2009 Long-Term Groundwater Sampling and Data Summary Report Mr. C's Dry Cleaners Site East Aurora, New York

Site Number: 9-15-157

August 2009

Prepared for:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 50 Wolf Road Albany, New York 12233

©2009 Ecology and Environment Engineering, P.C.



| Section |       | Page                                            |
|---------|-------|-------------------------------------------------|
|         | Exe   | cutive Summary1                                 |
| 1       | Intro | oduction1-1                                     |
|         | 1.1   | Site Location and Description                   |
|         | 1.2   | Site History                                    |
|         | 1.3   | Investigations Prior to 2009                    |
| 2       | Mr.   | C's Dry Cleaners 2009 Field Activities2-1       |
|         | 2.1   | 2009 Investigations                             |
|         |       | 2.1.1 Monitoring Well Sampling                  |
|         |       | 2.1.2 Monitoring Well Inspections               |
|         | 2.2   | Investigation-Derived Waste Management          |
|         |       |                                                 |
| 3       | Phv   | sical Characteristics of the Study Area         |
| -       | 3.1   | Physiography                                    |
|         | 3.2   | Topography                                      |
|         | 3.3   | Geology                                         |
|         |       | 3.3.1 Bedrock                                   |
|         |       | 3.3.2 Overburden                                |
|         | 3.4   | Hydrostratigraphic Units                        |
|         | 3.5   | Hydrogeology                                    |
| 4       | Nat   | ure and Extent of Contamination4-1              |
|         | 4.1   | Summary of Results from Previous Investigations |
|         | 4.2   | Summary of Previous Subsurface Soil Results     |
|         | 4.3   | 2009 Groundwater Results                        |
|         | 4.4   | Summary and Conclusions                         |
| 5       | Ref   | erences                                         |

### Table of Contents (Cont.)

| Appendix | K F                            | Page |
|----------|--------------------------------|------|
| Α        | Well Purge and Sample Records  | A-1  |
| В        | Data Usability Summary Reports | B-1  |

## ist of Tables

Table

| Table |                                                                                                                               | Page |
|-------|-------------------------------------------------------------------------------------------------------------------------------|------|
| 2-1   | Long-Term Monitoring Well Construction Summary, Mr. C's Dry Cleaners,<br>East Aurora, New York                                | 2-2  |
| 2-2   | 2009 Summary of Groundwater Quality Field Measurements, Mr. C's Dry<br>Cleaners, East Aurora, New York                        | 2-4  |
| 2-3   | 2009 Well Inspection Summary Results, Mr. C's Dry Cleaners, East Aurora,<br>New York                                          | 2-5  |
| 3-1   | 2009 Groundwater Elevations, Mr. C's Dry Cleaners Site, East Aurora, New York                                                 | 3-4  |
| 4-1   | Summary of Positive Analytical Results for Groundwater Samples, May 2009,<br>Mr. C's Dry Cleaners Site, East Aurora, New York |      |

# ist of Figures

| Figure |                                                                                                                     | Page   |
|--------|---------------------------------------------------------------------------------------------------------------------|--------|
| 1-1    | Mr. C's Dry Cleaners Site Location Map                                                                              | 1-5    |
| 3-1    | Groundwater Elevation Isopleths for the Outwash Aquifer, May 2009, Mr. C's Dry Cleaners Site, East Aurora, New York | 3-7    |
| 4-1    | Summary of Groundwater Results, Mr. C's Dry Cleaners Back                                                           | Pocket |
| 4-2    | Tetrachloroethene in Groundwater, Mr. C's Dry Cleaners Site, East Aurora,<br>New York, May 2009                     | 4-9    |
| 4-3    | Total Chlorinated VOCs in Groundwater, Mr. C's Dry Cleaners Site, East<br>Aurora, New York, May 2009                | 4-11   |

# ist of Abbreviations and Acronyms

| AMSL    | above mean sea level                                    |
|---------|---------------------------------------------------------|
| BGS     | below ground surface                                    |
| cm/s    | centimeters per second                                  |
| COC     | chain of custody                                        |
| cVOC    | chlorinated volatile organic compound                   |
| DCE     | dichloroethene                                          |
| DNAPL   | denser-than-water nonaqueous-phase liquid               |
| DUSR    | Data Usability Summary Report                           |
| EEEPC   | Ecology and Environment Engineering, P.C.               |
| EPA     | United States Environmental Protection Agency           |
| FS      | feasibility study                                       |
| IDW     | investigation-derived waste                             |
| Mr. C's | Mr. C's Dry Cleaners                                    |
| MS/MSD  | matrix spike/matrix spike duplicate                     |
| MTBE    | methyl tert-butyl ether                                 |
| µg/kg   | micrograms per kilogram                                 |
| μg/L    | micrograms per liter                                    |
| NTU     | nephelometric turbidity unit                            |
| NYS     | New York State                                          |
| NYSDEC  | New York State Department of Environmental Conservation |
| PCE     | tetrachloroethene (perchloroethylene)                   |

### List of Abbreviations and Acronyms (Cont.)

| PID   | photoionization detector              |  |  |  |  |  |
|-------|---------------------------------------|--|--|--|--|--|
| ppm   | parts per million                     |  |  |  |  |  |
| QA/QC | quality assurance/quality control     |  |  |  |  |  |
| RI    | Remedial Investigation                |  |  |  |  |  |
| ROD   | Record of Decision                    |  |  |  |  |  |
| SMP   | Site Management Plan                  |  |  |  |  |  |
| TCA   | trichloroethane                       |  |  |  |  |  |
| TCE   | trichloroethene                       |  |  |  |  |  |
| TCL   | Target Compound List                  |  |  |  |  |  |
| TOGS  | Technical Operational Guidance Series |  |  |  |  |  |
| VOC   | volatile organic compound             |  |  |  |  |  |

## **Executive Summary**

Under contract to the New York State Department of Environmental Conservation (NYSDEC) (Work Assignment No. 13.0), Ecology and Environment Engineering, P.C. (EEEPC) was tasked to perform long-term groundwater sampling and analysis and perform minor well maintenance at and around the Mr. C's Dry Cleaners (Mr. C's) site (NYSDEC Site No. 9-15-157), located in the town of East Aurora, Erie County, New York.

The purpose of this investigation was to obtain current groundwater analytical data for use in evaluating the performance of the groundwater treatment system. The groundwater pump-and-treatment system was installed and became operational on September 21, 2002. Operation and maintenance of the system is currently performed by EEEPC. An average of 1.3 million gallons per month is pumped by the system, and a total of 104.5 million gallons has been pumped since September 2002.

Fieldwork was performed by EEEPC personnel on May 11 and 12, 2009. EEEPC subcontracted Mitkem Corporation, located in Warwick, Rhode Island, to perform laboratory analyses.

Groundwater beneath and around the Mr. C's site contains elevated levels of several chlorinated solvents, their breakdown by-products, and other hydrocarbons. The highest concentrations of tetrachloroethene (PCE) and its breakdown byproducts occur in an area extending more than 200 feet from the Agway property located near the corner of Main Street and Whaley Avenue to the northwest, toward Fillmore Avenue.

Data collected in 2002, 2003, 2004, and 2007 from several wells were compared to the data from samples collected in 2009. The following is a summary of the findings:

Tetrachloroethylene (PCE) is the primary chlorinated volatile organic compound (cVOC) detected in the groundwater samples. However, cis-1,2-DCE levels in MW-4 were consistently higher (approximately two times) than the PCE level in this well in the past. This well could not be sampled in 2009 due

to the extensive reconstruction of Main Street in the village of East Aurora by the New York State Department of Transportation.

- From 2007 to 2009, the concentrations of PCE and trichloroethylene (TCE) in MPI-4I (near the corner of Main Street and Whaley Avenue) declined by over 50%, whereas the concentration of cis-1,2-DCE increased nearly 5-fold, indicating that natural reductive dechlorination of PCE is occurring in this area.
- The concentrations of PCE in the eight pumping wells (RW-1 and PW2-through PW-8) generally increased from 2002 until 2004/2005. Since that time, contaminant concentrations at each pumping well location have decreased but are still significantly higher than in 2002. Activation of the recovery system in 2002 caused an initial increase in concentrations as the contaminant plume was drawn toward the pumping wells. Reduction in plume size and natural degradation of the contaminants has since caused a decrease in contaminant concentrations in most pumping wells.
- PCE levels in MPI-6S have increased from non-detect in 2002 to 8,100 µg/L in 2009. This is likely due to the proximity of this well to the pumping wells, which draw the contaminant plume to that area for capture and treatment.
- At MW-8, which is along Whaley Avenue north of the Agway property, cVOC concentrations decreased significantly from 2007 to 2009. An approximately 40-fold reduction was observed in TCE and cis-1,2-DCE concentrations. The PCE concentration also decreased by over 4-fold, and vinyl chloride declined from 35 µg/L to non-detect. The May 2009 concentrations of cVOCs in MW-8 were generally the lowest recorded in this well to date.
- The concentrations of PCE and other cVOCs in ESI-6, which is adjacent to the First Presbyterian Church, generally decreased from 2002 to 2007 but showed a small increase or remained similar since 2007. With no recovery wells in the vicinity of this monitoring well, plume characteristics are expected to remain relatively stable, with natural degradation predominating plume cleanup.
- In general, methyl tert-butyl ether (MTBE) levels throughout the area have continued to decline since 2002.

Based on the observed changes in the on-site distribution (i.e., centered around pumping wells) of VOC contaminations and the general groundwater level decrease, the groundwater treatment system appears to be effective in drawing PCE contamination toward the pumping wells.

## Introduction

Ecology and Environment Engineering, P.C. (EEEPC), under contract to the New York State Department of Environmental Conservation (NYSDEC) (Work Assignment No. 27.4), was tasked to perform groundwater sampling and analysis and perform minor well maintenance at and around the Mr. C's Dry Cleaners (Mr. C's) site (NYSDEC Site No. 9-15-157), located in the town of East Aurora, Erie County, New York (see Figure 1-1).

Field investigations were performed by EEEPC personnel on Monday, May 11, and Tuesday, May 12, 2009. Laboratory analyses were performed by Mitkem Corporation, which is located in Warwick, Rhode Island. Independent data validations of the analytical results were performed by EEEPC.

This report provides a summary of the groundwater monitoring and sampling activities that took place at the Mr. C's site, as described in the EEEPC work plan (EEEPC 2007a) and the Site Management Plan (SMP) (EEEPC 2008). Descriptions of previous investigations are presented in Section 1.3, and work currently being performed is described in Section 2. The physical characteristics of the study area are discussed in Section 3. A discussion of the new analytical data obtained and a comparison to existing data is presented in Section 4.

#### **1.1 Site Location and Description**

The Mr. C's site is located at 586 Main Street in the village of East Aurora in Erie County, New York (see Figure 1-1). The site is located on an approximately 0.5-acre parcel in a mixed-use area of residential, municipal, and light commercial properties. Mr. C's is located in a one-story building on a concrete slab foundation with an adjacent paved parking lot. Mr. C's occupies the front portion of the building along Main Street; the remainder of the building is occupied by other commercial businesses.

The Mr. C's site is partially surrounded by the former Agway site to the west, residential homes along Whaley Avenue to the west, and Fillmore Avenue to the north. Other commercial businesses are adjacent to the site on the east side and across Main Street to the south. Groundwater pumping wells and groundwater monitoring wells ring the entire Mr. C's Site.

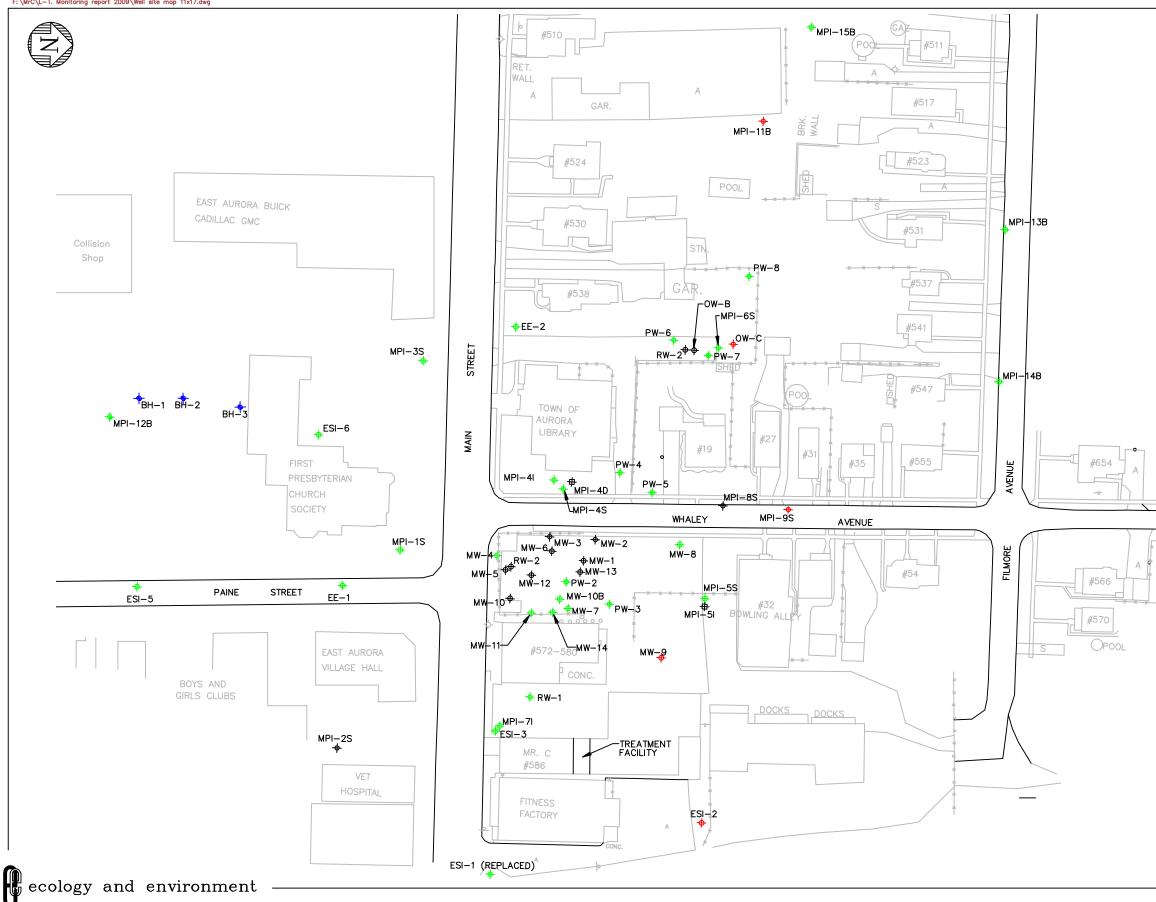
The Agway site, a former gasoline storage spill site, was previously excavated and is an active remedial site. An air sparge/soil vapor extraction system in the upper aquifer zone (0 to 12 feet BGS) is operated and maintained at this site by EEEPC.

Subslab depressurization systems are in operation at two locations around the Mr. C's site—the First Presbyterian Church, located southwest of the site at the corner of Main Street and Paine Avenue, and at 27 Whaley Avenue, located northwest of the site. Both systems are actively monitored and maintained by EEEPC under other tasks of the work assignment.

#### 1.2 Site History

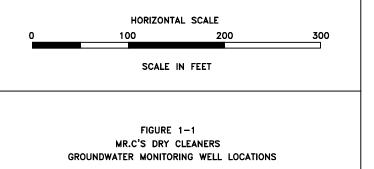
Mr. C's has been in operation as a dry cleaning facility since 1970. Prior to that, the property had been used for several other commercial purposes, including as a laundry service, an auto repair/paint shop, and as a hotel. In December 1991, NYSDEC investigated complaints of odors in a neighboring property southwest of the site. Subsequently, NYSDEC collected air samples from basements as well as soil vapor, groundwater, and sanitary sewer samples on several occasions and detected the presence of tetrachloroethene (PCE). The site was then designated a Class 2 Hazardous Waste Site (Site Number 9-15-157) by NYSDEC, indicating that the site is believed to pose a significant risk to public health and the environment.

#### 1.3 Investigations Prior to 2009


During a remedial investigation (RI) conducted in 1994 by Malcolm Pirnie, Inc. (Malcolm Pirnie, Inc. 1995), the highest concentration of PCE was found beneath the Mr. C's building. The RI also determined the horizontal and vertical extents of the contamination and found that other contaminants at the site consisted of petroleum hydrocarbons and volatile organic compounds (VOCs), including compounds resulting from PCE degradation. A feasibility study (FS) completed by Malcolm Pirnie, Inc., in November 1996 recommended remediation of the source plume using in situ air stripping wells. A remedial action consisting of the installation of eight in situ air-stripping wells was selected, and a Record of Decision (ROD) was signed in March 1997 (NYSDEC 1997). Additional predesign investigations were conducted by Malcolm Pirnie, Inc., in December 1998 and April 1999 to confirm the limits of the groundwater contamination plume (Malcolm Pirnie, Inc. 1998, 1999). As a result of the additional investigations, an Explanation of Significant Differences was issued in April 2000 as justification for the modification of the selected remedy to a conventional groundwater pump-andtreat system. Remedial design, including the preparation of Contract Documents and Drawings, was completed by Malcolm Pirnie, Inc., in October 2000. Remedial construction started in October 2001 under EEEPC's oversight.

#### 1. Introduction

Remedial construction included installation of eight pumping wells and 30 observation piezometers, 1,100 linear feet of double-walled groundwater collection piping improvements within the designated groundwater treatment system area inside the Mr. C's building (i.e., demolition and removal of existing utilities and fixtures), a groundwater treatment system, and approximately 1,400 linear feet of 4-inch-inner diameter force main for discharge of treated groundwater to Tannery Brook. The groundwater treatment system consisted of a sequestering agent feed system, bag filters, a 3,000-gallon holding tank, a low-profile air stripper, and vapor-phase granular activated carbon (GAC). The groundwater treatment system started operation on September 21, 2002. Operation, maintenance, and monitoring have been performed by EEEPC since September 2003. An average of 1.3 million gallons per month is pumped by the system, and a total of 104.5 million gallons has been pumped since September 2002.


In 2004, three overburden monitoring wells (EE-1, EE-2, and ESI-1 [replacement]) were installed at the site by B & S, Inc., of Buffalo, New York. Splitspoon samples were collected at monitoring well location EE-2 to screening levels of contamination and identify the geologic strata. Each new well was developed, surveyed by Lu Engineers, purged, and sampled. Also, three borings were drilled (BH-1 through BH-3) and continuous split-spoon samples were collected at each boring to screen levels of contamination and to identify the subsurface geologic data for future monitoring well installation. In addition, four monitoring wells (MPI-1I, MPI-4D, MPI-5I, and OW-C) were abandoned by B & S, Inc.

In August 2007, EEEPC collected depth-to-water measurements and purged and sampled 29 existing pumping and monitoring wells as part of the long-term monitoring of the site. The results from the 2007 sampling event are discussed in the 2007 Long-Term Groundwater Sampling and Data Summary Report (EEEPC 2007a) and are incorporated into the summary of analytical results in this report.



#### F: \MrC\L-T. Monitoring report 2009\Well site map 11x17.dwg

| LEGEND        |                                                                     |
|---------------|---------------------------------------------------------------------|
| ÷             | MONITORING WELL SAMPLED DURING<br>2004 GROUNDWATER SAMPLING EVENT.  |
| <del>\$</del> | MONITORING WELL NOT LOCATED DURING 2004 GROUNDWATER SAMPLING EVENT. |
| ¢             | MONITORING WELL NOT SAMPLED DURING 2004 GROUNDWATER SAMPLING EVENT. |
| <del>4</del>  | MONITORING WELL ABANDONED.                                          |
| +             | SOIL BORINGS                                                        |



## Mr. C's Dry Cleaners 2009 Field **Activities**

This section discusses the field activities performed at the Mr. C's site in May 2009. All field activities were conducted according to the April 2007 NYSDECapproved work plan (EEEPC 2007a). Sample locations are indicated on Figure 1-1. Well construction information is provided in Table 2-1.

#### 2009 Investigations 2.1 2.1.1 Monitoring Well Sampling

Groundwater samples were collected from 23 wells at the Mr. C's site (see Table 2-2). All monitoring wells sampled were purged prior to sampling. Eight pumping wells (RW-1, PW-2, PW-3, PW-4, PW-5, PW-6, PW-7, and PW-8) did not require purging because they are consistently pumped as part of the groundwater treatment system. If the pump was not turned on prior to sampling, as was the case with PW-6, it was manually activated, and the well was evacuated and allowed to recharge prior to sample collection.

Monitoring well purging was accomplished using a submersible pump with new polyethylene tubing or using disposable polyethylene bailers on new polypropylene line. All the wells with the exception of the pumping wells were sampled using disposable polyethylene bailers on new polypropylene line. The pumping wells were sampled using a check valve and new polyethylene tubing because the pumping hardware obstructed access with a bailer. Prior to purging, static water levels were measured to within  $\pm 0.01$  foot in each well using a Solinst water level meter. All wells were purged of approximately three to five times the volume (or greater) of water standing in the well. Purged water from the monitoring well was handled in accordance with the 2007 work plan (see Section 2.2). Temperature, pH, specific conductance, and turbidity were measured and recorded, at a minimum, initially, after each well volume and just prior to sampling using a LaMotte 2020 Turbidity meter and a Myron 6P Ultrameter II (water parameter kit). Purging was performed until pH, specific conductance, and temperature had stabilized and turbidity was 50 NTUs or less. The water quality parameters measured at the time of sampling are presented in Table 2-2. All groundwater samples were analyzed for VOCs by United States Environmental Protection Agency (EPA) Method 8260. Field data collection forms containing the data obtained during purging and sampling of the wells are provided in Appendix A.

| Well ID             | Well Casing/<br>Screen Inner<br>Diameter | Total<br>Well<br>Depth<br>(ft TOIC) | TOIC Casing<br>Elevation<br>(ft AMSL) | Ground<br>Elevation | Screen<br>Interval<br>(ft BGS) | Sand Pack<br>Interval<br>(ft BGS) | Top of<br>Seal<br>(ft BGS) | Unit<br>Screened | Northing <sup>a</sup> | Easting <sup>a</sup> |
|---------------------|------------------------------------------|-------------------------------------|---------------------------------------|---------------------|--------------------------------|-----------------------------------|----------------------------|------------------|-----------------------|----------------------|
| EE-1                | 2                                        | 26.37                               | 913.46                                | (ft AMSL)<br>913.63 | 23 - 28                        | 21 - 28.5                         | (IT BGS)<br>15             | OA               | 1008334.03            | 491787.2             |
| EE-2                | 2                                        | 31.34                               | 916.3                                 | 916.51              | 22 - 32                        | 20 - 32                           | 15                         | OA               | 1008521.26            | 491514.8             |
| ESI-1 Replacement   | 2                                        | 19.74                               | 916.99                                | 917.35              | 10.5 - 20.5                    | 8 - 21                            | 4                          | OA               | 1008488.4             | 492086.2             |
| ESI-3               | 2                                        | 15.42                               | 915.85                                | 916.41              | 7 - 17                         | 6 - 18                            | 4.1                        | OA               | 1008493.49            | 491938.8             |
| ESI-5               | 2                                        | 12.32                               | 912.64                                | 912.9               | 5 - 15                         | 4 - 16                            | 2                          | OA               | 1008120               | 491788.5             |
| ESI-6               | 2                                        | 15.93                               | 914.48                                | 914.92              | 7 - 17                         | 6 - 18                            | 3.8                        | OA               | 1008309.02            | 491630.2             |
| MPI-1S              | 2                                        | 18.64                               | 915.08                                | 915.38              | 9 - 19                         | 7.2 - 19.5                        | 5.3                        | OA               | 1008394.23            | 491750.1             |
| MPI-3S              | 2                                        | 17.41                               | 914.4                                 | 914.79              | 8 - 18                         | 5.7 - 18.5                        | 3.7                        | OA               | 1008418.03            | 491553.2             |
| MPI-4S              | 2                                        | 20.24                               | 914.82                                | 915.12              | 11 - 21                        | 8.8 - 21.5                        | 6.8                        | OA               | 1008564.07            | 491686.7             |
| MPI-4I              | 2                                        | 41.5                                | 915.66                                | 916.12              | 32 - 42                        | 29.8 - 42.5                       | 4                          | LA               | 1008554.34            | 491677.3             |
| MPI-5S              | 2                                        | 17.34                               | 916.45                                | 916.78              | 8 - 18                         | 5.9 - 18.4                        | 3.9                        | OA               | 1008711.63            | 491800.8             |
| MPI-6S              | 2                                        | 21.65                               | 915.03                                | 915.35              | 12.3 - 22.3                    | 10 - 23                           | 7.9                        | OA               | 1008725.14            | 491535.1             |
| MPI-7I              | 2                                        | 13.37                               | 916.14                                | 916.42              | 29.5 - 39.5                    | 27.1 - 40                         | 5.3                        | LA               | 1008497.89            | 491933.5             |
| MPI-8S              | 2                                        | 6.54                                | NA                                    | NA                  | 8 - 18                         | 6 - 18.5                          | 4                          | OA               | NA                    | NA                   |
| MPI-10B             | 2                                        | 31.11                               | 915.68                                | 916.07              | 16.5 - 31.5                    | 13 - 32                           | 11                         | OA               | 1008560.4             | 491801.5             |
| MPI-12B             | 2                                        | 34.62                               | 911.19                                | 911.44              | 20 - 35                        | 15 - 35                           | 11.5                       | OA               | 1008091.58            | 491611.5             |
| MPI-15B             | 2                                        | 28.15                               | NA                                    | NA                  | NA                             | NA                                | NA                         | OA               | 1008822.54            | 491205.5             |
| MW-4                | 4                                        | 16.67                               | 914.02                                | 914.47              | 7.3 - 17.3                     | 6.6 - 18                          | 4.7                        | OA               | 1008495.05            | 491755.9             |
| MW-7                | 2                                        | 13.97                               | 915.96                                | 916.34              | 5 - 14.5                       | NA - 15                           | 3                          | OA               | 1008569.02            | 491811.2             |
| MW-8                | 2                                        | 13.57                               | 915.62                                | 915.97              | 5 - 14.5                       | NA - 15                           | 3                          | OA               | 1008685.39            | 491744.6             |
| RW-1                | 6                                        | 24.48                               | NA                                    | NA                  | 17.9 - 27.9                    | 10 - 30                           | 7                          | OA               | 1008529.43            | 491903.3             |
| PW-2                | 4                                        | 29.02                               | NA                                    | NA                  | NA - 32                        | NA                                | NA                         | OA               | 1008567.08            | 491783.3             |
| PW-3                | 4                                        | 28.67                               | NA                                    | NA                  | NA - 32                        | NA                                | NA                         | OA               | 1008612.06            | 491806.6             |
| PW-4                | 4                                        | 29.04                               | NA                                    | NA                  | NA - 32                        | NA                                | NA                         | OA               | 1008623.23            | 491669.6             |
| PW-5                | 4                                        | 28.47                               | NA                                    | NA                  | NA - 32                        | NA                                | NA                         | OA               | 1008656.69            | 491690.3             |
| PW-6                | 4                                        | 28.3                                | NA                                    | NA                  | NA - 32                        | NA                                | NA                         | OA               | 1008679.07            | 491531.6             |
| PW-7                | 4                                        | 26.49                               | NA                                    | NA                  | NA - 32                        | NA                                | NA                         | OA               | 1008715.29            | 491547.6             |
| PW-8                | 4                                        | 26.82                               | NA                                    | NA                  | NA - 32                        | NA                                | NA                         | OA               | 1008757.77            | 491465.1             |
| Abandoned or Missir | Ŭ                                        |                                     |                                       |                     | 1                              |                                   |                            |                  |                       |                      |
| ESI-2               | 2                                        | NA                                  | NA                                    | NA                  | 9 - 19                         | 8 - 20                            | 6                          | OA               | NA                    | NA                   |
| ESI-4               | 2                                        | 26.37                               | NA                                    | NA                  | 5 - 15                         | 4 - 16                            | 2                          | OA               | NA                    | NA                   |
| MW-1                | 2                                        | NA                                  | NA                                    | NA                  | 12 - 22                        | 10.6 - 22                         | 9                          | OA               | NA                    | NA                   |
| MW-2                | 2                                        | NA                                  | NA                                    | NA                  | 10 - 15                        | NA                                | NA                         | OA               | NA                    | NA                   |

#### Table 2-1 Long-Term Monitoring Well Construction Summary, Mr. C's Dry Cleaners, East Aurora, New York

|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                               |                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Well Casing/<br>Screen Inner<br>Diameter | Total<br>Well<br>Depth<br>(ft TOIC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TOIC Casing<br>Elevation<br>(ft AMSL)                                                                                                         | Ground<br>Elevation<br>(ft AMSL)                                                                                                                                                                                     | Screen<br>Interval<br>(ft BGS)                                                                                                                                                                                                                                                               | Sand Pack<br>Interval<br>(ft BGS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Top of<br>Seal<br>(ft BGS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Unit<br>Screened                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Northing <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Easting <sup>ª</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                            | NA                                                                                                                                                                                                                   | 7 - 17                                                                                                                                                                                                                                                                                       | 6.1 - 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                            | NA                                                                                                                                                                                                                   | 10 - 15                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                            | NA                                                                                                                                                                                                                   | 5 - 14.5                                                                                                                                                                                                                                                                                     | NA - 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                            | NA                                                                                                                                                                                                                   | 5 - 14.5                                                                                                                                                                                                                                                                                     | NA - 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                            | NA                                                                                                                                                                                                                   | 4 - 13.5                                                                                                                                                                                                                                                                                     | NA - 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NA                                       | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                            | NA                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                            | NA                                                                                                                                                                                                                   | NA - 18.2<br>(TOIC)                                                                                                                                                                                                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1008530.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 491815.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NA                                       | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                            | NA                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2                                        | 9.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                                                                                                                                            | NA                                                                                                                                                                                                                   | 8 - 18                                                                                                                                                                                                                                                                                       | 6 - 18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                               | Borehole o                                                                                                                                                                                                           | nly – no wel                                                                                                                                                                                                                                                                                 | l construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NA                                       | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                            | NA                                                                                                                                                                                                                   | 32 - 42                                                                                                                                                                                                                                                                                      | 30 - 42.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                               | Borehole o                                                                                                                                                                                                           | nly – no wel                                                                                                                                                                                                                                                                                 | l construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                            | NA                                                                                                                                                                                                                   | 8 - 18                                                                                                                                                                                                                                                                                       | 6.5 - 18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                            | NA                                                                                                                                                                                                                   | 15 - 30                                                                                                                                                                                                                                                                                      | 13 - 30.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2                                        | 31.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 913.25                                                                                                                                        | 913.49                                                                                                                                                                                                               | 17 - 32                                                                                                                                                                                                                                                                                      | 15 - 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1009024.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 491416.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2                                        | 27.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>913.18</i>                                                                                                                                 | <i>913.68</i>                                                                                                                                                                                                        | 15 - 30                                                                                                                                                                                                                                                                                      | 11 - 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1009018.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 491574.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2                                        | 26.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                            | NA                                                                                                                                                                                                                   | 22.5 - 27.5                                                                                                                                                                                                                                                                                  | 10.5 - 27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                            | NA                                                                                                                                                                                                                   | 18 - 28                                                                                                                                                                                                                                                                                      | 10 - 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          | Screen Inner<br>Diameter           4           2           2           2           2           NA           2           NA           2           NA           2           NA           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2 | Well Casing/<br>Screen Inner<br>DiameterWell<br>Depth<br>(ft TOIC)4NA2NA2NA2NA2NA2NA2NA2NA2NA2NA2NA2NA2NA2NA2NA2NA2NA2NA2NA2NA2NA222222222222 | Well Casing/<br>Screen Inner<br>DiameterWell<br>Depth<br>(ft TOIC)TOIC Casing<br>Elevation<br>(ft AMSL)4NANA2NANA2NANA2NANA2NANA2NANA2NANA2NANA2NANA2NANA2NANA2NANA2NANA2NANA2NANA2NANA2NANA2NANA21.43913.25226.41NA | Well Casing/<br>Screen Inner<br>DiameterWell<br>Depth<br>(ft TOIC)TOIC Casing<br>Elevation<br>(ft AMSL)Ground<br>Elevation<br>(ft AMSL)4NANANANA2NANANANA2NANANANA2NANANANA2NANANANA2NANANANA2NANANA2NANANA2NANANA2NANANA2NANANA29.52NANANANANANA2NANANA2NANANA21.43913.25913.49226.41NANANA | Well Casing/<br>Screen Inner<br>DiameterWell<br>Depth<br>(ft TOIC)TOIC Casing<br>Elevation<br>(ft AMSL)Ground<br>Elevation<br>(ft AMSL)Screen<br>Interval<br>(ft BGS)4NANANANA7 - 172NANANANA10 - 152NANANANA5 - 14.52NANANANA5 - 14.52NANANANA5 - 14.52NANANANA5 - 14.52NANANANA10 - 15.52NANANANA5 - 14.52NANANANA10 - 13.5NANANANANA13.5NANANANANA18.2<br>(TOIC)NANANANANANA29.52NANANA29.52NANA32 - 42Borehole only - no wellNANANA2NANANA32 - 422NANANA15 - 30231.43913.25913.4917 - 32227.54913.18913.6815 - 30226.41NANANA22.5 - 27.5 | Well Casing/<br>Screen Inner<br>DiameterWell<br>Depth<br>(ft TOIC)TOIC Casing<br>Elevation<br>(ft AMSL)Ground<br>Elevation<br>(ft AMSL)Screen<br>Interval<br>(ft BGS)Sand Pack<br>Interval<br>(ft BGS) $4$ NANANANA7 - 176.1 - 18 $2$ NANANANA10 - 15NA $2$ NANANANA5 - 14.5NA - 15 $2$ NANANANA5 - 14.5NA - 15 $2$ NANANANA5 - 14.5NA - 14NANANANANANA - 15NA - 14NANANANANANANA $2$ NANANANANANA $2$ NANANANANANA $2$ NANANANANANA $2$ NANANANANANA $2$ NANANANANA $2$ NANANANANA $2$ NANANANANA $2$ 9.52NANANANA $2$ 9.52NANANAScreen $3$ $3$ $3$ $3$ $3$ $4$ $4$ NANANA $3$ $4$ $4$ $3$ $4$ $3$ $4$ $4$ $3$ $4$ $3$ $4$ $4$ $3$ $4$ $3$ $4$ </td <td>Well Casing/<br/>Screen Inner<br/>DiameterWell<br/>Depth<br/>(ft TOIC)TOIC Casing<br/>Elevation<br/>(ft AMSL)Ground<br/>Elevation<br/>(ft AMSL)Screen<br/>Interval<br/>(ft BGS)Sand Pack<br/>Interval<br/>(ft BGS)Top of<br/>Interval<br/>(ft BGS)4NANANANA7 - 176.1 - 183.72NANANANA10 - 15NANA2NANANAS - 14.5NA - 1532NANANANA5 - 14.5NA - 1532NANANANA5 - 14.5NA - 1532NANANANA4 - 13.5NA - 142NANANANANANANA2NANANANANANA2NANANANANANA2NANANANANANA2NANANANANANA2NANANANANANA2NANANANANANA2NANANANANANA2NANANANANANA2NANANANANANA2NANANANANANA2NANANANAS - 18.53.83SSSSSS</td> <td>Well Casing/<br/>Screen Inner<br/>DiameterWell<br/>Depth<br/>(ft TOIC)TOIC Casing<br/>Elevation<br/>(ft AMSL)Ground<br/>Elevation<br/>(ft AMSL)Screen<br/>Interval<br/>(ft BGS)Sand Pack<br/>Interval<br/>(ft BGS)Top of<br/>Interval<br/>(ft BGS)4NANANANA7 - 176.1 - 183.7OA2NANANA10 - 15NANAOA2NANANA10 - 15NANAOA2NANANA5 - 14.5NA - 153OA2NANANANA5 - 14.5NA - 153OA2NANANANA4 - 13.5NA - 142OANANANANANANANA2NANANANANANA2NANANANANANA2NANANANANANA29.52NANANANANA29.52NANA32 - 4230 - 42.58OA00</td> <td>Well Casing/<br/>Screen Inner<br/>DiameterWell<br/>Depth<br/>(ft TOIC)TOIC Casing<br/>Elevation<br/>(ft AMSL)Ground<br/>Elevation<br/>(ft AMSL)Screen<br/>(ft AMSL)Sand Pack<br/>Interval<br/>(ft BGS)Top of<br/>Interval<br/>(ft BGS)Northing*4NANANANA7 · 176.1 · 183.7OANA2NANANA10 · 15NANAOANA2NANANA10 · 15NA · 153OANA2NANANANA5 · 14.5NA · 153OANA2NANANANA4 · 13.5NA · 142OANA2NANANANANANANANA2NANANANANANANANA2NANANANANANANA2NANANANANANANA29.52NANANANANANA2NANANANA32 · 4230 - 42.58OANA2NANANANA8 · 186.5 · 18.54.5OANA2NANANANA15 · 3013 · 30.58.5OANA2NANANANA15 · 3013 · 30.58.5OANA3</td> | Well Casing/<br>Screen Inner<br>DiameterWell<br>Depth<br>(ft TOIC)TOIC Casing<br>Elevation<br>(ft AMSL)Ground<br>Elevation<br>(ft AMSL)Screen<br>Interval<br>(ft BGS)Sand Pack<br>Interval<br>(ft BGS)Top of<br>Interval<br>(ft BGS)4NANANANA7 - 176.1 - 183.72NANANANA10 - 15NANA2NANANAS - 14.5NA - 1532NANANANA5 - 14.5NA - 1532NANANANA5 - 14.5NA - 1532NANANANA4 - 13.5NA - 142NANANANANANANA2NANANANANANA2NANANANANANA2NANANANANANA2NANANANANANA2NANANANANANA2NANANANANANA2NANANANANANA2NANANANANANA2NANANANANANA2NANANANANANA2NANANANAS - 18.53.83SSSSSS | Well Casing/<br>Screen Inner<br>DiameterWell<br>Depth<br>(ft TOIC)TOIC Casing<br>Elevation<br>(ft AMSL)Ground<br>Elevation<br>(ft AMSL)Screen<br>Interval<br>(ft BGS)Sand Pack<br>Interval<br>(ft BGS)Top of<br>Interval<br>(ft BGS)4NANANANA7 - 176.1 - 183.7OA2NANANA10 - 15NANAOA2NANANA10 - 15NANAOA2NANANA5 - 14.5NA - 153OA2NANANANA5 - 14.5NA - 153OA2NANANANA4 - 13.5NA - 142OANANANANANANANA2NANANANANANA2NANANANANANA2NANANANANANA29.52NANANANANA29.52NANA32 - 4230 - 42.58OA00 | Well Casing/<br>Screen Inner<br>DiameterWell<br>Depth<br>(ft TOIC)TOIC Casing<br>Elevation<br>(ft AMSL)Ground<br>Elevation<br>(ft AMSL)Screen<br>(ft AMSL)Sand Pack<br>Interval<br>(ft BGS)Top of<br>Interval<br>(ft BGS)Northing*4NANANANA7 · 176.1 · 183.7OANA2NANANA10 · 15NANAOANA2NANANA10 · 15NA · 153OANA2NANANANA5 · 14.5NA · 153OANA2NANANANA4 · 13.5NA · 142OANA2NANANANANANANANA2NANANANANANANANA2NANANANANANANA2NANANANANANANA29.52NANANANANANA2NANANANA32 · 4230 - 42.58OANA2NANANANA8 · 186.5 · 18.54.5OANA2NANANANA15 · 3013 · 30.58.5OANA2NANANANA15 · 3013 · 30.58.5OANA3 |

#### Table 2-1 Long-Term Monitoring Well Construction Summary, Mr. C's Dry Cleaners, East Aurora, New York

2-3

Note:

Wells in *italic text* were previously abandoned or destroyed, or were otherwise not locatable in 2009.

<sup>a</sup> Coordinates system is New York State Plane West Zone (feet).

Key:

AMSL = Above mean sea level.

BGS = Below ground surface.

ft = Feet.

LA = Lacustrine aquifer.

NA = Not available.

OA = Outwash aquifer.

TOIC = Top of inner casing.

#### 2. Mr. C's Dry Cleaners 2009 Field Activities

|                     | Dry Cleaners, | Last A       |                     | 1 K                     | Unfiltered          |
|---------------------|---------------|--------------|---------------------|-------------------------|---------------------|
| Well Identification | Sample Date   | рН<br>(s.u.) | Temperature<br>(°C) | Conductivity<br>(μS/cm) | Turbidity<br>(NTUs) |
| EE-1                | 5/12/09       | 7.08         | 13.8                | 5453                    | 26                  |
| EE-2                | 5/12/09       | 7.46         | 15.4                | 2790                    | 12.8                |
| ESI-1 (Replacement) | Not sampled   | NA           | NA                  | NA                      | NA                  |
| ESI-3               | Not sampled   | NA           | NA                  | NA                      | NA                  |
| ESI-5               | 5/12/09       | 7.18         | 11.8                | 769.6                   | 38.6                |
| ESI-6               | 5/12/09       | 6.97         | 13.1                | 3701                    | 16.9                |
| MPI-1S              | 5/12/09       | 6.61         | 11.4                | 932.6                   | 2                   |
| MPI-3S              | 5/12/09       | 7.13         | 10.8                | 3698                    | 23.6                |
| MPI-4I              | 5/12/09       | 7.15         | 14.0                | 2331                    | 1.57                |
| MPI-4S              | Not sampled   | NA           | NA                  | NA                      | NA                  |
| MPI-5S              | 5/12/09       | 7.13         | 12.8                | 3284                    | 10                  |
| MPI-6S              | 5/12/09       | 7.28         | 9.6                 | 1120                    | 2.62                |
| MPI-7I              | 5/12/09       | 8.10         | 11.9                | 563.5                   | 10.2                |
| MPI-8S              | Not sampled   | NA           | NA                  | NA                      | NA                  |
| MPI-10B             | 5/12/09       | 7.14         | 13.1                | 3072                    | 6                   |
| MPI-12B             | 5/12/09       | 7.28         | 12.1                | 3203                    | 17                  |
| MPI-13B             | Not sampled   | NA           | NA                  | NA                      | NA                  |
| MPI-14B             | Not sampled   | NA           | NA                  | NA                      | NA                  |
| MPI-15B             | 5/12/09       | 7.04         | 12.3                | 1373                    | 2.67                |
| MW-04               | Not sampled   | NA           | NA                  | NA                      | NA                  |
| MW-07               | 5/12/09       | 7.39         | 10.2                | 1500                    | 8                   |
| MW-08               | 5/12/09       | 7.11         | 10.8                | 1667                    | 17.6                |
| PW-02               | 5/11/09       | 7.24         | 12.5                | 2204                    | 89                  |
| PW-03               | 5/11/09       | 6.51         | 14.0                | 2998                    | 17                  |
| PW-04               | 5/11/09       | 7.91         | 12.4                | 3230                    | 16                  |
| PW-05               | 5/11/09       | 7.35         | 13.2                | 3610                    | 13                  |
| PW-06               | 5/11/09       | 8.60         | 11.3                | 3286                    | 421                 |
| PW-07               | 5/11/09       | 8.06         | 14.5                | 1015                    | 38                  |
| PW-08               | 5/11/09       | 8.14         | 11.4                | 1440                    | 301                 |
| RW-01               | 5/11/09       | 8.13         | 11.4                | 2856                    | 26                  |

#### Table 2-2 2009 Summary of Groundwater Quality Field Measurements, Mr. C's Dry Cleaners, East Aurora, New York

Key:

 $^{\circ}C$  = Degrees Celsius.

 $\mu$ S/cm = MicroSiemens per centimeter.

NTU = Nephelometric turbidity unit.

NA = Not applicable, well was not sampled.

NP = Pumping well was not purged; therefore, no water quality monitoring was performed during sampling.

s.u. = Standard units.

In addition to the environmental samples, quality assurance/quality control (QA/QC) samples were collected. To check consistency in both sample collection and sample analysis, duplicate samples were collected. Duplicate samples were collected at a rate of approximately one per 20 field samples. The two duplicate samples (MRC-PW02/D and MRC-MPI-1S/D) consisted of aliquots of sample

#### 2. Mr. C's Dry Cleaners 2009 Field Activities

media placed in separate sample containers and labeled as separate samples. Additionally, matrix spike/matrix spike duplicates (MS/MSD) samples were collected to simulate the background effect and interferences found in the actual samples. The calculated percent recovery of the spike is used as a measure of the accuracy of the total analytical method. MS/MSD samples were collected at a rate of one per 20 field samples. A total of two MS/MSD samples were collected (MRC-PW04 and MRC-MPI-5S).

Per the procedures outlined in the 2007 work plan, volatile organic analysis vials were filled leaving no headspace. Upon collection, all samples were labeled and immediately placed in a cooler with ice. The samples were then packaged and the cooler was shipped to the laboratory with chain of custody (COC) documents prepared in accordance with the 2007 work plan (EEEPC 2007b).

#### 2.1.2 Monitoring Well Inspections

During groundwater sampling, EEEPC conducted a brief inspection of all existing groundwater monitoring, pumping, and recovery wells proposed for sampling. The purpose of these inspections was to determine and document the physical condition of the wells and to identify maintenance actions required to keep the wells operational. The results of the inspections are documented on Table 2-3.

| New Yo            | Drk               |              |                                                              |
|-------------------|-------------------|--------------|--------------------------------------------------------------|
|                   | Data              | PVC<br>Well  |                                                              |
| Well/Borehole No. | Date<br>Inspected | Casing<br>ID | Inspection Observations/Maintenance Required                 |
| EE-1              | 5/11/09           | 2            | Replace concrete pad, possibly with asphalt                  |
| EE-2              | 5/11/09           | 2            | Bolts stripped                                               |
| ESI-1 Replacement | 5/11/09           | 2            | Covered by construction debris                               |
| ESI-3             | 5/11/09           | 2            | Difficult to close; J-plug does not fit properly under cap   |
| ESI-5             | 5/11/09           | 2            | Inner casing cracked, outer cover damaged, inner well cap    |
|                   |                   |              | doesn't fit properly; lower 3 feet of approximately 15-foot- |
|                   |                   |              | deep well now filled with debris.                            |
| ESI-6             | 5/11/09           | 2            | Rusty lock                                                   |
| MPI-1S            | 5/11/09           | 2            | None                                                         |
| MPI-3S            | 5/11/09           | 2            | None                                                         |
| MPI-4S            | 5/11/09           | 2            | Covered by construction debris                               |
| MPI-4I            | 5/11/09           | 2            | None                                                         |
| MPI-5S            | 5/11/09           | 2            | None                                                         |
| MPI-6S            | 5/11/09           | 2            | None                                                         |
| MPI-7I            | 5/11/09           | 2            | Bolts stripped, no inner cap or room for cap; lower ap-      |
|                   |                   |              | proximately 25 feet of approximately 40-foot-deep well       |
|                   |                   |              | now filled with debris.                                      |
| MPI-8S            | 5/11/09           | 2            | Could not located; in 2007, lower approximately 11.5 feet    |
|                   |                   |              | of approximately 18-foot-deep well now filled with debris.   |

#### Table 2-3 2009 Well Inspection Summary Results, Mr. C's Dry Cleaners, East Aurora, New York

#### 2. Mr. C's Dry Cleaners 2009 Field Activities

#### Table 2-3 2009 Well Inspection Summary Results, Mr. C's Dry Cleaners, East Aurora, New York

| New to            |           |             |                                                       |
|-------------------|-----------|-------------|-------------------------------------------------------|
|                   |           | PVC<br>Well |                                                       |
| ····              | Date      | Casing      |                                                       |
| Well/Borehole No. | Inspected | ID          | Inspection Observations/Maintenance Required          |
| MPI-10B           | 5/11/09   | 2           | None                                                  |
| MPI-12B           | 5/11/09   | 2           | None                                                  |
| MPI-13B           | 5/11/09   | 2           | Paved over                                            |
| MPI-14B           | 5/11/09   | 2           | Paved over                                            |
| MPI-15B           | 5/11/09   | 2           | Replace pad                                           |
| MW-04             | 5/11/09   | 4           | Covered by construction debris                        |
| MW-07             | 5/11/09   | 2           | None                                                  |
| MW-08             | 5/11/09   | 2           | One bolt missing, needs new J-plug                    |
| PW-02             | 5/11/09   | 4           | One bolt missing                                      |
| PW-03             | 5/11/09   | 4           | Pump leaking (immediately corrected by O & M contrac- |
|                   |           |             | tor)                                                  |
| PW-04             | 5/11/09   | 4           | One bolt missing                                      |
| PW-05             | 5/11/09   | 4           | One bolt missing                                      |
| PW-06             | 5/11/09   | 4           | Two bolts missing                                     |
| PW-07             | 5/11/09   | 4           | None                                                  |
| PW-08             | 5/11/09   | 4           | None                                                  |
| RW-01             | 5/11/09   | 6           | Bolts stripped                                        |

Key:

ID = Inner diameter.

MW = Monitoring well.

PVC = Polyvinyl chloride.

PW = Pumping well.

TOIC = Top of inner casing.

Based on the inspections, required well maintenance includes replacing missing or stripped bolts; installing new asphalt/concrete pads, a new well cover, and a new water-tight inner well plug ("J-Plug"); and repairing a portion of cracked casing.

#### 2.2 Investigation-Derived Waste Management

All investigation-derived waste (IDW) generated during the groundwater sampling activities was handled according to procedures outlined in the work plan. Decontamination water and purged groundwater were the only IDWs generated during the fieldwork. Decontamination water and purged groundwater were pumped into the equalization holding tank at the on-site groundwater treatment system for treatment and disposal along with extracted groundwater.

# Physical Characteristics of the Study Area

### 3.1 Physiography

The site is located in the village of East Aurora, New York. The village of East Aurora is located at the boundary of the New York State (NYS) Allegheny Plateau and Lake Erie/Ontario lowland physiographic provinces. North-south valleys dissect the Allegheny Plateau in this area, with the village of East Aurora located at the north end of the east branch of the pre-glacial Cazenovia Creek (Blackmon 1956).

## 3.2 Topography

The site lies at the edge of the Allegheny Plateau. Topography is truncated to the south and east of the village where Cazenovia Creek exits the Allegheny Plateau and enters the Lake Erie/Ontario lowland. The Erie/Ontario lowland slopes gently north and west toward Lake Erie (Malcolm Pirnie, Inc. 1995). The topography of the area surrounding the site is relatively flat with some low areas at the rear of properties along Main Street. A railroad viaduct is presently approximately 15 feet above ground. East Aurora lies within the Erie Niagara basin bordering Lake Erie and Niagara River. Tannery Brook and Cazenovia Creek run approximately 0.25 mile north and one mile south of the site, respectively. The two surface water bodies flow into Buffalo River and into Lake Erie (approximately 12.5 miles west of the site).

## 3.3 Geology

The site is located in a residential/commercial area with both paved and unpaved (lawns and soil fill) sections. The site is situated on top fill overlaying glacial deposits deposited during the last glacial ice.

#### 3.3.1 Bedrock

The site is situated on top of the buried bedrock valley of Cazenovia Creek. The Rhinestreet Shale member of the West Falls Formation is the uppermost bedrock unit beneath the site and surrounding area. The Rhinestreet Shale consists of slightly petroliferous, fissile-to-massive, black shale interbedded with medium and dark gray shales in the upper third of the Rhinestreet member. Bedrock underneath the site is estimated at 150 to 200 feet below ground surface (BGS)

(Malcolm Pirnie, inc. 1995). East and west of the buried valley, bedrock is found at 20 to 30 feet BGS.

#### 3.3.2 Overburden

Unconsolidated sediments at the site consist primarily of fill, glacial outwash, lacustrine deposits, and glacial till. During the 1994 RI (Malcolm Pirnie, Inc. 1995), fill was found to approximately 11 feet BGS. Fill underneath the Mr. C's site was described as clayey silt with gravel overlaying gravel with clayey silt and trace of brick fragments. The fill is underlain by 4 to 7 feet glacial till composed of brown clayey silt with varying amounts of shale fragments. The RI identified three stratigraphic units below the fill and till. These stratigraphic units are described below.

#### **Gravel and Sand Outwash**

Glacial outwash, encountered in each RI borehole, grades from sandy gravel near the top of the unit to very fine sand at the base. The outwash is approximately 27 feet thick, consisting of 2 to 26 feet of gravel followed by 1.5 to 12 feet of medium-to-coarse sand with varying amounts of fine sand. Fine and very fine sands were encountered at the base of the outwash unit in most of the RI borings (Malcolm Pirnie, Inc. 1995).

#### **Lacustrine Deposits**

The glacial outwash is underlain by lacustrine sandy silt. The lacustrine deposits were encountered at an approximate elevation of 888 feet above mean sea level (AMSL) and ranged in thickness between 11.5 and 14.5 feet. These deposits may liquify when disturbed, are uniform, and are characterized by mostly silt and fine to very fine sand (Malcolm Pirnie, Inc. 1995).

#### Stratified Till and Sand

A sequence of stratified interbedded fine-grained till and sand underlies the lacustrine deposits. It was encountered at 90 feet BGS in the deepest exploratory RI boring. This layer was found to be approximately 49.5 feet thick.

This sequence contains lenses of stratified medium and fine sand interbedded with clayey silt and silty clay till layers. The two lithologies are separated by a sharp contact with the sand layers varying in thickness from thin laminae to 3 feet and the till ranging in thickness from thin laminae to layers 5 to 11 feet thick (Malcolm Pirnie, Inc. 1995).

#### 3.4 Hydrostratigraphic Units

The 1994 RI identified three major hydrostratigraphic units at the site including an unconfined aquifer of saturated outwash deposits (outwash aquifer); the underlying lacustrine aquifer; and a confining layer consisting of the stratified till deposits (Malcolm Pirnie, Inc. 1995). The outwash and lacustrine aquifers are hydrauli-

cally connected, with nearly the same hydraulic heads. However, they are characterized by different hydraulic conductivities and porosities.

#### **Outwash Aquifer**

The outwash aquifer is an unconfined aquifer with a saturated thickness of approximately 18 feet. Wells screened across the entire outwash aquifer exhibited a geometric mean hydraulic conductivity of 0.004 centimeter per second (cm/s). Precipitation and infiltration are the main recharge sources for this aquifer with possible exfiltration from sewers located above the water table.

#### Lacustrine Aquifer

The lacustrine aquifer is a rather uniform aquifer with a saturated thickness of approximately 13 feet. Wells screened across the lacustrine aquifer exhibited hydraulic conductivities that ranged from  $1.5 \ge 10^{-4}$  to  $4.9 \ge 10^{-4}$  cm/s. During the RI, groundwater flow appeared very similar to the outwash aquifer groundwater flow.

#### **Stratified Till Unit**

The confining stratified till unit consists of interbedded layers of clayey till and sand with average permeabilities measured for the clayey unit of 4.8 cm/s. Clay content in the unit ranged between 23.3 and 39.9%. The average hydraulic conductivity for the unit was estimated at 8.8 x  $10^{-6}$  cm/s (Malcolm Pirnie, Inc. 1995). An upward vertical hydraulic gradient for this unit was calculated on January 1995 indicating that the water table aquifer beneath the site is not the source of recharge to the stratified till unit (Malcolm Pirnie, Inc. 1995).

#### 3.5 Hydrogeology

In August 2007, the groundwater flow direction was radial, with a groundwater mound generally centered near the intersection of Main and Paine streets. This resulted in a groundwater flow divide where groundwater east of Whaley and Paine streets flowed to the east, northeast, and southeast with some flow to the south; and groundwater to the west of Whaley and Paine streets flowed to the west, northwest, and southwest, with some flow to the north. The groundwater gradient on the western half of the site was measured at 0.003 feet per foot (ft/ft), or generally flat; on the eastern half of the site, the gradient was measured at 0.001 ft/ft, also generally flat (EEEPC 2007a). Hydraulic gradients identified during the RI ranged from 0.004 to 0.002 ft/ft (with essentially no vertical flow) for the outwash aquifer and ranged between 0.002 to 0.003 ft/ft for the lacustrine aquifer (Malcolm Pirnie, Inc. 1995).

Groundwater elevation isopleths for the May 2009 data are depicted on Figure 3-1. In May 2009, a groundwater mound was again located at the southwest corner of Main Street and Paine Street, with radial flow to the north, south, east, and west. From Main Street northward, groundwater flow was primarily to the north

#### 3. Physical Characteristics of the Study Area

and northwest, towards areas of low elevation, especially pumping wells PW-3, PW-5, PW-6, and PW-8. This created a flow divide, with groundwater north of this line of pumping wells flowing to the south. The magnitude of the horizontal flow gradient varies throughout the area, depending on proximity to the pumping wells. The gradient is steep (high relative magnitude) north of Main Street in the vicinity of the pumping wells, but it is relatively shallow south of Main Street in the area of the First Presbyterian Church. The depth of groundwater beneath the site in May 2009 ranged from approximately 7 to 12 feet in the monitoring wells but was as deep as 23 feet in some active pumping wells (see Table 3-1).

| Table 3-1 2009 Gr |             |             | TOIC        | Water | ast Autora, I | ICW TOTK |
|-------------------|-------------|-------------|-------------|-------|---------------|----------|
|                   | Water Level | Measured    | Casing      | Level | Water         |          |
|                   | Measurement | Well Depth  | Elevation   | (feet | Elevation     | Unit     |
| Well ID           | Date        | (feet TOIC) | (feet AMSL) | TOIC) | (feet AMSL)   | Screened |
| EE-1              | 5/11/09     | 27.51       | 913.46      | 8.13  | 905.33        | OA       |
| EE-2              | 5/11/09     | 31.94       | 916.3       | 12.02 | 904.28        | OA       |
| ESI-1 Replacement | NA          | NA          | 916.99      | NA    | NA            | OA       |
| ESI-3             | 5/11/09     | NA          | 915.85      | DRY   | DRY           | OA       |
| ESI-5             | 5/11/09     | 21.16       | 912.64      | 11.15 | 901.49        | OA       |
| ESI-6             | 5/11/09     | 16.68       | 914.48      | 10.25 | 904.23        | OA       |
| MW-4              | NA          | NA          | 914.02      | NA    | NA            | OA       |
| MW-7              | 5/11/09     | 14.25       | 915.96      | 10.90 | 905.06        | OA       |
| MW-8              | 5/11/09     | 13.92       | 915.62      | 11.00 | 904.62        | OA       |
| MW-14             | 5/11/09     | NA          | NA          | NA    | NA            | OA       |
| MPI-1S            | 5/11/09     | 19.21       | 915.08      | 10.20 | 904.88        | OA       |
| MPI-3S            | 5/11/09     | 18.00       | 914.4       | 10.21 | 904.19        | OA       |
| MPI-4S            | NA          | NA          | 914.82      | NA    | NA            | OA       |
| MPI-4I            | 5/11/09     | 42.17       | 915.66      | 10.99 | 904.67        | LA       |
| MPI-5S            | 5/11/09     | 17.91       | 916.45      | 11.55 | 904.90        | OA       |
| MPI-6S            | 5/11/09     | 22.27       | 915.03      | 10.93 | 904.10        | OA       |
| MPI-7I            | 5/11/09     | 15.09       | 916.14      | 10.88 | 905.26        | LA       |
| MPI-10B           | 5/11/09     | 31.73       | 915.68      | 10.80 | 904.88        | OA       |
| MPI-12B           | 5/11/09     | 35.13       | 911.19      | 6.92  | 904.27        | OA       |
| MPI-13B           | NA          | NA          | 913.25      | NA    | NA            | OA       |
| MPI-14B           | NA          | NA          | 913.18      | NA    | NA            | OA       |
| MPI-15B           | 5/11/09     | 28.78       | NA          | 9.00  | NA            | OA       |
| PW-2              | 5/11/09     | NA          | 915.58      | 19.10 | 896.48        | OA       |
| PW-3              | 5/11/09     | NA          | 916.20      | 23.00 | 893.20        | OA       |
| PW-4              | 5/11/09     | NA          | 915.21      | 22.90 | 892.31        | OA       |
| PW-5              | 5/11/09     | NA          | 914.77      | 14.00 | 900.77        | OA       |
| PW-6              | 5/11/09     | NA          | 915.42      | 21.46 | 893.96        | OA       |
| PW-7              | 5/11/09     | NA          | 914.90      | 10.89 | 904.01        | OA       |

#### Table 3-1 2009 Groundwater Elevations, Mr. C's Dry Cleaners Site, East Aurora, New York

#### 3. Physical Characteristics of the Study Area

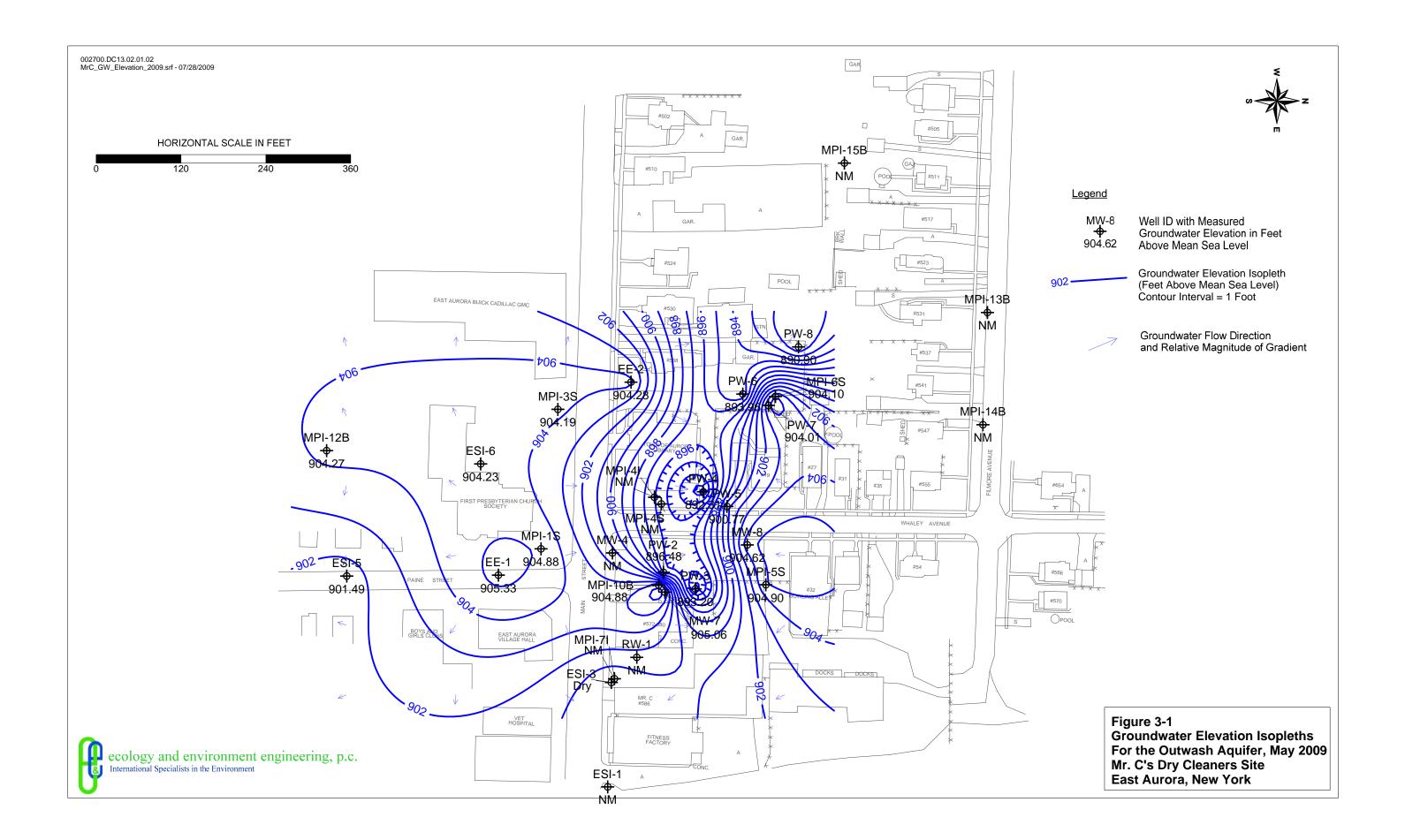
|         | Well Depth                     |                                                       | Water<br>Level<br>(feet<br>TOIC)                                                                                         | Water<br>Elevation<br>(feet AMSL)                                                                                                    | Unit<br>Screened                                                                                                                                                                            |
|---------|--------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5/11/09 | NA                             | 911.35                                                | 20.45                                                                                                                    | 890.90                                                                                                                               | OA                                                                                                                                                                                          |
| 5/11/09 | 24.48                          | NA                                                    | NA                                                                                                                       | NA                                                                                                                                   | OA                                                                                                                                                                                          |
|         | Measurement<br>Date<br>5/11/09 | Date         (feet TOIC)           5/11/09         NA | Water Level<br>Measurement<br>DateMeasured<br>Well Depth<br>(feet TOIC)Casing<br>Elevation<br>(feet AMSL)5/11/09NA911.35 | Water Level<br>MeasurementMeasured<br>Well DepthCasing<br>ElevationLevel<br>(feetDate(feet TOIC)(feet AMSL)TOIC)5/11/09NA911.3520.45 | Water Level<br>Measurement<br>DateMeasured<br>Well Depth<br>(feet TOIC)Casing<br>Elevation<br>(feet AMSL)Level<br>(feet<br>TOIC)Water<br>Elevation<br>(feet AMSL)5/11/09NA911.3520.45890.90 |

#### Table 3-1 2009 Groundwater Elevations, Mr. C's Dry Cleaners Site, East Aurora, New York

Key:

AMSL = Above mean sea level.

OA = Outwash aquier.


LA = Lacustrine aquifer.

PW = Pumping well.

MW = Monitoring well.

TOIC = Top of inner casing.

NA = Not available.



# 4

# Nature and Extent of Contamination

This section discusses the analytical results for the 2009 samples for the Mr. C's Dry Cleaners site and compares the results with prior sampling conducted by EEEPC. A short summary of the results of previous investigations (including the 1994 RI) is also provided in Section 4.1.

The analytical results for groundwater samples collected since 2002 are presented on Figure 4-1 (see back pocket). The 2009 analytical results are also summarized in Table 4-1. The complete laboratory data packs for the 2009 samples will be provided under separate cover.

Independent data validation of the analytical results was performed by EEEPC. The data usability summary report (DUSR) is provided as Appendix B.

During the 2009 field activities, groundwater samples were collected from 23 wells. The groundwater sample analytical results were screened against the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1, Class GA Drinking Water Standards and Guidance Values (NYSDEC 1998).

#### 4.1 Summary of Results from Previous Investigations

Investigations conducted prior to the 1995 RI (Malcolm Pirnie, Inc. 1995) detected PCE and other chlorinated solvents in the groundwater, soil gas, and sewers in the vicinity of the Mr. C's site. The highest concentrations of PCE in soil gas and groundwater were found near the Mr. C's sanitary sewer lateral. These investigations indicated the Mr. C's site as the possible source of PCE in the groundwater and soil gas.

It was determined that the PCE levels found in the sewers were consistent with a source located at the Mr. C's site (migration possibly occurring along sanitary sewers). It was also concluded that groundwater is an important migration pathway.

The 1995 Malcolm Pirnie, Inc., RI found the highest concentration of PCE beneath the Mr. C's building. The RI also determined the horizontal and vertical extents of the contamination and found that other contaminants at the site

| Analyte                         | Screening<br>Criteria <sup>(1)</sup> | MRC-EE-1<br>05/12/09 | MRC-MW-EE2<br>05/12/09 | MRC-ESI-5<br>05/12/09 | MRC-ESI-6<br>05/12/09 | MRC-MPI-1S<br>05/12/09 | MRC-MPI-1S/D<br>05/12/09 |
|---------------------------------|--------------------------------------|----------------------|------------------------|-----------------------|-----------------------|------------------------|--------------------------|
| Volatile Organic Compounds by S |                                      |                      |                        |                       |                       |                        |                          |
| 1,1,1-Trichloroethane           | 5                                    | 12                   | 5 U                    | 5 U                   | 5 U                   | 5 U                    | 5 U                      |
| Bromodichloromethane            | 50                                   | 5 U                  | 5 U                    | 5 U                   | 5 U                   | 5 U                    | 5 U                      |
| Chloroform                      | 7                                    | 5 U                  | 5 U                    | 5 U                   | 5 U                   | 5 U                    | 5 U                      |
| cis-1,2-Dichloroethene          | 5                                    | 5 U                  | 7.5                    | 5 U                   | 37                    | 5 U                    | 1.1 J                    |
| Methyl tert-butyl ether         | 10                                   | 1.6 J                | 130                    | 5 U                   | 7.4                   | 5 U                    | 5 U                      |
| Tetrachloroethene               | 5                                    | 4.5 J                | 5 U                    | 5 U                   | 320 J                 | 54                     | 49                       |
| trans-1,2-Dichloroethene        | 5                                    | 5 U                  | 5 U                    | 5 U                   | 5 U                   | 5 U                    | 5 U                      |
| Trichloroethene                 | 5                                    | 5 U                  | 5 U                    | 5 U                   | 17                    | 1.2 J                  | 1.1 J                    |
| Vinyl chloride                  | 2                                    | 5 U                  | 38                     | 5 U                   | 5 U                   | 5 U                    | 5 U                      |

\*Duplicate sample of MRC-MPI-1S

| Analyte                          | Screening<br>Criteria <sup>(1)</sup> | Sample ID:<br>Date: |       | MRC-MPI-4I<br>05/12/09 | MRC-MPI-5S<br>05/12/09 | MRC-MPI-6S<br>05/12/09 | MRC-MPI-7 | MRC-MPI-10B<br>05/12/09 |
|----------------------------------|--------------------------------------|---------------------|-------|------------------------|------------------------|------------------------|-----------|-------------------------|
| Volatile Organic Compounds by SV |                                      |                     |       |                        |                        |                        |           |                         |
| 1,1,1-Trichloroethane            | 5                                    |                     | 5 U   | 5 U                    | 5 U                    | 5 U                    | 1.1 J     | 5 U                     |
| Bromodichloromethane             | 50                                   |                     | 5 U   | 5 U                    | 5 U                    | 5 U                    | 1.9 J     | 5 U                     |
| Chloroform                       | 7                                    |                     | 5 U   | 5 U                    | 5 U                    | 5 U                    | 11 J      | 5 U                     |
| cis-1,2-Dichloroethene           | 5                                    |                     | 5 U   | 780 J                  | 7.7                    | 14                     | 18        | 3.3 J                   |
| Methyl tert-butyl ether          | 10                                   |                     | 190 J | 13                     | 5 U                    | 1.8 J                  | 5 U       | 5 U                     |
| Tetrachloroethene                | 5                                    |                     | 10 UJ | 640 J                  | 15 J                   | 8100 J                 | 490 J     | 450 J                   |
| trans-1,2-Dichloroethene         | 5                                    |                     | 5 U   | 4.4 J                  | 10                     | 5 U                    | 5 U       | 5 U                     |
| Trichloroethene                  | 5                                    |                     | 5 U   | 180                    | 3.6 J                  | 94                     | 6.5       | 5.1                     |
| Vinyl chloride                   | 2                                    |                     | 5 U   | 5 U                    | 2.7 J                  | 5 U                    | 5 U       | 5 U                     |

| Analyte                       | Screening<br>Criteria <sup>(1)</sup> | Sample ID:<br>Date: |       | MRC-MPI-15E<br>05/12/09 | 3 MRC-MW-07<br>05/12/09 | / MRC-MW-08<br>05/12/09 | MRC-PW02<br>05/11/09 | MRC-PW02/D<br>05/11/09 |
|-------------------------------|--------------------------------------|---------------------|-------|-------------------------|-------------------------|-------------------------|----------------------|------------------------|
| Volatile Organic Compounds by |                                      |                     |       |                         |                         |                         |                      |                        |
| 1,1,1-Trichloroethane         | 5                                    |                     | 5 U   | 5 U                     | 5 U                     | 5 U                     | 5 U                  | 5 U                    |
| Bromodichloromethane          | 50                                   |                     | 5 U   | 5 U                     | 5 U                     | 5 U                     | 5 U                  | 5 U                    |
| Chloroform                    | 7                                    |                     | 5 U   | 5 U                     | 5 U                     | 5 U                     | 5 U                  | 5 U                    |
| cis-1,2-Dichloroethene        | 5                                    |                     | 16    | 5 U                     | 5 U                     | 9.4                     | 2.8 J                | 2.3 J                  |
| Methyl tert-butyl ether       | 10                                   |                     | 90    | 7.4                     | 5 U                     | 5 U                     | 5 U                  | 5 U                    |
| Tetrachloroethene             | 5                                    |                     | 2.8 J | 5 U                     | 700 J                   | 210 J                   | 1200 J               | 1100 J                 |
| trans-1,2-Dichloroethene      | 5                                    |                     | 5 U   | 5 U                     | 1.7 J                   | 12                      | 3.4 J                | 4.1 J                  |
| Trichloroethene               | 5                                    |                     | 5 U   | 5 U                     | 1.4 J                   | 16                      | 7.5                  | 7.3                    |
| Vinyl chloride                | 2                                    |                     | 5 U   | 5 U                     | 5 U                     | 5 U                     | 5 U                  | 5 U                    |

\*Duplicate sample of MRC-PW02

| Analyte                          | Screening<br>Criteria <sup>(1)</sup> | MRC-PW03<br>05/11/09 | MRC-PW04<br>05/11/09 | MRC-PW05<br>05/11/09 | MRC-PW06<br>05/12/09 | MRC-PW07<br>05/11/09 | MRC-PW08<br>05/11/09 | MRC-RW01<br>05/12/09 |
|----------------------------------|--------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Volatile Organic Compounds by SV | N8260 (µg/L)                         |                      |                      |                      |                      |                      |                      |                      |
| 1,1,1-Trichloroethane            | 5                                    | 5 U                  | 5 U                  | 5 U                  | 5 U                  | 5 U                  | 10 U                 | 1.3 J                |
| Bromodichloromethane             | 50                                   | 5 U                  | 5 U                  | 5 U                  | 5 U                  | 5 U                  | 10 U                 | 5 U                  |
| Chloroform                       | 7                                    | 5 U                  | 5 U                  | 5 U                  | 5 U                  | 5 U                  | 10 U                 | 1 J                  |
| cis-1,2-Dichloroethene           | 5                                    | 4.3 J                | 34                   | 21                   | 300 J                | 5.7                  | 30                   | 2.4 J                |
| Methyl tert-butyl ether          | 10                                   | 5 U                  | 64                   | 2.6 J                | 37                   | 5 U                  | 4.2 J                | 5 U                  |
| Tetrachloroethene                | 5                                    | 300 J                | 2400 J               | 4000 J               | 340 J                | 1400 J               | 200 J                | 190 J                |
| trans-1,2-Dichloroethene         | 5                                    | 6.2                  | 3.9 J                | 12                   | 3.9 J                | 5 U                  | 10 U                 | 5 U                  |
| Trichloroethene                  | 5                                    | 6                    | 100                  | 140                  | 120                  | 29                   | 28                   | 1.5 J                |
| Vinyl chloride                   | 2                                    | 5 U                  | 5 U                  | 5 U                  | 5 U                  | 5 U                  | 10 U                 | 5 U                  |

Note:

Shaded cells exceed the screening value.

(1) New York State Department of Environmental Conservation, Technical and Operational Guidance Series Memorandum #1.1.1: *Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations*, 1998 (with updates), Class GA Groundwater.

#### Key:

J = Estimated value.

U = Not detected at the reported value.

 $\mu g/L =$  Micrograms per liter.

#### 4. Nature and Extent of Examination

consisted of petroleum hydrocarbons and VOCs, including compounds resulting from PCE degradation. The RI concluded that substantial VOC contamination is present in the outwash aquifer (upper unconfined aquifer in saturated glacial outwash sand and gravel). It was determined that PCE distribution in the lacustrine aquifer (saturated sand and silt lacustrine deposits) is more localized and at lower levels. The RI also concluded that the Agway property's existing well network adequately defined the limits of the petroleum hydrocarbon groundwater plume. The RI did not define the extent of the petroleum hydrocarbon plume west/southwest of the First Presbyterian Church. The RI identified the leading edges of the chlorinated organics groundwater plume. The RI identified leakage from the Mr. C's sanitary sewer lateral as the suspected original mechanism of PCE release to groundwater. The RI suggested that the presence of PCE and PCE degradation by-products south of Main Street are either the result of migration from the Mr. C's site or PCE originating from a different source. The RI found no evidence of migration of denser-than-water nonaqueous-phase liquid (DNAPL) PCE to the lacustrine sandy silt or substantial accumulation of DNAPL. RI analytical data indicated an increase of chlorinated VOCs with depth in the outwash aquifer, with the highest concentrations occurring near the base of the outwash aquifer in a narrow elongated plume extending downgradient (northwest) from the Mr. C's building.

#### 4.2 Summary of Previous Subsurface Soil Results

A previous subsurface soil sample was collected immediately above the water table from each of the three boreholes located in the parking lot on the south side of the First Presbyterian Church, 9 Paine Street, which were installed in May 2004 (see Figure 1-1). A second sample was collected from borehole BH-2. These subsurface soil samples were analyzed for Target Compound List (TCL) VOCs. Soil cores were scanned for VOCs by the EEEPC team using a photoionization detector (PID). PID readings above background were obtained in borehole BH-1 (0.5 part per million [ppm]) in the 6-to-8-foot soil core (sample collected) and in borehole BH-2 in the 0.5-to-2-foot (100.2 ppm [sample collected]) and 2-to-4-foot (2.4 ppm) soil cores. Orange stains were observed in the 4-to-6-foot soil core from BH-2 and the 2-to-4-foot soil core from BH-3.

Four VOCs were detected in the soil samples, including acetone (a common laboratory contaminant), cis-1,2-dichloroethene (DCE), PCE, and trichloroethene (TCE). All VOCs were detected at concentrations below NYSDEC soil cleanup objectives (NYSDEC 1994). Acetone was detected only in the samples from borehole BH-2 at estimated concentrations ranging between 4.57 and 4.92 micrograms per kilogram ( $\mu$ g/kg). Acetone was the only VOC detected in the shallow soil sample collected from the 0.5-to-1.5-foot interval from borehole BH-2. The deeper sample from the same borehole collected from the 6-to-7-foot interval contained acetone, cis-1,2-DCE, and PCE.

PCE concentrations ranged between 29.7 micrograms per kilogram ( $\mu$ g/kg) (in the deeper sample from borehole BH-2) and 77.4  $\mu$ /kg (in the 6-to-8-foot depth interval sample from borehole BH-1). TCE was only detected in boreholes BH-1 and BH-3 at concentrations ranging between 2.3  $\mu$ g/kg (in the 7-to-8-foot depth interval sample from BH-3) and 4.52  $\mu$ g/kg (in the BH-1 sample). Concentrations of cis-1,2-DCE ranged between 0.894  $\mu$ /kg (in the deeper sample from BH-2) and 4.54  $\mu$ /kg (in the sample from BH-1).

#### 4.3 2009 Groundwater Results

In May 2009, groundwater samples were collected from 23 monitoring and pumping wells and analyzed for VOCs. A summary of positive analytical results is presented in Table 4-1.

Nine VOCs were detected in the groundwater samples, eight of which were detected in at least one sample at concentrations that exceeded the NYSDEC Class GA groundwater standards and guidance values (NYSDEC 1998). The primary contaminant of concern remains PCE and its breakdown products, TCE and cis-1,2-DCE. The highest concentration of PCE detected in monitoring wells in May 2009 was 8,100 µg/L in MPI-6S, which is located in the rear of 538 Main Street (see Table 4-1 and Figure 4-1). Several other monitoring wells also contained PCE at concentrations between 200 and 1,000 µg/L, including ESI-6, MPI-10B, MPI-4I, MPI-7I, MW-7, and MW-8. All pumping wells contained PCE at concentrations ranging from 190 to 2,400  $\mu$ g/L. The maximum TCE concentration detected in May 2009 was 180 µg/L in monitoring well MPI-4I. Most other TCE detections were less than  $20 \,\mu g/L$  except at pumping wells. The highest cis-1,2-DCE concentration was also detected at MPI-4I. The concentration detected in this well (approximately 780  $\mu$ g/L) was more than one order of magnitude higher than all other detections, with the exception of approximately  $300 \,\mu g/L$  in pumping well PW-6.

Other compounds detected at concentrations exceeding NYSDEC Class GA groundwater standards and guidance values include:

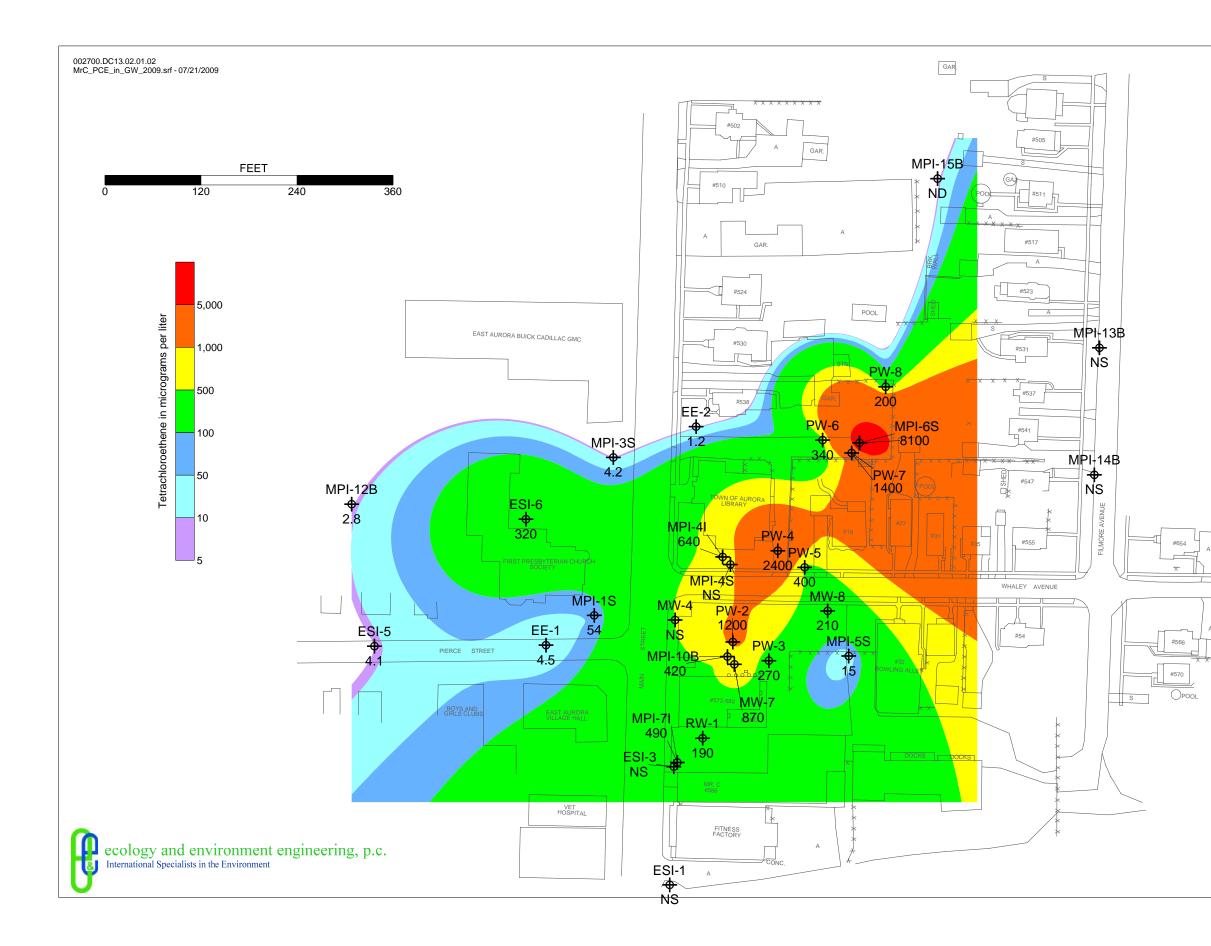
- 1,1,1-Trichloroethane at 12  $\mu$ g/L in EE-1;
- Chloroform at 11 µg/L in MPI-7I;
- Methyl tert-butyl ether (MTBE) at 190 µg/L in MPI-3S;
- Trans-1,2-DCE at  $12 \mu g/L$  in MW-08; and
- Vinyl chloride at  $38 \mu g/L$  in EE-2.

Concentration isopleths of PCE and total chlorinated VOCs (cVOCs) for the May 2009 data are presented on Figures 4-2 and 4-3, respectively.

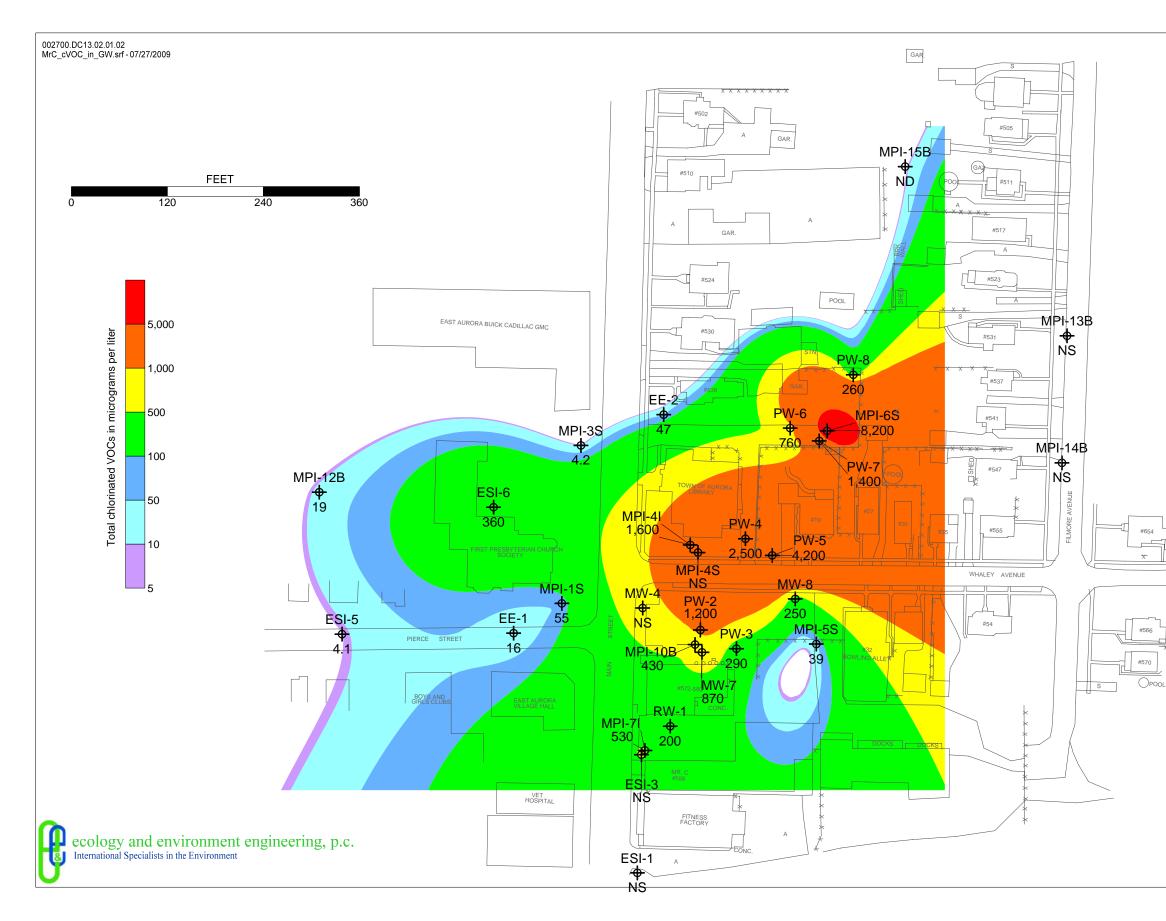
Three minor impacts on data usability were identified during the analytical data review. A trip blank was shipped with the field samples but was not analyzed.

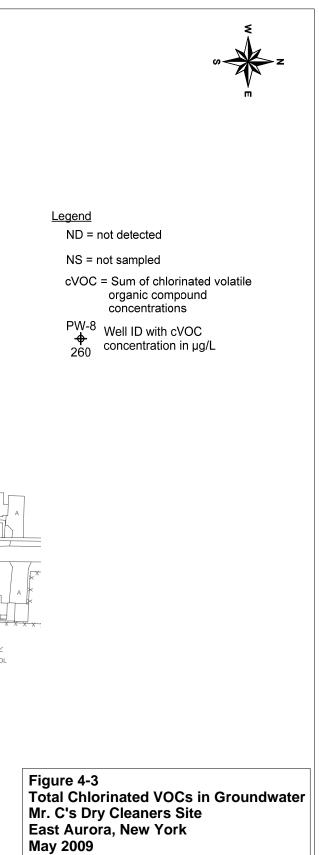
#### 4. Nature and Extent of Examination

The analytical results for the field samples were typical of those detected in the past and are primarily chlorinated VOCs, which are not typically affected by sample storage and shipment. Therefore, no significant impact is anticipated and sample results were not qualified. However, analytical results in Table 4-1 were flagged in "U" (not detected) or "J" (estimated) as appropriate due to low-level method blank contamination and instrument calibration range exceedances. Details of the data review are provided in the DUSRs in Appendix B.


#### **Summary of 2009 Analytical Results**

Groundwater in proximity to the Mr. C's site contains elevated levels of several chlorinated solvents, their breakdown products, and other hydrocarbons. The highest concentrations of PCE (the primary contaminant of concern) and its breakdown products are present in a plume that extends from the Agway property at the northeast corner of Main Street and Whaley Avenue at least 200 feet to the northwest, nearly to Fillmore Avenue. The highest concentrations of PCE and other cVOCs are associated with the pumping wells at the Agway property, behind the town library, and behind 538 Main Street indicating good capture of groundwater contaminants by these wells. An area of elevated PCE concentrations, although significantly lower than in the area described above, also remains near the First Presbyterian Church (ESI-6). Degradation of PCE is evident by the presence of elevated levels of its daughter products (TCE and cis-1,2-DCE). The only non-chlorinated VOC detected in May 2009 was MTBE. This fuel additive was present primarily west of Whaley Avenue and Paine Street, with the highest concentrations detected west of the First Presbyterian Church nearest the automobile dealership. The presence of elevated MTBE levels is not believed to be related to the PCE contamination.


#### **Comparison to Previous Data**


The overall distributions of the total cVOC and PCE contaminant plumes are relatively the same as seen in previous years. Figure 4-1 presents a summary of previous groundwater analytical data since 2002. Figures depicting contaminant concentration isopleths for PCE and cVOC data collected in 2002 and 2004 are presented in EEEPC 2004b. Similar figures for 2007 are presented in EEEPC 2007b. The following is a summary of the findings:

PCE is the primary cVOC detected in the groundwater samples and, in general, the distribution of PCE concentrations is similar to the total cVOC concentration distribution. However, previously, cis-1,2-DCE levels in MW-4 had been consistently higher (approximately two times) than the PCE level in this well. However, the concentration of cis-1,2-DCE and all other cVOCs dropped significantly from 2004 to 2007. This well was covered by construction materials and could not be sampled in 2009.









#### 4. Nature and Extent of Examination

- From 2007 to 2009, the concentrations of PCE and TCE in MPI-4I (near the corner of Main Street and Whaley Avenue) declined by over 50%, whereas the concentration of cis-1,2-DCE increased nearly 5-fold, indicating that natural reductive dechlorination of PCE is occurring in this area.
- The concentrations of PCE in the eight pumping wells (RW-1 and PW2-through PW-8) generally increased from 2002 until 2004/2005. Since that time, many concentrations have decreased but are still significantly higher than in 2002. The groundwater treatment system appears to be drawing the contamination towards the pumping wells, causing an increase in PCE concentrations in these wells since inception of the groundwater treatment system. Concentrations may be declining since historical maxima due to reduction in plume size and natural degradation of the contaminants. The distribution of PCE is consistent with the hydraulic low observed north of the library created by the pumping wells.
- PCE levels in MPI-6S have continually increased from non-detect in 2002 to 8,100 µg/L in 2009, which represents a nearly 2-fold increase in concentration since 2007. This is likely due to the proximity of this well to the pumping wells that draw the contaminant plume to that area for capture and treatment.
- At MPI-5S north of the Agway property, a 3-fold increase in PCE concentration to 15 µg/L was observed from 2007 to 2009; however, the most recent concentration is more than 50% lower than those detected in 2003 and 2004 and is relatively low compared to other areas of the plume.
- At MW-8 along Whaley Avenue north of the Agway property, there was a significant decrease in cVOC concentrations from 2007 to 2009. An approximately 40-fold reduction in TCE and cis-1,2-DCE concentrations was observed. The PCE concentration also decreased by over 4-fold, and vinyl chloride declined from 35 µg/L to non-detect. The May 2009 concentrations of cVOCs in MW-8 were generally the lowest recorded in this well to date.
- The concentrations of PCE and other cVOCs in ESI-6 (adjacent to the First Presbyterian Church) generally decreased from 2002 to 2007 but showed a small increase or have remained similar since 2007. With no recovery wells in the vicinity of this monitoring well, plume characteristics are expected to remain relatively stable, with natural degradation predominating plume cleanup.
- In general, MTBE levels throughout the area have continued to decline since 2002.

### 4. Nature and Extent of Examination

### 4.4 Summary and Conclusions

Groundwater samples were collected from 23 monitoring and pumping wells in May 2009. All groundwater samples were analyzed for VOCs.

Groundwater beneath Mr. C's contains elevated levels of several chlorinated solvents, their breakdown products, and other hydrocarbons. Nine VOCs were detected in at least one groundwater sample, including six cVOCs (PCE, TCE, cis-1,2-DCE, trans-1,2-DCE, vinyl chloride, and 1,1,1-trichloroethane), MTBE, and trihalomethanes (chloroform and bromodichloromethane). Eight of these VOCs were detected at levels that exceeded the NYSDEC Class GA groundwater standards and guidance values used for comparison with the groundwater analytical results (NYSDEC 1998).

In comparison, 14 VOCs were detected in at least one of 29 groundwater samples collected in 2007. In addition to the compounds detected in 2009, BTEX, acetone, cyclohexane, isopropylbenzene, methylcyclohexane, and carbon disulfide were also present in 2007. The lack of detection of these compounds in 2009 indicates that they are transient compounds, possibly resulting from laboratory or field contamination, and are not considered contaminants of concern for this site.

The highest concentrations of PCE and its breakdown by-products occur in an area extending over 200 feet to the northwest from the Agway property towards Fillmore Avenue. The northern and northwestern boundaries of the contaminant plume could not be fully defined due to a lack of wells that could be sampled in this area. Elevated, although significantly lower, levels of cVOCs also occur northwest of the First Presbyterian Church (ESI-6) and immediately west of the Mr. C's site (ESI-3 and RW-1). The distributions of total cVOCs and PCE in the contaminant plume are similar (see Figures 4-2 and 4-3). Based on the interpretation of analytical results using the Surfer modeling program, the area containing the highest levels of contamination has moved slightly westward since 2007; it was formerly centered under the private residences located at 19 and 27 Whaley Avenue. Although concentrations remain high in this area, the maximum concentrations were detected in the rear of 538 Main Street, behind 19 and 27 Whaley Avenue. Aromatic hydrocarbons (BTEX) were not detected in 2009; however, the fuel additive MTBE continues to be present west of the site, with concentrations increasing to the west. The MTBE concentrations detected in 2009 were generally lower than those previously detected.

The concentrations of PCE in pumping wells (RW-1 and PW-2 through PW-8) have generally decreased since 2004 but remain significantly higher than in 2002. The sole exception was PW-5, where the PCE concentration has increased to a maximum in 2009. The groundwater treatment system has created a hydraulic low area drawing the contamination toward the pumping wells, causing an initial increase followed by a long-term decrease in the PCE concentrations in these wells as the plume is remediated.

### References

Blackman, P., 1956. "Glacial Geology of the East Aurora, New York Quadrangle." Unpublished MA Thesis, State University of New York at Buffalo, 100 p.

Ecology and Environment Engineering, P.C. (EEEPC). 2007a. Mr. C's Dry Cleaners 2007 Long-Term Groundwater Sampling and Data Summary Report, East Aurora, New York. Lancaster, New York.

\_\_\_\_\_. 2007b. Work Plan for Operations, Maintenance and Monitoring for Mr. C's Dry Cleaning Site Village of East Aurora, Erie County, New York. Lancaster, New York.

\_\_\_\_\_\_. 2008. Site Management Plan, Mr. C's Dry Cleaners Site, NYSDEC Site No. 9-15-157, Village of East Aurora, Erie County. January 2008.

\_\_\_\_\_. 2004a. Monitoring Well Installation and Sampling Procedures, Mr. C's Dry Cleaners, East Aurora, New York. Lancaster, New York.

\_\_\_\_\_. 2004b. Mr. C's Dry Cleaners 2004 Groundwater and Subsurface Soil Sampling Draft Data Summary Report, July 2004, East Aurora, New York. Lancaster, New York.

Malcolm Pirnie, Inc. 1995. *Remedial Investigation Report, Mr. C Cleaners Superfund Site.* June 1995. Buffalo, New York.

\_\_\_\_\_. 1996. *Feasibility Study Report, Mr. C Cleaners Superfund Site.* November 1996. Buffalo, New York.

\_\_\_\_\_. 1998. Pre-design Investigation Report, M. C's Dry Cleaners Site. December 1998.

\_\_\_\_\_. 1999. Final Pre-design Investigation Report, M. C's Dry Cleaners Site. April 1999.

New York State Department of Conservation (NYSDEC). 1997. Division of Environmental Remediation. *Record of Decision, Mr. C's Dry Cleaners Site, East Aurora (V), Erie County, New York, Site No. 9-15-157.* March 1997.

\_\_\_\_\_.1998. Division of Water Technical and Operational Guidance Series (1.1.1): *Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations*, Division of Water, Albany, New York, with updates.

\_\_\_\_\_. 1994. Technical and Administrative Guidance Memorandum (TAGM) No. 4046, Determination of Soil Cleanup Objectives and Soil Cleanup Levels. Prepared by M.J. O'Toole, Jr., Division of Hazardous Waste Remediation, NYSDEC, Albany, New York.



BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

| WELL PURGE & S | SAMPLE RECORD |
|----------------|---------------|
|----------------|---------------|

|       | 014 Norra (I. a.           | allow Mr Cin Der                             |             |              |                  | RECORD         | WellID     | <br>E                                         | = <b>⊏_1</b>                            |             |
|-------|----------------------------|----------------------------------------------|-------------|--------------|------------------|----------------|------------|-----------------------------------------------|-----------------------------------------|-------------|
|       |                            | ation: <u>Mr C's Dry</u><br>t No.: 002700.DC | • •         |              |                  |                |            | 5/12/                                         |                                         |             |
|       | EEEPC Projec               | ST NO.: 002700.DC                            | 02.01.02    |              |                  | <u></u>        | Date.      | $-9\mu c \mu$                                 | 01                                      | —           |
|       | Initial Depth to           | Water: <u> </u>                              | feet TOIC   |              |                  |                |            | 1004                                          |                                         | ·           |
|       | Total Well I               | Depth: 27-51                                 | feet TOIC 2 | 26.91        |                  | . 1            | End Time:  | <u>    113                               </u> | 0                                       | <del></del> |
| PARUN | Depth to I                 | Pump: 25-51                                  | feet TOIC   | 25           |                  |                | Bailer     | X                                             | Pump                                    |             |
| 5112  | Initial Pump               | Rate:                                        | _Lpm / gpm  |              | · ·              | Pu             | imp Type:  | 12 V Mini T                                   | yphoon                                  |             |
|       | adjus                      | ted to:                                      | at          | <u></u>      | minutes          |                |            | 2                                             | • ·                                     | •           |
|       | adjus                      | ted to:                                      | at          |              | minutes          | 1x We          | ll Volume: | 3.15                                          | gallons 1.                              | 5=320       |
|       |                            | Purge Volume                                 | рН          | Temp.        | ORP              | Conductivity   | DD         | Turbidity                                     | Water                                   |             |
|       | Time                       | (gallons/liters)                             | (s.u.)      | (°C/°F)      | (mV)             | (µS/cm /nS/cm) | (mg/L)     | (NTU)                                         | Level (feet                             | )           |
|       | 1000                       | $\square \bigcirc$                           | 5.45        | 15.Z         | 141              | 6743           |            | 6743                                          |                                         |             |
|       | 1012                       | 1.5                                          | 5,70        | 13.8         | 117              | 6707           | ₩ <b></b>  | >/200                                         | 1                                       |             |
|       | 1018                       | 3                                            | 602         | 13.4         | 92               | 6624           |            | ₽877                                          |                                         | <u> </u>    |
|       | 1024                       | 4.5                                          | 6.32        | 14.0         | 90               | 6563           |            | 726                                           | ·                                       |             |
|       | 1030                       | <u> </u>                                     | 6.68        | 14.6         | 62               | 628            |            | 825                                           |                                         |             |
|       | 1036                       | 7.5                                          | 6.81        | 15.0         | 74               | 6031.          |            | 850                                           |                                         |             |
|       | 1042                       | 9                                            | 6.89        | 15.Z         | 71               | 6002           |            | 723                                           |                                         | _           |
|       | 1048                       | 10.5                                         | 6.97        | 15.1         | 62               | 5720           |            | 412                                           |                                         |             |
|       | 1054                       | 12.0                                         | 7.05        | (5.2         | اھ)              | 5605           |            | 197                                           |                                         |             |
|       | 1100                       | 13.5                                         | 7.08        | 14.8         | 57               | 5584           |            | 161                                           |                                         |             |
|       | 1100                       | 15.0                                         | 7.11        | 14.4         | 55               | 5532           | ·          | 130                                           | <u> </u>                                |             |
|       | 1112                       | 16.5                                         | 7.14        | 14.2         | 58               | 5530           |            | 84                                            |                                         |             |
|       | 1118                       | 18.0                                         | 7.11        | 4.1          | 56               | 5475           |            | 73                                            |                                         |             |
|       | 1124                       | 19.5                                         | 7.10        | 14.0         | 53               | 5472           |            | 32                                            |                                         |             |
|       | 1130                       | 21.0                                         | 7.08        | 13.8         | 50               | 5453           |            | 24                                            |                                         |             |
|       | Final S                    | ample Data:                                  | 7.08        | 13.8         | 50               | 5453           | ·          | ZU                                            |                                         |             |
|       | Sample ID:                 | MRC-EE-1                                     |             |              | -Duplicate?      |                | Samp ID:   |                                               |                                         |             |
|       | Sample Time:               |                                              |             |              | -MS/MSD?         |                |            | <u></u>                                       | · • · • • • • • • • • • • • • • • • • • |             |
|       |                            |                                              | Commonto:   |              |                  |                |            |                                               |                                         |             |
|       | <u>Analyses:</u><br>⊠ VOCs | Methods:                                     | Comments:   |              |                  |                |            |                                               |                                         | —           |
|       |                            | □ CLF.<br>□ SW846                            |             | <u> </u>     |                  |                |            | · · · · · · · · · · · · · · · · · · ·         | ·····                                   | —           |
|       |                            | Drink. Wtr.                                  |             | <u>.</u> =   |                  |                |            |                                               |                                         | <u> </u>    |
|       | □ Metals                   |                                              |             |              | <u> </u>         |                |            |                                               |                                         | _           |
|       |                            |                                              | Sampler(s): | S. Craig, J. | <del>days-</del> |                |            |                                               |                                         | _           |
|       |                            | <u> </u>                                     |             |              |                  |                |            |                                               |                                         | _           |

|       |                                           | ec<br>Inter   | national Specialis                       |                             | V <sup>°</sup> L <sup>™</sup> O™<br>ronment | ment          | enginee          | ering      | , p.c.      |            |           |
|-------|-------------------------------------------|---------------|------------------------------------------|-----------------------------|---------------------------------------------|---------------|------------------|------------|-------------|------------|-----------|
|       | Le la | BUP<br>Tel: 7 | FALO CORPOR<br>716/684-8060, Fa          | ATE CENTER<br>x: 716/684-08 | 368 Pleasa                                  | nt View Drive | , Lancaster, New | York 14086 |             | -          | ·         |
|       |                                           | 10(1 2        | 10,001,0000,10                           |                             |                                             | SAMPLE        | RECORD           |            | E           | EI-2       | ·         |
|       | Site Name/                                | Locat         | ion: .Mr C's Dry                         | Cleaners                    |                                             | ·             |                  | Well ID:   | E           | E-2        |           |
|       |                                           |               | No.: 002700.DC                           |                             |                                             |               |                  | Date:      |             |            |           |
|       |                                           |               | 0 - 7                                    |                             | .'                                          |               | c                | tort Times | 134         | ч <i>О</i> |           |
|       |                                           |               | ater: <u>12.02</u><br>epth: <u>34.79</u> |                             | 2(.34                                       |               |                  |            | 150         |            |           |
| .,    |                                           |               | ump: <u>29,919</u>                       |                             |                                             |               |                  |            | <br>        |            |           |
| Walls |                                           |               |                                          |                             | - I                                         |               |                  |            | 12 V Mini T | •          |           |
| •     |                                           |               | Rate:                                    | _                           |                                             | minutes       |                  |            | 2           |            |           |
|       |                                           |               | d to:                                    | _                           |                                             | minutes       |                  |            | 3.25        |            | × 9.74    |
|       | au                                        | انا استحصاده  |                                          |                             |                                             |               | Conductivity     |            | Turbidity   |            | r. (* * 5 |
|       | Time                                      |               | Purge Volume<br>(gallons/liters)         | рН<br>(s.u.)                | Temp.<br>(⁰C/⁰F)                            | ORP<br>(mV)   | (µS/cm mS/cm)    | (mg/L)     | (NTU)       | Level (fee | t)        |
|       | 134                                       | ~             | (D                                       | 6.97                        | 15.1                                        | -53           | 3127             | unite pi   | >1000       | 12.0       |           |
|       | 1350                                      |               | 31.00                                    | 7.D6                        | 15.7                                        | - 38          | 2960             |            | 71000       | -          |           |
| •     | 1400                                      |               | 2.00                                     | 7.20                        | 15.6                                        | -33           | 2885             |            | 2967        |            |           |
|       | 141                                       | -             | A.OD                                     | 7.44                        | 15.7                                        | - 39          | 2861             | ·          | 634         |            |           |
|       | 14)                                       | 9             | 4.00                                     | 7.20                        | 15.6                                        | -42           | 2857             |            | 428         |            |           |
| •     | 1424                                      | 5             | 5,00                                     | 7.47                        | 14.8                                        | -61           | 2804             |            | 226         |            |           |
|       | 143                                       |               | 6.00                                     | 7.34                        | 15.2                                        | - 80          | 2809             |            | 59          |            |           |
|       | 144                                       | 13            | 7.00                                     | 7.34                        | 14,4                                        | -91           | 2800             |            | 17.9        |            |           |
|       | 145                                       | 0             | 8.00                                     | 7.28                        | 15.4                                        | -81           | 2794             | *****      | 18.1        |            |           |
|       | 1500                                      | 2             | 9.00                                     | 7.48                        | 15.4                                        | -83           | 2790             | -          | 13.1        |            | _         |
|       | 1504                                      | 9             | 10.00                                    | 7.46                        | 15.4                                        | -82           | 2790             |            | 12.8        |            |           |
|       |                                           |               |                                          |                             |                                             |               |                  |            |             |            |           |
|       |                                           |               |                                          |                             |                                             |               |                  |            |             |            |           |
|       |                                           |               |                                          |                             |                                             |               |                  |            |             |            |           |
|       |                                           |               |                                          |                             |                                             |               |                  |            |             |            |           |
|       | Fina                                      | al Sai        | mple Data:                               | 7.46                        | 15.4                                        | -82           | 2790             | -          | 12.8        |            |           |
|       | Sample ID                                 | <b>٠</b>      | MRC-EE-2                                 |                             |                                             | Duplicate?    | Dupe             | Samp ID:   |             |            |           |
|       | Sample Ti                                 | _             | 1510                                     |                             |                                             | MS/MSD?       |                  |            |             | -          |           |
|       |                                           | -             |                                          | Comments:                   |                                             |               |                  |            |             |            |           |
|       | <u>Analyses:</u><br>⊠ VOCs                |               | Methods:                                 | oomments.                   |                                             | <u></u>       |                  |            | ·····       |            | en la en  |
|       |                                           |               | □ SW846                                  |                             | · · · ·                                     |               |                  |            |             |            |           |
|       |                                           |               | Drink. Wtr.                              |                             |                                             |               |                  |            |             |            |           |
|       | □ Metals                                  | ;             | □8260                                    |                             |                                             |               |                  |            |             |            |           |
|       | □                                         |               | □                                        | Sampler(s):                 | S_Craig, J.I                                | Mays B        | Kroon            |            |             |            | _         |

-----

BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

| Site Name/Loc         | cation: Mr C's Dry | Cleaners    |                           |              |                 | Well ID:    | É         | SI-5                |         |
|-----------------------|--------------------|-------------|---------------------------|--------------|-----------------|-------------|-----------|---------------------|---------|
| EEEPC Project         | ct No.: 002700.DC  | 02.01.02    |                           |              |                 | Date;       | 5/12      | 109                 |         |
| ·<br>Initial Depth to | Water: 11.15       | feet TOIC   |                           |              | e               | Start Time: | D95       | 53                  |         |
|                       | 12                 |             |                           |              |                 |             | 10        |                     |         |
| Total Well            | Pump: 19-11-       | feet TOIC   |                           |              | av de           | Bailer      | X         | Pump                |         |
| S Initial Pum         | p Rate:            | Lom / gpm   |                           |              | PI              | umn Tyne:   | Troho     | $\sim$              |         |
|                       | sted to:           | -           |                           | minutes      | Well            | Diameter:   | 2         | inches              | werest. |
|                       | sted to:           | -           |                           | -<br>minutes | 1x We           | l Volume:   | 0.2       | _inches<br>_gallons | = Juck  |
|                       | Purge Volume       |             | Temp.                     | ORP          | Conductivity    | DO          | Turbidity | Water               |         |
| Time                  | (gallons/lite)     |             | (°C(07-)                  | (mV)         | (µS/cm teS/244) |             |           | Level (feet)        |         |
| 0953                  | D.D                | 5.0Z        | 12.6                      | 157          | 1470            |             | 71000     |                     |         |
| 0958                  | 1.0                | 5.82        | 11.8                      | 127          | 1465            |             | 273       |                     |         |
| 1003                  | 1.8                | 6.34        | 11.8                      | 95           | 1057            |             | 216       |                     |         |
| 1008                  | 3.1                | 6.107       | 11.4                      | 810          | 843.4           |             | 244       |                     |         |
| 1013                  | 3.9                | 6.74        | 12.9                      | 89           | 1112            |             | 307       |                     |         |
| 1018                  | 4.6                | 6.87        | 12.8                      | 86           | 1024            |             | 259       |                     |         |
| 1023                  | 5.1                | 7.01        | 12.0                      | 83           | 876.0           |             | 127       |                     |         |
| 1028                  | 5.8                | 7.18        | 12.4                      | 55           | 799.5           |             | 46.5      |                     |         |
| 1033                  | 6.4                | 7.18        | 11.8                      | av \$161     | 769.6           |             | 38.6      |                     |         |
|                       |                    |             |                           |              |                 |             |           |                     |         |
|                       |                    |             |                           |              |                 |             |           |                     |         |
|                       |                    |             |                           |              |                 |             |           |                     |         |
|                       |                    |             |                           |              |                 |             |           |                     | ·       |
|                       |                    |             |                           |              |                 |             |           |                     |         |
|                       |                    | · .         |                           |              |                 |             |           |                     |         |
| Final S               | Sample Data:       | 7.18        | 11.8                      | 101          | 769.6           |             | 38.6      |                     |         |
| Sample ID:            | MRC-ESI-5          |             |                           | Duplicate?   | Dupe            | Samp ID:    |           |                     |         |
| Sample Time           |                    |             |                           | MS/MSD?      |                 | ·           | • - ····  | - <u> </u>          |         |
| <u>Anaiyses:</u>      | Methods:           | Comments:   |                           |              |                 |             |           |                     |         |
| ⊠ VOCs                |                    |             |                           |              |                 |             |           |                     |         |
| □ SVOCs               | □ SW846            |             |                           |              |                 |             |           |                     |         |
|                       | 🗆 Drink. Wtr.      |             |                           |              |                 |             |           |                     |         |
| □ Metals              | □8260              | - <u>-</u>  |                           |              |                 |             | ·         |                     |         |
|                       | □                  | Sampler(s): | <del>S. Gra</del> ig, J.A | Mays_ K.     | Kraan           |             |           |                     |         |

BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

#### WELL PURGE & SAMPLE RECORD

| Site Name/Loc              | ation: <u>Mr C's Dry</u>         | Cleaners       |                           |             |                               | Well ID:     | E                  | SI-6                                  |
|----------------------------|----------------------------------|----------------|---------------------------|-------------|-------------------------------|--------------|--------------------|---------------------------------------|
| EEEPC Projec               | t No.: 002700.DC                 | 02.01.02       |                           |             |                               | Date:        | 5/12               | 09                                    |
|                            | Notes to at                      | foot TOIC      |                           |             | S                             | tart Time    |                    | 15                                    |
|                            | Water: <u>10,25</u>              |                | 608                       |             |                               |              |                    |                                       |
|                            | Pump: 14-68                      |                | 4                         |             |                               |              |                    |                                       |
|                            | -unip: <u>ເສະ ເຊະ</u>            |                |                           |             |                               |              | 12 V Mini T        | •                                     |
| millian ump                |                                  | - <sup> </sup> |                           |             |                               |              |                    |                                       |
|                            | ied to:                          | -              |                           |             |                               |              | 2                  | gallons 3 x                           |
| adjust                     | ied to:                          | -              |                           |             |                               |              |                    |                                       |
| Time                       | Purge Volume<br>(gallons/liters) |                | Temp.<br>(°C/°F)          | DRP<br>(mV) | Conductivity<br>(µS/cm mS/cm) | DD<br>(mg/L) | Turbidity<br>(NTU) | Water<br>Level (feet)                 |
| 1115                       | (genions in terms)               | 6.64           | 12.4                      | 150         | 3622                          | ~            |                    | 10.25                                 |
| 1120                       | 110                              | 6.74           | 12.1                      | 134         | 3697                          |              | 285                |                                       |
| 1125                       | 2.0                              | 6.78           | 12.0                      | 126         | 3714                          |              | 36.1               | · · · · · · · · · · · · · · · · · · · |
| 1130                       | 3.0                              | 6.86           | 12.0                      | 117,        | 3723                          |              | 15.5               |                                       |
| 1135                       | 4.0                              | 6.96           | 12.0                      | 115         | 3713                          |              | 28,5               | · · · · · · · · · · · · · · · · · · · |
|                            | 5.0                              | 12.90          | 13,5                      | 118         | 3709                          |              | 26.7               |                                       |
| 1140                       | 6.0                              | 6.93           | -                         | 122         | 3707                          |              | 26.3               |                                       |
| 1145                       | 7.0                              | 6.97           | 13.1                      | 119         | 3701                          |              | 16.9               |                                       |
| 1150                       |                                  |                |                           |             |                               | <u> </u>     |                    |                                       |
|                            |                                  |                |                           |             |                               |              |                    |                                       |
|                            | 1                                |                |                           |             |                               |              |                    |                                       |
|                            |                                  | ·              |                           |             |                               |              |                    |                                       |
|                            |                                  |                |                           | ·······     |                               |              |                    |                                       |
|                            | · ·                              |                |                           |             |                               |              |                    |                                       |
|                            |                                  |                |                           |             |                               |              |                    |                                       |
| Final S                    | ampie Data:                      | 6.97           | 13.1                      | 119         | 3701                          |              | 16.9               |                                       |
| -                          |                                  |                |                           | Duplicate?  |                               | Samp ID:     |                    |                                       |
| Sample ID:<br>Sample Time: | MRC-ESI-                         |                |                           | MS/MSD?     |                               | oanp io.     |                    |                                       |
| ·                          |                                  |                |                           |             | -                             |              |                    | · ·                                   |
| Analyses:                  | Methods:                         | Comments:      |                           |             |                               |              |                    |                                       |
|                            |                                  |                |                           |             |                               |              |                    |                                       |
|                            | SW846                            |                |                           |             |                               |              |                    |                                       |
| □ PCBs<br>□ Metals         | Drink. Wtr. 8260                 |                |                           |             | v . <del>v</del>              |              |                    |                                       |
|                            | □8280                            |                | <del>S. Graig, J.</del> A |             | <i>th t a a</i>               |              |                    |                                       |

4



BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

| Site Name/Location:       Mr C's Dry Cleaners       Well ID:       MPI-1S         EEEPC Project No.:       002700.DC02.01.02       Date:       5 1 2 0 9         Initial Depth to Water:       10.20       feet TOIC       Start Time:       10.00         Total Well Depth:       19-24       feet TOIC       18-61       End Time:       1140         Depth to Pump:       12-24       feet TOIC       ~17       Bailer       IN Pump         Multiplication       Lpm / gpm       Pump Type:       12 V Mini Typhoon         adjusted to:       at       minutes       1x Well Volume:       1.5       gallons       4.5 | -      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Initial Depth to Water:       10.20       feet TOIC       Start Time:       10.00         Total Well Depth:       14-21       feet TOIC       18.61       End Time:       11.40         Depth to Pump:       14-21       feet TOIC       ~17       Bailer       II.90         W <sup>20</sup> Initial Pump Rate:       Lpm / gpm       Pump Type:       12 V Mini Typhoon         adjusted to:       at       minutes       Well Diameter:       2 inches                                                                                                                                                                   | •<br>• |
| Total Well Depth:       14-24       feet TOIC       18.61       End Time:       1140         Depth to Pump:       14-24       feet TOIC       N17       Bailer       IXI Pump         Joing Initial Pump Rate:       Lpm / gpm       Pump Type:       12 V Mini Typhoon         adjusted to:       at       minutes       Well Diameter:       2 inches                                                                                                                                                                                                                                                                     | •<br>• |
| Total Well Depth:       14-24       feet TOIC 18.61       End Time:       1140         Depth to Pump:       12-24       feet TOIC N17       Bailer       IXI Pump         Joing Initial Pump Rate:       Lpm / gpm       Pump Type:       12 V Mini Typhoon         adjusted to:       at       minutes       Well Diameter:       2 inches                                                                                                                                                                                                                                                                                 | -      |
| Depth to Pump:       Image: feet TOIC       Mini Typhoon         Initial Pump Rate:       Lpm / gpm       Pump Type:       12 V Mini Typhoon         adjusted to:       at       minutes       Well Diameter:       2 inches                                                                                                                                                                                                                                                                                                                                                                                                | -      |
| Pump Rate:        Lpm / gpm       Pump Type:       12 V Mini Typhoon         adjusted to:        at        Mini Typhoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -      |
| adjusted to: at minutes to were volume. To volume to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| Purge Volume         pH         Temp.         DRP         Conductivity         DD         Turbidity         Water           Time         (gallons/liters)         (s.u.)         (°C/°F)         (mV)         (µS/cm mS/cm)         (mg/L)         (NTU)         Level (feet)                                                                                                                                                                                                                                                                                                                                               |        |
| 1000 0 5.31 12.5 207 678.9 - 154 10.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
| 1005 1.0 5.98 12.3 163 649.2 - 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| 1010 2.0 6.08 11.7 156 679.2 - 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| $\frac{1015}{3.0}  \frac{3.0}{6.21}  \frac{11.1}{150}  \frac{174.6}{774.6}  -  10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| 1020 4.0 6.50 11.4 145 777.2 - 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1      |
| 1025 5.0 6,57 11.6 139 921.7 - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| Final Sample Data: 6.61 11.4 132 932.6 - 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2      |
| Sample ID: MRC-MPI-1S Duplicate? Dupe Samp ID: MRC - MPI-1S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -      |
| Sample Time: 1140 MS/MSD?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| Analyses: <u>Methods:</u> Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -      |
| PCBs Drink. Wtr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -      |
| □ Metals □8260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -      |
| □ □ Sampler(s): <del>S≓Grai</del> g, J.Mays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -      |

\_ \_ \_

P

BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

|         | · · ·             |                                  | WEL            | LL PURGE &        |                  | RECORD                       |               |                    |                    |          |
|---------|-------------------|----------------------------------|----------------|-------------------|------------------|------------------------------|---------------|--------------------|--------------------|----------|
|         | Site Name/Loc     | ation: Mr C's Dry                | Cleaners       |                   |                  |                              | Well ID:      | M                  | PI-3S              |          |
|         | EEEPC Projec      | t No.: 002700.DC                 | 02.01.02       |                   |                  | <u></u>                      | Date:         | 5 17               | 209                |          |
|         | Initial Depth to  | Water: 10.21                     | feet TOIC      |                   |                  |                              | Start Time:   | _1121              |                    |          |
|         |                   | Depth: 18-00                     |                | 17.40             |                  |                              | End Time:     | 1140               | Ŷ                  |          |
| در      | Depth to          | Pump: 1000                       | –<br>feet TOIC | N (le             |                  |                              | Bailer        | X                  | Pump               |          |
| Wy (Ble | a<br>Initial Pump | Rate:                            |                |                   |                  |                              | Pump Type:    | 12 V Mini T        | yphoon             |          |
|         |                   | ted to:                          |                |                   | minutes          | W                            | ell Diameter: | 2                  | inches             |          |
|         | adjus             | ted to:                          | at             |                   | minutes          | 1x <sup>1</sup>              | Well Volume:  | 1.27               | gallons            | 3.8      |
|         |                   | Purge Volume<br>(gallons/!iters) |                | Temp.<br>(°C/°T-) | ORP<br>(mV)      | Conductivit<br>(µS/cm m≘/::: |               | Turbidity<br>(NTU) | Water<br>Level (fe | ÷.       |
|         | Time              | 0.7                              | 6.32           |                   | -32              | 3861                         |               | 109                |                    |          |
|         | 11210             | D.5                              | 6.71           | 10.3              | -45              | 3910                         |               | 125                |                    |          |
|         | 1131              |                                  | 6.97           | 10.6              | -46              | 3825                         |               | 96                 |                    |          |
|         | 1136              | 2.6                              | 7.0%           | 10.4              | -60              | 3746                         |               | 48.2               |                    |          |
|         | 114)              | 3.4                              | 7.07           | 10.3              | -62              | 3702                         |               | 24.1               |                    |          |
|         | 1146              | 4.3                              | 7.13           | 10.8              | -63              | 3698                         |               | 23.6               |                    | ·        |
|         |                   |                                  |                |                   |                  |                              |               |                    |                    |          |
|         |                   |                                  |                |                   |                  |                              |               |                    |                    |          |
|         |                   |                                  | · · ·          |                   |                  |                              |               |                    |                    |          |
|         |                   |                                  |                |                   |                  |                              |               |                    |                    |          |
|         |                   |                                  |                |                   |                  |                              |               |                    |                    |          |
|         |                   |                                  |                |                   |                  |                              |               |                    |                    |          |
|         |                   |                                  |                |                   |                  |                              |               |                    |                    |          |
|         | -                 |                                  |                |                   |                  |                              |               |                    |                    |          |
|         |                   |                                  |                |                   |                  | -                            |               | <u> </u>           |                    |          |
|         | Final S           | ample Data:                      | 7.13           | 10.8              | 63               | 8698                         |               | 23.6               | <u> </u>           |          |
|         | Sample ID:        | MRC-MPI-                         | 3S             |                   | Duplicate?       |                              | upe Samp ID:  |                    |                    | ··       |
|         | Sample Time       | <u>1147</u>                      |                |                   | MS/MSD?          |                              |               |                    |                    |          |
|         | Analyses:         | Methods:                         | Comments:      |                   | . <u> </u>       | <u>_,=</u>                   |               |                    |                    |          |
|         | ⊠ VOCs            |                                  |                |                   | <u> </u>         |                              |               |                    |                    | <u> </u> |
|         | □ SVOCs           | □ SW846                          | ·              |                   |                  |                              |               |                    |                    |          |
|         | 🗆 PCBs            | 🗆 Drink. Wtr.                    | <b></b>        |                   | -                |                              |               |                    |                    |          |
|         | □ Metals          | □8260                            |                |                   |                  |                              |               |                    |                    |          |
|         |                   |                                  | Sampler(e)     | S-Grain_LA        | $A_{ave}$ $\rho$ | Kom                          |               |                    |                    |          |



BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

|       |                  |                     | WE          | LL PURGE &                 | SAMPLE                                | RECORD        |             |             |              |     |
|-------|------------------|---------------------|-------------|----------------------------|---------------------------------------|---------------|-------------|-------------|--------------|-----|
| · •   | Site Name/Loc    | ation: Mr C's Dry   | Cleaners    |                            | <i>.</i>                              |               |             |             | PI-4I        | _   |
|       | EEEPC Projec     | t No.: 002700.DC    | 02.01.02    |                            |                                       |               | Date:       | 5 1         | 2/09         | _   |
|       | · · · - · · · ·  | 20 60               |             | 5                          |                                       |               |             | 15          | l            |     |
| lı    |                  | Vater: <u>10.99</u> |             | 11157                      |                                       |               |             | - 4 /       | <u>19</u>    |     |
| č.,   | Total Well [     | Depth: 42-17        | feet TOIC   | 41.21                      |                                       |               | End Time:   |             |              | -   |
| Malo  | 9 Depth to F     | Pump: <u>40-17</u>  | _feet TOIC  | 240                        |                                       |               | Bailer      |             | Pump         |     |
| 21    | Initial Pump     | Rate:               | _Lpm / gpm  |                            |                                       |               |             | 12 V Mini T |              | -   |
| · · · | adjust           | ted to:             | at          |                            | minutes                               |               |             | 2           |              | 5   |
|       | adjust           | ted to:             | at          |                            | minutes                               | 1x W          | ell Volume: | 21          | gallons 15   | · C |
|       |                  | Purge Volume        |             | Temp.                      | DRP                                   | Conductivity  |             | Turbidity   |              |     |
|       | Time             | (gallons/liters)    |             | (°C/°F)                    | (mV)                                  | (µS/cm·mS/cm) | (mg/L)      | (NTU)       | Level (feet) |     |
|       | 1500             | (D                  | 7.03        | 14.6                       |                                       | 2063          | ·           |             | 10,99        | 4   |
|       | 1517             | 2.5                 | 7.35        | 14.1                       | -69                                   | 1             |             | 47.7        |              | -   |
| 1525  | 10-534           | 5.0                 | 7.40        | 14.0                       | -88                                   | <u> 2242</u>  | •           | 10.7        |              | 4   |
|       | 14551            | 7.5                 | 7.36        | 14.2                       | -90                                   | 2331          |             | 6.39        |              | _   |
| 1550  | 416 08           | 10,0                | 7.21        | 14.1                       | -92                                   | 2327          |             | 2.50        |              | _   |
| 1604  | 16-25            | 12.5                | 7,19        | 14.3                       | -95                                   | 2329          |             | 2.39        |              | _   |
| 1618  | 15 BZ            | 15.0                | 7.15        | 14.0                       | -99                                   | 2331          |             | 1.57-       |              |     |
|       |                  | à                   |             |                            |                                       |               |             |             |              |     |
|       |                  |                     |             |                            |                                       |               |             |             |              |     |
|       |                  |                     |             |                            |                                       |               |             |             |              |     |
|       |                  |                     |             |                            |                                       |               |             |             |              |     |
|       |                  | · ·                 |             |                            |                                       |               |             |             |              | ]   |
|       |                  |                     |             |                            |                                       |               |             |             |              | 1   |
|       |                  | -                   |             |                            | · · · · · · · · · · · · · · · · · · · |               |             |             |              | 1   |
|       |                  | ·                   |             |                            |                                       |               |             |             |              | 1   |
|       | Final S          | ample Data:         | 7.15        | 14.0                       | -99                                   | 2331          |             | 1.57        |              | 1   |
|       |                  |                     | <u> </u>    | . •                        |                                       |               | ·I          | 1           |              |     |
|       | Sample ID:       | MRC-MPI-            | 4           | -                          | Duplicate?                            | ·             | e Samp ID:  |             |              | -   |
|       | Sample Time:     | 619                 |             |                            | MS/MSD?                               |               |             |             |              |     |
|       | <u>Analyses:</u> | <u>Methods:</u>     | Comments:   |                            | <u></u>                               |               |             |             |              |     |
|       | 🗵 VOCs           |                     |             | · · p                      |                                       |               | <u></u>     |             |              | -   |
|       | SVOCs            | □ SW846             | ·           |                            |                                       |               |             |             |              | -   |
|       | D PCBs           | 🗆 Drink. Wtr.       |             |                            |                                       |               |             |             |              | -   |
|       | Metals           | □8260               |             |                            |                                       |               |             |             |              | -   |
|       |                  |                     | Sampler(s): | S <del>. Graig</del> , J.M | lays                                  |               |             |             |              |     |

| ecology an | d environm | nent engi | meering, p.c. |
|------------|------------|-----------|---------------|
|------------|------------|-----------|---------------|

International Specialists in the Environment BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844 WELL PURGE & SAMPLE RECORD Well ID: MPI-5S Site Name/Location: Mr C's Dry Cleaners EEEPC Project No.: 002700.DC02.01.02 Date: 5 Start Time: 1535 Initial Depth to Water: 11.55 feet TOIC Total Well Depth: \_\_\_\_\_feet TOIC 17.3 End Time: 1550 ww Depth to Pump: 15-9+ feet TOIC ~15 🗵 Bailer D Pump 5/10/04 Initial Pump Rate: Lpm / gpm Pump Type; adjusted to: Well Diameter: 2 inches at minutes 1x Well Volume: 1.01 gallons 3.05-3Ud adjusted to: at minutes ORP Conductivity DD Turbidity Water Purge Volume pН Temp. (°C/\F) (m¥) (µS/cm mS/cm) (mg/L) (NTU) Level (feet) (gallons/liters) (s.u.) Time 7.20 15.8 1.08 3110 71000 1535 3218 871 3 63 15 1540 7 3 263 13.1 17 329.3 13 1543 3 15 3287 3 i29 1547 3284 3 12.8 1550 4 13 3284 11 7 12.8 10 Final Sample Data: \*Duplicate?------Dupe Samp ID: MRC-MPI-5S Sample ID: MS/MSD? 1553 Sample Time: Comments: Analvses: Methods: ç 🗵 VOCs □ SVOCs □ SW846 PCBs Drink. Wtr. □ \_\_\_8260\_ Metals Sampler(s): S. Craig, J:Mays

BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

|       | Site Name/Loc       | ation: Mr C's Dry                                  | Cleaners    |                 |              |                              | Weli ID:     | MF                 | PI-6S                                  | _         |
|-------|---------------------|----------------------------------------------------|-------------|-----------------|--------------|------------------------------|--------------|--------------------|----------------------------------------|-----------|
|       |                     | t No.: 002700.D0                                   |             |                 |              |                              | Date:        | 5/12               | 109                                    | _         |
|       | Initial Depth to \  | Water: 10.93                                       | feet TOIC   |                 |              | S                            | Start Time:  | 150                | 25                                     |           |
|       |                     |                                                    |             | 21.67           |              |                              |              |                    | 12                                     | -         |
|       | Denth to i          | Depth: <u>20-27</u><br>Pump: <u>20-27</u><br>Rate: | _ feet TOIC | ארש.<br>גרש     |              |                              |              | X                  |                                        | -         |
| P sti | lon<br>Initial Pump | Rate:                                              | Lom / apm   | $\sim$          |              | Pi                           | ump Type:    | 12 V Mini Ty       | phoon                                  |           |
|       |                     | ted to:                                            |             |                 | minutes      |                              |              | 2                  |                                        | <b></b> . |
|       |                     | ted to:                                            | _           |                 | -<br>minutes |                              |              |                    | gallons 5                              | .55       |
|       |                     | Purge Volume                                       | рН          | Temp.<br>(℃/?∑) | DRP<br>(mV)  | Conductivity<br>(µS/cmmS/cm) | DD<br>(mg/L) | Turbidity<br>(NTU) | Water<br>Level (feet)                  |           |
|       | Time                | (gallons/litere)<br>ひ、ひ                            | 7.92        | 11,7            | 194          | 1175                         |              |                    | 10.93                                  |           |
|       | 1505<br>1510        | 1.3                                                | 7.43        | 11 7            | 152          | 1173                         |              | 19.3               | 10.10                                  |           |
|       | 1515                | 2.3                                                | 7.29        | 11.0            | 133          | 1155                         |              | 9.78               |                                        |           |
|       | 1520                | 21                                                 | 7.38        |                 | 188          | 1142                         | -            | 8.61               |                                        | 1         |
|       | 1525                | 4.0                                                | 7.28        |                 | 117          | 1131                         |              | 8.03               |                                        | 1         |
|       | 1530                | 4.8                                                | 7.26        | [               | 104          | 1127                         |              | 6.29               | ······································ |           |
|       | 1535                | 5.5                                                |             |                 |              | 1108                         |              | 4.38               |                                        |           |
|       | 1540                | 6.2                                                | 7.28        |                 | 109          | 1120                         |              | 2.62               |                                        | 1         |
|       | 10 10               |                                                    |             | <u> </u>        |              |                              |              |                    |                                        |           |
|       |                     |                                                    |             |                 |              |                              |              | 21 - A             |                                        | 1         |
|       |                     |                                                    |             | -               | · ·          |                              |              |                    |                                        | 1         |
|       |                     |                                                    |             |                 |              |                              |              |                    |                                        |           |
|       |                     |                                                    |             |                 |              |                              |              |                    | -                                      |           |
|       |                     |                                                    |             |                 |              |                              |              |                    |                                        |           |
|       | <u></u>             |                                                    |             |                 |              |                              |              |                    |                                        | ] .       |
|       | Final S             | ample Data:                                        | 7.28        | 9.4             | 109          | 1120                         |              | 2.62               |                                        | ]         |
|       | Sample ID:          | MRC-MPI-                                           | -6S         |                 | Duplicate?   | Dupe                         | Samp ID:     |                    |                                        |           |
|       | Sample Time:        |                                                    |             |                 | MS/MSD?      |                              |              |                    | •                                      | _         |
|       | Analyses:           | Methods:                                           | Comments:   |                 |              |                              |              |                    |                                        |           |
|       | ⊠ VOCs              |                                                    |             |                 |              |                              |              |                    |                                        | _         |
|       | □ SVOCs             | □ SW846                                            |             |                 | 1            |                              |              |                    |                                        | -         |
|       | 🗆 PCBs              | 🛙 Drink. Wtr.                                      |             |                 | _            | ſ                            |              |                    |                                        | _         |
|       | Metals              | □8260                                              |             |                 | ~            | 1/ -                         |              |                    |                                        | -         |
|       | □                   | □                                                  | Sampler(s): | S. Craig, J.    | Mays 13      | Kroon                        |              |                    |                                        | _         |



l

BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

|              | Site Name/Loca             | ation: Mr.C's Dry                | Cleaners    |                           | . o, un                |                                       | Well ID:     |                    | IPI-71               |          |
|--------------|----------------------------|----------------------------------|-------------|---------------------------|------------------------|---------------------------------------|--------------|--------------------|----------------------|----------|
|              |                            | No.: 002700.DC                   |             |                           |                        |                                       | Date:        | 5/12               | 01                   |          |
|              |                            |                                  | fa at TOIO  |                           |                        |                                       | tart Time:   | 1600               | 1                    |          |
| ]            |                            | Vater: <u>10,68</u>              |             |                           |                        |                                       |              | 144                |                      | _        |
|              | Total Well L               | Depth: <u>15.09</u>              |             |                           |                        |                                       |              | <u> </u>           |                      | <u> </u> |
| -MW<br>K1131 | oh Depth to H              | oump: <u>13,09</u>               |             |                           |                        |                                       |              |                    |                      |          |
| < lo         |                            | Rate:                            |             |                           |                        |                                       |              | <u> 2</u>          | uni typ              |          |
|              |                            | ed to:                           | -           |                           |                        |                                       |              |                    |                      | 02=3vd   |
|              | adjust                     | ed to:                           |             |                           |                        |                                       |              |                    |                      |          |
|              | Time                       | Purge Volume<br>(gallons/liters) |             | Temp.<br>(°C/°F)          | DRP<br>(mV)            | Conductivity<br>(µS/cm_nS/cm)         | DO<br>(mg/L) | Turbidity<br>(NTU) | Water<br>Level (feet | )        |
|              | 1621                       | 0                                | 7.83        | 14.7                      | 13                     | 426.3                                 | e            | 821                |                      | -        |
|              | 1425                       | 7                                | 7.99        | 12.5                      | 29                     | 536,1                                 | <b>*</b>     | 67                 | ·                    |          |
|              | 1630                       | 2                                |             |                           | 40                     | 554.5                                 |              | 32.1               |                      |          |
|              | 1635                       | 3                                | 8.10        | 12.2                      | 47                     | 557.5                                 |              | 15.8               |                      |          |
|              | 1640                       | 4                                | 8.10        | 11.9                      | 51                     | 563.5                                 | <u></u>      | 10.2               |                      |          |
|              |                            |                                  |             |                           |                        |                                       |              |                    |                      |          |
|              |                            |                                  |             |                           |                        |                                       |              |                    |                      | _        |
|              |                            |                                  |             | 1                         |                        |                                       |              |                    |                      |          |
|              |                            |                                  |             |                           |                        | •                                     |              |                    |                      |          |
|              |                            |                                  |             |                           |                        |                                       |              |                    |                      |          |
|              |                            | -                                |             |                           |                        | •                                     |              |                    |                      |          |
|              |                            |                                  |             |                           |                        |                                       |              |                    |                      |          |
|              |                            |                                  |             | -                         |                        |                                       |              |                    |                      |          |
|              |                            |                                  |             |                           |                        |                                       |              |                    |                      |          |
|              |                            |                                  |             |                           |                        |                                       |              |                    |                      |          |
|              | Final S                    | ample Data:                      | ୫.୦         | <u>  </u> . ¶             | 51                     | 563.5                                 |              | (0.Z               |                      |          |
|              | Sample ID:                 | MRC-MPI-                         | 71          |                           | • <del>Duplicate</del> |                                       | Samp ID:     |                    | _                    |          |
| t            | Sample Time:               |                                  | <u></u>     |                           | MS/MSD9                |                                       |              |                    |                      |          |
|              |                            | <u> </u>                         | Comments:   |                           |                        |                                       |              | 14                 |                      |          |
|              | <u>Analyses:</u><br>⊠ VOCs | <u>Methods:</u><br>□ CLP         | Comments.   |                           |                        | · · · · · · · · · · · · · · · · · · · |              |                    |                      | _        |
|              |                            | □ SW846                          | <u></u>     | <u> </u>                  |                        |                                       |              |                    |                      |          |
|              |                            | Drink. Wtr.                      |             |                           |                        |                                       |              |                    |                      |          |
|              | □ Metals                   | □8260                            |             |                           |                        |                                       |              |                    | ······               | _        |
|              | □                          | D                                | Sampler(s): | S. Craig, <del>J.</del> 1 | <del>days</del>        |                                       |              |                    |                      | _        |

P

BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

|                            |                                       |                                                       |                           |              | RECORD .                              |             |                                        |                   |     |
|----------------------------|---------------------------------------|-------------------------------------------------------|---------------------------|--------------|---------------------------------------|-------------|----------------------------------------|-------------------|-----|
| Site Name/Loca             | ation: <u>Mr C's Dry</u>              | Cleaners                                              | ·                         |              | ·                                     |             | M                                      |                   |     |
| EEEPC Project              | No.: 002700.DC                        | 02.01.02                                              |                           |              |                                       | Date:       | 5/12                                   | 09                |     |
| Initial Dopth to M         | Vater: 0.80                           | feet TOIC                                             |                           |              | S                                     | Start Time: | 13                                     | 10                |     |
|                            | Depth: 3-73                           | - feet TOIC                                           | 21.13                     |              |                                       |             | 13                                     |                   |     |
| j I OLAI Well L            | Pump: 27.73                           | feet TOIC #                                           | 299<br>179                |              |                                       |             | <u>.</u>                               |                   | ,   |
|                            |                                       |                                                       |                           |              |                                       |             | 12 V Mini T                            | ,                 |     |
|                            | Rate:                                 |                                                       |                           | minutes      | Well                                  |             |                                        |                   |     |
|                            | ed to:                                |                                                       | <u> </u>                  | minutes      |                                       | -           | 3.34                                   | _                 | 0-3 |
| adjust                     | ed to:                                |                                                       |                           | -            |                                       |             |                                        |                   |     |
|                            | Purge Volume                          | <ul> <li>A state of the state of the state</li> </ul> | Temp.<br>°C/'F)           | DRP<br>(m)() | Conductivity<br>(µS/cmonS/cm)         |             | Turbidity<br>(NTU)                     | Wate<br>Level (fr |     |
| Time<br>1310               | (gallons/liters)                      | 7.21                                                  | 16.5                      |              | 2843                                  | (11)5(74)   | HЦ                                     |                   |     |
| 1315                       | 2 :                                   | 7.21                                                  | 13.5                      | 53           | 2860                                  |             | 30                                     | <u> </u>          |     |
| _                          | 4                                     |                                                       | 13.4                      | 55           | 2970                                  |             | 28                                     |                   |     |
| 1320                       |                                       | 7.17                                                  | 13.1                      | 57           | 3003                                  |             | 20                                     | ·····             |     |
| 1325                       | 6                                     | 7.10                                                  |                           | 51           | 3023                                  |             | 16                                     |                   |     |
| 1330                       |                                       |                                                       | 13.0                      | 58           | 3072                                  |             | 6                                      |                   |     |
| 1335                       | 10                                    | 7.14                                                  | 12.1                      | 00           | 3076                                  |             |                                        |                   |     |
|                            |                                       |                                                       |                           |              |                                       |             |                                        |                   |     |
|                            | · · · · · · · · · · · · · · · · · · · |                                                       |                           |              | · · · · · ·                           | · · · ·     |                                        |                   |     |
|                            |                                       |                                                       |                           |              |                                       |             |                                        |                   |     |
|                            |                                       |                                                       |                           |              |                                       |             |                                        |                   |     |
|                            |                                       |                                                       |                           |              |                                       |             |                                        |                   |     |
|                            |                                       | -                                                     | · · · · · ·               |              | · · · · · · · · · · · · · · · · · · · |             |                                        |                   |     |
|                            |                                       |                                                       |                           |              |                                       |             |                                        |                   |     |
|                            |                                       |                                                       |                           |              |                                       |             |                                        |                   |     |
|                            |                                       |                                                       |                           |              |                                       |             |                                        |                   |     |
| Final Sa                   | ample Data:                           | 7.14                                                  | 13.1                      | 58           | 3072                                  |             | 6                                      |                   |     |
| Sample ID:                 | MRC-MPI-                              | 10B                                                   |                           | -Duplicate?  | Dupe                                  | Samp ID:    | ************************************** |                   |     |
| Sample Time:               |                                       |                                                       | •                         | -MS/MSD?     |                                       |             | 4                                      |                   |     |
| Analyzan                   | Methods:                              | Comments:                                             |                           |              |                                       |             |                                        |                   |     |
| <u>Analyses:</u><br>⊠ VOCs |                                       | Commenta.                                             | . <u></u>                 | -            |                                       |             |                                        |                   |     |
|                            | □ SW846                               |                                                       |                           |              |                                       |             |                                        |                   |     |
|                            | Drink. Wtr.                           |                                                       |                           |              |                                       |             |                                        |                   |     |
| □ Metals                   | □8260                                 |                                                       |                           |              |                                       |             |                                        |                   |     |
|                            |                                       | -                                                     | S. Craig, <del>J.</del> † |              |                                       |             |                                        |                   |     |

P

BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

|                            |                                  | WE          | LL PURGE &       | SAMPLE                  | RECORD                        |              |                    |                      |                  |
|----------------------------|----------------------------------|-------------|------------------|-------------------------|-------------------------------|--------------|--------------------|----------------------|------------------|
| Site Name/Loc              | ation: Mr C's Dry                | Cleaners    |                  | •                       |                               | Well ID:     | M                  | PI-12B               |                  |
| EEEPC Projec               | t No.: 002700.DC                 | 02.01.02    |                  |                         |                               | Date:        | 5/12/              | 09                   |                  |
| nitial Denth to \          | Nater: 6.92                      | feet TOIC   |                  |                         | S                             | Start Time:  | 121                | 0                    |                  |
|                            | Depth: 35.13                     | _           | 34.53            |                         |                               |              | 124                |                      |                  |
| Depth to I                 | Pump: 33.13                      | feet TOIC   | N33              |                         |                               |              | <br>               |                      | _                |
| inifial Pump               | Pump: <u>33,13</u><br>Rate:      | Lom / apm   |                  |                         | Pi                            | ump Type:    | 12 V Mini T        | yphoon               |                  |
|                            | ted to:                          |             |                  | minutes                 |                               |              | 2                  |                      | _                |
|                            | ted to:                          |             |                  | -                       |                               |              |                    | _<br>gallons (3      | <del>ت</del> - ح |
| Time                       | Purge Volume<br>(gallons/liters) |             | Temp.<br>("C/⁰F) | DRP<br>(mV)             | Conductivity<br>(µS/cm mS/cm) | DD<br>(mg/L) | Turbidity<br>(NTU) | Water<br>Level (feet |                  |
| 1210                       | O                                | 7.74        | 44.5             | 111                     | 3687                          |              | 20012              |                      |                  |
| 1215                       | Z                                | 7.43        | 12.U             | 62                      | 3310                          |              | 307                |                      | _                |
| 1220                       | 4                                | 7.36        | 12.3             | 52                      | 3143                          |              | 154                |                      |                  |
| 1225                       | 4                                | 7.32        | 12.2             | 40                      | 3191                          |              | 96                 | <u> </u>             |                  |
| 1230                       | 8                                | 7.29        | 12.3             | 39                      | 3172                          | <u> </u>     | НЦ                 |                      | _                |
| 1235                       | 0                                | 7:29        | 12.2             | 33                      | 3170                          | <u> </u>     | 29                 |                      |                  |
| 1240                       | 12                               | 7.28        | 12.1             | 29                      | 3203.                         |              | 17                 |                      | _                |
|                            |                                  |             | 1                |                         |                               |              |                    |                      | _                |
|                            |                                  |             |                  |                         |                               | <br>         |                    |                      | _                |
|                            |                                  |             |                  |                         |                               |              | •                  |                      | _                |
|                            |                                  |             |                  |                         |                               |              |                    |                      | _                |
|                            |                                  |             |                  |                         |                               |              |                    |                      | _                |
|                            |                                  |             |                  |                         |                               |              |                    |                      |                  |
|                            | · · · ·                          |             |                  |                         |                               |              |                    |                      | _                |
|                            |                                  |             |                  |                         |                               |              |                    |                      |                  |
| Final S                    | ample Data:                      | 7.28        | 12.              | 29                      | 3203                          |              | 17-                | ·                    |                  |
| Sample ID: ···             |                                  | 12B         |                  | - Duplicate?<br>MS/MSD? |                               | e Samp ID:   | ·                  | <u></u>              |                  |
| • •                        |                                  | Comments:   |                  |                         |                               |              |                    |                      |                  |
| <u>Analyses:</u><br>⊠ VOCs | Methods:                         | Comments.   |                  |                         |                               |              |                    |                      | _                |
|                            | □ SW846                          |             | · · · · ·        |                         |                               |              |                    |                      |                  |
|                            | Drink. Wtr.                      |             |                  |                         |                               |              |                    |                      |                  |
| □ Metals                   | □8260                            |             |                  |                         |                               |              |                    |                      | _                |
| □                          |                                  | Sampler(s): | S. Craig. J.     | viavs                   |                               |              |                    |                      |                  |

P

BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

|          | Site Name/Loca            | ation: Mr C's Dry                | Cleaners     |                |             |                               | Well ID:     | MP                 | 'I-15B             |            |      |
|----------|---------------------------|----------------------------------|--------------|----------------|-------------|-------------------------------|--------------|--------------------|--------------------|------------|------|
|          | EEEPC Project             | No.: 002700.DC                   | 02.01.02     |                |             |                               | Date:        | 5/12               | -109_              |            |      |
|          |                           |                                  |              |                |             | 0                             | tort Timo:   | 1 4                | 220                |            |      |
| ·        |                           | Vater: <u>9,00</u>               |              | 2818           |             | , 3                           | an Time:     | 13                 | <u>x 50</u><br>いつ  |            |      |
|          | Total Well D              | Depth: 28-78                     |              | 17 lo          |             | ,                             |              |                    |                    |            |      |
| ww<br>WW | ער Depth to F<br>ער שייים | 2ump: 26.79                      |              |                |             |                               |              | 12 V Mini T        | -                  |            |      |
| SUN      |                           | Rate:                            |              |                | minutoo     |                               |              | 2                  |                    |            |      |
|          |                           | ed to:                           | - ,          |                | minutes     |                               |              | 3.22               |                    | 9 %        | 7    |
|          | adjust                    | ed to:                           |              |                |             |                               |              |                    | _                  |            | 1    |
|          | Time                      | Purge Volume<br>(gallons/litors) | рН<br>(s.u.) | Temp.<br>(°C/° | ORP<br>(mV) | Conductivity<br>(µS/cmm.S/cm) | DD<br>(mg/L) | Turbidity<br>(NTU) | Water<br>Level (fe | · •        |      |
|          | 1230                      | 0.0                              | 7.65         | 11.4           | 171         | 1401                          |              | 558                | 5B                 | K          | 30.1 |
|          | 1235                      | 1.2                              | 7.17         | <u>11.0</u>    | 76          | 1396                          |              | 182                |                    |            |      |
|          | 1240                      | 2.4                              | 7.08         | 11.3           | 527         | 1387                          | - هرين       | 80.6               |                    |            |      |
|          | 1245                      | 3.6                              | 7.05         | 11.7           | -31         | 1394                          |              | 29.0               |                    |            |      |
|          | 1250                      | 4.8                              | 7.08         | 12.6           | - 59        | 1378                          |              | 10.1               |                    |            |      |
|          | 1255                      | 6.0                              | 7.03         | 11.9           | -71         | 1374                          | جعي          | 6.18               |                    |            |      |
|          | 1300                      | 7.2                              | 7.00         | 12.7           | -75         | 1374                          | ******       | .4.a               |                    |            |      |
|          | 1305                      | 8.4                              | 7,03         | 12,1           | -79         | 1373                          |              | 3,49               |                    |            |      |
|          | 1310                      | 9.6                              | 7.04         | 12.3           | -91         | 1373                          |              | 2.67               |                    |            |      |
|          |                           |                                  |              |                |             |                               |              |                    |                    |            |      |
|          |                           |                                  |              |                |             |                               |              |                    |                    |            |      |
|          | ·                         |                                  |              |                |             | ·                             |              |                    |                    |            |      |
|          | ,                         |                                  | -            |                |             |                               |              | :                  |                    |            |      |
|          |                           |                                  |              | · .            |             |                               |              |                    |                    |            |      |
|          |                           |                                  |              |                |             |                               |              | <b>A</b>           |                    |            |      |
|          | Final Sa                  | ample Data:                      | 7.04         | 12.3           | - 81        | 1373                          | t            | 2.67               |                    |            |      |
|          | Sample ID:                | MRC-MPI-1                        | 5B           |                | Duplicate?  | Dupe Dupe                     | Samp ID:     | _                  |                    |            |      |
|          | Sample Time:              | 1312                             | 2            |                | MS/MSD?     |                               |              |                    |                    | -          |      |
|          | Analyses:                 | Methods:                         | Comments:    | 6 Pr           | Ices F      | rom Fer                       | nce          | South              | Neg                | <u>v2_</u> |      |
|          | ⊠ VOCs                    |                                  | EDO          | ne of          | PARIL       | ~~ 20T.                       |              |                    |                    |            |      |
|          | 🗆 SVOCs                   | □ SW846                          | <u> </u>     | u<br>          |             | <u> </u>                      |              |                    |                    | <u> </u>   |      |
|          | D PCBs                    | 🗆 Drink. Wtr.                    |              |                |             | ,                             | ·            |                    |                    | <u></u>    |      |
|          | □ Metals                  | □8260                            |              |                |             | 1/                            |              |                    |                    |            |      |
|          | <b></b>                   |                                  | Sampler(s):  | S-Graig, J.N   | Mays 1.3    | Kroor                         | <u> </u>     |                    |                    |            |      |

P

BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

|        |                                       |                                       | •           |                |                  |               |             |           |                   |           |
|--------|---------------------------------------|---------------------------------------|-------------|----------------|------------------|---------------|-------------|-----------|-------------------|-----------|
| :      | Site Name/Loca                        | ation: <u>Mr C's Dry</u>              | Cleaners    |                |                  |               |             | N         |                   |           |
|        | EEEPC Project                         | No.: 002700.DC                        | 02,01.02    |                |                  | <u> </u>      | Date:       | 5/12      | 01                |           |
| 1      | nitial Denth to V                     | Vater: 10,90                          | feet TOIC   | *              |                  | S             | start Time: | 140       | 5                 |           |
|        |                                       | )epth: <u>14-25</u>                   |             | 3.65           |                  |               |             | 142       |                   |           |
| الىن   |                                       | Pump: 12.25                           |             |                |                  |               |             | 5         | -                 |           |
| mr(131 |                                       | Rate:                                 |             |                |                  | Pı            | Imp Type:   | 12 104    | nin               | ty phonon |
|        |                                       | ed tó:                                |             |                | minutes          | Well          | Diameter:   | 2         | 2 inches          |           |
|        |                                       | ed to:                                | -           |                | _                | 1x We         | Il Volume:  | .53       | gallons           | 1.6=3.5   |
|        |                                       | Purge Volume                          | -           | Temp.          | DRP              | Conductivity  | DD          | Turbidity |                   |           |
|        | Time                                  | (gallons/liters)                      |             | (°C/ºF)        | (mV)             | (µS/cm mS/cm) |             | (NTU)     | Level (fe         |           |
|        | 1405                                  | Ö                                     | 7.26        | 14.7           | তণ               | 1870          | ·           | 102       |                   |           |
| •      | 1410                                  | 1.5                                   | 7.34        | 11.6           | 105              | 1504          |             | 3'7       |                   |           |
|        | 1415                                  | 3                                     | 7.37        | 10.9           | 79               | 1528          | ¥           | 17        | . +2              |           |
|        | 1420                                  | 4.5                                   | 7:39        | 10,8           | 77               | 1500          |             | ন্ত       |                   |           |
|        |                                       |                                       |             |                |                  |               |             |           |                   |           |
|        |                                       |                                       |             |                |                  |               |             |           |                   |           |
|        |                                       |                                       |             |                |                  |               |             |           |                   |           |
|        |                                       | -                                     |             |                |                  |               |             |           |                   |           |
|        | ······                                |                                       |             |                |                  |               |             |           |                   |           |
|        |                                       | · · · · · · · · · · · · · · · · · · · |             |                |                  |               |             |           |                   |           |
|        |                                       |                                       |             |                |                  |               |             |           |                   |           |
|        |                                       |                                       |             |                |                  |               |             |           |                   |           |
|        |                                       |                                       |             |                |                  |               |             |           |                   |           |
|        | · · · · · · · · · · · · · · · · · · · |                                       |             |                | · ·              |               |             |           |                   |           |
|        |                                       |                                       |             |                |                  |               |             |           |                   |           |
|        | Final Sa                              | ample Data:                           | 7.39        | 10,2           | 77-              | 1500          |             | 8         |                   |           |
|        | ······                                | <b>i</b>                              |             |                | <b>Duplicate</b> |               | Samp ID:    |           |                   |           |
|        | Sample ID:<br>Sample Time:            | MRC-MW-<br>1423                       | 07          | · · ·          | -MS/MSD?         |               | oamp ib.    | <b></b>   |                   |           |
|        | Sample Time.                          |                                       |             |                |                  |               |             |           |                   |           |
|        | <u>Analyses:</u>                      | <u>Methods:</u>                       | Comments:   | <u> </u>       |                  |               |             |           |                   |           |
|        |                                       |                                       |             |                |                  |               |             |           |                   |           |
|        |                                       | □ SW846<br>□ Drink. Wtr.              |             |                |                  |               |             |           | · · · · · · · · · |           |
|        | □ PCBs<br>□ Metals                    | □ Dhnk. Wu.                           | ·           |                |                  |               |             |           |                   |           |
|        |                                       | · · · · · ·                           | Sampler(s): | S. Craio. 🗯    | Mars             |               |             |           |                   |           |
|        |                                       |                                       | Sumpler(S). | C. C. U. U. U. |                  |               |             |           |                   |           |



BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

|             |               |                                       | WEL          | LL PURGE &       | SAMPLE      | RECORD                        |              |                    |                     |           |
|-------------|---------------|---------------------------------------|--------------|------------------|-------------|-------------------------------|--------------|--------------------|---------------------|-----------|
|             | Site Name/Loc | ation: <u>Mr C's Dry (</u>            | Cleaners     |                  |             |                               | Well ID:     |                    | W-8                 |           |
|             | EEEPC Project | t No.: 002700.DC                      | 02.01.02     |                  |             |                               | Date:        | 5/12               | <u>01</u>           |           |
|             | in in a car   | Water: 11.00                          |              |                  |             | 9                             | tart Time:   | 16                 | 75                  |           |
|             |               |                                       | -            | 2 37             |             |                               |              | 170                |                     |           |
|             |               | Depth: 13.97                          |              |                  |             |                               |              |                    |                     |           |
| men<br>vili | lon           | Pump: 1192-                           |              | ~ 11             |             |                               |              |                    |                     |           |
| 510         | ,             | Rate:                                 |              |                  |             |                               |              |                    |                     | <u> </u>  |
|             |               | ted to:                               | -            | <u> </u>         |             |                               |              | 2                  |                     | 1.40=30al |
|             | adjust        | ted to:                               |              |                  |             |                               |              |                    |                     |           |
|             |               | Purge Volume<br>(gallons/liters)      | рН<br>(s.u.) | Temp.<br>(°C/°F) | ORP<br>(mV) | Conductivity<br>(µS/cm mS/cm) | DD<br>(mg/L) | Turbidity<br>(NTU) | Water<br>Level (fee | f)        |
|             | Time<br>11025 |                                       | 7.27         | 121              | 1107        | 18/24                         | ( E E 2      | 1860               |                     | 17.00     |
|             | 11.20         | 0.0                                   | 7.16         | 10-1             | 167         | 1                             |              | 178.7              |                     |           |
|             | 1627          |                                       | 7-08         | 11.3             | 165         | 1764                          |              | 1430               | <del>-</del>        |           |
| -57         | 10.52         | 1.0                                   | 7.21         | $\frac{11}{11}$  | 199         | 1693                          |              | 176                |                     |           |
| 7           |               | 2.3                                   | 7.13         | 10.6             | 190         | 11089                         |              | 81.3               |                     |           |
|             | 1650          | 3.6                                   | 7.11         | 10.5             | 182         | 1681                          |              | 48.5               |                     |           |
|             |               | 4.7                                   | 7.10         | 10.9             | 181         | 1661                          |              | 18.3               |                     |           |
|             | 1700          | 5.5                                   | 7.11         | 10.9             | 180         | 11067                         |              | 17.6               |                     |           |
|             | 1.10.5        |                                       |              | 10.0             | 100         |                               |              | 1.00               |                     |           |
|             |               |                                       |              |                  |             |                               |              |                    |                     |           |
|             |               | · ·                                   |              |                  | 1           |                               |              |                    |                     |           |
|             |               |                                       |              |                  |             |                               |              | ·                  |                     | •         |
|             | -             |                                       |              |                  |             |                               |              |                    |                     |           |
|             |               |                                       |              | . <u>.</u>       |             | -                             |              | ·····              |                     |           |
|             |               |                                       |              | · · · ·          |             |                               |              |                    |                     |           |
|             | - Final S     | ample Data:                           | 7.11         | 10.8             | 18-0        | 1667                          |              | 17.6               |                     | -         |
|             | Final S       |                                       | <u> </u>     |                  |             | _                             | <u>.</u>     |                    | <u></u>             | J         |
|             | Sample ID:    | MRC-MW-0                              |              |                  | Duplicate?  |                               | Samp ID:     |                    |                     | <u> </u>  |
|             | Sample Time   | : <u>1706</u>                         | <u> </u>     |                  | MS/MSD?     |                               |              |                    |                     |           |
|             | Analyses:     | Methods:                              | Comments:    |                  |             |                               |              |                    |                     |           |
|             | 🗵 VOCs        |                                       | <u> </u>     |                  |             |                               |              |                    |                     |           |
|             | SVOCs         | □ SW846                               | ·            |                  |             |                               |              |                    |                     |           |
|             |               | Drink. Wtr.                           | ,            |                  |             |                               |              |                    |                     |           |
|             | □ Metals      | □8260                                 |              | 0-0-1-1-1        | R           | Kroon                         |              |                    |                     |           |
|             | □             | · · · · · · · · · · · · · · · · · · · | sampler(s):  | S. Craig, J.I    | viays D     | $\sim \cos $                  |              | •                  |                     |           |



BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

Groundwater Grab Sample Data Collection Form

| Site Name:                               | Mr C's East Aurora                                          |                                    | Project No.: 002700DC13.02.01.02 |                      |                                        |  |  |
|------------------------------------------|-------------------------------------------------------------|------------------------------------|----------------------------------|----------------------|----------------------------------------|--|--|
| Sample Location Inform                   | nation                                                      | e Saletting al a state of the soul |                                  |                      | 和1997年後月1997年後年後                       |  |  |
| Project Location:                        | East Aurora, NY                                             |                                    |                                  |                      |                                        |  |  |
| Project Task:                            | Groundwater Sampling                                        |                                    |                                  |                      |                                        |  |  |
| Sampler Names (Print):                   | S. Craig, J. Mays                                           |                                    |                                  | <u> </u>             | <u></u>                                |  |  |
|                                          |                                                             |                                    |                                  |                      | e                                      |  |  |
| Organic Vapor Meter U                    |                                                             |                                    | Model:                           | 241.6                |                                        |  |  |
| Water Quality Meter U                    | Myron 6p multimeter, Ha                                     | ch 2100p turbidity meter           | Calibration Date/Time:           |                      | ·                                      |  |  |
| Sample ID:                               | MRC-PW03                                                    | MRC-PWO2                           | MRC-PWO4                         | MRC-PWOJ             | MRC-PWOG                               |  |  |
| Sample Date:                             | 5/11/09                                                     | 5/11/09                            | 5/11/04                          | 5/11/09              | 5/14/09                                |  |  |
| Sample Time:                             | 1105                                                        | 1715                               | 1740                             | 1730                 | 0848                                   |  |  |
| Depth (ft bgs): $\mathcal{W} \downarrow$ | 23,00                                                       | 19.10                              | 22.90                            | 14.00                | 21.46                                  |  |  |
| Purge Vol. (L):                          | · • • • • • • • • • • • • • • • • • • •                     |                                    | *                                |                      | ·                                      |  |  |
| pH:                                      | 6.51                                                        | 7.24                               | 7.91                             | 7.35                 | 8.60                                   |  |  |
| Temp. (° ():                             | 14.0                                                        | 12.5                               | 12.4                             | 13.2                 | 11.3                                   |  |  |
| Conductivity (µS/cm):                    | 2998                                                        | 2284                               | 3730                             | BID                  | 3284                                   |  |  |
| Turbidity (NTU):                         | 17-                                                         | ଟ୍ୟେ                               | 13/16                            | 13                   | 42                                     |  |  |
|                                          |                                                             |                                    | میا <b>ہ حک</b> ی                |                      |                                        |  |  |
|                                          |                                                             |                                    |                                  |                      |                                        |  |  |
|                                          |                                                             |                                    |                                  |                      |                                        |  |  |
|                                          |                                                             |                                    |                                  |                      |                                        |  |  |
| OVM (ppm):                               |                                                             |                                    |                                  |                      | ************************************** |  |  |
| Quality Control:                         | /                                                           | Dupe                               | MSMSD                            |                      | ·                                      |  |  |
| Analysis Method:                         | 8260                                                        |                                    |                                  |                      |                                        |  |  |
| Laboratory:                              | itkem Lab:                                                  |                                    |                                  | Date Shipped to Lab: | 5/12/09                                |  |  |
| Associated Trip Blank S                  | D                                                           | A                                  | · ·                              |                      |                                        |  |  |
| Comments:                                |                                                             |                                    |                                  |                      |                                        |  |  |
|                                          |                                                             |                                    |                                  |                      |                                        |  |  |
|                                          |                                                             |                                    | Signature:                       | Mas                  |                                        |  |  |
| Kau boo -                                | below ground surface                                        | OVM =                              | organic vapor meter              |                      | •                                      |  |  |
| FID =                                    | <ul> <li>flame-ionization detector</li> <li>feet</li> </ul> |                                    | photo-ionization detector        | 0-                   | •                                      |  |  |
|                                          | *                                                           |                                    |                                  |                      |                                        |  |  |



BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

Groundwater Grab Sample Data Collection Form

| Site Name:              | Mr C's East Aurora                                        | ······                   | Project No.: 002700DC13.02.01.02                 |                      |          |  |  |
|-------------------------|-----------------------------------------------------------|--------------------------|--------------------------------------------------|----------------------|----------|--|--|
| Sample Location Inform  | nation                                                    |                          |                                                  |                      |          |  |  |
| Project Location:       | East Aurora, NY                                           | ······                   |                                                  |                      |          |  |  |
| Project Task:           | Groundwater Sampling                                      |                          |                                                  | ·                    |          |  |  |
| Sampler Names (Print):  | S. Craig, J. Mays                                         |                          |                                                  |                      |          |  |  |
|                         |                                                           |                          | · · · · · · · · · · · · · · · · · · ·            |                      | <u>.</u> |  |  |
| Organic Vapor Meter U   |                                                           |                          | Model:                                           | en l'ul rec          | <u></u>  |  |  |
| Water Quality Meter U   | Myron 6p multimeter, Ha                                   | ch 2100p turbidity meter | Calibration Date/Time:                           | 5/11/09              |          |  |  |
| Sample ID:              | MRC-DW07                                                  | MRC-PRIOS                | MRC-RWOI                                         |                      |          |  |  |
| Sample Date:            | 5/11/09                                                   | 5 11 09                  | 51209                                            |                      |          |  |  |
| Sample Time:            | 1800                                                      | 1810                     | 0833                                             |                      |          |  |  |
| Depth (ft bgs):         | 10.89                                                     | 20.45                    |                                                  |                      |          |  |  |
| Purge Vol. (L): *       |                                                           | ·                        |                                                  |                      |          |  |  |
| pH:                     | ଉପ.ଟି                                                     | 8.14                     | 8.13                                             |                      |          |  |  |
| Temp. (° 🕐 ):           | 14.5                                                      | 11.4                     | 11.4                                             |                      |          |  |  |
| Conductivity (µS/cm):   | 1015                                                      | 1440                     | 2856                                             |                      |          |  |  |
| Turbidity (NTU):        | 38                                                        | 301                      | 26                                               |                      |          |  |  |
|                         |                                                           |                          |                                                  |                      |          |  |  |
|                         |                                                           |                          |                                                  |                      |          |  |  |
|                         |                                                           |                          |                                                  |                      |          |  |  |
|                         |                                                           |                          |                                                  |                      |          |  |  |
| OVM (ppm):              |                                                           |                          | <b></b>                                          |                      |          |  |  |
| Quality Control:        |                                                           |                          |                                                  |                      |          |  |  |
| Analysis Method:        | 8740-                                                     |                          |                                                  |                      |          |  |  |
| Laboratory: W           | sken hat                                                  | pratory                  |                                                  | Date Shipped to Lab: | 5/12/09  |  |  |
| Associated Trip Blank S |                                                           | A                        |                                                  | · · · ·              |          |  |  |
| Comments:               |                                                           |                          |                                                  |                      |          |  |  |
|                         |                                                           |                          |                                                  | $\bigcirc$           |          |  |  |
|                         |                                                           |                          | Signature                                        | (IGC                 |          |  |  |
| FID =                   | below ground surface<br>flame-ionization detector<br>feet |                          | organic vapor meter<br>photo-ionization detector | 96                   |          |  |  |



| Data Usability Summary Report | Project: Mr C's Cleaners  |
|-------------------------------|---------------------------|
| Date Completed: June 22, 2009 | Completed by: Bryan Kroon |

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness per NYSDEC Division of Environmental Remediation Guidance for the Development of DUSRs (June 1999). Specific criteria for QC limits were obtained from the project QAPP. Compliance with the project QA program is indicated on the in the checklist and tables. Any major or minor concerns affected data usability are summarized listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

#### Table 1 Sample Summary Tables from Electronic Data Deliverable

| Work<br>Order | Matrix      | Sample ID        | Lab ID         | Sample<br>Date | Lab QC | MS/ MSD | ID<br>Corrections |
|---------------|-------------|------------------|----------------|----------------|--------|---------|-------------------|
| SH0831        | Aqueou<br>s | MRC-PW03         | H0831-01A      |                |        |         | None              |
| SH0831        | Aqueou<br>s | MRC-PW02         | H0831-02A      |                |        |         | None              |
| SH0831        | Aqueou<br>s | MRC-PW02/D       | H0831-03A      |                |        |         | None              |
| SH0831        | Aqueou<br>s | MRC-PW04         | H0831-04A      |                |        | *       | None              |
| SH0831        | Aqueou<br>s | MRC-PW04         | H0831-<br>04AM |                | MS/MSD | *       | None              |
| SH0831        | Aqueou<br>s | MRC-PW05         | H0831-05A      |                |        |         | None              |
| SH0831        | Aqueou<br>s | MRC-PW07         | H0831-06A      |                |        |         | None              |
| SH0831        | Aqueou<br>s | MRC-PW08         | H0831-07A      |                |        |         | None              |
| SH0831        | Aqueou<br>s | MRC-PW06         | H0831-08A      |                |        |         | None              |
| SH0831        | Aqueou<br>s | MRC-RW01         | H0831-09A      |                |        |         | None              |
| SH0831        | Aqueou<br>s | MRC-ESI-5        | H0831-10A      |                |        |         | None              |
| SH0831        | Aqueou<br>s | MRC-MPI-1S       | H0831-11A      |                |        |         | None              |
| SH0831        | Aqueou<br>s | MRC-MPI-<br>1S/D | H0831-12A      |                |        |         | None              |
| SH0831        | Aqueou<br>s | MRC-EE-1         | H0831-13A      |                |        |         | None              |
| SH0831        | Aqueou<br>s | MRC-MPI-3S       | H0831-14A      |                |        |         | None              |
| SH0831        | Aqueou<br>s | MRC-ESI-6        | H0831-15A      |                |        |         | None              |
| SH0831        | Aqueou<br>s | MRC-MPI-12B      | H0831-16A      |                |        |         | None              |
| SH0831        | Aqueou<br>s | MRC-MPI-15B      | H0831-17A      |                |        |         | None              |
| SH0831        | Aqueou<br>s | MRC-MPI-10B      | H0831-18A      |                |        |         | None              |

G:\002700-002799\002700\B2811-DC13\_02\_01\_02-Mr. C's 2009 Data Summary\Appendices\App B\DUSR\_SH0831.doc/Last printed 8/5/2009 1:53:00 PM Page 1 of 6

| Data Usability Summary Report | Project: Mr C's Cleaners  |
|-------------------------------|---------------------------|
| Date Completed: June 22, 2009 | Completed by: Bryan Kroon |

| Work<br>Order | Matrix      | Sample ID  | Lab ID    | Sample<br>Date | Lab QC | MS/ MSD | ID<br>Corrections |
|---------------|-------------|------------|-----------|----------------|--------|---------|-------------------|
| SH0831        | Aqueou<br>s | MRC-MW-07  | H0831-19A |                |        |         | None              |
| SH0831        | Aqueou<br>s | MRC-MW-EE2 | H0831-20A |                |        |         | None              |

#### Work Orders, Tests and Number of Samples included in this DUSR

| Work<br>Orders | Matrix      | Test<br>Method | Method Name      | Number of<br>Samples | Sample Type |
|----------------|-------------|----------------|------------------|----------------------|-------------|
| SH0831         | Aqueou<br>s | SW8260_W       | VOC by GC-<br>MS | 11                   | DL          |
| SH0831         | Aqueou<br>s | SW8260_W       | VOC by GC-<br>MS | 20                   | SAMP        |

| General Sample Information                                                                                                                                                  | General Sample Information                                           |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|--|--|
| Do Samples and Analyses on COC check against Lab Sample<br>Tracking Form?                                                                                                   | Yes                                                                  |  |  |  |  |  |
| Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?                                                              | Yes                                                                  |  |  |  |  |  |
| Frequency of Field QC Samples Correct?<br>Field Duplicate - 1/20 samples<br>Trip Blank - Every cooler with VOCs waters only<br>Equipment Blank - 1/ set of samples per day? | Yes – Trip Blank not included with this<br>SDG.                      |  |  |  |  |  |
| All ASP Forms complete?                                                                                                                                                     | Yes                                                                  |  |  |  |  |  |
| Case narrative present and complete?                                                                                                                                        | Yes                                                                  |  |  |  |  |  |
| Any holding time violations (See table below)?                                                                                                                              | No - All samples were prepared and<br>analyzed within holding times. |  |  |  |  |  |

Insert Holding time table below.

The following tables are presented at the end of this DUSR and provided summaries of results outside QC criteria.

- Method Blanks Results (Table 2)
- Surrogates Outside Limits (Table 3)
- MS/MSD Outside Limits (Table 4)
- LCS Outside Limits (Table 5)
- Re-analysis Results (Table 6)
- Field Duplicate Results (Table 7)

Go to Tables List

| Volatile Organics and Semi-volatile Organics by GCMS |                      |  |  |  |
|------------------------------------------------------|----------------------|--|--|--|
| Description                                          | Notes and Qualifiers |  |  |  |

| Data Usability Summary Report | Project: Mr C's Cleaners  |
|-------------------------------|---------------------------|
| Date Completed: June 22, 2009 | Completed by: Bryan Kroon |

| Volatile Organics and Semi-volatile Organics by GCMS                                                                                                                                                                       |                                                                                                   |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|
| Description                                                                                                                                                                                                                | Notes and Qualifiers                                                                              |  |  |  |  |
| Any compounds present in method, trip and field blanks (see Table 2)?                                                                                                                                                      | No                                                                                                |  |  |  |  |
| For samples, if results are <5 times the blank or < 10 times blank for common laboratory contaminants then "U" flag data. Qualification also applies to TICs.                                                              | Samples are flagged U as noted on<br>Table 2a for method blanks and Table<br>2b for field blanks. |  |  |  |  |
| Surrogate for method blanks and LCS within limits?                                                                                                                                                                         | Yes                                                                                               |  |  |  |  |
| Surrogate for samples and MS/MSD within limits? (See<br>Table 3). All samples should be re-analyzed for VOCs?<br>Samples should re-analyzed if >1 BN and/or > AP for BNAs<br>is out. Matrix effects should be established. | Yes                                                                                               |  |  |  |  |
| Laboratory QC frequency one blank and LCS with each batch and one set of MS/MSD per 20 samples?                                                                                                                            | Yes                                                                                               |  |  |  |  |
| MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then J flag positive data in original sample due to matrix?                                                                                          | Yes                                                                                               |  |  |  |  |
| LCS within QC criteria (see Table 5)? If out, and the recovery high with no positive values, then no data qualification is required.                                                                                       | Yes                                                                                               |  |  |  |  |
| Do internal standards areas and retention time meet<br>criteria? If not was sample re-analyzed to establish matrix<br>(see Table 6)?                                                                                       | Yes                                                                                               |  |  |  |  |
| Is initial calibration for target compounds <15 %RSD or curve fit?                                                                                                                                                         | Yes                                                                                               |  |  |  |  |
| Is continuing calibration for target compounds < 20.5%D.                                                                                                                                                                   | Yes                                                                                               |  |  |  |  |
| Were any samples re-analyzed or diluted (see Table 6)?<br>For any sample re-analysis and dilutions is only one<br>reportable result by flagged?                                                                            | No                                                                                                |  |  |  |  |
| For TICs are there any system related compounds that should not be reported?                                                                                                                                               | No                                                                                                |  |  |  |  |
| Do field duplicate results show good precision for all compounds except TICs (see Table 7)?                                                                                                                                | Yes                                                                                               |  |  |  |  |

### Summary of Potential Impacts on Data Usability

Major Concerns

None

#### Minor Concerns

Samples qualified based on Method Blanks and Calibration range exceedance.

| Data Usability Summary Report | Project: Mr C's Cleaners  |
|-------------------------------|---------------------------|
| Date Completed: June 22, 2009 | Completed by: Bryan Kroon |

#### Table 2 - List of Positive Results for Blank Samples

| Method   | Sample ID | Samp Type | Analyte           | Result | Qual | Analyte Type | Units | MDL  | PQL |
|----------|-----------|-----------|-------------------|--------|------|--------------|-------|------|-----|
| SW8260_W | MB-43531  | MBLK      | Tetrachloroethene | 2      | J    | A            | µg/L  | 0.46 | 5   |
| SW8260_W | MB-43601  | MBLK      | Chloroform        | 1      | J    | A            | µg/L  | 0.4  | 5   |
| SW8260_W | MB-43629  | MBLK      | Tetrachloroethene | 1.1    | J    | A            | µg/L  | 0.46 | 5   |

#### Table 2A - List of Samples Qualified for Method Blank Contamination

| Method   | Lab<br>Blank | Matrix  | Analyte           | Blank<br>Result | Sample<br>Result | Lab<br>Qual | PQL | Affected<br>Samples | Sample Flag   |
|----------|--------------|---------|-------------------|-----------------|------------------|-------------|-----|---------------------|---------------|
| SW8260_W | MB-43531     | Aqueous | Tetrachloroethene | 2               | 54               |             | 5   | MRC-MPI-1S          | Not Qualified |
| SW8260_W | MB-43531     | Aqueous | Tetrachloroethene | 2               | 1100             | E           | 5   | MRC-PW02/D          | Not Qualified |
| SW8260_W | MB-43531     | Aqueous | Tetrachloroethene | 2               | 1300             | E           | 5   | MRC-PW07            | Not Qualified |
| SW8260_W | MB-43531     | Aqueous | Tetrachloroethene | 2               | 1900             | E           | 5   | MRC-PW04            | Not Qualified |
| SW8260_W | MB-43531     | Aqueous | Tetrachloroethene | 2               | 2300             | E           | 5   | MRC-PW05            | Not Qualified |
| SW8260_W | MB-43531     | Aqueous | Tetrachloroethene | 2               | 300              | E           | 5   | MRC-PW03            | Not Qualified |
| SW8260_W | MB-43531     | Aqueous | Tetrachloroethene | 2               | 520              | E           | 5   | MRC-PW06            | Not Qualified |
| SW8260_W | MB-43531     | Aqueous | Tetrachloroethene | 2               | 920              | E           | 5   | MRC-PW02            | Not Qualified |
| SW8260_W | MB-43531     | Aqueous | Tetrachloroethene | 2               | 4.1              | J           | 5   | MRC-ESI-5           | U Flag        |
| SW8260_W | MB-43629     | Aqueous | Tetrachloroethene | 1.1             | 190              | В           | 5   | MRC-RW01            | Not Qualified |
| SW8260_W | MB-43629     | Aqueous | Tetrachloroethene | 1.1             | 200              | В           | 10  | MRC-PW08            | Not Qualified |
| SW8260_W | MB-43629     | Aqueous | Tetrachloroethene | 1.1             | 1.2              | BJ          | 5   | MRC-MW-EE2          | U Flag        |
| SW8260_W | MB-43629     | Aqueous | Tetrachloroethene | 1.1             | 1000             | DB          | 50  | MRC-PW02/D          | Not Qualified |
| SW8260_W | MB-43629     | Aqueous | Tetrachloroethene | 1.1             | 1200             | DB          | 50  | MRC-PW02            | Not Qualified |
| SW8260_W | MB-43629     | Aqueous | Tetrachloroethene | 1.1             | 1400             | DB          | 50  | MRC-PW07            | Not Qualified |
| SW8260_W | MB-43629     | Aqueous | Tetrachloroethene | 1.1             | 2400             | DB          | 100 | MRC-PW04            | Not Qualified |
| SW8260_W | MB-43629     | Aqueous | Tetrachloroethene | 1.1             | 270              | DB          | 10  | MRC-PW03            | Not Qualified |
| SW8260_W | MB-43629     | Aqueous | Tetrachloroethene | 1.1             | 320              | DB          | 25  | MRC-ESI-6           | Not Qualified |
| SW8260_W | MB-43629     | Aqueous | Tetrachloroethene | 1.1             | 340              | DB          | 25  | MRC-PW06            | Not Qualified |
| SW8260_W | MB-43629     | Aqueous | Tetrachloroethene | 1.1             | 420              | DB          | 25  | MRC-MPI-10B         | Not Qualified |
| SW8260_W | MB-43629     | Aqueous | Tetrachloroethene | 1.1             | 870              | DB          | 50  | MRC-MW-07           | Not Qualified |
| SW8260_W | MB-43629     | Aqueous | Tetrachloroethene | 1.1             | 4.2              | DBJ         | 10  | MRC-MPI-3S          | U Flag        |

| Data Usability Summary Report | Project: Mr C's Cleaners  |
|-------------------------------|---------------------------|
| Date Completed: June 22, 2009 | Completed by: Bryan Kroon |

 Table 2B - List of Samples Qualified for Field Blank Contamination

 None

 Table 3 - List of Samples with Surrogates outside Control Limits

 None

Table 4 - List MS/MSD Recoveries and RPDs outside Control Limits

| Method   | Sample ID | Sample Type | Analyte                 | RPD  | <b>RPD</b> Limit | Sample Qual. |
|----------|-----------|-------------|-------------------------|------|------------------|--------------|
| SW8260_W | MRC-PW04  | MSD         | Methyl tert-butyl ether | 188  | 40               | None         |
| SW8260_W | MRC-PW04  | MSD         | Tetrachloroethene       | 1934 | 40               | None         |

### Table 5 - List LCS Recoveries outside Control Limits None

#### Table 6 –Samples that were Reanalyzed

| Sample ID  | Lab ID     | Method   | Sample Type | Action                      |
|------------|------------|----------|-------------|-----------------------------|
| MRC-PW03   | H0831-01A  | SW8260_W | SAMP        | Report, add J and UJ flags  |
| MRC-PW03   | H0831-01AD | SW8260_W | DL          | Report for E flag data only |
| MRC-PW02   | H0831-02A  | SW8260_W | SAMP        | Report, add J and UJ flags  |
| MRC-PW02   | H0831-02AD | SW8260_W | DL          | Report for E flag data only |
| MRC-PW02/D | H0831-03A  | SW8260_W | SAMP        | Report, add J and UJ flags  |
| MRC-PW02/D | H0831-03AD | SW8260_W | DL          | Report for E flag data only |
| MRC-PW04   | H0831-04A  | SW8260_W | SAMP        | Report, add J and UJ flags  |
| MRC-PW04   | H0831-04AD | SW8260_W | DL          | Report for E flag data only |
| MRC-PW05   | H0831-05A  | SW8260_W | SAMP        | Report, add J and UJ flags  |
| MRC-PW05   | H0831-05AD | SW8260_W | DL          | Report for E flag data only |
| MRC-PW07   | H0831-06A  | SW8260_W | SAMP        | Report, add J and UJ flags  |
| MRC-PW07   | H0831-06AD | SW8260_W | DL          | Report for E flag data only |
| MRC-PW06   | H0831-08A  | SW8260_W | SAMP        | Report, add J and UJ flags  |
| MRC-PW06   | H0831-08AD | SW8260_W | DL          | Report for E flag data only |
| MRC-MPI-3S | H0831-14A  | SW8260_W | SAMP        | Report, add J and UJ flags  |
| MRC-MPI-3S | H0831-14AD | SW8260_W | DL          | Report for E flag data only |
| MRC-ESI-6  | H0831-15A  | SW8260_W | SAMP        | Report, add J and UJ flags  |

| Data Usability Summary Report | Project: Mr C's Cleaners  |
|-------------------------------|---------------------------|
| Date Completed: June 22, 2009 | Completed by: Bryan Kroon |

| Sample ID   | Lab ID     | Method   | Sample Type | Action                      |
|-------------|------------|----------|-------------|-----------------------------|
| MRC-ESI-6   | H0831-15AD | SW8260_W | DL          | Report for E flag data only |
| MRC-MPI-10B | H0831-18A  | SW8260_W | SAMP        | Report, add J and UJ flags  |
| MRC-MPI-10B | H0831-18AD | SW8260_W | DL          | Report for E flag data only |
| MRC-MW-07   | H0831-19A  | SW8260_W | SAMP        | Report, add J and UJ flags  |
| MRC-MW-07   | H0831-19AD | SW8260_W | DL          | Report for E flag data only |

#### Table 7 – Summary of Field Duplicate Results

| Method | Analyte           | Unit | PQL | MRC-MPI-<br>1S | MRC-MPI-<br>1S/D | RPD   | RPD<br>Rating | Samp Qual |
|--------|-------------------|------|-----|----------------|------------------|-------|---------------|-----------|
| 8260   | Tetrachloroethene | ug/L | 5   | 54             | 49               | 9.71% | Good          | None      |
| 8260   | Trichloroethene   | ug/L | 5   | 1.2            | 1.1              | 8.69% | Good          | None      |

Key:

A = Analyte

NC = Not Calculated

ND = Not Detected

PQL = Practical Quantitation Limit

RPD = Relative Percent Difference

T = Tentatively Identified Compound

| Data Usability Summary Report | Project: Mr C's Cleaners  |
|-------------------------------|---------------------------|
| Date Completed: June 22, 2009 | Completed by: Bryan Kroon |

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness per NYSDEC Division of Environmental Remediation Guidance for the Development of DUSRs (June 1999). Specific criteria for QC limits were obtained from the project QAPP. Compliance with the project QA program is indicated on the in the checklist and tables. Any major or minor concerns affected data usability are summarized listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

| Work Order | Matrix  | Sample ID    | Lab ID     | Sample Date | Lab QC | MS/ MSD | <b>ID Corrections</b> |
|------------|---------|--------------|------------|-------------|--------|---------|-----------------------|
| SH0831     | Aqueous | MRC-PW03     | H0831-01A  |             |        |         | None                  |
| SH0831     | Aqueous | MRC-PW02     | H0831-02A  |             |        |         | None                  |
| SH0831     | Aqueous | MRC-PW02/D   | H0831-03A  |             |        |         | None                  |
| SH0831     | Aqueous | MRC-PW04     | H0831-04A  |             |        | *       | None                  |
| SH0831     | Aqueous | MRC-PW04     | H0831-04AM |             | MS/MSD | *       | None                  |
| SH0831     | Aqueous | MRC-PW05     | H0831-05A  |             |        |         | None                  |
| SH0831     | Aqueous | MRC-PW07     | H0831-06A  |             |        |         | None                  |
| SH0831     | Aqueous | MRC-PW08     | H0831-07A  |             |        |         | None                  |
| SH0831     | Aqueous | MRC-PW06     | H0831-08A  |             |        |         | None                  |
| SH0831     | Aqueous | MRC-RW01     | H0831-09A  |             |        |         | None                  |
| SH0831     | Aqueous | MRC-ESI-5    | H0831-10A  |             | İ      |         | None                  |
| SH0831     | Aqueous | MRC-MPI-1S   | H0831-11A  |             |        |         | None                  |
| SH0831     | Aqueous | MRC-MPI-1S/D | H0831-12A  |             |        |         | None                  |
| SH0831     | Aqueous | MRC-EE-1     | H0831-13A  |             | İ      |         | None                  |
| SH0831     | Aqueous | MRC-MPI-3S   | H0831-14A  |             |        |         | None                  |
| SH0831     | Aqueous | MRC-ESI-6    | H0831-15A  |             |        |         | None                  |
| SH0831     | Aqueous | MRC-MPI-12B  | H0831-16A  |             |        |         | None                  |
| SH0831     | Aqueous | MRC-MPI-15B  | H0831-17A  |             |        |         | None                  |
| SH0831     | Aqueous | MRC-MPI-10B  | H0831-18A  |             |        |         | None                  |
| SH0831     | Aqueous | MRC-MW-07    | H0831-19A  |             |        |         | None                  |
| SH0831     | Aqueous | MRC-MW-EE2   | H0831-20A  |             |        |         | None                  |

#### Work Orders, Tests and Number of Samples included in this DUSR

| Work Orders | Matrix  | Test Method | Method Name  | Number of Samples | Sample Type |
|-------------|---------|-------------|--------------|-------------------|-------------|
| SH0831      | Aqueous | SW8260_W    | VOC by GC-MS | 11                | DL          |
| SH0831      | Aqueous | SW8260_W    | VOC by GC-MS | 20                | SAMP        |

| Data Usability Summary Report | Project: Mr C's Cleaners  |
|-------------------------------|---------------------------|
| Date Completed: June 22, 2009 | Completed by: Bryan Kroon |

| General Sample Information                                                                                                                                                  |                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Do Samples and Analyses on COC check against Lab Sample Tracking Form?                                                                                                      | Yes                                                                  |
| Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?                                                              | Yes                                                                  |
| Frequency of Field QC Samples Correct?<br>Field Duplicate - 1/20 samples<br>Trip Blank - Every cooler with VOCs waters only<br>Equipment Blank - 1/ set of samples per day? | Yes – Trip Blank not included in this<br>SDG.                        |
| All ASP Forms complete?                                                                                                                                                     | Yes                                                                  |
| Case narrative present and complete?                                                                                                                                        | Yes                                                                  |
| Any holding time violations (See table below)?                                                                                                                              | No - All samples were prepared and<br>analyzed within holding times. |

Insert Holding time table below.

The following tables are presented at the end of this DUSR and provided summaries of results outside QC criteria.

- Method Blanks Results (Table 2)
- Surrogates Outside Limits (Table 3)
- MS/MSD Outside Limits (Table 4)
- LCS Outside Limits (Table 5)
- Re-analysis Results (Table 6)
- Field Duplicate Results (Table 7)

#### Go to Tables List

| Volatile Organics and Semi-volatile Organics by GCMS                                                                                                                                                                       |                                                                                                   |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Description                                                                                                                                                                                                                | Notes and Qualifiers                                                                              |  |  |  |  |  |
| Any compounds present in method, trip and field blanks (see Table 2)?                                                                                                                                                      | No                                                                                                |  |  |  |  |  |
| For samples, if results are <5 times the blank or < 10 times<br>blank for common laboratory contaminants then "U" flag<br>data. Qualification also applies to TICs.                                                        | Samples are flagged U as noted on<br>Table 2a for method blanks and Table<br>2b for field blanks. |  |  |  |  |  |
| Surrogate for method blanks and LCS within limits?                                                                                                                                                                         | Yes                                                                                               |  |  |  |  |  |
| Surrogate for samples and MS/MSD within limits? (See<br>Table 3). All samples should be re-analyzed for VOCs?<br>Samples should re-analyzed if >1 BN and/or > AP for BNAs<br>is out. Matrix effects should be established. | Yes                                                                                               |  |  |  |  |  |
| Laboratory QC frequency one blank and LCS with each batch and one set of MS/MSD per 20 samples?                                                                                                                            | Yes                                                                                               |  |  |  |  |  |
| MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then J flag positive data in original sample due to matrix?                                                                                          | Yes                                                                                               |  |  |  |  |  |
| LCS within QC criteria (see Table 5)? If out, and the recovery high with no positive values, then no data qualification is required.                                                                                       | Yes                                                                                               |  |  |  |  |  |
| Do internal standards areas and retention time meet<br>criteria? If not was sample re-analyzed to establish matrix<br>(see Table 6)?                                                                                       | Yes                                                                                               |  |  |  |  |  |

| Data Usability Summary Report | Project: Mr C's Cleaners  |
|-------------------------------|---------------------------|
| Date Completed: June 22, 2009 | Completed by: Bryan Kroon |

| Volatile Organics and Semi-volatile Organics by GCMS                                                                                            |                      |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|--|
| Description                                                                                                                                     | Notes and Qualifiers |  |  |  |  |  |
| Is initial calibration for target compounds <15 %RSD or curve fit?                                                                              | Yes                  |  |  |  |  |  |
| Is continuing calibration for target compounds < 20.5%D.                                                                                        | Yes                  |  |  |  |  |  |
| Were any samples re-analyzed or diluted (see Table 6)?<br>For any sample re-analysis and dilutions is only one<br>reportable result by flagged? | No                   |  |  |  |  |  |
| For TICs are there any system related compounds that should not be reported?                                                                    | No                   |  |  |  |  |  |
| Do field duplicate results show good precision for all compounds except TICs (see Table 7)?                                                     | Yes                  |  |  |  |  |  |

#### Summary of Potential Impacts on Data Usability

Major Concerns

### None

#### **Minor Concerns**

Results qualified based on Method Blank Contamination and Calibration range exceedances.

| Data Usability Summary Report | Project: Mr C's Cleaners  |  |  |  |
|-------------------------------|---------------------------|--|--|--|
| Date Completed: June 22, 2009 | Completed by: Bryan Kroon |  |  |  |

#### Table 2 - List of Positive Results for Blank Samples

| Method   | Sample ID | Samp Type | Analyte           | Result | Qual | Analyte<br>Type | Units | MDL  | PQL |
|----------|-----------|-----------|-------------------|--------|------|-----------------|-------|------|-----|
| SW8260_W | MB-43531  | MBLK      | Tetrachloroethene | 2      | J    | А               | µg/L  | 0.46 | 5   |
| SW8260_W | MB-43601  | MBLK      | Chloroform        | 1      | J    | А               | µg/L  | 0.4  | 5   |
| SW8260_W | MB-43629  | MBLK      | Tetrachloroethene | 1.1    | J    | А               | µg/L  | 0.46 | 5   |

#### Table 2A - List of Samples Qualified for Method Blank Contamination

| Method   | Lab<br>Blank | Matrix  | Analyte           | Blank<br>Result | Sample<br>Result | Lab<br>Qual | PQL | Affected<br>Samples | Sample Flag   |
|----------|--------------|---------|-------------------|-----------------|------------------|-------------|-----|---------------------|---------------|
| SW8260_W | MB-43531     | Aqueous | Tetrachloroethene | 2               | 54               |             | 5   | MRC-MPI-1S          | Not Qualified |
| SW8260_W | MB-43531     | Aqueous | Tetrachloroethene | 2               | 1100             | E           | 5   | MRC-PW02/D          | Not Qualified |
| SW8260_W | MB-43531     | Aqueous | Tetrachloroethene | 2               | 1300             | E           | 5   | MRC-PW07            | Not Qualified |
| SW8260_W | MB-43531     | Aqueous | Tetrachloroethene | 2               | 1900             | E           | 5   | MRC-PW04            | Not Qualified |
| SW8260_W | MB-43531     | Aqueous | Tetrachloroethene | 2               | 2300             | E           | 5   | MRC-PW05            | Not Qualified |
| SW8260_W | MB-43531     | Aqueous | Tetrachloroethene | 2               | 300              | E           | 5   | MRC-PW03            | Not Qualified |
| SW8260_W | MB-43531     | Aqueous | Tetrachloroethene | 2               | 520              | E           | 5   | MRC-PW06            | Not Qualified |
| SW8260_W | MB-43531     | Aqueous | Tetrachloroethene | 2               | 920              | E           | 5   | MRC-PW02            | Not Qualified |
| SW8260_W | MB-43531     | Aqueous | Tetrachloroethene | 2               | 4.1              | J           | 5   | MRC-ESI-5           | U Flag        |
| SW8260_W | MB-43629     | Aqueous | Tetrachloroethene | 1.1             | 190              | В           | 5   | MRC-RW01            | Not Qualified |
| SW8260_W | MB-43629     | Aqueous | Tetrachloroethene | 1.1             | 200              | В           | 10  | MRC-PW08            | Not Qualified |
| SW8260_W | MB-43629     | Aqueous | Tetrachloroethene | 1.1             | 1.2              | BJ          | 5   | MRC-MW-EE2          | U Flag        |
| SW8260_W | MB-43629     | Aqueous | Tetrachloroethene | 1.1             | 1000             | DB          | 50  | MRC-PW02/D          | Not Qualified |
| SW8260_W | MB-43629     | Aqueous | Tetrachloroethene | 1.1             | 1200             | DB          | 50  | MRC-PW02            | Not Qualified |
| SW8260_W | MB-43629     | Aqueous | Tetrachloroethene | 1.1             | 1400             | DB          | 50  | MRC-PW07            | Not Qualified |
| SW8260_W | MB-43629     | Aqueous | Tetrachloroethene | 1.1             | 2400             | DB          | 100 | MRC-PW04            | Not Qualified |
| SW8260_W | MB-43629     | Aqueous | Tetrachloroethene | 1.1             | 270              | DB          | 10  | MRC-PW03            | Not Qualified |
| SW8260_W | MB-43629     | Aqueous | Tetrachloroethene | 1.1             | 320              | DB          | 25  | MRC-ESI-6           | Not Qualified |
| SW8260_W | MB-43629     | Aqueous | Tetrachloroethene | 1.1             | 340              | DB          | 25  | MRC-PW06            | Not Qualified |
| SW8260_W | MB-43629     | Aqueous | Tetrachloroethene | 1.1             | 420              | DB          | 25  | MRC-MPI-10B         | Not Qualified |
| SW8260_W | MB-43629     | Aqueous | Tetrachloroethene | 1.1             | 870              | DB          | 50  | MRC-MW-07           | Not Qualified |
| SW8260_W | MB-43629     | Aqueous | Tetrachloroethene | 1.1             | 4.2              | DBJ         | 10  | MRC-MPI-3S          | U Flag        |

| Data Usability Summary Report | Project: Mr C's Cleaners  |
|-------------------------------|---------------------------|
| Date Completed: June 22, 2009 | Completed by: Bryan Kroon |

 Table 2B - List of Samples Qualified for Field Blank Contamination

 None

 Table 3 - List of Samples with Surrogates outside Control Limits

 None

Table 4 - List MS/MSD Recoveries and RPDs outside Control Limits

| Method   | Sample ID | Sample Type | Analyte                 | RPD  | <b>RPD</b> Limit | Sample Qual. |
|----------|-----------|-------------|-------------------------|------|------------------|--------------|
| SW8260_W | MRC-PW04  | MSD         | Methyl tert-butyl ether | 188  | 40               | None         |
| SW8260_W | MRC-PW04  | MSD         | Tetrachloroethene       | 1934 | 40               | None         |

### Table 5 - List LCS Recoveries outside Control Limits None

#### Table 6 –Samples that were Reanalyzed

| Sample ID  | Lab ID     | Method   | Sample Type | Action                      |
|------------|------------|----------|-------------|-----------------------------|
| MRC-PW03   | H0831-01A  | SW8260_W | SAMP        | Report, add J and UJ flags  |
| MRC-PW03   | H0831-01AD | SW8260_W | DL          | Report for E flag data only |
| MRC-PW02   | H0831-02A  | SW8260_W | SAMP        | Report, add J and UJ flags  |
| MRC-PW02   | H0831-02AD | SW8260_W | DL          | Report for E flag data only |
| MRC-PW02/D | H0831-03A  | SW8260_W | SAMP        | Report, add J and UJ flags  |
| MRC-PW02/D | H0831-03AD | SW8260_W | DL          | Report for E flag data only |
| MRC-PW04   | H0831-04A  | SW8260_W | SAMP        | Report, add J and UJ flags  |
| MRC-PW04   | H0831-04AD | SW8260_W | DL          | Report for E flag data only |
| MRC-PW05   | H0831-05A  | SW8260_W | SAMP        | Report, add J and UJ flags  |
| MRC-PW05   | H0831-05AD | SW8260_W | DL          | Report for E flag data only |
| MRC-PW07   | H0831-06A  | SW8260_W | SAMP        | Report, add J and UJ flags  |
| MRC-PW07   | H0831-06AD | SW8260_W | DL          | Report for E flag data only |
| MRC-PW06   | H0831-08A  | SW8260_W | SAMP        | Report, add J and UJ flags  |
| MRC-PW06   | H0831-08AD | SW8260_W | DL          | Report for E flag data only |
| MRC-MPI-3S | H0831-14A  | SW8260_W | SAMP        | Report, add J and UJ flags  |
| MRC-MPI-3S | H0831-14AD | SW8260_W | DL          | Report for E flag data only |

| Data Usability Summary Report | Project: Mr C's Cleaners  |
|-------------------------------|---------------------------|
| Date Completed: June 22, 2009 | Completed by: Bryan Kroon |

| Sample ID   | Lab ID     | Method   | Sample Type | Action                      |
|-------------|------------|----------|-------------|-----------------------------|
| MRC-ESI-6   | H0831-15A  | SW8260_W | SAMP        | Report, add J and UJ flags  |
| MRC-ESI-6   | H0831-15AD | SW8260_W | DL          | Report for E flag data only |
| MRC-MPI-10B | H0831-18A  | SW8260_W | SAMP        | Report, add J and UJ flags  |
| MRC-MPI-10B | H0831-18AD | SW8260_W | DL          | Report for E flag data only |
| MRC-MW-07   | H0831-19A  | SW8260_W | SAMP        | Report, add J and UJ flags  |
| MRC-MW-07   | H0831-19AD | SW8260_W | DL          | Report for E flag data only |

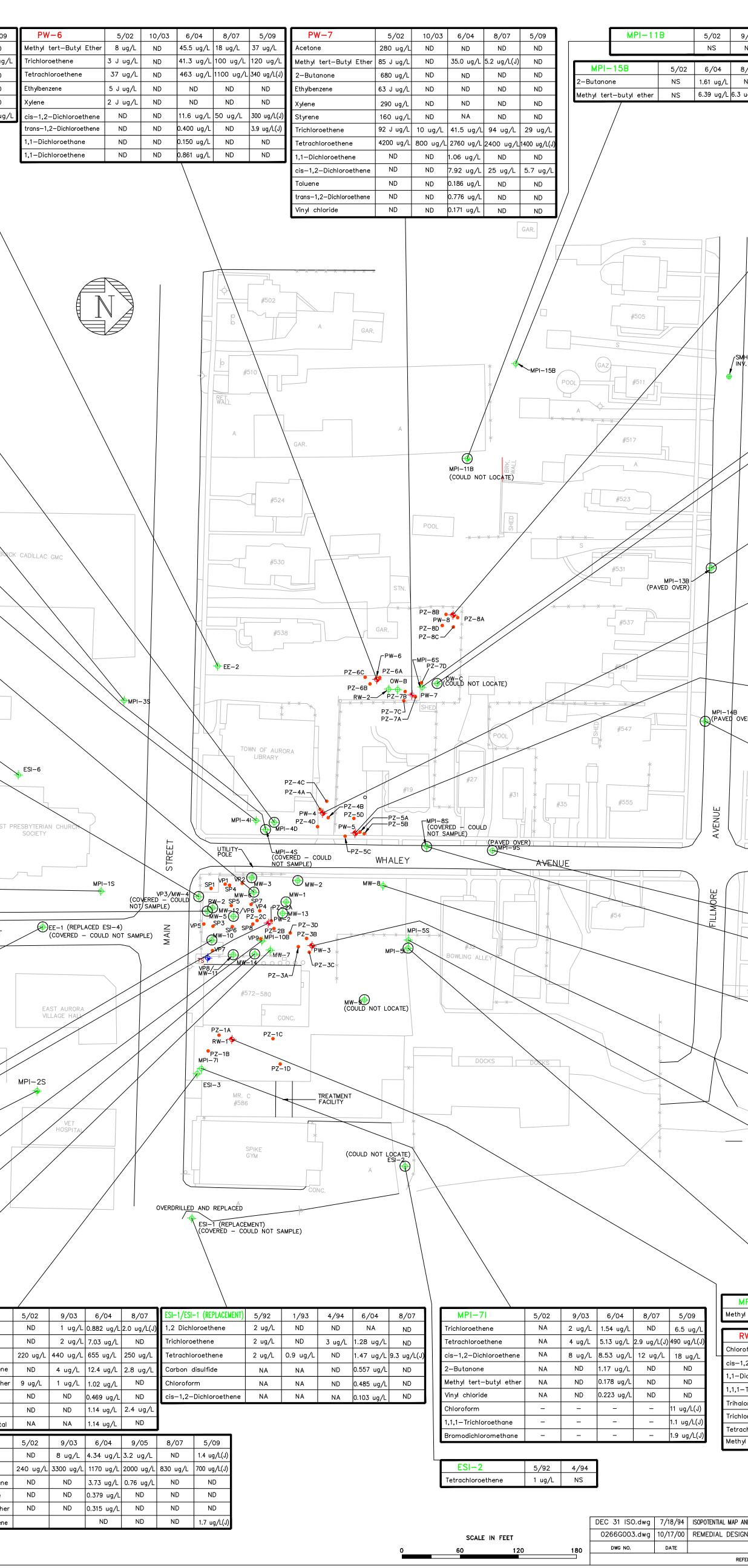
#### Table 7 – Summary of Field Duplicate Results

| Method | Analyte           | Unit | PQL | MRC-MPI-<br>1S | MRC-MPI-<br>1S/D | RPD   | RPD<br>Rating | Samp Qual |
|--------|-------------------|------|-----|----------------|------------------|-------|---------------|-----------|
| 8260   | Tetrachloroethene | ug/L | 5   | 54             | 49               | 9.71% | Good          | None      |
| 8260   | Trichloroethene   | ug/L | 5   | 1.2            | 1.1              | 8.69% | Good          | None      |

Key:

A = Analyte

NC = Not Calculated


ND = Not Detected

PQL = Practical Quantitation Limit

RPD = Relative Percent Difference

T = Tentatively Identified Compound

| MPI-4S<br>Tetrachloroethene                        | 5/02<br>2 ug/L        | 9/03<br>2 ug/L 1.        | 6/04<br>63 ug/L 5          | 8/07<br>.0 ug/L       | MPI-                          |                         | 5/02             | 9/03                            | 6/04                   | 8/0            | 7                 |                      | EE-2                         |                            | 6/04                      | 8/07                          |                 |
|----------------------------------------------------|-----------------------|--------------------------|----------------------------|-----------------------|-------------------------------|-------------------------|------------------|---------------------------------|------------------------|----------------|-------------------|----------------------|------------------------------|----------------------------|---------------------------|-------------------------------|-----------------|
| cis-1,2-Dichloroethene<br>Methyl tert-Butyl Ether  |                       | 16 ug/L 97<br>11 ug/L 4. |                            | Ю ug∕L<br>ND          | All Compo                     |                         | ND               | ND                              | NS                     | NS             |                   | _                    | Chloroform<br>Methyl tert    | -butyl eth                 | 0.346 ug,<br>er 1660 ug,  |                               | ND<br>/L 130 ug |
| Vinyl Chloride                                     | 4 ug/L                | ND 5.                    | 53 ug/L 2                  | 0 ug/L                | MPI-<br>Benzene               | 3S                      | 5/02<br>ND       | 9/03<br>1 ug/L                  | 6/04<br>ND             | 8/07<br>ND     | 7 5/0<br>NI       |                      | Methylene o<br>Tetrachloroet |                            | 0.208 ug,<br>0.387 ug,    |                               | ND<br>ND        |
| Acetone<br>1,1-Dichloroethene                      | 9 ug/L<br>1 ug/L      | ND<br>ND                 | ND<br>ND                   | ND<br>ND              | Methyl ter<br>Tetrachloro     | -Butyl Ether<br>bethene | 1700 ug/L<br>ND  | . 560 ug/L 3                    | 390 ug/L<br>).495 ug/L | 240 ug<br>ND   | y/L 190 ug<br>NI  |                      | Trihalometh                  | anes, Tota                 | ıl 0.346 ug,              | /L ND                         | ND              |
| Benzene<br>2-Butanone                              | 5 ug/L<br>3 ug/L      | ND 1.<br>ND              | 22 ug/L<br>ND              | ND<br>ND              | 1,2-Dichlo                    |                         | ND               | 1.4 ug/L 0                      |                        | ND             |                   |                      | Vinyl chlorid                | le                         | -                         |                               | 38 ug           |
| Chloroform<br>Isopropylbenzene                     | ND<br>ND              |                          | 722 ug/L<br>108 ug/L       | ND<br>ND              | $\backslash$                  |                         |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |
| trans-1,2-Dichloroethene                           | ND                    | ND 1.                    | 05 ug/L                    | ND                    |                               | <b>`</b>                |                  |                                 | <b>\</b>               |                |                   |                      |                              |                            |                           |                               | \               |
| Trichloroethene<br>Trihalomethanes, Total          | ND<br>NA              |                          | 27 ug/L 2<br>722 ug/L      | .4 ug/L<br>ND         |                               |                         |                  |                                 | $\backslash$           |                |                   |                      |                              |                            |                           |                               |                 |
| MPI-4I                                             | 5/02                  | 9/03                     | 6/04                       | 8/07                  | 5/09                          | ר ר                     |                  |                                 |                        |                |                   |                      | $\backslash$                 |                            |                           |                               |                 |
| Trichloroethene<br>Tetrachloroethene               |                       | -                        |                            |                       | /L 180 ug/<br>/L 640 ug/L(    | -                       |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |
| cis-1,2-Dichloroether                              | ie 16 ug/             | L 48 ug/l                | _ 49.4 ug/                 | L 160 ug,             | /L 780 ug/L(                  | -                       |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |
| Methyl tert-Butyl Eth<br>trans-1,2-Dichloroether   |                       | L 40 ug/l<br>ND          | 26.3 ug/                   | -                     |                               | $\overline{)}$          |                  |                                 |                        |                |                   |                      |                              | $\backslash$               |                           |                               |                 |
| Vinyl chloride                                     | ND                    | ND                       | 0.196 ug/                  | L ND                  | ND                            |                         |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |
| MW-6<br>Trichloroethene                            | 5/02<br>ND            | 9/03<br>2 ug/l           | 6/04<br>_ NS               | -                     |                               |                         |                  |                                 |                        | $\overline{\}$ |                   |                      | $\backslash$                 | ·                          |                           |                               |                 |
| Tetrachloroethene<br>cis-1,2-Dichloroethar         | 68 ug/l<br>ie ND      | _ 74 ug/l<br>2 ug/l      | -                          | -                     |                               |                         |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |
| ESI-6                                              | 5/02                  | 9/03                     | 6/04                       | 8/07                  | 5/09                          | ]                       |                  |                                 |                        |                |                   | <b>`</b>             |                              | <b>\</b>                   |                           | $\backslash$                  |                 |
| 1,1-Dichloroethane<br>Trichloroethene              | ND<br>44 ug/          |                          | ′L0.616 ug/l<br>L19.2 ug/l | _                     | ND<br>. 17 ug/L               | -                       |                  |                                 |                        |                |                   | $\backslash$         |                              | $\backslash$               |                           |                               |                 |
| Tetrachloroethene                                  | 1180 ug/              | L 230 ug/                | L 514 ug/L                 | 240 ug                | /L 320 ug/L(                  | J)                      |                  |                                 | < l>                   |                |                   |                      |                              |                            |                           |                               | $\backslash$    |
| cis-1,2-Dichloroether<br>Methyl tert-Butyl Eth     |                       |                          | L 23.6 ug/l<br>L 29.2 ug/  |                       |                               | -                       |                  |                                 | $\overline{\ }$        |                |                   |                      |                              |                            |                           |                               |                 |
| trans-1,2-Dichloroether<br>Vinyl chloride          | ne ND<br>ND           | ND<br>ND                 | 0.290 ug/<br>0.605 ug/     | -                     | ND<br>ND                      | $\mathbf{k}$            |                  |                                 |                        | $\backslash$   |                   |                      |                              |                            |                           | $\backslash$                  | \               |
| MW-4                                               | 5/02                  | 9/03                     | 6/04                       | 9/05                  |                               | j 🔨                     |                  |                                 |                        |                |                   |                      | $\overline{\ }$              |                            |                           | $\backslash$                  |                 |
| Vinyl Chloride<br>Trichloroethene                  | ND 23 ug/             | 47 ug/l                  | _ 41.0 ug/l<br>_ 27.9 ug/  | _ 590 ug,             | /L ND                         | -                       | $\overline{\ }$  | <.                              |                        |                |                   |                      |                              |                            |                           |                               | $\overline{\ }$ |
| Benzene                                            | 24 ug/                | L 46 ug/l                | _ 4.80 ug/                 | _21.0 ug              | /L 5.4 ug/L(                  | >                       |                  |                                 |                        | _              |                   |                      | $\mathbf{X}$                 |                            | $\langle \rangle$         |                               | $\backslash$    |
| trans-1,2-Dichloroether<br>Tetrachloroethene       | ne 1 ug/l<br>130 ug/l | _                        | _ 2.87 ug/<br>_ 278 ug/    |                       |                               | -                       |                  |                                 |                        |                |                   |                      |                              |                            |                           | EAST ,                        | AURORA BI       |
| cis-1,2-Dichloroether<br>Acetone                   | le 200 ug/<br>3 ug/   | _                        | L 515 ug/l<br>ND           | . 570 ug<br>ND        | /L 2.5 ug/L(<br>ND            | J)                      |                  |                                 |                        |                | Colli             | sion                 |                              |                            |                           |                               | $\searrow$      |
| Ethylbenzene                                       | 2 ug/                 | L ND                     | 4.42 ug/                   | _ 7.7 ug/             |                               |                         |                  |                                 |                        |                | Sh                | op                   |                              |                            |                           |                               | $\frown$        |
| Xylene—Total<br>1,3,5 — Trimethylbenzer            | 170 ug/<br>ne 120 ug/ | _                        | 0.704 ug/<br>NA            | - ND<br>ND            | 1.3 ug/L<br>ND                |                         |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |
| tert – Butylbenzene<br>1,2,4 – Trimethylbenzer     | 2 ug/l                | _                        | 0.447 ug/<br>0.243 ug/     | _                     | ND<br>ND                      |                         |                  |                                 |                        | $\prec$        |                   |                      |                              |                            |                           |                               |                 |
| Isopropylbenzene                                   | ND                    | ND ND                    | 0.243 ug/<br>1.76 ug/l     |                       | ′L 4.2 ug/L(                  | (I                      |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               | $\overline{\ }$ |
| n-Propylbenzene<br>m,p-Xylene                      | ND<br>NA              | ND<br>ND                 | 2.94 ug/l<br>0.282 ug/     | -                     | ND<br>/L ND                   | _                       |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |
| o-Xylene<br>sec-Butylbenzene                       | NA<br>ND              | ND<br>ND                 | 0.422 ug/                  |                       | L ND                          |                         |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               | _               |
| Toluene                                            | 3 ug/L                | . ND                     | 0.373 ug/                  | L 2.3 ug/             | L ND                          |                         |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |
| 1,1-Dichloroethene<br>Cyclohexane                  | ND<br>ND              | ND<br>ND                 | 0.320 ug/<br>ND            | L 1.2 ug/<br>75.0 ug/ |                               | -                       |                  |                                 |                        |                |                   | MPI                  | –12B                         |                            | ·                         |                               |                 |
| Methylcyclohexane<br>Methyl tert-butyl ether       | ND<br>ND              | ND<br>ND                 | ND<br>ND                   | 22.0 ug/<br>ND        | /L 22.0 ug/<br>ND             | L                       |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |
| MPI-12B                                            | 5/02                  | 9/03                     | 6/04                       | 8/07                  |                               | 」<br>】                  |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |
| cis-1,2-Dichloroethene<br>Methyl tert-butyl ether  | NS                    | NS<br>NS                 | 3.46 ug/L<br>341 ug/L      |                       | .(J) 16 ug/L                  | -                       |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |
| Tetrachloroethene                                  | NS                    | NS                       | 0.422 ug/                  | L ND                  | 2.8 ug/L(J                    | _                       |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |
| Trichloroethene                                    | NS<br>5/02            | NS<br>9/03               | 0.294 ug/<br>6/04          | L ND<br>8/07          | ND<br>5/09                    | ł                       |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |
| Trichloroethene                                    | ND                    | 1.5 ug/                  | L 9.87 ug/                 | L 6.5 ug/L            | (J) 1.2 ug/L(J                |                         |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |
| Tetrachloroethene<br>cis-1,2-Dichloroether         | 10 ug/l<br>ie ND      |                          | L 123 ug/<br>1/L 3.90 ug/  |                       | ′L 54 ug/L<br>1.1 ug/L(、      | _                       |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |
| Vinyl chloride<br>1,1-Dichloroethane               | ND<br>ND              | ND<br>ND                 | 0.346 ug/<br>0.337 ug/     |                       | ND<br>ND                      | _                       |                  |                                 |                        |                |                   | /                    | ESI-5                        |                            | PAINE                     |                               | STREET          |
| MW-5                                               | 5/02                  | 9/03                     | 6/04                       | 8/07                  |                               | <b>_</b>                |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |
| Xylene<br>Vinyl Chloride                           | 5700 ug/l             | L ND<br>7 ug/l           | NS<br>NS                   | NS<br>NS              | _                             |                         |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |
| Trichloroethene                                    | 21 ug/                | L ND                     | NS                         | NS                    | _                             |                         |                  |                                 |                        |                |                   |                      |                              |                            | BOYS<br>GIRLS             | AND<br>CLUBS                  |                 |
| Benzene<br>trans-1,2-Dichloroether                 | 220 ug/<br>ne ND      | /L 15 ug/l<br>ND         | _ NS<br>NS                 | NS<br>NS              | _                             |                         |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |
| Tetrachloroethene<br>cis-1,2-Dichloroether         | 83 ug/                |                          |                            | NS<br>NS              | _                             |                         |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |
| Methyl tert-Butyl Eth                              | er ND                 | 3 ug/l                   | - NS                       | NS                    |                               |                         |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |
| Toluene<br>Ethylbenzene                            | 160 ug/<br>25 ug/     | -                        | - NS<br>NS                 | NS<br>NS              | -                             |                         |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               | /               |
| 1,3,5 – Trimethylbenzer<br>1,2,4 – Trimethylbenzer |                       |                          | NS<br>NS                   | NS<br>NS              | _                             |                         |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |
| ESI-5                                              | 5/02                  | 9/03                     | 6/04                       | 8/07                  | 5/09                          | 1                       |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |
| Tetrachloroethene                                  | ND                    |                          | L 0.196 ug/                | _                     |                               |                         |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               | / /             |
| ESI-4/EE-1<br>Chloroform                           | 5/02<br>ND            | 9/03<br>0.54 ug/         | 6/04<br>L 0.521 ug/        | 8/07<br>- ND          | 5/09<br>ND                    | _                       |                  |                                 |                        |                |                   |                      |                              |                            | /                         |                               |                 |
| 1,1,1-Trichloroethane                              | 0.7 ug/               | L 2.4 ug/                | L 14.7 ug/                 | _ 9.6 ug/L            | (J) 12 ug/L                   |                         |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               | /               |
| Trichloroethene<br>Tetrachloroethene               | 0.5 ug/               |                          |                            | ND<br>3.1 ug/L        | ND<br>(J) 4.5 ug/L(.          | )                       |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |
| cis-1,2-Dichloroether<br>Methyl tert-butyl eth     |                       | 1.2 ug/                  | L ND<br>8.51 ug/L          | ND                    | ND<br>(J) 1.6 ug/L(.          |                         |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               | /               |
| Trihalomethanes, Toto                              | al NA                 | NA                       | 0.521 ug/                  | L ND                  | ND                            | ,<br>                   |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |
| 1,1-Dichloroethane<br>1,1-Dichloroethene           | ND<br>ND              | ND<br>ND                 | 1.16 ug/L<br>0.284 ug/     |                       | ND<br>ND                      |                         |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |
| 2-Butanone<br>Benzene                              | NA<br>ND              | NA<br>ND                 | 0.965 ug/<br>0.325 ug/     |                       | ND<br>ND                      |                         |                  | IPI-10B                         |                        | /02            | 9/03              | 6/04                 | 8/07                         | 5/09                       | ]  [                      | ESI-3                         |                 |
| Acetone                                            | NA                    | ND                       | 1.85 ug/L                  |                       | ND                            | <b>]</b>                | Trichlo<br>Benze | proethene<br>ne                 |                        | ND<br>ND       | 1 ug/L<br>3 ug/L  | 5.03 ug/<br>ND       | L ND<br>ND                   | 5.1 ug/L<br>ND             | ┨│ │┠─                    | ,1,1Trichlorc<br>richloroethe |                 |
| MW-10                                              | 5/02<br>ND            | 9/03                     | 6/04<br>NS                 | 8/07<br>NS            | 7                             |                         |                  | chloroethene<br>,2-Dichloroetl  |                        | 2 ug/L<br>ND   | 320 ug/<br>2 ug/L |                      | /L 790 ug/L<br>/L ND         | 450 ug/L(J)<br>3.3 ug/L(J) | -1                        | etrachloroe<br>is-1,2-Dicł    |                 |
| Acetone<br>cis-1,2-Dichloroethen                   | e ND                  | 14 ug/L<br>3 ug/L        | NS                         | NS                    | 1                             |                         | Methy            | 1 tert-Butyl                    | Ether                  | ND             | 2 ug/L            | 1.89 ug/             | L ND                         | ND                         |                           | ethyl tert-                   | -Butyl Eth      |
| Tetrachloroethene                                  | 12 ug/L               | ND                       | NS                         | NS                    |                               |                         |                  | omethanes, T<br>-1,2—Dichloroet |                        | NA<br>ND       | NA<br>ND          | 0.149 ug<br>0.588 ug |                              | ND<br>ND                   | ┨│ │┣─                    | ,1–Dichloro<br>hloroform      | ethane          |
| PW-2                                               | 5/02                  | 9/03                     | 6/04                       | 9/05                  |                               | 5/09                    | Chloro           | oform<br>ichloroethane          |                        | ND<br>ND       | ND<br>ND          | 0.149 ug<br>0.24 ug/ |                              | ND<br>ND                   | ┨││┣                      | rihalometho                   |                 |
| Trichloroethene<br>Tetrachloroethene               | ND<br>430 ug/L        |                          |                            |                       | _ 9.3 ug/L(J)<br>/L 1300 ug/L |                         |                  | Trichloroetha                   |                        | ND             | ND                | 0.24 ug/<br>0.926 ug |                              | ND                         | <u></u> 」││┞ <sub>╥</sub> | MW-7                          |                 |
| cis-1,2-Dichloroethene                             | e ND                  | 5 ug/L                   | 3.82 ug/L<br>0.617 ug/L    | 2.0 ug/               |                               | 2.8 ug/L(J)             |                  | IW-14                           |                        | /02<br>NS      | 9/03<br>NS        | 6/04                 |                              |                            |                           | etrachloroe                   | thene           |
| Methyl tert-Butyl Ethe<br>Acetone                  | er ND<br>14 ug/l      |                          | 0.617 ug/L<br>ND           | ND<br>ND              | ND<br>ND                      |                         |                  | chloroethene                    |                        | NS /94         | NS                | 180 ug/              | -                            |                            |                           | is-1,2-Dick<br>,1,1-Trichlo   |                 |
| Ethylbenzene<br>Xylene                             | 24 ug/l<br>65 ug/l    |                          | ND<br>ND                   | ND<br>ND              | ND<br>ND                      | ND<br>ND                |                  | IPI-25<br>Trichloroethar        |                        | /94<br>+ ug/L  | 1/95<br>12 u/L    | 6/04<br>NS           | 1                            |                            |                           | ethyl tert-<br>ans-1,2-Dia    | -               |
| trans-1,2-Dichloroethene                           | e ND                  | ND                       | 0.290 ug/L                 | ND                    | ND                            | ND<br>4.1 ug/L(J)       | Benze            | ene                             |                        | ND             | 2 ug/L            | NS                   |                              |                            | L                         | ı,z=DIC                       |                 |
| 1,1,1-Trichloroethane<br>D ecology and             | ND                    | ND                       | 0.344 ug/L                 | ND                    | ND                            | ND                      |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |
| <u>                                    </u>        | environ.              | теп е                    | noinee                     | ring r                | ) (                           |                         |                  |                                 |                        |                |                   |                      |                              |                            |                           |                               |                 |



| 9/03 6/04<br>NS NS                                                 | PW-8<br>1,1-Dichloroethene                                          | ND 2                                  | 9/03 6/04<br>2 ug/L 0.302 ug/L                     | 8/07 5/09<br>ND ND                                                      | MPI-6S                                                                        | 5/02                                   |                                                                        |                                                   |                                        | END                                                              |                                                                       |                                                                        |
|--------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|
| 8/07 5/09<br>ND ND<br>6.3 ug/L(J) 7.4 ug/L                         | 2-Butanone<br>Trichloroethene<br>trans-1,2-Dichloroethene           | 4 ug/L 66                             | 3 ug/L ND<br>3 ug/L 25.2 ug/L<br>2 ug/L 0.722 ug/L | ND         ND           15 ug/L         28 ug/L           ND         ND | Acetone<br>Trichloroethene<br>Tetrachloroethene                               | ND                                     | 15 ug/L 125                                                            | ID ND N<br>ug/L 58 ug/L 94<br>ug/L 4900 ug/L 8100 |                                        | <b>⊕</b>                                                         | SANITARY SEW<br>MONITORING W                                          |                                                                        |
|                                                                    | Tetrachloroethene<br>cis-1,2-Dichloroethene                         | 1 ug/L 5                              | 5 ug/L 8.45 ug/L                                   |                                                                         | cis-1,2-Dichloroethene<br>Methyl tert-Butyl Ether<br>trans-1,2-Dichloroethene | ND<br>1000 ug/L<br>ND                  | 2 ug/L 3.26<br>23 ug/L 2.59<br>ND 0.48                                 |                                                   | g/L(J)                                 | <ul><li>●</li></ul>                                              | PUMPING WELL<br>PIEZOMETER                                            |                                                                        |
|                                                                    | Methyl tert-Butyl Ether<br>Acetone<br>Xylene                        | 26 ug/L                               | ND ND ND                                           | 3.5 ug/L(J) 4.2 ug/L(J) ND ND ND ND                                     | 2-Butanone<br>1,1-Dichloroethene                                              | NA<br>NA<br>ND                         | NA 1.28                                                                | ug/L ND N                                         | D<br>D<br>D                            |                                                                  | EXISTING STRU<br>FEATURES                                             | CTURES AND                                                             |
|                                                                    | Ethylbenzene<br>Vinyl Chloride                                      | 3 ug/L                                | ND ND<br>ND ND                                     | ND ND<br>ND ND                                                          | ow-c                                                                          |                                        | 5/02 9/                                                                | /03 6/04 8/                                       | 07                                     | X                                                                | - FENCE                                                               |                                                                        |
|                                                                    | Carbon Disulfide                                                    | -                                     |                                                    | 7.2 ug/L(J) ND                                                          | Trichloroethe<br>trans-1,2-Dic                                                |                                        | NS N<br>NS N                                                           | S NS N                                            | s PAI                                  | NE STREET                                                        | MAJOR AREA :                                                          | STREETS                                                                |
|                                                                    |                                                                     |                                       |                                                    |                                                                         | Tetrachloroe<br>cis-1,2-Dich                                                  | loroethene                             | NS N<br>NS N                                                           | S NS N                                            | s<br>s                                 | $\bigoplus$                                                      | WELLS CIRCLEI<br>(EITHER ABANI                                        | ) = NOT FOUND<br>DONED OR MISSING)                                     |
|                                                                    |                                                                     |                                       |                                                    |                                                                         | Methyl tert-                                                                  | butyl ether                            | NS N<br>NS N                                                           | S NS N                                            |                                        | _ ABBREVIA                                                       | ATIONS                                                                |                                                                        |
|                                                                    |                                                                     |                                       |                                                    |                                                                         | MPI-1<br>Trichloroethe<br>Benzene                                             |                                        | 5/02 9/<br>ND 0.57<br>ND 1.4 (                                         | ug/L ND N                                         | D                                      | EMPIRE SOILS WE<br>(ENVIRONMENTAL                                |                                                                       | BSERVATION WELL                                                        |
|                                                                    |                                                                     |                                       |                                                    |                                                                         | Tetrachloroe<br>2-Butanone                                                    | thene                                  | ND 3.2<br>NA N                                                         | A 0.979 ug/L N                                    | g/L(J)<br>D MW                         | OBSERVATION WE<br>(MALCOLM-PIRNII<br>MONITORING WELI<br>(MATRIX) | E)                                                                    | UMPING WELL (TYREE)<br>IEZOMETER (TYREE)                               |
| SMH<br>INV. 907.74                                                 |                                                                     |                                       |                                                    |                                                                         | Acetone<br>Carbon disul                                                       | fide                                   | NA N<br>NA N                                                           |                                                   | D                                      | DATA NOT AVAIL                                                   | (                                                                     | ECOVERY WELL<br>BY OTHERS)                                             |
|                                                                    |                                                                     |                                       |                                                    |                                                                         | PW-4<br>Trichloroethene                                                       | 5/02<br>ND                             | 10/03 6/9<br>35 ug/L 57.9                                              | 04 8/07 5/0<br>ug/L 74 ug/L(J) 100 0              | )9                                     |                                                                  | BREVIATION                                                            | 9                                                                      |
|                                                                    |                                                                     |                                       |                                                    |                                                                         | Tetrachloroethene<br>cis-1,2-Dichloroethene                                   | 50 ug/L 2<br>ND 49                     | 00 ug/L 2850                                                           | ug/L 1600 ug/L 2400 u<br>ug/L 19 ug/L 34 u        | g/L(J)<br>g/L ND                       | MICROGRAMS PER<br>NOT DETECTED                                   |                                                                       | <u> </u>                                                               |
|                                                                    |                                                                     |                                       |                                                    |                                                                         | Acetone<br>2-Butanone                                                         | 100 ug/L<br>1400 ug/L<br>210 ug/L      | ND NE                                                                  | ) ND N                                            | NA<br>D –                              | NOT SAMPLED<br>NOT ANALYZED<br>NOT ANALYZED O<br>ESTIMATED VALUE | R NOT DETECTED                                                        |                                                                        |
|                                                                    |                                                                     |                                       |                                                    |                                                                         | Ethylbenzene<br>Xylene<br>Styrene                                             | 210 ug/L<br>1200 ug/L<br>360 ug/L      | ND NE<br>ND NE<br>ND NA                                                | D ND N                                            | )<br>)<br>)<br>(U)                     | ANALYZED FOR BU                                                  | UT NOT DETECTED<br>N LIMIT INDICATED                                  |                                                                        |
|                                                                    |                                                                     |                                       | ~                                                  |                                                                         | Methyl tert-butyl ether<br>Toluene                                            | ND<br>ND                               |                                                                        | ug/L 23 ug/L 64 u                                 | g/L<br>1. ONLY                         | DETECTED COMP                                                    | OUNDS ARE PRESENT                                                     |                                                                        |
|                                                                    |                                                                     |                                       |                                                    |                                                                         | Vinyl chloride<br>1,1,1—Trichloroethane<br>1,1—Dichloroethane                 | ND<br>ND<br>ND                         | ND         0.981           ND         0.680           ND         0.485 |                                                   | PLAN<br>(NAD                           | E COORDINATE S<br>83) AND WAS O                                  | IS BASED UPON THE<br>YSTEM, WEST ZONE,<br>BTAINED FROM A MA           | 1983 ADJUSTMENT<br>P PREPARED BY                                       |
|                                                                    |                                                                     |                                       |                                                    |                                                                         | 1,1-Dichloroethane<br>1,1-Dichloroethene<br>Benzene                           | ND<br>ND<br>ND                         | ND         0.485           ND         0.211           ND         0.121 | ug/L ND N                                         | ) (NYS                                 | SITE No. 9-15-                                                   | R ARCHITECTS AND E<br>157) NYSDEC CONTR<br>D UPON NORTH GEO           |                                                                        |
|                                                                    |                                                                     |                                       |                                                    |                                                                         | trans-1,2-Dichloroethene                                                      | ND                                     | ND 1.2 u                                                               |                                                   | /L(J) 1929<br>4. BENC                  | (NGVD 1929).<br>HMARK IS LOCATI                                  | ED NEAR THE NORTH                                                     | EAST CORNER OF                                                         |
|                                                                    |                                                                     |                                       |                                                    |                                                                         | Acetone<br>2-Butanone                                                         | 5/02<br>200 ug/L<br>3300 ug/L          | 10/03         6/0           ND         NE           ND         NE      | D ND N                                            | ) SET I                                | N THE TOP OF C                                                   | NE STREET, BEING A<br>ONCRETE BASE — EL                               | EVATION 916.64'                                                        |
|                                                                    |                                                                     |                                       |                                                    |                                                                         | Tetrachloroethene<br>Ethylbenzene                                             | 170 ug/L 20<br>310 ug/L                | 000 ug/L 3220<br>ND 0.209                                              | ug/L 2000 ug/L 4000 ug/L ND N                     | g/L(J) ANAL                            |                                                                  | C PERFORMED IN JUN<br>HOD 524.1 FOR VOLA                              |                                                                        |
| 4B<br>D OVER)                                                      |                                                                     |                                       |                                                    |                                                                         | Styrene<br>Trichloroethene                                                    |                                        |                                                                        | ug/L 95 ug/L 140                                  | ug/L 6. AUGL                           | IST 2007 ANALYT<br>METHOD OLM04.2.                               | ICAL WORK PERFORM                                                     | ED USING                                                               |
|                                                                    |                                                                     |                                       |                                                    |                                                                         | cis-1,2-Dichloroethene<br>Xylene<br>1,1,1-Trichloroethane                     | ND<br>1100 ug/L<br>ND                  | 8 ug/L 8.17<br>ND NE<br>ND 0.801                                       |                                                   | )                                      |                                                                  |                                                                       |                                                                        |
|                                                                    |                                                                     |                                       |                                                    |                                                                         | 1,1-Dichloroethane<br>1,1-Dichloroethene                                      | ND<br>ND                               | ND 0.346<br>ND 0.194                                                   | ug/L ND N                                         | )                                      |                                                                  |                                                                       |                                                                        |
| #                                                                  | 654 A                                                               |                                       |                                                    |                                                                         | Benzene<br>Methyl tert-butyl ether                                            | ND<br>ND                               |                                                                        | ug/L 3.7 ug/L(J) 2.6 ug                           | /L(J)                                  |                                                                  |                                                                       |                                                                        |
|                                                                    | *                                                                   |                                       |                                                    |                                                                         | trans-1,2-Dichloroethene<br>Vinyl chloride                                    | ND<br>ND                               | ND 2.61<br>ND 0.415                                                    |                                                   | >                                      |                                                                  |                                                                       | •                                                                      |
|                                                                    |                                                                     |                                       |                                                    |                                                                         |                                                                               |                                        |                                                                        | MPI-14<br>Vinyl chloride<br>cis-1,2-Dich          | ، ــــــــــــــــــــــــــــــــــــ | /02 9/03<br>ND ND<br>ND ND                                       | 6/04 8/07<br>1.06 ug/L ND<br>2.93 ug/L 2.8 ug/L(J                     | -                                                                      |
|                                                                    |                                                                     |                                       |                                                    |                                                                         |                                                                               |                                        |                                                                        | Methyl tert-<br>Tetrachloroe                      | outyl ether                            | ID ND                                                            | 2.99 ug/L         ND           0.175 ug/L         ND                  | -                                                                      |
|                                                                    | 566<br>———————————————————————————————————                          |                                       |                                                    |                                                                         |                                                                               |                                        |                                                                        | Trichloroethe<br>trans-1,2-Dic                    | hloroethene                            | ID ND                                                            | 0.191 ug/L ND<br>1.60 ug/L ND                                         | -                                                                      |
|                                                                    | 70                                                                  |                                       |                                                    |                                                                         |                                                                               |                                        |                                                                        | Acetone<br>1,2-Dichloro                           |                                        |                                                                  | 4.06 ug/L 9.6 ug/L(J<br>0.340 ug/L ND                                 |                                                                        |
| S                                                                  | POOL                                                                |                                       |                                                    |                                                                         |                                                                               |                                        |                                                                        | MPI-93                                            |                                        | /02 9/03<br>IS NS                                                | 6/04 8/07<br>NS NS                                                    | ]                                                                      |
|                                                                    |                                                                     | _                                     |                                                    |                                                                         |                                                                               |                                        |                                                                        | MPI-8                                             | '                                      | /02 9/03<br>IS NS                                                | 6/04 8/07<br>NS NS                                                    | ]                                                                      |
|                                                                    |                                                                     |                                       |                                                    | _                                                                       |                                                                               |                                        |                                                                        | MW-8<br>Trichloroethe                             | 5/                                     | /02 9/03                                                         | 6/04 9/05                                                             | 8/07 5/09                                                              |
|                                                                    |                                                                     |                                       |                                                    |                                                                         |                                                                               |                                        |                                                                        | Trichloroethe<br>trans-1,2-Dic<br>Tetrachloroet   | hloroethene 50                         | ug/L 1 ug/L                                                      | 10.4 ug/L 100.0 ug/L<br>0.481 ug/L 3.8 ug/L<br>299 ug/L 570.0 ug/L    | 24 ug/L 12 ug/L                                                        |
|                                                                    |                                                                     |                                       |                                                    |                                                                         |                                                                               |                                        |                                                                        | cis-1,2-Dich<br>2-Butanone                        | loroethene 40                          | ug/L 5 ug/L<br>ND ND                                             | 2.36 ug/L 15.0 ug/L<br>1.88 ug/L ND                                   | 390 ug/L         9.4 ug/L           ND         ND                      |
|                                                                    |                                                                     |                                       |                                                    |                                                                         |                                                                               |                                        |                                                                        | 1,1,1-Trichlor<br>Methyl tert-                    | outyl ether N                          | ID ND                                                            | 0.157 ug/L ND<br>0.135 ug/L ND                                        | ND     ND       ND     ND       35 ug/L     ND                         |
|                                                                    |                                                                     |                                       |                                                    |                                                                         |                                                                               |                                        |                                                                        | Vinyl chloride<br>Methylcyclohe                   |                                        | ID ND<br>- –                                                     | ND ND<br>                                                             | 35 ug/L ND<br>2.5 ug/L ND                                              |
|                                                                    |                                                                     |                                       |                                                    |                                                                         |                                                                               |                                        |                                                                        | PW-3<br>Trichloroethe                             |                                        | ∕02 9∕03<br>ID 6 ug/L                                            | 6/04 9/05<br>7.32 ug/L 8.9 ug/L                                       | 8/07 5/09<br>7.2 ug/L(J) 6 ug/L                                        |
|                                                                    |                                                                     |                                       |                                                    |                                                                         |                                                                               |                                        |                                                                        | Tetrachloroet<br>cis-1,2-Dich                     | hene 820                               | ) ug/L 850 ug/L                                                  |                                                                       | 290 ug/L         300 ug/L(J)           2.8 ug/L(J)         4.3 ug/L(J) |
|                                                                    | E /00                                                               |                                       | , <b>- 1</b>                                       |                                                                         |                                                                               |                                        |                                                                        | Methyl tert-<br>Acetone                           | 51                                     | ND 4 ug/L<br>ug/L ND                                             | 0.401 ug/L ND<br>ND ND                                                | ND ND<br>ND ND                                                         |
| MPI-51<br>Nethyl tert-Butyl Ether                                  | NA 4 ug/L                                                           | 5/04 8/07<br>NS NS                    |                                                    | MPI-5S<br>Vinyl Chloride                                                | 5/02 9/03<br>NA 5 ug/L                                                        |                                        | 8/07 5/0<br>5 ug/L 2.7 ug                                              | 4(1)                                              | 20                                     | ug/L ND<br>ug/L ND                                               | ND ND<br>ND ND                                                        | ND     ND       ND     ND       ND     ND                              |
| RW-1<br>Chloroform                                                 | ND ND 0.83                                                          | 6/04 8/07<br>39 ug/L ND               | 1 ug/L(J)                                          | Trichloroethene<br>trans-1,2-Dichloroeth                                | NA 6 ug/L                                                                     | 3.66 ug/L 2.7                          | 7 ug/L(J) 3.6 ug<br>) ug/L(J) 10 ug                                    | /L(J) Styrene                                     | 11                                     | ug/L ND<br>ug/L ND<br>ID ND                                      | ND         ND           ND         ND           0.407 ug/L         ND | ND     ND       ND     ND       ND     ND                              |
| is-1,2-Dichloroethene<br>,1-Dichloroethane<br>,1,1-Trichloroethane | ND ND 0.27                                                          | 1 ug/L ND<br>75 ug/L ND<br>31 ug/L ND | ND                                                 | Tetrachloroethene<br>cis-1,2-Dichloroethe                               | NA 36 ug/L<br>ene NA 5 ug/L                                                   | 38.3 ug/L 4.9<br>3.81 ug/L 8.4         | 9 ug/L(J) 15 ug,<br>+ ug/L(J) 7.7 u                                    | /L(J)<br>g/L<br>Chloroform                        | 1                                      | ID ND<br>ID ND                                                   | 0.148 ug/L ND<br>0.133 ug/L ND                                        | ND ND<br>ND ND                                                         |
| rihalomethanes, Total<br>richloroethene                            | NA         NA         0.83           ND         1 ug/L         2.01 | 39 ug/L ND<br>9 ug/L ND               | 1 ug/L(J)<br>1.5 ug/L(J)                           | Methyl tert-butyl et<br>2-Butanone<br>Benzene                           | NA ND                                                                         | 0.114 ug/L<br>0.994 ug/L<br>0.304 ug/L | ND NE                                                                  | ) Trihalometha                                    | nes, Total N                           |                                                                  | 2.94 ug/L 3.4 ug/L<br>0.133 ug/L ND                                   | 5.0 ug/L(J) 6.2 ug/L<br>ND NS<br>ND ND                                 |
| etrachloroethene<br>Nethyl tert—Butyl Ether                        | 4 ug/L 74 ug/L 410<br>ND 3 ug/L 1.03                                | ) ug/L 140 ug,<br>3 ug/L ND           |                                                    | 2012010                                                                 | שא אייי                                                                       | ug/L                                   | NL   NL                                                                | Vinyl chloride                                    |                                        | ID ND                                                            | ND   1.7 ug/L                                                         | ND ND                                                                  |
|                                                                    |                                                                     |                                       |                                                    |                                                                         |                                                                               |                                        |                                                                        |                                                   |                                        |                                                                  |                                                                       |                                                                        |

|                                                                        |     |         |     |       |                                      | SUMMARY OF |
|------------------------------------------------------------------------|-----|---------|-----|-------|--------------------------------------|------------|
| AP AND CROSS SECTIONS $4/13/94$ groundwater levels malcolm pirnie inc. | В   | 6/30/09 | KMK | MGS   | UPDATED PER MAY 2009 SAMPLE EVENT    | MR.C'S DRY |
| SIGN PIPING AND WELL LAYOUT PLAN MALCOLM PIRNIE INC.                   | А   | 12/6/07 | КМК | MGS   | UPDATED PER AUGUST 2007 SAMPLE EVENT |            |
| DESCRIPTION                                                            | NO. | DATE    | DWN | APP'D | DESCRIPTION                          | EA         |
| REFERENCE DRAWINGS                                                     |     |         |     |       | REVISIONS                            |            |

FIGURE 4–1 UMMARY OF GROUNDWATER ANALYTICAL DATA MR.C'S DRY CLEANERS SITE LOCATION MAP EAST AURORA, NEW YORK