915012

GROUNDWATER ASSESSMENT

PLANT D AREA

BUFFALO COLOR CORPORATION

Phase II Investigation

Prepared By: J. A. Gouck June 25, 1984

RECEIVED

JUN 29 1984

DIVISION OF HAZABOOUS WASTE ENFORCEMENT REGION 9

TABLE OF CONTENTS

I Summary

II Historical Background

III Site Description

IV Program Description

V Soil Samples

VI Hydrology

VII Analytical Data

VIII Assessment

Tables

Table I - Data Compilation

Table II - Worst Case

Appendices

Appendix I Soil Sample Analytical Data

Appendix II Hydrology Report

Appendix III "Wet" and "Dry" Groundwater Sampling Data

Appendix IV Mass Allocation Data

Appendix V Plot Plan

I. Summary

The analytical data resulting from the monitoring well sampling during "wet" & "dry" seasons indicates that the groundwater flow from the weathering area and the iron sludge ponds is minimal and the loadings to the Buffalo River do not contravene any existing or proposed criteria or standards. Based on a review of the data, no remedial action is planned and we request the sites be reclassified to a "D" rating requiring no further action.

II. Historical Background

On April 13, 1982 an agreement was executed between Buffalo Color Corporation and the Commissioner's designee of the Department of Environmental Conservation. The agreement covered a field investigation program and remedial program, if required, for inactive wastes disposal sites on the Buffalo Color property at 340 Elk Street, Buffalo, New York. These sites were listed in a document titled "Hazardous Waste Disposal sites in New York State" prepared by the New York State Department of Environmental Conservation and the New York State Department of Health.

The sites were classified in the inventory as follows:

- a) The Deepwell Code E: "Periodic surveillance and chemical analysis required for properly closed and maintained site".
- b) Iron oxide sludge Lagoons Code B: "Detailed chemical analysis and for hydrogeological survey is needed if warranted by the sites potential health and/or environmental impact".
- c) The Weathering Area Code B: "Detailed chemical analysis and/or hydrogeological survey is needed if warranted by the sites potential health and/or environmental impact".

The agreement required that thirty (30) days after completion of Field Investigation, Buffalo Color Corporation would submit a field investigation report. The purpose of the report was to provide the data and a comprehensive assessment of such data resulting from the field investigation.

III. Site Descriptions

General

Buffalo Color Corporation was formed July 1, 1977. At that time the new company took over the site formerly used to manufacture dyestuffs and organic chemicals by the Allied Corporation.

Currently, facility operations involve the organic syntheses of two dyestuffs, alkylanilines and five anhydrides. Approximately 70.0% of the company's present production entails the manufacture of Indigo dye. Since the take over by Buffalo Color there has been no manufacture of any dyes, intermediates or organic chemicals that required disposal on-site.

a)
d posed of ammonium
Sulfate 1957-1965

The Deep Well: The Deep Well is situated on that portion of the Property located east of South Park Avenue. It was used by Allied for the disposal of ammonium sulfate solution resulting from the manufacture of antioxidant-B and n-butyraldoxime, an anti-skinning agent for paint, from about October, 1957, until about the end of 1965, at which time the manufacturing processes generating said wastes were relocated to another facility operated by Allied. The sulfate solution was filtered through an activated carbon filter system, to recover butyric acid and other organics prior to disposal in the Deep Well.

residue rocess)

raptraler

b)

The Lagoons: The Lagoons, of which there are two, are situated on the northeast corner of a peninsula, which is located on that portion of the property west of South Park Avenue. The peninsula projects into the Buffalo River at a point approximately two miles upstream of the confluence of the Buffalo River with the Niagara River. A graphic description of the peninsula, including the Lagoons and the Weathering Area, entitled Plot Plan A, is attached hereto and hereby made a part hereof as Appendix A. Iron oxide sludge, a residue from the aniline manufacturing processes, was disposed of in the Lagoons by Allied prior to 1960. From 1960 through 1975, iron oxide sludge wastes from the manufacture of sulphonated naphthalene, were disposed of in the Lagoons by Allied. The Lagoons were used to settle out solids prior to the release of the remaining liquid into the Buffalo River. A portion of the dewatered iron oxide was then excavated and sold for iron value.

process. c)

The Weathering Area: The Weathering Area is situated on the southern tip of the peninsula described in subparagraph (b) of this Paragraph, and is identified on Plot Plan A. The Weathering Area was used by Allied from the 1930's until in or about 1976 for the storage of various metal oxide sludges, resulting from the manufacture of triphenylmethane ("TPM") dyes. Although some of said sludge wastes and residue were sold for their metal content, some portion of them remain in the place of their original storage at the Weathering Area.

IV. Description of Program

A field investigation was developed utilizing a phased approach to develop the required data so that a sound assessment could be made of the data and any environmental impact determined.

Phase I

Prizemeterski Pr This phase involved the installation of piezometers throughout the Plant D area and suitable measuring locations on the river. The piezometers were utilized to plot a contour map of the shape of the surface of the water table in Plant D. The contour map developed would indicate the direction of ground water flow beneath the iron sludge ponds and weathering area. In addition, soil/waste samples were collected from the sludge pond and weathering area - There were fourteen individual sampling sites selected and continuously split-spooned sampled to ground water level. These samples were then composited resulting in six composites representing the plant side and river side of the site. The composites were then analyzed for the contaminants listed in the agreement.

Phase II

1 may installed 2 down

This phase involved the installation of monitoring wells and river sampling stations. The installation of the wells included, one upgradient and two down gradient wells for the weathering area and the same number for the iron sludge pond area. The river sampling points were located upstream and downstream of the Plant D area.

Phase III

13900 1500 s

This phase consisted of ground water river sampling and analysis. The samples were analyzed for those parameters found in the agreement. The sampling to place on September 27, 1983 and on April 12 & 19, 1984. The September sampling was during dry weather and the April sampling during wet weather.

Detailed protocals for sample collection, compositing, handling, laboratory analysis, quality assurance and quality control were prepared and approved by the agency prior to the start of sampling.

V. Soil Samples

In December 1982, fourteen soil borings were made in the weathering area and the two iron sludge pond sites. A series of split-spoon samples were taken from each location for specific composites. In all 145 soil samples were taken and physiscal descriptions and sampling levels were recorded. All samples and drilling logs were examined by J. A. Gouck, Consultant to Buffalo Color, Richard Hoffman of NYDEC and Ms. C. Wojtowicz of Ecology and Environment. The purpose of the examination was to determine which samples were to be composited. A total of six composites were prepared and analyzed -- two from each of the three sites being investigated. Appendix I contains the analytical report for these samples.

(May) Jisposo

The data (Appendix I) indicates heavy metal loadings present in the weathering area composite. This is to be expected, since the site was used to dewater various metal hydroxides derived from the manufacturing processes prior to resale for recovery. It must be pointed out that the Plant D area in the late nineteenth century was very swampy and subsequently was used as the disposal site for fly-ash from boiler operations. The analytical data for the iron sludge ponds also indicates the presence heavy metals. Some of these could be residual impurities in the iron oxide powder that was used in chemical processing and the excess sent to the sludge ponds for dewatering and eventual resale for the iron content.

The following materials showed no detectable amount in any of the 18 well samples collected in either wet of dry weather.

Jezen Lo

Acenaphthene
Fluorene
Anthracene
Phenanthrene

Fluoranthene
Pyrene
Chrysene

Benzo (a) anthracene Benzo (b) Fluoranthene Benzo (k) Fluoranthene

Benzo (a) Pyrene

The detected presence of these materials in the soil of Plant D was not unexpected due to the past use of the area as a repository for fly-ash from the burning of coal. Likewise, their detection in the river near the railroad bridge during dry weather is relatable to the proximity of that site to the residuals of past coke and petroleum manufacture which may be present in the river mud. However, the absense of the materials from the groundwater indicates that the material is fixed and is not leaching into the groundwater. Neither the weathering area nor the iron sludge ponds constitute any threat to the Buffalo River environment by virtue of these materials. Therefore, they should be dropped from further consideration.

VI. Hydrology

Prior to the monitoring well sampling on April 12 & 19, 1984, water level readings were taken on 21 separate occasions. This data was analyzed and plotted by an Ecology and Environment hydrologist. The resultant data is found in Appendix II. Based on this data that indicates a ground water flow of 2.5 gpm at the iron oxide ponds and 1.4 gpm at the weathering areax. The impact on the Buffalo River can be determined.

VII. Analytical Data

A review of all the data listed in Table I indicates there are extremely low concentrations of heavy metals and organic chemicals in the groundwater going to the Buffalo River. All sampling and analytical procedures used were approved by the Agency prior to being used in the field or the laboratory. Appendix III includes the reports for the three sampling events.

VIII. Assessment

The State of New York in setting stream standards uses values based on best water usage. Discharges to a lower stream classification shall not cause the contravention of a higher water quality stream classification at the confluence of both streams. The State has not officially changed any stream standards in the last 15 years. The only numerical standards found in the present regulation are:

- Phenolic compounds 0.00 1 mg/l as phenol;
- 2. Cyanide -0.1 mg/l as CN;
- Ferro Ferricyanide 0.4 mg/l as Fe(CN)₆;
- 4. Copper -0.2 mg/1 as Cu;
- 5. Zinc 0.3 mg/l as Zn and
- 6. Cadmium 0.3 mg/1 as Cd.

All other standards were a narrative or non-numerical in nature.

Early in 1978, the DEC started to prepare water quality criteria based on numerical standards. These criteria were to be part of the required three year review under the Clean Water Act. The proposal revised and expanded on best usage of water under each classification in order to clarify such usages. The rationale for setting numerical standards was developed after reviewing fish toxicity factors, human toxicity factors, and the Federal drinking water standards. These proposals were never completed.

The agency is presently proposing a change in water quality standards and usages for all surface waters in the State. They have developed criteria for about 200 toxic substances and have listed them in a division of Waters Technical and Operational Guidance Series (TOGS-84-Water-38). These criteria have been set by an interagency committee of aquatic biologists, toxicologists, and engineers from the DEC and the State Dept. of Health. The committee recommends the values that should be used as ambient criteria. This assessment will be based on the proposed ambient criteria for those paramenters on the list and will also refer to the "mass allocation" plan for the Niagara River being developed by the DEC (Appendix IV).

The ambient water quality criteria being proposed by the Agency is that level found in the water after discharges have had an opportunity for complete mixing with the receiving waters. TOGS 84-W-38 listed the following metals of concern at the site and the numerical values for ambient water quality:

Parameter Mg/l	Stream Classification	Toxicity	Mg/l	Plant D Total Contribution
.197 .			bbw	
Arsenic	AA,A D	Human Aquatic	.05 < .01 ′	.0005
Chromium (Hy)	AA,A D	Human Aquatic	.05 · .021 ·	.0002
Chromium (Total)	AA,A D	Human Aquatic	.05 ⁴ .05 *	.0003
Copper	AA,A D	Human Aquatic	1.0 /	.026
Lead	AA,A D	Human Aquatic	.05 ✓ * ✓	.001
Nickel	AA,A D	Human Aquatic	.015 /	.001
Zinc	AA,A D	Human Aquatic	5 ~ * ~	.005

^{*} Value depends on hardness of receiving water.

None of the total contributions of heavy metals from the Plant D site contravene class AA, or A proposed criteria. In addition, the Niagara River load allocations for the Buffalo River "Reach" (Appendix IV) for the metal parameters are:

Worst Case Plant D

Parameter	Allocation Lbs.	Balance Lbs.	Contribution Lbs.
Arsenic	30.0	29.5	0.136
Copper	120	43.675	6.83
Chromium	30	13	0.076
Lead	13.0	6.1	0.36
Nickel	18.0	15.4	0.33
Zinc	180.0	164.8	1.29

The loadings from the Plant D area, in a "worst case" situation have no significant impact on the Buffalo River.

Of the three organic chemicals, other then the poly nuclear aromatics, only Benzidine is specifically mentioned in TOGS (84-W-38) and the levels on:

The level of benzidine found in all of the samples equates to 0.00004 mg/l or .04 ppb.

The proposed criteria refer to unlisted organic chemicals in this manner: any organic would have an ambient allowable level of 50 ppb and in combination with another organics with an allowable level of 100 ppb. The combination of 1-naphthylamine and 2-4 Dinitrotoluene would total 13 ppb.

In using the proposed water quality criteria being developed by the DEC, there is no evidence of contravention of any existing regulations or those being proposed. It is our judgement that there is no evidence of any adverse impact on the Environment and the sites should be reclassified to the "D" rating and no further action (beyond sampling) be required or taken.

Parameters	9/17/83	WELL NO. 6	5 4/19/84	9/17/83	WELL NO. 9) 4/19/84	9/17/83	VELL NO. 13 11/12/84	2 4/19/84	9/17/8	WELL NO. 1 3 11/12/84	
PH, S.U.	7.8	7.17	7.71	8.14	7.38	7.67	7.37	6.01	6.75	5.72	4.98	4.95
Tot. Org. Carbon Mg/l. Tot. Org. Halogen Mg/l.	118 0.18	180 .09	150 .024	74.3 .28	47 .42	52 .23	49.2 .042	48 .015	47 .021	50.6 .13	70 0.1	61 .069
Arsenic Mg/l Chromium Tot Mg/l Chromium Hex Mg/l Copper Mg/l Lead Mg/l Mercury Mg/l. Nickel Mg/l. Zinc Mg/l.	0.21 .042 .007 <.005 <.01 <.0004 .110 <.05	.383 .093 .06 <.05 .033 <.00004 <.05 .143	.62 .093 .096 .056 .089 .0009 .07	.078 <.01 .006 <.05 <.01 <.0004 <.05 <.05	<.01 .022 .007 <.05 .045 <.0004 <.05 .058	.037 .042 .042 <.05 <.022 <.0004 <.05 .088	.101 <.01 <.05 <.01 <.0004 0.64 <.05	.017 .164 .164 .071 .682 .0005 <.05	.042 .397 .319 .589 1.08 .0061 .143	.176 <.01 <.01 8.98 <.01 <.0004 4.86 17.10	.496 .072 .105 110 2.65 <.0004 3.44	.801 .071 .037 3.70 .331 .0008 1.87 9.93
1-Naphthylamine ppb 2-4 Dinitrotoluene ppb Benzidine ppb	<0.6 <5.0 <1.0	<0.6 <5.0 <1.0	<.6 <5.0 <1.0	10.5 <5.0 <1.0	<.06 <5.0 <1.0	<.06 <5.0 <1.0	6.1 <5.0 <1.0	<.06 <5.0 <1.0	<0.6 <5.0 <1.0	<.6 582 <1.0	7.1 507 <1.0	3.0 5270 <1.0
Acenaphthylene ppb Fluorene ppb	-	<1.5 <1.5	<1.5 <1.5	~	<1.5 <1.5	<1.5 <1.5	-	<1.5 <1.5	<1.5 <1.5	-	<1.5 <1.5	<1.5 <1.5
Anthracene ppb Phenanthrene ppb	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5 -	<1.5	<1.5
Fluoranthene ppb Pyrene ppb	<1.5 <1.5	<1.5 <1.5	<1.5 <1.5	<1.5 <1.5	<1.5 <1.5	<1.5 <1.5	<1.5 <1.5	<1.5 <1.5	<1.5 <1.5	<1.5 <1.5	<1.5 <1.5	<1.5 <1.5
Chrysene ppb Benzo(a)anthracene ppb	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5 -	<2.5	<2.5	<2.5 - <2.5	<2.5 - <2.5	<2.5 <2.5
Benzo(a)fluoranthene ppb Benzo(b) " ppb Benzo(a) pyrene ppb	<2.5	<2.5	<2.5	<2.5	<2.5 -	<2.5	<2.5 -	<2.5	<2.5	-	-	-

	WELL NO. 1- 11/12/84			IELL NO. 15 11/12/84		F	OOWN STREAM R.R. BRIDGE 11/12/84	:	9/17/83	UP STREA . PARK BRI 11/12/84	IDGE
7.34	7.25	7.55	7.65	8.59	7.43	7.73	7.25	7.20	7.60	7.3	7.95
190 0.3	370 .22	330 .22	29.3 2.0	900 .73	900 .96	11.5	.006	18 <.005	5.93 .05	5.7 <.005	15 <.005
.184 <.01 <.01 <.05 <.01 <.00004 .05 <.05	.013 .128 .128 2.9 2.0 .0024 .407 2.58	1.25 .484 .207 1.25 .997 .0044 .354	.114 <.01 <.01 <.05 <.01 <.00004 .072 <.05	.102 .389 .109 .387 .266 .0005 .217	.025 .167 .05 .130 .178 <.0004	.068 <.01 <.01 <.05 <.01 <.0004 <.05 <.05	<.01 <.005 <.05 <.01 <.0004 <.05 .074	<.01 <.01 <.005 <.05 0.01 <.0004 <.05 .064	.028 <.01 <.01 <.05 <.01 <.0004 <.05 <.05	<.01 <.005 <.05 <.01 <.0004 <.05 <.05	<.01 <.01 <.005 <.05 .045 <0.0004 <.05 <.05
943 <5.0 2.35	324 <5.0 <1.0	3300 <5.0 <1.0	3020 <5.0 <1.0	49600 <5.0 240	29300 <5.0 144	6.02 <5.0 <1.0	43 <5.0 <1.0	<.06 <5.0 <1.0	<.6 <5.0 <1.0	<.6 <5.0 <1.0	<.6 <5.0 <1.0
-	<1.5 <1.5	<1.5 <1.5	-	<1.5 <1.5	<1.5 <1.5	-	<1.5 <1.5	<1.5 <1.5	-	<1.5 <1.5	<1.5 <1.5
<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	3.94	<1.5	<1.5	BMDL	<1.5	<1.5
<1.5 <1.5.	<1.5 <1.5	<1.5 <1.5	<1.5 <1.5	<1.5 <1.5	<1.5 <1.5	3.81 4.0	<1.5 <1.5	<1.5 <1.5	BMDL BMDL	<1.5 <1.5	<1.5 <1.5
<2.5 -	<2.5	<2.5	<2.5 -	<2.5	<2.5	6.31	<2.5	<2.5	BMDL -	<2.5	<2.5
<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	7.74	<2.5	<2.5	BMDL	<2.5	<2.5
-	-	-	-	-	-	-	-	-	-		-

ASSUMPTION: WORST CASE

1. Buffalo River Low Flow - 32MGD

7200 GPD - ground water flow at each well
Use highest analytical result for each parameter at each well (4/12 & 4/19)

TABLE II

		Well ∦ Mg/l	/12 Lbs/Day		13 Lbs/Day	Well Mg/l	#14 Lbs/Day	Well Mg/l	#15 Lbs/Day	Total PPD	Buffalo River Mg/l
	Description						,			,	
	Arsenic	0.101	.006	.801	.048	1.25	.075	.114	.007	0.136	.0005
	Cr - Tot	.397	.02	.072	.004	.484	.029	.389	.023	.076	.003
0	Cr - Hx	.319	.019	.105	.006	2.07	.012	.109	.007	.044	.0002
	Copper	.589	.035	.110	6.6	2.9	.17	.387	.023	6.83	.026
	Pb	1.08	.065	2.65	.159	2.0	.12	.266	.016	.36	.001
	Hg	,			2			999	. 1 , 1		
	N1	.143	.008	4.86	.292	.407	.02	.217	.013	.33	.001
	Zn	1.34	.08	17.1	1.03	2.58	.155	.408	.024	1.29	.005
	Ave. TOC	48	2.88	60.5	3.63	297	17.82	900	54	78.33	.29
	1 Naphylamine	.0061	.0004	.0071	.0004	3.30	.198	49.6	2.98	3.179	.012
	2-4 Dinitro- Toluene	-	-	6.27	.376		-	-	<u>-</u>	.376	.001
	Benzidine	-	-	-		.00235	.0001	.240	.01	.0101	.0004

6 ACIA MATINIA MATINIA

BECEINED

ANALYSIS OF SOIL COMPOSITES FROM IRON SLUDGE PONDS AND WEATHERING AREA

March 2, 1983

Prepared for:

BUFFALO COLOR CORPORATION P.O. Box 7027 Buffalo, New York 14240

ecology and environment, inc.

195 SUGG ROAD, P.O. BOX D, BUFFALO, NEW YORK 14225, TEL. 716-632-4491 International Specialists in the Environmental Sciences recycled paper

TABLE OF CONTENTS

Section		<u>Page</u>
1	INTRODUCTION	1-1
2	SAMPLES	2-1
3	METHODS OF ANALYSIS	3-1 3-1 3-2
4	QUALITY ASSURANCE/QUALITY CONTROL	4-1 4-1 4-1
5	RESULTS	5-1
Appendix		
Α (CHAIN-OF-CUSTODY FORMS	A-1

LIST OF TABLES

Table		Page
2-1	Sample Information	2-2
2-2	Sample Location Codes	2-6
2-3	Composite Sample Identification	2-7
3-1	Analytical Methods Used for Organic Analyses	3-3
3-2	Analytical Methods Used for Metal Analyses	3-4
3-3	Analytical Methods Used for Miscellaneous Analyses	3-5
4-1	Quality Control for Accuracy: Percent Recovery for Spiked Samples	4-3
4-2	Quality Control for Accuracy: Percent Difference EPA Quality Assurance Materials	4-4
4-3	Quality Control for Precision: Results of Replicate Analyses	4-5
5-1	Results of Chemical Analyses of Soil Composites for Metals and pH	5-2
5-2	Results of Chemical Analyses of Soil Composites for Extractable Organics	5-3
5-3	Results of Chemical Analyses of Soil Composites for Polynuclear Aromatic Hydrocarbons	5-4
5-4	Results of Chemical Analyses of Soil Composites for Volatile Organics	5-5

1. INTRODUCTION

The Analytical Services Center (ASC) of Ecology and Environment, Inc., (E & E) was contracted by Buffalo Color Corporation (BCC) to prepare sample composites and perform chemical analysis of soil samples obtained from borings. This report presents the results of analysis of six soil composites.

2. SAMPLES

A series of split-spoon soil samples from the Plant D Area of BCC's Buffalo Plant were delivered to the ASC by BCC between December 14 and 22, 1982. A total of 145 soil samples were received and assigned E & E laboratory numbers. Sample information and descriptions can be found in Table 2-1. Chain-of-custody forms, detailing possession of the samples, are found in Appendix A.

The samples were taken from a "weathering area" and two iron oxide ponds. The codes in Table 2-2 were used to identify sample locations.

All samples were examined at the ASC by Mr. James Gouck of BCC, Mr. Richard Hoffman of the New York State Department of Environmental Conservation (DEC), and Ms. Caryn Wojtowicz of E & E. The purpose of examining the samples and drilling logs was to determine which samples were to be composited.

A total of six composites were prepared—two from each of the three sites being investigated. Table 2-1 lists the components of each composite. Each composite was assigned a number (1 through 6) as designated in Table 2-3.

Table 2-1
SAMPLE INFORMATION

Client's Identification	E & E Laboratory Number 82-	Physical Description	Included in Composite Number
weathering area pl	:.Je		-
WP-1 Sample 1A	2576	Bluish	1
WP-1 Sample 1B	2577	Hard, black	1
WP-1 Sample 2	2578	Blue to blue-green	1
√P-1 Sample 3	2579	Brown with some blue	1
√P-1 Sample 4	2580	_	*
YP-1 Sample 5	2581	••	*
√P-1 Sample 6	2582		+
HP-2 Sample 1A	2589	Dark purple, gelatinous	1
VP-2 Sample 18	2590	Dry, dark purple, some brown granules	1
√P-2 Sample 2	2591	Brown/black, oily	- 1
P-2 Sample 3	2592	Brown wood, chip-like	1
IP-2 Sample 4	2593	Light brown sandy clay	1
(P-2 Sample 5	2594	-	*
IP-2 Sample 6	2595	-	*
P-3 Sample 1A	2583	Purple cinders	*
/P-3 Sample 1B	2584	Sandy color and texture	1
P-3 Sample 2	2585	Sandy color and texture	1
P-3 Sample 4	2586	Clay	1
P-3 Sample 5	2587	-	*
P-3 Sample 6	2588	-	*
veothering urea	river side		
IR-1 Sample 1	2552	-	2
/R-1 Sample 2	2553	-	2
R-1 Sample 3	2554	-	2
R-1 Sample 4	2570	-	*
IR-1 Sample 5	2571	-	*
/R-1 Sample 6	2572	-	*
R-2 Sample 1	2555	Reddish chunks	2
R-2 Sample 2	2556	Mottled, rusty	2
R-2 Sample 3	2557	Reddish-brown chunks	2
R-2 Sample 4	2558	Clay-like	2
R-2 Sample 5	2573	-	*
R-2 Sample 6	2574		*
R-2 Sample 7	2575	-	*
R-3 Sample 1A	2559	Purple, greasy	2
R-3 Sample 1B	2560	Reddish-brown cinders	2
R-3 Sample 2	2561	Reddish brown gravel	2
R-3 Sample 3	2562	Stone, clay, pink tinge	2

Table 2-1 (Cont.)

	ient's ification	E &.E Laboratory Number 82-	Physical Description	Included i Composite Number
······				
√R-3 !	Sample 4	2596	<u>-</u>	+
4R-3 !	Sample 5	2597	Coarse	•
	Sample 6	2598	Sandy, silt	*
	ar - 1 Pla	1 5. J. En " L	·	
	Sample 1	2572	-	*
	Sample 2	2573		*
	Sample 3	2574		*
	Sample 4	2575	~	
	Sample 5	2576	Sand and gravel	*
	Sample 6	2577	Light, sandy, porous	+
	Sample 7	2578	Light, sandy, porous	+
	Sample 8	2579	Reddish black gravel	ن
	Sample 9	2580	Clay-like	+
	Sample 10	2581	Clay-like	*
	Sample 11	2582	Clay-like	*
	Sample 12	2583	Gray clay, some sand	5
	Sample 13	2584	Reddish clay	5
	Sample 19	2585	Acquion cray	*
	Sample 14	2586	-	*
	Sample 13		• . •	
		, t S. Je, Bor 2		*
	Sample 1	2853	-	*
	Sample 2	2854	•••	*
	Sample 3	2855	_	
	Sample 4	2856	Fine, black, dry gravel	6
	Sample 5	2857	Light, sandy, porcus	-
	Sample 6	2858	Light, sandy, porous	*
P2 !	Sample 7	2859	Reddish brown, chunky, some wood	6
P2 5	Sample 8	2860	Light, sandy, porous	*
	Sample 9	2861	-	*
	Sample 10	2862	-	*
	Sample 11	2863		*
	Sample 12	2864		5
	Sample 13	2865	Gray, gravelly clay	5
	•	< 1. (+ *)	,, g,	_
	Sample 1	2866	_	*
	Sample 2	2867	Black gravel with sheen	6
	Sample 3	2868		*
	-	2869		*
	Sample 4		Black chunks, reddish brown	6
R1 5	Sample 5	2870	coating	D
R1 9	Sample 6	2871	Black soil, stones, brick	6
R1 9	Sample 7	2872	-	•
R1 5	Sample 8	2873	~	*
	Sample 9	2874	Wet soil, brownish-black	6
	Sample 10	2875	-	*
	Sample 11	2876	_	*

Table 2-1 (Cont.)

	lient's Lification	EAE Laboratory Number 82-	Physical Description	included in Composite Number
IR1	Sample 12	2877	Wet black clay, some brown	5
		0070	material	_
IR1	Sample 13	2878	Sandy, wet, black clay	5
IR1	Sample 14	2879 C. S. J. B.	- : 4 g	*
	1222	****	,	
IR2	Sample 1	2824	-	*
IR2	Sample 2	2825	Mak Malan (1)	*
IR2	Sample 3	2826	Wet, black, oily	*
IR2	Sample 4	2827	-	*
IR2	Sample 5	2828	-	*
IR2	Sample 6	2829 .	-	*
IR2	Sample 7	2830	<u>-</u>	*
R2	Sample 8	2831	Thick, black, wet clay	6
122	Sample 9	2832	-	*
IR2	Sample 10	2833.	Black chunk	6
R2	Sample 11	2834	-	*
R2	Sample 12	2835	Black clay	5
R2	Sample 13A	2836	-	5
R2	Sample 13B	2837		5
R2	Sample 14A	2838		*
R2	Sample 148	2839	_	*
R2	Sample 15	2840	-	*
R2	Sample 16	2841	-	*
L	2400n 2	Plant Side Bot		
P1	Sample 1	2638		*
P1	Sample 2	2639	-	+
P1	Sample 3	2640	_	*
P1	Sample 4	2641	_	*
P1	Sample 5	2642	-	*
P1	Sample 6	2643	_	4
P1	Sample 7	2644		3
P1	Sample 8	2645	-	3
P1	Sample 9	2646	Dark sand	3
P1	Sample 10	2647	Dark sand	3
	ام 2 موراد الاراد الار		ta të	-
P2	Sample 1	2648	-	4
P2	Sample 2	2649 4	-	*
P2	Sample 3	2650	_	4
P2	Sample 4	2651	_	+
P2	Sample 5	2652	_	4
P2	Sample 6	2653	_	•
P2	Sample 7	2654		4
P2	Sample 8	2655	-	3
P2	Sample 5		-	3
P2 P2	•	2656 2657		3
r 4	Sample 10	2657	-)

Table 2-1 (Cont.)

	lient's tification	E & E Laboratory Number 82-		Physical Description	Included in Composite Number
L	u u 2,	River Side	f	1	
2R1	Sample 1	2610		Black clay	*
2R1	Sample 2	2611		Black, viscous, wet clay	*
2R1	Sample 3	2612		Black, viscous, wet clay	*
2R1	Sample 4	2613		Black, viscous, very wet clay	*
2R1	Sample 5	2614		Black, viscous, very wet clay	•
2R1	Sample 6	2615		Black, greasy, mud-like	+
2R1	Sample 7A	2616		<u></u>	*
2R1	Sample 78	2617		_	*
2R1	Sample 8	2618	•	-	4
2R1	Sample 9	2619		-	3
2R1	Sample 10	2620		Chunky, wet, black	*
2R1	Sample 11	2621		Brownish-red, greasy, mud-like	3
2R1	Sample 12	2622		Brownish-red, greasy, mud-like	3
2R1	Sample 13	2623		Brownish-red, greasy, mud-like	3
2R1	Sample 14	2624		Clay gravel, deep red color	3
2R1	Sample 15	2625		Clay	*
1	cyour ?	River Side	ស្នំក <u>ាំ</u> 2		
2R2	Sample 1	2626	_	-	*
2R2	Sample 2	2627		_	4
2R2	Sample 3	2628		_	*
2R2	Sample 4	2629		-	*
2R2	Sample 5	2630		-	3
2R2	Sample 6	2631		_	3
2R2	Sample 7	2632		Mottled, granular, goldish cold	or 3
2R2	Sample 8	2633		Black, thick, mud-like	3
2R2	Sample 9	2634		Black, thick, mud-like	3
2R2	Sample 10	2635		Clay	*
2R2	Sample 11	2636		Clay	*

^{*}DEC and 8CC agreed that these samples would not be included in sample composites.

Table 2-2
SAMPLE LOCATION CODES

Code	Sample Location							
WP	Weathering Area, Plant Side							
₩R	Weathering Area, River Side							
1P1	#1 Iron Oxide Pond, Plant Side, Borehole 1							
1P2	#1 Iron Oxide Pond, Plant Side, Borehole 2							
1R1	#1 Iron Oxide Pand, River Side, Borehole 1							
1R2	#1 Iron Oxide Pond, River Side, Borehole 2							
2P1	#2 Iron Oxide Pond, Plant Side, Borehole 1							
2P2	#2 Iron Oxide Pond, Plant Side, Borehole 2							
2R1	#2 Iron Oxide Pond, River Side, Borehole 1							
2R2	#2 Iron Oxide Pond, River Side, Borehole 2							

Table 2-3
COMPOSITE SAMPLE IDENTIFICATION

Composite Number	Designation						
1	' Weathering Area, Plant Side						
2	Weathering Area, River Side						
3	#2 Iron Oxide Pond, Water Table and Below						
4	#2 Iron Oxide Pond, Above Water Table						
5	#1 Iron Oxide Pond, Water Table and Below						
6	#1 Iron Oxide Pond, Above Water Table						

3. METHODS OF ANALYSIS

3.1 COMPOSITING PROCEDURE

The following procedure was used to prepare sample composites for analysis. All composites were split with DEC. Each containerized split-spoon soil sample used in a composite was sieved through an eight-mesh screen to remove stones and debris. Screening was accomplished using a Teflon® scraper to force material through the screen. This screening insured that sample weight was not distorted by stones and debris with respect to any compound that was present. The screened sample was weighed and returned to its original container for storage until all soil samples were screened.

A portion of each screened sample was then weighed to provide equal portions for the homogenization step. The weighed portions were thoroughly mixed in pre-cleaned, 16-ounce sample bottles using a spatula. A homogeneous mixture was attained by stirring the sample at least 10 to 15 times. The mixed sample was then placed on a Teflon® sheet and shaped into a rectangular form of even thickness. The rectangle was quartered with two diagonal quarters used for the ASC composite and two alternate quarters used for the DEC composite. The composites for DEC were placed in pre-cleaned containers, sealed, and subsequently picked up by Mr. Hoffman for delivery to a laboratory under contract to DEC.

The stainless steel spatulas, screens, and pans were washed with laboratory grade detergent; rinsed three times with tap water; rinsed with pesticide-grade acetone; and then rinsed with an ASTM Type I water. The equipment was dryed in an oven at 105°C for 15 minutes. Only the equipment that had come to room temperature was used for screening and mixing.

3.2 ANALYTICAL PROCEDURES

In an agreement dated April 13, 1982, DEC's Hazardous Waste Compliance Team and BBC compiled a list of chemicals of concern for this project. E & E proposed certain analytical methods to be used to detect those chemicals. The methods were subsequently agreed to by DEC and are listed in Tables 3-1, 3-2, and 3-3.

Table 3-1

ANALYTICAL SETHEDS
USED FOR ORGANIC ANALYSES
(EXTRACTION SETHED 8.86)

Compound	Method No.*
Volatiles**	8.01
1,1,2-Trichloroethylene	8.01
Yonochlorbenzene	8.01
o-Dichlorobenzene	8.01
n-Dichlorobenzene	8.01
o-Dichlorobenzene	8.01
Extractables	
Total polychlorinated biphenyls (PCBs)	8.09
Polynuclear aromatic screen	8.25
-Napthy lamine	8.25
1,2,4-Trichlorobenzene	8.25
1,2,4,5-Tetrachlorobenzene	8.25
2-Chlorophenol	8.25
o-Chlorophenol	8.25
2,4-Dichlorophenol	8.25
2,4,5-Trichlorophenol	8.25
2,4-Dinitrotolœne	8.25
Benzyl chloride	8.25
Benzidine	8.25
n-Toluenediamine	8.25
2,4-Dinitrophenol	8.25
o-Nitroaniline	8.25
Toluene diisocyanate	8.25
,2-Dinitrobenzene	8.25
n-Dinitrobenzene	8.25
o-Dinitrobenzene	8.25

^{*}United States Environmental Protection Agency (EPA), 1980, <u>Test</u> Methods for Evaluating Solid Waste, SW-846, Washington, D.C.

^{**}No extraction.

Fable 3-2
- ANALYTICAL METHODS USED FOR METAL ANALYSES

Metal	Method No.*
Arsenic	206.2
Chromium, total	218.2
Chromium, hexavalent**	
Copper .	220.2
Lead	239.2
Mercury	245.5
Nickel .	249.2
Zinc	289.1
•	

^{*}EPA, March 1979, Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, Washington, D.C.

^{**}Hexavalent chromium was extracted according to Method 3060 and analyzed according to Method 7195 in EPA, 1980, Test Methods for Evaluating Solid Waste, 5W-846, Washington, D.C.

Table 3-3

ANALYTICAL METHODS USED FOR MISCELLANEOUS ANALYSES

Parameter Method No.*

*American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 1980, Standard Methods for the Examination of Water and Wastewater, 15th edition, Washington, D.C.

4. QUALITY ASSURANCE/QUALITY CONTROL

4.1 QUALITY ASSURANCE

All phases of this study, including the final report, have been independently audited by E & E's internal quality assurance group. All data and the contents of the report have been accepted by the group and authorized for release.

4.2 QUALITY CONTROL

All glassware used was washed with soap and rinsed with deionized water. The glassware used for organics analysis was rinsed again with acetone and hexane and dried in an oven. The glassware used for metals was rinsed with nitric acid, followed by deionized water, and dried in an oven.

All solvents were pesticide-grade and were submitted to extraction and concentration procedures similar to those used for actual samples.

Low working-level standards are prepared fresh daily from stock standards. The stock standards are prepared fresh monthly from pure analytical standards.

Consistent with the quality control program, sample blanks were analyzed to determine whether any interferences were present that may have been contributed by the solvents, the glassware, or the procedure itself. No interferences were detected.

The accuracy of the analytical method is determined by the use of spiked samples* and is calculated as the percent recovery. Spikes of varying amounts were analyzed to further ensure the accuracy of the method. The percent recovery for the spiked samples is given in Table 4-1. All percent recoveries were within acceptable limits.

To further ensure the accuracy of the analyses for the various parameters tested, EPA quality assurance materials were analyzed along with the samples. The results of those analyses are presented in Table 4-2. All results were within acceptable limits.

The precision of the analytical method is determined by the analyses of replicate samples within the appropriate concentration ranges. Results of the replicate analyses appear in Table 4-3. An acceptable level of precision was obtained for all replicates.

^{*}Spiked samples are those that have a known quantity of chemical added and are used to estimate accuracy through percent recovery.

Table 4-1

DUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY
FOR SPIKED SAMPLES

	ΕĿΕ	Original Value	Amount Ad <i>d</i> ed	Amount Determined	December	
Compound/Element	Composite No.	mg/kg			Percent Recovery	
2,4-Dichlorophenol	6	<2.4	36.93	26.89	72.8	
Benzidine	6	<1.0	26.9	18.0	66.9	
p-Nitroanıline	1	<0.8	20.0	13.1	65.5	
1-Naphthylamine	1	<0.2	25.0	21.1	84.4	
Toluene diisocyanate	6	<0.7	11.3	10.49	95.1	
Trichloroethylene	1	<1.0	3.6	3.2	88.9	
Chlorobenzene	1	<0.1	2.4	1.9	79.2	
1,2-Dichlorobenzene	1	<0.1	1.8	1.5	83.3	
1,3-Dichlorobenzene	1	<0.1	1.6	1.4	87.5	
1,4-Dichlorobenzene	1	<0.1	2.2	1.8	81.8	
Aroclor 1260	6	<0.2	12.2	11.3	92.6	
Arsenic	6	63.5	24.9	85.6	88.3	
Chromium, total	6	825	500	1,320	99	
Chromium, hexavalent	1	0.567	2.00	2.50	96.7	
Copper	3	2,480	4,990	7,360	97.8	
Lead	4	746	994	1,840	110	
Mercury	4	11.3	4.80	16.3	104.8	
Nickel	2	103	99.6	217	114.5	
Zinc	2	795	4,980	6,070	106	

Note: All spike results fall within the 95% confidence limits of our control charts.

< = None detected at stated detection limit.</pre>

Table 4-2

QUALITY CONTROL FOR ACCURACY: PERCENT DIFFERENCE--EPA QUALITY ASSURANCE MATERIALS

	Concentra			
Element	Known	Determined	Percent Difference	
Arsenic	40	41.7	4.3	
Chromium	0.25	0.252	0.8	
Copper	0.35	0.344	1.7	
Lead	0.400	0.382	4.5	
Zinc	0.400	0.411	2.8	

Note: These results are within the 95% confidence interval for these parameters.

Table 4-3
QUALITY CONTROL FOR PRECISION:
RESULTS OF REPLICATE ANALYSES

Compound/Element	E & E Composite No.	Original Analysis (mg/kg) A	Replicate Analysis (mg/kg) B	Relative Percent Difference (RPD)*
Arsenic	1	108	97.0	10.73
Chromium, total	1	758	838	5.01
Chromium, hexavalent	5.	<0.5	<0.5	0
Copper	1	5,610	7,430	13.96
Copper	6	410	397	1.61
Lead	1	57,600	47,000	10.31
Mercury	6	0.744	0.738	0.40
Nickel	1	60.9	67.9	5.43
Zinc	1	2,130 -	1,800	8.40
Benzidine	6	<1.0	<1.0	0
p-Nitroaniline	6	<0.8	<0.8	0
1,2,4-Trichlorobenzene	6	<1.0	<1.0	0
2-Chlorophenol	6	<2.4	<2.4	0
2,4-Dichlorophenol	6	<2.4	<2.4	0
Trichloroethylene	6	<1.0	<1.0	0
Chlorobenzene	6	<0.1	<0.1	0
1,2-Dichlorobenzene	6	<0.1	<0.1	0
1,3-Dichlorobenzene	6	<0.1	<0.1	0
1,4-Dichlorobenzene	6 .	<0.1	, <0.1	ŋ
Aroclor 1221	3	<0.5	<0.5	0
Aroclor 1232	3	<0.2	<0.2	0
Aroclor 1016	3	<0.2	<0.2	0
Aroclor 1242	3	<0.2	<0.2	0
Aroclor 1248	3	<0.2	<0.2	0
Aroclor 1254	3	<0.2	<0.2	0
Aroclor 1260	3	<0.2	<0.2	0

Note: These results fall within the 95% confidence limits of our control charts.

* RPD =
$$\frac{[A-B]}{A + B/2} \times 100$$

< = None detected at stated detection limit.</p>

5. RESULTS

The results of the analyses are presented in Tables 5-1 through 5-4. Values are reported in mg/kg dry weight of the soil composites.

Fable 5-1

RESULTS OF CHEMICAL ANALYSES OF SOIL COMPOSITES FOR METALS* AND pH

		E &	E Compos	site Numb	er	
Element	1	2	3	4 ry weight	5	6
			g/ kg - ui		- /	
Arsenic	108	1,870	694	84.8	42.8	63.5
Chromium, total	758 -	1,050	55.8	715	50.3	825
Chromium, hexavalent	0.567	3.16	2.76	<0.5	<0.5	<0.5
Copper	5,610	6,200	2,480	1,320	1,030	410
Lead	57,600	26,200	923	746	262	116
Mercury	138	39.8	1.17	11.3	7.40	0.744
Nickel	60.9	103	60.9	167	49.9	187
Zinc	2,130	795	4,400	3,030	4,070	474
pH, S.U.	8.7 I" 1 Weather, Plant	5.6	7.4	7.1	8.0	7.6
*All metals are "Tota	1"		La	goon 2	Lag	1000
1 =	weather.	ng Arca	below	obove	below	- abo
,	Plant	5.de	W.T.	w.T.		- W
2 : \	verther. River	ng Åre	4			
_	River	5. de				

Table 5-2

RESULTS OF CHEMICAL ANALYSES OF SOIL COMPOSITES FOR EXTRACTABLE ORGANICS

Compound	1	E & E Composite Number 2 3 4 5 (mg/kg dry weight)				
1-Napthylamine	<0.2	<0.2	<0.2	57.3	<0.2	23.1
1,2,4-Trichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4,5-Trichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Chlorophenol	<2.4	<2.4	<2.4	<2.4	<2.4	<2.4
p-Chlorophenol	<2.4	<2.4	<2.4	<2.4	<2.4	<2.4
2,4-Dichlorophenol	<2.4	<2.4	<2.4	<2.4	<2.4	<2.4
2,4,5-Trichlorophenol	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2
2,4-Dinitrotoluene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzyl Chloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzidine	<1.0	<1.0	1.51	<1.0	4.52	<1.0
m-Toluenediamine	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
2,4-Dinitrophenol	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
p-Nitroaniline	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Toluene diisocyanate	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7
1,2-Dinitrobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
m-Dinitrobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
p-Dinitrobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Aroclor 1221	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Aroclor 1232	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Aroclor 1016	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Aroclor 1242	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Aroclor 1248	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Aroclor 1254	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Aroclor 1260	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2

< = None detected at stated detection limits. . .</pre>

Table 5-3 RESULTS OF CHEMICAL ANALYSIS OF 50% COMPOSITES FOR POLYNUCLEAR AROMATIC HYDROCARBONS

		Ε	& E Compos	site Number		
Compound	1	2	3 (mg/kg d	4 Try weight)	5	á
Acenaphthylene	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Acenaphthene	1.20	1.07	<0.6	<0.6	<0.6	<0.6
Naphthalene	1.85	<1.0	<1.0	<1.0	<1.0	<1.0
Fluorene	1.08	1.87	0.38	0.71	<0.1	0.54
Anthracene	9.59	0.89	0.52	1.32	0.44	0.23
Phenanthrene	+	±	*	*	*	•
Fluoranthene	10.21	1.87	0.68	1.83	0.32	0.50
Pyrene	6.73	1.21	0.56	1.45	0.28	0.41
Chrysene	4.63	0.87	0.42	1.22	0.29	0.17
Benzo(a)anthracene	**	**	**	**	**	**
Benzo(b)fluoranthene	7.94	1.78	0.59	3.40	<0.2	1.90
Benzo(k)fluoranthene	***	***	***	***	***	***
Benzo(a)pyrene	***	***	* * *	***	***	***
Indena(1,2,3-cd)pyrene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dibenzo(a,h)anthracene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(ghi)perylene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

< = None detected at stated detection limit.</p>

^{*}Anthracene and phenanthrene are an isomeric pair which cannot be separated under these chromatographic conditions. Values are based on calculations using anthracene as a standard.

^{**}Chrysene and benzo(a)anthracene are an isomeric pair. Values are based on

calculations using chrysene as a standard.

***Benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene are an isomeric group. Values are based on calculations using benzo(b)fluoranthene as a standard.

Table 5-4

RESULTS OF CHEMICAL ANALYSES OF SOIL COMPOSITES FOR VOLATILE ORGANICS

		ΕÆ	E Compo	site Nu	nber	
Compound	1	2	3	4	5	5
			(mg/kg	dry wei	ght) 	
Trichloroethylene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorobenzene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2-Dichlorobenzene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,3-Dichlorobenzene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,4-Dichlorobenzene.	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

< = None detected at stated detection limits.</p>

APPENDIX A

CHAIN-OF-CUSTODY FORMS

teremetional Specialists in the Environmental Sciences

March .					2117	,	COSTO	., ,	,	~.,,.,	-					
Voj. No.		ect Na		Cinn to	11 /400	Y All	NO.						\overline{Z}	////		
MPLERS:	(Signalu)	01		Cotor FI	u SAM	Linu	OF				//					
	<u>'</u>	Lo		wews			CON-			//	//	//	//	/./	REMARKS	
TA. NO. DAT		Ü	GRAB	AOITATS	LOCATION		TAINERS		//	/		//				HSSIGNED ERE LAB#
12/1	4/82			WR-1	SAMPLE	1	• 1							0-21 days	E,	2552
				WP-1	SAMPLE	2_	(2-34 80	11	2553
		_	_	WR-1:	SAMPLE	3	(4-6' dag	1 k	2554
-			<u> .</u>	WR-1	SAMP CE	Y								6-8' dath		1570_
		_		we-1	SAMPLE	5		4	100	ر. د	Ai(<u> </u>		8-10' dept	1.	257/ -
			-		SMAPLE	6			-01	<u>- </u>	1	16/		10-12 days	t E	25721
2-2				WR-Z	SAMPLE		'							0-21 dent	<u>(</u>	2555
2			-		SMORE	<u> </u>							.	7.4' clevil	1	2556
				1.5	SAMPLE	_3								11-6 0/201	<u> </u>	2557
<u>,,</u>				WR.Z.		4		1				<u> </u>	.	las de	<u> </u>	2558
	<u> - </u>	-	-	WR-7-		_5		(1)	E	Of	36.4	<u> </u>		8-10 del	<u> </u>	25 73
			_	WR-2 5		6		(α,		AIC			10.12. dep	<u>//</u>	2574
			_	WR-2		7		10	ot.	0	UL	1		12-14 den	<u>/l</u>	2575
			-	We-3 3	AMPLE	14	1							0-0.2 days	H	2559 2540
			1,	WR.3 Lin-3 Baid Time	AMPLE	2								2.0 - 4.0' de	et	256/
elinguished	Pue	ignajure **		Baid/Time	Received 1	(Signal	ure) (Reli	nquis	hed	by: (Signat	luro)	1.0-Gale/Time	Received by	(Signature)
elinguished	inquished by: (Signature) Date/Time Received by: (S							Reli	nquis	shed	by: (Date/Time	Received by	
Piter	d by: 15	Socialis	lo	12/14/87 420	Received (Signalifie)	for Labor	ratory by:	12	Date /iffe7	Tim	ne 429 W)	1 1	$2l \cap l$	ks (LOG only, ired at lab.) WR-, Sample	,44 /CC	e not ecoed lillo
Same.	Consulta S.				. [) ,	\cup						se	e notes 12/1	5/82	

International Specialists in the Environmental Sciences

agy and environment, inc.

Deal M	 ,	D-21-2			011/11/1 01		ODI NECOND
Proj. N		Project F	Nar LL U	ne S	AMPLING ALD COLOR	NO.	
SAMPLE	RS: (Si	gnaturo)		•	avens	OF	REMARKS
STA. HO.	DATE	TIAIE	COMP.	1	STATION LOCATION	CON- TAINERS	
		1			WP-1-SAMPLE /A WP-1-SAMPLE LB		0-08 depth 2576
					WP-1/- SAMPLE 2	1.	2.0 - 4.0' depth 2577 2.0 - 4.0' depth 2578
					WP-1-SAMPLE Y WP-1-SAMPR 5		(LOC DNOT) 8.0. 10.0' - (0.716-258)
			<u> </u>		WI-1-SAMPLE 6	((100 DN 4) 10.0 - 12.0 . 1 1. 2582
			_		·		
Relinga					Date/Time Received by: (Signate 17/15 3 m Would	-	Relinquished by: (Signature) Date/Time Received by: (Signature)
Relinqui	La	nh			Date/Time, Pecceived by: (Signal)	(110)	Relinguished by: (Signature) Date/Time Received by: (Signature)
Refindui	shod b	y: (Sign	atiire)		Date/Time Reserved for Labor	ratory by:	Seale areact
7 5-	RO		_	•		O	

Inter. unal Specialists in the Environmental Sciences

WP-3 SAMPLE 2 1 2.0 - 4.0 depth 3586 WP-3 SAMPLE 4 1 (100 DNCY) & 0 - 8.0 depth 4.58 COP-3 SAMPLE 6 1 (100 DNCY) & 0 - 10.0 cly 10.358 WP-3 SAMPLE 6 1 (100 DNCY) 10-12.0 cly 10.358 WP-4 SAMPLE 1A 1 0 - 0.7 depth 358 WP-4 SAMPLE 1A 1 0 - 0.7 depth 358 WP-4 SAMPLE 1A 1 20-4.0 depth 358 WP-4 SAMPLE 3 1 20-4.0 depth 358 WP-4 SAMPLE 3 1 40-6.0 depth 358 WP-4 SAMPLE 4 100-6.0 depth 358 WP-4 SAMPLE 5 1 (100 DAY 10.0-12.0 depth 358 WP-4 SAMPLE 5 1 (100 DAY 10.0-12.0 depth 358 WP-4 SAMPLE 5 1 (100 DAY 10.0-12.0 depth 359 WP-A SAMPLE 5 1 (100 DAY 10.0-12.0 depth 35	<i></i>			~	· · · · · ·	CHAIN OF	CUSTO	DY RECORD
SAMPLETS: (Signature) STATION LOCATION	Proj No		Project FIL	Nan	ne SAh	1PCING	No.	
STATION DATE TIME & STATION LOCATION TAINERS 1/1/21 WP 3 - SAMPLE A	SAMPLER	75: <i>(</i> Sig		-)			
12/07 WP-3 - SAMPLE 1A 0-0-2" lept 2583 1.0 20" dept 1584 1684 1684			_ (_ /		707	Cwerk		REMARKS
WP 3 - SAMPLE 2	\$1A. NO.	DATE	LIPIE	CONTRACT	GR.	STATION LOCATION	TAINERS	
WP-3 SAMPLE 2 1 2.0 - 4,0 dapth 3586 WP-3 SAMPLE 4 1 (100 ONCY) 6.0 - 10.0 dapth 2581 WP-3 SAMPLE 6 1 (100 ONCY) 6.0 - 10.0 dapth 2581 WP-3 SAMPLE 6 1 (100 ONCY) 10 - 12.0 dapth 3581 WP-4 SAMPLE 1A 1 0 - 0.7 dapth 3581 WP-4 SAMPLE 1A 1 20 - 4.0 dapth 3581 WP-4 SAMPLE 3 1 20 - 4.0 dapth 3581 WP-4 SAMPLE 3 1 40-6.0 dapth 3581 WP-4 SAMPLE 5 1 (100 ONCY) 80-10.0 dapth 3581 WP-4 SAMPLE 6 1 (100 ONCY) 80-10.0 dapth 3581 WP-4 SAMPLE 6 1 (100 ONCY) 80-10.0 dapth 3581 WP-3 SAMPLE 6 1 (100		4/06	-					
10-6.0 depth 258				ļ	<u> </u>			
(106 DNCY) 6, Q-8, Q 1 dyth 258 (106 DNCY) 5, Q-8, Q 1 dyth 258 (106 DNCY) 5, Q-10, Q dyth, 258 (106 DNCY) 10-12, Q dyth, 258				}			<u> </u>	· · · · · · · · · · · · · · · · ·
Cuf-3 SAMPLE 6 (406 DNCY) & 0-10, 0 cly 16, 258 10-3 SAMPLE 6 (400 DNLY) 10-12, 0 cly 16, 258 10-12, 0								1,0-6.0 dent
WP-3 SAMPLE 6 (LOS DNLY) 10-12.0 doubted start as well-4 SAMPLE 13 1 10-12.0 doubted start as well-4 SAMPLE 13 1 20-4.0 dopted as well-4 SAMPLE 3 1 40-6.0 dopted 3 1 40-6.0 d				-	-			
WP-4 SAMPLE 13 1				-	-	1 2 1 1 1 2 1 Y	1	
WP-Y SAMPLE 3 1 20-4,0 depth = 25 WP-Y SAMPLE 4 1 - 6.0-80 depth = 25 WP-Y SAMPLE 5 1 (100 DLY) 8.0-10.0 depth = 25 WP-A SAMPLE 6 1 (100 DLY) 8.0-10.0 depth = 2					 		1	
WP-4 SAMPLE 3 1 40-600 clapth							1.1	
Retinquisited by. (Signature) Date/Time Received by: (Signature) Date/Time Received by: (Signature) Date/Time Received by: (Signature) Myork Myo						WRY SAMPLE 2	1	
Relinquistied by. (Signature) Date/Time Received by: (Signature) Date/Time Received by: (Signature) Date/Time Received by: (Signature) My Marce Relinquished by: (Signature) Date/Time Received by: (Signature) My M						WP-4 SAMPLE 3		
Retinquished by: (Signature) Date/Time Received by: (Signature) Adamse Received by: (Signature) Date/Time Received by: (Signature) Myarse Date/Time Received by: (Signature)			<u> </u>	_	<u> </u>		\	6.0-80 denthe 1393
Retinquistind by. (Signature) Date/Time Received by: (Signature) Additional Received by: (Signature) Date/Time Received by: (Signature) Date/Time Received by: (Signature)				_	_	1-401-1-14:111-15	\	- <u></u>
Retinquistind by. (Signature) Date/Time Received by: (Signature) Additional Received by: (Signature) Date/Time Received by: (Signature) Date/Time Received by: (Signature)				-\	-	WP-A SAMPLE 6	1 '((100 ply 10.0-12, depth, 2595
Wind 12/15 3cm Marce			<u> </u>		<u> </u>			
	Relinquis	sligd b	iy. (Sign (V/)	ature,	,		aturė) uncė	Relinquished by: (signature) Date/Time Received by: (signature)
Have 17/15 4 mm 1/2 / La	Relinquis	stied to	y (Sign	alure	,		,,,,	
Remarks Seals intact (1) 1/15 4 pm Similar Of Durley 1/15 4 pm Similar Of Durley 1/15 4 pm Similar Of Durley 1/15 4 pm WP-4 shouldread WP2	helingui	shedi	3y: 75/9	Aatiro	> 1	Signatural Signatural		19 Hom Remarks Seals intact WP-4 shouldread WP2
7 St. Samples correct	PS	(.)	(C					samples correct

e ogy and environment, inc.
International Specialists in the Environmental Sciences

	~~~~		CHAIN OF	Coalc	int like	OND				
Proj. No.	Project I	Name	AMPCING				77	////		
-	Bu	PPA	AW COLOR CORP	NO.						
SAMPLERS: (.	S. a.u. a luur a de	}	ren	OF		///	///			
	1 (1)	. 1	rew	CON-			///	/ · /	REMARKS	
STA. NO. DATE	TIME	GRAB	STATION LOCATION '	TAINERS			///			
			2R-1 Sample 1					0-2,0	depth	2610
	_ -		2R-1 SAMPLE 2	1				2.0-4.0	1 al II	2611
	_ .		ZR-1 -SAMPLE 3					4.0.6.0	o' de il	36/2
	_		ZR-) SAMPLE 4	,				60.80		1613 x
	-		ZR-1 SAMPLE 5	1				8.0 - 10,		
	_		2R-1 SAMPLE C	(100-12.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3614.
	_		ZR-1 SAMAR 7 A+B	(120 - 14.0		2/1/34
	_].		2R-1 SAMPLE 8.					14.0 - 16.		2616
·	_ -		2P-1 SMPIR 9	1 .				16.0-18.0		36190
	_		2R-1 SMAR 10.	١١				110-20.		2630V
	- -									-400.
	_ -		The state of	1						*
			1 1 1 1 1 1 1 1 1 1							
	_ -								•	
			77.7 THOUGH!							
Relinquished			Date/Time Received by: (Signal Manual	luro)	Relinquis	hed by: (Sıy	naturo)	Date/Time	Received by: (Sig	nature)
Relinquished Julya	by (Signalu		Date/Time Received by: (Signal	lure)	Relinquis	hed by: (Sig	nature)	Date/Time	Received by: (Sig	nature)
Refinduished	by: (Signati	e)	Date/Time Received for Labor (Signatura)	ratory by:	Date: 12/16/2	Time 15	Remarks	Seenou	3	
				0		- ATT DOKUMENT				

,ogy and environment, inc,

International Specialists in the Environmental Sciences

~	•						+					7-7	
	Proj. No	D. [roject · Bu	Nam.	Au	o coron	NO.				//		
гесус	SAMPLE	RS: (5:0)	nativa) H)		DonOvens	OF CON-					//	. REMARKS
recycled paper	\$1A. HO.	DATE	livie	COMP.	GRAB	STATION LOCATION	TAINERS	/					
		12/17			X	2P-1 #1	1-1-	-			_ _	-	LAGOON # 2 PLANT 5/08 # 1 2639
					X	2P-1 #2	 	┼	-		- -	-	1640
		<u> </u>		-	X	2P-1 #3			-		\dashv		3641
			\ <u></u>	 	X	2P-1 #4		1-	-		1		3642
		 	 	-}	X	2P-1 #5 2P-1 #6	1.0	1	1				3643
4			-		X	21-1 77	1	1					3644
A-6		-{}-	-	-	X	1	(3645
		- -	-	-	X	16	(_	<u> </u>	_ _		26.44
		1	-		×	146.10	1	_ _			_		LAGOSS # 2 PLANT SIDE HE 24
	7.	12/1	7		2	2f-2 #1	_\	_ _			-		CAGGOSS A Z TOTAL SINC
						2P-2 #2	(-		
•			_			2P-2 #3		-		-	-		
- Suppres						2P2 #4		- -	- -				
y and						2P2 #5	9 '				$\rightarrow \downarrow$	21	Date/Time Received by, (Signature)
rnvirunme	Reliex	winded White	by (Sig	nalur	0)	Date/Time Received by: (s)	nature) (1	K	yithed I	Jan	ur	12/12 1610 Male Pierce SBC
at. inc.	Relina	quished	by (Si		e) BC		vice			uished			
	Reline	quished	1 by: 15	ignatii	-	Date/Time Received for La	horatory b	y: >	14/17	ale/Tim 82 4	35	Te	marks intact- No signatures als intacted
		خاسخاغ		-	le d'à con tr	A CONTRACTOR OF THE PARTY OF TH	40.	\mathcal{I}	Property Ar			\	

ff ec. agy and environment, inc. International Specialists in the Environmental Sciences CHAIN OF CUSTODY RECORD Project Name Proj. No. SUFFAW COLOR NO. SAMPLERS: (Signature)

WHATH DIMBUSLOWS OF REMARKS CON-TAINERS STA. NO. DATE TIME STATION LOCATION 12/0 212 76 LAGOON AL PLANT SIDE 2 2P-2 21-2 2/2 21-2 2P-2 LAST 172m Received by: (Managere) Relinquished (Signature) Date/Time Relinguished by: (Signature) Date/Time Received by: (Signature) Relinquished by: (Signature) Date/Time | Received by: (Signature) Date/Time Received by: (Signature) Relinquished by: (Signature) Reneived for Laboratory by: Date/Time Relinquished by: (Signature) Date/Time

dogy and environment, inc. International Specialists in the Environmental Sciences CHAIN OF CUSTODY RECORD Proj No. Project Name BUFFACE COLOR CORP. FILL NO. SAMPLERS: (Signafula) OF REMARKS CON-TAINERS STA. HO. DATE TIME STATION LOCATION SAMPLE 20.0. 22.01 262/ 22.0.24.0 J6:22 2623, SOMPLE 14 2624. <u> 26.0 · 28.0</u> 28.0 -30.0 SAMPLE 0 - 2.01 262 N 2628L 26212 2630 263/ 1 14.0'des 2632 V 2632 26341 'do 2635 - Dater Time Receive by: (Signature) Relinquished by: Signator 2200 Jim Urero vicely 17/17 Date/Time Relinquished by: (Signature) Relinguished by (signature) Received by: (Signature) Relinquished by: (Signature) Date/Time Received for Laboratory by: (Signature) Date/Time Remarks

e ogy and environment,
International Specialists in the Environmental Sciences

					CHAIN UP	CUSTO	ווע	ILC	Oni	,				
Proj. N	0.	Project	Nan	ne		NO.								
SAMPLE		gnature)	C.	7.1.1		OF		/	//	//	//	//	/./	REMARKS
STA. NO.	DATE	TILIE	COrrp.	GRAB	STATION LOCATION	CON- TAINERS	/	//	//	/	//	//		E+E #
	12/20				P - M!	1							2' depth 2'-4'	2672
					161-22	1							21-41	2673
					1 P 1 - A 3	1	<u> </u>						4-6' 6-8' 5-10' 10-12' 12-14'	2574
					191-44		ļ				ļ		6-8'	25.75
			<u> </u>		101-45	/							5-10'	26.76
					101-46	1							10-12	2677.
					181-47	_/_							12-64	2678
	ļ		.		1P1- # 8	/							14-16	2679
			-		101-#4		<u> </u>						16-181	lug on 14 , 2681
 	<u> </u>	ļ	.			-	ļ	ļ						
			-			-								
	ļ		<u> </u>				ļ							triba di m dilim di dirik kribinyan s <u>ayarannan direkani dinyaknyan yanga kapadal</u>
			_											
			<u> </u>			<u> </u>								
		*			2									
Relincia	1	-		ı	Date/Time Received by: (stone	nture)	Reli	ngvi	shed	ρ ΄ γ: ι	Signa	iluro)	1 3 / 1 / 1 / 26	occived by: (Signature)
Relinqu	Ished I	y: (Signi	alure)	_ _	Date/Time Received by: (Signa		Beli	inqui	shed	by:	(Signa	dare)		Received by: (Signature)
Sa	Jayout 1/4 930 you lab				(204)									
Relingu	Reinquished by: (Signature)				Date/Time Received for Labo	ratöry by:	ory by:			ne) <i>30</i>	ſ	Remar	ks Seals , d	Kilet
Philippine and and a second						Ũ.								

<i>,</i>						CHAIN OF	00010) IILC				
Proj. No	0.	F	roject B	Nam	FAL	w. color	NO.		_ 			
AMPLE	RS:	(Sigi	nature)		,		OF		//	//		REMARKS
STA. NO.	DAI	E	Эин	CO:/P	GRAB	STATION LOCATION	CON- TAINERS		//			
	12/	भ			X	HOLE IRZ 1	1					2824
					X	2	1					<i>38,</i> 5
					X	3	1			_		2826
					X	Y	/					125/
	-			<u> </u>	X	<u></u>	/			_	_	1828
					X	. 6	/				_	2829
	- -				X	7					_	2/30
	- -				X	8	/			-	- -	2831
	- -				X		/				-	3832
	- -		 -		X	10	_/_				-	2833
	-				X	11	-/				- -	2834
	- -			<u> </u>	オオ	·					-	2835
	-}-			-		13 A					- -	1836
	1-			-	X	13 B						2837
	L¥				X	14 4	/			1		<i>\$83.8</i>
,			y. (Signa Lar y: (Signa			Date time Received by: Work	()	Relingui	و .	by (sig.		Date/Time Received by: (Supartine)
elinqui	jejne	by	y: [Sign:			Date/Time Received by: (Signa	lure)	Relinqu	ished	by: (Sig	natur <u>o)</u>	Date/Time Received by: Signature)
ellnqui	ishe	d by	y; /(Sign	aline		(Signature)	ratory by:	.] /	e/Tim	145 am	Remark	S

ogy and environment, inc.

International Specialists in the Environmental Sciences

•	<i></i>				_	CHAIN OF	COSTO	UY	HEC	CINI				
	Proj. No	o.	Project 	Nan ÚFF	AU) cowl	NO.							
recv.	SAMPLE	RS: (Sig	malure)	,			OF .		/	/,	//	//	//	REMARKS
recycled paper	STA. HO.	DATE	THAE	COMP.	GRAB	STATION LOCATION	CON- TAINERS	· /	//	/	/		//	
		12/21			X	148	1							2839
İ					X	15	1							2840
Ì		¥			X	16	1							2841
I						- LAST ITEM -		上						
		ļ					<u> </u>							
			ļ. 	_										
l														
.				ļ										
:				 										
				.	 						 			
		<u></u>		-										
								<u> </u>			 			
				_										
		 		-										
	·		<u> </u>				A			_		<u> </u>		
	Relinqui					Date/Time Received by: Asigna 12/21 1600 h Cin	levie_	Rel	ingua	y)ed	1	(Signa		Date/Time Received by Signature)
	Helinqui	shed b	y. (Sighi	ature)		Date/Time Received by: Signa	luro)	Rel	inqui	shed	by:	(Signi	iture)	Date/Time Received by (Signature)
	ر مراجع المراجع					Date/Time Received by: Signa								
	Relinqu	ished b	y; (Sign	aline		Date/Time Deceived for Labo	ratory by:	. ,	Date 21/2	e/Tin	ne. リン	7	lema.	ıks
1	AT		_		**********	ATTENDED TO THE PROPERTY OF THE PARTY OF THE								

A STATE OF THE STA

ecology and environment, inc.

Pro No).	Project			Color	NO.				$\overline{/}$	///	7///		
SAMPLE		natuio)	•~		olso	OF CON-		/	//	//			REMARKS	
\$14.HO,	DATE	firit	ΩΨ.	E-24B	ETATION LOCATION	TAINENS	_		_		///	/		41.8
				·	191-10							18-20'	dry 16	2687 2682
					101-12		 					22- 241	'\ '\	2683
			_	_	P1 - 17	-						24-76	4	2684 2685
			<u></u>		101-15							58-30		26%
			_											
					1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1									
			<u> </u>	<u> </u>										
							_							
			(/						T	
Relingui		iy: [Signi			Dale/Time Received by: (Signal 12/21 9 4 For Substitute		Rel	ludnį	shed	by: (Signaturo)	Date/Time	Received by: (S	ignature)
Relinati					Date/Time Received by: (Sign		Rel	lutin	shod	by: (Signature)	Date/Time	Received by: (s	
Relinqu	Relinquished by: (Signalure) Dale/Time Received on Charles						aboratory by: Pale/Time 1961 930					irks Seals	intack)

gy and environment, inc

						CHAIN OF	00010	.			7			
	Proj. N	0.	Project ·			10. COLOR	NO.			,			//	
rec)	SAMPLE	RS: (Sig	nature)				OF		,	/,	//	/,	//	. REMARKS
ÇÎ e		ı 1					CON-						//	LETIMIK 3
recycled paper	STA. NO.	DATE	TIME	COMP.	GRAB	STATION LOCATION	TAINERS	/						€4€ lab #
		12/23			Χ	IRI #1	/							2866
		12/24	_		X	2	/							5861
		12/22			Х	3	1							<i>1868</i>
I		1			Х	Y	/							2869
		12/22			X	5	/							2870
					Χ	6	/							1871
Ъ		12/22			Х	7	1						·	3872
A-13		12/22			X	8	/							2873
		12/22			X	9	1							<i>3874</i>
		12/22			X	. 10	/							38.75
		12/22			X	//	/							. 2876
		12/22	+		X	12 .	/							3877
,		12/22			Χ	/3	/							2818
John		12/22			X	14	1							<u>. 3879</u>
erulogy and		***		+-	-	LAST ITEM	7					X		
environment, in	Relingu Relingu	ished b	y: (Sign		1	Date/Time Received by Some	Jun		1		Va	giyn. we		
c. inc.	Rélinqu	islud b	y. (Sign	alure)		Date/Time Received by: (Signal Date)	iture)	Re	linqu	ished	l by: (Sign	alure)	Date/Time Received by: (Signature)
	Ralingu	izlida p	y: (Sigi	native		Date/Time Received for Labo	ratory by:	1/2	Da)	e/Ti	me 1025	5	Remai	iks Seals intact
							O							

ecc y and environment, inc.

Internal Anal Specialists in the Environmental Sciences

Project									7		
	Project Name BUFFAZO COLUR						/	/,	//	//	
SAMPLERS: (Signature)									//	//	. RE MARKS
TIME	COMP.	GRAB	STATION LOCATION	CON- TAINERS		//	/	/		//	E & E lat #
		X	18-2 #1	/					Ĺ		1853
		X	2	7							1854
		Х	3	1							385C
		Χ	Y	1							2856
		X	, ,	(_	2857
		X	¢	/						_	2858
_		X	7	1							2859
_		X	9			_				_	2860
_		ļ	5	/							2861
_	-	 	70							_	1862
	-			'		-				-	3863
3	.	1	12								386 f
_	-	X		_/							1865
	1	-	LAST 11EM			\exists				_	
		<u> </u>		1		,	2				
,		1	Date/Time Received by Crossna 12/27 090 / Sauce		Relin	iquis	heq	${\Lambda}$			Date/Time Received by: (Suranine)
Relinquished by (Signature)			Date/Time Received by: (Signal 1975)	olure)	Relinquished by: (Signature)				(Signa	tur _i o)	Date/Time Received (Signature)
by: (Sign	nature)	,	Date/Time Received for Labo	ratory by:	13/2	Date 187	/Tin	ne عرو)	, n	emark	ks Seal intact
	by: (Sign	by: (Signature)	X X X X X X X X X X X X X X X X X X X	X / P-2 # / X 2 X 3 X Y X Y X G X G X G X G X G X G	TIME 8 8 STATION LOCATION TAINERS TAINERS	TAINERS TAIN	TAINERS STATION LOCATION TAINERS	TAINERS STATION LOCATION TAINERS	TAINERS X P-2 #	TINE B B STATION LOCATION TAINERS	

RECEIVED

JUN 2 9 1984

DIVISION OF HAZARBOUS WASTE ENFORCEMENT FREGION 9

APPENDIX II

REWIEW AND EVALUATION OF GROUNDWATER DISCHARGE ELK STREET PLANT

June 25, 1984

Prepared for:
Buffalo Color Corporation
Buffalo, New York

BUFFALO COLOR REPORT REVIEW

REVIEWERS:

Jack Krajewski - DEE, Buffalo Field Unit
Robert Leary - DEE, Buffalo Field Unit
Vance Bryant - DEE, Albany Core Unit
Dick Hoffman - DEE, Albany Field Unit
Ed Horn - DEC, Fish & Wildlife - Declined to review
Ed Kuzia - DEC, Water
Kevin Walter - DEE, Albany Core - will comment on 10/23/84
About Tay/ex: - DEFO. Buffale
COMMENTS

In general the review has generated two types of comments; those criticizing the quality of the report and those criticizing the conclusions.

Buffalo Color has concluded the following:

- 1. Groundwater flow from the lagoons and weathering area is minimal
- 2. Chemical contribution to the Buffalo River from the sites is neglibible
- 3. Contributions (chemical) to the Niagara River Load allocations are insignificant
- 4. The lagoons and weathering area should be re-classified to a D-rating no further action required

The comments regarding these conclusions are listed below:

1. Minimal groundwater flow:

The worst case evaluation presented by Buffalo Color is for a groundwater flow rate of 5gpm through the waste areas. This translates to 300 gallons per hour. The company considers this a negligible discharge level. In view of the contaminants it contains this amount is not negligible.

a) The 5gpm figure used by Buffalo Color is unsubstantiated in the report. The closest figures to the 5gpm rate are found in the 3/26/84 water balance flow rate estimate - they add up to 5.6gpm.

The figures in the Hydrology section of the report are listed as 2.5 and 1.4gpm.

- b) The flow rate calculations were done for the high and low <u>precipitation</u> periods rather than the high and low groundwater periods.
- c) Little or no data was provided to support the interpretations presented by the company. Water level data was incomplete and significant errors were found in the data that was submitted. The number of water level reading events was inaccurate and ambiguous. The ability to check their calculations was greatly impaired because of lack of data.
- d) No geologic data interpretation or evaluation was provided in the report. This information is critical to the proper calculation of flow rates.
- e) Two methods were used to determine flow rates through the waste areas. Both methods have questionable portions or errors.

Flow net method

- Estimates for permeability (10 gal/day/ft²) and aquifer thickness (50 ft) are unsubstantiated and ignore the geologic data obtained in the field investigation. These two factors are critical in this method.
- 2) Effect of storm drains on water levels at well #6
 were not considered or explained.

- 3) Effect of railroad embankment on groundwater divide is considered negligible. Therefore flow nets should be larger at the sludge ponds.
- 4) The permeability of the waste material is significantly different than the native soils.
- 5) Mathmatical errors were found in the calculations. Water balance method
 - Lake evaporation used in the report does not correlate with runoff and evapotranspiration.
 - 2) The calculations of the areas for recharge of the waste sites are underestimated.
 - 3) Runoff may be significant in the waste site areas, but there are no storm sewers and the sludge ponds have depressions in the center which will increase recharge.
 - 4) Weather data used is not the most recent. 1981 data indicates an inch more precipitation.
- f) The consultant, Ecology & Environment, who did the groundwater flow rate calculations, indicates there are insufficient monitoring points to define groundwater contours. The author of the consultant report was not indicated.
- g) Site map referenced in report was not included
- 2. Chemical contribution from sites:

Buffalo Color ignores groundwater standards and guidelines in their assessment and only mentions SPDES guidelines, but does not list them. They base their argument on Class D stream standards and Niagara River load allocations. The Niagara River load allocations will be addressed in section 3.

Introduction

Buffalo Color Corporation, Buffalo, New York, has directed Ecology and Environment, Inc., (E & E) to review hydrologic data obtained from part of their plant site at Elk Street, Buffalo. Two areas of the plant are involved, the so called "weathering area" where metal oxides were formerly stored on the surface for resale, and sludge ponds one and two, where iron wastes were dewatered for resale (Fig. 1). Both areas are immediately adjacent to the Buffalo River, and the company has had groundwater monitoring wells installed around them to determine water table elevations and to sample groundwater quality. The area has low slopes, is entirely composed of artificial fill and has little vegetation cover. There is no artificial drainage in the area of concern.

E & E adopted two approaches to estimate rates of discharge from groundwater through the two areas thought to be contaminated by past plant practices. The first approach used was to draw estimated groundwater contours and flow lines to define the area draining through each site. From the estimated hydraulic gradient and the estimated transmissivity of the subsurface materials, it is possible to derive a rate of flow through each site. Conservation estimates were used which tend, if anything, to overestimate rates of discharge. The second approach was to estimate where the groundwater divides were to determine how great a recharge area upgradient of the sites might be discharging through them and then to make a conservative estimate of the maximum flow rates from the water balance of the area. The estimated annual water balance, ignoring runoff and transpiration, is 35" of precipitation and 26-28" of lake evaporation, leaving, at most, 9" of infiltration (NOAA, 1963). For monthly calculations, we used 50% infiltration for March and 25% infiltration for June.

Although there are insufficient measurement points to satisfactorily define the groundwater contours in the entire area, the railroad embankment to the east must create at least a slight groundwater mound under it, and preclude entry of groundwater from the east, where existing storm drains will also direct both surface and groundwater flow away from the disposal sites.

Analysis of Available Data

The rate of flow of groundwater passing through a section of an aquifer may be calculated by a modified form of the Darcy equation:

Where Q = rate of flow of water through cross section of aquifer, in gpd,

T = coefficient of transmissivity, in gpd/ft,

I = hydraulic gradient, in ft/mile,

E = mean width of cross section of aquifer, in miles.

The value of transmissivity was estimated to be roughly 500 gallons per day per foot based upon an estimated aquifer thickness of 50 feet and a permeability of 10 gallons per day per foot squared. The mean width of cross section of the aquifer was measured off the water table contour maps. The hydraulic gradient is defined by the formula:

$$I = c_{i} \qquad (2)$$

Where I = hydraulic gradient, in ft/mile,

c; = contour interval of water table map, in feet,

 $W_a = A'$, where A' is the area between two limiting flow lines and water table contours between the two limiting flow lines, in miles.

The rate of groundwater flow into the Buffalo River was estimated at the "weathering area" and the number one and two sludge ponds for June 8, 1982, and March 26, 1984. These dates were chosen in order to provide calculations of groundwater flow under extremes of precipitation. The month of June experiences the least amount of rainfall during the year, while March experiences the greatest for those months with recorded water table data (Table 1).

 $\begin{array}{c} \text{TABLE 1} \\ \text{MEAN PRECIPITATION IN BUFFALO, NEW YORK} \end{array}^{1}$

MONTH	PRECIPITATION (inches)	WATER LEVEL MEASUREMENTS ²
January	2.84	0
February	2.72	0 .
March	3.24	5
April	3.01	10
May	2.95	6
June -	2.54	33
July	2.57	1
August	3.05	0
September	3.13	0
October	3.00	0
November	3.60	0
December.	3.00	0

- 1 Precipitation measurements were taken at Greater Buffalo International Airport.
- 2 Number of monitoring well water level measurements performed between the dates June 1, 1982 and April 24, 1984, as provided to Ecology and Environment, Inc.

From Climates of the States, Volume 1: Eastern States, Water Information Center, Inc., 1974.

June 8, 1982 analysis

Weathering Area

$$A' = 1.04 \times 10^{-3}$$
 square miles (shaded area A on Figure 3),

L = 0.0341 miles,

 $c_i = 0.3$ feet (elevations 573.7 - 573.4 feet a.m.s.l.),

$$I = \frac{0.3 \text{ feet}}{1.04 \times 10^{-3} \text{ miles}^2 2/0.0341 \text{ miles}} = 9.84 \text{ ft/mile,}$$

T = 500 gallons per day per foot,

Qn = 500 gpd/ft X 9.8 ft/mi X 0.0341 miles,

= 168 gpd or 0.117 gallons per minute.

Sludge Pond One and Two Area

A' = 5.25×10^{-3} square miles (shaded area B on Figure 3),

L = 0.0921 miles,

 $c_i = 0.5$ feet (elevations 573.9-573.4 feet a.m.s.l.),

$$I = \frac{0.5 \text{ feet}}{5.25 \text{ X } 10\text{-3 miles } 2/0.0921 \text{ miles}} = 8.77 \text{ ft/miles},$$

Qn = 500 gpd/ft X 8.77 ft/mile X 0.0921 miles,

= 404 gpd or 0.281 gallons per minute.

These analysis are sensitive to the assumptions made as to what value of T should be used.

March 26, 1984 analysis

Weathering Area

 $A' = 1.17 \times 10^{-3}$ square miles (shaded area A on Figure 2),

L = 0.0567 miles,

ci = 0.2 feet (elevations 573.8 - 573.6 feet a.m.s.l.),

I = $\frac{0.2 \text{ feet}}{1.168 \times 10^{-3} \text{ miles}^2/0.0567 \text{ miles}} = 9.71 \text{ feet/mile,}$

Sludge Pond One and Two Area

Pond One

 $A' = 3.26 \times 10^{-4}$ square miles (shaded area B on Figure 2),

L = 0.0266 miles

 $c_i = 0.1$ feet (elevations 574.2 - 574.1 feet a.m.s.l.),

I = 0.1 feet $3.26 \times 10^{-4} \text{ miles}^2/0.0266 \text{ miles} = 8.16 \text{ feet/mile},$

Pond Two

 $A' = 8.91 \times 10^{-4}$ square miles (shaded area C on Figure 2),

L = 0.0266 miles,

 $c_i = 0.5$ feet (elevations 574.6 - 574.1 feet a.m.s.l.),

 $I = \frac{0.5 \text{ feet}}{8.9 \times 10^{-4} \text{ miles}^2/0.0266 \text{ miles}} = 14.9 \text{ feet/mile},$

Qn = 500 gpd/feet X 14.9 feet/mile X 0.0266 miles,

= 199 gallons per day or 0.138 gallons per minute.

An alternate method relies on the mass balance of the aquifer in regards to area, rainfall and evaporation. The rate of flow of groundwater into the Buffalo River, ignoring runoff, should follow the following equation:

 $Q = (P-ET) \times A$

Where Q = recharge to the Buffalo River,

P = precipitation in feet,

ET = evapotranspiration in feet,

A = area of groundwater water shed.

The area from monitoring well 9 to the southeastern edge of the weathering zone and between the flow lines tangent to the weathering zone is roughly 41,700 feet.

The mean precipitation for June is 2.54 in or 0.212 feet (Table 1). Loss by evapotranspiration can only be estimated. A figure of 25% of the precipitation will be used as a conservative estimate.

 $Q = (0.212 \text{ feet - } 0.159 \text{ feet}) \times 41,700 \text{ feet}^2,$

= 2210 ft³,

= 16,500 gallons during the month of June, or 0.370 gallons per minute.

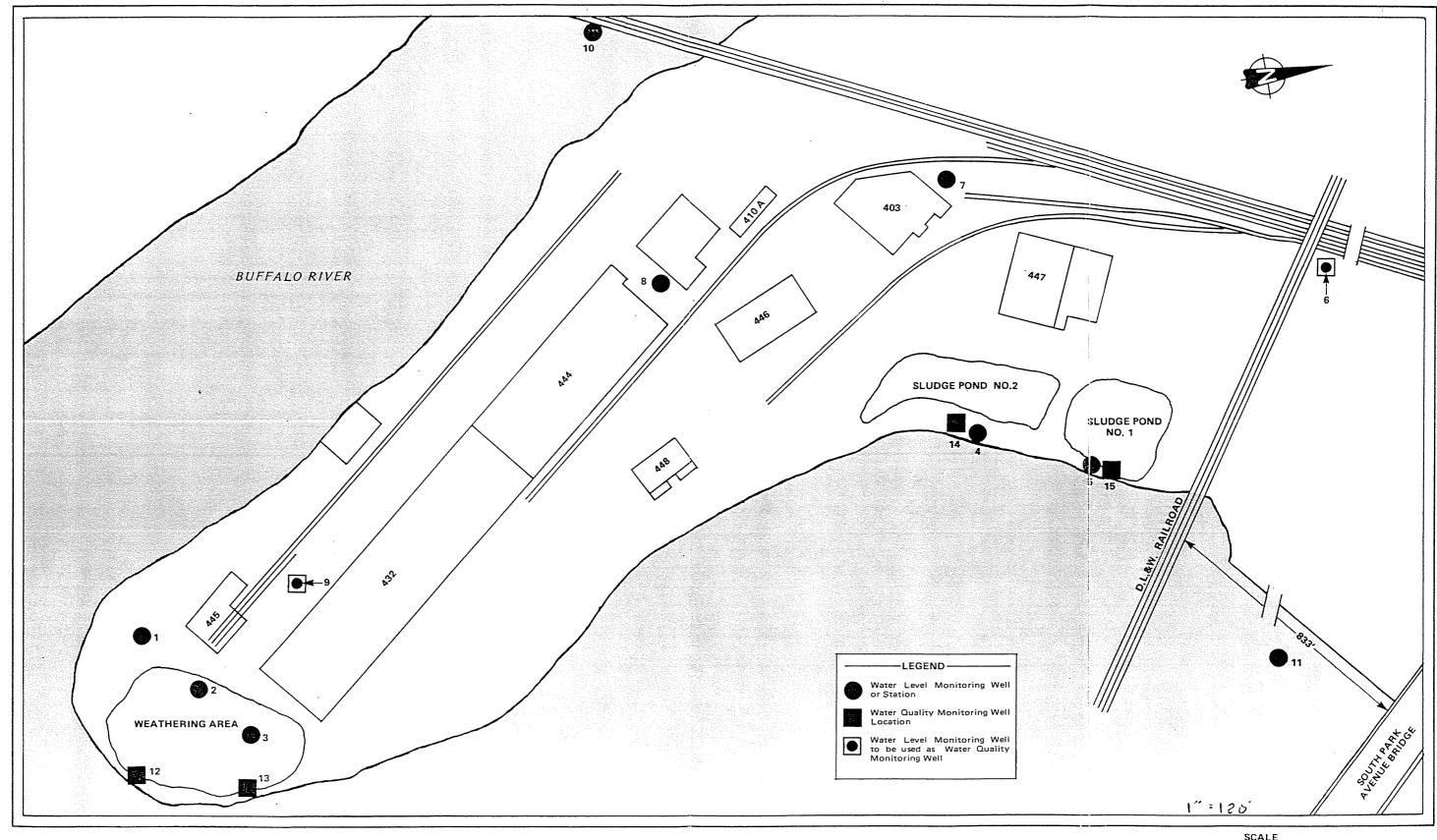
The rate of groundwater flow into the Buffalo River from the area of the sludge ponds can only be estimated from general considerations of the limits from which groundwater is likely to drain, since the monitoring well data is too sparse. As an outside estimate an area of five acres could drain to the river through the sludge pond area. This would result in a discharge of two gallons per minute in June.

The mass balance approach may be applied to the March 26, 1984 data set for calculation of flow rates in the weathering area. By equation 3,

Q = (0.270 feet - 0.135 feet) X 44,100 feet², = 5950 feet³, or 44,500 gallons during the month of March, or 1 gallon per minute.

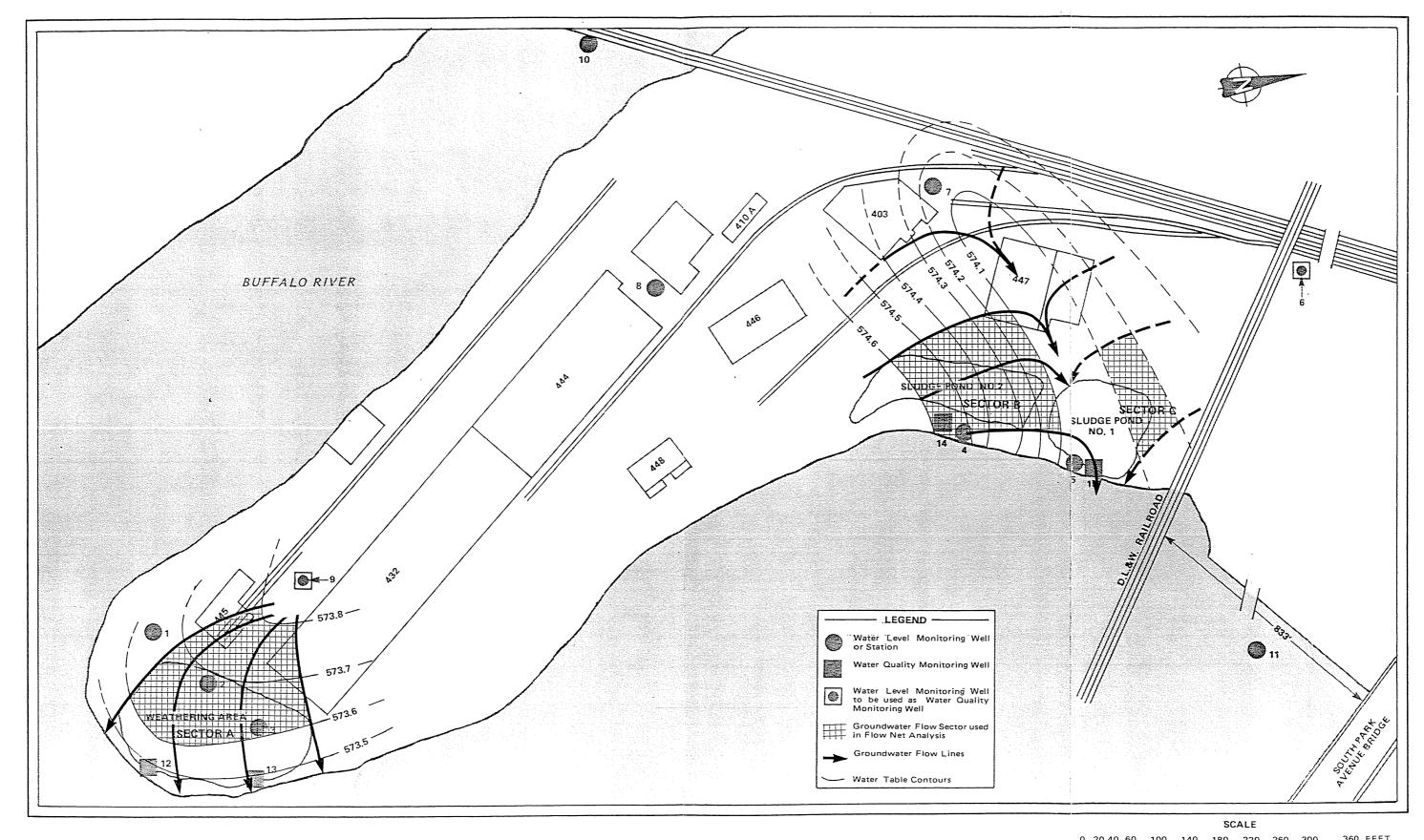
The portion of the groundwater watershed upgradient of the two sludge ponds was estimated to be 201600 square feet. Applying equation 3,

Q = (0.270 feet - 0.135 feet) X 201,600 feet²,
= 27.216 feet³,
 or 203,600 gallons during the month of March,
 or 4.56 gallons per minute.


Again it should be emphasized that these figures do not take runoff into account. As much of the area is buildings and paved areas, this could lead to a very significant reduction in these figures. For example, a ground water model of part of the City of Niagara Falls uses a figure of 7" per year for recharge to undeveloped areas, and only 3" per year for developed areas.

Summary

The highest flow rates through the ponds and weathering zone occurs during months of greatest precipitation. The March 26, 1984 analysis should yield typical flow rates for those months with high precipitation. A flow rate of 0.121 gallons per minute was calculated for sludge ponds one and two respectively using a flow net analysis. The results of the mass balance analysis yielded figures roughly an order of magnitude higher. These higher figures could be thought of as the worst case situation for calculations of discharge to the Buffalo River.


REFERENCES

- National Oceanic and Atmospheric Administration, 1963, Climatic Atlas of the United States, National Oceanic and Atmospheric Administration, Asheville, NC.
- Water Information Center, Inc., 1974, Climates of the States, Volume 1: Eastern States, Water Information Center, Inc., Syosset, NY.
- Walton, W.C., 1970, Ground Water Resource Evaluation: New York, McGraw-Hill Corporation.

SCALE
0 20 40 60 100 140 180 220 260 300 360 FEET
0 10 20 30 40 50 60 70 80 90 100 METER:

Figure 1 LOCATION OF MONITORING WELLS

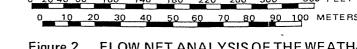


Figure 2 FLOW NET ANALYSIS OF THE WEATH-ERING AREA AND SLUDGE PONDS ONE AND TWO FOR MARCH 26, 1984



Figure 3 FLOW NET ANALYSIS OF THE WEATH-ERING AREA AND SLUDGE PONDS ONE AND TWO FOR JUNE 8, 1982

RECEIVED

JUN 29 1984

DIVISION OF HAZAR YOUS WASTE ENFORCEMENT REGION

APPENDIX III (1 of 3)

15 Round of sampling

ANALYSIS OF GROUNDWATER SAMPLES

OCTOBER, 1983

PREPARED FOR:

Buffalo Color Corporation P.O. Box 7027 Buffalo, New York

ecology and environment, inc.

195 SUGG ROAD, P.O. BOX D, BUFFALO, NEW YORK 14225, TEL. 716-632-4491 International Specialists in the Environmental Sciences recycled paper

TABLE OF CONTENTS

- 1. Introduction
- 2. Samples
- 3. Results
- .4. Methods of Analysis
- Quality Assurance/Quality Control

1. INTRODUCTION

Buffalo Color Corporation contracted with Ecology and Environment, Inc. (E & E) for the collection and analysis of a series of groundwater samples from their Buffalo plant site.

2. SAMPLES

Water samples were collected from six monitoring wells on the Buffalo Color Corporation properties and two from the River, one upstream and one downstream of the plant, by Ecology and Environment (E & E) field personnel, Glenn Millner and Nancy Aungst.

The samples were collected in pre-cleaned bottles prepared at E & E's Analytical Services Center (ASC). The samples were collected and delivered to the Analytical Services Center on September 27, 1983, by Nancy Aungst.

Chain of Custody records were maintained at all times.

The samples were assigned E & E Lab numbers as indicated:

E & E Lab Number 83-	Client Identification
3562	Well #6
3563	Well #9
3564	Well #12
3565	Well #13
3566	Well #14
3567	Well #15
3568	River Sample, Railroad Bridge
3569	River Sample, South Park Ave.

.3. RESULTS

Results are presented in the following two tables. Table 3-1 is expressed in milligrams per liter. Table 3-2 is expressed in micrograms per liter.

Table 3-1

RESULTS OF CHEMICAL ANALYSIS OF WATER SAMPLES

E & E Lab Number 83-	3562	3563	3564	3565	3566	3567	3568	3569
Sample Identity:	Well #6	Well #9	Well #12	Well #13	Well #14	Well #15	River Sample Rail- road Bridge	River Sample Southpark Ave.
			(All Results	in mg/L)				••
pH, S.U.	7.80	8.14	7.37	5.72	7.34	7.65	7.73	7.60
Total Organic Carbon	118	74.3	49.2	50.6	190	293	11.5	5.93
Total Organic Halogen	0.18	0.28	0.042	0.13	0.30	2.0	0.044	0.050
Arsenic	0.210	,0.078	0.101	0.176	0.184	0.114	0.068	0.028
Chromium-Total	0.042	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Chromium-Hexavalent	0.007	0.006	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Copper	< 0.050	< 0.050	< 0.050	8.98	< 0.050	< 0.050	< 0.050	< 0.050
Lead	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Mercury	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004
Nickel	0.110	< 0.050	0.064	4.86	0.050	0.072	< 0.050	< 0.050
Zinc	< 0.050	< 0.050	< 0.050	17.10	< 0.050	< 0.050	< 0.050	< 0.050

Table 3-2

RESULTS OF CHEMICAL ANALYSIS OF WATER SAMPLES
FOR ORGANIC COMPOUNDS

(ug/L)

PARAMETER	E & E Lab No. 83-	3562	3563	3564	3565	3566	3567	3568	3569
	Sample Identity	#6 .	#9	#12	#13	#14	#15	River	#1 River#2
1-Naphthylamine		< 0.6	10.5	6,10	4 0.6	943	3020	6.02	∢ 0.6 [≯]
2,4-Dinitotoluene		< 5.0	4 ,5.0	∢ 5.0	582	< 5.0	4 ,5.0	4 5.0	< 5.0
Benzidine	,	< 1.0	< 1.0	< 1.0	< 1.0	2.35	< 1.0	4 1.0	< 1.0
Anthracene	•	< 1.5	< 1.5	∢ 1.5	< 1.5	〈 1.5	<.1.5	3.94	BMDL A
Phenanthrene		* ′	*	· *	*	* *	*	*	*
Fluoranthene		< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	4 1.5	3.81	BMDL 4
Pyrene		〈 1.5	< 1.5	< 1.5	4 .1.5	< 1.5	< 1.5	4.00	BMDL ·
Chrysene		< 2.5	< 2.5	< 2.5	₹ 2.5	< 2.5	∠ 2.5	6.31	BMDL
Benzo(a)anthracene		**	**	**	**	**	**	**	**
Benzo(b)fluoranthene		< 2.5	< 2.5	< 2.5	< 2.5	4 2.5	4 2.5	7.74	BMDL (
Benzo(k)fluoranthene Benzo(a)pyrene		***	***	***	***	***	***	***	***

<= none detected at stated detection limit</pre>

BMDL - compound present, below measurable detection limit

^{*} Anthracene and phenanthrene are an isomeric pair which cannot be separated under these chromatographic conditions. The values are based on calculations using anthracene as a standard.

^{**} Chrysene and benzo(a)anthracene are an isomeric pair. Values are based on chrysene standards.

^{***} Benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene are an isomeric group. Values are based on benzo(b) fluoranthene.

4. METHODS OF ANALYSIS

All the required organic compounds were analyzed in accordance with EPA Method 625, "Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater", EPA-600/4-82-057, July 1982.

The metals analyses were performed according to "Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, 1979.

METAL	METHOD NO.
Arsenic	206.2
Chromium	218.2
Chromium, Hexavalent	218.4
Copper	220.2
Lead	239.2
Mercury	245.1
Nickel	249.2
Zinc	<u>2</u> 89.1

Total Organic Carbon and pH analyses were performed in accordance with Method 505 and 423 of "Standard Methods for the Examination of Water and Wastewater", 15th Edition.

Total Organic Halide analysis was performed according to Interim Methods as published by EPA, Cincinnati, November, 1980.

5. QUALITY ASSURANCE/QUALITY CONTROL

5.1 QUALITY ASSURANCE

All phases of this study, including the final report, have been independently audited by E & E's internal quality assurance group. All data and the contents of the report have been accepted by the group and authorized for release.

5.2 QUALITY CONTROL

All glassware used was washed with soap and rinsed with deionized water. The glassware that was used for organics was rinsed again with acetone and hexane and dried in an oven. The glassware that was used for metals was rinsed with nitric acid followed by deionized water and dried in an oven.

All solvents were pesticide grade and were submitted to extraction and concentration procedures similar to those used for actual samples.

Low working-level standards are prepared fresh daily from stock standards. The stock standards are prepared fresh monthly from pure analytical standards.

Consistent with the quality control program, sample blanks were analyzed to determine whether any interferences were present that may have been contributed by the solvents, the glassware, or the procedure itself. No interferences were detected.

.5. QUALITY ASSURANCE/QUALITY CONTROL (Cont'd.)

The accuracy of the analytical method is determined by the use of spiked samples* and is calculated as the percent recovery. Spikes of varying amounts were analyzed to further ensure the accurace of the method. The percent recovery for the spiked samples is given in Table 5-1.

The precision of the analytical method is determined by the analyses of duplicate samples within the appropriate concentration ranges. Results of the duplicate analyses appear in Table 5-2.

* Spiked samples are those that have a known quantity of chemical added and are used to estimate accuracy through percent recovery.

Table 5-1

QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY

FOR SPIKED SAMPLES

	E&E Lab	Original Value	Amount Added	Amount Determined	Percent
Compound	No. 83-				Recovery
Arsenic, mg/L	3567	0.114	0.250	0.357	97.2
Total Chromium, mg/L	3562	0.042	0.100	0.156	114
Chromium, Hexavalent, mg/L	3562 3569	0.007 ND	0.025 0.025	0.033 0.0275	104 110
Copper, mg/L	3564	ND	1.000	0.943	94.3
Lead, mg/L	3563	ND	0.100	0.111	111
Mercury, mg/L	3567	ND	.0.004	0.039	97.5
Nickel, mg/L	3562	0.110	0.100	0.252	142
Zinc, mg/L	3568	ND	1.000	1.023	102.3
1-Naphthylamine,ug/L	3562	ND	52.6	48.9	93.0
2,4-Dinitrotoluene, ug/L	3562	ND	58.0	54.4	93.8
Benzidine, ug/L	3562	ND	33.0	36.4	110

Note: All spike results fall within the 95% confidence limits of our control charts.

ND = None detected.

Table 5-2

QUALITY CONTROL FOR PRECISION:
RESULTS OF REPLICATE ANALYSES

	E&E Lab No. 83-	Original Analysis A	Replicate Analysis B	Relative Percent Difference RPD
Total Organic Carbon, mg/L	3564	49.2	48.6	1.23
Mercury, mg/L	3565	< 0.0004	<.0.0004	0
1-Naphthylamine , ug/L	3569	<.0.6	4 0.6	0
2,4-Dinitrotoluene,ug/L	3569	< .5.0	< 5.0	0
Benzidine, ug/L	3569	< 1.0	< .1.0	0
Polynuclear Aromatic Hydrocarbons, ug/L	3569	< .2.5	₹ 2.5	0

Note: These results fall within the 95% confidence limits of our control charts.

= None detected at the stated detection limit

$$RPD = \begin{bmatrix} A-B \\ X & 100 \end{bmatrix}$$

$$A+B/2$$

RECEIVED

JUN 2 9 1984

DIVISION OF HAZARDOUS
WASTE ENFORCEMENT
REGION 9

U-0094-D753

APPENDIX III (2 of 3)

4/12/84

SAMPLING

ELE FOR DC

2nd round sampling

ANALYSIS OF GROUNDWATER SAMPLES

April 12, 1984

Prepared for:

BUFFALO COLOR CORPORATION P.O. Box 7027 Buffalo, New York

ecology and environment, inc.

195 SUGG ROAD, P.O. BOX D, BUFFALO, NEW YORK 14225, TEL. 716-632-4491 International Specialists in the Environmental Sciences recycled paper

TABLE OF CONTENTS

Sect	<u>tion</u>		Page
.]	l ;	INTRODUCTION	1-1
2	2	SAMPLES	2-1
3	3	RESULTS	3-1
4	1	METHODS OF ANALYSIS	4-1
	5	QUALITY ASSURANCE/QUALITY CONTROL	5-1

1. INTRODUCTION

Buffalo Color Corporation contracted with Ecology and Environment, Inc. (E & E) for the collection and analysis of a series of groundwater samples from their Buffalo plant site.

This report presents the results of the second round of sampling.

2. SAMPLES

Water samples were collected from six monitoring wells on the Buffalo Color Corporation properties and two from the River, one upstream and one downstream of the plant by Ecology and Environment (E & E) field personnel Glenn Millner and Jim Chieh.

The samples were collected in pre-cleaned bottles prepared at E & E's Analytical Services Center (ASC). The samples were collected and delivered to the Analytical Services Center on April 12, 1984.

Chain of Custody records were maintained at all times. The samples were assigned E & E Lab numbers as indicated:

E & E Lab Number 84-	Client Identification
1738	Railroad Bridge
1739	South Park Bridge
1740	Well #9
1741	Well #6
1742	Well #13
1743	Well #14
1744	Well #12
1745	Well #15

3. RESULTS

The analytical results are presented in the following two tables. Table 3-1 is expressed in milligrams per liter. Table 3-2 is expressed in micrograms per liter.

Table 3-1 RESULTS OF CHEMICAL ANALYSIS OF WATER SAMPLES (All results in mg/L)

	The second secon	The second secon	The same of the sa		the name of column 2 is not a column 2 in	The second secon		
E & E Lab Number 84. Sample Identity	1741 MW#6	1740 MW#9	1744 MW#12	1742 MW#13	1743 MW#14	1745 MW#15	1738 Railroad Bridge	1739 South Park Bridge
Parameter								
pH, S.U.	7.17	7.38	6.01	4.98	7.25	8.59	7.25	7.30
Total Organic Carbon	180	47	48	70	370	900	10	5.7
Total Organic Halogen	0.094	0.42	0.015	0.1	0.22	0.73	900.0	<00.00>
Arsenic	0.383	<0.01	0.017	964.0	0.013	0.102	<0.01	<0.01
Chromium, total	0.093	0.022	0,164	0.072	<0.128	0.389	<0.01	<0.01
Chromium, hexavalent	0,060	0.007	0.164	0.105	0.128	0.109	<00.00>	<00.005
Copper	<0.0>	<0.05	0.071	110	2.90	0.387	<0.0>	<0.05
Lead	0.033	0.045	0.682	2.65	2,00	0.266	<0.01	<0.01
Mercury	<0.0004	<0.0004	0,0005	<0.0004	0.0024	0.0005	<0.004	<0.0004
Nickel	<0.0>	<0.0>	<0.0>	3.44	0.407	0.217	<0.0>	<0.05
Zinc	0.143	0.058	0.291	15.3	2.58	0.408	0.074	<0.05

Table 3-2

RESULTS OF CHEMICAL ANALYSIS OF WATER SAMPLES FOR ORGANIC COMPOUNDS (ug/L)

;

	E & E Lab No. 84- Semple Identity	1741 MW#6	1740 MW#9	1744 NW#12	1742 MWII 13	1743 MW#14	1745 MW#15	1738 Rail- road Bridge	1739 South Park Bridge
Parameter									
1-Naphtylamine		9.0>	9.0>	9.0>	7.1	324	49,600	43	9*0>
2,4-Dinitrotoluene		<5.0	<5.0	<5.0 -	507	<5.0	<5.0	<5.0	<5.0
Benzidine		<1.0	<1.0	<1.0	<1.0	<1.0	240	<1.0	<1.0
Acenaphthylene		<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Fluorene		<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Anthracene		<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Phenanthrene		*	*	*	*	*	*	*	SW.
Fluoranthene		<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Pyrene		<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Chrysene		<2.5	<2.5	<2.5	<2,5	<2.5	<2.5	<2.5	<2.5
Benzo (a) anthracene		*	*	*	*	*	×	*	*
Benzo (b) fluoranthene	Ð	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Benzo (k) fluoranthene	ဍ	*	* *	**	*	* *	* * *	* *	* *
Benzo (a) pyrene	-	*	* *	*	* *	*	*	* * *	* *

< = none detected at stated detection limit.

* Anthracene and phenanthrene are an isomeric pair which cannot be separated under these chromatographic conditions. The values are based on a combined standard.

** Chrysene and benzo (a) anthracene are an isomeric pair not separable under these chromalographic conditions. The values are based on a combined standard.

*** Benzo (b) fluoranthene, benzo (k) fluoranthene and benzo (a) pyrene are an isomeric group. Values are based on a combined standard.

4. METHODS OF ANALYSIS

'All the required organic compounds were analyzed in accordance with EPA Method 625, "Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater", EPA-600/4-82-057, July 1982.

The metals analyses were performed according to "Methods for Chemical Analyses of Water and Wastes, "EPA-600/4-79-020, 1979.

Element	Method Number
Arsenic	206.2
Chromium	218.2
Chromium, Hexavalent	218.4
Copper	220.2
Lead	239.2
Mercury	245.1
Nîckel	249.2
Zinc	289.1

Total Organic Carbon and pH analyses were performed in accordance with Methods 505 and 423 of <u>Standard Methods for the Examination of Water and Wastewater</u>, 15th Edition.

Total Organic Halide Analysis was performed according to Interim Methods as published by EPA, Cincinnati, November, 1980.

5. QUALITY ASSURANCE/QUALITY CONTROL

5.1 OUALITY ASSURANCE

All phases of this study, including the final report, have been independently audited by E & E's internal quality assurance group. All data and the contents of the report have been accepted by the group and authorized for release.

4.2 QUALITY CONTROL

All glassware used was washed with soap and rinsed with deionized water. The glassware that was used for organics was rinsed again with acetone and hexane and dried in an oven. The glassware that was used for metals was rinsed with nitric acid followed by deionized water and dried in an oven.

All solvents were pesticide grade and were submitted to extraction and concentration procedures similar to those used for actual samples.

Low working-level standards are prepared fresh daily from stock standards. The stock standards are prepared from pure analytical standards.

Consistent with the quality control program, sample blanks were analyzed to determine whether any interferences were present that may have been contributed by the solvents, the glassware, or the procedure itself. No interferences were detected.

The accuracy of the analytical method is determined by the use of spiked samples* and is calculated as the percent recovery. Spikes of

^{*}Spiked samples are those that have a known quantity of chemical added and are used to estimate accuracy through percent recovery.

varying amounts were analyzed to further ensure the accuracy of the method. The percent recovery for the spiked samples is given in Table 5-1.

In order to further assure the accuracy of the analyses for the various parameters tested, EPA quality assurance materials were analyzed along with the samples. The results of those analyses are presented in Table 5-2.

The precision of the analytical method is determined by the analyses of duplicate samples within the appropriate concentration ranges. Results of the duplicate analyses appear in Table 5-3.

)

Table 5-1

QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY
FOR SPIKED WATER SAMPLES

;	Ε&Ε	Original Value	Amaunt Added	Amount Determined	
Element	Laboratory No. 84-		(mg/L)		Percent Recovery
Arsenic	1745	0.102	0.100	0.194	92
Chromium, total	1743 1741 ' 1742	<0.01 0.093 0.072	0.020 0.200 0.200	0.026 0.310 0.293	130 108 110
Lead	1743	200	10.0	11.4	94
Mercury	1739	<0.0004	0.002	0.002	100
Nickel	1743	0.407	1.000	1.307	91

Table 5-2

QUALITY CONTROL FOR ACCURACY:
PERCENT DIFFERENCE--EPA QUALITY ASSURANCE MATERIALS

	Concentra	tions in ug/L	
Element	Known`	Determined	Percent Difference
Arsenic	27	21.7	19.6
Chromium	261	269	3.1
Copper	339	326	3.8
Lead	435	428	1.6
Mercury	8.7	8.4	3.4
Nickel	207	206	0.5
Zinc	418	415	0.7

Table 5-3

QUALITY CONTROL FOR PRECISION
RESULTS OF ANALYSIS OF REPLICATE
ANALYSES OF WATER SAMPLES

; Parameter	E & E Laboratory No. 84-	Original Analysis	Replicate Analysis	Relative Percent Difference RPD
pH. S.U.	1645	8.59	8.45	-
Arsenic	1739	<0.01	<0.01	0
Chromium	1739	0.01	0.01	0
Copper	1739	<0.05	<0.05	0 .
Lead	1739	<0.01	<0.01	0
Mercury	1738	<0.0004	<0.0004	0
Nickel	1739	<0.1	<0.1	0
Zinc	1739	<0.05	<0.05	0

RECEIVED

JUN 29 1984

DIVISION OF HAZABOOUS WASTE ENFORCEMENT REGION 9

U-0129-D754

Appendix III (3 of 3)

4/19/94 SAMFLING

EDE for BC

3rd round sampling

ANALYSIS OF GROUNDWATER SAMPLES

April 19, 1984

Prepared for:

BUFFALO COLOR CORPORATION P.O. Box 7027 Buffalo, New York

ecology and environment, inc.

195 SUGG ROAD, P.O. BOX D, BUFFALO, NEW YORK 14225, TEL. 716-632-4491 International Specialists in the Environmental Sciences recycled paper

TABLE OF CONTENTS

Section	-	Page
1 ;	INTRODUCTION	1-1
2	SAMPLES	2-1
3	RESULTS	3-1
4	METHODS OF ANALYSIS	4-1
5	QUALITY ASSURANCE/QUALITY CONTROL	5-1

1. INTRODUCTION

Buffalo Color Corporation contracted with Ecology and Environment, Inc. (E & E) for the collection and analysis of a series of groundwater samples from their Buffalo plant site.

This report presents the results of the third round of sampling.

2. SAMPLES

Water samples were collected from six monitoring wells on the Buffalo Color Corporation properties and two from the River, one upstream and one downstream of the plant by Ecology and Environment (E & E) field personnel Glenn Millner and Kit Pitkin.

The samples were collected in pre-cleaned bottles prepared at E & E's Analytical Services Center (ASC). The samples were collected and delivered to the Analytical Services Center on April 19, 1984.

Chain of Custody records were maintained at all times. The samples were assigned E & E Lab numbers as indicated:

E & E Lab Number 84-	Client Identification
1952	South Park Bridge
1953	Railroad Bridge
1954	Well #6
1955	Well #9
1956	Well #12
1957	Well #13
1958	Well #14
1959	Well #15

3. RESULTS

:The analytical results are presented in the following two tables. Table 3-1 is expressed in milligrams per liter. Table 3-2 is expressed in micrograms per liter.

Table 3-1 RESULIS OF CHEMICAL ANALYSIS OF WATER SAMPLES (All results in mg/L)

	MI 6	1956 1W#12	1957 1WII 13	1958 MW#14	1959 NW#15	1953 Railroad Bridge	1952 South Park Bridge
1							
, -	9		.95	7.55	7.43	7.20	7.95
Total Organic Carbon 150 52	7	.9 41	61	330	9 00 6	18	15
0.024	U		690	0.22	96.0	<00.005	<0.005
0.620	U		.801	1.250	0.025	<0.01	<0.01
0.093	۰		.071	0.484	0.167	<0.01	<0.01
n, hexavalent 0.096	ب	_	.037	0.207	0.050	<00.00>	<00.00>
0.056	_		.70	1.25	0.130	<0.05	<0.05
_	_	_	.331	766.0	0.178	0.01	0.045
0.000	_	_	.0008	0.0044	<0.0004	<0.0004	<0.0004
0.070	J		.87	0.354	}	<0.0>	<0.0>
0.251	•		.93	1,88	0.154	0,064,	<0.05

Table 3-2

The same of

)

RESULIS OF CHEMICAL ANALYSIS OF WAIER SAMPLES FOR ORGANIC COMPOUNDS (ug/L)

;

	E & E Lab No. 84- Sample Identity	1954 MW#6	1955 MWII 9	1956 MW#12	1957 MW#13	1958 MW#14	1959 HW#15	1953 Rail- road Bridge	1952 South Park Bridge
Parumeter									
1-Naphtylamine		9.0>	9.0>	9.0>	3.0	3300	29,300	9.0>	9.0>
2,4-Dinitrotoluene		<5.0	<5.0	<5.0	6270	<5.0	<5.0	<5.0	65.0
Benzidine		<1.0	<1.0	<1.0	<1.0	<1.0	144	<1.0	<1.0
Acenaphthylene		<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Fluorene		<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Anthracene		<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Phenanthrene		*	*	*	ż	*	*	×	74
Fluoranthene		<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Pyrene		<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Chrysene		<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Benzo (a) anthracene		*	*	*	*	*	*	*	× ×
Benzo (b) fluoranthene	ø	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Benzo (k) fluoranthene	υ.	* *	*	* *	* * *	* *	*	* * *	* *
Benzo (a) pyrene		* * *	* *	* * *	* *	* *	* * *	* *	* * *

< = none detected at stated detection limit.</pre>

* Anthracene and phenanthrene are an isomeric pair which cannot be separated under these chromatographic conditions. The values are based on a combined standard.

** Chrysene and benzo (a) anthracene are an isomeric pair not separable under these chromatographic conditions. The values are based on a combined standard.

*** Benzo (b) fluoranthene, benzo (k) fluoranthene and benzo (a) pyrene are an isomeric group. Values are based on a combined standard.

4. METHODS OF AMALYSIS

All the required organic compounds were analyzed in accordance with EPA Method 625, "Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater", EPA-600/4-82-057, July 1982.

The metals analyses were performed according to "Methods for Chemical Analyses of Water and Wastes, "EPA-600/4-79-020, 1979.

Element	Method Number
Arsenic	206.2
Chromium	. 218.2
Chromium, Hexavalent	218.4
Copper	220.2
Lead	239.2
Mercury	245.1
Nickel	249.2
Zinc	289.1

Total Organic Carbon and pH analyses were performed in accordance with Methods 505 and 423 of <u>Standard Methods for the Examination of Water and Wastewater</u>, 15th Edition.

Total Organic Halide Analysis was performed according to Interim Methods as published by EPA, Cincinnati, November, 1980.

5. QUALITY ASSURANCE/QUALITY CONTROL

5.1 QUALITY ASSURANCE

All phases of this study, including the final report, have been independently audited by E & E's internal quality assurance group. All data and the contents of the report have been accepted by the group and authorized for release.

4.2 QUALITY CONTROL

All glassware used was washed with soap and rinsed with deionized water. The glassware that was used for organics was rinsed again with acetone and hexane and dried in an oven. The glassware that was used for metals was rinsed with nitric acid followed by deionized water and dried in an oven.

All solvents were pesticide grade and were submitted to extraction and concentration procedures similar to those used for actual samples.

Low working-level standards are prepared fresh daily from stock standards. The stock standards are prepared from pure analytical standards.

Consistent with the quality control program, sample blanks were analyzed to determine whether any interferences were present that may have been contributed by the solvents, the glassware, or the procedure itself. No interferences were detected.

The accuracy of the analytical method is determined by the use of spiked samples* and is calculated as the percent recovery. Spikes of

^{*}Spiked samples are those that have a known quantity of chemical added and are used to estimate accuracy through percent recovery.

varying amounts were analyzed to further ensure the accuracy of the method. The percent recovery for the spiked samples is given in Table 5-1.

In order to further assure the accuracy of the analyses for the various parameters tested, EPA quality assurance materials were analyzed along with the samples. The results of those analyses are presented in Table 5-2.

The precision of the analytical method is determined by the analyses of duplicate samples within the appropriate concentration ranges. Results of the duplicate analyses appear in Table 5-3.

Table 5-1

QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY
FOR SPIKED WATER SAMPLES

:	E & E	Original Value	Amount Added	Amount Determined	
Element	Laboratory No. 84-				Percent Recovery
Arsenic,mg/L	1958	1.25	3.00	4.32	102
Chromium, mg/L	1953	<0.01	0.02	0.02	100
Copper, mg/L	1952	<0.05	0.250	0.234	94
Lead, mg/L	1957	0.331	1000	1.27	94
Mercury, mg/L	' 1956	0.0061	0.002	0.0076	78
Nickel	1958	0.354	1.000	1.286	93
1-Naphthylemine, ug/L	1952	<0.6	330	405	123
2,4-Dinitrotoluene, ug/L	1952	<5.0	725	440	61
Pyrene, ug/L	1952	<1.5	140	160	114

Table 5-2

QUALITY CONTROL FOR ACCURACY:
PERCENT DIFFERENCE--EPA QUALITY ASSURANCE MATERIALS

	Concentra	tions in ug/L	
Element	Known	Determined	Percent Difference
Arsenic	27	21.7	19.6
Chromium	261	269	3.1
Copper	339	348	2.7
Lead	43	47.1	9.5
Mercury	8.7	8.4	3.4
Nickel	207	206	0.5
Zinc ·	418	415	0.7

Table 5-3

QUALITY CONTROL FOR PRECISION
RESULTS OF ANALYSIS OF REPLICATE
ANALYSES OF WATER SAMPLES

Parameter	E & E Laboratory No. 84-	Original Analysis	Replicate Analysis	Relative Percent Difference RPD
Arsenic, mg/L	1952	<0.01	<0.01	0
Chromium, mg/L	1953	<0.01	<0.01	0
Copper, mg/L	1952	<0.05	<0.05	0
Mercury, mg/L	1954	0.009	0.009	0
Nickel	1952	<0.1	<0.1	0
1-Naphthylamine, ug/L	1953	<0.6	<0.6	0
2,4-Dinitrotoluene, ug/L	1953	<5.0	<5.0	0
Benzidine, ug/L	1959	<1.0	<1.0	0
Ploynuclear Aromatic Hydrocarbons, wg/L	1959 ·	<2.5	<2.5	0 .

< = None detected at stated detection limit.</pre>

frew York State Department of Environmental Conservation 50 Wolf Road, Albany, New York 12233

Robert F. Flacke Commissioner

September 29, 1982

Mr. John Westendorf Chemist City of Niagara Falls 1200 Buffalo Avenue Niagara Falls, New York 14302

Dear Mr. Westendorf:

Re: Niagara River Allocation Plan

In accordance with previous phone conversations and meetings, I am sending you a copy of our "first cut" allocation plan for the Niagara River. Also included are a user guidance for the printout and a rationale document explaining the Department's allocation methodology for the Niagara River.

Should you have any questions, please contact me.

Sincerely.

Joseph DiMura, P.E.

Assistant Sanitary Engineer Municipal Wastewater Section

JD/pl

Enclosure

cc: Mr. Adamczyk w/o enclosure

RECEIVED

JUN 29 1984

DIVISION OF HAZARDOUS
WASTE ENFORCEMENT
REGION 9

RATIONALE FOR WASTE LOAD APPLICATIONS FOR SPDES PERMITTED DISCHARGES TO THE NIAGARA RIVER

This rationale document is in response to the many public inquiries the Department has received as to the details of the waste load allocation process for the Niagara River discharges to the Niagara River. The assimilative capacity allocation process for any Niagara River segment and the Niagara River in total is one that consideres conservative and nonconservative substances in the aggregate from all sources, makes appropriate additions and subtractions for future imputs and losses from the system, and allocates the resource against the sum total of all discharges and the response of the waterway. DEC has been conservative, a proper present rationale for the protection of public health and the environment.

The presence of many substances in the Niagara River is recognized. For most, there is no valid reliable statistically based actual sample data to provide requisite information. Their presence is the result of many now uncontrolled discharges which exceed limitations to be imposed through the permit process. Background is a downward moving target that will diminish in direct proportion to the control of discharges (except for those substances which have accumulated out of the water column by bioaccumulation or benthic deposition which may be subsequently released). It is unreasonable to penalize, in proposed permit discharge limitations, against a background which is now prejudicially influenced by excessive unpermitted discharges.

DEC has attempted to use head-of-the-river data as a way of discounting present discharges so that the allocations are made against a base not influenced by present discharges to be controlled by more restrictive permits. Even if there were good measurements there and/or along the river of presently existing background concentrations, the results must be discounted because background measurements are obviously currently biased on the high side by dischargers exceeding proposed permit limitations. This is true at the outlet of lake Erie as well as in the river itself.

For man-made substances, which must (will) be controlled on the land, the background (river concentration) will be the aggregate of the resulting discharges, not be a measurement of the present state. That is why assumption zero is rational for background when the substances are subject to future control, as the allocation process is to bring about future compliance, not to penalize proposed discharges for present uncontrolled pollution. Canadian dischargers will not use the remaining half of the assimilative capacity for similar substances. The mixed concentration in the entire river, since we on the U.S. side are allocating to the objective, will only be approximately half of the total water quality objective.

The Niagara River study has an objective directed at determining background concentrations and river dynamics to better understand the concentration, distribution and fate of various toxic pollutants in the Niagara River ecosystem. Any attempt at preconclusion is ill-advised. The processes are not well understood, particularly the nonconservative action of certain volatile compounds which may be removed from the system under hydrologic conditions such as exist at Niagara Falls, and whose decay and removal from the system adds a further conservative element to our allocation processes. Permits may be modified should significant new information become available about the water resource which would indicate that the allocations made under present knowledge are inappropriate.

Would allow higher effluent limits and still maintain water quality objectives.

Any permit may be subject to reconsideration and reopening by the Department, by the permittee, or by any group or agency who can present significant data to indicate that substantive changes are appropriate, either upward or downward, in permit values.

Attachment A details the actual procedure for allocating SPDES permit effluent limit loadings on a pollutant specific basis.

A LEVIEW HOLE ELEMAN

Procedure for Allocating SPIES Permit Effluent Limit Loadings for Discharges to the Niagara River Basin

I. Establish Water Quality Objective

- A. Use New York State Water Quality Standards and Classifications limit for substances listed.
- B. For substances not listed:
 - 1. Obtain recommended limit for protection of drinking water supplies from NYS Department of Health Toxics Bureau.
 - 2. Obtain recommended limit for protection of fisheries from NYS Department of Environmental Conservation Bureau of Environmental Protection.
 - 3. Apply most stringent of the above as the water quality objective.

II. Determine Low Flow Hydrology

- A. For the purpose of allocating waste loads, the Niagara River is broken into four hydrological segments. In addition, the inputs from the Buffalo River are included. The four Niagara River segments are:
 - 1. Upper Niagara River
 - 2. Tonawanda Channel
 - ! 3. Falls Section
 - 4. Lower Niagara River
- B. Determine Minimum Average Seven Consecutive Day once in Ten Years (MA7CD/10) low flow from historical records for the entire Niagara River this is 145,000 cfs.
- C. For Main Channel use 1/2 MA7CD/10 as the U.S. may use on one-half of the boundary resource. 72,500 cfs.
- D. For Tonawanda Channel use flow distribution + stratification. 24,800 cfs.
- E. For Section, Niagara Falls to Robert Moses, use 1/2 minimum regulated flow of 25,000 cfs x .70 (70%). 17,500 cfs. Department policy requires holding 30% reserve in regulated streams for future growth.
- F. For Lower River use 1/2 MA7CD/10. 72,500 cfs., as for the Main Channel, for the hydro power takeouts are returned to the flow.
- G. For Buffalo River use BRIC discharge flow.

Determine Background Water Quality

Determine statistically valid existing ambient water quality concentrations for all substances where data is available. Where no data exists, assume zero concentration as manmade substances will be controlled by permit and are not natural gackground. Permit limits will assure point source contributed background does not exceed water quality objective. The following sources provided input to background data:

- A. New York State Water Quality surveillance Network.
- B. United State Geological Survey.
- C. Ontario Ministry of the Environment.
- D. Water Supply Intake Data

IV. Determine Allowable River Segment Load

- A. Allowable load = (ambient concentration objective background concentration) x usable streamflow x conversion. This total load is available for allocation among the dischargers.
- B. For lake discharge use mixing zone dilution to determine allowable load.
- V. A. * Water Quality based load:

Allocate available load to segment dischargers. Available load = segment load - upstream point source loads (identified from SPDES allowable effluent loadings).

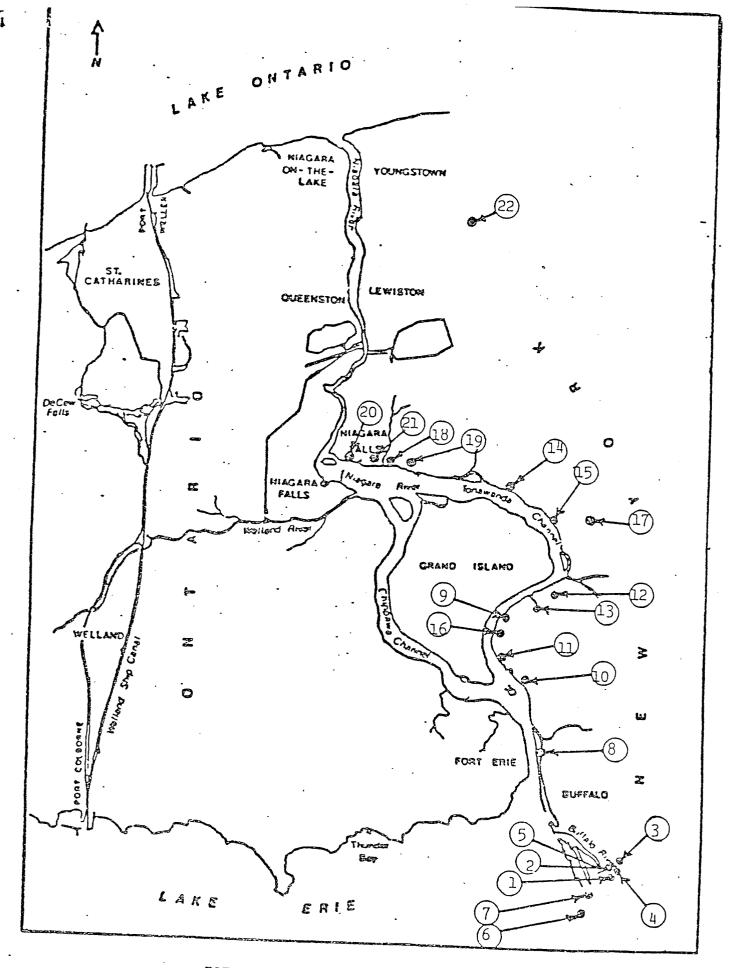
- B. Permit limit is the more stringent of the water quality based allowable limit and the technology based (EPA) effluent limit.
 - * When background water quality equals or exceeds water quality objective levels in Lake Erie prior to discharges of Niagara River industries, and no capacity is available for a substance discharge, the permit load becomes the water quality no. x effluent flow x conversion factor, or the discharge concentration equals the water quality objective.

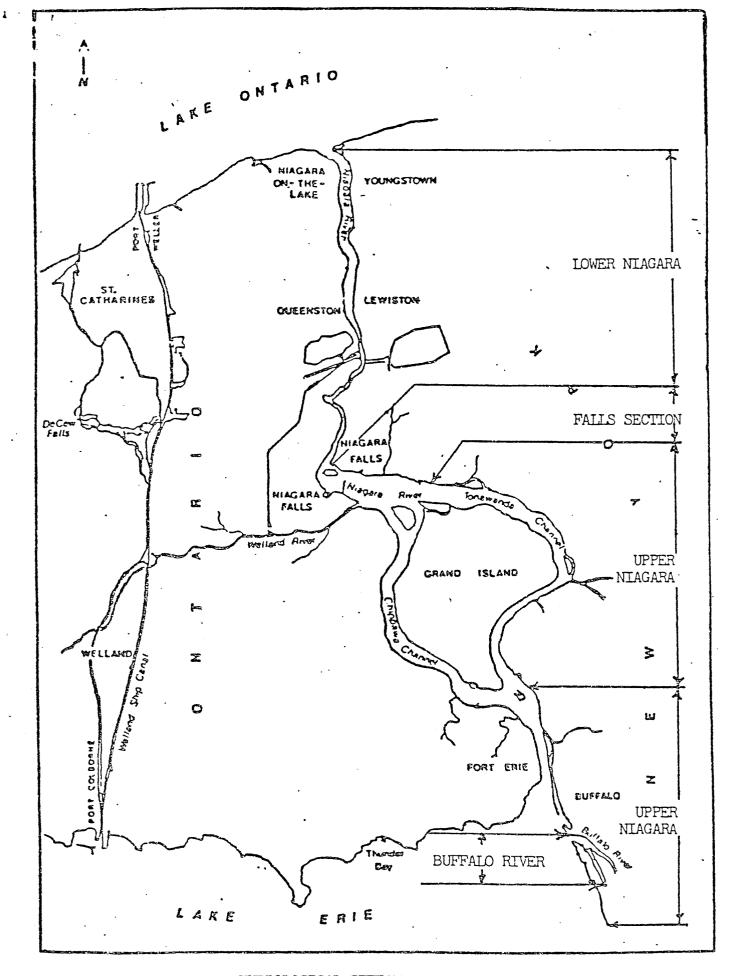
This procedure is conservative as it does not account for any losses of chemical substances due to decay, absorption, deposition, evaporation, or volitilization due to natural forces within the river itself.

USER GUIDANCE FOR NIAGARA RIVER LOAD ALLOCATION PRINTOUT

A. General

The printout lists mass loadings from 22 major point source discharges to the Niagara River (see Figure 1 and Table 1). For allocation purposes the Niagara River is divided into four hydrological segments, with inputs from the Buffalo River included (see Figure 2 and Table 1). For each river segment an industrial listing and balance sheet is printed. The industrial listing, includes mass loadings (in lbs/day) from the major discharges to that river segment. The balance sheet lists the total allocations (based on ambient standard) and compares it with the sum of the mass loadings from the discharges on the industrial listing. The balance also calculates a running sum and running balance starting with the Buffalo River and proceeding down the Niagara River and ending with the lower Niagara Section.


B. Industrial Listing


Listed vertically are all of the substances currently under consideration for allocation. All of the substances listed have been detected in at least one of the discharges to the Niagara River. Included are toxic, non-toxic and conventional substances. Under each discharge the permit status is listed (see Table 2). For each discharge a mass loading is listed for applicable substances. The technical basis for each entry has been referred to (see Table 3). It should be noted that all entries are not SPDES effluent limits or proposed limits. Numbers that are not limits have been included for allocation purposes.

6. Balance Sheet

Listed vertically (in mg/l) next to each substance in the ambient water quality standard which is used for calculating the total allowable allocation for each river segment. The technical basis for each number has been referenced (see Table 4). The balance sheet also calculates the following:

- 1. The sum of all discharges to each segment (lbs/day).
- 2. The total allocation to each segment based on the listed ambient standard (if listed).
- 3. The sum is compared to the allocation and a balance is printed. For substances that do not have an alloction listed, a negative number appears.
- 4. Starting with the Buffalo River and proceeding downstream, a running sum and running balance are calculated.

TABLE 1 - LIST OF DISCHARGES

Lower Niagara	Falls Section	Tonawanda Channel	Upper N1agara	<u>Segment</u> Buffalo River	Receiving Water
22	18 20 20	15 14 15 16 17 17	876	Number 2 3	11.
SCA	Dupont (Niagara Falls) Hooker (Niagara Falls) Niagara Falls (C) Olin (Cooling Water)	Ashlard Petroleum Chevrolet Motor Division FMC Spaulding Fiber Tonawarda (T) S.D. #2 Niagara Co. S.D. #1 North Tonawarda (C) Tonawarda Coke Hooker - Durez	Bethlehem Steel Hanna Furnace Buffalo Sewer Authority	Discharge Name Donner - Hanna Allied Chemical Buffalo Color Republic Steel PVS Chemical	
1.0	6.5 48.0 50.0	20.0 24.3 10.1 2.5 30.0 14.1 13.0 0.99	215.0 39.5 180.0	14.1 8.0 10.0 40.0 8.0	
• NY0072061	NY0003328 NY0003336 NY0001635	NY0001678 NY0000574 NY0000337 NY0026395 NY0027979 NY0026280 NY0002399 NY0002399	NY0001368 NY0001597		SDIES Parmit Nimber

TABLE 2 - PERMIT STATUS CODE

Status 1 - Permit has been issued.

Status 2 - Permit has gone to public notice.

Status 3 - Permit application pending.

TABLE 3 - REFERENCE CODE

Reference Code	Technical Basis
Λ	BAT
В .	BPT
С	BEJ (Best Fngineering Judgment)
D	WQ (Water quality of Niagara River)
E	Mass loading was included in the permit application, or was a reported level.
F	BCT
G	Mass loading was calculated from DMR's (Discharge Monitoring Reports).

TABLE 4 - AMBIENT STANDARD CODE

Mote ·	Technical Basis
D	DEC Bureau of Environmental Protection (Protection of aquatic organisms)
\mathbf{H}^{r}	NYS Department of Health (Protection of Drinking Water Resource)
Ι,	Environmental Conservation law

PARAMETER	DOMNER HANNA STATUS-2	R E F	ALLIED CHEMICAL STATUS-2	R E F	BUFFALO COLOR STATUS-1	R E F	REPUBLIC STEEL STATUS-2	R E F	P.V.S. CHEMICAL STATUS-2	R E F
ALKYL DIPHENYL OXIDE SULFOMATE	-	_	-	_	-	_	-		-	_
American American	240.000	D	12,000	Ε	85,000	А	400.000	Ε	200,000	D
ANT IMÓNY	_	_	-	_	.134	_	700.000	_	50.000	Ū
ARSENIC	.500	Ε	_	_	-	-	_	_	7	_
BARILM	-	_		_	•	_	_	_	50.000	Ε
BIST2-ETHYLHEXYLJPHTHALATE	_	_	_	_	.111	Ε	_	_	3.390	_
BENZENE BENZENE	.120	D		_	• 1111	_	_	_	Ç.Ç?()	_
BENZOIC ACID	.120	_	_	_	_			•	•	_
BENZOIC HOID BORON	_		_	_	_	_	_	_	_	_
CADMIUM	_		1.100	Ε	_	_	_	-	-	-
	_	_	1.100	<u>_</u>	- .	_	-	-	-	_
CARBONTETRACHLORIDE	-	_	-	_	-	-	-	-	-	_
CHLORENDIC ACID	-	_	-	-	-	_	-	-	-	-
CHLOROFORM	-	_	-	-	-	_	155	-	-	-
CHLORINE(TOTAL RESIDIUAL)	-	_	. 606	_	/ 155	_	.630	Ε.	5.666	_
COPPER	-	-	1.200	Ε	6.125	Ξ	£7.000	Ū	2.000	Ε
CHROMIUM	**	-		-		-	17.000	Ū		-
CYANIDE	12.000	D	1.000	٤.	1.545	Ε	3.400	, A	-	-
DECHLORANE PLUS	-	-		-	-		-	-	-	_
DECHLORANE 602	-	_		-	-	-	-	-	-	-
.1)IBROMO-3-NITRILO PROPRIONAMIDE(DBNPA)	24.000	D	-	-	-	-	<u></u>	-	-	-
DICHLÖRGBENZOTRIFLÖURIDE		-	-	-	-	-	_	-	-	-
DICHLORUBENZENE	-	-	-	-	-	-	-	-	-	-
1.1-DICHLORDETHYLEME	.020	Ε	-	-	-	-	-	-	-	-
DICHLORGETHYLENE	-	-		-	-	-	-	-	-	-
DICHLOROTOLUENE	-	-	-	-	-	-	-	-	-	-
DI HYLENE ETHER SEE (DIMETHYL FORMAMIDE)	-	-	-	-		-	-	-	-	-
DIMETHYL FORMAMIDE	-	-	-	_	•	, -	-	-	-	-
2.4-DIMETHYL PHENOL	• -	-	-	-		-	-	-	-	-
DIMETHYL PHTHLATE	-		-	-	-		-	-	-	-
DI (N-BUTYL) PHTHALATE	-	-		-	-	-	-	-	-	-
DI-N-OCTYL PHTHALATE	-	-	-	-	-	-	-	-	-	-
ENDOGULFAN	. •	_	.030	Ε	-	-	-	-	-	-
ETHYL BENZENE	-	-	-	_	-	-	-	-	-	-
FLOURANTHENE	.006	D	-	-	-	-	.001	Ū	-	-
FLOURENE	.200	Α	-	-		-	_	-		-
FLOURIDE	11.000	Ε	-	-	-	-	-	_	-	_
HEXACHLOROBENIENE	-	-	-	-	-	-	-	_		-
* HEXACHLOROSUTADIENE	~	-		-	-	-		_	-	-
HEXACHLORCCYCLOHEXANES	.020	Α.	-	_	-	_	-	_		-
HEXACHLOROPENTADIENE	-	-	-	-	_	_	-	_	-	-
XY DROXYETHYLIDENE-1-DIPHOSPHONIC ACID	-	_	-	_	-	_	_	_	-	_
IRCN	-	_	20.000	Ε	-	_	-		66.000	Ε
LEAD	-		1.000		_	-	7,900	Α	3.000	
MAGNAFLOX 573-C	-	_	-	-	_	_	-	-	-	-
MAGNAFLOC 844A	-	_	_	-	_	_	_	_	-	_
METHYLENS BISTHIOCYANATE	-	_	_	_		_		_	_	
METHYLENE CHLORIDE	61.000	Ε	-	_	_	-	_	_	_	_
MÜNÜCHLÜSEN TÖLNÜCH ER MÜNÜCHLÜSEN TÖLNÜCH ERÜNÜCH ER	01.000	_		_	_	_	_	_		_
TANOCHLOROSENTOTA TELOCATE	_	-	_	_	-	_	_	_	_	-
HÜNÜCHLORO PHENOL	_	_	_			_	_			
TURUURLUNU PHENOL	-	-	_		-	_	-	-	-	

	•									
PARAMETER	DOINER HANNA	R E	ALLIED CHEMICAL	Ŕ E	EUFFALÚ CÚLOR	R E	REPUBLIC STEEL	R E	P.V.S. CHEMICAL	R E
	STATUS-2	F	STATUS-2	F	STATUS-1	F	STATUG-2	F	STATUS-2	F
MONOCHLOROTOLUENE	-	_	-	_	-	_	-	_	-	_
MERCURY	-	_	_	_	-	_	_	-	.190	Ε
NALCO 7320(SEE BENFA)	-	-	_	-	-	_	-	_	-	_
NALCO 8361	-	-	-	_	-	_	-		-	_
NAFHTHALENE	.300	Α	-	-	da	-	-	_	-	_
NICKEL	-	-	1.500	Ε		-	-	_	1.090	Ε
NITRATE	76.000	Ε	32.000	Ε	101.400	Ε	-		٤.000	Ε
OIL 1 GREASE	194.000	F	1,300.000	D	13,200	Ε	2,483,000	Έ	1,500.000	Ū
PENTAC	-	-	-	-	-	-	-	-	-	-
PENTACHLOGOBENZENE	-	-	-	-	-	-	-	-	-	-
PHENANTHRENE		-	-	-	-	-	-	-	_	
FHENOLIC COMPOUNDS (AS FHENOL)	.120	D	.500	D	્. ફ5ક	Ε	52.200	Ε	.500	Ð
PHOSOPHORUS	-	-	-	-	14.400	Ε	-	-	-	-
PHOSPHORIC ACID (AS PO4)	-	-	-	-	-	-	-	-	-	_
POLYACRYLAMIDE EMULSION POLYMER	-	-	•	-	-		-	-	-	-
POLYCHLORINATED BIPHENYLS (PCB)	-		· .	-	-	-	-	-	-	-
PÜLYETHYLENE GLYCOL	-	-	-	-	••	-	-	-	-	-
• FOLYMETHACRYLIC ACID	-	-	-	-	-	-	-	-	-	-
POTASSIUM HYDRŪXIDE	-	-	-	-		-	**	-		-
PYRENE	.200	Α	-	-	-	-	<u>.</u>	-		-
SELENIUM	.120	D	-	-	-	-	.330	[j		-
SILVER	-	-	-		-	-	.033	D	2.000	Ū
SOSIUM		-	-	-	-	-	-	-	-	-
SODIUM CARBOXYLATE FOLYMER	-	-	-	-	-	-	-	-	-	-
SODIUM SILICATE	-	-	-	-	-	-	-	-	-	-
SODIUM NEXAMETAPHOSPHATE	-	-	-	-	-	-	-	-	-	-
SULFATE	2,690.000	E	50.000	Ε	277.500	Ę	-	-	50.000	Ε
SULFIDE	.240	Ū	-		-	-	-	-	-	-
SULFITE	-	-	•	-	-	-	-	-	-	-
TERACUL @	• -	-	-	-	-	-	-		-	-
TETRACHLOROBENZENE	-	-	-	-	-	-	-	-	-	-
1.1.2.2-TETRACHLORGETHANE	-	-	-	-	-	-	-	-	· -	-
TETRACHLORGETHENE	-	-	a	-	• -		-	-	-	-
TETRAHYURO FURAN	-	-	-	-	-	_	-	-	-	_
TETRA POTASSIUM PYROPHOSPHATE		 r.		-	600	_	-	-	- (-
TÚLUENE TOLYTRIAZÚLE	1.200	ħ	-	_	.025	Ε	-	_	-	-
TOTAL DISSOLVED SOLIDS (TDS)	-	_	•	-	-	-	-	-	-	-
TOTAL SUSPENDED SOLIDS (TSS)	650.000	r	-	~	-	-	-		•	-
TOTAL SOS BLOOD SULTOS (1937).	214.000		_	_	_		-	_	-	
1,2-TRANS DICHLORUETHYLENS	214.000	-2	_	_	_	_		-	-	_
TRICHLORUSENZENS	_	_	_	_	_	_	-	~	-	-
1,2,4-TRICHLURUBENZENE	_	_	_	_	_	_		-	-	-
TRICHLOROETHANE	_	_	_		-	_	-	-	-	_
1,1,1-TRICHLORUETHAVE	_	_	_	_	-	-		-	-	-
TRICHLOROETHYLENE	-	_	_	_	_	_	-		~	_
1,1,1-TRICHLORDETHENE	_	_	-	_	_	_	_	_	-	_
TRICHLOROTOLUENE	_	_	_	_	_	_		_	-	-
TRI WHUM NITRILO TRIACETATE MUNUM TRI	_	_		_	_	_	-	_	-	_
VINYL CHLORIDE	_	_	-	_		_	_	_	_	_
ATHIE CUTOUINE							_	_	-	_

PARAMETER	DONNER	Ŕ.	ALLIED	R	BUFFALO	R	REPUBLIC	R	P.V.S.	Ŕ
	HÀNNA	£	CHEMICAL	Ε	COLOR	Ε	STEEL	Ε	CHEMICAL	Ε
	STATUS-2	F	STATUS-2	٤	STATUS-1	F	STATUS-2	F	STATUS-2	F
ZINC	***	-	.500	Ε	5.394	Ε	8.600	Α	.670	
ZINC CHLORIDE	-	-	-	-	-	-	-	-	-	-
CHLORODI BROMOMETHANE	-	-	-	-	-	-	-	-	-	***
DICHLOROBROMOMETHANE	-	÷	-	-	-	-	-	-	-	-
BRUMUFORM	• •	-		-	• -	-	-	-	-	-
DICHLOROPROPYLENE	-	-	-	-	_	-	•	-	-	-
METHYLENE CHLORIDE	-	-	-	-		-	-	-	-	-
MONOCHLOROPHENOL	-	-	-		-	-	_,	-	-	-
DICHLOROPHENOL	-	-	-	_	-	-	-	-	-	-
MONOCHLOROCRESOL		-	-	-	-	-	-	_	-	-
TRICHLOROFHENOL	-	-		_	•	_	-	-	-	-
PENTACHLOROPHENOL	-		-	_	-	_	-	-	-	-
BUTYL BENZYL PHTHALATE	• -	-	_		_	-	-	-	_	-
DIBUTYL PHTHALATE	-		-	_	_	_	-	-	-	-
DIETHYL PHTHALATE	_	_		_	٠_	_	-	_	_	_
DIOCTYL PHTHALATE		_	-	-	-	_	-	-	-	-
NITROSODIPHENYLAMINE	_	-	_	_	-	_			_	-
ACENAPHTHENE	.200	۱۵	-	_	_	_	-	-	-	_
CHRYSENE		_	_	_	-	_	_	_	-	_
BENZ (A) ANTHRACENE	.200	A		_	_			_	_	_
MIREX	.200	n -	_	_	_	_		_	-	_
THIOCYANATES		_	_	_	_	_		_	_	_
CHLORIDE	_	_		_	_	_	_	_		_
	_	_		_	_	_	_	_	_	_
BROMIDE IODIDE	_	_	_	_	_	_		_	_	_
		_	-				_			_
HALOGENATED HYDROCARBON		_	· -	_	-	_	_	_	_	
BENZIDINE SCHEDO	-	-	<i>-</i>	_	-	_		_	_	_
PHTHALATE ESTERS BENZISOTHIAZOLE	-	_	-	_	-	, -	_	_	_	
	•	-	•	_	-	-	_	-	_	_
HEXAMETHYLBENZENE		_	-	-	-	_	_	_	_	_
· ALUMINUM	-	_	-	_	-	_	_	_	_	_
BERYLLIUM	-	-	•	-	-	-	-	-	_	-
CUBALI	-	-	-	_	•	-	-	-	_	. –
GÜLD	-	_	•	-			***	-	-	-
MANGARESE	-	_	-	-	-	_	•	-	-	-
NOLYECENUM	-		•	-	-		-	-	***	-
FALLADIUM	-	-	-	-	-	-	-	-	-	
PLATINUM		-	-	-	-	-	-	~	-	-
STRONTIUM	-	- .	-	-	-	-	-	-	-	-
- TELLURIUM	. -	-	**	-	-	-	-	-	-	-
THALLIUM	-	-	-	-	•	-	_	-	-	-
TIN	-	-		-	-	-	-	-	-	-
TITANIUM	-	-		_		-	-	. ••	-	-
ANTHRACENE	.200	Α	-	_	-	-	-	-	-	· -
2,4-DIMETHYLPHENOL	-	-	-	-	-		-	-	-	
MAGNAFLOX 844A	-	-	-	-	•	-	-	-	-	
DIETHYLPHTHALATE	-	-	-	-		-	-	-	-	
HEXACHLOROCYDOPENTADIENE	-	-	-	-	-	-	-	-	-	· -
BENZO(B)FLLCRANTHENE	.200	Α	-	-	-	-	-	_	-	
DICHLOROETHANE	-	-	-	-	· · -	· -	-			

BUFFALO RIVER REACH - BALANCE SHEET

					*		
	PARAMETER	AMBIENT	NOTE	SUM	ALLOC	BALANCE	
		LIMIT		16	· /day		
		(PPH)					
	ALKYL DIPHENYL OXIDE SULFUNATE	.05	Н	-	-	0	1: -
	AINONNA	2.0	L	937.000		1,463,000	H - DOH
	ANTIMONY	.05	H	50.134	300.0	249.216	
	ARGENIC	.05	Н	.500	30.0	29.50 0	
	BARIUM	1.0	H	50.000	-	-50.000	
	BISC2-ETHYLHEXYLJPHTHALATE	.0006	D	3.501	-	-3.501	
	BENZEKE	.0015	H	.120	.6	.430	
	BENZÜIC ACID	35	Н	•••		0	
	BORON	.125	H	4 400	3,002.0	3,002.000	
	CALMIUM	.3	L	1.100	130.0	178.900	
	CARBONTETRACHLORIDE	.0003	Н	-	-	0	
	CHLORENDIC ACID	.001	H	-	-	0	
	CHLOROFORM	.00019	D		-	0	
	CHLORINE(TOTAL RESIDIUAL)	.15	D	.630	30.0	29.370	
	<u> COFPER</u>	.2	<u> </u>	76.325	120.0	43:675	L - ECL
	CHRUNIUM	.15	<u>H</u>	17.000	30.0	13.000	
	CYANIDE	.1	L	17.945	106.0	88.055	
	DECHLORANE PLUS	.0001	H	- ,	-	0	
	DECHLÜRANE 602	.001	Н		-	0	
3.4	DIBROMO-3-NITRILO PROFRIONAMIDE(DENPA)	.05	H	24.000	-	-24.000	•
	DICHLOROBENZOTRIFLOURIDE	.01	H	-	-	0	
	DICHLOROGENZENE	.00025	D	-	-	0	
	1.1-DICHLORUETHYLENE	.00003	D	.020	-	020	
	DICHLOROETHYLENE	.0009	D	-	-	0	
	DICHLOROTOLUENE	.001	Ū	-		0	
[0]	THYLENE ETHER SEE (DINETHYL FORMAMIDE)	.05	Н	-	_	0	
	DIMETHYL FORMAMIDE	0.05	Н	-		, 0	
	2.4-DIMETHYL PHENOL	.001	H	•		0	
	DIMETHYL PHTHLATE	.0002	Đ	-	***	0	
	DI (N-BUTYL)PHTHALATE	.00045	D	-	-	0	•
	DI-N-UCTYL PHTHALATE	.0002	D	-	-	0	
	ENDOSULFAN	.000003	Ū	.030	-	~.03 0	
	ETHYL BENZENE	.017	D	-	-	0	
	FLOURANTHENE	.0000015	D	.007	-	007	D. WQ
	FLOURENE	.0002	Н	.200	-	200	
	FLOURIDE	1.2	D	11.000	900.0	839.000	
	HEXACHLOROBENZENE	.00000072	D	-	-	0	
	HEXACHLOROBUTADIENE	.000005	D	-	-	0	
	HEXACHLORUCYCLOHEXANES	.00001	D	.020	-	020	
	HEXACHLOROPENTADIENE	.00007	D	-		. 0	•
	XY IMOXYETHYLIDENE-1-BIPHOSPHONIC ACID	.05	Н	-	-	O	
	IRON	.3	Ĺ	84.000	-	-36.00Ú	
	LEAD	.03	Н	11.900	13.0	6.100	•
	MAGNAFLOX 573-C	Ж	N	-	-	. 0	-
	MAGNAFLOC 844A	N	И	-	-	O ,	•
	METHYLENE BISTHIGGYANATE	.001	D	-	-	0	
	METHYLENE CHLORIDE	.05	Н	61.000	5,785.0	5,704,000	
	MONOCHLOROSENZOTRIFLOURIDE	.01	Н	-	-	0	
	MONOCHLOROBENZENE	.0012	D	-	-	O	<u>.</u>
	MONOCHLORO PHENOL	.00015	D	-	•	0	

BUFFALD RIVER REACH - BALANCE SHEET

PARAMETER	AMBIENT LIMIT (PPM)	NOTE	sum	ALLCC	BALANCE	
MONOCHLOROTOLUENE	.0027	D	-	_	0	
MERCURY _	.0002	D	.120	-	130	V2-2
NALCO 7320(SEE DBNPA)	-	-	_	-	0	_
NALCO 8361	-	-	-	-	0	
NAFHTHALENE	2.0015	D	.300	-	300	
NICKEL	.015	D	2.590	18.0	15.410	~~?
NITRATE	2.3	D	215.400	-	-215.400	ē
OIL & GREASE	-	-	5,995,200	-	-5,995,200	•
PENTAC	.001	Н	-	_	Ù	
PENTACHLORUBENZENE	.00001	Ū	-	-	. 0	
PHENANTHRENZ	\$000003	Ω		-	0	
PHENGLIC COMPOUNDS (AS PHENOL)	.001	Н	54.178	1.2	-52.978	· · · · · · · · · · · · · · · · · · ·
FHUEUPKURUS	1.0	D	14.400	-	-14.400	
PHOSPHORIC ACID (AS PO4)	1.0	D	-	-	O	
PÜLYACRYLAMIES EMULSION PÜLYMER	.05	Н	-	-	0	
POLYCHLORINATED BIFHENYLS (PCB)	.000001	Ū	-	-	0	
FüLYETHYLENE GLYCOL	70	· H	-	-	0	
POLYMETHACRYLIC ACID	.05	Н	-	-	0	
POTASSIUM HYDROXIDE	100	?	-	-	0	
PYRENE	.0000015	Ū	.200	-	200	•
SELENIUM	.001	D	. 45ú	٤.	.150	**************
SILVER	.0001	D	2.033	.1	-1.933	
Sūdium	20	Н	-	-	0	
SODIUM CARBOXYLATE POLYMER	?	? D	_	-	O	
SODIUM SILICATE	3.7	D	-	-	0	
SUDIUM MEXAMETAPHOSPHATE	1.0	D	***	-	0	
SULFATE	200	?	3,067.500	_	,-3.067.500	*
SULFIDE	.002	D	.240	1.2	.960	
SULFITE	2	D	-	-	Ú	
TERACUL &	?	?	-	-	O	
TETRACHLOROBENZENE	.00001	D	-	-	0	
1.1.2.2-TETRACHLORUETHANE	.00017	Ū	· -	-	Û	
TETRACHLORUETHENE	.001	D	-	_	. 0	
TETRAHYDRÚ FURAN	.05	Н		-	. 0	
TETRA POTASSIUM PYROPHOSPHATE	1.0	D	-	-	0	
. TŪLUENE	?	?	1.225	20.0	18.775	
TOLYTRIAZOLE	.001	Ū	-	-	0	
TOTAL DISSOLVED SOLIDS (TRS)	200	L	·	-	Û	•
TOTAL SUSPENDED SOLIDS (TSS)	-	. L	650.000	-	-650.000	
TOTAL KJELDAHL NITROGEN	.15	H	214.000	-	-214,000	
1.2-TRANS DICHLORUETHYLENE	.002	Н	-	_	0	
TRICHLOROBENZENE	.00005	D	-	-	0	
1.2.4-TRICHLURUSENZENE	.00005	D		-	0	
TRICHLORGETHANE	.0005	D	-	-	. 0	_
1,1,1-TRICHLORCETHANE	.05	D	-	-	0	
TRICHLOROETHYLENE	.0006	D		-	0	
1.1.1-TRICHLORGETHENE	.0005	D	-	-	0	
TRICHLOROTOLUENE	.001	D	-	-	0	
TR DUIDM MITRILO TRIACETATE MONOHYDRATE	.013	Н	-	-	0	
VINYL CHLORIDE	.001	Н	•	-	0	

BUFFALO RIVER REACH - BALANCE SHEET

Parameter	Ambient Limit (PFM)	NOTE	SUM	ALLCC	BALANCE	
ZINC	.3	L	15.164	180.0	164.836	-ECL
IINC CHLORIDE	.03	D	40	-	0	
CHLORODI BROMOMETHANE	-	-	-	_	. 0	
DICHLURUBRUMUMETHANE	-	• -			ō	
BRÜMÜFÜRM	-	-	-	-	0	
DICHLOROPROPYLENE	-	-	_		0	
METHYLENE CHLORIDE		-		-	o	
MONOCHLOROPHENOL		-	_	_	0	,
DICHLOROPHENOL	-	-	-	-	0	
MONOCHLOROCRESOL	-	-	-	-	0	
TRICHLOGOPHENOL		-	-	-	Ù	
PENTACHLOROPHENOL		-	•	-	Ó	
BUTYL BENZYL PHTHALATE	-	-	~	-	Ó	
DIBUTYL PHTHALATE	-			-	0	
DIETHYL PHTHALATE	-	-	-	-	0	
DIOCTYL PHTHALATE	•••	-	_	-	O	
NITROSODIPHENYLAMINE	-	-	-	-	0	
ACENAPHTHENE	_	-	.200		200	
CHRYSENE	-	-		-	0	
BENZ (A) ANTHRACENE	-	-	-200	-	200	
MIREX	-	-		-	0	
THIOCYANATES		-	-	-	0	
CHLORIDE		-	-	-	Q	,
BROMIDE	-	-	· 🚣		0	
IODIDE	-	-		-	0	
HALOGENATED HYDROCARBON	_	-		-	0	
BENZIDINE	-	-		_	0_	
PHTHALATE ESTERS	-	-	-	- '	0	•
BENZ1SOTHIAZOLE	•	-	-	- '	0	
HEXAMETHYLBENZENE	-	-	-	-	0	
ALUMINUM	-	-	-	-	0	
BERYLLIUM	-	-	~		0	
COBALT	-	-	-	⊷.	0	
GŪLD	-	-	-	-	Ú	
MANGANESE	-	-	-	-	0	
HOLYBDENUM	-	_	-	• -	0	
PALLADIUM		-	-	-	Û	
PLATINUM	-	-	-	45	O	
STRÛNTIUM	-	-	-		0	
TELLURIUM	-	-	-	-	0	
THALLIUM	-	-		_	0	
TIN	-	-	_	-	0	
TITANIUM	-	-	-	•	0	
ANTHRACENE		-	.200	-	200	
2.4-DIMETHYLPHENGL	-	-	-	-	. 0	
NAGNAFLOX 844A	-	_	-	-	0	
DIETHYLFHTHALATE	-	-	-	-	()	
HEXACHLOROCYDOPENTADIENE	-	-		-	0	
BENZO (B) PLUGRANTHENE	-	***	.200	-	200	
DICHLORGETHANE	-	-	~	-	0	

BUFFALO RIVER REACH - BALANCE SHEET

PARAMETER	AMBIENT LIMIT (MPM)	NOTE	SUM	ALLOC	BALANCE
CHLOROMETHANE	-	-	-	-	0
HYDRAZINE	-	-	.600	-	600
VAKABIUM	-	-	50.000	_	-50.000
HEF TACHLOR	-		.020	-	020
BENZO (A) PYRENE	-	-	.200	-	200
ACENAPHTHALENE	*	-	.200	-	200

LOCKUP CODES -

A-BAT' B-BFT C-BEJ D-NO E-PERMIT APPLICATION OR REPORTING LEVEL F-BCT G-FROM DMR (NOT A LIMIT)

TF H-DOH B-F&W L-E.C.L. N-N/A

703 (1) ISSUED (2) PUBLIC NOTICE (3) APPLICATION PENDING

PARAMETER	DUNNER	Я	ALLIED	R	BUFFALO	R	REPUBLIC	R	P.V.S.	R
	Hanna	Ε	CHEMICAL	Ε	COLOR	Ε	STEEL	Ε	CHEMICAL	Ε
	STATUS-2	F	STATUS-2	F	STATUS-1	F	STATUS-2	F	STATUS-2	F
CHLOROMETHANE	-	-	-	-		-	-	-	-	-
HYDRAZINE	.600	D	-	-	-	-	-	-	-	_
VANADIUM	-	-	-	-	-	-	-	-	50.000	Ū
HEPTACHLOR	.020	E	-	-	-	-	-	-	-	-
BENZO (A) PYRENE	.200	Α	-	-	-	-	-	ca	-	-
ACENAPHTHALENS	.200	Α	-	-	-	-	•	-	-	_

E KUP CODES ---

A-BAT B-BAT C-BEU D-WO E-PERMIT APPLICATION OR REPORTING LEVEL F-BCT G-FROM DMR (NOT A LIMIT)

- E H-DOH D-F&W L-E.C.L. N-N/A
- ID (1) ISSUED (2) PUBLIC NOTICE (3) APPLICATION PENDING