

SITE INVESTIGATION REPORT

WORK ASSIGNMENT D004433-16

NORTH FRANKLIN STREET SITE WATKINS GLEN (V)

SITE NO. 8-49-002 SCHUYLER (C), NY

Prepared for:

NEW YORK STATE
DEPARTMENT OF ENVIRONMENTAL CONSERVATION
625 Broadway, Albany, New York 12233

Denise M. Sheehan, Commissioner

DIVISION OF ENVIRONMENTAL REMEDIATION

URS Corporation

77 Goodell Street Buffalo, New York 14203

FIELD INVESTIGATION LETTER REPORT

NORTH FRANKLIN STREET SITE SITE #8-49-002 VILLAGE OF WATKINS GLEN, NEW YORK

Prepared For:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATION WORK ASSIGNMENT D004433-16

FINAL

Prepared By:

URS CORPORATION
77 GOODELL STREET
BUFFALO, NEW YORK 14203

FEBRUARY 2007

TABLE OF CONTENTS

1.0	INTR	RODUCTION	1-1
	1.1	Site Background	1-1
	1.2	Previous Investigations	1-2
	1.3	Investigation Area History	1-2
		1.3.1 15-21 North Franklin Street	1-3
		1.3.2 Clifford Motors	1-4
		1.3.3 1 North Franklin Street (Captain Bill's)	1-4
2.0	FIEL	D ACTIVITIES	2-1
	2.1	Geophysical Survey	2-1
	2.2	Soil Borings and Sampling	2-2
		2.2.1 Additional Soil Samples	2-3
		2.2.2 Groundwater Sampling	2-4
	2.3	Underground Storage Tank Sampling	2-4
	2.4	Soil-Gas Conduit Sampling	2-5
	2.5	Investigation Area Survey	2-5
3.0	SUBS	SURFACE CONDITIONS	3-1
	3.1	Geophysical Survey Results	3-1
		3.1.1 15-21 North Franklin Street	3-1
		3.1.2 Clifford Motors	3-1
		3.1.3 Captain Bill's	3-2
	3.2	Geology of Investigation Areas	3-2
		3.2.1 15-21 North Franklin Street	3-2
		3.2.2 Clifford Motors	3-3
		3.2.3 Captain Bill's	3-3
		3.2.4 Investigation Area Hydrogeology	3-4
4.0	LAB	ORATORY ANALYTICAL RESULTS	4-1
	4.1	Soil Boring Samples	4-1
		4.1.1 15-21 North Franklin Street	4-1
		4.1.2 Clifford Motors	4-2
		4.1.3 Captain Bill's	4-3
		4.1.4 Additional Soil Samples	4-3
	4.2	Groundwater Samples	4-4
		4.2.1 15-21 North Franklin Street	4-4
		4.2.2 Clifford Motors	4-5
		4.2.3 Captain Bill's	4-5
	4.3	Underground Storage Tank Sample	4-6

	4.4	Soil-Gas Conduit Sample
5.0	CONC	ELUSIONS AND RECOMMENDATIONS
		TABLES
		(Following Text)
Table 2 Table 2 Table 2 Table 3 Table 3 Table 3	2 22a 2b 2c 3 3a 3b	Soil Sample Descriptions Summary of Detected Soil Analytical Results Statistical Summary of Detected Soil Analytical Results - 15-21 North Franklin Street Statistical Summary of Detected Soil Analytical Results - Clifford Motors Statistical Summary of Detected Soil Analytical Results - Captain Bill's Summary of Detected Groundwater Analytical Results Statistical Summary of Detected Groundwater Analytical Results - 15-21 North Franklin Street Statistical Summary of Detected Groundwater Analytical Results - Clifford Motors
Table 3 Table 4 Table 5	4	Statistical Summary of Detected Groundwater Analytical Results -Captain Bill's Summary of Tank Sample Analytical Results Summary of Detected Soil-Gas Analytical Results
		FIGURES
		(Following Tables)
Figure	2 3 4 5 6 7 8 9 10 11 12 13	Site Location Map Soil-Gas Conduit Locations - July 2005 Soil-Gas Conduit Analytical Results - July 2005 Site Locations 15-21 North Franklin Street Geophysical Survey Grid and Results Clifford Motors Geophysical Survey Grid and Results Captain Bill's Geophysical Survey Grid and Results 15-21 North Franklin Street Soil Boring Location Map Clifford Motors Soil Boring Location Map Captain Bill's Soil Boring Location Map 15-21 North Franklin Street Soil Analytical Results Clifford Motors Soil Analytical Results Captain Bill's Soil Analytical Results Groundwater Analytical Results (October 2006)

APPENDIX

(Following Figures)

	(
Appendix A	Sanborn Maps
Appendix B	Aerial Photographs
Appendix C	Photographic Log
Appendix D	Geophysical Survey Report
A 1' T	C '1D '

1.0 INTRODUCTION

URS Corporation (URS) is pleased to present the New York State Department of Environmental Conservation (NYSDEC) with this site investigation report for the investigation fieldwork completed between September and November 2006 in the vicinity of the above referenced site.

The purpose of this investigation was to: 1) delineate the extent of petroleum impacted soil and groundwater in the vicinity of the SG-03 soil-gas conduit location and; 2) determine if two former filling stations located on North Franklin Street are the potential source(s) of the petroleum contamination.

The fieldwork for this investigation was completed in general accordance with the *Site Investigation Project Management Work Plan/ Budget Estimate* for the site submitted to the NYSDEC and approved in July 2006. The tasks associated with the field investigation consisted of the following:

- Task 1 Geophysical Survey
- Task 2 Soil Boring and Sampling/Groundwater Sampling
- Task 3 Underground Storage Tank Sampling
- Task 4 Soil-Gas Conduit Sampling
- Task 5 Investigation Area Survey

1.1 Site Background

The North Franklin Street inactive hazardous waste disposal site is an approximately 0.3 acre parcel of land situated in the Village of Watkins Glen, Schuyler County. The site is located in an urban area approximately 400 feet south of Seneca Lake (Figure 1). Two (2) structures formerly existed on site. The building referred to as the "Former Auto Museum" was a single-story metal building on a concrete slab. The second structure was referred to as the "Former Dry Cleaning Building." This was a two-story brick building that also included two (2) unoccupied single-story brick sheds to the east and the "VFW Building attached to the south." The former dry cleaning building and former auto museum were vacant and were demolished during June

2006 under the Brownfield Cleanup Program. The cleanup is necessary to address groundwater beneath the site that has been contaminated with dry cleaning chemicals known as volatile organic compounds (VOCs), primarily tetrachloroethene (perchloroethene or PCE).

1.2 <u>Previous Investigations</u>

URS completed a soil-gas investigation in the vicinity of the North Franklin Street site in July 2005 to determine if soil-gas in the vicinity of the site had been impacted by contaminated groundwater originating from the site. The fieldwork associated with this investigation consisted of the installation and sampling of 13 new soil-gas conduits (Figure 2). URS personnel supervised the installation of the soil-gas conduits between July 12, 2005 and July 13, 2005, and conducted the soil-gas conduit sampling on July 18, 2005. A total of 13 soil-gas conduits (SG-01 through SG-13) were installed. URS collected 13 one (1) hour soil gas samples plus two (2) field duplicate samples.

VOCs were detected at every soil-gas conduit location (Figure 3), with the highest concentration detected in the sample collected from SG-03 (benzene at 22,700 ug/m3 and m, p-xylene at 6,430 ug/m3). However, chlorinated VOCs were only detected in the samples collected from soil-gas conduits SG-01, SG-02, SG-04, SG-06, SG-07 and SG09 through SG-12, with the highest concentration detected in the sample collected from SG-02 (chloroform at 214.83 ug/m3). PCE was detected in samples collected from conduits SG-06, SG-07, SG-09, SG-10 and SG-12, at concentrations ranging from 3.26 ug/m3 to 35.3 ug/m3. Trichloroethene (TCE) was detected in the sample collected from conduit SG-09, at a concentration of 12.4 ug/m3.

It was determined from the soil-gas investigation that a non-site related source of petroleum contamination existed and was responsible for the elevated VOCs detected at SG-03. URS was directed by the NYSDEC to delineate the extent of petroleum impacted groundwater in the vicinity of the SG-03 soil-gas conduit location (Captain Bill's) and to determine if two former filling stations (Clifford Motors and 15-21 Franklin Street) located on North Franklin Street are the potential source(s) of the petroleum contamination.

1.3 <u>Investigation Area History</u>

The area that was the focus of this investigation consisted of three separate properties located to the west and northwest of the North Franklin Street site. URS reviewed Sanborn maps

(Appendix A) of the investigation area (1886, 1891, 1897, 1903, 1908, 1914, 1924, 1938 and 1955) to identify potential historic sources of the petroleum contamination found in SG-03. URS also reviewed United States Geologic Survey (USGS) aerial photographs (1944, 1957, 1960 and 1985) of the study area (Appendix B). The aerial photographs were not useful because of the low resolution of the photographs and these represented the only aerial photographs that were available. URS conducted a search of the NYSDEC spill website and was assisted by regional NYSDEC personnel. No record of any tanks or tank closures was found for any of the three properties being investigated. The description and a brief history of each of the three properties is found below.

1.3.1 15-21 North Franklin Street

The southern most property included in the investigation is located at 15 to 21 North Franklin Street. Although the property covers three street addresses (15, 17 and 21) the property is owned by a single property owner and is one contiguous property. The property is located on the west side of North Franklin Street and its northern edge is located south of the intersection of North Franklin Street and Division Street (Figure 4). Photographs of the property may be found in Appendix C.

A review of the Sanborn maps indicated that the Hurd & Brown and Saw Mill occupied the property from 1886 to 1897 and a lumber shed occupied the adjacent property at 25 North Franklin Street. The 1903 Sandborn indicated that a veneer manufacturing company occupied the site building and that the lumber shed at 25 North Franklin Street had been replaced with a salt well and a building. The site building contained a hardware store in 1908 and was vacant in 1914. The 1924 Sanborn map indicates that the previous building had been removed and replaced with a residence/filling station at 15 North Franklin Street with a single gasoline tank located on the east side of the residence/filling station along North Franklin Street. The 1938 and 1955 Sanborn maps indicate the presence of three additional tanks along the southern side of the residence/ filling station starting at the southeast corner. An additional two tanks are located along North Franklin Street, one east of the northeast corner of the building and one east of the southeast corner of the building.

1.3.2 Clifford Motors

The middle property included in the investigation is located on North Franklin Street and is the current location of Clifford Motors, which uses the property as a car lot. This property apparently does not have an address on North Franklin Street and is identified on the County of Schuyler Tax Map, Village of Watkins Glen, Map No. 65.09, Section 1, Parcel No. 33. The property is located at the west side of North Franklin Street and is located between State Route 14 on the north, the intersection of North Franklin Street and Division Street on the south and Madison Street on the east (Figure 4). Photographs of the property may be found in Appendix C.

A review of the Sanborn maps indicates that the northern ¾ of the property was the site of the Lakeshore Hotel between 1886 and 1914. The southern ¼ of the property, along Division Street, was occupied by a single structure, which during the same time period served as a bottling company, a storage building and a tailor shop. Starting in 1924, the Lakeshore Hotel no longer occupied the northern ¾ of the property and the structure on the southern ¼ of the property housed an automobile garage. The 1938 Sanborn indicated a filling station in the middle of the property with a gasoline tank and two gasoline tanks are located on the east side of the garage. The 1955 Sanborn identified the garage structure as a filling station, the filling station in the middle of the property is absent and no gasoline tanks are noted on the property.

1.3.3 1 North Franklin Street (Captain Bill's)

The northern most property included in the investigation is located at 1 North Franklin Street and is the current location of Captain Bill's, which conducts boat tours of Seneca Lake. The property is located at the northern terminus of North Franklin Street on the east side of State Route 14 and is located between the intersection of North Franklin Street and Lincoln Street on the south and Seneca Lake on the north and Seneca Harbor Station (3 North Franklin Street), which is a restaurant, to the east (Figure 4). A historic and currently active railroad line is located along the northeast property line along Seneca Lake. Photographs of the property may be found in Appendix C.

A review of the Sanborn maps indicated that the property was undeveloped between 1886 and 1897, although a train station occupied the current location of the Seneca Harbor Station to the east and a foundry was located at the northwest edge of the property. A small structure

occupied the property between 1903 and 1908 and was absent in 1914. Watkins Salt Company operated two salt wells on the property between 1924 and 1955 and a structure serving as a restaurant and an office occupied the location of Captain Bill's building.

2.0 FIELD ACTIVITIES

The field activities conducted as part of this site investigation were sequenced to most effectively assess potential impacts of the study area on the environment. These field activities were conducted between September 26, 2006 and November 6, 2006, and include the following tasks:

- Geophysical Survey
- Soil Boring and Sampling/Groundwater Sampling
- Underground Storage Tank Sampling
- Soil-Gas Conduit Sampling
- Investigation Area Survey

2.1 Geophysical Survey

URS contracted Radar Solutions International of Waltham, Massachusetts (Radar Solutions) to conduct a geophysical survey of the study area to locate the buried utilities; potential buried metallic objects and potential underground storage tanks (USTs). The survey was conducted between September 26, 2006 and September 27, 2006 and utilized both time-domain electromagnetic (EM) techniques and ground penetrating radar (GPR). A URS geologist was present for all associated geophysical field activities.

A reference grid was established on each of the three properties, which coincided with the Geoprobe sampling grid, prior to collecting the geophysical data. The reference grid at each property was marked at 10-foot intervals along both the north-south and east-west axis.

A Geonics Model EM-61 time-domain induction meter was used to detect buried metal to a maximum depth of 12 feet. The use of the EM-61 minimized the effects of over-head power lines and surface metal object (i.e., cars, manholes, surface debris). Data was collected at 0.5 second intervals and at and field markers every 10 feet along grid lines spaced 2.5 feet apart.

A GSSI SIR-3000 digital radar system and a 400 MHz antenna was use to perform the GPR survey. GPR data were acquired along lines space 2.5 to 5.0 feet apart. Radar Solutions and URS painted the boundaries of suspect objects in the field.

A map summarizing the geophysical results for the 15 to 21 North Franklin Street, Clifford Motors property and Captain Bills property may be found on Figures 5, 6 and 7 respectively. A complete geophysical survey report is included in Appendix D. The data generated from this survey, in conjunction with the historic Sanborn map review were used to determine potential boring locations.

2.2 Soil Borings and Sampling

Geoprobe borings were advanced to delineate the extent of petroleum impacted soil and groundwater in the vicinity of the SG-03 soil-gas conduit location (Captain Bill's) and to determine if two former filling stations (Clifford Motors and 15-21 Franklin Street) located on North Franklin Street are the potential source(s) of the petroleum contamination. The boring locations were selected based upon the findings of the geophysical survey and in conjunction with the historic Sanborn map review. A regional NYSDEC representative approved all boring locations in the field before the start of the fieldwork.

A total of 41 borings were advanced across the three properties: fifteen borings were advanced on the 15-21 Franklin Street property (Figure 8); fifteen borings were advanced on the Clifford Motors property (Figure 9); and eleven borings were advanced on the Captain Bill's property (Figure 10). The borings were advanced between October 17 and October 20, 2006.

URS contracted Geologic NY Inc. of Homer, New York (Geologic) to advance the borings using a track-mounted Geoprobe unit. The borings were advanced to a maximum of 16 feet below ground surface (bgs) with 2 inch outside diameter (O.D.) acetate lined Macrocore sampler to approximately two feet below the water table, which was encountered between 5 to 15 feet bgs. A URS geologist scanned each Macrocore sample with a MiniRae 2000 photoionization detector (PID) at two (2) foot intervals, and described the subsurface materials encountered. Descriptions of the cores and related information from each boring were recorded on soil boring logs (Appendix E). All downhole equipment was decontaminated with a non-phosphate detergent and potable water between each sample collected.

A total of 31 soil samples plus quality assurance/ quality control (QA/QC) samples were collected from select borings; eight soil samples were collected from the 15-21 Franklin Street property; thirteen soil samples were collected from the Clifford Motors property; and ten soil samples were collected from the Captain Bill's property. Soil samples were collected from the interval exhibiting the highest PID reading or from just above water table if no elevated PID readings were encountered.

Soil samples collected for laboratory analyses were placed in pre-cleaned sample containers supplied by the analytical laboratory. The sample containers were labeled with a unique sample identification number and maintained at approximately 4°C in dedicated ice chests. A chain-of-custody (COC) form was maintained and accompanied the sample containers to Mitken Corporation of Warwick, Rhode Island, which is a New York State Department of Health New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) certified laboratory for analysis by Spill Technology and Remediation Series (STARS) volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260B and STARS semi-volatile organic compounds (SVOCs) by USEPA Method 8270C.

2.2.1 Additional Soil Samples

In addition to the soil samples collected for STARS VOCs by USEPA Method 8260B and STARS SVOCs by USEPA Method 8270C, URS collected one soil sample from the Clifford Motors property and one sample from the Captain Bill's property on October 20, 2006, for future analyses as directed by the regional NYSDEC representative. The soil samples were labeled with a unique sample identification number, transported under COC control, and stored in a freezer at the URS-Buffalo office.

On November 21, 2006, the NYSDEC requested that URS send the samples for analyses. The samples were shipped under COC control to Mitken Corporation for analyses for VOCs by USEPA Method 8260B, SVOCs by USEPA Method 8270C, total petroleum hydrocarbon (TPH) for gasoline via USEPA Method 8015M Gas Range Organics (GRO) and TPH diesel via USEPA Method 8015M Diesel Range Organics (DRO).

2.2.2 **Groundwater Sampling**

A total of 26 groundwater samples plus quality assurance/ quality control (QA/QC) samples were collected from select borings: seven groundwater samples were collected from the 15-21 Franklin Street property; eleven groundwater samples were collected from the Clifford Motors property; and eight groundwater samples were collected from the Captain Bill's property. Groundwater samples were collected from 0 to 1 foot below the water table.

The Geoprobe® unit was used to drive a screen point sampler to approximately one foot below the water table. The screen point was threaded into the leading end of a probe rod. While the sampler was driven to the desired depth, O-ring seals at the drive head and expendable drive points provided a watertight seal. At the desired depth, chase rods were used to enable the retraction of the tool sting while the screen is held in place. A minimum of 1 gallon of water was purged prior to the collection of a groundwater sample using dedicated high-density polyethylene (HDPE) tubing and a peristaltic pump. Following the collection of the groundwater samples, the borings were backfilled with bentonite chips to within 6 inches of the surface and the surface was repaired using materials similar to those found at the boring location.

Groundwater samples collected for laboratory analyses were placed in pre-cleaned sample containers supplied by the analytical laboratory. The sample containers were labeled with a unique sample identification number and maintained at approximately 4°C in dedicated ice chests. A COC form was maintained and accompanied the sample containers to Mitken Corporation of Warwick, Rhode Island for analysis by STARS VOCs by USEPA Method 8260B and STARS SVOCs by USEPA Method 8270C.

2.3 Underground Storage Tank Sampling

During a meeting at the site on June 20, 2006, an UST fill port was found at the Clifford Motors property at approximately 230 north by 68 west. The bottom of the UST was measured to be approximately 5.0 feet bgs and appeared to contain approximately 2.4 feet of black, non-aqueous, oily liquid. On September 27, 2006 URS personnel collected one sample from the tank to determine the type of product for disposal purposes.

The depth to the bottom of the tank was verified with a retractable steel tape measure to be approximately 5.0 feet below ground surface (bgs). Approximately 2.67 feet of liquid was

found to be in the bottom of the tank. URS used a water finding paste to determine that approximately 2 inches of the black, non-aqueous, oily liquid was floating on top of water in the tank. URS used a peristaltic pump and dedicated/disposable HDPE tubing to collect a sample of the black, non-aqueous, oily liquid. Photographs of the fill port and product measurement may be found in Appendix C.

The sample collected for laboratory analyses was placed in pre-cleaned sample containers supplied by the analytical laboratory. The sample containers were labeled with a unique sample identification number and maintained at approximately 4°C in dedicated ice chests. A COC form was maintained and accompanied the sample containers to Life Science Laboratories of East Syracuse, New York, which is a NYSDOH ELAP certified laboratory for analysis using USEPA Method 310.13.

2.4 Soil-Gas Conduit Sampling

A soil-gas sample was collected from soil-gas conduit SG-03 on September 26, 2006. The soil-gas sample was collected using a laboratory six-liter Summa canister, in accordance with the procedures outlined in the Field Sampling Plan (URS, July 2005). A helium tracer gas was used to verify that infiltration of outdoor air was not occurring during sample collection and no elevated concentrations of helium (>10%) were detected prior to or following the sample collection at the soil-gas conduit. In addition, an ambient air sample was collected from an upwind position. The soil-gas and ambient air samples were collected over a one-hour period using laboratory supplied and calibrated flow controllers. Photographs of the sampling of the soil-gas conduit may be found in Appendix C.

A COC form was maintained and accompanied the sample containers to Severn Trent Laboratories (STL) of Burlington, Vermont, which is a NYSDOH ELAP certified laboratory for analysis for benzene, ethylbenzene, toluene and xylene using USEPA Compendium Method TO15

2.5 <u>Investigation Area Survey</u>

A survey was conducted on November 7, 2006 by URS surveyors to locate the following items on all three properties: building corners; roads; sidewalks; three geophysical survey grids; the 41Geoprobe boring locations; and key site features. Vertical control was referenced to the

New York State Plane Coordinates, North American Vertical Datum of 1988 (NAVD 1988) and horizontal control was referenced to the New York State Plane West, 1983 North American Datum (NAD 1983). Survey notes are provided in Appendix F. All surveying and mapping was performed under the supervision of a New York State-licensed land surveyor.

3.0 SUBSURFACE CONDITIONS

3.1 Geophysical Survey Results

The findings of the geophysical survey performed at each of the three properties are summarized below. A complete geophysical survey report is included in Appendix D.

3.1.1 <u>15-21 North Franklin Street</u>

The combined results for the EM-61 and GPR survey and interpreted results for the 15-21 North Franklin Street property are shown on Figure 5.

- A possible 1,000-gallon capacity UST exists at approximately 65 north by 35 west. This object was detected by the EM-61 and the GPR.
- A possible 1,000-gallon capacity UST exists at approximately 57 north by 35 west. This object was detected by the EM-61 and the GP
- A possible 500-gallon capacity UST exists at approximately 2 north by 35 west. This object was detected by the EM-61 and the GPR.

3.1.2 Clifford Motors

The combined results for the EM-61 and GPR survey and interpreted results for the Clifford Motors property are shown on Figure 6.

- A possible UST exists at approximately 267 north by 20 east. This object was detected by the EM-61 only.
- A possible UST exists at approximately 270 north by 33 east. This object was detected by the EM-61 only.
- A possible UST exists at approximately 237 north by 48 east. This object was detected by the EM-61 only.
- A possible UST exists at approximately 243 north by 61 east. This object was detected by the EM-61 only.

- A possible UST or oil water separator exists at approximately 229 north by 68 east. This object was detected by the EM-61 and the GPR.
- A possible small UST exists at approximately 286 north by 43 east. This object was detected by the EM-61 and the GPR.
- A possible small UST exists at approximately 314 north by 18 east. This object was detected by the EM-61 and the GPR.

3.1.3 Captain Bill's

The combined results for the EM-61 and GPR survey and interpreted results for the Captain Bill's property are shown on Figure 7.

- A possible UST, buried utilities or subsurface structure exists at approximately 100 north by 30 east. This object was detected by the EM-61 only.
- A possible UST exists at approximately 30 north by 70 east. This object was detected by the EM-61 only.

3.2 Geology of Investigation Areas

3.2.1 <u>15-21 North Franklin Street</u>

A total of fifteen borings (SG-01 through SG-15) were advanced on the 15-21 North Franklin Street property (Figure 8). The general geology at the property consists of: black to brown fill material consisting of clayey silt to silty sand with varying amounts of slag, brick and ash (0.5 to 4.5 feet thick) overlying; silty clay with trace amounts of roots and gravel (4.0 to 9.0 feet in thickness) overlying; a silty sand to sand containing varying amounts of silt and gravel. At one location, SG-10, weathered shale bedrock was encountered at approximately 8.0 feet bgs.

PID screening results for the soil cores ranged from zero to 985 parts per million (ppm). The elevated PID readings were encountered in the borings surrounding and east/ northeast of the possible USTs located at approximately 65 north by 35 west. The description of soil samples collected from the borings at the 15-21 North Franklin Street property may be found in Table 1.

Groundwater at the property was generally encountered in the silty sand to sand unit and ranged from 6.8 to 12.0 feet bgs.

3.2.2 Clifford Motors

A total of fifteen borings (SG-17 through SG-30) were advanced on the Clifford Motors property (Figure 9). The general geology at the property consists of: black to brown fill material consisting of asphalt with a sand and gravel sub-base (0.5 to 1.5 feet thick) overlying; silty clay with trace amounts of sand and gravel (1.5 to 7.5 feet thick) overlying; a sand and gravel with trace amounts of silty clay.

PID screening results for the soil cores ranged from zero to 2,018 parts per million (ppm). The elevated PID readings were encountered across the entire site but were generally highest east and northeast of the possible USTs located at approximately 229 north by 68 east, 286 north by 43 east and 314 north by 18 east. The description of soil samples collected from the borings at the Clifford Motors property may be found in Table 1.

Groundwater at the property was generally encountered in the sand and gravel unit and ranged from 4.0 to 12.0 feet bgs

3.2.3 Captain Bill's

A total of eleven borings (SG-31 through SG-41) were advanced on the Captain Bill's property (Figure 10). The general geology at the property consists of: black to brown fill material consisting of asphalt with a sand and gravel sub-base (0.5 to 1.5 feet thick) overlying; a sand and gravel with trace amounts of clay (0 to 5.0 feet thick) overlying; silty clay with trace amounts of sand and gravel (0.5 to 3.5 feet thick) overlying; a sand and gravel with trace amounts of silty clay.

PID screening results for the soil cores ranged from zero to 3,585 parts per million (ppm). The elevated PID readings were highest south of the site building across the entire east/west extent of the sampling grid. The description of soil samples collected from the borings at the Captain Bill's property may be found in Table 1.

Groundwater at the property was generally encountered in the sand and gravel unit and ranged from 4.8 to 8.6 feet bgs.

3.2.4 <u>Investigation Area Hydrogeology</u>

The groundwater at the properties was generally encountered within the sand and gravel unit. The silty clay unit overlying the sand and gravel unit acts as a confining unit. Investigations at the North Franklin Street site have indicated that the silty clay unit is a discontinuously confining unit in the area and is absent northeast of the North Franklin Street site. Historic water level measurements from the North Franklin Street site indicate that the groundwater in the area of the investigation is generally flowing in a north to northeast direction towards Seneca Lake.

4.0 LABORATORY ANALYTICAL RESULTS

A limited data validation was performed on all the samples following the guidelines in USEPA Region II *Validating Canisters of Volatile Organics in Ambient Air*, Rev. 0, April 1994; USEPA Region II *CLP Organics Data Review and Preliminary Review* Validation Guidelines, SOP HW-6, Revision 12, March 2001; and the analytical methods. The validation included: a review of holding times and completeness of all required deliverables; a review of quality control (QC) results (blanks, instrument tunings, calibration standards, duplicate analyses, and laboratory control sample recoveries) to determine if the data are within the protocol-required limits and specifications; a determination that all samples were analyzed using established and agreed upon analytical protocols; an evaluation of the raw data to confirm the results provided in the data summary sheets; and a review of laboratory data qualifiers. Qualifications applied to the data include 'U' (non-detect), 'J' (estimated concentration), 'UJ' (estimated quantitation limit), and 'R' (rejected).

A Data Usability Summary Report (DUSR) was prepared following the guidelines provided in NYSDEC Division of Environmental Remediation *Guidance for the Development of Data Usability Summary Reports*, dated June 1999. This DUSR was submitted under separate cover.

4.1 Soil Boring Samples

All soil samples were analyzed for VOCs and SVOCs and the detected results were compared to NYSDEC *Technical and Administrative Guidance Memorandum* #4046 (TAGM) recommended soil cleanup objectives (RSCOs). Table 2 shows all detected compounds and RSCO exceedances are circled.

4.1.1 15-21 North Franklin Street

A total of eight soil samples were collected from the 15-21 Franklin Street property.

Nine VOCs (benzene, ethylbenzene, xylenes (total), 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, isopropylbenzene, naphthalene, n-butylbenzene, and n-propylbenzene) were detected in soil samples at levels exceeding their respective RSCOs. These compounds exceeded their respective RSCOs at only two sample locations (GB-12 and GB-13). The total VOC

concentrations at GB-12 [350, 400 micrograms per kilogram (µg/kg)] exceeded the RSCO for total VOCs (10,000µg/kg). Soil sample locations and their corresponding analytical results for VOCs that exceed RSCOs at the 15-21 Franklin Street property are depicted on Figure 11.

Two SVOCs (benzo(a)pyrene and naphthalene) were detected in soil samples at levels exceeding their respective RSCOs. These compounds also exceeded their respective RSCOs only at GB-12.

No sample location exceeded the total SVOC RSCO (500,000 μ g/kg). Soil sample locations and their corresponding analytical results for SVOCs that exceed RSCOs at the 15-21 Franklin Street property are depicted on Figure 11. Table 2a provides a statistical summary of the detected contaminants in soil samples at the 15-21 Franklin Street property.

4.1.2 Clifford Motors

A total of thirteen soil samples and two duplicate samples were collected from the Clifford Motors property.

Eight VOCs (benzene, ethylbenzene, xylenes (total), 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, isopropylbenzene, n-butylbenzene, and n-propylbenzene) were detected in soil samples at levels exceeding their respective RSCOs. Nine sample locations and one sample duplicate reported VOCs at concentrations above RSCOs (GB-17, GB-17 (dup-1), GB-20, GB-22, GB-25, GB-26, GB-27, GB-28, GB-29, and GB-30). The total VOC concentration at GB-17 (dup-1), GB-45, GB-26, GB-28, GB-29 and GB-30 (40,770, 33,951, 68,300, 46,330, 23,609 and 279,500μg/kg respectively) exceeded the RSCO for total VOCs (10,000μg/kg). Soil sample locations and their corresponding analytical results for VOCs that exceed RSCOs at the Clifford Motors property are depicted on Figure 12.

Six SVOCs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluorathene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene) were detected in soil samples at levels exceeding their respective RSCOs. Three sample locations and two samples duplicates reported SVOCs at concentrations above RSCOs [GB-17 (dup-1), GB-23, GB-23 (dup-2), GB-29, and GB-30]. No sample location exceeded the total SVOC RSCO (500,000 μg/kg). Soil sample locations and their corresponding analytical results for SVOCs that exceed RSCOs at the

Motors property are depicted on Figure 12. Table 2b provides a statistical summary of the detected contaminants in soil samples at the Clifford Motors property.

4.1.3 Captain Bill's

A total of ten soil samples and one duplicate sample were collected from the Captain Bill's property.

Nine VOCs (benzene, ethylbenzene, xylenes (total), 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, isopropylbenzene, naphthalene, n-butylbenzene, and n-propylbenzene) were detected in soil samples at levels exceeding their respective RSCOs. Four sample locations and one sample duplicate reported VOCs at concentrations above RSCOs [GB-31, GB-32, GB-38, GB-38 (dup-4-6-7), and GB-40]. The total VOC concentrations at GB-31, GB-32, GB-38 (dup-4-6-7), GB-38 and GB-40 (318,900, 48,150, 44,450, 48,060, and 57,660 μ g/kg respectively) exceeded the RSCO for total VOCs (10,000 μ g/kg). Soil sample locations and their corresponding analytical results for VOCs that exceed RSCOs at the Captain Bill's property are depicted on Figure 13.

Six SVOCs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluorathene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene) were detected in soil samples at levels exceeding their respective RSCOs. Five sample locations reported SVOCs at concentrations above RSCOs (GB-33, GB-34, GB-37, GB-40 and GB-41). No sample location exceeded the total SVOC RSCO (500,000 μg/kg). Soil sample locations and their corresponding analytical results for SVOCs that exceed RSCOs at the Captain Bill's property are depicted on Figure 13. Table 2c provides a statistical summary of the detected contaminants in soil samples at the Captain Bill's property.

4.1.4 Additional Soil Samples

At the time of this final report the analytical results for the additional analyses had not been validated by URS. The results will be discussed in a letter report addendum.

4.2 **Groundwater Samples**

All groundwater samples collected were analyzed for STARS VOCs, STARS SVOCs, and the detected results were compared to groundwater standards found in the NYSDEC Technical Operations and Guidance Series (TOGS) 1.1.1, "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" issued in June 1998 and updated in April 2000, Class GA (Table 3). Groundwater analytical results for total benzene, toluene, ethylbenzene and xylene (BTEX), total VOCs and total SVOCs at each sample location is shown on Figure 14.

4.2.1 15-21 North Franklin Street

A total of seven groundwater samples were collected from the 15-21 Franklin Street property. Table 3a provides a statistical summary of the detected contaminants in groundwater samples at the 15-21 Franklin Street property.

Thirteen VOCs (benzene, toluene, ethylbenzene, xylenes (total), 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, methyl tert-butyl ether, isopropylbenzene, 4-isopropyltoluene, naphthalene, n-butylbenzene, n-propylbenzene, and sec-butylbenzene) were detected in groundwater samples at levels exceeding Class GA groundwater standards. VOCs were reported above groundwater standards at four sample locations (GB-09, GB-12, GB-13, and GB-15) that are adjacent to and northeast of the possible USTs located at approximately 65 north and 35 west. The sample location with the highest concentration of total VOCs was GB-13 with 20,326 micrograms per liter (μ g/L).

One SVOC (naphthalene) was detected in groundwater samples at levels exceeding Class GA groundwater standards. Naphthalene exceeded its respective groundwater standards at four sample locations (GB-09, GB-12, GB-13, and GB-15) that are adjacent to and northeast of the possible USTs located at approximately 65 north and 35 west. The sample location with the highest concentration of total SVOCs was GB-12 with 391 μ g/L.

4.2.2 <u>Clifford Motors</u>

A total of eleven groundwater samples and two duplicate samples were collected from the Clifford Motors property. Table 3b provides a statistical summary of the detected contaminants in groundwater samples at the Clifford Motors property.

Twelve VOCs (benzene, toluene, ethylbenzene, xylenes (total), 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, isopropylbenzene, 4-isopropyltoluene, naphthalene, n-butylbenzene, n-propylbenzene, and sec-butylbenzene) were detected in groundwater samples at levels exceeding Class GA groundwater standards. VOCs were reported above groundwater standards at eleven sample locations (GB-17, GB-20, GB-21, GB-22, GB-24, GB-25, GW-26, GB-27, GB-28, GB-29, and GB-30) and in two duplicate samples [GB-17 (DUP-1-WG) and GB-26 (DUP-3-WG)]. The sample location with the highest concentration of total VOCs was GB-30 with 4,383 μg/L.

Four SVOCs (benzo(a)anthracene, benzo(a)pyrene, chrysene, and naphthalene) were detected in groundwater samples at levels exceeding Class GA groundwater standards. Benzo(a)anthracene, benzo(a)pyrene, and chrysene exceeded their respective groundwater standards only in sample GB-29. Napthalene exceeded its respective groundwater standard at six sample locations (GB-25, GB-26, GB-27, GB-28, GB-29, and GB-30) and in two duplicate samples [GB-17 (DUP-1-WG) and GB-26 (DUP-3-WG)]. The sample location with the highest concentration of total SVOCs was GB-27 with 232 μg/L.

4.2.3 Captain Bill's

A total of eight groundwater samples and one duplicate sample were collected from the Captain Bill's. Table 3c provides a statistical summary of the detected contaminants in groundwater samples at the Captain Bill's property.

Twelve VOCs (benzene, toluene, ethylbenzene, xylenes (total), 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, isopropylbenzene, 4-isopropyltoluene, naphthalene, n-butylbenzene, n-propylbenzene, and sec-butylbenzene) were detected in groundwater samples at levels exceeding Class GA groundwater standards. VOCs were reported above groundwater standards at eight sample locations (GB-31, GB-32, GB-33, GB-36, GB-37, GB-38, GW-40, and GB-41) and in one duplicate sample [GB-40 (DUP-5-WG)]. The sample location with the highest concentration of total VOCs was GB-36 with 30,534 μ g/L.

One SVOC (naphthalene) was detected in groundwater samples at levels exceeding Class GA groundwater standards. Naphthalene exceeded its respective groundwater standard at eight sample locations (GB-31, GB-32, GB-33, GB-36, GB-37, GB-38, GW-40, and GB-41) and in one duplicate sample [GB-40 (DUP-5-WG)]. The sample location with the highest concentration of total SVOCs was GB-36 with $500 \mu g/L$.

4.3 <u>Underground Storage Tank Sample</u>

The black, non-aqueous, oily product collected from the fill port found at the Clifford Motors property was analyzed for fuel fingerprint using USEPA Method 310.13. Table 4 shows the results of the analysis.

The product collected from the fill port was identified as #6 fuel oil.

4.4 <u>Soil-Gas Conduit Sample</u>

The validated analytical results from the soil-gas sample collected from SG-03 on September 26, 2006 is summarized in Table 5 and have been shown with the sample results from the July 18, 2005 sampling event. The following is a summary of the analytical results from the soil-gas conduit sampling.

Six VOCs (benzene, 1,1,2-trichloroethane, cyclohexane, heptane, hexane and 2,2,4-trimethylpentane) were detected in the soil-gas sample. The concentration of benzene [17,000 micrograms per cubic meter ($\mu g/m3$)] was less than the July 18, 2005 sample (22,700 $\mu g/m3$). The remaining VOCs were not detected during the previous sampling event.

An extremely high concentration of 2,2,4-trimethylpentane (1,000,000 $\mu g/m3$) was detected during this sampling event. This compound is associated with the manufacture, use and disposal of products associated with the petroleum and gasoline industry.

It should be noted that the reason that these additional VOC compounds may have been detected during the September 26, 2006 sampling event is that the sample went to a different inter-company laboratories for analyses. The samples from the July 18, 2005 sampling event went to STL-Knoxville and the sample from the September 26, 2006 sampling event went to STL-Burlington. Each laboratory has its' own specific list of compounds that it will analyze for

during TO-15 analyses. The laboratories were switched between sampling events because STL-Burlington can analyze for TO-15 using lower detection limits than STL-Knoxville, which is desirable when performing indoor air sampling and thus was selected as a contract lab in January 2006.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Based upon the results of this investigation, the following conclusions have been reached:

- A review of Sanborn maps has indicated that gasoline tanks were historically located at both the 15-21 North Franklin Street property and the Clifford Motors property.
- Results of the geophysical survey indicated 3 possible USTs at the 15-21 North Franklin Street property, 7 possible USTs at the Clifford Motors property, and 2 possible USTs at the Captain Bill' property.
- Soil samples from the 15-21 North Franklin Street property indicate that soils have been impacted above RSCOs adjacent to and northeast of the possible USTs located at approximately 65 north by 35 west and 57 north by 35 west.
- Soil samples from the Clifford Motors property indicate that soils have been impacted above RSCOs adjacent to and east to northeast of the possible USTs located at approximately 229 north by 68 east, 286 north by 43 east, and 314 north by 18 east.
- Soil samples from the Captain Bill's property indicate that soils have been impacted above RSCOs across most of the site but appear to have the highest concentration adjacent to two subsurface anomalies located at 30 north by 70 east and 50 north by 20 east.
- Groundwater samples at the 15-21 North Franklin Street property indicate that groundwater on the property has been impacted above Class GA groundwater standards adjacent to and northeast of the USTs located at approximately 65 north by 35 west and 57 north by 35 west.
- Groundwater samples at the Clifford Motors property indicate that groundwater on the property has been impacted above Class GA groundwater standards adjacent to and east to northeast of the UTS located at approximately 229 north by 68 east, 286 north by 43 east, and 314 north by 18 east.
- Groundwater samples at the Captain Bill's property indicate that groundwater on the property has been impacted above Class GA groundwater standards across most of

- the site but appear to have the highest concentration adjacent to two subsurface anomalies located at 30 north by 70 east and 50 north by 20 east.
- A review of the analytical results indicates that the USTs located on the 15-21 North
 Franklin Street property and the Clifford Motors property have impacted soil and
 groundwater in the vicinity and northeast of each site.
- The vertical and horizontal extent of impacted soil and groundwater has not been delineated

The following recommendations are offered for consideration by the Department:

- An additional round of soil gas samples should be collected from the soil-gas conduit locations associated with the three properties using STL-Burlington as the laboratory. This will confirm the presence of the high concentration of 2,2,4-trimethylpentane (1,000,000 ug/m³) at the SG-03 location and possible presence of this compound in the soil gas at the 15-21 North Franklin Street property and Clifford Motors property.
- Additional investigations should be conducted to determine the full extent of impacted soils and groundwater at the three properties.
- The USTs and associated piping if present should be properly closed/removed.

TABLES

TABLE 1 SOIL SAMPLE DESCRIPTIONS NORTH FRANKLIN ST. SITE

Boring ID	Depth Interval	PID Reading	Sample Description				
	(feet)	(ppm)					
GB-03	5.0-6.0	0.0	Silty CLAY, trace roots. slight petroleum odor				
GB-05	5.0-7.0	0.0	Silty CLAY, trace roots, slight sheen and petroleum odor.				
GB-09	7.0-8.0	0.0	Silty CLAY, trace roots. slight petroleum odor				
GB-10	6.0-7.0	0.0	Silty CLAY, trace gravel.				
GB-11	3.0-4.0	0.0	Silty CLAY, trace gravel, slight sheen and petroleum odor.				
GB-12	5.0-6.0.	640	Silty CLAY, trace roots, sheen and strong petroleum odor.				
GB-13	6.5-7.5	12.9	Silty CLAY trace fine gravel and slight petroleum odor				
GB-15	11.0-12.0	0.0	Silty CLAY trace fine gravel.				
GB-17	6.0-7.0	49	Silty CLAY trace sand and gravel, sheen and petroleum odor				
GB-18	6.0-7.0	2.0	Silty CLAY trace sand and gravel.				
GB-20	6.0-7.0	120	Silty CLAY trace sand and gravel. petroleum odor				
GB-21	6.0-7.0	16	Silty CLAY trace sand and gravel. slight petroleum odor				
GB-22	6.0-7.0	24	Silty CLAY trace sand and gravel. slight petroleum odor				
GB-23	9.0-10.0	0.0	Silty CLAY trace sand and gravel.				
GB-24	6.0-7.0	1157	SAND and GRAVEL trace silty clay. sheen and strong petroleum odor.				
GB-25	6.0-7.0	167	SAND and GRAVEL trace silty clay. petroleum odor				
GB-26	6.0-7.0	934	SAND and GRAVEL trace silty clay. sheen and strong petroleum odor				
GB-27	6.0-7.0	1690	SAND and GRAVEL trace silty clay. sheen and strong petroleum odor				
GB-28	6.0-7.0	1764	SAND and GRAVEL trace silty clay. sheen and strong petroleum odor				
GB-29	6.0-7.0	1942	SAND and GRAVEL trace silty clay. sheen and strong petroleum odor				
GB-30	6.0-7.0	2018	Silty CLAY trace sand and gravel. strong petroleum odor				
GB-31	8.0-9.0	1517	SAND and GRAVEL trace silty clay. strong petroleum odor				
GB-32	9.0-10.0	242	SAND and GRAVEL trace silty clay. strong petroleum odor				
GB-33	6.0-7.0	15.7	Silty CLAY trace sand and gravel. slight petroleum odor				
GB-34	6.0-7.0	2.8	SAND and GRAVEL trace silty clay.				
GB-35	6.0-7.0	64	Silty CLAY trace sand and gravel. slight petroleum odor				
GB-36	6.0-7.0	3585	SAND and GRAVEL trace silty clay. strong petroleum odor and free product.				
GB-37	6.0-7.0	1942	SAND and GRAVEL trace silty clay. sheen and strong petroleum odor				
GB-38	6.0-7.0	1954	Silty CLAY trace sand and gravel. sheen and strong petroleum odor				
GB-40	6.0-7.0	2704	SAND and GRAVEL trace silty clay. sheen and strong petroleum odor				
GB-41	5.0-6.0	not measured	SAND and GRAVEL trace silty clay, sheen and strong petroleum odor				

Location ID			GB-03	GB-05	GB-09	GB-10	GB-11
Sample ID	GB-03-5-6	GB-05-5-7	GB-09-7-8	GB-10-6-7	GB-11-3-4		
Matrix	Soil	Soil	Soil	Soil	Soil		
Depth Interval (f	t)		5.0-6.0	5.0-7.0	7.0-8.0	6.0-7.0	3.0-4.0
Date Sampled	_		10/17/06	10/17/06	10/17/06	10/17/06	10/17/06
Parameter	Units	Criteria*					
Volatile Organic Compounds			== 				
Benzene	UG/KG	60	6 U	7 UJ	7 UJ	7 U	6 U
Toluene	UG/KG	1500	2 J	7 UJ	7 UJ	7 UJ	1 J
Ethylbenzene	UG/KG	5500	6 UJ	7 UJ	7 UJ	7 UJ	6 U
Xylene (total)	UG/KG	1200	1 J	6 UJ	240 J	2 J	5 J
1,2,4-Trimethylbenzene	UG/KG	10000	3 J	33 J	510 J	2 J	2 J
1,3,5-Trimethylbenzene	UG/KG	3300	6 UJ	22 J	180 J	7 UJ	6 U
Methyl tert-Butyl Ether	UG/KG	120	6 U	7 UJ	7 UJ	7 U	6∪
Isopropylbenzene	UG/KG	2300	6 UJ	4 J	22 J	7 UJ	8
4-Isopropyltoluene	UG/KG	10000	6 UJ	10 J	19 J	7 UJ	6 U
Naphthalene	UG/KG	13000	6 U	12 J	89 J	7 UJ	6 U
n-Butylbenzene	UG/KG	10000	6 UJ	7 U	37 J	7 UJ	3 J
n-Propylbenzene	UG/KG	3700	6 UJ	3 J	79	7 UJ	19
sec-Butylbenzene	UG/KG	10000	6 UJ	12 J	7 UJ	7 UJ	4 J
Total BTEX	UG/KG	-	3	6	240	2	6
Total Volatile Organic Compounds	UG/KG	10000	6	102	1,176	4	42
Semivolatile Organic Compounds							
Acenaphthene	UG/KG	50000	420 U	430 U	480 U	470 U	420 U
Anthracene	UG/KG	50000	420 U	430 U	480 U	470 U	420 U
Benzo(a)anthracene	UG/KG	224 or MDL	420 U	430 U	480 U	470 UJ	420 U
Benzo(a)pyrene	UG/KG	61 or MDL	420 U	430 U	480 U	470 U	420 U
Benzo(b)fluoranthene	UG/KG	1100	420 U	430 U	480 U	470 U	420 U
Benzo(g,h,i)perylene	UG/KG	50000	420 U	430 U	480 U	470 U	420 U

*Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised) including subsequent addendum pertaining to STARs VOCs and SVOCs.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantitation is an estimation.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.
- D Result reported from a secondary dilution analysis.

Location ID			GB-03	GB-05	GB-09	GB-10	GB-11
Sample ID			GB-03-5-6	GB-05-5-7	GB-09-7-8	GB-10-6-7	GB-11-3-4 Soil
Matrix			Soil	Soil	Soil	Soil	
Depth Interval (f	t)		5.0-6.0	5.0-7.0	7.0-8.0	6.0-7.0	3.0-4.0
Date Sampled	-		10/17/06	10/17/06	10/17/06	10/17/06	10/17/06
Parameter Units Criteria*		Criteria*					
Semivolatile Organic Compounds							
Benzo(k)fluoranthene	UG/KG	1100	420 U	430 U	480 U	470 U	420 U
Chrysene	UG/KG	400	420 U	68 J	480 U	470 UJ	420 U
Dibenz(a,h)anthracene	UG/KG	14 or MDL	420 U	430 U	480 U	470 U	420 U
Fluoranthene	UG/KG	50000	420 U	55 J	480 U	470 U	420 U
Fluorene	UG/KG	50000	420 U	430 U	480 U	470 U	420 U
ndeno(1,2,3-cd)pyrene	UG/KG	3200	420 U	430 U	480 U	470 U	420 U
Naphthalene	UG/KG	13000	420 U	130 J	480 U	470 U	43 J
Phenanthrene	UG/KG	50000	420 U	88 J	480 U	470 U	420 U
Pyrene	UG/KG	50000	420 U	66 J	480 U	470 UJ	420 U
Total Semivolatile Organic Compounds	UG/KG	5.00E+05	ND	407	ND	ND	43

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantitation is an estimation.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.
- D Result reported from a secondary dilution analysis.

^{*}Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised) including subsequent addendum pertaining to STARs VOCs and SVOCs.

Location ID			GB-12	GB-13/SG-06	GB-15	GB-17	GB-17
Sample ID	GB-12-5-6	GB-13	GB-15	DUP-1	GB-17		
Matrix	Soil	Soil	Soil	Soil	Soil		
Depth Interval (f	5.0-6.0	6.5-7.5	11.0-12.0	6.0-7.0	6.0-7.0		
Date Sampled		10/17/06	10/18/06	10/18/06	10/18/06	10/18/06	
Parameter	Units	Criteria*				Field Duplicate (1-1)	
Volatile Organic Compounds							
Benzene	UG/KG	60	10 UJ	100	7 UJ	2,100	650
Toluene	UG/KG	1500	10 UJ	99	7 UJ	160 J	39 J
Ethylbenzene	UG/KG	5500	17,000 J	380	7 UJ	450	51 J
Xylene (total)	UG/KG	1200	81,000 J	790	3 J	15,000	2,400
1,2,4-Trimethylbenzene	UG/KG	10000	130,000 J	1,900	3 J	10,000	1,100
1,3,5-Trimethylbenzene	UG/KG	3300	47,000 J	420	7 UJ	3,900	420
Methyl tert-Butyl Ether	UG/KG	120	10 UJ	62 U	12 J	360 U	60 U
Isopropylbenzene	UG/KG	2300	7,800 J	130	7 U	460	46 J
4-Isopropyltoluene	UG/KG	10000	3,900 J	29 J	7 U	360 U	18 J
Naphthalene	UG/KG	13000	16,000 J	410	3 J	5,100	600
n-Butylbenzene	UG/KG	10000	21,000 J	180	7 UJ	1,700	110
n-Propylbenzene	UG/KG	3700	22,000 J	320	7 ÜJ	1,600	150
sec-Butylbenzene	UG/KG	10000	4,700 J	62 U	7 UJ	300 J	21 J
Total BTEX	UG/KG	-	98,000	1,369	3	17,710	3,140
Total Volatile Organic Compounds	UG/KG	10000	350,400	4,758	21	40,770	5,605
Semivolatile Organic Compounds							
Acenaphthene	UG/KG	50000	64 J	410 U	480 U	84 J	67 J
Anthracene	UG/KG	50000	56 J	410 UJ	480 U	140 J	130 J
Benzo(a)anthracene	UG/KG	224 or MDL	120 J	410 ŪĴ	480 U	180 J	400 U
Benzo(a)pyrene	UG/KG	61 or MDL	69 J	410 UJ	480 U	140 J	400 UJ
Benzo(b)fluoranthene	UG/KG	1100	110 J	410 ÜJ	480 U	210 J	400 UJ
Benzo(g,h,i)perylene	UG/KG	50000	420 U	410 UJ	480 U	150 J	86 J

*Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised) including subsequent addendum pertaining to STARs VOCs and SVOCs.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantitation is an estimation.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.
- D Result reported from a secondary dilution analysis.

Location ID			GB-12	GB-13/SG-06	GB-15	GB-17	GB-17
Sample ID	GB-12-5-6	GB-13	GB-15	DUP-1	GB-17		
Matrix			Soil	Soil	Soil	Soil	Soil
Depth Interval (1	ft)		5.0-6.0	6.5-7.5	11.0-12.0	6.0-7.0	6.0-7.0
Date Sampled			10/17/06	10/18/06	10/18/06	10/18/06	10/18/06
Parameter	Units	Criteria*				Field Duplicate (1-1)	
Semivolatile Organic Compounds							
Benzo(k)fluoranthene	UG/KG	1100	69 J	410 UJ	480 U	90 J	400 UJ
Chrysene	UG/KG	400	150 J	410 UJ	480 U	550	400 U
Dibenz(a,h)anthracene	UG/KG	14 or MDL	420 U	410 UJ	480 U	410 U	400 UJ
Fluoranthene	UG/KG	50000	490	410 UJ	480 U	220 J	190 J
Fluorene	UG/KG	50000	140 J	410 U	480 U	240 J	170 J
Indeno(1,2,3-cd)pyrene	UG/KG	3200	420 U	410 UJ	480 U	82 J	400 UJ
Naphthalene	UG/KG	13000	17,000 D	180 J	480 U	3,500	3,300
Phenanthrene	UG/KG	50000	650	410 UJ	480 U	1,000	730
Pyrene	UG/KG	50000	390 J	410 UJ	480 U	1,200	690
Total Semivolatile Organic Compounds	UG/KG	5.00E+05	19,308	180	ND	7,786	5,363

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantitation is an estimation.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.
- D Result reported from a secondary dilution analysis.

^{*}Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised) including subsequent addendum pertaining to STARs VOCs and SVOCs.

Location ID			GB-18	GB-20	GB-21	GB-22	GB-23
Sample ID	GB-18	GB-20	GB-21	GB-22	DUP-2		
Matrix	Soil	Soil	Soil	Soil	Soil		
Depth Interval (1	6.0-7.0	6.0-7.0	6.0-7.0	6.0-7.0	9.0-10.0		
Date Sampled			10/18/06	10/18/06	10/18/06	10/18/06	10/18/06
Parameter	Units	Criteria*					Field Duplicate (1-1)
Volatile Organic Compounds							
Benzene	UG/KG	60	9 U	29	6 U	38	6 U
Toluene	UG/KG	1500	6 J	4 J	2 J	43	1 J
Ethylbenzene	UG/KG	5500	9 UJ	32 J	6 U	180 DJ	6 U
Xylene (total)	UG/KG	1200	75 J	1,700 D	6 U	2,100 D	6 UJ
1,2,4-Trimethylbenzene	UG/KG	10000	180 J	4,400 D	2 J	2,600 D	6 U
1,3,5-Trimethylbenzene	UG/KG	3300	16 J	1,100 D	6 U	870 D	6 U
Methyl tert-Butyl Ether	UG/KG	120	9 U	7 U	6 U	410 U	6 U
Isopropylbenzene	UG/KG	2300	2 J	140 J	6 U	160 DJ	6 U
4-Isopropyltoluene	UG/KG	10000	4 J	32 J	6 U	120	6 U
Naphthalene	UG/KG	13000	9 UJ	1,000 D	6 U	130	6 UJ
n-Butylbenzene	UG/KG	10000	9 UJ	200 J	3 J	110 DJ	6 UJ
n-Propylbenzene	UG/KG	3700	6 J	7 UJ	6 U	530 D	6 U
sec-Butylbenzene	UG/KG	10000	9 UJ	49 J	6 U	160	6 U
Total BTEX	UG/KG	-	81	1,765	2	2,361	1
Total Volatile Organic Compounds	UG/KG	10000	289	8,686	7	7,041	1
Semivolatile Organic Compounds							
Acenaphthene	UG/KG	50000	570 U	480 U	390 U	440 U	540 J
Anthracene	UG/KG	50000	570 U	480 U	390 U	440 U	5,800
Benzo(a)anthracene	UG/KG	224 or MDL	570 U	480 U	390 U	440 U	11,000
Benzo(a)pyrene	UG/KG	61 or MDL	570 ∪	480 U	390 U	440 U	10,000
Benzo(b)fluoranthene	UG/KG	1100	570 U	480 U	390 U	440 U	14,000
Benzo(g,h,i)perylene	UG/KG	50000	570 U	480 U	390 U	440 U	2,300

^{*}Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised) including subsequent addendum pertaining to STARs VOCs and SVOCs.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantitation is an estimation.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.
- D Result reported from a secondary dilution analysis.

Location ID			GB-18	GB-20	GB-21	GB-22	GB-23
Sample ID		-	GB-18	GB-20	GB-21	GB-22	DUP-2
Matrix			Soil	Soil	Soil	Soil	Soil
Depth Interval (f	t)		6.0-7.0	6.0-7.0	6.0-7.0	6.0-7.0	9.0-10.0
Date Sampled			10/18/06	10/18/06	10/18/06	10/18/06	10/18/06
Parameter	Units	Criteria*					Field Duplicate (1-1)
Semivolatile Organic Compounds							
Benzo(k)fluoranthene	UG/KG	1100	570 U	480 U	390 U	440 U	7,000
Chrysene	UG/KG	400	570 U	480 U	390 U	440 U	10,000
Dibenz(a,h)anthracene	UG/KG	14 or MDL	570 U	480 U	390 U	440 U	870
Fluoranthene	UG/KG	50000	570 U	480 U	390 ∪	440 U	20,000
Fluorene	UG/KG	50000	570 U	480 U	54 J	440 U	2,500
Indeno(1,2,3-cd)pyrene	UG/KG	3200	570 U	480 U	390 U	440 U	2,900
Naphthalene	UG/KG	13000	570 U	1,000	940	440 U	1,600
Phenanthrene	UG/KG	50000	570 U	480 U	76 J	440 U	16,000
Pyrene	UG/KG	50000	570 U	480 U	390 U	440 U	21,000
Total Semivolatile Organic Compounds	UG/KG	5.00E+05	ND	1,000	1,070	ND	125,510

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantitation is an estimation.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.
- D Result reported from a secondary dilution analysis.

^{*}Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised) including subsequent addendum pertaining to STARs VOCs and SVOCs.

Location ID			GB-23	GB-24	GB-25	GB-26	GB-27
Sample ID	11		GB-23	GB-24	GB-25-6-7	GB-26-6-7	GB-27-6-7
Matrix			Soil	Soil	Soil	Soil	Soil
Depth Interval (f	t)		9.0-10.0	6.0-7.0	6.0-7.0	6.0-7.0	6.0-7.0
Date Sampled	<u> </u>		10/18/06	10/18/06	10/19/06	10/19/06	10/19/06
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Benzene	UG/KG	60	6 U	4 J	59 J	150 J	12 UJ
Toluene	UG/KG	1500	1 J	4 J	32 J	730 U	12 UJ
Ethylbenzene	UG/KG	5500	6 U	65	1,000 D	730 J	120 J
Xylene (total)	UG/KG	1200	6 UJ	760 D	10,000 D	35,000	(1,300 J
1,2,4-Trimethylbenzene	UG/KG	10000	6 U	3,900 D	5,900 D	18,000	1,400 J
1,3,5-Trimethylbenzene	UG/KG	3300	6 U	1,100 D	6,400 D	6,200	490 J
Methyl tert-Butyl Ether	UG/KG	120	6 U	6 U	6 U	730 U	12 UJ
Isopropylbenzene	UG/KG	2300	6 U	170	1,700 D	1,200	58 J
4-Isopropyltoluene	UG/KG	10000	6 U	110	680 U	730 U	12 UJ
Naphthalene	UG/KG	13000	6 UJ	1,400 D	1,500 D	1,600	180 J
n-Butylbenzene	UG/KG	10000	6 UJ	500 D	2,900 D	1,600	12 UJ
n-Propylbenzene	UG/KG	3700	6 U	500 D	3,900 D	3,500	170 J
sec-Butylbenzene	UG/KG	10000	6 U	150	560 DJ	320 J	12 J
Total BTEX	UG/KG	-	1	833	11,091	35,880	1,420
Total Volatile Organic Compounds	UG/KG	10000	1	8,663	33,951	68,300	3,730
Semivolatile Organic Compounds							
Acenaphthene	UG/KG	50000	370 U	430 U	68 J	65	410 U
Anthracene	UG/KG	50000	160 J	430 U	400 U	81	410 U
Benzo(a)anthracene	UG/KG	224 or MDL	350 J	430 U	82 J	48	410 U
Benzo(a)pyrene	UG/KG	61 or MDL	300 J	430 U	400 U	410 U	410 U
Benzo(b)fluoranthene	UG/KG	1100	360 J	430 U	61 J	410 U	410 U
Benzo(g,h,i)perylene	UG/KG	50000	100 J	430 U	400 U	42	410 U

^{*}Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised) including subsequent addendum pertaining to STARs VOCs and SVOCs.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantitation is an estimation.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.
- D Result reported from a secondary dilution analysis.

Location ID			GB-23	GB-24	GB-25	GB-26	GB-27
Sample ID			GB-23	GB-24	GB-25-6-7	GB-26-6-7	GB-27-6-7
Matrix			Soil	Soil	Soil	Soil	Soil
Depth Interval (f	t)		9.0-10.0	6.0-7.0	6.0-7.0	6.0-7.0	6.0-7.0
Date Sampled			10/18/06	10/18/06	10/19/06	10/19/06	10/19/06
Parameter	Units	Criteria*					
Semivolatile Organic Compounds							
Benzo(k)fluoranthene	UG/KG	1100	24 0 J	430 U	400 U	410 U	410 U
Chrysene	UG/KG	400	310 J	430 U	160 J	87	410 U
Dibenz(a,h)anthracene	UG/KG	14 or MDL	370 U	430 U	400 U	410 U	410 U
Fluoranthene	UG/KG	50000	820	430 U	72 J	100	410 U
luorene	UG/KG	50000	54 J	430 U	120 J	160	410 U
ndeno(1,2,3-cd)pyrene	UG/KG	3200	110 J	430 U	400 U	410 U	410 U
Naphthalene	UG/KG	13000	62 J	430	2,500	1,900	410 U
Phenanthrene	UG/KG	50000	490	430 U	350 J	480	410 U
Pyrene	UG/KG	50000	670	430 U	360 J	450	410 U
Fotal Semivolatile Organic Compounds	UG/KG	5.00E+05	4,026	430	3,773	3,413	ND

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantitation is an estimation.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.
- D Result reported from a secondary dilution analysis.

^{*}Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised) including subsequent addendum pertaining to STARs VOCs and SVOCs.

Location ID			GB-28	GB-29	GB-30	GB-31	GB-32
Sample ID			GB-28-6-7	GB-29-6-7	GB-30-6-7	GB-31-8-9	GB-32-9-10
Matrix			Soil	Soil	Soil	Soil	Soil
Depth Interval (f	t)		6.0-7.0	6.0-7.0	6.0-7.0	8.0-9.0	9.0-10.0
Date Sampled	·		10/19/06	10/19/06	10/19/06	10/19/06	10/19/06
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Benzene	UG/KG	60	62 UJ	15 J	3,300 U	3,200 U	1,300 U
Toluene	UG/KG	1500	62 UJ	4 J	3,300 U	1,100 J	1,300 U
Ethylbenzene	UG/KG	5500	1,800 J	500 D	12,000	27,000	1,300 U
Xylene (total)	UG/KG	1200	9,700 J	2,000 D	62,000	140,000	830 J
1,2,4-Trimethylbenzene	UG/KG	10000	17,000 J	5,000 D	120,000	85,000	26,000
1,3,5-Trimethylbenzene	UG/KG	3300	7,000 J	2,900 D	40,000	28,000	9,100
Methyl tert-Butyl Ether	UG/KG	120	62 UJ	6 U	3,300 U	3,200 U	1,300 U
Isopropylbenzene	UG/KG	2300	830 J	880 D	5,100	4,000	1,100 J
4-Isopropyltoluene	UG/KG	10000	350 J	150 J	3,300 U	3,200 U	1,300 U
Naphthalene	UG/KG	13000	4,000 J	6,000 D	4,900	9,400	2,200
n-Butylbenzene	UG/KG	10000	2,400 J	2,400 D	12,000	7,000	2,900
n-Propylbenzene	UG/KG	3700	2,800 J	3,200 D	21,000	16,000	5,400
sec-Butylbenzene	UG/KG	10000	450 J	560 D	2,500 J	1,400 J	620 J
Total BTEX	UG/KG	-	11,500	2,519	74,000	168,100	830
Total Volatile Organic Compounds	UG/KG	10000	46,330	23,609	279,500	318,900	48,150
Semivolatile Organic Compounds							
Acenaphthene	UG/KG	50000	60 J	430 U	750 U	1,100 U	370 U
Anthracene	UG/KG	50000	400 U	430 U	76 J	1,100 U	370 U
Benzo(a)anthracene	UG/KG	224 or MDL	400 U	77 J	200 J	1,100 U	370 U
Benzo(a)pyrene	UG/KG	61 or MDL	400 U	71 J	190 J	1,100 U	370 U
Benzo(b)fluoranthene	UG/KG	1100	400 U	110 J	290 J	1,100 U	370 U
Benzo(g,h,i)perylene	UG/KG	50000	400 U	430 U	81 J	1,100 U	370 U

^{*}Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised) including subsequent addendum pertaining to STARs VOCs and SVOCs.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantitation is an estimation.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.
- D Result reported from a secondary dilution analysis.

Location ID			GB-28	GB-29	GB-30	GB-31	GB-32
Sample ID			GB-28-6-7	GB-29-6-7	GB-30-6-7	GB-31-8-9	GB-32-9-10
Matrix			Soil	Soil	Soil	Soil	Soil
Depth Interval (f	t)		6.0-7.0	6.0-7.0	6.0-7.0	8.0-9.0	9.0-10.0
Date Sampled			10/19/06	10/19/06	10/19/06	10/19/06	10/19/06
Parameter	Units	Criteria*					
Semivolatile Organic Compounds							
Benzo(k)fluoranthene	UG/KG	1100	400 U	51 J	140 J	1,100 U	370 U
Chrysene	UG/KG	400	400 U	87 J	220 J	1,100 U	370 U
Dibenz(a,h)anthracene	UG/KG	14 or MDL	400 U	430 U	750 U	1,100 U	370 U
Fluoranthene	UG/KG	50000	400 U	210 J	420 J	1,100 U	370 U
Fluorene	UG/KG	50000	96 J	55 J	130 J	140 J	49 J
Indeno(1,2,3-cd)pyrene	UG/KG	3200	400 U	430 U	750 U	1,100 U	370 U
Naphthalene	UG/KG	13000	4,300 J	3,800	8,200 J	13,000 J	1,000 J
Phenanthrene	UG/KG	50000	120 J	180 J	350 J	220 J	63 J
Pyrene	UG/KG	50000	75 J	190 J	480 J	1,100 U	370 UJ
Total Semivolatile Organic Compounds	UG/KG	5.00E+05	4,651	4,831	10,777	13,360	1,112

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantitation is an estimation.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.
- D Result reported from a secondary dilution analysis.

^{*}Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised) including subsequent addendum pertaining to STARs VOCs and SVOCs.

Location ID			GB-33	GB-34	GB-35	GB-36	GB-37
Sample ID			GB-33-6-7	GB-34-6-7	GB-35-6-7	GB-36-6-7	GB-37-6-7
Matrix			Soil	Soil	Soil	Soil	Soil
Depth Interval (f	t)		6.0-7.0	6.0-7.0	6.0-7.0	6.0-7.0	6.0-7.0
Date Sampled			10/19/06	10/19/06	10/19/06	10/20/06	10/20/06
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Benzene	UG/KG	60	2 J	4 J	5 U	15 J	20
Toluene	UG/KG	1500	8 J	16 J	7	13 J	57
Ethylbenzene	UG/KG	5500	5 J	3 J	5 U	59	19
Xylene (total)	UG/KG	1200	23 J	9 J	5 U	400	110
1,2,4-Trimethylbenzene	UG/KG	10000	110 J	17 J	3 J	250	30
1,3,5-Trimethylbenzene	UG/KG	3300	30 J	5 J	5 U	74	8
Methyl tert-Butyl Ether	UG/KG	120	5 J	6 UJ	5 U	20 U	2 J
Isopropylbenzene	UG/KG	2300	2 J	6 UJ	5 U	12 J	3 J
4-Isopropyltoluene	UG/KG	10000	2 J	2 J	5 U	14 J	7 U
Naphthalene	UG/KG	13000	160 J	20 J	12	20 U	7 U
n-Butylbenzene	UG/KG	10000	14 J	4 J	2 J	8 J	7 U
n-Propylbenzene	UG/KG	3700	17 J	4 J	5 U	30	4 J
sec-Butylbenzene	UG/KG	10000	6 UJ	2 J	5 U	20 U	7 U
Total BTEX	UG/KG	-	38	32	7	487	206
Total Volatile Organic Compounds	UG/KG	10000	378	86	24	875	253
Semivolatile Organic Compounds]					
Acenaphthene	UG/KG	50000	760 J	390 U	350 U	380 U	460 U
Anthracene	UG/KG	50000	4,000	200 J	350 U	380 U	460 U
Benzo(a)anthracene	UG/KG	224 or MDL	5,100	1,300	350 U	380 U	140 J
Benzo(a)pyrene	UG/KG	61 or MDL	3,800	1,100	350 ∪	380 U	(130 J
Benzo(b)fluoranthene	UG/KG	1100	5,100	1,500	350 U	380 U	170 J
Benzo(g,h,i)perylene	UG/KG	50000	660 J	240 J	350 U	380 U	75 J

^{*}Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised) including subsequent addendum pertaining to STARs VOCs and SVOCs.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantitation is an estimation.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.
- D Result reported from a secondary dilution analysis.

Location ID			GB-33	GB-34	GB-35	GB-36	GB-37
Sample ID			GB-33-6-7	GB-34-6-7	GB-35-6-7	GB-36-6-7	GB-37-6-7
Matrix			Soil	Soil	Soil	Soil	Soil
Depth Interval (f	t)		6.0-7.0	6.0-7.0	6.0-7.0	6.0-7.0	6.0-7.0
Date Sampled		-	10/19/06	10/19/06	10/19/06	10/20/06	10/20/06
Parameter	Units Criteria						
Semivolatile Organic Compounds			<u> </u>				
Benzo(k)fluoranthene	UG/KG	1100	2,400	860	350 U	380 U	68 J
Chrysene	UG/KG	400	4,600	1,400	350 U	380 U	150 J
Dibenz(a,h)anthracene	UG/KG	14 or MDL	340 J	120 J	350 U	380 U	460 U
Fluoranthene	UG/KG	50000	8,300	2,100	350 U	380 U	240 J
luorene	UG/KG	50000	3,000	390 U	350 U	380 U	460 U
ndeno(1,2,3-cd)pyrene	UG/KG	3200	860	310 J	350 U	380 U	76 J
Naphthalene	UG/KG	13000	1,100	60	350 U	130 J	1,200
nanthrene UG/KG 50000		50000	9,400	780	350 U	380 U	91 J
Pyrene	UG/KG	50000	8,600	1,900	350 U	380 U	190 J
otal Semivolatile Organic Compounds	UG/KG	5.00E+05	58,020	11,870	ND	130	2,530

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantitation is an estimation.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.
- D Result reported from a secondary dilution analysis.

^{*}Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised) including subsequent addendum pertaining to STARs VOCs and SVOCs.

Location ID			GB-38	GB-38	GB-40	GB-41
Sample ID			DUP-4-6-7	GB-38-6-7	GB-40-6-7	GB-41-5-6
Matrix			Soil	Soil	Soil	Soil
Depth Interval (f	t)		6.0-7.0	6.0-7.0	6.0-7.0	5.0-6.0
Date Sampled			10/20/06	10/20/06	10/20/06	10/20/06
Parameter	Units	Criteria*	Field Duplicate (1-1)			
Volatile Organic Compounds			_			·
Benzene	UG/KG	60	700 UJ	690 UJ	280 J	14
Toluene	UG/KG	1500	700 UJ	690 UJ	14 U	10
Ethylbenzene	UG/KG	5500	1,800 J	2,500 J	1,800 J	11
Xylene (total)	UG/KG	1200	6,600 J	7,900 J	3,200 J	81 J
1,2,4-Trimethylbenzene	UG/KG	10000	20,000 J	18,000 J	4,500 J	120
1,3,5-Trimethylbenzene	UG/KG	3300	6,800 J	7,300 J	4,400 J	64
Methyl tert-Butyl Ether	UG/KG	120	700 UJ	690 UJ	14 UJ	7 U
Isopropylbenzene	UG/KG	2300	880 J	840 J	560 J	6 J
4-Isopropyltoluene	UG/KG	10000	410 J	2,100 J	14 U	2 J
Naphthalene	UG/KG	13000	2,400 J	920 J	40,000 J	7 UJ
n-Butylbenzene	UG/KG	10000	2,100 J	2,700 J	1,300 J	9
n-Propylbenzene	UG/KG	3700	3,000 J	4,000 J	1,300 J	15
sec-Butylbenzene	UG/KG	10000	460 J	1,800 J	320 J	3 J
Total BTEX	UG/KG	-	8,400	10,400	5,280	116
Total Volatile Organic Compounds	UG/KG	10000	44,450	48,060	57,660	335
Semivolatile Organic Compounds						
Acenaphthene	UG/KG	50000	380 U	380 U	580	410 U
Anthracene	UG/KG	50000	380 U	380 U	870	410 U
Benzo(a)anthracene	UG/KG	224 or MDL	380 U	380 U	660	130 J
Benzo(a)pyrene	UG/KG	61 or MDL	380 U	380 U	550	120 J
Benzo(b)fluoranthene	UG/KG	1100	380 U	380 U	710	190 J
Benzo(g,h,i)perylene	UG/KG	50000	380 U	380 U	300 J	78 J

^{*}Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised) including subsequent addendum pertaining to STARs VOCs and SVOCs.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantitation is an estimation.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.
- D Result reported from a secondary dilution analysis.

Location ID			GB-38	GB-38	GB-40	GB-41
Sample ID			DUP-4-6-7	GB-38-6-7	GB-40-6-7	GB-41-5-6
Matrix			Soil	Soil	Soil	Soil
Depth Interval (f	t)		6.0-7.0	6.0-7.0	6.0-7.0	5.0-6.0
Date Sampled			10/20/06	10/20/06	10/20/06	10/20/06
Parameter	Units	Criteria*	Field Duplicate (1-1)			
Semivolatile Organic Compounds						
Benzo(k)fluoranthene	UG/KG	1100	380 U	380 U	210 J	51 J
Chrysene	UG/KG	400	380 U	380 U	650	180 J
Dibenz(a,h)anthracene	UG/KG	14 or MDL	380 U	380 U	94 J	410 U
Fluoranthene	UG/KG	50000	380 U	380 U	1,800	170 J
Fluorene	UG/KG	50000	380 U	44 J	660	410 U
Indeno(1,2,3-cd)pyrene	UG/KG	3200	380 U	380 U	260 J	76 J
Naphthalene	UG/KG	13000	64 J	4,800 J	2,800	180 J
Phenanthrene	UG/KG	50000	380 U	68 J	2,600	110 J
Pyrene	UG/KG	50000	380 U	41 J	1,400	160 J
Total Semivolatile Organic Compounds	UG/KG	5.00E+05	64	4,953	14,144	1,445

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantitation is an estimation.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.
- D Result reported from a secondary dilution analysis.

^{*}Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised) including subsequent addendum pertaining to STARs VOCs and SVOCs.

TABLE 2A STATISTICAL SUMMARY OF DETECTED SOIL ANALYTICAL RESULTS 15-21 NORTH FRANKLIN STREET

Parameter	Units	Criteria*	No. of	No. of		Ranç	e of Detect	tions		No.	Dist	Location of	Depth
			Samples	Detections	Min	Max	Avg	StdDev	UCL95	Exceed		Max Value	Of Max
Volatile Organic Compounds													
Benzene	UG/KG	60	8	1	100.0	100.0	100.0	-	-	1	Non-Normal	GB-13/SG-06	6.5-7.5
Toluene	UG/KG	1500	8	3	1.00	99.00	34.00	56.29	97.70	0	Non-Normal	GB-13/SG-06	6.5-7.5
Ethylbenzene	UG/KG	5500	8	2	380.0	1.70E+04	8,690	1.18E+04	2.50E+04	1	Non-Normal	GB-12	5-6
Xylene (total)	UG/KG	1200	8	8	1.00	8.10E+04	1.03E+04	2.86E+04	3.01E+04	1	Non-Normal	GB-12	5-6
1,2,4-Trimethylbenzene	UG/KG	10000	8	8	2.00	1.30E+05	1.66E+04	4.58E+04	4.83E+04	1	Non-Normal	GB-12	5-6
1,3,5-Trimethylbenzene	UG/KG	3300	8	4	22.00	4.70E+04	1.19E+04	2.34E+04	3.48E+04	1	Non-Normal	GB-12	5-6
Methyl tert-Butyl Ether	UG/KG	120	8	1	12.00	12.00	12.00	-	-	0	Non-Normal	GB-15	11-12
Isopropylbenzene	UG/KG	2300	8	5	4.00	7,800	1,593	3,470	4,635	1	Non-Normal	GB-12	5-6
4-Isopropyltoluene	UG/KG	10000	8	4	10.00	3,900	989.5	1,940	2,891	0	Non-Normal	GB-12	5-6
Naphthalene	UG/KG	13000	8	5	3.00	1.60E+04	3,303	7,252	9,076	1	Non-Normal	GB-12	5-6
n-Butylbenzene	UG/KG	10000	8	4	3.00	2.10E+04	5,305	1.05E+04	1.56E+04	1	Non-Normal	GB-12	5-6
n-Propylbenzene	UG/KG	3700	8	5	3.00	2.20E+04	4,484	9,792	1.31E+04	1	Non-Normal	GB-12	5-6
sec-Butylbenzene	UG/KG	10000	8	3	4.00	4,700	1,572	2,709	4,637	0	Non-Normal	GB-12	5-6
Semivolatile Organic Compounds								,					
Acenaphthene	UG/KG	50000	8	1	64.00	64.00	64.00	-	-	0	Non-Normal	GB-12	5-6
Anthracene	UG/KG	50000	8	1	56.00	56.00	56.00		-	0	Non-Normal	GB-12	5-6
Benzo(a)anthracene	UG/KG	224 or MDL	8	1	120.0	120.0	120.0	-	-	0	Non-Normal	GB-12	5-6

^{*}Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised) including subsequent addendum pertaining to STARs VOCs and SVOCs.

TABLE 2A STATISTICAL SUMMARY OF DETECTED SOIL ANALYTICAL RESULTS 15-21 NORTH FRANKLIN STREET

Parameter	Units	Criteria*	No. of	No. of		Rang	je of Detec	tions		No.	Dist	Location of	Depth
			Samples	Detections	Min	Max	Avg	StdDev	UCL95	Exceed		Max Value	Of Max
Semivolatile Organic Compounds													**
Benzo(a)pyrene	UG/KG	61 or MDL	8	1	69.00	69.00	69.00	-	-	1	Non-Normal	GB-12	5-6
Benzo(b)fluoranthene	UG/KG	1100	8	1	110.0	110.0	110.0	-	-	0	Non-Normal	GB-12	5-6
Benzo(k)fluoranthene	UG/KG	1100	8	1	69.00	69.00	69.00	-	-	0	Non-Normal	GB-12	5-6
Chrysene	UG/KG	400	8	2	68.00	150.0	109.0	57.98	189.4	0	Non-Normal	GB-12	5-6
Fluoranthene	UG/KG	50000	8	2	55.00	490.0	272.5	307.6	698.8	0	Non-Normal	GB-12	5-6
Fluorene	UG/KG	50000	8	1	140.0	140.0	140.0	-	-	0	Non-Normal	GB-12	5-6
Naphthalene	UG/KG	13000	8	4	43.00	1.70E+04	4,338	7,252	9,076	1	Non-Normal	GB-12	5-6
Phenanthrene	UG/KG	50000	8	2	88.00	650.0	369.0	397.4	919.8	0	Non-Normal	GB-12	5-6
Pyrene	UG/KG	50000	8	2	66.00	390.0	228.0	229.1	545.5	0	Normal	GB-12	5-6

*Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised) including subsequent addendum pertaining to STARs VOCs and SVOCs.

TABLE 2B STATISTICAL SUMMARY OF DETECTED SOIL ANALYTICAL RESULTS CLIFFORD MOTORS

Parameter	Units	Criteria*	No. of	No. of		Rang	ge of Detec	tions		No.	Dist	Location of	Depth
			Samples	Detections	Min	Max	Avg	StdDev	UCL95	Exceed		Max Value	Of Max
Volatile Organic Compounds													
Benzene	UG/KG	60	13	7	4.00	1,375	238.6	503.4	611.5	2	Non-Normal	GB-17	6-7
Toluene	UG/KG	1500	13	9	1.00	99.50	21.72	32.82	43.16	0	Non-Normal	GB-17	6-7
Ethylbenzene	UG/KG	5500	13	10	32.00	1.20E+04	1,668	3,672	3,943	1	Non-Normal	GB-30	6-7
Xylene (total)	UG/KG	1200	13	11	75.00	6.20E+04	1.21E+04	1.93E+04	2.35E+04	9	Non-Normal	GB-30	6-7
1,2,4-Trimethylbenzene	UG/KG	10000	13	12	2.00	1.20E+05	1.53E+04	3.35E+04	3.43E+04	3	Non-Normai	GB-30	6-7
1,3,5-Trimethylbenzene	UG/KG	3300	13	11	16.00	4.00E+04	6,203	1.15E+04	1.30E+04	4	Non-Normal	GB-30	6-7
Isopropylbenzene	UG/KG	2300	13	11	2.00	5,100	953.9	1,481	1,829	1	Non-Normal	GB-30	6-7
4-Isopropyltoluene	UG/KG	10000	13	7	4.00	350.0	112.9	118.3	200.5	0	Non-Normal	GB-28	6-7
Naphthalene	UG/KG	13000	13	10	130.0	6,000	2,356	2,148	3,671	0	Non-Normal	GB-29	6-7
n-Butylbenzene	UG/KG	10000	13	10	3.00	1.20E+04	2,302	3,569	4,514	1	Non-Normal	GB-30	6-7
n-Propylbenzene	UG/KG	3700	13	10	6.00	2.10E+04	3,648	6,279	7,540	2	Non-Normai	GB-30	6-7
sec-Butylbenzene	UG/KG	10000	13	10	12.00	2,500	492.2	733.1	946.5	0	Non-Normal	GB-30	6-7
Semivolatile Organic Compounds							".						
Acenaphthene	UG/KG	50000	13	5	60.00	732.5	200.2	297.6	461.1	0	Normal	GB-23	6-7
Anthracene	UG/KG	50000	13	4	76.00	2,980	818.0	1,442	2,231	0	Normal	GB-23	9-10
Benzo(a)anthracene	UG/KG	224 or MDL	13	6	48.00	5,675	1,046	2,269	2,861	1	Normal	GB-23	9-10
Benzo(a)pyrene	UG/KG	61 or MDL	13	4	71.00	5,150	1,396	2,503	3,849	3	Normal	GB-23	9-10

*Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised) including subsequent addendum pertaining to STARs VOCs and SVOCs.

TABLE 2B STATISTICAL SUMMARY OF DETECTED SOIL ANALYTICAL RESULTS CLIFFORD MOTORS

Parameter	Units	Criteria*	No. of	No. of		Rang	je of Detec	tions		No.	Dist	Location of	Depth
			Samples	Detections	Min	Max	Avg	StdDev	UCL95	Exceed		Max Value	Of Max
Semivolatile Organic Compounds													
Benzo(b)fluoranthene	UG/KG	1100	13	5	61.00	7,180	1,570	3,137	4,320	0	Normal	GB-23	9-10
Benzo(g,h,i)perylene	UG/KG	50000	13	4	42.00	1,200	360.3	560.7	909.7	0	Normal	GB-23	9-10
Benzo(k)fluoranthene	UG/KG	1100	13	4	51.00	3,620	989.6	1,754	2,709	0	Non-Normal	GB-23	9-10
Chrysene	UG/KG	400	13	6	87.00	5,155	1,014	2,031	2,640	0	Normal	GB-23	9-10
Dibenz(a,h)anthracene	UG/KG	14 or MDL	13	1	897.5	897.5	897.5	-	-	0	Non-Normal	GB-23	
Fluoranthene	UG/KG	50000	13	6	72.00	1.04E+04	1,903	4,169	5,239	0	Non-Normal	GB-23	9-10
Fluorene	UG/KG	50000	13	8	54.00	1,277	262.1	413.2	548.5	0	Normal	GB-23	6-7
Indeno(1,2,3-cd)pyrene	UG/KG	3200	13	2	143.5	1,505	824.3	962.7	2,159	0	Non-Normal	GB-23	9-10
Naphthalene	UG/KG	13000	13	10	430.0	8,200	2,730	2,148	3,671	0	Non-Normal	GB-30	6-7
Phenanthrene	UG/KG	50000	13	8	76.00	8,245	1,333	2,804	3,276	0	Non-Normal	GB-23	6-7
Pyrene	UG/KG	50000	13	7	75.00	1.08E+04	1,905	3,947	4,829	0	Normal	GB-23	6-7

*Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised) including subsequent addendum pertaining to STARs VOCs and SVOCs.

TABLE 2C STATISTICAL SUMMARY OF DETECTED SOIL ANALYTICAL RESULTS CAPTAIN BILL'S

Parameter	Units	Criteria*	No. of	No. of		Rang	e of Detec	tions		No.	Dist	Location of	Depth
			Samples	Detections	Min	Max	Avg	StdDev	UCL95	Exceed		Max Value	Of Max
Volatile Organic Compounds													
Benzene	UG/KG	60	10	6	2.00	280.0	55.83	110.0	143.9	1	Non-Normal	GB-40	6-7
Toluene	UG/KG	1500	10	7	7.00	1,100	173.0	409.1	476.1	0	Non-Normal	GB-31	8-9
Ethylbenzene	UG/KG	5500	10	8	3.00	2.70E+04	3,881	9,384	1.04E+04	1	Non-Normal	GB-31	8-9
Xylene (total)	UG/KG	1200	10	9	9.00	1.40E+05	1.69E+04	4.62E+04	4.71E+04	3	Non-Normal	GB-31	8-9
1,2,4-Trimethylbenzene	UG/KG	10000	10	10	3.00	8.50E+04	1.35E+04	2.68E+04	3.01E+04	3	Non-Normal	GB-31	8-9
1,3,5-Trimethylbenzene	UG/KG	3300	10	9	5.00	2.80E+04	5,415	9,165	1.14E+04	4	Non-Normal	GB-31	8-9
Methyl tert-Butyl Ether	UG/KG	120	10	2	2.00	5.00	3.50	2.12	6.44	0	Non-Normal	GB-33	6-7
Isopropylbenzene	UG/KG	2300	10	8	2.00	4,000	817.9	1,358	1,759	1	Non-Normal	GB-31	8-9
4-Isopropyltoluene	UG/KG	10000	10	5	2.00	1,255	255.0	559.0	745.0	0	Non-Normal	GB-38	6-7
Naphthalene	UG/KG	13000	10	7	12.00	4.00E+04	7,636	1.04E+04	7,511	1	Non-Normal	GB-40	6-7
n-Butylbenzene	UG/KG	10000	10	9	2.00	7,000	1,515	2,350	3,051	0	Non-Normal	GB-31	8-9
n-Propylbenzene	UG/KG	3700	10	9	4.00	1.60E+04	2,919	5,273	6,364	3	Non-Normal	GB-31	8-9
sec-Butylbenzene	UG/KG	10000	10	6	2.00	1,400	579.2	585.0	1,047	0	Non-Normal	GB-31	6-7
Semivolatile Organic Compounds													
Acenaphthene	UG/KG	50000	10	2	580.0	760.0	670.0	127.3	846.4	0	Non-Normal	GB-33	6-7
Anthracene	UG/KG	50000	10	3	200.0	4,000	1,690	2,028	3,985	0	Non-Normal	GB-33	6-7
Benzo(a)anthracene	UG/KG	224 or MDL	10	5	130.0	5,100	1,466	2,087	3,296	3	Non-Normal	GB-33	6-7

*Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised) including subsequent addendum pertaining to STARs VOCs and SVOCs.

TABLE 2C STATISTICAL SUMMARY OF DETECTED SOIL ANALYTICAL RESULTS CAPTAIN BILL'S

Parameter	Units	Criteria*	No. of	No. of		Rang	ge of Detec	tions	-	No.	Dist	Location of	Depth
	ļ	<u> </u>	Samples	Detections	Min	Max	Avg	StdDev	UCL95	Exceed		Max Value	Of Max
Semivolatile Organic Compounds													
Benzo(a)pyrene	UG/KG	61 or MDL	10	5	120.0	3,800	1,140	1,540	2,490	5	Non-Normal	GB-33	6-7
Benzo(b)fluoranthene	UG/KG	1100	10	5	170.0	5,100	1,534	2,065	3,344	2	Non-Normal	GB-33	6-7
Benzo(g,h,i)perylene	UG/KG	50000	10	5	75.00	660.0	270.6	239.2	480.2	0	Non-Normai	GB-33	6-7
Benzo(k)fluoranthene	UG/KG	1100	10	5	51.00	2,400	717.8	996.8	1,592	1	Non-Normal	GB-33	6-7
Chrysene	UG/KG	400	10	5	150.0	4,600	1,396	1,861	3,027	3	Non-Normal	GB-33	6-7
Dibenz(a,h)anthracene	UG/KG	14 or MDL	10	3	94.00	340.0	184.7	135.1	337.6	3	Non-Normal	GB-33	6-7
Fluoranthene	UG/KG	50000	10	5	170.0	8,300	2,522	3,348	5,456	0	Non-Normal	GB-33	6-7
Fluorene	UG/KG	50000	10	5	49.00	3,000	793.2	1,258	1,895	0	Non-Normai	GB-33	6-7
Indeno(1,2,3-cd)pyrene	UG/KG	3200	10	5	76.00	860.0	316.4	321.8	598.5	0	Non-Normal	GB-33	6-7
Naphthalene	UG/KG	13000	10	9	60.00	1.30E+04	2,434	1.04E+04	7,511	1	Non-Normal	GB-31	8-9
Phenanthrene	UG/KG	50000	10	8	63.00	9,400	1,674	3,238	3,918	0	Non-Normal	GB-33	6-7
Pyrene	UG/KG	50000	10	6	115.5	8,600	2,061	3,290	4,693	0	Non-Normal	GB-33	6-7

*Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised) including subsequent addendum pertaining to STARs VOCs and SVOCs.

Location ID			GB-03	GB-05	GB-09	GB-11	GB-12
Sample ID			GB-03-WG	GB-05-WG	GB-09-WG	GB-11-WG	GB-12-WG
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		-	-	-	-	-
Date Sampled			10/17/06	10/17/06	10/17/06	10/17/06	10/17/06
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Benzene	UG/L	1	5 U	5 U	15 U	5 U	100 U
Toluene	UG/L	5	5 U	5 U	15 U	5 U	100 U
Ethylbenzene	UG/L	5	5 UJ	5 U	$\bigcirc^{22}\bigcirc$	5 U	1,100
Xyiene (total)	UG/L	5	5 U	5 U	130	2 J	4,800
1,2,4-Trimethylbenzene	UG/L	5	5 U	5 U	540	3 J	3,300
1,3,5-Trimethylbenzene	UG/L	5	5 UJ	5 U	460	2 J	1,000
Methyl tert-Butyl Ether	UG/L	10	5 U	5 U	$\overline{)}$	5 U	100 U
Isopropylbenzene	UG/L	5	5 U	5 U	100	5 U	\bigcirc
4-Isopropyltoluene	UG/L	5	5 U	5 U	$\bigcirc 32 \bigcirc$	5 U	100 U
Naphthalene	UG/L	10	5 U	5 U	40	5 U	630
n-Butylbenzene	UG/L	5	5 U	5 U	150	5 U	160
n-Propylbenzene	UG/L	5	5 U	5 U	300	1 J	\bigcirc 470
sec-Butylbenzene	UG/L	5	5 U	5 U	36	5 U	100 U
Total BTEX	UG/L	-	ND	ND	152	2	5,900
Total Volatile Organic Compounds	UG/L	-	ND 	ND	1,824	8	11,690
Semivolatile Organic Compounds							:
Acenaphthene	UG/L	20	10 U	10 U	10 U	10 U	10 U
Anthracene	UG/L	50	10 U	10 U	10 U	10 U	10 U
Benzo(a)anthracene	UG/L	0.002	10 U	10 U	10 U	10 U	10 U
Benzo(a)pyrene	UG/L	ND	10 U	10 U	10 U	10 U	10 U
Chrysene	UG/L	0.002	10 U	10 U	10 U	10 U	10 U
Fluoranthene	UG/L	50	10 U	10 U	10 U	10 U	10 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. Revised April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantitation is an estimation.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.
- D Result reported from a secondary dilution analysis.

Location ID			GB-03	GB-05	GB-09	GB-11	GB-12
Sample ID			GB-03-WG	GB-05-WG	GB-09-WG	GB-11-WG	GB-12-WG
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		-	-		-	-
Date Sampled			10/17/06	10/17/06	10/17/06	10/17/06	10/17/06
Parameter	Units	Criteria*					
Semivolatile Organic Compounds			:				
Fluorene	UG/L	50	10 U	10 U	10 U	10 U	10 U
Naphthalene	UG/L	10	10 U	10 U	26	10 U	390 D
Phenanthrene	UG/L	50	10 U	10 U	10 U	10 U	1 J
Pyrene	UG/L	50	10 U	10 U	10 U	10 U	10 U
Total Semivolatile Organic Compounds	UG/L	-	ND	ND	26	ND	391

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantitation is an estimation.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.
- D Result reported from a secondary dilution analysis.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.Revised April 2000, Class GA.

Location ID			GB-13/SG-06	GB-15	GB-17	GB-17	GB-20
Sample ID			GB-13 WG	GB-15-WG	DUP-1-WG	GB-17-WG	GB-20-WG
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		-	•	-	•	-
Date Sampled			10/18/06	10/18/06	10/18/06	10/18/06	10/18/06
Parameter	Units	Criteria*		-	Field Duplicate (1-1)		
Volatile Organic Compounds							
Benzene	UG/L	1	1,500	19	200	200	25 U
Toluene	UG/L	5	4,800	5	7J	9 U	25 U
Ethylbenzene	UG/L	5	1,600	2 J	25 U	4 J	6 J
Xylene (total)	UG/L	5	9,200	18	60	$ \begin{array}{c} 75 \end{array} $	150
1,2,4-Trimethylbenzene	UG/L	5	1,900	\bigcap	18 J	26	170
1,3,5-Trimethylbenzene	UG/L	5	510	2 J	17 J	24	$\bigcirc 33 \bigcirc$
Methyl tert-Butyl Ether	UG/L	10	99 J	8	25 U	5 U	25 U
Isopropylbenzene	UG/L	5	$\bigcirc 280 \bigcirc$	3 J	19 J	\bigcirc	\bigcirc
4-Isopropyltoluene	UG/L	5	200 U	5 U	25 U	5 U	ر م
Naphthalene	UG/L	10	160 J	5 U	25 U	$\bigcirc 34 \bigcirc$	25 U
n-Butylbenzene	UG/L	5	57 J	5 U	\bigcirc 9 J	$\bigcirc \qquad \qquad \bigcirc$	$\bigcirc 34 \bigcirc$
n-Propylbenzene	UG/L	5	220	3 J	$\begin{array}{ c c }\hline & 50 \\ \hline \end{array}$	70	42
sec-Butylbenzene	UG/L	5	200 U	5 U	6 J	\bigcirc 8	14 J
Total BTEX	UG/L	-	17,100	44	267	279	156
Total Volatile Organic Compounds	UG/L	-	20,326	67	386	474	469
Semivolatile Organic Compounds			_				
Acenaphthene	UG/L	20	10 U	10 U	10 U	10 U	10 U
Anthracene	UG/L	50	10 U	10 U	10 U	10 U	10 U
Benzo(a)anthracene	UG/L	0.002	10 U	10 U	10 U	10 U	10 U
Benzo(a)pyrene	UG/L	ND	10 U	10 U	10 U	10 U	10 U
Chrysene	UG/L	0.002	10 U	10 U	10 U	10 U	10 U
Fluoranthene	UG/L	50	10 U	10 U	10 U	10 U	10 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.Revised April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantitation is an estimation.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.
- D Result reported from a secondary dilution analysis.

Location ID			GB-13/SG-06	GB-15	GB-17	GB-17	GB-20
Sample ID			GB-13 WG	GB-15-WG	DUP-1-WG	GB-17-WG	GB-20-WG
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		-	•	-	•	-
Date Sampled			10/18/06	10/18/06	10/18/06	10/18/06	10/18/06
Parameter	ameter Units Criteria*				Field Duplicate (1-1)		
Semivolatile Organic Compounds							
Fluorene	UG/L	50	10 U	10 U	10 U	10 U	10 U
Naphthalene	UG/L	10	230 D	14	16	1 J	10
Phenanthrene	UG/L	50	10 U	2 J	1 J	10 U	10 U
⁵ yrene	UG/L	50	10 U	10 U	10 U	10 U	10 U
Total Semivolatile Organic Compounds	UG/L	-	230	16	17	1	10

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantitation is an estimation.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.
- D Result reported from a secondary dilution analysis.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. Revised April 2000, Class GA.

Location ID			GB-21	GB-22	GB-24	GB-25	GB-26
Sample ID			GB-21-WG	GB-22-WG	GB-24-WG	GB-25-WG	DUP-3-WG
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)			•	-	-	-
Date Sampled	-		10/18/06	10/18/06	10/18/06	10/19/06	10/19/06
Parameter	Units	Criteria*	-				Field Duplicate (1-1)
Volatile Organic Compounds	_						
Benzene	UG/L	1	25 U	25 U	25 U	130	$\overline{}$
Toluene	UG/L	5	25 U	25 U	25 U	4 J	6
Ethylbenzene	UG/L	5	25 U	9,5	56	10	\bigcirc 8
Xylene (total)	UG/L	5	8 J	14 J	150	$\bigcirc 52 \bigcirc$	260
1,2,4-Trimethylbenzene	UG/L	5	$\bigcirc 77$	390	760 D	15	110
1,3,5-Trimethylbenzene	UG/L	5	20 J	120	390	$\bigcirc 15$	$\bigcirc 35 \bigcirc$
Methyl tert-Butyl Ether	UG/L	10	25 U	25 U	25 U	5 U	5 U
Isopropylbenzene	UG/L	5	6 J	$\bigcirc 58 \bigcirc$	89	$\bigcirc 26 \bigcirc$	\bigcirc
4-Isopropyltoluene	UG/L	5	25 U	\bigcirc 66	$\bigcirc 29 \bigcirc$	2 J	5 U
Naphthalene	UG/L	10	25 U	25 U	25 U	$\bigcirc 15 \bigcirc$	$\begin{array}{c} 12 \\ \end{array}$
n-Butylbenzene	UG/L	5	\bigcirc^{27}	310	160	$\bigcirc 10$	\bigcirc 7
n-Propylbenzene	UG/L	5	$\bigcirc 25$	$\bigcirc 280 \bigcirc$	340	57	$\bigcirc 25 \bigcirc$
sec-Butylbenzene	UG/L	5	\bigcirc 12 J	\bigcirc	$\bigcirc 52 \bigcirc$	\bigcirc 6	3 J
Total BTEX	UG/L	-	8	23	206	196	353
Total Volatile Organic Compounds	UG/L	•	175	1,377	2,026	342	557
Semivolatile Organic Compounds							
Acenaphthene	UG/L	20	10 U	10 U	10 U	10 U	10 U
Anthracene	UG/L	50	10 U	10 U	10 U	10 U	10 U
Benzo(a)anthracene	UG/L	0.002	10 U	10 U	10 U	10 UJ	10 U
Benzo(a)pyrene	UG/L	ND	10 U	10 U	10 U	10 UJ	10 U
Chrysene	UG/L	0.002	10 U	10 U	10 U	10 UJ	10 U
Fluoranthene	UG/L	50	10 U	10 U	10 U	10 U	10 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.Revised April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantitation is an estimation.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.
- D Result reported from a secondary dilution analysis.

Location ID			GB-21	GB-22	GB-24	GB-25	GB-26	
Sample ID			GB-21-WG	GB-22-WG	GB-24-WG	GB-25-WG	DUP-3-WG	
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
Depth Interval (f	t)		-	-	-	-	-	
Date Sampled			10/18/06	10/18/06	10/18/06	10/19/06	10/19/06	
Parameter	rameter Units Criteria*						Field Duplicate (1-1)	
Semivolatile Organic Compounds								
Fluorene	UG/L	50	10 U	1 J	10 U	10 U	1 J	
Naphthalene	UG/L	10	10 U	10 U	8 J	29	22	
Phenanthrene	UG/L	50	10 U	1 J	10 U	2 J	2 J	
Pyrene	UG/L	50	10 U	10 U	10 U	2 J	2 J	
Total Semivolatile Organic Compounds	UG/L	-	ND	2	8	33	27	

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. Revised April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantitation is an estimation.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.
- D Result reported from a secondary dilution analysis.

Location ID			GB-26	GB-27	GB-28	GB-29	GB-30
Sample ID			GB-26-WG	GB-27-WG	GB-28-WG	GB-29-WG	GB-30-WG
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		-	-	-	-	-
Date Sampled			10/19/06	10/19/06	10/19/06	10/19/06	10/19/06
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Benzene	UG/L	1	110	25 U	25 U	\bigcirc 2 J	50 U
Toluene	UG/L	5	8 J	25 U	25 U	10 U	50 U
Ethylbenzene	UG/L	5	12 J	600	97	\bigcirc 22 \bigcirc	440
Xylene (total)	UG/L	5	450	230	21 J	$\bigcirc 43 \bigcirc$	1,200
1,2,4-Trimethylbenzene	UG/L	5	220	210	16 J	$\bigcirc 200 \bigcirc$	1,500
1,3,5-Trimethylbenzene	UG/L	5	$\bigcirc 63 \bigcirc$	620	150	$\bigcirc 88$	540
Methyl tert-Butyl Ether	UG/L	10	25 U	25 U	25 ∪	10 U	50 U
Isopropylbenzene	UG/L	5	\bigcirc 17 J	260	\bigcirc	\bigcirc 36	120
4-Isopropyltoluene	UG/L	5	25 U	$\bigcirc 33 \bigcirc$	\bigcap 7 J	10 U	50 U
Naphthalene	UG/L	10	25 U	260	80	$\bigcirc 17 \bigcirc$	160
n-Butylbenzene	UG/L	5	14 J	\bigcirc	\bigcirc	$\bigcirc 56 \bigcirc$	$\bigcirc 82 \bigcirc$
n-Propylbenzene	UG/L	5	$\bigcirc 40 \bigcirc$	810	340	\bigcirc	320
sec-Butylbenzene	UG/L	5	25 U	$\bigcirc 55 \bigcirc$	$\bigcirc 16 J$	10 U	21 J
Total BTEX	UG/L	•	580	830	118	67	1,640
Total Volatile Organic Compounds	UG/L	•	934	3,258	878	584	4,383
Semivolatile Organic Compounds							
Acenaphthene	UG/L	20	1 J	3 J	10 U	2 J	20 U
Anthracene	UG/L	50	10 UJ	20 U	10 U	2 J	20 U
Benzo(a)anthracene	UG/L	0.002	10 UJ	20 UJ	10 U	\bigcirc 2 J	20 U
Benzo(a)pyrene	UG/L	ND	10 UJ	20 U	10 U	1 J	20 U
Chrysene	UG/L	0.002	10 UJ	20 UJ	10 U	\bigcirc 2 J	20 U
Fluoranthene	UG/L	50	1 J	2 J	10 U	4 J	20 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. Revised April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantitation is an estimation.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.
- D Result reported from a secondary dilution analysis.

Location ID			GB-26	GB-27	GB-28	GB-29	GB-30
Sample ID			GB-26-WG	GB-27-WG	GB-28-WG	GB-29-WG	GB-30-WG
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		-	-	-	-	-
Date Sampled			10/19/06	10/19/06	10/19/06	10/19/06	10/19/06
Parameter	Units	Criteria*					
Semivolatile Organic Compounds							
Fluorene	UG/L	50	2 J	6 J	1 J	3 J	20 U
Naphthalene	UG/L	10	29 J	200	78	$\bigcirc^{27}\bigcirc$	160
Phenanthrene	UG/L	50	5 J	12 J	1 J	7 J	2 J
Pyrene	UG/L	50	6 J	9 J	10 U	4 J	20 U
Total Semivolatile Organic Compounds	UG/L	•	44	232	80	54	162

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.Revised April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantitation is an estimation.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.
- D Result reported from a secondary dilution analysis.

Location ID			GB-31	GB-32	GB-33	GB-36	GB-37
Sample ID			GB-31-WG	GB-32-WG	GB-33-WG	GB-36-WG	GB-37-WG
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		-		-	-	
Date Sampled			10/19/06	10/19/06	10/19/06	10/20/06	10/20/06
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Benzene	UG/L	1	30	50 U	260 DJ	760 DJ	350 D
Toluene	UG/L	5	550 DJ	50 U	780 D	5,800 DJ	680 D
Ethylbenzene	UG/L	5	3,500 D	100	2,800 D	3,200 DJ	490 D
Xylene (total)	UG/L	5	14,000 D	280	13,000 D	16,000 DJ	1,900 D
1,2,4-Trimethylbenzene	UG/L	5	5,100 D	1,700	2,800 D	2,900 DJ	330 D
1,3,5-Trimethylbenzene	UG/L	5	1,300 DJ	$\bigcirc 630 \bigcirc$	720 D	820 DJ	300 D
Methyl tert-Butyl Ether	UG/L	10	5 U	50 U	5 U	5 U	5 U
Isopropylbenzene	UG/L	5	\bigcirc	$\bigcirc 140 \bigcirc$	$\bigcirc 130 \bigcirc$	$\bigcirc 150 \bigcirc$	$\bigcirc 150 \bigcirc$
4-isopropyltoluene	UG/L	5	\bigcirc	50 U	\bigcirc 8	$\bigcirc 12 \bigcirc$	$\bigcirc {}^{\$}\bigcirc$
Naphthalene	UG/L	10	790 DJ	$\bigcirc 80 \bigcirc$	560 D	500 DJ	$\bigcirc 78 \bigcirc$
n-Butylbenzene	UG/L	5		$\bigcirc 77$	$\bigcirc 44 \bigcirc$	5 U	$\bigcirc 39 \bigcirc$
n-Propylbenzene	UG/L	5	690 DJ	420	360 DJ	380 DJ	290 D
sec-Butylbenzene	UG/L	5	\bigcirc	50 U		$\bigcirc 12 \bigcirc$	\bigcirc
Total BTEX	UG/L	-	18,080	380	16,840	25,760	3,420
Total Volatile Organic Compounds	UG/L	-	26,217	3,427	21,473	30,534	4,628
Semivolatile Organic Compounds							
Acenaphthene	UG/L	20	40 U	1 J	10 U	40 U	10 U
Anthracene	UG/L	50	40 U	10 U	10 U	40 U	10 U
Benzo(a)anthracene	UG/L	0.002	40 U	10 U	10 U	40 U	10 U
Benzo(a)pyrene	UG/L	ND	40 U	10 U	10 U	40 U	10 U
Chrysene	UG/L	0.002	40 U	10 U	10 U	40 U	10 U
Fluoranthene	UG/L	50	40 U	10 U	10 U	40 U	10 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.Revised April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantitation is an estimation.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.
- D Result reported from a secondary dilution analysis.

Location ID			GB-31	GB-32	GB-33	GB-36	GB-37	
Sample ID			GB-31-WG	GB-32-WG	GB-33-WG	GB-36-WG	GB-37-WG	
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
Depth Interval (f	t)		-	-	-	-	-	
Date Sampled		10/19/06	10/19/06	10/19/06	10/20/06	10/20/06		
Parameter	Units	Criteria*						
Semivolatile Organic Compounds								
Fluorene	UG/L	50	40 U	2 J	10 U	40 U	10 U	
Naphthalene	UG/L	10	460	99	380 D	500	94	
Phenanthrene	UG/L	50	40 U	2 J	10 U	40 U	10 U	
Pyrene	UG/L	50	40 U	10 U	10 U	40 U	10 U	
Total Semivolatile Organic Compounds	UG/L	-	460	104	380	500	94	

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantitation is an estimation.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.
- D Result reported from a secondary dilution analysis.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. Revised April 2000, Class GA.

Location ID		-	GB-38	GB-40	GB-40	GB-41
Sample ID			GB-38-WG	DUP-5-WG	GB-40-WG	GB-41-WG
Matrix			Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (1	t)		-	-	-	-
Date Sampled		·	10/20/06	10/20/06	10/20/06	10/20/06
Parameter	Units	Criteria*		Field Duplicate (1-1)		
Volatile Organic Compounds						
Benzene	UG/L	1	170	21 J	$\bigcirc 27 \bigcirc$	100 U
Toluene	UG/L	5	53	40 J	$\begin{array}{ c c }\hline & 53 \\ \hline & \end{array}$	100 U
Ethylbenzene	UG/L	5	470 D	800	690 D	700
Xylene (total)	UG/L	5	1,000 D	3,300	2,700 D	2,300
1,2,4-Trimethylbenzene	UG/L	5	370 D	2,900	2,000 D	2,100
1,3,5-Trimethylbenzene	UG/L	5	180	870	510 D	560
Methyl tert-Butyl Ether	UG/L	10	5 U	100 U	5 U	100 U
Isopropylbenzene	UG/L	5	96	230	$\bigcirc 180 \bigcirc$	150
4-Isopropyltoluene	UG/L	5	5	100 U	\bigcirc	100 U
Naphthalene	UG/L	10	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	360	260 D	260
n-Butylbenzene	UG/L	5	20	150	61	46 J
n-Propylbenzene	UG/L	5	160	550	340 D	320
sec-Butylbenzene	UG/L	5	6	100 U	$\bigcirc 17 \bigcirc$	100 U
Total BTEX	UG/L	-	1,693	4,161	3,470	3,000
Total Volatile Organic Compounds	UG/L	-	2,602	9,221	6,852	6,436
Semivolatile Organic Compounds						
Acenaphthene	UG/L	20	10 U	10 U	20 U	20 U
Anthracene	UG/L	50	10 U	10 U	20 U	20 U
Benzo(a)anthracene	UG/L	0.002	10 U	10 U	20 U	20 U
Benzo(a)pyrene	UG/L	ND	10 U	10 U	20 U	20 U
Chrysene	UG/L	0.002	10 U	10 U	20 U	20 U
Fluoranthene	UG/L	50	10 U	10 U	20 U	2 0 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Revised April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantitation is an estimation.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.
- D Result reported from a secondary dilution analysis.

Location ID			GB-38	GB-40	GB-40	GB-41	
Sample ID			GB-38-WG	DUP-5-WG	GB-40-WG	GB-41-WG	
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	
Depth Interval (f	t)		-	-	-	-	
Date Sampled			10/20/06 10/20/06		10/20/06	10/20/06	
Parameter	Units	Criteria*		Field Duplicate (1-1)			
Semivolatile Organic Compounds							
Fluorene	UG/L	50	10 U	10 U	20 U	20 U	
Naphthalene	UG/L	10	83	160	240	210	
Phenanthrene	UG/L	50	10 U	10 U	20 U	20 U	
Pyrene	UG/L	50	10 U	10 U	20 U	20 U	
Total Semivolatile Organic Compounds	UG/L	-	83	160	240	210	

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantitation is an estimation.
- R The data are unusable due to deficiencies in the ability to analyze the sample and meet quality control criteria.
- D Result reported from a secondary dilution analysis.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.Revised April 2000, Class GA.

TABLE 3A STATISTICAL SUMMARY OF DETECTED GROUNDWATER ANALYTICAL RESULTS 15-21 NORTH FRANKLIN STREET

Parameter	Units	Criteria*	No. of	No. of		Range of Detections					Dist	Location of
			Samples	Detections	Min	Max	Avg	StdDev	UCL95	Exceed		Max Value
Volatile Organic Compounds												
Benzene	UG/L	1	7	2	19.00	1,500	759.5	1,047	2,211	2	Non-Normal	GB-13/SG-06
Toluene	UG/L	5	7	2	5.00	4,800	2,403	3,391	7,102	2	Non-Normal	GB-13/SG-06
Ethylbenzene	UG/L	5	7	4	2.00	1,600	681.0	799.1	1,464	3	Non-Normal	GB-13/SG-06
Xylene (total)	UG/L	5	7	5	2.00	9,200	2,830	4,113	6,435	4	Non-Normal	GB-13/SG-06
1,2,4-Trimethylbenzene	UG/L	5	7	5	3.00	3,300	1,150	1,430	2,403	4	Non-Normal	GB-12
1,3,5-Trimethylbenzene	UG/L	5	7	5	2.00	1,000	394.8	416.0	759.5	3	Non-Normal	GB-12
Methyl tert-Butyl Ether	UG/L	10	7	3	8.00	99.00	40.33	50.90	97.93	2	Non-Normal	GB-13/SG-06
Isopropylbenzene	UG/L	5	7	4	3.00	280.0	153.3	125.7	276.4	3	Normal	GB-13/SG-06
4-Isopropyltoluene	UG/L	5	7	1	32.00	32.00	32.00	-	-	1	Non-Normal	GB-09
Naphthalene	UG/L	10	7	3	40.00	630.0	276.7	234.1	338.4	3	Non-Normal	GB-12
n-Butylbenzene	UG/L	5	7	3	57.00	160.0	122.3	56.80	186.6	3	Normal	GB-12
n-Propylbenzene	UG/L	5	7	5	1.00	470.0	198.8	201.1	375.0	3	Normal	GB-12
sec-Butylbenzene	UG/L	5	7	1	36.00	36.00	36.00	-	-	1	Non-Normal	GB-09
Semivolatile Organic Compounds												
Naphthalene	UG/L	10	7	4	14.00	390.0	165.0	234.1	338.4	4	Non-Normal	GB-12
Phenanthrene	UG/L	50	7	2	1.00	2.00	1.50	0.707	2.48	0	Non-Normai	GB-15

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.Revised April 2000, Class GA.

TABLE 3B STATISTICAL SUMMARY OF DETECTED GROUNDWATER ANALYTICAL RESULTS CLIFFORD MOTORS

Parameter	Units	Criteria*	No. of	No. of		Rang	ge of Detec	tions		No.	Dist	Location of
			Samples	Detections	Min	Max	Avg	StdDev	UCL95	Exceed		Max Value
Volatile Organic Compounds												
Benzene	UG/L	1	11	4	2.00	200.0	110.5	81.98	-	4	Non-Normal	GB-17
Toluene	UG/L	5	11	2	4.00	8.00	6.00	2.83	-	1	Non-Normal	GB-26
Ethylbenzene	UG/L	5	11	10	4.00	600.0	125.6	213.2	-	9	Non-Normal	GB-27
Xylene (total)	UG/L	5	11	11	8.00	1,200	217.5	350.8	-	11	Non-Normal	GB-30
1,2,4-Trimethylbenzene	UG/L	5	11	11	15.00	1,500	325.8	445.0	•	11	Non-Normal	GB-30
1,3,5-Trimethylbenzene	UG/L	5	11	11	15.00	620.0	187.5	221.8	•	11	Non-Normal	GB-27
Isopropylbenzene	UG/L	5	11	11	6.00	260.0	68.82	74.98	-	11	Non-Normal	GB-27
4-Isopropyltoluene	UG/L	5	11	6	2.00	66.00	23.83	24.36	•	5	Non-Normal	GB-22
Naphthalene	UG/L	10	11	6	15.00	260.0	94.33	97.85	-	6	Non-Normal	GB-27
n-Butylbenzene	UG/L	5	11	11	10.00	310.0	84.18	94.88	-	11	Non-Normal	GB-22
n-Propylbenzene	UG/L	5	11	11	25.00	810.0	222.2	234.9	-	11	Non-Normal	GB-27
sec-Butylbenzene	UG/L	5	11	9	6.00	130.0	34.89	40.02	-	9	Non-Normal	GB-22
Semivolatile Organic Compounds												
Acenaphthene	UG/L	20	11	3	1.00	3.00	2.00	1.00	-	0	Normal	GB-27
Anthracene	UG/L	50	11	1	2.00	2.00	2.00	-	-	0	Non-Normal	GB-29
Benzo(a)anthracene	UG/L	0.002	11	1	2.00	2.00	2.00	-	-	1	Non-Normal	GB-29
Benzo(a)pyrene	UG/L	0	11	1	1.00	1.00	1.00	-	-	1	Normal	GB-29

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.Revised April 2000, Class GA.

TABLE 3B STATISTICAL SUMMARY OF DETECTED GROUNDWATER ANALYTICAL RESULTS CLIFFORD MOTORS

Parameter	Units	Criteria*	No. of	No. of	Range of Detections					No.	Dist	Location of
			Samples	Detections	Min	Max	Avg	StdDev	UCL95	Exceed		Max Value
Semivolatile Organic Compounds												
Chrysene	UG/L	0.002	11	1	2.00	2.00	2.00	•	-	1	Non-Normal	GB-29
Fluoranthene	UG/L	50	11	3	1.00	4.00	2.33	1.53	•	0	Normal	GB-29
Fluorene	UG/L	50	11	5	1.00	6.00	2.60	2.07	•	0	Normal	GB-27
Naphthalene	UG/L	10	11	9	1.00	200.0	60.22	72.13	•	7	Non-Normal	GB-27
Phenanthrene	UG/L	50	11	7	1.00	12.00	4.29	4.07	-	0	Non-Normal	GB-27
Pyrene	UG/L	50	11	4	2.00	9.00	5.25	2.99	-	0	Normal	GB-27

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. Revised April 2000, Class GA.

TABLE 3C STATISTICAL SUMMARY OF DETECTED GROUNDWATER ANALYTICAL RESULTS CAPTAIN BILL'S

Parameter	Units	Criteria*	No. of	No. of		Rang	ge of Detec	tions		No.	Dist	Location of
			Samples	Detections	Min	Max	Avg	StdDev	UCL95	Exceed		Max Value
Volatile Organic Compounds												
Benzene	UG/L	1	8	6	27.00	760.0	266.2	273.2		6	Non-Normal	GB-36
Toluene	UG/L	5	8	6	53.00	5,800	1,319	2,217	-	6	Non-Normal	GB-36
Ethylbenzene	UG/L	5	8	8	100.0	3,500	1,494	1,410	-	8	Normal	GB-31
Xylene (total)	UG/L	5	8	8	280.0	1.60E+04	6,398	6,664	-	8	Normal	GB-36
1,2,4-Trimethylbenzene	UG/L	5	8	8	330.0	5,100	2,163	1,530	-	8	Normal	GB-31
1,3,5-Trimethylbenzene	UG/L	5	8	8	180.0	1,300	627.5	343.0	-	8	Normal	GB-31
Isopropylbenzene	UG/L	5	8	8	96.00	180.0	147.0	27.11	-	8	Normal	GB-40
4-isopropyitoluene	UG/L	5	8	6	5.00	14.00	9.83	3.37	-	6	Non-Normal	GB-40
Naphthalene	UG/L	10	8	8	72.00	790.0	325.0	266.1	-	8	Normal	GB-31
n-Butylbenzene	UG/L	5	8	7	20.00	77.00	48.43	17.84	-	7	Normal	GB-32
n-Propylbenzene	UG/L	5	8	8	160.0	690.0	370.0	150.7	-	8	Non-Normal	GB-31
sec-Butylbenzene	UG/L	5	8	6	6.00	17.00	12.00	3.58	-	6	Non-Normal	GB-40
Semivolatile Organic Compounds												
Acenaphthene	UG/L	20	8	1	1.00	1.00	1.00	-	-	0	Normal	GB-32
Fluorene	UG/L	50	8	1	2.00	2.00	2.00		-	0	Normal	GB-32
Naphthalene	UG/L	10	8	8	83.00	500.0	258.3	168.9	•	8	Normal	GB-36
Phenanthrene	UG/L	50	8	1	2.00	2.00	2.00	-	-	0	Normal	GB-32

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.Revised April 2000, Class GA.

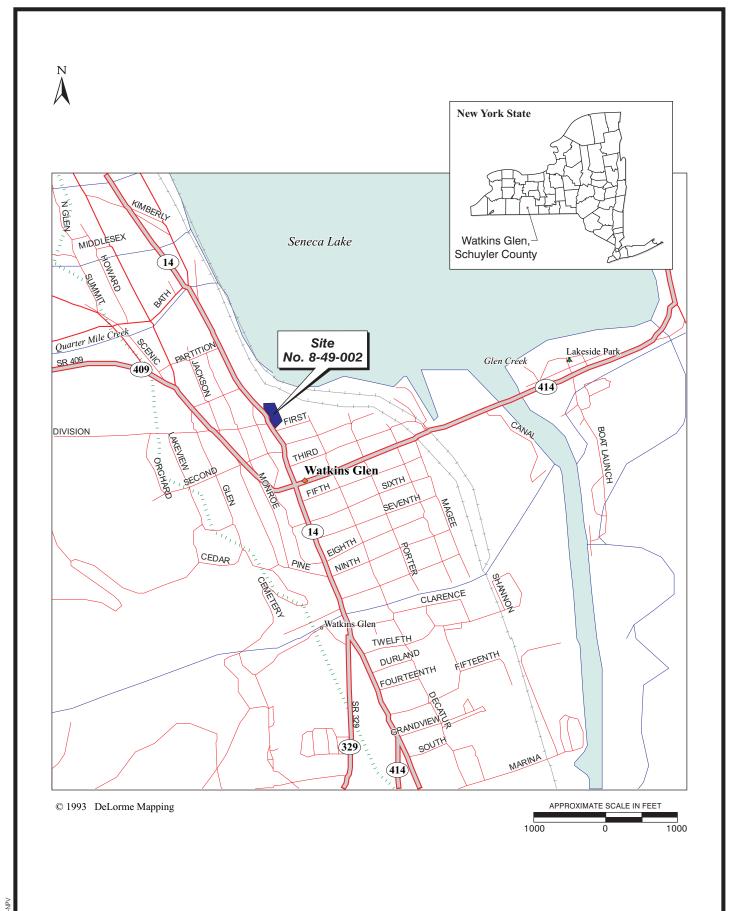
TABLE 4 SUMMARY OF TANK SAMPLE ANALYTICAL RESULTS NORTH FRANKLIN ST. SITE

		· -
Location ID		TS-01
Sample ID	TS-01	
Matrix		Free Product
Depth Interval (ft)		•
Date Sampled		09/27/06
Parameter		
Petroleum Hydrocarbon Mixtures		
#6 Fuel	MG/KG	4,700,000
Diesel (#2 Fuel)	MG/KG	25,000 U
Gasoline	MG/KG	25,000 U
Kerosene (#1 Fuel)	MG/KG	25,000 U
Lubricating Oil	MG/KG	120,000 U
Mineral Spirits	MG/KG	4,900 U

Flags assigned during chemistry validation are shown.

U - The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.

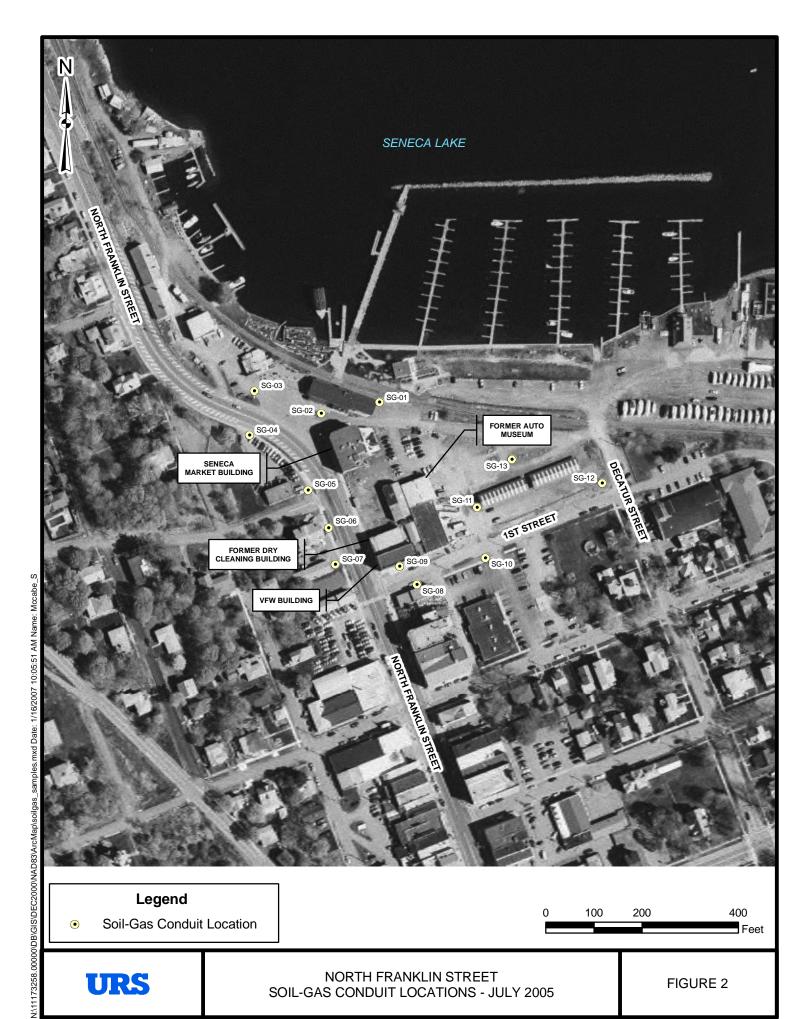
Location ID		SG-03	SG-03
Sample ID	SG-3	SG-03	
Matrix		Soil Gas	Soil Gas
Depth Interval (ft)		•	-
Date Sampled		07/18/05	09/26/06
Parameter	Units		
Volatile Organic Compounds			
Benzene	UG/M3	22,700	17,000 J
1,1,2-Trichloroethane	UG/M3	9,280 U	25,000 J
m,p-Xylene	UG/M3	6,430 J	NA
Cyclohexane	UG/M3	NA	170,000 J
Heptane	UG/M3	NA	130,000 J
Hexane	UG/M3	NA	530,000 J
2,2,4-Trimethylpentane	UG/M3	NA	1,000,000 J


Flags assigned during chemistry validation are shown.

NA - Not analyzed

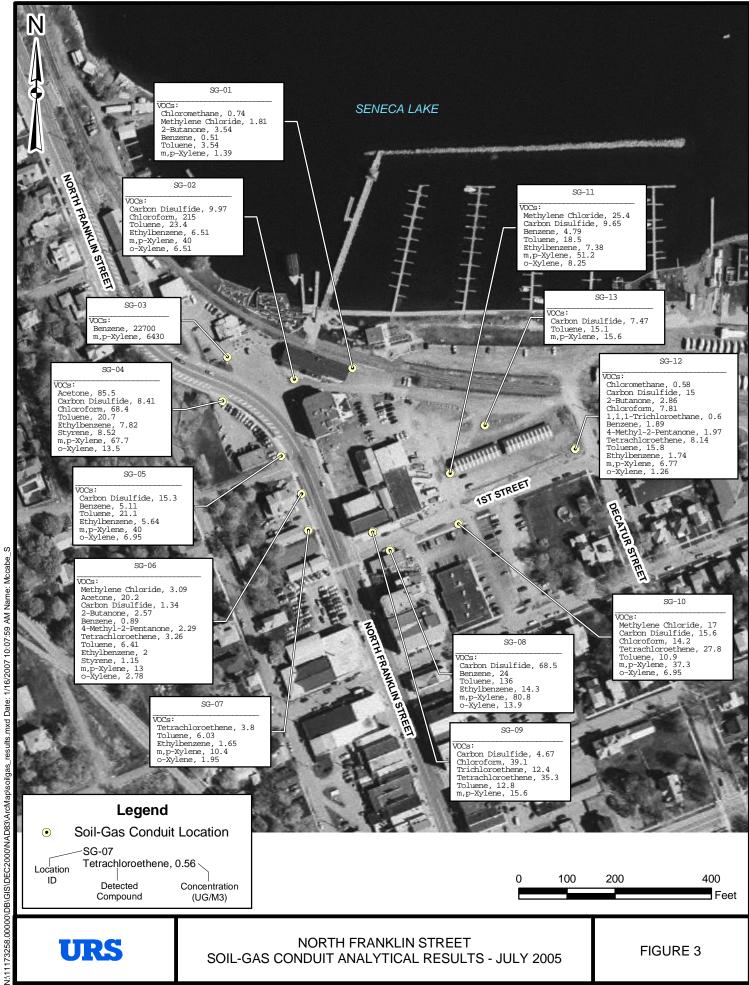
U - The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.

J - The analyte was positively identified, the quantitation is an estimation.

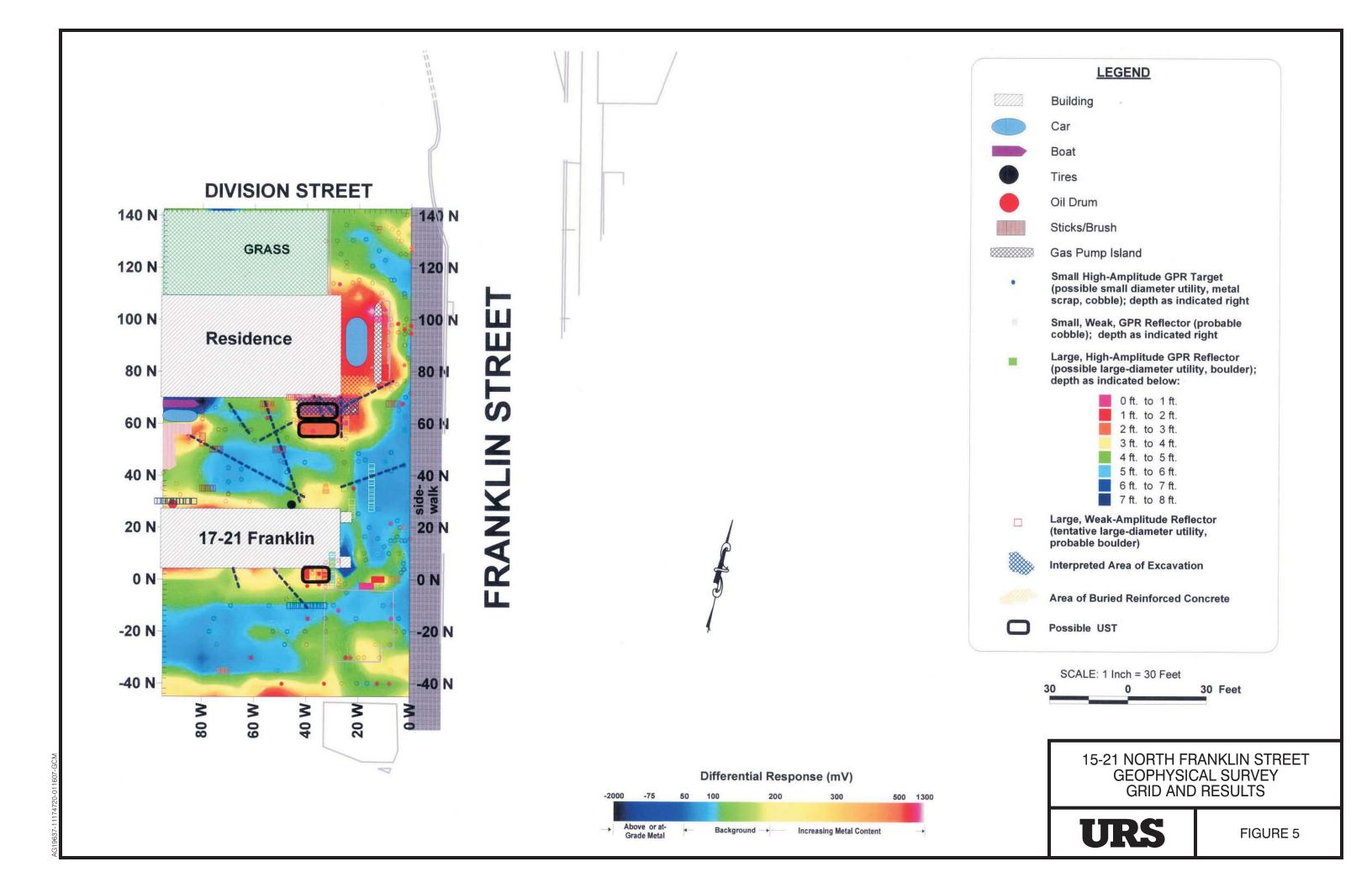

FIGURES

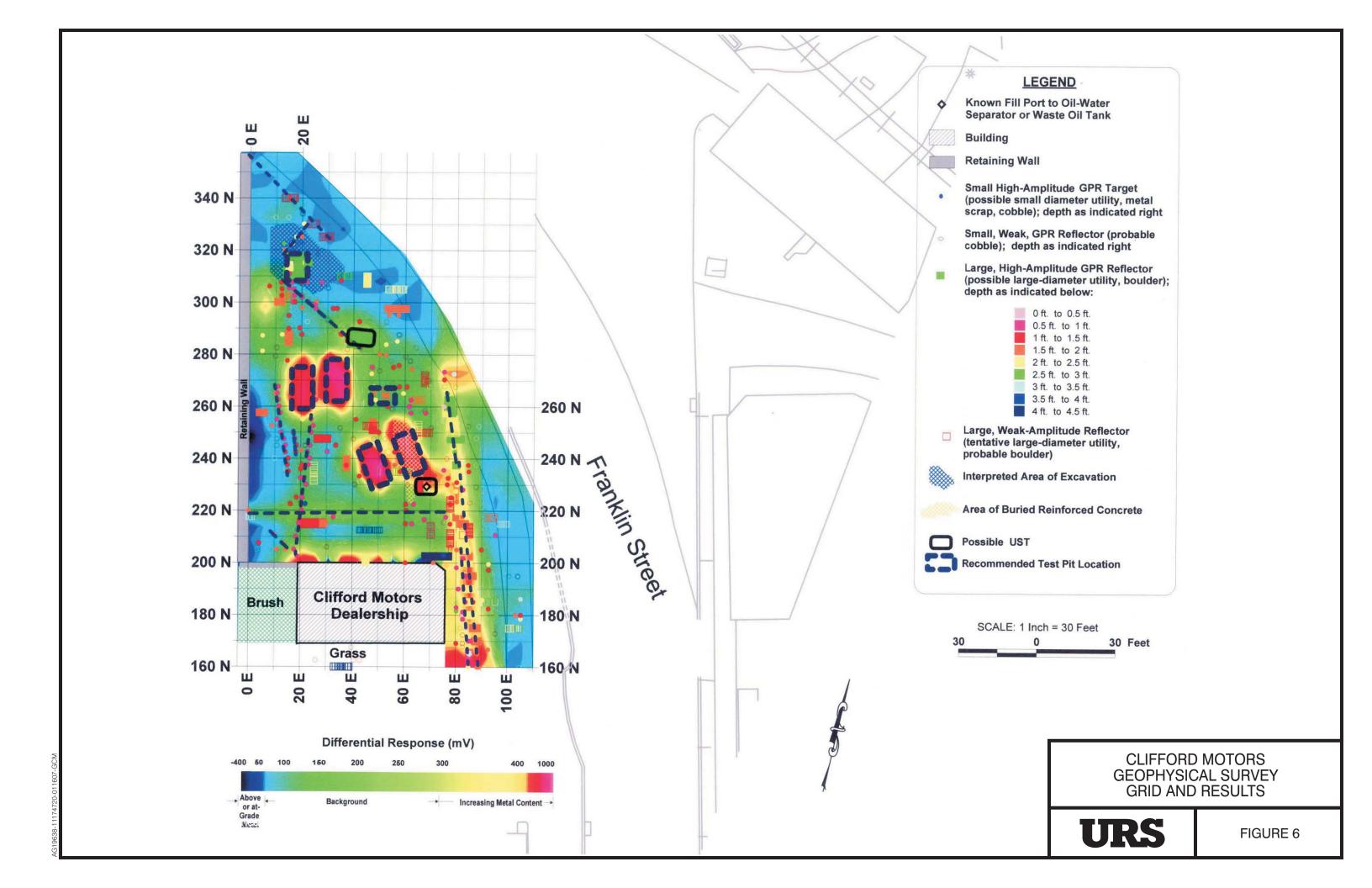
URS

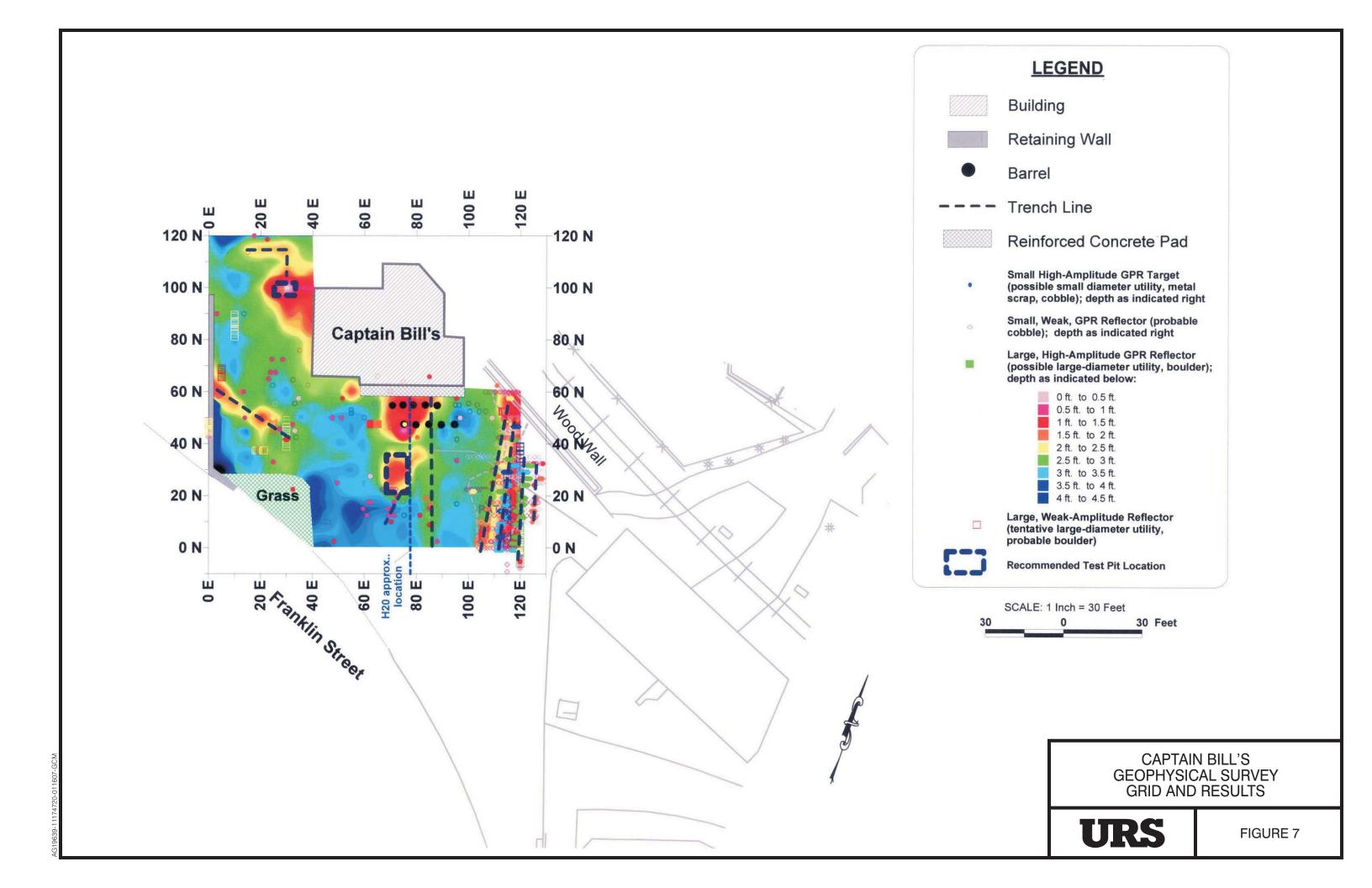
NORTH FRANKLIN STREET SITE LOCATION MAP

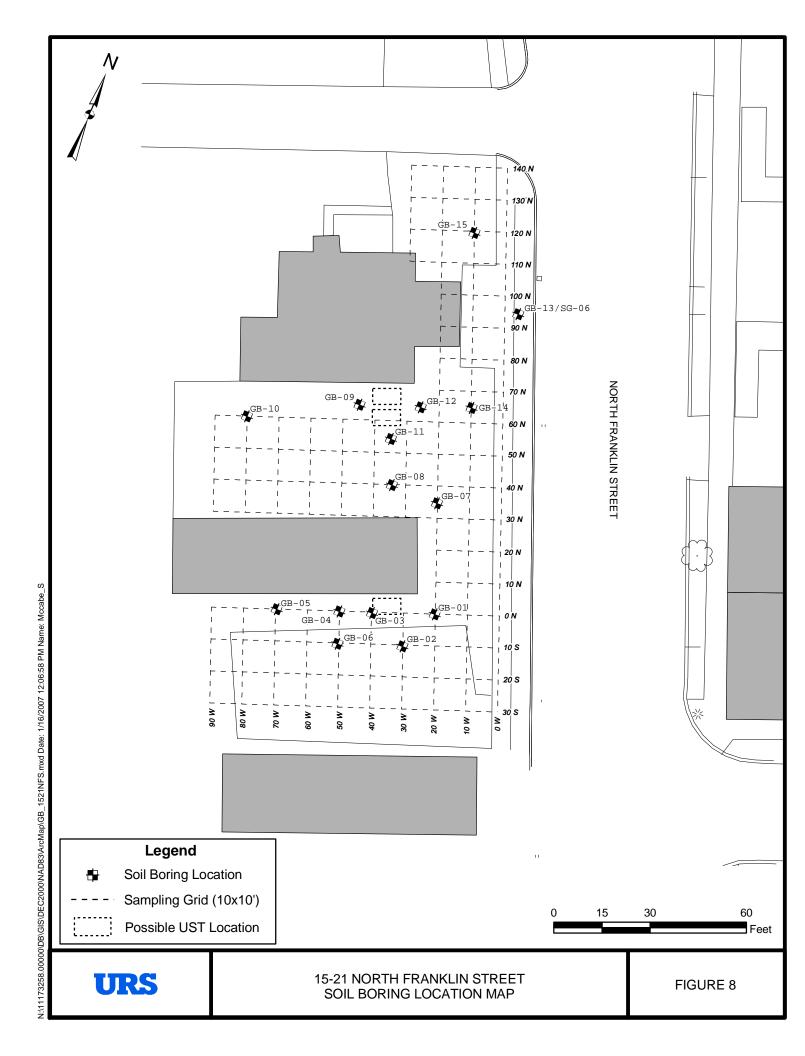

FIGURE 1

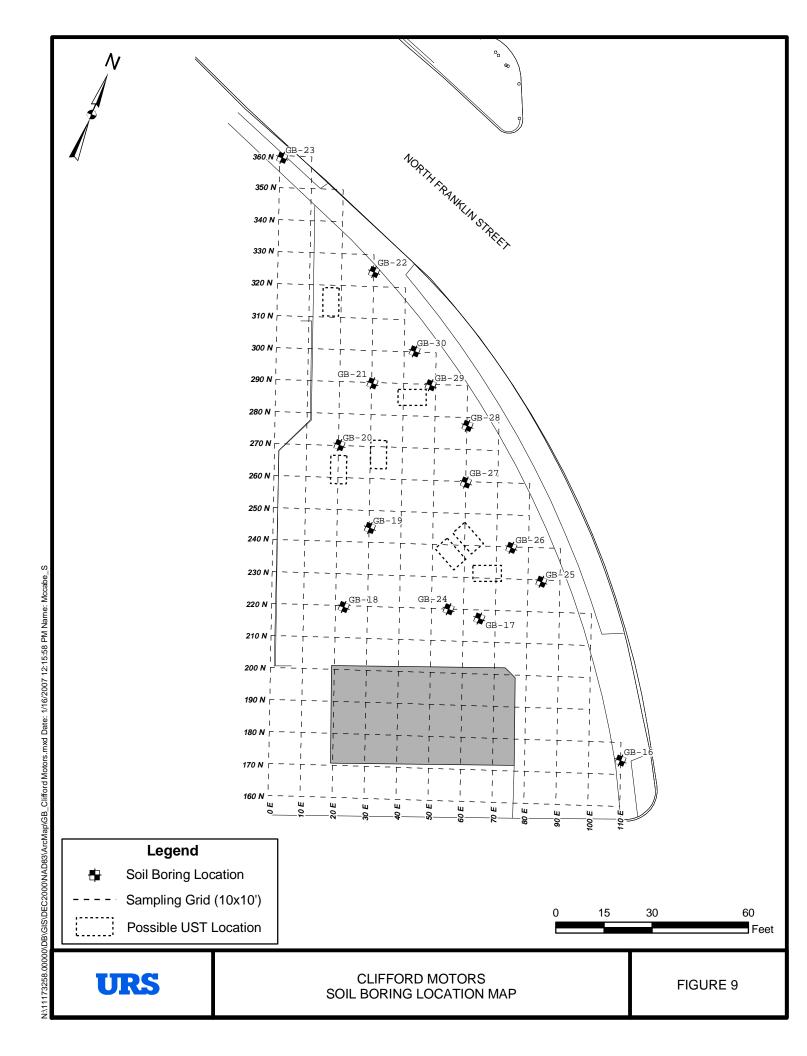
URS

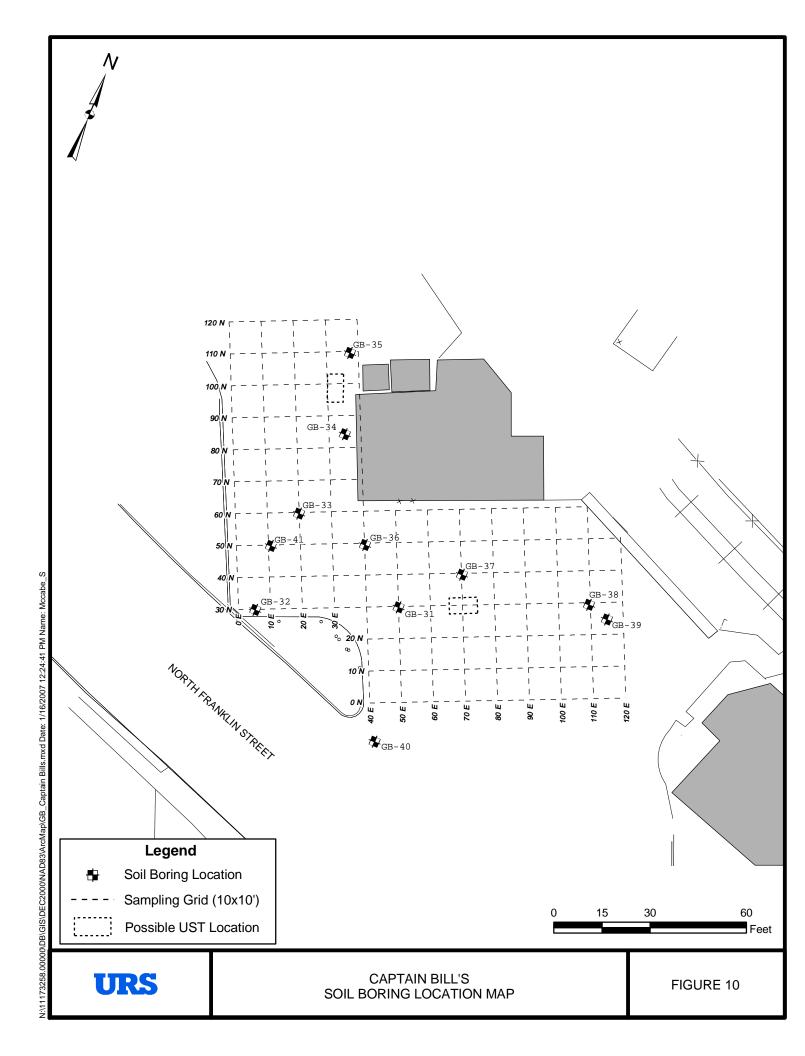

NORTH FRANKLIN STREET SOIL-GAS CONDUIT LOCATIONS - JULY 2005

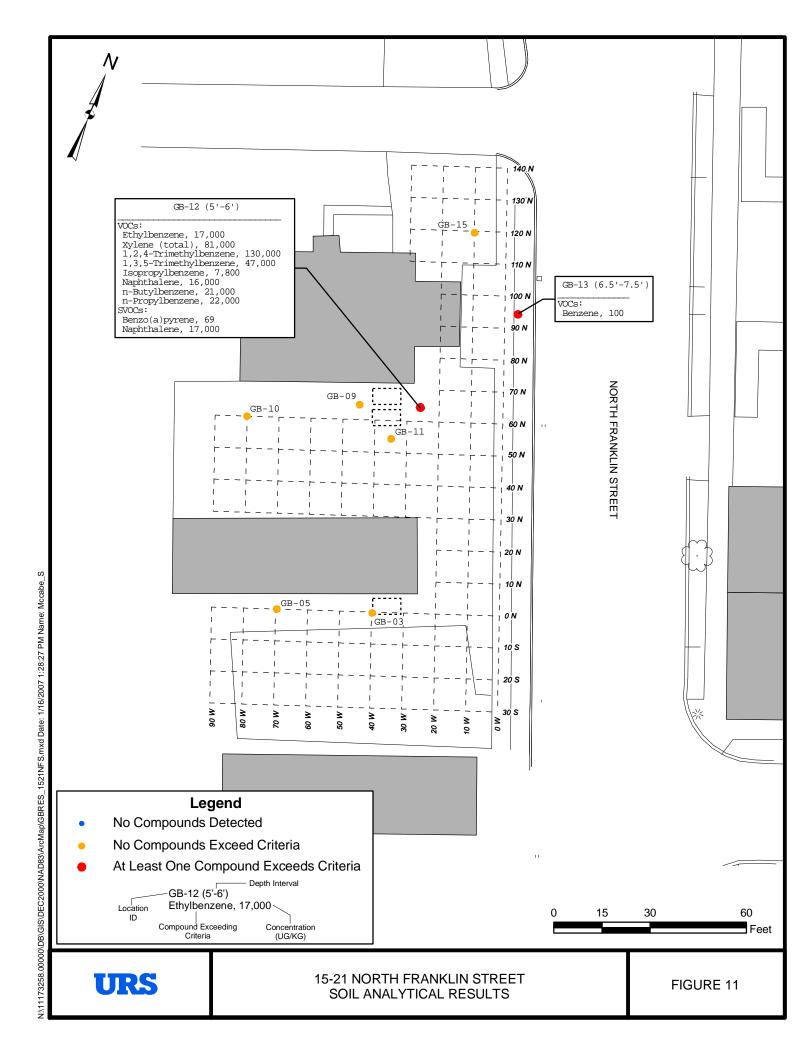

FIGURE 2

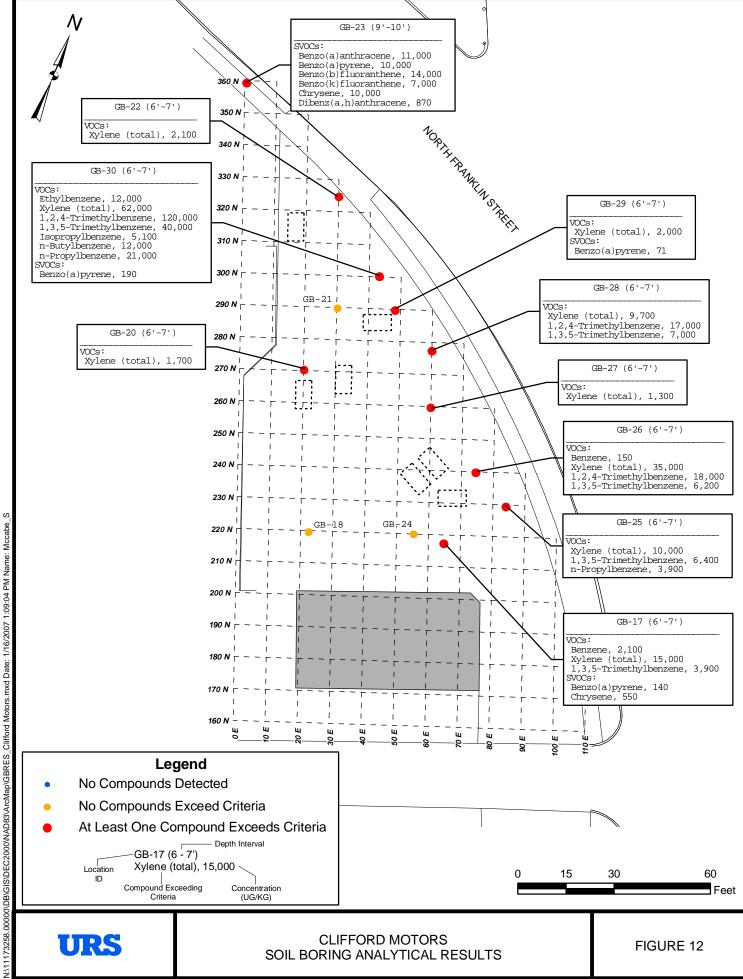


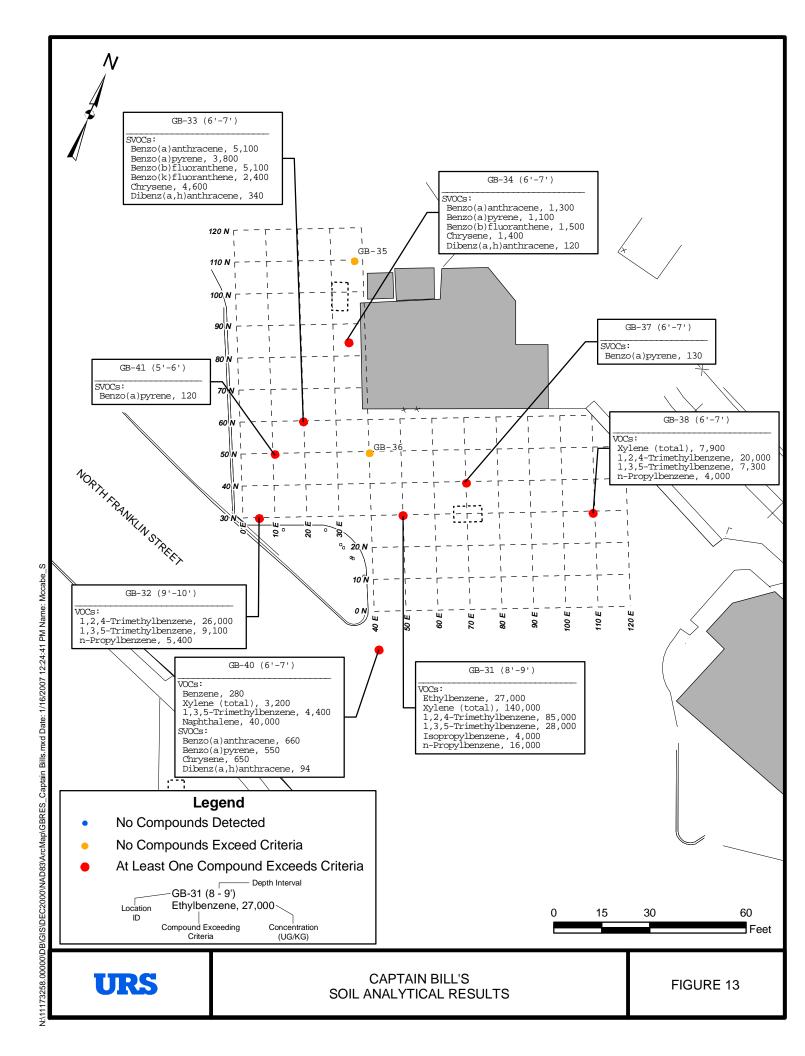

NORTH FRANKLIN STREET SOIL-GAS CONDUIT ANALYTICAL RESULTS - JULY 2005

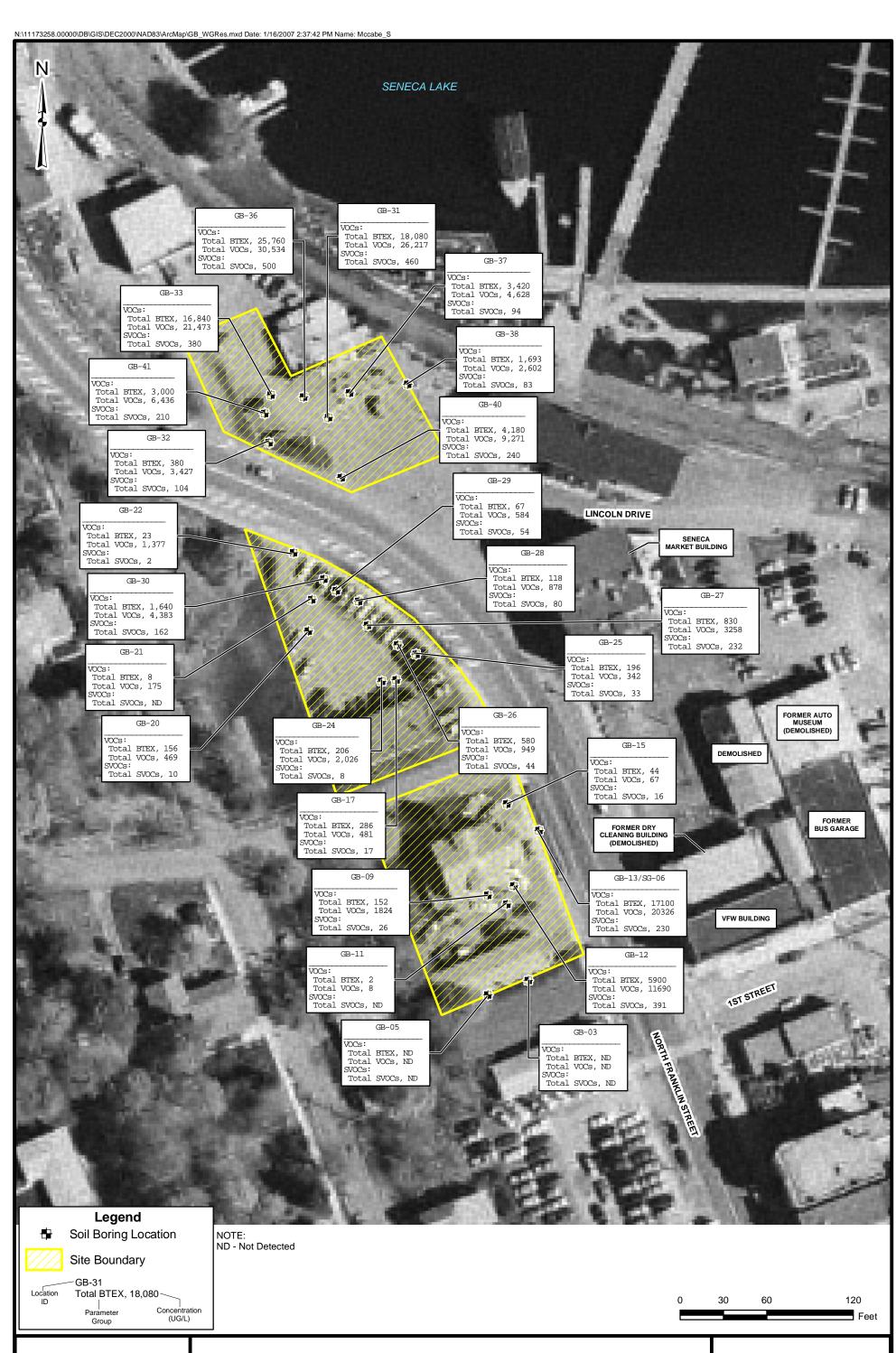




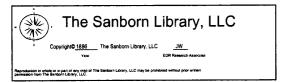


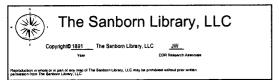


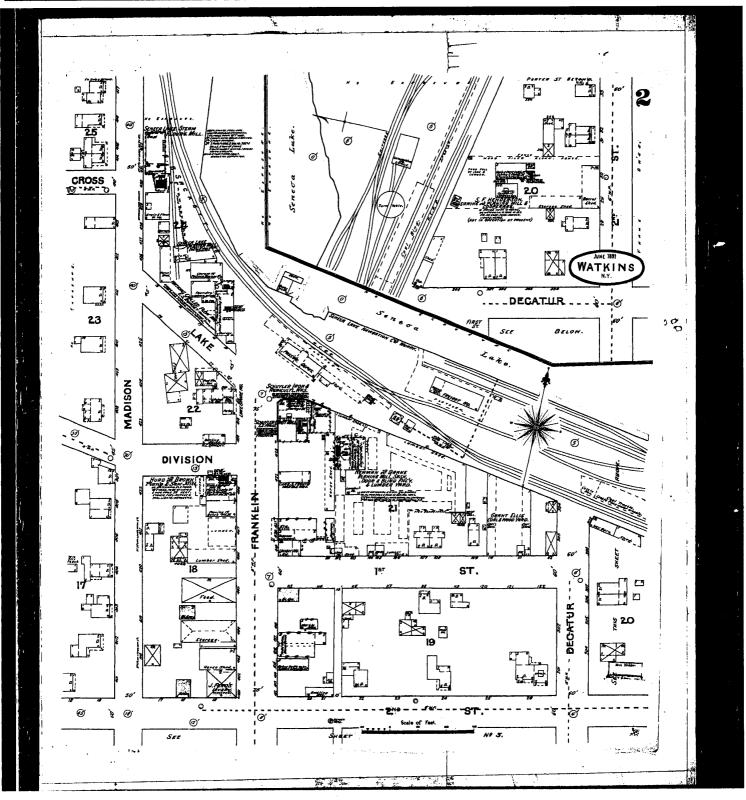


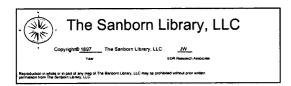


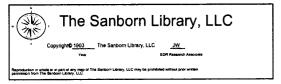
SOIL BORING ANALYTICAL RESULTS

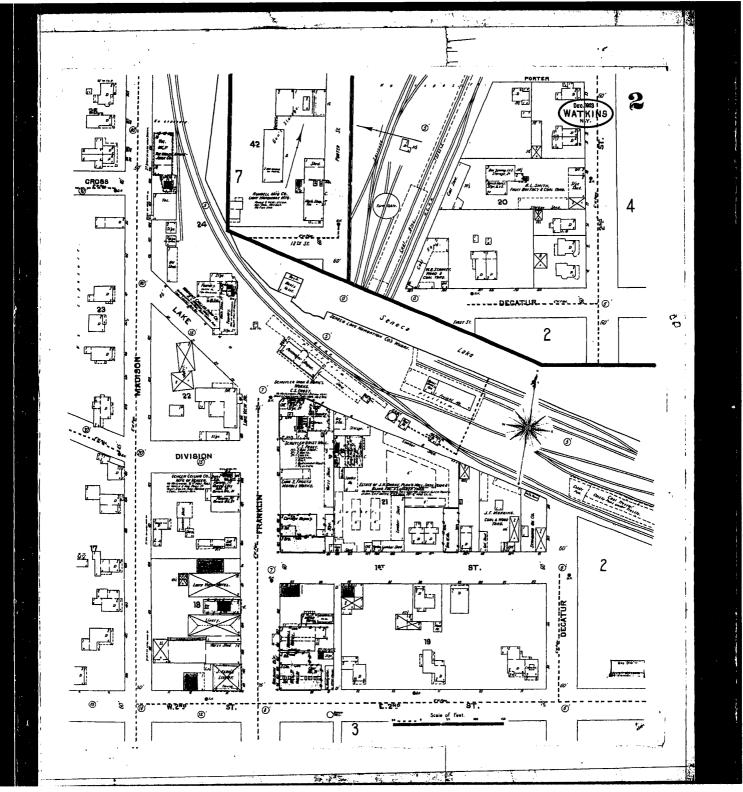


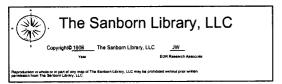


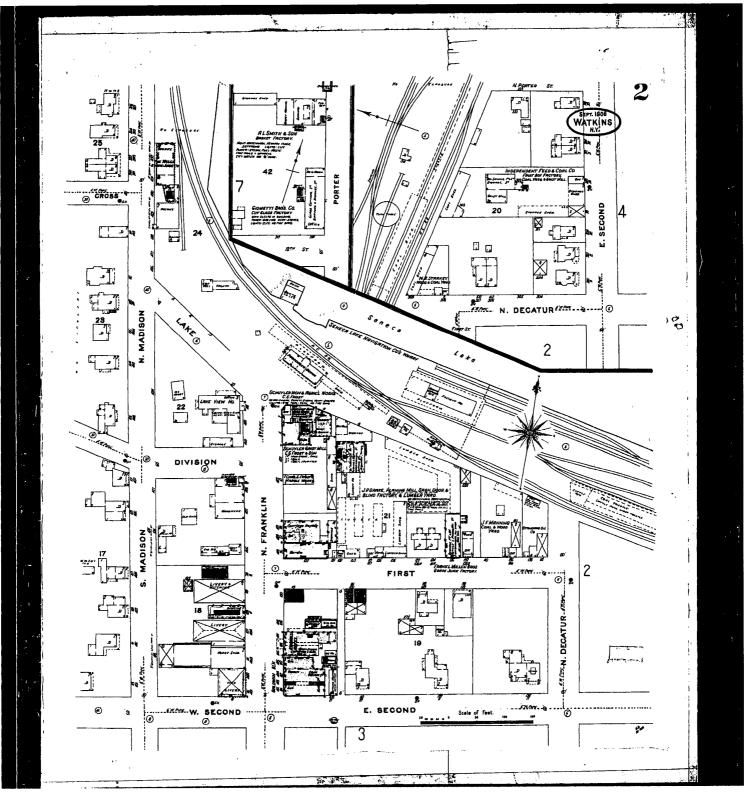

APPENDIX A

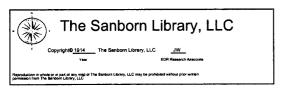

SANBORN MAPS

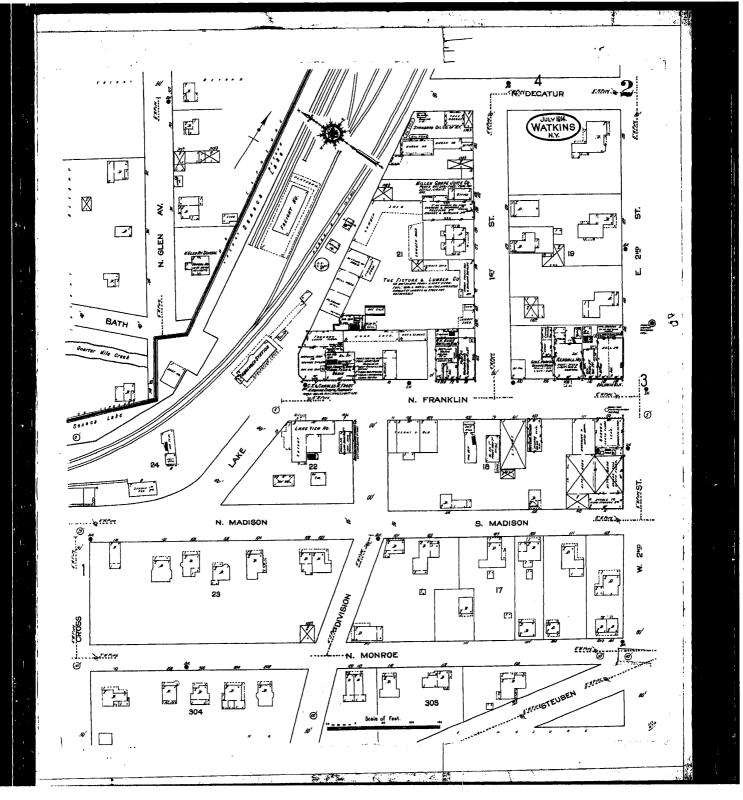


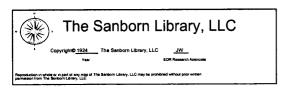


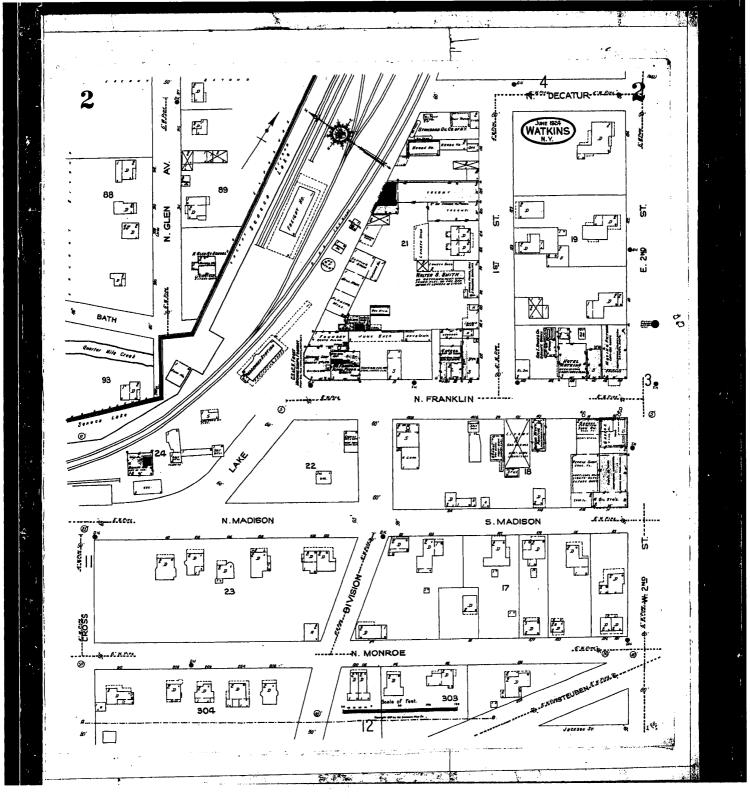


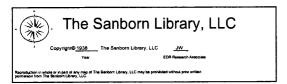


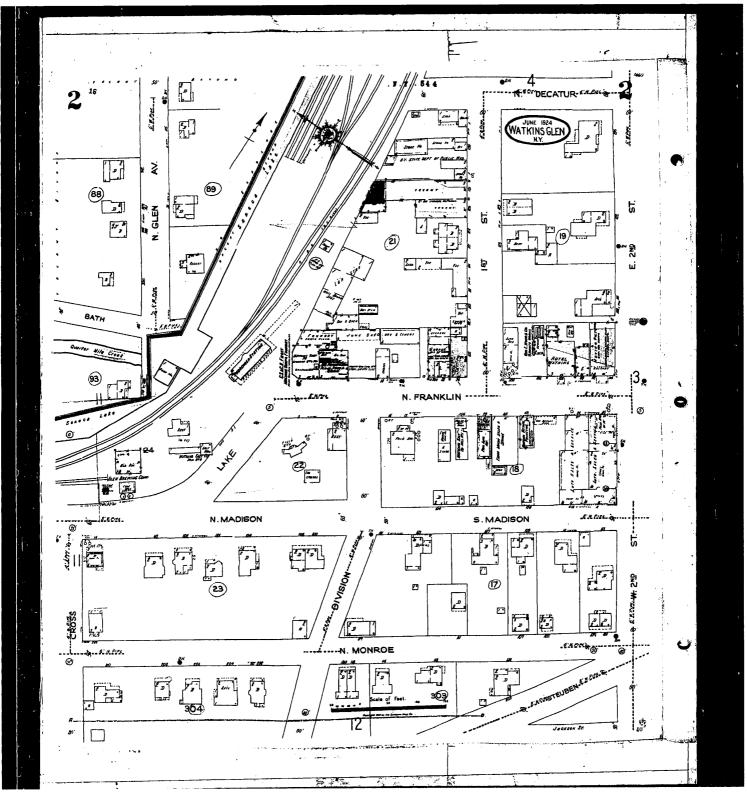


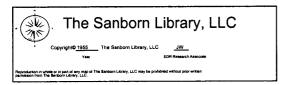


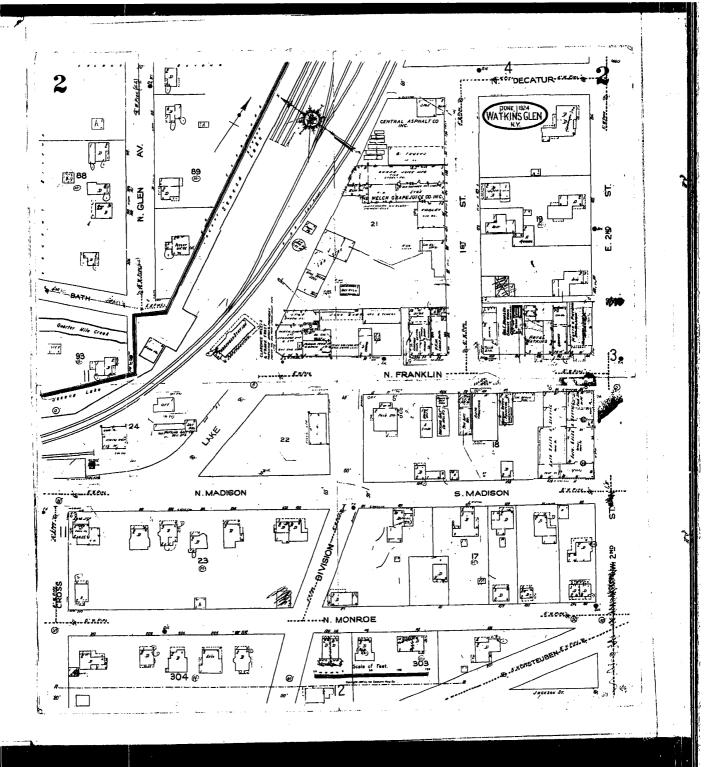












APPENDIX B

AERIAL PHOTOGRAPHS

APPENDIX C

Photo 1: View looking north at Captain Bill's property.

Photo 2: View looking north along west side of Captain Bill's building.

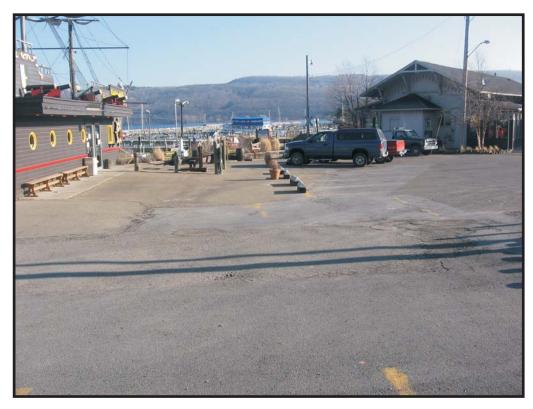


Photo 3: View looking east along south side of Captain Bill's building.

Photo 4: View of SG-03 and GB-13.

Photo 5: View looking west at Clifford Motors property.

Photo 6: View looking south at Clifford Motors property.

Photo 7: View looking north at suspect UST location (286 north 43 east).

Photo 8: View looking south at fill port location (230 north 68 east).

Photo 9: View of fill port (230 north 68 east).

Photo 10: View of product measurement from fill port.

Photo 11: View looking south at 15-21 North Franklin Street.

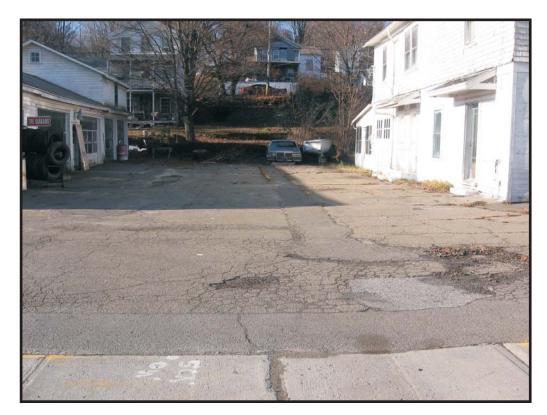


Photo 12: View looking west at south side of house/filling station at 15-21 North Franklin Street.

Photo 13: View looking west along south side of garage at 15-21 North Franklin Street.

Photo 14: View looking west along south side of garage at 15-21 North Franklin Street. Note fill port in center of photograph.

PHOTOGRAPH LOG

Photo 15: View of fill port at 15-21 North Franklin Street.

Photo 16: View looking north at suspect tank locations at 15-21 North Franklin Street (65 north 35 west).

PHOTOGRAPH LOG

Photo 17: View of collection of macrocore samples.

Photo 18: View of collection of soil-gas sample from SG-03.

PHOTOGRAPH LOG

Photo 19: View of ambient air sample collection.

APPENDIX D

GEOPHYSICAL SURVEY REPORT

November 2, 2006

Mr. Scott McCabe **Senior Geologist URS** Corporation, Inc. 77 Goodwell Street 4th Floor Buffalo, NY 14203

Re:

Geophysical Survey to Locate Possible USTs

Site ID#8-49-002 Franklin Street

Watkins Glen. New York

Dear Scott:

In accordance with your authorization, Radar Solutions International (RSI) conducted ground penetrating radar (GPR) and EM-61 time-domain surveys at the above-referenced site on Tuesday, September 26 and Wednesday, September 27, 2006. RSI's personnel, Sr. Geophysicist, Ms. Doria Kutrubes, and Geophysical Technician, Ms. Eli White conducted the survey with the assistance of URS personnel. The purpose of the survey was to locate possible underground storage tanks(USTs) which may be the source of high hydrocarbon readings in nearby monitoring wells. RSI's finalized survey results and interpretation are summarized below.

LOCATION AND SURVEY CONTROL

Three sites were examined along Franklin Street in Watkins Glen, New York. The first area of interest is in parking lots located adjacent to the existing buildings at 17-21 Franklin Street. RSI personnel established a geophysical survey grid using fiberglass taped measurements and referenced it to existing buildings and other features referenced on RSI's sketch map. At the recommendation of URS personnel, RSI also expanded the scope of work to include the parking lot south of 17-21 Franklin Street, immediately north of the Realtor building. Grid Line 5N is parallel to and aligned with the south face of the garage building at 17-21 Franklin Street, and Line 0W corresponds to the west edge of the Franklin Street sidewalk. Grid node 0W, and 0N corresponds to the corner at which the parking lot, sidewalk, and grass meet, 24feet east of the southeast corner of the garage building. The approximately 175 by 100 foot area was evaluated using GPR and EM time-domain metal detection (EM-61) methodologies to determine the location of the possible USTs. The location of geophysical traverses and our interpreted results are plotted on Figures 1 through 4.

The second area of interest is located in the parking lot located north and east of the Clifford Motors Car Dealership building. The scope of work was also expanded to include the narrow grassy area

> 51 Riverview Avenue, Waltham, MA 02453-3819 Tel. (781) 891-4492 / Fax (781) 736-0004 http://www.radar-solutions.com

URS Corporation, Inc. Franklin Street
Watkins Glen, New York

on the south side of the building. RSI referenced its geophysical survey grid to the building's north face, which corresponds to Line 200N, and to the east edge of the retaining wall, which corresponds to Line 0E. The approximately 180 by 100 foot area was evaluated using GPR and EM-61 methodologies to determine the location of possible USTs. Our interpreted results plotted on Figures 5 through 8.

The third area of interest was located in the parking lot south and west of the Captain Bill's Lake Tours building. A survey grid was established and referenced to the existing retaining wall and building. Grid node 0E, 0N corresponds to the southern corner of the existing retaining wall, while Grid Line 40E corresponds to the west face of the Captain Bill's Building. Again, RSI utilized both GPR and EM-61 methodologies to evaluate the area, with our interpreted results plotted on Figures 9-12.

METHODOLOGY

RSI used multiple geophysical techniques to best meet the objectives of URS and its client. RSI used a GEONICS Model EM-61 time domain induction meter, which is essentially a highly-sensitive metal detector, to detect buried metal to a maximum depth of 12 feet. The EM-61 is used to detect any type of metal while minimizing the effects of overhead power lines and above-ground metal objects. EM induction data were acquired using a GEONICS EM-61 EM induction meter. This method works by inducing an EM current into the ground and measuring the induced EM field, measured in millivolts (mV) at a specific time after the transmitted signal is switched off. Data were collected at 0.5 second intervals and field markers applied every10 feet along survey lines spaced 2.5 feet apart. EM data were recorded on a portable field computer then transferred to desktop computer and contoured (i.e. data with similar values were shaded similarly to bring out patterns of high voltages indicative of buried or near-surface metal). For this survey, orange to red and magenta filled contours indicate a large mass of buried metal. The greater the metal mass, the higher (and the closer to magenta and pink) the recorded induced voltages. "Background" inductive values are shown in green or cyan-filled contours. Dark blue to blue-filled contours typically indicate surface metal, such as a sign or light post, or at-grade metal, such as scrap metal or a gate box. Appendix A describes the EM induction method in more detail.

GPR data were acquired along lines spaced 2.5 to 5 feet apart. RSI personnel used a GSSI SIR-3000 digital radar system and a 400 MHz antenna. Data were recorded on the SIR-3000 and simultaneously displayed on the computer's monitor for immediate field inspection. Data were filtered to remove noise caused by the conductive soil and fill. Data were then transferred to desktop computer and processed using GSSI's proprietary radar processing package, RADAN NT. A 3D section was compiled from each GPR record, and was inspected for reflections characteristic of a UST or other large object.

RESULTS

GPR signal penetration was a maximum of 4 to 5 feet, and less than optimal resolution resulted from the conductive nature of the soil and shallow shale present. Figures 1 through 12 summarize

URS Corporation, Inc. Franklin Street
Watkins Glen. New York

our interpretation for both GPR and EM-61 methodologies. All figures are presented at a scale of 1 inch equals 30 feet. Key results for the areas of concern are presented below:

17-21 Franklin Street

- In the area of interest encompassing 17-21 Franklin St, several areas of buried metal are indicated by red and orange-filled contours on the EM maps on Figure 1 (bottom coil) and Figure 2 (differential measurements), respectively. A large EM anomaly was observed from 55N to 70N and 43W to 15W, which could represent an area where a UST is buried. Likewise, the smaller anomaly located south of the garage building at 40W, 2N also could possibly represent a small UST.
- The high amplitude EM anomalies located from 20W to 0W, and from 70N to 118N, and near 80W, 58N, are attributed to an overhead car port and to vehicles parked in those respective areas. These above-ground sources of interference were unable to be removed at the time of survey.
- GPR results confirm the presence of two UST-sized targets located from 42W to 28W and from 57N to 68N, coincident with the large EM anomaly. These targets appear approximately 2.5 to 2.7 feet below grade, and likely represents two USTs of 1,000 gallon capacity or less.
- GPR could not confirm the presence of a UST coincident with a possible fill port south of the garage building at 33W and 4.5N. However, two weak, large GPR reflectors were observed along Lines 32.5W and 35W at an approximate 2.5 to 3 foot depth, which could represent a small UST with a capacity of 500 gallons or less. The lack of strong GPR reflectors coincident with the fill suggests that if it is a UST, it is either deteriorated, that there is a lot of moisture and/or contamination within the ground, or that the target it not a UST. Figures 3 and 4 show the location of this possible UST, as well as the locations of the two USTs interpreted above.

Clifford Motors

- In the area of interest encompassing the Clifford Motors Parking Lot, the EM-61 Bottom Coil and differential results (Figures 5 and 6) highlight several anomalies which could represent large buried targets. The anomaly located at 278N, 82E is attributed to a manhole cover. A utility is inferred from a high-amplitude linear EM anomaly, which trends from 89E, 160N to the manhole. Similarly, the high-amplitude EM anomaly observed near 90E, 160N is attributed to a metal grate present at the site.
- Two large EM anomalies, shown near grid nodes 49E, 238N and 78E, 243N respectively, could possibly represent USTs. Two additional, large EM anomalies were observed to the north, near 20E, 268N and 32E, 270N, which are sufficiently large to represent USTs. However, GPR reflections indicative of USTs coincident with these anomalies were not

URS Corporation, Inc. Franklin Street
Watkins Glen, New York

observed. It is also possible that the anomalies were generated from reinforced concrete pads. However, the rectangular shape of the EM anomalies suggests the possibility of USTs being present there. GPR also indicates that there is at least one utility that trends from 19E and 200N to 23E, 250N where the EM anomalies were observed. The presence of this utility(ies) supports that these anomalies are USTs and that this utility(ies) may be representative of fill and/or return pipe(s) from a potential tank.

- An EM-61 anomaly was also observed coincident with a fill-port, observed at 69E abd 228B,
 URS personnel extracted oil from the fill-port structure. However, GPR reflections indicate
 that the target is flat and probably is deeper than it is wide. Also, based on GPR reflections,
 the structure is likely concrete. Therefore, in our professional opinion, we believe that this
 target is more likely to represent an underground oil/water separator, rather than a UST.
- A group of large GPR reflectors, observed between 37.5E to 45E, and 281N to 290N at an approximate 4 foot depth, could represent a small UST. The shape and location of the GPR reflections suggest that this possible UST is oriented with its long axis more or less east-west, slightly oblique to our survey grid. A weak EM anomaly was observed coincident with these reflectors, suggesting that if the target does represent a UST, it is in a deteriorated condition.
- A utility appears to trend from the southwest corner of this possible small UST referenced above, toward 12E, 310N. A second group of GPR reflectors were observed from 12.5E to 20E and 309N to 319N, at the terminus of the utility and at the same depth as the above-mentioned UST. Also, an EM anomaly of similar amplitude as the possible UST referenced above was observed coincident with the second group of reflectors. It is possible the second group of GPR reflectors also represent a small UST. It also appears that the area surrounding this group of reflectors has been previously excavated, suggesting that if it were a UST, it may have been closed in place.
- The anomalies depicted adjacent to the north and east faces of the Clifford Motors building are representative of the above ground reinforced concrete pads present at the site.

Captain Bill's Property

- Shallow bedrock is evident throughout the majority of this site. The combination of shallow shale bedrock with a high water table resulted in GPR signal penetrating only to about 2 feet below grade.
- Buried metal is indicated in several locations at the Captain Bill's site. The large EM
 anomaly located at 30E and 100N could feasibly represent a UST. However, the source of
 the EM anomaly here could not be determined as GPR signal penetration was very limited
 at this site, and no reflections indicative of USTs was observed. The linear "L-shaped" EM
 anomaly observed north of, and trending towards, the above-mentioned anomaly is

URS Corporation, Inc. Franklin Street
Watkins Glen, New York

attributed to a utility or to a building foundation.

- The large EM anomaly located between 42N and 60N, and from 65E to 85E is attributed to above-ground sources, such as picnic tables, metal posts, etc. However, no above-ground targets were observed near 72E and 30N that could account for the large EM anomaly there.
 It is possible that this anomaly could represent a UST; however, no GPR reflections indicative of a UST were observed there.
- The weak, linear, EM anomaly observed trending parallel to 86E is attributed to a utility that trends into the building. Likewise, the linear EM anomaly observed trending from 0E and 60N to 35E and 42N is attribute to a utility. The large, elongated EM anomaly observed trending from 105E to 109E, 0N to 112E to 120E, 60N is attributed to a trench in which there are multiple utilities. GPR results confirm the location of this trench as the excavation was made into the shallow shale bedrock. The excavation appears to be backfilled with a more resistive, sand and gravel fill, as at least three pipes were observed within the trench up to depths of 4 feet.
- The small, circular-shaped EM anomaly located at 55E, 61N is too small in extent to represent a UST, even a small one.

SUMMARY AND RECOMMENDATIONS

Two USTs are likely present, and a third UST could possibly be present, at the 17 to 21 Franklin Street site. Two probable USTs are located at an approximate 2.5 to 2.7 foot depth, just south of the northeast corner of the residence on the property, near 35W and 60N. These USTs may have as much as a 1,000 gallon capacity. The third possible UST is located immediately south of the garage and coincident with the fill port observed at 33W and 4.5N.

At the Clifford Motors site, as many as seven USTs may be present. Four potential USTs have been identified only from EM-61 results, although potential fill and return piping may have been identified using GPR trending toward the two southern potential USTs. A possible small UST has been interpreted from a group of reflectors near 42.5E, 288N and a weak EM anomaly. A second, similar group of GPR reflectors was observed near 29E and 314N, which could represent another small UST of similar vintage. We believe that the fill pipe observed at 69E and 229N is associated with an oil-water separator, as the GPR reflectors indicate a flat target that has dimensions deeper than wider.

At the Captain Bill property, two large EM anomalies could feasibly represent USTs. At both these locations, GPR could not identify targets that could be construed to represent USTs, probably due to the lack of signal penetration. The large EM anomaly located near the northwest corner of the building could represent a UST, but it could also be attributed to a buried utility and/or former building foundation. The other anomaly, located near 70E and 30N, could represent a UST. Again, no confirmation using GPR could be obtained due to its very limited investigative depth at this site.

November 2, 2006 Page 6

The following locations are recommended for test pits to confirm our interpreted findings. Please excavate with caution as not all utilities may have been identified at these sites.

17-21 Franklin Street Property:

- 1. 35W, 65N: probable UST (98% probability), 1,000 gallon capacity, 2.7 feet below grade,
- 2. 35W, 57N: probable UST (98% probability), 1,000 gallon capacity, 2.7 feet below grade,
- 3. 35W, 2N: possible UST (60% probability), 500 gallon capacity or less, 3 feet below grade.

Clifford Motors Dealership Property:

- 1. 20E. 267N: possible UST from EM-61 data only, 60% probability,
- 2. 33E, 270N: possible UST from EM-61 data only, 60% probability,
- 3. 48E, 237N: possible UST from EM-61 data only, 60% probability,
- 4. 61E, 243N; possible UST from EM-61 data only, 60% probability,
- 5. 68E, 229N: probable oil-water separator from EM-61 and GPR, 90% probability
- 6. 43E, 286N; possible small UST from GPR and EM-61, 90% probability,
- 7. 18E, 314N; possible small UST from GPR and EM-61, 80% probability.

Captain Bill's Property:

- 1. 30E, 100N: possible UST, buried utilities, and/or building foundation from EM-61, 50% probability.
- 2. 70E, 30N: possible UST from EM-61 data only, 60% probability.

We appreciate this opportunity to work with URS again. Please call should you have any inquiries regarding this or future assignments.

Sincerely.

RADAR SOLUTIONS INTERNATIONAL

Doria Kutrubes

President and Senior Geophysicist

Doria & Rutubes

APPENDIX A

EM TERRAIN CONDUCTIVITY METHOD OF INVESTIGATION

The terrain conductivity survey was conducted using a Geonics Model EM31-DL Terrain Conductivity Meter. This induction-type instrument measures terrain conductivity without electrodes or direct soil contact. The terrain conductivity method operates on the principle that secondary electric and magnetic currents can be induced in metal objects and conductive bodies, such as iron or steel USTs, when an electric field is applied. This instrumentation measures the secondary magnetic field strength relative to the primary magnetic field and converts it directly into a conductivity value, measured in millimhos per meter (mmhos/m) and a resolution of 1 mmho/m.

The EM-31 also records the amount of phase-shift occurring between primary and secondary magnetic fields. The in-phase component measures that portion of the secondary magnetic field that is aligned with the primary field. Because metal objects are almost perfect conductors, there is sometimes no phase shift between primary and secondary magnetic fields. Hence, metal objects are detectable using the in-phase component (measured in parts per thousand or ppt). Additionally, in the presence of metal, conductivity values are often negative ("polarity reversals") and highly irregular.

The transmitting and receiving coils in the EM31-DL have a fixed separation of 3 meters, and when used in its normal operating mode (vertical dipole mode), the EM-31 achieves a depth of penetration of about 6 meters. The instrument response is more affected by near-surface than by deeper material, especially when used in the vertical dipole mode. Conductivity and in-phase data were digitally stored and transferred to computer, where they were contoured.

SURVEY LIMITATIONS

EM terrain conductivity data is influenced by above-ground metal, such as cars, dumpsters, and buildings, and by electrical sources of noise, such as overhead power lines and radio broadcasting stations. These above-ground sources may create noise which may adversely effect and create unreliable conductivity data.

Buried metal may be concealed when buried within highly conductive soils, such as sludge and landfill materials. This effect may be mitigated when the in-phase component of the induced magnetic field is used in conjunction with conductivity for data interpretation.

For accurate conductivity readings, the terrain conductivity meter must first be calibrated in an area free of buried metal and overhead power lines. Because the survey area had significant sources of cultural noise, the EM-31 instrument was not calibrated on site and hence, there may be up to a 5% error in absolute conductivity and in-phase values.

APPENDIX B

GROUND PENETRATING RADAR METHOD OF INVESTIGATION

A GSSI SIR 2000 radar system with a 400 megahertz (MHZ) antenna was used for the survey. GPR data were collected continuously along survey lines and displayed on a monitor. GPR data were also simultaneously recorded on a hard drive for post-survey processing. The horizontal scale on each GPR record is determined by the antenna speed. Survey stations are recorded on GPR records by pressing a marker button as the antenna's centerline passes each grid node (at 5 foot intervals for this survey). The vertical scale of these radar "cross-sections" is determined by the recording interval, which was 60 nanoseconds (ns). The recording interval represents the maximum two-way travel time in which data are recorded. This recording interval was selected to be greater than the anticipated maximum two-way travel time during which real GPR reflections might be observed. GPR travel times were converted to depths using an approximate dielectric constant determined from typical soil propagation velocities from similar sites.

The GPR method operates by transmitting low-powered microwave energy into the ground. The GPR signal is reflected back to the antenna by materials with contrasting electric (dielectric and conductive) and physical properties. Metal objects, such as USTs and pipes typically produce high-amplitude hyperbolic reflections on the GPR records. Sometimes concrete blocks, bricks, and cobbles cause similar signatures on the radar record.

SURVEY LIMITATIONS

GPR signals propagate well in sand and gravel. Conditions such as clay, ash, road salt, and fill saturated with brackish or otherwise conductive groundwater cause GPR signal attenuation and loss of target resolution (i.e. limited detection of small objects). Typically, when background conductivity measurements exceed 30 millimhos per meter (mmhos/m), GPR signal penetration is limited to 3 to 5 feet. Reinforced concrete also limits GPR penetration and resolution. Signal penetration through reinforced concrete is quite variable, ranging from approximately 1 to 5 feet depending upon the type and spacing of metal reinforcing.

GPR is an interpretive method, based on the subjective identification of reflection patterns which may not uniquely identify a subsurface target or stratigraphic horizon. For instance, the hyperbolic reflector corresponding to a utility is similar in reflection and depth characteristics to that produced by a metal scrap or cobble. Obtaining data along multiple survey traverses helps to determine the size, shape, and continuity of buried objects. For instance, buried utilities are interpreted from hyperbolic reflectors of similar depth and appearance, which are aligned along adjacent lines. Reflections from USTs are asymmetric: reflectors appear flat and of finite dimensions when the antenna moves parallel to the UST's long axis, but appear as large hyperbolic reflectors when the antenna crosses obliquely or perpendicular to the short axis of the UST. In both instances, UST reflectors are of finite length. GPR data interpretation is more subjective than that for most other geophysical methods, and confirmation using boreholes or test pits is strongly recommended.

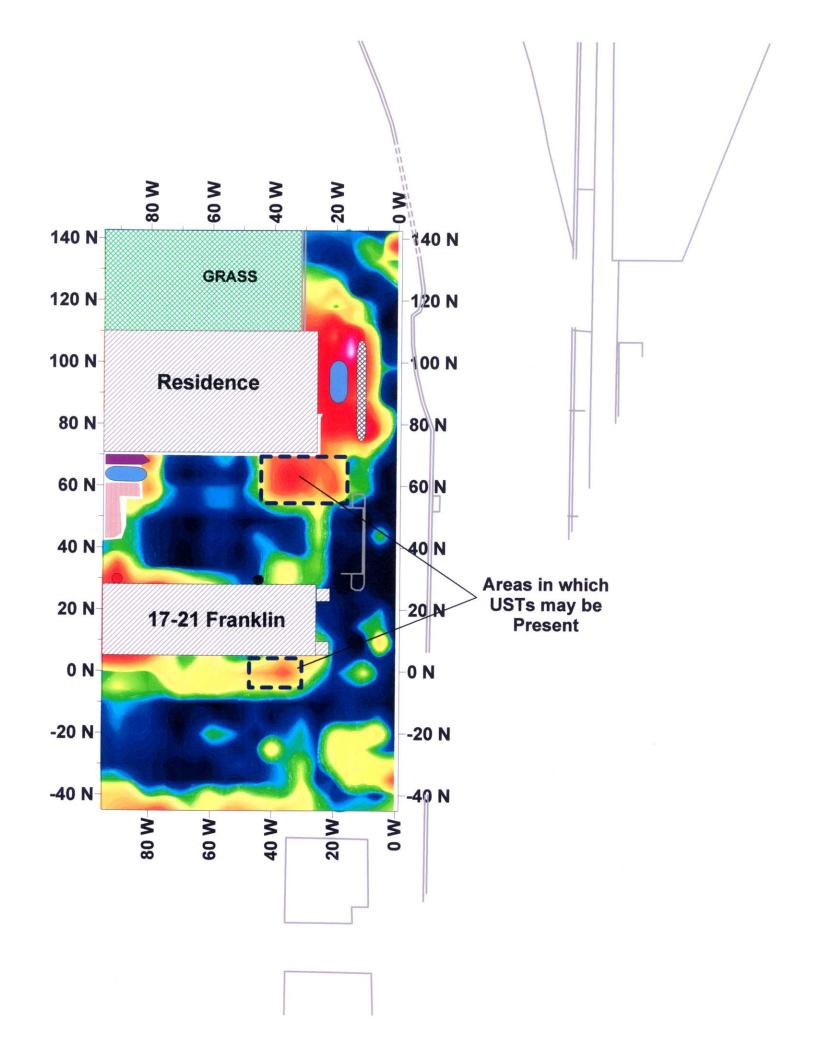
Changes in the speed at which the antenna is moved between stations causes slight errors in horizontal distance interpolations and hence interpreted object positions.

The antenna radiation pattern is cone-shaped, emanating GPR signals approximately 15 degrees from horizontal fore and aft, and about 45 degrees from horizontal along the sides of the antenna, depending upon the dielectric properties of the soil. Therefore, buried objects may be detected before the antenna is located directly over them. Due to this effect, GPR anomalies often appear larger than actual target dimensions.

GROUND PENETRATING RADAR METHOD OF INVESTIGATION

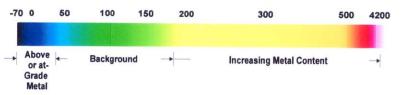
A GSSI SIR 2000 radar system with a 400 megahertz (MHZ) antenna was used for the survey. GPR data were collected continuously along survey lines and displayed on a monitor. GPR data were also simultaneously recorded on a hard drive for post-survey processing. The horizontal scale on each GPR record is determined by the antenna speed. Survey stations are recorded on GPR records by pressing a marker button as the antenna's centerline passes each grid node (at 5 foot intervals for this survey). The vertical scale of these radar "cross-sections" is determined by the recording interval, which was 60 nanoseconds (ns). The recording interval represents the maximum two-way travel time in which data are recorded. This recording interval was selected to be greater than the anticipated maximum two-way travel time during which real GPR reflections might be observed. GPR travel times were converted to depths using an approximate dielectric constant determined from typical soil propagation velocities from similar sites.

The GPR method operates by transmitting low-powered microwave energy into the ground. The GPR signal is reflected back to the antenna by materials with contrasting electric (dielectric and conductive) and physical properties. Metal objects, such as USTs and pipes typically produce high-amplitude hyperbolic reflections on the GPR records. Sometimes concrete blocks, bricks, and cobbles cause similar signatures on the radar record.


SURVEY LIMITATIONS

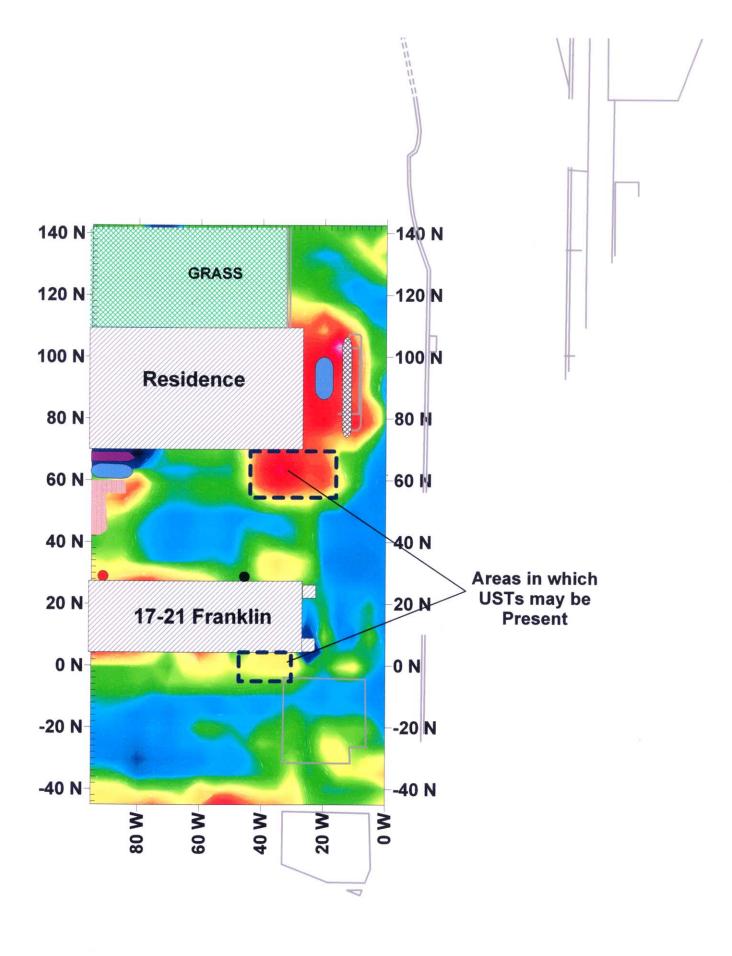
GPR signals propagate well in sand and gravel. Conditions such as clay, ash, road salt, and fill saturated with brackish or otherwise conductive groundwater cause GPR signal attenuation and loss of target resolution (i.e. limited detection of small objects). Typically, when background conductivity measurements exceed 30 millimhos per meter (mmhos/m), GPR signal penetration is limited to 3 to 5 feet. Reinforced concrete also limits GPR penetration and resolution. Signal penetration through reinforced concrete is quite variable, ranging from approximately 1 to 5 feet depending upon the type and spacing of metal reinforcing.

GPR is an interpretive method, based on the subjective identification of reflection patterns which may not uniquely identify a subsurface target or stratigraphic horizon. For instance, the hyperbolic reflector corresponding to a utility is similar in reflection and depth characteristics to that produced by a metal scrap or cobble. Obtaining data along multiple survey traverses helps to determine the size, shape, and continuity of buried objects. For instance, buried utilities are interpreted from hyperbolic reflectors of similar depth and appearance, which are aligned along adjacent lines. Reflections from USTs are asymmetric: reflectors appear flat and of finite dimensions when the antenna moves parallel to the UST's long axis, but appear as large hyperbolic reflectors when the antenna crosses obliquely or perpendicular to the short axis of the UST. In both instances, UST reflectors are of finite length. GPR data interpretation is more subjective than that for most other geophysical methods, and confirmation using boreholes or test pits is strongly recommended.


Changes in the speed at which the antenna is moved between stations causes slight errors in horizontal distance interpolations and hence interpreted object positions.

The antenna radiation pattern is cone-shaped, emanating GPR signals approximately 15 degrees from horizontal fore and aft, and about 45 degrees from horizontal along the sides of the antenna, depending upon the dielectric properties of the soil. Therefore, buried objects may be detected before the antenna is located directly over them. Due to this effect, GPR anomalies often appear larger than actual target dimensions.

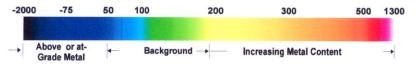
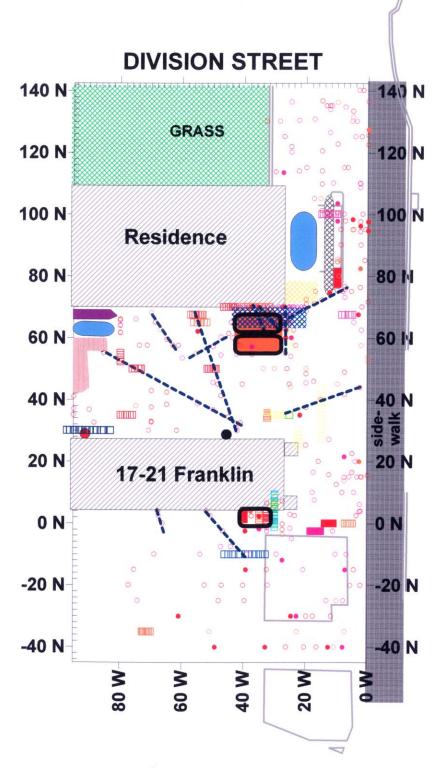
Bottom Coil Response (mV)



SCALE: 1 Inch = 30 Feet 30 0 30 Feet

FIGURE 1
EM-61 BOTTOM COIL RESULTS
17-21 FRANKLIN STREET
WATKINS GLEN, NEW YORK
Prepared for
URS CORPORATION INC.
NOVEMBER 2006

Differential Response (mV)

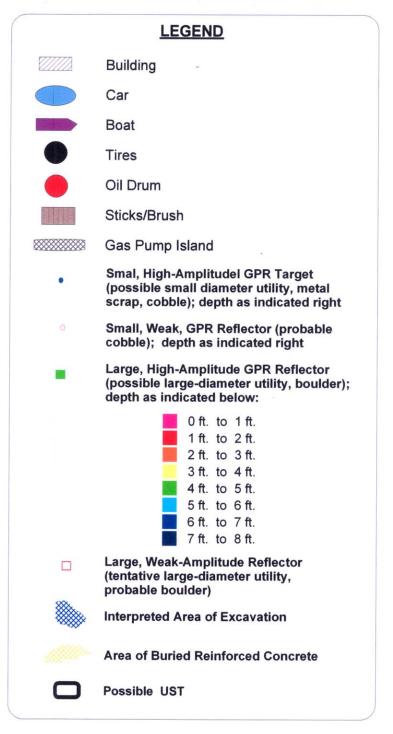
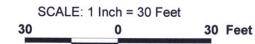
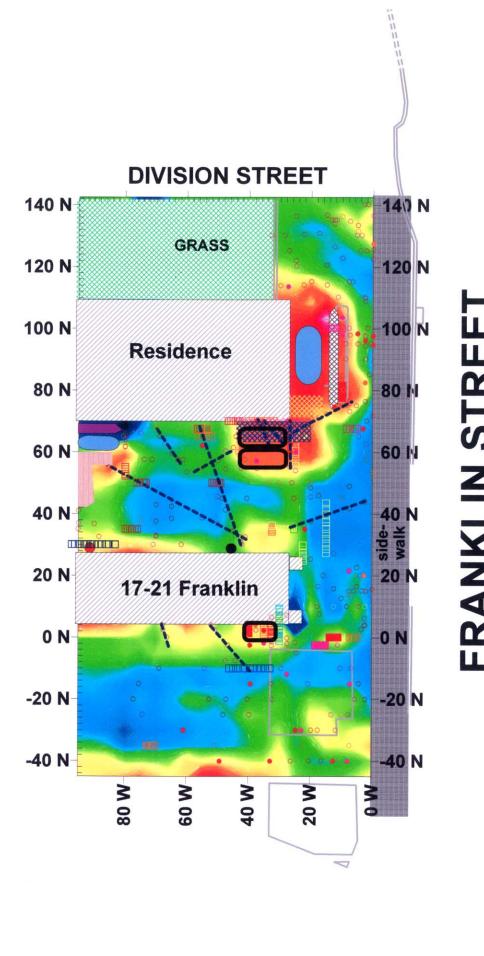
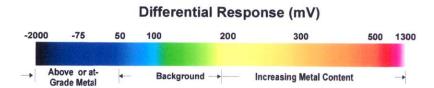
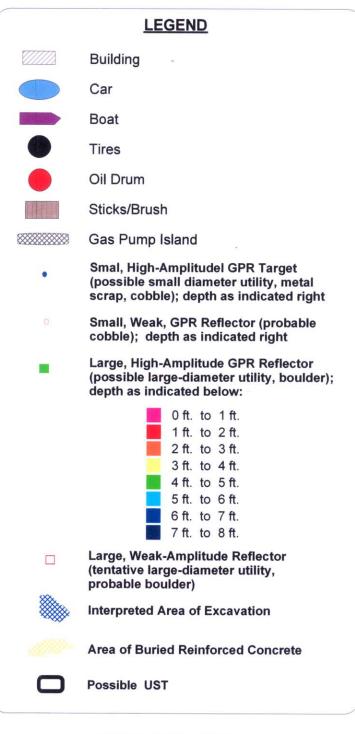
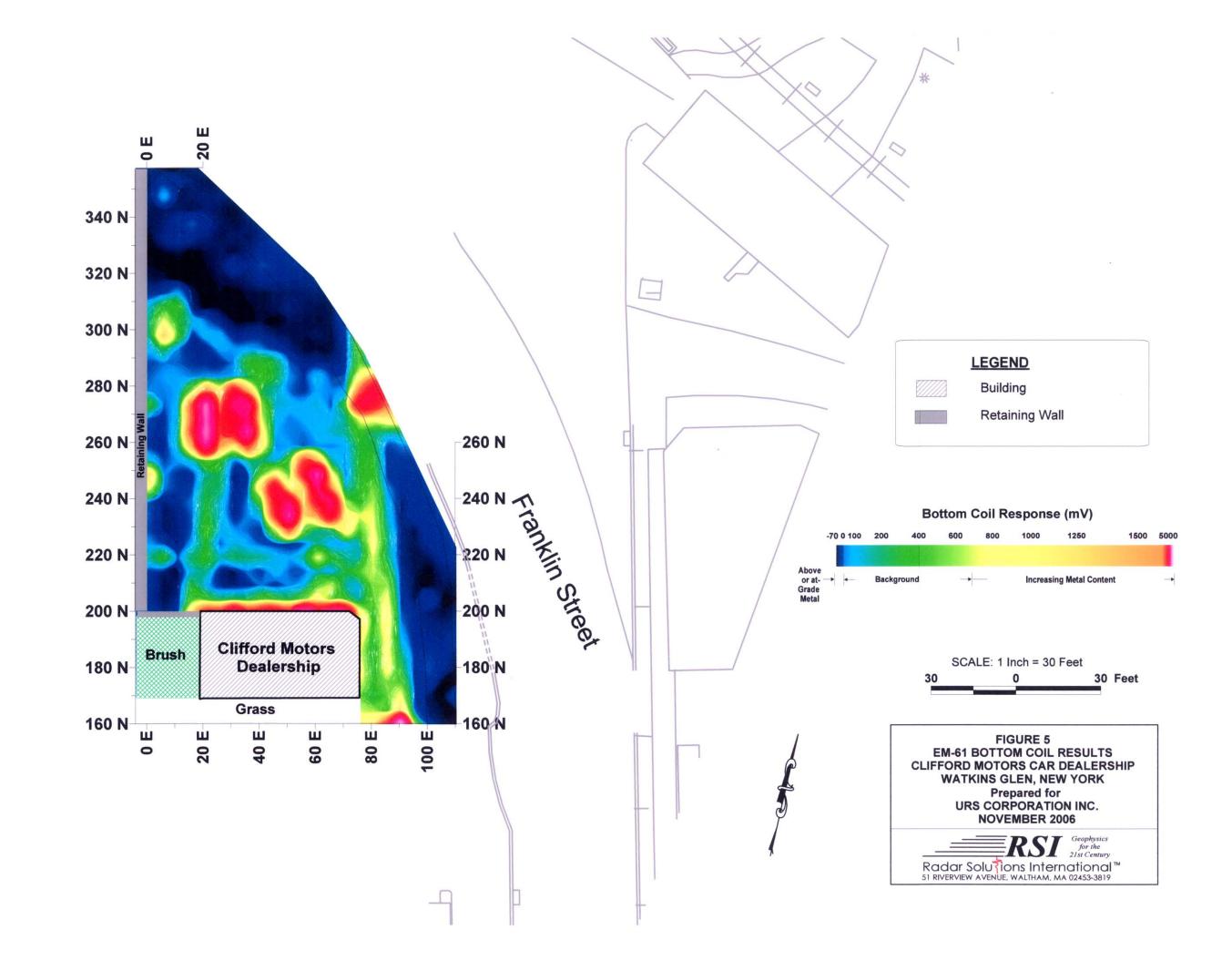
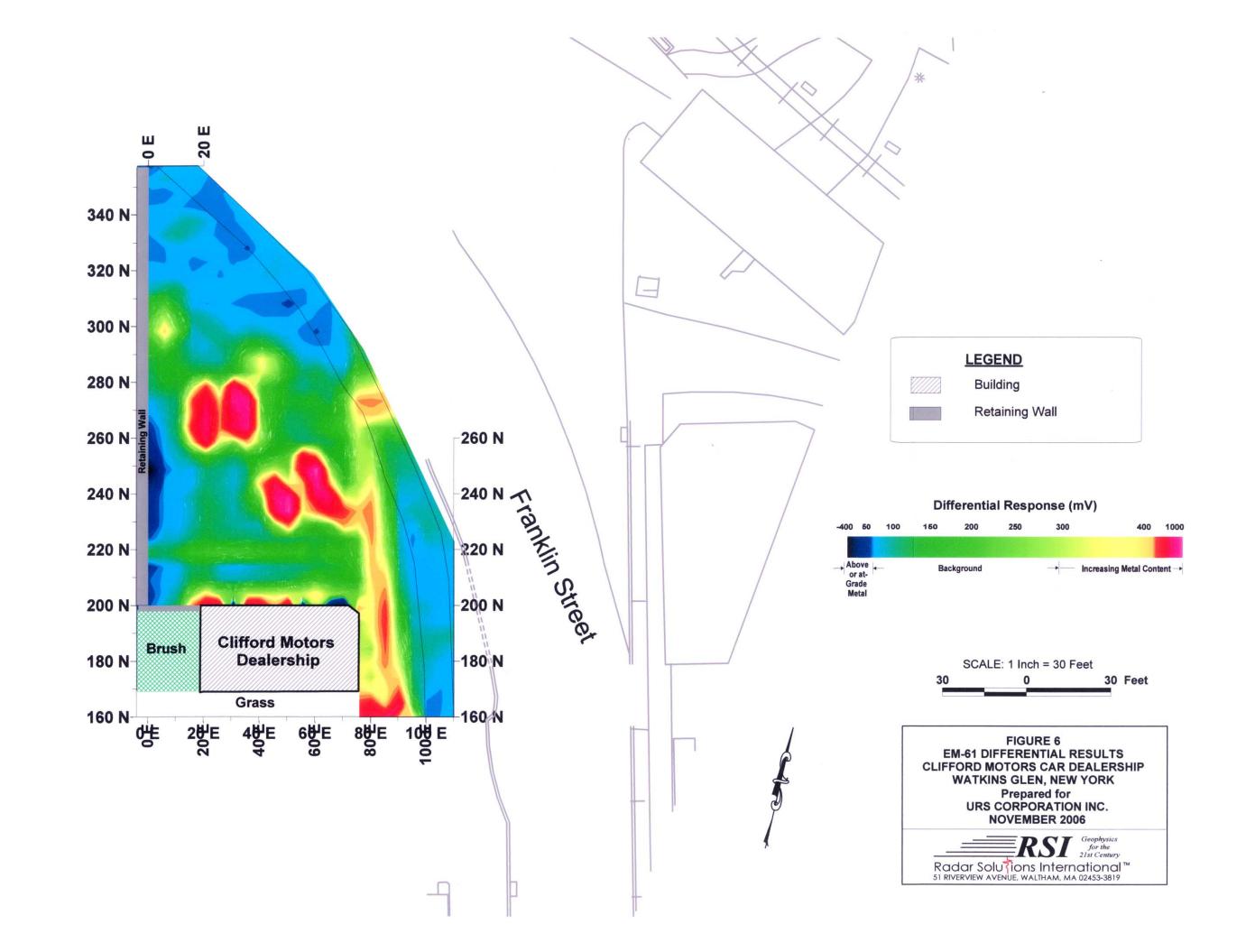


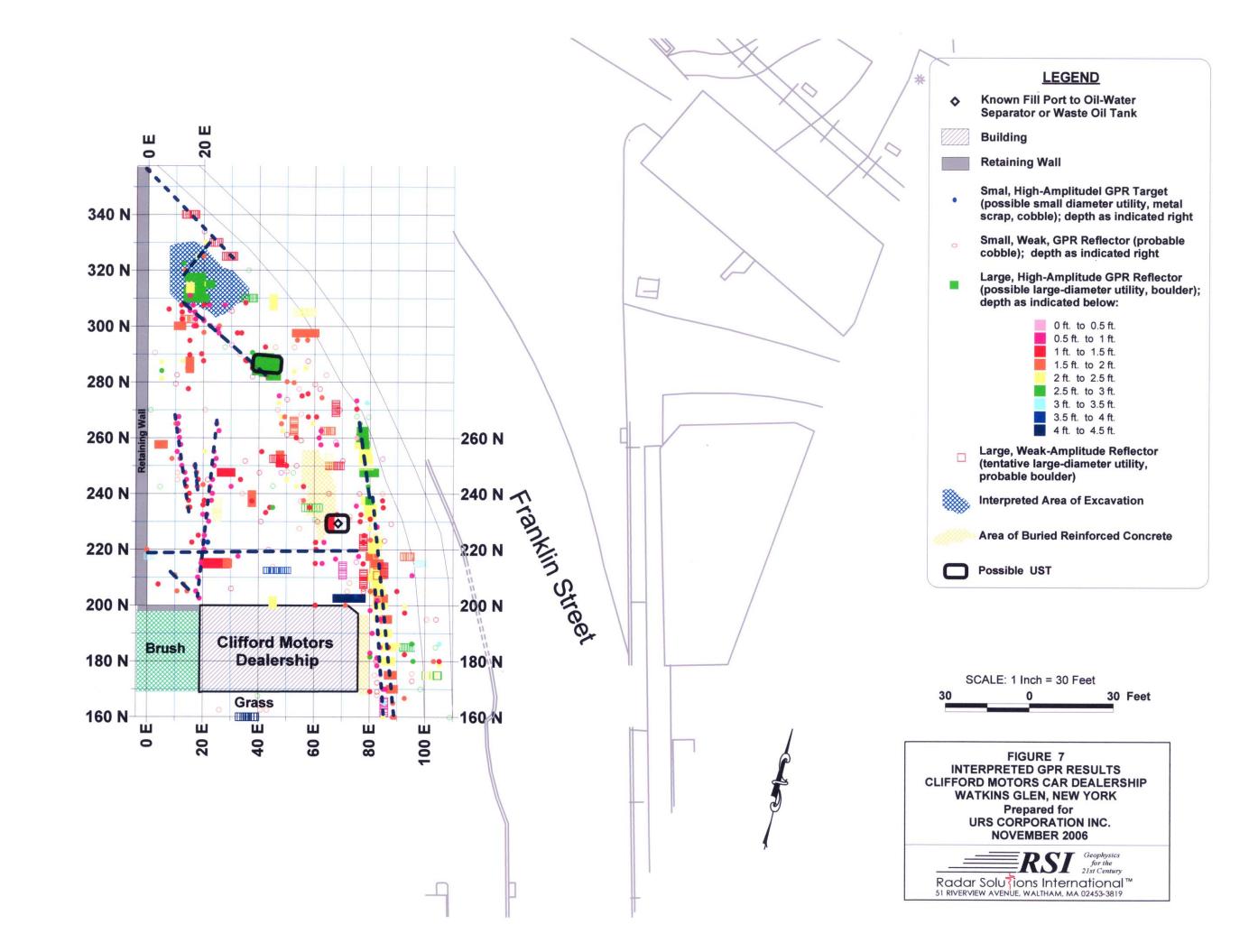
FIGURE 2
EM-61 DIFFERENTIAL RESULTS
17-21 FRANKLIN STREET
WATKINS GLEN, NEW YORK
Prepared for
URS CORPORATION INC.
NOVEMBER 2006

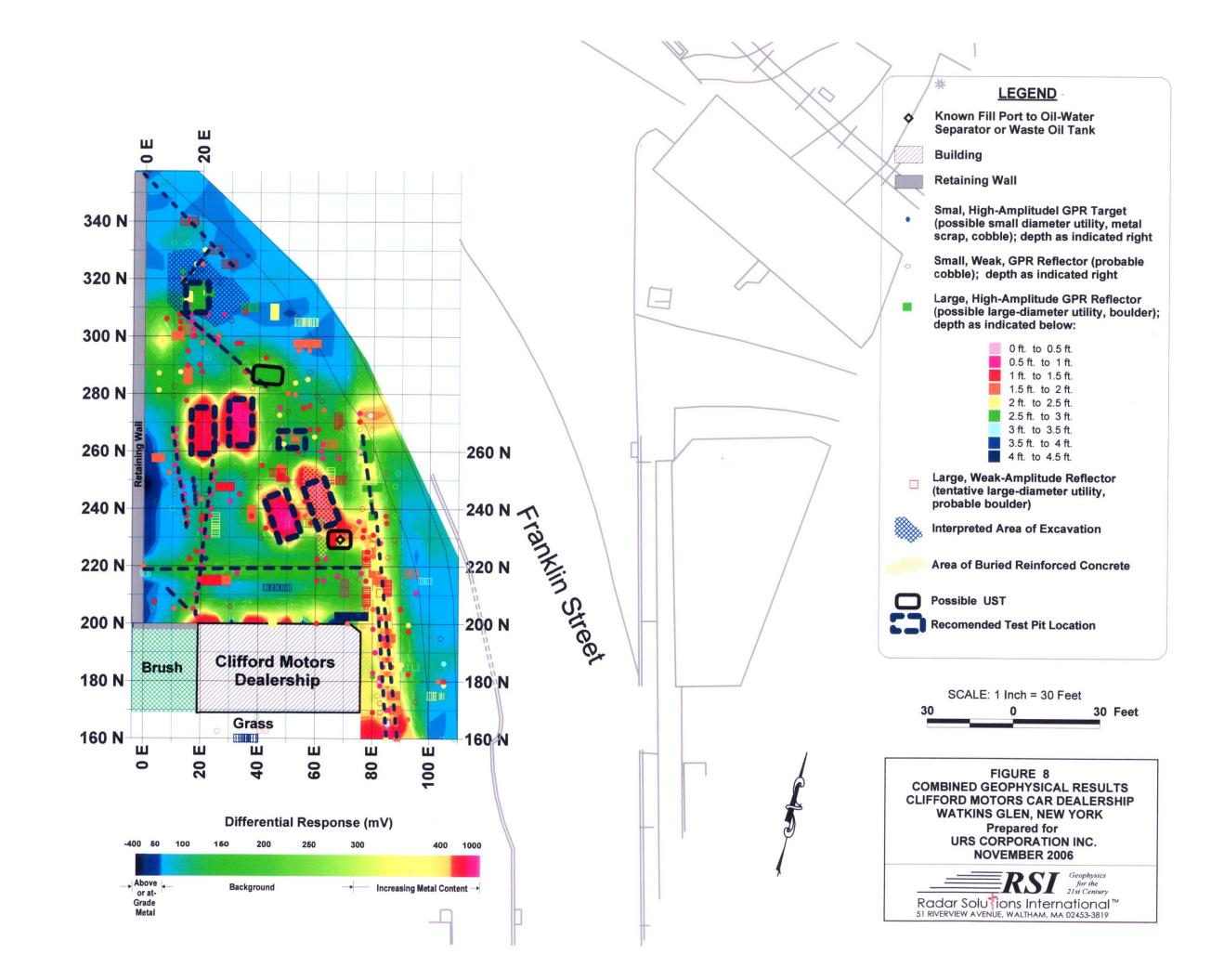
RANKLIN STREET

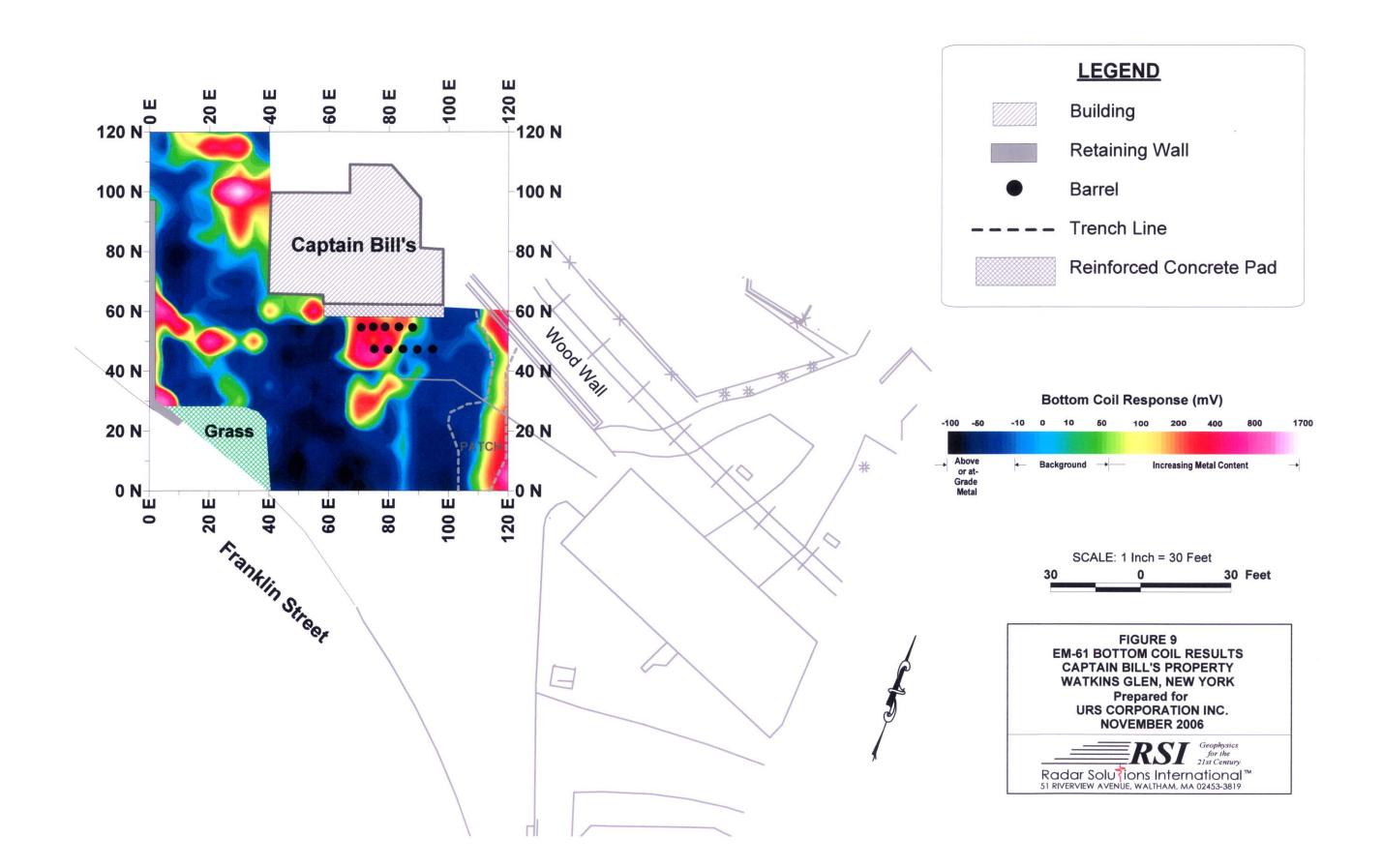



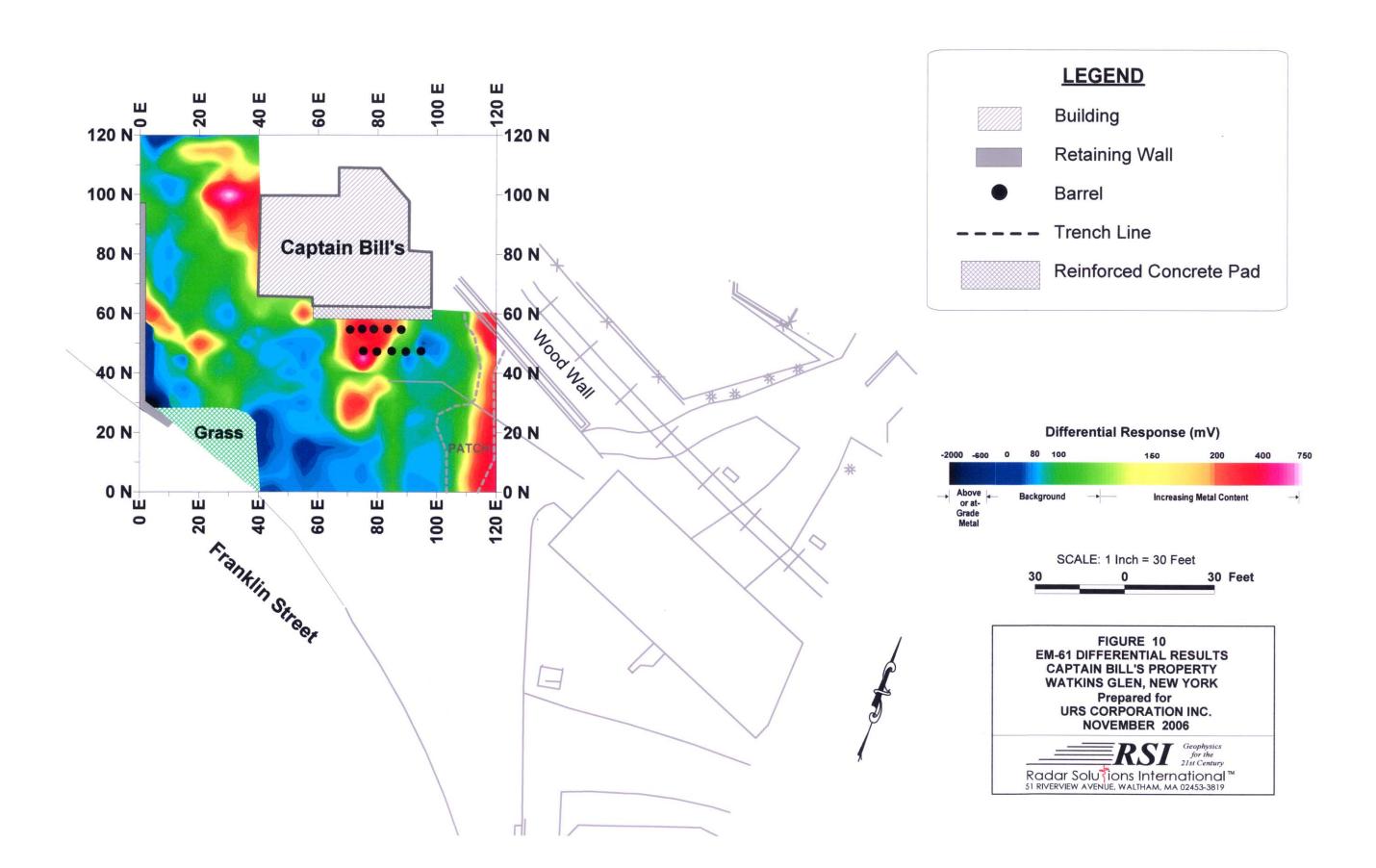

FIGURE 3
INTERPRETED GPR RESULTS
17-21 FRANKLIN STREET
WATKINS GLEN, NEW YORK
Prepared for
URS CORPORATION INC.
NOVEMBER 2006

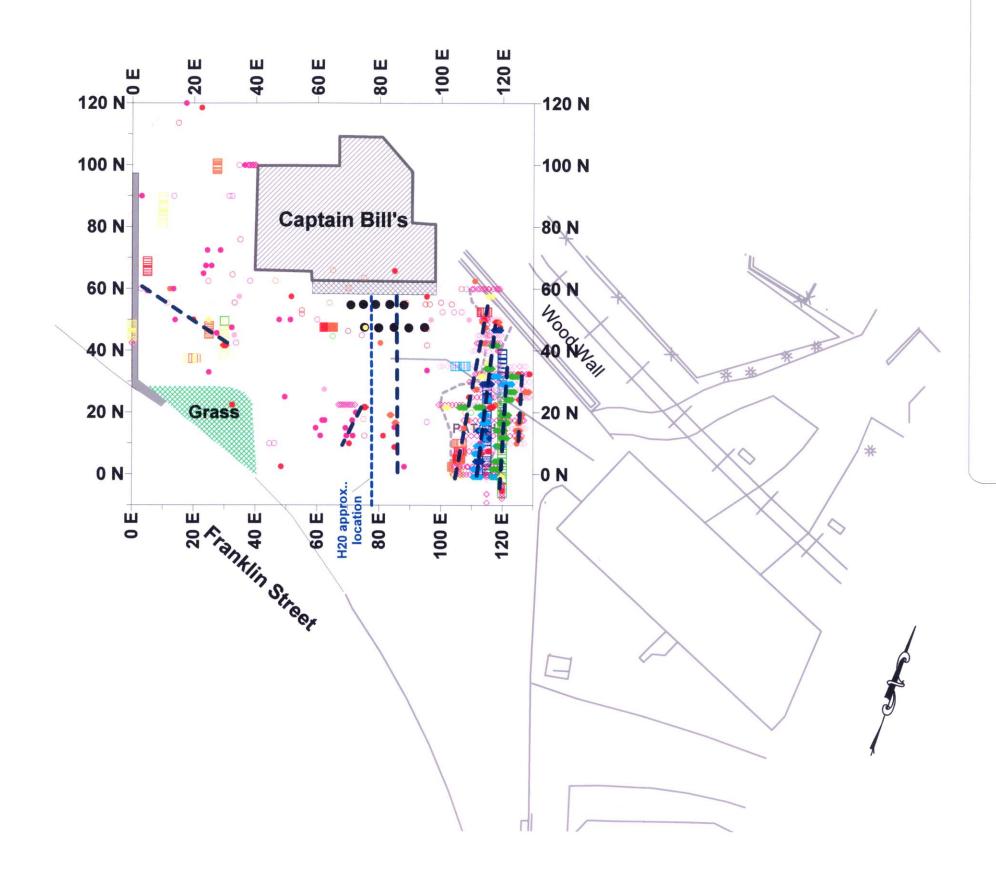







FIGURE 4
COMBINED GEOPHYSICAL RESULTS
17-21 FRANKLIN STREET
WATKINS GLEN, NEW YORK
Prepared for
URS CORPORATION INC.
NOVEMBER 2006







LEGEND

Building

Barrel

--- Trench Line

Reinforced Concrete Pad

- Smal, High-Amplitudel GPR Target
 (possible small diameter utility, metal scrap, cobble); depth as indicated right
- Small, Weak, GPR Reflector (probable cobble); depth as indicated right
- Large, High-Amplitude GPR Reflector (possible large-diameter utility, boulder); depth as indicated below:

0 ft. to 0.5 ft.
0.5 ft. to 1 ft.
1 ft. to 1.5 ft.
1.5 ft. to 2 ft.
2 ft. to 2.5 ft.
2.5 ft. to 3 ft.
3 ft. to 3.5 ft.
3.5 ft. to 4 ft.
4 ft. to 4.5 ft.

Large, Weak-Amplitude Reflector (tentative large-diameter utility, probable boulder)

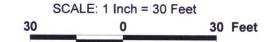
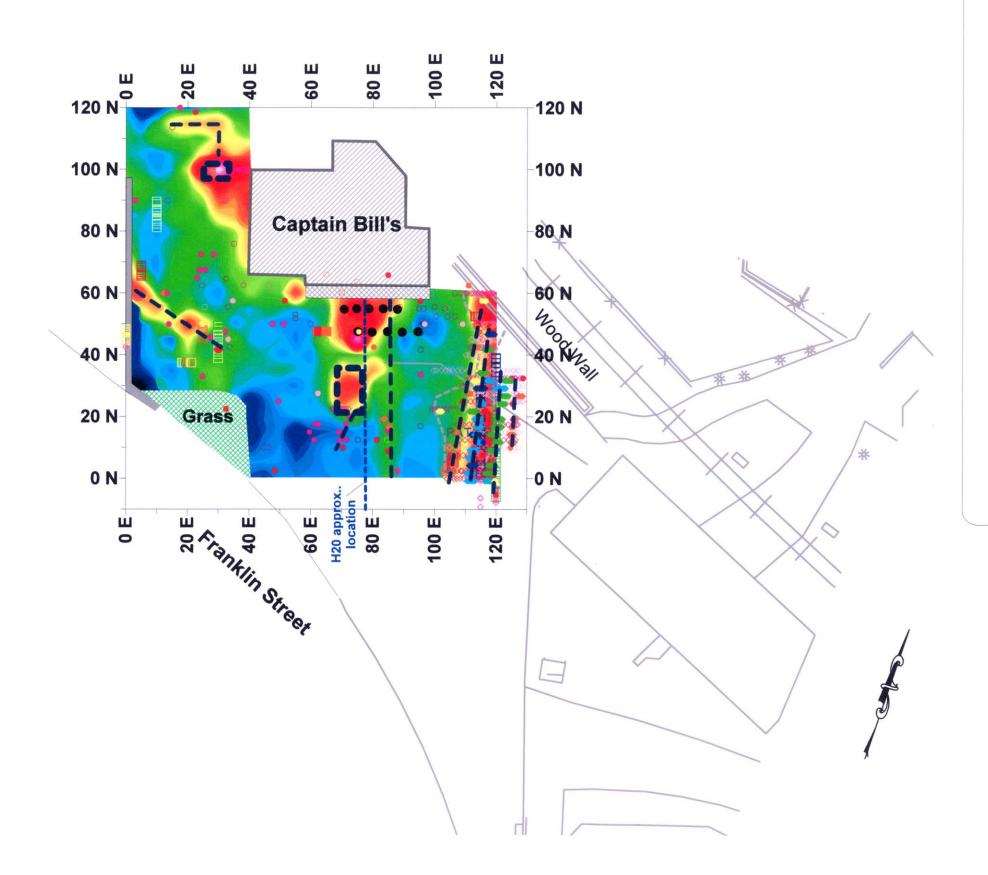



FIGURE 11
INTERPRETED GPR RESULTS
CAPTAIN BILL'S PROPERTY
WATKINS GLEN, NEW YORK
Prepared for
URS CORPORATION INC.
NOVEMBER 2006

LEGEND

Building

Barrel

--- Trench Line

- Smal, High-Amplitudel GPR Target
 (possible small diameter utility, metal scrap, cobble); depth as indicated right
- Small, Weak, GPR Reflector (probable cobble); depth as indicated right
- Large, High-Amplitude GPR Reflector (possible large-diameter utility, boulder); depth as indicated below:

0 ft. to 0.5 ft.
0.5 ft. to 1 ft.
1 ft. to 1.5 ft.
1.5 ft. to 2 ft.
2 ft. to 2.5 ft.
2.5 ft. to 3 ft.
3 ft. to 3.5 ft.
3.5 ft. to 4 ft.
4 ft. to 4.5 ft.

Large, Weak-Amplitude Reflector (tentative large-diameter utility, probable boulder)

Recomended Test Pit Location

FIGURE 12
COMBINED GEOPHYSICAL RESULTS
CAPTAIN BILL'S PROPERTY
WATKINS GLEN, NEW YORK
Prepared for
URS CORPORATION INC.
NOVEMBER 2006

APPENDIX E

SOIL BORING LOGS

			l	JRS	Co	rporat	ion				TEST BORIN	G LO	G	
						•					BORING NO:	GB-01		
PROJE	CT:	Site	Investig	ation	- Nort	h Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT		NYS									JOB NO.:		111	74720
BORING	CONTRA	стоі	₹:	GeoL	ogic l	NY, Inc.					BORING LOCATION:		0 north	n, 20 west
GROUN	DWATER:	Enco	untered			·	CAS.	SAMPLER	CORE	TUBE	17-21 Fr			
DATE	TIME		EVEL		PE	TYPE		Macrocore			DATE STARTED:	10/17		
						DIA.		2"			DATE FINISHED:	10/17		
						WT.					DRILLER:	Liam		
						FALL					GEOLOGIST:	Brian V	/eeks	
						* POC	KET PE	NETROMET	ER REA	DING	REVIEWED BY:	Scott M	lcCabe	
			SAMP	LE					DESC	CRIPTIO	N			
DEPTH				BLC	ows	REC%		CONSIST		N	MATERIAL		F	REMARKS
FEET	STRATA	NO.	TYPE	PEF	₹ 6"	RQD%	COLOR	HARD		DE	SCRIPTION	uscs	PID	
	XXXXX						Brown		Topsoil			Fill		Moist
	>>>>>										T, trace slag, brick,		_	
	XXXX					1			ash.				0	
	****		011.14.0			000/								
	>>>>>	1	2" MC			38%								
	$\times\!\!\times\!\!\times\!\!\times$					1							0	
	****					1							0	
	$\times\!\!\times\!\!\times\!\!\times$					1			1	7		$ \downarrow $		
									Silty CL	_AY, trac	e roots, few reddish	CL		
5	15					1	\forall		brown	mottles.			•	
						1	Gray						0	
			011.14.0			750/								
		2	2" MC			75%								
						1							0	
						1							0	
)													
										•	7	♦	0	lack
									Silty SA	ND, sor	ne fine to coarse	SM	U	Wet
10	·:\$:-:-:-	3	2" MC			75%			gravel.					
		J	2 1010			1370								
													0	
	·:::\$::												J	
							lacksquare			<u> </u>		₩		₩
									End of	boring a	t 12'.			
]								
15														
]								
						<u></u>								
COMME	NTS:	Borin	igs were	advar	nced u	sing a tra	ck-mount	ed geoprobe).		PROJECT NO.	111747	20	
No samp	oles collecte										BORING NO.	GB-01		

			- (JRS	Co	rporat	ion				TEST BORIN	G LO	G	
						-					BORING NO:	GB-02		
PROJE	CT:	Site	Investia	ation -	- Nort	h Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT		NYS									JOB NO.:	_	1117	74720
	CONTRA	СТО	R:	GeoL	oaic I	NY, Inc.					BORING LOCATION:			n, 30 west
	DWATER:					,	CAS.	SAMPLER	CORE	TUBE		ranklin S		
DATE	TIME		EVEL	TY		TYPE		Macrocore			DATE STARTED:	10/17		
						DIA.		2"			DATE FINISHED:	10/17		
						WT.					DRILLER:	Liam		
						FALL					GEOLOGIST:	Brian V	Veeks	
						* POC	KET PE	NETROMET	ER REA	DING	REVIEWED BY:	Scott M	lcCabe	
			SAMP	LE		_			DESC	CRIPTIO	N			
DEPTH				BLC	ws	REC%		CONSIST		N	MATERIAL		R	REMARKS
FEET	STRATA	NO.	TYPE	PEF	R 6"	RQD%	COLOR	HARD		DE	SCRIPTION	uscs	PID	
	XXXXX						Brown		Fill: SA	ND and	GRAVEL.	Fill		Moist
	$\times\!\!\times\!\!\times\!\!\times$								Fill: Silt	y CLAY,	trace sand and	1		
	$\times\!\!\times\!\!\times\!\!\times$								gravel.				0	
	>>>>>	1	2" MC			75%								
	XXXX					7570								
	$\times\!\!\times\!\!\times\!\!\times$												0	
	>>>>>													
	XXXX													
	$\times\!\!\times\!\!\times\!\!\times$						₩					▼		
5							Light		Silty CL	_AY.		CL	0	
							Brown							
		2	2" MC			63%								
						00,0								
													0	
										7				<u> </u>
									Silty SA	AND, trad	ce gravel and clay.	SM	0	Wet
	: S:													
10		3	2" MC			75%								
	C													
													0	
									CANID	4	. ▼	V		<u></u>
							Black			trace sil		SW		
						ļ			End of	boring a	t 12'.			
						ļ								
15														
15														
001	LITO	<u> </u>				<u> </u>		<u> </u>			DD0 1505 110	44	100	
COMME			ngs were	advan	iced u	sıng a tra	ck-mount	ed geoprobe	<u>).</u>		PROJECT NO.	111747	20	
No sam	ples collect	ed.									BORING NO.	GB-02		

			ι	JRS	Co	rporat	ion				TEST BORIN	G LO	G	
											BORING NO:	GB-03		
PROJEC	CT:	Site	Investig	ation	- Nort	h Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT	:	NYS	DEC								JOB NO.:		111	74720
BORING	CONTRA	СТОІ	₹:	GeoL	ogic l	NY, Inc.					BORING LOCATION:		0 north	n, 40 west
GROUN	DWATER:	Enco	untered	at 7.8	' bgs		CAS.	SAMPLER	CORE	TUBE	17-21 F	ranklin S	treet gr	id
DATE	TIME	LE	EVEL	TY	PΕ	TYPE		Macrocore			DATE STARTED:	10/17	7/06	
						DIA.		2"			DATE FINISHED:	10/17	7/06	
						WT.					DRILLER:	Liam		
						FALL					GEOLOGIST:	Brian V	Veeks	
						* POC	KET PEI	NETROMET	ER REA	DING	REVIEWED BY:	Scott M	lcCabe	
			SAMP	LE					DESC	CRIPTIO	N			
DEPTH				BLC	ows	REC%		CONSIST		N	MATERIAL		F	REMARKS
FEET	STRATA	NO.	TYPE	PEI	R 6"	RQD%	COLOR	HARD		DE	SCRIPTION	USCS	PID	
	XXXXX						Brown		Fill: Sil	ty CLAY	, trace sand, gravel,	Fill		Moist
	>>>>>		ľ			1			and sla	g.				
	XXXX		ľ			1							0	
$\neg \neg$	XXXX	1	2" MC			500/								
	>>>>>		ľ			50%								
1	$>\!\!>\!\!>\!\!>$		ľ			1								
	$\times\!\!\times\!\!\times\!\!\times$		ľ			1							0	
	$\times\!\!\times\!\!\times\!\!\times$		ľ				♦			\downarrow		₩		
							Gray		Silty CL	AY, trac	e roots. slight	CL		
5	K		ľ			1			-		from 5-7' bgs.	l ī		
_			•			i							0	
		2	2" MC											
			2 1010			100%								
))))))		 											\perp
							↓				_		0	Wet
-			ŀ			1	Brown	1	Silty CI	AY son	ne sand and gravel.	1		1
	SIG						BIOWII		sheen		io cana ana gravoi.			
			ŀ						Silective	JII 30II.		\perp		
	iiiiiiiiiii		}			ł	Limbs	ļ	Silty S/	ND she	een, slight petroleum	SM	0	
10	35333	3	2" MC				Light Brown		odor.	WD, SHO	cii, siigiit petroleum	SIVI		
10		3	2 1010			75%	I I			1				
			-											
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		-				Davis						0	
			}				Dark			\perp		\perp		
	>)>)>)>)>						Gray			<u>V</u>				
						ļ			End of	Boring a	t 12'.			
						ļ								
						-								
						ł								
4-						-								
15														
	NTS:	Borin	igs were	advar	nced u	sing a tra	ck-mount	ted geoprobe) .		PROJECT NO.	111747	'20	
	nple collect										BORING NO.	GB-03		

			U	JRS Co	rporat	ion				TEST BORIN	G LO	G	
										BORING NO:	GB-04		
ROJE	CT:	Site	Investig	ation - Nort	th Frankli	n Street	Site			SHEET:	1 of 1		
LIENT	:	NYS	DEC							JOB NO.:		111	74720
ORING	CONTRA	СТО	R:	GeoLogic	NY, Inc.					BORING LOCATION:		0 north	, 50 west
ROUN	DWATER:	Enco	untered	at 9.5' bgs		CAS.	SAMPLER	CORE	TUBE	17-21 Fr	ranklin St	treet gri	id
DATE	TIME	LE	EVEL	TYPE	TYPE		Macrocore			DATE STARTED:	10/17	7/06	
					DIA.		2"			DATE FINISHED:	10/17	7/06	
					WT.					DRILLER:	Liam		
					FALL		-			GEOLOGIST:	Brian V	/eeks	
					* POC	KET PE	NETROMETI	ER REA	DING	REVIEWED BY:	Scott M	lcCabe	
			SAMP	LE				DESC	CRIPTIO	N			
EPTH				BLOWS	REC%		CONSIST		N	MATERIAL		F	REMARKS
FEET	STRATA	NO.	TYPE	PER 6"	RQD%	COLOR	HARD		DE	SCRIPTION	uscs	PID	
	XXXXX					Black		Fill: Silt	y CLAY,	trace sand and gravel.	Fill		Moist
	$\times\!\!\times\!\!\times\!\!\times$							wet fror	n 2.0-2.	5' bgs (perched).			
	XXXXX											0	
	XXXX	1	2" MC		500/								\forall
	$\times\!\!\times\!\!\times\!\!\times$				58%	\forall					🖊		Wet
\neg						Brown		Silty CL	AY, trac	e roots.	CL	<u> </u>	Moist
												0	
	3												
5													
Ť												0	
	())))(\$	0	0" MC		-								
		2	2" MC		65%								
	S				_							0	
					_								
					_								
					4							0	
					_			0.11 0.4	<u> </u>		▼	-	
10		3	2" MC		63%			Silty SA	AND, trad	ce gravel and clay.	SM		Wet
	:5:::::												
					_							0	
	· · · · · · · · · · · · · · · · · · ·									\perp			
						▼				▼	▼		
					_			End of	Boring a	t 12'.			
15													
OMME	NTS:	Borin	igs were	advanced u	ising a tra	ck-mount	ed geoprobe	<u>. </u>		PROJECT NO.	111747	20	
	oles collecte		<u>J</u>		J 2: 1: W		J - 7 p - 2 2 2			BORING NO.	GB-04	-	
Count		- u.									05 04		

					Corpora								
CLIENT: BORING GROUNI										BORING NO:	GB-05		
CLIENT: BORING GROUNI		Site	Investig	ation - N	lorth Frankl	n Street	Site			SHEET:	1 of 1		
GROUNI		NYS								JOB NO.:		111	74720
	CONTRA	СТОЕ	₹:	GeoLog	jic NY, Inc.					BORING LOCATION:		0 north	n, 70 west
	DWATER:	Enco	untered	at 10.0' b	ogs	CAS.	SAMPLER	CORE	TUBE	17-21 F	ranklin St	treet gr	id
	TIME		VEL	TYPE	_		Macrocore			DATE STARTED:	10/17	7/06	
					DIA.		2"			DATE FINISHED:	10/17	7/06	
					WT.					DRILLER:	Liam		
					FALL					GEOLOGIST:	Brian V	Veeks	
					* PO(KET PEI	NETROMET	ER REA	DING	REVIEWED BY:	Scott M	lcCabe	1
			SAMP	LE				DESC	CRIPTIO	N			
DEPTH				BLOW	S REC%		CONSIST		N	MATERIAL			REMARKS
FEET	STRATA	NO.	TYPE	PER 6	S" RQD%	COLOR	HARD		DE	SCRIPTION	USCS	PID	
}	$\times\!\!\times\!\!\times$					Brown		Fill: SA	ND and	GRAVEL.	Fill		Moist
>	$\times\!\!\times\!\!\times$											0	
Ş	$\times\!\!\times\!\!\times\!\!\times$					▼			▼		▼	Ŭ	
	(1	2" MC		63%	Gray				ce roots, slight	ÇL		
								sheen a	and petro	oleum odor.			
												0	
	7												
5												0	
		2	2" MC		100%								
												0	
	11115												
	S											0	
10		2	0" MC			ΙL							1
10	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	3	2" MC		100%	Disale		Silty S/	ND cor	ne gravel, strong	014		10/-4
	·\$:::\$::					Black				and sheen.	SM		Wet I
						Olive				ce sheen.	SP	0	
						Green			10, ua		SF		Ţ
						Green		End of	Boring a	t 12'			▼
									Doining a	l 14.			
				$\overline{}$	\dashv								
				_									
15				_									
COMME	NTS [.]	Borin	as were	advance	ed using a tra	ıck-mount	ted geoprobe	<u> </u>		PROJECT NO.	111747	20	
					is of STARS			•		BORING NO.	GB-05		
	•				s of STARS						05 00		

			ι	JRS	Co	rporat	ion				TEST BORIN	G LO	G	
											BORING NO:	GB-06		
PROJE	CT:	Site	Investig	ation	- Nort	h Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT	:	NYS	DEC								JOB NO.:		1117	4720
BORING	CONTRA	СТОІ	R:	GeoL	ogic l	NY, Inc.					BORING LOCATION:		10 south	n, 50 west
ROUN	DWATER:	Enco	untered	at 8.7	bgs '		CAS.	SAMPLER	CORE	TUBE	17-21 F	ranklin S	treet grid	d
DATE	TIME	LI	EVEL	TY	'PΕ	TYPE		Macrocore			DATE STARTED:	10/1	7/06	
						DIA.		2"			DATE FINISHED:	10/1	7/06	
						WT.					DRILLER:	Liam		
						FALL					GEOLOGIST:	Brian V	Veeks	
						* POC	KET PEI	NETROMET	ER REA	DING	REVIEWED BY:	Scott M	lcCabe	
			SAMP	LE					DESC	CRIPTIO	N			
DEPTH				BLC	ows	REC%		CONSIST		N	MATERIAL		R	EMARKS
FEET	STRATA	NO.	TYPE	PEI	R 6"	RQD%	COLOR	HARD			SCRIPTION	USCS	PID	
	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>						Brown			LT, trace	<u> </u>	Fill		Dry
]	Light		Fill:. Fi	ne SANI	D and GRAVEL.		0	
			[]	Gray						Ľ	<u> </u>
		1	2" MC			55%	Brown		Silty CL	AY, trac	ce roots.	ÇL		Moist
	12													
						ļ							0	
	() () () () () ()													
5													0	
		2	2" MC			58%								
						ļ								
													0	
														1
									0:11 0.1	<u> </u>			_	
	5						Light		Silty SA	AND.		SM	0	Wet I
						ļ	Brown					1 1		
10		3	2" MC			100%			OAND			V		
						ļ	Olive		SAND,	trace gra	avel and silt.	SW		
							Gray						0	
										\perp		1 1		
							V					₩		
						ł			⊨nd of	boring a	t 12'.			
						-								
						ł								
						-								
1 E						-								
15						-								
						-								
201:::	N.T.O.	<u>.</u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>			DD0 1505 ***	44:-	100	
COMME			ngs were	advar	nced u	sing a tra	ck-mount	ted geoprobe	9.		PROJECT NO.	111747	20	
VIA camr	oles collecte	PΕ									BORING NO.	GB-06		

			ι	JRS	Co	rporat	ion				TEST BORIN	G LO	G	
						-					BORING NO:	GB-07		
PROJE	CT:	Site	Investig	ation	- Nort	h Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT		NYS									JOB NO.:		111	74720
BORING	CONTRA	СТОІ	R:	GeoL	ogic l	NY, Inc.					BORING LOCATION:		35 north	h, 20 west
GROUN	DWATER:	Enco	untered	at 11.	5' bgs		CAS.	SAMPLER	CORE	TUBE	17-21 F	ranklin S	treet gri	id
DATE	TIME	LI	EVEL	TY	PΕ	TYPE		Macrocore			DATE STARTED:	10/1	7/06	
						DIA.		2"			DATE FINISHED:	10/1	7/06	
						WT.					DRILLER:	Liam		
						FALL					GEOLOGIST:	Brian V	Veeks	
						* POC	KET PEI	NETROMET	ER REA	DING	REVIEWED BY:	Scott M	lcCabe	
			SAMP	LE					DES	CRIPTIO	N			
DEPTH				BLC	ows	REC%		CONSIST		N	MATERIAL		F	REMARKS
FEET	STRATA	NO.	TYPE	PE	R 6"	RQD%	COLOR	HARD		DE	SCRIPTION	USCS	PID	
	>>>>>>						Black		Asphal			Fill		Dry
]	Reddish		Fill: Silf	y SAND			0 -	
							Brown					▼		Moist
		1	2" MC			88%	Olive		Silty Cl	AY, trac	ce roots.	ÇL		
							Brown							
													0	
	<u> </u>													
5													0	
	S	2	2" MC			68%								
													0	
													0	
4.0	7	_				ļ								
10		3	2" MC			100%								
	Š													
					-					1		11	0	
	iiiiiikii					-	Carrie		Silty S	ND tra	ce gravel	O14		10/-1
							Gray					SM		Wet
						-			⊨nd of	boring a	t 12°.			
						-								
						-								
					-	ł								
15					-	ł								
ເນ														
						-								
201414	NITC:	D == '		- al: : -			al. ma - · · · ·				DDO IECT NO	44474	200	
COMME			igs were	advar	nced u	sing a tra	ск-mount	ted geoprobe) .		PROJECT NO.	111747	20	
vin camr	oles collecte	ea.									BORING NO.	GB-07		

			U	JRS	Co	rporat	ion				TEST BORIN	G LO	G	
											BORING NO:	GB-08		
PROJE	CT:	Site	Investig	ation	- Nort	h Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT		NYS	DEC								JOB NO.:		111	74720
BORING	CONTRA	СТО	R:	GeoL	.ogic I	NY, Inc.					BORING LOCATION:	,	40 nort	h, 45 west
GROUN	DWATER:	Enco	untered	at 10.	0' bgs		CAS.	SAMPLER	CORE	TUBE	17-21 Fı	ranklin S	treet gr	id
DATE	TIME	LI	EVEL	TY	Έ	TYPE		Macrocore			DATE STARTED:	10/1	7/06	
						DIA.		2"			DATE FINISHED:	10/1	7/06	
						WT.					DRILLER:	Liam		
						FALL					GEOLOGIST:	Brian V	Veeks	
						* POC	KET PEI	NETROMET	ER REA	DING	REVIEWED BY:	Scott M	lcCabe	
			SAMP	LE					DESC	CRIPTIO	N			
DEPTH				BLC	ows	REC%		CONSIST		N	MATERIAL		F	REMARKS
FEET	STRATA	NO.	TYPE	PE	R 6"	RQD%	COLOR	HARD			SCRIPTION	USCS	PID	
	$\times\!\!\times\!\!\times\!\!\times$						Dark		Fill: Sil	ty SAND).	Fill		Dry
							Brown						0	
							Gray		SILTY	CLAY, tr	ace roots.	CL		Moist
	7	1	2" MC			88%								
													0	
	111112													
						ļ								
5	5					ļ							0	
		2	2" MC			95%								
	11115													
							•						0	
						ļ	Light				-no roots			
	2						Brown I							
						ļ								
													0	
40			0".140							1				
10		3	2" MC			100%	011		CAND	and CD/	V/EL trace silt and	0144		
	.·o						Olive			anu GRA	AVEL, trace silt and	GW		Wet I
							Brown I		clay.				0	
											7			\perp
							▼		ام ما مد	h a ui ua a a	1 40	V		
									End of	boring a	[12'.			
						1								
15					1	1								
10						1								
						1								
СОММЕ	NTS:	Borin	ng waro	advar	nced ::	sing a tra	ck-mount	L ted geoprobe	<u></u>		PROJECT NO.	111747	20	
	oles collect		iya wele	auvai	ıc c u u	oniy a lia	CK-HIUUIII	ieu geoprobe	·		BORING NO.	GB-08	20	
INU Salil	nes conecti	ъu.									DORING NO.	GD-00		

				URS Co	rporat	ion				TEST BORIN	G LO	G	
					.,					BORING NO:	GB-09		
PROJE	CT:	Site	Investia	ation - Nort	h Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT		NYS								JOB NO.:		111	74720
BORING	CONTRA	СТОІ	R:	GeoLogic	NY, Inc.					BORING LOCATION:		65 north	h, 45 west
GROUN	DWATER:	Enco	untered	at 8.0' bgs		CAS.	SAMPLER	CORE	TUBE	17-21 Fr	anklin S	treet gri	id
DATE	TIME		EVEL	TYPE	TYPE		Macrocore			DATE STARTED:	10/1	7/06	
					DIA.		2"			DATE FINISHED:	10/1	7/06	
					WT.					DRILLER:	Liam		
					FALL					GEOLOGIST:	Brian V	Veeks	
					* POC	KET PE	NETROMET	ER REA	DING	REVIEWED BY:	Scott M	1cCabe	
			SAMP	LE				DES	CRIPTIO	N			
DEPTH				BLOWS	REC%		CONSIST		N	MATERIAL		F	REMARKS
FEET	STRATA	NO.	TYPE	PER 6"	RQD%	COLOR	HARD		DE	SCRIPTION	USCS	PID	
	$\times\!\!\times\!\!\times\!\!\times$							Aspha			Fill		
	$\times\!\!\times\!\!\times\!\!\times$					Brown		Fill: Sa	ndy SILT	, trace gravel and		0	Moist
	$\times\!\!\times\!\!\times\!\!\times$							slag.					
		1	2" MC		75%						▼		
								Silty Cl	_AY, trac	e roots.	ÇL		
	15											0	
						▼	ļ						
						Gray							
	()()()												
5												0	
	<u> </u>												
		2	2" MC		100%								
										- Fine sand lens (2"			
										thick) at 6.5'		0	
					_				_	-Slight petroleum odor			
								0:15 - 0.4	NND	from 7.5'-8.0' bgs.	V		
										ne gravel, trace clay.	SM		Wet I
	:>:::::							sneen	and stror	ng petroleum odor.		0	
40		0	0" 140										
10	· : · : · : ζ ·	3	2" MC		100%								
					-								
					-							0	
	. ?				-				•	Ļ	↓		
								End of	boring at	▼	*	\vdash	
					-			⊏iiu of	boiling at	. 14.			
					-								
					1								
					-								
15					-								
10					-								
					-								
СОММЕ	NTS:	Rorin	nas wara	advanced :	isina a tra	ck-mount	l ted geoprobe	,		PROJECT NO.	111747	20	
				or analysis o				·		BORING NO.	GB-09	20	
		_		analysis of						DOMING NO.	GD-08		
J. Juliu\	vator samp	الان حا	icolcuiul	analysis Ul	JIANO V	oos and	J v O O 3.						

			- (JRS	Со	rporat	ion				TEST BORIN	G LO	G	
						•					BORING NO:	GB-10		
PROJEC	CT:	Site	Investia	ation	- Nort	h Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT		NYS									JOB NO.:		1117	74720
BORING	CONTRA	СТО	R:	GeoL	ogic I	NY, Inc.					BORING LOCATION:			ı, 80 west
	DWATER:					,	CAS.	SAMPLER	CORE	TUBE	17-21 Fr			
DATE	TIME		EVEL		PE	TYPE		Macrocore			DATE STARTED:	10/17		
						DIA.		2"			DATE FINISHED:	10/17		
						WT.					DRILLER:	Liam		
						FALL					GEOLOGIST:	Brian V	Veeks	
						* POC	KET PE	NETROMET	ER REA	DING	REVIEWED BY:	Scott M	lcCabe	
			SAMP	LE					DESC	CRIPTIO	N			
DEPTH					ows	REC%		CONSIST			MATERIAL		R	EMARKS
FEET	STRATA	NO.	TYPE	PEF	₹ 6"		COLOR			DE	SCRIPTION	uscs		
	XXXX						Black		Fill: SA	ND and	SILT.	Fill		Dry
							Dark		Silty CL	AY, trac	e gravel.	CL	<u>,</u>	Moist
							Brown						0	1
		1	2" MC			50%								
						50%								
	 												0	
	S													
5													0	
	11115													
		2	2" MC			63%								
	K					0070								
													0	
							•				•	•	Ľ	
	0)						Brown				silty clay.	GW		Wet
							Gray		Weathe	ered bed	rock, SHALE			
		3	2" MC			50%							0	
10							▼							
									Macroc	ore refu	sal at 10.0'.			
						ł								
15														
10														
001414	NTC.	De:		a alc : -			ale ma - · · · · ·				DDO IECT NO	444747	200	
COMME								ed geoprobe) .		PROJECT NO.	111747	20	
SOII San	ple collect	ea (6	.u-1.U) to	r analy	ysis of	STARS	ous and	a SVOCS.			BORING NO.	GB-10		

				JRS Co	rporat	ion				TEST BORIN	G LO	G	
					,					BORING NO:	GB-11		
PROJE	CT:	Site	Investia	ation - Nor	th Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT		NYS								JOB NO.:		111	74720
BORING	CONTRA	СТОІ	R:	GeoLogic	NY, Inc.					BORING LOCATION:		55 nort	h, 35 west
GROUN	DWATER:	Enco	untered	at 9.3' bgs		CAS.	SAMPLER	CORE	TUBE	17-21 F	ranklin S	treet gr	id
DATE	TIME	LI	EVEL	TYPE	TYPE		Macrocore			DATE STARTED:	10/1	7/06	
					DIA.		2"			DATE FINISHED:	10/1	7/06	
					WT.					DRILLER:	Liam		
					FALL					GEOLOGIST:	Brian V		
					* POC	KET PE	NETROMET			REVIEWED BY:	Scott N	1cCabe	!
			SAMP		T			DES	CRIPTIO				
DEPTH				BLOWS	REC%		CONSIST			MATERIAL			REMARKS
FEET	STRATA	NO.	TYPE	PER 6"	RQD%	COLOR	HARD	Fill. Cil		SCRIPTION	USCS	PID	
	*****				-	Dark		FIII: SII	ty CLAY	, trace slag.	Fill		Moist I
	>>>>>				4	Brown			\perp		1 L	0	
	*****	1	2" MC		4	Cross	4	Silty CI	ΔV trac	e gravel, slight	CL		\downarrow
	8	1	2 IVIC		50%	Gray 				and sheen from 1.2			Very Moist
					1			to 4.0					very worst
					1							0	Moist
					1								
5					1								
	S				1							0	
		2	2" MC										
					70%								
					1								
												0	
	5												
												0	
						▼				▼	▼		
10		3	2" MC		75%	Olive			_	avel, trace silt.	SW		Wet
	0				1070	Gray		slight p	etroleum	odor.			
												0	
					_								
						▼			<u> </u>		<u> </u>		▼
					4			End of	boring at	t 12'.			
					4								
					4								
					4								
4.5					4								
15					4								
					-								
001:::	NITO.	<u> </u>			<u> </u>		<u> </u>		-	DD0 1505 110	44:-		
COMME							ted geoprobe) .		PROJECT NO.	111747	20	
		_		or analysis o						BORING NO.	GB-11		
Ground/	vater samp	ie col	iectea to	r analysis o	I STAKS \	ous and	a SVOUS.						

			ι	JRS	Co	rporat	ion				TEST BORIN	G LO	G	
											BORING NO:	GB-12		
PROJE	CT:	Site	Investiga	ation	- Nort	h Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT	:	NYS	DEC								JOB NO.:		111	74720
BORING	CONTRA	СТО	R:	GeoL	ogic l	NY, Inc.					BORING LOCATION:		65 north	n, 25 west
GROUN	DWATER:	Enco	untered	at 10.	0' bgs		CAS.	SAMPLER	CORE	TUBE	17-21 Fr	anklin S	reet gri	d
DATE	TIME	LI	EVEL	TY	PΕ	TYPE		Macrocore			DATE STARTED:	10/17	7/06	
						DIA.		2"			DATE FINISHED:	10/17	7/06	
						WT.					DRILLER:	Liam		
						FALL					GEOLOGIST:	Brian V	/eeks	
						* POC	KET PE	NETROMET	ER REA	DING	REVIEWED BY:	Scott M	lcCabe	
			SAMP	LE					DESC	CRIPTIO	N			
DEPTH				BLC	ows	REC%		CONSIST		N	MATERIAL		R	REMARKS
FEET	STRATA	NO.	TYPE	PEI	R 6"	RQD%	COLOR	HARD		DE	SCRIPTION	uscs	PID	
	$\times\!\!\times\!\!\times\!\!\times$						Black		Asphalt	t.		Fill		Moist
	XXXX						Brown		Fill: Silt	y CLAY,	trace ash and cinder	1	0	
							Dark		Silty CL	AY, trac	e roots. slight	CL	U	
	5	1	2" MC			63%	Gray		petrole	um odor				
						03%								
													0	
													U	
	111115													
											- sheen and strong			
5			•			1					petroleum odor.			
													640	
	112	2	2" MC			4000/	\downarrow							
						100%	Olive				- sheen and slight			
						1	Brown				petroleum odor.		00	
						1							29	
						1								
	K													
			•										76	
10		3	2" MC				\forall		,	₩	lack	♦		\downarrow
	. · • · · · · · ·		•			100%	Gray		SAND	AND GR	AVEL, trace clay	GW		Wet
									and silt	. sheen	and strong petroleum			
			•			1			odor.		-		0	
							\forall					↓		\downarrow
							•		End of	boring a	t 12'.			▼
						1				9 3				
						1								
						1								
						1								
15]			1								
						1								
						1								
COMME	NTS:	Rorin	nge were	advar	l red ::	eina a tra	ck-mount	ted geoprobe	,		PROJECT NO.	111747	20	
	nple collect								,.		BORING NO.	GB-12		
								SVOCs.			BORING NO.	OD-12		

				JRS	Col	rporat	ion				TEST BORIN	G LO	G	
											BORING NO:	GB-13		
PROJE	CT:	Site	Investia	ation -	Nort	h Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT		NYS									JOB NO.:		111	74720
BORING	G CONTRA	сто	R:	GeoLo	gic N	NY, Inc.					BORING LOCATION:		95 nor	th, 5 east
	IDWATER:						CAS.	SAMPLER	CORE	TUBE	17-21 F	anklin S		
DATE	TIME		EVEL	TYP		TYPE		Macrocore			DATE STARTED:	10/18		
						DIA.		2"			DATE FINISHED:	10/18	3/06	
						WT.					DRILLER:	Liam		
						FALL					GEOLOGIST:	Brian V	Veeks	
						* POC	KET PE	NETROMET	ER REA	DING	REVIEWED BY:	Scott M	lcCabe	:
			SAMP	LE					DESC	CRIPTIO	N			
DEPTH				BLO	ws	REC%		CONSIST		N	MATERIAL		I	REMARKS
FEET	STRATA	NO.	TYPE	PER	6"	RQD%	COLOR	HARD		DE	SCRIPTION	USCS	PID	
							Brown		Fill: GR	AVEL a	nd SILT.	Fill		Moist
	XXXX												0	
							▼					▼		
		1	2" MC			80%	Gray		Silty CL	AY trace	e fine gravel.	ÇL		
	13					0070								
													0	
											-slight petroleum odor			
5	S												8.7	
													0.7	
		2	2" MC			83%								
						00,0								
										<u> </u>		▼	12.9	▼
									SAND	AND GR	AVEL trace silty clay.	GW		Wet
	.:0:													
													0	
10	-:-:-:-	3	2" MC			85%								
	. •					ļ								
	: -: -: -:												0	
	σ										7			\perp
							▼				101	₩		
	-								⊨nd of	boring at	112".			
	-													
	1													
	ł					ł								
15	ł					ł								
15	1													
	ł													
001/11/2	NTO:	D				alas er e 1	ala : '			!	DDO IECT NO	44471	,00°	
COMME								ed geoprobe) .		PROJECT NO.	111747	20	
	nple collect										BORING NO.	GB-13		
Ground	water samp	ie col	iecteator	anaiys	IS OT	STAKS V	ous and	SVUUS.						

CONTRA	NYS	Investiga								DODING NO	GB-14		
CONTRA	NYS	Investig								BORING NO:	GB-14		
CONTRA DWATER:	_		ation	- Nort	h Frankli	n Street	Site			SHEET:	1 of 1		
OWATER:		DEC								JOB NO.:		1117	4720
	CTO	R:	GeoL	ogic l	NY, Inc.					BORING LOCATION:		65 north	, 10 west
	Enco	untered	at 7.8	bgs '		CAS.	SAMPLER	CORE	TUBE	17-21 F	ranklin S	treet grid	t
TIME	LE	EVEL	TY	'PΕ	TYPE		Macrocore			DATE STARTED:	10/18	3/06	
					DIA.		2"			DATE FINISHED:	10/18	3/06	
					WT.					DRILLER:	Liam		
					FALL					GEOLOGIST:	Brian V	Veeks	
					* POC	KET PE	NETROMET	ER REA	DING	REVIEWED BY:	Scott M	lcCabe	
		SAMP	LE					DES	CRIPTIO	N			
			BLC	ows	REC%		CONSIST		N	MATERIAL		R	EMARKS
STRATA	NO.	TYPE	PEI	R 6"	RQD%	COLOR	HARD		DE	SCRIPTION	USCS	PID	
$\times\!\!\times\!\!\times\!\!\times$						Dark		Fill: SA	ND and	GRAVEL trace silty	Fill		Moist
$\times\!\!\times\!\!\times\!\!\times$						Brown		clay.				0.2	
						Gray		-			ÇL	0.2	
5	1	2" MC			65%			petrole	um odor	, slight sheen.			
					ļ							20.1	
))))													
Š												507	
	2	2" MC			100%								
7											1 1	92.5	\perp
					ļ				▼			<u> </u>	
											GW		Wet
.0					ļ			strong	petroleui	m odor.			
					ļ							550	
	3	2" MC			50%								
. Q :													
												985	
· . · . · . 0. ·											1 👃		
						•							
								End of	boring a	t 12'.			
					-								
					ł								
					-								
					<u> </u>						1		
		igs were	advar	nced u	sing a tra	ck-mount	ted geoprobe) .				'20	
les collecte	ed.									BORING NO.	GB-14		
V V V ////////////////////////////////	S S	2	STRATA NO. TYPE 1 2" MC 2 2" MC 3 2" MC 0 3 2" MC	STRATA NO. TYPE PEI	STRATA NO. TYPE PER 6" 1 2" MC 2 2" MC 3 2" MC 0 3 2" MC	SAMPLE SAMPLE STRATA NO. TYPE BLOWS PER 6" RQD% 1 2" MC 65% 2 2" MC 100% 3 2" MC 50% NTS: Borings were advanced using a tra	STRATA NO. TYPE BLOWS REC% RQD% COLOR 1 2" MC 65% 2 2" MC 100% 3 2" MC 50% 50% NTS: Borings were advanced using a track-mount	STRATA NO. TYPE PER 6" RQD% COLOR HARD 1 2" MC Gray 2 2" MC Gray 3 2" MC Gray 50% 65% 65% 65% 65% 70% 70% 80% 80% 80% 80% 80% 80	SAMPLE SAMPLE BLOWS PER 6" RQD% COLOR HARD 1 2" MC 65% 2 2" MC 100% 3 2" MC 50% 6 50% SAND 6 50% End of Mark Brown Gray 5 100% SAND 6 50% SAND 6 50% SAND 6 50% End of Mark Brown Gray Sitry Cl petroles SAND 6 50% SAND 6 50% End of Mark Brown Gray Sitry Cl petroles SAND 6 50% End of Mark Brown Gray Sitry Cl petroles SAND 6 50% SAND 6 50% End of Mark Brown Gray Sitry Cl petroles SAND 6 50% End of Mark Brown Gray SITS: Borings were advanced using a track-mounted geoprobe.	SAMPLE SAMPLE BLOWS REC% RQD% COLOR HARD Fill: SAND and clay. Silty CLAY trace petroleum odor SAND and GRA strong petroleum To a sample STRATA NO. TYPE BLOWS REC% RQD% COLOR HARD Fill: SAND and clay. Silty CLAY trace petroleum odor SAND and GRA strong petroleum To a sample Brown Gray SAND and GRA strong petroleum Fill: SAND and clay. Silty CLAY trace petroleum odor End of boring a sample strong a strack-mounted geoprobe.	SAMPLE SAMPLE BLOWS REC% PER 6" RQD% COLOR HARD DESCRIPTION TYPE PER 6" RQD% COLOR HARD DESCRIPTION Brown Gray 1 2" MC 65% 65% SAND and GRAVEL trace silty clay. SILTY CLAY trace gravel. slight petroleum odor, slight sheen. SAND and GRAVEL trace silty clay. SAND and GRAVEL trace silty clay. STS: Borings were advanced using a track-mounted geoprobe. PROJECT NO.	SAMPLE SAMPLE DESCRIPTION BLOWS REC% CONSIST MATERIAL DESCRIPTION USCS FIII: SAND and GRAVEL trace silty clay. Silty CLAY trace gravel. slight petroleum odor. SAND and GRAVEL trace silty clay. STROMA OF THE PETROMATER READING REVIEWED BY: Scott No. 111747 Brown Gray FiII: SAND and GRAVEL trace silty clay. Silty CLAY trace gravel. slight petroleum odor, slight sheen. SAND and GRAVEL trace silty clay. SAND and GRAVEL trace silty clay. STROMA OF THE PETROMETER READING REVIEWED BY: Scott No. 111747	SAMPLE SAMPLE SAMPLE DESCRIPTION USCS PID 1 2" MC 65% 65% 1 00% SAND and GRAVEL trace silty clay. SAND and GRAVEL trace silty clay. STrang petroleum odor. SAND and GRAVEL trace silty clay. Silty CLAY trace silty clay. Strong petroleum odor. SAND and GRAVEL trace silty clay. Silty CLAY trace silty clay. STRAM of the petroleum odor. SAND and GRAVEL trace silty clay. SIR SAND and GRAVEL trace silty clay. SIR SAND and GRAVEL trace silty clay. STRAM odor of the petroleum odor. SAND and GRAVEL trace silty clay. STRAM odor of the petroleum odor. SAND and GRAVEL trace silty clay. STRAM odor of the petroleum odor. SAND and GRAVEL trace silty clay. STRAM odor of the petroleum odor. SAND and GRAVEL trace silty clay. STRAM odor of the petroleum odor. SAND and GRAVEL trace silty clay. STRAM odor of the petroleum odor. SAND and GRAVEL trace silty clay. STRAM odor of the petroleum odor. SAND and GRAVEL trace silty clay. STRAM odor of the petroleum odor. SAND and GRAVEL trace silty clay. STRAM odor of the petroleum odor. SAND and GRAVEL trace silty clay. STRAM odor of the petroleum odor. SAND and GRAVEL trace silty clay. STRAM odor of the petroleum odor. SAND and GRAVEL trace silty clay. STRAM odor of the petroleum odor. SAND and GRAVEL trace silty clay. STRAM odor of the petroleum odor. SAND and GRAVEL trace silty clay. STRAM odor of the petroleum odor. SAND and GRAVEL trace silty clay. STRAM odor of the petroleum odor. SAND and GRAVEL trace silty clay. STRAM odor of the petroleum odor. SAND and GRAVEL trace silty clay. STRAM odor of the petroleum odor. SAND and GRAVEL trace silty clay. STRAM odor of the petroleum odor. SAND and GRAVEL trace silty clay. STRAM odor of the petroleum odor. SAND and GRAVEL trace silty clay. STRAM odor of the petroleum odor. SAND and GRAVEL trace silty clay. STRAM odor of the petroleum odor. SAND and GRAVEL trace silty clay. STRAM odor of the petroleum odor. SAND and GRAVEL trace silty clay. STRAM odor of the petroleum odor. SAND and GRAVEL trace silty clay. STRA

			·	JRS C	corpora	tion				TEST BORIN	G LO	G	
					•					BORING NO:	GB-15		
PROJE	CT:	Site	Investia	ation - N	orth Frank	in Street	Site			SHEET:	1 of 1		
CLIENT		NYS								JOB NO.:		111	74720
	CONTRA	стоі	R:	GeoLog	ic NY, Inc.					BORING LOCATION:			10 west
GROUN	DWATER:	Enco				CAS.	SAMPLER	CORE	TUBE	17-21 F	ranklin S	treet gri	d
DATE	TIME		EVEL	TYPE			Macrocore			DATE STARTED:	10/18		
					DIA.		2"			DATE FINISHED:	10/18		
					WT.					DRILLER:	Liam		
					FALL					GEOLOGIST:	Brian V	Veeks	
					* PO	CKET PEI	NETROMET	ER REA	DING	REVIEWED BY:	Scott N	lcCabe	
			SAMP	LE				DES	CRIPTIO	N			
DEPTH				BLOW	S REC%		CONSIST		N	MATERIAL		F	REMARKS
FEET	STRATA	NO.	TYPE	PER 6	" RQD%	COLOR	HARD		DE	SCRIPTION	USCS	PID	
						Gray		Asphal	t				Dry
								Silty Cl	AY trace	e sand and gravel.	CL	6.5	
						▼						0.0	
		1	2" MC		55%	Light		GRAVE	EL trace	sand.	GW		
	.0.				_	Gray							
												0	
	0												
	iiiiiiii					_ ▼		0111 01	<u> </u>				
_						Olive		Silty Cl	-Ay trace	e fine gravel.	CL		Moist
5						Gray						0	
		2	2" MC		100%								
												0	
				-		Brown	•						
						BIOWII							
	9												
												0	
10		3	2" MC	-									
10			2 1010	-	100%								
												0	
	8												\downarrow
						1				-some sand and			Wet
										gravel			
												0	
		4	2" MC		4000/								
					100%								
15												0	
									/	₩			
						₩		End of	boring at	16'.	\bot		<u> </u>
СОММЕ	NTS:	Borin	ngs were	advance	d using a tra	ack-mount	ed geoprobe).		PROJECT NO.	111747	'20	
Soil San	nple collect	ed (1	1.0-12.0)	for analy	sis of STAF	RS VOCs	and SVOCs.			BORING NO.	GB-15		
Groundy	vater samp	le col	lected fo	r analysis	of STARS	VOCs and	SVOCs.						

			- (JRS (Coi	rporat	ion				TEST BORIN	G LO	G	
						•					BORING NO:	GB-16		
PROJE	CT:	Site	Investig	ation - I	Nort	h Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT			DEC								JOB NO.:		111	74720
_	CONTRA	СТО	R:	GeoLo	aic N	NY. Inc.					BORING LOCATION:	1		h, 110 east
	IDWATER:					,	CAS.	SAMPLER	CORE	TUBE		rd Motor		•
DATE	TIME		EVEL	TYP		TYPE		Macrocore			DATE STARTED:	10/1	_	
					_	DIA.		2"			DATE FINISHED:	10/1		
						WT.					DRILLER:	Liam		
						FALL					GEOLOGIST:	Brian V	Veeks	
						* POC	KET PE	NETROMET	ER REA	DING	REVIEWED BY:	Scott M	1cCabe	
			SAMP	LE					DES	CRIPTIO	N			
DEPTH				BLOV	NS	REC%		CONSIST		N	MATERIAL		F	REMARKS
FEET	STRATA	NO.	TYPE	PER	6"	RQD%	COLOR	HARD		DE	SCRIPTION	uscs	PID	
	XXXXX						Light		Asphal	t		Fill		Dry
	>>>>						Gray		GRAVE	EL and S	AND		0	·
							Brown		Silty Cl	AY.		CL	0	Moist
		1	2" MC			50%								
						50%								
													0	
									♦			★		▼
									SAND	AND GR	AVEL trace silt.	GW		Wet
5	0								perche	d water.			2	
									Silty Cl	_AY.		ÇL	^	Moist
	K	2	2" MC			68%								
						0070								
													0	
											-some sand and			Wet
											gravel		0	
10		3	2" MC			88%								
													0	
										L	\perp			\downarrow
							*		_ \		▼	V		▼
	4								End of	boring a	t 12'.			
	4													
	-													
	ł													
15	ł													
15	1													
	-													
001/11/1	NTO	D		a al: : -	امدا	alas: - 1	ا ددسیا				DDO IECT NO	44471	700	
COMME		Borir	ngs were	advanc	ed u	sing a tra	ск-mount	ed geoprobe) .		PROJECT NO.	111747	20	
NO Sam	ples taken.										BORING NO.	GB-16		

			- (JRS	Со	rporat	ion				TEST BORIN	G LO	G	
						-					BORING NO:	GB-17		
PROJE	CT:	Site	Investig	ation	- Nort	h Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT		NYS									JOB NO.:		111	74720
BORING	CONTRA	СТО	R:	GeoL	ogic l	NY, Inc.					BORING LOCATION:		218 nor	th, 65 east
GROUN	DWATER:	Enco	untered	at 7.0'	bgs		CAS.	SAMPLER	CORE	TUBE	Cliffo	rd Motor	s grid	
DATE	TIME	LI	EVEL	TY	PΕ	TYPE		Macrocore			DATE STARTED:	10/1	8/06	
						DIA.		2"			DATE FINISHED:	10/1	8/06	
						WT.					DRILLER:	Liam		
						FALL					GEOLOGIST:	Brian V	Veeks	
						* POC	KET PE	NETROMET	ER REA	DING	REVIEWED BY:	Scott M	1cCabe	
			SAMP	LE					DESC	CRIPTIO	N			
DEPTH					ows	REC%		CONSIST		N	MATERIAL			REMARKS
FEET	STRATA	NO.	TYPE	PE	R 6"	RQD%	COLOR	HARD			SCRIPTION	USCS	PID	
							Dark		Asphalt					
							Gray		-		e sand and gravel	CL	0	Moist
									sheen a	and petro	oleum odor			
		1	2" MC			0.8								
	<u> </u>												53.2	
-	7110													
5													182	
			0".140											
	.	2	2" MC			0.8								
	0													
													49.0	Wet
	5						↓			\downarrow		\downarrow		vvet
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						*		Fnd of	boring at	t 8 0'	1		
										20g a.				
10														
15														
COMME								ed geoprobe			PROJECT NO.	111747	720	
				_				Cs and SVC			BORING NO.	GB-17		
Groundy	vater samp	ie & c	tup colle	cted fo	or anal	ysis of ST	ARS VO	Cs and SVO	Cs.					

			ι	JRS	Со	rporat	ion				TEST BORIN	G LO	G	
											BORING NO:	GB-18		
PROJEC	CT:	Site	Investig	ation	- Nort	h Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT		NYS									JOB NO.:		111	74720
BORING	CONTRA	СТО	R:	GeoL	ogic l	NY, Inc.					BORING LOCATION:	2	220 nor	th, 23 east
GROUN	DWATER:	Enco	untered	at 6.2'	bgs		CAS.	SAMPLER	CORE	TUBE	Cliffo	rd Motor	s grid	
DATE	TIME	LI	EVEL	TY	PΕ	TYPE		Macrocore			DATE STARTED:	10/18	3/06	
						DIA.		2"			DATE FINISHED:	10/18	3/06	
						WT.					DRILLER:	Liam		
						FALL					GEOLOGIST:	Brian V	Veeks	
						* POC	KET PEI	NETROMET	ER REA	DING	REVIEWED BY:	Scott M	lcCabe	:
			SAMP	LE					DESC	CRIPTIO	N			
DEPTH				BLC	ows	REC%		CONSIST		N	MATERIAL			REMARKS
FEET	STRATA	NO.	TYPE	PE	R 6"	RQD%	COLOR	HARD			SCRIPTION	USCS	PID	
	$\times\!\!\times\!\!\times\!\!\times$						Gray		Asphalt					
	8								Silty CL	AY trace	e sand and gravel.	CL	0	Moist
		1	2" MC			60%								
														
													0	
	5													
5													2.0	
)))))											1 1		
		2	2" MC			60%			CAND		AVEL trace silty clay.	V		
	$\cdot \Diamond \cdot \vdots \cdot \vdots \cdot$								SAIND	and GRA	I lace silly clay.	GW		Wet I
													0.1	
											\downarrow	\perp		\downarrow
									End of	boring at	F 0 0!	V		
									Ena oi	borning a	1 0.0 .			
10														
			•											
			•											
			•											
15														
						1								
СОММЕ	NTS:	Borir	ngs were	advar	nced u	sing a tra	ck-mount	ted geoprobe).		PROJECT NO.	111747	20	
	ple collect										BORING NO.	GB-18		
		,												

				JRS	Со	rporat	ion				TEST BORIN	G LO	G	
						-					BORING NO:	GB-19		
PROJE	CT:	Site	Investig	ation	- Nort	h Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT		NYS									JOB NO.:		11	174720
BORING	CONTRA	СТО	R:	GeoL	ogic l	NY, Inc.					BORING LOCATION:	2	245 no	rth, 32 east
GROUN	DWATER:	Not e	encounte	red			CAS.	SAMPLER	CORE	TUBE	Cliffo	rd Motor	s grid	
DATE	TIME	LI	EVEL	TY	PΕ	TYPE		Macrocore			DATE STARTED:	10/18	3/06	
						DIA.		2"			DATE FINISHED:	10/18	3/06	
						WT.					DRILLER:	Liam		
						FALL					GEOLOGIST:	Brian V	Veeks	
						* POC	KET PEI	NETROMET	ER REA	DING	REVIEWED BY:	Scott N	lcCabe	e
			SAMP						DESC	CRIPTIO	N			
DEPTH					ows	REC%		CONSIST		N	MATERIAL		_	REMARKS
FEET	STRATA	NO.	TYPE	PEI	R 6"	RQD%	COLOR	HARD			SCRIPTION	USCS	PID	
									Asphalt					
	5						Brown		Silty CL	AY trace	e sand and gravel.	CL	0.0	Moist
		1	2" MC			40%								
)))))													
						ļ							4.0	
						•								
	7	2	2" MC			0%								
5			2 IVIC			0 /6					\downarrow	↓		\downarrow
3							•		Macroc	ore refu	sal at 5.0'.	\		V
						1			Macroc	ore retu	3ai at 3.0 .			
						1								
						1								
10														
						ļ								
						1								
						1								
						1								
15						1								
						1								
СОММЕ	NTS:	Borir	ngs were	advar	nced u	sing a tra	ck-mount	ed geoprobe)		PROJECT NO.	111747	'20	
No samp	oles taken.										BORING NO.	GB-19		
	· · · · · · · · · · · · · · · · · · ·													

			l	JRS	Co	rporat	ion				TEST BORIN	G LO	G	
						•					BORING NO:	GB-20		
PROJE	CT:	Site	Investig	ation -	Nort	h Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT	:	NYS	DEC								JOB NO.:		1117	74720
BORING	CONTRA	СТО	R:	GeoL	ogic N	NY, Inc.					BORING LOCATION:	2	270 nort	h, 20 east
GROUN	DWATER:	Enco	untered	at 6.8'	bgs		CAS.	SAMPLER	CORE	TUBE	Cliffo	rd Motor	s grid	
DATE	TIME	LI	EVEL	TY	PE	TYPE		Macrocore			DATE STARTED:	10/18	3/06	
						DIA.		2"			DATE FINISHED:	10/18	3/06	
						WT.					DRILLER:	Liam		
						FALL					GEOLOGIST:	Brian V	Veeks	
						* POC	KET PE	NETROMET	ER REA	DING	REVIEWED BY:	Scott M	IcCabe	
			SAMP					T	DES	CRIPTIO		1		
DEPTH				BLC		REC%		CONSIST		N	MATERIAL			REMARKS
FEET	STRATA	NO.	TYPE	PEF	₹ 6"	RQD%	COLOR	HARD			SCRIPTION	USCS	PID	
							White		Asphal					Dry
							Light		Silty Cl	AY trace	e sand and gravel.	CL	0	Moist
	<u> </u>						Brown							
		1	2" MC			60%								
))))												0	
	5										notroloum adar			
-											-petroleum odor.			
5													120	
	7		011 140											
		2	2" MC			75%				-	\downarrow	↓		\perp
	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii						Olive		SAND	and GRA	VEL, trace silty clay.	GW		Wet
	0						Gray			etroleum			850	VVE
	0						Glay		5g p	00.0		$\parallel \downarrow \parallel$		\downarrow
									End of	boring at	+ 8 N'	, ,		▼
									Liid Oi	boning a	. 0.0 .			
10														
15														
COMME								ed geoprobe).		PROJECT NO.	111747	20	
	ple collect	_									BORING NO.	GB-20		
Groundy	vater samp	le col	lected fo	or analy	ysis o	f STARS '	VOCs an	d SVOCs.						

			U	JRS	Co	rporat	ion				TEST BORIN	G LO	G	
											BORING NO:	GB-21		
PROJE	CT:	Site	Investig	ation	- Nort	h Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT	:	NYS	DEC								JOB NO.:		1117	4720
BORING	CONTRA	СТО	R:	GeoL	ogic l	NY, Inc.					BORING LOCATION:	2	290 nortl	n, 30 east
GROUN	DWATER:	Enco	ountered	at 6.6'	' bgs		CAS.	SAMPLER	CORE	TUBE	Cliffo	rd Motor	s grid	
DATE	TIME	LI	EVEL	TY	'PΕ	TYPE		Macrocore			DATE STARTED:	10/18	8/06	
						DIA.		2"			DATE FINISHED:	10/18	8/06	
						WT.					DRILLER:	Liam		
						FALL					GEOLOGIST:	Brian V		
						* POC	KET PEI	NETROMET			REVIEWED BY:	Scott M	1cCabe	
			SAMP			_		1	DES	CRIPTIO		_		
DEPTH					ows	REC%		CONSIST			MATERIAL			EMARKS
FEET	STRATA	NO.	TYPE	PEI	R 6"	RQD%	COLOR	HARD			SCRIPTION	USCS	PID	
	XXXX								Asphal		VIII to a silk also	Fill		Dry I
	<i>********</i>					1	Brown				AVEL trace silty clay.		0	
						ł	Dark		Silty Ci	AY trace	e sand and gravel.	CL		
		1	2" MC			58%	Brown							
						ł								
													0	
						1								
	Ø										-slight petroleum odor.			
5	S					1					ong. it pour ordain odd.			
U						1							16	
		2	2" MC			1								
		_	2 1010			80%	↓		_			₩		\downarrow
	0					1	Dark		SAND	AND GR	AVEL trace silty clay.	GW	-	
						1	Gray						830	
						1	,			•	\	₩		lack
									End of	boring at	t 8.0'.			
						1								
						1								
10														
]								
]								
						1								
						1								
						1								
						1								
						4								
						4								
15						1								
						4								
COMME								ed geoprobe) .		PROJECT NO.	111747	'20	
	nple collect										BORING NO.	GB-21		
Ground	water samp	ple &	MS/MSD	colle	cted fo	r analysis	of STAR	RS VOCs and	SVOC	3.				

			ι	JRS Co	rporat	ion				TEST BORIN	G LO	G	
					-					BORING NO:	GB-22		
PROJE	CT:	Site	Investig	ation - Nort	th Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT		NYS								JOB NO.:		111	74720
	CONTRA	сто	R:	GeoLogic	NY, Inc.					BORING LOCATION:	(th, 30 east
GROUN	DWATER:	Enco				CAS.	SAMPLER	CORE	TUBE	Cliffo	rd Motor		
DATE	TIME	_	EVEL	TYPE	TYPE		Macrocore			DATE STARTED:	10/18	_	
					DIA.		2"			DATE FINISHED:	10/18		
					WT.					DRILLER:	Liam		
					FALL					GEOLOGIST:	Brian V	Veeks	
					* POC	KET PEI	NETROMET	ER REA	DING	REVIEWED BY:	Scott M	1cCabe	
			SAMP	LE				DES	CRIPTIO	N			
DEPTH				BLOWS	REC%		CONSIST		N	MATERIAL		F	REMARKS
FEET	STRATA	NO.	TYPE	PER 6"	RQD%	COLOR	HARD		DE	SCRIPTION	uscs	PID	
	$\times\!\!\times\!\!\times\!\!\times$					Gray		Asphal	t				
						Brown		SAND	AND GR	AVEL trace silty clay.	GW	0	Moist
	0											U	1
		1	2" MC		50%								
	5.0				30 /6								
												0	
	0												
	0.												
						▼				7	▼		
5	K					Light		Silty Cl	_AY trace	e sand and gravel.	CL	24	
						Brown		slight p	etroleum	odor.		24	
		2	2" MC		53%					<u> </u>	▼		<u> </u>
] 00%	Dark		SAND	and GRA	AVEL trace silty clay.	GW		Wet
						Gray						395	
	5										1		1
											•		
								End of	boring a	t 8.0'.			
					_								
10					1								
					1								
					4								
					4								
					4								
					4								
					4								
					-								
					1								
15					-								
15					-								
					-								
001/11	NITC	Б.				-1 '				DD0 IE67 110	444=:-	700	
COMME							ted geoprobe	€.		PROJECT NO.	111747	'20	
				r analysis of						BORING NO.	GB-22		
round،	vater samp	ie col	iected foi	r analysis of	STARS \	ous and	i SVUCS.						

-			ι	JRS	Co	rporat	ion		-		TEST BORIN	G LO	G	
											BORING NO:	GB-23		
PROJE	CT:	Site	Investig	ation	- Nort	h Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT	:	NYS	DEC								JOB NO.:		111	74720
BORING	CONTRA	СТОІ	R:	GeoL	ogic l	NY, Inc.					BORING LOCATION:		360 nor	rth, 0 east
GROUN	DWATER:	Enco	untered	at 12.	0' bgs		CAS.	SAMPLER	CORE	TUBE	Cliffo	rd Motor	s grid	
DATE	TIME	LI	EVEL	TY	PΕ	TYPE		Macrocore			DATE STARTED:	10/18	3/06	
						DIA.		2"			DATE FINISHED:	10/18	3/06	
						WT.					DRILLER:	Liam		
						FALL					GEOLOGIST:	Brian V	Veeks	
						* POC	KET PEI	NETROMET	ER REA	DING	REVIEWED BY:	Scott N	1cCabe	
			SAMP	LE					DESC	CRIPTIO	N			
DEPTH					ows	REC%		CONSIST		N	MATERIAL			REMARKS
FEET	STRATA	NO.	TYPE	PEI	R 6"	RQD%	COLOR	HARD			SCRIPTION	USCS	PID	
	>>>>>						Black		Topsoil			Fill		Dry
	XXXXX						Gray				sand and silt.		0	
	.0:					ļ	Brown		SAND	and GRA	AVEL trace silt.	GW		Moist
		1	2" MC			30%								
						ļ								
					-								0	
					-					\perp		1		
	iiiiiiiii						▼		Cilty CI	AV trace	e sand and gravel.	▼		
							Black		Silly CL	AT liace	e sand and gravei.	CL		
5	12												0	
		2	2" MC			33%								
													0	
	7					•								
)))))					1	Brown						0	
10		3	2" MC			1	BIOWII			,	_	↓		\downarrow
	,,,,,,,,,,		- """			80%			SAND :	and GRA	AVEL trace silty clay.	GW		Wet
	· O·		•											
													0	
						1	\downarrow			4	7	₩		\forall
							*		End of	boring at	t 12.0'.			•
						1				20g a.				
						1								
						1								
						1								
15						1								
						1								
						1								
COMME	NTS:	Borir	ngs were	advar	nced u	sing a tra	ck-mount	ted geoprobe	. }.		PROJECT NO.	111747	'20	
								OCs and SV			BORING NO.	GB-23		
	•		,			-								

			ι	JRS (Corpo	atio	n				TEST BORIN	IG LO	G	
					-						BORING NO:	GB-24		
PROJE	CT:	Site	Investig	ation - N	North Fra	ıklin S	treet	Site			SHEET:	1 of 1		
CLIENT		NYS									JOB NO.:		111	74720
BORING	CONTRA	СТОІ	R:	GeoLo	gic NY, In	c.					BORING LOCATION:		220 nor	th, 55 east
GROUN	DWATER:	Enco	untered	at 5.4' b	gs	C	CAS.	SAMPLER	CORE	TUBE	Cliffo	ord Motor	s grid	
DATE	TIME	LE	EVEL	TYPI	E TYPI	:		Macrocore			DATE STARTED:	10/1	8/06	
					DIA.			2"			DATE FINISHED:	10/1	8/06	
					WT.						DRILLER:	Liam		
					FALI						GEOLOGIST:	Brian V		
					* F	OCKE	T PEI	NETROMET			REVIEWED BY:	Scott M	lcCabe	
			SAMP					l	DES	CRIPTIO		1		
DEPTH				BLOV				CONSIST			MATERIAL			REMARKS
FEET	STRATA	NO.	TYPE	PER (6" RQI	% C0		HARD	A I I		SCRIPTION	USCS	PID	
	XXXX				_	_	Gray		Asphal		\\/\[\ trace cilty clay	Fill		
	>>>>>					B	rown		SAND	and GRA	AVEL trace silty clay		0	Moist I
	****		011.14.0			<u> </u>	211		Silty CI	AV trace	e gravel.	01		
		1	2" MC		58	6	Olive		Only Of		e graver.	CL		
					_	١								
													7	
	7													
											-petroleum odor.			
5	(8)										•			
-							\downarrow			\forall		↓	150	\downarrow
		2	2" MC			, –	Dark		SAND	and GRA	AVEL trace silty clay.	GW		Wet
	. 0				63'	6	Gray		sheen a	and stror	ng petroleum odor.			
							'						1157	
	0												1137	
	0						▼			lacksquare		₩		★
									End of	boring a	t 8.0'.			
10														
					\dashv									
					\dashv									
					\dashv									
15					_									
. •					\dashv									
					_									
СОММЕ	NTS:	Borin	ngs were	advance	ed usina a	track-	mount	ed geoprobe	<u>. </u>		PROJECT NO.	111747	'20	
	nple collecte		_								BORING NO.	GB-24		
	vater samp	_									2	·		

				JRS Co	rporat	ion				TEST BORIN	IG LO	G	
					•					BORING NO:	GB-25		
PROJE	CT:	Site	Investig	ation - Nort	th Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT		NYS								JOB NO.:		111	74720
BORING	CONTRA	СТОІ	R:	GeoLogic	NY, Inc.					BORING LOCATION:		230 nort	h, 85 east
GROUN	DWATER:	Enco	untered	at 4.0' bgs		CAS.	SAMPLER	CORE	TUBE	Cliffo	ord Motor	s grid	
DATE	TIME	LE	EVEL	TYPE	TYPE		Macrocore			DATE STARTED:	10/1	9/06	
					DIA.		2"			DATE FINISHED:	10/1	9/06	
					WT.					DRILLER:	Liam		
					FALL					GEOLOGIST:	Brian V		
					* POC	KET PE	NETROMET	ER REA	DING	REVIEWED BY:	Scott N	1cCabe	
			SAMP				1	DES	CRIPTIO				
DEPTH				BLOWS	REC%		CONSIST			MATERIAL			EMARKS
FEET	STRATA	NO.	TYPE	PER 6"	RQD%	COLOR	HARD			SCRIPTION	USCS	PID	
	>>>>>					Brown-		Asphal			Fill		Dry
	XXXXXX				4	Gray		Fill: GR			1	96.2	
						Dark				AVEL trace silty clay	GW		Moist
	:::::::	1	2" MC		33%	Brown		slight p	etroleum	odor		\square	
	.												
												13.1	
	· · · · · · · · · · · · · · · ·				_						1 1		\perp
	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii					Dard		Silty CI	AV trace	e sand and gravel.	V)A/-4
5	15					Dark			um odor	e sand and graver.	CL		Wet I
5						Gray 		petrole	uiii odoi			202	
		0	0" 140		_	↓					\perp		
	iiiiiiiiiiiiii	2	2" MC		65%	Olive		SAND	and GRA	VEL trace silty clay.	GW		
	. o					Gray			um odor		I GW		
					_			potroio	arri odor			167	
										\downarrow	↓		\downarrow
								End of	boring at	+ 8 N'	*		
								Liid Oi	boning a	. 0.0 .			
					-								
10													
					1								
15													
COMME			_				ed geoprobe) .		PROJECT NO.	111747	720	
		_		or analysis c						BORING NO.	GB-25		
Groundy	vater samp	le col	lected fo	r analysis of	STARS \	OCs and	SVOCs.						

			·	JRS	Col	rporat	ion				TEST BORIN	G LO	G	
						•					BORING NO:	GB-26		
PROJE	CT:	Site	Investig	ation -	Nort	h Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT		NYS									JOB NO.:		1117	4720
	CONTRA	СТОІ	R:	GeoLo	gic N	NY, Inc.					BORING LOCATION:			n, 75 east
	DWATER:				_	,	CAS.	SAMPLER	CORE	TUBE	Cliffo	ord Motors		•
DATE	TIME		EVEL	TYP		TYPE		Macrocore			DATE STARTED:	10/19	_	
						DIA.		2"			DATE FINISHED:	10/19		
						WT.					DRILLER:	Liam		
						FALL					GEOLOGIST:	Brian V	Veeks	
							KET PE	NETROMET	ER REA	DING	REVIEWED BY:	Scott N	lcCabe	
			SAMP	LE					DESC	CRIPTIO	N			
DEPTH				BLO	ws	REC%		CONSIST			MATERIAL		RI	EMARKS
FEET	STRATA	NO.	TYPE	PER			COLOR				SCRIPTION	uscs		
	XXXXX						Gray		Asphalt	i		Fill		Moist
	>>>>>						Dark		SAND	and GRA	AVEL trace silty clay.	1		
	>>>>>						Brown						11.2	
	anna	1	2" MC			=00/	Dark		Silty CL	AY trace	e gravel.	CL		
	5					58%	Gray			- 1				
													504	
													534	
	111112													
5	S													
							\downarrow			\downarrow		↓	278	
		2	2" MC			550/	Dark		SAND a	and GRA	VEL trace silty clay.	GW		\forall
	. O					55%	Brown		sheen	and stro	ng petroleum odor.			Wet
	0												00.4	
													934	
	0						\forall		,	lack		↓		\forall
									End of	boring at	t 8.0'.			
10														
15														
COMME	NTS:	Borir	ngs were	advand	ced u	sing a tra	ck-mount	ed geoprobe).		PROJECT NO.	111747	'20	
Soil San	nple & dup	collec	ted (6.0-	7.0') fo	r ana	lysis of S	TARS VC	Cs and SVC	OCs.		BORING NO.	GB-26		
Groundv	vater samp	le & c	dup collec	cted for	anal	ysis of ST	ARS VO	Cs and SVO	Cs.					

			l	JRS (Corpo	orat	ion				TEST BORII	NG LO	G	
					•						BORING NO:	GB-27		
PROJE	CT:	Site	Investig	ation - N	lorth Fr	ranklii	n Street	Site			SHEET:	1 of 1		
CLIENT		NYS									JOB NO.:		1117	4720
BORIN	G CONTRA	СТО	R:	GeoLog	jic NY,	Inc.					BORING LOCATION:		260 north	n, 60 east
GROUN	IDWATER:	Enco	untered	at 5.4' b	gs		CAS.	SAMPLER	CORE	TUBE	Cliff	ord Motor	s grid	
DATE	TIME	LI	EVEL	TYPI	TY	PE		Macrocore			DATE STARTED:	10/1	9/06	
					DIA	۹.		2"			DATE FINISHED:	10/1	9/06	
					WT	Г.		-			DRILLER:	Liam		
					FA	LL					GEOLOGIST:	Brian W	/eeks	
					*	* POC	KET PEI	NETROMET	ER REA	DING	REVIEWED BY:	Scott M	cCabe	
			SAMP	LE					DES	CRIPTIO	N			
DEPTH				BLOV	/S R	EC%		CONSIST		N	MATERIAL		R	EMARKS
FEET	STRATA	NO.	TYPE	PER (6" R0	QD%	COLOR	HARD		DE	SCRIPTION	USCS	PID	
	$\times\!\!\times\!\!\times\!\!\times$						Brown		Aspha			Fill	L	Moist
									SAND	and GRA	AVEL trace silty clay		0.2	Dry
							Black							Moist
		1	2" MC		4	18%	Olive		Silty Cl	-AY trac	e sand and gravel	CL		
							Brown							
													1.3	
											notroloum odor			
											-petroleum odor			
5							1			\perp		\perp	255	<u> </u>
	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	_	011 140				Dark		SVND	and GP/	AVEL trace silty clay.	0)4/		Wet
	· • · · · · · ·	2	2" MC		6	80%	Dark				ng petroleum odor.	GW		
							Gray 		Silecti		ng petroleani edon			
													1690	
	0						↓			\downarrow				\downarrow
									Fnd of	boring a	t 8 0'	*	+	V
	1									20g u				
	1													
10	1													
	1													
	1													
	1													
	1													
]													
]													
15	1													
]													
COMME								ed geoprobe).		PROJECT NO.	111747	20	
	nple collect										BORING NO.	GB-27		
Ground	water samp	le col	lected fo	r analysi	s of STA	ARS V	OCs and	SVOCs.						

			ı	JRS (Corpora	tion				TEST BORIN	IG LO	G	
					-					BORING NO:	GB-28		
PROJE	CT:	Site	Investig	ation - N	North Frank	in Street	Site			SHEET:	1 of 1		
CLIENT	:	NYS	DEC							JOB NO.:		1117	4720
BORING	CONTRA	СТО	R:	GeoLo	gic NY, Inc.					BORING LOCATION:		277 nort	h, 60 east
GROUN	DWATER:	Enco	ountered	at 5.8' b	gs	CAS.	SAMPLER	CORE	TUBE	Cliffo	ord Motor	s grid	
DATE	TIME	LI	EVEL	TYPI	E TYPE		Macrocore			DATE STARTED:	10/1	9/06	
					DIA.		2"			DATE FINISHED:	10/1	9/06	
					WT.					DRILLER:	Liam		
					FALL					GEOLOGIST:	Brian V	Veeks	
					* PO	CKET PEI	NETROMET	ER REA	DING	REVIEWED BY:	Scott M	1cCabe	
			SAMP	LE				DES	CRIPTIO	N			
DEPTH				BLOV	VS REC%		CONSIST		ľ	MATERIAL		R	EMARKS
FEET	STRATA	NO.	TYPE	PER (6" RQD%	COLOR	HARD		DE	SCRIPTION	USCS	PID	
	$\times\!\!\times\!\!\times\!\!\times$					Black		Asphal	t		Fill		Dry
	$\times\!\!\times\!\!\times\!\!\times$					Gray		GRAVI	EL trace	sand.		0 -	
						Dark		Silty Cl	_AY trac	e sand and gravel.	CL		Moist
	17	1	2" MC		35%	Brown							
												0.2	
	())))))												
						4							
	K									-strong petroleum odor			
5												1170	
													<u> </u>
	· •	2	2" MC		55%	Black				AVEL trace silty clay.	GW		Wet
								sheen	and stroi	ng petroleum odor.			
	O											1764	
	.0												
								End of	boring a	t 8.0'.			
40													
10													
					_								
					\dashv								
15													
-													
COMME	NTS.	Borir	nas were	advance	ed using a tra	ack-mount	ted geoprobe			PROJECT NO.	111747	20	
					is of STARS			<i>,</i> .		BORING NO.	GB-28		
					is of STARS						JD 20		
o, Juliu\	ταιοι σαιτίμ	الان ت	ioolou iui	unanys	0.01710	, oos and	. U V U U 3.						

		NYS		ation -							DOD!!! 0 !! 0	OD 00		
CLIENT: BORING GROUND	CONTRA	NYS		ation -							BORING NO:	GB-29		
BORING GROUND	CONTRA		DEC		Nort	h Frankli	n Street	Site			SHEET:	1 of 1		
GROUND	OWATER:	СТОІ	DLO								JOB NO.:		1117	4720
			R:	GeoLo	ogic N	IY, Inc.					BORING LOCATION:		290 north	ı, 47 east
DATE	TIME	Enco	untered	at 6.0'	bgs		CAS.	SAMPLER	CORE	TUBE	Cliffo	rd Motor	s grid	
		LE	EVEL	TYF	PΕ	TYPE		Macrocore			DATE STARTED:	10/1	9/06	
						DIA.		2"			DATE FINISHED:	10/1	9/06	
						WT.					DRILLER:	Liam		
						FALL					GEOLOGIST:	Brian V	Veeks	
						* POC	KET PEN	NETROMETI	ER REA	DING	REVIEWED BY:	Scott M	lcCabe	
			SAMP	LE					DES	CRIPTIO	N			
DEPTH				BLO	ws	REC%		CONSIST		N	MATERIAL		RI	EMARKS
FEET :	STRATA	NO.	TYPE	PER	8 6"	RQD%	COLOR	HARD		DE	SCRIPTION	USCS	PID	
×	$\times\!\!\times\!\!\times\!\!\times$						Black		Asphal			Fill		Moist
X	$\times\!\!\times\!\!\times\!\!\times$						Dark		SAND	and GRA	AVEL trace silty clay		29.3	
Ω	$\times\!\!\times\!\!\times\!\!\times$						Brown						20.0	
	<u> </u>	1	2" MC			45%			Silty Cl	_AY trace	e sand and gravel.	CL		
											-slight petroleum odor		109	
	7													
											-sheen and strong			
5											petroleum odor		1122	
	5													
		2	2" MC			58%	•		04110	1.00.4		▼		
	0						Dark				AVEL trace silty clay.	GW		Wet I
:							Gray I		sneen	and stror	ng petroleum odor		1942	
 :	· • · · · · · ·		-											
-	V . · . ·								F l . f	la a silva av av	V	V		<u> </u>
									Ena of	boring at	[8.0°.			
10			•											
10			ļ .											
-														
15														
$\neg \neg$														
COMMEN	NTS:	Borin	ngs were	advan	ced u	sing a tra	ck-mount	ed geoprobe	<u>. </u>		PROJECT NO.	111747	20	
	ple collecte										BORING NO.	GB-29	-	
	ater sampl													

			ι	JRS C	orporat	tion				TEST BORIN	IG LC	G	
										BORING NO:	GB-30		
PROJE	CT:	Site	Investiga	ation - No	rth Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT	:	NYS								JOB NO.:		1117	4720
BORING	CONTRA	СТО	R:	GeoLogi	c NY, Inc.					BORING LOCATION:		300 nort	h, 42 east
GROUN	DWATER:	Enco	ountered	at 7.0' bg:	6	CAS.	SAMPLER	CORE	TUBE	Cliff	ord Moto	rs grid	
DATE	TIME	LI	EVEL	TYPE	TYPE		Macrocore			DATE STARTED:	10/1	19/06	
					DIA.		2"			DATE FINISHED:	10/1	19/06	
					WT.					DRILLER:	Liam		
					FALL					GEOLOGIST:	Brian V	Veeks	
					* POC	KET PE	NETROMETI	ER REA	DING	REVIEWED BY:	Scott M	lcCabe	
			SAMP	LE	_		_	DES	CRIPTIC	ON .			
DEPTH				BLOWS	REC%		CONSIST		ı	MATERIAL		R	EMARKS
FEET	STRATA	NO.	TYPE	PER 6'	RQD%	COLOR	HARD			SCRIPTION	USCS	PID	
	>>>>>					Black		Asphal			Fill		Dry
	$\times\!\!\times\!\!\times\!\!\times$				_	Brown				AVEL trace silt		17.7	
	ζ					Dark		Silty Cl	₋AY trac	e sand and gravel.	CL		Moist I
		1	2" MC		55%	Brown							
	9				_							435	
					_								
						•				-strong petroleum odor			
5	>				_								
5					_							750	
		2	2" MC		_								
		_	2 IVIC		48%								
					_								\downarrow
	7		 									2018	Wet
						♦			\downarrow	lack	♦		
								End of	boring a	t 8.0'.			
									J				
10			İ										
			[[_								
					_								
					_								
					4								
45													
15]		_								
					\dashv								
001/::-	NITC	<u> </u>			Landia d	-1-	Land on the			DD0 1507 110	444=:-	700	
COMME							ted geoprobe	ł.		PROJECT NO.	111747	20	
					of STARS					BORING NO.	GB-30		
Ground	vater samp	ie col	iected foi	analysis	of STARS \	vous and	i SVUCS.						

			ι	JRS (Corporat	tion				TEST BORIN	G LO	G	
					-					BORING NO:	GB-31		
PROJE	CT:	Site	Investig	ation - N	lorth Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT	:	NYS								JOB NO.:		11174	4720
BORING	CONTRA	СТО	R:	GeoLog	jic NY, Inc.					BORING LOCATION:		30 north,	, 50 east
GROUN	DWATER:	Enco	untered	at 8.0' bo	gs	CAS.	SAMPLER	CORE	TUBE	Сар	tain Bills	grid	
DATE	TIME	LI	EVEL	TYPE	TYPE		Macrocore			DATE STARTED:	10/1	9/06	
					DIA.		2"			DATE FINISHED:	10/1	9/06	
					WT.					DRILLER:	Liam		
					FALL					GEOLOGIST:	Brian V	Veeks	
					* PO0	KET PEI	NETROMET			REVIEWED BY:	Scott N	1cCabe	
			SAMP	LE				DES	CRIPTIC	N			
DEPTH				BLOW			CONSIST		ı	MATERIAL		RE	EMARKS
FEET	STRATA	NO.	TYPE	PER 6	S" RQD%	COLOR	HARD			SCRIPTION	USCS	PID	
	>>>>>					Black		Asphal			Fill		Dry
	XXXX					Brown-		SAND	and GR/	AVEL		0	\perp
						Black		0.11 01	A > / /			_	
		1	2" MC		73%	Brown		Silty Cl	_AY trac □	e sand and gravel	CL		Moist I
	(\$)												
						Black I						8.1	
										-strong petroleum odor			
5										-strong petroleum odor			
3												57.2	
	, 2	2	2" MC										
			2 1010		30%								
												1359	
						↓			\downarrow	<u> </u>	$ \downarrow $		\downarrow
						Brown		SAND	and GR	AVEL trace silty clay.	GW		Wet
	0							strong	petroleu	m odor.		4547	
												1517	
10	0	3	2" MC		620/								
	0				63%								
												2612	
	5 ₀											2012	\perp
						₩			▼		▼		▼
								End of	boring a	t 12.0'.			
					_								
45					_								
15					_								
					_								
001	NITO.	<u> </u>				<u> </u>	<u> </u>	ļ		DD0 1507 1:0	444=4=		
COMME					ed using a tra			9.		PROJECT NO.	111747	20	
					s of STARS					BORING NO.	GB-31		
Ground	vater samp	ie col	iecteator	anaiysis	of STARS V	ous and	SVUUS.						

			l	JRS	Co	rporat	ion				TEST BORIN	G LO	G	
											BORING NO:	GB-32		
PROJE	CT:	Site	Investig	ation -	Nort	h Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT	:	NYS	DEC								JOB NO.:		1117	4720
BORING	CONTRA	СТО	R:	GeoL	ogic N	NY, Inc.					BORING LOCATION:		30 nortl	n, 5 east
GROUN	DWATER:	Enco	untered	at 8.6'	bgs		CAS.	SAMPLER	CORE	TUBE	Cap	tain Bills	grid	
DATE	TIME	LI	EVEL	TYI	PE	TYPE		Macrocore			DATE STARTED:	10/1	9/06	
						DIA.		2"			DATE FINISHED:	10/1	9/06	
						WT.					DRILLER:	Liam		
						FALL					GEOLOGIST:	Brian V	Veeks	
						* POC	KET PEI	NETROMET			REVIEWED BY:	Scott M	lcCabe	
			SAMP			r		T	DES	CRIPTIO				
DEPTH				BLO		REC%		CONSIST		N	MATERIAL			EMARKS
FEET	STRATA	NO.	TYPE	PER	R 6"	RQD%	COLOR	HARD			SCRIPTION	USCS	PID	
	$\times\!\!\times\!\!\times\!\!\times$						Black		Asphal					Moist
	. 0						Dark		SAND	and GR I	AVEL trace silt.	GW	0	
							Brown I							
	0.	1	2" MC			50%								
						ļ								
	· •												0	
						•								
5	σ									\downarrow		↓		\downarrow
J	ininini						Gray		Silty CI	AY trace	e sand and gravel.	CL	2.2	Dn/
	S	2	2" MC				Gray 		-	etroleum	=	l GL		Dry
		_	Z WIO			55%			3		1			
						1							29.1	
						1								
							\downarrow				\	₩		\downarrow
						1	Light		SAND	and GRA	AVEL trace silty clay.	GW	040	Wet
	. Q					1	Gray		strong	petroleui	n odor.		242	
10		3	2" MC			650/								
						65%								
	0]							2014	
]					1		2017	
							▼				▼	▼		
]			End of	boring a	t 12.0'.			
						[
4-						-								
15						-								
						-								
001	LITO.	<u> </u>				<u> </u>		<u> </u>	ļ		DD0 1507 110	44.5= :=		
COMME								ed geoprobe	9.		PROJECT NO.	111747	20	
	nple collect				_						BORING NO.	GB-32		
round\	water samp	ie col	iected foi	analy	sis of	STARS	OUS and	a SVOCs.						

			l	JRS Co	rporat	ion				TEST BORIN	G LO	G	
					•					BORING NO:	GB-33		
PROJE	CT:	Site	Investig	ation - Nor	th Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT		NYS								JOB NO.:		111	74720
BORING	CONTRA	СТОІ	R:	GeoLogic	NY, Inc.					BORING LOCATION:		60 nort	h, 20 east
GROUN	DWATER:	Enco	untered	at 5.1' bgs		CAS.	SAMPLER	CORE	TUBE	Сар	tain Bills	grid	
DATE	TIME	LI	EVEL	TYPE	TYPE		Macrocore			DATE STARTED:	10/1	9/06	
					DIA.		2"			DATE FINISHED:	10/1	9/06	
					WT.					DRILLER:	Liam		
					FALL					GEOLOGIST:	Brian V		
					* POC	KET PE	NETROMET	ER REA	DING	REVIEWED BY:	Scott N	1cCabe	
			SAMP				1	DES	CRIPTIO		1		
DEPTH				BLOWS	REC%		CONSIST			MATERIAL			REMARKS
FEET	STRATA	NO.	TYPE	PER 6"	RQD%	COLOR	HARD			SCRIPTION	USCS	PID	
					_	Black		Asphal		N/E1	Fill		Dry
	0					Brown			and GRA			0.2	
					1	Black I		SAND	and GRA I	VEL trace silty clay	GW		Moist I
	0.	1	2" MC		50%								
					1								
	0				1					-slight petroleum odor		13.6	
					1					ong. it pouroioum out.			
5	0.				1	↓			Ļ		₩		\downarrow
	iiiiiiiiii				1	Gray		Silty Cl	AY trace	e sand and gravel.	CL	82.4	Wet
		2	2" MC		1			1 -	etroleum	•	l ĭ-		Ï
					63%					1			
					1							4.5.	
												15.7	
						\ \ \				₩	★		₩
								End of	boring at	8.0'.			
10													
					4								
					4								
					-								
					-								
					-								
					-								
					1								
					1								
15					1								
					1								
					1								
СОММЕ	NTS:	Borir	nas were	advanced i	using a tra	ck-mount	ed geoprobe	<u>.</u>		PROJECT NO.	111747	720	
			_				RS VOCs and		S.	BORING NO.	GB-33	-	
							S VOCs and			-			

				JRS Co	rporat	ion				TEST BORIN	G LO	G	
					-					BORING NO:	GB-34		
PROJE	CT:	Site	Investig	ation - Nor	th Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT		NYS								JOB NO.:		111	74720
BORING	CONTRA	СТОІ	R:	GeoLogic	NY, Inc.					BORING LOCATION:		85 nortl	h, 35 east
GROUN	DWATER:	Enco	untered	at 5.8' bgs		CAS.	SAMPLER	CORE	TUBE	Сар	tain Bills	grid	
DATE	TIME	LI	EVEL	TYPE	TYPE		Macrocore			DATE STARTED:	10/1	9/06	
					DIA.		2"			DATE FINISHED:	10/1	9/06	
					WT.					DRILLER:	Liam		
					FALL					GEOLOGIST:	Brian V		
					* POC	KET PEI	NETROMET	ER REA	DING	REVIEWED BY:	Scott M	1cCabe	
	1		SAMP	LE	1		ı	DES	CRIPTIO		1		
DEPTH				BLOWS	REC%		CONSIST			MATERIAL			REMARKS
FEET	STRATA	NO.	TYPE	PER 6"	RQD%	COLOR	HARD			SCRIPTION	USCS	PID	
	$\times\!\!\times\!\!\times\!\!\times$					Gray		Asphal					Moist
	· 0 · · · ·				_	Light		SAND	and GRA	VEL trace silt	GW	0	
					4	Brown							
		1	2" MC		58%	Dark							
	0. :				4	Brown							
					-							34.3	
					-					-slight petroleum odor			
5					-	1			\perp		1 1	12.8	\perp
	ininini di	•	0" 140		-			Cilty CI	_AY trace	a graval	01	 	V
		2	2" MC		63%	Brown				AVEL trace silty clay.	CL		Wet I
	0				1	Gray 		OAND	and Ord		GW 		
												2.8	
	· · · · · · o · ·				1	$ \downarrow $				\downarrow	↓		\downarrow
						•		End of	boring at	+ 8 N'	▼		•
								Liid Oi	boning a	. 0.0 .			
					1								
10					1								
					1								
					1								
					1								
]								
					_								
					_								
					1								
					_								
15					1								
					_								
COMME							ted geoprobe	e		PROJECT NO.	111747	720	
				r analysis o	f STARS \	/OCs and	d SVOCs.			BORING NO.	GB-34		
No grou	ndwater sar	mple	collected	d.									

				JRS Co	rporat	ion				TEST BORIN	G LO	G		
										BORING NO:	GB-35			
PROJE	CT:	Site	Investig	ation - Nort	th Frankli	n Street	Site			SHEET:	1 of 1			
CLIENT		NYS								JOB NO.:		111	74720	
BORING	CONTRA	СТОІ	R:	GeoLogic	NY, Inc.					BORING LOCATION: 110 north, 37 east				
GROUN	DWATER:	Enco	untered	at 4.8' bgs		CAS.	SAMPLER	CORE	TUBE	Сар	tain Bills	grid		
DATE	TIME	LE	EVEL	TYPE	TYPE	Macrocore				DATE STARTED:	10/1	9/06		
					DIA.		2"			DATE FINISHED:	10/1	9/06		
					WT.					DRILLER:	Liam			
					FALL					GEOLOGIST:	Brian V			
					* POC	KET PE	NETROMET	ER REA	DING	REVIEWED BY:	Scott N	1cCabe		
			SAMP					DES	CRIPTIO		1			
DEPTH				BLOWS	REC%		CONSIST			MATERIAL			REMARKS	
FEET	STRATA	NO.	TYPE	PER 6"	RQD%	COLOR	HARD			SCRIPTION	USCS	PID		
	XXXXX				_	Gray		Asphal		\\/\[\ \max_a a a \cdot\			Dry I	
	. 0					Brown I		SAND	and GRA	AVEL trace silt	GW	0		
	0 .		0".140					Silty CI	AV trace	e sand and gravel	01			
	S	1	2" MC		68%	↓		Only Of		e sand and graver	CL		\downarrow	
						Gray							 Moist	
	11115											0		
													lack	
5						\forall			\downarrow		₩	l	Wet	
						Light		SAND	and GRA	AVEL trace silty clay.	GW	10	1	
		2	2" MC		620/	Brown			- 1					
	0.				63%	Gray				-slight petroleum odor				
												64		
	0											04		
						▼					▼			
								End of	boring a	t 8.0'.				
10					4									
					4									
					-									
					-									
					-									
				 	1									
					1									
					1									
					1									
15														
COMME	NTS:	Borin	ngs were	advanced u	ising a tra	ck-mount	ed geoprobe) .		PROJECT NO.	111747	20		
Soil San				r analysis o						BORING NO.	GB-35			
No grou	ndwater saı	mple	collected	d										

			l	JRS C	orporat	ion				TEST BORIN	IG LO	G		
					•					BORING NO:	GB-36			
PROJE	CT:	Site	Investig	ation - No	rth Frankli	n Street	Site			SHEET:	1 of 1			
CLIENT	:		DEC							JOB NO.:		1117	4720	
BORING	CONTRA	СТО	R:	GeoLogi	c NY, Inc.					BORING LOCATION: 50 north, 40 east				
GROUN	DWATER:	Enco	ountered	at 5.1' bgs	3	CAS.	SAMPLER	CORE	TUBE	Cap	otain Bills	grid		
DATE	TIME	LI	EVEL	TYPE	TYPE		Macrocore			DATE STARTED:	10/2	10/20/06		
					DIA.		2"		DATE FINISHED: 10/20/06					
					WT.					DRILLER:	Liam			
					FALL					GEOLOGIST:	Brian V			
					* POC	KET PE	NETROMET			REVIEWED BY:	Scott M	lcCabe		
			SAMP				I		CRIPTIO		1	_		
DEPTH			->/	BLOWS			CONSIST			MATERIAL			EMARKS	
FEET	STRATA	NO.	TYPE	PER 6"	RQD%	COLOR	HARD	A l l		SCRIPTION	USCS	PID		
	××××××				_	Black		Asphal		EL trace silty clay	Fill		N.A:-4	
	ininini				_	Brown Dark	ļ			e sand and gravel.	CL	0	Moist I	
		1	2" MC			Gray		Only Of	באו נומט	e sand and graver.	CL			
	::::::: <u>::::::::::::::::::::::::::::::</u>	'	Z IVIC		63%	Glay		SAND	race silt		SW			
									1					
	· >: :::::											0.8		
						♦			\downarrow		₩			
						Brown		Silty Cl	AY trac	e gravel	CL			
5	5											384	\forall	
						Dark		SAND	and GRA	VEL trace silty clay.	GW	304	Wet	
		2	2" MC		45%	Gray		strong	petroleui	m odor and free				
					.070			produc	t.					
	0											3585		
	0.												\perp	
											▼		<u> </u>	
					_			End of	boring a	t 8.0'.				
					_									
10					_									
10														
15														
		<u> </u>									<u> </u>			
COMME			_				ted geoprobe) .		PROJECT NO.	111747	'20		
	oil sample collected (6.0-7.0) for analysis of STARS VOCs and SVOCs.									BORING NO.	GB-36			
Groundy	Groundwater sample collected for analysis of STARS VOCs and SVOCs.													

			l	JRS	Col	rporat	ion				TEST BORIN	IG LC	G		
						•					BORING NO:	GB-37			
PROJE	CT:	Site	Investig	ation -	- Nort	h Frankli	n Street	Site			SHEET:	1 of 1			
CLIENT		NYS									JOB NO.:		1117	4720	
BORING	CONTRA	СТОІ	R:	GeoL	ogic N	NY, Inc.					BORING LOCATION: 40 north, 70 east				
GROUN	DWATER:	Enco	untered	at 4.8'	bgs		CAS.	SAMPLER	CORE	TUBE	Car	otain Bills	s grid		
DATE	TIME	LI	EVEL	TY	PE	TYPE	Macrocore			DATE STARTED: 10/20/06					
						DIA.		2"		DATE FINISHED: 10/20/06					
						WT.					DRILLER:	Liam			
						FALL					GEOLOGIST:	Brian V	Veeks		
						* POC	KET PE	NETROMET	ER REA	DING	REVIEWED BY:	Scott N	1cCabe		
			SAMP	LE					DES	CRIPTIO	N				
DEPTH				BLC	swo	REC%		CONSIST		N	MATERIAL		R	EMARKS	
FEET	STRATA	NO.	TYPE	PEF	R 6"	RQD%	COLOR	HARD		DE	SCRIPTION	USCS	PID		
	>>>>>>						Black		Asphal						
							Brown		SAND	and GRA	VEL trace silty clay.	GW	0.8	Moist	
													0.0		
	Q · .	1	2" MC			55%									
	Φ					00,0									
													1.8		
	· · · · · o · ·														
							L								
									0111 01	****	<u>▼</u>				
5	113/11/11						Gray		_	_AY trac		CL	3.8	<u> </u>	
	0						Dark				AVEL trace silty clay. GW			Wet	
		2	2" MC			45%	Gray		strong	petroleui	n odor and sheen.				
													1942		
											\perp	\perp			
							•		ام ما ما		- O OI	 V			
									Ena oi	boring a	1 0.0 .				
10															
.5															
15															
COMME	NTS:	Borir	igs were	advan	ced u	sing a tra	ck-mount	ed geoprobe) .		PROJECT NO.	111747	'20		
Soil San	nple collect	ed (6.	.0-7. <u>0')</u> fc	r anal	ysis of	f STARS	VOCs an	d SVOCs.			BORING NO.	GB-37			
Groundy	vater samp	le col	lected fo	r analy	sis of	STARS \	OCs and	SVOCs.							

			ι	JRS	Co	rporat	ion				TEST BORIN	IG LC)G	
						-					BORING NO:	GB-38		
PROJE	CT:	Site	Investiga	ation	- Nort	h Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT	:	NYS									JOB NO.:		111	74720
BORING	CONTRA	СТО	R:	GeoL	ogic N	NY, Inc.					BORING LOCATION: 30 north, 110 east			
GROUN	DWATER:	Enco	untered	at 5.4	bgs		CAS.	SAMPLER	CORE	TUBE	Ca	ptain Bill:	s grid	
DATE	TIME	LI	EVEL	TY	PΕ	TYPE		Macrocore			DATE STARTED:	10/2		
						DIA.		2"			DATE FINISHED:	10/2	20/06	
						WT.					DRILLER:	Liam		
						FALL					GEOLOGIST:	Brian V	Veeks	
						* POC	KET PE	NETROMET	ER REA	DING	REVIEWED BY:	Scott N	/lcCabe	
			SAMP	LE					DES	CRIPTIO	N			
DEPTH				BLC	ows	REC%		CONSIST		N	MATERIAL		R	REMARKS
FEET	STRATA	NO.	TYPE	PEI	R 6"	RQD%	COLOR	HARD		DE	SCRIPTION	USCS	PID	
	$\times\!\!\times\!\!\times\!\!\times$						Black		Asphal					Moist
	.0						Brown		SAND	and GRA	AVEL trace silt	GW	1.8	
	0	1	2" MC			43%	Orange							
	0													
													3.4	
	0						*							
							Brown							
5													65	
		_					•		Cilty CI	AV trac	e sand and gravel.	V		<u> </u>
	S	2	2" MC			90%	Gray I		-		n odor and sheen.	CL		Wet I
									Silong	Jeli Oleui	ii odor and sneen.	\perp		
	.0						Dark		SAND	and GR/	AVEL trace silt.	GW	1954	
	0						Gray				n odor and sheen.	GW		\downarrow
							Glay			boring a				<u> </u>
									Liiu oi	builing a	1 0.0 .			
10			•											
15														
СОММЕ	NTS:	Borir	ngs were	advar	nced u	sing a tra	ck-mount	ed geoprobe).		PROJECT NO.	111747	720	
								Cs and SVC			BORING NO.	GB-38		
Groundv	vater samp	le & c	dup collec	cted fo	or anal	ysis of ST	ARS VO	Cs and SVO	Cs.					

			U	JRS	Со	rporat	ion				TEST BORIN	IG LO	G		
											BORING NO:	GB-39			
PROJE	CT:	Site	Investig	ation	- Nort	h Frankli	n Street	Site			SHEET:	1 of 1			
CLIENT	:	NYS	DEC								JOB NO.:		111	74720	
BORING	CONTRA	СТО	R:	GeoL	ogic l	NY, Inc.					BORING LOCATION: 10 north, 120 east				
GROUN	DWATER:	Not e	encounte	red			CAS.	SAMPLER	CORE	TUBE	Cap	otain Bills	grid		
DATE	TIME	LI	EVEL	TY	PE	TYPE Macrocore					DATE STARTED:	10/2	10/20/06		
						DIA.		2"			DATE FINISHED:	10/2	20/06		
						WT.					DRILLER:	Liam			
						FALL					GEOLOGIST:	Brian V			
						* POC	KET PE	NETROMET	ER REA	DING	REVIEWED BY:	Scott M	1cCabe		
			SAMP			r			DES	CRIPTIO					
DEPTH					ows	REC%		CONSIST			MATERIAL			REMARKS	
FEET	STRATA	NO.	TYPE	PEF	₹ 6"	RQD%		HARD			SCRIPTION	USCS	PID		
	$\times\!\!\times\!\!\times\!\!\times$						Black		Asphal					Moist	
	.0						Brown		SAND	and GRA	AVEL trace silt	GW	0		
	0	1	2" MC			43%									
	.0.														
													0		
	0						↓			\perp		\perp		\downarrow	
	• • • • • • •											V		•	
										boring at	t 4.0°. sal, possible storm				
5															
									drain, s	top borir	ıg.				
10															
						1									
15															
COMME	NTS:	Borir	ngs were	advar	nced u	sing a tra	ck-mount	ed geoprobe			PROJECT NO.	111747	'20		
No sam	lo samples collected.									BORING NO.	GB-39				

			ι	JRS Co	rporat	ion				TEST BORIN	G LO	G	
										BORING NO:	GB-40		
PROJE	CT:	Site	Investig	ation - Noi	rth Frankli	n Street	Site			SHEET:	1 of 1		
CLIENT		NYS	DEC							JOB NO.:	11174720		
BORING	CONTRA	СТОІ	R:	GeoLogic	NY, Inc.					BORING LOCATION:	: 10 south, 43 east		
GROUN	DWATER:	Enco	untered	at 8.0' bgs		CAS. SAMPLER CORE TUBE Captain Bills g						grid	
DATE	TIME	LE	EVEL	TYPE	TYPE	Macrocore			DATE STARTED: 10/20/06				
					DIA.		2"			0/06			
					WT.					DRILLER:	Liam		
					FALL					GEOLOGIST:	Brian V	Veeks	
		* POCKET PENETROMETER READING REVIEWED BY: Scott M					1cCabe						
			SAMP	LE				DES	CRIPTIO	N			
DEPTH				BLOWS	REC%		CONSIST		N	MATERIAL		F	REMARKS
FEET	STRATA	NO.	TYPE	PER 6"	RQD%	COLOR	HARD			SCRIPTION	USCS	PID	
	$\times\!\!\times\!\!\times\!\!\times$					Black		Asphal					Dry
	.0					Brown		SAND	and GRA	AVEL trace silty clay	GW	57	
					70%								1
		1	2" MC										
						Dark							Moist
	. o					Gray						354	
					_								
	· · · · · · · · · · · · · · · ·												
5	iriiri									<u> </u>	V	1923	
	118/11/11					_ ▼				e sand and gravel	CL		Dry
	.0.0.	2	2 2" MC		53%	Gray				AVEL trace silty clay.	GW		Moist
-	:::::::				4	Light		strong	petroleul	m odor and sheen.			
	0				_	Gray I						2704	
	.:.::::::				_								
													10/-4
	0				4								Wet
	$\cdot \vdots \cdot \vdots \cdot \vdots \cdot \vdots \cdot$				-							580	
10	0	3	2" MC		-								
10		3	2 IVIC		48%								
	0				-								
					-							90.2	
	·······		•		-	↓				7	↓		\downarrow
					+	! ▼		Fnd of	boring a	, t 12 0'	+ •		▼
					1				Joining a	2.0 .			
					1								
					┥								
					₫								
15					1								
-					┥								
					1								
COMME	NTS:	Borin	igs were	advanced	using a tra	ck-mount	ted geoprobe).		PROJECT NO.	111747	720	
							Cs and SVC			BORING NO. GB-40			
							Cs and SVO						

			l	JRS	Co	rporat	ion				TEST BORIN	G LO	G		
						•					BORING NO:	GB-41			
PROJE	CT:	Site	Investig	ation -	Nort	h Frankli	n Street	Site			SHEET:	1 of 1			
CLIENT		NYS									JOB NO.:		111	74720	
BORING	CONTRA	СТОІ	R:	GeoLo	ogic N	NY, Inc.					BORING LOCATION:		50 nort	h, 10 east	
GROUN	DWATER:	Enco	untered	at 4.8'	bgs		CAS.	SAMPLER	CORE	TUBE	Сар	tain Bills	grid		
DATE	TIME		EVEL	TYF		TYPE		Macrocore			DATE STARTED: 10/20/06				
						DIA.		2"			DATE FINISHED:	10/20	0/06		
						WT.					DRILLER:	Liam			
						FALL					GEOLOGIST:	Brian V	Veeks		
						* POC	KET PE	NETROMET	ER REA	DING	REVIEWED BY:	Scott M	lcCabe		
			SAMP	LE					DESC	CRIPTIO	N				
DEPTH				BLO	ws	REC%		CONSIST		N	MATERIAL		F	REMARKS	
FEET	STRATA	NO.	TYPE	PER	6"	RQD%	COLOR	HARD		DE	SCRIPTION	USCS	PID		
	>>>>>>						Black		Asphalt						
							Dark		SAND	and GRA	AVEL trace silty clay.	GW	_	Moist	
							Gray								
	Š	1	2" MC			53%	Gray		Silty CL	_AY trace	e sand and gravel.	ÇL			
	iiii (S												-		
	8														
	(1) X ((((((((((((((((((((((((((((((((((((CANID	l OD /	N/EL top as all to a law	V	-		
5	0.										AVEL trace silty clay.	GW		Dry	
									strong	petroleur	n odor and sheen.			Wet	
		2	2" MC			48%									
	. σ														
													-		
	· · · · · · · · · · · · · · · · · ·						↓				\downarrow	$ \downarrow $		\downarrow	
									End of	boring at	▼	V			
									Ella oi	borning a	1 0.0 .				
									Note: P	ID not w	orking due to heavy				
10									rain.	ID HOLW	orking due to neavy				
15															
COMME	NTS:	Borir	ngs were	advan	ced u	sing a tra	ck-mount	ed geoprobe).		PROJECT NO.	111747	'20		
	nple collect	_									BORING NO.	GB-41			
Groundy	vater samp	le col	lected fo	r analy	sis of	STARS \	OCs and	SVOCs.							

APPENDIX F

SURVEY DATA

Watkins 3,868596.533,741282.898,456.121,CP-3 NAIL 4,868409.020,741479.565,449.519,CP-4 PK 5,868304.951,741523.379,450.173,CP-5 PK 20,868673.326,741220.569,453.626,EP BG 21,868669.009,741225.740,453.544,EP 22,868664.177,741229.427,453.335,EP 23,868663.881,741228.627,453.845,WALL BG 24,868659.899,741230.255,456.156,WALL 25,868648.099,741235.748,456.692,WALL 26,868605.877,741254.980,457.542,WALL 27,868605.306,741254.996,457.379,CONC BG 28,868598.572,741273.632,456.212,CONC 29,868630.748,741244.554,453.418,EP 30,868605.264,741255.986,454.212,EP 31,868603.549,741260.831,454.063,EP 32,868612.445,741283.094,452.835,EP PC 33,868611.995,741292.261,452.776,EP 34,868604.679,741300.530,452.941,EP PT 35,868592.881,741305.940,453.678,EP PC 36,868588.436,741305.639,454.158,EP 41,868621.783,741212.243,461.054,TC BG 42,868621.345,741213.298,460.936,TC 43,868620.717,741214.547,460.491,TC
44,868610.193,741239.349,458.451,TC
45,868609.632,741240.664,458.692,TC
46,868595.707,741278.807,456.121,TC
47,868587.178,741301.095,454.849,TC
48,868588.601,741205.070,454.438.TC 48,868588.691,741305.079,454.428,TC 49,868591.996,741305.246,453.873,TC PT 50,868592.419,741304.918,454.289,WPOST BG 51,868602.377,741300.769,453.492,WPOST 52,868606.243,741295.544,453.384,WPOST 53,868606.286,741294.822,453.455,MP 54,868608.228,741291.497,453.544,MP 55,868608.826,741290.290,453.225,WPOST BG 56,868611.287,741284.193,453.134,WPOST 57,868606.405,741271.934,453.506,WPOST 58,868601.438,741290.927,454.325,UP NYT104 59,868589.930,741303.233,455.036,SG 60,868589.847,741299.114,455.416,LP31 61,868569.729,741362.154,451.031,CB 62,868547.043,741395.436,450.311,MH 63,868499.574,741398.777,449.657,MH 64,868574.314,741392.723,449.669,WV 65,868645.098,741357.564,450.100,GB38 66,868638.942,741317.000,451.236,GB37 67,868622.505,741296.832,452.364,MW 68,868621.410,741297.385,452.384,GB31 69,868602.864,741305.105,452.948,GB41 70,868593.626,741341.706,451.692,GB40 71,868638.102,741262.840,452.834,GB43 72,868605.676,741260.271,453.923,GB32 73,868639.623,741290.393,451.930,GB36 74,868688.019,741252.062,452.777,GB35 75,868685.126,741219.889,453.117,120N 0E 76,868612.614,741252.589,454.047,40N 0E 77,868595.340,741314.229,453.167,0N 50E 78,868620.364,741379.408,449.684,0N 120E 79,868656.287,741400.812,449.021,LP

Page 1

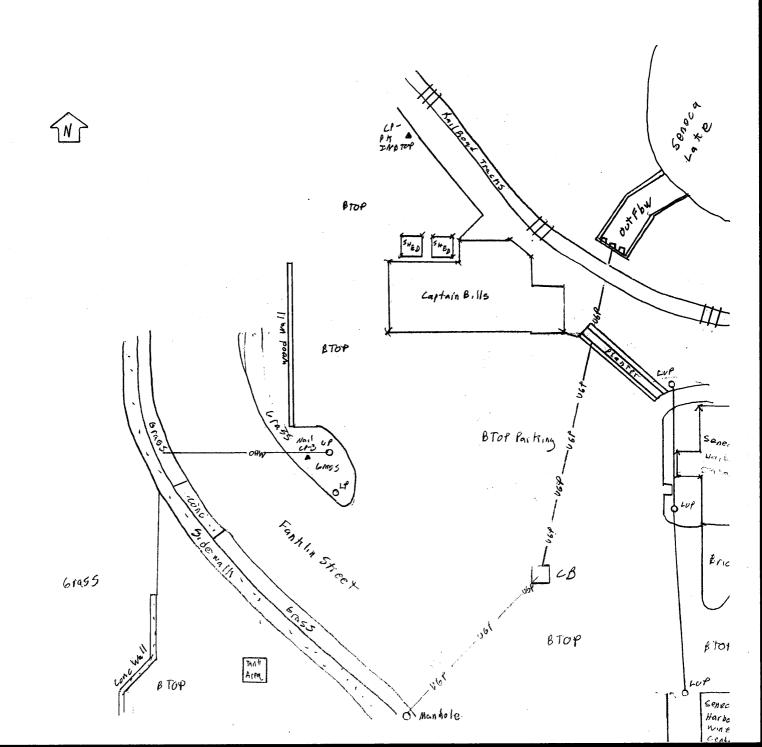
Watkins 80,868654.993,741400.268,449.289,PLANT BG 81,868651.853,741398.519,449.484,PLANT 82,868677.041,741345.324,450.442,PLANT 83,868572.251,741203.817,460.333,EP BG 84,868571.667,741203.951,460.613,TC BG 85,868563.057,741224.426,458.561,TC 86,868563.532,741224.834,458.232,EP 87,868551.932,741255.749,455.713,TC 88,868551.163.741257.823.455.713,TC 88,868551.163,741257.823,455.121,TC 89,868538.409,741290.590,452.518,TC
90,868537.958,741291.565,452.708,TC
91,868535.521,741297.998,452.021,EP PC
92,868535.246,741297.683,452.485,TC PC
93,868496.359,741357.046,449.473,TC
94,868496.711,741357.286,449.020,EP 95,868457.041,741394.522,448.426,TC 96,868455.630,741395.579,448.238,TC 97,868424.899,741416.495,448.711,TC 98,868423.727,741417.260,448.789,TC PT 99,868423.590,741417.864,448.662,EP PT 100,868415.113,741422.930,448.753,EP PC 101,868407.019,741423.762,448.757,EP 102,868401.290,741418.345,449.109,EP PT 103,868414.592,741422.542,449.304,TC PC 104,868407.707,741423.365,449.382,TC 105,868404.172,741421.415,449.028,TC 105,868404.172,741421.413,449.026,7C 106,868401.139,741416.404,449.150,TC PT 107,868410.857,741421.235,449.362,SG 108,868413.477,741420.468,449.454,SG 109,868401.205,741416.339,449.136,SWK1 BG 110,868403.889,741420.998,449.035,SWK BG 111,868419.272,741412.472,449.326,SWK 112,868423.577,741417.141,448.865,SWK 113,868415.275,741408.848,449.373,MW 114,868416.165,741408.582,449.326,5WK1 PC 115,868488.192,741348.278,450.231,5WK1 116,868455.419,741395.360,448.428,5WK BG 117,868452.577,741389.254,449.186,5WK PC 118,868492.225,741351.004,450.072,5WK 119,868502.391,741342.590,450.262,MH 120,868533.759,741290.288,452.793,SWK PT 121,868537.755,741291.547,452.725,SWK 121,868537.733,741231.347,432.723,5WK 122,868529.922,741286.019,453.139,MW 123,868537.622,741270.340,454.276,5WK1 PT 124,868556.870,741221.057,458.861,5WK1 125,868561.114,741222.723,458.777,5WK BG 126,868548.756,741255.388,455.698,5WK 127,868551.004,741256.919,455.386,SWK 128,868543.158,741255.890,455.454,EP BG 129,868480.647,741279.988,451.876,EP 130,868467.926,741274.100,452.093,EP 131,868449.948,741282.980,451.924,LP 132,868405.359,741298.275,451.518,EP 133,868407.075,741302.949,451.428,WALL BG 134,868405.043,741298.003,455.123,WALL 135,868468.111,741274.055,455.668,WALL 136,868480.615,741279.679,454.302,WALL 137,868509.330,741268.406,455.055,WALL 138,868508.096,741265.277,454.949,WALL 139,868560.460,741249.765,456.205,360N 10E 140,868529.466,741286.962,452.931,GB22 141,868477.631,741291.406,451.560,GB20 142,868499.801,741293.758,451.717,GB21

Page 2

Watkins 143,868507.171,741310.626,451.488,GB29 144,868501.008,741331.371,450.678,GB28 145,868513.384,741301.630,451.989,GB30 146,868482.699,741332.514,450.652,GB27 147,868468.209,741348.272,450.405,GB24-2 148,868450.345,741345.201,450.492,GB17 149,868432.257,741311.393,451.128,GB18 150,868459.398,741315.256,451.001,GB19 151,868457.080,741320.629,450.904,GB 152,868456.157,741321.281,450.880,GB 152,868456.137,741321.261,430.860,GB 153,868465.843,741369.051,449.811,GB25 154,868414.226,741409.653,449.341,GB16 155,868398.394,741394.342,449.730,CB 156,868388.791,741384.961,450.693,EP BG 157,868361.432,741314.636,459.961,EP 158,868342.971,741321.261,459.908,EP BG 159,868370.336,741393.490,450.719,EP 160,868363.882,741396.478,450.338,EP 161,868352.026,741403.047,450.251,EP 162,868367.162,741390.840,450.803,SG 163,868382.705,741425.515,448.947,EP 164,868381.600,741435.076,448.788,EP 165,868373.488,741442.791,448.999,EP 166,868382.204,741425.565,449.071,TC BG PC 167,868381.839,741433.138,448.782,TC 168,868380.814,741435.403,449.359,TC 169,868374.340,741441.748,449.347,TC PT 170,868371.657,741438.597,449.692,SG 171,868363.934,741444.055,449.555,SG 172,868351.405,741452.610,448.968,CB 173,868312.998,741466.620,449.179,EP 174,868308.378,741467.810,449.710,TC 175,868305.885,741468.751,449.292,TC 176,868263.832,741485.247,449.510,TC 177,868261.160,741486.301,449.999,TC 178,868260.794,741487.007,449.483,EP 179,868208.943,741507.506,449.945,EP 180,868210.560,741508.138,449.966,CB 181,868227.228,741499.703,450.268,TC 182,868224.766,741500.636,449.845,TC 183,868213.840,741504.923,449.893,TC 184,868211.300,741506.031,450.463,TC 185,868207.784,741507.411,450.432,TC 186,868211.458,741499.486,450.529,SWK BG
187,868281.057,741471.932,449.777,SWK
188,868371.688,741436.223,449.525,SWK
189,868374.317,741441.713,449.396,SWK
190,868379.072,741451.245,449.208,MH 191,868376.178,741429.248,449.407,WV 192,868388.191,741430.018,448.946,WV 193,868382.079,741425.758,449.045,SWK BG
194,868350.209,741438.572,449.902,SWK
195,868346.307,741428.684,449.950,SWK
196,868316.455,741440.022,450.015,SWK
197,868320.218,741450.211,449.814,SWK 198,868269.305,741470.179,449.911,5WK 199,868209.625,741493.832,450.548,5WK 200,868214.722,741518.886,450.337,MH 201,868245.842,741490.186,450.168,SG 202,868241.352,741459.477,450.842,GB1 203,868229.903,741453.835,451.353,GB2 204,868234.552,741441.657,451.047,GB3 205,868230.598,741432.241,451.055,GB4

Page 3

Watkins 206,868222.166,741435.085,451.478,GB6 207,868224.044,741415.183,451.041,GB5 208,868250.094,741478.377,450.212,0N OW 209,868260.416,741465.245,450.125,MW 210,868275.588,741446.314,450.065,GB7-2 211,868275.946,741435.208,450.055,GB8 212,868276.528,741382.406,450.575,GB10 213,868266.760,741385.186,450.501,50N 80W 214,868290.708,741419.683,450.263,GB9 215,868268.497,741416.612,450.113,40N 50W 216,868285.881,741427.199,450.161,GB11 217,868300.216,741432.960,450.169,GB12 218,868296.403,741459.523,449.726,50N OW 219,868312.106,741447.003,449.924,GB14 220,868338.714,741450.668,449.694,GB13-SG6 221,868359.264,741428.941,449.615,GB15 222,868388.737,741368.265,451.832,UP NYT101 223,868446.734,741463.524,449.316,LUP NYT102 224,868423.991,741487.946,449.860,UP LP5 225,868440.858,741486.025,449.735,MW 226,868445.247,741475.169,449.640,WV 227,868400.177,741475.511,448.955,WV 228,868394.255,741474.567,449.041,WV 229,868251.280,741538.738,449.739,EP 230,868305.598,741517.397,449.267,EP 231,868405.710,741478.034,448.966,EP 232,868524.482,741431.631,448.672,EP 233,868520.332,741431.818,448.603,CB 234,868520.937,741434.849,449.189,LUP3 235,868516.678,741436.357,449.542,SG 236,868545.999,741431.928,449.335,SMH 237,868727.281,741337.845,443.353,INV 24 238,868726.358,741342.204,445.358,TPIPE36 239,868724.298,741349.621,446.267,TPIPE48 240,868637.371,741328.204,450.904,WV 241,868583.461,741311.176,453.887,GS 242,868559.244,741357.603,451.923,GS 243,868526.358,741398.986,450.495,GS 244,868489.520,741433.137,449.529,GS 245,868566.306,741429.961,449.568,EP BG 246,868563.524,741428.068,449.505,EP 247,868562.469,741424.610,449.415,EP 248,868565.081,741420.984,449.436,EP PT 249,868588.584,741411.664,449.549,EP 250,868590.765,741411.369,449.533,TC BG 251,868590.108,741411.704,449.892,TC 252,868565.367,741421.565,449.751,TC PC 253,868563.066,741424.660,449.734,TC 254,868564.185,741427.782,449.795,TC PT 255,868567.182,741429.888,449.848,TC 256,868595.411491,741409.160401,449.538189,EP BG 257,868591.148613,741438.578088,450.062930,BLDG BG 258,868603.132717,741406.257613,449.487026,BLDG 259,868623.328349,741413.741836,449.838511,BLDG 260,868626.210315,741406.253906,449.809066,BLDG 261,868637,676846,741410,500761,450.005447,BLDG 261,868637.676846,741410.500761,450.005447,BLDG 262,868645.776573,741421.698943,449.617591,BLDG 263,868616.713178,741400.298473,449.826365,LUP 2J 264,868604.522914,741403.099867,449.588692,EP PC 265,868610.776987,741398.001322,449.602274,EP 266,868620.863457,741397.920529,449.496825,EP PT 267,868623.240374,741397.656296,449.443864,GUY 268,868624.234314.741398.616034.449.645232.EP


268,868624.234314,741398.616034,449.645232,EP Page 4

```
Watkins
269,868623.463532,741402.106807,449.764675,EP
270,868626.888903,741403.610776,449.774901,EP
271,868627.916485,741400.524421,449.645116,EP
272,868647.477288,741407.433826,449.475750,EP
273,868649.582002,741411.642503,449.531472,EP
274,868646.680552,741419.848593,449.551868,EP
275,868655.380372,741420.543869,449.820580,EP
276,868658.403247,741412.187705,449.450065,EP
277,868655.531027,741400.481886,449.291307,EP
278,868672.570551,741334.513106,451.766461,BLDG BG 279,868650.669320,741280.691152,452.504805,BLDG 280,868655.321681,741292.857414,452.504096,GS 281,868657.044508,741296.599882,451.963531,GS 282,868681.157389,741267.652458,452.677344,BLDG
283,868543.500468,741489.198869,449.889475,BLDG BG
284,868525.856780,741445.490734,449.266773,BLDG
285,868447.591925,741476.443242,449.489091,BLDG
286,868411.806800,741314.565467,451.053030,BLDG BG
287,868431.483393,741365.204989,450.863753,BLDG
288,868429.794860,741369.165110,450.780500,BLDG
289,868738.434650,741247.248116,452.051957,PK
290,868503.010199,741300.541074,451.61665,TANK AREA
291,868494.213112,741304.470772,451.337982,TANK AREA
292,868496.863891,741312.369264,451.253385,TANK AREA
293,868505.792357,741308.382798,451.504631,TANK AREA
294,868409.063229,741479.528022,449.431196,CHK
295,868691.607872,741290.355251,452.380256,BLDG BG 296,868700.735153,741287.205619,452.159235,BLDG 297,868706.420637,741300.622589,450.774120,BLDG 298,868699.915564,741312.479758,450.968420,BLDG 299,868701.451774,741287.483445,452.084054,EP BG
300,868711.441013,741291.057944,451.754627,EP
301,868723.849653,741272.569801,451.735170,EP
302,868683.085575,741269.347206,452.691553,SHED BG
303,868690.542301,741266.176152,452.721794,SHED
304,868693.771656,741273.485165,452.444239,SHED
305,868695.220334,741273.579051,452.437957,SHED
306,868699.999277,741284.971889,452.162617,SHED
307,868691.029551,741288.656404,452.396406,SHED
309,868404.233132,741379.171065,450.873267,BLDG BG
310,868383.468186,741325.690557,453.721108,BLDG
311,868340.924249,741367.555960,450.797616,GS
312,868328.783289,741374.132429,450.474741,BLDG BG 313,868332.677859,741383.918273,451.260076,BLDG 314,868337.211763,741382.113148,450.528809,BLDG 315,868340.437528,741389.553393,450.303535,BLDG 316,868335.765713,741391.867613,450.226922,BLDG 317.868344.364246.741413.757801.450.464651
317,868344.264246,741413.757891,450.464651,BLDG
318,868306.427435,741428.688966,450.406973,BLDG
319,868322.301627,741437.464771,450.996029,OVERHANG
320,868341.245426,741430.277173,451.027672,0VERHANG
321,868322.576950,741437.806395,450.125156,ISLAND BG
322,868346.047498,741428.870940,450.074383,ISLAND
323,868345.092736,741425.970356,450.232630,ISLAND
324,868316.098255,741436.858387,450.141461,ISLAND
 325,868317.381266,741439.620767,450.088499,ISLAND
326,868352.664382,741402.668531,450.352888,SWK BG
327,868345.817488,741385.590310,450.994252,SWK
 328,868339.783554,741387.926172,451.181048,SWK
329,868338.548069,741385.095848,451.185376,SWK
330,868347.503357,741381.656446,451.071486,SWK
331,868354.999766,741401.266148,450.447700,SWK
334,868286.652015,741377.861002,450.454694,BLDG
                                                                      Page 5
```

Watkins 335,868238.935515,741374.526619,451.665122,BLDG BG 336,868267.750601,741445.304062,450.378205,BLDG 337,868245.771122,741454.258167,450.640006,BLDG 338,868224.914179,741487.344193,450.662083,STN BG 339,868223.451834,741482.912103,450.988513,STN 340,868242.186780,741471.991584,450.970503,STN 341,868176.533480,741416.482206,452.403319,BLDG1 BG 342,868205.361560,741490.634808,451.438912,BLDG1 343,868182.701385,741499.618462,451.226179,BLDG1 346,868212.658223,741404.508337,452.057560,STN 347,868182.717621,741419.009552,452.484603,STN 348,868217.103129,741383.172682,452.011932,BLDG 349,868215.152613,741373.549953,452.164541,TANK

		Page	1 of 2
Job Franklin Street Wathins Glen	Project No. 111 74720,00002	Sheet	of
Description Site Sticte 4	Computed by	Date	11-7-06
	Checked by	Date	
			D-6

Reference

URS

Page _____ of ______ Job Franklin Street Watkins Glon Project No. 1117 4720.0000 2 Computed by ______ Description 5,40 Sketch 11-7-06 Date Checked by Date Reference Marhole BTOP Seneca Harbor Wixe conter CI. Ford Motors GAMBE catch Basin OHV DIVISION STREET CAG PK is BTOP BTOP conë. 17 nard old Station TEIAND BTOP 1) pridois 870P BTOP Garage 250gal Waste Oil A.S. Tanti 61955 Stone Parking BTA 6-23019 Cabine to Cartino Bealterate