

ecology and environment engineering, p.c.

BUFFALO CORPORATE CENTER 368 Pleasantview Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

August 10, 2006

Mr. William Welling PE, Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233 - 7013

Re: Mr. C's Dry Cleaners Site, Contract # D004442-DC02, Site # 9-15-157 July 2006 Operations, Maintenance, and Monitoring Report

Dear Mr. Welling:

Ecology and Environment Engineering, P.C. (EEEPC) is pleased to provide this July 2006 Operation, Maintenance, and Monitoring (OM&M) Report for the Mr. C's Dry Cleaners Site, NYSDEC Site # 9-15-157, located in East Aurora, New York. Copies of weekly inspection reports from EEEPC's subcontractor O&M Enterprises, Inc. (OMEI) are provided as Attachment A. Selected pages from the individual analytical data packages prepared by Severn - Trent Laboratories (STL) is provided as Attachment B. All analytical results for the report were analyzed at the lowest detection limits in accordance with the standard method. The air sampling analytical results from the Agway remedial treatment unit stack are provided as Attachment C. Remedial treatment system utility costs for the Mr. C's and Agway sites are provided as Attachment D.

In review of the on-site treatment system operations, monitoring and maintenance for July 2006, EEEPC offers the following comments and highlights:

Operational Summary

Mr. C's Site - Remedial Operations Information

- The treatment system was operational for 98.88% of the period between 7/3/06 and 7/30/06. <u>Table 1</u> is provided to indicate the monthly operational time of the treatment equipment from the time of system startup.
- The <u>effluent totalizer</u> readings for the month of July 2006 indicate that approximately 813,264 gallons of groundwater were processed through the treatment system for the period 7/3/06 and 7/30/06. <u>Table 2</u> provides a summary of groundwater volume treated since system start-up. Historical volumes are based on totalizer readings provided by the O&M subcontractor's weekly inspection forms.
- Filters in the influent bag filter unit were replaced during weekly inspections on 7/3/06, 7/10/06, 7/17/06, and 7/30/06.

- Checklists for weekly system inspections from OMEI are provided as <u>Attachment A</u> for 7/3/06, 7/10/06, 7/17/06, 7/24/06 and 7/30/06. Weekly system checks indicated that the air stripper differential pressure remained constant at 3 inches of water during the month of July 2006.
- The feed rate for the sequestering agent is 3.0 ml/min based on reduced inflow requirements to the system and visual observation of mineral deposits on the stripping trays. The further adjustment in feed rate will be evaluated during the following month.
- A new pump was installed at pumping well RW-1 on 7/10/06. All pumps, motors and blowers in the system were also lubricated at that time.
- A low pressure alarm was detected on Sunday, July 30 2006 at 2AM. OMEI personnel responded to the alarm at 3PM on the same day. The blower was operating normally. The alarm was reset after temporarily shutting off both blowers and restarting them. A problem with the Dwyer pressure switch was discovered which prevented the alarm from resetting. OMEI personnel isolated the switch circuit with a jumper wire and the system returned to normal operation.

Agway Site Remedial Information

- The Agway site remedial system air analyses are provided as <u>Attachment C</u>. The analytical results were provided to EEEPC from STL on July 13, 2006. The results indicate the air sparging / soil vapor extraction system is exhausting the following contaminants and concentrations:
 - Trichloroethene 86 ug/m³
 - Tetrachloroethene 5600 ug/m³
- The Agway/Matrix system remains in operation by EEEPC/OMEI since re-start occurred in April 2005. OMEI continues to review the system operations on a weekly basis. The air sparge system continues to be functional except four out of the eight injection points cannot inject air to the lower injection zones. Pressure is still provided throughout the distribution system and to the individual heads, but air cannot be injected due to blockage below grade. OMEI is currently investigating costs for either the installation of new sparge points or repairs to the existing points. Repairs are expected to be performed in September 2006.
- The month of July 2006 report for the Agway site is as follows: The vacuum pressure on the air sparge / vapor extraction treatment system maintained 13 inches of water vacuum and ranged between 0 and 115 pounds per square inch of air pressure. 4 out of the 8 sparge points were injecting an average of 1.41 standard CFM of air to the remaining operational sparge points. The system remains operational pending further NYSDEC review.
- The air compressor at the Agway treatment building was found inoperative during the weekly O&M inspection of 7/24/06, despite the fact that there was power to the unit. OMEI removed the motor for servicing to ElectroMech, Niagara Falls, NY. Motor reinstallation is anticipated in early August. The compressor drive belts were also inspected and were found to be badly worn and were replaced.

• A copy of the site utility costs from EEEPC operations from December 2004 to July 2006 are provided as <u>Attachment D</u>.

Analytical Summary - Groundwater

- EEEPC and OMEI personnel collected samples of influent and effluent groundwater for the reporting period 7/3/06 to 7/30/06 on July 3, 2006 as part of the normal weekly O&M services. Overall cleanup efficiency for the July 2006 reporting period was 99.93%. The analytical results for the July 3, 2006 sampling event are presented in <u>Table 3</u>.
- The July 2006 monthly analytical results indicate that the treated groundwater effluent remains below the site specific Effluent Discharge Limitation Requirements for all compounds.
- Approximately 13.64 pounds of VOCs were removed from the influent groundwater based on calculations using the effluent discharge analytical results during the reporting period. A summary of the calculated pounds of VOC's by month and by date are located in <u>Table 5</u>. These values are calculated based on effluent totalizer readings and assumes that non-detect values given in the analytical data package = $0 \mu g/L$ and that the monthly samples are indicative of the influent characteristics and system performance for the entire reporting period.

If you have any questions regarding the July 2006 O&M report summary submitted, please call me a 716-684-8060.

Very Truly Yours,

 ${\bf Ecology\ and\ Environment\ Engineering,\ P.\ C.}$

Michael G. Steffan

Project Manager

cc: D. Szymanski, Region 9, NYSDEC - Buffalo w/ attachments

D. Chiusano, Albany, NYSDEC w/attachments

R. Becken, O&M Enterprises w/ attachments

D. Miller, E&E-Buffalo w/ attachments

CTF- 002700.DC02.02

Michael & Steffan

Table 1 Mr. C's Dry Cleaners Site Remediation Site #9-15-157 System Operational Time

Month	Reporting Hours	Operational Up-time
September 2002	576	100%
October 2002	744	99.33%
November 2002	720	93.41%
December 2002	744	80.65%
January 2003	744	59.15%
February 2003	672	63.39%
March 2003	744	82.39%
April 2003	720	100%
May 2003	744	100%
June 2003	720	90.00%
July 2003	744	100%
August 2003	744	100%
September 1-4, 2003	96	100%
October 22 -29, 2003	168	100%
October 29 - November 25, 2003	648	99%
November 25 - December 29, 2003	816	100%
December 29, 2003 – January 26, 2004	672	100%
January 26 – February 24, 2004	696	100%
February 24 – March 29, 2004	816	99.97%
March 29 – April 26, 2004	672	99.70%
April 26 – May 24, 2004	696	73.70%
May 24 – June 21, 2004	696	99.43%
June 22 – July 26, 2004	840	100%
July 27 – August 23, 2004	672	100%
August 23 - September 27, 2004	840	97.62%
September 27 - October 25, 2004	672	90.33%
October 25 - November 23, 2004	696	92.17%
November 23 - December 27, 2004	816	97.06%
December 27, 2004 - January 31, 2005	840	100%
January 31, 2005 - February 28, 2005	660	98.20%
February 28, 2005 - April 4, 2005	828	98.60%
April 4, 2005 - May 2, 2005	696	87.50%
May 2, 2005 - June 6, 2005	840	91.43%
June 6, 2005 - July 6, 2005	744	86.60%
July 6, 2005 - August 1, 2005	605.5	97.00%
August 1, 2005 - August 29, 2005	696	100.00%
Motals Page (1	25037.5	93.80%

Table 1 Mr. C's Dry Cleaners Site Remediation Site #9-15-157 System Operational Time

	Reporting Hours	Operational Up-time
Totals forward from Page 1 (8/29/05)	25037.5	93.80%
October 3, 2005 - October 31, 2005	672	100.00%
October 31, 2005 - November 28, 2005	672	98.06%
November 28, 2005 - January 3, 2006	854	98.84%
January 3, 2006 - February 6, 2006	816	100.00%
February 6, 2006 - March 6, 2006	696	100.00%
March 6, 2006 - April 3, 2006	696	100.00%
April 3, 2006 - May 1, 2006	689	98.99%
May 1, 2006 - May 30, 2006	· 689	98.99%
May 31, 2006 - July 3, 2006	812	99.50%
July 3, 2006 - July 30, 2006	624	99.50%

Average Operational Up-time = 98.88%

NOTES:

- 1. Up-time based as percentage of total reporting hours
- 2. Treatment system operated by the Tyree Organization Ltd. from 9/02-9/03.
- 3. Treatment system operated by O&M Enterprises Inc. from 10/03 present.

Table 2 Mr. C's Dry Cleaners Site Remediation Site #9-15-157 **Monthly Process Water Volumes**

Month	Actual Period	Gállons
September 2002 ¹	9/5/02 - 10/2/02	4,362,477
October 2002 ¹	10/2/02 - 11/4/02	4,290,429
November 2002 ¹	11/4/02 - 12/2/02	3,326,126
December 2002 ¹	12/2/02 - 1/7/03	3,349,029
January 2003 ¹	1/7/03 - 2/3/03	1,973,144
February 2003 ¹	2/3/03 - 3/10/03	2,158,771
March 2003 ¹	3/10/03 - 4/7/03	3,263,897
April 2003 ¹	4/7/03 - 5/2/03	2,574,928
May 2003 ¹	5/2/03 - 6/2/03	1,652,538
June 2003 ¹	6/2/03 - 6/30/03	2,002,990
July 2003 ¹	6/30/03 - 7/29/03	2,543,978
August 2003 ¹	7/29/03 - 8/25/03	2,042,424
September 2003 ¹	8/25/03 - 10/22/03	370,446
October 2003 ²	10/22/03 - 10/29/03	67,424
November 2003 ²	10/29/03 - 11/25/03	224,278
December 2003 ²	11/25/03 - 12/29/03	1,496,271
January 2004 ²	12/29/03 - 01/26/04	688,034
February 2004 ²	01/26/04 - 02/24/04	736,288
March 2004 ²	02/24/04 - 03/29/04	2,164,569
April 2004 ²	03/29/04 - 04/26/04	1,741,730
May 2004 ²	4/26/2004 - 5/24/2004	1,408,095
June 2004 ²	5/24/2004 - 6/21/2004	972,132
July 2004 ²	6/22/2004 - 7/26/2004	1,858,790
August 2004 ²	7/27/04 - 8/23/04	1,289,960
September 2004 ²	8/23/04 - 9/27/04	1,201,913
October 2004 ²	9/27/04 - 10/25/04	937,560
November 2004 ²	10/25/04 - 11/23/04	1,098,158
December 2004 ²	11/23/04 - 12/27/04	1,556,063
January 2005 ²	12/27/04 - 1/31/05	1,798,238
February 2005 ²	1/31/05 -2/28/05	1,271,562
March 2005 ²	2/28/05 - 4/4/05	1,295,692
April 2005 ²	4/4/05 - 5/2/05	1,652,510
May 2005 ²	5/2/05 - 6/6/05	1,423,099
June 2005 ²	6/6/05 - 7/6/05	877,988
July 2005 ²	7/6/05 - 8/1/05	1,283,302
August 2005 ²	8/1/05 - 8/29/05	1,443,195
September 2005 ²	8/29/05 - 10/3/05	1,591,248
October 2005 ²	10/3/05 - 10/31/05	1,204,074
November 2005 ²	10/31/05 - 11/28/05	1,038,170
December 2005 ²	11/28/05 - 1/3/06	1,182,854
January 2006 ²	1/3/06 - 2/6/06	1,401,821
February 2006 ²	2/6/06 - 3/6/06	1,927,556
March 2006 ²	3/6/06 - 4/3/06	1,838,541
April 2006 ²	4/3/06 - 5/1/06	1,116,192
May 2006 ²	5/1/06 - 5/30/06	1,053,047
June 2006 ²	5/30/06 - 7/3/06	1,092,786
July 2006 ²	7/3/06 - 7/30/06	813,264
Total	Gallons Treated To Date:	76,657,581

NOTES:

- System operated by Tyree Organization Ltd. From 9/02 9/03
 System operated by O&M Enterprises from 10/03 present

Table 3
Mr. C's Dry Cleaners Site Remediation
NYSDEC Site #9-15-157
July 2006 VOC Analytical Summary

			July 3, 2006		
	·		Effluent		
Compound	Influent Concentration*	tion*	Concentration*		Cleanup Efficiency
	(ng/L)		(ng/L)		(%)
Acetone	ND (<100)		ND(<1.0)	<u> </u>	NA
Benzene	ND (<20)		ND(<1.0)		NA
2-Butanone	ND (<100)		ND (<5.0)		NA
cis-1, 2-Dichloroethene	12 (<20)	DJ	ND(<1.0)		100%
Methylene chloride	16 (<20)	DJ	ND(<1.0)		100%
Methyl tert-butyl ether	12 (<20)	12	ND(<1.0)	\vdash	NA
Tetrachloroethene	1900	D	0.95	J	100%
Toluene	16 (<20)	BDJ	0.47	BJ	NA
Trichloroethene	. 54	D	ND(<1.0)		100%.
Total Xylenes	(09>) QN		ND (<3.0)		NA
July TOTAL (in ug/L) =	2010		1.4	Г	99.93%

Notes:

- 1. "NA" = Not applicable
- 2. "ND" = Non-detect and lists the detection limit in parentheses
- 3. "J" indicates an estimated value below the practical quantitation limit but above the method detection limit.
 - 4. Non-detect values are assumed to be equal to zero for calculation of monthly average concentrations.
 - 5. "D" = Compounds identified in analysis required secondary dilution factoring.

* (<50) - Detection Limit

Mr. C's Dry Cleaners Site Remediation Site #9-15-157 Effluent Discharge Criteria & Analytical Compliance Results

	Hallade Salasaidi	SECTION AND PROPERTY.	July 32 2006 Efficient Manlytical Walues - Compilance
er de la company			
Parameter/Analyte	Dally Maximum	Company of the compan	July 3, 2006 Effluent Analytical Values - Compliance
Flow	216,000	gpd	31,279 gpd ⁶
pΗ	6.0 - 9.0	standard units	8.3
1,1 Dichloroethene	10	μφ/L	ND (<1.0)
1,2 Dichloroethane	10	μg/L	ND (<1.0)
Trichloroethene	10	μg/L	ND (<1.0)
Tetrachloroethene	10	μg/L	0.95 J
Vinyl Chloride	10	μg/L	ND (<1.0)
Benzene	5	με/L	ND (<1.0)
Ethylbenzene	5	μg/L	ND (<1.0)
Methylene Chloride	10	μg/L	ND (<1.0)
1,1,1 Trichloroethane	10	μg/L	ND (<1.0)
Toluene	5	μg/L	0.47 J
Methyl-t-Butyl Ether (MTBE)	NA	ug/L	ND (<1.0)
o-Xylene ³	5	μg/L	NA
m, p-Xylene ⁸	10	μg/L	. NA
Total Xylenes	NA	ug/L	ND (<3.0)
Iron, total	600	μg/L	NA NA
Aluminum	4,000	μp/L	NA ·
Copper	48	μg/L	NA NA
Lend	11	μg/L	NA NA
Миндапеле	2,000	μ <u>φ</u> /L	NA
Silver	100	μg/L	NA NA
Vanadium	28	με⁄Ι	NA .
Zinc	230	μ g/ L	NA NA
Total Dissolved Solids	850	mg/L	NA
Total Suspended Solids	. 20	mg/L	NA NA
Hardness	N/A	mg/l	471
Cynnide, Free	10	μg/L	NA NA

- NOTES:

 1. "Daily Maximum" excerpted from Attachment E of Addendum 1 to the Construction Contract Documents.

 2. Analytical report did not differentiate between o-Xyleine and m, p-Xyleine. Total Xyleine value reported is given in each line.

 3. Shaded cells indicate that analytical value exceeds the "Daily Maximum"

 4. "ND" indicates that the compound was not detected and lists the practical quantitation limit in parentheses.

 5. "NA" indicates that analyses were not performed and data is unavailable.

 6. Average flows based on effluent readings taken July 3, 2006 through July 30, 2006. Total gallons: 813,264 divided by 26 operating days.

 7. "I" indicates an estimated value below the detection limit.

 8. "B" indicates analyte found in the associated blank.

15 Indicates non-compilance with the NYSDEC effluent discharge requirements

Table 5 Mr. C's Dry Cleaners Site Remediation Site #9-15-157 Monthly VOCs Removed From Groundwater

Month	Actual Period	Influent VOCs	Effluent VOCs	VOCs Removed
		(μg/L)	(μg/L)	(lbs.)
September 2002 ⁶	9/5/02 - 10/2/02	1297	1	47.2
October 20026	10/2/02 - 11/4/02	2000	1	71.6
November 20026	11/4/02 - 12/2/02	1685	0 .	46.8
December 20026	12/2/02 - 1/7/03	1586	9	44.1
January 20036	1/7/03 - 2/3/03	1803	10	29.5
February 2003 ⁶	2/3/03 - 3/10/03	1985	3	35.7
March 2003 ⁶	3/10/03 - 4/7/03	1990	5	54.1
April 2003 ⁶	4/7/03 - 5/2/03	1656	3	35.5
May 2003 ⁶	5/2/03 - 6/2/03	1623	7	22.3
June 2003 ⁶	6/2/03 - 6/30/03	5787	6	96.6
July 2003 ⁶	6/30/03 - 7/29/03	1356	1	28.8
August 2003	<u> </u>	1263	3	
September 2003	7/29/03 - 8/25/03		3	21.5
	8/25/03 - 10/22/03	1263		3.9
October 2003 ⁷	10/22/03 - 10/29/03	1693.69	1.47	1,0
November 2003 ⁷	10/29/03 - 11/25/03	2510,83	4,4	4.7
December 20037	11/25/03 - 12/29/03	503.3	10.5	6.2
January 2004 ⁷	12/29/03 - 01/26/04	3667	15.8	21.0
February 2004 ⁷	01/26/04 - 02/24/04	3348.6	26.7	20.4
March 2004 ⁷	02/24/04 - 03/29/04	1939.3	4.96	34.9
April 2004 ⁷	03/29/04 - 04/26/04	2255	0.0	32.8
May 2004 ⁷	4/26/2004 - 5/24/2004	2641	13.3	30.9
June 2004 ⁷	5/24/2004 - 6/21/2004	1454	1.7	22.5
July 2004 ⁷	6/22/2004 - 7/26/2004	1313	3.6	20.3
August 2004 ⁷	7/27/04 - 8/23/04	2305	7.4	24.7
September 20047	8/23/04 - 9/27/04	1453	. 6.7	14.5
October 2004 ⁷	9/27/04 - 10/25/04	1504	14.3	11.7
November 20047	10/25/04- 11/23/04	1480	36.42	13.2
December 20047, 8	11/23/04 - 12/27/04	1562	132.21	18.6
January 2005 ⁷	12/27/04 - 1/31/05	1264	47.5	18.3
February 20059	1/31/05 - 2/28/05	1538	53.2	15.8
March 2005 ⁹	2/28/05 - 4/4/05	931	56.0	9.5
April 2005 ⁹	4/4/05 - 5/2/05	1269	111,7	15.96
May 2005 ⁹	5/2/05 - 6/6/05	1431	319.0	13.20
June 2005 ⁹	6/6/05 - 7/6/05	1126	12	8.16
July 2005 ⁹		1575		
	7/6/05 - 8/1/05		5.90	16.80
August 20059	8/1/05 - 8/29/05	1359	51.26	15.70
September 20059	8/29/05 - 10/3/05	1239	0.47	16.50
October 20059	10/3/05 - 10/31/05	1454	0.81	14.60
November 20059	10/31/05 - 11/28/05	2266	6.80	13.64
December 2005 January 2006	11/28/05 - 1/3/06 1/3/06 -2/6/06	1166 1679	1.30 11.87	11.50 13.62
February 2006	2/6/06 - 3/6/06	1465	90.20	16.56
March 2006	3/6/06 - 4/4/06	1475	2.00	22.43
April 2006	4/4/06 - 5/1/06	1465	8.80	13.56
May 2006	5/1/06 - 5/30/06	1263	0.00	11.07
June 2006 July 2006	5/30/06 - 7/3/06	1994	1.40 1.40	18.17
July 2000	7/3/06 - 7/30/06	2010	ed from inception =	13.64

NOTES:

- 1. Calculations are based on monthly water samples and assumes samples are representative of the entire reporting period.

 2. Calculations assume that non-detect values = 0 ug/L.
- 3. Total VOCs summations include estimated "J" values.
- 4. Calculations are based on effluent totalizer readings.
- 5. "Influent VOCs" and "Effluent VOCs" values given above is the summation of values for individual compounds given in monthly analytical reports.
- 6. No samples were collected in September 2003. August 2003 values are used.
- 7. Treatment system operated by Tyree Organization, Ltd. from 9/02 to 9/03.

 8. Treatment system operated by O&M Enterprises from 10/03 to present.

CONVERSIONS:

1 pound = 453.5924 grams

1 gallon = 3.785 liters

Based on the Analytical Results from July 3, 2006:
Pounds of VOCs removed calculated by the following formula:
(2010 ug/L-0.0ug/L)*(1g/10⁶ ug)*(1 ib/453.5924 g)*813,264 gallons*(3.785 L/gallon) ~ 13.64 lbs

where 813,264 gallons is the monthly process water volume.

Attachment A OMEI Weekly Inspection Reports July 2006

Including:

7/3/06

7/10/06

7/17/06

7/24/06

7/30/06

Date/11m	.е	· · · · · · · · · · · · · · · · · · ·	7/03/2006	9:00	<u> </u>			
Inspectio	n personn	el	R C Becken				· · · · · · · · · · · · · · · · · · ·	
Other per	rsonnel on	site				·		
Weather	Conditions	· ·	overcast 73	degrees				
	ell pumps c rovide exp		in auto?	(YES)	, NO			
Provide war RW-1 PW-2	ater level r (ON) ON	eadings (OFF (OFF)	on control pan 9 5	· · · · · · · · · · · · · · · · · · ·	ft ft			
PW-3 PW-4 PW-5	ON (ON) (ON)	(OFF) OFF OFF	6 7 4		ft ft ft			
PW-6 PW-7 PW-8	ON (ON) (ON) Equalizati	(OFF) OFF OFF ion tank	7 8 8 4		ft ft ft ft			
Influent Flo		•		14.65		· ···		
Influent To	talizer Rea	ading			42332	95 gallons	; * '	· -
Sequesteri	ng agent o	trum leve			~26	in.	· .	
Amount of	sequester	ing agent	remaining	· · · · · · · · · · · · · · · · · · ·		~40	gallons	
Sequesteri	ng agent f	eed rate _		·		3 ml/min.		
Sequesterii	ng agent n	netering F	Pump Pressur	e _	·		1	psi
Bag filter to	p pressure	e	· .		5 5	psi		
Bag filter bo	ottom pres	sure _		0) 0	_psi		

	Influent feed pump in use	(#1)	#2				•
	Influent Pump Pressure			2	<u>5</u> psi		
	Air stripper blower in use	#1	(#2)				·
	Air stripper differential pressure			3.	5 inches	H ₂ O	
	Air stripper r Pressure		18	inches H ₂ ()		-
	Effluent feed pump in use	#1	(#2)				
	Effluent feed pump pressure	· ·			<u>7</u> psi		
	Effluent flow rate		121 (gpm			
	Effluent Totalizer reading	· _ · · · ·		26276660	<u>gallons</u>		
	Are building heaters in use?	YES	(NO)				
	Ambient air temperature			79.4	_degree	s F	
	Are any leaks present?	YES	(NO)				
	Is sump pump in use?	YES	(NO)				
	Water level in sump		4				
	ls treatment building clean and o	rganized	1?	(YES)	NO		
	Samples collected? (YES)	NO					
1111	Sampl Air stripper influent Air stripper effluent GAC influent GAC effluent s there evidence of tampering/va Were manholes inspected? Were electrical boxes inspected? s water present in any manholes	ndalism	of wells?	:45	pH 7.1 8.04 NA NA YES (YES) YES (YES)	Turbidity 1.67 0 NA NA NO (NO) NO (NO)	/ Temp. 59.7 63.1

Other observations:	
Agway	
vacuum 13"	
air pressur re 120 psi	
	:
Bank 1	
SP-1 0 scfm SP-2 2 scfm SP-3 2.5 scfm SP-4 0 4 0 scfm	
SP-5 0 scfm SP-6 3 scfm SSP-7 0scfm SP-8 0 scfm	
y y y y y y y y y y y y y y y y y y y 	
	
Describe any other system maintenance performed	
Describe any officer system maintenance penormed	•
Checked manholes, did water level measurements.	
<u> </u>	
	•
	
and the second control of the second contro	
	1
Signature	

Mr. C's Dry Cleaners Site NYSDEC Site #9-15-157 Piezometer Water Level Log

	Date	7/3/2006		Measurements taken by RCB	
	RW-1	24.1	ft	Comments	
	PZ-1A	12.52	ft		
	PZ-1B	12.21	ft	Comments	
	PZ-1C	13.35	ft	Comments	
	PZ-1D _	13.47	ft	Comments	
	PW-2 _	23.41	ff	Comments	
	PZ-2A	11.98	ft	Comments	·
	PZ-2B _	12.26	ft	Comments	
	PZ-2C _	11.84	ft	Comments	·
	PZ-2D _		ft	Comments	
	PW-3	26.61	ft	Comments	
	PZ-3A _	12.48	ft	Comments	
	PZ-3B	12.5	ft	Comments	
	PZ-3C	13.06	ft	Comments	
	PZ-3D	12.36	ft	Comments	
	PW-4	23.25	ft	Comments	
	PZ-4A	12.46	ft	Comments	
	PZ-4B	12.02	ft	Comments	
	PZ-4C	12.15	ft	Comments	
i	PZ-4D	11.53	ft	Comments	
_				•	1

RW-1 pump on during measurements?	YES	(NO)
PW-2 pump on during measurements?	YES	(NO)
PW-3 pump on during measurements?	(YES)	NO
PW-4 pump on during measurements?	(YES)	NO

Mr. C's Dry Cleaners Site NYSDEC Site #9-15-157 Piezometer Water Level Log

Dat	te 7/3/2006		Measurements taken by RCB	,
PW-5	21.4	ft	Comments	
PZ-5A	11.76	ft	Comments	
PZ-5B	11.8	ft	Comments	- .
PZ-5C	11.38	ft	Comments	_
PZ-5D	12.19	ft	Comments	- ' '
PW-6	21.45	ft	Comments	-
PZ-6A	12.4	ft	Comments	•
PZ-6B	12.36	ft	Comments	
PZ-6C	12.48	ft	Comments	
PZ-6D	12.17	ft	Comments	
PW-7 .	18.1	ft	Comments	
MPI6S	11.84	ft	Comments	
PZ-7B	12.34	ft	Comments	
owc _	12.11	ft	Comments	
PZ-7D	11.9	ft	Comments	
PW-8	21.63	ft	Comments	
PZ-8A	8.83	ft	Comments	
PZ-8B _	8.8	ft	Comments	
PZ-8C _	8.57	ft	Comments	
PZ-8D	8.75	ft	Comments	
	······································	,]

PW-5 pump on during measurements?	YES	(NO)
PW-6 pump on during measurements?	YES	(NO)
PW-7 pump on during measurements?	(YES)	NO
PW-8 pump on during measurements?	(YES)	NO

Date/Time	e		7/10/2006	9:00				
Inspection	n personne) <u> </u>	R C Becken	·	<u>,,,</u>			
Other per	sonnel on	site						
Weather	Conditions		overcast 71 de	grees ligh	t rain			
	ell pumps o rovide exp	lanation	n auto?					
							· · · · · · · · · · · · · · · · · · ·	····
RW-1 PW-2 PW-3 PW-4	(OX) (OX) (OX) (OX) (OX) (OX) (OX)	OFF .		ft			•	
Influent F	low Rate			70.16 gpn	ו			
Influent Te	otalizer Re	ading			458638	35 gallons		
Sequeste	ring agent	drum leve	<u> </u>	~23	ı	in.		
Amount o	f sequeste	ring agent	t remaining			~35	gallons	
Sequeste	ring agent	feed rate				3 ml/min.		
Sequeste	ring agent	metering	Pump Pressure	·	·		. 1	_psi
Bag filter	top pressu	re .		18	22	psi		
Bag filter	bottom pre	ssure		0	0	psi		

Influent feed pump in use	(#1)	#2				
Influent Pump Pressure			24	1 psi		
Air stripper blower in use	(#1)	#2				
Air stripper differential press	sure			3 inches H	H ₂ O	
Air stripperr Pressure		17	inches H₂O			
Effluent feed pump in use	#1	(#2)	· · · · · · · · · · · · · · · · · · ·			•
Effluent feed pump pressure	e	+ /A LP+	7	^z _psi		
Effluent flow rate		113	gpm			
Effluent Totalizer reading			264825567	gallons		
Are building heaters in use?	YES	(NO)				
Ambient air temperature			79	degrees	F	
Are any leaks present?	YES	(NO)				
Is sump pump in use?	YES	(NO)				
Water level in sump		4				
ls treatment building clean a	and organized?		(YES)	NO		
Samples collected? YES	(NO)					
Air stripper influent	Sample ID	Time o	f Sampling	рН	Turbidity	Temp
Air stripper effluent GAC influent GAC effluent				NA NA	NA NA	
Is there evidence of tamperi Were manholes inspected? Were electrical boxes inspe is water present in any man	cted? holes or electric	al boxes'		YES YES YES (YES)	(NO) (NO) (NO) NO	naga l

Other observations:
Agway
vacuum 1 3"
air pressur re 115 psi
Bank 1
SP-1 0 scfm SP-2 2 scfm SP-3 2.5 scfm SP-4 0 0 scfm
SP-5 0 scfm SP-6 3 scfm SSP-7 0scfm SP-8 0 scfm
Describe any other system maintenance performed
Changed filters, installed a new pump in PW-8, greased all pumps, motors and blowers.
Signature -
Osqualar Ozer 1 1 1/2 1/2 Compared to the comp

Date/Tim	ne		7/17/200	<u>)6</u>	8:10				
Inspectio	n personne	əl	R C Beck	cen	<u> </u>				····
Other per	rsonnel on	site						, 	
Weather	Conditions	i	clear sun	ny 82 d					
	ell pumps o rovide exp	lanation	in auto?	·	ES)	NO			
	,								
Provide w RW-1 PW-2 PW-3 PW-4 PW-5 PW-6 PW-7 PW-8	vater level r ON ON ON ON (ON) ON (ON) ON (ON) Equalizat	(OFF) (OFF) (OFF) (OFF) OFF (OFF) OFF	on control	panel 7 7 3 3 7 6 3 7 5 4	ft ft ft ft ft ft ft				
Influent Fl	ow Rate	<u> </u>	· · · · · · · · · · · · · · · · · · ·		12.9 gpm	1			
Influent To	otalizer Re	ading			, , , , , , , , , , , , , , , , , , , ,	495854	13 gallons		
Sequester	ring agent	drum leve	<u> </u>		~15		in.		
Amount of	f sequester	ing agen	t remaining	J			~20	galions	·
Sequester	ring agent f	eed rate					3 ml/min.		
Sequester	ing agent i	metering	Pump Pres	ssure					1 psi
Bag filter t	op pressur	e			4	15	psi		-
Bag filter b	oottom pres	ssure			0	0	psi	·	

Influent feed pump in	use	(#1)	#2				
Influent Pump Pressi	ure			24	<u>4</u> psi		
Air stripper blower in	use	#2					
Air stripper differentia	al pressu <u>re</u>			3	inches	H ₂ O	
Air strippei r Pressure) ,		17	inches H ₂ O			
Effluent feed pump in	use	#1	(#2)				
Effluent feed pump pa	ressure		A 1740	10) psi		
Effluent flow rate			112	gpm			
Effluent Totalizer read	ding	·		26700407	gallons		
Are building heaters i	YES	(NO)					
Ambient air temperatu	ıre		· · · · · · · · · · · · · · · · · · ·	85	_degree:	s F	
Are any leaks present	?	YES	(NO)				
ls sump pump in use?)	YES	(NO)				
Water level in sump _			4			•	
ls treatment building o	lean and o	rganized?		(YES)	NO		
Samples collected?	YES	(NO)		· .			
Air stripper influent Air stripper effluent	Samp	le ID	Time of	Sampling	рН	Turbidity	Temp.
GAC influent GAC effluent					NA NA	NA NA	
s there evidence of ta Were manholes inspe Were electrical boxes s water present in any If ves. provide manhole/el	cted? inspected? manholes	or electrica	al boxes?	orractiva meės	YES YES YES (YES)	(NO) (NO) (NO) NO	2000 l

Other observations:
Agway
Agway
vacuum 1 3"
air pressur re 120 psi
Bank 1
SP-1 1 scfm SP-2 2 scfm SP-3 2 scfm SP-4 0 sc 0 scfm
SP-5 0 scfm SP-6 3 scfm SSP-7 1scfm SP-8 0 scfm
Describe any other system maintenance performed
Changed filters. Checked manholes all have water in them.
Signature Fell C Section -

Date/Tin	ne		7/24/2006	9:05		,			
Inspection	n personn	el	R C Becken						
Other pe	rsonnel on	site					<u> </u>		
Weather	Conditions	S	sunny 74 deg	rees					
Are all we	ell pumps o provide exp	perating i	in auto?	(YES)		NO			
Provide w RW-1 PW-2 PW-3 PW-4 PW-5 PW-6 PW-7 PW-8	vater level (ON) ON ON (ON) (ON) (ON) (ON) (ON)	OFF (OFF) (OFF) OFF OFF OFF	on control pane 7 6 3 7 6 6 6 7 4		ft ft ft ft ft ft ft ft				
Influent F				21.31	gpm				
	otalizer Re				5	32943	7 gallons		
	ring agent f sequester	•	remaining _		~10		in. _~15	_gallons	3
Sequeste	ring agent	feed rate _.		· · · · · · · · · · · · · · · · · · ·			3 ml/min.		
Sequeste	ring agent i	metering F	Pump Pressure	·					<u>1</u> psi
Bag filter t	op pressur	e _)	10	_psi		
Bag filter t	oottom pres	ssure)	0	_psi		

Influent feed pump in	use	(#1)	#2			
Influent Pump Pressi	ıre			2	<u>5</u> psi	
Air stripper blower in	use	(#1)	#2			
Air stripper differentia	al pressu	re			3 inches	H ₂ O
Air stripperr Pressure	<u> </u>		16	inches H₂O		
Effluent feed pump in	use	#1	(#2)			
Effluent feed pump po	ressure		····		<u>3</u> psi	
Effluent flow rate		· · · · · · · · · · · · · · · · · · ·	123 (gpm		
Effluent Totalizer read	ding .	· · · · · · · · · · · · · · · · · · ·	<u>.</u>	26917417	gallons	
Are building heaters i	n use?	YES	(NO)			
Ambient air temperatı			76.2	2_degree:	s F	
Are any leaks present	:?	YES	(NO)			
ls sump pump in use?	•	YES	(NO)			
Water level in sump _			4			
ls treatment building o	lean and	l organized?		(YES)	NO	1
Samples collected?	YES	(NO)				
Air stripper influent Air stripper effluent	San	nple ID	Time of	Sampling	рН	Turbidity Temp
GAC influent GAC effluent					NA NA	NA NA
s there evidence of ta Were manholes inspe Were electrical boxes s water present in any If yes, provide manhole/el	cted? inspecte / manhol	d? es or electrica	al boxes?	Orrective meas	YES (YES) YES (YES)	(NO) NO (NO) NO

Other observations:
Aguard
Agway
vacuum 13"
air pressur re 0 psi
Bank 1
SP-1 0 scfm SP-2 2 scfm SP-3 2 scfm SP-4 0 sc 0 scfm
SP-5 0 scfm SP-6 3 scfm SSP-7 1scfm SP-8 0 scfm
•
Describe any other system maintenance performed
Checked manholes all have water in them. Found the air compressor at the Agway site
not operating, there is power to the motor but it does not run, I removed the motor and
took it to ElectroMech in Niagara Falls to have them check it. The compressor drive belts
were bad so I bought new belts.Recieved two drums of Redox 380.
Signature VC / Server

Date/Tim	ne	····	7/30/2006	3:00					, <u></u>
Inspectio	n personn	ə <u> </u>	R C Becken	··········				······································	· · · · · · · · · · · · · · · · · · ·
Other pe	rsonnel on	site					· · · · · · · · · · · · · ·		
Weather	Conditions	}	sunny 89 deg	rees					
	ell pumps o provide exp	lanation	in auto?	(YES)	1	NO			
						-			
Provide w RW-1 PW-2 PW-3 PW-4 PW-5 PW-6 PW-7 PW-8	vater level on ON ON ON (ON) ON (ON) ON Equalizat	(OFF) (OFF) (OFF) (OFF) OFF (OFF) OFF	on control pane 11 6 7 4 8 6 8 7 4	1 1 1 1 1	ft ft ft ft ft ft ft				
Influent F	low Rate			70.13 g	gpm				
Influent T	otalizer Re	ading		·	56	323958	gallons		
Sequeste	ring agent	drum leve	<u> </u>	-	-5	· · · · · · · · · · · · · · · · · · ·	_in.		
Amount o	f sequeste	ring agen	t remaining _			· · - · ·	~10	_gallons	
Sequeste	ring agent	feed rate					3-ml/min.		
Sequeste	ring agent	metering	Pump Pressure	e _		-		1	psi
Bag filter	top pressu	re .		2	20	0	_psi		
Bag filter l	bottom pre	ssure		2	22	0	psi		

Influent feed pump in use	(#1)	#2			
Influent Pump Pressure		,	25	<u>5</u> psi	
Air stripper blower in use	#1	(#2)			
Air stripper differential pressure	:		3	3 inches	H ₂ O
Air strippei r Pressure		16	inches H ₂ O		
Effluent feed pump in use	#1	(#2)			
Effluent feed pump pressure _			8] psi	
Effluent flow rate		115	gpm		
Effluent Totalizer reading	,		27089924	gallons	
Are building heaters in use?	YES	(NO)			
Ambient air temperature			90	degrees	s F
Are any leaks present?	YES	(NO)			
Is sump pump in use?	YES	(NO)			
Water level in sump		4			
Is treatment building clean and	organized?		(YES)	NO	
Samples collected? YES	(NO)				
Samp Air stripper influent Air stripper effluent	ole ID	Time of	Sampling	рН	Turbidity Temp
GAC influent GAC effluent				NA NA	NA NA
Is there evidence of tampering/v Were manholes inspected? Were electrical boxes inspected Is water present in any manhole (If yes, provide manhole/electric box ID	? s or electrica	al boxes?		YES YES YES (YES)	(NO) NO (NO) NO

Other observations:
Agway
vacuum 13"
air pressur re 0 psi
Bank 1
SP-1 0 scfm SP-2 20 scfm SP-3 0 scfm SP-4 0 scfm
OF TO SOME OF PERSONNEL OF TO SOME OF THE OF
SP-5 0 scfm SP-6 0scfm SP-7 0scfm SP-8 0 scfm
Describe any other system maintenance performed
Changed filters. I received an alarm at 0200 am Sunday low air pressure, responded to the
alarm at 1500 Sunday, found the air blower operating normally with a normal air pressure,
but I couldn't reset the alarm. I tried opening the blower damper, I tried the other blower, I
then tried operating both blowers at this point I could reset the alarm. I then checked the
Dwyer pressure switch and found that if I run a jumper across the two terminals the alarm would reset, so I disconnected the pressure switch and the system now is operating normal!
would reset, so redisconnected the pressure switch and the system now is operating normali
Signature

Attachment B
Analytical Report from
Severn-Trent Laboratory
Analytical Data Package #A06-7585
Sampled: July 3, 2006

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tei: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: A06-7585

STL Project#: NY5A9393.3

Site Name: Ecology and Environment NYSDEC Standby

Task: Mr. C's Site-000699.NY06

Mr. Mike Steffan Ecology and Environment 368 Pleasant View Drive Lancaster, NY 14086

STL Buffalo

Inthony 17 18690111 Project/Manager

07/21/2006

STL Buffalo Current Certifications

As of 4/10//2006

STATE	Program	Cert # / Lab ID
AFCEE	AFCEE	
Arkansas	SDWA, CWA, RCRA, SOIL	03-054-D/88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	SDWA, CWA, RCRA, CLP	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA, ASP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	Env. Lab Reg.	68-281
South Carolina	RCRA	91013
Tennessee	SDWA	02970
USACE	USACE	
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA	998310390

SAMPLE SUMMARY

			SAMPLED		RECEIVED	
LAB SAMPLE ID	CLIENT SAMPLE ID_	MATRIX	DATE	TIME	DATE	TIME
A6758501	Effluent				07/03/2006	
A6758502	Influent	WATER	07/03/2006	10:45	07/03/2006	11:45

METHODS SUMMARY

Job#: A06-7585

STL Project#: NY5A9393.3

Site Name: Ecology and Environment NYSDEC Standby

PARAMETER	ANALYTICAL MEIHOD
METHOD 8260 - TCL VOLATILE ORGANICS	SW8463 8260
pH Total Hardness	MCAWW 150.1 MCAWW 130.2

MCAWW "Methods for Chemical Analysis of Water and Wastes", EPA/600/4-79-020 (Mar 1983) with updates and supplements EPA/600/4-91-010 (Jun 1991), EPA/600/R-92-129 (Aug 1992) and EPA/600/R-93-100 (Aug 1993)

SW8463 "Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

NON-CONFORMANCE SUMMARY

Job#: <u>A06-7585</u>

STL Project#: NY5A9393.3

Site Name: Ecology and Environment NYSDEC Standby

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A06-7585

Sample Cooler(s) were received at the following temperature(s); $17.8\,^{\circ}\text{C}$ Samples were received at a temperature of $17.8\,^{\circ}\text{C}$. Samples were received within one hour of collection. It was not possible for the samples to cool to $4\,^{\circ}\text{C}$ prior to receipt.

GC/MS Volatile Data_

The recovery of the analyte Trichloroethene in the Matrix Spike and in the Matrix Spike Duplicate of sample Influent exceeded quality control limits. The Matrix Spike Blank recoveries were compliant, so no corrective action was performed.

Wet Chemistry Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Date: 07/21/2006 Time: 09:31:33

Dilution Log w/Code Information For Job A06-7585

6/25°age:

Rept: AN1266R

Client Sample ID	Lab Sample ID	Parameter (Inorganic)/Method (Organic)	<u>Dilution</u>	Code
Influent	A6758502	8260	20.00	800
Influent	A6758502MS	8260	20.00	800
Influent	A6758502SD	8260	20.00	800

Dilution Code Definition:

002 - sample matrix effects

003 - excessive foaming

004 - high levels of non-target compounds

005 - sample matrix resulted in method non-compliance for an Internal Standard

006 - sample matrix resulted in method non-compliance for Surrogate

007 - nature of the TCLP matrix

008 - high concentration of target analyte(s)

009 - sample turbidity

010 - sample cotor

011 - insufficient volume for lower dilution

012 - sample viscosity

013 - other

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

- ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.
- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

8/25 Page:

Rept: AN1178

Sample ID: Effluent
Lab Sample ID: A6758501
Date Collected: 07/03/2006
Time Collected: 10:55

Date Received: 07/03/2006 Project No: NY5A9393.3 Client No: 397714

ite No:

occorca.	0,) 05) 2000	
ollected:	10:55	Site

	Detection					Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
AQUEOUS-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
1,1,2,2-Tetrachloroethane	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
1,1,2-Trichloroethane	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
1,1-Dichloroethane	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
1,1-DichLoroethene	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
1,2,4-Trichlorobenzene	ND		1.0	∪G/L	8260	07/06/2006 03:51	RJ
1,2-Dibromo-3-chloropropane	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
1,2-Dibromoethane	ND		1.0	UG/L	8260	07/06/2006 03:51	·RJ
1,2-DichLorobenzene	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
1,2-Dichloroethane	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
1,2-DichLoropropane	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
1,3-Dichlorobenzene	ND		1.0	UG/∟	8260	07/06/2006 03:51	RJ
1,4-Dichlorobenzene	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
2-Butanone	ND		5.0	UG/L	8260	07/06/2006 03:51	RJ
2-Hexanone	ND		5.0	UG/L	8260	07/06/2006 03:51	ŘЈ
4-Methyl-2-pentanone	ND		5.0	UG/L	8260	07/06/2006 03:51	RJ
Acetone	ND		5.0	UG/L	8260	07/06/2006 03:51	RJ
Benzene	ND		1.0	ue/L	8260	07/06/2006 03:51	RJ
Bromodich Loromethane	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
Bromoform	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
Bromomethane	ND		1.0	υ <mark>σ/</mark> L	8260	07/06/2006 03:51	RJ
Carbon Disulfide	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
Carbon Tetrachloride	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
Ch Lorobenzene	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
Chloroethane	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
Chloroform	ND		1.0	ue/L	8260	07/06/2006 03:51	RJ
Chloromethane	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
cis-1,2-Dichloroethene	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
cis-1,3-Dichloropropene	ND .		1.0	UG/L	8260	07/06/2006 03:51	RJ
Cyclohexane	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
Dibromoch Loromethane	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
Dichlorodifluoromethane	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
Ethylbenzene	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
Isopropylbenzene	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
Methyl acetate	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
Methyl-t-Butyl Ether (MTBE)	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
Me thy Loyc Lohexane	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
Methylene chloride	ND		1.0	ug/L	8260	07/06/2006 03:51	RJ
Styrene	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
Tetrachloroethene	1.6		1.0	UG/L	8260	07/06/2006 03:51	RJ
Toluene	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
Total Xylenes	ND		3.0	UG/L	8260	07/06/2006 03:51	RJ
trans-1,2-Dichloroethene	NĐ		1.0	บG/L	8260	07/06/2006 03:51	RJ
trans-1,3-Dichloropropene	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
Trichloroethene	ND		1.0	UG/L	8260	07/06/2006 03:51	RJ
Trichlorofluoromethane	ND		1.0	υG/L	8260	07/06/2006 03:51	RJ
Vinyl chloride	ND		1.0	UG/∟	8260	07/06/2006 03:51	RJ

Date: 07/21/2006 Time: 09:31:39

Ecology and Environment NYSDEC Standby Mr. C's Site-000699.NY06

9/25 Page:

Rept: AN1178

Sample ID: Effluent Lab Sample ID: A6758501 Date Collected: 07/03/2006

Time Collected: 10:55

Date Received: 07/03/2006 Project No: NY5A9393.3

Client No: 397714

Site No:

		Detection	·		Date/Time	
Parameter	ResultFla		Units	Method	Analyzed	<u>Analyst</u>
Wet Chemistry Analysis pH Total Hardness	8.15 473	0.500 2.0	s.u. MG/L	150.1 130.2	07/03/2006 15:26 07/06/2006 09:11	

10/25 Page:

Rept: AN1178

Sample ID: Influent
Lab Sample ID: A6758502
Date Collected: 07/03/2006
Time Collected: 10:45

Date Received: 07/03/2006 Project No: NY5A9393.3

Client No: 397714 Site No:

			Detection			——Date/Time——	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
AQUEOUS-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		20	UG/L	8260	07/06/2006 04:15	RJ
1,1,2,2-Tetrachloroethane	ND		20	UG/L	8260	07/06/2006 04:15	RJ
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		20	UG/L	8260	07/06/2006 04:15	RJ
1,1,2-TrichLoroethane	ND		20	UG/L	8260	07/06/2006 04:15	RJ
1,1-Dichloroethane	ND		20	UG/L	8260	07/06/2006 04:15	RJ
1,1-Dichloroethene	ND		20	UG/L	8260	07/06/2006 04:15	RJ
1,2,4-TrichLorobenzene	ND		20	υσ/L	8260	07/06/2006 04:15	RJ
1,2-Dibromo-3-chloropropane	ND		20	UG/L	8260	07/06/2006 04:15	RJ
1,2-Dibromoethane	ND		20	UG/L	8260	07/06/2006 04:15	RJ
1,2-Dichlorobenzene	ND		20	ne/r	8260	07/06/2006 04:15	RJ
1,2-Dichloroethane	ND		20	UG/L	8260	07/06/2006 04:15	RJ
1,2-Dichloropropane	ND		20	UG/L	8260	07/06/2006 04:15	RJ
1,3-Dichlorobenzene	ND		20	UG/L	8260	07/06/2006 04:15	RJ
1,4-Dichlorobenzene	ND		20	UG/L	8260	07/06/2006 04:15	RJ
•	ND		100	UG/L	8260	07/06/2006 04:15	RJ
2-Butanone	ND		100	UG/L	8260	07/06/2006 04:15	RJ
Z-Hexanone	ND		100	UG/L	8260	07/06/2006 04:15	RJ
4-Methyl-2-pentanone	ND		100	UG/L	8260	07/06/2006 04:15	RJ
Acetone	ND		20	UG/L	8260	07/06/2006 04:15	RJ
Benzene	ND		20	UG/L	8260	07/06/2006 04:15	RJ
Bromodichloromethane	ND ND		20	UG/L	8260	07/06/2006 04:15	RJ
Bromoform	ND		- 20	UG/L	8260	07/06/2006 04:15	RJ
Bromomethane	ND		20	UG/L	8260	07/06/2006 04:15	RJ
Carbon Disulfide	ND		20	UG/L	8260	07/06/2006 04:15	RJ
Carbon Tetrachloride	ND ND		20	UG/L	8260	07/06/2006 04:15	RJ
Chlorobenzene	ND ND		20	UG/L	8260	07/06/2006 04:15	RJ
Chloroethane	ND		20	UG/L	8260	07/06/2006 04:15	RJ
Chloroform	ND ND		20	UG/L	8260	07/06/2006 04:15	RJ
Chloromethane	ND ND		20	UG/L	8260	07/06/2006 04:15	RJ
cis-1,Z-Dichloroethene			20	UG/L	8260	07/06/2006 04:15	RJ
cis-1,3-Dichloropropene	ND		20	UG/L	8260	07/06/2006 04:15	RJ
Cyclohexane	ND		20	UG/L	8260	07/06/2006 04:15	RJ
Dibromochloromethane	ND		20	UG/L	8260	07/06/2006 04:15	RJ
Dichlorodifluoromethane	ND			UG/L	8260	07/06/2006 04:15	RJ
Ethylbenzene	ND		20	UG/L	8260	07/06/2006 04:15	RJ
Isopropylbenzene	ND		20	UG/L	8260 8260	07/06/2006 04:15	RJ
Methyl acetate	ND		20	UG/L	8260	07/06/2006 04:15	RJ
Methyl-t-Butyl Ether (MTBE)	ND		. 20	UG/L	8260	07/06/2006 04:15	RJ
Me thy Lcyc Lohexane	ND		20			07/06/2006 04:15	
Methylene chloride	ND		20	UG/L	8260	07/06/2006 04:15	RJ
Styrene	ND		20	UG/L	8260	07/06/2006 04:15	RJ
Tetrachloroethene	1100		20	UG/L	8260	07/06/2006 04:15	RJ
Toluene	ND		20	UG/L	8260	• •	RJ
Total Xylenes	ND		60	UG/L	8260	07/06/2006 04:15	RJ
trans-1,2-Dichloroethene	ND		20	UG/L	8260	07/06/2006 04:15	RJ
trans-1,3-Dichloropropene	ND		20	UG/L	8260	07/06/2006 04:15	RJ
Trichloroethene	33		20	UG/L	8260	07/06/2006 04:15	RJ
Trichlorofluoromethane	ND		20	UG/L	8260	07/06/2006 04:15	RJ
Vinyl chloride	ND		20	UG/L	8260	07/06/2006 04:15	RJ

Date: 07/21/2006 Time: 09:31:39

Ecology and Environment NYSDEC Standby Mr. C's Site-000699.NY06

11/25 Page:

Rept: AN1178

Sample ID: Influent
Lab Sample ID: A6758502
Date Collected: 07/03/2006

Time Collected: 10:45

Date Received: 07/03/2006 Project No: NY5A9393.3

Client No: 397714 Site No:

	· · · · · · · · · · · · · · · · · · ·	Detection			Date/Time	
<u>Parameter</u>	Result Flag	<u>Limit</u>	Units	Method	Analyzed	<u>Analyst</u>
Wet Chemistry Analysis						
На	7.33	0.500	s.u.	150.1	07/03/2006 15:26	
Total Hardness	483	2.0	MG/L	130.2	07/06/2006 09:11	LRM

Chain of Custody Record

Severn Trent Laboratories, Inc.

								_	1	1	ı	•	1	ı	1	l' 1	ļ	1	ı	í	25/2	25	1
Chain of Questady Number	Page (of 1		Special Instructions/	Conditions of Receipt						-							(A fee may be assessed if samples are retained bonner than 1 month)			1).3 06 114K	Date Time	Date Time	
Date 13/06	Lab Number	Analysis (Attach list if more space is needed)															(A fee may			11,			
	hh8		\$.584p	He.	मुब अध्य १८४	1 1 3	1113			7							1 Archine For	crify)		1 Gradie			
	(-116) 284 -0	Lab Contact	Juc.	Containers & Preservatives	NªOH NªOH HCI HNO3 HSZO¢	1 1 3	[13]										Operated By Jah	1		1. Received By	2. Réceived By	3. Received By	
Project Manager Stoff	ber (Area Co	Site Contact	Carrier Waybill Number O+M Enternises Inc.	Matrix	niA suceupta ba8 lino2	×	×	-91									Sample Disposal	1		3 to 1 Time	Time	Time	
					Date Time	7/3/66 1045	715/06 1055										Paris B		□ 21 Days	1131	Date	Date	_
Colodia Environment Inc.	sattiens Dr.		cation (State) tas		Sample I.D. No. and Description (Containers for each sample may be combined on one line)	influent 1											Possible Hazard Identification	e Required	☐ 24 Hours ☐ 48 Hours ► 7 Days ☐ 14 Days	(Helinguished By Color	2. Relimquished By	3. Relinquished By	Comments

NO ICE SAM DAY

DISTRIBUTION: WHITE-Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Attachment C Agway Stack Test Analytical Results STL SDG – NY115082 Sampled: June 26, 2006

Analytical Report: July 13, 2006

STL Burlington 208 South Park Drive, Suite 1 Colchester, VT 05446

Tel: 802 655 1203 Fax: 802 655 1248 www.stl-inc.com

July 13, 2006

Mr. Mike Steffan Ecology & Environmental Inc. 368 Pleasant View Drive Lancaster, NY 14086

Re: Laboratory Project No. MR.Cs Case: MR.Cs: SDG: NY115082

Dear Mr. Steffan:

Enclosed are the analytical results for the samples that were received by STL Burlington on June 29th, 2006. Laboratory identification numbers were assigned, and designated as follows:

<u>Lab ID</u>	Client Sample ID	Sample <u>Date</u>	Sample <u>Matrix</u>
	Received: 06/29/06 ETR No:	115082	
674180	27 WHALEY BASEMENT	06/26/06	Air
67 4 181	27 WHALEY DINING ROOM	06/26/06	Air
674182	CHURCH RM 114	06/26/06	Air
674183	CHURCH RM114DUPLICATE	06/26/06	Air
674184	CHURCH RM 113	06/26/06	Air
674185	- CHURCH RM 111	06/26/06	Air
674186	PILLAR ROOM	06/26/06	Air
674187	1ST FLOOR SANCTUARY	06/26/06	Air
674188	OUTSIDE AMBIENT	06/26/06	Air
674189	AGWAY EXHAUST	06/26/06	Air
674190	TRIP BLANK	06/26/06	Air

Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal.

Method TO-15 – Volatile Organics:

Cardare in Environmental Testino

The analyses of the field samples 27 WHALEY BASEMENT, CHURCH RM 114 and AGWAY EXHAUST were accomplished at dilutions in order to get the response of the target analytes with the highest concentration within the calibration range. Only the results for the dilution analysis were provided.

The analysis of the blank spike sample VISB LCS and the associated clank spike duplicate sample VISB LCSD exhibited percent recoveries for the target compound Dichlorodifluoromethane that was outside the established control limits. This analyte was detected in the associated samples 27 WHALEY BASEMENT, 27 WHALEY DINING ROOM, CHURCH RM 114, CHURCH RM114DUPLICATE, CHURCH RM 111, PILLAR ROOM and OUTSIDE AMBIENT.

The analysis of the blank spike sample VISB LCS and the associated clank spike duplicate sample VISB LCSD exhibited percent recoveries for the target compounds 1,2,4-Trichlorobenzene, Hexachlorobutadiene, Naphthalene and 1,1,2,2-Tetrachloroethane that were outside the established control limits. These analytes were not detected in the field samples of this delivery group. It should be noted that only the field sample AGWAY EXHAUST was analyzed for Naphthalene and all other project target compounds.

The analytical results associated with the samples presented in this test report were generated under a quality system that adheres to requirements specified in the NELAC standard. Release of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.

If there are any questions regarding this submittal, please contact me at 802 655-1203.

Sincerely,

Ron Pentkowski Project Manager

Enclosure

EXHIBIT 6

SUBCONTRACTOR DELIVERABLES CERTIFICATION FORM

ECOLOGY AND ENVIRONMENT, INC. TO: Corporate Headquarters 368 Pleasant View Drive Lancaster, NY 14086 Attention: Rebecca Humphrey (RHumphrey@ene.com) STL Burlington Laboratory: This Exhibit must be completed and returned to E & E with each data submittal Laboratory certifies that the electronic version of the data submitted for the above referenced Work Order is an EXACT DUPLICATE of the hard copy report and that both deliverables conform exactly to the E & E project requirements and are being submitted error free. Any errors identified by E & E will be corrected by subcontractor at their cost. If errors are corrected by E & E in order to meet E & E prime contract responsibilities, the cost will be deducted from the payment made to the laboratory using E & E standard commercial rates. Executed this 13 day of July 2006 Christopher A. Ovellette.

TO-14/15 Result Summary

CLIENT SAMPLE NO.

AGWAY EXHAUST

Lab Name:

STL Burlington

SDG Number: NY115082

Case Number:

Sample Matrix: Air

Lab Sample No.: 674189

07/12/2006

Date Analyzed: Date Received:

06/29/2006

	CAS	Results	Q	RL in	Results in	Q	RL in
Target Compound	Number	in ppbv	u	ppbv	ug/m3	G.	иg/m3
		FF					
Dichlorodifluoromethane	75- 7 1-8	20	U	20	99	U	99
1,2-Dichlorotetrafluoroethane	76-14-2	8.0	U	8.0	56	U	56
Chloromethane	74-87-3	20	U	20	41	U	41
Vinyl Chloride	75-01 - 4	8.0	U	8.0	20	U	20
1,3-Butadiene	106-99-0	20	ŭ	20	44	U	44
Bromomethane	74-83-9	8.0	U	8.0	31	U	31
Chloroethane	75-00-3	20	U	20	53	U	53
Bromoethene	593-60-2	8.0	U	8.0	35	U	35
Trichlorofluoromethane	75-69-4	8.0	U	8.0	45	Ŭ	45
Freon TF	76-13-1	8.0	U	8.0	61	U	61
1,1-Dichloroethene	75-35-4	8.0	ט	8.0	32	U .	32
Carbon Disulfide	75-15-0	29		20	90		62
3-Chloropropene	107-05-1	20	Ŋ	20	63	U	63
Methylene Chloride	75-09-2	20	U	20	69	U	69
Methyl tert-Butyl Ether	1634-04-4	20	U	20 .	72	U	72
trans-1,2-Dichloroethene	156-60-5	8.0	יט י	8.0	- 32	U	32
n-Hexane	110-54-3	37		20	130		70
1,1-Dichloroethane	75-34-3	8.0	· U	8.0	32	U	32
cis-1,2-Dichloroethene	156-59-2	8.0	U	8.0	32	· U	32
Chloroform .	67-66-3	8.0	U	8.0	39	U	39
1,1,1-Trichloroethane	71-55-6	8.0	U	0,8	44	Ľ	44
Cyclohexane	110-82-7	58	-	8.0	200		28
Carbon Tetrachloride	56-23-5	8.0	U	8.0	50	U	50
2,2,4-Trimethylpentane	540-84-1	260		8.0	1200		37
Benzene	71-43-2	8.0	U	8.0	26	U	26
1,2-Dichloroethane	107-06-2	8.0	, n	8.0	32	U	- 32
n-Heptane	142-82-5	24		8.0	98	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	33
Trichloroethene	79-01-6	16		0.8	86		43
1,2-Dichloropropane	78-87-5	8.0	U	8.0	37	U	37
Bromodichloromethane	75-27-4	8.0	U	8.0	54	U	54
cis-1,3-Dichloropropene	10061-01-5	8.0	U	8.0	36	U	36
Toluene	108-88-3	13		8.0	49		30
trans-1,3-Dichloropropene	10061-02-6	8.0	U	8.0	36	U	36

TO-14/15 Result Summary

CLIENT SAMPLE NO.

AGWAY EXHAUST

Lab Name:

STL Burlington

SDG Number: NY115082

Case Number:

Sample Matrix: Air

Lab Sample No.:

674189

Date Analyzed:

07/12/2006

Date Received:

06/29/2006

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
1,1,2-Trichloroethane	79-00-5	8.0	U	8.0	44	U	44
Tetrachioroethene	127-18-4	830		8.0	5600		54
Dibromochloromethane	124-48-1	8.0	U	8.0	68	U	68
1,2-Dibromoethane	106-93-4	8.0	U	8.0	61	U	61
Chlorobenzene	108-90-7	8.0	U	8.0	37	U	37
Ethylbenzene	100-41-4	8.0	U	8.0	35	U	35
Xylene (m,p)	1330-20-7	20	Ü	20	87	U	87
Xylene (o)	95-47-6	8.0	Ü	8.0	35	U	35
Styrene	100-42-5	8.0	U	8.0	34	U	34
Bromoform	75-25-2	8.0	U	8.0	83	U	83
1,1,2,2-Tetrachloroethane	79-34-5	8.0	υ	8.0	55	U	55
4-Ethyltoluene	622-96-8	8.0	Ū	8.0	39	U	39
1,3,5-Trimethylbenzene	108-67-8	8.0	U	8.0	39	U	39
2-Chlorotoluene	95-49-8	8.0	U	8.0	41	U	41
1,2,4-Trimethylbenzene	95-63-6	8.0	U	8.0	39	U	39
1,3-Dichlorobenzene	541-73-1	8.0	U	8.0	48	U	48
1,4-Dichlorobenzene	106-46-7	8.0	U	8.0	48	U	48
1,2-Dichlorobenzene	95-50-1	8.0	U	8.0	48	U	48
1,2,4-Trichlorobenzene	120-82-1	20	U	20	150	U	150
-lexachlorobutadiene	87-68-3	8.0	U	8.0	85	U	85
Vaphthalene	91-20-3	20	U	20	100	U	100

Attachment D Summary of Site Utility Costs and Projections October 2004 to July 2006

Mr. C's Dry (Sleaners Sit	e - Remedia	Mr. C's Dry Cleaners Site - Remedial Treatment Utility	ity Costs	S					,	ATTA	ATTACHMENT D
NYSDEC Work Assignment #27.5	rk Assignm	ent #27.5						Utility Budget:		Electric:	\$24,024.00	
12 Months o	f System Op	eration and	12 Months of System Operation and Maintenance							Telephone:	\$680.00	
July 2006 Report	port									Gas	\$1,100.00	-
Gas and Electric	C Account #	E&E Cost Center	Description	October '05	November '05	December '05	-lanuary '06	February '06	March 106	Total:	\$25,804.00 May '06	
Now York State E.C.	08-311-11-002616-26	OUDERR NYOR OF	Mr C's Electric Costs	¢ 1 871 38	====	4 4 4 4 5 70	C4 7E9 19	4 000 70	© 2450.47	0 119 40	2 204 03	
New York State E&G	76-311-11-015900-1B		Annay Site - Flentric		997 R4		¢987 93	1	1	Ι.		
National Fuel Gas	5819628-05	000699.NY06.05	Mr. C's Natural Gas Costs		8.61							
			Totals	\$ 2,165.70	2,049.83	\$ 1,942.81	\$2,029.35	\$ 2	2,5	~	\$ 2,620.36	
				−5	July '06		September '06	ľŏ		╸	an	Ave. /Month
	į		Mr. C's Electric Costs	\$ 1,916.90	\$ 1,627.85	\$ 1,898.10				-		\$ 2,111.29
			Agway Electric	\$ 308.98	\$ 299.15	\$ 328.10						\$ 335.48
			Mr. C's Natural Gas Costs	, \$	\$ 0.73	\$ 14.90					:	\$ 60.80
			Totals	\$ 2,225.88	\$ 1,927.73	\$ 2,241.10	\$	-	- \$	·	\$0.00	\$ 2,507.56
			Electric		\$ 21,112.86							
			Natural Gas		\$ 607.95			Overbilled nat	Overbilled natural gas costs			
	Grand Total - NY	'SE&G/National F	Grand Total - NYSE&G/National Fuel Gas Costs To Date	₩.	21,720.81			Estimated Reading	ading			
Phone		1										
Utility Provider	Phone #	E&E Cost Center	Location Description	October 105	November '05	December '05	January '06	February '06	March '06	April '06	May '06	
Verizon	716-652-0094	000699.NY06.05	Mr. C's Telephone Costs	-								
Account#		-		· &	\$ 38.60	\$ 39.71	\$ 38.94	\$ 38.86	\$ 38.56	\$ 39.03	\$ 38.59	
716 652 0094 416 26 2												
				June 106	July '06	August	September	October	November	December		Ave./Month
				\$ 38.59	\$ 43.63	, , , , , , , , , , , , , , , , , , ,		↔	· 69	1 69		\$ 39.39
		Grand Total - \	Grand Total - Verizon Costs to Date	\$	354.51	*	***This includes	initial connect	on fees for the	phone company	****This includes initial connection fees for the phone company of approximately \$180	y \$180.
		Grand Total	Grand Total All Iltilities To Date	·	22 075 32							
				• -								
		. •										

M. C. D.				litre Coats		_		_		ATTA	1
Mr. Cs Dry C	C's Dry Cleaners Site	- Kemediai	i reatment otility		20					AIIA	ALI ACHIMENI D
NYSDEC Work Assignment #27	k Assignm	ent #27.4						·.			
12 Months of	System Op	eration and	12 Months of System Operation and Maintenance			Budget Remaining:	g: Electric:	\$2,911.14			
July 2006 Report	ort						Telephone	\$325.49			
							Gas	\$492.05			
							Total:	\$3,728.68			
Monthly Treatm	Treatment System	Operational	Time by O&M Se	Services							
	Possible OP	Actual OP	Up-Time	Percent		-					
Month	Hours	Hours	Percent	Capacity-	General General	General Operation Comments	(S				
September-03	36	96	100.00%	28%	Official Startun by	Official Start in by O&M Entermises on 10/20/03	Dispection				
November-03	720	720	100.00%	2%	Cincial Canada 25		00.000				
December-03	744	744	100.00%	28%			-				-
January-04 Fehruary-04	696	696	100.00%	21%							
March-04	816	815	99.88%	51%							
April-04	672	670	99.70%	20%							
May-04	969	513	73.71%	43%	Equipment shutdo	Equipment shutdown- low flow of water to air stripper - individual primps chitdown for inspendion and pleaning	Equipment shutdown- low tlow of water to air stripper - 5/17-24/04 individual numbe chutdown for incoordion and pleaning	94			
July-04	840	840	100.00%	47%	100% operational	Indiana In Indiana	מוות סופמוווים				
August-04	672	672	100.00%	42%	100% operational						
September-04	940	820	97.62%	31%	Temporary Strippe	r Shutdown	Temporary Stripper Shutdown	-	•		
October-04	672	607	90.33%	33%	65 hour weekend	nutdown due to low p	ressure problems with	ine airstripper	-		
December-04	816	792	97.06%	42%	GAC units remove	GAC units removed from treatment system operations	m operations				
January-05	840	840	100.00%	46%	GAC units remove	GAC units removed from project site 1/14/05	4/05				-
February-05	672 -	660	98.21%	41%	Unit cleaned February 4, 2005	Jary 4, 2005					
March-05	840	828	98.57%	33%	Unit shut down for	additional cleaning an	Unit shut down for additional cleaning and sequestering agent review.	eview.	:		
April-05	9690	609	87.50%	28%	Unit re cleaned April	8, ZUU5. Back in servic	Unit re-aleaned April 8, 2005. Back in service until new sequestering agent approved	ng agent approve	d and installed.		-
May-05	744	644	86.56%	%06	Extremely dry month of June.	th of June.	olielilloai sisi ieu upei	ations of 37 19705			
July-05	624	605.5	97.04%	44%	Extremely dry month of July	ith of July.					
August-05	969	969	100.00%	44%	Extremely dry month of August	ith of August.			!		
September-05	864	864	100:00%	40% 30%	Extremely dry month of September.	ith of September.		- -			
November-05	672	- 659	98.07%	34%	Power outage occ	Power outage occurred November 6, 2005	55				
December-05	. 864	854	98.84%	29.6%	Air Stripper cleani	Air Stripper cleaning occurred on 12/27/05	15				
January-06	816	816	100.00%	36.7%			-				
March-06	989	969	100.00%	56.4%							
April-06	969	689	98.99%	34.3%	Dry month, 5 hour	s for cleaning the strip	Jer.				
May-06	969	689	%66'86	32.3%	Dry month, 5 hour	Dry month, 5 hours for cleaning the stripper	Jer.				
90-eunr	816	812	99.51%	28.6%							
Totals to Date	94576	93877	99.02%	27.0%	Based on OM sen	Based on OM services provided by EEEBOOMEI since 9003	C/OMEI since 0/03			1	
			* Percent Capacity is based on initial operating groundwater flows from the eight installed pumps from 9/02.	on initial operati	ng groundwater flor	vs from the eight instal	led pumps from 9/02.				
			Evaluated on total gallons discharged for monthly operating time	scharged for mo	inthly operating tim		_				
			Maximum pump discharges calculated as an average of 78 gpm as the total for all 8 pumps at the site if all pumps operate 100%. With the excention of promotwater primp RW-1 all other primps run a hatch basis	valculated as ar	average of 78 gpn	as the total for all 8 pr	umps at the site if all pu	imps operate 100	.%.		
Projected Utility Costs for the O&M year (10/05 to 4/06)	ts for the O&M v	ear (10/05 to 4/0	5)					-			
•	Ave./Month		,								
П	2										
ی				!							
Mr. C's Telephone \$	39.39										
┧≝	22	times	12 month Estimate	\$33,110.38							
			1							-	