52 Federal Road, Suite 2C Danbury, CT 06810 Tele: (203) 205-9000

Fax: (203) 205-9011 www.unicornmgt.com

April 1, 2010 Refer to OP-2510

Mr. David Locey Project Manager New York State Department of Environmental Conservation, Region 9 270 Michigan Avenue Buffalo, New York 14203-2999

Subject: Groundwater Monitoring Report; Closure Year 13 (2009); Annual Sampling

Union Road Site, Erie County, Cheektowaga, NY Inactive Hazardous Waste Disposal Site No. 915128

Dear Mr. Locey:

On behalf of American Premier Underwriters, Inc., Unicorn Management Consultants, LLC (UMC) hereby submits the Groundwater Monitoring Report for the Annual Sampling of Closure Year 13 (2009) for the subject site.

Also enclosed is the completed NYSDEC Institutional and Engineering Controls Certification Form for 2009.

If you have any questions regarding this report, please call me at 203-205-9000, ext. 13.

Sincerely,

Unicorn Management Consultants, LLC

Kerry M. Hanlon, LEP, P.G.

Project Manager

Union Road Remediation Project

Enclosures

cc: M. Doster: Regional Director, NYSDEC, Region 9

J. Crua: Project Manager, Bureau of Environmental Exposure Investigation

M. Cioffi

L. Lackner

J. Periconi

52 Federal Road, Suite 2C Danbury, CT 06810 Tele: (203) 205-9000 Fax: (203) 205-9011

www.unicornmgt.com

ANNUAL GROUNDWATER MONITORING REPORT CLOSURE YEAR 13 (2009)

UNION ROAD SITE TOWN OF CHEEKTOWAGA ERIE COUNTY, NEW YORK (SITE REGISTRY NO. 9-15-128)

Prepared for:

AMERICAN PREMIER UNDERWRITERS, INC. (FORMERLY THE PENN CENTRAL CORPORATION) ONE EAST FOURTH STREET CINCINNATI, OHIO 45202

Prepared by:

UNICORN MANAGEMENT CONSULTANTS, LLC 52 FEDERAL ROAD, SUITE 2C DANBURY, CT 06810

March 31, 2010

Document Authorization Form

Annual Groundwater Monitoring Report Closure Year 13 (2009)

> Union Road Site Town of Cheektowaga Erie County, New York (Site Registry No. 9-15-128)

> > Prepared for:

American Premier Underwriters, Inc. (Formerly The Penn Central Corporation) One East Fourth Street Cincinnati, Ohio 45202

Prepared by:

UNICORN MANAGEMENT CONSULTANTS, LLC 52 FEDERAL ROAD, SUITE 2C DANBURY, CT 06810

March 31, 2010

AUTHORIZATIONS:

Kerry M. Hanlon, LEP, PG.

Director of Operations

3/3//10 Date

Table of Contents

	P	age
1.	INTRODUCTION	1
2.	WELL INSTALLATION	4
3.	GROUNDWATER SAMPLING AND ANALYSES	6
4.	GROUNDWATER ELEVATION MONITORING	8
5.	CONCLUSION2	23
	List of Figures	
		age
	ure 1-1: Location Map	
Fig	gure 1-2: Site Location	3
Fig	ure 2-1: Groundwater Monitoring Well Locations	5
Fig	ure 4-1: Shallow Groundwater Flow Map; September 14, 20092	0.
Fig	ure 4-2: Medium Well Groundwater Flow Map; September 14, 20092	:1
Fig	sure 4-3: Bedrock Groundwater Flow Map; September 14, 2009	.2
	List of Tables	
		age
Tal	ble 3-1: Pre-Construction Sampling of Shallow Wells (June - August, 1991)	_
	ble 3-2: Well Purging Summary	
	ble 3-3: Annual Groundwater Monitoring 2009: Shallow Well SVOCs	
	ble 3-4: Annual Groundwater Monitoring 2009: Shallow Well VOCs, TPH, and Metals 1	
	ble 3-5: Annual Groundwater Monitoring 2009: Medium Well SVOCs	
	ble 3-6: Annual Groundwater Monitoring 2009: Medium Well VOCs, TPH, and Metals 1	
	ble 3-7: Annual Groundwater Monitoring 2009: Deep Well SVOCs	
	ble 3-8: Annual Groundwater Monitoring 2009: Deep Well VOCs, TPH, and Metals	
	ble 4-1: Groundwater Well Measurements; September 14, 2009	
ΑP	PENDIX A BORING LOGS AND WELL CONSTRUCTION DRAWINGS	
ΑP	PENDIX R LABORATORY REPORT	

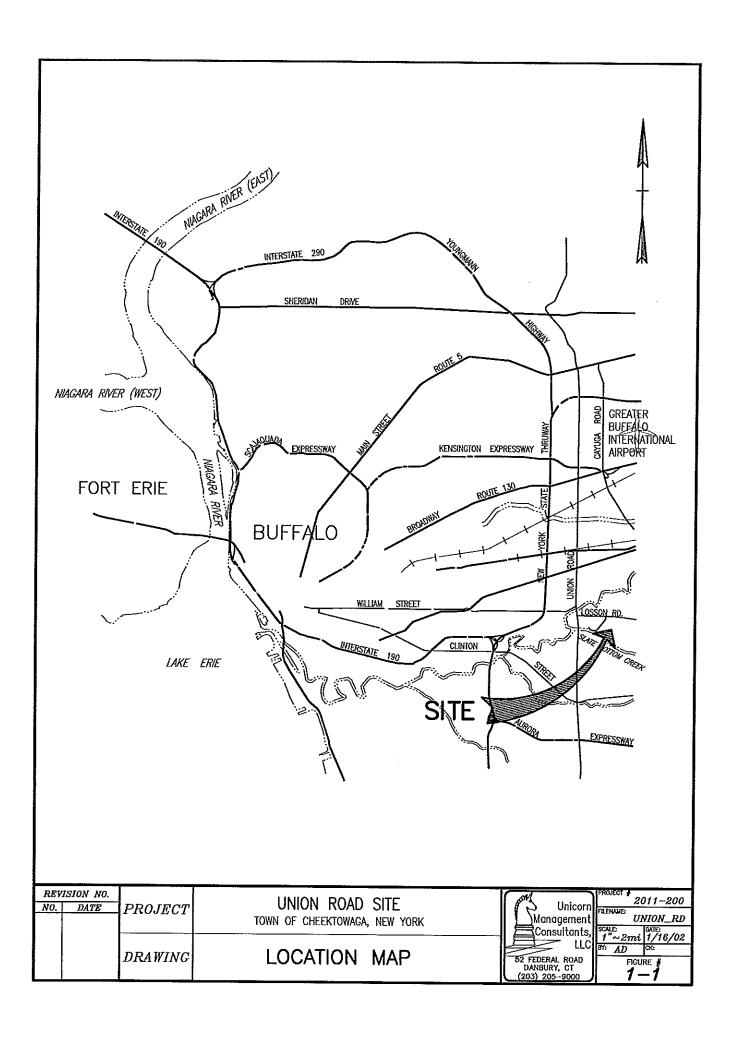
Period: Annual 2009

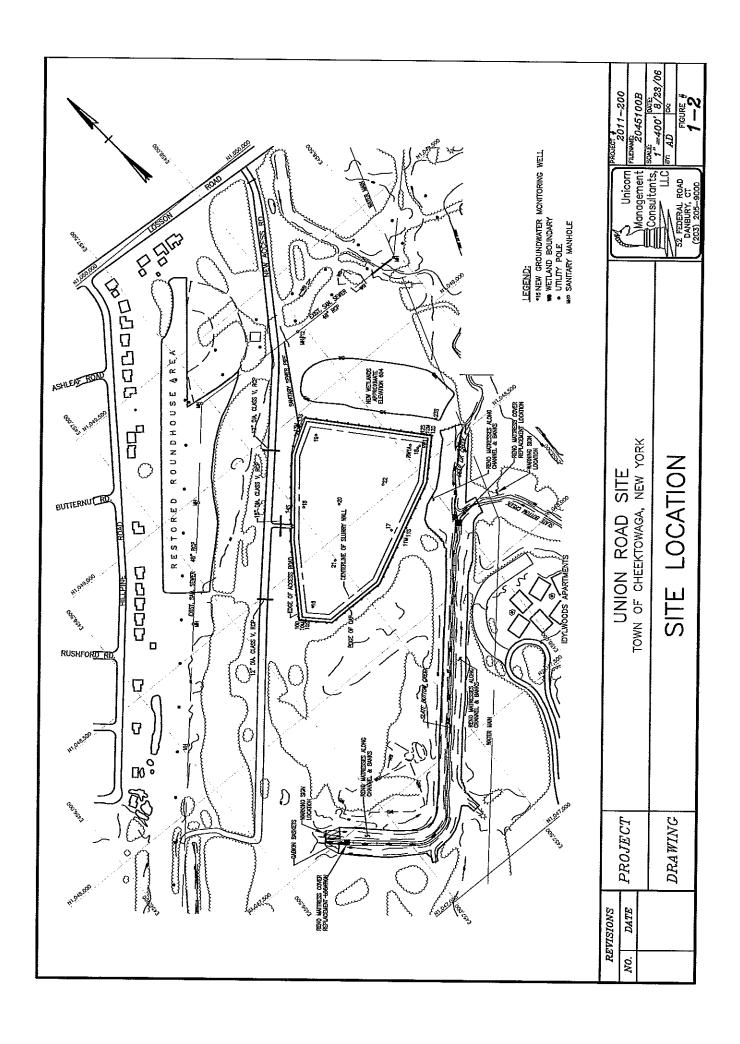
1. INTRODUCTION

This Groundwater Monitoring Report has been prepared by Unicorn Management Consultants, LLC (UMC) on behalf of American Premier Underwriters, Inc. The purpose of this document is to demonstrate compliance with Section 12.4.1 of the Union Road Site Remedial Design Report (Design Report), approved by the NYSDEC in May, 1995. Section 12.4.1 of the Design Report discusses the Groundwater Monitoring Plan (GMP). The GMP consists of these elements:

- Installation of groundwater monitoring wells inside and outside the slurry wall around the landfill closure;
- Collection and analyses of groundwater samples; and
- Determination of groundwater elevations.

Please note that pursuant to letter dated October 18, 2001, from Blank Rome Comisky and McCauley, LLP (APU's legal counsel), effective October 19, 2001, APU designated UMC as their environmental consultants.


The Union Road site ("the Site") is a Class 2 Site as defined by the New York State Department of Environmental Conservation (NYSDEC). The Site registry number is 915128. The Site is located at 333 Losson Road in Cheektowaga, New York (see Figure 1-1). A Record of Decision (ROD) for the Site was signed on March 9, 1992. Order on Consent Index No. B9-0148-92-03 was signed by The Penn Central Corporation (currently, American Premier Underwriters, Inc.) and the New York State Department of Environmental Conservation (NYSDEC); the effective date of the Order is April 12, 1994. Appendix "B" of the Order is the Final Remedial Action Work Plan (the "Work Plan"), dated June 18, 1993.

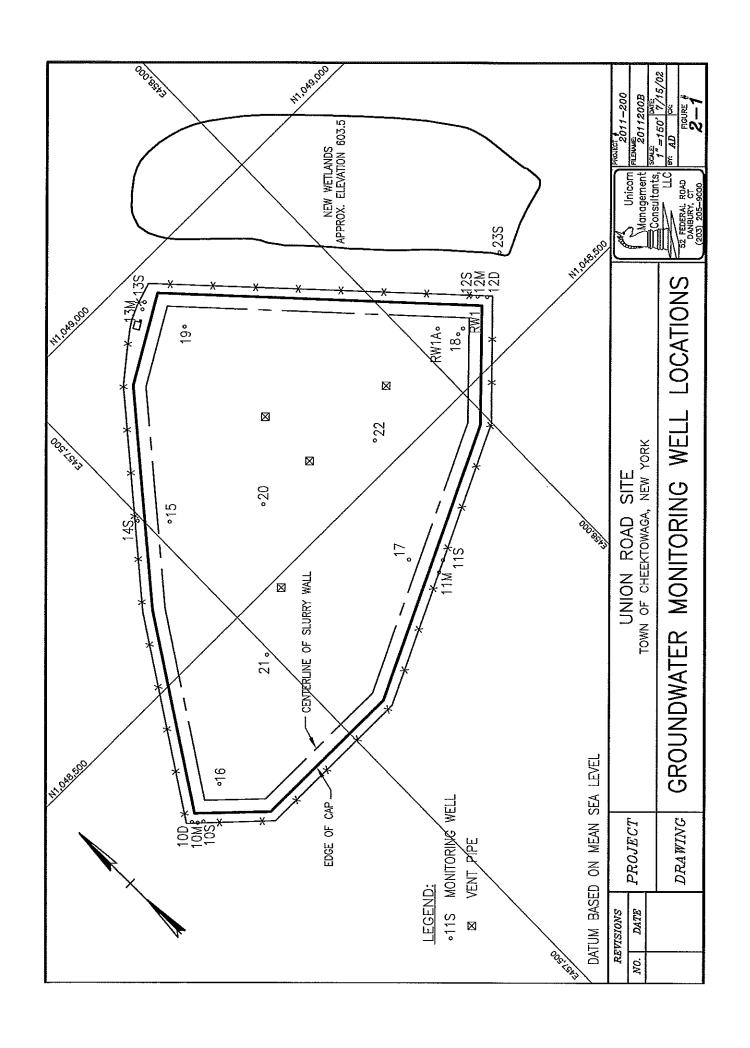

As required in Section 4.2 of the Work Plan, the design documents, including the Union Road Site Remedial Design Report, were submitted in May 1995 to the NYSDEC and were subsequently approved. After approval, work commenced and the landfill closure was completed in December 1996. Figure 1-2 illustrates a plan view of the Site closure.

The GMP, Inspection and Operation and Maintenance activities for the Site went into effect following the landfill closure. This report presents and summarizes the groundwater monitoring data for the Annual Monitoring of Closure Year 13 (2009). This is the Seventeenth sampling event since the landfill closure (December 1997).

The purpose of GMP is as follows:

- Monitor the groundwater gradient of the three hydrogeologic units in and around the closure area; and
- Evaluate the groundwater quality to assess the effectiveness of the remedial action performed in accordance with 1995 Design Report.

Union Road Site: Groundwater Monitoring Report


Period: Annual 2009

2. WELL INSTALLATION

As proposed in the GMP, five well clusters were installed along the outside perimeter of the slurry wall. These exterior wells are identified as MW-10S-M-D, MW-11S-M, MW-12S-M-D, MW-13S-M, and MW-14S. Adjacent to these wells, along the inside perimeter of the slurry wall, five shallow wells identified as MW-15, MW-16, MW-17, MW-18, and MW-19 were installed.

Three additional shallow wells (not originally proposed) were also installed. These wells (MW-20, MW-21, and MW-22) were installed in the center of the landfill to monitor the elevation of groundwater inside the landfill closure. Proposed well MW-20S adjacent to the outfall of the new wetland was installed; however, the identification of this well was changed from MW-20S to MW-23S. As discussed in the Groundwater Monitoring Report for the Second Quarter 1997, the original Monitoring Well 14S (MW-14S) was decommissioned and the replacement was reinstalled nine (9) feet southwest (along the fence line). The MW-14S replacement was installed, surveyed and developed on August 19, 1997. Well designations and locations are shown on Figure 2-1.

Installation of monitoring wells proceeded according to Section 02170 of the Technical Specifications. Installation of the interior wells occurred from February 19-23, 1996. Installation of the exterior wells took place from December 10, 1996 through January 6, 1997 and August 19, 1997. Copies of the Boring Logs and Well Construction Drawings are included as Appendix A.

3. GROUNDWATER SAMPLING AND ANALYSES

The purpose of groundwater sampling and analyses is to assess the effectiveness of the remedial action by evaluating the groundwater quality.

According to the GMP, groundwater samples will be collected from the outside perimeter monitoring wells by the following schedule:

- Quarterly the first year (1997);
- Semi-annually the second year (1998); and
- Annually (during the dry season) thereafter.

The parameters and applicable methods for the analyses are as follows:

- Total petroleum hydrocarbons (TPH) by EPA Method 1664*;
- Volatile organic compounds (VOCs) by EPA Method 8260;
- Semi-volatile organic compounds (SVOCs) by EPA Method 8270; and
- Soluble metals (lead and arsenic) by EPA Method 6010B, respectively.

The sampling frequency, analytical parameters, and/or sampling of specific wells will be modified based on the results of previous sampling events (since the landfill closure) and with written approval from the NYSDEC.

To evaluate the immediate effects of remedial activities on the groundwater around the landfill closure, the results of this sampling event are compared to results gathered from previous investigation reports performed by Dvirka and Bartilucci prior to the landfill closure. The data from the reports dated June, 1991 and August, 1991 are summarized in Table 3-1. Comparison between the averages prior to closure with post closure in the shallow wells shows significant decreases in all of the contaminants analyzed. To determine the continued effectiveness of the containment system, future sampling will be compared to the pre-closure concentrations.

Groundwater sampling for the annual monitoring event of 2009 was conducted on September 14, 2009. Table 3-2 summarizes the water depth measurements and well purging operations completed on the wells along the outside perimeter of the slurry wall during the annual sampling event. Analysis was performed by Columbia Analytical Services of Rochester, New York. Tables 3-3 through 3-8 present the analytical results from this sampling event.

*EPA Method 1664 has replaced EPA Method 418.1 because of the concerns and availability of Freon.

TABLE 3-1 UNION ROAD GROUNDWATER MONITORING REPORT YEAR 13 (2009)

PRE-CONSTRUCTION SAMPLING OF SHALLOW WELLS (JUNE - AUGUST, 1991)

(Concentrations in ug/L)

	WW.4S	NTW AS	MXV #C	SY /XXVV	37 /IME	
	CL MIN	CH- AA TAT	LVI. VV = 3.5	CO AA TAT	CO-AA TAT	
ANALYTE	PHASE I	PHASE II	PHASE I	PHASE I	PHASE II	AVERAGE
SVOC's (Base Neutrals)	17	16	120	290	100	109
Total VOC's	ND	5.9	QN.	42	3	10
ТРН	4,400	1,800	2,200	5,800	ND	2,840
Soluble Arsenic	34.8	35.5	14.7	27.1	5.7	24
Soluble Lead	10,100	8,090	4,450	3,560	367	5,313

ND- analyte not detected

GROUNDWATER MONITORING REPORT UNION ROAD TABLE 3-2

Checked by: GPC

Prepared by: KMH Date: 3/15/10 0

Date:

WELL PURGING SUMMARY September 14, 2009

								- Annual Control of Co
	(1)	Orginal			Water	Water	Water	
•	Riser	Bottom	Depth to	Water	Height	Volume	Removed	Notes
	Elev.	Elev.	Water	Elev.	in Well	in Well	from Well	
	(Feet)	(Feet)	(Feet)	(Feet)	(Feet)	(Gallons)	(Gallons)	
	623.09	599.9	9.52	613.57	13.67	2.2	7.0	
	622.50	589.6	11.84	610.66	21.06	3.4	10.0	
	622.02	574.1	16.20	605.82	31.72	5.1	8.5	Purged to nearly dry -Slow Recovery
	622.74	597.1	15.26	607.48	10.38	1.7	5.0	
I	622.86	578.4	21.80	601.06	22.66	3.6	10.0	
	622.62	595.8	20.22	602.40	6.60	1.1	3.25	Purged to nearly dry -Slow Recovery
	622.97	578.8	22.46	600.51	21.71	3.5	11.0	
l	621.18	557.8	19.96	601.22	43.42	7.0	21.0	The state of the s
I	622.96	599.1	12.32	610.64	11.54	1.8	6.0	
I	621.66	585.8	12.30	609.36	23.56	3.8	12.0	
	621.61	602.1	10.80	610.81	8.71	1,4	4.0	

⁽¹⁾ Elevations were surveyed by Douglas C. Meyers P.L.S., P.C. on March 17, 1997

Printed: 3/15/2010

⁽²⁾ Reinstalled, developed and resurveyed on August 19, 1997

All Elevations are referenced to Mean Sea Level

All wells are two (2) inches in diameter

Well development was performed on 1/16/1997

Prepared by: KMH Date: 3/17/10 Checked by GPK Date: 3-16-10

TABLE 3-3 UNION ROAD ANNUAL GROUNDWATER MONITORING 2009

UMC

SHALLOW WELL SVOCs

		ANALYTICAL RESULTS (ug/L)						
ANALYTE	MW-10S	MW-11S	MW-12S	MW-13S	MW-14S	Detection		
Dilution	1.00	1.00	1.00	1.00	1.00	Limit		
acenapthene	ND	ND	ND	ND	ND	10.0		
acenapthylene	ND	ND	ND	ND	ND	10.0		
anthracene	ND	ND	ND	ND	ND	10.0		
benzo(a)anthracene	ND	ND	ND	ND	ND	10.0		
benzo(a)pyrene	ND	ND	ND	ND	ND	10.0		
benzo(b)fluoranthene	ND	ND	ND	ND	ND	10.0		
benzo(g,h,i)perylene	ND	NĐ	ND	ND	ND	10.0		
benzo(k)fluoranthene	ND	ND	ND	ND	ND	10.0		
benzyl alcohol	ND	ND	ND	ND	ND	10.0		
butly benzyl phthalate	ND	ND	ND	ND	ND	10.0		
di-n-butlyphthalate	ND	ND	ND	ND	ND	10.0		
carbazole	ND	ND	ND	ND	ND	10.0		
indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	ND	10.0		
4-chloroaniline	ND	ND	ND	ND	ND	10.0		
bis(-2-chloroethoxy)methane	ND	ND	ND	ND	ND	10.0		
bis(2-chloroethyl)ether	ND	ND	ND	ND	ND	10.0		
2-chloronapthalene	ND	ND	ND	ND	ND	10.0		
2-chlorophenol	ND	ND	ND	ND	ND	10.0		
2,2'-oxybis(1-chloropropane)	ND	ND	ND	ND	ND	10.0		
chrysene	ND	ND	ND	ND	ND	10.0		
dibenzo(a,h)anthracene	ND	ND	ND	ND	ND	10.0		
dibenzofuran	ND	ND	ND	ND	ND	10.0		
1,2-dichlorobenzene	ND	ND	ND	ND	ND	10.0		
1,3-dichlorobenzene	ND	ND	ND	ND	ND	10.0		
1,4-dichlorobenzene	ND	ND	ND	ND	ND	10.0		
3,3'-dichlorobenzidine	ND	ND	ND	ND	ND	10.0		
2,4-dichlorophenol	ND	ND	ND	ND	ND	10.0		
diethylphthalate	ND	ND	ND	ND	ND	10.0		
dimethyl phthalate	ND	ND	ND	ND	ND	10.0		
2,4-dimethlyphenol	ND	ND	ND	ND	ND	10.0		
2,4-dinitrophenol	ND	ND	ND	ND	ND	50.0		
2,4-dinitrotoluene	ND	ND	ND	ND	ND	10.0		
2,6-dinitrotoluene	ND	ND	ND	ND	ND	10.0		
bis(2-ethylhexyl)phthalate	ND	ND	ND	ND	ND	10.0		
fluoranthene	ND	ND	ND	ND	ND	10.0		
fluorene	ND	ND	ND	ND	ND	10.0		
hexachlorobenzene	ND	ND	ND	ND	ND	10.0		
hexachlorobutadiene	ND	ND	ND	ND	ND	10.0		
hexachlorocyclopentadiene	ND	ND	ND	ND	ND	10.0		
hexachloroethane	ND	ND	ND	ND	ND	10.0		
isophorone	ND	ND	ND	ND	ND	10.0		

Prepared by: KMH Date: 3/17/10

Checked by: GAL Date: 3-18-10

TABLE 3-3 UNION ROAD ANNUAL GROUNDWATER MONITORING 2009

UMC

SHALLOW WELL SVOCs

2-methlynapthalene	ND	ND	ND	ND	ND	10.0
4,6-dinitro-2-methylphenol	ND	ND	ND	ND	ND	50.0
4-chloro-3-methlyphenol	ND	ND	ND	ND	ND	10.0
2-methylphenol	ND	ND	ND	ND	ND	10.0
3+4-methylphenol	ND	ND	ND	ND	ND	10.0
napthalene	ND	ND	ND	ND	ND	10.0
2-nitroaniline	ND	ND	ND	ND	ND	50.0
3-nitroaniline	ND	ND	ND	ND	ND	50.0
4-nitroaniline	ND	ND	ND	ND	ND	50.0
nitrobenzene	ND	ND	ND	ND	ND	10.0
2-nitrophenol	ND	ND	ND	ND	ND	10.0
4-nitrophenol	ND	ND	ND	ND	ND	50.0
n-nitrosodimethylamine	ND	ND	ND	ND	ND	10.0
n-nitrosodiphenylamine	ND	ND	ND	ND	ND	10.0
di-n-octyl phthalate	ND	ND	ND	ND	ND	10.0
pentachlorophenol	ND	ND	ND	ND	ND	50.0
phenanthrene	ND	ND	ND	ND	ND	10.0
phenol	ND	ND	ND	ND	ND	10.0
4-bromophenyl-phenylether	ND	ND	ND	ND	ND	10.0
4-chlorophenyl-phenylether	ND	ND	ND	ND	ND	10.0
n-nitroso-di-n-propylamine	ND	ND	ND	ND	ND	10.0
pyrene	ND	ND	ND	ND	ND	10.0
1,2,4-trichlorobenzene	ND	ND	ND	ND	ND	10.0
2,4,5-trichlorophenol	ND	ND	ND	ND	ND	10.0
2,4,6-trichlorophenol	ND	ND	ND	ND	ND	10.0
TOTALS	ND	ND	ND	ND	ND	

Average Outside Landfill (MW 10S - 14S)	ND
Average Inside Landfill (Table 3-1)	109

ND - Not Detected, above the laboratory detection limit

Prepared by: KMH Date: 3/15/10 Checked by: 60k Date: 3-18-10

TABLE 3-4 UNION ROAD ANNUAL GROUNDWATER MONITORING 2009

UMC

SHALLOW WELL VOCs, TPH, and METALs

MW-108 MW-128 MW-138 MW-148 Limit	ANALYTE		D.44!				
Dilution 1.00 1.0	ANALITE	MW-10S	MW-11S	MW-12S	MW-13S	MW-14S	Detection
Denzene	Dilution	1.00	1.00	1.00	1.00	1.00	Pimit
Dromodichloromethane	acetone	ND	ND	ND	ND	ND	20
Dromoform	benzene	ND	ND	ND	ND	ND	5.0
December ND	bromodichloromethane	ND	ND	ND	ND	ND	5.0
2-butanone (MEK) ND ND ND ND ND 10 carbon disulfide ND	bromoform	ND	ND	ND	ND	ND	5.0
carbon disulfide ND ND ND ND ND 10 carbon tetrachloride ND	bromomethane	ND	ND	ND	ND	ND	5.0
carbon tetrachloride ND ND ND ND S.0 chlorobenzene ND ND ND ND ND ND S.0 chloroethane ND ND ND ND ND ND ND S.0 chloroform ND ND ND ND ND ND ND ND S.0 chloromethane ND ND <td>2-butanone (MEK)</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>10</td>	2-butanone (MEK)	ND	ND	ND	ND	ND	10
chlorobenzene ND ND ND ND ND 5.0 chloroethane ND ND ND ND ND ND 5.0 chloroform ND ND ND ND ND ND ND 5.0 chloromethane ND ND ND ND ND ND ND 5.0 chloromethane ND ND ND ND ND ND ND ND 5.0 1,1-dichloroethane ND 5.0 1,2-dichloroethane ND	carbon disulfide	ND	ND	ND	ND	ND	10
chloroethane ND ND ND ND S.0 chloroform ND ND ND ND ND S.0 chloromethane ND ND ND ND ND ND S.0 dibromochloromethane ND ND ND ND ND ND ND S.0 1,1-dichloroethane ND ND ND ND ND ND ND S.0 1,2-dichloroethane ND S.0 cis-1,2-dichloroethene ND ND </td <td>carbon tetrachloride</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>5.0</td>	carbon tetrachloride	ND	ND	ND	ND	ND	5.0
chloroform ND ND ND ND ND 5.0 chloromethane ND ND ND ND ND ND 5.0 dibromochloromethane ND ND ND ND ND ND ND 5.0 1,1-dichloroethane ND ND ND ND ND ND ND 5.0 1,1-dichloroethane ND ND ND ND ND ND ND 5.0 1,1-dichloroethene ND 5.0 trans-1,2-dichloroethene ND	chlorobenzene	ND	ND	ND	ND	ND	5.0
chloromethane ND ND ND ND ND 5.0 dibromochloromethane ND ND ND ND ND ND ND 5.0 1,1-dichloroethane ND ND <t< td=""><td>chloroethane</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>5.0</td></t<>	chloroethane	ND	ND	ND	ND	ND	5.0
dibromochloromethane ND ND ND ND ND 5.0 1,1-dichloroethane ND ND ND ND ND ND 5.0 1,2-dichloroethane ND ND ND ND ND ND ND 5.0 1,1-dichloroethene ND <	chloroform	ND	ND	ND	ND	ND	5.0
1,1-dichloroethane ND ND ND ND ND 5.0 1,2-dichloroethane ND ND ND ND ND ND 5.0 1,1-dichloroethane ND ND ND ND ND ND ND 5.0 cis-1,2-dichloroethene ND	chloromethane	ND	ND	ND	ND	ND	5.0
1,2-dichloroethane ND ND ND ND 5.0 1,1-dichloroethene ND ND ND ND ND 5.0 cis-1,2-dichloroethene ND ND ND ND ND ND 5.0 trans-1,2-dichloroethene ND ND ND ND ND ND ND 5.0 1,2-dichloropropane ND	dibromochloromethane	ND	ND	ND	ND	ND	5,0
1,1-dichloroethene ND ND ND ND 5.0 cis-1,2-dichloroethene ND ND ND ND ND 5.0 trans-1,2-dichloroethene ND ND ND ND ND ND 5.0 1,2-dichloropropane ND ND ND ND ND ND ND 5.0 cis-1,3-dichloropropene ND	1,1-dichloroethane	ND	ND	ND	ND	ND	5.0
cis-1,2-dichloroethene ND ND ND ND S.0 trans-1,2-dichloroethene ND ND ND ND ND ND S.0 1,2-dichloropropane ND ND ND ND ND ND ND S.0 cis-1,3-dichloropropene ND S.0 trans-1,3-dichloropropene ND		ND	ND	ND	ND	ND	5.0
trans-1,2-dichloroethene ND ND ND ND ND S,0 1,2-dichloropropane ND ND ND ND ND ND S,0 cis-1,3-dichloropropene ND ND ND ND ND ND ND S,0 trans-1,3-dichloropropene ND ND ND ND ND ND ND ND S,0 ethlybenzene ND	1,1-dichloroethene	ND	ND	ND	ND	ND	5.0
1,2-dichloropropane ND ND ND ND 5.0 cis-1,3-dichloropropene ND ND ND ND ND 5.0 trans-1,3-dichloropropene ND	cis-1,2-dichloroethene	ND	ND	ND	ND	ND	5.0
cis-1,3-dichloropropene ND ND ND ND ND 5.0 trans-1,3-dichloropropene ND ND ND ND ND ND ND 5.0 ethlybenzene ND	,	ND	ND	ND	ND	ND	5.0
trans-1,3-dichloropropene ND ND ND ND 5.0 ethlybenzene ND ND ND ND ND ND 5.0 2-hexanone ND ND ND ND ND ND ND 10 methylene chloride ND	1,2-dichloropropane	ND	ND	ND	ND	ND	5.0
ethlybenzene ND ND ND ND ND 5.0 2-hexanone ND ND ND ND ND ND 10 methylene chloride ND	cis-1,3-dichloropropene	ND	ND	ND	ND	ND	5.0
2-hexanone ND ND ND ND 10 methylene chloride ND	trans-1,3-dichloropropene	ND	ND	ND	ND	ND	5.0
methylene chloride ND ND ND ND ND 5.0 4-methyl-2-pentanone (MIBK) ND ND ND ND ND ND ND 10 styrene ND ND <t< td=""><td>ethlybenzene</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>5.0</td></t<>	ethlybenzene	ND	ND	ND	ND	ND	5.0
4-methyl-2-pentanone (MIBK) ND ND ND ND ND 10 styrene ND ND ND ND ND ND 5.0 1,1,2,2-tetrachloroethane ND ND ND ND ND ND ND ND 5.0 tetrachloroethane ND ND ND ND ND ND ND ND 5.0 toluene ND ND ND ND ND ND ND ND ND 5.0 1,1,1-trichloroethane ND ND ND ND ND ND ND 5.0 trichloroethane ND ND ND ND ND ND ND 5.0 trichloroethane ND ND ND ND ND ND ND 5.0 vinyl chloride ND ND ND ND ND ND ND 5.0 m+p xylene ND ND ND <td>2-hexanone</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>10</td>	2-hexanone	ND	ND	ND	ND	ND	10
styrene ND ND ND ND ND 5.0 1,1,2,2-tetrachloroethane ND ND ND ND ND ND 5.0 tetrachloroethane ND ND ND ND ND ND ND 5.0 toluene ND 5.0 1,1,1-trichloroethane ND ND ND ND ND ND ND ND ND 5.0 trichloroethane ND ND ND ND ND ND ND ND 5.0 trichloroethane ND ND ND ND ND ND ND 5.0 trichloroethane ND ND ND ND ND ND ND ND 5.0 winyl chloride ND ND ND ND ND ND ND ND ND ND <td>methylene chloride</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>5.0</td>	methylene chloride	ND	ND	ND	ND	ND	5.0
1,1,2,2-tetrachloroethane ND ND ND ND ND 5.0 tetrachloroethene ND ND ND ND ND ND ND 5.0 toluene ND ND ND ND ND ND ND ND 5.0 1,1,1-trichloroethane ND ND ND ND ND ND ND ND 5.0 trichloroethane ND ND ND ND ND ND ND ND 5.0 vinyl chloride ND ND ND ND ND ND ND 5.0 m+p xylene ND ND ND ND ND ND ND 5.0 TOTAL VOC'S ND ND ND ND ND ND ND 1,000	4-methyl-2-pentanone (MIBK)	ND	ND	ND	ND	ND	10
tetrachloroethene ND ND ND ND ND 5.0 toluene ND ND ND ND ND ND 5.0 1,1,1-trichloroethane ND ND ND ND ND ND ND 5.0 1,1,2-trichloroethane ND ND ND ND ND ND ND 5.0 trichloroethane ND 5.0 vinyl chloride ND ND ND ND ND ND ND 5.0 m+p xylene ND ND ND ND ND ND ND 5.0 TOTAL VOC'S ND ND ND ND ND ND ND 1,000	styrene	ND	ND	ND	ND	ND	5.0
toluene ND ND ND ND ND 5.0 1,1,1-trichloroethane ND ND ND ND ND ND ND 5.0 1,1,2-trichloroethane ND ND ND ND ND ND ND ND 5.0 trichloroethane ND ND ND ND ND ND ND ND ND 5.0 vinyl chloride ND ND ND ND ND ND ND 5.0 m+p xylene ND ND ND ND ND ND ND 5.0 o-xylene ND ND ND ND ND ND ND TOTAL VOC'S ND ND ND ND ND ND ND 1,000	1,1,2,2-tetrachloroethane	ND	ND	ND	ND	ND	5.0
1,1,1-trichloroethane ND ND ND ND 5.0 1,1,2-trichloroethane ND ND ND ND ND ND 5.0 trichloroethane ND ND ND ND ND ND ND 5.0 vinyl chloride ND ND ND ND ND ND 5.0 m+p xylene ND ND ND ND ND ND 5.0 o-xylene ND ND ND ND ND ND ND TOTAL VOC'S ND ND ND ND ND ND 1,000	tetrachloroethene	ND	ND	ND	ND	ND	5.0
1,1,2-trichloroethane ND ND ND ND 5.0 trichloroethene ND ND ND ND ND ND 5.0 vinyl chloride ND ND ND ND ND ND ND 5.0 m+p xylene ND ND ND ND ND ND 5.0 o-xylene ND ND ND ND ND ND ND TOTAL VOC'S ND ND ND ND ND ND 1,000	1 1	ND	ND	ND	ND	ND	5.0
trichloroethene ND ND ND ND ND 5.0 vinyl chloride ND ND ND ND ND ND 5.0 m+p xylene ND ND ND ND ND ND 5.0 o-xylene ND ND ND ND ND ND 5.0 TOTAL VOC'S ND ND ND ND ND ND ND 1,000	1,1,1-trichloroethane	ND	ND	ND	ND	ND	5.0
vinyl chloride ND ND ND ND ND 5.0 m+p xylene ND ND ND ND ND 5.0 o-xylene ND ND ND ND ND ND 5.0 TOTAL VOC'S ND ND ND ND ND ND ND 1,000	1,1,2-trichloroethane	ND	ND	ND	ND	ND	5.0
m+p xylene ND ND ND ND 5.0 o-xylene ND ND ND ND ND 5.0 TOTAL VOC'S ND ND ND ND ND ND ND ND 1,000 TPH ND ND ND ND ND 1,000	trichloroethene	ND	ND	ND	ND	ND	5.0
o-xylene ND ND ND ND ND 5.0 TOTAL VOC'S ND ND ND ND ND ND ND ND ND 1,000 TPH ND ND ND ND ND ND 1,000	vinyl chloride	ND	ND	ND	ND	ND	5.0
TOTAL VOC'S ND ND ND ND ND ND ND ND ND 1,000 TPH ND ND ND ND ND ND 1,000	m+p xylene	ND	ND	ND	ND	ND	5.0
TPH ND ND ND ND ND 1,000	o-xylene	ND	ND	ND	ND	ND	5.0
	TOTAL VOC'S	ND	ND	ND	ND	ND	
SOLUBLE ARSENIC ND ND ND ND 10.0	ТРН	ND	ND	ND	ND	ND	1,000
, 100	SOLUBLE ARSENIC	ND	ND	ND	ND	ND	10.0
SOLUBLE LEAD ND ND ND ND 5.00	SOLUBLE LEAD	ND	ND	ND			

Average
Inside
Landfill
(Table 3-1)
10
2,840
24
5,313

ND - Not Detected, above the laboratory detection limit

File: 2009 Annual Report Tables

Sheet: Table 3-4 S-Well VOCs TPH Metal

Prepared by: KMH
Date: 3/17/10
Checked by: GPK
Date: 3/18/10

TABLE 3-5 UNION ROAD ANNUAL GROUNDWATER MONITORING 2009

UMC

MEDIUM WELL SVOCs

ANALYTE	Aì	ALYTICAL	RESULTS (ug	z/L)	Detection
ANALYIE	MW-10M	MW-11M	MW-12M	MW-13M	Detection
Dilution	1.00	1.00	1.00	1.00	Limit
acenapthene	ND	ND	ND	ND	10.0
acenapthylene	ND	ND	ND	ND	10.0
anthracene	ND	ND	ND	ND	10.0
benzo(a)anthracene	ND	ND	ND	ND	10.0
benzo(a)pyrene	ND	ND	ND	ND	10.0
benzo(b)fluoranthene	ND	ND	ND	ND	10.0
benzo(g,h,i)perylene	ND	ND	ND	ND	10.0
benzo(k)fluoranthene	ND	ND	ND	ND	10.0
benzyl alcohol	ND	ND	ND	ND	10.0
butly benzyl phthalate	ND	ND	ND	ND	10.0
di-n-butlyphthalate	ND	ND	ND	ND	10.0
carbazole	ND	ND	ND	ND	10.0
indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	10.0
4-chloroaniline	ND	ND	ND	ND	10.0
bis(-2-chloroethoxy)methane	ND	ND	ND	ND	10.0
bis(2-chloroethyl)ether	ND	ND	ND	ND	10.0
2-chloronapthalene	ND	ND	ND	ND	10.0
2-chlorophenol	ND	ND	ND	ND	10.0
2,2'-oxybis(1-chloropropane)	ND	ND	ND	ND	10.0
chrysene	ND	ND	ND	ND	10.0
dibenzo(a,h)anthracene	· ND	ND	ND	ND	10.0
dibenzofuran	ND	ND	ND	ND	10.0
1,2-dichlorobenzene	ND	ND	ND	ND	10.0
1,3-dichlorobenzene	ND	ND	ND	ND	10.0
1,4-dichlorobenzene	ND	ND	ND	ND	10.0
3,3'-dichlorobenzidine	ND	ND	ND	ND	10.0
2,4-dichlorophenol	ND	ND	ND	ND	10
diethylphthalate	ND	ND	ND	ND	10.0
dimethyl phthalate	ND	ND	ND	ND	10.0
2,4-dimethlyphenol	ND	ND	ND	ND	10
2,4-dinitrophenol	ND	ND	ND	ND	50
2,4-dinitrotoluene	ND	ND	ND	ND	10.0
2,6-dinitrotoluene	ND	ND	ND	ND	10.0
bis(2-ethylhexyl)phthalate	ND	ND	ND	ND	10.0
fluoranthene	ND	ND	ND	ND	10.0
fluorene	ND	ND	ND	ND	10.0
hexachlorobenzene	ND	ND	ND	ND	10.0
hexachlorobutadiene	ND	ND	ND	ND	10.0
hexachlorocyclopentadiene	ND	ND	ND	ND	10.0
hexachloroethane	ND	ND	ND	ND	10.0
isophorone	ND	ND	ND	ND	10.0
2-methlynapthalene	ND	ND	ND	ND	10

File: 2009 Annual Report Tables Sheet: Table 3-5 M-Well SVOCs

Printed: 3/18/2010

Prepared by: KMH Date: 3/17/10

TABLE 3-5 UNION ROAD ANNUAL GROUNDWATER MONITORING 2009

UMC

Checked by: GPK Date: 3-16-10

MEDIUM WELL SVOCs

2-methylphenol	ND	ND	ND	ND	10
4,6-dinitro-2-methylphenol	ND	ND	ND	ND	50
4-chloro-3-methlyphenol	ND	ND	ND	ND	10
3+4-methylphenol	ND	ND	ND	ND	10
napthalene	ND	ND	ND	ND	10.0
2-nitroaniline	ND	ND	ND	ND	50.0
3-nitroaniline	ND	ND	ND	ND	50.0
4-nitroaniline	ND	ND	ND	ND	50.0
nitrobenzene	ND	ND	ND	ND	10.0
2-nitrophenol	ND	ND	ND	ND	10
4-nitrophenol	ND	ND	ND	ND	50
n-nitrosodimethylamine	ND	ND	ND	ND	10.0
n-nitrosodiphenylamine	ND	ND	ND	ND	10.0
di-n-octyl phthalate	ND	ND	ND	ND	10.0
pentachlorophenol	ND	ND	ND	ND	50
phenanthrene	ND	ND	ND	ND	10.0
phenol	ND	ND	ND	ND	10
4-bromophenyl-phenylether	ND	ND	ND	ND	10.0
4-chlorophenyl-phenylether	ND	ND	ND	ND	10.0
n-nitroso-di-n-propylamine	ND	ND	ND	ND	10.0
pyrene	ND	ND	ND	ND	10.0
1,2,4-trichlorobenzene	ND	ND	ND	ND	10.0
2,4,5-trichlorophenol	ND	ND	ND	ND	10
2,4,6-trichlorophenol	ND	ND	ND	ND	10
TOTALS	ND	ND	ND	ND	

File: 2009 Annual Report Tables Sheet: Table 3-5 M-Well SVOCs Prepared by: KMH Date: 3/17/10

Checked by: GRK Date: 3-18-10

TABLE 3-6 UNION ROAD ANNUAL GROUNDWATER MONITORNG 2009

UMC

MEDIUM WELL VOCs, TPH, and METALs

	ANA	LYTICAL	RESULTS (1	1g/L)	
ANALYTE	MW-10M	MW-11M	MW-12M	MW-13M	Detection
Dilution	1.00	1.00	1.00	1.00	Limit
acetone	ND	ND	ND	ND	20
benzene	ND	ND	ND	ND	5.0
bromodichloromethane	ND	ND	ND	ND	5.0
bromoform	ND	ND	ND	ND	5.0
bromomethane	ND	ND	ND	ND	5.0
2-butanone (MEK)	ND	ND	ND	ND	10
carbon disulfide	ND	ND	ND	ND	10
carbon tetrachloride	ND	ND	ND	ND	5.0
chlorobenzene	ND	ND	ND	ND	5.0
chloroethane	ND	ND	ND	ND	5.0
chloroform	ND	ND	ND	ND	5.0
chloromethane	ND	ND	ND	ND	5.0
dibromochloromethane	ND	ND	ND	ND	5.0
1,1-dichloroethane	ND	ND	ND	ND	5.0
1,2-dichloroethane	ND	ND	ND	ND	5.0
1,1-dichloroethene	ND	ND	ND	ND	5.0
cis-1,2-dichloroethene	ND	ND	ND	ND	5.0
trans-1,2-dichloroethene	ND	ND	ND	ND	5.0
1,2-dichloropropane	ND	ND	ND	ND	5.0
cis-1,3-dichloropropene	ND	ND	ND	ND	5.0
trans-1,3-dichloropropene	ND	ND	ND	ND	5.0
ethlybenzene	ND	ND	ND	ND	5.0
2-hexanone	ND	ND	ND	ND	10
methylene chloride	ND	ND	ND	ND	5.0
4-methyl-2-pentanone (MIBK)	ND	ND	ND	ND	10
styrene	ND	ND	ND	ND	5.0
1,1,2,2-tetrachloroethane	ND	ND	ND	ND	5.0
tetrachloroethene	ND	ND	ND	ND	5.0
toluene	ND	ND	ND	ND	5.0
1,1,1-trichloroethane	ND	ND	ND	ND	5.0
1,1,2-trichloroethane	ND	ND	ND	ND	5.0
trichloroethene	ND	ND	ND	ND	5.0
vinyl chloride	ND	ND	ND	ND	5.0
m+p xylene	ND	ND	ND	ND	5.0
o-xylene	ND	ND	ND	ND	5.0
TOTAL VOC'S	ND	ND	ND	ND	
ТРН	ND	ND	ND	ND	1,000
SOLUBLE ARSENIC	ND	ND	ND	ND	10.0
SOLUBLE LEAD	ND	ND	ND	ND	5.00

ND - Not Detected, above the laboratory detection limit

File: 2009 Annual Report Tables

Sheet: Table 3-6 M-Well VOCs TPH Metal Printed: 3/18/2010

Prepared by: KMH Date: 3/17/10 Checked by: A

UNION ROAD
ANNUAL GROUNDWATER MONITORING 2009

TABLE 3-7

UMC

Date: 3-18-16

DEEP WELL SVOCs

ANALYTE	ANALYTICAL	RESULTS (ug/L)	
ANALITE	MW-10D	MW-12D	Detection
Dilution	1.00	1.00	Limit
acenapthene	ND	ND	10.0
acenapthylene	ND	ND	10.0
anthracene	ND	ND	10.0
benzo(a)anthracene	ND	ND	10.0
benzo(a)pyrene	ND	ND	10.0
benzo(b)fluoranthene	ND	ND	10.0
benzo(g,h,i)perylene	ND	ND	10.0
benzo(k)fluoranthene	ND	ND	10.0
benzyl alcohol	ND	ND	10.0
butly benzyl phthalate	ND	ND	10.0
di-n-butlyphthalate	ND	ND	10.0
carbazole	ND	ND	10.0
indeno(1,2,3-cd)pyrene	ND	ND	10.0
4-chloroaniline	ND	ND	10.0
bis(-2-chloroethoxy)methane	ND	ND	10.0
bis(2-chloroethyl)ether	ND	ND	10.0
2-chloronapthalene	ND	ND	10.0
2-chlorophenol	ND	ND	10.0
2,2'-oxybis(1-chloropropane)	ND	ND	10.0
chrysene	ND	ND	10.0
dibenzo(a,h)anthracene	ND	ND	10.0
dibenzofuran	ND	ND	10.0
1,2-dichlorobenzene	ND	ND	10.0
1,3-dichlorobenzene	ND	ND	10.0
1,4-dichlorobenzene	ND	ND	10.0
3,3'-dichlorobenzidine	ND	ND	10.0
2,4-dichlorophenol	ND	ND	10.0
diethylphthalate	ND	ND	10.0
dimethyl phthalate	ND	ND	10.0
2,4-dimethlyphenol	ND	ND	10.0
2,4-dinitrophenol	ND	ND	50.0
2,4-dinitrotoluene	ND	ND	10.0
2,6-dinitrotoluene	ND	ND	10.0
bis(2-ethylhexyl)phthalate	ND	ND	10.0
fluoranthene	ND	ND	10.0
fluorene	ND	ND	10.0
hexachlorobenzene	ND	ND	10.0

File:2009 Annual Report Tables Sheet: Table 3-7 D-Well SVOCs Prepared by: KMH Date: 3/17/10 Checked by:

TABLE 3-7 UNION ROAD ANNUAL GROUNDWATER MONITORING 2009

UMC

Date: 3-18-10

DEEP WELL SVOCs

hexachlorobutadiene	ND	ND	10.0
hexachlorocyclopentadiene	ND	ND	10.0
hexachloroethane	ND	ND	10.0
isophorone	ND	ND	10.0
2-methlynapthalene	ND	ND	10.0
2-methylphenol	ND	ND	10.0
4,6-dinitro-2-methylphenol	ND	ND	50.0
4-chloro-3-methlyphenol	ND	ND	10.0
3+4-methylphenol	ND	ND	10.0
napthalene	ND	ND	10.0
2-nitroaniline	ND	ND	50.0
3-nitroaniline	ND	ND	50.0
4-nitroaniline	ND	ND	50.0
nitrobenzene	ND	ND	10.0
2-nitrophenol	ND	ND	10.0
4-nitrophenol	ND	ND	50.0
n-nitrosodimethylamine	ND	ND	10.0
n-nitrosodiphenylamine	ND	ND	10.0
di-n-octyl phthalate	ND	ND	10.0
pentachlorophenol	ND	ND	50.0
phenanthrene	ND	ND	10.0
phenol	ND	ND	10.0
4-bromophenyl-phenylether	ND	ND	10.0
4-chlorophenyl-phenylether	ND	ND	10.0
n-nitroso-di-n-propylamine	ND	ND	10.0
pyrene	ND	ND	10.0
1,2,4-trichlorobenzene	ND	ND	10.0
2,4,5-trichlorophenol	ND	ND	10.0
2,4,6-trichlorophenol	ND	ND	10.0
TOTALS	ND	ND	

ND - Not Detected, above the laboratory detection limit

File:2009 Annual Report Tables Sheet: Table 3-7 D-Well SVOCs Prepared by: KMH Date: 3/17/10

Checked by: GK

TABLE 3-8 UNION ROAD ANNUAL GROUNDWATER MONITORING 2009

UMC

Date: 3-18-16

DEEP WELL VOCs, TPH, and METALs

ANALYTE	ANALYTICAL	RESULTS (ug/L)		
ANALYTE	MW-10D	MW-12D	Detection	
Dilution	1.00	1.00	Limit	
acetone	ND	ND	20	
benzene	ND	ND	5.0	
bromodichloromethane	ND	ND	5.0	
bromoform	ND	ND	5.0	
bromomethane	ND	ND	5.0	
2-butanone (MEK)	ND	ND	10	
carbon disulfide	ND	ND	10	
carbon tetrachloride	ND	ND	5.0	
chlorobenzene	ND	ND	5.0	
chloroethane	ND	ND	5.0	
chloroform	ND	ND	5.0	
chloromethane	ND	ND	5.0	
dibromochloromethane	ND	ND	5.0	
1,1-dichloroethane	ND	ND	5.0	
1,2-dichloroethane	ND	ND	5.0	
1,1-dichloroethene	ND	ND	5.0	
cis-1,2-dichloroethene	ND	ND	5.0	
trans-1,2-dichloroethene	ND	ND	5.0	
1,2-dichloropropane	ND	ND	5.0	
cis-1,3-dichloropropene	ND	ND	5.0	
trans-1,3-dichloropropene	ND	ND	5.0	
ethlybenzene	ND	ND	5.0	
2-hexanone	ND	ND	10	
methylene chloride	ND	ND	5.0	
4-methyl-2-pentanone (MIBK)	ND	ND	10	
styrene	ND	ND	5.0	
1,1,2,2-tetrachloroethane	ND	ND	5.0	
tetrachloroethene	ND	ND	5.0	
toluene	ND	ND	5.0	
1,1,1-trichloroethane	ND	ND	5.0	
1,1,2-trichloroethane	ND	ND	5.0	
trichloroethene	ND	ND	5.0	
vinyl chloride	ND	ND	5.0	
m+p xylene	ND	ND	5.0	
o-xylene	ND	ND	5.0	
TOTAL VOC'S	ND	ND		
ТРН	ND	ND	1,000	
SOLUBLE ARSENIC	ND	ND	10.0	
SOLUBLE LEAD	ND	ND	5.00	

ND - Not Detected, above the laboratory detection limit

File: 2009 Annual Report Tables

Sheet: Table 3-8 D-Well VOCs TPH Metal

Period: Annual 2009

4. GROUNDWATER ELEVATION MONITORING

The purpose of Groundwater Elevation Monitoring is to determine the groundwater gradient of the three hydrogeologic units in and around the closure area. The three hydrogeologic units (layers) are:

- 1) The overburden layer (shallow), which is above the clay layer;
- 2) The till layer (medium), which is beneath the clay layer; and
- 3) Bedrock (deep), which is beneath the till layer.

As stated in the NYSDEC approved Design Report, the frequency of groundwater elevation measurements are as follows:

- Monthly for the first six months after closure (Jan June 1997);
- Quarterly thereafter until the end of year two (July 1997 December 1998); and
- Annually (during the dry season) thereafter.

As stated previously, the sampling frequency, sampling parameters, and/or sampling of specific wells will be modified based on the results of previous sampling events (since the landfill closure) and with written approval from the NYSDEC.

The objective for collecting groundwater elevation measurements is to gain knowledge of the groundwater flows and hydraulic gradients in and around the closure. This information is used to generate groundwater flow maps and demonstrate an inward gradient of groundwater around the closure.

On September 19, 2007, UMC measured the depth to groundwater in the monitoring wells. Table 4-1 summarizes the results of these measurements. The data from Table 4-1 were used to create Figures 4-1 through 4-3, which depict groundwater elevations and presumed flow directions in the three hydrogeologic units. Figure 4-1 shows an inward gradient of shallow (overburden) groundwater across the slurry wall and towards the dewatering trench within the closure.

Figures 4-2 and 4-3 depict groundwater flow in the medium and deep units. Flow is generally toward the southeast and east respectfully and has not been affected by the placement of the landfill closure.

Prepared by: KMH Date: 3/15/10 Checked by: Date: 3-16-10

TABLE 4-1 UNION ROAD GROUNDWATER MONITORING REPORT

UMC

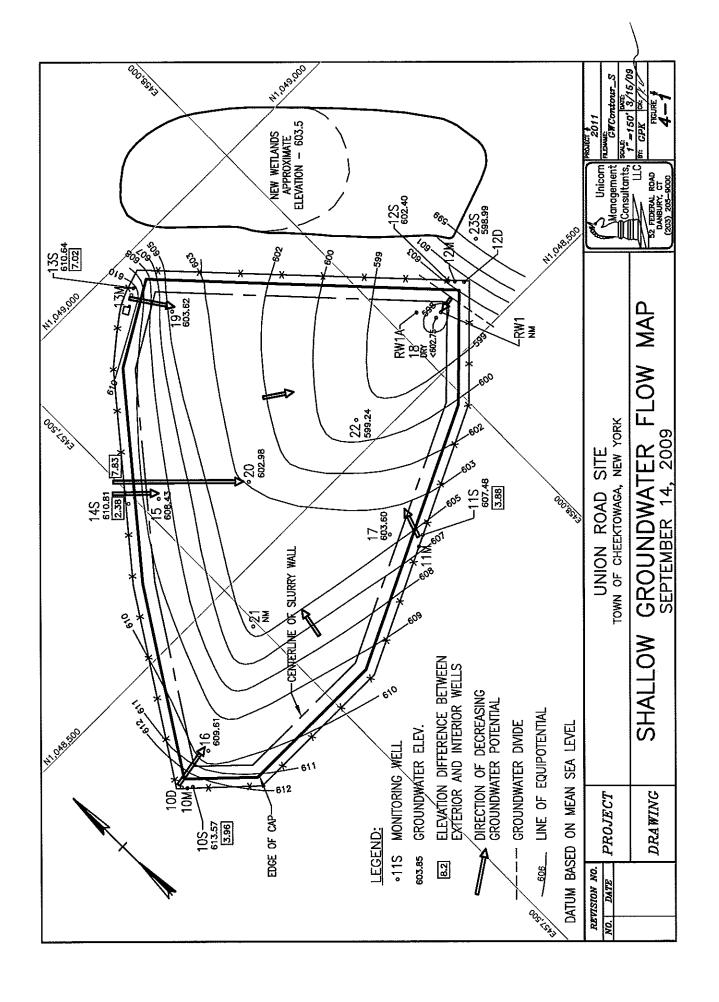
GROUNDWATER WELL MEASUREMENTS September 14, 2009

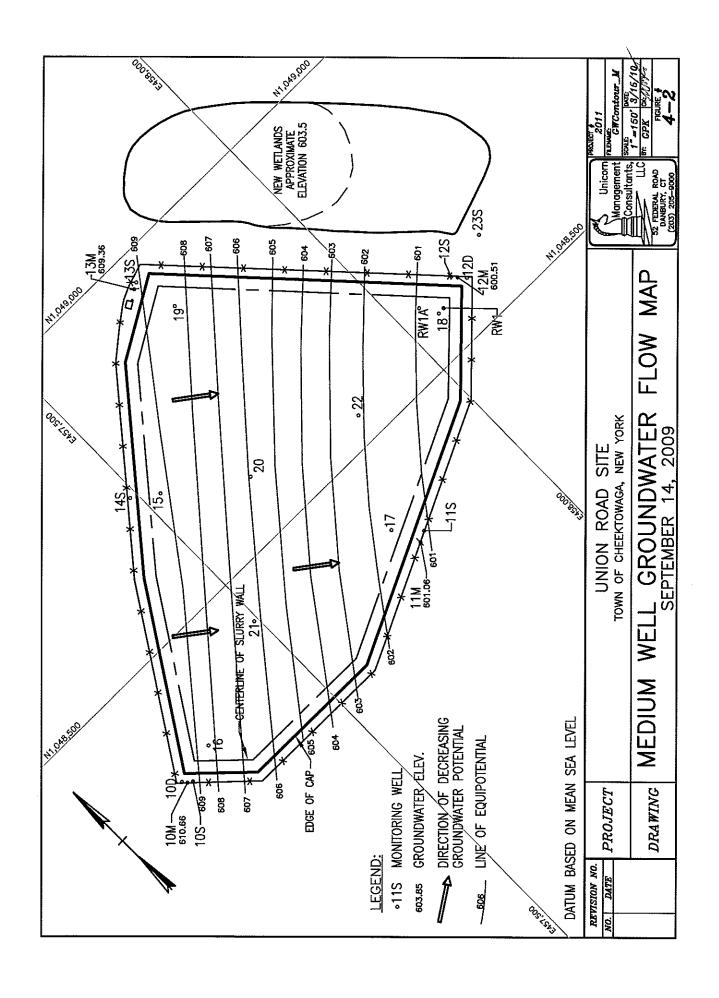
Well Number	Riser Elev. ¹ (Feet)	Depth to Water (Feet)	Water Elev. (Feet)
10S	623.09	9.52	613.57
10M	622,50	11.84	610.66
10D	622.02	16.20	605.82
118	622.74	15.26	607.48
11M	622.86	21.80	601.06
128	622.62	20.22	602.40
12M	622.97	22.46	600.51
12D	621.18	19.96	601.22
138	622.96	12.32	610.64
13M	621.66	12.30	609.36
14S ²	621.61	10.80	610.81
15	624.67	16.24	608.43
16	624.51	14.90	609.61
17	624.44	20.84	603.60
18 ³	624.67	>21.92	<602.75
19	625.08	21.46	603.62
20 ⁴	631.98	29.00	602.98
21	629.25	NM/NR	
22 4	629.24	30.00	599.24
238	607.45	8.46	598.99
RW1 ⁵	623.76	NM/NR	

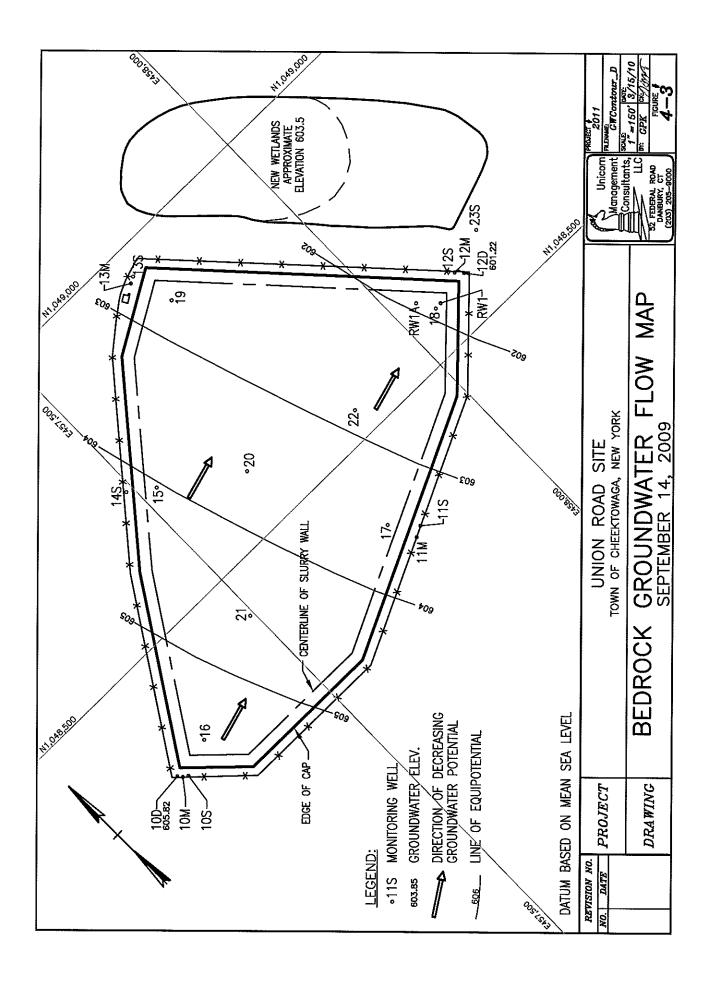
¹ Elevations were surveyed by Douglas C. Meyers P.L.S., P.C. on March 17, 1997.

NM/NR: Not Measure/Not Recorded

MW-20 and MW-22 have free product on water surface; therefore water level measurement conservatively assumed as the top of the oil layer (Because of the less dense oil, the actual water elevation would be lower).


All Elevations are referenced to Mean Sea Level


² MW-14S was reinstalled and resurveyed on August 19, 1997.


³ MW-18 is dry; measuring tape stopped without indicating water.

⁴ Depth measured to free product.

⁵ Groundwater measurement was not taken in RW1. The assumed elevation is at the pump inlet (598.76).

5. CONCLUSION

5.1 SITE INSPECTION AND MAINTENANCE

As part of the annual groundwater sampling event conducted on September 14, 2009, UMC walked the site and documented its observations. Following is a summary of the inspection and maintenance activities that have occurred this year:

Roundhouse Area: The area is well vegetated and stabilized. It is also noted that numerous property owners adjacent to this area are maintaining it with the rest of their properties. No action is needed.

<u>Landfill Closure:</u> There is no signs of erosion, no areas of distressed vegetation, and no evidence of any outbreak of any substance (slurry wall material or oil) on the landfill. Erie County Water Company was notified that a small quantity of contaminated soil is located northeast of the new wetland area and beneath the existing water pipe. UMC has an account with Dig Safely New York so when someone needs to dig in the area and calls Dig Safely, UMC will be notified. Except for periodic grass cutting, annual groundwater monitoring, and quarterly groundwater discharge monitoring required by the Erie County Sewer Authority, no action is needed.

A woodchuck eradication program was implemented during 2009. Woodchuck burrows were noted at several locations on the cap and around the pump control building. Although small amounts of gravel noted at the surface indicated that the burrows went as deep as the drainage layer, it is unlikely that the impervious section of the cap was breached because the gravel collapses on itself and therefore discourages deeper burrowing by the wood chucks once it is encountered. UMC engaged the services of a licensed nuisance wildlife control company to capture resident wood chucks from within the fenced area. About 13 wood chucks were captured and removed. The burrows were backfilled and the surface reseded.

<u>Wetland Restoration:</u> The wetlands north of the landfill closure, which was created during the remediation activities has continued to reestablish itself. The wetlands has completely revegetated itself and wildlife (e.g., ducks, geese and deer) have returned to the area. No action is needed.

<u>Stream Restoration:</u> A letter to the Town of Cheektowaga (Town) was sent by APU's Legal Counsel on October 7, 2005. This letter informs the Town that it must notify the NYSDEC (David Locey or Martin Doster at 716-851-7220) prior to any activity in those creeks where the reno mattresses are located (see Figure 1-2).

The reno matresses installed in 1995/1996 and repaired in 2006 on the creek channel has stabilized and vegetation has established itself through the reno mattresses. There is some sediment accumulation within the creek channels, but at some locations the reno mattress wire mesh was visible at the base of the channel. The gabion basket wing-walls are stable. No other action is needed.

<u>Downstream Area:</u> Though some of the trees planted in this area have died, there are no signs of erosion in this area. Grass has established itself in this area. No action is needed.

UMC will continue to inspect and repair all closure areas to ensure that the closure remains intact and successful.

5.2 GROUNDWATER QUALITY

The groundwater quality within the exterior wells and the groundwater elevation measurements during the annual monitoring event of 2009 demonstrate that remedial activities at the Union Road Site are successful. The groundwater quality outside the landfill closure is better than groundwater quality in the interior of the closure.

The groundwater elevation measurements indicate that an inward gradient of shallow groundwater flow has been established across the slurry wall. This inward gradient in combination with the groundwater quality outside the closure demonstrates that the contamination is contained within the slurry wall.

No TPH, Arsenic, Lead, VOC, or SVOCs were detected in the any of the monitoring wells during this annual sampling event.

Though Monitoring wells MW-11S and MW-14S did not exhibited detectable concentrations of TPH this monitoring period, detectable concentrations of TPH have existed in both MW-11S and MW-14S since their construction in 1997. As discussed in previous monitoring reports, the contamination appears to be isolated and stabilized within those areas of the site (northwest and south sides) and there are inward groundwater gradient into the landfill closure at MW-11S and MW-14S areas.

Though arsenic has been detected in several wells over the duration of the groundwater monitoring activities, during this sample event, arsenic was not detected in any of the wells.

UMC will continue to monitor and evaluate the groundwater surrounding the landfill in accordance with the GMP.

Union Road Site: Groundwater Monitoring Report Period: Annual 2007

APPENDIX A

BORING LOGS AND WELL CONSTRUCTION DRAWINGS

80		10-5		TEST BORING LOG			
PA	QUE		O NAM	NOUROAD - 2035 - ZOS LOCATION BUFFALO NY			_
CR		KG CC		70 = 10 to 1 1 To			
-	·	ZOL	CCIST.	OFFICE CONTRACTOR			
				JOHN 7 CACHEC JK			
<u> </u>				HSA G' SHE HSA S	RIT SPOON	ART. FIN	454 Q
AE:	LLIN SÇ	ista: A	L 207	CASING MAT./DIA. SCREEN RAINLESS STEEL /2" TIPE SLOT MAT. STAINLESS LE	2" ma 2"	07 SIT	<u>+</u> ٥ء٢
	VATI	₩		CROUND SERFACE TOP OF WELL CLERKE TOP & SOTTON SO	EEN ON SUPPLICE		ATE
	ARK	-		21', Scaples to 20'			
				LOG OF TEST SORING		L COMBT.	GRAPHIC
	£8 (4)	28.33		DESCRIPTION	REMARKS	WEL	CAA
				SAMPLING STARTS AT 41 B.G.			
-				=		1. 1	
-							
<u> </u>	14					_	
{			1 6	BER TO THUIGERY BAY WEITTLE HOLLINE RECHE TOllz"	Stiff, Dilais		}
	14	21	10			1.	
	6		15	0-3" BY HERE TO TANKER YCLAY SHE ROCKS - TO SHOT	Stiles Dirab	1/:	13.4
-	8	21	20	5-15" CINDERS WISCHE CORS DIVI	the ware, positives	¥1.	
•	15		1 5	15-21" BROWLITAN COLY SOME SIND PUTTLE SILI TRACTOCK		-	1
-		24"	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	THAT DIECES CHIT	STIFF, LITTLE HE		5~1
- 10	IIC.	-	10				
	10	$j2^{il}$	3	TANKI BROWN CLIF	HED STIFF		
	12		3			1.13	シー
	12		7.3	TAULLIBROOL CLARY TRACE SILIS	HED STIFF	124	
•	ئے	16"	3		7. 46 HS G		
	14. 14		2	GEEN 10 OT BROWN CLAY SEE LITTLE RELIGION ROCKS	SEO STIFF		
- 1 🕵		20	7 3		Sc. 412 HZ G		
	ξ φ		4	TAN 1027 BROWN CLAY	HEDSTIFF	"	
	عال	15"	マイップ ひのようしついろい	THE ISE I DREETO CELE-	X.16 H2C		
	18	10	고 <u> </u>			图	
	J-64	20.1	2 2	GREYISH DIEN CLIPY TEALECTERINGS.	MEDSTIFC SCHEHZ®		
	20	٠	<u>3</u> 3	~ ENDS Born 21' BCCS - 2008:70'	<u></u>		

SCHO NO.	7537	BORI	NG LQE			
PROJECT HOL NAME ORILLING CONTRACTOR	DAD - 2035 - 200	LOCATIC	BUFFAL NY	ĺ	KD KD	
SECTOLOGIST, OFFICE	JOHD J ZACHER J	0			100	
DRILLING EQUIPMENT. MET	HSA	SZLITE	CH BIT HSA	SPLIT SA	±€7∺0¢	START. FINSH 0: 1/3/97
TES S NO C MAINLESS		e slot	MAT. STAINLESS	LENGTH IO	DIA 2"	SLOT SIZZONI
REMARKS:						

	LOG OF TEST SCRING		
32° 17 34.24	DESCRIPTION	REMARKS	WELL COMBY
	SAMACING STARTS 41 BC.		
	đ		
5 2	BUX 10 TAD GREY CUTY WILLITTLE BEEKS TOTH"	SNEE , DAMP	
	C-7" BUNKED INDIGET (CH-1 SETT ROCKS) 50 744' CINDERS	STIFF DIMP	
5	12 M-22 BREWIAN CLAY LITTLE REIKS TANKE BROWN CLAY	STIFF, LITTLE HZC	1 Gr
	TANKT BRUNG CLIFY	HEO STIFF SIMBHZO	·
17 12 5" 7	1 1 5	MEDSTIFF SOME HOC	
18 14 2011 3	7	MED STIFF	-
	TAN TO CI BEOLDY CLAY	HEDSTIFF SAR HED	1 37
15 4 75 20' 37 70 20' 37	CRETISH BROWN CLAY , I'ME ORGANICS	म्हेण डासहर इसह मर्थ	1534

DAILLING WELL INST	LOGISTI C	Noulcan: 2035:200 BUFFACE NY TON DRILLER MAHIM DIFFICE JOHN J ZACHER JR.	PLIT SPOOD	AFT. FIMEN 1/3/9 7 LOT SIZZOX DATE
32 IT 98	12 (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	LOG OF TEST BORING	REMARKS	WELL COMBY.
2c 22 22 22 22 22 22 22 22 22 22 22 22 2	1-717-6-1-5-4-9-1-2-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	DARK GREY DISTRE OXCUMICS LITTLE GREY CLAY GREY CLAY BUT 7" GREY CLAY BUT 7" GREY LIBROWN CLAY, SIME ROCK FILINGS, LITTLE SAND LIBROWN SILISUISME SHAD OUT" LIBROWN TAN CLAY, SIFRECES UIT" 112-1" DOB & 31 Bgd	MED STIFF YER HER HER STIFF LITTLE HER SEFT WET WET, KILCHESIVE WET, ICCLE SEFT-WET	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3	(203) 796-5279	N Table
	BORING NO. MW-IOD	
	PROJECT NO HAME LOCATION VIION ROAD BUTTE TO NY	2 Min
	Maxim (Dick miller Rom Rown)	· ·
	Junes Dun	·
	DRILLING EQUIPMENT. METHOD SIZE TYPE OF BIT SAMPLING 8/4"HSA 178" SAMPLING	METHOD START. FINISH OAT Spen 12/0 - 13/17/6
\int	WELL INSTALLED? CASING MAT/OIA, SCREEN: YES TO NO Stainless LENGTH 10	
		W SURFACE DATE
Γ	REMARKS:	

	/		0.140	LOG OF TEST BORING		COMST.) 1.0G
/5	2 1 kg		NO. ALIV	DESCRIPTION	REMARKS	WELL	GRAPH
				sampling started @ 9' BG.		NABOQA (ODONA	
- - - 5	- 2	21 6	15 6 8 10	-BIK to tan/Grey clay w/Trace angular Fragmented Rock upto 1"in Size	-Stiff, Damp	O'NOW THE	
- -	þ	<i>ت</i> ه"	16 18 10 10	Tap 8" Bik, tan/brey Glay w/ Tince angular Fragmented Rock next 6 Bik Cinder like motoral w/ 300 w/ angular Fragmented Rock!" Bottom 6" Bound Tan Sard/SI Hly Clay m/ 16# -20% Rx Fing. 2"	Stiff, Danp Dry Not Coheasie, littletyo M. Stiffness	Newson's	
-	2	245	8 10 9	Tan to (t Brown Clay; No Rocks	w/some H20	Sono S	
- 10		5"	2223	Tom to It Brown Chy wb Rocks	m. Stiffness w/ some H20 m. stiffness	New News	
		57	5	tun to It Brown Clay w/o Rocks Possibly some silts Gray to It Brown Modeled clay w/ trace rounded	w/ Some HO m. Stiffness	CANODON	
15 		0" 8"	2234 -3	Gray to It Brown Modeled clay w/ trace rounded Rocks, Yy - 1/6" diameter. Tam to It Brown Clay W/D Rxs	w/ Some HD m. Stiffness	Ondoorge (-
- - -		0	4627777	Granish/Brown/Blt Clay W/ 10-20% organics	w/ Some H20 m. Stillness w/ Some H20	SAMPLY .	

It Brown/ Tan Clays w/ silts, 20% RX2 Frags

@38/BG Bottom of Rotective Cosing Cosing

Annih Marie Alleria Marie Marie

soft wet

Bottem of

Bed Rock

32-

341

15

4437/50

PROJECT NO. NAME Union Prod 20 ORILLING CONTRACTOR/ MAXIM GEOLOGIST, OFFICE Tomas Door ORILLING EQUIPMENT. HS A WELL INSTALLED? CASI	ETHOD SIZE TYPE OF BIT	SAMPLING Split s Length //	SPOON	T. FINISH	SATE
	LOG OF TEST I	ROBING		CONST.	ງຕ
() In ()	LOG OF TEST I				GRAPHIC LIYHO LOG
Seatt 2 to 40 feet 2	NOITHENESS OF THE PROPERTY OF		REMARKS	WELL	E =
10	The hole has Collaps The Rock isn't very consolidate	e	B.O.B 45.		

DAILLING EQU	INCOMPOSITION NOTICES NY RACTOR/DRILLER MAKIM IST. OFFICE JOHN 1 ZACHER JR IFMENT. METHOD HSA SUZE TYPE OF BIT ISA OF CASING MAT./DIA SCREEN: TYPE SLOT MAT. STAINLESS LEN GROUND SURFACE TOP OF WELL CASING TOP & BOTTOM SCREEN	PLIT SPORN 11.	HM AND COLOR OF THE STATE OF TH
	LOG OF TEST BORING LOG OF TEST BORING COVER LOG OF TEST BORING DESCRIPTION	REMARKS	WELL CONST. GRAPHC
ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	BECOMIDER BROWN SILIS & CLARS TRACE LA FRANCAPAIS & 1/8 BECOMIDER BROWN SILIS AND CLARS TO BECOMIDER BROWN SILIS AND CLARS	STREPI DAY-LIMIENE IC MZC STIFF LITTLE IC NO. MZC) () () () () () () () () () () () () ()
9' 8' 10' 10' 12' 12' 12'	FILL BEEN DER BEEN CLAYS TERE RA FRAGS FILL TOP 9" DER BEEN CLAYS WISCAR CLEHNICS BETTON 4" - GITTS INTO CHEMNICS COREY CLAYS LITTLE CREMMICS	STIFF LITTE TO IN 12°C STIFF: L. HIER. IN 12°O CHATSTIFF - LITTLE H2°C MEDIUM STIFFNESS SCHE H2°C	The same of the sa
15 15"	TOP 6. GREY CHAYS, LITTLE CHENDRES BETCH 17 REDUISH BRULL CHAY DO IXS CHENDRES REDUISH BRULL CHAS WIGHEN LATERS CECH LAHERS MAY BE EVIDENCE OF VIRESED CHASS REDUISH BRULL CHAS WIGHEN CAYERS REDUISH BRULL CHAS WIGHEN CAYERS CLEY WHERE HAY BE EVIDENCE OF VARBED CHAYS CLEY WHERE HAY BE EVIDENCE OF VARBED CHAYS	MED STIFFARE 1120 STIFF- LIFTLE TO LU 1120 M. STIFFARESS DAMP	

BORING NO. MW - 11.5 PROJECT NO. NAME	LOCATION BEFALE NY		
DRILLING CONTRACTO	MAKIM		
कुनुवहoLagist, of		ISAMPLING METHOD STA	T. FIMISH CAT
DRILLING EQUIPMEN	HSI+ 6" FISIA	SPLIT SPECIAL 1	2/17
WELL INSTALLED? CA	35 /2" TTPE SLUI #41.3" #INCESS	LENGTH & DIA. 2" SLO	T SIZECCO
ELEVATION OF: GR (FT. ABOVE M.S.L.)	DUND SURFACE TOP OF WELL CASHE TOP & SOTTOM		
REMARKS:			
/ kg	LOG OF TEST BORIN	¥G	WELL COHST. GRAPHIC 11716) 1 0 G
21 17 3 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LOG OF TEST SORING	REMARKS	MELL
20 24 35 65 2 4 54 27 23 4 54 54 54 54 54 54	BRUN I DRY BROWN CLAYS, No ZAS. BRUN WIXME GREY CLAYS Axbe July By	STIFF LITHE AN AZO STIFF TRACE MZO	
-			

ORING HO. MW- I/M PROJECT HO NAME WIGH CONTRACTOR/ MAXIM GEOLOGIST, OFFICE TOMAS DOON DRILLING EQUIPMENT. I HS A VELL INSTALLED? CASIL VEST NO CO. Sto	E ISAMA	ING METHOD START. 17/5/20/10/10/10/10/10/10/10/10/10/10/10/10/10	FINIS H - (ਹੁ.।	CATE IND
JO MADO	LOG OF TEST ECRING		LL CONST.	GRAPHIC LIYIO LOG
SEPIT SANTAE SO VERY	DESCRIPTION	REMARKS		5=
10 8 10 0 8 2 12 14 35 7 9 - 5	Brown / DRKBrown Silts + clays w/ Trace anounts of Ax Fragments. less than 18 Brown Drk Brown silts + clays, w/o Rxs Most likely Fill Bro Drk Brown clays w/ Track anount of Rx Grags. must liky Fill Top8 " Drk Brown clays w/ Some Organics Bottom 2" Gray silts + Clays w/ Some Organics Top 4" discarded boked as if they refellinto hole Bottom 14" Gray clays w/ Some organics + Trace Bottom 14" Gray clays w/ Some organics + Trace Reddish Brown Clays w/ Some organics Reddish Brown Clays w/ Some organics The gray layers may be without of The gray layers may be without clays.	Stiff little to No H20 Stiff little to No H20 Stiff little to No H20 Title to No H20 Stiff little to No H20 Stiff little to No H20 Stiff little to No H20	AS A A COCK MAN STONE AND A COCK COCK OF COCK COCK OF COCK COCK OF COCK COCK	

10 / 10 / 10 / 10 / 10 / 10 / 10 / 10 /	LOG OF TEST BORING	· · · · · · · · · · · · · · · · · · ·	VELL COINSY GRAPHIC HYTHO LOG
GEPTH SHIP RECOVERY THE BE	DESCRIPTION	REMARKS	WELL CO
20' 24" Red 28' 28' 30' 4" Ped 28' 78' 13' 1500 Ped 28' 78' 13' 1500 Ped 28' 78' 1500 Ped 28' 78' 1500 Ped 28' 78' 75' 75' 75' 75' 75' 75' 75' 75' 75' 75	ddish brown varbed Clays w/ Red, Grey, and dark Brown byers. dish Brown (Fleshy Color) Clays 4"- 1/2" Rafrags. w/ Gunda d edges. dish Brown(Fleshy Color) Clays 4"-2" Rx Frags. w/ Townded edges. ddish Brown (Fleshy Color) Clays 14"-2" Rx Frags w/ Townded edges. ddish Brown (Fleshy Color) Clays + 408-506 Rock fragments w/ some rounded edges astly Rocks 706 w/ Some Reddish Brown leshy Color) Clays	soft wet soft wet Soft wet	WASSALL THE
34' 4" 13 34' 13 34' 13 34' 15 32 32 35 35 35 35 35 3	Idish Brown (Flesh color) clays + 3ilts Research 20-30% rock mostly smoothed peobles Hish Brown/Grey Silts + Clays Rocks + Sands Hish Brown/Grey silts, clays, Sands + Racks.	Soft Wet The sample Ranged From Soft Share Wet	1-1-1

CHILLING CONTRACTO	JOHN J ZACHER JR.	
DRILLING EQUIPMENT WELL INSTALLEDT CA YES S NO C DIA	HSA GIRGHS HSA	SRUT SPOOL 1-2-97 LENGTH 10' DIA 2" SLOT SIZEO COL
ELEVATION OF: GRI	DUNO SURFACE TOP OF WELL CASES TOP & BOTTOM	SCREEN ON SURFACE DATE
REMARKS:		
13) / F 14.6	LOG OF TEST BORIN	DE LE COMBY. GRAPHE LEVIUS CO.
41' 1 44' 45' 41' 45' 41' 45' 41' 45' 41' 41' 41' 41' 41' 41' 41' 41' 41' 41	DESCRIPTION	CONTRACTOR
21 - 8 21 24 55.2 13 5 6	BROWN OLING FILL BROWN OLING FILL BROWN TO TERR BULLING CLIMS BROWN TO TANCIEM VILLETTLE CRET	STIFF LITTLE ICAL 1120 STIFF LITTLE HZC STIFF LITTLE HZC STIFF AXE IL LITTLE MZ C X FT /MCIST

Proportions Used: Trace x 0-10%, Little x 10-20%, Same x 20-25%, Ams x 35+50%. Sameling appreviations: 55 x Salit Speen, ST x Shelby Tube, CSC y Commissions Salit Core

LING CONTRACTOR DRILLER MAIM PRESIDENCE DRILLER MAIM PRESIDENCE CONTRACTOR DRILLER MAIM PRESIDENCE CONTRACTOR DRILLER MAIM PRESIDENCE CONTRACTOR DRILLER MAIM PRESIDENCE MAIN AS STEEL /2. INC. SAMPLE MAIN AS STEE	12-H	TEST BORING LOG			•
DESCRIPTION DESCR	SHAN DN TOSLO	BUFFAL NY		ښد	
JOHN J ZACHEL JR. JOHN J ZACHEL	LLING CONTRACTOR	Манм			
LINETALLED T CLISING MATTOTAL STAND OF TANILES STEER 21 THE SLOT MAT, STANCESS LINETAN OF THAT 2" ROT STEEL NO OF TANILES STEER 21 THE SLOT MAT, STANCESS LINETAN OF THAT 2" ROT STEEL ARTON OF COGUND SUPFACE TOP OF WELL CLEME TOP & BETTOM SCHEME MY 2 WITCHES AND STANDARD TOP & BETTOM SCHEME MY 2 WITCHES AND STANDARD TOP & BETTOM SCHEME MY 2 WITCHES AND SCHEME UP 3 WITCHES AND SCHEME UP	<u></u>	JOHN J ZACHER JR.			 .
ATOM OF GROUND SUPFACE TOP OF WELL CLEMATE TOP & BOTTOM SCHEEN ON SUPFACE DATE ARONG M.S.L.) RES. NO SAMPLES O 26' FILL MATERIAL, CONTINGS BOULD DO. CAMPRE 40-12 - DOTTOLOGY SCHOOL OLD LOG OF TEST BORING DESCRIPTION REMARKS DESCRIPTION REMARKS SIFF LITTLE DILC ALC 22' 4 BREW TO LED BROWN CLAYS SIFF LITTLE DILC ALC 24' 4 CLEY TO LED BROWN CLAY , TRACELIES 25' 7 MOIST LO BROWN TAN CLAY , TRACELIES 26' 10' 10' 10' 10' 10' 10' 10' 10' 10' 10	·		RIT SPOON	12/31/96	<u>5.</u> R 2 54 Ĉ'
NO SHARES 0-26' FILL MATERIAL, CONTING BOWN DAY SAME 40-12 - WORKS WIN SEPERIAL VILL BORNES OF TEST BORING DESCRIPTION REMARKS SHIFT LITTLE HARE 120 24' 14 25 27 28 29 21 21 21 21 21 21 21 21 21	AIATE DOM 2	MESS STEEL /2" TYPE SLOT MAY, STAINLESS LE	MITH 10 DIA 2"	SLOT SIZ	
NC SIMMES 0.26' SILL MATÉRING, CONTINES ROLL DO SAMRE WIND WITCHES SELECTION LOG OF TREST EGRING DESCRIPTION REMARKS SIMFF LITTLE IN LOC ALC ALC 22' 24' 4 BREW TO TAN COM SIME GREY THE CONTINE TO THE TIME COMPT STATE GREY THE CONTINE HOLD STAFF, INTLE HOLD STAFF, INTLE HOLD TO P 17' LIT BREW ITANCOM - SOME GREYS, LITTLE REMS TO P 17' LIT BREW ITANCOM - SOME GREYS, LITTLE REMS TO P 17' LIT BREW ITANCOM - SOME GREYS, LITTLE REMS SET DAMP 30 18 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ABOVE M.S.L.)	OND SORTAGE TOP OF WELL CASSES TOP & SOTTOM SCH	EEN CH SCHPACE	, u	A: C
DESCRIPTION REMARKS SHIFF LITTLE INLOCATED STIFF SERVING THE PLANE 22 24 4 5 6 6 7 10 LED BERW (LAY , TRIKE BLUES STIFF SERVING THE HOO MILE 24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NO SHARES	0.26 FILL MATERIAE, COTTINGS BROLL DRY SAM	RE 46-12 - NoteCO	164. sefusi	<u>42 5</u>
DESCRIPTION REMARKS SHIFF LITTLE INLOCATED STIFF SERVING THE PLANE 22 24 4 5 6 6 7 10 LED BERW (LAY , TRIKE BLUES STIFF SERVING THE HOO MILE 24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, die	LOG OF TEST SCRING		COMBY.	Į.
BEAL DRY SEW CLAYS SHIFF LITTLE PLACE ALL SHIFF SA IS TO TRACE HICK SHIFF SA IS TO TRACE HICK SHIFF SA IS TO TRACE HICK SCHT, MOIST STIFF, INTILE H2 C STIF	5 17 18 18 18 18 18 18 18 18 18 18 18 18 18	BESCRIPTION	REMARK	19	GRAPHIC
BREW TO TAN CLAY SCREENCY 24 24 24 25 26 27 28 29 20 20 21 20 21 21 22 24 25 26 27 28 20 20 20 21 20 20	120 9	Biam HORK BROWN CLAYS		10	
24 24 24 2 27 2 CORET TO LED BELOW CLAY, TRIKE BLIKES 25 27 LED BROWN /TAN CLAY, TRINGES SILTS, LITTLE BROWS (Up) 30 18 2 2 CET BROWN /TAN CLAY, TRINGES SILTS, LITTLE BROWS (Up) 30 2 CET BROWN /TAN CLAY, TRINGES SILTS, LITTLE BROWS (Up) 31 18 2 2 CET BROWN /TAN CLAY, TRINGES SILTS, LITTLE BROWS (Up) 32 18 2 2 CET BROWN /TAN CLAY, TRINGES SILTS, LITTLE BROWS (Up) 33 18 2 2 CET BROWN /TAN CLAY, TRINGES SILTS, LITTLE BROWS (Up) 34 18 5 2 CET BROWN /TAN CLAY, TRINGES SILTS, LITTLE BROWS (Up) 35 2 10 2 CET BROWN /TAN CLAY, TRINGES SILTS, LITTLE BROWS (Up) 36 2 CET BROWN /TAN CLAY, TRINGES SILTS, LITTLE BROWS (Up) 37 18 18 12 CET BROWN /TAN CLAY, LITTLE GLEY, LITTLE BROWS (Up) 38 2 CET BROWN /TAN CLAY, LITTLE GLEY, LITTLE BROWS (Up) 39 2 CET BROWN /TAN CLAY, TRINGES SILTS, LITTLE BROWS (Up) 30 2 CET BROWN /TAN CLAY, TRINGES SILTS, LITTLE BROWS (Up) 30 2 CET BROWN /TAN CLAY, TRINGES SILTS, LITTLE BROWS (Up) 30 2 CET BROWN /TAN CLAY, TRINGES SILTS, LITTLE BROWS (Up) 30 2 CET BROWN /TAN CLAY, LITTLE GLEY, LITTLE BROWS (Up) 30 2 CET BROWN /TAN CLAY, LITTLE GLEY, LITTLE BROWS (Up) 31 31 CET BROWN /TAN CLAY, LITTLE GLEY, LITTLE BROWS (Up) 31 18 2 CET BROWN /TAN CLAY, LITTLE GLEY, LITTLE BROWS (Up) 31 18 2 CET BROWN /TAN CLAY, LITTLE GLEY, LITTLE BROWS (Up) 32 2 CET BROWN /TAN CLAY, LITTLE GLEY, LITTLE BROWS (Up) 34 18 2 CET BROWN /TAN CLAY, LITTLE GLEY, LITTLE BROWS (Up) 35 2 CET BROWN /TAN CLAY, LITTLE GLEY, LITTLE BROWS (Up) 36 2 CET BROWN /TAN CLAY, LITTLE GLEY, LITTLE BROWS (Up) 37 2 CET BROWN /TAN CLAY, LITTLE GLEY, LITTLE BROWS (Up) 38 2 CET BROWN /TAN CLAY, LITTLE GLEY, LITTLE BROWS (Up) 39 2 CET BROWN /TAN CLAY, LITTLE GLEY, LITTLE BROWS (UP) 30 2 CET BROWN /TAN CLAY, LITTLE GLEY, LITTLE BROWS (UP) 30 2 CET BROWN /TAN CLAY, LITTLE GLEY, LITTLE BROWS (UP) 30 2 CET BROWN /TAN CLAY, LITTLE GLEY, LITTLE BROWS (UP) 30 2 CET BROWN /TAN CLAY, LITTLE BROWS (UP) 30 2 CET BROWN /TAN CLAY, LITTLE BRO	124 1	Borns to Tell read state GREV	Store & 10 761	Pair /	
CIET IC LED BROWN (LAY), TRINEILLUS STIFF, INTLE HOO THE RED BROWN (LAY), TRINEIS SILTS, LITTLE ROLLS (HE) STIFF, INTLE HOO TO BROWN ITAN CLAY, TRINEIS SILTS, LITTLE ROLLS (HE) STIFF, INTLE HOO STIFF, INT	24 " "				100
RED SPECIAL CLAY RED SPECIAL	24 2 (SEET TO LED BROWN CLAY, Trike Blues	 Scitt, Moist	1,5	1
TOP 12" - LT BROWN TAND CLAY AND SAND ONS: 18 17 17 18 18 18 18 18	24 س	,		<i>i ii</i>	>1
2 LI BEWN MAN CLAY, TRACESILES, LITTLE ROCKS (46) 2 LI BEWN MAN CHAY LITTLE GLEY, LITTLE ROCKS (46) 2 LI BEWN MAN CHAY LITTLE GLEY, LITTLE ROCKS (46) 3 TOP 12" - LITBERN MANOSANO, WO CHASSIVE STREATH 18 12 BLEY CLAY AND SAND CYS. 10 GLEY CLAY AND SAND CYS. 11 GLEY CLAY AND SAND CYS. 12 CT PARTY SAFERORY 12 CT PARTY SAFERORY 13 CT PARTY SAFERORY 14 WET WET WET CLAY AND SAND CYS. 15 20" - G. R. CLAY WISHER GLEY MANOLANY 16 CT SOL." HOSTLY RICK WISHER GLEY MANOLANY 17 WET, STIFF		LED Brewe (LA-)	STIFF, little H	4 : / 1	
D 2 LIBRULLIAN CHAS LITTLE GIRAL, LITTLE ROCKS (115 141) STATT DAMP. 2 16 3. TCP 12"-LIBRULLIAN CHAS SUBGINERS, LITTLE ROCKS SC. T DAMP, & 46 450 WET NO STRENCTH, WET 1 Gray Cha and Sand Ons Sc. T DAMP, & 46 450 WET NO STRENCTH, WET 1 Gray Cha and Sand Ons Sc. T DAMP, & 46 450 WET NO STRENCTH, WET 1 Gray Cha and Sand Ons Sc. T DAMP, & 46 450 WET NO STRENCTH, WET 1 15-20" - G. M. CLM AND ROCKS 14-1/2" VET C. SC/2" HOSTLY RICK - WISCAR GIEY TANCLAY WET, STIER	V =				1
LIBRUMITAN CHM : LITTLE GILR-1, LITTLE ROXES (115-14) LIBRUMITAN CHM: LITTLE GILR-1, LITTLE ROXES (115-14) LIBRUMITAN CHM: LITTLE GILR-1, LITTLE ROXES (115-14) LITTLE ROXES (115-14) LITTLE ROXES (115-14) SCHOOL RAPPORT AND SOLUTION OF CHESTIVE STREATH LITTLE ROXES (115-14) SCHOOL RAPPORT AND SAND OF STREATH LITTLE ROXES (115-14) LITTLE ROXES (115-14) SCHOOL RAPPORT AND SAND OF STREATH LITTLE ROXES (115-14) LITTLE ROXES (115-14) LITTLE ROXES (115-14) SCHOOL RAPPORT AND SAND OF STREATH LITTLE ROXES (115-14) L	1 × 1 4	bews /IAN CLAY TRACESILIS, LITTLE Recks (14)	SIFT, WIMP	111	17.0
TCP 12"-LT BROWN ITENCHINI- SOMEGNESS, LITTLE RUKS SCHT PAMP, SHEHOO 18 12 18 12 10 BCT W- CKEN CLAY AND SAND, WE CHEST VE STREATH WET NO STRENCTH, WET 10 GT TO CLAY AND SAND C-15 11 GT TO CLAY AND SAND C-15 12 C' SUL!" HOSTLY RUK WISTE GLEY ITANICLAY WET WET WET WET WET WET WET WE	<u> </u>	I BOWN ITAN CHAY & LITTLE GIREY LITTLE PORTS (16.16)	SUFF MAD	- (-)	-
TCP 12" - LT BROWN / TRNCLINI - SCYEGETTENS, UTILE RUKS 8 CT DAMP, STEFIC 18 8 8 CT 0" - CKEN CLAY ANDSAND, NO CLARSINE STREATH WET NO STRENCTH, WET 12" 13 GT QUALINAMIS SAND CTS. 15-20" - G. RY CLAY CLAY CLAY AND ROCKS 14- 1/2" HOSTLY LLK - WISCHE GLEY / TANCLAY HOSTLY LLK - WISCHE GLEY / TANCLAY WET WET WET WET WET WET WET WE	$\frac{1}{1}$	The state of the s	2711		31.5
BCTW"- CKEN CLAY AND SAND 21	2 3		SCH DAMP, SHE	H ₂ C	
Wet 21" Color Clay mail Sano 0-15" Gray Clay and Sano 0-15" Wet 15-20" - Gray Clay and Andrews 14-1/2" Wet Wet Wet Wet Stript Hestry Ruck - wisere Giff Hancking Wet, Stript	4 10	- -	1		1
G: EX CLIM AND SAND O-15. S. C. SOL: HOSTLY RUK - WISCHE GIEY TANCLAY WET STIFF	} ! 4	ley clay knn sand			- <u>}-</u>
20" 15-20" - G. X CLM - HUDRICUS 14-1/2" WET - TIFF 15-20" - G. X CLM - HUDRICUS 14-1/2" WET - STIFF	ا اسلا	(1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DE LITREM TH		
G' ST/2" HUSTLY RUK - WISETE GLEY ITANCLAY	26"		ψet~ .		•
C' 50/: HOSTEY RECK WILL TO	8 7		1	1,1	
	6' 50/.	ACCTUTE KLEK WITH THE CONTINUES OF		1, 4	1
nos Used, Trace x 0=10%, Little x 10=20%, Seme x 20=35%, Amm x 35=50%	nos uses. Trace a	2-10%, Little x 10-10%, Seme x 20-35%, Amm x 35-50%	,	1 -	

PROJECT NO NAME Union Phad 2035-200 DRILLING CONTRACTOR/DRILLER MAXIM (Ron Brown, Dick Miller)	t. Finish 1212/	CATE:
LOG OF TEST SORING	L CONST.	GRAPHIC 11710 1 0G
LOG OF TEST SCRING LOG OF TEST SCRING REMARKS DESCRIPTION	WELL	
No Samples taken until 70 BG The material is all Fill untill then. Secul	A STANDARD AND ARCHARACTER AND AND ARCHARACTER AND AND ARCHARACTER AND ARCHARA	WILLIAM MACHACIAN AND COMMISSION AND CONTROL OF THE STATE

DANBURY, CT 06810 (203) 796-5279 201 TEST BORING LOG BORING NO. MW-BUFFALO NY PROJECT NO., NAME 2035-200 Union Road DRILLING CONTRACTOR/DRILLER Dilly 100 Maxim GEOLOGIST OFFICE START, FINISH DATE James Doan SAMPLING METHOD SIZE TYPE OF BIT ORILLING EQUIPMENT, METHOD Split SPOON LENGTH 10 OIA. Z" SLOT SIZE .OZC WELL INSTALLED? CASING HAT. O.A. YES IN NO 1 Stainless Steel 2" SCREEN: TYPE SIOT MAT. Stainless GW SURFACE TOP OF WELL CASING TOP & BOTTOM SCREEN GROUND SURFACE ELEVATION OF: (FT. ABOVE M.S.L.) REMARKS: Orthor Pridons LOG OF TEST BORING Mr. Covery WELL REMARKS DESCRIPTION Stiff Brown to Drk Brown Clays, NO RXS 201 little to No MO 24" Stiff 22 ZZ Brown/Tan/w/ some Greys W trace H20 24" 241 Soft 741 Damp Breyish/ Red Brown Ckys, Trace Per Fragments 26 SKiff Top6" Red Brown Glay, No RXS 26 -soff w/H20 Bottemli" It Brown/Tan (Floshy color) Clays, Tracesillo Rx Eng 17 14 28 Soft 28′ It Brown/Tan(Fleshy color) clays, Trace silts + Some HO 15

Some rock fragments 18 2- 44 Sof+ 3D´ It Brown / Tan (Flish Color) clays, Trace silts + д Some H20 14 4 some Rock tragments Topiz" It Brown / Tan, w/ some cray chys some Rx Soft, Damp 37 32 Bestemn" Gray 50% Sands Neks No Checsive Strang 24° 34' 50 Sample skipped the augers into hard unconsolidated Rocks 15 It Brown/Tan/Grey Clays of 5ilts + Argular Dock Vugments 40-50% 48"-1" 39

ORING NO. MW- ROJECT NO NAME WIND PART FILLING CONTRACTOR/ MAXIM GEOLOGIST, OFFICE FILLING EQUIPMENT. HS A FELL INSTALLED? CASI FS TO NO C. Shi	METHOD SIZE TYPE OF BIT SAME	H 10' DIA. Z" SLOT	SIZE OZO SIZE
SEPTH SAMPLE HO SEPTH	DESCRIPTION Mostly RY 4"-2" insize of a matrix of	REMARKS	WELL CONSY. GRAPHIC LIYIO LOG
- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	Mostly RY 14"-2" insize of a matrix of It Bown I Tan / Grey Clays + silts -Bed Rock @ -41 BG Bottom of Autechive Cosing @ 44 Stain less Steal Riser Stain less Steal Screen	We for Stiff Coment Boot BG Bentonite	Y TATALON (ALL LAG WOMAN MAN MAN MAN MAN MAN MAN MAN MAN MAN
15	Rotten of typle 61.5' Bb = 0-103. Little = 10-203. Some = 20-353. And = 35-503		

DRILLING CONTRI	DEFFICE MAKIM T. OFFICE MENT. METHOD MENT. METHOD MILLER MENT. METHOD MILLER MENT. METHOD MILLER MENT. METHOD MILLER MILLER MENT. METHOD MILLER MILLER MILLER MAT. STAILLESS GROUND SURFACE TOP OF WELL CLEME TOP & BOTTOM: L.)	SAMPLING METHOD STAR SPLIT SPCC.N 12 LENGTH /O' DIA-2" SLOTE SCREEN GW SLREACE	
SEPTIME TO SEPTIME SEP	LOG OF TEST BORIN	,	WELL CONST. GHAPIUC LIYHO LOG
- 5	Direk Bernin CLAMS Direk Bernin CLAMS Direk Bernin CLAMS SCHE CLAMBERS SCHE CLAMBERS SOTS" - BERK SCLAM CLAMS, LITTLE CLAMBERS BOTS" - BERKK SCLAM CLAMS, LITTLE CLAMBERS BOTS" - BERKK SCLAM CLAMBERS NOT WHATWE RAP 3" - BERKK SCLAM CLAMBERS BEHKM 3" - WOLCO: LOING CREALOIE CIX IZ BEHKM 3" - WOLCO: LOING CREALOIE CIX IZ BEHKM SAND CLAMBERS BEHKK SAND CLAMBERS BEHKK SAND CLAMBERS TODG BEHKL CLAMBERS TODG BEHKL CLAMBERS	STIFF LIFTLE, Nº HZO STIFF TRACE HZO STIFF, LIFTE HZU DZY	

Proportions used: Trace = 0-10%. Little = 10-20%. Same = 20-15%. And = 35-50% Bulk Dill Samoting Abbreviations: 55 = 5pttl Speck. 5T = Shelby Tube. CSC = Continuous Soil Care

BORING NO. MAY 13 M PROJECT NO. NAME UN'ND DAM! DRILLING CONTRACTOR OFFICE DRILLING EQUIPMENT. METHOD PISCE TO CONTRACTOR OFFICE STATE FINANCIA TYPE SICT MAT. STAINING METHOD STATE FINANCIA TYPE SICT MAT. STAINING ELEVATION OF: GROUND SURFACE TOP OF WELL CASING TOP & BOTTOM SCREEN GW SURFACE OATE LOG OF TEST BORING DESCRIPTION REMARKS DESCRIPTION REMARKS DESCRIPTION REMARKS SHIFT TOP OF WELL CASING DESCRIPTION REMARKS REMARKS DESCRIPTION REMARKS RE
WELL INSTALLED? CASING MAT. 1012. SCREEN: TYPE SIOT MAT. Strainless LENGTH 10 012. 2" SLOT SIZE OZE TYPE SIOT MAT. Strainless LENGTH 10 012. 2" SLOT SIZE OZE ELEVATION OF: GROUND SLAFFACE TOP OF WELL CLISING TOP & BOTTOM SCREEN GW SLAFFACE DESCRIPTION REMARKS: LOG OF TEST BORING STIFF TOP OF WELL CLISING DESCRIPTION REMARKS STIFF IITH BOND HO IN Calusasive Strainless IN Calusasive Strainless Finance Top 9" BIK sands as Nesso Cirden some congunics Thought
WELL INSTALLED CASING MAT. OBLAND SURFACE TOP OF WELL CASING TOP & BOTTOM SCREEN GW SURFACE ELEVATION OF: GROUND SURFACE TOP OF WELL CASING TOP & BOTTOM SCREEN GW SURFACE OATE LOG OF TEST BORING DESCRIPTION REMARKS DESCRIPTION REMARKS BIK SANds + OShes of Ginders - Not Calward - Street - Street - Street - Street - Not Calward - Street - Street - Not Calward - Street - Street - Not Calward - Street - St
ELEVATION OF: GROUND SIRFACE TOP OF TEST BORING LOG OF TEST BORING DESCRIPTION REMARKS DESCRIPTION REMARKS DESCRIPTION REMARKS DESCRIPTION REMARKS DESCRIPTION REMARKS DESCRIPTION REMARKS DESCRIPTION
DESCRIPTION REMARKS TO 10 10 10 15 BIK sunds + Oshes or dinders - Not a Native material To 9% BIK sand a sheso circler some arganics To 9% BIK sand a sheso circler some arganics No Cohoosive strength
5 5 12 18 -Drk Brown clays w/o Rxs 10 10 10 18 Blk sands + Oshes or ainders - Not a Native material Top 9 Blk sand + as he sor circles some organics The cheesive strong to
5 5 12 18 -Drk Brown clays w/o Rxs 10 10 10 18 Blk sands + Oshes or ainders - Not a Native material Top 9 Blk sand + as he sor circles some organics The cheesive strong to
5 5 12 18 -Drk Brown clays w/o Rxs 10 10 10 18 Blk sands + Oshes or ainders - Not a Native material Top 9 Blk sand + as he sor circles some organics The cheesive strong to
14' 15 Bottom? Wood, Arobdy from a RR tier Damp 14' 5" 51/5" Top?" Bik ash w/some as organics Nath" Brick (Red Bettom?" Wood 16' 3" 50/3" Wood Nex Sample will be 19'-21' 18' 3" 50/3" Wood

IORING NO. 10 M MW- 10 M PROJECT NO. NAME UNION PAAD PRILLING CONTRACTOR MAXIM OFFICE GEOLOGIST, OFFI JAMES DOON ORILLING EQUIPMENT. HS A WELL INSTALLED? CAS YES TO NO CO STORY ELEVATION OF: GRO FT. ABOVE M.S.L.)	METHOD SIZE TYPE OF BIT SAMPL	Sailling	THISH CATE
REMARKS:	78/ /5° /		CONST.
, rio	LOG OF TEST BORING		MELL COMS GRAPHIC LIYHO LOG
560 14 2 14 16 10 14 14 14 14 14 14 14 14 14 14 14 14 14	DESCRIPTION	REMARKS	3 3 -
15 34 0 50/0 15 36 34 0 50/0	Top 5" Wood Bottom 19" Greyish red clays, No Rocks Reddish Carey Clays of some tacks Top 2" Wood - Maybe Rom a plug in Bottomof ager Bottom 10" Reddish / Grey Clays w/ some Rs Fring Pebbes There wasn't on basket in the spoon.	Sit Sosti little to No H20 Soft Wet. Borring	

	(2)	03) 796-5179		14.5	
	BORING NO.	TEST BORING LOG			
	PROJECT NO. NAME	ON ROAD BURGO NY] :
	DRILLING CONTRACTOR	MAYIM Technologies			
	GEOLOGIST, OFFI	MARIS CAMBRIA NES DANBURY, CT	LING METHOD START	EINIS	STAO H
	DRILLING EQUIPMENT	METHOD SIZE TYPE OF BIT V SAMP	AF 1 8		
	WELL INSTALLED? CAS	TOLK 4" I TIPE AND MAIL STAMPS TOLK	H /O DIA. Z " SLOT	SIZĘ ()20 (E
	ELEVATION OF: GRO	UND SURFACE TOP OF WELL CASING TOP & BOTTOM SCREEN	GW CAM. MA	DAT //5/	5)
Ì	REMARKS: REDIACES	Drevious 14-5 Well.		<u>-</u>	
·		LOG OF TEST BORING		4ST.	U
	/ kmp	LOG OF TEST BORING		CONST	GRAPHIC LIYHO LOG
	GERTH SHIP RECORERS	REALOW	REMARKS	WELL	GRAF LIYII
	SER / STAT RECEPTION	DESCRIPTION		, W	<u></u>
		_ Topso:/	y w	1/1	
			·		
		Fill- @ Redish brown SANDY Clay	3.8		-
			(Josephin		
	- 5		5.>		
			<u>ر</u> . چې	1//-	
		Reelish Brown Clay			
	335		SaND		·
	5.		-		
	L 1 2 2				
	E YI			Ý	
				7	
	- 15			1,1	
			K.8_ 17.3	上	
		- ENDY Borry	110		
		ENDO			
	F				

DRILL DRILL DRILL	LING LING LING LING LINS LINS	NO	DIPMENT ED7 CA ED7 CA ED7 CA ED7 CA	FICE JOHAN J ZACHER JO METHOD HSA SOME SING MAT. FOLL SCREEN: DURS STEEL 2" TYPE SCOT MAT. STAIDLESS LENGT DUND SUMFACE TOP OF WELL CASING TOP & BOTTOM SCREEN	1 Street 12-	T. FINISH CA 30-9/. T SIZEC+C20
	, tr's		L KO VERY	LOG OF TEST SORING		WELL CONST
1	! /			HOITEIRDEED	REMARKS	3 3 =
5	4. 6. 88 10 10 17. 17. 17. 17. 17. 17. 17. 17. 17. 17.	20° - 15" 22°	LALL GALL PLANT BARGET	TOP I"- WORD TOP I"- WORD 1-11" - BROWN CLAY WILITTLE GENNEL 11-12" - BROWN CLAY WILITTLE GENNEL G-7" - FILL CINDERS, STEWER, DRICK. 7-19" - BROWN CLAY WI TITTLE RECES (IN-) 7-27" REDIBREW WLAY REDIBREWN CLAY WI TITTLE RECES (IN-) REDIBREWN CLAY, TRACE CREANICS (ECCIS) REDIBREWN CLAY - SXIR GREY VARBING	STIFF, OIZY ORY STIFF, OIZY STIFF, TRIMEHZO STIFF, LITTLEHZ HZO STIFF LITTLE HZ HZO STIFF LITTLE HZ HZO STIFF LITTLE HZ HZO	
15	<i>া</i> ধ	24" 24" 24"	مناهما متامن آمس	REDIBROWN CLA-1 WISCHE GRE-1	STIFF /LITTLE HZ O STIFF-LITTLE HZ O KEDSTIFF THOMZO KEDSTIFF THOMZO	10 BM 7.

BOR	ING N	Ю.	ļ		EST BO	PAING LC)e===				
PRO.	니. ÆCT		NAME		Loc	MOITA					
DRIL	LING	COM	TRACTO	IR/ DRILLER						•	
<u></u>	₹ G 2-	oroc	SIST. OF	ACI							
				T, METHOD	82	TYPE OF BIT	SAM	FATHE HELLH	20 STA	RT. FINE	SH CA
				SING MAT./DIA	SCREEN						
YES ELEY	<u> </u>	HO	<u>a.l.</u>	OUND SURFACE	TOP OF WELL	MAT.	LENG SCREE MOTTO			T SIZE	TE
(FT.	AEO	/E 14.								,	
					· · · · · · · · · · · · · · · · · · ·						-
		/) las	17.70 0 4 5 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		LOG OF TEST	BORING		·	WELL COMST.	110
/4	911			ALL DO	DESCRI	PTION		REMA	LXR	WELL	GRAPHIC
_	20		49	GOREY CLAY				SDFT, W	CT	Tit	
-	22	18'								1.1-	
 -	22		wagnt	CSEA Cruz				WART SCAT,	WET), [-	
-	24	ĸ	ان ا		·					九七	
	1) पं		00	GREY CLITY				SOFF, WE	<u> </u>		
—}5 ~	26	lь''	3 2								
_	26	l.,	Z	GREY CLA-1				SOFT			
-	28	24	3 7.3					SATURATED SATURIATED		1,1	
-	23	2."	6	G-3 GREY CLAY	•					八川	
	30	20.	074	8-20' GEEY CU	14 15046 Recei	s Bus		bendest	オナ		
_											
-					•			Ì			
_											
- 15					•				-		
						,	i				
								-			•
-											
 					•						

Proportions Used: Trace ± 0-10%, Little ± 10-20%, Same ± 20-35%. And ± 35-50% Sampling Abbreviations: S5 ± Split Spoon, ST ± Shelby Tube, C5C ± Continuous Sail Care

BORING NO. MW-15. PROJECT NO NAME UNION TO ORILLING CONTRACT	DRIDAILLER MARIM - EMPIRE : P. DENKE	G LOG	SLAW -1	5
GEOLOGIST. O WINGAL DRILLING EQUIPMEN 855 \$	SZWAKA DANG JAK		METHOD START	T. FINISH SAT /20/66
PES NO (1) ELEVATION OF: G (FT. ABOVE M.S.L.) REMARKS: FLEATER	HOUND SURFACE TOP OF WELL CLAIMS 620.0 4 AND NORTHY DELIATIVE TO PUEC	AT. S LENGTH IC TOP A BOTTOM SCREEN G 610'-600'	DIA.) SLOT	SIZE O DO DATE, 2/20
SEPTH SHIP RECOVE	100 C	F TEST BORING		WELL CONST. GRAPHIC
\$29 T SIMP \$600 46	DESCRIPTION		REMARKS	3 3-
	FRIT GROWN SITE) PARTY COMES TO LINE TO PROPERTY COMES DEPLES SAND CLEAR THAT FINES, TAN. TON FROM THE MATTER COMES DEPLES SAND CLEARS of THACK FINES, TAN. TON FROM THAT NO COMES MATCH UP. ARTY CLAY, NO COMES MATCH UP. ARTY CLAY, NO COMES MATCH UP. SAND OUT AREA[KING, SILTY CLAY, GREO/GRY SILTS FOR SOME CLAY.	TY" Grant. CARLES MANEHOLD A SUBANGULAR PRUE FRAG. SAFT. TRACE SILT TRACE LRANGE	Grand? Control Grand?	The state of the s

				(203) 796-5279				, x	· -].
		NG NO.	5		TEST	BORING L	OG TO			•••	1
•		ECT NO.		טאודיי אט	A)	CAD INTEST	ಬ{				المحرا
	ORILI	LING CON	TRACTO	RIORILLER -N.) Ter	BENIC				\ w~	لر عديا	
	点	in deproi	GIST. OF	FICE . THURM /524	Maya	Danbury			/ *_		
		(MC	. 65c	т. метно о) Н S	sn	SIZE: TIPE OF BIT	SAME	SS METHOD	START), /S	£1 3 ± 1 <u>9-<</u>
j	WELL YES	. JNSTALL Y NO	ED7 C.	SING MAT./DIA	SCREE TYP	h: e o jo hat. ss	LEKI	CAID OLK	SLOT	SIZE	<u>₽</u> ₽
	(FT. A	ATION OF	: .GR .S.L.)	OUND SURFACE	t.9 TOP OF	MET CYZING 100 F	BOTTOM SCREE GIOIS - 600	Y GW SURFAI	2/2	SIZE GAT	· -
	REMA	MAS: AU	ر فریقه			RELATIVE T	O PRE-CAP	GRAVE			 -
		/	MAG	(1) pt 15/1		LOG OF TES	T SORING			CONST.	100
	15	grider)	E HO YEAR	TAPE BLOWS TO	0	ESCRIPTION		REMAR	KS	WELL (GNAP
	- 2	ی.ی	35	Hard Bro	own Cla	7, 10% Girect	-	Fpt			
	1 2 . 1 .	1.5	20	upper 1:	1" 54~c	₹ <i>K</i> ?		081			
·	— 4 = — 5	1.0	1	SAFE				PRY	friad		
	- is -	9"	12/北			SECTION SHOULD	1.45 in Ect. 420004		F.~6 S+vd→		3 3 3
	_ _ = = ' _			1 of side	MA LATEST	in produce					****
	- - - 10'	z'	5/34		42/18 some co	ind, we considurate states	sim.	-	, I		
	- 1	1,5	5/4	-	-erec organ	ÇDLS.					
<u> </u>	- - ,	1,3	44	Samé							
	- 14 7 15 1].5	4/51-	SAME Y	e (20%) Ecce fi	rays, 17 Yy", anyunda.	יי ל הסדינה או	,			
	16 + - -	l ₁ 5 ¹	12/ _Y L	5Amil 1			-	พละว่า			
}	- 18'-				EOB	19.0'			(2706 3)		

· /	/	0. M	LOG OF TEST BORING		COMST.	GNAPIUC LYMO 1 OG
55.0 TH /51	A PRI	HO LEAT	DESCRIPTION	REMARKS	WELL	GNAPHIC 1 FYHO 1 C
-	125		TAVIBLE CLASS PROTES, WILLSMAN MATERIAL	-نفرد-	To be designed to	
- 2'	ر کئے	42/4	BIME OUR ELO FILITISANO, WANGE PRESENT. FET STANDY.	WET .		
- 4'	1.0%		TANISTON CONT SUFF. NO EVERS MA FORING FOR STRING	pr.		
	1.2	٠ ، مسد	0.5	(
	۱۰۶٬	11/4	SET ADIA CLAR. Fot stung. W LANGE MATTER TAME BURE CHOSE FILL MATTE.		11/1/2	
1 1	5.5°	"/H	\$ _{የተ} ጠ £			
. 12'	0	7/ _{/t}	No excitest	wet		
	0	3/H	He kein ster			
- 10	2.8	11/ft	SAME, NO TILL MATE. TRACE PREMATION ANYMAY PORT		hard and the second	
- 18 -	.5	14/ 14	AS CAREFAREN CLAS of BURE STANCES TARE FASANTIS [1000)	_		- - -

			7 圖	DANBURY, CT 068. (203) 796-5279		ROSIN	G LOG		7		150'	7
	BORI	ид но. - W	.17		1 5 5 4				· []		رة حر	/x xx
	PROJ	ECT NO				LOCATION	FILL EAS				· ./	
	DRILL	THE COI	UTRACTO	A/DRILLER	3 000							
	<u></u>	: GEOLC	GIST, OF	FICE	O.BENE							
		-	M, Y	<u>کی مج</u> م <u>مرامه ۱</u> ۲. HETHOD	بسادلوامه	SZE TYPE O	F BIT	ISAMP	I JHG METHO	D STAI	RT. FINIS	H CA
			258 H	54	1	6.25"		7-			2/22/4	<u>(</u>
	YEST	37) H	a 🗀 🚶	Sing Mat./DIA. 27 51	דיין ו	<u>.</u>	A7. 5x	цената	I IO DIA.	L" SLC	OT SIZE	20
	ELEY,	ATION O	F: GR! 4.5.L.)	OUND SURFACE	TOP OF V	AET CYZING	TOP & BOTTO!	M SCREEN TŠ'	GW SURF	B'	=/12	
	REMA	AXS:					Yeps.					
١.				184 15							, i	
				11 / RESIZ		LOG	F TEST BOR	IING			CONST	ي ا
,	•	10	/10:/Q1	(1) (10) 13 /				· .	·			GRAPHIC
	/st	PITT GAME	AECOVERY	TAME GAME GAME	01	SCRIPTION	· · .		REMA	.RKS	WELL	S .
かり		2.	14/4	(isama) high	lanz war Commen	My show st.	eining. Thank is	Marky	₩.T 			
	- 11'	§.5	, 15/st	23:01 Busine surp	\ \\A^0;	placed injury	mestic					
	- 24		1	·		END FHID,						
	<u></u>											
	<u> </u>				•].				
	-							.				
			1				•	[
	_			-								
	_ i											
	- !											
	_		1									
	_											
	15											
	F											
	<u> </u>											
	L											
	 	1	1	1				1			1	

A DIVISION OF TIES
44 SHELTER ROCK ROAD
DANBURY, CT 06810
(203) 796-5279

REMARKS:	MAYEN ENTER PHIL BENLE FFICE PANON SENTIT, NAMELY IT. METHOD SIZE TYPE OF BIT SAMP ASING MAT./OIA. SCREEN: TYPE MAT. 55 LENGTH ROUND SURFACE TOP OF WELL CASING TOP & BOTTOM SCREEN (19.1 6)DIO 605.0-595.0	H 16' DIA.) SLOT	
GEP TH SHIP RECOVE	LOG OF TEST SORING	REMARKS	WELL CONST. GRAPHIC LIYHO 1.0G
F \lank_i :	1 12 6.7% (10.0)	(Frazin)	0 1 1 1 1 1
32/4	Firm		
	The city, said, the course, they		7-
-5 1 12/F	Tanjory Ceny F.m , No Chai Dr.	. govt >>	
7, 12 je	Brun ilas SEFFIRM, AU CONTE, Dry	. 0	
- 11/2/2	T Same		7.7.1
15 24/	hitten 6"	\$ Purp	
1527/5	- same W/Trace rock figs (horping give)	74°	
المن الما	5 Sema (5.17 lover to 10%)	control of	
J. 348	Same	tery	
15 4/6	Same hat sett in mist		

LORING MELL JOCATION SALTCH &

BORING NO. PROJECT NO NAME DRILLING CONTRACTO DRILLING EQUIPMENT (MAC 9 700 WELL INSTALLED? CA YES NO CELEVATION OF: GRI (FT. ABOVE M.S.L.) REMARKS:	FICE HALLY SOMATION SIZE TYPE OF BIT SAME SING MATURIA. SCREEN: SUM TYPE MAT. S CHAT OUND SURFACE TOP OF WELL CASING TOP & BOTTOM SCREEN 619. 620.0 605.0 - 595.0	PLING I	OIA.) SLO	T SIZE	SIDRI NAIL O.D.
SEPTH SHIP RECOVERY	LOG OF TEST BORING			ELL COMST	GRAPHIC LIYIO 10G
23 Oct Strate Recorder	DESCRIPTION		REMARKS	₩.	8 E
F 1 9/4	l y nta		Course		

LOG OF TEST BORING										
\display \text{35.0}	PATH SAN	PLE	HOVERY	AL BLO DESCRIPTION	RI	EMARKS	WELL	GULAPI		
	1 1	۶,	18/4	NOW - ELLOW SAND, ONE LEARNISE, EARLYSIAN, ENGEN PHILAS	flotte					
1 2	L.	,·	12/14	FIRM BARRINGTON CHATE FE'S BURLE ESTIMAY, AS CHASE MAPLE	uni.					
- 4' - 5		5	13/54	Shari.	-					
	1.	5	**/#	TO' ALE SOME WITH TALLE YOU LANGE (RULLER), V. NARO	하기 즉 '			- 1 - 1		
	0.	5	62/56	TAN JOAN, MARD, ELAY () SILT. FE STANLING. TRACE GRANGE PROMATE E STANLING		fue lang				
	1.7	5	ᅫ							
	1	٥	14/41.	the seems to make the property of the seed	Τζω	منفر ۱۹۸۴ در				
15	ja s	ا ار	19' H	Same. Sugar skeet present. Beick backle trugs, front.						
	1.6	,	6/4	Sofficial wentered cook, some morrow from organic trace errormani's Fetztmany, in come matic.						
	3,2	5	1/ tr	Sound and production and office strates, No charge mathematically are productions from	£.0.0 8	10'				

PRO OR	ಕ್ಷ್ಯಕ್ಷ GEOLOGIST. G	E FOR/ORILLER M- IMPLIED DEFICE SIWHIL DANSE	LOCATION BENCE SIZE TYPE 425	N LANDFILL (AF	SAMPLIM 2"s	5,	START. FINISH CATE Z/23/94 SLOT SIZE FO
	YATION OF: C	ROUND SURFACE ∳(\$,5'			M SCREEN (2/23/14
REX	IARKS:	English & Bear	HI RELATIVE TO TR				
	OEP IT SAMPRECONE	AD TYPE RESIST	Log	OF TEST BO	RING		WELL CONST.
/	OEP IT GAMPARECON	E TE B	DESCRIPTION			REMARKS	WELL CO
			20' 8.0.8				

	T N	DANBURY, CT 06810 (203) 796-5279	<u>-</u> -	l N	•	_
<u> </u>	MW-20	TEST BORING			- دي	-
PRO	JECT NO., NAME	UNION BD LOCATION	HTELISH CAP	\		
-	LING CONTRACT YY	OR/ORILLER WAIM/CIMPIRE BEHLE!	ROHACKET		120.	س≶د.يل ښډبر
ارو در	ि GEOLOGIST, Q	FFICE HAMON/SZUMMA DR	MBURY			
ORI	LLING EQUIPMENT & SCI	HT. METHOD SIZE TIPE OF	BIT SAME	PLING METHOD	2/2//5	SH 017; <
YES		ASING MAT./DIA. SCREEN:		710 OIA.)"	SLOT SIZE	<u> </u>
ELEY (FT.	ATION OF: G	COLUMN SAFACE TOP OF WELL CASING	TOP & BOTTOM SCREEN	GW SURFACE		YTE 21/96
		TITY AND DEPTHS RELATED				<u>/// / e</u>
<u> </u>		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ID PRE-U	IN SORTA	10,50	
	, h	LOG OF	TEST BORING		COMST.	001
	PIT SAMPLE COLD	THE BUT				APHI
<u> </u>	3/47/4E/4E	DESCRIPTION		REMARK	5 3	5 =
	1.5 8	M. Black Mish DRAMICE		FZLZCM		
	1.0 26	Brown (10% three organics	tm ^c 5; 1+	W2157		
5	1.5 19	BOTTOM 12" BINCK FOR GI W/chroconl ODE2, 10% OZNIME	man metrini	M1:55		
-	1 14	Black F.m Clay 100 0 ggs		moist	Cox 1	という
- - 10	1.5 24	Buttom Un Fin ton Clay, H.	ه دماتوع			0000
	5" 16	MORT P. DEA ZUME MOREMON (1) YEAR ON BACK (1) YEAR THE CINES ESP MISSING)	s Suma Chy to Libod	Wist		
	05' 8	Fine Black Sond Tow SI E		~ct		
15	7 8	- 6 (0-12)	1 22-7 - 10 10 20 ANA	Bright		
	1.5 3	Same House organis	in a	WT E		1.7
	153	Beam CLMY+SAND UBLICKSTING , DOOR, Succing, 20010 DUK Fry	Strong Petidena	wet !	70	ار ار ار

	BOR PRO DRILL ORILL YES ELEY (FT.	LING LING	NO NO NO NO NO PLOG CONT CONT CONT CONT CONT CONT CONT CONT	NAME RACTION IST. O. IPMEN IST. C. GF	POR ORIUM FFICE HA IT. METHO ASING MA SOUND SU	MUDA GODING CONTINUES OF STAGE	EST.	BENC SIZE THE	ANDARY E OF BIT OF TOP & B 607.0	5 L BOTTOM SC - S97-0	SAMPLING SENGTH 10 REEN G	METHOD O DIA.) W SUMFACE NA	sro. ∫	T FINIS	76
		<u> </u>			/\$ ⁴ /	110			TO PR		<u>GRA</u>	REMARKS		WELL CONST.	GRAPHIC LIYHO LOG
0,	15		0 70	3 8 7 6	Sum mut	MO FOR	C 18, 0 81-15 (1 1200)	my service 121 100 00 1018 run	mo dos			ι. 5.	red 7		1000年の1000年

BORING	S NO.		TEST BORING LOG		· · · /
PROJE		. NAME	LOCATION		.1
DBILLIA	Uz KG CON	UNON S	RIDRILLER LANGELL CAP	\	\ \\\ \'\'
1		MA	cim- Empiral		ita
±3.77 (≠37±±	SEOLO:	GIST, OF	FICE DANGUAY		<u> </u>
ORILLI		UIPMEN 3 HSA	T. METHOD SIZE: TYPE OF BIT SAI		TT. FINISH CAT Z/22/96
	YSTALL	ED7 C	SING MAT./DIA. SCREEN:		, ,
YES &	ION OF	GR	2" 55 TYPE MAT. 5.5. LENG OUND SURFACE TOP OF WELL CASING TOP & BOTTOM SCREEN	ETH 10' DIA. 2 SLL EN GW SURFACE	DATE
REMARK	OVE M	.S.L.}	623.4 625' 595'-605'	, ak	2/27/41
L. C.		All FLO	WATCHE & DEATHS ZECATIVE TO PRE-CAP GRADE		<u>. </u>
	/3/	E HO VERY	LOG OF TEST BORING TRANSPORTED DESCRIPTION		CONST.
SERT	SAMP	E HO VERY	AC DESCRIPTION	EXAMBR	WELL CO
FT	2.	411.		Kno zen	W
F	2	41/56	District and anscharge Christian fee marchine many		
<u> </u> '			a original. Match / feet made.	1	
 -	1, 25	UML-	Street 6	Blover Us MAMME	%
- 4'				PHUS HARMEL.	
_ 5	1.25	9/4		İ	
- 4-	-		SAME of Will beach com. For staining with or men	324	
- (-		<i>-</i> 23	OLNA CUEL CINDERS PRESENT. WHAT TAN DER, SAMO GLANGE ME FINES, AND MAKE SHE	· .	A 1 -
_	\	50/4	BEALL BOTH BEN LANGE COLL BY THE STATE OF TH		
– ધ. ¹ 			MANISM SIMT SAMO. PEDALY KAROOD DAY		
-	/	7/4	same of period course (140) Rule & whole fings , Francisco.		
- 10		, , , ,	SLACE YOUT ! FIND your TABLE Dryamies. DET.		
-			-		
-	1.25'	9()£	Pointed thank the state in coming a material. Day.		
- 12					
_	0'	15/16	•		
- , ,		110			S
- M		ر ہے			
15	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5/4	34-40. A		
-12-		-	the new startings. Why finally the matter		国
_	ر. ح	7/1/2	was their after a State of Marie Confer of 1970 we con	1,4121,	[[]]
- - (*		••			
, '		41.			
-		4/50	PARÉ		

			DAMBUKI, CI 008, (203) 796-5279			1	N		- ,
8 ORII	NG HO.			FEST BO	RING LO	3 4 3			/
PROJ	MW-21 ECT NO	NAME		Loc	ATION	, , 		21 - w ng	. 4-1
ORILL	JNG COM	U.OL 2	R/DRILLER		LANDFILL (N	<u> </u>		270	73
	GEOLOG	NA.	m-Empias: D	· 13 = NC =		· · · · · · · · · · · · · · · · ·	_	210":	
^{دو} شه	•	W	. SZLAZA ; DAW	سريري	7000 05 017		L L	I START	FINISH C
		955 J	r. Method ⊰sa	S/2E	TYPE OF BIT		NG METHOD		122/21
WELL YES 2	INSTALL	E07 C.	SING MAT./DIA.	SCREEN:	MAT. S.S.	LENGTH	10 ' DIA. 2'	SLOT :	SIZE Z
ELEYA	TION OF	: GR	OUND SURFACE	TOP OF WELL O	CO7'-	TOM SCREEN	GW SURFAC	Ε	DATE Z/ZZ/
REMAI	RXS:			سو ، ب	we to In-cap	· · · · · · · · · · · · · · · · · · ·			
		A	1. 2-evertor.	/		<i>y., y.</i>			.
			THE SAME 2" PAR		LOG OF TEST :	ORING			CONST
	/3/	40. kg	(1) (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		-				
15	44.44.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.		Age of	DESCRI	PTION		REMARK	5	WELL
	79.79	1	24 12×1	د کاسادی کا د	is sering				
•	ದಿಚ	10/4			·				
-12			3. 14 115	مام کلید علام	الهدي شديكاج كالسراء	e danu			
	ندا	19/16	General Mer and		17. 7. 17.	W)U.2,			
-24			<u> </u>	an, where M	· · · · · · · · · · · · · · · · · · ·				
<u>7</u> 5	125	MH	and an	we, where m					
- £U	1,	!	,	E	05.26		· <u>-</u>		
_									
	•		<u> </u>			Andrian			
			,						
•					-				
-30									
-		Į							
-									
- {									
_				•					
15									
<u> </u>						-			
_									
<u>. </u>									
- !	f	1	1			1		- 1	1

BORING NO.	TES	T BORING LOG			1531
PROJECT HO., HAME VIVIOR DRILLING CONTRACTOR MAYA	DRILLEH NEMPLAE D	BENES			SINE
DRILLING EQUIPMENT.	METHOD	SIZE TYPE OF BIT	SAMPLING M	ETHOD STAF	TT. FINISH 31 20 96
CME 558 WELL INSTALLED? CASI YES & NO C Z ELEVATION OF: GROU (FT. ABOVE M.S.L.)	A S.S. TOP C	EEH: YPE 10 500 MAT. 55 * WELL CASING TOP & BOTTOM 626,40 6060' - 5	SCXEEN GW	SCALACE	OATE
~2' = 2	1 2 ver Apar cons	LOG OF TEST SOR	D SURFAC		ST.
GEPT SAMPLE OVERY	THE SEPTI	DESCRIPTION		REMARKS	WELL COMST

Proportions Used: Trace = 0-10%, Little = 10-20%, Some = 20-35%, And = 35-50% Sampling Abbreviations: SS = Split Spoon, ST = Shelby Tube, CSC = Continuous Soil Core

Sim Morrid master is the Styling

5/4

4/4

5/96

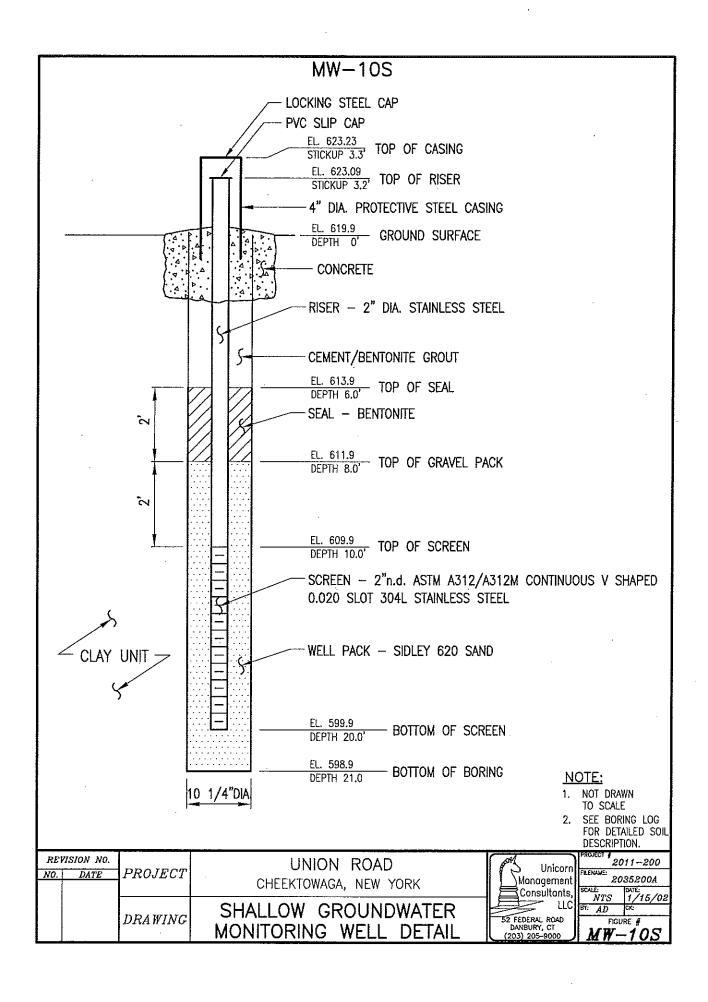
2/4

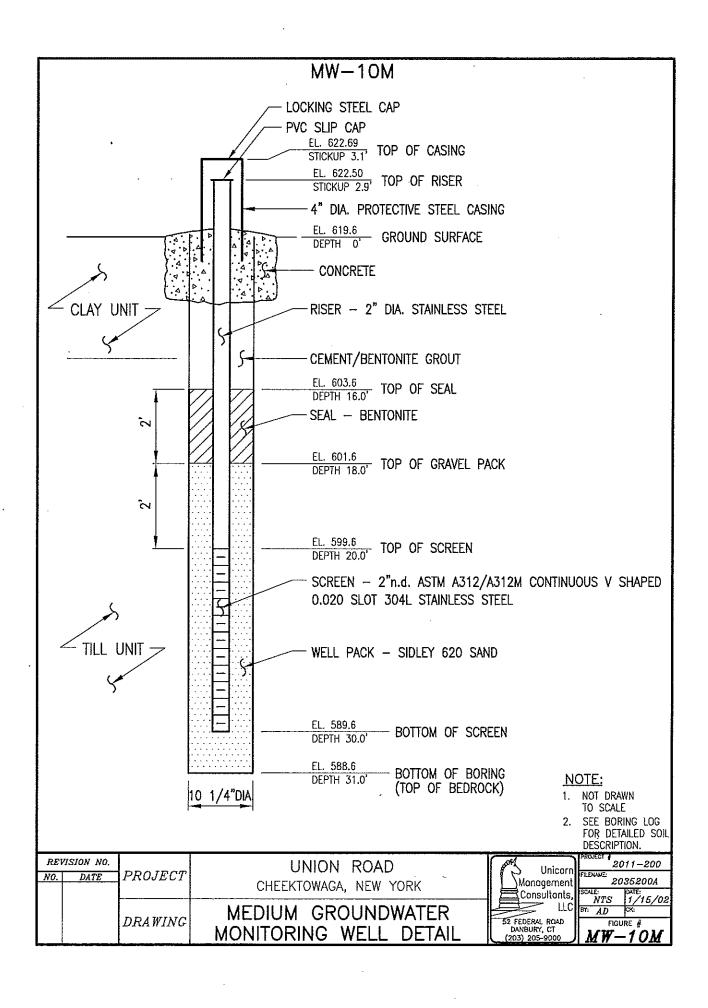
2/4

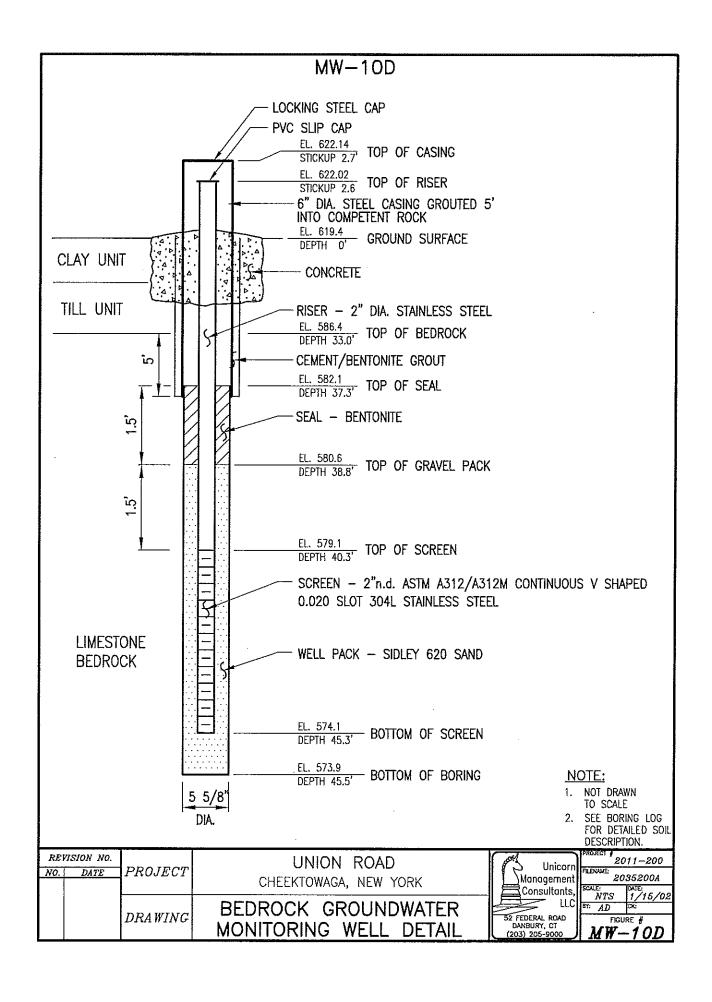
6/4

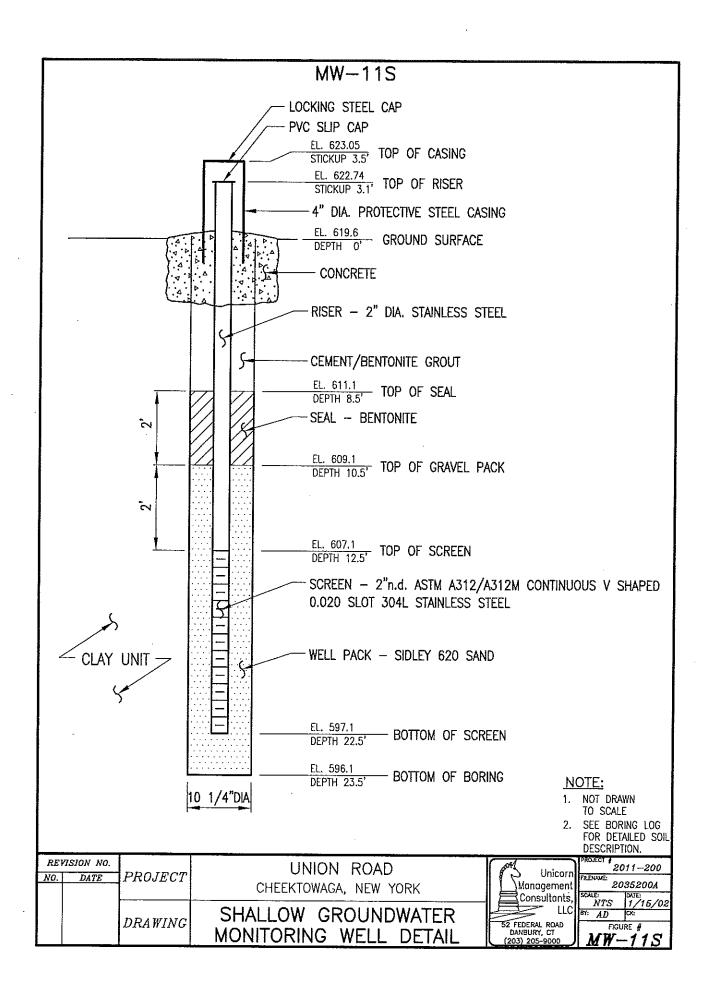
1

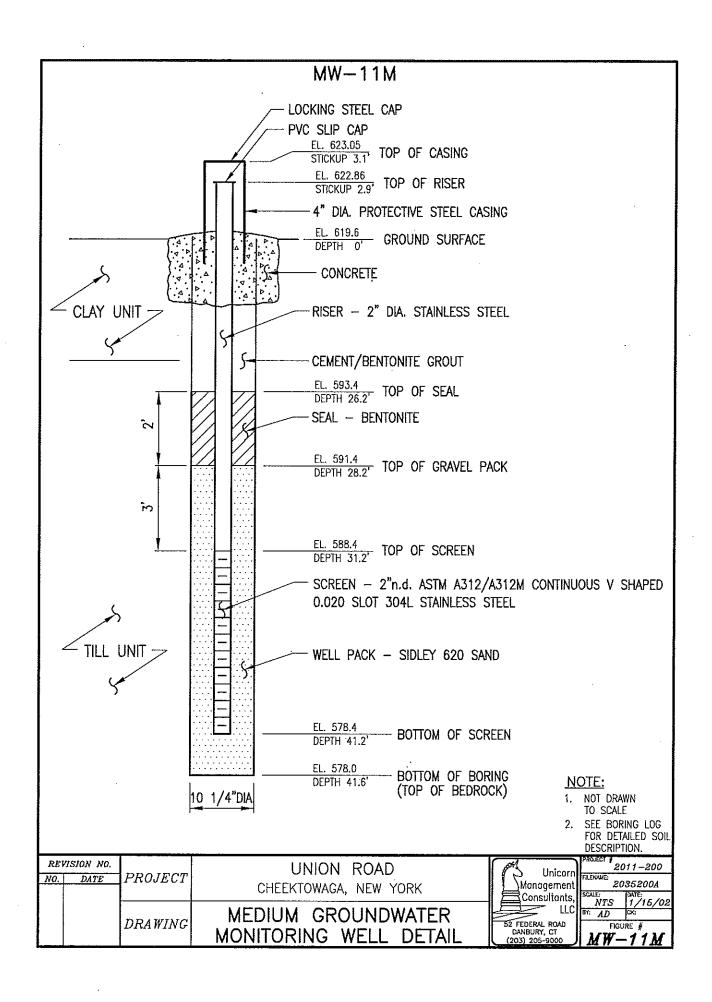
 I^{l}

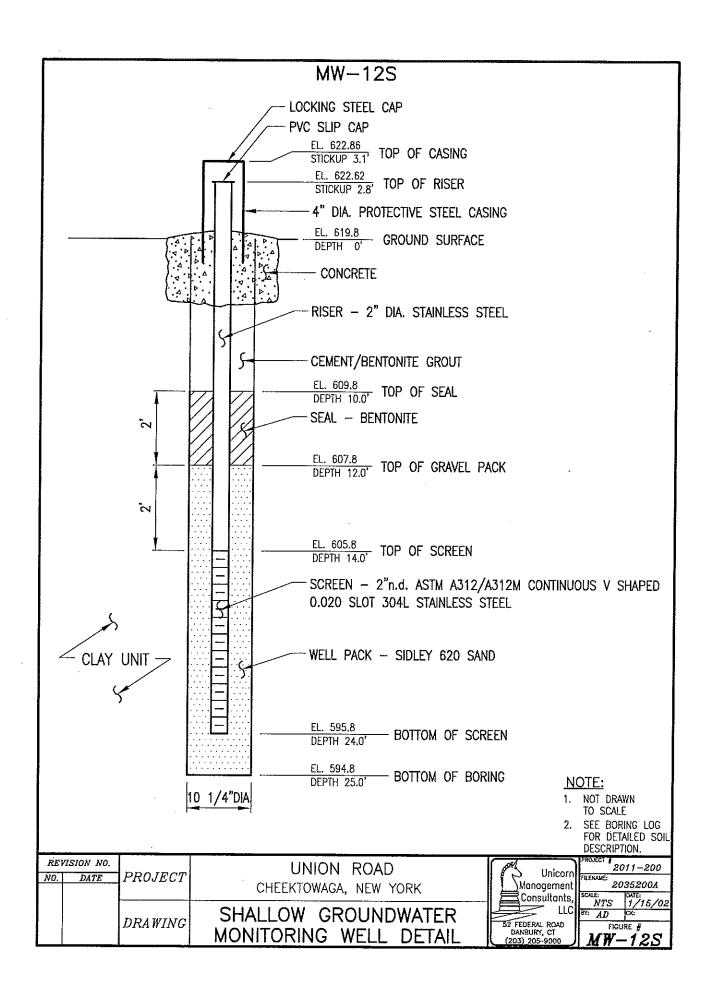

15

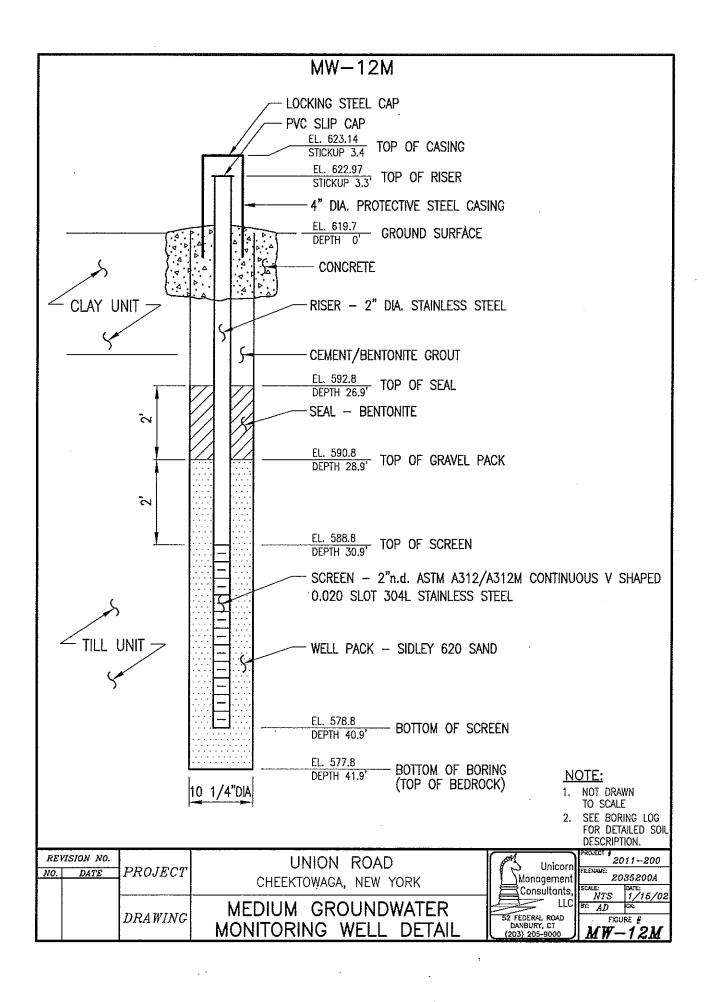

Same

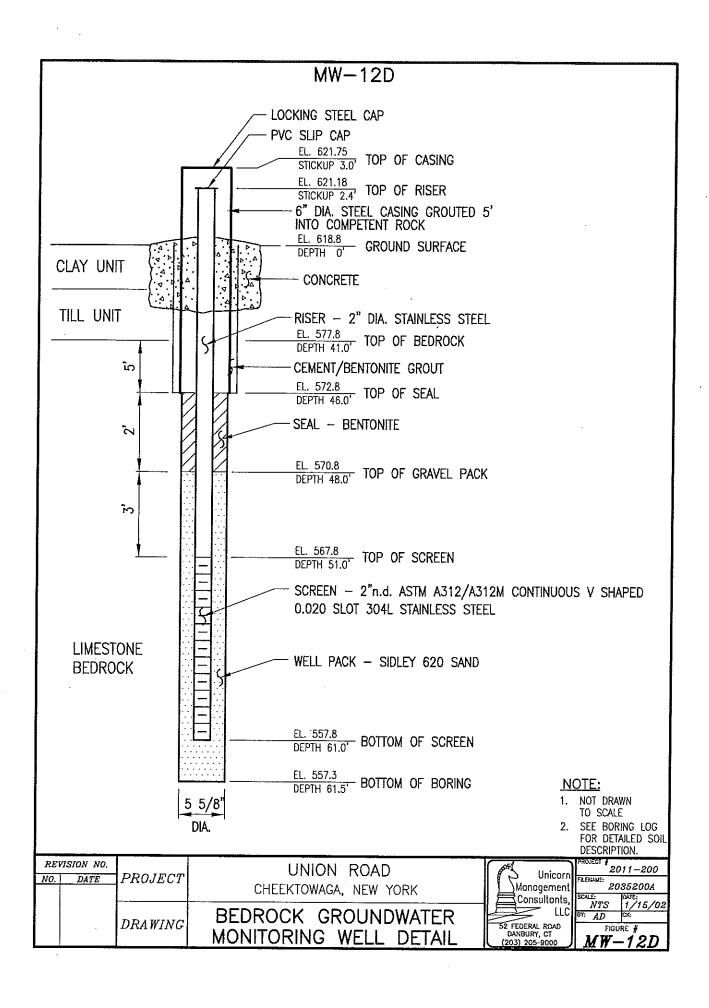

SMME

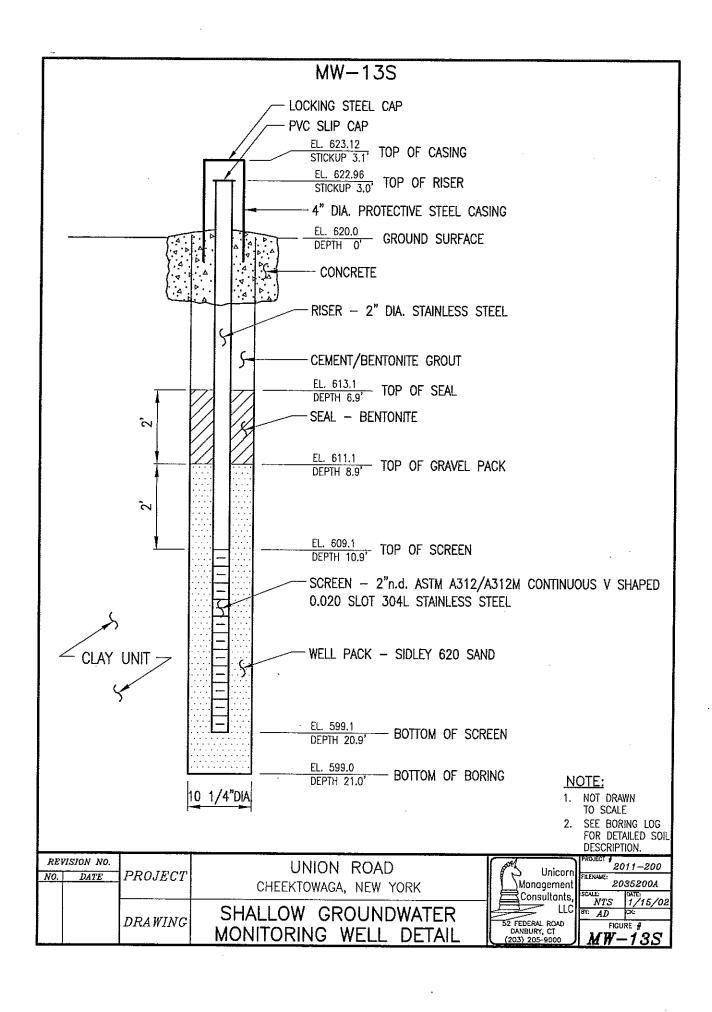

BORIN	G NO. W·22		703) 796-5279	TEST		a Log				M-37	153 /
	CT NO.	in ROAD			OCATION Zaside	Car					
ORILLI	NG CON	TRACTO	R/DRILLER	P. DEVICE				1	١		
ಕ್ಟ್ರೌಡ ಎಸ್ಟಿಸಿ	GEOLO	SIST, OFF	M- ENIAG FICE LOW / 53-PA		nl	·			<u></u>	/	
DRILL	NG EQI	UIPMENT	. METHOD	S	ZE: TYPE OF 6,25° H		SAMPLI	HG METHOD	START	r. FINIS 20 9	94 0 '6
WELL I	NSTALL	ED7 CA	SING MAT./DIA.	SCREEN:		7. 55	I FNGTH	10' DIA. 2"	SLOT	SIZE	10
ELEYAT	רוסא סד	: GR	OUND SURFACE	TOP OF WEI 626.3	T CYZING	TOP & BOTTO	M SCREEN	GW SURFACE		O.Ā.	馬
REMAR	KS:		623,4 RE-LPR &			<u></u>					-
		<u> </u>	12 / /5	20001102							$\overline{\top}$
	/	1	AL ALBAN		LOG O	F TEST 801	RING	•		CONST	GRAPHIC
	13/	10 / Ri					<u> </u>	<u>.</u>]	I d
منو ^و (H Griff	E TO VERT	TYPE ASSIST	0850	CRIPTION			REMARK	5	WEL	3
_ 1		l l	AMOUNT GIZA	clly MAT'L. G	sethic, on.	L & Spece. 7.	race unil			: E	-
-	CH	15/64	2" Andria L.		t						•
22											
	6*	1514	1,3mc				ļ				
· 커 🕇		 	Chift can	Cham. To	31.e*	,		(0	~44~}		
- 5	11	11/jt	/u - v ,	fram, The	erace in the first	17: 12:2 MU (1807)	2),116 474,	7	ا مهم		- -
× +										::目	=
. ,	اړا	9/14	SANC		1						Ξ
13		/ 10	•	1 EOJ	7450		-		.		
			,								ı
-10									.		
			·								
									•		
- 15											
•								_			
-								·			
•											
•			-								

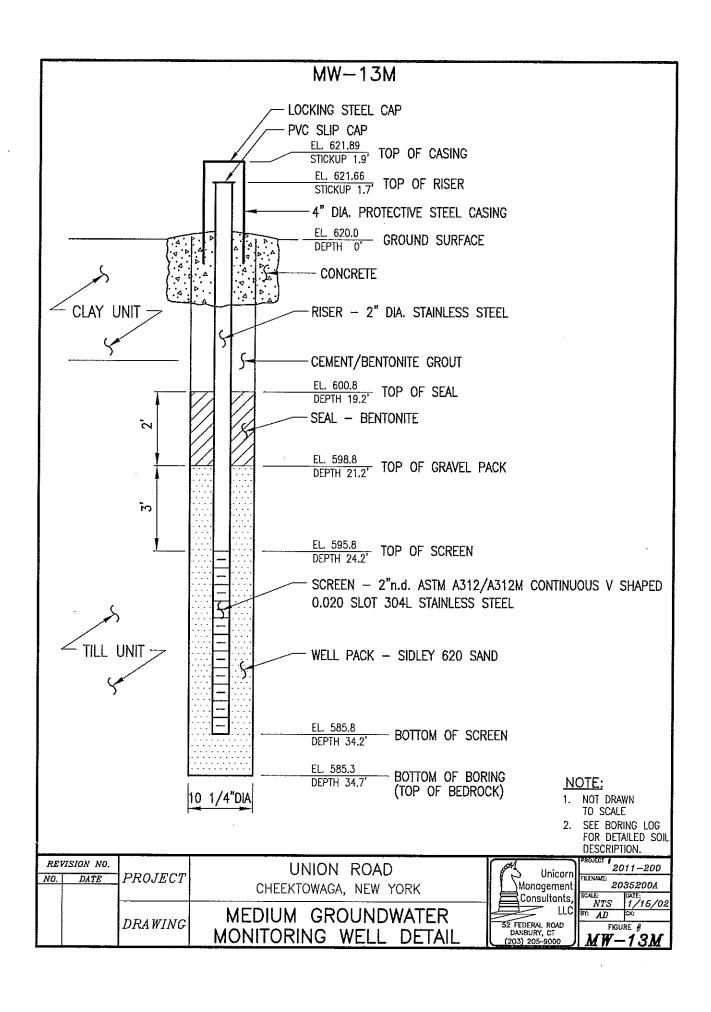

	TORILLER MAXIM TOE JOHN J ZACHER IR METHOD HSA 16" HSA	SAMPLING METHOD STAR SPLIT SPOON F	T. FINISH :
REMARKS:	LOG OF TEST BORING		COMSY.
54 14 74 44 46 74 18 18 18 18 18 18 18 18 18 18 18 18 18	LOG OF TEST BORING	REMARKS	WELL CON
15' 15' 15' 15' 15' 15' 15' 15' 15' 15'	SAMPLING STARTS 2' BG. CH TWELLHOUAND HAS REOIBER ON, SWECKE GIS REOBROW CLAY 15-71 SOYE MCINURE C-10 REOIBER CLAY 15-71 SOYE MCINURE C-10 REOIBER CLAY 15-71 SOYE MCINURE C-10 REOIBER CLAY GEET CLAY LITTLE SAWN, LITTLE RES GREY CLAY, LITTLE SAWN, LITTLE RES BYD 16	STIFF- DAY STIFF, TENE HOO STIFF, TENE HOO MEDSIFF DAMP. MEDSIFF DAMP. MEDSIFF DAMP. SEFT, WET SCIT WET	72847

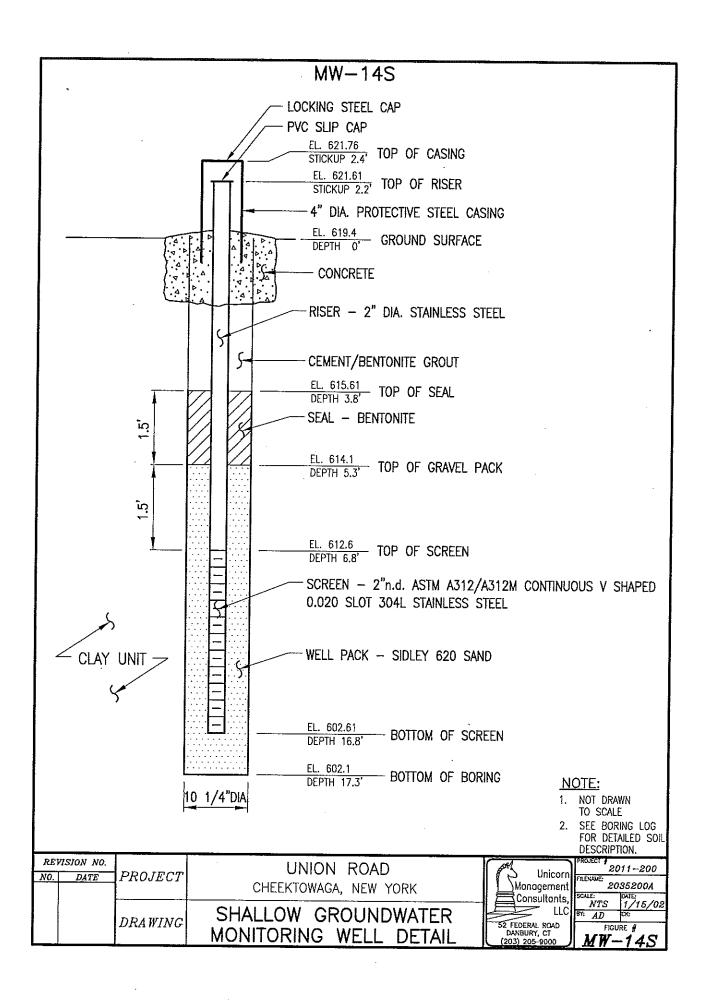


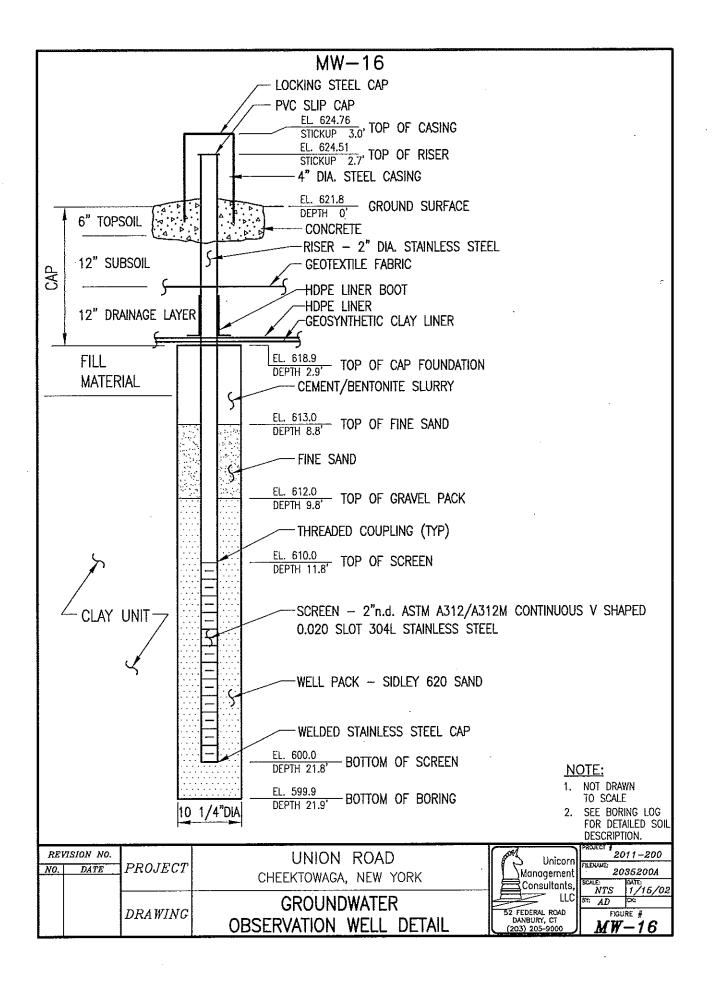


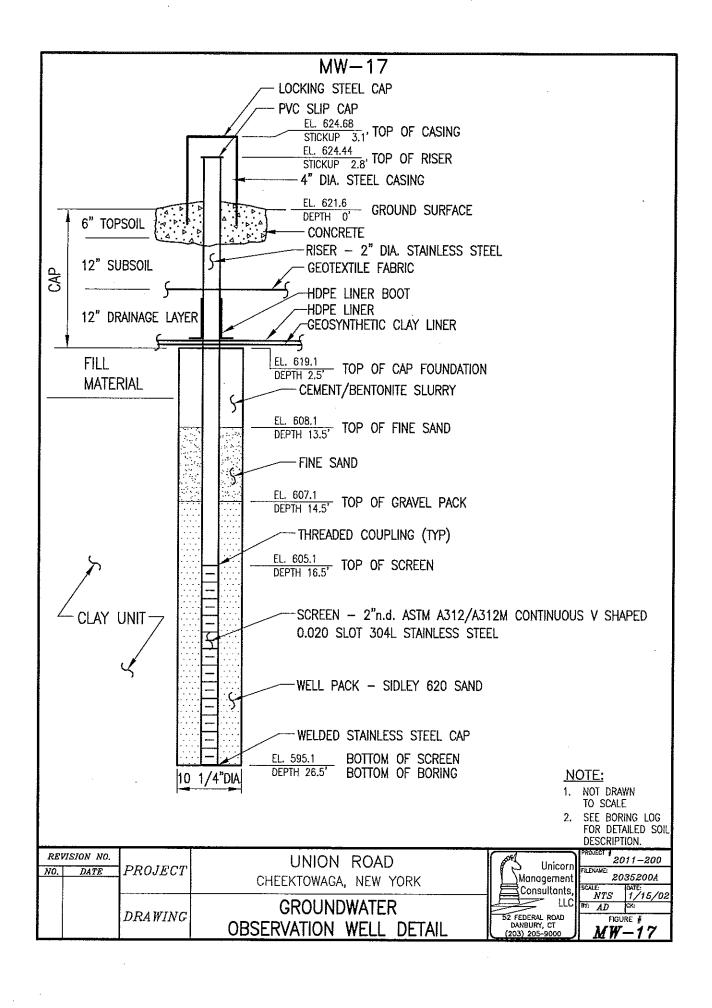


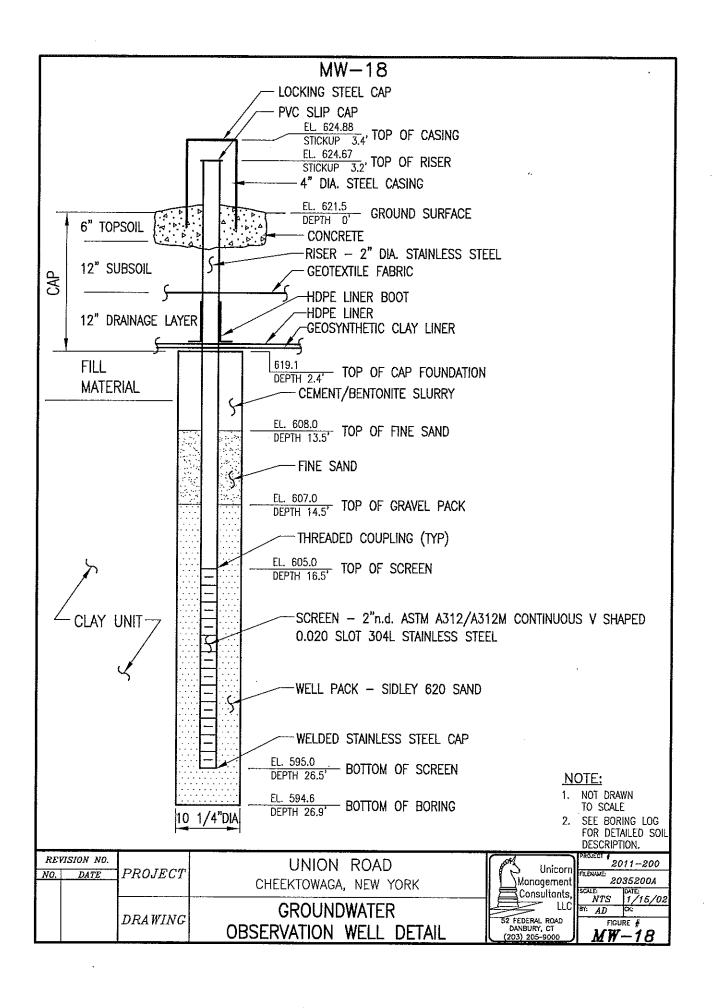


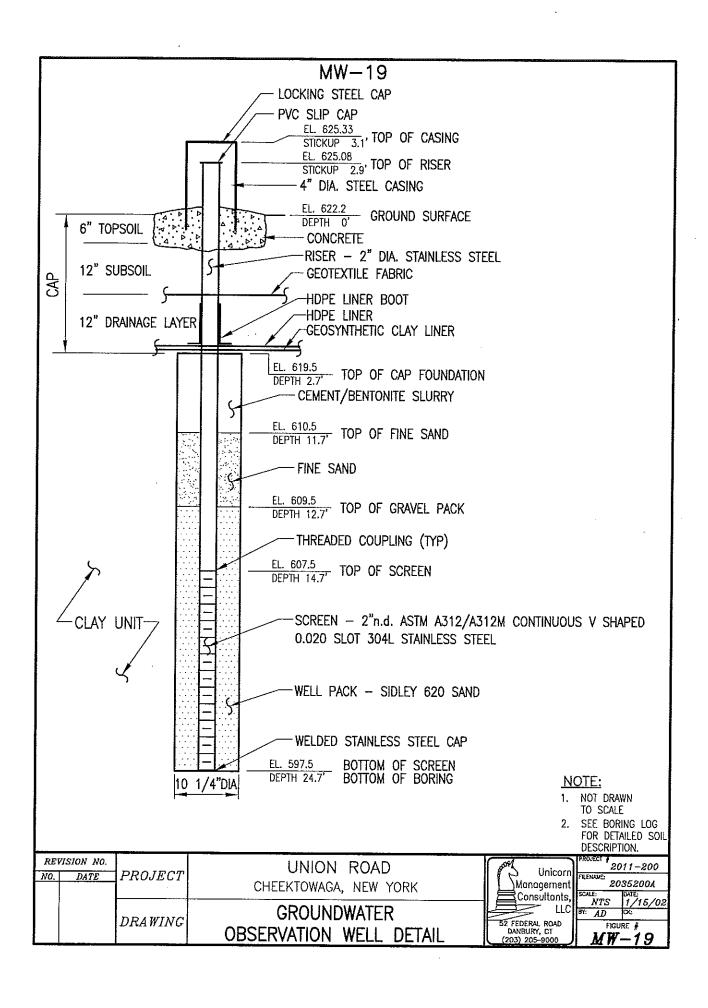


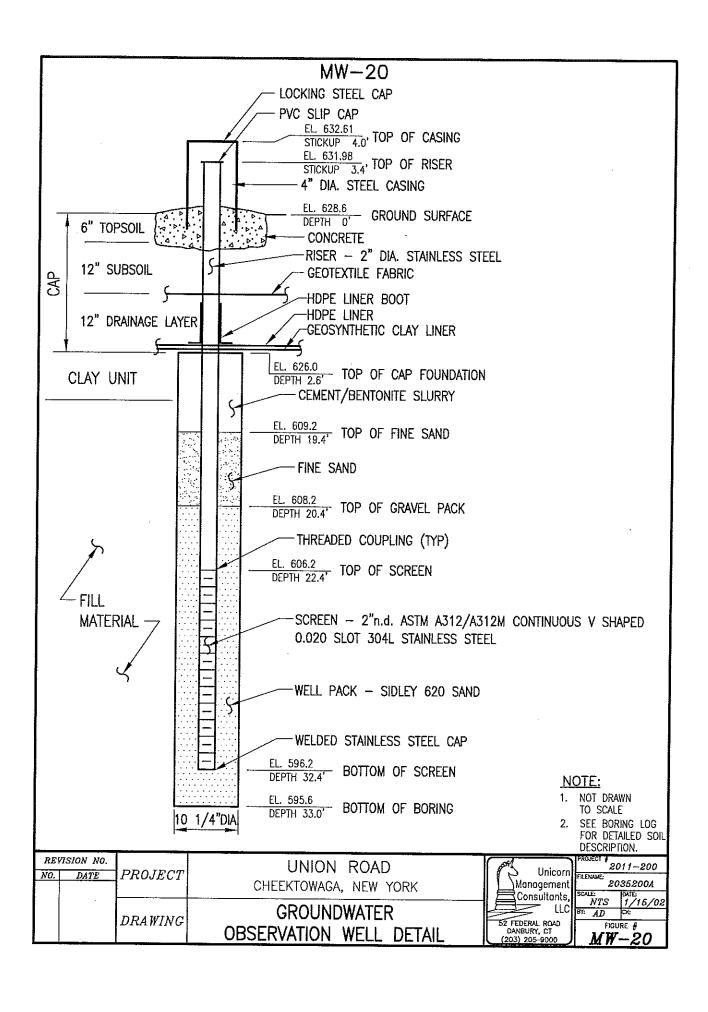


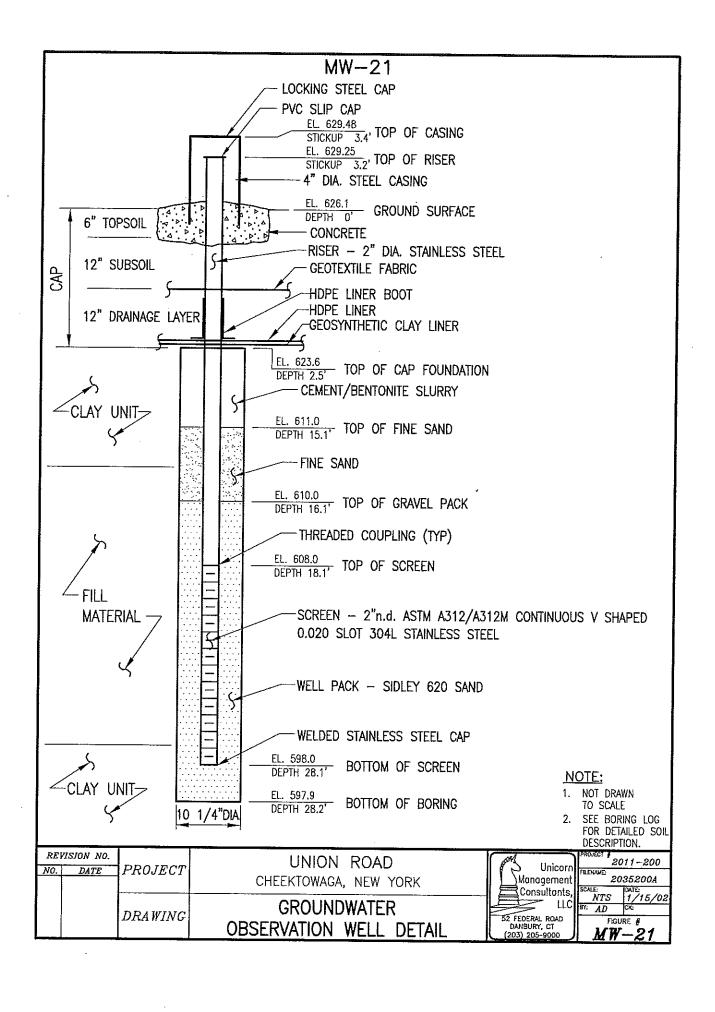


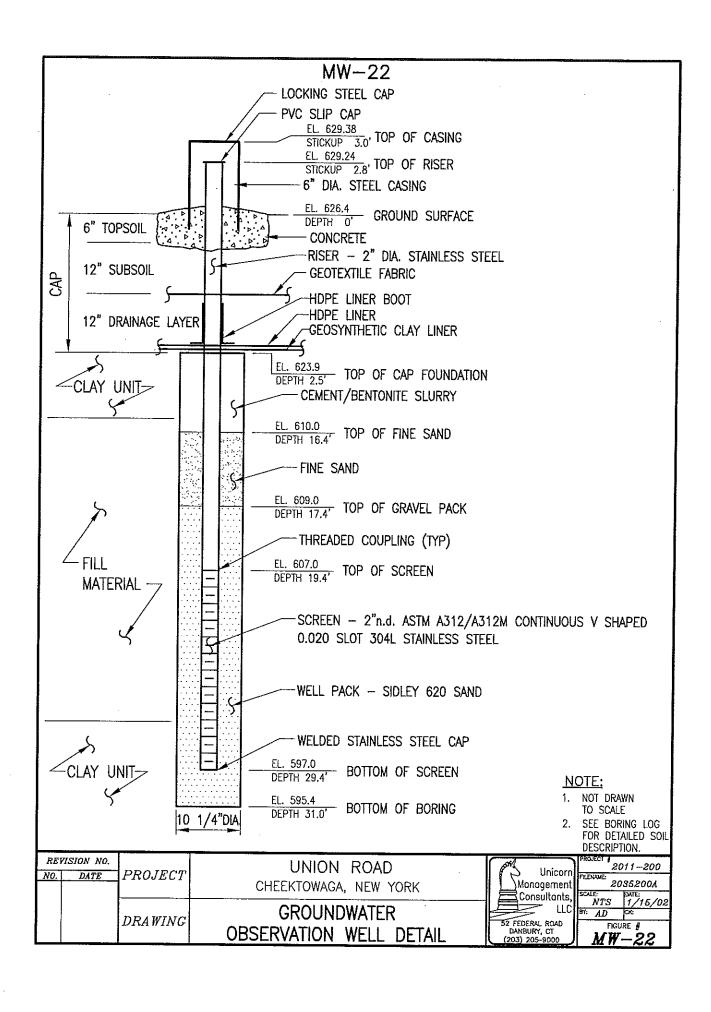


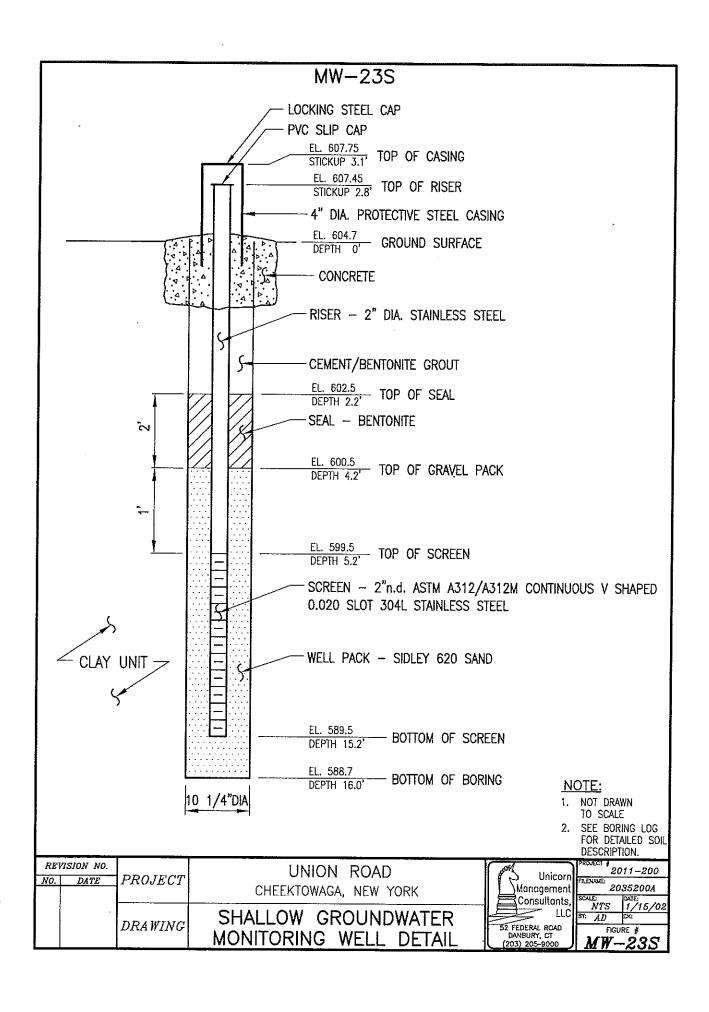












APPENDIX B

LABORATORY REPORT

October 06, 2009

Service Request No: R0905245

Mr. Kerry Hanlon Unicorn Management Consultants 52 Federal Road Suite 2C Danbury, CT 06810

Laboratory Results for: Union Rd #2011-100

Dear Mr. Hanlon:

Enclosed are the results of the sample(s) submitted to our laboratory on September 15, 2009. For your reference, these analyses have been assigned our service request number R0905245.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 134. You may also contact me via email at KBunker@caslab.com.

Respectfully submitted,

ist retast

Columbia Analytical Services, Inc.

Karen Bunker

Project Manager

Page 1 of 98

Client: Project: Unicorn Management Consultants

Union Rd #2011

Sample Matrix: Water

Service Request No.: Date Received:

R0905245 9/15/09

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses.

Sample Receipt

Eleven (11) samples were collected by the client on 9/14/09 and received for analysis at Columbia Analytical Services on 9/15/09. The samples were received unbroken at cooler temperatures of 2°, 4° and 6°C, within the 0-6°C guidelines.

Inorganics

Eleven (11) water samples were analyzed for a client specified list of Inorganics. See the attached pages for specific method numbers.

The initial and continuing calibrations criteria were met for all samples.

The Laboratory Method Blanks were free from contamination.

Site QC was not requested. All Laboratory Control Sample (LCS) recoveries were acceptable.

No other analytical or QC problems were encountered.

Volatile Organic Compounds by EPA Method 8260B

Eleven (11) water samples were analyzed for STARS List of Volatile Organics by Method 8260B from SW-846.

The initial and continuing calibrations criteria were met for all samples.

All BFB Tune requirements were met for the method.

Surrogate standard recoveries were within acceptance limits.

The Laboratory Method Blanks were free from contamination down.

Site QC was not requested. All Laboratory Control Sample (LCS) recoveries were acceptable.

The samples were found to be preserved at a pH of <2. The sample vials were checked after analysis in order to preserve the integrity of the sample. All samples were run within the method required 14 day holding time for preserved aliquots.

No other analytical or QC problems were encountered.

Approved by	Jaur	_	Date	10/6/03

Extractable Organics

Eleven (11) water samples were analyzed for a client specified list by GCMS Method 8270C.

The initial and continuing calibrations criteria were met for all samples.

Surrogate standard recoveries were within acceptance limits on all samples. The method blank had surrogates 2,4,6-Tribromophenol, 2-Fluorobiphenyl and Nitrobenzene-d5 outside of the control limits low and have been flagged with a "*".

The Laboratory Method Blanks were free from contamination down.

Site QC was not requested. All Laboratory Control Sample (LCS) recoveries were acceptable.

No other problems were encountered during the analysis of these samples.

Approved by	Hatter_	Date	10/4/05	

CASE NARRATIVE

This report contains analytical results for the following samples: Service Request Number: R0905245

Lab ID	Client ID
<u>Lap ID</u>	
R0905245-001	MW 10S
R0905245-002	MW 10M
R0905245-003	MW 10D
R0905245-004	MW 11M
R0905245-005	MW 11S
R0905245-006	MW 12S
R0905245-007	MW 12M
R0905245-008	MW 12D
R0905245-009	MW 13M
R0905245-010	MW 13S
R0905245-011	MW 148

REPORT QUALIFIERS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- Indicates that a quality control parameter has exceeded laboratory limits.
- # Spike was diluted out.
- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Pesticide/Aroclors: Concentration >40% (25% for CLP) difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a posticide/Arocior is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion

CAS/Rochester Lab ID # for State Certifications'

NELAP Accredited
Delaware Accredited
Connecticut ID # PH0556
Florida ID # E87674
Illinois ID #200047
Maine ID #NY0032
Nebraska Accredited

Nevada ID # NY-00032
New Jersey ID # NY004
New York ID # 10145
New Hampshire ID # 294100 A/B
Pennsylvania ID# 68-786
Rhode Island ID # 158
West Virginia ID # 292

Navy Facilities Engineering Service Center Approved

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable, except as noted in the laboratory case narrative provided. For a specific list of accredited analytes, refer to the certifications section at www.caslab.com.

Analytical Report

Client: Project: Unicorn Management Consultants

Sample Matrix:

Union Rd #2011-100

Service Request: R0905245 Date Collected: 9/14/09 1520

Date Received: 9/15/09

Sample Name:

Water

Lab Code:

MW 10S R0905245-001

Basis: NA

Oil and Grease, HEM Silica Gel Treated

Analyte Name	Method	Result	Q	Units	MRL	Dilutior Factor		Date Analyzed
Oil and Grease, Nonpolar (SGT-HEM)	1664	4.7	U	mg/L	4.7	I	NA	9/24/09 07:30

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

MW 10S

Sample Name: Lab Code:

R0905245-001

Service Request: R0905245

Date Collected: 9/14/09 1520

Date Received: 9/15/09

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed
Arsenic, Dissolved	6010B	0.010 U	mg/L	0.010	1 9/22/09 9/24/09 17:40
Lead, Dissolved	6010B	0.0050 U	mg/L	0.0050	1 9/22/09 9/24/09 17:40

Comments:	
-----------	--

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 10S R0905245-001 Service Request: R0905245
Date Collected: 9/14/09 1520

Date Received: 9/15/09

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	Q MR	\mathbf{T}	Dilution Factor	Date Extracted	Date Analyzed	Extraction A Lot	Lot	Note
Acetone	20			1	NA	9/23/09 13:48		171600	
Benzene	5.0			1	NA	9/23/09 13:48		171600	
Bromodichloromethane	5.0	U 5.0)	1	NA	9/23/09 13:48		171600	
Bromoform	5.0	U 5.0)	1	NA	9/23/09 13:48		171600	
Bromomethane	5.0	U 5.0)	1	NA	9/23/09 13:48		171600	
2-Butanone (MEK)	10	U 10		1	NA	9/23/09 13:48		171600	
Carbon Disulfide	10	U 10		1	NA	9/23/09 13:48		171600	
Carbon Tetrachloride	5.0	U 5.0)	1	NA	9/23/09 13:48		171600	
Chlorobenzene	5.0	U 5.0)	1	NA	9/23/09 13:48		171600	
Chloroethanc	5.0	U 5.0)	1	NA	9/23/09 13:48		171600	
Chloroform	5.0)	1	NA	9/23/09 13:48		171600	
Chloromethane	5.0	U 5.0)	1	NA	9/23/09 13:48		171600	
Dibromochloromethanc	5.0	U 5.0)	1	NA	9/23/09 13:48		171600	
1,1-Dichloroethane	5,0)	1	NA	9/23/09 13:48		171600	
1,2-Dichloroethane	5.0)	1	NA	9/23/09 13:48		171600	
1,1-Dichloroethene	5.0	U 5.0)	1	NA	9/23/09 13:48		171600	
cis-1,2-Dichloroethene	5,0)	1	NA	9/23/09 13:48		171600	
trans-1,2-Dichloroethene	5.0	U 5.0)	1	NA	9/23/09 13:48		171600	
1,2-Dichloropropane	5,0	U 5.0)	1	NA	9/23/09 13:48		171600	
cis-1,3-Dichloropropene	5.0	U 5.0)	**	NA	9/23/09 13:48		171600	
trans-1,3-Dichloropropene	5.0	U 5.0)	1	NA	9/23/09 13:48		171600	
Ethylbenzene	5.0	U 5.0)	1	NA	9/23/09 13:48		171600	
2-Hexanone	10	U 10)	1	NA	9/23/09 13:48		171600	
Methylene Chloride	5.0	U 5.0)	1	NA	9/23/09 13:48		171600	
4-Methyl-2-pentanone (MIBK)	10	U 10)	1	NA	9/23/09 13:48		171600	
Styrene	5.0	U 5.0)	1	ΝA	9/23/09 13:48		171600	
1,1,2,2-Tetrachloroethane	5.0	U 5.0)	1	NA	9/23/09 13:48		171600	
Tetrachloroethene	5.0	U 5.0)	I	NA	9/23/09 13:48		171600	
Toluene	5.0	U 5.0)	1	NA	9/23/09 13:48		171600	
1,1,1-Trichloroethane	5.0	U 5.0)	1	NA	9/23/09 13:48		171600	
1,1,2-Trichloroethane	5.0	U 5.0)	1	NA	9/23/09 13:48		171600	
Trichloroethene	5.0			1	NA	9/23/09 13:48		171600	
Vinyl Chloride	5.0	U 5.)	1	NA.	9/23/09 13:48		171600	

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 10S R0905245-001 Service Request: R0905245

Date Collected: 9/14/09 1520

Date Collected: 9/14/09

Date Received: 9/15/09

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted		Extraction Lot	1 Analysis Lot Note
o-Xylene m,p-Xylenes	5.0 U 5.0 U	5.0 5.0	1	NA NA	9/23/09 13:48 9/23/09 13:48		171600 171600

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	Note	
4-Bromofluorobenzene	107	85-122	9/23/09 13:48		
Toluene-d8	104	87-121	9/23/09 13:48		
Dibromofluoromethane	114	89-119	9/23/09 13:48		

Comments:	
-----------	--

Analytical Report

Client:

Unicorn Management Consultants

Project: Sample Matrix: Union Rd #2011-100

Sample Name:

Water

Lab Code:

MW 10S R0905245-001 Service Request: R0905245 Date Collected: 9/14/09 1520

Date Received: 9/15/09

Units: µg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C EPA 3510C Prep Method:

Analyte Name	rich internour									
1,2,4-Trichlorobenzene										
1,2-Dichlorobenzene	Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzeu	LAUL		HOLE
1,2-Dichlorobenzene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 1,3-Dichlorobenzene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 1,4-Dichlorobenzene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2,4,5-Trichlorophenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2,4,6-Trichlorophenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2,4-Dichlorophenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2,4-Dimitrophenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2,4-Dimitrophenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2,4-Dimitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 2,4-Dimitrophenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2,4-Dimitrophenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2,4-Dimitrophenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2,6-Dimitrophenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2,6-Dimitrophenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Chloronaphthalene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Chlorophenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Chlorophenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Nethylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3,3-Dichlorobenzidine 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3-nad 4-Methylphenol Coelution 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3-nad 4-Methylphenol Coelution 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3-nad 4-Methylphenol Coelution 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 47 U	1.2.4-Trichlorobenzene	9,4	Ū	9,4	1	9/17/09				
1,3-Dichlorobenzene 9.4 U 9.4 U <td></td> <td>9.4</td> <td>U</td> <td>9.4</td> <td>1</td> <td>9/17/09</td> <td>9/21/09 14:10</td> <td></td> <td></td> <td></td>		9.4	U	9.4	1	9/17/09	9/21/09 14:10			
1,4-Dichlorophenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2,4,6-Trichlorophenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2,4-Dichlorophenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2,4-Dimethylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2,4-Dimethylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2,4-Dimitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 2,4-Dimitrotoluene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2,6-Dimitrotoluene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Chlorophenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Chlorophenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Chlorophenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3,3-Dichlorobenzidine 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3,3-Dichlorobenzidine 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3,3-Dichlorobenzidine 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3-Aitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 3-Aitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 3-Aitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-me				9.4	1	9/17/09	9/21/09 14:10	96208	171359	
2,4,5-Trichlorophenol 9,4 U 9,4	1,4-Dichlorobenzene	9.4	U	9,4	1	9/17/09				
2,4,6-Trichlorophenol 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 2,4-Dichlorophenol 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 2,4-Dimitrophenol 47 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 2,4-Dimitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 2,4-Dimitrophenol 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 2,6-Dinitrotoluene 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 2-Chlorophenol 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 2-Chlorophenol 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 2-Mitrophenol 9,4 U 9,4 1 9/17/09		9.4	U	9,4	1	9/17/09				
2,4-Dinitrophenol 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 2,4-Dinitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 2,4-Dinitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 2,4-Dinitrotoluene 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 2-Dinitrotoluene 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 2-Chloronaphthalene 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 2-Chlorophenol 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 2-Methylaphthalene 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 2-Methylaphthalene 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 2-Methylaphthalene 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 2-Methylaphthalene 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 2-Methylaphthalene 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 2-Methylaphthalene 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 2-Nitrophenol 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 3-3-Dichlorobenzidine 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 3-and 4-Methylphenol Coelution 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 3-AILTOPHENOL 9,4 U 47 1 9/17/09 9/21/09 14:10 96208 171359 3-AILTOPHENOL 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 3-AILTOPHENOL 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 3-AILTOPHENOL 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 3-AILTOPHENOL 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 3-AILTOPHENOL 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 3-AILTOPHENOL 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 3-AILTOPHENOL 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 3-AILTOPHENOL 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 3-AILTOPHENOL 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 3-AILTOPHENOL 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 3-AILTOPHENOL 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 3-AILTOPHENOL 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 3-AILTOPHENOL 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 3-AILTOPHENOL 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 3-AILTOPHENOL 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 3-AILTOPHENOL 9,4		9,4	U	9.4	1	9/17/09	9/21/09 14:10	96208		
2,4-Dimethylphenol 9,4 U 9,4 U 9,4 U 1 9/17/09 9/21/09 14:10 96208 171359 2,4-Dinitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 2,4-Dinitrotoluene 9,4 U 9,4 U 9,4 U 9,4 U 96208 171359 2,6-Dinitrotoluene 9,4 U 9,4 U 9,4 U 9,4 U 9,4 U 96208 171359 2-Chloronaphthalene 9,4 U 9,4 U </td <td>2,4-Dichlorophenol</td> <td>9.4</td> <td>U</td> <td>9,4</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>	2,4-Dichlorophenol	9.4	U	9,4	1					
2,4-Dinitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 2,4-Dinitrotoluene 9.4 U 9.4 U <t< td=""><td></td><td>9.4</td><td>U</td><td>9.4</td><td>1</td><td></td><td></td><td></td><td></td><td></td></t<>		9.4	U	9.4	1					
2,4-Dintrotoluene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Chloronaphthalene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Chlorophenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Methylnaphthalene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Methylnaphthalene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Nitrophenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3,3'-Dichlorobenzidine 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3-and 4-Methylphenol Cochution 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3-Ailtroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4,6-Dinitro-2-methylphenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl		47	U	47	1	9/17/09	9/21/09 14:10			
2,0-Dillitrootheride 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 2-Chloronaphthalene 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 2-Methylnaphthalene 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 2-Methylnaphthalene 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 2-Methylphenol 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 2-Nitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 2-Nitrophenol 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 3,3'-Dichlorobenzidine 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 3,-and 4-Methylphenol Coclution 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 3-Aitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4,6-Dinitro-2-methylphenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Bromophenyl Phenyl Ether 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloroaniline 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloroaniline 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloroaniline 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthene 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthene 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthene 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359 Benz(a)anthracene 9,4 U 9,4 1 9/17/09 9/21/09 14:10 96208 171359	2,4-Dinitrotoluene	9,4	U	9.4	1					
2-Chloronaphthalene 9.4 U 9.4 U <td>2,6-Dinitrotoluene</td> <td>9.4</td> <td>U</td> <td>9.4</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>	2,6-Dinitrotoluene	9.4	U	9.4	1					
2-Methylnaphthalene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Nitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 2-Nitrophenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3,3'-Dichlorobenzidine 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3-and 4-Methylphenol Cochution 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3-Nitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 3-Nitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-G-Dinitro-2-methylphenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Bromophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloroaniline 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359		9.4	U	9.4	1	9/17/09	9/21/09 14:10			
2-Methylnaphthalene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Nitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 2-Nitrophenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3,3'-Dichlorobenzidine 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3-and 4-Methylphenol Coelution 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3-Nitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4,6-Dinitro-2-methylphenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Bromophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloroaniline 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitroaniline 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitroaniline 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Romaphthene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Romaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Romaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Romaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Romaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Romaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Romaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Romaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359	2-Chlorophenol	9.4	υ	9.4	1					
2-Methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 2-Nitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 2-Nitrophenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3,3'-Dichlorobenzidine 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3- and 4-Methylphenol Coclution 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3-Nitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4,6-Dinitro-2-methylphenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Bromophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloroaniline 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359				9.4	1					
2-Nitrophenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3,3'-Dichlorobenzidine 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3- and 4-Methylphenol Coclution 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3-Nitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4,6-Dinitro-2-methylphenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Bromophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloroaniline 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 47 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359				9.4	1	9/17/09	9/21/09 14:10	96208		
2-Nitrophenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3,3'-Dichlorobenzidine 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3- and 4-Methylphenol Cochition 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3-Nitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4,6-Dinitro-2-methylphenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Bromophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloroaniline 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Cenaphthene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Cenaphthene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Cenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Ritracene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Ritracene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Ritracene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Ritracene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359	2-Nitroaniline	47	U	47	1					
3,3'-Dichlorobenzidine 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3- and 4-Methylphenol Cochution 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 3-Nitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4,6-Dinitro-2-methylphenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Bromophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloroaniline 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Anthracene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Benz(a)anthracene 9.4 U 9.4 I 9/17/09 9/21/09 14:10 96208 171359	2-Nitrophenol	9.4	U	9.4	1					
3-Nitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4,6-Dinitro-2-methylphenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Bromophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloroaniline 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Anthracene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Anthracene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Anthracene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359		9.4	U	9.4	1	9/17/09	9/21/09 14:10			
4,6-Dinitro-2-methylphenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Bromophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloroaniline 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Anthracene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Benz(a)anthracene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359	3- and 4-Methylphenol Coclution	9.4	U	9.4	1					
4-Bromophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloro-3-methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloroaniline 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 I 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 I 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 I 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 I 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 I 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 I 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 I 9/17/09 9/21/09 14:10 96208 171359	3-Nitroaniline	47	U	47						
4-Chloro-3-methylphenol 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chloroaniline 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Anthracene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Anthracene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Anthracene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359	4,6-Dinitro-2-methylphenol	47	U	47	1	9/17/09				
4-Chloro-3-methylphenol 9.4 U 9.	4-Bromophenyl Phenyl Ether	9.4	U	9.4	1	9/17/09				
4-Chloroaniline 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Chlorophenyl Phenyl Ether 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Anthracene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Benz(a)anthracene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359		9.4	U	9.4	1					
4-Chlorophenyl Phenyl Ether 4-Tu 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Anthracene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Benz(a)anthracene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359		9.4	U	9.4	1	9/17/09	9/21/09 14:10			
4-Nitroaniline 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 4-Nitrophenol 47 U 47 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Anthracene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Benz(a)anthracene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359	4-Chlorophenyl Phenyl Ether	9.4	U	9.4	1					
Acenaphthene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Acenaphthylene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Anthracene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Benz(a)anthracene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359		47	U	47	1					
Acenaphthele 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Anthracene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Benz(a)anthracene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359	4-Nitrophenol	47	U	47	1	9/17/09	9/21/09 14:10			
Acenaphthylene 9.4 U	Acenaphthene	9,4	U	9.4	1					
Anthracene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359 Benz(a)anthracene 9.4 U 9.4 1 9/17/09 9/21/09 14:10 96208 171359		9.4	U	9.4	1					
Beliz(a)alitilitacene 9,4 0 7,4 1 2,171250		9.4	U	9.4	1					
$\frac{1}{2}$	Benz(a)anthracene	9.4	U	9.4	1					
	` •	9.4	U	9.4	1	9/17/09	9/21/09 14:10	96208	171359	

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 10S R0905245-001 Service Request: R0905245

Date Collected: 9/14/09 1520

Date Received: 9/15/09

Units: μg/L Basis: NA

Extraction Analysis

Dafe

Semivolatile Organic Compounds by GC/MS

Dibution

Date

Analytical Method: 8270C Prep Method: EPA 3510C

A I . / . Marro	7114	^	MRL	Dilution Factor	Date Extracted	Date Analyzed	Lot	Lot	
Analyte Name	Result			ractor		<u> </u>			
Benzo(b)fluoranthene	9.4	U	9.4	1	9/17/09	9/21/09 14:10		171359	
Benzo(g,h,i)perylene	9,4	U	9.4	1	9/17/09	9/21/09 14:10		171359	
Benzo(k)fluoranthene	9.4	U	9.4	l	9/17/09	9/21/09 14:10		171359	
Benzyl Alcohol	9.4	U	9.4	1	9/17/09	9/21/09 14:10	96208	171359	
2,2'-Oxybis(1-chloropropane)	9,4	U	9.4	1	9/17/09	9/21/09 14:10		171359	
Bis(2-chloroethoxy)methane	9.4	U	9.4	1	9/17/09	9/21/09 14:10		171359	
Bis(2-chloroethyl) Ether	9.4	U	9.4	1	9/17/09	9/21/09 14:10	96208	171359	
Bis(2-ethylhexyl) Phthalate	9.4	U	9.4	1	9/17/09	9/21/09 14:10		171359	
Butyl Benzyl Phthalate	9,4	U	9,4	1	9/17/09	9/21/09 14:10		171359	
Carbazole	9,4	U	9.4	1	9/17/09	9/21/09 14:10	96208	171359	
Chrysene	9.4	U	9.4	1	9/17/09	9/21/09 14:10		171359	
Di-n-butyl Phthalate	9,4	U	9.4	I	9/17/09	9/21/09 14:10		171359	
Di-n-octyl Phthalate	9.4	U	9.4	I	9/17/09	9/21/09 14:10	96208	171359	
Dibenz(a,h)anthracene	9.4	Ŭ	9.4	1	9/17/09	9/21/09 14:10		171359	
Dibenzofuran	9.4		9.4	1	9/17/09	9/21/09 14:10		171359	
Diethyl Phthalate	9.4		9.4	1	9/17/09	9/21/09 14:10	96208	171359	
Dimethyl Phthalate	9.4	U	9.4	1	9/17/09	9/21/09 14:10		171359	
Fluoranthene	9.4	U	9.4	1	9/17/09	9/21/09 14:10		171359	
Fluorene	9.4	U	9.4	i	9/17/09	9/21/09 14:10	96208	171359	
Hexachlorobenzene	9.4	Ū	9.4	1	9/17/09	9/21/09 14:10		171359	
Hexachlorobutadiene	9.4	U	9.4	1	9/17/09	9/21/09 14:10		171359	
Hexachlorocyclopentadiene	9.4	U	9.4	i	9/17/09	9/21/09 14:10	96208	171359	
Hexachloroethane	9.4	U	9.4	1	9/17/09	9/21/09 14:10		171359	
Indeno(1,2,3-cd)pyrene	9.4	U	9.4	İ		9/21/09 14:10		171359	
Isophorone	9.4	U	9.4	1	9/17/09	9/21/09 14:10	96208	171359	
N-Nitrosodi-n-propylamine	9,4	U	9,4	1		9/21/09 14:10		171359	
N-Nitrosodimethylamine	9.4	U	9.4	1		9/21/09 14:10		171359	
N-Nitrosodiphenylamine	9.4	U	9.4	1	9/17/09	9/21/09 14:10	96208	171359	
Naphthalene	9.4	U	9.4	I		9/21/09 14:10		171359	
Nitrobenzene	9.4	U	9.4	1		9/21/09 14:10		171359	
Pentachlorophenol (PCP)	47	U	47	1	9/17/09	9/21/09 14:10	96208	171359	
Phenanthrene	9,4	U	9.4	1	9/17/09	9/21/09 14:10	96208	171359	

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 108 R0905245-001 Service Request: R0905245

Date Collected: 9/14/09 1520 Date Received: 9/15/09

> Units: µg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C Prep Method:

EPA 3510C

			Dilution Date Date Extraction Analysis				
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Lot Note
Phenol	9.4 U	9.4	1	9/17/09	9/21/09 14:10	96208	171359
Pyrene	9.4 U	9.4	1	9/17/09	9/21/09 14:10	96208	171359

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	Note	
2,4,6-Tribromophenol	100	46-134	9/21/09 14:10		
2-Fluorobiphenyl	81	46-110	9/21/09 14:10		
2-Fluorophenol	49	12-84	9/21/09 14:10		
Nitrobenzene-d5	83	44-117	9/21/09 14:10		
Phenol-d6	32	10-70	9/21/09 14:10		
p-Terphenyl-d14	97	40-133	9/21/09 14:10		

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 10M R0905245-002

Service Request: R0905245 Date Collected: 9/14/09 1500

Date Received: 9/15/09

Basis: NA

Oil and Grease, HEM Silica Gel Treated

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed
Oil and Grease, Nonpolar (SGT-HEM)	1664	4.8 U	mg/L	4.8	1 NA 9/24/09 07:30

Comments:	
-----------	--

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 10M

R0905245-002

Service Request: R0905245

Date Collected: 9/14/09 1500

Date Received: 9/15/09

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution I Factor Ext	Date racted	Date Analyzed
Arsenic, Dissolved	6010B	0.010 U	mg/L	0.010	1 9/2	22/09	9/24/09 18:21
Lead, Dissolved	6010B	0.0050 U	mg/L	0.0050	1 9/2	22/09	9/24/09 18:21

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 10M R0905245-002 Service Request: R0905245
Date Collected: 9/14/09 1500

Date Received: 9/15/09

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot Note
Acetone	20	Ü	20	1	NA	9/23/09 14:17	
Benzene	5.0	U	5.0	1	NA	9/23/09 14:17	_
Bromodichloromethane	5.0	U	5.0	1	NA	9/23/09 14:17	
Bromoform	5.0	U	5.0	1	NA	9/23/09 14:17	
Bromomethane	5.0	U	5.0	1	NA	9/23/09 14:17	
2-Butanone (MEK)	10	U	10	1	NA.	9/23/09 14:17	
Carbon Disulfide	10	U	10	1	NA	9/23/09 14:17	
Carbon Tetrachloride	5.0	U	5.0	1	NA	9/23/09 14:17	
Chlorobenzene	5.0	U	5.0	1	NA	9/23/09 14:17	
Chloroethane	5.0	U	5.0	1	NA	9/23/09 14:17	
Chloroform	5.0		5,0	1	NA	9/23/09 14:17	
Chloromethane	5.0	U	5.0	1	NA	9/23/09 14:17	
Dibromochloromethane	5.0	U	5.0	1	NA	9/23/09 14:17	171600
1,1-Dichloroethane	5.0		5,0	1	NA	9/23/09 14:17	
1,2-Dichloroethane	5.0		5.0	1	NA	9/23/09 14:17	171600
1.1-Dichloroethene	5.0	U	5.0	1	NA	9/23/09 14:17	
cis-1,2-Dichloroethene		Ū	5.0	1	NA	9/23/09 14:17	
trans-1,2-Dichloroethene		Ū	5,0	1	NA	9/23/09 14:17	171600
1,2-Dichloropropane	5.0	U	5.0	1	NA	9/23/09 14:17	
cis-1,3-Dichloropropene		Ū	5.0	1	NA	9/23/09 14:17	
trans-1,3-Dichloropropene		U	5.0	1	NA	9/23/09 14:17	
Ethylbenzene	5.0	U	5.0	1	NA	9/23/09 14:17	
2-Hexanone		Ū	10	1	NA	9/23/09 14:17	
Methylene Chloride		U	5.0	1	NA	9/23/09 14:17	
4-Methyl-2-pentanone (MIBK)	10	U	10	1	NA	9/23/09 14:17	
Styrene		Ū	5.0	1	NA	9/23/09 14:17	
1,1,2,2-Tetrachloroethane		Ū	5.0	1	NA	9/23/09 14:17	171600
Tetrachloroethene	5.0	U	5.0	1	NA	9/23/09 14:17	171600
Toluene		Ū	5.0	1	NA	9/23/09 14:17	
1,1,1-Trichloroethane		U	5.0	1	NA	9/23/09 14:17	
1,1,2-Trichloroethane		U	5.0	1	NA	9/23/09 14:17	
Trichloroethene) Ü	5.0	1	NA	9/23/09 14:17	
Vinyl Chloride) U	5.0	1	NA	9/23/09 14:17	171600

Comments:

Printed 10/6/09 13:09
\Unflow2\Starlims\LimsReps\AnalyticalReport rpt

Form 1A

SuperSet Reference:

09-0000121449 rev 00

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Hator

Sample Name: Lab Code: MW 10M R0905245-002 Service Request: R0905245

Date Collected: 9/14/09 1500 Date Received: 9/15/09

> Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted		Extraction Lot	Analysi Lot	is Note
o-Xylene m,p-Xylenes	5.0 U 5.0 U	5.0 5.0	1 1	NA NA	9/23/09 14:17 9/23/09 14:17		171600 171600	
<i>A</i> 2								

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	Note
4-Bromofluorobenzene	107	85-122	9/23/09 14:17	
Toluene-d8	103	87-121	9/23/09 14:17	
Dibromofluoromethane	110	89-119	9/23/09 14:17	

Analytical Report

Client:

Unicorn Management Consultants

Project: Sample Matrix: Union Rd #2011-100 Water

Sample Name: Lab Code: MW 10M R0905245-002 Service Request: R0905245

Date Collected: 9/14/09 1500

Date Received: 9/15/09

Units: μg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C Prep Method: EPA 3510C

				Dilution	Date	Date	Extraction	Analysi	S
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Lot	Note
1,2,4-Trichlorobenzene	9.4	Ü	9.4	1	9/17/09	9/21/09 14:50		171359	
1,2-Dichlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
1,3-Dichlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 14:50	96208	171359	
1,4-Dichlorobenzene	9,4		9.4	1	9/17/09	9/21/09 14:50		171359	
2,4,5-Trichlorophenol	9.4	ប	9.4	1	9/17/09	9/21/09 14:50		171359	
2,4,6-Trichlorophenol	9.4	U	9.4	11	9/17/09	9/21/09 14:50		171359	
2,4-Dichlorophenol	9.4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
2,4-Dimethylphenol	9.4	U	9.4	I	9/17/09	9/21/09 14:50		171359	
2,4-Dinitrophenol	47	U	47	1	9/17/09	9/21/09 14:50		171359	
2,4-Dinitrotoluene	9,4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
2,6-Dinitrotoluene	9.4	U	9,4	1	9/17/09	9/21/09 14:50		171359	
2-Chloronaphthalene	9.4	U	9.4	1	9/17/09	9/21/09 14:50	96208	171359	
2-Chlorophenol	9.4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
2-Methylnaphthalene	9.4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
2-Methylphenol	9.4		9.4	1	9/17/09	9/21/09 14:50	96208	171359	
2-Nitroaniline	47	U	47	l	9/17/09	9/21/09 14:50		171359	
2-Nitrophenol	9.4	U	9,4	1	9/17/09	9/21/09 14:50		171359	
3,3'-Dichlorobenzidine	9.4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
3- and 4-Methylphenol Coelution	9.4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
3-Nitroaniline	47	U	47	1	9/17/09	9/21/09 14:50		171359	
4,6-Dinitro-2-methylphenol	47	U	47	1		9/21/09 14:50		171359	
4-Bromophenyl Phenyl Ether	9.4	U	9,4	1		9/21/09 14:50		171359	
4-Chloro-3-methylphenol	9.4	U	9.4	1		9/21/09 14:50		171359	
4-Chloroaniline	9.4	U	9.4	<u>l</u>	9/17/09	9/21/09 14:50		171359	
4-Chlorophenyl Phenyl Ether	9.4	U	9.4	1		9/21/09 14:50		171359	
4-Nitroaniline	47	U	47	Ĭ		9/21/09 14:50		171359	
4-Nitrophenol	47	U	47	<u> </u>	9/17/09	9/21/09 14:50		171359	
Acenaphthene	9.4		9.4	1		9/21/09 14:50		171359	
Acenaphthylene	9.4	Ü	9.4	1		9/21/09 14:50		171359	
Anthracene	9.4	U	9.4	1		9/21/09 14:50		171359	
Benz(a)anthracene	9,4	U	9,4	1		9/21/09 14:50		171359	
Benzo(a)pyrene	9.4	U	9.4	1	9/17/09	9/21/09 14:50	96208	171359	

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 10M R0905245-002 Service Request: R0905245
Date Collected: 9/14/09 1500

Date Received: 9/15/09

Date

Units: μg/L Basis: NA

Extraction Analysis

Semivolatile Organic Compounds by GC/MS

Dilution

Data

Analytical Method: 8270C Prep Method: EPA 3510C

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot		Note
Benzo(b)fluoranthene	9.4	U	9,4	1	9/17/09	9/21/09 14:50	96208	171359	
Benzo(g,h,i)perylene	9.4	11	9.4	1	9/17/09	9/21/09 14:50	96208	171359	
Benzo(k)fluoranthene	9.4		9.4	ì	9/17/09	9/21/09 14:50	96208	171359	
Benzyl Alcohol	9.4		9,4	1	9/17/09	9/21/09 14:50	96208	171359	
2,2'-Oxybis(1-chloropropane)	9,4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
Bis(2-chloroethoxy)methane	9,4		9.4	1	9/17/09	9/21/09 14:50		171359	
Bis(2-chloroethyl) Ether	9.4		9.4	1	9/17/09	9/21/09 14:50	96208	171359	
Bis(2-ethylhexyl) Phthalate	9.4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
Butyl Benzyl Phthalate	9.4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
Carbazole	9.4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
Chrysene	9,4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
Di-n-butyl Phthalate	9,4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
Di-n-octyl Phthalate	9.4	U	9.4	1	9/17/09	9/21/09 14:50	96208	171359	
Dibenz(a,h)anthracene	9.4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
Dibenzofuran	9.4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
Diethyl Phthalate	9.4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
Dimethyl Phthalate	9.4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
Fluoranthene	9.4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
Fluorene	9.4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
Hexachlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
Hexachlorobutadiene	9.4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
Hexachlorocyclopentadiene	9.4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
Hexachloroethane	9,4	U	9,4	1	9/17/09	9/21/09 14:50		171359	
Indeno(1,2,3-cd)pyrene	9.4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
Isophorone	9.4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
N-Nitrosodi-n-propylamine	9,4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
N-Nitrosodimethylamine	9.4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
N-Nitrosodiphenylamine	9,4	U	9,4	1	9/17/09	9/21/09 14:50		171359	
Naphthalene	9.4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
Nitrobenzene	9,4	U	9.4	1	9/17/09	9/21/09 14:50		171359	
Pentachlorophenol (PCP)	47	U	47	1		9/21/09 14:50		171359	
Phenanthrene	9.4	U	9.4	1	9/17/09	9/21/09 14:50	96208	171359	

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 10M R0905245-002 Service Request: R0905245 Date Collected: 9/14/09 1500

Date Received: 9/15/09

Units: µg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C Prep Method:

EPA 3510C

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted		Lot	Lot	Note
Phenol Pyrene	9,4 U 9,4 U	9.4 9.4	1		9/21/09 14:50 9/21/09 14:50		171359 171359	

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	Note	
2,4,6-Tribromophenol	98	46-134	9/21/09 14:50		
2-Fluorobiphenyl	81	46-110	9/21/09 14:50		
2-Fluorophenol	47	12-84	9/21/09 14:50		
Nitrobenzene-d5	80	44-117	9/21/09 14:50		
Phenol-d6	31	10-70	9/21/09 14:50		
p-Terphenyl-d14	101	40-133	9/21/09 14:50		

Comments:	
Committee	

Analytical Report

Client: Project: Unicorn Management Consultants

Sample Matrix:

Union Rd #2011-100

Water

Sample Name: Lab Code:

MW 10D R0905245-003 Service Request: R0905245 Date Collected: 9/14/09 0930

Date Received: 9/15/09

Basis: NA

Oil and Grease, HEM Silica Gel Treated

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Factor Extracted	Date Analyzed
Oil and Grease, Nonpolar (SGT-HEM)	1664	4.7 U	mg/L	4.7	1 NA 9	9/24/09 07:30

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 10D R0905245-003 Service Request: R0905245 Date Collected: 9/14/09 0930

Date Received: 9/15/09

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Arsenic, Dissolved	6010B	0.010 U	mg/L	0.010	1	2,22,00	9/24/09 18:27
Lead, Dissolved	6010B	0.0050 U	mg/L	0.0050	1		9/24/09 18:27

Analytical Report

Client: Unicorn Management Consultants

Union Rd #2011-100 Project:

Sample Matrix:

Water

MW 10D Sample Name: Lab Code: R0905245-003 Service Request: R0905245 Date Collected: 9/14/09 0930

Date Received: 9/15/09

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction A Lot	Lot	Note
Acetone	20		20	1	NA	9/23/09 14:45		71600	
Benzene	5.0		5.0	1	NA	9/23/09 14:45		71600	
Bromodichloromethane	5.0	U	5.0	1	NA	9/23/09 14:45		71600	······
Bromoform	5,0	U	5.0	1	NA	9/23/09 14:45		71600	
Bromomethane	5.0	U	5.0	1	NA	9/23/09 14:45		71600	
2-Butanone (MEK)	10	U	10	<u> </u>	NA	9/23/09 14:45		71600	
Carbon Disulfide	10	U	10	1	NA	9/23/09 14:45		71600	
Carbon Tetrachloride	5.0	U	5.0	1	NA	9/23/09 14:45		71600	
Chlorobenzene	5.0	U	5.0	1	NA	9/23/09 14:45		71600	<u></u>
Chloroethane	5.0	U	5.0	1	NA	9/23/09 14:45		71600	
Chloroform	5.0	U	5.0	1	NA	9/23/09 14:45		71600	
Chloromethane	5.0	U	5.0	1	NA	9/23/09 14:45	1	71600	
Dibromochloromethane	5,0	U	5.0	1	NA	9/23/09 14:45		71600	
1,1-Dichloroethane	5.0	U	5.0	I	NA	9/23/09 14:45		71600	
1,2-Dichloroethane	5.0	U	5.0	1	NA	9/23/09 14:45	1	71600	
1,1-Dichloroethene	5.0	U	5.0	1	NA	9/23/09 14:45		71600	
cis-1,2-Dichloroethene	5.0	U	5.0	1	NA	9/23/09 14:45		71600	
trans-1,2-Dichloroethene	5.0	U	5.0	1	NA	9/23/09 14:45	1	71600	
1,2-Dichloropropane	5.0	U	5.0	1	NA	9/23/09 14:45		71600	
cis-1,3-Dichloropropene	5.0	U	5.0	1	NA	9/23/09 14:45		71600	
trans-1,3-Dichloropropene	5.0	U	5,0	1	NA	9/23/09 14:45	1	71600	
Ethylbenzene	5.0	U	5.0	1	NA	9/23/09 14:45		71600	
2-Hexanone	10	U	10	1		9/23/09 14:45		71600	
Methylene Chloride	5.0	U	5.0	1	NA	9/23/09 14:45	1	71600	
4-Methyl-2-pentanone (MIBK)	10	U	10	1		9/23/09 14:45		71600	
Styrene	5.0	U	5.0	1		9/23/09 14:45		71600	
1,1,2,2-Tetrachloroethane	5.0	U	5.0	1	NA	9/23/09 14:45	1	71600	
Tetrachloroethene	5.0	U	5.0	1		9/23/09 14:45		71600	
Toluene	5.0	U	5.0	1	•	9/23/09 14:45		71600	
1,1,1-Trichloroethane	5.0	U	5,0	1	NA	9/23/09 14:45	1	71600	
1,1,2-Trichloroethane	5.0	U	5.0	1		9/23/09 14:45		71600	
Trichloroethene	5.0	U	5.0	1		9/23/09 14:45		71600	
Vinyl Chloride	5.0	U	5.0	1	NA	9/23/09 14:45	1′	71600	

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 10D R0905245-003 Service Request: R0905245

Date Collected: 9/14/09 0930

Date Received: 9/15/09

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted		Extraction Lot	Analysi Lot	is Note
o-Xylene m,p-Xylenes	5,0 U 5,0 U	5.0 5.0	1	NA NA	9/23/09 14:45 9/23/09 14:45		171600 171600	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	Note
4-Bromofluorobenzene	105	85-122	9/23/09 14:45		
Toluene-d8	102	87-121	9/23/09 14:45		
Dibromofluoromethane	109	89-119	9/23/09 14:45		

Comments:	

SuperSet Reference:

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 10D R0905245-003 Service Request: R0905245

Date Collected: 9/14/09 0930

Date Received: 9/15/09

Units: μg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C Prep Method: EPA 3510C

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Lot	Note
1,2,4-Trichlorobenzene	9,4	U	9.4	1	9/17/09	9/21/09 15:30		171359	
1,2-Dichlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 15:30		171359	
1,3-Dichlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 15:30	96208	171359	
1,4-Dichlorobenzene	9.4	U	9,4	1	9/17/09	9/21/09 15:30		171359	
2,4,5-Trichlorophenol	9.4		9.4	1	9/17/09	9/21/09 15:30		171359	
2,4,6-Trichlorophenol	9,4	U	9.4	<u> </u>	9/17/09	9/21/09 15:30		171359	
2,4-Dichlorophenol	9.4	U	9.4	1	9/17/09	9/21/09 15:30		171359	
2,4-Dimethylphenol	9.4	U	9.4	1	9/17/09	9/21/09 15:30		171359	
2,4-Dinitrophenol	47	U	47	1	9/17/09	9/21/09 15:30	96208	171359	
2,4-Dinitrotoluene	9.4	U	9,4	1	9/17/09	9/21/09 15:30		171359	
2,6-Dinitrotoluene	9.4	U	9.4	1	9/17/09	9/21/09 15:30		171359	
2-Chloronaphthalene	9.4	U	9.4	1	9/17/09	9/21/09 15:30	96208	171359	
2-Chlorophenol	9.4	U	9.4	1	9/17/09	9/21/09 15:30		171359	
2-Methylnaphthalene	9.4	U	9.4	1	9/17/09	9/21/09 15:30		171359	
2-Methylphenol	9,4	U	9.4	1	9/17/09	9/21/09 15:30	96208	171359	
2-Nitroaniline	47	U	47	1	9/17/09	9/21/09 15:30		171359	
2-Nitrophenol	9.4	U	9.4	1		9/21/09 15:30		171359	
3,3'-Dichlorobenzidine	9,4	U	9.4	1	9/17/09	9/21/09 15:30	96208	171359	
3- and 4-Methylphenol Coelution	9.4	U	9.4	1		9/21/09 15:30		171359	
3-Nitroaniline	47	U	47	1		9/21/09 15:30		171359	
4,6-Dinitro-2-methylphenol	47	U	47	1	9/17/09	9/21/09 15:30	96208	171359	
4-Bromophenyl Phenyl Ether	9.4	U	9.4	1		9/21/09 15:30		171359	
4-Chloro-3-methylphenol	9.4	U	9.4	1		9/21/09 15:30		171359	
4-Chloroaniline	9.4	U	9,4	1	9/17/09	9/21/09 15:30	96208	171359	
4-Chlorophenyl Phenyl Ether	9.4	U	9.4	1		9/21/09 15:30		171359	
4-Nitroaniline	47	U	47	i		9/21/09 15:30		171359	
4-Nitrophenol	47	U	47	1	9/17/09	9/21/09 15:30	96208	171359	
Acenaphthene	9.4	U	9.4	1		9/21/09 15:30		171359	
Acenaphthylene	9.4	U	9.4	1		9/21/09 15:30		171359	
Anthracene	9.4	U	9.4	1	9/17/09	9/21/09 15:30	96208	171359	
Benz(a)anthracene	9.4	U	9.4	1		9/21/09 15:30		171359	
Benzo(a)pyrene	9.4	U	9.4	1	9/17/09	9/21/09 15:30	96208	171359	

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 10D R0905245-003 Service Request: R0905245

Date Collected: 9/14/09 0930

Date Received: 9/15/09

Units: μg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C Prep Method: EPA 3510C

				Dilution	Date	Date	Extraction	Analysi	S
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Lot	Note
Benzo(b)fluoranthene	9.4	U	9.4	1	9/17/09	9/21/09 15:30	96208	171359	
Benzo(g,h,i)perylene	9,4	U	9.4	1	9/17/09	9/21/09 15:30		171359	
Benzo(k)fluoranthene	9,4		9.4	1	9/17/09	9/21/09 15:30	96208	171359	
Benzyl Alcohol	9.4		9,4	1	9/17/09	9/21/09 15:30	96208	171359	
2,2'-Oxybis(1-chloropropane)	9,4	U	9,4	1	9/17/09	9/21/09 15:30	96208	171359	
Bis(2-chloroethoxy)methane	9.4		9.4	1	9/17/09	9/21/09 15:30	96208	171359	
Bis(2-chloroethyl) Ether	9.4		9.4	1	9/17/09	9/21/09 15:30	96208	171359	·
Bis(2-ethylhexyl) Phthalate	9.4	U	9.4	1	9/17/09	9/21/09 15:30		171359	
Butyl Benzyl Phthalate	9.4		9.4	1	9/17/09	9/21/09 15:30		171359	
Carbazole	9.4		9,4	1	9/17/09	9/21/09 15:30	96208	171359	
Chrysene	9.4	U	9.4	1	9/17/09	9/21/09 15:30	96208	171359	
Di-n-butyl Phthalate	9.4		9.4	1	9/17/09	9/21/09 15:30		171359	
Di-n-octyl Phthalate	9.4		9.4	1	9/17/09	9/21/09 15:30	96208	171359	
Dibenz(a,h)anthracene	9,4	U	9.4	1	9/17/09	9/21/09 15:30		171359	
Dibenzofuran	9.4		9.4	1	9/17/09	9/21/09 15:30	96208	171359	
Diethyl Phthalate	9.4		9.4	1	9/17/09	9/21/09 15:30	96208	171359	
Dimethyl Phthalate	9.4	U	9.4	1		9/21/09 15:30		171359	
Fluoranthene	9.4	U	9,4	I		9/21/09 15:30		171359	
Fluorene	9.4	U	9,4	1	9/17/09	9/21/09 15:30	96208	171359	
Hexachlorobenzene	9.4	U	9.4	1		9/21/09 15:30		171359	
Hexachlorobutadiene	9.4	U	9.4	1		9/21/09 15:30		171359	
Hexachlorocyclopentadiene	9.4	U	9.4	1	9/17/09	9/21/09 15:30	96208	171359	
Hexachloroethane	9.4	U	9.4	I		9/21/09 15:30		171359	
Indeno(1,2,3-cd)pyrene	9,4	U	9,4	1		9/21/09 15:30		171359	
Isophorone	9.4	U	9.4	1	9/17/09	9/21/09 15:30	96208	171359	
N-Nitrosodi-n-propylamine	9,4	U	9,4	1		9/21/09 15:30		171359	
N-Nitrosodimethylamine	9.4	U	9.4	1		9/21/09 15:30		171359	
N-Nitrosodiphenylamine	9.4	U	9.4	1	9/17/09	9/21/09 15:30	96208	171359	
Naphthalene	9.4	U	9.4	1		9/21/09 15:30		171359	
Nitrobenzene	9.4	U	9.4	1		9/21/09 15:30		171359	
Pentachlorophenol (PCP)	47	U	47	1	9/17/09	9/21/09 15:30		171359	
Phenanthrene	9.4	U	9.4	1	9/17/09	9/21/09 15:30	96208	171359	

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 10D R0905245-003

Service Request: R0905245 Date Collected: 9/14/09 0930

Date Received: 9/15/09

Units: µg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C

Prep Method: EPA 3510C

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted		Lot	Anaiysi Lot	Note
Phenol	9.4 U 9.4 U	9.4 9.4	l 1		9/21/09 15:30 9/21/09 15:30		171359 171359	
Pyrene	7. 4 U	2,7	•					

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	Note	
2,4,6-Tribromophenol	102	46-134	9/21/09 15:30		
2-Fluorobiphenyl	87	46-110	9/21/09 15:30		
2-Fluorophenol	52	12-84	9/21/09 15:30		
Nitrobenzene-d5	87	44-117	9/21/09 15:30		
Phenol-d6	35	10-70	9/21/09 15:30		
p-Terphenyl-d14	101	40-133	9/21/09 15:30		

Comments:	

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 11M R0905245-004 Service Request: R0905245

Date Collected: 9/14/09 1600

Date Received: 9/15/09

Basis: NA

Oil and Grease, HEM Silica Gel Treated

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed
Oil and Grease, Nonpolar (SGT-HEM)	1664	4.8 U	mg/L	4.8	1 NA 9/24/09 07:30

Comments:	

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix: Sample Name: Water

Lab Code:

MW 11M R0905245-004 Service Request: R0905245

Date Collected: 9/14/09 1600

Date Received: 9/15/09

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed
Arsenic, Dissolved	6010B	0.010 U	mg/L	0.010	1 9/22/09 9/24/09 18:33
Lead, Dissolved	6010B	0.0050 U	mg/L	0.0050	1 9/22/09 9/24/09 18:33

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd #2011-100

Sample Matrix:

Water

Sample Name: MW 11M Lab Code: R0905245-004 Service Request: R0905245

Date Collected: 9/14/09 1600

Date Received: 9/15/09

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analy Lot Lo	ysis t Note
Acetone	20		20	1	NA	9/23/09 15:13		
Benzene	5.0		5.0	1	NA	9/23/09 15:13		
Bromodichloromethane	5.0	U	5,0	1	NA	9/23/09 15:13	1716	00
Bromoform	5.0	U	5.0	1	NA	9/23/09 15:13		
Bromomethane	5.0	U	5.0	1	NA	9/23/09 15:13		
2-Butanone (MEK)	10	U	10	11	NA	9/23/09 15:13		
Carbon Disulfide	10		10	1	NA	9/23/09 15:13		
Carbon Tetrachloride	5.0	U	5.0	1	NA	9/23/09 15:13		
Chlorobenzene	5.0	U	5.0	l	NA	9/23/09 15:13	1716	00
Chloroethane	5,0	U	5,0	1	NA	9/23/09 15:13		
Chloroform	5.0	U	5.0	1	NA	9/23/09 15:13		
Chloromethane	5.0	U	5.0	1	NA	9/23/09 15:13	1716	00
Dibromochloromethane	5.0	U	5.0	1	NA	9/23/09 15:13		
1,1-Dichloroethane	5.0	U	5.0	1	NA	9/23/09 15:13		
1,2-Dichloroethane	5.0	U	5.0	I	NA	9/23/09 15:13	1716	00
1,1-Dichloroethene	5.0	U	5.0	I	NA	9/23/09 15:13		
cis-1,2-Dichloroethene	5,0	U	5.0	1	NA	9/23/09 15:13		
trans-1,2-Dichloroethene	5.0	U	5.0	1	NA	9/23/09 15:13	17160	
1,2-Dichloropropane	5.0	U	5.0	1	ΝÁ	9/23/09 15:13		
cis-1,3-Dichloropropene	5.0	U	5.0	1	NA	9/23/09 15:13	1716	
trans-1,3-Dichloropropene	5.0	U	5.0	1	NA	9/23/09 15:13	17160	
Ethylbenzene	5.0	U	5.0	I		9/23/09 15:13	17160	
2-Hexanone	10	U	10	1		9/23/09 15:13	17160	
Methylene Chloride	5.0	U	5.0	1	NA	9/23/09 15:13	17160	
4-Methyl-2-pentanone (MIBK)	10	U	10	1		9/23/09 15:13	17160	
Styrene	5.0	U	5.0	1		9/23/09 15:13	17160	
1,1,2,2-Tetrachloroethane	5.0	U	5,0	1	NA	9/23/09 15:13	17160	
Tetrachloroethene	5.0	U	5,0	1		9/23/09 15:13	17160	
Toluene	5.0	U	5.0	1		9/23/09 15:13	17160	
1,1,1-Trichloroethane	5.0	U	5.0	1	NA	9/23/09 15:13	17160	
1,1,2-Trichloroethane	5,0	U	5.0	1		9/23/09 15:13	17160	
Trichloroethene	5,0		5.0	1		9/23/09 15:13	17160	
Vinyl Chloride	5.0	U	5.0	1	NA	9/23/09 15:13	1716(

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 11M R0905245-004 Service Request: R0905245

Date Collected: 9/14/09 1600

Date Received: 9/15/09

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted		Extraction Lot	n Analysis Lot Not	e
o-Xylene m.p-Xylenes	5.0 U 5.0 U	5,0 5.0	1 1		9/23/09 15:13 9/23/09 15:13		171600 171600	

Surrogate Name	%Rec	Control Limits	Date Analyzed (Q Note
4-Bromofluorobenzene	104	85-122	9/23/09 15:13	
Toluene-d8	100	87-121	9/23/09 15:13	
Dibromofluoromethane	109	89-119	9/23/09 15:13	

Cen	ımer	us:
-----	------	-----

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 11M R0905245-004 Service Request: R0905245

Date Collected: 9/14/09 1600 Date Received: 9/15/09

> Units: µg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C EPA 3510C Prep Method:

Trep method.									_
Assolute Nome	Result	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot		s Note
Analyte Name	Nesuit	V		1 110101				171260	
1,2,4-Trichlorobenzene	9.4		9.4	1	9/17/09	9/21/09 16:10		171359 171359	
1,2-Dichlorobenzene	9.4		9.4	1	9/17/09	9/21/09 16:10		171359	
1,3-Dichlorobenzene	9.4	U	9.4	<u> </u>	9/17/09	9/21/09 16:10			
1,4-Dichlorobenzene	9,4	U	9.4	1	9/17/09	9/21/09 16:10		171359	
2,4,5-Trichlorophenol	9.4	U	9.4	1	9/17/09	9/21/09 16:10		171359	
2,4,6-Trichlorophenol	9,4	U	9.4	1	9/17/09	9/21/09 16:10	96208	171359	
2,4-Dichlorophenol	9.4	U	9.4	1	9/17/09	9/21/09 16:10		171359	
2,4-Dimethylphenol	9,4		9.4	***	9/17/09	9/21/09 16:10		171359	
2,4-Dinitrophenol		U	47	1	9/17/09	9/21/09 16:10	96208	171359	
2,4-Dinitrotoluene	9,4	13	9.4	1	9/17/09	9/21/09 16:10	96208	171359	
2,6-Dinitrotoluene	9.4		9.4	1	9/17/09	9/21/09 16:10	96208	171359	
2-Chloronaphthalene	9.4		9.4	1	9/17/09	9/21/09 16:10	96208	171359	
2-Chlorophenol	9,4		9.4	1	9/17/09	9/21/09 16:10	96208	171359	
2-Methylnaphthalene		Ŭ	9.4	1	9/17/09	9/21/09 16:10	96208	171359	
2-Methylphenol		Ŭ	9.4	1	9/17/09	9/21/09 16:10	96208	171359	
2-Nitroaniline		U	47	1	9/17/09	9/21/09 16:10	96208	171359	
2-Nitrophenol		U	9.4	ī	9/17/09	9/21/09 16:10	96208	171359	
3,3'-Dichlorobenzidine		Ū	9.4	1	9/17/09	9/21/09 16:10	96208	171359	
3- and 4-Methylphenol Coelution		U	9.4	1	9/17/09	9/21/09 16:10	96208	171359	
3-Nitroaniline		U	47	1	9/17/09	9/21/09 16:10		171359	
4,6-Dinitro-2-methylphenol		U	47	1	9/17/09	9/21/09 16:10	96208	171359	
4-Bromophenyl Phenyl Ether	9.4	U	9,4	1	9/17/09	9/21/09 16:10	96208	171359	
4-Chloro-3-methylphenol		Ŭ	9.4	I	9/17/09	9/21/09 16:10		171359	
4-Chloroaniline		Ū	9.4	1	9/17/09	9/21/09 16:10	96208	171359	
4-Chlorophenyl Phenyl Ether	9.4	U	9,4	1	9/17/09	9/21/09 16:10	96208	171359	
4-Nitroaniline		Ŭ	47	1	9/17/09	9/21/09 16:10		171359	
4-Nitrophenol		Ū	47	1	9/17/09	9/21/09 16:10	96208	171359	
Acenaphthene	9.4	U	9,4	I	9/17/09	9/21/09 16:10		171359	
Acenaphthylene		Ŭ	9.4	1	9/17/09	9/21/09 16:10		171359	
Anthracene		Ū	9.4	1	9/17/09	9/21/09 16:10	96208	171359	
Benz(a)anthracene		U	9.4	1	9/17/09	9/21/09 16:10	96208	171359	
Benzo(a)pyrene		Ü	9.4	1	9/17/09	9/21/09 16:10	96208	171359	
μοιικο(α/μγιστισ	· · ·	_	***						

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd #2011-100

Sample Matrix: Water

Sample Name: MW 11M Lab Code: R0905245-004 Service Request: R0905245
Date Collected: 9/14/09 1600
Date Received: 9/15/09

Units: μg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C Prep Method: EPA 3510C

Analyte Name	Result	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysi Lot	s Note
	9.4		9.4	I	9/17/09	9/21/09 16:10	96208	171359	
Benzo(b)fluoranthene					9/17/09	9/21/09 16:10		171359	
Benzo(g,h,i)perylene	9.4		9.4]]	9/17/09 9/1 7 /09	9/21/09 16:10		171359	
Benzo(k)fluoranthene	9.4		9.4	1	9/17/09	9/21/09 16:10		171359	
Benzyl Alcohol	9.4		9.4					171359	
2,2'-Oxybis(1-chloropropane)	9.4		9.4	1	9/17/09	9/21/09 16:10 9/21/09 16:10		171359	
Bis(2-chloroethoxy)methane	9.4		9.4	T-	9/17/09			171359	
Bis(2-chloroethyl) Ether	9.4	U	9.4	1	9/17/09	9/21/09 16:10			
Bis(2-ethylhexyl) Phthalate	9.4	U	9.4	1	9/17/09	9/21/09 16:10		171359	
Butyl Benzyl Phthalate	9.4	U	9.4	1	9/17/09	9/21/09 16:10		171359	
Carbazole	9.4	U	9.4	I	9/17/09	9/21/09 16:10		171359	
Chrysene	9.4	IJ	9,4	1	9/17/09	9/21/09 16:10		171359	
Di-n-butyl Phthalate	9.4		9,4	1	9/17/09	9/21/09 16:10		171359	
Di-n-octyl Phthalate		Ū	9,4	1	9/17/09	9/21/09 16:10	96208	171359	
Dibenz(a,h)anthracene	9.4	U	9.4	1	9/17/09	9/21/09 16:10		171359	
Dibenzofuran		Ü	9.4	1	9/17/09	9/21/09 16:10		171359	
Diethyl Phthalate		Ū	9.4	1	9/17/09	9/21/09 16:10	96208	171359	
Dimethyl Phthalate	9.4	U	9,4	1	9/17/09	9/21/09 16:10		171359	
Fluoranthene		U	9.4	1	9/17/09	9/21/09 16:10		171359	
Fluorene	9.4	U	9.4	1	9/17/09	9/21/09 16:10		171359	
Hexachlorobenzene	9.4	· U	9.4	1	9/17/09	9/21/09 16:10		171359	
Hexachlorobutadiene		U	9.4	1	9/17/09	9/21/09 16:10		171359	
Hexachlorocyclopentadiene		U	9.4	1	9/17/09	9/21/09 16:10		171359	
Hexachloroethane	9.4	U	9,4	1	9/17/09	9/21/09 16:10		171359	
Indeno(1,2,3-cd)pyrene		Ū	9.4	l	9/17/09	9/21/09 16:10		171359	
Isophorone		U	9.4	1	9/17/09	9/21/09 16:10	96208	171359	
N-Nitrosodi-n-propylamine	9,4	l U	9,4	1	9/17/09	9/21/09 16:10		171359	
N-Nitrosodimethylamine	9.4	U	9.4	I	9/17/09	9/21/09 16:10		171359	
N-Nitrosodiphenylamine	9.4	U	9,4	1	9/17/09	9/21/09 16:10		171359	
Naphthalene	9,4	U	9.4	1	9/17/09	9/21/09 16:10		171359	
Nitrobenzene	9.4	U	9.4	1	9/17/09	9/21/09 16:10		171359	
Pentachlorophenol (PCP)	47	7 U	47	1	9/17/09	9/21/09 16:10		171359	
Phenanthrene	9.4	U	9.4	The state of the s	9/17/09	9/21/09 16:10) 96208	171359)

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 11M R0905245-004 Service Request: R0905245
Date Collected: 9/14/09 1600

Date Collected: 9/14/09 10

Date Received: 9/15/09

Units: μg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C Prep Method: EPA 3510C

			Dilution	Date	Date	Extraction	i Analysis
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Lot Note
Phenol	9.4 U	9.4	1	9/17/09	9/21/09 16:10	96208	
Pyrene	9.4 U	9.4	1	9/17/09	9/21/09 16:10	96208	171359

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	Note
2,4,6-Tribromophenol	94	46-134	9/21/09 16:10	
2-Fluorobiphenyl	79	46-110	9/21/09 16:10	
2-Fluorophenol	48	12-84	9/21/09 16:10	
Nitrobenzene-d5	82	44-117	9/21/09 16:10	
Phenol-d6	31	10-70	9/21/09 16:10	
p-Terphenyl-d14	98	40-133	9/21/09 16:10	

Comments:	
-----------	--

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 11S R0905245-005

Service Request: R0905245 Date Collected: 9/14/09 1630

Date Received: 9/15/09

Basis: NA

Oil and Grease, HEM Silica Gel Treated

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed
Oil and Grease, Nonpolar (SGT-HEM)	1664	4.8 U	mg/L	4.8	1 NA 9/24/09 07:30

Comments

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 11S

R0905245-005

Service Request: R0905245 Date Collected: 9/14/09 1630

Date Received: 9/15/09

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed
Arsenic, Dissolved	6010B	0,010 U	mg/L	0,010	1 9/22/09 9/24/09 18:38
Lead, Dissolved	6010B	0,0050 U	mg/L	0,0050	1 9/22/09 9/24/09 18:38

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 11S R0905245-005 Service Request: R0905245

Date Collected: 9/14/09 1630

Date Received: 9/15/09

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot Not
Acetone	20	U	20	1	NA	9/23/09 15:42	
Benzene	5.0	U	5.0	1	NA	9/23/09 15:42	
Bromodichloromethane	5.0	U	5.0	1	NA	9/23/09 15:42	
Bromoform	5.0	U	5.0	1	NA.	9/23/09 15:42	
Bromomethane	5.0	U	5.0	1	NA	9/23/09 15:42	
2-Butanone (MEK)	10	U	10	1	NA	9/23/09 15:42	
Carbon Disulfide	10	U	10		NA	9/23/09 15:42	
Carbon Tetrachloride	5.0	U	5.0	I	NA	9/23/09 15:42	
Chlorobenzene	5.0	U	5.0	1	NA	9/23/09 15:42	
Chloroethane	5.0	U	5.0	1	NA	9/23/09 15:42	
Chloroform	5.0	U	5.0	1	NA	9/23/09 15:42	
Chloromethane	5,0	U	5.0	1	NA	9/23/09 15:42	
Dibromochloromethane	5.0	U	5.0	1	NA	9/23/09 15:42	
1,1-Dichloroethane	5.0		5.0	1	NA	9/23/09 15:42	
1,2-Dichloroethane	5.0		5.0	1	NA	9/23/09 15:42	
1,1-Dichloroethene	5.0	U	5.0	1	NA	9/23/09 15:42	
cis-1,2-Dichloroethene	5.0		5.0	1	NA	9/23/09 15:42	
trans-1,2-Dichloroethene	5.0		5.0	1	NA	9/23/09 15:42	171600
1,2-Dichloropropane	5.0	U	5.0	1	NA	9/23/09 15:42	
cis-1,3-Dichloropropene	5.0		5.0	1	NA	9/23/09 15:42	
trans-1,3-Dichloropropene	5.0		5.0	1	NA	9/23/09 15:42	171600
Ethylbenzene	5.0	U	5.0	1	NA	9/23/09 15:42	
2-Hexanone	10	U	10	1	NA	9/23/09 15:42	
Methylene Chloride	5.0		5.0	1	NA	9/23/09 15:42	
4-Methyl-2-pentanone (MIBK)	10	U	10	1	NA	9/23/09 15:42	
Styrene	5.0		5.0	1	NA	9/23/09 15:42	
1,1,2,2-Tetrachloroethane	5.0		5.0	1	NA	9/23/09 15:42	171600
Tetrachloroethene	5.0	U	5.0	1	NA	9/23/09 15:42	
Toluene	5.0		5.0	1	NA	9/23/09 15:42	
1,1,1-Trichloroethane	5.0		5.0	1	NA	9/23/09 15:42	
1,1,2-Trichloroethane	5,0	U	5.0	1	NA	9/23/09 15:42	
Trichloroethene	5.0		5.0	1	NA	9/23/09 15:42	
Vinyl Chloride	5.0		5.0	1	NA	9/23/09 15:42	171600

Comments:

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 11S R0905245-005 Servic

Service Request: R0905245

Date Collected: 9/14/09 1630

Date Received: 9/15/09

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted		Extraction Lot	Analysi Lot	is Note
o-Xylene m,p-Xylenes	5.0 U 5.0 U	5.0 5.0	1 1	NA NA	9/23/09 15:42 9/23/09 15:42		171600 171600	

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	Note	
4-Bromofluorobenzene	109	85-122	9/23/09 15:42		
Toluene-d8	103	87-121	9/23/09 15:42		
Dibromofluoromethane	113	89-119	9/23/09 15:42		

Comments:	

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 11S R0905245-005 Service Request: R0905245

Date Collected: 9/14/09 1630

Date Received: 9/15/09

Units: μg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C Prep Method: EPA 3510C

				Dilution	Date	Date	Extraction		
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Lot	Note
1,2,4-Trichlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 16:50		171359	
1,2-Dichlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 16:50		171359	
1,3-Dichlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 16:50	96208	171359	
1,4-Dichlorobenzene	9,4	U	9.4	1	9/17/09	9/21/09 16:50		171359	
2,4,5-Trichlorophenol	9.4	U	9.4	1	9/17/09	9/21/09 16:50		171359	
2,4,6-Trichlorophenol	9.4	U	9.4	1	9/17/09	9/21/09 16:50		171359	
2,4-Dichlorophenol	9,4		9.4	1	9/17/09	9/21/09 16:50		171359	
2,4-Dimethylphenol	9.4	U	9.4	1	9/17/09	9/21/09 16:50		171359	
2,4-Dinitrophenol	47	U	47	1	9/17/09	9/21/09 16:50	96208	171359	
2,4-Dinitrotoluene	9,4	U	9,4	1	9/17/09	9/21/09 16:50		171359	
2,6-Dinitrotoluene	9.4	U	9.4	1	9/17/09	9/21/09 16:50		171359	
2-Chloronaphthalene	9.4	U	9.4	1	9/17/09	9/21/09 16:50	96208	171359	
2-Chlorophenol	9.4	U	9.4	1	9/17/09	9/21/09 16:50		171359	
2-Methylnaphthalene	9.4	U	9.4	1	9/17/09	9/21/09 16:50		171359	
2-Methylphenol	9.4	U	9.4	1	9/17/09	9/21/09 16:50	96208	171359	
2-Nitroaniline	47	U	47	1	9/17/09	9/21/09 16:50		171359	
2-Nitrophenol	9.4	U	9.4	1	9/17/09	9/21/09 16:50		171359	
3,3'-Dichlorobenzidine	9.4	U	9.4	1	9/17/09	9/21/09 16:50	96208	171359	
3- and 4-Methylphenol Coelution	9.4	U	9.4	1	9/17/09	9/21/09 16:50		171359	
3-Nitroaniline	47	U	47	1	9/17/09	9/21/09 16:50		171359	
4,6-Dinitro-2-methylphenol	47	U	47	1	9/17/09	9/21/09 16:50	96208	171359	
4-Bromophenyl Phenyl Ether	9.4	U	9,4	1		9/21/09 16:50		171359	
4-Chloro-3-methylphenol	9.4	U	9.4	1		9/21/09 16:50		171359	
4-Chloroaniline	9.4	U	9.4	1		9/21/09 16:50		171359	
4-Chlorophenyl Phenyl Ether	9.4	U	9.4	1		9/21/09 16:50		171359	
4-Nitroaniline	47	U	47	1		9/21/09 16:50		171359	
4-Nitrophenol	47	U	47	1	9/17/09	9/21/09 16:50	96208	171359	
Acenaphthene	9,4	U	9.4	1		9/21/09 16:50		171359	
Acenaphthylene	9.4	U	9.4	I		9/21/09 16:50	96208	171359	
Anthracene	9.4	U	9.4	1	9/17/09	9/21/09 16:50	96208	171359	
Benz(a)anthracene	9.4	U	9.4	1		9/21/09 16:50		171359	
Benzo(a)pyrene	9.4	U	9.4	1	9/17/09	9/21/09 16:50	96208	171359	

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 11S R0905245-005 Service Request: R0905245 Date Collected: 9/14/09 1630

Date Received: 9/15/09

Units: µg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C Prep Method: EPA 3510C

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot		s Note
Benzo(b)fluoranthene	9.4	U	9.4	1	9/17/09	9/21/09 16:50	96208	171359	
Benzo(g,h,i)perylene	9.4	U	9.4	1	9/17/09	9/21/09 16:50		171359	
Benzo(k)fluoranthene	9,4	U	9.4	1	9/17/09	9/21/09 16:50		171359	
Benzyl Alcohol	9.4	U	9.4	1	9/17/09	9/21/09 16:50	96208	171359	
2,2'-Oxybis(1-chloropropane)	9.4	U	9.4	I	9/17/09	9/21/09 16:50		171359	
Bis(2-chloroethoxy)methane	9.4	U	9.4	1	9/17/09	9/21/09 16:50		171359	
Bis(2-chloroethyl) Ether	9.4	U	9.4	1	9/17/09	9/21/09 16:50	96208	171359	
Bis(2-ethylhexyl) Phthalate	9.4	U	9.4	1	9/17/09	9/21/09 16:50		171359	
Butyl Benzyl Phthalate	9,4	U	9.4	1	9/17/09	9/21/09 16:50		171359	
Carbazole	9.4	U	9.4	1	9/17/09	9/21/09 16:50	96208	171359	
Chrysene	9.4	U	9,4	1	9/17/09	9/21/09 16:50		171359	
Di-n-butyl Phthalate	9,4		9.4	1	9/17/09	9/21/09 16:50		171359	
Di-n-octyl Phthalate	9.4		9.4	1	9/17/09	9/21/09 16:50	96208	171359	
Dibenz(a,h)anthracene	9.4	U	9.4	1	9/17/09	9/21/09 16:50		171359	
Dibenzofuran	9.4		9.4	1	9/17/09	9/21/09 16:50		171359	
Diethyl Phthalate	9.4	U	9.4	1	9/17/09	9/21/09 16:50	96208	171359	
Dimethyl Phthalate	9.4	U	9.4	1	9/17/09	9/21/09 16:50		171359	
Fluoranthene	9.4	U	9.4	1	9/17/09	9/21/09 16:50		171359	
Fluorene	9.4	U	9.4	1	9/17/09	9/21/09 16:50	96208	171359	
Hexachlorobenzene	9,4	U	9.4	1	9/17/09	9/21/09 16:50		171359	
Hexachlorobutadiene	9.4	U	9.4	1		9/21/09 16:50		171359	
Hexachlorocyclopentadiene	9.4	U	9,4	1	9/17/09	9/21/09 16:50	96208	171359	
Hexachloroethane	9.4	U	9,4	1	9/17/09	9/21/09 16:50		171359	
Indeno(1,2,3-cd)pyrene	9.4	U	9.4	1	9/17/09	9/21/09 16:50		171359	
Isophorone	9.4	U	9.4	1	9/17/09	9/21/09 16:50	96208	171359	
N-Nitrosodi-n-propylamine	9.4	U	9.4	1		9/21/09 16:50		171359	
N-Nitrosodimethylamine	9.4	U	9.4	1		9/21/09 16:50		171359	
N-Nitrosodiphenylamine	9.4	U	9.4	1	9/17/09	9/21/09 16:50	96208	171359	
Naphthalene	9.4	U	9.4	1		9/21/09 16:50		171359	
Nitrobenzene	9.4	U	9.4	1		9/21/09 16:50		171359	
Pentachlorophenol (PCP)	47	U	47	1	9/17/09	9/21/09 16:50	96208	171359	
Phenanthrene	9,4	U	9.4	1	9/17/09	9/21/09 16:50	96208	171359	

Comments:

Printed 10/6/09 13:09 \\Inflow2\Starlims\LimsReps\AnalyticalReport.rpt Form 1A

SuperSet Reference:

09-0000121449 rev 00

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 11S R0905245-005

Service Request: R0905245 Date Collected: 9/14/09 1630

Date Received: 9/15/09

Units: µg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C Prep Method:

EPA 3510C

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted		Extraction Lot	Analysi Lot	Note
Phenol Pyrene	9,4 U 9,4 U	9.4 9.4	1 1		9/21/09 16:50 9/21/09 16:50		171359 171359	

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	Note	
2,4,6-Tribromophenol	95	46-134	9/21/09 16:50		
2-Fluorobiphenyl	79	46-110	9/21/09 16:50		
2-Fluorophenol	47	12-84	9/21/09 16:50		
Nitrobenzene-d5	81	44-117	9/21/09 16:50		
Phenol-d6	31	10-70	9/21/09 16:50		
p-Terphenyl-d14	102	40-133	9/21/09 16:50		

Comments:	·	

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 12S

Service Request: R0905245 Date Collected: 9/14/09 1750

Date Received: 9/15/09

Basis: NA

R0905245-006

Oil and Grease, HEM Silica Gel Treated

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed
Oil and Grease, Nonpolar (SGT-HEM)	1664	4.8 U	mg/L	4,8	1 NA 9/24/09 07:30

Comments:

Printed 10/6/09 13:09

\\Inflow2\Sterlims\LimsReps\AnalyticalReport.rpt

Form 1A

SuperSet Reference:

09-0000121449 rev 00

66641

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 12S

R0905245-006

Service Request: R0905245

Date Collected: 9/14/09 1750 Date Received: 9/15/09

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Arsenic, Dissolved	6010B	0.010 U	mg/L	0.010	1	9/22/09	9/24/09 18:44
Lead, Dissolved	6010B	0.0050 U	mg/L	0.0050	1	9/22/09	9/24/09 18:44

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd #2011-100

Sample Matrix: Water

Sample Name: MW 12S Lab Code: R0905245-006 Service Request: R0905245

Date Collected: 9/14/09 1750

Date Received: 9/15/09

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot		s Note
Acetone	20		20	Y	NA	9/23/09 16:10		171600	
Benzene	5.0		5.0	1	NA	9/23/09 16:10		171600 171600	
Bromodichloromethane	5.0	U	5.0	1	NA	9/23/09 16:10			
Bromoform	5.0	Ŭ	5.0	1	NA	9/23/09 16:10		171600	
Bromomethane	5.0	U	5.0	1	NA	9/23/09 16:10		171600	
2-Butanone (MEK)	10	U	10	1	NA	9/23/09 16:10		171600	
Carbon Disulfide	10	U	10	1	NA	9/23/09 16:10		171600	
Carbon Tetrachloride	5.0	U	5.0	1	NA	9/23/09 16:10		171600	
Chlorobenzene	5,0	U	5.0	1	NA	9/23/09 16:10		171600	
Chloroethane	5,0	U	5.0	1	NA	9/23/09 16:10		171600	
Chloroform	5.0	U	5.0	1	NA	9/23/09 16:10		171600	
Chloromethane	5.0	U	5,0	1	NA	9/23/09 16:10) 	171600	
Dibromochloromethane	5,0	U	5,0	1	NA	9/23/09 16:10		171600	
1,1-Dichloroethane	5.0		5,0	1	NA	9/23/09 16:10		171600	
1,2-Dichloroethane	5.0		5.0	1	NA	9/23/09 16:10)	171600	
1,1-Dichloroethene	5,0	U	5.0	1	NA	9/23/09 16:10		171600	
cis-1,2-Dichloroethene	5.0		5.0	1	NA	9/23/09 16:10		171600	
trans-1,2-Dichloroethene	5.0	U	5.0	1	NA	9/23/09 16:10) 	171600	
1,2-Dichloropropane	5,0	U	5,0	1	NA	9/23/09 16:10		171600	
cis-1,3-Dichloropropene	5,0	U	5.0	1	NA	9/23/09 16:10		171600	
trans-1,3-Dichloropropene	5.0	U	5.0	1	NA	9/23/09 16:10)	171600	
Ethylbenzene	5.0	U	5.0	1	NA	9/23/09 16:10		171600	
2-Hexanone		U	10	1	NA	9/23/09 16:10		171600	
Methylene Chloride	5,0	U	5.0	1	NA	9/23/09 16:10		171600	
4-Methyl-2-pentanone (MIBK)	10	U	10	1	NA	9/23/09 16:10		171600	
Styrene		Ū	5.0	ł	NA	9/23/09 16:10		171600	
1,1,2,2-Tetrachloroethane	5,0	U	5.0	1	NA	9/23/09 16:10) 	171600	
Tetrachloroethene	5.0	U	5,0	1	NA	9/23/09 16:10		171600	
Toluene		Ü	5.0	1	NA	9/23/09 16:10		171600	
1,1,1-Trichloroethane		U	5.0	1	NA	9/23/09 16:10)	171600	
1,1,2-Trichloroethane	5.0	U	5.0	1	NA	9/23/09 16:10		171600	
Trichloroethene		Ū	5.0	1	NA	9/23/09 16:10		171600	
Vinyl Chloride		U	5.0	1	NA	9/23/09 16:10) 	171600	

Comments:	

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 12S R0905245-006 Service Request: R0905245
Date Collected: 9/14/09 1750

Date Received: 9/15/09

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

			Dilution	Date	Date	Extraction	Analys	ís
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Lot	Note
o-Xylene	5.0 U	5.0	1	NA	9/23/09 16:10)	171600)
m,p-Xylenes	5,0 U	5.0	1	NA	9/23/09 16:10)	171600)

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	Note
4-Bromofluorobenzene	107	85-122	9/23/09 16:10	
Toluene-d8	103	87-121	9/23/09 16:10	
Dibromofluoromethane	112	89-119	9/23/09 16:10	

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd #2011-100

Sample Matrix: Water
Sample Name: MW 12S
Lab Code: R0905245-006

Service Request: R0905245

Date Collected: 9/14/09 1750

Date Received: 9/15/09

Units: µg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C Prep Method: EPA 3510C

				Dilution	Date	Date	Extraction	Analysi	S
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Lot	Note
1,2,4-Trichlorobenzene	9,4	U	9.4	1	9/17/09	9/21/09 17:30		171359	
1,2-Dichlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 17:30	96208	171359	
1,3-Dichlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 17:30	96208	171359	
1,4-Dichlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 17:30		171359	
2,4,5-Trichlorophenol	9.4	U	9.4	1	9/17/09	9/21/09 17:30		171359	
2,4,6-Trichlorophenol	9.4	U	9,4	1	9/17/09	9/21/09 17:30		171359	
2,4-Dichlorophenol	9,4	U	9.4	1	9/17/09	9/21/09 17:30		171359	
2,4-Dimethylphenol	9.4	U	9.4	1	9/17/09	9/21/09 17:30		171359	
2,4-Dinitrophenol	47	U	47	1	9/17/09	9/21/09 17:30	96208	171359	
2,4-Dinitrotoluene	9,4	U	9.4	1	9/17/09	9/21/09 17:30		171359	
2,6-Dinitrotoluene	9.4	U	9.4	1	9/17/09	9/21/09 17:30		171359	
2-Chloronaphthalene	9.4	U	9.4	1	9/17/09	9/21/09 17:30	96208	171359	
2-Chlorophenol	9.4	U	9.4	1	9/17/09	9/21/09 17:30	96208	171359	
2-Methylnaphthalene	9.4	Ų	9.4	1	9/17/09	9/21/09 17:30		171359	
2-Methylphenol	9.4	U	9.4	1	9/17/09	9/21/09 17:30	96208	171359	
2-Nitroaniline	47	U	47	1	9/17/09	9/21/09 17:30		171359	
2-Nitrophenol	9.4	U	9.4	1	9/17/09	9/21/09 17:30		171359	
3,3'-Dichlorobenzidine	9.4		9.4	1	9/17/09	9/21/09 17:30	96208	171359	
3- and 4-Methylphenol Coclution	9.4	U	9.4	1		9/21/09 17:30		171359	
3-Nitroaniline	47	U	47	1		9/21/09 17:30		171359	
4,6-Dinitro-2-methylphenol	47	U	47	1	9/17/09	9/21/09 17:30	96208	171359	
4-Bromophenyl Phenyl Ether	9.4	U	9.4	1		9/21/09 17:30		171359	
4-Chloro-3-methylphenol	9.4	U	9.4	1		9/21/09 17:30		171359	
4-Chloroaniline	9.4	U	9.4	1	9/17/09	9/21/09 17:30	96208	171359	
4-Chlorophenyl Phenyl Ether	9.4	U	9.4	1		9/21/09 17:30		171359	
4-Nitroaniline	47	U	47	1		9/21/09 17:30		171359	
4-Nitrophenol	47	U	47	1	9/17/09	9/21/09 17:30	96208	171359	
Acenaphthene	9,4	U	9.4	1		9/21/09 17:30		171359	
Acenaphthylene	9.4	U	9.4	1		9/21/09 17:30		171359	
Anthracene	9.4	U	9.4	1	9/17/09	9/21/09 17:30		171359	
Benz(a)anthracene	9.4	U	9,4	1		9/21/09 17:30		171359	
Benzo(a)pyrene	9,4	U	9.4	1	9/17/09	9/21/09 17:30	96208	171359	

Comments:

Printed 10/6/09 13:09
\text{\text{\text{Minflow2\Starlims\LimsReps\AnalyticalReport.rpt}}}

Form 1A

SuperSet Reference:

09-0000121449 rev 00

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 12S R0905245-006 Service Request: R0905245

Date Collected: 9/14/09 1750

Date Received: 9/15/09

Units: μg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C Prep Method: EPA 3510C

Trop Methods				1919 41-11	Data	Date	Extraction	Analysis	
Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Analyzed	Lot	Lot	
Benzo(b)fluoranthene	9.4	Ü	9.4	1	9/17/09	9/21/09 17:30	96208	171359	
Benzo(g,h,i)perylene	9,4	U	9.4	1	9/17/09	9/21/09 17:30		171359	
Benzo(k)fluoranthene	9.4		9.4	1	9/17/09	9/21/09 17:30		171359	
Benzyl Alcohol	9.4		9.4	1	9/17/09	9/21/09 17:30	96208	171359	
2,2'-Oxybis(1-chloropropane)	9.4	U	9.4	1	9/17/09	9/21/09 17:30		171359	
Bis(2-chloroethoxy)methane	9.4	U	9.4	1	9/17/09	9/21/09 17:30		171359	
Bis(2-chloroethyl) Ether	9.4	U	9.4	1	9/17/09	9/21/09 17:30	96208	171359	
Bis(2-ethylhexyl) Phthalate	9.4	U	9.4	1	9/17/09	9/21/09 17:30		171359	
Butyl Benzyl Phthalate	9,4	U	9.4	1	9/17/09	9/21/09 17:30		171359	
Carbazole	9.4	U	9.4	1	9/17/09	9/21/09 17:30	96208	171359	
Chrysene	9.4	U	9.4	1	9/17/09	9/21/09 17:30		171359	
Di-n-butyl Phthalate	9,4		9.4	1	9/17/09	9/21/09 17:30		171359	
Di-n-octyl Phthalate	9.4		9.4	1	9/17/09	9/21/09 17:30	96208	171359	
Dibenz(a,h)anthracene	9,4	U	9,4	1	9/17/09	9/21/09 17:30		171359	
Dibenzofuran	9.4		9.4	1	9/17/09	9/21/09 17:30		171359	
Diethyl Phthalate	9.4		9.4	1	9/17/09	9/21/09 17:30	96208	171359	
Dimethyl Phthalate	9,4	U	9.4	1	9/17/09	9/21/09 17:30		171359	
Fluoranthene	9.4	U	9.4	1	9/17/09	9/21/09 17:30		171359	
Fluorene	9.4	U	9.4	1	9/17/09	9/21/09 17:30	96208	171359	
Hexachlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 17:30		171359	
Hexachlorobutadiene	9.4	U	9.4	1	9/17/09	9/21/09 17:30		171359	
Hexachlorocyclopentadiene	9.4	U	9.4	1	9/17/09	9/21/09 17:30		171359	
Hexachloroethane	9.4	U	9.4	1	9/17/09	9/21/09 17:30		171359	
Indeno(1,2,3-cd)pyrene	9.4	U	9.4	1	9/17/09	9/21/09 17:30		171359	
Isophorone	9.4	U	9.4	1	9/17/09	9/21/09 17:30	96208	171359	
N-Nitrosodi-n-propylamine	9.4	Ŭ	9.4	1	9/17/09	9/21/09 17:30		171359	
N-Nitrosodimethylamine	9,4	U	9.4	1	9/17/09	9/21/09 17:30		171359	
N-Nitrosodiphenylamine	9,4	U	9.4	1	9/17/09	9/21/09 17:30	96208	171359	
Naphthalene	9.4	U	9.4	1	9/17/09	9/21/09 17:30		171359	
Nitrobenzene		U	9.4	**		9/21/09 17:30		171359	
Pentachiorophenol (PCP)		U	47	1	9/17/09	9/21/09 17:30	96208	171359	
Phenanthrene	9.4	U	9.4	1	9/17/09	9/21/09 17:30	96208	171359	

Analytical Report

Client:

Unicorn Management Consultants

Project: Sample Matrix: Union Rd #2011-100

Water

Sample Name: Lab Code:

MW 12S R0905245-006 Service Request: R0905245 Date Collected: 9/14/09 1750

Date Received: 9/15/09

Units: µg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C Prep Method:

EPA 3510C

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted		Extraction Lot	-	s Note
Phenol	9.4 U	9.4	1	.,	9/21/09 17:30		171359	
Pyrene	9.4 U	9,4	1	9/17/09	9/21/09 17:30	96208	171359	

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	Note	
2,4,6-Tribromophenol	98	46-134	9/21/09 17:30		
2-Fluorobiphenyl	73	46-110	9/21/09 17:30		
2-Fluorophenol	49	12-84	9/21/09 17:30		
Nitrobenzene-d5	80	44-117	9/21/09 17:30		
Phenol-d6	33	10-70	9/21/09 17:30		
p-Terphenyl-d14	103	40-133	9/21/09 17:30		

_	
Comments:	

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 12M R0905245-007 Service Request: R0905245 **Date Collected: 9/14/09 1720**

Date Received: 9/15/09

Basis: NA

Oil and Grease, HEM Silica Gel Treated

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor		Date Analyzed
Oil and Grease, Nonpolar (SGT-HEM)	1664	4.7 U	mg/L	4.7	1	NA	9/24/09 07:30

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 12M R0905245-007 Service Request: R0905245
Date Collected: 9/14/09 1720

Date Received: 9/15/09

ccivea. 571570

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed
Arsenic, Dissolved	6010B	0,010 U	mg/L	0,010	1 9/22/09 9/24/09 18:50
Lead, Dissolved	6010B	0.0050 U	mg/L	0.0050	1 9/22/09 9/24/09 18:50

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix: Sample Name: Water

Lab Code:

MW 12M R0905245-007 Service Request: R0905245

Date Collected: 9/14/09 1720

Date Received: 9/15/09

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction And Lot I		s Note
Acetone	20	U	20	1	NA	9/23/09 16:38		600	
Benzene	5,0	U	5.0	1	NA	9/23/09 16:38		600	
Bromodichloromethane	5.0	U	5.0	1	NA	9/23/09 16:38		600	
Bromoform	5.0	U	5.0	1	NA	9/23/09 16:38		600	
Bromomethane	5,0	U	5.0	1	NA	9/23/09 16:38		600	
2-Butanone (MEK)	10	U	10	1	NA	9/23/09 16:38	.,	600	
Carbon Disulfide	10	U	10	1	NA	9/23/09 16:38		600	
Carbon Tetrachloride	5,0	U	5.0	1	NA	9/23/09 16:38		600	
Chlorobenzene	5.0	U	5,0	1	NA	9/23/09 16:38		600	
Chloroethane	5.0	U	5.0	1	NA	9/23/09 16:38		600	
Chloroform	5,0	U	5.0	I	NA	9/23/09 16:38		600	
Chloromethane	5.0	U	5.0	1	NA	9/23/09 16:38		600	
Dibromochloromethane	5.0	II	5.0	1	NA	9/23/09 16:38		600	
1,1-Dichloroethane		Ŭ	5.0	1	NA	9/23/09 16:38		600	
1,2-Dichloroethane		Ū	5.0	1	NA	9/23/09 16:38	17.	600	·
1,1-Dichloroethene	5.0	U	5.0	1	NA	9/23/09 16:38		600	
cis-1,2-Dichloroethene		U	5.0	1	NA	9/23/09 16:38		600	
trans-1,2-Dichloroethene		U	5.0	1	NA	9/23/09 16:38	17	600	
1,2-Dichloropropane	5.0	U	5.0	1	NA	9/23/09 16:38		600	
cis-1,3-Dichloropropene		U	5.0	1	NA	9/23/09 16:38		600	
trans-1,3-Dichloropropene	5.0	U	5.0	1	NA	9/23/09 16:38		600	
Ethylbenzene	5.0	U	5.0	1	NA	9/23/09 16:38		600	
2-Hexanone	10	U	10	1	NA	9/23/09 16:38		600	
Methylene Chloride	5.0	U	5.0	1	NA	9/23/09 16:38		600	
4-Methyl-2-pentanone (MIBK)	10	U	10	1	NA	9/23/09 16:38		1600	
Styrene	5,0	U	5,0	1	NA	9/23/09 16:38		600	
1,1,2,2-Tetrachloroethane	5.0	U	5.0	**	NA	9/23/09 16:38	17	1600	
Tetrachloroethene	5,0	U	5,0	1	NA	9/23/09 16:38		600	
Toluene	5,0) U	5.0	1	NA	9/23/09 16:38		600	
1,1,1-Trichloroethane) U	5,0	1	NA	9/23/09 16:38		600	
1,1,2-Trichloroethane	5.0) Ü	5.0	1	NA	9/23/09 16:38		600	
Trichloroethene		Ū	5.0	1	NA	9/23/09 16:38		600	
Vinyl Chloride		U	5.0	1	NA	9/23/09 16:38	17	600	

Comments:

Printed 10/6/09 13:09
\\Inflow2\Sterlims\LimsReps\AnalyticelReport.rpt

Form 1A

SuperSet Reference:

09-0000121449 rev 00

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 12M R0905245-007 Service Request: R0905245

Date Collected: 9/14/09 1720
Date Received: 9/15/09

Uniter 110/1

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted		Extraction Lot	Analys Lot	is Note
o-Xylene m,p-Xylenes	5.0 U 5.0 U	5.0 5.0	1	NA NA	9/23/09 16:38 9/23/09 16:38		171600 171600	

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	Note
4-Bromofluorobenzene	106	85-122	9/23/09 16:38	
Toluene-d8	101	87-121	9/23/09 16:38	
Dibromofluoromethane	109	89-119	9/23/09 16:38	

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd #2011-100 Sample Matrix: Water

Sample Matrix: Sample Name:

Lab Code:

MW 12M R0905245-007 Service Request: R0905245

Date Collected: 9/14/09 1720

Date Received: 9/15/09

Units: μg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C Prep Method: EPA 3510C

Analyte Name	Result	o	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot		s Note
				1	9/17/09	9/21/09 18:10	96208	171359	
1,2,4-Trichlorobenzene	9.4		9.4	1	9/17/09	9/21/09 18:10		171359	
1,2-Dichlorobenzene	9.4		9.4 9.4	1	9/17/09	9/21/09 18:10		171359	
1,3-Dichlorobenzene	9.4							171359	
1,4-Dichlorobenzene	9.4		9.4	1	9/17/09	9/21/09 18:10		171359	
2,4,5-Trichlorophenol	9.4		9.4	1	9/17/09	9/21/09 18:10		171359	
2,4,6-Trichlorophenol	9.4	U	9.4	1	9/17/09	9/21/09 18:10			
2,4-Dichlorophenol	9.4	U	9.4	1	9/17/09	9/21/09 18:10		171359	
2,4-Dimethylphenol	9,4	U	9.4	1	9/17/09	9/21/09 18:10		171359	
2,4-Dinitrophenol	47	U	47	1	9/17/09	9/21/09 18:10	96208	171359	
2,4-Dinitrotoluene	9,4	U	9,4	1	9/17/09	9/21/09 18:10		171359	
2,6-Dinitrotoluene	9,4		9.4	1	9/17/09	9/21/09 18:10		171359	
2-Chloronaphthalene	9.4		9.4	1	9/17/09	9/21/09 18:10	96208	171359	
2-Chlorophenol	9.4	IJ	9.4	1	9/17/09	9/21/09 18:10	96208	171359	
2-Methylnaphthalene	9.4		9.4	1	9/17/09	9/21/09 18:10		171359	
2-Methylphenol	9,4		9.4	1	9/17/09	9/21/09 18:10	96208	171359	
2-Nitroaniline	47	Ü	47	1	9/17/09	9/21/09 18:10	96208	171359	
2-Nitrophenol	9.4		9,4	1	9/17/09	9/21/09 18:10	96208	171359	
3,3'-Dichlorobenzidine	9.4		9.4	1	9/17/09	9/21/09 18:10	96208	171359	
3- and 4-Methylphenol Coelution	9,4	IJ	9.4	1	9/17/09	9/21/09 18:10		171359	
3-Nitroaniline		Ŭ	47	1	9/17/09	9/21/09 18:10		171359	
4,6-Dinitro-2-methylphenol		Ū	47	1	9/17/09	9/21/09 18:10	96208	171359	
4-Bromophenyl Phenyl Ether	9.4	II	9,4	1	9/17/09	9/21/09 18:10	96208	171359	
4-Chloro-3-methylphenol	9,4		9.4	1	9/17/09	9/21/09 18:10	96208	171359	
4-Chloroaniline	9.4		9.4	1	9/17/09	9/21/09 18:10	96208	171359	
4-Chlorophenyl Phenyl Ether	9,4		9.4	1	9/17/09	9/21/09 18:10	96208	171359	
4-Nitroaniline		Ü	47	1	9/17/09	9/21/09 18:10	96208	171359	
4-Nitrophenol		Ū	47	\$	9/17/09	9/21/09 18:10	96208	171359	
Acenaphthene	9.4	11	9.4	1	9/17/09	9/21/09 18:10	96208	171359	
Acenaphthylene	9.4		9.4	1	9/17/09	9/21/09 18:10		171359	
Anthracene	9.4		9.4	1	9/17/09	9/21/09 18:10	96208	171359	
Benz(a)anthracene	9,4		9.4	i	9/17/09	9/21/09 18:10		171359	
Benzo(a)pyrene	9.4		9.4	1	9/17/09	9/21/09 18:10	96208	171359	
									

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 12M R0905245-007 Service Request: R0905245

Date Collected: 9/14/09 1720

Date Received: 9/15/09

Units: µg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C Prep Method: EPA 3510C

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot Note
Benzo(b)fluoranthene	9.4	U	9.4	1	9/17/09	9/21/09 18:10	96208	171359
Benzo(g,h,i)perylene	9.4	U	9.4	1	9/17/09	9/21/09 18:10		171359
Benzo(k)fluoranthene	9.4	U	9.4	1	9/17/09	9/21/09 18:10		171359
Benzyl Alcohol	9.4	U	9.4	1	9/17/09	9/21/09 18:10		171359
2,2'-Oxybis(1-chloropropane)	9,4		9.4	1	9/17/09	9/21/09 18:10		171359
Bis(2-chloroethoxy)methane	9.4	U	9.4	1	9/17/09	9/21/09 18:10		171359
Bis(2-chloroethyl) Ether	9.4	U	9.4	1	9/17/09	9/21/09 18:10	96208	171359
Bis(2-ethylhexyl) Phthalate	9.4	U	9,4	1	9/17/09	9/21/09 18:10		171359
Butyl Benzyl Phthalate	9.4	U	9,4	1	9/17/09	9/21/09 18:10		171359
Carbazole	9.4	U	9,4	1	9/17/09	9/21/09 18:10		171359
Chrysene	9,4	U	9.4	1	9/17/09	9/21/09 18:10		171359
Di-n-butyl Phthalate	9,4	U	9.4	i	9/17/09	9/21/09 18:10		171359
Di-n-octyl Phthalate	9.4		9.4	1	9/17/09	9/21/09 18:10	96208	171359
Dibenz(a,h)anthracene	9,4	U	9.4	1	9/17/09	9/21/09 18:10		171359
Dibenzofuran	9,4	U	9,4	1	9/17/09	9/21/09 18:10		171359
Diethyl Phthalate	9.4		9.4	1	9/17/09	9/21/09 18:10	96208	171359
Dimethyl Phthalate	9.4	U	9.4	1	9/17/09	9/21/09 18:10		171359
Fluoranthene	9.4	U	9.4	1	9/17/09	9/21/09 18:10		171359
Fluorene	9,4	U	9.4	1	9/17/09	9/21/09 18:10	96208	171359
Hexachlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 18:10		171359
Hexachlorobutadiene	9.4	U	9,4	1	9/17/09	9/21/09 18:10		171359
Hexachlorocyclopentadiene	9.4	U	9.4	1	9/17/09	9/21/09 18:10	96208	171359
Hexachloroethane	9.4	U	9,4	1	9/17/09	9/21/09 18:10		171359
Indeno(1,2,3-cd)pyrene	9.4	U	9.4	1	9/17/09	9/21/09 18:10		171359
Isophorone	9.4	U	9.4	1	9/17/09	9/21/09 18:10	96208	171359
N-Nitrosodi-n-propylamine	9.4	U	9.4	1	9/17/09	9/21/09 18:10		171359
N-Nitrosodimethylamine	9.4	U	9,4	1	9/17/09	9/21/09 18:10		171359
N-Nitrosodiphenylamine	9,4	U	9.4	1	9/17/09	9/21/09 18:10	96208	171359
Naphthalene	9.4	U	9.4	1	9/17/09	9/21/09 18:10		171359
Nitrobenzene	9.4	U	9.4	1	9/17/09	9/21/09 18:10		171359
Pentachlorophenol (PCP)	47	U	47	1	9/17/09	9/21/09 18:10		171359
Phenanthrene	9,4	U	9.4	I	9/17/09	9/21/09 18:10	96208	171359

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 12M R0905245-007 Service Request: R0905245 Date Collected: 9/14/09 1720

Date Received: 9/15/09

Units: µg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C Prep Method:

EPA 3510C

			Dilution	Date		Extraction	. •	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Lot	Note
Phenol	9.4 U	9.4	1		9/21/09 18:10		171359	
Pyrene	9.4 U	9.4	1	9/17/09	9/21/09 18:10	96208	171359	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	Note	
2,4,6-Tribromophenol	97	46-134	9/21/09 18:10			
2-Fluorobiphenyl	86	46-110	9/21/09 18:10			
2-Fluorophenol	47	12-84	9/21/09 18:10			
Nitrobenzene-d5	86	44-117	9/21/09 18:10			
Phenol-d6	30	10-70	9/21/09 18:10			
p-Terphenyl-d14	97	40-133	9/21/09 18:10			

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 12D R0905245-008 Service Request: R0905245 Date Collected: 9/14/09 1700

Date Received: 9/15/09

Basis: NA

Oil and Grease, HEM Silica Gel Treated

Analyte Name	Method	Result Q	Units	MRL	Dilutior Factor		Date Analyzed
Oil and Grease, Nonpolar (SGT-HEM)	1664	4.7 U	mg/L	4.7	1	NA	9/24/09 07:30

Comments:

Printed 10/6/09 13:09

\\Inflow2\Starlims\LimsReps\AnalyticalReport.rpt

Form 1A

SuperSet Reference:

09-0000121449 rev 00

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 12D R0905245-008

Service Request: R0905245

Date Collected: 9/14/09 1700 Date Received: 9/15/09

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Arsenic, Dissolved	6010B	0.010 U	mg/L	0.010	1	9/22/09	9/24/09 18:56
Lead, Dissolved	6010B	0.0050 U	mg/L	0.0050	1	9/22/09	9/24/09 18:56

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd #2011-100

Sample Matrix: V

Water

Sample Name: Lab Code: MW 12D R0905245-008 Service Request: R0905245

Date Collected: 9/14/09 1700

Date Received: 9/15/09

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot Note
Accione	20	U	20	1	NA	9/23/09 17:06	
Benzene	5.0		5.0	1	NA	9/23/09 17:06	
Bromodichloromethane	5.0	U	5.0	1	NA	9/23/09 17:06	
Bromoform	5.0	U	5,0	1	NA	9/23/09 17:06	
Bromomethane	5.0	U	5.0	1	NA	9/23/09 17:06	
2-Butanone (MEK)	10	U	10	1	NA	9/23/09 17:06	
Carbon Disulfide	10	U	10	1	NA	9/23/09 17:06	
Carbon Tetrachloride	5.0	U	5.0	l	NA	9/23/09 17:06	
Chlorobenzene	5.0	U	5.0	1	NA	9/23/09 17:06	
Chloroethane	5,0	Ü	5,0	1	NA	9/23/09 17:06	
Chloroform	5.0	U	5.0	1	NA	9/23/09 17:06	
Chloromethane	5.0	U	5,0	1	NA	9/23/09 17:06	
Dibromochloromethane	5.0	U	5.0	1	NA	9/23/09 17:06	
1,1-Dichloroethane	5.0		5,0	1	NA	9/23/09 17:06	
1,2-Dichloroethane	5.0	U	5,0	1	NA	9/23/09 17:06	171600
1,1-Dichloroethene	5.0	U	5.0	1	NA	9/23/09 17:06	
cis-1,2-Dichloroethene	5.0	U	5.0	1	NA	9/23/09 17:06	
trans-1,2-Dichloroethene	5.0	U	5.0	1	NA	9/23/09 17:06	171600
1,2-Dichloropropane	5.0	U	5,0	1		9/23/09 17:06	
cis-1,3-Dichloropropene	5.0	U	5.0	1		9/23/09 17:06	171600
trans-1,3-Dichloropropene	5.0	U	5.0	1	NA	9/23/09 17:06	171600
Ethylbenzene	5,0	U	5.0	1		9/23/09 17:06	171600
2-Hexanone	10	U	10	1		9/23/09 17:06	171600
Methylene Chloride	5.0	U	5.0	1	NA.	9/23/09 17:06	171600
4-Methyl-2-pentanone (MIBK)	10	U	10	1		9/23/09 17:06	171600
Styrene	5.0	U	5.0	1		9/23/09 17:06	171600
1,1,2,2-Tetrachloroethane	5.0	U	5.0	1	NA	9/23/09 17:06	171600
Tetrachloroethene	5.0	U	5.0	1		9/23/09 17:06	171600
Toluene	5.0	U	5.0	I		9/23/09 17:06	171600
1,1,1-Trichloroethane	5.0	U	5.0	1		9/23/09 17:06	171600
1,1,2-Trichloroethane	5,0	U	5.0	1		9/23/09 17:06	171600
Trichloroethene	5.0	U	5.0	1		9/23/09 17:06	171600
Vinyl Chloride	5.0	U	5.0	1	NA	9/23/09 17:06	171600

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 12D R0905245-008 Service Request: R0905245

Date Collected: 9/14/09 1700 Date Received: 9/15/09

ate Received: 9/13/03

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	_	Extraction Lot	Analysi Lot	is Note
o-Xylene m,p-Xylenes	5.0 U 5.0 U	5.0 5.0	1 1	NA NA	9/23/09 17:00 9/23/09 17:00		171600 171600	

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	Note
4-Bromofluorobenzene	106	85-122	9/23/09 17:06	
Toluene-d8	102	87-121	9/23/09 17:06	
Dibromofluoromethane	113	89-119	9/23/09 17:06	

Comments:	
-----------	--

Analytical Report

Client:

Unicorn Management Consultants

Project: Sample Matrix:

Sample Name: Lab Code: MW 12D R0905245-008

Union Rd #2011-100 Water Service Request: R0905245
Date Collected: 9/14/09 1700
Date Received: 9/15/09

Units: μg/L

Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C Prep Method: EPA 3510C

				Dilution	Date	Date	Extraction	Analysi	S
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Lot	Note
1,2,4-Trichlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 18:50		171359	
1,2-Dichlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 18:50		171359	
1,3-Dichlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 18:50	96208	171359	
1,4-Dichlorobenzene	9.4	U	9,4	1	9/17/09	9/21/09 18:50		171359	
2,4,5-Trichlorophenol	9.4	U	9.4	1	9/17/09	9/21/09 18:50		171359	
2,4,6-Trichlorophenol	9.4	U	9.4	1	9/17/09	9/21/09 18:50		171359	
2,4-Dichlorophenol	9.4	U	9.4	1	9/17/09	9/21/09 18:50		171359	
2,4-Dimethylphenol	9.4	U	9.4	1	9/17/09	9/21/09 18:50		171359	
2,4-Dinitrophenol	47	U	47	1	9/17/09	9/21/09 18:50	96208	171359	
2,4-Dinitrotoluene	9.4	U	9.4	1	9/17/09	9/21/09 18:50	96208	171359	
2,6-Dinitrotoluene	9,4		9.4	1	9/17/09	9/21/09 18:50	96208	171359	
2-Chloronaphthalene	9.4		9.4	1	9/17/09	9/21/09 18:50	96208	171359	
2-Chlorophenol	9.4	U	9,4	1	9/17/09	9/21/09 18:50		171359	
2-Methylnaphthalene	9.4	U	9.4	1	9/17/09	9/21/09 18:50		171359	
2-Methylphenol	9.4		9.4	1	9/17/09	9/21/09 18:50	96208	171359	
2-Nitroaniline	47	U	47	1	9/17/09	9/21/09 18:50		171359	
2-Nitrophenol	9.4	U	9.4	1	9/17/09	9/21/09 18:50		171359	
3,3'-Dichlorobenzidine	9.4	U	9.4	1	9/17/09	9/21/09 18:50	96208	171359	
3- and 4-Methylphenol Coelution	9.4	U	9.4	1	9/17/09	9/21/09 18:50		171359	
3-Nitroaniline	47	U	47	1	9/17/09	9/21/09 18:50		171359	
4,6-Dinitro-2-methylphenol	47	U	47	1	9/17/09	9/21/09 18:50		171359	
4-Bromophenyl Phenyl Ether	9,4	Ų	9.4	1		9/21/09 18:50		171359	
4-Chloro-3-methylphenol	9.4	U	9.4	1		9/21/09 18:50		171359	
4-Chloroaniline	9.4	U	9,4	1	9/17/09	9/21/09 18:50	96208	171359	
4-Chlorophenyl Phenyl Ether	9.4	U	9.4	1		9/21/09 18:50		171359	
4-Nitroaniline	47	U	47	1		9/21/09 18:50		171359	
4-Nitrophenol	47	U	47	1	9/17/09	9/21/09 18:50		171359	
Acenaphthene	9.4	U	9,4	I		9/21/09 18:50		171359	
Acenaphthylene	9.4	U	9.4	1		9/21/09 18:50		171359	
Anthracene	9.4	U	9.4	1	9/17/09	9/21/09 18:50		171359	
Benz(a)anthracene	9.4	U	9.4	1		9/21/09 18:50		171359	
Benzo(a)pyrene	9.4	U	9.4	1	9/17/09	9/21/09 18:50	96208	171359	

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 12D R0905245-008 Service Request: R0905245

Date Collected: 9/14/09 1700

Date Received: 9/15/09

Units: μg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C Prep Method: EPA 3510C

Fieh arction. Fire 22100									
	Dagult	^	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Anaiysi	
Analyte Name	Result	Q	IVIKLI	ractor				151050	
Benzo(b)fluoranthene	9.4	U	9.4	1	9/17/09	9/21/09 18:50		171359	
Benzo(g,h,i)perylene	9,4	U	9.4	1	9/17/09	9/21/09 18:50		171359	
Benzo(k)fluoranthene	9.4	U	9.4	1	9/17/09	9/21/09 18:50		171359	
Benzyl Alcohol	9.4	U	9,4	1	9/17/09	9/21/09 18:50	96208	171359	
2,2'-Oxybis(1-chloropropane)	9.4	U	9.4	1	9/17/09	9/21/09 18:50		171359	
Bis(2-chloroethoxy)methane	9.4		9.4	1	9/17/09	9/21/09 18:50		171359	
Bis(2-chloroethyl) Ether	9.4		9.4	1	9/17/09	9/21/09 18:50	96208	171359	
Bis(2-ethylhexyl) Phthalate	9.4	U	9.4	1	9/17/09	9/21/09 18:50		171359	
Butyl Benzyl Phthalate	9,4		9,4	1	9/17/09	9/21/09 18:50		171359	
Carbazole	9.4		9.4	1	9/17/09	9/21/09 18:50	96208	171359	
Chrysene	9.4	[]	9,4	1	9/17/09	9/21/09 18:50		171359	
Di-n-butyl Phthalate	9.4		9.4	1	9/17/09	9/21/09 18:50		171359	
Di-n-octyl Phthalate		U	9.4	1	9/17/09	9/21/09 18:50	96208	171359	
Dibenz(a,h)anthracene	9.4	11	9.4	1	9/17/09	9/21/09 18:50		171359	
Dibenzofuran		Ü	9.4	1	9/17/09	9/21/09 18:50		171359	
Diethyl Phthalate		Ū	9.4	1	9/17/09	9/21/09 18:50	96208	171359	
Dimethyl Phthalate	9.4	U	9.4	1	9/17/09	9/21/09 18:50		171359	
Fluoranthene		Ū	9.4	1	9/17/09	9/21/09 18:50		171359	
Fluorene		Ŭ	9.4	1	9/17/09	9/21/09 18:50	96208	171359	
Hexachlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 18:50		171359	
Hexachlorobutadiene		Ū	9.4	1	9/17/09	9/21/09 18:50		171359	
Hexachlorocyclopentadiene		Ü	9.4	1	9/17/09	9/21/09 18:50	96208	171359	· · · · · · · · · · · · · · · · · · ·
Hexachloroethane		U	9.4	1	9/17/09	9/21/09 18:50		171359	
Indeno(1,2,3-cd)pyrene		Ŭ	9.4	1	9/17/09	9/21/09 18:50		171359	
Isophorone		Ū	9.4	1	9/17/09	9/21/09 18:50	96208	171359	
N-Nitrosodi-n-propylamine		U	9.4	1	9/17/09	9/21/09 18:50	96208	171359	
N-Nitrosodi-n-propyramine N-Nitrosodimethylamine		Ū	9.4	1	9/17/09	9/21/09 18:50		171359	
N-Nitrosodiphenylamine		Ū	9.4	1	9/17/09	9/21/09 18:50	96208	171359	
Naphthalene		U	9.4	1	9/17/09	9/21/09 18:50	96208	171359	
Nitrobenzene		U	9.4	1	9/17/09	9/21/09 18:50		171359	
Pentachlorophenol (PCP)		7 Ü	47	1	9/17/09	9/21/09 18:50	96208	171359	
Phenanthrene		U	9.4	1	9/17/09	9/21/09 18:50	96208	171359	;

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix: Sample Name: Water MW 12D

Lab Code:

R0905245-008

Service Request: R0905245

Date Collected: 9/14/09 1700

Date Received: 9/15/09

Units: µg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C Prep Method: EPA 3510C

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted		Extraction Lot	Analysi Lot	Note
Phenol Pyrene	9,4 U 9,4 U	9,4 9,4	1		9/21/09 18:50 9/21/09 18:50		171359 171359	

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	Note	
2,4,6-Tribromophenol	95	46-134	9/21/09 18:50		
2-Fluorobiphenyl	81	46-110	9/21/09 18:50		
2-Fluorophenol	44	12-84	9/21/09 18:50		
Nitrobenzene-d5	82	44-117	9/21/09 18:50		
Phenol-d6	27	10-70	9/21/09 18:50		
p-Terphenyl-d14	98	40-133	9/21/09 18:50		

Comments:	

Analytical Report

Client: Project: Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 13M R0905245-009 Service Request: R0905245

Date Collected: 9/14/09 1915

Date Received: 9/15/09

Basis: NA

Oil and Greasc, HEM Silica Gel Treated

Analyte Name	Method	Result	Q	Units	MRL	Dilution Factor		Date Analyzed
Oil and Grease, Nonpolar (SGT-HEM)	1664	4.7	U	mg/L	4.7	1	NA	9/24/09 07:30

Comments:

Printed 10/6/09 13:09
\tinflow2\Starlims\LimsReps\AnalyticalReport rpt

Form 1A

SuperSet Reference:

09-0000121449 rev 00

00052

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 13M R0905245-009 Service Request: R0905245

Date Collected: 9/14/09 1915

Date Received: 9/15/09

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Publicu -	ate lyzed
Arsenic, Dissolved	6010B	0.010 U	mg/L	0.010	1 7/24/07 11-11-	9 19:02
Lead, Dissolved	6010B	0.0050 U	mg/L	0.0050		9 19:02

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd #2011-100

Sample Matrix: Water

Sample Name: MW 13M Lab Code: R0905245-009 Service Request: R0905245

Date Collected: 9/14/09 1915

Date Received: 9/15/09

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

	- ·	_	***	Dilution Factor	Date Extracted	Date Analyzed	Extraction . Lot		s Note
Analyte Name	Result	Q	MRL	Factor					
Acetone	20	Ū	20	1	NA	9/23/09 17:35		171600	
Benzene	5.0	U	5.0	1	NA	9/23/09 17:35		171600	
Bromodichloromethane	5.0	U	5.0	1	NA	9/23/09 17:35		171600	
Bromoform	5.0	U	5.0	I	NA	9/23/09 17:35		171600	
Bromomethane	5,0	U	5.0	l	NA	9/23/09 17:35		171600	
2-Butanone (MEK)	10	U	10	1	NA	9/23/09 17:35		171600	
Carbon Disulfide	10	U	10	1	NA	9/23/09 17:35		171600	
Carbon Tetrachloride	5.0	U	5.0	1	NA	9/23/09 17:35		171600	
Chlorobenzene	5.0	U	5.0	1	NA	9/23/09 17:35		171600	
Chloroethane	5.0	U	5.0	1	NA	9/23/09 17:35		171600	
Chloroform	5,0		5.0	1	NA	9/23/09 17:35		171600	
Chloromethane	5.0		5.0	1	NA	9/23/09 17:35		171600	
Dibromochloromethane	5.0	IJ	5,0	I	NA	9/23/09 17:35		171600	
1,1-Dichloroethane	5.0		5.0	I	NA	9/23/09 17:35		171600	
1,2-Dichloroethane	5,0		5.0	1	NA	9/23/09 17:35		171600	
1,1-Dichloroethene	5.0	U	5.0	1	NA	9/23/09 17:35		171600	
cis-1,2-Dichloroethene	5.0		5,0	1	NA	9/23/09 17:35		171600	
trans-1,2-Dichloroethene	5.0		5.0	1	NA	9/23/09 17:35		171600	
1,2-Dichloropropane	5.0	U	5.0	1	NA	9/23/09 17:35		171600	
cis-1,3-Dichloropropene	5.0		5.0	1	NA	9/23/09 17:35		171600	
trans-1,3-Dichloropropene	5.0	U	5,0	1	NA	9/23/09 17:35		171600	
Ethylbenzene	5.0	U	5.0	1	NA	9/23/09 17:35		171600	
2-Hexanone		Ū	10	1	NA	9/23/09 17:35	-	171600	
Methylene Chloride		U	5.0	1	NA	9/23/09 17:35		171600	
4-Methyl-2-pentanone (MIBK)	10	U	10	1	NA	9/23/09 17:35		171600	
Styrene		U	5.0	1	NA	9/23/09 17:35		171600	
1,1,2,2-Tetrachloroethane		U	5,0	1	NA	9/23/09 17:35		171600	
Tetrachloroethene	5.0	U	5.0	1	NA	9/23/09 17:35		171600	
Toluene		Ū	5.0	1	NA	9/23/09 17:35		171600	
1,1,1-Trichloroethane		Ū	5.0	1	NA	9/23/09 17:35		171600	
1,1,2-Trichloroethane	5.0	U	5.0	1	NĀ	9/23/09 17:35		171600	
Trichloroethene		Ū	5.0	1	NA	9/23/09 17:35		171600	
Vinyl Chloride		U	5.0	1	NA	9/23/09 17:35		171600	

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 13M R0905245-009 Service Request: R0905245

Date Collected: 9/14/09 1915
Date Received: 9/15/09

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted		Extraction Lot	1 Analysis Lot Note
o-Xylene m,p-Xylenes	5.0 U 5.0 U	5,0 5.0	1	NA NA	9/23/09 17:35 9/23/09 17:35		171600 171600

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	Note
4-Bromofluorobenzene	107	85-122	9/23/09 17:35	
Toluene-d8	101	87-121	9/23/09 17:35	
Dibromofluoromethane	113	89-119	9/23/09 17:35	

Comments:

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 13M R0905245-009 Service Request: R0905245
Date Collected: 9/14/09 1915

Date Received: 9/15/09

Units: μg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C Prep Method: EPA 3510C

Trep literature Divisorio				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Let	Lot Note
1,2,4-Trichlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 19:30		171359
1,2-Dichlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 19:30		171359
1,3-Dichlorobenzene	9,4		9.4	1	9/17/09	9/21/09 19:30		171359
1,4-Dichlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 19:30		171359
2.4,5-Trichlorophenol	9.4	U	9.4	1	9/17/09	9/21/09 19:30		171359
2,4,6-Trichlorophenol	9.4	U	9.4	I	9/17/09	9/21/09 19:30		171359
2,4-Dichlorophenol	9.4	U	9.4	1	9/17/09	9/21/09 19:30		171359
2,4-Dimethylphenol	9.4	U	9.4	I	9/17/09	9/21/09 19:30		171359
2,4-Dinitrophenol	47	U	47	1	9/17/09	9/21/09 19:30		171359
2,4-Dinitrotoluene	9.4	U	9,4	1	9/17/09	9/21/09 19:30		171359
2,6-Dinitrotoluene	9,4	U	9,4	1	9/17/09	9/21/09 19:30		171359
2-Chloronaphthalene	9,4	U	9,4	1	9/17/09	9/21/09 19:30		171359
2-Chlorophenol	9.4	U	9.4	1	9/17/09	9/21/09 19:30		171359
2-Methylnaphthalene		U	9.4	1	9/17/09	9/21/09 19:30		171359
2-Methylphenol	9.4	U	9.4	1	9/17/09	9/21/09 19:30		171359
2-Nitroaniline	47	U	47	1	9/17/09	9/21/09 19:30		171359
2-Nitrophenol	9.4	U	9.4	1	9/17/09	9/21/09 19:30		171359
3,3'-Dichlorobenzidine	9.4	U	9.4	1	9/17/09	9/21/09 19:30		171359
3- and 4-Methylphenol Coelution	9,4	U	9.4	1	9/17/09	9/21/09 19:30		171359
3-Nitroaniline		U	47	1	9/17/09	9/21/09 19:30		171359 171359
4,6-Dinitro-2-methylphenol	47	U	47	1	9/17/09	9/21/09 19:30		
4-Bromophenyl Phenyl Ether	9.4	U	9.4	1	9/17/09	9/21/09 19:30		171359
4-Chloro-3-methylphenol	9,4	U	9.4	1	9/17/09	9/21/09 19:30		171359
4-Chloroaniline	9.4	U	9.4	1	9/17/09	9/21/09 19:30		171359
4-Chlorophenyl Phenyl Ether	9.4	U	9.4	1	9/17/09	9/21/09 19:30		171359
4-Nitroaniline	47	7 U	47	1	9/17/09	9/21/09 19:30		171359
4-Nitrophenol	47	U	47	1	9/17/09	9/21/09 19:30		171359
Acenaphthene	9.4	U	9.4	1	9/17/09	9/21/09 19:30		171359
Acenaphthylene	9.4	U	9.4	1	9/17/09	9/21/09 19:30		171359
Anthracene	9,4	I U	9.4	1	9/17/09	9/21/09 19:30		171359
Benz(a)anthracene	9.4	U	9.4	1	9/17/09	9/21/09 19:30		171359
Benzo(a)pyrene	9.4	U	9.4	1	9/17/09	9/21/09 19:30	96208	171359

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd #2011-100

Sample Matrix: Water

MW 13M Sample Name: Lab Code: R0905245-009 Service Request: R0905245 Date Collected: 9/14/09 1915 Date Received: 9/15/09

> Units: µg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C EPA 3510C Prep Method:

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot Note
Benzo(b)fluoranthene	9.4	U	9.4	I	9/17/09	9/21/09 19:30	96208	171359
Benzo(g,h,i)perylene	9.4	U	9,4	1	9/17/09	9/21/09 19:30		171359
Benzo(k)fluoranthene	9.4	U	9.4	1	9/17/09	9/21/09 19:30		171359
Benzyl Alcohol	9.4	U	9,4	1	9/17/09	9/21/09 19:30	96208	171359
2,2'-Oxybis(1-chloropropane)	9,4	U	9.4	1	9/17/09	9/21/09 19:30		171359
Bis(2-chloroethoxy)methane	9.4	U	9.4	1	9/17/09	9/21/09 19:30		171359
Bis(2-chloroethyl) Ether	9.4	U	9.4	1	9/17/09	9/21/09 19:30	96208	171359
Bis(2-ethylhexyl) Phthalate	9.4	U	9.4	1	9/17/09	9/21/09 19:30		171359
Butyl Benzyl Phthalate	9,4	U	9.4	i	9/17/09	9/21/09 19:30		171359
Carbazole	9.4	U	9.4	1	9/17/09	9/21/09 19:30	96208	171359
Chrysene	9.4	U	9,4	1	9/17/09	9/21/09 19:30		171359
Di-n-butyl Phthalate	9.4	U	9.4	1	9/17/09	9/21/09 19:30		171359
Di-n-octyl Phthalate	9.4	U	9.4	1	9/17/09	9/21/09 19:30	96208	171359
Dibenz(a,h)anthracene	9,4	U	9.4	1	9/17/09	9/21/09 19:30		171359
Dibenzofuran	9.4	U	9.4	1	9/17/09	9/21/09 19:30		171359
Diethyl Phthalate	9.4	U	9.4	1	9/17/09	9/21/09 19:30	96208	171359
Dimethyl Phthalate	9.4	U	9.4	1	9/17/09	9/21/09 19:30		171359
Fluoranthene	9.4	U	9.4	1	9/17/09	9/21/09 19:30		171359
Fluorene	9.4	U	9.4	l	9/17/09	9/21/09 19:30	96208	171359
Hexachlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 19:30		171359
Hexachlorobutadiene	9.4	U	9.4	1	••-	9/21/09 19:30		171359
Hexachlorocyclopentadiene	9.4	U	9.4	1	9/17/09	9/21/09 19:30		171359
Hexachloroethane	9.4	U	9.4	1		9/21/09 19:30		171359
Indeno(1,2,3-cd)pyrene	9.4	U	9,4	1		9/21/09 19:30		171359
Isophorone	9.4	U	9.4	1	9/17/09	9/21/09 19:30	96208	171359
N-Nitrosodi-n-propylamine	9.4	Ŭ	9,4	1	9/17/09	9/21/09 19:30		171359
N-Nitrosodimethylamine	9.4	U	9.4	1		9/21/09 19:30		171359
N-Nitrosodiphenylamine	9,4	U	9.4	1	9/17/09	9/21/09 19:30	96208	171359
Naphthalene	9.4	U	9.4	1		9/21/09 19:30		171359
Nitrobenzene	9.4	U	9.4	1		9/21/09 19:30		171359
Pentachlorophenol (PCP)	47	Ų	47	1	9/17/09	9/21/09 19:30		171359
Phenanthrene	9.4	U	9.4	1	9/17/09	9/21/09 19:30	96208	171359

Comments:

Printed 10/6/09 13:09 Wnflow2\Starlims\LimsReps\AnalyticalReport.rpt Form 1A

SuperSet Reference:

09-0000121449 rev 00

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 13M R0905245-009 Service Request: R0905245 Date Collected: 9/14/09 1915

Date Received: 9/15/09

Units: µg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C

EPA 3510C Prep Method:

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted		Extraction Lot	Analysi Lot	s Note
Phenol	9.4 U	9.4	1	• • • • • •	9/21/09 19:30		171359	
Pyrene	9.4 U	9.4	1	9/17/09	9/21/09 19:30	96208	171359	

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	Note	
2,4,6-Tribromophenol	91	46-134	9/21/09 19:30		
2-Fluorobiphenyl	76	46-110	9/21/09 19:30		
2-Fluorophenol	43	12-84	9/21/09 19:30		
Nitrobenzene-d5	78	44-117	9/21/09 19:30		
Phenol-d6	28	10-70	9/21/09 19:30		
p-Terphenyl-d14	94	40-133	9/21/09 19:30		

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 13S R0905245-010 Service Request: R0905245

Date Collected: 9/14/09 1930

Date Received: 9/15/09

Basis: NA

Oil and Grease, HEM Silica Gel Treated

Analyte Name	Method	Result	Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed
Oil and Grease, Nonpolar (SGT-HEM)	1664	4.8	U	mg/L	4.8	1 NA 9/24/09 07:30

Comments:	

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 13S

Service Request: R0905245

Date Collected: 9/14/09 1930

Date Received: 9/15/09

Basis: NA

R0905245-010

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed
Arsenic, Dissolved	6010B	0,010 U	mg/L	0.010	1 9/22/09 9/24/09 19:20
Lead, Dissolved	6010B	0.0050 U	mg/L	0.0050	1 9/22/09 9/24/09 19:20

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 13S R0905245-010 Service Request: R0905245

Date Collected: 9/14/09 1930

Date Received: 9/15/09

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction . Lot		s Note
Acetone	20	U	20	1	NA	9/23/09 18:03		171600	
Benzene	5.0	U	5.0	I	NA	9/23/09 18:03		171600	
Bromodichloromethane	5.0	U	5.0	1	NA	9/23/09 18:03		171600	
Bromoform	5,0	U	5.0	1	NA	9/23/09 18:03		171600	
Bromomethane	5.0	U	5.0	1	NA	9/23/09 18:03		171600	
2-Butanone (MEK)	10	U	10	1	NA	9/23/09 18:03		171600	
Carbon Disulfide	10	U	10	1	NA	9/23/09 18:03		171600	
Carbon Tetrachloride	5,0	U	5.0	1	NA	9/23/09 18:03		171600	
Chlorobenzene	5,0	U	5.0	1	NA	9/23/09 18:03	· · · · · · · · · · · · · · · · · · ·	171600	
Chloroethane	5.0	U	5,0	1	NA	9/23/09 18:03		171600	
Chloroform	5.0		5.0	1	NA	9/23/09 18:03		171600	
Chloromethane	5.0		5.0	1	NA	9/23/09 18:03		171600	
Dibromochloromethane	5.0	U	5,0	1	NA	9/23/09 18:03		171600	
1,1-Dichloroethane	5,0		5.0	1	NA	9/23/09 18:03		171600	
1,2-Dichloroethane		U	5.0	1	NA	9/23/09 18:03		171600	
1,1-Dichloroethene	5.0	U	5,0	1	NA	9/23/09 18:03		171600	
cis-1,2-Dichloroethene		U	5.0	1	NA	9/23/09 18:03		171600	
trans-1,2-Dichloroethene		U	5.0	1	NA	9/23/09 18:03		171600	
1,2-Dichloropropane	5.0	U	5.0	1	NA	9/23/09 18:03		171600	
cis-1,3-Dichloropropeпе	5,0	U	5.0	I	NA	9/23/09 18:03		171600	
trans-1,3-Dichloropropene	5.0	U	5.0	l	NA	9/23/09 18:03		171600	
Ethylbenzene	5.0	Ū	5.0	1	NA	9/23/09 18:03		171600	
2-Hexanone	10	U	10	1	NA	9/23/09 18:03		171600	
Methylene Chloride	5.0	U	5.0	1	NA	9/23/09 18:03		171600	
4-Methyl-2-pentanone (MIBK)	10	U	10	1	NA	9/23/09 18:03		171600	
Styrene		U	5.0	1	NA	9/23/09 18:03		171600	
1,1,2,2-Tetrachloroethane		U	5.0	1	NA	9/23/09 18:03		171600	
Tetrachloroethene	5.0) U	5.0	1	NA	9/23/09 18:03		171600	
Toluene	5,0	U	5.0	1	NA	9/23/09 18:03	}	171600	
1,1,1-Trichloroethane		U	5.0	1	NA	9/23/09 18:03		171600	
1,1,2-Trichloroethane	5.0) U	5.0	1	NA	9/23/09 18:03		171600	
Trichloroethene		Ū	5.0	1	NA	9/23/09 18:03		171600	
Vinyl Chloride	5.0) U	5.0	1	NA	9/23/09 18:03		171600)

Form 1A

Comments:	

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 13S R0905245-010 Service Request: R0905245

Date Collected: 9/14/09 1930

Date Received: 9/15/09

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL		Dilution Factor	Date Extracted	Date I Analyzed	Extraction Lot	Analysi Lot	s Note
o-Xylene	5.0 U	5.0		1	NA	9/23/09 18:03	3	171600	
m,p-Xylenes	5.0 U	5.0		1	NA	9/23/09 18:03	3	171600	
Surrogate Name		%Rec	Control Limits		Date nalyzed	Q Note			
4-Bromofluorobenzenc		107	85-122	9/23/	09 18:03				
Toluene-d8		102	87-121	9/23/	09 18:03				
Dibromofluoromethane		110	89-119	9/23/	09 18:03				

Comments:		

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 13S R0905245-010 Service Request: R0905245

Date Collected: 9/14/09 1930

Date Received: 9/15/09

Units: μg/L Basis: NA

Extraction Analysis

Semivolatile Organic Compounds by GC/MS

Dilution

Data

Date

Analytical Method: 8270C Prep Method: EPA 3510C

				Dilution	Date	Date	Extraction	-	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot		Note
1,2,4-Trichlorobenzene	9.4	Ü	9.4	1	9/17/09	9/21/09 20:10		171359	_
1,2-Dichlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
1,3-Dichlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 20:10	96208	171359	
1,4-Dichlorobenzene	9.4	U	9,4	1	9/17/09	9/21/09 20:10		171359	
2,4,5-Trichlorophenol	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
2,4,6-Trichlorophenol	9.4	U	9.4	1	9/17/09	9/21/09 20:10	96208	171359	
2,4-Dichlorophenol	9.4		9.4	1	9/17/09	9/21/09 20:10		171359	
2,4-Dimethylphenol	9.4	U	9.4	I	9/17/09	9/21/09 20:10		171359	
2,4-Dinitrophenol	47	U	47	1	9/17/09	9/21/09 20:10		171359	
2,4-Dinitrotoluene	9.4	U	9.4	I	9/17/09	9/21/09 20:10		171359	
2,6-Dinitrotoluene	9.4	U	9.4	I	9/17/09	9/21/09 20:10		171359	
2-Chloronaphthalene	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
2-Chlorophenol	9.4	U	9,4	1	9/17/09	9/21/09 20:10		171359	
2-Methylnaphthalene	9.4		9.4	1	9/17/09	9/21/09 20:10		171359	
2-Methylphenoi	9.4		9.4	1	9/17/09	9/21/09 20:10	96208	171359	
2-Nitroaniline	47	U	47	1	9/17/09	9/21/09 20:10		171359	
2-Nitrophenol	9,4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
3,3'-Dichlorobenzidine	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
3- and 4-Methylphenol Coelution		U	9.4	1	9/17/09	9/21/09 20:10		171359	
3-Nitroaniline	47	U	47	ì	9/17/09	9/21/09 20:10		171359	
4,6-Dinitro-2-methylphenol	47	U	47	1	9/17/09	9/21/09 20:10		171359	
4-Bromophenyl Phenyl Ether	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
4-Chloro-3-methylphenol	9.4	U	9.4]	9/17/09	9/21/09 20:10		171359	
4-Chloroaniline		U	9.4	1	9/17/09	9/21/09 20:10	96208	171359	
4-Chlorophenyl Phenyl Ether	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
4-Nitroaniline	47	U	47	1	9/17/09	9/21/09 20:10		171359	
4-Nitrophenol	47	U	47	1	9/17/09	9/21/09 20:10	96208	171359	
Acenaphthene		U	9.4	1	9/17/09	9/21/09 20:10	96208	171359	
Acenaphthylene	9.4	U	9.4	1	9/17/09	9/21/09 20:10	96208	171359	
Anthracene	9.4	U	9.4	I	····	9/21/09 20:10	96208	171359	
Benz(a)anthracene	9,4	U	9,4	1		9/21/09 20:10	96208	171359	
Benzo(a)pyrene		U	9.4	1	9/17/09	9/21/09 20:10	96208	171359	

Comments:

Printed 10/6/09 13:09
\Unflow2\Starlims\LimsReps\AnalyticalReport.rpt

Form 1A

SuperSet Reference:

09-0000121449 rev 00

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 13S R0905245-010 Service Request: R0905245 Date Collected: 9/14/09 1930

Date Received: 9/15/09

Units: µg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C **EPA 3510C** Prep Method:

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot		s Note
Benzo(b)fluoranthene	9.4	U	9,4	1	9/17/09	9/21/09 20:10	96208	171359	
Benzo(g,h,i)perylene	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
Benzo(k)fluoranthene	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
Benzyl Alcohol	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
2,2'-Oxybis(1-chloropropane)	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
Bis(2-chloroethoxy)methane	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
Bis(2-chloroethyl) Ether	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
Bis(2-ethylhexyl) Phthalate	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
Butyl Benzyl Phthalate	9.4	U	9,4	1	9/17/09	9/21/09 20:10		171359	
Carbazole	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
Chrysene	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
Di-n-butyl Phthalate	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
Di-n-octyl Phthalate	9.4		9.4	1	9/17/09	9/21/09 20:10	96208	171359	
Dibenz(a,h)anthracene	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
Dibenzofuran	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
Diethyl Phthalate	9.4		9.4	1	9/17/09	9/21/09 20:10		171359	
Dimethyl Phthalate	9.4	U	9,4	1	9/17/09	9/21/09 20:10		171359	
Fluoranthene	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
Fluorene	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
Hexachlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
Hexachlorobutadiene	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
Hexachlorocyclopentadiene	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
Hexachloroethane	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
Indeno(1,2,3-cd)pyrene	9,4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
Isophorone	9,4	U	9,4	1	9/17/09	9/21/09 20:10	96208	171359	
N-Nitrosodi-n-propylamine	9,4	U	9,4	1	9/17/09	9/21/09 20:10		171359	
N-Nitrosodimethylamine	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
N-Nitrosodiphenylamine	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
Naphthalene	9.4	U	9,4	1	9/17/09	9/21/09 20:10		171359	
Nitrobenzene	9.4	U	9.4	1	9/17/09	9/21/09 20:10		171359	
Pentachlorophenol (PCP)		' U	47	1	9/17/09	9/21/09 20:10		171359	
Phenanthrene	9.4	U	9.4	1	9/17/09	9/21/09 20:10	96208	171359	

Comments:

Printed 10/6/09 13:09

\\Inflow2\Starlims\LimsReps\AnalyticalReport.rpt

Form 1A

SuperSet Reference:

09-0000121449 rev 00

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 13S R0905245-010

Service Request: R0905245

Date Collected: 9/14/09 1930 Date Received: 9/15/09

> Units: µg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C Prep Method: EPA 3510C

			Dilution	Date	Date	Extraction	ı Analysis
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Lot Note
Phenol	9.4 U	9.4	1		9/21/09 20:10		
Pyrene	9.4 U	9.4	1	9/17/09	9/21/09 20:10	96208	171359

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	Note	
2,4,6-Tribromophenol	97	46-134	9/21/09 20:10			
2-Fluorobiphenyl	85	46-110	9/21/09 20:10			
2-Fhiorophenol	49	12-84	9/21/09 20:10			
Nitrobenzene-d5	85	44-117	9/21/09 20:10			
Phenol-d6	31	10-70	9/21/09 20:10			
p-Terphenyl-d14	93	40-133	9/21/09 20:10			

_	
Comments:	

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 14S R0905245-011 Service Request: R0905245 Date Collected: 9/14/09 1820

Date Received: 9/15/09

Basis: NA

Oil and Grease, HEM Silica Gel Treated

Analyte Name	Method	Result	Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed
Oil and Grease, Nonpolar (SGT-HEM)	1664	4.7	U	mg/L	4.7	1 NA 9/24/09 07:30

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 14S

R0905245-011

Service Request: R0905245

Date Collected: 9/14/09 1820

Date Received: 9/15/09

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed
Arsenic, Dissolved	6010B	0.010 U	mg/L	0,010	1 9/22/09 9/24/09 19:26
Lead, Dissolved	6010B	0.0050 U	mg/L	0.0050	1 9/22/09 9/24/09 19:26

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd #2011-100

Sample Matrix: Water

Sample Name: MW 14S Lab Code: R0905245-011 Service Request: R0905245

Date Collected: 9/14/09 1820

Date Received: 9/15/09

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot Note
Acetone	20	U	20	1	NA	9/23/09 18:31	
Benzene	5.0	U	5,0	1	NA	9/23/09 18:31	
Bromodichloromethane	5.0	U	5.0	1	NA	9/23/09 18:31	
Bromoform	5.0	U	5.0	1	NA	9/23/09 18:31	
Bromomethane	5.0	U	5.0	1	NA.	9/23/09 18:31	
2-Butanone (MEK)	10	U	10	<u> </u>	NA	9/23/09 18:31	
Carbon Disulfide	10	U	10	1	NA	9/23/09 18:31	
Carbon Tetrachloride	5,0	U	5.0	1	NA	9/23/09 18:31	
Chlorobenzene	5.0	U	5.0	1	NA	9/23/09 18:31	171600
Chloroethane	5,0	U	5.0	1	NA	9/23/09 18:31	
Chloroform	5.0	U	5.0	1	NA	9/23/09 18:31	
Chloromethane	5.0	U	5,0	1	NA	9/23/09 18:31	
Dibromochloromethane	5,0	U	5.0	1	NA	9/23/09 18:31	
1,1-Dichloroethane	5.0	U	5,0	1	NA	9/23/09 18:31	
1,2-Dichloroethane	5.0	U	5.0	1	NA	9/23/09 18:31	171600
1,1-Dichloroethene	5.0	U	5.0	l	NA	9/23/09 18:31	
cis-1,2-Dichloroethene	5.0	U	5.0	1	NA	9/23/09 18:31	
trans-1,2-Dichloroethene	5.0	U	5.0	1	NA	9/23/09 18:31	171600
1,2-Dichloropropane	5,0	U	5.0	l	NA	9/23/09 18:31	
cis-1,3-Dichloropropene	5.0	U	5.0	1	NA	9/23/09 18:31	
trans-1,3-Dichloropropene	5.0	U	5.0	1	NA	9/23/09 18:31	
Ethylbenzene	5.0	U	5.0	1		9/23/09 18:31	
2-Hexanone	10	U	10	1	NA	9/23/09 18:31	
Methylene Chloride	5.0	U	5.0	1	NA	9/23/09 18:31	
4-Methyl-2-pentanone (MIBK)	10	U	10	1	NA	9/23/09 18:31	
Styrene	5.0	U	5.0	1	NA	9/23/09 18:31	
1,1,2,2-Tetrachloroethane	5.0	U	5.0	1	NA	9/23/09 18:31	171600
Tetrachloroethene	5.0	U	5.0	1	NA	9/23/09 18:31	
Toluene	5.0	U	5.0	1		9/23/09 18:31	
1,1,1-Trichloroethane	5.0	U	5.0	1	NA	9/23/09 18:31	171600
1,1,2-Trichloroethane	5.0	U	5.0	1	-	9/23/09 18:31	
Trichloroethene	5.0		5.0	1	*	9/23/09 18:31	171600
Vinyl Chloride	5.0	U	5.0	1	NA	9/23/09 18:31	171600

Comments:

Printed 10/6/09 13:09
\\Inflow2\Starlims\LimsReps\AnalyticalReport.tpt

Form 1A

SuperSet Reference:

09-0000121449 rev 00

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 14S R0905245-011 Service Request: R0905245 Date Collected: 9/14/09 1820

Date Received: 9/15/09

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

			Dilution	Date	Date	Extraction	action Analysis				
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Lot	Note			
o-Xylene	5,0 U	5.0	1	NA	9/23/09 18:31		171600				
m,p-Xylenes	5.0 U	5.0	1	NA	9/23/09 18:31	1	171600				

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	Note
4-Bromofluorobenzene	108	85-122	9/23/09 18:31	
Toluene-d8	102	87-121	9/23/09 18:31	
Dibromofluoromethane	112	89-119	9/23/09 18:31	

Comments:	
-----------	--

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd #2011-100

Sample Matrix: Water
Sample Name: MW 14S
Lab Code: R0905245-011

Service Request: R0905245

Date Collected: 9/14/09 1820
Date Received: 9/15/09

Units: µg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C Prep Method: EPA 3510C

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Analyzed	Extraction Lot	Lot	Note
1,2,4-Trichlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 20:50		171359	
1,2-Dichlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 20:50		171359	
1,3-Dichlorobenzene	9.4	U	9,4	<u>i</u>	9/17/09	9/21/09 20:50		171359	
1,4-Dichlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 20:50		171359	
2,4,5-Trichlorophenol	9.4		9.4	1	9/17/09	9/21/09 20:50		171359	
2,4,6-Trichlorophenol	9.4	U	9,4	1	9/17/09	9/21/09 20:50		171359	
2,4-Dichlorophenol	9.4	U	9.4	1	9/17/09	9/21/09 20:50		171359	
2,4-Dimethylphenol	9.4	U	9.4	1	9/17/09	9/21/09 20:50		171359	
2,4-Dinitrophenol	47	U	47	1	9/17/09	9/21/09 20:50		171359	
2,4-Dinitrotoluene	9.4	U	9.4	1	9/17/09	9/21/09 20:50		171359	
2.6-Dinitrotoluene	9.4		9.4	1	9/17/09	9/21/09 20:50		171359	
2-Chloronaphthalene	9.4		9.4	1	9/17/09	9/21/09 20:50	96208	171359	
2-Chlorophenol	9.4	U	9.4	1	9/17/09	9/21/09 20:50		171359	
2-Methylnaphthalene	9.4		9.4	1	9/17/09	9/21/09 20:50		171359	
2-Methylphenol	9,4		9.4	1	9/17/09	9/21/09 20:50	96208	171359	
2-Nitroaniline	47	Ü	47	1	9/17/09	9/21/09 20:50		171359	
2-Nitrophenol	9.4	U	9.4	1	9/17/09	9/21/09 20:50		171359	
3,3'-Dichlorobenzidine	9.4		9.4	1	9/17/09	9/21/09 20:50		171359	
3- and 4-Methylphenol Coelution	9,4	U	9.4	1	9/17/09	9/21/09 20:50		171359	
3-Nitroaniline	47	IJ	47	1	9/17/09	9/21/09 20:50		171359	
4,6-Dinitro-2-methylphenol	47	U	47	1	9/17/09	9/21/09 20:50		171359	
4-Bromophenyl Phenyl Ether	9.4	U	9.4	1	9/17/09	9/21/09 20:50		171359	
4-Chloro-3-methylphenol	9.4	U	9.4	1	9/17/09	9/21/09 20:50		171359	
4-Chloroaniline	9.4	U	9.4	1	9/17/09	9/21/09 20:50		171359	
4-Chlorophenyl Phenyl Ether	9.4	U	9.4	1	9/17/09	9/21/09 20:50		171359	
4-Nitroaniline	47	U	47	1	9/17/09	9/21/09 20:50		171359	
4-Nitrophenol	47	U	47	1	9/17/09	9/21/09 20:50		171359	
Acenaphthene	9.4	U	9.4	1	9/17/09	9/21/09 20:50		171359	
Acenaphthylene	9.4	U	9.4	1	9/17/09	9/21/09 20:50		171359	
Anthracene		U	9.4	1	9/17/09	9/21/09 20:50		171359	
Benz(a)anthracene	9.4	U	9.4	1	9/17/09	9/21/09 20:50		171359	
Benzo(a)pyrene	9.4	U	9.4	1	9/17/09	9/21/09 20:50	96208	171359	r

Comments:

Printed 10/6/09 13:09
\text{\tinz}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\texi}\text{\text{\texitiex{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texit{\te

Form 1A

SuperSet Reference:

09-0000121449 rev 00

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: MW 14S R0905245-011 Service Request: R0905245

Date Collected: 9/14/09 1820

Date Received: 9/15/09

Units: µg/L Basis: NA

Extraction Analysis

Semivolatile Organic Compounds by GC/MS

Dibation

Data

Date

Analytical Method: 8270C Prep Method: EPA 3510C

				Dilution	Date	Date	Extraction	Lot Note	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot		
Benzo(b)fluoranthene	9,4	Ü	9.4	1	9/17/09	9/21/09 20:50	96208	171359	
Benzo(g,h,i)perylene	9.4	IJ	9.4	1	9/17/09	9/21/09 20:50		171359	
Benzo(k)fluoranthene	9,4		9.4	l	9/17/09	9/21/09 20:50		171359	
Benzyl Alcohol	9.4		9.4	1	9/17/09	9/21/09 20:50	96208	171359	
2,2'-Oxybis(1-chloropropane)	9.4	IJ	9.4	Ī	9/17/09	9/21/09 20:50		171359	
Bis(2-chloroethoxy)methane	9.4		9.4	I	9/17/09	9/21/09 20:50		171359	
Bis(2-chloroethyl) Ether	9.4		9.4	1	9/17/09	9/21/09 20:50		171359	
Bis(2-ethylhexyl) Phthalate	9.4	U	9.4	1	9/17/09	9/21/09 20:50		171359	
Butyl Benzyl Phthalate	9,4		9.4	1	9/17/09	9/21/09 20:50		171359	
Carbazole	9,4		9.4	1	9/17/09	9/21/09 20:50	96208	171359	
Chrysene	9.4	[]	9,4	1	9/17/09	9/21/09 20:50		171359	
Di-n-butyl Phthalate	9,4		9.4	1	9/17/09	9/21/09 20:50		171359	
Di-n-octyl Phthalate	9.4		9.4	1	9/17/09	9/21/09 20:50	96208	171359	
Dibenz(a,h)anthracene	9.4	U	9.4	1	9/17/09	9/21/09 20:50		171359	
Dibenzofuran		Ū	9.4	1	9/17/09	9/21/09 20:50		171359	
Diethyl Phthalate		Ŭ	9.4	1	9/17/09	9/21/09 20:50	96208	171359	
Dimethyl Phthalate	9.4	U	9.4	1	9/17/09	9/21/09 20:50		171359	
Fluoranthene	9.4		9,4	1	9/17/09	9/21/09 20:50		171359	
Fluorenc	9.4		9.4	1	9/17/09	9/21/09 20:50	96208	171359	
Hexachlorobenzene	9.4	U	9.4	1	9/17/09	9/21/09 20:50		171359	
Hexachlorobutadiene		U	9,4	1	9/17/09	9/21/09 20:50		171359	
Hexachlorocyclopentadiene		U	9.4	1	9/17/09	9/21/09 20:50		171359	
Hexachloroethane	9.4	U	9.4	1	9/17/09	9/21/09 20:50		171359	
Indeno(1,2,3-cd)pyrene	9.4	U	9.4	1	9/17/09	9/21/09 20:50		171359	
Isophorone		U	9.4	1	9/17/09	9/21/09 20:50	96208	171359	
N-Nitrosodi-n-propylamine	9.4	U	9.4	1	9/17/09	9/21/09 20:50		171359	
N-Nitrosodimethylamine		U	9.4	1	9/17/09	9/21/09 20:50		171359	
N-Nitrosodiphenylamine		U	9.4	1	9/17/09	9/21/09 20:50	96208	171359	
Naphthalene	9.4	U	9.4	1	9/17/09	9/21/09 20:50		171359	
Nitrobenzene		U	9.4		9/17/09	9/21/09 20:50		171359	
Pentachlorophenol (PCP)		Ü	47	1	9/17/09	9/21/09 20:50		171359	
Phenanthrene	9,4	U	9.4	l	9/17/09	9/21/09 20:50	96208	171359	

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

MW 14S R0905245-011 Service Request: R0905245

Date Collected: 9/14/09 1820 Date Received: 9/15/09

> Units: µg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C

Prep Method:

EPA 3510C

			Dilution	Date	Date	Extraction	n Analysi	is
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Lot	Note
Phenol	9,4 Ŭ	9.4	1	9/17/09	9/21/09 20:50	96208	171359	
Pyrene	9.4 U	9.4	1	9/17/09	9/21/09 20:50	96208	171359	!

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	Note	
2,4,6-Tribromophenol	96	46-134	9/21/09 20:50			
2-Fluorobiphenyl	81	46-110	9/21/09 20:50			
2-Fluorophenol	48	12-84	9/21/09 20:50			
Nitrobenzene-d5	81	44-117	9/21/09 20:50			
Phenol-d6	32	10-70	9/21/09 20:50			
p-Terphenyl-d14	98	40-133	9/21/09 20:50			

Comments:	

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Method Blank

R0905245-MB

Sample Matrix:

Water

Sample Name: Lab Code:

Service Request: R0905245

Date Collected: NA

Date Received: NA

Basis: NA

Oil and Grease, HEM Silica Gel Treated

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor E	Date Extracted	Date Analyzed
Oil and Grease, Nonpolar (SGT-HEM)	1664	5.0 U	mg/L	5.0	1	NA	9/24/09 07:30

Comments:	

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

Method Blank R0905245-MB1 Service Request: R0905245

Date Collected: NA Date Received: NA

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed
Arsenic, Dissolved	6010B	0.010 U	mg/L	0.010	1 9/22/09 9/24/09 16:59
Lead, Dissolved	6010B	0.0050 U	mg/L	0.0050	1 9/22/09 9/24/09 16:59

Comments:

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: Method Blank R0905245-MB2 Service Request: R0905245

Date Collected: NA
Date Received: NA

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed
Arsenic, Dissolved	6010B	0.010 U	mg/L	0.010	1 9/22/09 9/24/09 17:11
Lead, Dissolved	6010B	0.0050 U	mg/L	0.0050	1 9/22/09 9/24/09 17:11

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: Method Blank RQ0909006-01 Service Request: R0905245

Date Collected: NA
Date Received: NA

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction An Lot		s Note
	20 U	20	1	NA	9/23/09 12:49	17	600	
Acetone	5,0 U	5.0	1	NA	9/23/09 12:49		1600	
Benzene Bromodichloromethane	5.0 U	5.0	î	NA	9/23/09 12:49	17	1600	
		5.0	1	NA	9/23/09 12:49	17	1600	
Bromoform	5.0 U 5.0 U	5.0	1	NA	9/23/09 12:49		1600	
Bromomethane	3,0 U 10 U	10	1	NA	9/23/09 12:49		1600	
2-Butanone (MEK)				NA	9/23/09 12:49		1600	
Carbon Disulfide	10 U	10	1 1	NA NA	9/23/09 12:49		1600	
Carbon Tetrachloride	5.0 U	5.0 5.0	1	NA NA	9/23/09 12:49		1600	
Chlorobenzene	5.0 U						1600	
Chloroethane	5.0 U	5.0	1	NA	9/23/09 12:49		1600 1600	
Chloroform	5,0 U	5.0	1	NA	9/23/09 12:49 9/23/09 12:49		1600	
Chloromethane	5.0 U	5.0	1	NA				
Dibromochloromethane	5.0 U	5.0	1	NA	9/23/09 12:49		1600 1600	
1,1-Dichloroethane	5.0 U	5.0	1	NA	9/23/09 12:49		1600 1600	
1,2-Dichloroethane	5.0 U	5,0	1	NA	9/23/09 12:49			
1,1-Dichloroethene	5.0 U	5.0	1	NA	9/23/09 12:49		1600	
cis-1,2-Dichloroethene	5,0 U	5.0	1	NA	9/23/09 12:49		600	
trans-1,2-Dichloroethene	5.0 U	5,0	1	NA	9/23/09 12:49		1600	
1,2-Dichloropropane	5.0 U	5.0	1	NA	9/23/09 12:49		1600	
cis-1,3-Dichloropropene	5.0 U	5.0	1	NA	9/23/09 12:49		1600	
trans-1,3-Dichloropropene	5.0 U	5.0	1	NA	9/23/09 12:49	17	1600	<u>-</u>
Ethylbenzene	5.0 U	5,0	1	NA	9/23/09 12:49		1600	
2-Hexanone	10 U	10	1	NA	9/23/09 12:49		1600	
Methylene Chloride	5,0 U	5.0	1	NA	9/23/09 12:49	17	1600	· · · · · · · · · · · · · · · · · · ·
4-Methyl-2-pentanone (MIBK)	10 U	10	1	NA	9/23/09 12:49		1600	
Styrene	5.0 U	5.0	1	NA	9/23/09 12:49		1600	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	NA	9/23/09 12:49	17	1600	
Tetrachloroethene	5.0 U	5.0	1	NA	9/23/09 12:49		1600	
Toluene	5.0 U	5.0	1	NA	9/23/09 12:49		1600	
1,1,1-Trichloroethane	5.0 U	5.0	1	NA	9/23/09 12:49	17	1600	
	5.0 U	5.0	1	NA	9/23/09 12:49	17	1600	
1,1,2-Trichloroethane Trichloroethene	5.0 U	5.0	i	NA	9/23/09 12:49		1600	t
Vinyl Chloride	5.0 U	5.0	1	NA	9/23/09 12:49		1600	

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: Method Blank RQ0909006-01 Service Request: R0905245

Date Collected: NA
Date Received: NA

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted		Extraction Lot	Lot	Note
o-Xylene m,p-Xylenes	5.0 U 5.0 U	5,0 5.0	1 1	NA NA	9/23/09 12:49 9/23/09 12:49		171600 171600	

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	Note	
4-Bromofluorobenzene	108	85-122	9/23/09 12:49		
Toluene-d8	104	87-121	9/23/09 12:49		
Dibromofluoromethane	109	89-119	9/23/09 12:49		

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code:

Method Blank RQ0908726-01 Service Request: R0905245

Date Collected: NA
Date Received: NA

Units: μg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C Prep Method: EPA 3510C

тер линон.								
Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot Note
1,2,4-Trichlorobenzene	10	IJ	10	1	9/17/09	9/21/09 12:50	96208	171359
1,2-Dichlorobenzene	10		10	1	9/17/09	9/21/09 12:50	96208	171359
1,3-Dichlorobenzene	10		10	1	9/17/09	9/21/09 12:50	96208	171359
1,4-Dichlorobenzene	10	U	10	1	9/17/09	9/21/09 12:50		171359
2,4,5-Trichlorophenol	10		10	1	9/17/09	9/21/09 12:50		171359
2,4,6-Trichlorophenol	10	U	10	1	9/17/09	9/21/09 12:50	96208	171359
2,4-Dichlorophenol	10	U	10	1	9/17/09	9/21/09 12:50		171359
2,4-Dimethylphenol	10	U	10	1	9/17/09	9/21/09 12:50		171359
2,4-Dinitrophenol	50	U	50	1	9/17/09	9/21/09 12:50	96208	171359
2,4-Dinitrotoluene	10	U	10	1	9/17/09	9/21/09 12:50		171359
2,6-Dinitrotoluene	10	U	10	1	9/17/09	9/21/09 12:50		171359
2-Chloronaphthalene	10	U	10	1	9/17/09	9/21/09 12:50	96208	171359
2-Chlorophenol	10	U	10	1	9/17/09	9/21/09 12:50		171359
2-Methylnaphthalene	10	U	10	1	9/17/09	9/21/09 12:50		171359
2-Methylphenol	10	U	10	1	9/17/09	9/21/09 12:50		171359
2-Nitroaniline	50	U	50	1	9/17/09	9/21/09 12:50		171359
2-Nitrophenol	10	U	10	Į	9/17/09	9/21/09 12:50		171359
3,3'-Dichlorobenzidine	10	U	10	1	9/17/09	9/21/09 12:50		171359
3- and 4-Methylphenol Coclution	10	U	10	1	9/17/09	9/21/09 12:50		171359
3-Nitroaniline	50	U	50	1	9/17/09	9/21/09 12:50		171359
4,6-Dinitro-2-methylphenol	50	U	50	1	9/17/09	9/21/09 12:50		171359
4-Bromophenyl Phenyl Ether	10	U	10	1	9/17/09	9/21/09 12:50		171359
4-Chloro-3-methylphenol	10	U	10	1	9/17/09	9/21/09 12:50		171359
4-Chloroaniline	10	U	10	I	9/17/09	9/21/09 12:50		171359
4-Chlorophenyl Phenyl Ether	10	U	10	1		9/21/09 12:50		171359
4-Nitroaniline	50	U	50	1	9/17/09	9/21/09 12:50		171359
4-Nitrophenol	50	U	50	1	9/17/09	9/21/09 12:50		171359
Acenaphthene	10	U	10	Ì		9/21/09 12:50		171359
Acenaphthylene	10	U	10	1	• •	9/21/09 12:50		171359
Anthracene	10	U	10	1	9/17/09	9/21/09 12:50		171359
Benz(a)anthracene	10	U	10	1		9/21/09 12:50		171359
Benzo(a)pyrene	10	U	10	1	9/17/09	9/21/09 12:50	96208	171359

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code: Method Blank RQ0908726-01 Service Request: R0905245

Date Collected: NA
Date Received: NA

Units: μg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C Prep Method: EPA 3510C

				Dilution	Date	Date	Extraction		
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Lot	Note
Benzo(b)fluoranthene	10	Ü	10	1	9/17/09	9/21/09 12:50	96208	171359	
Benzo(g,h,i)perylene	10	U	10	1	9/17/09	9/21/09 12:50	96208	171359	
Benzo(k)fluoranthene	10	U	10	1	9/17/09	9/21/09 12:50		171359	
Benzyl Alcohol	10	U	10	1	9/17/09	9/21/09 12:50	96208	171359	
2,2'-Oxybis(1-chloropropane)	10	U	10	1	9/17/09	9/21/09 12:50	96208	171359	
Bis(2-chloroethoxy)methane	10	U	10	1	9/17/09	9/21/09 12:50	96208	171359	
Bis(2-chloroethyl) Ether	10	U	10	1	9/17/09	9/21/09 12:50	96208	171359	
Bis(2-ethylhexyl) Phthalate	10	U	10	1	9/17/09	9/21/09 12:50	96208	171359	
Butyl Benzyl Phthalate	10	U	10	1	9/17/09	9/21/09 12:50	96208	171359	
Carbazole	10	U	10	1	9/17/09	9/21/09 12:50	96208	171359	
Chrysene	10	U	10	1	9/17/09	9/21/09 12:50	96208	171359	
Di-n-butyl Phthalate	10		10	1	9/17/09	9/21/09 12:50		171359	
Di-n-octyl Phthalate	10		10	1	9/17/09	9/21/09 12:50	96208	171359	
Dibenz(a,h)anthracene	10	U	10	1	9/17/09	9/21/09 12:50		171359	
Dibenzofuran	10	U	10	1	9/17/09	9/21/09 12:50		171359	
Diethyl Phthalate	10	U	10	1	9/17/09	9/21/09 12:50	96208	171359	<u>.</u>
Dimethyl Phthalate	10	U	10	1	9/17/09	9/21/09 12:50		171359	
Fluoranthene	10	U	10	1	9/17/09	9/21/09 12:50		171359	
Fluorene	10	U	10	1	9/17/09	9/21/09 12:50	96208	171359	
Hexachlorobenzene	10	U	10	1		9/21/09 12:50	96208	171359	
Hexachlorobutadiene	10	U	10	1		9/21/09 12:50		171359	
Hexachlorocyclopentadiene	10	U	10	1	9/17/09	9/21/09 12:50	96208	171359	
Hexachloroethane	10	U	10	1		9/21/09 12:50		171359	
Indeno(1,2,3-cd)pyrene	10	U	10	1		9/21/09 12:50		171359	
Isophorone	10	U	10	1	9/17/09	9/21/09 12:50	96208	171359	
N-Nitrosodi-n-propylamine	10	U	10	1		9/21/09 12:50	96208	171359	
N-Nitrosodimethylamine	10	U	10	1		9/21/09 12:50	96208	171359	
N-Nitrosodiphenylamine	10	U	10	1	9/17/09	9/21/09 12:50	96208	171359	
Naphthalene	10	U	10	1		9/21/09 12:50	96208	171359	
Nitrobenzene	10	U	10	1		9/21/09 12:50	96208	171359	
Pentachlorophenol (PCP)	50	U	50	1	9/17/09	9/21/09 12:50	96208	171359	
Phenanthrene	10	Ŭ	10	1	9/17/09	9/21/09 12:50	96208	171359	

Analytical Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Sample Name: Lab Code;

Method Blank RQ0908726-01 Service Request: R0905245

Date Collected: NA Date Received: NA

> Units: µg/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analytical Method: 8270C Prep Method:

EPA 3510C

	n 11 0	BATST	Dilution	Date Extracted		Extraction Lot	-	s Note
Analyte Name	Result Q	MRL	Factor					
Phenol	10 U	10	1		9/21/09 12:50			
Pyrene	10 U	10	1	9/17/09	9/21/09 12:50	96208	171359	

Surrogate Name	%R	ec	Control Limits	Date Analyzed	Q	Note	
2,4,6-Tribromophenol	35	*	46-134	9/21/09 12:50			
2-Fluorobiphenyl	34	*	46-110	9/21/09 12:50			
2-Fluorophenol	14		12-84	9/21/09 12:50			
Nitrobenzene-d5	30	*	44-117	9/21/09 12:50			
Phenol-d6	12		10-70	9/21/09 12:50			
p-Terphenyl-d14	60		40-133	9/21/09 12:50			

Comments:		

QA/QC Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

voc report

Service Request: R0905245 Date Analyzed: 9/24/09

Lab Control Sample Summary Oil and Grease, HEM Silica Gel Treated

Units: mg/L

Basis: NA

			Lab Control Sample R0905245-LCS			ab Contro)5245-DL(% Rec		RPD	
Analyte Name	Method	Result	Expected	1% Rec	Result	Expected	1% Rec	Limits	RPD	Limit
Oil and Grease, Nonpolar (SGT-HEM)	1664	17.7	20.9	85	17.6	20.9	84	64 - 132	1	34

Comments:	
Conditions	

QA/QC Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Service Request: R0905245 Date Analyzed: 9/24/09

Lab Control Sample Summary **Inorganic Parameters**

> Units: mg/L Basis: NA

Lab Control Sample

		R09	% Rec	
Analyte Name	Method	Result	Expected % Rec	Limits
Arsenic, Dissolved	6010B	0.0368	0.040 92	80 - 120
Lead, Dissolved	6010B	0.519	0.500 104	80 - 120

QA/QC Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Service Request: R0905245 Date Analyzed: 9/23/09

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Units: µg/L Basis: NA

Analysis Lot: 171600

	Lab		% Rec	
Analyte Name	Result	Q0909006-0 Expected	2 % Rec	Limits
Acetone	26,5	20.0	132	50 - 150
Benzene	21.5	20.0	107	70 - 130
Bromodichloromethane	21.3	20.0	106	70 - 130
Bromoform	22.0	20.0	110	70 - 130
Bromomethane	21.8	20.0	109	50 - 150
2-Butanone (MEK)	24.8	20.0	124	50 - 150
Carbon Disulfide	20.5	20.0	103	70 - 130
Carbon Tetrachloride	20.2	20.0	101	70 - 130
Chlorobenzene	21.2	20.0	106	70 - 130
Chloroethane	22.8	20.0	114	70 - 130
Chloroform	22.2	20.0	111	70 - 130
Chloromethane	22.0	20.0	110	70 - 130
Dibromochloromethane	23,1	20.0	115	70 - 130
1,1-Dichloroethane	21.6	20.0	108	70 - 130
1,2-Dichloroethane	22.0	20.0	110	70 - 130
1,1-Dichloroethene	20.8	20.0	104	70 - 130
cis-1,2-Dichloroethene	21.1	20.0	105	70 - 130
trans-1,2-Dichloroethene	20.8	20.0	104	70 - 130
1,2-Dichloropropane	21.5	20.0	108	70 - 130
cis-1,3-Dichloropropene	21.4	20.0	107	70 - 130
trans-1,3-Dichloropropene	20.6	20,0	103	70 - 130
Ethylbenzene	20.5	20.0	102	70 - 130
2-Hexanone	23.2	20.0	116	70 - 130
Methylene Chloride	23.0	20.0	115	70 - 130
4-Methyl-2-pentanone (MIBK)	24.0	20.0	120	70 - 130
Styrene	22,5	20.0	112	70 - 130
1,1,2,2-Tetrachloroethane	23.3	20.0	117	70 - 130
Tetrachloroethene	21,4	20.0	107	70 - 130
Toluene	20.6	20.0	103	70 - 130
1,1,1-Trichloroethane	20.4	20.0	102	70 - 130
1,1,2-Trichloroethane	22.0	20.0	110	70 - 130
Trichloroethene	20.7	20.0	104	70 - 130
Vinyl Chloride	24.0	20.0	120	70 - 130
o-Xylene	21.2	20.0	106	70 - 130
m,p-Xylenes	41,5	40.0	104	70 - 130

QA/QC Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Service Request: R0905245 Date Analyzed: 9/21/09

Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS

Analytical Method: Prep Method: 8270C

EPA 3510C

Units: µg/L Basis: NA

Extraction Lot: 96208

	Lab Control Sample				e Lab Contro			222	
		RQ0908726-0			RQ0908726-0		% Rec	D. W.D.	RPD
Analyte Name	Result	Expected	% Rec	Result	Expected	% Rec	Limits	RPD	Limit
1,2,4-Trichlorobenzene	65.7	100	66	68,3	100	68	17 - 99	4	30
1,2-Dichlorobenzene	65.4	100	65	65.4	100	65	23 - 130	0	30
1,3-Dichlorobenzene	61.4	100	61	63.6	100	64	17 - 130	4	30
1,4-Dichlorobenzene	63.1	100	63	64.9	100	65	31 - 84	3	30
2,4,5-Trichlorophenol	93,3	100	93	100	100	100	62 - 117	7	30
2,4,6-Trichlorophenol	94.0	100	94	101	100	101	62 - 115	8	30
2,4-Dichlorophenol	88.7	100	89	92.7	100	93	62 - 109	4	30
2,4-Dimethylphenol	68.5	100	68	76.4	100	76	33 - 130	11	30
2,4-Dinitrophenol	96.1	100	96	98.6	100	99	48 - 142	3	30
2,4-Dinitrotoluene	104	100	104	107	100	107	69 - 122	3	30
2,6-Dinitrotoluene	100	100	100	104	100	104	48 - 125	3	30
2-Chloronaphthalene	77.2	100	77	82.2	100	82	47 - 130	6	30
2-Chlorophenol	82.1	100	82	84.9	100	85	42 - 112	3	30
2-Methylnaphthalene	77.7	100	78	79.8	100	80	34 - 102	3	30
2-Methylphenol	76.7	100	77	78.9	100	79	51 - 130	3	30
2-Nitroaniline	104	100	104	107	100	107	60 - 119	3	30
2-Nitrophenol	91.0	100	91	94,5	100	94	60 - 113	4	30
3,3'-Dichlorobenzidine	80.5	100	81	86.2	100	86	18 - 108	7	30
3- and 4-Methylphenol Coelution	151	200	76	152	200	76	49 - 130	1	30
3-Nitroaniline	82,8	100	83	82.9	100	83	34 - 130	0	30
4,6-Dinitro-2-methylphenol	107	100	107	111	100	111	60 - 135	3	30
4-Bromophenyl Phenyl Ether	93.5	100	93	100	100	100	63 - 124	7	30
4-Chloro-3-methylphenol	94.5	100	95	97.1	100	97	42 - 124	3	30
4-Chloroaniline	86.5	100	86	89.1	100	89	24 - 130	3	30
4-Chlorophenyl Phenyl Ether	91.3	100	91	95.3	100	95	59 - 112	4	30
4-Nitroaniline	97.2	100	97	96.6	100	97	55 - 111	1	30
4-Nitrophenol	40.6	100	41	40.7	100	41	15 - 130	0	30
Acenaphthene	89.0	100	89	92.7	100	93	57 - 104	4	30
Acenaphthylene	94.2	100	94	98.6	100	99	57 - 109	5	30
Anthracene	95.1	100	95	99,0	100	99	55 - 116	4	30
Benz(a)anthracene	97.0	100	97	102	100	102	66 - 130	5	30
Benzo(a)pyrene	87.1	100	87	91.9	100	92	44 - 114	5	30
Benzo(b)fluoranthene	105	100	105	109	100	109	64 - 122	3	30
Benzo(g,h,i)perylene	99.8	100	100	100	100	100	60 - 127	0	30
Benzo(k)fluoranthene	102	100	102	107	100	107	49 - 133	5	30
Benzyl Alcohol	71.9	100	72	74.1	100	74	31 - 109	3	30
Donaji moonoi		•							

QA/QC Report

Client:

Unicorn Management Consultants

Project:

Union Rd #2011-100

Sample Matrix:

Water

Service Request: R0905245 Date Analyzed: 9/21/09

Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS

Analytical Method: Prep Method:

8270C

EPA 3510C

Units: µg/L Basis: NA

Extraction Lot: 96208

	Lab Control Sample			Duplicate	e Lab Contro				
	F	RQ0908726-0	2	F	kQ0908726-0	3	% Rec		RPD
Analyte Name	Result	Expected	% Rec	Result	Expected	% Rec	Limits	RPD	Limit
2,2'-Oxybis(1-chloropropane)	100	100	100	102	100	102	10 - 140	2	30
Bis(2-chloroethoxy)methane	94.5	100	95	99.0	100	99	44 - 141	5	30
Bis(2-chloroethyl) Ether	87.9	100	88	91.3	100	91	56 - 106	4	30
Bis(2-ethylhexyl) Phthalate	101	100	101	112	100	112	62 - 124	10	30
Butyl Benzyl Phthalate	94.1	100	94	103	100	103	41 - 148	9	30
Carbazole	99.0	100	99	99,4	100	99	66 - 117	0	30
Chrysene	96.7	100	97	101	100	101	57 - 118	4	30
Di-n-butyl Phthalate	105	100	105	107	100	107	59 - 139	2	30
Di-n-octyl Phthalate	98.7	100	99	114	100	114	44 - 151	14	30
Dibenz(a,h)anthracene	98.6	100	99	100	100	100	58 - 132	2	30
Dibenzofuran	89,8	100	90	92.8	100	93	58 - 105	3	30
Diethyl Phthalate	98.9	100	99	102	100	102	65 - 122	3	30
Dimethyl Phthalate	97,0	100	97	100	100	100	69 - 130	3	30
Fluoranthene	104	100	104	103	100	103	62 - 123	2	30
Fluorene	94.4	100	94	97.2	100	97	60 - 112	3	30
Hexachlorobenzene	95.0	100	95	99.7	100	100	51 - 132	5	30
Hexachlorobutadiene	67.6	100	68	69.2	100	69	27 - 130	2	30
Hexachlorocyclopentadiene	57.2	100	57	66.3	100	66	10 - 130	15	30
Hexachloroethane	63,4	100	63	63,4	100	63	28 - 130	0	30
Indeno(1,2,3-cd)pyrene	97.4	100	97	98,7	100	99	64 - 126	1	30
Isophorone	97.1	100	97	100	100	100	61 - 128	3	30
N-Nitrosodi-n-propylamine	92.8	100	93	96.2	100	96	25 - 120	4	30
N-Nitrosodimethylamine	53,8	100	54	54.8	100	55	27 - 130	2	30
N-Nitrosodiphenylamine	96.4	100	96	102	100	102	45 - 123	5	30
Naphthalene	72.8	100	73	74.8	100	75	40 - 130	3	30
Nitrobenzene	88.6	100	89	93.1	100	93	51 - 113	5	30
Pentachlorophenol (PCP)	99.0	100	99	106	100	106	39 - 147	7	30
Phenanthrene	100	100	100	103	100	103	58 - 118	3	30
Phenol	38.4	100	38	38.5	100	38	16 - 130	0	30
Pyrene	98.9	100	99	107	100	107	67 - 118	8	30

Columbia Columbia Analytical Services

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

CAS Contact SR #

Preservative Key 0. NONE REMARKS/ ALTERNATE DESCRIPTION INVOICE INFORMATION . V. Spocializad Forms / Oustom R R0905245
Unicom Management Consultants ÷</r>
ಗಟ್ಕಳ
ಳ ANALYSIS REQUESTED (Include Method Number and Container Preservative) Printed Name Date/Timo Signature BILL TO Firm IV. Data Validation Roport with Raw Data It. Recults + OC Summarios (LCS, DUP, MSAMSD as required) REPORT REQUIREMENTS III. Results + QC and Calibration (0) RELINQUISHED BY X Se f. Results Only Date/Tune 14/0 TURNAROUND REQUIREMENTS 5 day RUSH (SURCHARGES APPLY) RECEIVED BY REQUESTED REPORT DATE One Mustard St., Suite 250 • Rochester, NY 14609-0859(585) 288-5380 • 800-695-7222 x11 • FAX (565) 288-8475 Date/Timp / 15/69 REQUESTED FAX DATE STANDARD PRESERVATIVE CUSTODY SEALS: Y (N) NUMBER OF CONTAINERS RELINQUISHED BY Analysis For Pb + As MATRIX Jeh (525) 19/1/8 野でる 9/15/09 9:30 9/m/64 16:00 9/14/bg 16:30 911/69 17:50 16469 178 05, PI POLL スピジ OC:21 69/41/18 ට්දෙර් ලින 1409 19:15 ADS-205-901 901-10c 06810 FIRE Sample Unicorn Management FOR OFFICE USE ONLY LAB ID SAMPLE RECEIPT: CONDITION/COOLER TEMP: X-(0"C Wayme Spring of Federal Rd Danbury, C Hanloh Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Project Name

Pr 11:30 SPECIAL INSTRUCTIONS/COMMENTS CLIENT SAMPLE ID # James DeGolier 13 X 5 Company See CAPP

Distribution: White - Return to Originator; Yeltow - Lab Copy; Pink - Retained by Client

Columbia
Analytical Services CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

CAS Contact

US

Preservative Key 1. NONE 1. HOLL 2. HNO3 3. H-SO4 4. NãOH 6. MeOH 7. NathSO4 8. Other REMARKS/ ALTERNATE DESCRIPTION INVOICE INFORMATION R0905245 Unicorn Management Consultanta ANALYSIS REQUESTED (Include Method Number and Container Preservative) Printed Name Signature BILL TO: \$ IV. Data Validation Report with Raw Data LCS, DUP, MS/MSD as required) REPORT REQUIREMENTS III, Results + OC and Calibration Summartes V. Specialized Forms / Custom RELINQUISHED BY Edata X TOWN TOWN TO SO THE POLOW TO S 1. Results Only Printed Name PAGE TURNAROUND REQUIREMENTS 5 day RUSH (SURCHARGES APPLY) RECEIVED BY One Mustard St., Suite 250 • Rochester, NY 14609-0859(585) 288-5380 • 800-695-7222 x11 • FAX (585) 288-8475 REQUESTED REPORT DATE REQUESTED FAX DATE STANDARD S AON 8 800 20 ED PS OF THE POOR SWOOD PRESERVATIVE CUSTODY SEALS: NO иливев об соитыпевз MATRIX 9/14/69 19:45 HaD 0.84 OC! 81 POH1/P Analysis For Ab +AS SAMPLING SAMPLING DATE TIME Samplers Printed Name
Samplers Printed Name
NO. VINC. 1—
FOR OFFICE USE ONLY
SAMPLING
LAB ID
DATE TIME FITTER Sample Project Number — NOO 01890 Management SAMPLE RECEIPT: CONDITION/COOLER TEMP: 2-600 Report CC こり 52 Federal Rd. Hawlow Supples Synchia Magalli LINION RD SPECIAL INSTRUCTIONS/COMMENTS Metals Danbury AB # CLIENT SAMPLE ID Chricary 941 PO OUR AW CHS とのろと See OAPP

Date/Time

Date/Time

Date/Time 9/15/09 1910

かっていっち

36%

2000

1:30

00 men

Distribution: White - Return to Originator; Yellow - Lab Copy; Pink - Retained by Client

Cooler Receipt And Preservation Check Form

Project/C	lient	U	1160	orn Manag	em Bub	mission Nun	nber_{	09052	45.		
Cooler re	ceived on_	9/1	5/00	7 by: MCPC	OURI	ER: CAS	UPS	FEDEX		TY CLIENT	
2. V 3. I 4. I 5. V 6. V	Vere custod Did all bottle Did any VO Were Ice or Where did th	y pares arr A via Ice re	ers prive in the second		t (ink, si (unbrok ir bubbl	ken)?	c .	YES YES YES CAS/RO	NO NO NO NO NO C, CLIE	N/A NT	Ý
1	s the tempe	ratur	e wit	hin 0° - 6° C?:	Ye	\$> Yes	١	Tes	Yes	Yes (V)	4
]	if No, Expl	ain E	elow	7	No	No		No ,	Ņо	No	•
.]	Date/Time 1	Cemp	eratu	ıres Taken:		a ta a financiani di Anto		9/13	-/09@	1470	
,	Thermomete	er ID	: 16	1 / IR GUN#2 /	IR/GU	N#3 Rea	ding Fro	m: Temp	Blank /	Sample Bottle	
If out of Temperature, note packing/ice condition, Client Approval to Run Samples: PC Secondary Review:										4.	
pН	Reagent	YES	NO	Lot Received	Ехр	Sample ID	Vol. Added	Lot Added	Final pH	Yes = All samples OK	
≥12	NaOH									,	
<u>S</u> 2	HNO ₃ H ₂ SO ₄			·						No = Samples	
Residua Chlorine	For TCN		·	If present, contact add ascorbic acid	PM to					were preserved at lab as listed	
1	Na ₂ S ₂ O ₃	-	-					ore analysis –		PM OK to	
	Zn Aceta HCl	- *	*	Chican	hálin	on a separate		y VOAs or G eet	enChem	Adjust:	
•	L	<u></u>	<u> </u>	1645A01	07720] Soa 1//					
Bottle le	ot numbers:	1-19	1-11	01,037955	0/4(W1700					
		r 7	pH-	M1786098J	exp 67,	110					

PC Secondary Review: *significant air bubbles are greater than 5-6 mm

Enclosure 1 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Si	Site Details I te No. 915128	Box 1			
Sit	te Name Union Road Site				
Site Address: Losson Road Zip Code: 14110 City/Town: Cheektowaga					
All Sit	ounty: Erie owable Use(s) (if applicable, does not address local zoning): se Acreage: 23.0 vner: WITBEN REALTY				
ΟV	P.O. BOX 4369, Jacksonville, FL 33201				
Re	eporting Period: December 26, 2008 to December 26, 2009				
	Verification of Site Details	В	ox 2		
		YES	NO		
1.	Is the information in Box 1 correct?	N/			
	If NO, are changes handwritten above or included on a separate sheet?				
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		V		
	If YES, is documentation or evidence that documentation has been previously submitted included with this certification?				
3.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?				
	If YES, is documentation (or evidence that documentation has been previously submitted) included with this certification?				
4.	If use of the site is restricted, is the current use of the site consistent with those restrictions?	IV.			
	If NO, is an explanation included with this certification?		į		
5.	For non-significant-threat Brownfield Cleanup Program Sites subject to ECL 27-1415.76 has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?	(c),			
	If YES, is the new information or evidence that new information has been previously submitted included with this Certification?	□			
6.	For non-significant-threat Brownfield Cleanup Program Sites subject to ECL 27-1415.70 are the assumptions in the Qualitative Exposure Assessment still valid (must be certified every five years)?	(c), <u>v</u>			
	If NO, are changes in the assessment included with this certification?				

SITE NO. 915128

Description of Institutional Controls

<u>Parcel</u>

Institutional Control

S_B_L Image: 114.17-1-2

Ground Water Use Restriction

Landuse Restriction Monitoring Plan O&M Plan

Description of Engineering Controls

<u>Parcel</u>

Engineering Control

S_B_L Image: 114.17-1-2

Cover System

Fencing/Access Control

Pump & Treat

Attach documentation if IC/ECs cannot be certified or why IC/ECs are no longer applicable. (See instructions)

Control Description for Site No. 915128

Parcel: 114.17-1-2

Site O&M Plan & Reporting per Order on Consent.

Periodic Review Report (PRR) Certification Statements

	renoute Review Report (FRR) Certification Statements					
1.	. I certify by checking "YES" below that:					
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification; 	ť				
	 b) to the best of my knowledge and belief, the work and conclusions described in this certificate in accordance with the requirements of the site remedial program, and generally accepted YES 	catio d NC				
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Insti or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:	tutior	nal			
(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;						
(b) nothing has occurred that would impair the ability of such Control, to protect public health and he environment;						
(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;						
d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and						
e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.						
	YES	NC)			
3.	If this site has an Operation and Maintenance (O&M) Plan (or equivalent as required in the Decision 1.00 plan (or equivalent as required in the Decision 2.00 plan (or equivalent as required in the Decision 2.00 plan (or equivalent as required in the Decision 2.00 plan (or equivalent as required in the Decision 2.00 plan (or equivalent as required in the Decision 2.00 plan (or equivalent as required in the Decision 2.00 plan (or equivalent as required in the Decision 2.00 plan (or equivalent as required in the Decision 2.00 plan (or equivalent as required in the Decision 2.00 plan (or equivalent as required in the Decision 2.00 plan (or equivalent as required in the Decision 2.00 plan (or equivalent as required in the Decision 2.00 plan (or equivalent as required in the Decision 2.00 plan (or equivalent as required as required 2.00 plan (or equivalent	on	Document);			
I certify by checking "YES" below that the O&M Plan Requirements (or equivalent as required in the Decision Document) are being met.						
١.	If this site has a Monitoring Plan (or equivalent as required in the remedy selection document);					
I certify by checking "YES" below that the requirements of the Monitoring Plan (or equivalent as required in the Decision Document) is being met.						
	YES	NO				
			İ			

IC CERTIFICATIONS SITE NO. 915128

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 2 and/or 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

am certifying as a certifying a certification according to the for the Site named in the Site Details Section of this form. Signature of Owner or Remedial Party Rendering Certification IC/EC CERTIFICATIONS Box 7 QUALIFIED ENVIRONMENTAL PROFESSIONAL (QEP) SIGNATURE I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. | Kerry M. Honly at 52 Federal Rd, Darbry CT 06810 print name print business address

am certifying as a Qualified Environmental Professional for the Rengal Polty (Owner or Remedial Party) for the Site named in the Site Details Section of this form. Signature of Qualified Environmental Professional, for Stamp (if Required) Date

the Owner or Remedial Party, Rendering Certification