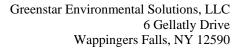
Bi-Annual 2010 Monitoring Event Letter Report and Remedy Review Report for Site No. 932001 Airco Properties, Inc., Airco Parcel Niagara Falls, New York

Prepared for

Linde, LLC 575 Mountain Avenue Murray Hill, New Jersey 07974


Prepared by

Greenstar Environmental Solutions, LLC 6 Gellatly Drive Wappingers Falls, New York 12590 (845) 223-9944

> June 2011 Revision: 0

Project No.: 150C265.1038

13 June 2011

Mr. Brian Thiesse Head of US SHEQ Operations Linde, LLC 575 Mountain Avenue Murray Hill, New Jersey 07974

RE: Second 2010 Bi-Annual Monitoring Event Letter Report and Remedy Review Report, Site No. 932001, Airco Properties Inc., Airco Parcel, Niagara Falls, New York

Dear Mr. Thiesse:

Greenstar Environmental Solutions, LLC (Greenstar) is pleased to provide the second 2010 Bi-Annual Monitoring Event Letter Report summarizing the operation and maintenance activities at the Airco Parcel (Site), Niagara Falls, New York, for the period 1 July 2010 to 31 December 2010. The post-closure monitoring and facility maintenance program was initiated at the Airco Parcel during December 2000. Post-closure monitoring and facility maintenance is required by New York State Solid Waste Management Facilities Regulations (6 NYCRR Part 360-2.15[k][4]) and stipulated in Order on Consent No. B9-0470-94-12. The purpose of this Bi-Annual Monitoring Event Letter Report is to summarize the analytical results of the second bi-annual 2010 groundwater monitoring event that was conducted in September 2010, and operations and maintenance activities conducted at the Site from July through December 2010.

OBJECTIVES

In accordance with the Revised Final Post-Closure Monitoring and Facility Maintenance Plan for the Airco Parcel, prepared by EA Engineering, PC and its affiliate EA Science and Technology (EA 2004)¹, environmental monitoring points will be maintained and sampled during the post-closure monitoring period, including the collection of appropriate groundwater, surface water, and groundwater collection treatment system (GCTS) samples. The Post-Closure Monitoring and Facility Maintenance Plan specifies sampling locations, sampling parameters and analytical methods, in addition to other required maintenance activities, such as landfill cap inspections and the operations and maintenance plan for the GCTS. Following completion of the first five years of post-closure monitoring, the original Revised Final Post-Closure Monitoring and Facility Maintenance Plan, which was included as Appendix A in the Interim Remedial Measure Report (EA 2001a)², was re-evaluated and revised based on the data collected at the site so that the monitoring plan is more focused to address site-specific issues that were identified during the first five years of post-closure monitoring. The second 5-year remedy review period is summarized in the Remedy Review Report contained in Attachment H. It summarizes the last 5 years of data collected, and provides recommendations for modifications to the Post-Closure

^{1.} EA Engineering, P.C. and its Affiliate EA Science and Technology. 2004. Revised Final Post-Closure Monitoring and Facility Maintenance Plan for the Airco Parcel, Niagara Falls, New York. September.

^{2.} EA Engineering, P.C. and its Affiliate EA Science and Technology. 2001a. Interim Remedial Measure Report Documenting Closure of the Witmer Road Landfill, Niagara Falls, New York. Appendix A – Revised Final Post-Closure Monitoring and Facility Maintenance Plan. January.

Monitoring and Facility Maintenance Plan, and discusses additional investigations and pilot studies to explore alternative solutions to the groundwater collection and treatment system.

In accordance with the Revised Post-Closure Monitoring and Facility Maintenance Program the following activities are being completed:

- Environmental monitoring points are being maintained and sampled during the post-closure period.
- Bi-annual summary reports are submitted to site stakeholders including the New York State Department of Environmental Conservation (NYSDEC) Division of Solid and Hazardous Materials, Region 9; the New York State Department of Health, Albany, New York; Linde, Inc.; and the document repository located at the Town of Niagara Clerk's Office.
- Routine inspections of the sediment ponds and the engineered wetlands are conducted to assess the presence of mosquito larvae.
- Drainage structures and ditches are maintained to prevent ponding of water and erosion of the landfill soil cap.
- Soil cover integrity, slopes, cover vegetation, drainage structures, and the perimeter road are maintained during the post-closure monitoring and maintenance period.
- A vegetative cover is maintained on all exposed final cover material, and adequate measures
 are taken to ensure the integrity of the final vegetated cover, topsoil layer, and underlying
 barrier protection layer.
- The GCTS is being operated and maintained to effectively mitigate the discharge of groundwater to surface water in the southwest corner of the Airco Parcel.
- Records are maintained of sample analytical results.

BACKGROUND

The Airco Parcel is part of the Vanadium Corporation of America site that is located in the Town of Niagara Falls, New York (Figure 1). The entire Vanadium site is approximately 150 acres in size, with the Airco Parcel encompassing approximately 25 acres. The 25-acre Airco parcel is the focus of this bi-annual sampling event letter report. The site contains waste material from the historic operations of onsite and nearby production facilities.

An Immediate Investigative Work Assignment (IIWA) investigation was conducted by NYSDEC for a portion of the 150-acre parcel in August 1997, and included investigation of the 70 acre parcel owned by Niagara Mohawk Power Corporation and New York Power Authority. During the investigation, NYSDEC determined that the site had been used by Vanadium Corporation of America (the owners of the site from 1924 to 1964) to dispose of wood, brick, ash, lime slag, ferrochromium silicon slag, and ferrochromium silicon dust. Based on results of the IIWA investigation NYSDEC determined that much of the surface material consisted of fill, including fly ash, dust, slag, and cinder materials.

Analytical results of groundwater samples collected at the site during the IIWA investigation indicated that surface water and groundwater standards were exceeded for hexavalent chromium

and pH. The Vanadium site, including the Airco Parcel, has been listed as a Class 2 Hazardous Waste Site in the New York State Registry of Inactive Hazardous Waste Sites (Site No. 932001).

Remedial measures at the Airco Parcel were completed in 2000 when the landfill was capped as part of an Interim Remedial Measure (IRM) implemented at the Site. A complete description of the history of the site, and the construction details of the landfill capping system, can be found in the Interim Remedial Measure Report (EA 2001b)³. During cap construction a relief pipe system was installed to allow perched water to exit from under the cap without causing slope instability. Flow monitoring and sampling were initiated as part the monitoring program. The data collected indicated that the leachate was actually groundwater recharging to surface water and elevated hexavalent chromium concentrations and pH in groundwater remained in excess of the ambient water quality criteria after mixing with surface water.

Therefore, the IRM was augmented in 2003 with the design and implementation of the GCTS, which was determined to be necessary to meet the goals of the interim remedial measures program. The GCTS was designed to prevent the uncontrolled discharge of impacted groundwater from the Airco Parcel and includes pH adjustment via carbon dioxide aeration, settling for precipitate removal, oxidation/reduction via zero valence iron, and final clarification via an engineered wetland. The main portion of the GCTS is located at the northwest corner of the site and contains the main control panel, carbon dioxide storage tank, carbon dioxide aeration system, sedimentation tanks, pump stations, zero valence iron reaction tanks, and an engineered wetland. An influent pump station is located at the southwest corner of the site.

MONITORING EVENT FIELD ACTIVITIES

The second monitoring event for 2010 was completed 28 - 29 September 2010. The sections below provide a summary of data collected as part of this Monitoring event.

Monitoring Well Gauging

The site monitoring wells, Figure 2, were gauged on 28 September 2010 prior to sampling. Gauging data are summarized in the table below:

N	Depth to Water	Well Elevation	Water Elevation					
Monitoring Well	(ft TOC)	(ft AMSL)	(ft AMSL)					
MW-1B	14.15	617.77	603.62					
MW-2B	16.75	615.88	599.13					
MW-3B	12.79	611.22	598.43					
MW-4B	14.38	606.68	592.30					
MW-5B	12.89	605.48	592.59					
MW-6B	5.27	603.47	598.20					
MW-7B	13.45	609.48	596.03					
MW-8B	9.50	611.62	602.12					
NOTE: TOC	= Top of casin	g.						
AMSL	= Above mean							

^{3.} EA Engineering, Science, and Technology. 2001b. Interim Remedial Measure Report Documenting Closure of the Witmer Road Landfill, Niagara Falls, New York. January.

Figure 3 shows the inferred groundwater flow direction at the site, based on the September 2010 gauging data.

LABORATORY ANALYSIS

Groundwater and surface water samples were submitted to TestAmerica Laboratories of Amherst, New York for analysis of phenolics by U.S. Environmental Protection Agency (EPA) Method 420.2, sulfate by EPA Method 375.3, ammonia (expressed as nitrogen) by EPA Method 350.2, and Target Analyte List metals by EPA Series 6010/6020, including hexavalent chromium.

Regulatory Criteria

Groundwater sampling results were compared to NYSDEC Ambient Water Quality Standards (AWQS) (NYSDEC 1999) and guidance values for Class GA waters. Class GA groundwater is used as a source of drinking water. Surface water samples were compared to NYSDEC AWQS for Class D surface waters. Class D waters are used for fishing but are not conducive to fish propagation. If no Class D standards were applicable for a particular compound, analytical results were compared to the more stringent Class C standards. Class C waters are suitable for fishing and fish propagation.

Groundwater Sampling

Monitoring wells were sampled on 28 – 29 September 2011. Eight monitoring wells are present at the site. Groundwater samples were collected from seven monitoring wells during this sampling event. One monitoring well (MW-4B) had insufficient well volume to purge and sample. Monitoring wells MW-3B, MW-5B, and MW-8B were purged using dedicated bailers due to slow recharge and limited well volume. Consistent with previous sampling, these wells yield very little groundwater and were bailed dry and allowed to recharge prior to sample collection. Monitoring wells MW-1B, MW-2B, MW-6B and MW-7B had adequate groundwater yield for low flow sampling utilizing a peristaltic pump. Water quality readings were allowed to stabilize prior to sample collection.

Surface Water Sampling

Surface water samples were collected from the drainage swales in the southwest corner of the site. These samples were collected from the eastern swale approximately 80 feet east of the pump station (SS-02); the confluence of the two swales where they discharge from the property (SS-01); and upstream of the confluence (SS-03). The surface water sample locations are shown on Figures 2 and 4.

ANALYTICAL RESULTS

Analytical results are summarized on the table provided in Attachment A. Copies of the well gauging, purging, and sampling forms are provided in Attachment B. Laboratory chain of-custody records are provided in Attachment C. A copy of the laboratory data package for groundwater and surface water sampling is included in Attachment D.

Summary tables listing analytical results compared to applicable NYSDEC AWQS are included in Attachment A, and a tag map illustrating analytical results is provided as Figure 4.

Metals

Unfiltered groundwater samples were collected from the 7 monitoring wells for metals analyses. Significant results included the following:

- Chromium, hexavalent chromium, iron, lead, magnesium, manganese, and sodium were
 detected in one or more of the groundwater samples at concentrations in excess of
 NYSDEC AWQS.
- Chromium was detected in excess of the NYSDEC AWQS in MW-2B, and MW-8B at concentrations ranging from 0.0962 milligram per liter (mg/L) (MW-8B) to 0.574 mg/L (MW-2B).
- Hexavalent chromium was detected in excess of the NYSDEC AWQS in MW-2B and MW-8B at concentrations of 0.271 mg/L and 0.0985 mg/L, respectively.
- Iron was detected in excess of the NYSDEC AWQS in MW-2B, MW-5B and MW-8B at concentrations ranging from 2.76 mg/L (MW-5B) to 8.64 mg/L (MW-8B).
- Lead was detected slightly above the NYSDEC AWQS (.025 mg/L) in MW-8at a concentrations of .00253 mg/L.
- Magnesium was detected in excess of the NYSDEC AWQS in MW-1B, MW-5B, MW-6B and MW-8B at concentrations ranging from 61.3 mg/L (MW-1B) to 95.4 mg/L (MW-5B).
- Manganese was detected in excess of the NYSDEC AWQS in MW-1B and MW-8B at concentration of 0.684 mg/L and 0.586 mg/L, respectively.
- Sodium was detected in excess of the NYSDEC AWQS in all 7 monitoring wells at concentrations ranging from 44 mg/L (MW-5B) to 118 mg/L (MW-1B).

Unfiltered surface water samples were collected from 3 surface water locations for metals analyses. Iron was detected at concentration above the NYSDEC AWQS for Class D surface waters in SS-02 (0.971 mg/L). No other metals exceeded their respective NYSDEC AWQS for Class D surface waters.

Water Quality Parameters

Water quality parameters, including pH, temperature, conductivity, dissolved oxygen, turbidity, and salinity, were collected in the field. In addition, water quality parameters, including ammonia (expressed as N), phenolics, and sulfate, were analyzed by the laboratory. Notable results included the following:

- Sulfate was detected in excess of the NYSDEC AWQS in MW-6B at a concentration of 392 mg/L.
- pH measurements were measured outside the NYSDEC AWQS of 6.5-8.5 standard pH units in monitoring wells MW-2B (13.06), MW-3B (9.69), and MW-7B (8.56).

LANDFILL INSPECTION

Landfill cap inspections were conducted on 24 August and 29 December 2010. The completed Landfill Cap Inspection Checklists are provided as Attachment E. No deterioration, damage, or erosion to the landfill cap was noted during the engineering inspections. The noted deficiencies identified during the 1st, 2nd and 3rd quarters were addressed during the 4th quarter. They included:

- Repair of areas of disturbance around the T-7 pond. The top of the T-7 berm in some areas was as much as 1.5' lower than other areas. Fill was added and topsoil placed to raise the berm elevation.
- The T-7 outlet pipe was excavated and repaired to prevent blockages from forming.
- Culverts were installed under the access road in the southwest corner to aid in the prevention of water backing up and flooding the drywell.
- The damaged T-3A tank cover was replaced.

GCTS OPERATIONS AND MAINTENANCE MONITORING ACTIVITIES

Routine operations and maintenance of the GCTS is preformed during site visits twice per month. Activities performed include data collection, cleaning and calibration of pH probes, cleaning of pressure transmitters, operational parameter adjustments based on observed site conditions, and general housekeeping tasks. The replacement of system components, including pumps, pressure transmitters, and pH probes is also scheduled and performed during the routine visits when practicable.

System Operations and Maintenance (July – December 2010)

The GCTS was operated throughout the 6-month period of 1 July – 31 December 2010. System monitoring was conducted throughout the operation period. Attachment G provides details of the problems encountered, and the implemented solutions.

Mr. Brian Theiesse Linde, LLC. 13 June 2011 Page 7

During the reporting period, the GCTS operated for 4,416 hours (100 percent) at an average flow rate of 11.4 gallons per minute (gpm). The GCTS sampling occurred bi-weekly during the operation period. Samples were collected at various locations within the system to evaluate treatment system performance and compliance with discharge criteria. Bi-weekly samples were collected from the system at T3B after CO_2 aeration; T6B after treatment via the zero valence iron tank; after the engineered wetland (EWE); and at the point where the drainage swale exits the site in the southwest corner, when accessible. The samples were analyzed in the field for total chromium and hexavalent chromium using a HACH DR4000® spectrophotometer. The HACH DR4000® spectrophotometer field method is EPA approved for reporting water and wastewater analyses within a detection limit of 0.006 and 0.005 mg/L for hexavalent chromium, and 0.003 mg/L for total chromium.

The engineered wetland discharge samples were analyzed in the field, and separate quarterly samples were also collected for off-site laboratory analysis at Test America Laboratories of Amherst, New York for a full list of discharge criteria. During the report period, field analysis on 14 September 2010 noted a hexavalent chromium concentration of 50 micrograms per liter (μ g/L), which is in excess of the NYSDEC discharge guidance value (11 μ g/L), in the surface water where it exits the site in the southwest corner. A confirmatory sample was collected and submitted to TestAmerica for analysis. The results indicated that no hexavalent chromium was present in the discharge. In addition, samples were collected on 8 July 2010 and 18 July 2010 and sent for offsite analysis for Total and hexavalent chromium as the Hach DR4000 Spectrophotometer was sent to the manufacturer for routine repairs and calibration.

Field sampling results for total and hexavalent chromium can be found in Table 1, and results of the quarterly engineered wetland discharge samples can be found in Table 2. Analytical results for the quarterly discharge sampling indicated full compliance with the NYSDEC discharge guidance values for the August 2010 discharge sampling. A chain of custody error occurred during the 4th Quarter sampling event, and the surface water sample was analyzed for only a portion of the guidance value parameters. The sample was analyzed for Ammonia, Total and hexavalent chromium, Iron, Selenium, thallium and zinc. For this partial list, no results exceeded the guidance values. The Laboratory data package for the GCTS discharge sampling can be found in Attachment F.

GCTS Modifications (July – December 2010)

No major modifications to the GCTS were performed during the report period. Site activities were limited to routine operations and maintenance, including repairs to pumps, VFDs, and pH probes, routine tank and line cleaning, and replacement of the T-1 influent valve actuator. Routine site maintenance to address deficiencies noted in the engineering inspections was performed. Attachment G summarizes monthly operation and maintenance details for the period July through December 2010, as well as provides details of any proposed operation and maintenance projects and modification improvements to be implemented in the near future.

If you have any questions regarding the results of this Bi-Annual 2010 Monitoring Event Letter Report, please do not hesitate to contact the undersigned at (845) 223-9944.

Sincerely,

GREENSTAR ENVIRONMENTAL SOLUTIONS

Charles E. McLeod, Jr., P.E.

Project Manager

WE. NEW R

Peter L. Nimmer, P.G. Senior Geologist

Peter Muny

Attachment

cc: M. Hinton (NYSDEC) M. Forcucci (NYSDOH) Town of Niagara Falls (Town Clerk)

TABLE 1 SUMMARY OF GCTS FIELD SAMPLING RESULTS 1 JULY – 31 DECEMBER 2010, AIRCO PARCEL, NIAGARA FALLS, NEW YORK

	Chromium Tank 3B		Iron T	ank 6B	Engineere	d Wetland	Southwes	t Corner
	Total	Hexavalent	Total	Hexavalent	Total	Hexavalent	Total	Hexavalent
Date	Chromium	Chromium	Chromium	Chromium	Chromium	Chromium	Chromium	Chromium
7/8/10 ⁽¹⁾	134 μg/L	39 μg/L	NS	NS	NS	NS	<4U μg/L	<10U μg/L
7/18/10 ⁽²⁾	138 μg/L	26 μg/L	NS	NS	NS	NS	<4U μg/L	<10U µg/L
8/2/10	61 μg/L	21 μg/L	<3U μg/L	<3U μg/L	11 μg/L	22 μg/L	11 μg/L	5 μg/L
8/24/10	38 μg/L	7 μg/L	15 μg/L	<3U μg/L	38 μg/L	23 μg/L	17 μg/L	8 μg/L
9/3/10	35 μg/L	8 μg/L	28 μg/L	<3U μg/L	42 μg/L	26 μg/L	14 μg/L	4 μg/L
9/14/10	30 μg/L	8 μg/L	50 μg/L	<3U μg/L	35 μg/L	29 μg/L	50 μg/L	46 μg/L
9/14/10 ⁽³⁾	NS	NS	NS	NS	NS	NS	<4U μg/L	<10U µg/L
10/13/10 ⁽⁴⁾	26 μg/L	52 μg/L	47 μg/L	8 μg/L	17 μg/L	6 μg/L	NS	NS
10/22/10	90 μg/L	10 μg/L	49 μg/L	51 μg/L	84 μg/L	7 μg/L	18 μg/L	8 μg/L
11/15/10	99 μg/L	46 μg/L	4 μg/L	41 μg/L	7 μg/L	39 μg/L	16 μg/L	7 μg/L
11/30/10	74 μg/L	79 μg/L	<3U μg/L	29 μg/L	35 μg/L	48 μg/L	16 μg/L	10 μg/L
12/13/10	82 μg/L	50 μg/L	18 μg/L	<3U μg/L	7 μg/L	<3U μg/L	15 μg/L	7 μg/L
12/29/10	118 μg/L	58 μg/L	12 μg/L	26 μg/L	18 μg/L	<3U μg/L	19 μg/L	5 μg/L

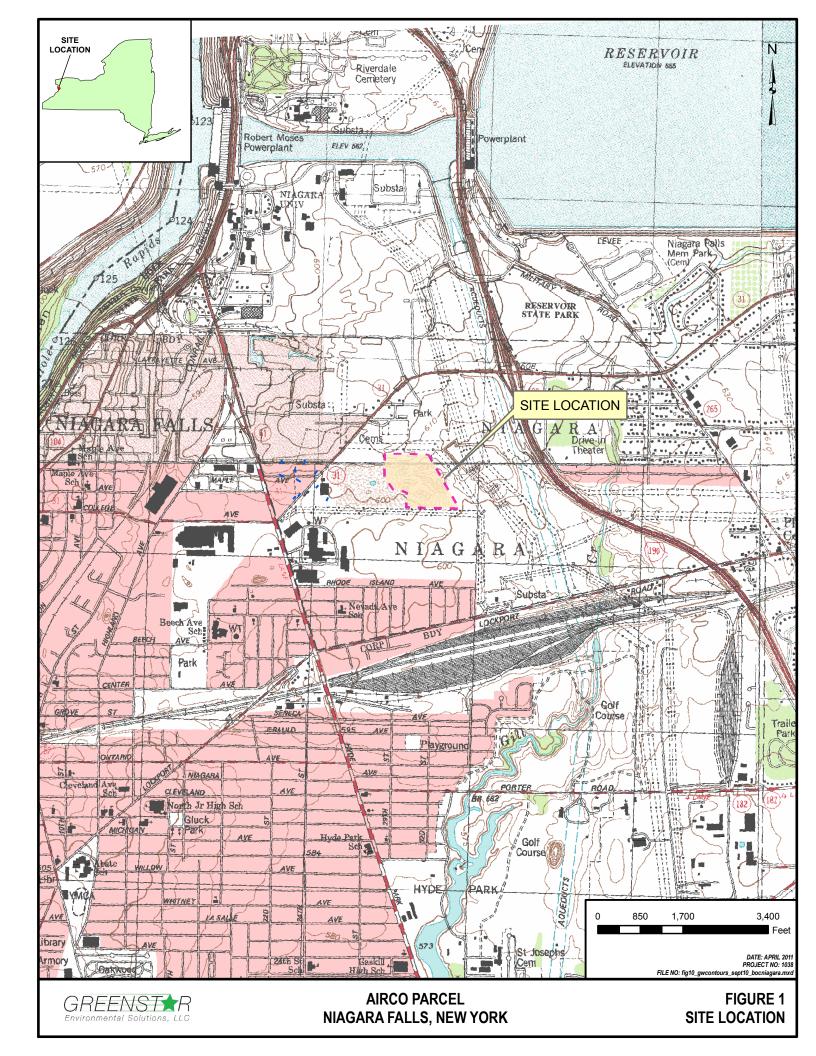
NOTE: NS = Not Sampled

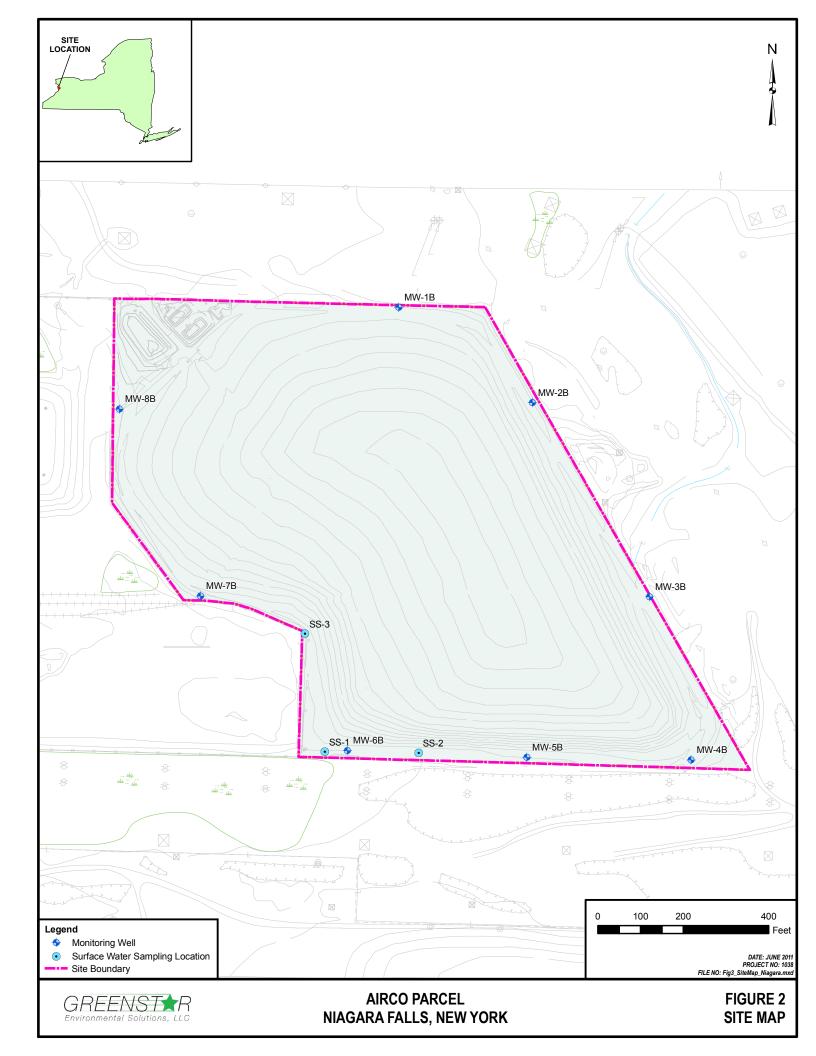
NS - Ice = Not Sampled due to winter weather conditions.

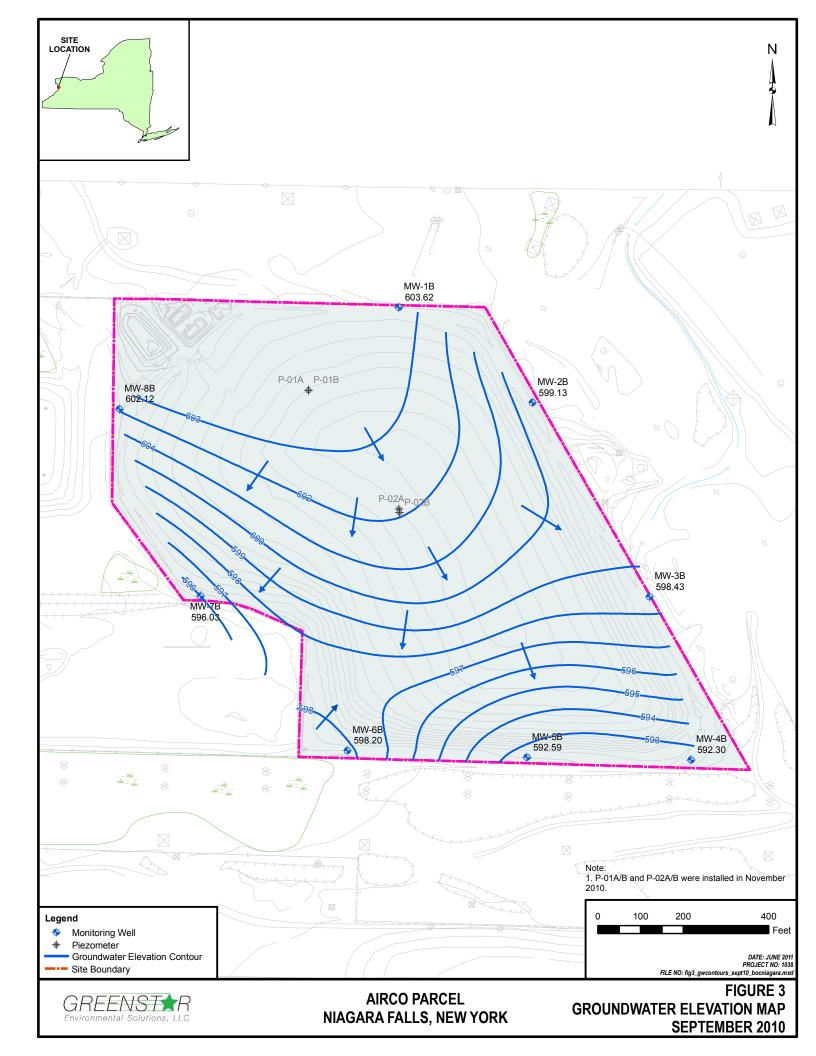
Bold field sample results were in excess of SPDES discharge guidance values.

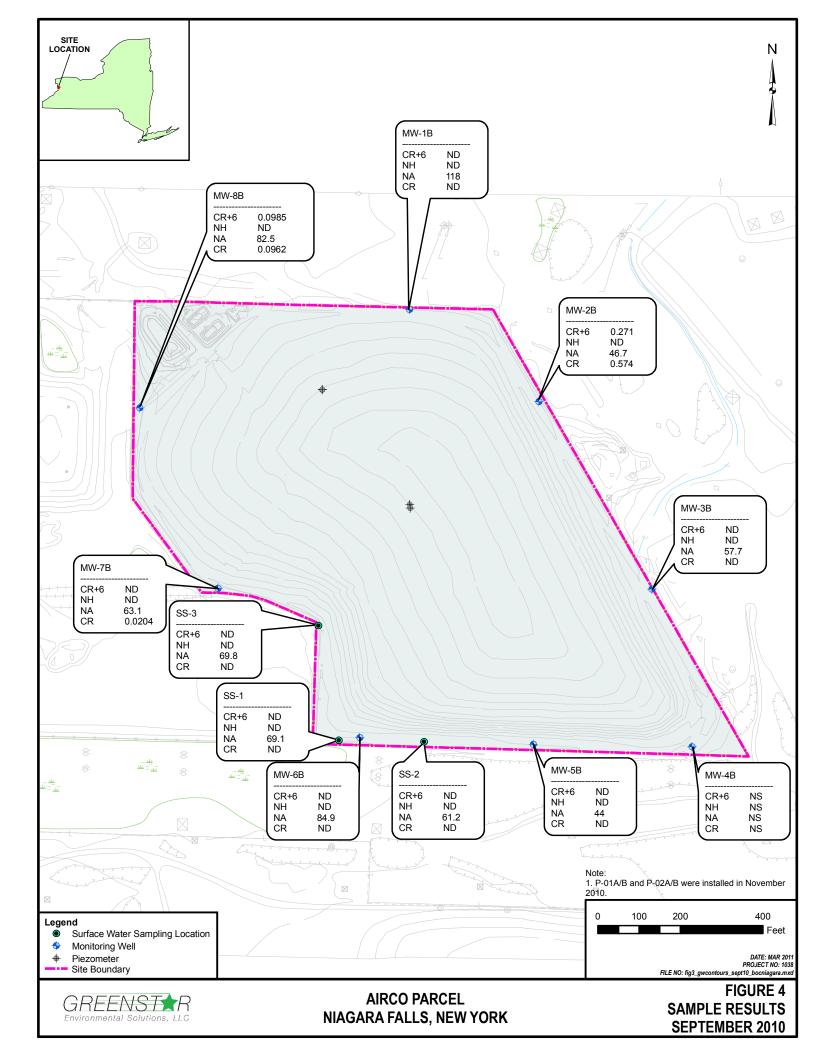
- (1) DR4000 Spectrophotometer failed. Packaged and sent to the manufacturer for repairs. Sample collected and sent to TestAmerica for analysis.
- (2) Sample collected and sent to TestAmerica for analysis.
- (3) Confirmation sample sent to TestAmerica for analysis. Sample was ND for hexavalent and total chrome.
- (4) No sample collected as there was no water due to dry conditions.

Field samples analyzed using a HACH DR4000® Spectrophotometer.


Hach Methods 8023 for Hexavalent Chromium and Hach Method 8084 for Total Chromium.


TABLE 2 SUMMARY OF QUARTERLY GCTS DISCHARGE SAMPLING 25 AUGUST AND 29 SEPTEMBER 2010, AIRCO PARCEL, NIAGARA FALLS, NEW YORK


			New York State Department of Environmental Conservation
Parameter	25 August 2010	29 September 2010	Discharge Criteria
рН	7.90	NS	6-8
Total suspended solids	<10U	NS	10 mg/L
Dissolved Oxygen	8.24	NS	7 mg/L
Ammonia as N	<9.2U	<9.2U	9.2 mg/L
Total Kjeldahl nitrogen	<1.0U	NS	Monitor (mg/L)
Total Recoverable Phenolics	<0.008U	NS	.008 mg/L
Biochemical oxygen demand	<5U	NS	5.0 mg/L
1,1-Dichloroethane	<5U	NS	5.0 μg/L
Trichloroethene	<5U	NS	5.0 μg/L
Nickel	<0.07U	NS	0.07 mg/L
Copper	<0.0147U	NS	0.0147 mg/L
Barium	<2U	NS	2 mg/L
Total chromium	<0.1U	<0.1U	0.1 mg/L
Hexavalent chromium	<0.011U	<0.011U	0.011 mg/L
Iron	<0.3U	<0.3U	0.3 mg/L
Selenium	<0.0046U	<0.0046U	0.0046 mg/L
Thallium	<0.004U	<0.004U	0.004 mg/L
Zinc	<0.115U	<0.115U	0.115 mg/L
Nitrate as N	0.543	NS	Monitor (mg/L-N)
Nitrite as N	<0.05U	NS	Monitor (mg/L-N)
Chemical oxygen demand	<40U	NS	40 mg/L
Total dissolved solids	526	NS	Monitor (mg/L)


Values in bold exceeded discharge guidance values.

NS = Not Sampled. Chain of Custody Did not properly state the required Analyses.

Attachment A

Summary of Analytical Results Groundwater and Surface Water Samples September 2010

ATTACHMENT A

SUMMARY OF ANALYTICAL RESULTS OF SURFACE WATER AND GROUNDWATER SAMPLES COLLECTED IN SEPTEMBER 2010,

AIRCO PARCEL, NIAGARA FALLS, NEW YORK

Groundwater

Baseline Metals by EPA Method 200.7 (mg/L) Total (Unfiltered)

		MW-1B	MW-2B	MW-2B	MW-3B	MW-5B	MW-6B	MW-7B	MW-8B
				(Dup)					
Analyte	AWQS								
Cadmium	0.005	(<0.001U)	(<0.001U)	0.0011	(<0.001U)	0.001	(<0.001U)	(<0.001U)	0.0016
Chromium	0.05	(<0.004U)	0.574	0.573	(<0.004U)	0.0053	(<0.004U)	0.0204	0.0962
Chromium, Hexavalent	0.05	(<0.011U)	0.271	0.248	(<0.011U)	(<0.011U)	(<0.011U)	(<0.011U)	0.0985
Iron	0.3	0.1	2.89	1.93	(<0.05U)	2.76	0.155	0.189	8.64
Lead	0.025	(<0.005U)	0.0097	0.0076	(<0.005U)	0.0129	(<0.005U)	(<0.005U)	0.0253
Magnesium	35*	61.3	1.49	0.898	8.14	95.4	78	11.3	80.2
Manganese	0.3	0.684	0.123	0.0927	0.0064	0.119	0.152	0.049	0.586
Selenium	0.01	(<0.015U)	0.0244						
Silica		6.86	1.09	0.892	7.31	11.1	6.18	8.46	27
Sodium	20	118	46.7	45.9	57.7	44	84.9	63.1	82.5
Thallium	0.0005*	(<0.02U)	(<0.02U)						
Zinc	2*	0.561	0.0312	0.0203	(<0.01U)	0.138	(<0.01U)	(<0.01U)	0.256

Water Quality Parameters (mg/L)

		MW-1B	MW-2B	MW-2B (Dup)	MW-3B	MW-5B	MW-6B	MW-7B	MW-8B
Analyte	AWQS								
Ammonia (expressed as N)	2	(<9.2U)	(<9.2U)	(<9.2U)	(<9.2U)	(<9.2U)	(<9.2U)	(<9.2U)	(<9.2U)
Phenolics	0.001	(<0.01U)	(<0.01U)	(<0.01U)	(<0.01U)	(<0.01U)	(<0.01U)	(<0.01U)	(<0.01U)
Sulfate	250	194	22.4	22.3	58.7	160	392	35	225

Surface Water

Baseline Metals by EPA Method 200.7 (mg/L) Total (Unfiltered)

		SS-01	SS-02	SS-03
Analyte	AWQS			
Cadmium		(<0.001U)	(<0.001U)	(<0.001U)
Chromium		(<0.004U)	(<0.004U)	(<0.004U)
Chromium, Hexavalent	0.016	(<0.011U)	(<0.011U)	(<0.011U)
Iron	0.3	(<0.05U)	0.971	0.092
Lead		(<0.005U)	(<0.005U)	(<0.005U)
Magnesium		2.14	4.72	2.12
Manganese		(<0.003U)	0.592	0.0059
Selenium	0.0046	(<0.015U)	(<0.015U)	(<0.015U)
Silica		1.33	4.14	1.25
Sodium		69.1	61.2	69.8
Thallium	0.02	(<0.02U)	(<0.02U)	(<0.02U)
Zinc		(<0.01U)	(<0.01U)	(<0.01U)

Water Quality Parameters (mg/L)

		SS-01	SS-02	SS-03
Analyte	AWQS			
Ammonia (expressed as N)		(<9.2U)	(<9.2U)	(<9.2U)
Phenolics		(<0.01U)	(<0.01U)	(<0.01U)
Sulfate		22.5	22.1	21.3

QA/QC

Baseline Metals by EPA Method 200.7 (mg/L) Total (Unfiltered)

		RB-01	SWB-01
Analyte	AWQS		
Cadmium		(<0.001U)	(<0.001U)
Chromium		(<0.004U)	(<0.004U)
Chromium, Hexavalent		(<0.011U)	(<0.011U)
Iron		(<0.05U)	(<0.05U)
Lead		(<0.005U)	(<0.005U)
Magnesium		0.925	0.875
Manganese		0.003	(<0.003U)
Selenium		(<0.015U)	(<0.015U)
Silica		2.28	2.32
Sodium		(<1U)	(<1U)
Thallium		(<0.02U)	(<0.02U)
Zinc		(<0.01U)	(<0.01U)

Water Quality Parameters (mg/L)

		RB-01	SWB-01
Analyte	AWQS		
Ammonia (expressed as N)		(<9.2U)	(<9.2U)
Phenolics		(<0.01U)	(<0.01U)
Sulfate		(<10U)	(<10U)

ATTACHMENT A (CONTINUED)

TABLE NOTES

AWQS = New York State Ambient Water Quality Standards and Guidance Values from

Water Quality Regulations, Title 6, Chapter X Parts 700-706 August 1999.

* = Indicates guidance value.

U = Not detected. Sample quantitation limits shown as (<__U).

Only those analytes detected in at least one of the samples is shown on this table. Results shaded and in boldface indicate concentrations in excess of New York State Ambient Water Quality Standards or Guidance Values.

Analytical Methods for Water Quality Parameters

Ammonia (expressed as Nitrogen) = EPA 350.2 Phenolics = EPA 420.2 Silica = EPA 6010 Sulfate = EPA 375.3

Attachment B

Well Gauging, Purging, and Sampling Forms September 2010

Well I.D.:			Personnel			Client:			
	AP-MW1B			SB/NM			Linde, Inc.		
Location:	NP		Well Cond			Weather:	Claudy CC°		
	Niagara Falls			Good; Locked			Cloudy, 66°		
Sounding I			Gauge Dat			Measurement F			
041-1-11-70	WLI		O Ti	9/28/2010 Gauge Time:			TOC		
Stick Up/De									
	UP			15:40		2"			
Purge Date	<u> </u>				Purge Tim				
J 9	9/29/2010)			J	7:57			
Purge Meth					Greenstar	Personnel:			
	Low-Flow					SB/NM			
				Well	Volume				
A. Well De	pth (ft):		D. Well Vo	lume (ft³):		Depth/Height o	f Top of PVC:		
	27.83 0.30						N/A		
B. Depth to	Water (ft):		E. Well Vo	lume (L)		Pump Type:			
	14.15			8.5			Peristaltic		
C. Liquid D	C. Liquid Depth (ft) (A-B):					Pump Designation			
	13.68	}					N/A		
				Water Ouel	ity Dorom	notoro.			
Time	DTW	Volume		Water Qual	Conduct.		D.O.	Tomas	ORP
Time (hrs)	(ft btoc)	(liters)	Rate (Lpm)	pH (pH units)	(mS/cm)	Turbidity (NTU)	D.O. (mg/L)	Temp. (° C)	(mv)
8:09	14.62	1	0.20	7.05	1.51	7.1	0.00	12.55	154
8:14	14.67	2	0.20	7.08	1.50	5.6	0.00	12.35	109
8:20	14.70	3	0.20	7.09	1.52	4.8	0.00	11.84	77
8:25	14.74	4	0.20	7.13	1.51	2.9	0.00	11.77	56
8:29	14.72	5	0.20	7.10	1.51	1.9	0.00	11.78	52
8:34	14.72	6	0.20	7.07	1.51	1.3	0.00	11.80	47
Total Oue	atity of Woter D	omoved:		el.		Sampling Time	_	0.25	
	ntity of Water R	emoved:		~6L SB/NM	_	Sampling Time		8:35	Ι/Δ
Samplers:	-	emoved:		SB/NM	- -	Split Sample W		N	I/A
Total Quan Samplers: Sampling I	-	emoved:			- - -				I/A

Well I.D.:		<u> </u>	Personnel	:		Client:				
	AP-MW2B			SB/NM			Linde, Inc.			
Location:			Well Cond			Weather:				
	Niagara Falls			Good; Locked		Cloudy, 66°				
Sounding I	Method:		Gauge Dat	Gauge Date:			Ref:			
	WLI			9/28/2010			TOC			
Stick Up/Do	own (ft):		Gauge Time: Well Diameter (in):							
	UP			15:50		2"				
Purge Date):				Purge Tim	e:				
	9/29/2010					9:04				
Purge Meth	nod:				Greenstar	Personnel:				
	Low-Flow					SB/NM				
				Well	Volume					
Δ Well Der	A. Well Depth (ft): D. Well Volume (ft ³):					Depth/Height of	of Top of PVC:			
A. HOII DO	27.31 0.23				Doptimioignic	N/A				
B. Depth to			E. Well Vo			Pump Type:				
	16.75			6.5		Peristaltic				
C. Liquid D	epth (ft) (A-B):	Pump Designation:								
	10.56					N/A				
						<u> </u>				
				Water Qual	ity Param	eters				
Time	DTW	Volume	Rate	рН	Conduct.	Turbidity	D.O.	Temp.	ORP	
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mS/cm)	(NTU)	(mg/L)	(° C)	(mv)	
9:09	19.98	1	0.20	13.15	4.45	1.5	0.86	12.09	-108	
9:14	21.30	2	0.20	13.18	4.49	3.6	0.55	12.20	-110	
9:22	22.71	3	0.20	13.14	4.44	1.8	0.17	12.93	-105	
9:32	23.68	4	0.20	13.14	4.47	2.3	0.26	13.24	-101	
9:44	24.91	5	0.20	13.06	4.49	2.5	0.19	13.38	-99	
	tity of Water Re	emoved:		~5L	•	Sampling Time		9:45		
Samplers:				SB/NM	_	Split Sample W	/ith:		I/A	
Sampling [Date:			9/29/2010	-	Sample Type:		GRAB		
	S AND OBSER			Lock lubed wit	h WD40.					
	Collected from									
***Always ta	ake DUP from A	P-MW-2B								

Well I.D.:	AD MM/2D		Personnel			Client:				
	AP-MW3B		W !! O !	SB/NM			Linde, Inc.			
Location:	Niagara Falls		Well Cond	lition: Good; Locked		Weather: Cloudy, 66°				
Sounding I			Gauge Dat		·	Measurement I				
Souriding	WLI		Gauge Da	9/28/2010			TOC			
Stick Up/D			Gauge Tin			Well Diameter				
Otick Op/D	UP		Cauge IIII	15:55		Well Blameter	2"			
	<u> </u>					<u> </u>				
Purge Date):				Purge Tim	e:				
	9/29/2010)				10:22				
Purge Metl	nod:				Greenstar	Personnel:				
	Hand-Bail					SB/NM				
					Volume					
A. Well De _l	pth (ft):		D. Well Vo	lume (ft ³):		Depth/Height of	of Top of PVC:			
18.41 0.12						N/A				
B. Depth to	. Depth to Water (ft):			lume (L):		Pump Type:				
	12.79			3.5		3' Poly Bailer				
C. Liquid D	epth (ft) (A-B):					Pump Designation:				
	5.62					N/A				
				Water Qual	ity Param	eters				
Time	DTW	Volume	Rate	рН	Conduct.		D.O.	Temp.	ORP	
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mS/cm)	(NTU)	(mg/L)	(° C)	(mv)	
16:00	15.32	1	-	9.40	0.344	0.2	0.57	15.81	140	
16:08	Dry	7	-	9.37	0.366	4.8	1.87	14.50	-43	
	,									
10:22	12.91	-	-	9.69	0.363	1.1	0.20	14.31	79	
								1		
Total Quan	tity of Water R	emoved.		~7L		Sampling Time	\ !			
Samplers:	inty of water in	ciliovea.		SB/NM	-	Split Sample W			N/A	
Sampling I	Date:			9/29/2010	-	Sample Type: GRAB			·	
					•					
COMMENT	S AND OBSER	VATIONS:		Lock lubed wi	th WD40. V	Vell purged dry a	nd sampled the	following da	y.	
Replace ba	iler for next sam	pling event.								

-										
Well I.D.:			Personnel			Client:			<u> </u>	
	AP-MW4B			SB/NM			Linde, Inc.			
Location:			Well Cond			Weather:	Olavidi. 222			
	Niagara Falls			Good; Locked			Cloudy, 66°			
Sounding I			Gauge Dat			Measurement				
	WLI			9/28/2010			TOC			
Stick Up/D			Gauge Tim	ne:		Well Diameter				
	UP						2"			
Purge Date	<u> </u>				Purge Tim	<u></u>				
go =	9/28/2010				90	16:18				
Purge Metl					Greenstar	Personnel:				
	Hand Bail					SB/NM				
				Well	Volume					
A. Well De	pth (ft):		D. Well Vo	lume (ft ³):		Depth/Height of	of Top of PVC:			
	15.08			0.02			N/A			
B. Depth to	o Water (ft):		E. Well Vo	lume (L):		Pump Type:				
	14.38			0.4			3' Poly Bailer			
C. Liquid D	Depth (ft) (A-B):					Pump Designation:				
	0.70						N/A			
				Water Qual	ity Param	eters				
Time	DTW	Volume	Rate	pH	Conduct.	Turbidity	D.O.	Tomp	ORP	
(hrs)	(ft btoc)	(liters)	(Lpm)	рп (pH units)	(mS/cm)	(NTU)	(mg/L)	Temp. (° C)	(mv)	
16:18		(IIICI 3)	(Epini)	(pri units)	(IIIO/CIII)	(1410)	(1119/12)	(0)	(1114)	
10.10	Dry	<u>-</u>	-	-	-	-	-	-		
10:39	Dry	_	_	_	_	_	_	 		
10.00	2.9							1		
-										
	ntity of Water Re	emoved:		OD /NIM	-	Sampling Time			1/4	
Samplers:	Data			SB/NM	-	Split Sample V	vith:		I/A	
Sampling I	Date:			9/29/2010	•	Sample Type:		GRAB		
COMMENT	S AND OBSER	·2MOITA\		Lock lubed w	ith \\\□40					
	water to purge		Ω narametei			ll was DRY				
o. onough	a.c. to purge t	J. 100010 VV	a parameter	o. Campic not	Lancin do We					

Well I.D.:		_	Personnel	:		Client:				
	AP-MW5B			SB/NM			Linde, Inc.			
Location:			Well Cond	ition:		Weather:				
	Niagara Falls			Good; Locked		<u> </u>	Cloudy, 66°			
Sounding I	Method:		Gauge Dat	e:		Measurement	Ref:			
	WLI			9/28/2010			TOC			
Stick Up/D	own (ft):		Gauge Tin	ne:		Well Diameter	(in):			
	UP			16:24			2"			
Purge Date) :				Purge Tim	e:				
	9/28/2010					16:27				
Purge Meth	hod:				Greenstar	Personnel:				
	Hand Bail					SB/NM				
				Well	Volume					
A. Well De	oth (ft):		D. Well Vo	lume (ft³):		Depth/Height o	of Top of PVC:			
	14.22			0.03		- opg	N/A			
B. Depth to			E. Well Vo			Pump Type:				
	12.89		0.8				3' Poly Bailer			
C. Liquid D	epth (ft) (A-B):						Pump Designation:			
	1.33					N/A				
<u>!</u>						•				
				Water Qual	ity Param	neters				
Time	DTW	Volume	Rate	рН	Conduct.	Turbidity	D.O.	Temp.	ORP	
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mS/cm)	(NTU)	(mg/L)	(° C)	(mv)	
16:27	Dry	1	-	7.23	0.953	262.0	1.16	15.92	-55	
	itity of Water Re	emoved:		~1L	_	Sampling Time		10:45		
Samplers:	_			SB/NM	-	Split Sample W	Vith:		I/A	
Sampling I	Date:			9/29/2010	-	Sample Type:		GRAB		
COMMENT	e and opens	VATIONS		المصادرا بامصا	15 MD 40 M	ا ما المال	nd oom; lad 41	والمعادة والمالة		
	S AND OBSER		dings at time		ui VV D40. V	Vell purged dry a	nu sampied the	Tollowing day	у.	
	quate water to ta		ungs at time	or sampling.						
replace ba	iler next samplin	y event.								

Well I.D.:			Personnel		<u> </u>	Client:				
	AP-MW6B			SB/NM			Linde, Inc.			
Location:			Well Cond			Weather:	6 1 1			
	Niagara Falls			Good; Locked			Cloudy, 66°			
Sounding I			Gauge Dat			Measurement F				
<u> </u>	WLI			9/28/2010			TOC			
Stick Up/D	• •		Gauge Tin			Well Diameter (
	UP			16:36			2"			
Purge Date):				Purge Tim	e:				
	9/29/2010	1				11:03				
Purge Meth	nod:				Greenstar	Personnel:				
	Low-Flow					SB/NM				
				\A/all	Values					
			I		Volume	I				
A. Well De			D. Well Vo			Depth/Height o	-			
D. Donath 4a	23.02		E Wall Va	0.39		N/A Pump Type:				
B. Depth to	Water (ft): 5.27	•	E. Well Vo	11.0		Pump Type: Peristaltic				
C. Liquid D	Depth (ft) (A-B):			11.0	'	Pump Designat				
o. Liquid D	17.75						N/A			
				Water Qual		eters				
Time	DTW	Volume	Rate	рН	Conduct.	Turbidity	D.O.	Temp.	ORP	
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mS/cm)	(NTU)	(mg/L)	(° C)	(mv)	
11:03	7.72	1	0.20	7.63	0.98	1.4	0.00	14.88	-140	
11:08	8.89	2	0.20	7.55	0.98	1.1	0.00	15.12	-122	
11:13	9.95	3	0.20	7.56	0.97	0.8	0.00	15.23	-115	
11:18 11:23	10.50 11.21	4 5	0.20 0.20	7.42 7.49	0.97 0.97	0.7 0.7	0.00	15.26 15.54	-103 -103	
11:28	11.89	6	0.20				0.00	15.64	-105	
				/ 5/1	11 11 11 1	() /			-105	
				7.54 7.54	0.97	0.7		1	-106	
11:33	12.40	7	0.20	7.54	0.97	0.7	0.00	15.69	-106	
						t		1	-106	
						t		1	-106	
						t		1	-106	
						t		1	-106	
11:33	12.40	7		7.54		0.8	0.00	15.69	-106	
11:33 Total Quan		7		7.54 ~7L		0.8 Sampling Time	0.00	15.69		
11:33 Total Quan Samplers:	12.40	7		7.54 ~7L SB/NM		0.8 Sampling Time Split Sample W	0.00	15.69 11:35	-106	
11:33 Total Quan	12.40	7		7.54 ~7L		0.8 Sampling Time	0.00	15.69		

Horiba malfunctioning during first reading.

Well I.D.:		<u> </u>	Personnel		<u>-</u>	Client:				
	AP-MW7B			SB/NM			Linde, Inc.			
Location:			Well Cond			Weather:				
	Niagara Falls			Good; Locked			Cloudy, 66°			
Sounding I			Gauge Dat			Measurement I				
	WLI			9/28/2010			TOC			
Stick Up/Do	. ,		Gauge Tim			Well Diameter	• •			
	UP			16:48			2"			
Purge Date					Purge Tim					
ruige Date	9/29/2010	1			ruige iiiii	12:30				
Purge Meth		'			Greenstar	Personnel:				
i argo mon	Low-Flow				Orconstar	SB/NM				
					<u> </u>	<u> </u>				
				Well	Volume					
A. Well Dep	oth (ft):		D. Well Vo	lume (ft ³):		Depth/Height o	f Top of PVC:			
•	21.79	1		0.18			N/A			
B. Depth to	Water (ft):		E. Well Vo	lume (L):		Pump Type:				
	13.45	İ		5.2		Peristaltic				
C. Liquid D	epth (ft) (A-B):					Pump Designa	tion:			
	8.34						N/A			
<u> </u>										
		T		Water Qual				T T		
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (Lpm)	pH (pH units)	Conduct. (mS/cm)	Turbidity (NTU)	D.O. (mg/L)	Temp. (° C)	ORP (mv)	
12:38	15.75	 	0.10		(IIIO/CIII)			(0)		
12:48	16.46	1 2	0.10	8.36	0.313	- 0.1	2.79	18.23	- -72	
12:58	18.30	3	0.10	8.61	0.344	74.5	0.00	15.98	-99	
13:08	18.42	4	0.10	8.81	0.347	11.1	0.00	16.55	-115	
13:18	18.48	5	0.10	8.57	0.345	11.1	0.00	16.58	-110	
13:28	18.57	6	0.10	8.56	0.345	11.0	0.00	16.63	-111	
						-				
Total Over	4:4., af \A/a+a., D	- m - 1 -		CI.		Camalia a Tim		40.00		
Samplers:	tity of Water Re	emovea:		~6L SB/NM	-	Sampling Time Split Sample W		13:30	I/A	
Samplers: Sampling [)ata:			9/29/2010	-	Sample Type:	nun:	GRAB	//A	
Janipinig L	Jaic.			3/23/2010	=	Sample Type:		GNAD		

Well I.D.:			Personnel	•		Client:				
	AP-MW8B			SB/NM			Linde, Inc.			
Location:			Well Cond			Weather:	0			
	Niagara Falls			Good; Locked		ī	Cloudy, 66°			
Sounding I			Gauge Dat			Measurement				
	WLI			9/28/2010			TOC			
Stick Up/D			Gauge Tim			Well Diameter	• •			
	UP			16:53			2"			
Purge Date	·				Purge Tim	e.				
l argo Date	9/28/2010				l urgo riiii	16:57				
Purge Meth					Greenstar	Personnel:				
	Hand Bail					SB/NM				
				Well	Volume					
A. Well De	oth (ft):		D. Well Vo	lume (ft ³):		Depth/Height o	of Top of PVC:			
	15.51			0.13			N/A			
B. Depth to	Water (ft):		E. Well Vo	. ,		Pump Type:				
	9.50			3.7		3' Poly Bailer Pump Designation:				
C. Liquid D	epth (ft) (A-B):		Pu							
	6.01						N/A			
				Water Qual	ity Param	neters				
Time	DTW	Volume	Rate	рН	Conduct.	Turbidity	D.O.	Temp.	ORP	
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mS/cm)	(NTU)	(mg/L)	(° C)	(mv)	
16:57	12.14	1	-	7.21	1.09	337.0	4.01	14.97	174	
17:05	Dry	4.5	-	-	-	-	-	-	-	
14:25	9.61	-	-	7.57	1.09	59.8	5.86	15.02	173	
Total Ouen	tity of Water Re	amoved:		~4.5L		Sampling Time	·			
Samplers:	ility of water Ke	emovea.		SB/NM	-	Split Sample W			I/A	
Sampling [Date:			9/29/2010	-	Sample Type:	· 141.	GRAB	w// \	
- ab9 r				0,20,2010	=	-ab.o .) bo.				
COMMENT	S AND OBSER	VATIONS:		Lock lubed wit	th WD40. V	Vell purged dry a	and sampled the	following day	y	

Attachment C Chain-of-Custody Records

Chain of Custody Record

				1									
Client Information	1	. 刻	31/12	Peggy	Peggy Gray-Erdmann	UDEL						09272010 10:02	32_1
Grant Contaor. Charles E. McLeod, Jr.	Prove 908-358	١ ا	8116	E-Mail Peggy.	E.Naii poggy. gray-erdmann@lestamericainc.com	ann@de	lamen	ginc.com				Page"	
Company Greenstar Environmental Solutions, LLC							Param	eter(s) F	Parameter(s) Requested	_ ت		: ∦ q¢[
Addresse: 8 Geflaty Drive	Due Date Requested:	ŧi		-		L						Preservation Codes:	242
टाए Wappinger Falls	TAT Requested (Business Days 10	rainess Days	_								. 1744,	B=N=OH C=Zn Acetate	
Sizie, Ito NY, 12590					l de							D-Naic Acid	
Priorie: (845) 223-9944	PG#. 150C265-1005-01			(0)								N=Nove S=H2504	
Email crideod@greenstersolutions.com	WO#: RTI1588		 	W 10 a								V=MCAA Contanter Codes:	
Project Name. Semi-Aanual GW Monitoring • NYSA9562AE04918	Project #: Semi-Annual GW Monitoring	V Monitoring		: →),] 3				(AnAmber Gesass	TeTodar VeVe
S-a: Airco - Niagara Falls - NY5A9582	\$50v#			athe 8				۶. <i>۲</i>				P -Po ly/Plastic 3=Summa	
			Sample Type (C=comp.	Mary X 1 1 1	MSM moh νΩκ	slonsd slaomr	elalsk) HEIGH			१९५८ हित्र		
Sample Identification	Sample Date	ř.	Gagrab) r	-	# 9	- 15	17 6	- 1	†	+	οī >	Special	Special Instructions/Note:
AP-MW-DUP-01	0/20/10	4	9	3			-	_			-		
AP-MW-1B	9/24/10	1~~	G	۸	-	-	-	-			60		
AP-MW-2B		5460	9	3	-	-	-	-			<u></u>		
AP-MW-3B	9/29/10	2701	9	W	-	-	-				Ф.		
- The HW-45 mm	<u></u>		-	:- Manual	1	+	<u> </u>	(###	#	9	NAT S TAM	CT3 IGWES
AP-IMW-5B	9/29/10	bis :	ŋ	*	-	-	_	-			80	<u> </u>	Ushac in 2 HUD BITLES
AP-MW-6B	1120110	1135	_o	*	1	1	-	1 1			Ė		l
AP-MW-78	વાસ્તા	1330	U	*	4	1	-	1 1			9		
AP-MW-8B	12/10	1425	Ø	*	11	1	-	+		<u> </u>	9		
AP- R B-01	ahalio	550	٥	*	-	1	-	1			ø		
AP-88-01	9/12/10	1100	ı	W	1	1	-	-		_	80		
	Potson B 🗀 Unkr	Unknown	Radiołogical	_	Sample	le D isposal (A I Retum To Clianl	ıfA.fe Cüşni	Maria .	De assessed II sam	f samples a	ne retaine ☐ Anch	Sample Disposal [A fee may be assessed if samples are retained longer than 1 month) Return To Client Archive For Man	1 month) Months
۸' (Special	nstractio	ns/QC	Special Instructions/OC Requirements:	ntş:				
Empty Kit Relinquished by:		Date:			Тите:				xulbo	Muthod of Shainant			
Reinquerisch by Anna Samman	C//W/b	17.) ع د	Company GES	Rece	Recompt by.	Ĺ	1	,	1/20mg	01/6	(730	Contains
Reimquished by			•	Company		Received by.	,			euz précé ()			Company.
FiglingWahed by	DataTime.			Company	Ð	Received by.				Jake Time			Соправу
Custody Seals Infact: Custody Seal No.					Cook	T Temper	15)257	Cooker Temperature(s) **C and Other Remarks	() ()	34.50	 		
					$\left \right $	ĺ	l						

Special Instructions/ Conditions of Receipt Crein of Custody Number 159639 (A has may be assessed if sumples are related bleams.) Page 8 15.0°C NS 100 **TestAmerica** THE LEADER IN ENVIRONMENTAL TESTING more space is needed) 01/8/60 Analysis (Attach list il Dispute! By Lab [] Actine For ^{2,2} γ<u>σ</u>Τ 9+ C Requirements (Specify) Preservatives Containers & 3. Recovered By 194 Telephone Number (Area Code)/Fax Number 107WH 1052H Lab Contact **4** 8451 233-9944 Come Tone Seaton 10 Cliens Drinking Water? Yes□ Temperature on Receipt DISTRIBUTION: WATE Refund to Client with Agract CANARY Stops with the Somple: PINK Field Cary Chip Melod Sample Disposel PBS Carrier Way tall Number Matrix Project Menager Site Contact TÉNOTOR 923 04:31 01/6/6 E/2/2018 120 Cods / ☐ Anison B Oate 14 Cays Companiers for each sentate may be combined on one time) Skin frammatte [] Skin fmlant 38.85 X COCNEC (AP -55-0 Greenstar Environmental Sample I.D. No. and Description 5/60/ [] 6 Gellatty Dr Contract Prochase Choles Ducks No. Wayer Mand and Location (Save) Custody Record Brush 65 Possible Hazard (denotedation Hirco Parce Turn, Annual Time Required 1. Rotinguished By 3 Retinguished By Acon-Hazani Chain of 7 - 38A Hous 121-1007 Comments 3

ò

Chain of Custody Record

Pento

	× ×
receipt	Ng.s□
тепрегатие од невер	Omiking Water?

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

TAL-4124 (1007)			•																								
Greenstar Environmental		Proyect Menager	gusyy	Š												€	<u>-اية</u>	4	01-71-6	0	-	159640	200 200 200 200 200 200 200 200 200 200	<u>\$</u> Ω §Ω	4 0		
6 Gently D.		(345)	18 (m	£ ~	4	50	More in the Care Free More	¥.	<u>*</u>	ı				! :		5	тар Митре	noer				Page	-		9		
\$1815	12590	Chin		Mc	Melod	-u	7.00	Leb Comba	 ช				:		£ 55	zarbysk re spr	5 (Att	Analysis (Attach list if niore space is needed)	(280) (21)/		1						
ager	Falls M.Y.	Correct Name	16	1	Į.					1	!		M-10	MOV									Š	cial It	STATE	Special Instructions/	
				Á	Adghr.			उठ	Series Pose	Comminers & Preservatives	a+ 75	_ ^ _	9.	<u>ار در ا</u>									S	titions	s of FI	Conditions of Receipt	
Sample LO No and Description (Containers to sech sample may be combined on one and)	Clark	Tane	· Tr		ANS AMS		ANALT?	POS34	10H 10H4	HOPN	HOW 12 Mag		CR. 184	76	u t												
1-38	7-19-10	11:00		700	_		~	 -					×	×			 	Ļ									
AP_\$5-01	7-14-10	8) <u> </u>		-		<u> </u>	-∡						*	*			\square									ļ	
						_								—													
					_			 					H	$\vdash \vdash$)												
									<u> </u>												<u> </u>						
				\vdash					ļ									_									
				H					_								-										
			٠. ـــا	-	<u> </u>					_			· 								\dashv	_		İ			
					\dashv					<u> </u>					·			_			-	_			j		
		一	 †	$\vdash \dashv$	_			\dashv						_			-	1	1								_
			7					ᅥ	_	_			\dashv	\dashv	\dashv		-	_	$\overline{}$			_			-		_
-			\neg					_				<u>.</u>	_	_				<u>i</u>	_		-	_ 					
Posseles Hazard Identification Non-Hazard] Fianmable Stortman	- Abison B	Semple Dispose!	& □	Per.	Semple Disposel 	. 28.			900	Casposeer By Last		ì	Archie For	y Fay]	Months		1 ABB A.	18y be	Secret Month	(A fee may be assessed if samples are retained longer than 1 month).	Semos	/ (1) (1)	Blaknsk	`	
Tum Around Time Required D. per Hours	iys 🗌 21 Days	e 🗆 Owner			ļ [30.5	юдж	BUNBA	OC Requirements (Specify)	Mice															
1. Halingstored By		1-7-7-1	2		$\tilde{\mathcal{O}}_{\mathbb{R}}^{\mathbb{R}}$	1		<i>2</i> 4 €		\$ 25) ' =		`	S	1	٤. ا						174	•	9	en T	Ţ	
2. Reenquished By		Zkate			700	İ		2 FINDS		497			-	1								80			Torne	`	
3. Resinguished By		(Zave		<u> </u>	700		1	ر. و	J Phermacien	ار اول ا			 				/	;	!	[/	1	Page 1			<i>June</i>		
Connects		<u> </u> 					1			1						<u> </u>		وب	2	30(\	5	[_ [97	4		
Corposition and the Control of the C	A A A A A A STORY	Annual Contract	. 9		j	ć	1	ĺ						J		ί	•				ŀ						

Chain of Custody Record

Temperature on Receipt _

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

78. 4459 (1988)	Drinking Water? Yes ☐ No ☐ THE LEAD	THE LEADER IN ENVIRONMENTAL TESTING	
() Cecaster Fryightents	Project Manager	Date	Chein of Custody Neuraber
7 DC.	Topphone Number (Area Code)/Fax Number (845) 323-9944	Lab Atombar	DOCC 31
Wassing Falls W. 12590	Sie Contact Chio McLeod	Analysis (Attach list if more space is needed)	
	چَـل	wat	Special Institutions/
Contract/Purchase Order/Duole No.	Metrix Containers & Procevatives		Conditions of Receipt
Sample J.D. No. and Description (Contenes for each sample may be combined on one line)	HOW	ztoT	
4P-55-01	18:30 1		
			-
		- H	
n mmetrie 🗀 Stört fratant 🔝 Pouson B	Sample Disposal Uninown Patum 10 Clant Disposal By Lab Disposal By Lab	Months	(A fee may be assessed if samples are ratelned longer them it month)
Tum Anound Time Required 24 Hours	Cone.		
11	71.6/ 0171		1916 114 111 1916
Z. Pasimpuidred By	Date Time 2. Received By V		Code / Finds Code
3. Pelinguikhad By	Delta Time 3. Received By		Date
Comments			
DISTRIBUTION: "WHITE - Returned to Client with Plepont: CANARY - Stays with the Sample; PINK - Field Copy	tin the Sample; PINK - Flets Copy		

Chain of Custody Record

TestAmerica Tereson or property and and a

			10 40									-[
	Steve BA	Barlus	Peggy Gray-Endmann	ray-End	mann			THE REPORT OF THE PARTY OF THE	faku Ba		09272010 10:02_2	
Charles E. McLend, Jr	ın	892	E-Mail poggy-gray-erdmann@testamericainc.com	ay-extin	¦∰unet	estame	rica:nc.c	Ę			Fage 2	Γ
Company: Greenstar Environmental Solutions, LLC			\vdash			Para	nater	Parameteris) Requestrd	 -		1 POT	Γ
Address.	Due Date Requested:			75	L		_		Ļ	H	Preservation Codes:	Τ
6 Gellaty Drive	TAT Requested (Business Days)			Ť.							A+HCL Z+Z	
Wappinger Fatts	•			. 2							C-Zn Acelate	
Sale, 2 <i>p.</i> NY, 12590				977-9							Continue Acid	
Prione: (345) 223-9944	PO# 150C265-1005-01		10	e vojage							N=None SHH2804	
Errail pricteod@greenstarsolutions.com	WO #. RT11588		- N W B	ζίον						B.		
From - Annual GW Monitoring - NY5A9582AE04818	Project # Semi-Annual GW Monitoring		e Al e	úq. 18			<u>(ī</u> 5			ienlet.		
Sıla. Airoo - Niagara Falts • NYSA9582	SSOWE		id me S	JJ OS			77	_		noa 10	P=Poly.Plastic S=Summa	
	- GES	Sample Ma Type (====================================	E T T T	C. (Qirti Mavi	alone	ştetə	aluta			nedmu h li		
Sample Identification	Sample Data Time	Gegrab) 81-1mm, reval)	બ∍≻	×eH □		M-T 5	w·⊥ c			#0T >	Special Instructions/Note:	1
AP-5S-02	Olistin 1110	0		: -	; - } -	- 1	_		-	۳		1
AP-5S-03		ی	3	-	-	-	-			 "		Τ
AP-SWB-01	129/10 1445	ŋ	3	-	-	-	-			-		Γ
	-											
										\vdash		
					\dashv					<u> </u>		
							\dashv			_		
				4			-			-		
			\top				-					
	[1	- Set	Dispos	[]	Aem ae	by assessed If	semples an	- data	Sample Disposal (A fee mark by assessed if samples are relained longer than 1 month)	Т
CS. Mon-Hazard Fammeble Skin Instant Poison B Deliverable Requested: It, III, III, IV, Other (specify)	Umknawn	Radiological	<u> </u>) Becili	ekum Ta Instructi	Olienz Gnis/QK	Requir	Special Instructions/OC Requirements:	164 1	₹ 1	hive For Months	Τ
Empty Kit Relaquished by:	Date:			₩ ₩	l	ı			Method of Shipment	l		Т
Administratory A 3rd but desirable	10	() Company	_	-	Received pf		1	$\frac{1}{1}$	154 Bener	01/15	1743 CAJ	
Reinquished by:	2	Company))) E	Rece	Received by:				Date/Time.	-1	<u>, </u>	Τ
	DateTme:	Company	J.	Авсе	Asceived by.				Dalle-Time:		Company	
Custody Seals Intert: Custody Seat No.				38	* Teampe	(a)	C end C	Cooler Temperature(s) *C and Other Remarks:	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	્	-	
									ļ]

Attachment D

Laboratory Analytical Results for Groundwater and Surface Water Sampling September 2010

Analytical Report

Work Order: RTI1732

Project Description
Semi-Annual GW Monitoring

For:

Charles E. McLeod, Jr.

Greenstar Environmental Solutions, LLC

6 Gellatly Drive Wappinger Falls, NY 12590

Jennifer Byrnes For Peggy Gray-Erdmann

int H. Eyrner

Project Manager

jennifer.byrnes@testamericainc.com

Friday, October 15, 2010

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

Greenstar Environmental Solutions, LLC 6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Project Number:

Project: Semi-Annual GW Monitoring

TestAmerica Buffalo **Current Certifications**

As of 08/16/2010

09/29/10

10/15/10 16:06

Received:

Reported:

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-N Y044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP,SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA	10026
North Dakota	CWA, RCRA	R-176
Oklahoma	CWA, RCRA	9421
Oregon*	CWA, RCRA	NY200003
Pennsylvania*	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
Texas*	NELAP CWA, RCRA	T104704412-08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA, RCRA	252

*As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parame ters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

Greenstar Environmental Solutions, LLC 6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received:

09/29/10

Reported: 10/15/10 16:06

Project: Semi-Annual GW Monitoring

Project Number: GES

CASE NARRATIVE

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

There are pertinent documents appended to this report, 29 pages, are included and are an integral part of this report. Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received: Reported: 09/29/10

10/15/10 16:06

Project: Semi-Annual GW Monitoring

Project Number: GES

DATA QUALIFIERS AND DEFINITIONS

B Compound was found in the blank and sample.

CF6 Results confirmed by reanalysis.

D08 Dilution required due to high concentration of target analyte(s)

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

M11 The MS and/or MSD were above the acceptance limits.

MHA Due to high levels of analyte in the sample, the MS and /or MSD calculation does not provide useful spike recovery

information. See Blank Spike (LCS).

NR Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below

the laboratory reporting limit.

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received:

09/29/10

Reported: 10/15/10 16:06

Project: Semi-Annual GW Monitoring

Project Number: GES

			Executive	Summar	y - Detec	tions				
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTI1732-01 (A	AP-MW-DUP	-01 - Water)			Sam	pled: 09/	/29/10	Recv	/d: 09/29/1	0 17:30
Total Metals by EPA 200	Series Meth	<u>nods</u>								
Cadmium	0.0011		0.0010	NR	mg/L	1.00	09/30/10 21:17	AMH	1012189	200.7
Chromium	0.573		0.0040	NR	mg/L	1.00	09/30/10 21:17	AMH	1012189	200.7
Iron	1.93		0.050	NR	mg/L	1.00	09/30/10 21:17	AMH	1012189	200.7
Lead	0.0076		0.0050	NR	mg/L	1.00	09/30/10 21:17	AMH	1012189	200.7
Magnesium	0.898		0.200	NR	mg/L	1.00	09/30/10 21:17	AMH	1012189	200.7
Manganese	0.0927		0.0030	NR	mg/L	1.00	09/30/10 21:17	AMH	1012189	200.7
Sodium	45.9		1.0	NR	mg/L	1.00	09/30/10 21:17	AMH	1012189	200.7
Zinc	0.0203		0.0100	NR	mg/L	1.00	09/30/10 21:17	AMH	1012189	200.7
General Chemistry Para	<u>meters</u>									
Chromium, Hexavalent	248		11.0	NR	ug/L	1.00	09/29/10 20:00	JFR	1012180	7196A
Anions by EPA Method	<u>300.0</u>									
Sulfate	22.3		10.0	NR	mg/L	1.00	09/30/10 15:34	RMM	1012214	300
Metals (ICP)										
Silicon	892	В	100	8.1	ug/L	1.00	10/13/10 23:08	BAA	7872	6010B RTN
Sample ID: RTI1732-02 (A	AP-MW-1B -	Water)			Sam	pled: 09/	/29/10 08:35	Recv	/d: 09/29/1	0 17:30
Total Metals by EPA 200	Series Meth	nods								
Iron	0.100		0.050	NR	mg/L	1.00	09/30/10 21:19	AMH	1012189	200.7
Magnesium	61.3		0.200	NR	mg/L	1.00	09/30/10 21:19	AMH	1012189	200.7
Manganese	0.684		0.0030	NR	mg/L	1.00	09/30/10 21:19	AMH	1012189	200.7
Sodium	118		1.0	NR	mg/L	1.00	09/30/10 21:19	AMH	1012189	200.7
Zinc	0.561		0.0100	NR	mg/L	1.00	09/30/10 21:19	AMH	1012189	200.7
Anions by EPA Method	<u>300.0</u>									
Sulfate	194	D08	10.0	NR	mg/L	5.00	09/30/10 15:45	RMM	1012214	300
Metals (ICP)										
Silicon	6860	В	100	8.1	ug/L	1.00	10/13/10 23:16	BAA	7872	6010B RTN
Sample ID: RTI1732-03 (AP-MW-2B -	Water)			Sam	pled: 09/	/29/10 09:45	Recv	/d: 09/29/1	0 17:30
Total Metals by EPA 200	Series Meth	<u>nods</u>								
Chromium	0.574		0.0040	NR	mg/L	1.00	09/30/10 21:22	AMH	1012189	200.7
Iron	2.89	CF6	0.050	NR	mg/L	1.00	09/30/10 21:22	AMH	1012189	200.7
Lead	0.0097	CF6	0.0050	NR	mg/L	1.00	09/30/10 21:22	AMH	1012189	200.7
Magnesium	1.49	CF6	0.200	NR	mg/L	1.00	09/30/10 21:22	AMH	1012189	200.7
Manganese	0.123	CF6	0.0030	NR	mg/L	1.00	09/30/10 21:22		1012189	200.7
Sodium	46.7		1.0	NR	mg/L	1.00	09/30/10 21:22	AMH	1012189	200.7
Zinc	0.0312	CF6	0.0100	NR	mg/L	1.00	09/30/10 21:22		1012189	200.7
General Chemistry Para	meters									
Chromium, Hexavalent	271		11.0	NR	ug/L	1.00	09/29/10 20:00	JFR	1012180	7196A

Anions by EPA Method 300.0

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received: Reported:

09/29/10

10/15/10 16:06

Project: Semi-Annual GW Monitoring

Project Number: GES

Executive	Summary -	Detections
-----------	-----------	------------

			LACCULIVE	Guiiiiiai	y - Detect					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTI1732-							/29/10 09:45		/d: 09/29/	
Anions by EPA Met	•	,			Juin	pioui vo	20,10 00110	1100		
Sulfate	22.4		10.0	NR	mg/L	1.00	09/30/10 16:35	RMM	1012215	300
Metals (ICP)										
Silicon	1090	В	100	8.1	ug/L	1.00	10/13/10 23:19	BAA	7872	6010B RTN
Sample ID: RTI1732-	-04 (AP-MW-3B - \	Water)			•	pled: 09	/29/10 10:20	Recy	/d: 09/29/	10 17:30
Total Metals by EPA	•	•			-	,				
Magnesium	8.14	<u>10us</u>	0.200	NR	mg/L	1.00	09/30/10 21:37	АМН	1012189	200.7
Manganese	0.0064		0.0030	NR	mg/L	1.00	09/30/10 21:37	AMH	1012189	200.7
Sodium	57.7		1.0	NR	mg/L	1.00	09/30/10 21:37	AMH	1012189	200.7
					9. =		00,00,10 = 1101	AIVIII	.0.2.00	
Anions by EPA Met Sulfate	<u>58.7</u>		10.0	NR	mg/L	1.00	09/30/10 16:45	RMM	1012215	300
Motole (ICD)					Ü					
Metals (ICP) Silicon	7310	В	100	8.1	//	1.00	10/13/10 23:23	BAA	7872	6010B RTN
Sample ID: RTI1732-			100	0.1	ug/L				/d: 09/29/	
-	-				Sain	pieu. Us	/29/10 10:45	Kec	74. 09/29/	10 17.30
Total Metals by EPA		<u>iods</u>	0.0040		,	4.00	00/00/10 01 00		4010400	
Cadmium	0.0010		0.0010	NR	mg/L	1.00	09/30/10 21:39	AMH	1012189	200.7
Chromium	0.0053	050	0.0040	NR	mg/L	1.00	09/30/10 21:39	AMH	1012189	200.7
Iron	2.76	CF6	0.050	NR	mg/L	1.00	09/30/10 21:39	AMH	1012189	200.7
Lead	0.0129	CF6	0.0050	NR	mg/L	1.00	09/30/10 21:39	AMH	1012189	200.7
Magnesium	95.4 0.119	OF C	0.200	NR	mg/L	1.00	09/30/10 21:39	AMH	1012189	200.7
Manganese		CF6	0.0030	NR	mg/L	1.00	09/30/10 21:39	AMH	1012189	200.7
Sodium	44.0		1.0	NR	mg/L	1.00	09/30/10 21:39	AMH	1012189	200.7
Zinc	0.138		0.0100	NR	mg/L	1.00	09/30/10 21:39	AMH	1012189	200.7
Anions by EPA Met	hod 300.0									
Sulfate	160	D08	10.0	NR	mg/L	2.00	09/30/10 16:55	RMM	1012215	300
Metals (ICP)										
Silicon	11100	В	100	8.1	ug/L	1.00	10/13/10 23:27	BAA	7872	6010B RTN
Sample ID: RTI1732-	-06 (AP-MW-6B - \	Water)			Sam	pled: 09	/29/10 11:35	Recv	/d: 09/29/	10 17:30
Total Metals by EPA	A 200 Series Meth	<u>nods</u>								
Iron	0.155		0.050	NR	mg/L	1.00	09/30/10 21:41	AMH	1012189	200.7
Magnesium	78.0		0.200	NR	mg/L	1.00	09/30/10 21:41	AMH	1012189	200.7
Manganese	0.152		0.0030	NR	mg/L	1.00	09/30/10 21:41	AMH	1012189	200.7
Sodium	84.9		1.0	NR	mg/L	1.00	09/30/10 21:41	AMH	1012189	200.7
Anions by EPA Met	hod 300.0									
Sulfate	392	D08	10.0	NR	mg/L	5.00	09/30/10 17:06	RMM	1012215	300
Metals (ICP)										
Silicon	6180	В	100	8.1	ug/L	1.00	10/13/10 23:31	BAA	7872	6010B RTN

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received: 09/29/10

Reported: 10/15/10 16:06

Project: Semi-Annual GW Monitoring

			Executive	Summar	y - Detect	ions					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Mathad	
			INL				-			Method	
Sample ID: RTI1732-07 (AP-MW-/B -	vvater)			Samı	oled: 09	/29/10 13:30	Rec	Recvd: 09/29/10 17:30		
Total Metals by EPA 200	Series Meth	<u>nods</u>									
Chromium	0.0204		0.0040	NR	mg/L	1.00	09/30/10 21:43	AMH	1012189	200.7	
Iron	0.189		0.050	NR	mg/L	1.00	09/30/10 21:43	AMH	1012189	200.7	
Magnesium	11.3		0.200	NR	mg/L	1.00	09/30/10 21:43	AMH	1012189	200.7	
Manganese	0.0490		0.0030	NR	mg/L	1.00	09/30/10 21:43	AMH	1012189	200.7	
Sodium	63.1		1.0	NR	mg/L	1.00	09/30/10 21:43	AMH	1012189	200.7	
Anions by EPA Method	<u>300.0</u>										
Sulfate	35.0		10.0	NR	mg/L	1.00	09/30/10 17:16	RMM	1012215	300	
Metals (ICP)											
Silicon	8460	В	100	8.1	ug/L	1.00	10/13/10 23:35	BAA	7872	6010B RTN	
Sample ID: RTI1732-08 (A	AP-MW-8B -	Water)			Samı	oled: 09	/29/10 14:25	Recv	/d: 09/29/1	0 17:30	
Total Metals by EPA 200	Series Meth	nods									
Cadmium	0.0016		0.0010	NR	mg/L	1.00	09/30/10 21:45	AMH	1012189	200.7	
Chromium	0.0962		0.0040	NR	mg/L	1.00	09/30/10 21:45	AMH	1012189	200.7	
Iron	8.64		0.050	NR	mg/L	1.00	09/30/10 21:45	AMH	1012189	200.7	
Lead	0.0253		0.0050	NR	mg/L	1.00	09/30/10 21:45	AMH	1012189	200.7	
Magnesium	80.2		0.200	NR	mg/L	1.00	09/30/10 21:45	AMH	1012189	200.7	
Manganese	0.586		0.0030	NR	mg/L	1.00	09/30/10 21:45	AMH	1012189	200.7	
Selenium	0.0244		0.0150	NR	mg/L	1.00	09/30/10 21:45	AMH	1012189	200.7	
Sodium	82.5		1.0	NR	mg/L	1.00	09/30/10 21:45	AMH	1012189	200.7	
Zinc	0.256		0.0100	NR	mg/L	1.00	09/30/10 21:45	AMH	1012189	200.7	
General Chemistry Para	meters										
Chromium, Hexavalent	98.5		11.0	NR	ug/L	1.00	09/29/10 20:00	JFR	1012180	7196A	
Anions by EPA Method	<u>300.0</u>										
Sulfate	225	D08	10.0	NR	mg/L	5.00	09/30/10 17:26	RMM	1012215	300	
Metals (ICP)											
Silicon	27000	В	100	8.1	ug/L	1.00	10/13/10 23:47	BAA	7872	6010B RTN	
Sample ID: RTI1732-09 (A	AP-RB-01 - V	Vater)			Samı	oled: 09	29/10 15:00	Recv	/d: 09/29/1	0 17:30	
Total Metals by EPA 200	Series Meth	<u>nods</u>									
Magnesium	0.925		0.200	NR	mg/L	1.00	09/30/10 21:48	AMH	1012189	200.7	
Manganese	0.0030		0.0030	NR	mg/L	1.00	09/30/10 21:48	AMH	1012189	200.7	
Metals (ICP)											
Silicon	2280	В	100	8.1	ug/L	1.00	10/13/10 23:51	BAA	7872	6010B RTN	
Sample ID: RTI1732-10 (A	AP-SS-01 - W	/ater)			Samı	oled: 09	/29/10 11:00	Recv	/d: 09/29/1	0 17:30	
Total Metals by EPA 200	Series Meth	<u>nods</u>									
Magnesium	2.14		0.200	NR	mg/L	1.00	09/30/10 21:50	AMH	1012189	200.7	
Sodium	69.1		1.0	NR	mg/L	1.00	09/30/10 21:50	AMH	1012189	200.7	

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received: Reported: 09/29/10

10/15/10 16:06

Project: Semi-Annual GW Monitoring

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTI1732-10 (AF	P-SS-01 - W	/ater) - cont.			Sampled: 09/29/10 11:00 Recvd: 09/29/10 17:30					
Anions by EPA Method 30	00.0									
Sulfate	22.5		10.0	NR	mg/L	1.00	09/30/10 17:46	RMM	1012215	300
Metals (ICP)										
Silicon	1330	В	100	8.1	ug/L	1.00	10/13/10 23:55	BAA	7872	6010B RTN
Sample ID: RTI1732-11 (AF	P-SS-02 - W	/ater)			Samp	oled: 09/	/29/10 11:10	Recv	/d: 09/29/1	0 17:30
Total Metals by EPA 200 S	Series Meth	<u>nods</u>								
Iron	0.971	CF6	0.050	NR	mg/L	1.00	09/30/10 21:52	AMH	1012189	200.7
Magnesium	4.72		0.200	NR	mg/L	1.00	09/30/10 21:52	AMH	1012189	200.7
Manganese	0.592	CF6	0.0030	NR	mg/L	1.00	09/30/10 21:52	AMH	1012189	200.7
Sodium	61.2		1.0	NR	mg/L	1.00	09/30/10 21:52	AMH	1012189	200.7
Anions by EPA Method 30	00.0									
Sulfate	22.1		10.0	NR	mg/L	1.00	09/30/10 17:56	RMM	1012215	300
Metals (ICP)										
Silicon	4140	В	100	8.1	ug/L	1.00	10/13/10 23:59	BAA	7872	6010B RTN
Sample ID: RTI1732-12 (AF	P-SS-03 - W	/ater)			Sampled: 09/29/10 12:00 Recvd: 09/29/10			0 17:30		
Total Metals by EPA 200 S	Series Meth	nods								
Iron	0.092	CF6	0.050	NR	mg/L	1.00	09/30/10 21:54	AMH	1012189	200.7
Magnesium	2.12		0.200	NR	mg/L	1.00	09/30/10 21:54	AMH	1012189	200.7
Manganese	0.0059		0.0030	NR	mg/L	1.00	09/30/10 21:54	AMH	1012189	200.7
Sodium	69.8		1.0	NR	mg/L	1.00	09/30/10 21:54	AMH	1012189	200.7
Anions by EPA Method 30	00.0									
Sulfate	21.3		10.0	NR	mg/L	1.00	09/30/10 18:37	RMM	1012215	300
Metals (ICP)										
Silicon	1250	В	100	8.1	ug/L	1.00	10/14/10 00:03	BAA	7872	6010B RTN
Sample ID: RTI1732-13 (AF	P-SWB-01 -	Water)			Samp	oled: 09/	/29/10 14:45	Recv	/d: 09/29/1	0 17:30
Total Metals by EPA 200 S	Series Meth	<u>nods</u>								
Magnesium	0.875		0.200	NR	mg/L	1.00	09/30/10 22:00	AMH	1012189	200.7
Metals (ICP)										
Silicon	2320	В	100	8.1	ug/L	1.00	10/14/10 00:07	BAA	7872	6010B RTN

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received: Reported:

09/29/10 10/15/10 16:06

Project: Semi-Annual GW Monitoring

Project Number: GES

Sample Summary

Sample Identification	Lab Number	Client Matrix	Date/Time Sampled	Date/Time Received	Sample Qualifiers
AP-MW-DUP-01	RTI1732-01	Water	09/29/10	09/29/10 17:30	
AP-MW-1B	RTI1732-02	Water	09/29/10 08:35	09/29/10 17:30	
AP-MW-2B	RTI1732-03	Water	09/29/10 09:45	09/29/10 17:30	
AP-MW-3B	RTI1732-04	Water	09/29/10 10:20	09/29/10 17:30	
AP-MW-5B	RTI1732-05	Water	09/29/10 10:45	09/29/10 17:30	
AP-MW-6B	RTI1732-06	Water	09/29/10 11:35	09/29/10 17:30	
AP-MW-7B	RTI1732-07	Water	09/29/10 13:30	09/29/10 17:30	
AP-MW-8B	RTI1732-08	Water	09/29/10 14:25	09/29/10 17:30	
AP-RB-01	RTI1732-09	Water	09/29/10 15:00	09/29/10 17:30	
AP-SS-01	RTI1732-10	Water	09/29/10 11:00	09/29/10 17:30	
AP-SS-02	RTI1732-11	Water	09/29/10 11:10	09/29/10 17:30	
AP-SS-03	RTI1732-12	Water	09/29/10 12:00	09/29/10 17:30	
AP-SWB-01	RTI1732-13	Water	09/29/10 14:45	09/29/10 17:30	

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received: 0

09/29/10

Reported: 10/15/10 16:06

Project: Semi-Annual GW Monitoring

Ana	lytical	Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTI1732-01 (AP-IVIVV-DUP	-o1 - water)			Samp	led: 09	/29/10	Rec	/d: 09/29/1	0 17:30
Total Metals by EPA 20	0 Series Meth	<u>iods</u>								
Cadmium	0.0011		0.0010	NR	mg/L	1.00	09/30/10 21:17	AMH	1012189	200.7
Chromium	0.573		0.0040	NR	mg/L	1.00	09/30/10 21:17	AMH	1012189	200.7
Iron	1.93		0.050	NR	mg/L	1.00	09/30/10 21:17	AMH	1012189	200.7
Lead	0.0076		0.0050	NR	mg/L	1.00	09/30/10 21:17	AMH	1012189	200.7
Magnesium	0.898		0.200	NR	mg/L	1.00	09/30/10 21:17	AMH	1012189	200.7
Manganese	0.0927		0.0030	NR	mg/L	1.00	09/30/10 21:17	AMH	1012189	200.7
Selenium	ND		0.0150	NR	mg/L	1.00	09/30/10 21:17	AMH	1012189	200.7
Sodium	45.9		1.0	NR	mg/L	1.00	09/30/10 21:17	AMH	1012189	200.7
Thallium	ND		0.0200	NR	mg/L	1.00	09/30/10 21:17	AMH	1012189	200.7
Zinc	0.0203		0.0100	NR	mg/L	1.00	09/30/10 21:17	AMH	1012189	200.7
General Chemistry Para	ameters									
Ammonia as N	ND	D08	9.20	NR	mg/L as N	5.00	09/30/10 12:31	jmm	1012198	350.1
Chromium, Hexavalent	248		11.0	NR	ug/L	1.00	09/29/10 20:00	JFR	1012180	7196A
Phenolics, Total	ND		10.0	NR	ug/L	1.00	10/08/10 11:22	KLD	10J0483	420.4
Recoverable										
Anions by EPA Method	300.0									
Sulfate	22.3		10.0	NR	mg/L	1.00	09/30/10 15:34	RMM	1012214	300
Metals (ICP)										
Silicon	892	В	100	8.1	ug/L	1.00	10/13/10 23:08	BAA	7872	6010B RTN

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received: 09/29/10

Reported: 10/15/10 16:06

Project: Semi-Annual GW Monitoring

Ana	lytical	Report

			7 J com 7 to p c . t							
	Sample	Data		MDI		Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTI1732-02 (AP-MW-1B - \	Water)			Samp	led: 09/	29/10 08:35	Recv	/d: 09/29/1	0 17:30
Total Metals by EPA 20	0 Series Meth	<u>iods</u>								
Cadmium	ND		0.0010	NR	mg/L	1.00	09/30/10 21:19	AMH	1012189	200.7
Chromium	ND		0.0040	NR	mg/L	1.00	09/30/10 21:19	AMH	1012189	200.7
Iron	0.100		0.050	NR	mg/L	1.00	09/30/10 21:19	AMH	1012189	200.7
Lead	ND		0.0050	NR	mg/L	1.00	09/30/10 21:19	AMH	1012189	200.7
Magnesium	61.3		0.200	NR	mg/L	1.00	09/30/10 21:19	AMH	1012189	200.7
Manganese	0.684		0.0030	NR	mg/L	1.00	09/30/10 21:19	AMH	1012189	200.7
Selenium	ND		0.0150	NR	mg/L	1.00	09/30/10 21:19	AMH	1012189	200.7
Sodium	118		1.0	NR	mg/L	1.00	09/30/10 21:19	AMH	1012189	200.7
Thallium	ND		0.0200	NR	mg/L	1.00	09/30/10 21:19	AMH	1012189	200.7
Zinc	0.561		0.0100	NR	mg/L	1.00	09/30/10 21:19	AMH	1012189	200.7
General Chemistry Para	ameters									
Ammonia as N	ND		9.20	NR	mg/L as N	1.00	09/30/10 11:50	jmm	1012198	350.1
Chromium, Hexavalent	ND		11.0	NR	ug/L	1.00	09/29/10 20:00	JFR	1012180	7196A
Phenolics, Total	ND		10.0	NR	ug/L	1.00	10/06/10 14:25	KLD	10J0384	420.4
Recoverable										
Anions by EPA Method	300.0									
Sulfate	194	D08	10.0	NR	mg/L	5.00	09/30/10 15:45	RMM	1012214	300
Metals (ICP)										
Silicon	6860	В	100	8.1	ug/L	1.00	10/13/10 23:16	BAA	7872	6010B RTN

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received:

09/29/10

Reported: 10/15/10 16:06

Project: Semi-Annual GW Monitoring

	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTI1732-03 (AP-MW-2B - \	Water)			Samp	led: 09	/29/10 09:45	Recv	/d: 09/29/1	0 17:30
Total Metals by EPA 200	0 Series Meth	<u>iods</u>								
Cadmium	ND		0.0010	NR	mg/L	1.00	09/30/10 21:22	AMH	1012189	200.7
Chromium	0.574		0.0040	NR	mg/L	1.00	09/30/10 21:22	AMH	1012189	200.7
Iron	2.89	CF6	0.050	NR	mg/L	1.00	09/30/10 21:22	AMH	1012189	200.7
Lead	0.0097	CF6	0.0050	NR	mg/L	1.00	09/30/10 21:22	AMH	1012189	200.7
Magnesium	1.49	CF6	0.200	NR	mg/L	1.00	09/30/10 21:22	AMH	1012189	200.7
Manganese	0.123	CF6	0.0030	NR	mg/L	1.00	09/30/10 21:22	AMH	1012189	200.7
Selenium	ND		0.0150	NR	mg/L	1.00	09/30/10 21:22	AMH	1012189	200.7
Sodium	46.7		1.0	NR	mg/L	1.00	09/30/10 21:22	AMH	1012189	200.7
Thallium	ND		0.0200	NR	mg/L	1.00	09/30/10 21:22	AMH	1012189	200.7
Zinc	0.0312	CF6	0.0100	NR	mg/L	1.00	09/30/10 21:22	AMH	1012189	200.7
General Chemistry Para	ameters									
Ammonia as N	ND	D08	9.20	NR	mg/L as N	5.00	09/30/10 12:32	jmm	1012198	350.1
Chromium, Hexavalent	271		11.0	NR	ug/L	1.00	09/29/10 20:00	JFR	1012180	7196A
Phenolics, Total Recoverable	ND		10.0	NR	ug/L	1.00	10/08/10 11:22	KLD	10J0483	420.4
Anions by EPA Method	300.0									
Sulfate	22.4		10.0	NR	mg/L	1.00	09/30/10 16:35	RMM	1012215	300
Metals (ICP)										
Silicon	1090	В	100	8.1	ug/L	1.00	10/13/10 23:19	BAA	7872	6010B RTN

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received:

09/29/10

Reported: 10/15/10 16:06

Project: Semi-Annual GW Monitoring

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTI1732-04 (AP-MW-3B -	Water)			Samp	led: 09	/29/10 10:20	Recv	/d: 09/29/1	0 17:30
Total Metals by EPA 200	0 Series Meth	<u>nods</u>								
Cadmium	ND		0.0010	NR	mg/L	1.00	09/30/10 21:37	AMH	1012189	200.7
Chromium	ND		0.0040	NR	mg/L	1.00	09/30/10 21:37	AMH	1012189	200.7
Iron	ND		0.050	NR	mg/L	1.00	09/30/10 21:37	AMH	1012189	200.7
Lead	ND		0.0050	NR	mg/L	1.00	09/30/10 21:37	AMH	1012189	200.7
Magnesium	8.14		0.200	NR	mg/L	1.00	09/30/10 21:37	AMH	1012189	200.7
Manganese	0.0064		0.0030	NR	mg/L	1.00	09/30/10 21:37	AMH	1012189	200.7
Selenium	ND		0.0150	NR	mg/L	1.00	09/30/10 21:37	AMH	1012189	200.7
Sodium	57.7		1.0	NR	mg/L	1.00	09/30/10 21:37	AMH	1012189	200.7
Thallium	ND		0.0200	NR	mg/L	1.00	09/30/10 21:37	AMH	1012189	200.7
Zinc	ND		0.0100	NR	mg/L	1.00	09/30/10 21:37	AMH	1012189	200.7
General Chemistry Para	ameters									
Ammonia as N	ND		9.20	NR	mg/L as N	1.00	09/30/10 11:52	jmm	1012198	350.1
Chromium, Hexavalent	ND		11.0	NR	ug/L	1.00	09/29/10 20:00	JFR	1012180	7196A
Phenolics, Total Recoverable	ND		10.0	NR	ug/L	1.00	10/06/10 14:25	KLD	10J0384	420.4
Anions by EPA Method	300.0									
Sulfate	58.7		10.0	NR	mg/L	1.00	09/30/10 16:45	RMM	1012215	300
Metals (ICP)										
Silicon	7310	В	100	8.1	ug/L	1.00	10/13/10 23:23	BAA	7872	6010B RTN

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received:

09/29/10

Reported: 10/15/10 16:06

Project: Semi-Annual GW Monitoring

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTI1732-05 (AP-MW-5B -				Samp	led: 09/	/29/10 10:45		/d: 09/29/1	
Total Metals by EPA 200	0 Series Meth	<u>nods</u>								
Cadmium	0.0010		0.0010	NR	mg/L	1.00	09/30/10 21:39	AMH	1012189	200.7
Chromium	0.0053		0.0040	NR	mg/L	1.00	09/30/10 21:39	AMH	1012189	200.7
Iron	2.76	CF6	0.050	NR	mg/L	1.00	09/30/10 21:39	AMH	1012189	200.7
Lead	0.0129	CF6	0.0050	NR	mg/L	1.00	09/30/10 21:39	AMH	1012189	200.7
Magnesium	95.4		0.200	NR	mg/L	1.00	09/30/10 21:39	AMH	1012189	200.7
Manganese	0.119	CF6	0.0030	NR	mg/L	1.00	09/30/10 21:39	AMH	1012189	200.7
Selenium	ND		0.0150	NR	mg/L	1.00	09/30/10 21:39	AMH	1012189	200.7
Sodium	44.0		1.0	NR	mg/L	1.00	09/30/10 21:39	AMH	1012189	200.7
Thallium	ND		0.0200	NR	mg/L	1.00	09/30/10 21:39	AMH	1012189	200.7
Zinc	0.138		0.0100	NR	mg/L	1.00	09/30/10 21:39	AMH	1012189	200.7
General Chemistry Para	ameters									
Ammonia as N	ND		9.20	NR	mg/L as N	1.00	09/30/10 11:55	jmm	1012198	350.1
Chromium, Hexavalent	ND		11.0	NR	ug/L	1.00	09/29/10 20:00	JFR	1012180	7196A
Phenolics, Total Recoverable	ND		10.0	NR	ug/L	1.00	10/08/10 11:09	KLD	10J0463	420.4
Anions by EPA Method	300.0									
Sulfate	160	D08	10.0	NR	mg/L	2.00	09/30/10 16:55	RMM	1012215	300
Metals (ICP)										
Silicon	11100	В	100	8.1	ug/L	1.00	10/13/10 23:27	BAA	7872	6010B RTN

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received:

09/29/10 Reported: 10/15/10 16:06

Project: Semi-Annual GW Monitoring

Project Number:

			Δ i	iaryticar	Report					
Analysia	Sample Result	Data	RL	MDL	Units	Dil	Date	Lab	Datah	No. 4la a al
Analyte	Resuit	Qualifiers	NL .	IVIDE	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTI1732-06 (AP-MW-6B - \	Water)			Samp	led: 09	/29/10 11:35	Recv	/d: 09/29/1	0 17:30
Total Metals by EPA 200	Series Meth	<u>nods</u>								
Cadmium	ND		0.0010	NR	mg/L	1.00	09/30/10 21:41	AMH	1012189	200.7
Chromium	ND		0.0040	NR	mg/L	1.00	09/30/10 21:41	AMH	1012189	200.7
Iron	0.155		0.050	NR	mg/L	1.00	09/30/10 21:41	AMH	1012189	200.7
Lead	ND		0.0050	NR	mg/L	1.00	09/30/10 21:41	AMH	1012189	200.7
Magnesium	78.0		0.200	NR	mg/L	1.00	09/30/10 21:41	AMH	1012189	200.7
Manganese	0.152		0.0030	NR	mg/L	1.00	09/30/10 21:41	AMH	1012189	200.7
Selenium	ND		0.0150	NR	mg/L	1.00	09/30/10 21:41	AMH	1012189	200.7
Sodium	84.9		1.0	NR	mg/L	1.00	09/30/10 21:41	AMH	1012189	200.7
Thallium	ND		0.0200	NR	mg/L	1.00	09/30/10 21:41	AMH	1012189	200.7
Zinc	ND		0.0100	NR	mg/L	1.00	09/30/10 21:41	AMH	1012189	200.7
General Chemistry Para	meters									
Ammonia as N	ND		9.20	NR	mg/L as N	1.00	09/30/10 11:56	jmm	1012198	350.1
Chromium, Hexavalent	ND		11.0	NR	ug/L	1.00	09/29/10 20:00	JFR	1012180	7196A
Phenolics, Total	ND		10.0	NR	ug/L	1.00	10/08/10 11:09	KLD	10J0463	420.4
Recoverable										
Anions by EPA Method	300.0									
Sulfate	392	D08	10.0	NR	mg/L	5.00	09/30/10 17:06	RMM	1012215	300
Metals (ICP)										
Silicon	6180	В	100	8.1	ug/L	1.00	10/13/10 23:31	BAA	7872	6010B RTN

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received: 09/29/10

Reported: 10/15/10 16:06

Project: Semi-Annual GW Monitoring

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTI1732-07 (AP-MW-7B - \	Water)			Samp	led: 09	/29/10 13:30	Recv	/d: 09/29/1	0 17:30
Total Metals by EPA 200	0 Series Meth	<u>nods</u>								
Cadmium	ND		0.0010	NR	mg/L	1.00	09/30/10 21:43	AMH	1012189	200.7
Chromium	0.0204		0.0040	NR	mg/L	1.00	09/30/10 21:43	AMH	1012189	200.7
Iron	0.189		0.050	NR	mg/L	1.00	09/30/10 21:43	AMH	1012189	200.7
Lead	ND		0.0050	NR	mg/L	1.00	09/30/10 21:43	AMH	1012189	200.7
Magnesium	11.3		0.200	NR	mg/L	1.00	09/30/10 21:43	AMH	1012189	200.7
Manganese	0.0490		0.0030	NR	mg/L	1.00	09/30/10 21:43	AMH	1012189	200.7
Selenium	ND		0.0150	NR	mg/L	1.00	09/30/10 21:43	AMH	1012189	200.7
Sodium	63.1		1.0	NR	mg/L	1.00	09/30/10 21:43	AMH	1012189	200.7
Thallium	ND		0.0200	NR	mg/L	1.00	09/30/10 21:43	AMH	1012189	200.7
Zinc	ND		0.0100	NR	mg/L	1.00	09/30/10 21:43	AMH	1012189	200.7
General Chemistry Para	ameters									
Ammonia as N	ND		9.20	NR	mg/L as N	1.00	09/30/10 11:57	jmm	1012198	350.1
Chromium, Hexavalent	ND		11.0	NR	ug/L	1.00	09/29/10 20:00	JFR	1012180	7196A
Phenolics, Total Recoverable	ND		10.0	NR	ug/L	1.00	10/08/10 11:09	KLD	10J0463	420.4
Anions by EPA Method	300.0									
Sulfate	35.0		10.0	NR	mg/L	1.00	09/30/10 17:16	RMM	1012215	300
Metals (ICP)										
Silicon	8460	В	100	8.1	ug/L	1.00	10/13/10 23:35	BAA	7872	6010B RTN

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received: 09/29/10

Reported: 10/15/10 16:06

Project: Semi-Annual GW Monitoring

Ana	lytical	Report

Analyte Result Qualifiers RL MDL Units Fac Fac Fac Fac Fac Fac Fac Fac Fac Fac	29/10 17:30
Sample ID: RTI1732-08 (AP-MW-8B - Water) Sampled: 09/29/10 14:25 Recvd: 09/29/10 14:25 Total Metals by EPA 200 Series Methods Cadmium 0.0016 0.0010 NR mg/L 1.00 09/30/10 21:45 AMH 10/21 Chromium 0.0962 0.0040 NR mg/L 1.00 09/30/10 21:45 AMH 10/21 Iron 8.64 0.050 NR mg/L 1.00 09/30/10 21:45 AMH 10/21	29/10 17:30
Total Metals by EPA 200 Series Methods Cadmium 0.0016 0.0010 NR mg/L 1.00 09/30/10 21:45 AMH 10l21 Chromium 0.0962 0.0040 NR mg/L 1.00 09/30/10 21:45 AMH 10l21 Iron 8.64 0.050 NR mg/L 1.00 09/30/10 21:45 AMH 10l21	
Cadmium 0.0016 0.0010 NR mg/L 1.00 09/30/10 21:45 AMH 10l21 Chromium 0.0962 0.0040 NR mg/L 1.00 09/30/10 21:45 AMH 10l21 Iron 8.64 0.050 NR mg/L 1.00 09/30/10 21:45 AMH 10l21	80 200 7
Chromium 0.0962 0.0040 NR mg/L 1.00 09/30/10 21:45 AMH 10I21 Iron 8.64 0.050 NR mg/L 1.00 09/30/10 21:45 AMH 10I21	80 200.7
Iron 8.64 0.050 NR mg/L 1.00 09/30/10 21:45 AMH 10I21	200.7
······································	89 200.7
Lead 0.0253 0.0050 NR mg/L 1.00 09/30/10 21:45 AMH 10I21	89 200.7
	89 200.7
Magnesium 80.2 0.200 NR mg/L 1.00 09/30/10 21:45 AMH 10I21	89 200.7
Manganese 0.586 0.0030 NR mg/L 1.00 09/30/10 21:45 AMH 10I21	89 200.7
Selenium 0.0244 0.0150 NR mg/L 1.00 09/30/10 21:45 AMH 10I21	89 200.7
Sodium 82.5 1.0 NR mg/L 1.00 09/30/10 21:45 AMH 10I21	89 200.7
Thallium ND 0.0200 NR mg/L 1.00 09/30/10 21:45 AMH 10I21	89 200.7
Zinc 0.256 0.0100 NR mg/L 1.00 09/30/10 21:45 AMH 10I21	89 200.7
General Chemistry Parameters	
Ammonia as N ND 9.20 NR mg/L as N 1.00 09/30/10 11:58 jmm 10l21	98 350.1
Chromium, Hexavalent 98.5 11.0 NR ug/L 1.00 09/29/10 20:00 JFR 10I21	80 7196A
Phenolics, Total ND 10.0 NR ug/L 1.00 10/08/10 11:09 KLD 10J0 ² Recoverable	63 420.4
Anions by EPA Method 300.0	
Sulfate 225 D08 10.0 NR mg/L 5.00 09/30/10 17:26 RMM 10I22	15 300
Metals (ICP)	
Silicon B 100 8.1 ug/L 1.00 10/13/10 23:47 BAA 787	2 6010B RT

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received: 09/29/10

Reported: 10/15/10 16:06

Project: Semi-Annual GW Monitoring

Ana	lytical	Report

	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTI1732-09 (AP-RB-01 - Water)		/ater)			Samp	led: 09	/29/10 15:00	Recvd: 09/29/10 17:30		0 17:30
Total Metals by EPA 200	0 Series Meth	<u>iods</u>								
Cadmium	ND		0.0010	NR	mg/L	1.00	09/30/10 21:48	AMH	1012189	200.7
Chromium	ND		0.0040	NR	mg/L	1.00	09/30/10 21:48	AMH	1012189	200.7
Iron	ND		0.050	NR	mg/L	1.00	09/30/10 21:48	AMH	1012189	200.7
Lead	ND		0.0050	NR	mg/L	1.00	09/30/10 21:48	AMH	1012189	200.7
Magnesium	0.925		0.200	NR	mg/L	1.00	09/30/10 21:48	AMH	1012189	200.7
Manganese	0.0030		0.0030	NR	mg/L	1.00	09/30/10 21:48	AMH	1012189	200.7
Selenium	ND		0.0150	NR	mg/L	1.00	09/30/10 21:48	AMH	1012189	200.7
Sodium	ND		1.0	NR	mg/L	1.00	09/30/10 21:48	AMH	1012189	200.7
Thallium	ND		0.0200	NR	mg/L	1.00	09/30/10 21:48	AMH	1012189	200.7
Zinc	ND		0.0100	NR	mg/L	1.00	09/30/10 21:48	AMH	1012189	200.7
General Chemistry Para	ameters									
Ammonia as N	ND		9.20	NR	mg/L as N	1.00	09/30/10 11:59	jmm	1012198	350.1
Chromium, Hexavalent	ND		11.0	NR	ug/L	1.00	09/29/10 20:00	JFR	1012180	7196A
Phenolics, Total Recoverable	ND		10.0	NR	ug/L	1.00	10/08/10 11:09	KLD	10J0463	420.4
Anions by EPA Method	300.0									
Sulfate	ND		10.0	NR	mg/L	1.00	09/30/10 17:36	RMM	1012215	300
Metals (ICP)										
Silicon	2280	В	100	8.1	ug/L	1.00	10/13/10 23:51	BAA	7872	6010B RTN

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received:

09/29/10 Reported: 10/15/10 16:06

Project: Semi-Annual GW Monitoring

Project Number:

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTI1732-10 (29/10 11:00	Recvd: 09/29/10 17:30		
Total Metals by EPA 20	0 Series Meth	<u>iods</u>								
Cadmium	ND		0.0010	NR	mg/L	1.00	09/30/10 21:50	AMH	1012189	200.7
Chromium	ND		0.0040	NR	mg/L	1.00	09/30/10 21:50	AMH	1012189	200.7
Iron	ND		0.050	NR	mg/L	1.00	09/30/10 21:50	AMH	1012189	200.7
Lead	ND		0.0050	NR	mg/L	1.00	09/30/10 21:50	AMH	1012189	200.7
Magnesium	2.14		0.200	NR	mg/L	1.00	09/30/10 21:50	AMH	1012189	200.7
Manganese	ND		0.0030	NR	mg/L	1.00	09/30/10 21:50	AMH	1012189	200.7
Selenium	ND		0.0150	NR	mg/L	1.00	09/30/10 21:50	AMH	1012189	200.7
Sodium	69.1		1.0	NR	mg/L	1.00	09/30/10 21:50	AMH	1012189	200.7
Thallium	ND		0.0200	NR	mg/L	1.00	09/30/10 21:50	AMH	1012189	200.7
Zinc	ND		0.0100	NR	mg/L	1.00	09/30/10 21:50	AMH	1012189	200.7
General Chemistry Para	ameters									
Ammonia as N	ND		9.20	NR	mg/L as N	1.00	09/30/10 12:00	jmm	1012198	350.1
Chromium, Hexavalent	ND		11.0	NR	ug/L	1.00	09/29/10 20:00	JFR	1012180	7196A
Phenolics, Total Recoverable	ND		10.0	NR	ug/L	1.00	10/08/10 11:09	KLD	10J0463	420.4
Anions by EPA Method	300.0									
Sulfate	22.5		10.0	NR	mg/L	1.00	09/30/10 17:46	RMM	1012215	300
Metals (ICP)										
Silicon	1330	В	100	8.1	ug/L	1.00	10/13/10 23:55	BAA	7872	6010B RTN

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received:

09/29/10 Reported: 10/15/10 16:06

Project: Semi-Annual GW Monitoring

Project Number:

	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTI1732-11 (AP-SS-02 - Water)					Samp	led: 09	/29/10 11:10	Recvd: 09/29/10 17:30		
Total Metals by EPA 200	0 Series Meth	<u>iods</u>								
Cadmium	ND		0.0010	NR	mg/L	1.00	09/30/10 21:52	AMH	1012189	200.7
Chromium	ND		0.0040	NR	mg/L	1.00	09/30/10 21:52	AMH	1012189	200.7
Iron	0.971	CF6	0.050	NR	mg/L	1.00	09/30/10 21:52	AMH	1012189	200.7
Lead	ND		0.0050	NR	mg/L	1.00	09/30/10 21:52	AMH	1012189	200.7
Magnesium	4.72		0.200	NR	mg/L	1.00	09/30/10 21:52	AMH	1012189	200.7
Manganese	0.592	CF6	0.0030	NR	mg/L	1.00	09/30/10 21:52	AMH	1012189	200.7
Selenium	ND		0.0150	NR	mg/L	1.00	09/30/10 21:52	AMH	1012189	200.7
Sodium	61.2		1.0	NR	mg/L	1.00	09/30/10 21:52	AMH	1012189	200.7
Thallium	ND		0.0200	NR	mg/L	1.00	09/30/10 21:52	AMH	1012189	200.7
Zinc	ND		0.0100	NR	mg/L	1.00	09/30/10 21:52	AMH	1012189	200.7
General Chemistry Para	ameters									
Ammonia as N	ND		9.20	NR	mg/L as N	1.00	09/30/10 12:01	jmm	1012198	350.1
Chromium, Hexavalent	ND		11.0	NR	ug/L	1.00	09/29/10 20:00	JFR	1012180	7196A
Phenolics, Total Recoverable	ND		10.0	NR	ug/L	1.00	10/12/10 12:21	KLD	10J0784	420.4
Anions by EPA Method	300.0									
Sulfate	22.1		10.0	NR	mg/L	1.00	09/30/10 17:56	RMM	1012215	300
Metals (ICP)										
Silicon	4140	В	100	8.1	ua/L	1.00	10/13/10 23:59	BAA	7872	6010B RTN

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received: 09/29/10

Reported: 10/15/10 16:06

Project: Semi-Annual GW Monitoring

Ana	lytical	Report

	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTI1732-12 (Sample ID: RTI1732-12 (AP-SS-03 - Water)						/29/10 12:00	Recvd: 09/29/10 17:30		
Total Metals by EPA 200	Series Meth	<u>nods</u>								
Cadmium	ND		0.0010	NR	mg/L	1.00	09/30/10 21:54	AMH	1012189	200.7
Chromium	ND		0.0040	NR	mg/L	1.00	09/30/10 21:54	AMH	1012189	200.7
Iron	0.092	CF6	0.050	NR	mg/L	1.00	09/30/10 21:54	AMH	1012189	200.7
Lead	ND		0.0050	NR	mg/L	1.00	09/30/10 21:54	AMH	1012189	200.7
Magnesium	2.12		0.200	NR	mg/L	1.00	09/30/10 21:54	AMH	1012189	200.7
Manganese	0.0059		0.0030	NR	mg/L	1.00	09/30/10 21:54	AMH	1012189	200.7
Selenium	ND		0.0150	NR	mg/L	1.00	09/30/10 21:54	AMH	1012189	200.7
Sodium	69.8		1.0	NR	mg/L	1.00	09/30/10 21:54	AMH	1012189	200.7
Thallium	ND		0.0200	NR	mg/L	1.00	09/30/10 21:54	AMH	1012189	200.7
Zinc	ND		0.0100	NR	mg/L	1.00	09/30/10 21:54	AMH	1012189	200.7
General Chemistry Para	meters									
Ammonia as N	ND		9.20	NR	mg/L as N	1.00	09/30/10 12:02	jmm	1012198	350.1
Chromium, Hexavalent	ND		11.0	NR	ug/L	1.00	09/29/10 20:00	JFR	1012180	7196A
Phenolics, Total Recoverable	ND		10.0	NR	ug/L	1.00	10/08/10 11:15	KLD	10J0463	420.4
Anions by EPA Method	<u>300.0</u>									
Sulfate	21.3		10.0	NR	mg/L	1.00	09/30/10 18:37	RMM	1012215	300
Metals (ICP)										
Silicon	1250	В	100	8.1	ug/L	1.00	10/14/10 00:03	BAA	7872	6010B RTN

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received: 09/29/10

Reported: 10/15/10 16:06

Project: Semi-Annual GW Monitoring

Ana	lytical	Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTI1732-13 ((AP-SWB-01 -				Samp	led: 09/	29/10 14:45	Recvd: 09/29/10 17:30		
Total Metals by EPA 20	0 Series Meth	<u>iods</u>								
Cadmium	ND		0.0010	NR	mg/L	1.00	09/30/10 22:00	AMH	1012189	200.7
Chromium	ND		0.0040	NR	mg/L	1.00	09/30/10 22:00	AMH	1012189	200.7
Iron	ND		0.050	NR	mg/L	1.00	09/30/10 22:00	AMH	1012189	200.7
Lead	ND		0.0050	NR	mg/L	1.00	09/30/10 22:00	AMH	1012189	200.7
Magnesium	0.875		0.200	NR	mg/L	1.00	09/30/10 22:00	AMH	1012189	200.7
Manganese	ND		0.0030	NR	mg/L	1.00	09/30/10 22:00	AMH	1012189	200.7
Selenium	ND		0.0150	NR	mg/L	1.00	09/30/10 22:00	AMH	1012189	200.7
Sodium	ND		1.0	NR	mg/L	1.00	09/30/10 22:00	AMH	1012189	200.7
Thallium	ND		0.0200	NR	mg/L	1.00	09/30/10 22:00	AMH	1012189	200.7
Zinc	ND		0.0100	NR	mg/L	1.00	09/30/10 22:00	AMH	1012189	200.7
General Chemistry Para	ameters									
Ammonia as N	ND		9.20	NR	mg/L as N	1.00	09/30/10 12:07	jmm	1012199	350.1
Chromium, Hexavalent	ND		11.0	NR	ug/L	1.00	09/29/10 20:00	JFR	1012180	7196A
Phenolics, Total Recoverable	ND		10.0	NR	ug/L	1.00	10/08/10 11:15	KLD	10J0463	420.4
Anions by EPA Method	300.0									
Sulfate	ND		10.0	NR	mg/L	1.00	09/30/10 18:47	RMM	1012215	300
Metals (ICP)										
Silicon	2320	В	100	8.1	ug/L	1.00	10/14/10 00:07	BAA	7872	6010B RTI

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received: Reported: 09/29/10

10/15/10 16:06

Project: Semi-Annual GW Monitoring

Project Number: GES

SAMPLE EXTRACTION DATA

Anions by EPA Method 300.0 1012214 RT11732-01 5.00 mL 5.00 mL 09/30/10 11:17 RMM Direct Injection - Anions 300 1012215 RT11732-03 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-03 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-05 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-06 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-06 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-06 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-08 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-09 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-09 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-10 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-11 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-12 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-12 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-13 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300	Parameter	Batch	Lab Number	Wt/Vol Extracte	Units	Extract Volume	Units	Date Prepared	Lab Tech	Extraction Method
1000 1012214 RT11732-02 5.00 mL 5.00 mL 09/30/10 11:17 RMM Direct Injection - Anions 1012215 RT11732-03 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-05 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-05 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-05 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-07 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-08 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-09 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-09 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-10 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-11 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-12 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 101218 RT11732-12 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 101218 RT11732-01 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 101218 RT11732-01 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 101218 RT11732-01 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 101218 RT11732-04 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 101218 RT11732-08 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 101218 RT11732-08 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 101218 RT11732-08 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 101218 RT11732-08 5.00 mL 5.00 mL 09/30/10 07:53 JMM	Anions by EPA Method 300.0									
1000 1012215 RT11732-03 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-05 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-05 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-07 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-07 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-09 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-09 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-10 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-11 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-11 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-12 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-13 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-13 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-13 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-13 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-13 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-13 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-13 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-13 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-13 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-13 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 1012215 RT11732-13 5.00 mL 5.00 mL 09/30/10 11:18 RMM	300	1012214	RTI1732-01	5.00	mL	5.00	mL	09/30/10 11:17	RMM	Direct Injection - Anions
300 1012215 RT11732-05 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-06 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-07 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-08 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-09 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-10 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-11 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-12 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-13 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-13 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-13 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-13 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-13 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300	300	1012214	RTI1732-02	5.00	mL	5.00	mL	09/30/10 11:17	RMM	Direct Injection - Anions
300 1012215 RT11732-05 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-07 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-08 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-08 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-10 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-11 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-12 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-12 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-12 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-12 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-12 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-12 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-01 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-02 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-05 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-05 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-07 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-10 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep	300	1012215	RTI1732-03	5.00	mL	5.00	mL	09/30/10 11:18	RMM	Direct Injection - Anions
300 1012215 RT11732-06 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-08 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-09 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-10 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-11 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-11 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012216 RT11732-12 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350	300	1012215	RTI1732-04	5.00	mL	5.00	mL	09/30/10 11:18	RMM	Direct Injection - Anions
300 1012215 RTI1732-07 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RTI1732-08 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RTI1732-10 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RTI1732-11 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RTI1732-12 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RTI1732-12 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012216 RTI1732-12 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 350.1 1012198 RTI1732-01 5.00 mL	300	1012215	RTI1732-05	5.00	mL	5.00	mL	09/30/10 11:18	RMM	Direct Injection - Anions
300 1012215 RT11732-08 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-09 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-11 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-12 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-12 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RT11732-12 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012198 RT11732-12 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-03 5.00 mL 5.00	300	1012215	RTI1732-06	5.00	mL	5.00	mL	09/30/10 11:18	RMM	Direct Injection - Anions
300 1012215 RTI1732-09 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RTI1732-11 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RTI1732-12 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RTI1732-12 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1010219 RTI1732-12 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 350.1 1012198 RTI1732-01 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-03 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 <td>300</td> <td>1012215</td> <td>RTI1732-07</td> <td>5.00</td> <td>mL</td> <td>5.00</td> <td>mL</td> <td>09/30/10 11:18</td> <td>RMM</td> <td>Direct Injection - Anions</td>	300	1012215	RTI1732-07	5.00	mL	5.00	mL	09/30/10 11:18	RMM	Direct Injection - Anions
300 1012215 RTI1732-10 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RTI1732-11 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RTI1732-12 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RTI1732-12 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012218 RTI1732-01 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-02 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-05 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1	300	1012215	RTI1732-08	5.00	mL	5.00	mL	09/30/10 11:18	RMM	Direct Injection - Anions
300 1012215 RTI1732-11 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RTI1732-12 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RTI1732-13 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions General Chemistry Parameters 8 8 8 8 8 8 7 8 8 8 7 8 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 9 <td>300</td> <td>1012215</td> <td>RTI1732-09</td> <td>5.00</td> <td>mL</td> <td>5.00</td> <td>mL</td> <td>09/30/10 11:18</td> <td>RMM</td> <td>Direct Injection - Anions</td>	300	1012215	RTI1732-09	5.00	mL	5.00	mL	09/30/10 11:18	RMM	Direct Injection - Anions
300 1012215 RTI1732-12 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 300 1012215 RTI1732-13 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions General Chemistry Parameters 350.1 1012198 RTI1732-01 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Armonia 350.1 1012198 RTI1732-03 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Armonia 350.1 1012198 RTI1732-04 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Armonia 350.1 1012198 RTI1732-05 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Armonia 350.1 1012198 RTI1732-05 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Armonia	300	1012215	RTI1732-10	5.00	mL	5.00	mL	09/30/10 11:18	RMM	Direct Injection - Anions
General Chemistry Parameters Tility 32-13 5.00 mL 5.00 mL 09/30/10 11:18 RMM Direct Injection - Anions 350.1 1012198 RTI1732-01 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-02 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-03 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-04 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-06 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-06 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198	300	1012215	RTI1732-11	5.00	mL	5.00	mL	09/30/10 11:18	RMM	Direct Injection - Anions
Semeral Chemistry Parameters 350.1 1012198 RT11732-01 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-02 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-03 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-04 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-05 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-06 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-07 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-08 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-09 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-10 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 3	300	1012215	RTI1732-12	5.00	mL	5.00	mL	09/30/10 11:18	RMM	Direct Injection - Anions
350.1 1012198 RTI1732-01 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-02 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-04 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-05 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-05 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-06 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-07 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 R	300	1012215	RTI1732-13	5.00	mL	5.00	mL	09/30/10 11:18	RMM	Direct Injection - Anions
350.1 1012198 RTI1732-02 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-04 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-05 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-06 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-06 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-07 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-08 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-09 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-10 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-12 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-13 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-13 5.00 mL 5.00 mL 09/30/10 07:53 JMM Rop Prep Ammonia 350.1 1012198 RTI1732-13 5.00 mL 5.00 mL 09/30/10 07:53 JMM Rop Prep Ammonia 350.1 1012198 RTI1732-11 5.00 mL 5.00 mL 10/09/10 08:30 JME TRP Distillation 420.4 10J0384 RTI1732-04 50.00 mL 50.00 mL 10/06/10 08:30 JME TRP Distillation 420.4 10J0483 RTI1732-03 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0483 RTI1732-03 50.00 mL 50.00 mL 10/06/10 15:00 KLD TRP Distillation 420.4 10J0463 RTI1732-05 50.00 mL 50.00 mL 10/06/10 15:00 KLD TRP Distillation 420.4 10J0463 RTI1732-05 50.00 mL 50.00 mL 10/06/10 15:00 KLD TRP Distillation	General Chemistry Parameters									
350.1 1012198 RT11732-04 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-05 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-06 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-06 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-07 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-08 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-09 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-10 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-12 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-12 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-12 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-12 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-12 5.00 mL 5.00 mL 09/30/10 07:54 JMM No prep Ammonia 350.1 1012198 RT11732-13 5.00 mL 5.00 mL 09/30/10 07:54 JMM No prep Ammonia 350.1 1012198 RT11732-13 5.00 mL 5.00 mL 10/09/10 18:38 AMP TRP Distillation 420.4 10J0384 RT11732-04 50.00 mL 50.00 mL 10/09/10 08:30 JME TRP Distillation 420.4 10J0384 RT11732-04 50.00 mL 50.00 mL 10/06/10 08:30 JME TRP Distillation 420.4 10J0483 RT11732-01 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0483 RT11732-03 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0483 RT11732-05 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0483 RT11732-05 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RT11732-05 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RT11732-05 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RT11732-05 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RT11732-05 50.00 mL 50.00 mL	350.1	1012198	RTI1732-01	5.00	mL	5.00	mL	09/30/10 07:53	JMM	No prep Ammonia
350.1 1012198 RT11732-05 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-06 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-07 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-07 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-08 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-09 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-10 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-12 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-12 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-13 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-13 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-13 5.00 mL 5.00 mL 09/30/10 07:54 JMM No prep Ammonia 350.1 1012198 RT11732-13 5.00 mL 5.00 mL 10/09/10 18:38 AMP TRP Distillation 420.4 10J0384 RT11732-02 50.00 mL 50.00 mL 10/09/10 08:30 JME TRP Distillation 420.4 10J0384 RT11732-04 50.00 mL 50.00 mL 10/06/10 08:30 JME TRP Distillation 420.4 10J0483 RT11732-03 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0483 RT11732-03 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0483 RT11732-03 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RT11732-05 50.00 mL 50.00 mL 10/06/10 15:00 KLD TRP Distillation	350.1	1012198	RTI1732-02	5.00	mL	5.00	mL	09/30/10 07:53	JMM	No prep Ammonia
350.1 1012198 RTI1732-06 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-07 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-07 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-08 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-09 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-10 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-12 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-12 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-13 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012199 RTI1732-13 5.00 mL 5.00 mL 09/30/10 07:54 JMM No prep Ammonia 420.4 10J0784 RTI1732-01 50.00 mL 50.00 mL 10/06/10 08:30 JME TRP Distillation 420.4 10J0384 RTI1732-04 50.00 mL 50.00 mL 10/06/10 08:30 JME TRP Distillation 420.4 10J0483 RTI1732-01 50.00 mL 50.00 mL 10/06/10 08:30 JMM TRP Distillation 420.4 10J0483 RTI1732-03 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0483 RTI1732-03 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0483 RTI1732-03 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0483 RTI1732-03 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0483 RTI1732-03 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0483 RTI1732-05 50.00 mL 50.00 mL 10/06/10 15:00 KLD TRP Distillation	350.1	1012198	RTI1732-03	5.00	mL	5.00	mL	09/30/10 07:53	JMM	No prep Ammonia
350.1 10l2198 RTI1732-06 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 10l2198 RTI1732-07 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 10l2198 RTI1732-09 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 10l2198 RTI1732-10 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 10l2198 RTI1732-10 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 10l2198 RTI1732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 10l2198 RTI1732-12 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 10l2198 R	350.1	1012198	RTI1732-04	5.00	mL	5.00	mL	09/30/10 07:53	JMM	No prep Ammonia
350.1 1012198 RT11732-08 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-09 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-10 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-12 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-12 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012199 RT11732-13 5.00 mL 5.00 mL 09/30/10 07:54 JMM No prep Ammonia 350.1 1012199 RT11732-13 5.00 mL 5.00 mL 09/30/10 07:54 JMM No prep Ammonia 420.4 10J0784 RT11732-01 50.00 mL 50.00 mL 10/09/10 18:38 AMP TRP Distillation 420.4 10J0384 RT11732-04 50.00 mL 50.00 mL 10/06/10 08:30 JME TRP Distillation 420.4 10J0483 RT11732-01 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0483 RT11732-03 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0483 RT11732-03 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RT11732-03 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RT11732-05 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RT11732-05 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RT11732-05 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RT11732-05 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RT11732-05 50.00 mL 50.00 mL 10/07/10 15:00 KLD TRP Distillation	350.1	1012198	RTI1732-05	5.00	mL	5.00	mL	09/30/10 07:53	JMM	No prep Ammonia
350.1 1012198 RTI1732-09 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-09 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-10 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-12 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-12 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012199 RTI1732-13 5.00 mL 5.00 mL 09/30/10 07:54 JMM No prep Ammonia 350.1 1012199 RTI1732-13 5.00 mL 50.00 mL 10/09/10 18:38 AMP TRP Distillation 420.4 10J0384 RTI1732-02 50.00 mL 50.00 mL 10/06/10 08:30 JME TRP Distillation 420.4 10J0384 RTI1732-04 50.00 mL 50.00 mL 10/06/10 08:30 JME TRP Distillation 420.4 10J0483 RTI1732-01 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0483 RTI1732-03 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RTI1732-03 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RTI1732-05 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RTI1732-05 50.00 mL 50.00 mL 10/06/10 15:00 KLD TRP Distillation	350.1	1012198	RTI1732-06	5.00	mL	5.00	mL	09/30/10 07:53	JMM	No prep Ammonia
350.1 1012198 RT11732-09 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RT11732-12 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012199 RT11732-13 5.00 mL 5.00 mL 09/30/10 07:54 JMM No prep Ammonia 350.1 1012199 RT11732-13 5.00 mL 5.00 mL 09/30/10 07:54 JMM No prep Ammonia 420.4 10J0784 RT11732-11 50.00 mL 50.00 mL 10/09/10 18:38 AMP TRP Distillation 420.4 10J0384 RT11732-02 50.00 mL 50.00 mL 10/06/10 08:30 JME TRP Distillation 420.4 10J0384 RT11732-04 50.00 mL 50.00 mL 10/06/10 08:30 JME TRP Distillation 420.4 10J0483 RT11732-01 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0483 RT11732-03 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RT11732-05 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RT11732-05 50.00 mL 50.00 mL 10/06/10 15:00 KLD TRP Distillation	350.1	1012198	RTI1732-07	5.00	mL	5.00	mL	09/30/10 07:53	JMM	No prep Ammonia
350.1 1012198 RTI1732-10 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-12 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012199 RTI1732-13 5.00 mL 5.00 mL 09/30/10 07:54 JMM No prep Ammonia 350.1 1012199 RTI1732-13 5.00 mL 5.00 mL 09/30/10 07:54 JMM No prep Ammonia 420.4 10J0784 RTI1732-11 50.00 mL 50.00 mL 10/09/10 18:38 AMP TRP Distillation 420.4 10J0384 RTI1732-02 50.00 mL 50.00 mL 10/06/10 08:30 JME TRP Distillation 420.4 10J0384 RTI1732-04 50.00 mL 50.00 mL 10/06/10 08:30 JME TRP Distillation 420.4 10J0483 RTI1732-01 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0483 RTI1732-03 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RTI1732-05 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RTI1732-05 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation	350.1	1012198	RTI1732-08	5.00	mL	5.00	mL	09/30/10 07:53	JMM	No prep Ammonia
350.1 1012198 RTI1732-11 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012198 RTI1732-12 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012199 RTI1732-13 5.00 mL 5.00 mL 09/30/10 07:54 JMM No prep Ammonia 420.4 10J0784 RTI1732-11 50.00 mL 50.00 mL 10/09/10 18:38 AMP TRP Distillation 420.4 10J0384 RTI1732-02 50.00 mL 50.00 mL 10/06/10 08:30 JME TRP Distillation 420.4 10J0384 RTI1732-04 50.00 mL 50.00 mL 10/06/10 08:30 JME TRP Distillation 420.4 10J0483 RTI1732-01 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0483 RTI1732-03 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0483 RTI1732-03 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RTI1732-05 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RTI1732-05 50.00 mL 50.00 mL 10/06/10 15:00 KLD TRP Distillation	350.1	1012198	RTI1732-09	5.00	mL	5.00	mL	09/30/10 07:53	JMM	No prep Ammonia
350.1 1012198 RTI1732-12 5.00 mL 5.00 mL 09/30/10 07:53 JMM No prep Ammonia 350.1 1012199 RTI1732-13 5.00 mL 5.00 mL 09/30/10 07:54 JMM No prep Ammonia 420.4 10J0784 RTI1732-11 50.00 mL 50.00 mL 10/09/10 18:38 AMP TRP Distillation 420.4 10J0384 RTI1732-02 50.00 mL 50.00 mL 10/06/10 08:30 JME TRP Distillation 420.4 10J0384 RTI1732-04 50.00 mL 50.00 mL 10/06/10 08:30 JME TRP Distillation 420.4 10J0483 RTI1732-01 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0483 RTI1732-03 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RTI1732-05 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RTI1732-05 50.00 mL 50.00 mL 10/06/10 15:00 KLD TRP Distillation	350.1	1012198	RTI1732-10	5.00	mL	5.00	mL	09/30/10 07:53	JMM	No prep Ammonia
350.1 1012199 RTI1732-13 5.00 mL 5.00 mL 09/30/10 07:54 JMM No prep Ammonia 420.4 10J0784 RTI1732-11 50.00 mL 50.00 mL 10/09/10 18:38 AMP TRP Distillation 420.4 10J0384 RTI1732-02 50.00 mL 50.00 mL 10/06/10 08:30 JME TRP Distillation 420.4 10J0384 RTI1732-04 50.00 mL 50.00 mL 10/06/10 08:30 JME TRP Distillation 420.4 10J0483 RTI1732-01 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0483 RTI1732-03 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RTI1732-05 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RTI1732-05 50.00 mL 50.00 mL 10/06/10 15:00 KLD TRP Distillation	350.1	1012198	RTI1732-11	5.00	mL	5.00	mL	09/30/10 07:53	JMM	No prep Ammonia
420.4 10J0784 RTI1732-01 50.00 mL 50.00 mL 10/09/10 18:38 AMP TRP Distillation 420.4 10J0384 RTI1732-02 50.00 mL 50.00 mL 10/06/10 08:30 JME TRP Distillation 420.4 10J0384 RTI1732-04 50.00 mL 50.00 mL 10/06/10 08:30 JME TRP Distillation 420.4 10J0483 RTI1732-01 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0483 RTI1732-03 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RTI1732-05 50.00 mL 50.00 mL 10/06/10 15:00 KLD TRP Distillation	350.1	1012198	RTI1732-12	5.00	mL	5.00	mL	09/30/10 07:53	JMM	No prep Ammonia
420.4 10J0384 RTI1732-02 50.00 mL 50.00 mL 10/06/10 08:30 JME TRP Distillation 420.4 10J0384 RTI1732-04 50.00 mL 50.00 mL 10/06/10 08:30 JME TRP Distillation 420.4 10J0483 RTI1732-01 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RTI1732-05 50.00 mL 50.00 mL 10/06/10 15:00 KLD TRP Distillation	350.1	1012199	RTI1732-13	5.00	mL	5.00	mL	09/30/10 07:54	JMM	No prep Ammonia
420.4 10J0384 RTI1732-04 50.00 mL 50.00 mL 10/06/10 08:30 JME TRP Distillation 420.4 10J0483 RTI1732-01 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0483 RTI1732-03 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RTI1732-05 50.00 mL 50.00 mL 10/06/10 15:00 KLD TRP Distillation	420.4	10J0784	RTI1732-11	50.00	mL	50.00	mL	10/09/10 18:38	AMP	TRP Distillation
420.4 10J0483 RTI1732-01 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0483 RTI1732-03 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RTI1732-05 50.00 mL 50.00 mL 10/06/10 15:00 KLD TRP Distillation	420.4	10J0384	RTI1732-02	50.00	mL	50.00	mL	10/06/10 08:30	JME	TRP Distillation
420.4 10J0483 RTI1732-03 50.00 mL 50.00 mL 10/07/10 08:13 JMM TRP Distillation 420.4 10J0463 RTI1732-05 50.00 mL 50.00 mL 10/06/10 15:00 KLD TRP Distillation	420.4	10J0384	RTI1732-04	50.00	mL	50.00	mL	10/06/10 08:30	JME	TRP Distillation
420.4 10J0463 RTI1732-05 50.00 mL 50.00 mL 10/06/10 15:00 KLD TRP Distillation	420.4	10J0483	RTI1732-01	50.00	mL	50.00	mL	10/07/10 08:13	JMM	TRP Distillation
	420.4	10J0483	RTI1732-03	50.00	mL	50.00	mL	10/07/10 08:13	JMM	TRP Distillation
420.4 10J0463 RTI1732-06 50.00 mL 50.00 mL 10/06/10 15:00 KLD TRP Distillation	420.4	10J0463	RTI1732-05	50.00	mL	50.00	mL	10/06/10 15:00	KLD	TRP Distillation
	420.4	10J0463	RTI1732-06	50.00	mL	50.00	mL	10/06/10 15:00	KLD	TRP Distillation
420.4 10J0463 RTI1732-07 50.00 mL 50.00 mL 10/06/10 15:00 KLD TRP Distillation	420.4	10J0463	RTI1732-07	50.00	mL	50.00	mL	10/06/10 15:00	KLD	TRP Distillation
420.4 10J0463 RTI1732-08 50.00 mL 50.00 mL 10/06/10 15:00 KLD TRP Distillation	420.4	10J0463	RTI1732-08	50.00	mL	50.00	mL	10/06/10 15:00	KLD	TRP Distillation

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received:

09/29/10 Reported: 10/15/10 16:06

Project: Semi-Annual GW Monitoring

Project Number:

SAMPLE EXTRACTION DATA

			OAMII EI	_ LX ! ! \	AOTION	מות			
Parameter	Batch	Lab Number	Wt/Vol Extracte	Units	Extract Volume	Units	Date Prepared	Lab Tech	Extraction Method
420.4	10J0463	RTI1732-09	50.00	mL	50.00	mL	10/06/10 15:00	KLD	TRP Distillation
420.4	10J0463	RTI1732-10	50.00	mL	50.00	mL	10/06/10 15:00	KLD	TRP Distillation
420.4	10J0463	RTI1732-12	50.00	mL	50.00	mL	10/06/10 15:00	KLD	TRP Distillation
420.4	10J0463	RTI1732-13	50.00	mL	50.00	mL	10/06/10 15:00	KLD	TRP Distillation
7196A	1012180	RTI1732-01	25.00	mL	25.00	mL	09/29/10 20:00	JFR	Hex Digestion
7196A	1012180	RTI1732-02	25.00	mL	25.00	mL	09/29/10 20:00	JFR	Hex Digestion
7196A	1012180	RTI1732-03	25.00	mL	25.00	mL	09/29/10 20:00	JFR	Hex Digestion
7196A	1012180	RTI1732-04	25.00	mL	25.00	mL	09/29/10 20:00	JFR	Hex Digestion
7196A	1012180	RTI1732-05	25.00	mL	25.00	mL	09/29/10 20:00	JFR	Hex Digestion
7196A	1012180	RTI1732-06	25.00	mL	25.00	mL	09/29/10 20:00	JFR	Hex Digestion
7196A	1012180	RTI1732-07	25.00	mL	25.00	mL	09/29/10 20:00	JFR	Hex Digestion
7196A	1012180	RTI1732-08	25.00	mL	25.00	mL	09/29/10 20:00	JFR	Hex Digestion
7196A	1012180	RTI1732-09	25.00	mL	25.00	mL	09/29/10 20:00	JFR	Hex Digestion
7196A	1012180	RTI1732-10	25.00	mL	25.00	mL	09/29/10 20:00	JFR	Hex Digestion
7196A	1012180	RTI1732-11	25.00	mL	25.00	mL	09/29/10 20:00	JFR	Hex Digestion
7196A	1012180	RTI1732-12	25.00	mL	25.00	mL	09/29/10 20:00	JFR	Hex Digestion
7196A	1012180	RTI1732-13	25.00	mL	25.00	mL	09/29/10 20:00	JFR	Hex Digestion
Total Metals by EPA 200 Serie	es Methods								
200.7	1012189	RTI1732-01	50.00	mL	50.00	mL	09/30/10 09:45	JRK	3005A
200.7	1012189	RTI1732-02	50.00	mL	50.00	mL	09/30/10 09:45	JRK	3005A
200.7	1012189	RTI1732-03	50.00	mL	50.00	mL	09/30/10 09:45	JRK	3005A
200.7	1012189	RTI1732-04	50.00	mL	50.00	mL	09/30/10 09:45	JRK	3005A
200.7	1012189	RTI1732-05	50.00	mL	50.00	mL	09/30/10 09:45	JRK	3005A
200.7	1012189	RTI1732-06	50.00	mL	50.00	mL	09/30/10 09:45	JRK	3005A
200.7	1012189	RTI1732-07	50.00	mL	50.00	mL	09/30/10 09:45	JRK	3005A
200.7	1012189	RTI1732-08	50.00	mL	50.00	mL	09/30/10 09:45	JRK	3005A
200.7	1012189	RTI1732-09	50.00	mL	50.00	mL	09/30/10 09:45	JRK	3005A
200.7	1012189	RTI1732-10	50.00	mL	50.00	mL	09/30/10 09:45	JRK	3005A
200.7	1012189	RTI1732-11	50.00	mL	50.00	mL	09/30/10 09:45	JRK	3005A
200.7	1012189	RTI1732-12	50.00	mL	50.00	mL	09/30/10 09:45	JRK	3005A
200.7	1012189	RTI1732-13	50.00	mL	50.00	mL	09/30/10 09:45	JRK	3005A

6 Gellatly Drive

Wappinger Falls, NY 12590

www.testamericainc.com

Work Order: RTI1732

Received: Reported: 09/29/10 10/15/10 16:06

Project: Semi-Annual GW Monitoring

LABORATORY Q		DAIA	
--------------	--	------	--

Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
Total Metals by EPA 20	0 Series Met	<u>hods</u>									
Blank Analyzed: 09/30/1	10 (Lab Nun	nber:10l21	189-BLK1, Ba	atch: 10l2189)							
Cadmium	•		0.0010	NR	mg/L	ND					
Chromium			0.0040	NR	mg/L	ND					
Iron			0.050	NR	mg/L	ND					
Lead			0.0050	NR	mg/L	ND					
Magnesium			0.200	NR	mg/L	ND					
Manganese			0.0030	NR	mg/L	ND					
Selenium			0.0150	NR	mg/L	ND					
Sodium			1.0	NR	mg/L	ND					
Thallium			0.0200	NR	mg/L	ND					
Zinc			0.0100	NR	mg/L	ND					
LCS Analyzed: 09/30/10) (Lab Numb	er:10l218	9-BS1, Batc	h: 10l2189)							
Cadmium	•	0.200	0.0010	NR	mg/L	0.199	99	85-115			
Chromium		0.200	0.0040	NR	mg/L	0.197	98	85-115			
Iron		10.0	0.050	NR	mg/L	9.59	96	85-115			
Lead		0.200	0.0050	NR	mg/L	0.202	101	85-115			
Magnesium		10.0	0.200	NR	mg/L	10.2	102	85-115			
Manganese		0.200	0.0030	NR	mg/L	0.202	101	85-115			
Selenium		0.200	0.0150	NR	mg/L	0.207	103	85-115			
Sodium		10.0	1.0	NR	mg/L	10.2	102	85-115			
Thallium		0.200	0.0200	NR	mg/L	0.202	101	85-115			
Zinc		0.200	0.0100	NR	mg/L	0.195	98	85-115			
Matrix Spike Analyzed: QC Source Sample: RTI1732	-		er:10l2189-M	S1, Batch: 10l	2189)						
Cadmium	0.000550	0.200	0.0010	NR	mg/L	0.200	100	70-130			
Chromium	0.574	0.200	0.0040	NR	mg/L	0.780	103	70-130			
Iron	2.89	10.0	0.050	NR	mg/L	12.0	91	70-130			
Lead	0.00973	0.200	0.0050	NR	mg/L	0.212	101	70-130			
Magnesium	1.49	10.0	0.200	NR	mg/L	11.1	96	70-130			
Manganese	0.123	0.200	0.0030	NR	mg/L	0.310	94	70-130			
Selenium	0.00920	0.200	0.0150	NR	mg/L	0.217	104	70-130			
Sodium	46.7	10.0	1.0	NR	mg/L	60.2	135	70-130			MHA
Thallium	ND	0.200	0.0200	NR	mg/L	0.197	99	70-130			
Zinc	0.0312	0.200	0.0100	NR	mg/L	0.222	95	70-130			
Matrix Spike Dup Analy QC Source Sample: RTI1732		0 (Lab Ni	umber:10l21	89-MSD1, Bato	ch: 10l2189)						
Cadmium	0.000550	0.200	0.0010	NR	mg/L	0.205	102	70-130	2	20	
Chromium	0.574	0.200	0.0040	NR	mg/L	0.780	103	70-130	0.02	20	
TestAmerica Buffalo - 1	10 Hazelwoo		mherst, NY	14228 tel 716-	=	716-691-799	91				

 $\label{eq:Greenstar} \textbf{Greenstar Environmental Solutions, LLC}$

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received: Reported: 09/29/10

10/15/10 16:06

Project: Semi-Annual GW Monitoring

Project Number: GES

LABORATORY QC DATA

				20.01.011	Q0 D/\./\						
	Source	Spike	DI				%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Total Metals by EF	PA 200 Series Met	<u>hods</u>									
Matrix Spike Dup A	•	0 (Lab N	umber:10l21	89-MSD1, Bato	ch: 10l2189)						
Iron	2.89	10.0	0.050	NR	mg/L	12.2	93	70-130	1	20	
Lead	0.00973	0.200	0.0050	NR	mg/L	0.217	103	70-130	2	20	
Magnesium	1.49	10.0	0.200	NR	mg/L	11.2	97	70-130	0.9	20	
Manganese	0.123	0.200	0.0030	NR	mg/L	0.308	93	70-130	0.5	20	
Selenium	0.00920	0.200	0.0150	NR	mg/L	0.223	107	70-130	2	20	
Sodium	46.7	10.0	1.0	NR	mg/L	59.7	130	70-130	0.9	20	
Thallium	ND	0.200	0.0200	NR	mg/L	0.204	102	70-130	3	20	
Zinc	0.0312	0.200	0.0100	NR	ma/L	0.225	97	70-130	1	20	

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received:

09/29/10

Reported: 10/15/10 16:06

Project: Semi-Annual GW Monitoring Project Number:

LABORATORY	റ	DATA
LABORATORI	QU	DAIA

Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC		RPD	Data Qualifiers
General Chemistry Param		20701		MDL	Offics	Result	REC	LIIIIIIS	IN D L	iiiiic	Qualifiers
Blank Analyzed: 09/29/10	(I ab Num	ber:10l21	80-BI K1. B	atch: 10l2180)							
Chromium, Hexavalent	(Lub Ituli		11.0	NR	ug/L	ND					
LCS Analyzed: 09/29/10 ((I ah Numh	er:1012180)-BS1 Batc	h· 10l2180)							
Chromium, Hexavalent	Lab Hamb	50.0	10.0	NR	ug/L	49.0	98	85-115			
Duplicate Analyzed: 09/29 QC Source Sample: RTI1732-06	-	Number:10)12180-DUP	1, Batch: 10I21	80)						
Chromium, Hexavalent	ND		10.0	NR	ug/L	ND				15	
Duplicate Analyzed: 09/29 QC Source Sample: RTI1732-12	-	Number:10)12180-DUP	2, Batch: 10I21	80)						
Chromium, Hexavalent	ND		10.0	NR	ug/L	ND				15	
Matrix Spike Analyzed: 09 QC Source Sample: RTI1732-07	-	ab Numbei	r:10I2180-M	S1, Batch: 10l	2180)						
Chromium, Hexavalent	ND	50.0	10.0	NR	ug/L	64.6	129	85-115			M11
Matrix Spike Analyzed: 09 QC Source Sample: RTI1732-13	-	ab Numbei	r:10I2180-M	S2, Batch: 10l	2180)						
Chromium, Hexavalent	ND	50.0	10.0	NR	ug/L	56.3	113	85-115			
General Chemistry Param	<u>neters</u>										
Blank Analyzed: 09/30/10	(Lab Num	nber:10l21	98-BLK1, B	atch: 10I2198)							
Ammonia as N			9.20	NR	mg/L as N	ND					
LCS Analyzed: 09/30/10 ((Lab Numb	er:10l2198	B-BS1, Batc	h: 10l2198)							
Ammonia as N		0.500	9.20	NR	mg/L as N	0.515	103	90-110			
Duplicate Analyzed: 09/30 QC Source Sample: RTI1732-12	-	Number:10)12198-DUP	1, Batch: 10I21	98)						
Ammonia as N	0.0209		9.20	NR	mg/L as N	0.0206			1	20	
Matrix Spike Analyzed: 09 QC Source Sample: RTI1732-12	-	ab Numbei	r:10I2198-M	S1, Batch: 10l	2198)						
Ammonia as N	0.0209	0.200	9.20	NR	mg/L as N	0.184	82	54-150			
General Chemistry Param	<u>neters</u>										
Blank Analyzed: 09/30/10	(Lab Num	nber:10l21	99-BLK1, B	atch: 10l2199)							
Ammonia as N			9.20	NR	mg/L as N	ND					
LCS Analyzed: 09/30/10 ((Lab Numb	er:10l2199	9-BS1, Batc	h: 10l2199)							
Ammonia as N		0.500	9.20	NR	mg/L as N	0.523	105	90-110			

6 Gellatly Drive

Phenolics, Total

Recoverable

Wappinger Falls, NY 12590

Work Order: RTI1732

Project Number:

Received:

09/29/10

Reported: 10/15/10 16:06

Project: Semi-Annual GW Monitoring

			LA	BORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
General Chemistry Param	<u>eters</u>										
Duplicate Analyzed: 09/30 QC Source Sample: RTI1732-13		Number:10	012199-DUP	1, Batch: 10I21	199)						
Ammonia as N	0.0304		9.20	NR	mg/L as N	0.0328			8	20	
Matrix Spike Analyzed: 09 QC Source Sample: RTI1732-13	-	ab Numbe	r:10l2199-M	S1, Batch: 10	2199)						
Ammonia as N	0.0304	0.200	9.20	NR	mg/L as N	0.241	105	54-150			
General Chemistry Param	<u>eters</u>										
Blank Analyzed: 10/06/10	(Lab Num	nber:10J03	384-BLK1, E	Batch: 10J0384)						
Phenolics, Total Recoverable			10.0	NR	ug/L	ND					
LCS Analyzed: 10/06/10 (Lab Numb	er:10J038	4-BS1, Bate	ch: 10J0384)							
Phenolics, Total Recoverable		100	10.0	NR	ug/L	103	103	90-110			
Matrix Spike Analyzed: 10 QC Source Sample: RTI1732-04	•	ab Numbe	r:10J0384-N	/IS1, Batch: 10	J0384)						
Phenolics, Total Recoverable	ND	100	10.0	NR	ug/L	100	100	60-143			
General Chemistry Param	<u>eters</u>										
Blank Analyzed: 10/08/10	(Lab Num	nber:10J04	463-BLK1, E	3atch: 10J0463)						
Phenolics, Total Recoverable			10.0	NR	ug/L	ND					
LCS Analyzed: 10/08/10 (Lab Numb	er:10J046	3-BS1, Bate	ch: 10J0463)							
Phenolics, Total Recoverable		100	10.0	NR	ug/L	99.8	100	90-110			
Duplicate Analyzed: 10/08 QC Source Sample: RTI1732-13	•	Number:10	0J0463-DUF	P1, Batch: 10J0)463)						
Phenolics, Total Recoverable	ND		10.0	NR	ug/L	ND				20	
General Chemistry Param	<u>eters</u>										
Blank Analyzed: 10/08/10	(Lab Num	nber:10J04	483-BLK1, E	Batch: 10J0483)						
Phenolics, Total Recoverable			10.0	NR	ug/L	ND					
LCS Analyzed: 10/08/10 (Lab Numb	er:10J048	3-BS1, Bate	ch: 10J0483)							

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

10.0

100

NR

ug/L

98.1

98

90-110

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received: Reported: 09/29/10 10/15/10 16:06

Project: Semi-Annual GW Monitoring

Project Number: GES

LABORATORY QC DATA

Analyte General Chemistry Paran	Source Result neters	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD RPD Limit	Data Qualifiers
Blank Analyzed: 10/12/10	(Lab Num	ber:10J07	84-BLK1, E	Batch: 10J0784)						
Phenolics, Total Recoverable			10.0	NR	ug/L	ND				
LCS Analyzed: 10/12/10	(Lab Numb	er:10J0784	I-BS1, Bate	ch: 10J0784)						
Phenolics, Total Recoverable		100	10.0	NR	ug/L	105	105	90-110		

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received: 09/

Reported:

09/29/10 10/15/10 16:06

Project: Semi-Annual GW Monitoring

1.	ΔR	(RΔ	TO	RY	QC	DΔ	ΔΤ
	\neg	•	\sim	$\cdot \cdot \cdot$	1	ω ω		

	Source	Spike	RL	MDI			%	% REC	%	RPD	Data
Analyte	Result	Level	IXL .	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Anions by EPA Method 3	<u>00.0</u>										
Blank Analyzed: 10/01/10	(Lab Num	nber:10l22	4-BLK1, Bato	:h: 10l2214)							
Sulfate			10.0	NR	mg/L	ND					
LCS Analyzed: 10/01/10	(Lab Numb	er:10l2214	-BS1, Batch:	1012214)							
Sulfate		20.0	2.00	NR	mg/L	19.6	98	90-110			
Matrix Spike Analyzed: 10 QC Source Sample: RTI1732-02	•	ab Number	:10I2214-MS1	, Batch: 10l2214	1)						
Sulfate	194	125	10.0	NR	mg/L	330	108	75-125			
Matrix Spike Dup Analyze QC Source Sample: RTI1732-02		0 (Lab Nu	mber:10l2214	-MSD1, Batch: 1	012214)						
Sulfate	194	125	10.0	NR	mg/L	332	110	75-125	0.5	20	
Anions by EPA Method 3	00.0										
Blank Analyzed: 10/01/10	(Lab Num	nber:10l22	5-BLK1, Bato	:h: 10l2215)							
Sulfate			10.0	NR	mg/L	ND					
LCS Analyzed: 10/01/10	(Lab Numb	er:10l2215	-BS1, Batch:	1012215)							
Sulfate		20.0	2.00	NR	mg/L	20.4	102	90-110			
Matrix Spike Analyzed: 10 QC Source Sample: RTI1732-13	-	ab Number	:10I2215-MS1	, Batch: 10l221	5)						
Sulfate	1.37	25.0	2.00	NR	mg/L	27.8	106	75-125			
Matrix Spike Analyzed: 10 QC Source Sample: RTI1732-1	•	ab Number	:10I2215-MS2	, Batch: 10l221	5)						
Sulfate	22.1	25.0	2.00	NR	mg/L	48.4	105	75-125			
Matrix Spike Dup Analyze QC Source Sample: RTI1732-13		0 (Lab Nui	mber:10l2215	-MSD1, Batch: 1	012215)						
Sulfate	1.37	25.0	2.00	NR	mg/L	28.0	106	75-125	0.5	20	

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI1732

Received:

09/29/10

Reported: 10/15/10 16:06

Project: Semi-Annual GW Monitoring

Project Number: GES

LABORATORY QC DATA

Analyte Metals (ICP)	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD RPD Limit	Data Qualifiers
Blank Analyzed: 10/13/10 Silicon	(Lab Num	ber:200-7	872-13, Bat 100	s ch: 7872) 8.1	ug/L	16.05		-		J
LCS Analyzed: 10/13/10 Silicon	(Lab Numb	er: 200-787 1000	72-14, Batc 100	h: 7872) 8.1	ug/L	992.2	99	80-120		

Chain of Custody Record

Stale, Zip NY, 12590 a Gellatly Drive Company Greenstar Environmental Solutions, LLC Wappinger Falls Client Information Airco - Niagara Falls - NYSA9582 cmdeod@greenstarsolutions.com (845) 223-9844 Sient Coreot. Charles, E. McLeod, Jr. Sample Identification Suppression of the Empty Kli Relinquished by: Poserble Hazard Identification

Non-Hazard Teleminab emi-Annual GW Meniloring • NYSA9562AE04618 Deliverable Requested: I, II, III, IV, Other (specify) уд реценфияву (dipolation) Custody Seals Mact: Flammable 1 AP-14W-48 AP-MW-DUP-01 Custody Seel No AP-MW-18 AP+IW-2B AP MW-BB AP-MW-78 AP-MW-68 AP-MW-5B AP-MW-3B AP-R6-01 AP-SS-01 Skin Indiant O Polson B 1124110 Mars. 908-358-9768 વા યુવા ક 9129/10 9/25/10 9/24/10 WO# RT11588 TAT Requested (Business Days) Project #: Servi-Annual GW Monitoring Due Date Raquasied: Sampler 912410 9/14/10 0||X|||b| 9/19/10 PO#. 150C265-1005-01 0118715 وسالمادد Sample Date Stew Bagis Unknown 250 見い <u>288</u> 7 8 Dale: S S 1020 11110 1425 Sample O Radiological (C=comp. Gagrab) prom.ma)
Preserv-Cont Code: Sample ۵ ø ø ø Ç Ç) Ω ១ ഒ O Company Company **Sueduo** Maldx ٤ ₹ ε Ŧ ٤ ٤ ٤ Æ ε ₽ Lab PM Peggy Gray-Erdmann E.Maii peggy.gray-erdmann@festamericainc.com Field Filtered Sample [Yes or No] Time: Perform MS/MSD (Yes or No) Sample Disposal (A fee may be assessed if samples

Return To Client Disposal By Leb Special Instructions/QC Requirements ¥₹### Cooler Temperature(s) *C and Other Remarks Received by Reserved by ó က ဂ ţ Parameter(s) Requested _ P P _ _ _ _ T-Metals ξ 504 몪 T-Motals 'τ≤<u>`</u> (s)thy functions attended duthod of Shairsont M əmazətler are retained longer than 1 month) 0 벎 Archive For ä Total Number of containers æ o Φ φ "Linited Values in 2 HAVA BOTHLS à B Ф ø A-Amber G-Gass P-Poly/Plastic Container Codes N=None S=H2SO4 C≥Zn Acetate D=Neńc Acad NOT SHAPLED Preservation Codes: V-MCAA į 09272010 10:02_1 1 S-Summa 730 Special Instructions/Note: I-Toda Configuration ALPRAINT. Months

¢

Chain of Custody Record

																					_
Slient Information	STEVE STEVE	17 1 1 N	<u>.</u>	Peggy Gray-Erdmann	ລູ້	in S	dmar	ī				5	Camier Tracking No(6) :	Į.	No. Bu	6)			88	COC No. 09272010 10:02 2	N)
	816-858-806	58-9	748	E-പല ഉള്ളു.gray-ലെന്നുണയ്ക്ക് testamericainc.com	-gray	, - 6 44	nem	Š S	siam	සැය	8	š							P-909		
ompany Sceenstar Environmental Sciutions, LLC									Para	ĐĘ T	107.	쿲	Parameter(s) Requested	8	~				₽ qor	7	
s Gellathy Drive	Due Data Requested:	ņ.				0.7	\neg	ヿ					╣	\dashv	\dashv	\dashv	┪	a - 1	A-HCL Brand	Preservation Codes:	Z4Z
אני Vappinger Falls	TAT Requested (Business Days) 10	ayed appoint	-		Ž-														C>Zn Ace HO€N=8	B=KaOH C≠Zn Acalata	
Sale, 25: NY, 12590					·///	>000													2 8 2 8	D≃Naberic Acdd I≃loa	
толе: (945) 223-9944	10-2001-592005-01 Fo #	<u> </u>				9020.3												-	K=None	N=None S=H2SO4	
smail smaileodのgreenstarsolutions.com	985µ⊔¥ ₩0#:					12.574													- - - -	V-MCAA	
rojed Nime. Somi-America (CW Monitorina - NYSAGSSZAEGIARI)	Project * Semi-Annual GW Monitopoo	V Monitorno				7.	_			_	<u>Sī.)</u>						_		, A	A sambor	Υ=πedlar
Side Property Total PICA ADRIES	SC/VB:										Έ.	_						cont	Parolly /	PerPoly/Plastic	Ē
CHICAL LANGE OF THE CHICAL STATE OF THE CHICAL				丄		vı												er o	383	S*SUPP	
		S	Sample Type		d Filtered Marin MS/	:Cr	unols	einem	eteiş	ı	etals							l Rumbe			
			Proserva Providence	Preserv-Cont Code:		_		6 T	7	- s		1	+	╫	╫	+	$^{+}$	₫₹	T	Special ins	Special instructions/Note:
AP-8S-02	0 16 17	5	G	≨		_		-	- J	- [-	_	\dashv	\dashv	┪	┪.	┪	<u></u> }			
AP-55-01	((I)) T	001	G	\$		_	_	-	-]	- 1	-	_[_	\dashv	\dashv	\dashv	\dashv		П		
AP-SWB-01	129/10	ロルラ	င	*		_	_	-	_	_	-				\vdash	$\vdash \vdash$		6			
					╁						$oxed{oxed}$	_	<u> </u>								
					\vdash	H	H						_	_	\vdash	\vdash	 	٠.			
					┢	<u> </u>					<u> </u>				Н	Н					
					-	-	Ħ					_	_	┝			_	_			
					┼-	┪-	1	1		匚	_	<u> </u>	_	┢		\vdash		_			
					╁	+					丄	Ļ	-	╄	+	 		<u> </u>			
					╁	╅	\top	1			4	_	+	+	+	- -	1				
)	ı [8		핡	200	\$[9	亂	易	Sess-	扑	퇅	핡	3		ä	nger than 1	taonth)
≝ [Polson B Unknown		Radiological		┝	Ļ	Retur	70	Clien	~	N	£ 2 S:	spos	l By	<u> </u>			Arch	úve f	Return To Client 🕰 Disposal By Lab 🗀 Archive For Mon	Months
Deliverable Requested: I, II, III, IV. Other (specify)					35	Special Instructions/OC	150	ncho.	Q.Su	₽, C 7,	Requirements:	Trejon.	<u> </u>								
Empty Kit Reliaquished by:		Date:			Ппне:						7		•	Mathod of Shipment	A Shift	tu 9 m			ļ		
Reanquished by:	9/29/10 BaldTime	.77	(5.2)	Company Contract		8 8	Received by	₹ 7		20	1	-111	1 1		D D	auvivased	125/	0		730	Company
Reinquished by:	: men Lehich		- 0	Company		Set.	Received by:	ě	J						2	Dalle/Time:	"				Company
Custody Seals Intact: Custody Seat No. A Yes A No						8		mperar	Cooler Temperature(s) *C		and Other Remarks:	170 en	Ģ	≥.	Դ	7	۲	-			
					ı	I	l	l	l	ŀ	ı	ı	ı		١	ľ	ľ				

ANALYTICAL REPORT

Job Number: 200-1784-1 SDG Number: RTI1732

Job Description: Greenstar Environmental Solutions, LLC

For:

TestAmerica Laboratories, Inc. 10 Hazelwood Drive Amherst, NY 14228-2298

Attention: Peggy Gray-Erdmann

Approved for release Joseph Carabillo Project Manager I 10/14/2010 3:06 PM

Joseph Carabillo
Project Manager I
joseph.carabillo@testamericainc.com
10/14/2010

The test results in this report relate only to sample(s) as received by the laboratory. These test results were derived under a quality system that adheres to the requirements of NELAC. Pursuant to NELAC, this report may not be produced in full without written approval from the laboratory

CASE NARRATIVE

Client: TestAmerica Laboratories, Inc.

Project: Greenstar Environmental Solutions, LLC

Report Number: 200-1784-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 10/01/2010; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 18.7 C.

TOTAL METALS (ICP)

Samples RTI1732-01, RTI1732-02, RTI1732-03, RTI1732-04, RTI1732-05, RTI1732-06, RTI1732-07, RTI1732-08, RTI1732-09, RTI1732-10, RTI1732-11, RTI1732-12 and RTI1732-13 were analyzed for total metals (ICP) in accordance with EPA SW-846 Method 6010B. The samples were prepared on 10/04/2010 and analyzed on 10/13/2010 and 10/14/2010.

Silicon was detected in method blank MB 200-7355/1-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged "J". If the associated sample reported a result above the MDL and/or RL, the result has been "B" flagged. Refer to the QC report for details.

No other difficulties were encountered during the metals analyses.

All other quality control parameters were within the acceptance limits.

METHOD SUMMARY

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1784-1 Sdg Number: RTI1732

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Metals (ICP)	TAL BUR	SW846 6010B	
Preparation, Total Metals	TAL BUR		SW846 3010A

Lab References:

TAL BUR = TestAmerica Burlington

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: TestAmerica Laboratories, Inc. Job Number: 200-1784-1

Sdg Number: RTI1732

Method	Analyst	Analyst ID
SW846 6010B	Ames, Bennye A	BAA

SAMPLE SUMMARY

Client: TestAmerica Laboratories, Inc. Job Number: 200-1784-1

Sdg Number: RTI1732

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
	•		•	40/04/0040 4000
200-1784-1	RTI1732-01	Water	09/29/2010 0000	10/01/2010 1030
200-1784-2	RTI1732-02	Water	09/29/2010 0835	10/01/2010 1030
200-1784-3	RTI1732-03	Water	09/29/2010 0945	10/01/2010 1030
200-1784-4	RTI1732-04	Water	09/29/2010 1020	10/01/2010 1030
200-1784-5	RTI1732-05	Water	09/29/2010 1045	10/01/2010 1030
200-1784-6	RTI1732-06	Water	09/29/2010 1135	10/01/2010 1030
200-1784-7	RTI1732-07	Water	09/29/2010 1330	10/01/2010 1030
200-1784-8	RTI1732-08	Water	09/29/2010 1425	10/01/2010 1030
200-1784-9	RTI1732-09	Water	09/29/2010 1500	10/01/2010 1030
200-1784-10	RTI1732-10	Water	09/29/2010 1100	10/01/2010 1030
200-1784-11	RTI1732-11	Water	09/29/2010 1110	10/01/2010 1030
200-1784-12	RTI1732-12	Water	09/29/2010 1200	10/01/2010 1030
200-1784-13	RTI1732-13	Water	09/29/2010 1445	10/01/2010 1030

SAMPLE RESULTS

Client: TestAmerica Laboratories, Inc. Job Number: 200-1784-1

Sdg Number: RTI1732

Client Sample ID: RTI1732-01

Lab Sample ID: 200-1784-1 Date Sampled: 09/29/2010 0000

Client Matrix: Water Date Received: 10/01/2010 1030

6010B Metals (ICP)

Method:6010BAnalysis Batch: 200-7872Instrument ID:METICP7Preparation:3010APrep Batch: 200-7355Lab File ID:101310-05.ttx

Dilution: 1.0 Initial Weight/Volume: 100 mL

 Date Analyzed:
 10/13/2010 2308
 Final Weight/Volume:
 100 mL

 Date Prepared:
 10/04/2010 0714

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Silicon
 892
 B
 8.1
 100

Client: TestAmerica Laboratories, Inc. Job Number: 200-1784-1

Sdg Number: RTI1732

Client Sample ID: RTI1732-02

Lab Sample ID: 200-1784-2 Date Sampled: 09/29/2010 0835 Client Matrix: Water

Date Received: 10/01/2010 1030

6010B Metals (ICP)

6010B Method: Analysis Batch: 200-7872 Instrument ID: METICP7 Prep Batch: 200-7355 Preparation: 3010A Lab File ID: 101310-05.ttx

Dilution: Initial Weight/Volume: 1.0 100 mL

10/13/2010 2316 Date Analyzed: Final Weight/Volume: 100 mL 10/04/2010 0714 Date Prepared:

Analyte Result (ug/L) Qualifier MDL RL

Silicon 6860 В 8.1 100

Client: TestAmerica Laboratories, Inc. Job Number: 200-1784-1

Sdg Number: RTI1732

Client Sample ID: RTI1732-03

Lab Sample ID: 200-1784-3 Date Sampled: 09/29/2010 0945 Client Matrix: Water

Date Received: 10/01/2010 1030

6010B Metals (ICP)

6010B Method: Analysis Batch: 200-7872 Instrument ID: METICP7 3010A Prep Batch: 200-7355 Preparation: Lab File ID: 101310-05.ttx

Dilution: Initial Weight/Volume: 1.0 100 mL

10/13/2010 2319 Date Analyzed: Final Weight/Volume: 100 mL 10/04/2010 0714 Date Prepared:

Analyte Result (ug/L) Qualifier MDL RL

Silicon 1090 В 8.1 100

Client: TestAmerica Laboratories, Inc. Job Number: 200-1784-1

Sdg Number: RTI1732

Client Sample ID: RTI1732-04

Lab Sample ID: 200-1784-4 Date Sampled: 09/29/2010 1020

Client Matrix: Water Date Received: 10/01/2010 1030

6010B Metals (ICP)

Method:6010BAnalysis Batch: 200-7872Instrument ID:METICP7Preparation:3010APrep Batch: 200-7355Lab File ID:101310-05.ttx

Dilution: 1.0 Initial Weight/Volume: 100 mL

Date Analyzed: 10/13/2010 2323 Final Weight/Volume: 100 mL

Date Prepared: 10/04/2010 0714

Analyte Result (ug/L) Qualifier MDL RL

Silicon 7310 B 8.1 100

Client: TestAmerica Laboratories, Inc. Job Number: 200-1784-1

Sdg Number: RTI1732

Client Sample ID: RTI1732-05

Lab Sample ID: 200-1784-5 Date Sampled: 09/29/2010 1045 Client Matrix: Water

Date Received: 10/01/2010 1030

6010B Metals (ICP)

6010B Method: Analysis Batch: 200-7872 Instrument ID: METICP7 Prep Batch: 200-7355 Preparation: 3010A Lab File ID: 101310-05.ttx

Dilution: Initial Weight/Volume: 1.0 100 mL

10/13/2010 2327 Date Analyzed: Final Weight/Volume: 100 mL 10/04/2010 0714 Date Prepared:

RL

Analyte Result (ug/L) Qualifier MDL Silicon 11100 В 8.1 100

Client: TestAmerica Laboratories, Inc. Job Number: 200-1784-1

Sdg Number: RTI1732

Client Sample ID: RTI1732-06

Lab Sample ID: 200-1784-6 Date Sampled: 09/29/2010 1135 Client Matrix:

Water Date Received: 10/01/2010 1030

6010B Metals (ICP)

6010B Method: Analysis Batch: 200-7872 Instrument ID: METICP7 Prep Batch: 200-7355 Preparation: 3010A Lab File ID: 101310-05.ttx

Dilution: Initial Weight/Volume: 1.0 100 mL

10/13/2010 2331 Date Analyzed: Final Weight/Volume: 100 mL 10/04/2010 0714 Date Prepared:

Analyte Result (ug/L) Qualifier MDL RLSilicon 6180 В 8.1 100

Client: TestAmerica Laboratories, Inc. Job Number: 200-1784-1

Sdg Number: RTI1732

100

Client Sample ID: RTI1732-07

Silicon

Lab Sample ID: 200-1784-7 Date Sampled: 09/29/2010 1330 Client Matrix:

Water Date Received: 10/01/2010 1030

В

8.1

6010B Metals (ICP)

6010B Method: Analysis Batch: 200-7872 Instrument ID: METICP7 Prep Batch: 200-7355 Preparation: 3010A Lab File ID: 101310-05.ttx

Dilution: Initial Weight/Volume: 1.0 100 mL

10/13/2010 2335 Date Analyzed: Final Weight/Volume: 100 mL 10/04/2010 0714 Date Prepared:

Analyte Result (ug/L) Qualifier MDL RL8460

Client: TestAmerica Laboratories, Inc. Job Number: 200-1784-1

Sdg Number: RTI1732

Client Sample ID: RTI1732-08

Lab Sample ID: 200-1784-8 Date Sampled: 09/29/2010 1425 Client Matrix: Water

Date Received: 10/01/2010 1030

6010B Metals (ICP)

6010B Method: Analysis Batch: 200-7872 Instrument ID: METICP7 Prep Batch: 200-7355 Preparation: 3010A Lab File ID: 101310-05.ttx

Dilution: Initial Weight/Volume: 1.0 100 mL

10/13/2010 2347 Date Analyzed: Final Weight/Volume: 100 mL 10/04/2010 0714 Date Prepared:

Qualifier Analyte Result (ug/L) MDL RLSilicon 27000 В 8.1 100

Client: TestAmerica Laboratories, Inc. Job Number: 200-1784-1

Sdg Number: RTI1732

Client Sample ID: RTI1732-09

Lab Sample ID: 200-1784-9 Date Sampled: 09/29/2010 1500

Client Matrix: Water Date Received: 10/01/2010 1030

6010B Metals (ICP)

Method:6010BAnalysis Batch: 200-7872Instrument ID:METICP7Preparation:3010APrep Batch: 200-7355Lab File ID:101310-05.ttx

Dilution: 1.0 Initial Weight/Volume: 100 mL

Date Analyzed: 10/13/2010 2351 Final Weight/Volume: 100 mL Date Prepared: 10/04/2010 0714

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Silicon
 2280
 B
 8.1
 100

Client: TestAmerica Laboratories, Inc. Job Number: 200-1784-1

Sdg Number: RTI1732

Client Sample ID: RTI1732-10

Lab Sample ID: 200-1784-10 Date Sampled: 09/29/2010 1100

Client Matrix: Water Date Received: 10/01/2010 1030

6010B Metals (ICP)

Method:6010BAnalysis Batch: 200-7872Instrument ID:METICP7Preparation:3010APrep Batch: 200-7355Lab File ID:101310-05.ttx

Dilution: 1.0 Initial Weight/Volume: 100 mL

Date Analyzed: 10/13/2010 2355 Final Weight/Volume: 100 mL Date Prepared: 10/04/2010 0714

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Silicon
 1330
 B
 8.1
 100

Client: TestAmerica Laboratories, Inc. Job Number: 200-1784-1

Sdg Number: RTI1732

Client Sample ID: RTI1732-11

Lab Sample ID: 200-1784-11 Date Sampled: 09/29/2010 1110

Client Matrix: Water Date Received: 10/01/2010 1030

6010B Metals (ICP)

Method:6010BAnalysis Batch: 200-7872Instrument ID:METICP7Preparation:3010APrep Batch: 200-7355Lab File ID:101310-05.ttx

Dilution: 1.0 Initial Weight/Volume: 100 mL

Date Analyzed: 10/13/2010 2359 Final Weight/Volume: 100 mL

Date Prepared: 10/04/2010 0714

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Silicon
 4140
 B
 8.1
 100

Client: TestAmerica Laboratories, Inc. Job Number: 200-1784-1

Sdg Number: RTI1732

Client Sample ID: RTI1732-12

Lab Sample ID: 200-1784-12 Date Sampled: 09/29/2010 1200

Client Matrix: Water Date Received: 10/01/2010 1030

6010B Metals (ICP)

Method:6010BAnalysis Batch: 200-7872Instrument ID:METICP7Preparation:3010APrep Batch: 200-7355Lab File ID:101310-05.ttx

Dilution: 1.0 Initial Weight/Volume: 100 mL

Date Analyzed: 10/14/2010 0003 Final Weight/Volume: 100 mL Date Prepared: 10/04/2010 0714

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Silicon
 1250
 B
 8.1
 100

Client: TestAmerica Laboratories, Inc. Job Number: 200-1784-1

Sdg Number: RTI1732

Client Sample ID: RTI1732-13

Lab Sample ID: 200-1784-13 Date Sampled: 09/29/2010 1445

Client Matrix: Water Date Received: 10/01/2010 1030

6010B Metals (ICP)

Method:6010BAnalysis Batch: 200-7872Instrument ID:METICP7Preparation:3010APrep Batch: 200-7355Lab File ID:101310-05.ttx

Dilution: 1.0 Initial Weight/Volume: 100 mL

 Date Analyzed:
 10/14/2010 0007
 Final Weight/Volume:
 100 mL

 Date Prepared:
 10/04/2010 0714

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Silicon
 2320
 B
 8.1
 100

DATA REPORTING QUALIFIERS

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1784-1

Sdg Number: RTI1732

Lab Section	Qualifier	Description	
Metals			
	В	Compound was found in the blank and sample.	
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	

QUALITY CONTROL RESULTS

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1784-1

Sdg Number: RTI1732

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
Metals					
Prep Batch: 200-7355					
LCS 200-7355/2-A	Lab Control Sample	Т	Water	3010A	
MB 200-7355/1-A	Method Blank	Т	Water	3010A	
200-1784-1	RTI1732-01	Т	Water	3010A	
200-1784-2	RTI1732-02	Т	Water	3010A	
200-1784-3	RTI1732-03	Т	Water	3010A	
200-1784-4	RTI1732-04	Т	Water	3010A	
200-1784-5	RTI1732-05	Т	Water	3010A	
200-1784-6	RTI1732-06	Т	Water	3010A	
200-1784-7	RTI1732-07	Т	Water	3010A	
200-1784-8	RTI1732-08	Т	Water	3010A	
200-1784-9	RTI1732-09	Т	Water	3010A	
200-1784-10	RTI1732-10	Т	Water	3010A	
200-1784-11	RTI1732-11	Т	Water	3010A	
200-1784-12	RTI1732-12	Т	Water	3010A	
200-1784-13	RTI1732-13	Т	Water	3010A	
Analysis Batch:200-787	72				
LCS 200-7355/2-A	Lab Control Sample	Т	Water	6010B	200-7355
MB 200-7355/1-A	Method Blank	Т	Water	6010B	200-7355
200-1784-1	RTI1732-01	Т	Water	6010B	200-7355
200-1784-2	RTI1732-02	Т	Water	6010B	200-7355
200-1784-3	RTI1732-03	Т	Water	6010B	200-7355
200-1784-4	RTI1732-04	Т	Water	6010B	200-7355
200-1784-5	RTI1732-05	Т	Water	6010B	200-7355
200-1784-6	RTI1732-06	Т	Water	6010B	200-7355
200-1784-7	RTI1732-07	Т	Water	6010B	200-7355
200-1784-8	RTI1732-08	Т	Water	6010B	200-7355
200-1784-9	RTI1732-09	Т	Water	6010B	200-7355
200-1784-10	RTI1732-10	Т	Water	6010B	200-7355
200-1784-11	RTI1732-11	Т	Water	6010B	200-7355
200-1784-12	RTI1732-12	Т	Water	6010B	200-7355
200-1784-13	RTI1732-13	Т	Water	6010B	200-7355

Report Basis

T = Total

Quality Control Results

Client: TestAmerica Laboratories, Inc. Job Number: 200-1784-1

Sdg Number: RTI1732

Method Blank - Batch: 200-7355 Method: 6010B Preparation: 3010A

Lab Sample ID: MB 200-7355/1-A

Client Matrix: Water Dilution: 1.0

10/13/2010 2300 Date Analyzed: Date Prepared: 10/04/2010 0714 Analysis Batch: 200-7872 Prep Batch: 200-7355

Units: ug/L

Instrument ID: METICP7 Lab File ID: 101310-05.ttx Initial Weight/Volume: 100 mL Final Weight/Volume: 100 mL

MDL RL Analyte Result Qual Silicon 16.05 J 8.1 100

Lab Control Sample - Batch: 200-7355 Method: 6010B Preparation: 3010A

Lab Sample ID: LCS 200-7355/2-A Client Matrix: Water

Dilution: 1.0

10/13/2010 2304 Date Analyzed: 10/04/2010 0714 Date Prepared:

Analysis Batch: 200-7872 Prep Batch: 200-7355

Units: ug/L

Instrument ID: METICP7 Lab File ID: 101310-05.ttx Initial Weight/Volume: 100 mL

Final Weight/Volume: 100 mL

Analyte Spike Amount Result % Rec. Limit Qual Silicon 1000 992.2 80 - 120 99

D: DKKA (716) 691-2600 ESTAMERICA O HAZELMOOD DR

AMHERST, NY 14228 UNITED STATES US

BILL RECIPIENT

ODON DAWICKI

30 COMMUNITY DRIVE TA BURLINGTON

SOUTH BURLINGTON VT 05403 (618) 640-6018 PEF: METALS DEPT: METALS

FRI - 01 0CT AA PRIORITY OVERNIGHT 05403 vr-us BTV

505C3/9292/DA47

SUBCONTRACT ORDER TestAmerica Buffalo

RTI1732

SENDING LABORATORY:

RECEIVING LABORATORY:

TestAmerica Buffalo

TestAmerica Burlington

10 Hazelwood Drive

30 Community Drive; Suite 11

Amherst, NY 14228

S. Burlington, VT 05403

Phone: 716-691-2600

Phone: (802) 655-1203

Fax: 716-691-7991

Fax: (802) 655-1248

Project Manager: Peggy Gray-Erdmann

Project Location: _UNKNOWN

Client: Greenstar Environmental Solutions, LLC

Receipt Temperature: 19.7 °C

Ice:

Report: Level 2 Report

Copy/Relog from RTI1588. Added via Bottle Orders by PJG 09/27/10 10:01

Analysis

Units

Due

Expires

Interlab Price Surch Comments

Sample ID: RTI1732-01 (AP-MW-DUP-01 - Water)

Sampled: 09/29/10 00:00

SUB - 6010B Tot - Silicon

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

10/12/10 03/28/11 00:00 \$30.00

0% NONE,

Containers Supplied:

Sample ID: RTI1732-02 (AP-MW-1B - Water)

Sampled: 09/29/10 08:35

SUB - 6010B Tot - Silicon

10/12/10

03/28/11 08:35

\$30.00

0% NONE,

Containers Supplied:

Sample ID: RTI1732-03 (AP-MW-2B - Water)

Sampled: 09/29/10 09:45

SUB - 6010B Tot - Silicon

10/12/10 03/28/11 09:45 \$30.00

0% NONE,

Containers Supplied:

Sample ID: RTI1732-04 (AP-MW-3B - Water)

Sampled: 09/29/10 10:20

SUB - 6010B Tot - Silicon

10/12/10 03/28/11 10:20 \$30.00

0% NONE.

Containers Supplied:

Sample ID: RTI1732-05 (AP-MW-5B - Water)

Sampled: 09/29/10 10:45

SUB - 6010B Tot - Silicon

10/12/10

03/28/11 10:45

\$30.00

0% NONE.

Containers Supplied:

Sample ID: RTI1732-06 (AP-MW-6B - Water)

Sampled: 09/29/10 11:35

SUB - 6010B Tot - Silicon

10/12/10

03/28/11 11:35

\$30.00

NONE, 0%

Containers Supplied:

Released By

Date/Time

25 of 27

Received By

Date/Time

Page 1 of 2

SUBCONTRACT ORDER TestAmerica Buffalo

RTI1732

Analysis	Units	Due	Expires	Interlab Price Su	rch	Comments	
Sample ID: RTI1732-07 (AF	-MW-7R - W	ater\					
<u> </u>				: 09/29/10 13:30	00/	NONE	
SUB - 6010B Tot - Silicon	mg/L	10/12/10	03/28/11 13:30	\$30.00	0%	NONE,	
Containers Supplied:							
Sample ID: RTI1732-08 (AF	P-MW-8B - W	ater)	Sampleo	l: 09/29/10 14:25			
SUB - 6010B Tot - Silicon	mg/L	10/12/10	03/28/11 14:25		0%	NONE,	
Containers Supplied:							
Sample ID: RTI1732-09 (AF	P-RB-01 - Wa	ter)	Sample	1: 09/29/10 15:00			
SUB - 6010B Tot - Silicon	mg/L	10/12/10	03/28/11 15:00		0%	NONE,	
Containers Supplied:	-						
Sample ID: RTI1732-10 (AF SUB - 6010B Tot - Silicon Containers Supplied:	P-SS-01 - Wa mg/L	10/12/10	Sample: 03/28/11 11:00	d: 09/29/10 11:00 0 \$30.00	0%	NONE,	
Sample ID: RTI1732-11 (Al	P-SS-02 - Wa	ter)	Sample	d: 09/29/10 11:10			
SUB - 6010B Tot - Silicon	mg/L	10/12/10	03/28/11 11:10		0%	NONE,	
Containers Supplied:	•						
Sample ID: RTI1732-12 (AF	P-SS-03 - Wa	ter)	Sampleo	d: 09/29/10 12:00			
SUB - 6010B Tot - Silicon	mg/L	10/12/10	03/28/11 12:00		0%	NONE,	
Containers Supplied:							
Sample ID: RTI1732-13 (AI	P-SWB-01 - V	Vater)	Sample	d: 09/29/10 14:45			
SUB - 6010B Tot - Silicon	mg/L	10/12/10	03/28/11 14:4		0%	NONE,	
Containers Supplied:	J -					·	
общаться биррпец.							

Login Sample Receipt Check List

Client: TestAmerica Laboratories, Inc.

Job Number: 200-1784-1 SDG Number: RTI1732

Login Number: 1784 List Source: TestAmerica Burlington

Creator: Keeton, Jamie

List Number: 1

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	619611
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	18.7°C, IR GUN ID 96, CF -1
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

Attachment E

Landfill Cap Inspection Checklists August and December 2010

LANDFILL CAP INSPECTION CHECKLIST AIRCO PARCEL, NIAGARA FALLS, NEW YORK

Personnel: Bruce Vinal - Greenstar Environmental Solutions, LLC

Date: 3rd Quarter Inspection 8/24/10

Weather: Sun 80 degrees

- 1. Inspection of ground surface for exposure of geotextile cover (cap erosion): None noted.
- 2. Inspection of ground surface for differential settlement resulting in soil cracking or ponded water: The slopes around T-7 still require additional fill to level out top of slope.
- **3. Identification of stressed vegetation:** Re-seeded areas in the South West corner appear to be well established and require no further monitoring other than normal.
- 4. Identification of seeps, rooted vegetation (trees), and/or animal burrows: Vegetation has gotten high around sheds and tanks as well as the roads. Ground clear has been applied around sheds and tanks, Roads will be addressed during Fall mowing.
- 5. Identification of deteriorating equipment (i.e., monitoring wells, fencing, or drainage structures): Tearing of the tarp on the T-3 has gotten worse, recommend replacement./
 The outlet pipe to T-8 has 45 degree bends and is prone to blockages, recommend replacement with one solid piece.
- **6. Inspection of stormwater drainage swales for erosion, sloughing, or flow-through:** Still recommend the addition of pipes under the stone "Bridge" in the South West corner.
- 7. Inspection of east side of the landfill (Niagara Mohawk Power Corporation parcel) along the intermittent stream for the presence of erosion or sloughing:

 None noted
- **8. Inspection of access roads:** Roads are heavily overgrown and require mowing

LANDFILL CAP INSPECTION CHECKLIST AIRCO PARCEL, NIAGARA FALLS, NEW YORK

Personnel: Bruce Vinal - Greenstar Environmental Solutions, LLC

Date: 4th Quarter Inspection 12/29/10

Weather: Overcast 30 degrees

1. Inspection of ground surface for exposure of geotextile cover (cap erosion): None noted.

- 2. Inspection of ground surface for differential settlement resulting in soil cracking or ponded water: The slopes around T-7 have been raised and re-seeded.
- **3. Identification of stressed vegetation:** Re-seeded areas around T-7 are not yet established and will be monitored.
- **4. Identification of seeps, rooted vegetation (trees), and/or animal burrows:** All overgrown vegetation was taken care of during the Fall mowing.
- 5. Identification of deteriorating equipment (i.e., monitoring wells, fencing, or drainage structures): The tarp on T-3 has been replaced / Entrance gate was hit by snowplow contractor, new gate was installed. New gate appears to be of equal quality to the original./ Two new monitoring wells are currently painted black, both will be painted "Safety Blue" in the spring with left over stock./ The outlet pipe to T-7 has been replaced.
- 6. Inspection of stormwater drainage swales for erosion, sloughing, or flow-through: None noted/ Pipes have been added under the stone bridge in the South West corner.
- 7. Inspection of east side of the landfill (Niagara Mohawk Power Corporation parcel) along the intermittent stream for the presence of erosion or sloughing: None noted
- **8. Inspection of access roads:** Roads are in acceptable condition.

Attachment F

Laboratory Analytical Results for GCTS Discharge Sampling

Analytical Report

Work Order: RTH1280

Project Description

Quarterly Discharge Monitoring

For:

Charles E. McLeod, Jr.

Greenstar Environmental Solutions, LLC

6 Gellatly Drive Wappinger Falls, NY 12590

Jennifer Byrnes For Peggy Gray-Erdmann

in L. H. Eyrner

Project Manager

jennifer.byrnes@testamericainc.com

Thursday, September 9, 2010

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

Greenstar Environmental Solutions, LLC 6 Gellatly Drive

Genally Drive

Wappinger Falls, NY 12590

Work Order: RTH1280

Project: Quarterly Discharge Monitoring

Project Number: GES

Received: 08/25/10 Reported: 09/09/10 14:31

TestAmerica Buffalo Current Certifications

As of 08/16/2010

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-N Y044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP,SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA	10026
North Dakota	CWA, RCRA	R-176
Oklahoma	CWA, RCRA	9421
Oregon*	CWA, RCRA	NY200003
Pennsylvania*	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
Texas*	NELAP CWA, RCRA	T104704412-08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA, RCRA	252

*As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parame ters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

Greenstar Environmental Solutions, LLC 6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTH1280

Received: 08/25/10

Reported: 09/09/10 14:31

Project: Quarterly Discharge Monitoring

Project Number: GES

CASE NARRATIVE

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Biochemical Oxygen Demand sample RTH1280-01 was bracketed by a compliant Method Blank and a non-compliant CCB which was above acceptance limits. The sample was non-detect for Biochemical Oxygen Demand, therefore no corrective action was necessary.

A pertinent document is appended to this report, 1 page, is included and is an integral part of this report.

Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTH1280

Received: Reported:

08/25/10

09/09/10 14:31

Project: Quarterly Discharge Monitoring

Project Number: GE

The requested project specific reporting limits listed below were less than lab standard quantitation limits but greater than or equal to the lab MDL. It must be noted that results reported below lab standard quantitation limits (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

SpecificMethodAnalyteUnitsClient RLLab PQL2540CTotal Dissolved Solidsmg/L4.010.0

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTH1280

Project: Quarterly Discharge Monitoring Project Number: GES

Received: 08/25/10

Reported: 09/09/10 14:31

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.

HFT The holding time for this test is immediate. It was analyzed in the laboratory as soon as possible after receipt.

Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits.

Analyte not detected, data not impacted.

N1 See case narrative.

NR Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below

the laboratory reporting limit.

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTH1280

Received:

08/25/10 Reported: 09/09/10 14:31

Project: Quarterly Discharge Monitoring

Project Number:

Executive Summary - Detections

			Executive	Summa	ry - Detecti	ons				
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTH1280-01	(AP-EWE-01	- Water)			Samp	led: 08/	/25/10 12:30	Recv	/d: 08/25/1	0 14:05
General Chemistry Para	ameters									
рН	7.90	HFT	0.100	NR	SU	1.00	08/25/10 19:42	RMB	10H1829	9040
Oxygen, Dissolved	8.24		7.00	NR	mg/L	1.00	08/26/10 09:40	KLD	10H1885	4500-O G
Nitrate	0.543		0.050	NR	mg/L as N	1.00	08/25/10 16:15	JFR	10H1786	353.2
Total Dissolved Solids	526	В	4.0	NR	mg/L	1.00	08/26/10 09:09	KLD	10H1851	2540C

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTH1280

Received: Reported:

08/25/10 09/09/10 14:31

Project: Quarterly Discharge Monitoring

Project Number: GES

Sample Summary

Sample Identification	Lab Number	Client Matrix	Date/Time Sampled	Date/Time Received	Sample Qualifiers
AP-EWE-01	RTH1280-01	Water	08/25/10 12:30	08/25/10 14:05	

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTH1280

Received: 08/25/10

Reported: 09/09/10 14:31

Project: Quarterly Discharge Monitoring

Project Number: GES

Analytical Report	
-------------------	--

	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTH1280-01 (AP-EWE-01 - Water)			Samp	led: 08	/25/10 12:30	Recv	/d: 08/25/1	0 14:05		
Volatile Organic Compo	ounds									
1,1-Dichloroethane	ND		5.0	0.59	ug/L	1.00	08/26/10 14:20	TRB	10H1859	624
Trichloroethene	ND		5.0	0.60	ug/L	1.00	08/26/10 14:20	TRB	10H1859	624
1,2-Dichloroethane-d4	102 %		Surr Limits:	(88-132%)			08/26/10 14:20	TRB	10H1859	624
4-Bromofluorobenzene	100 %		Surr Limits:	(78-122%)			08/26/10 14:20	TRB	10H1859	624
Toluene-d8	92 %		Surr Limits:	(87-110%)			08/26/10 14:20	TRB	10H1859	624
Total Metals by EPA 200	O Series Meth	<u>nods</u>								
Barium	ND		2000	NR	ug/L	1.00	09/04/10 21:12	MxM	10H1898	200.7
Chromium	ND		100	NR	ug/L	1.00	09/04/10 21:12	MxM	10H1898	200.7
Copper	ND		14.7	NR	ug/L	1.00	09/04/10 21:12	MxM	10H1898	200.7
Iron	ND		300	NR	ug/L	1.00	09/04/10 21:12	MxM	10H1898	200.7
Nickel	ND		70.0	NR	ug/L	1.00	09/04/10 21:12	MxM	10H1898	200.7
Zinc	ND		115	NR	ug/L	1.00	09/04/10 21:12	MxM	10H1898	200.7
Selenium	ND		4.6	NR	ug/L	1.00	08/30/10 13:38	ESW	10H1929	200.8
Thallium	ND		4.0	NR	ug/L	1.00	08/30/10 13:38	ESW	10H1929	200.8
General Chemistry Para	meters									
Ammonia as N	ND		9.20	NR	mg/L as N	1.00	08/26/10 14:27	jmm	10H1838	350.1
Biochemical Oxygen	ND	N1	5.0	NR	mg/L	1.00	08/26/10 15:35	AMP	10H1915	5210B
Demand Chromium, Hexavalent	ND		11.0	NR	//	1.00	08/25/10 19:15	DMD	10H1823	7196A
*	ND		40.0	NR NR	ug/L	1.00	08/27/10 09:55		10H1623	410.4
Chemical Oxygen Demand	ND		40.0	NK	mg/L	1.00	08/27/10 09:55	JIVIIVI	10H1970	410.4
pH	7.90	HFT	0.100	NR	SU	1.00	08/25/10 19:42	RMB	10H1829	9040
Oxygen, Dissolved	8.24		7.00	NR	mg/L	1.00	08/26/10 09:40	KLD	10H1885	4500-O G
Nitrate	0.543		0.050	NR	mg/L as N	1.00	08/25/10 16:15	JFR	10H1786	353.2
Nitrite	ND		0.050	NR	mg/L as N	1.00	08/25/10 16:44	JFR	10H1787	353.2
Phenolics, Total	ND	L	10.0	NR	ug/L	1.00	09/04/10 11:37		1010130	420.4
Recoverable					Ũ					
Total Dissolved Solids	526	В	4.0	NR	mg/L	1.00	08/26/10 09:09	KLD	10H1851	2540C
Total Suspended Solids	ND		10.0	NR	mg/L	1.00	08/27/10 10:20	KLD	10H2024	2540D
Total Kjeldahl Nitrogen	ND		1.00	NR	mg/L as N	1.00	09/01/10 08:55	JMM	10H2255	351.2

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTH1280

Received: 0

08/25/10 09/09/10 14:31

Project: Quarterly Discharge Monitoring

Project Number: GES

SAMPLE EXTRACTION DATA

			Wt/Vol		Extract			Lab	
Parameter	Batch	Lab Number	Extracte	Units	Volume	Units	Date Prepared	Tech	Extraction Method
General Chemistry Parameters									
2540C	10H1851	RTH1280-01	100.00	mL	100.00	mL	08/26/10 09:09	AMP	No prep solids
2540D	10H2024	RTH1280-01	250.00	mL	250.00	mL	08/27/10 10:20	KLD	No prep solids
350.1	10H1838	RTH1280-01	5.00	mL	5.00	mL	08/26/10 12:24	JMM	No prep Ammonia
351.2	10H2255	RTH1280-01	25.00	mL	25.00	mL	08/31/10 09:30	JME	TKN Digestion
353.2	10H1786	RTH1280-01	5.00	mL	5.00	mL	08/25/10 15:28	RMB	Nitrate/Nitrite
353.2	10H1787	RTH1280-01	5.00	mL	5.00	mL	08/25/10 15:28	RMB	Nitrate/Nitrite
410.4	10H1970	RTH1280-01	2.00	mL	2.00	mL	08/27/10 09:55	JMM	No prep Chemical Oxygen Demand
420.4	1010130	RTH1280-01	50.00	mL	50.00	mL	09/02/10 15:48	JLN	TRP Distillation
4500-O G	10H1885	RTH1280-01	1.00	mL	1.00	mL	08/26/10 09:40	KLD	No prep Biochemical Oxygen Demand
5210B	10H1915	RTH1280-01	300.00	mL	300.00	mL	08/26/10 15:35	JLN	No prep Biochemical Oxygen Demand
7196A	10H1823	RTH1280-01	25.00	mL	25.00	mL	08/25/10 19:15	RMB	Hex Digestion
9040	10H1829	RTH1280-01	1.00	mL	1.00	mL	08/25/10 19:42	RMB	pН
Total Metals by EPA 200 Series I	Methods								
200.7	10H1898	RTH1280-01	50.00	mL	50.00	mL	08/27/10 12:30	JRK	3005A
200.8	10H1929	RTH1280-01	50.00	mL	50.00	mL	08/27/10 12:15	JRK	3020A
Volatile Organic Compounds									
624	10H1859	RTH1280-01	5.00	mL	5.00	mL	08/26/10 14:02	TRB	5030B MS

 ${\it Greenstar\ Environmental\ Solutions,\ LLC}$

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTH1280

Received:

08/25/10

Reported: 09/09/10 14:31

Project: Quarterly Discharge Monitoring

Project Number: GES

LABORATORY QC DATA

Analyte Volatile Organic Compou	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD RPD Limit	Data Qualifiers
	<u></u>									
Blank Analyzed: 08/26/10	(Lab Num	ber:10H1	859-BLK1, I	Batch: 10H1859))					
1,1-Dichloroethane			5.0	0.59	ug/L	ND				
Trichloroethene			5.0	0.60	ug/L	ND				
Surrogate:					ug/L		100	88-132		
1,2-Dichloroethane-d4 Surrogate: 4-Bromofluorobenzene					ug/L		100	78-122		
Surrogate: Toluene-d8					ug/L		92	87-110		
LCS Analyzed: 08/26/10	(Lab Numb	er:10H18	59-BS1, Bat	ch: 10H1859)						
1,1-Dichloroethane		20.0	5.0	0.59	ug/L	22.9	115	73-128		
Trichloroethene		20.0	5.0	0.60	ug/L	22.3	111	67-134		
Surrogate:					ug/L		96	88-132		
1,2-Dichloroethane-d4 Surrogate: 4-Bromofluorobenzene					ug/L		102	78-122		
Surrogate: Toluene-d8					ug/L		94	87-110		

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTH1280

Received: Reported: 08/25/10

09/09/10 14:31

Project: Quarterly Discharge Monitoring

Project Number:

LABOR	?ATOR`	y ດ	C D	ATA
-------	--------	-----	-----	-----

	Source	Spike	D.				%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Total Metals by EPA 200	Series Met	<u>hods</u>									
Blank Analyzed: 09/04/10	(Lab Num	nber:10H18	898-BLK1, I	Batch: 10H1898	3)						
Barium			2000	NR	ug/L	ND					
Chromium			100	NR	ug/L	ND					
Copper			14.7	NR	ug/L	ND					
Iron			300	NR	ug/L	ND					
Nickel			70.0	NR	ug/L	ND					
Zinc			115	NR	ug/L	ND					
LCS Analyzed: 09/04/10	(Lab Numb	er:10H189	8-BS1, Bat	ch: 10H1898)							
Barium		200	2000	NR	ug/L	203	102	85-115			
Chromium		200	100	NR	ug/L	203	102	85-115			
Copper		200	14.7	NR	ug/L	200	100	85-115			
Iron		10000	300	NR	ug/L	10100	101	85-115			
Nickel		200	70.0	NR	ug/L	205	102	85-115			
Zinc		200	115	NR	ug/L	202	101	85-115			
Total Metals by EPA 200	Series Met	<u>hods</u>									
Blank Analyzed: 08/30/10	(Lab Num	nber:10H1	929-BLK1, I	Batch: 10H1929	9)						
Selenium			4.6	NR	ug/L	ND					
Thallium			4.0	NR	ug/L	ND					В
LCS Analyzed: 08/30/10	(Lab Numb	er:10H192		ch: 10H1929)							
Selenium		20.0	1.0	NR	ug/L	19.0	95	85-115			
Thallium		20.0	0.2	NR	ug/L	20.0	100	85-115			

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTH1280

Received: Reported:

08/25/10 09/09/10 14:31

Project: Quarterly Discharge Monitoring

Project Number: GES

LABO	DRAT	ORY	OC	DATA
------	------	-----	----	------

					QU DAIA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
General Chemistry Parar	<u>meters</u>										
Blank Analyzed: 08/25/10	0 (Lab Nun	nber:10H1	786-BLK1. E	Batch: 10H178	6)						
Nitrate			0.050	NR	mg/L as N	ND					
L CC Amelymody 00/05/40	(I ala Niveala	401147	00 DO4 D-4	-b. 4011470C)	_						
LCS Analyzed: 08/25/10 Nitrate	(Lab Numi		0.050	cn: 10H1786) NR	mg/L as N	1.42	95	90-110			
Milale		1.50	0.050	INIX	mg/L as N	1.42	95	90-110			
Duplicate Analyzed: 08/2 QC Source Sample: RTH1280-	•	Number:1	0H1786-DUI	P1, Batch: 10H	1786)						
Nitrate	0.543		0.050	NR	mg/L as N	0.554			2	20	
Matrix Spike Analyzed: 0)8/25/10 (La	ab Numbe	er:10H1786-I	//S1, Batch: 10	H1786)						
QC Source Sample: RTH1280-	-01										
Nitrate	0.543	1.00	0.050	NR	mg/L as N	1.65	110	77-123			
General Chemistry Parar	meters										
Blank Analyzed: 08/25/10	0 (Lab Nun	nber:10H1	787-BLK1, E		•						
Nitrite			0.050	NR	mg/L as N	ND					
LCS Analyzed: 08/25/10	(Lab Numb	er:10H17	87-BS1, Bat	ch: 10H1787)							
Nitrite		1.50	0.050	NR	mg/L as N	1.62	108	90-110			
Conoral Chamiatry Baras	motoro										
General Chemistry Parar	illeters										
Blank Analyzed: 08/25/10	0 (Lab Nun	nber:10H1	823-BLK1, E	Batch: 10H182	3)						
Chromium, Hexavalent			11.0	NR	ug/L	ND					
LCS Analyzed: 08/25/10	(Lab Numb	per:10H18	23-BS1, Bat	ch: 10H1823)							
Chromium, Hexavalent	•	50.0	10.0	NR	ug/L	49.0	98	85-115			
Duplicate Analyzed: 08/2	05/10 (Lab	Numbor:1	0H1833-DHI	01 Ratch: 10U	1923)						
QC Source Sample: RTH1280-	-	Mullibel. I	0111023-001	i, batcii. ivii	1023)						
Chromium, Hexavalent	ND		10.0	NR	ug/L	ND				20	
Matrix Spike Analyzed: 0 QC Source Sample: RTH1280-	-	ab Numbe	er:10H1823-l	/IS1, Batch: 10	H1823)						
Chromium, Hexavalent	ND	50.0	10.0	NR	ug/L	53.6	107	75-120			
General Chemistry Parar	meters										
Control Chamber y 1 drai											
LCS Analyzed: 08/25/10	(Lab Numb	per:10H18		-							
pH		7.00	NA	NR	SU	6.99	100	99.3-100.			
								8			

General Chemistry Parameters

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTH1280

Received: Reported:

08/25/10 09/09/10 14:31

Project: Quarterly Discharge Monitoring

Project Number: **GES**

LABORATORY Q	QC DATA	١
--------------	---------	---

			LA	BORATORY	/ QC DATA					
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC	% RPD	Data Qualifiers
General Chemistry Para					<u> </u>	Rooun	ILLO	Liiiito	THE CHINE	quamicio
Blank Analyzed: 08/26/1	0 (Lab Nun	nber:10H1			-					
Ammonia as N			9.20	NR	mg/L as N	ND				
LCS Analyzed: 08/26/10	(Lab Numb	er:10H18	38-BS1, Bat	ch: 10H1838)						
Ammonia as N		0.750	0.020	NR	mg/L as N	0.805	107	90-110		
General Chemistry Para	<u>meters</u>									
Blank Analyzed: 08/26/1	0 (Lab Nun	nber:10H1	851-BLK1, I	3atch: 10H185	1)					
Total Dissolved Solids			4.0	NR	mg/L	9.0				
LCS Analyzed: 08/26/10	(I ab Numb	er:10H18	51-BS1. Bat	ch: 10H1851)						
Total Dissolved Solids	(Lub Itulii	500	4.0	NR	mg/L	470	94	85-115		В
		000			3					
General Chemistry Para	<u>meters</u>									
Duplicate Analyzed: 08/2 QC Source Sample: RTH1280	-	Number:1	0H1885-DUI	P1, Batch: 10H	11885)					
Oxygen, Dissolved	8.24		0.05	NR	mg/L	8.37			2	
General Chemistry Para	meters									
Blank Analyzed: 08/26/1	0 (Lab Nun	nber:10H1	915-BLK1, I	Batch: 10H191	5)					
Biochemical Oxygen Demand			5.0	NR	mg/L	ND				
LCS Analyzed: 08/26/10	(Lab Numb	er:10H19	15-BS1, Bat	ch: 10H1915)						
Biochemical Oxygen Demand		198	2.0	NR	mg/L	213	108	85-115		
General Chemistry Para	<u>meters</u>									
Blank Analyzed: 08/27/1	0 (Lab Nun	nber:10H1	970-BLK1, I	Batch: 10H197	0)					
Chemical Oxygen Demand			40.0	NR	mg/L	ND				
LCS Analyzed: 08/27/10	(Lab Numb	er:10H19	70-BS1, Bat	ch: 10H1970)						
Chemical Oxygen Demand		75.0	10.0	NR	mg/L	80.6	107	90-110		
General Chemistry Para	<u>meters</u>									
Blank Analyzed: 08/27/1	0 (Lab Nun	nber:10H2	024-BLK1, I	Batch: 10H202	4)					

LCS Analyzed: 08/27/10 (Lab Number:10H2024-BS1, Batch: 10H2024)

Total Suspended Solids

www.testamericainc.com

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

10.0

NR

mg/L

ND

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTH1280

Received:

08/25/10

Reported: 09/09/10 14:31

Project: Quarterly Discharge Monitoring

Project Number: **GES**

Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% F RPD L	RPD	Data Qualifiers
General Chemistry Parar	meters				<u> </u>						
LCS Analyzed: 08/27/10	(Lab Numb	er:10H202	4-BS1, Bat	ch: 10H2024)							
Total Suspended Solids	`	880	4.0	NR	mg/L	838	95	88-110			
General Chemistry Parar	<u>neters</u>										
Blank Analyzed: 09/01/10) (Lab Nun	nber:10H22	255-BLK1,	Batch: 10H2255))						
Total Kjeldahl Nitrogen			1.00	NR	mg/L as N	ND					
LCS Analyzed: 09/01/10	(Lab Numb	er:10H225	5-BS1, Bat	ch: 10H2255)							
Total Kjeldahl Nitrogen		2.50	0.20	NR	mg/L as N	2.43	97	90-110			
General Chemistry Parar	<u>neters</u>										
Blank Analyzed: 09/04/10) (Lab Nun	nber:10l01	30-BLK1, B	atch: 10I0130)							
Phenolics, Total Recoverable			10.0	NR	ug/L	ND					L
LCS Analyzed: 09/04/10	(Lab Numb	er:10l0130)-BS1, Bato	:h: 10l0130)							
Phenolics, Total Recoverable		100	10.0	NR	ug/L	116	116	90-110			L

Chain of Custody Record

Temperature on Receipt _____

TAL-4 (24 (1007)	Drinking H	Drinking Water? Yes \ No	ક □ *∞	序	HE	THE LEADER IN ENVIRONMENTAL TESTING	N E	VIRO	Z N	IAI	SE	¥							
Greenstar Environmental Solution	~~								Date					Chain	_ 75	ထန္တိ	Tombo.	1 <u>§</u>	
Dr.	(548) W RUCHOSHIEL	Andrew (Areas Code) Fax Number	bы (Aras Cook)/Fax / 223 - 994 4	Number				£-	Lab Numbo	196				Page	Ĭ	:		of ,	i
Washing Falls NY 13590	Chio	McLeol	Lab Contact	CAMBC!				Analysis (Attach list if more space is needed)	iis (Att 3900 ti	ach li nee	(C)		j						
Payer Name and Location (State)	Сэтен Жауын Аңтын	wiii Arumber	ľ				,te	_ - -							1				
Commercia Purchase Orden Chore No.	_	1	1	Contains	*		v;t		<u> </u>	7	_	_	_	/ T.	96	1 6	1110	100	Conditions of Receipt
Quarterly Discharge Mon.	:	Mantix		Preservatives	WHATE .		te 1	t mol	noni	net		5_	<u>۶</u>	٧c	5	2	Š	1	
Sample J.D. No. and Description (Containers for each sample may be combined on one line).	750,69 4×	Aucomus Separ Schil	Unpres H2SO4	HNOS HCI	NaOH ZivAci NaOH	Bot	Hex o pritri	<u>LP1</u> Tek	And	<u>ር</u> ያ	Do		T'S 624	004					
AP-ENE-01 (/25/10 1	12:30	1	ಯ ಖ	3		-		-					w						
		-		<u> </u>		+-		†	+	-			+						
		‡		+		+		<u> </u>	_	+	I	4_	+	-					
				<u> </u>		+-	#		+	+-		- -	+						
	! : +			<u>-</u>	-	_ - -	\pm		+	+		┥.	+	—i—	٠	Ι	į	ĺ	
	_	-	- -	<u> </u>	+				+	+		 .	+	-					
							-		<u> </u>	. !		 +	- i			- (
				ļ 		-	 - -		}	ì		-	<u>. </u>	i	<u> </u>				
		-		<u> </u>	<u> </u>	<u> </u>		<u> </u>	_	\vdash		╬	_						
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<u> </u>		-			-	-	+	+	+	Ţ	: - !	+	!	ĺ				
Describle His word Intervible to Key		Common Dispuse				_			\vdash	\vdash			\vdash						
nuade 🗌 Skin linkens 🔲 Poison 8	Literaturamen [Aesum 70 Client		□ Disposed By Lab		Arpiiva For	1,50		Accopte		\$ \$ \$ \$	W 28	3.66	(A tee may be awassed if semples and retained target than 1 month)	Z-TYPES	100	6)67.8	*	
Turn Around Time Required 1 24 Hours	D) Other			OC Requirements (Specify)	Section (Species	*		•				į				l			
My C representations:	56.3	10:41 -	٠,	i. Received By		d d	A)		<i>₽</i>	Tank!	1	\$\$,		7 8	77	2	<u>ج</u> ۽	$\leq_{\mathfrak{g}}$	3
2. Resinguistrat By	Date	Тапе		2. Recompy 81	ig.	ļ	Ġ	1						OF P.C.	1	i	— ≽	75ma	
3. Retironished By	Clarker	- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		S. Received By	*		!		ļ			-	l i	24.67			_ _{\$} }	in the	1
Company	· -	L	-								ļ	ī	1	-			-		

DISTRIBUTION: WHITE - Returned to Client with Report: CANARY - Stays with the Samptie: PINK - Field Copy

Analytical Report

Work Order: RTG1241

Project Description one time event

For:

Charles E. McLeod, Jr.

Greenstar Environmental Solutions, LLC

6 Gellatly Drive Wappinger Falls, NY 12590

Jennifer Byrnes For Peggy Gray-Erdmann

il H. Eyra

Project Manager jennifer.byrnes@testamericainc.com Friday, July 23, 2010

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

Greenstar Environmental Solutions, LLC 6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTG1241

Received: 07/19/10 Reported: 07/23/10 08:20

Reported:

Project: one time event
Project Number: GES

TestAmerica Buffalo Current Certifications

As of 06/17/2010

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP C WA, RCRA	011 69 CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida *	NELAP CWA, RCRA	E87672
Georgia *	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
M ary land	SDWA	294
Massachusetts	SDWA, CWA	M-N Y044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire *	NELAP SDWA, CWA	233701
New Jersey *	NELAP,SDWA, CWA, RCRA,	NY455
New York *	NELAP, AIR, SDWA, CWA, RCRA,CLP	10026
North Dakota	CWA, RCRA	R-176
Oklahoma	CWA, RCRA	9421
Oregon*	CWA,RCRA	NY200003
Pennsylvania*	NELAP CWA,RCRA	68-00 281
Tennessee	SDWA	02970
Texas*	NELAP CWA, RCRA	T104704412 -08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA,RCRA	252

*As required under the indicated accreditation, the test results in this report meet all NELAP requirements for p arameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTG1241

Received: Reported: 07/19/10 07/23/10 08:20

Project: one time event
Project Number: GES

CASE NARRATIVE

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

A pertinent document is appended to this report, 1 page, is included and is an integral part of this report.

Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

6 Gellatly Drive

P15

Wappinger Falls, NY 12590

Work Order: RTG1241

Project: one time event Project Number: Gl Received:

07/19/10

Reported: 07/23/10 08:20

DATA QUALIFIERS AND DEFINITIONS

GES

CF6 Results confirmed by reanalysis.

P The sample, as received, was not preserved in accordance to the referenced analytical method.

Volume was poured off and preserved using ESS LOT # 032610 .

P3 Sample was received above recommended temperature.P4 Sample received in inappropriate sample container.

NR Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below

the laboratory reporting limit.

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTG1241

Received: 07

Reported:

07/19/10

07/23/10 08:20

Project: one time event

Project Number: GES

Executive Summary - Detections

Analyte	Sample Result	Data Qualifiers	RL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTG1241-01	(T-3B - Water	r)		Sam	oled: 07/	/19/10 11:00	Recv	/d: 07/19/1	0 12:17
Total Metals by EPA 200	O Series Meth	<u>iods</u>							
Chromium	0.138		0.0040	mg/L	1.00	07/21/10 20:51	LMH	10G1373	200.7
General Chemistry Para	meters								
Chromium, Hexavalent	0.0260	CF6	0.0100	mg/L	1.00	07/19/10 21:23	RMB	10G1288	7196A

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTG1241

Received: Reported:

07/19/10 07/23/10 08:20

Project: one time event

Project Number: GES

Sample Summary

Sample Identification	Lab Number	Client Matrix	Date/Time Sampled	Date/Time Received	Sample Qualifiers
T-3B	RTG1241-01	Water	07/19/10 11:00	07/19/10 12:17	P, P15, P4, P3
AP-SS-01	RTG1241-02	Water	07/19/10 11:00	07/19/10 12:17	P, P15, P4, P3

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTG1241

Project: one time event Project Number:

07/19/10 Received:

07/23/10 08:20

Reported:

Analytical Report

GES

			y .						
Analyte	Sample Result	Data Qualifiers	RL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTG1241-01	(T-3B - Wate	r)		Samp	oled: 07/	19/10 11:00	Recv	/d: 07/19/10	12:17
Total Metals by EPA 200	Series Meth	<u>iods</u>							
Chromium	0.138		0.0040	mg/L	1.00	07/21/10 20:51	LMH	10G1373	200.7
Lead	ND		0.0050	mg/L	1.00	07/21/10 20:51	LMH	10G1373	200.7
General Chemistry Para	meters								
Chromium, Hexavalent	0.0260	CF6	0.0100	mg/L	1.00	07/19/10 21:23	RMB	10G1288	7196A

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTG1241

Received: 07/19/10

Reported: 0

07/23/10 08:20

Project: one time event
Project Number: GES

			, and y c	ioai itopoit					
Analyte	Sample Result	Data Qualifiers	RL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTG1241-02	(AP-SS-01 - W	/ater)		Samp	oled: 07/	19/10 11:00	Rec	vd: 07/19/10	0 12:17
Total Metals by EPA 200	Series Metho	ods							
Chromium	ND		0.0040	mg/L	1.00	07/21/10 20:56	LMH	10G1373	200.7
Lead	ND		0.0050	mg/L	1.00	07/21/10 20:56	LMH	10G1373	200.7
General Chemistry Para	meters								
Chromium, Hexavalent	ND		0.0100	mg/L	1.00	07/19/10 21:23	RMB	10G1288	7196A

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTG1241

Received:

07/19/10

Reported:

: 07/23/10 08:20

Project: one time event Project Number: GES

SAMPLE EXTRACTION DATA

Parameter	Batch	Lab Number	Wt/Vol Extracte	Units	Extract Volume	Units	Date Prepared	Lab Tech	Extraction Method
General Chemistry Parameters							•		
7196A	10G1288	RTG1241-01	25.00	mL	25.00	mL	07/19/10 21:23	RMB	Hex Digestion
7196A	10G1288	RTG1241-02	25.00	mL	25.00	mL	07/19/10 21:23	RMB	Hex Digestion
Total Metals by EPA 200 Series I	Methods								
200.7	10G1373	RTG1241-01	50.00	mL	50.00	mL	07/21/10 09:30	JRK	3005A
200.7	10G1373	RTG1241-02	50.00	mL	50.00	mL	07/21/10 09:30	JRK	3005A

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTG1241

Project: one time event Project Number: G Received:

07/19/10

Reported: 07/23/10 08:20

LABORATORY QC DATA

GES

	Source	Spike				%	% REC	%	RPD	Data
Analyte	Result	Level	RL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Total Metals by EPA 200	Series Met	<u>hods</u>								
Blank Analyzed: 07/21/10	(Lab Num	ber:10G1	373-BLK1, Batch: 10G1373)							
Chromium			0.0040	mg/L	ND					
Lead			0.0050	mg/L	ND					
1.00 A 1 1 - 07/04/40	// - I- NII-		70 DO4 D-4-b- 4004070\							
LCS Analyzed: 07/21/10	(Lab Numb	er:10G13	3-BS1, Batch: 10G13/3)							
Chromium		0.200	0.0040	mg/L	0.201	101	85-115			
Lead		0.200	0.0050	mg/L	0.201	100	85-115			

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTG1241

Received: Reported: 07/19/10

07/23/10 08:20

Project: one time event Project Number: GES

LABORATORY QC DATA

Analyte	Source Result	Spike Level	RL	Units	Result	% REC	% REC Limits	% PPD	RPD Limit	Data Qualifiers
General Chemistry Para		20101		Office	Result	REC	Lillits	IXI D	LIIIII	Qualifiers
Blank Analyzed: 07/19/1	0 (Lab Num	nber:10G1	288-BLK1, E	Batch: 10G1288)						
Chromium, Hexavalent			0.0100	mg/L	ND					
LCS Analyzed: 07/19/10	(Lab Numb	er:10G12	88-BS1, Bate	ch: 10G1288)						
Chromium, Hexavalent		0.0500	0.0100	mg/L	0.0523	105	85-115			
Duplicate Analyzed: 07/1 QC Source Sample: RTG1241	•	Number:1	0G1288-DUF	P1, Batch: 10G1288)						
Chromium, Hexavalent	0.0260		0.0100	mg/L	0.0279			7	15	
Matrix Spike Analyzed: (QC Source Sample: RTG1241	•	ab Numbe	er:10G1288-N	MS1, Batch: 10G1288)						
Chromium, Hexavalent	0.0260	0.0500	0.0100	mg/L	0.0796	107	85-115			

Chain of Custody Record

Pento

	× ×
receipt	Ng.s□
тепрегатие од невер	Omiking Water?

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

TAL-4124 (1007)			•																								
Greenstar Environmental		Proyect Menager	#Kerue	Š												€	<u>-اية</u>	4	01-71-6	0		159640	ر 15	<u>\$</u> Ω §Ω	∮4 0		
6 Gently D.		(345)	18 (m)	£ ~	4	50	More in the Care Free More	¥.	<u>}</u>	ı				! :		5	тар Митре	19Qu				Page			6		
\$1815	12590	Chin	12 0	Mc	Melod	-u	7.00	Leb Comba	 ช				:		£ 55	zarbysk re spr	5 (Att	Analysis (Attach list if nxore space is needed)	() () () () ()		1						
ager	Falls M.Y.	Correct Name	16	1	Į.					1	!		M. 120 -	MOV									Š	cial tr	STATE	Special Instructions/	
				Á	Adghr.			उठ	Series Pose	Comminers & Preservatives	a+ 75	_ ^ _	9.	· ` ` `									8	horit	s of R	Conditions of Receipt	
Sample LO No and Description (Containers to sech sample may be combined on one and)	Clark	Tane	·nr	A-400	ANS AMS		ANALT?	POSZ4	10H 10H4	HOPN	HOW 12 Mag		CR. 184	74	u t												
1-38	7-19-10	139		-	_		~	 -	_	<u> </u>			×	×			 	<u> </u>									
AP_\$5-01	7-14-10	8) <u> </u>		-		<u> </u>	-∡						₹	*			\square									ļ	
						_								—							_						
					_			 					-	\vdash)							- ,					
									<u> </u>												!						
				\vdash					ļ									_									
				H					_								-	_									
				-	<u> </u>					_											\dashv	_		İ]		
					\dashv					<u> </u>					·						_				j		
		一		$\vdash \dashv$	_			\dashv					\dashv				-	- 1							-		
			7					ᅥ	_	_			\dashv	-	\dashv		-	\dashv	\Box		_				-		_
								_				<u>.</u>	_	_				<u>i</u>			-	_			١		
Possele Hazard Identification How Hazard Figuration Stortmant	- Abison B	Semple Dispose!	& □	Per.	Semple Disposel 	. 28'			900	Casposeer By Last		ì	Archie For	y Fay]	Months		TARRE A	787 /s	Second Change	(A fee may be assessed if samples are retained longer than 1 month).	semple	/ due 36	Blains	``	
Tum Around Time Required D. per Hours	iys 🗌 21 Days	e 🗆 Owner			ļ [30.5	юдж	BUNBA	OC Requirements (Specify)	Mice															
1. Halingshirmed By		1-7-7-1	2		$\tilde{\mathcal{O}}_{\mathbb{R}}^{\mathbb{R}}$	1		<i>2</i> 4 €		\$ 25) ' =		`	CO	1	٤. ا						174	9	9	Time	ΓĪ	
2. Reentuished By		- Charles			700			2 Fores		10 By			-	ĺ								80			Your	\	
3. Resinguiahed By		(Zanka	1	ſ <u> </u>	707		1	ر ا	J Parened By	ا. ا							\	$\left \frac{1}{\lambda} \right $!	[/	1	ayer]			Time		
Connects		<u> </u> 					1			1						<u> </u>		وب	2	30(`	5		97	14		
Corto State Contract of the State Contract o	A A A A A A STORY	A STATE OF COMMENTS		ì	j	ź		l					į	ı	!	'n					ŀ						

Analytical Report

Work Order: RTG0719

Project Description one time event

For:

Charles E. McLeod, Jr.

Greenstar Environmental Solutions, LLC

6 Gellatly Drive Wappinger Falls, NY 12590

Jennifer Byrnes For Peggy Gray-Erdmann

il H. Eyra

Project Manager jennifer.byrnes@testamericainc.com Monday, July 19, 2010

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

Greenstar Environmental Solutions, LLC 6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTG0719

Received: 07/08/10

Reported: 07/19/10 14:33

Project: one time event
Project Number: GES

TestAmerica Buffalo Current Certifications

As of 06/17/2010

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP C WA, RCRA	011 69 CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida *	NELAP CWA, RCRA	E87672
Georgia *	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
M ary land	SDWA	294
Massachusetts	SDWA, CWA	M-N Y044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire *	NELAP SDWA, CWA	233701
New Jersey *	NELAP,SDWA, CWA, RCRA,	NY455
New York *	NELAP, AIR, SDWA, CWA, RCRA,CLP	10026
North Dakota	CWA, RCRA	R-176
Oklahoma	CWA, RCRA	9421
Oregon*	CWA,RCRA	NY200003
Pennsylvania*	NELAP CWA,RCRA	68-00 281
Tennessee	SDWA	02970
Texas*	NELAP CWA, RCRA	T104704412 -08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA,RCRA	252

*As required under the indicated accreditation, the test results in this report meet all NELAP requirements for p arameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTG0719

Received: Reported: 07/08/10 07/19/10 14:33

Project: one time event
Project Number: GES

CASE NARRATIVE

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

A pertinent document is appended to this report, 1 page, is included and is an integral part of this report.

Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTG0719

Received: 07/08/10

Reported:

07/19/10 14:33

Project: one time event Project Number: GES

DATA QUALIFIERS AND DEFINITIONS

P3 Sample was received above recommended temperature.

NR Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below the laboratory reporting limit.

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTG0719

Received: 07/08/10

Reported: 07/19/10 14:33

Project: one time event
Project Number: GES

Executive Summary - Detections

Analyte	Sample Result	Data Qualifiers	RL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTG0719-01	(T-3B - Water	r)		Samp	led: 07/	08/10 16:40	Recv	/d: 07/08/10	0 17:20
Total Metals by EPA 20	0 Series Meth	<u>iods</u>							
Chromium	0.134		0.0040	mg/L	1.00	07/12/10 22:54	DAN	10G0551	200.7
General Chemistry Para	ameters								
Chromium, Hexavalent	0.0387		0.0100	mg/L	1.00	07/09/10 01:35	JLN	10G0496	7196A

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTG0719

Project: one time event Project Number:

Received:

07/08/10

07/19/10 14:33 Reported:

Sample Summary

GES

Sample Identification	Lab Number	Client Matrix	Date/Time Sampled	Date/Time Received	Sample Qualifiers
T-3B	RTG0719-01	Water	07/08/10 16:40	07/08/10 17:20	P3
SW CORNER (AP-SS-01)	RTG0719-02	Water	07/08/10 16:40	07/08/10 17:20	P3

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTG0719

Received: 07/08/10

Jeiveu. 07/00/10

Reported:

07/19/10 14:33

Project: one time event Project Number: GES

Anal	ytical	Repor	t
------	--------	-------	---

Analyte	Sample Result	Data Qualifiers	RL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTG0719-01	(T-3B - Water	r)		Samp	oled: 07/	08/10 16:40	Rec	vd: 07/08/10) 17:20
Total Metals by EPA 200	Series Meth	<u>iods</u>							
Chromium	0.134		0.0040	mg/L	1.00	07/12/10 22:54	DAN	10G0551	200.7
General Chemistry Para	meters								
Chromium, Hexavalent	0.0387		0.0100	mg/L	1.00	07/09/10 01:35	JLN	10G0496	7196A

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTG0719

Received:

07/08/10

Reported:

07/19/10 14:33

Project: one time event Project Number: GES

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTG0719-02	(SW CORNE	R (AP-SS-01)	· Water)	Samp	oled: 07/	08/10 16:40	Rec	vd: 07/08/10	17:20
Total Metals by EPA 200	Series Meth	<u>iods</u>							
Chromium	ND		0.0040	mg/L	1.00	07/12/10 22:59	DAN	10G0551	200.7
General Chemistry Para	meters								
Chromium, Hexavalent	ND		0.0100	mg/L	1.00	07/09/10 01:35	JLN	10G0496	7196A

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTG0719

Project: one time event Project Number:

Received:

07/08/10

07/19/10 14:33 Reported:

SAMPLE EXTRACTION DATA

GES

			Wt/Vol		Extract			Lab	
Parameter	Batch	Lab Number	Extracte	Units	Volume	Units	Date Prepared	Tech	Extraction Method
General Chemistry Parameters									
7196A	10G0496	RTG0719-01	25.00	mL	25.00	mL	07/09/10 01:35	JLN	Hex Digestion
7196A	10G0496	RTG0719-02	25.00	mL	25.00	mL	07/09/10 01:35	JLN	Hex Digestion
Total Metals by EPA 200 Series Methods									
200.7	10G0551	RTG0719-01	50.00	mL	50.00	mL	07/12/10 08:10	KCW	3005A
200.7	10G0551	RTG0719-02	50.00	mL	50.00	mL	07/12/10 08:10	KCW	3005A

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTG0719

Received:

07/08/10

Reported:

07/19/10 14:33

Project: one time event Project Number: GES

LABORATORY QC DATA

Analyte	Source Result	Spike Level	RL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
Total Metals by EPA 200 Series Methods										
Blank Analyzed: 07/12/10 (Lab Number:10G0551-BLK1, Batch: 10G0551)										
Chromium			0.0040	mg/L	ND					
LCS Analyzed: 07/12/10 (Lab Number:10G0551-BS1, Batch: 10G0551)										
Chromium		0.200	0.0100	mg/L	0.196	98	85-115			

6 Gellatly Drive

Wappinger Falls, NY 12590

Chromium, Hexavalent

ND

0.0500

0.0100

Work Order: RTG0719

Received:

07/08/10

Reported:

07/19/10 14:33

Project: one time event Project Number: GES

LABORATORY QC DATA

	Source	Spike				%	% REC	%	RPD	Data
Analyte	Result	Level	RL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
General Chemistry Parameters										
Blank Analyzed: 07/09/10	(Lab Num	ber:10G0	496-BLK1,	Batch: 10G0496)						
Chromium, Hexavalent			0.0100	mg/L	ND					
LCS Analyzed: 07/09/10	/Lab Numb	or:10G04	06 BS1 B	atch: 10G0496)						
LC3 Allalyzeu. 07/09/10	(Lab Nullib	lei. 10G04	30-D3 I, Da	itcii. 10G0490)						
Chromium, Hexavalent		0.0500	0.0100	mg/L	0.0464	93	85-115			
Duplicate Analyzed: 07/0	9/10 (Lab I	Number:1	0G0496-DI	JP1, Batch: 10G0496)						
QC Source Sample: RTG0719-	01			•						
Chromium, Hexavalent	0.0387		0.0100	mg/L	0.0377			3	15	
Matrix Spike Analyzed: 0	•	ab Numbe	r:10G0496	-MS1, Batch: 10G0496)						
QC Source Sample: RTG0719-	02									

mg/L

0.0464

93

85-115

Special Instructions/ Conditions of Receipt Crein of Custody Number 159639 (A has may be assessed if sumples are related bleams.) Page 8 15.0°C NS 100 **TestAmerica** THE LEADER IN ENVIRONMENTAL TESTING more space is needed) 01/8/60 Analysis (Attach list il Dispute! By Lab [] Actine For ^{2,2} γ<u>σ</u>Τ 9+ C Requirements (Specify) Preservatives Containers & 3. Recovered By 19H Telephone Number (Area Code)/Fax Number 107WH 1052H Lab Contact **4** 8451 233-9944 Come Tone Seaton 10 Cliens Drinking Water? Yes□ Temperature on Receipt DISTRIBUTION: WATE Refund to Client with Agract CANARY Stops with the Songles PINK Field Cary Chip Melod Sample Disposel PBS Carrier Way tall Number Matrix Project Menager Site Contact Tringsone 923 04:31 01/6/6 E/2/2018 120 Cods / ☐ Anison B Oate 14 Cays Companiers for each sentate may be combined on one time) Skin frammatte [] Skin fmlant 38.85 X COCNEC (AP -55-0 Greenstar Environmental Sample I.D. No. and Description 5/60/ [] 6 Gellatty Dr Contract Prochase Choles Ducks No. Wayer Mand and Location (Save) Custody Record Brush 65 Possible Hazard (denotedation Hirco Parce Turn, Annual Time Required 1. Rotinguished By 3 Retinguished By Acon-Hazani Chain of 7 - 38A Hous 121-1007 Comments 3

ò

Analytical Report

Work Order: RTI0954

Project Description one time event

For:

Charles E. McLeod, Jr.

Greenstar Environmental Solutions, LLC

6 Gellatly Drive Wappinger Falls, NY 12590

Jennifer Byrnes For Peggy Gray-Erdmann

in L. H. Eyrner

Project Manager

jennifer.byrnes@testamericainc.com

Thursday, September 16, 2010

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

Greenstar Environmental Solutions, LLC 6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI0954

Received: 09/14/10 Reported: 09/16/10 15:41

Project: one time event
Project Number: GES

TestAmerica Buffalo Current Certifications

As of 08/16/2010

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-N Y044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP,SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA	10026
North Dakota	CWA, RCRA	R-176
Oklahoma	CWA, RCRA	9421
Oregon*	CWA, RCRA	NY200003
Pennsylvania*	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
Texas*	NELAP CWA, RCRA	T104704412-08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA, RCRA	252

*As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parame ters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI0954

Reported:

Received:

09/14/10

09/16/10 15:41

Project: one time event
Project Number: GES

CASE NARRATIVE

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

A pertinent document is appended to this report, 1 page, is included and is an integral part of this report.

Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

 ${\it Greenstar\ Environmental\ Solutions,\ LLC}$

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI0954

Received: 0 Reported: 0

09/14/10 09/16/10 15:41

Project: one time event Project Number: GE

DATA QUALIFIERS AND DEFINITIONS

NR Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below the laboratory reporting limit.

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI0954

Received: 09/14/10

Reported: 09/16/10 15:41

Project: one time event Project Number: GES

Executive Summary - Detections

Sample Data Dil Date Lab

Analyte Result Qualifiers Units Fac Analyzed Tech Batch Method

Sampled: Recvd:

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI0954

Received: Reported:

09/14/10 09/16/10 15:41

Project: one time event

Project Number: GE

Sample Summary

Sample Identification	Lab Number	Client Matrix	Date/Time Sampled	Date/Time Received	Sample Qualifiers
AP-SS-01	RTI0954-01	Water	09/14/10 18:30	09/14/10 19:15	

 ${\it Greenstar\ Environmental\ Solutions,\ LLC}$

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI0954

Received:

09/14/10

Reported:

09/16/10 15:41

Project: one time event
Project Number: GES

Ana	lytical	l Report
-----	---------	----------

Analyte	Sample Result	Data Qualifiers	RL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTI0954-01 (AP-SS-01 - W	/ater)		Samp	led: 09/	14/10 18:30	Recv	/d: 09/14/1	0 19:15
Total Metals by EPA 200	O Series Meth	<u>iods</u>							
Chromium	ND		0.0040	mg/L	1.00	09/15/10 14:48	DAN	1010896	200.7
General Chemistry Para	<u>imeters</u>								
Chromium, Hexavalent	ND		0.0100	mg/L	1.00	09/14/10 22:31	JFR	1010889	7196A

Greenstar Environmental Solutions, LLC

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI0954

Project: one time event Project Number: G Received:

09/14/10

Reported: 09/16/10 15:41

SAMPLE EXTRACTION DATA

			Wt/Vol		Extract			Lab	
Parameter	Batch	Lab Number	Extracte	Units	Volume	Units	Date Prepared	Tech	Extraction Method
General Chemistry Parameters									
7196A	1010889	RTI0954-01	25.00	mL	25.00	mL	09/14/10 22:31	JFR	Hex Digestion
Total Metals by EPA 200 Series	Methods								
200.7	1010896	RTI0954-01	50.00	mL	50.00	mL	09/15/10 07:15	JRK	3005A

Greenstar Environmental Solutions, LLC

ND

0.200

0.0040

6 Gellatly Drive

Chromium

Wappinger Falls, NY 12590

Work Order: RTI0954

Received: 0 Reported: 0

09/14/10 09/16/10 15:41

Project: one time event

Project Number:

LABORATORY QC DATA

Analyte	Source Result	Spike Level	RL	Units	Result	% REC	% REC	% RPI RPD Limi	
Total Metals by EPA 200	Series Met	<u>hods</u>		011110	rtooun				<u> </u>
Blank Analyzed: 09/15/10	(Lab Num	nber:10l08	96-BLK1, Batch: 10l0896)						
Chromium			0.0040	mg/L	ND				
LCS Analyzed: 09/15/10	(Lab Numb	er:10l0890	6-BS1, Batch: 10l0896)						
Chromium		0.200	0.0040	mg/L	0.199	99	85-115		
Matrix Spike Analyzed: 0: QC Source Sample: RTI0954-0	`	ab Numbe	r:10l0896-MS1, Batch: 10l0	896)					
Chromium	ND	0.200	0.0040	mg/L	0.202	101	70-130		
Matrix Spike Dup Analyzo QC Source Sample: RTI0954-0		0 (Lab Nu	mber:10l0896-MSD1, Batc	h: 10l0896)					

mg/L

0.200

100

70-130 1

20

Greenstar Environmental Solutions, LLC

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RTI0954

Received:

09/14/10

Reported:

09/16/10 15:41

Project: one time event
Project Number: GES

LABORATORY QC DATA

Analyte	Source Result	Spike Level	RL	Units	Result	% REC	% REC Limits	% RPD RPD Limit	Data Qualifiers
General Chemistry Para	meters								
Blank Analyzed: 09/14/1	0 (Lab Num	ber:10l08	89-BLK1, Ba	atch: 10l0889)					
Chromium, Hexavalent			0.0100	mg/L	ND				
LCS Analyzed: 09/14/10	(Lab Numb	er:10l088	9-BS1, Batch	n: 10l0889)					
Chromium, Hexavalent		0.0500	0.0100	mg/L	0.0508	102	85-115		
Duplicate Analyzed: 09/ QC Source Sample: RTI0954-	•	Number:1	010889-DUP1	l, Batch: 10l0889)					
Chromium, Hexavalent	ND		0.0100	mg/L	ND			15	

Chain of Custody Record

Тетрегатие оп Явсер! —

TestAmerica

JAL-4124 (1007)	×? Yes □ No □	THE LEADER IN ENVIRONMENTAL TESTING	
(OFECASTE FINIFAMENT)	Project Manager	Date	Chein of Custody Number
- Dc.	Ja33-99	Lab Number	Page 0/
Wassings Falls W. 12590	She Contact Chio McLeod	Analysis (Attach list if more space is needed)	
	Cerrier/Waystll Number	war	Special Institutions/
Contract/Purchase OrdenChote No.	Metrix Containers & Procervatives		Conditions of Receipt
Sample J.D. No. and Description (Contenes for each sample may be combined on one line)	HOBIN HOBIN	zio!	
4P-55-01	18:30 14		
			-
			·
			<u> </u>
Possitive Hauserd Kritentification Non-Hauserd Posson B Collins Internet Posson B Collins Internet Collins Co	Sample Disposal Uninnomo Return To Clean Disposal By Lab Are	sasses od yem med k) Cathering For	(A fee may be assessed if samples are rationed force! then 1 month)
	C Requirements (Sp.		
Ser M			Delw Time 0.1/
Z. Resimpuished By	Date Time 2. Received By	Harman	Cale 17 (1) [mt - 11-5]
3. Pelinquished By	Date Three 3. Received By	—	Date Time
		ړر	
Comments		<u></u>	
DISTRIBUTION: "WHITE - Rawmed to Cleant with Report; CANARY - Stays with the Sample; PINK - Field Copy	in the Sample: PINK - Field Copy	— ————————————————————————————————————	

Attachment G

Monthly Operation and Maintenance Details July – December 2010

1. INTRODUCTION

This report presents a summary of the ongoing operation and maintenance activities for the Airco Parcel, Niagara Falls, New York, from 1 July to 31 December 2010. It includes a summary of ongoing operations, system repairs, corrective actions, improvements, and an evaluation of the groundwater collection and treatment system (GCTS) performance.

2. ROUTINE OPERATION AND MAINTENANCE

A revision to the discharge limit was requested in the 1st 2010 Bi-Annual report. The increase was requested from 21,600 gallons per day (gpd) discharge to 36,000 gpd. The increase was granted in a letter dated 14 June 2010. Comparing the discharge flow rates to the revised value, the system did not exceed the 36,000 gpd threshold. During this report period, the overall system average flow rate was 11.4 gallons per minute (gpm).

Table 2 of the second 2010 Bi-Annual Monitoring Event Letter Report provides a summary of the quarterly effluent analytical data from the August and September 2010 sampling events. Routine operation and maintenance was completed throughout the monitoring period. Field tasks included system checks, data collection, and field analysis of treatment water at various stages of the treatment process, transducer cleanings, and general site maintenance.

3. SYSTEM OPERATIONS AND EFFICIENCY

During this monitoring period, 3,013,310 gal of groundwater were treated and discharged to the stormwater swale adjacent to the engineered wetlands. The system average flow rate was 11.4 gpm during the reporting period. The treatment system was operational for 100 percent of the reporting period. The emergency overflow pond (T8) was utilized while the tank and line cleaning was performed during the reporting period. No releases to the environment occurred during the reporting period.

The completed System Monitoring Checklists are provided in Attachment G.1. Monthly GCTS flow calculations are provided in Attachment G.2. During the reporting period, an estimated 2 pounds (lb) of total chromium was treated by the GCTS, of which an estimated 1 lb was hexavalent chromium. These values are based on the total gallons treated and the average influent and effluent concentrations observed from the bi-weekly field sampling.

June 2011

3.1 SYNOPSIS OF THE BI-ANNUAL ACTIVITIES

July 2010

The system was operational for all 31 days in July. No alarm conditions were reported during the month of July. No scheduled or unscheduled shut downs or system bypasses occurred. The following details the activities which were performed during July:

- 7 July 2010 Routine site visit. Cleaned and calibrated pH probes in T3B and T6B. DR4000 will not calibrate. Shipped back to Hach for service. Mowed grass around T-7.
- 18 July 2010 Routine site visit. DR4000 not back from Hach. Collected compliance sample for fixed laboratory analysis. Cut grass around T-7 and T-8. Resolved Generator communication issues. Cleaned T-3 crossover pipes. Picked up rebuilt hydromatic pump. Cleaned T-7 discharge pipe.

August 2010

The system was operational for all 31 days in August. No alarm conditions were reported during the month of August. No scheduled or unscheduled shut downs or system bypasses occurred. The following details the activities which were performed during August:

- 2 August 2010 Routine site visit. Clean and calibrate pH probes. Pumped down T-3A and cleared blockage on inlet from T-1. Cut grass around T-7 and T-8. DR4000 returned from Hach. Cleared crossover pipes in T-3A.
- 24 August 2010 Routine site visit. Clean and calibrate pH probes. Quarterly EWE effluent sample collected. Gauged wells for groundwater model. Cut grass around T-7 and T-8. Cleaned and calibrated pH probes. NYSDEC Mike Hinton on site for visit.

September 2010

The system was operational for all 30 days in September. No alarm conditions were reported during the month of September. No scheduled or unscheduled shut downs or system bypasses occurred. The following details the activities which were performed during September:

- 3 September 2010 Routine site visit. Clean and calibrate pH probes. Suspended T-3A PT to get it out of sediment. Cut grass around T-7 and T-8. Cleaned crossover pipes in T3A.
- 14 September 2010 Routine site visit. Gauged wells for groundwater model. Confirmatory sample sent to fixed lab due to high chrome level in field tests. Cleaned and calibrated pH probes.
- 27 September 2010 Mobilized to the site to complete the system cleaning of tanks and lines.
- 28 September 2010 Mobilized to the site to complete the second 2010 bi-annual sampling event.

October 2010

The system was operational for 31 days in October. One alarm condition was reported during the month of October. A P-1B pump fail to start condition occurred. Mobilization to the site was combined with a routine site visit. No scheduled or unscheduled shut downs or system bypasses occurred. The following details the activities which were performed during October:

- 1 October 2010 System cleaning completed.
- 13 October 2010 Routine site visit. Clean and calibrate pH probes. Could not sample EWE at SS-01 due to no flow as a result of T-7 outfall work. Deficiencies noted in the engineering inspections being repaired.
- 22 October 2010 Mobilized to the site to perform a routine site visit and to evaluate the P-1B pump fail to start alarm condition. Rest the VFD. No other abnormalities noted.

November 2010

The system was operational for 30 days in November. One alarm condition was reported during the month of November. A P-6B high level alarm condition was reported. Mobilization to the site was combined with a routine site visit. No scheduled or unscheduled shut downs or system bypasses occurred. The following details the activities which were performed during November:

- 14 November 2010 Emergency response combined with a routine site visit. Mowed the grass around T7 and T8. Unable to sample EWE at SS-01 due to low system flow. Removed mouse nest in trough box in main panel. Alarm condition found to be caused by faulty pressure transducer in T-6B. Swapped with T-8 pressure transducer, ordered 2 pressure transducers, one for parts inventory.
- 30 November 2010 Routine site visit. Clean and calibrate pH probes. Replaced T-3A tank cover on first row of tanks. Installed recently ordered pressure transducer into T-6B and moved borrowed one back to T-8.

December 2010

The system was operational for 31 days in December. No alarm conditions were reported during the month of December. No scheduled or unscheduled shut downs or system bypasses occurred. The following details the activities which were performed during December:

- 13 December 2010 Routine site visit. Cleaned and calibrated pH probes. Replaced locks (2) on entry gates. Noticed liquid Flocculent (Sodium Aluminate) leaking from cracked line to pump, spill confined to secondary containment vessel. Closed main valve-leak stopped.
- 29 December 2010 Competed the engineer's inspection. Calibrated pH probes. Put Combination locks on 2 new wells, need to order new keyed alike locks.

June 2011

4. MODIFICATIONS/IMPROVEMENTS AND RECOMMENDATIONS

4.1 SYSTEM MODIFICATION/IMPROVEMENTS

No system modifications to the GCTS were performed during the report period. The following site maintenance activities were performed to address deficiencies noted during the engineering inspections:

- Areas of disturbance around the T-7 pond required repair. The top of the T-7 berm in some areas is as much as 1.5' lower than other areas. Fill was added and topsoil placed to raise the berm elevation.
- The T-7 outlet pipe was excavated and repaired to prevent blockages from forming.
- Culverts were installed under the access road in the southwest corner to aid in the prevention of water backing up and flooding the drywell.
- The damaged T-3A tank cover was replaced.

5. PROJECTED OPERATION AND MAINTENACE

5.1 JANUARY – JULY 2011

During the first bi-annual report period of 2011, Greenstar anticipates performing routine operation and maintenance activities. Routine activities during the second report period will include routine cleaning and calibration, pump replacements, and other activities as required.

6. SYSTEM MONITORING

6.1 **ENVIRONMENTAL SAMPLING**

Routine system sampling with field analysis will continue on an as needed basis to ensure chromium removal efficiency is maintained and no short circuiting is occurring in the zero valence iron beds. Quarterly discharge samples are anticipated to be collected in March and June 2011 from the GCTS to monitor the New York State Department of Environmental Conservation discharge permit guidelines. The next groundwater monitoring event for 2011 is anticipated to occur in June 2010.

Attachment G.1

Airco Parcel Bi-Weekly System Monitoring Checklists July – December 2010

Pate: 7/8/10 Project No.: 1005		Greenstar Personnel: Bruce Vinal			
Weather: Sun 85					
	READING	ITEM			
	233	Carbon Dioxide Storage Tank Pressure (220-235 psi)			
	5,300	Carbon Dioxide Tank Liquid Level			
	2.9	T1 Water Level			
A	UTO/CYCLING	Pump P1A Running Status ON/OFF			
A ¹	UTO/CYCLING	Pump P1BA Running Status ON/OFF			
	616.0	T3A Water Elevation			
	6.3	T3B pH Reading			
	613.9	T3B Water Level			
A ¹	UTO/CYCLING	Pump 3B Operational Status ON/OFF			
	611.5	T5 Water Level			
A ¹	UTO/CYCLING	Pump 5 Operational Status ON/OFF			
	616.1	T6A Water Elevation			
6.5		Т6В рН			
	613.9	T6B Water Level			
A	UTO/CYCLING	Pump 6B Operational Status ON/OFF			
	615.5	T7 Water Level Reading			
	6.7	T7 pH			
	2.3	T8 Water Elevation			
	27,949,990	Flow Meter Reading			
	18.7	Average System Flow			
	30.8	Generator Run Hours			
READING	Standard	LOCATION/PARAMETER			
	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromium			
	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium			
	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium			
	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium			
	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium			
	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium			
	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium			
	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium			
	pH READING	SAMPLE LOCATION			
		Calcium Settling Pond Effluent (T3)			
		Iron Settling Pond Effluent (T6)			
		Engineered Wetland Effluent (T7)			
		Southwest Corner Effluent (SS-1)			

Notes: DR/4000 won't calibrate. Shipped to Hach for Service. EWE sample taken to TestAmerica for analysis. Cut grass around T-7. Cleaned and calibrated pH probes.

Date: 7/18/10	Project No.: 1005	Greenstar Personnel: Bruce Vinal		
Weather: Sun 85				
	READING	ITEM		
	230	Carbon Dioxide Storage Tank Pressure (220-235 psi)		
	7,300	Carbon Dioxide Tank Liquid Level		
	3.2	T1 Water Level		
AU'	TO/CYCLING	Pump P1A Running Status ON/OFF		
AU'	TO/CYCLING	Pump P1BA Running Status ON/OFF		
	616.1	T3A Water Elevation		
	6.4	T3B pH Reading		
	613.4	T3B Water Level		
AU'	TO/CYCLING	Pump 3B Operational Status ON/OFF		
	611.8	T5 Water Level		
AU'	TO/CYCLING	Pump 5 Operational Status ON/OFF		
	616.1	T6A Water Elevation		
	6.5	Т6В рН		
	613.3	T6B Water Level		
AU'	TO/CYCLING	Pump 6B Operational Status ON/OFF		
	615.5	T7 Water Level Reading		
	6.8	T7 pH		
	2.1	T8 Water Elevation		
	28,220,314	Flow Meter Reading		
	17.8	Average System Flow		
	31.0	Generator Run Hours		
READING	Standard	LOCATION/PARAMETER		
X	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromium		
X	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium		
X	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium		
X	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium		
X	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium		
X	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium		
X	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium		
X	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium		
pl	H READING	SAMPLE LOCATION		
	6.35	Calcium Settling Pond Effluent (T3)		
	6.35	Iron Settling Pond Effluent (T6)		
	6.8	Engineered Wetland Effluent (T7)		
	7.42	Southwest Corner Effluent (SS-1)		

Notes: Due to DR/4000 out for repairs, EWE sample taken to TestAmerica for analysis. Cut grass around T-7 and T-8. Resolved Generator communication issues. Cleaned T-3 crossover pipes. Picked up rebuilt hydromatic pump. Cleaned T-7 discharge pipe.

te: 8/2/10	Project No.: 1005	Greenstar Personnel: Bruce Vinal		
eather: Sun 82 deg				
	READING	ITEM		
	234	Carbon Dioxide Storage Tank Pressure (220-235 psi)		
	7,100	Carbon Dioxide Tank Liquid Level		
	3.1	T1 Water Level		
AUT	O/CYCLING	Pump P1A Running Status ON/OFF		
AUT	O/CYCLING	Pump P1BA Running Status ON/OFF		
	616.1	T3A Water Elevation		
	6.3	T3B pH Reading		
	614.4	T3B Water Level		
AUT	O/CYCLING	Pump 3B Operational Status ON/OFF		
	613.1	T5 Water Level		
AUT	O/CYCLING	Pump 5 Operational Status ON/OFF		
	616.1	T6A Water Elevation		
	6.4	Т6В рН		
	613.8	T6B Water Level		
AUT	O/CYCLING	Pump 6B Operational Status ON/OFF		
	615.4	T7 Water Level Reading		
	6.5	T7 pH		
	2.4	T8 Water Elevation		
2	8,588,166	Flow Meter Reading Average System Flow Generator Run Hours		
	16.0			
	31.4			
READING	Standard	LOCATION/PARAMETER		
0.021	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromiu		
0.061	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium		
ND	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium		
ND	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium		
0.022	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium		
0.011	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium		
0.005	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium		
0.011	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium		
pH	READING	SAMPLE LOCATION		
	6.38	Calcium Settling Pond Effluent (T3)		
	6.43	Iron Settling Pond Effluent (T6)		
	6.78	Engineered Wetland Effluent (T7)		
	7.27	Southwest Corner Effluent (SS-1)		

Notes: Pumped down T-3A and cleared blockage on inlet from T-1. Cut grass around T-7 & T-8. DR4000 returned from Hach. Cleared crossover pipes in T-3A. Cleaned and calibrated pH probes.

te: 8/24/10 eather: Sun 80 De	Project No.: 1005	Greenstar Personnel: Bruce Vinal		
READING		ITEM		
	248	Carbon Dioxide Storage Tank Pressure (220-235 psi)		
	12,900	Carbon Dioxide Tank Liquid Level		
	2.9	T1 Water Level		
AUT	TO/CYCLING	Pump P1A Running Status ON/OFF		
	TO/CYCLING	Pump P1BA Running Status ON/OFF		
	616.2	T3A Water Elevation		
	6.4	T3B pH Reading		
	614.1	T3B Water Level		
AUT	TO/CYCLING	Pump 3B Operational Status ON/OFF		
	612.2	T5 Water Level		
AUT	TO/CYCLING	Pump 5 Operational Status ON/OFF		
	616.1	T6A Water Elevation		
	6.5	Т6В рН		
	613.6	T6B Water Level		
AUT	TO/CYCLING	Pump 6B Operational Status ON/OFF		
	615.4	T7 Water Level Reading		
	6.7	T7 pH		
	2.5	T8 Water Elevation		
2	29,092,120	Flow Meter Reading		
	13.7	Average System Flow		
	31.9	Generator Run Hours		
READING	Standard	LOCATION/PARAMETER		
0.007	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromiu		
0.038	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium		
ND	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium		
0.015	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium		
0.023	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium		
0.038	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium		
0.008	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium		
0.017	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium		
pH	H READING	SAMPLE LOCATION		
	6.20	Calcium Settling Pond Effluent (T3)		
	6.30	Iron Settling Pond Effluent (T6)		
	6.70	Engineered Wetland Effluent (T7)		
	7.26	Southwest Corner Effluent (SS-1)		

e: 9/3/10 ather: Cloudy 90 D	Project No.: 1005	Greenstar Personnel: Bruce Vinal		
READING		ITEM		
	229	Carbon Dioxide Storage Tank Pressure (220-235 psi)		
	7,300	Carbon Dioxide Tank Liquid Level		
	2.9	T1 Water Level		
AUTO	O/CYCLING	Pump P1A Running Status ON/OFF		
	O/CYCLING	Pump P1BA Running Status ON/OFF		
	616.7	T3A Water Elevation		
	6.11	T3B pH Reading		
	613.0	T3B Water Level		
AUTO	O/CYCLING	Pump 3B Operational Status ON/OFF		
	613.4	T5 Water Level		
AUTO)/CYCLING	Pump 5 Operational Status ON/OFF		
	616.1	T6A Water Elevation		
	6.25	Т6В рН		
	613.0	T6B Water Level		
AUTO	O/CYCLING	Pump 6B Operational Status ON/OFF		
	615.4	T7 Water Level Reading		
	6.9	T7 pH		
	2.4	T8 Water Elevation		
29,286,598		Flow Meter Reading		
	13.3	Average System Flow Generator Run Hours		
	32.3			
READING	Standard	LOCATION/PARAMETER		
0.008	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromiu		
0.035	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium		
ND	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium		
0.028	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium		
0.026	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium		
0.042	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium		
0.004	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium		
0.014	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium		
pH l	READING	SAMPLE LOCATION		
	6.22	Calcium Settling Pond Effluent (T3)		
	6.17	Iron Settling Pond Effluent (T6)		
	6.70	Engineered Wetland Effluent (T7)		
	7.30	Southwest Corner Effluent (SS-1)		

e: 9/14/10 Project No.: 1005 Greenstar Personnel: Bruce Vinal ather:				
atilei .	READING	ITEM		
	233	Carbon Dioxide Storage Tank Pressure (220-235 psi)		
	10,600	Carbon Dioxide Tank Liquid Level		
	2.9	T1 Water Level		
A	UTO/CYCLING	Pump P1A Running Status ON/OFF		
	UTO/CYCLING	Pump P1BA Running Status ON/OFF		
	616.2	T3A Water Elevation		
	6.2	T3B pH Reading		
	614.3	T3B Water Level		
A	UTO/CYCLING	Pump 3B Operational Status ON/OFF		
	613.5	T5 Water Level		
A	UTO/CYCLING	Pump 5 Operational Status ON/OFF		
	616.1	T6A Water Elevation		
	6.5	Т6В рН		
	614.0	T6B Water Level		
A	UTO/CYCLING	Pump 6B Operational Status ON/OFF		
	615.4	T7 Water Level Reading		
	6.5	T7 pH		
	2.5	T8 Water Elevation		
	29,477,234	Flow Meter Reading Average System Flow		
	10.4			
		Generator Run Hours		
READING	Standard	LOCATION/PARAMETER		
0.008	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromiu		
0.030	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium		
ND	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium		
0.050	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium		
0.029	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium		
0.035	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium		
0.046	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium		
0.050 0.050 mg/L		Southwest Corner Effluent (SS-1) Total Chromium		
	pH READING	SAMPLE LOCATION		
	6.34	Calcium Settling Pond Effluent (T3)		
	6.43	Iron Settling Pond Effluent (T6)		
	6.95	Engineered Wetland Effluent (T7)		
	7.48	Southwest Corner Effluent (SS-1)		

probes.

Pate: 10/13/10 Project No.: 1005 Greenstar Personnel: Bruce Vinal Weather: Sun 60 degrees				
		TTEM		
READING		ITEM		
234		Carbon Dioxide Storage Tank Pressure (220-235 psi)		
	9,200	Carbon Dioxide Tank Liquid Level		
	2.9	T1 Water Level		
AUTO	D/CYCLING	Pump P1A Running Status ON/OFF		
AUTO	D/CYCLING	Pump P1BA Running Status ON/OFF		
	616.1	T3A Water Elevation		
	6.3	T3B pH Reading		
	614.3	T3B Water Level		
AUTO	D/CYCLING	Pump 3B Operational Status ON/OFF		
	613.3	T5 Water Level		
AUTO	D/CYCLING	Pump 5 Operational Status ON/OFF		
	616.1	T6A Water Elevation		
	6.5	Т6В рН		
	613.7	T6B Water Level		
AUTO	D/CYCLING	Pump 6B Operational Status ON/OFF		
	615.4	T7 Water Level Reading		
	6.4	T7 pH		
	2.3	T8 Water Elevation		
29	,745,308	Flow Meter Reading		
	2.7	Average System Flow		
	33.1	Generator Run Hours		
READING	Standard	LOCATION/PARAMETER		
0.052	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromiun		
0.026	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium		
0.008	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium		
0.047	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium		
0.006	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium		
0.017	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium		
N/A	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium		
N/A	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium		
pH l	READING	SAMPLE LOCATION		
	6.06	Calcium Settling Pond Effluent (T3)		
	6.27	Iron Settling Pond Effluent (T6)		
	6.86	Engineered Wetland Effluent (T7)		
	N/A	Southwest Corner Effluent (SS-1)		

Notes: Could not sample EWE at SS-01 due to low flow caused by T-7 outfall work. Contractor onsite addressing deficiencies noted in engineering inspections.

ate: 10/22/10 /eather: Sun 45 de	Project No.: 1005	Greenstar Personnel: Bruce Vinal		
- Carrier Sur Ic a	READING	ITEM		
230		Carbon Dioxide Storage Tank Pressure (220-235 psi)		
	4,500	Carbon Dioxide Tank Liquid Level		
	2.6	T1 Water Level		
AU	TO/CYCLING	Pump P1A Running Status ON/OFF		
AU	TO/CYCLING	Pump P1BA Running Status ON/OFF		
	616.2	T3A Water Elevation		
	6.0	T3B pH Reading		
	613.2	T3B Water Level		
AU	TO/CYCLING	Pump 3B Operational Status ON/OFF		
	613.2	T5 Water Level		
AU	TO/CYCLING	Pump 5 Operational Status ON/OFF		
	616.1	T6A Water Elevation		
	6.5	Т6В рН		
	612.6	T6B Water Level		
AU	TO/CYCLING	Pump 6B Operational Status ON/OFF		
	615.4	T7 Water Level Reading		
	6.6	T7 pH		
	2.8	T8 Water Elevation		
	29,796,916	Flow Meter Reading		
	3.7	Average System Flow		
	33.5	Generator Run Hours		
READING	Standard	LOCATION/PARAMETER		
0.010	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromium		
0.090	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium		
0.051	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium		
0.049	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium		
0.007	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium		
0.084	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium		
0.008	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium		
0.018	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium		
p	H READING	SAMPLE LOCATION		
	6.23	Calcium Settling Pond Effluent (T3)		
	6.31	Iron Settling Pond Effluent (T6)		
	6.90	Engineered Wetland Effluent (T7)		
<u> </u>	7.39	Southwest Corner Effluent (SS-1)		

e: 11/15/10 other: Sun 48 degi	Project No.: 1005	Greenstar Personnel: Bruce Vinal		
	EADING	ITEM		
10				
232		Carbon Dioxide Storage Tank Pressure (220-235 psi)		
9,500		Carbon Dioxide Tank Liquid Level		
A I I'T'	2.8	T1 Water Level		
	O/CYCLING	Pump P1A Running Status ON/OFF		
AUIC	O/CYCLING	Pump P1BA Running Status ON/OFF		
	616.1	T3A Water Elevation		
	6.0	T3B pH Reading		
	614.0	T3B Water Level		
AUTO	O/CYCLING	Pump 3B Operational Status ON/OFF		
	611.5	T5 Water Level		
AUTO	O/CYCLING	Pump 5 Operational Status ON/OFF		
	616.1	T6A Water Elevation		
	6.4	T6B pH		
	N/A	T6B Water Level		
AUTO	O/CYCLING	Pump 6B Operational Status ON/OFF		
	615.5	T7 Water Level Reading		
	6.8	T7 pH		
	N/A	T8 Water Elevation		
29	9,880,362	Flow Meter Reading		
	2.2	Average System Flow		
	34.0	Generator Run Hours		
READING	Standard	LOCATION/PARAMETER		
0.046	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromi		
0.099	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium		
0.041	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium		
0.004	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium		
0.039	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromiun		
0.007	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium		
N/A	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium		
N/A	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium		
рН	READING	SAMPLE LOCATION		
	6.03	Calcium Settling Pond Effluent (T3)		
	6.25	Iron Settling Pond Effluent (T6)		
	6.70	Engineered Wetland Effluent (T7)		
	N/A	Southwest Corner Effluent (SS-1)		

Trouble with pressure transducer in T-6B. Swapped with T-8 PT until replacement is ordered.

Airco Parcel, Niagara Falls, New York

te: 11/30/10	Project No.: 1005	Greenstar Personnel: Bruce Vinal		
ather: Rain 40 d		VANDA A		
	READING	ITEM		
234		Carbon Dioxide Storage Tank Pressure (220-235 psi)		
	7,700	Carbon Dioxide Tank Liquid Level		
	2.7	T1 Water Level		
AU'	ΓO/CYCLING	Pump P1A Running Status ON/OFF		
AU'	ΓO/CYCLING	Pump P1BA Running Status ON/OFF		
	616.2	T3A Water Elevation		
	6.1	T3B pH Reading		
	614.1	T3B Water Level		
AU'	ΓO/CYCLING	Pump 3B Operational Status ON/OFF		
	612.2	T5 Water Level		
AU'	ΓO/CYCLING	Pump 5 Operational Status ON/OFF		
	612.2	T6A Water Elevation		
	6.6	Т6В рН		
	613.4	T6B Water Level		
AU	ΓO/CYCLING	Pump 6B Operational Status ON/OFF		
	615.6	T7 Water Level Reading		
	6.8	T7 pH		
	3.6	T8 Water Elevation		
	30,080,784	Flow Meter Reading		
	13.5	Average System Flow		
	34.4	Generator Run Hours		
READING	Standard	LOCATION/PARAMETER		
0.079	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromiu		
0.074	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium		
0.029	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium		
ND	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium		
0.048	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium		
0.035	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium		
0.010	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium		
0.016	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium		
pl	H READING	SAMPLE LOCATION		
*	6.01	Calcium Settling Pond Effluent (T3)		
	6.18	Iron Settling Pond Effluent (T6)		
	6.55	Engineered Wetland Effluent (T7)		
	7.14	Southwest Corner Effluent (SS-1)		

Date: 12/13/10	Project No.: 1005	Greenstar Personnel: Bruce Vinal		
Veather: Snow 8 Deg	PEADING	ITEM		
Λ				
	9,000	Carbon Dioxide Storage Tank Pressure (220-235 psi)		
	234	Carbon Dioxide Tank Liquid Level		
	2.7	T1 Water Level		
	O/CYCLING	Pump P1A Running Status ON/OFF		
AUT	O/CYCLING	Pump P1BA Running Status ON/OFF		
	616.2	T3A Water Elevation		
_	6.3	T3B pH Reading		
_	614.1	T3B Water Level		
AUT	O/CYCLING	Pump 3B Operational Status ON/OFF		
	611.5	T5 Water Level		
AUT	O/CYCLING	Pump 5 Operational Status ON/OFF		
	616.1	T6A Water Elevation		
	6.5	Т6В рН		
	613.9	T6B Water Level		
AUT	O/CYCLING	Pump 6B Operational Status ON/OFF		
	615.5	T7 Water Level Reading		
	6.8	Т7 рН		
	3.7	T8 Water Elevation		
30	0,357,790	Flow Meter Reading		
	11.9	Average System Flow		
	34.7	Generator Run Hours		
READING	Standard	LOCATION/PARAMETER		
0.050	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromium		
0.082	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium		
ND	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium		
0.018	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium		
ND	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium		
0.007	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium		
0.007	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium		
0.015	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium		
рН	READING	SAMPLE LOCATION		
	6.30	Calcium Settling Pond Effluent (T3)		
	6.26	Iron Settling Pond Effluent (T6)		
	6.52	Engineered Wetland Effluent (T7)		
	7.13	Southwest Corner Effluent (SS-1)		

Notes: Cleaned and calibrated pH probes. Replaced locks (2) on entry gates. Noticed liquid Flocculent (Sodium Aluminate) leaking from cracked line to pump, spill confined to secondary containment vessel. Closed main valveleak stopped.

	Project No.: 1005	Greenstar Personnel: Bruce Vinal		
Veather: Overcast 30				
READING		ITEM		
232		Carbon Dioxide Storage Tank Pressure (220-235 psi)		
	5,800	Carbon Dioxide Tank Liquid Level		
	3.4	T1 Water Level		
AUTO	D/CYCLING	Pump P1A Running Status ON/OFF		
AUTO	D/CYCLING	Pump P1BA Running Status ON/OFF		
	616.2	T3A Water Elevation		
	6.4	T3B pH Reading		
	614.5	T3B Water Level		
AUTO	D/CYCLING	Pump 3B Operational Status ON/OFF		
	612.6	T5 Water Level		
AUTO	D/CYCLING	Pump 5 Operational Status ON/OFF		
	616.2	T6A Water Elevation		
	6.5	Т6В рН		
	613.3	T6B Water Level		
AUTO	D/CYCLING	Pump 6B Operational Status ON/OFF		
	615.5	T7 Water Level Reading		
	6.6	Т7 рН		
	3.6	T8 Water Elevation		
30),714,626	Flow Meter Reading		
	16.8	Average System Flow		
	35.1	Generator Run Hours		
READING	Standard	LOCATION/PARAMETER		
0.058	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromiun		
0.118	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium		
0.026	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium		
0.012	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium		
0.001	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium		
0.018	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium		
0.005	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium		
0.019	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium		
pН	READING	SAMPLE LOCATION		
	6.36	Calcium Settling Pond Effluent (T3)		
	6.30	Iron Settling Pond Effluent (T6)		
	6.55	Engineered Wetland Effluent (T7)		
	7.04	Southwest Corner Effluent (SS-1)		

Notes: Competed the engineer's inspection. Recalibrated pH probe in T6-B. Put Combination locks on 2 new wells, need to order new keyed alike locks.

Attachment G.2

Airco Parcel GCTS Monthly Flow Calculations July – December 2010

Monthly Airco Parcel GCTS Flow Calculations July 2011

	Maximum	Average	T 4 1 D "1	Total	Run	D Tr
Date	Flow (gpm)	Flow Rate (gpm)	Total Daily Flow (Gal)	Gallons To Date (Gal)	Time (hours)	Run Time (minutes)
7/1/2010	41	20	28,524	27,765,016	24	0
7/2/2010	41	20	28,434	27,793,450	24	0
7/3/2010	40	20	28,318	27,793,430	24	0
7/4/2010	40	20	28,090	27,849,858	24	0
7/5/2010	40	19	27,792	27,877,650	24	0
7/6/2010	40	19	27,598	27,905,248	24	0
7/7/2010	40	19	27,194	27,932,442	24	0
7/8/2010	40	19	26,706	27,959,148	24	0
7/9/2010	40	20	28,802	27,987,950	24	0
7/10/2010	40	20	28,300	28,016,250	24	0
7/11/2010	40	19	27,514	28,043,764	24	0
7/12/2010	40	19	27,202	28,070,966	24	0
7/13/2010	40	19	27,104	28,098,070	24	0
7/14/2010	40	19	26,854	28,124,924	24	0
7/15/2010	39	19	26,928	28,151,852	24	0
7/16/2010	39	18	26,466	28,178,318	24	0
7/17/2010	39	18	26,122	28,204,440	24	0
7/18/2010	39	18	25,774	28,230,214	24	0
7/19/2010	39	18	25,780	28,255,994	24	0
7/20/2010	39	18	25,650	28,281,644	24	0
7/21/2010	39	18	25,260	28,306,904	24	0
7/22/2010	39	17	24,818	28,331,722	24	0
7/23/2010	39	18	25,882	28,357,604	24	0
7/24/2010	39	18	25,616	28,383,220	24	0
7/25/2010	39	17	25,196	28,408,416	24	0
7/26/2010	39	17	24,228	28,432,644	24	0
7/27/2010	39	17	23,926	28,456,570	24	0
7/28/2010	39	17	24,592	28,481,162	24	0
7/29/2010	39	17	24,054	28,505,216	24	0
7/30/2010	39	17	23,918	28,529,134	24	0
7/31/2010	39	16	23,100	28,552,234	24	0
	41	18	815,742	28,552,234	31	100%
Sample		Monitoring	,	, ,		
Measurement	Daily	Period	Monitoring			
	Maximum	Average	Period Total	Cumulative	Runtime	Operational
	(GPM)	(GPM)	(GAL)	Total (GAL)	(Days)	Percentage

Monthly Airco Parcel GCTS Flow Calculations August 2011

	Maximum	Average		Total	Run	
D. 4	Flow	Flow Rate	Total Daily	Gallons To	Time	Run Time
Date 9/1/2010	(gpm)	(gpm)	Flow (Gal)	Date (Gal)	(hours)	(minutes)
8/1/2010	39	16	23,328	28,575,562	24	0
8/2/2010	40	18	26,420	28,601,982	24	0
8/3/2010	39	14	20,058	28,622,040	24	0
8/4/2010	39	16	23,158	28,645,198	24	0
8/5/2010	39	16	23,184	28,668,382	24	0
8/6/2010	39	16	22,620	28,691,002	24	0
8/7/2010	39	15	22,130	28,713,132	24	0
8/8/2010	39	15	22,030	28,735,162	24	0
8/9/2010	39	16	22,320	28,757,482	24	0
8/10/2010	39	19	27,880	28,785,362	24	0
8/11/2010	39	17	25,114	28,810,476	24	0
8/12/2010	39	17	23,998	28,834,474	24	0
8/13/2010	39	17	23,798	28,858,272	24	0
8/14/2010	39	16	23,542	28,881,814	24	0
8/15/2010	39	17	23,914	28,905,728	24	0
8/16/2010	39	16	23,314	28,929,044	24	0
8/17/2010	39	16	22,650	28,951,694	24	0
8/18/2010	39	15	22,226	28,973,920	24	0
8/19/2010	39	15	21,794	28,995,714	24	0
8/20/2010	39	15	21,172	29,016,886	24	0
8/21/2010	39	15	21,040	29,037,926	24	0
8/22/2010	40	16	22,860	29,060,786	24	0
8/23/2010	40	14	20,318	29,081,104	24	0
8/24/2010	39	14	20,068	29,101,172	24	0
8/25/2010	40	15	21,248	29,122,420	24	0
8/26/2010	40	14	19,638	29,142,058	24	0
8/27/2010	39	13	19,400	29,161,458	24	0
8/28/2010	39	13	19,342	29,180,800	24	0
8/29/2010	40	13	19,076	29,199,876	24	0
8/30/2010	39	13	19,406	29,219,282	24	0
8/31/2010	39	13	18,968	29,238,250	24	0
	40	15	680,614	29,238,250	31	100%
Sample		Monitoring	000,014	<i></i>	J1	100/0
Measurement	Daily	Period	Monitoring			
	Maximum	Average	Period Total	Cumulative	Runtime	Operational
	(GPM)	(GPM)	(GAL)	Total (GAL)	(Days)	Percentage

Monthly Airco Parcel GCTS Flow Calculations September 2011

	Maximum Flow	Average Flow Rate	Total Daily	Total Gallons To	Run Time	Run Time
Date	(gpm)	(gpm)	Flow (Gal)	Date (Gal)	(hours)	(minutes)
9/1/2010	39	13	19,280	29,257,530	24	0
9/2/2010	39	13	19,040	29,276,570	24	0
9/3/2010	40	13	18,696	29,295,266	24	0
9/4/2010	40	13	18,032	29,313,298	24	0
9/5/2010	40	12	16,572	29,329,870	24	0
9/6/2010	40	12	16,938	29,346,808	24	0
9/7/2010	40	12	17,200	29,364,008	24	0
9/8/2010	40	11	16,446	29,380,454	24	0
9/9/2010	40	11	15,778	29,396,232	24	0
9/10/2010	40	11	15,484	29,411,716	24	0
9/11/2010	40	11	15,566	29,427,282	24	0
9/12/2010	40	11	15,290	29,442,572	24	0
9/13/2010	40	11	15,156	29,457,728	24	0
9/14/2010	40	10	14,904	29,472,632	24	0
9/15/2010	40	10	14,638	29,487,270	24	0
9/16/2010	40	11	15,686	29,502,956	24	0
9/17/2010	40	10	13,826	29,516,782	24	0
9/18/2010	40	10	13,858	29,530,640	24	0
9/19/2010	40	10	14,946	29,545,586	24	0
9/20/2010	40	9	13,630	29,559,216	24	0
9/21/2010	40	10	13,714	29,572,930	24	0
9/22/2010	40	10	13,986	29,586,916	24	0
9/23/2010	40	9	13,638	29,600,554	24	0
9/24/2010	40	10	14,696	29,615,250	24	0
9/25/2010	40	9	13,418	29,628,668	24	0
9/26/2010	40	9	12,948	29,641,616	24	0
9/27/2010	40	9	12,780	29,654,396	24	0
9/28/2010	40	19	26,852	29,681,248	24	0
9/29/2010	40	6	8,476	29,689,724	24	0
9/30/2010	39	3	4,110	29,693,834	24	0
	40	11	455,584	29,693,834	30	100%
Sample		Monitoring	120,004			20070
Measurement	Daily	Period	Monitoring			
	Maximum	Average	Period Total	Cumulative	Runtime	Operational
	(GPM)	(GPM)	(GAL)	Total (GAL)	(Days)	Percentage

Monthly Airco Parcel GCTS Flow Calculations October 2011

	Maximum	Average		Total	Run	
D .4	Flow	Flow Rate	Total Daily	Gallons To	Time	Run Time
Date	(gpm)	(gpm)	Flow (Gal)	Date (Gal)	(hours)	(minutes)
10/1/2010	0	0	0	29,693,834	24	0
10/2/2010	40	4	5,654	29,699,488	24	0
10/3/2010	40	6	8,344	29,707,832	24	0
10/4/2010	40	5	7,784	29,715,616	24	0
10/5/2010	40	6	8,230	29,723,846	24	0
10/6/2010	40	4	6,298	29,730,144	24	0
10/7/2010	40	3	5,018	29,735,162	24	0
10/8/2010	40	1	1,302	29,736,464	24	0
10/9/2010	5	0	0	29,736,464	24	0
10/10/2010	40	0	350	29,736,814	24	0
10/11/2010	40	2	2,430	29,739,244	24	0
10/12/2010	40	3	3,866	29,743,110	24	0
10/13/2010	40	3	4,268	29,747,378	24	0
10/14/2010	40	5	6,628	29,754,006	24	0
10/15/2010	40	4	6,234	29,760,240	24	0
10/16/2010	40	4	5,540	29,765,780	24	0
10/17/2010	40	4	5,950	29,771,730	24	0
10/18/2010	40	4	5,202	29,776,932	24	0
10/19/2010	40	3	3,650	29,780,582	24	0
10/20/2010	40	4	5,516	29,786,098	24	0
10/21/2010	40	5	7,036	29,793,134	24	0
10/22/2010	40	4	5,152	29,798,286	24	0
10/23/2010	40	4	6,164	29,804,450	24	0
10/24/2010	40	5	7,414	29,811,864	24	0
10/25/2010	40	4	5,666	29,817,530	24	0
10/26/2010	40	6	8,066	29,825,596	24	0
10/27/2010	40	4	6,384	29,831,980	24	0
10/28/2010	40	4	5,800	29,837,780	24	0
10/29/2010	40	4	6,244	29,844,024	24	0
10/30/2010	40	4	5,748	29,849,772	24	0
10/31/2010	40	4	5,612	29,855,384	24	0
	40	4	161 550	20 955 204	21	1000/
Sample	40	4 Manitanina	161,550	29,855,384	31	100%
Measurement	Daily	Monitoring Period	Monitoring			
	Maximum	Average	Period Total	Cumulative	Runtime	Operational
	(GPM)	(GPM)	(GAL)	Total (GAL)	(Days)	Percentage

Monthly Airco Parcel GCTS Flow Calculations November 2011

	Maximum	Average		Total	Run	
5 .	Flow	Flow Rate	Total Daily	Gallons To	Time	Run Time
Date	(gpm)	(gpm)	Flow (Gal)	Date (Gal)	(hours)	(minutes)
11/1/2010	40	4	5,118	29860502	24	0
11/2/2010	40	3	4,652	29865154	24	0
11/3/2010	40	1	1,308	29866462	24	0
11/4/2010	6	0	0	29866462	24	0
11/5/2010	40	1	1,658	29868120	24	0
11/6/2010	40	4	5,374	29873494	24	0
11/7/2010	6	0	0	29873494	24	0
11/8/2010	6	0	0	29873494	24	0
11/9/2010	6	0	0	29873494	24	0
11/10/2010	6	0	0	29873494	24	0
11/11/2010	6	0	0	29873494	24	0
11/12/2010	7	0	0	29873494	24	0
11/13/2010	40	2	2,286	29875780	24	0
11/14/2010	39	2	2,534	29878314	24	0
11/15/2010	39	4	5,196	29883510	24	0
11/16/2010	39	9	12,284	29895794	24	0
11/17/2010	39	8	11,348	29907142	24	0
11/18/2010	39	8	11,112	29918254	24	0
11/19/2010	39	8	11,344	29929598	24	0
11/20/2010	39	8	11,378	29940976	24	0
11/21/2010	39	8	11,786	29952762	24	0
11/22/2010	39	10	14,896	29967658	24	0
11/23/2010	39	11	15,662	29983320	24	0
11/24/2010	39	9	13,550	29996870	24	0
11/25/2010	39	9	13,618	30010488	24	0
11/26/2010	39	12	16,844	30027332	24	0
11/27/2010	38	10	14,266	30041598	24	0
11/28/2010	38	10	14,756	30056354	24	0
11/29/2010	38	11	15,180	30071534	24	0
11/30/2010	39	15	21,870	30093404	24	0
	40	5	240,306	30,093,404	30	100%
Sample		Monitoring				
Measurement	Daily	Period	Monitoring			
	Maximum	Average	Period Total	Cumulative	Runtime	Operational
	(GPM)	(GPM)	(GAL)	Total (GAL)	(Days)	Percentage

Monthly Airco Parcel GCTS Flow Calculations December 2011

	Maximum	Average		Total	Run	
	Flow	Flow Rate	Total Daily	Gallons To	Time	Run Time
Date	(gpm)	(gpm)	Flow (Gal)	Date (Gal)	(hours)	(minutes)
12/1/2010	39	17	25,194	30,118,598	24	0
12/2/2010	38	12	17,268	30,135,866	24	0
12/3/2010	38	13	18,874	30,154,740	24	0
12/4/2010	38	13	19,420	30,174,160	24	0
12/5/2010	38	14	19,828	30,193,988	24	0
12/6/2010	38	13	19,394	30,213,382	24	0
12/7/2010	38	14	19,452	30,232,834	24	0
12/8/2010	38	14	19,594	30,252,428	24	0
12/9/2010	38	14	20,356	30,272,784	24	0
12/10/2010	38	15	22,002	30,294,786	24	0
12/11/2010	38	15	21,952	30,316,738	24	0
12/12/2010	38	21	30,438	30,347,176	24	0
12/13/2010	38	12	17,136	30,364,312	24	0
12/14/2010	38	13	18,042	30,382,354	24	0
12/15/2010	37	14	19,472	30,401,826	24	0
12/16/2010	37	14	20,178	30,422,004	24	0
12/17/2010	37	14	20,656	30,442,660	24	0
12/18/2010	37	15	22,100	30,464,760	24	0
12/19/2010	37	15	22,264	30,487,024	24	0
12/20/2010	37	16	22,522	30,509,546	24	0
12/21/2010	37	16	23,482	30,533,028	24	0
12/22/2010	37	16	23,014	30,556,042	24	0
12/23/2010	37	16	23,566	30,579,608	24	0
12/24/2010	37	17	23,932	30,603,540	24	0
12/25/2010	37	17	24,340	30,627,880	24	0
12/26/2010	37	17	23,904	30,651,784	24	0
12/27/2010	37	17	24,588	30,676,372	24	0
12/28/2010	36	17	24,314	30,700,686	24	0
12/28/2010	36	17	24,314	30,700,686	24	0
12/29/2010	36	17	24,588	30,725,274	24	0
12/30/2010	36	17	24,528	30,749,802	24	0
	39	15	708,158	30,749,802	31	100%
Sample Measurement	Daily Maximum (GPM)	Monitoring Period Average (GPM)	Monitoring Period Total (GAL)	Cumulative Total (GAL)	Runtime (Days)	Operational Percentage

Attachment H Remedy Review Report