2021 Hazardous Waste Scanning Project

File Form Naming Convention.

(*File_Type*).(*Program*).(*Site_Number*).(*YYYY-MM-DD*).(*File_Name*).pdf

Note 1: Each category is separated by a period "." Note 2: Each word within category is separated by an underscore "_"

Specific File Naming Convention Label:

HW. 932020. 1992-10-0. Data_Collection__TRM

6

Occidental Chemical Corporation

FINAL REPORT DATA COLLECTION AND **INTERIM REMEDIAL PROGRAM**

10500 CAYUGA DRIVE NIAGARA FALLS, NEW YORK

Occidental Chemical Corporation

FINAL REPORT DATA COLLECTION AND **INTERIM REMEDIAL PROGRAM**

10500 CAYUGA DRIVE NIAGARA FALLS, NEW YORK

OCTOBER 1992

REFERENCE NO. 3307 (24) This report has been printed on recycled paper.

CONESTOGA-ROVERS & ASSOCIATES

TABLE OF CONTENTS

	· · · · · · · · · · · · · · · · · · ·	<u>Page</u>	
1.0	INTRODUCTION	1	
2.0	BACKGROUND		
3.0	NYSDEC INVESTIGATION		
4.0	 INTERIM REMEDIAL PROGRAM 4.1 PHASE I ACTIVITIES 4.1.1 Excavation 4.1.2 Confirmatory Sampling 4.2 DATA COLLECTION PROGRAM 4.2.1 Fourth Round Sample Collection 4.2.2 Fifth Round Sample Collection 4.2.3 Sixth Round Sample Collection 4.2.4 Seventh Round Sample Collection 4.3 PHASE II ACTIVITIES 4.4 PHASE III ACTIVITIES 4.4 Waste Characterization 4.4 Toperty Restoration 4.4 I327 and 1341 104th Street Sample Collection 	4 5 6 7 7 8 9 10 12 13 14 16 18 19	

5.0 FINAL CONDITIONS

LIST OF FIGURES (Following Report)

FIGURE 2.1	SITE LOCATION	-
FIGURE 2.2	PROJECT SITE	
FIGURE 4.1	1327 AND 1341 104TH STREE	SAMPLE LOCATIONS

LIST OF TABLES (Following Report)

TABLE 2.1	CHRONOLOGY OF EVENTS
TABLE 3.1	NYSDEC ANALYTICAL PARAMETER LIST
TABLE 4.1	APPROVED PROJECT DOCUMENTS
TABLE 4.2	OXYCHEM ANALYTICAL PARAMETER LIST
TABLE 4.3	SAMPLE COLLECTION SUMMARY MARCH 1990 - ROUND FOUR
TABLE 4.4	SUMP WATER SAMPLING DETAILS 1335 104TH STREET
TABLE 4 5	SUMP WATER SAMPLING DETAILS

1331 104TH STREET

LIST OF APPENDICES

APPENDIX A	ANALYTICAL RESULTS
APPENDIX B	STRATIGRAPHIC LOGS

LIST OF PLANS

PLAN 1 SAMPLE LOCATIONS

PLAN 2 EXCAVATED AREAS

1.0 INTRODUCTION

An interim remedial program has been completed by Occidental Chemical Corporation (OxyChem) on the property at 10500 Cayuga Drive and two adjacent residential properties (1331 and 1335 104th Street) in Niagara Falls, New York.

The project was conducted in accordance with the Order on Consent (AOC) (No. B9-0263-89-03) between the New York State Department of Environmental Conservation (NYSDEC) and OxyChem.

The project consisted of iterative rounds of soil sampling to define the remediation areas and three phases of excavation activities to remove the soils which exhibited chemical presence.

This document presents a comprehensive, certified report of the sampling and excavation activities conducted.

2.0 <u>BACKGROUND</u>

In the fall of 1988, while installing a sewer line, construction workers observed evidence of chemical presence in the soils under the parking lot at 10500 Cayuga Drive. The location of the project site within the City of Niagara Falls is shown on Figure 2.1.

Between March 1989 and July 1990, six rounds of sample collection (two by the NYSDEC and four by OxyChem) and two phases of soil excavation (Phases I and II) were conducted at the parking area. The purpose of these activities was to define the extent of soils exhibiting chemical presence and to remove these materials from the parking area.

Since chemicals were detected in soil samples collected just off the west edge of the parking area, the project was expanded into the rear yards of the properties located at 1331 and 1335 104th Street.

Between July 1990 and January 1991 a third phase of sampling and excavation was conducted (Phase III) on these residential properties to further define the extent of soils exhibiting chemical presence and to remove that soil material from the residential properties.

Figure 2.2 presents a plan view of the project Site. Table 2.1 presents a chronology of site activities.

3.0 NYSDEC INVESTIGATION

Following the report of the observation of possible chemical presence in site soils, the NYSDEC conducted investigations in March and April 1989 to attempt to define the nature and extent of chemical presence at the Site. The locations of all NYSDEC sample points (1 through 9 and A through L) are shown on Plan 1.

In March 1989 soil and water samples were collected by NYSDEC and analyzed for the parameters listed on Table 3.1. Documentation of the sampling procedures has not been provided to OxyChem and therefore is not included in this report.

In April 1989 NYSDEC conducted a second round of soil and water sampling. A memo dated April 24, 1989 from R.W. Schick (NYSDEC) to A.S. Nagi (NYSDEC) describes the sampling program. A copy of this memo is contained in Appendix A.

The results of the NYSDEC investigations confirmed the presence of chlorinated organic compounds in soils on the property at 10500 Cayuga Drive. The analytical data from these two sampling rounds was forwarded to OxyChem and is contained in Appendix A.

4.0 INTERIM REMEDIAL PROGRAM

Pursuant to the conditions of the AOC the documents listed on Table 4.1 were submitted by OxyChem and approved by NYSDEC. All sampling and remedial activities performed by OxyChem were executed in accordance with these documents.

Interim progress reports have been submitted by OxyChem to NYSDEC. These reports included descriptions of activities performed, presentations of results, proposed additional activities, and detailed Quality Assurance/Quality Control (QA/QC) reviews when analytical data was presented. It is to be noted that all samples were analyzed for the parameters listed on Table 4.2, as required by the approved Quality Assurance Project Plan (QAPP). This list includes the 2,4- and 2,5-isomers of dichlorophenol. Some of the interim progress reports incorrectly reported 2,3-dichlorophenol rather than 2,5-dichlorophenol. These tables have been corrected and the proper parameters are presented in this report.

4.1 PHASE I ACTIVITIES

In accordance with the document entitled "Work Plan, Interim Remedial Program, 10500 Cayuga Drive" (October 1989) OxyChem completed the excavation and restoration activities briefly described below. A detailed description of these activities has been submitted previously in the document entitled "Comprehensive Summary Report, Data Collection Program and Interim Remedial Activities, 10500 Cayuga Drive" (March 1991).

4.

4.1.1 Excavation

The March and April 1989 analytical data was used to define an area from which soil material was removed in early November 1989. The area of the Phase I excavation is shown on Plan 2.

The Phase I excavation was performed by SLC Project oversight was provided by Conestoga-Rovers & Associates (CRA) on behalf of OxyChem. NYSDEC representatives were present at all times during the excavation and sampling program.

Removal of the soils was accomplished using a track-mounted backhoe. The excavated material was placed directly into plastic lined dump trailers and transported to the Chemical Waste Management (CWM) Hazardous Waste Landfill, Model City, New York, for disposal as non-hazardous material. The excavation extended from the existing ground surface to a depth of six inches to 12 inches into the native clay/till layer. Approximately 710 cubic yards of material were removed.

After completing the excavation of a given area, the sidewalls were visually examined and monitored with an HNU photoionization detector for signs of chemical presence. Additional soils were removed beyond the excavation limits as deemed necessary based on this inspection.

All areas excavated during Phase I were backfilled (maximum 12 inch lift) using #2 run of crusher stone and compacted using a vibratory roller. Prior to backfilling, the excavation was lined with polyethylene to provide a visible delineation of the area of remediation.

4.1.2 Confirmatory Sampling

Prior to restoration of the excavated area, confirmation samples were taken from 12 locations on the excavation walls and from four locations on the excavation floor The locations of the sample points (NCC-1 through NCC-12 and NCC-1F, NCC-3F, NCC-7F and NCC-FF) are shown on Plan 1. These samples and all subsequent samples were analyzed for the parameters shown on Table 4.2.

Analytical data from this round of confirmation samples is contained in Appendix A. A QA/QC review was performed by OxyChem and all data was determined to be acceptable for its intended purpose. The QA/QC review has been submitted previously in the Comprehensive Summary Report.

The analytical data revealed chemicals remaining in the excavation sidewalls, indicating the area of elevated chemistry at the Site extended beyond the excavated area. The excavation was backfilled before the confirmatory analytical data was received.

4.2 DATA COLLECTION PROGRAM

Following receipt and review of the analytical data from the Phase I excavation confirmation sampling, an additional data collection program was proposed by OxyChem and approved by the NYSDEC to further define the extent of contamination at the Site.

This additional data collection program was conducted in a series of events. The extent of each sampling event was based on the analytical results of the previous event. The NYSDEC approved each round of sampling prior to its being conducted and had a representative present during all activities. A sample collection summary for the Data Collection Program is presented on Table 4.3. The locations of all sample points are shown on Plan 1 and stratigraphic logs of each borehole are contained in Appendix B.

4.2.1 Fourth Round Sample Collection

On March 5-6 and March 14, 1990, OxyChem conducted a round of sample collection at 10500 Cayuga Drive utilizing a rotary drilling rig and split spoon samplers to obtain 30 soil samples from 27 boreholes (NCC-14 through NCC-32 and NCC-35 through NCC-42).

The NYSDEC collected split samples from several of the boreholes completed on March 5 and 6. These split samples were collected

directly from the sampling device. On March 14, the NYSDEC obtained split samples after homogenization at the laboratory.

Analytical results of the samples collected and analyzed in this round are contained in Appendix A. A QA/QC review was performed by OxyChem and all data were determined to be acceptable for their intended use. The QA/QC review has been submitted previously in the Comprehensive Summary Report.

The presence of chemicals was detected in 20 of the boreholes installed during this round of sampling.

4.2.2 Fifth Round Sample Collection

Based on the results of the fourth round sample collection program, 12 additional boreholes (NCC-44 through NCC-55) were completed on June 1, 1990. The boreholes were completed using the same protocols as for the previous round.

Chemistry was detected in four of the samples collected during this sampling round. Results of the chemical analyses are contained in Appendix A. A QA/QC review was performed by OxyChem and all data were found to be acceptable for their intended use. The QA/QC review was submitted previously in the Comprehensive Summary Report.

4.2.3 Sixth Round Sample Collection

Two additional boreholes (NCC-58 and NCC-59) were installed on the east side of the parking area in July 1990. Samples were collected from the boreholes in accordance with the approved protocols.

During the fifth round sampling at 10500 Cayuga Drive, chemical presence was detected in boreholes NCC-53 and NCC-55 located just off the west side of the 10500 Cayuga Drive parking area. Therefore on July 20, 1990, 16 soil samples were collected from eight boreholes (1335-1 through 1335-8) at 1355 104th Street. The locations of these boreholes are shown on Plan 1. From each borehole, analytical samples were collected from ground surface to 6 inches below ground surface (BGS) and from 6 inches BGS to the top of the native clay/till layer.

The analytical data of this sixth sample round are contained in Appendix A. A QA/QC review was performed by OxyChem and all data were found to be acceptable for their intended use. The QA/QC review was submitted previously in the Comprehensive Summary Report and "Soils Investigation Summary Report, 1335 104th Street" (April 1991).

The analytical data revealed no chemical presence in boreholes NCC-58 or NCC-59 on the 10500 Cayuga Drive property. Low levels of chemical presence was detected, however, in all boreholes installed at 1335 104th Street.

4.2.4 Seventh Round Sample Collection

1335 104th Street

On January 3 and 4, 1991, OxyChem returned to 1335 104th Street to collect additional soil samples. Five boreholes (1335-10 through 1335-14) were completed and 10 soil samples submitted for chemical analysis using the same procedures described previously.

Additionally, a water sample was collected from the basement sump of the residence and submitted for chemical analysis. The sump sampling details are presented in Table 4.4.

Chemistry was not detected in any of the soil samples or in the sump water. The analytical data from the 1335 104th Street sample analyses are contained in Appendix A. A QA/QC review as performed by OxyChem and the data were found to be acceptable for their intended use. The QA/QC review was submitted previously in the Soils Investigation Summary Report, 1335 104th Street.

Based on the data collected in July 1990 and January 1991, Dr. Paul O. Nees of Biosurvey, Inc. conducted an evaluation of the risk to human health which would result from ingestion of fruits and vegetables grown in the subsurface soils on this property. This evaluation concluded that the presence of chemicals in the soils did not represent a health risk with respect to ingestion of fruits and vegetables grown in these soils. The complete health risk assessment was presented previously in the Soils Investigation Summary Report, 1335 104th Street.

1331 104th Street

On January 8 to 10, 1991, OxyChem collected soil samples from the rear yard of the residence at 1331 104th Street. Twelve boreholes (1331-1 through 1331-12) were completed with 24 soil samples collected and submitted for chemical analysis.

Additionally, a water sample was collected from the basement sump of the residence for chemical analysis. The sump sampling details are provided in Table 4.5.

Chemistry was not detected in the sump water or surface soil samples. Low levels of chemistry were detected in subsurface samples collected from four of the boreholes.

The analytical results of the 1331 104th Street sampling are contained in Appendix A. A QA/QC review was performed by OxyChem and all data were found to be acceptable for their intended use. The QA/QC review was submitted previously in the report entitled "Soils Investigation Summary Report, 1331 104th Street" (April 1991).

Based on the analytical data, Dr. Paul O. Nees of Biosurvey, Inc. conducted an evaluation of the risk to human health which would result from the ingestion of fruits and vegetables grown in the subsurface soils on this property. This evaluation concluded that the presence of chemicals in these soils did not represent a health risk with respect to ingestion of fruits and vegetables grown in these soils. The complete health risk assessment was

presented previously in the Soils Investigation Summary Report, 1331 104th Street.

4.3 <u>PHASE II ACTIVITIES</u>

Following the review of data obtained from the sixth round of sampling (July 1990), it was determined that the limits of soils exhibiting elevated chemical presence on the 10500 Cayuga Drive property had been adequately defined and a work plan entitled "Phase II Work Plan - Interim Remedial Program, 10500 Cayuga Drive" (October 1990) was developed and approved for removal of these soils.

From November 12 to 16, 1990, the soils underlying the parking area adjacent to the Phase I excavation were removed. The excavation areas are shown on Plan 2. The work was performed by SLC under the direction of the OxyChem on-Site Representative (Conestoga-Rovers & Associates). NYSDEC representatives were present at all times work was being conducted.

Removal of the soils was accomplished using a track-mounted backhoe with a three yard bucket. The excavated material was placed directly into plastic lined dump trailers and transported to the Chemical Waste Management (CWM) Hazardous Waste Landfill, Model City, New York, for disposal as non-hazardous material. The excavation extended from the existing ground surface to a depth of six inches to 12 inches into

native clay/till layer. Approximately 1,350 cubic yards of material were removed.

After completing the excavation of a given area, the sidewalls were visually examined for signs of chemical presence, and additional soils were removed beyond the excavation limits as deemed necessary based on the visual examination. No confirmation sampling was performed as consented to by the NYSDEC.

All areas excavated during Phase II were backfilled (maximum 12 inch lift) using #1 and #2 run of crusher stone and compacted using a vibratory roller. The surface of the parking area overlying both the Phase I and the Phase II excavation areas was paved using blacktop asphalt in November 1990.

4.4 PHASE III ACTIVITIES

Despite the fact that the health risk assessment concluded that no additional risk was posed by the presence of chemicals in the soils on 1331 or 1335 104th Street, a decision was made to remove all soils exhibiting evidence of chemical presence from these properties.

In accordance with the document entitled "Phase III, Final Work Plan, Interim Remedial Program, 10500 Cayuga Drive" (February 1992) the following data collection, excavation, restoration, and soils disposal activities were completed.

4.4.1 Waste Characterization

On April 13, 1992, as part of the Phase III Interim Remedial Program, soil samples were collected from the proposed areas of excavation within the rear yards of 1331 and 1335 104th Street.

The purpose of this sampling program was two-fold:

 i) characterization of the soils to be excavated during the remediation to determine an appropriate disposal facility; and

 at the land owners request: investigation of the northwest area of the rear yard of 1335 104th Street to determine whether OxyChem chemicals were present in the soil.

Samples were collected at the locations shown on Plan 1. At locations 1331-TCLP and 1335-TCLP samples were collected from depths of 0 to 4.0 feet BGS and submitted for analysis by the Toxicity Characteristic Leaching Procedures (TCLP). Two adjacent boreholes were required at location 1331-TCLP to obtain sufficient sample volume. At location 1335-TCLP, two boreholes were installed approximately 12 feet apart (see Plan 1). No waste material was observed at either location. The soils collected from each borehole were composited for the analytical sample.

The owner of the property at 1335 104th Street requested that samples to be collected from an area of his yard where vegetative growth was observed to be sparse. Two samples (1335-20 and 1335-21) were collected from this area and analyzed for the parameters listed on Table 4.2.

The analytical data are presented in Appendix A. A QA/QC review was performed by OxyChem and all data were found to be acceptable for their intended use. A complete QA/QC review was submitted previously in the report entitled "Waste Characterization Sampling Report, Phase III Interim Remedial Program, 10500 Cayuga Drive" (June 1992).

The concentrations of all TCLP compounds were found to be below the regulatory level indicating a hazardous waste. The material excavated, therefore, did not exhibit the characteristic of toxicity. In addition, since the soils exhibited only low level organic chemistry presence they were not expected to exhibit any of the other characteristics of a hazardous waste (ignitibility, corrosivity or reactivity). Therefore, it was deemed appropriate to dispose of the soils at OxyChem's 102nd Street Landfill. Approval was obtained from NYSDEC for this disposal plan.

The samples analyzed for the Table 4.2 parameters showed no detected levels of any of the analytes. The deficient vegetative growth in this area of the yard at 1335 104th Street is therefore not due to any OxyChem-related chemistry.

4.4.2 Excavation

The excavation of soils from the yards at 1331 and 1335 104th Street commenced on June 8, 1992 and was completed on June 9, 1992. The work was performed by Sicoli and Massaro under the direction of the on-Site OxyChem Representative. All work was performed in accordance with the project documents.

With approval of the property owner, access to the excavation area was made from the property at 10500 Cayuga Drive. A track-mounted backhoe was used to excavate the soils and load them directly into tandem dump trucks. Excavation proceeded from the rear of the house at 1331 104th Street to the area east of the garage at 1335 104th Street.

As the excavation progressed, the face and bottom of each excavated area were examined for evidence of chemical presence (i.e. discoloration or staining, odor, etc.) . In addition, a photoionization detector (HNU) was used to screen the excavated area to confirm that soils containing chemical presence had been removed. As each area was determined to be clean by the on-Site OxyChem Representative, concurrence from the on-Site NYSDEC Representative was obtained. The final excavation limits are shown on Plan 2. At the request of the property owner, the southeast corner of the proposed remedial area of the 1331 104th Street property was not excavated in order to preserve a large tree. OxyChem informed NYSDEC in advance of their intent to exclude this area from the excavation area. Excavation was performed to the drip edge of the tree.

After being loaded and prior to leaving the loading area, each truck was inspected and any spilled material removed. Each load was signed for by the contractor superintendent prior to leaving the Site for disposal at the 102nd Street Landfill. Care was taken to ensure that excavated materials were not tracked onto the parking lot at 10500 Cayuga Drive.

A total of 635 cubic yards of material were excavated and removed from the Site in 49 loads. All excavated material was transported to the OxyChem 102nd Street Landfill for disposal. Each load, after dumping, was signed for by the security guard at the 102nd Street Landfill. After the dumping of each load, the on-Site landfill crew spread the material in the existing soil disposal cell.

Verbal approval was given by Mr. James A. Tuk, NYSDEC, to backfill the excavation, OxyChem's on-Site Representative directed the Contractor to proceed with backfilling the excavation with fill from sources previously approved by the OxyChem Site Representative. The backfilling sequence consisted of the following:

- i) general fill to within 18 inches of finished grade;
- ii) sandy loam to within 6 to 9 inches of finished grade;
- iii) topsoil; and
- iv) sod to final grade.

Fill was placed in 12 inch lifts and compacted to a grade suitable for the placement of sod.

4.4.3 Property Restoration

After the backfilling of the excavation was complete to rough grade, the landscape contractor (Menne Nursery) performed the final grading and placed sod. The garden and plant landscaped areas were also restored including all plants, trees, shrubs, and cover material which had been removed.

Upon completion of the landscape work, a 5 foot chain link fence with access gates was installed along the property lines. This work was performed by Argy Fence.

As a result of the movement of trucks and equipment the west edge of the parking lot asphalt at 10500 Cayuga Drive became damaged. Upon completion of the project, the damaged edge of the asphalt parking lot was mechanically cut and the stone base was restored and compacted. A 2 inch layer of binder was placed and rolled and a 1 inch layer of top coat was placed and rolled to match existing asphalt. The area between the asphalt and the chain link fence was lined with clean graded crushed stone.

4.4.4 1327 and 1341 104th Street Sample Collection

The owners of the properties adjacent to 1331 and 1335 104th Street contacted OxyChem and requested that samples be collected from their yards to confirm that no chemicals were present.

On June 10, 1992, soil samples were collected from the rear yards at 1327 and 1341 104th Street. Two soil samples were collected from each yard as shown on Figure 4.1. The samples from 1327 104th Street were collected from two locations (1327-1 and 1327-2). At 1341 104th Street, two boreholes (1341-1 and 1341-2) were completed at opposite ends of the yard.

A sample collection summary is presented in Table 4.3.

The analytical data of the 1327 and 1341 104th Street sampling are contained in Appendix A. QA/QC information for the 1327 and 1341 104th Street samples is contained in Appendix B.

5.0 FINAL CONDITIONS

In accordance with the Interim Remedial Work Plans (Phase I, Phase II and Phase III) soils exhibiting the presence of organic chemicals above the survey levels established have been removed from the properties at 10500 Cayuga Drive, 1331 104th Street and 1335 104th Street.

The areas of excavation have been restored to original or improved conditions to enable continued, unrestricted use of these areas.

As indicated by the data obtained from the sample of sump water collected at 1335 104th Street in January 1991 chemicals from the site soils were not present in the area groundwater. Since the potential source of chemicals to groundwater has now been removed there is no need for further groundwater monitoring at this site.

CERTIFICATION

I, Richard J. Snyder, a Professional Engineer in the State of New York, certify, based on site visits during progress of the works and interviews with persons directly responsible for supervising the performance of the work, that the activities performed for the implementation of the Interim Remedial Program, except as otherwise noted in this report, were performed in accordance with the documents entitled:

- i) "Work Plan Interim Remedial Program" 10500 Cayuga Drive, Niagara Falls, New York October 1989;
- ii) "Phase II Work Plan Interim Remedial Program" 10500 Cayuga Drive, Niagara Falls, New York October 1990; and
- iii) "Phase III Final Work Plan Interim Remedial Program" 10500 Cayuga Drive, Niagara Falls, New York February 1992.

NEW Richard J. Snyder, P LICENSED CHUNEEr 6624 PROFESSIONAL 10-12-92 Date

LIST OF INFORMATION SOURCES

Correspondence

- NYSDEC memorandum to R. Schick from A. Nagi dated April 24, 1989.
- NYSDEC letter to J. Cull from R. Schick dated December 14, 1989.

Project Documents

- Work Plan, Interim Remedial Program 10500 Cayuga Drive Niagara Falls, New York (October 1989)
- Quality Assurance/Quality Control Plan Interim Remedial Program 10500 Cayuga Drive Niagara Falls, New York (October 1989)
- Health and Safety Plan for Interim Remedial Program 10500 Cayuga Drive Niagara Falls, New York (October 1989)
- Phase II Work Plan
 Interim Remedial Program
 10500 Cayuga Drive
 Niagara Falls, New York (October 1990)
- Phase III Final Work Plan Interim Remedial Program 10500 Cayuga Drive Niagara Falls, New York (February 1992)

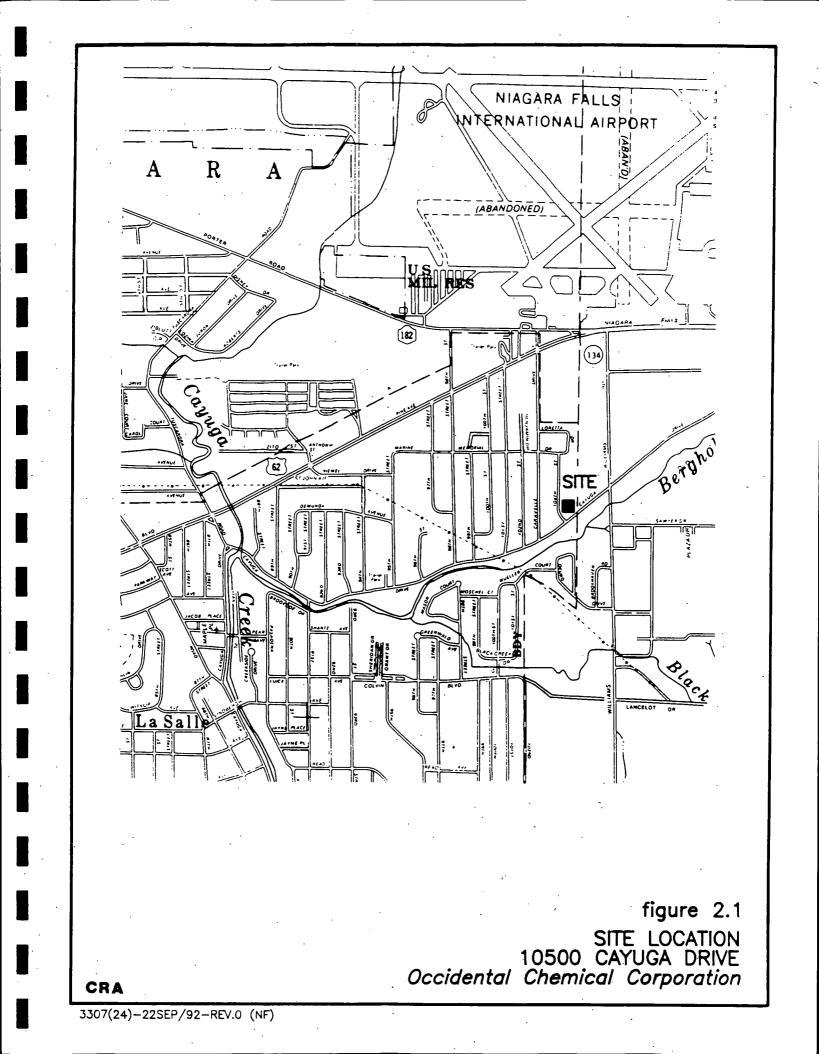
Interim Progress Reports

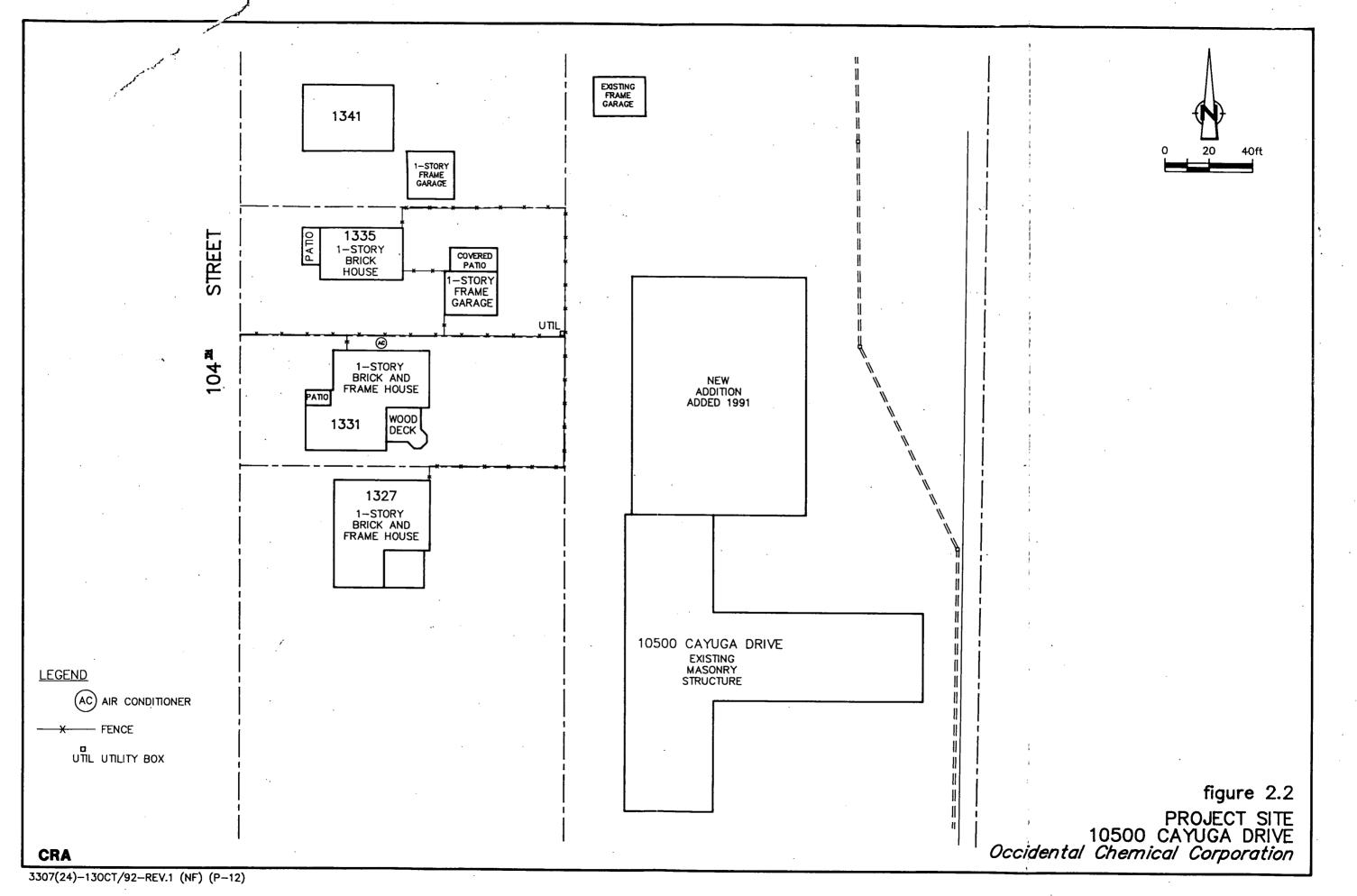
- Comprehensive Summary Report, Data Collection Program and Interim Remedial Activities, 10500 Cayuga Drive, Niagara Falls, New York (March 1991).
- Soils Investigation Summary Report 1331 104th Street, Niagara Falls, New York (April 1991).
- Soils Investigation Summary Report 1335 104th Street, Niagara Falls, New York (April 1991).
- Waste Characterization Sampling Report Phase III Interim Remedial Program, 10500 Cayuga Drive, Niagara Falls, New York (June 1992).
- Soil Sampling Report, 1327/1341 104th Street, 10500 Cayuga Drive, Niagara Falls, New York (August 1992).

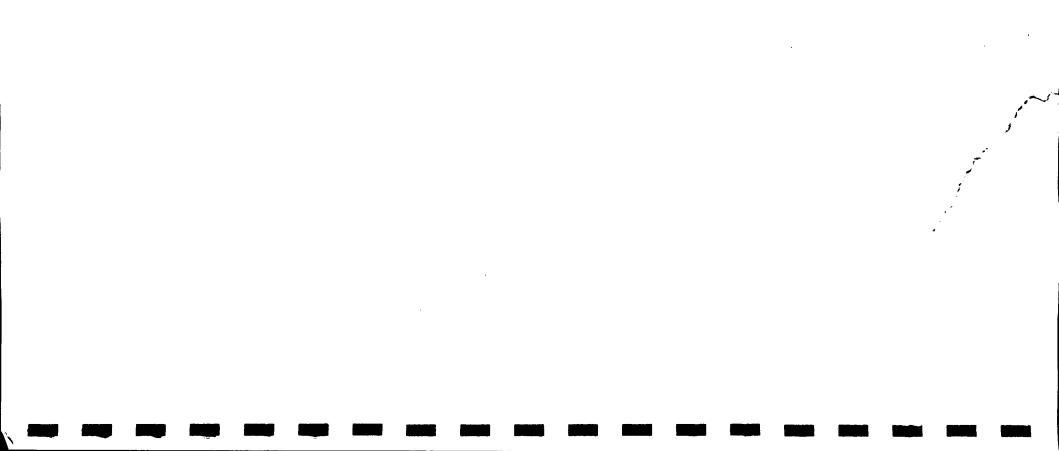
FIGURES

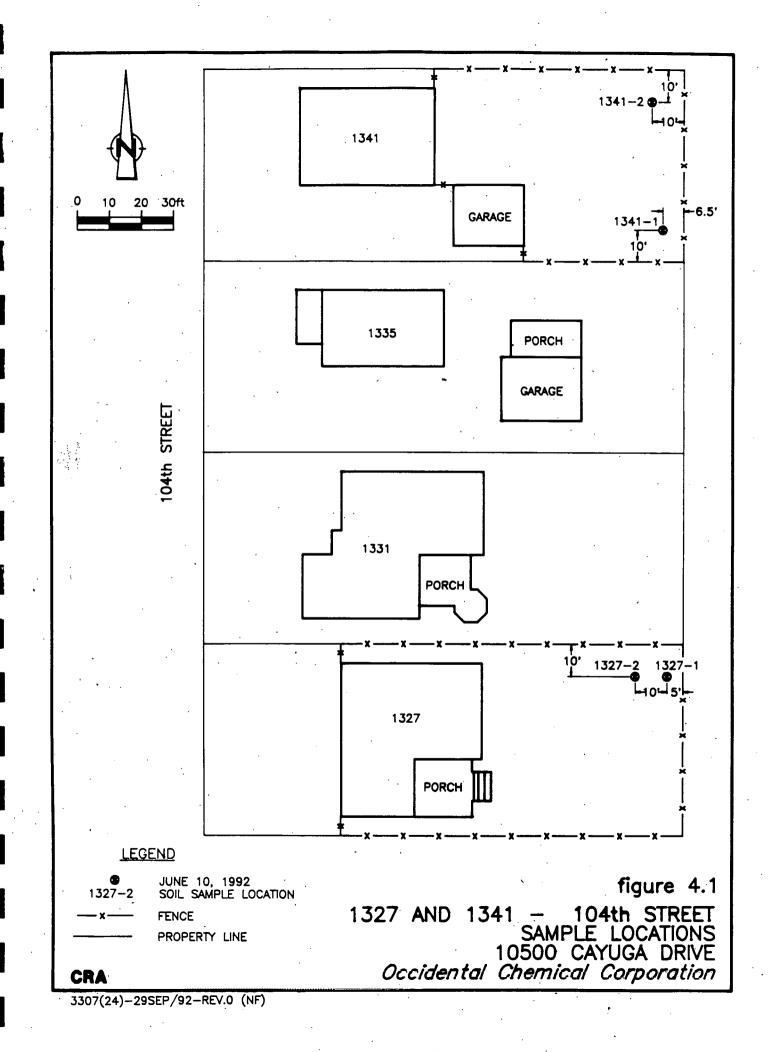
ł

,


.


ا بقنيات فيبيبين الوجد


. . ا الأكت الجري


· .

FIGURES

.

: . .

TABLES

· · ·

.

TABLE 2.1

CHRONOLOGY OF EVENTS 10500 CAYUGA DRIVE

.

1.	Reported Observation of Chemical Presence	1988
2.	Soil Sampling, 10500 Cayuga Drive (conducted by NYSDEC)	March 1989 April 1989
3.	Order on Consent	August 1989
[•] 4.	Phase I Excavation, 10500 Cayuga Drive	November 1989
5.	Phase I Confirmatory Sampling	Novèmber 1989
6.	Data Collection Program 10500 Cayuga Drive	March 1990 June 1990 July 1990 January 1991
7.	Phase II Excavation, 10500 Cayuga Drive	November 1990
8. ·	Waste Characterization Sampling 1331 and 1335 104th Street	April 1992
9.	Phase III Excavation 1331 and 1335 104th Street	June 1992
10		L 1000

10. Soil Sampling 1327 and 1341 104th Street

June 19<u>9</u>2

TABLE 3.1

NYSDEC ANALYTICAL PARAMETER LIST 10500 CAYUGA DRIVE MARCH/APRIL 1989

	March 1989	April 1989	
VOLATILE ORGANIC COMPOUNDS		· .	
Benzene	х	X	
Toluene	X	х	
Chlorobenzene	X	X	
Trifluoromethyl benzene	Х	х	
Cl-trifluoromethyl benzene	· X	X	
Xylene	X	. X .	• •
Chlorotoluene	х	X	
a,a,a-Trifluorotoluene		Х	
Ethylbenzene		Х	
Dichlorobenzene		· X	
	· .		
SEMI-VOLATILE ORGANIC COMPOUNDS			
1,4-Dichlorobenzene	Х	, Χ .	e
1,3-Dichlorobenzene	х	X	
1,2-Dichlorobenzene	Х	Х	
2,3-Dichlorotoluene	Х	X	
Trimethyl benzene	X	X	
Trifluoromethyl benzene amine	· X	\mathbf{X}_{i}	
Tetrachlorobutadiene	Х	X	
1,3-Dichlorotoluene	Х	Х	
Dichlorotoluene	Х	× X	
Trichlorobenzene (isomer)	X	Х	
Trichlorobenzene (isomer)	X .	Х	•
Trichlorobenzene (isomer)	X	X	
Trichlorobenzene (total)		X	
Hexachlorobutadiene	X	X	
Trichlorotoluene (isomer)	. X	X	
Trichlorotoluene (isomer)	Х	Х	
Trichlorotoluene (isomer)	Х	Х	
Trichlorotoluene (total)		х	
Tetrachlorobenzene (isomer)	Х	Х	
Tetrachlorobenzene (isomer)	X	· X	
Tetrachlorobenzene (total)		X	
Pentachlorobenzene	X .	Х	
Hexachlorobenzene	X	X · ·	
Trichlorobiphenyl	X	X	
Tetrachlorobiphenvl	х	Χ .	

TABLE 3.1

NYSDEC ANALYTICAL PARAMETER LIST 10500 CAYUGA DRIVE MARCH/APRIL 1989

· · · ·	March 1989	April 1989
I-VOLATILE ORGANIC COMPOUNDS	· ·	
Octachlorostyrene	· · ·	х
Pyrene	Х	· X
Fluoranthene	X	х
Phenanthrene		Х
Anthracene	· .•	х
Acenaphthene		х
Fluorene		. X
Benzene,2-chloro-1,3,5(1-methylethyl)		х
Octachloronaphthalene	•	. X

APPROVED PROJECT DOCUMENTS 10500 CAYUGA DRIVE

Title

Date

- 1. Work Plan, Interim Remedial Program 10500 Cayuga Drive
- Quality Assurance/Quality Control Plan Interim Remedial Program 10500 Cayuga Drive

3. Health and Safety Plan for Interim Remedial Program 10500 Cayuga Drive

4. Work Plan Data Collection Program 10500 Cayuga Drive

5. Phase II Work Plan Interim Remedial Program 10500 Cayuga Drive

6. Phase III
 Final Work Plan
 Interim Remedial Program
 10500 Cayuga Drive

.

October 1989

October 1989

October 1989

January 1990

October 1990

February 1992

OXYCHEM ANALYTICAL PARAMETER LIST 10500 CAYUGA DRIVE

Organics	Survey Level (1) (ppb)
VOLATILES	
Benzene	100
Toluene	100
Trichloroethylene	100
Tetrachloroethylene	100
Monochlorobenzene	. 100
2-Monochlorotoluene	100
4-Monochlorotoluene	. 100
2-Chlorobenzotrifluoride	100
4-Chlorobenzotrifluoride	100
1,2-Dichlorobenzene	100
1,4-Dichlorobenzene	100
2,4-Dichlorotoluene	100
2,5-Dichlorotoluene	100
2,6-Dichlorotoluene	100
3,4-Dichlorotoluene	100
2,4-Dichlorobenzotrifluoride	100
3,4-Dichlorobenzotrifluoride	100
SEMI-VOLATILES	
1,2,3-Trichlorobenzene	100
1,2,4-Trichlorobenzene	100
1,2,3,4-Tetrachlorobenzene	100
1,2,4,5-Tetrachlorobenzene	100
Pentachlorobenzene	100
Hexachlorobenzene	100
alpha-Hexachlorocyclohexane	100
beta-Hexachlorocyclohexane	100
gamma-Hexachlorocyclohexane	100
delta-Hexachlorocyclohexane	100
2,4-Dichlorophenol	100
2,5-Dichlorophenol	100
2,4,5-Trichlorophenol	100
2,4,6-Trichlorophenol	100
Hexachlorobutadiene	100
Hexachlorocyclopentadiene	100
Octachlorocyclopentene	100
Perchlorocyclopentadecane (Mirex)	100

Note:

Estimated levels for soil, actual levels are sample dependent and can vary significantly with matrix.

(1)

SAMPLE COLLECTION SUMMARY DATA COLLECTION PROGRAM 10500 CAYUGA DRIVE

Sample Number	Date Collected	Sample Interval (ft. BGS)	Comments			
NCC14	03/05/90	0.5 - 3.5	HNU Reading = 1.0 ppm			
NCC15	03/05/90	0.2 - 3.2	HNU Reading = 1.5 ppm			
NCC16	03/05/90	0.2 - 3.2	HNU Reading = 0.2 ppm (borehole wet)			
NCC17	03/05/90	0.5 - 3.5	HNU Reading = 4.0 ppm			
NCC18	03/05/90	0.1 - 3.1	HNU Reading = 0.0 ppm (borehole wet)			
NCC19	03/05/90	0.5 - 3.5	HNU Reading = 7.0 ppm			
NCC20	03/05/90	0.3 - 3.3	HNU Reading = 1.5 ppm			
NCC21	03/05/90	0.5 - 3.5	HNU Reading = 0.5 ppm			
NCC22	03/05/90	0.5 - 3.5	HNU Reading = 1.5 ppm			
NCC23	03/06/90	0.5 - 3.5	HNU Reading = 0.5 ppm			
NCC24	03/05/90	0.5 - 3.5	HNU Reading = 0.5 ppm			
NCC25	03/06/90	0.5 - 3.5	HNU Reading = 2.0 ppm			
NCC26	03/05/90	0.5 - 3.5	HNU Reading = 9.0 ppm			
NCC27	03/06/90	0.5 - 4.0	- HNU Reading = 2.0 ppm			
NCC28	03/06/90	0.5 - 3.5	HNU Reading = 2.2 ppm			
NCC29	03/06/90	0.5 - 3.5	HNU Reading = 1.0 ppm			
NCC30	03/06/90	3.0 - 3.8	, HNU Inoperative			
NCC30a	. 03/06/90	3.8 - 4.5				
NCC31	03/06/90	2.5 - 4.5	HNU Reading = 0.5 ppm			
NCC31a	03/06/90	4.5 - 5.0	HNU Reading = 1.0 ppm			
NCC32	03/06/90	3.0 - 3.5	HNU Inoperative			
NCC32a	03/06/90	3.5 - 4.0				
NCC33	03/05/90	0.5 - 3.5	Duplicate of NCC24			
NC34	03/06/90	0.5 - 3.5	Duplicate of NCC23			
NCC35	03/14/90	0.5 - 3.5	HNU Reading = 0.2 ppm			
NCC36	03/14/90	0.5 - 3.5	HNU Reading = 0.6 ppm			
NCC37	03/14/90	0.5 - 3.5	HNU Reading = 0.0 ppm			
NCC38	03/14/90	0.5 - 3.5	HNU Reading = 0.2 ppm			
NCC39 .	03/14/90	0.5 - 3.5	HNU Reading = 0.0 ppm			
NCC40	03/14/90	0.5 - 3.5	HNU Reading = 0.0 ppm			
NCC41	03/14/90	0.5 - 3.5	HNU Reading = 0.0 ppm (borehole wet)			
NCC42	03/14/90	0.5 - 3.5	HNU Reading = 0.0 ppm			
NCC43	03/14/90	0.5 - 3.5	Duplicate of NCC42			
NCC44	06/01/90	0.2 - 3.5	HNU Reading = 0.8 ppm			
NCC45	06/01/90	0.5 - 4.3	HNU Reading = 1.6 ppm			
NCC46	06/01/90	0.3 - 3.8	. HNU Reading = 1.6 ppm			
NCC47	06/01/90	0.2 - 3.5	HNU Reading = 4.6 ppm			
NCC48	06/01/90	0.2 - 4.8	HNU Reading = 7.6 ppm			

SAMPLE COLLECTION SUMMARY DATA COLLECTION PROGRAM 10500 CAYUGA DRIVE

Sample Number	Date Collected	Sample Interval	Comments
	•	(ft. BGS)	•
NCC49	06/01/90	0.5 - 4.0	HNU Reading = 0.6 ppm
NCC50	06/01/90	0.5 - 4.0	HNU Reading = 0.2 ppm
NCC51	06/01/90	0.5 - 4.0	HNU Reading = 0.2 ppm
NCC52	06/01/90	0.5 - 3.5	HNU Reading = 0.5 ppm
NCC53	06/01/90	0.5 -4.0	HNU Reading = 0.1 ppm
NCC54	06/01/90	0.5 - 4.5	HNU inoperative
NCC55 .	06/01/90	0.5 - 3.5	HNU inoperative
NCC56	06/01/90	0.5 - 4.0	Duplicate of NCC-51
NCC58	07/20/90	1.0 - 5.0	
NCC59	07/20/90	0.5 - 4.5	White rounded gravel encountered
NCC60	07/20/90	1.0 - 4.5	Duplicate of NCC59
1335-1	07/20/90	0.0 - 0.5	-
1335-1	07/20/90	0.5 - 4.5	· · ·
1335-2×	07/20/90	0.0 - 0.5	
1335-2	07/20/90	0.0 - 4.5	
1335-3	07/20/90	0.0 - 0.5	
1335-3	07/20/90	0.5 - 4.5	White rounded gravel encountered
1335-4	07/20/90	0.0 - 0.5	
1335-4	07/20/90	0.5 - 4.5	· · · · ·
1335-5	07/20/90	0.0 - 0.5	·
1335-5	07/20/90	0.5 - 4.5	White rounded gravel encountered
1335-6	. 07/20/90	0.0 - 0.5	
1335- 6	07/20/90	0.5 - 4.5	Slight chemical odor
1335-7	07/20/90	0.0 - 0.5	× .
1335-7	07/20/90	0.5 - 4.5	White rounded gravel encountered; chemical odor
1335-8 丶	07/20/90	0.0 - 0.5	
1335-8	07/20/90	0.5 - 4.5	
1335-9	07/20/90	0.5 - 4.5	Duplicate of 1335-7, 0.5 - 4.5 feet
1335-10	01/03/91	0.0 - 0.5	
1335-10	01/03/91	0.5 - 3.5	
1335-11	01/03/91	0.0 - 0.5	NYSDEC Split
1335-11	01/03/91	0.5 - 4.5	
1335-12	01/03/91	0.0 - 0.5	· · ·
1335-12	01/03/91	0.5 - 4.5	NYSDEC Split
1335-13	01/03/91	0.0 - 0.5	
1335-13	01/03/91	0.5 - 4.0	
1335-14	01/03/91	0.0 - 0.5	
1335-14	01/03/91	0.5 - 4.0	
			•

SAMPLE COLLECTION SUMMARY DATA COLLECTION PROGRAM 10500 CAYUGA DRIVE

Sample Number	Date Collected	Sample Interval (ft. BGS)
1335-15	01/03/91	0.5 - 4.5
1335-20	04/13/92	0.0 - 4.0
1335-21	04/13/92	0.0 - 3.0
1335-22	04/13/92	0.0 - 4.0
Sump	01/03/91	• -
1331-1	01/09/91	0.0 - 0.5
1331-1	01/09/91	0.5 - 4.5
1331-2	01/09/91	0.0 - 0.5
1331-2	01/09/91	0.5 - 4.5
1331-3	01/09/91	0.0 - 0.5
1331-3	01/09/91	0.5 - 4.5
1331-4	01/09/91	0.0 - 0.5
1331-4	01/09/91	0.5 - 4.5
1331-5	01/10/91	0.0 - 0.5
1331-5	01/10/91	0.5 - 4.5
1331-6	01/10/91	0.0 - 0.5
1331-6	01/10/91	0.5 - 4.5
1331-7	01/09/91	0.0 - 0.5
1331-7	01/09/91	0.5 - 4.5
1331-8	01/08/91	0.0 - 0.5
1331-8	01/08/91	0.5 - 4.0
1331-9	01/08/91	0.0 - 0.5
1331-9	01/08/91	0.5 - 5.0
1331-10	01/10/91	0.0 - 0.5
1331-10	01/10/91	0.5 - 4.5
1331-11	01/08/91	0.0 - 0.5
1331-11	01/08/91	0.5 - 5.5
1331-12	01/08/91	0.0 - 0.5
1331-12	01/08/91	0.5 - 5.0
1331-13	01/08/91	0.5 - 4.5
1331-14	01/09/91	0.5 - 4.5
Sump	01/08/91	

Comments

Duplicate of 1335-10 (0.5 - 3.5 feet)

Duplicate of 1335-20 (0.0 - 4.0 feet) Water Sample

NYSDEC Split

NYSDEC Split

NYSDEC Split

Fine white round gravel - slight chemical odor

Fine white round gravel - slight chemical odor

Duplicate of 1331-9 (0.5 -5.0 feet) Duplicate of 1331-3 (0.5 - 4.5 feet) Water sample

SAMPLE COLLECTION SUMMARY DATA COLLECTION PROGRAM 10500 CAYUGA DRIVE

Sample	Date	Sample .			
Number	Collected	Interval			
•		(ft. BGS)			
1327-1	06/10/92	0.0 - 4.5			
1327-2	06/10/92	2.0 - 4.0			
1341-1	06/10/92	0.0 - 1.9			
1341-2	06/10/92	0.0 - 4.5			

Comments

Extra volume for matrix spike

*HNU reading is maximum above background.

Note:

(1) Above samples were submitted for volatile and semi-volatile analysis (per Table 1 analytes). See Appendix A for the analytical results.

Page 4 of 4

SUMP WATER SAMPLING DETAILS 1335 104TH STREET

Sampled:January 3, 1991 at 1730 hours.pH:7.13Conductance:880 μmho/cmWater Quality:Clear, no odor, slight surficial second phase
(possibly dust), no sheen. No sediments in sump.
Possible mineral scale on sump wall coating present.Samples Taken:3x40 ml VOCs + 1x1L amber semi-volatiles

SUMP WATER SAMPLING DETAILS 1331 104TH STREET

Sampled:	January 8, 1 9 91 at 1420 hours.
pH:	7.09
Conductance:	770 µmho/cm
Water Quality:	Clear, no odor, no sheen. No sediments in sump.
Samples Taken:	3x40 ml VOCs + 1x1L amber

semi-volatiles

APPENDICES

,

. •

.

.

.

. . •

. .

. · · · ·

3

APPENDIX A

ANALYTICAL RESULTS

TABLE OF CONTENTS

TABLE A.1	ANALYTICAL DATA - NYSDEC, 1989
TABLE A.2	ANALYTICAL DATA - PHASE I
TABLE A.3	ANALYTICAL DATA - DATA COLLECTION PROGRAM
TABLE A.4	ANALYTICAL DATA - RESIDENTIAL PROPERTIES
TABLE A.5	WASTE CHARACTERIZATION DATA

	10500 CAYUGA DRIVE										
Sample Location: Sample Date: Units:	1 03/08/89	2 03/08/89	3 03/08/89	4 03/08/89	5 03/08/89	6 03/08/89	7 03/08/89	8 03/08/89	9 03/08/89	N. Basin 03/08/89	S. Basin 03/08/89
umits:	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	ug/L	ug/L
Volatile Organic Compounds											
Benzene	ND0.002	0.02	0.01	ND0.002	ND0.002	0.01	ND0.002	0.01	ND0.002	ND1.0	ND1.0
Toluene	2.18	ND0.002	ND0.002	ND0.002	ND0.002	ND0.002	0.09	ND0.002	ND0.002	ND1.0	ND1.0
Chlorobenzene	0.19	0.15	0.08	ND0.002	ND0.002	ND0.002	0.16	ND0.002	ND0.002	ND1.0	ND1.0
Trichloromethyl benzene	0.07	ND0.002	0.05	ND0.002	ND0.002	ND0.002	0.09	ND0.002	ND0.002	ND1.0	ND1.0
Cl-Trifluoromethyl benzene	0.06	ND0.002	ND0.002	ND0.002	ND0.002	ND0.002	0.04	ND0.002	ND0.002	ND1.0	ND1.0
Xylene	0.06	ND0.002	ND0.002	ND0.002	ND0.002	ND0.002	ND0.002	ND0.002	ND0.002	ND1.0	ND1.0
Chlorotoluene	0.06	ND0.002	ND0.002	ND0.002	ND0.002	ND0.002	0.05	ND0.002	ND0.002	ND1.0	ND1.0
a,a,a-Trifluorotoluene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	
Ethylbenzene	NA	· NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Dichlorobenzene	NA	NA	NA	NA	NA -	NA	NA	NA	NA	NA	NA
Semi-Volatile Organic Compounds							•				
1,4-Dichlorobenzene			10.00								
1,3-Dichlorobenzene	8.38.	ND0.1	12.22	ND0.1	ND0.1	ND0.1	4.41	ND0.1	ND0.1	ND5.0	ND5.0
1,2-Dichlorobenzene	10.5	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	10.78	ND0.1	ND0.1	ND5.0	ND5.0
2,3-Dichlorotoluene	2.99	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND5.0	ND5.0
Trimethyl benzene	ND0.1	ND0:1	6.25	ND0.1	· ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND5.0	ND5.0
•	0.54	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND5.0	ND5.0
Trifluoromethylbenzeneamine Tetrachlorobutadiene	0.3	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND5.0	ND5.0
1,3-Dichlorotoluene	0.16	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND5.0	ND5.0
Dichlorotoluene	1.08	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND5.0	ND5.0
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NĄ
Trichlorobenzene (isomer)	9.11	ND0.1	0.2	ND0.1	ND0.1	ND0.1	1.25	ND0.1	ND0.1	ND5.0	ND5.0
Trichlorobenzene (isomer) Trichlorobenzene (isomer)	13.68	ND0.1	0.2	ND0.1	ND0.1	ND0.1	0.59	ND0.1	ND0.1	ND5.0	ND5.0
Trichlorobenzene (total)	3.37	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND5.0	ND5.0
Hexachlorobutadiene	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA 🕤	NA
Trichlorotoluene (isomer)	1.41	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND5.0	ND5.0
Trichlorotoluene (isomer)	0.27	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	, ND0.1	ND0.1	ND5.0	ND5.0
Trichlorotoluene (isomer)	0.44	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND5.0	ND5.0
Trichlorotoluene (total)	0.37	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND5.0	ND5.0
Tetrachlorobenzene (isomer)	NA 2.36	NA	NA	NA	NA	NA	NA	NA	NA	·NA	NA
Tetrachlorobenzene (isomer)	0.33	ND0.1 ND0.1	ND0.1	ND5.0	ND5.0						
Tetrachlorobenzene (total)	0.35 NA		ND0.1	ND5.0	ND5.0						
Pentachlorobenzene	0.57	NA NDO 1	NA	NA							
Hexachlorobenzene		ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND5.0	ND5.0
Trichlorobiphenyl	7.46	ND0.1	ND0.1	0.14	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND5.0	ND5.0
	0.18	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND5.0	ND5.0
Tetrachlorobiphenyl	0.14	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND5.0	ND5.0
Octachlorostyrene	NA	NA	NA	· NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	0.79	ND0.1	2.96	0.29	ND0.1	0.67	ND0.1	1.03	0.25	ND5.0	ND5.0
Fluoranthene	ND0.1	ND0.1	2.70	0.22	ND0.1	0.9	ND0.1	1.05	0.1	ND5.0	ND5:0
Phenanthrene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anthracene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluorene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene,2-chloro-1,3,5(1-methylethyl)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Octachloronaphthalene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Page 1 of 7

I ABLE A.1
ANALYTICAL DATA - NYSDEC, 1989
10500 CAYUGA DRIVE

÷

Sample Location:	A	B	С	D.	E	F	G	н	I	I	к
Sample Date:	4/17/89	4/17/89	4/17/89	4/17/89	4/17/89	4/17/89	4/17/89	4/17/89	4/17/89	4/17/89	4/17/89
Units:	mg/Kg										
Volatile Organic Compounds									•		
Benzene	ND0.002	ND0.002	ND0.002	ND0.002	ND0.002	0.63	ND0.002	ND0.002	ND0.002	ND0.002	ND0.002
Toluene	ND0.002										
Chlorobenzene	ND0.002	ND0.002	ND0.002	ND0.002	1.85	0.95	ND0.002	ND0.002	ND0.002	ND0.002	ND0.002
Trifluoromethyl benzene	ND0.002	ND0.002	. 0.11	ND0.002							
Cl-Trifluoromethyl benzene	ND0.002										
Xylene	ND0.002	ND0.002	ND0.002	ND0.002	ND0.002	0.65	ND0.002	ND0.002	ND0.002	ND0.002	ND0.002
Chlorotoluene	ND0.002	ND0.002	ND0.002	ND0.002	0.34	1.11	ND0.002	ND0.002	ND0.002	ND0.002	ND0.002
a,a,a-Trifluorotoluene	ND0.002										
Ethylbenzene	ND0.002	ND0.002	ND0.002	ND0.002	ND0.002	0.22	ND0.002	ND0.002	ND0.002	ND0.002	ND0.002
Dichlorobenzene	ND0.002	ND0.002	0.61	ND0.002	3.22	1.41	ND0.002	ND0.002	ND0.002	ND0.002	ND0.002
Semi-Volatile Organic Compounds											
1,4-Dichlorobenzene	ND0.1	· ND0.1	ND0.1								
1,3-Dichlorobenzene	ND0.1										
1,2-Dichlorobenzene	ND0.1										
2,3-Dichlorotoluene	ND0.1										
Trimethyl benzene	ND0.1	ND0.1	ND0.1	ND0.1	0.91	3.91	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1
Trifluoromethylbenzeneamine	ND0.1										
Tetrachlorobutadiene	ND0.1										
1,3-Dichlorotoluene	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	NA	ND0.1	ND0.1	ND0.1	ND0.1
Dichlorotoluene	ND0.1	ND0.1	0.63	ND0:1	ND0.1	3.28	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1
Trichlorobenzene (isomer)	NA										
Trichlorobenzene (isomer)	NA	ŃA	NA	NA	NA						
Trichlorobenzene (isomer)	NA	' NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichlorobenzene (total)	ND0.1	ND0.1	0.59	ND0.1	4.2	0.62	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1
Hexachlorobutadiene	ND0.1										
Trichlorotoluene (isomer)	ND0.1										
Trichlorotoluene (isomer)	ND0.1										
Trichlorotoluene (isomer)	ND0.1										
Trichlorotoluene (total)	NA	NA	NA .	NA							
Tetrachlorobenzene (isomer)	ND0.1										
Tetrachlorobenzene (isomer)	ND0.1	· ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1 .
Tetrachlorobenzene (total)	NA	NA	NA	. NA	NA	NA	NA	NA	NA /	NA	NA
Pentachlorobenzene	ND0.1										
Hexachlorobenzene	ND0.1										
Trichlorobiphenyl	ND0.1										
Tetrachlorobiphenyl	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1	9.16	ND0.1	ND0.1	ND0.1	ND0.1	ND0.1
Octachlorostyrene	NA										
Pyrene	ND0.1										
Fluoranthene	ND0.1										
Phenanthrene	NA										
Anthracene	NA	NA	NA	NA	NA	NA ·	NA	. NA	NA	NA	NA
Acenaphthene	NA										
Fluorene	· NA	NA	NA	NA .	NA						
Benzene,2-chloro-1,3,5(1-methylethyl)	NA	NA ·	NA	NA							
Octachloronaphthalene	NA										
									••••	• •• •	

Page 2 of 7

	•			NALYTICA 10500	L DATA - N CAYUGA I	•	19 .				
Sample Location: Sample Date: Units:	L 04/17/89 mg/Kg	NCC-1 11/07/89 mg/Kg	NCC-2 11/07/89 mg/Kg	NCC-3 11/09/89 mg/Kg	NCC-4 11/09/89 mg/Kg	NCC-5 11/09/89 mg/Kg	NCC-6 11/08/89 mg/Kg	NCC-7 11/08/89 mg/Kg	NCC-8 11/08/89 mg/Kg	, NCC-9 11/08/89 mg/Kg	NCC-10 11/07/89 mg/Kg
Volatile Organic Compounds											
Benzene	ND0.002	ND0.005	ND0.005	'ND0.005	ND0.005	ND0.005	ND0.005	ND0.005	ND0.005	ND0.005	ND0.005
Toluene	ND0.002	ND0.005	ND0.005	ND0.005	ND0.005	0.027	ND0.005	ND0.005	ND0.005	ND0.005	0.03
Chlorobenzene	ND0.002	ND0.005	ND0.005	ND0.005	ND0.005	1.5	ND0.005	ND0.005	ND0.005	ND0.005	0.03
Trifluoromethyl benzene	ND0.002	NA	NA	ŇA	NA	NA	NA	, NA	NA	NA	NA
Cl-Trifluoromethyl benzene	ND0.002	NA	NA								
Xylene	ND0.002	ND0.005	ND0.005	ND0.005	ND0.005	0.038	ND0.005	ND0.005	ND0.005	ND0.005	0.022
Chlorotoluene	ND0.002	ND0.005	ND0.005	ND0.005	ND0.005	0.16	ND0.005	ND0.005	ND0.005	ND0.005	0.035
a,a,a-Trifluorotoluene	ND0.002	ND0.005	ND0.005	ND0.005	ND0.005	0.029	ND0.005	ND0.005	ND0.005	ND0.005	0.033
Ethylbenzene	ND0.002	ND0.005	ND0.005								
Dichlorobenzene	ND0.002	ND0.005	ND0.005	ND0.005	ND0.005	2.3	ND0.005	ND0.005	ND0.005	ND0.005	0.552
		*		•							
Semi-Volatile Organic Compounds											
1,4-Dichlorobenzene	ND0.1	NA	NA								
1,3-Dichlorobenzene	ND0.1	NA	' NA	NA							
1,2-Dichlorobenzene	ND0.1	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA
2,3-Dichlorotoluene	ND0.1	NA	NA								
Trimethyl benzene	ND0.1	0.002	NA	0.004	NA	0.092	NA ·	0.003	NA	NA	NA
Trifluoromethylbenzeneamine	ND0.1	NA	NA								
Tetrachlorobutadiene	ND0.1	NA	NA								
1,3-Dichlorotoluene	ND0.1	NA	NA								
Dichlorotoluene	ND0.1	ND0.04	NA	ND0.04	NA	0.17	NA	0.031	NA	NA	NA
Trichlorobenzene (isomer)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichlorobenzene (isomer)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichlorobenzene (isomer)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichlorobenzene (total)	ND0.1	0.007	NA	0.018	NA	0.52	NA	0.09	NA	NA	NA
Hexachlorobutadiene	ND0.1	0.004	NA	ND0.04	NA	0.140	NA	0.003	NA	NA	NA
Trichlorotoluene (isomer)	ND0.1	NA	NA								
Trichlorotoluene (isomer)	ND0.1	NA	NA	NA	NA	NA	· NA	NA	NA	NA	NA
Trichlorotoluene (isomer)	ND0.1	NA	'NA	NA	NA						
Trichlorotoluene (total)	NA	ND0.04	NA	ND0.04	NA	0.067	NA	0.013	NA	NA	NA
Tetrachlorobenzene (isomer) Tetrachlorobenzene (isomer)	ND0.1	NA	NA								
Tetrachlorobenzene (total)	ND0.1	·NA	NA	NA							
Pentachlorobenzene	NA NDO 1	0.002	NA	0.004	NA	0.05	NA	0.012	NA	NA	NA
Hexachlorobenzene	ND0.1	ND0.04	NA	0.003	NA	0.01	NA	0.004	NA	NA	NA
	ND0.1	0.011	NA	0.002	NA	0.11	NA	0.026	NA	NA	NA
Trichlorobiphenyl	ND0.1	ND0.04	NA	ND0.04	NA	0.033	NA	ND0.04	NA	NA	NA
Tetrachlorobiphenyl	ND0.1	ND0.04	NA	ND0.04	NA	0.049	NA	0.004	NA	NA	NA
Octachlorostyrene	NA	ND0.04	NA	ND0.04	NA	0.057	NA	0.002	NA	NA	, NA
Pyrene Fluoranthene	ND0.1	0.029	NA	0.03	NA	ND0.04	NA	0.032	NA	NA	NA
	ND0.1	ND0.04	NA	0.1	NA	ND0.04	NA	ND0.04	NA	NA	NA
Phenanthrene		0.087	NA	0.137	NA	ND0.04	NA	0.031	NA	NA	NA
Anthracene	NA	0.012	NA	ND0.04	NA	ND0.04	NA	ND0.04	NA	NA	NA
Acenaphthene Fluorene	NA	ND0.04	NA	ND0.04	NA	ND0.04	NA	ND0.04	NA	NA	NA
Benzene,2-chloro-1,3,5(1-methylethyl)	NA	ND0.04	NA	ND0.04	NA	ND0.04	NA	ND0.04	NA	NA	NA
	NA NA	· ND0.04	NA	0.096	NA	ND0.04	NA .	ND0.04	NA	NA	NA
Octachloronaphthalene	. INA	ND0.04	NA	ND0.04	NA	ND0.04	NA	ND0.04	NA	NA	NA

TABLE A.1

Sample Location: Sample Date: Units:	NCC-11 11/07/89 mg/Kg	NCC-12 11/07/89 mg/Kg	NCC-3F 11/08/89 mg/Kg	NCC-FF 11/09/89 mg/Kg	NCC-7F 11/09/89 mg/Kg	NCC-1F 11/09/89 mg/Kg	NCC-1(H) 11/01/89	NCC-2(H) 11/01/89	NCC-3(H) 11/01/89	NCC-4(H) 11/01/89	NCC-5(H) 11/01/89
						mgrkg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Volatile Organic Compounds		•									
Benzene	ND0.005	ND0.005	ND0.005	ND0.005	ND0.005	ND0.005	ND0.005	ND0:005	ND0.005	ND0.005	0.01
Toluene	0.012	0,018	ND0.005	ND0.005	ND0.005	0.005	ND0.005	ND0.005	ND0.005	ND0.005	0.008
Chlorobenzene	0.084	0.097	ND0.005	ND0.005	ND0.005	0.042	ND0.005	ND0.005	ND0.005	ND0.005	0.47
Trifluoromethyl benzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cl-Trifluoromethyl benzene	NA	NA	NA	NA	NA	NA	NA	'NA	NA	NA	NA
Xylene	0.063	0.039	ND0.005	ND0.005	ND0.005	0.006	ND0.005	ND0.005	ND0.005	ND0.005	0.011
Chlorotoluene	0.103	0.063	ND0.005	ND0.005	ND0.005	0.038	ND0.005	ND0.005	ND0.005	ND0.005	0.044
a,a,a-Trifluorotoluene	0.43	0.28	ND0.005	ND0.005	ND0.005	0.012	ND0.005	ND0.005	ND0.005	ND0.005	0.005
Ethylbenzene	ND0.005	ND0.005	ND0.005	ND0.005	ND0.005	ND0.005	ND0.005	ND0.005	ND0.005	ND0.005	ND0.005
Dichlorobenzene	. 1.9	1.1	ND0.005	ND0.005	ND0.005	1.31	ND0.005	ND0.005	ND0.005	ND0.005	0.604
Semi-Volatile Organic Compounds											
1,4-Dichlorobenzene	NA	NA	NA.	NA	NA	NA	NA	NIA	N1 4		
1,3-Dichlorobenzene	NA	NA	· NA	NA	NA	NA	NA	NA NA	NA	NA	NA
1,2-Dichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA ·	NA	NA	NA
2,3-Dichlorotoluene	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NÀ
Trimethyl benzene	0.125	NA	NA	ND0.04	NA	NA	NA	NA	• NA	NA NA	NA
Trifluoromethylbenzeneamine	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachlorobutadiene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA
1,3-Dichlorotoluene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dichlorotoluene	0.14	' NA	NA	ND0.04	NA	NA	· NA	NA	NA	NA	NA
Trichlorobenzene (isomer)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichlorobenzene (isomer)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichlorobenzene (isomer)	• NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichlorobenzene (total)	1.9	NA	NA	ND0.04	NA	NA	NA	NA	NA	NA	NA ·
Hexachlorobutadiene	0.031 .	NA	NA	ND0.04	NA	NA	NA	NA	NA	NA	NA
Trichlorotoluene (isomer)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichlorotoluene (isomer)	. NA	NA	NA	NA	NA	NA	' NA	NA	· NA	NA	NA
Trichlorotoluene (isomer)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichlorotoluene (total)	0.155	NA	NA	ND0.04	NA	NA	NA	NA	NA	NA	NA
Tetrachlorobenzene (isomer)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachlorobenzene (isomer)	NA	NA	NA	NA	NA	ŇA	NA	NA	NA	NA	NA
Tetrachlorobenzene (total)	0.039	NA	NA	ND0.04	NA	NA	NA	NA	NA	NA	NA
Pentachlorobenzene	0.005	NA	NA	ND0.04	NA	NA	• NA	NA	NA	NA	NA
Hexachlorobenzene	0.066	NA	NA	ND0.04	NA	NA	NA	NA	NA	NA	NA
Trichlorobiphenyl	0.065	NA	NA	ND0.04	NA	NA	NA	NA	NA	NA	NA
Tetrachlorobiphenyl	0.14	NA	NA	ND0.04	NA	NA	NA	NA	NA	NA	NA
Octachlorostyrene	0.084	NA	NA	ND0.04	NA	NA	NA	NA	NA	NA	NA
Pyrene	0.026	NA	NA	· ND0.04	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	ND0.04	NA	NA	ND0.04	NA	NA	NA	NA	NA	NA	NA
Phenanthrene	0.022	NA	NA	ND0.04	NA	NA	NA	NA	NA	NA	NA
Anthracene	ND0.04	NA	NA	ND0.04	• NA	NA	NA	NA	NA	NA	NA
Acenaphthene	. 0.036	NA	NA	ND0.04	NA	ŇA	NA	NA	NA	NA	NA
Fluorene Bonnone 2 ablane 1.2 5(1 ablant ball	0.058	NA	NA	ND0.04	NA	NA	NA	NA	NA	NA	NA
Benzene,2-chloro-1,3,5(1-methyleth	,,,	NA	NA	ND0.04	NA	NA	NA	NA	NA	NA	NA
Octachloronaphthalene	0.47	ŅA	NA	ND0.04	NA	NA	NA	NA	NA	NA	NA

Page 4 of 7

	Sample Location: Sample Date:	NCC-6(H) 11/01/89	NCC-7(H) 11/01/89	NCC-8(H) 11/01/89	NCC-9(H) 11/01/89	NCC-10(H) 11/01/89	NCC-11(H) 11/01/89	NCC-12(H) 11/01/89	NCC-13(H) 11/01/89	NCC-3F(H) 11/01/89	NCC-FF(H) 11/01/89	NCC-7F(H) 11/01/89
	Units:	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
												marka
Vola	tile Organic Compounds											
	Benzene	ND0.005	ND0.005	ND0.005	0.02	0.007	0.008	0.011	0.01	0.006	ND0.005	0.01
	Toluene	ND0.005	ND0.005	ND0.005	0.005	0.01	0.018	0.009	0.005	ND0.005	ND0.005	ND0.005
	Chlorobenzene	ND0.005	ND0.005	ND0.005	0.512	0.021	0.036	0.024	0.323	0.01	0.17	0.026
	Trifluoromethyl benzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Cl-Trifluoromethyl benzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Xylene	ND0.005	ND0.005	ND0.005	ND0.005	0.014	0.04	ND0.005	0.005	ND0.005	ND0.005	ND0.005
	Chlorotoluene	ND0.005	ND0.005	ND0.005	0.053	0.008	0.016	0.009	0.019	ND0.005	0.005	ND0.005
	a,a,a-Trifluorotoluene	ND0.005	ND0.005	ND0.005	0.014	0.004	1.198	0.11	0.007	ND0.005	ND0.005	ND0.005
	Ethylbenzene	ND0.005	ND0.005	ND0.005	ND0.005	ND0.005	0.006	ND0.005	ND0.005	ND0.005	ND0.005	ND0.005
	Dichlorobenzene	ND0.005	ND0.005	ND0.005	0.079	0.134	0.097	0.101	0.178	0.031	ND0.005	0.051
Semi	-Volatile Organic Compounds											
	1,4-Dichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	1,3-Dichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	1,2-Dichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	2,3-Dichlorotoluene	· NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Trimethyl benzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Trifluoromethylbenzeneamine	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Tetrachlorobutadiene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	1,3-Dichlorotoluene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dichlorotoluene	NA	NA	NA	NA	ŅA	NA	NA	NA	NA	NA	NA
	Trichlorobenzene (isomer)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .
	Trichlorobenzene (isomer)	· NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Trichlorobenzene (isomer)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Trichlorobenzene (total)	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA
	Hexachlorobutadiene	NA	- NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Trichlorotoluene (isomer)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Trichlorotoluene (isomer)	NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA	NA
	Trichlorotoluene (isomer)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Trichlorotoluene (total)	NA	NA	' NA	NA	NA	NA	NA	NA	NA	· NA `	NA
	Tetrachlorobenzene (isomer)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Tetrachlorobenzene (isomer)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Tetrachlorobenzene (total)	NA	NA	NA	NA ·	NA						
	Pentachlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ŇA
	Hexachlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Trichlorobiphenyl	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Tetrachlorobiphenyl	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Octachlorostyrene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Pyrene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Fluoranthene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Phenanthrene	NA	NA	∙ NA	NA	NA	NA	NA	NA	NA	NA	NA
	Anthracene .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Acenaphthene	NA	NA	NA	NA	NA	NA	NA	NA	NA	ŇA	NA
	Fluorene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Benzene,2-chloro-1,3,5(1-methylethyl)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Octachloronaphthalene	NA	NA	NA .	NA .	NA	NA	, NA	NA	NA	NA	NA

Page 5 of 7

			1	10500 CATUGA DRIV	E			
	Sample Location:	NCC-1F(H)	• •					
•	Sample Date:	11/01/89						
	Units:	mg/Kg	`.					
Vol	atile Organic Compounds							
	Benzene	0.008	•	•				
	Toluene	0.007		•				
	Chlorobenzene	. 0.037			•	•		
	Trifluoromethyl benzene	NA						
	Cl-Trifluoromethyl benzene	NA		· · ·			-	
	Xylene	0.005				· · ·	•	
	Chlorotoluene	0.032			•	• • •		
	a,a,a-Trifluorotoluene	ND0.005	• •					
	Ethylbenzene	ND0.005				2		
	Dichlorobenzene	1.12						
			•	•	•			
Sen	ni-Volatile Organic Compounds			•				
	1,4-Dichlorobenzene	NA	• •				:	
	1,3-Dichlorobenzene	NA						
	1,2-Dichlorobenzene	NA						
	2,3-Dichlorotoluene	NA	•					
	Trimethyl benzene	NĄ		4				
	Trifluoromethylbenzeneamine	NA						
	Tetrachlorobutadiene	NA					·	
	1,3-Dichlorotoluene	NA	•					
	Dichlorotoluene	NA						
	Trichlorobenzene (isomer)	NA	•	•			· ·	
	Trichlorobenzene (isomer)	NA				• •	·	
	Trichlorobenzene (isomer)	NA						
	Trichlorobenzene (total)	NA .	•					
	Hexachlorobutadiene	NA						
	Trichlorotoluene (isomer) Trichlorotoluene (isomer)	NA			•			
	Trichlorotoluene (isomer)	NA			. *	•		
	Trichlorotoluene (total)	NA NA					,	
	Tetrachlorobenzene (isomer)	NA						
•	Tetrachlorobenzene (isomer)	NA				•	•	
	Tetrachlorobenzene (total)	NA		•				
	Pentachlorobenzene	NA	·		· ·			
	Hexachlorobenzene	NA			·			
	Trichlorobiphenyl	NA		· · ·	×	-	•	
	Tetrachlorobiphenyl	NA						
	Octachlorostyrene	NA			s			
	Pyrene	NA						
	Fluoranthene	NA ·						
	Phenanthrene	NA						
	Anthracene	NA					•	
	Acenaphthene	NA						
	Fluorene	NA					•	
	Benzene,2-chloro-1,3,5(1-methylethyl)	NA						
	Octachloronaphthalene	NA	•	, ·		•		
		110				•		

Notes:

NA Not analyzed

NDx Compound was not detected at the limit specified

(H) Homogenized sample received directly from the laboratory

SOURCES:

Attachment to memorandum, R.W. Schick (NYSDEC) to A. S. Nagi (NYSDEC) dated April 24, 1989 Attachment to letter R. W. Schick (NYSDEC) to J.A. Cull (OxyChem) dated December 14, 1989

Page 7 of 7

TABLE A.2 ANALYTICAL DATA - PHASE I 10500 CAYUGA DRIVE

	Sample Location:	NCC-1	NCC-2	NCC-3	NCC-4	NCC-5	NCC-6	NCC-7	NCC-8	NCC-9	NCC-10	NCC-11
	Sample Date:	11/07/8 9	11/07/89	11/09/89	11/09/89	11/09/89	11/08/89	11/08/89	11/08/89	11/08/89	11/07/89	11/07/89
	Units:	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Vola	atile Organic Compounds					/						
	Benzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Toluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Trichloroethylene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Tetrachloroethylene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Monochlorobenzene	ND100	ND100	ND100	ND100	270	ND100	ND100	ND100	380	ND100	ND100
	2-Monochlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	4-Monochlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	140
. •	2-Chlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	4-Chlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	1,2-Dichlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	1,4-Dichlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	1900
•	2,4-Dichlorotoluene	ND100	ND100	ND100	ND100	190	ND100	ND100	ND100	ND100	620	240
	2,5-Dichlorotoluene	ND100	ND100	ND100	ND100	290	ND100	ND100	ND100	ND100	800	300
	2,6-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	3,4-Dichlorotoluene	ND100	ND100	ND100	ND100	270	ND100	ND100	ND100	ND100	ND100	ND100
	2,4-Dichlorobenzotrifluoride	ND100	ND100	ND100	ND100	1400 `	ND100	ND100	ND100	. ND100	ND100	ND100
	3,4-Dichlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	· ND100	ND100	ND100	340	260
Sem	i-Volatile Organic Compounds											
	1,2,3-Trichlorobenzene	ND100	ND100	ND100	240	740	ND100	ND100	ND100	ND100	760	790
	1,2,4-Trichlorobenzene	ND100	ND100	ND100	500	1700	ND100	ND100	ND100	ND100	2100	2000
	1,2,3,4-Tetrachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	250	100
	1,2,4,5-Tetrachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Pentachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	150	ND100
	Hexachlorobenzene	ND100	ND100	ND100	ND100	160	ND100	ND100	·ND100	ND100	1300	180
	alpha-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	beta-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	gamma-Hexachlorocyclohexane (BHC)	ND100.	ND100									
	delta-Hexachlorocyclohexane (BHC)	. ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
· ·	2,3-Dichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	2,4-Dichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	2,4,5-Trichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	2,4,6-Trichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Hexachlorobutadiene	ND100	ND100	ND100	ND100	170	ND100	ND100	ND100	ND100	200	130
	Hexachlorocyclopentadiene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Octachlorocyclopentene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
•	Perchlorocyclopentadecane (Mirex)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	560	270
	•											

			TABLE A.2 ICAL DATA CAYUGA I	- PHASE I	. 5 		
Sample Location: Sample Date: Units:	NCC-12 11/07/89 ug/Kg	NCC-13 11/09/89* ug/Kg	NCC-1F 11/09/89 ug/Kg	NCC-3F 11/08/89 ug/Kg	NCC-7F 11/09/89 ug/Kg	NCC-FF 11/08/89 ug/Kg	,
	00	00	00	00	00		•
Volatile Organic Compounds	NID100	NID100				NID100	
Benzene	ND100	ND100	ND100	ND100	ND100	ND100	
Toluene Tricklandskular	ND100	ND100	ND100	ND100	ND100	ND100	
Trichloroethylene	ND100	ND100	ND100	ND100	ND100	ND100	
Tetrachloroethylene	ND100	ND100	ND100	ND100	ND100	ND100	
Monochlorobenzene	ND100	430	ND100	ND100	ND100	200	
2-Monochlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	
4-Monochlorotoluene	ND100	ND100	ND100	·ND100	ND100	ND100	
2-Chlorobenźotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	
4-Chlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	
1,2-Dichlorobenzene	ND100	ND100	ND100	ND100	ND100	,ND100	
1,4-Dichlorobenzene	ND100	ND100	0.31	ND100	ND100	ND100	
2,4-Dichlorotoluene	610	120	ND100	ND100	ND100	ND100	
2,5-Dichlorotoluene	1000	190	ND100	ND100	ND100	ND100	
2,6-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	
3,4-Dichlorotoluene	590	150	ND100	ND100	ND100	ND100	
2,4-Dichlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	
3,4-Dichlorobenzotrifluoride	210	ND100	ND100	ND100	ND100	ND100	
Semi-Volatile Organic Compounds	••						
1,2,3-Trichlorobenzene	270	280	ND100	ND100	ND100	ND100	
1,2,4-Trichlorobenzene	1100	870	ND100	ND100	ND100	ND100	
1,2,3,4-Tetrachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	
1,2,4,5-Tetrachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	
Pentachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	
Hexachlorobenzene	150	ND100	ND100	ND100	ND100	ND100	
alpha-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	
beta-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	· ND100	
gamma-Hexachlorocyclohexane (BHC)	· ND100	ND100	ND100	ND100	ND100	ND100	•
delta-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	
2,3-Dichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	
2,4-Dichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	
2,4,5-Trichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	
2,4,6-Trichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	
Hexachlorobutadiene	230	150	ND100	ND100	ND100	ND100	
Hexachlorocyclopentadiene	ND100	ND100	ND100	ND100	.ND100	ND100	
Octachlorocyclopentene	ND100	ND100	ND100	ND100	ND100	ND100	
Perchlorocyclopentadecane (Mirex)	360	ND0.1	ND100	ND100	ND100	ND100	

Notes:

NDx Compound not detected at the level specified Duplicate of sample NCC-5.

2.

					TABLE A.3						
			ANALYTI	CAL DATA	- DATA CO	LLECTION	PROGRAM	[·	
				10500	CAYUGA I	DRIVE					
Sample Location:	NCC-14	NCC-15	NCC-16	NCC-17	NCC-18	• NCC-19	NCC-20	NCC-21	NCC-22	NCC-23	NCC-34*
Sample Depth (Ft.):	0.5-3.5	0.2-3.2	0.2-3.2	0.5-3.5	0.1-3.1	0.5-3.5	0.3-3.3	0.5-3.5	0.5-35	0.5-3.5	0.5-3.5
Sample Date:	03/05/90	03/05/90	03/05/90	03/05/90	03/05/90	03/05/90	03/05/90	03/05/90	03/05/90	03/06/90	03/06/90
Units:	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Volatile Organic Compounds		·									
Benzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
Toluene	ND100	3600	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
Trichloroethylene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	
Tetrachloroethylene	ND100	130	ND100	ND100	ND100	ND100	ND100	ND100 ND100			ND100
Monochlorobenzene	540	1900	ND100	ND100	ND100	ND100	ND100		ND100	ND100	ND100
2-Monochlorotoluene	ND100	1500	ND100	ND100	ND100	ND100		ND100	290	ND100	ND100
4-Monochlorotoluene	ND100	· 510	ND100	ND100	ND100	ND100 ND100	ND100	ND100	ND100	ND100	ND100
2-Chlorobenzotrifluoride	ND100	320	ND100	ND100			ND100	ND100	ND100	ND100	ND100
4-Chlorobenzotrifluoride	ND100	320 110	ND100		ND100	ND100	ND100	ND100	ND100	ND100	ND100
1,2-Dichlorobenzene	ND100	ND100		ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
1,4-Dichlorobenzene	530	10000	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
2,4-Dichlorofoluene	140		ND100	ND100	ND100	620	340	ND100	280	ND100	ND100
2,5-Dichlorotoluene	230	180	290	160	ND100	250	ND100	ND100	ND100	ND100	ND100
2,6-Dichlorotoluene		290	· 500	250	ND100	570	ND100	ND100	ND100	ND100	ND100
3,4-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	. ND100	ND100	130	110	ND100	460	ND100	ND100	ND100	ND100	ND100
2,4-Dichlorobenzotrifluoride	ND100	260	510	450	ND100	950	ND100	ND100	ND100	ND100	ND100
3,4-Dichlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
Semi-Volatile Organic Compounds					,						
1,2,3-Trichlorobenzene	ND100	ND100	150	150	ND100	8600	ND100	ND100	ND100	ND100	ND100
1,2,4-Trichlorobenzene	210	400	1300	880	ND100	26000	ND100	ND100	110	ND100	ND100
1,2,3,4-Tetrachlorobenzene	ND100	ND100	ND100	ND100	ND100	610	ND100	ND100	ND100	ND100	ND100
1,2,4,5-Tetrachlorobenzene	ND100	ND100	530	230 ·	ND100	5000	ND100	ND100	ND100	ND100	ND100
Pentachlorobenzene	ND100	ND100	ND100	ND100	ND100	2800	ND100	ND100	ND100	ND100	ND100
Hexachlorobenzene	ND100	ND100	1100	640	ND100	15000	ND100	ND100	ND100	ND100	ND100
alpha-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
beta-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
gamma-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
delta-Hexachlorocyclohexane (BHC)	ND100	ND100	510	110	ND100	150	ND100	ND100	ND100	ND100	
2,4-Dichlorophenol	1800	2400	8300	5700	ND100	8800	ND100	ND100	ND100 ND100		ND100
2,5-Dichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100		ND100	ND100
2,4,5-Trichlorophenol	ND100	ND100	ND100	ND100	ND100				ND100	ND100	ND100
2,4,6-Trichlorophenol	ND100	ND100	ND100	ND100	ND100 ND100	ND100 ND100	ND100 ND100	ND100	ND100	ND100	ND100
Hexachlorobutadiene	ND100	180	690	330	ND100			ND100	ND100	ND100	ND100
Hexachlorocyclopentadiene	ND100	ND100	090 ND100			1600	ND100	ND100	ND100	ND100	ND100
Octachlorocyclopentene	ND100	ND100 ND100	ND100 ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
Perchlorocyclopentadecane (Mirex)	190	130	650	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
rectation of permanental (mmex)	170	130	000	330	ND100	1100	ND100	ND100	ND100	ND100	ND100

TABLE A.3

				10500	CAYUGA	ORIVE					
Sample Location:	NCC-24	NCC-33**	NCC-25	NCC-26	NCC-27	NCC-28	NCC-29	NCC-30	NCC-30A	NCC-31	NCC-31A
Sample Depth (Ft.):	0.5-3.5	0.5-3.5	0.5-3.5	0.5-3.5	0.5-4.0	0.5-3.5	0.5-3.5	3.0-3.8	3.8-4.5	2.5-4.5	4.5-5.0
Sample Date:	03/05/90	03/05/90	03/06/90	03/05/90	03/06/90	03/06/90	03/06/90	03/06/90	03/06/90	03/06/90	03/06/90
Units:	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Volatile Organic Compounds		•									
Benzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
Toluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
Trichloroethylene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
Tetrachloroethylene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
Monochlorobenzene	1300	ND100	ND100	ND100	ND100	ND100	ND100	ND100	200	ND100	ND100
2-Monochlorotoluene	210	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
4-Monochlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
2-Chlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
4-Chlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
1,2-Dichlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
1,4-Dichlorobenzene	1800	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	290
2,4-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
2,5-Dichlorotoluene	. ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
2,6-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
3,4-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
2,4-Dichlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
3,4-Dichlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
Semi-Volatile Organic Compounds							•				
1,2,3-Trichlorobenzene	ND100	ND100	170	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
1,2,4-Trichlorobenzene	240	ND100	550	190	ND100	190	110	ND100	ND100	ND100	ND100
1,2,3,4-Tetrachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
1,2,4,5-Tetrachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
Pentachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
Hexachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
alpha-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
beta-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
gamma-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
delta-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
2,4-Dichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
2,5-Dichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
2,4,5-Trichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
2,4,6-Trichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
Hexachlorobutadiene	ND100	ND100	110	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
Hexachlorocyclopentadiene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
Octachlorocyclopentene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
Perchlorocyclopentadecane (Mirex)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100

				ANALYTI	CAL DATA 10500	- DATA CO CAYUGA I		PROGRAM	Í .		· ·	
	Sample Location:	NCC-32	NCC-32A	NCC-35	NCC-36	NCC-37	NCC-38	NCC-39	NCC-40	NCC-41	NCC-42	NCC-43***
	Sample Depth (Ft.):	3.0-3.5	3.5-4.0	0.5-3.5	0.5-3.5	0.5-3.5	0.5-3.5	0.5-3.5	0.5-3.5	0.5-3.5	0.5-3.5	0.5-3,5
	Sample Date:	03/06/90	03/06/90	03/14/90	03/14/90	03/14/90	03/14/90	03/14/90	03/14/90	03/14/90	03/14/90	03/14/90
	Units:	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Vola	tile Organic Compounds											
•	Benzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Toluene	ND100	230	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Trichloroethylene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Tetrachloroethylene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Monochlorobenzene	ND100	1900	ND100	ND100	960	ND100	260	ND100	290	ND100	ND100
	2-Monochlorotoluene	ND100	870	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	· ND100
c	4-Monochlorotoluene	ND100	230	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	2-Chlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	4-Chlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	- ND100	ND100	ND100	ND100	ND100	ND100
	1,2-Dichlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	1,4-Dichlorobenzene	ND100	12000	ND100	ND100	140	ND100	ND100	ND100	ND100	ND100	ND100
	2,4-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	250	ND100	ND100
	2,5-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	410	ND100	ND100
,	2,6-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	3,4-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	150	ND100	ND100
	2,4-Dichlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	430	ND100	ND100
	3,4-Dichlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
Sem	i-Volatile Organic Compounds										•	
	1,2,3-Trichlorobenzene	390	ND100	ND100	ND100	190	ND100	120	ND100	1600	ND100	ND100
	1,2,4-Trichlorobenzene	1500	290	ND100	ND100	440	250	470	390	6100	ND100	ND100 ND100
	1,2,3,4-Tetrachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	120	ND100	ND100
	1,2,4,5-Tetrachlorobenzene	ND100	ND100	ND100	ND100	ND100	120	ND100	110	590	ND100	ND100 ND100
	Pentachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	
	Hexachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	330	230	ND100	ND100 ND100
	alpha-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	beta-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	gamma-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	delta-Hexachlorocyclohexane (BHC)	ND100	'ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	
	2,4-Dichlorophenol	460	170	ND100	ND100	ND100	190	ND100	280	330	ND100	ND100
	2,5-Dichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100		ND100
	2,4,5-Trichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100 ND100		ND100	ND100
	2,4,6-Trichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100 ND100	ND100	ND100	ND100
	Hexachlorobutadiene	170	ND100	ND100	ND100	ND100	ND100	ND100 ND100		ND100	ND100	ND100
	Hexachlorocyclopentadiene	ND100	ND100	ND100	ND100	ND100	ND100		170 ND100	190	ND100	ND100
	Octachlorocyclopentene	ND100	ND100	ND100	ND100	ND100 ND100	ND100 ND100	ND100 ND100	ND100	350 ND100	ND100	ND100
	Perchlorocyclopentadecane (Mirex)	ND100	ND100	ND100	ND100	ND100	150	ND100	ND100	ND100	ND100	ND100
	· · · · · · · · · · · · · · · · · · ·			112100	110100	1412100	130	IND100	ND100	170	ND100	ND100

TABLE A.3

Sample Location:	NCC-44	NCC-45	NCC-46	NCC-47	NCC-48	NCC-49	NCC-50	NCC-51	NCC-52	NCC-53	NCC-54
Sample Depth (Ft.):	0.2-3.5	0.5-4.3	0.3-3.8	0.2-3.5	0.2-4.8	0.5-4.0	0.5-4.0	0.5-4.0	0.5-3.5	0.5-4.0	0.5-4.5
Sample Date:	06/01/90	06/01/90	06/01/90	06/01/90	06/01/90	06/01/90	06/01/90	06/01/90	06/01/90	06/01/90	06/01/90
Units:	ug/Kg										
Volatile Organic Compounds			•								
Benzene	ND100										
Toluene	ND100	ND100	ND100	270	230	ND100	ND100	ND100	ND100	ND100	ND100
Trichloroethylene	ND100										
Tetrachloroethylene	ND100										
Monochlorobenzene	ND100	ND100	ND100	14000	5000	280	ND100	ND100	ND100	ND100	110
2-Monochlorotoluene	ND100	ND100	ND100	400	210	ND100	ND100	ND100	ND100	ND100	ND100
4-Monochlorotoluene	ND100	ND100	ND100	110	ND100						
2-Chlorobenzotrifluoride	ND100										
4-Chlorobenzotrifluoride	ND100										
1,2-Dichlorobenzene	ND100										
1,4-Dichlorobenzene	ND100	ND100	ND100	1100	330	ND100	ND100	ND100	ND100	ND100	480
2,4-Dichlorotoluene	ND100	ND100	ND100	390	ND100						
2,5-Dichlorotoluene	ND100	ND100	ND100	1100	230	180	ND100	ND100	ND100	ND100	ND100
2,6-Dichlorotoluene	ND100										
3,4-Dichlorotoluene	ND100										
2,4-Dichlorobenzotrifluoride	ND100	ND100	ND100	150	ND100	540	ND100	ND100	ND100	ND100	ND100
3,4-Dichlorobenzotrifluoride	ND100										
Semi-Volatile Organic Compounds											
1,2,3-Trichlorobenzene	ND100	ND100	ND100	1900	920	ND100	ND100	ND100	ND100	ND100	1000
1,2,4-Trichlorobenzene	ND100	ND100	ND100	5600	1700	240	ND100	ND100	ND100	ND100	3100
1,2,3,4-Tetrachlorobenzene	ND100	ND100	ND100	190	100	ND100	ND100	ND100	ND100	ND100	ND100
1,2,4,5-Tetrachlorobenzene	ND100	ND100	ND100	520	230	ND100	ND100	ND100	ND100	ND100	200
Pentachlorobenzene	ND100	ND100	ND100	130	ND100						
Hexachlorobenzene	ND100	ND100	ND100	620	570	ND100	ND100	ND100	ND100	ND100	280
alpha-Hexachlorocyclohexane (BHC)	ND100										
beta-Hexachlorocyclohexane (BHC)	ND100										
gamma-Hexachlorocyclohexane (BHC)	ND100										
delta-Hexachlorocyclohexane (BHC)	ND100										
2,4-Dichlorophenol	ND100	ND100	ND100	400	220	ND100	ND100	ND100	ND100	ND100	ND100
2,5-Dichlorophenol	ND100										
2,4,5-Trichlorophenol	ND100										
2,4,6-Trichlorophenol	ND100										
Hexachlorobutadiene	ND100	ND100	ND100	320	250	ND100	ND100	ND100	ND100	ND100	ND100
Hexachlorocyclopentadiene	ND100	ND100	ND100	170	ND100						
Octachlorocyclopentene	ND100										
Perchlorocyclopentadecane (Mirex)	ND100	ND100	ND100	160	ND100						

	Sample Location:	NCC-55	NCC-56****	NCC-58	NCC-59	NCC-60*****
	Sample Depth (Ft.):	0.5-3.5	0.5-4.0	1.0-5.0	0.5-4.5	1.0-4.5
	Sample Date:	06/01/90	06/01/90	07/20/90	07/20/90	07/20/90
• •	Units:	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Vol	atile Organic Compounds					
	Benzene	ND100	ND100	ND100	ND100	ND100
	Toluene	ND100	ND100	ND100	ND100	ND100
	Trichloroethylene	ND100	ND100	ND100	ND100	ND100
	Tetrachloroethylene	ND100	ND100	ND100	ND100	ND100
	Monochlorobenzene	ND100	ND100	ND100	ND100	ND100
	2-Monochlorotoluene	ND100	ND100	ND100	ND100	ND100
	4-Monochlorotoluene	ND100	ND100	ND100	ND100	ND100
	2-Chlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100
	4-Chlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100
	1,2-Dichlorobenzene	ND100	ND100	ND100	ND100	ND100
	1,4-Dichlorobenzene	ND100	ND100	ND100	ND100	ND100
	2,4-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100
	2,5-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100
	2,6-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100
	3,4-Dichlorotoluene	· ND100	ND100	ND100	ND100	ND100
	2,4-Dichlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100
	3,4-Dichlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100
Sen	ni-Volatile Organic Compounds					
	1,2,3-Trichlorobenzene	ND100	ND100	ND100	ND100	ND100
	1,2,4-Trichlorobenzene	ND100	ND100	ND100	ND100	ND100
	1,2,3,4-Tetrachlorobenzene	ND100	ND100	ND100	ND100	ND100
	1,2,4,5-Tetrachlorobenzene	ND100	ND100	ND100	ND100	ND100
	Pentachlorobenzene	ND100	ND100	ND100	ND100	ND100
	Hexachlorobenzene	ND100	ND100	ND100	ND100	ND100
•	alpha-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100
	beta-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100
	gamma-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100
	delta-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100
	2,4-Dichlorophenol	ND100	ND100	ND100	ND100	ND100
	2,5-Dichlorophenol	ND100	ND100	ND100	· ND100	ND100
	2,4,5-Trichlorophenol	ND100	ND100	ND100	ND100	ND100 ·
	2,4,6-Trichlorophenol	ND100	ND100	ND100	ND100	ND100
	Hexachlorobutadiene	ND100	ND100	ND100	ND100	ND100
	Hexachlorocyclopentadiene	ND100	ND100	ND100	ND100	ND100
	Octachlorocyclopentene	ND100	ND100	ND100	ND100	ND100
·	Perchlorocyclopentadecane (Mirex)	ND100	ND100	ND100	ND100	ND100
		•				

Notes:

NDx Compound not detected at the limit specified Duplicate of sample NCC-23. Duplicate of sample NCC-24. Duplicate of sample NCC-42. Duplicate of sample NCC-51. Duplicate of sample NCC-59.

Page 6 of 6

						IADLE A.4			· .			
	ANALYTICAL DATA - RESIDENTIAL PROPERTIES											
		10500 CAYUGA DRIVE										
	, · · ·					•						
	Sample Location:	1335-1	1335-1	1335-2	1335-2	1335-3	1335-3	1335-4	1335-4	1335-5	1335-5	1335-6
	Sample Depth (Ft.):	0-0.5	0.5-4.5	0-0.5	0.5-4.5	0-0.5	0.5-4.5	0-0.5	0.5-4.5	0-0.5		
	Sample Date:	07/20/90	07/20/90	07/20/90	07/20/90	07/20/90	07/20/90	07/20/90			0.5-4.5	0-0.5
,	Units:	ug/Kg	ug/Kg	ug/Kg	ug/Kg				07/20/90	07/20/90	07/20/90	07/20/90
		-01-0	-8/1.8	"8/Ng	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Vol	atile Organic Compounds		1					· ·				
	Benzene	ND100	ND100	NID100	NID100	110.444						
	Toluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Trichloroethylene	ND100		ND100	ND100	370	ND100	ND100	ND100	ND100	270	ND100
	Tetrachloroethylene		ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
		ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100.	ND100	ND100	ND100
	Monochlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	2-Monochlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	4-Monochlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
•	2-Chlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	4-Chlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	1,2-Dichlorobenzene	ND100	ND100	220	ND100	ND100	ND100	ND100	ND100	ND100	ND100	
	1,4-Dichlorobenzene	ND100	ND100	260	ND100	ND100	ND100	ND100	ND100	ND100		ND100
	2,4-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100		ND100	ND100
	2,5-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100		ND100	ND100	ND100
	2,6-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100		ND100	ND100	ND100	ND100
	3,4-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100		ND100	ND100	ND100	ND100	ND100
	2,4-Dichlorobenzotrifluoride	ND100	ND100	ND100	ND100		ND100	ND100	ND100	ND100	ND100	ND100
	3,4-Dichlorobenzotrifluoride	ND100	ND100	ND100		ND100	ND100	ND100	ND100	ND100 .	ND100	ND100
•	,	140100	ND100	NDIO	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
Sem	i-Volatile Organic Compounds						•					•
	1,2,3-Trichlorobenzene	NID100	1/0	Norda								
	1,2,4-Trichlorobenzene	ND100	160	ND100	ND100	ND100	420	ND100	ND100	ND100	490	ND100
	1,2,3,4-Tetrachlorobenzene	ND100	440	ND100	ND100	ND100	1400	ND100	ND100	ND100	1600	ND100
		ND100	ND100	ND100	ND100	ND100	120	ND100	ND100	ND100	140	ND100
	1,2,4,5-Tetrachlorobenzene	ND100	ND100	ND100	ND100	ND100	110	ND100	ND100	ND100	180	ND100
	Pentachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Hexachlorobenzene	ND100	410	ND100	ND100	ND100	590	ND100	ND100	ND100	880	ND100
	alpha-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	beta-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	gamma-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	delta-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100		
	2,4-Dichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100		ND100	ND100
	2,5-Dichlorophenol	ND100	ND100	ND100	ND100	ND100	160			ND100	ND100	ND100
•	2,4,5-Trichlorophenol	ND100	ND100	ND100	ND100	•		ND100	ND100	ND100	ND100	ND100
	2,4,6-Trichlorophenol	ND100	ND100	ND100		ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Hexachlorobutadiene	ND100	ND100		ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Hexachlorocyclopentadiene	ND100		ND100	ND100	ND100	120	ND100	ND100	ND100	280	ND100
• •	Octachlorocyclopentene		ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
		ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Perchlorocyclopentadecane (Mirex)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100

TABLE A.4 ANALYTICAL DATA - RESIDENTIAL PROPERTI 10500 CAYUGA DRIVE

	· ·	ANALYTICAL DATA - RESIDENTIAL PROPERTIES 10500 CAYUGA DRIVE										
						CATOOAT	DRIVE			•		
	Sample Location:	1335-6	1335-7	1335-7	1335-8	1335-8	1335-9*	1335-10	1335-10	1335-11	1335-11	1335-12
	Sample Depth (Ft.):	0.5-4.5	0-0.5	0.5-4.5	0-0.5	0.5-4.5	0.5-4.5	0-0.5	0.5-3.5	0-0.5	0.5-4.0	0-0.5
	Sample Date:	07/20/90	07/20/90	07/20/90	07/20/90	07/20/90	07/20/90	01/03/91	01/03/91	01/03/91	01/03/91	01/03/91
	Units:	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Vo	platile Organic Compounds											
	Benzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	NID100
•	Toluene	ND100	ND100	1800	ND100	ND100	160	ND100	ND100	ND100	ND100	ND100
	Trichloroethylene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Tetrachloroethylene	ND100	ND100	200	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Monochlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	· ND100	ND100	ND100	ND100
	2-Monochlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	4-Monochlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100 ND100	ND100 ND100
	2-Chlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100		
	4-Chlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100 ND100	ND100
	1,2-Dichlorobenzene	1600	ND100	1800	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	1,4-Dichlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	2,4-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100 .	ND100	ND100	ND100	ND100 ND100
	2,5-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	
	2,6-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100 ND100
	3,4-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100 ND100	
	2,4-Dichlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	3,4-Dichlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100 ND100	ND100 ND100	ND100 ND100
Se	mi-Volatile Organic Compounds					•			· .			
	1,2,3-Trichlorobenzene	180	ND100	100	ND100	ND100	ND100	ND100	NID100	NID100		
	1,2,4-Trichlorobenzene	580	ND100	270	ND100	180	200	ND100 ND100	ND100 ND100	ND100	ND100	ND100
	1,2,3,4-Tetrachlorobenzene	ND100	ND100	·ND100	ND100	ND100	ND100	ND100		ND100	ND100	ND100
	1,2,4,5-Tetrachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100 ND100	ND100 ND100	ND100	ND100	ND100
	Pentachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100 ND100	ND100	ND100	ND100
	Hexachlorobenzene	460	ND100	290	ND100	ND100	200	ND100	ND100 ND100	ND100	ND100	ND100
	alpha-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	beta-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100 ND100	ND100 ND100	ND100 ND100	ND100	ND100
	gamma-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	delta-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100 .	ND100	ND100	ND100	ND100	ND100
	2,4-Dichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	2,5-Dichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100 ND100		ND100	ND100
	2,4,5-Trichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100		ND100	ND100	ND100
	2,4,6-Trichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100 ND100	ND100	ND100	ND100
	Hexachlorobutadiene	ND100	ND100	ND100	ND100	ND100	ND100	ND100 ND100		ND100	ND100	ND100
	Hexachlorocyclopentadiene	ND100	ND100	ND100	ND100	ND100	ND100 ND100	ND100 ND100	ND100	ND100	ND100	ND100
	Octachlorocyclopentene	ND100	ND100	ND100	ND100	ND100	ND100		ND100	ND100	ND100	ND100
	Perchlorocyclopentadecane (Mirex)	ND100	ND100	ND100	ND100	ND100 ND100						
										110100	ND100	110100

TABLE A.4 ANALYTICAL DATA - RESIDENTIAL PROPERTII 10500 CAYUGA DRIVE

· .	TABLE A.4									
	ANALYTICAL DATA - RESIDENTIAL PROPERTIES									
	10500 CAYUGA DRIVE									
Sample Location:	1335-12	1335-13	1335-13	1335-14	1335-14	1335-15**	1335-20	1335-21	1335-22***	1335
Sample Depth (Ft.):	0.5-4.0	0-0.5	0.5-4.0	0-0.5	0.5-4.0	0.5-3.5	0.0-4.0	0.0-3.0	0.0-4.0	SUMP
Sample Date:	01/03/91	01/03/91	01/03/91	01/03/91	01/03/91	01/03/91	4/13/92	04/13/92	04/13/92	01/03/91
Units:	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	, ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/L
Volatile Organic Compounds					· .					
Benzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND1
Toluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND1
Trichloroethylene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND1
Tetrachloroethylene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND1
Monochlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	'ND100	ND100	ND1
2-Monochlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND1
4-Monochlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND1
2-Chlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND1
4-Chlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND1
1,2-Dichlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND1
1,4-Dichlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND1
2,4-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND1
2,5-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND1
2,6-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND1
3,4-Dichlorotoluène	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND1
2,4-Dichlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND1
3,4-Dichlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND1
Semi-Volatile Organic Compounds						,				•
1,2,3-Trichlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND1
1,2,4-Trichlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND1
1,2,3,4-Tetrachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND1
1,2,4,5-Tetrachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND1
Pentachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	. ND100	ND1
Hexachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND1
alpha-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND1
beta-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND1
gamma-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100		ND100	ND1
delta-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	'ND100	ND100	ND100	ND100	ND100	ND100	ND1
2,4-Dichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND1
2,5-Dichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND1
2,4,5-Trichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	
2,4,6-Trichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100 ND100	ND10 ND1
Hexachlorobutadiene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100 ND100	
Hexachlorocyclopentadiene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100 ND100	ND1
Octachlorocyclopentene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100 ND100		ND1
Perchlorocyclopentadecane (Mirex)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100 ND100	ND1 ND1
						110100	ND100	IND IOU	IND IOU	INDI

Page 3 of 7

			•			TABLE A.4	L			•		
				ANALY	TICAL DAT		NTIAL PRC	PERTIES		~		
						CAYUGA			•			
	Samula Location.	1221 1	1001 1	4224.2								•
	Sample Location: Sample Depth (Ft.):	1331-1 0-0.5	1331-1 0.5-4.5	1331-2 0-0.5	1331-2 0.5-4.5	1331-3 0-0.5	1331-3	1331-4	1331-4	1331-5	1331-5	1331-6
	Sample Depth (FL): Sample Date:	0-0.5 01/09/91	0.5-4.5 01/09/91	0-0.5 01/09/91	0.5-4.5 01/09/91		0.5-4.5	0-0.5	0.5-4.5	0-0.5	0.5-4.5	0-0.5
	Units:					01/09/91	01/09/91	01/09/91	01/09/91	01/10/91	01/10/91	01/10/91
	Q11115.	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Vola	tile Organic Compounds											
	Benzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Toluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Trichloroethylene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
•	Tetrachloroethylene	ND100	120	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Monochlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	2-Monochlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	4-Monochlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	2-Chlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	4-Chlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	1,2-Dichlorobenzene	ND100	ND100	ND100	ND100	ŅD100	ND100	ND100	ND100	ND100	ND100	ND100
	1,4-Dichlorobenzene	ND100	ND100	ND100	ND100	ŃD100	ND100	ND100	ND100	ND100	ND100	ND100
	2,4-Dichlorotoluene	' ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	2,5-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	2,6-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	3,4-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
•	2,4-Dichlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	3,4-Dichlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
Sem	i-Volatile Organic Compounds	•					•				•	
<i></i>	1,2,3-Trichlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100		NID100	ND100
	1,2,4-Trichlorobenzene	ND100	130	ND100	ND100	ND100	ND100	ND100	ND100 ND100	ND100 ND100	ND100	ND100
	1,2,3,4-Tetrachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100 ND100	ND100	ND100	ND100
	1,2,4,5-Tetrachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100 ND100	ND100 ND100	ND100 ND100
	Pentachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100 ND100	
	Hexachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100 ND100	ND100 ND100
	alpha-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	· ND100	ND100	ND100	ND100
	beta-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	· ND100
	gamma-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	'ND100	ND100	ND100	ND100	ND100	ND100	ND100
	delta-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	2,4-Dichlorophenol	ND100	510	ND100	750	ND100	ND100	ND100	ND100	ND100	330	ND100 ND100
	2,5-Dichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	2,4,5-Trichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	. ND100	ND100	ND100	ND100 ND100
	2,4,6-Trichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Hexachlorobutadiene	ND100	ND100	ND100	ND100	ND100	*′ ND100	ND100	ND100	ND100	ND100	ND100 ND100
	Hexachlorocyclopentadiene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100 ND100	ND100 ND100
	Octachlorocyclopentene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100 ND100
	Perchlorocyclopentadecane (Mirex)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
								110100	110100	110100	IND IOU	ND 100

	ANALY IICAL DATA - RESIDENTIAL PROPERTIES 10500 CAYUGA DRIVE											
	Sample Location:	1331-6	1331-7	1331-7	1331-8	1331-8	1331-9	1331-9	1331-10	1331-10	1331-11	1331-11
	Sample Depth (Ft.):	0.5-4.5	0-0.5	0.5-4.5	0-0.5	0.5-4.0	0-0.5	0.5-5.0	0-0.5	0.5-4.5	0-0.5	0.5-4.5
	Sample Date:	01/10/91	01/09/91	01/09/91	01/08/91	01/08/91	01/08/91	01/08/91	01/10/91	01/10/91	01/08/91	01/08/91
	Units:	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
١	Volatile Organic Compounds			•	•							
	Benzene	ND100 -	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Toluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Trichloroethylene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Tetrachloroethylene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Monochlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	2-Monochlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	4-Monochlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	2-Chlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	4-Chlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	1,2-Dichlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	1,4-Dichlorobenzene	ND100	ND100	ND100	ND100	[•] ND100	ND100	ND100	ND100	ND100	ND100	ND100
	2,4-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	2,5-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	2,6-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	3,4-Dichlorotoluene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	2,4-Dichlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	3,4-Dichlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
5	Semi-Volatile Organic Compounds				•							
	1,2,3-Trichlorobenzene	ND100	ND100	ND100	·ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	1,2,4-Trichlorobenzene	120	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	1,2,3,4-Tetrachlorobenzene	390	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	1,2,4,5-Tetrachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Pentachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Hexachlorobenzene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	alpha-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	beta-Hexachlorocyclohexane (BHC)	760	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
•	gamma-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	delta-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	2,3-Dichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	2,4-Dichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	2,4,5-Trichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	2,4,6-Trichlorophenol	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Hexachlorobutadiene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Hexachlorocyclopentadiene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Octachlorocyclopentene	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100
	Perchlorocyclopentadecane (Mirex)	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100	ND100

TABLE A.4 ANALYTICAL DATA - RESIDENTIAL PROPERTIES 10500 CAYUGA DRIVE

		ANALYTICAL DATA - RESIDENTIAL PROPERTIES 10500 CAYUGA DRIVE									
	Sample Location: Sample Depth (Ft.): Sample Date: Units:	1331-12 0-0.5 01/08/91 ug/Kg	1331-12 0.5-5.0 01/08/91 ug/Kg	1331-13**** 0.5-5.0 01/08/91 ug/Kg	1331-14***** 0.5-4.5 01/09/91 ug/Kg	1331 SUMP 1/8/91 ug/L	1327-1 0-4.5 6/10/92 µg/kg	1327-2 0-4.0 6/10/92 μg/kg	1341-1 0-1.9 6/10/92 μg/kg	1341-2 0-4.5 6/10/92 μg/kg	
Va	latile Organic Compounds								10.10	10.00	
	Benzene	ND100	ND100	ND100	ND100	ND1					
	Toluene	ND100	ND100	ND100	ND100	ND1	ND100	ND100	ND100	ND100	
	Trichloroethylene	ND100	ND100	ND100	ND100	ND1	ND100 ND100	ND100	ND100	ND100	
·	Tetrachloroethylene	ND100	ND100	ND100	ND100	ND1	-	ND100	ND100	ND100	
	Monochlorobenzene	ND100	ND100	ND100	ND100	ND1	ND100 ND100	ND100	ND100	ND100	
	2-Monochlorotoluene	ND100	ND100	ND100	ND100	ND1		ND100	ND100	ND100	
	4-Monochlorotoluene	ND100	ND100	ND100	ND100	ND1	ND100 ND100	ND100	ND100	ND100	
	2-Chlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND1	ND100	ND100	ND100	ND100	
	4-Chlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND1	ND100 ND100	ND100	ND100	ND100	
	1,2-Dichlorobenzene	ND100	ND100	ND100	ND100	ND1	ND100	ND100 ND100	ND100	ND100	
•	1,4-Dichlorobenzene	ND100	ND100	ND100	ND100	ND1	ND100	ND100 ND100	ND100	ND100	
	2,4-Dichlorotoluene	ND100	ND100	ND100	ND100	ND1	ND100	ND100	ND100	ND100	
	2,5-Dichlorotoluene	ND100	ND100	ND100	ND100	ND1	ND100	ND100 ND100	ND100 ND100	ND100	
	2,6-Dichlorotoluene	ND100	ND100	ND100	ND100	ND1	ND100	ND100		ND100	
	3,4-Dichlorotoluene	ND100	ND100	ND100	ND100	ND1	ND100	ND100	ND100 ND100	ND100	
	2,4-Dichlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND1	ND100	ND100	ND100 ND100	ND100	
	3,4-Dichlorobenzotrifluoride	ND100	ND100	ND100	ND100	ND1	ND100	ND100	ND100	ND100 ND100	
Ser	ni-Volatile Organic Compounds						· .				
	1,2,3-Trichlorobenzene	ND100	ND100	ND100	ND100	ND1					
	1,2,4-Trichlorobenzene	ND100	ND100	ND100	ND100 ND100	ND1 ND1	ND100	ND100	ND100	ND100	
	1,2,3,4-Tetrachlorobenzene	ND100	ND100	ND100	ND100	ND1	ND100	ND100	ND100	ND100	
	1,2,4,5-Tetrachlorobenzene	ND100	ND100	ND100	ND100 ND100	ND1	ND100	ND100	ND100	ND100	
	Pentachlorobenzene	ND100	ND100	ND100	ND100		ND100	ND100	ND100	ND100	
	Hexachlorobenzene	ND100	ND100	ND100	ND100	ND1 ND1	ND100	ND100	ND100	ND100	
	alpha-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND1 ND1	ND100	ND100	ND100	ND100	
	beta-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND1 ND1	ND100	ND100	ND100	ND100	
	gamma-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND1	ND100	ND100	ND100	ND100	
	delta-Hexachlorocyclohexane (BHC)	ND100	ND100	ND100	ND100	ND1	ND100 ND100	ND100	ND100	ND100	
•	2,4-Dichlorophenol	ND100	ND100	ND100	ND100	ND1	ND100 ND100	ND100	ND100	ND100	
	2,5-Dichlorophenol	ND100	ND100	ND100	ND100	ND1	ND100	ND100	ND100	ND100	
	2,4,5-Trichlorophenol	ND100	ND100	ND100	ND100	ND10		ND100	ND100	ND100	
	2,4,6-Trichlorophenol	ND100	ND100	ND100	ND100	ND10 ND1	ND100	ND100	ND100	ND100	
	Hexachlorobutadiene	ND100	ND100	ND100	ND100	ND1	ND100	ND100	ND100	ND100	
	Hexachlorocyclopentadiene	ND100	ND100	ND100	ND100	ND1	ND100 ND100	ND100	ND100	ND100	
	Octachlorocyclopentene	ND100	ND100	ND100	ND100	ND1		ND100	ND100	ND100	
	Perchlorocyclopentadecane (Mirex)	ND100	ND100	ND100	ND100	ND1 ND1	ND100 ND100	ND100 ND100	ND100 ND100	ND100 ND100	

TABLE A.4 ANALYTICAL DATA - RESIDENTIAL PROPERTIES 10500 CAYUGA DRIVE

TABLE A.4 ANALYTICAL DATA - RESIDENTIAL PROPERTIES 10500 CAYUGA DRIVE

Notes:

Notes: NDx Compound not detected at the limit specified Duplicate of 1335-7. Duplicate of sample 1335-10. Duplicate of sample 1335-20. Duplicate of sample 1331-9. Duplicate of sample 1331-3.

Page 7 of 7

TABLE A.5

WASTE CHARACTERIZATION DATA 10500 CAYUGA DRIVE

Sample Date:				4/13/92	4/13/92
Sample Description:				1331-TCLP	1335-TCLP
······································		Method			
		Detection	Regulatory		
	Units:	Limit:	Level*		•
·					
TCLP Volatiles		Å			· ·
Benzene	mg/L	0.05	0.5	ND	ND
Carbon Tetrachloride	mg/L mg/L	0.05	. 0.5	ND	ND
Chlorobenzene	mg/L	0.05	100	ND	ND
		0.05	6.0	ND	ND
Chloroform	mg/L mg/L	0.05	0.5	ND	ND
1,2-Dichloroethane		0.05	0.5	ND	ND
1,1-Dichloroethylene	mg/L	0.05	200	ND	ND
Methyl Ethyl Ketone	mg/L	0.05	0.7	ND	ND
Tetrachloroethene	mg/L	0.05	0.5	ND ¹	ND
Trichloroethene	mg/L		0.5	· ND '	ND
Vinyl Chloride	mg/L	0.1	0.2	ND	ND
TCLP Semi-Volatiles				•	
O-Cresol	mg/L	0.03	200	ND	ND
m/p-Cresol	mg/L	0.03	200	ND	ND
1,4-Dichlorobenzene	mg/L	0.03	7.5	ND	ND
2.4-Dinitrotoluene	mg/L	0.03	0.13	ND	ND
Hexachlorobenzene	mg/L	0.03	0.13	ND	ND
Hexachlorobutadiene	mg/L	0.03	0.52	ND	ND
Hexachloroethane	mg/L	0.03	3.0	ND	ND
Nitrobenzene	mg/L	0.03	2.0	ND	ND
•	mg/L	0.2	100	ND	· ND
Pentachlorophenol	mg/L	0.03	5.0	ND	ND
Pyridine 24 5 Tricklorophonol	mg/L	0.2	400	ND	ND
2,4,5-Trichlorophenol	mg/L	0.03	2.0	ND	ND
2,4,6-Trichlorophenol	ing/ L	0.00	L .U ,	112	
TCLP Pesticides/Herbicides					
Chlorodane	mg/L	0.0017	0.03	ND	ND
Endrin	mg/L	0.0003	0.02	NĎ	NĎ
Heptachlor	mg/L	0.0002	0.008	. ND	ND
Heptachlor epoxide	mg/L	0.0002	0.008	ND	ND
Lindane	mg/L	0.0002	0.4	ND	ND
Methoxychlor	mg/L	0.0007	10.0	ND	ND
Toxaphene	mg/L	0.0067	0.5	ND	ND
2,4-D	mg/L	0.0002	10.0	ND	ND
2,4,5-TP	mg/L	0.0002	1.0	ND	ND
TCLP Metals		· .			
Total Arsenic	mg/L	0.005	5.0	ND	ND
Total Barium	mg/L	0.03	100.0	0.75	0.77
Total Cadmium	mg/L	0.01	1.0	0.02	0.024
Total Chromium	mg/L	0.01	5.0	0.016	0.023
Total Lead	mg/L	0.003	5.0	0.014J	0.009J
Total Mercury	mg/L	0.0002	0.2	ND	ND
Total Selenium	. mg/L	0.005	1.0	ND	ND
Total Silver	mg/L	0.01	5.0	ND	ND
TOWE ONLY CL					

lotes:

J The associated value is estimated indicating a low bias.
Maximum concentration for the Toxicity Characteristic, 40 CFR 261.24.

• •

.

APPENDIX B

STRATIGRAPHIC LOGS

· ·	(OVERBU	RDEN)			
PROJE	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION	: NCC-14	
PROJE	CT NO.: 3307		DATE COMPLETED:	MARCH	5. 1
CLIENT	: OXYCHEM		DRILLING METHOD:	3" SPLI1	i sf
LOCATI	ON: 10500 CAYUGA DRIVE		CRA SUPERVISOR:	K. LYNC	н
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION			MPL
ft' BGS	· · · · · · · · · · · · · · · · · · ·	ft BGS	INSTALLATION		T
				B E R	Ē
	Auger through asphalt and sub-base gravel Brown CLAY with some fine to coarse sand.		3.0		
- 1.0	trace wood, dry, FILL		BOREHOLE		N/
			CEMENT/ BENTON/TE CROUT	155	X
- 2.0	Brown to gray CLAY, some sand, trace brick,		CROUT		\square
	slag and gravel, moist, slight chemical odor				N
- 3.0	Gray mottled CLAY, some silt and fine sand,	-2.8		(255)	ľÅ
· · .	moist, NATIVE END OF HOLE @ 3.5 FT. BGS	3.5			<u> </u>
4.0	NOTES: 1. Soil sample collected for				
	chemical analysis from 0.5 to 3.5 ft. BGS. 2. Borehole backfilled to surface				
- 5.0	with cement/bentonite grout.				
6.0					
			•		
7.0					
<u>8</u> .0					
		·	•		
9.0			· .		
, , , ,					
10.0					
11.0				· 1	•
11.0					
12.0					
			•		
- 13.0					
_					
	·				

.

.

·

	STRATIGRAPHIC AND IN (OVERBU		TATION LUG	(L
PROJE	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION	: NCC-15
PROJE	CT NO.: 3307		DATE COMPLETED:	MARCH 5, 1990
CLIENT	OXYCHEM	· e	DRILLING METHOD:	3" SPLIT SPOOL
LOCAT	ON: 10500 CAYUGA DRIVE		CRA SUPERVISOR:	K. LYNCH
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SAMPLE
ft BGS		ft BGS	INSTALLATION	
				М А 8 Т 5 Е
- 1.0	Auger through asphalt Brown fine to coarse SAND, some fine to coarse angular gravel, dry, FILL		BOREHOLE	R
- 1.0		-1.4	CEMENT/	
- 2.0	Dark gray CLAY, trace fine angular gravel, moist, slight chemical odor Same with trace brown resinous material, moist, slight chemical odor	2.1	CEMENT/ BENTONITE GROUT	
- 3.0	Same with trace silt and plant roots, moist, NATIVE	-3.2		255
- 4.0	END OF HOLE @ 3.2 FT. BGS NOTES: 1. Soil sample collected for chemical analysis from 0.2 to 3.2 ft. BGS. 2. Borehole backfilled to surface	-3.2		-
	with cement/bentonite grout.			
· 5.0				
6.0				
7.0				
8.0				
9.0		,		
· 10.0				
			•	
11.0				
			· .	
12.0				
13.0				
13.0			•	
	S: MEASURING POINT ELEVATIONS MAY CHANG	E; REFER T	O CURRENT ELEVATION	N TABLE
	\frown		STATIC WATER LEV	

	STRATIGRAPHIC AND IN (OVERBU		TATION LOG	(L-
PROJE	CT NAME: 10500 CAYUGA DRIVE	•	HOLE DESIGNATION	: NCC-16
PROJE	CT NO.: 3307		DATE COMPLETED:	MARCH 5, 19
CLIENT	ОХҮСНЕМ		DRILLING METHOD:	3" SPLIT SPC
LOCATI	ION: 10500 CAYUGA DRIVE		CRA SUPERVISOR:	K. LYNCH
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SAMPLE
ft BGS		ft BGS	INSTALLATION	
				M A B T E E
	Auger through asphalt \Brown SAND, trace fine to coarse angular / \gravel, dry, FILL /	-0.3		
- 1.0	Black CLAY, some sand, trace gravel, slag and coal, moist to wet			ISS
- 2.0	Dark gray SAND, some fine gravel, wet	-1.7	GROUT	
7.0	Gray CLAY, some fine sand and silt, trace roots, moist, NATIVE Green-gray mottled CLAY with trace silt and	-2.2		255
- 3.0	roots, moist END OF HOLE @ 3.2 FT. BGS	-3.2		
4.0	NOTES: 1. Soil sample collected for chemical analysis from 0.2 to 3.2 ft. BGS. 2. Borehole backfilled to surface with cement/bentonite grout.			
5.0				
			·	
6.0				
7.0				
			· · ·	
8.0				
9.0				
5.0				
10.0				
11.0				
12.0				
13.0				
			·. ·	
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG			
	-		STATIC WATER LEVEL	

. .

. .

. .

PROJE	(OVERBI	,	HOLE DESIGNATION	NCC-17
	CT NO.: 3307		DATE COMPLETED:	
CLIENT	: OXYCHEM		DRILLING METHOD:	
LOCAT	ON: 10500 CAYUGA DRIVE		CRA SUPERVISOR:	K. LYNCH
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SAMPLE
ft_BGS		ft BGS	INSTALLATION	
				M A B T E É
- 1.0	Auger through asphalt Gray SAND, trace brick and gravel, moist, FILL	-1.4		R ISS
- 2.0 _.	Black to red—brown CLAY, some sand, trace weathered concrete, metal, wood and coal, moist Same, moist		GROUT	255
- 3.0	Gray mottled CLAY, trace silt and fine sand,	-3.1		$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$
- 4.0	moist, NATIVE END OF HOLE @ 3.5 FT. BGS NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BGS.	-3.5		
5.0	 Borehole backfilled to surface with cement/bentonite grout. 			
· 6.0				
- 7.0				
8 .0				
9.0	· · · · · · · · · · · · · · · · · · ·		•	
• 10.0				
11.0	· · · ·			
12.0				
13.0				
NOTE	S: MEASURING POINT ELEVATIONS MAY CHAN	IGE; REFER 1	O CURRENT ELEVATION	TABLE

·

.

PROJE	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION	NCC-18
PROJE	CT NO.: 3307		DATE COMPLETED:	MARCH 5, 199
CLIENT	OXYCHEM	,	DRILLING METHOD:	3" SPLIT SPO
LOCAT	ION: 10500 CAYUGA DRIVE		CRA SUPERVISOR:	K. LYNCH
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SAMPLE
t BGS		ft BGS	INSTALLATION	
				M A B T E E
	Auger through asphalt Brown SAND, some clay, trace rounded fine gravel, wet, FILL			
1.0	Same		CEMENT/ BEN CONITE GROUT	
2.0	Dark gray CLAY, some silt, moist, NATIVE Green-gray mottled CLAY, some silt and fine sand, moist	2.1		255
3.0 4.0	END OF HOLE @ 3.1 FT. BGS NOTES: 1. Soil sample collected for chemical analysis from 0.1 to 3.1 ft. BGS.	-31		
	2. Borehole backfilled to surface with cement/bentonite grout.			
5.0				
6:0				
7.0				
8.0				
9.0	· · · · · · · · · · · · · · · · · · ·			
10.0			· ·	
11.0				
12.0	· · ·			
13.0			· · ·	

•

	STRATIGRAPHIC AND I (OVERB	URDEN)		(L-0
PROJEC	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION	NCC-19
PROJEC	CT NO.: 3307		DATE COMPLETED:	MARCH 5, 1990
CLIENT	OXYCHEM		DRILLING METHOD:	3" SPLIT SPOON
LOCATI	ON: 10500 CAYUGA DRIVE		CRA SUPERVISOR:	K. LYNCH
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SAMPLE
ft BGS	· · · · · · · · · · · · · · · · · · ·	ft BGS	INSTALLATION	
				M A 80 T E E
.1.0	Auger through asphalt Black SAND, some silt, trace concrete, brick coal, slag, dry to moist, FILL, slight chemical odor			
2.0	Red-brown CLAY, some concrete and gravel, moist Same, moist Dark gray SILT, some concrete and gravel,			
3.0	\moist Gray/green mottled CLAY, some fine sand and silt, moist, NATIVE	/		
4.0	END OF HOLE @ 3.5 FT. BGS NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BGS.		×	
5.0	 Borehole backfilled to surface with cement/bentonite grout. 			
6.0			· ·	
7.0				
	·		· .	
.8.0				
9.0			·	
10.0				
11.0				
12.0				
13.0	•		· · ·	
NOTE	S: MEASURING POINT ELEVATIONS MAY CHAN	IGE: REFER T	O CURRENT ELEVATION	N TABLE

.

•

.

.

.

•

.

. .

	STRATIGRAPHIC AND IN (OVERBU		NTATION LOG	(1	L-C
PROJE	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION: N	ICC-20	
	CT NO.: 3307		DATE COMPLETED: N		n
CLIENT	· · · ·		DRILLING METHOD: 3		
LOCATI			CRA SUPERVISOR: K		
OCDIL					
ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft BGS	MONITOR INSTALLATION	SAMPLI N S	<u>-</u>
		1	· · ·	N T ≪ T E	
	Auger through asphalt			B T E E R	
	Brown SAND, some fine to coarse angular gravel, moist, FILL		BOREHOLE		
- 1.0	grave, moist, ALL		BOREHOLE		
	Black SILT, moist	1.2 -1.6		\bigwedge	
- 2.0	Brown SAND, some fine ğravel, trace slag, n moist	-7.0 -2.0	GROUT		
	Same without slag and gravel, dry to moist Gray CLAY, some silt and fine sand, dry to			V	.
- 3.0	moist, NATIVE Gray-green mottled CLAY, some silt and sand,			255	
	dry to moist	-3.3			
- 4.0	END OF HOLE @ 3.3 FT. BGS NOTES: 1. Soil sample collected for		•		
1.0	chemical analysis from 0.3 to 3.3 ft. BGS.		· ·		
- 5.0	 Borehole backfilled to surface with cement/bentonite grout. 		-		
- J.U			••••		
- 6.0					
- 0.0			· · ·		
- 7.0					
- 7.0					
- 8.0		ľ	•		
9.0					
	•		· .		
- 10.0					
			,		
11.0					
12.0	· · · · · · · · · · · · · · · · · · ·				
1,3.0	•				
ľ					
NOTE	S. MEASURING DOINT ELEVATIONS MAY OUT				
NOTE				_	•
	CHEMICAL ANALYSIS WATER	FOUND V	STATIC WATER LEVEL	¥	_

.

PROJECT NAME: 10500 CAYUGA DRIVE HOLE DESIGNATION: NCC-21 PROJECT NO:: 3307 DATE COMPLETED: MARCH 5, 1950 CLIENT:: 0XYCHEM DRILLING METHOD: 3' SPLIT SPOOL LOCATION: 10500 CAYUGA DRIVE CRA SUPERVISOR: K. LYNCH CRA SUPERVISOR: K. LYNCH DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION MONITOR Auger through ospholt TI BGS Gray CLAY, some glass, trace cool, metol, word ond rounded white fine gravel, moist, FILL -1.0 White, rounded fine GRAVEL, some gray clay, roist -2.0 White, rounded fine GRAVEL, some gray clay, roist -3.0 Dark gray motiled CLAY, some silt, moist, NATIVE -3.0 Dork for younded fine GRAVEL, some gray clay, rots and the state of the		STRATIGRAPHIC AND IN (OVERBU		VIATION LUG	(L-
CLIENT: OXYCHEM DRILLING METHOD: 3' SPLIT SPOOL LOCATION: 10500 CAYUGA DRIVE CRA SUPERVISOR: K. LYNCH DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION MONITOR SAMPLE 100 Auger through asphalt Gray CLAY, some glass, trace coal, metal, wood and rounded white fine gravel, moist, FILL INSTALLATION Nonitor INSTALLATION Nonitor Sample 2.0 White, rounded fine GRAVEL, some gray clay, maist Dark gray mottled CLAY, some silt, moist, NOTES: -7.8 -7.8 -7.8 3.0 NATIVE -3.5 -3.5 -3.5 -3.5 4.0 END OF HOLE @ 3.5 FT. BGS NOTES: -3.5 -3.5 -3.5 4.0 END OF HOLE @ 3.5 FT. BGS 0.5 to 3.5 bt/t BGS. -3.5 -3.5 -3.5 6.0 .0 .0 sto at 5 bt/t BGS. -3.5 6.0 9.0 10.0 10.0 10.1	PROJE	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION:	NCC-21
LOCATION: 10500 CAYUGA DRIVE DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS <u>LEVATION</u> MONITOR INSTALLATION <u>SAMPLE</u> (1 BOS <u>INSTALLATION</u> <u></u>	PROJE	CT NO.: 3307		DATE COMPLETED:	MARCH 5, 1990
DEPTH It BCS STRATIGRAPHIC DESCRIPTION & REMARKS It BCS ELEVATION It BCS MONITOR INSTALLATION SAMPLE Auger through asphalt Gray CLAY, some glass, trace coal, metal, woad and rounded white fine gravel, moist, Fill -1.0 -1.0 -1.0 -1.0 2.0 White, rounded fine GRAVEL, some gray clay, moist Same Same Same -1.8 -1.8 -1.8 3.0 Ork gray mottled CLAY, some silt, moist, NATIVE -2.5 -2.5 -2.5 4.0 END OF HOLE @ 3.5 FT. BCS NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BCS. 2. Borehole backfilled to surface with cement/bentanite graut. -3.5 6.0 -0 7.0 -1.0 10.0 -1.0	CLIENT	OXYCHEM	•	DRILLING METHOD:	3" SPLIT SPOON
ft BCS ft BCS INSTALLATION Auger through asphalt Gray CLAY, some glass, trace coal, metal, wood and rounded white fine gravel, moist, Fill -7.8 2.0 White, rounded fine GRAVEL, some gray clay, moist Same Same Or gray mottled CLAY, some silt, moist. -7.8 3.0 NATIVE -2.5 4.0 For gray mottled CLAY, some silt, moist. -3.5 4.0 For gray mottled CLAY, some silt, moist. -3.5 5.0 NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BGS. -3.5 6.0 2 Borehole beckfilled to surface with cement/bentonite graut. -3.5 8.0 -0 -10 9.0 -10.0 -10.0	LOCATI	ON: 10500 CAYUGA DRIVE		CRA SUPERMSOR:	K. LYNCH
Auger through asphalt Gray CLAY, some glass, trace coal, metal, wood and rounded white fine gravel, moist, Fill. -/.8 2.0 White, rounded fine GRAVEL, some gray clay, moist Same -/.8 3.0 NATIVE Bork gray mottled CLAY, some silt, moist, NATIVE -/.8 2.0 White, rounded fine GRAVEL, some gray clay, moist -/.8 3.0 NATIVE Bork gray mottled CLAY, some silt, moist, NOTES: -/.8 2.0 END OF HOLE @ 3.5 FT. BGS 0.5 to 3.5 ft. BGS. 2. Borehole backfilled to surface with cement/bentonite grout. 6.0 7.0 8.0 9.0 10.0 11.0		STRATIGRAPHIC DESCRIPTION & REMARKS			
Gray CLAY, some glass, trace coal, metal, wood and rounded white fine gravel, moist, Fill. 2.0 White, rounded fine GRAVEL, some gray clay, moist Some Dark gray mottled CLAY, some silt, moist, 3.0 NATVE END OF HOLE @ 3.5 FT. BGS 					
 2.0 White, rounded fine GRAVEL, some gray clay, moist Same Dark gray mottled CLAY, some silt, moist, NATIVE END OF HOLE @ 3.5 FT. BGS A.0 NOTES: 1. Soil sample collected for chemical analysis fram 0.5 to 3.5 ft. BGS. 2. Borehole backfilled to surface with cement/bentonite grout. 	- 1.0	Gray CLAY, some glass, trace coal, metal, wood and rounded white fine gravel, moist,			
3.0 Dark gray mottled CLAY, some silt, moist, NATIVE 235 3.0 END OF HOLE @ 3.5 FT. BGS -J.5 -J.5 4.0 NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BGS. -J.5 5.0 Borehole backfilled to surface with cement/bentonite grout. -J.5 6.0 . . 7.0 . . 8.0 . . 9.0 . . 11.0 . .	2.0	moist	-1.8	ERNINATE GROUT	
 END OF HOLE @ 5.5 F1. BGS 4.0 NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BGS. 2. Borehole backfilled to surface with cement/bentonite grout. 6.0 6.0 7.0 8.0 9.0 10.0 11.0 	- 3.0	Dark aray mottled CLAY, some silt, moist	-2.5		255
5.0 with cement/bentonite grout. 6.0 7.0 8.0 9.0 10.0 11.0	4.0	NOTES: 1. Soil sample colllected for chemical analysis from 0.5 to 3.5 ft. BGS.	3.5		
7.0 8.0 9.0 10.0 11.0	5.0	 Borehole backfilled to surface with cement/bentonite grout. 			
8.0 9.0 10.0 11.0	6.0	•			
9.0 10.0 11.0	7.0				
10.0	8.0			. ·	
11.0	9.0				
	10.0				
12.0	11.0	· ·			
	12.0				
13.0	13.0				

PROJE	(OVERBU) CT NAME: 10500 CAYUGA DRIVE	•	HOLE DESIGNATION:	NCC-22
	CT NO.: 3307		DATE COMPLETED:	
CLIENT	· · ·		DRILLING METHOD:	
LOCAT			CRA SUPERVISOR:	
				K. LINCH
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft BGS	MONITOR INSTALLATION	SAMPI
		1		8 T E E R
	Auger through asphalt Gray fine to coarse GRAVEL, some sand, FILL	•	BOREHOLE	
1.0	Some CLAY, some gravel, trace brick, moist	-0.7	BOREHOLE	
			CEMENT/ BENTONITE GROUT	ISS X
2.0	Same, no brick, moist		GROUT	
2.0				
3.0	Dark to light gray mottled CLAY, some silt and fine sand, moist, NATIVE	-2.6		2SS X
5.0	ine sono, moist, NATIVE			
	END OF HOLE @ 3.5 FT. BGS NOTES: 1. Soil sample collected for	-3.5	-	
4.0	NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BGS.			
	 Borehole backfilled to surface with cement/bentonite grout. 			
5.0				
6.0				
	- -			
7.0	· · · ·			
		· · ·		
8.0				
				ľ l
9.0				
			-	
10.0	4			
11.0			:	
. 12.0				
13.0				

PROF	CT NAME: 10500 CAYUGA DRIVE	BURDEN)	HOLE DESIGNATION	• NCC-23
	CT NO.: 3307		DATE COMPLETED:	
CLIENT	,	•	DRILLING METHOD:	
LOCATI			CRA SUPERVISOR:	
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft BGS	MONITOR INSTALLATION	SAMPL N S U T
			· · · · · · · · · · · · · · · · · · ·	M A
	Auger through asphalt			Ê E R
	Gray SAND, some gravel, dry, FILL		BOREHOLE	
1.0				
	Dark gray CLAY, some sand and fine to coa	-1.5	CEMENT/ BENTONITE CROUT	
2.0	gravel, moist Same, moist	-2.2		
	Same with some silt, moist, NATIVE Light gray mottled, same, some fine sand ar			
3.0	silt, moist Same with some silt and trace fine subround			
	gravel, moist END OF HOLE @ 3.5 FT. BGS	-3.5		
4.0	NOTES: 1. Soil sample collected for chemical analysis from			
	0.5 to 3.5 ft. BGS. 2. Duplicate soil sample			
5.0	collected and submitted as NCC-34.			
	 Borehole backfilled to surface with cement/bentonite grout. 			
6.0	· · · · · · · · · · · · · · · · · · ·			
7.0				· .
8.0				
9.0				
	· · · · ·		· · ·	
10.0				
	· · ·		•	
11.0			· .	
12.0				
17.0			4	• •
13.0			·	
NOTE	S: MEASURING POINT ELEVATIONS MAY CHA	NGE; REFER	TO CURRENT ELEVATIO	N TABLE
	-			

Ĵ

4

PROJECT NO: 3307 DATE COMPLETED: MARCH 5, 197 CUENT: OXYCHEM DRILLING METHOD: 3' SPLIT SPO LOCATION: 10500 CAYUGA DRIVE CRA SUPERVISOR: K. LYNCH DEPTH STRATGRAPHIC DESCRIPTION & REMARKS ELEVATION MONITOR SAMP Auger through asphalt Dark gray motified CLAY, some fine to coarse gravel, moist, FILL -1.9 -1.9 1.0 White rounded fine GRAVEL, some clay, moist -2.7 -3.5 -3.5 3.0 Gray motified CLAY, some silt, moist, NATIVE -2.7 -3.5 3.0 Gray motified CLAY, some silt, moist, NATIVE -2.7 -3.5 4.0 NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BCS -3.5 5.0 Croy motified CLAY, some silt, moist, NATIVE -3.5 5.0 Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BCS -3.5 6.0 Barehole backfilled to surface with cement/bentonite gravut. -3.5 7.0 7.0 7.0 7.0 7.0 7.0 <		(OVERBU				
CLIENT: OXYCHEM DRILLING METHOD: 3' SPLIT SPO LOCATION: 10500 CAYUGA DRIVE CRA SUPERVISOR: K. LYNCH DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION MONITOR SAMP LOCATION: 10500 CAYUGA DRIVE CRA SUPERVISOR: K. LYNCH DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION MONITOR SAMP LOCATION: Gray motitled CLAY, some fine to coarse gravel, moist, FILL -1.9 -1.9 -1.9 20 White rounded fine GRAVEL, some clay, moist -2.7 -2.5 -3.5 -3.5 3.0 Gray motitled CLAY, some silt, moist, NATIVE -2.7 -3.5 -3.5 -3.5 4.0 Formical analysis from 0.0 St to 3.5 ft. BGS -3.5 -3.5 -3.5 -3.5 -3.5 5.0 Createring analysis from 0.0 St to 3.5 ft. BGS -3.5 -3.5 -3.5 -3.5 -3.5 6.0 3.8 Borehole bockfilled to surface with cement/bentonite grout. -3.5 -3.5 -3.5 7.0 3.0 Borehole bockfilled to surface with cement/bentonite grout. -3.6 -3.6 -3.6 7.0 10.0 11.0 11.0 11.0 11.0 11.0						
LOCATION: 10500 CAYUGA DRIVE CRA SUPERVISOR: K. LYNCH DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS LEVATION WONTOR SAMP 1.0 Auger through aspholt Dark gray motiled CLAY, some fine to coarse gravel, most, FILL 2.0 White rounded line GRAVEL, some cloy, moist Same 3.0 Gray motiled CLAY, some silt, moist, NATIVE 4.0 Cray motiled CLAY, some silt, moist, NATIVE 5.0 Cray motiled CLAY, some silt, moist, NATIVE 5.0 Contest on a submitted 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0						
DEPTH It BGS STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION It BGS MONITOR It BGS SAMP It BGS Auger through caphoit Dork gray motited Gray motited CLAY, some fine to coarse grave, most, Fill -1.9 -1.9 2.0 White rounded fine CRAVEL, some cloy, moist Same -1.9 -1.9 3.0 Gray motified CLAY, some silt, moist, NATIVE -2.7 205 4.0 White rounded fine CRAVEL, some cloy, moist -1.9 -3.5 3.0 Gray motified CLAY, some silt, moist, NATIVE -2.7 205 4.0 NOTES: 1.0 Soil sample collected for Collected and submitted for NOTES: -3.5 ft BGS -3.5 5.0 Collected and submitted for NOTES: 3. Borehole backfilled to surface with cement/bentonite grout. -3.5 7.0 3.0 It controls and the grave. 1.0 10.0 1.0 1.0 1.0		· · · · · ·				P00
ft BCS ft BCS INSTALLATION Auger through asphalt				CRA SUPERVISUR:	K. LYNCH	
Auger through asphalt Dark gray motified CLAY, some fine to coarse gravel, moist, FILL 2.0 White rounded fine GRAVEL, some clay, moist 3.0 Gray motified CLAY, some silt, moist, NATIVE 3.0 From of HOLE @ 3.5 FT. BGS NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BGS. 2. Duplicate soil sample collected and submitted for chemical analysis 3.0 B SNCC -3.5 Some 5.0 From the common submitted for chemical analysis 3.0 B SNCC -3.5 Some 5.0 From the common submitted for chemical analysis 3.0 B SNCC -3.5 Some 5.0 From the common submitted for chemical analysis 3.0 S B SNCC -3.5 Some 5.0 From the common submitted for chemical analysis 3.0 Some 5.0 From the common submitted for chemical analysis 3.0 From the common submitted for chemical analysis for chemical anal		STRATIGRAPHIC DESCRIPTION & REMARKS				MPL
Auger through asphalt Dark gray mattled CLAY, some fine to coarse gravel, moist, FILL 2.0 White rounded fine GRAVEL, some clay, moist 3.0 Gray mattled CLAY, some silt, maist, NATIVE 3.0 Cray mattled CLAY, some silt, maist, NATIVE 4.0 END OF HOLE @ 3.5 FT. BGS 7.0 Collected and submitted for chemical analysis os NCC-33. 3. Barehole backfilled to surface with cement/bentonite graut. 7.0 8.0 9.0 10.0						T.
Dark gray motified CLAY, some fine to coarse grovel, moist, FILL -1.9 1.0 White rounded fine GRAVEL, some cloy, moist Same -1.9 3.0 Gray motified CLAY, some silt, moist, NATIVE -2.7 4.0 NOTES: 1. Soil sample collected for rotherical analysis os NCC-35 ft BaS. -3.5 5.0 Collected on d submitted for chemical analysis os NCC-35. -3.5 6.0 White comment/bentonite grout. -3.5 7.0 8.0 9.0 11.0			ļ	PR110 N2 01	Ē R	Ē
1.0 White rounded fine GRAVEL, some clay, moist -1.9 2.0 Gray moltiled CLAY, some silt, moist, NATIVE -2.7 3.0 Gray moltiled CLAY, some silt, moist, NATIVE -2.7 4.0 NOTES: 1. Soil somple collected for collected for collected soil somple collected for collected for collected soil somple collected for collected		Dark gray mottled CLAY, some fine to coarse		-3.0**		
 2.0 White rounded fine GRAVEL, some clay, moist 3.0 Gray mottled CLAY, some silt, moist, NATIVE 3.0 Gray mottled CLAY, some silt, moist, NATIVE 4.0 END OF HOLE @ 3.5 FT, BGS. 2. Duplicate soil sample collected for collected and submitted for exercise analysis from 0.5 to 3.5 ft, BGS. 3. Borehole backfilled to surface with cement/bentonite grout. 3.0 Borehole backfilled to surface 9.0 10.0 11.0 12.0 	1.0	grover, moist, mill	İ	BUNEHOLE		\mathbb{N}
 White rounded fine GRAVEL, some clay, moist Gray mottled CLAY, some silt, moist, NATIVE Gray mottled CLAY, some silt, moist, NATIVE END OF HOLE @ 3.5 FT. BGS Collected and submitted for chemical analysis as NCC-33. Collected and submitted for chemical analysis Collected and submitted for chemical analysis Collected solt sample collected to surface with cement/bentonite grout. 			,	CEMENT/ BENTONITE		ľÅ
Some Gray mottled CLAY, some silt, moist, NATIVE -2.7 3.0 Gray mottled CLAY, some silt, moist, NATIVE -3.5 4.0 END OF HOLE @ 3.5 FT. BGS -3.5 10 0.5 to 3.5 ft. BGS, 2. Duplicate soil sample collected for chemical analysis as NCC-33. -3.5 5.0 collected and submitted for chemical analysis as NCC-33. -3.5 6.0 7.0 8.0 9.0 11.0 12.0 13.0	2.0	White rounded fine GRAVEL, some clay, moist	-1.9	GROUT		\square
3.0 Gray motified CLAT, some silt, moist, NATIVE END OF HOLE @ 3.5 FT. BGS -J.5 4.0 END OF HOLE @ 3.5 FT. BGS 0.5 1.5 Soil sample collected for chemical analysis as NCC-33. 3.8 Borehole bockfilled to surface with cement/bentonite grout. 7.0 8.0 9.0 11.0 13.0						$\backslash/$
 END OF HOLE S 3.5 TI BOS NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BGS. Duplicate soil sample collected and submitted for chemical analysis as NCC-33. Borehole backfilled to surface with cement/bentonite grout. 	3.0	Gray mottled CLAY, some silt, moist, NATIVE] -2.7		(255)	Ň
4.0 NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 tt. BGS. 2. Duplicate soil sample collected and submitted for chemical analysis or NCC-33. 3. Borchole backfilled to surface with cement/bentonite grout. 5.0 3. Borchole backfilled to surface with cement/bentonite grout. 7.0 3.0 8.0 3.0 10.0 3.0 11.0 3.0		END OF HOLE @ 35 FT BCS	-3.5			\square
0.5 to 3.5 tr. BGS. 2. Duplicate soil somple collected and submitted for chemical analysis as NCC-33. 3. Borehole backfilled to surface with cement/bentonite grout. 7.0 8.0 9.0 10.0 11.0 12.0 13.0	4.0	NOTES: 1. Soil sample collected for				
5.0 collected and submitted for chemical analysis as NCC-33. 3. Borehole back/illed to surface with cement/bentonite grout. 7.0 8.0 9.0 10.0 11.0 12.0 13.0		0.5 to 3.5 ft. BGS.				
as NCC-33. 3. Borehole backfilled to surface with cement/bentonite grout. 6.0	. 5.0	collected and submitted for chemical analysis				
3.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0		as NCC-33. 3. Borehole backfilled to surface				
8.0 9.0 9.0 10.0 11.0 12.0 13.0 11.0	6.0	with cement/bentonite grout.				
8.0 9.0 9.0 10.0 11.0 12.0 13.0 11.0				· .		
9.0 10.0 11.0 12.0 13.0	7.0					
9.0 10.0 11.0 12.0 13.0		•				
10.0 11.0 12.0 13.0	8 .0					
10.0 11.0 12.0 13.0	•					
11.0 12.0 13.0	9.0	· · ·			·	
11.0 12.0 13.0				•		
12.0 13.0	10.0					
12.0 13.0						
13.0	11.0					
13.0						
	12.0					
	13.0					
	NOTE			· · · · · · · · · · · · · · · · · · ·		

- .

Ç

,	STRATIGRAPHIC AND IN (OVERBU		TATION LOG	. (
PROJE	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION	NCC-25
	CT NO.: 3307		DATE COMPLETED:	
CLIENT	OXYCHEM		DRILLING METHOD:	
LOCAT	ON: 10500 CAYUGA DRIVE		CRA SUPERVISOR:	
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SAMPL
ft BGS		ft BGS	INSTALLATION	
				B T E E
	Auger through asphalt			R
	Dark gray CLAY, some fine gravel, moist, FILL		3.0°¢ BOREHOLE	
- 1.0				
			CEMENT/ BENTONITE CROUT	
2.0	Same, moist			
	Same without gravel, moist, NATIVE	-2.6		
3.0	Light gray mottled CLAY, moist Brown CLAY, some fine to coarse sand, moist			
	END OF HOLE @ 3.5 FT. BGS	-3.5	622233	`
· 4.0	NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BGS.			
	2. Borehole backfilled to surface			
5.0	with cement/bentonite grout.		.'	
			,	
· 6.0				
7.0			•	
8.0			•	
			•	
9.0				
10.0				
11.0	· · · ·	.		
12.0			· .	
13.0	·			
		·		
			·	
NOTE	-	E; REFER T	O CURRENT ELEVATION	N TABLE
	CHEMICAL ANALYSIS WATER F	OUND 🔽	STATIC WATER LEV	ÆL 🗶

ļ

ĺ

Auger through asphalt Gray SILT, some clay and fine to coarse gravel, trace coal, moist, FILL 1.0 Gray CLAY, trace gravel, moist 2.0 Same, moist 3.0 Gray mottled CLAY, some silt, moist, NATIVE END OF HOLE @ 3.5 FT. BGS 4.0 NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft, BGS.	ELEVATION ft BGS - 1.4 - 3.0 - 3.5	DATE CO DRILLING CRA SUF		ARCH 5, SPLIT 5 LYNCH	SPOC
CLIENT: OXYCHEM LOCATION: 10500 CAYUGA DRIVE DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS t BGS Auger through asphalt Gray SILT, some clay and fine to coarse gravel, trace coal, moist, FILL 1.0 Gray CLAY, trace gravel, moist 2.0 Same, moist 3.0 Gray mottled CLAY, some silt, moist, NATIVE END OF HOLE @ 3.5 FT. BGS NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BGS.	ft BGS -1.4 -3.0	DRILLING CRA SUF	METHOD: 3" PERVISOR: K. TOR ATION	SPLIT S	SPOC
LOCATION: 10500 CAYUGA DRIVE DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS Auger through asphalt Gray SILT, some clay and fine to coarse gravel, trace coal, moist, FILL 1.0 Gray CLAY, trace gravel, moist 2.0 Same, moist 3.0 Gray mottled CLAY, some silt, moist, NATIVE END OF HOLE @ 3.5 FT. BGS NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BGS.	ft BGS -1.4 -3.0	CRA SUF	PERVISOR: K.	LYNCH	
DEPTH t BGS STRATIGRAPHIC DESCRIPTION & REMARKS Auger through asphalt Gray SiLT, some clay and fine to coarse gravel, trace coal, moist, FILL 1.0 Gray CLAY, trace gravel, moist 2.0 Same, moist 3.0 Gray mottled CLAY, some silt, moist, NATIVE END OF HOLE @ 3.5 FT. BGS 4.0	ft BGS -1.4 -3.0	MONI	TOR ATION	S/ U B E R 1SS	MPL S T
Auger through asphalt Gray SILT, some clay and fine to coarse gravel, trace coal, moist, FILL 1.0 Gray CLAY, trace gravel, moist 2.0 Same with some white rounded gravel, moist 3.0 Gray mottled CLAY, some silt, moist, NATIVE END OF HOLE @ 3.5 FT. BGS 4.0 NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft, BGS.	ft BGS -1.4 -3.0		- 3.0° BOREHOLE	NU BER 155	S T
Auger through asphalt Gray SILT, some clay and fine to coarse gravel, trace coal, moist, FILL 1.0 Gray CLAY, trace gravel, moist 2.0 Same, moist 3.0 Gray mottled CLAY, some silt, moist, NATIVE END OF HOLE @ 3.5 FT. BGS NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft, BGS.	-1.4 -3.0		- 3.0° BOREHOLE	U B E R 1SS	
Gray SILT, some clay and fine to coarse gravel, trace coal, moist, FILL 1.0 Gray CLAY, trace gravel, moist 2.0 Same with some white rounded gravel, moist 3.0 Gray mottled CLAY, some silt, moist, NATIVE END OF HOLE @ 3.5 FT. BGS NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft, BGS.	-3.0			1SS	Ē
Gray SILT, some clay and fine to coarse gravel, trace coal, moist, FILL 1.0 Gray CLAY, trace gravel, moist 2.0 Same with some white rounded gravel, moist 3.0 Gray mottled CLAY, some silt, moist, NATIVE END OF HOLE @ 3.5 FT. BGS NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft, BGS.	-3.0				
 1.0 Gray CLAY, trace gravel, moist 2.0 Same with some white rounded gravel, moist 3.0 Gray mottled CLAY, some silt, moist, NATIVE END OF HOLE @ 3.5 FT. BGS 4.0 A.0 <l< td=""><td>-3.0</td><td></td><td></td><td></td><td></td></l<>	-3.0				
Gray CLAY, trace gravel, moist 2.0 Same, moist 3.0 Gray mottled CLAY, some silt, moist, NATIVE END OF HOLE @ 3.5 FT. BGS 4.0 NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BGS.	-3.0		- CEMENT/ BENTONITE GROUT		X X
 2.0 Same, moist 3.0 Same with some white rounded gravel, moist 3.0 Gray mottled CLAY, some silt, moist, NATIVE 4.0 END OF HOLE @ 3.5 FT. BGS 4.0 NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BGS. 			GROUT	255	
 Same with some white rounded gravel, moist 3.0 Gray mottled CLAY, some silt, moist, NATIVE END OF HOLE @ 3.5 FT. BGS 4.0 A.0 <li< td=""><td></td><td></td><td></td><td>255</td><td>X</td></li<>				255	X
 3.0 Gray mottled CLAY, some silt, moist, NATIVE END OF HOLE @ 3.5 FT. BGS 4.0 NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BGS. 				255	Å
4.0 OF HOLE @ 3.5 FT. BGS NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BGS.			•		$\mid \perp \mid$
4.0 NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BGS.			•		
0.5 to 3.5 ft. BGS.				1	
2. Borehole backfilled to surface	1				
5.0 with cement/bentonite grout.					
6.0					
7.0					
8.0.		·			
9.0					
10.0		7			
11.0	ł	•	•		
12.0					
13.0			•.		
<u> </u>			· · · · · · · · · · · · · · · · · · ·		
NOTES: MEASURING POINT ELEVATIONS MAY CHANGE	E; REFER	TO CURRENT	ELEVATION T	ABLE	

Ŷ

•

PROJE	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION:	NCC-27	
PROJE	CT NO.: 3307		DATE COMPLETED:	MARCH 6	i. 1990
CLIENT	OXYCHEM		DRILLING METHOD:		
LOCATI	ON: 10500 CAYUGA DRIVE		CRA SUPERVISOR:		
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		
ft BGS		ft BGS	INSTALLATION	N	S
				. M B E	A T E
	Auger through asphalt			<u>Ř</u>	
	Brown SILT, some fine to coarse gravel and sand, trace weathered concrete, moist, FILL		BOREHOLE		
• 1.0	Dark gray CLAY, some silt, trace white	-1.1		(155	$\langle V \rangle$
	rounded fine gravel, moist		CEMENT/ BENTONITE GROUT		1/
2.0	Same				(\rightarrow)
				255	$\langle V $
3.0	White fine rounded GRAVEL, some clay, moist	3.1			$1 \wedge 1$
	Same except wet	-3.6		355	\mathbb{A}
4.0	Gray mottled CLAY, some silt, moist, NATIVE	-4.0	2000		\sim
	END OF HOLE @ 4 FT. BGS NOTES: 1. Soil sample collected for				
5.0	chemical analysis from 0.5 to 4.0 ft. BGS.				
	Borehole backfilled to surface with cement/bentonite grout.				
6.0	· · ·				
7.0	•				
8.0	· · ·				
	•				
9.0	· •		• .		
10.0					.
11.0					
			· . ·	· .	
12.0					
13.0					
NOTE	S: MEASURING POINT ELEVATIONS MAY CHAN	i <u> i l</u>	· · · · · · · · · · · · · · · · · · ·	·	

	(OVERB)	JRDEN)	· .	
PROJE	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION:	NCC-28
PROJE	CT NO.: 3307		DATE COMPLETED:	MARCH 6, 199
CLIENT	CXYCHEM		DRILLING METHOD: 3	SPLIT SPOC
LOCAT	ION: 10500 CAYUGA DRIVE		CRA SUPERVISOR:	K. LYNCH
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION		SAMPL
ft BGS		ft BGS		
				B T E E R
	Auger through asphalt Brown SAND, some fine to coarse angular			
1.0	gravel, dry, FILL		BOREHOLE	
1.0				
	Gray CLAY, some silt and white fine rounded gravel, moist	-1.5	CEMENT/ BENTONITE GROUT	
2.0	Red-brown same, moist Same, moist	1.		
	Dark gray CLAY, some silt, moist, NATIVE	-2.8		255
3.0	Light gray mottled CLAY, moist			
	END OF HOLE @ 3.5 FT. BGS NOTES: 1. Soil sample collected for	3.5		
4.0	chemical analysis from 0.5 to 3.5 ft. BGS.		•	
ſ	 Borehole backfilled to surface with cement/bentonite grout. 			
5.0				
		· .		
6.0				
7.0	· · ·			
8.0				
9.0				
	· .		· ·	
10.0				
11.0			·	
12.0				
13.0				
	· · · ·			
	· · · · · · · · · · · · · · · · · · ·			

	PROJE	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION	1: NCC-29
	PROJE	CT NO.: 3307		DATE COMPLETED:	
	CLIENT	OXYCHEM	•ر	DRILLING METHOD:	·
	LOCATI	ON: 10500 CAYUGA DRIVE		CRA SUPERVISOR:	
	DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION		·
	ft BGS		ft BGS	INSTALLATION	
•		Auger through asphalt			
		Light gray SAND, some weathered concrete, trace gravel, moist, FILL		BOREHOLE	
	- 1.0				
			-1.6	CEMENT/ BENIONITE GROUT	
	- 2.0	Gray-brown CLAY, some sand, trace gravel, moist		GROUT	
		Same, moist			
	- 3.0	Dark gray CLAY, some silt, moist, NATIVE Light gray mottled CLAY, moist	-2.7		
		END OF HOLE @ 3.5 FT. BCS	-3.5		
	- 4.0	NOTES: 1. Soil sample collected for chemical analysis from		* ,	
•		0.5 to 3.5 ft. BGS. 2. Borehole backfilled to surfac		· •	
	- 5.0	with cement/bentonite grout			
		· · · · ·			
	- 6.0				
	- 7.0			<i>,</i>	
	- 8.0				
		,			
	- 9.0			•	
	, ,	· ·			
	- 10.0				
		· · · ·			
	- 11.0	· · · · · · · · · · · · · · · · · · ·			
•					
	12.0				
				· ·	
	- 13.0	·. ·			
		•			
	NOTE	S: MEASURING POINT ELEVATIONS MAY CH	ANCE: REEER 1		

.

PROJE	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION	: NCC-30
PROJE	CT NO.: 3307		DATE COMPLETED:	MARCH 6
CLIENT	OXYCHEM		, DRILLING METHOD:	
LOCAT	ION: 10500 CAYUGA DRIVE		CRA SUPERVISOR:	
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SAM
t BGS	· · · · · · · · · · · · · · · · · · ·	ft BGS	INSTALLATION	
				B E
	Auger to 2.5 ft. BGS through fine to coarse angular gravel and sand fill			
• •			BOREHOLE	
1.0			CEMENT /	
			CEMENT/ BENTONITE CROUT	
2.0	Gray and tan SAND, some fine to coarse			
3.0	angular gravel, dry to moist, FILL			
J.U ·		ć		
4.0				
4.0	Gray SILT, some clay, dry to moist	-4.1 -4.3		
5.0	Red/brown CLAY, some silt, dry to moist, NATIVE	/ -4.5		
5.0	END OF HOLE @ 4.5 FT. BGS NOTES: 1. Soil sample NCC-30 collected			
6.0	for chemical analysis from 3.0 to 3.8 ft. BGS. Soil			
0.0	sample NCC-30a collected for chemical analysis from			
7.0	3.8 to 4.5 ft. BGS. 2. Borehole backfilled to surface with cement (hentenite accut		· ·	· .
	with cement/bentonite grout. 3. Borehole was located in area excavated in November 1989.			
8.0				
	· · · · · · · · · · · · · · · · · · ·			
9.0		•		
10.0				
	· · · · · · · · ·			
11.0				
12.0			· ·	
13.0	· · · ·		:	
				<u> </u>
NOTE	S: MEASURING POINT ELEVATIONS MAY CHAN	GE: REFER T	O CURRENT ELEVATION 1	ABLE

	STRATIGRAPHIC AND IN (OVERBU		NTATION LOG	
PROJE	CT NAME: 10500 CAYUGA DRIVE	·	HOLE DESIGNATION	: NCC-31
PROJE	CT NO.: 3307	·	DATE COMPLETED:	MARCH 6
CLIEN	C OXYCHEM		DRILLING METHOD:	4 1/4" (
LOCAT	ION: 10500 CAYUGA DRIVE		CRA SUPERVISOR:	K. LYNCH
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION		SAM
ft BGS		ft BGS	INSTALLATION	
				B E R
	Auger through fine to coarse gravel and sand fill			
1.0			BOREHOLE	
			CEMENT/	
2.0			EENTONITE CROUT	
2.0	Brown SAND, some gray fine to coarse angular			
- 3.0	gravel, dry. FILL			
				155
- 4.0	Crow find to concern consider CRAVEL come			
	Gray fine to coarse angular GRAVEL, some gray and red-brown clay, wet, FILL			255
5.0	END OF HOLE @ 5 FT. BGS NOTES: 1. Soil sample NCC-31 collected	-5.0	MEN'S TENT AG	ľ ľ
	for chemical analysis from 2.5 to 4.5 ft. BGS. Soil sample NCC-31a collected for		* · · ·	
6.0	sample NCC-31a collected for chemical analysis from		-	
	4.5 to 5.0 ft. BGS. 2. Borehole backfilled to surface		•	
- 7.0	with cement/bentonite grout. 3. Borehole was located in area			
	excavated in November 1989.		· · ·	
- 8.0				
			· · ·	
- 9.0	· ·		·	
10.0				
11.0			· .	
			·	
12.0			·	
- 13.0				

PROJE	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION	I: NCC-32
PROJE	CT NO.: 3307		DATE COMPLETED:	MARCH 6.
CLIENT	OXYCHEM		DRILLING METHOD:	4 1/4" iD
LOCAŢ	ON: 10500 CAYUGA DRIVE		CRA SUPERVISOR:	K. LYNCH
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION		SAM
ft BGS	·	ft BGS	INSTALLATION	M C N
			r .	B E R
	Auger through fine to coarse angular gravel and sand fill			
1.0			BOREHOLE	
1.0			CEMENT/ BENTONITE GROUT	
2.0			GROUT	
	Light gray SAND, some gravel, dry, FILL			
3.0				I N
				155
4.0	Dark gray mottled CLAY, some silt and fine sand, moist, NATIVE	-3.7		
	Red-brown mottled Same, some silt and fine \sand, moist /	-4.5	a subsection and a subsection of the subsection	
5.0	END OF HOLE @ 4.5 FT. BGS NOTES: 1. Soil sample NCC-32 collected		•	
	NOTES: 1. Soil sample NCC-32 collected for chemical analysis from 3.0 to 3.5 ft. BGS. Soil			
6.0	sample NCC+32a collected for chemical analysis from 3.5 to 4.0 ft. BGS.			
	2. Borehole backfilled to surface			
7.0	with cement/bentonite grout. 3. Borehole was located in area excavated in November 1989.			
				-
8.0				
9.0			-	
10.0				
10.0	· ·			
11.0				
			·	
12.0			·	
13.0	· · · ·		, ··	
NOTE			· .	
	CHEMICAL ANALYSIS WATER	FOUND 🔽	STATIC WATER LEVE	L 🗶

•

	STRATIGRAPHIC AND IN (OVERBU		TATION LOG		(L-
PROJE	CT NAME: 10500 CAYUGA DRIVE	-	HOLE DESIGNATION:	NCC-35	
PROJE	CT NO.: 3307		DATE COMPLETED:	MARCH 14	4, 19
CLIENT	OXYCHEM		DRILLING METHOD:		
LOCATI	ON: 10500 CAYUGA DRIVE		CRA SUPERVISOR:		
EPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION			
t BGS		ft BGS	MONITOR INSTALLATION		
				M I	A T E
	Auger through asphalt			R	
1.0	Brown to gray GRAVEL, some fine to coarse sand and clay, trace asphalt and coal, FILL		CEMENT/ BOREHOLE CEMENT/ BENTON/TE GROUT	155	
2.0	Same, except moist to wet		GROUT		
3.0	Red brown mottled CLAY, some silt, dry to moist Green-brown SILT, some fine sand, trace sub-	-2.7 -3.0 -3.2 -3.5		255	$\langle $
4.0	Tounded gravel, moist Dark gray mottled CLAY, dry to moist, NATIVE END OF HOLE @ 3.5 FT. BGS NOTES: 1. Soil sample collected for chemical				
5.0	analysis from 0.5 to 3.5 ft. BGS. 2. Borehole backfilled to surface with cement—bentonite grout.				
6.0		,			
7.0					
8.0					
9.0					
10.0					
11.0			· · ·		
12.0					
13.0			• •		
NOTES	-				
	CHEMICAL ANALYSIS WATER F		STATIC WATER LEVEL	Y	

.

•

	STRATIGRAPHIC AND IN (OVERBU		NTATION LOG		(L-
PROJE	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION	: NCC-36	
PROJE	CT NO.: 3307		DATE COMPLETED:		19
CLIENT	ОХҮСНЕМ		DRILLING METHOD:		
LOCATI	ION: 10500 CAYUGA DRIVE		CRA SUPERVISOR:		
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION		· · · · · · · · · · · · · · · · · · ·	
ft BGS	STRATIGRAFHIC DESCRIFTION & REMARKS	ft BGS	MONITOR INSTALLATION		<u>LE</u> T
		· · · ·			
	Auger through asphalt				╇
	Gray GRAVEL, some sand, red-brown clay and		BOREHOLE		
- 1.0	wood, wet, FILL				/
,			EMENT/ BENTONITE GROUT		
- 2.0	Same, with some fine sand	、	GROUT		Y
					/
3.0				(255)	
					¥.
4.0	Light gray mottled CLAY, some silt, trace	-3.8			1
	rounded gravel, dry to moist, Native Red brown CLAY, dense, dry to moist			(JSS)	
5.0		-5.0			Y
	END OF HOLE @ 5 FT. BGS NOTES: 1. Soil sample collected for chemical		•. •		
6.0	analysis from 0.5 to 3.8 ft. BGS. 2. Borehole backfilled to surface with cement-bentonite grout.				
7.0		·			
7.0			·		
· a a l	<i>.</i>		•		
8.0					
			•		
9.0					
	· · · ·		**		
10.0					
					ľ
11.0					
		l	•		
12.0					
13.0					
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG	E; REFER	TO CURRENT ELEVATION	TABLE	•
	CHEMICAL ANALYSIS 💛 WATER F		STATIC WATER LEVE		

ı

ľ

	(OVERBU	RDEN)		· (
PROJE	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION	: NCC-37
PROJE	CT NO.: 3307		DATE COMPLETED:	MARCH 14,
CLIEN1	C OXYCHEM		DRILLING METHOD:	3" SPLIT _. SP
LOCAT	ION: 10500 CAYUGA DRIVE		CRA SUPERVISOR:	K. LYNCH
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft BGS	MONITOR	SAMPL
		11 505		
	Auger through asphalt			B T E E R
	Grav SAND, some fine to coarse angular	-0.5	BOREHOLE	
- 1.0	gravel, dry to moist, FILL	-1.2		
	Gray and red brown CLAY, some gravel, trace coal, cobbles and metal, moist		CEMENT/ BENTONITE CROUT	
2.0				
- 3.0	Gray mottled CLAY, moist, NATIVE	-3.1		
	END OF HOLE OF 35 FT BGS	-3.5	1977 1979 1999 1999 1999 1999 1999 1999	
- 4.0	NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BGS. 2. Borehole backfilled to surface with			
5.0	cement-bentonite grout.			
J.U				
- 6.0	- · · · · · · · · · · · · · · · · · · ·			
0.0			×	
7.0				
	· · · · ·			
- 8.0				
	•		· · · · ·	
- 9.0				
			· · ·	
- 10.0				
*				
- 11.0				
			· ·	
- 12.0			•	
			. •	
- 13.0	· · ·			1. 1. 1

. **,**

	STRATIGRAPHIC AND IN (OVERBU		NTATION LOG	•
PROJE	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION	: NCC-38
PROJE	CT NO.: 3307		DATE COMPLETED:	MARCH 1
CLIENT	OXYCHEM		DRILLING METHOD:	3" SPLIT
LOCAT	ION: 10500 CAYUGA DRIVE		CRA SUPERVISOR:	K. LYNCH
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION		SAN
ft BGS		ft BGS	INSTALLATION	
	Auger through asphalt		174381574 c ² 75	BER
	Dark gray SAND, some clay and silt, trace	-0.5	BOREHOLE	
- 1.0	fine to coarse gravel, clinkers and weathered concrete, moist, FILL		BUREHULE	
			CEMENT/ BENTONITE GROUT	
- 2.0			GROUT	.
	Gray CLAY, trace vegetation (roots), moist	-2.3 -2.5		
- 3.0	Light gray mottled CLAY, moist, NATIVE			(255)
	END OF HOLE @ 3.5 FT. BGS	- 3.5		I K
- 4.0	NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BGS.			
	Borehole backfilled to surface with cement-bentonite grout.			
- 5.0				
	· · ·			
- 6.0				
- 7.0			•	
- 8.0				
- 9.0				
- 10.0				
- 11.0	· · · ·		· ·	
- 12.0			• ·	
- 13.0				
13.0				
			· · · · · · · · · · · · · · · · · · ·	
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG	E; REFER	TO CURRENT ELEVATION	TABLE
	CHEMICAL ANALYSIS 🔵 WATER F		STATIC WATER LEVEL	

PROJE	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION:	NCC-39		
PROJE	CT NO.: 3307		DATE COMPLETED:	MARCH	14	19
CLIENT	OXYCHEM		DRILLING METHOD:			
LOCATI	ON: 10500 CAYUGA DRIVE		CRA SUPERVISOR:	K. LYNC	н	
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	,	MPL	F
ft BGS		ft BGS	INSTALLATION		S T	Ē
	·			B E	A T E	
	Auger through asphalt	· · ·		<u> </u>		t
1.0	Dark brown to gray SAND, some fine gravel, trace coarse grvel, moist, FILL	-0.5	BOREHOLE		\setminus	
	Dark gray SILT, some sand, weathered concrete and brick, maist				Å	
2.0	Dark gray SILT, some fine sand, weathered concrete and brick, moist, NATIVE	-2.1			$\left\langle \right\rangle$	
3.0	Light gray mottled CLAY, some silt, moist	-2.8		255	Å	
4.0	END OF HOLE @ 3.5 FT. BGS NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BGS. 2. Borehole backfilled to surface with cement-bentonite grout.	-3.5			<u> </u>	
5 .0						
6.0						
.7.0						
8.0						
9.0				,		
10.0						
11.0						
1,2.0			· ·			i I
13.0						
						1

	STRATIGRAPHIC AND IN (OVERBUI		NTATION LOG	(L-2
PRO	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION	NCC-40	
	CT NO.: 3307		DATE COMPLETED:		10
CLIENT	· .		DRILLING METHOD:		
	ION: 10500 CAYUGA DRIVE		CRA SUPERVISOR:		~-
	· · · · · · · · · · · · · · · · · · ·				_
ft BGS		ELEVATION ft BGS	INSTALLATION		
		:		M A B T E R	
	Auger through asphalt	-0.5			Γ
- 1.0	Gray SAND, some fine gravel, trace brick, Wet, FILL	-0.0,	BOREHOLE		
	Gray and red brown CLAY, some silt, weathered	-1.6	CEMENT/ BENTONITE CROUT		
- 2.0	concrete and cobbles, moist Same, with sand, weathered concrete and				
	angular fine to coarse gravel, wet	-2.8			
- 3.0	Gray mottled CLAY, some silt, dry, NATIVE				
- 4.0	END OF HOLE @ 3.5 FT. BGS NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BGS. 2. Borehole backfilled to surface with cement-bentonite grout.	-3.5			
- 5.0					
- 6,0					
- 7.0					
- 8.0	¢ .				
- 9.0					
- 10.0					·
- 11.0					
- 12.0		· .			
- 13.0					
NOT	-	E; REFER	,		[

·

e.

		STRATIGRAPHIC AND (OVERI	BURDEN)	MINION TOG	(L-
	PROJE	CT NAME: 10500 CAYUGA DRIVE	·	HOLE DESIGNATION	I: NCC-41
	PROJE	CT NO.: 3307		DATE COMPLETED:	MARCH 14, 19
-	CLIENT	: OXYCHEM		DRILLING METHOD:	
	LOCATI	ON: 10500 CAYUGA DRIVE	•	CRA SUPERVISOR:	K. LYNCH
		STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SAMPLE
	t BGS		ft BGS	INSTALLATION	
		•			
Γ		Auger through asphalt			
	1.0	Brown and gray SAND, some fine to coarse angular and white rounded gravel, wet, Fill	-0.5	BOREHOLE	
Ī	1.0	Same, except dark gray with cobbles and wo	od	CEMENT/	
L	2.0		-1.9	CEMENT/ BENTONITE GROUT	
÷	2.0	Gray CLAY, trace gravel, moist			
·	3.0				
	0.0	Light gray mottled CLAY, dry, NATIVE	-3.1		
	4.0	END OF HOLE @ 3.5 FT. BGS NOTES: 1. Soil sample collected for chemical	-5.5		
		analysis from 0.5 to 3.5 ft. BGS. 2. Borehole backfilled to surface with			
	5.0	cement-bentonite grout.			
		· · · · · ·			
·	6.0	· · · · · · · · · · · · · · · · · · ·			
	·				
-	7.0				
		,			
· F	8.0				
ŀ	9.0			· ·	
ŀ	10.0	· · ·			
ŀ	11.0				
F	12.0	· · ·			
		,			
ŀ	13.0	· · · · · ·			
	NOTES	S: MEASURING POINT ELEVATIONS MAY CHAI			
		CHEMICAL ANALYSIS WATER		O CORRENT ELEVATION	

PROJE	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION	1: NCC-42
PROJE	CT NO.: 3307		DATE COMPLETED:	
CĻIENT	ОХҮСНЕМ		DRILLING METHOD:	
LOCATI	ON: 10500 CAYUGA DRIVE		CRA SUPERMSOR:	
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS			
ft BGS	STRATIGRAFILE DESCRIPTION & REMARKS	ELEVATION ft BGS	MONITOR INSTALLATION	
; •	•			
	Auger through asphalt			
- 1.0	Brown to gray SAND, some weathered concrete cobbles, trace wood, silt and rounded white gravel, moist, FILL		BOREHOLE	
- 2.0	Same, except gray			
	Gray CLAY, some silt and fine sand, moist	-2.5 -2.9		
3.0	Gray mottled CLAY, some silt, dry, NATIVE			
4.0	 END OF HOLE Ø 3.5 FT. BGS NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BGS. 2. Borehole backfilled to surface with cement-bentonite grout. 	-3.5		
5.0	 Duplicate soil sample submitted for chemical analysis as NCC-43. 			
6.0				
0.0			•	
7.0				
8.0			•	
5.5				
9.0		•	·	
10.0 ⁻				
,				
11.0				
12.0				
13.0	· · · · ·		•	
• NOTE:	E MEASURING POINT ELEVATIONS MAY CHANGE			

,

PROJE	CT NAME: 10500 CAYUGA DRIVE	· · · ·	HOLE DESIGNATION	: NCC-44
PROJE	CT NO.: 3307		DATE COMPLETED:	JUNE 1, 1990
CLIENT	OCCIDENTAL CHEMICAL CORPORATION		DRILLING METHOD:	3"¢ SPLIT SP
LOCATI	ON: 10500 CAYUGA DRIVE		CRA SUPERVISOR:	K. LYNCH
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION		SAMPLE
ft BGS		ft AMSL	INSTALLATION	
				M A B T E E
	Black SILT, some fine to coarse sand and vegetation, moist, TOPSOIL	-0.2		
• 1.0	Gray fine to coarse SAND, some fine to coarse angular gravel, dry to moist, FILL	-0.8	BOREHOLE	
	Red-brown CLAY some fine to coarse angular			
2.0	gravel, trace sand, dense, hard, moist Same, with trace concrete and metal slag, trace wood		BACAFILL	
				255
3.0	Gray mottled CLAY, some silt, soft, plastic,	-2.9		
	moist. NATIVE END OF HOLE @ 3.5 FT. BGS	-3.5		
4.0	NOTES: 1. Soil sample collected for chemical analysis from 0.2 to 3.5 ft. BGS.			
	Borehole backfilled to surface with gravel and topsail		· .	
5.0 ·	3. Borehole located in grass off west edge of pavement			
6.0			•	
7.0			•	
8.0	· · · · · · · · · · · · · · · · · · ·			
a.u		· · ·		
9.0			· .	
10.0	· · ·			
	· ·			
11.0				
· .				
12.0			· · ·	
13.0			· ·	
	S: MEASURING POINT ELEVATIONS MAY CHANG	<u> </u>		

PROJE	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION:	NCC-45	
PROJE	PROJECT NO.: 3307		DATE COMPLETED:	JUNE 1.	1990
CLIENT	CLIENT: OCCIDENTAL CHEMICAL CORPORATION		DRILLING METHOD:		
LOCATI	ON: 10500 CAYUGA DRIVE		CRA SUPERVISOR:		
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	54	MPLE
ft BGS		ft AMSL	INSTALLATION	N U	S T
				3 B L R	A T E
	Auger through asphalt Gray fine to coarse GRAVEL, some coarse sand			- R	
	dry, FILL		BOREHOLE		
1.0			CEMENT /		VI :
	Dark gray SILT, trace gravel and fine to	-1.7	EEN TONITE CROUT		\mathbb{N}
2.0	<u>\coarse sand, (black tar on gravel), moist</u>	-2.0			
	Gray fine angular GRAVEL, trace fine to coarse sand, moist			255	V
3.0	Same, with gray, some red-brown clay, fine to coarse sand and silt				N
	Gray mottled CLAY, some silt, soft, plastic,	-3.5			(-)
4.0	moist, NATIVE Same, except red-brown, fine to coarse sand,			(JSS)	X
	dense, very slightly plastic END OF HOLE @ 4.5 FT. BGS	-4.5	学家を		\square
5.0	NOTES: 1. Soil sample collected for chemical				
	analysis from 0.5 to 4.3 ft. BGS. 2. Stratigraphy from 3.0 to 4.5 ft. from		. ·		
6.0	borehole 1 ft. east of original borehole. 3. Borehole backfilled to surface with				
	cement—bentonite grout and blacktop patch.				
7.0					
8.0					
0.0			,		
				· ·	
9.0					
			· .		
10.0					
	· · · ·				
11.0			· ·		
			· · · ·		
12.0					•
			• .		
13.0					
: I					·
NOTE	-			ABLE	
_	CHEMICAL ANALYSIS WATER F	OUND 🔽	STATIC WATER LEVEL	—	

-

	STRATIGRA	PHIC AND INSTRU (OVERBURDEN		(L-
PROJE	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATIO	N: NCC-46
PROJE	CT NO.: 3307		DATE COMPLETED	UNE 1, 1990
CLIENT	OCCIDENTAL CHEMICAL	CORPORATION	DRILLING METHOD	: · 3"ø SPLIT SP
LOCAT	ON: 10500 CAYUGA DRIVE		CRA SUPERVISOR:	K. LYNCH
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & R	REMARKS ELEVA		SAMPLE N S
				N S U T M A 8 T E E
	Auger through asphalt Gray fine to coarse SAND, some	e fine to coarse	BOREHOLE	R
· - 1.0	angular gravel, trace black tar, moist, FILL			
	Red-brown mottled CLAY, some coarse sand, strongly laminated	e silt, fine to	.2 CEMENT/ BENTONITE CROUT	
- 2.0	NATIVE		GROUT	
	•			
- 3.0	Black fine to coarse SAND, som \slight chemical odor	-2 ne silt, moist, -3		
	Gray CLAY, trace silt, moist	/		
- 4.0	END OF HOLE © 3.8 FT. BGS NOTES: 1. Soil sample collected	for chemical		
	analysis from 0.2 to 2. Borehole backfilled to	3.8 ft. BGS.		
- 5.0	cement-bentonite gr 3. Interval from 0.2 to 0	rout.		
	sampled by hand.			
- 6.0	· · ·			
- 7.0				
- 8.0				
- 9.0				
			•	
- 10.0			•	
- 11.0			· · · · · · · · · · · · · · · · · · ·	
- 12.0				
2.0				
- 13.0				
NOTE	S: MEASURING POINT ELEVATION	ONS MAY CHANGE; REP	FER TO CURRENT ELEVATION	TABLE
		WATER FOUND	STATIC WATER LEVE	- -

	STRATIGRAPHIC AND IN (OVERBU			(L-	•••
PROJ	ECT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION	N: NCC-47	
PROJE	ECT NO.: 3307		DATE COMPLETED:	JUNE 1, 1990	
CLIEN	T: OCCIDENTAL CHEMICAL CORPORATION		DRILLING METHOD:	3"ø SPLIT SP	oc
LOCA	TION: 10500 CAYUGA DRIVE		CRA SUPERVISOR:	K. LYNCH	
DEPTH ft BCS		ELEVATION	MONITOR	N SAMPLE	
				U T M A B T E E	
	Black SILT, some fine to coarse sand, fine angular gravel, vegetation, moist to wet, TOPSOIL	-0.6		R	
- 1.0	Red-brown CLAY, dry, FILL Same, except black, some fine to coarse sand, trace rounded white pebbles, some cinders	•	MATIVE BACKFILL		1
- 2.0	and wood, dry to moist, chemical odor Same, except moist, chemical odor Same, except gray, some fine to coarse black sand layers, trace metal and glass slag, no pebbles, cinders or wood, moist to wet			255	2
- 3.0	Gray mottled CLAY, some silt, dry to moist, NATIVE	-2.9			~
- 4.0	END OF HOLE @ 3.5 FT. BGS NOTES: 1. Soil sample collected for chemical analysis from 0.2 to 3.5 ft. BGS. 2. Borehole backfilled to surface with	-3.5			
- 5.0	gravel and topsoil. 3. Borehole located in grass off west edge of pavement.				
- 6.0					
- 7.0					
- 8.0					
- 9.0	4		· · · ·		
- 10.0					
- 11.0			• ·		
- 12.0					-
- 13.0	•	· ·	· · · · ·		
NOT	-	E; REFER I	STATIC WATER LEVE		

• •

STRATIGRAPHIC AND INSTRUMENTATION LOG (L-32) (OVERBURDEN) PROJECT NAME: 10500 CAYUGA DRIVE HOLE DESIGNATION: NCC-48 PROJECT NO .: 3307 DATE COMPLETED: JUNE 1, 1990 CLIENT: OCCIDENTAL CHEMICAL CORPORATION DRILLING METHOD: 3" SPLIT SPOON LOCATION: 10500 CAYUGA DRIVE CRA SUPERVISOR: K. LYNCH DEPTH | STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION MONITOR SAMPLE ft BGS INSTALLATION ft AMSL 'N UMBED A T E Å L U Black SILT, some fine to coarse sand, trace -0.3 fine rounded white gravel, moist, TOPSOIL 3.0 0 BOREHOLE Dark gray SAND, some clay, fine round white gravel, moist, FILL **1**SS 70 1.0 Same, except black, some white pasty material, no clay or gravel, slight chemical BACKFILL odor 2.0 255 112/6 Sampler refusal, no recovery, wood in shoe of split spoon sampler - augered to 3.0 ft. BGS Black SAND, some clay, fine round white 3.0 gravel, moist to wet 4.0 -4.0 355 18 Gray and brown mottled CLAY, some silt and fine to coarse sand, trace subrounded gravel, dry to moist, NATIVE Same, except red-brown, no sand or gravel, 5.0 -5.0 dense, hard, dry END OF HOLE @ 5 FT. BGS NOTES: 1. Soil sample collected for chemical 6.0 analysis from 0.2 to 4.8 ft. BGS. 2. Borehole backfilled to surface with gravel and top soil. 3. Borehole lacated in grass off west 7.0 edge of pavement. 8.Ò 9.0 10.0 11.0 12.0 13.0 NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE CHEMICAL ANALYSIS WATER FOUND V STATIC WATER LEVEL

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

PROJECT NAME: 10500 CAYUGA DRIVE

PROJECT NO .: 3307

CLIENT: OCCIDENTAL CHEMICAL CORPORATION

LOCATION: 10500 CAYUGA DRIVE

DATE COMPLETED: JUNE 1, 1990 . DRILLING METHOD: 3" SPLIT SPOON

HOLE DESIGNATION: NCC-49

CRA SUPERMSOR: K. LYNCH

DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION MONITOR SAMPLE ft BGS INSTALLATION ft AMSL NU S Å T E ₿ Ľ Auger through asphalt Gray fine to coarse angular GRAVEL, some fine 3.0 . BOREHOLE to coarse sand, concrete pieces, trace fine rounded white gravel, moist to wet, FILL 1.0 CEMENT/ BENTONITE GROUT **1**SS 58 2.0 -2.0 Red-brown CLAY, some fine to coarse sub-rounded gravel, moist to wet Same, with trace brick 3.0 -3.0 Gray and brown mottled CLAY, some silt, hard, dense, dry to moist, NATIVE **2**SS 45 4.0 -4.5 END OF HOLE @ 4.5 FT. BGS 5.0 NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 4.0 ft. BGS. 2. Borehole backfilled to surface with cement-bentonite grout. 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE CHEMICAL ANALYSIS WATER FOUND 🔽 STATIC WATER LEVEL

(L-33)

PROJE	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION:	NCC-50
PROJE	CT NO.: 3307	•	DATE COMPLETED:	1
CLIENT	OCCIDENTAL CHEMICAL CORPORATION		DRILLING METHOD:	
1	ON: 10500 CAYUGA DRIVE		CRA SUPERVISOR:	
	STRATIGRAPHIC DESCRIPTION & REMARKS			
ft BGS	STRATIGRAFTIC DESCRIFTION & REMARKS	ELEVATION ft AMSL	MONITOR INSTALLATION	
	Auger through asphalt Brown fine to coarse SAND, some fine to coarse angular gravel, trace clay, slag, coal and ash, moist, FILL			
- 1.0	and ash, moist, FILL			$ \rangle$
			CEMENT/ BENTONITE GROUT	1SS X
- 2.0				$ - / \rangle$
- 3.0	Red-brown CLAY, some silt, hard, dense, dry to moist, NATIVE	- <i>3.0</i> - <i>3.5</i>		255
- 4.0	Gray Coarse SAND, trace shells, wet Gray CLAY, trace silt, soft, plastic, dry to moist	-3.8		
- 5.0	END OF HOLE @ 4.8 FT. BGS	-4.8		
- 6.0	NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 4.0 ft. BGS. 2. Borehole backfilled to surface with			
0.0	cement-bentonite grout.]. I		
- 7.0	· · ·	· ·		
	· · ·			
	•		• • •	
- 8.0				
		·		
- 9.0		· ·		
		•		
- 10.0			. `	
- 11.0	```		•	
			1	
- 12.0				
- 13.0				
NOTE				
NOTE			· ·	· ·
· · · · · · ·	CHEMICAL ANALYSIS WATER	FOUND 🔽	STATIC WATER LEVEL	T

.

PROJE	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION	NCC-51	
PROJE	CT NO.: 3307		DATE COMPLETED:	JUNE 1,	1990
CLIENT	OCCIDENTAL CHEMICAL CORPORATION		DRILLING METHOD:	3"ø SPL	
LOCAT	ON: 10500 CAYUGA DRIVE	- ·	CRA SUPERVISOR:	K. LYNC	н
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	54	MPLE
ft BGS		ft AMSL	INSTALLATION		S T
	1	•		M B E	A T E
	Auger through asphalt			R	
	Brown fine to coarse SAND, some fine to coarse angular gravel, dry to moist, FILL		BOREHOLE		
- 1.0					Λ
	Red-brown CLAY, some silt, trace wood and	-1.5	CEMENT/ BENTONITE CROUT	ISS	XI
- 2.0	glass slag, moist				/
		· [⊨).
- 3.0	Gray mottled CLAY, some fine to coarse sand	-3.1		255	VI.
	and silt, moist to wet, NATIVE	· ·		233	$ \Lambda $
- 4.0	END OF HOLE @ 4 FT. BGS	-4.0			
	NOTES: 1. Soil sample collected for chemical				
- 5.0	analysis from 0.5 to 3.5 ft. BGS. 2. Duplicate soil sample submitted for		. ,		
	chemical analysis as NCC-56 at time 17:45 from 0.5 to 4.0 ft. BGS.		· .		
- 6.0	 Borehole backfilled to surface with cement-bentonite grout. 			1.	
- 7.0	•				
	· · ·				
- 8.0					
- 9.0					
3.5					
- 10.0	•		•		
- 11.0					
- 12.0		,	•		
	· · ·				
-13.0					
	· · ·				
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG			1	

PROJE	(OVERBU		HOLE DESIGNATION	
	CT NO.: 3307			
CLIENT			DATE COMPLETED: DRILLING METHOD:	
LOCATI			CRA SUPERVISOR:	
				•
ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR INSTALLATION	
	Auger through asphalt			R
	Gray fine to coarse SAND, some fine to coarse angular gravel, dry, FILL		BOREHOLE	
- 1.0	· ·			
	Dark gray CLAY, some fine to coarse sand, moist, slight chemical odor	-1.5	EENTONITE CROUT	
- 2.0	· · · ·	-2.4		
	Brown CLAY, some fine to coarse sand, moist, NATIVE	-2.4		255
- 3.0	· · · · · · · · · · · · · · · · · · ·			
4.0	END OF HOLE @ 3.5 FT. BGS NOTES: 1. Soil sample collected for chemical	-3.5		
7.0	analysis from 0.5 to 3.5 ft. BGS. 2. Borehole backfilled to surface with			
5.0	cement-bentonite grout.	· · ·		
	· · · · · ·	•	,	
6.0				
			· ·	
7.0			, , , , , , , , , , , , , , , , , , ,	
ł				
8.0				
9.0				
10.0				
11.0				
12.0				
			•	
13.0	· · · · · ·		• .	
			· ·	
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG			

ļ

.

PROJECT NO.: 3307 DATE COMPLETED: JUNE 1, 1990 CLIENT: OCCIDENTAL CHEMICAL CORPORATION DRILLING METHOD: 3"ø SPLIT SPO LOCATION: 10500 CAYUGA DRIVE CRA SUPERVISOR: K. LYNCH DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION MONITOR SAMPLE It BOS ft AMSL INSTALLATION N N N Black SILT, some fine to coarse sand and fine angular gravel, moist, TOPSOIL -0.9 -0.9 -0.9 INSTALLATION N 1.0 Red-brown and gray CLAY, some silt, trace -0.9 -0.9 INSTALLATION ISS INSTALLATION 2.0 Same, with trace red brick -2.8 -2.8 -2.8 -2.8 -2.8		(OVERBU			
CLIENT: OCCIDENTAL CHEMICAL CORPORATION DRILLING METHOD: 3'* SPLIT SPO LOCATION: 10500 CAYUGA DRIVE DRILLING METHOD: 3'* SPLIT SPO CLEDENTH STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION MONITOR SAMPLE LOCATION: Black SiLT, some fine to coarse sond and fine angular gravel, moist. TOPSOIL -0.9 MONITOR SAMPLE 1.0 Red-brown and gray CLAY, some silt, trace -0.9 -0.9 -0.9 -0.9 2.0 Same, with trace red brick -0.9 -0.9 -0.9 -0.9 -0.9 3.0 preside, moist. FILL -2.8 -2.8 -2.8 -2.8 -2.8 -2.8 -2.5 -2.8 -2.5 -2.8 -2.9					
LOCATION: 10500 CAYUGA DRIVE DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION H BGS Block SiLT, some fine to coarse sand and fine angular gravel, moist, TOPSOIL 1.0 Red-brown and gray CLAY, some silt, trace fine angular gravel, moist, FILL 2.0 Same, with trace red brick 3.0 Cray and brown CLAY, trace silt, soft. 4.0 Red-brown mottled CLAY, some silt, hard, END OF HOLE • +FT. BGS NOTES 1. Soil sample collected for chemical analysis fram 0.3 to 3.5 ft. BGS. 5.0 2. Borehole is located in grass off 6.0 8.0 8.0 9.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1		· · · ·			
DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION (t AMSL MONITOR INSTALLATION SAMPLE SAMPLE Black SILT, some fine to coarse sand and line angular gravel, moist, TOPSOIL 0 0 0 0 Red-brown and gray CLAY, some silt, trace fine angular gravel, moist, FILL -0.9 0 0 0 2.0 Same, with trace red brick -2.8 -2.8 0 0 3.0 Gray and brown CLAY, trace silt, soft, plastic, moist, NATIVE -4.0 -4.0 0 8.0 0.0 Cray and brown OLAY, trace silt, soft, gravel and topsoil, 3.0 -4.0 -4.0 0 7.0 8.0 0 0 10.5 to 3.5 ft. BCS and gravel and topsoil, 3.0 0 -4.0	•				
tt BCS tt AMSL INSTALLATION Black SILT, some fine to coarse sand and fine angular gravel, moist, TDPSOIL -0.9 Red-brown and gray CLAY, some silt, trace fine angular gravel, moist, FILL -0.9 2.0 Same, with trace red brick -2.8 3.0 Gray and brown CLAY, trace silt, soft. plastic, moist, NATIVE -2.8 4.0 dense, moist Clay is the soft of the s			. ``	CRA SUPERVISOR:	K. LYNCH
Black SILT, some fine to coorse sand and fine angular gravel, moist, TOPSOIL -0.9 1.0 Red-brown and gray CLAY, some silt, trace fine angular gravel, moist, FILL -0.9 2.0 Same, with trace red brick -2.8 3.0 Drown mottled CLAY, some silt, soft, dense, moist -2.8 1.0 Red-brown mottled CLAY, some silt, hard, dense, moist -2.8 2.0 Same, with trace red brick -2.8 3.0 Drown mottled CLAY, some silt, hard, dense, moist -4.0 1.0 END OF HOLE @ 4 FT. BGS NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BGS. 2. Borehole backfilled to surface with gravel and tapsail. 3. Borehole is located in grass off east edge of powement. -4.0 7.0 8.0 9.0 11.0		STRATIGRAPHIC DESCRIPTION & REMARKS			
Black SILT, some fine to coarse sand and fine angular gravel, moist, TOPSOIL -0.9 1.0 Red-brown and gray CLAY, some silt, trace fine angular gravel, moist, FILL -0.9 2.0 Same, with trace red brick -2.8 3.0 Gray and brown CLAY, trace silt, soft, dense, moist, NATIVE -2.8 4.0 Executive CLAY, some silt, hard, dense, moist -2.8 5.0 2.1 Same solid to be to	1 003		IT AMSL		
fine angular gravel, moist, TOPSOIL Red-brown and gray CLAY, some silt, trace fine angular gravel, moist, FILL 2.0 Same, with trace red brick 3.0 prostic, moist, NATVE Red-brown mottled CLAY, trace silt, soft, dense, moist END OF HOLE @ 4 FT. BGS NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BGS 2. Borehole backfilletto surface with 3. Borehole is located in grass off east edge of pavement. 8.0 9.0 11.0					
1.0 Red-brown and gray CLAY, some silt, trace -0.9 1.0 Fine angular gravel, moist, FILL -0.9 2.0 Same, with trace red brick -2.8 3.0 Gray and brown CLAY, trace silt, soft, plastic, moist, NATIVE -2.8 4.0 dense, moist -4.0 8.0 2.0 Same and topsail. 3.0 Cray and brown CLAY, trace silt, hard, dense, moist -4.0 4.0 Hender brown mottled CLAY, some silt, hard, dense, moist -4.0 5.0 2. Borchole backfilled to surface with gravel and topsail. -4.0 3.0 Borchole backfilled to surface with gravel and topsail. -4.0 6.0 east edge of pavement. -4.0 7.0 8.0 -7.0 8.0 -7.0 -7.0 10.0 -7.0 -7.0 7.0 -7.0 -7.0 7.0 -7.0 -7.0 7.0 -7.0 -7.0 7.0 -7.0 -7.0 7.0 -7.0 -7.0 7.0 -7.0 -7.0 7.0 -7.0 -7.0		Black SILT, some fine to coarse sand and fine angular gravel, moist, TOPSOIL			
fine angular gravel, moist, FILL Same, with trace red brick 3.0 Gray and brown CLAY, trace silt, soft, plastic, moist, NATIVE Red-brown mottled CLAY, same silt, hard, dense, moist END OF HOLE • 4 FT. BGS 1. Soil sample collected for chemical analysis fram 0.3 to 3.5 ft. BGS. 2. Borehole backfilled to surface with gravel and topol. 3. Borehole is located in grass off east edge of powement. 6.0 8.0 9.0 11.0 12.0	1.0	Red-brown and aray CLAY, some silt, trace	-0.9	BOREHOLE	
 Cray and brown CLAY, trace silt, soft. plastic, moist, NATIVE Red-brown mottled CLAY, some silt, hard, dense, moist END OF HOLE • 4 FT. BGS NOTES: 1. Soil sample callected for chemical analysis from 0.5 to 3.5 ft. BGS. 2. Borehole backfilled to surface with gravel and topsoil. 3. Borehole is located in grass off east edge of pavement. 		fine angular gravel, moist, FILL			
 Cray and brown CLAY. trace slit. soft. 4 Cray and brown outlied CLAY. some slit. hard. Red-brown mottlied CLAY. some slit. hard. END OF HOLE	2.0	Same, with trace red brick			
 3.0 Gray and brown CLAY. trace slit. soft. 4 4.0 Red-brown mattled CLAY, some slit. hard. dense. moist END OF HOLE @ 4 FT. BGS NOTES: 1. Soil sample callected for chemical analysis from 0.5 to 3.5 ft. BGS. 2. Borehole backfilled to surface with gravel and topsoil. 3. Borehole is located in grass off east edge of pavement. 5.0 3.0 6.0 4.0 7.0 4.0 8.0 9.0 9.1 9.1 9.2 9.2 9.2 9.2 9.2 9.2 9.4 9.4 9.5 9.5 9.6 9.7 9					
4.0 dense, moist -4.0 END OF HOLE @ 4 FT. BGS analysis from 0.5 to 3.5 ft. BGS. 2. Borehole backfilled to surface with gravel and topsoil. 5.0 2. Borehole is located in grass off east edge of pavement. 3. Borehole is located in grass off east edge of pavement. 7.0 3.0 0.0 1.0 2.0	3.0	Gray and brown CLAY, trace silt, soft, 4	-2.8		
END OF HOLE 4 FT. BGS NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 3.5 ft. BGS. 2. Borehole backfilled to surface with grave and topsail. 3. Borehole is located in grass off east edge of povement. 3. Borehole is located in grass off 5.0 7.0 8.0 9.0 1.0 2.0		Red-brown mottled CLAY, some silt, hard,			
5.0 2. Borehole bookfilled to surface with gravel and topsoil. 3. Borehole is located in grass off east edge of pavement. 5.0 7.0 8.0 9.0 11.0 2.0	4.0 [END OF HOLE @ 4 FT. BGS	-4.0		
arovel and topsoil. 3. Borehole is located in grass off east edge of pavement. 5.0 6.0 7.0 8.0 9.0 9.0 11.0 9.0		analysis from 0.5 to 3.5 ft. BGS.		• •	
6.0 east edge of pavement. 7.0 8.0 9.0 10.0 11.0 12.0	5.0	gravel and topsoil.		· · ·	
5.0 7.0 8.0 9.0 10.0 11.0		3. Borehole is located in grass off	. 1		
a.0 a.0 </td <td>6.0</td> <td></td> <td></td> <td></td> <td></td>	6.0				
8.0 9.0 10.0 11.0 12.0					
9.0 10.0 11.0 12.0	7.0				
9.0 10.0 11.0 12.0		· · · · · ·			
10.0 11.0 12.0	B.O				
10.0 11.0 12.0					
11.0	9.0	· · · · · · · · · · · · · · · · · · ·			
2.0					
2.0	0.0				
2.0					
2.0	1.0			•	
		· · ·		· · ·	
	20				
3.0					
	30.1	· · ·			
	3.0 1				
	NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG CHEMICAL ANALYSIS WATER F	NEFER I	U CURRENT ELEVATION	

ľ

> , ,

ľ

PROJE	CT NAME: 10500 CAYUGA DRIVE			HOLE DESIGNATION	N: NCC-54
PROJE	CT NO.: 3307			DATE COMPLETED	
CLIENT	OCCIDENTAL CHEMICAL CO	ORPORATION		DRILLING METHOD	
LOCATI	ON: 10500 CAYUGA DRIVE			CRA SUPERVISOR:	•
	STRATIGRAPHIC DESCRIPTION & REA	VARKS	ELEVATION	MONITOR	SAMF
ft BGS	· · · · · · · · · · · · · · · · · · · ·	-	ft AMSL	INSTALLATION	Ŭ
					B E R
	Auger through asphalt Brown SILT, some fine to coarse clay and fine to coarse rounded o	sand, trace			
- 1.0	to moist, FILL	<u>.</u>			
				CEMENT/ BENTONITE CROUT	(ISS)
- 2.0	Black CLAY, some fine to coarse rounded white gravel, trace wood, chemical odor	sand, fine moist,	-1.8	CROUT	
- 3.0					
	•				255
- 4.0	·		-3.9		
- 4.0	Gray CLAY, some fine to coarse s moist, NATIVE Same, except red—brown, some si dense, hard, dry		-4.5		
- 5.0	END OF HOLE @ 4.5 FT. BGS	/			
- 6.0	NOTES: 1. Soil sample collected for analysis from 0.5 to 4. 2. Borehole backfilled to su cement—bentonite grou	.5 ft. BGS. urface with			
- 7.0					
8.0					
9.0				•	
	· · ·			. · · ·	
10.0					
,0.0					
11.0	t .				
11.0	· · · · · · · · · · · · · · · · · · ·			• •	
	·			· .	
12.0					
13.0	· · ·				
			·		
NOTE	S: MEASURING POINT ELEVATION	S MAY CHANC			

	STRATIGRAPHIC AND IN (OVERBU		NTATION LOG	(L-
PROJE	CT NAME: 10500 CAYUGA DRIVE	······	HOLE DESIGNATION	: NCC-55
PROJE	CT NO.: 3307		DATE COMPLETED:	
CLIENT	OCCIDENTAL CHEMICAL CORPORATION		DRILLING METHOD:	
LOCATI	ON: 10500 CAYUGA DRIVE		CRA SUPERVISOR:	
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	· · · · · · · · · · · · · · · · · · ·	
ft BGS	Showing the beschill how a remarks	ft AMSL	INSTALLATION	
				M A B T E E
	Black SILT, some fine to coarse sand, some vegetation, fine angular gravel, trace fine white round gravel, moist, TOPSOIL			
- 1.0	Red-brown CLAY, some silt and fine sand, some coarse angular gravel, moist, FILL Same, except red-brown to brown	-0.9		
- 2.0	Gray fine to coarse SAND, some silt and clay, moist, NATIVE	-2.2		255
· 3.0	Red-brown CLAY, some silt, trace fine sub- rounded gravel, moist	-3.1 -3.5		
4.0	END OF HOLE @ 3.5 FT. BGS NOTES: 1. Soil sample collected for chemical			
5.0	analysis from 0.5 to 3.5 ft. BGS. 2. Borehole backfilled to surface with gravel and topsoil. 3. Borehole is located in grass off east edge of pavement.			
6.0				
7.0	· · ·			
8.0				
9.0				
10.0	•			
11.0			\$ () •	
12.0				
13.0				
NOTE		e; Refer	••	

,

.

.

•

•

	(OVERBU	RDEN)	· .	(
	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION	
	CT NO.: 3307		DATE COMPLETED:	
CLIENT	OXYCHEM		DRILLING METHOD:	3" SPLIT S
LOCATI	ON: 10500 CAYUGA DRIVE		CRA SUPERVISOR:	K. LYNCH
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR	SAMP
				M A B T E E
	Auger through asphalt			R
- 1.0	Brown SAND, some fine white subround gravel, trace angular gravel, dry to moist, FILL			
- 2.0	Red-brown CLAY, some silt, stiff, dry to	-1.7 -2.0	3" BOREHOLE	155
- 3.0	Gray SILT, some clay, soft, moist		CEMENT/ BENTONITE GROUT	
- 4.0				255
- 5.0	Red-brown CLAY, some silt, trace subround medium gravel, moist, NATIVE END OF HOLE @ 5.0 FT. BGS	-4.6 -5.0		
- 6.0	NOTES: 1. Soil sample collected for chemical analysis from 0.5 to 4.6 ft. BGS 2. Borehole backfilled to surface with			
- 7.0	cement/bentonite grout.			
- 8.0	· · · ·			
9.0				
- 10.0				
- 11.0	• •			
- 12.0				
- 13.0				
	······································			
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG	SE: REFER T	O CURRENT ELEVATION	TABLE

. .

PROJEC PROJEC CLIENT: LOCATIO	CT NAME: 10500 CAYUGA DRIVE CT NO.: 3307			
CLIENT:	T NO · 3307		HOLE DESIGNATION	NCC-59
			DATE COMPLETED:	JULY 20, 199
LOCATIO	OXYCHEM		DRILLING METHOD:	•
	ON: 10500 CAYUGA DRIVE		CRA SUPERVISOR:	
пертн Т	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION		
ft BGS		ft AMSL	MONITOR INSTALLATION	SAMPLE N S
				B T E E
	AUGER through asphalt			
	Brown SAND, some fine angular gravel, trace fine white round gravel, dry, FILL			
1.0	3 • • • • • • • • • •			$I \wedge I$
-	Gray CLAY, trace silt, fine angular gravel,	-1.5	3-0	(ISS)
2.0	moist		BOREHOLE	
			CEMENT/ BENTONITE	
3.0			GROUT	
·	Red-brown SiLT, some clay, some fine gravel.	-3.3		255
4.0	moist, NATIVE			
	Red-brown CLAY, some silt, moist	-4.2 -4.5		
5.0	END OF HOLE @ 4.5 FT. BGS NOTES:	-4.3		
5.0	1. Soil sample collected for chemical			
	 Soil sample collected for chemical analysis from 0.5 to 4.5 ft. BGS Duplicate soil sample collected for chemical analysis as NCC-60. 		•	
6.0	3. Borehole backfilled to surface with cement/bentonite grout.		· .	
	cementy bencome grout.			
7.0				
8.0	·			
		·		
9.0				
10.0			•	
11.0				
12.0			•	
12.0				
13.0	. ·			
NOTES	S: MEASURING POINT ELEVATIONS MAY CHANG		<u> </u>	

,

:

.

.

· .

	STRATIGRAPHIC AND IN (OVERBU		NTATION LOG	(L-
PROJE	CT NAME: 104th ST. DATA COLLECTION PROGRAM	···· /	HOLE DESIGNATION:	1331-1
PROJE	CT NO.: 3307		DATE COMPLETED:	•
ÇLIEN 1	CCCIDENTAL CHEMICAL CORPORATION		DRILLING METHOD:	
LOCAT	ION: 1331 104th ST.		CRA SUPERVISOR:	K. LYNCH
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION		SAMPLE
ft BGS		ft AMSL	INSTALLATION	
•.			·	B T E E
	Remove sod and topsoil with spade. Sampled by hand		S	(1HS)
- 1.0	Gray and brown SILT, some sand, little clay, moist, FILL			
			2.0	
- 2.0	Black CINDERS, some medium sand, trace slag and coal, moist, no odor	-1.8	2 BOREHOLE	
	and codi, moist, no odor		TOPSOIL	
- 3.0				
•				255
- 4.0				
	Gray and red-brown CLAY, some fine sand and silt, dry to moist, NATIVE	-4.4 -4.5		
- 5.0	END OF HOLE @ 4.5 FT. BGS NOTES:			
- 6.0	 Soil samples collected for chemical analysis from 0.0 to 0.5 ft. and 0.5 to 4.5 ft. BGS. 			
	0.5 to 4.5 ft. BGS. 2. At completion the borehole was backfilled using clean commercial			
7.0	topsoil and the sod was replaced over the borehole.			
- 8.0				
			•	
- 9.0			•	
- 10.0				
- 11.0				
12.0				
12.0				
- 13.0				
		;	·	
			·····	
NOTE	S: MEASURING POINT. ELEVATIONS MAY CHANG	E; REFER "	TO CURRENT ELEVATION T	ABLE
•	CHEMICAL ANALYSIS O WATER FO		STATIC WATER LEVEL	T

.

.

`	STRATIGRAPHIC AND IN (OVERBU		TATION LOG	(L-54)
PROJE	CT NAME: 104th ST. DATA COLLECTION PROGRAM	•	HOLE DESIGNATION	1331-2
PROJE	CT NO.: 3307		DATE COMPLETED:	JANUARY 9, 19
CLIENT	: OCCIDENTAL CHEMICAL CORPORATION		DRILLING METHOD:	2"# SPLIT SPOC
LOCATI	ON: 1331 104th ST.		CRA SUPERVISOR:	K. LYNCH
DEPTH ft BGS		ELEVATION ft AMSL	MONITOR	SAMPLE
				N S N U T V B T V
	Remove sod and topsoil with spade. Sampled		8	
1.0	by hand Brown fine SAND, some silt, dry to moist, FILL(TOPSOIL)			
1.0	Red-brown CLAY, some silt, trace gravel, dry to moist	-1.1	2.	
2.0	Black coarse SAND, some silt, dry, no odor	-1.8	BOREHOLE	
	Red-brown CLAY, some silt, trace gravel,	-2.2	TOPSOIL	
3.0	Brown and red-brown SiLT, some clay, dry to moist			
				255
4.0				
	END OF HOLE @ 4.5 FT. BGS	-4.5		
5.0	NOTES: 1. Borehole was not advanced to native			
	clay. 2. Soil samples collected for chemical analysis from 0.0 to 0.5 ft. and	· .		
6.0	• 0.5 to 4.5 ft. BGS.			
7.0	3. At completion the borehole was backfilled using clean commercial topsoil and the sod was replaced			
7.0	over the borehole.		<i>.</i>	
8.0				
0.0				
9.0				
		-		
10.0			•	
11.0				
12.0			· .	
			•	, .
13.0			· · · ·	
NOTE				
NOTE		•		
	CHEMICAL ANALYSIS WATER F	OUND 🔽	STATIC WATER LEVEL	X

. .

.

-

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

PROJECT NAME: 104th ST. DATA COLLECTION PROGRAM

PROJECT NO .: 3307

CLIENT: OCCIDENTAL CHEMICAL CORPORATION

LOCATION: 1331 104th ST.

HOLE DESIGNATION: 1331-3 DATE COMPLETED: JANUARY 9, 1991

DRILLING METHOD: 2" SPLIT SPOON CRA SUPERVISOR: K. LYNCH

DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION MONITOR SAMPLE ft BGS INSTALLATION ft AMSL U Å T E Â 8 L U Remove sod and topsoil with spade. Sample 1HS by hand Red and brown CLAY, some silt and fine sand, moist, FILL 1.0 155 2** BOREHOLE -1.9 2.0 Black SILT, moist, no odor TOPSOIL -2.4 Brown SAND, some silt, moist 3.0 255 -3.6 Red-brown SILT, some fine to medium sand, dry to moist, NATIVE (TILL) · 4.0 -4.5 END OF HOLE @ 4.5 FT. BGS NOTES: 5.0 1. Soil samples collected for chemical analysis from 0.0 to 0.5 ft. and 0.5 to 4.5 ft. BGS. Duplicate soil sample collected for chemical analysis as 1331–14 from 0.5 to 4.5 ft. BGS. 2. 6.0 3. At completion the borehole was backfilled using clean commercial topsoil and the sod was replaced - 7.0 over the borehole. 8.0 9.0 - 10.0 - 11.0 - 12.0 - 13.0 MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE NOTES: WATER FOUND V STATIC WATER LEVEL CHEMICAL ANALYSIS

(L-55)

	STRATIGRAPHIC AND IN (OVERBU		INTATION LOG	(L-56
PROJE	CT NAME: 104th ST. DATA COLLECTION PROGRAM		HOLE DESIGNATION:	1331-4
PROJE	CT NO.: 3307		DATE COMPLETED.	JANUARY 9, 19
CLIENT	CCIDENTAL CHEMICAL CORPORATION		DRILLING METHOD:	2" SPLIT SPO
LOCAT	ION: 1331 104th ST.		CRA SUPERVISOR:	K. LYNCH
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATIO	MONITOR	SAMPLE
ft BGS		ft AMSL		
		i I		H A B T E E R
	Remove sod and topsoil with spade. Sampled by hand			
	Brown fine to medium SAND, some vegetation, Vittle silt, trace coal, moist, TOPSOIL/	-0.8		
1.0	Red-brown CLAY, some silt little fine sond			
	and gravel, dry to moist, FILL		2°0 BOREHOLE	
2.0			TOPSOL	
3.0				
	· · · · · · · · · · · · · · · · · · ·	-3.8		255
4.0	Red-brown CLAY, some silt, trace fine subround gravel, dry, NATIVE (TILL)	-3.8 -4.2		
	Brown medium SAND, dry to moist	-4.5		
5.0	END OF HOLE @ 4.5 FT. BGS NOTES:			
	1. Soil samples collected for chemical analysis from 0.0 to 0.5 ft. and			
5.0	0.5 to 4.5 ft. BCS. 2. At completion the borehole was backfilled using clean commercial			
	topsoil and the sod was replaced			
7.0	over the borehole.			
*	· · · ·			
.o ·				
.0.				
0.0		• •		
•				
1.0			, , , , , , , , , , , , , , , , , , ,	
			· .	
2.0 `				
· [· · · · · ·		· · ·	
3.0				
			•	
				1 I I

۰.

ر

PROJE	CT NAME: 104th ST. DATA COLLECTION PROGRAM		HOLE DESIGNATION	: 1331-5
PROJE	CT NO.: 3307		DATE COMPLETED:	JANUARY 10, 1
CLIENT	OCCIDENTAL CHEMICAL CORPORATION		DRILLING METHOD:	
LOCAT	ION: 1331 104th ST.		CRA SUPERVISOR:	
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION		SAMPLE
t BGS		ft AMSL	INSTALLATION	
	· · · · · · · · · · · · · · · · · · ·			M A A B T C C C C C C C C C C C C C C C C C C
	Remove sod and topsoil with spade. Sample by hand			1HS
1.0	Brown SAND, some silt, little vegetation, dry to moist, FILL (TOPSOIL)	-0.6		
1.0	Red-brown CLAY, some silt, dry to moist			
2.0			2 BOREHOLE	
2.0				
3.0				
		-3.5	2241	
1.0	Red-brown CLAY, some silt and fine sand, little subangular gravel, dry to moist, NATIVE			
		-4.5		
5.0	END OF HOLE @ 4.5 FT. BGS NOTES:	7.0	• .	
	1. Soil samples collected for chemical analysis from 0.0 to 0.5 ft. and			
5.0	0.5 to 4.5 ft. BGS			
	 At completion the borehole was backfilled using clean commercial topsoil and the sod was replaced over the borehole. 		•	
.0	over the borehole.			
.0				
3.0			·	
).0				
0.0	· · ·			
5.5	· · ·			
1.0				
		.	•	
2.0			• • •	
2.0			.)	
3.0			· ·	
5.5	-			
	· · · · · · · · · · · · · · · · · · ·			
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG	E; REFER T	O CURRENT ELEVATION	ABLE
	CHEMICAL ANALYSIS OWATER FO		STATIC WATER LEVEL	×

•

0

•

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

PROJECT NAME: 104th ST. DATA COLLECTION PROGRAM

PROJECT NO .: 3307

CLIENT: OCCIDENTAL CHEMICAL CORPORATION

LOCATION: 1331 104th ST.

DATE COMPLETED: JANUARY 10, 1991

HOLE DESIGNATION: 1331-6

DRILLING METHOD: 2" SPLIT SPOON CRA SUPERVISOR: K. LYNCH

DEPTH | STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION MONITOR SAMPLE INSTALLATION ft BGS ft AMSL N V ü A A T E Ľ õ Remove sod and topsoil with spade. Sample 1HS by hand Brown SAND, trace silt and vegetation, dry -0.6 to moist, FILL (TOPSOIL) 1.0 Red-brown CLAY and SILT, some fine sand, trace fine gravel, dry 155 2** BOREHOLE 2.0 TOPSOIL 3.0 -3.5 255 Red-brown SILT, some clay and fine sand, dry to moist, NATIVE (TILL) 4.0 -4.4 -4.5 Dark brown fine to medium SAND, some silt. moist 5.0 END OF HOLE @ 4.5 FT. BGS NOTES: 1. Soil samples collected for chemical analysis from 0.0 to 0.5 ft. and 0.5 to 4.5 ft. BGS. 6.0 2. At completion the borehole was backfilled using clean commercial topsoil and the sod was replaced - 7.0 over the borehole. - 8.0 9.0 10.0 11.0 12.0 13.0 MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE NOTES: CHEMICAL ANALYSIS WATER FOUND 🔽 STATIC WATER LEVEL T

(L-58)

STRATIGRAPHIC AND INSTRUMENTATION LOG (L-66) (OVERBURDEN) PROJECT NAME: 104th ST. DATA COLLECTION PROGRAM HOLE DESIGNATION: 1331-7 PROJECT NO .: 3307 DATE COMPLETED: JANUARY 9, 1991 CLIENT: OCCIDENTAL CHEMICAL CORPORATION DRILLING METHOD: 2" SPLIT SPOON LOCATION: 1331 104th ST. CRA SUPERVISOR: K. LYNCH DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION MONITOR SAMPLE ft BGS INSTALLATION ft AMSL Ň A Ĩ Remove sod and topsoil with spade. Sampled 1HS by hand A Seco Red-brown and gray CLAY, some fine sand and silt, moist, FILL 1.0 1**SS** 2". 2.0 TOPSOIL 3.0 255 - 4.0 -4.5 4.5 FT. BGS END OF HOLE @ NOTES: 5.0 1. Borehole was not advanced to native clay. 2. Soil samples collected for chemical analysis from 0.0 to 0.5 ft. and 0.5 to 4.5 ft. BGS. At completion the borehole was 6.0 3. backfilled using clean commercial topsoil and the sod was replaced 7.0 over the borehole. · 8.0 9.0 10.0 11.0 · 12.0 - 13:0 MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE NOTES: CHEMICAL ANALYSIS WATER FOUND $\mathbf{\nabla}$ STATIC WATER LEVEL X

PROJECT CLIENT:	T NAME: 104th ST. DATA COLLECTION PROGRAM		HOLE DESIGNATION:	1331-8
CLIENT:	T NO.: 3307			
			DATE COMPLETED:	JANUARY 8, 1
LOCATIO	OCCIDENTAL CHEMICAL CORPORATION		DRILLING METHOD:	2"ø SPLIT SPO
	N: 1331 104th ST.	•	CRA SUPERVISOR:	K. LYNCH
DEPTH S	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR INSTALLATION	SAMPLE N S U T
				B T E
1.0	Remove sod and topsoil with spade. Sampled by hand Brown fine to medium SAND, some silt, dry, FILL (TOPSOIL)	-0.6	NAME AND A CONSTRUCT OF A	IHS
	Red-brown CLAY, some silt, trace fine to medium angular subround gravel, trace vegetation, moist		2 BOREHOLE	
			TOPSOIL	
3.0				255
L\	Red-brown CLAY, some silt, hard, dense, dry, NATIVE	-4.0 -4.2 -4.5		
5.0	END OF HOLE @ 4.5 FT. BGS NOTES: 1 Soil samples collected for chemical	•		
6.0	analysis from 0.0 to 0.5 ft. and 0.5 to 4.0 ft. BGS. 2. At completion the borehole was backfilled using clean commercial topsoil and the sod was replaced		•	
7.0	over the borehole.			
			· ·	
8.0				
9.0				
10.0				
11.0				
12.0				
13.0				
			·	

•		STRATIGRAPHIC AND IN (OVERBU		TATION LUG	(L-0
	PROJE	CT NAME: 104th ST. DATA COLLECTION PROGRAM		HOLE DESIGNATION:	1331-9
	PROJE	CT NO.: 3307	•	DATE COMPLETED:	JANUARY 8, 1
	CLIENT	OCCIDENTAL CHEMICAL CORPORATION		DRILLING METHOD:	
	LOCATI	ON: 1331 104th ST.		CRA SUPERVISOR:	
	DEDTU	STRATIGRAPHIC DESCRIPTION & REMARKS	E E W Boyd		
	ft BGS		ELEVATION ft AMSL	MONITOR INSTALLATION	
				······································	
		Remove sod and topsoil with spade. Sampled			E E
		by hand			
	- 1.0	Brown and gray fine to medium SAND, some fine white round gravel, dry to moist, no odor, FILL			
					(ISS)
	- 2.0		-2.0	BOREHOLE	
	·	Red—brown and gray CLAY, some silt, some fine to medium angular and subround gravel, trace glassy slag and metallic slag, dry			
•	- 3.0	trace glassy slag and metallic slag, dry			
	- 4.0				
•	7.0	Brown SAND, moist to wet, NATIVE	-4.2		
	5.0	Same, except wet			355
	- 5.0	END OF HOLE @ 5.0 FT. BGS NOTES:	-5.0		
		1. Borehole was not advanced to native			
	- 6.0	 Soil samples collected for chemical analysis from 0.0 to 0.5 ft. and 0.5 to 5.0 ft. BGS. 		•	
		0.5 to 5.0 ft. BGS. 3. At completion the borehole was			
	- 7.0	 At completion the borehole was backfilled using clean commercial topsoil and the sod was replaced over the borehole. 			
	- 8.0			•	
				-	
	- 9.0				
• .	- 10.0	· · · · · ·			
·					
	- 11.0			· ,	
				. <i>.</i> .	
••••••••					
	- 12.0				
	- 13.0				

· .

K

	(OVERBU			
	CT NAME: 104th ST. DATA COLLECTION PROGRAM		HOLE DESIGNATION	
	CT NO.: 3307		DATE COMPLETED:	JANUARY 10, 19
CLIENT			DRILLING METHOD:	
LOCATI	ON: 1331 104th ST.		CRA SUPERVISOR:	K. LYNCH
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION		SAMPLE
ft BGS	· · · · · · · · · · · · · · · · · · ·	ft AMSL	INSTALLATION	
				B T L E E U R E
	Remove sod and topsoil with spade. Sampled by hand		100 A	(1HS)
	Brown fine SAND, some silt and vegetation, \dry to moist, FILL (TOPSOIL) /	-0.8		
1.0	Red-brown CLAY, some silt and fine gravel, dry to moist			
	Black SAND, some silt and fine to medium	-1.5	BOREHOLE	
2.0	round white gravel, moist, slight chemical odor Dark brown SAND, some silt and subround	-2.0	TOPSOIL	
	gravel, moist			
3.0				
	Red-brown CLAY, some silt and fine sand, dry to moist, NATIVE (TILL)	-3.4		255
4.0		· ·		
	END_OF HOLE @ 4.5 FT. BGS	-4.5		
5.0	NOTES: 1. Soil samples collected for chemical.	· ·		
	analysis from 0.0 to 0.5 ft. and 0.5 to 4.5 ft. BGS.			
6.0	At completion the borehole was backfilled using clean commercial			
· · ·	topsoil and the sod was replaced over the borehole.			
7.0				
8.0		· .		
·				
9.0				
	· · · ·			
10.0				
11.0				
			·	
12.0				
		· · · ·		
13.0			i i	
	S. MEASUBING BOINT SUSVATIONS MAY CLIMAT			
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANC	DE, REFER	O CORRENT ELEVATION	MOLE

. .

•

.

•

ספה ובי	OVERBU CT NAME: 104th ST. DATA COLLECTION PROGRAM	-		4774
			HOLE DESIGNATION	
	CT NO.: 3307		DATE COMPLETED:	
ÇLIENT			DRILLING METHOD:	2"Ø SPLIT SPOC
LOCATI	ON: 1331 104th ST.		CRA SUPERVISOR:	K. LYNCH
DEPTH m BCS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR INSTALLATION	
· .				
	Remove sod and topsoil with spade. Sampled by hand		S.	1HS
- 1.0	Brown fine to medium SAND, some to little vegetation, FILL (TOPSOIL)			\square
	Same, except black, some white fine round gravel, little wood, trace metallic slag, dry	-1.9	2°¢ BOREHOLE	1SS X
- 2.0	Gray SILT, some fine sand, trace clay, dry to moist Same, except moist to wet	-1.3	TOPSOIL	
- 3.0	•			
- 4.0	Brown fine SAND, some silt, moist			(255)
- 5.0	Red-brown SILT, some silt, moist, NATIVE END OF HOLE @ 4.5 FT. BGS NOTES:	-4.3 -4.5		
- 6.0	 Soil samples collected for chemical analysis from 0.0 to 0.5 ft. and 0.5 to 4.5 ft. BGS. At completion the borehole was 			
	backfilled using clean commercial topsoil and the sod was replaced over the borehole.			
7.0	 Water in barehole at completion. Sample depth noted incorrectly on Chain of Custody as 5.5 ft. rather 			
8.0	than 4.5 ft. BGS.			
9.0				
	· · · ·			
10.0			,	
11.0			·	
12.0			· ·	
13.0				
	-			
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG	E: REFER	TO CURRENT ELEVATION	TABLE
	- CHEMICAL ANALYSIS - WATER F		STATIC WATER LEVEL	

•

. :

.

PROJE	CT NAME: 104th ST. DATA COLLECTION PROGRAM		HOLE DESIGNATION:	1331-12
PROJE	CT NO.: 3307		DATE COMPLETED:	JANUARY 8, 1991
CLIENT	OCCIDENTAL CHEMICAL CORPORATION		DRILLING METHOD:	2"& SPLIT SPOON
LOCATI	ON: 1331 104th ST.		CRA SUPERVISOR:	K. LYNCH
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SAMPLE
t BGS		ft AMSL	INSTALLATION	N S N U T V M A A B T L E E U
	Remove sod and topsoil with spade. Sampled by hand Brown fine to medium SAND, some vegetation			R E
1.0	Brown fine to medium SAND, some vegetation (roots), dry to moist, FILL (TOPSOIL) Black and gray SAND, some clay, little cinders, coal, trace slag, dry	`-	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
2.0	Brown medium SAND, trace silt, moist		BOREHOLE	$\sum_{i=1}^{n}$
3.0			TOPSOIL	
4.0			1.242 (294)	
5.0	Red-brown CLAY, some to little silt, trace clay, dry to moist, NATIVE	-4.7		355
6.0	END OF HOLE @ 5.5 FT. BGS NOTES: 1. Soil samples collected for chemical	-5.5		
7.0	analysis from 0.0 to 0.5 ft. and 0.5 to 5.0 ft. BGS. 2. At completion the borehole was backfilled using clean commercial topsoil and the sod was replaced over the borehole.			
8.0				
9.0	•		· · ·	
10.0				
11.0				
12.0				
13.0			·	
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG	I I I I I I I I I I I I I I I I I I I	TO CURRENT ELEVATION	_t TABLE

.

-

.

•

•

PROJE	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION	· 1335_1
	CT NO.: 3307		DATE COMPLETED:	
CLIENT			DRILLING METHOD:	
LOCAT			CRA SUPERVISOR:	
DCDT (K. LINCH
ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR INSTALLATION	SAMPLE
	· · · · · · · · · · · · · · · · · · ·			N S U I A B T E R
				Ë E R
	Sample_collected by hand Light and dark brown, fine to medium grained	-0:1	ġ.	1HS
- 1.0	SAND and SILT, some fine to coarse angular gravel, dry to moist, FILL Light brown SAND, some silt, trace clay, dry			
	Light brown SAND, some silt, trace clay, dry to moist		S.	
20	Same, except trace silt, small angular aravel		BOREHOLE	
- 2.0	Concrete cobble	-2.0	TOPSOIL	
	Light brown SILT, some clay, trace fine angular gravel, dry, trace brick, trace very fine clinkers	-2.5		
- 3.0	Gray and brown SILT, some clay, trace fine			
	sand, moist, NATIVE		2	255
• 4.0	Red-brown CLAY, trace silt, soft, mottled, moist	-3.9		
	END OF HOLE @ 4.5 FT. BGS NOTES:	-4.5		
5.0	1. Soil samples collected for chemical			
	analysis from 0.0 to 0.5 ft. BGS and 0.5 to 4.5 ft. BGS			
6.0	2. Borehole backfilled with clean commercial topsoil, with the			
	original sod placed over the borehole.			
7.0	•			
			· .	
8.0			- · · ·	
			· · ·	
9.0		· · ·	· .	
10.0		`	·	
11.0				
Ì				
12.0				
·				
13.0				
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG	E; REFER TO	CURRENT FLEVATION	ABLE
- <u></u>	- CHEMICAL ANALYSIS O WATER FO		•	
			STATIC WATER LEVEL	T

,

	STRATIGRAPHIC AND IN (OVERBU		TATION LOG	(L-4.
PROJE	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION:	1335-2
PROJE	CT NO.: 3307		DATE COMPLETED:	JULY 20, 1990
CLIENT	OXYCHEM	· · ·	DRILLING METHOD:	3" SPLIT SPO
LOCAT	ON: 10500 CAYUGA DRIVE		CRA SUPERVISOR	K. LYNCH
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SAMPLE
ft BGS		ft AMSL	INSTALLATION	N S U T M A B T E E
- 1.0	Sample collected by hand Light and dark brown, fine to medium grained SAND and SILT, some fine to medium angular gravel, moist, FILL			1HS
2.0	Light gray fine to coarse grained SAND, some medium to coarse angular gravel, moist, metal Increase in silt content Brick			
3.0	Light gray fine to coarse grained SAND, some medium gravel, moist, trace coal Gray CLAY, some fine sand and silt, moist	-2.9 -3.0 -3.5		255
4.0	Dark gray SAND, some silt, some clay, moist Gray CLAY, some silt, trace sand, moist, NATIVE END OF HOLE @ 4.5 FT. BGS	-4.5		\square
5.0	NOTES: 1. Soil sample collected for chemical analysis from 0.0 to 0.5 ft. BGS and 0.5 to 4.5 ft. BGS.			
6.0	 Ants and earthworms found in soil from 0.0 to 0.5 ft. BGS. Borehole backfilled with clean commercial topsoil with the original 	·		
7.0	sod placed over the borehole.			
8.0				
9.0			 	
10.0				
11.0			·	
12.0			· · · · ·	
13.0				
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG	LE: REFER T	O CURRENT ELEVATION T	ABLE

ί

· .

• •

•

	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION:	1335-3
PROJE	CT NO.: 3307		DATE COMPLETED:	JULY 20, 1
CLIEN			DRILLING METHOD:	3" SPLIT S
LOCAT	ION: 10500 CAYUGA DRIVE		CRA SUPERVISOR:	K. LYNCH
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SAMPI
ft BGS		ft AMSL	INSTALLATION	N S U T M A E E
	Sample collected by hand Brown, fine to medium grained SAND, trace silt, dry to moist, FILL			(1HS)
- 1.0			3.4	
- 2.0	Light brown SILT, some fine sand, some gravel, trace white rounded gravel, dry to moist, no apparent chemical odor Red-brown SILT, trace clay, dry to moist	2.0		
3.0	Red-brown SILT, trace clay, dry to moist			255
4.0	Black SILT, trace slag, loose, moist <u>Red-brown SILT, some clay, moist, NATIVE</u> Gray CLAY, some silt, moist	-4.1 -4.2 -4.5		
5.0	END OF HOLE @ 4.5 FT. BGS NOTES: 1. Soil sample collected for chemical analysis from 0.0 to 0.5 ft. BGS.			
6.0 7.0	 and 4.5 ft. BGS. 2. Numerous ants in soil from 0.0 to 0.5 ft. BGS. 3. Borehole backfilled with clean commercial topsoil with the original sod placed over borehole. 		· · ·	
			· ·	
8.0				
9.0 [°]			·	
10.0				
11.0				
12.0				· · /
13.0	•		•	

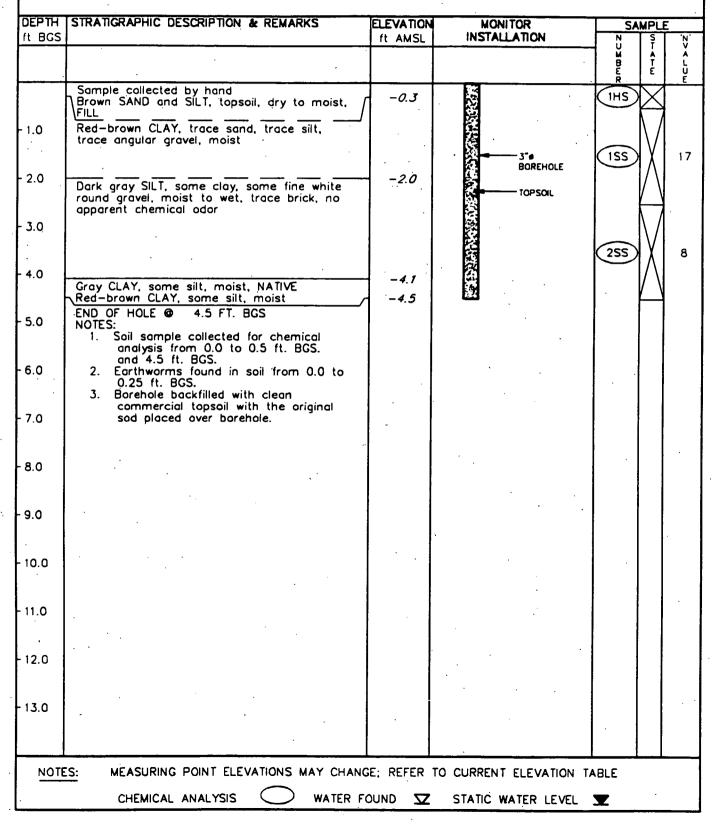
v

	(OVERB	URDEN)	•	(L-45)
PROJE	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION	: 1335-4
PROJE	CT NO.: 3307	•	DATE COMPLETED:	JULY 20. 1990
CLIENT	OXYCHEM		DRILLING METHOD:	3" SPLIT SPOOR
LOCATI	ON: 10500 CAYUGA DRIVE		CRA SUPERVISOR:	K. LYNCH
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SAMPLE
ft BGS		ft_AMSL	INSTALLATION	
	Sample collected by hand			
	Brown fine to medium grained SAND, trace silt, dry to moist, FILL			
1.0 '				
2.0		-1.9	BOREHOLE	
2.0	Red-brown CLAY, some silt, dry Brown SILT, some clay, dry, trace white	-2.1	TOPSOIL	
3.0	powder, no odor Brown to red-brown SILT, some sand and clay	/.		
	dry, trace concrete Gray SILT, some clay , some fine sand, dry			255 3
4.0	to moist, trace rust color			
·	Red-brown CLAY, moist, NATIVE END OF HOLE @ 4.5 FT. BGS	4.2		
5.0	NOTES: 1. Soil sample collected for chemical		· .	
ľ	analysis from 0.0 to 0.5 ft. BGS. and 4.5 ft. BGS.			
6.0	2. Earthworms in soil from 0.0 to 0.25 ft. BGS.			
	3. Borehole backfilled with clean commercial topsoil with the original			
7.0	sod placed over borehole.		· · ·	
8.0				
			· ·	
9.0				
10.0	• •			
.0.0				
11.0				
12.0				
			· .	
13.0				
NOTE	S: MEASURING POINT ELEVATIONS MAY CHAN	GE REFER T	O CURRENT ELEVATION	

• .

.

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)


PROJECT NAME: 10500 CAYUGA DRIVE

PROJECT NO .: 3307

CLIENT: OXYCHEM

LOCATION: 10500 CAYUGA DRIVE

HOLE DESIGNATION: 1335-5 DATE COMPLETED: JULY 20, 1990 DRILLING METHOD: 3" SPLIT SPOON CRA SUPERVISOR: K. LYNCH

(L-46)

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

PROJECT NAME: 10500 CAYUGA DRIVE

PROJECT NO .: 3307

CLIENT: OXYCHEM

LOCATION: 10500 CAYUGA DRIVE

HOLE DESIGNATION: 1335-6 DATE COMPLETED: JULY 20, 1990 DRILLING METHOD: 3" SPLIT SPOON

CRA SUPERVISOR: K. LYNCH

ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR INSTALLATION	SAMPLE
. 203		LIL AMOL		N S U T B T E E
1.0	Sample collected by hand Brown, fine to medium grained SAND, some silt, dry to moist, FILL Same,except trace brick		3.	
2.0				
3.0				
4.0	Black fine SAND, some red-brown clay and silt, trace gravel, moist, trace brick, trace wood	-3.3		255
5.0.	Gray mottled CLAY, some silt, soft, moist, NATIVE END OF HOLE @ 4.5 FT. BGS NOTES:	-4.5		
5.0	 Soil sample collected for chemical analysis from 0.0 to 0.5 ft. BGS. and 4.5 ft. BGS. Borehole backfilled with clean commercial topsoil with the original sod placed over borehole. 		· ·	
7.0				
3.0				
9.0				
0.0				
1.0				
2,0				
3.0			· · ·	
		·	-	

(L-47)

	STRATIGRAPHIC AND I		NTATION LOG	(L-4
PROJE	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION	1: 1335-7
PROJE	CT NO.: 3307		DATE COMPLETED:	JULY 20, 199
CLIENT	C OXYCHEM		DRILLING METHOD:	3" SPLIT SPO
LOCAT	ION: 10500 CAYUGA DRIVE		CRA SUPERVISOR:	K. LYNCH
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION		SAMPLE
ft BGS		ft AMSL	INSTALLATION	N S U T M A B T
				B T E E R
	Sample collected by hand Brown SAND and SILT, dry to moist, some	r -0.3		1HS X
	lgrass and roots Light brown CLAY, some silt, dry to moist	-0.5		
- 1.0	Light brown SAND, some silt, dry to moist	<i>I</i>		
	Light brown SILT, some clay, trace fine	-1.6	BOREHOLE	
- 2.0	some clay, trace fine gravel, dry to moist Same, except dark brown	-2.3		
	Gray CLAY, some fine round white pebbles, moist, trace brick, chemical odor			
- 3.0	Same, except trace silt, no odor			
				255
- 4.0		-4.2		
	Gray mottled CLAY, moist, NATIVE END OF HOLE @ 4.5 FT. BGS	-4.5		
- 5.0	NOTES: 1. Soil sample collected for chemical			
	analysis from 0.0 to 0.5 ft. BGS. and 4.5 ft. BGS.			
- 6.0	2. Duplicate soil sample collected			
	for chemical analysis from 0.5 to 4.5 ft. BGS. as 1335-9.			
- 7.0	3. Numerous ants and several earthworms noted from 0.0 to 0.3 ft. BGS.			
	 Borehole backfilled with clean commercial topsoil with the original 			
- 8.0	sod placed over borehole.			
0.0				
		· ·		
- 9.0	· · · ·			
- 10.0	· · · · · · · · · · · · · · · · · · ·			
	· · · · ·			
- 11.0			· .	
- 12.0				
- 13.0				
NOTE	S: MEASURING POINT ELEVATIONS MAY CHAN	GE; REFER	TO CURRENT ELEVATION	TABLE
1	- CHEMICAL ANALYSIS - WATER F	•	STATIC WATER LEVEL	

PROJE	CT NAME: 10500 CAYUGA DRIVE		HOLE DESIGNATION	1335-8
1	CT NO.: 3307	:	DATE COMPLETED:	
CLIENT	OXYCHEM		DRILLING METHOD:	
LOCAT	ION: 10500 CAYUGA DRIVE		CRA SUPERVISOR:	
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SAMP
ft BGS		ft AMSL	INSTALLATION	
				B T E E
	Sample collected by hand	-0.3	20 24	
	Brown SAND and SILT, dry to moist, FILL/ Light brown CLAY, some silt, trace gravel,	0.0		
- 1.0	dry to moist	-1.3		
	Dark brown SILT, some medium grained SILT, dry to moist		BOREHOLE	1SS
- 2.0	Light brown SILT, some clay, dry to moist White weathered CEMENT, some fine gravel,	-2.2		/
	Light brown SILT, some sand, dry to moist	-2.5		
3.0	Gray CLAY, some silt, some sand lenses, moist, NATIVE, mottled toward bottom	-3.0		
- 4.0	moist, NATIVE, mottled toward bottom			255
- 4.0		-4.5		
- 5.0	END OF HOLE @ 4.5 FT. BGS NOTES:	-4.5		
5.0	 Soil sample collected for chemical analysis from 0.0 to 0.5 ft. BGS. 			
- 6.0	and 4.5 ft. BGS. 2. Borehole backfilled with clean commercial topsoil with the original sod placed over borehole.			
- 7.0				
- 8.0 ·	· · · · ·			
- 9.0			• •	
3.0	· · · · ·		•	
- 10.0			v ¹	
10.0			•	
- 11.0				
- 12.0				
			·	
- 13.0			· .	
			•	
NOT	S: MEASURING POINT ELEVATIONS MAY CHANG	E; REFER 1	TO CURRENT ELEVATION	TABLE

	STRATIGRAPHIC AND IN (OVERBU		TATION LOG	(L-6
PROJE	CT NAME: 104th ST. DATA COLLECTION PROGRAM	-	HOLE DESIGNATION	: 1335-10
PROJE	CT NO.: 3307		DATE COMPLETED:	JANUARY 3, 1
CLIENT	OCCIDENTAL CHEMICAL CORPORATION		DRILLING METHOD:	
LOCATI	ON: 1335 104th ST.		CRA SUPERVISOR:	
	STRATIGRAPHIC DESCRIPTION & REMARKS			
ft BGS	STRATIORAFHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR	
				- U I M A B T E E
- 1.0	Remove sod and topsoil with spade. Sampled by hand Brown and gray SILT, some clay, little fine to medium gravel, moist, FILL			IHS
- 2.0				ISS
- 3.0		7.0	L. S. S. F. S.	255
- 4.0	Red-brown and gray CLAY, some silt, little fine sand and gravel, dry to moist, NATIVE END OF HOLE @ 3.5 FT. BGS	-3.2 -3.5		
- 5.0	 NOTES: Soil samples collected for chemical analysis from 0.0 to 0.5 ft. and 0.5 to 3.5 ft. BGS. Duplicate soil sample collected for chemical analysis from 0.0 to 3.5 ft. BGS. as 1335-15. At completion the borehole was 	-		
· 6.0 · 7.0	backfilled using clean commercial topsoil and the sod was replaced over the borehale.	,		
8.0				
9.0				
:	·			
10.0				
11.0			[.]	
· · ·				
12.0			· . ·	
13.0				
	S: MEASURING POINT ELEVATIONS MAY CHANG	E: REFER T	O CURRENT ELEVATION 1	
	- CHEMICAL ANALYSIS - WATER FO		STATIC WATER LEVEL	T

.

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

PROJECT NAME: 104th ST. DATA COLLECTION PROGRAM

PROJECT NO .: 3307

CLIENT: OCCIDENTAL CHEMICAL CORPORATION

LOCATION: 1335 104th ST.

DRILLING METHOD: 2"& SPLIT SPOON

HOLE DESIGNATION: 1335-12

DATE COMPLETED: JANUARY 4, 1991

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR INSTALLATION	SAMPLE		
1 802		ft AMSL	INSTALLATION	N S N U T V B T L E E		
1.0	Remove sod and topsoil with spade. Sampled by hand Red-brown and gray SILT and fine to medium SAND, some fine to medium gravel, dry to moist, FILL		342 W.W.W. # M.	1HS		
2.0			BOREHOLE			
3.0						
4.0	Red-brown CLAY, some silt, trace fine subround gravel, dry to moist, NATIVE	-3.9				
5.0	END OF HOLE @ 4.5 FT. BGS NOTES: 1. Soil samples collected for chemical analysis from 0.0 to 0.5 ft. and	-4.5	•			
6.0	0.5 to 4.0 ft. BGS. 2. At completion the borehole was backfilled using clean commercial tapsoil and the sod was replaced over the borehole.					
7.0						
3.0			• •			
9.0			· · · · · · · · · · · · · · · · · · ·			
0.0	-					
11.0			• • • •			
12.0						
3.0			•			

(L-62)

PROJEC	CT NAME: 104th ST. DATA COLLECTION PROGRAM	4	HOLE DESIGNATION	. 1776 17
	T NAME: 10411 ST. DATA COLLECTION PROGRAM	τ		
			DATE COMPLETED:	
CLIENT			DRILLING METHOD:	
LOCATI	ON: 1335 104th ST.		CRA SUPERVISOR:	K. LYNCH
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SAMPLE
ft BGS		ft AMSL	INSTALLATION	U T M A
				9 T E E R
	Remove sod and topsoil with spade. Sampled by hand			
1.0	Dark brown fine SAND, some silt, trace vegetation, trace coal, moist, FILL			\square
	Red-brown CLAY, some silt, trace coal and fine white round gravel, dense, moist	-1.2		
2.0			2°ø BOREHOLE	
	Red—brown and gray CLAY, some silt, little subround gravel, maist, some black discoloration, no odor			
3.0	·			255
4.0				
				355
5.0	Red-brown CLAY, some silt, little fine sand, dry to moist, NATIVE	-4.8		
	END OF HOLE @ 4.8 FT. BGS NOTES:			
6.0	1. Soil samples collected for chemical		•	•
0.0	analysis from 0.0 to 0.5 ft. and 0.5 to 4.0 ft. BGS.			
7.0	2. At completion the borehole was backfilled using clean commercial topsoil and the sod was replaced over the borehole.			
/.0	over the borehole.			
	 Water in borehole was 2.5 ft. BGS. at completion. 			
8.0				
			•	
9.0			· · ·	
·				
10.0			· .	
	· · · · · · · · · · · · · · · · · · ·			
11.0				
·				
12.0				
·				
13.0				
	·		· · · · · · · · · · · · · · · · · · ·	
NOTE	S: MEASURING POINT ELEVATIONS MAY CHAN	GE: REFER TO	CURRENT ELEVATION	

. .

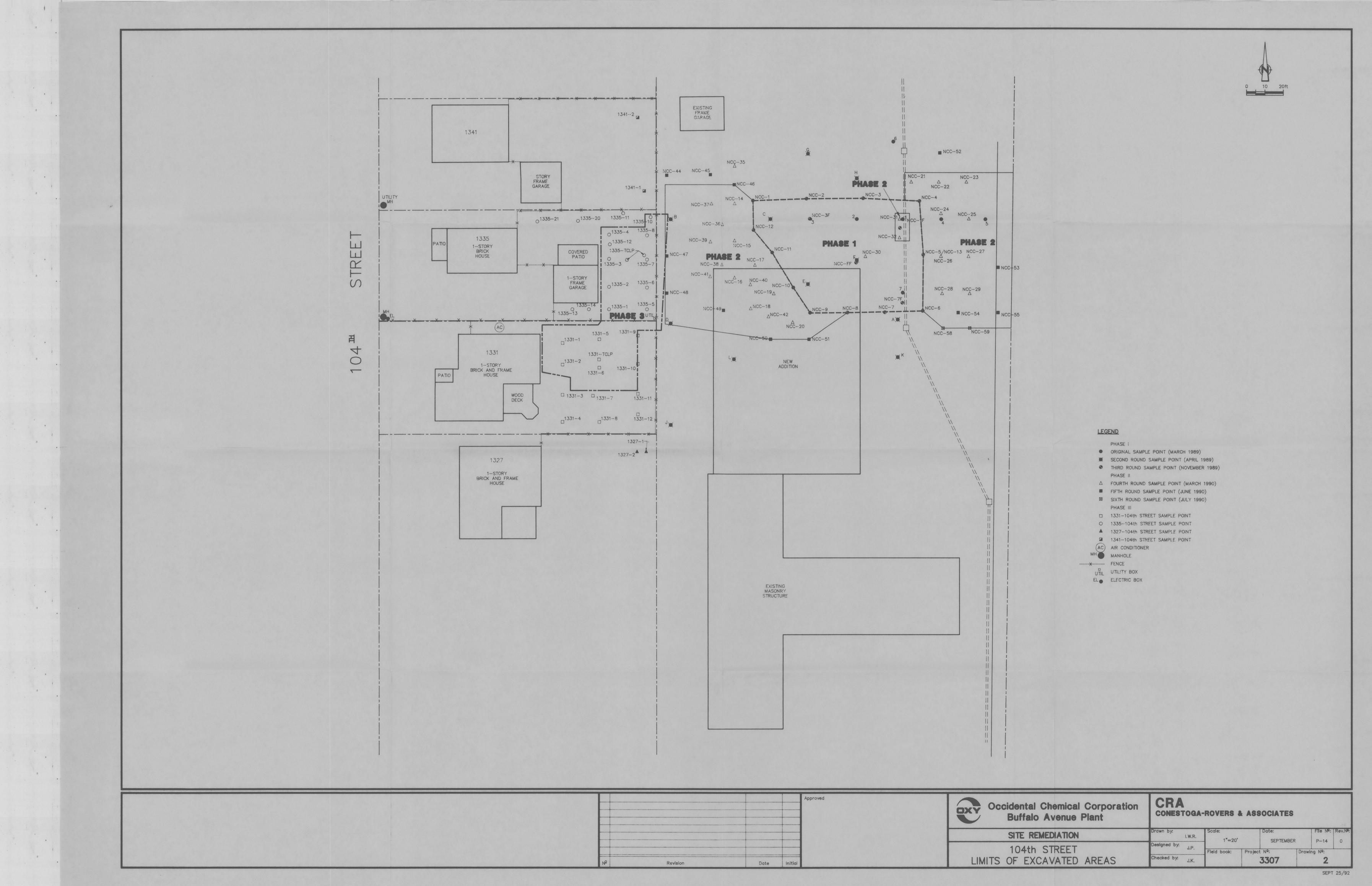
. |

•

. (

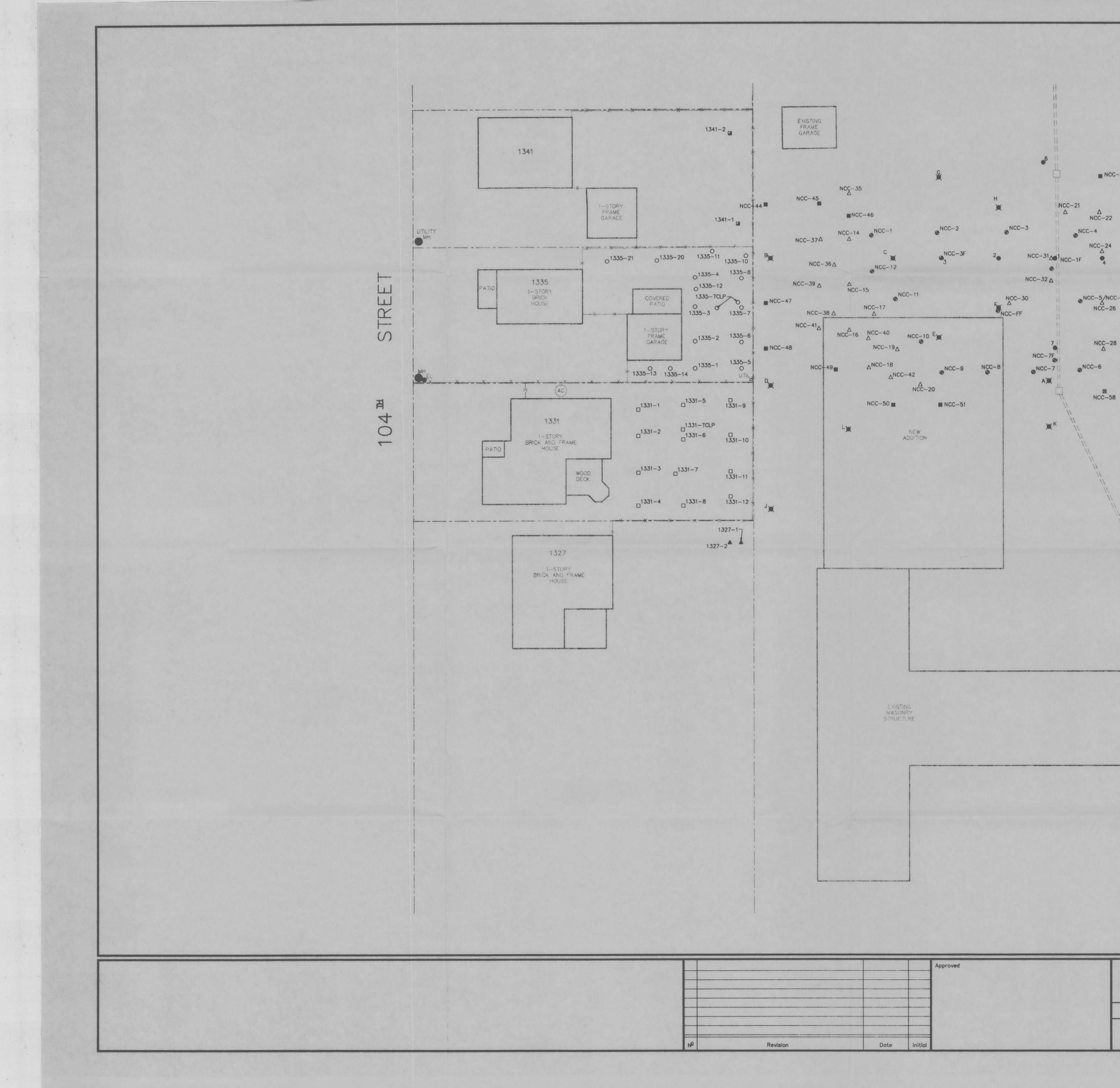
STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

PROJECT NAME: 104th ST. DATA COLLECTION PROGRAM


PROJECT NO .: 3307

CLIENT: OCCIDENTAL CHEMICAL CORPORATION .,

LOCATION: 1335 104th ST. HOLE DESIGNATION: 1335-14 DATE COMPLETED: JANUARY 3, 1991 DRILLING METHOD: 2"# SPLIT SPOON CRA SUPERVISOR: K. LYNCH


ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION		SAMPLE
		ft AMSL	INSTALLATION	N S N V T A B T L E E E
	Remove sod and topsoil with spade. Sampled by hand Dark brown fine SAND, some silt, trace fine			
1.0	gravel, moist, FILL (TOPSOIL) Brown SILT, some clay, little fine gravel, moist	-0.8	2.0	
2.0				
3.0				
4.0	Gray CLAY, some silt, moist, NATIVE Same, except red-brown	-3.8	1400 AN	255
5.0	END OF HOLE @ 4.5 FT. BGS NOTES: 1. Soil samples collected for chemical analysis from 0.0 to 0.5 ft. and	-4.5		
6.0	0.5 to 4.0 ft. BGS. 2. At completion the borehole was backfilled using clean commercial topsoil and the sod was replaced over the borehole.			
7.0			• •	
8.0				
9.0				
10.0				
1.0				
12.0				
3.0				

(L-64)

				Approved
NP	Revision	Date	Initial	

<u>1</u> 341-2	EXISTING FRAME GARAGE		NCC-52				0 10 20ft	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NCC-39 \triangle \triangle NCC-47 NCC-38 \triangle NCC-41 \triangle \triangle NCC-46 NCC-49 NCC-49	$ \frac{NCC-1}{C} $ $ \frac{NCC-2}{3} $ $ \frac{NCC-3F}{3} $ $ \frac{NCC-12}{3} $ $ \frac{NCC-11}{C} $ $ \frac{NCC-11}{\Delta} $ $ \frac{NCC-10}{2} $ $ \frac{NCC-10}{2} $	NCC-22 NCC-4 NCC-24 Δ NCC-25 C-1F 4 5 NCC-5/NCC-13 NCC-27 NCC-26 Δ NCC-27 NCC-28 NCC-29 Δ NCC-6	C 53				
LI331-4 LI331-8 LI331-12	¥۲				 SECOND ROUND S THIRD ROUND SA PHASE II FOURTH ROUND SA FIFTH ROUND SA 	EET SAMPLE POINT EET SAMPLE POINT EET SAMPLE POINT		
	Revision	Approved Date Initial	10	idental Chemical C Buffalo Avenue P SITE REMEDIATION 500 CAYUGA DR AMPLE LOCATION	RIVE	CRA CONESTOGA-ROVERS Drown by: I.W.R. Designed by: J.P. Designed by: J.P. Field books	20' Date: SEPTEMBER 1992	File NP: Rev.NP: P-13 0 g NP: 1 SEPT 22/92

CONESTOGA-ROVERS & ASSOCIATES