

April 7, 2011

Ms. Gail Dieter

The Dow Chemical Company

PO Box 8361

3200/3300 Kanawha Turnpike South Charleston, WV 25303

U.S.A.

New York State Department of Environmental Conservation Division of Environmental Remediation

Bureau E, Section B 625 Broadway, 12th Floor Albany, NY 12233-7017

Subject:

RCRA Facility Investigation

SWMU 1 Soil Vapor Intrusion Investigation Report, April 2011

Former Hampshire Chemical Corp. Facility

Waterloo, New York

Dear Ms. Dieter:

The Dow Chemical Company is pleased to submit one hard copy and one electronic copy (CD) of the attached *SWMU 1 Soil Vapor Intrusion Investigation Report, April 2011* for the Former Hampshire Chemical Corp. Facility in Waterloo, New York. The investigation activities were conducted at the request of the New York State Department of Environmental Conservation (NYSDEC) and New York State Department of Health (NYSDOH). In a letter dated February 26, 2010, the NYSDEC and NYSDOH approved the *RCRA Facility Investigation – Revised Work Plan, SWMU 1 Soil Vapor Investigation, Former Hampshire Chemical Corp., Waterloo, New York – February 2010*.

The April 2011 report includes the SWMU 1 and the residential property downgradient of SWMU 1 soil vapor intrusion investigation results for the field work that was conducted by CH2M HILL during March 2010.

This work is being performed pursuant to an amended Administrative Order on Consent (Index No. 8-20000218-3281, June 1, 2004). If you have any questions or comments, please contact me at 304-747-7788 or Dakon Brodmerkel at 610-280-0924.

Sincerely,

Jerome E. Cibrik, P.G.

Remediation Leader

Attachments

cc:

Mr. Pete Hoffmire, NYSDEC Region 8 (CD)

Mr. Scott Foti, NYSDEC Region 8 (CD)

Mrs. Katherine Fish, NYSDOH (Hard copy)

Mr. Steve Brusso, Evans Chemetics (Hard copy)

CH2M HILL Project File (Hard copy and CD)

RCRA Facility Investigation SWMU 1 Soil Vapor Intrusion Investigation

Former Hampshire Chemical Corp. Facility Waterloo, New York

NYD002234763

Prepared for

The Dow Chemical Company

April 2011

CH2MHILL

This page intentionally left blank.

Contents

Acro	nyms	and Ab	breviations	v				
1	Intro	duction	l	1-1				
2	Site Background							
	2.1	S .						
	2.2		J1					
3	Vapo	r Intrus	sion Conceptual Site Model	3-1				
	3.1	Potent	ial Sources in Soil	3-1				
	3.2	Potential Sources in Groundwater						
	3.3	Potential Sources in Soil Vapor						
4	Sampling Procedures and Methods							
	4.1	Soil Vapor Sampling						
	4.2	Crawl Space Air Sampling4						
	4.3	Indoor Air Sampling4-						
	4.4	Ambient Air Sampling4						
	4.5	Quality Assurance/Quality Control						
	4.6	Investigation-Derived Waste Management						
	4.7	Laboratory Analysis and Validation						
5	Data Evaluation and Analytical Results							
	5.1 Criteria Used for Comparison							
		5.1.1	90th Percentile Indoor Air Background Levels (NYSDOH)					
		5.1.2	Site-Specific Soil Vapor, Crawl Space, and Ambient Air					
			Concentrations	5-1				
	5.2	5-2						
		5.2.1	Residential Property					
		5.2.2	SWMU 1					
		5.2.3	Evans Chemetics Facility					
6	Conclusions							
	6.1 Summary							
	6.2	Proposed Path Forward						
7								

Table

Soil Vapor, Crawl Space Air, Indoor Air, and Ambient Air Analytical Results – March 2010

Figures

- 1 Facility Location Map
- 2 SWMU and AOC Locations
- 3 Groundwater Monitoring Well Locations
- 4 Soil Vapor, Crawl Space Air, Indoor Air, and Ambient Air Sample Locations and Results

Appendixes

- A NYSDOH Indoor Air Quality Questionnaire and Building Inventory
- B Field Sampling Log Sheets
- C Quality Assurance/Quality Control Results Table
- D Validated Laboratory Data Package & CD

Acronyms and Abbreviations

μg/m³ micrograms per cubic meter

AOC area of concern

DCE dichloroethene

facility former Hampshire Chemical Corp. Facility in Waterloo, New York

GC gas chromatography

HCC Hampshire Chemical Corp

IRA interim response action

MEK methyl ethyl ketone

MIBK methyl isobutyl ketone

MS mass spectrometry

NYCRR New York Codes Rules and Regulations

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

OB&G O'Brien & Gere Engineers, Inc.

QA quality assurance

QAPP quality assurance project plan

QC quality control

RCRA Resource Conservation and Recovery Act

RFI Resource Conservation and Recovery Act facility investigation

RSCO Recommended Soil Cleanup Objectives

RUSCO restricted use soil cleanup objectives

Sanborn Sanborn Fire Insurance

SOP standard operating procedure

SSCO Supplemental Soil Cleanup Objectives

SVOC semivolatile organic compound

SWMU solid waste management unit

TAGM Technical and Administrative Guidance Memorandum

TCE trichloroethene

TOGS Technical Operation Guidance Series

USEPA United States Environmental Protection Agency

VOC volatile organic compound

SECTION 1

Introduction

This soil vapor intrusion investigation report presents the data and findings obtained from the soil vapor intrusion investigation activities conducted at the Solid Waste Management Unit (SWMU) 1 area of the former Hampshire Chemical Corp. (HCC) Facility in Waterloo, New York (hereafter referred to as the facility) (Figure 1). HCC is a wholly owned subsidiary of The Dow Chemical Company.

The investigation activities were conducted at the request of the New York State Department of Environmental Conservation (NYSDEC). In comments transmitted on December 14, 2009, and January 7, 2010 to HCC, regarding the Resource Conservation and Recovery Act (RCRA) facility investigation (RFI) addendum report (CH2M HILL 2008), NYSDEC requested the preparation of a work plan to evaluate potential soil vapor intrusion pathways in the residential property south and west of the landfill (NYSDEC 2009, 2010a). The RFI SWMU 1 soil vapor investigation work plan was submitted on January 22, 2010 (CH2M HILL 2010a).

In comments transmitted on February 5, 2010, regarding the RFI SWMU 1 soil vapor investigation work plan, NYSDEC and the New York State Department of Health (NYSDOH) (collectively referred to as the agencies) issued conditional approval of the January 2010 work plan (NYSDEC 2010b). NYSDEC requested submittal of a revised work plan for the Department's approval prior to conducting the field sampling. The revised work plan was submitted on February 18, 2010 (CH2M HILL 2010b). The revisions included the following items:

- Eliminating the proposed soil vapor sample location, SGP-11, at the northeast area outside the residential property
- Including the NYSDOH building survey form for use during the pre-sampling building survey of the residential property
- Analyzing samples to be based on the analyte list included in Appendix A and Table 2-4
 of the Quality Assurance Project Plan (QAPP; CH2M HILL 2009)

The revised work plan was approved on February 26, 2010, and the investigation activities were conducted according to this revised work plan.

On March 23 and 24, 2010, CH2M HILL conducted a soil vapor, crawl space air, indoor air, and ambient air sampling event at the facility and the residential property downgradient of SWMU 1 (Figure 2). The purpose of this investigation was to collect data to evaluate potential soil vapor intrusion pathways in the residential property between SWMU 1 and the Seneca-Cayuga Canal. During this sampling event, two soil vapor and one ambient air samples were collected at SWMU 1; one crawl space, one indoor, and one ambient air samples were collected at the residential property; and two ambient air samples were collected at the facility. The sampling and data evaluation was consistent with the *Guidance for Evaluating Soil Vapor Intrusion in the State of New York* (NYSDOH 2006).

1-1

This page intentionally left blank.

Site Background

2.1 Site Background and Setting

The former HCC facility is located at 228 East Main Street in the Village of Waterloo, Seneca County, New York (Figure 1). The facility is bordered to the north by East Main Street, the east by Gorham Street, the west by East Water Street, and the south by the Seneca-Cayuga Canal.

The facility is operated by Evans Chemetics LP, a wholly owned subsidiary of Bruno Bock, and manufactures divalent organic sulfur chemical intermediates used for the cosmetic, pharmaceutical, and plastics industries. These products have been manufactured at the facility since approximately 1943. Before 1943, the facility was owned by the Waterloo Woolen Manufacturing Company, which had operated a woolen textile mill from 1836 until approximately 1936, when the mill was closed.

The facility has undergone significant changes over time. A number of onsite buildings were constructed in the 1800s, some of which are still standing, others of which subsequently were demolished.

The facility is regulated under 6 New York Codes Rules and Regulations (NYCRR) Part 373 and RCRA with NYSDEC as the lead agency. HCC has retained environmental liabilities for the facility, in accordance with the terms described in the purchase agreement between HCC and Bruno Bock, the current property owner.

2.2 SWMU 1

SWMU 1 corresponds to the former Village of Waterloo Dump site. Sanborn Fire Insurance (Sanborn) maps of the facility indicate that until 1948, the Village of Waterloo Dump site was occupied by part of the Seneca-Cayuga Canal, a lock, and several raceways. SWMU 1 managed municipal waste from the village of Waterloo until probably 1951, which suggests a maximum operation period of 3 years as a dump for debris, soil, and refuse. The 1964 Sanborn map for the facility shows that the canal and raceways were filled to the western edge of the old lock, and the area is identified as the Village of Waterloo Dump.

The former dump site contains fill material, including glass and plastic fragments, scrap metal, ash, ceramics, shoes, brake pads, copper wire, tires, cobbles, bricks, wood, and metal scrap. Intact glass bottles containing a white liquid also were encountered in four test pits completed within the landfill; the bottles were primarily encountered at or just below the water table. CH2M HILL developed an interim response action (IRA) to address liquid-containing bottles at the former Village of Waterloo Dump site (CH2M HILL 2004a), discovered at Test Pit 9 during the RCRA facility assessment sampling visit (O'Brien & Gere Engineers, Inc. [OB&G] 2003). Test Pit 9 was located southwest of SWMU 1. In April 2004 during a limited IRA, CH2M HILL removed approximately 7 cubic yards of fill material

containing broken and intact glass bottles and associated soil. The limited IRA was conducted because the extent of the bottle-containing fill is unknown. Waste characterization sampling confirmed that the material was nonhazardous (CH2M HILL 2004b).

A sample of liquid from a glass bottle collected during the sampling visit contained acetone at a concentration of 90,000 micrograms per liter (OB&G 2003); however, samples from two bottles (one clear liquid and one white liquid) collected during the RFI did not contain detectable volatile organic compounds (VOCs) or semivolatile organic compounds (SVOCs) (CH2M HILL 2004b). It is important to note that these samples had elevated reporting limits because of sample matrix interference (CH2M HILL 2004b).

The municipal fill material is not exposed at the surface; it is covered by soil. However, some bottle debris was observed at the surface during site visits in 2007, 2008, and 2009. CH2M HILL conducted fieldwork in 2009 to determine the extent of the offsite debris at SWMU 1, and the results were submitted to NYSDEC in the RCRA Facility Investigation, Visual Subsurface Investigation at the Former Village of Waterloo Dump Site (SWMU 1) in 2010 (CH2M HILL 2010c).

No releases have been reported from SWMU 1.

Vapor Intrusion Conceptual Site Model

In general, potential indoor air exposures in the residential property may result from VOCs in subsurface soil and/or shallow groundwater volatilizing, migrating vertically (and horizontally to a limited extent) through the soil column, and entering buildings through cracks. The VOCs then may be inhaled by house occupants. Sources of chemicals potentially contributing to vapor intrusion comprise the VOCs detected in soil and in groundwater at the facility which is in close proximity to the residential property.

Sources of constituents potentially contributing to vapor intrusion include VOCs detected in groundwater at SWMU 1. Based on data collected during the RFI, site groundwater within both the shallow and intermediate groundwater zones flows to the south toward the Seneca-Cayuga Canal.

The potential sources of VOCs and migration pathways at SWMU 1 are discussed in the following sections.

3.1 Potential Sources in Soil

Historical soil sample results indicate only one VOC, methyl isobutyl ketone (MIBK), which is also known as 4-methyl-2-pentanone, in exceedance of the January 24, 1994 Technical and Administrative Guidance Memorandum (TAGM) 4046 Recommended Soil Cleanup Objectives (RSCOs) of 1 milligram per kilogram (mg/kg) at Area of Concern (AOC) B. This AOC is located approximately 800 feet east and side-gradient of the residential property, within the facility. In 1994, MIBK was reported at a concentration of 2.2 mg/kg from a sample collected at BLDG4-PIT-S1. In 1995, MIBK was reported at a concentration of 8.1 mg/kg from a sample collected at soil boring for installation of monitoring well MW-03. In 2004, MIBK was reported at a concentration of 5.85 mg/kg from a sample collected at soil boring SB-16.

In 2007, CH2M HILL collected soil samples at SWMU 1 and AOC B. No VOCs were detected in exceedance of the TAGM 4046, the Supplemental Soil Cleanup Objectives (SSCO) (Industrial) of the Departments Draft Soil Cleanup Guidance dated November 4, 2009, and the December 14, 2006 NYSDEC Restricted Use Soil Cleanup Objectives (RUSCO) industrial screening criteria (CH2M HILL 2010b). No criterion was available for MIBK based on the SSCO and the RUSCO industrial screening criteria (CH2M HILL 2010b).

On October 21, 2010, NYSDEC issued CP-51/Soil Cleanup Guidance, which applies to each of the remedial programs administered by NYSDEC's Division of Environmental Remediation and replaced the TAGM 4046: Determination of Soil Cleanup Objectives and Cleanup Levels (NYSDEC 2010c). The SSCO section of this document indicates a protection of groundwater criteria of 1 mg/kg for MIBK. No NYSDEC SSCO Residential, Restricted Residential, or Industrial criterion has been established for MIBK.

Although the soil screening levels do not specifically include the vapor intrusion pathway, comparison of site data to these values gives an indication of the magnitude of concentrations of VOCs in soil. Therefore, with the exception of MIBK, VOCs in soil are not expected to contribute to the vapor intrusion pathway at the residential property.

Benzo(a)pyrene and dibenzo(a,h)anthracene are the only constituents found in soil in SWMU 1 that have been detected above the RUSCO industrial screening criteria, but have not been detected in groundwater at SWMU 1. Benzo(a)pyrene and dibenzo(a,h)anthracene are not volatile chemicals, so they are not expected to contribute to the vapor intrusion pathway.

3.2 Potential Sources in Groundwater

Monitoring wells associated with SWMU 1 are MW-14, MW-15, MW-16S, MW-16I, MW-17, and MW-18 (Figure 3). Groundwater at SWMU 1 historically contained the following VOCs and SVOCs at concentrations above the Technical Operation Guidance Series New York State Ambient Water Quality Standards and Guidance Values - Class GA Water Values (TOGS Class GA) (NYSDEC 1998): acetone, benzo(b)fluoranthene, chrysene, and naphthalene. The overall results of the groundwater samples collected at SWMU 1 during the last four sampling events (December 2007, October 2008, April 2009, and October 2009) indicate that the concentrations did not exceed the NYSDEC Class GA standards (CH2M HILL 2010d). Acetone has not exceeded the Class GA standard since 2004.

VOCs, including MIBK, have been identified in exceedance of the NYSDEC Class GA standards in groundwater samples collected during 1995, 2002, 2004, 2005, 2007, 2008, and 2009 at AOC B (CH2M HILL 2010d). However, as previously indicated, AOC B is located east and side-gradient of the residential property.

3.3 Potential Sources in Soil Vapor

On December 18, 2007, CH2M HILL conducted a soil vapor sampling event at SWMU 1 soil vapor points SGP-9 and SGP-10. MIBK, toluene, m,p-xylenes, trichloroethene, carbon tetrachloride, and tetrachloroethene were detected at SGP-09 at concentrations below the NYSDOH 90th percentile indoor air background values. Acetone, MIBK, toluene, chloroform, carbon tetrachloride, and tetrachloroethene were detected at SGP-10 at concentrations below the NYSDOH 90th percentile indoor air background values.

One ambient air sample was collected at SWMU 1, and MIBK, toluene, m,p-xylenes, chloroform and carbon tetrachloride were detected, but did not exceed the NYSDOH 90th percentile indoor air background values.

These low concentrations of VOCs are not expected to result in a complete vapor intrusion pathway at the residential property.

Sampling Procedures and Methods

On March 23 and 24, 2010, two soil vapor samples and one ambient air sample were collected at SWMU 1. One crawl space air sample, one indoor air sample, and one ambient air sample were collected at the residential property. Two ambient air samples were collected at the facility following *Guidance for Evaluating Soil Vapor Intrusion in the State of New York* (NYSDOH 2006) and in accordance with the revised *RFI Soil Vapor Investigation Work Plan* (CH2M HILL 2010b). The sample locations are shown on Figure 4. The NYSDOH indoor air quality questionnaire and building inventory form are provided in Appendix A. The field sampling log sheets are provided as Appendix B.

4.1 Soil Vapor Sampling

Two soil vapor probes (SGP-09 and SGP-10) were installed at 6 and 7.5 feet below ground surface, respectively, hydraulically upgradient of the residence and downgradient of SWMU 1. The two soil vapor samples were collected over a 24-hour period using 6-liter SUMMATM canisters equipped with flow controllers and dedicated Teflon® tubing, as described in the QAPP (CH2M HILL 2009). A standard operating procedure (SOP) for soil vapor sampling using SUMMATM canisters is presented in Appendix B of the revised work plan (CH2M HILL 2010b).

One duplicate sample (SGP-DUP) was collected at sample location SGP-10 for quality assurance (QA)/quality control (QC) purposes.

4.2 Crawl Space Air Sampling

One crawl space air sample (RP-CS-1) was collected at the residential property. The final crawl space sample point was adjusted onsite per NYSDOH's request and installed through a crawl space vent at the southwest corner of the residential property. The crawl space air sample was collected over a 24-hour period using 6-liter SUMMATM canisters equipped with flow controllers and dedicated Teflon® tubing, as described in the QAPP (CH2M HILL 2009). The SOP for crawl space sampling using SUMMATM canisters is presented in Appendix B of the revised work plan (CH2M HILL 2010b).

4.3 Indoor Air Sampling

A survey of the residential property was performed prior to indoor air sampling activities, using an NYSDOH indoor air quality questionnaire and building inventory form (NYSDOH 2005). The survey was conducted to determine an appropriate indoor air sample location. The completed form is presented in Appendix A.

The indoor air sample was collected over a 24-hour period using SUMMA[™] canisters equipped with flow controllers. SOPs for SUMMA[™] canister sampling and flow controller calibration are presented in Appendix B of the revised work plan (CH2M HILL 2010b).

One indoor air sample (RP-IA-1) was collected from inside the residential property at a height of approximately 3 feet above the floor in a centrally located high activity area of the house. A height of 3 feet above the floor represents the breathing zone of occupants that are normally seated and/or lying down to sleep (NYSDOH 2006). The location was based on the information gathered in the building survey and the NYSDOH representative indicated the location chosen was acceptable for sample collection.

4.4 Ambient Air Sampling

Ambient air samples were collected over a 24-hour period using SUMMA™ canisters equipped with flow controllers. SOPs for SUMMA™ canister sampling and flow controller calibration are presented in Appendix B of the revised work plan (CH2M HILL 2010b).

Four ambient air samples were collected: one at SWMU 1 (SGP-RP), one at the residential property (SGP-SWMU1), and two at the facility (SG-B2 and SG-B4). These samples were collected at a height of 3 to 5 feet above ground surface and away from wind obstructions such as trees or bushes, and chemical storage areas.

At the residential property, the final ambient air sample location was adjusted onsite per NYSDOH's request and located at the southwest corner of the house. The ambient air sample SGP-RP was collected simultaneously with indoor air sample RP-IA-1 to evaluate the potential influence of ambient air on indoor air quality. The ambient air sample was collected upwind of the house. The canister was placed at a height of 3 to 5 feet above ground surface and away from wind obstructions such as trees or bushes. This height is representative of standing breathing zones (NYSDOH 2006).

During the sampling activities, the temperature was measured onsite using portable instruments and recorded in the field book. The barometric pressure was obtained for the area from the weather report.

4.5 Quality Assurance/Quality Control

As mentioned in Section 4.1, a QA/QC sample (SGP-DUP) for this sampling event included a co-located sample (field duplicate). The tubing from the field duplicate was connected to the parent canister using a "T" fixture, so the sample drew the same air from the soil vapor probe once the valves were opened simultaneously. One field blank was collected by placing two canisters side by side and not opening one of the valves. The QA/QC results are presented in Appendix C.

4.6 Investigation-Derived Waste Management

Rubbish, personal protective equipment, and other waste material were managed and disposed of in accordance with the materials management plan (CH2M HILL 2007, 2008).

4.7 Laboratory Analysis and Validation

Air samples (crawl space, indoor, and ambient air) and soil vapor were collected in certified clean SUMMATM canisters with individual tracking numbers and calibrated flow regulators. The samples were analyzed for site-specific analytes following U.S. Environmental Protection Agency (USEPA) Method TO-15, *Determination of Volatile Organic Compounds In Air Collected In Specially Prepared Canisters and Analyzed by Gas Chromatography* [GC]/Mass Spectrometry [MS] (USEPA 1999). Analyses were performed by Columbia Analytical Services, Inc. of Simi Valley, California, which is a laboratory certified under the New York State Environmental Laboratory Approval Program certification process for the appropriate analyte and environmental matrix combinations. The measurement quality objectives for analyses using Method TO-15 GC/MS and GC/MS-selective ion monitoring analysis are described in the QAPP (CH2M HILL 2009). A site-specific analyte list and associated reporting limits are presented in Table 2-4 of the QAPP (CH2M HILL 2009) and Appendix A of the work plan (CH2MHILL 2010b).

The data were validated using applicable quality criteria in the *National Functional Guidelines* for Organic Data Review (USEPA 1994) and USEPA Region 2 data validation procedures (USEPA 2007). Appendix D contains the laboratory data package and the data quality evaluation report for the samples collected during this investigation.

This page intentionally left blank.

Data Evaluation and Analytical Results

The soil vapor, crawl space, indoor, and ambient air sample results collected from SWMU 1, the residential property, and the facility were evaluated and are presented in Table 1. The indoor air sample collected from the residential property was used to assess current exposures to volatile chemicals in air. As stated in NYSDOH guidance (2006), the detection of volatile chemicals in indoor air samples does not necessarily indicate soil vapor intrusion is occurring or actions should be taken to address exposures. The following lines of evidence were evaluated in this report to determine the potential significance of the vapor intrusion pathways in the residential property.

- Comparison of the indoor air sampling results to background levels of volatile chemicals in indoor air to 90th percentile indoor air background levels from C.1 NYSDOH 2003: Study of Volatile Organic Chemicals in Air of Fuel Oil Heated Homes (NYSDOH, Appendix C, 2006).
- Comparison of the indoor air sampling results to other types of air sample results collected during this sampling event (i.e., soil vapor, crawl space, and ambient air).

The concentration levels of the chemicals were compared to the criteria described in Section 5.1. The results are summarized in Section 5.2.

5.1 Criteria Used for Comparison

5.1.1 90th Percentile Indoor Air Background Levels (NYSDOH)

The indoor air data collected from the residential property were compared to the 90th percentile indoor air background levels provided in NYSDOH (2006) Appendix C. Note that background indoor air concentrations are not risk-based, and an exceedance only indicates if the indoor air concentration is different from background aboveground indoor air concentrations, which provides one line of evidence in determining if vapor intrusion is a potential concern and/or if additional investigations are needed to further assess the soil vapor intrusion pathway. Additionally, some of the detected chemicals do not have background indoor air concentrations listed in the NYSDOH guidance document (2006).

5.1.2 Site-Specific Soil Vapor, Crawl Space, and Ambient Air Concentrations

The indoor air data collected from the residential property were compared to the site-specific soil vapor, crawl space, and ambient air data to provide one line of evidence to determine if vapor intrusion is a potential concern and/or if additional investigations are needed to further assess the soil vapor intrusion pathway. Two soil vapor samples (SGP-9 and SGP-10) were collected at SWMU 1. One crawl space air sample (RP-CS-1) was collected at the residential property. Four ambient air samples were collected during this sampling event: one sample collected near the residential property (SGP-RP), one sample

collected in SWMU 1 (SGP-SWMU1), and two samples collected at the facility (SG-B2 and SG-B4), approximately 1,000 feet east of the residential property.

5.2 Analytical Results

One field blank was collected by placing two canisters side by side and not opening one of the valves. Low levels of acetone (1.6 micrograms per cubic meter [$\mu g/m^3$]) and toluene (0.56 $\mu g/m^3$) were detected in the field blank. The QA/QC results are presented in Appendix C.

5.2.1 Residential Property

The indoor, crawl space, and ambient air sample locations and results are presented in Table 1 and Figure 4.

In the indoor air sample (RP-IA), methyl ethyl ketone (MEK) which also is known as 2-butanone, was detected at the 90th percentile indoor air background level (NYSDOH 2006), while MIBK exceeded the background level (NYSDOH 2006). All other detected compounds were below the background levels.

In the crawl space air sample (RP-CS-1), the MEK and MIBK concentrations were lower than the concentrations in the indoor air sample. The concentrations of other detected compounds were comparable to the concentrations in the indoor air sample, except for cis-1,2-dichloroethene (cis-1,2-DCE) and trichloroethene (TCE),which were not detected in the indoor air sample. Cis-1,2-DCE and TCE were not detected in the groundwater samples collected from the crossgradient monitoring wells (MW-17 and MW-18) (Figure 3) during the October 2009 sampling event (CH2M HILL 2010d). In addition, cis-1,2-DCE was not detected in any other wells in SWMU 1 since January 2002; TCE was not detected in any other wells in SWMU 1 during the October 2009 sampling event (CH2M HILL 2010d).

In the ambient air sample (SGP-RP), the MEK and MIBK concentrations were lower than the concentrations in the indoor and crawl space air samples. The concentrations of all other detected compounds were comparable to the concentrations in the indoor air sample. Cis-1,2-DCE and TCE were not detected in the ambient air sample.

5.2.2 SWMU 1

Two soil vapor (SGP-9 and SGP-10) and one ambient air (SGP-SWMU1) samples were collected at SWMU 1 during this sampling event. The sample locations and analytical results are presented in Table 1 and Figure 4.

In the soil vapor and ambient air samples, the MEK and MIBK concentrations were lower than the concentrations in the residential property indoor air sample. The concentrations of all other compounds detected in SWMU 1 were comparable to the concentrations detected in the residential property indoor air sample. Cis-1,2-DCE and TCE were not detected in the soil vapor or ambient air samples in SWMU 1.

5.2.3 Evans Chemetics Facility

Two ambient air samples (SG-B2 and SG-B4) were collected from the facility. The sample locations and analytical results are presented in Table 1 and Figure 4.

In the ambient air samples, the MEK concentrations were lower than the concentration in the indoor air sample collected from the residential property. Elevated MIBK concentrations were detected in both ambient air samples at 140 μ g/m³ (SG-B2) and 52 μ g/m³ (SG-B4), and were higher than the indoor air (4.8 μ g/m³) and crawl space air concentrations (1.5 μ g/m³) at the residential property. Cis-1,2-DCE was not detected in either of the ambient air samples. TCE was detected in both ambient air samples at 3.3 μ g/m³ (SG-B2) and 5 μ g/m³ (SG-B4), which were lower than the concentration (49 μ g/m³) detected in the residential property crawl space air sample. TCE was not detected in the indoor air sample at the residential property. The concentrations of all other detected compounds were comparable to those detected in the residential property indoor air sample.

This page intentionally left blank.

Conclusions

6.1 Summary

- MEK and MIBK detected at or above the 90th percentile indoor air background level (NYSDOH 2006) in the residential property indoor air sample are not believed to be related to subsurface conditions because lower concentrations were detected in the residential property crawl space air sample and the soil vapor samples collected from SWMU 1.
- Higher concentrations of MIBK detected in ambient air at the site indicate the potential for MIBK to be detected at higher concentrations in ambient air at the residential property.
- Higher concentrations of cis-1,2-DCE and TCE detected in the residential property crawl space air sample are not believed to be related to subsurface conditions because these two compounds were not detected in the soil vapor samples collected from SWMU 1. In addition, it is not believed that these two compounds have impact to indoor air because they were not detected in the residential property indoor air sample. Cis-1,2-DCE and TCE were not detected in the groundwater samples collected from the crossgradient monitoring wells (MW-17 and MW-18) (Figure 3) during the October 2009 sampling event (CH2M HILL 2010d). In addition, cis-1,2-DCE was not detected in any other wells in SWMU 1 since January 2002; TCE was not detected in any other wells in SWMU 1 during the October 2009 sampling event (CH2M HILL 2010d).

6.2 Proposed Path Forward

Based on the evaluation of the soil vapor, crawl space, indoor, and ambient air sampling data obtained during the March 2010 soil vapor investigation, only two compounds (MEK and MIBK) in the residential property indoor air sample were detected at or above the 90th percentile indoor air background level (NYSDOH 2006). No further evaluation is proposed because lower MEK and MIBK concentrations were detected in the residential property crawl space air sample and the soil vapor samples collected from SWMU 1, which suggested that MEK and MIBK in the residential property indoor air do not appear to be related to vapor intrusion. Based on discussions with NYSDEC and NYSDOH on May 7, 2010, the agencies agreed that no additional vapor intrusion evaluation was needed on the residential property.

This page intentionally left blank.

References

CH2M HILL. 2004a. RCRA Facility Investigation Work Plan, Hampshire Chemical Corporation Facility, Waterloo, NY. February.

CH2M HILL. 2004b. RCRA Facility Investigation Report, Hampshire Chemical Corp, Waterloo, New York. October.

CH2M HILL. 2007. *Materials Management Plan, RCRA Corrective Action Program, Hampshire Chemical Corp, Waterloo, New York*. May 2007; revised October 2008.

CH2M HILL. 2008. RCRA Facility Investigation Report Addendum, Former Hampshire Chemical Corp, Waterloo, New York. November.

CH2M HILL. 2009. *Quality Assurance Project Plan, RCRA Facility Investigation, Former Hampshire Chemical Corp, Waterloo, New York.* September.

CH2M HILL. 2010a. Work Plan, RCRA Facility Investigation, SWMU 1 Soil Vapor Investigation, Former Hampshire Chemical Corp, Waterloo, New York. January.

CH2M HILL. 2010b. Revised Work Plan, RCRA Facility Investigation, SWMU 1 Soil Vapor Investigation, Former Hampshire Chemical Corp, Waterloo, New York. February 18.

CH2M HILL. 2010c. RCRA Facility Investigation, Visual Subsurface Investigation the Former Village of Waterloo Dump Site (SWMU 1), Former Hampshire Chemical Corp Facility, Waterloo, New York. February 11.

CH2M HILL. 2010d. *Groundwater Monitoring Results Report October 2008, April 2009 and October 2009 Sampling Events, Former Hampshire Chemical Corp, Waterloo, New York.* March.

New York State Department of Environmental Conservation (NYSDEC). 1998. *Technical and Operational Guidance Series (TOGS), Ambient Water Quality Standards and Guidance Values and Ground Water Effluent Limitations*. June 1998; modified January 1999; modified April 2000; modified June 2004.

New York State Department of Environmental Conservation (NYSDEC). 2006. Environmental Remediation Programs. NYSDEC Restricted Use Soil Cleanup Objectives (RUSCO): Protection of Public Health, Residential and Industrial (6 NYCRR Part 375-6.8(b)). December.

New York State Department of Environmental Conservation (NYSDEC). 2009. Letter from NYSDEC, RE: Hampshire Chemical SWMU 1 – Soil Vapor Sampling Requirements, Former Hampshire Chemical Corporation Facility, Waterloo, New York, November 2008. December 14.

New York State Department of Environmental Conservation (NYSDEC). 2010a. Letter from NYSDEC, RE: RCRA Facility Investigation Report Addendum, Former Hampshire Chemical Corporation Facility, Waterloo, New York, November 2008. January 7.

New York State Department of Environmental Conservation (NYSDEC). 2010b. Letter from NYSDEC, RE: RCRA Facility Investigation - SWMU 1 Soil Vapor Investigation, Former Hampshire Chemical Corporation, Waterloo, New York, January 2010. February 5.

New York State Department of Environmental Conservation (NYSDEC). 2010c. CP-51/Soil Cleanup Guidance, January 2010. October 21. New York State Department of Health (NYSDOH). 2005. Indoor Air Sampling and Analysis Guidance. February. http://www.health.state.ny.us/environmental/indoors/air/guidance.htm.

New York State Department of Health (NYSDOH). 2006. *Guidance for Soil Vapor Intrusion in the State of New York*. http://www.health.state.ny.us/environmental/investigations/soil_gas/svi_guidance/.

O'Brien & Gere Engineers, Inc. (OB&G). 2003. Sampling Visit Report, RCRA Facility Assessment, Hampshire Chemical Corporation Facility, Waterloo, New York. September.

U.S. Environmental Protection Agency (USEPA). 1994. USEPA Contract Laboratory Program, National Functional Guidelines for Organic Data Review. February.

U.S. Environmental Protection Agency (USEPA). 1999. *Compendium Method TO-15:*Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specialty-Prepared

Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS) from the

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient

Air, Second Edition.

U.S. Environmental Protection Agency (USEPA) Region 2. 2007. Data Validation Standard Operating Procedures, http://www.epa.gov/region02/qa/documents.htm.

TABLE 1
Soil Vapor, Crawl Space Air, Indoor Air, and Ambient Air Analytical Results - March 2010
SWMU 1 Soil Vapor Intrusion Investigation Repor.
Former Hampshire Chemical Corp. Facility, Waterloo, New York

Area	1			Ambier	nt Air		Residenti	ial Property		SWMU 1	
Location			Residential Property	SGP-SWMU1	SG-B2	SG-B4	Indoor Air	Crawl Space	SGP-09	SGP-10	SGP-10
Sample ID		NYSDOH	SGP-RP-032410	SGP-SWMU1-032410	WAT-SG-B2-032310	WAT-SG-B4-032310	RP-IA-032410	RP-CS-1-032410	SGP-9-032410	SGP-10-032410	SGP-DUP-032410
Sample Date		(App C)	3/24/2010	3/24/2010	3/23/2010	3/23/2010	3/24/2010	3/24/2010	3/24/2010	3/24/2010	3/24/2010
Sample Type		Indoor Air	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Duplicate
		90th Percentile Background									·
Sample Matrix	CAS#	Value ¹	Ambient	Ambient	Ambient	Ambient	Air	Air	Soil Vapor	Soil Vapor	Soil Vapor
TO-15 (ug/m³)	-	а									
1,1,1-Trichloroethane	71-55-6	3.1	0.14 U	0.15 U	0.13 U	0.14 U	0.14 U	0.16 U	0.22 U	0.12 U	0.12 U
1.1.2.2-Tetrachloroethane	79-34-5	0.25	0.14 U	0.15 U	0.13 U	0.14 U	0.14 U	0.16 U	0.22 U	0.12 U	0.12 U
1,1,2-Trichloroethane	79-00-5	0.25	0.14 U	0.15 U	0.13 U	0.14 U	0.14 U	0.16 U	0.22 U	0.12 U	0.12 U
1,1-Dichloroethane	75-34-3	0.25	0.14 U	0.15 U	0.13 U	0.14 U	0.14 U	0.16 U	0.22 U	0.12 U	0.12 U
1,1-Dichloroethene	75-34-3	0.25	0.14 U	0.15 U	0.13 U	0.14 U	0.14 U	0.16 U	0.22 U	0.12 U	0.12 U
	107-06-2	0.25	0.14 U	0.15 U	0.13 U	0.14 U			0.22 U	0.12 U	0.12 U
1,2-Dichloroethane			0.14 U	0.15 U	0.13 U	0.14 U	0.14 U 0.14 U	0.16 U 4		0.12 U	0.12 U 0.12 U
1,2-Dichloroethene, cis-	156-59-2	0.25							0.22 U		
1,2-Dichloroethene, trans-	156-60-5		0.14 U	0.15 U	0.13 U	0.14 U	0.14 U	0.16 U	0.22 U	0.12 U	0.12 U
1,2-Dichloropropane	78-87-5	0.25	0.14 U	0.15 U	0.13 U	0.14 U	0.14 U	0.16 U	0.22 U	0.12 U	0.12 U
1,3-Dichloropropene, cis-	10061-01-5	0.25	0.68 U	0.76 U	0.63 U	0.71 U	0.7 U	0.82 U	1.1 U	0.61 U	0.59 U
1,3-Dichloropropene, trans-	10061-02-6	0.25	0.68 U	0.76 U	0.63 U	0.71 U	0.7 U	0.82 U	1.1 U	0.61 U	0.59 U
Acetone	67-64-1	110	6.8 U	14	6.3 U	18	20	20 J	57	12 J	5.9 U
Acrylonitrile	107-13-1		0.68 U	0.76 U	0.33 J	0.39 J	0.7 U	0.82 U	1.1 U	0.61 U	0.59 U
Benzene	71-43-2	15	0.54	0.53	0.62	0.68	0.75	0.71	0.93	0.61	0.58
Bromodichloromethane	75-27-4		0.14 U	0.15 U	0.13 U	0.14 U	0.14 U	0.16 U	0.22 U	0.12 U	0.12 U
Bromoform	75-25-2		0.68 U	0.76 U	0.63 U	0.71 U	0.7 U	0.82 U	1.1 U	0.61 U	0.59 U
Bromomethane	74-83-9		0.14 U	0.15 U	0.13 U	0.14 U	0.14 U	0.16 U	0.22 U	0.12 U	0.12 U
Carbon Disulfide	75-15-0		6.8 U	7.6 U	6.3 U	0.83 J	7 U	8.2 U	11 U	6.1 U	5.9 U
Carbon Tetrachloride	56-23-5	0.8	0.55	0.56	0.54	0.52	0.53	0.61	0.51	0.54	0.57
Chlorobenzene	108-90-7	0.25	0.14 U	0.15 U	0.13 U	0.14 U	0.14 U	0.16 U	0.22 U	0.12 U	0.12 U
Chloroethane	75-00-3	0.25	0.14 U	0.15 U	0.13 U	0.14 U	0.14 U	0.16 U	0.22 U	0.12 U	0.12 U
Chloroform	67-66-3	1.4	0.14 U	0.15 U	0.28	0.15	0.085 J	0.31	0.22 U	0.13 J	2.4 J
Chloromethane	74-87-3	3.3	0.41	0.52	0.42	0.47	0.46	0.49	0.25 J	0.45	0.41
Dibromochloromethane	124-48-1		0.14 U	0.15 U	0.13 U	0.14 U	0.14 U	0.16 U	0.22 U	0.12 U	0.12 U
Ethylbenzene	100-41-4	7.3	0.68 U	0.76 U	0.32 J	0.35 J	0.31 J	0.33 J	1.1 U	0.61 U	0.23 J
Methyl Ethyl Ketone (2-Butanone)	78-93-3	16	2.5 J	1.5 J	6.3 U	0.99 J	16 ^a	3.2 J	12	6.1 U	5.9 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	108-10-1	2.2	0.85	0.49	140	52	4.8 ^a	1.5	1.7	0.31	0.65
Methylene chloride	75-09-2	22	0.68 U	0.76 U	0.28 J	0.29 J	0.7 U	0.45 J	0.45 J	0.61 U	0.26 J
Styrene	100-42-5	1.3	0.68 U	0.76 U	0.63 U	0.71 U	0.3 J	0.82 U	1.1 U	0.61 U	0.59 U
tert-Butyl Methyl Ether			0.14 U	0.15 U	0.13 U	0.14 U	0.14 U	0.16 U	0.22 U	0.12 U	0.12 U
Tetrachloroethene	127-18-4	2.9	0.14 U	0.19	0.084 J	0.14 U	0.29	0.72	0.22 U	0.12 U	0.52 J
Toluene	108-88-3	58	3	1.2	2.4	9.3	2.1	6.8	3.1	1.1	1.5
Trichloroethene	79-01-6	0.5	0.14 U	0.15 U	3.3	5	0.14 U	49	0.22 U	0.12 U	0.12 U
Vinyl chloride	75-01-4	0.25	0.14 U	0.15 U	0.13 U	0.14 U	0.14 U	0.16 U	0.22 U	0.12 U	0.12 U
Xylene, m,p-	108-38-3/1	12	0.63 J	0.76 U	0.78	1.1	0.82	1.1	1.1 J	0.61 U	0.72 J
Xylene, o-	95-47-6	7.6	0.26 J	0.76 U	0.41 J	0.59 J	0.38 J	0.75 J	0.67 J	0.61 U	0.32 J
Epichlorohydrin	106-89-8	_	NF	NF	NF	NF	NF	NF	NF	NF	NF
Toutedingly Identified Common de											
Tentatively Identified Compounds	1										
1,1-Difluoroethane	1			-		-	30 N	-	-	-	-
Acetaldehyde + Isobutane	1		4.1 N	26 N	5 N	-	23 N	13 N			12 N
Benzaldehyde	1	3500	5.2 N	5.6 N	9.4 N	-	-	-	10 N	7.3 N	-
Hexamethylcyclotrisiloxane	1		-	-	-	-	-	-	26 N	-	-
Isopropyl Cyanate			-	-	8.6 N	13 N	-	-	33 N	-	-

Notes:

43 Concentration > or = NYSDOH 90th Percentile Indoor Air Background Value
1.1 U RL exceeds NYSDOH 90th Percentile Indoor Air Background Value

Bold indicates detected concentratio

[&]quot;--" No Established NYSDOH (App C) 90th Percentile Indoor Air Background Value

J = The result is an estimated concentration that is less than the method reporting limit (MRL) but greater than or equal to the method detection limit (MDL).

U = Compound was analyzed for, but not detected above the laboratory detection limit.

N = Tentatively Identified Compound (TIC)

NF = Not found by laboratory library search

NYSDEC requested indoor/outdoor air reporting limit of 1 ug/m3 or less for all compounds except TCE which should be 0.25 ug/m3 or less; this is not applicable to tentatively identified compounds (TIC), acetone or epichlorohydrin. SGP-10-032410 is parent of duplicate sample SGP-DUP-032410.

 $SG-B2\ was\ collected\ west\ of\ Building\ 1\ and\ SG-B4\ \ was\ collected\ northeast\ of\ Building\ 4\ at\ the\ facility.$

¹ Source: New York State Department of Health (NYSDOH) 2006 Final Soil Vapor Intrusion Guidance, Appendix C, Section C.1. NYSDOH 2003: Study of volatile organic chemicals in air of fuel oil heated homes 90th Percentile.

Figure 2
SWMU and AOC Locations
SWMU 1 Soil Vapor Intrusion Investigation Report
Former Hampshire Chemical Corp. Facility
Waterloo, New York

Groundwater Monitoring Well Locations SWMU 1 Soil Vapor Intrusion Investigation Report Former Hampshire Chemical Corp. Facility Waterloo, New York

¹Source: New York State Department of Health (NYSDOH) 2006 Final Soil Vapor Intrusion Guidance, Appendix C, Section C.1. NYSDOH 2003: Study of volatile organic chemicals in air of fuel oil heated homes 90th percentile.

Soil Vapor, Crawl Space Air, Indoor Air, and Ambient Air Sample Locations and Results SMWU 1 Soil Vapor Intrusion Investigation Report Former Hampshire Chemical Corp. Facility Waterloo, New York

Appendix A
NYSDOH Indoor Air Quality Questionnaire and
Building Inventory

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Sampling

Preparer's Name Gaham Sharkey Lisa La FortunDate/Time Prepared 1105							
Preparer's Affiliation CH2M H.II Phone No							
Purpose of Investigation Determine proper locations for indoor Air							
1. OCCUPANT:							
Interviewed: \(\varPi/N\)							
Last Name: Nadeau First Name: Jimmi / Robb S. Address: 60 East Water Street, Waterloo, NY							
County: Serveca							
Home Phone: Office Phone:							
Number of Occupants/persons at this location 2 Age of Occupants $203 \sim 45$							
2. OWNER OR LANDLORD: (Check if same as occupant)							
Interviewed: ②/N							
Last Name: Nadeau First Name: Robb S. Address: 60 East Water Street, Waterloo, NY							
Address: 60 East Water Street, Waterloo, NY							
County: Soulca Cell 586-700 9/3/							
Home Phone: 585-750-8631 Office Phone: NA							
3. BUILDING CHARACTERISTICS							
Type of Building: (Circle appropriate response)							
Residential School Commercial/Multi-use Industrial Church Other:							

If the property is residential,	type? (Circle appropriat	te response)							
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	3-Family Colonial Mobile Home Townhouses/Condos Other:							
If multiple units, how many?	No								
If the property is commercial	, type?								
Business Type(s) NA									
Does it include residences (i.e., multi-use)? Y/N M If yes, how many? MA									
Other characteristics:									
Number of floors	Buildi	ing age 1972 (38 yrs)							
Is the building insulated?	N How a	air tight? Tight (Average) Not Tight All windows original of may have a look except for main thing room window (200							
4. AIRFLOW		except for main tring room werdow (200							
Use air current tubes or trace		rflow patterns and qualitatively describe:							
Airflow between floors									
Airflow near source									
Outdoor air infiltration									
Infiltration into air ducts									

3								
BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)								
a. Above grade construction:	wood frame	concrete	stone	brick				
b. Basement type:	full	crawlspace	slab	other				
c. Basement floor:	concrete	dirt	stone	other				
d. Basement floor:	uncovered	covered	covered with					
e. Concrete floor:	unsealed	sealed	sealed with					
f. Foundation walls:	poured	block	stone	other				
g. Foundation walls:	unsealed	sealed	sealed with					
h. The basement is: NA	wet	damp	dry	moldy				
i. The basement is: NA	finished	unfinished	partially finish	lly finished				
j. Sump present?								
k. Water in sump? Y/N	/ not applicable	>						
Basement/Lowest level depth below a	grade:	_(feet)						
Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains) No potential soil repor entry points observed in the main flow								
6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)								
Type of heating system(s) used in this building: (circle all that apply – note primary)								
Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radiati Wood stove	on Radia	ater baseboard nt floor or wood boiler	Other				
The primary type of fuel used is:								
Natural Gas Electric Wood	Fuel Oil Propane Coal	Keros Solar	ene					
Domestic hot water tank fueled by: Electric								

Outdoors

Basement

Central Air

Boiler/furnace located in:

Air conditioning:

Main Floor

Window units Open Windows)

Other

None

condition where visible, including whether ndicate the locations on the floor plan
), the condition comment be
n on the site diagram. latirely new condition
latively new condition
sionally Seldom Almost Never
om, bedroom, laundry, workshop, storage)
·
QUALITY
YN
YIN
Y/N/NA Please specify 2 Motorcycles
Y (N) When? Unknown
Y N Where?
@/N Where & Type? Garage - auto maintenas
YN How frequently? Daily
(P) N When & Type? Laundam 2 days ago

Y N When & Type?

i. Have cosmetic products been used recently?

5	0 - 1 1 1
j. Has painting/staining been done in the last 6 months? Y	Where & When? Painted 6/2009
k. Is there new carpet, drapes or other textiles?	N) Where & When? Painted 6/2009 N Where & When? Carpet put in 6/2009
I. Have air fresheners been used recently?	N When & Type? Fabrese for pets
m. Is there a kitchen exhaust fan?	N If yes, where vented? Above Store
n. Is there a bathroom exhaust fan?	N If yes, where vented? Above Store (S) N If yes, where vented? Above store chies
	N If yes, is it vented outside N N
p. Has there been a pesticide application?	When & Type?
Are there odors in the building? If yes, please describe: Smokey, possibly due	to againsts or fire wood
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or auto boiler mechanic, pesticide application, cosmetologist	
If yes, what types of solvents are used?	
If yes, are their clothes washed at work?	N
Do any of the building occupants regularly use or work at a dry-response)	cleaning service? (Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	No Unknown
Is there a radon mitigation system for the building/structure? Y Is the system active or passive? Active/Passive	Date of Installation:
9. WATER AND SEWAGE	
Water Supply: Public Water Drilled Well Driven We	ll Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Leach Field	d Dry Well Other:
10. RELOCATION INFORMATION (for oil spill residential em	ergency)
a. Provide reasons why relocation is recommended:	
b. Residents choose to: remain in home relocate to friends/	family relocate to hotel/motel
c. Responsibility for costs associated with reimbursement ex	plained? Y/N
d. Relocation package provided and explained to residents?	Y/N

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

13. PRODUCT INVENTORY FORM

	١ ٨	
Make & Model of field instrument used:	NA	

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
LAUNDRY	DOWNY FABRIC SOFTNE	3L	I FULL	NOT SHOWN		W
LADNORY	AIZME HADWARD	1.5	FULL	NOTSHOWN		N
ı	LESTOIL	4.43	3/4 FULL	ANIONIE & IDNIC SURFACTANTO PETROLEUM DISTILLATES		N
	STAVN REMOVER RESOLUE	890ml		CONTAINS NO PHOSPHATES.		N
	SPRAY WASH	12295	1/2 FULL	CONTAINS NO PHENCHATES		N
	CLASCIETINGR W/ANTONIA	950ml	1/4 FOLL	CONTAINS NO PHOSPHATES		N
	VINYLLSPACKUNG	237ml	FULL(U)	CACO, MgAlsilvak		N
	FEBREZE	890ml	1/2 Full	WATER, ALCOHOL, FRAGANCE	conv	N
1.	FOBRELLE	26	Mive	SAME		N
J	TONCH BLUE)	14	1/2 FULL	GAS (BUTANE?)		N
LITLHEN	GLASS GLOW	946	1/2 Fire	GLASS CLEANEL WITH AMARE	MA	Ν
SINK	TILEX	946	YO FULL	SAWEL CLEANER		N
	HOT SHOT	425M	14 FULL	FLYING MIELT KILLER		N
	PLEDGE	12.502	3/4 FULL	MULYISURFACE CLEANS		N
	BILLLO	South	1/2 FULL	GREASE FLEITTER		N
MIDDUE	y SOFTSLAUB	2403	1/2 FULL	BLACH CLEANSON		N
MAIN BATUROÙM	BANBASOL	1102	12 ALL	SHADIN GREAM		N
X	POULDONE DDINE	803	237 ml	glyceri, nonoxynol-9,	unifed wa	K.N
	BORROPYL ALKANIL		1/4 FULL	50%	0	N

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

13. PRODUCT INVENTORY FORM (CONT'D ON BACK OF PAGE 8)

down and Value Kitchen of Buth cleaner (4) 976ml No hypochiosite, also OH, nonionic surfactore, frequence and phosphotoric and phosphotoric and phosphotoric vaguediants not on bother Spic of Spin The Complete Home Clears (U) 32Fl No phosphotoric, chlorine, bleach or amnerous flydrogen

flydrogen

flydrogen

flydrogen perox de 3%

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

12: OUTDOOR PLOT (CONT'D BN BACK OF PAGE 7)

- Glass found along the fence on North side of property - by entrance of property, from road to garage

- Burried up to ~ 4' deep

- Motal burned under fool crear

Ambient, Indoor, Outdoor & Crawl Space Air Sampling Log (Summa Canister)

Project Information	Former	Hampshire	Chemical	Corp Fair	lity, Wathloo, A)4
Project Name					oject#: 386132.	05. CI.FI
By: LISA	LA FORTUNE/N	Jo; BRAHANSH	HONDY /NJO	ı.	Date: 03 24 1	D

Sample Location	Field ID	Canister ID	Flow Controller	Initial Canister Pressure ("Hg)	Initial Flow Controller Rate (ml/min)	Start Date & Time	End Data & Time	Final Pressure ("Hg)	Final Flow Controller Rate (ml/min)
residental Indoor Air	RP-IA-032410	AC01240	FC 00783 AVG 01321	-28	4ml min	1501	1510	-2	4 ml/min
RESIDENTIAL CRAWL SPACE	RP-C5-1-032410	AC01590	FC 00557 AV6 01012	-30		456	1505	-8	
RESIDENTIAL AMBIENT AIR	SGP-RP-032410	A C01335	FC 00111 AVG 00981	-29	V	1445	1500	-3	U

Other Observations and Comments (note any unique circumstances): UORE DETAILS IN INSDOH TABOOR AIR	
QUALITY QUESTIONINARE AND BUILDING INVENTORY. SWAGROK GAS TLEHT	
FITINGS 0800 ON CRAWL SPACE SAMPLE PROBE.	ě
	is:

Indoor Vapor Intrusion Assessment Soil Gas Sampling Field Log

Structure						
	SOIL VAPOR	INVESTIGATION				
	٥٥ . ٨٦ ٢	1100201101111				
Sample Location type:	,					
concrete slab on grade concrete footing w/crawl space	. 181	Yard or Driveway other (describe)	GRASSY SLOPE	OUTSIDE		
basement MAN GULDINGS						
Soil Gas Sampling System						
Probe type (describe):	Geoprade si	cil gas impl	art finished	or a stick in		
Probe to sample interface syste	em (describe):	Suspeck go	s light fitting	s used on		
Sail gas	probe	<u>.</u>		mma canister		
Sample collection type:	□ Syringe	10.50000				
Other info (describe other aspects)	o completed a	24 hr sampl	ing commence	d on 03 23 10		
and wa	2 wipew a	w. 0.2 eq. 10.				
Soil Gas Probe Purging & San	npling Log					
Sample location (show in diagram)	S6P+9	56P€10	DUPLI CATE	AMBIENT AIR		
Sample Identification (field ID)	fication (field ID) SGP-9-032410 SGP-1		56P-DUP-032410	SGP-SWMU1-032		
Time Installed (PROBE)	12/13/2007	12/13/2007	N/A	N/A		
Depth of installed probe (feet bgs)	5.5-6.0	7.0-7.5	DUPLICATE	AMBIENT AIR		
Leak check, vacuum (probe/sampling interface)	ok	ok	OFSGP-10	N/A		
Calculated dead volume (1 purge volume), cc	175 M	205M	NIA	NIA		
Calculated purge volume (3 purge	525 M	615 M	N/A	N/A		
volume), cc Purge rate, cc/min.	150 ml min	150ml/min	150ml/min	N/A		
Purge duration, min.	3 min 30 sec	4 min bsec	N/A	N/A		
Purge started (time of day)	1432	1415	1415	NA		
Purge vacuum, " Hg	0	0	0	N/A		
Max Helium Leak Check Reading	0.0	0.0	0.0	N/A		
Purge completed (time of day)	1436	1419	1419	N/A		
Sampling period started (time of day)	1437	1420	1420	1405		
Sampling rate, cc/min	HMI/min	4 ml/min	4 ml /min	4ml min		
Sampling vacuum, " Hg	-281-14	-2910	-30 fo	-301-8		
	1450 03/24/10	1247 03/24/10	1247 03/24/10	1445 03/24/10		
Sampling period ended (time of day)			The second secon			

Indoor Vapor Intrusion Assessment Soil Gas Sampling Field Log Sheet 2 of 2

Other observations and comments:	SEE	FIGURE	FOR .	SAMPLE	LOCATIONS	i NO
BUILDINGS, FOUND	ATIONS,	02 91DBL	DALLO	NEARBY.		

Appendix C Quality Assurance/Quality Control Results Table

APPENDIX C Quality Analysis/Quality Control Results Table - March 2010 SWMU 1 Soil Vapor Intrusion Investigation Report

Former Hampshire Chemical Corp. Facility, Waterloo, New York

Area		SW	/MU 1	-
Location		SGP-10	SGP-10	Field QC
Sample ID		SGP-10-032410	SGP-DUP-032410	WAT-SG-FB-032310
Sample Date		3/24/2010	3/24/2010	3/23/2010
Sample Type		Normal	Duplicate	Field Blank
Sample Matrix	CAS#	Vapor	Vapor	Vapor
TO-15 (ug/m3)				
1,1,1-Trichloroethane	71-55-6	0.12 U	0.12 U	0.1 U
1,1,2,2-Tetrachloroethane	79-34-5	0.12 U	0.12 U	0.1 U
1,1,2-Trichloroethane	79-00-5	0.12 U	0.12 U	0.1 U
1,1-Dichloroethane	75-34-3	0.12 U	0.12 U	0.1 U
1,1-Dichloroethene	75-35-4	0.12 U	0.12 U	0.1 U
1,2-Dichloroethane	107-06-2	0.12 U	0.12 U	0.1 U
1,2-Dichloroethene, cis-	156-59-2	0.12 U	0.12 U	0.1 U
1,2-Dichloroethene, trans-	156-60-5	0.12 U	0.12 U	0.1 U
1,2-Dichloropropane	78-87-5	0.12 U	0.12 U	0.1 U
1,3-Dichloropropene, cis-	10061-01-5	0.61 U	0.59 U	0.5 U
1,3-Dichloropropene, trans-	10061-02-6	0.61 U	0.59 U	0.5 U
Acetone	67-64-1	12 J	5.9 U	1.6 J
Acrylonitrile	107-13-1	0.61 U	0.59 U	0.5 U
Benzene	71-43-2	0.61	0.58	0.1 U
Bromodichloromethane	75-27-4	0.12 U	0.12 U	0.1 U
Bromoform	75-25-2	0.61 U	0.59 U	0.5 U
Bromomethane	74-83-9	0.12 U	0.12 U	0.1 U
Carbon Disulfide	75-15-0	6.1 U	5.9 U	5 U
Carbon Tetrachloride	56-23-5	0.54	0.57	0.1 U
Chlorobenzene	108-90-7	0.12 U	0.12 U	0.1 U
Chloroethane	75-00-3	0.12 U	0.12 U	0.1 U
Chloroform	67-66-3	0.13 J	2.4 J	0.1 U
Chloromethane	74-87-3	0.45	0.41	0.2 U
Dibromochloromethane	124-48-1	0.12 U	0.12 U	0.1 U
Ethylbenzene	100-41-4	0.61 U	0.23 J	0.5 U
Methyl Ethyl Ketone (2-Butanone)	78-93-3	6.1 U	5.9 U	5 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	108-10-1	0.31	0.65	0.5 U
Methylene chloride	75-09-2	0.61 U	0.26 J	0.5 U
Styrene	100-42-5	0.61 U	0.59 U	0.5 U
tert-Butyl Methyl Ether		0.12 U	0.12 U	0.1 U
Tetrachloroethene	127-18-4	0.12 U	0.52 J	0.1 U
Toluene	108-88-3	1.1	1.5	0.56
Trichloroethene	79-01-6	0.12 U	0.12 U	0.1 U
Vinyl chloride	75-01-4	0.12 U	0.12 U	0.1 U
Xylene, m,p-	108-38-3/1	0.61 U	0.72 J	0.5 U
Xylene, o-	95-47-6	0.61 U	0.32 J	0.5 U
Epichlorohydrin	106-89-8	NF	NF	NF
Totali di Marifia I				
Tentatively Identified Compounds			46.11	
Acetaldehyde + Isobutane		-	12 N	-
Benzaldehyde		7.3 N	-	-

Notes:

Bold indicates detected concentration.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

U = Compound was analyzed for, but not detected above the laboratory detection limit.

N = Tentatively Identified Compound

^{- =} Not identified

Data Quality Evaluation for the March 2010 Soil Vapor/Indoor Air Investigation, Former Hampshire Chemical Corp. Facility, Waterloo, New York

PREPARED BY: CH2M HILL

DATE: March 30, 2011

Introduction

The objective of this Data Quality Evaluation (DQE) report is to assess the data quality of analytical results for soil vapor and indoor air samples collected from the Former Hampshire Chemical Corp. Facility in Waterloo, New York. HCC is a wholly owned subsidiary of The Dow Chemical Company.

CH2M HILL collected samples March 23-24, 2010. Guidance for this DQE report came from the *Quality Assurance Project Plan, RCRA Facility Investigation, Former Hampshire Chemical Corp. Facility, Waterloo, New York* (CH2M HILL 2009); *U.S. Environmental Protection Agency (USEPA) Contract Laboratory National Functional Guidelines (NFG) for Organic Data Review, October* 1999 (USEPA 1999); individual method requirements; and, historical laboratory quality control limits.

This report is intended as a general data quality assessment designed to summarize data issues.

Analytical Data

This DQE report covers five soil vapor samples, five indoor air samples, four ambient air, one crawl space, two field duplicate (FD) and one field blank (FB). The samples were reported as one sample delivery group (SDG), P1001084. Two soil vapor samples (SGP-09 and SGP-10), one crawl space air sample (RP-CS-1), one indoor air sample (RP-IA-1), four ambient air samples (SGP-RP, SGP-SWMU1, SG-B2, and SG-B4), one field duplicate (SGP-DUP) and one field blank (WAT-SG-FB) are discussed in the attached April 2011 SWMU 1 Soil Vapor Intrusion Investigation Report. Other analytical results reported in SDG P1001084 correspond to the soil vapor intrusion investigation that was conducted at the facility buildings and will be discussed in a future soil vapor intrusion report.

Samples were collected and delivered to Columbia Analytical Services (CAS) in Simi Valley, California. The samples were analyzed by the method listed in Table 1.

1

TABLE 1 Analytical Parameter SWMU 1 Soil Vapor Intrusion Investigation, Former Hampshire Chemical Corp. Facility, Waterloo, New York

Parameter	Method	Laboratory
Volatile Organic Compounds (VOC)	TO-15	CAS

The SDG was assessed by reviewing the following: (1) the chain-of- custody documentation; (2) holding-time compliance; (3) initial and continuing calibration criteria; (4) method blanks and a FB; (5) laboratory control sample recoveries; (6) surrogate spike recoveries; (7) internal standard recoveries; (8) FD precision; and (9) the required quality control (QC) samples at the specified frequencies.

Data flags were assigned according to the Waterloo QAPP. Multiple flags are routinely applied to specific sample method/matrix/analyte combinations, but there will only be one final flag. A final flag is applied to the data and is the most conservative of the applied validation flags. The final flag also includes matrix and blank sample impacts.

The data flags are those listed in the Waterloo QAPP and are defined below:

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- R = The sample result was rejected due to serious deficiencies in the ability to analyze the sample and meet the QC criteria. The presence or absence of the analyte could not be verified.
- U = The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Findings

The overall summaries of the data validation are contained in the following sections and Table 2.

Holding Time

All holding time criteria were met.

Calibration

Initial and continuing calibration analyses were performed as required by the methods. All acceptance criteria were met.

Method Blanks

Method blanks were analyzed at the required frequency and were free of contamination.

Field Blanks (Ambient Blank)

One FB was collected and was free of contamination with the following exceptions:

Acetone and toluene were detected in the FB at concentrations less than the reporting limit (RL). The field blank detects suggest that the ambient air may contribute to detects in the samples. Data were not qualified for FB contaminations.

Canister Certifications

The samples were collected in Summa canisters, which are certified "clean" per project instructions prior to shipment to the project site. The laboratory was not able to certify all canisters clean to the method detection limit for all target analytes. Low-level detections in the samples associated with these canisters are possibly due to canister contamination. Detected results less than five times (10 times for acetone, methylene chloride and 2-butanone) the concentrations detected in the canister certification were flagged "U" in the associated samples.

Laboratory Control Samples

LCSs were analyzed as required and all accuracy and precision criteria were met.

Internal Standards

All acceptance criteria were met.

Surrogates

Surrogates were added to all samples and all acceptance criteria were met.

Field Duplicates

FDs were collected and analyzed as required and all precision criteria were met.

Tentatively Identified Compounds

Tentatively identified compounds were reported in the VOC analysis to determine the presence/absence of epichlorohydrin. The library search did not identify this analyte in the samples.

Quanitification

Acetone coeluted with a non-target analyte in sample WAT-SG-7a-032310, potentially causing the concentration to be biased high. The result was qualified as estimated and flagged "J" in the sample.

Chain of Custody

Required procedures were followed and were free of errors.

Overall Assessment

The goal of this assessment is to demonstrate that a sufficient number of representative samples were collected and the resulting analytical data can be used to support the decision making process. The following summary highlights the PARCC findings for the above-defined events:

Precision of the data was verified through the review of the field and laboratory data quality indicators that include FD RPDs. Precision was acceptable.

Accuracy of the data was verified through the review of the calibration data, LCS, internal standard, and surrogate recoveries. Accuracy was acceptable.

Representativeness of the data was verified through the sample's collection, storage and preservation procedures, verification of holding-time compliance, evaluation of method/FB data and canister certifications. All data were reported from analyses within the USEPA-recommended holding time. The method/FB samples were generally free of contamination. The FB sample contained low-level detections of acetone and toluene; however, the data was not qualified due to the FB contamination. Several analytes were qualified as not detected due to contamination in the canisters. Data users should consider the impact to any result that is qualified as estimated as it may contain a bias, which could affect the decision-making process.

Comparability of the data was ensured through the use of standard USEPA analytical procedures and standard units for reporting. Results obtained are comparable to industry standards in that the collection and analytical techniques followed approved, documented procedures.

Completeness is a measure of the number of valid measurements obtained in relation to the total number of measurements planned. Completeness is expressed as the percentage of valid or usable measurements compared to planned measurements. Valid data are defined as all data that are not rejected for project use. All data were considered valid. The completeness goal of 95 percent was met for all analyte/method combinations.

TABLE 2 Qualified Data

SWMU 1 Soil Vapor Intrusion Investigation, Former Hampshire Chemical Corp. Facility, Waterloo, New York

Sample ID	Method	Analyte	Final Result	Units	Final Flag	Reason
WAT-IA-6-032310	TO15	2-Butanone	UG/M3	7.1	U	CanCert <rl< td=""></rl<>
WAT-IA-6-032310	TO15	Acetone	UG/M3	24	U	CanCert <rl< td=""></rl<>
WAT-IA-7-032310	TO15	2-Butanone	UG/M3	6.7	U	CanCert <rl< td=""></rl<>
WAT-SG-7a-032310	TO15	Acetone	UG/M3	42	J	Coelution
WAT-SG-B2-032310	TO15	2-Butanone	UG/M3	6.3	U	CanCert <rl< td=""></rl<>
WAT-SG-B2-032310	TO15	Acetone	UG/M3	8.9	U	CanCert <rl< td=""></rl<>

Validation Reasons

The analyte was detected in the Summa canister at a concentration less than the reporting limit. Analyte coeluted with a nontarget analyte. CanCert<RL

Coelution

LABORATORY REPORT

April 14, 2010

Dave Newman CH2M Hill 119 Cherry Hill Road, Suite 300 Parsippany, NJ 07054

RE: DOW Waterloo, NY / 386132.05.C1.FI

Dear Dave:

Enclosed are the results of the samples submitted to our laboratory on March 26, 2010. For your reference, these analyses have been assigned our service request number P1001084.

All analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein. Your report contains 22 pages.

Columbia Analytical Services, Inc. is certified by the California Department of Health Services, NELAP Laboratory Certificate No. 02115CA; Arizona Department of Health Services, Certificate No. AZ0694; Florida Department of Health, NELAP Certification E871020; New Jersey Department of Environmental Protection, NELAP Laboratory Certification ID #CA009; New York State Department of Health, NELAP NY Lab ID No: 11221; Oregon Environmental Laboratory Accreditation Program, NELAP ID: CA20007; The American Industrial Hygiene Association, Laboratory #101661; United States Department of Defense Environmental Laboratory Accreditation Program (DoD-ELAP), Certificate No. L10-3; Pennsylvania Registration No. 68-03307; TX Commission of Environmental Quality, NELAP ID T104704413-09-TX; Minnesota Department of Health, Certificate No. 11495AA. Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact me for information corresponding to a particular certification.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

Columbia Analytical Services, Inc.

Hall Azeuly

Kate Aguilera

Project Manager

Page 1 of 92

Simi Valley CA 93065

805.526.7161

805 526 7270 fa

www.caslab.com

Client: Project:

CH2M Hill

DOW Waterloo, NY / 386132.05.C1.FI

CAS Project No: NJ Certification ID: P1001084

CA009

CASE NARRATIVE

The samples were received intact under chain of custody on March 26, 2010 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Volatile Organic Compound Analysis

The samples were analyzed for selected volatile organic compounds and tentatively identified compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for utilization of less than the complete report.

Client: CH2M Hill

Project: DOW Waterloo, NY 386132.05.C1.FI

Detailed Sample Information

Folder: P1001084

		 	1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1	 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1	[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	
FC ID	FC00674	FC00111	_FC00783 _	_FC00619_	FC00557	FC00462	FC00812	_FC00386	_FC00223 _	_FC00522	FC00354	FC00439	FC00413	_OA01357_	OA01344 -	OA00808	_OA01411		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Order#	17081	17081	17081	17081	17081	17081	17081	17081	17081	17081	17081	17081	17081	17081	17081	17081	17081	17081	17081	17081	17081
Cont ID	AC01103	AC01335	_ĀC01240	ĀC01462	- AC01590	_ĀC00642	_AC00824	_ĀC00977	ĀC01257	_AC01425	AC00515	_AC00527	_AC00623	SC01013	SC00139 -	_ SC00592	SC00982	SC00847	SC01093 -	_ ĀC00383	ĀC01677
Pi <u>2</u> Pi <u>2</u> (Hg) (psig) Pf <u>2</u>				1																	
Pf1	3.7	3.5	3.6	3.5	3.5	3.5	4.3	3.9	3.5	3.6	3.6	3.5	3.5	3.5	3.5	3.6	3.5	! ! !	! ! !	 	
Pi1 (psig)	0.4	-1.2	-1.5	-2.7	-3.5	0.7	0.4	-1.6	-14.6	-23	-0.1	-1.0	1.8.	-0.3	-0.5	-0.1	-1.3	1 1 1	1 1 1	- 	
(Hg)	-13.1	-2.5	-3.1	-5.5	-7.1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-3.3	-29.7	-4.6	-0.2	-2.1	-3.7	-0.7	1.1.	-0.2	-2.6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Container Type	6.0 L-Summa Canister Ambient 6.0 L-Summa Canister Ambient	6.0 L-Summa Canister Ambient	6.0 L-Summa Canister Ambient	P1001084-005.01 SGP-SWMU1-03241 6.0 L-Summa Canister Ambient 0.0 L-Summa Canister	6.0 L-Summa Canister Ambient	6.0 L-Summa Canister Ambient	WAT-SG-B2-032310 6.0 L-Summa Canister Ambient	6.0 L-Summa Canister Ambient	6.0 L-Summa Canister Ambient	6.0 L-Summa Canister Ambient	6.0 L-Summa Canister Ambient	6.0 L-Summa Canister Ambient		6.0 L-Summa Canister Source	WAT-SG-7a-032310 6.0 L-Summa Canister Source	WAT-SG-DUP-03231 6.0 L-Summa Canister Source	P1001084-018.01 WAT-SG-9-032310 6.0 L-Summa Canister Source	6.0 L-Summa Canister Source			6.0 L-Summa Canister Ambient
CAS Sample ID Client Sample ID Container Type	SGP-10-032410 SGP-9-032410	SGP-RP-032410	_RP-IA-032410	_\$GP-\$WMU1-03241		P1001084-007.01 SGP-DUP-032410	WAT-SG-B2-032310	WAT-SG-B4-032310	WAT-SG-FB-032310		i		i .				WAT-SG-9-032310 -	SC00847		AC00383	AC01677
CAS Sample ID	P1001084-001.01	P1001084-003.01	P1001084-004.01	P1001084-005.01	P1001084-006.01 RP-CS-1-032410	P1001084-007.01	P1001084-008.01	P1001084-009.01	P1001084-010.01	P1001084-011.01	P1001084-012.01	P1001084-013.01	P1001084-014.01	P1001084-015.01	P1001084-016.01	P1001084-017.01	P1001084-018.01	P1001084-019.01	P1001084-020.01	P1001084-021.01 AC00383	P1001084-022.01

CAS Project No.

Air - Chain of Custody Record & Analytical Service Request

2655 Park Center Drive, Suite A

Simi Valley, California 93065 Phone (805) 526-7161 ⁻ax (805) 526-7270 Columbia
Analytical Services

Requested Turnaround Time in Business Days (Surcharges) please circle 1 Day (100%) 2 Day (75%) 3 Day (50%) 4 Day (35%) 5 Day (25%) 10 Day - Standard

e.g. Actual Preservative or specific instructions WAT-IA-7-03230 WAT-1A-6-032310 Project Requirements (MRLs, QAPP) Comments CAS Contact KATE AGOILERA Analysis Method and/or Analytes 79 7 386132.05.01.FI BRAMM SAMMEN / Lisa La Fortune ACUT/67/FC80470 Flow Controller ACOM25 FC00522 Des WATERLOO, NY ACOII03 | FC00674 AC00977 | FC00386 A00023 [F0041]3 AC00824 FC00812 ACOINST | FC 00223 AC00527 | FC00439 ACO1462 | FC00619 1000000 Recosso AC 00642 | FC 00462 ACO6575 FC00357 ACO1356 FECTION ACO1240 FC 06/83 43874 Canister ID (Bar Code # - AC, SC, etc.) P.O. # / Billing Information Sampler (Print & Sign) Sample Type (Air/Tube/ Solid) AIR AIR > Project Number Project Name Time Collected 2025 1855 1450 1500 1505 1247 250 1928 2019 2023 1850 1929 Shhi 10,000 V Date Collected 3/24/10 IN CHERRY HILL RDISTE BOO F18-32158-59 1.5%. latortune Cenzm. am Company Name & Address (Reporting Information) PROCOCO IN LUNGO SON (年)・20 Laboratory ID Number 1-12 か (a) -3.2 WAT-8G-FB-032310 (19)25/16 しょうと シアスク ナルー \$ 1-5% 117 17.0 K WAT-IA- 632310 (11)-2.1 りそうじと回ろうな Email Address for Result Reporting SCP-SWAUT-OBLIE WAT-IA-5-032310 WA [-54-02-032310 WAT-IA-6-032310 WAT-1A-3-032310 WAT-SG-B4-032312 RP-CS-1-032410 Syp-032410 SYP-RP-032410 569-10-032410 SGP-9-032410 9733169300 RPIA-032410 いまったい Project Manager Client Sample ID

Report Tier Levels - please select Tier I - (Results/Default if not specified) ___

Tier II - (Results + QC)

Relinquished by: (Signature)

Relinquished by: (Signature)

Tier III - (Data Validation Package) 10% Surcharge

EDD required Yes / No / Type: Lab Spec /

Received by: (Signature) Received by: (Signature) Received by: (Signature)

Time: Time:

Date: Date: Date:

Time:

EDD Units: 2403

1 1113

がによる TimeのH i Date: Time:

Cooler / Blank

0

Temperature

Time:

Air - Chain of Custody Record & Analytical Service Request

Columbia
Analytical Services* p

2655 Park Center Drive, Suite A Simi Valley, California 93065
.es Phone (805) 526-7161
Fax (805) 526-7270

CAS Project No. Requested Turnaround Time in Business Days (Surcharges) please circle 1 Day (100%) 2 Day (75%) 3 Day (50%) 4 Day (35%) 5 Day (25%) 10 Day - Standard CAS Contact

e.g. Actual Preservative or specific instructions Project Requirements (MRLs, QAPP) Comments Analysis Method and/or Analytes ATE AGOILERA EDD Units: MOSAM3 (See PO) EDD required Yes No でし Flow Controller (Bar Code -FC #) 386132.05.C1.FI 0A01344 Scoig 3 10A01367 500592 OABOSOS S000982 |OAO1411 938714 Canister ID (Bar Code # - AC, SC, etc.) Dow Waterloo Graham Sharkey, 5000139 Tier III - (Data Validation Package) 10% Surcharge _ Tier V - (client specified) P.O. # / Billing Information Sample Type (Air/Tube/ Solid) Sampler (Print & Sign) AIR Project Number Project Name Date Time 15) -05/23/10 2104 2048 2057 119 Cherry Hill Road, Stx 300 473 316 9300 973 334 5847 Company Name & Address (Reporting Information) Email Address for Result Reporting lisa. lafatione @ Ch AM, CGM Laboratory ID Number (3)-1.6 1. 17 1256 1.2 -18%-WAT-SG-Dup-032310 10-0.4 Parsippany, NJ 07054 David Newman Report Tier Levels - please select WAT-SG-70-032310 Tier 1 - (Results/Default if not specified) WAT-3G-4-032310 WAT-SG-9-032311) CH2M HILL Tier II - (Results + QC) Project Manager Client Sample ID Phone

Cooler / Blank Temperature

Pfe: U. Tire; Date: Time:

HEALD LL

Received by: (Signature)
Received by: (Signature)
Received by: (Signature)

Time: Time:

Date: Date: Date:

Time:

Relinquished by: (Signature)
Relinquished by: (Signature)
Relinquished by: (Signature)

Time:

Columbia Analytical Services, Inc. Sample Acceptance Check Form

Client:	CH2M Hill		, Sump	e meepiime	oncen i or ii	Work order:	P1001084			phophodour lister from a service marrier constr
		oo, NY / 386132.05.C	1.FI							-
	(s) received on:			•	Date opened:	***************************************	_ by:	MZAN		
		samples received by CAS. T							on of	
compliance	or nonconformity.	Thermal preservation and pl	H will only be eval	uated either at the	request of the clie	ent and/or as required	by the method/SOF	Yes	<u>No</u>	N/A
1	Were sample	containers properly r	narked with cl	ient sample II)?			\boxtimes		
2	-	supplied by CAS?	narked with e	Tent sample in	,			\boxtimes		
3		ontainers arrive in go	od condition?					\boxtimes		
4		of-custody provided?						$\overline{\mathbf{x}}$		
5		1-of-custody properly	completed?					$\overline{\mathbf{x}}$		
6		ontainer labels and/o	_	ith custody par	pers?			$\overline{\mathbf{X}}$		
7	_	volume received adequ						$\overline{\mathbf{X}}$		
8	-	within specified holding	=	10.				\boxtimes		
9	-	emperature (thermal)	_	of cooler at rec	eint adhered	to?				×
9 .		Cooler Temperature	preservation)		Femperature		°C			hissial
10		ank received?	<u> </u>	· C Dialik	remperature				X	- 🗆
10		supplied by CAS:								
11	-	supplied by CAS. seals on outside of co	oler/Pov?	·	MONON CONTRACTOR OF THE CONTRA				X	
11	Location of		OICI/DOX:				Sealing Lid?			×
			<u> </u>				_ Seaming Liu?			\mathbf{X}
		ure and date included								X
	Were seals i			0					\boxtimes	
		seals on outside of sai	npie containe	r?			C1111-19			
	Location of		0				_Sealing Lid?			X
	_	ure and date included	?							X
	Were seals i		.•	41	1/200	71.	ć			X
12		have appropriate pre				lient specified in	nformation?			\boxtimes
		ent indication that the			reserved?					X
		ials checked for prese								X
	Does the clien	nt/method/SOP requir	e that the anal	lyst check the	sample pH an	d if necessary al	ter it?			X
13	Tubes:	Are the tubes cap	ped and intact	1?						X
		Do they contain	moisture?							X
14	Badges:	Are the badges p	roperly cappe	d and intact?						X
		Are dual bed bac	lges separated	and individua	lly capped an	d intact?				X
Lab	Sample ID	Container	Required	Received	Adjusted	VOA Headspace	Receir	t / Pres	ervation	1
		Description	pH *	pH	pH	(Presence/Absence)		`omme r		
P1001084	4-001.01	6.0 L Ambient Can								
P1001084		6.0 L Ambient Can			·					
P1001084	4-003.01	6.0 L Ambient Can						TABLE AND THE TABLE AND THE TABLE AND THE		
P1001084		6.0 L Ambient Can							****************	and control of the Parket of the Control of the Con
P1001084		6.0 L Ambient Can		*	,			Machine Southware Constitution of the		-
P1001084		6.0 L Ambient Can				<u> </u>		T CANADA TO THE TAXABLE PROPERTY OF TAXABLE PROPERTY O		
Explain a	any discrepancies	s: (include lab sample II	numbers):		WEST AND THE PARTY OF THE PARTY		urse remaniment into our limite describe	***************************************		

Columbia Analytical Services, Inc. Sample Acceptance Check Form

Client: CH2M Hill	Work order:	P1001084	
Project: DOW Waterloo, NY / 386132.05.C1.FI			:
Sample(s) received on: 03/26/10	Date opened: 03/26/10	by:	MZAMORA

Lab Sample ID	Container Description	Required pH *	Received pH	Adjusted pH	VOA Headspace (Presence/Absence)	Receipt / Preservation Comments
	1ASCI (priori	pii	pii	1 1/11	(Treasure/Ansence)	COMMISSION
P1001084-007.01	6.0 L Ambient Can			<u></u>		
P1001084-008.01	6.0 L Ambient Can					
P1001084-009.01	6.0 L Ambient Can					
P1001084-010.01	6.0 L Ambient Can					
P1001084-011.01	6.0 L Ambient Can					
P1001084-012.01	6.0 L Ambient Can					
P1001084-013.01	6.0 L Ambient Can					
P1001084-014.01	6.0 L Ambient Can					
P1001084-015.01	6.0 L Source Can					
P1001084-016.01	6.0 L Source Can		_			
P1001084-017.01	6.0 L Source Can		-			
P1001084-018.01	6.0 L Source Can					
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· · · · · · · · · · · · · · · · · · ·		
	:					PRACTICAL MANAGEMENT (Control of the Association of
				·		
				· · · · · · · · · · · · · · · · · · ·		
				·		
				1		
			• · · · · · · · · · · · · · · · · · · ·			
		-				
					A A DIRECTOR CONTRACTOR CONTRACTO	
			A Verbination of the minimum of the second o			

Explain any discrepancies: (include lab sample ID numbers):	-

RESULTS OF ANALYSIS

Page 1 of 3

Client:

CH2M Hill

Client Sample ID: SGP-10-032410

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-001

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/24/10 Date Received: 3/26/10

Instrument ID: Analyst:

Chris Cornett

Date Analyzed: 3/31/10

Sampling Media:

Test Notes:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Container ID:

AC01103

Initial Pressure (psig):

0.4

Final Pressure (psig):

3.7

Canister Dilution Factor: 1.22

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		$\mu g/m^3$	μg/m³	μg/m³	ppbV	ppbV	ppbV	Qualifier
74-87-3	Chloromethane	0.45	0.24	0.13	0.22	0.12	0.065	
75-01-4	Vinyl Chloride	0.12	0.12	0.079	0.048	0.048	0.031	\mathbf{U}
74-83-9	Bromomethane	0.12	0.12	0.089	0.031	0.031	0.023	\mathbf{U}
75-00-3	Chloroethane	0.12	0.12	0.098	0.046	0.046	0.037	\mathbf{U}
67-64-1	Acetone	12	6.1	1.6	5.2	2.6	0.67	
107-13-1	Acrylonitrile	0.61	0.61	0.27	0.28	0.28	0.12	U
75-35-4	1,1-Dichloroethene	0.12	0.12	0.092	0.031	0.031	0.023	\mathbf{U}
75-09-2	Methylene Chloride	0.61	0.61	0.23	0.18	0.18	0.067	U
75-15-0	Carbon Disulfide	6.1	6.1	0.29	2.0	2.0	0.094	\mathbf{U}
156-60-5	trans-1,2-Dichloroethene	0.12	0.12	0.072	0.031	0.031	0.018	\mathbf{U}
75-34-3	1,1-Dichloroethane	0.12	0.12	0.076	0.030	0.030	0.019	U
1634-04-4	Methyl tert-Butyl Ether	0.12	0.12	0.085	0.034	0.034	0.024	\mathbf{U}
78-93-3	2-Butanone (MEK)	0.64	6.1	0.27	0.22	2.1	0.091	J
156-59-2	cis-1,2-Dichloroethene	0.12	0.12	0.070	0.031	0.031	0.018	\mathbf{U}
67-66-3	Chloroform	0.13	0.12	0.072	0.026	0.025	0.015	
107-06-2	1,2-Dichloroethane	0.12	0.12	0.076	0.030	0.030	0.019	U
71-55-6	1,1,1-Trichloroethane	0.12	0.12	0.090	0.022	0.022	0.017	U
71-43-2	Benzene	0.61	0.12	0.084	0.19	0.038	0.026	

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 2 of 3

Client:

CH2M Hill

Client Sample ID: SGP-10-032410

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

Date Collected: 3/24/10

CAS Sample ID: P1001084-001

Test Code: Instrument ID: EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Received: 3/26/10 Date Analyzed: 3/31/10

Analyst: Sampling Media: Chris Cornett 6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC01103

Initial Pressure (psig):

0.4

Final Pressure (psig):

3.7

Canister Dilution Factor: 1.22

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		μg/m³	$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	ppbV	Qualifier
56-23-5	Carbon Tetrachloride	0.54	0.12	0.092	0.085	0.019	0.015	
78-87-5	1,2-Dichloropropane	0.12	0.12	0.089	0.026	0.026	0.019	\mathbf{U}
75-27-4	Bromodichloromethane	0.12	0.12	0.088	0.018	0.018	0.013	U
79-01-6	Trichloroethene	0.12	0.12	0.076	0.023	0.023	0.014	\mathbf{U}
10061-01-5	cis-1,3-Dichloropropene	0.61	0.61	0.20	0.13	0.13	0.043	\mathbf{U}
108-10-1	4-Methyl-2-pentanone	0.31	0.61	0.23	0.075	0.15	0.057	J
10061-02-6	trans-1,3-Dichloropropene	0.61	0.61	0.24	0.13	0.13	0.054	\mathbf{U}
79-00-5	1,1,2-Trichloroethane	0.12	0.12	0.067	0.022	0.022	0.012	\mathbf{U}
108-88-3	Toluene	1.1	0.61	0.23	0.30	0.16	0.062	
124-48-1	Dibromochloromethane	0.12	0.12	0.083	0.014	0.014	0.0097	U
127-18-4	Tetrachloroethene	0.12	0.12	0.072	0.018	0.018	0.011	U
108-90-7	Chlorobenzene	0.12	0.12	0.061	0.027	0.027	0.013	U
100-41-4	Ethylbenzene	0.61	0.61	0.23	0.14	0.14	0.053	\mathbf{U}
179601-23-1	m,p-Xylenes	0.61	0.61	0.44	0.14	0.14	0.10	U
75-25-2	Bromoform	0.61	0.61	0.26	0.059	0.059	0.025	\mathbf{U}
100-42-5	Styrene	0.61	0.61	0.23	0.14	0.14	0.054	U
95-47-6	o-Xylene	0.61	0.61	0.23	0.14	0.14	0.053	\mathbf{U}
79-34-5	1,1,2,2-Tetrachloroethane	0.12	0.12	0.070	0.018	0.018	0.010	U

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 3 of 3

Tentatively Identified Compounds

Client:

CH2M Hill

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

Client Sample ID: SGP-10-032410

CAS Project ID: P1001084

CAS Sample ID: P1001084-001

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/24/10

Date Received: 3/26/10

Instrument ID: Analyst:

Chris Cornett

Date Analyzed: 3/31/10

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

T

Container ID:

AC01103

Initial Pressure (psig):

0.4

Final Pressure (psig):

3.7

Canister Dilution Factor: 1.22

GC/MS	Compound Identification	Concentration	Data
Retention Time		$\mu \mathrm{g}/\mathrm{m}^3$	Qualifier
5.41	Isobutane	3.5	•
5.97	n-Butane	4.1	
23.82	Benzaldehyde	7.3	
	Epichlorohydrin	NF	

T = Analyte is a tentatively identified compound, result is estimated.

NF = Compound was searched for, but not found.

RESULTS OF ANALYSIS

Page 1 of 3

Client:

CH2M Hill

Client Sample ID: SGP-9-032410

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-002

Test Code:

EPA TO-15

Date Collected: 3/24/10

Instrument ID: Analyst:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Analyzed: 3/31/10

Date Received: 3/26/10

Sampling Media:

Chris Cornett

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC01467

Initial Pressure (psig):

-6.4

Final Pressure (psig):

3.5

Canister Dilution Factor: 2.19

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
	·	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	ppbV:	Qualifier
74-87-3	Chloromethane	0.25	0.44	0.24	0.12	0.21	0.12	J
75-01-4	Vinyl Chloride	0.22	0.22	0.14	0.086	0.086	0.056	\mathbf{U}
74-83-9	Bromomethane	0.22	0.22	0.16	0.056	0.056	0.041	\mathbf{U}
75-00-3	Chloroethane	0.22	0.22	0.18	0.083	0.083	0.066	\mathbf{U}
67-64-1	Acetone	57	11	2.8	24	4.6	1.2	
107-13-1	Acrylonitrile	1.1	1.1	0.48	0.50	0.50	0.22	U
75-35-4	1,1-Dichloroethene	0.22	0.22	0.16	0.055	0.055	0.041	\mathbf{U}
75-09-2	Methylene Chloride	0.45	1.1	0.42	0.13	0.32	0.12	I = J
75-15-0	Carbon Disulfide	11	11	0.53	3.5	3.5	0.17	\mathbf{U}
156-60-5	trans-1,2-Dichloroethene	0.22	0.22	0.13	0.055	0.055	0.033	\mathbf{U}
75-34-3	1,1-Dichloroethane	0.22	0.22	0.14	0.054	0.054	0.034	U
1634-04-4	Methyl tert-Butyl Ether	0.22	0.22	0.15	0.061	0.061	0.043	\mathbf{U}
78-93-3	2-Butanone (MEK)	12	11	0.48	4.2	3.7	0.16	
156-59-2	cis-1,2-Dichloroethene	0.22	0.22	0.12	0.055	0.055	0.031	U
67-66-3	Chloroform	0.22	0.22	0.13	0.045	0.045	0.026	U
107-06-2	1,2-Dichloroethane	0.22	0.22	0.14	0.054	0.054	0.034	U
71-55-6	1,1,1-Trichloroethane	0.22	0.22	0.16	0.040	0.040	0.030	\mathbf{U}
71-43-2	Benzene	0.93	0.22	0.15	0.29	0.069	0.047	

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 2 of 3

Client:

CH2M Hill

Client Sample ID: SGP-9-032410

CAS Project ID: P1001084

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Sample ID: P1001084-002

Test Code:

EPA TO-15

Date Collected: 3/24/10

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Received: 3/26/10 Date Analyzed: 3/31/10

Analyst: Sampling Media: Chris Cornett

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC01467

Initial Pressure (psig):

-6.4

Final Pressure (psig):

3.5

Canister Dilution Factor: 2.19

CAS#	Compound	Result µg/m³	MRL μg/m³	MDL $\mu g/m^3$	Result ppbV	MRL ppbV	MDL ppbV	Data Qualifier
56-23-5	Carbon Tetrachloride	μg/m 0.51	0.22	0.16	0.081	0.035	0.026	Quanner
78-87-5	1,2-Dichloropropane	0.22	0.22	0.16	0.047	0.033	0.025	U
75-27-4	Bromodichloromethane	0.22	0.22	0.16	0.033	0.033	0.024	U
79-01-6	Trichloroethene	0.22	0.22	0.14	0.033	0.033	0.024	U
10061-01-5	cis-1,3-Dichloropropene	1.1	1.1	0.35	0.24	0.24	0.077	U
108-10-1	4-Methyl-2-pentanone	1.7	1.1	0.42	0.41	0.27	0.10	
10061-02-6	trans-1,3-Dichloropropene	1.1	1.1	0.44	0.24	0.24	0.097	\mathbf{U}
79-00-5	1,1,2-Trichloroethane	0.22	0.22	0.12	0.040	0.040	0.022	U
108-88-3	Toluene	3.1	1.1	0.42	0.83	0.29	0.11	
124-48-1	Dibromochloromethane	0.22	0.22	0.15	0.026	0.026	0.017	U
127-18-4	Tetrachloroethene	0.22	0.22	0.13	0.032	0.032	0.019	U
108-90-7	Chlorobenzene	0.22	0.22	0.11	0.048	0.048	0.024	\mathbf{U}_{\perp}
100-41-4	Ethylbenzene	1.1	1.1	0.42	0.25	0.25	0.096	U
179601-23-1	m,p-Xylenes	1.1	1.1	0.79	0.25	0.25	0.18	J
75-25-2	Bromoform	1.1	1.1	0.46	0.11	0.11	0.044	U .
100-42-5	Styrene	1.1	1.1	0.42	0.26	0.26	0.098	U
95-47-6	o-Xylene	0.67	1.1	0.42	0.15	0.25	0.096	J
79-34-5	1,1,2,2-Tetrachloroethane	0.22	0.22	0.12	0.032	0.032	0.018	U

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 3 of 3

Client:

CH2M Hill

Client Sample ID: SGP-9-032410

6.0 L Summa Canister

CAS Project ID: P1001084

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Sample ID: P1001084-002

Tentatively Identified Compounds

Test Code:

EPA TO-15

Date Collected: 3/24/10

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Received: 3/26/10

Analyst: Sampling Media: Chris Cornett

Date Analyzed: 3/31/10

1.00 Liter(s)

Test Notes:

T

Container ID:

AC01467

Initial Pressure (psig):

-6.4

Final Pressure (psig):

3.5

Volume(s) Analyzed:

Canister Dilution Factor: 2.19

GC/MS	Compound Identification	Concentration	Data
Retention Time		$\mu \mathrm{g}/\mathrm{m}^3$	Qualifier
8.72	Unidentified Compound	55	
11.72	Isopropyl Cyanate	33	
20.77	Hexamethylcyclotrisiloxane	26	
23.82	Benzaldehyde	10	· · · · · · · · · · · · · · · · · · ·
26.27	n-Nonanal	10	
	Epichlorohydrin	NF	

T = Analyte is a tentatively identified compound, result is estimated.

NF = Compound was searched for, but not found.

RESULTS OF ANALYSIS

Page 1 of 3

Client:

CH2M Hill

Client Sample ID: SGP-RP-032410

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-003

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

6.0 L Summa Canister

Date Collected: 3/24/10

Date Received: 3/26/10

Instrument ID: Analyst:

Chris Cornett

Date Analyzed: 3/31/10 Volume(s) Analyzed:

1.00 Liter(s)

Sampling Media:

Test Notes:

AC01335

Container ID:

Initial Pressure (psig):

-1.2

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.35

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		$\mu g/m^3$	μg/m³	$\mu g/m^3$	ppbV	ppbV	ppbV	Qualifier
74-87-3	Chloromethane	0.41	0.27	0.15	0.20	0.13	0.072	
75-01-4	Vinyl Chloride	0.14	0.14	0.088	0.053	0.053	0.034	\mathbf{U}
74-83-9	Bromomethane	0.14	0.14	0.099	0.035	0.035	0.025	\mathbf{U}
75-00-3	Chloroethane	0.14	0.14	0.11	0.051	0.051	0.041	U
67-64-1	Acetone	12	6.8	1.8	5.1	2.8	0.74	
107-13-1	Acrylonitrile	0.68	0.68	0.30	0.31	0.31	0.14	U
75-35-4	1,1-Dichloroethene	0.14	0.14	0.10	0.034	0.034	0.026	\mathbf{U}
75-09-2	Methylene Chloride	0.68	0.68	0.26	0.19	0.19	0.074	\mathbf{U}
75-15-0	Carbon Disulfide	6.8	6.8	0.32	2.2	2.2	0.10	\mathbf{U}
156-60-5	trans-1,2-Dichloroethene	0.14	0.14	0.080	0.034	0.034	0.020-	\mathbf{U}
75-34-3	1,1-Dichloroethane	0.14	0.14	0.084	0.033	0.033	0.021	U
1634-04-4	Methyl tert-Butyl Ether	0.14	0.14	0.095	0.037	0.037	0.026	\mathbf{U}
78-93-3	2-Butanone (MEK)	2.5	6.8	0.30	0.84	2.3	0.10	J
156-59-2	cis-1,2-Dichloroethene	0.14	0.14	0.077	0.034	0.034	0.019	\mathbf{U}
67-66-3	Chloroform	0.14	0.14	0.080	0.028	0.028	0.016	U
107-06-2	1,2-Dichloroethane	0.14	0.14	0.084	0.033	0.033	0.021	U
71-55-6	1,1,1-Trichloroethane	0.14	0.14	0.10	0.025	0.025	0.018	U
71-43-2	Benzene	0.54	0.14	0.093	0.17	0.042	0.029	

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 2 of 3

Client:

CH2M Hill

Client Sample ID: SGP-RP-032410

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-003

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/24/10 Date Received: 3/26/10

Instrument ID: Analyst:

Date Analyzed: 3/31/10

Sampling Media:

Chris Cornett

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC01335

Initial Pressure (psig):

-1.2

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.35

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		μg/m³	μg/m³	μg/m³	ppbV	ppbV	ppbV	Qualifier
56-23-5	Carbon Tetrachloride	0.55	0.14	0.10	0.088	0.021	0.016	
78-87-5	1,2-Dichloropropane	0.14	0.14	0.099	0.029	0.029	0.021	\mathbf{U}
75-27-4	Bromodichloromethane	0.14	0.14	0.097	0.020	0.020	0.015	U
79-01-6	Trichloroethene	0.14	0.14	0.084	0.025	0.025	0.016	U
10061-01-5	cis-1,3-Dichloropropene	0.68	0.68	0.22	0.15	0.15	0.048	U
108-10-1	4-Methyl-2-pentanone	0.85	0.68	0.26	0.21	0.16	0.063	
10061-02-6	trans-1,3-Dichloropropene	0.68	0.68	0.27	0.15	0.15	0.059	U
79-00-5	1,1,2-Trichloroethane	0.14	0.14	0.074	0.025	0.025	0.014	\mathbf{U}
108-88-3	Toluene	3.0	0.68	0.26	0.78	0.18	0.068	
124-48-1	Dibromochloromethane	0.14	0.14	0.092	0.016	0.016	0.011	\mathbf{U}
127-18-4	Tetrachloroethene	0.14	0.14	0.080	0.020	0.020	0.012	U
108-90-7	Chlorobenzene	0.14	0.14	0.068	0.029	0.029	0.015	\mathbf{U}
100-41-4	Ethylbenzene	0.68	0.68	0.26	0.16	0.16	0.059	\mathbf{U}
179601-23-1	m,p-Xylenes	0.63	0.68	0.49	0.15	0.16	0.11	J
75-25-2	Bromoform	0.68	0.68	0.28	0.065	0.065	0.027	U
100-42-5	Styrene	0.68	0.68	0.26	0.16	0.16	0.060	U
95-47-6	o-Xylene	0.26	0.68	0.26	0.061	0.16	0.059	J
79-34-5	1,1,2,2-Tetrachloroethane	0.14	0.14	0.077	0.020	0.020	0.011	\mathbf{U}

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 3 of 3

Client:

CH2M Hill

Client Sample ID: SGP-RP-032410

CAS Project ID: P1001084

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Sample ID: P1001084-003

Tentatively Identified Compounds

Test Code:

EPA TO-15

Date Collected: 3/24/10

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Received: 3/26/10

Analyst:

Chris Cornett

Date Analyzed: 3/31/10

Volume(s) Analyzed:

1.00 Liter(s)

Sampling Media: Test Notes:

6.0 L Summa Canister T

Container ID:

AC01335

Initial Pressure (psig):

-1.2

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.35

GC/MS	Compound Identification	Concentration	Data	
Retention Time		$\mu \mathrm{g}/\mathrm{m}^3$	Qualifier	
5.41	Acetaldehyde + Isobutane	4.1	-	
23.82	Benzaldehyde	5.2		
	Epichlorohydrin	NF		

T = Analyte is a tentatively identified compound, result is estimated.

NF = Compound was searched for, but not found.

RESULTS OF ANALYSIS

Page 1 of 3

Client:

CH2M Hill

Client Sample ID: RP-IA-032410

CAS Project ID: P1001084

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Sample ID: P1001084-004

Test Code:

EPA TO-15

Date Collected: 3/24/10

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Received: 3/26/10

Analyst: Sampling Media: Chris Cornett

6.0 L Summa Canister

Date Analyzed: 3/31/10 Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC01240

Initial Pressure (psig):

-1.5

Final Pressure (psig):

3.6

Canister Dilution Factor: 1.39

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
74.07.2		μg/m³	$\mu g/m^3$	$\frac{\mu g/m^3}{0.15}$	ppbV	ppbV	ppbV	Qualifier
74-87-3	Chloromethane	0.46	0.28	0.15	0.22	0.13	0.074	
75-01-4	Vinyl Chloride	0.14	0.14	0.090	0.054	0.054	0.035	U
74-83-9	Bromomethane	0.14	0.14	0.10	0.036	0.036	0.026	\mathbf{U}
75-00-3	Chloroethane	0.14	0.14	0.11	0.053	0.053	0.042	Ü
67-64-1	Acetone	20	7.0	1.8	8.6	2.9	0.76	
107-13-1	Acrylonitrile	0.70	0.70	0.31	0.32	0.32	0.14	U
75-35-4	1,1-Dichloroethene	0.14	0.14	0.10	0.035	0.035	0.026	U
75-09-2	Methylene Chloride	0.70	0.70°	0.26	0.20	0.20	0.076	\mathbf{U}
75-15-0	Carbon Disulfide	7.0	7.0	0.33	2.2	2.2	0.11	\mathbf{U}
156-60-5	trans-1,2-Dichloroethene	0.14	0.14	0.082	0.035	0.035	0.021	U
75-34-3	1,1-Dichloroethane	0.14	0.14	0.086	0.034	0.034	0.021	U
1634-04-4	Methyl tert-Butyl Ether	0.14	0.14	0.097	0.039	0.039	0.027	\mathbf{U}
78-93-3	2-Butanone (MEK)	16	7.0	0.31	5.3	2.4	0.10	
156-59-2	cis-1,2-Dichloroethene	0.14	0.14	0.079	0.035	0.035	0.020	\mathbf{U}
67-66-3	Chloroform	0.085	0.14	0.082	0.017	0.028	0.017	J
107-06-2	1,2-Dichloroethane	0.14	0.14	0.086	0.034	0.034	0.021	U
71-55-6	1,1,1-Trichloroethane	0.14	0.14	0.10	0.025	0.025	0.019	U
71-43-2	Benzene	0.75	0.14	0.096	0.23	0.044	0.030	

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 2 of 3

Client:

CH2M Hill

Client Sample ID: RP-IA-032410

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-004

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

6.0 L Summa Canister

Date Collected: 3/24/10

Date Received: 3/26/10

Instrument ID: Analyst:

Chris Cornett

Date Analyzed: 3/31/10 Volume(s) Analyzed:

1.00 Liter(s)

Sampling Media: Test Notes:

Container ID:

AC01240

Initial Pressure (psig):

-1.5

Final Pressure (psig):

3.6

CAS#	Compound	Result μg/m³	MRL μg/m³	MDL μg/m³	Result ppbV	MRL ppbV	MDL ppbV	Data Qualifier
56-23-5	Carbon Tetrachloride	0.53	0.14	0.10	0.084	0.022	0.017	
78-87-5	1,2-Dichloropropane	0.14	0.14	0.10	0.030	0.030	0.022	\mathbf{U}
75-27-4	Bromodichloromethane	0.14	0.14	0.10	0.021	0.021	0.015	U
79-01-6	Trichloroethene	0.14	0.14	0.086	0.026	0.026	0.016	\mathbf{U}
10061-01-5	cis-1,3-Dichloropropene	0.70	0.70	0.22	0.15	0.15	0.049	\mathbf{U}^{-}
108-10-1	4-Methyl-2-pentanone	4.8	0.70	0.26	1.2	0.17	0.064	
10061-02-6	trans-1,3-Dichloropropene	0.70	0.70	0.28	0.15	0.15	0.061	\mathbf{U}
79-00-5	1,1,2-Trichloroethane	0.14	0.14	0.076	0.025	0.025	0.014	\mathbf{U}
108-88-3	Toluene	2.1	0.70	0.26	0.56	0.18	0.070	
124-48-1	Dibromochloromethane	0.14	0.14	0.095	0.016	0.016	0.011	U
127-18-4	Tetrachloroethene	0.29	0.14	0.082	0.043	0.021	0.012	
108-90-7	Chlorobenzene	0.14	0.14	0.070	0.030	0.030	0.015	\mathbf{U}
100-41-4	Ethylbenzene	0.31	0.70	0.26	0.071	0.16	0.061	J
179601-23-1	m,p-Xylenes	0.82	0.70	0.50	0.19	0.16	0.12	
75-25-2	Bromoform	0.70	0.70	0.29	0.067	0.067	0.028	\mathbf{U}
100-42-5	Styrene	0.30	0.70	0.26	0.071	0.16	0.062	J
95-47-6	o-Xylene	0.38	0.70	0.26	0.088	0.16	0.061	J
79-34-5	1,1,2,2-Tetrachloroethane	0.14	0.14	0.079	0.020	0.020	0.012	\mathbf{U}

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

RESULTS OF ANALYSIS

Page 3 of 3

Tentatively Identified Compounds

Client:

CH2M Hill

Client Sample ID: RP-IA-032410

CAS Project ID: P1001084

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Sample ID: P1001084-004

EPA TO-15

Date Collected: 3/24/10

Instrument ID:

Test Code:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Received: 3/26/10

Analyst:

Chris Cornett

Date Analyzed: 3/31/10

Volume(s) Analyzed:

1.00 Liter(s)

Sampling Media: Test Notes:

6.0 L Summa Canister

Container ID:

AC01240

Initial Pressure (psig):

-1.5

Final Pressure (psig):

3.6

GC/MS	Compound Identification		Concer	ıtrati	on		Data
Retention Time			μg	/m³		 Q	ualifier
4.52	1,1-Difluoroethane			30			
5.38	Acetaldehyde + Isobutane			23			
5.96	n-Butane			3.8			
8.76	Isoprene		3	5.4			
14.74	1-Butanol			13			
	Epichlorohydrin			N	F _		

T = Analyte is a tentatively identified compound, result is estimated.

NF = Compound was searched for, but not found.

RESULTS OF ANALYSIS

Page 1 of 3

Client:

CH2M Hill

Client Sample ID: SGP-SWMU1-032410

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-005

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/24/10 Date Received: 3/26/10

Instrument ID: Analyst:

Chris Cornett

Date Analyzed: 3/31/10

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC01462

Initial Pressure (psig):

-2.7

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.52

CAS#	Compound	Result μg/m³	MRL μg/m³	MDL $\mu g/m^3$	Result ppbV	MRL ppbV	MDL ppbV	Data Qualifier
74-87-3	Chloromethane	$\frac{\mu_{\rm g/M}}{0.52}$	$\frac{\mu g/m}{0.30}$	$\frac{\mu g/m}{0.17}$	0.25	0.15	0.081	Quanner
75-01-4	Vinyl Chloride	0.15	0.15	0.099	0.059	0.059	0.039	\mathbf{u}
74-83-9	Bromomethane	0.15	0.15	0.11	0.039	0.039	0.029	U
75-00-3	Chloroethane	0.15	0.15	0.12	0.058	0.058	0.046	U
67-64-1	Acetone	14	7.6	2.0	5.8	3.2	0.83	
107-13-1	Acrylonitrile	0.76	0.76	0.33	0.35	0.35	0.15	U
75-35-4	1,1-Dichloroethene	0.15	0.15	0.11	0.038	0.038	0.029	\mathbf{U}
75-09-2	Methylene Chloride	0.76	0.76	, 0.29	0.22	0.22	0.083	\mathbf{U}_{-}
75-15-0	Carbon Disulfide	7.6	7.6	0.36	2.4	2.4	0.12	U
156-60-5	trans-1,2-Dichloroethene	0.15	0.15	0.090	0.038	0.038	0.023	\mathbf{U}
75-34-3	1,1-Dichloroethane	0.15	0.15	0.094	0.038	0.038	0.023	U
1634-04-4	Methyl tert-Butyl Ether	0.15	0.15	0.11	0.042	0.042	0.030	U
78-93-3	2-Butanone (MEK)	1.5	7.6	0.33	0.51	2.6	0.11	J
156-59-2	cis-1,2-Dichloroethene	0.15	0.15	0.087	0.038	0.038	0.022	\mathbf{U}
67-66-3	Chloroform	0.15	0.15	0.090	0.031	0.031	0.018	\mathbf{U}
107-06-2	1,2-Dichloroethane	0.15	0.15	0.094	0.038	0.038	0.023	U
71-55-6	1,1,1-Trichloroethane	0.15	0.15	0.11	0.028	0.028	0.021	\mathbf{U}
71-43-2	Benzene	0.53	0.15	0.10	0.17	0.048	0.033	

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

RESULTS OF ANALYSIS

Page 2 of 3

Client:

CH2M Hill

Client Sample ID: SGP-SWMU1-032410

6.0 L Summa Canister

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-005

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/24/10 Date Received: 3/26/10

Instrument ID: Analyst:

Date Analyzed: 3/31/10

Sampling Media:

Chris Cornett

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC01462

Initial Pressure (psig):

-2.7

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.52

CAS#	Compound	Result μg/m³	MRL μg/m³	$MDL \ \mu g/m^3$	Result ppbV	MRL ppbV	MDL ppbV	Data Qualifier
56-23-5	Carbon Tetrachloride	0.56	0.15	0.11	0.089	0.024	0.018	
78-87-5	1,2-Dichloropropane	0.15	0.15	0.11	0.033	0.033	0.024	U.
75-27-4	Bromodichloromethane	0.15	0.15	0.11	0.023	0.023	0.016	U
79-01-6	Trichloroethene	0.15	0.15	0.094	0.028	0.028	0.018	\mathbf{U}
10061-01-5	cis-1,3-Dichloropropene	0.76	0.76	0.24	0.17	0.17	0.054	\mathbf{U}
108-10-1	4-Methyl-2-pentanone	0.49	0.76	0.29	0.12	0.19	0.070	J
10061-02-6	trans-1,3-Dichloropropene	0.76	0.76	0.30	0.17	0.17	0.067	U
79-00-5	1,1,2-Trichloroethane	0.15	0.15	0.084	0.028	0.028	0.015	\mathbf{U}
108-88-3	Toluene	1.2	0.76	0.29	0.32	0.20	0.077	
124-48-1	Dibromochloromethane	0.15	0.15	0.10	0.018	0.018	0.012	\mathbf{U}
127-18-4	Tetrachloroethene	0.19	0.15	0.090	0.028	0.022	0.013	
108-90-7	Chlorobenzene	0.15	0.15	0.076	0.033	0.033	0.017	${f U}$
100-41-4	Ethylbenzene	0.76	0.76	0.29	0.18	0.18	0.067	\mathbf{U}
179601-23-1	m,p-Xylenes	0.76	0.76	0.55	0.18	0.18	0.13	\mathbf{U}
75-25-2	Bromoform	0.76	0.76	0.32	0.074	0.074	0.031	U
100-42-5	Styrene	0.76	0.76	0.29	0.18	0.18	0.068	U
95-47-6	o-Xylene	0.76	0.76	0.29	0.18	0.18	0.067	U
79-34-5	1,1,2,2-Tetrachloroethane	0.15	0.15	0.087	0.022	0.022	0.013	U

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 3 of 3

Client:

CH2M Hill

Client Sample ID: SGP-SWMU1-032410

6.0 L Summa Canister

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-005

Tentatively Identified Compounds

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/24/10

Date Received: 3/26/10

Instrument ID: Analyst:

Test Code:

Date Analyzed: 3/31/10

Sampling Media:

Chris Cornett

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

T

Container ID:

AC01462

Initial Pressure (psig):

-2.7

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.52

GC/MS	Compound Identification	Concentration	Data
Retention Time		$\mu \mathrm{g}/\mathrm{m}^3$	Qualifier
5.41	Acetaldehyde	26	
23.82	Benzaldehyde	5.6	
	Epichlorohydrin	NF	

T = Analyte is a tentatively identified compound, result is estimated.

NF = Compound was searched for, but not found.

RESULTS OF ANALYSIS

Page 1 of 3

Client:

CH2M Hill

Client Sample ID: RP-CS-1-032410

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-006

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/24/10

Date Received: 3/26/10

Instrument ID: Analyst:

Chris Cornett

Date Analyzed: 3/31/10

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC01590

Initial Pressure (psig):

-3.5

Final Pressure (psig):

3.5

CAS#	Compound	Result μg/m³	MRL μg/m³	MDL $\mu g/m^3$	Result ppbV	MRL ppbV	MDL ppbV	Data Qualifier
74-87-3	Chloromethane	0.49	0.33	0.18	0.24	0.16	0.087	
75-01-4	Vinyl Chloride	0.16	0.16	0.11	0.064	0.064	0.041	U
74-83-9	Bromomethane	0.16	0.16	0.12	0.042	0.042	0.031	U
75-00-3	Chloroethane	0.16	0.16	0.13	0.062	0.062	0.049	\mathbf{U}
67-64-1	Acetone	20	8.2	2.1	8.5	3.4	0.89	M1
107-13-1	Acrylonitrile	0.82	0.82	0.36	0.38	0.38	0.17	U
75-35-4	1,1-Dichloroethene	0.16	0.16	0.12	0.041	0.041	0.031	\mathbf{U}
75-09-2	Methylene Chloride	0.45	0.82	0.31	0.13	0.23	0.089	J
75-15-0	Carbon Disulfide	8.2	8.2	0.39	2.6	2.6	0.13	\mathbf{U}
156-60-5	trans-1,2-Dichloroethene	0.16	0.16	0.096	0.041	0.041	0.024	U
75-34-3	1,1-Dichloroethane	0.16	0.16	0.10	0.040	0.040	0.025	U
1634-04-4	Methyl tert-Butyl Ether	0.16	0.16	0.11	0.045	0.045	0.032	U
78-93-3	2-Butanone (MEK)	3.2	8.2	0.36	1.1	2.8	0.12	J
156-59-2	cis-1,2-Dichloroethene	4.0	0.16	0.093	1.0	0.041	0.023	
67-66-3	Chloroform	0.31	0.16	0.096	0.063	0.033	0.020	
107-06-2	1,2-Dichloroethane	0.16	0.16	0.10	0.040	0.040	0.025	U
71-55-6	1,1,1-Trichloroethane	0.16	0.16	0.12	0.030	0.030	0.022	\mathbf{U}
71-43-2	Benzene	0.71	0.16	0.11	0.22	0.051	0.035	

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

M1 = Matrix interference due to coelution with a non-target compound; results may be biased high.

RESULTS OF ANALYSIS

Page 2 of 3

Client:

CH2M Hill

Client Sample ID: RP-CS-1-032410

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084 CAS Sample ID: P1001084-006

Test Code:

EPA TO-15

Date Collected: 3/24/10

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

6.0 L Summa Canister

Date Received: 3/26/10

Analyst:

Chris Cornett

Date Analyzed: 3/31/10

Volume(s) Analyzed:

1.00 Liter(s)

Sampling Media:

Test Notes: Container ID:

AC01590

Initial Pressure (psig):

-3.5

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.63

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		μg/m³	μg/m³	μg/m³	ppbV	ppbV	ppbV	Qualifier
56-23-5	Carbon Tetrachloride	0.61	0.16	0.12	0.097	0.026	0.019	
78-87-5	1,2-Dichloropropane	0.16	0.16	0.12	0.035	0.035	0.026	U
75-27-4	Bromodichloromethane ·	0.16	0.16	0.12	0.024	0.024	0.018	\mathbf{U}
79-01-6	Trichloroethene	49	0.16	0.10	9.1	0.030	0.019	
10061-01-5	cis-1,3-Dichloropropene	0.82	0.82	0.26	0.18	0.18	0.057	\mathbf{U}
108-10-1	4-Methyl-2-pentanone	1.5	0.82	0.31	0.36	0.20	0.076	
10061-02-6	trans-1,3-Dichloropropene	0.82	0.82	0.33	0.18	0.18	0.072	U
79-00-5	1,1,2-Trichloroethane	0.16	0.16	0.090	0.030	0.030	0.016	U
108-88-3	Toluene	6.8	0.82	0.31	1.8	0.22	0.082	
124-48-1	Dibromochloromethane	0.16	0.16	0.11	0.019	0.019	0.013	\mathbf{U}
127-18-4	Tetrachloroethene	0.72	0.16	0.096	0.11	0.024	0.014	
108-90-7	Chlorobenzene	0.16	0.16	0.082	0.035	0.035	0.018	\mathbf{U}
100-41-4	Ethylbenzene	0.33	0.82	0.31	0.075	0.19	0.071	${f J}$
179601-23-1	m,p-Xylenes	1.1	0.82	0.59	0.26	0.19	0.14	
75-25-2	Bromoform	0.82	0.82	0.34	0.079	0.079	0.033	U
100-42-5	Styrene	0.82	0.82	0.31	0.19	0.19	0.073	U
95-47-6	o-Xylene	0.75	0.82	0.31	0.17	0.19	0.071	J
79-34-5	1,1,2,2-Tetrachloroethane	0.16	- 0.16	0.093	0.024	0.024	0.014	\mathbf{U}

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 3 of 3

Client:

CH2M Hill

Client Sample ID: RP-CS-1-032410

CAS Project ID: P1001084

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Sample ID: P1001084-006

Tentatively Identified Compounds

EPA TO-15

Date Collected: 3/24/10

Test Code: Instrument ID:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Received: 3/26/10

Analyst:

Chris Cornett

Date Analyzed: 3/31/10

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

T

Container ID:

AC01590

Initial Pressure (psig):

-3.5

Final Pressure (psig):

3.5

GC/MS	Compound Identification	Concentration	Data
Retention Time		μg/m³	Qualifier
4.45	1,1,3,3,3-Pentafluro-1-Propene	5.4	
5.29	Unidentified Polyfluorinated Compound	6.2	
5.40	Acetaldehyde + Isobutane	13	
7.76	Isopentane	13	
8.59	n-Pentane	20	
	Epichlorohydrin	NF	

T = Analyte is a tentatively identified compound, result is estimated.

NF = Compound was searched for, but not found.

RESULTS OF ANALYSIS

Page 1 of 3

Client:

CH2M Hill

Client Sample ID: SGP-DUP-032410

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-007

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/24/10 Date Received: 3/26/10

Instrument ID: Analyst:

Chris Cornett

Date Analyzed: 3/31/10

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC00642

Initial Pressure (psig):

0.7

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.18

CAS#	Compound	Result μg/m³	MRL μg/m³	MDL μg/m³	Result ppbV	MRL ppbV	MDL ppbV	Data Qualifier
74-87-3	Chloromethane	0.41	0.24	0.13	0.20	0.11	0.063	
75-01-4	Vinyl Chloride	0.12	0.12	0.077	0.046	0.046	0.030	\mathbf{U}
74-83-9	Bromomethane	0.12	0.12	0.086	0.030	0.030	0.022	U
75-00-3	Chloroethane	0.12	0.12	0.094	0.045	0.045	0.036	\mathbf{U}
67-64-1	Acetone	41	5.9	1.5	17	2.5	0.65	
107-13-1	Acrylonitrile	0.59	0.59	0.26	0.27	0.27	0.12	U
75-35-4	1,1-Dichloroethene	0.12	0.12	0.089	0.030	0.030	0.022	\mathbf{U}
75-09-2	Methylene Chloride	0.26	0.59	0.22	0.075	0.17	0.065	· J
75-15-0	Carbon Disulfide	5.9	5.9	0.28	1.9	1.9	0.091	U
156-60-5	trans-1,2-Dichloroethene	0.12	0.12	0.070	0.030	0.030	0.018	U
75-34-3	1,1-Dichloroethane	0.12	0.12	0.073	0.029	0.029	0.018	U
1634-04-4	Methyl tert-Butyl Ether	0.12	0.12	0.083	0.033	0.033	0.023	U
78-93-3	2-Butanone (MEK)	4.0	5.9	0.26	1.3	2.0	0.088	J
156-59-2	cis-1,2-Dichloroethene	0.12	0.12	0.067	0.030	0.030	0.017	\mathbf{U}
67-66-3	Chloroform	2.4	0.12	0.070	0.48	0.024	0.014	
107-06-2	1,2-Dichloroethane	0.12	0.12	0.073	0.029	0.029	0.018	U
71-55-6	1,1,1-Trichloroethane	0.12	0.12	0.087	0.022	0.022	0.016	\mathbf{U}
71-43-2	Benzene	0.58	0.12	0.081	0.18	0.037	0.025	***************************************

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 2 of 3

Client:

CH2M Hill

Client Sample ID: SGP-DUP-032410

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-007

Test Code:

Analyst:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/24/10 Date Received: 3/26/10

Chris Cornett

Date Analyzed: 3/31/10

Sampling Media:

Instrument ID:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC00642

Initial Pressure (psig):

0.7

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.18

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		μg/m³	$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	ppbV	Qualifier
56-23-5	Carbon Tetrachloride	0.57	0.12	0.089	0.091	0.019	0.014	
78-87-5	1,2-Dichloropropane	0.12	0.12	0.086	0.026	0.026	0.019	\mathbf{U}
75-27-4	Bromodichloromethane	0.12	0.12	0.085	0.018	0.018	0.013	\mathbf{U}
79-01-6	Trichloroethene	0.12	0.12	0.073	0.022	0.022	0.014	\mathbf{U}
10061-01-5	cis-1,3-Dichloropropene	0.59	0.59	0.19	0.13	0.13	0.042	U
108-10-1	4-Methyl-2-pentanone	0.65	0.59	0.22	0.16	0.14	0.055	
10061-02-6	trans-1,3-Dichloropropene	0.59	0.59	0.24	0.13	0.13	0.052	\mathbf{U}
79-00-5	1,1,2-Trichloroethane	0.12	0.12	0.065	0.022	0.022	0.012	\mathbf{U}
108-88-3	Toluene	1.5	0.59	0.22	0.39	0.16	0.060	
124-48-1	Dibromochloromethane	0.12	0.12	0.080	0.014	0.014	0.0094	U
127-18-4	Tetrachloroethene	0.52	0.12	0.070	0.077	0.017	0.010	
108-90-7	Chlorobenzene	0.12	0.12	0.059	0.026	0.026	0.013	\mathbf{U}
100-41-4	Ethylbenzene	0.23	0.59	0.22	0.053	0.14	0.052	J
179601-23-1	m,p-Xylenes	0.72	0.59	0.42	0.17	0.14	0.098	
75-25-2	Bromoform	0.59	0.59	0.25	0.057	0.057	0.024	\mathbf{U} .
100-42-5	Styrene	0.59	0.59	0.22	0.14	0.14	0.053	U
95-47-6	o-Xylene	0.32	0.59	0.22	0.074	0.14	0.052	J
79-34-5	1,1,2,2-Tetrachloroethane	0.12	0.12	0.067	0.017	0.017	0.0098	\mathbf{U}

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 3 of 3

Client:

CH2M Hill

Client Sample ID: SGP-DUP-032410

CAS Project ID: P1001084

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Sample ID: P1001084-007

Tentatively Identified Compounds

Test Code:

EPA TO-15

Date Collected: 3/24/10

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Received: 3/26/10

Analyst:

Chris Cornett

Date Analyzed: 3/31/10

1.00 Liter(s)

Sampling Media:

6.0 L Summa Canister

 \mathbf{T}

Test Notes: Container ID:

AC00642

Initial Pressure (psig):

0.7

Final Pressure (psig):

3.5

Volume(s) Analyzed:

Canister Dilution Factor: 1.18

GC/MS	Compound Identification	Concentration	Data
Retention Time		$\mu {f g}/{f m}^3$	Qualifier
5.41	Acetaldehyde + Isobutane	12	
5.80	Isobutene	6.9	
5.96	n-Butane	4.2	
11.37	n-Butanal	3.3	
	Epichlorohydrin	NF	

T = Analyte is a tentatively identified compound, result is estimated.

NF = Compound was searched for, but not found.

RESULTS OF ANALYSIS

Page 1 of 3

Client:

CH2M Hill

Client Sample ID: WAT-SG-B2-032310

6.0 L Summa Canister

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084 CAS Sample ID: P1001084-008

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/23/10 Date Received: 3/26/10

Instrument ID: Analyst:

Chris Cornett

Volume(s) Analyzed:

Date Analyzed: 3/31/10

Sampling Media:

Test Notes: Container ID:

AC00824

Initial Pressure (psig):

0.4

Final Pressure (psig):

4.3

Canister Dilution Factor: 1.26

1.00 Liter(s)

CAS#	Compound	Result		MDL	Result	MRL	MDL	Data
		μ g /m³	$\mu g/m^3$	μg/m³	ppbV	ppbV	ppbV	Qualifier
74-87-3	Chloromethane	0.42	0.25	0.14	0.21	0.12	0.067	
75-01-4	Vinyl Chloride		.13 0.13	0.082	0.049	0.049	0.032	\mathbf{U}
74-83-9	Bromomethane		.13 0.13	0.092	0.032	0.032	0.024	U
75-00-3	Chloroethane	(.13 0.13	0.10	0.048	0.048	0.038	\mathbf{U}
67-64-1	Acetone	8.9	6.3	1.6	3.7	2.7	0.69	
107-13-1	Acrylonitrile	0.33	0.63	0.28	0.15	0.29	0.13	J
75-35-4	1,1-Dichloroethene	, (.13 0.13	0.095	0.032	0.032	0.024	\mathbf{U}
75-09-2	Methylene Chloride	0.28	0.63	0.24	0.080	0.18	0.069	J
75-15-0	Carbon Disulfide	ϵ	.3 6.3	0.30	2.0	2.0	0.097	\mathbf{U}
156-60-5	trans-1,2-Dichloroethene	C	.13 0.13	0.074	0.032	0.032	0.019	\mathbf{U}
75-34-3	1,1-Dichloroethane	C	.13 0.13	0.078	0.031	0.031	0.019	U
1634-04-4	Methyl tert-Butyl Ether	C	.13 0.13	0.088	0.035	0.035	0.024	\mathbf{U}
78-93-3	2-Butanone (MEK)	1.1	6.3	0.28	0.36	2.1	0.094	J
156-59-2	cis-1,2-Dichloroethene	C	.13 0.13	0.072	0.032	0.032	0.018	\mathbf{U}
67-66-3	Chloroform	0.28	0.13	0.074	0.057	0.026	0.015	
107-06-2	1,2-Dichloroethane	C	.13 0.13	0.078	0.031	0.031	0.019	U
71-55-6	1,1,1-Trichloroethane	C	.13 0.13	0.093	0.023	0.023	0.017	U
71-43-2	Benzene	0.62	0.13	0.087	0.20	0.039	0.027	

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 2 of 3

Client:

CH2M Hill

Client Sample ID: WAT-SG-B2-032310

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-008

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/23/10 Date Received: 3/26/10

Instrument ID: Analyst:

Chris Cornett

Date Analyzed: 3/31/10

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC00824

Initial Pressure (psig):

0.4

Final Pressure (psig):

4.3

Canister Dilution Factor: 1.26

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	${f ppbV}$	ppbV	ppbV	Qualifier
56-23-5	Carbon Tetrachloride	0.54	0.13	0.095	0.087	0.020	0.015	
78-87-5	1,2-Dichloropropane	0.13	0.13	0.092	0.027	0.027	0.020	\mathbf{U}
75-27-4	Bromodichloromethane	0.13	0.13	0.091	0.019	0.019	0.014	\mathbf{U}^{\perp}
79-01-6	Trichloroethene	3.3	0.13	0.078	0.61	0.023	0.015	
10061-01-5	cis-1,3-Dichloropropene	0.63	0.63	0.20	0.14	0.14	0.044	\mathbf{U}
108-10-1	4-Methyl-2-pentanone	140	0.63	0.24	33	0.15	0.058	
10061-02-6	trans-1,3-Dichloropropene	0.63	0.63	0.25	0.14	0.14	0.056	\mathbf{U}
79-00-5	1,1,2-Trichloroethane	0.13	0.13	0.069	0.023	0.023	0.013	\mathbf{U}
108-88-3	Toluene	2.4	0.63	0.24	0.64	0.17	0.064	
124-48-1	Dibromochloromethane	0.13	0.13	0.086	0.015	0.015	0.010	U
127-18-4	Tetrachloroethene	0.084	0.13	0.074	0.012	0.019	0.011	J
108-90-7	Chlorobenzene	0.13	0.13	0.063	0.027	0.027	0.014	U
100-41-4	Ethylbenzene	0.32	0.63	0.24	0.074	0.15	0.055	J
179601-23-1	m,p-Xylenes	0.78	0.63	0.45	0.18	0.15	0.10	
75-25-2	Bromoform	0.63	0.63	0.26	0.061	0.061	0.026	\mathbf{U}
100-42-5	Styrene	0.63	0.63	0.24	0.15	0.15	0.056	U
95-47-6	o-Xylene	0.41	0.63	0.24	0.095	0.15	0.055	J
79-34-5	1,1,2,2-Tetrachloroethane	0.13	0.13	0.072	0.018	0.018	0.010	U

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 3 of 3

Client:

CH2M Hill

Client Sample ID: WAT-SG-B2-032310

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-008

Tentatively Identified Compounds

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/23/10

Date Received: 3/26/10

Instrument ID: Analyst:

Chris Cornett

Date Analyzed: 3/31/10

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

T

Container ID:

AC00824

Initial Pressure (psig):

0.4

Final Pressure (psig):

4.3

GC/MS Retention Time	Compound Identification		Concentration µg/m³	Data Qualifier
			μg/m	Quantier
4.70	Propane		8.6	
5.41	Acetaldehyde + Isobutane		5.0	
23.82	Benzaldehyde	. No. 100 (1996)	9.4	, i
	Epichlorohydrin		NF	-

T = Analyte is a tentatively identified compound, result is estimated.

NF = Compound was searched for, but not found.

RESULTS OF ANALYSIS

Page 1 of 3

Client:

CH2M Hill

Client Sample ID: WAT-SG-B4-032310

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-009

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/23/10

Instrument ID: Analyst:

Date Received: 3/26/10 Date Analyzed: 3/31/10

Sampling Media:

Chris Cornett 6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC00977

Initial Pressure (psig):

-1.6

Final Pressure (psig):

3.9

Canister Dilution Factor: 1.42

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	${f ppbV}$	ppbV	ppbV	Qualifier
74-87-3	Chloromethane	0.47	0.28	0.16	0.23	0.14	0.076	
75-01-4	Vinyl Chloride	0.14	0.14	0.092	0.056	0.056	0.036	U
74-83-9	Bromomethane	0.14	0.14	0.10	0.037	0.037	0.027	U
75-00-3	Chloroethane	0.14	0.14	0.11	0.054	0.054	0.043	Ú
67-64-1	Acetone	18	7.1	1.8	7.7	3.0	0.78	
107-13-1	Acrylonitrile	0.39	0.71	0.31	0.18	0.33	0.14	J
75-35-4	1,1-Dichloroethene	0.14	0.14	0.11	0.036	0.036	0.027	\mathbf{U} .
75-09-2	Methylene Chloride	0.29	0.71	0.27	0.083	0.20	0.078	J
75-15-0	Carbon Disulfide	0.83	7.1	0.34	0.27	2.3	0.11	J
156-60-5	trans-1,2-Dichloroethene	0.14	0.14	0.084	0.036	0.036	0.021	U
75-34-3	1,1-Dichloroethane	0.14	0.14	0.088	0.035	0.035	0.022	U
1634-04-4	Methyl tert-Butyl Ether	0.14	0.14	0.099	0.039	0.039	0.028	U
78-93-3	2-Butanone (MEK)	0.99	7.1	0.31	0.33	2.4	0.11	J
156-59-2	cis-1,2-Dichloroethene	0.14	0.14	0.081	0.036	0.036	0.020	U
67-66-3	Chloroform	0.15	0.14	0.084	0.032	0.029	0.017	
107-06-2	1,2-Dichloroethane	0.14	0.14	0.088	0.035	0.035	0.022	U
71-55-6	1,1,1-Trichloroethane	0.14	0.14	0.11	0.026	0.026	0.019	U
71-43-2	Benzene	0.68	0.14	0.098	0.21	0.044	0.031	

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 2 of 3

Client:

CH2M Hill

Client Sample ID: WAT-SG-B4-032310

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-009

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/23/10 Date Received: 3/26/10

Chris Cornett

Date Analyzed: 3/31/10

Analyst: Sampling Media:

Instrument ID:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC00977

Initial Pressure (psig):

-1.6

Final Pressure (psig):

3.9

Canister Dilution Factor: 1.42

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		μg/m³	μg/m³	μg/m³	ppbV	ppbV	ppbV	Qualifier
56-23-5	Carbon Tetrachloride	0.52	0.14	0.11	0.082	0.023	0.017	
78-87-5	1,2-Dichloropropane	0.14	0.14	0.10	0.031	0.031	0.022	\mathbf{U}
75-27-4	Bromodichloromethane	0.14	0.14	0.10	0.021	0.021	0.015	U
79-01-6	Trichloroethene	5.0	0.14	0.088	0.94	0.026	0.016	
10061-01-5	cis-1,3-Dichloropropene	0.71	0.71	0.23	0.16	0.16	0.050	\mathbf{U}^{r}
108-10-1	4-Methyl-2-pentanone	52	0.71	0.27	13	0.17	0.066	7-7-110000000000
10061-02-6	trans-1,3-Dichloropropene	0.71	0.71	0.28	0.16	0.16	0.063	Ü
79-00-5	1,1,2-Trichloroethane	0.14	0.14	0.078	0.026	0.026	0.014	\mathbf{U}
108-88-3	Toluene	9.3	0.71	0.27	2.5	0.19	0.072	
124-48-1	Dibromochloromethane	0.14	0.14	0.097	0.017	0.017	0.011	\mathbf{U}
127-18-4	Tetrachloroethene	0.14	0.14	0.084	0.021	0.021	0.012	U
108-90-7	Chlorobenzene	0.14	0.14	0.071	0.031	0.031	0.015	\mathbf{U}
100-41-4	Ethylbenzene	0.35	0.71	0.27	0.081	0.16	0.062	J
179601-23-1	m,p-Xylenes	1.1	0.71	0.51	0.25	0.16	0.12	
75-25-2	Bromoform	0.71	0.71	0.30	0.069	0.069	0.029	U
100-42-5	Styrene	0.71	0.71	0.27	0.17	0.17	0.063	U
95-47-6	o-Xylene	0.59	0.71	0.27	0.14	0.16	0.062	J
79-34-5	1,1,2,2-Tetrachloroethane	0.14	0.14	0.081	0.021	0.021	0.012	U

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 3 of 3

Client:

CH2M Hill

Client Sample ID: WAT-SG-B4-032310

6.0 L Summa Canister

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-009

Tentatively Identified Compounds

Test Code:

EPA TO-15

Date Collected: 3/23/10

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Received: 3/26/10

Date Analyzed: 3/31/10

Analyst: Sampling Media: Chris Cornett

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

 \mathbf{T}

Container ID:

AC00977

Initial Pressure (psig):

-1.6

Final Pressure (psig):

3.9

Canister Dilution Factor: 1.42

GC/MS Retention Time	Compound Identification	Concentration μg/m³	Data Qualifier
4.70	Propane	13	
5.96	n-Butane	7.9	
	Epichlorohydrin	NF	

T = Analyte is a tentatively identified compound, result is estimated.

NF = Compound was searched for, but not found.

RESULTS OF ANALYSIS

Page 1 of 3

Client:

CH2M Hill

Client Sample ID: WAT-SG-FB-032310

6.0 L Summa Canister

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

Date Collected: 3/23/10

Date Received: 3/26/10

CAS Sample ID: P1001084-010

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Analyst:

Chris Cornett

Date Analyzed: 3/31/10 Volume(s) Analyzed:

1.00 Liter(s)

Sampling Media: Test Notes:

Container ID:

AC01257

Canister Dilution Factor: 1.00

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	${f ppbV}$	ppbV	ppbV	Qualifier
74-87-3	Chloromethane	0.20	0.20	0.11	0.097	0.097	0.053	U
75-01-4	Vinyl Chloride	0.10	0.10	0.065	0.039	0.039	0.025	\mathbf{U}
74-83-9	Bromomethane	0.10	0.10	0.073	0.026	0.026	0.019	U
75-00-3	Chloroethane	0.10	0.10	0.080	0.038	0.038	0.030	U.
67-64-1	Acetone	1.6	5.0	1.3	0.69	2.1	0.55	J
107-13-1	Acrylonitrile	0.50	0.50	0.22	0.23	0.23	0.10	U
75-35-4	1,1-Dichloroethene	0.10	0.10	0.075	0.025	0.025	0.019	\mathbf{U}
75-09-2	Methylene Chloride	0.50	0.50	0.19	0.14	0.14	0.055	\mathbf{U}
75-15-0	Carbon Disulfide	5.0	5.0	0.24	1.6	1.6	0.077	\mathbf{U}
156-60-5	trans-1,2-Dichloroethene	0.10	0.10	0.059	0.025	0.025	0.015	U
75-34-3	1,1-Dichloroethane	0.10	0.10	0.062	0.025	0.025	0.015	U
1634-04-4	Methyl tert-Butyl Ether	0.10	0.10	0.070	0.028	0.028	0.019	\mathbf{U}
78-93-3	2-Butanone (MEK)	5.0	5.0	0.22	1.7	1.7	0.075	U
156-59-2	cis-1,2-Dichloroethene	0.10	0.10	0.057	0.025	0.025	0.014	U
67-66-3	Chloroform	0.10	0.10	0.059	0.020	0.020	0.012	U
107-06-2	1,2-Dichloroethane	0.10	0.10	0.062	0.025	0.025	0.015	U
71-55-6	1,1,1-Trichloroethane	0.10	0.10	0.074	0.018	0.018	0.014	Ü
71-43-2	Benzene	0.10	0.10	0.069	0.031	0.031	0.022	U

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 2 of 3

Client: CH2M Hill

Client Sample ID: WAT-SG-FB-032310 CAS Project ID: P1001084

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI CAS Sample ID: P1001084-010

Test Code: EPA TO-15

Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: 3/26/10

Analyst: Chris Cornett Date Analyzed: 3/31/10

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC01257

Canister Dilution Factor: 1.00

Date Collected: 3/23/10

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		μg/m³	μg/m³	μg/m³	ppbV	ppbV	ppbV	Qualifier
56-23-5	Carbon Tetrachloride	0.10	0.10	0.075	0.016	0.016	0.012	\mathbf{U}
78-87-5	1,2-Dichloropropane	0.10	0.10	0.073	0.022	0.022	0.016	\mathbf{U}
75-27-4	Bromodichloromethane	0.10	0.10	0.072	0.015	0.015	0.011	\mathbf{U}
79-01-6	Trichloroethene	0.10	0.10	0.062	0.019	0.019	0.012	\mathbf{U}
10061-01-5	cis-1,3-Dichloropropene	0.50	0.50	0.16	0.11	0.11	0.035	U
108-10-1	4-Methyl-2-pentanone	0.50	0.50	0.19	0.12	0.12	0.046	U
10061-02-6	trans-1,3-Dichloropropene	0.50	0.50	0.20	0.11	0.11	0.044	\mathbf{U}
79-00-5	1,1,2-Trichloroethane	0.10	0.10	0.055	0.018	0.018	0.010	\mathbf{U}
108-88-3	Toluene	0.56	0.50	0.19	0.15	0.13	0.050	
124-48-1	Dibromochloromethane	0.10	0.10	0.068	0.012	0.012	0.0080	U
127-18-4	Tetrachloroethene	0.10	0.10	0.059	0.015	0.015	0.0087	U
108-90-7	Chlorobenzene	0.10	0.10	0.050	0.022	0.022	0.011	\mathbf{U}
100-41-4	Ethylbenzene	0.50	0.50	0.19	0.12	0.12	0.044	U
179601-23-1	m,p-Xylenes	0.50	0.50	0.36	0.12	0.12	0.083	\mathbf{U}
75-25-2	Bromoform	0.50	0.50	0.21	0.048	0.048	0.020	U
100-42-5	Styrene	0.50	0.50	0.19	0.12	0.12	0.045	U
95-47-6	o-Xylene	0.50	0.50	0.19	0.12	0.12	0.044	U
79-34-5	1,1,2,2-Tetrachloroethane	0.10	0.10	0.057	0.015	0.015	0.0083	U

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 3 of 3

Tentatively Identified Compounds

Client:

CH2M Hill

Client Sample ID: WAT-SG-FB-032310

6.0 L Summa Canister

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-010

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/23/10

Date Received: 3/26/10

Instrument ID: Analyst:

Chris Cornett

Date Analyzed: 3/31/10 Volume(s) Analyzed:

1.00 Liter(s)

Sampling Media:

Test Notes:

Container ID:

AC01257

Canister Dilution Factor: 1.00

GC/MS

Compound Identification

Concentration

Data

Retention Time

Epichlorohydrin

 $\mu g/m^3$ NF Qualifier

NF = Compound was searched for, but not found.

P1001084_TO15_1004081123_SS - TIC (10)

RESULTS OF ANALYSIS

Page 1 of 3

Client:

CH2M Hill

Client Sample ID: WAT-IA-3-032310

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

Date Collected: 3/23/10 Date Received: 3/26/10

CAS Sample ID: P1001084-011

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Analyst:

Chris Cornett

6.0 L Summa Canister

Date Analyzed: 4/1 - 4/2/10

1.00 Liter(s)

Volume(s) Analyzed:

0.10 Liter(s)

Sampling Media:

Test Notes:

Container ID:

AC01425

Initial Pressure (psig):

-2.3

Final Pressure (psig):

3.6

Canister Dilution Factor: 1.48

CAS#	Compound	Result	MRL	MDL	Result	MRL ppbV	MDL ppbV	Data Qualifier
74.07.0		μg/m³	$\mu g/m^3$	$\mu g/m^3$	ppbV 0.19	0.14	0.079	Quanner
74-87-3	Chloromethane	0.38	0.30	0.16				
75-01-4	Vinyl Chloride	0.15	0.15	0.096	0.058	0.058	0.038	U
74-83-9	Bromomethane	0.15	0.15	0.11	0.038	0.038	0.028	U
75-00-3	Chloroethane	0.15	0.15	0.12	0.056	0.056	0.045	U
67-64-1	Acetone	25	7.4	1.9	11	3.1	0.81	
107-13-1	Acrylonitrile	2.7	0.74	0.33	1.3	0.34	0.15	
75-35-4	1,1-Dichloroethene	0.15	0.15	0.11	0.037	0.037	0.028	\mathbf{U}
75-09-2	Methylene Chloride	0.74	0.74	0.28	0.21	0.21	0.081	U
75-15-0	Carbon Disulfide	7.4	7.4	0.36	2.4	2.4	0.11	\mathbf{U}
156-60-5	trans-1,2-Dichloroethene	0.15	0.15	0.087	0.037	0.037	0.022	U
75-34-3	1,1-Dichloroethane	0.15	0.15	0.092	0.037	0.037	0.023	\mathbf{U}
1634-04-4	Methyl tert-Butyl Ether	0.15	0.15	0.10	0.041	0.041	0.029	\mathbf{U}
78-93-3	2-Butanone (MEK)	1.2	7.4	0.33	0.42	2.5	0.11	J
156-59-2	cis-1,2-Dichloroethene	0.15	0.15	0.084	0.037	0.037	0.021	\mathbf{U}
67-66-3	Chloroform	1.4	0.15	0.087	0.28	0.030	0.018	
107-06-2	1,2-Dichloroethane	0.15	0.15	0.092	0.037	0.037	0.023	U
71-55-6	1,1,1-Trichloroethane	0.15	0.15	0.11	0.027	0.027	0.020	\mathbf{U}
71-43-2	Benzene	1.1	0.15	0.10	0.35	0.046	0.032	

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

P1001084 TO15 1004081123 SS - Sample (11)

RESULTS OF ANALYSIS

Page 2 of 3

Client:

CH2M Hill

Client Sample ID: WAT-IA-3-032310

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-011

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/23/10 Date Received: 3/26/10

Instrument ID: Analyst:

Chris Cornett

Date Analyzed: 4/1 - 4/2/10

1.00 Liter(s)

Sampling Media:

Test Notes:

6.0 L Summa Canister

Volume(s) Analyzed:

0.10 Liter(s)

Container ID:

AC01425

Initial Pressure (psig):

-2.3

Final Pressure (psig):

3.6

CAS#	Compound	Result µg/m³	MRL μg/m³	$\frac{\text{MDL}}{\mu g/m^3}$	Result ppbV	MRL ppbV	MDL ppbV	Data Qualifier
56-23-5	Carbon Tetrachloride	0.49	0.15	0.11	0.078	0.024	0.018	
78-87-5	1,2-Dichloropropane	0.15	0.15	0.11	0.032	0.032	0.023	U
75-27-4	Bromodichloromethane	0.15	0.15	0.11	0.022	0.022	0.016	Ù
79-01-6	Trichloroethene	1.4	0.15	0.092	0.26	0.028	0.017	
10061-01-5	cis-1,3-Dichloropropene	0.74	0.74	0.24	0.16	0.16	0.052	U .
108-10-1	4-Methyl-2-pentanone	410	7.4	0.28	100	1.8	0.069	D
10061-02-6	trans-1,3-Dichloropropene	0.74	0.74	0.30	0.16	0.16	0.065	U
79-00-5	1,1,2-Trichloroethane	0.15	0.15	0.081	0.027	0.027	0.015	$^{\prime}$. $^{\prime\prime}$ $^{\prime\prime}$ $^{\prime\prime}$
108-88-3	Toluene	4.7	0.74	0.28	1.2	0.20	0.075	
124-48-1	Dibromochloromethane	0.15	0.15	0.10	0.017	0.017	0.012	U
127-18-4	Tetrachloroethene	0.087	0.15	0.087	0.013	0.022	0.013	J
108-90-7	Chlorobenzene	0.15	0.15	0.074	0.032	0.032	0.016	\mathbf{U}
100-41-4	Ethylbenzene	0.54	0.74	0.28	0.13	0.17	0.065	J
179601-23-1	m,p-Xylenes	1.8	0.74	0.53	0.41	0.17	0.12	
75-25-2	Bromoform	0.74	0.74	0.31	0.072	0.072	0.030	U
100-42-5	Styrene	0.74	0.74	0.28	0.17	0.17	0.066	U
95-47-6	o-Xylene	0.69	0.74	0.28	0.16	0.17	0.065	J
79-34-5	1,1,2,2-Tetrachloroethane	0.15	0.15	0.084	0.022	0.022	0.012	U

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

D = The reported result is from a dilution.

RESULTS OF ANALYSIS

Page 3 of 3

Client: CH2M Hill

Container ID:

Client Sample ID: WAT-IA-3-032310 CAS Project ID: P1001084

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI CAS Sample ID: P1001084-011

Tentatively Identified Compounds

Test Code: EPA TO-15 Date Collected: 3/23/10

Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: 3/26/10
Analyst: Chris Cornett Date Analyzed: 4/1 - 4/2/10

Analyst: Chris Cornett Date Analyzed: 4/1 - 4/2/10
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes: T 0.10 Liter(s)

Initial Pressure (psig): -2.3 Final Pressure (psig): 3.6

Canister Dilution Factor: 1.48

GC/MS	Compound Identification	Concentration	Data
Retention Time	- -	$\mu g/m^3$	Qualifier
5.40	Isobutane	4.0	
5.96	n-Butane	6.4	
8.59	n-Pentane	5.6	
,	Epichlorohydrin	NF	

T = Analyte is a tentatively identified compound, result is estimated.

NF = Compound was searched for, but not found.

AC01425

Verified By: Date: 48/14 40

RESULTS OF ANALYSIS

Page 1 of 3

Client:

CH2M Hill

Client Sample ID: WAT-IA-5-032310

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-012

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/23/10

Date Received: 3/26/10

Instrument ID: Analyst:

Chris Cornett

Date Analyzed: 4/1/10 & 4/3/10

1.00 Liter(s)

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

0.10 Liter(s)

Test Notes: Container ID:

AC00515

Initial Pressure (psig):

-0.1

Final Pressure (psig):

3.6

Canister Dilution Factor: 1.25

CAS#	Compound	Result	MRL	MDL	Result ppbV	MRL ppbV	MDL ppbV	Data Qualifier
74-87-3	Chloromethane	μg/m ³ 0.52	$\frac{\mu g/m^3}{0.25}$	$\frac{\mu g/m^3}{0.14}$	0.25	0.12	0.067	Quanner
				0.081	0.049	0.049	0.032	U
75-01-4	Vinyl Chloride	0.13	0.13					
74-83-9	Bromomethane	0.13	0.13	0.091	0.032	0.032	0.024	U
75-00-3	Chloroethane	0.13	0.13	0.10	0.047	0.047	0.038	U
67-64-1	Acetone	15	6.3	1.6	6.4	2.6	0.68	
107-13-1	Acrylonitrile	0.63	0.63	0.28	0.29	0.29	0.13	\mathbf{U}
75-35-4	1,1-Dichloroethene	0.74	0.13	0.094	0.19	0.032	0.024	
75-09-2	Methylene Chloride	0.34	0.63	0.24	0.096	0.18	0.068	J
75-15-0	Carbon Disulfide	14	6.3	0.30	4.5	2.0	0.096	
156-60-5	trans-1,2-Dichloroethene	0.13	0.13	0.074	0.032	0.032	0.019	U
75-34-3	1,1-Dichloroethane	0.13	0.13	0.078	0.031	0.031	0.019	U
1634-04-4	Methyl tert-Butyl Ether	0.13	0.13	0.088	0.035	0.035	0.024	U
78-93-3	2-Butanone (MEK)	1.3	6.3	0.28	0.45	2.1	0.093	J
156-59-2	cis-1,2-Dichloroethene	0.13	0.13	0.071	0.032	0.032	0.018	\mathbf{U}
67-66-3	Chloroform	4.3	0.13	0.074	0.88	0.026	0.015	
107-06-2	1,2-Dichloroethane	0.13	0.13	0.078	0.031	0.031	0.019	U
71-55-6	1,1,1-Trichloroethane	0.13	0.13	0.093	0.023	0.023	0.017	\mathbf{U}
71-43-2	Benzene	0.69	0.13	0.086	0.22	0.039	0.027	

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 2 of 3

Client:

CH2M Hill

Client Sample ID: WAT-IA-5-032310

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

Date Collected: 3/23/10

CAS Sample ID: P1001084-012

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Received: 3/26/10

Analyst:

Chris Cornett

Date Analyzed: 4/1/10 & 4/3/10

1.00 Liter(s)

Sampling Media:

Test Notes:

6.0 L Summa Canister

Volume(s) Analyzed:

0.10 Liter(s)

Container ID:

AC00515

Initial Pressure (psig):

-0.1

Final Pressure (psig):

3.6

Compound	Result	MRL	MDL	Result	MRL	MDL	
	μg/m³	μg/m³	μg/m³	ppbV	ppbV	ppbV	Qualifier
Carbon Tetrachloride	0.67	0.13	0.094	0.11	0.020	0.015	
1,2-Dichloropropane	0.13	0.13	0.091	0.027	0.027	0.020	\mathbf{U}
Bromodichloromethane	0.13	0.13	0.090	0.019	0.019	0.013	· U
Trichloroethene	0.78	0.13	0.078	0.14	0.023	0.014	
cis-1,3-Dichloropropene	0.63	0.63	0.20	0.14	0.14	0.044	U
4-Methyl-2-pentanone	560	6.3	0.24	140	1.5	0.058	D
trans-1,3-Dichloropropene	0.63	0.63	0.25	0.14	0.14	0.055	\mathbf{U}
1,1,2-Trichloroethane	0.13	0.13	0.069	0.023	0:023	0.013	\mathbf{U}^{-1}
Toluene	3.3	0.63	0.24	0.87	0.17	0.063	
Dibromochloromethane	0.13	0.13	0.085	0.015	0.015	0.010	U
Tetrachloroethene	0.13	0.13	0.074	0.018	0.018	0.011	U
Chlorobenzene	0.13	0.13	0.063	0.027	0.027	0.014	U
Ethylbenzene	0.33	0.63	0.24	0.076	0.14	0.055	J
m,p-Xylenes	1.1	0.63	0.45	0.25	0.14	0.10	
Bromoform	0.63	0.63	0.26	0.060	0.060	0.025	\mathbf{U}
Styrene	0.63	0.63	0.24	0.15	0.15	0.056	U
o-Xylene	0.39	0.63	0.24	0.091	0.14	0.055	J
1,1,2,2-Tetrachloroethane	0.13	0.13	0.071	0.018	0.018	0.010	U
	Carbon Tetrachloride 1,2-Dichloropropane Bromodichloromethane Trichloroethene cis-1,3-Dichloropropene 4-Methyl-2-pentanone trans-1,3-Dichloropropene 1,1,2-Trichloroethane Toluene Dibromochloromethane Tetrachloroethene Chlorobenzene Ethylbenzene m,p-Xylenes Bromoform Styrene o-Xylene	Carbon Tetrachloride 0.67 1,2-Dichloropropane 0.13 Bromodichloromethane 0.13 Trichloroethene 0.78 cis-1,3-Dichloropropene 0.63 4-Methyl-2-pentanone 560 trans-1,3-Dichloropropene 0.63 1,1,2-Trichloroethane 0.13 Toluene 3.3 Dibromochloromethane 0.13 Tetrachloroethene 0.13 Chlorobenzene 0.13 Ethylbenzene 0.33 m,p-Xylenes 1.1 Bromoform 0.63 Styrene 0.63 o-Xylene 0.39	Carbon Tetrachloride 0.67 0.13 1,2-Dichloropropane 0.13 0.13 Bromodichloromethane 0.13 0.13 Trichloroethene 0.78 0.13 cis-1,3-Dichloropropene 0.63 0.63 4-Methyl-2-pentanone 560 6.3 trans-1,3-Dichloropropene 0.63 0.63 1,1,2-Trichloroethane 0.13 0.13 Toluene 3.3 0.63 Dibromochloromethane 0.13 0.13 Tetrachloroethene 0.13 0.13 Chlorobenzene 0.13 0.13 Ethylbenzene 0.33 0.63 m,p-Xylenes 1.1 0.63 Bromoform 0.63 0.63 O-Xylene 0.39 0.63	Carbon Tetrachloride 0.67 0.13 0.094 1,2-Dichloropropane 0.13 0.13 0.091 Bromodichloromethane 0.13 0.13 0.090 Trichloroethene 0.78 0.13 0.078 cis-1,3-Dichloropropene 0.63 0.63 0.20 4-Methyl-2-pentanone 560 6.3 0.24 trans-1,3-Dichloropropene 0.63 0.63 0.25 1,1,2-Trichloroethane 0.13 0.13 0.069 Toluene 3.3 0.63 0.24 Dibromochloromethane 0.13 0.13 0.085 Tetrachloroethene 0.13 0.13 0.074 Chlorobenzene 0.13 0.13 0.063 Ethylbenzene 0.33 0.63 0.24 m,p-Xylenes 1.1 0.63 0.63 0.24 Styrene 0.63 0.63 0.24 o-Xylene 0.39 0.63 0.24	μg/m³ μg/m³ μg/m³ ppbV Carbon Tetrachloride 0.67 0.13 0.094 0.11 1,2-Dichloropropane 0.13 0.13 0.091 0.027 Bromodichloromethane 0.13 0.13 0.090 0.019 Trichloroethene 0.78 0.13 0.078 0.14 cis-1,3-Dichloropropene 0.63 0.63 0.20 0.14 4-Methyl-2-pentanone 560 6.3 0.24 140 trans-1,3-Dichloropropene 0.63 0.63 0.25 0.14 1,1,2-Trichloroethane 0.13 0.13 0.069 0.023 Toluene 3.3 0.63 0.24 0.87 Dibromochloromethane 0.13 0.13 0.085 0.015 Tetrachloroethene 0.13 0.13 0.063 0.24 0.076 Chlorobenzene 0.33 0.63 0.24 0.076 m,p-Xylenes 1.1 0.63 0.24 0.056 Bromoform <t< td=""><td>μg/m³ μg/m³ μg/m³ ppbV ppbV Carbon Tetrachloride 0.67 0.13 0.094 0.11 0.020 1,2-Dichloropropane 0.13 0.13 0.091 0.027 0.027 Bromodichloromethane 0.13 0.13 0.090 0.019 0.019 Trichloroethene 0.78 0.13 0.078 0.14 0.023 cis-1,3-Dichloropropene 0.63 0.63 0.20 0.14 0.14 4-Methyl-2-pentanone 560 6.3 0.24 140 1.5 trans-1,3-Dichloropropene 0.63 0.63 0.25 0.14 0.14 1,1,2-Trichloroethane 0.13 0.13 0.069 0.023 0.023 Toluene 3.3 0.63 0.24 0.87 0.17 Dibromochloromethane 0.13 0.13 0.085 0.015 0.015 Tetrachloroethene 0.13 0.13 0.063 0.24 0.076 0.14 Chlorobenzene</td><td>Carbon Tetrachloride 0.67 0.13 0.094 0.11 0.020 0.015 1,2-Dichloropropane 0.13 0.13 0.091 0.027 0.027 0.020 Bromodichloromethane 0.13 0.13 0.090 0.019 0.019 0.013 Trichloroethene 0.78 0.13 0.078 0.14 0.023 0.014 cis-1,3-Dichloropropene 560 6.3 0.20 0.14 0.14 0.044 4-Methyl-2-pentanone 560 6.3 0.24 140 1.5 0.058 trans-1,3-Dichloropropene 0.63 0.63 0.25 0.14 0.14 0.055 1,1,2-Trichloroethane 0.13 0.13 0.069 0.023 0.023 0.013 Toluene 3.3 0.63 0.24 0.87 0.17 0.063 Dibromochloromethane 0.13 0.13 0.085 0.015 0.015 0.010 Tetrachloroethene 0.13 0.13 0.063 0.24 <td< td=""></td<></td></t<>	μg/m³ μg/m³ μg/m³ ppbV ppbV Carbon Tetrachloride 0.67 0.13 0.094 0.11 0.020 1,2-Dichloropropane 0.13 0.13 0.091 0.027 0.027 Bromodichloromethane 0.13 0.13 0.090 0.019 0.019 Trichloroethene 0.78 0.13 0.078 0.14 0.023 cis-1,3-Dichloropropene 0.63 0.63 0.20 0.14 0.14 4-Methyl-2-pentanone 560 6.3 0.24 140 1.5 trans-1,3-Dichloropropene 0.63 0.63 0.25 0.14 0.14 1,1,2-Trichloroethane 0.13 0.13 0.069 0.023 0.023 Toluene 3.3 0.63 0.24 0.87 0.17 Dibromochloromethane 0.13 0.13 0.085 0.015 0.015 Tetrachloroethene 0.13 0.13 0.063 0.24 0.076 0.14 Chlorobenzene	Carbon Tetrachloride 0.67 0.13 0.094 0.11 0.020 0.015 1,2-Dichloropropane 0.13 0.13 0.091 0.027 0.027 0.020 Bromodichloromethane 0.13 0.13 0.090 0.019 0.019 0.013 Trichloroethene 0.78 0.13 0.078 0.14 0.023 0.014 cis-1,3-Dichloropropene 560 6.3 0.20 0.14 0.14 0.044 4-Methyl-2-pentanone 560 6.3 0.24 140 1.5 0.058 trans-1,3-Dichloropropene 0.63 0.63 0.25 0.14 0.14 0.055 1,1,2-Trichloroethane 0.13 0.13 0.069 0.023 0.023 0.013 Toluene 3.3 0.63 0.24 0.87 0.17 0.063 Dibromochloromethane 0.13 0.13 0.085 0.015 0.015 0.010 Tetrachloroethene 0.13 0.13 0.063 0.24 <td< td=""></td<>

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

D = The reported result is from a dilution.

RESULTS OF ANALYSIS

Page 3 of 3

Client: **CH2M Hill**

CAS Project ID: P1001084 Client Sample ID: WAT-IA-5-032310 Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Sample ID: P1001084-012

Tentatively Identified Compounds

Test Code: EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/23/10

Instrument ID:

Date Received: 3/26/10

Analyst: Sampling Media: Chris Cornett

Date Analyzed: 4/1/10 & 4/3/10

1.00 Liter(s)

Test Notes:

6.0 L Summa Canister Т

Volume(s) Analyzed:

0.10 Liter(s)

Container ID:

AC00515

Initial Pressure (psig):

-0.1

Final Pressure (psig):

3.6

GC/MS Retention Time	Compound Identification	Concentration μg/m³	Data Qualifier
4.70	Propane	98	
5.40	Isobutane	9.7	
26.26	Cymene Isomer	10	
26.79	1,2,3,4-Tetramethyl Benzene	12	
27.23	C ₁₀ H ₁₂ Aromatic Compound	12	
	Epichlorohydrin	NF	

T = Analyte is a tentatively identified compound, result is estimated.

NF = Compound was searched for, but not found.

RESULTS OF ANALYSIS

Page 1 of 3

Client:

CH2M Hill

Client Sample ID: WAT-IA-7-032310

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-013

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Received: 3/26/10

Analyst:

Chris Cornett

Date Analyzed: 4/1/10

Date Collected: 3/23/10

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC00527

Initial Pressure (psig):

-1.0

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.33

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		μg/m³	$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV		Qualifier
74-87-3	Chloromethane	0.46	0.27	0.15	0.22	0.13	0.071	
75-01-4	Vinyl Chloride	0.13	0.13	0.086	0.052	0.052	0.034	\mathbf{U}
74-83-9	Bromomethane	0.13	0.13	0.097	0.034	0.034	0.025	\mathbf{U}
75-00-3	Chloroethane	0.13	0.13	0.11	0.050	0.050	0.040	\mathbf{U}
67-64-1	Acetone	30	6.7	1.7	13	2.8	0.73	
107-13-1	Acrylonitrile	0.38	0.67	0.29	0.18	0.31	0.13	J
75-35-4	1,1-Dichloroethene	0.13	0.13	0.10	0.034	0.034	0.025	\mathbf{U}
75-09-2	Methylene Chloride	0.32	0.67	0.25	0.093	0.19	0.073	J
75-15-0	Carbon Disulfide	11	6.7	0.32	3.6	2.1	0.10	
156-60-5	trans-1,2-Dichloroethene	0.13	0.13	0.078	0.034	0.034	0.020	U
75-34-3	1,1-Dichloroethane	0.13	0.13	0.082	0.033	0.033	0.020	\mathbf{U}
1634-04-4	Methyl tert-Butyl Ether	0.13	0.13	0.093	0.037	0.037	0.026	\mathbf{U}
78-93-3	2-Butanone (MEK)	1.1	6.7	0.29	0.36	2.3	0.099	J
156-59-2	cis-1,2-Dichloroethene	0.13	0.13	0.076	0.034	0.034	0.019	U
67-66-3	Chloroform	0.39	0.13	0.078	0.080	0.027	0.016	
107-06-2	1,2-Dichloroethane	0.13	0.13	0.082	0.033	0.033	0.020	J
71-55-6	1,1,1-Trichloroethane	0.13	0.13	0.098	0.024	0.024	0.018	\mathbf{U}
71-43-2	Benzene	0.71	0.13	0.092	0.22	0.042	0.029	

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 2 of 3

Client:

CH2M Hill

Client Sample ID: WAT-IA-7-032310

6.0 L Summa Canister

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-013

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/23/10 Date Received: 3/26/10

Date Analyzed: 4/1/10

Instrument ID: Analyst:

Chris Cornett

Volume(s) Analyzed:

1.00 Liter(s)

Sampling Media: Test Notes:

Container ID:

AC00527

Initial Pressure (psig):

-1.0

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.33

CAS#	Compound	Result μg/m³	MRL μg/m³	MDL μg/m³	Result ppbV	MRL ppbV	MDL ppbV	Data Qualifier
56-23-5	Carbon Tetrachloride	0.64	0.13	0.10	0.10	0.021	0.016	
78-87-5	1,2-Dichloropropane	0.13	0.13	0.097	0.029	0.029	0.021	\mathbf{U}
75-27-4	Bromodichloromethane	0.13	0.13	0.096	0.020	0.020	0.014	U
79-01-6	Trichloroethene	0.51	0.13	0.082	0.095	0.025	0.015	
10061-01-5	cis-1,3-Dichloropropene	0.67	0.67	0.21	0.15	0.15	0.047	U
108-10-1	4-Methyl-2-pentanone	79	0.67	0.25	19	0.16	0.062	
10061-02-6	trans-1,3-Dichloropropene	0.67	0.67	0.27	0.15	0.15	0.059	\mathbf{U}
79-00-5	1,1,2-Trichloroethane	0.13	0.13	0.073	0.024	0.024	0.013	U
108-88-3	Toluene	2.6	0.67	0.25	0.69	0.18	0.067	
124-48-1	Dibromochloromethane	0.13	0.13	0.090	0.016	0.016	0.011	U
127-18-4	Tetrachloroethene	0.13	0.13	0.078	0.020	0.020	0.012	\mathbf{U}
108-90-7	Chlorobenzene	0.13	0.13	0.067	0.029	0.029	0.014	\mathbf{U}
100-41-4	Ethylbenzene	0.26	0.67	0.25	0.061	0.15	0.058	J
179601-23-1	m,p-Xylenes	0.82	0.67	0.48	0.19	0.15	0.11	
75-25-2	Bromoform	0.67	0.67	0.28	0.064	0.064	0.027	U
100-42-5	Styrene	0.67	0.67	0.25	0.16	0.16	0.059	U
95-47-6	o-Xylene	0.49	0.67	0.25	0.11	0.15	0.058	J
79-34-5	1,1,2,2-Tetrachloroethane	0.13	0.13	0.076	0.019	0.019	0.011	U

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

RESULTS OF ANALYSIS

Page 3 of 3

Client: CH2M Hill

Container ID:

Client Sample ID: WAT-IA-7-032310 CAS Project ID: P1001084

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI CAS Sample ID: P1001084-013

Tentatively Identified Compounds

Test Code: EPA TO-15 Date Collected: 3/23/10

Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: 3/26/10
Analyst: Chris Cornett Date Analyzed: 4/1/10

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes: T

Initial Pressure (psig): -1.0 Final Pressure (psig): 3.5

Canister Dilution Factor: 1.33

GC/MS	Compound Identification	Concentration	Data Oualifier
Retention Time		μg/m³	Quanner
4.70	Propane	20	
23.82	Benzaldehyde	13	
26.26	Cymene Isomer	9.4	
26.79	1,2,3,4-Tetramethyl Benzene	12	
27.23	C ₁₀ H ₁₂ Aromatic Compound	12	
	Epichlorohydrin	NF	

T = Analyte is a tentatively identified compound, result is estimated.

AC00527

NF = Compound was searched for, but not found.

RESULTS OF ANALYSIS

Page 1 of 3

Client:

CH2M Hill

Client Sample ID: WAT-IA-6-032310

6.0 L Summa Canister

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

Date Collected: 3/23/10

CAS Sample ID: P1001084-014

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Received: 3/26/10

Analyst:

Chris Cornett

Date Analyzed: 4/1/10 Volume(s) Analyzed:

1.00 Liter(s)

Sampling Media: Test Notes:

Container ID:

AC00623

Initial Pressure (psig):

-1.8

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.41

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		μg/m³	$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	ppbV	Qualifier
74-87-3	Chloromethane	0.46	0.28	0.16	0.22	0.14	0.075	
75-01-4	Vinyl Chloride	0.14	0.14	0.092	0.055	0.055	0.036	U
74-83-9	Bromomethane	0.14	0.14	0.10	0.036	0.036	0.027	U
75-00-3	Chloroethane	0.14	0.14	0.11	0.053	0.053	0.043	U
67-64-1	Acetone	24	7.1	1.8	10	3.0	0.77	
107-13-1	Acrylonitrile	6.7	0.71	0.31	3.1	0.32	0.14	
75-35-4	1,1-Dichloroethene	0.14	0.14	0.11	0.036	0.036	0.027	U
75-09-2	Methylene Chloride	0.30	0.71	0.27	0.085	0.20	0.077	J
75-15-0	Carbon Disulfide	3.8	7.1	0.34	1.2	2.3	0.11	J
156-60-5	trans-1,2-Dichloroethene	0.14	0.14	0.083	0.036	0.036	0.021	U
75-34-3	1,1-Dichloroethane	0.14	0.14	0.087	0.035	0.035	0.022	\mathbf{U}
1634-04-4	Methyl tert-Butyl Ether	0.14	0.14	0.099	0.039	0.039	0.027	\mathbf{U}
78-93-3	2-Butanone (MEK)	1.0	7.1	0.31	0.34	2.4	0.11	J
156-59-2	cis-1,2-Dichloroethene	0.14	0.14	0.080	0.036	0.036	0.020	\mathbf{U}
67-66-3	Chloroform	0.47	0.14	0.083	0.096	0.029	0.017	
107-06-2	1,2-Dichloroethane	0.14	0.14	0.087	0.035	0.035	0.022	U
71-55-6	1,1,1-Trichloroethane	0.14	0.14	0.10	0.026	0.026	0.019	\mathbf{U}
71-43-2	Benzene	0.73	0.14	0.097	0.23	0.044	0.030	

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 2 of 3

Client:

CH2M Hill

Client Sample ID: WAT-IA-6-032310

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-014

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Received: 3/26/10

Date Collected: 3/23/10 Date Analyzed: 4/1/10

Instrument ID: Analyst: Sampling Media:

Chris Cornett

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC00623

6.0 L Summa Canister

Initial Pressure (psig):

-1.8

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.41

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		μg/m³	μg/m³		ppbV	ppbV	ppbV	Qualifier
56-23-5	Carbon Tetrachloride	0.63	0.14	0.11	0.10	0.022	0.017	
78-87-5	1,2-Dichloropropane	0.14	0.14	0.10	0.031	0.031	0.022	U .
75-27-4	Bromodichloromethane	0.14	0.14	0.10	0.021	0.021	0.015	\mathbf{U}
79-01-6	Trichloroethene	0.11	0.14	0.087	0.021	0.026	0.016	J
10061-01-5	cis-1,3-Dichloropropene	0.71	0.71	0.23	0.16	0.16	0.050	·U
108-10-1	4-Methyl-2-pentanone	130	0.71	0.27	31	0.17	0.065	
10061-02-6	trans-1,3-Dichloropropene	0.71	0.71	0.28	0.16	0.16	0.062	\mathbf{U}
79-00-5	1,1,2-Trichloroethane	0.14	0.14	0.078	0.026	0.026	0.014	\mathbf{U}
108-88-3	Toluene	1.8	0.71	0.27	0.46	0.19	0.071	
124-48-1	Dibromochloromethane	0.14	0.14	0.096	0.017	0.017	0.011	U
127-18-4	Tetrachloroethene	0.14	0.14	0.083	0.021	0.021	0.012	\mathbf{U}
108-90-7	Chlorobenzene	0.14	0.14	0.071	0.031	0.031	0.015	\mathbf{U}
100-41-4	Ethylbenzene	0.51	0.71	0.27	0.12	0.16	0.062	J
179601-23-1	m,p-Xylenes	1.7	0.71	0.51	0.39	0.16	0.12	
75-25-2	Bromoform	0.71	0.71	0.30	0.068	0.068	0.029	U
100-42-5	Styrene	0.71	0.71	0.27	0.17	0.17	0.063	U
95-47-6	o-Xylene	0.49	0.71	0.27	0.11	0.16	0.062	J
79-34-5	1,1,2,2-Tetrachloroethane	0.14	0.14	0.080	0.021	0.021	0.012	U

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 3 of 3

Client: CH2M Hill

Container ID:

Client Sample ID: WAT-IA-6-032310 CAS Project ID: P1001084

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI CAS Sample ID: P1001084-014

Tentatively Identified Compounds

Test Code: EPA TO-15 Date Collected: 3/23/10

Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: 3/26/10 Analyst: Chris Cornett Date Analyzed: 4/1/10

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Sampling Media. 0.0 L Sumina Canister volume(s) Analyzed. 1.00 Ener(s)

Test Notes: T

Initial Pressure (psig): -1.8 Final Pressure (psig): 3.5

Canister Dilution Factor: 1.41

GC/MS	Compound Identification	Concentration	Data
Retention Time		$\mu \mathrm{g}/\mathrm{m}^3$	Qualifier
4.71	Propane	81	
5.41	Acetaldehyde + Isobutane	7.9	
26.26	Cymene Isomer	6.4	
26.79	1,2,3,4-Tetramethyl Benzene	6.8	
27.23	C ₁₀ H ₁₂ Aromatic Compound	7.0	
	Epichlorohydrin	NF	

T = Analyte is a tentatively identified compound, result is estimated.

AC00623

NF = Compound was searched for, but not found.

RESULTS OF ANALYSIS

Page 1 of 3

Client:

CH2M Hill

Client Sample ID: WAT-SG-4-032310

CAS Project ID: P1001084

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Sample ID: P1001084-015

Test Code: Instrument ID: EPA TO-15

Date Collected: 3/23/10

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Received: 3/26/10

Analyst: Sampling Media: Chris Cornett

Date Analyzed: 4/1/10 & 4/3/10 Volume(s) Analyzed:

6.0 L Summa Canister

1.00 Liter(s) 0.050 Liter(s)

Test Notes: Container ID:

SC01013

Initial Pressure (psig):

-0.3

Final Pressure (psig):

3.5

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		μg/m ³	μg/m³	μg/m³	ppbV	ppbV	ppbV	
74-87-3	Chloromethane	0.25	0.25	0.14	0.12	0.12	0.067	U
75-01-4	Vinyl Chloride	0.13	0.13	0.082	0.049	0.049	0.032	\mathbf{U}
74-83-9	Bromomethane	0.13	0.13	0.092	0.032	0.032	0.024	\mathbf{U}
75-00-3	Chloroethane	0.22	0.13	0.10	0.084	0.048	0.038	
67-64-1	Acetone	37	6.3	1.6	15	2.7	0.69	in management
107-13-1	Acrylonitrile	0.38	0.63	0.28	0.18	0.29	0.13	J
75-35-4	1,1-Dichloroethene	0.34	0.13	0.095	0.086	0.032	0.024	
75-09-2	Methylene Chloride	0.35	0.63	0.24	0.10	0.18	0.069	J
75-15-0	Carbon Disulfide	11	6.3	0.30	3.4	2.0	0.097	
156-60-5	trans-1,2-Dichloroethene	0.13	0.13	0.074	0.032	0.032	0.019	U
75-34-3	1,1-Dichloroethane	4.1	0.13	0.078	1.0	0.031	0.019	
1634-04-4	Methyl tert-Butyl Ether	0.13	0.13	0.088	0.035	0.035	0.024	\mathbf{U}
78-93-3	2-Butanone (MEK)	2.0	6.3	0.28	0.69	2.1	0.094	J
156-59-2	cis-1,2-Dichloroethene	0.13	0.13	0.072	0.032	0.032	0.018	\mathbf{U}
67-66-3	Chloroform	770	2.5	0.074	160	0.52	0.015	D
107-06-2	1,2-Dichloroethane	0.13	0.13	0.078	0.031	0.031	0.019	U
71-55-6	1,1,1-Trichloroethane	-19	0.13	0.093	3.6	0.023	0.017	
71-43-2	Benzene	0.18	0.13	0.087	0.055	0.039	0.027	

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

D = The reported result is from a dilution.

RESULTS OF ANALYSIS

Page 2 of 3

Client:

CH2M Hill

Client Sample ID: WAT-SG-4-032310

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-015

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/23/10 Date Received: 3/26/10

Instrument ID: Analyst:

Chris Cornett

Date Analyzed: 4/1/10 & 4/3/10

1.00 Liter(s)

Sampling Media: Test Notes:

6.0 L Summa Canister

Volume(s) Analyzed:

0.050 Liter(s)

Container ID:

SC01013

Initial Pressure (psig):

-0.3

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.26

CAS#	Compound	Result μg/m³	MRL μg/m³	MDL μg/m³	Result ppbV	MRL ppbV	MDL ppbV	Data Qualifier
56-23-5	Carbon Tetrachloride	0.25	$\frac{\mu g/m}{0.13}$	0.095	0.040	0.020	0.015	Quantitei
78-87-5	1,2-Dichloropropane	8.0	0.13	0.092	1.7	0.027	0.020	
75-27-4	Bromodichloromethane	0.15	0.13	0.091	0.023	0.019	0.014	
79-01-6	Trichloroethene	4.8	0.13	0.078	0.90	0.023	0.015	
10061-01-5	cis-1,3-Dichloropropene	0.63	0.63	0.20	0.14	0.14	0.044	\mathbf{U}
108-10-1	4-Methyl-2-pentanone	10	0.63	0.24	2.5	0.15	0.058	
10061-02-6	trans-1,3-Dichloropropene	0.63	0.63	0.25	0.14	0.14	0.056	U
79-00-5	1,1,2-Trichloroethane	0.13	0.13	0.069	0.023	0.023	0.013	U
108-88-3	Toluene	2.2	0.63	0.24	0.59	0.17	0.064	
124-48-1	Dibromochloromethane	0.13	0.13	0.086	0.015	0.015	0.010	\mathbf{U}
127-18-4	Tetrachloroethene	34	0.13	0.074	5.0	0.019	0.011	
108-90-7	Chlorobenzene	0.13	0.13	0.063	0.027	0.027	0.014	U
100-41-4	Ethylbenzene	0.39	0.63	0.24	0.090	0.15	0.055	J
179601-23-1	m,p-Xylenes	0.57	0.63	0.45	0.13	0.15	0.10	J
75-25-2	Bromoform	0.63	0.63	0.26	0.061	0.061	0.026	\mathbf{U}
100-42-5	Styrene	0.63	0.63	0.24	0.15	0.15	0.056	U
95-47-6	o-Xylene	0.25	0.63	0.24	0.057	0.15	0.055	J
79-34-5	1,1,2,2-Tetrachloroethane	0.13	0.13	0.072	0.018	0.018	0.010	U_

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 3 of 3

Client:

CH2M Hill

Client Sample ID: WAT-SG-4-032310

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-015

EPA TO-15

Tentatively Identified Compounds

Date Collected: 3/23/10

Date Received: 3/26/10

Instrument ID: Analyst:

Test Code:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Chris Cornett

Date Analyzed: 4/1/10 & 4/3/10

Sampling Media:

1.00 Liter(s)

Test Notes:

T

6.0 L Summa Canister

Volume(s) Analyzed:

0.050 Liter(s)

Container ID:

SC01013

Initial Pressure (psig):

-0.3

Final Pressure (psig):

3.5

GC/MS	Compound Identification	Concentration	Data
Retention Time	·	$\mu {f g}/{f m}^3$	Qualifier
5.39	Isobutane	43	
14.74	1-Butanol	9.7	
20.77	Hexamethylcyclotrisiloxane	7.5	
21.19	Unidentified Polyfluorinated Compound	34	
22.22	Cyclohexanone	23	
	Epichlorohydrin	NF	,

T = Analyte is a tentatively identified compound, result is estimated.

NF = Compound was searched for, but not found.

RESULTS OF ANALYSIS

Page 1 of 3

Client:

CH2M Hill

Client Sample ID: WAT-SG-7a-032310

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-016

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/23/10

Date Received: 3/26/10

Instrument ID: Analyst:

Chris Cornett

Date Analyzed: 4/3/10 & 4/5/10 1.00 Liter(s)

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

0.050 Liter(s)

Test Notes: Container ID:

SC00139

Initial Pressure (psig):

-0.5

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.28

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		$\mu g/m^3$	μg/m³	$\mu g/m^3$	ppbV	ppbV	ppbV	Qualifier
74-87-3	Chloromethane	0.49	0.26	0.14	0.24	0.12	0.068	
75-01-4	Vinyl Chloride	0.096	0.13	0.083	0.038	0.050	0.033	J
74-83-9	Bromomethane	0.093	0.13	0.093	0.024	0.033	0.024	J
75-00-3	Chloroethane	0.39	0.13	0.10	0.15	0.049	0.039	
67-64-1	Acetone	42	6.4	1.7	18	2.7	0.70	M1
107-13-1	Acrylonitrile	0.39	0.64	0.28	0.18	0.30	0.13	J
75-35-4	1,1-Dichloroethene	0.86	0.13	0.096	0.22	0.032	0.024	
75-09-2	Methylene Chloride	11	0.64	0.24	3.3	0.18	0.070	, · · ·
75-15-0	Carbon Disulfide	820	130	0.31	260	41	0.099	D
156-60-5	trans-1,2-Dichloroethene	0.32	0.13	0.076	0.080	0.032	0.019	
75-34-3	1,1-Dichloroethane	2.4	0.13	0.079	0.58	0.032	0.020	
1634-04-4	Methyl tert-Butyl Ether	0.13	0.13	0.090	0.036	0.036	0.025	\mathbf{U}
78-93-3	2-Butanone (MEK)	2.8	6.4	0.28	0.95	2.2	0.096	J
156-59-2	cis-1,2-Dichloroethene	1.7	0.13	0.073	0.42	0.032	0.018	
67-66-3	Chloroform	99	0.13	0.076	20	0.026	0.015	
107-06-2	1,2-Dichloroethane	0.12	0.13	0.079	0.029	0.032	0.020	J
71-55-6	1,1,1-Trichloroethane	0.13	0.13	0.095	0.023	0.023	0.017	\mathbf{U}
71-43-2	Benzene	1.1	0.13	0.088	0.35	0.040	0.028	

U = Compound was analyzed for, but not detected above the laboratory detection limit.

M1 = Matrix interference due to coelution with a non-target compound; results may be biased high.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

D = The reported result is from a dilution.

RESULTS OF ANALYSIS

Page 2 of 3

Client:

CH2M Hill

Client Sample ID: WAT-SG-7a-032310

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-016

Test Code:

Analyst:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/23/10 Date Received: 3/26/10

Chris Cornett

Date Analyzed: 4/3/10 & 4/5/10

Sampling Media:

Instrument ID:

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

6.0 L Summa Canister

0.050 Liter(s)

Container ID:

SC00139

Initial Pressure (psig):

-0.5

Final Pressure (psig):

3.5

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	ppbV	Qualifier
56-23-5	Carbon Tetrachloride	0.62	0.13	0.096	0.098	0.020	0.015	
78-87-5	1,2-Dichloropropane	1.4	0.13	0.093	0.29	0.028	0.020	
75-27-4	Bromodichloromethane	0.13	0.13	0.092	0.019	0.019	0.014	U
79-01-6	Trichloroethene	2.2	0.13	0.079	0.41	0.024	0.015	
10061-01-5	cis-1,3-Dichloropropene	0.64	0.64	0.20	0.14	0.14	0.045	\mathbf{U}
108-10-1	4-Methyl-2-pentanone	260	13	0.24	63	3.1	0.059	D
10061-02-6	trans-1,3-Dichloropropene	0.64	0.64	0.26	0.14	0.14	0.056	U
79-00-5	1,1,2-Trichloroethane	0.13	0.13	0.070	0.023	0.023	0.013	\mathbf{U}
108-88-3	Toluene	62	0.64	0.24	16	0.17	0.065	
124-48-1	Dibromochloromethane	0.13	0.13	0.087	0.015	0.015	0.010	\mathbf{U}
127-18-4	Tetrachloroethene	0.80	0.13	0.076	0.12	0.019	0.011	
108-90-7	Chlorobenzene	0.13	0.13	0.064	0.028	0.028	0.014	U
100-41-4	Ethylbenzene	12	0.64	0.24	2.8	0.15	0.056	
179601-23-1	m,p-Xylenes	99	0.64	0.46	23	0.15	0.11	
75-25-2	Bromoform	0.64	0.64	0.27	0.062	0.062	0.026	\mathbf{U}
100-42-5	Styrene	1.6	0.64	0.24	0.37	0.15	0.057	
95-47-6	o-Xylene	23	0.64	0.24	5.3	0.15	0.056	
79-34-5	1,1,2,2-Tetrachloroethane	0.13	0.13	0.073	0.019	0.019	0.011	\mathbf{U}

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

D = The reported result is from a dilution.

RESULTS OF ANALYSIS

Page 3 of 3

Client:

CH2M Hill

Client Sample ID: WAT-SG-7a-032310

6.0 L Summa Canister

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-016

Tentatively Identified Compounds

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/23/10

Date Received: 3/26/10

Instrument ID: Analyst:

Test Code:

Chris Cornett

Date Analyzed: 4/3/10 & 4/5/10

Sampling Media: Test Notes:

T

Volume(s) Analyzed:

1.00 Liter(s) 0.050 Liter(s)

Container ID:

SC00139

Initial Pressure (psig):

-0.5

Final Pressure (psig):

3.5

GC/MS Retention Time	Compound Identification		Concentration µg/m³	Data Qualifier
7.77	Isopentane	,	260	
8.60	n-Pentane		140	
9.31	C_5H_{10} Compound		240	
23.35	Unidentified Compound		380	
25.18	2,2-Oxybispentane		200	
	Epichlorohydrin		NF	

T = Analyte is a tentatively identified compound, result is estimated.

NF = Compound was searched for, but not found.

RESULTS OF ANALYSIS

Page 1 of 3

Client:

CH2M Hill

Client Sample ID: WAT-SG-DUP-032310

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-017

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/23/10 Date Received: 3/26/10

Instrument ID: Analyst:

Chris Cornett

Date Analyzed: 4/3/10 & 4/5/10

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s) 0.050 Liter(s)

Test Notes: Container ID:

SC00592

Initial Pressure (psig):

-0.1

Final Pressure (psig):

3.6

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	ppbV	Qualifier
74-87-3	Chloromethane	0.50	0.25	0.14	0.24	0.12	0.067	
75-01-4	Vinyl Chloride	0.83	0.13	0.081	0.32	0.049	0.032	
74-83-9	Bromomethane	0.26	0.13	0.091	0.068	0.032	0.024	
75-00-3	Chloroethane	0.49	0.13	0.10	0.18	0.047	0.038	
67-64-1	Acetone	75	6.3	1.6	32	2.6	0.68	
107-13-1	Acrylonitrile	0.63	0.63	0.28	0.29	0.29	0.13	U
75-35-4	1,1-Dichloroethene	1.5	0.13	0.094	0.38	0.032	0.024	
75-09-2	Methylene Chloride	82	0.63	0.24	24	0,18	0.068	
75-15-0	Carbon Disulfide	1,000	130	0.30	320	40	0.096	D
156-60-5	trans-1,2-Dichloroethene	2.3	0.13	0.074	0.59	0.032	0.019	
75-34-3	1,1-Dichloroethane	11	0.13	0.078	2.8	0.031	0.019	
1634-04-4	Methyl tert-Butyl Ether	0.13	0.13	0.088	0.036	0.035	0.024	
78-93-3	2-Butanone (MEK)	3.7	6.3	0.28	1.2	2.1	0.093	J
156-59-2	cis-1,2-Dichloroethene	9.9	0.13	0.071	2.5	0.032	0.018	
67-66-3	Chloroform	190	2.5	0.074	39	0.51	0.015	D
107-06-2	1,2-Dichloroethane	0.11	0.13	0.078	0.028	0.031	0.019	J
71-55-6	1,1,1-Trichloroethane	0.13	0.13	0.093	0.023	0.023	0.017	U
71-43-2	Benzene	2.2	0.13	0.086	0.69	0.039	0.027	

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

D = The reported result is from a dilution.

RESULTS OF ANALYSIS

Page 2 of 3

Client:

CH2M Hill

Chent Sample 1D

Client Sample ID: WAT-SG-DUP-032310

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-017

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/23/10

Instrument ID:

Chris Cornett

Date Received: 3/26/10

Analyst: Sampling Media:

6.0 L Summa Canister

Date Analyzed: 4/3/10 & 4/5/10

Test Notes: 6.0

Volume(s) Analyzed:

1.00 Liter(s) 0.050 Liter(s)

Container ID:

SC00592

Initial Pressure (psig):

-0.1

Final Pressure (psig):

3.6

Canister Dilution Factor: 1.25

CAS#	Compound	Result µg/m³	MRL μg/m³	MDL μg/m³	Result ppbV	MRL ppbV	MDL ppbV	Data Qualifier
56-23-5	Carbon Tetrachloride	$\frac{\mu g/m}{0.53}$	$\frac{\mu g/m}{0.13}$	0.094	0.085	0.020	0.015	Quantici
78-87-5	1,2-Dichloropropane	6.0	0.13	0.091	1.3	0.027	0.020	
75-27-4	Bromodichloromethane	0.13	0.13	0.090	0.019	0.019	0.013	\mathbf{U}
79-01-6	Trichloroethene	4.4	0.13	0.078	0.82	0.023	0.014	
10061-01-5	cis-1,3-Dichloropropene	0.63	0.63	0.20	0.14	0.14	0.044	\mathbf{U}
108-10-1	4-Methyl-2-pentanone	930	13	0.24	230	3.1	0.058	D
10061-02-6	trans-1,3-Dichloropropene	0.63	0.63	0.25	0.14	0.14	0.055	U
79-00-5	1,1,2-Trichloroethane	0.13	0.13	0.069	0.023	0.023	0.013	U
108-88-3	Toluene	82	0.63	0.24	22	0.17	0.063	
124-48-1	Dibromochloromethane	0.13	0.13	0.085	0.015	0.015	0.010	U
127-18-4	Tetrachloroethene	2.8	0.13	0.074	0.41	0.018	0.011	
108-90-7	Chlorobenzene	0.13	0.13	0.063	0.027	0.027	0.014	\mathbf{U}
100-41-4	Ethylbenzene	60	0.63	0.24	14	0.14	0.055	
179601-23-1	m,p-Xylenes	600	13	0.45	140	2.9	0.10	D
75-25-2	Bromoform	0.63	0.63	0.26	0.060	0.060	0.025	U
100-42-5	Styrene	1.7	0.63	0.24	0.40	0.15	0.056	
95-47-6	o-Xylene	120	0.63	0.24	28	0.14	0.055	
79-34-5	1,1,2,2-Tetrachloroethane	0.13	0.13	0.071	0.018	0.018	0.010	U

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

D = The reported result is from a dilution.

Verified By: Date: Tol5scan.xls

RESULTS OF ANALYSIS

Page 3 of 3

Client:

CH2M Hill

Client Sample ID: WAT-SG-DUP-032310

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-017

Tentatively Identified Compounds

Test Code:

EPA TO-15

Date Collected: 3/23/10

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Received: 3/26/10

Analyst:

Chris Cornett

Date Analyzed: 4/3/10 & 4/5/10

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

0.050 Liter(s)

Test Notes:

T

Container ID:

SC00592

Initial Pressure (psig):

-0.1

Final Pressure (psig):

3.6

GC/MS	Compound Identification	Concentration	Data
Retention Time		μg/m³	Qualifier
9.30	C ₅ H ₁₀ Compound	1,400	
23.34	Unidentified Compound	2,100	
25.17	2,2-Oxybispentane	1,300	
25.24	Unidentified Compound	810	
27.00	Unidentified Compound	940	
	Epichlorohydrin	NF	

T = Analyte is a tentatively identified compound, result is estimated.

NF = Compound was searched for, but not found.

RESULTS OF ANALYSIS

Page 1 of 3

Client:

CH2M Hill

Client Sample ID: WAT-SG-9-032310

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-018

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

6.0 L Summa Canister

Date Collected: 3/23/10 Date Received: 3/26/10

Date Analyzed: 4/3/10

Analyst: Sampling Media:

Instrument ID:

Chris Cornett

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

SC00982

Initial Pressure (psig):

-1.3

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.36

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
74.07.2		μg/m³	$\mu g/m^3$	μg/m ³	ppbV	ppbV	ppbV	Qualifier
74-87-3	Chloromethane	0.38	0.27	0.15	0.19	0.13	0.072	
75-01-4	Vinyl Chloride	0.14	0.14	0.088	0.053	0.053	0.035	\mathbf{U}
74-83-9	Bromomethane	0.14	0.14	0.099	0.035	0.035	0.026	\mathbf{U}
75-00-3	Chloroethane	0.14	0.14	0.11	0.052	0.052	0.041	\mathbf{U}
67-64-1	Acetone	14	6.8	1.8	6.0	2.9	0.74	
107-13-1	Acrylonitrile	0.68	0.68	0.30	0.31	0.31	0.14	\mathbf{U}
75-35-4	1,1-Dichloroethene	0.14	0.14	0.10	0.034	0.034	0.026	\mathbf{U}
75-09-2	Methylene Chloride	0.68	0.68	0.26	0.20	0.20	0.074	U .
75-15-0	Carbon Disulfide	5.7	6.8	0.33	1.8	2.2	0.10	J
156-60-5	trans-1,2-Dichloroethene	0.14	0.14	0.080	0.034	0.034	0.020	${f U}$
75-34-3	1,1-Dichloroethane	0.14	0.14	0.084	0.034	0.034	0.021	U
1634-04-4	Methyl tert-Butyl Ether	0.14	0.14	0.095	0.038	0.038	0.026	\mathbf{U}_{+}
78-93-3	2-Butanone (MEK)	1.1	6.8	0.30	0.37	2.3	0.10	J
156-59-2	cis-1,2-Dichloroethene	0.14	0.14	0.078	0.034	0.034	0.020	\mathbf{U}
67-66-3	Chloroform	41	0.14	0.080	8.3	0.028	0.016	
107-06-2	1,2-Dichloroethane	0.15	0.14	0.084	0.037	0.034	0.021	
71-55-6	1,1,1-Trichloroethane	0.14	0.14	0.10	0.025	0.025	0.018	U
71-43-2	Benzene	0.55	0.14	0.094	0.17	0.043	0.029	

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

RESULTS OF ANALYSIS

Page 2 of 3

Client:

CH2M Hill

Client Sample ID: WAT-SG-9-032310

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-018

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/23/10 Date Received: 3/26/10

Instrument ID:

Chris Cornett

Analyst:

Date Analyzed: 4/3/10

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

SC00982

Initial Pressure (psig):

-1.3

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.36

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		μg/m³	$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	ppbV	Qualifier
56-23-5	Carbon Tetrachloride	0.50	0.14	0.10	0.079	0.022	0.016	
78-87-5	1,2-Dichloropropane	1.7	0.14	0.099	0.37	0.029	0.021	
75-27-4	Bromodichloromethane	0.14	0.14	0.098	0.020	0.020	0.015	\mathbf{U}
79-01-6	Trichloroethene	13	0.14	0.084	2.5	0.025	0.016	
10061-01-5	cis-1,3-Dichloropropene	0.68	0.68	0.22	0.15	0.15	0.048	\mathbf{U}
108-10-1	4-Methyl-2-pentanone	53	0.68	0.26	13	0.17	0.063	W. W. B.
10061-02-6	trans-1,3-Dichloropropene	0.68	0.68	0.27	0.15	0.15	0.060	U
79-00-5	1,1,2-Trichloroethane	0.092	0.14	0.075	0.017	0.025	0.014	J
108-88-3	Toluene	1.8	0.68	0.26	0.47	0.18	0.069	
124-48-1	Dibromochloromethane	0.14	0.14	0.092	0.016	0.016	0.011	U
127-18-4	Tetrachloroethene	0.27	0.14	0.080	0.040	0.020	0.012	
108-90-7	Chlorobenzene	0.086	0.14	0.068	0.019	0.030	0.015	J
100-41-4	Ethylbenzene	0.68	0.68	0.26	0.16	0.16	0.060	U
179601-23-1	m,p-Xylenes	0.61	0.68	0.49	0.14	0.16	0.11	J
75-25-2	Bromoform	0.68	0.68	0.29	0.066	0.066	0.028	U
100-42-5	Styrene	0.68	0.68	0.26	0.16	0.16	0.061	U
95-47-6	o-Xylene	0.68	0.68	0.26	0.16	0.16	0.060	\mathbf{U}
79-34-5	1,1,2,2-Tetrachloroethane	0.14	0.14	0.078	0.020	0.020	0.011	U

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

RESULTS OF ANALYSIS

Page 3 of 3

Client:

CH2M Hill

Client Sample ID: WAT-SG-9-032310

CAS Project ID: P1001084

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Sample ID: P1001084-018

Test Code:

Tentatively Identified Compounds

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/23/10

6.0 L Summa Canister

Date Received: 3/26/10

Analyst: Sampling Media:

Instrument ID:

Chris Cornett

Date Analyzed: 4/3/10 Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

T

Container ID:

SC00982

Initial Pressure (psig):

-1.3

Final Pressure (psig):

3.5

GC/MS	Compound Identification	Concentration	Data
Retention Time	•	$\mu \mathrm{g}/\mathrm{m}^3$	Qualifier
4.70	Propane	15	
5.40	Acetaldehyde + Isobutane	6.4	
8.59	n-Pentane	4.8	
26.27	Cymene Isomer	4.4	
27.25	Unidentified Compound	13	
The state of the s	Epichlorohydrin	NF	

T = Analyte is a tentatively identified compound, result is estimated.

NF = Compound was searched for, but not found.

RESULTS OF ANALYSIS Page 1 of 3

Client:

CH2M Hill

Client Sample ID: Method Blank

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

Date Collected: NA

Date Received: NA

CAS Sample ID: P100331-MB

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Analyst:

Chris Cornett

Sampling Media:

6.0 L Summa Canister

Date Analyzed: 3/31/10 Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

CAS#	Compound	Result μg/m³	MRL μg/m³	$\frac{MDL}{\mu g/m^3}$	Result ppbV	MRL ppbV	MDL ppbV	Data Qualifier
74-87-3	Chloromethane	0.20	0.20	0.11	0.097	0.097	0.053	U
75-01-4	Vinyl Chloride	0.10	0.10	0.065	0.039	0.039	0.025	\mathbf{U}
74-83-9	Bromomethane	0.10	0.10	0.073	0.026	0.026	0.019	U
75-00-3	Chloroethane	0.10	0.10	0.080	0.038	0.038	0.030	\mathbf{U}
67-64-1	Acetone	5.0	5.0	1.3	2.1	2.1	0.55	\mathbf{U}
107-13-1	Acrylonitrile	0.50	0.50	0.22	0.23	0.23	0.10	U
75-35-4	1,1-Dichloroethene	0.10	0.10	0.075	0.025	0.025	0.019	\mathbf{U}
75-09-2	Methylene Chloride	0.50	0.50	0.19	0.14	0.14	0.055	\mathbf{U}
75-15-0	Carbon Disulfide	5.0	5.0	0.24	1.6	1.6	0.077	\mathbf{U}
156-60-5	trans-1,2-Dichloroethene	0.10	0.10	0.059	0.025	0.025	0.015	\mathbf{U}
75-34-3	1,1-Dichloroethane	0.10	0.10	0.062	0.025	0.025	0.015	U
1634-04-4	Methyl tert-Butyl Ether	0.10	0.10	0.070	0.028	0.028	0.019	U
78-93-3	2-Butanone (MEK)	5.0	5.0	0.22	1.7	1.7	0.075	\mathbf{U}
156-59-2	cis-1,2-Dichloroethene	0.10	0.10	0.057	0.025	0.025	0.014	U
67-66-3	Chloroform	0.10	0.10	0.059	0.020	0.020	0.012	\mathbf{U}
107-06-2	1,2-Dichloroethane	0.10	0.10	0.062	0.025	0.025	0.015	U
71-55-6	1,1,1-Trichloroethane	0.10	0.10	0.074	0.018	0.018	0.014	\mathbf{U}
71-43-2	Benzene	0.10	0.10	0.069	0.031	0.031	0.022	\mathbf{U}_{\perp}

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 2 of 3

Client:

CH2M Hill

Client Sample ID: Method Blank

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084 CAS Sample ID: P100331-MB

Date Collected: NA

Date Received: NA

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Analyst:

Chris Cornett

Sampling Media:

6.0 L Summa Canister

Date Analyzed: 3/31/10 Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

CAS#	Compound	Result	MRL	MDL	Result ppbV	MRL ppbV	MDL ppbV	Data Qualifier
56 22 5	Carbon Tetrachloride	<u>μg/m³</u>	$\mu g/m^3$	$\frac{\mu g/m^3}{0.075}$		0.016		
56-23-5		0.10	0.10		0.016		0.012	U
78-87-5	1,2-Dichloropropane	0.10	0.10	0.073	0.022	0.022	0.016	U
75-27-4	Bromodichloromethane	0.10	0.10	0.072	0.015	0.015	0.011	${f U}$
79-01-6	Trichloroethene	0.10	0.10	0.062	0.019	0.019	0.012	\mathbf{U}
10061-01-5	cis-1,3-Dichloropropene	0.50	0.50	0.16	0.11	0.11	0.035	U
108-10-1	4-Methyl-2-pentanone	0.50	0.50	0.19	0.12	0.12	0.046	\mathbf{U}
10061-02-6	trans-1,3-Dichloropropene	0.50	0.50	0.20	0.11	0.11	0.044	\mathbf{U}
79-00-5	1,1,2-Trichloroethane	0.10	0.10	0.055	0.018	0.018	0.010	\mathbf{U}
108-88-3	Toluene	0.50	0.50	0.19	0.13	0.13	0.050	\mathbf{U}
124-48-1	Dibromochloromethane	0.10	0.10	0.068	0.012	0.012	0.0080	\mathbf{U}
127-18-4	Tetrachloroethene	0.10	0.10	0.059	0.015	0.015	0.0087	U
108-90-7	Chlorobenzene	0.10	0.10	0.050	0.022	0.022	0.011	U
100-41-4	Ethylbenzene	0.50	0.50	0.19	0.12	0.12	0.044	\mathbf{U}
179601-23-1	m,p-Xylenes	0.50	0.50	0.36	0.12	0.12	0.083	\mathbf{U}
75-25-2	Bromoform	0.50	0.50	0.21	0.048	0.048	0.020	\mathbf{U}
100-42-5	Styrene	0.50	0.50	0.19	0.12	0.12	0.045	U
95-47-6	o-Xylene	0.50	0.50	0.19	0.12	0.12	0.044	U
79-34-5	1,1,2,2-Tetrachloroethane	0.10	0.10	0.057	0.015	0.015	0.0083	U

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 3 of 3

Tentatively Identified Compounds

Client:

CH2M Hill

Client Sample ID: Method Blank

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P100331-MB

Test Code:

EPA TO-15

Date Collected: NA

Instrument ID:

Test Notes:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Received: NA

Date Analyzed: 3/31/10

Analyst:

Chris Cornett

Volume(s) Analyzed:

1.00 Liter(s)

Sampling Media:

6.0 L Summa Canister

Canister Dilution Factor: 1.00

GC/MS

Compound Identification

Concentration

Data

Retention Time

Epichlorohydrin

 $\mu g/m^3$ NF Qualifier

NF = Compound was searched for, but not found.

RESULTS OF ANALYSIS Page 1 of 3

Client:

CH2M Hill

Client Sample ID: Method Blank

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P100402-MB

Date Collected: NA

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Analyst:

Chris Cornett

Sampling Media:

6.0 L Summa Canister

Date Received: NA

Date Analyzed: 4/2/10

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	ppbV	Qualifier
74-87-3	Chloromethane	0.20	0.20	0.11	0.097	0.097	0.053	U
75-01-4	Vinyl Chloride	0.10	0.10	0.065	0.039	0.039	0.025	\mathbf{U}
74-83-9	Bromomethane	0.10	0.10	0.073	0.026	0.026	0.019	U
75-00-3	Chloroethane	0.10	0.10	0.080	0.038	0.038	0.030	U
67-64-1	Acetone	5.0	5.0	1.3	2.1	2.1	0.55	\mathbf{U}
107-13-1	Acrylonitrile	0.50	0.50	0.22	0.23	0.23	0.10	U
75-35-4	1,1-Dichloroethene	0.10	0.10	0.075	0.025	0.025	0.019	\mathbf{U}
75-09-2	Methylene Chloride	0.50	0.50	0.19	0.14	0.14	0.055	\mathbf{U}
75-15-0	Carbon Disulfide	5.0	5.0	0.24	1.6	1.6	0.077	\mathbf{U}
156-60-5	trans-1,2-Dichloroethene	0.10	0.10	0.059	0.025	0.025	0.015	\mathbf{U}
75-34-3	1,1-Dichloroethane	0.10	0.10	0.062	0.025	0.025	0.015	U
1634-04-4	Methyl tert-Butyl Ether	0.10	0.10	0.070	0.028	0.028	0.019	\mathbf{U}
78-93-3	2-Butanone (MEK)	5.0	5.0	0.22	1.7	1.7	0.075	\mathbf{U}
156-59-2	cis-1,2-Dichloroethene	0.10	0.10	0.057	0.025	0.025	0.014	\mathbf{U}_{-}
67-66-3	Chloroform	0.10	0.10	0.059	0.020	0.020	0.012	\mathbf{U}
107-06-2	1,2-Dichloroethane	0.10	0.10	0.062	0.025	0.025	0.015	U
71-55-6	1,1,1-Trichloroethane	0.10	0.10	0.074	0.018	0.018	0.014	\mathbf{U}
71-43-2	Benzene	0.10	0.10	0.069	0.031	0.031	0.022	U

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 2 of 3

Client:

CH2M Hill

Client Sample ID: Method Blank

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P100402-MB

Test Code:

Instrument ID:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: NA Date Received: NA

Chris Cornett

Date Analyzed: 4/2/10

Analyst: Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

CAS#	Compound	Result µg/m³	$MRL \mu g/m^3$	MDL $\mu g/m^3$	Result ppbV	MRL ppbV	MDL ppbV	Data Qualifier
56-23-5	Carbon Tetrachloride	0.10	0.10	0.075	0.016	0.016	0.012	U
78-87-5	1,2-Dichloropropane	0.10	0.10	0.073	0.022	0.022	0.016	\mathbf{U}
75-27-4	Bromodichloromethane	0.10	0.10	0.072	0.015	0.015	0.011	\mathbf{U}
79-01-6	Trichloroethene	0.10	0.10	0.062	0.019	0.019	0.012	U
10061-01-5	cis-1,3-Dichloropropene	0.50	0.50	0.16	0.11	0.11	0.035	U
108-10-1	4-Methyl-2-pentanone	0.50	0.50	0.19	0.12	0.12	0.046	U
10061-02-6	trans-1,3-Dichloropropene	0.50	0.50	0.20	0.11	0.11	0.044	\mathbf{U}
79-00-5	1,1,2-Trichloroethane	0.10	0.10	0.055	0.018	0.018	0.010	\mathbf{U}
108-88-3	Toluene	0.50	0.50	0.19	0.13	0.13	0.050	U
124-48-1	Dibromochloromethane	0.10	0.10	0.068	0.012	0.012	0.0080	\mathbf{U}
127-18-4	Tetrachloroethene	0.10	0.10	0.059	0.015	0.015	0.0087	U
108-90-7	Chlorobenzene	0.10	0.10	0.050	0.022	0.022	0.011	U
100-41-4	Ethylbenzene	0.50	0.50	0.19	0.12	0.12	0.044	\mathbf{U}
179601-23-1	m,p-Xylenes	0.50	0.50	0.36	0.12	0.12	0.083	\mathbf{U}
75-25-2	Bromoform	0.50	0.50	0.21	0.048	0.048	0.020	\mathbf{U}
100-42-5	Styrene	0.50	0.50	0.19	0.12	0.12	0.045	U
95-47-6	o-Xylene	0.50	0.50	0.19	0.12	0.12	0.044	\mathbf{U}
79-34-5	1,1,2,2-Tetrachloroethane	0.10	0.10	0.057	0.015	0.015	0.0083	U

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 3 of 3

Client:

CH2M Hill

Client Sample ID: Method Blank

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P100402-MB

Tentatively Identified Compounds

Test Code:

EPA TO-15

Date Collected: NA

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Received: NA

Analyst:

Chris Cornett

Date Analyzed: 4/2/10

Sampling Media: 6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

GC/MS

Compound Identification

Concentration

Data

Retention Time

Epichlorohydrin

 $\mu g/m^3$ NF Qualifier

NF = Compound was searched for, but not found.

RESULTS OF ANALYSIS Page 1 of 3

Client:

CH2M Hill

Client Sample ID: Method Blank

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P100405-MB

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Analyst:

Chris Cornett

Sampling Media:

6.0 L Summa Canister

Date Collected: NA Date Received: NA

Date Analyzed: 4/5/10

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

CAS#	Compound		Result µg/m³	$MRL \mu g/m^3$	MDL μg/m³	Result ppbV	MRL ppbV	MDL ppbV	Data Qualifier
74-87-3	Chloromethane		0.20	0.20	0.11	0.097	0.097	0.053	U
75-01-4	Vinyl Chloride		0.10	0.10	0.065	0.039	0.039	0.025	\mathbf{U}
74-83-9	Bromomethane		0.10	0.10	0.073	0.026	0.026	0.019	U
75-00-3	Chloroethane		0.10	0.10	0.080	0.038	0.038	0.030	\mathbf{U}_{\perp}
67-64-1	Acetone		5.0	5.0	1.3	2.1	2.1	0.55	\mathbf{U}
107-13-1	Acrylonitrile		0.50	0.50	0.22	0.23	0.23	0.10	U
75-35-4	1,1-Dichloroethene		0.10	0.10	0.075	0.025	0.025	0.019	U
75-09-2	Methylene Chloride	1	0.50	0.50	0.19	0.14	0.14	0.055	\mathbf{U}
75-15-0	Carbon Disulfide		5.0	5.0	0.24	1.6	1.6	0.077	\mathbf{U}
156-60-5	trans-1,2-Dichloroethene		0.10	0.10	0.059	0.025	0.025	0.015	U
75-34-3	1,1-Dichloroethane		0.10	0.10	0.062	0.025	0.025	0.015	U
1634-04-4	Methyl tert-Butyl Ether		0.10	0.10	0.070	0.028	0.028	0.019	\mathbf{U}
78-93-3	2-Butanone (MEK)		5.0	5.0	0.22	1.7	1.7	0.075	\mathbf{U}
156-59-2	cis-1,2-Dichloroethene		0.10	0.10	0.057	0.025	0.025	0.014	\mathbf{U}
67-66-3	Chloroform	-	0.10	0.10	0.059	0.020	0.020	0.012	\mathbf{U}
107-06-2	1,2-Dichloroethane		0.10	0.10	0.062	0.025	0.025	0.015	U
71-55-6	1,1,1-Trichloroethane		0.10	0.10	0.074	0.018	0.018	0.014	\mathbf{U}
71-43-2	Benzene		0.10	0.10	0.069	0.031	0.031	0.022	<u>U</u>

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 2 of 3

Client:

CH2M Hill

Client Sample ID: Method Blank

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084 CAS Sample ID: P100405-MB

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Analyst:

Sampling Media:

6.0 L Summa Canister

Chris Cornett

Date Collected: NA

Date Received: NA Date Analyzed: 4/5/10

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

CAS#	Compound	Result µg/m³	$\frac{MRL}{\mu g/m^3}$	MDL $\mu g/m^3$	Result ppbV	MRL ppbV	MDL ppbV	Data Qualifier
56-23-5	Carbon Tetrachloride	0.10	0.10	0.075	0.016	0.016	0.012	U
78-87-5	1,2-Dichloropropane	0.10	0.10	0.073	0.022	0.022	0.016	${f U}$
75-27-4	Bromodichloromethane	0.10	0.10	0.072	0.015	0.015	0.011	\mathbf{U}
79-01-6	Trichloroethene	0.10	0.10	0.062	0.019	0.019	0.012	\mathbf{U}
10061-01-5	cis-1,3-Dichloropropene	0.50	0.50	0.16	0.11	0.11	0.035	\mathbf{U}
108-10-1	4-Methyl-2-pentanone	0.50	0.50	0.19	0.12	0.12	0.046	U ·
10061-02-6	trans-1,3-Dichloropropene	0.50	0.50	0.20	0.11	0.11	0.044	\mathbf{U}
79-00-5	1,1,2-Trichloroethane	0.10	0.10	0.055	0.018	0.018	0.010	${f U}$
108-88-3	Toluene	0.50	0.50	0.19	0.13	0.13	0.050	\mathbf{U}
124-48-1	Dibromochloromethane	0.10	0.10°	0.068	0.012	0.012	0.0080	\mathbf{U}
127-18-4	Tetrachloroethene	0.10	0.10	0.059	0.015	0.015	0.0087	U
108-90-7	Chlorobenzene	0.10	0.10	0.050	0.022	0.022	0.011	\mathbf{U}
100-41-4	Ethylbenzene	0.50	0.50	0.19	0.12	0.12	0.044	\mathbf{U}
179601-23-1	m,p-Xylenes	0.50	0.50	0.36	0.12	0.12	0.083	\mathbf{U}
75-25-2	Bromoform	0.50	0.50	0.21	0.048	0.048	0.020	\mathbf{U}
100-42-5	Styrene	0.50	0.50	0.19	0.12	0.12	0.045	U
95-47-6	o-Xylene	0.50	0.50	0.19	0.12	0.12	0.044	\mathbf{U}
79-34-5	1,1,2,2-Tetrachloroethane	0.10	0.10	0.057	0.015	0.015	0.0083	\mathbf{U}

U = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 3 of 3

Tentatively Identified Compounds

Client:

CH2M Hill

Client Sample ID: Method Blank

CAS Project ID: P1001084

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Sample ID: P100405-MB

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: NA Date Received: NA

Chris Cornett

Date Analyzed: 4/5/10

Analyst: Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Test Code:

Instrument ID:

Canister Dilution Factor: 1.00

GC/MS

Compound Identification

Concentration

Data

Retention Time

Epichlorohydrin

 $\mu g/m^3$

Qualifier

NF = Compound was searched for, but not found.

SURROGATE SPIKE RECOVERY RESULTS $\label{eq:page1} \textbf{Page 1 of 1}$

Client:

CH2M Hill

Client Project ID:

DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

Date(s) Collected: 3/23 - 3/24/10

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Analyst:

Chris Cornett

Sampling Media:

6.0 L Summa Canister(s)

Date(s) Received: 3/26/10 Date(s) Analyzed: 3/31 - 4/5/10

Test Notes:

		1,2-Dichlor	oethane-d4	Tolue	ene-d8	Bromofluo	robenzene	
Client Sample ID	CAS Sample ID	%	Acceptance	0/0	Acceptance	%	Acceptance	Data
		Recovered	Limits	Recovered	Limits	Recovered	Limits	Qualifier
Method Blank	P100331-MB	100	70-130	99	70-130	99	70-130	,
Method Blank	P100402-MB	106	70-130	103	70-130	95	70-130	
Method Blank	P100405-MB	98	70-130	101	70-130	94	70-130	
Lab Control Sample	P100331-LCS	96	70-130	100	70-130	101	70-130	
Lab Control Sample	P100402-LCS	95	70-130	104	70-130	96	70-130	
Lab Control Sample	P100405-LCS	99	70-130	101	70-130	97	70-130	
SGP-10-032410	P1001084-001	96	70-130	101	70-130	102	70-130	
SGP-10-032410	P1001084-001DUP	97	70-130	100	70-130	100	70-130	
SGP-9-032410	P1001084-002	105	70-130	101	70-130	101	70-130	
SGP-RP-032410	P1001084-003	97	70-130	100	70-130	101	70-130	
RP-IA-032410	P1001084-004	99	70-130	100	70-130	101	70-130	
SGP-SWMU1-032410	P1001084-005	98	70-130	99	70-130	101	70-130	
RP-CS-1-032410	P1001084-006	98	70-130	100	70-130	102	70-130	
SGP-DUP-032410	P1001084-007	101	70-130	99	70-130	99	70-130	
WAT-SG-B2-032310	P1001084-008	100	70-130	98	70-130	101	70-130	
WAT-SG-B4-032310	P1001084-009	100	70-130	98	70-130	101	70-130	
WAT-SG-FB-032310	P1001084-010	100	70-130	100	70-130	102	70-130	
WAT-IA-3-032310	P1001084-011	101	70-130	98	70-130	101	70-130	
WAT-IA-5-032310	P1001084-012	102	70-130	97	70-130	101	70-130	
WAT-IA-7-032310	P1001084-013	100	70-130	98	70-130	102	70-130	,
WAT-IA-6-032310	P1001084-014	98	70-130	98	70-130	101	70-130	
WAT-SG-4-032310	P1001084-015	100	70-130	97	70-130	102	70-130	
WAT-SG-7a-032310	P1001084-016	102	70-130	96	70-130	92	70-130	
WAT-SG-DUP-032310	P1001084-017	97	70-130	87	70-130	83	70-130	
WAT-SG-9-032310	P1001084-018	95	70-130	102	70-130	96	70-130	

erified By: Date: 4/8/16

LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 2

Client:

CH2M Hill

Client Sample ID: Lab Control Sample

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P100331-LCS

Test Code:

EPA TO-15

Instrument ID:

Test Notes:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Analyst: Sampling Media:

Chris Cornett

6.0 L Summa Canister

Date Collected: NA

Date Received: NA

Date Analyzed: 3/31/10 Volume(s) Analyzed:

NA Liter(s)

					Project	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ng	ng		Limits	Qualifier
74-87-3	Chloromethane	25.0	27.8	111	70-130	
75-01-4	Vinyl Chloride	25.3	28.8	114	70-130	
74-83-9	Bromomethane	25.8	30.8	119	70-130	
75-00-3	Chloroethane	25.5	27.5	108	70-130	
67-64-1	Acetone	132	133	101	70-130	
107-13-1	Acrylonitrile	25.8	29.0	112	70-130	
75-35-4	1,1-Dichloroethene	27.5	31.0	113	70-130	
75-09-2	Methylene Chloride	26.8	28.2	105	70-130	
75-15-0	Carbon Disulfide	26.0	27.9	107	70-130	
156-60-5	trans-1,2-Dichloroethene	25.5	29.3	115	70-130	
75-34-3	1,1-Dichloroethane	26.5	28.2	106	70-130	-
1634-04-4	Methyl tert-Butyl Ether	26.3	28.9	110	70-130	
78-93-3	2-Butanone (MEK)	26.8	31.3	117	70-130	
156-59-2	cis-1,2-Dichloroethene	27.0	29.9	111	70-130	
67-66-3	Chloroform	27.5	28.6	104	70-130	
107-06-2	1,2-Dichloroethane	26.3	28.2	107	70-130	
71-55-6	1,1,1-Trichloroethane	26.0	27.9	107	70-130	
71-43-2	Benzene	25.8	28.6	111	70-130	

LABORATORY CONTROL SAMPLE SUMMARY Page 2 of 2

Client:

CH2M Hill

Client Sample ID: Lab Control Sample

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

Date Collected: NA

Date Received: NA

CAS Sample ID: P100331-LCS

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Analyst:

Chris Cornett

Sampling Media:

6.0 L Summa Canister

Date Analyzed: 3/31/10 Volume(s) Analyzed:

NA Liter(s)

Test Notes:

					Project	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ng	ng		Limits	Qualifier
56-23-5	Carbon Tetrachloride	26.3	28.3	108	70-130	
78-87-5	1,2-Dichloropropane	26.0	28.2	108	70-130	
75-27-4	Bromodichloromethane	26.3	29.2	111	70-130	
79-01-6	Trichloroethene	25.8	28.8	112	70-130	
10061-01-5	cis-1,3-Dichloropropene	24.5	29.9	122	70-130	
108-10-1	4-Methyl-2-pentanone	26.8	29.8	111	70-130	
10061-02-6	trans-1,3-Dichloropropene	27.0	32.5	120	70-130	
79-00-5	1,1,2-Trichloroethane	26.0	29.8	115	70-130	
108-88-3	Toluene	26.8	28.9	108	70-130	
124-48-1	Dibromochloromethane	28.3	31.2	110	70-130	
127-18-4	Tetrachloroethene	25.3	26.9	106	70-130	
108-90-7	Chlorobenzene	26.5	28.2	106	70-130	
100-41-4	Ethylbenzene	26.3	28.8	110	70-130	
179601-23-1	m,p-Xylenes	51.5	56.4	110	70-130	
75-25-2	Bromoform	26.5	28.9	109	70-130	
100-42-5	Styrene	26.3	30.1	114	70-130	
95-47-6	o-Xylene	26.0	28.5	110	70-130	
79-34-5	1,1,2,2-Tetrachloroethane	27.0	30.8	114	70-130	

LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 2

Client:

CH2M Hill

Client Sample ID: Lab Control Sample

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P100402-LCS

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Analyst:

Chris Cornett

Sampling Media:

6.0 L Summa Canister

Date Collected: NA Date Received: NA

Date Analyzed: 4/02/10

Volume(s) Analyzed:

NA Liter(s)

Test Notes:

					Project	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ng	ng		Limits	Qualifier
74-87-3	Chloromethane	25.0	25.4	102	70-130	
75-01-4	Vinyl Chloride	25.3	26.4	104	70-130	
74-83-9	Bromomethane	25.8	29.1	113	70-130	
75-00-3	Chloroethane	25.5	25.7	101	70-130	
67-64-1	Acetone	132	127	96	70-130	
107-13-1	Acrylonitrile	25.8	26.9	104	70-130	
75-35-4	1,1-Dichloroethene	27.5	29.2	106	70-130	
75-09-2	Methylene Chloride	26.8	26.5	99	70-130	
75-15-0	Carbon Disulfide	26.0	26.3	101	70-130	
156-60-5	trans-1,2-Dichloroethene	25.5	27.4	107	70-130	
75-34-3	1,1-Dichloroethane	26.5	26.8	101	70-130	
1634-04-4	Methyl tert-Butyl Ether	26.3	27.1	103	70-130	
78-93-3	2-Butanone (MEK)	26.8	29.8	111	70-130	
156-59-2	cis-1,2-Dichloroethene	27.0	27.9	103	70-130	
67-66-3	Chloroform	27.5	26.7	97	70-130	
107-06-2	1,2-Dichloroethane	26.3	26.0	99	70-130	
71-55-6	1,1,1-Trichloroethane	26.0	26.3	101	70-130	
71-43-2	Benzene	25.8	26.8	104	70-130	

LABORATORY CONTROL SAMPLE SUMMARY Page 2 of 2

Client:

CH2M Hill

Client Sample ID: Lab Control Sample

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P100402-LCS

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: NA

Instrument ID: Analyst:

Test Notes:

Date Received: NA Date Analyzed: 4/02/10

Chris Cornett

Volume(s) Analyzed:

NA Liter(s)

Sampling Media:

6.0 L Summa Canister

Project Acceptance Data CAS# Compound Spike Amount Result % Recovery Limits Qualifier ng ng 56-23-5 Carbon Tetrachloride 26.3 26.4 100 70-130 78-87-5 1,2-Dichloropropane 26.0 26.4 102 70-130 Bromodichloromethane 26.3 27.1 103 70-130 75-27-4 25.8 26.9 70-130 Trichloroethene 104 79-01-6 cis-1,3-Dichloropropene 24.5 28.0 114 70-130 10061-01-5 108-10-1 4-Methyl-2-pentanone 26.8 27.8 104 70-130 10061-02-6 trans-1,3-Dichloropropene 27.0 30.0 111 70-130 27.9 70-130 79-00-5 1,1,2-Trichloroethane 26.0 107 26.8 28.5 106 70-130 108-88-3 Toluene 28.3 30.6 108 70-130 Dibromochloromethane 124-48-1 70-130 Tetrachloroethene 25.3 26.7 106 127-18-4 108-90-7 Chlorobenzene 26.5 28.2 106 70-130 70-130 100-41-4 Ethylbenzene 26.3 28.6 109 70-130 51.5 56.3 109 179601-23-1 m,p-Xylenes 26.5 29.1 70-130 75-25-2 Bromoform 110 26.3 30.0 114 70-130 Styrene 100-42-5 70-130 95-47-6 o-Xylene 26.0 28.5 110 27.0 30.7 114 70-130 79-34-5 1,1,2,2-Tetrachloroethane

LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 2

Client:

CH2M Hill

Client Sample ID: Lab Control Sample

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

Date Collected: NA

Date Received: NA

CAS Sample ID: P100405-LCS

Test Code:

Analyst:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Chris Cornett

Sampling Media:

6.0 L Summa Canister

Date Analyzed: 4/05/10

Volume(s) Analyzed:

NA Liter(s)

Test Notes:

					Project	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ng	ng		Limits	Qualifier
74-87-3	Chloromethane	25.0	23.0	92	70-130	
75-01-4	Vinyl Chloride	25.3	24.2	96	70-130	
74-83-9	Bromomethane	25.8	28.0	109	70-130	
75-00-3	Chloroethane	25.5	25.4	100	70-130	
67-64-1	Acetone	132	125	95	70-130	
107-13-1	Acrylonitrile	25.8	27.0	105	70-130	
75-35-4	1,1-Dichloroethene	27.5	28.8	105	70-130	
75-09-2	Methylene Chloride	26.8	25.8	96	70-130	
75-15-0	Carbon Disulfide	26.0	25.3	97	70-130	
156-60-5	trans-1,2-Dichloroethene	25.5	27.2	107	70-130	
75-34-3	1,1-Dichloroethane	26.5	26.2	99	70-130	
1634-04-4	Methyl tert-Butyl Ether	26.3	26.5	101	70-130	
78-93-3	2-Butanone (MEK)	26.8	28.1	105	70-130	
156-59-2	cis-1,2-Dichloroethene	27.0	27.4	101	70-130	
67-66-3	Chloroform	27.5	26.3	96	70-130	
107-06-2	1,2-Dichloroethane	26.3	26.1	99	70-130	
71-55-6	1,1,1-Trichloroethane	26.0	26.4	102	70-130	
71-43-2	Benzene	25.8	25.7	100	70-130	

LABORATORY CONTROL SAMPLE SUMMARY Page 2 of 2

Client:

CH2M Hill

Client Sample ID: Lab Control Sample

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P100405-LCS

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Analyst:

Test Notes:

Chris Cornett

Sampling Media:

6.0 L Summa Canister

Date Received: NA Date Analyzed: 4/05/10

Date Collected: NA

Volume(s) Analyzed:

NA Liter(s)

					Project	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ng	ng		Limits	Qualifier
56-23-5	Carbon Tetrachloride	26.3	26.6	101	70-130	
78-87-5	1,2-Dichloropropane	26.0	25.4	98	70-130	
75-27-4	Bromodichloromethane	26.3	27.1	103	70-130	
79-01-6	Trichloroethene	25.8	26.1	101	70-130	
10061-01-5	cis-1,3-Dichloropropene	24.5	27.1	111	70-130	
108-10-1	4-Methyl-2-pentanone	26.8	27.4	102	70-130	
10061-02-6	trans-1,3-Dichloropropene	27.0	29.5	109	70-130	
79-00-5	1,1,2-Trichloroethane	26.0	27.4	105	70-130	
108-88-3	Toluene	26.8	26.6	99	70-130	
124-48-1	Dibromochloromethane	28.3	29.3	104	70-130	
127-18-4	Tetrachloroethene	25.3	25.5	101	70-130	-
108-90-7	Chlorobenzene	26.5	26.4	100	70-130	
100-41-4	Ethylbenzene	26.3	26.8	102	70-130	
179601-23-1	m,p-Xylenes	51.5	52.9	103	70-130	
75-25-2	Bromoform	26.5	27.7	105	70-130	
100-42-5	Styrene	26.3	28.1	107	70-130	
95-47-6	o-Xylene	26.0	26.9	103	70-130	
79-34-5	1,1,2,2-Tetrachloroethane	27.0	28.2	104	70-130	

LABORATORY DUPLICATE SUMMARY RESULTS

Page 1 of 2

Client:

CH2M Hill

Client Sample ID: SGP-10-032410

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-001DUP

Test Code: Instrument ID: EPA TO-15

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Collected: 3/24/10 Date Received: 3/26/10

Analyst: Sampling Media:

Chris Cornett

6.0 L Summa Canister

Date Analyzed: 3/31/10 Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC01103

Initial Pressure (psig):

0.4

Final Pressure (psig): 3.7

			Dupli	cate				
Compound	Sample	Result	Sample	Result	Average	% RPD	RPD	Data
	$\mu g/m^3$	ppbV	$\mu g/m^3$	ppbV	$\mu g/m^3$		Limit	Qualifier
Chloromethane	0.445	0.216	0.366	0.177	0.4055	19	25	
Vinyl Chloride	ND	ND	ND	ND	-	-	25	
Bromomethane	ND.	ND	ND	ND	-		25	
Chloroethane	ND	ND	ND	ND	-	-	25	
Acetone	12.4	5.23	12.9	5.43	12.65	4	25	
Acrylonitrile	ND	ND	ND	ND		-	25	
1,1-Dichloroethene	ND	ND	ND	ND	-	-	25	
Methylene Chloride	ND	ND	ND	ND	-	- ·	25	N.
Carbon Disulfide	ND	ND	ND	ND	-	-	25	
trans-1,2-Dichloroethene	ND	ND	ND	ND	-	-	25	
1,1-Dichloroethane	ND	ND	ND	ND		_	25	
Methyl tert-Butyl Ether	ND	ND	ND	ND	-		25	
2-Butanone (MEK)	0.644	0.219	0.570	0.193	0.607	12	25	J
cis-1,2-Dichloroethene	ND	ND	ND	ND	-	-	25	
Chloroform	0.127	0.0260	0.133	0.0272	0.13	5	25	
1,2-Dichloroethane	ND	ND	ND	ND	-	-	25	
1,1,1-Trichloroethane	ND	ND	ND	ND	- -	-	25	
Benzene	0.608	0.190	0.643	0.201	0.6255	6	25	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

LABORATORY DUPLICATE SUMMARY RESULTS

Page 2 of 2

Client:

CH2M Hill

Client Sample ID: SGP-10-032410

Client Project ID: DOW Waterloo, NY / 386132.05.C1.FI

CAS Project ID: P1001084

CAS Sample ID: P1001084-001DUP

Test Code:

EPA TO-15

Date Collected: 3/24/10

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Date Received: 3/26/10

Analyst:

Chris Cornett

Date Analyzed: 3/31/10

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC01103

Initial Pressure (psig):

0.4

Final Pressure (psig): 3.7

Canister Dilution Factor: 1.22

			Dupli	cate				
Compound	Sample	Result	Sample	Result	Average	% RPD	RPD	Data
	$\mu g/m^3$	ppbV	$\mu g/m^3$	${f ppbV}$	$\mu g/m^3$		Limit	Qualifier
Carbon Tetrachloride	0.536	0.0852	0.544	0.0865	0.54	1	25	
1,2-Dichloropropane	ND	ND	ND	ND	_	-	25	
Bromodichloromethane	ND	ND	ND	ND	-	-	25	
Trichloroethene	ND	ND	ND	ND	-	_	25	
cis-1,3-Dichloropropene	ND	ND	ND	ND	·	-	25	
4-Methyl-2-pentanone	0.306	0.0748	0.310	0.0756	0.308	1 .	25	J
trans-1,3-Dichloropropene	ND	ND	ND	ND	-	_	25	
1,1,2-Trichloroethane	ND	, ND	ND	ND		-	25	
Toluene	1.13	0.300	1.11	0.295	1.12	2	25	
Dibromochloromethane	ND	ND	ND	ND	-	-	25	
Tetrachloroethene	ND	· ND	ND	ND	-	-	25	
Chlorobenzene	ND	ND	ND	ND	-	-,	25	
Ethylbenzene	ND	ND	ND	ND	-	-	25	
m,p-Xylenes	ND	ND	ND	ND	-	-	25	
Bromoform	ND	ND	ND	ND	-	-	25	
Styrene	ND	ND	ND	ND	-	-	25	
o-Xylene	ND	ND	ND	ND	-	-	25	
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	-	_	25	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

GCMS13 Response Factor Report

: J:\MS13\METHODS\R13032310.M (RTE Integrator)
: EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)
: Wed Mar 24 10:25:57 2010
: Initial Calibration Method Title

Last Update

Response via

=03231027.D 5.0 =03231026.D 1.0 =03231025.D =03231030.D 0.5 =03231024.D =03231029.D 0.2 Calibration Files =03231023.D =03231028.D 0.1 25

-	1	Compound	0.1	0.2	0.5	1.0	2.0	25	20	100	Avg	%RSD
			 			 	 					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1)	IR	. Bromochloromethan	1		1	! ! !	ISI		1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
2)	H	opene	.62	.33	82	.44	2.963		9	.03	.40	5.5
3)	Η	hlorodifluorom	.54	.69	.31	.82	.25	.87	.68	96.	.39	6.2
4)	\vdash	hloromethane	.46	.20	. 93	.62	.03	.09	.83	.47	.20	α
5)	H	ichloro-1,1,	1.364	1.333	1.592	1.496	.31	•		1.474	1.385	8.94
(9	Η	inyl Chloride	.97	.99	.56	.39	.15	.15	.11	.55	. 23	9.0
7)	H	utadiene	.81	.72	.32	.14	.12	19	.19	.57	.13	2.6
8)	H	momethane	. 85	.86	.14	.04	.01	.04	.90	.08	.99	5
6	Η	thane	00.	00.	.34	. 28	.18	.17	.13	.30	.18	1.1
	Η		. 58	.53	. 82	. 68	. 59	.70	.59	. 75	.65	0.
11)	Η	Acetonitrile		90.	.02	.64	.37	47	.19	.65	.48	Η.
	E	in			.15	.02	.04	16	. 12	.29	.13	5
	H	cetone	7	.49	.70	.60	.40	.32	.25	.39	.48	ς.
	H	richlorofluorome	3.326	.20	. 58	.39	.07	.05	92	.34	. 23	9.9
	H	-Propanol (Isopr	.97	.96	. 52	. 92	. 88	.94	.75	.15	.89	6.4
	Η	crylonitril		.21	.16	. 93	.86	. 93	. 78	.16	.86	1.2
	H	,1-Dichloroethen	0.929	. 92	. 24	.16	.07	.09	90.	.25	.09	1.5
	H	-Methyl-2-Prop		.04	.13	.71	.07	.25	.96	. 58	96.	∞
	Η	thylene Chlorid	1.340	.24	.40	. 19	.14	.18	.14	.30	. 24	7.7
	Η	-Chloro-1-F		.51	.12	.05	.10	.26	.10	.54	.10	9
	Η	richlorotrifluor	0.918	.03	.30	. 23	.08	.09	.05	.19	.17	0.
	Η	arbon Disul		. 23	. 22	.61	.37	.35	. 22	88	.55	2
	H	rans-1,2-Dichlor	98	1.996	.89	. 73	.59	.67	.53	.89	.53	2
	Η	Dichloroethan	2.595	.77	.37	-	.85	.89	.76	.20	.94	φ.
	H	yl tert-Butyl	.36	.05	.00	.59	.32	.44	. 28	.91	.49	<u>-</u>
	⊣	inyl Ace			.17	.18	1.9	. 23	. 23	.25	.21	.3
	<u>-</u>	-Butanone			.80	.80	. 78	. 83	.80	.80	.80	0.
	\vdash	,2-Dichloroe	2.015	2.327	.80	.59	.44	.49	.35	.69	.46	9
	H	iisopropyl Ether	.65	.97	. 29	.15	00.	.01	. 98	.13	.02	0.

###

GCMS13 Response Factor Report

: J:\MS13\METHODS\R13032310.M (RTE Integrator)
: EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)
: Wed Mar 24 10.25:57 2010
: Initial Calibration Method Title

Last Update

Response via

	03231027	**************************************
	5.0	
	=03231026.D	11
	1.0	
	=03231025.D	=03231030.D
	0.5	7 O O
	=03231024.D	=03231029.D
	0.5	20
Calibration Files	=03231023	=03231028.D
Cali	0.1	7

***	*RSD	593 12.02	49 9.5	7.0	63 3.2	44 21.4	98 9.5	16 8.0		0.5 6.6	06 8.7	80 17.9	013 8.00	56 6.6	80 7.2	44 5.9	14 7.3	90 7.0	63 8.1	03 11.2	59 8.1	99 26.5	58 11.0	11 12.7	51 11.5	29 10.7	21 12.6		
	>	0	•			•	. •		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	•	•	Ι.(•	•	•	•		•	•	•	•	•	•		•	•	1 1 1 1 1 1 1	
	100	585 0	038 3.35	295 2.67	64 2.50	765 0.88	644 1.91	477 2.80		458 0.52	197 0.22	399 0.44	\sim	420 0.48	344 0.39	780 0.89	287 0.32	368 0.41	242 0.27	195 0.22	586 1.75	105 0.12	244 0.28	423 0.48	342 0.38	433 0.49	215 0.24		
	25 5	619 0	9 3.275 3	1 2.384 2	2 2.668 2	1 0.848 0	2 1.718 1	5 2.670 2	Q	489 0	7 0.210 0	5 0.427 0	3 0.964 0	1 0.446 0	0 0.366 0	3 0.822 0	7 0.304 0	9 0.391 0	6 0.254 0	3 0.202 0	7 1.704 1	6.0.110 0	4 0.257 0	8 0.444 0	4 0.364 0	5 0.451 0	8 0.225 0	. – – – – – ПТ	1
	.0	0.613 0.6	.638 3.3	.527 2.3	.759 2.6	.015 0.8	.776 1.6	.806 2.6	SI	512 0.4	.217 0.2	.409 0.4	.039 0.9	.475 0.4	389 0.3	.860 0.8	.310 0.2	.402 0.3	.278 0.2	.207 0.2	.881 1.7	.106 0.1	.276 0.2	.427 0.4	.377 0.3	.433 0.4	.239 0.2		1
	I	41	16 4.07	. 74	09 2.72	.32	. 88	24 3.17	1 1	8 0	79 0.23	81 0.41	2 1.17	20 0.50	68 0.43	19 0.93	94 0.34	67 0.43	53 0.30	60 0.23	23 2.02	96 0.11	23 0.30	55 0.42	66 0.37	44 0.42	83 0.25	 	
	0.1 0.	0	٠	511 2.	.685 2.			.639 2.	1 1 1 1 1 1	.524 0.	.187 0.	.265 0.	1.026.0.	.462 0.	.383 0.	.839 0.	.343 0.	.361 0.	.252 0.	0	.790 1.	0360.	.223 0.	.316 0.	•	0	•	1 1 1	
	Compound	yl Acetate	n-Hexane	Д	1,2-Dichloroethan	O	Ethyl tert-Butyl	-	\cap	,1,1-Trichloroe	opropyl Acetat	-But	Benzene	Carbon Tetrachlor	Cyclohexane	tert-Amyl Methyl	1,2-Dichloropropa	Bromodichlorometh	Trichloroethene	1,4-Dioxane	2,2,4-Trimethylpe	ethyl Methacryl	n-Heptane	cis-1,3-Dichlorop	4-Methyl-2-pentan	ans-1,3-Dichlo	,1,2-Trichloroe	Chlorobenzene-d5	
	! !	30) T	1	2)	3)	4)	2)	(9	7	38) T	6	0	1)	\widehat{S}	3	4)	2	(9	2	8	6	0		2	3)	4)	2	56) IR	

(#) Out of Range ### Number of calibration levels exceeded format Thu Apr 01 13:03:01 2010

###

GCMS13 Response Factor Report

: J:\MS13\METHODS\R13032310.M (RTE Integrator)
: EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)
: Wed Mar 24 10:25:57 2010
: Initial Calibration Method Title

Last Update

Response via

	**	***
	=03231027.D	
	5.0	
	=03231026.D	11
	1.0	
	=03231025.D	=03231030.D
	0.5	100
	=03231024.D	=03231029.D
	0.2	
bration Files	0.1 =03231023.D	=03231028.D
Call	0.1	25

**			9.	8.0	.3	-	9.1	7	9	∞		∞	9.6	2	7.	7.	1.0	.5	4.	Ω.	-	0.	.5	.4	.5	9.	ς.	20.84	φ.	ς.	. 7
[]	-	.04	.98	.57	. 52	. 28	.72	.57	.36	.42	.99	.49	.42	.02	.87	. 74	.68	.67	.26	.07	.48	.50	.13	.04	.61	.21	.74	1.731	.12	.16	. 83
	00	2.139	.12	.64	.60	.60	.72	.61	.41	. 58	.13	.61	.60	1.7	. 79	.86	.68	. 79	.37	.26	.65	.66	.29	.19	.75	.37	. 73	.21	. 22	. 28	. 99
11	0	1.865	.94	.55	. 52	. 29	.65	.53	.23	.25	.86	. 52	.39	.89	.68	. 73	.69	.47	.19	.00	.33	.35	.00	.04	.41	.07	.57	.91	.05	.12	.66
٦.	2	95	11.	.57	.54	.44	. 70	.55	. 29	.37	.95	.53	.46	. 98	.86	.76	.69	.61	.25	.05	.51	.42	.12	.10	.53	.21	. 72	.97	-	.18	. 83
Z31030	0.	1.905	.13	.53	.51	.34	. 70	.53	. 25	.30	.91	.47	.40	96.	. 92	. 73	. 68	.55	. 23	.01	.40	.40	.06	.04	.49	.14	. 72	.80	90.	.12	. 75
0 = 03	• 1	2.086	. 18	. 57	.53	.31	.72	. 58	.37	.42	.03	.49	47	90.	.05	. 76	.67	. 73	. 28	.18	.57	. 58	.21	.05	.65	.34	.82	. 74	.17	. 18	. 93
OT U.	0.5	2	2.20	0.61	0.55	2.55	0.86	0.68	1.51	2.60	2.22	0.53	1.57	2.21	2.16	0.81	0.67	3.04	1.37	3.43	2.79	2.74	2.37	1.11	2.92	2.48	1.99	1.77	1.23	1.29	3.18
77777777777777777777777777777777777777	0.2	2.00	1.66	0.50	0.49	1.96	0.65	0.53	1.30	2.28	1.85	0.40	1.17	1.85	1.76	0.61	0.68	2.42	1.16	2.81	2.29	2.32	1.98	0.87	2.44	1.97	1.61	1.30	1.02	1.08	2.68
=03	0.1		1.54	0.54	0.43	. 72	0.75	0.58	.50	. 55	.95	.41	.31	4	.76	0.65	0.67	. 76	.19	.97	.33	.49	2.04	0.94	.67	2.12	72	.10	1.12	1.01	.64
=03231028.D 50	Compound		1	ibro	2-Dibromoet	n-Butyl Acetate	n-Octane	Tetrachloroethène	oroben	thylbenz	m- & p-Xylenes	romo	Styrene	o-Xylene	Nonane	1,1,2,2-Tetrachlo	omof	umene	\exists	T	-Ethylto	-Ethylt	13,5-T	a-Met	-Ethyl	,2,4-	-Decane	zy	,3-Di	,4-Dichloroben	sec-Butylbenzene
N 0	1	Η	Η	H	⊟	H	E	<u>-</u>	<u>-</u> -	H	⊢	<u>-</u>	<u>-</u>	H	H	Е	Ŋ	H	[-]	Η	⊢	H	⊢	⊢	<u>[</u> -	E	[-	<u>-</u>	[E 1	E →(
	1	58)	59)	(09	61)	62)	63)	64)	65)	(99	(29	(89)	(69	70)	71)	72)	73)	74)	75)	76)	77)	78)	79)	80)	81)	82)	83)	84)	85)	86)	0 2

GCMS13 Response Factor Report

J:\MS13\METHODS\R13032310.M (RTE Integrator) EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) Method Title

Wed Mar 24 10:25:57 2010 Initial Calibration Last Update

Response via

Calibration Files

=03231027.D 5.0 =03231026.D 1.0 =03231025.D =03231030.D 0.5 =03231024.D =03231029.D 0.2 50 0.1 =03231023.D 25 =03231028.D

-	Compound	1	0.1 0.2	0.5	1.0	5.0	25	0	100	Avg	%RSD	Д
88) 1	4-Isopropyltolu	n 2.428	2.56	3.044	2.744	2	2.662	2.500	2.796	2.666	9	1 6
89) 1	T 1,2,3-Trimethylbe 2.293	e 2.293	2.003	2.531	2.385	2.189	2.262	2.125	.41	.27	7	
90) 1		e 0.920	1.041	1.222	1.131	1.043	1.068	1.001	.15	.07	. ω	
91)]	T d-Limonene	0.681	0.708	0.850	0.825	0.803	0.846	0.807		.80	9	96
92) 1	I 1,2-Dibromo-3-Chl	H	0.217	0.335	0.330	0.344	0.385	0.377	0.444	0.347	20.	03
93) 1	r n-Undecane	1.583	1.547	2.028	1.883	1.840	1.856	1.690	1.831		9	12
94) 1	T 1,2,4-Trichlorobe	e 0.550	0.581	0.802	0.758	0.747	0.822	0.782	•		16.	10
95) 1	r Naphthalene	3.032	2.549	2.948	2.755	2.715	3.026	2.858	3.203	∞	7.	24
1 (96)	T n-Dodecane	1.896	1.751	2.237	2.155	2.116	2.192	1.992	2.145	9	. &	H
97) I	T Hexachlorobutadie	e 0.541	0.471	0.560	0.534	0.502	0.533	0.512	0.594	.53	7.	04
1 (86	T Cyclohexanone	1.069	1.060	1.416	1.303	1.267	1.282	1.204	1.349	4	10.	17
1 (66	T tert-Butylbenzene	e 1.971	2.004	2.331	2.194	2.035	2.053	1.934	2.206	2.091		58
100)	T n-Butylbenzene	2.03	2.039 1.908	2.46	4 2.28	2.205	2.261	2.122	2.389	2.209	. 80	27

Data Path : J:\MS13\DATA\2010 03\31\

Data File : 03311001.D

Acq On : 31 Mar 2010 9:49

Operator : CC

Sample : 5ng TO-15 CCV STD

Misc : S20-03051001/S20-03241004 ALS Vial : 12 Sample Multiplier: 1

Quant Time: Apr 01 13:02:15 2010

Quant Method: J:\MS13\METHODS\R13032310.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Mar 24 10:25:57 2010

Response via : Initial Calibration

4-1-10

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Ar	ea%	Dev(min)
1 IR	Bromochloromethane (IS1)	1.000	1.000	0.0	85	-0.03
2 T	Propene	2.408	3.082	-28.0	89	0.01
3 T	Dichlorodifluoromethane (CF	3.393	3.551	-4.7	93	0.00
4 T	Chloromethane	3.209	3.248	-1.2	91	0.01
5 T	1,2-Dichloro-1,1,2,2-tetraf	1.385	1.437	-3.8	93	0.00
6 T	Vinyl Chloride	2.238	2.347	-4.9	93	0.00
7 T	1,3-Butadiene	2.139	2.324	-8.6	93	0.00
8 T	Bromomethane	0.995	0.998	-0.3	84	0.00
9 T	Chloroethane	1.180	1.280	-8.5	92	0.00
10 T	Ethanol	1.658	1.836	-10.7	98	-0.14
11 T	Acetonitrile	4.489	4.841	-7.8	9,5	
12 T	Acrolein	1.137	1.158	-1.8	94	-0.02
13 T	Acetone	1.481	1.577	-6.5	96	-0.06
14 T	Trichlorofluoromethane	3.239	3.426	-5.8	95	0.00
15 T	2-Propanol (Isopropanol)	5.891	5.626	4.5	98	-0.09
16 T	Acrylonitrile	2.865	3.115	-8.7	93	-0.04
17 T	1,1-Dichloroethene	1.093	1.204	-10.2	96	0.00
18 T	2-Methyl-2-Propanol (tert-B	4.966	5.528	-11.3	93	-0.07
19 T	Methylene Chloride	1.245	1.288	-3.5	96	-0.03
20 T	3-Chloro-1-propene (Allyl C	3.101	3.412	-10.0	94	-0.02
21 T	Trichlorotrifluoroethane	1.116	1.187	-6.4	94	0.00
22 T	Carbon Disulfide	4.559	4.816	-5.6°	94	0.00
23 T	trans-1,2-Dichloroethene	2.538	2.892	-13.9	95	-0.02
24 T	1,1-Dichloroethane	2.948	3.117	-5.7	93	-0.03
25 T	Methyl tert-Butyl Ether	4.498	4.808	-6.9	95	-0.02
26 T	Vinyl Acetate	0.213	0.225	-5.6	96	-0.05
27 T	2-Butanone (MEK)	0.806	0.912	-13.2	99	-0.03
28 T	cis-1,2-Dichloroethene	2.465	2.642	-7.2	92	-0.02
29 T	Diisopropyl Ether	1.027	1.150	-12.0	98	-0.02
30 T	Ethyl Acetate	0.593	0.674	-13.7	94	-0.03
31 T	n-Hexane	3.449	3.719	-7.8	95	-0.01
32 T	Chloroform	2.470	2.593	-5.0	94	-0.05
33 S	1,2-Dichloroethane-d4(SS1)	2.663	2.676	-0.5	85	-0.03
34 T	Tetrahydrofuran (THF)	0.944	0.881	6.7	90	-0.02
35 T	Ethyl tert-Butyl Ether	1.698	1.838	-8.2	95	-0.02
36 T	1,2-Dichloroethane	2.716	2.880	-6.0	93	-0.02
37 IR	1,4-Difluorobenzene (IS2)	1.000	1.000	0.0	86	-0.02
38 T	1,1,1-Trichloroethane	0.505	0.520	-3.0	93	-0.02

Data Path : J:\MS13\DATA\2010_03\31\

Data File : 03311001.D

Acq On : 31 Mar 2010 9:49

Operator : CC

Sample : 5ng TO-15 CCV STD

Misc : S20-03051001/S20-03241004 ALS Vial : 12 Sample Multiplier: 1

Quant Time: Apr 01 13:02:15 2010

Quant Method: J:\MS13\METHODS\R13032310.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Mar 24 10:25:57 2010

Response via: Initial Calibration

4-1-10

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev: 30% Max. Rel. Area: 200%

	Compound	AvgRF	CCRF	%Dev Area	a% Dev(min)
39 T 40 T 41 T 42 T 43 T 44 T 45 T 46 T 47 T 48 T 49 T 50 T 51 T 52 T 53 T	Isopropyl Acetate 1-Butanol Benzene Carbon Tetrachloride Cyclohexane tert-Amyl Methyl Ether 1,2-Dichloropropane Bromodichloromethane Trichloroethene 1,4-Dioxane 2,2,4-Trimethylpentane (Iso Methyl Methacrylate n-Heptane cis-1,3-Dichloropropene 4-Methyl-2-pentanone	0.206 0.380 1.013 0.456 0.380 0.844 0.314 0.263 0.263 0.203 1.759 0.099 0.258 0.411 0.351	0.224 0.419 1.045 0.478 0.399 0.872 0.323 0.405 0.273 0.205 1.833 0.115 0.282 0.457 0.373	-10.3 -3.2 -4.8 -5.0 -3.3 -2.9 -3.8 -3.8 -1.0 -4.2 -16.2 -9.3 -11.2 -6.3	94 -0.03 89 -0.07 95 -0.02 94 -0.02 96 -0.02 94 -0.01 92 -0.02 96 -0.02 97 -0.02 98 -0.02 99 -0.02
55 T	trans-1,3-Dichloropropene 1,1,2-Trichloroethane	0.429	0.461		96 -0.01 94 -0.02
56 IR 57 58 T T T T T T T T T T T T T T T T T T	Chlorobenzene-d5 (IS3) Toluene-d8 (SS2) Toluene 2-Hexanone Dibromochloromethane 1,2-Dibromoethane n-Butyl Acetate n-Octane Tetrachloroethene Chlorobenzene Ethylbenzene m- & p-Xylenes Bromoform Styrene o-Xylene n-Nonane 1,1,2,2-Tetrachloroethane Bromofluorobenzene (SS3) Cumene alpha-Pinene n-Propylbenzene	1.000 2.065 2.044 1.989 0.570 0.525 2.280 0.723 0.579 1.362 2.425 1.991 0.499 1.427 2.024 1.879 0.743 0.683 2.676 1.260 3.079	1.000 2.037 2.104 2.133 0.591 0.556 2.399 0.742 0.585 1.374 2.517 2.070 0.530 1.523 2.105 2.003 0.786 0.681 2.775 1.317 3.237	1.4 -2.9 -7.2 -3.7 -5.2 -1.0 -0.9 -3.8 -4.0 -6.2 -6.7 -4.6 -5.8 -3.7 -4.5 -3.7 -4.5	67 0.00 67 0.00 66 -0.01 67 -0.02 66 -0.01 69 -0.01 69 -0.01 60 -0.01 61 -0.01 62 -0.01 63 -0.01 64 -0.02 64 -0.02 64 -0.02 65 -0.01 66 -0.01 67 -0.01 68 -0.01 69 -0.01 69 -0.01 60 -0.01

Data Path : J:\MS13\DATA\2010 03\31\

Data File : 03311001.D

Acq On : 31 Mar 2010 9:49

Operator : CC

Sample : 5ng TO-15 CCV STD

Misc : S20-03051001/S20-03241004 ALS Vial : 12 Sample Multiplier: 1

Quant Time: Apr 01 13:02:15 2010

Quant Method: J:\MS13\METHODS\R13032310.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Mar 24 10:25:57 2010

Response via : Initial Calibration

41-10

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev: 30% Max. Rel. Area: 200%

		Compound	AvgRF	CCRF	%Dev Area	ત્રે જ	Dev(min)
77	$^{-}$ T.	3-Ethyltoluene	2.488	2.556	-2.7	92	-0.01
78	T	4-Ethyltoluene	2.501	2.623	-4.9	95	-0.01
79	T	1,3,5-Trimethylbenzene	2.139	2.235	-4.5	94	-0.01
80	T	alpha-Methylstyrene	1.048	1.134	-8.2	94	-0.01
81	T	2-Ethyltoluene	2.613	2.682	-2.6	93	-0.02
82	${f T}$	1,2,4-Trimethylbenzene	2.216	2.322	-4.8	94	-0.01
83	\mathbf{T}	n-Decane	1.740	1.833	-5.3	92	-0.02
84	${f T}$	Benzyl Chloride	1.731	1.963	-13.4	95	-0.02
85	T	1,3-Dichlorobenzene	1.125	1.150	-2.2	94	-0.01
86	${f T}$	1,4-Dichlorobenzene	1.161	1.216	-4.7	94	-0.01
87	${f T}$	sec-Butylbenzene	2.836	2.975	-4.9	94	-0.01
88		4-Isopropyltoluene (p-Cymen	2.666	2.808	-5.3	94	-0.01
89	T	1,2,3-Trimethylbenzene	2.276	2.367	-4.0	94	-0.01
90	T	1,2-Dichlorobenzene	1.073	1.131	-5.4	94	-0.01
91	T	d-Limonene	0.807	0.872	-8.1	94	-0.01
92	T	1,2-Dibromo-3-Chloropropane	0.347	0.370	-6.6	94	0.00
93		n-Undecane	1.782	1.945	-9.1	92	0.00
94		1,2,4-Trichlorobenzene	0.743	0.796	-7.1	93	-0.01
95		Naphthalene	2.886	2.973	-3.0	95	0.00
96		n-Dodecane	2.060	2.251	-9.3	€3	0.00
97	${ m T}$	Hexachlorobutadiene	0.531	0.529	0.4	92	0.00
98	${ m T}$	Cyclohexanone	1.244	1.031	17.1 7	71	-0.02
99	${ m T}$	tert-Butylbenzene	2.091	2.208	-5.6	94	-0.01
100	Т	n-Butylbenzene	2.209	2.341	-6.0	92	0.00

(#) = Out of Range

SPCC's out = 0 CCC's out = 0

Data Path : J:\MS13\DATA\2010 04\02\

Data File : 04021004.D

Acq On : 2 Apr 2010 10:58

Operator : CC

Sample : 5ng TO-15 CCV STD

: S20-04011006/S20-03241004 Misc ALS Vial : 12 Sample Multiplier: 1

Quant Time: Apr 02 11:57:02 2010

Quant Method: J:\MS13\METHODS\R13032310.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Mar 24 10:25:57 2010 Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev: 30% Max. Rel. Area: 200%

	Compound	AvgRF	CCRF	%Dev Area	% Dev(min)
1 IR 2 T 3 T 4 T 5 T 6 T	Bromochloromethane (IS1) Propene Dichlorodifluoromethane (CF Chloromethane 1,2-Dichloro-1,1,2,2-tetraf Vinyl Chloride	2.408 3.393 3.209 1.385 2.238	1.408 2.255	0.0 10 -25.7 10 -6.6 11 1.7 10 -1.7 10 -0.8 10	5 0.00 4 0.00 7 0.00 9 0.00 8 0.00
7 T 8 T 9 T 10 T 11 T 12 T 13 T	1,3-Butadiene Bromomethane Chloroethane Ethanol Acetonitrile Acrolein Acetone	2.139 0.995 1.180 1.658 4.489 1.137 1.481	2.136 1.067 1.250 1.780 4.821 1.058 1.510	0.1 10 -7.2 10 -5.9 10 -7.4 11 ,-7.4 11 6.9 10 -2.0 11	7 0.00 8 0.00 4 -0.13 3 -0.05 4 -0.02
14 T 15 T 16 T 17 T 18 T 19 T	Trichlorofluoromethane 2-Propanol (Isopropanol) Acrylonitrile 1,1-Dichloroethene 2-Methyl-2-Propanol (tert-B Methylene Chloride	3.239 5.891 2.865 1.093 4.966 1.245	3.515 5.490 3.107 1.167 5.419 1.249	-2.0 11 -8.5 11 6.8 11 -8.4 11 -6.8 11 -9.1 11 -0.3 11	7 -0.01 5 -0.09 1 -0.05 2 -0.01 0 -0.08
20 T 21 T 22 T 23 T 24 T 25 T	3-Chloro-1-propene (Allyl C Trichlorotrifluoroethane Carbon Disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane Methyl tert-Butyl Ether	3.101 1.116 4.559 2.538 2.948 4.498	3.317 1.205 4.688 2.821 3.067 4.687	-7.0 11 -8.0 11 -2.8 11 -11.2 11: -4.0 11	0 -0.02 4 -0.01 0 0.00 2 -0.03 0 -0.03
26 T 27 T 28 T 29 T 30 T 31 T 32 T 33 S	Vinyl Acetate 2-Butanone (MEK) cis-1,2-Dichloroethene Diisopropyl Ether Ethyl Acetate n-Hexane Chloroform 1,2-Dichloroethane-d4(SS1)	0.213 0.806 2.465 1.027 0.593 3.449 2.470 2.663	0.203 0.826 2.649 1.123 0.637 3.652 2.566 2.829	4.7 104 -2.5 106 -7.5 115 -9.3 115 -7.4 106 -5.9 112 -3.9 112	4 -0.05 8 -0.03 1 -0.03 5 -0.02 6 -0.03 2 -0.01 2 -0.05
34 T 35 T 36 T 37 IR 38 T	Tetrahydrofuran (THF) Ethyl tert-Butyl Ether 1,2-Dichloroethane 1,4-Difluorobenzene (IS2) 1,1,1-Trichloroethane	0.944 1.698 2.716	0.845 1.767 2.945 1.000 0.539	10.5 104 -4.1 116 -8.4 11! 0.0 103 -6.7 11!	4 -0.02 0 -0.02 5 -0.02 3 -0.02

Data Path : J:\MS13\DATA\2010 04\02\

Data File : 04021004.D

Acq On : 2 Apr 2010 10:58

Operator : CC

Sample : 5ng TO-15 CCV STD

Misc : S20-04011006/S20-03241004 ALS Vial : 12 Sample Multiplier: 1

Quant Time: Apr 02 11:57:02 2010

Quant Method: J:\MS13\METHODS\R13032310.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Mar 24 10:25:57 2010

Response via: Initial Calibration

4,210

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 200%

Compound	AvgRF	CCRF	%Dev Area%	Dev(min)
Isopropyl Acetate 1 T 1-Butanol 1 T Benzene 2 T Carbon Tetrachloride 3 T Cyclohexane 4 T tert-Amyl Methyl Ether 5 T 1,2-Dichloropropane 6 T Bromodichloromethane 7 T Trichloroethene 8 T 1,4-Dioxane 7 T 2,2,4-Trimethylpentane (Isomethyl Methyl Methacrylate 1 T n-Heptane 1 T n-Heptane	0.206 0.380 1.013 0.456 0.380 0.844 0.314 0.390 0.263 0.203 1.759 0.099 0.258 0.411 0.351 0.429	0.212 0.398 1.019 0.486 0.388 0.840 0.311 0.409 0.265 0.207 1.815 0.109 0.270 0.445 0.364 0.449	-2.9 106 -4.7 102 -0.6 111 -6.6 114 -2.1 111 0.5 108 1.0 108 -4.9 112 -0.8 111 -2.0 105 -3.2 110 -10.1 106 -4.7 110 -8.3 110 -3.7 106 -4.7 112	-0.07 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.02 -0.01 -0.02 -0.01
55 T 1,1,2-Trichloroethane 56 IR Chlorobenzene-d5 (IS3) 57 S Toluene-d8 (SS2) 58 T Toluene 59 T 2-Hexanone 60 T Dibromochloromethane 61 T 1,2-Dibromoethane 62 T n-Butyl Acetate 63 T n-Octane 64 T Tetrachloroethene 65 T Chlorobenzene 66 T Ethylbenzene 67 T m- & p-Xylenes 68 T Bromoform 69 T Styrene 70 T o-Xylene 71 T n-Nonane 72 T 1,1,2,2-Tetrachloroethane 73 S Bromofluorobenzene (SS3) 74 T Cumene 75 T alpha-Pinene 76 T n-Propylbenzene	0.221 1.000 2.065 2.044 1.989 0.570 0.525 2.280 0.723 0.579 1.362 2.425 1.991 0.499 1.427 2.024 1.879 0.743 0.683 2.676 1.260 3.079	0.229 1.000 2.131 2.194 2.296 0.630 0.593 2.546 0.784 0.615 1.447 2.624 2.189 0.569 1.584 2.211 2.200 0.821 0.654 2.934 1.390 3.425	-3.6 108 0.0 98 -3.2 102 -7.3 112 -15.4 105 -10.5 115 -13.0 112 -11.7 106 -8.4 108 -6.2 111 -6.2 112 -8.2 111 -6.2 112 -9.9 111 -14.0 116 -11.0 110 -9.2 110 -17.1 111 -10.5 109 4.2 93 -9.6 112 -10.3 110 -11.2 111	0.00 -0.01 -0.01 -0.02 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

Data Path : J:\MS13\DATA\2010 04\02\

Data File : 04021004.D

Acq On : 2 Apr 2010 10:58

Operator : CC

Sample : 5ng TO-15 CCV STD

Misc : S20-04011006/S20-03241004 ALS Vial : 12 Sample Multiplier: 1

Quant Time: Apr 02 11:57:02 2010

Quant Method: J:\MS13\METHODS\R13032310.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Mar 24 10:25:57 2010

Response via: Initial Calibration

4.2.10

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev: 30% Max. Rel. Area: 200%

		Compound	AvgRF	CCRF	%Dev Area%	Dev(min)
77 78 79 80 81 82 83 84 85 87 89 91 92 93	T T T T T T T T T T T	Compound 3-Ethyltoluene 4-Ethyltoluene 1,3,5-Trimethylbenzene alpha-Methylstyrene 2-Ethyltoluene 1,2,4-Trimethylbenzene n-Decane Benzyl Chloride 1,3-Dichlorobenzene 1,4-Dichlorobenzene sec-Butylbenzene 4-Isopropyltoluene (p-Cymen 1,2,3-Trimethylbenzene 1,2-Dichlorobenzene d-Limonene 1,2-Dibromo-3-Chloropropane n-Undecane 1,2,4-Trichlorobenzene	AvgRF 2.488 2.501 2.139 1.048 2.613 2.216 1.740 1.731 1.125 1.161 2.836 2.666 2.276 1.073 0.807 0.347 1.782 0.743	CCRF 2.780 2.750 2.404 1.184 2.865 2.482 1.969 2.057 1.214 1.289 3.147 3.016 2.556 1.194 0.897 0.398 2.085 0.851	-11.7 113 -10.0 111 -12.4 113 -13.0 110 -9.6 112 -12.0 113 -13.2 111 -18.8 111 -7.9 111 -11.0 112 -11.0 112 -11.1 113 -12.3 114 -11.3 112 -11.2 109 -14.7 113 -17.0 111	-0.02 -0.01 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
94 95	$_{ m T}$				-14.5 111 -8.2 112	-0.01
96	T T	n-Dodecane Hexachlorobutadiene	2.886 2.060 0.531	3.124 2.375 0.584	-8.2 112 -15.3 109 -10.0 114	0.00
99	T T T	Cyclohexanone tert-Butylbenzene n-Butylbenzene	1.244 2.091 2.209	0.987 2.333 2.497	20.7 76 -11.6 112 -13.0 110	-0.02 -0.02 -0.01

^{(#) =} Out of Range SPCC's out = 0 CCC's out = 0

Data Path : J:\MS13\DATA\2010 04\05\

Data File : 04051001.D

Acq On : 5 Apr 2010 10:33

Operator : CC

Sample : 5ng TO-15 CCV STD

Misc : S20-04011006/S20-03241004 ALS Vial : 12 Sample Multiplier: 1

Quant Time: Apr 05 12:23:02 2010

Quant Method : J:\MS13\METHODS\R13032310.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Mar 24 10:25:57 2010

Response via : Initial Calibration

47-10

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev: 30% Max. Rel. Area: 200%

		Compound	AvgRF	CCRF	%Dev .	Area%	Dev(min)
1		Bromochloromethane (IS1)	1.000	1.000	0.0	127	-0.03
	Γ	Propene	2.408	2.573	-6.9	110	0.00
	Γ	Dichlorodifluoromethane (CF	3.393	3.298	2.8	128	0.00
	Γ	Chloromethane	3.209	3.484	-8.6	146	0.00
	Γ	1,2-Dichloro-1,1,2,2-tetraf	1.385	1.542	-11.3	148	0.00
	Γ	Vinyl Chloride	2.238	2.591	-15.8	153	0.00
7 7	Γ	1,3-Butadiene	2.139	2.506	-17.2	149	0.00
8 7	Γ	Bromomethane	0.995	1.127	-13.3	140	0.00
9]	Γ	Chloroethane	1.180	1.296	-9.8	138	0.00
10 7	Γ	Ethanol	1.658	1.683	-1.5	134	-0.14
11 7	Γ	Acetonitrile	4.489	4,332	3.5	126	-0.05
12 7	Γ	Acrolein	1.137	1.096	3.6		-0.03
13 7	Γ	Acetone	1.481	1.488	-0.5		-0.06
14 7	Γ	Trichlorofluoromethane	3.239	3.265	-0.8		0.00
15 7	Γ	2-Propanol (Isopropanol)	5.891	5.211	11.5		-0.10
16 7	Γ	Acrylonitrile	2.865	2.876	-0.4		-0.05
17 7	Γ	1,1-Dichloroethene	1.093	1.169	-7.0		-0.01
18 T	Γ	2-Methyl-2-Propanol (tert-B	4.966	5.210	-4.9		-0.08
19 T	Γ	Methylene Chloride	1.245	1.259	-1.1		-0.03
20 I		3-Chloro-1-propene (Allyl C	3.101	3.085	0.5		-0.03
21 I		Trichlorotrifluoroethane	1.116	1.161	-4.0		-0.01
22 I		Carbon Disulfide	4.559	4.668	-2.4		-0.01
23 I		trans-1,2-Dichloroethene	2.538	2.666	-5.0		-0.03
24 I		1,1-Dichloroethane	2.948	2.936	0.4		-0.03
25 I		Methyl tert-Butyl Ether	4.498	4.570	-1.6	134	-0.02
26 T		Vinyl Acetate	0.213	0.218	-2.3		-0.05
27 I		2-Butanone (MEK)	0.806	0.863	-7.1		-0.03
28 I		cis-1,2-Dichloroethene	2.465	2.496	-1.3		-0.03
29 I		Diisopropyl Ether	1.027	1.106	-7.7		-0.02
30 I		Ethyl Acetate	0.593	0.619	-4.4		-0.03
31 I		n-Hexane	3.449	3.321	3.7		-0.01
32 I		Chloroform	2.470	2.475	-0.2		-0.05
33 S		1,2-Dichloroethane-d4(SS1)	2.663	2.562	3.8		-0.03
34 I		Tetrahydrofuran (THF)	0.944	0.898	4.9		-0.02
35 I		Ethyl tert-Butyl Ether	1.698	1.779	-4.8		-0.02
36 I		1,2-Dichloroethane	2.716	2.618	3.6	126	-0.02
J J I	-		2.710	2.010	٥.٥	120	-0.03
37 I	IR .	1,4-Difluorobenzene (IS2)	1.000	1.000	0.0	127	-0.02
38 I		1,1,1-Trichloroethane	0.505	0.488	3.4	128	
J U I	-	T/T/T TITOITOCOITAIL	0.202	0.700	J.4	140	-0.02 9

Data Path : J:\MS13\DATA\2010 04\05\

Data File : 04051001.D

Acq On : 5 Apr 2010 10:33

Operator : CC

Sample : 5ng TO-15 CCV STD

Misc : S20-04011006/S20-03241004 ALS Vial : 12 Sample Multiplier: 1

Quant Time: Apr 05 12:23:02 2010

Quant Method: J:\MS13\METHODS\R13032310.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Mar 24 10:25:57 2010

Response via : Initial Calibration

4-17-10

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 200%

Compound	AvgRF	CCRF	%Dev Area%	Dev(min)
<pre>39 T</pre>	0.206 0.380 1.013 0.456 0.380 0.844 0.314 0.390 0.263 0.203 1.759 0.099 0.258 0.411 0.351 0.429	0.442	-1.5 129 -1.8 122 0.8 134 3.3 127 0.5 133 0.8 133 2.9 131 -0.8 132 0.8 135 -1.0 128 4.8 125 -13.1 134 -3.9 134 -8.0 135 2.6 123 -3.0 136	-0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.02 -0.01 -0.02 -0.01
55 T 1,1,2-Trichloroethane 56 IR Chlorobenzene-d5 (IS3) 57 S Toluene-d8 (SS2) 58 T Toluene 59 T 2-Hexanone 60 T Dibromochloromethane 61 T 1,2-Dibromoethane 62 T n-Butyl Acetate 63 T n-Octane 64 T Tetrachloroethene 65 T Chlorobenzene 66 T Ethylbenzene 67 T m- & p-Xylenes 68 T Bromoform 69 T Styrene 70 T o-Xylene 71 T n-Nonane 72 T 1,1,2,2-Tetrachloroethane 73 S Bromofluorobenzene (SS3) 74 T Cumene 75 T alpha-Pinene 76 T n-Propylbenzene	0.221 1.000 2.065 2.044 1.989 0.570 0.525 2.280 0.723 0.579 1.362 2.425 1.991 0.499 1.427 2.024 1.879 0.743 0.683 2.676 1.260 3.079	0.230 1.000 2.137 2.126 1.957 0.604 0.577 2.211 0.729 0.597 1.390 2.558 2.096 0.541 1.539 2.138 1.877 0.806 0.649 2.810 1.335 3.274	-4.1 134 0.0 120 -3.5 125 -4.0 134 1.6 110 -6.0 135 -9.9 133 3.0 113 -0.8 124 -3.1 133 -2.1 132 -5.5 133 -5.3 131 -8.4 135 -7.8 131 -5.6 130 0.1 117 -8.5 131 5.0 113 -5.0 132 -6.0 130 -6.3 130	-0.02 0.00 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 -0.01 -0.02 -0.02 -0.02 -0.02 -0.00 -0.02 -0.00 -0.01

Data Path : J:\MS13\DATA\2010 04\05\

Data File : 04051001.D

Acq On : 5 Apr 2010 10:33

Operator : CC

Sample : 5ng TO-15 CCV STD

Misc : S20-04011006/S20-03241004 ALS Vial : 12 Sample Multiplier: 1

Quant Time: Apr 05 12:23:02 2010

Quant Method : J:\MS13\METHODS\R13032310.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Mar 24 10:25:57 2010

Response via : Initial Calibration

C-M-10

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev: 30% Max. Rel. Area: 200%

	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
77 T	3-Ethyltoluene	2.488	2.611	-4.9 130 -0.01
78 T	4-Ethyltoluene	2.501	2.655	-6.2 132 -0.01
79 T	1,3,5-Trimethylbenzene	2.139	2.275	-6.4 132 -0.01
80 T	alpha-Methylstyrene	1.048	1.143	-9.1 130 -0.01
81 T	2-Ethyltoluene	2.613	2.726	-4.3 131 -0.02
82 T	1,2,4-Trimethylbenzene	2.216	2.348	-6.0 131 -0.01
83 T	n-Decane	1.740	1.749	-0.5 121 -0.01
84 T	Benzyl Chloride	1.731	1.957	-13.1 130 -0.02
85 T	1,3-Dichlorobenzene	1.125	1.159	-3.0 130 -0.01
86 T	1,4-Dichlorobenzene	1.161	1.210	-4.2 129 -0.01
87 T	sec-Butylbenzene	2.836	3.005	-6.0 131 -0.01
88 T	4-Isopropyltoluene (p-Cymen	2.666	2.869	-7.6 132 -0.01
89 T	1,2,3-Trimethylbenzene	2.276	2.388	-4.9 131 -0.01
90 T	1,2-Dichlorobenzene	1.073	1.130	-5.3 130 -0.01
91 T	d-Limonene	0.807	0.868	-7.6 129 -0.01
92 T	1,2-Dibromo-3-Chloropropane	0.347	0.385	-11.0 134 0.00
93 T	n-Undecane	1.782	1.889	-6.0 123 0.00
94 T	1,2,4-Trichlorobenzene	0.743	0.800	-7.7 128 0.00
95 T	Naphthalene	2.886	2.945	-2.0 130 0.00
96 T	n-Dodecane	2.060	2.131	-3.4 121 0.00
97 T	Hexachlorobutadiene	0.531	0.543	-2.3 130 0,00
98 T	Cyclohexanone	1.244	0.735	40.9# 70 -0.02
99 T	tert-Butylbenzene	2.091	2.216	-6.0 130 -0.02
100 T	n-Butylbenzene	2.209	2.334	-5.7 127 0.00

(#) = Out of Range

SPCC's out = 0 CCC's out = 0