

CBS Corporation

Environmental Remediation 11 Stanwix Street Pittsburgh, PA 15222

November 10, 2008

William P. Murray, P.E.
Environmental Engineer I
New York State Department of Environmental Conservation
Division of Hazardous Waste Remediation
Region 9
270 Michigan Avenue
Buffalo, NY 14203-2999

Re: Monthly Operation and Maintenance Report NYSDEC Site 9-15-066, Cheektowaga, New York

Dear Mr. Murray:

On behalf of the Respondents to the Order on Consent and Settlement Agreement (Index No. B9-0381-91-8) (the "Order"), CBS Corporation (CBS) submits this monthly report on the status of operation and maintenance (O&M) activities at New York State Department of Environmental Conservation (NYSDEC) Site No. 9-15-066 in Cheektowaga, New York (the "Site"). Under an Agreement among the Respondents, CBS is managing the Remedial Program defined in the Order. This report covers activities during the period of October 1 through October 31, 2008 and transmits the discharge monitoring report for this period.

1. Site Activities and Status

- A. On October 10, 2008, CBS submitted to NYSDEC a monthly report on the status of both routine and non-routine O&M activities at the Site for the September 2008 operating period. That status report also transmitted the discharge monitoring data for September 2008.
- B. On October 13, 2008, CBS received comments from NYSDEC (letter dated October 8, 2008) regarding the revised work plan for the partial closure those portions of the groundwater collection system that drain to Sumps 001 and 002. NYSDEC also forwarded its comment letter to the Niagara Frontier Transportation Authority (NFTA). On behalf of the Respondents, CBS modified the revised work plan and is forwarding the modified version (Rev. 1, November 7, 2008) to NYSDEC under separate cover.

- C. The recovery and treatment system operated throughout the October 2008 reporting period.
- D. Conestoga-Rovers & Associates (CRA) conducted routine and non-routine O&M on behalf of CBS, and TestAmerica Laboratories, Inc. provided analytical laboratory services, as required.
- E. Pursuant to the agreements reached at the meeting of June 26, 2006, as subsequently documented via CBS' correspondence of August 8, 2006, NYSDEC is working directly with the NFTA and Mercy Flight of Western New York, Inc. regarding vapor intrusion issues associated with the redevelopment of the Flying Tigers Area (Area P) of the Site.

2. Sampling Results and Other Site Data

- A. In October 2008, the groundwater system recovered and treated an estimated 219,000 gallons.¹
- B. Attachment A provides the discharge monitoring report for October 2008 based on effluent sample collected on October 23, 2008. Attachment B provides the analytical laboratory report for the effluent sample collected on October 23, 2008.
- C. In reviewing the treatment system effluent monitoring information, please note the following:
 - The flow data are provided via on-site readings and calls into the Autodialer. The maximum daily flow was calculated from these data.
 - The pH data are provided via on-site readings, calls into the Autodialer, and laboratory analysis of the monthly effluent sample. pH data are reported only for measurements taken while the treatment pump is operating and the system is actively discharging.
 - The reported daily maximum values (pounds per day) are calculated using the maximum observed daily flow and the results of the monthly effluent monitoring, irrespective of whether the actual maximum daily flow occurred on the day of sampling.
- D. For the October 2008 reporting period, the effluent complied with all discharge limitations.
- E. Table 1 presents the results of quarterly monitoring of well MW-32 located in Area P at the northern portion of the Site, including the most recent sample

Based on additional information and recalculation, the estimated total discharge for September 2008 has been revised to 226,000 gallons from the 228,000 gallons as indicated in the September 008 monthly status report.

collected on September 30, 2008. Attachment C includes the analytical laboratory report for this groundwater sample.

F. Figure 1 plots target volatile organic compound (VOC) concentrations at well MW-32 over time, showing the relationship between these VOC concentrations and the past in situ treatment in Area P.

3. Upcoming Activities

- A. CBS will continue required O&M activities.
- B. Upon NYSDEC authorization to proceed, CBS will implement the Revised Work Plan (Rev. 1, November 7, 2008) for shutdown of those portions of the groundwater collection system that drain to Sumps 001 and 002.

4. Operational Problems

- A. Previously reported operational problems associated with elevated pH, hardness, and inflow continue. These operational problems are expected to be largely resolved with the partial shutdown of the collection and treatment system and limitation of inflows to those associated with Sump 003.
- B. As previously observed by and described to NYSDEC, the water levels in Sumps 001 and 002 have risen to the point where the water overtops these manholes during period of high precipitation. This situation will be remedied through closure of these portions of the groundwater collection system.

* * * *

We trust this submittal satisfies your requirements at this time. If you have questions regarding this status report, please contact me.

Respectfully submitted,

Leo M. Brausch

Consultant/Project Engineer

LMB:

Attachments

cc: K. P. Lynch, CRA

K. Minkel, NFTA

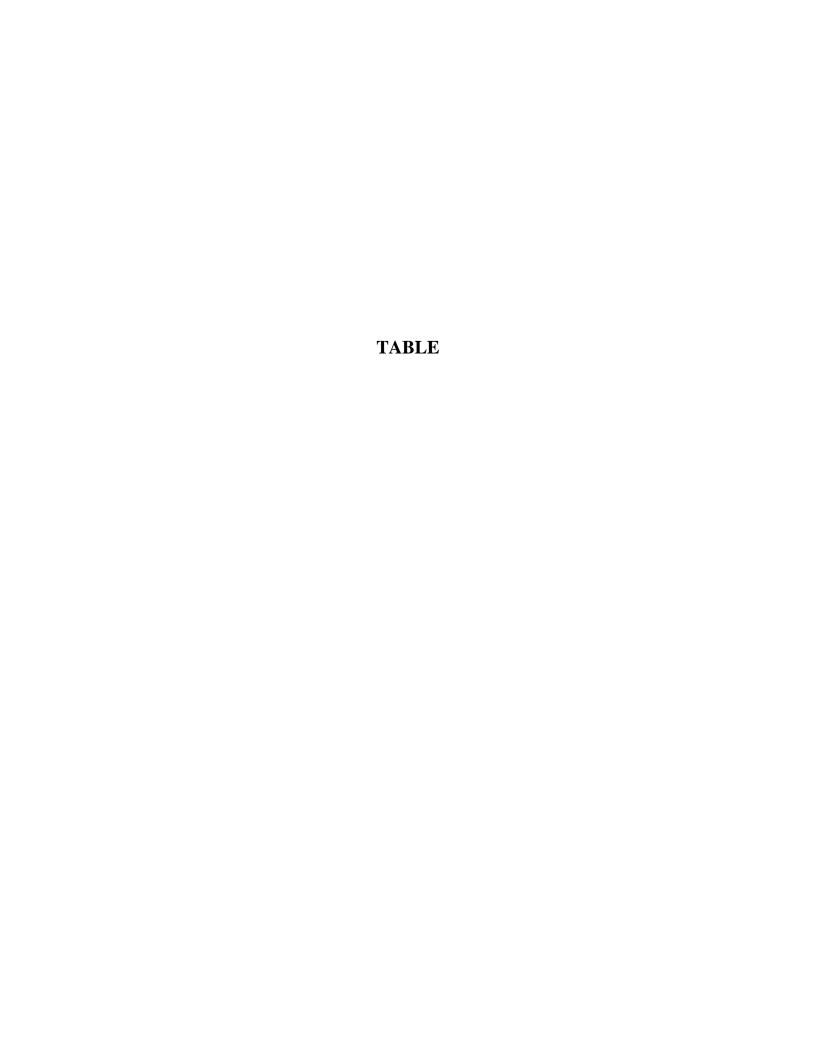


Table 1
Summary of Groundwater Monitoring Data, Well MW-32
NYSDEC Site No. 9-15-066, Cheektowaga, New York

D)			Constituer	nt Concentra	tion (ug/L)		
Date of Sampling	cis-1,2- dichloroethylene	Toluene	1,1,1- trichloroethane	Trichloroethylene	Vinyl Chloride	Cadmium	Lead
05/11/00	1,500	5 U	5 U	3,700	540	1.0 U	3.0 U
12/01/00	2,200	5 U	5 U	1,200	110	1.0 U	10 U
12/01/00 (Dup)	2,300	10 U	10 U	1,900	230 J	NA	NA
03/30/01	1,600	100 U	100 U	650	340	0.41 U	2.47 U
03/30/01 (Dup)	1,500	100 U	100 U	610	310	0.41 U	2.47 U
06/21/01	2,800	250 U	250 U	4,100	890	0.85 U	1.21 U
06/21/01 (Dup)	2,700	250 U	250 U	4,000	830	0.85 U	1.21 U
09/13/01	4,000	250 U	250 U	2,900	1,000	0.70 B	2.1 U
09/13/01 (Dup)	4,100	250 U	250 U	2,800	1,100	0.83 B	2.8 U
12/13/01	2,300	200 U	200 U	2,500	590	0.44 U	3.7 U
12/31/01 (Dup)	2,200	200 U	200 U	2,400	560	0.44 U	2.0 U
03/14/02	560	250 U	250 U	730	98	0.17 U	2.03 U
03/14/02 (Dup)	570	250 U	250 U	710	100	0.17 U	2.03 U
07/10/02	1,200	NA	NA	2,000	190	NA	NA
12/31/02	480	NA	50 U	530	66	0.34 B	4.9
12/31/02 (Dup)	510	NA	50 U	580	77	0.29 U	4.7
03/29/03	1,000	80 U	80 U	740	150	5.0 U	3.0 U
06/17/03	1,100	200 U	200 U	2,400	130 J	0.34 B	4.9
06/17/03 (Dup)	1,100	100 U	100 U	1,700	110	5.0 U	3.0 U
09/26/03	2,800	100 U	100 U	8,100	310 J	5.0 U	3.0 U
12/22/03	1,000	100 U	100 U	1,300	97 J	0.38 U	1.1 B
03/29/04	460	10 U	10 U	570	20 J	0.37 U	1.4 U
06/30/04	620	200 U	200 U	1,900	200 U	0.29 U	1.5 U
09/13/04	2,100	200 U	200 U	2,900	130 J	5.0 U	1.8 B
12/17/04	640	10 U	10 U	420	45	5.0 U	3.0 U
12/17/04 (Dup)	760	50 U	50 U	790	50 J	5.0 U	2.3 B
03/31/05	570	50 U	50 U	680	49 J	5.0 U	3.0 U

Table 1
Summary of Groundwater Monitoring Data, Well MW-32
NYSDEC Site No. 9-15-066, Cheektowaga, New York

D)			Constituer	nt Concentra	tion (ug/L)		
Date of Sampling	cis-1,2- dichloroethylene	Toluene	1,1,1- trichloroethane	Trichloroethylene	Vinyl Chloride	Cadmium	Lead
06/22/05	540	10 U	10 U	810	100	5.0 U	3.0 U
06/22/05 (Dup)	1,100	100 U	100 U	880	140	5.0 U	3.0 U
09/09/05	1,400	330 U	330 U	1,700	96 J	5.0 U	3.0 U
12/14/05	900	10 U	10 U	700	56	5.0 U	3.0 U
12/14/05 (Dup)	1,200	100 U	100 U	750	68 J	5.0 U	3.0 U
03/23/06	350	30 U	30 U	290	36	5.0 U	3.0 U
06/13/06	410	50 U	50 U	440	13 J	5.0 U	3.0 U
06/13/06 (Dup)	540	50 U	50 U	880	51	5.0 U	3.0 U
09/11/06	1,400	150 U	150 U	2,000	85 J	0.34 B	4.9
12/12/06	290	40 U	40 U	67	42 J	5.0 U	1.2 B
12/12/06 (Dup)	590	50 U	50 U	240	75 J	5.0 U	3.1
03/27/07	380	10 U	10 U	22	36 J	5.0 U	2.4 B
06/26/07	1,700	150 U	150 U	23 J	710	5.0 U	1.5 B
09/17/07	2,500	150 U	150 U	410	140	5.0 U	1.5 B
12/19/07	1,500	150 U	150 U	160	200	0.29 B	3.0
12/19/07 (Dup)	1,500	100 U	100 U	170	200	5.0 U	3.0 U
03/19/08	530	40 U	40 U	110	53	0.38 B	2.2 B
06/26/08	520	50 U	50 U	310	27 J	0.3 U	1.4 U
09/30/08	420	50 U	50 U	120	48	0.3 U	1.4 U

Data Legend:

"NA" - indicates not analyzed

Detections and estimated values are in **bold-face** type.

Organic data qualifiers:

U - not detected at indicated reporting limit

J - estimated concentration

Inorganic data qualifiers:

U - not detected at indicated detection limit

B - detected concentration below contract required detection limit but above instrument detection limit.

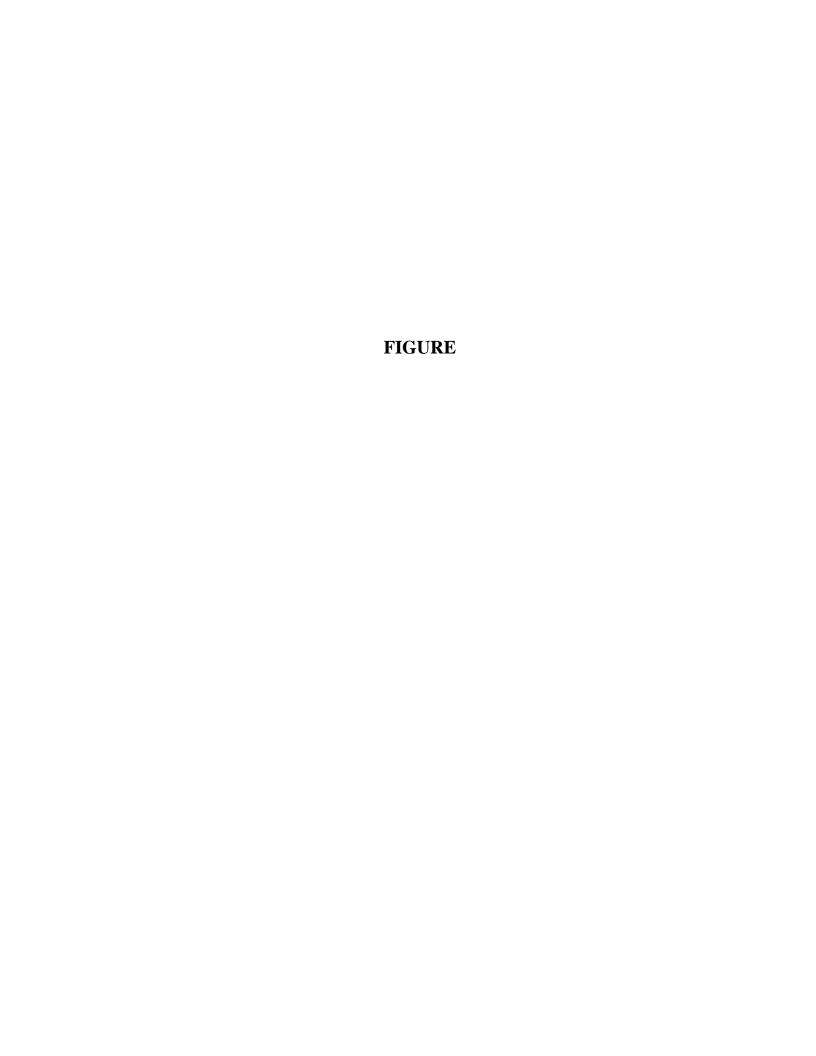
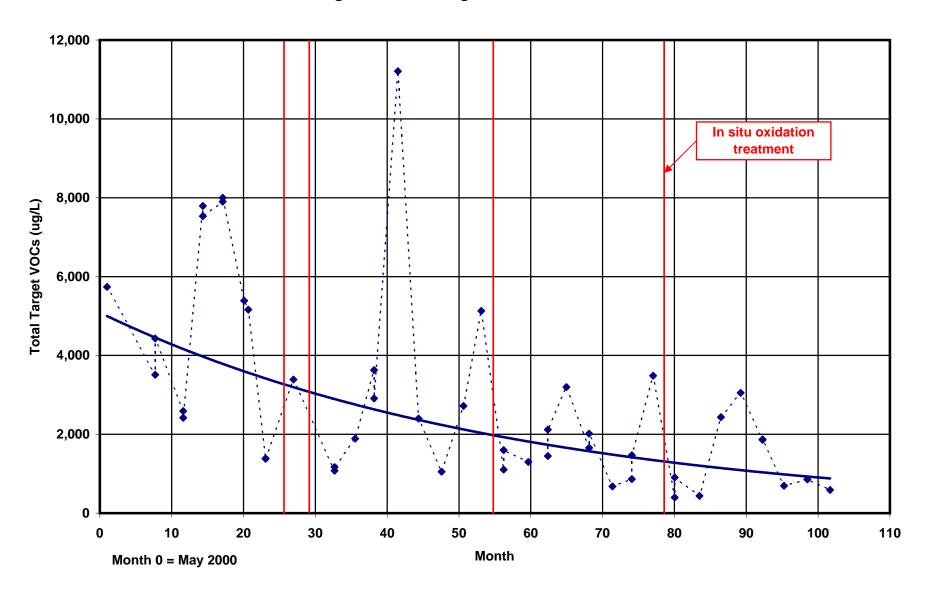



Figure 1: Total Target VOCs at MW-32

ATTACHMENT A DISCHARGE MONITORING REPORT OCTOBER 2008

Discharge Monitoring Data
Outfall 001 - Treated Groundwater Remediation Discharge
NYSDEC Site No. 9-15-006
Cheektowaga, New York

Reporting Month & Year Oct-08

Paramet	ter	Daily Minimum	Daily Maximum	Units	Daily Maximum (lbs/day)	Measurement Frequency	Sample Type
Flow	Monitoring Result Discharge Limitation		10,458 28,800	gpd gpd		Continuous Continuous	Meter Meter
рН	Monitoring Result Discharge Limitation	6.81 6.5	7.60 8.5	s.u.		9 Weekly	Grab Grab
Total suspended solids	Monitoring Result Discharge Limitation		< 4.0 20	mg/L mg/L	0.39	1 Monthly	Grab Grab
Toluene	Monitoring Result Discharge Limitation		< 1.0 5	ug/L ug/L	< 0.00009	1 Monthly	Grab Grab
Methylene chloride	Monitoring Result Discharge Limitation		< 1.0 10	ug/L ug/L	< 0.00009	1 Monthly	Grab Grab
1,2-dichlorobenzene	Monitoring Result Discharge Limitation		< 1.0 5	ug/L ug/L	< 0.00009	1 Monthly	Grab Grab
cis-1,2-dichloroethylene	Monitoring Result Discharge Limitation		1.0 10	ug/L ug/L	0.000087	1 Monthly	Grab Grab
Trichloroethylene	Monitoring Result Discharge Limitation		< 1.0 10	ug/L ug/L	< 0.00009	1 Monthly	Grab Grab
Tetrachloroethylene	Monitoring Result Discharge Limitation		< 1.0 50	ug/L ug/L	< 0.00009	1 Monthly	Grab Grab
Cadmium	Monitoring Result Discharge Limitation		< 0.43	ug/L ug/L	< 0.000038	1 Monthly	Grab Grab
Chromium	Monitoring Result Discharge Limitation		3.5 99	ug/L ug/L	0.00031	1 Monthly	Grab Grab

11/10/2008 Page 1 of 1

ATTACHMENT B ANALYTICAL LABORATORY REPORT EFFLUENT SAMPLING - OCTOBER 2008

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

PROJECT NO. LEO BRAUSCH BUF

Leo Brausch Buffalo Airport

Lot #: C8J250125

Leo Brausch

Leo Brausch Consulting 131 Wedgewood Drive Gibsonia, PA 15044

TESTAMERICA LABORATORIES, INC.

Carrie L. Gamber

Project Manager

C8J250125 1 of 20

NELAC REPORTING:

At the time of analysis the laboratory was in compliance with the current NELAC standards and held accreditation for all analyses performed unless noted by a qualifier. The labs accreditation numbers are listed below. The format and contents of the report meets all applicable NELAC standards except as noted in the narrative and shall not be reproduced except in full, without the written approval of the laboratory. The table below presents a summary of the certifications held by TestAmerica Pittsburgh. Our primary accreditation authority for the Non-potable water and Solid & Hazardous waste programs is Pennsylvania DEP. A more detailed parameter list is available upon request. Please ask your project manager for this information when required.

Certifying State/Program	Certificate #	Program Types	TestAmerica
NFESC	NA	NAVY	Χ
US Dept of Agriculture	(#P330-07-00101)	Foreign Soil Import Permit	Χ
Arkansas	(#03-022-1)	ww	Χ
{	1	HW	X
California – NELAC	04224CA	ww	Χ
		HW	XX
Connecticut	(#PH-0688)	ww	Χ
	<u> </u>	HW	Χ
Florida – NELAC	(#E87660)	ww	X
		HW	X
Illinois - NELAC	(#200005)	ww	X
	<u> </u>	HW	X
Kansas – NELAC	(#E-10350)	ww	X
		HW	XX
Louisiana – NELAC	(#93200)	ww	
***************************************		HW	<u>X</u>
New Hampshire – NELAC	(#203002)	- WW	X
New Jersey - NELAC	(PA-005)	ww	Χ
		HW	X
New York - NELAC	(#11182)	ww	X
	,	HW	X
North Carolina	(#434)	ww	X
	<u> </u>	HW	ΧΧ
Pennsylvania - NELAC	(#02-00416)	ww	Χ
·		HW	X
South Carolina	(#89014001)	ww	X
		HW	X
Utah – NELAC	(STLP)	ww	Χ
	<u> </u>	HW	X
West Virginia	(#142)	ww	X
<u></u>	<u> </u>	HW	X
Wisconsin	998027800	ww	X
D		HW	X

The codes utilized for program types are described below:

HW Hazardous Waste certification

WW Non-potable Water and/or Wastewater certification

X Laboratory has some form of certification under the specific program. Many states certify laboratories for specific parameters or tests within a category. The information in the table indicates the lab is certified in a general category of testing. Please contact the laboratory if parameter specific certification information is required.

Updated: 12/28/07 C:\Documents and Settings\derubeisn\My Documents\NELAC NARRATIVE Pttsburgh.doc

CASE NARRATIVE

Leo Brausch Consulting

Lot # C8J250125

Sample Receiving:

TestAmerica's Pittsburgh laboratory received one sample on October 24, 2008. The cooler was received within the proper temperature range.

GC/MS Volatiles:

TestAmerica's North Canton laboratory performed the 624 analysis. All results are included in the report.

The method blank had methylene chloride detected between the MDL and the reporting limit. The result was flagged with a "J" qualifier. Any sample that had this compound detected had the result flagged with a "B" qualifier.

Metals:

There were no problems associated with the analysis.

General Chemistry:

The test for pH is a field parameter. The laboratory pH analysis was completed at the request of the client.

The RPD between the sample and it's duplicate was outside QC limits for TSS.

METHODS SUMMARY

C8J250125

PARAMETER	2	ANALYTICAL METHOD	PREPARATION METHOD
pH (Elect	crometric)	SM20 4500-H+B CFR136A 624	SW846 5030B
- .	spended Solids SM 2540 D	SM20 2540D	DW040 3030B
Trace Ind	ductively Coupled Plasma (ICP) Metals	MCAWW 200.7	MCAWW 200.7
Reference	"Methods for Organic Chemical Analysis Industrial Wastewater", 40CFR, Part 136	-	
	October 26, 1984 and subsequent revision	ns.	
MCAWW	"Methods for Chemical Analysis of Water EPA-600/4-79-020, March 1983 and subseq	· ·	
SM20	"STANDARD METHODS FOR THE EXAMINATION O WASTEWATER", 20TH EDITION."	F WATER AND	

SAMPLE SUMMARY

C8J250125

WO #	SAMPLE#	CLIENT SAMPLE ID	DATE DATE	SAMP TIME
K1L5N	001	EFF1008	10/23/08	09:00

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

CHAIN OF CUSTODY RECORD

-	SHIPPED, TO (Laboratory Name):	/ Name):	REFERENCE NUMBER:	1. Kithele
CONESTOGA-ROVERS & ASSOCIATES A CAS THE STATE OF THE STA	lest thou	r de	Olsus Vlacur	1
M	0/2 bill-	(5)/847 (3) SIB)
TIME	SAMPLE	No. of Contain		
10x3 900 FFF 1008	Lah	W		
TOTAL NUMBER OF CONTAINERS	ERS	HEA	HEALTH/CHEMICAL HAZARDS	
DELINION WELL BY.	DATE: 70.21-01	RECEIVED BY:		DATE:
שלום אינוסאל	TIME: 7.55	D		TIME:
RELINQUISHED BY:	DATE: TIME:	RECEIVED BY:		DATE: TIME:
	DATE	RECEIVED BY: //		DATE: 10 2 9 8
	TIME:	3		1000
METHOD OF SHIPMENT:		WAY BILLANO.		
lly Executed Copy ceiving Laboratory Copy	SAMPLE TEAM:	RECEIVED F	RECEIVED FOR LABORATORY BY:	N^{o} CRA 15303
Pink —Shipper Copy —Sampler Copy —		DATE:	TIME:	
			(D) 1001 (D)	1001 (D) APR 28/97(NF) REV. 0 (F-15)

Leo Brausch Consulting

Client Sample ID: EFF1008

GC/MS Volatiles

Lot-Sample #...: C8J250125-001 Work Order #...: K1L5N1AD Matrix.....: WATER

Date Sampled...: 10/23/08 Date Received..: 10/24/08 MS Run #....: 8305256

 Prep Date.....: 10/31/08
 Analysis Date..: 10/31/08

 Prep Batch #...: 8305458
 Analysis Time..: 01:10

Dilution Factor: 1

Method....: CFR136A 624

REP(ORI	ING
------	-----	-----

PARAMETER	RESULT	LIMIT	UNITS	\mathtt{MDL}	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13	
cis-1,2-Dichloroethene	1.0	1.0	ug/L	0.17	
Methylene chloride	ND	1.0	ug/L	0.33	
Tetrachloroethene	ND	1.0	ug/L	0.29	
Toluene	ND	1.0	ug/L	0.13	
Trichloroethene	ND	1.0	ug/L	0.17	

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
1,2-Dichloroethane-d4	98	(80 - 125)
Toluene-d8	91	(84 - 110)
Bromofluorobenzene	87	(81 - 112)

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: C8J250125

Work Order #...: K12RK1AA

Matrix..... WATER

MB Lot-Sample #: A8J310000-458

Prep Date....: 10/30/08 Prep Batch #...: 8305458

Analysis Time..: 18:32

Analysis Date..: 10/30/08

Dilution Factor: 1

REPORTING

		KEI OKI II	.10	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Toluene	ND	1.0	ug/L	CFR136A 624
1,2-Dichlorobenzene	ND	1.0	ug/L	CFR136A 624
Trichloroethene	ND	1.0	ug/L	CFR136A 624
Methylene chloride	0.48 J	1.0	ug/L	CFR136A 624
Tetrachloroethene	ND	1.0	ug/L	CFR136A 624
cis-1,2-Dichloroethene	ND	1.0	ug/L	CFR136A 624
	PERCENT	RECOVER	·r	
SURROGATE	RECOVERY	LIMITS		
1,2-Dichloroethane-d4	97	(80 - 12	25)	
Toluene-d8	91	(84 - 13	10)	
Bromofluorobenzene	87	(81 - 13	12)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

J Estimated result. Result is less than RL.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: C8J250125 Work Order #...: K12RK1AC Matrix.....: WATER

LCS Lot-Sample#: A8J310000-458

 Prep Date.....:
 10/30/08
 Analysis Date..:
 10/30/08

 Prep Batch #...:
 8305458
 Analysis Time..:
 18:07

Dilution Factor: 1

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
Benzene	89	(37 - 151)	CFR136A 624
Bromodichloromethane	85	(35 - 155)	CFR136A 624
Bromoform	67	(45 - 169)	CFR136A 624
Bromomethane	103	(10 - 242)	CFR136A 624
Carbon tetrachloride	96	(70 - 140)	CFR136A 624
Chlorobenzene	88	(37 - 160)	CFR136A 624
Chloroethane	92	(14 - 230)	CFR136A 624
2-Chloroethyl vinyl ether	104	(10 - 305)	CFR136A 624
Chloroform	94	(51 - 138)	CFR136A 624
Chloromethane	80	(10 - 273)	CFR136A 624
Dibromochloromethane	74	(53 - 149)	CFR136A 624
1,3-Dichlorobenzene	83	(59 - 156)	CFR136A 624
1,4-Dichlorobenzene	80	(18 - 190)	CFR136A 624
1,1-Dichloroethane	99	(59 - 155)	CFR136A 624
1,2-Dichloroethane	96	(49 - 155)	CFR136A 624
1,1-Dichloroethene	124	(10 - 234)	CFR136A 624
trans-1,2-Dichloroethene	104	(54 - 156)	CFR136A 624
1,2-Dichloropropane	87	(10 - 210)	CFR136A 624
cis-1,3-Dichloropropene	80	(10 - 227)	CFR136A 624
trans-1,3-Dichloropropene	73	(17 - 183)	CFR136A 624
Ethylbenzene	81	(37 - 162)	CFR136A 624
1,1,2,2-Tetrachloroethane	99	(46 - 157)	CFR136A 624
1,1,1-Trichloroethane	103	(52 - 162)	CFR136A 624
1,1,2-Trichloroethane	93	(52 - 150)	CFR136A 624
Trichlorofluoromethane	125	(17 - 181)	CFR136A 624
Vinyl chloride	95	(10 - 251)	CFR136A 624
1,2-Dichlorobenzene	86	(18 - 190)	CFR136A 624
Methylene chloride	89	(10 - 221)	CFR136A 624
Tetrachloroethene	87	(64 - 148)	CFR136A 624
Toluene	84	(47 - 150)	CFR136A 624
Trichloroethene	95	(71 ~ 157)	CFR136A 624

(Continued on next page)

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: C8J250125 Work Order #...: K12RK1AC Matrix...... WATER

LCS Lot-Sample#: A8J310000-458

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
1,2-Dichloroethane-d4	102	(80 - 125)
Toluene-d8	92	(84 - 110)
Bromofluorobenzene	90	(81 - 112)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Lot-Sample #...: C8J250125 Work Order #...: K1RE31AG Matrix.....: WATER

MS Lot-Sample #: A8J280262-002

 Date Sampled...:
 10/28/08
 Date Received..:
 10/28/08

 Prep Date....:
 10/31/08
 Analysis Date..:
 10/31/08

 Prep Batch #...:
 8305458
 MS Run #.....:
 8305256

Dilution Factor: 1

PERCENT RECOVERY RAMETER RECOVERY LIMITS METHOD Discrete 85 a (90 - 114) CFR136A 624 Comodichloromethane 73 a (78 - 123) CFR136A 624 Comoform 50 (40 - 141) CFR136A 624
nzene 85 a (90 - 114) CFR136A 624 cmodichloromethane 73 a (78 - 123) CFR136A 624
omodichloromethane 73 a (78 - 123) CFR136A 624
ymoForm
omoform 50 (40 - 141) CFR136A 624
omomethane 99 (42 - 160) CFR136A 624
rbon tetrachloride 73 (61 - 129) CFR136A 624
lorobenzene 80 a (90 - 113) CFR136A 624
loroethane 91 (56 - 133) CFR136A 624
Chloroethyl vinyl ether 0.0 a (10 - 185) CFR136A 624
loroform 90 (90 - 118) CFR136A 624
loromethane 79 (37 - 127) CFR136A 624
promochloromethane 60 a (65 - 123) CFR136A 624
3-Dichlorobenzene 73 a (90 - 111) CFR136A 624
4-Dichlorobenzene 72 a (90 - 112) CFR136A 624
1-Dichloroethane 97 (90 - 114) CFR136A 624
2-Dichloroethane 92 (90 - 123) CFR136A 624
1-Dichloroethene 117 (83 - 129) CFR136A 624
ans-1,2-Dichloroethene 98 (85 - 116) CFR136A 624
2-Dichloropropane 83 a (87 - 119) CFR136A 624
s-1,3-Dichloropropene 67 a (77 - 115) CFR136A 624
ans-1,3-Dichloropropene 59 a (71 - 114) CFR136A 624
nylbenzene 71 a (88 - 111) CFR136A 624
1,2,2-Tetrachloroethane 91 (77 - 133) CFR136A 624
1,1-Trichloroethane 87 (82 - 119) CFR136A 624
1,2-Trichloroethane 85 a (89 - 123) CFR136A 624
ichlorofluoromethane 115 a (62 - 110) CFR136A 624
nyl chloride 92 (50 - 119) CFR136A 624
2-Dichlorobenzene 80 a (90 - 115) CFR136A 624
thylene chloride 85 (78 - 131) CFR136A 624
trachloroethene 76 a (81 - 112) CFR136A 624
luene 77 a (87 - 112) CFR136A 624
ichloroethene 89 (85 - 114) CFR136A 624
PERCENT RECOVERY
RROGATE RECOVERY LIMITS
2-Dichloroethane-d4 104 (80 - 125)
luene-d8 91 (84 - 110)
omofluorobenzene 90 (81 - 112)

(Continued on next page)

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Lot-Sample #...: C8J250125 Work Order #...: K1RE31AG Matrix.....: WATER

MS Lot-Sample #: A8J280262-002

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

a Spiked analyte recovery is outside stated control limits.

Leo Brausch Consulting

Client Sample ID: KFF1008

TOTAL Metals

Lot-Sample #...: C8J250125-001 Matrix....: WATER

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #	.: 8303295					
Cadmium	ND	5.0	ug/L	MCAWW 200.7	10/29-10/31/08	K1L5N1AA
		Dilution Facto	or: 1	Analysis Time: 10:27	MS Run #	: 8303193
		MDL	.: 0.43			
Chromium	3.5 B	5.0	ug/L	MCAWW 200.7	10/29-10/31/08	K1L5N1AC
		Dilution Facto	r: 1	Analysis Time: 10:27	MS Run #	: 8303193
		MIDL	.: 0.59			

NOTE(S):

B Estimated result. Result is less than RL.

METHOD BLANK REPORT

TOTAL Metals

Client Lot #...: C8J250125

Matrix....: WATER

PARAMETER	RESULT	REPORTIN LIMIT	G UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
MB Lot-Sample	#: C8J29000	0-295 Prep B	atch #:	8303295		
Cadmium	ND	5.0	ug/L	MCAWW 200.7	10/29-10/31/08	K1VEL1AD
		Dilution Fac	tor: 1			
		Analysis Tim	e: 09:38			
Chromium	ND	5.0	ug/L	MCAWW 200.7	10/29-10/31/08	K1VEL1AE
		Dilution Fac	tor: 1			
		Analysis Tim	e: 09:38			
Note (s) :						

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot #:	C8J250125		Matrix: WATER
PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS METHOD	PREPARATION- ANALYSIS DATE WORK ORDER #
LCS Lot-Sample#:	C8J290000-	295 Prep Batch #: 8303295	
Cadmium	103	(85 - 115) MCAWW 200.7	10/29-10/31/08 K1VEL1AN
		Dilution Factor: 1 Analysis	Time: 09:43
Chromium	103	(85 - 115) MCAWW 200.7	10/29-10/31/08 KIVEL1AP
		Dilution Factor: 1 Analysis	Time: 09:43
NOTE(S):			

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot #...: C8J250125 Matrix....: WATER Date Sampled...: 10/22/08 Date Received..: 10/23/08 PERCENT RECOVERY RPD PREPARATION-WORK RECOVERY LIMITS RPD LIMITS ANALYSIS DATE ORDER # PARAMETER METHOD MS Lot-Sample #: C8J230271-002 Prep Batch #...: 8303295 Cadmium 101 (70 - 130)MCAWW 200.7 10/29-10/31/08 K1GH01AQ 99 (70 - 130) 1.1 (0-20) MCAWW 200.7 10/29-10/31/08 K1GH01AR Dilution Factor: 1 Analysis Time..: 10:00 MS Run #.....: 8303193 Chromium 102 (70 - 130)MCAWW 200.7 10/29-10/31/08 K1GH01AT 101 (70 - 130) 0.38 (0-20) MCAWW 200.7 10/29-10/31/08 K1GH01AU Dilution Factor: 1 Analysis Time..: 10:00 MS Run #....: 8303193

Calculations are performed before rounding to avoid round-off errors in calculated results.

NOTE(S):

Leo Brausch Consulting

Client Sample ID: KFF1008

General Chemistry

Lot-Sample #...: C8J250125-001 Work Order #...: K1L5N

Matrix....: WATER

Date Sampled...: 10/23/08

Date Received..: 10/24/08

PARAMETER PH	RESULT 7.6	<u>RL</u> 	UNITS No Units	METHOD SM20 4500-H+B	PREPARATION- ANALYSIS DATE 10/27/08	PREP BATCH # 8301110
		Dilution Fac		Analysis Time: 14:46	MS Run #	.: 8301072
			,			
Total Suspended Solids	ND	4.0	mg/L	SM20 2540D	10/26/08	8300015
		Dilution Fac		Analysis Time: 00:00	MS Run #	.: 8300006

METHOD BLANK REPORT

General Chemistry

Client Lot #...: C8J250125

Matrix....: WATER

PARAMETER Total Suspended Solids	RESULT	REPORTING LIMIT Work Order	UNITS	METHOD MB Lot-Sample #:	PREPARATION - ANALYSIS DATE C8J260000-015	PREP BATCH #
	ND	4.0 Dilution Fact Analysis Time		SM20 2540D	10/26/08	8300015

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: C8J250125

Matrix....: WATER

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
рн	101		#: KINCETAA LCS Lot SM20 4500-H+B	t-Sample#: C8J270000- 10/27/08	·110 8301110
		Dilution Fact	or: 1 Analysis Ti	ime: 00:00	
Total Suspended Solids		Work Order	#: KIMXFIAC LCS Lot	t-Sample#: C8J260000-	-015
	94	(80 - 120) Dilution Fact	SM20 2540D or: 1 Analysis Ti	10/26/08 ime: 00:00	8300015

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #...: C8J250125 Work Order #...: K1L5N-SMP Matrix.....: WATER

K1L5N-DUP

	RESULT Suspended s	DUPLICATE RESULT	UNITS	RPD	RPD LIMIT	METHOD SD Lot-Sample #:	PREPARATION- ANALYSIS DATE C8J250125-001	PREP BATCH #
	ND	ND	mg/L Dilution Fac	29 tor: 1	(0-20) Ana	SM20 2540D lysis Time: 00:00	10/26/08 MS Run Number:	8300015 8300006
рН	7.6	7.6	No Units			SD Lot-Sample #: SM20 4500-H+B lysis Time: 14:46	C8J250125-001 10/27/08 MS Run Number:	8301110 8301072

ATTACHMENT C ANALYTICAL LABORATORY REPORT QUARTERLY SAMPLING – MONITORING WELL MW-32

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

PROJECT NO. LEO BRAUSCH BUF

Leo Brausch Buffalo Airport

Lot #: C8J010334

Leo Brausch

Leo Brausch Consulting 131 Wedgewood Drive Gibsonia, PA 15044

TESTAMERICA LABORATORIES, INC.

Carrie L. Gamber

Project Manager

October 20, 2008

NELAC REPORTING:

At the time of analysis the laboratory was in compliance with the current NELAC standards and held accreditation for all analyses performed unless noted by a qualifier. The labs accreditation numbers are listed below. The format and contents of the report meets all applicable NELAC standards except as noted in the narrative and shall not be reproduced except in full, without the written approval of the laboratory. The table below presents a summary of the certifications held by TestAmerica Pittsburgh. Our primary accreditation authority for the Non-potable water and Solid & Hazardous waste programs is Pennsylvania DEP. A more detailed parameter list is available upon request. Please ask your project manager for this information when required.

Certifying State/Program	Certificate #	Program Types	TestAmerica
NFESC	NA NA	NAVY	v
US Dept of Agriculture	(#P330-07-00101)	Foreign Soil Import Permit	X
Arkansas	(#03-022-1)	WW WW	X X
	("00 022 . ,	HW	x
California – NELAC	04224CA	ww	x
		HW	
Connecticut	(#PH-0688)	WW	x
		HW	
Florida - NELAC	(#E87660)	WW	X
		HW	X
Illinois – NELAC	(#200005)	ww	X
		HW	
Kansas – NELAC	(#E-10350)	ww	X
		HW	X
Louisiana - NELAC	(#93200)	ww	X
	•	HW	X
New Hampshire – NELAC	(#203002)	ww	X
New Jersey - NELAC	(PA-005)	ww	X
	,	HW	
New York - NELAC	(#11182)	ww	X
		HW	
North Carolina	(#434)	ww	X
		HW	X
Pennsylvania - NELAC	(#02-00416)	ww	Χ
		HW	X
South Carolina	(#89014001)	ww	X
		HW	X
Utah - NELAC	(STLP)	ww	X
		HW	X
West Virginia	(#142)	WW	Χ
		HW	X
Wisconsin	998027800	ww	X
		HW	X

The codes utilized for program types are described below:

HW Hazardous Waste certification

WW Non-potable Water and/or Wastewater certification

X Laboratory has some form of certification under the specific program. Many states certify laboratories for specific parameters or tests within a category. The information in the table indicates the lab is certified in a general category of testing. Please contact the laboratory if parameter specific certification information is required.

Updated: 12/28/07 C:\Documents and Settings\derubeisn\My Documents\NELAC NARRATIVE Pttsburgh.doc

CASE NARRATIVE

Leo Brausch Consulting

Lot # C8J010334

Sample Receiving:

TestAmerica's Pittsburgh laboratory received samples on October 1, 2008. The cooler was received within the proper temperature range.

GC/MS Volatiles:

Due to the concentration of target compounds detected, sample WG-18036-093008-MW-32 was analyzed at a dilution.

Metals:

The relative percent difference between sample WG-18036-093008-MW-32 and the duplicate digestion of this sample was outside of the control limits for lead.

METHODS SUMMARY

C8J010334

PARAMET	ER	ANALYTICAL METHOD	PREPARATION METHOD
	Volatile Organic Compounds (OLM04.2) Lively Coupled Plasma	OCLP OLM04.2 ICLP ILM04.0/4.	OCLP OLM04.2 ICLP ILM04.0
Referen	nces:		
ICLP	USEPA Contract Laboratory Program St Inorganics Analysis, Multi-Media, Mu	atement of Work for lti-Concentration.	
OCLP	USEPA Contract Laboratory Program St Organics Analysis, Multi-Media, Mult	atement of Work for i-Concentration.	

SAMPLE SUMMARY

C8J010334

WO # SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
KX1A5 001	WG-18036-093008-MW-32	09/30/08	10:15
KX1CF 002	TB-18036-093008	09/30/08	

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

$\mathbf{\alpha}$
0
ŭ
Ш
盃
Ξ
\leq
느
0
H
S
\supset
$\bar{\mathbf{o}}$
li.
7
O
7
⋖
I
乙

	SHIPPED 10 (Laborat	TO (Laboratory Name):	REFERENCE NUMB	ER: 18036-521831
CUNESTOVA-HUVENS & ASSOCIATES N F OFFICE	STL PINSBURGH	RBH	VIACOM /44y (VIACOM YALY GW SAMPLING
SAMPLER'S Sam Maidmer PRINTED SIGNATURE: S	SHAWN GARDNER	STĐI	1	Sylvenia
SEQ. No. DATE TIME SAMPLE No.	SAN	SAMPLE Contain	Wash Sign was	KEMAHRS
4-30-081015 WB-18056-093008-HW-32		┼	X	
		ins Wasek 3	, ,	
	1			
	:			
TOTAL NUMBER OF CONTAINERS		7	HEALTH/CHEMICAL HAZARDS	SO
RELINGUISHED BY Jacamer	DATE: 4-30-08	RECEIVED BY:	D BY:	DATE: TIME:
LINQUISHED BY:	DATE:	RECEIVED BY:	D BY:	DATE:
Ø	TIME:	0		TIME
RELINQUISHED BY:	DATE: TIME:	RECEIVED BY:	ØBY:	DATE: 70/1/8
METHOD OF SHIPMENT: FED EX		WAY BILI	Mo.	
Copy ratory Copy	SAMPLE TEAM:		RECEIVED FOR LABORATORY BY:	NO @117518
l l	GARDNER		DATE:TIME:	
				1001 (D) APR 28/97(NE) REV () (E-15)

Leo Brausch Consulting

Client Sample ID: WG-18036-093008-MW-32

GC/MS Volatiles

Lot-Sample #...: C8J010334-001 Work Order #...: KX1A51AA Matrix....: WATER

Date Sampled...: 09/30/08 Date Received..: 10/01/08 MS Run #...: 8283259

Prep Batch #...: 8283393 Analysis Time..: 12:41

Prep Batch #...: 8283393 Analysis Time..: 12:4
Dilution Factor: 3

Method...... OCLP OLM04.2

PARAMETER	RESULT	REPORTING LIMIT	UNITS	MDL
Toluene	ND 420	30 30	ug/L ug/L	3.0 3.0
cis-1,2-Dichloroethene 1,1,1-Trichloroethane	ND	30 30	ug/L ug/L	3.0 3.0
Trichloroethene Vinyl chloride	120 48	30	ug/L	3.0
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	_	
Toluene-d8 Bromofluorobenzene	98 92	(88 - 110) (86 - 115)	=	
1,2-Dichloroethane-d4	96	(76 - 114))	

Leo Brausch Consulting

Client Sample ID: TB-18036-093008

GC/MS Volatiles

Lot-Sample #: C8J010334-002 Date Sampled: 09/30/08	Work Order #: KX1CF1AA Date Received: 10/01/08	Matrix: WATER MS Run #: 8283259
Date Sampled 05/30/00	Analysis Date - 10/09/08	

Prep Date....: 10/09/08 Analysis Time..: 11:56 Prep Batch #...: 8283393

Dilution Factor: 1

1,2-Dichloroethane-d4

Method.....: OCLP OLM04.2

PARAMETER	RESULT	REPORTING LIMIT	UNITS	MDL .
Toluene	ND	10	ug/L	1.0
cis-1,2-Dichloroethene	ND	10	ug/L	1.0
1,1,1-Trichloroethane	ND	10	ug/L	1.0
Trichloroethene	ND	10	ug/L	1.0
Vinyl chloride	ND.	10	ug/L	1.0
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	_	
Toluene-d8	95	(88 - 110)		
Bromofluorobenzene	91	(86 - 115)	ı	
1,2-Dichloroethane-d4	96	(76 - 114)	l	

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: C8J010334

Work Order #...: KOHEH1AA

Matrix..... WATER

MB Lot-Sample #: C8J090000-393

Prep Date....: 10/09/08

Analysis Time..: 10:05

Analysis Date..: 10/09/08

Dilution Factor: 1

Prep Batch #...: 8283393

GULT	LIMIT 10 10 10 10	ug/L ug/L ug/L	METHOD OCLP OLM04.2 OCLP OLM04.2 OCLP OLM04.2	
	10 10	ug/L ug/L	OCLP OLM04.2 OCLP OLM04.2	
	10	ug/L	OCLP OLM04.2	
•				
	10	/*		
		ug/L	OCLP OLM04.2	
	10	ug/L	OCLP OLM04.2	
RCENT	RECOVER'	Y		
COVERY	LIMITS			
	(88 - 1	10)		
	-			
	(76 - 1	14)	•	
		RCENT RECOVER COVERY LIMITS (88 - 1) (86 - 1)	RCENT RECOVERY	RCENT RECOVERY LIMITS (88 - 110) (86 - 115)

NOTE(S):

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: C8J010334 Work Order #...: K0HEH1AC Matrix.....: WATER

LCS Lot-Sample#: C8J090000-393

Prep Date....: 10/09/08 Analysis Date..: 10/09/08 Prep Batch #...: 8283393 Analysis Time..: 10:44

Dilution Factor: 1

PARAMETER Trichloroethene Toluene 1,1-Dichloroethene Benzene Chlorobenzene	PERCENT RECOVERY 99 101 101 99 98	RECOVERY LIMITS (71 - 120) (76 - 125) (61 - 145) (76 - 127) (75 - 130)	METHOD OCLP OLM04.2 OCLP OLM04.2 OCLP OLM04.2 OCLP OLM04.2 OCLP OLM04.2	
SURROGATE Toluene-d8 Bromofluorobenzene 1,2-Dichloroethane-d4		PERCENT RECOVERY 98 93 98	RECOVERY LIMITS (88 - 110) (86 - 115) (76 - 114)	٠.

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: C8J010334 Work Order #...: KX1A51AE-MS Matrix....: WATER

MS Lot-Sample #: C8J010334-001 KX1A51AF-MSD

Date Sampled...: 09/30/08 Date Received..: 10/01/08 MS Run #.....: 8283259

Prep Date....: 10/09/08 Analysis Date..: 10/09/08
Prep Batch #...: 8283393 Analysis Time..: 13:18

Dilution Factor: 3

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD_	RPD LIMITS	METHOD
Trichloroethene	100	(71 - 120)			OCLP OLM04.2
	99	(71 - 120)	0.63	(0-14)	OCLP OLM04.2
Toluene	104	(76 - 125)			OCLP OLM04.2
	102	(76 - 125)	1.8	(0-13)	OCLP OLM04.2
1,1-Dichloroethene	106	(61 - 145)			OCLP OLM04.2
1,1 21011 0101	103	(61 - 145)	2.9	(0-14)	OCLP OLM04.2
Benzene	102	(76 - 127)			OCLP OLM04.2
	100	(76 - 127)	1.2	(0-11)	OCLP OLM04.2
Chlorobenzene	102	(75 - 130)			OCLP OLM04.2
	101	(75 - 130)	0.72	(0-13)	OCLP OLM04.2
		PERCENT		RECOVERY	•
SURROGATE		RECOVERY		LIMITS	
Toluene-d8		100		(88 - 110))
10100110 00		99		(88 - 110))
Bromofluorobenzene		96		(86 - 115	5)
D100114010000000000000000000000000000	•	93		(86 - 119	5)
1,2-Dichloroethane-d4		102		(76 - 114	1)
1,2 210111010001111110 41	•	99		(76 - 114	1)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

Leo Brausch Consulting

Client Sample ID: WG-18036-093008-MW-32

TOTAL Metals

Lot-Sample # Date Sampled		01 Date R	eceived:	10/01/08	Matrix:	WATER
PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Cadmium	.: 8283411 ND	5 Dilution Facto		ICLP ILM04.0/4.1 Analysis Time: 09:43	10/09-10/20/08 MS Run #	
Lead	ND	3 Dilution Facto		ICLP ILM04.0/4.1 Analysis Time: 09:43	10/09-10/20/08 MS Run #	

METHOD BLANK REPORT

TOTAL Metals

Client Lot #...: C8J010334

Matrix..... WATER

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
MB Lot-Sample # Cadmium	ND	1 Prep Bar 5.0 ilution Facto nalysis Time.	ug/L or: 1	8283411 ICLP ILM04.0/4.1	10/09-10/20/08	KOHJ51AA
Lead	_	3.0 Dilution Factor Canalysis Time.		ICLP ILM04.0/4.1	10/09-10/20/08	KOHJ51AC

NOTE(S):

LABORATORY CONTROL SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot #...: C8J010334

Matrix....: WATER

PERCENT

RECOVERY

PREPARATION-

Cadmium

RECOVERY

METHOD LIMITS

ANALYSIS DATE WORK ORDER #

LCS Lot-Sample#: C8J090000-411 Prep Batch #...: 8283411

(80 - 120) ICLP ILM04.0/4.1 10/09-10/20/08 K0HJ51AD

Dilution Factor: 1

Analysis Time..: 09:39

Lead

102

(80 - 120) ICLP ILM04.0/4.1 10/09-10/20/08 KOHJ51AE

Dilution Factor: 1

Analysis Time..: 09:39

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot #...: C8J010334

Matrix....: WATER

Date Sampled...: 09/30/08

Date Received..: 10/01/08

PERCENT

RECOVERY

PREPARATION-

PARAMETER

RECOVERY

LIMITS

METHOD

ANALYSIS DATE WORK ORDER #

MS Lot-Sample #: C8J010334-001 Prep Batch #...: 8283411

Cadmium

(75 - 125) ICLP ILM04.0/4.1 10/09-10/20/08 KX1A51AG

99

Dilution Factor: 1

Analysis Time..: 09:43

MS Run #....: 8283281

103

(75 - 125) ICLP ILM04.0/4.1 10/09-10/20/08 KX1A51AH

Dilution Factor: 1

Analysis Time..: 09:43

MS Run #.....: 8283281

NOTE(S):

Lead

SAMPLE DUPLICATE EVALUATION REPORT

Metals

Client Lot #...: C8J010334

Work Order #...: KX1A5-SMP

Matrix....: WATER

Date Sampled...: 09/30/08

KX1A5-DUP

Date Received..: 10/01/08

	RESULT	DUPLICATE RESULT	UNITS	RPD	RPD LIMIT	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Cadmi	ND	ND	ug/L Dilution Fact	0 :or: 1	(0-20) Ana	SD Lot-Sample #: ICLP ILM04.0/4.1 lysis Time: 09:43	10/09-10/20/08 MS Run Number:	
Lead	ND	1.9 B	ug/L Dilution Fact	200 cor: 1	(0-20) Ana	SD Lot-Sample #: ICLP ILM04.0/4.1 lysis Time: 09:43		

B Estimated result. Result is less than RL.