

ANNUAL GROUNDWATER MONITORING REPORT CLOSURE YEAR 24 (2020)

UNION ROAD SITE TOWN OF CHEEKTOWAGA ERIE COUNTY, NEW YORK (SITE REGISTRY NO. 9-15-128)

Prepared for:
AMERICAN PREMIER UNDERWRITERS, INC.
(FORMERLY THE PENN CENTRAL CORPORATION)
ONE EAST FOURTH STREET
CINCINNATI, OHIO 45202

Prepared by:
UNICORN MANAGEMENT CONSULTANTS, LLC
52 FEDERAL ROAD, SUITE 2C
DANBURY, CT 06810

January 12, 2021

Responsiveness • Solutions • Quality

Document Authorization Form

Annual Groundwater Monitoring Report Closure Year 24 (2020)

> Union Road Site Town of Cheektowaga Erie County, New York (Site Registry No. 9-15-128)

Prepared for:
American Premier Underwriters, Inc.
(Formerly The Penn Central Corporation)
One East Fourth Street
Cincinnati, Ohio 45202

Prepared by: UNICORN MANAGEMENT CONSULTANTS, LLC 52 FEDERAL ROAD, SUITE 2C DANBURY, CT 06810

> January 12, 2021 AUTHORIZATIONS:

Michael J. O'Connor, LEP, PG. Manager of Environmental Projects Date

Responsiveness • Solutions • Quality

Period: Annual 2020

TABLE OF CONTENTS

1	INTRODUCTION	1
2	WELL INSTALLATION	2
3	GROUNDWATER SAMPLING AND ANALYSIS	3
4	GROUNDWATER ELEVATION MONITORING	5
5	SITE INSPECTION AND MAINTENANCE	6
6	CONCLUSION	9

LIST OF FIGURES

- Figure 1-1: Location Map
- Figure 1-2: Site Location
- Figure 2-1: Groundwater Monitoring Well Locations
- Figures 3-1a to 3-11e: Summary of Post-Closure Groundwater Monitoring Data
- Figure 4-1: Shallow Groundwater Flow Map; August 13, 2020
- Figure 4-2: Medium Well Groundwater Flow Map; August 13, 2020
- Figure 4-3: Bedrock Groundwater Flow Map; August 13, 2020

LIST OF TABLES

- Table 3-1: Pre-Construction Sampling of Shallow Wells (June August, 1991)
- Table 3-2: Summary of Post-Closure Groundwater Monitoring Data SVOCs
- Table 3-3: Summary of Post-Closure Groundwater Monitoring Data VOCs, TPH, and Metals
- Table 4-1: Groundwater Well Measurements; August 13, 2020

LIST OF APPENDICES

APPENDIX A BORING LOGS AND WELL CONSTRUCTION DRAWINGS

Period: Annual 2020

1 INTRODUCTION

This Groundwater Monitoring Report has been prepared by Unicorn Management Consultants, LLC (UMC) on behalf of American Premier Underwriters, Inc (APU). The purpose of this document is to demonstrate compliance with Section 12.4.1 of the Union Road Site Remedial Design Report (Design Report), approved by the New York State Department of Environmental Conservation (NYSDEC) in May, 1995. Section 12.4.1 of the Design Report discusses the Groundwater Monitoring Plan (GMP).

The purpose of GMP is as follows:

- To evaluate the groundwater quality to assess the effectiveness of the remedial action performed in accordance with 1995 Design Report, and
- To monitor the groundwater gradient of the three hydrogeologic units in and around the closure area.

The GMP consists of these elements:

- The installation of groundwater monitoring wells inside and outside the slurry wall around the landfill closure;
- The collection and analyses of groundwater samples; and
- The determination of groundwater elevations.

Please note that pursuant to a letter dated October 18, 2001, from Blank Rome Comisky and McCauley, LLP (APU's legal counsel), effective October 19, 2001, APU designated UMC as their environmental consultants.

The Union Road site ("the Site") is a Class 4 Site as defined by the NYSDEC. The Site registry number is 915128. The Site is located at 333 Losson Road in Cheektowaga, New York (see Figure 1-1). A Record of Decision (ROD) for the Site was signed on March 9, 1992. Order on Consent Index No. B9-0148-92-03 was signed by The Penn Central Corporation (currently, APU) and the NYSDEC; the effective date of the Order is April 12, 1994. Appendix "B" of the Order is the Final Remedial Action Work Plan (the "Work Plan"), dated June 18, 1993.

As required in Section 4.2 of the Work Plan, the design documents, including the Union Road Site Remedial Design Report, were submitted in May 1995 to the NYSDEC and were subsequently approved. After approval, work commenced and the landfill closure was completed in December 1996. Figure 1-2 illustrates a plan view of the Site closure.

The GMP, and Operation and Maintenance (O&M) activities for the Site went into effect following the landfill closure. This report presents and summarizes the activities conducted on Site during Closure Year 24 (2020). UMC did not conduct a groundwater sampling event in 2020 as discussed in Section 3 of this report.

Period: Annual 2020

2 WELL INSTALLATION

As proposed in the GMP, five well clusters were installed along the outside perimeter of the slurry wall. These exterior wells are identified as MW-10S/M/D, MW-11S/M, MW-12S/M/D, MW-13S/M, and MW-14S. Adjacent to these wells, along the inside perimeter of the slurry wall, five shallow wells identified as MW-15, MW-16, MW-17, MW-18, and MW-19 were installed.

Three additional shallow wells (not originally proposed) were also installed. These wells (MW-20, MW-21, and MW-22) were installed in the center of the landfill to monitor the elevation of groundwater inside the landfill closure. Proposed well MW-20S adjacent to the outfall of the new wetland was installed; however, the identification of this well was changed from MW-20S to MW-23S. As discussed in the Groundwater Monitoring Report for the Second Quarter 1997, the original Monitoring Well 14S (MW-14S) was decommissioned and the replacement was reinstalled nine feet southwest (along the fence line). The MW-14S replacement was installed, surveyed and developed on August 19, 1997. Well designations and locations are shown on Figure 2-1.

Installation of monitoring wells proceeded according to Section 02170 of the Technical Specifications. Installation of the interior wells occurred from February 19-23, 1996. Installation of the exterior wells took place from December 10, 1996 through January 6, 1997 and August 19, 1997. Copies of the Boring Logs and Well Construction Drawings are included as Appendix A.

Period: Annual 2020

3 GROUNDWATER SAMPLING AND ANALYSIS

3.1 GROUNDWATER SAMPLING

The purpose of groundwater sampling and analyses is to assess the effectiveness of the remedial action by evaluating the groundwater quality.

According to the GMP, groundwater samples will be collected from the outside perimeter monitoring wells by the following schedule:

- Quarterly the first year (1997);
- Semi-annually the second year (1998);
- Annually, during the dry season (1999 to 2019); and
- Bienially (see Section 3.2) thereafter.

The parameters and applicable methods for the analyses are as follows:

- Total petroleum hydrocarbons (TPH) by EPA Method 1664A;
- Volatile organic compounds (VOCs) by EPA Method 8260;
- Semi-volatile organic compounds (SVOCs) by EPA Method 8270; and
- Soluble metals (lead and arsenic) by EPA Method 6010B, respectively.

The sampling frequency, analytical parameters, and/or sampling of specific wells will be modified based on the results of previous sampling events (since the landfill closure) and with written approval from the NYSDEC. Following discussions with NYSDEC and a review of the analytical data for groundwater samples collected on Site following the landfill closure in 1997, UMC believes that a reduction in the sampling frequency on Site is appropriate.

To evaluate the immediate effects of remedial activities on the groundwater around the landfill closure, the results of this sampling event are compared to results gathered from previous investigation reports performed by Dvirka and Bartilucci prior to the landfill closure. The data from the reports dated June, 1991 and August, 1991 are summarized in Table 3-1. Comparison between the averages prior to closure with post closure in the shallow wells shows significant decreases in all of the contaminants analyzed. To determine the continued effectiveness of the containment system, future sampling will be compared to the pre-closure concentrations.

3.2 MODIFICATION OF GROUNDWATER SAMPLING FREQUENCY

In letters dated November 22, 2019 and January 24, 2020, NYSDEC concurred with UMC's assessment that historical analytical data for the Site supported a change in the frequency of the groundwater sampling events from annual to biennial, with the next groundwater sampling event scheduled for 2021. Copies of these letters are included in Appendix B of this report.

Period: Annual 2020

3.3 2020 GROUNDWATER SAMPLING EVENT

Due to the change in groundwater sampling frequency dicussed in Section 3.2 above, UMC did not conduct a groundwater sampling event in 2020.

3.4 SUMMARY OF HISTORICAL ANALYTICAL DATA

Since the landfill closure in 1997, groundwater sampling has been conducted a total of 27 times. The data from these 27 events is presented in Tables 3-2 and 3-3 of this report. Total values for SVOCs, VOCs, TPH, souluble arsenic, and soluble lead are presented in Figures 3-1a to 3-11e of this report. In the majority of wells on Site, the total concentrations of these compounds have either declined or remained below detection levels since 1997. Upward trends for VOCs and SVOCs are observed in three wells on Site; MW-12M (Figure 3-7a), MW-13S (Figures 3-9a and 3-9b), and MW-14S (Figure 3-11b).

The upward trends in VOCs in MW-13S and MW-14S are due to singular detections of acetone (12 μ g/L and 14 μ g/L respectively) in 2019. The laboratory analytical report for these samples notes that the Continuing Calibration Verification (CCV) exceeded control limits for acetone, and that all concentrations of acetone should be considered estimated. The upward trend in SVOCs in MW-12M and MW-13S are due to singular detections of bis(2-ethylhexyl)phthalate in 2018 (14 μ g/L in MW-13S) and 2019 (120 μ g/L in MW-12M).

Both acetone and Bis(2-ethylhexyl)phthalate are common laboratory artifacts and have not been observed consistently in groundwater samples collected on Site.

Period: Annual 2020

4 GROUNDWATER ELEVATION MONITORING

The purpose of groundwater elevation monitoring is to determine the groundwater gradient of the three hydrogeologic units in and around the closure area. The three hydrogeologic units (layers) are:

- The overburden layer (shallow), which is above the clay layer;
- The till layer (medium), which is beneath the clay layer; and
- Bedrock (deep), which is beneath the till layer.

As stated in the NYSDEC approved Design Report, the frequency of groundwater elevation measurements are as follows:

- Monthly for the first six months after closure (Jan June 1997);
- Quarterly thereafter until the end of year two (July 1997 December 1998); and
- Annually (during the dry season) thereafter.

The objective for collecting groundwater elevation measurements is to gain knowledge of the groundwater flows and hydraulic gradients in and around the closure. This information is used to generate groundwater flow maps and demonstrate an inward gradient of groundwater around the closure.

On August 13, 2020, UMC measured the depth to groundwater in the monitoring wells. Table 4-1 summarizes the results of these measurements. The data from Table 4-1 were used to create groundwater contour maps (Figures 4-1 through 4-3), which depict groundwater elevations and inferred groundwater flow directions in the three hydrogeologic units. Figure 4-1 shows an inward gradient of shallow (overburden) groundwater across the slurry wall and towards the dewatering trench at the east corner of the closure.

Figures 4-2 and 4-3 depict groundwater elevations in the medium and deep units. The inferred groundwater flow direction for the medium unit is toward the southeast. The inferred groundwater flow direction for the deep unit is easterly. However, since only two monitoring wells intercept the deep unit, a groundwater contour map cannot be produced. Flow is generally toward the southeast and east respectfully and has not been affected by the placement of the landfill closure.

Period: Annual 2020

5 SITE INSPECTION AND MAINTENANCE

UMC performed the 2020 Site Inspection on May 20, 2020. UMC was accompanied by Ms. Megan Kuczka of the NYSDEC. The 2020 Site Inspection consisted of walking the site and documenting any observations. Below is a summary of observations made during the 2020 Site Inspection, as well as any maintenance activities that have been conducted in 2020:

5.1 ROUNDHOUSE AREA

The area is well vegetated and stabilized. During the 2020 Site Inspection, several large holes were observed where the concrete of the former roundhouse has collapsed. These holes are large enough for a person to fall into. However, this land is not owned by APU. Numerous property owners adjacent to this area have encroached on it and are maintaining it with the rest of their properties. No action is needed.

5.2 LANDFILL CLOSURE

There are no signs of erosion, no areas of distressed vegetation, and no evidence of any outbreak of any substance (slurry wall material or oil) on the landfill. Erie County Water Company has previously been notified that a small quantity of contaminated soil is located northeast of the new wetland area and beneath the existing water pipe. UMC has an account with Dig Safely New York so when someone needs to dig in the area and calls Dig Safely, UMC will be notified. Except for periodic grass cutting, annual groundwater monitoring, and quarterly groundwater discharge monitoring required by the Buffalo Sewer Authority, no action is needed.

During the 2020 Site Inspection, UMC observed some erosion due to a small number of animal burrows located on the sloped area between the landfill and the northern wetlands. UMC periodically observes this type of erosion in this area, and replaces the washed-out material as needed. OnSeptember 22, 2020, UMC filled the erosion located on the slope between the landfill and the wetlands to the north of the landfill with topsoil and reseeded the affected area with a local ryegrass grass seed blend. UMC continues to monitor the erosion and will replace eroded soils as necessary.

Some rutting attributed to vehicular traffic was observed along the southwestern side of the site near Slate Bottom Creek. This rutting does not affect the integrity of the capped landfill.

As requested by the NYSDEC, grass on the landfill area is mowed annually. Annual Mowing was performed on September 22, 2020.

5.3 WETLAND RESTORATION

The wetlands north of the landfill closure, which was created during the remediation activities has continued to reestablish itself. The wetlands have completely revegetated itself and wildlife (e.g., ducks, geese and deer) have returned to the area.

Period: Annual 2020

5.4 STREAM ESTORATION

A letter to the Town of Cheektowaga (Town) was sent by APU's Legal Counsel on October 7, 2005. This letter informs the Town that it must notify the NYSDEC prior to any activity in those creeks where the reno mattresses are located (see Figure 1-2).

The reno mattresses installed in 1995/1996 and repaired in 2006 on the creek channel have stabilized and vegetation has established itself through the reno mattresses. There is some sediment accumulation within the creek channels, but at some locations the reno mattress wire mesh was visible at the base of the channel.

At the time of the 2020 Site Inspection, the gabion basket wing-walls were stable and the reno mattresses installed along the creek were in overall good condition

5.5 DOWNSREAM AREA

Though some of the trees planted in this area have died, there are no signs of erosion in this area. Grass has established itself in this area. No action is needed.

While conducting the Site Inspection, UMC and NYSDEC did observe a small number of new ATV trails cut into the wetlands and wooded areas south of the landfill. It appeared in some areas that the areas were being maintained. This maintenance is likely being conducted by the local residents. None of the new ATV trails appear to affect the landfill or erosion controls installed in the creeks.

UMC will continue to inspect and repair all closure areas to ensure that the closure remains intact and successful.

5.6 DEWATERING SYSTEM

During the 2020 Site Inspection, UMC did not observe any issues with the Site dewatering system; however, beginning on May 24, 2020, UMC began receiving a series of "duplex high" alerts from the Site telemetry unit. UMC received these alerts on May 24-25, 2020; June 7, 2020; and June 20, 2020.

A "duplex high" alarm means that water in the sump pit is entering into the sump pit at a faster rate than it is being discharged to the sewer system, causing the sump pit to flood. When the sump pit water level reaches the "duplex high" contact sensor, the system will temporarily turn off the trench dewatering pump to allow the water in the sump pit to either be pumped out by the sump pumps or, if the sump pumps aren't working, passively drain to the sewer (this is slower). Once the sump water level drops below the "off" contact sensor, the system restarts the trench dewatering pump. This will repeat until the trench has been adequately dewatered.

On June 22, 2020, UMC ran the system manually and checked the flow rates for each of the two sump pumps during operation. One of the sump pumps was pumping at a rate of approximately 13 to 15 gallons per minute (gpm), when it should have been pumping at a rate of 19 to 22 gpm.

UMC adjusted the gate valve to achieve the correct flow rate. Because no changes were made to the valves during the previous Site visit on May 20, 2020, UMC believes that the reduction in the flow rate may have been caused by debris that was caught either at the sump pump inlet, or at the gate valve. In either case, adjusting the gate valve appears to have cleared the blockage.

Period: Annual 2020

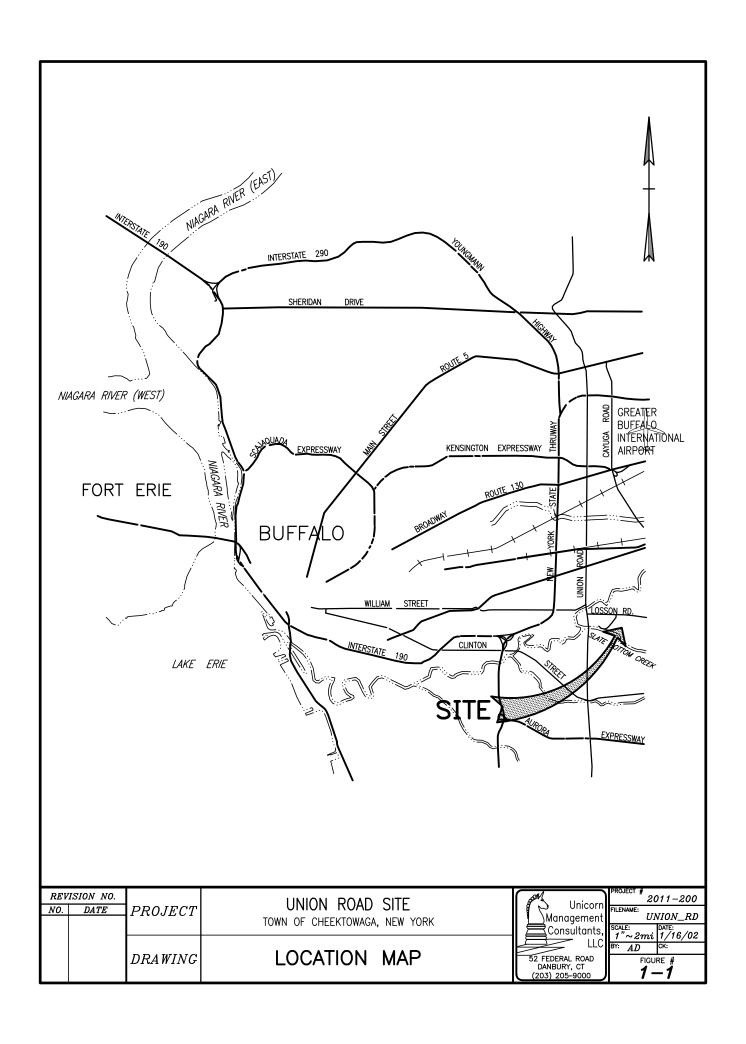
After adjusting the gate valve, UMC continued to run the system for approximately 1 hour to ensure that the system was discharging without issue. During the remainder of the manual test, no "duplex high" alarms were generated. UMC will continue to remotely monitor the Site dewatering system and address any issues that are observed.

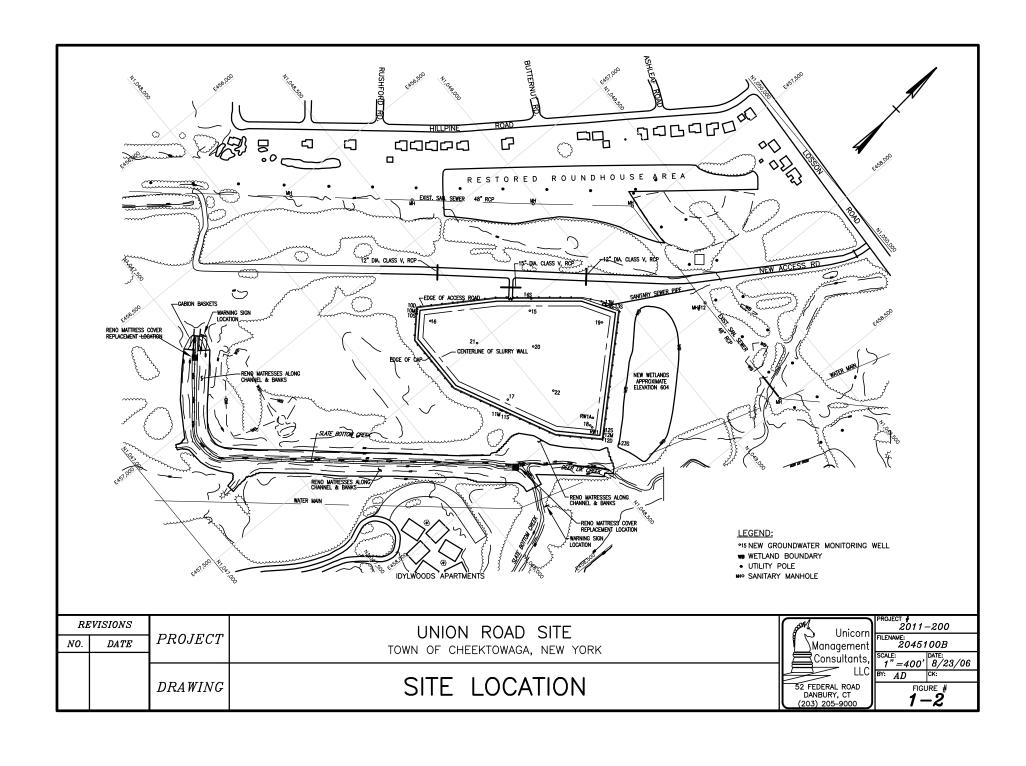
The dewatering system is currently operating without issue.

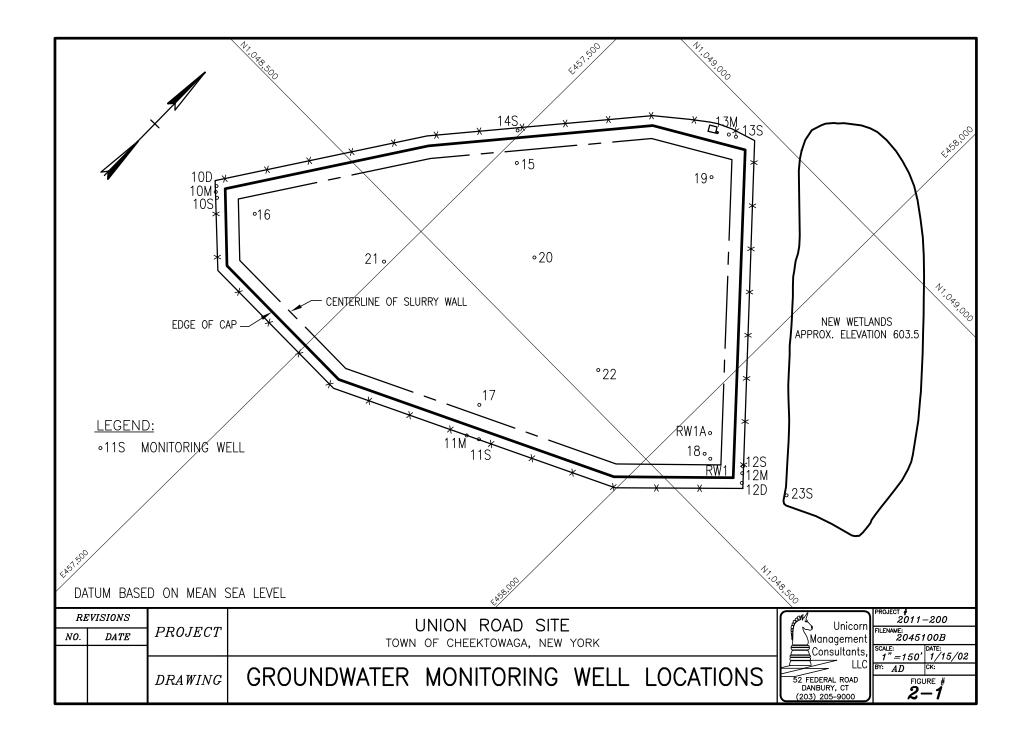
UMC

Period: Annual 2020

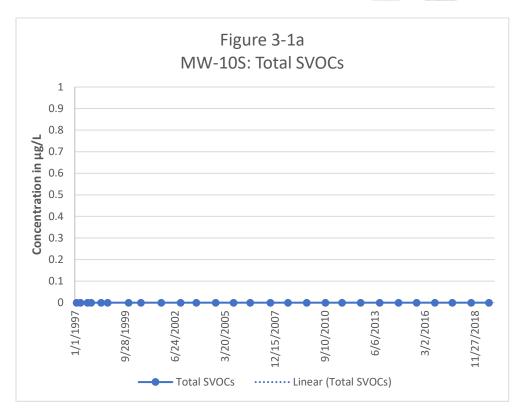
6 CONCLUSION

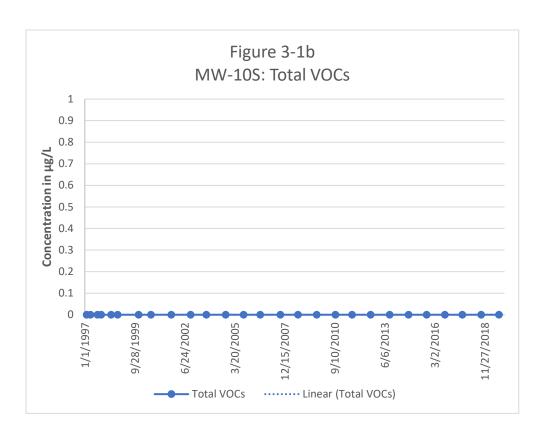

The observations made during the 2020 Annual Site Inspection, groundwater elevation measurements collected in 2020, and the historical groundwater data, all demonstrate that remedial activities at the Union Road Site continue to be successful. The groundwater quality outside the landfill closure is better than groundwater quality in the interior of the closure.

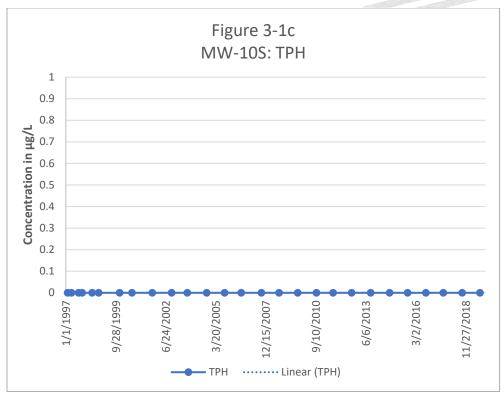

The groundwater elevation measurements indicate that an inward gradient of shallow groundwater flow has been established across the slurry wall. This inward gradient in combination with the groundwater quality outside the closure demonstrates that the contamination is contained within the slurry wall.

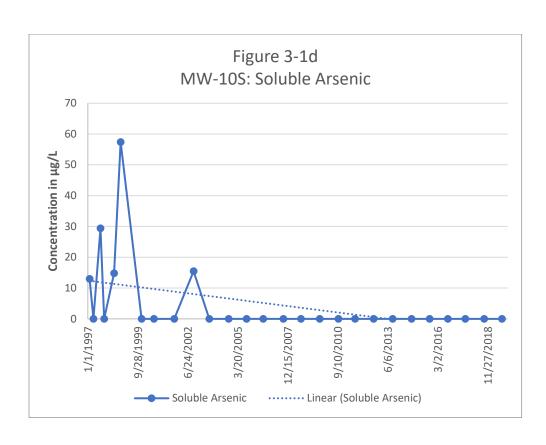

UMC will continue to monitor and evaluate the groundwater surrounding the landfill in accordance with the GMP.

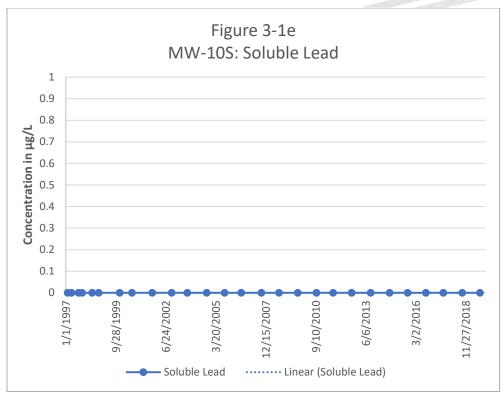
Union Road Site: Groundwater Monitoring Report Period: Annual 2020

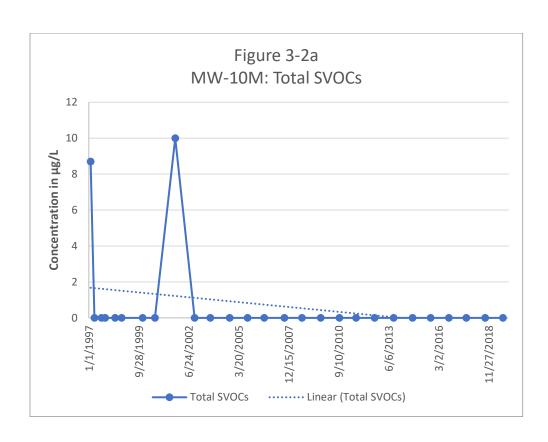

FIGURES

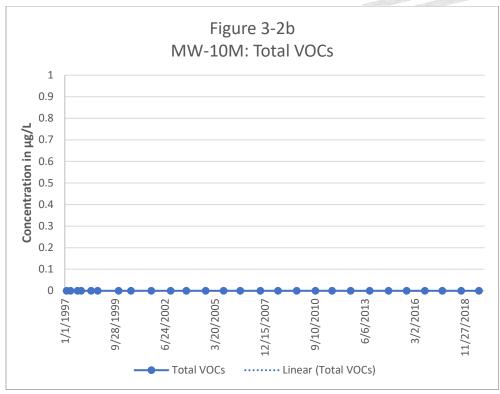


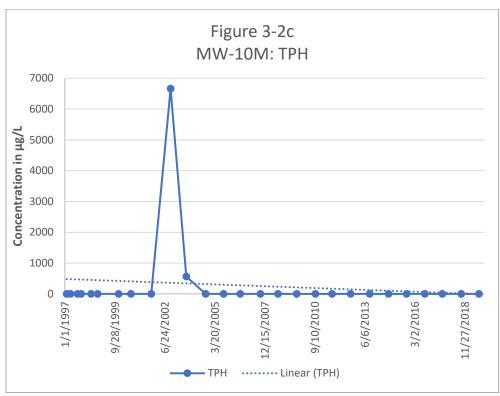


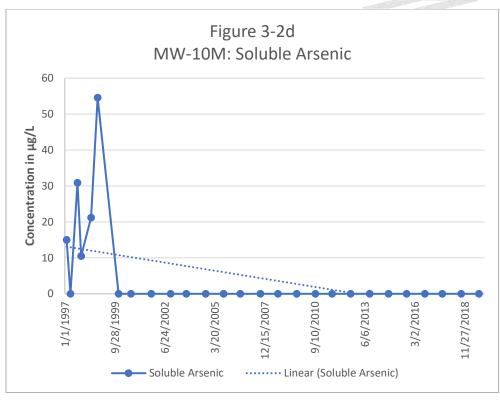


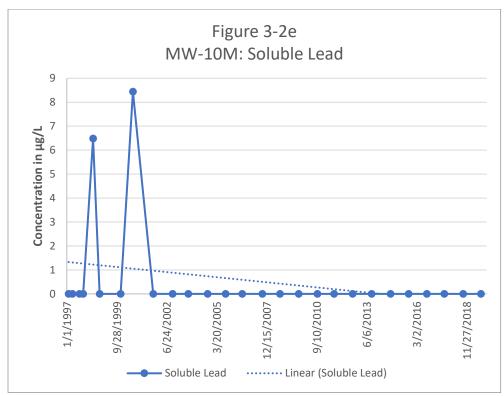


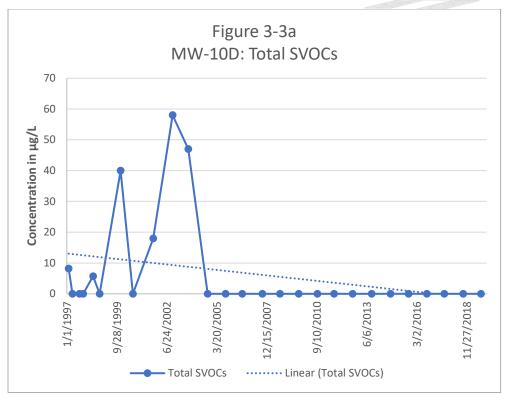


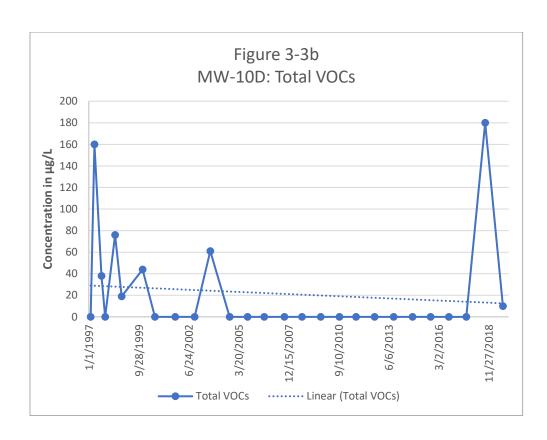


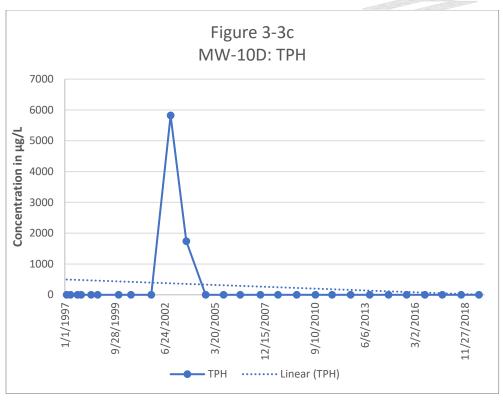


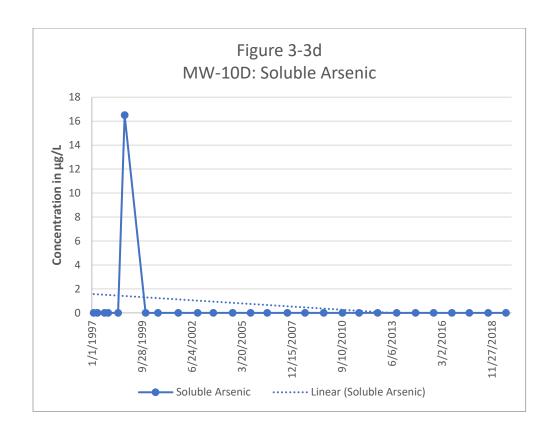


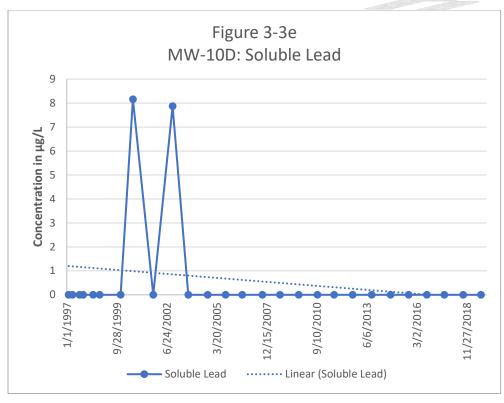


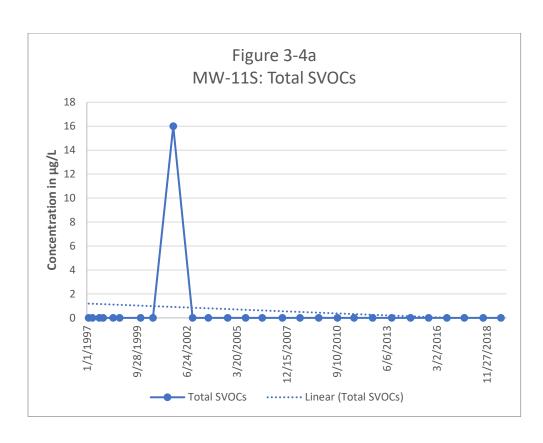


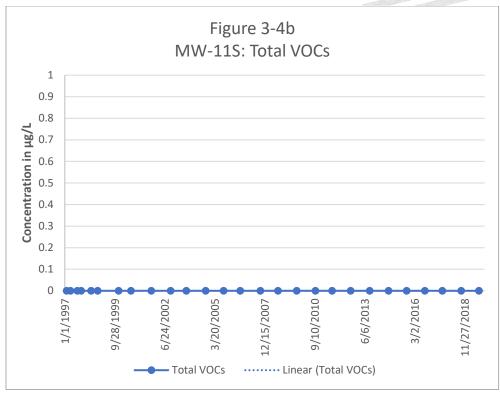


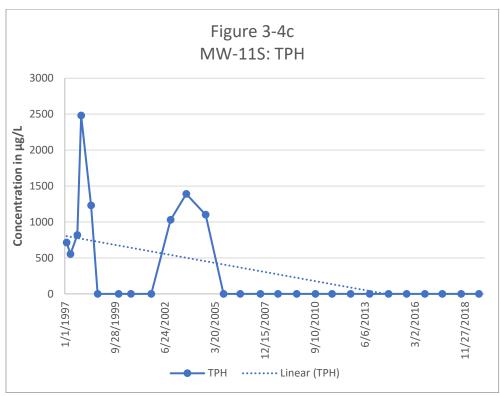


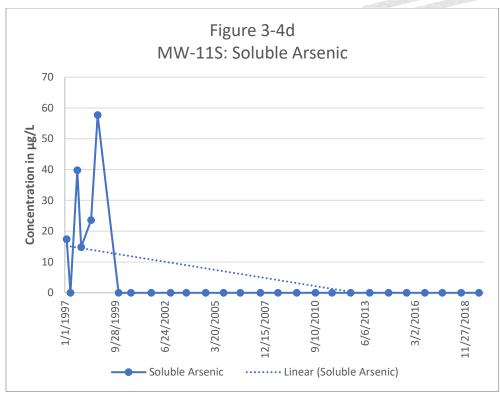


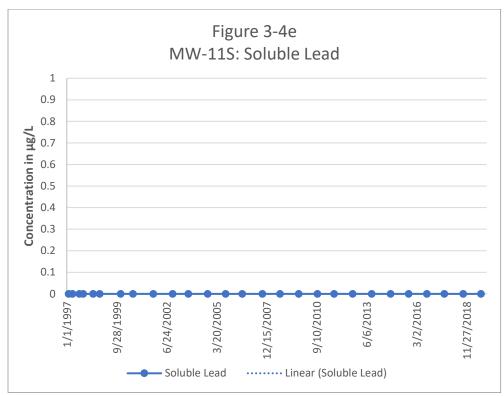


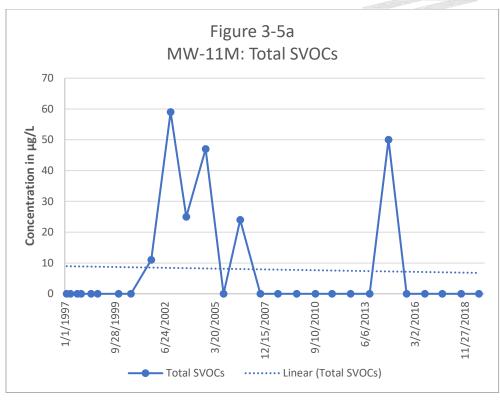


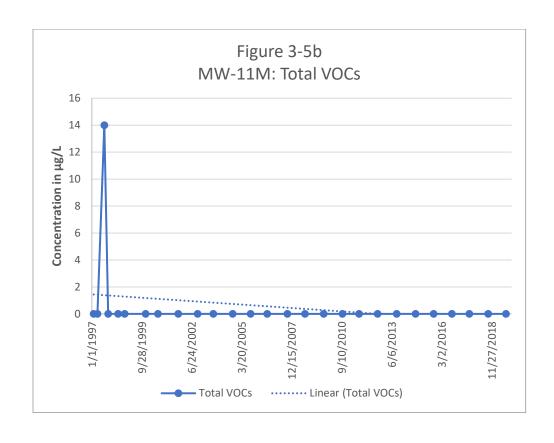


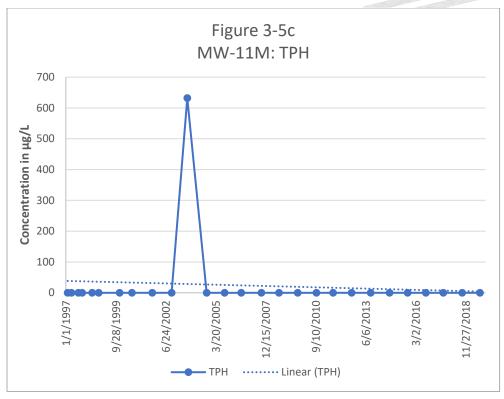


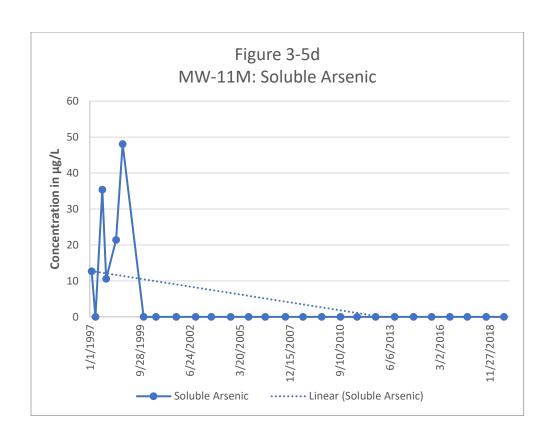


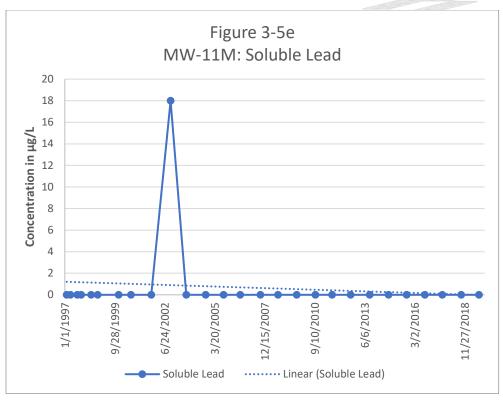


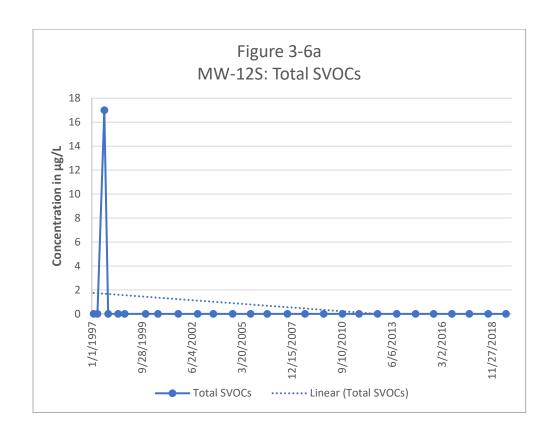


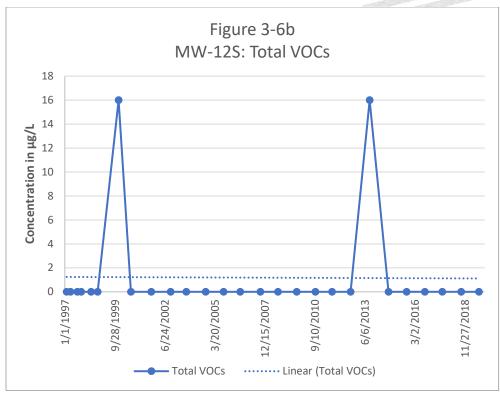


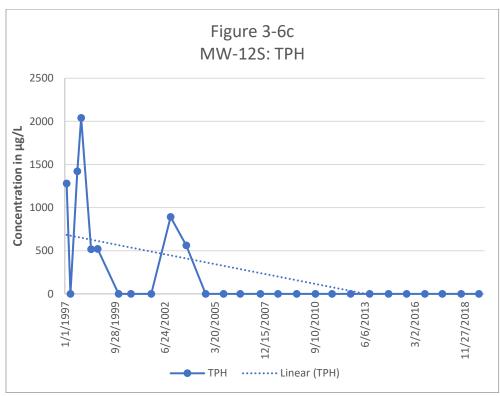


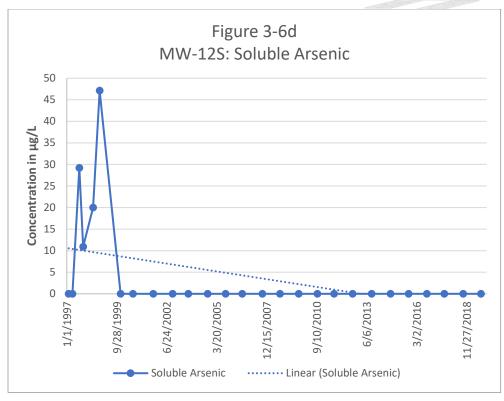


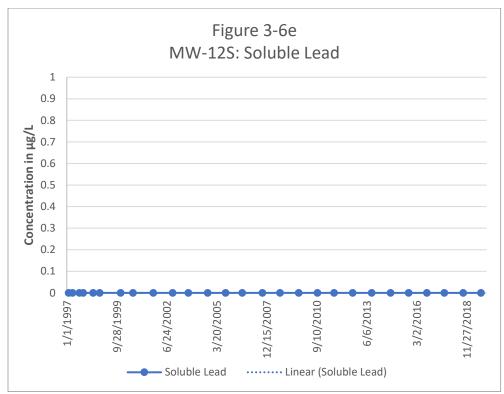


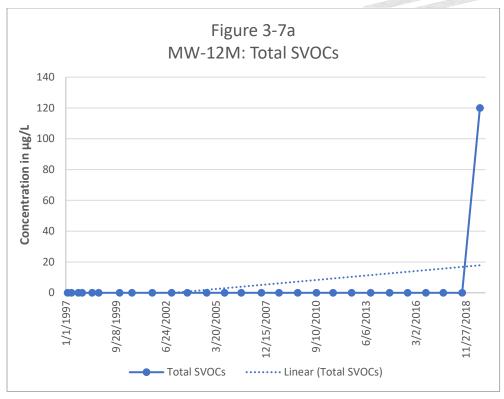


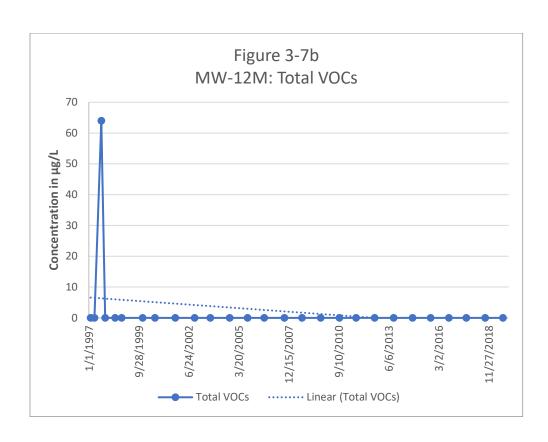


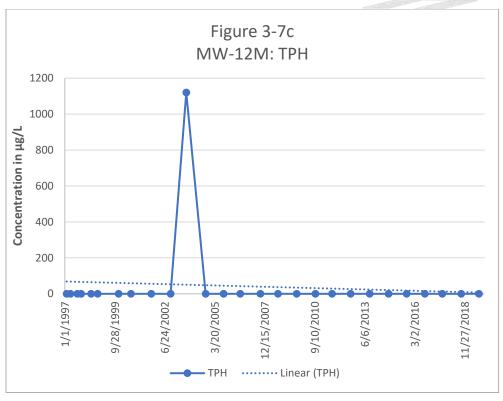


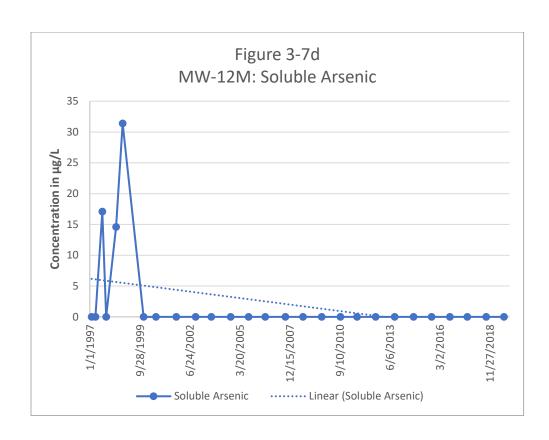


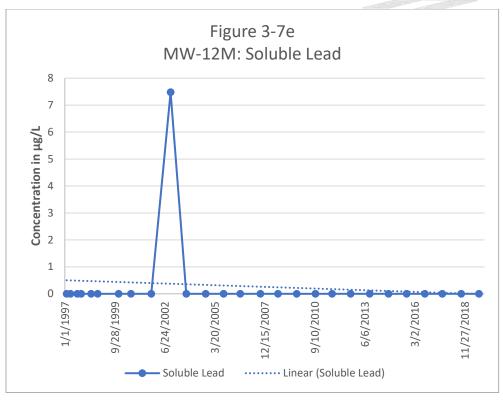


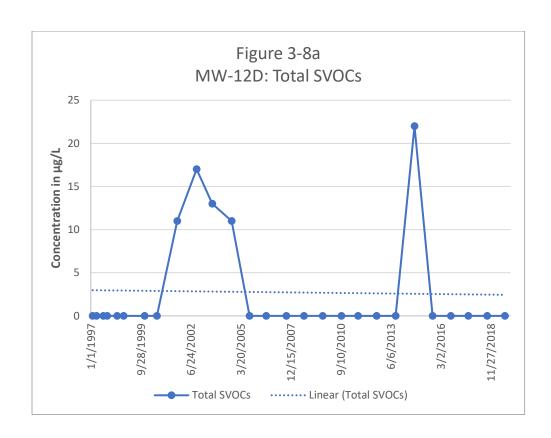


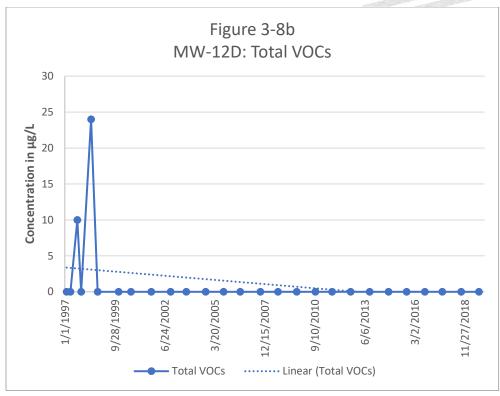


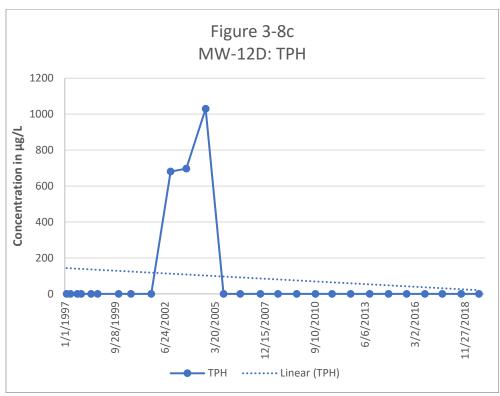


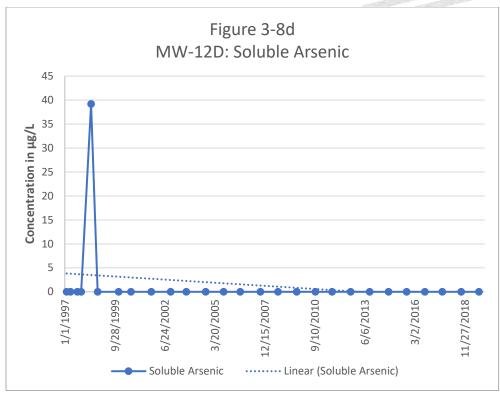


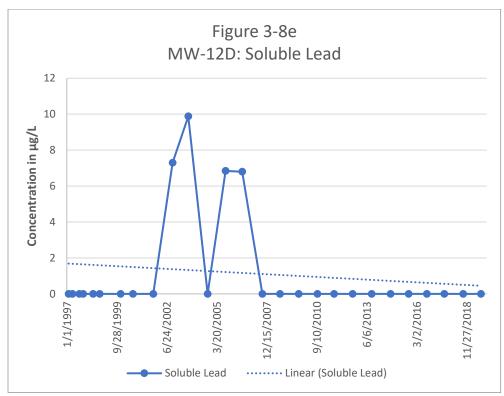


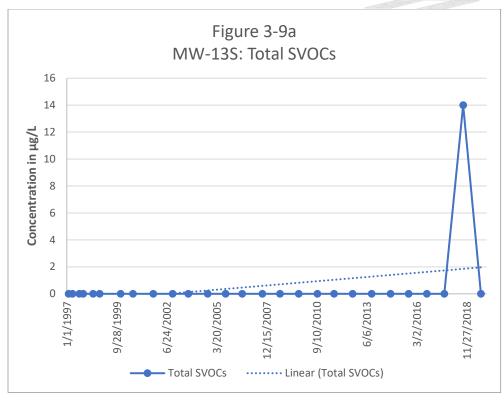


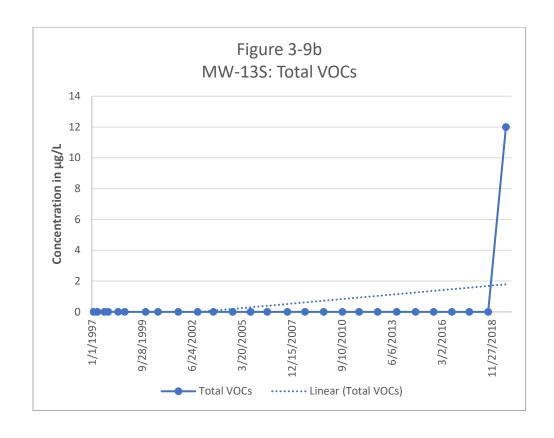


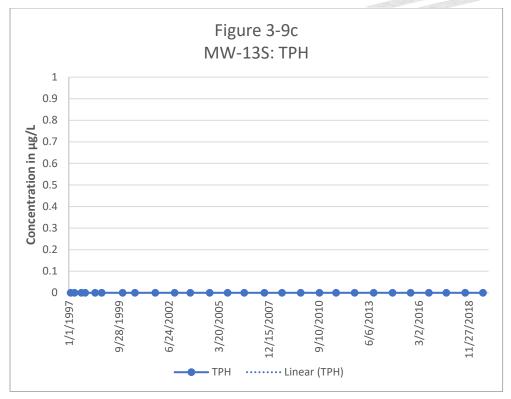


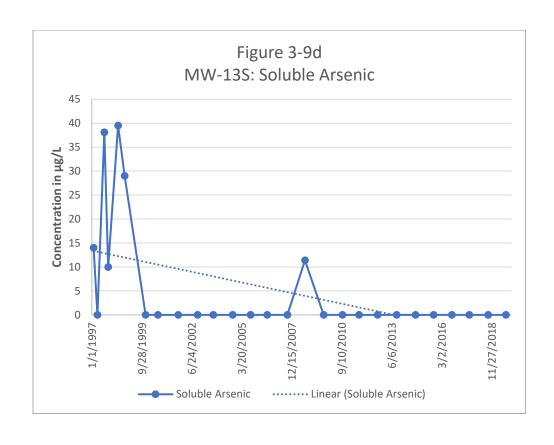


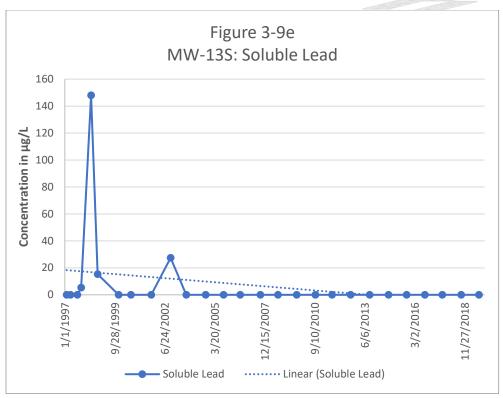


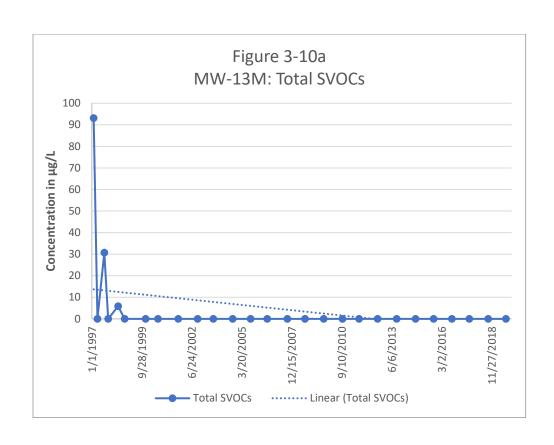


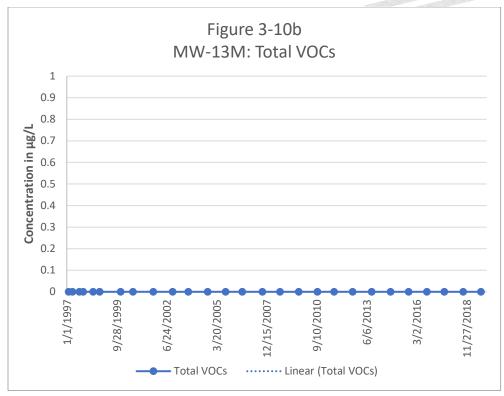


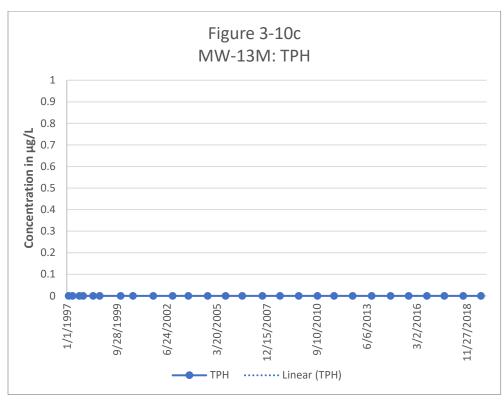


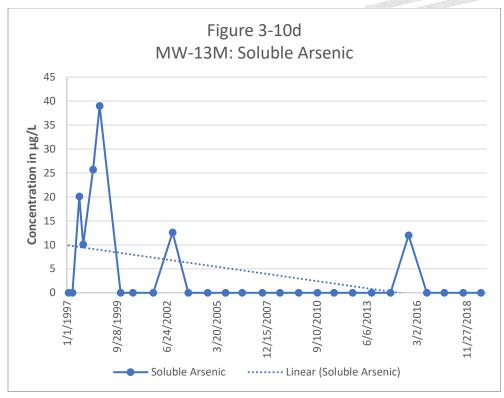


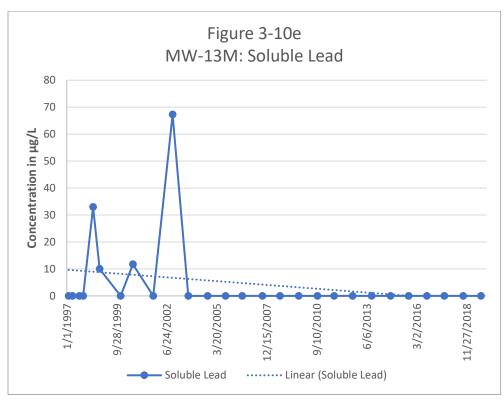


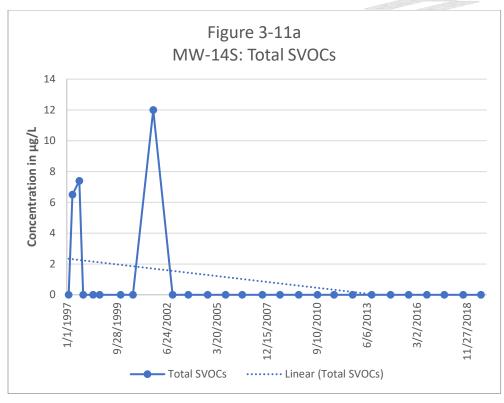


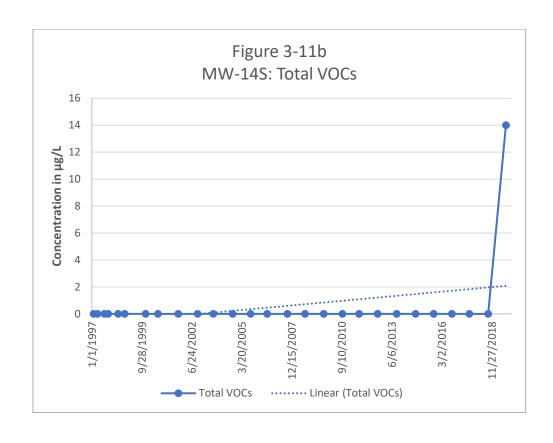


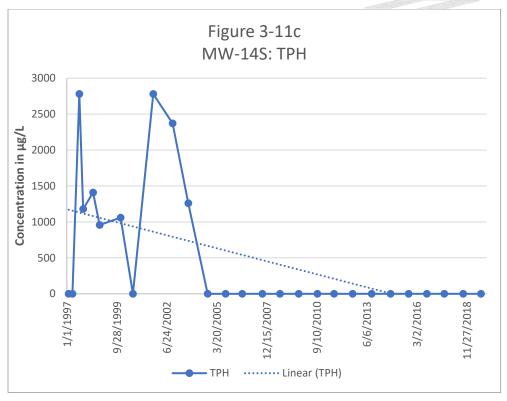


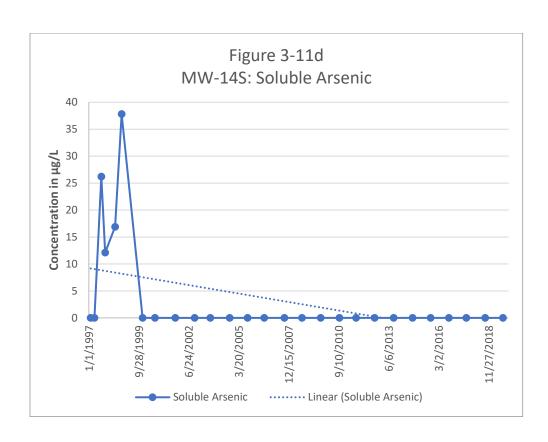


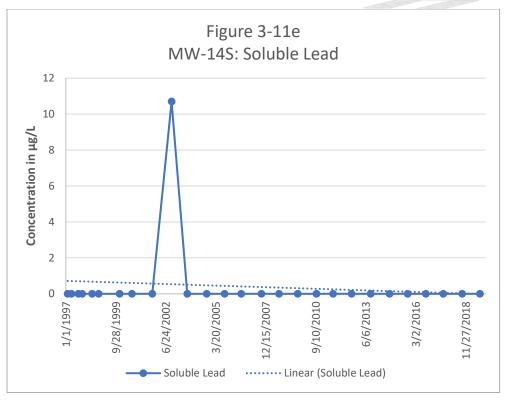


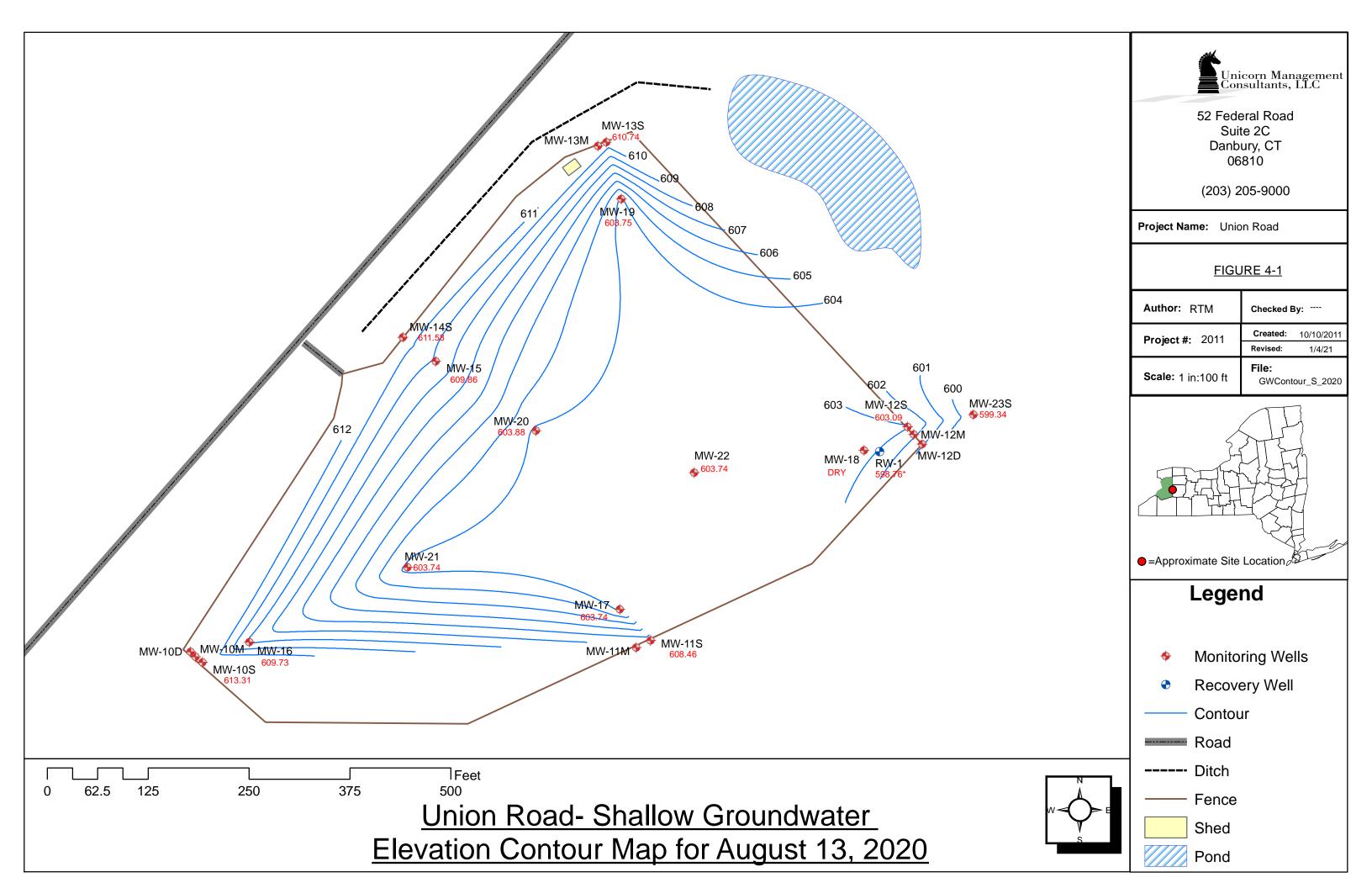


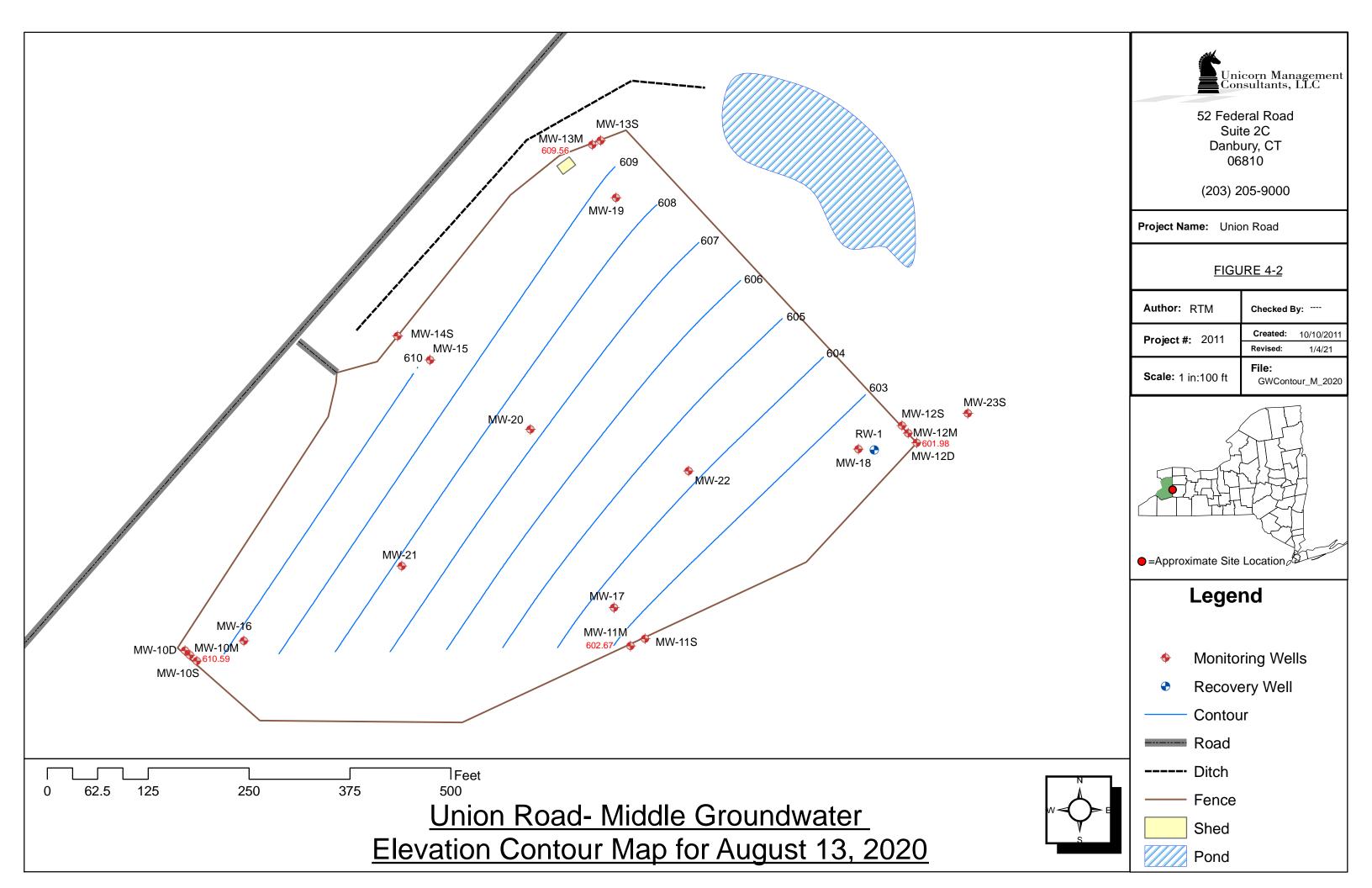


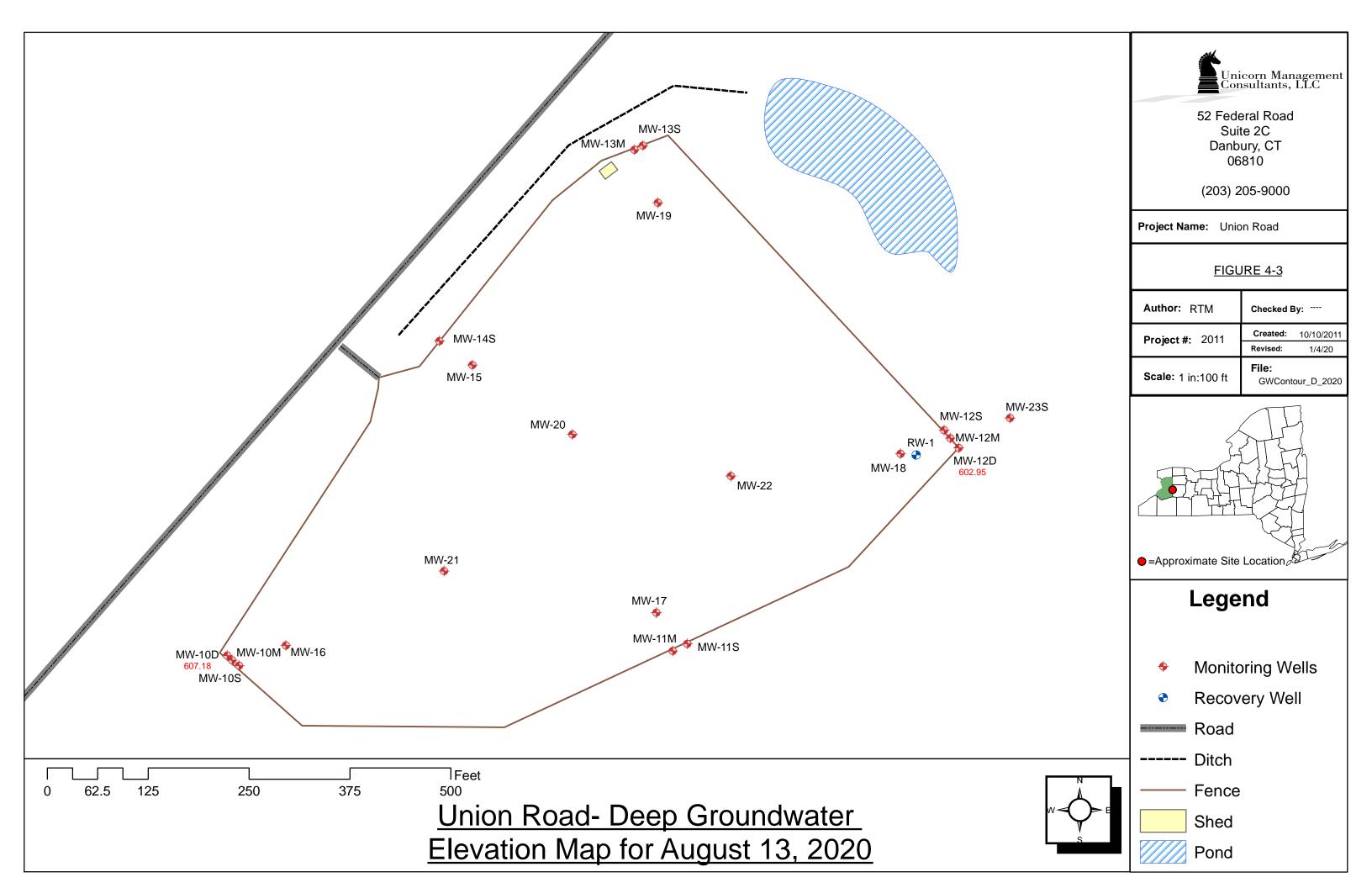












Union Road Site: Groundwater Monitoring Report Period: Annual 2020

TABLES

TABLE 3-1 UNION ROAD GROUNDWATER MONITORING REPORT CLOSURE YEAR 24 (2020)

PRE-CONSTRUCTION SAMPLING OF SHALLOW WELLS (JUNE - AUGUST, 1991)

(concentrations in ug/L)

	MW-4S	MW-4S	MW-5S	MW-6S	MW-6S	
ANALYTE	PHASE I	PHASE II	PHASE I	PHASE I	PHASE II	AVERAGE
SVOC's (Base Neutrals)	17	16	120	290	100	109
Total VOC's	ND	5.9	ND	42	3	10
ТРН	4,400	1,800	2,200	5,800	ND	2,840
Soluble Arsenic	34.8	35.5	14.7	27.1	5.7	24
Soluble Lead	10,100	8,090	4,450	3,560	367	5,313

ND- analyte not detected

Table 3-2 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		[Well ID								M	W-10S							$\overline{}$
			Date	2/6/1997	4/22/1997	9/10/1997	11/25/1997	6/9/1998	10/20/1998	12/14/1999	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006	9/17/2007	9/3/2008
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value																
acenapthene	83-32-9		20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
anthracene	120-12-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(a)anthracene	56-55-3	>ND	0.002	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
benzo(a)pyrene benzo(b)fluoranthene	50-32-8 205-99-2	>ND	0.002	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	191-24-2	NR	NR	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND
	207-08-9		0.002	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND
benzyl alcohol	100-51-6	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
butly benzyl phthalate	85-68-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
di-n-butylphthalate	84-74-2	50		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbazole	86-74-8	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
indeno(1,2,3-cd)pyrene	193-39-5		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-chloroaniline	106-47-8	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	111-91-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-chloroethyl)ether	111-44-4	1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-chloronapthalene	91-85-7		10	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-chlorophenol 2,2'-oxybis(1-chloropropane)	95-57-8 108-60-1	1† 5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	218-01-9		0.002	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
dibenzo(a.h)anthracene	55-70-3	NR	0.002 NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
dibenzofuran	132-64-9	NR NR	NR NR	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-dichlorobenzene	95-50-1	3	.410	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND
1,3-dichlorobenzene	541-73-1	3		ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND
1,4-dichlorobenzene	106-46-7	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,3'-dichlorobenzidine	91-94-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-dichlorophenol	120-83-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
diethylphthalate	84-66-2		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dimethyl phthalate	131-11-3		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-dimethylphenol	105-67-9		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-dinitrophenol	51-28-5		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-dinitrotoluene	121-14-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-dinitrotoluene	606-20-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-ethylhexyl)phthalate	117-81-7	5	F0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	206-44-0 86-73-7		50 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
fluorene hexachlorobenzene	118-74-1	0.04	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
hexachlorobutadiene	87-68-3	0.5		ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND
hexachlorocyclopentadiene	77-47-4	5		ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
hexachloroethane	67-72-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
isophorone	78-59-1		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-methlynapthalene	91-57-6	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-methylphenol	95-48-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,6-dinitro-2-methylphenol	534-52-1	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-chloro-3-methylphenol	59-50-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3- and 4-methylphenol	NA	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
napthalene	91-20-3		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-nitroaniline	88-74-4	5		ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
3-nitroaniline 4-nitroaniline	99-09-2 100-01-6	5 5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-nitroaniline nitrobenzene	98-95-3	0.4		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-nitrophenol	88-75-5	1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	100-02-7	1†		ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND
n-nitrosodimethylamine	62-75-9	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-nitrosodiphenylamine	86-30-6	<u> </u>	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	117-84-0		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
pentachlorophenol	87-86-5	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
phenanthrene	85-01-8		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	108-95-2	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	101-55-3	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7005-72-3	NR NB	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-nitroso-di-n-propylamine	621-64-7	NR	NR FO	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	129-00-0 120-82-1	5	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2,4-trichloropenzene 2,4,5-trichlorophenol	95-95-4	1 [†]		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4,5-trichlorophenol	88-06-2	1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
2, 7,0-111111010 1111111	30 00-2	. 4. 1		IVD	110	140	140	שאו	110	110	110	1 110	IND	140	140	1 110	140	140	IND
Toal SVOCs				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
100137003				.10	10	10	10	.10			.40		.,,,,	.10	10			10	

Table 3-2 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID						MW-10S					
			Date	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019
Analyte	CAS No.	NYS Water Quality Standard	NYS Water Quality Guidance Value	μg/L	μg/L	μg/L	μg/L							
acenapthene	83-32-9	010110010	20	ND	ND	ND	ND							
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND							
anthracene	120-12-7		50	ND	ND	ND	ND							
benzo(a)anthracene	56-55-3		0.002	ND	ND	ND	ND							
benzo(a)pyrene	50-32-8	>ND		ND	ND	ND	ND							
benzo(b)fluoranthene	205-99-2		0.002	ND	ND	ND	ND							
benzo(g,h,i)perylene benzo(k)fluoranthene	191-24-2 207-08-9	NR	NR 0.002	ND ND	ND ND	ND ND	ND ND							
benzyl alcohol	100-51-6	NR	NR	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND
butly benzyl phthalate	85-68-7		50	ND	ND	ND	ND							
di-n-butylphthalate	84-74-2	50		ND	ND	ND	ND							
carbazole	86-74-8	NR	NR	ND	ND	ND	ND							
indeno(1,2,3-cd)pyrene	193-39-5	_	0.002	ND	ND	ND	ND							
4-chloroaniline bis(-2-chloroethoxy)methane	106-47-8 111-91-1	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND
bis(-z-chloroethoxy)methane bis(2-chloroethyl)ether	111-91-1	1		ND ND	ND ND	ND ND	ND ND							
2-chloronapthalene	91-85-7		10	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND
2-chlorophenol	95-57-8	1†		ND	ND	ND	ND							
2,2'-oxybis(1-chloropropane)	108-60-1	5		ND	ND	ND	ND							
chrysene	218-01-9		0.002	ND	ND	ND	ND							
dibenzo(a,h)anthracene	55-70-3	NR	NR	ND	ND	ND	ND							
dibenzofuran	132-64-9	NR 2	NR	ND ND	ND ND	ND ND	ND ND							
1,2-dichlorobenzene 1,3-dichlorobenzene	95-50-1 541-73-1	3		ND ND	ND ND	ND ND	ND ND							
1,3-dichlorobenzene	106-46-7	3		ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
3,3'-dichlorobenzidine	91-94-1	5		ND	ND	ND	ND							
2,4-dichlorophenol	120-83-2	5		ND	ND	ND	ND							
diethylphthalate	84-66-2		50	ND	ND	ND	ND							
dimethyl phthalate	131-11-3		50	ND	ND	ND	ND							
2,4-dimethylphenol	105-67-9		50 10	ND	ND	ND	ND ND							
2,4-dinitrophenol 2,4-dinitrotoluene	51-28-5 121-14-2	5	10	ND ND	ND ND	ND ND	ND ND							
2,6-dinitrotoluene	606-20-2	5		ND	ND	ND	ND							
bis(2-ethylhexyl)phthalate	117-81-7	5		ND	ND	ND	ND							
fluoranthene	206-44-0		50	ND	ND	ND	ND							
fluorene	86-73-7		50	ND	ND	ND	ND							
hexachlorobenzene	118-74-1	0.04		ND	ND	ND	ND							
hexachlorobutadiene hexachlorocyclopentadiene	87-68-3 77-47-4	0.5 5		ND ND	ND ND	ND ND	ND ND							
hexachloroethane	67-72-1	5		ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND
isophorone	78-59-1		50	ND	ND	ND	ND							
2-methlynapthalene	91-57-6	NR	NR	ND	ND	ND	ND							
2-methylphenol	95-48-7	1†		ND	ND	ND	ND							
4,6-dinitro-2-methylphenol	534-52-1	1†		ND	ND	ND	ND							
4-chloro-3-methylphenol	59-50-7	1† 1†		ND ND	ND ND	ND ND	ND ND							
3- and 4-methylphenol napthalene	NA 91-20-3	- 1'	10	ND ND	ND ND	ND ND	ND ND							
2-nitroaniline	88-74-4	5		ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND
3-nitroaniline	99-09-2	5		ND	ND	ND	ND							
4-nitroaniline	100-01-6	5		ND	ND	ND	ND							
nitrobenzene	98-95-3	0.4		ND	ND	ND	ND							
2-nitrophenol	88-75-5	1†		ND ND	ND	ND ND	ND ND							
4-nitrophenol n-nitrosodimethylamine	100-02-7 62-75-9	1† NR	NR	ND ND	ND ND	ND ND	ND ND							
n-nitrosodimetriyanine n-nitrosodiphenylamine	86-30-6	1410	50	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND
di-n-octyl phthalate	117-84-0		50	ND	ND	ND	ND							
pentachlorophenol	87-86-5	1†		ND	ND	ND	ND							
phenanthrene	85-01-8		50	ND	ND	ND	ND							
phenol	108-95-2	1†	N/P	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND
4-bromophenyl-phenylether	101-55-3	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND							
4-chlorophenyl-phenylether n-nitroso-di-n-propylamine	7005-72-3 621-64-7	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND							
pyrene	129-00-0		50	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND
1,2,4-trichlorobenzene	120-82-1	5		ND	ND	ND	ND							
2,4,5-trichlorophenol	95-95-4	1†		ND	ND	ND	ND							
2,4,6-trichlorophenol	88-06-2	1†		ND	ND	ND	ND							
1			-		I									
Toal SVOCs				ND	ND	ND	ND							

Table 3-2 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		[Well ID								MV	V-10M							$\overline{}$
			Date	2/6/1997	4/22/1997	9/10/1997	11/24/1997	6/9/1998	10/20/1998	12/14/1999	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006	9/17/2007	9/3/2008
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value																
acenapthene	83-32-9		20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
anthracene	120-12-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(a)anthracene	56-55-3	>ND	0.002	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
benzo(a)pyrene benzo(b)fluoranthene	50-32-8 205-99-2	>ND	0.002	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	191-24-2	NR	NR	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND
	207-08-9		0.002	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND
benzyl alcohol	100-51-6	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
butly benzyl phthalate	85-68-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
di-n-butylphthalate	84-74-2	50		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbazole	86-74-8	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
indeno(1,2,3-cd)pyrene	193-39-5		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-chloroaniline	106-47-8	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	111-91-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-chloroethyl)ether	111-44-4	1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-chloronapthalene	91-85-7		10	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND
2-chlorophenol 2,2'-oxybis(1-chloropropane)	95-57-8 108-60-1	1† 5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	218-01-9		0.002	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
dibenzo(a.h)anthracene	55-70-3	NR	0.002 NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
dibenzofuran	132-64-9	NR NR	NR NR	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-dichlorobenzene	95-50-1	3	.410	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND
1,3-dichlorobenzene	541-73-1	3		ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND
1,4-dichlorobenzene	106-46-7	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,3'-dichlorobenzidine	91-94-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-dichlorophenol	120-83-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
diethylphthalate	84-66-2		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dimethyl phthalate	131-11-3		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-dimethylphenol	105-67-9		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-dinitrophenol	51-28-5		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-dinitrotoluene	121-14-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-dinitrotoluene	606-20-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-ethylhexyl)phthalate	117-81-7	5	F0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	206-44-0 86-73-7		50 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
fluorene hexachlorobenzene	118-74-1	0.04	30	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
hexachlorobutadiene	87-68-3	0.5		ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND
hexachlorocyclopentadiene	77-47-4	5		ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
hexachloroethane	67-72-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
isophorone	78-59-1		50	ND	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	ND	ND
2-methlynapthalene	91-57-6	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-methylphenol	95-48-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,6-dinitro-2-methylphenol	534-52-1	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-chloro-3-methylphenol	59-50-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3- and 4-methylphenol	NA	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
napthalene	91-20-3		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-nitroaniline	88-74-4	5		ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
3-nitroaniline 4-nitroaniline	99-09-2 100-01-6	5 5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-nitroaniline nitrobenzene	98-95-3	0.4		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-nitrophenol	88-75-5	1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	100-02-7	1†		ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND
n-nitrosodimethylamine	62-75-9	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-nitrosodiphenylamine	86-30-6	<u> </u>	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	117-84-0		50	8.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
pentachlorophenol	87-86-5	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
phenanthrene	85-01-8		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	108-95-2	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	101-55-3	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7005-72-3	NR NB	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-nitroso-di-n-propylamine	621-64-7	NR	NR FO	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	129-00-0 120-82-1	5	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2,4-trichloropenzene 2,4,5-trichlorophenol	95-95-4	1 [†]		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4,5-trichlorophenol	88-06-2	1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
2, 4,0- tricinorophenor	30 00-2	. 4. 1		IVD	110	1 110	140	שאו	NU	110	110	1 110	IND	140	140	1 110	140	140	140
Toal SVOCs				8.7	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	ND	ND
100137003				5.7	10		10	10			.40		.,,,,	.10	10		. 10	10	

Table 3-2 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		ĺ	Well ID						MW-10M					
			Well ID Date	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L							
. ,		Standard	Guidance Value	10	""	""	""	10	10	""	100	""	100	10,
acenapthene	83-32-9		20	ND	ND	ND	ND							
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND							
anthracene	120-12-7		50	ND	ND	ND	ND							
benzo(a)anthracene	56-55-3		0.002	ND	ND	ND	ND							
benzo(a)pyrene	50-32-8	>ND		ND	ND	ND	ND							
benzo(b)fluoranthene	205-99-2	ND	0.002	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND
benzo(g,h,i)perylene benzo(k)fluoranthene	191-24-2 207-08-9	NR	NR 0.002	ND ND	ND ND	ND ND	ND ND							
benzyl alcohol	100-51-6	NR	NR	ND ND	ND	ND ND	ND ND							
butly benzyl phthalate	85-68-7	1411	50	ND	ND	ND	ND							
di-n-butylphthalate	84-74-2	50		ND	ND	ND	ND							
carbazole	86-74-8	NR	NR	ND	ND	ND	ND							
indeno(1,2,3-cd)pyrene	193-39-5		0.002	ND	ND	ND	ND							
4-chloroaniline	106-47-8	5		ND	ND	ND	ND							
bis(-2-chloroethoxy)methane	111-91-1	5		ND	ND	ND	ND							
bis(2-chloroethyl)ether	111-44-4	1		ND	ND	ND	ND							
2-chloronapthalene	91-85-7		10	ND	ND	ND	ND							
2-chlorophenol	95-57-8	1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND
2,2'-oxybis(1-chloropropane)	108-60-1	5	0.002	ND ND	ND ND	ND ND	ND ND							
chrysene dibenzo(a,h)anthracene	218-01-9 55-70-3	NR	0.002 NR	ND ND	ND ND	ND ND	ND ND							
dibenzofuran	132-64-9	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND							
1,2-dichlorobenzene	95-50-1	3	1417	ND ND	ND	ND ND	ND ND							
1,3-dichlorobenzene	541-73-1	3		ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
1,4-dichlorobenzene	106-46-7	3		ND	ND	ND	ND							
3,3'-dichlorobenzidine	91-94-1	5		ND	ND	ND	ND							
2,4-dichlorophenol	120-83-2	5		ND	ND	ND	ND							
diethylphthalate	84-66-2		50	ND	ND	ND	ND							
dimethyl phthalate	131-11-3		50	ND	ND	ND	ND							
2,4-dimethylphenol	105-67-9		50	ND	ND	ND	ND							
2,4-dinitrophenol	51-28-5		10	ND	ND	ND	ND							
2,4-dinitrotoluene	121-14-2	5		ND	ND	ND	ND							
2,6-dinitrotoluene	606-20-2	5		ND	ND	ND	ND							
bis(2-ethylhexyl)phthalate	117-81-7	5	50	ND	ND	ND	ND NB	ND	ND	ND	ND	ND	ND NB	ND
fluoranthene	206-44-0 86-73-7		50	ND ND	ND ND	ND ND	ND ND							
fluorene hexachlorobenzene	118-74-1	0.04	30	ND ND	ND ND	ND ND	ND ND							
hexachlorobetizene	87-68-3	0.5		ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
hexachlorocyclopentadiene	77-47-4	5		ND	ND	ND	ND							
hexachloroethane	67-72-1	5		ND	ND	ND	ND							
isophorone	78-59-1		50	ND	ND	ND	ND							
2-methlynapthalene	91-57-6	NR	NR	ND	ND	ND	ND							
2-methylphenol	95-48-7	1†		ND	ND	ND	ND							
4,6-dinitro-2-methylphenol	534-52-1	1†		ND	ND	ND	ND							
4-chloro-3-methylphenol	59-50-7	1†		ND	ND	ND	ND							
3- and 4-methylphenol	NA	1†		ND	ND	ND	ND							
napthalene	91-20-3		10	ND	ND	ND	ND							
2-nitroaniline	88-74-4	5		ND ND	ND ND	ND ND	ND ND							
3-nitroaniline	99-09-2	5		ND ND	ND ND	ND ND	ND ND							
4-nitroaniline	100-01-6	5 0.4		ND ND	ND ND	ND ND	ND ND							
nitrobenzene 2-nitrophenol	98-95-3 88-75-5	0.4 1†		ND ND	ND ND	ND ND	ND ND							
2-nitrophenol 4-nitrophenol	88-75-5 100-02-7	1†		ND ND	ND ND	ND ND	ND ND							
n-nitrosodimethylamine	62-75-9	NR	NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND
n-nitrosodiphenylamine	86-30-6		50	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND
di-n-octyl phthalate	117-84-0		50	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
pentachlorophenol	87-86-5	1†	-	ND	ND	ND	ND							
phenanthrene	85-01-8		50	ND	ND	ND	ND							
phenol	108-95-2	1†		ND	ND	ND	ND							
4-bromophenyl-phenylether	101-55-3	NR	NR	ND	ND	ND	ND							
4-chlorophenyl-phenylether	7005-72-3	NR	NR	ND	ND	ND	ND							
n-nitroso-di-n-propylamine	621-64-7	NR	NR	ND	ND	ND	ND							
pyrene	129-00-0		50	ND	ND	ND	ND							
1,2,4-trichlorobenzene	120-82-1	5		ND	ND	ND	ND							
2,4,5-trichlorophenol	95-95-4	1†		ND	ND	ND	ND							
2,4,6-trichlorophenol	88-06-2	1†		ND	ND	ND	ND							
1								1	1					T
Toal SVOCs				ND	ND	ND	ND							

Table 3-2 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		ĺ	Well ID								MV	V-10D							
			Date	2/7/1997	4/22/1997	9/10/1997	11/25/1997	6/10/1998	10/20/1998	12/14/1999	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006	9/17/2007	9/3/2008
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value																
acenapthene	83-32-9 208-96-8	NR	20 NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
acenapthylene anthracene	120-12-7	INK	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
benzo(a)anthracene	56-55-3		0.002	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND
benzo(a)pyrene	50-32-8	>ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(b)fluoranthene	205-99-2		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(g,h,i)perylene	191-24-2	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(k)fluoranthene	207-08-9	ND	0.002 NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
benzyl alcohol butly benzyl phthalate	100-51-6 85-68-7	NR	50	ND ND	ND ND	ND ND	ND ND	5.7 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
di-n-butylphthalate	84-74-2	50	30	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND
carbazole	86-74-8	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
indeno(1,2,3-cd)pyrene	193-39-5		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-chloroaniline	106-47-8	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(-2-chloroethoxy)methane	111-91-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-chloroethyl)ether 2-chloronapthalene	111-44-4 91-85-7	1	10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-chlorophenol	95-57-8	1†	10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,2'-oxybis(1-chloropropane)	108-60-1	5		ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND
chrysene	218-01-9		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibenzo(a,h)anthracene	55-70-3	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibenzofuran	132-64-9	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichlorobenzene 1,3-dichlorobenzene	95-50-1 541-73-1	3		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,3-dichlorobenzene	106-46-7	3		ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
3,3'-dichlorobenzidine	91-94-1	5		ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND
2,4-dichlorophenol	120-83-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
diethylphthalate	84-66-2		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dimethyl phthalate	131-11-3		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-dimethylphenol	105-67-9		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
2,4-dinitrophenol 2,4-dinitrotoluene	51-28-5 121-14-2	5	10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,6-dinitrotoluene	606-20-2	5		ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND
bis(2-ethylhexyl)phthalate	117-81-7	5		8.2	ND	ND	ND	ND	ND	40	ND	18	58	47	ND	ND	ND	ND	ND
fluoranthene	206-44-0		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
fluorene	86-73-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachlorobenzene	118-74-1 87-68-3	0.04		ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND
hexachlorobutadiene hexachlorocyclopentadiene	77-47-4	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
hexachloroethane	67-72-1	5		ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND
isophorone	78-59-1		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-methlynapthalene	91-57-6	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-methylphenol	95-48-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,6-dinitro-2-methylphenol	534-52-1	1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-chloro-3-methylphenol 3- and 4-methylphenol	59-50-7 NA	1† 1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
napthalene	91-20-3	1.	10	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-nitroaniline	88-74-4	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-nitroaniline	99-09-2	5	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-nitroaniline	100-01-6	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
nitrobenzene	98-95-3	0.4 1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-nitrophenol 4-nitrophenol	88-75-5 100-02-7	1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
n-nitrosodimethylamine	62-75-9	NR	NR	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND
n-nitrosodiphenylamine	86-30-6		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
di-n-octyl phthalate	117-84-0		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
pentachlorophenol	87-86-5	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NB	ND	ND	ND	ND	ND	ND
phenanthrene	85-01-8	1†	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
phenol 4-bromophenyl-phenylether	108-95-2 101-55-3	NR	NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	7005-72-3	NR NR	NR NR	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND
n-nitroso-di-n-propylamine	621-64-7	NR	NR	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
pyrene	129-00-0		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-trichlorobenzene	120-82-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,5-trichlorophenol	95-95-4	1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4,6-trichlorophenol	88-06-2	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toal SVOCs				8.2	ND	ND	ND	5.7	ND	40	ND	18	58	47	ND	ND	ND	ND	ND
100134003				J.2	.,,,,	.10		5.7	10	. ~	.10	1 10			40	. 10		.10	

Table 3-2 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID						MW-10D					
			Date	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019
Analyte	CAS No.	NYS Water Quality Standard	NYS Water Quality Guidance Value	μg/L	μg/L	μg/L	μg/L							
acenapthene	83-32-9	010110010	20	ND	ND	ND	ND							
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND							
anthracene	120-12-7		50	ND	ND	ND	ND							
benzo(a)anthracene	56-55-3		0.002	ND	ND	ND	ND							
benzo(a)pyrene	50-32-8	>ND		ND	ND	ND	ND							
benzo(b)fluoranthene	205-99-2		0.002	ND	ND	ND	ND							
benzo(g,h,i)perylene benzo(k)fluoranthene	191-24-2 207-08-9	NR	NR 0.002	ND ND	ND ND	ND ND	ND ND							
benzyl alcohol	100-51-6	NR	NR	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND
butly benzyl phthalate	85-68-7		50	ND	ND	ND	ND							
di-n-butylphthalate	84-74-2	50		ND	ND	ND	ND							
carbazole	86-74-8	NR	NR	ND	ND	ND	ND							
indeno(1,2,3-cd)pyrene	193-39-5		0.002	ND	ND	ND	ND							
4-chloroaniline	106-47-8	5		ND	ND	ND	ND							
bis(-2-chloroethoxy)methane	111-91-1	5 1		ND ND	ND ND	ND ND	ND ND							
bis(2-chloroethyl)ether 2-chloronapthalene	111-44-4 91-85-7	-	10	ND ND	ND ND	ND ND	ND ND							
2-chlorophenol	95-57-8	1†	- 10	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND
2,2'-oxybis(1-chloropropane)	108-60-1	5		ND	ND	ND	ND							
chrysene	218-01-9		0.002	ND	ND	ND	ND							
dibenzo(a,h)anthracene	55-70-3	NR	NR	ND	ND	ND	ND							
dibenzofuran	132-64-9	NR	NR	ND	ND	ND	ND							
1,2-dichlorobenzene	95-50-1	3		ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND
1,3-dichlorobenzene 1,4-dichlorobenzene	541-73-1 106-46-7	3		ND ND	ND ND	ND ND	ND ND							
3.3'-dichlorobenzidine	91-94-1	5		ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4-dichlorophenol	120-83-2	5		ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND
diethylphthalate	84-66-2		50	ND	ND	ND	ND							
dimethyl phthalate	131-11-3		50	ND	ND	ND	ND							
2,4-dimethylphenol	105-67-9		50	ND	ND	ND	ND							
2,4-dinitrophenol	51-28-5		10	ND	ND	ND	ND							
2,4-dinitrotoluene	121-14-2	5		ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND
2,6-dinitrotoluene bis(2-ethylhexyl)phthalate	606-20-2 117-81-7	5		ND ND	ND ND	ND ND	ND ND							
fluoranthene	206-44-0	,	50	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
fluorene	86-73-7		50	ND	ND	ND	ND							
hexachlorobenzene	118-74-1	0.04		ND	ND	ND	ND							
hexachlorobutadiene	87-68-3	0.5		ND	ND	ND	ND							
hexachlorocyclopentadiene	77-47-4	5		ND	ND	ND	ND							
hexachloroethane	67-72-1	5		ND	ND	ND	ND							
isophorone 2-methlynapthalene	78-59-1 91-57-6	NR	50 NR	ND ND	ND ND	ND ND	ND ND							
2-methylphenol	95-48-7	1†	INIX	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND
4,6-dinitro-2-methylphenol	534-52-1	1†		ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND
4-chloro-3-methylphenol	59-50-7	1†		ND	ND	ND	ND							
3- and 4-methylphenol	NA	1†		ND	ND	ND	ND							
napthalene	91-20-3		10	ND	ND	ND	ND							
2-nitroaniline	88-74-4	5		ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND
3-nitroaniline 4-nitroaniline	99-09-2 100-01-6	5		ND ND	ND ND	ND ND	ND ND							
4-nitroaniine nitrobenzene	98-95-3	0.4		ND ND	ND ND	ND ND	ND ND							
2-nitrophenol	88-75-5	1†		ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND
4-nitrophenol	100-02-7	1†		ND	ND	ND	ND							
n-nitrosodimethylamine	62-75-9	NR	NR	ND	ND	ND	ND							
n-nitrosodiphenylamine	86-30-6		50	ND	ND	ND	ND							
di-n-octyl phthalate	117-84-0	4.	50	ND	ND	ND	ND							
pentachlorophenol phenanthrene	87-86-5 85-01-8	1†	50	ND ND	ND ND	ND ND	ND ND							
phenol	108-95-2	1†	JU	ND ND	ND ND	ND ND	ND ND							
4-bromophenyl-phenylether	101-55-3	NR	NR	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
4-chlorophenyl-phenylether	7005-72-3	NR	NR	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND
n-nitroso-di-n-propylamine	621-64-7	NR	NR	ND	ND	ND	ND							
pyrene	129-00-0		50	ND	ND	ND	ND							
1,2,4-trichlorobenzene	120-82-1	5		ND	ND	ND	ND							
2,4,5-trichlorophenol	95-95-4	1†		ND	ND	ND	ND							
2,4,6-trichlorophenol	88-06-2	1†		ND	ND	ND	ND							
Tasksvoc				ND	ND	ND	ND							
Toal SVOCs		l		ND	ND	ND								

Table 3-2 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID								м	IW-11S							
			Date	2/7/1997	4/22/1997	9/9/1997	11/25/1997	6/9/1998	10/20/1998	12/14/1999	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006	9/17/2007	9/3/2008
Analyte	CAS No.	NYS Water Quality		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
·		Standard	Guidance Value					'-"											
acenapthene	83-32-9		20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
anthracene	120-12-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(a)anthracene	56-55-3		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(a)pyrene	50-32-8	>ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(b)fluoranthene	205-99-2		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(g,h,i)perylene	191-24-2	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(k)fluoranthene	207-08-9	ND	0.002	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NB	ND	ND
benzyl alcohol	100-51-6	NR	NR 50	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
butly benzyl phthalate di-n-butylphthalate	85-68-7 84-74-2	50	30	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
carbazole	86-74-8	NR	NR	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
indeno(1,2,3-cd)pyrene	193-39-5	141.	0.002	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND
4-chloroaniline	106-47-8	5		ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND
bis(-2-chloroethoxy)methane	111-91-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-chloroethyl)ether	111-44-4	1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-chloronapthalene	91-85-7		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-chlorophenol	95-57-8	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2'-oxybis(1-chloropropane)	108-60-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chrysene	218-01-9		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibenzo(a,h)anthracene	55-70-3	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibenzofuran	132-64-9	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichlorobenzene	95-50-1	3		ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichlorobenzene	541-73-1	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-dichlorobenzene	106-46-7	3		ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NB	ND	ND
3,3'-dichlorobenzidine	91-94-1 120-83-2	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4-dichlorophenol diethylphthalate	84-66-2	5	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
dimethyl phthalate	131-11-3		50	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4-dimethylphenol	105-67-9		50	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND
2,4-dinitrophenol	51-28-5		10	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND
2,4-dinitrotoluene	121-14-2	5		ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-dinitrotoluene	606-20-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-ethylhexyl)phthalate	117-81-7	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
fluoranthene	206-44-0		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
fluorene	86-73-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachlorobenzene	118-74-1	0.04		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachlorobutadiene	87-68-3	0.5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachlorocyclopentadiene	77-47-4	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachloroethane	67-72-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
isophorone 2-methlynapthalene	78-59-1 91-57-6	NR	50 NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	16 ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND
2-metniynaptnaiene 2-methylphenol	95-48-7	1†	NK	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4,6-dinitro-2-methylphenol	534-52-1	1†		ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-chloro-3-methylphenol	59-50-7	1†		ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND
3- and 4-methylphenol	NA	1†		ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND
napthalene	91-20-3		10	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
2-nitroaniline	88-74-4	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-nitroaniline	99-09-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-nitroaniline	100-01-6	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
nitrobenzene	98-95-3	0.4		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-nitrophenol	88-75-5	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-nitrophenol	100-02-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-nitrosodimethylamine	62-75-9	NR	NR EO	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
n-nitrosodiphenylamine	86-30-6 117-84-0	-	50 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
di-n-octyl phthalate pentachlorophenol	117-84-0 87-86-5	1†	JU	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
pentacnioropnenoi	87-86-5 85-01-8	1'	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
phenol	108-95-2	1†	30	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-bromophenyl-phenylether	101-55-3	NR	NR	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND
4-chlorophenyl-phenylether	7005-72-3	NR	NR	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND
n-nitroso-di-n-propylamine	621-64-7	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
pyrene	129-00-0		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-trichlorobenzene	120-82-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,5-trichlorophenol	95-95-4	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,6-trichlorophenol	88-06-2	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
										· · · · · · · · · · · · · · · · · · ·			I	I				1	
Toal SVOCs				ND	ND	ND	ND	ND	ND	ND	ND	16	ND	ND	ND	ND	ND	ND	ND

Table 3-2 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID						MW-11S					
			Date	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019
Analyte	CAS No.	NYS Water Quality Standard	NYS Water Quality Guidance Value	μg/L	μg/L	μg/L	μg/L							
acenapthene	83-32-9		20	ND	ND	ND	ND							
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND							
anthracene	120-12-7		50	ND	ND	ND	ND							
benzo(a)anthracene	56-55-3		0.002	ND	ND	ND	ND							
benzo(a)pyrene	50-32-8	>ND		ND	ND	ND	ND							
benzo(b)fluoranthene benzo(g,h,i)perylene	205-99-2 191-24-2	NR	0.002 NR	ND ND	ND ND	ND ND	ND ND							
benzo(k)fluoranthene	207-08-9	NK.	0.002	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
benzyl alcohol	100-51-6	NR	NR	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND
butly benzyl phthalate	85-68-7		50	ND	ND	ND	ND							
di-n-butylphthalate	84-74-2	50		ND	ND	ND	ND							
carbazole	86-74-8	NR	NR	ND	ND	ND	ND							
indeno(1,2,3-cd)pyrene	193-39-5		0.002	ND	ND	ND	ND							
4-chloroaniline	106-47-8	5		ND	ND	ND	ND							
bis(-2-chloroethoxy)methane bis(2-chloroethyl)ether	111-91-1 111-44-4	5 1		ND ND	ND ND	ND ND	ND ND							
2-chloronapthalene	91-85-7	-	10	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND
2-chlorophenol	95-57-8	1†		ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND
2,2'-oxybis(1-chloropropane)	108-60-1	5		ND	ND	ND	ND							
chrysene	218-01-9		0.002	ND	ND	ND	ND							
dibenzo(a,h)anthracene	55-70-3	NR	NR	ND	ND	ND	ND							
dibenzofuran	132-64-9	NR	NR	ND	ND	ND	ND							
1,2-dichlorobenzene	95-50-1	3		ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND
1,3-dichlorobenzene	541-73-1	3		ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND
1,4-dichlorobenzene 3,3'-dichlorobenzidine	106-46-7 91-94-1	5		ND ND	ND ND	ND ND	ND ND							
2,4-dichlorophenol	120-83-2	5		ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND
diethylphthalate	84-66-2		50	ND	ND	ND	ND							
dimethyl phthalate	131-11-3		50	ND	ND	ND	ND							
2,4-dimethylphenol	105-67-9		50	ND	ND	ND	ND							
2,4-dinitrophenol	51-28-5		10	ND	ND	ND	ND							
2,4-dinitrotoluene	121-14-2	5		ND	ND	ND	ND							
2,6-dinitrotoluene	606-20-2	5		ND	ND	ND	ND							
bis(2-ethylhexyl)phthalate	117-81-7	5	50	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND
fluoranthene fluorene	206-44-0 86-73-7		50	ND ND	ND ND	ND ND	ND ND							
hexachlorobenzene	118-74-1	0.04	30	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND
hexachlorobutadiene	87-68-3	0.5		ND	ND	ND	ND							
hexachlorocyclopentadiene	77-47-4	5		ND	ND	ND	ND							
hexachloroethane	67-72-1	5		ND	ND	ND	ND							
isophorone	78-59-1		50	ND	ND	ND	ND							
2-methlynapthalene	91-57-6	NR	NR	ND	ND	ND	ND							
2-methylphenol	95-48-7	1†		ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND
4,6-dinitro-2-methylphenol 4-chloro-3-methylphenol	534-52-1 59-50-7	1† 1†		ND ND	ND ND	ND ND	ND ND							
3- and 4-methylphenol	NA	1†		ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
napthalene	91-20-3	1	10	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND
2-nitroaniline	88-74-4	5		ND	ND	ND	ND							
3-nitroaniline	99-09-2	5		ND	ND	ND	ND							
4-nitroaniline	100-01-6	5		ND	ND	ND	ND							
nitrobenzene	98-95-3	0.4		ND	ND	ND	ND							
2-nitrophenol	88-75-5	1†		ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND
4-nitrophenol n-nitrosodimethylamine	100-02-7 62-75-9	1† NR	NR	ND ND	ND ND	ND ND	ND ND							
n-nitrosodimetnylamine n-nitrosodiphenylamine	86-30-6	NIK	50	ND ND	ND ND	ND ND	ND ND							
di-n-octyl phthalate	117-84-0	 	50	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND
pentachlorophenol	87-86-5	1†		ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
phenanthrene	85-01-8	<u> </u>	50	ND	ND	ND	ND							
phenol	108-95-2	1†		ND	ND	ND	ND							
4-bromophenyl-phenylether	101-55-3	NR	NR	ND	ND	ND	ND							
4-chlorophenyl-phenylether	7005-72-3	NR	NR	ND	ND	ND	ND							
n-nitroso-di-n-propylamine	621-64-7	NR	NR FO	ND ND	ND	ND ND	ND ND	ND ND						
pyrene 1,2,4-trichlorobenzene	129-00-0 120-82-1	5	50	ND ND	ND ND	ND ND	ND ND							
1,2,4-trichlorobenzene 2,4,5-trichlorophenol	95-95-4	1†		ND ND	ND ND	ND ND	ND ND							
2,4,6-trichlorophenol	88-06-2	1†		ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND
=, ,,o a. aopiiciioi					,									

Table 3-2 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID								M	W-11M							
			Date	2/7/1997	4/22/1997	9/9/1997	11/25/1997	6/9/1998	10/20/1998	12/14/1999	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006	9/17/2007	9/3/2008
Analyte	CAS No.	NYS Water Quality		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value																
acenapthene	83-32-9		20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
anthracene	120-12-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(a)anthracene	56-55-3		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(a)pyrene	50-32-8	>ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(b)fluoranthene	205-99-2		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(g,h,i)perylene	191-24-2	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(k)fluoranthene	207-08-9		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzyl alcohol	100-51-6	NR	NR 50	ND	ND	ND	ND NB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
butly benzyl phthalate	85-68-7 84-74-2		50	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND
di-n-butylphthalate carbazole	86-74-8	50 NR	NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
indeno(1,2,3-cd)pyrene	193-39-5	INIX	0.002	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-chloroaniline	106-47-8	5	0.002	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
bis(-2-chloroethoxy)methane	111-91-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND
bis(2-chloroethyl)ether	111-44-4	1		ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND
2-chloronapthalene	91-85-7	<u> </u>	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-chlorophenol	95-57-8	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2'-oxybis(1-chloropropane)	108-60-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chrysene	218-01-9		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibenzo(a,h)anthracene	55-70-3	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibenzofuran	132-64-9	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichlorobenzene	95-50-1	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichlorobenzene	541-73-1	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-dichlorobenzene	106-46-7	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,3'-dichlorobenzidine	91-94-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-dichlorophenol	120-83-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
diethylphthalate	84-66-2		50 50	ND	ND	ND	ND NB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NB	ND	ND
dimethyl phthalate	131-11-3 105-67-9		50	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4-dimethylphenol 2,4-dinitrophenol	51-28-5		10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4-dinitrophenoi 2,4-dinitrotoluene	121-14-2	5	10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,6-dinitrotoluene	606-20-2	5		ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND
bis(2-ethylhexyl)phthalate	117-81-7	5		ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	59	25	47	ND ND	24	ND ND	ND ND
fluoranthene	206-44-0		50	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND
fluorene	86-73-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachlorobenzene	118-74-1	0.04		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachlorobutadiene	87-68-3	0.5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachlorocyclopentadiene	77-47-4	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachloroethane	67-72-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
isophorone	78-59-1		50	ND	ND	ND	ND	ND	ND	ND	ND	11	ND	ND	ND	ND	ND	ND	ND
2-methlynapthalene	91-57-6	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-methylphenol	95-48-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,6-dinitro-2-methylphenol	534-52-1	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-chloro-3-methylphenol	59-50-7	1† 1†		ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
3- and 4-methylphenol	NA 91-20-3	1'	10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
napthalene 2-nitroaniline	91-20-3 88-74-4	5	10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
3-nitroaniline	99-09-2	5		ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-nitroaniline	100-01-6	5		ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND
nitrobenzene	98-95-3	0.4		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND
2-nitrophenol	88-75-5	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-nitrophenol	100-02-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-nitrosodimethylamine	62-75-9	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-nitrosodiphenylamine	86-30-6		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
di-n-octyl phthalate	117-84-0		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
pentachlorophenol	87-86-5	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
phenanthrene	85-01-8		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
phenol	108-95-2	1†	h	ND	ND	ND	ND NB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NB	ND	ND
4-bromophenyl-phenylether	101-55-3	NR NB	NR NR	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
4-chlorophenyl-phenylether	7005-72-3	NR NB	NR NR	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
n-nitroso-di-n-propylamine	621-64-7 129-00-0	NR	NR 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
pyrene 1,2,4-trichlorobenzene	129-00-0	5	JU JU	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4,5-trichlorophenol	95-95-4	1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4,5-trichlorophenol	88-06-2	1†		ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4,0-111111010pileiloi	00 00-2		1	140	140	140	NU	140	NU	140	110	140	I ND	140	140	140	, NO	140	
Toal SVOCs				ND	ND	ND	ND	ND	ND	ND	ND	11	59	25	47	ND	24	ND	ND
.50154065																			

Table 3-2 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		ſ	Well ID						MW-11M					
			Date	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019
Analyte	CAS No.	NYS Water Quality Standard	NYS Water Quality Guidance Value	μg/L	μg/L	μg/L	μg/L							
acenapthene	83-32-9		20	ND	ND	ND	ND							
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND							
anthracene	120-12-7		50	ND	ND	ND	ND							
benzo(a)anthracene	56-55-3		0.002	ND	ND	ND	ND							
benzo(a)pyrene	50-32-8	>ND		ND	ND	ND	ND							
benzo(b)fluoranthene benzo(g,h,i)perylene	205-99-2 191-24-2	NR	0.002 NR	ND ND	ND ND	ND ND	ND ND							
benzo(k)fluoranthene	207-08-9	INK	0.002	ND	ND ND	ND ND	ND ND	ND ND						
benzvi alcohol	100-51-6	NR	NR	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
butly benzyl phthalate	85-68-7		50	ND	ND	ND	ND							
di-n-butylphthalate	84-74-2	50		ND	ND	ND	ND							
carbazole	86-74-8	NR	NR	ND	ND	ND	ND							
indeno(1,2,3-cd)pyrene	193-39-5		0.002	ND	ND	ND	ND							
4-chloroaniline	106-47-8	5		ND	ND	ND	ND							
bis(-2-chloroethoxy)methane	111-91-1	5		ND	ND	ND	ND							
bis(2-chloroethyl)ether	111-44-4	1	40	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND
2-chloronapthalene 2-chlorophenol	91-85-7 95-57-8	1†	10	ND ND	ND ND	ND ND	ND ND							
2,2'-oxybis(1-chloropropane)	108-60-1	5		ND	ND ND	ND ND	ND	ND ND						
chrysene	218-01-9	 	0.002	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND
dibenzo(a,h)anthracene	55-70-3	NR	NR	ND	ND	ND	ND							
dibenzofuran	132-64-9	NR	NR	ND	ND	ND	ND							
1,2-dichlorobenzene	95-50-1	3		ND	ND	ND	ND							
1,3-dichlorobenzene	541-73-1	3		ND	ND	ND	ND							
1,4-dichlorobenzene	106-46-7	3		ND	ND	ND	ND							
3,3'-dichlorobenzidine	91-94-1	5		ND	ND	ND	ND							
2,4-dichlorophenol	120-83-2	5		ND	ND	ND	ND							
diethylphthalate	84-66-2		50 50	ND ND	ND ND	ND ND	ND ND							
dimethyl phthalate 2,4-dimethylphenol	131-11-3 105-67-9		50	ND ND	ND ND	ND ND	ND ND							
2,4-dinitrophenol	51-28-5		10	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND
2,4-dinitrotoluene	121-14-2	5		ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-dinitrotoluene	606-20-2	5		ND	ND	ND	ND							
bis(2-ethylhexyl)phthalate	117-81-7	5		ND	ND	ND	ND	ND	50	ND	ND	ND	ND	ND
fluoranthene	206-44-0		50	ND	ND	ND	ND							
fluorene	86-73-7		50	ND	ND	ND	ND							
hexachlorobenzene	118-74-1	0.04		ND	ND	ND	ND							
hexachlorobutadiene	87-68-3	0.5		ND	ND	ND	ND							
hexachlorocyclopentadiene	77-47-4	5		ND	ND	ND	ND							
hexachloroethane isophorone	67-72-1 78-59-1	5	50	ND ND	ND ND	ND ND	ND ND							
2-methlynapthalene	91-57-6	NR	NR	ND ND	ND ND	ND ND	ND ND							
2-methylphenol	95-48-7	1†	Tel.	ND	ND	ND	ND							
4,6-dinitro-2-methylphenol	534-52-1	1†		ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
4-chloro-3-methylphenol	59-50-7	1†		ND	ND	ND	ND							
3- and 4-methylphenol	NA	1†		ND	ND	ND	ND							
napthalene	91-20-3		10	ND	ND	ND	ND							
2-nitroaniline	88-74-4	5		ND	ND	ND	ND							
3-nitroaniline	99-09-2	5		ND	ND	ND	ND							
4-nitroaniline	100-01-6	5		ND	ND	ND	ND ND							
nitrobenzene	98-95-3	0.4 1†		ND ND	ND ND	ND ND	ND ND							
2-nitrophenol	88-75-5 100-02-7	1† 1†		ND ND	ND ND	ND ND	ND ND							
4-nitrophenol n-nitrosodimethylamine	100-02-7 62-75-9	NR	NR	ND ND	ND ND	ND ND	ND ND							
n-nitrosodimetriylamine	86-30-6	1417	50	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND
di-n-octyl phthalate	117-84-0		50	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
pentachlorophenol	87-86-5	1†		ND	ND	ND	ND							
phenanthrene	85-01-8		50	ND	ND	ND	ND							
phenol	108-95-2	1†		ND	ND	ND	ND							
4-bromophenyl-phenylether	101-55-3	NR	NR	ND	ND	ND	ND							
4-chlorophenyl-phenylether	7005-72-3	NR	NR	ND	ND	ND	ND							
n-nitroso-di-n-propylamine	621-64-7	NR	NR	ND	ND	ND	ND							
pyrene	129-00-0		50	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND
1,2,4-trichlorobenzene	120-82-1	5		ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND
2,4,5-trichlorophenol	95-95-4	1† 1†		ND ND	ND ND	ND ND	ND ND							
2,4,6-trichlorophenol	88-06-2	Tı		ND	ND	ND	ND.							

Table 3-2 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

March Column Co				Well ID								M	IW-12S							
Secondary Seco					2/6/1997	4/22/1997	9/9/1997	11/24/1997	6/9/1998	10/20/1998	12/14/1999			10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006	9/17/2007	9/3/2008
Company Comp	Analyte	CAS No.															μg/L			μg/L
Part		02.22.0	Standard		NB	ND	NB	ND	ND	ND	ND	ND	ND	ND	ND	NB	ND	ND	ND	ND
Minister 1991 199			ND																	ND ND
Processing 15-13	, ,		INI															1	1	ND ND
Memoring process 1988 1980 1981 19																				ND ND
			>ND	0.002																ND
Manual Conference 19-1-1-1 Manual Property 19-1-1-1 Manual Property 19-1-1 Manual Proper				0.002																ND ND
	,,		NR																	ND
Methods 1647 52																				ND
Column C	benzyl alcohol	100-51-6	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Column C	butly benzyl phthalate	85-68-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Property 1989 198	di-n-butylphthalate	84-74-2	50		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
## 4:00000000000000000000000000000000000	carbazole	86-74-8	NR		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Miles Selection of Processing 1945 1	1,,,,,,,			0.002															i e	ND
Big Selected 134-44 1																				ND
2-chemosphase 35-7																				ND
2-despeciation 35-73 11	` ''		1																	ND
## 12.2 - Septiment 19.64 5 5 5 5 5 5 5 5 5			,.	10															i e	ND
dispersion 19-19-19																		1		ND ND
Hemotol_Allenthrecens 57-79 NN			- 5	0.002																ND ND
December 132-644 MR			ND																	ND ND
1_3-disclosed-searce 55-95-1 3	, , ,																			ND ND
1.3 dishierodementers 547.74 3				1411														1	1	ND ND
1.4.dicthrophenoidnes 164-67 3																		1		ND ND
3.3° deliveropersonial 93.94.1 5																				ND
2,4-dickboropened 26-83-2 S																			i e	ND
	·		5																	ND
2.4-dimetrophenol 195-679 50 N0	diethylphthalate	84-66-2		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Administrational St.28.5 10 ND ND ND ND ND ND ND N	dimethyl phthalate	131-11-3		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2.4-finitrotolenee 121-142 5	2,4-dimethylphenol	105-67-9		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2.5-dimitroliume 66-20 2 5	2,4-dinitrophenol	51-28-5		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bisig2-ethylescyliphtsalate 117-81-7 S	2,4-dinitrotoluene		5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Formation 18-64-40 50 ND ND ND ND ND ND ND N																			i e	ND
Mace			5																	ND
hexachiorobennee 134-74-1																			i e	ND
Pexachbrorobtadeline 74-74-74 5				50																ND
hexachlorocylopentalleine 77-47-4 5																				ND
No. No.																		1		ND ND
Suphrorone 78-59-1 50 ND	, ,																			ND ND
2-methylphenol 91-57-6 NR NR ND ND ND ND ND ND			,	50															i e	ND ND
2-methylphenol 95-48-7			NR																	ND ND
Af-dintro-2-methylphenol 534-52-1 11				NIK																ND
A-chloro-3-methylphenol S9-50-7	,,																	1		ND ND
3- and 4-methylphenol NA 1† ND ND ND ND ND ND ND N																				ND
No																				ND
3-nitroaniline 99-09-2 5	,, ,			10						ND	ND		ND			ND			ND	ND
A-nitroaniline 100-01-6 5	2-nitroaniline	88-74-4	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
No	3-nitroaniline					ND		ND			ND		ND			ND	ND		ND	ND
2-nitrophenol 88-75-5 1†																				ND
A-nitrophenol 100-02-7 1† ND																				ND
n-nitrosodimethylamine 62-75-9 NR NR NR ND ND ND ND ND																	1		1	ND
n-nitrosodiphenylamine																				ND
Descript Control Con	, , ,		NR																	ND ND
Pentachlorophenol 87-86-5 1† ND			-																i e	ND ND
Phenanthrene 85-01-8 50 ND			1+	30															i e	ND ND
phenol 108-95-2 1† ND			1'	50																ND ND
4-bromophenyl-phenylether 101-55-3 NR NR ND			1†	30																ND ND
				NR																ND ND
וואר ב אווי ב א	4-chlorophenyl-phenylether	7005-72-3	NR	NR NR	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND
																			i e	ND ND
pyrene 129-00-0 50 ND																				ND ND
1,2,4-trichlorobenzene 120-82-1 5 ND			5																	ND
2,4,5-trichlorophenol 95-95-4 1† ND						ND		ND			ND	ND			ND	ND			ND	ND
2,4,6-trichlorophenol 88-06-2 1† ND		88-06-2	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND	ND
ND ND 17 ND	Toal SVOCs				ND	ND	17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Table 3-2 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID						MW-12S					
			Date	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019
Analyte	CAS No.	NYS Water Quality Standard	NYS Water Quality Guidance Value	μg/L	μg/L	μg/L	μg/L							
acenapthene	83-32-9	010.100.0	20	ND	ND	ND	ND							
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND							
anthracene	120-12-7		50	ND	ND	ND	ND							
benzo(a)anthracene	56-55-3		0.002	ND	ND	ND	ND							
benzo(a)pyrene	50-32-8	>ND		ND	ND	ND	ND							
benzo(b)fluoranthene	205-99-2		0.002	ND	ND	ND	ND							
benzo(g,h,i)perylene benzo(k)fluoranthene	191-24-2 207-08-9	NR	NR 0.002	ND ND	ND ND	ND ND	ND ND							
benzyl alcohol	100-51-6	NR	NR	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
butly benzyl phthalate	85-68-7		50	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND
di-n-butylphthalate	84-74-2	50		ND	ND	ND	ND							
carbazole	86-74-8	NR	NR	ND	ND	ND	ND							
indeno(1,2,3-cd)pyrene	193-39-5		0.002	ND	ND	ND	ND							
4-chloroaniline	106-47-8	5		ND	ND	ND	ND							
bis(-2-chloroethoxy)methane	111-91-1	5		ND	ND	ND	ND							
bis(2-chloroethyl)ether	111-44-4 91-85-7	1	10	ND ND	ND ND	ND ND	ND ND							
2-chloronapthalene 2-chlorophenol	91-85-7	1†	10	ND ND	ND ND	ND ND	ND ND							
2,2'-oxybis(1-chloropropane)	108-60-1	5		ND ND	ND ND	ND ND	ND ND							
chrysene	218-01-9		0.002	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND
dibenzo(a,h)anthracene	55-70-3	NR	NR	ND	ND	ND	ND							
dibenzofuran	132-64-9	NR	NR	ND	ND	ND	ND							
1,2-dichlorobenzene	95-50-1	3		ND	ND	ND	ND							
1,3-dichlorobenzene	541-73-1	3		ND	ND	ND	ND							
1,4-dichlorobenzene	106-46-7	3		ND	ND	ND	ND							
3,3'-dichlorobenzidine 2,4-dichlorophenol	91-94-1 120-83-2	5 5		ND ND	ND ND	ND ND	ND ND							
diethylphthalate	84-66-2	,	50	ND ND	ND ND	ND ND	ND ND							
dimethyl phthalate	131-11-3		50	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND
2,4-dimethylphenol	105-67-9		50	ND	ND	ND	ND							
2,4-dinitrophenol	51-28-5		10	ND	ND	ND	ND							
2,4-dinitrotoluene	121-14-2	5		ND	ND	ND	ND							
2,6-dinitrotoluene	606-20-2	5		ND	ND	ND	ND							
bis(2-ethylhexyl)phthalate	117-81-7	5		ND	ND	ND	ND							
fluoranthene	206-44-0		50 50	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND
fluorene hexachlorobenzene	86-73-7 118-74-1	0.04	30	ND ND	ND ND	ND ND	ND ND							
hexachlorobutadiene	87-68-3	0.5		ND	ND	ND	ND							
hexachlorocyclopentadiene	77-47-4	5		ND	ND	ND	ND							
hexachloroethane	67-72-1	5		ND	ND	ND	ND							
isophorone	78-59-1		50	ND	ND	ND	ND							
2-methlynapthalene	91-57-6	NR	NR	ND	ND	ND	ND							
2-methylphenol	95-48-7	1†		ND	ND	ND	ND							
4,6-dinitro-2-methylphenol	534-52-1	1†		ND ND	ND	ND ND	ND ND							
4-chloro-3-methylphenol 3- and 4-methylphenol	59-50-7 NA	1† 1†		ND ND	ND ND	ND ND	ND ND							
napthalene	91-20-3	<u> </u>	10	ND ND	ND ND	ND ND	ND ND							
2-nitroaniline	88-74-4	5		ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND
3-nitroaniline	99-09-2	5		ND	ND	ND	ND							
4-nitroaniline	100-01-6	5		ND	ND	ND	ND							
nitrobenzene	98-95-3	0.4		ND	ND	ND	ND							
2-nitrophenol	88-75-5	1†		ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND
4-nitrophenol n-nitrosodimethylamine	100-02-7	1†	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND
n-nitrosodimethylamine n-nitrosodiphenylamine	62-75-9 86-30-6	NR	NR 50	ND ND	ND ND	ND ND	ND ND							
di-n-octyl phthalate	117-84-0		50	ND ND	ND ND	ND ND	ND ND							
pentachlorophenol	87-86-5	1†		ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND
phenanthrene	85-01-8		50	ND	ND	ND	ND							
phenol	108-95-2	1†	_	ND	ND	ND	ND							
4-bromophenyl-phenylether	101-55-3	NR	NR	ND	ND	ND	ND							
4-chlorophenyl-phenylether	7005-72-3	NR	NR	ND	ND	ND	ND							
n-nitroso-di-n-propylamine	621-64-7	NR	NR	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
pyrene 1,2,4-trichlorobenzene	129-00-0	5	50	ND ND	ND ND	ND ND	ND ND							
1,2,4-trichlorobenzene 2,4,5-trichlorophenol	120-82-1 95-95-4	1†		ND ND	ND ND	ND ND	ND ND							
2,4,3-u icinoropnenoi								ND ND						ND ND
2.4.6-trichloronhenol	88-06-2] 17		NI)	NI)	NI)	[11]		[913]	ND	NI)	NI)	NI)	
2,4,6-trichlorophenol	88-06-2	1†		ND	ND	ND	ND							

Table 3-2 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

,	CAS No.	NYS Water Quality	Date	2/6/1997	4/22/1997	9/9/1997	11/24/1997	6/10/1998	10/20/1998	12/14/1999	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006	9/17/2007	0/2/2000
,	CAS No.	NIVE Mater Quality								,,			,,		3/13/2004	3/11/2003		3/11/2001	9/3/2008
acenapthene		Standard	NYS Water Quality Guidance Value	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	83-32-9		20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	120-12-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	56-55-3		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	50-32-8	>ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	205-99-2 191-24-2	NR	0.002 NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
10: 17:	207-08-9	NK	0.002	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	100-51-6	NR	NR	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND
butly benzyl phthalate	85-68-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
di-n-butylphthalate	84-74-2	50		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbazole	86-74-8	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
111 717	193-39-5		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	106-47-8	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	111-91-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
` ''	111-44-4	1		ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND
	91-85-7 95-57-8	1†	10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	108-60-1	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	218-01-9	 	0.002	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	55-70-3	NR	NR	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND
	132-64-9	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichlorobenzene	95-50-1	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichlorobenzene	541-73-1	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-dichlorobenzene	106-46-7	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	91-94-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	120-83-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	84-66-2		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	131-11-3		50 50	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND
	105-67-9 51-28-5		10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	121-14-2	5	10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
· ·	606-20-2	5		ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND
	117-81-7	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
fluoranthene	206-44-0		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
fluorene	86-73-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	118-74-1	0.04		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	87-68-3	0.5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	77-47-4	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachloroethane	67-72-1	5		ND	ND	ND	ND	ND NB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	78-59-1 91-57-6	NR	50 NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-methylphenol	95-48-7	1†	INK	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND
	534-52-1	1†		ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND
	59-50-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3- and 4-methylphenol	NA	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
napthalene	91-20-3		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-nitroaniline	88-74-4	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-nitroaniline	99-09-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	100-01-6	5		ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
nitrobenzene	98-95-3	0.4		ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND
	88-75-5	1† 1+		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	100-02-7 62-75-9	1† NR	NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	86-30-6	141/	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	117-84-0		50	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND ND
	87-86-5	1†	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	85-01-8		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
phenol	108-95-2	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	101-55-3	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7005-72-3	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	621-64-7	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	129-00-0		50	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND
	120-82-1	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
	95-95-4 88-06-2	1† 1†	+	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	00-00-2	11		NÜ	IND	NU	MD	IND	IND	NU	NU	שא	ND	NU	NU	NU	שא	טא	NU

Table 3-2 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID						MW-12M					
			Date	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019
Analyte	CAS No.	NYS Water Quality Standard	NYS Water Quality Guidance Value	μg/L	μg/L	μg/L	μg/L							
acenapthene	83-32-9		20	ND	ND	ND	ND							
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND							
anthracene	120-12-7		50	ND	ND	ND	ND							
benzo(a)anthracene	56-55-3		0.002	ND	ND	ND	ND							
benzo(a)pyrene	50-32-8	>ND		ND	ND	ND	ND							
benzo(b)fluoranthene benzo(g,h,i)perylene	205-99-2 191-24-2	NR	0.002 NR	ND ND	ND ND	ND ND	ND ND							
benzo(g,n,r)peryiene benzo(k)fluoranthene	207-08-9	NK.	0.002	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
benzyl alcohol	100-51-6	NR	NR	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND
butly benzyl phthalate	85-68-7		50	ND	ND	ND	ND							
di-n-butylphthalate	84-74-2	50		ND	ND	ND	ND							
carbazole	86-74-8	NR	NR	ND	ND	ND	ND							
indeno(1,2,3-cd)pyrene	193-39-5		0.002	ND	ND	ND	ND							
4-chloroaniline	106-47-8	5		ND	ND	ND	ND							
bis(-2-chloroethoxy)methane	111-91-1	5		ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND
bis(2-chloroethyl)ether 2-chloronapthalene	111-44-4 91-85-7	1	10	ND ND	ND ND	ND ND	ND ND							
2-chlorophenol	95-57-8	1†	10	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,2'-oxybis(1-chloropropane)	108-60-1	5		ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND
chrysene	218-01-9		0.002	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
dibenzo(a,h)anthracene	55-70-3	NR	NR	ND	ND	ND	ND							
dibenzofuran	132-64-9	NR	NR	ND	ND	ND	ND							
1,2-dichlorobenzene	95-50-1	3		ND	ND	ND	ND							
1,3-dichlorobenzene	541-73-1	3		ND	ND	ND	ND							
1,4-dichlorobenzene	106-46-7	3		ND	ND	ND	ND							
3,3'-dichlorobenzidine 2,4-dichlorophenol	91-94-1 120-83-2	5		ND ND	ND ND	ND ND	ND ND							
z,4-dichiorophenoi diethylphthalate	84-66-2	•	50	ND ND	ND ND	ND ND	ND ND							
dimethyl phthalate	131-11-3		50	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
2,4-dimethylphenol	105-67-9		50	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
2,4-dinitrophenol	51-28-5		10	ND	ND	ND	ND							
2,4-dinitrotoluene	121-14-2	5		ND	ND	ND	ND							
2,6-dinitrotoluene	606-20-2	5		ND	ND	ND	ND							
bis(2-ethylhexyl)phthalate	117-81-7	5		ND	ND	ND	120							
fluoranthene	206-44-0		50	ND	ND	ND	ND							
fluorene	86-73-7 118-74-1	0.04	50	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
hexachlorobenzene hexachlorobutadiene	87-68-3	0.04 0.5		ND ND	ND ND	ND ND	ND ND							
hexachlorocyclopentadiene	77-47-4	5		ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
hexachloroethane	67-72-1	5		ND	ND	ND	ND							
isophorone	78-59-1		50	ND	ND	ND	ND							
2-methlynapthalene	91-57-6	NR	NR	ND	ND	ND	ND							
2-methylphenol	95-48-7	1†		ND	ND	ND	ND							
4,6-dinitro-2-methylphenol	534-52-1	1†		ND	ND	ND	ND							
4-chloro-3-methylphenol	59-50-7	1†		ND	ND	ND	ND							
3- and 4-methylphenol	NA 01 20 2	1†	10	ND ND	ND ND	ND ND	ND ND							
napthalene 2-nitroaniline	91-20-3 88-74-4	5	10	ND ND	ND ND	ND ND	ND ND							
3-nitroaniline	99-09-2	5		ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
4-nitroaniline	100-01-6	5		ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
nitrobenzene	98-95-3	0.4		ND	ND	ND	ND							
2-nitrophenol	88-75-5	1†		ND	ND	ND	ND							
4-nitrophenol	100-02-7	1†		ND	ND	ND	ND							
n-nitrosodimethylamine	62-75-9	NR	NR	ND	ND	ND	ND							
n-nitrosodiphenylamine	86-30-6		50	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND
di-n-octyl phthalate	117-84-0	1†	50	ND ND	ND ND	ND ND	ND ND							
pentachlorophenol phenanthrene	87-86-5 85-01-8	- ''	50	ND ND	ND ND	ND ND	ND ND							
phenol	108-95-2	1†	30	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-bromophenyl-phenylether	101-55-3	NR	NR	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND
4-chlorophenyl-phenylether	7005-72-3	NR	NR	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
n-nitroso-di-n-propylamine	621-64-7	NR	NR	ND	ND	ND	ND							
pyrene	129-00-0		50	ND	ND	ND	ND							
1,2,4-trichlorobenzene	120-82-1	5		ND	ND	ND	ND							
2,4,5-trichlorophenol	95-95-4	1†		ND	ND	ND	ND							
2,4,6-trichlorophenol	88-06-2	1†		ND	ND	ND	ND							
T		ı		N/S	N/S	NO	N.0	l 1/2	No.	NE	N.0	N/S	l	422
Toal SVOCs		L	l	ND	ND	ND	120							

Table 3-2 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID								M	W-12D							
			Date	2/6/1997	4/22/1997	9/9/1997	11/24/1997	6/9/1998	10/20/1998	12/14/1999	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006	9/17/2007	9/3/2008
Analyte	CAS No.	NYS Water Quality		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
acenapthene	83-32-9	Standard	Guidance Value 20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
acenapthylene	208-96-8	NR	NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
anthracene	120-12-7	INIT	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
benzo(a)anthracene	56-55-3		0.002	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
benzo(a)pyrene	50-32-8	>ND	0.002	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
benzo(b)fluoranthene	205-99-2	7.1.5	0.002	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND
benzo(g,h,i)perylene	191-24-2	NR	NR	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(k)fluoranthene	207-08-9		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzyl alcohol	100-51-6	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
butly benzyl phthalate	85-68-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
di-n-butylphthalate	84-74-2	50		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbazole	86-74-8	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
indeno(1,2,3-cd)pyrene	193-39-5		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-chloroaniline	106-47-8	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(-2-chloroethoxy)methane	111-91-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-chloroethyl)ether	111-44-4	1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-chloronapthalene	91-85-7		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-chlorophenol	95-57-8	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2'-oxybis(1-chloropropane)	108-60-1	5	0.000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NB
chrysene	218-01-9	l lin	0.002	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
dibenzo(a,h)anthracene dibenzofuran	55-70-3 132-64-9	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-dichlorobenzene	95-50-1	NR 3	NK	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-dichlorobenzene	95-50-1 541-73-1	3		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,4-dichlorobenzene	106-46-7	3		ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
3,3'-dichlorobenzidine	91-94-1	5		ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
2,4-dichlorophenol	120-83-2	5		ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND
diethylphthalate	84-66-2		50	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dimethyl phthalate	131-11-3		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-dimethylphenol	105-67-9		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-dinitrophenol	51-28-5		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-dinitrotoluene	121-14-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-dinitrotoluene	606-20-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-ethylhexyl)phthalate	117-81-7	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	17	13	11	ND	ND	ND	ND
fluoranthene	206-44-0		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
fluorene	86-73-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachlorobenzene	118-74-1	0.04		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachlorobutadiene	87-68-3	0.5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachlorocyclopentadiene	77-47-4	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachloroethane	67-72-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NB	ND	ND
isophorone 2-methlynapthalene	78-59-1 91-57-6	NR	50 NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	11 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-metniynaptnaiene 2-methylphenol	95-48-7	1†	NK	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4,6-dinitro-2-methylphenol	534-52-1	1†		ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-chloro-3-methylphenol	59-50-7	1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
3- and 4-methylphenol	NA	1†		ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
napthalene	91-20-3		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND
2-nitroaniline	88-74-4	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-nitroaniline	99-09-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-nitroaniline	100-01-6	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
nitrobenzene	98-95-3	0.4		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-nitrophenol	88-75-5	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-nitrophenol	100-02-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-nitrosodimethylamine	62-75-9	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-nitrosodiphenylamine	86-30-6		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
di-n-octyl phthalate	117-84-0		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
pentachlorophenol	87-86-5	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
phenanthrene	85-01-8		50	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND
phenol	108-95-2	1†	N/D	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-bromophenyl-phenylether	101-55-3	NR NP	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-chlorophenyl-phenylether	7005-72-3 621-64-7	NR NR	NK NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
n-nitroso-di-n-propylamine pyrene	129-00-0	1415	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2,4-trichlorobenzene	129-00-0	5	30	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4,5-trichlorophenol	95-95-4	1†		ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4,6-trichlorophenol	88-06-2	1†		ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,7,0 citatiologiiciloi	00 00 E			.10							.10								
Toal SVOCs				ND	ND	ND	ND	ND	ND	ND	ND	11	17	13	11	ND	ND	ND	ND
		•										-	•				-		

Table 3-2 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID						MW-12D					-
			Date	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019
Analyte	CAS No.	NYS Water Quality Standard	NYS Water Quality Guidance Value	μg/L	μg/L	μg/L	μg/L							
acenapthene	83-32-9		20	ND	ND	ND	ND							
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND							
anthracene	120-12-7		50	ND	ND	ND	ND							
benzo(a)anthracene	56-55-3		0.002	ND	ND	ND	ND							
benzo(a)pyrene	50-32-8	>ND		ND	ND	ND	ND							
benzo(b)fluoranthene	205-99-2		0.002	ND	ND	ND	ND							
benzo(g,h,i)perylene	191-24-2	NR	NR 0.003	ND	ND	ND	ND							
benzo(k)fluoranthene	207-08-9	NR	0.002 NR	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
benzyl alcohol butly benzyl phthalate	100-51-6 85-68-7	NK.	50	ND ND	ND ND	ND ND	ND ND							
di-n-butylphthalate	84-74-2	50	30	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND
carbazole	86-74-8	NR NR	NR	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
indeno(1,2,3-cd)pyrene	193-39-5		0.002	ND	ND	ND	ND							
4-chloroaniline	106-47-8	5		ND	ND	ND	ND							
bis(-2-chloroethoxy)methane	111-91-1	5		ND	ND	ND	ND							
bis(2-chloroethyl)ether	111-44-4	1		ND	ND	ND	ND							
2-chloronapthalene	91-85-7		10	ND	ND	ND	ND							
2-chlorophenol	95-57-8	1†		ND	ND	ND	ND							
2,2'-oxybis(1-chloropropane)	108-60-1	5		ND	ND	ND	ND							
chrysene	218-01-9		0.002	ND	ND	ND	ND							
dibenzo(a,h)anthracene	55-70-3	NR	NR	ND	ND	ND	ND							
dibenzofuran	132-64-9	NR	NR	ND	ND	ND	ND							
1,2-dichlorobenzene	95-50-1	3		ND	ND	ND	ND							
1,3-dichlorobenzene	541-73-1	3		ND	ND	ND	ND							
1,4-dichlorobenzene	106-46-7	3		ND	ND	ND	ND							
3,3'-dichlorobenzidine	91-94-1	5		ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
2,4-dichlorophenol diethylphthalate	120-83-2 84-66-2	5	50	ND ND	ND ND	ND ND	ND ND							
diethylphthalate	131-11-3		50	ND ND	ND ND	ND ND	ND ND							
2,4-dimethylphenol	105-67-9		50	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
2,4-dinitrophenol	51-28-5		10	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND
2,4-dinitrophenor	121-14-2	5	- 10	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND
2,6-dinitrotoluene	606-20-2	5		ND	ND	ND	ND							
bis(2-ethylhexyl)phthalate	117-81-7	5		ND	ND	ND	ND	ND	22	ND	ND	ND	ND	ND
fluoranthene	206-44-0		50	ND	ND	ND	ND							
fluorene	86-73-7		50	ND	ND	ND	ND							
hexachlorobenzene	118-74-1	0.04		ND	ND	ND	ND							
hexachlorobutadiene	87-68-3	0.5		ND	ND	ND	ND							
hexachlorocyclopentadiene	77-47-4	5		ND	ND	ND	ND							
hexachloroethane	67-72-1	5		ND	ND	ND	ND							
isophorone	78-59-1		50	ND	ND	ND	ND							
2-methlynapthalene	91-57-6	NR	NR	ND	ND	ND	ND							
2-methylphenol	95-48-7	1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND
4,6-dinitro-2-methylphenol	534-52-1	1†		ND ND	ND ND	ND ND	ND ND							
4-chloro-3-methylphenol 3- and 4-methylphenol	59-50-7 NA	1† 1†		ND ND	ND ND	ND ND	ND ND							
3- and 4-methylphenol napthalene	91-20-3		10	ND ND	ND ND	ND ND	ND ND							
2-nitroaniline	88-74-4	5		ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
3-nitroaniline	99-09-2	5		ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND
4-nitroaniline	100-01-6	5		ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
nitrobenzene	98-95-3	0.4		ND	ND	ND	ND							
2-nitrophenol	88-75-5	1†		ND	ND	ND	ND							
4-nitrophenol	100-02-7	1†		ND	ND	ND	ND							
n-nitrosodimethylamine	62-75-9	NR	NR	ND	ND	ND	ND							
n-nitrosodiphenylamine	86-30-6		50	ND	ND	ND	ND							
di-n-octyl phthalate	117-84-0		50	ND	ND	ND	ND							
pentachlorophenol	87-86-5	1†		ND	ND	ND	ND							
phenanthrene	85-01-8		50	ND	ND	ND	ND							
phenol	108-95-2	1†	N	ND	ND	ND	ND							
4-bromophenyl-phenylether	101-55-3	NR	NR NB	ND	ND	ND	ND							
4-chlorophenyl-phenylether	7005-72-3	NR NR	NR NB	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND
n-nitroso-di-n-propylamine	621-64-7	NR	NR FO	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND
pyrene 1,2,4-trichlorobenzene	129-00-0	5	50	ND ND	ND ND	ND ND	ND ND							
1,2,4-trichloropenzene 2,4,5-trichlorophenol	95-95-4	1†		ND ND	ND ND	ND ND	ND ND							
2,4,3-u icinorophenor				ND ND			ND ND	ND ND	ND ND				ND ND	ND ND
2.4 6-trichloronhanol	88-06-7	1 17												
2,4,6-trichlorophenol	88-06-2	1†		ND	ND	NU	IND							

Table 3-2 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID								M\	W-13S							
			Date	2/6/1997	4/22/1997	9/9/1997	11/24/1997	6/10/1998	10/20/1998	12/14/1999	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006	9/17/2007	9/3/2008
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value																
	83-32-9 208-96-8	NR	20 NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	120-12-7	INK	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	56-55-3		0.002	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
	50-32-8	>ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
177	205-99-2		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(g,h,i)perylene	191-24-2	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
- ' '	207-08-9		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	100-51-6	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	85-68-7 84-74-2	50	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
carbazole	86-74-8	NR	NR	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	193-39-5	, mix	0.002	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND
111 111	106-47-8	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(-2-chloroethoxy)methane	111-91-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
` ''	111-44-4	1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	91-85-7		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	95-57-8	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
, , , , , , , , , , , , , , , , , , , ,	108-60-1	5	0.002	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	218-01-9 55-70-3	NR	0.002 NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	132-64-9	NR NR	NR NR	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
	95-50-1	3		ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND
1,3-dichlorobenzene	541-73-1	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-dichlorobenzene	106-46-7	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	91-94-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	120-83-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	84-66-2		50 50	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND
	131-11-3 105-67-9		50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	51-28-5		10	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
	121-14-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	606-20-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-ethylhexyl)phthalate	117-81-7	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	206-44-0		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	86-73-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	118-74-1 87-68-3	0.04 0.5		ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
	77-47-4	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	67-72-1	5		ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND
	78-59-1		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-methlynapthalene	91-57-6	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-methylphenol	95-48-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	534-52-1	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	59-50-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3- and 4-methylphenol	NA 91-20-3	1†	10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	91-20-3 88-74-4	5	10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
3-nitroaniline	99-09-2	5		ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND
	100-01-6	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	98-95-3	0.4		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	88-75-5	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	100-02-7	1†	NO	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	62-75-9 86-30-6	NR	NR 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	86-30-6 117-84-0	 	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	87-86-5	1†		ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
	85-01-8		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND
	108-95-2	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	101-55-3	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7005-72-3	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	621-64-7	NR	NR	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND ND
	129-00-0 120-82-1	5	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	95-95-4	1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	88-06-2	1†		ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
-, -,-				_															
Toal SVOCs		<u> </u>		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Table 3-2 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID						MW-13S					
		I	Date	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019
Analyte	CAS No.	NYS Water Quality Standard	NYS Water Quality Guidance Value	μg/L	μg/L	μg/L	μg/L							
acenapthene	83-32-9	Standard	20	ND	ND	ND	ND							
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND							
anthracene	120-12-7		50	ND	ND	ND	ND							
benzo(a)anthracene benzo(a)pyrene	56-55-3 50-32-8	>ND	0.002	ND ND	ND ND	ND ND	ND ND							
benzo(a)pyrene benzo(b)fluoranthene	205-99-2	>ND	0.002	ND ND	ND ND	ND ND	ND							
benzo(g,h,i)perylene	191-24-2	NR	NR	ND	ND	ND	ND							
benzo(k)fluoranthene	207-08-9		0.002	ND	ND	ND	ND							
benzyl alcohol	100-51-6	NR	NR 50	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
butly benzyl phthalate di-n-butylphthalate	85-68-7 84-74-2	50	50	ND ND	ND ND	ND ND	ND ND							
carbazole	86-74-8	NR	NR	ND	ND	ND	ND							
indeno(1,2,3-cd)pyrene	193-39-5		0.002	ND	ND	ND	ND							
4-chloroaniline	106-47-8	5		ND	ND	ND	ND							
bis(-2-chloroethoxy)methane bis(2-chloroethyl)ether	111-91-1 111-44-4	5 1		ND ND	ND ND	ND ND	ND ND							
2-chloronapthalene	91-85-7	<u> </u>	10	ND ND	ND ND	ND ND	ND ND							
2-chlorophenol	95-57-8	1†		ND	ND	ND	ND							
2,2'-oxybis(1-chloropropane)	108-60-1	5		ND	ND	ND	ND							
chrysene	218-01-9	 	0.002	ND	ND	ND	ND							
dibenzo(a,h)anthracene	55-70-3 132-64-9	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND							
dibenzofuran 1,2-dichlorobenzene	95-50-1	3 3	NK	ND ND	ND ND	ND ND	ND ND							
1,3-dichlorobenzene	541-73-1	3		ND	ND	ND	ND							
1,4-dichlorobenzene	106-46-7	3		ND	ND	ND	ND							
3,3'-dichlorobenzidine	91-94-1	5		ND	ND	ND	ND							
2,4-dichlorophenol	120-83-2	5		ND	ND	ND	ND							
diethylphthalate dimethyl phthalate	84-66-2 131-11-3		50 50	ND ND	ND ND	ND ND	ND ND							
2,4-dimethylphenol	105-67-9		50	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND
2,4-dinitrophenol	51-28-5		10	ND	ND	ND	ND							
2,4-dinitrotoluene	121-14-2	5		ND	ND	ND	ND							
2,6-dinitrotoluene	606-20-2	5		ND	ND	ND	ND							
bis(2-ethylhexyl)phthalate	117-81-7 206-44-0	5	50	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	14 ND	ND ND
fluoranthene fluorene	86-73-7		50	ND ND	ND ND	ND ND	ND ND							
hexachlorobenzene	118-74-1	0.04	30	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachlorobutadiene	87-68-3	0.5		ND	ND	ND	ND							
hexachlorocyclopentadiene	77-47-4	5		ND	ND	ND	ND							
hexachloroethane	67-72-1	5		ND	ND	ND	ND ND							
isophorone 2-methlynapthalene	78-59-1 91-57-6	NR	50 NR	ND ND	ND ND	ND ND	ND ND							
2-methylphenol	95-48-7	1†	NIK	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND
4,6-dinitro-2-methylphenol	534-52-1	1†		ND	ND	ND	ND							
4-chloro-3-methylphenol	59-50-7	1†		ND	ND	ND	ND							
3- and 4-methylphenol	NA	1†	4.5	ND	ND	ND	ND							
napthalene 2-nitroaniline	91-20-3 88-74-4	5	10	ND ND	ND ND	ND ND	ND ND							
2-nitroaniline 3-nitroaniline	99-09-2	5		ND ND	ND ND	ND ND	ND ND							
4-nitroaniline	100-01-6	5		ND	ND	ND	ND							
nitrobenzene	98-95-3	0.4		ND	ND	ND	ND							
2-nitrophenol	88-75-5	1†		ND	ND	ND	ND							
4-nitrophenol	100-02-7	1†	ND	ND ND	ND ND	ND ND	ND ND							
n-nitrosodimethylamine n-nitrosodiphenylamine	62-75-9 86-30-6	NR	NR 50	ND ND	ND ND	ND ND	ND ND							
di-n-octyl phthalate	117-84-0	1	50	ND	ND ND	ND ND	ND ND	ND						
pentachlorophenol	87-86-5	1†		ND	ND	ND	ND							
phenanthrene	85-01-8		50	ND	ND	ND	ND							
phenol	108-95-2	1†	N/D	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND
4-bromophenyl-phenylether 4-chlorophenyl-phenylether	101-55-3 7005-72-3	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND							
4-chlorophenyl-phenylether n-nitroso-di-n-propylamine	621-64-7	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND							
pyrene	129-00-0		50	ND	ND ND	ND ND	ND ND	ND						
1,2,4-trichlorobenzene	120-82-1	5		ND	ND	ND	ND							
2,4,5-trichlorophenol	95-95-4	1†		ND	ND	ND	ND							
2,4,6-trichlorophenol	88-06-2	1†		ND	ND	ND	ND							
Tailsugg		T		ND	ND	1.4	ND							
Toal SVOCs		1		ND	ND	14	ND							

Table 3-2 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

acenapthene acenapthylene 201	AS No. NYS 33-32-9 08-96-8 20-12-7 66-55-3 60-32-8 05-99-2 91-24-2 07-08-9 00-51-6 85-68-7 44-74-2 66-74-8 93-39-5 06-47-8 11-91-1 11-44-4 11-85-7	NR >ND NR NR SND NR NR SO NR 50 NR	Date NYS Water Quality Guidance Value 20 NR 50 0.002 NR 0.002 NR 0.002 NR 0.002 NR	2/7/1997 µg/L 21 ND ND ND ND ND ND ND ND ND N	4/22/1997 µg/L ND ND ND ND ND ND ND ND ND N	9/9/1997 µg/L 8.8 ND ND ND ND ND ND ND ND ND N	11/24/1997 µg/L ND ND ND ND ND ND ND ND ND N	6/10/1998 μg/L 5.9 ND ND ND ND ND	10/20/1998 μg/L ND ND ND ND	12/14/1999 μg/L ND ND ND	8/17/2000 μg/L ND ND	9/27/2001 μg/L ND ND	10/17/2002 μg/L ND ND	8/28/2003 μg/L ND ND	9/19/2004 μg/L ND ND	9/11/2005 μg/L ND ND	8/10/2006 μg/L ND	9/17/2007 μg/L ND	9/3/2008 μg/L ND
acenapthene acenapthylene 201	33-32-9 88-96-8 20-12-7 66-55-3 90-32-8 90-59-9-2 91-24-2 90-51-6 85-68-7 44-74-2 66-74-8 93-39-5 96-47-8 11-91-1 11-44-4	Standard NR >ND NR NR NR NR SO NR 50 NR	Guidance Value 20 NR 50 0.002 NR 0.002 NR 0.002 NR 0.002 NR 0.002 NR	21 ND	ND N	8.8 ND ND ND ND ND ND ND	ND ND ND ND ND ND	5.9 ND ND ND	ND ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
acenapthylene anthracene 120 anthracene 120 anthracene 120 benzo(a)anthracene 50 benzo(b)fluoranthene 200 benzo(g,h,i)perylene 190 benzo(k)fluoranthene 200 benzo(k)fluoranthene 200 benzo(k)fluoranthene 200 benzyl alcohol 100 butly benzyl phthalate 34 di-n-butylphthalate 34 carbazole 36 indeno(1,2,3-cd)pyrene 190 4-chloroaniline 100 bis(-2-chloroethyy)methane 110 bis(-2-chloroethyl)tether 111 bis(2-chloroapthalene 91	08-96-8 20-12-7 16-55-3 10-32-8 10-32-8 10-32-8 10-32-8 10-32-8 10-32-8 10-32-8 10-32-8 10-32-8 10-32-8 10-32-8 11-91-1 11-44-4	>ND NR NR NR 50	NR 50 0.002 0.002 NR 0.002 NR 50	ND N	ND	ND	ND ND ND ND ND	ND ND ND ND	ND ND	ND	ND								
anthracene benzo(a)anthracene benzo(a)anthracene benzo(a)pyrene benzo(g,h,i)perylene benzo(g,h,i)perylene benzo(k)fluoranthene benzy alcohol butly benzy phthalate di-n-butylphthalate carbazole indeno(1,2,3-cd)pyrene bis(-2-chloroethyy)methane bis(2-chloroethyy)tether 2-chloronapthalene 91	20-12-7 66-55-3 60-32-8 60-32-8 60-32-8 60-32-8 60-32-8 60-59-2 91-24-2 07-08-9 90-51-6 18-68-7 14-74-2 18-74-8 18-74-8 11-91-1 11-44-4	>ND NR NR NR 50	50 0.002 0.002 NR 0.002 NR 50	ND N	ND	ND ND ND ND ND	ND ND ND ND	ND ND ND	ND			ND	ND	ND	ND	ND	ND	ND	l .
benzo(a)anthracene benzo(a)pyrene benzo(b)fluoranthene benzo(g,h,i)perylene benzo(k)fluoranthene benzo(k)fluoranthene benzo(k)fluoranthene benzo(k)fluoranthene benzyl alcohol butly benzyl phthalate di-n-butylphthalate carbazole indeno(1,2,3-cd)pyrene 4-chloroaniline bis(-2-chloroethyy)methane bis(2-chloroethyy)methane bis(2-chloroethyl)tethe 11:	66-55-3 60-32-8 05-99-2 91-24-2 07-08-9 00-51-6 85-68-7 84-74-2 16-74-8 93-39-5 00-47-8 11-91-1 11-44-4	NR NR 50 NR	0.002 0.002 NR 0.002 NR 50	ND	ND ND ND ND ND	ND ND ND ND	ND ND ND	ND ND		ND			IND	INU		IND	ND	ND	ND
benzo(a)pyrene 50	60-32-8 05-99-2 91-24-2 07-08-9 00-51-6 15-68-7 14-74-2 16-74-8 193-39-5 06-47-8 11-91-1 11-44-4	NR NR 50 NR	0.002 NR 0.002 NR 50	ND ND ND ND ND	ND ND ND ND	ND ND ND	ND ND ND	ND	ND ND		ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(b)fluoranthene 203 benzo(g,h,i)perylene 193 benzo(k)fluoranthene 203 benzyl alcohol 103 butly benzyl phthalate 85 di-n-butylphthalate 84 carbazole 86 indeno(1,2,3-cd)pyrene 193 di-n-butylphthalate 193 carbazole 193 c	05-99-2 91-24-2 07-08-9 00-51-6 35-68-7 34-74-2 36-74-8 93-39-5 06-47-8 11-91-1 11-44-4	NR NR 50 NR	NR 0.002 NR 50	ND ND ND ND	ND ND ND	ND ND ND	ND ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(g,h,i)perylene 19: benzo(k)fluoranthene 20: benzyl alcohol 10: butly benzyl phthalate 84: di-n-butylphthalate 84: carbazole 16: indeno(1,2,3-cd)pyrene 19: 4-chloroaniline 10: bis(-2-chloroethyy)methane 11: bis(2-chloronapthalene 91: 2-chloronapthalene 91:	91-24-2 07-08-9 00-51-6 85-68-7 84-74-2 86-74-8 93-39-5 06-47-8 11-91-1 11-44-4	NR 50 NR 5	NR 0.002 NR 50	ND ND ND	ND ND ND	ND ND	ND		ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND
benzo(k)fluoranthene 207 benzyl alcohol 100 butly benzyl phthalate 84 di-n-butylphthalate 84 carbazole 86 indeno(1,2,3-cd)pyrene 197 4-chloroaniline 101 bis(-2-chloroethyylphthalate 111 bis(2-chloroapthalene 91 2-chloronapthalene 91	07-08-9 00-51-6 85-68-7 84-74-2 86-74-8 93-39-5 06-47-8 11-91-1 11-44-4	NR 50 NR 5	0.002 NR 50 NR	ND ND ND	ND ND	ND		ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
benzyl alcohol 100	00-51-6 85-68-7 84-74-2 86-74-8 93-39-5 06-47-8 11-91-1 11-44-4	50 NR	NR 50 NR	ND ND	ND		ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND
di-n-butylphthalate	34-74-2 36-74-8 93-39-5 06-47-8 11-91-1 11-44-4	NR 5	NR		ND		ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND ND
carbazole 86 indeno(1,2,3-cd)pyrene 193 4-chloroaniline 101 bis(-2-chloroethoxy)methane 113 bis(2-chloroethy)lether 114 2-chloronapthalene 91 2-chloronapthalene 91	86-74-8 93-39-5 06-47-8 11-91-1 11-44-4	NR 5		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
indeno(1,2,3-cd)pyrene	93-39-5 06-47-8 11-91-1 11-44-4	5			ND	5.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-chloroaniline 100 bis{-2-chloroethoxy}methane 11: bis{2-chloroethyl}ether 11: 2-chloronapthalene 91	06-47-8 11-91-1 11-44-4		0.002	5.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(-2-chloroethoxy)methane 11: bis(2-chloroethyl)ether 11: 2-chloronapthalene 91	11-91-1 11-44-4		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-chloroethyl)ether 11: 2-chloronapthalene 91	11-44-4			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-chloronapthalene 91		5 1		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
		-	10	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-chlorophenol 95	95-57-8	1†	10	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND ND
	08-60-1	5		ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND
	18-01-9		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibenzo(a,h)anthracene 55	5-70-3	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	32-64-9	NR	NR	13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	95-50-1	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
,	41-73-1	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
,	06-46-7	5		ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND
,	91-94-1 20-83-2	5	+	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
·	34-66-2	,	50	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND ND
,,	31-11-3		50	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND ND
	05-67-9		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-dinitrophenol 51	1-28-5		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
, ,	21-14-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	06-20-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17-81-7	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	06-44-0		50 50	ND 16	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND
	36-73-7 18-74-1	0.04	30	16 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	37-68-3	0.5		ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND
	77-47-4	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	57-72-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	78-59-1		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	91-57-6	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	95-48-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
, ,	34-52-1	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	9-50-7 NA	1† 1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	NA 91-20-3	1.	10	19	ND ND	8.7	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	88-74-4	5		ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND
	99-09-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-nitroaniline 100	00-01-6	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	98-95-3	0.4		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	88-75-5	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	00-02-7	1†	N.F.	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND
	62-75-9 86-30-6	NR	NR 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	17-84-0	-	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	37-86-5	1†	55	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
	85-01-8	-	50	19	ND ND	7.8	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND ND
•	08-95-2	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	01-55-3	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	05-72-3	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	21-64-7	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	29-00-0		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	20-82-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	95-95-4	1† 1+		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4,6-trichlorophenol 88	88-06-2	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Table 3-2 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID						MW-13M					
			Date	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019
Analyte	CAS No.	NYS Water Quality Standard	NYS Water Quality Guidance Value	μg/L	μg/L	μg/L	μg/L							
acenapthene	83-32-9		20	ND	ND	ND	ND							
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND							
anthracene	120-12-7		50	ND	ND	ND	ND							
benzo(a)anthracene	56-55-3		0.002	ND	ND	ND	ND							
benzo(a)pyrene	50-32-8	>ND		ND	ND	ND	ND							
benzo(b)fluoranthene benzo(g,h,i)perylene	205-99-2 191-24-2	NR	0.002 NR	ND ND	ND ND	ND ND	ND ND							
benzo(k)fluoranthene	207-08-9	INK	0.002	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND
benzyl alcohol	100-51-6	NR	NR	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND
butly benzyl phthalate	85-68-7		50	ND	ND	ND	ND							
di-n-butylphthalate	84-74-2	50		ND	ND	ND	ND							
carbazole	86-74-8	NR	NR	ND	ND	ND	ND							
indeno(1,2,3-cd)pyrene	193-39-5	_	0.002	ND	ND	ND	ND							
4-chloroaniline	106-47-8	5		ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND
bis(-2-chloroethoxy)methane bis(2-chloroethyl)ether	111-91-1 111-44-4	1		ND ND	ND ND	ND ND	ND ND							
2-chloronapthalene	91-85-7	-	10	ND	ND	ND	ND							
2-chlorophenol	95-57-8	1†	-	ND	ND	ND	ND							
2,2'-oxybis(1-chloropropane)	108-60-1	5		ND	ND	ND	ND							
chrysene	218-01-9		0.002	ND	ND	ND	ND							
dibenzo(a,h)anthracene	55-70-3	NR	NR	ND	ND	ND	ND							
dibenzofuran	132-64-9	NR	NR	ND	ND	ND	ND							
1,2-dichlorobenzene	95-50-1	3		ND ND	ND ND	ND ND	ND ND							
1,3-dichlorobenzene 1,4-dichlorobenzene	541-73-1 106-46-7	3		ND ND	ND ND	ND ND	ND ND							
3.3'-dichlorobenzidine	91-94-1	5		ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND
2,4-dichlorophenol	120-83-2	5		ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND
diethylphthalate	84-66-2		50	ND	ND	ND	ND							
dimethyl phthalate	131-11-3		50	ND	ND	ND	ND							
2,4-dimethylphenol	105-67-9		50	ND	ND	ND	ND							
2,4-dinitrophenol	51-28-5	_	10	ND	ND	ND	ND							
2,4-dinitrotoluene	121-14-2	5		ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,6-dinitrotoluene bis(2-ethylhexyl)phthalate	606-20-2 117-81-7	5		ND ND	ND ND	ND ND	ND ND							
fluoranthene	206-44-0	,	50	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
fluorene	86-73-7		50	ND	ND	ND	ND							
hexachlorobenzene	118-74-1	0.04		ND	ND	ND	ND							
hexachlorobutadiene	87-68-3	0.5		ND	ND	ND	ND							
hexachlorocyclopentadiene	77-47-4	5		ND	ND	ND	ND							
hexachloroethane	67-72-1	5		ND	ND	ND	ND							
isophorone 2-methlynapthalene	78-59-1 91-57-6	NR	50 NR	ND ND	ND ND	ND ND	ND ND							
2-methylphenol	95-48-7	1†	INIX	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND
4,6-dinitro-2-methylphenol	534-52-1	1†		ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND
4-chloro-3-methylphenol	59-50-7	1†		ND	ND	ND	ND							
3- and 4-methylphenol	NA	1†		ND	ND	ND	ND							
napthalene	91-20-3		10	ND	ND	ND	ND							
2-nitroaniline	88-74-4	5		ND	ND	ND	ND							
3-nitroaniline	99-09-2	5		ND ND	ND ND	ND ND	ND ND							
4-nitroaniline nitrobenzene	98-95-3	0.4		ND ND	ND ND	ND ND	ND ND							
2-nitrophenol	88-75-5	1†		ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-nitrophenol	100-02-7	1†		ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND
n-nitrosodimethylamine	62-75-9	NR	NR	ND	ND	ND	ND							
n-nitrosodiphenylamine	86-30-6		50	ND	ND	ND	ND							
di-n-octyl phthalate	117-84-0		50	ND	ND	ND	ND							
pentachlorophenol	87-86-5	1†		ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND
phenanthrene	85-01-8	1†	50	ND ND	ND ND	ND ND	ND ND							
phenol 4-bromophenyl-phenylether	108-95-2 101-55-3	NR	NR	ND ND	ND ND	ND ND	ND ND							
4-chlorophenyl-phenylether	7005-72-3	NR	NR NR	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
n-nitroso-di-n-propylamine	621-64-7	NR	NR	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND
pyrene	129-00-0		50	ND	ND	ND	ND							
1,2,4-trichlorobenzene	120-82-1	5		ND	ND	ND	ND							
2,4,5-trichlorophenol	95-95-4	1†		ND	ND	ND	ND							
2,4,6-trichlorophenol	88-06-2	1†		ND	ND	ND	ND							
ı			-											
Toal SVOCs				ND	ND	ND	ND							

Table 3-2 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID								MW-1	AC .							
			Date	2/7/1997	4/22/1997	9/9/1997	11/24/1997	6/9/1998	10/20/1998	12/14/1999	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006	9/17/2007	9/3/2008
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value																
acenapthene acenapthylene	83-32-9 208-96-8	NR	20 NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS* NS*	ND ND	ND ND	ND ND	ND ND	ND ND
anthracene	120-12-7	INK	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS*	ND ND	ND ND	ND ND	ND ND	ND ND
benzo(a)anthracene	56-55-3		0.002	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	NS*	ND ND	ND	ND	ND ND	ND
benzo(a)pyrene	50-32-8	>ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS*	ND	ND	ND	ND	ND
benzo(b)fluoranthene	205-99-2		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS*	ND	ND	ND	ND	ND
benzo(g,h,i)perylene	191-24-2	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
benzo(k)fluoranthene	207-08-9	ND.	0.002 NR	ND	ND	ND	ND ND	ND	ND	ND	ND NB	ND	ND	NS *	ND	ND	ND	ND	ND
benzyl alcohol butly benzyl phthalate	100-51-6 85-68-7	NR	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
di-n-butylphthalate	84-74-2	50	30	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND	ND	ND ND	ND ND	ND ND
carbazole	86-74-8	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
indeno(1,2,3-cd)pyrene	193-39-5		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
4-chloroaniline	106-47-8	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
bis(-2-chloroethoxy)methane	111-91-1	5		ND	ND	ND	ND NB	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
bis(2-chloroethyl)ether 2-chloronapthalene	111-44-4 91-85-7	1	10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
2-chlorophenol	95-57-8	1†	10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
2,2'-oxybis(1-chloropropane)	108-60-1	5		ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND ND	ND	ND	ND
chrysene	218-01-9		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
dibenzo(a,h)anthracene	55-70-3	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
dibenzofuran	132-64-9	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
1,2-dichlorobenzene 1.3-dichlorobenzene	95-50-1 541-73-1	3		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
1,3-dichlorobenzene	106-46-7	3		ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND	ND ND	ND	ND ND	ND ND
3,3'-dichlorobenzidine	91-94-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
2,4-dichlorophenol	120-83-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
diethylphthalate	84-66-2		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
dimethyl phthalate	131-11-3		50	ND	ND	ND	ND ND	ND	ND ND	ND	ND NB	ND	ND	NS *	ND	ND	ND	ND	ND
2,4-dimethylphenol	105-67-9 51-28-5	1	50 10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
2,4-dinitrophenol	121-14-2	5	10	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND	ND	ND ND	ND ND	ND ND
2,6-dinitrotoluene	606-20-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
bis(2-ethylhexyl)phthalate	117-81-7	5		ND	6.5	7.4	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
fluoranthene	206-44-0		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
fluorene hexachlorobenzene	86-73-7 118-74-1	0.04	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
hexachlorobutadiene	87-68-3	0.04		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
hexachlorocyclopentadiene	77-47-4	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
hexachloroethane	67-72-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
isophorone	78-59-1		50	ND	ND	ND	ND	ND	ND	ND	ND	12	ND	NS *	ND	ND	ND	ND	ND
2-methlynapthalene	91-57-6	NR	NR	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
2-methylphenol	95-48-7 534-52-1	1† 1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
4-chloro-3-methylphenol	59-50-7	1†		ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
3- and 4-methylphenol	NA	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
napthalene	91-20-3		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
2-nitroaniline	88-74-4	5		ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
3-nitroaniline 4-nitroaniline	99-09-2 100-01-6	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
nitrobenzene	98-95-3	0.4		ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	NS *	ND	ND ND	ND	ND ND	ND ND
2-nitrophenol	88-75-5	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
4-nitrophenol	100-02-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
n-nitrosodimethylamine	62-75-9	NR	NR FO	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
n-nitrosodiphenylamine di-n-octyl phthalate	86-30-6 117-84-0	+	50 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
pentachlorophenol	87-86-5	1†	- 30	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
phenanthrene	85-01-8		50	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
phenol	108-95-2	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
4-bromophenyl-phenylether	101-55-3	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
4-chlorophenyl-phenylether	7005-72-3	NR NR	NR NB	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	NS *	ND ND	ND ND	ND	ND ND	ND ND
n-nitroso-di-n-propylamine pyrene	621-64-7 129-00-0	NR	NR 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
1,2,4-trichlorobenzene	129-00-0	5	- 30	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND	ND ND	ND ND	ND ND	ND
2,4,5-trichlorophenol	95-95-4	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
2,4,6-trichlorophenol	88-06-2	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
1			, ,				, , ,								,	1		ı	1
Toal SVOCs		1	i l	ND	6.5	7.4	ND	ND	ND	ND	ND	12	ND	NS*	ND	ND	ND	ND	ND

Notes:
Bolded results exceed NYS Ambient Water Quality Standards.
NR - No groundwater standard or guidance value available.
ND - Analyte not detected in Sample
NS - Not sampled
† - Applies to the sum total of these substances

* MW-14S - August 28, 2003 - Sampled, but not analyzed because the sample jar broke at laboratory. NYSDEC split sample contained 390 µg/L of caprolactam. No groundwater standard or guidance value for caprolactam available.

Table 3-2 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		ı	Well ID						MW-14S					
			Date	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019
Analyte	CAS No.	NYS Water Quality Standard	NYS Water Quality Guidance Value	μg/L	μg/L	μg/L	μg/L							
acenapthene	83-32-9		20	ND	ND	ND	ND							
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND							
	120-12-7		50	ND	ND	ND	ND							
	56-55-3		0.002	ND	ND	ND	ND							
	50-32-8	>ND		ND	ND	ND	ND							
	205-99-2 191-24-2	NR	0.002 NR	ND ND	ND ND	ND ND	ND ND							
	207-08-9	INIV	0.002	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND ND
	100-51-6	NR	NR	ND	ND	ND	ND							
	85-68-7		50	ND	ND	ND	ND							
di-n-butylphthalate	84-74-2	50		ND	ND	ND	ND							
carbazole	86-74-8	NR	NR	ND	ND	ND	ND							
	193-39-5	_	0.002	ND	ND	ND	ND							
	106-47-8	5		ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND
	111-91-1 111-44-4	5 1		ND ND	ND ND	ND ND	ND ND							
, ,,	91-85-7		10	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	95-57-8	1†		ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND
	108-60-1	5		ND	ND	ND	ND							
	218-01-9		0.002	ND	ND	ND	ND							
	55-70-3	NR	NR	ND	ND	ND	ND							
	132-64-9	NR	NR	ND	ND	ND	ND							
	95-50-1	3		ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND
	541-73-1 106-46-7	3		ND ND	ND ND	ND ND	ND ND							
	91-94-1	5		ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
	120-83-2	5		ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND
	84-66-2	-	50	ND	ND	ND	ND							
dimethyl phthalate	131-11-3		50	ND	ND	ND	ND							
	105-67-9		50	ND	ND	ND	ND							
	51-28-5		10	ND	ND	ND	ND							
·	121-14-2	5		ND	ND	ND	ND							
	606-20-2 117-81-7	5 5		ND ND	ND ND	ND ND	ND ND							
	206-44-0	,	50	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	86-73-7		50	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
	118-74-1	0.04		ND	ND	ND	ND							
hexachlorobutadiene	87-68-3	0.5		ND	ND	ND	ND							
<i>.</i>	77-47-4	5		ND	ND	ND	ND							
	67-72-1	5		ND	ND	ND	ND							
	78-59-1	ND.	50 NR	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND
	91-57-6 95-48-7	NR 1†	NK	ND ND	ND ND	ND ND	ND ND							
	534-52-1	1†		ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	59-50-7	1†		ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND
3- and 4-methylphenol	NA	1†		ND	ND	ND	ND							
napthalene	91-20-3		10	ND	ND	ND	ND							
2-nitroaniline	88-74-4	5		ND	ND	ND	ND							
3-nitroaniline	99-09-2	5		ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND
	100-01-6	5 0.4		ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
nitrobenzene 2-nitrophenol	98-95-3 88-75-5	0.4 1†		ND ND	ND ND	ND ND	ND ND							
	100-02-7	1†		ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
	62-75-9	NR NR	NR	ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND
	86-30-6		50	ND	ND	ND	ND							
di-n-octyl phthalate	117-84-0		50	ND	ND	ND	ND							
	87-86-5	1†		ND	ND	ND	ND							
	85-01-8		50	ND	ND	ND	ND							
	108-95-2	1† NR	NR	ND ND	ND ND	ND ND	ND ND							
	101-55-3 7005-72-3	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND							
	621-64-7	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND							
	129-00-0	1417	50	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
	120-82-1	5		ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
	95-95-4	1†		ND	ND	ND	ND							
2,4,5 themorephenon			_											ND
	88-06-2	1†		ND	ND	ND	שוו							

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-10S			
			Date	2/6/1997	4/22/1997	9/10/1997	11/25/1997	6/9/1998	10/20/1998	12/14/1999
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
,		Standard	Guidance Value	F-67 -	P-07 -	P-07 -	F-67 -	F-67 -	P-0/ -	F-6/ -
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
		<u> </u>	1				I			
Total VOCs		1		ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		13	ND	29.4	ND	14.8	57.4	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

NS - Not sampled

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		1	Well ID				MW-10S			
			Date	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value	P-07 -	P-07 -	P-07 -	1-01 -	F-6/ -	F-67 -	P-07 -
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA .	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
			1	ND	ND	ND	ND	ND	ND	ND
Total VOCs		1		ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	15.5	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-10S			
			Date	9/17/2007	9/3/2008	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
-		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Г		1			1	1	1	1	ı	1
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID			MW	'-10S		
			Date	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value						
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND
, ,		•			•				
Total VOCs				ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-10M			
			Date	2/6/1997	4/22/1997	9/10/1997	11/24/1997	6/9/1998	10/20/1998	12/14/1999
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value							1
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Т		1	1		T	1	T	T	1	1
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		15	ND	30.9	10.5	21.2	54.6	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	6.48	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

Analyte	
Analyte	8/10/2006
Standard Guidance Value Standard Suidance Value Standard Suidance Value Suida	μg/L
Section Color Co	F-67 -
Bromodichloromethane	ND
Department Ty-2-2-2 S0	ND
December T4-83-9 S	ND
2-butanone (MEK) 78-93-3 50 ND	ND
Carbon disulfide 75-15-0	ND
Carbon tetrachloride S6-23-5 S	ND
chlorobenzene 108-90-7 5 ND	ND
chloroethane 75-00-3 5 ND	ND
chloroform 67-66-3 7 ND	ND
chloromethane 74-87-3 5 ND	ND
Description	ND
1,1-dichloroethane	ND
1,2-dichloroethane	ND
1,1-dichloroethene	ND
cis-1,2-dichloroethene 156-59-2 5 ND ND <t< td=""><td>ND</td></t<>	ND
trans-1,2-dichloroethene 156-60-5 5 ND	ND
1,2-dichloropropane	ND
cis-1,3-dichloropropene 10061-01-5 0.4* ND	ND
trans-1,3-dichloropropene 10061-02-6 0.4* ND	ND
ethlybenzene 100-41-4 5 ND	ND
2-hexanone 591-78-6 50 ND	ND
methylene chloride 75-09-2 5 ND ND<	ND
4-methyl-2-pentanone (MIBK) 108-10-1 NR NR ND	ND
styrene 100-42-5 5 ND	ND
1,1,2,2-tetrachloroethane 79-34-5 5 ND ND ND ND ND ND ND	ND
	ND
	ND
tetrachloroethene 127-18-4 5 ND ND<	ND
toluene 108-88-3 5 ND	ND ND
1,1,1-trichloroethane 71-55-6 5 ND	ND ND
1,1,2-trichloroethane 79-01-6 5 ND	ND ND
ND	ND
	ND
m+p xylene NA 5 (each) ND	ND ND
טא טא טאן טאן טאן טאן טאן טאן טאן טאן טא	טוו
Total VOCs ND ND ND ND ND ND	ND
10ta 1 VOC3 10t0 10t0	NU
TPH NA ND ND 6660 566 ND ND	ND
SOLUBLE ARSENIC 7440-38-2 25 ND ND ND ND ND ND	ND
SOLUBLE LEAD 7439-92-1 25 8.44 ND ND ND ND ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

acetone benzene bromodichloromethane bromoform bromomethane	CAS No. 67-64-1 71-43-2 75-27-4 75-25-2 74-83-9	NYS Water Quality Standard	Well ID Date NYS Water Quality Guidance Value 50	9/17/2007 μg/L	9/3/2008 μg/L	9/14/2009 μg/L	MW-10M 9/22/2010 μg/L	8/23/2011 μg/L	8/28/2012 μg/L	9/12/2013 μg/L
acetone benzene bromodichloromethane bromoform bromomethane	67-64-1 71-43-2 75-27-4 75-25-2 74-83-9	Standard	NYS Water Quality Guidance Value 50	μg/L						
acetone benzene bromodichloromethane bromoform bromomethane	67-64-1 71-43-2 75-27-4 75-25-2 74-83-9	Standard	Guidance Value 50		P07 -	F-07 =				
benzene bromodichloromethane bromoform bromomethane	71-43-2 75-27-4 75-25-2 74-83-9	1	50	ND				r-6/ -	P-07 -	P-07 -
bromodichloromethane bromoform bromomethane	75-27-4 75-25-2 74-83-9	1			ND	ND	ND	ND	ND	ND
bromodichloromethane bromoform bromomethane	75-25-2 74-83-9			ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9		50	ND	ND	ND	ND	ND	ND	ND
			50	ND	ND	ND	ND	ND	ND	ND
		5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
,	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
, , , , , , , , , , , , , , , , , , , ,	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
	.0061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
	.0061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
,,,	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
,,	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
-	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA OF ARC	5 (each)		ND	ND	ND	ND	ND ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Tet-1400-			1	ND	ND	ND	ND	ND	ND	ND
Total VOCs				NU	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC 7	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD 7	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID			MW	-10M		
			Date	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value						
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND
Total VOCs				ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		Ī	Well ID				MW-10D			
			Date	2/7/1997	4/22/1997	9/10/1997	11/25/1997	6/10/1998	10/20/1998	12/14/1999
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
·		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	160	38	ND	76	19	44
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
		1					T	T		
Total VOCs				ND	160	38	ND	76	19	44
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	16.5	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-10D			
			Date	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
-		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	61	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Г		1			ı	ı	1	1	ı	1
Total VOCs				ND	ND	ND	61	ND	ND	ND
ТРН	NA			ND	ND	5820	1740	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		8.16	ND	7.87	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-10D			
			Date	9/17/2007	9/3/2008	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
-		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Г		1			1	ı	1	1	ı	1
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID			MW	-10D		
			Date	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
,		Standard	Guidance Value	. 5					
acetone	67-64-1		50	ND	ND	ND	ND	2	10
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND
m+p xylene	NA OF 47.6	5 (each)		ND	ND ND	ND ND	ND ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND
				ND	ND	l ND	ND	1 2	10
Total VOCs		1		ND	ND	ND	ND	2	10
ТРН	NA			ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-11S			
			Date	2/7/1997	4/22/1997	9/9/1997	11/25/1997	6/9/1998	10/20/1998	12/14/1999
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6	_	50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND ND	ND	ND	ND ND	ND
styrene	100-42-5 79-34-5	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,2,2-tetrachloroethane										
tetrachloroethene	127-18-4 108-88-3	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
toluene 1,1,1-trichloroethane	71-55-6	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,2-trichloroethane	79-00-5	1		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
trichloroethene	79-00-5	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
vinyl chloride	75-01-6	2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
· 1	75-01-4 NA	5 (each)		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
m+p xylene o-xylene	95-47-6	5 (eacn)		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
о-хутепе	33-47-0	, ,		IVD	IAD	ND	ND	ND	ND	ND
Total VOCs				ND	ND	ND	ND	ND	ND	ND
Total vocs		1		IND	ND	ND	I ND	ND	ND	NU
ТРН	NA			714	554	818	2480	1230	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		17.4	ND	39.8	14.8	23.6	57.7	ND ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND ND	ND ND	ND ND	ND ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-11S			
			Date	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value	P-07 -	P-07 -	P-07 -	1-01 -	F-6/ -	F-67 -	F-6/ -
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
		<u> </u>								
Total VOCs		1		ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	1030	1390	1100	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID MW-11S							
			Date	9/17/2007	9/3/2008	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Г		1			1	1	1	1	ı	1
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID	MW-11S							
			Date	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019		
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L		
		Standard	Guidance Value								
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND		
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND		
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND		
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND		
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND		
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND		
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND		
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND		
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND		
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND		
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND		
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND		
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND		
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND		
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND		
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND		
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND		
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND		
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND		
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND		
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND		
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND		
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND		
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND		
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND		
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND		
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND		
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND		
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND		
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND		
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND		
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND		
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND		
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND		
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND		
Total VOCs				ND	ND	ND	ND	ND	ND		
ТРН	NA			ND	ND	ND	ND	ND	ND		
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND		
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND		

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-11M			
			Date	2/7/1997	4/22/1997	9/9/1997	11/25/1997	6/9/1998	10/20/1998	12/14/1999
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value	F-67 -	P-07 -	P-07 -	P-07 -	F-67 -	P-0/ -	F-6/ -
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	14	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
			1		T					
Total VOCs		1		ND	ND	14	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		12.7	ND	35.4	10.6	21.4	48.1	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		1	Well ID				MW-11M			
			Date	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
, , ,		Standard	Guidance Value	1.0	10,	1.0	1.0	1.0		10
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Г						1		T		1
Total VOCs		ı		ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	632	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	18	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID MW-11M							
			Date	9/17/2007	9/3/2008	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
-		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Г		1			1	ı	1	1	ı	1
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID MW-11M							
			Date	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019	
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	
		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	
Total VOCs				ND	ND	ND	ND	ND	ND	
ТРН	NA			ND	ND	ND	ND	ND	ND	
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID MW-12S							
			Date	2/6/1997	4/22/1997	9/9/1997	11/24/1997	6/9/1998	10/20/1998	12/14/1999
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
-		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	16
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Г		1			ı	1	1	1	1	
Total VOCs				ND	ND	ND	ND	ND	ND	16
ТРН	NA			1280	ND	1420	2040	517	520	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	29.2	10.9	20	47.1	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		1	Well ID				MW-12S			
			Date	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
, , ,		Standard	Guidance Value	1.0	10,	1.0	1.0	1.0	10	10
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
		<u> </u>								
Total VOCs		1		ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	892	561	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		1	Well ID				MW-12S			
			Date	9/17/2007	9/3/2008	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value	P-07 -	P-07 -	P-07 -	P-07 -	F-6/ -	F-67 -	F-07 -
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	16
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
		<u> </u>								
Total VOCs		1		ND	ND	ND	ND	ND	ND	16
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID MW-12S							
			Date	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019	
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	
		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	
					1	1			1	
Total VOCs				ND	ND	ND	ND	ND	ND	
ТРН	NA			ND	ND	ND	ND	ND	ND	
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID MW-12M							
			Date	2/6/1997	4/22/1997	9/9/1997	11/24/1997	6/10/1998	10/20/1998	12/14/1999
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
-		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	64	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Т		1	1		T	1	T	T	1	T
Total VOCs				ND	ND	64	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	17.1	ND	14.6	31.4	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		1	Well ID				MW-12M			
			Date	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
, , ,		Standard	Guidance Value	1.0	10,	1.0	1.0	1.0	10	
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
		<u> </u>				T				
Total VOCs		1		ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	1120	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	7.48	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID MW-12M							
			Date	9/17/2007	9/3/2008	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Т		1			T	T	T	T	1	T
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID MW-12M							
			Date	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019	
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	
		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	
Total VOCs				ND	ND	ND	ND	ND	ND	
ТРН	NA			ND	ND	ND	ND	ND	ND	
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		1	Well ID				MW-12D			
			Date	2/6/1997	4/22/1997	9/9/1997	11/24/1997	6/9/1998	10/20/1998	12/14/1999
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
,,,,		Standard	Guidance Value	1.0	10,	1.0	10	1.0		1.0
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	10	ND	24	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA .	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
			1	ND	ND	10	l ND	24	ND	ND
Total VOCs		<u> </u>		ND	ND	10	ND	24	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	39.2	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		1	Well ID				MW-12D			
			Date	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
, , ,		Standard	Guidance Value	1.0	10,	1.0	1.0	1.0		1.0
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
			1			1		T		T
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	681	697	1030	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	7.3	9.88	ND	6.84	6.8

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-12D			
			Date	9/17/2007	9/3/2008	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value	r-o/ -	P-07 -	1-07 -	P-07 -	P-07 -	P-07 -	F-07 -
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA OF AR C	5 (each)		ND	ND	ND	ND	ND	ND ND	ND ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Total VOCs				ND	ND	ND	ND	ND	ND	ND
i otal vocs		<u> </u>		טאו	טא	טא	עוו	טא	ND	טא ן
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID MW-12D							
			Date	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019	
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	
		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	
Total VOCs				ND	ND	ND	ND	ND	ND	
ТРН	NA			ND	ND	ND	ND	ND	ND	
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-13S			
			Date	2/6/1997	4/22/1997	9/9/1997	11/24/1997	6/10/1998	10/20/1998	12/14/1999
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value	P-07 -	P-07 -	P-07 -	1-07 -	F-67 -	P-0/ -	F-6/ -
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA .	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
			1	ND	ND	ND	l ND	ND	ND	ND
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		14	ND	38.1	10	39.5	29	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	5.4	148	15.3	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID MW-13S							
			Date	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Т		1			1	T		T	1	T
Total VOCs		1		ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	27.4	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		1	Well ID				MW-13S			
			Date	9/17/2007	9/3/2008	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
,		Standard	Guidance Value	P-07 -	P-07 -	1-07 -	P-07 -	F-6/ -	P-07 -	F-07 -
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
T										
Total VOCs		1		ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	11.4	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID	MW-13S							
			Date	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019		
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L		
		Standard	Guidance Value								
acetone	67-64-1		50	ND	ND	ND	ND	ND	12		
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND		
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND		
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND		
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND		
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND		
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND		
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND		
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND		
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND		
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND		
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND		
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND		
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND		
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND		
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND		
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND		
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND		
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND		
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND		
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND		
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND		
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND		
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND		
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND		
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND		
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND		
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND		
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND		
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND		
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND		
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND		
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND		
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND		
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND		
Tatalyon		F		ND	ND	ND.	ND	ND	12		
Total VOCs				ND	ND	ND	ND	ND	12		
ТРН	NA			ND	ND	ND	ND	ND	ND		
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND		
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND		

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID MW-13M							
			Date	2/7/1997	4/22/1997	9/9/1997	11/24/1997	6/10/1998	10/20/1998	12/14/1999
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
-		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Т		1	1		1		T	T	1	T
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	20.1	10.1	25.7	39	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	33	10	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		1	Well ID				MW-13M			
			Date	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
, , ,		Standard	Guidance Value	1.0	10,	1.0	1.0	1.0		
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
		<u> </u>								
Total VOCs		1		ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	12.6	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		11.7	ND	67.3	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-13M			
			Date	9/17/2007	9/3/2008	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
-		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Г		1			1	1	1	1	ı	1
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID			MW	-13M		
			Date	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value						
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND
, ,		•			•				
Total VOCs				ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	12	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		1	Well ID				MW-14S			
			Date	2/7/1997	4/22/1997	9/9/1997	11/24/1997	6/9/1998	10/20/1998	12/14/1999
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
,		Standard	Guidance Value	P-07 -	P-07 -	P-07 -	P-07 -	P-07 -	P-0/ -	F-6/ -
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND ND	ND ND	ND	ND ND	ND ND
trichloroethene	79-01-6	5		ND	ND	ND ND	ND ND	ND	ND ND	ND ND
vinyl chloride	75-01-4	2 5 (h)		ND	ND	ND ND	ND ND	ND	ND ND	ND ND
m+p xylene	NA OF 47.6	5 (each)		ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Total VOCs				ND	ND	ND	ND	ND	ND	ND
I otal VOCs		ı		NU	ND	עא ו	ND	ND	עוא ו	ND.
ТРН	NA			ND	ND	2780	1180	1410	957	1060
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	26.2	12.1	16.9	37.8	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-14S			
			Date	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Т		1			T	T		T	1	T
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	2780	2370	1260	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	10.7	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		1	Well ID				MW-14S			
			Date	9/17/2007	9/3/2008	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value	P-07 -	P-07 -	P-07 -	P-07 -	F-6/ -	F-67 -	F-07 -
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
		<u> </u>								
Total VOCs		1		ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-3 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2019

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID			MW	'-14S		
			Date	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value						
acetone	67-64-1		50	ND	ND	ND	ND	ND	14
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND
- , ,			l .						
Total VOCs				ND	ND	ND	ND	ND	14
ТРН	NA			ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Prepared by: MP Date: 11/23/20

Checked by:RTM Date:1/8/21

TABLE 4-1 UNION ROAD GROUNDWATER MONITORING REPORT

GROUNDWATER WELL MEASUREMENTS August 13, 2020

Well Number	Riser Elev. ¹ (Feet)	Depth to Water (Feet)	Water Elev. (Feet)
10S	623.09	9.78	613.31
10M	622.50	11.91	610.59
10D	622.02	14.84	607.18
11S	622.74	14.28	608.46
11M	622.86	20.19	602.67
12S	622.62	19.53	603.09
12M	622.97	20.99	601.98
12D	621.18	18.23	602.95
13S	622.96	12.22	610.74
13M	621.66	12.10	609.56
14S ²	621.61	10.03	611.58
15	624.67	14.81	609.86
16	624.51	14.78	609.73
17	624.44	20.70	603.74
18 ³	624.67	Dry	<602.75
19	625.08	21.33	603.75
20 4	631.98	28.10	603.88
21	629.25	25.51	603.74
22 4	629.24	25.50	603.74
23S	607.45	8.11	599.34
RW1 ⁵	623.76	NM	598.76

¹ Elevations were surveyed by Douglas C. Meyers P.L.S., P.C. on March 17, 1997.

² MW-14S was reinstalled and resurveyed on August 19, 1997.

³ MW-18 is dry; measuring tape stopped without indicating water.

⁴ Depth measured to free product. Both MW-20 and MW-22 have free product on water surface; therefore water level measurement is conservatively assumed as the top of the oil layer (Because of the less dense oil, the actual water elevation would be lower).

⁵ Groundwater measurement was not taken in RW1. The assumed elevation is at the pump inlet (598.76).

⁶ NM: Not Measured

⁷ All Elevations are referenced to Mean Sea Level

Union Road Site: Groundwater Monitoring Report Period: Annual 2020

APPENDIX A

BORING LOGS AND WELL CONSTRUCTION DRAWINGS

	Woolcan - 2035 - 200 Bufface NY	and the second s	
CRILLING CONTRAC	MANM	7	
जुड़ GZOLOGIST.	JOHN J ZACHER JR		
DRILLING EQUIPM	HSA G" WE HSA	SRIT SPOON	ART. FINISH Q
WELL INSTALLED?	CASING MAT./OIA. SCREEN: STAINLESS STEEL 12" TYPE SLOT MAT. STAINLESS U		07 81780 22
	GROUNG SURFACE TOP OF WELL CARRY TOP & BOTTOM SC		BATE
SEM A GW C.	21', SIMPLES TO 20'		
	LOG OF TEST BORING		L COMBY.
41 17 44 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BESCRIPTION	REMARKS	ES KE
-	SAMELING STARTS AT 41 B.G.		
- 4 4 6 5 5 5 5 5 5 5 5 5	BER TO THE HOUSER BECKE FULLY	STIFF, Dilyin	
- 6 100	0-3" PERCETO TANKER GLAY SEME RECLES - TO 3/4"	STIFE DIMP	7/17
21 25 20 5	15-21' BROWNIAN COAY SCHE SIND PUTTLE SILL TRAGRE	COUCCIOSIVE	
- 10 10 24" 3 1b	TANBIEC CLAY	STIFF, LITTLE HZ	1/1 5mJ
$\frac{10}{12}$ $\frac{12}{3}$ $\frac{2}{3}$	TAN 141 BROWN CLIFT	HEN STIEF	
12 2 16" 3 14	TANKIBEOUR CLIFY -TRACE SILIS	MED STIFF SUMF HEC	
17 2 2	CREY TO ET BROWN CLINY SEE LITTLE RELIAND ROCKS	\$160 37166 51.46 Hz 0	
16 3 3 2 3 3	TAN TOUT BROWN SLA-(MEDSTIFF SLAE HZC	
18 3	GRENISH DIEN GLAY TRACECTERINICS.	HEDSTIFE STHE HZC	

1=

BCRING NG. 10-M PROJECT NO. NAMI CRILLING CONTRACT	Nouloan - 2035 - 200 LOCATION BUFFALL A	To the second	
GEOLOGIST.	JOHN J ZACHER JR		
DRILLING EQUIPME	HSA 6" HSA	SRIT SPOOL 18/47	
ELEVATION OF: Q	LASING MAT./DIA. SCREEN	M SCHEN GW SURFACE	ZZO AZ BATE
REMARKS:	LOG OF TEST EG	DING.	
32 1 1 32 2 2 3 4 5 4 5 5 4 5 5 6 5 6 5 6 5 6 5 6 5 6 5	197,00 p		FIEC.
132 1 4 3 1 4 C 1	MOITGIRDESO	EXRAMBA	MEI CAN
- 5 July 20 5 5	RIX 10 TAD GREY CLAY WILLITTLE AXXX TO 4"	SMEF, DAMP	
- G G G G G G G G G G G G G G G G G G G	C-7" BLAKE TO FAN HORE & CLA-1 SCHE ROCKS 7-14' CINDERS	STIFF DIMP	(×
5 12 7 5 7 5 5 5 5 5 5 5	M-22 BROWN CLAY LITTLE PROJES	STIFF, LITTLE HZC	13
15 3	TANKT BROWN CLAY	MED STIFF SMEHZO	
12 343	TANILI BRUNN CLAY	MEDSTIFF Some Hize	
-18 25" 3	TANKT BROWN CLAY, LITTLE GREY LITTLE RELUD ROCKS	MED STIFF	
19 19 3	TANTOCT BROWN CLAY	MEDSTIFF SMEHZO	Ben
15 3	CREAIRH BEOFF CRUM (THE OSCHINC)	SME HZO	1524

					ني ا	
SCHOOL NO.	TE3	T BOR	ING TOE			
MAN LON TOSLORE	2015 - 2035 - 20X	LOCATI	BUFFAL NY		P	
DARLING CONTRACTOR/O	MAHM				W. 2	
कुं लुंदर OLOGIST, OFFICE	I JOHN J ZACHER	JR.				
DRILLING EQUIPMENT. W	ethod HSA	\$25 TY	CF BIT GHSA	SPLIT SA	METHOD	113197
	MAT./DIA SCRESS STEEL /2" TY		MAT. STAINLESS	LENGTH 10		SLOT SIZZÕEL
ELEVATION OF: GROUN (FT. ABOVE M.S.L.)	D SURFACE TOP OF	MAIT CYAN	MG TOP & BOTTOM	SCHEEN OF	a and the	DATE
REMARKS:						

, J. S.	LOG OF TEST SORING		COMBY.
	OESCRIPTION	REMARKS	WELL
22 21 23 2	DARKGUEY N/SEME OXUMNICS	MED STIFF	
21 5	GREY YEME BROWN CLAYS	MED STIFE	
24 2 3 3 2 2 3 3 3 3 3	GREY CLAY	SIFF, WEF	
2) 2	TUP 14" GREY CLAY	SCAT WALL	
25 26 12	BET 7" GREY/LIBREWN CLAY SEME ROCK FRINGS, LITTLE SAND	LIET, METCHESING	
	LT BROWNTAN CLAY, S. JERCEKS. 617"	ser-wet	
	Bobe 31' Bgl		11.5
	•		
			•
	•.		

BORING NO. MW-IOD PROJECT NO NAME VAION ROLL DRILLING CONTRACTOR MOX M GEOLOGIST. OFF JAMES DOLL DRILLING EQUIPMENT HI ROTALY WELL INSTALLED? CA YES TO NO ST	(Dick Miller Ron Rown) FICE FICE SIZE TYPE OF BIT 178" S HSA 8"4" HSA / 778" S	AMPUNG METHOD STARTI Solit Spen 12/0 NGTH 10' DIA. 2" SLOT	r finis - IJI	.070
, in	LOG OF TEST BORING		CONST.	00.1 10.0
26914 1 40 4 10 16 14 16 16 16 16 16 16 16 16 16 16 16 16 16	LOG OF TEST BORING	PEMARKS	WELL C	GRAPHIC LIYHO LOG
21 20 10 70 80 10 10 10 10 10 10 10 10 10 10 10 10 10	Sampling Started @ 9' BG. BIK to tan/Grex clay of Trace angular Fragmented Rock upto 1" in Size Top 5" BiK tan/Grey Glay w/ Trace angular Fragmented Rock Next BiK cinder like material w/ see of angular Fragmented Rock Retten6" Brown Tan Sand/Si Hly Clay of 10th-20th Rx Frag. 2" Tan to It Brown Clay w/o Rocks Tom to It Brown Clay w/o Rocks Possibly Some Silts Gray to It Brown Moteled clay w/ trace rounded Rocks, yy - 1/6" dianeter. Tan to It Brown Clay W/O Rxs	Damp	TON CHORD SON OF SON ON	

RING NO. MW- 10	2035-200 08/08ILLER	EORING LOS LOCATION Buffalo NY		N D D D D D D D D D D D D D D D D D D D	
RILLING EQUIPMEN	T. METHOD	SIZE TYPE OF BIT FEN: YPE SIOT MAT. Stainle F WELL CASING TOP & BO	SAMPLING Split: Split: TTOM SCREEN G	SPOON !	T. FINISH CATE
	AT A SE ON S	LOG OF TEST	BORING		WELL CONST.
SEPTH SPARECON	The state of the s	NOITGIRDESO		EXRAMS	3 0-
				 	1
- 5	The holy The Rock is	water bearing Zov e has Collar not very consolid	sed .	B.O.B 45.5	7BG-
— 10					
- - - - -					

DRILLI DRILLI GAILLI DRILL	MG CO	LOG EQU ALLI NO OF:	RACTOR	METHOD SIZE TYPE OF BIT . SAM	EIT SPOON 1/2	T. FINIS	H CAT
			JHO,	LOG OF TEST BORING		COMST.	1 00
/3	(4 / 2)		10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LOG OF TEST BORING AND STREET AT 4' B.G.	REMARKS	WELL	GBAPHIC LIYIN LOG
5	'ما انا	າຣີ.	न व व व	Brown Dek Brown Sills And CLARS	STHEFT DAY IN HIR HE TO THE T		ر کریمی
م ا ۱ ا ۲ ا ۲	8' 8'	<i>16</i> (9211 12 12 14 12 12 12 14 12 12 12 12 12 12 12 12 12 12 12 12 12	FILL BEEN DER BEEN CLAYS FILL TON 9" DER BEEN CLAYS WIXTHE CLEHNICS BETTOM 4" - GIRTSING CLAYS WIXTHE CLEHNICS CREY CLAYS LITTLE CREMMICS	STIFF LITTE TO THE PLATE AND THED HEDINA STIFFNESS SOME HED		Bac
15	w	20" 15" 21"	にろう にって ちゃことろうは	TOP 6. GREY CLAYS, LITTLE CHENDLES BOTHER 12" - REDUISH BROWN CLAY NO CLASSICEGIANICS REDUISH BROWN CLAYS WIGHER LAYERS GERY LAYERS MAY BE EVIDENCE OF VARISED CLAYS REDUISH BROWN CLAYS WI GREY LAYERS CLEY LAYERS HAY BE EVIDENCE OF VARBED CLAYS	MED STIFFMES STIFF LITTLE TOWN HED STIFF LITTLE TOWN HED TO WO HED M. STIFFMESS DAMP		<i>B</i>

PROJECT NO NAME No 20 DRILLING CONTRACTOR	CHO - 2035-700 LOCATION BUFFALO		
ಪ್ರಸ್ತ್ GZOLOGIST. OF	John J Zacher Jr		
DRILLING EQUIPMENT		SALE CITY MAIN	tt. Finish Cate 2/97
WELL INSTALLED? CA		SS LENGTH IC' DIA. 2" SLO	T 31220 CZC
	DUND SURFACE TOP OF WELL CASING TOP & 40	TTOM SCREEN GW SLAFACE	DATE
REMARKS:			
Į pro	LOG OF TEST	BORING	MELL COMBY. GRAPING
34 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LOG OF TEST	REMARKS	WELL CO
22 24 35 65 2 4 54 2 1 3 5 6 5 2 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5	BRUN DAK BROWN CLAYS, NO ZAS. BRUN WISCHE GREY CLAYS (ASBE) July 12/	STIFF LITTLE - AL HZQ STIFF TRACE HZQ	

Proportions Used: Trace = 0-10%. Little = 10-20%. Some = 20-35%. And = 35-50% Sampling Abbreviations: SS = Spitt Spoon. ST = Shelpy Tube. CSC = Continuous Soil Core

GOS, BORING NO. MW- // M PROJECT NO NAME UNION PAGE 20: PROJECT NO NAME UNION PAGE 20: MAXIM GEOLOGIST, OFFICE Tamas Door ORILLING EQUIPMENT. A HS A WELL INSTALLED? CASIL YES TO NO	E SIZE TYPE OF BIT SA	MPLING METHOD START. 12/18 GTH 10 DIA. Z" SLOT:	FINISH GATE - 12 14/16 SIZE . OZC
SEPT SAMPLE COVERY	LOG OF TEST BORING TO BESCRIPTION South and Addition	REMARKS	WELL COHST. GRAPHIC LIYIE LOG
10 8 10 0 8 2 2 2 4 M 5 7 9 10 10 12 12 14 M 5 7 9 10 10 12 12	Sampling started D 4' BG Brown/DRKBrown Silts + clays w/ Trace anounts of Ax Fragments. less than 18" Brown/Drk Brown silts + clays, w/o Rxs Most likely Fill Bro Drk Brown clays w/ Trace amounts of Rafio must liky Fill Top8" Drk Brown clays w/ some Organics Top 4" discarded booked as if they is fellints Top 4" discarded booked as if they is fellints Bottom 14" Grey clays w/ Some organics + Tro Bottom 14" Grey clays w/ Some organics + Tro Reddish Brown clays w/ Grey layers The grey layers mayber varbed clays. Reddish Brown clays w/ Grey layers The grey layers mayber varbed clays. Reddish Brown clays w/ Grey layers	Little to the H20 Little to the H20 Soft w/some H20 Let m. Stiffness Some H2C SLIFF	JELY POSTANIAN PROPARA

TEST BORING LOG BORING NO. MW- 11M

PROJECT NO. NAME 2035-200 Union Road DRILLING CONTRACTOR/DRILLER

BUFFALO

Maxim James Drain

DRILLING EQUIPMENT, METHOD HS A

WELL INSTALLED? CASING MATURIALY
YES IN NO [Stainless Steel 2"

SIZE TYPE OF BIT

SCREEN:

NY

SAMPLING METHOD Split SPOON

START. FINISH DATE

LENGTH /0 DIA. Z" SLOT SIZE .OZC

 ∇ Silling

DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION REMARKS Soft and dar k Brown (red Clays w/ Red, Grey, Wet 22' 33 Reddish/Brown clays Let' 24' 37 Reddish Brown (Fleshy Color) Clays 4"- ½" Rafrags. Soft Wet 18" 1 Reddish Brown (Fleshy Color) Clays 4"- ½" Rafrags. Wet Wet 18" 1 Reddish Brown (Fleshy Color) Clays 4"- ½" Rafrags. Soft Wet 18" 1 Reddish Brown (Fleshy Color) Clays 4"- 2" Rafrags. Soft Wet 18" 1 Reddish Brown (Fleshy Color) Clays 4"- 2" Rafrags. Wet Wet 18 3 Reddish Brown (Fleshy Color) Clays 4"- 2" Rafrags. Wet	- ANDRONANDANA MELL
22' 24" 33 Peddish Brown clays 12" 24' 12" 2 Reddish Brown (Fleshy Colon) Clays 4"- 12" Rafrags. Soft Wet 18" 1 Reddish Brown (Fleshy Colon) Clays 4"- 12" Rafrags. Wet Wet Wet Wet Wet Wet Wet	Mary appropries
22' 12' 22' 12' 24' 24' 24' 18" Reddish Brown (Fleshy Colon) clays 4"-1/2" Rxfrags. Wet Wet Wet Wet Wet Wet Soft Wet Soft Wet Soft Wet Soft Soft Soft Soft Soft Soft Soft Soft	PORTOPARY.
24' - 4 Reddish Brown (Fleshy Colon) clays 4"-1/2" Rafrags. Soft Wet 18" 3 Reddish Brown (Fleshy Colon) clays 4"-1/2" Rafrags. Wet Wet Soft	Mr.
24 18" 3 Reddish Brown (Fleshy Color) 100 4 12 7" Wet we anded edges.	
26 3 Soft	$\sqrt{\cdot}$
Lie 4	11.
28 5 5 w/ rounded edges. Well 5	-
128 12 7 Reddish Brown 15 w/ some (ounded edges)	-
10 30 Poddich Bown Cutt	
·	
- Reddish Brown (Fresh Ock mostly smoothed pebbles Wet	-
34 Readish Brown/Grey Silts + Clays From Soft > hard	
2 22 40 Ft -> Herd	
- 35 Reddish Brown/Grey silts, clays, Sands + Wet	- 1, 1

BCRING NO. 17-5 PROJECT NO. NAME ()4 CRILLING CONTRACT	DOURGED - 2035 - 200 LOCATION BUFFALE MANIM		. \
SECEPTORIST. C	JOHN J ZACHER JR		
DAILLING EQUIPME		A SRIT SPOON 15	17. FIMEH GA 2-97
	aimess Steel 2" THE SLOT MAT. STAINS	ESS LENGTH 10' DIA 2" SLO TOM SCREEN ON SURFACE	T SIZZÓ CAC DATE
34 17 34 17 18 18 18 18 18 18 18 18 18 18 18 18 18	LOG OF TEST E	GRING	WELL COMBY.
(4) (4) (4) (4)	SANDLING START AT 15' BG	EXAMEN	3 5=
- 3 - 6 - 7	•	10	34 500
- s 10 10 10 10 10 10 10	BREEN CENTS - FILL	STIFF LITTLE IC AL	
17 9 7 7 19 19 19 19 19 19 19 19 19	Become empts Face	STIFF TRIKE HZC	() - x =
123 G	Brew To Derk Brewn CLIMS	SIIFF LITILE HZC	
21 - 8 21 24 5 23 24 5	BRUND TOTANCLAS VILITTLE GRES	STIFF BLAETU ALTICE Mz G	
23 24 23 24 27 27 27 27 27 24 27 27 27 27 27 27 27 27 27 27 27 27 27	BRELLU = GREYCLIHU G-12 12-24 PRB 35		
			-

T. ABOVE W.S.L.) MARKS: NC SHARES 0-20' FILL MATERIAL, CUTTINGS BRUIL DRY SAMRE 40-12 - LOTRELLING SEPTION LOG OF TEST BORING DESCRIPTION REMARKS 22 27" 5 BRUIL TO TAIL CLAY SEE GREY 24 BRUIL TO TAIL CLAY SEE GREY 24 CEST TO LED BRUIL CLAY , TRINGIBLES SOFF, MOST 25 CEST TO LED BRUIL CLAY , TRINGIBLES SOFF, MOST 26 CEST TO LED BRUIL CLAY , TRINGIBLES SOFF, MOST TO BRUIL TAIL CLAY , TRINGIBLES (Mg*) SOFF, MOST SOFF, MITTER H2 C MG SEE GREY TO BRUIL TAIL CLAY , TRINGIBLES (Mg*) SOFF, MOST TO BRUIL TAIL CLAY , TRINGIBLES (Mg*) SOFF, MOST TO BRUIL TAIL CLAY , TRINGIBLES (Mg*) SOFF, MOST TO BRUIL TAIL CLAY , TRINGIBLES (Mg*) SOFF, MOST TO BRUIL TAIL CLAY , LITTLE BRUIL SEE CHAY SEE TO HARP, SEE FAGO TO BRUIL TAIL CLAY AMOSANO, NO CLASSIVE STREATH NO STREAM THE MOST AMOSANO, NO CLASSIVE STREATH NO STREAM THE MOST AMOSANO, NO CLASSIVE STREATH NO STREAM THE MOST AMOSANO, NO CLASSIVE STREAM WET NO STREAM THE MOST AMOSANO, NO CLASSIVE STREAM WET NO STREAM THE MOST AMOSANO, NO CLASSIVE STREAM WET NO STREAM THE MOST AMOSANO, NO CLASSIVE STREAM WET NO STREAM THE MOST AMOSANO, NO CLASSIVE STREAM WET NO STREAM THE MOST AMOSANO, NO CLASSIVE STREAM WET	ELL INC	G EC	Ciet. Offic Uipment. I 107 Casi	HSA GU SH G" HSA SA	LIT SPOON 121	at. A 131/96
DESCRIPTION REMARKS DESCRIPTION REMARKS SHEFT LITTLE TO LEE 122 24 4 BEELL TO TAN CLAY STREETHY STIFF & TO THE TO LEE 125 126 127 128 129 120 120 120 121 121 122 123 124 125 126 127 128 129 120 120 120 120 120 120 120	EVATIO	ON OF	: GACU	NO SURFACE TOP OF WELL CASING TOP & SOTTOM SCRE	EN GW SLAFACZ	0.
BELLI TO TAN CLAY , TRINGERIUS 21 21 21 21 21 22 21 21 22 22 21 21 22 22		/	//	+//5/	ZE 4642-botecioni, 9	COMBY.
SHEFF LITTLE TO LEC 120 STIFF & TO THE COMP SCHEDISCY 22 21 21 21 21 22 22 22 22 22 22 22 22 2	32 54	Name of		DESCRIPTION	REMARKS	WELL
24 2 GEET TO LED BROWN (LAT), TRINGRIMES 24 1 RED BROWN (LAT) 25 7 LT BROWN TAN CLAM, TRINGS SILTS, LITTLE ROLLS (18) 26 27 LT BROWN TAN CLAM, TRINGS SILTS, LITTLE ROLLS (18) 27 LT BROWN TAN CLAM, TRINGS SILTS, LITTLE ROLLS (18) 28 2 LT BROWN TAN CLAM, TRINGS SILTS, LITTLE ROLLS (18) 29 2 LT BROWN TAN CLAM, TRINGS SILTS, LITTLE ROLLS (18) 20 2 LT BROWN TAN CLAM, TRINGS SILTS, LITTLE ROLLS (18) 21 LT BROWN TAN CLAM, TRINGS SILTS, LITTLE ROLLS 21 LT BROWN TAN CLAM, TRINGS SILTS, LITTLE ROLLS 22 LT BROWN TAN CLAM, LITTLE GLAM, LITTLE ROLLS 23 TO PAMP, SIREHOLD 24 LT BROWN TAN CLAM, NO SAND, NO CLARES IN ESTREACH NO STRENGTH, WET NO STRENGTH, WET	22 22 22	22	7		120 STIFF SCIETUTEACE	
25 2 LI BRUND TAN CLAY TRACESILES, LITTLE ROLLS (48) SCOT, DAMP. 32 18 2 1	24 210		2 G 1 1			
32 16 3 TOP 12"-LIBROW ITANCLIA-I - SCHEGIFFIS, LITTLE RUICS SCET DAMP, & 48 H20 31 18 12 BUT CLEY CLAY AND SAND, NO CLARSINE STREATH WET NO STRENCTH, WET	23			BRUN TAN CLAY TRACESILIS, LITTLE RECES (48)	SOFT, WIMP	
TCP 12"-LTBREW ITANCLIEN - SOMEGNEYS, LITTLE RUICS SCET PHATE, & 46 H20 31 32 34 35 37 38 38 38 39 30 31 31 31 31 31 32 32 34 36 36 37 38 38 38 38 38 38 38 38 38	3 Q	16	2,3,		SMFT DAMP	
1 170 1 - 1	372 341 34		5 12 10	SCTIBILLE CERT AND SAND, NO CHESING STREATH	WET NO STRENCTH,	
36 20" Gray CLAY AND ROCKS 14-1/2" WET STIFF WET STIFF	31- 31- 358		1 15	7-20" - G. H. CLIH WATH AND ROCKS 14- 1/2"	wet vet	

44 SHELTER ROCK ROAD DANBURY, CT 06810 (203) 796-5279 * MW-103 TEST BORING LOG BORING NO. BUTTON MW- 12D NY PROJECT NO.. NAME Union Road ليود بوايني DRILLING CONTRACTOR/DRILLER Brown, Dick Miller (Ron START, FINISH GATE Maxim James Draw SAMPLING METHOD 12/12-12/16/96 SIZE: TYPE OF BIT Solit SPOON 874"HSA/ 776 Ai/15 DRILLING EQUIPMENT, METHOD SLOT SIZE .OZC LENGTH /O DIA. / Ar Patary WELL INSTALLED? CASING MAT. DIA. 17
YES TO NO C Stainless Steel 2" SCREEN: MAT. Stainless TYPE SIOT GW SURFACE TOP OF WELL CASING TOP & BOTTOM SCREEN GROUND SURFACE ELEVATION OF: (FT. ABOVE M.S.L.) REMARKS: CONST GRAPHIC LIYHO LOG LOG OF TEST SORING AND ALCO SET STICE OF ALCO SET REMARKS DESCRIPTION WHOMING CONTRACTOR OF THE SPECIAL SPEC No samples until 20 all Fill The material is un 6:11 then. 10

15

BORING NO. MW- PROJECT NO NAME Union Road 2035- DRILLING CONTRACTOR/DRIL MAXIM GEOLOGIST, OFFICE James Drow ORILLING EQUIPMENT, METH HS A	LOCATION LOCATION BUTTALO LER HOD SIZE TYPE OF BIT MAT. OIA SCREEN: STEEL STOT MAT. Stainless	SAMPLING METHOD START. Split SPON LENGTH 10 DIA. Z" SLOT S	TAN CATE
REMARKS:			-
[1.4°]	LOG OF TEST BOR	ING	VELL CONST
SEPTH STREET SERVICES	DESCRIPTION	REMARKS	WELL CO GRAPING LIYIIO 1
24 24 24 24 24 26 28 28 28 28 28 32 24 50 BS	Cown to Drk Brown Clays, NO 125 cown Tan / w/ some Greys Greyish/ Red Brown Clays, Trace Par Fag.	sits exerces Some H20 Soft Some H20 Soft Some H20 Soft, Damp silts The Cohecive Strang Wet to Damp	JAMIN MOUNTAND AMOND AN AND AND AND AND AND AND AND AND AN

39'

RING NG. MW- OJECT NO NAME UNION ROAD ILLING CONTRACTOR/ DI MAXIM GEOLOGIST OFFICE TOMAS RILLING EQUIPMENT. M ELL INSTALLED? CASIN ST. NO. St. M.	ETHOD SIZE TYPE OF BIT SAI	Split SPOON STH /O' DIA. Z" SLOT	FINISH DATE
SEPTIFFIELD SEPTIFFE	DESCRIPTION Mostly RY 4"-2" insize of a matrix of	REMARKS	WELL CONST. GRAPHIC LIYHO LOG
42' 2' 50/2"	mostly RY 14"-2" insize of a matrix of HE Bown/Tan/Grey Clays + silts Bed ROCK @ -41' BG Bottom of Protective Cosing @ Stain less Steal Riser Stain less Steal Screen	We to Stiff Coment Boat He BE Bentonite Seal	THANKANANANANANANANANANANANANANANANANANAN
-15	Botten of hole 61,5 Bb = 0-103. Little = 10-203. Some = 20-353. And = 35-5		

				TEST BORING LOG		\	
BORIN MW					GITE	,	<i>;</i>
PROJE	CT	NO 1	() NICH	Repo 2035-200 BUFFACE NY			
			RACTOR	MAXIM			
ن الله ما الله	GZO	LOGI	ST. OFF		RING METHOD START	. ศพุร	H CATE
CRILL	ING	EQU	PMENT.	METHOD SIZE TYPE OF BIT SPEC	IT SPECY 12.	120/9	(د.
WELL YES G		ALLE NO	D7 CAS	SING MAT./DIA. SCREEN:	/	SIZEC	€2C.
ELEYA (FT. A	TICH	QF:	GRO	NUNC SURFACE TOP OF WELL CASING TOP & BUTTOM SCALE			
REMAR				o 21', last 1' NOT SPLIT SPECLED Well CHESTE	- RISER AT 2051	} G.	
		/		LOG OF TEST BORING		COMST.	SBAPIUC FYIO LOG
	14/4	A VOTE	01/2	NOTTEN DESCRIPTION	REMARKS	WELL	CBA
7 34	/ 5	•		SAMPLING STARTEDAT H! B. B.			
_							
_				•			L
							Ţ., Ţ
	4		15	Dier Brewn Clims	STIFF		-)
5]→ , ,	ic is	NC ROLES SIE CIMPOERS	LIFFLE, NK, HZC	KA	
	'نا ت		12 12	DIER BREIN CLAYS	STIFE	7//	- p
_		12	40	SCHE CINDERS	TRINE HZC	14/1/	-13.74
-	ช'	.	ان	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	STIFF, LIFIE HZU	1,4/4	
-	'ઇ'	c	12	5'-> DETERBELLA CLAYS, LITTLE CINDERS			الميراد
- - 10	10:	١٥	13	BOTS" - BLACK SCUIDS CINDERS NOT NITTUE	224 2124	门闩	
	10		ガ	RAD 3" - BLACK SHOW CINDERS	DIET	月日	
-	i2	11	707	BETTER 3" - WILLOW COME CARE COX 12	LET	I' , †	
-	i)		3	BLALIC SAND / CININIES:			
-	14	jc"	3			I; FI	
_	, i⊶i		7	BLACK SAND KINDERS	wf.t-		
15	ju	12"	U L	SOME BRICK AND DOED		门山	
F	الا		5	Builting CINDERS IN FOICE REDCLING	DAMP	山上	-
-		7"	4			1)11	
-	15		7/70	TUDG" BLACK CINDERS	MEDSTIFF	NE	!
F		21"	104	6-15" RED CLIPIL, NO ECKS	ENG HZC		

Sampling Abbreviations: S5 = Spitt Speed, ST = Shelby Tube, CSC & Continuous Soil Core

ORILLING EQUIPME HS A WELL INSTALLED? YES TO NO CO ELEVATION OF: IFT. ABOVE M.S.L.	2035-200 TOR/ORILLER DEFICE TORY THE THOO CASING MAT./DIA./ Starriess Steel 2 GROUND SURFACE TOP	LOCATION LOCATION BUFFALO NY SIZE TYPE OF BIT REEN: TYPE SIOT MAT. Stainle OF WELL CASING TOP & BO	SAMPLI	+ SPOON 12/19/1	FIMISH DATE
REMARKS:	AND (1) AREAST	LOG OF TEST	BORING		MELL CONST. GRAPIUG LIVIO 10G
SEPT SAMPLES		DESCRIPTION		REMARKS	
5 5	18 - Dr.K. Brown cla	Lys w/o Rxs		Stiff little to No HO	A MARKAN A MANOR
10 10 8 11 12 11 11 11 11 11 11 11 11 11 11 11	- Not a Nati	d, Abbly from a RR:	ie organics	No Coheasive Strangth No Coheasive Strangth DRY Damp	

50/3"

50/3

18

141

Wood Nex Sample will be 19'-21'

44 SHELTER ROCK ROAD DANBURY, CT 06810 (203) 796-5279

20+2

	TEST BORING LOG
CRING NO. 15 M	LOCATION

Union Road 2035-200

LOCATION Buffalo NY

PHILLING CONTRACTOR/ORILLER

Maxim James Drain

SIZE: TYPE OF BIT DRILLING EQUIPMENT, METHOD

START. FINISH DATE SAMPLING METHOD Solit SROON

Dull: 45

WELL INSTALLED? CASING MAT. DIA. SCREEN:
YES TO NO C Stainless Steel 2" TYPE SICT MAT. Stainless HS A

GROUND SURFACE TOP OF WELL CASING TOP & BOTTOM SCREEN GW SURFACE

LENGTH 10 DIA. Z" SLOT SIZE .CZC

ELEVATION OF:

LOG OF TEST BORING						
SEPT STATE COVERY OF THE SEPTEMBERS OF SEPTE	DESCRIPTION	REMARKS	WELL CONS GRAPHIC LIYHOLOG			
747 7 Top 5" 5 Bottom 19	Wood "Greyish red Clays, No Rocks Lary Clays of some tacks	Stiff Spoof				
32 0 5 Bottom, There	wood-maybe from a plug in Bottomof a or Reddish / Grey Clays w/ some Ruff Pebb wasn't on basket in the spoon or Rock	ies				
	and the second s					

10-205, Some = 20-355, And = 35-505

DRILLING CONTRACT DRILLING EQUIPME WELL INSTALLED? YES 2 NO CONTRACT ELEVATION OF: (FT. ABOVE M.S.L.) REMARKS: Q. O. O.	TORIDALLER TORIDA	SAMPLING METHOD START	FINISH DATE /19/87 SIZE OZO DATE 2/19/8)
	LOG OF TEST BOR	ING	WELL CONST. GRAPHIC LITHO LOG
SEPTH STAPLE CO	ENTAPTO DESCRIPTION	REMARKS	WELL
- 5	Fill- Of Reclish brown Samy Clay Reclish Brown Clay	3.8 Desto. 1.9 SAND	
15 	- ENDY Bor.y	6.8 ₋ 7.3	

YES Z NO C STA	FICE JOHN J ZACHER JR I METHOD SIZE TYPE OF BIT SAME	1 SPECIAL 2" SLOT	SIZECACO GATE
Stirt stirt books	LOG OF TEST BORING	REMARKS	WELL CONST. GRAPING HIVIN 1 0G
7 H 7 12 19 14 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TOP I"- WORD TOP I"- WORD TOP I"- WORD TOP I"- WORD TOP I"- BROWN CLAY WILLIFTLE CHANEL HATT CHANGES ITTO BROWNCLAY WI MARE CHENNIC C-7" - FILL CHOOPES, STENDS, DRICK T-19" - BROWN CLAY WITTE RECES (IN) T-27" BROWN CLAY WITTE RECES (IN) T-27" REDIBROWN CLAY REDIBROWN CLAY - SEITE GREY VARBING REDIBROWN CLAY SCHE GREY VARBING REDIBROWN CLAY SCHE GREY VARBING REDIBROWN CLAY WISCAR GREY VARBING REDIBROWN CLAY WISCAR GREY VARBING	STIFF, OIZ-J DIZY STIFF, DIZ-J STIFF, TRING HZO STIFF, LITTLE ME HZO STIFF LITTLE ME HZO STIFF LITTLE ME HZO STIFF LITTLE ME HZO STIFF LITTLE HZO	

PROJECT NO NAME DRILLING CONTRACTOR/DRILLER SCREENT MAT. SAMPLING METHOD START. FINE WELL INSTALLED? CASING MAT./OIA TYPE WAT. LINGTH DIA SLCT SIZE CETALON OF: CROUND SURFACE TOP OF WELL CLISING TOP A SOTTOM SCREEN GW SURFACE OF CROUND SURFACE TOP OF WELL CLISING TOP A SOTTOM SCREEN GW SURFACE OF CROWN SURFACE OBSCRIPTION REMARKS DESCRIPTION REMARKS SOFT, WET VERY SUFF, WET OBSCRIPTION SOFT, WET SOFT, WET OBSCRIPTION SOFT, WET SOFT, WET SOFT, WET OBSCRIPTION SOFT, WET SOFT, WET SOFT, WET SOFT, WET OBSCRIPTION SOFT, WET SO	BOR	ING N	0 .		7 [TEST	BOR	ING L	06=		-			
DRILLING EQUIPMENT, METHOD START, FIN WELL INSTALLED? CASING MAT. CIA. SCREEN: TYPE WAT. LENGTH DIA. SLOT SIZE ELEVATION OF GROUND SURFACE TOP OF WELL CASING TOP & EGITOM SCREEN GW SURFACE OF THE SOVE M.S.L.) REMARKS: LOG OF TEST BORING SOFT, WET 18 7 7	PRO.			MAM	¥			LOCATI	ION			†			
DRILLING EQUIPMENT, METHOD SIZE TYPE OF BIT SAMPLING METHOD START, FINE WELL INSTALLED? CASING MAT./OLA YES NO OLA ELEVATION OF GROUND SURFACE TOP OF WELL CASING TOP A BOTTOM SCREEN GW SURFACE OLI ELEVATION OF GROUND SURFACE TOP OF WELL CASING TOP A BOTTOM SCREEN GW SURFACE OLI ELEVATION OF TEST BORING DESCRIPTION REMARKS SOFT, WET 22 Worght GREY CLIPY 24 OLI 25 OLI 26 OLI 27 OLI 28 OLI 29 OLI 20 OLI 20 OLI 21 OLI 22 OLI 23 OLI 24 OLI 25 OLI 26 OLI 27 OLI 28 OLI 29 OLI 20 OLI 20 OLI 21 OLI 22 OLI 23 OLI 24 OLI 25 OLI 26 OLI 27 OLI 28 OLI 29 OLI 20 OLI 20 OLI 21 OLI 22 OLI 23 OLI 24 OLI 25 OLI 26 OLI 27 OLI 28 OLI 29 OLI 20 OLI 20 OLI 21 OLI 22 OLI 23 OLI 24 OLI 25 OLI 26 OLI 27 OLI 28 OLI 29 OLI 20 OLI 20 OLI 21 OLI 22 OLI 23 OLI 24 OLI 25 OLI 26 OLI 27 OLI 28 OLI 29 OLI 20 OLI 20 OLI 21 OLI 22 OLI 23 OLI 24 OLI 25 OLI 26 OLI 27 OLI 28 OLI 29 OLI 20 OLI 20 OLI 21 OLI 22 OLI 23 OLI 24 OLI 25 OLI 26 OLI 27 OLI 28 OLI 29 OLI 20 OLI 20 OLI 21 OLI 22 OLI 23 OLI 24 OLI 25 OLI 26 OLI 27 OLI 28 OLI 29 OLI 20 OLI 20 OLI 21 OLI 22 OLI 23 OLI 24 OLI 25 OLI 26 OLI 27 OLI 28 OLI 29 OLI 20 OLI 20 OLI 21 OLI 22 OLI 23 OLI 24 OLI 25 OLI 26 OLI 27 OLI 28 OLI 29 OLI 20 OLI 20 OLI 21 OLI 22 OLI 23 OLI 24 OLI 25 OLI 26 OLI 27 OLI 28 OLI 29 OLI 20 OLI 20 OLI 20 OLI 21 OLI 22 OLI 23 OLI 24 OLI 25 OLI 26 OLI 27 OLI 27 OLI 28 OLI 29 OLI 20 OLI 20 OLI 20 OLI 20 OLI 21 OLI 22 OLI 23 OLI 24 OLI 25 OLI 26 OLI 27 OLI 27 OLI 28 OLI 29 OLI 20 OLI 20 OLI 20 OLI 21 OLI 22 OLI 24 OLI 25 OLI 26 OLI 27 OLI 28 OLI 29 OLI 20 OLI 20 OLI	DRIL	LING (CONT	TAC	TOR/ DRI	LLER									
WELL INSTALLED? CASING MAT. OIA SCREEN: TYPE: MAT. LENGTH DIA. SLOT SIZE ELEVATION OF: GROUND SURFACE TOP OF WELL CASING TOP & BOTTOM SCREEN GW SURFACE O. IFT. ABOVE M.S.L.) REMARKS: LOG OF TEST BORING DESCRIPTION REMARKS 22	. ت و الريد	₹ G Z¢	ودوو	ist.	OFFICE										
ELEVATION OF GROUND SURFACE TOP OF WELL CASING TOP & BOTTOM SCREEN GW SURFACE OF GREAT CLAY PERMARKS: LOG OF TEST BORING REMARKS DESCRIPTION REMARKS SOFT, WET 27 16 7 2	DAIL	LING	EQU	IPHE	MT. ME	מסאז		SE TY	PE OF BIT		SAMPLIN	G METHOD	STAR	T. FINIS	# CA
ELEVATION OF CARDING SAFETY REMARKS: LOG OF TEST BORING REMARKS DESCRIPTION REMARKS SOFT, WET 10 OF CREY CLAY WATER, WET 11 OF CREY CLAY SOFT, WET 12 OF CREY CLAY SOFT, WET 13 OF CREY CLAY SOFT, WET SATURATED, SOFT SATURATED, SOFT 14 OF CREY CLAY STURATED, SOFT SATURATED, SOFT 15 OF CREY CLAY SOFT SATURATED, SOFT SATURATED, SOFT SOFT SOFT SOFT SATURATED, SOFT SOFT SOFT SOFT SATURATED, SOFT	WEL	LINST	ALLI				TYP	E							- <u>-</u>
DESCRIPTION REMARKS SOFT, WET 10 SOFT, WET 11 SOFT, WET 12 SOFT, WET 12 SOFT, WET 13 SOFT, WET 14 SOFT, WET 15 SOFT, WET 16 SOFT, WET 17 SOFT 28 SOFT, WET 28 SOFT, WET 29 SOFT, WET 20 SOFT, WET 20 SOFT 20 SOFT 21 SOFT 22 SOFT 23 SOFT 24 SOFT 25 SOFT 26 SOFT 27 SOFT 28 SOFT 29 SOFT 20 SOFT 20 SOFT 21 SOFT 22 SOFT 23 SOFT 24 SOFT 25 SOFT 26 SOFT 27 SOFT 28 SOFT 29 SOFT 20 SOFT 20 SOFT 21 SOFT 22 SOFT 23 SOFT 24 SOFT 25 SOFT 26 SOFT 27 SOFT 28 SOFT 29 SOFT 20 SOFT 20 SOFT 20 SOFT 21 SOFT 22 SOFT 23 SOFT 24 SOFT 25 SOFT 26 SOFT 27 SOFT 28 SOFT 29 SOFT 20 SOFT		_				SURFACE	top of v	WELL CAS	Deg Top &	EOTTOM S	CREEN .	SM STIELYC			
DESCRIPTION REMARKS SOFT, WET 121 181 192 193 194 195 195 195 195 195 195 195	REMA	ARKS:												,	
DESCRIPTION REMARKS SOFT, WAT 12 18 1					242 (1)	15 915 T		LO	G OF TES	T BORIN	G			COMST.	HC 1
## SPENCLING 15' 7		217				0.	01	ESCRIPTI	ON			REMARK	3	7	GNAPING
- 15 		22 22 21 24 20 25 25 30	15' K' 15"	9000 NSABOO	G2 G2 G3	REY CLAY EY CLAY TY CLAY GREY CLAY	•	E Rus	DUD		.SC .SC .SA .SA	er suet, with the sue of the sue	ET		

PELL MSTALLED?	CONDITION ON LANDFIL CAP TORIORILLER MAKIM- EMPIRE : P. BENCE DEFICE I SEWARA DANG JRK NT. METHOD SA HSA G. 25" H.S.A	SLAND WALL AMPLING METHOD START 2 MOTH 10' DIA.) 1/ SLOT	FINISH SATE /ze/or SIZE O DO DATE, 2/200
REMARKS: ELLI ATIO	N AND DEPUTY RELIATIVE TO PRELAD SURFACE LOG OF TEST BORING		15T.
560 14 44 4 6 0 V	AT AN SUCH PROPERTION	REMARKS	WELL COMS GHAPHIC LITHIO LOG
 	HAD MAD MAD MONT (HIZEN) & LIHE MY GOOD. THE BROWN CLAY, FIRM, NO CONTECT MATERIALS TO MAD AND CLAY, FIRM, NO CONTECT MATERIALS THE SAME CLAY, WO CONTE MATERIAL SHEET, TRACE SILT AND CLAY, NO CONTE MATERIAL, SHEET, TRACE SILT AND SAME BUT SCALE. SILTE CLAY. TRACE SILT SAME SIT AMUNICIPAL, SILTE CLAY. Greofing Sint, The sime Clay, Soft.	brok	

S.c.		(203) 796-5279	N	
	BORING NO.	TEST BORING LOG		
-	PROJECT NO NAME	UNITE ROAD CAP INTERTOR		
		emple Bence	\ m	الرعديد
		ANNON/52MAYA DANBUNI	•	T, FINISH DATE
	ORILLING EQUIPMEN	[11 MC11100]	ST 2	15, 19-4
	WELL INSTALLED? C	2" SS TYPE 0.70 MAT. SS LENGT		PATE
	ELEVATION OF: G	ROUND SURFACE TOP OF WELL CASING TOP & BOTTOM SCREEN	GW SURFACE	2//9/-
ĺ	REMARKS: ALL ELE	WATERS AND DEPTHS RELATIVE TO PRE-LAP	GRAVE	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ST.
		LOG OF TEST BORING		MELL CONS
	362-14-14-16-16-16-16-16-16-16-16-16-16-16-16-16-	ET RE BLO	REMARKS	WELL GRAP HYRE
	368 / 514 / 46 / 46	DESCRIPTION		
	F 1 13.5 35	Hard Brown Clay, 10% Gravel	rta?	
	2 -		254	
	1.5/30	Rottom b' CITURERS	08/	
	H 4 + 1 + 1		PR1	
	5 1.0 0/4	SAME	·	
	6	THE SENIE , SELL, SUSTANGULA BICK FRAGS CHELL GENOLG	F.~	2, 3
	- q" 12/ _H	1		
	3' 2' 5/0	THE CONST. HO COTASE IMPORTANT		
Ì	_	SOFT THE / SECUL CIPY, NO CONDUCT ANTECITY.		11111
	115			
	- 1 1/86	SAME & TALLE DIGALILIS.		
	1.5' 8/8	Samé		
	1.5 1.5 4/50	SAME Y LOCK FRAIS, TO YY", ANGULIA. IN ASSTORG"		
	16 12/46	SAME.	สบาร์	
	- 18	EOB 19.0'	(27.25)	

PROJECT N (ORILLING C	O. NAME JNDY JOA: CONTRACTOR Marin - S LEGIST, OFF	A PRILLER	LOCATION LAMPSING CAP		START FINISH S
WELLINST	OF: GR	SING MAT./DIA. SCR	SIZE: TYPE OF BIT U.ZS " HIA EEN: YPE MAT. SS OF WELL CASING TOP & BOTTON	2" 55 LEHGTH 10' DIA- 2	2/22/96 SLOT SIZE Z
	AFC SEN	TYPE RESIST	LOG OF TEST BOR		WELL COMST.
SEPATH ST	AFC FERE	nce	NOITHINDESO	REMARKS	Sax Ker
- - 	15' 20/14		esten. Wicznaie matérial	سرتين لاع	
2'	.251 47,	BIME OUR EGO FI	ilrygano, clause present. Fet	scaring. WET	
- - - 4' +	12/4	1	· .		
	10. 11/16	المراعة المراعة المراعة المراعة	er, we consider marchiel, Fet se		3 1/2
٠	1	0,5	TABLE VILLAGES, FUT STAINING . IL	HE HAMES.	3
-	न्य व्याप	BLACK CLAM, 30%, on	junio, (word), There wasse march (cinose, grave),	6.40	
. 1 1	ار ا اکار	SEPT & TUNK CHAM! FILE	et stang. AN wass matter To matter	Mmë	18 1
	11/4 11/4	\$ሱ ጣ ፎ			
. ,	o 7/4t	NU RECUYARY		wet	
.	0 3/4	He Rein sond	/		
•	18, 11/8F		AFE. TRACE PREARING ANYON	n grand	
- 18	·5 14/12	anethra un y bu	Mi Searing. TRALE FAGARING	ا (د.م	
	. > \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	HO WARE MARY	. Fer immy (stight)		

	DANBURY, CT 06\$10 (203) 796-5279	H	
BORING NO.	TEST BORING LOG		250') 7-4 / M.W.
PROJECT NO. NAMI			
DRILLING CONTRACT	COR/ORILLER		_
GEOLOGIST, C	OFFICE		
DRILLING EQUIPME	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		AT. FINISH DAT
WELL INSTALLED?	CASING MAT./DIA. SCREEN:	I LA DIA LA SIG	OT SIZE LO
YES W NO [2 31 THE MAIL CASING TOP & BOTTOM SCREEN	GW SURFACE	DATE
(FT. ABOVE M.S.L.)	619.1 620 603 - 343	602	
}	levanon i deline ALLATIVE TO PRE-LAP TOPS.		
	LOG OF TEST BORING		CONST
(1) (x0)	at Atlanta		
369 TH (47) ALCON	LOG OF TEST BORING LOG OF TEST BORING	REMARKS	WEL
22 (3) (4)	1 (same) weepland and of some staining. Thank offered	URT	
	The GAME WILLIAM STATE STRING TRACE OF MAN THE STRING STRING	J	
22'	1 77.07		
1,5'	If Busine sur is and the organization		
<u> </u>	EAD. 24,0'		
-5			
F	·		
	·		
10			
15			
			-

A DIVISION OF THES
44 SHELTER ROCK ROAD
DANBURY, CT 06810
(203) 796-5279

		(2	03) 796-5279	•	•		17	•	7.14 W-
BORIN	1G NO. NW-'남			TEST BC	RING LOG			/	<i>)</i>
PROJE	ECT NO.		Catton BOW		CHP BATE	,Σ 1 0.Σ			
ORILL	ING CONT	TRACTOR	OBILLER		RE PHIL BU	NE			
127 () \$31/2 2	GEOLOG	IST, OFF	ICE Hanlon	152 mayor,	MANURY				
DRILL		IPMENT	METHOD	SIZE	TYPE OF BIT	SAMPLI 5	NG METHOD S	TART. FINIS	H DAT
WELL YES I	INSTALL.	ED7 CAS	SING MAT./DIA.	SCREEN: TYPE	MAT. 55	LENGTH		SLOT SIZE (3.10
	TION OF		UND SURFACE	FOR OF WELL	EOS.0-	595.0	GW SURFACE NA	2/19	196
REMAR	RKS:	EUATZ	red Amos I	LETTHS REL	ATTUE TO PRO	9-(A)	GURGALE		
		ANO	AT ON SIT		LOG OF TEST S	ORING		CONST.	HIC 3.1.0G
/se ⁵	21H (51)	E TO LEAT	AP BLOW	DESCR	IPTION		REMARKS	WELL	GRAPHIC LIYHO LOG
	5	32/5~	120 5.77		ı		أرجيء		11111
- - -	12	14/57	Ton Clay	Firm He	course Dry				
- 5 5	;1	1-15	Tanjon (1 [Lag F. ~	المن رسري	0	Ø₽ ³	₹	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-	」プ,	15/57	Brown ile	Y SEF	Tem, the Cons	J. 'D->	Ü	i d	1 1 1 1
- -	į	治年	Sai	ر مر	•				J - 1
— 10 - - - -	1:0'	MFT	hitta	- 6 ¹	17371CS + 51		& v		7
- -	1.2	77/FC	5 ame	w/t5-c2	ruck figs (hor	mar, ginely	5*		
- - - 15	13	2/8-	Same	(5.17 class-	40 10%		ر مهن ما	**	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	2	3485	Same				<i>ليول</i>	4	
- - -	15	4	Same	ケスケデ	4 - Mist				

BORINGI NELL LOCATION SAETCH &

REMARKS: LIEVA	TISING AND DETITY (DELATED TO A BOTTO OF WELL CASING TOP & BOTTO OF WELL C	SAMPLING METHOD START, FINISH CA LENGTH O DIA. 2 SLOT SIZE O 2 DM SCREEN GW SURFACE 2 1994	7 5
	LOG OF TEST BO	PRING PRING	-
OFOTH SAMPRECOM	OESCRIPTION	WELL CO GRAPHIC LING I C	
F 7,	From Sendy Clay 20% organice Very SUFT Trail Ruch Fra GUTTIUM 6" Ver: Suft were CLAY trace Dock fragents INTSET 1" EDB 24.5"	544 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

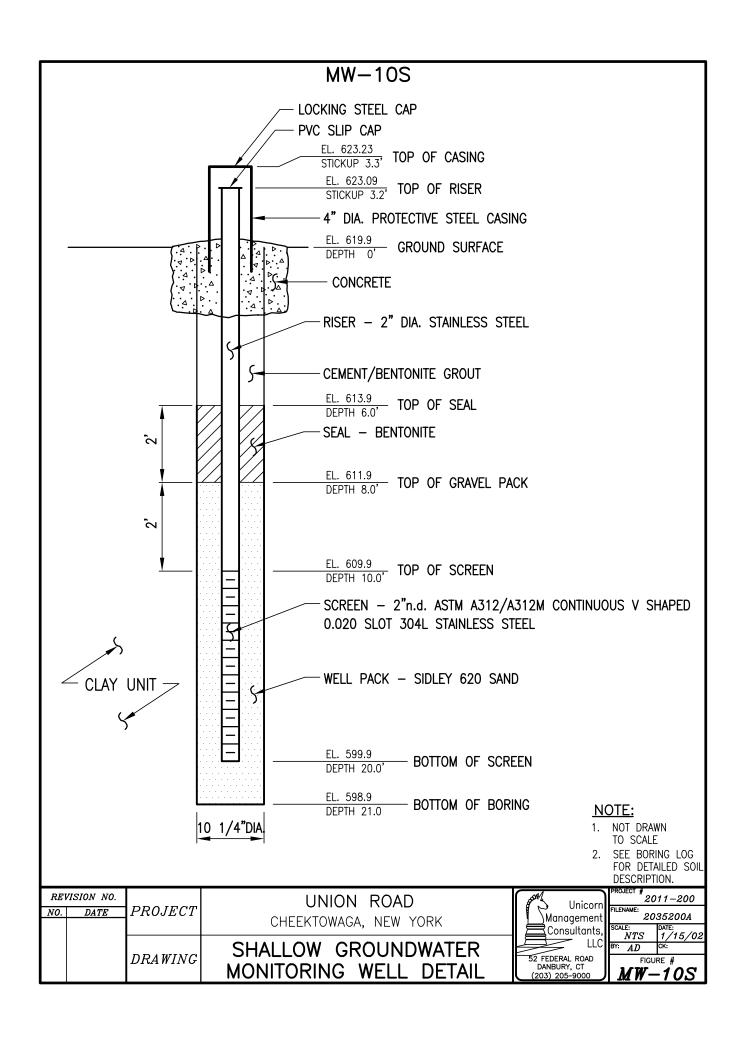
LOG OF TEST BORING 10 10 10 10 10 10 10 1	/.		O. AND	LOG OF TEST BORING			CONST.	,mc
2' Let 12/H Filter \$ \$0.00 per cont. Fe's Rule coming as mark. 15 15/H Short 1.5 26/H To' Short with Thaci Ye' whange (surross), v. marks 0.5 62/ft Tan jan Hand. cont. I shir. Fe' maning. Thace yearly strand surjections with marks. Surjections mark is straining 1.75 24/ft Short, print, just cont. There expanses. Anything strandor commercial and cont. 1.75 24/ft Short, print, just cont. There expanses. Anything strandor 1.75 24/ft Short, print, just cont. There expanses. Anything strandor 1.75 24/ft Short, print, just cont. There expanses. Anything strandor 1.75 24/ft Short, print, just cont. There expanses. Anything strandor 1.75 24/ft Short, print, just cont. There expanses. Anything strandor 1.75 24/ft Short strandor prints on a same from the print of the cont. 1.75 24/ft Short strandor prints on a same from the content of	SEP THE ST	AP E	E SER	DESCRIPTION	RE	EXRAM	WELL	GHAF
1.5 24/16 SAME SAME TRALE YOU WARRE (RUMAND) IN MARIO 1.5 24/16 TO TRALE YOU WARRE (RUMAND) IN MARIO 0.5 62/56 TAN DOMENTARIO CHART STATE GRANGE ARANGE STORAGE SINGLE SHARE WARRE CHART FROM MARY & STORAGE SINGLE SHARE CHART FROM CHART FROM CHARTER ARANGE STORAGE 1.75 Att / 12 SINGLE SHARE CHART FROM CHART FROM CHARTER ARANGE STORAGE 1.0 14/66 CHART CHART STORAGE CHARTER ARANGE STORAGE 1.0 14/66 CHART CHARTER STORAGE CHARTER ARANGE STORAGE 1.10 14/66 CHARTER CHARTER STORAGE CHARTER ARANGE STORAGE 1.11 15/16 CHARTER CHARTER STORAGE CHARTER ARANGE STORAGE 1.12 14/66 CHARTER CHARTER STORAGE CHARTER ARANGE STORAGE 1.13 14/66 CHARTER CHARTER STORAGE CHARTER ARANGE STORAGE 1.14 15/16 CHARTER CHARTER STORAGE CHARTER ARANGE STORAGE 1.15 16/16 CHARTER CHARTER STORAGE CHARTER STORAGE CHARTER STORAGE 1.15 16/16 CHARTER CHARTER STORAGE CHARTER STOR	1 1	İ			feore			- -
1.5 16/4 SAME TRACE YOU WARRE (ALMOSON), VINARD 0.5 62/4 TAN, DAY, MARD, CLARY PAINT, FE Training, Trace MANUE DYCKAY SINGLE BLOCK SIMPLE STORM MAT IS STRING 1.75 24/4 The Secret Manuel STRING 1.75 24/4 The Secret Manuel STRING 1.01 14/4 Secret Manuel String Compared to the Compared Compared Manuel Manuel Manuel String 1.01 14/4 Secret Manuel String 1.02 14/4 Secret Manuel Man		٠,٠	12/14	FIRM BODO DU FORM CHIEF , FE' & BUNKE STAINING NO CHART	. بدین			
1.75' 24/ 14 Server, France Comment of Arthurst Comment of Arthurst State Comment of Arthurst State Comment of State Comment		1.5	13/54	Same		 		
1.0' 14/pf. Same, surfamily come surfamily from parton west. 1.0' 14/pf. Same, surfamily come surfamily s		1.5		Short with TARLE You" WARDE (RELACED), V. NARD	3.1 - <u>7</u> .			- - -
10' 14/ Same, var, surrivana, some Kamel Areson, passon scar. 10' 14/ ps. 10' 19' by Same, Sugar successor. Bank bakels try, prod. 10' 53/Fruer, Landery come, quare matter from a come trace.		0.5	62/56	TANDONINAMOLEUMY (SIED), FET TANING, TANKE MANUE PROMATE E STAINING		Fine Sano	37.0	
10' 14/ pf. Bener, UST, SILTINAM. ISAN RANDE ARRIVE PROTECTION WERT. TEMES CAPACIES LUI 19/ H SAME. SUMMY SHEET PROSONT. BEICK BALLIS HIM, POWN.		1.75	عظالد			/		
hui 19th Same. Sugar sucer preserv. Beick Backle High. Porch.		1.0	14/1	BLACK WET, STORY SAME SAME AMOUNT PROTON WORK.	we i	معدر ۱۹۶۴ کی		(
1.01 6/ ft South was in . Fet strong . Wo care matic.	15	hoù		٠، د				
·		1.0'	6/4	Softwer, wrentery cook, succe morning from organic. Trace exportment is reforming, indicate matric.				

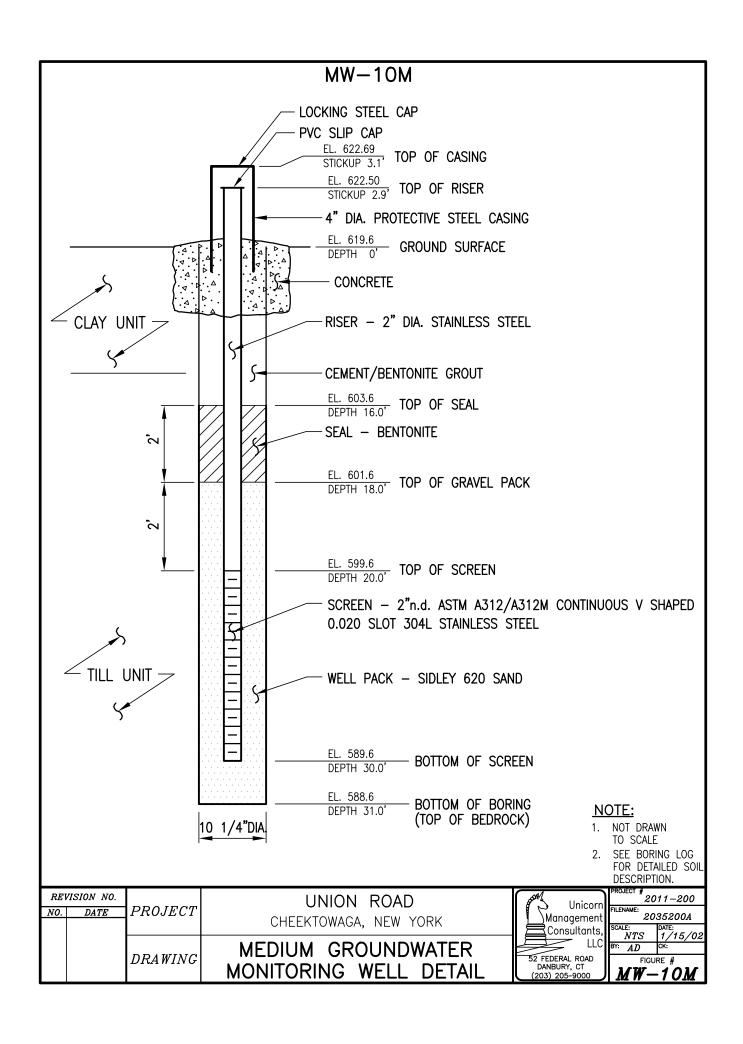
चुं न GEOLOGIST. O ORILLING EQUIPMEN WELL INSTALLED?	DR/DRILLER M- IMPITE , P. FFICE SEWAL DAME A T. METHOD SER MSA ASING MAT./DIA.	BENZE TYPE	ANDFILE CAP OF BIT HSA	SAMPLING A		AT. FINISE 2/23/9	<u> </u>
	ROUND SURFACE	TOP OF WELL CASING	TOP & BOTTOM	SCREEN GW	DIA. Zª SLO SURFACE	OAT	ξ
(FT. ABOVE M.S.L.) REMARKS:	618.5	617.5	605'- 595	••	und.	2/23	196
SEPIT GANGE COVER	/5° / 65°	LOG	G-CAP ELEU OF TEST BOR	ING		CONST.	GRAPING LYHO LOG
SEP IT OF THE COVER	A A B A B	MOITHINGESO			REMARKS	WELL	CRAPIUC LIVIO 1 (
- 15		20' 8.0.8					

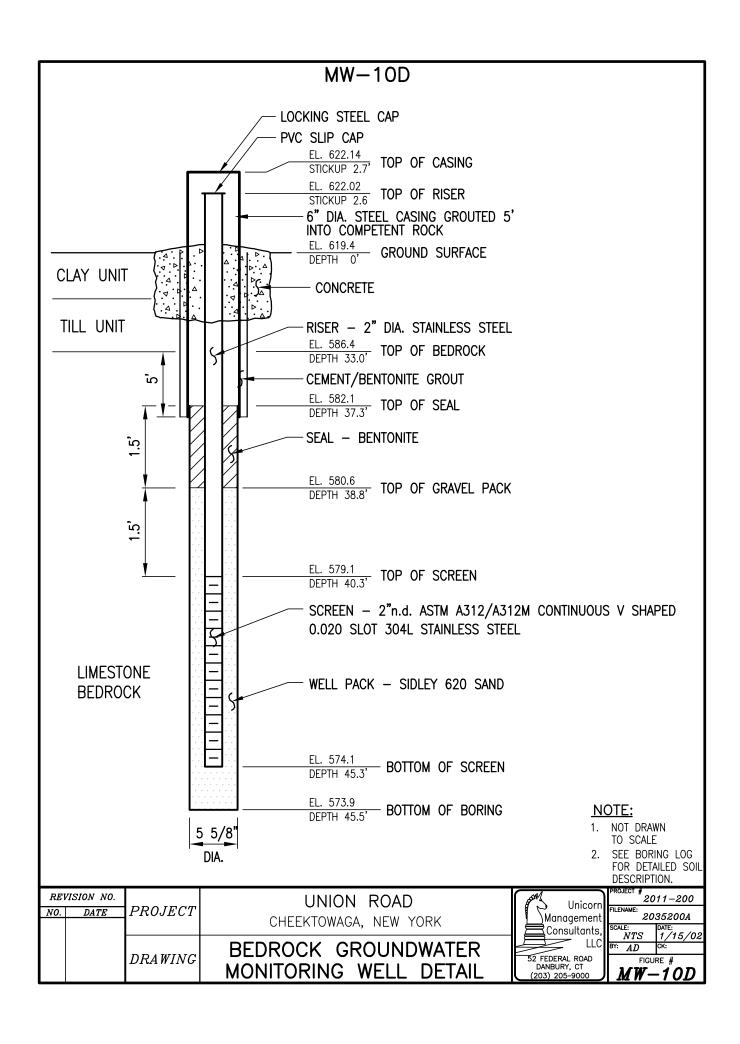
	DANBURY, CT 06810	N	
BORING NO.	TEST BORING LOG		·
PROJECT NO NAME	UNION RD LOCATION THIERTILL CAP		-
DRILLING CONTRACT	OR/DRILLER VA XIM/EMPIRE BELLE/BOHNCKET		o Sana
चुनु GEOLOGIST. O	FFICE HAMON/SZUMYA DAMBURY		
DRILLING EQUIPMENT CANE 450	AT. METHOD SIZE TYPE OF BIT ISA	MPLING METHOD	START. FINISH CATE 2/2//5<
WELL MSTALLED? C		GTH 10' DIA.)"	SLOT SIZE 0.20
ELEVATION OF: G	ROUND SURFACE TOP OF WELL CASING TOP & BOTTOM SCRE	EN GW SURFACE	DATE 7/11/96
7514.5	TI-AL ALLO DEPTHS RELATIVE TO PRE-		
	12-14 ALO UCHILD RECT. IST ID PRE-	CAD SORPHI	<i></i>
A	LOG OF TEST BORING		COMST.
SEPTH SAMPRESONE	LOG OF TEST BORING LOG OF TEST BORING DESCRIPTION	REMARKS	VELL O
JE / 4 / 4E / 4E	DESCRIPTION		3 0 -
- 1.5 8	Brown CIGY; NO COME, FROZEN, BOTTOM	F 20'26M	*
1.0 26	Brunn (lay trace organics this it	nsist	
1.5 19	BUTTON 12" BINCK I'M FINNLY WASSING W/charcon ODEZ, 10% OZMATES 10% "F. DET	mist	
	Black Fim Clay 100 0 Mayes TRACE 1/2" TOOK Trags	moist	SA STATE
1.5 221	Hert 6" WHITE CINESY ASK W/30% Chood	Wist	01111
05' 6	Fine and / 5,14 red w/ Blow String	-ct	
15 2 8	The ice fire only	De Cott	
1.5 3	Sime Fisher or ging	1.00.	
- 1023	BERN CLAY + SAND U BULL STING SHOR PETIDER	, wet	300 A

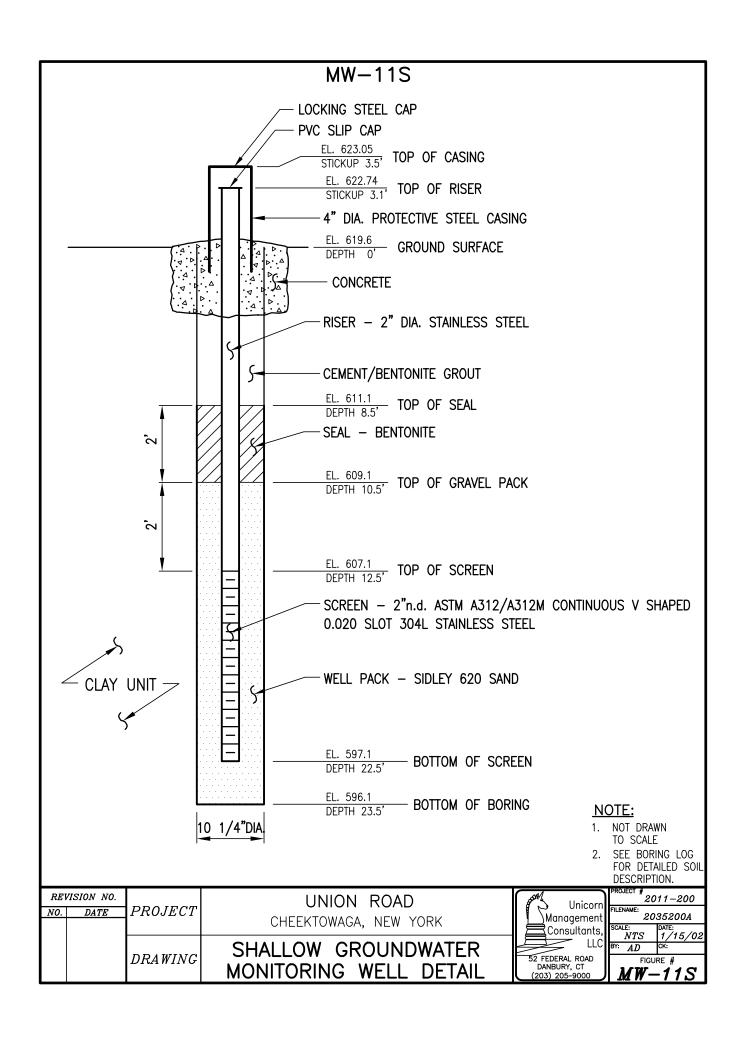
WELL INSTALLED? OF YES SEND CONTROL OF GENERALS CONTROL OF GENERALS CONTROL OF THE MARKS:	ROAD THERESON THE PLANT BENCE FFICE HAMDA SWAM HT. METHOD SCREEN: ASING MAT. DIA. SCREEN: TYPE MAT. SS ROUND SURFACE TOP OF WELL CLISING TOP & BO FOR THE BLATTUE TO PRO-	SAMPLING METHOD S LENGTH 10 DIA. 7 S OTTOM SCREEN GW SURFACE NA	TART FINISH CAT 2/2/1/76 SLOT SIZE 0-10 1/2/96
	LOG OF TEST LOG OF TEST LOG OF TEST LOG OF TEST DESCRIPTION	BORING	CONST.
SEPIT STATE OF	DESCRIPTION	REMARKS	WELL CO
3 8 7 6 3 8 7 6	Sume Wirks up > 1.5" findes in the Buttom 3" Blust Uni No course, truce of the course	ND petrolem	

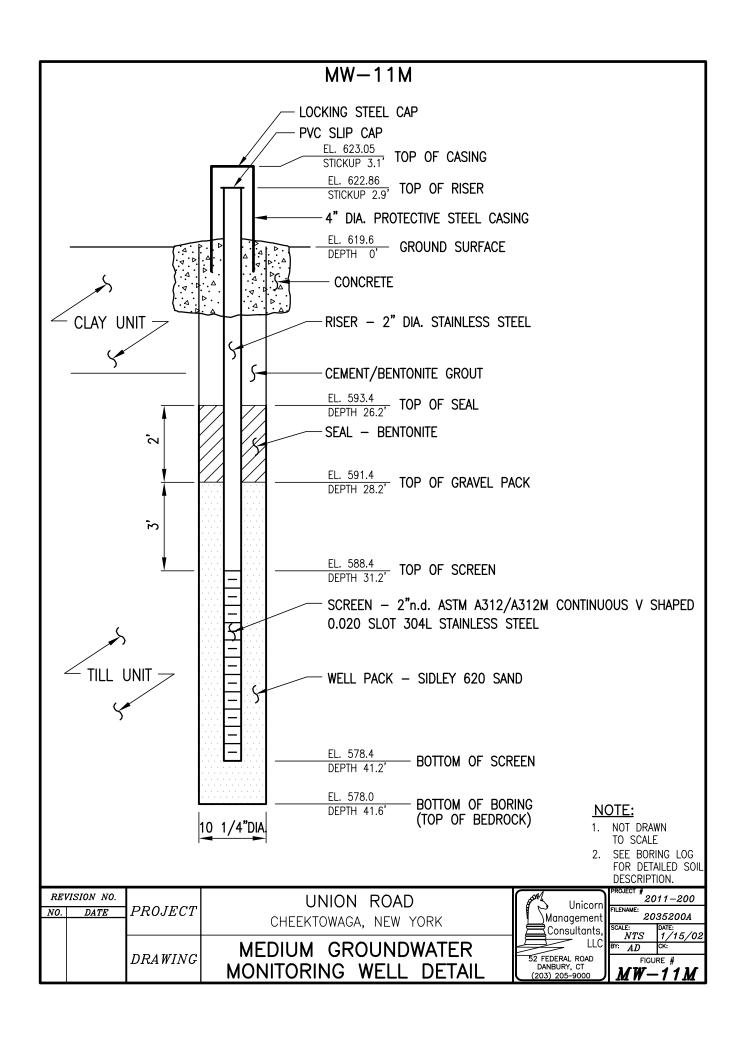
	(203) 796-5279	N J	
BORING NO.	TEST BORING LOG		
PROJECT NO NAME	1	\ m=	,
DRILLING CONTRACT	POAD LANDAL CAD		X ~ 75°'
	A = = 4 A 2 /		270
कुल GEOLOGIST. (ZWATA I HAVE STATE		
DRILLING EQUIPME	NT. METHOD SIZE TYPE OF BIT SAM	PLING METHOD ST	ART. FINISH CAT Z/22/16
WELL INSTALLED?	SSING MAT /DIA. SCREEN-		7 ,
YES WO C	2" 55 TYPE MAT. 5.5. LENG ROUND SURFACE TOP OF WELL CASING TOP & BOTTOM SCREE	H GW SURFACE	DATE
(FT. ABOVE M.S.L.)	623.4 625' 595'-605	/~k	2/22/4/
REMARKS:	OWATHER DEATHS ZECATIVE TO PRE-CAP GRADE		
	15/15		<u>-</u>
	LOG OF TEST BORING DESCRIPTION BRING FRIEN WAY.		COMS
36014 444 46 CON			WELL CONS
SEPTH SAMPLE CON		REMARKS	HAN SELL
1 4 / 4 / 4 / A	DESCRIPTION	REMARKS	1314-
2' 41	BRING FEBRUARY	Kno zem	= 1
	Distil and and allarder Charles for marchine march		
- 1'	a original. Milest/ feet made.	1	
- 1.25 UM	Some	د د د مسلمه ويركي مسمد كرا، استعادي	77.4
- ₄ ,	1400.4	SHUP HARMEL.	
F 1 1. act 9/2			
-5 1.25 7	SAME of Gray Beach copy, Fot staining with criming	324	
- 6-	BLAK CHAL CINDERS PROJECT		A
- 1 50/	Busice all the Linea Fire MARRIEL UT. TENER		
- 5'-	The First Files (19) And week.		
- 1 7	Sandy Have Grante (14) Rule & wanter frags , Frings.		
- ' ½	Dence your find some Track organies. 025.		
_10			
- L25' 9/4	Pointed the address of the relative mentalists. Outs		
- 12 - ' '	ECT STATES		A. W.
-			
- 0' 15/x			
- H'			
15 11 5/3	Short		
- 1/2	\perp .		
-	ne nen sier somme wife friendly received	14435	
- c.s' 1/4			
<u>- it </u>			
- - 4/ £.	nnt		

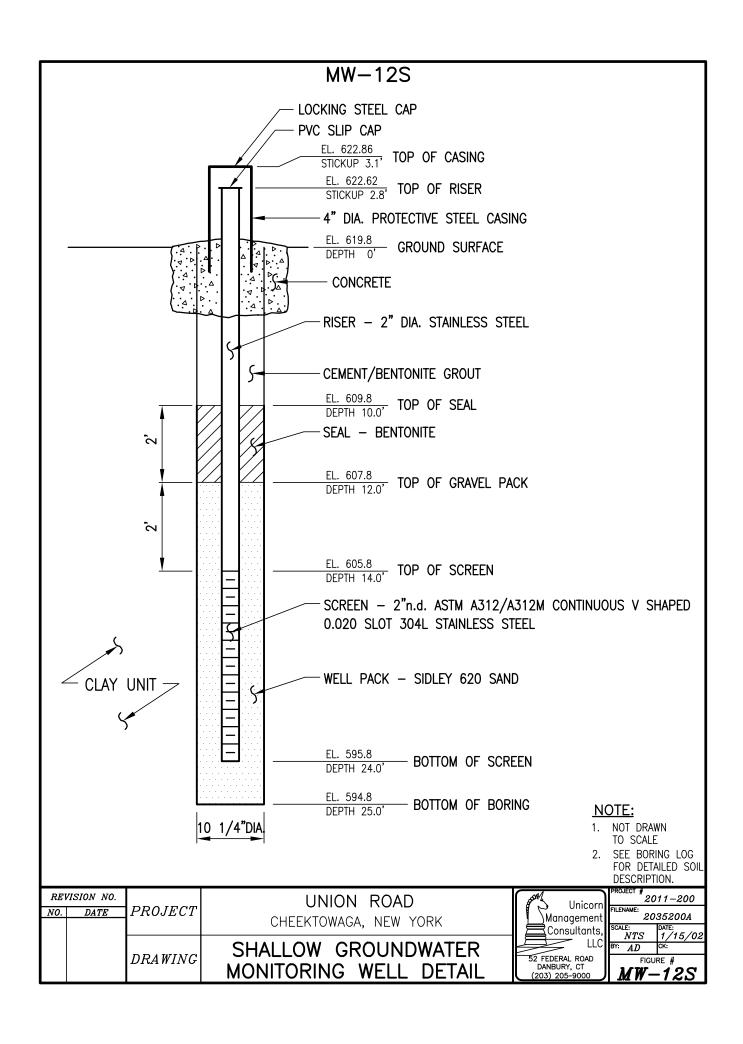

*				DANBUKI. CI 00310 (203) 796-5279		RING LOG		N			-
	BCRIN	G NO. MW:21					RD-100-0-1		mw-21		
		CT NO.			100	LANOFILE CAN			. اد دها اد دها	/ بول ب	/
	,	אם כטאר	1V/A~,.	R/ORILLER m = Empiae : D	13 ENCÉ	two size (14)			270	\mathcal{F}	
į	1475 - 17 227 - 2	GEOLOC	ist, of	FICE . Szuaka : Danis	ر پېږ						
	DRILL			T. METHOD	SIZE	COZS" HIS.A.		NG METHOD		r. finis 1/22/2	
	AETT	INSTALL NO		SING MAT./DIA.	SCREEN: TYPE	WAT. 5.5.	LEHGTH	10 ' DIA. 2"	SLOT	SIZE	
	ELEYA (FT. AI			OUND SURFACE	625'	CASING TOP & BOTTO	7 '	GW SURFACE		DAT Z/Z	2/.
Į	nca		<u> </u>	1) Eleventur :	Derthy relat	LOG OF TEST BO				157.	
		(+ (+ (+ (+ (+ (+ (+ (+ (+ (+ (+ (+ (+ (F COVERY	TAPE DO NO STATE OF THE PARTY O						TE COMST	GRAPHIC
	SER	(17) (17) (4)	E O SENS	ARCE	DESCR	PTION		REMARK	5	WELL	5
		ದಿಚ	1 10/1	Samé. 2" Ruce	DW(124 5\$	e, wang					1
	ー	14	19/16	Beauty Stortish	ing Amuse	ונטנג אנטיין . זיין אר	שטטיב, אפינטיר:				4
	-# -15	77	·1 _H	t ancr am	w where						
	[:"+		·	1	5	:05026			-		
	<u>_</u> 30										
	-								,		
	-										
	- 15 - -										. •
	F									and the same of th	

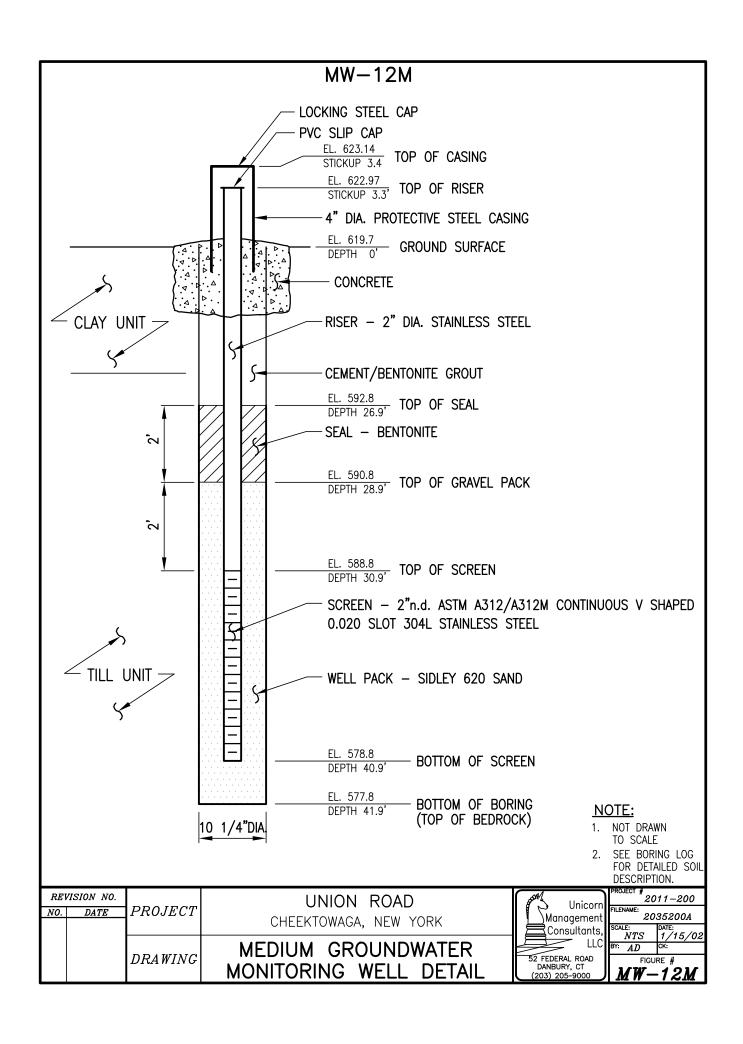

BORING NO. PROJECT NO NAME IJV, ON TO DRILLING CONTRACTOR MAYIN GEOLOGIST OFFI HANLON (CME \$55 WELL INSTALLED? CAS YES & NO I Z ELEVATION OF: GRO (FT. ABOVE M.S.L.)	COMA ORILLER MEMPINE D. BENES CE SEMANA. DAMANY METHOD S, HSA ING MAT./DIA. SCREEN: TYPE UND SURFACE TOP OF WE	LIZE TYPE OF BIT 6,25" HSA 10 SOF MAT. SS LL CASING TOP & BOTTOM 50000' - 50	SAMPLING 55 LENGTH 10 SCREEN GY	METHOD STAR 2 1 DIA. 2" SLOT N SURFACE	1. FINISH DATE 120/96 T. SIZE 10 DATE 2 / 22/96
(10.11)	10t / NST	LOG OF TEST SORE	NG .		WELL COMST. GHAPHIC
SEP IT GT ALCO VERY	de de co	CRIPTION		EXRAMES	WEL GRA
2 13/40 1 5/44 10/46 1 5/44 1 5/44 1 5/44 1 5/44 1 5/44 1 5/44 1 5/44 1 5/44 1 5/44 1 5/44	SAME. NUT AS CORNER SAME. NUT AS CORNER SAME SAME SAME CI-ACA IFILL MAPRIAL, G. RICE REAGE TO 1/2",	te Styling	יין איין איין איין איין איין איין איין	Grad Sarah	

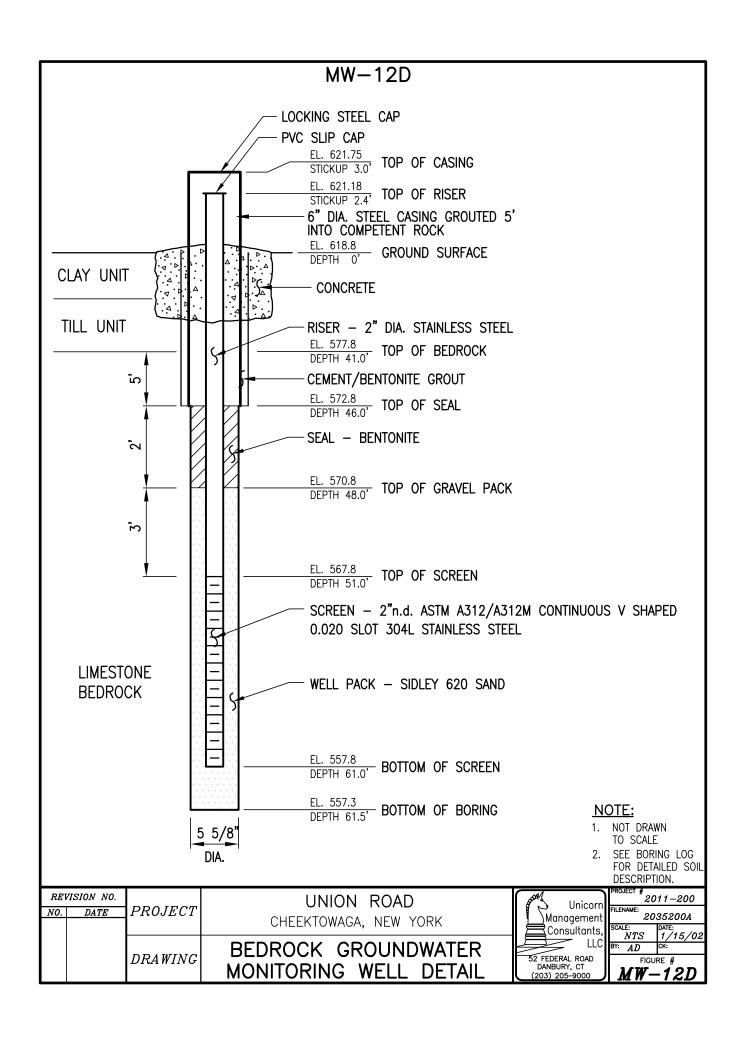

BORIN			TEST BORING LOG		M-22 153
PROJE	CT NO		LOCATION		
DRILLI	NG CONT	J ROAD	DRILLER OF		
		MARL	CE 1 52 FORD DOLLAR		\ /
		MAN	D / Jan Him		START, FINISH O
		HPMENT	METHOD SIZE THE UP BIT	SAMPLING METHOD	2/20/96
WELL	INSTALL!	ED? CAS	855 6.25 H 5A	LENGTH 10' DIA. 2"	SLOT SIZE TO
ELEYA	TION OF:	GRO	IND SURFACE TOP OF WELL CASING TOP & BOTTOM SE	CREEN GW SURFACE	025
REMAR	BOVE M.				
·			E-CAS SOFAE		
			LOG OF TEST BORING	G	CONST
					ō ɔ ɔ
	(H (HT) / 6	ECO SENS	DESCRIPTION	REMARKS	WELL
JE8	/5 /0	E SET	DESCRIPTION		141=1
-	1	l	ANGUIAL GRANILY MATIL. INTUCE ODUL; speck. MAR	(2 71,/	一片声
•	6 44	15/66	2 " Agriam Adule.		
- 27 + -			13mE		
-	6	15 14	4/9ALE		
<u> -</u> 커 †			Chit capt man, Thister of	(0	757
— 5	11	11/34	CREA CENTY FRAME THEHER ELLENTY ILS IM COM	, A	"
-x +					
-	2'	9/ ₁₆	SAME		
. 7	^	716	EOB JAN		
- 場					
-					
<u> </u>					
-					
-					
_					,
- 15					
-					
-					
•	1 1	1		1	
-					

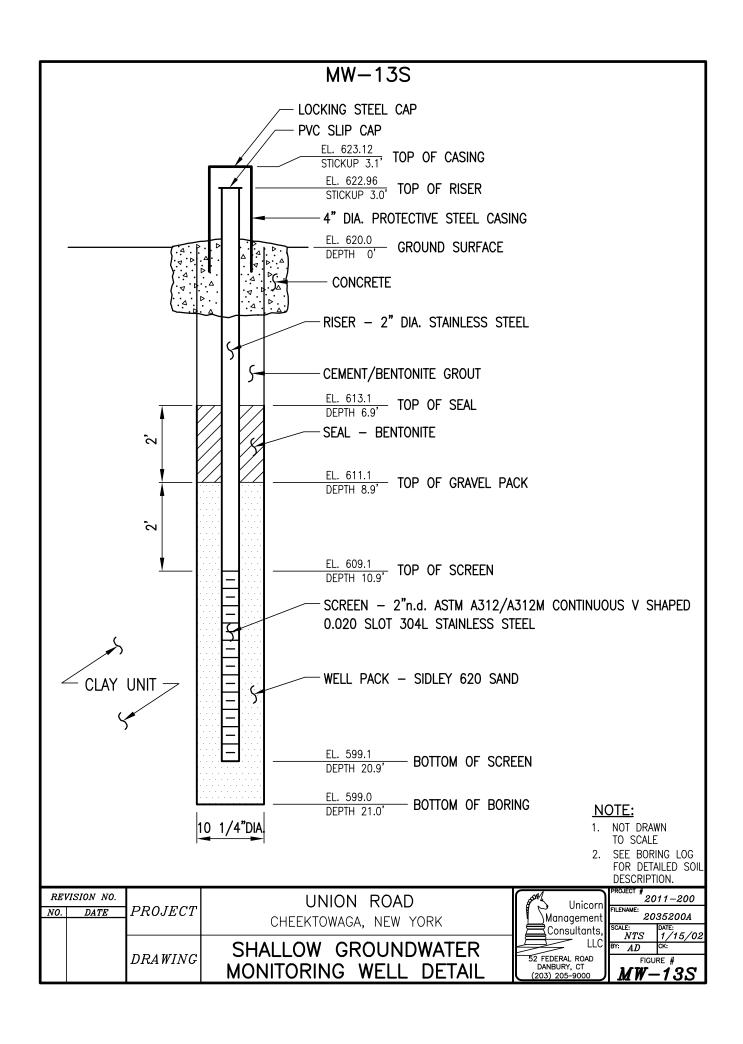

20

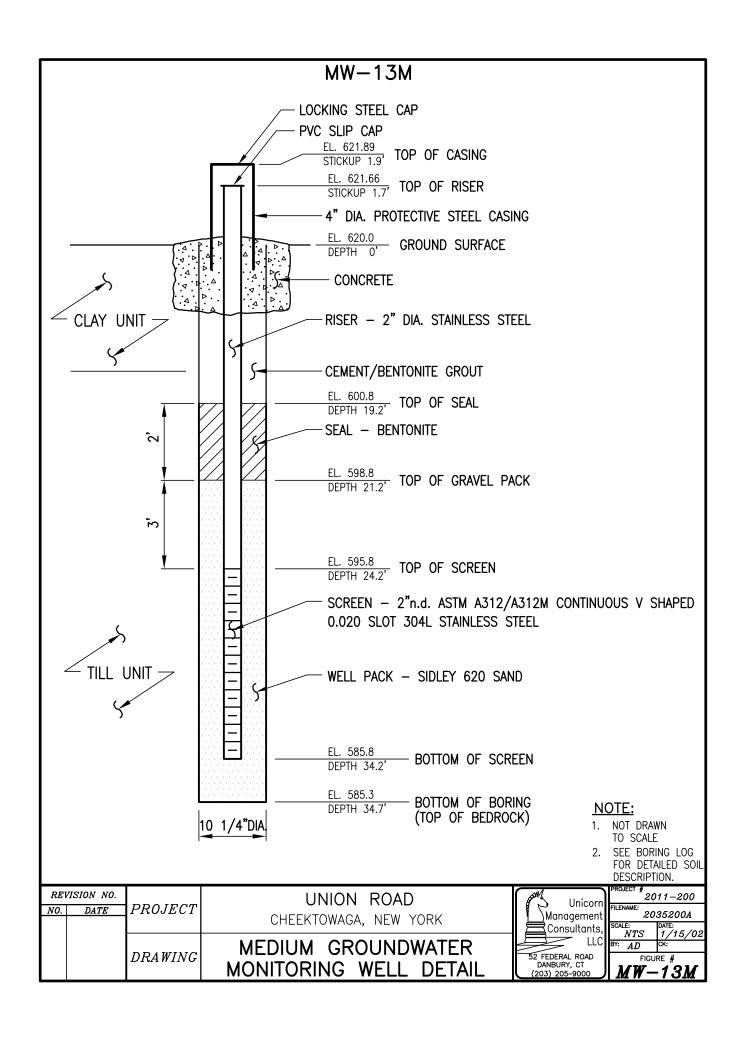

BORING NO. 23-5 PROJECT NO NAME (L)(C) DRILLING CONTRACTO DRILLING EQUIPMEN WELL INSTALLED? C. YES & NO () ST. ELEVATION OF: G. (FT. ABOVE M.S.L.) REMARKS:	TORILLER MAXIM FFICE JOHN J ZACHER IR IT. METHOD HSA (6" HSA	SAMPLING METHOD STAME SPLIT SECOND 1- LENGTH 16' BIA. 2" SLO	T. FINISH CA L-97 T SIZEC • CXC OATE
/s ²	CANAL LOG OF TEST EC	RING	COMST.
34 14 41 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LOG OF TEST EO	REMARKS	WELL COMS
1777 9 - 1 3 6 6 8 6 6 7 7 2 7 2 7 2 7 3 3 3 3 3 3 3 3 3 3 3 3	SAMPLING STARTS 2' BG. CH TWEEL HUNDAND HTS REOIBER CITY 15-18 REOIBER CLAY 15-21 SCHE MCHURE OHO REOIBER CLAY IGHH REOIBER CLAY GETH CLAY CLAY GETH CLAY, LITTLE SHIM, LITTLE RES GREY CLAY, LITTLE SHIM, LITTLE RES GREY CLAY, LITTLE SHIM, LITTLE RES GREY CLAY, LITTLE SHIM, LITTLE RES CREY CLAY, LITTLE SHIM, LITTLE RES	STIFF- DAY STIFF, TOKE HOO MEDSTIFF DAMP MEDSTIFF, DAMP SCAT, WET SCAT, WET SCAT, WET	7204/2

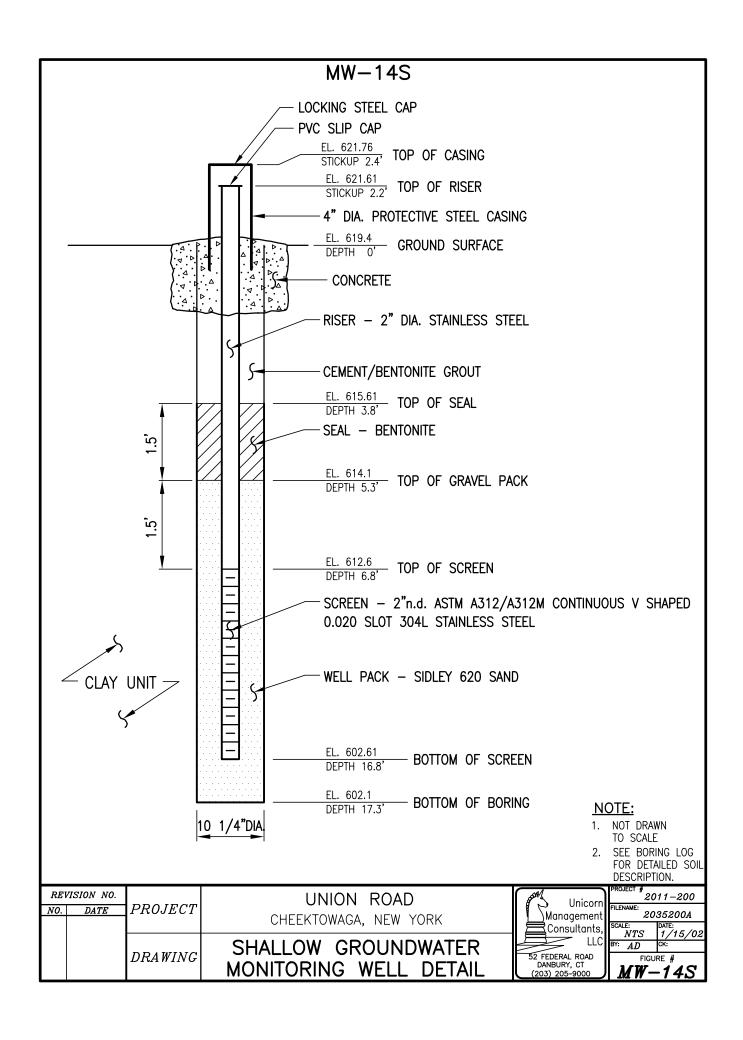


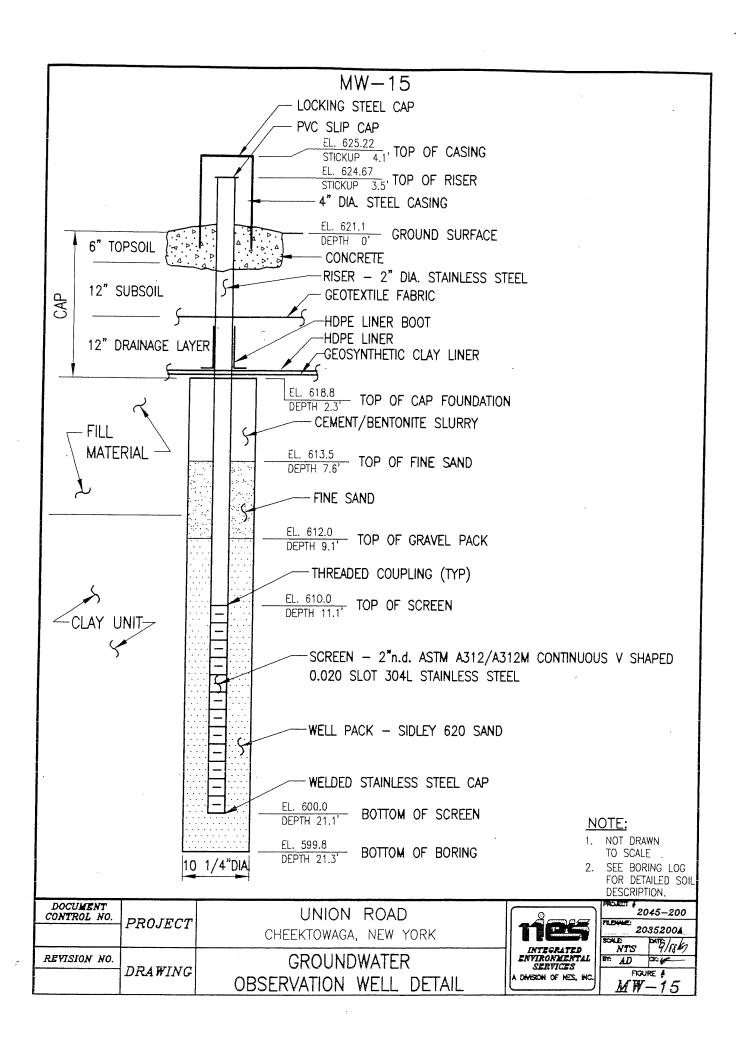


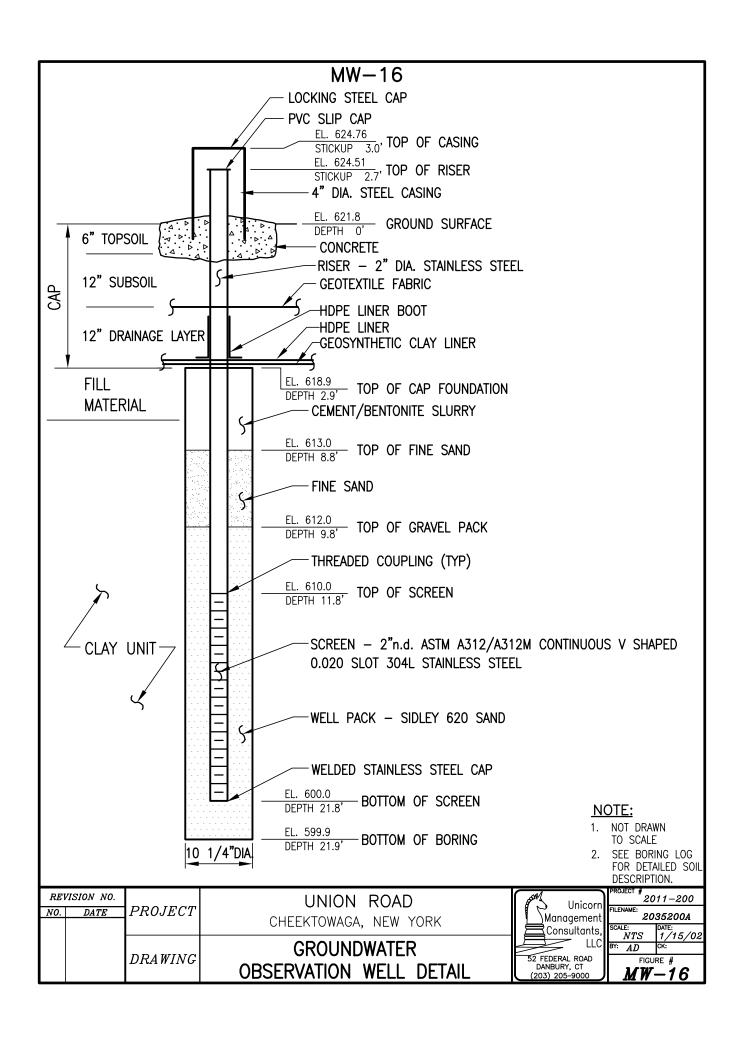


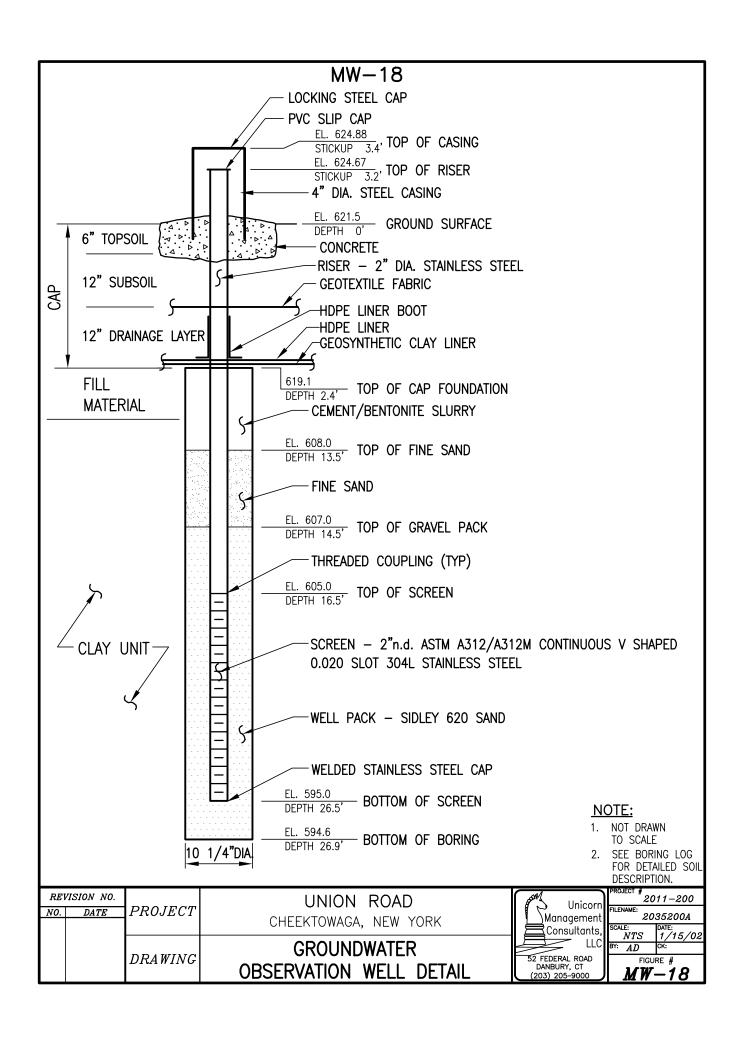


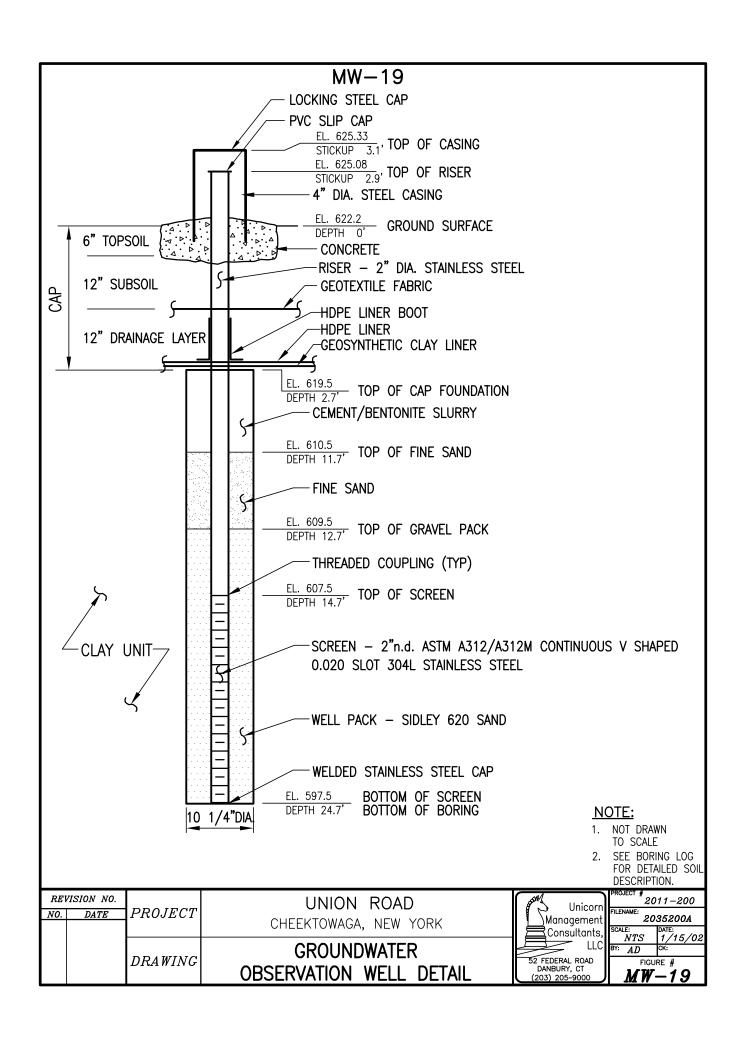


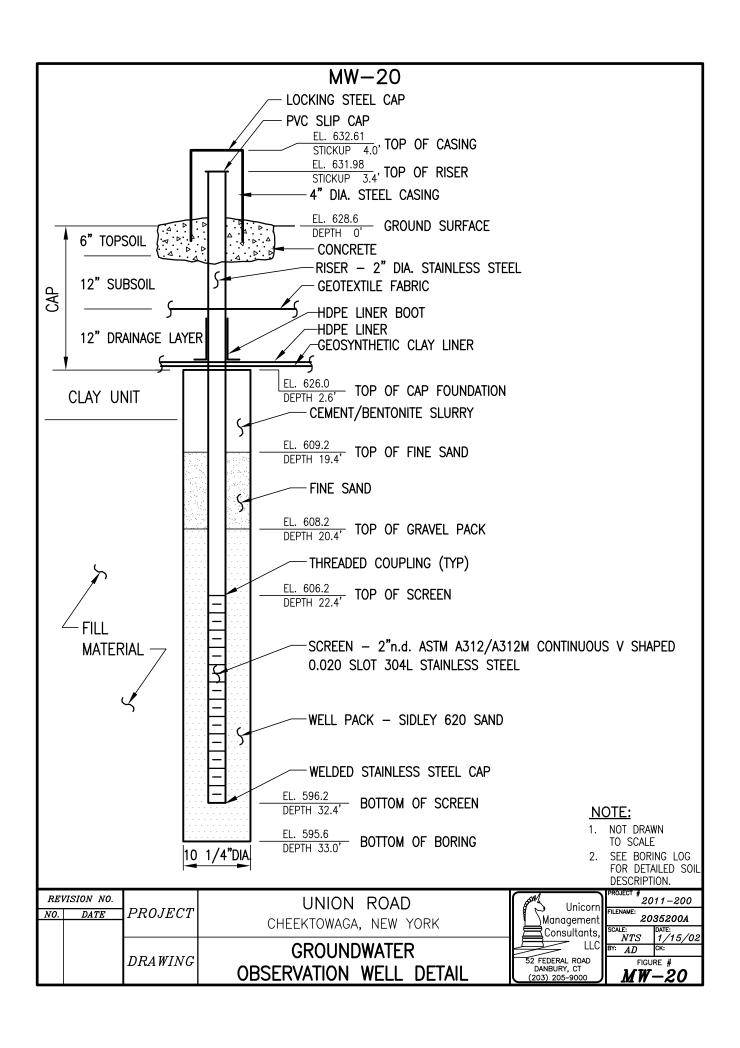


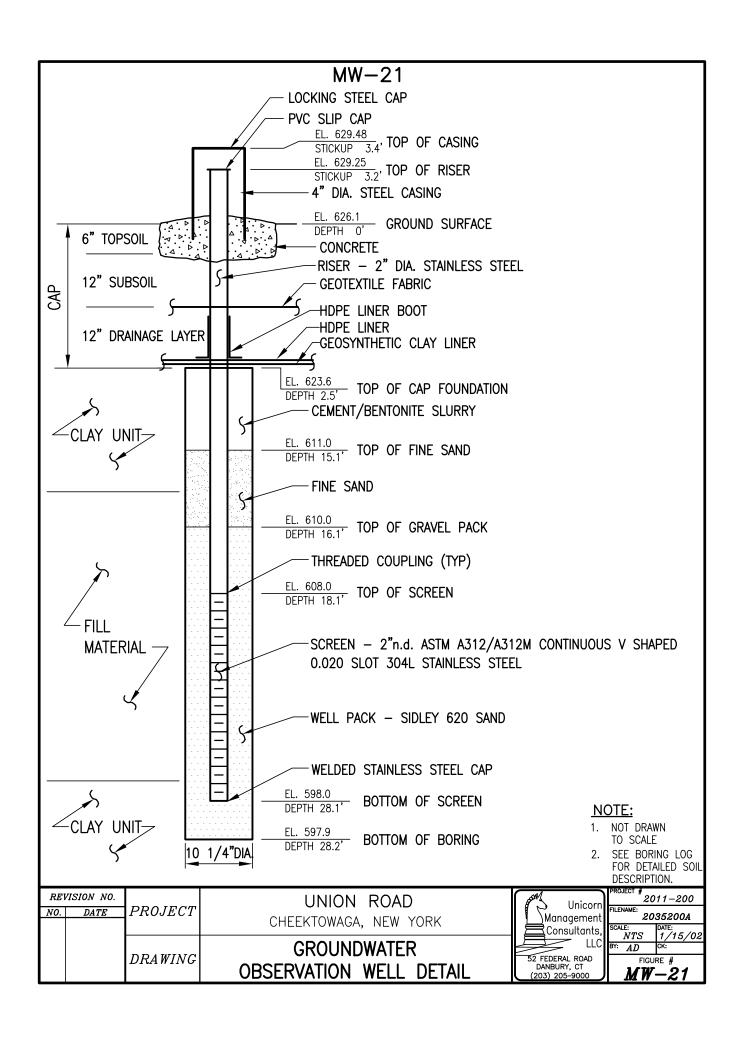


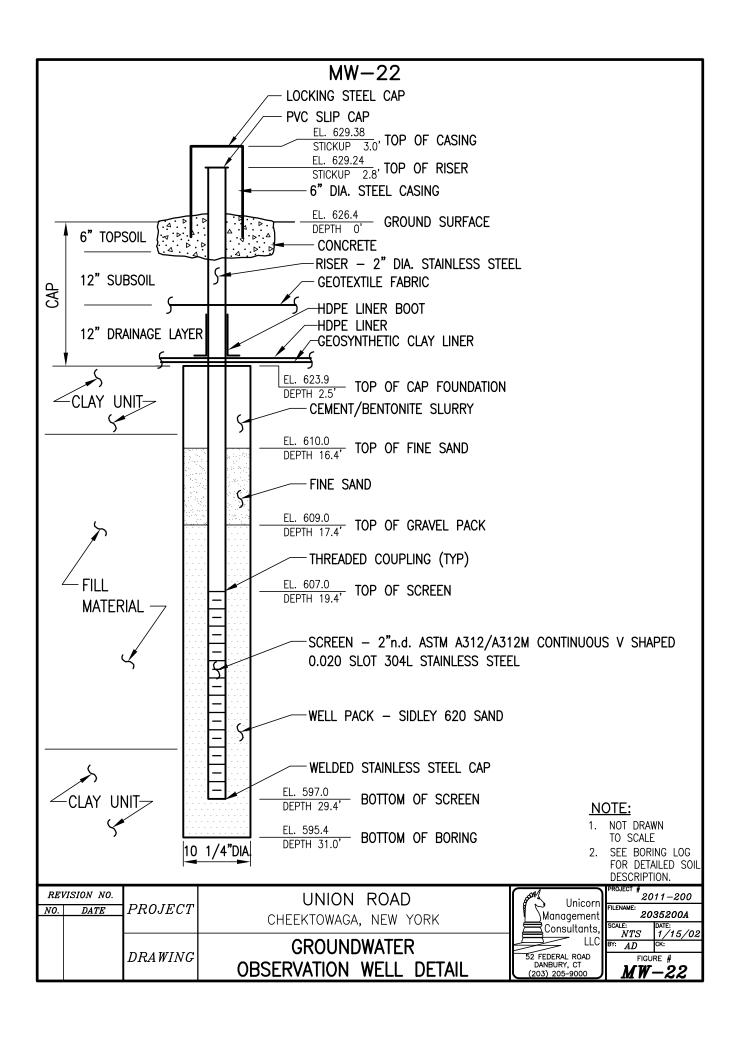


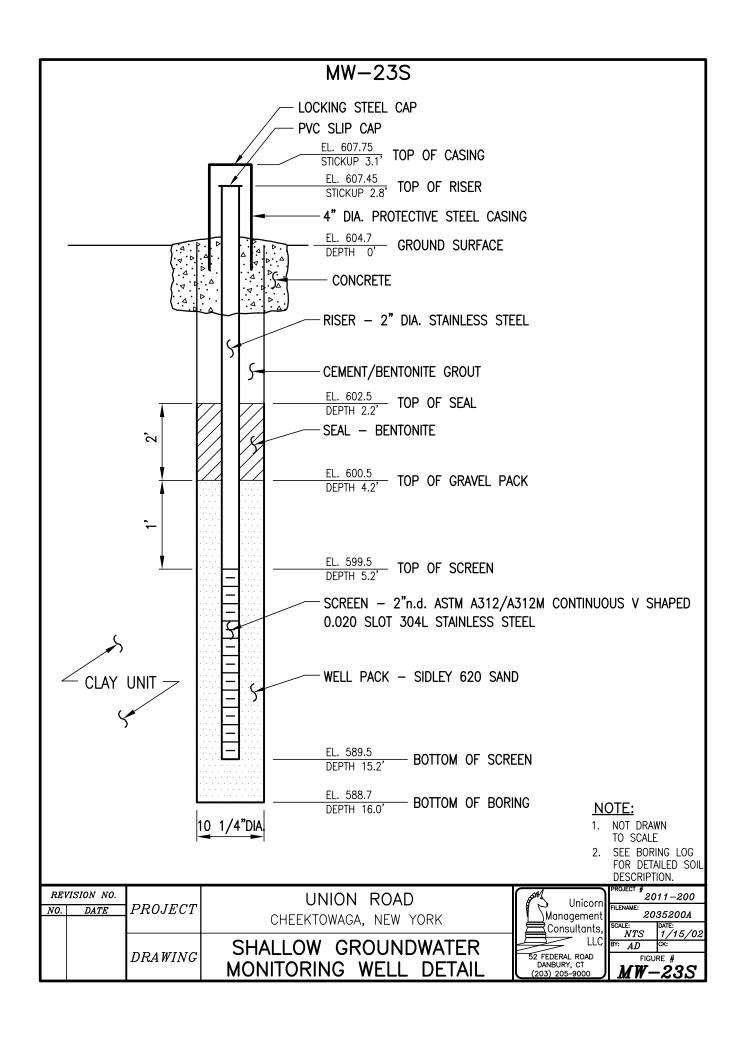












Union Road Site: Groundwater Monitoring Report Period: Annual 2020

APPENDIX B

NYSDEC LETTERS

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 9 270 Michigan Avenue, Buffalo, NY 14203-2915 P: (716) 851-7220 | F: (716) 851-7226 www.dec.ny.gov

November 22, 2019

Blank Rome, LLP Margaret Anne Hill, Esq. One Logan Square Philadelphia, Pennsylvania 19103

Dear Ms. Hill (as the Certifying Party):

Site Management (SM) Periodic Review Report (PRR) Response Letter Union Road Site, Cheektowaga Erie County, Site No.: 915128

The Department has reviewed your Periodic Review Report (PRR) and IC/EC Certification for the following period: December 26, 2017 to December 26, 2018.

The Department hereby accepts the PRR and associated Certification. The frequency of Periodic Reviews for this site is 1 year, and your next PRR is due on January 25, 2020. You will receive a reminder letter and updated certification form 75-days prior to the due date. Regardless of receipt or not of the reminder notice, the next PRR, including the signed certification form, is still due on the date specified above.

Please Note: After reviewing the analytical data, the NYSDEC concurs that the groundwater sampling frequency can be changed, from annually to once every 2 years, with the next sampling event occurring in 2020. Annual groundwater elevation monitoring and O&M activities still need to be conducted on an annual basis and included within the annual PRR's. In future PRR's, please include trendlines of total SVOCs, total VOCs, TPH, Soluble Arsenic, and Soluble Lead for each groundwater sampling location.

Additionally, according to our records, groundwater data associated with this certification period has not been uploaded to our electronic database (EQuIS). Please make sure this data, along with data collected during the current certification period, is uploaded prior to submittal of the PRR due January 25, 2020. The Department will not accept the next PRR without verification the data has been uploaded.

Margaret Anne Hill, Esq. November 22, 2019 Page 2

If you have any questions, please contact me at 716-851-7220 or email: megan.kuczka@dec.ny.gov.

Sincerely,

Megan Kuczka /

Environmental Program Specialist 1

MK/dpp

ec: Damianos Skaros - NYSDEC

Stanley Radon - NYSDEC

Michael O'Connor – Unicorn Management Consultants, LLC Michael Persico – Unicorn Management Consultants, LLC

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 9 270 Michigan Avenue, Buffalo, NY 14203-2915 P: (716) 851-7220 | F: (716) 851-7226 www.dec.ny.gov

January 24, 2020

Margaret Anne Hill, Esq. Blank Rome, LLP One Logan Square Philadelphia, Pennsylvania 19103

Dear Ms. Hill (as the Certifying Party):

Site Management (SM)
Periodic Review Report (PRR) Response Letter
Union Road Site, Cheektowaga
Erie County, Site No.: 915128

The Department has reviewed your Periodic Review Report (PRR) and IC/EC Certification for the following period: December 26, 2018 to December 26, 2019. The Department hereby accepts the PRR and associated Certification.

The frequency of Periodic Reviews for this site is one year, and your next PRR will be due on January 25, 2021. You will receive a reminder letter and updated certification form 75-days prior to the report's due date. Regardless of receipt or not of the reminder notice, the next PRR, including the signed certification form, is still due on the date specified above.

Please Note: After reviewing the analytical data, the Department concurs that the groundwater sampling frequency can be changed, from annually to once every 2 years, with the next sampling event occurring in 2021. Annual groundwater elevation monitoring and O&M activities still need to be conducted on an annual basis and included within the annual PRR's. Please continue to include trendlines of total SVOCs, total VOCs, TPH, Soluble Arsenic, and Soluble Lead for each groundwater sampling location and the historical groundwater data tables.

Additionally, in future PRR's, please include the following edits:

- Attach the groundwater sampling field forms from the Certifying Period
- Add a Groundwater Quality Standards column to Tables 3-3 through 3-8 and put any exceedances in bold.

Margaret Anne Hill, Esq. January 24, 2020 Page 2

If you have any questions, please contact me at 716-851-7220 or email: megan.kuczka@dec.ny.gov.

Sincerely,

Megan Kuczka

Environmental Program Specialist - 1

MK/jl

ec: Ms. Andrea Caprio, NYSDEC

Mr. Stanley Radon, NYSDEC

Mr. Michael O'Connor, Unicorn Management Consultants, LLC Mr. Michael Persico, Unicorn Management Consultants, LLC