

April 13, 2012 Refer to OP-2800 RECEIVED NYSDEC - REGION 9 APR 16 2012 FOIL REL UNREL

Mr. David Szymanski Project Manager New York State Department of Environmental Conservation, Region 9 270 Michigan Avenue Buffalo, New York 14203-2999

Subject: Groundwater Monitoring Report; Closure Year 15 (2011); Annual Sampling Union Road Site, Erie County, Cheektowaga, NY Inactive Hazardous Waste Disposal Site No. 915128

Dear Mr. Szymanski:

On behalf of American Premier Underwriters, Inc., Unicorn Management Consultants, LLC (UMC) hereby submits the Groundwater Monitoring Report for the Annual Sampling of Closure year 15 (2011) for the subject site.

Also enclosed is the completed NYSDEC Institutional and Engineering Controls Certification form for 2011.

If you have any questions regarding this report, please call me at 203-205-9000, ext. 13.

Sincerely,

Unicorn Management Consultants, LLC

MMhl O' Con

Michael J. O'Connor, LEP, P.G. Project Manager Union Road Remediation Project

Attachments

cc: M. Doster: Regional Director, NYSDEC, Region 9
M. Cioffi
L. Lackner (w/o attachment)
J. Periconi
M. Hill, Esq.

٠

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

٦

Sit	Site Details te No. 915128	Box 1	
Sit	te Name Union Road Site		
Cit Co	e Address: Losson Road Zip Code: 14110 y/Town: Cheektowaga ounty:Erie e Acreage: 23.0		
Re	porting Period: December 26, 2010 to December 26, 2011		
		YES	NO
1.	Is the information above correct?	X	
	If NO, include handwritten above or on a separate sheet.		
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		×
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		À
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		đ.
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form		
5.			đ.
5.	that documentation has been previously submitted with this certification form		¢.
5.	that documentation has been previously submitted with this certification form		¢ NO
	that documentation has been previously submitted with this certification form		-
6.	that documentation has been previously submitted with this certification form Is the site currently undergoing development? Is the current site use consistent with the use(s) listed below?	Box 2 YES	NO
6. 7.	that documentation has been previously submitted with this certification form Is the site currently undergoing development? Is the current site use consistent with the use(s) listed below? Closed Landfill	Box 2 YES X X	NO

SITE NO. 915128		Box 3
Description of Ins	titutional Controls	
Parcel	<u>Owner</u>	Institutional Control
114.17-1-3.1	Universal Marion Corp.	<u>monatorial control</u>
	- · · · · · · · · · · · · · · · · · · ·	Ground Water Use Restriction
		Landuse Restriction
		Monitoring Plan O&M Plan
114.17-1-3.1	Universal Marion Corp.	Oalin Flan
114.17-1-5.1		
114.17-1-2	Witben Realty C/O Universal M	
		Ground Water Use Restriction
		Landuse Restriction
		Monitoring Plan O&M Plan
114.17-1-2	Witben Realty C/O Universal M	
		Box 4
Description of End	ineering Controls	
Description of Eng		l
Parcel	gineering Controls Engineering Contro	<u>l</u>
	Engineering Contro Cover System	
Parcel	Engineering Contro Cover System Fencing/Access Co	
<u>Parcel</u> 114.17-1-3.1	Engineering Contro Cover System	
Parcel	Engineering Contro Cover System Fencing/Access Co Pump & Treat	
<u>Parcel</u> 114.17-1-3.1	Engineering Contro Cover System Fencing/Access Co Pump & Treat Cover System Fencing/Access Co	ntrol
<u>Parcel</u> 114.17-1-3.1 114.17-1-2	Engineering Contro Cover System Fencing/Access Co Pump & Treat Cover System Fencing/Access Co Pump & Treat	ntrol
<u>Parcel</u> 114.17-1-3.1 114.17-1-2	Engineering Contro Cover System Fencing/Access Co Pump & Treat Cover System Fencing/Access Co	ntrol
Parcel 114.17-1-3.1 114.17-1-2 Engineering Contr Parcel: 114.17-1-2	Engineering Contro Cover System Fencing/Access Co Pump & Treat Cover System Fencing/Access Co Pump & Treat rol Details for Site No. 915128	ntrol
Parcel 114.17-1-3.1 114.17-1-2 Engineering Contr Parcel: 114.17-1-2	Engineering Contro Cover System Fencing/Access Co Pump & Treat Cover System Fencing/Access Co Pump & Treat	ntrol
Parcel 114.17-1-3.1 114.17-1-2 Engineering Contr Parcel: 114.17-1-2	Engineering Contro Cover System Fencing/Access Co Pump & Treat Cover System Fencing/Access Co Pump & Treat rol Details for Site No. 915128	ntrol
Parcel 114.17-1-3.1 Engineering Contr Parcel: 114.17-1-2 Site O&M Plan & Repo Parcel: 114.17-1-3.1	Engineering Contro Cover System Fencing/Access Co Pump & Treat Cover System Fencing/Access Co Pump & Treat rol Details for Site No. 915128	ntrol

	Box 5
	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
	engineering practices, and the mormation presented is accurate and compete. YES NO
	X □
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
,	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
Ī	Signature of Owner, Remedial Party or Designated Representative Date

SITE NO. 915128	Box 6
SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNAT I certify that all information and statements in Boxes 1,2, and 3 are true. I under statement made herein is punishable as a Class "A" misdemeanor, pursuant to S Penal Law.	stand that a false
Michael O'Connor at 52 Federal Rol, Suite ; print name print business address	BC Danbury CT 06810
am certifying as <u>Remedial Party</u> (Ou	wner or Remedial Party)
for the Site named in the Site Details Section of this form.	
MM O' CmSignature of Owner, Remedial Party, or Designated RepresentativeSolutionRendering CertificationDate	-/3//12

IC/EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Michgel O'Connor print name

at 52 Federal Rd Suite 26 Danbury CT 06810 print business address

am certifying as a Qualified Environmental Professional for the <u>Remedial Party</u> (Owner or Remedial Party)

MMMI n' In

Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification

Stamp (Required for PE)

Date

52 Federal Road, Suite 2C Danbury, CT 06810 Tele: (203) 205-9000 Fax: (203) 205-9011 www.unicornmgt.com

RECEIVED NYSDEC - REGION 9

APR 16 2012

ANNUAL GROUNDWATER MONITORING REPORT CLOSURE YEAR 15 (2011)

FOIL REL____UNREL

UNION ROAD SITE TOWN OF CHEEKTOWAGA ERIE COUNTY, NEW YORK (SITE REGISTRY NO. 9-15-128)

Prepared for:

AMERICAN PREMIER UNDERWRITERS, INC. (FORMERLY THE PENN CENTRAL CORPORATION) ONE EAST FOURTH STREET CINCINNATI, OHIO 45202

Prepared by:

UNICORN MANAGEMENT CONSULTANTS, LLC 52 FEDERAL ROAD, SUITE 2C DANBURY, CT 06810

April 13, 2012

Responsiveness

٠

٠

Quality

Document Authorization Form

Annual Groundwater Monitoring Report Closure Year 15 (2011)

> Union Road Site Town of Cheektowaga Erie County, New York (Site Registry No. 9-15-128)

> > **Prepared for:**

American Premier Underwriters, Inc. (Formerly The Penn Central Corporation) One East Fourth Street Cincinnati, Ohio 45202

Prepared by:

UNICORN MANAGEMENT CONSULTANTS, LLC 52 FEDERAL ROAD, SUITE 2C DANBURY, CT 06810

April 13, 2012

AUTHORIZATIONS:

D'Cm

Michael J. O'Connor, LEP, PG. Manager of Environmental Projects

4/13/12

Date

Table of Contents

Page

1.	INT	RODUCTION	1
2.	WE	LL INSTALLATION	4
3.	GR	OUNDWATER Sampling and Analyses	6
4.	GR	OUNDWATER ELEVATION Monitoring	18
5.	CO	NCLUSION	23
	5.1	Site Inspection and MaintenAnce	23
	5.2	Groundwater Quality	24

List of Figures

Page

Figure 1-1: Location Map	2
Figure 1-2: Site Location	3
Figure 2-1: Groundwater Monitoring Well Locations	5
Figure 4-1: Shallow Groundwater Flow Map; August 23, 2011	20
Figure 4-2: Medium Well Groundwater Flow Map; August 23, 2011	21
Figure 4-3: Bedrock Groundwater Flow Map; August 23, 2011	22

List of Tables

	Page
Table 3-1: Pre-Construction Sampling of Shallow Wells (June - August, 1991)	7
Table 3-2: Well Purging Summary	8
Table 3-3: Annual Groundwater Monitoring 2011: Shallow Well SVOCs	9
Table 3-4: Annual Groundwater Monitoring 2011: Shallow Well VOCs, TPH, and Metals	11
Table 3-5: Annual Groundwater Monitoring 2011: Medium Well SVOCs	12
Table 3-6: Annual Groundwater Monitoring 2011: Medium Well VOCs, TPH, and Metals	14
Table 3-7: Annual Groundwater Monitoring 2011: Deep Well SVOCs	15
Table 3-8: Annual Groundwater Monitoring 2011: Deep Well VOCs, TPH, and Metals	17
Table 4-1: Groundwater Well Measurements; August 23, 2011	19

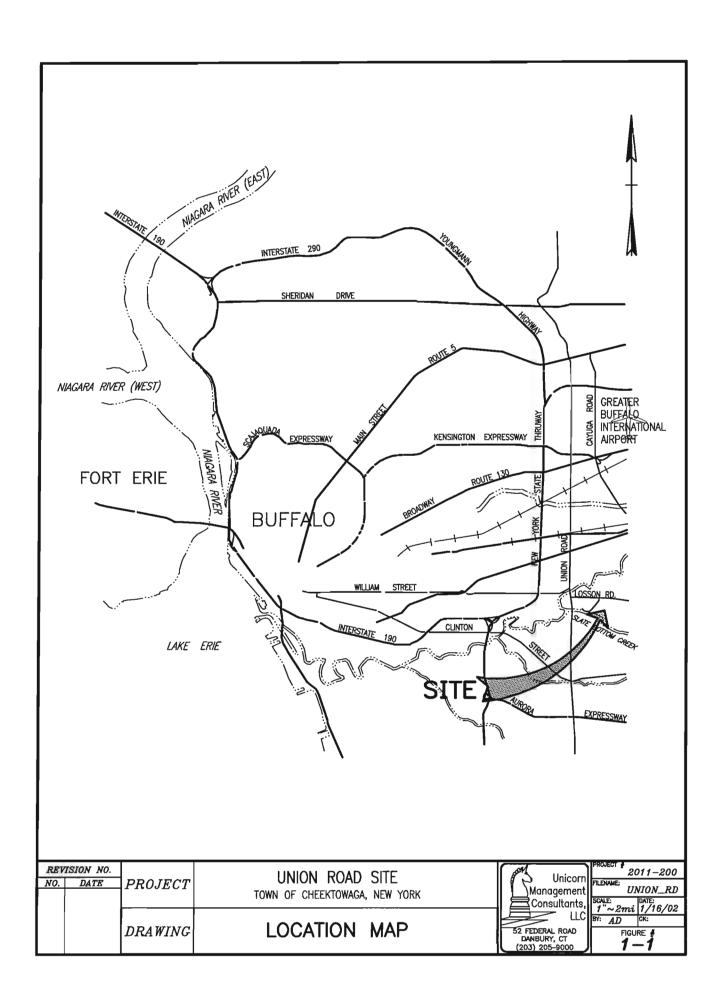
APPENDIXABORING LOGS AND WELL CONSTRUCTION DRAWINGS (ON CD)APPENDIXBLABORATORY REPORT (ON CD)

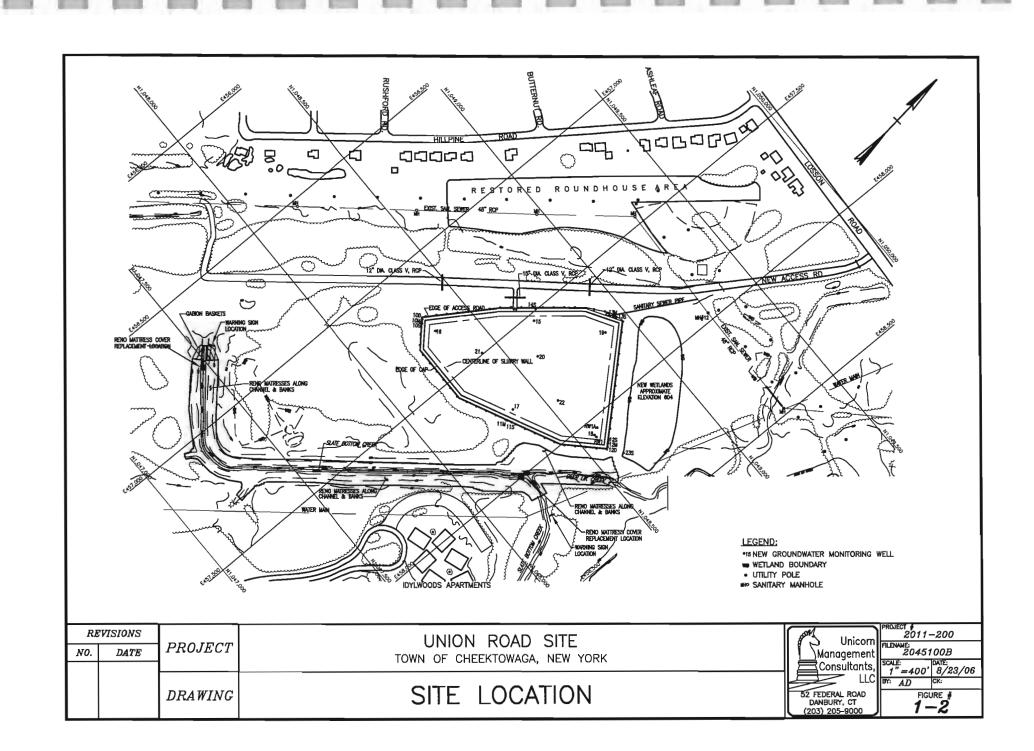
1. INTRODUCTION

This Groundwater Monitoring Report has been prepared by Unicorn Management Consultants, LLC (UMC) on behalf of American Premier Underwriters, Inc. The purpose of this document is to demonstrate compliance with Section 12.4.1 of the Union Road Site Remedial Design Report (Design Report), approved by the NYSDEC in May, 1995. Section 12.4.1 of the Design Report discusses the Groundwater Monitoring Plan (GMP). The GMP consists of these elements:

- Installation of groundwater monitoring wells inside and outside the slurry wall around the landfill closure;
- Collection and analyses of groundwater samples; and
- Determination of groundwater elevations.

Please note that pursuant to letter dated October 18, 2001, from Blank Rome Comisky and McCauley, LLP (APU's legal counsel), effective October 19, 2001, APU designated UMC as their environmental consultants.

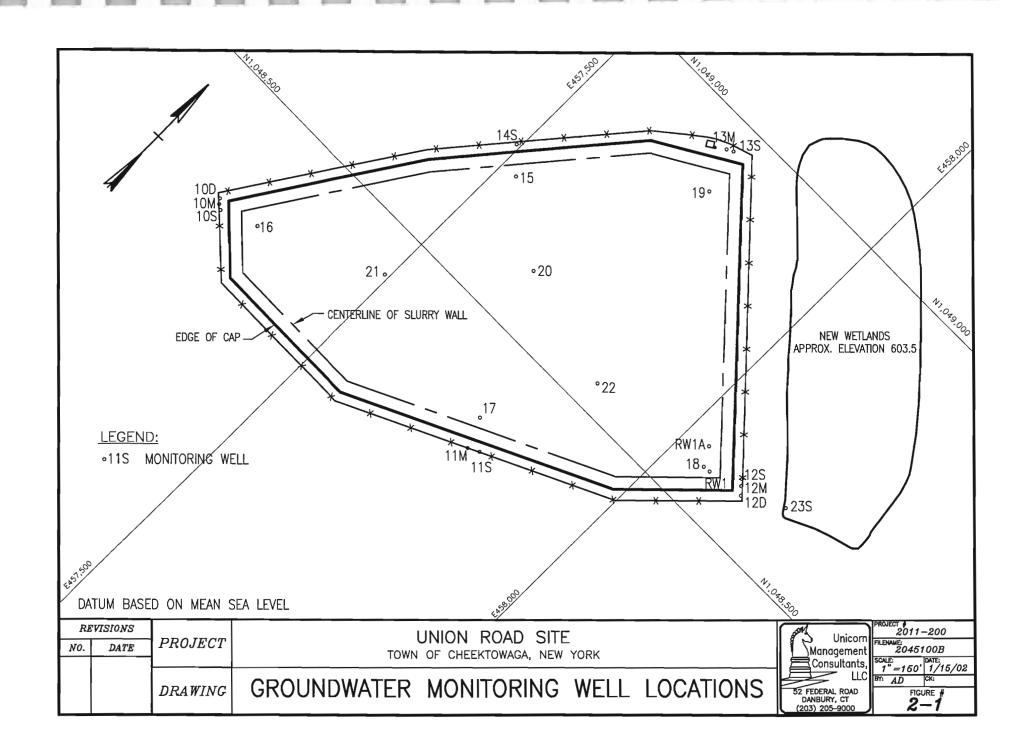

The Union Road site ("the Site") is a Class 2 Site as defined by the New York State Department of Environmental Conservation (NYSDEC). The Site registry number is 915128. The Site is located at 333 Losson Road in Cheektowaga, New York (see Figure 1-1). A Record of Decision (ROD) for the Site was signed on March 9, 1992. Order on Consent Index No. B9-0148-92-03 was signed by The Penn Central Corporation (currently, American Premier Underwriters, Inc.) and the New York State Department of Environmental Conservation (NYSDEC); the effective date of the Order is April 12, 1994. Appendix "B" of the Order is the Final Remedial Action Work Plan (the "Work Plan"), dated June 18, 1993.


As required in Section 4.2 of the Work Plan, the design documents, including the Union Road Site Remedial Design Report, were submitted in May 1995 to the NYSDEC and were subsequently approved. After approval, work commenced and the landfill closure was completed in December 1996. Figure 1-2 illustrates a plan view of the Site closure.

The GMP, Inspection and Operation and Maintenance activities for the Site went into effect following the landfill closure. This report presents and summarizes the groundwater monitoring data for the Annual Monitoring of Closure Year 14 (2011). This is the 14th sampling event since the landfill closure (December 1997).

The purpose of GMP is as follows:

- Monitor the groundwater gradient of the three hydrogeologic units in and around the closure area; and
- Evaluate the groundwater quality to assess the effectiveness of the remedial action performed in accordance with 1995 Design Report.



2. WELL INSTALLATION

As proposed in the GMP, five well clusters were installed along the outside perimeter of the slurry wall. These exterior wells are identified as MW-10S-M-D, MW-11S-M, MW-12S-M-D, MW-13S-M, and MW-14S. Adjacent to these wells, along the inside perimeter of the slurry wall, five shallow wells identified as MW-15, MW-16, MW-17, MW-18, and MW-19 were installed.

Three additional shallow wells (not originally proposed) were also installed. These wells (MW-20, MW-21, and MW-22) were installed in the center of the landfill to monitor the elevation of groundwater inside the landfill closure. Proposed well MW-20S adjacent to the outfall of the new wetland was installed; however, the identification of this well was changed from MW-20S to MW-23S. As discussed in the Groundwater Monitoring Report for the Second Quarter 1997, the original Monitoring Well 14S (MW-14S) was decommissioned and the replacement was reinstalled nine (9) feet southwest (along the fence line). The MW-14S replacement was installed, surveyed and developed on August 19, 1997. Well designations and locations are shown on Figure 2-1.

Installation of monitoring wells proceeded according to Section 02170 of the Technical Specifications. Installation of the interior wells occurred from February 19-23, 1996. Installation of the exterior wells took place from December 10, 1996 through January 6, 1997 and August 19, 1997. Copies of the Boring Logs and Well Construction Drawings are included as Appendix A.

3. GROUNDWATER SAMPLING AND ANALYSES

The purpose of groundwater sampling and analyses is to assess the effectiveness of the remedial action by evaluating the groundwater quality.

According to the GMP, groundwater samples will be collected from the outside perimeter monitoring wells by the following schedule:

- Quarterly the first year (1997);
- Semi-annually the second year (1998); and
- Annually (during the dry season) thereafter.

The parameters and applicable methods for the analyses are as follows:

- Total petroleum hydrocarbons (TPH) by EPA Method 1664*;
- Volatile organic compounds (VOCs) by EPA Method 8260;
- Semi-volatile organic compounds (SVOCs) by EPA Method 8270; and
- Soluble metals (lead and arsenic) by EPA Method 6010B, respectively.

The sampling frequency, analytical parameters, and/or sampling of specific wells will be modified based on the results of previous sampling events (since the landfill closure) and with written approval from the NYSDEC.

To evaluate the immediate effects of remedial activities on the groundwater around the landfill closure, the results of this sampling event are compared to results gathered from previous investigation reports performed by Dvirka and Bartilucci prior to the landfill closure. The data from the reports dated June, 1991 and August, 1991 are summarized in Table 3-1. Comparison between the averages prior to closure with post closure in the shallow wells shows significant decreases in all of the contaminants analyzed. To determine the continued effectiveness of the containment system, future sampling will be compared to the pre-closure concentrations.

Groundwater sampling for the annual monitoring event of 2011 was conducted on August 23, 2011. Table 3-2 summarizes the water depth measurements and well purging operations completed on the wells along the outside perimeter of the slurry wall during the annual sampling event. Analysis was performed by Columbia Analytical Services of Rochester, New York. Tables 3-3 through 3-8 present the analytical results from this sampling event.

*EPA Method 1664 has replaced EPA Method 418.1 because of the concerns and availability of Freon.

TABLE 3-1UNION ROAD GROUNDWATER MONITORING REPORTYEAR 15 (2011)

PRE-CONSTRUCTION SAMPLIN OF SHALLOW WELLS (JUNE - AUGUST, 1991)

(Concentrations in ug/L)

	MW-4S	MW-4S	MW-5S	MW-6S	MW-6S	
ANALYTE	PHASE I	PHASE II	PHASE I	PHASE I	PHASE II	AVERAGE
SVOC's (Base Neutrals)	17	16	120	290	100	109
Total VOC's	ND	5.9	ND	42	3	10
TPH	4,400	1,800	2,200	5,800	ND	2,840
Soluble Arsenic	34.8	35.5	14.7	27.1	5.7	24
Soluble Lead	10,100	8,090	4,450	3,560	367	5,313

ND- analyte not detected

TABLE 3-2 UNION ROAD GROUNDWATER MONITORING REPORT

August 23, 2011 WELL PURGING SUMMARY

Well Number	(1) Riser Elev. (Feet)	Orginal Bottom Elev. (Feet)	Depth to Water (Feet)	Water Elev. (Feet)	Water Height in Well (Feet)	Water Volume in Well (Gallons)	Water Removed from Well (Gallons)	Notes
10S	623.09	599.9	10.36	612.73	12.83	2.1	6.5	
10M	622.50	589.6	13.93	608.57	18.97	3.0	9.5	
10D	622.02	574.1	16.97	605.05	30.95	5.0	7.0	Purged to nearly dry -Slow Recovery
11S	622.74	597.1	15.76	606.98	9.88	1.6	5.0	
11M	622.86	578.4	22.01	600.85	22.45	3.6	11.25	
12S	622.62	595.8	22.69	599.93	4.13	0.7	1.50	Purged to nearly dry -Slow Recovery
12M	622.97	578.8	23.07	599.90	21.10	3.4	10.5	
12D	621.18	557.8	20.16	601.02	43.22	6.9	21.5	
138	622.96	599.1	13.23	609.73	10.63	1.7	5.25	
13M	621.66	585.8	13.18	608.48	22.68	3.6	7.0	Purged to nearly dry -Slow Recovery
$14S^{(2)}$	621.61	602.1	11.49	610.12	8.02	1.3	4.0	

(1) Elevations were surveyed by Douglas C. Meyers P.L.S., P.C. on March 17, 1997

(2) Reinstalled, developed and resurveyed on August 19, 1997

All Elevations are referenced to Mean Sea Level

All wells are two (2) inches in diameter

Well development was performed on 1/16/1997

TABLE 3-3 UNION ROAD ANNUAL GROUNDWATER MONITORING for 2011

SHALLOW WELL SVOCs

		Detection				
ANALYTE	MW-10S	MW-11S	MW-12S	MW-13S	MW-14S	Detection
Dilution	1.00	1.00	1.00	1.00	1.00	Limit
acenapthene	ND	ND	ND	ND	ND	9.4
acenapthylene	ND	ND	ND	ND	ND	9.4
anthracene	ND	ND	ND	ND	ND	9.4
benzo(a)anthracene	ND	ND	ND	ND	ND	9.4
benzo(a)pyrene	ND	ND	ND	ND	ND	9.4
benzo(b)fluoranthene	ND	ND	ND	ND	ND	9.4
benzo(g,h,i)perylene	ND	ND	ND	ND	ND	9.4
benzo(k)fluoranthene	ND	ND	ND	ND	ND	9.4
benzyl alcohol	ND	ND	ND	ND	ND	9.4
butly benzyl phthalate	ND	ND	ND	ND	ND	9.4
di-n-butlyphthalate	ND	ND	ND	ND	ND	9.4
carbazole	ND	ND	ND	ND	ND	9.4
indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	ND	9.4
4-chloroaniline	ND	ND	ND	ND	ND	9.4
bis(-2-chloroethoxy)methane	ND	ND	ND	ND	ND	9.4
bis(2-chloroethyl)ether	ND	ND	ND	ND	ND	9.4
2-chloronapthalene	ND	ND	ND	ND	ND	9.4
2-chlorophenol	ND	ND	ND	ND	ND	9.4
2,2'-oxybis(1-chloropropane)	ND	ND	ND	ND	ND	9.4
chrysene	ND	ND	ND	ND	ND	9.4
dibenzo(a,h)anthracene	ND	ND	ND	ND	ND	9.4
dibenzofuran	ND	ND	ND	ND	ND	9.4
1,2-dichlorobenzene	ND	ND	ND	ND	ND	9.4
1,3-dichlorobenzene	ND	ND	ND	ND	ND	9.4
1,4-dichlorobenzene	ND	ND	ND	ND	ND	9.4
3,3'-dichlorobenzidine	ND	ND	ND	ND	ND	9.4
2,4-dichlorophenol	ND	ND	ND	ND	ND	9.4
diethylphthalate	ND	ND	ND	ND	ND	9.4
dimethyl phthalate	ND	ND	ND	ND	ND	9.4
2,4-dimethlyphenol	ND	ND	ND	ND	ND	9.4
2,4-dinitrophenol	ND	ND	ND	ND	ND	47
2,4-dinitrotoluene	ND	ND	ND	ND	ND	9.4
2,6-dinitrotoluene	ND	ND	ND	ND	ND	9.4
bis(2-ethylhexyl)phthalate	ND	ND	ND	ND	ND	9.4
luoranthene	ND	ND	ND	ND	ND	9.4
luorene	ND	ND	ND	ND	ND	9.4
nexachlorobenzene	ND	ND	ND	ND	ND	9.4
nexachlorobutadiene	ND	ND	ND	ND	ND	9.4
nexachlorocyclopentadiene	ND	ND	ND	ND	ND	9.4
nexachloroethane	ND	ND	ND	ND	ND	9.4
sophorone	ND	ND	ND	ND	ND	9.4

File:2011 Annual Report Tables.xlsx Sheet: Table 3-3 S-Well SVOCs

TABLE 3-3 UNION ROAD ANNUAL GROUNDWATER MONITORING for 2011

SHALLOW WELL SVOCs

Average Inside Landfill (Table 3-1)	109				
Average Outside Landfill (MW 10		ND				
TOTALS	ND	ND	ND	ND	ND	
2,4,6-trichlorophenol	ND	ND	ND	ND	ND	9.4
2,4,5-trichlorophenol	ND	ND	ND	ND	ND	9.4
1,2,4-trichlorobenzene	ND	ND	ND	ND	ND	9.4
pyrene	ND	ND	ND	ND	ND	9.4
n-nitroso-di-n-propylamine	ND	ND	ND	ND	ND	9.4
4-chlorophenyl-phenylether	ND	ND	ND	ND	ND	9.4
4-bromophenyl-phenylether	ND	ND	ND	ND	ND	9.4
phenol	ND	ND	ND	ND	ND	9.4
phenanthrene	ND	ND	ND	ND	ND	9.4
pentachlorophenol	ND	ND	ND	ND	ND	47
di-n-octyl phthalate	ND	ND	ND	ND	ND	9.4
n-nitrosodiphenylamine	ND	ND	ND	ND	ND	9.4
n-nitrosodimethylamine	ND	ND	ND	ND	ND	9.4
4-nitrophenol	ND	ND	ND	ND	ND	47
2-nitrophenol	ND	ND	ND	ND	ND	9.4
nitrobenzene	ND	ND	ND	ND	ND	9.4
4-nitroaniline	ND	ND	ND	ND	ND	47
3-nitroaniline	ND	ND	ND	ND	ND	47
2-nitroaniline	ND	ND	ND	ND	ND	47
napthalene	ND	ND	ND	ND	ND	9.4
3+4-methylphenol	ND	ND	ND	ND	ND	9.4
2-methylphenol	ND	ND	ND	ND	ND	9.4
4-chloro-3-methlyphenol	ND	ND	ND	ND	ND	9.4
4,6-dinitro-2-methylphenol	ND	ND	ND	ND	ND	47
2-methlynapthalene	ND	ND	ND	ND	ND	9.4

ND - Not Detected, above the laboratory detection limit

TABLE 3-4 UNION ROAD ANNUAL GROUNDWATER MONITORING for 2011

SHALLOW WELL VOCs, TPH, and METALs

ANALVIE		n				
ANALYTE	MW-10S	ANALYTI MW-11S		MW-13S		Detection
Dilution	1.00	1.00	1.00	1.00	1.00	Limit
acetone	ND	ND	ND	ND	ND	20
benzene	ND	ND	ND	ND	ND	5.0
bromodichloromethane	ND	ND	ND	ND	ND	5.0
bromoform	ND	ND	ND	ND	ND	5.0
bromomethane	ND	ND	ND	ND	ND	5.0
2-butanone (MEK)	ND	ND	ND	ND	ND	10
carbon disulfide	ND	ND	ND	ND	ND	10
carbon tetrachloride	ND	ND	ND	ND	ND	5.0
chlorobenzene	ND	ND	ND	ND	ND	5.0
chloroethane	ND	ND	ND	ND	ND	5.0
chloroform	ND	ND	ND	ND	ND	5.0
chloromethane	ND	ND	ND	ND	ND	5.0
dibromochloromethane	ND	ND	ND	ND	ND	5.0
1,1-dichloroethane	ND	ND	ND	ND	ND	5.0
1,2-dichloroethane	ND	ND	ND	ND	ND	5.0
1,1-dichloroethene	ND	ND	ND	ND	ND	5.0
cis-1,2-dichloroethene	ND	ND	ND	ND	ND	5.0
trans-1,2-dichloroethene	ND	ND	ND	ND	ND	5.0
1,2-dichloropropane	ND	ND	ND	ND	ND	5.0
cis-1,3-dichloropropene	ND	ND	ND	ND	ND	5.0
trans-1,3-dichloropropene	ND	ND	ND	ND	ND	5.0
ethlybenzene	ND	ND	ND	ND	ND	5.0
2-hexanone	ND	ND	ND	ND	ND	10
methylene chloride	ND	ND	ND	ND	ND	5.0
4-methyl-2-pentanone (MIBK)	ND	ND	ND	ND	ND	10
styrene	ND	ND	ND	ND	ND	5.0
1,1,2,2-tetrachloroethane	ND	ND	ND	ND	ND	5.0
tetrachloroethene	ND	ND	ND	ND	ND	5.0
toluene	ND	ND	ND	ND	ND	5.0
1,1,1-trichloroethane	ND	ND	ND	ND	ND	5.0
1,1,2-trichloroethane	ND	ND	ND	ND	ND	5.0
trichloroethene	ND	ND	ND	ND	ND	5.0
vinyl chloride	ND	ND	ND	ND	ND	5.0
n+p xylene	ND	ND	ND	ND	ND	5.0
o-xylene	ND	ND	ND	ND	ND	5.0
TOTAL VOC'S	ND	ND	ND	ND	ND	
ГРН	ND	ND	ND	ND	ND	4,700
SOLUBLE ARSENIC	ND	ND	ND	ND	ND	10
SOLUBLE LEAD	ND	ND	ND	ND	ND	50

Average	Average
Outside	Inside
Landfill	Landfill
(MW 10S -	(Table 3-1)
14S)	
ND	10
0.0	2,840
0.0	24
0.0	5,313

ND - Not Detected, above the laboratory detection limit

TABLE 3-5 UNION ROAD ANNUAL GROUNDWATER MONITORING for 2011

MEDIUM WELL SVOCs

	ANALYTICAL RESULTS (ug/L)				Detection
ANALYTE	MW-10M	MW-11M	MW-12M	MW-13M	Limit
Dilution	1.00	1.00	1.00	1.00	Linun
acenapthene	ND	ND	ND	ND	9.4
acenapthylene	ND	ND	ND	ND	9.4
anthracene	ND	ND	ND	ND	9.4
benzo(a)anthracene	ND	ND	ND	ND	9.4
benzo(a)pyrene	ND	ND	ND	ND	9.4
benzo(b)fluoranthene	ND	ND	ND	ND	9.4
benzo(g,h,i)perylene	ND	ND	ND	ND	9.4
benzo(k)fluoranthene	ND	ND	ND	ND	9.4
benzyl alcohol	ND	ND	ND	ND	9.4
butly benzyl phthalate	ND	ND	ND	ND	9.4
di-n-butlyphthalate	ND	ND	ND	ND	9.4
carbazole	ND	ND	ND	ND	9.4
indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	9.4
4-chloroaniline	ND	ND	ND	ND	9.4
bis(-2-chloroethoxy)methane	ND	ND	ND	ND	9.4
bis(2-chloroethyl)ether	ND	ND	ND	ND	9.4
2-chloronapthalene	ND	ND	ND	ND	9.4
2-chlorophenol	ND	ND	ND	ND	9.4
2,2'-oxybis(1-chloropropane)	ND	ND	ND	ND	9.4
chrysene	ND	ND	ND	ND	9.4
dibenzo(a,h)anthracene	ND	ND	ND	ND	9.4
dibenzofuran	ND	ND	ND	ND	9.4
1,2-dichlorobenzene	ND	ND	ND	ND	9.4
1,3-dichlorobenzene	ND	ND	ND	ND	9.4
1,4-dichlorobenzene	ND	ND	ND	ND	9.4
3,3'-dichlorobenzidine	ND	ND	ND	ND	9.4
2,4-dichlorophenol	ND	ND	ND	ND	9.4
diethylphthalate	ND	ND	ND	ND	9.4
dimethyl phthalate	ND	ND	ND	ND	9.4
2,4-dimethlyphenol	ND	ND	ND	ND	9.4
2,4-dinitrophenol	ND	ND	ND	ND	47
2,4-dinitrotoluene	ND	ND	ND	ND	9.4
2,6-dinitrotoluene	ND	ND	ND	ND	9.4
bis(2-ethylhexyl)phthalate	ND	ND	ND	ND	9.4
fluoranthene	ND	ND	ND	ND	9.4
fluorene	ND	ND	ND	ND	9.4
nexachlorobenzene	ND	ND	ND	ND	9.4
nexachlorobutadiene	ND	ND	ND	ND	9.4
nexachlorocyclopentadiene	ND	ND	ND	ND	9.4
nexachloroethane	ND	ND	ND	ND	9.4
sophorone	ND	ND	ND	ND	9.4
2-methlynapthalene	ND	ND	ND	ND	9.4
2-methylphenol	ND	ND	ND	ND	47
I,6-dinitro-2-methylphenol	ND	ND	ND	ND	9.4

File: 2011 Annual Report Tables.xlsx Sheet: Table 3-5 M-Well SVOCs

TABLE 3-5 UNION ROAD ANNUAL GROUNDWATER MONITORING for 2011

MEDIUM WELL SVOCs

4-chloro-3-methlyphenol	ND	ND	ND	ND	9.4
3+4-methylphenol	ND	ND	ND	ND	9.4
napthalene	ND	ND	ND	ND	9.4
2-nitroaniline	ND	ND	ND	ND	47
3-nitroaniline	ND	ND	ND	ND	47
4-nitroaniline	ND	ND	ND	ND	47
nitrobenzene	ND	ND	ND	ND	9.4
2-nitrophenol	ND	ND	ND	ND	9.4
4-nitrophenol	ND	ND	ND	ND	47
n-nitrosodimethylamine	ND	ND	ND	ND	9.4
n-nitrosodiphenylamine	ND	ND	ND	ND	9.4
di-n-octyl phthalate	ND	ND	ND	ND	9.4
pentachlorophenol	ND	ND	ND	ND	47
phenanthrene	ND	ND	ND	ND	9.4
phenol	ND	ND	ND	ND	9.4
4-bromophenyl-phenylether	ND	ND	ND	ND	9.4
4-chlorophenyl-phenylether	ND	ND	ND	ND	9.4
n-nitroso-di-n-propylamine	ND	ND	ND	ND	9.4
pyrene	ND	ND	ND	ND	9.4
1,2,4-trichlorobenzene	ND	ND	ND	ND	9.4
2,4,5-trichlorophenol	ND	ND	ND	ND	9.4
2,4,6-trichlorophenol	ND	ND	ND	ND	9.4
TOTALS	ND	ND	ND	ND	

TABLE 3-6 UNION ROAD ANNUAL GROUNDWATER MONITORNG for 2011

MEDIUM WELL VOCs, TPH, and METALs

	ANALYTICAL RESULTS (ug/L)				Detection
ANALYTE				MW-13M	Detection
Dilution	1.00	1.00	1.00	1.00	Limit
acetone	ND	ND	ND	ND	20
benzene	ND	ND	ND	ND	5.0
bromodichloromethane	ND	ND	ND	ND	5.0
bromoform	ND	ND	ND	ND	5.0
bromomethane	ND	ND	ND	ND	5.0
2-butanone (MEK)	ND	ND	ND	ND	10
carbon disulfide	ND	ND	ND	ND	10
carbon tetrachloride	ND	ND	ND	ND	5.0
chlorobenzene	ND	ND	ND	ND	5.0
chloroethane	ND	ND	ND	ND	5.0
chloroform	ND	ND	ND	ND	5.0
chloromethane	ND	ND	ND	ND	5.0
dibromochloromethane	ND	ND	ND	ND	5.0
1,1-dichloroethane	ND	ND	ND	ND	5.0
1,2-dichloroethane	ND	ND	ND	ND	5.0
1,1-dichloroethene	ND	ND	ND	ND	5.0
cis-1,2-dichloroethene	ND	ND	ND	ND	5.0
trans-1,2-dichloroethene	ND	ND	ND	ND	5.0
1,2-dichloropropane	ND	ND	ND	ND	5.0
cis-1,3-dichloropropene	ND	ND	ND	ND	5.0
trans-1,3-dichloropropene	ND	ND	ND	ND	5.0
ethlybenzene	ND	ND	ND	ND	5.0
2-hexanone	ND	ND	ND	ND	10
methylene chloride	ND	ND	ND	ND	5.0
4-methyl-2-pentanone (MIBK)	ND	ND	ND	ND	10
styrene	ND	ND	ND	ND	5.0
1,1,2,2-tetrachloroethane	ND	ND	ND	ND	5.0
tetrachloroethene	ND	ND	ND	ND	5.0
toluene	ND	ND	ND	ND	5.0
1,1,1-trichloroethane	ND	ND	ND	ND	5.0
1,1,2-trichloroethane	ND	ND	ND	ND	5.0
trichloroethene	ND	ND	ND	ND	5.0
vinyl chloride	ND	ND	ND	ND	5.0
m+p xylene	ND	ND	ND	ND	5.0
o-xylene	ND	ND	ND	ND	5.0
TOTAL VOC'S	ND	ND	ND	ND	
TPH	ND	ND	ND	ND	4,700
SOLUBLE ARSENIC	ND	ND	ND	ND	10
SOLUBLE LEAD	ND	ND	ND	ND	50

ND - Not Detected, above the laboratory detection limit

TABLE 3-7 UNION ROAD ANNUAL GROUNDWATER MONITORING for 2011 DEEP WELL SVOCs

	ANALYTICAL RESULTS (ug/L)		
ANALYTE	MW-10D	MW-12D	Detection
Dilution	1.00	1.00	Limit
acenapthene	ND	ND	9.4
acenapthylene	ND	ND	9.4
anthracene	ND	ND	9.4
benzo(a)anthracene	ND	ND	9.4
benzo(a)pyrene	ND	ND	9.4
benzo(b)fluoranthene	ND	ND	9.4
benzo(g,h,i)perylene	ND	ND	9.4
benzo(k)fluoranthene	ND	ND	9.4
benzyl alcohol	ND	ND	9.4
butly benzyl phthalate	ND	ND	9.4
di-n-butlyphthalate	ND	ND	9.4
carbazole	ND	ND	9.4
indeno(1,2,3-cd)pyrene	ND	ND	9.4
4-chloroaniline	ND	ND	9.4
bis(-2-chloroethoxy)methane	ND	ND	9.4
bis(2-chloroethyl)ether	ND	ND	9.4
2-chloronapthalene	ND	ND	9.4
2-chlorophenol	ND	ND	9.4
2,2'-oxybis(1-chloropropane)	ND	ND	9.4
chrysene	ND	ND	9.4
dibenzo(a,h)anthracene	ND	ND	9.4
dibenzofuran	ND	ND	9.4
1,2-dichlorobenzene	ND	ND	9.4
1,3-dichlorobenzene	ND	ND	9.4
1,4-dichlorobenzene	ND	ND	9.4
3,3'-dichlorobenzidine	ND	ND	9.4
2,4-dichlorophenol	ND	ND	9.4
liethylphthalate	ND	ND	9.4
dimethyl phthalate	ND	ND	9.4
2,4-dimethlyphenol	ND	ND	9.4
2,4-dinitrophenol	ND	ND	47
2,4-dinitrotoluene	ND	ND	9.4
2,6-dinitrotoluene	ND	ND	9.4
bis(2-ethylhexyl)phthalate	ND	ND	9.4
luoranthene	ND	ND	9.4
luorene	ND	ND	9.4
exachlorobenzene	ND	ND	9.4

File:2011 Annual Report Tables.xlsx Sheet: Table 3-7 D-Well SVOCs

Printed: 4/13/2012

TABLE 3-7 UNION ROAD ANNUAL GROUNDWATER MONITORING for 2011 DEEP WELL SVOCs

hexachlorobutadiene	ND	ND	9.4
hexachlorocyclopentadiene	ND	ND	9.4
hexachloroethane	ND	ND	9.4
isophorone	ND	ND	9.4
2-methlynapthalene	ND	ND	9.4
2-methylphenol	ND	ND	47
4,6-dinitro-2-methylphenol	ND	ND	9.4
4-chloro-3-methlyphenol	ND	ND	9.4
3+4-methylphenol	ND	ND	9.4
napthalene	ND	ND	9.4
2-nitroaniline	ND	ND	47
3-nitroaniline	ND	ND	47
4-nitroaniline	ND	ND	47
nitrobenzene	ND	ND	9.4
2-nitrophenol	ND	ND	9.4
4-nitrophenol	ND	ND	47
n-nitrosodimethylamine	ND	ND	9.4
n-nitrosodiphenylamine	ND	ND	9.4
di-n-octyl phthalate	ND	ND	9.4
pentachlorophenol	ND	ND	47
phenanthrene	ND	ND	9.4
phenol	ND	ND	9.4
4-bromophenyl-phenylether	ND	ND	9.4
4-chlorophenyl-phenylether	ND	ND	9.4
n-nitroso-di-n-propylamine	ND	ND	9.4
pyrene	ND	ND	9.4
1,2,4-trichlorobenzene	ND	ND	9.4
2,4,5-trichlorophenol	ND	ND	9.4
2,4,6-trichlorophenol	ND	ND	9.4
TOTALS	ND	ND	

ND - Not Detected, above the laboratory detection limit

File:2011 Annual Report Tables.xlsx Sheet: Table 3-7 D-Well SVOCs

Printed: 4/13/2012

TABLE 3-8 UNION ROAD ANNUAL GROUNDWATER MONITORING for 2011 DEEP WELL VOCs, TPH, and METALs

	ANALYTICAL	Detection		
ANALYTE	MW-10D	MW-12D	- Detection	
Dilution	1.00	1.00	– Limit	
acetone	ND	ND	20	
benzene	ND	ND	5.0	
bromodichloromethane	ND	ND	5.0	
bromoform	ND	ND	5.0	
bromomethane	ND	ND	5.0	
2-butanone (MEK)	ND	ND	10	
carbon disulfide	ND	ND	10	
carbon tetrachloride	ND	ND	5.0	
chlorobenzene	ND	ND	5.0	
chloroethane	ND	ND	5.0	
chloroform	ND	ND	5.0	
chloromethane	ND	ND	5.0	
dibromochloromethane	ND	ND	5.0	
1,1-dichloroethane	ND	ND	5.0	
1,2-dichloroethane	ND	ND	5.0	
1,1-dichloroethene	ND	ND	5.0	
cis-1,2-dichloroethene	ND	ND	5.0	
trans-1,2-dichloroethene	ND	ND	5.0	
1,2-dichloropropane	ND	ND	5.0	
cis-1,3-dichloropropene	ND	ND	5.0	
trans-1,3-dichloropropene	ND	ND	5.0	
ethlybenzene	ND	ND	5.0	
2-hexanone	ND	ND	10	
methylene chloride	ND	ND	5.0	
4-methyl-2-pentanone (MIBK)	ND	ND	10	
styrene	ND	ND	5.0	
1,1,2,2-tetrachloroethane	ND	ND	5.0	
tetrachloroethene	ND	ND	5.0	
toluene	ND	ND	5.0	
1,1,1-trichloroethane	ND	ND	5.0	
1,1,2-trichloroethane	ND	ND	5.0	
trichloroethene	ND	ND	5.0	
vinyl chloride	ND	ND	5.0	
m+p xylene	ND	ND	5.0	
o-xylene	ND	ND	5.0	
TOTAL VOC'S	ND	ND		
ТРН	ND	ND	4,700	
SOLUBLE ARSENIC	ND	ND	10	
SOLUBLE LEAD	ND	ND	50	

ND - Not Detected, above the laboratory detection limit

4. GROUNDWATER ELEVATION MONITORING

The purpose of Groundwater Elevation Monitoring is to determine the groundwater gradient of the three hydrogeologic units in and around the closure area. The three hydrogeologic units (layers) are:

1) The overburden layer (shallow), which is above the clay layer;

2) The till layer (medium), which is beneath the clay layer; and

3) Bedrock (deep), which is beneath the till layer.

As stated in the NYSDEC approved Design Report, the frequency of groundwater elevation measurements are as follows:

- Monthly for the first six months after closure (Jan June 1997);
- Quarterly thereafter until the end of year two (July 1997 December 1998); and
- Annually (during the dry season) thereafter.

As stated previously, the sampling frequency, sampling parameters, and/or sampling of specific wells will be modified based on the results of previous sampling events (since the landfill closure) and with written approval from the NYSDEC.

The objective for collecting groundwater elevation measurements is to gain knowledge of the groundwater flows and hydraulic gradients in and around the closure. This information is used to generate groundwater flow maps and demonstrate an inward gradient of groundwater around the closure.

On August 23, 2011, UMC measured the depth to groundwater in the monitoring wells. Table 4-1 summarizes the results of these measurements. The data from Table 4-1 were used to create Groundwater Contour Maps (Figures 4-1 through 4-3), which depict groundwater elevations and inferred groundwater flow directions in the three hydrogeologic units. Figure 4-1 shows an inward gradient of shallow (overburden) groundwater across the slurry wall and towards the dewatering trench at the east corner of the closure.

Figures 4-2 and 4-3 depict groundwater elevations in the medium and deep units. The inferred groundwater flow direction for the medium unit is toward the southeast. The inferred groundwater flow direction for the deep unit is easterly. However, since only two (2) monitoring wells intercept the deep unit, a groundwater contour map cannot be produced. Flow is generally toward the southeast and east respectfully and has not been affected by the placement of the landfill closure.

TABLE 4-1 UNION ROAD GROUNDWATER MONITORING REPORT

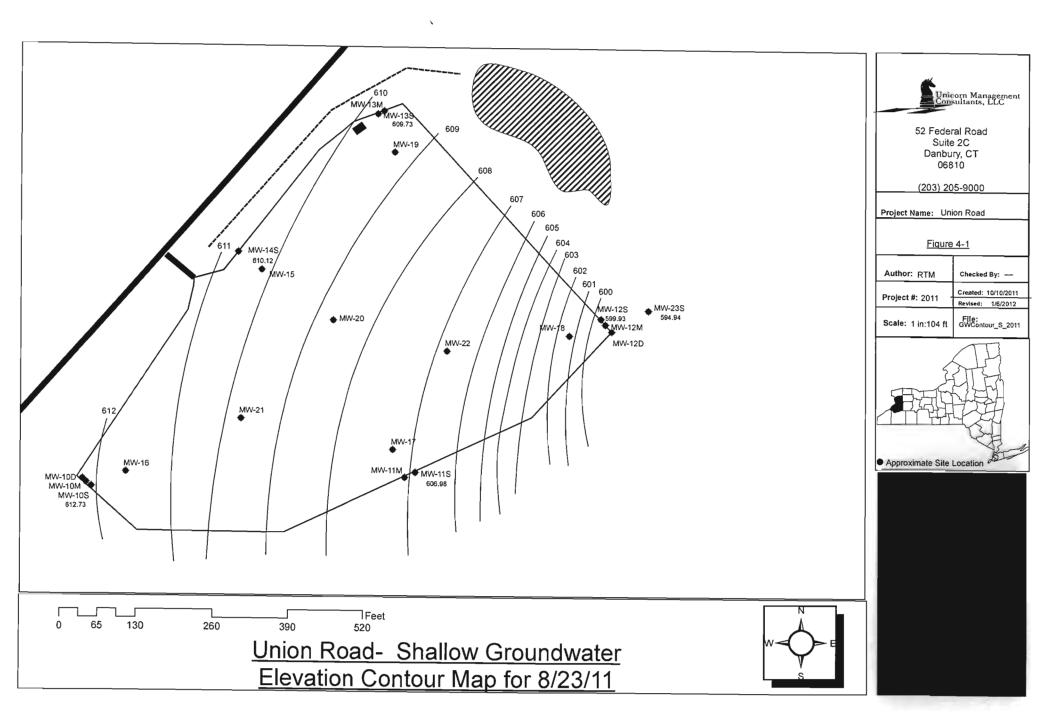
GROUNDWATER WELL MEASUREMENTS August 23, 2011

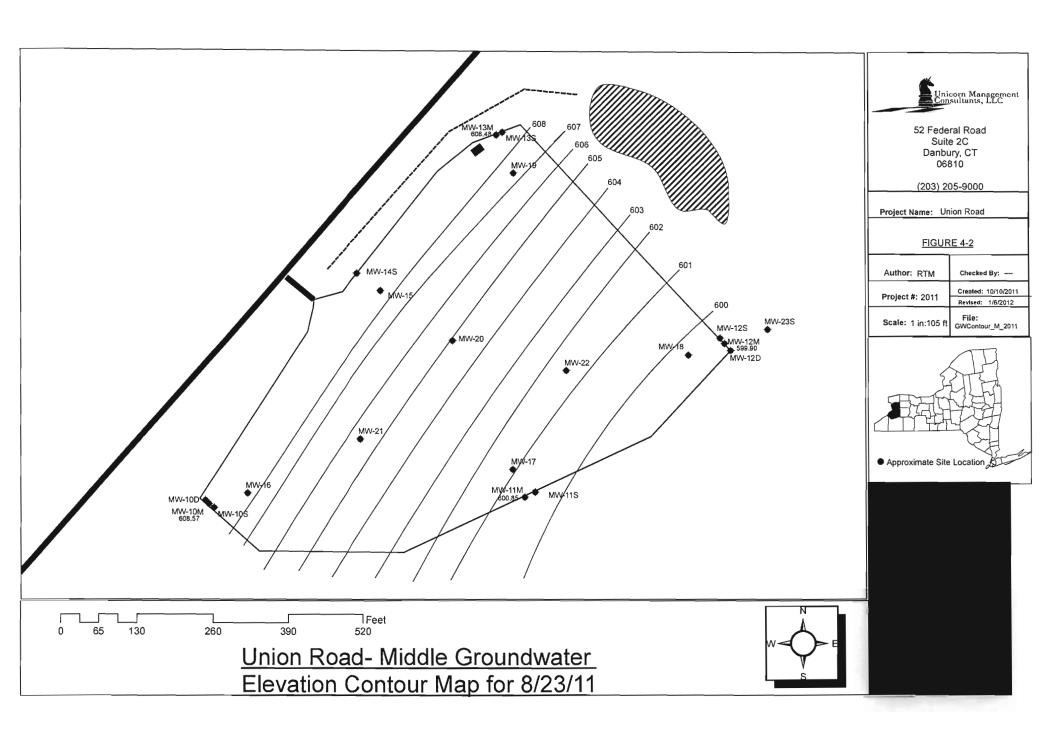
Well Number	Riser Elev. ¹ (Feet)	Depth to Water (Feet)	Water Elev. (Feet)
105	623.09	10.36	612.73
10M	622.50	13.93	608.57
10D	622.02	16.97	605.05
115	622.74	15.76	606.98
11M	622.86	22.01	600.85
12S	622.62	22.69	599.93
12M	622.97	23.07	599.90
12D	621.18	20.16	601.02
13S	622.96	13.23	609.73
13M	621.66	13.18	608.48
14S ²	621.61	11.49	610.12
15	624.67	16.11	608.56
16	624.51	15.20	609.31
17	624.44	20.71	603.73
18 ³	624.67	Dry	<602.75
19	625.08	21.41	603.67
20 4	631.98	20.72	611.26
21	629.25	25.61	603.64
22 ⁴	629.24	25.86	603.38
238	607.45	12.51	594.94
RW1 ⁵	623.76	NM	

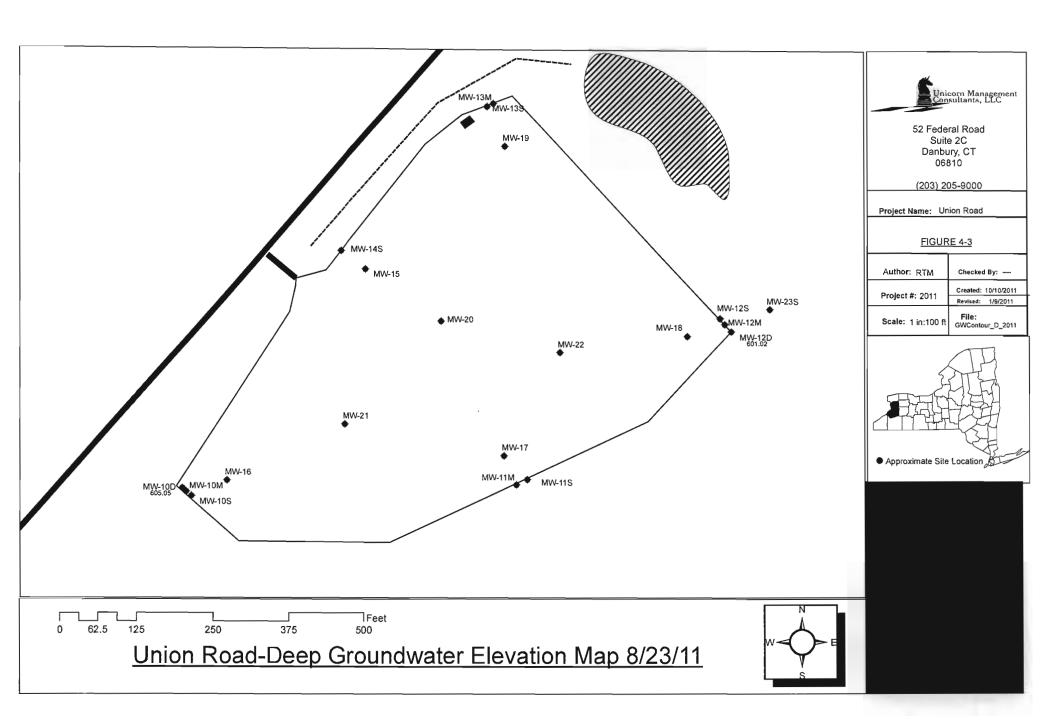
¹ Elevations were surveyed by Douglas C. Meyers P.L.S., P.C. on March 17, 1997.

² MW-14S was reinstalled and resurveyed on August 19, 1997.

 3 MW-18 is dry; measuring tape stopped without indicating water.


⁴ Depth measured to free product.


⁵ Groundwater measurement was not taken in RW1. The assumed elevation is at the pump inlet (598.76).


NM/NR: Not Measure/Not Recorded

MW-20 and MW-22 have free product on water surface; therefore water level measurement conservatively assumed as the top of the oil layer (Because of the less dense oil, the actual water elevation would be lower).

All Elevations are referenced to Mean Sea Level

5. CONCLUSION

5.1 SITE INSPECTION AND MAINTENANCE

UMC performed an annual site inspection on April 21, 2011. Mr. David Szymanski of the NYSDEC accompanied UMC on the inspection. The inspections consisted of walking the site and documenting the observations. Following is a summary of the inspection and maintenance activities that have occurred this year:

<u>Roundhouse Area:</u> The area is well vegetated and stabilized. During the inspection, several large holes were observed where the concrete of the former roundhouse has collapsed. These holes are large enough for a person to fall into. However, this land is not owned by APU. Numerous property owners adjacent to this area have encroached on it and are maintaining it with the rest of their properties. No action is needed.

Landfill Closure: There are no signs of erosion, no areas of distressed vegetation, and no evidence of any outbreak of any substance (slurry wall material or oil) on the landfill. Erie County Water Company was notified that a small quantity of contaminated soil is located northeast of the new wetland area and beneath the existing water pipe. UMC has an account with Dig Safely New York so when someone needs to dig in the area and calls Dig Safely, UMC will be notified. Except for periodic grass cutting, annual groundwater monitoring, and quarterly groundwater discharge monitoring required by the Erie County Sewer Authority, no action is needed.

A woodchuck eradication program was implemented during 2009 and continued in 2011. During 2009, woodchuck burrows were noted at several locations on the cap and around the pump control building. The woodchucks were captured and removed. During the 2011 site inspection, no woodchuck burrows were noted. However, it was observed that woodchucks had burrowed under the perimeter fence at several locations. UMC filled the holes during September 2011.

As requested by the NYSDEC, grass on the landfill area was mowed only once during September. Also during September, ruts outside the fence area caused by ATVs were repaired by filling with stone.

Wetland Restoration: The wetlands north of the landfill closure, which was created during the remediation activities has continued to reestablish itself. The wetlands has completely revegetated itself and wildlife (e.g., ducks, geese and deer) have returned to the area. No action is needed.

Stream Restoration: A letter to the Town of Cheektowaga (Town) was sent by APU's Legal Counsel on October 7, 2005. This letter informs the Town that it must notify the NYSDEC (David Locey or Martin Doster at 716-851-7220) prior to any activity in those creeks where the reno mattresses are located (see Figure 1-2).

The reno mattresses installed in 1995/1996 and repaired in 2006 on the creek channel has stabilized and vegetation has established itself through the reno mattresses. There is some sediment accumulation within the creek channels, but at some locations the reno mattress wire mesh was visible at the base of the channel. The gabion basket wing-walls are stable. No other action is needed.

Downstream Area: Though some of the trees planted in this area have died, there are no signs of erosion in this area. Grass has established itself in this area. No action is needed.

UMC will continue to inspect and repair all closure areas to ensure that the closure remains intact and successful.

5.2 GROUNDWATER QUALITY

The groundwater quality within the exterior wells and the groundwater elevation measurements during the annual 2011 monitoring event demonstrate that remedial activities at the Union Road Site are successful. The groundwater quality outside the landfill closure is better than groundwater quality in the interior of the closure.

The groundwater elevation measurements indicate that an inward gradient of shallow groundwater flow has been established across the slurry wall. This inward gradient in combination with the groundwater quality outside the closure demonstrates that the contamination is contained within the slurry wall.

No TPH, Arsenic, Lead, VOCs, or SVOCs were detected in the any of the monitoring wells during this annual sampling event.

Though samples collected from Monitoring wells MW-11S and MW-14S did not contain detectable concentrations of TPH during this monitoring period, detectable concentrations of TPH have existed in samples from both MW-11S and MW-14S since their construction in 1997. As discussed in previous monitoring reports, the contamination appears to be isolated and stabilized within those areas of the site (northwest and south sides) and there are inward groundwater gradient into the landfill closure at MW-11S and MW-14S areas.

Though arsenic has been detected in several wells over the duration of the groundwater monitoring activities, during this sample event, arsenic was not detected in any of the wells.

UMC will continue to monitor and evaluate the groundwater surrounding the landfill in accordance with the GMP.

APPENDIX A

BORING LOGS AND WELL CONSTRUCTION DRAWINGS (ON CD)

APPENDIX A

BORING LOGS AND WELL CONSTRUCTION DRAWINGS

BCANG NO. 10-5 PROJECT NO. NAME	TEST BORING LOG		
CRILLING CONTRACTI	Манм		
DRILLING EQUIPMEN	T. METHOD SIZE TYPE CE BIT	SAMPLING METHOD ST	WIT. FINISH
VELL INSTALLEDT C		SRIT SPOON	
LEVATION OF: OF	MULLESS STEEL /2" TTPE SLOT MAT. STAINLESS		LOT SIZEOA
EMARKS: HILE TO 2	21', SUMPLES TO 20'		
	LOG OF TEST EORI	NG	CONST.
547 11 15 11 15 15 15 15 15 15 15 15 15 15	BESCRIPTION	REMARKS	WELL
· · · · · · · · · · · · · · · · · · ·	SAMAINE STARTS AT 41B.G. E Bue to TANIGEEY BAY WHITTLE ANDREAR RECENSE TO1/2 O-3" REALIE TO TANK-REFELLAY SCHE RECENSE TO SIGN 5-75" CINDERS WISCHE RECENSE TO SIGN 15-21" BROWLITAN COLLY SCHE SIND JUIFTLESILL TRAC TANIBIELEN CLAY	STIFF Ditorp	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TANKIBROWN CUTY TRACE SILLS	HED STIFE SCHEHZC HED STIFE SCHEHZC	
14 <u>2</u> 14 <u>2</u> 20' <u>2</u> 3	GEENICHT BROWN (LALY See LITTLE RE-Nin ROOKS	STED STIFF SCHEHZO	
15" 3 12	TAN 1027 BRC-10 (LA-1	KEDSTIFA XAE HZC	
15 20'' 23 20'' 23	GRENISH DIEN GLALY TRACECISCIANCS. - ENDER BORN 21' BESS-2008-70'	HEDSTIFE SCHEHZC	

Sampline Approvisions: 55 x Split Speen, ST x Shelby Tube, CSC & Continuous Sell Core

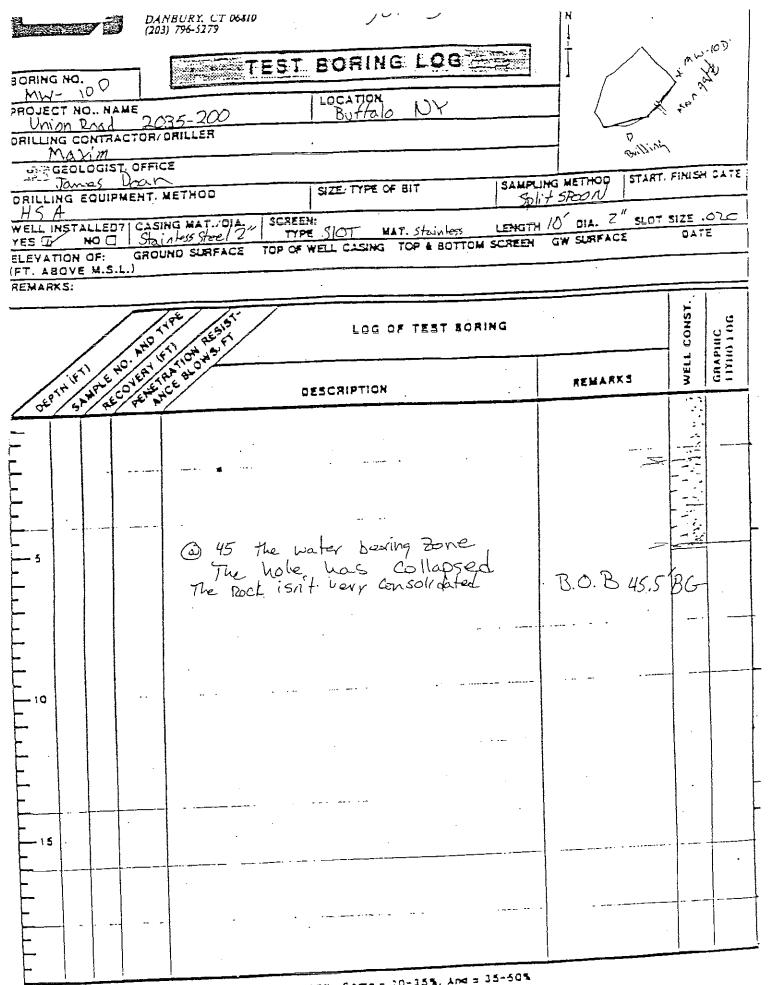
ICTING HO.	BORING LOB	entre l
PHOLECT HOL NAME (HUBUROAD - 2035 -200	BUFFRE NY	KA
DRILLING CONTRACTOR/DRILLER		10.17
JOHN J ZACHEL	1 R	
DRILLING EQUIPMENT. METHOD	GET THE CE BIT GALLING	HETHOD STLET. FINEN O:
ELEVATION OF: GROUND SURFACE TOP OF (FT. ABOVE H.S.L.)		N SURFACE DATE
REMARKS:		

	LOG OF TEST BORING				CONBY.	10	
52.9.1	33397		GESCRIPTION		REMARKS	MEIL	GMAPING I MUMAA
ET			IL STARTS 41 BC.	-		11	
		đ					
	2	· · ·	and when the Acts with"		SNFF. DAMP		
		G-7" BLIKE TO IAN	HOLET CH-1 SUR RUCKS	1	STIFE DIMP		
5	i7	H-22' BREWIAN	CLAY LITTLE PLEILS		HEDSTIFF HUTLE HOC		۲۰۱۶) ۱۲۷
- 3	2 2 5	TANKER BROWN	CLAY	5	STIFF, LITTLE HZC		J
-10 10		TANILT BRUNN	CLIFT	ł	LEO STIFF SMEHZO		
12	- 5 - 5 - 5 - 5 - 5	TAN LI BRUNN	CLAY	1	MEDSTIFF XX:46 H20		
-18	- 5 26" 4	TANKT BROWN C LITTLE	LAY, LITTLE GREY Renue Backs	f (AED STIFF SHE HZE		
،الو بابر	1 19" 3 19	TAN TO LT BELLON	J CLAY	- ·- ·- ·· ·	KEDSTIFF JAIZ HZO		Βή
15 15 20	10' 3.	GEEYISH BRin	~ CLAY , SHE ORGANICS		ied Stiff Zwrr H2 ⁰		s a

Proportions used: Track x 0-10%, Lillie x 10-20%, Seme x 20-35%, And x 35-50% Sampling Abbreviations: SS x Satil Speen, ST x Sholay Tube, CSC y Continuous Sati Core

			- · ·	[لى ا	
BCREAC HC	TE	ST BOR	ING LOS	-	ţ,	
PROJECT NO. NAME		LOCAT	BUFFAL NY	(V	
DRILLING CONTRACT	MAHM					
STREEDLOGIST C						
DAILLING EQUIPHE	нт. метно о НSA	इन्द्र, गा	6" HSA	SPLIT SPC	0000730 CLC	STATT. FIMSH 0. 1/3/97
WELL INSTALLED? C	ASING MAT./DIA. SC	TYPE SLOT	MAT. STAIRLESS	LENGTH 10	DIA 2"	SLOT 31220.02
ELEVATION OF: G	ROUND SURFACE TOP	OF WELL CAS	the second se		5185163	QATE
REMARKS:	<u></u>					

USI START AND AST LOG OF TEST BORING			WELL COMBY. GAAPIAC
20 TH 0 TH	DESCRIPTION	REMARKS	WELL CO
$ \begin{array}{c} 22 \\ 22 \\ 22 \\ 22 \\ 22 \\ 22 \\ 22 \\ 21 \\ 21 \\ 21 \\ 22 \\ 22 \\ $	DARIGUET JETTE OLGANICS LITTLE GREN VIENE BROWN CLAUS GREN LIAN BOT 7" GREN LLAT BOT 7" GREN LLAT BOT 7" GREN LLAT BROWN SILTSUISCHE SANDOro" LTBROWN SILTSUISCHE SANDOro"	MED STIFF 2. AE HEG HED STIFF -ITTLE HEC SEFF WET SEFT WET WET, ICCLE SEFT-WET	


Proportione Level - Trace 2 0-10%, Little 2 10-20%, Seme 2 20-33%, Ane 2 35-50% Sempting Abbreviations: 55 2 Salit Spent, ST 2 Shelay Tube, CSC 4 Continuous Seli Core

(203) 796-5279 TEST BORING LOG BORING NO. MW-10D BUTTE 10 En Prov PROJECT NO .. NAME NY Union Road DRILLING CONTRACTOR/DRILLER Dick Miller Rori Rown Maxim JEGEOLOGIST. OFFICE START. FINISH DATE 12/0 - 13/17/26 SIZE TYPE OF BIT 8/4 HSA / SAMPLING METHOD DRILLING EQUIPMENT. METHOD 1, 7% AT Rotary / H5A Solit Spon WELL INSTALLEDT CASING HAT, OIA, YES IN NO I Stainless / 2 SCREEH: MAT. Stainless LEHOTH 10' DIA. 2" SLOT SIZE ,020 THE Slot DATE GW SURFACE TOP OF WELL CASING TOP & BOTTOM SCREEN GROUND SURFACE ELEVATION OF: (FT. ABOVE M.S.L.) REMARKS: CONST GRAPHIC LIYHO LOG TION RE LOG OF TEST BORING SAMPLE NO. AND é DEPTHIETI PETERNCE WELL REMARKS DESCRIPTION Martin Martin and a sal Martin of her was here and hand the martin and here and he sampling started @ 9' BG. -BIK to tan/Grey clay w/ Trace angular L-St.ff. 5600 21" Fragmented Rock upto 1" in size Damp . 4 Ð stiff, Damp -30 18 Tap 5" BIK, tankbrey Glay of TIACE ANgular Fragmented Rock 22″ weather BIK Cinder like meter al we see up angular Fragmented Rocks! Dry Not Cohensire, littlethed Bottan 6" Burn / Tan Sand / Si Hly Clay of 12# -202 Rx Fing. 2 11 18 10 9 m. stiffness Tan to It Brown Clay, No Rocks Ø w/some H2O 24 Ð 22200 m. Stiffness 6' Tom to It Brown Chy up Rocks ø w/ some Hoo m. stiffness 335 5 tun to It Brown Clay w/o Rocks Possibly some sills 151 W/ Some HO Gray to It Brain Moteled clay w/ trace rounded Rocks, Yy - 1/6" dianeter. m. stiffness 2234 20" 15 w/ Some HD Tan to It Brown Clay W/D Rxs m. Stiffness 134 18" u/ Some the 6 m. stithess Gronish/Brown/BIL Clay W/ 10-20% organics 27 21% w/ some H20

Proportions Used: Trace = 0-10%, Little = 10-20%, Some = 20-35%, And = 35-50% Sampling Abbreviations: SS = Split Spoon, ST = Shelby Tube, CSC + Continuous Soli Core

BORING NO. MW- 120 PROJECT NO NAME UNION Road 2035-200 DRILLING CONTRACTOR/DRILLER Maxim (Dick Miller, Row Brawn) DRILLING EQUIPMENT. METHOD HS A / Air Rotary WELL INSTALLED? CASING MAT. DIA. YES TO NO C Stainbess LENGTH /0' DIA. Z" SL ELEVATION OF: GROUND SURFACE TOP OF WELL CASING TOP & BOTTOM SCREEN GW SURFACE	ART. FINIS	H CATE
(FT. ABOVE M.S.L.) REMARKS:		
OF THE TO THE TOT TO THE DESCRIPTION REMARKS	CONST.	110G
DESCRIPTION REMARKS	MELL	
$\frac{20^{-}}{22^{-}} \frac{21^{+}}{21^{+}} \frac{3}{5}$ $\frac{3}{5}$	Marvindographycerophycerologia	
Beel Rock. Bottem of The Protective Bottem of The Protective Cosive		-

Proportions Used: Trace = 0-10%, Little = 10-20%, Some = 20-35%, And = 35-50%

Propertions Used: Trace = 0-10%, Little = 10-20%, Some = 20-35%, And = 35-50% Propertions Used: Trace = 0-10%, Little = 10-20%, Some = 20-35%, And = 35-50%

17.77 17.17	CT NG C GZC ING	NO.	IST. OFF	TEST BORING LOG NC. POSA 2025-200 LOCATION BUFFILO NY A/DRILLER MAHUM TICE JOHN JZACHER JR METHOD HSA SUCT MAT. STAINLESS LENGT DINO SURFACE TOP OF WELL CLEMENT TOP & BOTTOM SCREEN	11 5000 1 112 TH 10' DIA. 2" SLOT	نم نن	
<u> </u>	`		AND AND	LOG OF TEST BORING		CONST.	11 DG
54 ³	(H)			RA ST DESCRIPTION	REMARKS	WELL	684P10C 11710100
	۲۲' ۲۰ ۲' ۲' ۲'	ਨੂੰ ਦੂ	2 9:10 4 421 12 12 4 5 6 8 8 5 43	Biowy Dex Browni SILTAR CLARS TRACE 24 FERCINENTS 4 1/2 BROWNI DEX BROWN SILTS AND CLARS NO 2x5 FILL BROWNI DEX BROWN CLARS TRACE RA FRAGS FILL TOP 9" DEX BROWN CLARS WISCHE CLOHNICS BETTOM 4" - GITTS JID / CLARS WISCHE CLOHNICS BETTOM 4" - GITTS JID / CLARS WISCHENNICS CREY CLARS LITTLE CROWNICS	STHEFI Dry- 1: HILENC IC H2C STIFF LITTLE IC X: H2C STIFF LITTLE IC X: H2C STIFF LITTLE IC X: H2C STIFF LITTLE H2C HED HEDINA STIFFNESS SCHE H2C HED STIFFNESS		ien. 13-1 13-1
		15" 21 ^{''} 12 ^{''}	ち = 102 2322222	TOP 6" GUEY CLARS, LITTLE CLEMENES BETCH IZ" - REDUIST BRULLULY NO LAS CLEMENES REDUCT BRULL CLARS WIGREY LATERS GEEY LAYERS MAY BE EVIDENCE OF VIRISED CLARS REDUISH BRULL CLARS WIGREY LATERS GLEY WIYERS HAY BE EVIDENCE OF VARBED CLARS	STUE-LITTETERE H20 STUE-LITTETERE H20 STIFF-LITTE TO AU H20 M. STIFFNESS DAMP		

Proportions Used. Trace = 0-10%. Little = 10-20%. Some = 20-35%. And = 35-50% Sampling Abbreviations: S3 = 5pitt Spaon, ST = Shelpy Tube, CSC = Continuous Soil Core

•

DRILLING CONTRACTO			•
DRILLING EQUIPMENT		SAMELING METHOD STA	RT. FINISH CAT
	SING MAT./DIAL SCREEN: 35 / 2" TYPE SLOT MAT. ST ATMLESS GUND SURFACE TOP OF WELL CASING TOP & BOTTOM S		DATE
1 10.100	LOG OF TEST BORIN	G	WELL CONST. GRAFHC
State States	DESCRIPTION	REMARKS	WELL GRAFI
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BRENN IDRE BROWN CLAYS, NO 245. BRENN WINCHE GREY CLANS ANDE JULY BY	STIFF LITTLE - NA 1120 STIFF TRACE H20	

Proportions Used: Trace = 0-10%. Little x 10-20%. Some x 20-35%. And x 35-50% Sampling Abbreviations: SS = Split Spoon. ST = Shelby Tube, CSC = Continuous Soil Core

. •

BORING NO. MW-1/M PROJECT NO NAME UNION DAL 20 DRILLING CONTRACTOR/ MAYIM DRILLING EQUIPMENT. HSA WELL INSTALLED? CASI YES TO NO D STAL		H H H H H H H H H H H H H H	FINISH - 12	1 QATE 19/16 19/16
- m ⁰	LOG OF TEST EORING		L CONST.	GRAPHIC LIYHO NOG
OLP IT IS IN RECOVERY	AT ON AS A DESCRIPTION	REMARKS	MEL	Cu Cu
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sampling started @ 4'BG Brown/DRKBown Silts + clays w/ Trace anounts of Ax Fragments. less than 18" Drown/Drk Brown silts + clays, w/o Rxs Most likely Fill Bro Drk Brown clays w/ Trace anounts of Rufrags mistliky Fill Top 8" Drk Brown clays w/ Some Organics Bottom 2" Grey silts + clays w/ Some Organics Top 4" discarded boked as if they is fellints hel Bottown 14" Grey clays w/ Some Organics + Trace Bottown 14" Grey clays w/ Some Organics to trace Bottown 14" Grey clays w/ Some Organics + Trace Reddish Brown clays w/ No Rts or organics Reddish Brown clays w/ Grey layers The grey layers mayber unbed clays.	Little to D. H.C. Soft W/ Some H.C.	A MANNAN MANNAN A	

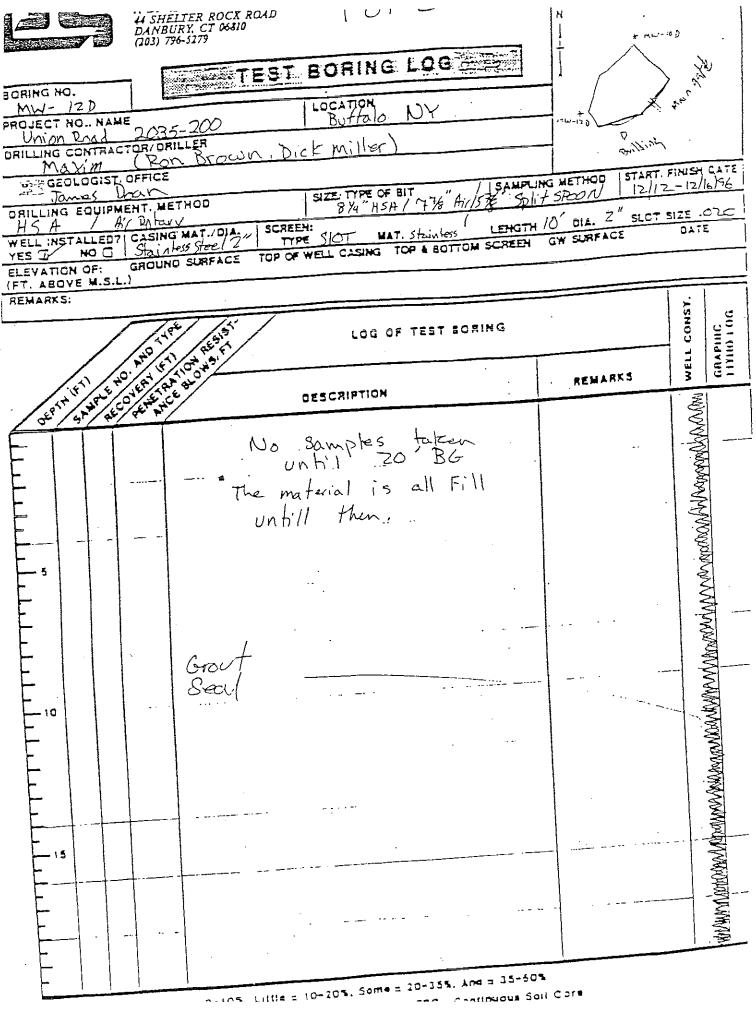
Proportions Used: Trace 2 0-10%, Little = 10-20%, Some = 20-35%, And = 35-50%

Union T Union T May GEOL	ANTRAC	DEFIC			T. FINISH	
HS A			SDI	10' DIA. Z" SLD	T SIZE -	
res 🖅 🔤		ടിപ്പ	A less steel 2" TYPE SLOT MAT. Stainless LENGTH NO SURFACE TOP OF WELL CASING TOP & BOTTOM SCREEN	GW SURFACE	DAT	E
FT. ABOVE						
REMARKS:						
,		NRO TH	LOG OF TEST BORING		CONST	GRAPINC
SEPTHIET ST	APT CO	ERIA	DESCRIPTION DESCRIPTION DESCRIPTION	REMARKS	MELL	GRAPHIC
20'		6	- Reddish brown varbed Clays w/ Red, Grey,	Soft	- YVA	Į
-	24*	10000 Mm 101000	and dark Brown kyers.	Wet	-3	;
22'		ا ــــــــــــــــــــــــــــــــــــ		Soft	RAND	Ì
-	12"	52	Reddish/ Bown clays	Wet.	Mr.	ļ
24'24		<u> </u> 	Reddish Brown (Fleshy Color) Clays 4"- 1/2" Rafrags. W/ Gunded edges.	Soft	Margaran -	
	18"		inf Gundad edges.	wet		
- 26 26		3	Reddish Brown (Fleshy Color) clays 1/4"-2" Rx Shags	. soft	. }•*	
-	18	43	w/ rounded edges.	wet		
- 28 28		6	D Wich Brown (Eleshy Gbr) Clays + 408-508	soft		
	131	2	Reddish Brown (Flesh y Cobor) Chys + 408-508 Rock fragments w/ some counded edges	wet_		
- 10 30 30		7 	11 Dut Say w some Reddish Brown		[-{	
- 20	<i>'</i> 4″	50	- Mostly Rocks 705 w some Reddish Brown (Elishy color) Clays	Wet		
		7	- Reddish Brown (Flesh color) clayst silts	Soft		
- 31	14"	5	- Reddish Brown (Fight Locar) - capit and street peoples	wet	-	
- 34		3	Reddish Brown/Grey Silts + Clays	Thesample Rang		
- 15 34'	137	8	WE Rocks + Sands	Wet		
- 26		22		- goff-> Her	1-T	
36	5	24 54/2*	Reddish Brown/Grey silts, clays, Sands +	11/0+		-
- 35		,	Racks.			
		-				Ť
			Bed Rock @ 39 BG	1 .	·	-

AT Chine Tibe, CSC & Continuous Soil Core

17-S	TEST BOI	NING LOS			
POOR FOT NOT MANUE	- 2035 - 200 LOCA	BUFFALS NY			
CAILLING CONTRACTOR/DRILL					
STOZOLOGIST. OFFICE	OHD J ZACHER JR.				
ORILLING EQUIPMENT. WETH	HSA SEE T	GH ART HSA	SRIT SA		START. FINSH 01
WELL INSTALLEDT CASING MA	T./DIA. SCREEDE	MAT. STAINLESS	LENGTH 10	DIA 2"	STOT SIZE OCCC
ELEVATION OF: GROUND SU (FT. ABOVE M.S.L.)	RFACE TOP OF WELL CAS			N SLAFACZ	
REMARKS:					

LOG OF TEST BORING		COMBY.
SESCRIPTION	REMARS	WELL CON
41 BROW CLAYS - FILL 24 BROW CLAYS - FILL 24 BROW CLAYS FILL 23 G BROW CLAYS FILL 23 G BROW CLAYS FILL 24 BROW CLAYS FILL 24 BROW CLAYS FILL 25 BROW CLAYS FILL 24 BROW CLAYS FILL 24 BROW CLAYS FILL 24 BROW CLAYS FILL 25 BROW CLAYS FILL 24 BROW CLAYS FILL 25 BROW CLAYS FILL 26 BROW CLAYS FILL 27 C CLAYS FILL 27 C CLAYS FILL 28 C CLAYS FILL 29 C CLAYS FILL 29 C CLAYS FILL 29 C CLAYS FILL 29 C CLAYS FILL 20 C CLAYS FILL 21 C CLAYS FILL 22 C CLAYS FILL 23 C CLAYS FILL 24 C CLAYS FILL 25 C CLAYS FILL 26 C CLAYS FILL 27 C CLAYS FILL 27 C CLAYS FILL 28 C CLAYS FILL 29 C CLAYS FILL 29 C CLAYS FILL 20 C	10 12 STIFF LITILE IC IL 120 STIFF TEALE HZC STIFF LITILE HZC STIFF J. HE IC LITILE HZC STIFF J. HE IC LITILE HZC STIFF J. HE IC LITILE	


. .

Proportione Laws - Trace x 0-10%, Little x 10-20%, Same x 20-35%, Ami x 35+50% Samaling Abbreviations: -55 x Salit Spawn, ST x Shelay Tube, CSC & Continuous Sali Core

CRING HE	RCIAD - 2035 - 200 LOCATION BUFFALD NY		
RILLING CONTRACTOR/	Сянцея Мани		
GEOLOGIST. OFFIC			
ILLING LOUIPHENT.			2131/96
S NO C DIANU	MA HAT /DIA SCOREDH	DIGTH 10' DIA 2" SI	
	NO SURFACE TOP OF WELL CASING TOP & BOTTOM SC	REEN OW SLAFACZ	DATE
LARX S.	0-201 FILL MATERIAL, COTTING BRUN DRY SA	HRE HUH? - WOTELLUNT.	sefuei 42:
	LOG OF TEST BORING		
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			WELL CON
25 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	BESCRIPTION	REMARKS	NEL CA
120 9	Som IORK BRINN CLAYS	SHIFF-LITTLE ILLO NZO	
22 2			
22 4 8 24 4	Read To TAN CULY SCIEGICAY	STIFF SCIETERACE HIZC	
21 4			1.44
24 ⁴ 2 7.4 24 ⁴ 1	EPT 10 LED BROW (14-1, TRIKE BLUES	SCAT, MOUST	
	LED GREWE (LA-1	STIFF, INTLE H2 C	
28 1' 8 28 Z 47	BROWN /TAN CLAM, TRALESILTS, LITTLE RECKS (14)	SAT, DIMP.	
3 18 4			
- <u>+</u>] !] .	BRUNITAN CUMA SLITTLE GERMAN, LITTLE ROCES (115.14)	SHAFT DAMP	
32 16 3			1 : H
32 3 TO	P 12"-LT BROW HANCULI- SOMEGNENS, UTILE RULES	SCAT DAMP, SHEH20	
341 10 8	LTO"- CRE-1 CLAY ANOSAND, NO CLAESINE STREATH		
	En clay Ann SAND	No STRENCTI, wet	
3 21 1		NC STREAK TH	
3- 1 Gr	the the second s	wet .	
	-20" - G. RICLIM - HANDRECKS 14- 1/2"	wet stiff	
6' 50/." H	LETLY RUCK - WISCHE GLEY ITANCLAY	- (
Heli			
mone Land. Trace z G ing Abbreviations: 55	10%, LITTLE & 10-10%, Same & 20-11%, Am & 330304 = Sallt Spean. ST = Shelby Tube. CSC + Communes Sall a We a The Brd		
		40-	1 1 1 1

•

.

⁻no Continuous Soil Core

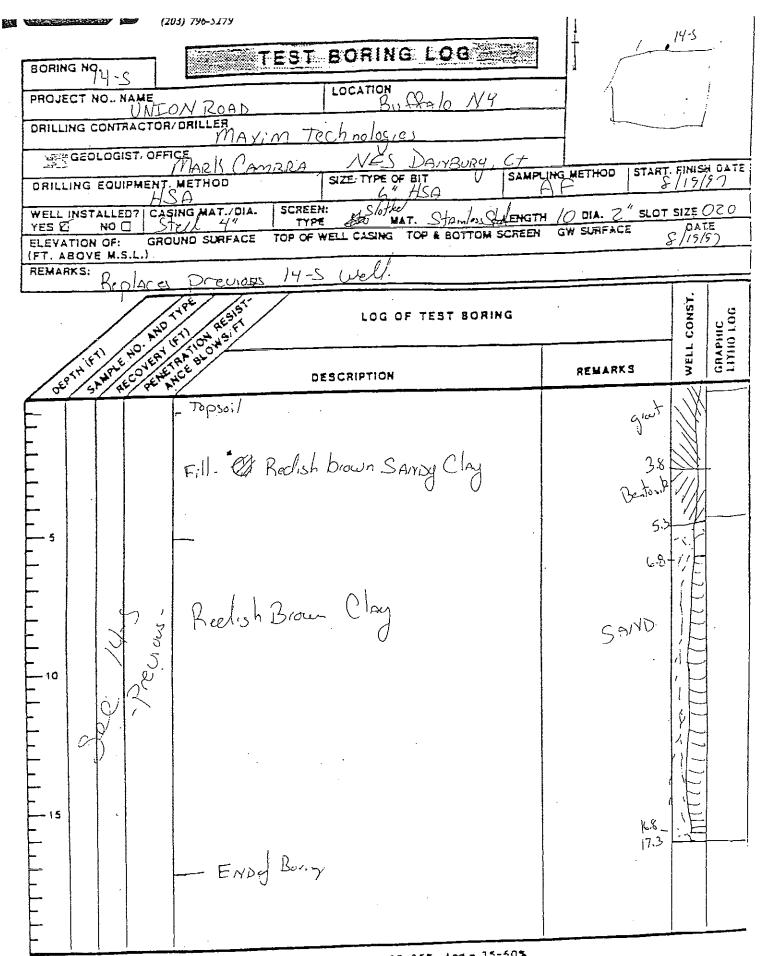
DANBURY, CT 06310 (203) 796-5279 201 TEST BORING LOG ren fre BORING NO. DD MW-BUFFALO NY PROJECT NO., NAME 2035-200 Union Road DRILLING CONTRACTOR/DRILLER anillinon Maxim GEOLOGIST OFFICE START. FINISH DATE James Unan SAMPLING METHOD SIZE TYPE OF BIT ORILLING EQUIPMENT. METHOD Split SPOON LENGTH 10' OIA. Z" SLOT SIZE .OZC <u>HSA</u> WELL INSTALLED? CASING HAT. / 01A. YES IN NO I Stainless Steel 2" SCREEH: TYPE SLOT MAT. Stainless GW SURFACE TOP OF WELL CASING TOP & BOTTOM SCREEN GROUND SURFACE ELEVATION OF: (FT. ABOVE M.S.L.) REMARKS: CONSY GRAPHIC 117110-1-0G LOG OF TEST BORING MINE COVERY Shunt HO. WELL OEPTHIPTI REMARKS DESCRIPTION NOUN NIN W MANUNA MANUNANA NAMANANANANA stiff 500 Brown to Drk Brown Clays, NO RXS 201 little toNo AO 244 8 Stiff 22 22 Brown/Tan/ w/ some Greys w/ trace H2O 24″ 24' Ч Soft 241 Damp Breyish/ Red Brown Ckys, Trace Rx Fragments 24 26 SKiff Top6" Red Brown Elay, No RAS 26' 4 6 Bottem 11" It Brown/Tan (Floshy color) Clays, Trace 5: H5 RX For 17' 14 20 28 soft 281 It Brown / Tan (Fleshy color) elays, Trace silts + 1 Some HO · 423 15 Some rock fragments 18 - 44 Sof+ 3D It Brown / Tan (Flish Color) clays, Trace Silts + 10 Ð Some H2O 34 14 * some Rock Hagments Top 12" It Brown / Tan, w/ some Gray Chys some Rx Soft; Damp <u>I</u> ş 32 Ragments. Bettemn" Grey 50% Sands North No Checsive Strand Wet to Damp 24″ 16 34' 50 MANAMAN MANANA Sample skipped the augers into hard unconsolidated Racks 15 It Brown/Tan/Grey Clays of Silts + Aryular Dack Fungments 40=50% -18"-1" Soft 5″ Ħ; 37' wet 31

annormone used: Trace = 0-10%, Little = 10-20%, Some = 20-35%, And = 35-50%

	DANBURY. CT 06810 (203) 796-5279	JOT J	N I I		-
RILLING CONTRACTO	2035-200 DR/ DRILLER	BORING LOG		opiliting road	
HS A VELL INSTALLED? C	ASING MAT./DIA. SCREEN			Z" SLOT SIZE .C	
FT. ABOVE M.S.L.)					
	ND 1174 NE3151	LOG OF TEST BOI	RING	L CONSY.	GRAPHIC 117110-1-0G
SEPTH SAMPLE COVE	NO TI RET AT RATOLON AS	ESCRIPTION	- 1		CA CA
5 ²¹ 40 ² 42 ² 2 ² 59 	2" Mastly RY 44"-2 1t Bewnitan/G -Bed Roc Bottom of Ac Stain Steal Stain	ess Screen	Beat	+ +	
	Sch Botten (t hole 61,5' Bt			

DRILLING CONTRACTOR	TIAKIM FICE LINN J ZACHER JR METHOD SIZE TYPE OF BIT S HSA SCREEN:	ALLE UNG METHOD STA SPLIT SPECO IN HOTH /0' DIA 2" SLC	T. FINISH DATE
ELEVATION OF: GRI (FT. ABOVE M.S.L.)	DUND SURFACE TOP OF WELL CLEING TOP & BOTTOM SC	CEN GW SURFACE	
REMARKS: BORING	TO 21', Jast I' NOT SPLIT SPECZED Wellton	STOC RUSER AT 205	<u>BG.</u>
100	LOG OF TEST BORING		VELL CONSY. Graphic
SEPTIMITINE COVERS	AL DESCRIPTION	REMARKS	WELL CO GHAPHIC
	SAMPLING STARTEDAT H' B. G. DARK BROWN CLAMS WE RELADERS SHE GINDERS DARK BROWN CLAMS SCHE CINDERS S'-> DERK BROWN CLAMS, LITTLE CINDERS SOTS" - BLACK SONDERS SOTS" - BLACK SOND KINDERS BATKA 3" - BLACK SAND CINDERS BATKA 3" - BLACK SAND CINDERS BATKA SAND / CINDERS SCHE BRICK AND DECD BUTCH SAND CINDERS SCHE BRICK AND DECD BUTCH SAND CINDERS	STIFF LIFTLE, Nº H2C STIFC TRACE H2C STIFF, LIFIE H2W D24 D24 D24 D24 D24 D24 D24 D24 D24 D24	

Proportions Uses. Trace = 0-10%. Little x 10-20%. Same x 20-35%. Ane x 35-50% BiB 2 Sampling Abbreviations: 55 = Spitt Spean. ST = Sheiby Tube. CSC x Continuous Soil Core


•

BORING NO. MW- 13 M PROJECT NO NAME UNION RAAD DRILLING CONTRACTOR/O MAXIM DRILLING EQUIPMENT. A HS A WELL INSTALLED? CASH		110 0.	X MUN	0 0 A T E
	LOG OF TEST BORING	REMARKS	WELL CONSY.	GRAPINC 11710-1-00
	-Drk Brown clays w/o Rx5	Stiff Nittle to No H2O	MARKING AND	
	BIK sands + OShes on ainders -Not a Native matorial Top 9"BIK sand + as heson cinder some organics Botom2" Wood, Aboby from a RR tie- Top2" Bik ash w/some as organics Nati" Brick (Red Botom2" Wood Wood Nex Sample will be 19'-21'	No Colvessive stranith DRY No Colvecsive strongth DRY Damp	A A A A A A A A A A A A A A A A A A A	

Proportions Used: Trace = 0-10%, Little = 10-20%, Some = 20-30%, Area - --

DA	SHELTER ROCK ROAD NBURY, CT 06810 3) 796-5279	20+2		N 1		
MAY'M MAY'M JANGEOLOGIST. OFFI	235-200	BORING LOG		METHOD	START. FINE	AN CATE
YES THE NO CI STO	ING HAT DIA. SCREEN:	-	LENGTH /O	SPON OIA. Z" W SURFACE	SLOT 3121 0	E .02C
FT. ABOVE M.S.L.) REMARKS:						
	AND BLONDE	LOG OF TEST BORN	łG		CONST	. 189 1
SEPTH SAUTHE COVERS		SCRIPTION		REMARK	5 S	VUU UU
247 247 249 5 5 5 5 5	Top 5" Wood Bottom 19" Greyish Fe Reddish Grey Cl	d clays, No Rocks		Stif S- He to No	-351H	
- 10 30' 12" 1 - 32 - 32 0' 55 - 34 0' 50/0	Bottom,10- Reddish/ There wasn't on	e Roma plug in Bottomof Grey Clays W/ Some Ra Bosket in the spo	on.	-Soft Wet.		

10-705, Some = 20-355, And = 35-503

Proportions Used: Trace \pm 0-10%, Little \pm 10-20%, Some \pm 20-35%, And \pm 35-50% Sampling Abbrevistions: SS \pm Split Spoon, ST \pm Sheiby Tube, CSC \pm Continuous Soll Core

BORING NO.	TE	ST BOR	ING LOG		Carle of	45
PROJECT NO. NAME	an 2035-200.	LOCAT	BUFFALD N	1		/
DRILLING CONTRACTO						
GEOLOGIST. OF	HCE JOHN J ZACI		· ·			
DRILLING EQUIPMENT			G" HSA	SAMPLING	17-	т. ғінізн сат -30 -9(,,
	SING MAT./DIA SC	REEN:	MAT. STAINLESS	LENGTH IO	DIA. 2" 510	T SIZECALO
		OF WELL CLS		SCREEN GI	W SIMFACE	DATE
REMARKS:	· · · · · · · · · · · · · · · · · · ·					

<i>,</i>		0. INC	LOG OF TEST BORING		CONST.	GAAPING 1 YHO 1 DG
 La LIN V			SESCRIPTION	REMARKS	MELL	GRAPING 1 I YINI 1 F
4 66 8 10 22	20' 	COLUL	TUP 1" - WORD TUP 1" - WORD HAT CINDERS 17-20 BROWN CLAY WILLIFTLE CRANEL G-7" - FILL CINDERS, STONES, DRICH. 7-19" - BROWN CLAY WILLIFLE ROOTS (IN C) G-7" BROWN CLAY WILLIFLE ROOTS (IN C) G-7" BROWN CLAY WILLIFLE ROOTS (IN C) 7-22" REDIBER NCLAY REDIBRE NCLAY REDIBRE NCLAY, TRALE CREANICS (RUS)	STIFF, OIZY DIZY STIFF, DIZY STIFF, DZY STIFF, DZY STIFF, DZY STIFF, DITTEH2Q STIFF, LITTLEH2Q STIFF, LITTLEH2Q STIFF, LITTLEH2Q STIFF, LITTLEH2Q	and the second sec	17 But
15 20	24" 24"	1. 1. 0 m. n. n	G-4" MER BIZOWICKEY CLA-1 4-24" GREY SANUY(LAY(40-50)2)	KEDSKIFF Are Hzc SSFT, WET		fi

Proportions Used: Trace z 0-10%, Little z 10-20%, Some z 20-35%, And z 35-50% Sampling Abbreviations: SS z Split Speon, ST z Sheiby Tube, CSC \pm Cantinuous Soil Care

SORING NO.	TEST	BORING LOG			
PROJECT NO., NAME		LOCATION			
DRILLING CONTRACTOR/DRILLER				-	
J. # GZOLOGIST. OFFICE					
DRILLING EQUIPMENT, METHOD		SIZE TYPE OF BIT	SAMPLING	CONTER	START. FINISH CA
WELL INSTALLED? CASING MAT./DIA.	SCREEN	WAT.	LENGTH	DIA.	SLOT SIZE
ELEVATION OF: GROUND SURFACE (FT. ABOVE M.S.L.)	TOP OF W	EL CASHG TOP & BOTTON	A SCREEN Q	W SURFACE	GATE
AEMARKS:					

ALL	TITE LOG OF TEST BORIN	16	CONST.
SEP TH WITH DE CONTRACT	LOG OF TEST BORIN	REMARKS	WELL COHS) GRAPHIC GRAPHIC
9	GREY CLAY	SOFT, WET	
22' 18' 7 22 worgint	GZEY CLAY	WRTSHT, WET), [=]
	GREY CLITY	SOFT, WET	
⁴	GREY CLAN	.SONT SATURNTED	
$-\frac{26}{23}$ $\frac{3}{6}$	G-3 GREACLAN	SATURIATED, SOAT	
30 2. 4	5-20' GREY CUAH, SOME RECES DUD	verywet - 254	
	• .		
-	10-155 Los - 15-5		

Proportions used: Trace \pm 0-10%, Little \pm 10-20%, Some \pm 20-35%. Let \pm 35-50% Sampling Abbreviations: S5 \pm Split Spoon, ST \pm Shelby Tube, CSC \pm Cantinuous Soli Care

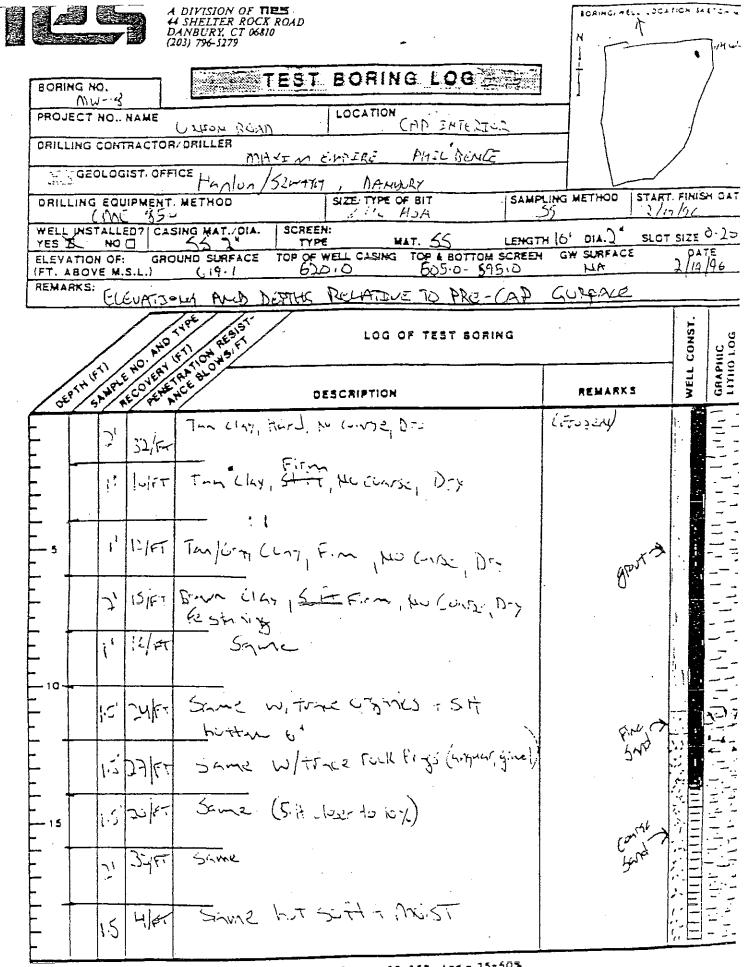
BORING NO. MW-15	TEST BORING LOG	- mw-is	5
PROJECT NO NA			-
DRILLING CONTRA			· /
· · · · · · · · · · · · · · · · · · ·	MARIM- Empire P. DENCE	- SLIRY WAL	_/
	1/SEWARA DANG JAL		FINISH DAT
ରୁନ୍ନ ପ୍ରଥାମାନ କୁନ୍ନ		PLING METHOD START.	20/46
WELL INSTALLED?	CASING MAT. DIA. SCREEN: SS 2" TYPE MAT. SS LENGT	TH 10' DIA.)" SLOT	SIZE O P
ELEVATION OF:	GROUND SURFACE TOP OF WELL CASING TOP & BOTTOM SCREED	N GW SLAFACE	0ATE, 2/20
(FT. ABOVE M.S.L REMARKS:	.) 616'6 610'6 610-600	<u> </u>	
<u> </u>	IN AND DETTHS RELATIVE TO PRECADE SULFACE		1
	HO TYPE LOG OF TEST BORING		COHST.
	HO FICE DESCRIPTION		CONS 0 1 0G
SEPTHIFTI NO	VER THE BUILD		ELL.
549 43 AF	REAL DESCRIPTION	REMARKS	3 0 -
	Fuch gended silt & gran week and grand		
$ z^l $	24/3 ALD Aran. Noust (412200) + Little My granel.	-	
2	TRIBRING CLAS, FIRM, NO CALLS MANEAUN		===
	3/4 Festimany.		
		brok	
5 1.5 ⁴ Z	2/ SAUG LULANDE of TANKE FINES, TAN, FRANK, FRANK,	ب ا ¹	
	Taw Firm tary. No course matte		
	1, anty clark, we could a match up, SHFT. TRACE SILT	5e 7	
- (.5')	15t green		
		ن نظر المردي المراجع ال	
- (8) 9	14 sand But Scalk. SILT LLA: THE LANDE	6 mg !	
	SAME BUT ARCU/Kref. SILM CLAY.		
	14 area/any Sint, a sime cum. solt.		
	14 area lang sich and		
E 515' 6	lse sure		
⊨ i4			
	14 some	•	
	· /9 -		
– z' 4	SAME		
			-
	EOB 19.0'		<u>, , , , , , , , , , , , , , , , , , , </u>
]	1

Proportions used: Trace = 0-10%, Little = 10-20%, Some = 20-35%, And = 35-50%Sampling Abbreviations: SS = Solit Spoon, ST = Sheiby Tube, CSC = Continuous Soli Core

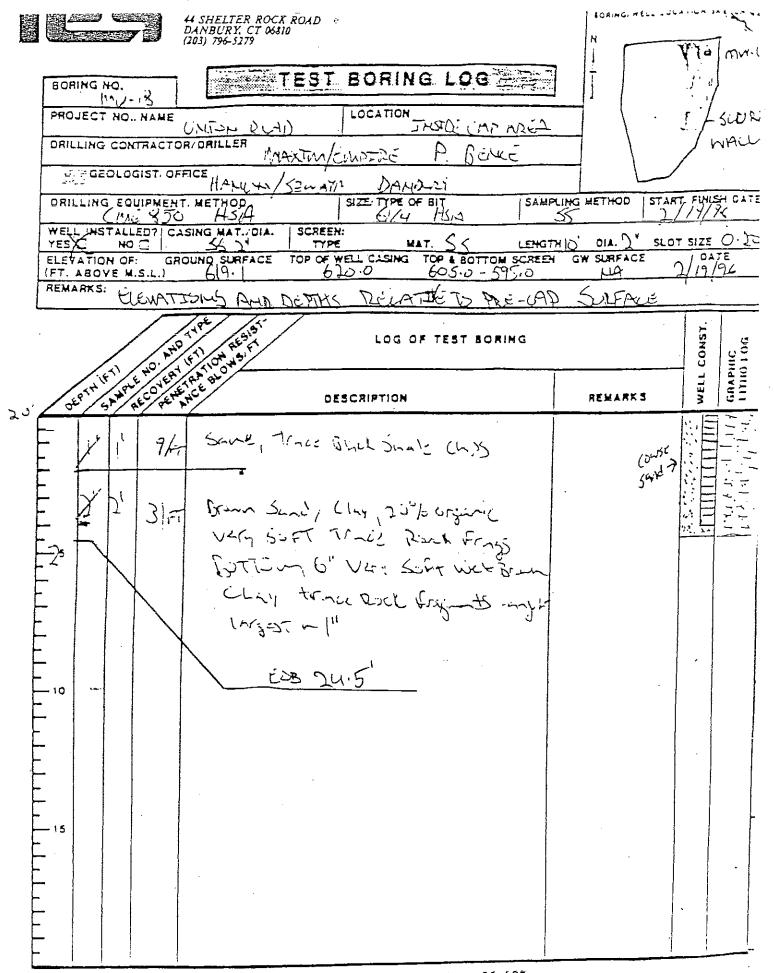
					(203) 796-5279			•		א 	/·]
		ho h		6		TEST		IC LOG				•• •	
				NAME	UNTRA ROA	-D '	LOCATION	utility				•	L suit
	ORILI	LING O		TRACTO	RIDAILLER MIJEE	Binci						4-1- J	1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	1	-020	LOC	197. OF	FICE . the on /5211		Danby	العشرو			*	<u> </u>	
	ORIL	LING	EQU NC		HSV		SIZE TIPE	OF BIT	SAMP	LING METHON	star בו	t, finis / <u>}</u> ,/(9- <u>(</u>
	YES (<u>v</u> .	NO		SING MAT./DIA.	SCREE	<u>e 0.jo 1</u>			H IO DIA.		SIZE O	<u>0.75</u>
	(FT. A			.GR <u>S.L.)</u>	OUND SURFACE	9 OF	MET CTRING	TOP & BOTT	DM SCREET	I GW SURF	2/	<u>) [</u> 96	· <u>-</u>
L	REMA	AKS:	Au		ATTELS AHI		S RELAT	INS TO	PRE-LAP	GRAVE			
			/	0. 110	1492 1492 1511 1611 1074 1997		LOG	OF TEST SC	RING			CONST.	SNAPHIC LYHO LOG
	J.S.	P111151	APL P	HO. AND	TRABLO	01	ESCRIPTION			REMAI	RKS	MELL	GNAP
	-			<u>35</u>	Hard Bro-	un Cla	7, 10% G	rheal		Frozen			
	- 2		Ś	jo	upper" 12' Bottom b"	Groc CIHI	, £R			150	-		
	- 4'- - 5		1.0	\$/4	Shere .					PRI	bartt		
	- 6 -		<i>q "</i>	12/批	THN SANA	; >14,	SE STAY OFA	ancie intelasi	4-1004		F. NO +		
	- 3' -				- 1" of Jutice ,	0.110.14 E	H ATTER						<u>***</u>
	-	1	-	5/4	L		M, NICON SCIGHT FE	LIC AATSUAL			•		
F	- 10'		،5 [°]		same but any !	4ren				-			ר ו ען ה ה ה
				5/56	SAME 7 TA	не охулц 	<i>, 51</i> 5.						
			.5 ⁷	¥16	SamE								
	- (4) 15 , /]	I	, s ́	4/51-	Sans 7 200	(IoY.) F LOCE FI	4415 r 14".	angula in b	2000 6 °				
	- 16 + -	l	15	12/yL	space.	•				ሕ ^ψ ະእ			
	- 18'-					EOB	19.0'				5-14 7		

Proportions Used: Trace = 0-10%, Little = 10-20%, Some = 20-35%, And = 35-50% Sampling Abbreviations: SS = Split Spoon, ST = Shelby Tube, CSC \pm Continuous Soli Core

1993	· · · · · · · · · · · · · · · · · · ·	(203) 796-5279		
	BORING NO.	TEST BORING LOG		254'
	MW-17 PROJECT NO., NAME	LOCATION		+ AMILIT
• •	DRILLING CONTRACT	AD LANDFILL (AD)		
	Marin	- Saprile P. BEnch		
ļ		ALIENARA I DEMONIC		START. FINISH DATE
	ORILLING EQUIPMEN	IT. METHOD SIZE TYPE OF BIT SAN	2" 55	2/22/96
ľ	WELLINSTALLED7 C	ASING MAT./DIA. SCREEN: 2" 35 TYPE MAT. 59 LENC	, אוס <i>י ט</i> ו אדנ.	SLOT SIZE ZU
ľ	ELEVATION OF: G	ROUND SURFACE TOP OF WELL CASING TOP & BOTTOM SCREE		DATE
ŀ	(FT. ABOVE M.S.L.) REMARKS:		· · · ·	
J.				
		LOG OF TEST BORING		CONST 10G
	0.1			
	GEPTH SAMPLE OVER	DINTE LOG OF TEST BORING	REMARKS	WELL CONS GRAPHIC
ć	5t 5t 4t 4	*/		1N
F	- 415' 20/14		- رين و ۲	
ļ	- 2'		WET	
Ł	_ /	ALMA DALA LED THEISAND. WANGE PRESENT. I'L' STANY.	- Ψ£Γ.	
┝	- 14/4			()]
F	- 4 - 1.0 11/15	TANISHOW CLAR SUFF. WE CLARE MA FELING, FE' STRING	\$12.º	
þ	- 5 1.0" 11/48	Bitom / Burker ward That Dimmes, fit starny , Bak Frags	.]	4
F	-0'	<u>6.5'</u>		
L	- 1.2 24/	BLACE CLAN. 30% (11/20,10) (WIND), TRANE LIDAGE MATCHING (EIROM, LIDNEL), BIAN		
F	- 3	SETTADIA WAY, Set stang. W LANSE ANTL. TAME		
F	- 1.5' 11/4-	Brace Choose File Maile.	-	
		-		
F	- 05 1/4	SAME		
┢	- 12'			
F		NU RECOTERT	WET	
F	- 0 7/yt			
E	- 14			
-	-15 0 B/H	He few will	-	
Ļ	- 10	+		
F	- 0.8° 11/12	SAME, NO THE MATE. TRACE PARAMIN Anyone grand.		
L	- 18			
F	· · · · · · · · · · · · · · · · · · ·	adet/and any of but searing that is easing (19.0)	-	
Ľ	- 1.5 14/4E	HOUNAGE METER FET ITAMIN (SLIGHT)		F


.

•


Proportions Used: Trace = 0-10%, Little = 10-20%, Seme = 20-35%, And = 35-50% Sampling Abbreviations: SS = Split Spoon, ST = Sheiby Tube, CSC = Continuous Soil Core

BORING NO.		FEST BORING LOG		150' 7-1 / 21
BORING NO. MW-1				
PROJECT NO		LOCATION LAM FILL LAD		.)
LOBILLING COM	RACTOR/DRILLER			-
್ರಾನ್ GEOLOG	MARIA - EMPIRE	VIBENUE		
	M. JEWAYA DAN	N/M		RT. FINISH :
	IPMENT. METHOD	6.25" HOA	SAMPLING METHOD STA	2 2- 46
YELL INSTALLI	ED7 CASING MAT./DIA.	ן ייר אאד איר נ	ENGTH 10 DIA. L" SL	OT SIZE LA
ELEVATION OF:	GROUND SURFACE	TOP OF WELL CASING TOP & BOTTOM SC (270' COS'- 375'	REEN GW SURFACE	DATE #/12
(FT. ABOVE M. REMARKS:			<u></u> <u>_</u> _ <u>_</u>	
	Elevanon y selons	ALLATIVE TO PAFEAR TOPS,		
	Elevenen i selters NO: AND INTON SIT NO: AND INTON SIT COVERTARY SU ECOVERTARY SU ECOVERTARY ECOVERTARY ECOVERTARY (19, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	LOG OF TEST BORING	1	WELL CONST.
SEPTH IFTI SAMPLE		DESCRIPTION	REMARKS	MELL
	14/Ft. (3AmE) 4.11/	has use of your staning. That's offer	ms with	
- 2'	14. 60	when any of the standy. These offer when mather sugar is some		
- 22'	· · · · · ·			
	15/11 23:00			
- §,5'	ip Bush sur	isano, the copie met the		NEL.
		EAD. 24,0'		
-3				
-		•		
- 1 1		• "		
-10				
- · ·				
-				
- 15				
F				
		· · ·		

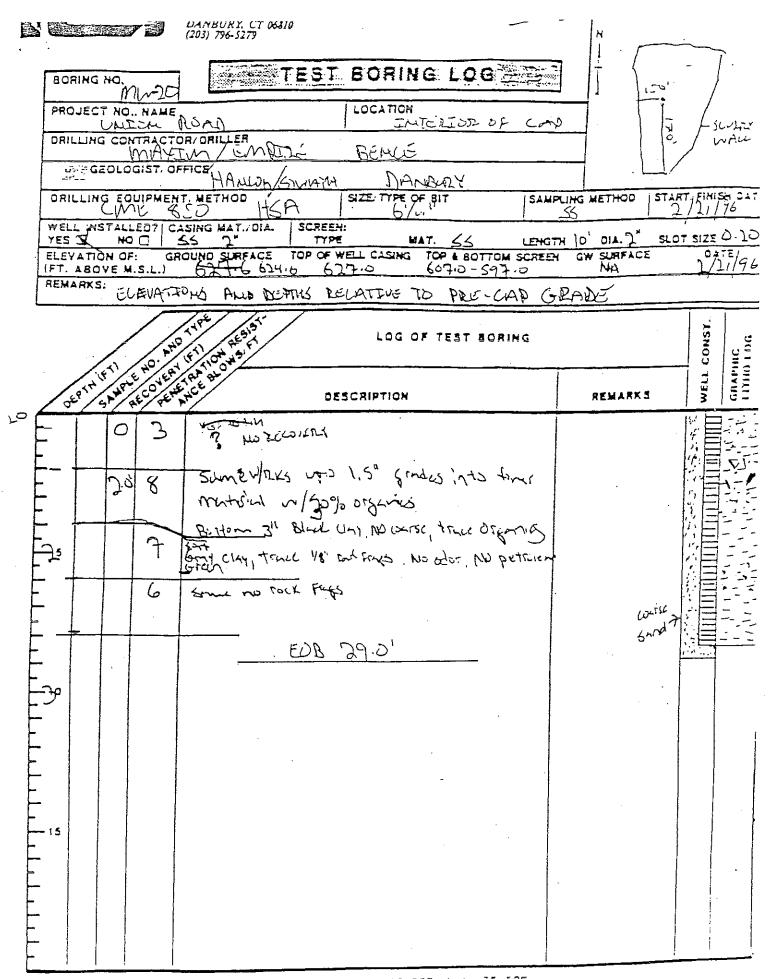
Proportions Used: Trace = 0-10%, Little = 10-20%, Some = 20-35%, And = 35-50%. Sampling Abbreviations: SS = Split Spoon, ST = Sheiby Tube, CSC = Continuous Soil Core ...

Proportions Used: Trace = 0+10%, Little = 10-20%, Some = 20+35%, And = 35+50%Sempling Abbreviations: SS = Split Speen, ST = Shelby Tube, CSC a Continuous Sell Core

Propertions Used: Trace = 0-10%, Little = 10-20%, Some = 20-35%, And = 35-50% Sampling Abbreviations: SS = Split Speen, ST = Shelby Tube, CSC = Continuous Soll Core

Se CEOLOGIST	CTOR/ORILLER	RING LOB		N A		
DRILLING EQUIPM		TYPE OF BIT	SAMPLING		7487. FINIS	H CA:
	CASING MAT./DIA. SCREEN:	HAT. ()	LENGTH IP'	DIA. Z * 5	SLOT SIZE	20_
ELEVATION OF:	GROUND SURFACE TOP OF WELL C	ASING TOP & BOTTOM		SURFACE	0AT 7/23	
REMARKS:	IL THE T DEFEN RELATION TO THE - CAP					
SEPTHIFTI ENO	14Pt 653151	LOG OF TEST BORN	+G		L CONST.	GIAPINC LIVIN LOG
SEPTH SAMPLE	PERANC DESCRI	PTION		REMARKS	WELL	
2' 1.2 ⁵ 1'	Ht 21 Film \$ \$1.000 LAND, CILL LAA Film \$ \$1.000 LANT + FE		ust unt.	-		
-6'	144 Sm2	نوبر ۱			(. N 7	
- 1.5 ⁻ 24	HE BOS SOME - IN TALLE YY" LA	Auge (Runnin), V. HARD	v.1.√.,			
0.5' 62	/ Style share and my	thomany. TARIE Addude P. L C String	(1) 7(7) 7(Fue Sau		
	At Breek, FIRM, DAY CLASS TRUE & A	Lenges Arydaess winds Legels daes frys	- ا			
	H. BLACK, WAT, STUTISTAND, SOME TEAMS CANNELS	Gener prover perou		معکر + دمیدرج		(
- 15 hul 19	16'					1 ··· · . · · · · . · · · ·
1.0' 6/		Mottuny from organice. True my, was cannon mattice	L .			
- 3.25 [°] n/ 9	to Some dir prelacion and the	ly streats, his charge a	NTL. E.O.D	e 20']		

Proportions Used: Trace = 0-10%, Little = 10-20%, Some = 20-35%, And = 35-50% Sampling Abbreviations: SS = Split Spoon, ST = Shelby Tube, CSC + Continuous Soil Core


٠

Proportions Used: Trace = 0-10%, Little = 10-20%, Some = 20-35%, And = 35-50% Sampling Abbreviations: SS = Split Spoon, ST = Sheiby Tube, CSC a Continuous Soll Core

DANBURY, CT 06810 (203) 796-5279 N Carrow a ч TEST BORING LOG BORING NO. MW-20 62 LOCATION INTERIST CAP PROJECT NO .. NAME UNION RD يد DRILLING CONTRACTOR/ DRILLER ເມ BEALE/BOITMULET MAXIM/EMPIRE ~, + Ū ST GEOLOGIST. OFFICE HANLON SLUMMA DAMBURY DRILLING EQUIPMENT, METHOD SIZE TIPE OF BIT START. FINISH CAT SAMPLING METHOD CME 450 HSA 2/24/85 55 WELL INSTALLED? | CASING MAT. /DIA. SCREEN: dia. \mathcal{I}^{u} γ, YES 🔀 NO 🗋 44 MAT. 55 SLOT SIZE 0.20 LEHGTH)D¹ TYPE ELEVATION OF: GROUND SURFACE TOP OF WELL CASING TOP & BOTTOM SCREEN GW SURFACE 2/21/90 (FT. ABOVE M.S.L.) 617.0 6-7-5 634.6 607.0- 5917.00 HA REMARKS: ELEVATION AND DEPTHS RELATIVE SURFACE Gr. PRC-CAD CONST LOG OF TEST BORING GRAPHIC FEYIO LOG NECOVERY MAN SANDLE NO. TION DEPTHIFTI 0* \$ WELL ANCE DESCRIPTION 月ビヨメガズラ Brown CILY ; NO CONSE, FROZEL, BOTTOM FLUZCH 8 1.5 " Black w/15% Drunkics FIRM Brown (14) trace organics this it NJIST 26 1.0 19 same 1.5 BUTTON 12" BINCK For finder wettend W/chicon/ ODIZ, 10% OZMMECS 10% "F.Ber BARD" mist J, 14 BLACK F.M CLAY DOD OXANICS TRACE moist ñ. A-d 1/2" Rock Frends k S British 4" Fin the Clay, HO CONFE First 6" Same w/ Orginics Next 6" Pad Sond w/ Black Linders Sum Chy الح^{ال} wist 14 Nelt 6" WHITE CINESY ASh W/30% Lood soft the Clay, he course 1 ġ 05 Fine Black Sand True red Fine Sond -c+Ś 7 15 Sametismeorging [.5 کر BRIN (LAT + SAND ~ Brick String, Strong Petiden DOR, Succing, 20°10 DUC FINGS UPTO 0.5" [9..... BI S 3 7.

Proportions Used: Trace = 0-10%, Little = 10-20%, Some = 20-35%, And = 35-50% Sampling Abbreviations: SS = Split Spoon, ST = Sheiby Tube, CSC = Continuous Soil Core

Proportions Used: Trace = 0-10%. Little = 10-20%, Some = 20-35%. And = 35-50%Sampling Abbreviations: SS = Split Spoon, ST = Shelby Tube, CSC + Continuous Soil Core

				(203) 796-5279		
	BORING	ыно. 		TEST BORING LOG		/
	PROJE	בא דכ.	NAME	LOCATION	· .	
	001110		NON S		/ ^	
ļ			<u>MA</u>	RICE Devision		ETC /
) مېرونو سرونو	320100	SIST, QF くっ	FICE		\mathbf{Y}
· [ORILLI		UIPMEN'	T. METHOD SIZE: TYPE OF BIT SAM	r mattem server i se	RT. FINISH CAT
╞	WELL IN	STALL	<u>3 HSA</u> ED71CA	SING MAT./DIA. SCREEN:	2* 55	2/22/96
Ļ	YES 2	NO		2." 5.5. TYPE MAT. 5.5. LENG OUND SURFACE TOP OF WELL CASING TOP & BOTTOM SCREE	TH 10' DIA. Z" SLI	DT SIZE 10 DATE
	ELEVAT	OVE M.	: GR .S.L.)	623.4 625' 595'- 605'	N GW SLAFFACE	<u>z/22/01</u>
Γ	REMARX	S:		WERE & DEATES ZECATIVE TO PRE-CAP GRADE		
Ľ			100 800	LET IN		
			- AND	LOG OF TEST BORING		CONST.
			+0. A1		1	
	SEP 1	A IFTI SAMPLE	E HO. AMP	DESCRIPTION	REMARKS	VELL CONS GRAPHIC GRAPHIC
é	<u></u>	<u>4</u>	\$ ~~ ·			
Ļ	-	2'	41/56		Friete	
-	•		<i>י</i> תי	Dissie with mo crance clubbe ful another should		
Ē	- 24			· onlymus. ANICAT/FERS HOLD.	Arindamica 22 35	
F	-	1.15	UN1.	Strong .	Blover USE MANNE	
F	- 4'				AND HARMEL.	
F	- 5	1.25	9/4			
F	-			SAME I Writ Bisch cape. Fet stars, writte or any	J24	
F	- 6-					
┝	-		50/4	HANG CAL CIARAS PERSON. HANG FRAN, DER. SAMA CLANNEL. M. FILED. LAS MAR ()-4 - BLACK COARE HED LINDER FILE MARTHAL. D.M. FEACE FIRES. AND FEASS IT, AND MARTINE. D.M. FEACE		
Ľ	- 'ċ -		-			
┝	-		٦/	Sand y House Commence and a land of any		
Ľ	-	۱'	74	Sand of parts counter (1/4+) Rober & under frings, FURDION.		
-	- 10			Swill give i find some. TARES dryamins. 025.		
	-	'کن ا	٩(يو	- POINCE ELLAND HER SAM NO COMPLETE DRY.		
┢			אן'	fet >5		
F	- 12 -					
	-	0'	15/16			
Ē	- ਮਾ					
Ľ	- 15	N I	5/*	Smart		
F	- {		174			
	-12-		-	the rep short spin with findly revented	-1 <u>6</u> 1	
	-	6.5	7/ W		:N+15:	
Ľ	- 14					
┢			41_			
	-		4/54	2 ANE		

Proportions Used: Trace \pm 0-10%, Little \pm 10-20%, Some \pm 20-35%, and \pm 35-50%. Sampling Abbreviations: SS \pm Split Spoon, ST \pm Sheiby Tube, CSC \pm Continuous Soll Core

			7		(203) 796-5279					א - -	•	.)
	BORI		a.			TEST	BORI	NG LOG			7 (
	PROJ		NO	NAME	· · · ·		LOCATION	ANDFILL (AA			w-21	x' /
	DRILL	שאנ			R/ ORILLER						270	\neq
	v.	GE	DLOG	IST, OFF	HCE						/	
				111	. Szwała ; Daw 1. METHOD	4000	SIZE TYPE			A METHOD	START. F	LO HEIN
			4	あらら ド		SCREE	6. N:	<u>25" H.S.A.</u>		<u>'' 55 </u>		2/2:
ļ	YES D	<u>x</u>	NO		2155 OUND SURFACE	TYP	Ē			10 1014. 2"		DATE
ļ	(FT. 4	BOY	Е₩	S.L.)	623.9	6	2.5'	607- 547			Z	122/10
L	REMA	RX S:		<u> </u>	1. Eleventer	2 Derthe	relative to	In-cay un	ile			
				AND	1184 1815		LOG	OF TEST BOR	ING			CONST.
	JE SE	81H 4		HO. AND	11 24 00 01 1 11 24 00 01 01 11 00 00 11 00	D	ESCRIPTION	I		REMARKS		GRAPHIC GRAPHIC
2			1	40/4	32mE. 2" 12,0	ال بالمارية	56 6.000	7				
			ندا	19/11	BLEVE SINTL	ising an	youth Maly 5	1277. J-(jrr	ратик. 490.24			
	- <u>2</u> {- - <u>1</u> 5		è	י. און או	t and any	ېلې مې مې ا						
F	- 211			•	3		E08•	26				
	- 15							. [.]				
				- -								

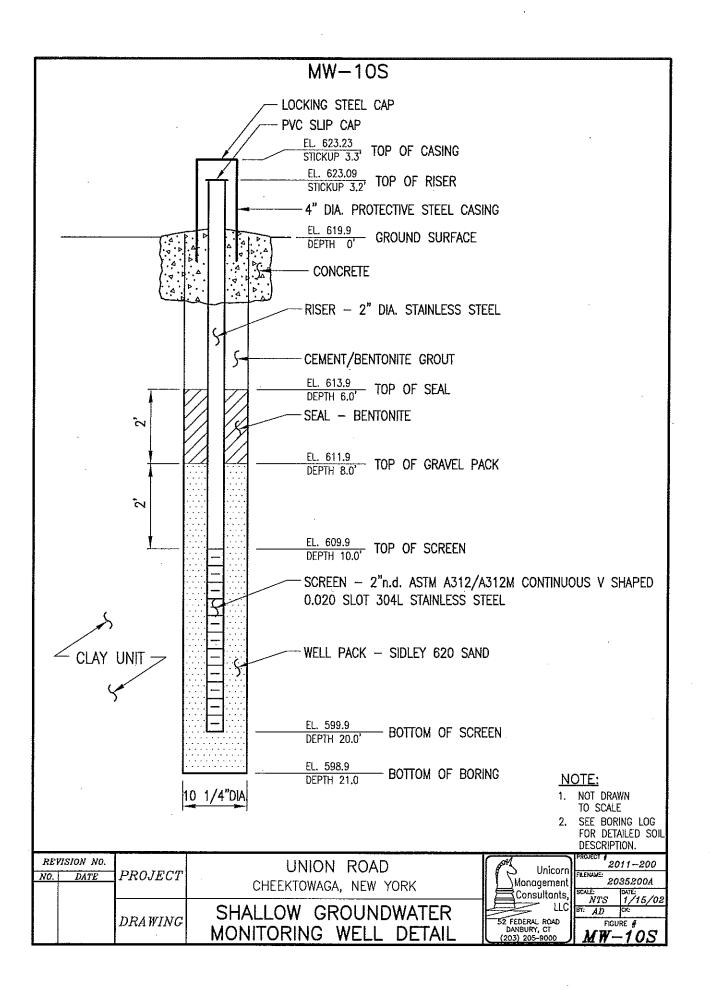
Proportions Used: Trace = 0-10%, Little = 10-20%, Some = 20-35%, And = 35-50% Sampling Abbreviations: SS = Split Spoon, ST = Shelby Tube, CSC \pm Continuous Soli Core

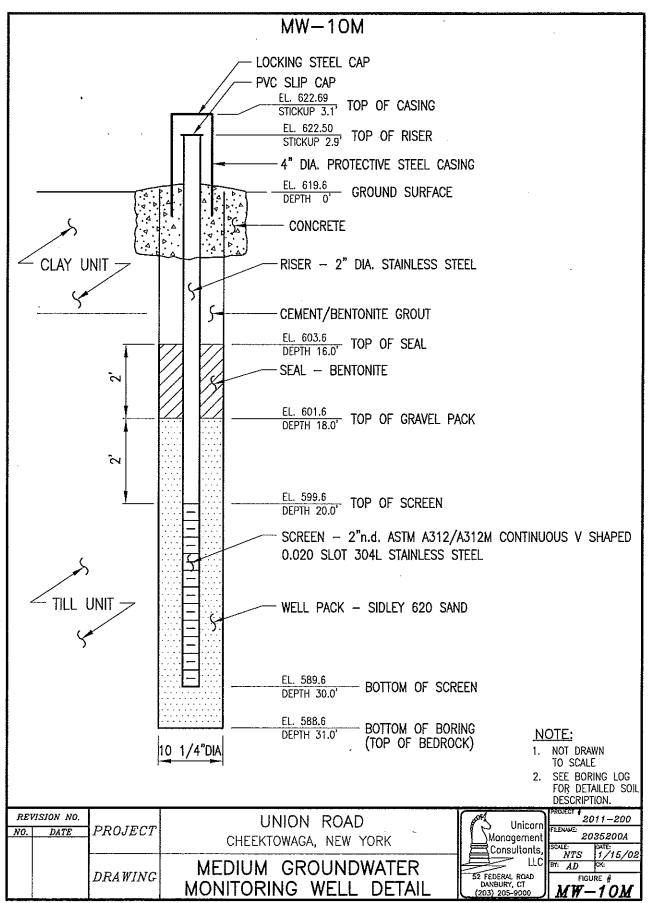
,

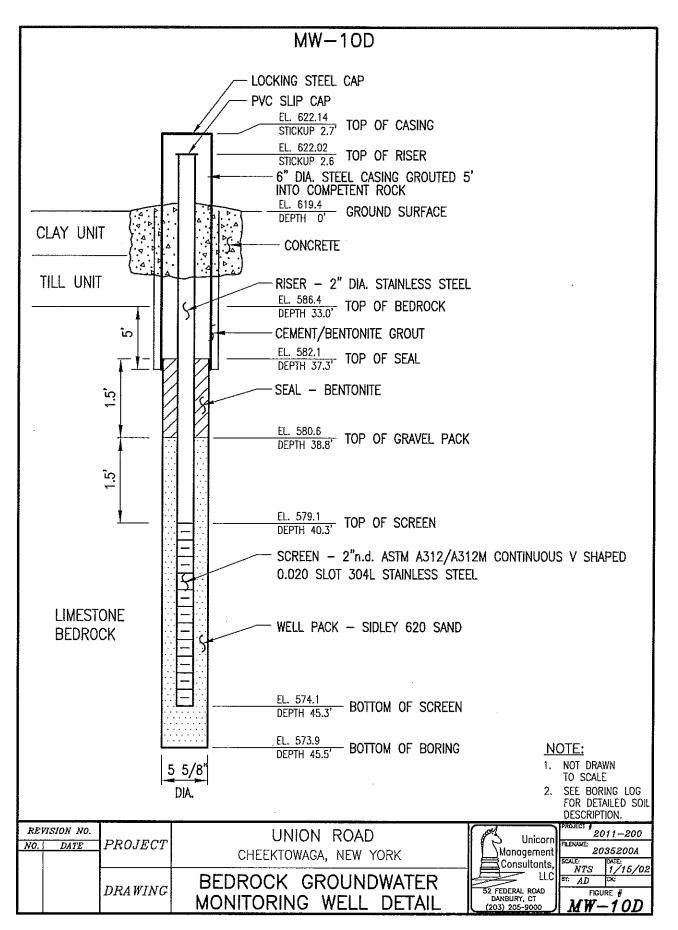
BORING HQ.	N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ļ
BORING HO.		
PROJECT NO., NAME		
DRILLING CONTRACTOR/DRILLER MARINE P. BENG		221 1212
HANLON (SZWANA, DANGULY	V	
ORILLING EQUIPMENT. METHOD SIZE TYPE OF BIT SAMPL	ING METHOD START. FINISH	، ند ن
WELL INSTALLED? CASING MAT./DIA. SCREEN:	10' DIA. 2" SLOT SIZE IC	0
ELEVATION OF: GROUND SURFACE TOP OF WELL CASING TOP & BOTTOM SCREEN	GW SURFACE	: 2190
(FT. ABOVE M.S.L.) 623.4 626.40 6060' - 596.0'		
REMARKS: ~2' No 21 2081 ADON'S CULLOUT SURFICE PRE-CAR SUR	+PCC	
NO OF TEST BORING	CONST.	100 100
JEPTH THE COVERT PAR DESCRIPTION	REMARKS 3	GRAPHIC FLITHU LOG
TAN ELA, $d sf. Fild,$ BOTTOR G" POTRUL UNITED BOTHING, EDDO UNITED COMING MAT'L 1' S/14 SAME NOT AS CHAISE 4' SAME -5 1.5' 12/4 SAME -6' S		
- 14 5/56 Sim Married master is the Streamy		ية م موالم مركز م
$-15 \qquad 1^{1} \qquad 2/4 \qquad \text{sand} \qquad .$	F. (2) -3 (2) - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	A
- 1' 2/4 SAME	in the same	2 A 2
1' 6/4 since trogs,	均量;	E.

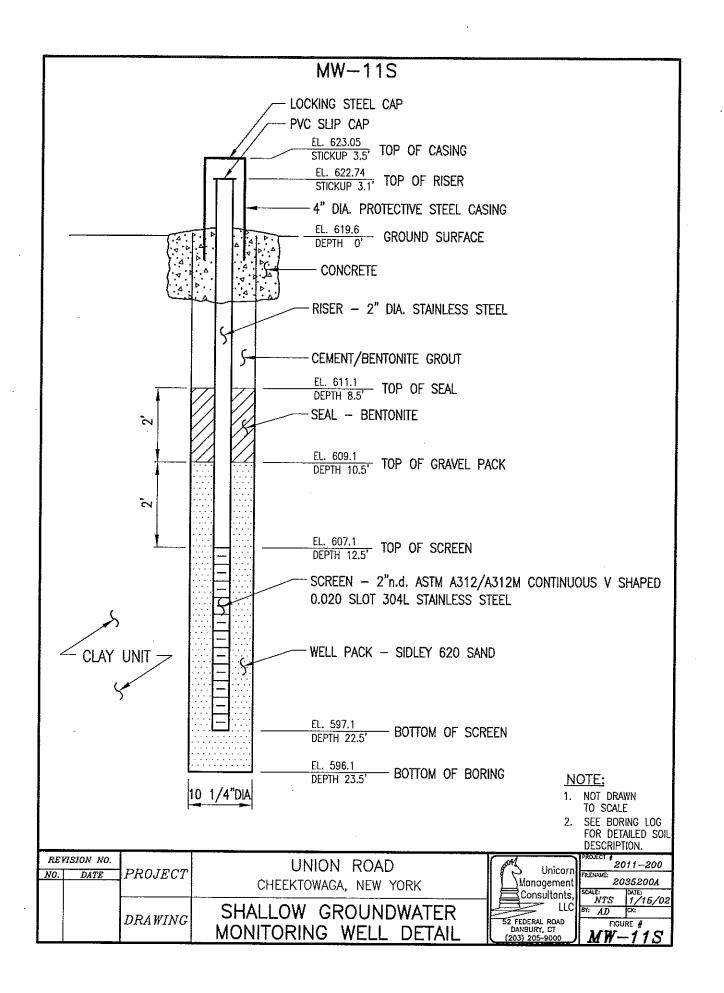
2

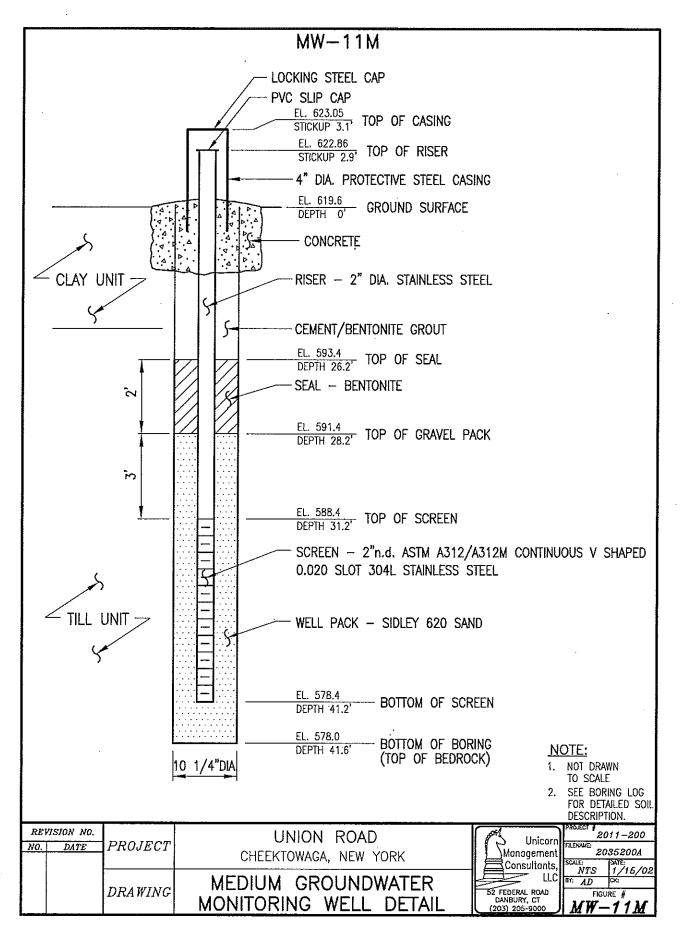
Proportions Used: Trace \pm 0-10%. Little \pm 10-20%, Some \pm 20-35%, And \pm 35-50% Sampling Abbreviations: SS \pm Split Spoon, ST \pm Sherby Tube, CSC \pm Continuous Soil Core

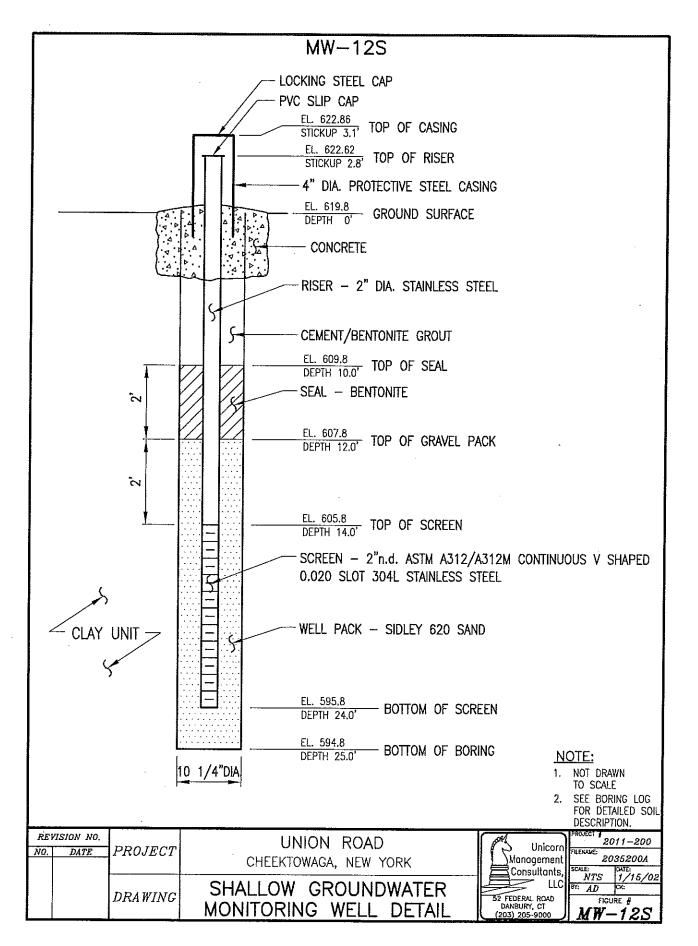

	·	EST BORING	L06		W-22 20
BORING NO. MW · 21					/
PROJECT NO NA		LOCATION	·····	·	
DRILLING CONTRA	CTOR/OBILLER	Inside CAP			. /
	MAR.M- ENIAC	P. DENCC		\	
ಕ್ಷೇತ್ರ GEOLOGIS'	HANGE / SBUTHA	5 Opener			<u> </u>
DRILLING EQUIP		SIZE TYPE OF BIT		NG METHOD STA	RT. FINISH DA 2/20/96
YES D NO C	1	I TYPE MAT.	55 LEHGTH	10' DIA. 2" SLI	DT SIZE 10
ELEVATION OF:		TOP OF WELL CASING TOP 626. YO 60	& BOTTOM SCREEN	GW SURFACE	215/9
REMARKS:	PRE-LAR 5.		<u> </u>	X	
	470 1 1976 (1951 (F1) (194 1977)	LOG OF TE	EST BORING		VELL CONST. Staphic
DEPTH IFTI HA	ATTO TYLE RESIS	DESCRIPTION		REMARKS	WELL CO
•••• 1 1 1	S/66 2" Agrian Auch	ly MAT'L. REMIL, BALL!	Spece . Irace way!		
- 6'	Fift Liame				
	1/2 CREACHT	France The Library and	s in course myrk,	Const	
- , , , , , , , , , , , , , , , , , , ,	9/H SANG -	EOB 2801			
- -					
					-
- -					

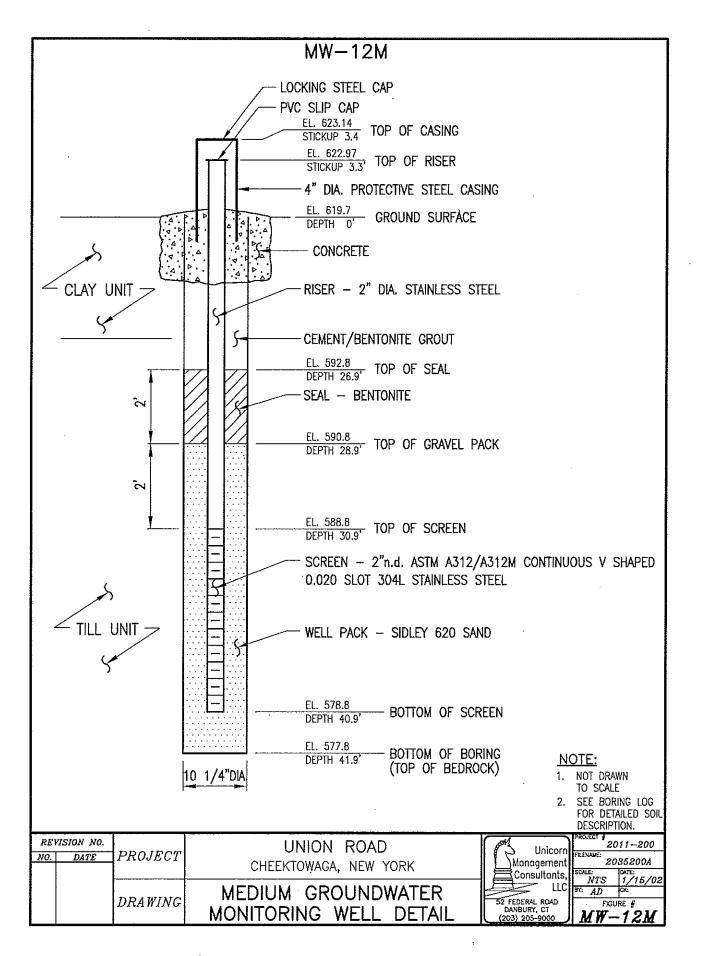

Proportions Used: Trace = 0-10%, Little = 10-20%, Some = 20-35%, And = 15-50% Sampling Abbreviations: SS = Split Spoon, ST = Sheiby Tube, CSC x Continuous Soil Core

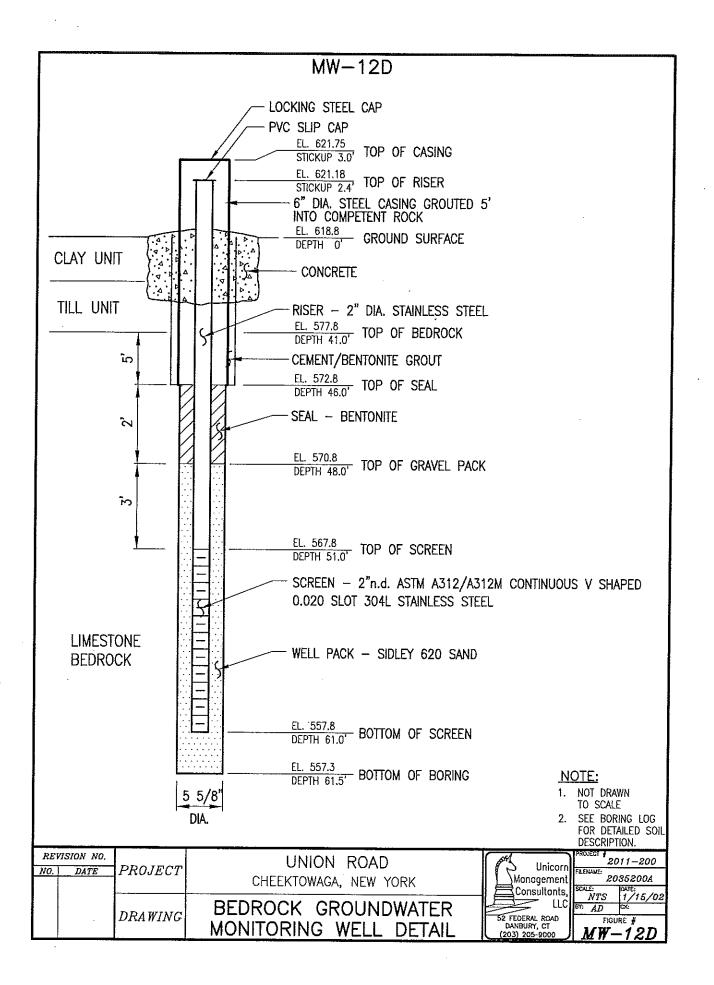

.

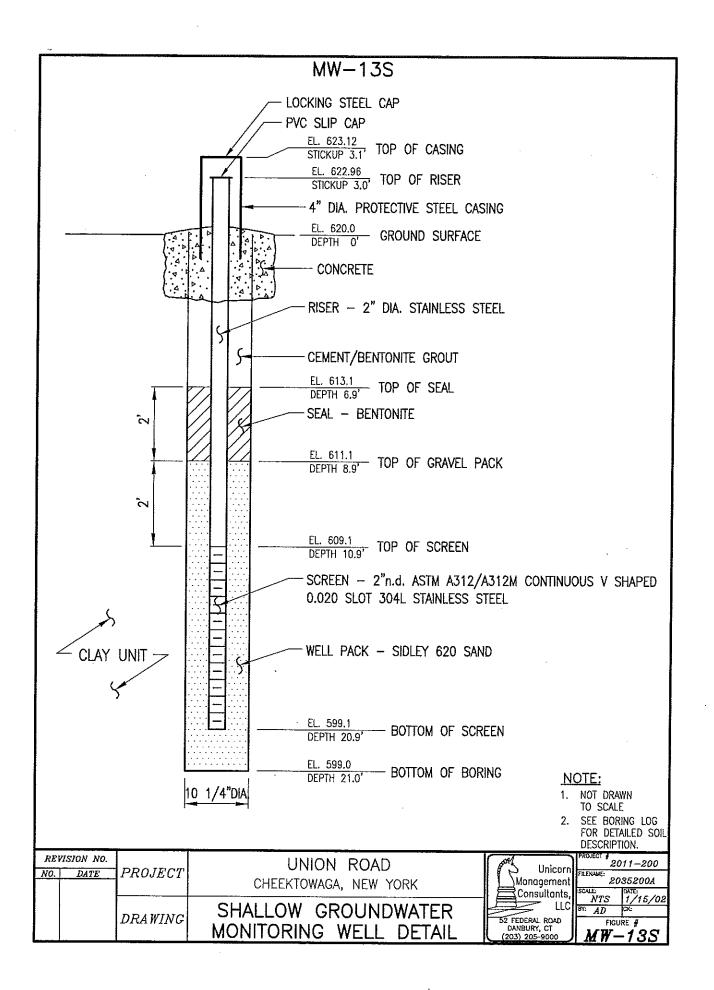

BORING NO. 23-5 PROJECT NO. NAME ULICI RO DRILLING CONTRACTO	MAXIM	J Give	
WELL INSTALLED? CA YES S NO D STA ELEVATION OF: GRI (FT. ABOVE M.S.L.) REMARKS:	METHOD JCHN JZACHER IR HSA 10" HSA	SPLIT SPOON 1 1-	T. FINISH OA U-97 T SIZEC - 02 OATE
SEPT HE SAMPLE COVERS	LOG OF TEST BORING	REMARKS	WELL CONSY. GRAPHIC
2' - 4 15' - 15' - 4 15' - 15' - 4 15' - 15'	SAMPLING STARTS 2' BG. CH TURCH, INDUAND HAS REDIBER CIAN HAS REDIBER CIAN, SCHECZE CHS REDIBER CLAN 15-21 SOME MENDEF ONO REDIBER CLAN 15-21 SOME MENDEF ONO REDIBER CLAN 14-24 GRENCLAN GRENCLAN, LITTLE SAND, LITTLE RAS GRENCLAN, LITTLE SAND, LITTLE RAS GRENCLAN, LITTLE SAND, LITTLE RAS GRENCLAN, LITTLE SAND, LITTLE RAS BUB 16	STIFF- D4-1 STIFF- D4-1 STIFF, TRACE H2O STIFF, TRACE H2O HEDSTIFF DAMP HEDSTIFF DAMP. MEDSTIFF DAMP. SAT, WET SCAT, WET	PADA IN CONTRACT

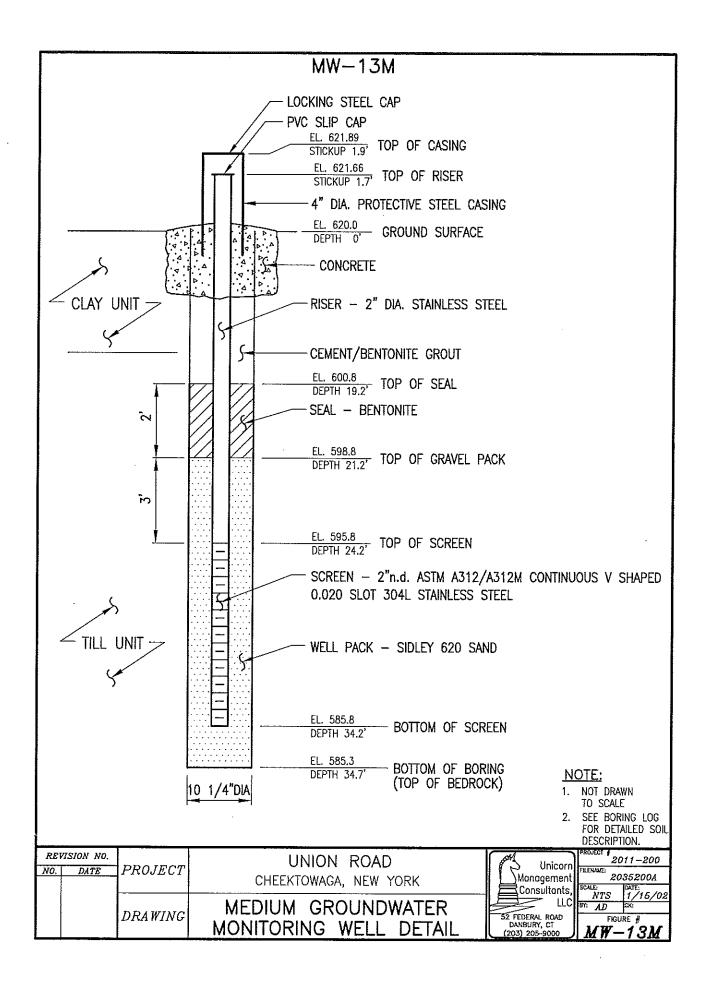

Proportions used: Trace = 0-10%. Little = 10+20%, Some = 20-35%, And = 35-50% Sampling Abbreviations: SS = Split Spoon, ST = Shelby Tube, CSC = Continuous Soli Core

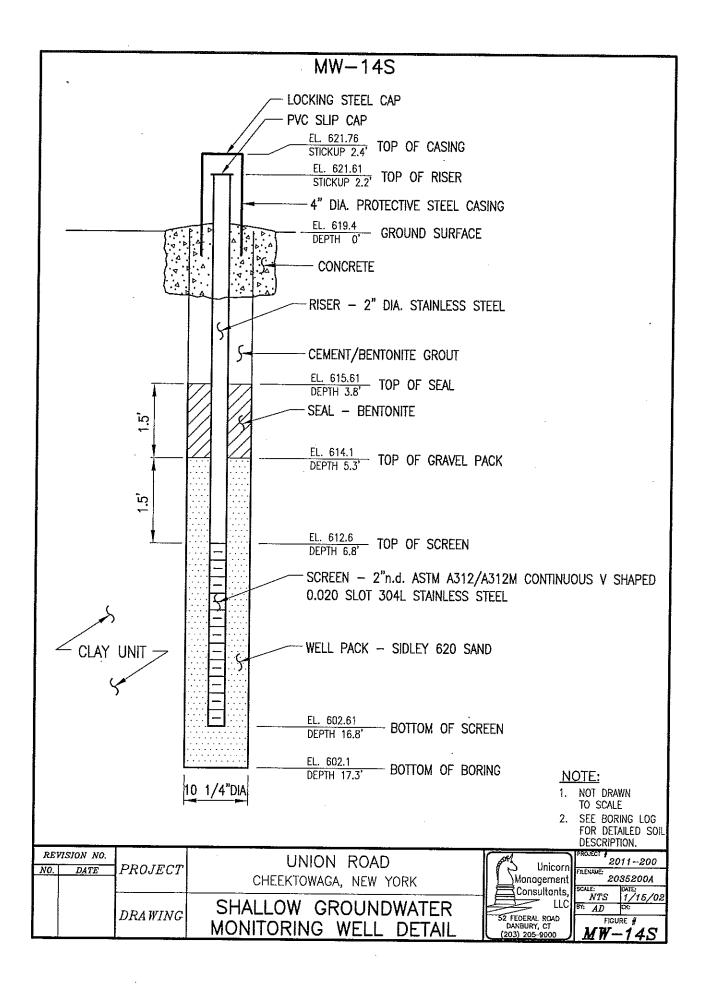


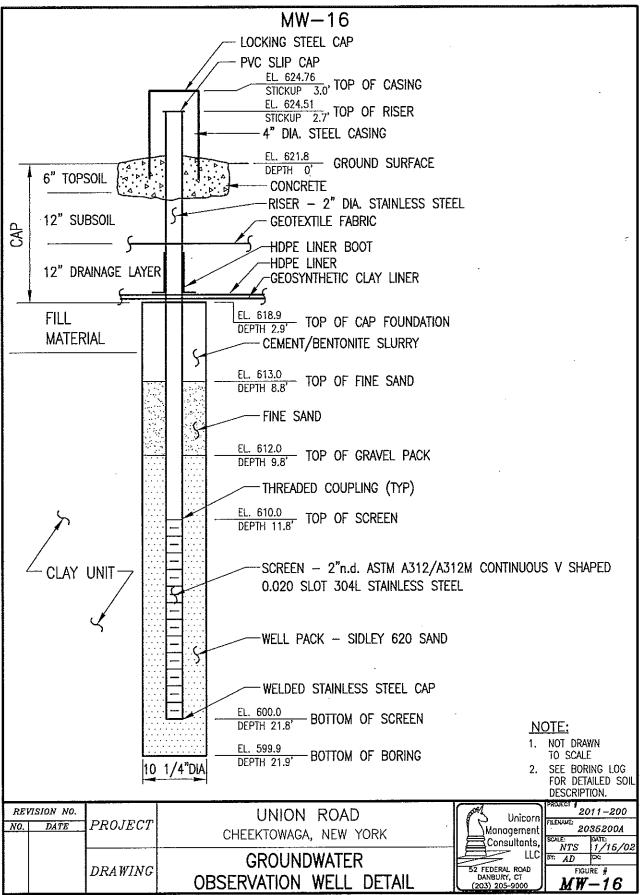


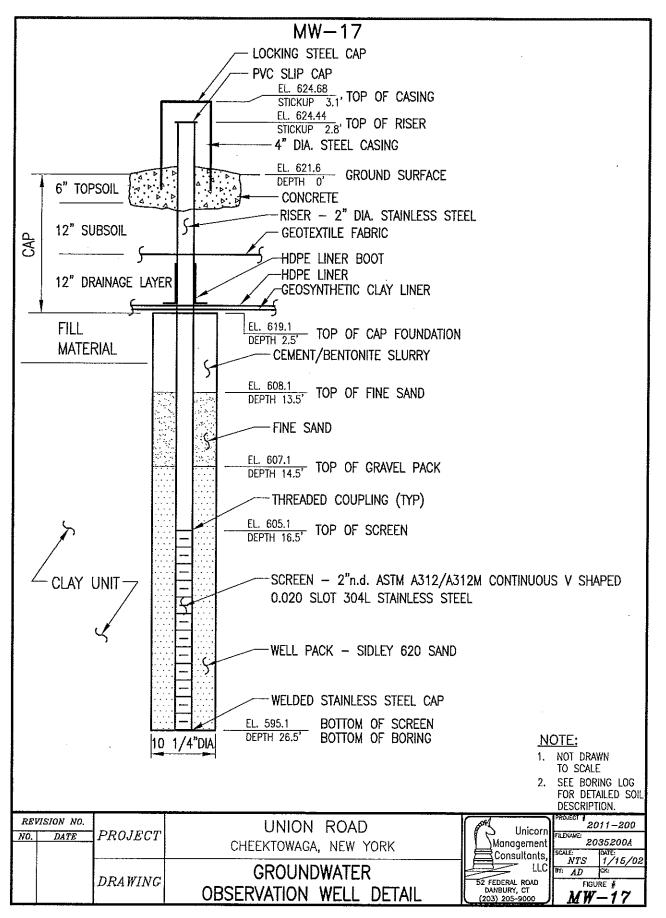


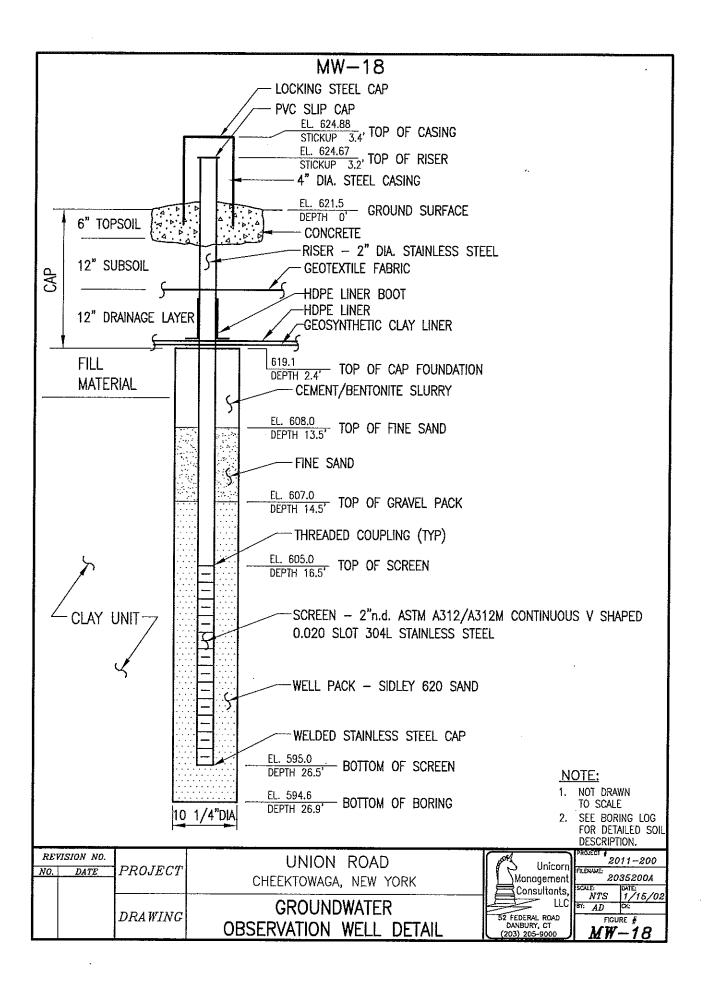


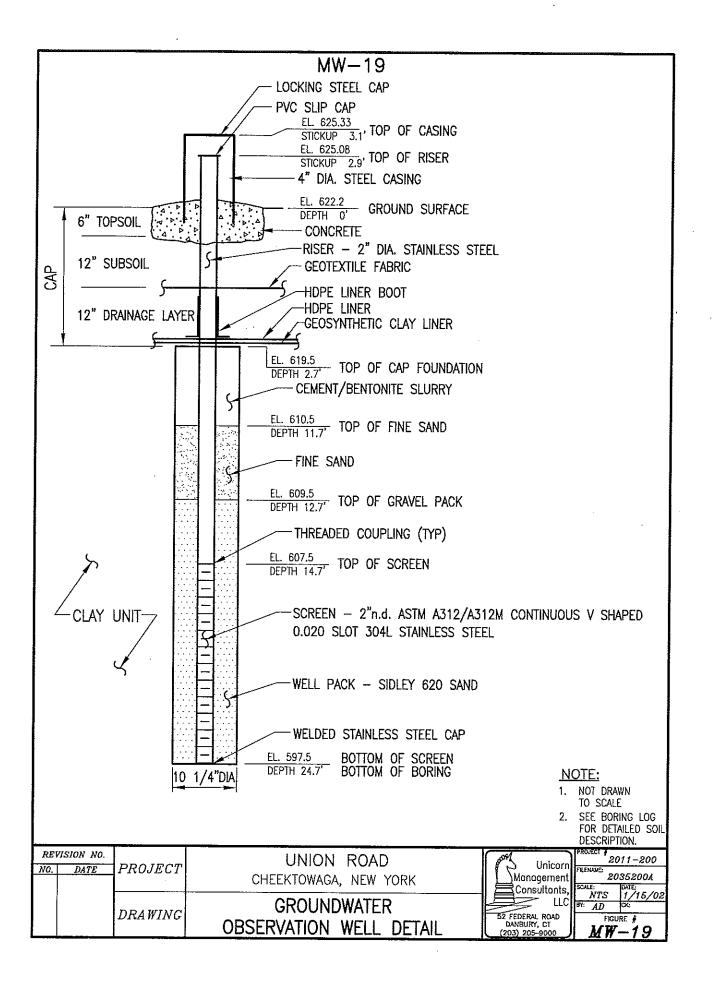


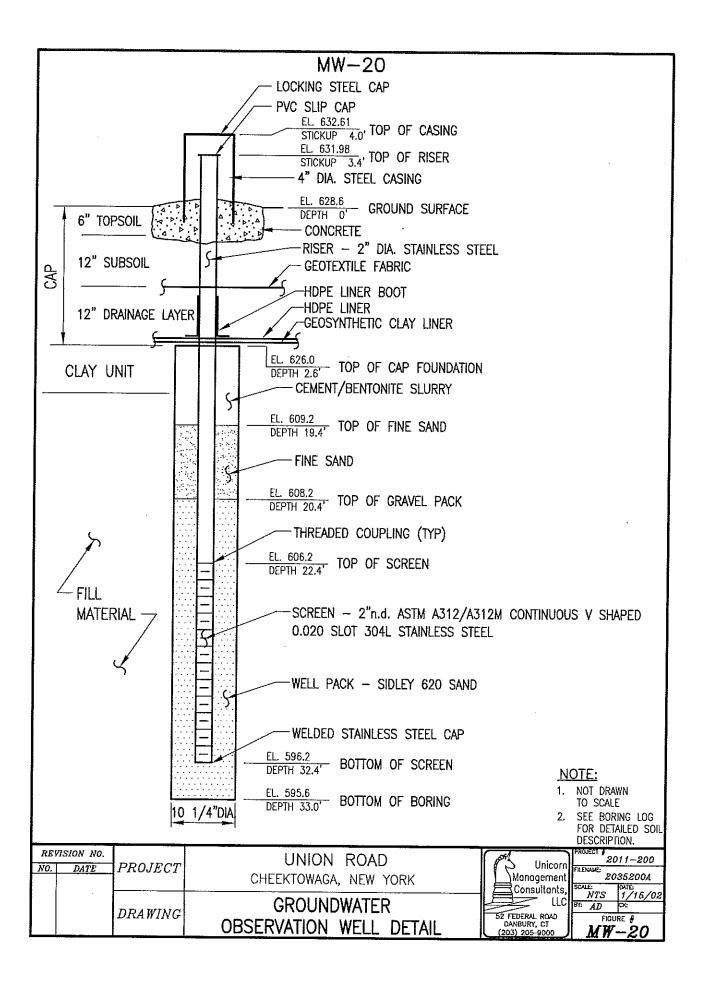


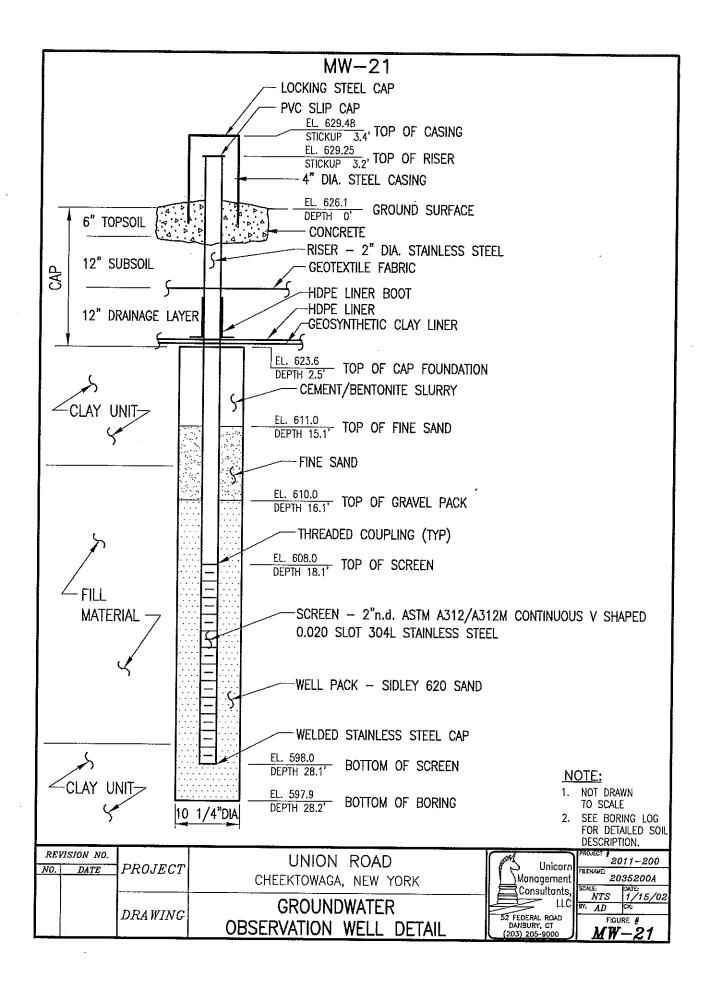




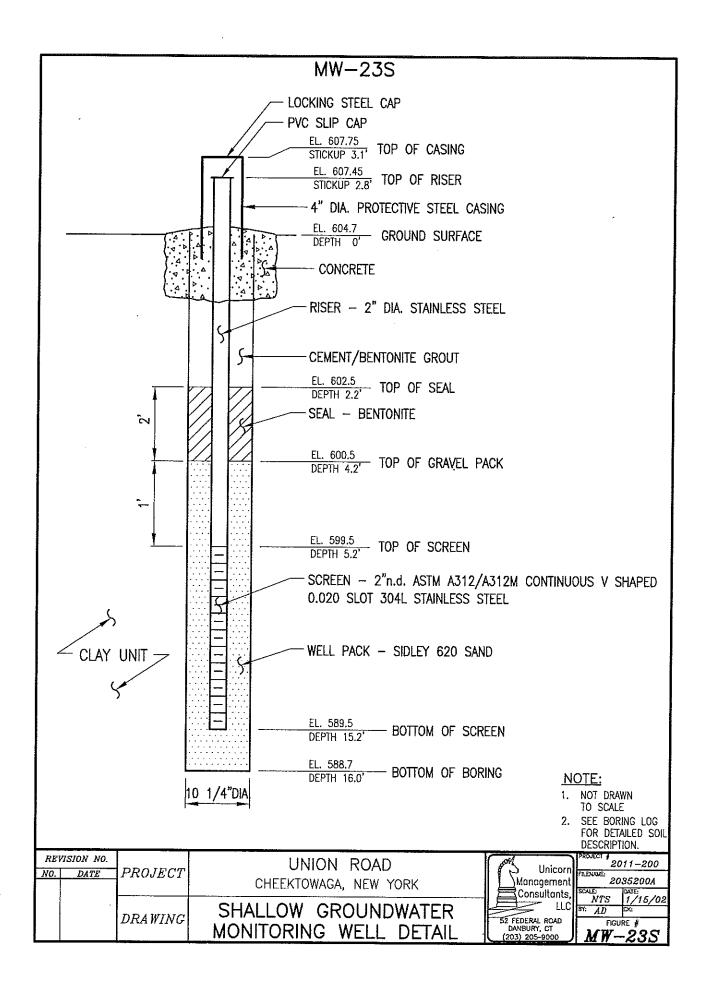












APPENDIX B

LABORATORY REPORT (ON CD)

Analytical Services 1565 Jefferson Rd, Building 300, Suite 360 | Rochester, NY 14623 | 585-288-5380 | 585-288-8475 fax |

September 12, 2011

Service Request No: R1104718

Mr. Michael O'Connor Unicorn Management Consultants 52 Federal Road Suite 2C Danbury, CT 06810

Laboratory Results for: Union Rd #2011-100

Dear Mr. O'Connor:

Enclosed are the results of the sample(s) submitted to our laboratory on August 24, 2011. For your reference, these analyses have been assigned our service request number R1104718.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s) for analysis of these samples, and represented by Laboratory Control Sample control limits. Any events, such as QC failures, which may add to the uncertainty are explained in the report narrative.

Please contact me if you have any questions. My extension is 7471. You may also contact me via email at KBunker@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Karen Bunker **Project Manager**

Page 1 of 106

Client:	Unicorn Management Consultants	Service Request No.:	R1104718
Project:	Union Rd #2011-100	Date Received:	8/23/11
Sample Matrix:	Water		

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses.

Sample Receipt

Twelve (12) water samples including one (1) Trip Blank were collected by the client on 8/23/11 were received at Columbia Analytical Services via the client on the 8/24/11. The samples were received within a cooler temperature range of $3.4 - 5.6^{\circ}$ C within the 0-6°C guidelines.

Volatile Organic Compounds

Twelve (12) water samples including one (1) Trip Blank were analyzed for Volatile Organics by Method 8260C from SW-846.

The Initial Calibration and Continuing Calibration criteria were met for all samples.

All BFB Tune requirements were met for the method.

Surrogate standard recoveries were within acceptance limits for all samples.

The Laboratory Method Blanks were free from contamination.

Batch QC is included in the report. All Laboratory Control Sample (LCS) recoveries were within limits.

All samples were analyzed within the 14 day holding time from collection to analysis for preserved samples. All vials are checked for preservation after analysis in order to maintain the integrity of the sample. All vials were found to be preserved to a pH of <2.

No other analytical or QC problems were encountered.

Semivolatile Organics

Eleven (11) water samples were analyzed for SemiVolatile Organics by Method 8270D from SW-846.

The Initial Calibration and Continuing Calibration criteria were met for all samples.

All DFTPP Tune requirements were met for the method.

Surrogate standard recoveries were within acceptance limits for all samples.

The Laboratory Method Blanks were free from contamination.

Batch QC is included in the report. All Laboratory Control Sample (LCS) and LCS Duplicate (LCSD) recoveries were within limits. All Relative Percent Difference (RPD) calculations were acceptable.

All samples were extracted and analyzed within the proper holding time for the method.

No other analytical or QC problems were encountered		1 1
Approved by Lacon Bencher	Date	2/14/11

Page 2 R1104718 Continued

Inorganic Parameters

Eleven (11) water samples were analyzed for Oil & Grease by method 1664 and Dissovled Metals by ICP method 6010C. The Metals were filtered in the laboratory.

Initial and Continuing Calibration Criteria was met for all analyses.

Batch QC is included in the report. All LCS and LCSD (1664 only) recoveries were acceptable. All RPD calculations were within QC limits.

All holding times were met for the analyses of these samples.

All Laboratory Method Blanks were free from contamination.

No problems were encountered during the analysis of these samples.

even Benke Approved by

CASE NARRATIVE

This report contains analytical results for the following samples: Service Request Number: R1104718

Lab ID	<u>Client ID</u>
R1104718-001	MW-10S-2011
R1104718-002	MW-10S-2011 Dissolved
R1104718-003	MW-10M-2011
R1104718-004	MW-10M-2011 Dissolved
R1104718-005	MW-10D-2011
R1104718-006	MW-10D-2011 Dissolved
R1104718-007	MW-11S-2011
R1104718-008	MW-11S-2011 Dissolved
R1104718-009	MW-11M-2011
R1104718-010	MW-11M-2011 Dissolved
R1104718-011	MW-12S-2011
R1104718-012	MW-12S-2011 Dissolved
R1104718-013	MW-12M-2011
R1104718-014	MW-12M-2011 Dissolved
R1104718-015	MW-12D-2011
R1104718-016	MW-12D-2011 Dissolved
R1104718-017	MW-13S-2011
R1104718-018	MW-13S-2011 Dissolved
R1104718-019	MW-13M-2011
R1104718-020	MW-13M-2011 Dissolved
R1104718-021	MW-14S-2011
R1104718-022	MW-14S-2011 Dissolved
R1104718-023	Trip Blank-2011

REPORT QUALIFIERS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the "Notes" column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an "immediate" hold time criteria.
- # Spike was diluted out.
- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% (25% for CLP) difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.

CAS/Rochester Lab ID # for State Certifications¹

NELAP Accredited Connecticut ID # PH0556 Delaware Accredited DoD ELAP #65817 Florida ID # E87674 Illinois ID #200047 Maine ID #NY0032 Nebraska Accredited Nevada ID # NY-00032 New Jersey ID # NY004 New York ID # 10145 New Hampshire ID # 294100 A/B Pennsylvania ID# 68-786 Rhode Island ID # 158

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable, except as noted in the laboratory case narrative provided. For a specific list of accredited analytes, refer to the certifications section at <u>www.caslab.com</u>.

Analytical Report

Client:	Unicorn Management Consultants	Service Request: R1104718
Project:	Union Rd #2011-100	Date Collected: 8/23/11 1500
Sample Matrix:	Water	Date Received: 8/24/11
Sample Name: Lab Code:	MW-10S-2011 R1104718-001	Basis: NA

General Chemistry Parameters Dilution Date Date Method MRL Factor Extracted Analyzed Analyte Name Result Q Units Note Oil and Grease, Nonpolar (SGT-HEM) 1664 9/6/11 09:30 4.7 U 4.7 1 NA mg/L

Analytical Report

Client:	Unicorn Management Consultants
Project:	Union Rd #2011-100
Sample Matrix:	Water
Sample Name:	MW-10S-2011 Dissolved
Lab Code:	R1104718-002

 Service Request:
 R1104718

 Date Collected:
 8/23/11 1500

 Date Received:
 8/24/11

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL		Date alyzed Note
Arsenic, Dissolved	6010C	10 U	μg/L	10	-	/11 19: 17
Lead, Dissolved	6010C	50 U	μg/L	50		/11 19: 17

Analytical Report

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water	Service Request: R1104718 Date Collected: 8/23/11 1500 Date Received: 8/24/11 Date Analyzed: 8/30/11 18:04
Sample Name:	MW-10S-2011	Units: µg/L
Lab Code:	R1104718-001	Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method:	8260C
Data File Name:	J:\ACQUDATA\msvoa10\data\083011\D4463.D\

Analysis Lot: 259593 Instrument Name: R-MS-10 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	Note
67-64-1	Acetone	20 U	20	
71-43-2	Benzene	5.0 U	5.0	
75-27-4	Bromodichloromethane	5.0 U	5.0	
75-25-2	Bromoform	5.0 U	5.0	
74-83-9	Bromomethane	5.0 U	5.0	
78-93-3	2-Butanone (MEK)	10 U	10	
75-15-0	Carbon Disulfide	10 U	10	
56-23-5	Carbon Tetrachloride	5.0 U	5.0	
108-90-7	Chlorobenzene	5.0 U	5.0	
75-00-3	Chloroethane	5.0 U	5.0	
67-66-3	Chloroform	5.0 U	5.0	
74-87-3	Chloromethane	5.0 U	5.0	
124-48-1	Dibromochloromethane	5.0 U	5.0	
75-34-3	1,1-Dichloroethane	5.0 U	5.0	
107-06-2	1,2-Dichloroethane	5.0 U	5.0	
75-35-4	1,1-Dichloroethene	5.0 U	5.0	
156-59-2	cis-1,2-Dichloroethene	5.0 U	5.0	
156-60-5	trans-1,2-Dichloroethene	5.0 U	5.0	
78-87-5	1,2-Dichloropropane	5.0 U	5,0	
10061-01-5	cis-1,3-Dichloropropene	5.0 U	5.0	
10061-02-6	trans-1,3-Dichloropropene	5.0 U	5.0	
100-41-4	Ethylbenzene	5.0 U	5.0	
591-78-6	2-Hexanone	10 U	10	
75-09-2	Methylene Chloride	5.0 U	5.0	
108-10-1	4-Methyl-2-pentanone (MIBK)	10 U	10	
100-42-5	Styrene	5.0 U	5.0	
79-34-5	1,1,2,2-Tetrachloroethane	5.0 U	5.0	
127-18-4	Tetrachloroethene	5.0 U	5.0	
108-88-3	Toluene	5.0 U	5.0	
71-55-6	1,1,1-Trichloroethane	5.0 U	5.0	
79-00-5	1,1,2-Trichloroethane	5.0 U	5.0	
79-01-6	Trichloroethene	5.0 U	5.0	
75-01-4	Vinyl Chloride	5.0 U	5.0	
95-47-6	o-Xylene	5.0 U	5.0	

Analytical Report

		A	атупсат кероп				
Client: Project: Sample Matrix:	Unicorn Management Con Union Rd #2011-100 Water	nsultants				Service Request: Date Collected: Date Received: Date Analyzed:	8/23/11 1500 8/24/11
Sample Name: Lab Code:	MW-10S-2011 R1104718-001					Units: Basis:	
	v	olatile Organ	ic Compounds	by GC/MS			
Analytical Method: Data File Name:	8260C J:\ACQUDATA\msvoa10\d	ata\083011\D4	4463.D\			Analysis Lot: Instrument Name: Dilution Factor:	R-MS-10
CAS No.	Analyte Name		Result Q	MRL		Note	
179601-23-1	m,p-Xylenes		5.0 U	5.0			
Surrogate Name		%Rec	Control Limits	Date Analyzed	Q		
4-Bromofluorobenzer	ne	96	85-122	8/30/11 18:04			
		101		0 10 0 13 3 4 0 0 A			
Toluene-d8 Dibromofluorometha		104 109	87-121	8/30/11 18:04			

Analytical Report

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water	Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed;	8/23/11 1500 8/24/11 8/25/11
Sample Name:	MW-10S-2011	Units:	
Lab Code:	R1104718-001	Basis:	
	Semivolatile Organic Compounds b	y GC/MS	
Analytical Method:	8270D	Analysis Lot:	
Prep Method:	EPA 3510C	Extraction Lot:	

 Data File Name:
 J:\ACQUDATA\5973A\DATA\083111\CH628.D\

Analysis Lot: 259912 Extraction Lot: 140522 Instrument Name: R-MS-51 Dilution Factor: 1

CAS No.	Analyte Name	Result	Q	MRL	Note	
120-82-1	1,2,4-Trichlorobenzene	9.4	U	9.4		
95-50-1	1,2-Dichlorobenzene	9.4	U	9.4		
541-73-1	1,3-Dichlorobenzene	9.4	U	9.4		
106-46-7	1,4-Dichlorobenzene	9.4	U	9.4		
95-95-4	2,4,5-Trichlorophenol	9.4	U	9.4		
88-06-2	2,4,6-Trichlorophenol	9.4	U	9.4		
120-83-2	2,4-Dichlorophenol	9.4	U	9.4		
105-67-9	2,4-Dimethylphenol	9,4	U	9.4		
51-28-5	2,4-Dinitrophenol	47	U	47		
121-14-2	2,4-Dinitrotoluene	9.4	U	9.4		
606-20-2	2,6-Dinitrotoluene	9.4	U	9.4		
91-58-7	2-Chloronaphthalene	9.4	U	9.4		
95-57-8	2-Chlorophenol	9.4	U	9.4		
91-57-6	2-Methylnaphthalene	9.4	U	9.4		
95-48-7	2-Methylphenol	9.4	U	9.4		
88-74-4	2-Nitroaniline	47	U	47		
88-75-5	2-Nitrophenol	9.4	U	9.4		
91-94-1	3,3'-Dichlorobenzidine	9.4	U	9.4		
	3- and 4-Methylphenol Coelution	9.4	U	9.4		
99-09-2	3-Nitroaniline	47	U	47		
534-52-1	4,6-Dinitro-2-methylphenol	47	U	47		
101-55-3	4-Bromophenyl Phenyl Ether	9.4	U	9.4		
59-50-7	4-Chloro-3-methylphenol	9.4	U	9.4		
106-47-8	4-Chloroaniline	9.4	U	9.4		
7005-72-3	4-Chlorophenyl Phenyl Ether	9.4	U	9.4		·
100-01-6	4-Nitroaniline	47	U	47		
100-02-7	4-Nitrophenol	47	U	47		
83-32-9	Acenaphthene	9.4	U	9.4	· , <u></u>	
208-96-8	Acenaphthylene	9.4	U	9.4		
120-12-7	Anthracene	9.4	U	9.4		
56-55-3	Benz(a)anthracene	9.4	U	9.4		
50-32-8	Benzo(a)pyrene	9.4	U	9.4		

Analytical Report

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water				Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	8/23/11 1500 8/24/11 8/25/11
Sample Name: Lab Code:	MW-10S-2011 R1104718-001				Units: Basis:	
Analysiaal Mashada		Organic Con	npound	s by GC/MS	Anglasis I of	250012
Analytical Method: Prep Method: Data File Name:	EPA 3510C J:\ACQUDATA\5973A\DATA\0831	11\CH628.D\			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	140522 R-MS-51
CAS No.	Analyte Name	Result	Q	MRL	Note	
205-99-2 191-24-2 207-08-9	Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	9.4 9.4 9.4	U	9.4 9.4 9.4		
100-51-6 108-60-1 111-91-1	Benzyl Alcohol 2,2'-Oxybis(1-chloropropane) Bis(2-chloroethoxy)methane	9.4 9.4 9.4	U	9.4 9.4 9.4		
111-44-4 117-81-7 85-68-7	Bis(2-chloroethyl) Ether Bis(2-ethylhexyl) Phthalate Butyl Benzyl Phthalate	9.4 9.4 9.4	U	9.4 9.4 9.4		
86-74-8 218-01-9 84-74-2	Carbazole Chrysene Di-n-butyl Phthalate	9.4 9.4 9.4	U	9.4 9.4 9.4		
117-84-0 53-70-3 132-64-9	Di-n-octyl Phthalate Dibenz(a,h)anthracene Dibenzofuran	9.4 9.4 9.4	U	9.4 9.4 9.4		
84-66-2 131-11-3 206-44-0	Diethyl Phthalate Dimethyl Phthalate Fluoranthene	9.4 9.4 9.4	U	9.4 9.4 9.4		
86-73-7 118-74-1 87-68-3	Fluorene Hexachlorobenzene Hexachlorobutadiene	9.4 9.4 9.4	U	9.4 9.4 9.4		
77-47-4 67-72-1 193-39-5	Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene	9.4 9.4 9.4	U	9.4 9.4 9.4		
78-59-1 621-64-7 62-75-9	Isophorone N-Nitrosodi-n-propylamine N-Nitrosodimethylamine	9.4 9.4 9.4	U	9.4 9.4 9.4		
86-30-6 91-20-3 98-95-3	N-Nitrosodiphenylamine Naphthalene Nitrobenzene	9.4 9.4 9.4	U	9.4 9.4 9.4		
87-86-5	Pentachlorophenol (PCP)	47	U	47	······	

85-01-8

Phenanthrene

9.4 U

Analytical Report

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water	Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	8/23/11 1500 8/24/11 8/25/11
Sample Name: Lab Code:	MW-10S-2011 R1104718-001	Units: Basis:	
	Semivolatile Organic Compounds by GC/MS		
Analytical Method: Prep Method: Data File Name:	8270D EPA 3510C J:\ACQUDATA\5973A\DATA\083111\CH628.D\	Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	140522 R-MS-51

CAS No.	Analyte Name	Result Q	MRL	Note	
108-95-2	Phenol	9.4 U	9.4		
129-00-0	Pyrene	9.4 U	9.4		

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	106	28-157	8/31/11 13:37	
2-Fluorobiphenyl	75	39-119	8/31/11 13:37	
2-Fluorophenol	43	10-105	8/31/11 13:37	
Nitrobenzene-d5	77	37-117	8/31/11 13:37	
Phenol-d6	27	10-107	8/31/11 13:37	
p-Terphenyl-d14	88	40-133	8/31/11 13:37	

Analytical Report

Client:	Unicorn Management Consultants	Service Request:	8/23/11 151
Project:	Union Rd #2011-100	Date Collected:	
Sample Matrix:	Water	Date Received:	
Sample Name: Lab Code:	MW-10M-2011 R1104718-003	Basis:	NA

General Chemistry Parameters								
Analyte Name	Method	Result Q	Units	MRL	Dilution Factor		Date Analyzed	Note
Oil and Grease, Nonpolar (S	GT-HEM) 1664	4.7 U	mg/L	4.7	1	NA	9/6/11 09:30	

1515

Analytical Report

Client:	Unicorn Management Consultants
Project:	Union Rd #2011-100
Sample Matrix:	Water
Sample Name:	MW-10M-2011 Dissolved
Lab Code:	R1104718-004

 Service Request:
 R1104718

 Date Collected:
 8/23/11 1515

 Date Received:
 8/24/11

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed Note
Arsenic, Dissolved	6010C	10 U	μg/L	10	1 9/ 7/11 9/8/11 19:55
Lead, Dissolved	6010C	50 U	μg/L	50	1 9/ 7/11 9/8/11 19:55

Analytical Report

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water	Service Request: R1104718 Date Collected: 8/23/11 1515 Date Received: 8/24/11 Date Analyzed: 8/30/11 18:34
Sample Name:	MW-10M-2011	Units: µg/L
Lab Code:	R1104718-003	Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method:	8260C
Data File Name:	J:\ACQUDATA\msvoa10\data\083011\D4464.D\

Analysis Lot: 259593 Instrument Name: R-MS-10 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	Note	
67-64-1	Acetone	20 U	20		
71-43-2	Benzene	5.0 U	5.0		
75-27-4	Bromodichloromethane	5.0 U	5.0		
75-25-2	Bromoform	5.0 U	5.0		
74-83-9	Bromomethane	5.0 U	5.0		
78-93-3	2-Butanone (MEK)	10 U	10		
75-15-0	Carbon Disulfide	10 U	10		
56-23-5	Carbon Tetrachloride	5.0 U	5.0		
108-90-7	Chlorobenzene	5.0 U	5.0		
75-00-3	Chloroethane	5.0 U	5.0		· · · ·
67-66-3	Chloroform	5.0 U	5.0		
74-87-3	Chloromethane	5.0 U	5.0		
124-48-1	Dibromochloromethane	5.0 U	5.0		
75-34-3	1,1-Dichloroethane	5.0 U	5.0		
107-06-2	1,2-Dichloroethane	5.0 U	5.0		
75-35-4	1,1-Dichloroethene	5.0 U	5.0		
156-59-2	cis-1,2-Dichloroethene	5.0 U	5.0		
156-60-5	trans-1,2-Dichloroethene	5.0 U	5,0		
78-87-5	1,2-Dichloropropane	5.0 U	5.0		
10061-01-5	cis-1,3-Dichloropropene	5.0 U	5.0		
10061-02-6	trans-1,3-Dichloropropene	5.0 U	5.0		
100-41-4	Ethylbenzene	5.0 U	5.0		
591-78-6	2-Hexanone	10 U	10		
75-09-2	Methylene Chloride	5.0 U	5.0		
108-10-1	4-Methyl-2-pentanone (MIBK)	10 U	10		
100-42-5	Styrene	5.0 U	5.0		
79-34-5	1,1,2,2-Tetrachloroethane	5.0 U	5.0		
127-18-4	Tetrachloroethene	5.0 U	5.0		
108-88-3	Toluene	5.0 U	5.0		
71-55-6	1,1,1-Trichloroethane	5.0 U	5.0		
79-00-5	1,1,2-Trichloroethane	5.0 U	5.0		
79-01-6	Trichloroethene	5.0 U	5.0		
75-01-4	Vinyl Chloride	5.0 U	5.0		
95-47-6	o-Xylene	5.0 U	5.0	. <u> </u>	·
	•				

Analytical Report

		A	haryticar Keport			
Client: Project: Sample Matrix:	Unicorn Management Cor Union Rd #2011-100 Water	isultants			Date Collect Date Receiv	est: R1104718 ed: 8/23/11 1515 ed: 8/24/11 ed: 8/30/11 18:34
Sample Name: Lab Code:	MW-10M-2011 R1104718-003					its: μg/L sis: NA
	v	olatile Organ	iic Compound	s by GC/MS		
Analytical Method: Data File Name:	8260C J:\ACQUDATA\msvoa10\d	ata\083011\D4	4464.D\		Analysis I Instrument Nar Dilution Fact	
CAS No.	Analyte Name		Result Q	MRL	Note	
179601-23-1	m,p-Xylenes		5.0 U	5.0		
Surrogate Name		%Rec	Control Limits	Date Analyzed	Q	
4-Bromofluorobenzer Toluene-d8 Dibromofluorometha		98 105 108	85-122 87-121 89-119	8/30/11 18:34 8/30/11 18:34 8/30/11 18:34	·	

Analytical Report

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water				Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	8/23/11 1515 8/24/11 8/25/11
Sample Name: Lab Code:	MW-10M-2011 R1104718-003				Units: Basis:	
Semivolatile Organic Compounds by GC/MS						
Analytical Method: Prep Method: Data File Name:	8270D EPA 3510C J:\ACQUDATA\5973A\DATA\083111\CH629.D\				Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	140522 R-MS-51
CAS No.	Analyte Name	Result	Q	MRL	Note	
120-82-1 95-50-1 541-73-1	1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	9.4 9.4 9.4	U	9.4 9.4 9.4		
106-46-7 95-95-4 88-06-2	1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	9.4 9.4 9.4	U	9.4 9.4 9.4		
120-83-2 105-67-9 51-28-5	2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol	9.4 9.4 47	U U	9.4 9.4 47		
121-14-2 606-20-2 91-58-7	2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene	9.4 9.4 9.4	U	9.4 9.4 9.4		
95-57-8 91-57-6 95-48-7	2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol	9.4 9.4 9.4	U	9.4 9.4 9.4		
88-74-4 88-75-5 91-94-1	2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine	47 9.4 9.4	U	47 9.4 9.4		
99-09-2 534-52-1	3- and 4-Methylphenol Coelution3-Nitroaniline4,6-Dinitro-2-methylphenol	9.4 47 47	U	9.4 47 47		
101-55-3 59-50-7 106-47-8	4-Bromophenyl Phenyl Ether 4-Chloro-3-methylphenol 4-Chloroaniline	9.4 9.4 9.4	U	9.4 9.4 9.4		
7005-72-3 100-01-6	4-Chlorophenyl Phenyl Ether 4-Nitroaniline	9.4 47		9.4 47		

100-02-7

83-32-9

208-96-8

120-12-7

56-55-3

50-32-8

4-Nitrophenol

Acenaphthene

Anthracene

Acenaphthylene

Benz(a)anthracene

Benzo(a)pyrene

47 U

9.4 U

9.4 U

9.4 U

9.4 U

9.4 U

47

9.4

9.4

9.4

9.4

Analytical Report

Client: Project:	Unicorn Management Consultants Union Rd #2011-100	Service Request: R1104718 Date Collected: 8/23/11 1515
Sample Matrix:	Water	Date Received: 8/24/11
-		Date Extracted: 8/25/11
		Date Analyzed: 8/31/11 14:18
~		T 1. N

Units: µg/L Basis: NA

Sample Name:MW-JLab Code:R1104

MW-10M-2011 R1104718-003

Semivolatile Organic Compounds by GC/MS

Analytical Method:	8270D
Prep Method:	EPA 3510C
Data File Name:	J:\ACQUDATA\5973A\DATA\083111\CH629.D\

Analysis Lot:	259912
Extraction Lot:	140522
Instrument Name:	R-MS-51
Dilution Factor:	1

CAS No.	Analyte Name	Result	Q	MRL	Note	
205-99-2	Benzo(b)fluoranthene	9.4	U	9.4		
191-24-2	Benzo(g,h,i)perylene	9.4	U	9.4		
207-08-9	Benzo(k)fluoranthene	9.4	U	9.4		
100-51-6	Benzyl Alcohol	9,4	U	9.4		
108-60-1	2,2'-Oxybis(1-chloropropane)	9.4	U	9.4		
111-91-1	Bis(2-chloroethoxy)methane	9.4	U	9.4		
111-44-4	Bis(2-chloroethyl) Ether	9.4	U	9.4	······	
117-81-7	Bis(2-ethylhexyl) Phthalate	9.4	U	9.4		
85-68-7	Butyl Benzyl Phthalate	9.4	U	9.4		
86-74-8	Carbazole	9.4	U	9.4		
218-01-9	Chrysene	9.4	U	9.4		
84-74-2	Di-n-butyl Phthalate	9.4	U	9.4		
117-84-0	Di-n-octyl Phthalate	9.4	U	9.4		
53-70-3	Dibenz(a,h)anthracene	9.4	U	9.4		
132-64-9	Dibenzofuran	9.4	U	9.4		
84-66-2	Diethyl Phthalate	9.4	U	9.4		
131-11-3	Dimethyl Phthalate	9.4	U	9.4		
206-44-0	Fluoranthene	9.4	U	9.4		
86-73-7	Fluorene	9.4	U	9.4		
118-74-1	Hexachlorobenzene	9.4	U	9.4		
87-68-3	Hexachlorobutadiene	9.4	U	9.4		
77-47-4	Hexachlorocyclopentadiene	9.4	U	9.4		
67-72-1	Hexachloroethane	9.4	U	9.4		
193-39-5	Indeno(1,2,3-cd)pyrene	9.4	U	9.4		
78-59-1	Isophorone	9.4	U	9.4		
621-64-7	N-Nitrosodi-n-propylamine	9.4	U	9.4		
62-75-9	N-Nitrosodimethylamine	9.4	U	9.4		
86-30-6	N-Nitrosodiphenylamine	9.4	U	9.4		
91-20-3	Naphthalene	9.4	U	9.4		
98-95-3	Nitrobenzene	9.4	U	9.4		
87-86-5	Pentachlorophenol (PCP)	47	U	47		
85-01-8	Phenanthrene	9.4	U	9.4		

Analytical Report

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water	Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	8/23/11 1515 8/24/11 8/25/11
Sample Name: Lab Code:	MW-10M-2011 R1104718-003 Semivolatile Organic Compounds by GC/MS	Units: Basis:	• •

Analytical Method:	8270D
Prep Method:	EPA 3510C
Data File Name:	J:\ACQUDATA\5973A\DATA\083111\CH629.D\

Analysis Lot:259912Extraction Lot:140522Instrument Name:R-MS-51Dilution Factor:1

CAS No.	Analyte Name	Result Q	MRL	Note	
108-95-2	Phenol	9.4 U	9.4		
129-00-0	Pyrene	9.4 U	9.4		

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	102	28-157	8/31/11 14:18	
2-Fluorobiphenyl	73	39-119	8/31/11 14:18	
2-Fluorophenol	44	10-105	8/31/11 14:18	
Nitrobenzene-d5	73	37-117	8/31/11 14:18	
Phenol-d6	26	10-107	8/31/11 14:18	
p-Terphenyl-d14	80	40-133	8/31/11 14:18	

Client:	Unicorn Management Consultants	Service Request: R1104718
Project:	Union Rd #2011-100	Date Collected: 8/23/11 1530
Sample Matrix:	Water	Date Received: 8/24/11
Sample Name: Lab Code:	MW-10D-2011 R1104718-005	Basis: NA

General Chemistry Parameters							
Analyte Name	Method	Result Q	Units	MRL	Dilution Date Factor Extrac		Note
Oil and Grease, Nonpolar (SGT-HEM) 1664	4.7 U	mg/L	4.7	1 NA	9/6/11 09:30	·······

Analytical Report

Client:	Unicorn Management Consultants
Project:	Union Rd #2011-100
Sample Matrix:	Water
Sample Name:	MW-10D-2011 Dissolved
Lab Code:	R1104718-006

 Service Request:
 R1104718

 Date Collected:
 8/23/11 1530

 Date Received:
 8/24/11

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Factor Extracted	Date Analyzed	Note
Arsenic, Dissolved	6010C	10 U	μg/L	10	1 9/7/11	9/8/11 20:01	
Lead, Dissolved	6010C	50 U	μg/L	50	1 9/7/11	9/8/11 20:01	

Analytical Report

Client:	Unicorn Management Consultants
Project:	Union Rd #2011-100
Sample Matrix:	Water

 Service Request:
 R1104718

 Date Collected:
 8/23/11 1530

 Date Received:
 8/24/11

 Date Analyzed:
 8/30/11 19:04

Sample Name:MW-10D-2011Lab Code:R1104718-005

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method:	8260C
Data File Name:	J:\ACQUDATA\msvoa10\data\083011\D4465.D\

Analysis Lot: 259593 Instrument Name: R-MS-10 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	Note	
67-64-1	Acetone	20 U	20		
71-43-2	Benzene	5.0 U	5.0		
75-27-4	Bromodichloromethane	5.0 U	5.0		
75-25-2	Bromoform	5.0 U	5.0		
74-83-9	Bromomethane	5.0 U	5.0		
78-93-3	2-Butanone (MEK)	10 U	10		
75-15-0	Carbon Disulfide	10 U	10		
56-23-5	Carbon Tetrachloride	5.0 U	5.0		
108-90-7	Chlorobenzene	5.0 U	5.0		
75-00-3	Chloroethane	5.0 U	5.0		
67-66-3	Chloroform	5.0 U	5.0		
74-87-3	Chloromethane	5.0 U	5.0		
124-48-1	Dibromochloromethane	5.0 U	5.0		
75-34-3	1,1-Dichloroethane	5.0 U	5.0		
107-06-2	1,2-Dichloroethane	5.0 U	5.0		
75-35-4	1,1-Dichloroethene	5.0 U	5.0		
156-59-2	cis-1,2-Dichloroethene	5.0 U	5.0		
156-60-5	trans-1,2-Dichloroethene	5.0 U	5.0		
78-87-5	1,2-Dichloropropane	5.0 U	5.0		
10061-01-5	cis-1,3-Dichloropropene	5.0 U	5.0		
10061-02-6	trans-1,3-Dichloropropene	5.0 U	5.0		
100-41-4	Ethylbenzene	5.0 U	5.0		
591-78-6	2-Hexanone	10 U	10		
75-09-2	Methylene Chloride	5.0 U	5.0		
108-10-1	4-Methyl-2-pentanone (MIBK)	10 U	10		
100-42-5	Styrene	5.0 U	5.0		
79-34-5	1,1,2,2-Tetrachloroethane	5.0 U	5.0		
127-18-4	Tetrachloroethene	5.0 U	5.0		
108-88-3	Toluene	5.0 U	5.0		
71-55-6	1,1,1-Trichloroethane	5.0 U	5.0		
79-00-5	1,1,2-Trichloroethane	5.0 U	5.0		
79-01-6	Trichloroethene	5.0 U	5.0		
75-01-4	Vinyl Chloride	5.0 U	5.0		
95-47-6	o-Xylene	5.0 U	5.0		

		A	latytical Repo				
Client: Project: Sample Matrix:	Unicorn Management C Union Rd #2011-100 Water	onsultants				Service Request: Date Collected: Date Received: Date Analyzed:	8/23/11 1530 8/24/11
Sample Name: Lab Code:	MW-10D-2011 R1104718-005					Units: Basis:	
		Volatile Organ	iic Compour	ds by GC/MS			
Analytical Method: Data File Name:	8260C J:\ACQUDATA\msvoa10	\data\083011\D4	4465.D\			Analysis Lot: Instrument Name: Dilution Factor:	R-MS-10
CAS No.	Analyte Name		Result Q	MRL		Note	
179601-23-1	m,p-Xylenes		5.0 U	5.0			
Surrogate Name		%Rec	Control Limits	Date Analyzed	Q		
4-Bromofluorobenzer Toluene-d8 Dibromofluorometha		98 107 110	85-122 87-121 89-119	8/30/11 19:04 8/30/11 19:04 8/30/11 19:04		· · · · · ·	

Analytical Report

Client: Project:	Unicorn Management Consultants Union Rd #2011-100	Service Request: R1104718 Date Collected: 8/23/11 1530
Sample Matrix:	Water	Date Received: 8/24/11
•		Date Extracted: 8/25/11
		Date Analyzed: 8/31/11 15:00
		· · · -

Units: μg/L Basis: NA

 Sample Name:
 MW-10D-2011

 Lab Code:
 R1104718-005

Semivolatile Organic Compounds by GC/MS

Analytical Method:	8270D
Prep Method:	EPA 3510C
Data File Name:	J:\ACQUDATA\5973A\DATA\083111\CH630.D\

Analysis Lot:	259912
Extraction Lot:	140522
Instrument Name:	R-MS-51
Dilution Factor:	1

CAS No.	Analyte Name	Result	Q	MRL	Note	
120-82-1	1,2,4-Trichlorobenzene	9.4	U	9.4		
95-50-1	1,2-Dichlorobenzene	9.4	U	9.4		
541-73-1	1,3-Dichlorobenzene	9.4	U	9.4		
106-46-7	1,4-Dichlorobenzene	9.4	U	9.4		
95-95-4	2,4,5-Trichlorophenol	9,4	U	9.4		
88-06-2	2,4,6-Trichlorophenol	9.4	U	9.4		
120-83-2	2,4-Dichlorophenol	9.4	U	9.4		
105-67-9	2,4-Dimethylphenol	9,4	U	9.4		
51-28-5	2,4-Dinitrophenol	47	U	47		
121-14-2	2,4-Dinitrotoluene	9.4	U	9.4		· · · · · · · · · · · · · · · · · · ·
606-20-2	2,6-Dinitrotoluene	9.4	U	9.4		
91-58-7	2-Chloronaphthalene	9.4	U	9.4		
95-57-8	2-Chlorophenol	9.4	U	9.4		
91-57-6	2-Methylnaphthalene	9.4	U	9.4		
95-48-7	2-Methylphenol	9.4	U	9.4		
88-74-4	2-Nitroaniline	47	U	47		
88-75-5	2-Nitrophenol	9.4	U	9.4		
91-94-1	3,3'-Dichlorobenzidine	9.4	U	9.4		
	3- and 4-Methylphenol Coelution	9.4	U	9.4		
99-09-2	3-Nitroaniline	47	U	47		
534-52-1	4,6-Dinitro-2-methylphenol	47	U	47		
101-55-3	4-Bromophenyl Phenyl Ether	9.4	U	9.4		
59-50-7	4-Chloro-3-methylphenol	9.4	U	9.4		
106-47-8	4-Chloroaniline	9.4	U	9.4		
7005-72-3	4-Chlorophenyl Phenyl Ether	9.4	U	9.4		
100-01-6	4-Nitroaniline	47	U	47		
100-02-7	4-Nitrophenol	47	U	47		
83-32-9	Acenaphthene	9.4	U	9.4		
208-96-8	Acenaphthylene	9.4	U	9.4		
120-12-7	Anthracene	9.4	U	9.4		
56-55-3	Benz(a)anthracene	9.4	U	9.4		
50-32-8	Benzo(a)pyrene	9.4	U	9.4		

Analytical Report

Unicorn Management Consultants

Client:

Project: Sample Matrix:	Union Rd #2011-100 Water				Date Collected: Date Received: Date Extracted: Date Analyzed:	8/23/11 1530 8/24/11 8/25/11
Sample Name: Lab Code:	MW-10D-2011 R1104718-005				Units: Basis:	
	Semivolatile	Organic Con	npound	s by GC/MS		
Analytical Method: Prep Method: Data File Name:	8270D EPA 3510C J:\ACQUDATA\5973A\DATA\0831	11\CH630.D\			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	140522 R-MS-51
CAS No.	Analyte Name	Result	Q	MRL	Note	
205-99-2 191-24-2 207-08-9	Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	9.4 9.4 9.4	U	9.4 9.4 9.4		
100-51-6 108-60-1 111-91-1	Benzyl Alcohol 2,2'-Oxybis(1-chloropropane) Bis(2-chloroethoxy)methane	9.4 9.4 9.4	U	9.4 9.4 9.4		
111-44-4 117-81-7 85-68-7	Bis(2-chloroethyl) Ether Bis(2-ethylhexyl) Phthalate Butyl Benzyl Phthalate	9.4 9.4 9.4	U U	9.4 9.4 9.4		
86-74-8 218-01-9 84-74-2	Carbazole Chrysene Di-n-butyl Phthalate	9.4 9.4 9.4	U U	9.4 9.4 9.4		
117-84-0 53-70-3 132-64-9	Di-n-octyl Phthalate Dibenz(a,h)anthracene Dibenzofuran	9.4 9.4 9.4	U	9.4 9.4 9.4		
84-66-2 131-11-3 206-44-0	Diethyl Phthalate Dimethyl Phthalate Fluoranthene	9.4 9.4 9.4	U	9.4 9.4 9.4		
86-73-7 118-74-1 87-68-3	Fluorene Hexachlorobenzene Hexachlorobutadiene	9.4 9.4 9.4	U	9.4 9.4 9.4		
77-47-4 67-72-1 193-39-5	Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene	9.4 9.4 9.4	U	9.4 9.4 9.4		
78-59-1 621-64-7 62-75-9	Isophorone N-Nitrosodi-n-propylamine N-Nitrosodimethylamine	9.4 9.4 9.4	U	9.4 9.4 9.4		
86-30-6 91-20-3	N-Nitrosodiphenylamine Naphthalene	9.4 9.4	U	9.4 9.4		

98-95-3

87-86-5 85-01-8 Nitrobenzene

Phenanthrene

Pentachlorophenol (PCP)

9.4 U

47 U

9.4 U

9.4

47

9.4

Service Request: R1104718

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water	Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	8/23/11 1530 8/24/11 8/25/11
Sample Name: Lab Code:	MW-10D-2011 R1104718-005	Units: Basis:	
	Semivolatile Organic Compounds by GC/MS		
Analytical Method: Prep Method: Data File Name:		Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	140522 R-MS-51

CAS No.	Analyte Name	Result Q	MRL	Note	
108-95-2	Phenol	9.4 U	9.4		
129-00-0	Pyrene	9.4 U	9.4		

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	104	28-157	8/31/11 15:00	
2-Fluorobiphenyl	81	39-119	8/31/11 15:00	
2-Fluorophenol	47	10-105	8/31/11 15:00	
Nitrobenzene-d5	81	37-117	8/31/11 15:00	
Phenol-d6	28	10-107	8/31/11 15:00	
p-Terphenyl-d14	89	40-133	8/31/11 15:00	

Analytical Report

Client:	Unicorn Management Consultants
Project:	Union Rd #2011-100
Sample Matrix:	Water
Sample Name:	MW-11S-2011
Lab Code:	R1104718-007

 Service Request:
 R1104718

 Date Collected:
 8/23/11 1545

 Date Received:
 8/24/11

,

Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Factor Extracted	Date Analyzed	Note
Oil and Grease, Nonpolar ((SGT-HEM) 1664	4.7 U	mg/L	4.7	1 NA	9/6/11 09:30	

Analytical Report

Client:	Unicorn Management Consultants
Project:	Union Rd #2011-100
Sample Matrix:	Water
Sample Name:	MW-11S-2011 Dissolved
Lab Code:	R1104718-008

Service Request: R1104718 Date Collected: 8/23/11 1545 Date Received: 8/24/11

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Factor Extracted	Date Analyzed	Note
Arsenic, Dissolved	6010C	10 U	μg/L	10	1 9/ 7/11	9/8/11 20:06	
Lead, Dissolved	6010C	50 U	μg/L	50	1 9/ 7/11	9/8/11 20:06	

Analytical Report

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water	Service Request: R1104718 Date Collected: 8/23/11 1545 Date Received: 8/24/11 Date Analyzed: 8/30/11 19:34
Sample Name:	MW-11S-2011	Units: µg/L
Lab Code:	R1104718-007	Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method:	8260C
Data File Name:	J:\ACQUDATA\msvoa10\data\083011\D4466.D\

Analysis Lot: 259593 Instrument Name: R-MS-10 Dilution Factor: 1

CAS No.	Analyte Name	Result	Q	MRL	Note	
67-64-1	Acetone	20	U	20		
71-43-2	Benzene	5.0	U	5.0		
75-27-4	Bromodichloromethane	5.0	U	5.0		
75-25-2	Bromoform	5.0	U	5.0		
74-83-9	Bromomethane	5.0	U	5.0		
78-93-3	2-Butanone (MEK)	10	U	10		
75-15-0	Carbon Disulfide	10	U	10		
56-23-5	Carbon Tetrachloride	5.0	U	5.0		
108-90-7	Chlorobenzene	5.0	U	5.0		
75-00-3	Chloroethane	5.0	U	5.0		
67-66-3	Chloroform	5.0	U	5.0		
74-87-3	Chloromethane	5.0	U	5.0		
124-48-1	Dibromochloromethane	5.0	U	5.0		
75-34-3	1,1-Dichloroethane	5.0	U	5.0		
107-06-2	1,2-Dichloroethane	5.0	U	5.0		
75-35-4	1,1-Dichloroethene	5.0	U	5.0		
156-59-2	cis-1,2-Dichloroethene	5.0	U	5.0		
156-60-5	trans-1,2-Dichloroethene	5.0	U	5.0		
78-87-5	1,2-Dichloropropane	5.0	U	5.0		
10061-01-5	cis-1,3-Dichloropropene	5.0	U	5.0		
10061-02-6	trans-1,3-Dichloropropene	5.0	U	5.0		
100-41-4	Ethylbenzene	5.0	U	5.0		
591-78-6	2-Hexanone	10	U	10		
75-09-2	Methylene Chloride	5.0	U	5.0		
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10		
100-42-5	Styrene	5.0	U	5.0		
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U	5.0		
127-18-4	Tetrachloroethene	5.0	U	5.0		
108-88-3	Toluene	5.0		5.0		
71-55-6	1,1,1-Trichloroethane	5.0	U	5.0		
79-00-5	1,1,2-Trichloroethane	. 5.0	U	5.0		
79-01-6	Trichloroethene	5.0		5.0		
75-01-4	Vinyl Chloride	5.0	U	5.0		
95-47-6	o-Xylene	5.0	U	5.0		

		A	naryucar Report				
Client: Project: Sample Matrix:	Unicorn Management C Union Rd #2011-100 Water	Consultants				Service Request: Date Collected: Date Received: Date Analyzed:	8/23/11 1545 8/24/11
Sample Name: Lab Code:	MW-11S-2011 R1104718-007					Units: Basis:	
		Volatile Organ	nic Compounds	by GC/MS			
Analytical Method: Data File Name:	8260C J:\ACQUDATA\msvoa10	\data\083011\D	4466.D\			Analysis Lot: Instrument Name: Dilution Factor:	R-MS-10
CAS No.	Analyte Name		Result Q	MRL		Note	
179601-23-1	m,p-Xylenes		5.0 U	5.0			
Surrogate Name		%Rec	Control Limits	Date Analyzed	Q		
4-Bromofluorobenze Toluene-d8 Dibromofluorometha		95 106 109	85-122 87-121 89-119	8/30/11 19:34 8/30/11 19:34 8/30/11 19:34			

Analytical Report

		Analytical Re	port			
Client: Project: Sample Matrix:	Unicorn Management Consulta Union Rd #2011-100 Water	nts			Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	8/23/11 1545 8/24/11 8/25/11
Sample Name: Lab Code:	MW-11S-2011 R1104718-007				Units: Basis:	
	Semivola	tile Organic Com	pound	s by GC/MS		
Analytical Method: Prep Method: Data File Name:	8270D EPA 3510C J:\ACQUDATA\5973A\DATA\0	83111\CH631.D\			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	140522 R-MS-51
CAS No.	Analyte Name	Result	Q	MRL	Note	
120-82-1	1,2,4-Trichlorobenzene	9.4	U	9.4		
95-50-1	1,2-Dichlorobenzene	9.4	U	9.4		
541-73-1	1,3-Dichlorobenzene	9.4	U	9.4		
106-46-7	1,4-Dichlorobenzene	9.4	U	9.4		
95-95-4	2,4,5-Trichlorophenol	9.4	U	9.4		
88-06-2	2,4,6-Trichlorophenol	9.4	U	9.4		
120-83-2	2,4-Dichlorophenol	9,4	U	9.4		
105-67-9	2,4-Dimethylphenol	9.4	U	9.4		
51-28-5	2,4-Dinitrophenol	47	U	47		
121-14-2	2,4-Dinitrotoluene	9.4	U	9.4		
606-20-2	2,6-Dinitrotoluene	9.4	-	9.4		
91-58-7	2-Chloronaphthalene	9.4	U	9.4		
95-57-8	2-Chlorophenol	9.4	U	9.4		
91-57-6	2-Methylnaphthalene	9.4		9.4		
95-48-7	2-Methylphenol	9.4	U	9.4		
88-74-4	2-Nitroaniline	47	U	47		
			 7 T			

9.4 U

9.4 U

9.4 U

47 U

9.4

9.4

9.4

47

JJ-0J-2	J-Individualitie	7/0	т <i>і</i>	
534-52-1	4,6-Dinitro-2-methylphenol	47 U	47	
101-55-3	4-Bromophenyl Phenyl Ether	9.4 U	9.4	
59-50-7	4-Chloro-3-methylphenol	9.4 U	9.4	
106-47-8	4-Chloroaniline	9.4 U	9.4	
7005-72-3	4-Chlorophenyl Phenyl Ether	9.4 U	9.4	
100-01-6	4-Nitroaniline	47 U	47	
100-02-7	4-Nitrophenol	47 U	47	
83-32-9	Acenaphthene	9.4 U	9.4	
208-96-8	Acenaphthylene	9.4 U	9.4	
120-12-7	Anthracene	9.4 U	9.4	
56-55-3	Benz(a)anthracene	9.4 U	9.4	
50-32-8	Benzo(a)pyrene	9.4 U	9.4	

2-Nitrophenol

3-Nitroaniline

3,3'-Dichlorobenzidine

3- and 4-Methylphenol Coelution

88-75-5

91-94-1

99-09-2

		Analytical Re	eport			
Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water				Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	8/23/11 1545 8/24/11 8/25/11
Sample Name: Lab Code:	MW-11S-2011 R1104718-007				Units: Basis:	
	Semivolatile	Organic Com	pound	s by GC/MS		
Analytical Method: Prep Method: Data File Name:	8270D EPA 3510C J:\ACQUDATA\5973A\DATA\0831	11\CH631.D\			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	140522 R-MS-51
CAS No.	Analyte Name	Result	Q	MRL	Note	
205-99-2 191-24-2 207-08-9	Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	9.4 9.4 9.4	U	9.4 9.4 9.4		
100-51-6 108-60-1 111-91-1	Benzyl Alcohol 2,2'-Oxybis(1-chloropropane) Bis(2-chloroethoxy)methane	9.4 9.4 9.4	Ū	9.4 9.4 9.4		
111-44-4 117-81-7 85-68-7	Bis(2-chloroethyl) Ether Bis(2-ethylhexyl) Phthalate Butyl Benzyl Phthalate	9.4 9.4 9.4	U	9.4 9.4 9.4		· · · · ·
86-74-8 218-01-9 84-74-2	Carbazole Chrysene Di-n-butyl Phthalate	9.4 9.4 9.4	U	9.4 9.4 9.4		

85-68-7	Butyl Benzyl Phthalate	9.4 U	9.4	
86-74-8	Carbazole	9.4 U	9.4	
218-01-9	Chrysene	9.4 U	9.4	
84-74-2	Di-n-butyl Phthalate	9.4 U	9.4	
117-84-0	Di-n-octyl Phthalate	9.4 U	9.4	
53-70-3	Dibenz(a,h)anthracene	9.4 U	9.4	
132-64-9	Dibenzofuran	9.4 U	9.4	
84-66-2	Diethyl Phthalate	9.4 U	9.4	
131-11-3	Dimethyl Phthalate	9.4 U	9.4	
206-44-0	Fluoranthene	9.4 U	9.4	
86-73-7	Fluorene	9.4 U	9.4	
118-74-1	Hexachlorobenzene	9.4 U	9.4	
87-68-3	Hexachlorobutadiene	9.4 U	9.4	
77-47-4	Hexachlorocyclopentadiene	9.4 U	9.4	
67-72-1	Hexachloroethane	9.4 U	9.4	
193-39-5	Indeno(1,2,3-cd)pyrene	9.4 U	9.4	
78-59-1	Isophorone	9.4 U	9.4	
621-64-7	N-Nitrosodi-n-propylamine	9.4 U	9.4	
62-75-9	N-Nitrosodimethylamine	9.4 U	9.4	
86-30-6	N-Nitrosodiphenylamine	9.4 U	9.4	
91-20-3	Naphthalene	9.4 U	9.4	
98-95-3	Nitrobenzene	9.4 U	9.4	
87-86-5	Pentachlorophenol (PCP)	47 U	47	······
85-01-8	Phenanthrene	9.4 U	9.4	

Analytical Report

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water	Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	8/23/11 1545 8/24/11 8/25/11
Sample Name:	MW-11S-2011	Units:	
Lab Code:	R1104718-007	Basis:	
	Semivolatile Organic Compounds by GC/MS		
Analytical Method:	8270D	Analysis Lot:	
Prep Method:	EPA 3510C	Extraction Lot:	

Data File Name: J:\ACQUDATA\5973A\DATA\083111\CH631.D\ Instrument Name: R-MS-51 **Dilution Factor:** 1

CAS No.	Analyte Name	Result Q	MRL	Note	
108-95-2	Phenol	9.4 U	9,4		
129-00-0	Pyrene	9.4 U	9.4		

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	97	28-157	8/31/11 15:41	
2-Fluorobiphenyl	76	39-119	8/31/11 15:41	
2-Fluorophenol	40	10-105	8/31/11 15:41	
Nitrobenzene-d5	73	37-117	8/31/11 15:41	
Phenol-d6	25	10-107	8/31/11 15:41	
p-Terphenyl-d14	87	40-133	8/31/11 15:41	

Analytical Report

Client:	Unicorn Management Consultants
Project:	Union Rd #2011-100
Sample Matrix:	Water
Sample Name:	MW-11M-2011
Lab Code:	R1104718-009

 Service Request:
 R1104718

 Date Collected:
 8/23/11 1600

 Date Received:
 8/24/11

Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Factor Extracte	Date d Analyzed	Note
Oil and Grease, Nonpolar (SG	T-HEM) 1664	4.7 U	mg/L	4.7	1 NA	9/6/11 09:30	

Analytical Report

Client:	Unicorn Management Consultants
Project:	Union Rd #2011-100
Sample Matrix:	Water
Sample Name:	MW-11M-2011 Dissolved
Lab Code:	R1104718-010

Service Request: R1104718 Date Collected: 8/23/11 1600 Date Received: 8/24/11

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Factor Extracte	Date I Analyzed	Note
Arsenic, Dissolved	6010C	10 U	μg/L	10	1 9/7/11	9/8/11 20:12	
Lead, Dissolved	6010C	50 U	μg/L	50	1 9/7/11	9/8/11 20:12	

Analytical Report

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water	Service Request: R1104718 Date Collected: 8/23/11 1600 Date Received: 8/24/11 Date Analyzed: 8/30/11 20:04
Sample Name:	MW-11M-2011	Units: µg/L
Lab Code:	R1104718-009	Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method:	8260C
Data File Name:	J:\ACQUDATA\msvoa10\data\083011\D4467.D\

Analysis Lot: 259593 Instrument Name: R-MS-10 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	Note	
67-64-1	Acetone	20 U	20		
71-43-2	Benzene	5.0 U	5.0		
75-27-4	Bromodichloromethane	5.0 U	5.0		
75-25-2	Bromoform	5.0 U	5.0		
74-83-9	Bromomethane	5.0 U	5.0		
78-93-3	2-Butanone (MEK)	10 U	10		
75-15-0	Carbon Disulfide	10 U	10		
56-23-5	Carbon Tetrachloride	5.0 U	5.0		
108-90-7	Chlorobenzene	5.0 U	5.0		
75-00-3	Chloroethane	5.0 U	5.0		
67-66-3	Chloroform	5.0 U	5.0		
74-87-3	Chloromethane	5.0 U	5.0		
124-48-1	Dibromochloromethane	5.0 U	5.0		
75-34-3	1,1-Dichloroethane	5.0 U	5.0		
107-06-2	1,2-Dichloroethane	5.0 U	5.0		
75-35-4	1,1-Dichloroethene	5.0 U	5.0		
156-59-2	cis-1,2-Dichloroethene	5.0 U	5.0		
156-60-5	trans-1,2-Dichloroethene	5.0 U	5.0		
78-87-5	1,2-Dichloropropane	5.0 U	5.0		
10061-01-5	cis-1,3-Dichloropropene	5.0 U	5.0		
10061-02-6	trans-1,3-Dichloropropene	5.0 U	5.0		
100-41-4	Ethylbenzene	5.0 U	5.0		
591-78-6	2-Hexanone	10 U	10		
75-09-2	Methylene Chloride	5.0 U	5.0		
108-10-1	4-Methyl-2-pentanone (MIBK)	10 U	10		
100-42-5	Styrene	5.0 U	5.0		
79-34-5	1,1,2,2-Tetrachloroethane	5.0 U	5.0		
127-18-4	Tetrachioroethene	5.0 U	5.0		
108-88-3	Toluene	5.0 U	5.0		
71-55-6	1,1,1-Trichloroethane	5.0 U	5.0		
79-00-5	1,1,2-Trichloroethane	5.0 U	5.0		
79-01-6	Trichloroethene	5.0 U	5.0		
75-01-4	Vinyl Chloride	5.0 U	5.0		
95-47-6	o-Xylene	5.0 U	5.0		

		A	nalytical Report				
Client: Project: Sample Matrix:	Unicorn Management Union Rd #2011-100 Water	Consultants				Service Request: Date Collected: Date Received: Date Analyzed:	8/23/11 1600 8/24/11
Sample Name: Lab Code:	MW-11M-2011 R1104718-009					Units: Basis:	
		Volatile Organ	ic Compounds	by GC/MS			
Analytical Method Data File Name:	: 8260C J:\ACQUDATA\msvoal	0\data\083011\D	4467.D\			Analysis Lot: Instrument Name: Dilution Factor:	R-MS-10
CAS No.	Analyte Name		Result Q	MRL		Note	
179601-23-1	m,p-Xylenes		5.0 U	5.0			
Surrogate Name		%Rec	Control Limits	Date Analyzed	Q		
4-Bromofluorobenze	ene	96	85-122	8/30/11 20:04			
Toluene-d8		105	87-121	8/30/11 20:04			
Dibromofluorometh	ane	110	89-119	8/30/11 20:04			

Analytical Report

Client: Project:	Unicorn Management Consultants Union Rd #2011-100	Service Request: R1104718 Date Collected: 8/23/11 1600
Sample Matrix:	Water	Date Received: 8/24/11
•		Date Extracted: 8/25/11
		Date Analyzed: 8/31/11 16:22
		TT A

Units: µg/L Basis: NA

 Sample Name:
 MW-11M-2011

 Lab Code:
 R1104718-009

Semivolatile Organic Compounds by GC/MS

Analytical Method:	8270D
Prep Method:	EPA 3510C
Data File Name:	J:\ACQUDATA\5973A\DATA\083111\CH632.D\

Analysis Lot:	259912
Extraction Lot:	140522
Instrument Name:	R-MS-51
Dilution Factor:	1

120-82-1 1,2,4-Trichlorobenzene 95-50-1 1,2-Dichlorobenzene 541-73-1 1,3-Dichlorobenzene 106-46-7 1,4-Dichlorobenzene 95-95-4 2,4,5-Trichlorophenol 88-06-2 2,4,6-Trichlorophenol 120-83-2 2,4-Dichlorophenol	9.4 U 9.4 U 9.4 U 9.4 U 9.4 U 9.4 U 9.4 U 9.4 U 9.4 U 47 U 9.4 U	9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 47		
541-73-1 1,3-Dichlorobenzene 106-46-7 1,4-Dichlorobenzene 95-95-4 2,4,5-Trichlorophenol 88-06-2 2,4,6-Trichlorophenol	9.4 U 9.4 U 9.4 U 9.4 U 9.4 U 9.4 U 9.4 U 47 U 9.4 U	9.4 9.4 9.4 9.4 9.4 9.4 9.4 47		
106-46-7 1,4-Dichlorobenzene 95-95-4 2,4,5-Trichlorophenol 88-06-2 2,4,6-Trichlorophenol	9.4 U 9.4 U 9.4 U 9.4 U 9.4 U 9.4 U 47 U 9.4 U	9.4 9.4 9.4 9.4 9.4 9.4 47		
95-95-4 2,4,5-Trichlorophenol 88-06-2 2,4,6-Trichlorophenol	9.4 U 9.4 U 9.4 U 9.4 U 47 U 9.4 U 9.4 U	9.4 9.4 9.4 9.4 47		
88-06-2 2,4,6-Trichlorophenol	9.4 U 9.4 U 9.4 U 47 U 9.4 U 9.4 U	9.4 9.4 9.4 47		
	9.4 U 9.4 U 47 U 9.4 U	9.4 9.4 47		
120-83-2 2 4-Dichloronhenol	9.4 U 47 U 9.4 U	9.4 47		
	47 U 9.4 U	47		
105-67-9 2,4-Dimethylphenol	9.4 U			
51-28-5 2,4-Dinitrophenol				
121-14-2 2,4-Dinitrotoluene		9.4		
606-20-2 2,6-Dinitrotoluene	9.4 U	9,4		
91-58-7 2-Chloronaphthalene	9.4 U	9.4		
95-57-8 2-Chlorophenol	9.4 U	9.4		
91-57-6 2-Methylnaphthalene	9.4 U	9.4		
95-48-7 2-Methylphenol	9.4 U	9.4		
88-74-4 2-Nitroaniline	47 U	47	· · · · · · · · · · · · · · · · · · ·	
88-75-5 2-Nitrophenol	9.4 U	9.4		
91-94-1 3,3'-Dichlorobenzidine	9.4 U	9.4		
3- and 4-Methylphenol Coelution	9.4 U	9.4		
99-09-2 3-Nitroaniline	47 U	47		
534-52-1 4,6-Dinitro-2-methylphenol	47 U	47		
101-55-3 4-Bromophenyl Phenyl Ether	9.4 U	9.4		
59-50-7 4-Chloro-3-methylphenol	9.4 U	9.4		
106-47-8 4-Chloroaniline	9.4 U	9.4		
7005-72-34-Chlorophenyl Phenyl Ether	9.4 U	9.4		
100-01-6 4-Nitroaniline	47 U	47		
100-02-7 4-Nitrophenol	47 U	47		
83-32-9 Acenaphthene	9.4 U	9,4		
208-96-8 Acenaphthylene	9.4 U	9.4		
120-12-7 Anthracene	9.4 U	9.4		
56-55-3 Benz(a)anthracene	9.4 U	9.4		
50-32-8 Benzo(a)pyrene	9.4 U	9.4		

Analytical Report

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water			Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	8/23/11 1600 8/24/11 8/25/11
Sample Name: Lab Code:	MW-11M-2011 R1104718-009			Units: Basis:	
	Semivolatile	Organic Compound	ls by GC/MS		
Analytical Method: Prep Method: Data File Name:	8270D EPA 3510C J:\ACQUDATA\5973A\DATA\0831	11\CH632.D\		Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	140522 R-MS-51
CAS No.	Analyte Name	Result Q	MRL	Note	
205-99-2 191-24-2 207-08-9	Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	9.4 U 9.4 U 9.4 U	9.4 9.4 9.4		, <u>, , , , , , , , , , , , , , , , , , </u>
100-51-6 108-60-1 111-91-1	Benzyl Alcohol 2,2'-Oxybis(1-chloropropane) Bis(2-chloroethoxy)methane	9.4 U 9.4 U 9.4 U	9.4 9.4 9.4		
111-44-4 117-81-7 85-68-7	Bis(2-chloroethyl) Ether Bis(2-ethylhexyl) Phthalate Butyl Benzyl Phthalate	9.4 U 9.4 U 9.4 U	9.4 9.4 9.4		
86-74-8 218-01-9 84-74-2	Carbazole Chrysene Di-n-butyl Phthalate	9.4 U 9.4 U 9.4 U	9.4 9.4 9.4		
117-84-0 53-70-3 132-64-9	Di-n-octyl Phthalate Dibenz(a,h)anthracene Dibenzofuran	9.4 U 9.4 U 9.4 U	9.4 9.4 9.4		
84-66-2 131-11-3 206-44-0	Diethyl Phthalate Dimethyl Phthalate Fluoranthene	9.4 U 9.4 U 9.4 U	9.4 9.4 9.4		
86-73-7 118-74-1 87-68-3	Fluorene Hexachlorobenzene Hexachlorobutadiene	9.4 U 9.4 U 9.4 U	9.4 9.4 9.4		
77-47-4 67-72-1 193-39 - 5	Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene	9.4 U 9.4 U 9.4 U	9.4 9.4 9.4		
78-59-1 621-64-7 62-75-9	Isophorone N-Nitrosodi-n-propylamine N-Nitrosodimethylamine	9.4 U 9.4 U 9.4 U	9.4 9.4 9.4		
86-30-6	N-Nitrosodiphenylamine	9.4 U	9.4		·····

Naphthalene

Nitrobenzene

Phenanthrene

Pentachlorophenol (PCP)

91-20-3

98-95-3

87-86-5

85-01-8

9.4 U

9.4 U

47 U

9.4 U

9.4

9.4

47

9.4

Analytical Report

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water				Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	8/23/11 1600 8/24/11 8/25/11
Sample Name: Lab Code:	MW-11M-2011 R1104718-009 Semivolatile	Organic Cor	npounds	by GC/MS	Units: Basis:	
Analytical Method: Prep Method: Data File Name:			×	·	Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	140522 R-MS-51
CAS No.	Analyte Name	Result	Q	MRL	Note	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	104	28-157	8/31/11 16:22	
2-Fluorobiphenyl	73	39-119	8/31/11 16:22	
2-Fluorophenol	44	10-105	8/31/11 16:22	
Nitrobenzene-d5	71	37-117	8/31/11 16:22	
Phenol-d6	28	10-107	8/31/11 16:22	
p-Terphenyl-d14	119	40-133	8/31/11 16:22	

9.4 U

9.4 U

9.4

9.4

108-95-2

129-00-0

Phenol

Pyrene

Analytical Report

Client:	Unicorn Management Consultants	Se
Project:	Union Rd #2011-100	D
Sample Matrix:	Water	I
Sample Name: Lab Code:	MW-12S-2011 R1104718-011	

Service Request: R1104718 Date Collected: 8/23/11 1615 Date Received: 8/24/11

Basis: NA

General Chemistry Parameters								
Analyte Name	Method	Result Q	Units	MRL	Dilution Factor 1	Date Extracted	Date Analyzed	Note
Oil and Grease, Nonpolar (SC	GT-HEM) 1664	4.7 U	mg/L	4.7	I	NA	9/6/11 09:30	

.

Analytical Report

Client:	Unicorn Management Consultants
Project:	Union Rd #2011-100
Sample Matrix:	Water
Sample Name:	MW-12S-2011 Dissolved
Lab Code:	R1104718-012

 Service Request:
 R1104718

 Date Collected:
 8/23/11 1615

 Date Received:
 8/24/11

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Factor Extracted	Date Analyzed	Note
Arsenic, Dissolved	6010C	10 U	μg/L	10	1 9/ 7/11	9/8/11 20:18	
Lead, Dissolved	6010C	50 U	μg/L	50	1 9/7/11	9/8/11 20:18	

Analytical Report

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water	Service Request: R1104718 Date Collected: 8/23/11 1615 Date Received: 8/24/11 Date Analyzed: 8/30/11 20:34
Sample Name:	MW-12S-2011	Units: μg/L
Lab Code:	R1104718-011	Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method:	8260C
Data File Name:	J:\ACQUDATA\msvoa10\data\083011\D4468.D\

Analysis Lot: 259593 Instrument Name: R-MS-10 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	Note	
67-64-1	Acetone	20 U	20		
71-43-2	Benzene	5.0 U	5.0		
75-27-4	Bromodichloromethane	5.0 U	5.0		
75-25-2	Bromoform	5.0 U	5.0		
74-83-9	Bromomethane	5.0 U	5,0		
78-93-3	2-Butanone (MEK)	10 U	10		
75-15-0	Carbon Disulfide	10 U	10		
56-23-5	Carbon Tetrachloride	5.0 U	5.0		
108-90-7	Chlorobenzene	5.0 U	5.0		
75-00-3	Chloroethane	5.0 U	5.0		
67-66-3	Chloroform	5.0 U	5.0		
74-87-3	Chloromethane	5.0 U	5.0		
124-48-1	Dibromochloromethane	5.0 U	5.0		
75-34-3	1,1-Dichloroethane	5.0 U	5.0		
107-06-2	1,2-Dichloroethane	5.0 U	5.0		
75-35-4	1,1-Dichloroethene	5.0 U	5.0		
156-59-2	cis-1,2-Dichloroethene	5.0 U	5.0		
156 - 60-5	trans-1,2-Dichloroethene	5.0 U	5.0		
78-87-5	1,2-Dichloropropane	5.0 U	5.0		
10061-01-5	cis-1,3-Dichloropropene	5.0 U	5.0		
10061-02-6	trans-1,3-Dichloropropene	5.0 U	5.0		
100-41-4	Ethylbenzene	5.0 U	5.0		
591-78-6	2-Hexanone	10 U	10		
75-09-2	Methylene Chloride	5.0 U	5.0		
108-10-1	4-Methyl-2-pentanone (MIBK)	10 U	10		
100-42-5	Styrene	5.0 U	5.0		
79-34-5	1,1,2,2-Tetrachloroethane	5.0 U	5.0		
127-18-4	Tetrachloroethene	5.0 U	5.0		
108-88-3	Toluene	5.0 U	5.0		
71-55-6	1,1,1-Trichloroethane	5.0 U	5.0		
79-00-5	1,1,2-Trichloroethane	5.0 U	5.0		
79-01-6	Trichloroethene	5.0 U	5.0		
75-01-4	Vinyl Chloride	5.0 U	5.0		
95-47-6	o-Xylene	5.0 U	5.0		

		A	nalytical Report			
Client: Project: Sample Matrix:	Unicorn Management Union Rd #2011-100 Water	Consultants			Service Request Date Collected Date Received Date Analyzed	: 8/23/11 1615
Sample Name: Lab Code:	MW-12S-2011 R1104718-011					: µg/L : NA
		Volatile Organ	nic Compounds	s by GC/MS		
Analytical Method: 8260C Data File Name: J:\ACQUDATA\msvoa10\data\083011\D4468.D\				Analysis Lot Instrument Name Dilution Factor	: R-MS-10	
CAS No.	Analyte Name		Result Q	MRL	Note	
179601-23-1	m,p-Xylenes		5.0 U	5.0		
Surrogate Name		%Rec	Control Limits	Date Analyzed	Q	
4-Bromofluorobenze Toluene-d8 Dibromofluorometha		97 107 110	85-122 87-121 89-119	8/30/11 20:34 8/30/11 20:34 8/30/11 20:34	- , 1 - 191	
	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	

Analytical Report

Unicorn Management Consultants

Project: Sample Matrix:	Union Rd #2011-100 Water				Date Collected: Date Received: Date Extracted: Date Analyzed:	8/23/11 1615 8/24/11 8/25/11
Sample Name: Lab Code:	MW-12S-2011 R1104718-011				Units: Basis:	
	Semivolatile	Organic Con	npound	is by GC/MS		
Analytical Method: Prep Method: Data File Name:	8270D EPA 3510C J:\ACQUDATA\5973A\DATA\0831	11\CH633.D\			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	140522 R-MS-51
CAS No.	Analyte Name	Result	Q	MRL	Note	
120-82-1 95-50-1 541-73-1	1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	9.4 9.4 9.4	U	9.4 9.4 9.4	<u> </u>	
106-46-7 95-95-4 88-06-2	1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	9.4 9.4 9.4	U U	9.4 9.4 9.4		· · · · ·
120-83-2 105-67-9 51-28-5	2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol	9.4 9.4	U	9.4 9.4 47		
121-14-2 606-20-2 91-58-7	2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene	9.4 9.4 9.4 9.4	U U	9.4 9.4 9.4 9.4		
95-57-8 91-57-6 95-48-7	2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol	9.4 9.4 9.4 9.4	U U	9.4 9.4 9.4 9.4		<u>_</u>
88-74-4 88-75-5 91-94-1	2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine	47 9.4 9.4	U U	47 9.4 9.4		
99-09-2 534-52-1	3- and 4-Methylphenol Coelution 3-Nitroaniline 4,6-Dinitro-2-methylphenol	9.4 47 47	U U	9.4 47 47		
101-55-3 59-50-7 106-47-8	4-Bromophenyl Phenyl Ether 4-Chloro-3-methylphenol 4-Chloroaniline	9.4 9.4 9.4	U	9.4 9.4 9.4		
7005-72-3 100-01-6 100-02-7	4-Chlorophenyl Phenyl Ether 4-Nitroaniline 4-Nitrophenol	9.4 47 47	U	9.4 47 47		
83-32-9 208-96-8	Acenaphthene Acenaphthylene	9.4 9.4		9.4 9.4		

Anthracene

Benz(a)anthracene

Benzo(a)pyrene

120-12-7

56-55-3

50-32-8

Client:

9.4 U

9.4 U

9.4 U

9,4

9.4

9.4

Service Request: R1104718

.....

		Analytical R	eport			
Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water				Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	8/23/11 1615 8/24/11 8/25/11
Sample Name: Lab Code:				Units: Basis:		
	Semivolatile	e Organic Con	npound	s by GC/MS		
Analytical Method: Prep Method: Data File Name:	8270D EPA 3510C J:\ACQUDATA\5973A\DATA\0831	111\CH633.D\			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	140522 R-MS-51
CAS No.	Analyte Name	Result	Q	MRL	Note	
205-99 -2 191-24-2 207-08-9	Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	9.4 9.4 9.4	U	9.4 9.4 9.4		, <u> </u>
100-51-6 108-60-1 111-91-1	Benzyl Alcohol 2,2'-Oxybis(1-chloropropane) Bis(2-chloroethoxy)methane	9.4 9.4 9.4	U	9.4 9.4 9.4		
111-44-4 117-81-7 85-68-7	Bis(2-chloroethyl) Ether Bis(2-ethylhexyl) Phthalate Butyl Benzyl Phthalate	9.4 9.4 9.4	U	9.4 9.4 9.4		
86-74-8 218-01-9 84-74-2	Carbazole Chrysene Di-n-butyl Phthalate	9.4 9.4 9.4	U	9.4 9.4 9.4		
117-84-0 53-70-3 132-64-9	Di-n-octyl Phthalate Dibenz(a,h)anthracene Dibenzofuran	9.4 9.4 9.4	U	9.4 9.4 9.4		
	Disthed Distribute	0.4	ŤΤ	0.4		

Divenzoruran	2.4 U	2.4	
Diethyl Phthalate	9.4 U	9.4	
Dimethyl Phthalate	9.4 U	9.4	
Fluoranthene	9.4 U	9.4	
Fluorene	9.4 U	9.4	
Hexachlorobenzene	9.4 U	9.4	
Hexachlorobutadiene	9.4 U	9.4	
Hexachlorocyclopentadiene	9.4 U	9.4	
Hexachloroethane	9.4 U	9.4	
Indeno(1,2,3-cd)pyrene	9.4 U	9.4	
Isophorone	9.4 U	9.4	
N-Nitrosodi-n-propylamine	9.4 U	9.4	
N-Nitrosodimethylamine	9.4 U	9.4	
N-Nitrosodiphenylamine	9.4 U	9.4	
Naphthalene	9.4 U	9.4	
Nitrobenzene	9.4 U	9.4	
Pentachlorophenol (PCP)	47 U	47	
Phenanthrene	9.4 U	9.4	
	Diethyl Phthalate Dimethyl Phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone N-Nitrosodi-n-propylamine N-Nitrosodimethylamine N-Nitrosodimethylamine Naphthalene Nitrobenzene Pentachlorophenol (PCP)	Diethyl Phthalate9.4UDimethyl Phthalate9.4UFluoranthene9.4UFluorene9.4UHexachlorobenzene9.4UHexachlorobutadiene9.4UHexachlorocyclopentadiene9.4UHexachlorocyclopentadiene9.4UHexachlorocyclopentadiene9.4UIndeno(1,2,3-cd)pyrene9.4UIsophorone9.4UN-Nitrosodin-n-propylamine9.4UN-Nitrosodiphenylamine9.4UNaphthalene9.4UNaphthalene9.4UNitrobenzene9.4UNentachlorophenol (PCP)47U	Dimethyl Phthalate9.4U9.4Fluoranthene9.4U9.4Fluorene9.4U9.4Hexachlorobenzene9.4U9.4Hexachlorobutadiene9.4U9.4Hexachlorocyclopentadiene9.4U9.4Hexachlorocyclopentadiene9.4U9.4Hexachloroethane9.4U9.4Indeno(1,2,3-cd)pyrene9.4U9.4Isophorone9.4U9.4N-Nitrosodi-n-propylamine9.4U9.4N-Nitrosodimethylamine9.4U9.4N-Nitrosodiphenylamine9.4U9.4Naphthalene9.4U9.4Nitrobenzene9.4U9.4Nentrosodiphenylamine9.4U9.4Naphthalene9.4U9.4Naphthalene9.4U9.4Nitrobenzene9.4U9.4Yentachlorophenol (PCP)47U47

Analytical Report

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water	Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	8/23/11 1615 8/24/11 8/25/11
Sample Name: Lab Code:	MW-12S-2011 R1104718-011	Units: Basis:	· •
	Semivolatile Organic Compounds by GC/MS		
Analytical Method:	8270D	Analysis Lot:	259912

Analytical Method:	8270D
Prep Method:	EPA 3510C
Data File Name:	J:\ACQUDATA\5973A\DATA\083111\CH633.D\

Analysis Lot: 259912 Extraction Lot: 140522 Instrument Name: R-MS-51 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	Note
108-95-2	Phenol	9.4 U	9.4	
129-00-0	Pyrene	9.4 U	9.4	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	107	28-157	8/31/11 17:03	
2-Fluorobiphenyl	78	39-119	8/31/11 17:03	
2-Fluorophenol	45	10-105	8/31/11 17:03	
Nitrobenzene-d5	75	37-117	8/31/11 17:03	
Phenol-d6	29	10-107	8/31/11 17:03	
p-Terphenyl-d14	115	40-133	8/31/11 17:03	

Analytical Report

Client:	Unicorn Management Consultants
Project:	Union Rd #2011-100
Sample Matrix:	Water
Sample Name:	MW-12M-2011
Lab Code:	R1104718-013

 Service Request:
 R1104718

 Date Collected:
 8/23/11 1630

 Date Received:
 8/24/11

Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor		Date Analyzed	Note
Oil and Grease, Nonpolar (SG	T-HEM) 1664	4.7 U	mg/L	4.7	1	NA	9/6/11 09:30	

Analytical Report

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water	Se 1
Sample Name: Lab Code:	MW-12M-2011 Dissolved R1104718-014	

Service Request: R1104718 Date Collected: 8/23/11 1630 Date Received: 8/24/11

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed Note
Arsenic, Dissolved	6010C	10 U	μg/L	10	1 9/ 7/11 9/8/11 20:24
Lead, Dissolved	6010C	50 U	μg/L	50	1 9/ 7/11 9/8/11 20:24

Analytical Report

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water	Service Request: R1104718 Date Collected: 8/23/11 1630 Date Received: 8/24/11 Date Analyzed: 8/31/11 17:39
Sample Name:	MW-12M-2011	Units: µg/L
Lab Code:	R1104718-013	Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method:	8260C
Data File Name:	J:\ACQUDATA\msvoa10\data\083111\D4489.D\

Analysis Lot: 259792 Instrument Name: R-MS-10 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	Note	
67-64-1	Acetone	20 U	20		
71-43-2	Benzene	5.0 U	5.0		
75-27-4	Bromodichloromethane	5.0 U	5.0		
75-25-2	Bromoform	5.0 U	5.0		
74-83-9	Bromomethane	5.0 U	5.0		
78-93-3	2-Butanone (MEK)	10 U	10		
75-15-0	Carbon Disulfide	10 U	10		
56-23-5	Carbon Tetrachloride	5.0 U	5.0		
108-90-7	Chlorobenzene	5.0 U	5.0		
75-00-3	Chloroethane	5.0 U	5.0		
67-66-3	Chloroform	5.0 U	5.0		
74-87-3	Chloromethane	5.0 U	5,0		
124-48-1	Dibromochloromethane	5.0 U	5.0		
75-34-3	1,1-Dichloroethane	5.0 U	5.0		
107-06-2	1,2-Dichloroethane	5.0 U	5.0		
75-35-4	1,1-Dichloroethene	5.0 U	5.0		
156-59-2	cis-1,2-Dichloroethene	5.0 U	5.0		
156-60-5	trans-1,2-Dichloroethene	5.0 U	5.0		
78-87-5	1,2-Dichloropropane	5.0 U	5.0		
10061-01-5	cis-1,3-Dichloropropene	5.0 U	5.0		
10061-02-6	trans-1,3-Dichloropropene	5.0 U	5.0		
100-41-4	Ethylbenzene	5.0 U	5.0		
591-78-6	2-Hexanone	10 U	10		
75-09-2	Methylene Chloride	5.0 U	5.0		
108-10-1	4-Methyl-2-pentanone (MIBK)	10 U	10		
100-42-5	Styrene	5.0 U	5.0		
79-34-5	1,1,2,2-Tetrachloroethane	5.0 U	5.0		
127-18-4	Tetrachloroethene	5.0 U	5.0		
108-88-3	Toluene	5.0 U	5.0		
71-55-6	1,1,1-Trichloroethane	5.0 U	5.0		
79-00-5	1,1,2-Trichloroethane	5.0 U	5.0		
79-01-6	Trichloroethene	5.0 U	5.0		
75-01-4	Vinyl Chloride	5.0 U	5.0		
95-47-6	o-Xylene	5.0 U	5.0		

	А	nalytical Report				
Unicorn Management C Union Rd #2011-100 Water	consultants				Service Request: Date Collected: Date Received: Date Analyzed:	8/23/11 1630 8/24/11
MW-12M-2011 R1104718-013					Units: Basis:	
	Volatile Orga	nic Compounds	by GC/MS			
	\data\083111\D	4489.D\			Analysis Lot: Instrument Name: Dilution Factor:	R-MS-10
Analyte Name		Result Q	MRL		Note	
m,p-Xylenes		5.0 U	5.0			n - 21875
	%Rec	Control Limits	Date Analyzed	Q		
ne	96 105	85-122 87-121	8/31/11 17:39 8/31/11 17:39			
	Union Rd #2011-100 Water MW-12M-2011 R1104718-013 8260C J:\ACQUDATA\msvoa10 Analyte Name	Unicorn Management Consultants Union Rd #2011-100 Water MW-12M-2011 R1104718-013 Volatile Organ 8260C J:\ACQUDATA\msvoa10\data\083111\D Analyte Name m,p-Xylenes %Rec ne 96	Union Rd #2011-100 Water MW-12M-2011 R1104718-013 Volatile Organic Compounds 8260C J:\ACQUDATA\msvoa10\data\083111\D4489.D\ Analyte Name Result Q m,p-Xylenes 5.0 U %Rec Control Limits ne 96 85-122	Unicorn Management Consultants Union Rd #2011-100 Water MW-12M-2011 R1104718-013 Volatile Organic Compounds by GC/MS 8260C J:\ACQUDATA\msvoa10\data\083111\D4489.D\ Analyte Name Result Q MRL m,p-Xylenes 5.0 U 5.0 <u>%Rec Control Date Analyzed</u> ne 96 85-122 8/31/11 17:39	Unicorn Management Consultants Union Rd #2011-100 Water MW-12M-2011 R1104718-013 Volatile Organic Compounds by GC/MS 8260C J:\ACQUDATA\msvoa10\data\083111\D4489.D\ <u>Analyte Name Result Q MRL</u> m,p-Xylenes 5.0 U 5.0 <u>%Rec Control Date Analyzed Q</u> ne 96 85-122 8/31/11 17:39	Unicorn Management Consultants Union Rd #2011-100 Water MW-12M-2011 R1104718-013 Volatile Organic Compounds by GC/MS 8260C J:\ACQUDATA\msvoa10\data\083111\D4489.D\ Analysis Lot: Instrument Name: Dilution Factor: <u>Analyte Name</u> Result Q MRL Note MRL Note MRL Note MRL Note MRL Note Malysis Lot: Instrument Name: Dilution Factor: <u>Analysis Lot:</u> Analysis Lot: Instrument Name: Dilution Factor: <u>Analyte Name</u> Mgec <u>85.0 U</u> 5.0 U 5.0 <u>5.0 U</u> 5.0 <u>5.0 U</u> 5.0 <u>5.0 U</u> 5.0 <u>5.0 U</u> 5.0 <u>5.0 U</u> 5.0 <u>5.0 U</u> 5.0 <u>5.0</u> <u>5.0 U</u> 5.0 <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u> <u>5.0</u>

Analytical Report

Unicorn Management Consultants

Client:

Project: Sample Matrix:	Union Rd #2011-100 Water				Date Collected: Date Received: Date Extracted: Date Analyzed:	8/24/11 8/25/11
Sample Name: Lab Code:	MW-12M-2011 R1104718-013				Units: Basis:	
	Semivolatile	e Organic Con	apound	s by GC/MS		
Analytical Method: Prep Method: Data File Name:	8270D EPA 3510C J:\ACQUDATA\5973A\DATA\0831	11\CH634.D\			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	140522 R-MS-51
CAS No.	Analyte Name	Result	Q	MRL	Note	
120-82-1 95-50-1	1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	9.4 9.4		9.4 9.4		
541-73-1	1,3-Dichlorobenzene	9.4	U	9.4		
106-46-7	1,4-Dichlorobenzene	9.4		9.4		
95 - 95-4 88-06-2	2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	9.4 9.4		9.4 9.4		
120-83-2	2,4-Dichlorophenol	9,4		9,4		
105-67-9	2,4-Dimethylphenol	9.4		9.4		
51-28-5	2,4-Dinitrophenol	47	U	47		
121-14-2	2,4-Dinitrotoluene	9.4		9.4		
606-20-2	2,6-Dinitrotoluene	9.4		9.4		
91-58-7	2-Chloronaphthalene	9.4		9.4	· · ·	
95-57-8 91-57-6	2-Chlorophenol 2-Methylnaphthalene	9.4 9.4		9.4 9.4		
95-48-7	2-Methylphenol	9.4		9.4		
88-74-4	2-Nitroaniline	47	U	47		······································
88-75-5	2-Nitrophenol	9.4		9.4		
91-94-1	3,3'-Dichlorobenzidine	9.4	U	9.4		
	3- and 4-Methylphenol Coelution	9.4		9.4		
99-09-2	3-Nitroaniline	47		47		
534-52-1	4,6-Dinitro-2-methylphenol	47		47		
101-55-3	4-Bromophenyl Phenyl Ether	9.4		9.4		
59-50-7	4-Chloro-3-methylphenol 4-Chloroaniline	9.4		9.4		
106-47-8		9.4		9.4		
7005-72-3 100-01-6	4-Chlorophenyl Phenyl Ether 4-Nitroaniline	9.4 47		9.4 47		
100-01-6	4-Nitrophenol	47		47 47		
83-32-9	Acenaphthene	9.4		9.4		
208-96-8			0	2.7		
200-20-0	Acenaphthylene	9.4	U	9.4		

Benz(a)anthracene Benzo(a)pyrene

56-55-3

50-32-8

9.4 U

9.4 U

9.4

9.4

Service Request: R1104718

		Analytical Re	eport			
Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water				Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	8/23/11 1630 8/24/11 8/25/11
Sample Name: Lab Code:	MW-12M-2011 R1104718-013				Units: Basis:	
	Semivolatile	e Organic Com	pound	s by GC/MS		
Analytical Method:	8270D				Analysis Lot:	
Prep Method:	EPA 3510C				Extraction Lot:	
Data File Name:	J:\ACQUDATA\5973A\DATA\0831	11\CH634.D\			Instrument Name: Dilution Factor:	
CAS No.	Analyte Name	Result	Q	MRL	Note	
205-99-2	Benzo(b)fluoranthene	9.4	U	9.4		
191-24-2	Benzo(g,h,i)perylene	9.4	U	9.4		
207-08-9	Benzo(k)fluoranthene	9.4	U	9.4		
100-51-6	Benzyl Alcohol	9.4	U	9.4		
108-60-1	2,2'-Oxybis(1-chloropropane)	9.4	U	9.4		
111-91-1	Bis(2-chloroethoxy)methane	9.4	U	9.4		
111 44 4	D'- (0 -1-1	0.4	T 7	0.4		

191-24-2	Benzo(g,h,i)perylene	9.4 U	9.4	
207-08-9	Benzo(k)fluoranthene	9.4 U	9.4	
100-51-6	Benzyl Alcohol	9.4 U	9.4	
108-60-1	2,2'-Oxybis(1-chloropropane)	9.4 U	9.4	
111-91-1	Bis(2-chloroethoxy)methane	9.4 U	9.4	
111-44-4	Bis(2-chloroethyl) Ether	9.4 U	9.4	
117-81-7	Bis(2-ethylhexyl) Phthalate	9.4 U	9.4	
85-68-7	Butyl Benzyl Phthalate	9.4 U	9.4	
86-74-8	Carbazole	9.4 U	9.4	
218-01-9	Chrysene	9.4 U	9.4	
84-74-2	Di-n-butyl Phthalate	9.4 U	9.4	
117-84-0	Di-n-octyl Phthalate	9.4 U	9.4	
53-70-3	Dibenz(a,h)anthracene	9.4 U	9.4	
132-64-9	Dibenzofuran	9.4 U	9.4	
84-66-2	Diethyl Phthalate	9.4 U	9.4	 · · · · · · · · · · · · · · · · · · ·
131-11-3	Dimethyl Phthalate	9.4 U	9.4	
206-44-0	Fluoranthene	9.4 U	9.4	
86-73-7	Fluorene	9.4 U	9.4	
118-74-1	Hexachlorobenzene	9.4 U	9.4	
87-68-3	Hexachlorobutadiene	9.4 U	9.4	
77-47-4	Hexachlorocyclopentadiene	9.4 U	9.4	· •
67-72-1	Hexachloroethane	9.4 U	9.4	
193-39-5	Indeno(1,2,3-cd)pyrene	9.4 U	9.4	
78-59-1	Isophorone	9.4 U	9.4	
621-64-7	N-Nitrosodi-n-propylamine	9.4 U	9.4	
62-75-9	N-Nitrosodimethylamine	9.4 U	9.4	
86-30-6	N-Nitrosodiphenylamine	9.4 U	9.4	
91-20-3	Naphthalene	9.4 U	9.4	
98-95-3	Nitrobenzene	9.4 U	9.4	
87-86-5	Pentachlorophenol (PCP)	47 U	47	
85-01-8	Phenanthrene	9.4 U	9.4	

Analytical Report

		•	-			
Client:	Unicorn Management Consultan	ts			Service Request:	R1104718
Project:	Union Rd #2011-100				Date Collected:	8/23/11 1630
Sample Matrix:	Water				Date Received:	8/24/11
•					Date Extracted:	8/25/11
					Date Analyzed:	8/31/11 17:44
Sample Name:	MW-12M-2011				Units:	μg/L
Lab Code:	R1104718-013				Basis:	NA
Analytical Method: Prep Method: Data File Name:	8270D EPA 3510C J:\ACQUDATA\5973A\DATA\08	3111\CH634.D\			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	140522 R-MS-51
CAS No.	Analyte Name	Result	Q	MRL	Note	
08-95-2	Phenol	9.4		9,4		

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	101	28-157	8/31/11 17:44	
2-Fluorobiphenyl	71	39-119	8/31/11 17:44	
2-Fluorophenol	47	10-105	8/31/11 17:44	
Nitrobenzene-d5	71	37-117	8/31/11 17:44	
Phenol-d6	30	10-107	8/31/11 17:44	
p-Terphenyl-d14	119	40-133	8/31/11 17:44	

9.4 U

9.4

129-00-0

Pyrene

.

Analytical Report

Client:	Unicorn Management Consultants	Service Request: R1104718
Project:	Union Rd #2011-100	Date Collected: 8/23/11 1645
Sample Matrix:	Water	Date Received: 8/24/11
Sample Name: Lab Code:	MW-12D-2011 R1104718-015	Basis: NA

General Chemistry Parameters						
Analyte Name	Method	Result Q	Units	MRL	Dilution Date Factor Extracted	Date Analyzed

4.7 U

mg/L

4.7

Oil and Grease,	, Nonpolar (SGT-HEI	v 1)1664

Note

9/6/11 09:30

NA

1

Analytical Report

Client:	Unicorn Management Consultants
Project:	Union Rd #2011-100
Sample Matrix:	Water
Sample Name:	MW-12D-2011 Dissolved
Lab Code:	R1104718-016

Service Request: R1104718 Date Collected: 8/23/11 1645 Date Received: 8/24/11

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed Not	te
Arsenic, Dissolved	6010C	10 U	μg/L	10	1 9/ 7/11 9/8/11 20:29	-
Lead, Dissolved	6010C	50 U	µg/L	50	1 9/ 7/11 9/8/11 20:29	

Analytical Report

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water	Service Request: R1104718 Date Collected: 8/23/11 1645 Date Received: 8/24/11 Date Analyzed: 8/31/11 18:09
Sample Name:	MW-12D-2011	Units: µg/L
Lab Code:	R1104718-015	Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method:	8260C
Data File Name:	J:\ACQUDATA\msvoa10\data\083111\D4490.D\

Analysis Lot: 259792 Instrument Name: R-MS-10 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	Note	
67-64-1	Acetone	20 U	20		
71-43-2	Benzene	5.0 U	5.0		
75-27-4	Bromodichloromethane	5.0 U	5.0		
75-25-2	Bromoform	5.0 U	5.0		
74-83-9	Bromomethane	5.0 U	5.0		
78-93-3	2-Butanone (MEK)	10 U	10		
75-15-0	Carbon Disulfide	10 U	10	· · · · · · · · · · · · · · · · · · ·	
56-23-5	Carbon Tetrachloride	5.0 U	5.0		
108-90-7	Chlorobenzene	5.0 U	5.0		
75-00-3	Chloroethane	5.0 U	5.0		
67-66-3	Chloroform	5.0 U	5.0		
74-87-3	Chloromethane	5.0 U	5.0		
124-48-1	Dibromochloromethane	5.0 U	5.0		
75-34-3	1,1-Dichloroethane	5.0 U	5.0		
107-06-2	1,2-Dichloroethane	5.0 U	5.0		
75-35-4	1,1-Dichloroethene	5.0 U	5,0		
156-59-2	cis-1,2-Dichloroethene	5.0 U	5.0		
156-60-5	trans-1,2-Dichloroethene	5.0 U	5.0		
78-87-5	1,2-Dichloropropane	5.0 U	5.0		
10061-01-5	cis-1,3-Dichloropropene	5.0 U	5.0		
10061-02-6	trans-1,3-Dichloropropene	5.0 U	5.0		
100-41-4	Ethylbenzene	5.0 U	5.0		
591-78-6	2-Hexanone	10 U	10		
75-09-2	Methylene Chloride	5.0 U	5.0		
108-10-1	4-Methyl-2-pentanone (MIBK)	10 U	10		
100-42-5	Styrene	5.0 U	5.0		
79-34-5	1,1,2,2-Tetrachloroethane	5.0 U	5.0		
127-18-4	Tetrachloroethene	5.0 U	5.0		
108-88-3	Toluene	5.0 U	5.0		
71-55-6	1,1,1-Trichloroethane	5.0 U	5.0		
79-00-5	1,1,2-Trichloroethane	5.0 U	5.0		
79-01-6	Trichloroethene	5.0 U	5.0		
75-01-4	Vinyl Chloride	5.0 U	5.0		
95-47-6	o-Xylene	5.0 U	5.0		

		Aı	nalytical Report			
Client:	Unicorn Management C	onsultants			Service Request:	R1104718
Project:	Union Rd #2011-100				Date Collected:	8/23/11 1645
Sample Matrix:	Water				Date Received:	8/24/11
					Date Analyzed:	8/31/11 18:09
Sample Name:	MW-12D-2011				Units:	μg/L
Lab Code:	R1104718-015				Basis:	NA
		Volatile Organ	nic Compounds	by GC/MS		
Analytical Method:	8260C				Analysis Lot:	259792
Data File Name:	J:\ACQUDATA\msvoa10\	\data\083111\D4	4490.D\ ,		Instrument Name: Dilution Factor:	
CAS No.	Analyte Name		Result Q	MRL	Note	
179601-23-1	m,p-Xylenes		5.0 U	5.0		
Surrogate Name		%Rec	Control Limits	Date Analyzed	Q	
4-Bromofluorobenze	ne	96	85-122	8/31/11 18:09		
Toluene-d8		107	87-121	8/31/11 18:09		

Analytical Report

Client:	Unicorn Management Consultants	Service Request: R1104718
Project:	Union Rd #2011-100	Date Collected: 8/23/11 1645
Sample Matrix:	Water	Date Received: 8/24/11
		Date Extracted: 8/25/11
		Date Analyzed: 8/31/11 18:26

Units: µg/L Basis: NA

Sample Name: MW Lab Code: R11

MW-12D-2011 R1104718-015

Semivolatile Organic Compounds by GC/MS

Analytical Method:	8270D
Prep Method:	EPA 3510C
Data File Name:	J:\ACQUDATA\5973A\DATA\083111\CH635.D\

Analysis Lot:259912Extraction Lot:140522Instrument Name:R-MS-51Dilution Factor:1

CAS No.	Analyte Name	Result	Q	MRL	Note	
120-82-1	1,2,4-Trichlorobenzene	9.4	U	9.4		
95-50-1	1,2-Dichlorobenzene	9.4	U	9.4		
541-73-1	1,3-Dichlorobenzene	9.4	U	9.4		
106-46-7	1,4-Dichlorobenzene	9.4	U	9.4		
95-95-4	2,4,5-Trichlorophenol	9.4	U	9.4		
88-06-2	2,4,6-Trichlorophenol	9.4	U	9.4		
120-83-2	2,4-Dichlorophenol	9.4	U	9.4		•
105-67-9	2,4-Dimethylphenol	9.4	U	9.4		
51-28-5	2,4-Dinitrophenol	47	U	47		
121-14-2	2,4-Dinitrotoluene	9.4	U	9.4		
606-20-2	2,6-Dinitrotoluene	9.4	U	9.4		
91-58-7	2-Chloronaphthalene	9.4	U	9.4		
95-57-8	2-Chlorophenol	9.4	U	9.4		
91-57-6	2-Methylnaphthalene	9.4	U	9.4		
95-48-7	2-Methylphenol	9.4	U	9.4		
88-74-4	2-Nitroaniline	47	U	47	, , , <u>, , , , , , , , , , , , , , , , </u>	
88-75-5	2-Nitrophenol	9.4	U	9.4		
91-94-1	3,3'-Dichlorobenzidine	9.4	U	9.4		
	3- and 4-Methylphenol Coelution	9.4	U	9.4		
99-09-2	3-Nitroaniline	47	U	47		
534-52-1	4,6-Dinitro-2-methylphenol	47	U	47		
101-55-3	4-Bromophenyl Phenyl Ether	9.4	U	9.4	·	
59-50-7	4-Chloro-3-methylphenol	9.4	U	9.4		
106-47-8	4-Chloroaniline	9.4	U	9.4		
7005-72-3	4-Chlorophenyl Phenyl Ether	9.4	U	9.4	· · · · · · · · · · · · · · · · · · ·	
100-01-6	4-Nitroaniline	47	U	47		
100-02-7	4-Nitrophenol	47	U	47		
83-32-9	Acenaphthene	9,4	U	9.4		
208-96-8	Acenaphthylene	9.4	U	9.4		
120-12-7	Anthracene	9.4	U	9.4		
56-55-3	Benz(a)anthracene	9.4	U	9.4		
50-32-8	Benzo(a)pyrene	9.4	U	9.4		

Analytical Report

		Analytical R	eport			
Client: Project: Sample Matrix:	Unicorn Management Consultant Union Rd #2011-100 Water	s			Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	8/23/11 1645 8/24/11 8/25/11
Sample Name: Lab Code:	MW-12D-2011 R1104718-015				Units: Basis:	
	Semivolati	le Organic Con	npound	s by GC/MS		
Analytical Method: Prep Method: Data File Name:	8270D EPA 3510C J:\ACQUDATA\5973A\DATA\083	9111\CH635.D\			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	140522 R-MS-51
CAS No.	Analyte Name	Result	Q	MRL	Note	
205-99-2	Benzo(b)fluoranthene	9.4	U	9.4		
191-24-2	Benzo(g,h,i)perylene	9.4	U	9.4		
207-08-9	Benzo(k)fluoranthene	9.4	U	9.4		
100-51-6	Benzyl Alcohol	9.4	U	9.4	· · · ·	
108-60-1	2,2'-Oxybis(1-chloropropane)	9.4	U	9.4		
111-91-1	Bis(2-chloroethoxy)methane	9,4		9.4		

CAS No.	Analyte Name	Result	Q	MRL	Note	
205-99-2	Benzo(b)fluoranthene	9.4	U	9.4		
191-24-2	Benzo(g,h,i)perylene	9.4	U	9.4		
207-08-9	Benzo(k)fluoranthene	9.4	U	9.4		
100-51-6	Benzyl Alcohol	9.4	U	9.4	·	
108-60-1	2,2'-Oxybis(1-chloropropane)	9.4	U	9.4		
111-91-1	Bis(2-chloroethoxy)methane	9.4	U	9.4		
111-44-4	Bis(2-chloroethyl) Ether	9.4	U	9.4		
117-81-7	Bis(2-ethylhexyl) Phthalate	9.4	U	9.4		
85-68 - 7	Butyl Benzyl Phthalate	9.4	U	9.4		
86-74-8	Carbazole	9.4	U	9.4		
218-01-9	Chrysene	9.4	U	9.4		
84-74-2	Di-n-butyl Phthalate	9.4	U	9.4		
117-84-0	Di-n-octyl Phthalate	9.4	U	9.4		
53-70-3	Dibenz(a,h)anthracene	9.4	U	9.4		
132-64-9	Dibenzofuran	9.4	U	9.4		
84-66-2	Diethyl Phthalate	9.4	U	9.4	· · · · · · · · · · · ·	
131-11-3	Dimethyl Phthalate	9.4	U	9.4		
206-44-0	Fluoranthene	9.4	U	9.4		
86-73-7	Fluorene	9.4	U	9.4	· · · · · · · ·	
118-74-1	Hexachlorobenzene	9.4	U	9.4		
87-68-3	Hexachlorobutadiene	9.4	U	9.4		
77-47-4	Hexachlorocyclopentadiene	9.4	U	9.4		
67-72-1	Hexachloroethane	9.4	U	9.4		
193-39-5	Indeno(1,2,3-cd)pyrene	9.4	U	9.4		
78-59-1	Isophorone	9.4	U	9.4		
621-64-7	N-Nitrosodi-n-propylamine	9.4	U	9.4		
62-75-9	N-Nitrosodimethylamine	9.4	U	9.4		
86-30-6	N-Nitrosodiphenylamine	9.4	U	9.4		
91-20-3	Naphthalene	9.4	U	9.4		
98-95-3	Nitrobenzene	9.4	U	9.4		
87-86-5	Pentachlorophenol (PCP)	47	U	47	· · · · ·	
05 01 0	Dhanarthrong	0.4	тт	0.4		

Phenanthrene

85-01-8

9.4 U

9,4

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water	Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	8/23/11 1645 8/24/11 8/25/11		
Sample Name: Lab Code:	MW-12D-2011 R1104718-015	Units: Basis:	• -		
Semivolatile Organic Compounds by GC/MS					
Analytical Method: Prep Method: Data File Name:	8270D EPA 3510C J:\ACQUDATA\5973A\DATA\083111\CH635.D\	Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	140522 R-MS-51		

CAS No.	Analyte Name	Result Q	MRL	Note	
108-95-2	Phenol	9.4 U	9.4		
129-00-0	Pyrene	9.4 U	9.4		

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	95	28-157	8/31/11 18:26	
2-Fluorobiphenyl	70	39-119	8/31/11 18:26	
2-Fluorophenol	44	10-105	8/31/11 18:26	
Nitrobenzene-d5	73	37-117	8/31/11 18:26	
Phenol-d6	26	10-107	8/31/11 18:26	
p-Terphenyl-d14	113	40-133	8/31/11 18:26	

Analytical Report

Client:	Unicorn Management Consultants
Project:	Union Rd #2011-100
Sample Matrix:	Water
Sample Name:	MW-13S-2011
Lab Code:	R1104718-017

 Service Request:
 R1104718

 Date Collected:
 8/23/11 1700

 Date Received:
 8/24/11

Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Dat Factor Extra	e Date cted Analyzed	Note
Oil and Grease, Nonpolar (SGI	Г-НЕМ) 1664	4.7 U	mg/L	4.7	1 NA	9/6/11 09:30	

Analytical Report

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water
Sample Matrix: Sample Name:	WW-13S-2011 Dissolved
Lab Code:	R1104718-018

ı.

Service Request: R1104718 Date Collected: 8/23/11 1700 Date Received: 8/24/11

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Factor Extracted	Date Analyzed	Note
Arsenic, Dissolved	6010C	10 U	μg/L	10	1 9/ 7/11	9/8/11 20:35	
Lead, Dissolved	6010C	50 U	μg/L	50	1 9/ 7/11	9/8/11 20:35	

Analytical Report

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water	Service Request: R1104718 Date Collected: 8/23/11 1700 Date Received: 8/24/11 Date Analyzed: 8/31/11 18:39
Sample Name:	MW-13S-2011	Units: µg/L
Lab Code:	R1104718-017	Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method:	8260C
Data File Name:	J:\ACQUDATA\msvoa10\data\083111\D4491.D\

Analysis Lot: 259792 Instrument Name: R-MS-10 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	Note	
67-64-1	Acetone	20 U	20		
71-43-2	Benzene	5.0 U	5.0		
75 - 27-4	Bromodichloromethane	5.0 U	5.0		
75-25-2	Bromoform	5.0 U	5.0		
74-83-9	Bromomethane	5.0 U	5.0		
78-93-3	2-Butanone (MEK)	10 U	10		
75-15-0	Carbon Disulfide	10 U	10		
56-23-5	Carbon Tetrachloride	5.0 U	5.0		
108-90-7	Chlorobenzene	5.0 U	5.0		
75-00-3	Chloroethane	5.0 U	5.0		
67-66-3	Chloroform	5.0 U	5.0		
74-87-3	Chloromethane	5.0 U	5.0		
124-48-1	Dibromochloromethane	5.0 U	5.0		
75-34-3	1,1-Dichloroethane	5.0 U	5.0		
107-06-2	1,2-Dichloroethane	5.0 U	5.0		
75-35-4	1,1-Dichloroethene	5.0 U	5,0		
156-59-2	cis-1,2-Dichloroethene	5.0 U	5.0		
156-60-5	trans-1,2-Dichloroethene	5.0 U	5.0		
78-87-5	1,2-Dichloropropane	5.0 U	5.0		
10061-01-5	cis-1,3-Dichloropropene	5.0 U	5.0		
10061-02-6	trans-1,3-Dichloropropene	5.0 U	5.0		
100-41-4	Ethylbenzene	5.0 U	5.0		
591-78-6	2-Hexanone	10 U	10		
75-09-2	Methylene Chloride	5.0 U	5.0		
108-10-1	4-Methyl-2-pentanone (MIBK)	10 U	10		
100-42-5	Styrene	5.0 U	5.0		
79-34-5	1,1,2,2-Tetrachloroethane	5.0 U	5.0		
127-18-4	Tetrachloroethene	5.0 U	5.0		
108-88-3	Toluene	5.0 U	5.0		
71-55-6	1,1,1-Trichloroethane	5.0 U	5.0		
79-00-5	1,1,2-Trichloroethane	5.0 U	5.0		
79-01-6	Trichloroethene	5.0 U	5.0		
75-01-4	Vinyl Chloride	5.0 U	5.0		
95-47-6	o-Xylene	5.0 U	5.0		

		A	nalytical Report				
Client:	Unicorn Management C	Consultants				Service Request:	R1104718
Project:	Union Rd #2011-100					Date Collected:	8/23/11 1700
Sample Matrix:	Water					Date Received:	8/24/11
						Date Analyzed:	8/31/11 18:39
Sample Name:	MW-13S-2011					Units:	μg/L
Lab Code:	R1104718-017					Basis:	NA
		Volatile Organ	ic Compound	s by GC/MS			
Analytical Method: Data File Name:	alytical Method: 8260C ta File Name: J:\ACQUDATA\msvoa10\data\083111\D4491.D\					Analysis Lot: Instrument Name: Dilution Factor:	R-MS-10
CAS No.	Analyte Name		Result Q	MRL		Note	
179601-23-1	m,p-Xylenes		5.0 U	5.0			•
Surrogate Name		%Rec	Control Limits	Date Analyzed	Q		
4-Bromofluorobenzer	ne	98	85-122	8/31/11 18:39			· · · · · · · · ·
Toluene-d8		105	87-121	8/31/11 18:39			
Dibromofluorometha		109	89-119	8/31/11 18:39			

		Analytical R	eport			
Client: Project: Sample Matrix:	Unicorn Management Consulta Union Rd #2011-100 Water	nts			Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	8/23/11 1700 8/24/11 8/25/11
Sample Name: Lab Code:	MW-13S-2011 R1104718-017				Units: Basis:	
	Semivola	tile Organic Con	npound	s by GC/MS		
Analytical Method: Prep Method: Data File Name:	8270D EPA 3510C J:\ACQUDATA\5973A\DATA\03	83111\CH636.D\			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	140522 R-MS-51
CAS No.	Analyte Name	Result	Q	MRL	Note	
120-82-1 95-50-1 541-73-1	1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	9.4 9.4 9.4	U	9.4 9.4 9.4		
106-46-7 95-95-4 88-06-2	1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	9.4 9.4 9.4	Ū	9.4 9.4 9.4		
120-83-2 105-67-9	2,4-Dichlorophenol 2,4-Dimethylphenol	9.4 9.4		9.4 9.4		

90-00-1	1,2-Dicitior obelizene	9.4 U	9.4	
541-73-1	1,3-Dichlorobenzene	9.4 U	9.4	
106-46-7	1,4-Dichlorobenzene	9.4 U	9.4	
95-95-4	2,4,5-Trichlorophenol	9.4 U	9.4	
88-06-2	2,4,6-Trichlorophenol	9.4 U	9.4	
120-83-2	2,4-Dichlorophenol	9.4 U	9.4	
105-67-9	2,4-Dimethylphenol	9.4 U	9.4	
51-28-5	2,4-Dinitrophenol	47 U	47	
121-14-2	2,4-Dinitrotoluene	9.4 U	9.4	
606-20-2	2,6-Dinitrotoluene	9.4 U	9.4	
91-58-7	2-Chloronaphthalene	9.4 U	9.4	
95-57-8	2-Chlorophenol	9.4 U	9.4	
91-57-6	2-Methylnaphthalene	9.4 U	9.4	
95-48 - 7	2-Methylphenol	9.4 U	9.4	
88-74-4	2-Nitroaniline	47 U	47	
88-75-5	2-Nitrophenol	9.4 U	9.4	
91-94-1	3,3'-Dichlorobenzidine	9.4 U	9.4	
	3- and 4-Methylphenol Coelution	9.4 U	9.4	
99-09-2	3-Nitroaniline	47 U	47	
534-52-1	4,6-Dinitro-2-methylphenol	47 U	47	
101-55-3	4-Bromophenyl Phenyl Ether	9.4 U	9.4	
59-50-7	4-Chloro-3-methylphenol	9.4 U	9.4	
106-47-8	4-Chloroaniline	9.4 U	9.4	
7005-72-3	4-Chlorophenyl Phenyl Ether	9.4 U	9.4	
100-01-6	4-Nitroaniline	47 U	47	
100-02-7	4-Nitrophenol	47 U	47	
83-32-9	Acenaphthene	9.4 U	9.4	-
208-96-8	Acenaphthylene	9.4 U	9.4	
120-12-7	Anthracene	9.4 U	9.4	
56-55-3	Benz(a)anthracene	9.4 U	9.4	<u> </u>
50-32-8	Benzo(a)pyrene	9.4 U	9.4	

Analytical Report

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water				Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	8/23/11 1700 8/24/11 8/25/11
Sample Name: Lab Code:	MW-13S-2011 R1104718-017				Units: Basis:	
	Semivolatile	organic Con	npound	ls by GC/MS		
Analytical Method: Prep Method: Data File Name:		-			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	140522 R-MS-51
CAS No.	Analyte Name	Result	Q	MRL	Note	
205-99-2 191-24-2 207-08-9	Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	9.4 9.4 9.4	U	9.4 9.4 9.4		
100-51-6 108-60-1 111-91-1	Benzyl Alcohol 2,2'-Oxybis(1-chloropropane) Bis(2-chloroethoxy)methane	9.4 9.4 9.4	U U	9.4 9.4 9.4 9.4		
111-44-4 117-81-7 85-68-7	Bis(2-chloroethyl) Ether Bis(2-chloroethyl) Phthalate Butyl Benzyl Phthalate	9.4 9.4 9.4	U U	9.4 9.4 9.4 9.4		
86-74-8 218-01-9 84-74-2	Carbazole Chrysene Di-n-butyl Phthalate	9.4 9.4 9.4	U	9.4 9.4 9.4		
117-84-0 53-70-3 132-64-9	Di-n-octyl Phthalate Dibenz(a,h)anthracene Dibenzofuran	9.4 9.4 9.4	U	9.4 9.4 9.4		
84-66-2 131-11-3 206-44-0	Diethyl Phthalate Dimethyl Phthalate Fluoranthene	9.4 9.4 9.4	U	9.4 9.4 9.4		······
86-73-7 118-74-1 87-68-3	Fluorene Hexachlorobenzene Hexachlorobutadiene	9.4 9.4 9.4	U	9.4 9.4 9.4		
77-47-4 67-72-1 193-39-5	Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene	9.4 9.4 9.4	U	9.4 9.4 9.4		
78-59-1 621-64-7	Isophorone N-Nitrosodi-n-propylamine	9.4 9.4	U	9.4 9.4		·

62-75-9

86-30-6

91-20-3

98-95-3

87-86-5

85-01-8

N-Nitrosodimethylamine

N-Nitrosodiphenylamine

Pentachlorophenol (PCP)

Naphthalene

Nitrobenzene

Phenanthrene

9.4 U

9.4 U

9.4 U

9.4 U

47 U

9.4 U

9.4

9.4

9.4

9.4

47

9.4

		А	nalytical Report			
Client: Project: Sample Matrix:	Unicorn Management Con Union Rd #2011-100 Water	sultants			Date Collec Date Recei Date Extra	uest: R1104718 cted: 8/23/11 1700 ived: 8/24/11 cted: 8/25/11 rzed: 8/31/11 19:06
Sample Name: Lab Code:	MW-13S-2011 R1104718-017					nits: µg/L asis: NA
	Semi	ivolatile Org	ganic Compour	nds by GC/MS		
Analytical Method: Prep Method: Data File Name:	8270D EPA 3510C J:\ACQUDATA\5973A\DAT	ΓΑ\083111\C	CH636.D\		Extraction	Lot: 259912 Lot: 140522 ame: R-MS-51 ctor: 1
CAS No.	Analyte Name		Result Q	MRL	Note	
108-95-2 129-00-0	Phenol Pyrene		9.4 U 9.4 U	9.4 9.4		
Surrogate Name		%Rec	Control Limits	Date Analyzed	Q	
2,4,6-Tribromopheno 2-Fluorobiphenyl	1	99 71	28-157 39-119	8/31/11 19:06 8/31/11 19:06		

2,4,6-Tribromophenol	99	28-157	8/31/11 19:06	
2-Fluorobiphenyl	71	39-119	8/31/11 19:06	
2-Fluorophenol	44	10-105	8/31/11 19:06	
Nitrobenzene-d5	71	37-117	8/31/11 19:06	
Phenol-d6	28	10-107	8/31/11 19:06	
p-Terphenyl-d14	114	40-133	8/31/11 19:06	

Analytical Report

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water
Sample Name:	MW-13M-2011
Lab Code:	R1104718-019

 Service Request:
 R1104718

 Date Collected:
 8/23/11 1715

 Date Received:
 8/24/11

Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL		Date xtracted	Date Analyzed	Note
Oil and Grease, Nonpolar (SGI	Г-НЕМ) 1664	4.7 U	mg/L	4.7	1	NA	9/6/11 09:30	

Analytical Report

Client: Project:	Unicorn Management Consultants Union Rd #2011-100
Sample Matrix:	Water
Sample Name:	MW-13M-2011 Dissolved
Lab Code:	R1104718-020

 Service Request:
 R1104718

 Date Collected:
 8/23/11 1715

 Date Received:
 8/24/11

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed Note
Arsenic, Dissolved	6010C	10 U	μg/L	10	1 9/ 7/11 9/8/11 20:51
Lead, Dissolved	6010C	50 U	μg/L	50	1 9/ 7/11 9/8/11 20:51

Analytical Report

Client:	Unicorn Management Consultants
Project:	Union Rd #2011-100
Sample Matrix:	Water

 Service Request:
 R1104718

 Date Collected:
 8/23/11 1715

 Date Received:
 8/24/11

 Date Analyzed:
 8/31/11 19:09

Units: μg/L Basis: NA

 Sample Name:
 MW-13M-2011

 Lab Code:
 R1104718-019

Volatile Organic Compounds by GC/MS

Analytical Method:	8260C
Data File Name:	J:\ACQUDATA\msvoa10\data\083111\D4492.D\

Analysis Lot: 259792 Instrument Name: R-MS-10 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	Note	
67-64-1	Acetone	20 U	20	·	
71-43-2	Benzene	5.0 U	5.0		
75-27-4	Bromodichloromethane	5.0 U	5.0		
75-25-2	Bromoform	5.0 U	5.0		
74-83-9	Bromomethane	5.0 U	5.0		
78-93-3	2-Butanone (MEK)	10 U	10		
75-15-0	Carbon Disulfide	10 U	10		
56-23-5	Carbon Tetrachloride	5.0 U	5.0		
108-90-7	Chlorobenzene	5.0 U	5.0		
75-00-3	Chloroethane	5.0 U	5.0		
67-66-3	Chloroform	5.0 U	5.0		
74-87-3	Chloromethane	5.0 U	5.0		
124-48-1	Dibromochloromethane	5.0 U	5.0		
75-34-3	1,1-Dichloroethane	5.0 U	5.0		
107-06-2	1,2-Dichloroethane	5.0 U	5.0		
75-35-4	1,1-Dichloroethene	5.0 U	5.0		
156-59-2	cis-1,2-Dichloroethene	5.0 U	5.0		
156-60-5	trans-1,2-Dichloroethene	5.0 U	5.0		
78-87-5	1,2-Dichloropropane	5.0 U	5.0		
10061-01-5	cis-1,3-Dichloropropene	5.0 U	5.0		
10061-02-6	trans-1,3-Dichloropropene	5.0 U	5.0		
100-41-4	Ethylbenzene	5.0 U	5.0		
591-78-6	2-Hexanone	10 U	10		
75-09-2	Methylene Chloride	5.0 U	5.0		
108-10-1	4-Methyl-2-pentanone (MIBK)	10 U	10		
100-42-5	Styrene	5.0 U	5.0		
79-34-5	1,1,2,2-Tetrachloroethane	5.0 U	5.0		
127-18-4	Tetrachloroethene	5.0 U	5.0		
108-88-3	Toluene	5.0 U	5.0		
71-55-6	1,1,1-Trichloroethane	5.0 U	5.0		
79-00-5	1,1,2-Trichloroethane	5.0 U	5.0		·
79-01-6	Trichloroethene	5.0 U	5.0		
75-01-4	Vinyl Chloride	5.0 U	5.0		
95-47-6	o-Xylene	5.0 U	5.0		

		A	nalytical Report				
Client:	Unicorn Management C	Consultants				Service Request:	
Project:	Union Rd #2011-100					Date Collected:	8/23/11 1715
Sample Matrix:	Water					Date Received:	8/24/11
						Date Analyzed:	8/31/11 19:09
Sample Name:	MW-13M-2011					Units:	μg/L
Lab Code:	R1104718-019					Basis:	NA
		Volatile Organ	ic Compound	s by GC/MS			
Analytical Method: Data File Name:	8260C J:\ACQUDATA\msvoa10	\\data\083111\D4	4492.D\]	Analysis Lot: Instrument Name: Dilution Factor:	R-MS-10
CAS No.	Analyte Name		Result Q	MRL		Note	
179601-23-1	m,p-Xylenes		5.0 U	5.0			
Surrogate Name		%Rec	Control Limits	Date Analyzed	Q		
4-Bromofluorobenzer	ne	97	85-122	8/31/11 19:09			ñ
Toluene-d8		105	87-121	8/31/11 19:09			
Dibromofluoromethane 109 89-119 8/31/11 19				8/31/11 19:09			

Analytical Report

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water				Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	8/23/11 1715 8/24/11 8/25/11
Sample Name: Lab Code:	MW-13M-2011 R1104718-019				Units: Basis:	
	Semivolatile	Organic Con	mound	ls by GC/MS		
	Schitvolathe	Of game Con	apound	is by Gennis		
Analytical Method: Prep Method: Data File Name:	: 8270D EPA 3510C J:\ACQUDATA\5973A\DATA\0831	11\CH637.D\			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	140522 R-MS-51
CAS No.	Analyte Name	Result	Q	MRL	Note	
120-82-1 95-50-1 541-73-1	1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	9.4 9.4 9.4	U	9.4 9.4 9.4		
106-46-7 95-95-4 88-06-2	1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	9.4 9.4 9.4	U	9.4 9.4 9.4		
120-83-2 105-67-9 51-28-5	2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol	9.4 9.4 47	U	9.4 9.4 47		
121-14-2 606-20-2 91-58-7	2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene	9.4 9.4 9.4	U	9.4 9.4 9.4		
95-57-8 91-57-6 95-48-7	2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol	9.4 9.4 9.4	U	9.4 9.4 9.4		
88-74-4 88-75-5 91-94-1	2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine	47 9.4 9.4	Ū	47 9.4 9.4		
99-09-2 534-52-1	3- and 4-Methylphenol Coelution 3-Nitroaniline 4,6-Dinitro-2-methylphenol	9.4 47 47	U	9.4 47 47		
101-55-3 59-50-7 106-47-8	4-Bromophenyl Phenyl Ether 4-Chloro-3-methylphenol 4-Chloroaniline	9.4 9.4 9.4	U	9.4 9.4 9.4		
7005-72-3 100-01-6 100-02-7	4-Chlorophenyl Phenyl Ether 4-Nitroaniline 4-Nitrophenol	9.4 47 47	U	9.4 47 47		
83-32-9 208-96-8 120-12-7	Acenaphthene Acenaphthylene Anthracene	9.4 9.4 9.4	U	9.4 9.4 9.4		
56-55-3 50 32 8	Benz(a)anthracene	9.4	U	9.4		

50-32-8

Benzo(a)pyrene

9.4 U

9.4

Analytical Report

Client: Project: Sample Matrix: Sample Name: Lab Code:	Unicorn Management Consultants Union Rd #2011-100 Water MW-13M-2011 R1104718-019				Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed: Units: Basis:	8/23/11 1715 8/24/11 8/25/11 8/31/11 19:48 μg/L
	Semivolatile	e Organic Con	npound	is by GC/MS		
Analytical Method: Prep Method: Data File Name:	8270D EPA 3510C J:\ACQUDATA\5973A\DATA\0831	11\CH637.D\			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	140522 R-MS-51
CAS No.	Analyte Name	Result	Q	MRL	Note	
205-99-2 191-24-2 207-08-9	Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	9.4 9.4 9.4	Ū	9.4 9.4 9.4	44	*
100-51-6 108-60-1 111-91-1	Benzyl Alcohol 2,2'-Oxybis(1-chloropropane) Bis(2-chloroethoxy)methane	9.4 9.4 9.4	U U	9.4 9.4 9.4		
111-44-4 117-81-7 85-68-7	Bis(2-chloroethyl) Ether Bis(2-ethylhexyl) Phthalate Butyl Benzyl Phthalate	9.4 9.4 9.4	U	9.4 9.4 9.4		
86-74-8 218-01-9 84-74-2	Carbazole Chrysene Di-n-butyl Phthalate	9.4 9.4 9.4	U	9.4 9.4 9.4		
117-84-0 53-70-3 132-64-9	Di-n-octyl Phthalate Dibenz(a,h)anthracene Dibenzofuran	9.4 9.4 9.4	U	9.4 9.4 9.4		
84-66-2 131-11-3 206-44-0	Diethyl Phthalate Dimethyl Phthalate Fluoranthene	9.4 9.4 9.4	U	9.4 9.4 9.4		,
86-73-7 118-74-1 87-68-3	Fluorene Hexachlorobenzene Hexachlorobutadiene	9.4 9.4 9.4	U	9.4 9.4 9.4		
77-47-4 67-72-1 193-39-5	Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene	9.4 9.4 9.4	U	9.4 9.4 9.4		
78-59-1 621-64-7 62-75-9	Isophorone N-Nitrosodi-n-propylamine N-Nitrosodimethylamine	9.4 9.4 9.4	U	9.4 9.4 9.4		
86-30-6 91-20-3 98-95-3	N-Nitrosodiphenylamine Naphthalene Nitrobenzene	9.4 9.4 9.4	U	9.4 9.4 9.4		
87-86-5 85-01-8	Pentachlorophenol (PCP) Phenanthrene	47 9.4		47 9.4		

,

Client:	Unicorn Management Consultants	Service Request:	R1104718
Project:	Union Rd #2011-100	Date Collected:	8/23/11 1715
Sample Matrix:	Water	Date Received:	8/24/11
		Date Extracted:	8/25/11
		Date Analyzed:	8/31/11 19:48
Sample Name:	MW-13M-2011	Units:	μg/L
Lab Code:	R1104718-019	Basis:	NA
	Semivolatile Organic Compounds by GC/MS		
	Semitomine of game compounds by OCMAS		
Analytical Method:	8270D	Analysis Lot:	259912
Prep Method:	EPA 3510C	Extraction Lot:	140522
Data File Name:	J:\ACQUDATA\5973A\DATA\083111\CH637.D\	Instrument Name:	R-MS-51
		Dilution Factor:	1

CAS No.	Analyte Name	Result Q	MRL	Note	
108-95-2	Phenol	9.4 U	9.4		
129-00-0	Pyrene	9.4 U	9.4		

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	104	28-157	8/31/11 19:48	
2-Fluorobiphenyl	76	39-119	8/31/11 19:48	
2-Fluorophenol	43	10-105	8/31/11 19:48	
Nitrobenzene-d5	72	37-117	8/31/11 19:48	
Phenol-d6	28	10-107	8/31/11 19:48	
p-Terphenyl-d14	115	40-133	8/31/11 19:48	

Analytical Report

Client:	Unicorn Management Consultants
Project:	Union Rd #2011-100
Sample Matrix:	Water
Sample Name:	MW-14S-2011
Lab Code:	R1104718-021

 Service Request:
 R1104718

 Date Collected:
 8/23/11 1730

 Date Received:
 8/24/11

Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution D Factor Extr	ate	Date Analyzed	Note
Oil and Grease, Nonpolar (SC	F-HEM) 1664	4.7 U	mg/L	4.7	1 1	NA 9/	/6/11 09:30	

Analytical Report

Client:	Unicorn Management Consultants
Project:	Union Rd #2011-100
Sample Matrix:	Water
Sample Name:	MW-14S-2011 Dissolved
Sample Mane,	

R1104718-022

Lab Code:

 Service Request:
 R1104718

 Date Collected:
 8/23/11 1730

 Date Received:
 8/24/11

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	 Date nalyzed Note
Arsenic, Dissolved	6010C	10 U	μg/L	10	 /11 20:57
Lead, Dissolved	6010C	50 U	μg/L	50	/11 20:57

1

Analytical Report

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water	Service Request: R1104718 Date Collected: 8/23/11 1730 Date Received: 8/24/11 Date Analyzed: 8/31/11 19:39
Sample Name:	MW-14S-2011	Units: µg/L
Lab Code:	R1104718-021	Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method:	8260C
Data File Name:	J:\ACQUDATA\msvoa10\data\083111\D4493.D\

Analysis Lot: 259792 Instrument Name: R-MS-10 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	Note	
67-64-1	Acetone	20 U	20		
71-43-2	Benzene	5.0 U	5.0		
75-27-4	Bromodichloromethane	5.0 U	5.0		
75-25-2	Bromoform	5.0 U	5.0		
74-83-9	Bromomethane	5.0 U	5.0		
78-93-3	2-Butanone (MEK)	10 U	10		
75-15-0	Carbon Disulfide	10 U	10		
56-23-5	Carbon Tetrachloride	5.0 U	5.0		
108-90-7	Chlorobenzene	5.0 U	5.0		
75-00-3	Chloroethane	5.0 U	5.0		······
67-66-3	Chloroform	5.0 U	5.0		
74-87-3	Chloromethane	5.0 U	5.0		
124-48-1	Dibromochloromethane	5.0 U	5.0	·····	
75-34-3	1,1-Dichloroethane	5.0 U	5.0		
107-06-2	1,2-Dichloroethane	5.0 U	5.0		
75-35-4	1,1-Dichloroethene	5.0 U	5.0		
156-59-2	cis-1,2-Dichloroethene	5.0 U	5.0		
156-60-5	trans-1,2-Dichloroethene	5.0 U	5.0		
78-87-5	1,2-Dichloropropane	5.0 U	5.0		
10061-01-5	cis-1,3-Dichloropropene	5.0 U	5.0		
10061-02-6	trans-1,3-Dichloropropene	5.0 U	5.0		
100-41-4	Ethylbenzene	5.0 U	5.0		
591-78-6	2-Hexanone	10 U	10		
75-09-2	Methylene Chloride	5.0 U	5.0		
108-10-1	4-Methyl-2-pentanone (MIBK)	10 U	10		
100-42-5	Styrene	5.0 U	5.0		
79-34-5	1,1,2,2-Tetrachloroethane	5.0 U	5.0		
127-18-4	Tetrachloroethene	5.0 U	5.0		······
108-88-3	Toluene	5.0 U	5.0		
71-55-6	1,1,1-Trichloroethane	5.0 U	5.0		
79-00-5	1,1,2-Trichloroethane	5.0 U	5.0		
79-01-6	Trichloroethene	5.0 U	5.0		
75-01-4	Vinyl Chloride	5.0 U	5.0		
95-47-6	o-Xylene	5.0 U	5.0		
	-				

	A	nalytical Report				
Unicorn Management C Union Rd #2011-100 Water	Consultants				Date Collected: Date Received:	8/23/11 1730 8/24/11
MW-14S-2011 R1104718-021						
	Volatile Organ	nic Compounds	by GC/MS			
al Method: 8260C Name: J:\ACQUDATA\msvoa10\data\083111\D4493.D\				Instrument Name:	R-MS-10	
Analyte Name		Result Q	MRL		Note	
m,p-Xylenes		5.0 U	5.0			
	%Rec	Control Limits	Date Analyzed	Q		
ne	95 106 110	85-122 87-121 89-119	8/31/11 19:39 8/31/11 19:39 8/31/11 19:39			- 1 27 7
	Union Rd #2011-100 Water MW-14S-2011 R1104718-021 8260C J:\ACQUDATA\msvoa10 Analyte Name m,p-Xylenes	Unicorn Management Consultants Union Rd #2011-100 Water MW-14S-2011 R1104718-021 Volatile Organ 8260C J:\ACQUDATA\msvoa10\data\083111\D Analyte Name m,p-Xylenes %Rec ne 95 106	Union Rd #2011-100 Water MW-14S-2011 Result Organic Compounds 8260C J:\ACQUDATA\msvoa10\data\083111\D4493.D\ Analyte Name Result Q m,p-Xylenes 5.0 U %Rec Control Limits ne 95 85-122 106 87-121	Unicorn Management Consultants Union Rd #2011-100 Water MW-14S-2011 R1104718-021 Volatile Organic Compounds by GC/MS 8260C J:\ACQUDATA\msvoa10\data\083111\D4493.D\ Analyte Name Result Q MRL m,p-Xylenes 5.0 U 5.0 Mainter %Rec Control Date Manalyzed 95 85-122 8/31/11 19:39 106 87-121 8/31/11 19:39	Unicorn Management Consultants Union Rd #2011-100 Water MW-14S-2011 R1104718-021 Volatile Organic Compounds by GC/MS 8260C J:\ACQUDATA\msvoa10\data\083111\D4493.D\ Analyte Name Result Q MRL m,p-Xylenes 5.0 U 5.0 Pate %Rec Control Limits Date Analyzed Q ne 95 85-122 8/31/11 19:39 106 87-121 8/31/11 19:39	Unicorn Management Consultants Union Rd #2011-100 Water MW-14S-2011 R1104718-021 Volatile Organic Compounds by GC/MS 8260C J:\ACQUDATA\msvoa10\data\083111\D4493.D\ Analysis Lot: Instrument Name: Dilution Factor: Analyte Name Result Q MRL Note MRL Note No

Analytical Report

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water		-		Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	8/23/11 1730 8/24/11 8/25/11
Sample Name: Lab Code:	MW-14S-2011 R1104718-021				Units: Basis:	
	Semivolatile	Organic Cor	npound	ls by GC/MS		
Analytical Method: Prep Method: Data File Name:	8270D EPA 3510C J:\ACQUDATA\5973A\DATA\0831	l 1\CH638.D\			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	140522 R-MS-51
CAS No.	Analyte Name	Result	Q	MRL	Note	
120-82-1 95-50-1 541-73-1	1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	9.4 9.4 9.4	U	9.4 9.4 9.4		
106-46-7 95-95-4 88-06-2	1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	9.4 9.4 9.4	U	9.4 9.4 9.4		
120-83-2 105-67-9 51-28-5	2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol	9.4 9.4 47	U U	9.4 9.4 47		
121-14-2 606-20-2 91-58-7	2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene	9.4 9.4 9.4	U	9.4 9.4 9.4		
95-57-8 91-57-6 95-48-7	2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol	9.4 9.4 9.4	U	9.4 9.4 9.4		
88-74-4 88-75-5 91-94-1	2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine	47 9.4 9.4	U	47 9.4 9.4		
99-09-2 534-52-1	3- and 4-Methylphenol Coelution 3-Nitroaniline 4,6-Dinitro-2-methylphenol	9.4 47 47	U	9.4 47 47		
101-55-3 59-50-7 106-47-8	4-Bromophenyl Phenyl Ether 4-Chloro-3-methylphenol 4-Chloroaniline	9.4 9.4 9.4	U	9.4 9.4 9.4		
7005-72-3 100-01-6	4-Chlorophenyl Phenyl Ether 4-Nitroaniline	9.4 47		9.4 47		

4-Nitrophenol

Acenaphthene

Anthracene

Acenaphthylene

Benzo(a)pyrene

Benz(a)anthracene

100-02-7

83-32-9

208-96-8

120-12-7

56-55-3

50-32-8

47 U

9.4 U

9.4 U

9.4 U

9.4 U

9.4 U

47

9.4

9.4

9.4

9.4

9.4

Analytical Report

Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water				Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	8/23/11 1730 8/24/11 8/25/11
Sample Name: Lab Code:	MW-14S-2011 R1104718-021				Units: Basis:	
	Semivolatile	e Organic Con	npound	ls by GC/MS		
Analytical Method: Prep Method: Data File Name:	8270D EPA 3510C J:\ACQUDATA\5973A\DATA\0831	11\CH638.D\			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	140522 R-MS-51
CAS No.	Analyte Name	Result	Q	MRL	Note	
205-99-2 191-24-2 207-08-9	Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	9.4 9.4 9.4	U	9.4 9.4 9.4		
100-51-6 108-60-1 111-91-1	Benzyl Alcohol 2,2'-Oxybis(1-chloropropane) Bis(2-chloroethoxy)methane	9.4 9.4 9.4	U	9.4 9.4 9.4		
111-44-4 117-81-7 85-68-7	Bis(2-chloroethyl) Ether Bis(2-ethylhexyl) Phthalate Butyl Benzyl Phthalate	9.4 9.4 9.4	U	9.4 9.4 9.4		
86-74-8 218-01-9 84-74-2	Carbazole Chrysene Di-n-butyl Phthalate	9.4 9.4 9.4	U	9.4 9.4 9.4		
117-84-0 53-70-3 132-64-9	Di-n-octyl Phthalate Dibenz(a,h)anthracene Dibenzofuran	9.4 9.4 9.4	U	9.4 9.4 9.4		
84-66-2 131-11-3 206-44-0	Diethyl Phthalate Dimethyl Phthalate Fluoranthene	9.4 9.4 9.4	U	9.4 9.4 9.4		
86-73-7 118-74-1 87-68-3	Fluorene Hexachlorobenzene Hexachlorobutadiene	9.4 9.4 9.4	U	9.4 9.4 9.4		
77-47-4 67-72-1 193-39-5	Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene	9.4 9.4 9.4	U	9.4 9.4 9.4		
78-59-1 621-64-7 62-75-9	Isophorone N-Nitrosodi-n-propylamine N-Nitrosodimethylamine	9.4 9.4 9.4	U	9.4 9.4 9.4		

N-Nitrosodiphenylamine

Pentachlorophenol (PCP)

Naphthalene

Nitrobenzene

Phenanthrene

86-30-6

91-20-3

98-95-3

87-86-5

85-01-8

9.4 U

9.4 U

9.4 U

47 U

9.4 U

9.4

9.4

9.4

47

9.4

		A	nalytical Report			
Client: Project: Sample Matrix:	Unicorn Management Cor Union Rd #2011-100 Water	nsultants			Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	8/23/11 1730 8/24/11 8/25/11
Sample Name: Lab Code:	MW-14S-2011 R1104718-021				Units: Basis:	
	Sem	nivolatile Org	anic Compour	nds by GC/MS		
Analytical Method: Prep Method: Data File Name:	8270D EPA 3510C J:\ACQUDATA\5973A\DA	TA\083111\C	:H638.D\		Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	140522 R-MS-51
CAS No.	Analyte Name		Result Q	MRL	Note	
108-95-2 129-00-0	Phenol Pyrene		9.4 U 9.4 U	9.4 9.4		
Surrogate Name		%Rec	Control Limits	Date Analyzed	Q	
2,4,6-Tribromophenol 2-Fluorobiphenyl		97 77	28-157 39-119	8/31/11 20:28 8/31/11 20:28		

2,4,6-Tribromophenol	97	28-157	8/31/11 20:28	
2-Fluorobiphenyl	77	39-119	8/31/11 20:28	
2-Fluorophenol	48	10-105	8/31/11 20:28	
Nitrobenzene-d5	77	37-117	8/31/11 20:28	
Phenol-d6	30	10-107	8/31/11 20:28	
p-Terphenyl-d14	105	40-133	8/31/11 20:28	

Analytical Report

Client:	Unicorn Management Consultants
Project:	Union Rd #2011-100
Sample Matrix:	Water

 Service Request:
 R1104718

 Date Collected:
 8/23/11

 Date Received:
 8/24/11

 Date Analyzed:
 8/31/11 20:09

Sample Name:Trip Blank-2011Lab Code:R1104718-023

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method:	8260C
Data File Name:	J:\ACQUDATA\msvoa10\data\083111\D4494.D\

Analysis Lot: 259792 Instrument Name: R-MS-10 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	Note	
67-64-1	Acetone	20 U	20		
71-43-2	Benzené	5.0 U	5.0		
75-27-4	Bromodichloromethane	5.0 U	5.0		
75-25-2	Bromoform	5.0 U	5.0		
74-83-9	Bromomethane	5.0 U	5.0		
78-93-3	2-Butanone (MEK)	10 U	10		
75-15-0	Carbon Disulfide	10 U	10		
56-23-5	Carbon Tetrachloride	5.0 U	5.0		
108-90-7	Chlorobenzene	5.0 U	5.0		
75-00-3	Chloroethane	5.0 U	5.0		
67-66-3	Chloroform	5.0 U	5.0		
74-87-3	Chloromethane	5.0 U	5.0		
124-48-1	Dibromochloromethane	5.0 U	5.0		
75-34-3	1,1-Dichloroethane	5.0 U	5.0		
107-06-2	1,2-Dichloroethane	5.0 U	5.0		
75-35-4	1,1-Dichloroethene	5.0 U	5.0		
156-59-2	cis-1,2-Dichloroethene	5.0 U	5.0		
156-60-5	trans-1,2-Dichloroethene	5.0 U	5.0		
78-87-5	1,2-Dichloropropane	5.0 U	5.0		
10061-01-5	cis-1,3-Dichloropropene	5.0 U	5.0		
10061-02-6	trans-1,3-Dichloropropene	5.0 U	5.0		
100-41-4	Ethylbenzene	5.0 U	5.0		
591-78-6	2-Hexanone	10 U	10		
75-09-2	Methylene Chloride	5.0 U	5.0		
108-10-1	4-Methyl-2-pentanone (MIBK)	10 U	10		
100-42-5	Styrene	5.0 U	5.0		
79-34-5	1,1,2,2-Tetrachloroethane	5.0 U	5.0		
127-18-4	Tetrachloroethene	5.0 U	5.0		
108-88-3	Toluene	5.0 U	5.0		
71-55-6	1,1,1-Trichloroethane	5.0 U	5.0		
79-00-5	1,1,2-Trichloroethane	5.0 U	5.0		
79-01-6	Trichloroethene	5.0 U	5.0		
75-01-4	Vinyl Chloride	5.0 U	5.0		
95-47-6	o-Xylene	5.0 U	5.0		

			italy noar response				
Client: Project: Sample Matrix:	Unicorn Management C Union Rd #2011-100 Water	consultants				Service Request: Date Collected: Date Received: Date Analyzed:	8/23/11 8/24/11
Sample Name: Lab Code:	Trip Blank-2011 R1104718-023					Units: Basis:	
		Volatile Orgai	nic Compounds	s by GC/MS			
Analytical Method Data File Name:	I: 8260C J:\ACQUDATA\msvoa10	\data\083111\D	4494.D\			Analysis Lot: Instrument Name: Dilution Factor:	R-MS-10
CAS No.	Analyte Name		Result Q	MRL		Note	
179601-23-1	m,p-Xylenes	• *	5.0 U	5.0			
Surrogate Name		%Rec	Control Limits	Date Analyzed	Q		
4-Bromofluorobenz	ene	97	85-122	8/31/11 20:09			
Toluene-d8		106	87-121	8/31/11 20:09			
Dibromofluorometh	lane	111	89-119	8/31/11 20:09			

Analytical Report

Client:Unicorn Management ConsultantsProject:Union Rd #2011-100Sample Matrix:WaterSample Name:Method BlankLab Code:R1104718-MB

Service Request: R1104718 Date Collected: NA Date Received: NA

Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor 1	Date Extracted	Date Analyzed	Note
Oil and Grease, Nonpolar (SG	T-HEM) 1664	5.0 U	mg/L	5.0	1	ŇA	9/6/11 09:30	

Analytical Report

Unicorn Management Consultants Union Rd #2011-100 Water
Method Blank R1104718-MB1

Service Request: R1104718 Date Collected: NA Date Received: NA

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed No	ote
Arsenic, Dissolved	6010C	10 U	μg/L	10	1 9/ 7/11 9/8/11 19:00	-
Lead, Dissolved	6010C	50 U	μg/L	50	1 9/ 7/11 9/8/11 19:00	

Analytical Report

Client:	Unicorn Management Consultants
Project:	Union Rd #2011-100
Sample Matrix:	Water
Sample Name:	Method Blank
Lab Code:	R1104718-MB2

Service Request: R1104718 Date Collected: NA Date Received: NA

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Factor Extracted	Date Analyzed	Note
Arsenic, Dissolved	6010C	10 U	μg/L	10	1 9/ 7/11	9/8/11 19:05	
Lead, Dissolved	6010C	50 U	μg/L	50	1 9/ 7/11	9/8/11 19:05	

Analytical Report

Client:	Unicorn Management Consultants
Project:	Union Rd #2011-100
Sample Matrix:	Water

Service Request: R1104718 Date Collected: NA Date Received: NA Date Analyzed: 8/30/11 12:36

Sample Name:Method BlankLab Code:RQ1108621-01

Volatile Organic Compounds by GC/MS

Analytical Method:	8260C
Data File Name:	J:\ACQUDATA\msvoa10\data\083011\D4452.D\

Analysis Lot: 259593 Instrument Name: R-MS-10 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	Note
67-64-1	Acetone	20 U	20	
71-43-2	Benzene	5.0 U	5.0	
75-27-4	Bromodichloromethane	5.0 U	5.0	
75-25-2	Bromoform	5.0 U	5.0	
74-83-9	Bromomethane	5.0 U	5.0	
78-93-3	2-Butanone (MEK)	10 U	10	
75-15-0	Carbon Disulfide	10 U	10	
56-23-5	Carbon Tetrachloride	5.0 U	5.0	
108-90-7	Chlorobenzene	5.0 U	5.0	
75-00-3	Chloroethane	5.0 U	5.0	· · · · · · · · · · · · · · · · · · ·
67-66-3	Chloroform	5.0 U	5.0	
74-87-3	Chloromethane	5.0 U	5.0	
124-48-1	Dibromochloromethane	5.0 U	5.0	
75-34-3	1,1-Dichloroethane	5.0 U	5.0	
107-06-2	1,2-Dichloroethane	5.0 U	5.0	
75-35-4	1,1-Dichloroethene	5.0 U	5.0	
156-59-2	cis-1,2-Dichloroethene	5.0 U	5.0	
156-60-5	trans-1,2-Dichloroethene	5.0 U	5.0	
78-87-5	1,2-Dichloropropane	5.0 U	5.0	
10061-01-5	cis-1,3-Dichloropropene	5.0 U	5.0	
10061-02-6	trans-1,3-Dichloropropene	5.0 U	5.0	
100-41-4	Ethylbenzene	5.0 U	5,0	
591-78-6	2-Hexanone	10 U	10	
75-09-2	Methylene Chloride	5.0 U	5.0	
108-10-1	4-Methyl-2-pentanone (MIBK)	10 U	10	· · ·
100-42-5	Styrene	5.0 U	5.0	
79-34-5	1,1,2,2-Tetrachloroethane	5.0 U	5.0	
127-18-4	Tetrachloroethene	5.0 U	5.0	
108-88-3	Toluene	5.0 U	5.0	
71-55-6	1,1,1-Trichloroethane	5.0 U	5.0	
79-00-5	1,1,2-Trichloroethane	5.0 U	5.0	
79-01-6	Trichloroethene	5.0 U	5.0	
75-01-4	Vinyl Chloride	5.0 U	5.0	
95-47-6	o-Xylene	5.0 U	5.0	

Service Request: R1104718 Date Collected: NA Date Received: NA Date Analyzed: 8/30/11 12:36
Units: µg/L Basis: NA
C/MS
Analysis Lot: 259593 Instrument Name: R-MS-10 Dilution Factor: 1
MRL Note
5.0
Date Analyzed Q
D/11 12:36 D/11 12:36 D/11 12:36

Analytical Report

Client:	Unicorn Management Consultants
Project:	Union Rd #2011-100
Sample Matrix:	Water

Service Request: R1104718 Date Collected: NA Date Received: NA Date Analyzed: 8/31/11 12:11

Units: μg/L Basis: NA

Sample Name:Method BlankLab Code:RQ1108703-01

Volatile Organic Compounds by GC/MS

Analytical Method:	8260C
Data File Name:	J:\ACQUDATA\msvoa10\data\083111\D4478.D\

Analysis Lot: 259792 Instrument Name: R-MS-10 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	Note	
67-64-1	Acetone	20 U	20		
71-43-2	Benzene	5.0 U	5.0		
75-27-4	Bromodichloromethane	5.0 U	5.0		
75-25-2	Bromoform	5.0 U	5.0		
74-83-9	Bromomethane	5.0 U	5.0		
78-93-3	2-Butanone (MEK)	10 U	10		
75-15-0	Carbon Disulfide	10 U	10		
56-23-5	Carbon Tetrachloride	5.0 U	5.0		
108-90-7	Chlorobenzene	5.0 U	5.0		
75-00-3	Chloroethane	5.0 U	5.0		
67-66-3	Chloroform	5.0 U	5.0		
74-87-3	Chloromethane	5.0 U	5.0		
124-48-1	Dibromochloromethane	5.0 U	5.0		
75-34-3	1,1-Dichloroethane	5.0 U	5,0		
107-06-2	1,2-Dichloroethane	5.0 U	5.0		
75-35-4	1,1-Dichloroethene	5.0 U	5.0	· ,	··· ·
156-59-2	cis-1,2-Dichloroethene	5.0 U	5,0		
156-60-5	trans-1,2-Dichloroethene	5.0 U	5.0		
78-87-5	1,2-Dichloropropane	5.0 U	5.0		
10061-01-5	cis-1,3-Dichloropropene	5.0 U	5.0		
10061-02-6	trans-1,3-Dichloropropene	5.0 U	5.0		
100-41-4	Ethylbenzene	5.0 U	5.0		
591-78-6	2-Hexanone	10 U	10		
75-09-2	Methylene Chloride	5.0 U	5.0		
108-10-1	4-Methyl-2-pentanone (MIBK)	10 U	10		
100-42-5	Styrene	5.0 U	5.0		
79-34-5	1,1,2,2-Tetrachloroethane	5.0 U	5.0		
127-18-4	Tetrachloroethene	5.0 U	5.0		·
108-88-3	Toluene	5.0 U	5.0		
71-55-6	1,1,1-Trichloroethane	5.0 U	5.0		
79-00-5	1,1,2-Trichloroethane	5.0 U	5.0		
79-01-6	Trichloroethene	5.0 U	5.0		
75-01-4	Vinyl Chloride	5.0 U	5.0		
95-47-6	o-Xylene	5.0 U	5.0		

Analytical Report

		А	nalytical Report				
Client: Project: Sample Matrix:	Unicorn Management Union Rd #2011-100 Water	Consultants				Service Request: Date Collected: Date Received: Date Analyzed:	NA NA
Sample Name: Lab Code:	Method Blank RQ1108703-01					Units: Basis:	• =
		Volatile Orga	nic Compounds	s by GC/MS			
Analytical Method Data File Name:	: 8260C J:\ACQUDATA\msvoa1	0\data\083111\D	4478.D\			Analysis Lot: Instrument Name: Dilution Factor:	R-MS-10
CAS No.	Analyte Name		Result Q	MRL		Note	
179601-23-1	m,p-Xylenes	<u></u>	5.0 U	5.0		<u>,</u>	
Surrogate Name		%Rec	Control Limits	Date Analyzed	Q		
4-Bromofluorobenze Toluene-d8 Dibromofluorometha		96 104 106	85-122 87-121 89-119	8/31/11 12:11 8/31/11 12:11 8/31/11 12:11			

Analytical Report

Sample Name: Lab Code:Method Blank RQ1108299-01Units: 197L Basis: NASemivolatile Organic Compounds by GC/MSSemivolatile Organic Compounds by GC/MSAnalytical Method:8270D EPA 3510CAnalysis Lot: 259561 Extraction Lot: 140522 Instrument Name: Diffution Factor: 1CAS No.Analyte NameResultQMRLD0-82-11,2,4-Trichlorobenzene10U1095-50-11,3-Dichlorobenzene10U1010-83-642,4,5-Trichlorophenzene10U1010-646-71,4-Dichlorobenzene10U1010-646-72,4,5-Trichlorophenzene10U1010-646-72,4,5-Trichlorophenzene10U1010-75-742,4-Dinitrophenol10U1012-14-22,4-Dinitrophenol10U1012-83-22,4-Dinitrophenol10U1012-85-32,4-Dinitrophenol10U1013-75-12,4-Dinitrophenol10U1013-75-12,4-Dinitrophenol10U1013-75-13,-Dichlorophenol10U1013-75-13,-Dichlorophenol10U1013-75-13,-Dichlorophenol10U1013-75-13,-Dichlorophenol10U1014-75-32,-Choronaphthalene10U1015-782,-Choronaphthalene10U1015-782,-Choronaphthalene	Client: Project: Sample Matrix:	Unicorn Management Consultants Union Rd #2011-100 Water				Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	NA NA 8/25/11
Semivolatile Organic Compounds by GC/MS Analytical Method: 8270D Analysis Lot: 259561 Prep Method: EPA 3510C Extraction Lot: 140522 Data File Name: I/ACQUDATA/5973A/DATA/082911/CH593.D/ Instrument Name: R-MS-51 Diffusion Factor: 1 0 0 10 20-82-1 1,2,4-Trichlorobenzene 10 U 10 95-50-1 1,2-Dichlorobenzene 10 U 10 106-46-7 1,4-Dichlorobenzene 10 U 10 106-46-7 1,4-Dichlorobenzene 10 U 10 106-46-7 1,4-Dichlorobenzene 10 U 10 102-83-2 2,4-Ortichlorophenol 10 U 10 103-87-9 2,4-Dinitrotoluene 10 U 10 102-83-2 2,4-Dinitrotoluene 10 U 10 121-14-2 2,4-Dinitrotoluene 10 U 10 91-58-7 2-Chlorophenol 10 U 10							
Analytical Method: 8270D Analysis Lot: 259561 Prep Method: EPA 3510C Extraction Lot: 140522 Data File Name: JACQUDATA/5973A/DATA/082911/CH593.D/ Instrument Name: R-MS-51 Dilution Factor: 1 2 CAS No. Analyte Name Result Q MRL Note 20-82-1 12.4-Trichlorobenzene 10 U 10 95-50-1 1.2-Dichlorobenzene 10 U 10 95-50-1 1.2-Dichlorobenzene 10 U 10 95-56-2 2.4.5-Trichlorophenzene 10 U 10 95-554 2.4.5-Trichlorophenol 10 U 10 95-95-4 2.4.5-Trichlorophenol 10 U 10 120-83-2 2.4-Dimethylphenol 10 U 10 10 10 10 10 10 10 10 10 10 11 11 11 11 12 12 14 2.4-Dimethylphenol 10 10 10 10 10 10 10 10 10 11 12 12 14							
Prep Method: EPA 3510C Extraction Lot: 140522 Data File Name: J:\ACQUDATA\5973A\DATA\082911\CH593.D\ Instrument Name: R-MS-51 Dilution Factor: 1 140522 Instrument Name: R-MS-51 Dilution Factor: 120-82-1 1,2,4-Trichlorobenzene 10 U 10 95-50-1 1,2-Dichlorobenzene 10 U 10 105-46-7 1,4-Dichlorobenzene 10 U 10 105-46-7 1,4-Dichlorobenzene 10 U 10 106-46-7 1,4-Dichlorobenzene 10 U 10 120-83-2 2,4-5 7.4-Dichlorophenol 10 U 10 120-83-2 2,4-Dinitrotoluene 10 U 10 10 121-14-2 2,4-Dinitrotoluene 10 U 10 10 121-14-2 2,4-Dinitrotoluene 10 U 10 10 95-57-8 2-Chlorophenol 10 U 10 10 95-57-6 2-Methylphenol		Semivolatile C	Organic Con	npou	nds by GC/MS		
Prep Method: EPA 3510C Extraction Lot: 140522 Data File Name: J:\ACQUDATA\5973A\DATA\082911\CH593.D\ Instrument Name: R-MS-51 Dilution Factor: 1 140522 Instrument Name: R-MS-51 Dilution Factor: 120-82-1 1,2,4-Trichlorobenzene 10 U 10 95-50-1 1,2-Dichlorobenzene 10 U 10 105-46-7 1,4-Dichlorobenzene 10 U 10 105-46-7 1,4-Dichlorobenzene 10 U 10 106-46-7 1,4-Dichlorobenzene 10 U 10 120-83-2 2,4-5 7.4-Dichlorophenol 10 U 10 120-83-2 2,4-Dinitrotoluene 10 U 10 10 121-14-2 2,4-Dinitrotoluene 10 U 10 10 121-14-2 2,4-Dinitrotoluene 10 U 10 10 95-57-8 2-Chlorophenol 10 U 10 10 95-57-6 2-Methylphenol	Analytical Mathady	\$270D				Amplusia Lota	250561
Data File Name: J:\ACQUDATA\5973A\DATA\082911\CH593.D\ Instrument Name: R-MS-51 Dilution Factor: 1 CAS No. Analyte Name Result Q MRL Note 120-82-1 1,2,4-Trichlorobenzene 10 U 10 10 95-50-1 1,2-Dichlorobenzene 10 U 10 10 541-73-1 1,3-Dichlorobenzene 10 U 10 10 95-95-4 2,4,5-Trichlorophenol 10 U 10 10 105-67-2 2,4,6-Trichlorophenol 10 U 10 10 10 105-67-9 2,4-Dinitrophenol 10 U 10 10 10 10 121-14-2 2,4-Dinitrophenol 10 U 10 10 10 10 91-58-7 2-Chlorophenol 10 U 10 10 10 10 91-58-7 2-Chlorophenol 10 U 10 10 10 10 10 10 10 10 11 10 10 12 14 10 10 10 10 12 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
CAS No. Analyte Name Result Q MRL Note 120-82-1 1,2,4-Trichlorobenzene 10 U 10 95-50-1 1,2-Dichlorobenzene 10 U 10 541-73-1 1,3-Dichlorobenzene 10 U 10 106-46-7 1,4-Dichlorobenzene 10 U 10 88-06-2 2,4,6-Trichlorophenol 10 U 10 105-37-9 2,4-Dichlorophenol 10 U 10 105-37-9 2,4-Dinitroblene 10 U 10 105-37-9 2,4-Dinitroblene 10 U 10 121-14-2 2,4-Dinitroblene 10 U 10 51-28-5 2,4-Dinitroblene 10 U 10 91-38-7 2-Chloronaphthalene 10 U 10 91-58-7 2-Chlorophenol 10 U 10 95-57-8 2-Chlorophenol 10 U 10 95-48-7 2-Methylphenol Coelution 10 </td <td></td> <td></td> <td>\CH593,D\</td> <td></td> <td></td> <td></td> <td></td>			\CH593,D\				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CASNO	Analyta Nama	Docult	0	MDI	Noto	
95-50-1 1,2-Dichlorobenzene 10 U 10 541-73-1 1,3-Dichlorobenzene 10 U 10 106-46-7 1,4-Dichlorobenzene 10 U 10 95-95-4 2,4,5-Trichlorophenol 10 U 10 120-83-2 2,4,6-Trichlorophenol 10 U 10 120-83-2 2,4-Dimethylphenol 10 U 10 105-67-9 2,4-Dimethylphenol 10 U 10 121-14-2 2,4-Dinitrotoluene 10 U 10 95-57-8 2-Chloronphthalene 10 U 10 95-57-8 2-Chloronphthalene 10 U 10 95-57-8 2-Chlorophenol 10 U 10 91-57-6 2-Methylphenol 10 U 10 92-92-2 3-Nitroaniline 50 U	···			-			
541-73-1 1,3-Dichlorobenzene 10 U 10 106-46-7 1,4-Dichlorobenzene 10 U 10 95-95-4 2,4,5-Trichlorophenol 10 U 10 120-83-2 2,4-5-Trichlorophenol 10 U 10 120-83-2 2,4-Dichlorophenol 10 U 10 105-67-9 2,4-Dinitrophenol 50 U 50 121-14-2 2,4-Dinitrotoluene 10 U 10 606-20-2 2,6-Dinitrotoluene 10 U 10 91-58-7 2-Chloronaphthalene 10 U 10 91-57-6 2-Methylaphthalene 10 U 10 95-48-7 2-Methylaphthalene 10 U 10 88-75-5 2-Nitrophenol 10 U 10 91-94-1 3,3'-Dichlorobenzidine 10 U 10 92-09-2 3-Nitroaniline 50 U 50 534-52-1 4,6-Dinitro-2-methylphenol							
106-46-7 1,4-Dichlorobenzene 10 U 10 95-95-4 2,4,5-Trichlorophenol 10 U 10 88-06-2 2,4,5-Trichlorophenol 10 U 10 120-83-2 2,4-Dichlorophenol 10 U 10 120-83-2 2,4-Dinthylphenol 10 U 10 105-67-9 2,4-Dinitrophenol 50 U 50 121-14-2 2,4-Dinitrophenol 50 U 50 121-14-2 2,4-Dinitrotoluene 10 U 10 91-58-7 2-Chloronphenol 10 U 10 91-58-7 2-Chloronphenol 10 U 10 91-57-6 2-Methylaphthalene 10 U 10 95-57-8 2-Chlorophenol 10 U 10 88-74-4 2-Nitroaniline 50 U 50 88-75-5 2-Nitrophenol 10 U 10 91-94-1 3,3'-Dichlorobenzidine 10 U 10 91-94-1 3,3'-Dichlorobenzidine 10 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
95-95-42,4,5-Trichlorophenol10U1088-06-22,4,5-Trichlorophenol10U10120-83-22,4-Dichtyphenol10U10105-67-92,4-Dimethyphenol10U1051-28-52,4-Dimitrophenol50U50121-14-22,4-Dinitrotoluene10U10606-20-22,6-Dinitrotoluene10U1091-58-72-Chloronaphthalene10U1095-57-82-Chlorophenol10U1095-57-82-Chlorophenol10U1095-57-82-Chlorophenol10U1095-57-82-Chlorophenol10U1095-57-82-Chlorophenol10U1095-57-82-Nitrophenol10U1091-97-62-Methylphenol10U1091-97-72-Methylphenol10U1091-94-13,3'-Dichlorobenzidine10U1091-94-13,3'-Dichlorobenzidine10U1091-94-13,3'-Dichlorobenzidine10U1095-90-74-Chloro-3-methylphenol50U50534-52-14,6-Dinitro-2-methylphenol10U10106-47-84-Chloroaniline10U10106-47-84-Chloroaniline50U50100-02-74-Nitrophenyl Phenyl Ether10U10100-01-6							
88-06-2 2,4,6-Trichlorophenol 10 U 10 120-83-2 2,4-Dichlorophenol 10 U 10 105-67-9 2,4-Dimethylphenol 10 U 10 51-28-5 2,4-Dinitrophenol 50 U 50 121-14-2 2,4-Dinitrotoluene 10 U 10 606-20-2 2,6-Dinitrotoluene 10 U 10 91-58-7 2-Chloronaphthalene 10 U 10 95-57-8 2-Chlorophenol 10 U 10 95-57-8 2-Chlorophenol 10 U 10 95-48-7 2-Methylphenol 10 U 10 88-75-5 2-Nitroaniline 50 U 50 88-75-5 2-Nitroaniline 50 U 50 95-09-2 3-Nitroaniline 50 U 50 534-52-1 4,6-Dinitro-2-methylphenol 50 U 50 534-52-1 4,6-Dinitro-2-methylphenol 50 U 50 534-52-1 4,6-Dinitro-2-methylphenol 50							
120-83-22,4-Dichlorophenol10U10105-67-92,4-Dimethylphenol10U1051-28-52,4-Dinitrophenol50U50121-14-22,4-Dinitrotoluene10U10606-20-22,6-Dinitrotoluene10U1091-58-72-Chloronaphthalene10U1095-57-82-Chlorophenol10U1095-57-82-Chlorophenol10U1095-48-72-Methylnaphthalene10U1095-48-72-Methylphenol10U1088-74-42-Nitroaniline50U5088-75-52-Nitrophenol10U1091-94-13,3'Dichlorobenzidine10U1099-09-23-Nitroaniline50U50534-52-14,6-Dinitro-2-methylphenol50U50101-55-34-Bromophenyl Phenyl Ether10U10106-47-84-Chloro-3-methylphenol10U10106-47-84-Chloro-3-methylphenol50U50100-01-64-Nitroaniline50U50100-02-74-Nitrophenol50U50100-02-74-Nitrophenol50U50100-02-74-Nitrophenol50U50100-02-74-Chloro-3-methylphenol50U50100-02-74-Nitrophenol50U50100-02-7							
105-67-92,4-Dimethylphenol10U1051-28-52,4-Dimitrophenol50U50121-14-22,4-Dimitrotoluene10U10 $606-20-2$ 2,6-Dinitrotoluene10U1091-58-72-Chloronaphthalene10U1095-57-82-Chlorophenol10U1095-57-82-Methylnaphthalene10U1095-57-72-Methylnaphthalene10U1095-57-82-Methylnaphthalene10U1095-57-72-Methylphenol10U1088-74-42-Nitroaniline50U5088-75-52-Nitrophenol10U1091-94-13,3'-Dichlorobenzidine10U1099-09-23-Nitroaniline50U50534-52-14,6-Dinitro-2-methylphenol50U50101-55-34-Bromophenyl Phenyl Ether10U10106-47-84-Chloroa-3-methylphenol10U10106-47-84-Chloroaniline50U50100-02-74-Nitrophenol50U5083-32-9Acenaphthene10U10208-96-8Acenaphthylene10U10							
51-28-5 $2,4-Dinitrophenol$ 50 50 $121-14-2$ $2,4-Dinitrotoluene$ 10 10 $606-20-2$ $2,6-Dinitrotoluene$ 10 10 $91-58-7$ $2-Chloronaphthalene$ 10 10 $95-57-8$ $2-Chlorophenol$ 10 10 $95-48-7$ $2-Methylphenol$ 10 10 $88-74-4$ $2-Nitroaniline$ 50 U $88-75-5$ $2-Nitrophenol$ 10 U $91-94-1$ $3,3'-Dichlorobenzidine$ 10 U $3-$ and $4-Methylphenol Coclution10U9-09-23-Nitroaniline50U50U5051-52-14,6-Dinitro-2-methylphenol50101-55-34-Bromophenyl Phenyl Ether10U10-55-34-Bromophenyl Phenyl Ether10U106-47-84-Chloron-3-methylphenol1010100-02-74-Nitroaniline5050100-02-74-Nitroaniline505083-32-9Accenaphthene10U10208-96-8Acenaphthene10U10$		-					
121-14-22,4-Dinitrotoluene10U10 $606-20-2$ 2,6-Dinitrotoluene10U10 $91-58-7$ 2-Chloronaphthalene10U10 $95-57-8$ 2-Chlorophenol10U10 $95-57-8$ 2-Chlorophenol10U10 $91-57-6$ 2-Methylnaphthalene10U10 $95-48-7$ 2-Methylphenol10U10 $88-74-4$ 2-Nitroaniline50U50 $88-75-5$ 2-Nitrophenol10U10 $91-94-1$ 3,3'-Dichlorobenzidine10U10 $91-94-1$ 3,3'-Dichlorobenzidine10U10 $99-09-2$ 3-Nitroaniline50U50 $534-52-1$ 4,6-Dinitro-2-methylphenol50U50 $101-55-3$ 4-Bromophenyl Phenyl Ether10U10 $106-47-8$ 4-Chloro-3-methylphenol10U10 $106-47-8$ 4-Chlorophenyl Phenyl Ether10U10 $100-02-7$ 4-Nitroaniline50U50 $100-02-7$ 4-Nitroaniline50U50 $83-32-9$ Acenaphthene10U10 $208-96-8$ Acenaphthylene10U10							
606-20-22,6-Dinitrotoluene10U10 $91-58-7$ 2-Chloronaphthalene10U10 $95-57-8$ 2-Chlorophenol10U10 $91-57-6$ 2-Methylnaphthalene10U10 $95-48-7$ 2-Methylphenol10U10 $88-74-4$ 2-Nitroaniline50U50 $88-75-5$ 2-Nitrophenol10U10 $91-94-1$ 3,3'-Dichlorobenzidine10U10 $9-09-2$ 3-Nitroaniline50U50 $534-52-1$ 4,6-Dinitro-2-methylphenol50U50 $101-55-3$ 4-Bromophenyl Phenyl Ether10U10 $106-47-8$ 4-Chloroaniline10U10 $100-01-6$ 4-Nitroaniline50U50 $100-02-7$ 4-Nitroaniline50U50 $100-02-7$ 4-Nitroaniline50U50 $83-32-9$ Acenaphthene10U10 $208-96-8$ Acenaphthylene10U10							
91-58-72-Chloronaphthalene10U1095-57-82-Chlorophenol10U1091-57-62-Methylnaphthalene10U1095-48-72-Methylphenol10U1088-74-42-Nitroaniline50U5088-75-52-Nitrophenol10U1091-94-13,3'-Dichlorobenzidine10U103- and 4-Methylphenol Coclution10U1099-09-23-Nitroaniline50U50534-52-14,6-Dinitro-2-methylphenol50U50101-55-34-Bromophenyl Phenyl Ether10U10106-47-84-Chloroaniline10U107005-72-34-Chlorophenyl Phenyl Ether10U10100-01-64-Nitroaniline50U50100-02-74-Nitrophenol50U5083-32-9Acenaphthene10U10208-96-8Acenaphthylene10U10		•					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
91-57-62-Methylnaphthalene10U1095-48-72-Methylphenol10U1088-74-42-Nitroaniline50U5088-75-52-Nitrophenol10U1091-94-13,3'-Dichlorobenzidine10U103- and 4-Methylphenol Coelution10U1099-09-23-Nitroaniline50U50534-52-14,6-Dinitro-2-methylphenol50U50101-55-34-Bromophenyl Phenyl Ether10U1099-09-74-Chloro-3-methylphenol10U10106-47-84-Chlorophenyl Phenyl Ether10U10106-47-84-Chlorophenyl Phenyl Ether10U10100-01-64-Nitroaniline50U50100-02-74-Nitroaniline50U5083-32-9Acenaphthene10U10208-96-8Acenaphthylene10U10							
95-48-72-Methylphenol10U10 $88-74-4$ 2-Nitroaniline50U50 $88-75-5$ 2-Nitrophenol10U10 $91-94-1$ $3,3'$ -Dichlorobenzidine10U10 $3-$ and 4-Methylphenol Coelution10U10 $99-09-2$ 3-Nitroaniline50U50 $534-52-1$ $4,6$ -Dinitro-2-methylphenol50U50 $101-55-3$ 4-Bromophenyl Phenyl Ether10U10 $106-47-8$ 4-Chloro-3-methylphenol10U10 $106-47-8$ 4-Chlorophenyl Phenyl Ether10U10 $106-47-8$ 4-Chlorophenyl Phenyl Ether10U10 $100-01-6$ 4-Nitroaniline50U50 $100-02-7$ 4-Nitrophenol50U50 $83-32-9$ Acenaphthene10U10 $208-96-8$ Acenaphthylene10U10							
88-74-42-Nitroniline50U50 $88-75-5$ 2-Nitrophenol10U10 $91-94-1$ $3,3'-Dichlorobenzidine10U103- and 4-Methylphenol Coelution10U1099-09-23-Nitroaniline50U50534-52-14,6-Dinitro-2-methylphenol50U50101-55-34-Bromophenyl Phenyl Ether10U10106-47-84-Chloro-3-methylphenol10U10106-47-84-Chloronailine10U10106-47-84-Chlorophenyl Phenyl Ether10U10100-01-64-Nitroaniline50U50100-02-74-Chlorophenyl Phenyl Ether10U10100-02-74-Chlorophenol50U5083-32-9Acenaphthene10U10208-96-8Acenaphthylene10U10$							
88-75-5 2-Nitrophenol 10 U 10 91-94-1 3,3'-Dichlorobenzidine 10 U 10 3- and 4-Methylphenol Coelution 10 U 10 99-09-2 3-Nitroaniline 50 U 50 534-52-1 4,6-Dinitro-2-methylphenol 50 U 50 101-55-3 4-Bromophenyl Phenyl Ether 10 U 10 59-50-7 4-Chloro-3-methylphenol 10 U 10 106-47-8 4-Chloroaniline 10 U 10 7005-72-3 4-Chlorophenyl Phenyl Ether 10 U 10 100-01-6 4-Nitroaniline 50 U 50 100-02-7 4-Nitrophenol 50 U 50 83-32-9 Acenaphthene 10 U 10 208-96-8 Acenaphthylene 10 U 10			50	ĨĨ	50		
91-94-1 3,3'-Dichlorobenzidine 10 U 10 3- and 4-Methylphenol Coelution 10 U 10 99-09-2 3-Nitroaniline 50 U 50 534-52-1 4,6-Dinitro-2-methylphenol 50 U 50 101-55-3 4-Bromophenyl Phenyl Ether 10 U 10 59-50-7 4-Chloro-3-methylphenol 10 U 10 106-47-8 4-Chloroaniline 10 U 10 7005-72-3 4-Chlorophenyl Phenyl Ether 10 U 10 100-01-6 4-Nitroaniline 50 U 50 100-02-7 4-Nitrophenol 50 U 50 83-32-9 Acenaphthene 10 U 10 208-96-8 Acenaphthylene 10 U 10							
99-09-2 3-Nitroaniline 50 U 50 534-52-1 4,6-Dinitro-2-methylphenol 50 U 50 101-55-3 4-Bromophenyl Phenyl Ether 10 U 10 59-50-7 4-Chloro-3-methylphenol 10 U 10 106-47-8 4-Chloroaniline 10 U 10 7005-72-3 4-Chlorophenyl Phenyl Ether 10 U 10 100-01-6 4-Nitroaniline 50 U 50 100-02-7 4-Nitrophenol 50 U 50 83-32-9 Acenaphthene 10 U 10 208-96-8 Acenaphthylene 10 U 10				-			
99-09-2 3-Nitroaniline 50 U 50 534-52-1 4,6-Dinitro-2-methylphenol 50 U 50 101-55-3 4-Bromophenyl Phenyl Ether 10 U 10 59-50-7 4-Chloro-3-methylphenol 10 U 10 106-47-8 4-Chloroaniline 10 U 10 7005-72-3 4-Chlorophenyl Phenyl Ether 10 U 10 100-01-6 4-Nitroaniline 50 U 50 100-02-7 4-Nitrophenol 50 U 50 83-32-9 Acenaphthene 10 U 10 208-96-8 Acenaphthylene 10 U 10		3- and 4-Methylphenol Coelution	10	U	10	· · · ·	
534-52-1 4,6-Dinitro-2-methylphenol 50 U 50 101-55-3 4-Bromophenyl Phenyl Ether 10 U 10 59-50-7 4-Chloro-3-methylphenol 10 U 10 106-47-8 4-Chloroaniline 10 U 10 7005-72-3 4-Chlorophenyl Phenyl Ether 10 U 10 100-01-6 4-Nitroaniline 50 U 50 100-02-7 4-Nitrophenol 50 U 50 83-32-9 Acenaphthene 10 U 10 208-96-8 Acenaphthylene 10 U 10	99-09-2						
59-50-7 4-Chloro-3-methylphenol 10 U 10 106-47-8 4-Chloroaniline 10 U 10 7005-72-3 4-Chlorophenyl Phenyl Ether 10 U 10 100-01-6 4-Nitroaniline 50 U 50 100-02-7 4-Nitrophenol 50 U 50 83-32-9 Acenaphthene 10 U 10 208-96-8 Acenaphthylene 10 U 10		4,6-Dinitro-2-methylphenol					
59-50-7 4-Chloro-3-methylphenol 10 U 10 106-47-8 4-Chloroaniline 10 U 10 7005-72-3 4-Chlorophenyl Phenyl Ether 10 U 10 100-01-6 4-Nitroaniline 50 U 50 100-02-7 4-Nitrophenol 50 U 50 83-32-9 Acenaphthene 10 U 10 208-96-8 Acenaphthylene 10 U 10	101-55-3	4-Bromophenyl Phenyl Ether	10	U	10		
7005-72-3 4-Chlorophenyl Phenyl Ether 10 10 100-01-6 4-Nitroaniline 50 U 50 100-02-7 4-Nitrophenol 50 U 50 83-32-9 Acenaphthene 10 U 10 208-96-8 Acenaphthylene 10 U 10							
100-01-6 4-Nitroaniline 50 U 50 100-02-7 4-Nitrophenol 50 U 50 83-32-9 Acenaphthene 10 U 10 208-96-8 Acenaphthylene 10 U 10	106-47-8	• •					
100-01-6 4-Nitroaniline 50 U 50 100-02-7 4-Nitrophenol 50 U 50 83-32-9 Acenaphthene 10 U 10 208-96-8 Acenaphthylene 10 U 10	7005-72-3	4-Chlorophenyl Phenyl Ether	10	U	10		
83-32-9 Acenaphthene 10 10 208-96-8 Acenaphthylene 10 U 10							
208-96-8 Acenaphthylene 10 U 10	100-02-7	4-Nitrophenol	50	U	50		
208-96-8 Acenaphthylene 10 U 10	83-32-9	Acenaphthene	10	U	10	- · · · ·	
120-12-7 Anthracene 10 U 10		-					
	120-12-7	Anthracene	10	U	10		

Benz(a)anthracene

Benzo(a)pyrene

56-55-3

50-32-8

10 U

10 U

10

10

Analytical Report

Client:	Unicorn Management Consultants	Service Request:	R1104718
Project:	Union Rd #2011-100	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
-		Date Extracted:	8/25/11
		Date Analyzed:	8/29/11 18:42
Sample Name:	Method Blank	Units:	μg/L
Lab Code:	RQ1108299-01	Basis:	
	Semivolatile Organic Compounds by GC/MS		

Analytical Method:	8270D
Prep Method:	EPA 3510C
Data File Name:	J:\ACQUDATA\5973A\DATA\082911\CH593.D\

Analysis Lot:259561Extraction Lot:140522Instrument Name:R-MS-51Dilution Factor:1

CAS No.	Analyte Name	Result	Q	MRL	Note	
205-99-2	Benzo(b)fluoranthene	10	U	10		
191-24-2	Benzo(g,h,i)perylene	10	U	10		
207-08-9	Benzo(k)fluoranthene	10	U	10		
100-51-6	Benzyl Alcohol	10	U	10		
108-60-1	2,2'-Oxybis(1-chloropropane)	10	U	10		
111-91-1	Bis(2-chloroethoxy)methane	10	U	10		
111-44-4	Bis(2-chloroethyl) Ether	10	U	10		
117-81-7	Bis(2-ethylhexyl) Phthalate	10	U	10		
85-68-7	Butyl Benzyl Phthalate	10	U	10		
86-74-8	Carbazole	10	U	10		
218-01-9	Chrysene	10	U	10		
84-74-2	Di-n-butyl Phthalate	10	U	10		
117-84-0	Di-n-octyl Phthalate	10	U	10	· · · ·	
53-70-3	Dibenz(a,h)anthracene	10	U	10		
132-64-9	Dibenzofuran	10	U	10		
84-66-2	Diethyl Phthalate	10	U	10	·····	
131-11-3	Dimethyl Phthalate	10	U	10		
206-44-0	Fluoranthene	10	U	10		
86-73-7	Fluorene	10	U	10	· · · ·	
118-74-1	Hexachlorobenzene	10	U	10		
87-68-3	Hexachlorobutadiene	10	U	10		
77-47-4	Hexachlorocyclopentadiene	10	U	10		
67-72-1	Hexachloroethane	10	U	10		
193-39-5	Indeno(1,2,3-cd)pyrene	10	U	10		
78-59-1	Isophorone	10	U	10		
621-64-7	N-Nitrosodi-n-propylamine	10	U	10		
62-75-9	N-Nitrosodimethylamine	10	U	10		
86-30-6	N-Nitrosodiphenylamine	10	U	10		· · · · · · · · · · · · · · · · · · ·
91-20-3	Naphthalene	10	U	10		
98-95-3	Nitrobenzene	10	U	10		
87-86-5	Pentachlorophenol (PCP)	50	U	50		
85-01-8	Phenanthrene	10	U	10		

.

Analytical Report

		А	nalytical Rej	port				
Client: Project: Sample Matrix:	Unicorn Management Co Union Rd #2011-100 Water	onsultants					Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	NA NA 8/25/11
Sample Name: Lab Code:	Method Blank RQ1108299-01						Units: Basis:	
	Se	mivolatile Org	ganic Comj	pounds	by GC/MS			
Analytical Method: Prep Method: Data File Name:	8270D EPA 3510C J:\ACQUDATA\5973A\D.	ATA\082911\C	CH593.D\				Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	140522 R-MS-51
CAS No.	Analyte Name		Result	Q	MRL		Note	
108-95-2 129-00-0	Phenol Pyrene		10 10	-	10 10			
Surrogate Name		%Rec	Contro Limit		Date Analyzed	Q		
2,4,6-Tribromopheno	1	90	28-15		8/29/11 18:42			
2-Fluorobiphenyl		66	39-11		8/29/11 18:42			
2-Fluorophenol		44	10-10:	5 8	3/29/11 18:42			
Nitrobenzene-d5		68	37 - 11′		8/29/11 18:42			
Phenol-d6		27	10-10	78	3/29/11 18:42			
		100	40.40	• <i>•</i>	100/11 10 10			

40-133

8/29/11 18:42

102

p-Terphenyl-d14

QA/QC Report

Client:Unicorn Management ConsultantsProject:Union Rd #2011-100Sample Matrix:Water

Service Request: R1104718 Date Analyzed: 9/ 6/11

Unite ma/l

Lab Control Sample Summary General Chemistry Parameters

								Basis: N	0	
			Control Sai 04718-L(•	Duplicate L R110	ab Contro 4718-DL(-			
Analyte Name	Method	Result	Spike Amount			Spike Amount		% Rec Limits	RPD	RPD Limit
Oil and Grease, Nonpolar (SGT-HEM)	1664	16.4	21.3	77	15.5	21.3	73	64 - 132	6	34

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:Unicorn Management ConsultantsProject:Union Rd #2011-100Sample Matrix:Water

Service Request: R1104718 Date Analyzed: 9/ 8/11

Lab Control Sample Summary Inorganic Parameters

Units: µg/L Basis: NA

			Control Sau 104718-LO	•	
Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits
Arsenic, Dissolved Lead, Dissolved	6010C 6010C	36.3 490	40 500	91 98	80 - 120 80 - 120

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ŧ

QA/QC Report

Client:Unicorn Management ConsultantsProject:Union Rd #2011-100Sample Matrix:Water

Service Request: R1104718 Date Analyzed: 8/30/11

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

Units: µg/L Basis: NA

Analysis Lot: 259593

	Q1108621-0		% Rec
Result	Amount	% Rec	[%] Rec Limits
16.9	20.0	85	54 - 139
			78 - 121
20.0	20.0	100	80 - 125
20.2	20.0	101	68 - 130
• -			57 - 144
19.5	20.0	97	60 - 133
23.0	20.0	115	52 - 140
18.1	20.0	91	68 - 133
18.3	20,0	92	80 - 121
20.4	20.0	102	71 - 130
19.8	20.0	99	78 - 125
17.8	20.0	89	61 - 138
20.1	20.0	101	78 - 133
18.9	20.0	95	76 - 124
20.0	20.0	100	73 - 127
17.6	20.0	88	72 - 129
18.9	20.0	95	78 - 122
18.2	20.0	91	75 - 121
19.6	20,0	98	80 - 123
18.1	20.0	91	77 - 125
17.8	20.0	89	69 - 127
18.5	20.0	92	78 - 123
17.3	20.0	86	61 - 131
19.1	20.0	96	75 - 125
18.1	20.0	90	61 - 132
19.8	20.0	99	80 - 132
19.6	20.0	98	72 - 131
17.4	20.0	87	72 - 131
18.0	20.0	90	78 - 122
17.9	20.0	90	72 - 128
18.8	20.0	94	80 - 122
17.6	20.0	88	74 - 127
	Result 16.9 17.8 20.0 20.2 16.6 19.5 23.0 18.1 18.3 20.4 19.8 17.6 18.9 20.0 17.6 18.9 19.6 18.1 17.8 18.5 17.3 19.1 18.1 19.6 17.4 18.8	RQ1108621-0 Spike Result Amount 16.9 20.0 17.8 20.0 20.0 20.0 20.2 20.0 16.6 20.0 20.2 20.0 16.6 20.0 19.5 20.0 23.0 20.0 18.1 20.0 19.8 20.0 19.8 20.0 17.8 20.0 19.8 20.0 17.8 20.0 18.9 20.0 20.1 20.0 18.9 20.0 18.9 20.0 18.9 20.0 18.1 20.0 18.2 20.0 17.3 20.0 18.1 20.0 19.6 20.0 19.8 20.0 19.6 20.0 19.6 20.0 19.6 20.0 19.6 20.0 <td>ResultAmount% Rec16.920.08517.820.08920.020.010020.220.010116.620.08319.520.09723.020.011518.120.09118.320.09220.420.010219.820.09917.820.08920.120.010118.920.09520.020.010017.620.08818.920.09518.220.09119.620.09818.120.09217.320.08918.520.09217.320.08918.120.09019.820.09019.820.09019.820.09019.820.09019.820.09017.420.08718.020.09017.920.090</td>	ResultAmount% Rec16.920.08517.820.08920.020.010020.220.010116.620.08319.520.09723.020.011518.120.09118.320.09220.420.010219.820.09917.820.08920.120.010118.920.09520.020.010017.620.08818.920.09518.220.09119.620.09818.120.09217.320.08918.520.09217.320.08918.120.09019.820.09019.820.09019.820.09019.820.09019.820.09017.420.08718.020.09017.920.090

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:Unicorn Management ConsultantsProject:Union Rd #2011-100Sample Matrix:Water

Service Request: R1104718 Date Analyzed: 8/30/11

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

Units: µg/L Basis: NA

Analysis Lot: 259593

		Control Sa Q1108621-0	-		
Analyte Name	Result	Spike Amount	% Rec	% Rec Limits	
Vinyl Chloride	19.8	20.0	99	72 - 138	
o-Xylene	19.0	20.0	95	77 - 118	
m,p-Xylenes	38.3	40.0	96	79 - 126	

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:Unicorn Management ConsultantsProject:Union Rd #2011-100Sample Matrix:Water

Service Request: R1104718 Date Analyzed: 8/31/11

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

Units: µg/L Basis: NA

Analysis Lot: 259792

		Control Sa Q1108703-0			
Analyte Name	Result	Spike Amount	% Rec	% Rec Limits	
Acetone	18.6	20.0	93	54 - 139	
Benzene	19.2	20.0	96	78 - 121	
Bromodichloromethane	20.7	20.0	104	80 - 125	
Bromoform	20.5	20.0	102	68 - 130	
Bromomethane 2-Butanone (MEK)	16.4 18,7	20.0 20.0	82 94	57 - 144 60 - 133	
Carbon Disulfide Carbon Tetrachloride	22.1 19.8	20.0	111	52 - 140	
Chlorobenzene	20.0	20.0 20.0	99 100	68 - 133 80 - 121	
· · · · · · ·					
Chloroethane Chloroform	22.1 21.3	20.0 20.0	110 107	71 - 130 78 - 125	
Chloromethane	18.8	20.0	94	61 - 138	
Dibromochloromethane	21.0	20.0	105	78 - 133	
1,1-Dichloroethane	21.0	20.0	103	76 - 133 76 - 124	
1,2-Dichloroethane	20.9	20.0	104	73 - 127	
1,1-Dichloroethene	19.2	20.0	96	72 - 129	
cis-1,2-Dichloroethene	20.0	20.0	100	78 - 122	
trans-1,2-Dichloroethene	19.9	20.0	100	75 - 121	
1,2-Dichloropropane	20.4	20.0	102	80 - 123	
cis-1,3-Dichloropropene	18.9	20.0	95	77 - 125	
trans-1,3-Dichloropropene	18.4	20.0	92	69 - 127	
Ethylbenzene	20.1	20.0	100	78 - 123	
2-Hexanone	16.8	20.0	84	61 - 131	
Methylene Chloride	20.2	20.0	101	75 - 125	
4-Methyl-2-pentanone (MIBK)	16.7	20.0	84	61 - 132	
Styrene	21.3	20.0	107	80 - 132	
1,1,2,2-Tetrachloroethane	20.1	20.0	100	72 - 131	
Tetrachloroethene	19.5	20.0	97	72 - 131	
Toluene	19.4	20.0	97 00	78 - 122	
1,1,1-Trichloroethane	19.9	20.0	99	72 - 128	
1,1,2-Trichloroethane	19.5	20.0	97	80 - 122	
Trichloroethene	19.3	20.0	96	74 - 127	

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:Unicorn Management ConsultantsProject:Union Rd #2011-100Sample Matrix:Water

Service Request: R1104718 Date Analyzed: 8/31/11

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

Units: μg/L Basis: NA

Analysis Lot: 259792

		Control Sa Q1108703-(-		
Analyte Name	Result	Spike Amount	% Rec	% Rec Limits	
Vinyl Chloride	21.7	20.0	109	72 - 138	
o-Xylene	20.4	20.0	102	77 - 118	
m,p-Xylenes	41.9	40.0	105	79 - 126	

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:Unicorn Management ConsultantsProject:Union Rd #2011-100Sample Matrix:Water

Service Request: R1104718 Date Analyzed: 8/29/11

Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS

Analytical Method:	8270D
Prep Method:	EPA 3510C

Units:	μg/L
Basis :	NA

Extraction Lot: 140522

		Control Sa RQ1108299-(e Lab Contr RQ1108299-(
Analyte Name	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	56.0 54.3	100	56 54	54.4	100	54	10 - 127	3	30
1,3-Dichlorobenzene	54.5 51.5	100 100	54 52	51.8 51.0	100 100	52 51	23 - 130 21 - 90	5 <1	30 30
							·····	_	
1,4-Dichlorobenzene	51.8 95,9	100	52 06	49.6	100	50	10 - 124	4	30
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	95.9 94.4	100 100	96 94	88.8 87.6	100	89	62 - 117	8	30
					100	88	62 - 115	8	30
2,4-Dichlorophenol	91.4	100	91	90.7	100	91	62 - 109	<1	30
2,4-Dimethylphenol	92.5	100	93	87.7	100	88	28 - 100	5	30
2,4-Dinitrophenol	101	100	101	98.8	100	99	40 - 156	2	30
2,4-Dinitrotoluene	106	100	106	101	100	101	69 - 122	5	30
2,6-Dinitrotoluene	94.7	100	95	91.2	100	91	48 - 125	4	30
2-Chloronaphthalene	72.3	100	72	67.7	100	68	47 - 98	7	30
2-Chlorophenol	81.4	100	81	76.2	100	76	42 - 112	7	30
2-Methylnaphthalene	71.2	100	71	68,6	100	69	34 - 102	4	30
2-Methylphenol	77.1	100	77	75.1	100	75	51 - 95	3	30
2-Nitroaniline	97.4	100	97	89.4	100	89	60 - 119	9	30
2-Nitrophenol	90.4	100	90	89.3	100	89	60 - 113	1	30
3,3'-Dichlorobenzidine	77.6	100	78	78.8	100	79	44 - 114	1	30
3- and 4-Methylphenol Coelution	154	200	77	144	200	72	49 - 89	7	30
3-Nitroaniline	83.5	100	84	79.0	100	79	49 - 110	6	30
4,6-Dinitro-2-methylphenol	96.3	100	96	98.3	100	98	65 - 141	2	30
4-Bromophenyl Phenyl Ether	102	100	102	101	100	101	63 - 124	<1	30
4-Chloro-3-methylphenol	106	100	106	100	100	100	42 - 124	6	30
4-Chloroaniline	87.6	100	88	81.9	100	82	40 - 111	7	30
4-Chlorophenyl Phenyl Ether	94.2	100	94	90.0	100	90	59 - 112	4	30
4-Nitroaniline	97.3	100	97	91.2	100	91	61 - 122	7	30
4-Nitrophenol	48.0	100	48	52.3	100	52	10 - 126	9	30
Acenaphthene	90.8	100	91	82.6	100	83	54 - 125	9	30
Acenaphthylene	89,6	100	90	85.3	100	85	69 - 111	5	30
Anthracene	99.5	100	100	99.0	100	99	55 - 116	<1	30
Benz(a)anthracene	98.0	100	98	95.0	100	95	66 - 110	3	30
Benzo(a)pyrene	95.7	100	96	92.8	100	93	44 - 114	3	30

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:	Unicorn Management Consultants
Project:	Union Rd #2011-100
Sample Matrix:	Water

Service Request: R1104718 Date Analyzed: 8/29/11

Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS

Analytical Method:8270DPrep Method:EPA 3510C

Units: µg/L Basis: NA

Extraction Lot: 140522

		Control San Q1108299-0 Spike			e Lab Contr Q1108299-0 Spike		% Rec		RPD
Analyte Name	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Benzo(b)fluoranthene	106	100	106	104	100	104	64 - 122	2	30
Benzo(g,h,i)perylene	94.7	100	95	92.5	100	93	60 - 127	2	30
Benzo(k)fluoranthene	110	100	110	105	100	105	49 - 133	5	30
Benzyl Alcohol	101	100	101	91.9	100	92	31 - 109	9	30
2,2'-Oxybis(1-chloropropane)	89.8	100	90	84.7	100	85	44 - 112	6	30
Bis(2-chloroethoxy)methane	92.7	100	93	90.8	100	91	53 - 142	2	30
Bis(2-chloroethyl) Ether	82.8	100	83	81.0	100	81	56 - 106	2	30
Bis(2-ethylhexyl) Phthalate	101	100	101	97.9	100	98	62 - 124	3	30
Butyl Benzyl Phthalate	97.2	100	97	92.6	100	93	41 - 148	5	30
Carbazole	94.9	100	95	94.0	100	94	66 - 117	<1	30
Chrysene	99.2	100	99	96.6	100	97	57 - 118	3	30
Di-n-butyl Phthalate	98.6	100	99		100	97	<u>57 - 139</u>	1	30
Di-n-octyl Phthalate	112	100	112	107	100	107	77 - 120	4	30
Dibenz(a,h)anthracene	96.1	100	96	94.1	100	94	58 - 132	2	30
Dibenzofuran	86.3	100	86	81.1	100	81	58 - 105	6	30
Diethyl Phthalate	106	100	106	98.6	100	99	65 - 122	7	30
Dimethyl Phthalate	97.9	100	98	91.8	100	92	69 - 115	6	30
Fluoranthene	97.6	100	98	99.7	100	100	62 - 123	2	30
Fluorene	99.2	100	99	92.7	100	93	60 - 112	7	30
Hexachlorobenzene	101	100	101	105	100	105	76 - 116	3	30
Hexachlorobutadiene	59.6	100	60	56.0	100	56	16 - 95	6	30
Hexachlorocyclopentadiene	64.7	100	65	60.4	100	60	10 - 99	7	30
Hexachloroethane	52.7	100	53	48.2	100	48	15 - 92	9	30
Indeno(1,2,3-cd)pyrene	90.1	100	90	89.7	100	90	64 - 126	<1	30
Isophorone	89,5	100	90	86.9	100	87	61 - 128	3	30
N-Nitrosodi-n-propylamine	94.5	100	95	86.8	100	87	51 - 119	9	30
N-Nitrosodimethylamine	58.2	100	58	55.2	100	55	37 - 67	5	30
N-Nitrosodiphenylamine	97.8	100	98	97.5	100	97	45 - 123	<1	30
Naphthalene	65.9	100	66	65.4	100	65	36 - 95	<1	30
Nitrobenzene	81.6	100	82	78.5	100	79	51 - 113	4	30
Pentachlorophenol (PCP)	100	100	100	104	100	104	56 - 146	4	30
Phenanthrene	102	100	102	102	100	102	58 - 118	<1	30

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client:Unicorn Management ConsultantsProject:Union Rd #2011-100Sample Matrix:Water

Service Request: R1104718 Date Analyzed: 8/29/11

Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS

Analytical Method: Prep Method:	8270D EPA 3510C		Jnits: μg/L Basis: NA
		Extraction	Lot: 140522

		Control Sa: Q1108299-(-		e Lab Contr Q1108299-(
Analyte Name	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Phenol Pyrene	37.7 104	100 100	38 104	35.6 103	100 100	36 103	10 - 113 67 - 118	6 2	30 30

Results flagged with an asterisk (*) indicate values outside control criteria.

SCOC Rev. 10/2010 Preservative Key 0. NONE 2. HNO3 3. H2SO4 4. NãOH 5. Dato Acetate 5. Mach 7. NaHSO4 REMARKS/ ALTERNATE DESCRIPTION INVOICE INFORMATION Other യ് R1104718 Unicorn Management Consu ANALYSIS REQUESTED (Include Method Number and Container Preservative) Printed Name Date/Time BILL TO: Signature PO #: E II. Results + QC Summaries (LCS, DUP, MS/MSD as required) REPORT REQUIREMENTS IV. Data Validation Report with P-III. Results + QC and Calibration Summaries й П RELINQUISHED BY Edata X Yes I. Results Only Р COMMENTS DEION V2' 6 93 Printed Name Date/Time Signature ୨ (Test in comment, NETALS, DISSO (List in commente METALS, TOTAL METALS, E PAGE 3 day **TURNAROUND REQUIREMENTS RUSH (SURCHARGES APPLY)** ____2 day ____ RECEIVED BY 1 Mustard Street, Suite 250, Rochester, NY 14609 | 585.288.5380 | 800.695.7222 | 585.288.8475 (fax) REQUESTED REPORT DATE __5 day Standard 1 day _4 day Printed Name 02020 SC/W2 Date/Time Signature PRESERVATIVE Ē 9 J ى 0 NUMBER OF CONTRINERS ى ى ٩ -0 RELINQUISHED BY Cox MATRIX 3 MOCDNNOL & UNICOVNMAL G.W 019 20 8:23-11 1715 GW 30 018 8-23-11 1700 600 8-23-11 1615 GW -005,000 (8-23-11/1530 GW 008 8-23-11 1545 GW 1, OIO 8-23-11 1600 GW 8-23-11 630 GW 015,016 8-23-11 1645 8-23-11 1515 8-23-11 1500 SAMPLING DATE TIME Unicory Management Consultants Printed Name Date/Time Signature E Metals Dissolved, reguire lab filtering. 2011-100 575 FOR OFFICE USE ONLY LAB ID g ЫQ 52 Federal Road, Suite 20 <u>7</u>0 -CCD COD ୧ RECEIVED BY Project Numbe Report CC Date/Times 24/11 Danbury, CT 06810 500 50 8 Ols Distribution: White - Lab Copy; Yellow - Return To Orighator õ Sanalo STATE WHERE SAMPLES WERE COLLECTED: Ē Mike O'CONNOr company/Address SPECIAL INSTRUCTIONS/COMMENTS Union Road (203)205-9000 Samplers Signature **CLIENT SAMPLE ID** MW - 13 M-2011 MW-135-2011 845 HW-12D-2011 MW- 12M-2011 MW-11 M-2011 MW-115-2011 MW- 125-201 MW-10M-2011 Hw-101-2011 Jary Behan MW-105-2011 Hame Bohen Relinquished by Date/Time 8-24-11 J Z N See QAPP Project Name Ē

Columbia Analytical Services CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

FORM	с Г
GUEST	
SIS RE	ЦÜVd
ices* Chain of Custody/Laboratory analysis request form	250. Bochester. NY 14609 585.288.5380 800 695.7222 585.288.877.4320 26.05
/LABORAT	800 695 7225
CUSTODY	585,288,5380
CHAIN OF	ochester. NY 14609
Columbia Analytical Services*	1 Mustard Street. Suite 250. Ro

	1 Mustard Street, Suite 250, Rochester, NY 14609	I 585.288.5380	I 800.695.7222	2 585.288.8475 (fax) PAGE	Ч СЕ Ч	
Project Name	Project Number			ANALYSIS REQUESTED	te Method Nu	er Preservative)
Project Manager Märke O'COMMOV			PRESE	PRESERVATIVE		
Companyadress Unicorn Management Consultants 52 Federal Road, Suite 20	ement Consult. Suite 20	Itants			0000	0. NONE 0. NONE 1. HCL 2. HNO3 3. HNO3
Danbury CT 06810	B10			25		 4. NãOH 5. Zn. Acetate 6. MeOH
Phone # 1 (203)205-9000		E-mail C.	ER OF	24 C		7. NaHSO4 8. Other
Sampler's Signature	Sampler's Printed Name GOVEN 10	lame 1 Do han				
-	FOR OFFICE USE ONLY LAB ID	NG TIME		100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	
ľ	-021, (DD 5	11730	و	7		
Trip Blank-2011	, DO-		3			-
-						
SPECIAL INSTRUCTIONS/COMMENTS Metals Dissolved, reguive lab filtering.	ive lab filterin	ي. ي.		TURNAROUND REQUIREMENTS	REPORT REQUIREMENTS	INVOICE INFORMATION
				1 day2 day3 day5 day	(LCS, DUP, MS/MSD as required)	BILL TO:
				Indard	III. Results + CC and Calibration Summaries	
				REQUESTED REPORT DATE	IV. Data Validation Report with Raw Data	
gjSee QAPP □	` •				7	
V STATE WHERE SAMPLES WERE COLLECTED: N	2				Edata Yes No	K 04 8
RELINQUISHED BY	AECEIVED BY	BELINO	(QUISHED BY	RECEIVED BY	RELINQUISHED BY	RECEIVED BY
	Signature Korulo	Signature		Signature	Signature	Signature
a han	Printed Name	Printed Name		Printed Name	Printed Name	Printed Name
	3	rim		Firm	Firm	Firm
11/845	DEPUTION IN DEPUTION DEPUTION	Date/Time		Date/Time	Date/Time	Date/Time

Distribution: White - Lab Copy; Yellow - Return To Orkginator

SCOC Rev. 10/2010

Cooler Receipt And Preservation Check Form Project/Client_Unicorn Folder Number____ R1104718 Cooler received on 8/24/11 by: MUKBLOURIER: CAS UPS FEDEX VELOCITY CLIENT 1. Were custody seals on outside of cooler? YES NO 2. Were custody papers properly filled out (ink, signed, etc.)? ZES NO 3. Did all bottles arrive in good condition (unbroken)? YES NQ Did VOA vials, Alkalinity, or Sulfide have significant* air bubbles? YES 4. N/A NÔ 5. Were Ice or Ice packs present? YES NO 6. Where did the bottles originate? CAS/ROC, CLIENT 5.6° 3.5° 7. Temperature of cooler(s) upon receipt: 4° Is the temperature within $0^{\circ} - 6^{\circ}$ C?: Yes Yes Yes Yes Yes If No, Explain Below No No No No No 8/24/11 0850 Date/Time Temperatures Taken: Thermometer ID: (IR GUN#3) / IR GUN#4 Reading From: (Temp Blank) Sample Bottle If out of Temperature, note packing/ice condition, Client Approval to Run Samples: PC Secondary Review: VB 82411 8/24/11 Cooler Breakdown: Date : Time: 1307 Ahb by: Were all bottle labels complete (i.e. analysis, preservation, etc.)? 1. NO YES) 2. Did all bottle labels and tags agree with custody papers? YÉS NO 3. Were correct containers used for the tests indicated? YES NO Air Samples: Cassettes / Tubes Intact 4. Canisters Pressurized Tedlar® Bags Inflated (N/A Explain any discrepancies: pН Reagent Lot Received Vol. Exp Sample ID Lot Added Final Yes = AllYES Added NO pН samples OK >12 NaOH ≤2 HNO₃ No =<2 H₂SO₄ Samples WCIOSISD 8/12 were For TCN Residual If present, contact PM to preserved at Chlorine and add ascorbic acid lab as listed (-) Phenol Na₂S₂O₃ _ -*Not to be tested before analysis - pH PM OK to tested and recorded by VOAs or GenChem Zn Aceta --Adjust: on a separate worksheet HC1 * ¥ 10060 7/17 -0415-00+ 050911-15, 072511-20D.

Bottle lot numbers: Other Comments:

PC Secondary Review: H:\SMODOCS\Cooler Receipt 3.doc

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

66166