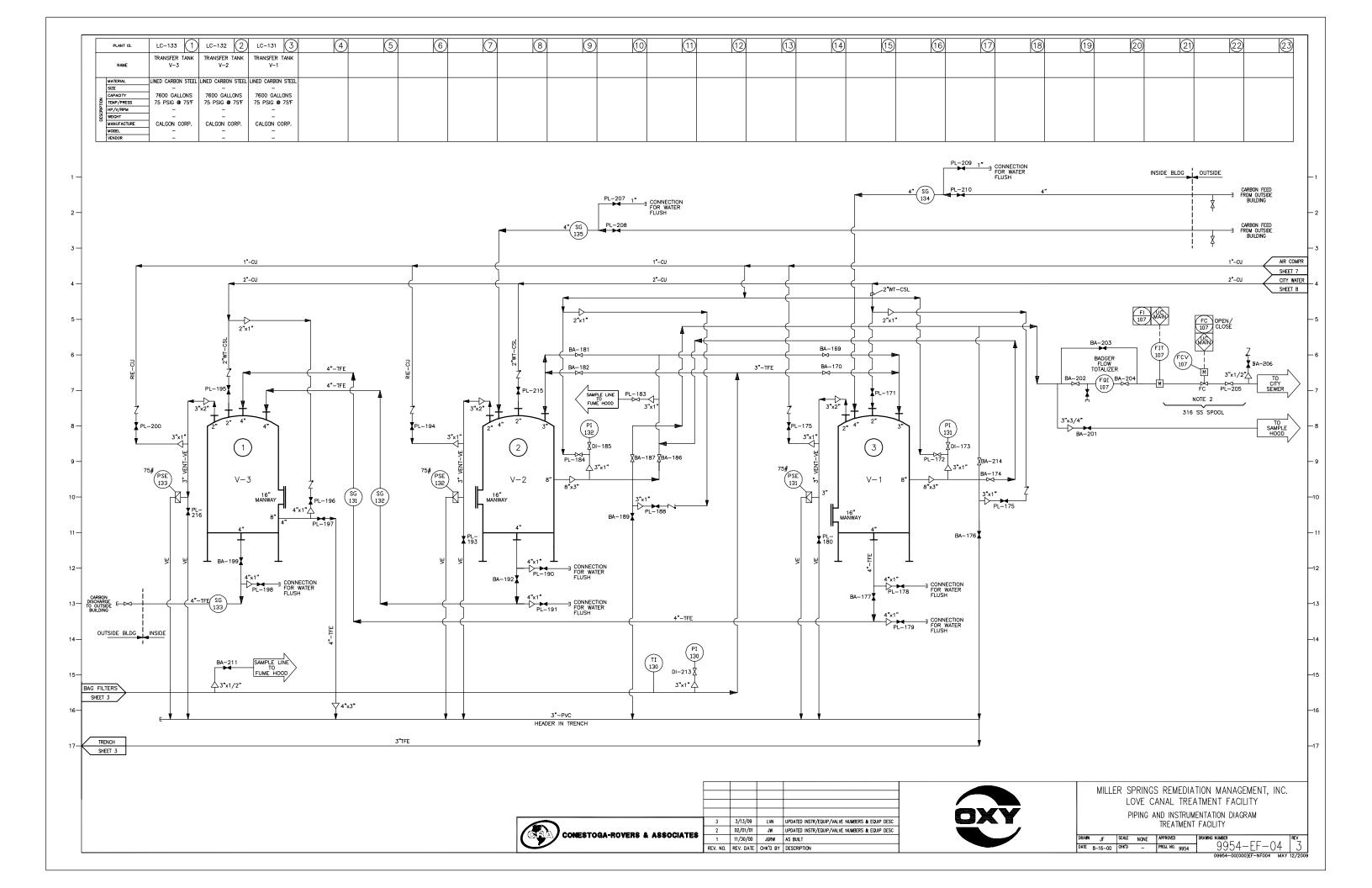
MILLER SPRINGS REMEDIATION MANAGEMENT, INC. LOVE CANAL TREATMENT FACILITY PIPING AND INSTRUMENTATION DIAGRAM LEGEND

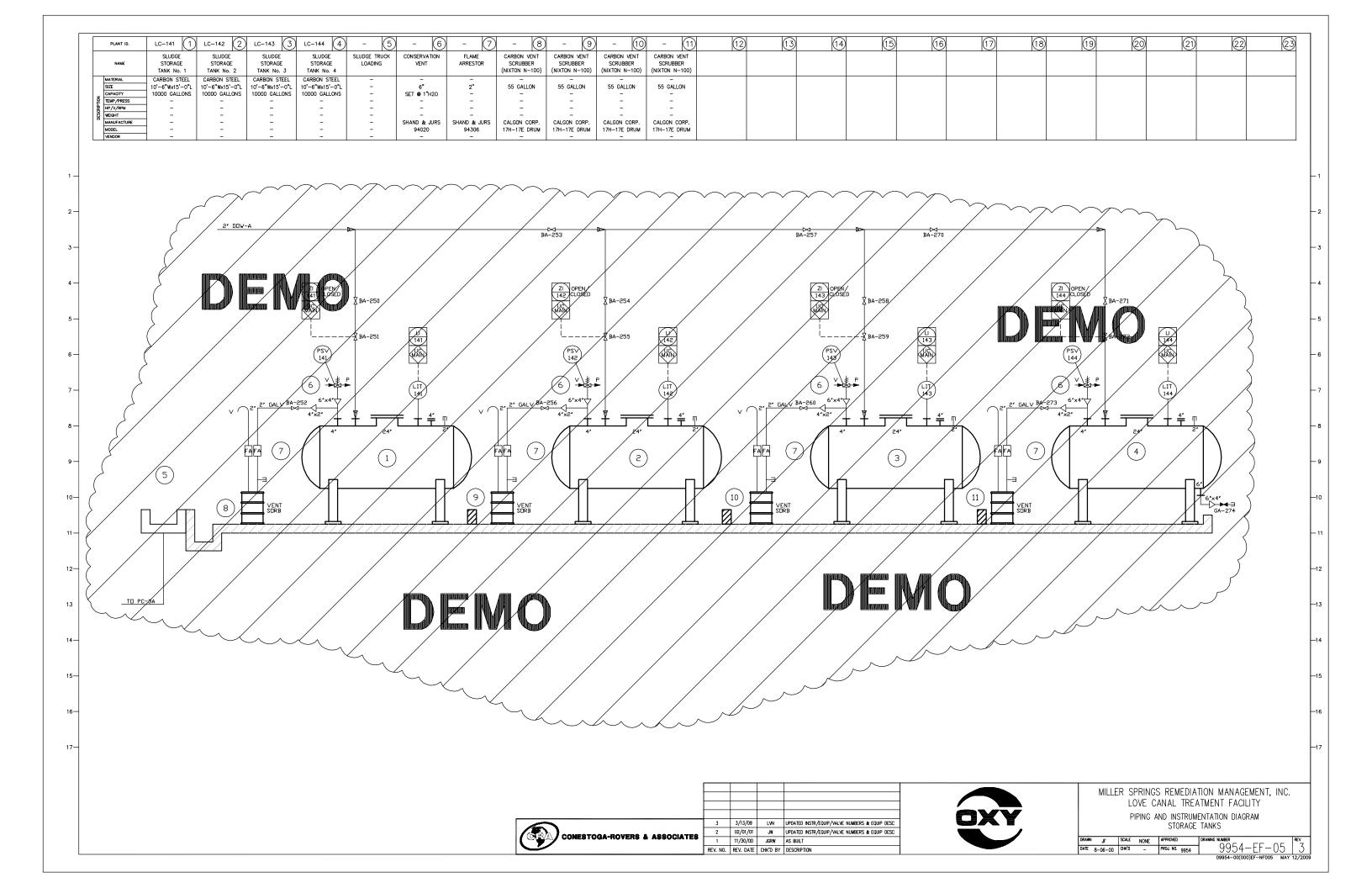
DATE $2-23-96$ CHK'D $-$ PROJ. NO. 9954 $9954-F-00$ 3	DRAWN	BAB	SCALE	NONE	APPROVED	DRAWING NUMBER	REV
	DATE	2-23-96	CHK*D	-	PROJ. NO. 9954	1 9954-EF-00	3

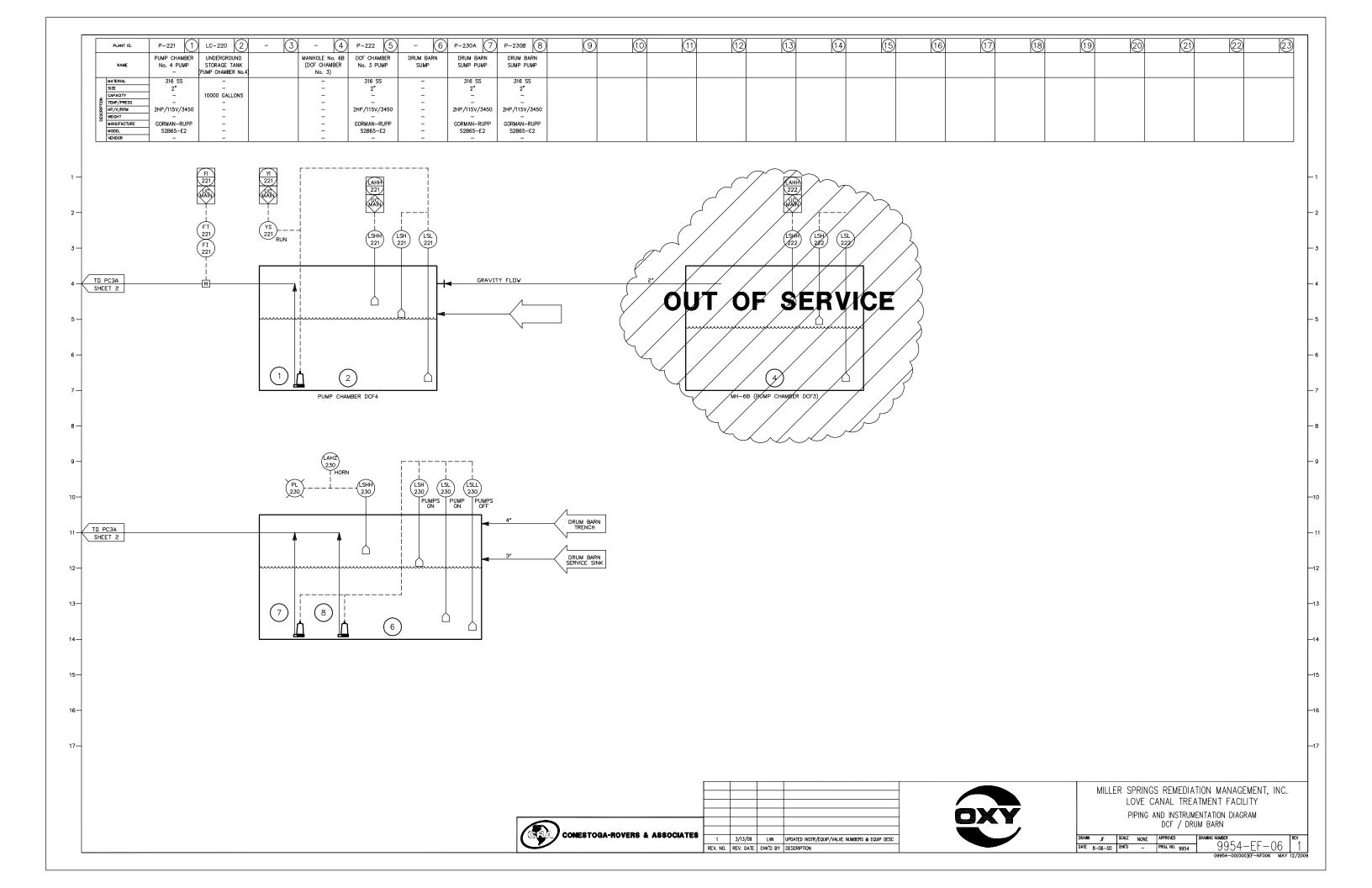

AV BZ

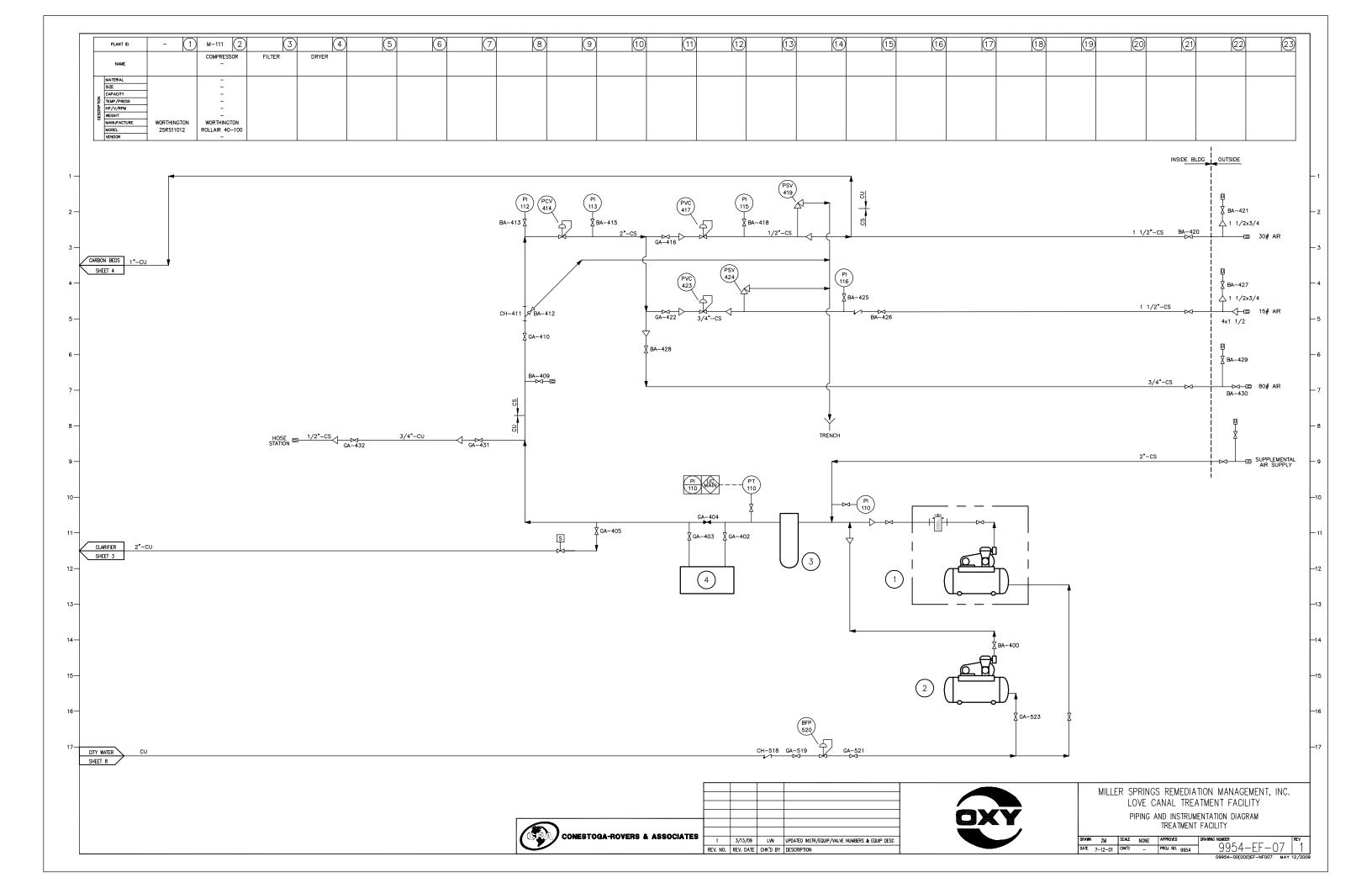

FV FQV FFV

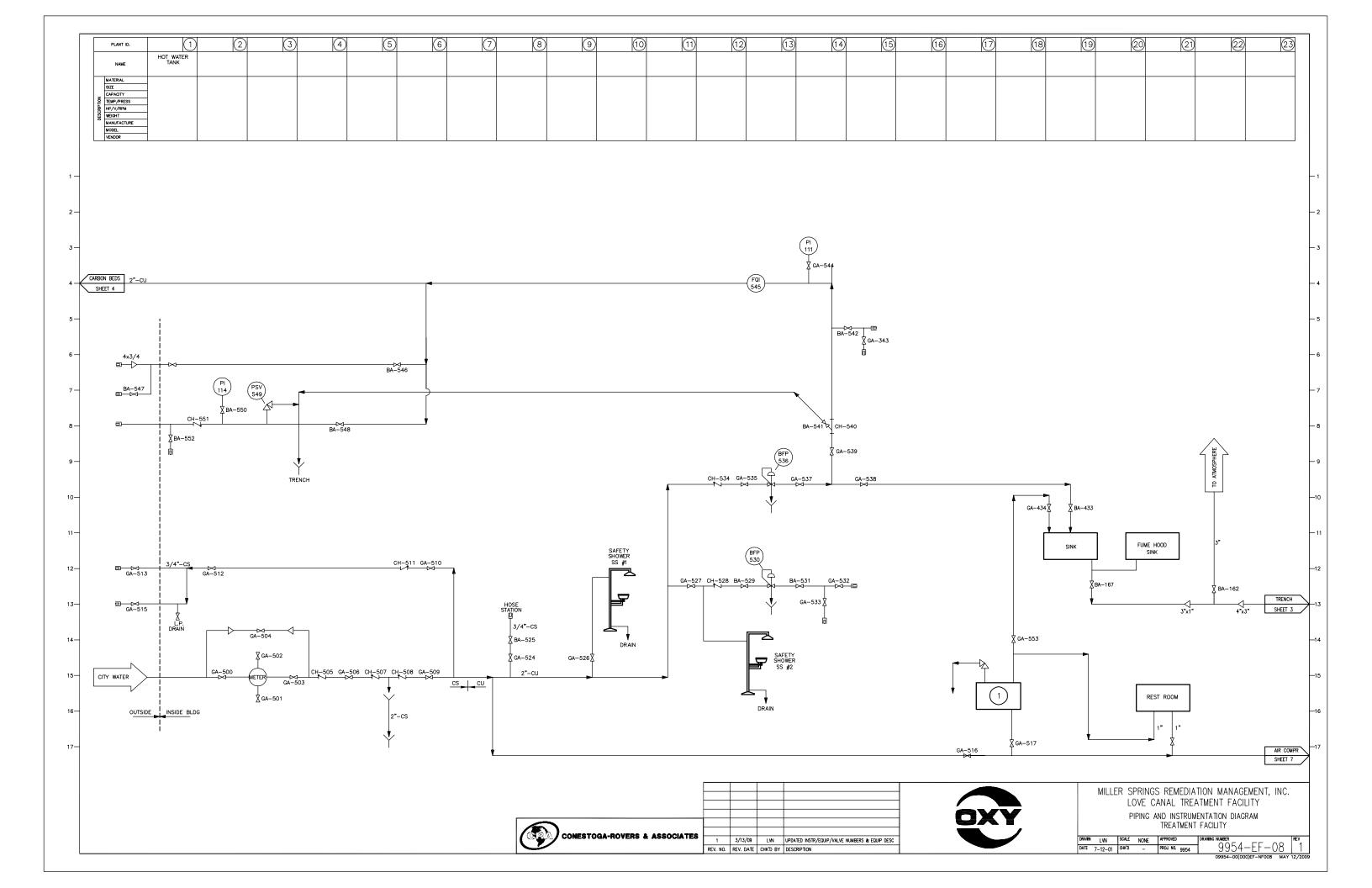

KV LV


PDV
QZ
RZ
SV
TV
TDV
UV
VZ
WZ


YZ ZV ZDV







APPENDIX D

SEQUENCES

SEQ	Description
1	Shutdown Treatment Plant
2	Inhibit Manhole #7 Pump From Running
3	Inhibit Manhole #8 Pump From Running
4	Inhibit Pump Chamber #3 Pump A From Running
5	Inhibit Pump Chamber #3 Pump B From Running
6	Inhibit 102 nd Street Well Pumps From Running
7	Inhibit Pump Chamber #1A Pump A From Running
8	Inhibit Pump Chamber #1A Pump B From Running
9	Inhibit Pump Chamber #2A Pump A From Running
10	Inhibit Pump Chamber #2A Pump B From Running
11	Inhibit Pump Chamber #3A Pump A From Running
12	Inhibit Pump Chamber #3A Pump B From Running
13	Inhibit Raw Water Feed Pump From Running
14	Inhibit Filter Feed Pump From Running

SEQUENCE 1 REVISION No: 0 August 16, 2000

SHUTDOWN TREATMENT PLANT

Reference: P&ID Drawings Sht. 1-5, Electrical Drawings.

Purpose: To prevent system operation on Floor Drain High Level.

The following control actions will take place:

- The system will be inhibited from running. The system will be turned to SYSTEM STOP.
- The Raw Water pump motor will be inhibited from running.
- The Filter Feed pump motor will be inhibited from running.
- The Influent Valve will close.

When any of the conditions listed below occur:

• Level in the floor drain is above the high level switch for 5 seconds. LAH will alarm.

After ALL conditions below occur:

• Level in the floor drain is below the high limit switch. LAH will clear.

Then

- The Treatment System will be enabled for normal operation.
- SEQ-1 clears.

The operator may

- Turn the Process to SYSTEM START.
- Manual operation will override all sequences.

SEQUENCE 2 REVISION No: 0 November 22, 2000

INHIBIT MANHOLE #7 PUMP FROM RUNNING

Reference: P&ID Drawings Sht. 1-5, Electrical Drawings.

Purpose: To prevent Manhole #7 (PC1) Pump from running in the automatic

mode.

The following control actions will take place:

• The Manhole #7 Pump motor will be inhibited from running.

When any of the conditions listed below occur:

- Level in the Manhole #7 falls below the low setpoint permissive.
- Level in Pump Chamber #3 rises above the high setpoint permissive.
- Hand-Off-Auto switch for Manhole #7 Pump is switched out of AUTO.
- Manhole #7 Pump is disabled on the HMI.

After ALL conditions below occur:

- Level in the Manhole #7 rises above the high setpoint permissive.
- Level in Pump Chamber #3 falls below the low setpoint permissive.
- Hand-Off-Auto switch for Manhole #7 Pump is switched to AUTO.
- Manhole #7 Pump is enabled on the HMI.

Then

- The Manhole #7 Pump motor will run.
- SEQ-2 clears.

The operator may

SEQUENCE 3 REVISION No: 0 November 22, 2000

INHIBIT MANHOLE #8 PUMP FROM RUNNING

Reference: P&ID Drawings Sht. 1-5, Electrical Drawings.

Purpose: To prevent Manhole #8 (PC2) Pump from running in the automatic

mode.

The following control actions will take place:

• The Manhole #8 Pump motor will be inhibited from running.

When any of the conditions listed below occur:

- Level in the Manhole #8 falls below the low setpoint permissive.
- Level in Pump Chamber #3 rises above the high setpoint permissive.
- Hand-Off-Auto switch for Manhole #8 Pump is switched out of AUTO.
- Manhole #8 Pump is disabled on the HMI.

After ALL conditions below occur:

- Level in the Manhole #8 rises above the high setpoint permissive.
- Level in Pump Chamber #3 falls below the low setpoint permissive.
- Hand-Off-Auto switch for Manhole #8 Pump is switched to AUTO.
- Manhole #8 Pump is enabled on the HMI.

Then

- The Manhole #8 Pump motor will run.
- SEQ-3 clears.

The operator may

SEQUENCE 4 REVISION No: 0 November 22, 2000

INHIBIT PUMP CHAMBER #3 PUMP A FROM RUNNING

Reference: P&ID Drawings Sht. 1-5, Electrical Drawings.

Purpose: To prevent Pump Chamber #3 (PC3) Pump A from running in the

automatic mode.

The following control actions will take place:

• The Pump Chamber #3 Pump A motor will be inhibited from running.

When any of the conditions listed below occur:

- Level in Pump Chamber #3 falls below the low setpoint permissive.
- Level in the Raw Water Tank rises above the high setpoint permissive.
- Hand-Off-Auto switch for Pump Chamber #3 Pump A is switched out of AUTO.
- Pump Chamber #3 Pump A is disabled on the HMI.

After ALL conditions below occur:

- Level in Pump Chamber #3 rises above the high setpoint permissive.
- Level in Raw Water Tank falls below the low setpoint permissive.
- Hand-Off-Auto switch for Pump Chamber #3 Pump A is switched to AUTO.
- Pump Chamber #3 Pump A is enabled on the HMI.

Then

- The Pump Chamber #3 Pump A motor will run.
- SEQ-4 clears.

The operator may

SEQUENCE 5 REVISION No: 0 November 22, 2000

INHIBIT PUMP CHAMBER #3 PUMP B FROM RUNNING

Reference: P&ID Drawings Sht. 1-5, Electrical Drawings.

Purpose: To prevent Pump Chamber #3 (PC3) Pump B from running in the

automatic mode.

The following control actions will take place:

• The Pump Chamber #3 Pump B motor will be inhibited from running.

When any of the conditions listed below occur:

- Level in Pump Chamber #3 falls below the low setpoint permissive.
- Level in the Raw Water Tank rises above the high setpoint permissive.
- Hand-Off-Auto switch for Pump Chamber #3 Pump B is switched out of AUTO.
- Pump Chamber #3 Pump B is disabled on the HMI.

After ALL conditions below occur:

- Level in Pump Chamber #3 rises above the high setpoint permissive.
- Level in Raw Water Tank falls below the low setpoint permissive.
- Hand-Off-Auto switch for Pump Chamber #3 Pump B is switched to AUTO.
- Pump Chamber #3 Pump B is enabled on the HMI.

Then

- The Pump Chamber #3 Pump B motor will run.
- SEQ-5 clears.

The operator may

SEQUENCE 6 REVISION No: 0 November 22, 2000

INHIBIT 102ND STREET WELL PUMPS FROM RUNNING

Reference: P&ID Drawings Sht. 1-5, Electrical Drawings.

Purpose: To prevent the four (4) 102nd Street Well Pumps (WW-1, WW-2, WW-3

and WW-4) from running in the automatic mode.

The following control actions will take place:

• The four (4) 102nd Street Well Pump motors will be inhibited from running.

When any of the conditions listed below occur:

- *Level in the respective well falls below the low setpoint permissive.
- *Level in Pump Chamber #3 rises above the high setpoint permissive.
- *The respective well pump is disabled on the HMI.
- Hand-Off-Auto switch for the respective pump is switched out of AUTO.
- Leak Detection alarm occurs. (Sample Pit, MH-8, MH-9 and MH-10).
- Level controller at the wells is not within pump permissive.

After ALL conditions below occur:

- *Level in the respective well rises above the high setpoint permissive.
- *Level in Pump Chamber #3 falls below the low setpoint permissive.
- *The respective well pump is enabled on the HMI.
- Hand-Off-Auto switch for the respective pump is switched to AUTO.
- Leak Detection alarm is resolved and reset.
- Level controller at the wells is within pump permissive.

Then

- The four (4) 102nd Street Well Pump motors will run.
- SEQ-6 clears.

The operator may

 \bullet By activating the bypass switch on the 102^{nd} Street PLC panel, the conditions marked with an * will be bypassed.

Note:

The local reset button must be pressed in order to reset Leak Detection Alarms.

SEQUENCE 7 REVISION No: 0 November 22, 2000

INHIBIT PUMP CHAMBER #1A PUMP A FROM RUNNING

Reference: P&ID Drawings Sht. 1-5, Electrical Drawings.

Purpose: To prevent Pump Chamber #1A (PC1A) Pump A from running in the

automatic mode.

The following control actions will take place:

• The Pump Chamber #1A Pump A motor will be inhibited from running.

When any of the conditions listed below occur:

- Level in Pump Chamber #1A falls below the low setpoint permissive.
- Level in Pump Chamber #3A rises above the high setpoint permissive.
- Hand-Off-Auto switch for Pump Chamber #1A Pump A is switched out of AUTO.
- Pump Chamber #1A Pump A is disabled on the HMI.

After ALL conditions below occur:

- Level in Pump Chamber #1A rises above the high setpoint permissive.
- Level in Pump Chamber #3A falls below the low setpoint permissive.
- Hand-Off-Auto switch for Pump Chamber #1A Pump A is switched to AUTO.
- Pump Chamber #1A Pump A is enabled on the HMI.

Then

- The Pump Chamber #1A Pump A motor will run.
- SEQ-7 clears.

The operator may

SEQUENCE 8 REVISION No: 0 November 22, 2000

INHIBIT PUMP CHAMBER #1A PUMP B FROM RUNNING

Reference: P&ID Drawings Sht. 1-5, Electrical Drawings.

Purpose: To prevent Pump Chamber #1A (PC1A) Pump B from running in the

automatic mode.

The following control actions will take place:

• The Pump Chamber #1A Pump B motor will be inhibited from running.

When any of the conditions listed below occur:

- Level in Pump Chamber #1A falls below the low setpoint permissive.
- Level in Pump Chamber #3A rises above the high setpoint permissive.
- Hand-Off-Auto switch for Pump Chamber #1A Pump B is switched out of AUTO.
- Pump Chamber #1A Pump B is disabled on the HMI.

After ALL conditions below occur:

- Level in Pump Chamber #1A rises above the high setpoint permissive.
- Level in Pump Chamber #3A falls below the low setpoint permissive.
- Hand-Off-Auto switch for Pump Chamber #1A Pump B is switched to AUTO.
- Pump Chamber #1A Pump B is enabled on the HMI.

Then

- The Pump Chamber #1A Pump B motor will run.
- SEQ-8 clears.

The operator may

SEQUENCE 9 REVISION No: 0 November 22, 2000

INHIBIT PUMP CHAMBER #2A PUMP A FROM RUNNING

Reference: P&ID Drawings Sht. 1-5, Electrical Drawings.

Purpose: To prevent Pump Chamber #2A (PC2A) Pump A from running in the

automatic mode.

The following control actions will take place:

• The Pump Chamber #2A Pump A motor will be inhibited from running.

When any of the conditions listed below occur:

- Level in Pump Chamber #2A falls below the low setpoint permissive.
- Level in Pump Chamber #3A rises above the high setpoint permissive.
- Hand-Off-Auto switch for Pump Chamber #2A Pump A is switched out of AUTO.
- Pump Chamber #2A Pump A is disabled on the HMI.

After ALL conditions below occur:

- Level in Pump Chamber #2A rises above the high setpoint permissive.
- Level in Pump Chamber #3A falls below the low setpoint permissive.
- Hand-Off-Auto switch for Pump Chamber #2A Pump A is switched to AUTO.
- Pump Chamber #2A Pump A is enabled on the HMI.

Then

- The Pump Chamber #2A Pump A motor will run.
- SEQ-9 clears.

The operator may

SEQUENCE 10 REVISION No: 0 November 22, 2000

INHIBIT PUMP CHAMBER #2A PUMP B FROM RUNNING

Reference: P&ID Drawings Sht. 1-5, Electrical Drawings.

Purpose: To prevent Pump Chamber #2A (PC2A) Pump B from running in the

automatic mode.

The following control actions will take place:

The Pump Chamber #2A Pump B motor will be inhibited from running.

When any of the conditions listed below occur:

- Level in Pump Chamber #2A falls below the low setpoint permissive.
- Level in Pump Chamber #3A rises above the high setpoint permissive.
- Hand-Off-Auto switch for Pump Chamber #2A Pump B is switched out of AUTO.
- Pump Chamber #2A Pump B is disabled on the HMI.

After ALL conditions below occur:

- Level in Pump Chamber #2A rises above the high setpoint permissive.
- Level in Pump Chamber #3A falls below the low setpoint permissive.
- Hand-Off-Auto switch for Pump Chamber #2A Pump B is switched to AUTO.
- Pump Chamber #2A Pump B is enabled on the HMI.

Then

- The Pump Chamber #2A Pump B motor will run.
- SEQ-10 clears.

The operator may

SEQUENCE 11 REVISION No: 0 November 22, 2000

INHIBIT PUMP CHAMBER #3A PUMP A FROM RUNNING

Reference: P&ID Drawings Sht. 1-5, Electrical Drawings.

Purpose: To prevent Pump Chamber #3A (PC3A) Pump A from running in the

automatic mode.

The following control actions will take place:

• The Pump Chamber #3A Pump A motor will be inhibited from running.

When any of the conditions listed below occur:

- Level in Pump Chamber #3A falls below the low setpoint permissive.
- Level in the Raw Water Tank rises above the high setpoint permissive.
- Hand-Off-Auto switch for Pump Chamber #3A Pump A is switched out of AUTO.
- Pump Chamber #3A Pump A is disabled on the HMI.

After ALL conditions below occur:

- Level in Pump Chamber #3A rises above the high setpoint permissive.
- Level in Raw Water Tank falls below the low setpoint permissive.
- Hand-Off-Auto switch for Pump Chamber #3A Pump A is switched to AUTO.
- Pump Chamber #3A Pump A is enabled on the HMI.

Then

- The Pump Chamber #3A Pump A motor will run.
- SEQ-11 clears.

The operator may

SEQUENCE 12 REVISION No: 0 November 22, 2000

INHIBIT PUMP CHAMBER #3A PUMP B FROM RUNNING

Reference: P&ID Drawings Sht. 1-5, Electrical Drawings.

Purpose: To prevent Pump Chamber #3A (PC3A) Pump B from running in the

automatic mode.

The following control actions will take place:

• The Pump Chamber #3A Pump B motor will be inhibited from running.

When any of the conditions listed below occur:

- Level in Pump Chamber #3A falls below the low setpoint permissive.
- Level in the Raw Water Tank rises above the high setpoint permissive.
- Hand-Off-Auto switch for Pump Chamber #3A Pump B is switched out of AUTO.
- Pump Chamber #3A Pump B is disabled on the HMI.

After ALL conditions below occur:

- Level in Pump Chamber #3A rises above the high setpoint permissive.
- Level in Raw Water Tank falls below the low setpoint permissive.
- Hand-Off-Auto switch for Pump Chamber #3A Pump B is switched to AUTO.
- Pump Chamber #3A Pump B is enabled on the HMI.

Then

- The Pump Chamber #3A Pump B motor will run.
- SEQ-12 clears.

The operator may

SEQUENCE 13 REVISION No: 0 November 22, 2000

INHIBIT RAW WATER FEED PUMP FROM RUNNING

Reference: P&ID Drawings Sht. 1-5, Electrical Drawings.

Purpose: To prevent the Raw Water Feed Pump from running in the automatic

mode.

The following control actions will take place:

• The Raw Water Feed Pump motor will be inhibited from running.

When any of the conditions listed below occur:

- The system START/STOP selector on the HMI is STOPPED.
- Level in the Raw Water Tank falls below the low setpoint permissive.
- Level in the Filter Feed Tank rises above the high setpoint permissive.
- Off-Auto switch for the Raw Water Feed Pump is switched out of AUTO.
- The VFD for the Raw Water Feed Pump is in MANUAL (Toggle F2 at the VFD).

After ALL conditions below occur:

- The system START/STOP selector on the HMI is STARTED.
- Level in the Raw Water Tank rises above the high setpoint permissive.
- Level in Filter Feed Tank falls below the low setpoint permissive.
- Off-Auto switch for Raw Water Feed Pump is switched to AUTO.
- The VFD for the Raw Water Feed Pump is in AUTO (Toggle F2 at the VFD).

Then

- The Raw Water Feed Pump motor will run.
- SEQ-13 clears.

The operator may

• Turn the pump off, or run the pump manually at any time from the VFD. Manual operation will override all sequences.

SEQUENCE SUMMARY FOR LOVE CANAL LANDFILL SITE

Note:

If the VFD is in AUTO, the sequence has cleared and the pump still won't run, the VFD may need to be reset. To do this, turn the HOA switch from AUTO to OFF and then back to AUTO.

SEQUENCE SUMMARY FOR LOVE CANAL LANDFILL SITE

SEQUENCE 14 REVISION No: 0 November 22, 2000

INHIBIT FILTER FEED PUMP FROM RUNNING

Reference: P&ID Drawings Sht. 1-5, Electrical Drawings.

Purpose: To prevent the Filter Feed Pump from running in the automatic mode.

The following control actions will take place:

• The Filter Feed Pump motor will be inhibited from running.

When any of the conditions listed below occur:

- The system START/STOP selector on the HMI is STOPPED.
- Level in the Filter Feed Tank falls below the low setpoint permissive.
- Off-Auto switch for the Filter Feed Pump is switched out of AUTO.
- The VFD for the Filter Feed Pump is in MANUAL (Toggle F2 at the VFD).

After ALL conditions below occur:

- The system START/STOP selector on the HMI is STARTED.
- Level in the Filter Feed Tank rises above the high setpoint permissive.
- Off-Auto switch for Filter Feed Pump is switched to AUTO.
- The VFD for the Filter Feed Pump is in AUTO (Toggle F2 at the VFD).

Then

- The Filter Feed Pump motor will run.
- SEQ-14 clears.

The operator may

• Turn the pump off, or run the pump manually at any time from the VFD. Manual operation will override all sequences.

Note:

If the VFD is in AUTO, the sequence has cleared and the pump still won't run, the VFD may need to be reset. To do this, turn the HOA switch from AUTO to OFF and then back to AUTO.

APPENDIX E

CITY OF NIAGARA FALLS DISCHARGE PERMIT NO. 44 CITY OF NIAGARA FALLS LETTER TO CEASE DISCHARGE

PAGE 1 OF 15 PERMIT NO. 44

NIAGARA FALLS WATER BOARD WASTEWATER FACILITIES SIGNIFICANT INDUSTRIAL USER WASTEWATER DISCHARGE PERMIT

PERMIT NO. 44 Glenn Springs Holdings, Inc. Love Canal Leachate Treatment Facility

In accordance with all terms and conditions of the Niagara Falls Water Board Regulations Part 1960 and also with all applicable provisions of Federal and State Law or regulation:

Permission is Hereby Granted To: Glenn Springs Holdings, Inc. -

Love Canal Leachate Treatment Facility

Located at: 805 - 97th Street, Niagara Falls, NY 14304

Classified by SIC No(s): 4952

For the contribution of wastewater, into the Niagara Falls Water Board Publicly-Owned Treatment Works (POTW).

Effective this 8th day of, January 2010 To Expire this 8th day of, January 2015

Cleart C. Zagral

William Bolents Director of Administrative Services

Signed this 20TH day of December, 2009

DISCHARGE IDENTIFICATION

OUTFALL	DESCRIPTION	LOCATION	RECEIVING
#1	97th Street Discharge	97th Street	Carbon Treated Leachate from Love Canal Leachate Treatment Facility and the 102nd Street landfill

PAGE 3 OF 15 PERMIT NO. 44

WASTEWATER DISCHARGE PERMIT REQUIREMENTS FOR:

ACTION REQUIRED

REQUIRED DATE OF SUBMISSION

A. <u>Discharges to the Niagara Falls Water Board (NFWB) Sewer</u>

 Identification of all discharges to the NFWB Sewer System on a current plant sewer map certified by a New York State licensed professional engineer. None

Submitted 12/16/09

 Identification of each contributing waste stream to each discharge to the NFWB Sewer System clearly marked on, or referenced to, a current plant sewer map certified by a New York State licensed professional engineer. None

Submitted 12/16/09

3. Elimination of all uncontaminated discharges to the NFWB Sewer System. All uncontaminated flows should be clearly identified on a current sewer map certified by a New York State licensed professional engineer.

N/A

4. Establishment of a control manhole that is continuously and immediately accessible for each discharge to the NFWB Sewer System.

None

Previously Established

B. <u>Wastewater Discharge Management</u> Practices

Identification of a responsible person(s)
 (day to day and in emergencies).

None

Performed by NFWB

C. Slug Control Plan**

Pursuant to Section 40 CFR 403.12 (v) of the Federal Pretreatment Standards the Niagara Falls Water Board will evaluate the permittee, a minimum of once every two years for the need for a "Slug Control Plan." If a plan is required by the Niagara Falls Water Board, then the plan will contain, at a minimum, the following elements:

- a) Description of discharge practices, including non-routine batch discharges;
- b) Description of stored chemicals;
- c) Procedures for immediately notifying the POTW of slug discharges, including any discharge that would violate a prohibition under 40 CFR 403.5 (b), with procedures for follow-up written notification within five days;
- d) If necessary, procedures to prevent adverse impact from accidental spills, including inspection and maintenance of storage areas, handling and transfer of materials, loading and unloading operations, control of plant site runoff, worker training, building of containment structures or equipment, measures for containing toxic organic pollutants (including solvents), and/or measures and equipment necessary for emergency response.

^{**}This section applies to all pollutants limited by the Niagara Falls Water Board SPDES Permit and all prohibited wastewater discharges (See Section 1960.5 of the Niagara Falls Water Board Wastewater Regulations).

D. General Wastewater Discharge Permit Conditions

- 1. Flow monitoring should be performed concurrently with any Wastewater Discharge Permit sampling and should be reported at the same time as analytical results. If it is not feasible to perform flow monitoring, an estimate of flow (method of estimated flow preapproved by the Niagara Falls Water Board) should be submitted with the analytical results.
- 2. All sampling for billing and pretreatment compliance purposes will be coordinated through the Niagara Falls Water Board Industrial Monitoring Coordinator.
- 3. All analysis must be performed by a State certified laboratory using analytical methods consistent with 40 CFR 136 and quality control provisions as required by the Niagara Falls Water Board Laboratory Technical Director. The permittee will report the results as directed in Section G of this permit. Results should be reported using the Method Detection Limit (MDL). Reporting results less than MDL will be indicated in the report by a less than sign (<) followed by the numeric MDL concentration reported by the laboratory. In these cases the pollutant load will be calculated and reported as zero (0). The MDL will be defined as the level at which the analytical procedure referenced is capable of determining with a 99% probability that the substance is present. The value is determined in reagent water. The precision at this level is +/- 100%.
- 4. An estimate of relative production levels for wastewater contributing processes at the time of any pretreatment compliance sampling will be submitted upon request of the Director of Niagara Falls Water Board Wastewater Facilities.
- 5. All samples will be handled in accordance with EPA approved methods. Chain of Custody records will be submitted with all sampling results.
- 6. All conditions, standards and numeric limitations of Niagara Falls Water Board Wastewater Regulations are hereby incorporated into this permit by reference. These conditions, standards and numeric limitations must be complied with. Failure to comply with any part of said Regulations constitutes a violation and is subject to enforcement actions(s) described in Section 1960.9 of said Regulations, and in the Niagara Falls Water Board Pretreatment Administrative Procedure Number Five (5) "Enforcement Response Guide." In the event of a violation, including slug discharges or spills, the Niagara Falls Water Board must be notified immediately by phone and confirmed by letter within five (5) working days.

Any person adjudicated of violating any provision in the Niagara Falls Water Board Wastewater Regulations shall be assessed a fine in the amount of up to \$10,000. This amount is available for each violation, and each day of a violation is a separate incident for which penalties may be sought.

6. The person violating any of the provisions of the Niagara Falls Water Board Wastewater Regulations will be liable for any expense, loss, or damage occasioned by reason of such violation. The expense, loss or damage will be taken to be the extent determined by the Director.

In addition, any person who knowingly makes any false statements, representation or certification in any application, record, report, plan or other document filed or required to be maintained pursuant to the Niagara Falls Water Board Wastewater Regulations, or Wastewater Discharge Permit, or who falsifies, tampers with, or knowingly renders inaccurate any monitoring device or method required under the Niagara Falls Water Board Wastewater Regulations will, upon conviction be punished by a fine up to \$5,000. Furthermore, the Niagara Falls Water Board may recover reasonable attorney's fees, court costs, court reporting fees, and other expenses of litigation by appropriate suit at law against the person found to have violated applicable laws, orders, rules and permits required by the Niagara Falls Water Board Wastewater Regulations.

7. In accordance with Federal Regulation CFR 40, Part 403.12(g), any exceedance of a numeric limitation noted by the SIU must be re-sampled, analyzed and resubmitted to the Niagara Falls Water Board - Wastewater Facilities within 30 days.

Specifically, if any limit that is <u>listed</u> in Section F of this permit is exceeded, then the permittee will undertake a short term monitoring program for that pollutant. Samples will be collected identical to those required for routine monitoring purposes and will be collected on each of at least <u>two (2)</u> operating days and analyzed. Results will be reported in both concentration and mass, and will be submitted within <u>30</u> days of becoming aware of the exceedence.

- 8. Sampling frequency for any permitted compounds may be increased beyond the requirements set forth in Section F and G of this permit. If the permittee monitors (sample and analysis) more frequent than required under this permit, <u>all</u> results of this monitoring must be reported.
- 9. As noted in Section 1960.5g of the Niagara Falls Water Board Wastewater Regulations, "Personnel as designated by the Director will be permitted at any time for reasonable cause to enter upon all properties served by the Niagara Falls Water Board for the purpose of, and to carry out, inspection of the premises, observation, measurement, sampling and testing, in accordance with provisions of the Regulations."
- 10. As noted in Section 1960.5c of the Niagara Falls Water Board Wastewater Regulations, significant changes in discharge characteristics or volume must be reported immediately to the Niagara Falls Water Board Wastewater Facilities.
- 11. As noted in Section 1960.6b of the Niagara Falls Water Board Wastewater Regulations,

samples required to be collected via a 24-hour composite sampler must be retained refrigerated for an additional 24 hour plus un-refrigerated an additional 48 hours (total 72 hours).

PAGE 7 OF 15 PERMIT NO. 44

- 12. As noted in Section 1960.5d of the Niagara Falls Water Board Wastewater Regulations, all "SIU's will keep on file for a minimum of three years, all records, flow charts, laboratory calculations or any other pertinent data on their discharge to the Niagara Falls Water Board Wastewater Facilities."
- 13. As noted in Section 1960.6g of the Niagara Falls Water Board Wastewater Regulations, "Permits are issued to a specific user for a specific monitoring station. A permit will not be reassigned or transferred without the approval of the Director which approval will not be unreasonably withheld. Any succeeding owner or user to which a permit has been transferred and approved will also comply with all the terms and conditions of the existing permit."
- 14. The Annual Average Limitation is equivalent to the specific SIU allocation, and will be defined as the permissible long term average discharge of a particular pollutant. These limitations are listed in Section F of this permit. The computation of the Annual Average will be as follows; for each compound listed in Section G of this permit, the Annual Average will be the average of the present monitoring quarter and three previous quarters data.
- 15. The Daily Maximum Limitation will be defined as the maximum allowable discharge on anyone day. The Daily Maximum Limitation will allow for periodic short term discharge fluctuations. These specific limitations are listed in Section F of this permit.
- 16. Enforcement of the Annual Average Limitation will be based on the reported average of the last four quarters data vs. the Annual Average Limited listed in Section F of this permit. Enforcement of the Daily Maximum Limitation will be based on individual analysis results vs. the Daily Maximum Limit listed in Section F of this permit. These results may be obtained from self monitoring (Section G), City of Niagara Falls Verification, incident investigation or billing samples.
- 17. The Niagara Falls Water Board Administrative Procedure Number 6 "Procedure for Determination and Use of Local Limits" lists all pollutants noted in the Niagara Falls Water Board Wastewater Facilities SPDES Permit. The limits defined in the procedure are values which are based on the quantity of substances discharged which can be easily related to the Treatment Plant's removal capacity.

The pollutants listed in this procedure that are <u>not</u> specifically listed in Section F and G of this permit may be present in the permittee's wastewater discharge, but at levels which do not require specific permit limitations. Consequently, if any of the limits listed in this procedure, for pollutants <u>not</u> identified in Section F and G of this permit, are exceeded then the permittee will undertake a short-term, high intensity monitoring program for that pollutant. Samples identical to those required for routine monitoring purposes will be

collected on each of at least three operating days and analyzed. Results will be expressed in terms of both concentration and mass, and will be submitted no later than the end of the third month following the month when the limit was first exceeded.

If levels higher than the limit are confirmed, the permit may be reopened by the Niagara Falls Water Board for consideration of revised permit limits.

PAGE 8 OF 15 PERMIT NO. 44

E. <u>Specific Wastewater Discharge Permit Conditions</u>

1. <u>Billing Agreement</u>:

- a) Flow quantities will be derived from the Wastewater Treatment Facility flow meter.
- b) Charges for TSS, SOC and Substances of Concern shall be developed based on Quarterly Self Monitoring data.

2. <u>Love Canal Leachate Treatment Facility (LCLTF)</u>

The Niagara Falls Water Board agrees to accept wastewater processed from the Glenn Springs Holdings (GSH) LCLTF. These waters in addition to Love Canal wastewater shall include wastewater from the 102nd Street remedial site. This approval is subject to the following conditions:

- a) The LCLTF shall be properly operated and maintained at all times.
- b) To ensure proper operation GSH shall ensure sufficient feed, inter-stage (breakthrough), and effluent analysis to ensure timely carbon changes. Treatment levels of 10 ug/ℓ shall be achieved and verified with quarterly composite sample analysis for the following compounds: trichloroethylene, tetrachloroethylene, monochlorotoluene, monochlorobenzenes, trichlorobenzenes, tetrachlorobenzenes, hexachlorocyclohexanes and hexachlorobenzene.

PAGE 9 OF 15 PERMIT NO. 44

E. Specific Wastewater Discharge Permit Conditions

- 2. Love Canal Leachate Treatment Facility (LCLTF)
- Continued
- c) The issuance of this approval if based on GSH's previous assertions that there is no reason to anticipate the presence of tetrachlorodibenzo-p-dioxins in the discharge from the treatment facility. The Niagara Falls Water Board hereby reserves the right to collect samples from the treatment facility effluent and analyze such wastewaters for their chemical constituents, including tetrachlorodibenzo-p-dioxins. If such analysis indicates the presence of tetrachlorodibenzo-p-dioxins, this approval may be withdrawn. If at anytime, the Niagara Falls Water Board determines on any basis that the discharge of these wastewater to the POTW is interfering with the operation of that facility, the Niagara Falls Water Board will direct GSH to discontinue the discharge.
- d) These pretreated wastewaters shall be discharged to the POTW via Outfall MS # 1.
- e) Periodically wet weather flow in the area around LCLTF results in surcharged sewers. The resultant surcharge requires overflow at combined sewer and storm sewer overflow points. Other points in the sewer shed require manual bypass pumping. Consequently, to minimize this overflow, the Niagara Falls Water Board will require the permittee to cease discharge from the LCLTF during these surcharge events.

A notification procedure has been established by the Niagara Falls Water Board to formalize the communication between the Niagara Falls Water Board and the permittee to halt and resume the LCLTF discharge. This procedure by reference is hereby incorporated as a condition of this permit.

F. <u>Discharge Limitations & Monitoring Requirements</u>

During the Period beginning the effective date of this Permit and lasting until the expiration date, discharge from the permitted facility outfall(s) will be limited and monitored by the permittee as specified below.

OUTFALL NUMBER/ EFFLUENT PARAMETER		DISCHARGE LIMITATIONS ANNUAL DAILY		1 9	MINIMUM MO REQUIRE MEASUREMENT	
	I EOLIVI I / III/ IIII/ IIII	AVERAGE	MAXIMUM	UNITS	FREQUENCY	TYPE
#1	Flow	0.3	0.3	MGD	Continuous	4
#1	Total Suspended Suspended	25	50	lbs/d	1/Qtr.	1
#1	Soluble Organic Carbon	50	75	lbs/d	1/Qtr.	1
#1	Volatile - Priority Pollutants (See Attached list Section G)	MONITOR	ONLY	lbs/d	1/Qtr.	1
#1	Acid Extractable - Priority Pollutants (See attached list Section G)	MONITOR	ONLY	lbs/d	1/Qtr.	1
#1	Base/Neutral - Priority Pollutants (See attached list Section G)	MONITOR	ONLY	lbs/d	1/Qtr.	1
# 1 He	Pesticides - xachlorocyclohexanes	MONITOR	ONLY	lbs/d	1/Qtr.	1
#1	Total Phenols	MONITOR	ONLY	lbs/d	1/Qtr.	1

F. <u>DISCHARGE LIMITATIONS & MONITORING REQUIREMENTS</u> CONTINUED

SAMPLE TYPE FOOTNOTES

- (1) Each sample will consist of four (4) grabs collected spaced throughout the **batch** discharge, such that they are representative of the effluent being discharged pursuant to 40CFR 403.12.b5iii. The four (4) grabs will be **composited in the laboratory** and analyzed as one sample.
- (2) Each sample will consist of four (4) grabs collected spaced over the 24-hour period, such that they are representative of the effluent being discharged pursuant to 40CFR 403.12.b5iii. The four (4) grabs will be **composited in the laboratory** and analyzed as one sample.
- (3) Each sample will consist of a 24-hour, **flow proportioned** composite sample collected from the monitoring point.
- (4) Flow will be monitored continuously with the use of a water meter or another acceptable flow metering device.
- (5) Each sample will consist of a 24-hour, **time proportioned** composite sample collected from the monitoring point.
- (6) Reserved
- (7) Same as (3), however, five (5) samples will be collected per quarter from the monitoring point and analyzed by and at the Niagara Falls Water Board's expense.
- (8) Four (4) grab samples will be collected spaced over the 24-hour period, such that they are representative of the effluent being discharged pursuant to 40CFR 403.12.b5iii. Each grab will be analyzed and reported separately.
- (9) A grab sample is defined as an aliquot collected over a period of not more than 15 minutes.

G. <u>Discharge Monitoring Reporting Requirements</u>

During the period beginning the effective date of this permit and lasting until its expiration date, discharge monitoring results will be summarized and reported by the permittee; Monthly - 14 days after monitoring period, Quarterly - by the last day of the monitoring period = February 28, May 31, August 31, November 30. Semiannual reports will be submitted on the last day of the monitoring period = February 28, August 31. The annual average for each parameter listed in Section F, will be computed and reported quarterly. The individual sample analysis for present quarter will also be reported quarterly unless directed otherwise in this permit.

OUTFALL NO	PARAMETER	REPORTING FREQUENCY
#1	Flow	Quarterly
#1	Total Suspended Solids	Quarterly
#1	Volatile - Priority Pollutants	Quarterly
#1	Acid Extractables - Priority Pollutants	Quarterly
#1	Base/Neutral - Priority Pollutants	Quarterly
#1	Total Phenols	Quarterly

Discharge Monitoring Compounds

Volatile	Base/Neutrals Extractables
Benzene	Dimethyl Phthalate
Carbon Tetrachloride	Butyl Benz Phthalate
Chlorodibromethane	Di-N-Butyl Phthalate
Monochlorobenzene	Di-N-Octyl Phthalate
Dichlorobromethane	Diethyl Phthalate
Chloroform	Nitrosodiphenylamine
Dichloroethylenes	Dichlorobenzenes
Bromoform	Dichlorotoluene
Dichloropropylenes	Acenaphthlene
Ethylbenzene	Fluoranthene
Tetrachloroethanes	Chrysene
Tetrachloroethylene	Napthalene
Toluene	Benzo (a) Anthracene
Trichloroethanes	Pyrene
Trichloroethylene	Trichlorobenzene
Methylene Chloride	Trichlorotoluene
Vinyl Chloride	Hexachlorobutadiene
Monochlorotoluenes	Tetrachlorobenzene
Monochlorobenzotrifluoride	Hexachlorocyclopentadiene
	Hexachlorobenzene
	Dichlorobenzotrifluoride

Discharge Monitoring Compounds

Acids	Pesticides
Monochlorophenol	Alpha, beta, delta, gama – hexachlorocyclohexane
Dichlorophenol	
Monochlorocresol	
Trichlorophenol	
Pentachlorophenol	

Conventionals	
Total Phenols	
Total Suspended Solids	
Soluble Organic Carbon	

H.	Comments/Revisions
I:\ADM	IN\WINWORD\ZAEPFEL\SIU\PERMITS\LOVCAN44

APPENDIX F

SYSTEM SETPOINTS

Love Canal Operation Setpoints

Pump ON/OFF Levels

<u>Pump</u>	State	<u>Level</u>
Raw Water Feed Pump	ON	50% *
(Permissive from Raw Water Feed Tank)	OFF	40% *
Raw Water Feed Pump	ON	60% *
(Permissive from Filter Feed Tank)	OFF	70% *
Filter Feed Pump	ON	50% *
(Permissive from Filter Feed Tank)	OFF	40% *
PC3 Pump A and B	ON	2.5 ft.
(Permissive from PC3)	OFF	2.0 ft.
PC3 Pump A and B	ON	5.0 ft.
(Permissive from Raw Water Feed Tank)	OFF	6.0 ft.
PC3A Pump A and B	ON	2.5 ft.
(Permissive from PC3A)	OFF	2.0 ft.
PC3A Pump A and B	ON	5.0 ft.
(Permissive from Raw Water Feed Tank)	OFF	6.0 ft.
PC1 Pump	ON	2.5 ft.
(Permissive from PC1)	OFF	2.0 ft.
PC1 Pump	ON	6.0 ft.
(Permissive from PC3)	OFF	7.0 ft.
PC2 Pump	ON	2.5 ft.
(Permissive from PC2)	OFF	2.0 ft.
PC2 Pump	ON	6.0 ft.
(Permissive from PC3)	OFF	7.0 ft.
PC1A Pumps A and B	ON	2.5 ft.
(Permissive from PC1A)	OFF	2.0 ft.
PC1A Pumps A and B	ON	6.0 ft.
(Permissive from PC3A)	OFF	7.0 ft.
PC2A Pumps A and B	ON	2.5 ft.
(Permissive from PC2A)	OFF	2.0 ft.
PC2A Pumps A and B	ON	6.0 ft.
(Permissive from PC3A)	OFF	7.0 ft.

^{*} Cannot be set by operator through the HMI.

Pump	State	Level
102 nd Street Well Pump #1	ON	562.1 AMSL
(Permissive from Wetwell #1)	OFF	561.8 AMSL
102 nd Street Well Pump #2	ON	562.1 AMSL
(Permissive from Wetwell #2)	OFF	561.8 AMSL
102 nd Street Well Pump #3	ON	562.1 AMSL
(Permissive from Wetwell #3)	OFF	561.8 AMSL
102 nd Street Well Pump #4	ON	562.1 AMSL
(Permissive from Wetwell #4)	OFF	561.8 AMSL
102 nd Street Well Pump #1, 2, 3 and 4	ON	5.0 ft.
(Permissive from PC3)	OFF	6.5 ft.

APPENDIX G

POTENTIAL OPERATING PROBLEMS/TROUBLESHOOTING

Problem	Potential Sources of Problems	Solution	Associated Alarms
PUMP CHAMBERS 1. Too little or no water to treatment system	 Pump problems Power failure Pump chambers dry Line leaks Lines plugged PLC malfunction High system pressure Influent valve malfunction 	 Repair or replace Check power, disconnects, breakers, etc. Verify Find leaks and repair Find plugs and clean Reset PLC, and call for programming assistance Verify valve positions Repair or replace 	Station PC3 Wetwell Level Station PC3A Wetwell Level
2. Too much water to system	Influent valve malfunctionPLC malfunction	 Repair or replace Reset PLC, and call for programming assistance 	
3. PC1, PC2, PC1A, and PC2A dry	 Drain system damaged or plugged Faulty level transmitter 	Find problem and repairRepair or replace	Station PC1 Wetwell Level Station PC1A Wetwell Level Station PC2 Wetwell Level Station PC2A Wetwell Level
4. PC3 and PC3A dry	 PC1, PC2, PC1A, or PC2A pumps not running Power failure Lines to chambers plugged PLC malfunction High system pressure Faulty level transmitter 	 Repair or replace Check power, disconnects, breakers, etc. Find plugs and clean Reset PLC, and call for programming assistance Verify valve positions Repair or replace 	Station PC3 Wetwell Level Station PC3A Wetwell Level

LOVE CANAL
POTENTIAL OPERATING PROBLEMS/TROUBLESHOOTING

Problem	Potential Sources of Problems	Solution	Associated Alarms
5. PC1, PC2, PC1A, and PC2A full	 PC1, PC2, PC1A, or PC2A pumps not running Power failure Lines from chambers plugged PLC malfunction High system pressure Faulty level transmitter 	 Repair or replace Check power, disconnects, breakers, etc. Find plugs and clean Reset PLC, and call for programming assistance Verify valve positions Repair or replace 	Station PC1 Wetwell Level Station PC1A Wetwell Level Station PC2 Wetwell Level Station PC2A Wetwell Level
6. PC3 and PC3A full	 PC1, PC2, PC1A, or PC2A pumps running PC3 or PC3A pumps not running Power failure Lines from chambers plugged PLC malfunction High system pressure Faulty level transmitter 	 Check flows and controls (are pumps in hand) Repair or replace Check power, disconnects, breakers, etc. Find plugs and clean Reset PLC, and call for programming assistance Verify valve positions Repair or replace 	Station PC3 Wetwell Level Station PC3A Wetwell Level
7. RTU panel high temperature	 Excessive heat generated by equipment in the panel or by outside source Faulty heater Faulty temperature switch 	 Find heat source and resolve Repair or replace heater Repair or replace switch 	RTU L Temp PC1 RTU L Temp PC1A RTU L Temp PC2 RTU L Temp PC2A RTU L Temp PC3 RTU L Temp PC3A
8. RTU panel intrusion	 Someone has opened the door on the panel Faulty switch 	 Confirm and correct Repair or replace switch 	Station PC1 Intrusion Alarm Station PC1A Intrusion Alarm Station PC2 Intrusion Alarm Station PC2A Intrusion Alarm Station PC3 Intrusion Alarm Station PC3A Intrusion Alarm

Problem	Potential Sources of Problems	Solution	Associated Alarms
9. Motor overload tripped or amps high	The motor to the respective pump is drawing excessive current	Replace or repair motor and/or pump	Station PC1 Pump AMP 1 Station PC1A Pump A AMP 1 Station PC2 Pump AMP 1 Station PC2A Pump A AMP 1 Station PC3A Pump A AMP 1 Station PC3A Pump A AMP 1 Station PC3A Pump A AMP 1 Station PC1A Pump B AMP 1 Station PC2 Pump B AMP 1 Station PC2A Pump B AMP 1 Station PC3A Pump B AMP 1 Station PC3 Pump B AMP 1 Station PC1 Pump Overload Alarm Station PC1A Pump A Overload Alarm Station PC2 Pump Overload Alarm Station PC3 Pump A Overload Alarm Station PC3 Pump A Overload Alarm Station PC3 Pump A Overload Alarm Station PC3A Pump B Overload Alarm Station PC1A Pump B Overload Alarm Station PC3A Pump B Overload Alarm
TREATMENT BUILDING			
Raw Water Tank1. High level2. Low level	 Flow from pump chambers too high Discharge line plugged or valve shut Raw Water Feed Pump not running Instrument malfunction Tank leak Raw Water Feed Pump pumping too fast Instrument malfunction Feed to tank too low 	 Verify, correct Find plug and clean, or open valve Electrical or instrument problem, repair Check instrument Repair Verify level instruments, VFD Check instrument Check flow setpoint (see above) 	Raw Water Tank (LTI-106) Level (Ft), identified as LT-6 on HMI screen Raw Water Tank BQA

Problem	Potential Sources of Problems	Solution	Associated Alarms
Raw Water Feed Pump and Filter Feed Pump			
. High pressure	Discharge line plugged or valve shut	Find plug and clean or open valve	
 Pump not reacting (design flow rate/design head) 	 Insufficient NPSH System head greater than anticipated Entrained air Direction of rotation wrong Impeller too small Impeller clearance too large Plugged impeller/suction line Wet end parts worn 	 Recalculate NPSH available/required Reduce system head Release air Reverse 2 of 3 leads (phase) Replace Reset clearance Clean Repair/replace 	
3. No discharge when pump running	 Not primed Suction line plugged or valve shut Direction of rotation wrong Entrained air Plugged impeller Damaged pump shaft/impeller 	 Repeat priming Find plug and clean, or open valve Reverse 2 of 3 leads (phase) Release air Clean Replace 	
Pump operates for short period, then loses prime	Insufficient NPSHEntrained air	Recalculate NPSH available/requiredCheck and repair	
5. Excessive noise from wet end	CavitationAbnormal fluid rotationImpeller rubbing	 Recalculate NPSH available/required Redesign suction piping Check/reset clearance and outboard bearing assembly 	
6. Excessive noise from power end	False brinellingThrust overload on bearingMisalignment	Correct vibration sourceRemount bearingsRemount properly	

Problem	Potential Sources of Problems	Solution	Associated Alarms
	Bearing damage	Refer to manufacturer's instructions	
7. Pump not running	VFD in manualAuto mode on VFD needs to be reset	 Press [F2] on VFD to place VFD in AUTO Turn HOA switch on pump from AUTO to OFF and back to AUTO 	
Filter Feed Tank			Filter Feed Tank (LIT-107) Level (Ft), identified as LT-1 on HMI screen
1. High level	 Flow from clarifier too high Discharge line plugged or valve shut Filter Feed Pump not running Instrument malfunction Bag filters plugged Carbon vessels plugged 	 Verify, correct Find plug and clean or open valve Electrical or instrument problem, repair Check instrument Replace bag filters Backwash or change carbon 	Filter Feed Tank Level BQA
2. Low Level	 Tank Leak Filter Feed Pump pumping too fast Instrument malfunction Feed to tank too low 	 Repair Verify level instruments, VFD Check instrument Check flow from clarifier/Raw Water Tank 	
Clarifier	Flow from Raw Water Tank too high	Verify, correct	
1. High level	Discharge line plugged	Find plug and clean	

Problem	Potential Sources of Problems	Solution	Associated Alarms
Effluent metering pump (If needed)			
1. Pump loses prime	 Dirty check valve Ball checks not seating/sealing properly Drum allowed to run dry 	Clean or replaceClean or replaceReplace drum and prime pump	
2. Fitting	Loose fittingsBroken or twisted gasketChemical attack	Tighten fittingsCheck/replace gasketReplace pump	
3. Leakage at tubing	Worn tube endsChemical attack	Cut off end of tubing and replaceReplace pump	
4. Failure	 Too much pressure at discharge Check valves not sealing Output dials not at maximum Suction lift too high 	 Check ball check valves and injectors Clean or replace Prime with output dials at maximum Decrease suction lift 	
Sludge Tank 1. High level	 Flow from clarifier tank too high Discharge line plugged or valve shut Instrument malfunction 	Verify, correctFind plug and clean or open valveCheck instrument	Sludge Holding Tank (LIT-105) Level (Ft), identified as LT-5 on HMI screen

D 11	D. C. I.C. (D. II	0.1.11	A
Problem	Potential Sources of Problems	Solution	Associated Alarms
Bag Filters 1. High differential pressure	Plugged bags	Change bags	North Bag Filter Differential Pressure South Bag Filter Differential Pressure
2. Low differential	• Leaks	Repair leaks Characteristics	
pressure	Hole in bagInstrument malfunction	Change bagsCheck instrument	
Carbon Vessels			
High differential pressure	 Plugged carbon Bed not flooded Plugged line Leaks Instrument malfunction Closed valves in the GAC system 	 Backwash or change carbon Open vent valve to release pressure Find plugged area and clean Repair leaks Check instrument Check all valves for correct positions 	
2. Low differential pressure	Faulty pressure relief valve or rupture disk	Replace or repair (Replace rupture disk when source of overpressurization, if any, is removed)	
3. Carbon in the effluent	Internal mechanical (underdrain) failure	Remove carbon and repair	
4. Excessive flow out vent line	Broken rupture disk	Replace rupture disk when source of over pressurization is removed (check manufacturer's instructions)	

APPENDIX H

PROCEDURES INDEX

Love Canal Operations and Maintenance Procedures

_NUMBER	TITLE	SECTION
ENVIRONME	<u>ENTAL</u>	
LC-001	Overpacking of Deteriorating 55 Gallon Drums.	Environmental
SECURITY		
LC-002	Power Reset of Main Gate Operator.	Security
LC-003	Security Systems for Administration Building, Treatment Building and Drum Barn.	Security
TREATMENT	<u>n</u>	
LC-004	Belt Replacement on the Hastings Treatment Process Air Make-up Unit.	Treatment
LC-005	Replacement of Vapor Phase Carbon Adsorption Canisters.	Treatment
LC-006	Dewatering of Infiltrate/Inflow of South Sector Pump Chambers.	Treatment
LC-007	Removal and Replacement of Zook, Impervious, Graphite Rupture Disks on the Main Carbon Beds.	Treatment
LC-008	Inspection Treatment Room Floor Fans.	Treatment
LC-009	Filter bag replacement on the Gaflo, Model RB-2A Leachate Filtration Bag Systems.	Treatment
LC-010	Start-Up Leachate Treatment Facility.	Treatment
LC-011	Shutdown Leachate Treatment Facility.	Treatment
LC-012	Emergency Transfer of Leachate from PC-3A to the LCTF.	Treatment
LC-013	Investigation of Poor Discharge from North & Central Sector Field Pumps.	Treatment
LC-014	Transfer of Sludge/NAPL from the Clarifier	Treatment

009954 (16) 009954-16-APPH.doc Revised 06/02

LC-015	Transfer of Sludge/NAPL from the Holding Tank to External Storage Tanks.	Treatment
LC-016	Dewatering of Precipitation from inside of Sludge/NAPL Containment Dike.	Treatment
LC-017	Leak Detection Procedures for the Sludge/NAPL Storage Tanks.	Treatment
LC-025	Bulk Handling System (Carbon Transfer)	Treatment
<u>UTILITIES</u>		
LC-018	Annual Service, Worthington Screw Type Air Compressor Model Rollair 40-110.	Utilities
LC-019	Annual Service, Worthington Screw Type Air Compressor Models-25-110.	Utilities
LC-020	Removal/Replacement, Inline Air Filter, Hankison Model 3106 Air Dryer.	Utilities
LC-021	Dravo Hastings Treatment Plant Make-up Air Unit, Cleaning and Replacement of Air Filters.	Utilities
LC-022	Replacement of Administration Building HVAC Filters.	Utilities
LC-023	Use of and Testing of Site's Emergency Shower/Eyewash Stations.	Utilities

Removal/Cleaning/Replacement, Inline, Condensate Draining Device Hankison, Snap-Trap, Model 503.

Utilities

LC-024

Procedures Removed from Procedure List

Note: The following procedures have been removed for the reason indicated:

DEC#	Procedure	Reason	<u>Date</u>
001	Operation, Maintenance, and Safety Procedures of the Snow blower.	Not Applicable	11/00
005	Time Clock Setting for the Plant's External Lighting.	Automated by photo eye	11/00
014	Replacement of Hydrogen Peroxide Drums.	Not Applicable Hydrogen Peroxide no	11/00
018	Replacement of Process Piping.	longer used. Not Applicable Piping not changed out.	11/00
019	Replacement of Process Piping for Pump Tranquilizers.	Not Applicable Pumps Eliminated	11/00
020	Snowplowing and Maintenance.	Not Applicable Equipment not used	11/00
022	Repair of Plant's SB 1 ½ A Sludge Pump.	Not Applicable Pump not used	11/00
028	Cleaning of Filter Feed Tank.	Not Applicable	11/00
029	Maintenance of the Lawn Tractor and Safety Guidelines when Operating.	Contractor maintains Lawns	11/00
031	Power Trimming of Site Vegetation.	Contractor maintains Lawns	11/00
033	Paint Touch-up of Plant Clarifier and Sludge/NAPL Storage Tanks	Not Applicable	11/00
035	Lock Out and Tag Out Procedure	Covered in SOP SR-13	11/00
036	Long Term Sampling Procedures	Covered in Long Term Monitoring Manual	11/00

009954 (16) 009954-16-APPH.doc Revised 06/02

APPENDIX I

OWNERS MANUALS INDEX

	Item	Manufacture	Model	Function
A				
	Air Compressor	Worthington	Rollair-40-110	Plant Air
	Air Compressor	Worthington	RS Rotary, RS-25	Plant Air
	Air Exchanger	ITT Standards		
	Arrestor, Flame	L&J Technologies	94306	Process Ventsorber
С				
	Carbon	Calgon	Type BPL Granular Carbon	Vapor Phase Canisters
	Carbon	TIGG Corp.	NIXTOX Vapor Phase Canisters	Vapor Phase Canisters
	Clarifier	Clow Waste Treatment Div.		Process Clarifier
D				
	Disks	Zook Enterprise	Graphite Rupture Disks/Gaskets	Carbon Bed Vent Line
	Dryer, Air	Van Air Systems Inc.	RA-400	Process Air Dryer
E				
	Exhaust Fan	Penn Ventilation Corp.	Penn Fumex	Process Roof and Wall Exhaust Fans
F				
	Filters	GAF	Gaflo RB-2A	Process Bag Filters
	Filters	Hankinson Corp.	Model 503 Snap Trap	Air Dryer Filter
	Filters	Hankinson Corp.	Model 3106	Inline Air Process Filter

009954 (16) APPI Rev. 12/00

	Item	Manufacture	Model	Function
	Filters	Black & Decker	Bowl Filter	
G				
	Gage	Weather Measurer Weather Tronics	Model 6021-A,B	Tipper Bucket Rain Gage
	Gage	Weather Measurer Weather Tronics	6410, 6411	Precipitation Gage Wind Screen
Н				
	Hood	LabConco	47716	Process Fume Hood
	HVAC	Hastings	Direct Fired Make-up Air Systems, LU-215-9-756	Process Air Makeup
	HVAC	Carrier	58ED 76,000 BTU Horizontal, Center Fired Furnace	HVAC 1
	HVAC	Bryant	Commercial Outdoor Combination Gas Heating /Electric Cooling	Treatment Building Heating/Cooling
Ι				
	Instrument	Badger Meter, Inc.	Compu-Sonic Model 4100	DCF Flow Meter
	Instrument	Badger Meter, Inc.	Recordall II Turbo Meter	Effluent Mechanical Flow Meter
	Instrument	Controlotron	System 1010X	Effluent Flow Meter FIT-107
	Instrument	Electromagnetic	MUT 1100	PC-1 & PC-2 Flow Meter
	Instrument	Endress & Hauser	EXIMAG, FIT1950	Flow Meter; Influent (FIT-106), PC-1A, PC-2A, PC-3 & 3A
	Instrument	HNU Systems Inc.	Model P1 101	Photoionization Analyzer
	Instrument	Kessler-Ellis Products	BAT R/T	102 nd T. Flow WW- 1-4 & Sample Pit

009954 (16) APPI Rev. 12/00

	Item	Manufacture	Model	Function
	Instrument	Magnetrol	Echotel III Series 311 Ultrasonic Mon-Contact Continuous Level Transmitter	Sludge Storage, Raw, Filter & Sludge Holding Tanks Level
	Instrument	Red Lion Controls	Model PAXD 1/8 Din Universal DC Input Panel Meter	PC-1, 1A, 2, 2A, 3A & 102 nd St. Local Digital Indicator
	Instrument	MSA	Model 260	Combustible Gas and Oxygen Meter
P				
	PLC	Allen Bradley Rockwell Automation	Discrete I/O Modules	
	PLC	Allen Bradley Rockwell Automation	SLC 5/03, 5/04 & 5/05 Module Processors	
	PLC	Allen Bradley Rockwell Automation	Compact 1769-IF4 Analog Input Module	
	PLC	Allen Bradley Rockwell Automation	SLC 500 Power Supplies	
	PLC	Allen Bradley Rockwell Automation	SLC 500 Analog Input Module	
	PLC	Allen Bradley Rockwell Automation	MicroLogix 1500 Programmable Controller Base Units	
	Pump	Goulds	Model 3196	Process Pumps Raw & Filter Feed
	Pump	Goulds	Model 3171 Vertical Pump	PC-1A, PC-2A & PC-3A Pumps
	Pump	Gorman-Rupp	S2B65-E2 230/3 Submersible	PC-1 & PC-2 Pumps
	Pump	Homa	CH424, CH445 Stainless Steel Submersible pump	PC-3 Pumps
	Pump Level Control	Syrelec	NR Series	PC-3 Pump level control
	Pump Check Valve	Durabla	Excalibur Silent Check Valve	PC-3 Check Valve
	Pump Control	Telemecanique / Square D	Altivar 66	VSD Pump Controls Raw & Filter Feed

009954 (16) APPI Rev. 12/00

	Item	Manufacture	Model	Function
	Pump Utility	Little Giant	Water Wizard submersible pump	Utility Pump
	Pump Trash	C.H. & E Manufacturing Co.	3100 series, 3" Trash Pump	Trash Pump
	Pump Self- priming	Gorman Rupp	Model 11 ½ A2-8 3-hp Engine Driven Centrifugal	Portable Pump
	Pump	Flygt	Sump pump	DCF Pump Station #3
	Preventer	Watts	Series 900	Back-flow preventers
R				
	Regulator	Black & Decker	Cat. No. 22015,16,17,18,19	Air Regulator
	Regulator	Fisher Controls	Type 95L & 95H Pressure Regulator	Air, Water & Gas Regulator
S				
	Safety Eyewash/ Shower	Bradley	Model S1931	Safety Eyewash/ Drench Shower
Γ				
	Trap	Armstrong	Compressor Drain	Air Compressor Drain Trap
	Trap	Sarco	Type FA	Compressor Air Drain Trap
	Tank	Owens/Corning	Model 106, 20 Mil. Fiberglass, 5940 gallons	Raw Water Tank
	Tank	Buffalo Tank Div. Bethlehem Steel Corp.	125in dia. x 15ft 8in, 10,000 gallon	Sludge Storage Tank
	Tank	Clemmer Industries	Doubled Walled Storage Tanks Vac-U-Test	

	Item	Manufacture	Model	Function
	Valve	Apollo	87-200 (3"), 87-208 (2") 316 Stainless Steel Class 150 Full Port	Sludge Storage; Transfer Lines and PC-2
	Valve	Shand & Jurs	Model 94020 Pressure/Vacuum Breather Valve	Process Tanks
	Valve	Worcester Controls	Series 75 Electric Valve Actuator	Effluent Valve
	Valve	Flowserve	Automax Valve Automation Systems (Valve, poistioner & controller)	Influent Valve
	Vent	Shand & Jurs	Model 94130 Pressure only Breather Vent	Sludge Tanks
	Ventsorb	Calgon	Ventsorb Activated Carbon Drums	Process Ventsorbs
	Vacuum	Cadillac	Drum Top Vacuum	Exchange Carbon for Ventsorbs
W				
	Winch	Thern Inc.	Worm Gear Hand Winch	Hand Winch used for pump retrieval

APPENDIX J

DAILY INSPECTION LOG

LOVE CANAL DAILY

Date	Inspected BY:
	CHECK PERIMETER FENCING AND GATES FOR INTEGRITY SIGN POSTING GARBAGE / GROUNDS
	CHECK DRUM WAREHOUSE FUEL OIL STORAGE TANK & DIKE FOR LEAKS, CHECK STORED DRUMS FOR CORROSION/LEAKAGE, SUMP LEVELS
	CHECK SECURITY SYSTEM ADMINISTRATION, TREATMENT BLDG, DRUM BARN.
	CHECK CONTAINMENT SYSTEM LEVELS COMPUTER SYSTEM OPERATION
	CHECK RAW, FILTER FEED, CLARIFIER TANKS CARBON/ABSORBERS PUMPS/PIPNG
	CHECK SLUDGE STORAGE TANKS FOR LEAKS, CHECK DIKE INTEGRITY
	CHECK TELEPHONE SYSTEM FOR PROPER OPERATIONS
	CHECK SAMPLE REFRIDGERATOR FOR PROPER OPERATIONS (4 DEG. C)
	CHECK VECHILES
PREC	INCHES MONTH TO DATE (RESET BEGINING OF MONTH)
COM	MENTS:

SIGNATURE:

APPENDIX K

OPERATOR TRAINING ACKNOWLEDGEMENT FORM

APPENDIX K

GLENN SPRINGS HOLDINGS, INC. COLLECTION, STORAGE, AND TREATMENT SYSTEM OPERATOR TRAINING ACKNOWLEDGEMENT

The undersigned has been formally trained on	the Love Canal Leachate Treatment
Facility in accordance with the Love Canal Coll	ection and Aqueous Phase Liquid (APL
Treatment System Operation and Maintenance	(O&M) Manual.
NAME:	DATE:
SUPERVISOR:	DATE: