

40 La Riviere Drive, Suite 122 • Buffalo, New York 14202 • (716) 541-0730 • www.parsons.com

July 31, 2023

Joshua M. Vaccaro New York State Department of Environmental Conservation, Region 9 Division of Environmental Remediation 700 Delaware Avenue Buffalo, New York 14209

RE: Annual Groundwater Monitoring Report, Honeywell Buffalo Research Laboratory

Dear Mr. Vaccaro:

Enclosed please find the 2023 Annual Groundwater Monitoring Report for the Honeywell Buffalo Research Laboratory in Buffalo, New York (see **Figure 1**). The report is a requirement of the Site Management Plan (SMP) (GHD, June 2019) for the facility. The annual groundwater monitoring event was conducted on June 6, 2023.

Based on the results of the annual groundwater monitoring over the last several years, including the current year, the monitoring will be continued on an annual schedule as defined in the SMP. The monitoring schedule will be re-evaluated as additional results are collected. The detailed rationale for these recommendations is provided in the Recommendations/Conclusions section of this report.

Well Inspection

In accordance with the SMP, the depth to groundwater was measured and the condition of each monitoring well (MW-2, MW-3, MW-5, MW-6, MW-7, MW-8, MW-9, and MW-10) was inspected. MW-1 and MW-4 could not be found and may have been covered by asphalt, as noted in previous reports. MW-9 is a flush mounted well and was unable to be opened as it appears to have been partially paved over. In 2023, additional tools were used in an attempt to open the well but it was still unable to be opened. In 2024, an attempt to remove the tar will be made in an effort to open the well. The results of the well inspections are presented below. The well inspection records are included in **Attachment A**. Each of the wells that were inspected were in good condition with only minor issues, but none requiring maintenance.

MW-2, Stick-up Protective Casing

- Paint and label in good condition.
- Well was locked.
- Stick-up protective metal casing was in good condition outside of a sticky hinge.
- J-plug well cap was secure.
- Concrete pad was in good condition.

MW-3, Stick-up Protective Casing

- Paint and label in good condition.
- Well was locked.

- Stick-up protective metal casing was in good condition outside of a sticky hinge.
- J-plug well cap was secure.
- Concrete pad was in good condition.

MW-5, Flush-mounted Protective Casing

- Curb box, cover, and concrete pad were in good condition.
- Water-tight well cap was secure.
- Surrounding asphalt was in good condition.

MW-6, Flush-mounted Protective Casing

- Curb box and cover were in place and in good condition. Bolts were slightly rusted and stripped, and it is planned to replace the bolts in 2024.
- Water-tight well cap was secure.
- Surrounding asphalt was in good condition.

MW-7, Flush-mounted Protective Casing

- Curb box, cover, and concrete pad were in good condition. Noted one bolt could be replaced.
- Concrete pad is in good condition.
- Water-tight well cap was secure.
- Surrounding asphalt was in good condition.

MW-8, Stick-up Protective Casing

- Paint and label in good condition.
- Well was locked.
- Stick-up protective metal casing was in good condition.
- J-plug well cap is needed.
- Concrete pad was in good condition and covered by blacktop.

MW-9, Flush-mounted Protective Casing

- Curb box and cover were in place and in good condition (new installed 2021) however the well could not be opened due to being partially paved over. Additional tools were used in an attempt to open the well in 2023 but it still could not be opened. Additional effort to open the well will be applied in 2024.
- Concrete pad was new (installed 2021).
- Water-tight well cap was secure.
- Surrounding asphalt was in good condition.

MW-10, Stick-up Protective Casing

- Well was locked. While cover is broken, it is still able to be locked. Consideration will be given to replacement or repair of the cap in 2024.
- Stick-up protective metal casing was in good condition.
- J-plug well cap was secure.
- Concrete pad was in good condition but is covered by blacktop.

Groundwater Sampling

Groundwater samples were collected from MW-3 and MW-5 for laboratory analysis, as specified in the SMP. During this sampling event, purging was conducted, and samples were collected, using a peristaltic pump and HDPE tubing.

Prior to collecting groundwater samples, each well was purged of a minimum of three well volumes of groundwater and was purged until field parameters (pH, specific conductivity, turbidity, and temperature) were stable. During purging, field parameters, including pH, temperature, specific conductivity, and turbidity, were measured and recorded. Wells were purged at approximately 220 milliliters per min (ml/min).

Samples were submitted for analysis using Method EPA 8260 for volatile organic compounds (VOCs) and EPA 6010C for metals (total arsenic and barium and soluble arsenic and barium). Soluble arsenic and barium are analyzed if turbidity exceeds 50 NTU, which in 2023, neither sample did, and therefore soluble arsenic and barium were not analyzed. Turbidity is measured both in the field and at the laboratory. In addition to the two groundwater samples, the trip blank that accompanied the bottle set from the laboratory, into the field, and back to the laboratory, was submitted for VOC analysis. Field parameters and other monitoring data were recorded on the Well Sampling Records provided in **Attachment A**.

Summary of Analytical Results

Table 1 presents a summary of the detected chemical constituents for this sampling event, and **Table 2** provides the historical analytical results from 1994 through the current (2023) annual sampling event. A data summary table and the laboratory data report for the current samples are provided in **Attachment B**. Sample results were compared to the NYSDEC Ambient Water Quality Standards and Guidance Values (AWQS), contained in 6 NYCRR Part 703.

VOCs

Three VOCs were identified in the groundwater sample from MW-3 (1,1,1-trichloroethane at 6.8 μ g/L, 1,1-dichloroethene [1,1-DCE] at 2.9 μ g/L, and 1,1- dichloroethane [1,1-DCA] at 23 μ g/L). 1,1-DCA and 1,1,1-trichloroethane exceeded the NYSDEC AWQS. No VOCs were identified in the groundwater sample from MW-5. The analytical results for the trip blank (VOCs) were all below the analytical detection limits.

Metals

Total arsenic was below the AWQS (25 μ g/L) in MW-3 (7.8 μ g/L) and in MW-5 (7.6 μ g/L). Total barium was below the AWQS (1,000 μ g/L) in both wells (358 μ g/L in MW-3 and 190 μ g/L in MW-5). Turbidity of both samples was below 50 NTUs and therefore, soluble arsenic and barium were not analyzed.

Discussion of Historical Analytical Results

VOCs

Table 2 provides a summary of the historical analytical results. Two VOCs were identified in the sample from MW-5 in 2016 that were not found in 2017 through 2023, or prior to 2016. VOCs have not typically been found in MW-5. Chloroform and dibromochloromethane were both identified in 2016 and both were below their respective NYSDEC AWQS. It is suspected that these two VOCs are the result of a water main break in the area of MW-5 in 2016. The water main break was repaired prior to the groundwater sampling in 2016. These two compounds are not expected to be identified in the future.

1,1,1-TCA and 1,1-DCA have typically been identified above the respective AWQS in groundwater from MW-3. The concentrations of 1,1-DCA ranged from below the analytical detection limits to 42 μ g/L between 1994 and June 2023. Although 1,1,1-TCA was below the analytical detection limit in July 2014, it was detected each year from 2015 through 2022 between 4.1 μ g/L and 9.8 μ g/L. The concentrations of 1,1,1-TCA have ranged from below the analytical detection limits to 36 μ g/L (1994) in MW-3. Since 1994 1,1,1-TCA has been 20 μ g/L or less and has been less than 10 μ g/L for the last eleven years. 1,1,1-TCA was below the NYSDEC AWQS of 5 μ g/L between 2019 and 2021. 1,1-DCE has occasionally been identified in MW-3, but is typically below the NYSDEC AWQS. Although 1,1-DCE has been detected for the last twelve years, it has been below the NYSDEC AWQS of 5 μ g/L during this time. 1,1-DCE last exceeded the NYSDEC AWQS in 2009. In 2019 TCE was detected (0.90 μ g/L) for the first time since 2005 and was again detected in 2020 (0.51 μ g/L). Both results are below the NYSDEC AWQS of 5 μ g/L. TCE has not been detected since 2020.

In summary, the analytical results from the current sampling event showed two VOCs (1,1,1-TCA and 1,1-DCA) above the AWQS in a single well (MW-3). Additionally, 1,1-DCE was observed below the AWQS in MW-3. 1,1-DCA is a common breakdown product of 1,1,1-TCA, when degraded through biotic processes such as reductive dechlorination, while 1,1-DCE is a common breakdown product of 1,1,1-TCA when degraded through abiotic processes. While VOCs have not typically been identified in MW-5, chloroform and dibromochloromethane were detected below their respective NYSDEC AWQS in 2016. It is suspected that these two compounds were associated with a water main break in the area of the well. These compounds were not detected between 2017 and 2023.

Metals

Over the past 25 years, total arsenic and total barium have been analyzed at least annually in the groundwater samples from MW-3 and MW-5. Total arsenic frequently exceeded the AWQS (25 µg/L) in the samples from MW-3 and occasionally in samples from MW-5. Total arsenic was below the AWQS in MW-3 and MW-5 during the current sampling event. Total barium did not exceed the AWQS in either well during this sampling event, nor in the previous sampling events. Historic total arsenic results for MW-3 and MW-5 have been included in a plot (**Figure 2**).

As required in the SMP, soluble arsenic and barium are analyzed when the sample turbidity exceeds 50 NTUs. Historically, soluble arsenic and soluble barium have been below the AWQS in both wells when analyzed, except for MW-3 in 2013 and 2016 when soluble arsenic exceeded the AWQS. Soluble

arsenic and soluble barium were not analyzed in 2023 due to measured turbidity levels below 50 NTUs. The last time that soluble arsenic and barium were analyzed, 2018, soluble arsenic was below the analytical detection limits in MW-3 and MW-5 and soluble barium was detected in both wells at levels below the AWQS.

Groundwater Flow Direction

The water level measurements recorded on June 6, 2023 (see **Table 3**) are consistent with previous measurements. The groundwater elevation contour map (**Figure 3**) indicates that the groundwater flow direction is generally to the southeast across the Site, which is consistent with the flow direction observed at the site in previous years.

Recommendations/Conclusions

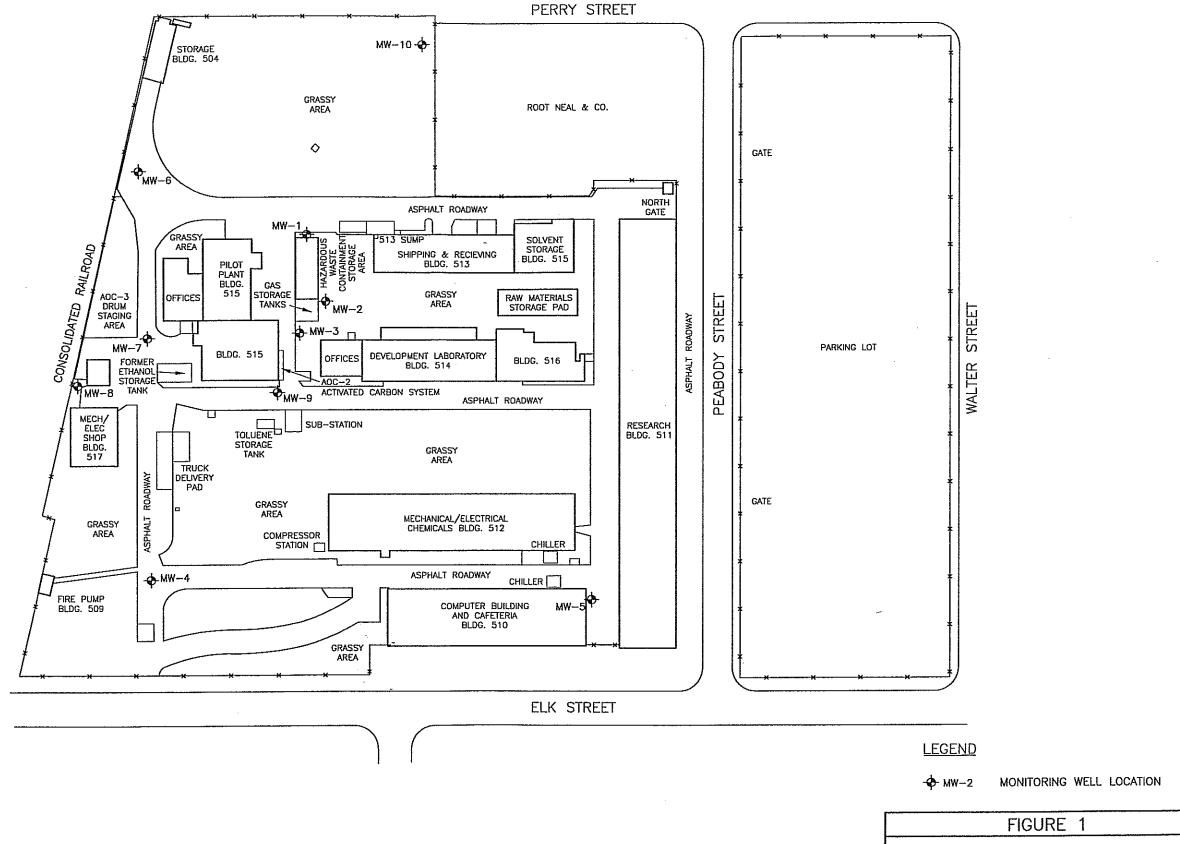
Based on the current sampling results, groundwater flow direction, and the following points, groundwater monitoring should continue on an annual schedule:

- The detected concentrations of two VOCs (1,1,1-TCA and 1,1-DCA) were low, although exceeding the AWQS in MW-3. One other VOC was detected (1,1-DCE) in MW-3, but was below the AWQS;
- As shown by the lack of VOCs in MW-5, VOCs observed in onsite well (MW-3) will naturally attenuate prior to reaching the facility boundary;
- Total arsenic has been below the AWQS during six out of the last 20 sampling events in MW-3, and below the AWQS during 15 out of the last 20 sampling events in MW-5;
- Soluble arsenic, when analyzed, has typically been below the detection limits or the AWQS. The only two exceptions were in 2013 and 2016 in MW-3; and
- Total barium and soluble barium (when analyzed) have been below the AWQS during the current event and all previous sampling events in MW-3 and MW-5.

If you need additional information or would like to discuss the results of this Annual Groundwater Monitoring Report, please contact me at (716) 525-3425.

Sincerely,

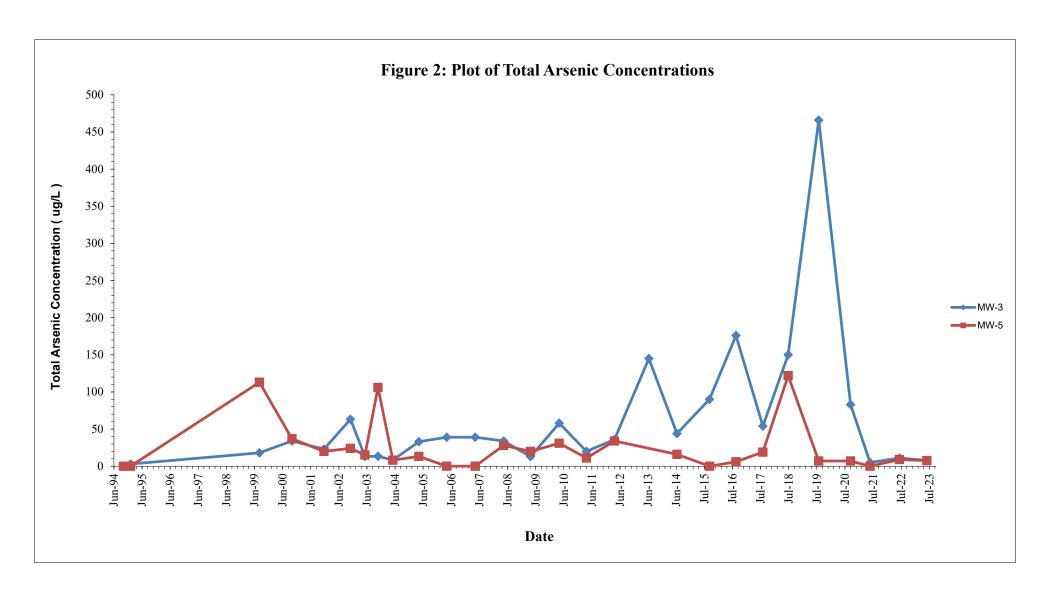
Eric A. Felter Project Manager

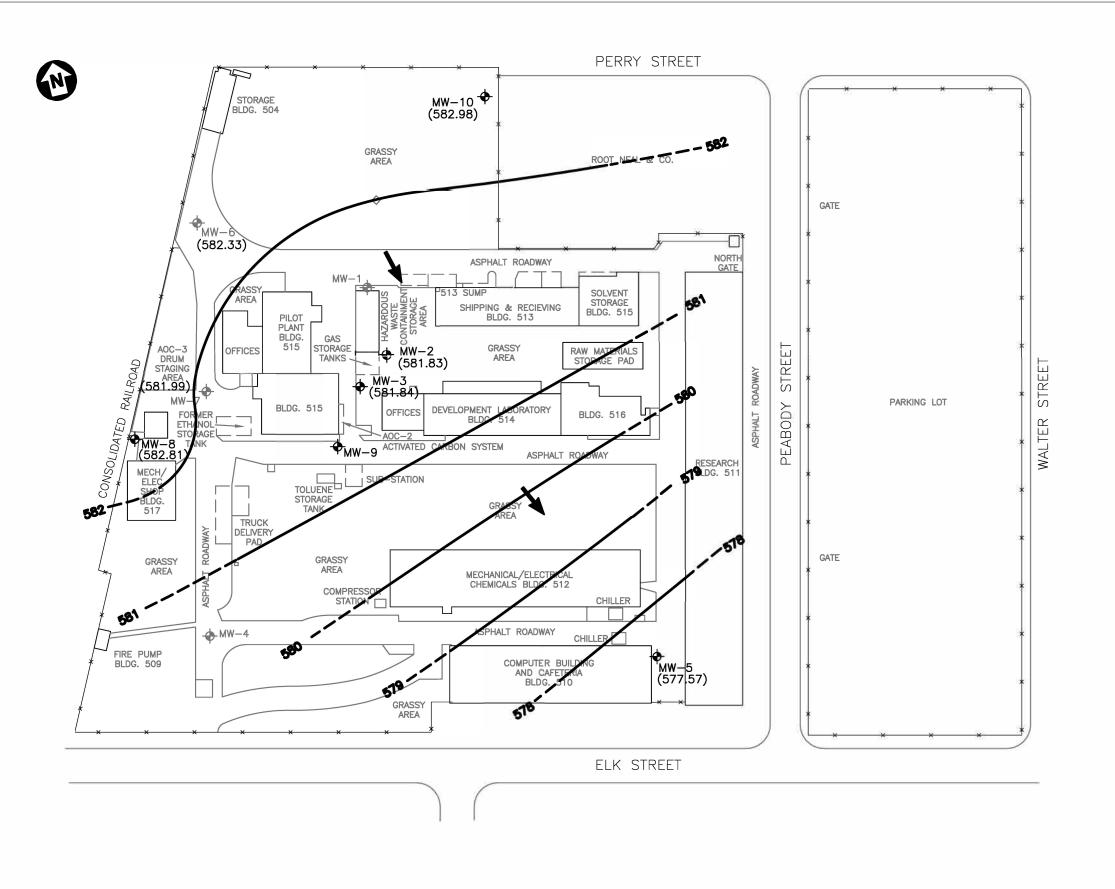

Michelle Mattice

Site Leader – Honeywell Buffalo Research

Michelle Mattice

Laboratory




100 50 0 100 200 SCALE: 1"=100' SITE PLAN HONEYWELL SPECIALTY CHEMICALS BUFFALO, NEW YORK

PARSONS

180 LAWRENCE BELL DRIVE, SUITE 104, WILLIAMSVILLE, N.Y. 14221, PHONE: 716-633-7074

P:\741239-hnywllSpecChem\cad\41239C02.dwg, 12/05/02 at 09:22, MAB, 1=1 No XREFs

LEGEND:

MW-2 MONITORING WELL LOCATION

GROUNDWATER ELEVATION
CONTOUR LINE (CONTOUR
INTERVAL = 1 FOOT)

(578.35) GROUNDWATER ELEVATION

NM WATER LEVEL UNABLE TO BE MEASURED

GROUNDWATER FLOW DIRECTION

100 50 0 100 200

SCALE: 1"=100"

FIGURE 3

Honeywell

SPECIALTY CHEMICALS BUFFALO, NEW YORK

GROUNDWATER ELEVATION CONTOUR MAP (JUNE 6, 2023)

PARSONS

40 LA RIVIERE DRIVE * SUITE 350 * BUFFALO, NY 14202 * 716/541-0730 OFFICES IN PRINCIPAL CITIES

TABLE 1
Summary of Groundwater Analytical Results (6/6/2023)

Analytical Parameters	NYSDEC AWQS µg/L	MW-3 μg /L	MW-5 μg /L	Trip Blank μg /L
Total Arsenic	25	7.8	7.6	NA
Total Barium	1,000	358	190	NA
1,1-Dichloroethene	5	2.9	ND	ND
1,1-Dichloroethane	5	23	ND	ND
1,1,1-Trichloroethane	5	6.8	ND	ND

Note: Only detected analytes are shown.

Boxed and bold analytical results exceed NYSDEC Ambient Water Quality Standards (AWQS).

ND = Not detected. NA = Not analyzed.

Table 2

Compound	NYSDEC AWQS (ug/L)	MW-1 10/17/94	MW-1 1/18/95	MW-2 10/17/94	MW-2 1/18/95	MW-2 5/27/03	MW-3 10/17/94	MW-3 1/18/95	MW-3 8/23/99	MW-3 10/19/00	MW-3 12/10/01	MW-3 11/19/02	MW-3 5/27/03	MW-3 11/13/03	MW-3 5/25/04	MW-3 4/28/05	MW-3 4/25/06	MW-3 5/1/07	MW-3 5/6/08
Total Arsenic	25	3 B	-	-	2.9 B	8.80 J	-	3 B	18	34	23 J	63.3	13.2 J	13.4 J	8.38 J	33.0	39.0	39.0	34.0
Soluble Arsenic	25	NA	NA	NA	NA	6.41 J	NA	NA	NA	NA	13 J	16 J	9.2 J	13.1 J	NA	NA	24	-	13
Total Barium	1,000	102 B	67.6	197 B	157 B	130	111 B	129 B	166	135	140	194	197	262	279	357	302	394	361
Soluble Barium	1,000	NA	NA	NA	NA	129	NA	NA	NA	NA	140	177	191	245	NA	NA	361	324	360
Acetone	50	12	-	11	6 J	NA	7	59	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Butanone	50	-	-	-	-	NA	-	6 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloroform	7	-	-	-	-	•	-	-	•	-	•	-	-	-	•	-	-	-	-
Dibromochloromethane	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	5	-	-	-	-	-	36	10	20	17.1	7.62	16.2	12.3	-	-	-	10	12.3	11.2
Tetrachloroethene (PCE)	5	-	-	-	-	ı	-	-	•	<10	ı	-	-	-	-	2.11 J	-	-	-
Trichloroethene (TCE)	5	-	-	-	-	-	-	-	-	-	-	-	-	-		5.20 J	-	-	-
1,1-Dichloroethene	5	-	-	-	-	-	4	-	-	<10	-	-	-	-		-	-	-	-
Methylene Chloride	5	11	-	8	-	-	8	-	-	<10	-	-	-	-		-	-	-	-
1,1-Dichloroethane	5	-	-	-	-	-	42	11	20	20.7	7.73	26.0	17.3	-		6.42 J	14	17.1	17.1
1,2-Dichloroethane	0.6	11	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene	3	-	-	-	-	-	-	-	-	-	2.86	-	-	-	-	-	-	-	-
1,2-Dichloropropane	1	-	-	-	-	1	-	-	-	-	1	-	-	-		-	-	-	-
Toluene	5	-	-	-	3 J	1	-	-	-	-	1	-	-	-		-	-	-	-
Chloroethane	5	-	-	-	-	1	-	-	-	-	1	-	-	-		-	-	-	-
Vinyl chloride	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Bold data exceed NYSDEC Ambient Water Quality Standards (AWQS).

NA = Not analyzed.

B = Compond also identified in blank.

^{- =} Compound not detected above analytical detection limits.

J = Analytical result is an estimate.

Table 2

Compound	NYSDEC AWQS (ug/L)	MW-3 4/21/09	MW-3 4/29/10	MW-3 4/19/11	MW-3 4/17/12	MW-3 7/9/13	MW-3 7/9/14	MW-3 9/5/15	MW-3 8/16/16	MW-3 8/1/17	MW-3 6/26/18	MW-3 7/29/19	MW-3 9/15/20	MW-3 5/27/21	MW-3 6/14/22	MW-3 6/6/23	MW-4 10/17/94	MW-4 1/18/95	MW-5 10/17/94	MW-5 1/18/95	MW-5 8/23/99
Total Arsenic	25	13	58	20	36	145	44	90	176	54	150	466	83	5	11	7.8	-	5.6 B	-	-	113
Soluble Arsenic	25	NA	-	-	18	69	-	NA	43.7	15	-	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Barium	1,000	206	147	313	204	289	203	455	446	215	246	425	374	360	142	358	183 B	243	71 B	74 B	170
Soluble Barium	1,000	NA	136	331	128	226	200	NA	508	244	180	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	50	NA	NA	NA	NA	NA	NA	NA	NA	-	NA	NA	-	-	-	-	6	-	5	-	NA
2-Butanone	50	NA	NA	NA	NA	NA	NA	NA	NA	-	NA	NA	-	-	-	-	-	-	-	-	NA
Chloroform	7	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-
Dibromochloromethane	5	-	•	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-
1,1,1-Trichloroethane	5	17.7	8.22	7.3	11.4	5.9	-	9.2	4.7	9.0	9.8	4.2	4.1	4.1	6.9	6.8	-	-	-	-	-
Tetrachloroethene (PCE)	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethene (TCE)	5	-	-	-	-	-	-	-	-	-	-	0.90	0.51	-	-	-	-	-	-	-	-
1,1-Dichloroethene	5	23.3	-	-	2.54	2.1	2.3	3.3	1.6	4.4	4.1	2.4	1.8	2.0	3.2	2.9	-	-	-	-	-
Methylene Chloride	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8	-	12	-	-
1,1-Dichloroethane	5	-	12.1	10.6	21.1	8.5	19.2	29	28	38	40	22	19	18	24	23	-	-	-	-	-
1,2-Dichloroethane	0.6	-	ı	-	-	-	-	-	-	-	-	-	-	ı	-	-	-	-	-	-	-
1,2-Dichlorobenzene	3	-	-	-	-	4.2	-	-	-	-	-	-	-	-	-		-	-	-		-
1,2-Dichloropropane	1	-	•	-	-	-	-	-	-	-	-	-	-	•	-	•	-	-	-	-	-
Toluene	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	5	-	•	-	-	-	-	-	-	-	-	3.9	-	•	-	-	-	-	-	-	-
Vinyl chloride	2	-	-	-	13.7	-	4.4	-	-	2.6	-	-	-	-	-	-		-	-	-	-

Bold data exceed NYSDEC Ambient Water Quality Standards (AWQS).

NA = Not analyzed.

B = Compond also identified in blank.

^{- =} Compound not detected above analytical detection limits.

J = Analytical result is an estimate.

Table 2

Compound	NYSDEC AWQS (ug/L)	MW-5	MW-5 12/10/01	MW-5 11/19/02	MW-5 5/27/03	MW-5 11/13/03	MW-5 5/25/04	MW-5 4/28/05	MW-5 4/25/06	MW-5 5/1/07	MW-5 5/6/08	MW-5 4/21/09	MW-5 4/29/10	MW-5 4/19/11	MW-5 4/17/12	MW-5 7/9/13	MW-5 7/9/14	MW-5 9/8/15	MW-5 8/16/16	MW-5 8/1/17
Total Arsenic	25	37	20 J	24.1 J	15.1 J	106	8.17 J	13.3 J	-	-	28.0	20	31	11	34	12	16	ı	6	19
Soluble Arsenic	25	NA	6 J	14.0 J	8.18 J	9.1 J	NA	8.85	10	-	14	NA	19	-	17	ı	-	NA	-	-
Total Barium	1,000	100	80	95.1	83.8	214	63.9	94.9	92	58	56	50	61	56	56	70	61	58	169	137
Soluble Barium	1,000	NA	80	76	70.2	63.8	NA	86.4	71	21	63	NA	57	71	67	57	51	NA	108	124
Acetone	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	-
2-Butanone	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	-
Chloroform	7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6.1	-
Dibromochloromethane	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.1	-
1,1,1-Trichloroethane	5	-		-	ı	-	-	-	-	-	-	-	ı	-	-	•	-	ı	-	-
Tetrachloroethene (PCE)	5	-	•	-	•	-	-	-	-	-	-	-	•	-	-	•	-	ı	-	-
Trichloroethene (TCE)	5	-	-	-	ı	-	-	-	-	-	-	-	ı	-	-	1	-	ı	-	-
1,1-Dichloroethene	5	-	ı	-	ı	-	-	-	-	-	-	-	ı	-	-	ı	-	ı	-	-
Methylene Chloride	5	31.1		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethane	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane	0.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene	3	-	1	-	ı	-	-	-	-	-	-	-	ı	-	-	ı	-	ı	-	-
1,2-Dichloropropane	1	-	1	-	ı	-	-	-	-	-	-	-	ı	-	-	ı	-	ı	-	-
Toluene	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride	2	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Bold data exceed NYSDEC Ambient Water Quality Standards (AWQS).

NA = Not analyzed.

^{- =} Compound not detected above analytical detection limits.

J = Analytical result is an estimate.

B = Compond also identified in blank.

Table 2

Compound	NYSDEC AWQS (ug/L)	MW-5 6/26/18	MW-5 7/29/19	MW-5 9/15/20	MW-5 5/27/21	MW-5 6/14/22	MW-5 6/6/23	MW-6 10/17/94	MW-6 1/18/95	MW-6 5/27/03	MW-7 10/17/94	MW-7 1/18/95	MW-8 10/17/94	MW-8 1/18/95	MW-9 10/17/94	MW-9 1/18/95	MW-9 5/25/04	MW-10 10/17/94		MW-10 5/27/03
Total Arsenic	25	122	7	7	-	9	7.6	-	-	5.64 J	-	2.7 B	-	-	-	-	28.1	4 B	-	19.7 J
Soluble Arsenic	25	-	NA	NA	NA	NA	NA	NA	NA	7.34 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Barium	1,000	254	209	143	180	195	190	84 B	61.5 B	65.2	176 B	204 B	90 B	77.2 B	149 B	134 B	205	33 B	22.3 B	16.5
Soluble Barium	1,000	165	NA	NA	NA	NA	NA	NA	NA	69.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	50	NA	-	-	-	-	-	4	-	NA	9	-	6	ı	27	18	NA	21	5 J	NA
2-Butanone	50	NA	-	-	-	-	-	-	-	NA	-	-	-	•	•	-	NA	-	-	NA
Chloroform	7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-
Tetrachloroethene (PCE)	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethene (TCE)	5	-	-	-	-	-	-	-	-	-	-	-	-	ı	-	-	-	-	-	-
1,1-Dichloroethene	5	-	-	-	-	-	-	-	-	-	-	-	-	ı	-	-	-	-	-	-
Methylene Chloride	5	-	-	-	-	-	-	5	-	-	8	-	8	ı	19	-	-	16	-	-
1,1-Dichloroethane	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
1,2-Dichloroethane	0.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	1	-	-	-	-	-	-	-	-	-	-	26	-	-	-	-	1	-	-	-
Toluene	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
Chloroethane	5	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
Vinyl chloride	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Bold data exceed NYSDEC Ambient Water Quality Standards (AWQS).

NA = Not analyzed.

B = Compond also identified in blank.

^{- =} Compound not detected above analytical detection limits.

J = Analytical result is an estimate.

Monitoring	Water Level	Top of Well	Depth to	Water Table
Well	Measurement	Casing Elevation	Water	Elevation
ID	Date	(Feet AMSL)	(Feet TOC)	(Feet)
MW-1	10/17/1994	585.69	3.26	582.43
MW-1 MW-1	11/8/1994 11/15/1994	585.69 585.69	5.04 3.59	580.65 582.10
MW-1	1/17/1994	585.69	2.55	583.14
MW-2	10/17/1994	587.32	5.09	582.23
MW-2	11/8/1994	587.32	4.38	582.94
MW-2	11/15/1994	587.32	4.73	582.59
MW-2	1/17/1995	587.32	4.43	582.89
MW-2	8/23/1999	587.32	5.95	581.37
MW-2 MW-2	10/19/2000 12/10/2001	587.32 587.32	5.05 4.88	582.27 582.44
MW-2	11/19/2002	587.32	4.45	582.87
MW-2	5/27/2003	587.32	4.56	582.76
MW-2	11/13/2003	587.32	4.56	582.76
MW-2	5/25/2004	587.32	4.21	583.11
MW-2	4/28/2005	587.32	4.10	583.22
MW-2 MW-2	4/25/2006	587.32	4.80 4.58	582.52 582.74
MW-2	5/1/2007 5/6/2008	587.32 587.32	4.58	582.74 582.52
MW-2	4/21/2009	587.32	4.56	582.76
MW-2	4/29/2010	587.32	4.63	582.69
MW-2	4/19/2011	587.32	4.28	583.04
MW-2	4/17/2012	587.32	5.10	582.22
MW-2	7/9/2013	587.32	4.47	582.85
MW-2 MW-2	7/9/2014 9/8/2015	587.32 587.32	4.55 5.34	582.77 581.98
MW-2	8/16/2016	587.32	5.51	581.81
MW-2	8/1/2017	587.32	4.80	582.52
MW-2	6/26/2018	587.32	4.91	582.41
MW-2	7/29/2019	587.32	5.45	581.87
MW-2	9/15/2020	587.32	5.66	581.66
MW-2	5/27/2021	587.32	5.08	582.24
MW-2 MW-2	6/14/2022 6/6/2023	587.32 587.32	5.05 5.49	582.27 581.83
MW-3	10/17/1994	587.55	5.41	582.14
MW-3	11/8/1994	587.55	5.13	582.42
MW-3	11/15/1994	587.55	5.30	582.25
MW-3	1/17/1995	587.55	5.20	582.35
MW-3	8/23/1999	587.55	5.90	581.65
MVV-3	10/19/2000	587.55	6.20	581.35
MW-3 MW-3	12/10/2001 11/19/2002	587.55 587.55	6.18 6.11	581.37 581.44
MW-3	5/27/2003	587.55	6.09	581.46
MW-3	11/13/2003	587.55	6.43	581.12
MW-3	5/25/2004	587.55	6.57	580.98
MW-3	4/28/2005	587.55	6.40	581.15
MW-3	4/25/2006	587.55	6.10	581.45
MW-3 MW-3	5/1/2007 5/6/2008	587.55 587.55	6.08 6.12	581.47 581.43
MW-3	4/21/2009	587.55	6.00	581.43 581.55
MW-3	4/29/2010	587.55	6.20	581.35
MW-3	4/19/2011	587.55	5.94	581.61
MW-3	4/17/2012	587.55	6.00	581.55
MW-3	7/9/2013	587.55	5.89	581.66
MW-3	7/9/2014	587.55	5.62	581.93
MW-3 MW-3	9/8/2015 8/16/2016	587.55 587.55	5.81 5.81	581.74 581.74
MW-3	8/1/2017	587.55	5.52	582.03
MW-3	6/26/2018	587.55	5.60	581.95
MW-3	7/29/2019	587.55	5.82	581.73
MW-3	9/15/2020	587.55	5.91	581.64
MW-3	5/27/2021	587.55	5.53	582.02
MW-3	6/14/2022	587.55	5.57	581.98
MW-3	6/6/2023	587.55	5.71	581.84

Monitoring	Water Level	Top of Well	Depth to	Water Table
Well	Measurement	Casing Elevation	Water	Elevation
ID	Date	(Feet AMSL)	(Feet TOC)	(Feet)
MW-4	10/17/1994	583.87	3.18	580.69
MW-4	11/8/1994	583.87	4.30	579.57
MW-4	11/15/1994	583.87	2.96	580.91
MW-4	1/17/1995	583.87	2.86	581.01
MW-5	10/17/1994	583.47	4.96	578.51
MW-5	11/8/1994	583.47	4.65	578.82
MW-5	11/15/1994	583.47	4.76	578.71
MW-5	1/17/1995	583.47	4.77	578.70
MW-5	8/23/1999	583.47	4.82	578.65
MW-5	10/19/2000	583.47	4.55	578.92
MW-5 MW-5	12/10/2001 11/19/2002	583.47	4.86 5.02	578.61 578.45
		583.47		
MW-5	5/27/2003	583.47	5.27	578.20
MW-5	11/13/2003	583.47	8.46	575.01
MW-5	5/25/2004	583.47	6.30	577.17
MW-5	4/28/2005	583.47	4.82	578.65
MW-5	4/25/2006	583.47	5.12	578.35
MW-5	5/1/2007	583.47	5.62	577.85
MW-5	5/6/2008	583.47	6.32	577.15
MW-5	4/21/2009	583.47	8.72	574.75
MW-5	4/29/2010	583.47	9.02	574.45
MW-5	4/19/2011	583.47	8.29	575.18
MW-5	4/17/2012	583.47	8.28	575.19
MW-5	7/9/2013	583.47	8.30	575.17
MW-5	7/9/2014	583.47	5.30	578.17
MW-5	9/8/2015	583.47	8.30	575.17
MW-5	8/16/2016	583.47	6.85	576.62
MW-5	8/1/2017	583.47	5.87	577.60
MW-5	6/26/2018	583.47	5.98	577.49
MW-5	7/29/2019	583.47	6.01	577.46
MW-5	9/15/2020	583.47	6.32	577.15
MW-5	5/27/2021	583.47	5.83	577.64
MW-5	6/14/2022	583.47	5.92	577.55
MW-5	6/6/2023	583.47	5.90	577.57
MW-6	10/17/1994	585.22	2.68	582.54
MW-6	11/8/1994	585.22	2.49	582.73
MW-6	11/15/1994	585.22	2.55	582.67
MW-6	1/17/1995	585.22	2.54	582.68
MW-6	5/27/2003	585.22	2.48	582.74
MW-6	10/17/1994	585.22	2.40	582.54
MW-6	11/8/1994	585.22	2.49	582.73
MW-6	11/15/1994	585.22	2.49	582.67
MW-6	1/17/1994	585.22	2.53	582.68
MW-6	5/27/2003		2.54	582.74
_		585.22	-	
MW-6	7/9/2013	585.22	2.75	582.47
MW-6	7/9/2014	585.22	2.69	582.53
MW-6	9/8/2015	585.22	3.56	581.66
MW-6	8/16/2016	585.22	3.42	581.80
MW-6	8/1/2017	585.22	3.16	582.06
MW-6	6/26/2018	585.22	3.34	581.88
MW-6	7/29/2019	585.22	3.51	581.71
MW-6	9/15/2020	585.22	3.50	581.72
MW-6	5/27/2021	585.22	3.11	582.11
MW-6	6/14/2022	585.22	3.11	582.11
MW-6	6/6/2023	585.22	2.89	582.33

Monitoring	Water Level	Top of Well	Depth to	Water Table
Well	Measurement	Casing Elevation	Water	Elevation
ID	Date	(Feet AMSL)	(Feet TOC)	(Feet)
MW-7	10/17/1994	585.42	3.71	581.71
MW-7 MW-7	11/8/1994 11/15/1994	585.42 585.42	3.36 3.62	582.06 581.80
MW-7	1/17/1994	585.42	3.38	582.04
MW-7	7/9/2013	585.42	3.38	582.04
MW-7	7/9/2014	585.42	3.40	582.02
MW-7	9/8/2015	585.42	3.75	581.67
MW-7	8/16/2016	585.42	3.84	581.58
MW-7	8/1/2017	585.42	3.60	581.82
MW-7 MW-7	6/26/2018 7/29/2019	585.42 585.42	3.46 3.85	581.96 581.57
MW-7	9/15/2020	585.42	3.90	581.52
MW-7	5/27/2021	585.42	3.36	582.06
MW-7	6/14/2022	585.42	3.57	581.85
MW-7	6/6/2023	585.42	3.43	581.99
MW-8	10/17/1994	587.94	5.55	582.39
MW-8	11/8/1994	587.94	5.40	582.54
MW-8	11/15/1994	587.94	5.53	582.41
MW-8 MW-8	1/17/1995 8/23/1999	587.94 587.94	5.82 5.40	582.12 582.54
MW-8	10/19/2000	587.94	5.40	582.54 582.64
MW-8	12/10/2001	587.94	5.35	582.59
MW-8	11/19/2002	587.94	5.25	582.69
MW-8	5/27/2003	587.94	5.21	582.73
MW-8	11/13/2003	587.94	5.09	582.85
MW-8	5/25/2004	587.94	4.91	583.03
MW-8	4/28/2005	587.94	4.99	582.95
MW-8	4/25/2006	587.94	5.3	582.64
MW-8 MW-8	5/1/2007 5/6/2008	587.94 587.94	5.23 5.25	582.71 582.69
MW-8	4/21/2009	587.94	4.68	583.26
MW-8	4/29/2010	587.94	5.32	582.62
MW-8	4/19/2011	587.94	5.12	582.82
MW-8	4/17/2012	587.94	5.43	582.51
MW-8	7/9/2013	587.94	4.86	583.08
MW-8	7/9/2014	587.94	4.82	583.12
MW-8	9/8/2015	587.94	5.46	582.48
MW-8 MW-8	8/16/2016 8/1/2017	587.94 587.94	5.05 5.09	582.89 582.85
MW-8	6/26/2018	587.94	5.10	582.84
MW-8	7/29/2019	587.94	5.15	582.79
MW-8	9/15/2020	587.94	5.14	582.80
MW-8	5/27/2021	587.94	5.23	582.71
MW-8	6/14/2022	587.94	5.09	582.85
MW-8	6/6/2023	587.94	5.13	582.81
MW-9	10/17/1994	584.48	2.39	582.09
MW-9 MW-9	11/8/1994 11/15/1994	584.48 584.48	1.83 2.09	582.65 582.39
MW-9	1/17/1994	584.48	2.09	582.46
MW-9	10/19/2000	584.48	0.00	584.48
MW-9	5/27/2003	584.48	1.91	582.57
MW-9	5/25/2004	584.48	2.90	581.58
MW-9	4/19/2011	584.48	2.26	582.22
MW-9	4/17/2012	584.48	1.86	582.62
MW-9	7/9/2013	584.48	2.26	582.22
MW-9	7/9/2014	584.48	2.50	581.98
MW-9 MW-9	9/8/2015 8/16/2016	584.48 584.48	2.45 2.10	582.03 582.38
MW-9	8/1/2017	584.48	1.68	582.80
MW-9	6/26/2018	584.48	2.76	581.72
MW-9	7/29/2019	584.48	2.66	581.82
MW-9	9/15/2020	584.48	2.66	581.82
MW-9	5/27/2021	584.48	2.60	581.88

Monitoring	Water Level	Top of Well	Depth to	Water Table
Well	Measurement	Casing Elevation	Water	Elevation
ID	Date	(Feet AMSL)	(Feet TOC)	(Feet)
MW-10	10/17/1994	587.85	5.31	582.54
MW-10	11/8/1994	587.85	3.44	584.41
MW-10	11/15/1994	587.85	3.98	583.87
MW-10	1/17/1995	587.85	3.40	584.45
MW-10	8/23/1999	587.85	7.83	580.02
MW-10	10/19/2000	587.85	5.01	582.84
MW-10	12/10/2001	587.85	4.13	583.72
MW-10	11/19/2002	587.85	4.23	583.62
MW-10	5/27/2003	587.85	3.85	584.00
MW-10	11/13/2003	587.85	3.63	584.22
MW-10	5/25/2004	587.85	3.00	584.85
MW-10	4/28/2005	587.85	3.53	584.32
MW-10	4/25/2006	587.85	4.65	583.20
MW-10	5/1/2007	587.85	6.89	580.96
MW-10	5/6/2008	587.85	4.02	583.83
MW-10	4/21/2009	587.85	6.82	581.03
MW-10	4/29/2010	587.85	4.40	583.45
MW-10	4/19/2011	587.85	3.42	584.43
MW-10	4/17/2012	587.85	5.84	582.01
MW-10	7/9/2013	587.85	3.49	584.36
MW-10	7/9/2014	587.85	3.60	584.25
MW-10	9/8/2015	587.85	5.55	582.3
MW-10	8/16/2016	587.85	5.64	582.21
MW-10	8/1/2017	587.85	5.07	582.78
MW-10	6/26/2018	587.85	4.39	583.46
MW-10	7/29/2019	587.85	5.21	582.64
MW-10	9/15/2020	587.85	4.81	583.04
MW-10	5/27/2021	587.85	4.61	583.24
MW-10	6/14/2022	587.85	4.61	583.24
MW-10	6/6/2023	587.85	4.87	582.98

ATTACHMENT A

Well Sampling Records

LOW FLOW WELL SAMPLING RECORD													
Site Name: _		Honeywe	II BRL		_	Well ID:	MW-3		Well Diame	ter:	2	Inches	
Samplers: _		Taylor Sch	nweigel		=			ation Sample Set	(Y/N)?	N			
ourging Da	ata									OLUME CALC			
							= (Total Depth of We	ell - Depth To	Water) x Cas	ing Volume բ	per Foot	
vol = 6.2 gal									Casin	g Volumes (ga	l/ft.):		
									inch=0.092	2-inch=0.16		n=0.36	
Method:		w Flow		Date/Time:	6/6/23		4-		inch=1.4	8-inch=2.5	10-ir	nch=4	
Time 24 hr.	DTW ft.	Pump Rate ml/min.	Vol. gal.	pН	Spec. Cond. mS/cm	Turbidity NTU	Temp. °C	ORP mV	DO mg/L	TDS g/L	_ (Comments	
1315	5.85	260	0.00	7.12	2.42	17.0	14.79	-92	3.16	1.55		clear	
1320	7.18	260	0.20	7.12	2.17	14.7	13.83	-106	1.97	1.00		no odor	
1325	7.71	260	0.30	7.08	2.08	12.8	13.52	-112	1.40	1.38		no sheen	
1330	8.01	23	0.40	7.02	2.20	4.37	13.64	-109	1.26	1.33			
1335	8.03	240	0.60	6.99	2.26	3.30	13.80	-105	1.26	1.41			
1340	7.96	230	0.80	6.97	2.29	3.0	13.77	-101	1.14	1.45			
1345	7.92	230	1.10	6.94	2.39	3.5	13.72	-97	1.15	1.47			
1350	7.92	230	2.40	6.98	2.57	3.93	13.76	-96	1.07	1.53			
1355	7.93	230	2.80	6.95	2.65	1.64	13.62	-92	1.08	1.61			
1400	7.95	230	3.30	6.95	2.83	1.24	13.58	-89	1.01	1.70			
1405	7.94	230	3.60	6.95	2.97	1.13	13.86	-86	0.99	1.81	1.81		
1410	7.93	230	4.00	6.94	3.18	1.00	13.85	-84	0.98	1.90			
1415	7.92	230	4.50	6.95	3.54	1.11	13.76	-82	0.94	2.04			
1420	7.91	230	4.90	6.95	4.03	0.89	13.82	-80	0.92	2.58			
1425	7.93	230	5.30	6.94	4.48	1.11	13.76	-77	0.93	2.88			
1430	7.91	230	5.60	6.93	4.92	0.76	14.02	-74	0.92	3.15			
1440	7.86	225	6.00	6.96	5.39	0.0	15.05	-70	0.97	3.40			
1445	7.89	230	6.40	6.94	5.70	0.5	14.71	-68	0.85	3.59			
Sampling I Tield Parame		Method:	G	rab	-	Date/Time:	6/6/2023	3 14:50	Tota	l Volume of W	ater purged:	6.4	
	НОЕ	RRIBA		1						SAMPLE SE	Т		
рН		6.94						Parameter	Bott	le	Pres.	Method	
Spec. Cond.	(mS/cm)	5.39	1	-				As & Ba	250n	nL	HNO3		
Turbidity	(NTU)	0.49	1					Soluble As &Ba	250n	nL	NA		
Temp.(14.7	1					Turbidity	250n	nL	NA		
ORF		0.68						VOC-TCL	3-40ml	. vial	HCL		
DO TDS		3.59											
103	•	0.09		J									
		•											
Comments: 1	3 well volu	mes purged to	collect sar	nple.									

				L	OW FLOW	WELL SA	MPLING	RECORD						
Site Name:		Honeywe	II BRL		_	Well ID:	MW-5		Well Diame	ter:	2	Inches		
		Taylor Sch			_				Set (Y/N)?	N	_			
Purging D	<u>ata</u>									OLUME CALCUL				
							=	(Total Depth of V	Well - Depth To	Water) x Casing	g Volume p	per Foot		
									Casin	g Volumes (gal/fl	t.):			
								-inch=0.041 1.5	5-inch=0.092	2-inch=0.16	3-inch	n=0.36		
Method:		w Flow		Date/Time:	: 6/6/23		4		6-inch=1.4	8-inch=2.5	10-in	nch=4		
Time 24 hr.	DTW ft.	Pump Rate ml/min.	Vol. gal.	pН	Spec. Cond. mS/cm	Turbidity	Temp. °C	ORP mV	DO mg/L	TDS g/L	- (Comments		
1145	6.06	300	0.0	6.42	2.57	64.8	14.30	80	2.03	1.49	clou	udy, light orange		
1150	5.92	220	0.3	6.93	2.14	139	14.52	-50	1.26	1.38				
1155	5.91	220	0.4	7.04	5.42	107	14.76	-79	1.22	3.61		no odor		
1200	5.91	220	0.7	7.05	9.43	73.9	14.98	-85	1.15	6.01		no sheen		
1205	5.91	220	1.2	7.05	12.0	47.1	15.16	-86	1.08	7.47				
1210	5.91	220	1.6	7.05	13.6	30.7	15.29	-84	1.08	8.49				
1215	5.92	220	2.0	7.05	14.7	17.9	15.29	-82	1.01	9.15		clear		
1220	5.92	220	2.4	7.05	15.2	11.7	15.29	-79	0.99	9.44				
1225	5.93	225	2.8	7.06	15.4	8.66	15.23	-76	1.02	9.57				
1230	5.92	220	3.2	7.06	15.5	6.32	15.28	-74	1.06					
1235	5.92	220	3.6	7.07	15.5	4.45	15.37	-72	1.10	1.10 9.61				
	Data													
Sampling	<u>Data</u>	Method:	G	Grab	<u>-</u>	Date/Time:	6/6/23	3 1240	Tota	l Volume of Wate	er purged:	3.6		
ield Parame	<u>eters</u>													
	НОІ	RRIBA								SAMPLE SET				
pН		7.07	,					Parameter	Bott	le I	Pres.	Method		
Spec. Cond	.(mS/cm)	15.50	0					Vas & Ba	250m	nL F	HNO3			
Turbidity	(NTU)	4.45	5					Soluble As &B	3a 250m	ıL	NA			
Temp.	(°C)	15.37	7					Turbidity	250m	nL	NA			
ORI	P	-72						VOC-TCL	3-40mL	. vial	HCL			
DC)	1.10)											
TDS	S	9.61												
Comments:														

PARSONS

WELL INSPECTION FORM												
Site Name	Honeywell Specialty Chen	nicals		Well ID	MW-2							
Personnel	Tayler Schweigel											
Total Well D	epth (TOC)	19.08	feet									
Initial Static	Water Level (TOC)	5.49	feet									
Well Diamet	er	2	inches									
Condition of	Pro-Cover	N/	Α									
Well Locked		yes	no									
Condition of	J-Plug	god	od									
Concrete Pa	d Condition	god	od									
Asphalt Con	dition	n/a (g	rass)									
Date of Insp	ection	6/6/2	023									
Time of Insp	ection	104	49									
	Hinge is sticky from disuse	9.										
MW-1 paved	d over.											

WELL INSPECTION FORM					
Site Name	Honeywell Specialty Chem	nicals	Well ID _	<i>MW-</i> 3	
Personnel	Tayler Schweigel				
Total Well D	epth (TOC)	18.68 feet			
Initial Static	Water Level (TOC)	5.71 feet			
Well Diamet	er	2 inches			
Condition of	Pro-Cover	n/a			
Well Locked		yes no			
Condition of J-Plug		good			
Concrete Pa	d Condition	good			
Asphalt Con	dition	n/a (grass)			
Date of Insp	ection	6/6/2023			
Time of Insp	Time of Inspection				
Comments:	Hinge is sticky from disuse) .			

WELL INSPECTION FORM					
Site Name	Honeywell Specialty Chem	nicals		Well ID	MW-05
Personnel	Tayler Schweigel			- -	
Total Well D	epth (TOC)	15.68	feet	hard bottom	
Initial Static	Water Level (TOC)	5.90	feet	_	
Well Diamet	er	2	inches	_	
Condition of	Pro-Cover	go	od	_	
Well Locked		yes	no]	
Condition of	J-Plug	good		_	
Concrete Pa	d Condition	good		_	
Asphalt Con	dition	good		_	
Date of Insp	ection	6/6/2	2023	_	
Time of Insp	of Inspection 0954		-		
Comments:					

WELL INSPECTION FORM					
Site Name Honeywell Specialty Chem	nicals		Well ID	MW-6	
Personnel <u>Tayler Schweigel</u>			_		
Total Well Depth (TOC)	16.68	feet	hard bottles		
Initial Static Water Level (TOC)	2.89	feet	_		
Well Diameter	2	inches	_		
Condition of Pro-Cover	fa	ir	_		
Well Locked	yes	no			
Condition of J-Plug g		od	_		
Concrete Pad Condition	go	od	_		
Asphalt Condition	go	od	_		
Date of Inspection	6/6/2	2023	_		
Time of Inspection	Time of Inspection 1020		_		
Comments: A lot of sediment in bolt the TS cleaned off some. TS cleaned bolts. Bolt threads are stripped.			oolts.		

WELL INSPECTION FORM Site Name Honeywell Specialty Chemicals Well ID MW-7 Tayler Schweigel Personnel Total Well Depth (TOC) 13.02 feet Initial Static Water Level (TOC) 3.43 feet Well Diameter 2 inches Condition of Pro-Cover good Well Locked yes no Condition of J-Plug fair Concrete Pad Condition good **Asphalt Condition** good Date of Inspection 6/6/2023 Time of Inspection 1011 Comments: One bold is bent. Replace bolt. Bent bolt is from side with missing tab. Do not recomment replacing road box at this time.

WELL INSPECTION FORM					
Site Name	Honeywell Specialty Chem	nicals		Well ID	MW-8
Personnel	Tayler Schweigel				
Total Well D	epth (TOC)	19.24	feet		
Initial Static	Water Level (TOC)	5.13	feet		
Well Diamet	er	2	inches		
Condition of	Pro-Cover	n/	′a		
Well Locked		yes	no		
Condition of	J-Plug	no j-plug			
Concrete Pa	d Condition	n/a			
Asphalt Con	dition	good			
Date of Insp	ection	6/6/2	2023		
Time of Insp	ection	<u> </u>			
Comments:					

WELL INSPECTION FORM					
Site Name	Honeywell Specialty Chem	nicals		Well ID	MW-9
Personnel	Tayler Schweigel				
Total Well D	epth (TOC)		feet		
Initial Static	Water Level (TOC)		feet		
Well Diamet	er		inches		
Condition of	Pro-Cover				
Well Locked	Well Locked yes no		no		
Condition of	J-Plug				
Concrete Pa	ad Condition				
Asphalt Con	dition				
Date of Insp	ection	6/6/	2023		
Time of Insp	Time of Inspection)58		
	Partially paved over. Attem loosen one bolt. Cover doe				

WELL INSPECTION FORM					
Site Name	Honeywell Specialty Chen	nicals		Well ID	MW-10
Personnel	Tayler Schweigel			<u>-</u> -	
Total Well D	epth (TOC)	18.05	feet	hard bottom	
Initial Static	Water Level (TOC)	4.87	feet	_	
Well Diamet	er	2	inches	_	
Condition of	Pro-Cover	needs new	сар	_	
Well Locked		yes	no]	
Condition of	J-Plug	good		_	
Concrete Pa	d Condition	n	/a	_	
Asphalt Con	dition	good		_	
Date of Insp	ection	6/6/2	2023	_	
Time of Insp	ime of Inspection		_		
Comments:	Cone placed over well. Re	eplace cap.			

ATTACHMENT B

Groundwater Analytical Results

Sample ID: Monitoring Well 3 Sample Date: 06/06/23

Analytical Parameters	Analytical Results	Units	Practical Quantifiable Limits	Method
Total Arsenic	0.0078	mg/L	0.025	EPA 6010
Soluble Arsenic	NA	mg/L	0.025	EPA 6010
Total Barium	0.358	mg/L	0.010	EPA 6010
Soluble Barium	NA	mg/L	0.010	EPA 6010
Chloromethane	ND	μg/L	10	SW 846 8260
Vinyl chloride	ND	μg/L	10	SW 846 8260
Bromomethane	ND	μg/L	10	SW 846 8260
Chloroethane	ND	μg/L	10	SW 846 8260
Trichlorofluoromethane	ND	μg/L	10	SW 846 8260
1,1-Dichloroethene	2.9	μg/L	10	SW 846 8260
Methylene chloride	ND	μg/L	10	SW 846 8260
Trans-1,2-Dichloroethene	ND	μg/L	10	SW 846 8260
1,1-Dichloroethane	23	μg/L	10	SW 846 8260
Bromochloromethane	ND	μg/L	10	SW 846 8260
Chloroform	ND	μg/L	10	SW 846 8260
1,2-Dichloroethane	ND	μg/L	10	SW 846 8260
1,1,1-Trichloroethane	6.8	μg/L	10	SW 846 8260
Carbon tetrachloride	ND	μg/L	10	SW 846 8260
Benzene	ND	μg/L	10	SW 846 8260
1,2-Dichloropropane	ND	μg/L	10	SW 846 8260
Trichloroethene	ND	μg/L	10	SW 846 8260
2-Chloroethylvinyl ether	ND	μg/L	10	SW 846 8260
Cis-1,3-Dichloropropene	ND	μg/L	10	SW 846 8260
Trans-1,3-Dichloropropene	ND	μg/L	10	SW 846 8260
1,1,2-Trichloroethane	ND	μg/L	10	SW 846 8260
Toluene	ND	μg/L	10	SW 846 8260
Dibromochloromethane	ND	μg/L	10	SW 846 8260
Tetrachloroethene	ND	μg/L	10	SW 846 8260
Chlorobenzene	ND	μg/L	10	SW 846 8260
Ethylbenzene	ND	μg/L	10	SW 846 8260
Bromoform	ND	μg/L	10	SW 846 8260
1,1,2,2-Tetrachloroethane	ND	μg/L	10	SW 846 8260
1,3-Dichlorobenzene	ND	μg/L	10	SW 846 8260
1,4-Dichlorobenzene	ND	μg/L	10	SW 846 8260
1,2-Dichlorobenzene	ND	μg/L	10	SW 846 8260

Sample ID: Monitoring Well 5 Sample Date: 06/06/23

Analytical Parameters	Analytical Results	Units	Practical Quantifiable Limits	Method
Total Arsenic	0.0076	mg/L	0.025	EPA 6010
Soluble Arsenic	NA	mg/L	0.025	EPA 6010
Total Barium	0.190	mg/L	0.010	EPA 6010
Soluble Barium	NA	mg/L	0.010	EPA 6010
Chloromethane	ND	μg/L	10	SW 846 8260
Vinyl chloride	ND	μg/L	10	SW 846 8260
Bromomethane	ND	μg/L	10	SW 846 8260
Chloroethane	ND	μg/L	10	SW 846 8260
Trichlorofluoromethane	ND	μg/L	10	SW 846 8260
1,1-Dichloroethene	ND	μg/L	10	SW 846 8260
Methylene chloride	ND	μg/L	10	SW 846 8260
Trans-1,2-Dichloroethene	ND	μg/L	10	SW 846 8260
1,1-Dichloroethane	ND	μg/L	10	SW 846 8260
Chloroform	ND	μg/L	10	SW 846 8260
1,2-Dichloroethane	ND	μg/L	10	SW 846 8260
1,1,1-Trichloroethane	ND	μg/L	10	SW 846 8260
Carbon tetrachloride	ND	μg/L	10	SW 846 8260
Benzene	ND	μg/L	10	SW 846 8260
1,2-Dichloropropane	ND	μg/L	10	SW 846 8260
Trichloroethene	ND	μg/L	10	SW 846 8260
2-Chloroethylvinyl ether	ND	μg/L	10	SW 846 8260
Cis-1,3-Dichloropropene	ND	μg/L	10	SW 846 8260
Trans-1,3-Dichloropropene	ND	μg/L	10	SW 846 8260
1,1,2-Trichloroethane	ND	μg/L	10	SW 846 8260
Toluene	ND	μg/L	10	SW 846 8260
Dibromochloromethane	ND	μg/L	10	SW 846 8260
Tetrachloroethene	ND	μg/L	10	SW 846 8260
Chlorobenzene	ND	μg/L	10	SW 846 8260
Ethylbenzene	ND	μg/L	10	SW 846 8260
Bromoform	ND	μg/L	10	SW 846 8260
1,1,2,2-Tetrachloroethane	ND	μg/L	10	SW 846 8260
1,3-Dichlorobenzene	ND	μg/L	10	SW 846 8260
Acetone	ND	μg/L	10	SW 846 8260
2-Butanone	ND	μg/L	10	SW 846 8260
1,4-Dichlorobenzene	ND	μg/L	10	SW 846 8260
1,2-Dichlorobenzene	ND	μg/L	10	SW 846 8260

Sample ID: Trip Blank Sample Date: 06/06/23

Analytical Parameters	Analytical Results	Units	Practical Quantifiable Limits	Method
Chloromethane	ND	μg/L	10	SW 846 8260
Vinyl chloride	ND	μg/L	10	SW 846 8260
Bromomethane	ND	μg/L	10	SW 846 8260
Chloroethane	ND	μg/L	10	SW 846 8260
Trichlorofluoromethane	ND	μg/L	10	SW 846 8260
1,1-Dichloroethene	ND	μg/L	10	SW 846 8260
Methylene chloride	ND	μg/L	10	SW 846 8260
Trans-1,2-Dichloroethene	ND	μg/L	10	SW 846 8260
1,1-Dichloroethane	ND	μg/L	10	SW 846 8260
Bromochloromethane	ND	μg/L	10	SW 846 8260
Chloroform	ND	μg/L	10	SW 846 8260
1,2-Dichloroethane	ND	μg/L	10	SW 846 8260
1,1,1-Trichloroethane	ND	μg/L	10	SW 846 8260
Carbon tetrachloride	ND	μg/L	10	SW 846 8260
Benzene	ND	μg/L	10	SW 846 8260
1,2-Dichloropropane	ND	μg/L	10	SW 846 8260
Trichloroethene	ND	μg/L	10	SW 846 8260
2-Chloroethylvinyl ether	ND	μg/L	10	SW 846 8260
Cis-1,3-Dichloropropene	ND	μg/L	10	SW 846 8260
Trans-1,3-Dichloropropene	ND	μg/L	10	SW 846 8260
1,1,2-Trichloroethane	ND	μg/L	10	SW 846 8260
Toluene	ND	μg/L	10	SW 846 8260
Dibromochloromethane	ND	μg/L	10	SW 846 8260
Tetrachloroethene	ND	μg/L	10	SW 846 8260
Chlorobenzene	ND	μg/L	10	SW 846 8260
Ethylbenzene	ND	μg/L	10	SW 846 8260
Bromoform	ND	μg/L	10	SW 846 8260
1,1,2,2-Tetrachloroethane	ND	μg/L	10	SW 846 8260
1,3-Dichlorobenzene	ND	μg/L	10	SW 846 8260
Acetone	ND	μg/L	10	SW 846 8260
2-Butanone	ND	μg/L	10	SW 846 8260
1,4-Dichlorobenzene	ND	μg/L	10	SW 846 8260
1,2-Dichlorobenzene	ND	μg/L	10	SW 846 8260

ANALYTICAL REPORT

Lab Number: L2331541

Client: Honeywell

20 Peabody Street Buffalo, NY 14120

ATTN: Matthew Kandefer Phone: (716) 827-6318

Project Name: GROUNDWATER MONITORING

Project Number: Not Specified Report Date: 06/29/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: GROUNDWATER MONITORING

Project Number: Not Specified

Lab Number: L2331541 **Report Date:** 06/29/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2331541-01	MW-3	WATER	BUFFALO, NY	06/06/23 14:50	06/07/23
L2331541-02	MW-5	WATER	BUFFALO, NY	06/06/23 12:40	06/07/23
L2331541-03	TRIP BLANK	WATER	BUFFALO, NY	06/06/23 00:00	06/07/23

Project Name:GROUNDWATER MONITORINGLab Number:L2331541Project Number:Not SpecifiedReport Date:06/29/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.					

Project Name:GROUNDWATER MONITORINGLab Number:L2331541Project Number:Not SpecifiedReport Date:06/29/23

Case Narrative (continued)

Report Submission

Please note that this report format does not contain typical QC parameters that were performed with these samples. As such, any QC outliers or non-conformances can only be reviewed by accessing your Alpha Customer Center account at www.alphalab.com and building a Data Usability table (format 11) in our Data Merger tool.

Volatile Organics

L2331541-01, -02, and -03: The pH of the sample was less than two. It should be noted that 2-chloroethylvinyl ether breaks down under acidic conditions.

Turbidity

L2331541-01 and -02: The sample was analyzed with the method required holding time exceeded.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Ashaley Moynihan

Authorized Signature:

Title: Technical Director/Representative

Date: 06/29/23

VOLATILES

L2331541

06/29/23

Project Name: GROUNDWATER MONITORING

L2331541-01

BUFFALO, NY

MW-3

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 06/06/23 14:50

Lab Number:

Report Date:

Date Received: 06/07/23
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 06/16/23 12:13

Analyst: LAC

Parameter	Result	Qualifier Units	s RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab				
Methylene chloride	ND	ug/l	2.5		1
1,1-Dichloroethane	23	ug/l	2.5		1
Chloroform	ND	ug/l	2.5		1
2-Chloroethylvinyl ether	ND	ug/l	10		1
Carbon tetrachloride	ND	ug/l	0.50		1
1,2-Dichloropropane	ND	ug/l	1.0		1
Dibromochloromethane	ND	ug/l	0.50		1
1,1,2-Trichloroethane	ND	ug/l	1.5		1
Tetrachloroethene	ND	ug/l	0.50		1
Chlorobenzene	ND	ug/l	2.5		1
Trichlorofluoromethane	ND	ug/l	2.5		1
1,2-Dichloroethane	ND	ug/l	0.50		1
1,1,1-Trichloroethane	6.8	ug/l	2.5		1
trans-1,3-Dichloropropene	ND	ug/l	0.50		1
cis-1,3-Dichloropropene	ND	ug/l	0.50		1
Bromoform	ND	ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		1
Benzene	ND	ug/l	0.50		1
Toluene	ND	ug/l	2.5		1
Ethylbenzene	ND	ug/l	2.5		1
Chloromethane	ND	ug/l	2.5		1
Bromomethane	ND	ug/l	2.5		1
Vinyl chloride	ND	ug/l	1.0		1
Chloroethane	ND	ug/l	2.5		1
1,1-Dichloroethene	2.9	ug/l	0.50		1
trans-1,2-Dichloroethene	ND	ug/l	2.5		1
Trichloroethene	ND	ug/l	0.50		1
1,2-Dichlorobenzene	ND	ug/l	2.5		1

Project Name: GROUNDWATER MONITORING Lab Number: L2331541

Project Number: Not Specified Report Date: 06/29/23

SAMPLE RESULTS

Lab ID: L2331541-01 Date Collected: 06/06/23 14:50

Client ID: MW-3 Date Received: 06/07/23 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	ialifier Units		MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
1,3-Dichlorobenzene	ND		ug/l	2.5		1				
1,4-Dichlorobenzene	ND		ug/l	2.5		1				
Acetone	ND		ug/l	5.0		1				
2-Butanone	ND		ug/l	5.0		1				
Bromochloromethane	ND		ug/l	2.5		1				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	99	70-130	

L2331541

06/29/23

Project Name: GROUNDWATER MONITORING

L2331541-02

BUFFALO, NY

MW-5

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 06/06/23 12:40

Date Received: 06/07/23

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 06/16/23 12:37

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ough Lab					
Methylene chloride	ND		ug/l	2.5		1
1,1-Dichloroethane	ND		ug/l	2.5		1
Chloroform	ND		ug/l	2.5		1
2-Chloroethylvinyl ether	ND		ug/l	10		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	2.5		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	2.5		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	2.5		1
Ethylbenzene	ND		ug/l	2.5		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	2.5		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.5		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	2.5		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1

Project Name: GROUNDWATER MONITORING Lab Number: L2331541

Project Number: Not Specified Report Date: 06/29/23

SAMPLE RESULTS

Lab ID: L2331541-02 Date Collected: 06/06/23 12:40

Client ID: MW-5 Date Received: 06/07/23 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	ialifier Units		MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
1,3-Dichlorobenzene	ND		ug/l	2.5		1				
1,4-Dichlorobenzene	ND		ug/l	2.5		1				
Acetone	ND		ug/l	5.0		1				
2-Butanone	ND		ug/l	5.0		1				
Bromochloromethane	ND		ug/l	2.5		1				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	100	70-130	

L2331541

06/29/23

Project Name: GROUNDWATER MONITORING

L2331541-03

TRIP BLANK

BUFFALO, NY

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 06/06/23 00:00

Lab Number:

Report Date:

Date Received: 06/07/23
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 06/16/23 13:01

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	orough Lab						
Methylene chloride	ND		ug/l	2.5		1	
1,1-Dichloroethane	ND		ug/l	2.5		1	
Chloroform	ND		ug/l	2.5		1	
2-Chloroethylvinyl ether	ND		ug/l	10		1	
Carbon tetrachloride	ND		ug/l	0.50		1	
1,2-Dichloropropane	ND		ug/l	1.0		1	
Dibromochloromethane	ND		ug/l	0.50		1	
1,1,2-Trichloroethane	ND		ug/l	1.5		1	
Tetrachloroethene	ND		ug/l	0.50		1	
Chlorobenzene	ND		ug/l	2.5		1	
Trichlorofluoromethane	ND		ug/l	2.5		1	
1,2-Dichloroethane	ND		ug/l	0.50		1	
1,1,1-Trichloroethane	ND		ug/l	2.5		1	
trans-1,3-Dichloropropene	ND		ug/l	0.50		1	
cis-1,3-Dichloropropene	ND		ug/l	0.50		1	
Bromoform	ND		ug/l	2.0		1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1	
Benzene	ND		ug/l	0.50		1	
Toluene	ND		ug/l	2.5		1	
Ethylbenzene	ND		ug/l	2.5		1	
Chloromethane	ND		ug/l	2.5		1	
Bromomethane	ND		ug/l	2.5		1	
Vinyl chloride	ND		ug/l	1.0		1	
Chloroethane	ND		ug/l	2.5		1	
1,1-Dichloroethene	ND		ug/l	0.50		1	
trans-1,2-Dichloroethene	ND		ug/l	2.5		1	
Trichloroethene	ND		ug/l	0.50		1	_
1,2-Dichlorobenzene	ND		ug/l	2.5		1	

06/29/23

Project Name: GROUNDWATER MONITORING Lab Number: L2331541

Project Number: Not Specified Report Date:

SAMPLE RESULTS

Lab ID: L2331541-03 Date Collected: 06/06/23 00:00

Client ID: TRIP BLANK Date Received: 06/07/23 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - V	estborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1
Acetone	ND		ug/l	5.0		1
2-Butanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ua/l	2.5		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	101	70-130	

METALS

06/06/23 14:50

Not Specified

06/07/23

Date Collected:

Date Received:

Field Prep:

Project Name: Lab Number: **GROUNDWATER MONITORING** L2331541 **Report Date:** 06/29/23

Not Specified **Project Number:**

SAMPLE RESULTS

Lab ID: L2331541-01

Client ID: MW-3

Sample Location:

BUFFALO, NY

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	ansfield Lab										
Arsenic, Total	0.0078		mg/l	0.0050		1	06/16/23 12:2	8 06/29/23 10:53	EPA 3005A	1,6010D	JMF
Barium, Total	0.358		mg/l	0.0100		1	06/16/23 12:2	8 06/28/23 17:17	EPA 3005A	1,6010D	TAA

Project Name: Lab Number: **GROUNDWATER MONITORING** L2331541 **Project Number: Report Date:** Not Specified 06/29/23

SAMPLE RESULTS

Lab ID: L2331541-02 Date Collected: 06/06/23 12:40 Client ID: MW-5 Date Received: 06/07/23

Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Arsenic, Total	0.0076		mg/l	0.0050		1	06/16/23 12:2	8 06/29/23 10:57	EPA 3005A	1,6010D	JMF
Barium, Total	0.190		mg/l	0.0100		1	06/16/23 12:2	8 06/28/23 17:19	EPA 3005A	1,6010D	TAA

INORGANICS & MISCELLANEOUS

Project Name: GROUNDWATER MONITORING Lab Number: L2331541

Project Number: Not Specified Report Date: 06/29/23

SAMPLE RESULTS

Lab ID: L2331541-01 Date Collected: 06/06/23 14:50

Client ID: MW-3 Date Received: 06/07/23

Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result Qu	nalifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab								
Turbidity	2.5	NTU	0.20		1	-	06/09/23 05:44	121,2130B	KAF

Project Name: GROUNDWATER MONITORING Lab Number: L2331541

Project Number: Not Specified Report Date: 06/29/23

SAMPLE RESULTS

Lab ID: L2331541-02 Date Collected: 06/06/23 12:40

Client ID: MW-5 Date Received: 06/07/23

Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Turbidity	3.5		NTU	0.20		1	-	06/09/23 05:44	121,2130B	KAF

Lab Number: L2331541

Project Number: Not Specified Report Date: 06/29/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

GROUNDWATER MONITORING

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen		
	Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L2331541-01A	Vial HCI preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260(14)
	L2331541-01B	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260(14)
	L2331541-01C	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260(14)
	L2331541-01D	Plastic 250ml HNO3 preserved	Α	<2	<2	4.4	Υ	Absent		BA-TI(180),AS-TI(180)
	L2331541-01E	Plastic 250ml unpreserved	Α	7	7	4.4	Υ	Absent		-
	L2331541-01F	Plastic 250ml unpreserved	Α	7	7	4.4	Υ	Absent		TURB-2130(2)
	L2331541-01X	Plastic 250ml HNO3 preserved Filtrates	Α	NA		4.4	Υ	Absent		HOLD-METAL-DISSOLVED(180)
	L2331541-02A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260(14)
	L2331541-02B	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260(14)
	L2331541-02C	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260(14)
	L2331541-02D	Plastic 250ml HNO3 preserved	Α	<2	<2	4.4	Υ	Absent		BA-TI(180),AS-TI(180)
	L2331541-02E	Plastic 250ml unpreserved	Α	7	7	4.4	Υ	Absent		TURB-2130(2)
	L2331541-02F	Plastic 250ml unpreserved	Α	7	7	4.4	Υ	Absent		-
	L2331541-02X	Plastic 250ml HNO3 preserved Filtrates	Α	NA		4.4	Υ	Absent		HOLD-METAL-DISSOLVED(180)
	L2331541-03A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260(14)
	L2331541-03B	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260(14)

Project Name:GROUNDWATER MONITORINGLab Number:L2331541Project Number:Not SpecifiedReport Date:06/29/23

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report - No QC

Project Name:GROUNDWATER MONITORINGLab Number:L2331541Project Number:Not SpecifiedReport Date:06/29/23

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- ${\bf J} \qquad \hbox{-Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs)}.$
- Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

Report Format: DU Report - No QC

Project Name:GROUNDWATER MONITORINGLab Number:L2331541Project Number:Not SpecifiedReport Date:06/29/23

Data Qualifiers

- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report - No QC

Project Name:GROUNDWATER MONITORINGLab Number:L2331541Project Number:Not SpecifiedReport Date:06/29/23

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 20

Published Date: 6/16/2023 4:52:28 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Az

EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

Page 23 of 24

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Westborough, MA 01581 B Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193 NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-898-9193 FAX: 508-898-9193		Service Centers Mahwah, NJ 07430: 35 White Albany, NY 12205: 14 Walke Tonawanda, NY 14150: 275 Project Information Project Name:		Page 1 of 1			oles	c'd	16/23			ALPHA Job# L 2331541 Billing Information				
		Project Name: Groundwater Monitoring Project Location: Buffalo, NY						ASP-A ASP-B ✓ Same as C EQuIS (1 File) EQuIS (4 File) Po#								
Client Informațio		Project #								rile	e) EQuIS (4 File)			PO#		
Client: Honey		The state of the s	Project #\				- 1	Oth	-	- dece				V		
	body Street								-	quirem	ent	Disposal Site Information				
Buffalo, NY 14120		Project Manager: Diana Overton ALPHAQuote #:							TOGS		_	Please identify below location	of			
Phone: 716-82	7-6318	Turn-Around Time					AWQ Standards NY CP-51 NY Restricted Use Other							applicable disposal facilities.		
Fax: 716-82		Standa	ent 1/	D . D		فنهواله	Į.			ted Use	Disposal Facility:					
	verton@honeywell.com	Rush (only if pre approve		Due Dat	500		1 5	NY Unrestricted Use						□ NJ □ NY		
	e been previously analyze			# of Day	/s:		NYC Sewer Discharge							Other:		
	ific requirements/comm						AN	ALYSI	1.90	-	_	_		Sample Filtration	0	
	filtered and preserved by		only need to i	be analyzed	if Turbidity e	xceed 50	6010C (lab filter)	,Ba-6010C	NYTCL-8260 Client Specif	TURB-2130				Done Lab to do Preservation Lab to do (Please Specify below)	t a l	
ALPHA Lab ID			ID Co		Sample	Sampler's	7	As,	占	1				(Flease Specify below)	t	
(Lab Use Only)	Sar	nple ID	Date	Time	Matrix	Initials	As,Ba	É	Ę			1 1		Cample Carrier Communication	e e	
31541-0	MW-3		6/6/23	1450	ww	43	v	-		-	_		_	Sample Specific Comments	-	
03	MW-5		6/6/23	1240	ww	43	X	X	X	X	-	\vdash	_	Lab Tilter secrate		
0	Trip Blank		6/6/23	-	DI Water	13	^	X	X	X	-	\vdash	_	Lab Filter seenst		
			9,57,5		- Vidici				Â						2	
															-	
Preservative Code:	Container Code P = Plastic	Westboro: Certification N	o: MA935		-											
3 = HCI 5 = HNO ₃ 9 = H ₂ SO ₄ = NaOH = MeOH 5 = NaHSO ₄		Mansfield: Certification N Relinquished E			Preservative A		P V C H	н а			Date/T	īme	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are			
= Na ₂ S ₂ O ₃ /E = Zn Ac/NaOH = Other orm No: 01-25 (rev. 30-5)	E = Encore D = BOD Bottle	Taylor Schurige	6/6/23	3-1510 904						Date/Time 66/20 /510 6/4/23 0/30			resolved. BY EXECUTING			