DUMIN



**CBS** Corporation

RECEIVED

Environmental Remediation 11 Stanwix Street Pittsburgh, PA 15222

MAR 1 4 2006 NYSDEC REG 9 FOIL UNREL

March 13, 2006

David S. Szymanski Environmental Engineering Technician III New York State Department of Environmental Conservation Division of Environmental Remediation, Region 9 270 Michigan Avenue Buffalo, NY 14203-2999

Re: Monthly Operation and Maintenance Report NYSDEC Site 9-15-066, Cheektowaga, New York

Dear Mr. Szymanski:

On behalf of the Respondents to the Order on Consent and Settlement Agreement (Index No. B9-0381-91-8) (the "Order"), CBS Corporation (CBS) submits this monthly report on the status of operation and maintenance (O&M) activities at New York State Department of Environmental Conservation (NYSDEC) Site No. 9-15-066 in Cheektowaga, New York (the "Site"). Under an Agreement among the Respondents, CBS is managing the Remedial Program under the Order. This report covers activities during the period of February 1 through February 28, 2006 and transmits the discharge monitoring report for this reporting period.

#### 1. Site Activities and Status

- A. On February 18, 2006, CBS submitted to NYSDEC a monthly report on the status of both routine and non-routine O&M activities at the Site for the January 2006 operating period. That status report also transmitted the discharge monitoring data for January 2006.
- B. The recovery and treatment system operated throughout the February 2006 reporting period.

<sup>&</sup>lt;sup>1</sup> "Agreement for Cost Sharing, Joint Performance and Joint Defense Related to a Remedial Design and Remedial Action for the NYSDEC Inactive Hazardous Waste Disposal Site No. 9-15-066, Cheektowaga, NY," effective January 5, 1999.

- C. Conestoga-Rovers & Associates (CRA) conducted routine O&M on behalf of Viacom.
- D. CBS, through its outside counsel, continued discussions with the Niagara Frontier Transportation Authority (NFTA) regarding the potential disposition of the Flying Tigers Restaurant and associated property that had been the subject of NYSDEC correspondence dated September 25 and November 30, 2005.

# 2. Sampling Results and Other Site Data

- A. In February 2006, the groundwater system recovered an estimated 399,000 gallons.
- B. Attachment A provides the discharge monitoring report for February 2006 based on the effluent sample collected on February 28, 2006. Attachment B provides the analytical laboratory report for this effluent sample.
- C. In reviewing the treatment system effluent monitoring information, please note the following:
  - The flow data are provided via on-site readings and calls into the Autodialer. The maximum daily flow was calculated from these data.
  - The pH data are provided via on-site readings, calls into the Autodialer, and laboratory analysis of the monthly effluent sample. pH data are reported only for measurements taken while the treatment pump is operating and the system is actively discharging.
  - The reported daily maximum values (pounds per day) are calculated using the maximum observed daily flow and the results of the monthly effluent monitoring, irrespective of whether the actual maximum daily flow occurred on the day of sampling.
- D. For the February 2006 reporting period the effluent complied with all discharge limitations except for pH. pH values were recorded both below and above the specified range of 6.5 to 8.5. The (geometric) mean and median pH values recorded in February 2006 were 6.40 and 8.01, respectively. The operational problems associated with pH fluctuations recurred in February 2006, and, in response, CRA has redoubled its efforts to improve system maintenance and control. The two most-recent readings from the in-line pH meter (via Autodialer on March 12 and 13, 2006) were 7.27 and 7.40, respectively.

# 3. Upcoming Activities

- A. CBS will continue its reviews with NFTA regarding the potential disposition of the Flying Tigers Restaurant and coordinate with NYSDEC counsel on this matter.
- B. CRA will continue routine operation of the recovery and treatment system until NYSDEC concurs that the operation of this system can be terminated.
- C. As needed, Encotech, Inc. will conduct supplemental maintenance of the treatment facility focused on issues related to system sustainability and treatment efficiency.

# 4. Operational Problems

- A. In various areas, the collected groundwater exhibits a high hardness and pH that are likely related to the use of crushed concrete as fill in site redevelopment. The hardness precipitates as calcium and magnesium carbonate. This fine precipitate rapidly plugs pumps, piping, filters, and activated carbon adsorbers, greatly increasing the level of effort required to operate the treatment system. Viacom has been unable to implement effective measures to address this high solids loading.
- B. The inflow to the collection system continues to exceed the routine withdrawal rate from the three collector sumps. This imbalance is caused, in part, by downtime for sump pump maintenance due to clogging with precipitate. It is also suspected that surface water inflows continue to occur.

\* \* \* \*

We trust this submittal satisfies your requirements at this time. If you have questions regarding this status report, please contact me.

Respectfully submitted,

Leo M. Brausch

Consultant/Project Engineer

LMB:

Attachments

David S. Szymanski March 13, 2006 Page 4

cc:

J. Crua, NYSDOH C. Boller, CRA K. Minkel, NFTA

# ATTACHMENT A DISCHARGE MONITORING REPORT FEBRUARY 2006

Discharge Monitoring Data
Outfall 001 - Treated Groundwater Remediation Discharge
NYSDEC Site No. 9-15-006
Cheektowaga, New York

Reporting Month & Year

Feb-06

| Parame                                          | Daily<br>Minimum                       | Daily<br>Maximum | Units                   | Daily<br>Maximum<br>(lbs/day) | Measurement<br>Frequency | Sample Type              |                       |
|-------------------------------------------------|----------------------------------------|------------------|-------------------------|-------------------------------|--------------------------|--------------------------|-----------------------|
| Flow                                            | Monitoring Result Discharge Limitation |                  | <b>22,183</b><br>28,800 | <b>gpd</b><br>gpd             |                          | Continuous<br>Continuous | <b>Meter</b><br>Meter |
| рН                                              | Monitoring Result Discharge Limitation | <b>2.87</b> 6.5  | 10.12<br>8.5            | <b>s.u.</b><br>s.u.           |                          | 17<br>Weekly             | <b>Grab</b><br>Grab   |
| Total suspended solids                          | Monitoring Result Discharge Limitation | -                | < <b>4.0</b> 20         | mg/L<br>mg/L                  | < 0.74                   | 1<br>Monthly             | <b>Grab</b><br>Grab   |
| Toluene                                         | Monitoring Result Discharge Limitation |                  | < 1.0<br>5              | <b>ug/L</b><br>ug/L           | < 0.00019                | 1<br>Monthly             | <b>Grab</b><br>Grab   |
| Methylene chloride                              | Monitoring Result Discharge Limitation |                  | <b>0.56</b><br>10       | ug/L<br>ug/L                  | 0.00010                  | 1<br>Monthly             | <b>Grab</b><br>Grab   |
| 1,2-dichlorobenzene                             | Monitoring Result Discharge Limitation |                  | < 1.0<br>5              | ug/L<br>ug/L                  | < 0.00019                | 1<br>Monthly             | <b>Grab</b><br>Grab   |
| cis-1,2-dichloroethylene                        | Monitoring Result Discharge Limitation | _                | <b>2.2</b><br>10        | ug/L<br>ug/L                  | 0.00041                  | 1<br>Monthly             | <b>Grab</b><br>Grab   |
| Trichloroethylene                               | Monitoring Result Discharge Limitation |                  | < <b>1.0</b><br>10      | ug/L<br>ug/L                  | < 0.00019                | 1<br>Monthly             | <b>Grab</b><br>Grab   |
| Tetrachloroethylene                             | Monitoring Result Discharge Limitation |                  | <b>&lt; 1.0</b><br>50   | u <b>g/L</b><br>ug/L          | < 0.00019                | 1<br>Monthly             | <b>Grab</b><br>Grab   |
| Cadmium                                         | Monitoring Result Discharge Limitation |                  | <b>2.2</b><br>3         | u <b>g/L</b><br>ug/L          | 0.00041                  | 1<br>Monthly             | <b>Grab</b><br>Grab   |
| Chromium Monitoring Result Discharge Limitation |                                        |                  | <b>5.0</b><br>99        | ug/L<br>ug/L                  | 0.00093                  | 1<br>Monthly             | <b>Grab</b><br>Grab   |

3/13/2006 Page 1 of 1

# ATTACHMENT B LABORATORY ANALYSIS REPORT FEBRUARY 2006 EFFLUENT SAMPLE



STL Pittsburgh 301 Alpha Drive Pittsburgh, PA 15238

Tel: 412 963 7058 Fax: 412 963 2468 www.stl-inc.com

# **ANALYTICAL REPORT**

PROJECT NO. VIACOM

Viacom Buffalo Airport

Lot #: C6C010116

Leo Brausch

Leo Brausch Consulting

SEVERN TRENT LABORATORIES, INC.

Carrie L. Gamber Project Manager

March 8, 2006

l





#### **NELAC REPORTING:**

The format and content of the attached report meets NELAC standards and guidelines except as noted in the narrative. The table below presents a summary of the certifications held by STL Pittsburgh. Our primary accreditation authority for the Non-potable water and Solid & Hazardous waste programs is Pennsylvania DEP. A more detailed parameter list is available upon request. Please ask your project manager for this information when required.

| Certifying<br>State Program | Certificate                           | Program Types              | S1t Pittsburgh |
|-----------------------------|---------------------------------------|----------------------------|----------------|
| NFESC                       | NA                                    | NAVY                       | X              |
| USACE                       | NA -                                  | Corps of Engineers         | X              |
| US Dept of Agriculture      | (#S-46425)                            | Foreign Soil Import Permit | X              |
| Arkansas                    | (#03-022-1)                           | ww                         | X              |
|                             |                                       | HW                         | X              |
| California – nelac          | 04224CA                               | . ww                       | X              |
|                             |                                       | HW HW                      | X              |
| Connecticut                 | (#PH-0688)                            | j ww                       | X              |
|                             |                                       | HW -                       | <u>X</u>       |
| Florida - nelac             | (#E87660)                             | ww !                       | X              |
|                             |                                       | HW HW                      | X              |
| Illinois – nelac            | (#200005)                             | ww                         | X              |
|                             |                                       | HW                         | X              |
| Kansas – nelac              | (#E-10350)                            | ww                         | Х              |
|                             | · · · · · · · · · · · · · · · · · · · | HW                         | X              |
| Louisiana nelac             | (#93200)                              | ww                         | X              |
|                             |                                       | HW                         | X              |
| New Hampshire – nelac       | (#203002)                             | ww                         | × -            |
| New Jersey - nelac          | (PA-005)                              | ww                         | X              |
|                             |                                       | HW                         | X              |
| New York - nelac            | (#11182)                              | ww                         | X              |
|                             |                                       | HW _                       | X              |
| North Carolina              | (#434)                                | ww                         | X              |
|                             |                                       | HW                         | <u> </u>       |
| North Dakota                | R-075                                 | ww                         | X              |
|                             |                                       | HW                         | X              |
| Ohio Vap                    | (#CL0063)                             | ww                         | X              |
|                             |                                       | HW                         | X              |
| Pennsylvania - nelac        | (#02-00416)                           | ww                         | X              |
|                             |                                       | HW                         | X              |
| South Carolina              | (#89014001)                           | ww                         | X              |
| <u> </u>                    | (0710)                                | HW                         | <u> </u>       |
| Utah nelac                  | (STLP)                                | ww                         | X              |
| M                           | (44.45)                               | HW                         | X              |
| West Virginia               | (#142)                                | WW                         |                |
| )A/!                        | 000007000                             | HW                         | X              |
| Wisconsin                   | 998027800                             | WW                         | X              |
|                             | أسبب كيسيس كيسم                       | HW                         | X              |

The codes utilized for program types are described below:

HW Hazardous Waste certification

WW Non-potable Water and/or Wastewater certification

Laboratory has some form of certification under the specific program. Many states certify laboratories for specific parameters or tests within a category. The information in the table indicates the lab is certified in a general category of testing. Please contact the laboratory if parameter specific certification information is required.

#### **CASE NARRATIVE**

# Leo Brausch Consulting Viacom

Viacom Buffalo Airport

#### STL Lot # C6C010116

#### Sample Receiving:

STL Pittsburgh received one sample on March 1, 2006. The cooler was received within the proper temperature range.

If project specific QC was not required for samples contained in this report, when batch QC was completed on these samples, anomalous results will be discussed below.

# GC/MS Volatiles(624):

2-chloroethyl vinyl ether does not recover well in acid preserved samples.

The RPD between the MS/MSD for 2-chloroethyl vinyl ether recovered outside of criteria. Acceptable LCS data demonstrates that the analytical system was operating in control; this condition is most likely due to a matrix effect.

#### Metals:

There were no problems associated with the analysis.

#### General Chemistry:

The sample was received and analyzed outside of the holding time for pH.

# **METHODS SUMMARY**

#### C6C010116

| PARAMETER                                     | ANALYTICAL<br>METHOD | PREPARATION<br>METHOD |
|-----------------------------------------------|----------------------|-----------------------|
| pH (Electrometric)                            | MCAWW 150.1          | MCAWW 150.1           |
| Non-Filterable Residue (TSS)                  | MCAWW 160.2          | MCAWW 160.2           |
| Purgeables                                    | CFR136A 624          | CFR136A 624           |
| Trace Inductively Coupled Plasma (ICP) Metals | MCAWW 200.7          | MCAWW 200.7           |

CFR136A "Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

MCAWW "Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.

# **SAMPLE SUMMARY**

#### C6C010116

| WO #  | SAMPLE# | CLIENT SAMPLE ID | SAMPLED<br>DATE | SAMP<br>TIME |
|-------|---------|------------------|-----------------|--------------|
| HODVR | 001     | EFF-2-06         | 02/28/06        | 14:02        |
|       | _       |                  |                 |              |

#### NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

# CHAIN OF CUSTODY RECORD

| (6                             |             | 2371         | OGA-ROVERS & ASSOCIATES George Weintlel                                     | SHIPPED TO (Laboratory Name):         |                                       |                                                  |            | VIA CON BUFFALO AIRPORT |            |          |               |                 |     |      |     |              |                                                  |          |                                                  |      |       |                  |             |
|--------------------------------|-------------|--------------|-----------------------------------------------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------------------|------------|-------------------------|------------|----------|---------------|-----------------|-----|------|-----|--------------|--------------------------------------------------|----------|--------------------------------------------------|------|-------|------------------|-------------|
| SAM                            | IPLER'S     | Depar<br>De  |                                                                             | E Chu                                 | ck Bolle-                             |                                                  |            | Jers                    | بال        | سال      | R. C.         | Tit.            | 19  | 7    | 7   | 7            | 7                                                | 7        | 7                                                | 7    |       |                  |             |
| SEQ.<br>No.                    | DATE        | TIME         | SAMPLE No.                                                                  |                                       |                                       | SAMPI<br>TYPE                                    | E          | No. of<br>Containers    | 120        | Ser.     |               | ed              | _   | _    | /   |              | /                                                | /        | /                                                |      | H     | EMARK            | .s<br>      |
|                                | 2-28-d      | 202          | EFF-2-06                                                                    |                                       |                                       | Later                                            |            | 2                       | 3          | 7        | $\mathcal{L}$ |                 |     |      |     |              |                                                  | _        | L                                                |      |       |                  |             |
|                                |             |              |                                                                             |                                       |                                       | <del> </del> -                                   |            |                         |            | -        |               |                 |     |      | _   |              | -                                                |          | ╀                                                |      |       |                  |             |
|                                |             |              |                                                                             |                                       | <del></del>                           | <del> </del>                                     | -          |                         |            |          |               |                 |     |      | i   |              | -                                                |          | <del>                                     </del> |      |       |                  |             |
|                                |             |              |                                                                             |                                       |                                       |                                                  |            |                         |            |          |               |                 |     |      |     |              |                                                  |          |                                                  |      |       |                  |             |
|                                |             | ļ            |                                                                             |                                       |                                       | <b> </b>                                         | {          |                         |            |          |               |                 |     |      |     | -            | <u> </u>                                         | <u> </u> | 1                                                |      |       |                  |             |
| -                              |             |              | <u> </u>                                                                    |                                       |                                       | ┼                                                |            |                         |            |          |               |                 |     |      |     | <u> </u>     | ├                                                |          | ┼                                                |      |       |                  |             |
| $\vdash$                       | <del></del> | <del> </del> | <u> </u>                                                                    |                                       |                                       | <del> </del>                                     |            |                         | $\vdash$   |          |               |                 |     | -    |     |              | ╁╌                                               | ╂─       | ┼-                                               |      | · · - |                  |             |
| 1                              |             | _            |                                                                             |                                       | · · · · · · · · · · · · · · · · · · · | <del> </del>                                     |            |                         |            |          |               |                 |     |      |     | -            | 一                                                | <u> </u> | $\vdash$                                         |      |       |                  |             |
|                                |             |              |                                                                             |                                       |                                       |                                                  |            |                         |            |          |               |                 |     |      |     |              |                                                  |          |                                                  |      |       |                  |             |
|                                |             |              |                                                                             |                                       |                                       |                                                  |            |                         |            |          |               |                 |     |      |     |              | L.                                               |          | L.                                               |      |       |                  |             |
|                                | · -         | <u> </u>     | <br>                                                                        |                                       |                                       | ļ                                                |            |                         | _          |          |               |                 |     |      |     | <u> </u>     | <b>├</b> _                                       | —        | <u> </u>                                         |      |       |                  |             |
| <b> </b>                       |             |              | <del></del>                                                                 | · · · · · · · · · · · · · · · · · · · |                                       | <del> </del>                                     |            |                         |            | -        | <u> </u>      | -               |     |      |     | <del> </del> |                                                  | ├-       | ┼-                                               |      |       |                  |             |
|                                |             | <del> </del> |                                                                             |                                       |                                       | <del>                                     </del> |            |                         | -          | $\vdash$ |               |                 | -   | -    |     |              | ├-                                               | ╁╴       | <del> </del>                                     |      |       |                  |             |
| -                              |             |              | <del> </del>                                                                |                                       | <del></del>                           | +                                                |            |                         |            |          |               |                 | _   |      |     |              | <del>                                     </del> | 1-       |                                                  |      |       | <del></del>      |             |
|                                |             |              | TOTAL NUMBER OF CONT                                                        | AINERS                                |                                       |                                                  |            |                         |            |          |               | HEA             | LTH | ł/C⊦ | IEM | ICA          | L H                                              | AZA      | RDS                                              | ;    |       |                  |             |
| REL                            | INOM        | HE BYB       |                                                                             | D.                                    | ATE: 2-28                             | -06                                              | RI         | ECEN                    | /ED        | BY:      |               |                 |     |      | _   | _            |                                                  |          |                                                  | ==   | DATE  | <del></del><br>: | <del></del> |
| 0/2                            | IR.         | 150          |                                                                             |                                       | IME: 2:15                             |                                                  | <b>D</b>   |                         |            |          |               |                 |     |      |     |              |                                                  |          |                                                  |      | TIME  |                  |             |
|                                | INQUIS      | SHED B       | Y:                                                                          |                                       | ATE:                                  |                                                  |            | ECEI                    | /ED        | BY:      |               |                 |     |      |     |              |                                                  |          |                                                  |      | DATE  |                  |             |
| 2_                             |             |              |                                                                             |                                       | IME:                                  |                                                  | 2          | ===                     | _          | ==       |               |                 |     |      |     | =            |                                                  |          |                                                  | =    | TIME  |                  |             |
| _                              | INQUIS      | SHED B       | <b>Y</b> :                                                                  |                                       | ATE:                                  |                                                  |            | ECEI                    | <b>∕ED</b> | BY:      |               |                 |     |      |     |              |                                                  |          |                                                  |      | DATE  |                  |             |
| 3_                             |             |              |                                                                             |                                       | IMÉ:                                  |                                                  | 3          |                         |            |          | _             | _               | =   |      | === |              | =                                                | ==       |                                                  |      | TIME  | :<br>            | <del></del> |
| <del></del>                    |             | F SHIP       |                                                                             |                                       |                                       |                                                  | _ <u>w</u> | AY BI                   |            |          | 4             |                 | _   |      |     | _            |                                                  |          |                                                  |      |       |                  | <del></del> |
| White<br>Yello<br>Pink<br>Gold | w           |              | -Fully Executed Copy -Receiving Laboratory Copy -Shipper Copy -Sampler Copy | SAMPL                                 | E TEAM:                               |                                                  |            | <u></u> -               | .  ,       | Ta       | Tu            | OF<br>CA<br>13/ | 7-1 |      | la. | L            | 1                                                |          | _ <b>!</b>                                       | No ( | CRA   | 102              | 214         |

# Leo Brausch Consulting

# Client Sample ID: RFF-2-06

# GC/MS Volatiles

Lot-Sample #...: C6C010116-001 Work Order #...: HODVR1AA Matrix....: WATER

Date Sampled...: 02/28/06 Date Received..: 03/01/06 MS Run #....: 6061010

 Prep Date....:
 03/01/06
 Analysis Date..:
 03/02/06

 Prep Batch #...:
 6060621
 Analysis Time..:
 05:20

Dilution Factor: 1

Method..... CFR136A 624

#### REPORTING

|                        |          | REPORTIN  | 1G    |      |   |
|------------------------|----------|-----------|-------|------|---|
| PARAMETER              | RESULT_  | LIMIT     | UNITS | MDL  | _ |
| cis-1,2-Dichloroethene | 2.2      | 1.0       | ug/L  | 0.27 |   |
| 1,2-Dichlorobenzene    | ND       | 1.0       | ug/L  | 0.20 |   |
| Methylene chloride     | 0.56 J   | 1.0       | ug/L  | 0.40 |   |
| Tetrachloroethene      | ND       | 1.0       | ug/L  | 0.21 |   |
| Toluene                | ND       | 1.0       | ug/L  | 0.18 |   |
| Trichloroethene        | ND       | 1.0       | ug/L  | 0.22 |   |
|                        | PERCENT  | RECOVERY  | 7     |      |   |
| SURROGATE              | RECOVERY | _ LIMITS_ |       |      |   |
| 4-Bromofluorobenzene   | 115      | (70 - 11  | .8)   |      |   |
| 1,2-Dichloroethane-d4  | 112      | (64 - 13  | 5)    |      |   |
| Toluene-d8             | 95       | (71 - 11  | .8)   |      |   |
| Dibromofluoromethane   | 109      | (64 - 12  | (8)   |      |   |

#### NOTE(S):

J Estimated result. Result is less than RL.

#### Leo Brausch Consulting

#### Client Sample ID: KFF-2-06

#### TOTAL Metals

Lot-Sample #...: C6C010116-001

Date Sampled...: 02/28/06

Date Received..: 03/01/06

Matrix....: WATER

PREPARATION-WORK

REPORTING LIMIT UNITS METHOD ANALYSIS DATE ORDER # PARAMETER RESULT

Prep Batch #...: 6061059

03/02-03/05/06 HODVR1AC Cadmium uq/L MCAWW 200.7 5.0 MS Run #..... 6061036 Dilution Factor: 1 Analysis Time..: 01:53

MDL..... 0.31

MCANW 200.7 03/02-03/05/06 HODVR1AD Chromium 5.0 5.0 ug/L Dilution Factor: 1 Analysis Time..: 01:53 MS Run #....: 6061036

MDL..... 0.80

NOTE (S):

B Estimated result. Result is less than RL.

#### Leo Brausch Consulting

#### Client Sample ID: EFF-2-06

#### General Chemistry

Lot-Sample #...: C6C010116-001 Work Order #...: HODVR

Matrix....: WATER

Date Received..: 03/01/06 Date Sampled...: 02/28/06

PREPARATION-PREP RESULT PARAMETER UNITS METHOD ANALYSIS DATE BATCH # 3.1 No Units MCAWW 150.1 03/01/06 pН 6060467 Dilution Factor: 1 Analysis Time..: 13:16 MS Run #..... 6060303 MDL.... --03/02/06 Total Suspended 4.0 mg/L MCAWW 160.2 ND 6061057 Solids Dilution Factor: 1 Analysis Time..: 00:00 MS Run #....: 6061033 MDL..... 3.4

#### METHOD BLANK REPORT

# GC/MS Volatiles

Client Lot #...: C6C010116

Work Order #...: HOF1J1AA

Matrix....: WATER

MB Lot-Sample #: C6C010000-621

**Prep Date....:** 03/01/06

Analysis Time..: 00:39

Analysis Date..: 03/02/06

Prep Batch #...: 6060621

Dilution Factor: 1

|                       |          | REPORTIN      | iG    |             |
|-----------------------|----------|---------------|-------|-------------|
| PARAMETER             | RESULT   | LIMIT         | UNITS | METHOD      |
| Methylene chloride    | ND       | 1.0           | ug/L  | CFR136A 624 |
| Tetrachloroethene     | ND       | 1.0           | ug/L  | CFR136A 624 |
| Toluene               | ND       | 1.0           | ug/L  | CFR136A 624 |
| Trichloroethene       | ND       | 1.0           | ug/L  | CFR136A 624 |
|                       | PERCENT  | RECOVERY      | ?     |             |
| SURROGATE             | RECOVERY | <u>LIMITS</u> |       |             |
| 4-Bromofluorobenzene  | 108      | (70 - 11      | .8)   |             |
| 1,2-Dichloroethane-d4 | 103      | (64 - 13      | 5)    |             |
| Toluene-d8            | 97       | (71 - 11      | .8)   |             |
| Dibromofluoromethane  | 102      | (64 - 12      | 8)    |             |

NOTE (S):

#### METHOD BLANK REPORT

#### TOTAL Metals

Client Lot #...: C6C010116

Matrix....: WATER

| PARAMETER     | RESULT       | REPORTING LIMIT UNIT | 'S METHOD   | PREPARATION-<br>ANALYSIS DATE | WORK<br>ORDER # |
|---------------|--------------|----------------------|-------------|-------------------------------|-----------------|
| MB Lot-Sample | #: C6C020000 | 059 Prep Batch #     | : 6061059   |                               |                 |
| Cadmium       | ND           | 5.0 ug/L             | MCAWW 200.7 | 03/02-03/05/06                | H0F3V1AF        |
|               |              | Dilution Factor: 1   |             |                               |                 |
|               |              | Analysis Time: 01:   | :31         |                               |                 |
|               |              | •                    |             |                               |                 |
| Chromium      | ND           | 5.0 ug/L             | MCAWW 200.7 | 03/02-03/05/06                | H0F3V1AA        |
|               |              | Dilution Pactor: 1   |             |                               |                 |
|               | •            | Analysis Time: 01:   | :31         |                               |                 |
|               |              |                      |             |                               |                 |

#### METHOD BLANK REPORT

#### General Chemistry

Client Lot #...: C6C010116

Matrix....: WATER

| PARAMETER Total Suspended Solids | RESULT | REPORTING LIMIT Work Order | UNITS   | METHOD  MB Lot-Sample #: | PREPARATION-<br>ANALYSIS DATE<br>C6C020000-057 | PREP<br>BATCH # |
|----------------------------------|--------|----------------------------|---------|--------------------------|------------------------------------------------|-----------------|
| ,                                | ND     | 4.0                        | mg/L    | MCAWW 160.2              | 03/02/06                                       | 6061057         |
|                                  |        | Dilution Fact              | or: 1   |                          |                                                |                 |
|                                  |        | Analysis Time              | : 00:00 |                          |                                                |                 |
| MOTERICI.                        |        |                            |         |                          |                                                |                 |

# GC/MS Volatiles

Client Lot #...: C6C010116 Work Order #...: H0F1J1AC Matrix.....: WATER

LCS Lot-Sample#: C6C010000-621

 Prep Date....:
 03/01/06
 Analysis Date..:
 03/01/06

 Prep Batch #...:
 6060621
 Analysis Time..:
 23:49

Dilution Factor: 1

|                           | PERCENT  | RECOVERY            |             |
|---------------------------|----------|---------------------|-------------|
| PARAMETER                 | RECOVERY | LIMITS              | METHOD      |
| 1,2-Dichlorobenzene       | 104      | (63 - 137)          | CFR136A 624 |
| Benzene                   | 104      | (64 - 136)          | CFR136A 624 |
| Bromodichloromethane      | 103      | (65 - 135)          | CFR136A 624 |
| Bromoform                 | 123      | (71 - 129)          | CFR136A 624 |
| Bromomethane              | 142      | (14 - 186)          | CFR136A 624 |
| Carbon tetrachloride      | 91       | (73 - 127)          | CFR136A 624 |
| Chloroethane              | 57       | (38 - 162)          | CFR136A 624 |
| Chloroform                | 96       | (67 - 133)          | CFR136A 624 |
| Chloromethane             | 116      | (1.0-204)           | CFR136A 624 |
| 1,1-Dichloroethene        | 104      | (50 - 150)          | CFR136A 624 |
| 1,1-Dichloroethane        | 104      | (72 - 128)          | CFR136A 624 |
| trans-1,2-Dichloroethene  | 109      | (69 - 131)          | CFR136A 624 |
| 1,2-Dichloroethene        | 104      | (69 - 131)          | CFR136A 624 |
| (total)                   |          |                     |             |
| 1,2-Dichloroethane        | 107      | (68 - 132)          | CFR136A 624 |
| Methylene chloride        | 100      | (60 - 140)          | CFR136A 624 |
| 1,1,1-Trichloroethane     | 89       | (75 - 125)          | CFR136A 624 |
| 1,2-Dichloropropane       | 106      | (34 - 166)          | CFR136A 624 |
| Tetrachloroethene         | 100      | (73 - 127)          | CFR136A 624 |
| Toluene                   | 108      | (74 - 126)          | CFR136A 624 |
| cis-1,3-Dichloropropene   | 106      | (24 - 176)          | CFR136A 624 |
| Trichloroethene           | 96       | (66 - 134)          | CFR136A 624 |
| Dibromochloromethane      | 118      | (67 - 133)          | CFR136A 624 |
| 1,1,2-Trichloroethane     | 122      | (71 - 129)          | CFR136A 624 |
| trans-1,3-Dichloropropene | 103      | (50 ~ 150)          | CFR136A 624 |
| 1,1,2,2-Tetrachloroethane | 121      | (60 - 1 <b>4</b> 0) | CFR136A 624 |
| Chlorobenzene             | 110      | (66 - 134)          | CFR136A 624 |
| Rthylbenzene              | 111      | (59 - 141)          | CFR136A 624 |
| 2-Chloroethyl vinyl ether | 100      | (1.0- 224)          | CFR136A 624 |
| Acrylonitrile             | 138      | (10 - 200)          | CFR136A 624 |
| Xylenes (total)           | 113      | (37 - 162)          | CFR136A 624 |
| Acrolein                  | 73       | (10 - 200)          | CFR136A 624 |
| Dichlorodifluoromethane   | 113      | (10 - 200)          | CFR136A 624 |
| Carbon disulfide          | 100      | (35 - 150)          | CFR136A 624 |

(Continued on next page)

#### GC/MS Volatiles

Client Lot #...: C6C010116 Work Order #...: H0F1J1AC Matrix.....: WATER

LCS Lot-Sample#: C6C010000-621

|                        | PERCENT  | RECOVERY   |             |
|------------------------|----------|------------|-------------|
| PARAMETER              | RECOVERY | LIMITS     | METHOD      |
| Vinyl chloride         | 108      | (4.0- 196) | CFR136A 624 |
| Styrene                | 119      | (70 - 130) | CFR136A 624 |
| Trichlorofluoromethane | 106      | (48 - 152) | CFR136A 624 |
|                        |          | PERCENT    | RECOVERY    |
| SURROGATE              |          | RECOVERY   | LIMITS      |
| -Bromofluorobenzene    |          | 107        | (70 - 118)  |
| l,2-Dichloroethane-d4  |          | 116        | (64 - 135)  |
| Toluene-d8             |          | 107        | (71 - 118)  |
| Dibromofluoromethane   |          | 100        | (64 - 128)  |

NO1E(5):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

#### TOTAL Metals

Client Lot #...: C6C010116 Matrix....: WATER

PERCENT RECOVERY PREPARATION-

PARAMETER RECOVERY LIMITS METHOD ANALYSIS DATE WORK ORDER #

LCS Lot-Sample#: C6C020000-059 Prep Batch #...: 6061059

Chromium 102 (85 - 115) MCAWW 200.7 03/02-03/05/06 H0F3V1AD

Dilution Factor: 1 Analysis Time..: 01:36

Cadmium 104 (85 - 115) MCAWW 200.7 03/02-03/05/06 H0F3V1AG

Dilution Factor: 1 Analysis Time..: 01:36

Calculations are performed before rounding to avoid round-off errors in calculated results.

NOTE(S):

# General Chemistry

Client Lot #...: C6C010116

Matrix....: WATER

| PARAMETER<br>PH        | PERCENT<br>RECOVERY | RECOVERY LIMITS Work Order  | METHOD<br>#: HOFGELAA LCS Lot    | PREPARATION- ANALYSIS DATE C-Sample#: C6C010000 | PREP BATCH # |  |
|------------------------|---------------------|-----------------------------|----------------------------------|-------------------------------------------------|--------------|--|
|                        | 100                 | (99 - 101)<br>Dilution Fact | MCAWW 150.1                      | 03/01/06                                        | 6060467      |  |
| Total Suspended Solids |                     | Work Order                  | #: HOF3W1AC LCS Lot              | :-Sample#: C6C020000                            | -057         |  |
|                        | 106                 | (80 - 120)<br>Dilution Fact | MCAWW 160.2<br>or: 1 Analysis Ti | 03/02/06<br>me: 00:00                           | 6061057      |  |

NOTE (S):

#### GC/MS Volatiles

Client Lot #...: C6C010116 Work Order #...: HODVR1AH-MS Matrix.....: WATER

MS Lot-Sample #: C6C010116-001 H0DVR1AJ-MSD

 Prep Date....: 03/01/06
 Analysis Date..: 03/02/06

 Prep Batch #...: 6060621
 Analysis Time..: 05:55

Dilution Factor: 1

|                          | PERCENT  | RECOVERY                |      | RPD            |             |
|--------------------------|----------|-------------------------|------|----------------|-------------|
| PARAMETER                | RECOVERY | LIMITS                  | RPD_ | <u>LIMI</u> TS | METHOD      |
| 1,2-Dichlorobenzene      | 100      | (18 - 190)              |      |                | CFR136A 624 |
|                          | 102      | (18 - 190)              | 1.9  | (0-40)         | CFR136A 624 |
| Benzene                  | 97       | (37 - 151)              |      |                | CFR136A 624 |
|                          | 99       | (37 - 151)              | 2.3  | (0-40)         | CFR136A 624 |
| Bromodichloromethane     | 96       | (35 - 155)              |      |                | CFR136A 624 |
|                          | 94       | (35 - 155)              | 1.5  | (0-40)         | CFR136A 624 |
| Bromoform                | 116      | (45 - 169)              |      |                | CFR136A 624 |
|                          | 101      | (45 - 169)              | 14   | (0-43)         | CFR136A 624 |
| Bromomethane             | 126      | (1.0-242)               |      |                | CFR136A 624 |
|                          | 103      | (1.0- 242)              | 20   | (0~40)         | CFR136A 624 |
| Carbon tetrachloride     | 89       | (70 - 140)              |      |                | CFR136A 624 |
|                          | 88       | (70 - 1 <del>4</del> 0) | 0.73 | (0-40)         | CFR136A 624 |
| Chloroethane             | 57       | (14 - 230)              |      |                | CFR136A 624 |
|                          | 48       | (14 - 230)              | 18   | (0~40)         | CFR136A 624 |
| Chloroform               | 97       | (51 - 138)              |      |                | CFR136A 624 |
|                          | 98       | (51 - 138)              | 1.1  | (0-40)         | CFR136A 624 |
| Chloromethane            | 116      | (1.0- 273)              |      |                | CFR136A 624 |
|                          | 100      | (1.0- 273)              | 14   | (0-40)         | CFR136A 624 |
| 1,1-Dichloroethene       | 105      | (1.0-234)               |      |                | CFR136A 624 |
|                          | 97       | (1.0-234)               | 7.8  | (0-40)         | CFR136A 624 |
| 1,1-Dichloroethane       | 109      | (59 - 155)              |      |                | CFR136A 624 |
|                          | 108      | (59 - 155)              | 0.96 | (0-40)         | CFR136A 624 |
| trans-1,2-Dichloroethene | 103      | (69 - 138)              |      |                | CFR136A 624 |
|                          | 101      | (69 - 138)              | 2.2  | (0-40)         | CFR136A 624 |
| 1,2-Dichloroethene       | 104      | (69 - 138)              |      |                | CFR136A 624 |
| (total)                  |          |                         |      |                |             |
|                          | 103      | (69 - 138)              | 1.2  | (0-40)         | CFR136A 624 |
|                          |          |                         |      |                |             |
| 1,2-Dichloroethane       | 96       | (49 - 155)              |      | 45             | CFR136A 624 |
|                          | 95       | (49 - 155)              | 0.15 | (0-40)         | CFR136A 624 |
| Methylene chloride       | 93       | (1.0- 221)              |      |                | CFR136A 624 |
|                          | 83       | (1.0- 221)              | 11   | (0-40)         | CFR136A 624 |
| 1,1,1-Trichloroethane    | 90       | (52 - 162)              |      |                | CFR136A 624 |
|                          | 91       | (52 - 162)              | 1.2  | (0-40)         | CFR136A 624 |
| 1,2-Dichloropropane      | 103      | (1.0- 210)              |      | (0.40)         | CFR136A 624 |
|                          | 100      | (1.0- 210)              | 2.5  | (0-40)         | CFR136A 624 |
| Tetrachloroethene        | 99       | (64 - 148)              |      | 40 403         | CFR136A 624 |
|                          | 97       | (64 - 148)              | 1.8  | (0-40)         | CFR136A 624 |
| Toluene                  | 109      | (47 - 150)              |      | (5 (5)         | CFR136A 624 |
|                          | 104      | (47 ~ 150)              | 4.4  | (0-40)         | CFR136A 624 |

(Continued on next page)

# GC/MS Volatiles

Client Lot #...: C6C010116 Work Order #...: HODVR1AH-MS Matrix..... WATER

MS Lot-Sample #: C6C010116-001 H0DVR1AJ-MSD

|                                | PERCENT  | RECOVERY           |     | RPD                      |         | ÷.  |
|--------------------------------|----------|--------------------|-----|--------------------------|---------|-----|
| PARAMETER                      | RECOVERY | LIMITS             | RPD | LIMITS                   | METHOD  |     |
|                                |          |                    |     |                          |         |     |
| cis-1,3-Dichloropropene        | 94       | (1.0- 227)         |     |                          | CFR136A | 624 |
|                                | 93       | (1.0- 227)         | 1.1 | (0-40)                   | CFR136A | 624 |
| Trichloroethene                | 98       | (71 - 157)         |     |                          | CFR136A | 624 |
|                                | 95       | (71 - 157)         | 3.3 | (0-40)                   | CFR136A | 624 |
| Dibromochloromethane           | 108      | (53 <b>- 149</b> ) |     |                          | CFR136A | 624 |
|                                | 105      | (53 <b>- 149</b> ) | 2.7 | (0-40)                   | CFR136A | 624 |
| 1,1,2-Trichloroethane          | 119      | (52 - 150)         |     |                          | CFR136A | 624 |
|                                | 108      | (52 - 150)         | 9.4 | (0-40)                   | CFR136A | 624 |
| trans-1,3-Dichloropropene      | 95       | (17 - 183)         |     |                          | CFR136A | 624 |
|                                | 93       | (17 - 183)         | 2.1 | (0-40)                   | CFR136A | 624 |
| 1,1,2,2-Tetrachloroethane      | 114      | (46 - 157)         |     |                          | CFR136A | 624 |
|                                | 119      | (46 - 157)         | 4.7 | (0-40)                   | CFR136A | 624 |
| Chlorobenzene                  | 108      | (37 - 160)         |     |                          | CFR136A | 624 |
|                                | 101      | (37 - 160)         | 7.1 | (0-40)                   | CFR136A | 624 |
| <b>Ethylbenzene</b>            | 112      | (37 - 162)         |     |                          | CFR136A | 624 |
|                                | 106      | (37 - 162)         | 5.4 | (0-40)                   | CFR136A | 624 |
| 2-Chloroethyl vinyl ether      | 35       | (1.0- 305)         |     |                          | CFR136A | 624 |
|                                | 3.9 p    | (1.0- 305)         | 160 | (0-40)                   | CFR136A | 624 |
| Acrylonitrile                  | 125      | (10 - 200)         |     |                          | CFR136A | 624 |
|                                | 114      | (10 - 200)         | 9.1 | (0-40)                   | CFR136A | 624 |
| Xylenes (total)                | 113      | (37 - 162)         |     |                          | CFR136A | 624 |
|                                | 104      | (37 - 162)         | 8.9 | (0-40)                   | CFR136A | 624 |
| Acrolein                       | 76       | (10 - 200)         |     |                          | CFR136A | 624 |
| •                              | 62       | (10 - 200)         | 20  | (0-40)                   | CFR136A | 624 |
| Dichlorodifluoromethane        | 122      | (10 - 200)         |     |                          | CFR136A | 624 |
|                                | 104      | (10 - 200)         | 16  | (0-40)                   | CFR136A | 624 |
| Carbon disulfide               | 99       | (35 - 150)         |     |                          | CFR136A | 624 |
|                                | 92       | (35 - 150)         | 7.8 | (0-40)                   | CFR136A | 624 |
| Vinyl chloride                 | 121      | (1.0- 251)         |     |                          | CFR136A |     |
|                                | 107      | (1.0- 251)         | 11  | (0-50)                   | CFR136A |     |
| Styrene                        | 117      | (70 - 130)         |     |                          | CFR136A |     |
|                                | 104      | (70 - 130)         | 12  | (0-30)                   | CFR136A |     |
| Trichlorofluoromethane         | 112      | (17 - 181)         |     |                          | CFR136A | -   |
|                                | 98       | (17 - 181)         | 14  | (0-40)                   | CFR136A | 624 |
|                                |          | nerocere           |     | RECOVERY                 |         |     |
| CIDBOCATE                      |          | PERCENT            |     |                          |         |     |
| SURROGATE 4-Bromofluorobenzene |          | RECOVERY           |     | <u>LIMITS</u>            | -       |     |
| 4-PIOHOLIGOTODEUZEUE           |          | 100                |     | (70 - 118)<br>(70 - 118) |         |     |
| 1,2-Dichloroethane-d4          |          | 108                |     |                          |         |     |
| 1,2-Dichioroechane-04          |          | 101                |     | (64 - 135)<br>(64 - 135) |         |     |
|                                |          | 100                |     | (04 - 135)               |         |     |

(Continued on next page)

# GC/MS Volatiles

Client Lot #...: C6C010116 Work Order #...: HODVR1AH-MS Matrix....: WATER

MS Lot-Sample #: C6C010116-001 H0DVR1AJ-MSD

| SURROGATE            | PERCENT<br>RECOVERY | RECOVERY<br>LIMITS |  |  |
|----------------------|---------------------|--------------------|--|--|
| Toluene-d8           | 105                 | (71 - 118)         |  |  |
|                      | 101                 | (71 - 118)         |  |  |
| Dibromofluoromethane | 95                  | (64 - 128)         |  |  |
|                      | 95                  | (64 - 128)         |  |  |

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

p Relative percent difference (RPD) is outside stated control limits.

# TOTAL Metals

| Client Lot #<br>Date Sampled |                     | Matrix: WATER       |               |             |                               |              |
|------------------------------|---------------------|---------------------|---------------|-------------|-------------------------------|--------------|
| PARAMETER                    | PERCENT<br>RECOVERY | RECOVERY LIMITS RPD | RPD<br>LIMITS | METHOD      | PREPARATION-<br>ANALYSIS DATE | WORK ORDER # |
| MS Lot-Sampl                 | e #: C6C01          | 0231-001 Prep B     | atch #        | .: 6061059  |                               |              |
| Cadmium                      | 102                 | (70 - 130)          |               | MCAWW 200.7 | 03/02-03/05/06                | H0E1K1AT     |
|                              | 104                 | (70 - 130) 1.8      | (0-20)        | MCAWW 200.7 | 03/02-03/05/06                | H0E1K1AU     |
|                              |                     | Dilution Fac        | tor: 1        |             |                               |              |
|                              |                     | Analysis Time       | : 02:10       |             |                               |              |
|                              |                     | MS Run #            | : 60610       | 36          |                               |              |
| Chromium                     | 105                 | (70 - 130)          |               | MCAWW 200.7 | 03/02-03/05/06                | H0E1K1AM     |
|                              | 106                 | (70 - 130) 0.77     | (0-20)        | MCAWW 200.7 | 03/02-03/05/06                | H0E1K1AN     |
|                              |                     | Dilution Fact       | tor: 1        |             | ÷                             |              |
|                              |                     | Analysis Time       | 2: 02:10      |             |                               |              |
|                              |                     | MS Run #            | 60610         | 36          |                               |              |
|                              |                     |                     |               |             |                               |              |

Calculations are performed before rounding to avoid round-off errors in calculated results.

NOTE(S):

#### SAMPLE DUPLICATE EVALUATION REPORT

# General Chemistry

Client Lot #...: C6C010116

Work Order #...: HODVR-SMP

HODVR-DUP

Matrix....: WATER

Date Sampled...: 02/28/06

Date Received..: 03/01/06

| PARAM<br>pH    | RESULT         | DUPLICATE<br>RESULT | UNITS                 | RPD                                 | RPD<br>LIMIT                     | METHOD SD Lot-Sample #:          | PREPARATION-<br>ANALYSIS DATE<br>C6C010116-001 | PREP<br>BATCH #    |
|----------------|----------------|---------------------|-----------------------|-------------------------------------|----------------------------------|----------------------------------|------------------------------------------------|--------------------|
| <b>P</b>       | 3.1            | 3.1                 |                       | Units 0.32 (0-2.0) on Factor: 1 Ana | MCAWW 150.1<br>lysis Time: 13:16 | 03/01/06<br>MS Run Number:       | 6060467<br>6060303                             |                    |
| Total<br>Solid | Suspended<br>s |                     |                       |                                     |                                  | SD Lot-Sample #:                 | C6C010116-001                                  |                    |
|                | ND             | ND                  | mg/L<br>Dilution Fact | 0.0<br>or: 1                        | (0-20)<br>Ana                    | MCAWW 160.2<br>lysis Time: 00:00 | 03/02/06<br>MS Run Number:                     | 6061057<br>6061033 |