2019 Annual Groundwater Sampling Report

Location:

729 Cross Road Oaks Corners, New York

Prepared For:

Elderlee, Inc. 729 Cross Road Oaks Corners, New York 14518

June 2019

Prepared By:

Eastman Business Park, 1667 Lake Avenue, Building 59, 1st Floor Rochester, New York 14615

Table of Contents

		<u>Pag</u>	<u>e</u>
1.0	Introdu 1.1	Objective	
2.0	Scope 2.1 2.2 2.3	of Work	
3.0	Field N	Measurements	
4.0	Analyt	ical Results3	
5.0	Summa	ary of Findings and Conclusions4	
Figure	es		
Figure Figure Figure	2 3	Site Location Map General Site Map and Monitoring Well Locations Groundwater Contour and Flow Map	
Tables	}		
Table 2 Table 3 Table 4 Table 5 Table 6 Table 6 Table 8	2 3 4 5 5 7	Summary of Monitoring Well Depths Analytical Results Summary of Historical Results: MW-4A Summary of Historical Results: MW-5A Summary of Historical Results: MW-8 Summary of Historical Results: MW-9R Summary of Historical Results: MW-10R Summary of Historical Results: MW-11	
Appen	dices		
Append Append Append	dix B – dix C – dix D –	Figures Analytical Summary Tables Groundwater Sampling Logs Laboratory Analytical Report Photo's	

1.0 Introduction

NEU-VELLE, LLC ("NEU-VELLE") was retained by Elderlee, Inc. to provide professional environmental services at 729 Cross Road, Oaks Corners, New York, hereinafter referred to as the "Site" for the 2019 annual groundwater sampling event. (Figure 1)

A portion of this Site (Elderlee, Inc.) in Oaks Corners, New York is a listed New York State Department of Environmental Conservation (NYSDEC) Inactive Hazardous Waste Disposal Site (NYSDEC ID3 835014). This Site has been utilized to manufacture road signs, galvanized highway bridge rail, and guide rails since approximately 1968. Hazardous waste was disposed of in two (2) distinct areas of the Site.

Area A is a location of two (2) former settling lagoons that are located north of the galvanizing plant and used for neutralizing waste sulfuric acid until approximately 1984. Elevated levels of zinc and lead were detected in soil samples collect from the former lagoon area. A Remedial Investigation/Feasibility Study (RI/FS) was conducted at the Site in the fall of 1995. The RI/FS was finalized in 1998 and a Record of Decision (ROD) was signed in March 1998. The ROD specified asphalt capping of the former lagoon area combined with continued semi-annual ground water monitoring of selected wells located within, and downgradient, from Area A. The sampling frequency was subsequently reduced to annual sampling.

Area B was the former paint waste disposal area immediately southeast of the sign plant at the Site. Waste paint thinner and cleaning solvents were reportedly disposed of on the ground surface. Elevated levels of xylene, ethylbenzene, toluene and acetone have been detected in soil and groundwater samples collected form this area. The March 1998 ROD specified the operation and enhanced bioremediation program (i.e., oxygen injection) in this area combined with continued groundwater monitoring of selected wells located within the downgradient from Area B. After ground water analytical results indicated a significant decrease in contaminant levels with Area B monitoring wells utilizing a passive (wind-powered) soil vapor extraction system was installed to treat unsaturated soils in the area in the summer of 2001. Based on analytical results, periodic sampling of Area B ground water monitoring wells was terminated in 2006.

1.1 Objective

The objective of this project is to monitor Area A groundwater monitoring wells, collect cap photos and provide an annual progress report for Area A at the Site. The Scope of Work in Section 2.0 of this Report was conducted at the Site.

2.0 Scope of Work

2.1 Annual Sampling of Area A Groundwater Monitoring Wells

The NYSDEC requires the annual sample of Area A monitoring wells (MW-4A, MW-5A, MW-8, MW-9R, MW-10R, and MW-11). To meet the objective, NEU-VELLE completed the

following:

- A NEU-VELLE Environmental Scientist measured water levels from all on-site Area A
 monitoring wells prior to sample collection using an electronic water level meter
 calibrated to ±0.01 foot. Measurements were taken from the top of the inner PVC casing
 of each well which have previously been surveyed for elevation. Water level
 measurements were recorded on the groundwater sampling logs generated for each well
 sampled. The groundwater sampling logs are contained in Appendix C.
- 2. Prior to groundwater sampling, the monitoring wells were purged by the NEU-VELLE Environmental Scientist. Specifically, a peristaltic pump and dedicated Teflon tubing were used to purge the selected wells using low flow methodologies. Field parameter measurements for pH, Specific Conductance, Temperature and Turbidity were collected at five-minute intervals, then recorded on the individual Groundwater Sampling Log Sheets for each well sampled. Purging was considered complete with the field parameters of pH and Specific Conductance stabilized to within 10% for three (3) successive readings, and when the turbidity readings were at or below 10 Nephelometric Turbidity Units (NTUs). However, since the turbidity criteria of 10 NTUs could not be achieved, sampling was completed after turbidity measurements stabilized.
- 3. Groundwater samples were collected from each well once the purging criteria described above had been reached. The samples were collected using the peristaltic pump operating at the same low flow rate utilized during purging of the well. The groundwater samples were placed in laboratory supplied bottles, placed in a cooler on ice, and transported to Paradigm Laboratories under chain-of-custody procedures for the following analysis:
 - Target Analyte List (TAL) Metals by USEPA Methods 6010 and 7471
 - Chloride and Sulfate Ions by USEPA Method 300.0

2.2 Deviation from Reporting Requirements

This is the seventh annual reporting period for well MW-9R and MW-10R monitoring well locations, which replaced former well locations MW-9 and MW-10.

2.3 Annual Progress Report

Following sampling, NEU-VELLE prepared this Annual Progress Report for the Site. The Report details the field methodologies implemented at the Site, and summarizes and discusses the results of the work, including a comparison of the current analytical result to historical site data as well as the appropriate NYSDEC Groundwater Standards and Guidance Values.

This Annual Progress Report will be submitted electronically as follows:

- Jonathan Tamargo NYSDEC Region 8
- Karis Manning NYSDEC Region 8
- Adam Morgan NYSDEC Region 8
- Director, Bureau of Environmental Exposure Investigation NYSDOH
- James Morlang Elderlee, Inc
- Robert Lamb Elderlee, Inc

3.0 Field Measurements

On May 9, 2019, NEU-VELLE Environmental Scientist measured the water levels within the referenced groundwater monitoring wells in Area A with an electronic water level meter. Static water level readings were utilized to evaluate the groundwater flow pattern with historical data.

Well I.D.	Static Water	Depth of
Well I.D.	Level (feet)	Well (feet)
MW-4A	3.31	12.0
MW-5A	2.60	11.3
MW-8	6.36	13.9
MW-9R	10.23	20.0
MW-10R	6.87	15.0
MW-11	1.04	12.3

The Site groundwater flow direction was calculated from the above static water level measurements collected on May 9, 2019 is depicted in Figure 3 – Appendix A. Water-level elevation data indicate groundwater to be flowing in a southeast direction on site.

4.0 Analytical Results

The laboratory results were compared to the NYCRR Part 703 Groundwater Standards from the NYSDEC Technical and Operational Guidance Series (1.1.1) Memorandum, and to historical analytical data collected for each well. Table 2 presents the analytical data from the Area A monitoring wells from the sampling event. Tables 3 through 8 present the current and historic analytical data for each well in Area A. Appendix E contains the laboratory report. The following summarizes the infringements of groundwater quality standards identified during the 2018 annual sampling event:

- Two (2) wells (MW-9R and MW-11) contained concentrations of Chloride Ion that exceeded the NYCRR Part 703 Groundwater Standard.
- Four (4) wells (MW-4A, MW-5A, MW-8 and MW-11) contained concentrations of Sulfate Ion that exceeded the NYCRR Part 703 Groundwater Standard.

- Five (5) wells (MW-4A, MW-5A, MW-8, MW-10R and MW-11) contained concentrations of iron that exceeded the NYCRR Part 703 Groundwater Standard.
- Three (3) wells (MW-4A, MW-8 and MW-11) contained concentrations of magnesium that exceeded the NYCRR Part 703 Groundwater Standard.
- Four (4) wells (MW-4A, MW-8, MW-10R and MW-11) contained concentrations of manganese that exceeded the NYCRR Part 703 Groundwater Standard.
- Six (6) wells (MW-4A, MW-5A, MW-8, MW-9R, MW-10R and MW-11) contained concentrations of sodium that exceeded the NYCRR Part 703 Groundwater Standard.
- One (1) well (MW-4A) contained concentrations of zinc that exceeded the NYCRR Part 703 Groundwater Standard.
- One (1) well (MW-10R) contained concentrations of chromium that exceeded the NYCRR Part 703 Groundwater Standard.
- Four (4) wells (MW-4A, MW-5A, MW-8 and MW-11) contained concentrations of Sulfate that exceeded the NYCRR Part 703 Groundwater Standard.

The concentration of analytes detected in groundwater samples collected on May 10, 2019 were generally within the ranges of values previously recorded for Area A monitoring wells. Appendix B – Table 2 depicts the results from the May 10, 2019 annual sampling event.

5.0 Summary of Findings

Summary of Findings

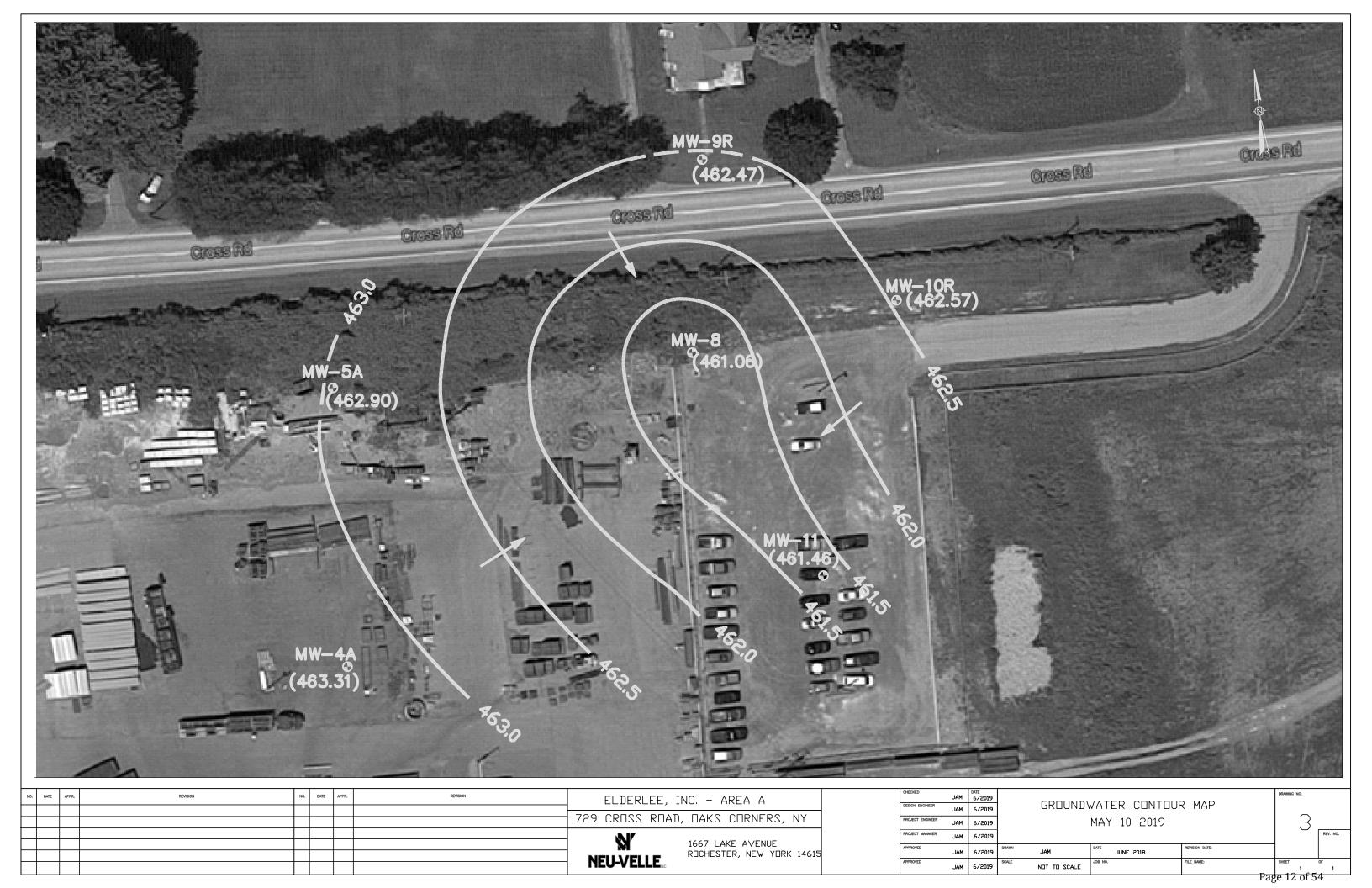
In general, the concentrations of analytes of concern have remained relatively unchanged over the past year. Many of the analytes that exceed the Part 703 Value in the previous sampling event were reported at concentrations still exceeding the Part 703 Value in the May 10, 2019 sampling event.

Concentrations of analytes of concern were below the standard deviation (SD) above their associated historical average concentration except for the following well/analyte that exceeded the historical average by one SD:

- MW-4A: Iron, Magnesium, Manganese, Sodium, Zinc, Chloride and Sulfate
- MW-5A: Sodium and Sulfate
- MW-8: Magnesium, Manganese, Sodium, Chloride and Sulfate
- MW-9R: None

- MW-10R: Chromium, Manganese and Sodium
- MW-11: Iron, Magnesium, Manganese, Sodium, Chloride and Sulfate

Appendix B depicts the historical data in Table 3 through 8.


Conclusions

- Overall the concentrations of analytes of interest are either decreasing in certain compounds or have remained relatively stable. Additionally, the analytical parameters have included testing for TAL metals, chloride and sulfates. Generally, only a select few metals have been detected above the Part 703 Values on a consistent basis. These metals include:
 - Chromium
 - Iron
 - Magnesium
 - Manganese
 - Sodium
 - Zinc
 - Chloride
 - Sulfate
- As requested by the NYSDEC, a change of use and corrective action work plan was developed and submitted to the NYSDEC to address the BMP's for Area A. Area A consists of the two (2) former settling lagoons that are asphalt capped that are located north of the galvanizing plant. Based on the agreement between the NYSDEC and Elderlee, the following will be implemented.
 - In 2018 a lining for a section storm water piping to the west of Area A was completed to restrict infiltration into the piping.
 - In 2018, installation for drainage swale to the east of the manufacturing facility to control no industrial storm water from entering the site.
 - In 2018 the former dewatering pump station was abandoned, removed and closed.

APPENDIX A FIGURES

APPENDIX B ANALYITICAL SUMMARY TABLES

Table 1 Annual Groundwater Sampling 729 Cross Road, Oaks Corners, New York

Summary of Monitoring Well Depths May 9, 2019

Well I.D.	Static Water Level (feet)	Depth of Well (feet)
MW-4A	3.31	12.04
MW-5A	2.60	11.3
MW-8	6.36	13.9
MW-9R	10.23	20.0
MW-10R	6.87	15.0
MW-11	1.04	12.3

Table 2
Elderlee, Inc. Oaks Corners Facility - Area A
Table of Analytical Results - May 10, 2019

Field Parameters	Units	Method	MW-4A	MW-5A	MW-8	MW-9R	MW-10R	MW-11	6NYCRR Part 703 MCL/Std.
Gradient Location	NA	NA	Downgradient	Downgradient	Downgradient	Downgradient	Downgradient	Downgradient	NS
Static Water Level	feet	NA	3.31	2.60	6.36	10.23	6.87	1.04	NS
Specific Conductance	umhos/cm	NA	1,890	2,170	1,610	2,620	1,390	2,670	NS
Temperature	Degrees C	NA	12.9	9.2	10.3	10.5	10.7	10.4	NS
рН	S.U.	NA	6.65	6.86	6.84	6.88	6.91	6.73	6.5 - 8.5
Turbidity	NTU	NA	2.21	1.1	2.14	2.69	2.8	12.4	NS
Metals									
Aluminum	ug/l	200.7	ND	ND	ND	ND	199	115	NS
Antimony	ug/l	200.7	ND	ND	ND	ND	ND	ND	3
Arsenic	ug/l	200.7	ND	ND	ND	ND	ND	18.7	25
Barium	ug/l	200.7	ND	ND	ND	ND	ND	ND	1,000
Beryllium	ug/l	200.7	ND	ND	ND	ND	ND	ND	3
Cadmium	ug/l	200.7	ND	ND	ND	ND	ND	ND	5
Calcium	ug/l	200.7	320,000	451,000	312,000	162,000	109,000	364,000	NS
Chromium	ug/l	200.7	ND	ND	ND	ND	ND	ND	50
Cobalt	ug/l	200.7	ND	ND	ND	ND	ND	ND	5
Copper	ug/l	200.7	ND	ND	ND	ND	ND	ND	200
Iron	ug/l	200.7	1,420	1,740	2,650	120	446	6,190	300
Lead	ug/l	200.7	ND	ND	ND	ND	ND	ND	25
Magnesium	ug/l	200.7	38,900	29,900	23,000	39,000	25,000	60,300	35,000
Manganese	ug/l	200.7	408	440	637	88	1,150	1,110	300
Mercury	ug/l	245.1	ND	ND	ND	ND	ND	ND	0.7
Nickel	ug/l	200.7	ND	ND	ND	ND	ND	ND	100
Potasium	ug/l	200.7	2,960	ND	ND	4,530	ND	3,860	NS
Selenium	ug/l	200.7	ND	ND	ND	ND	ND	ND	10
Silver	ug/l	200.7	ND	ND	ND	ND	ND	ND	50
Sodium	ug/l	200.7	88,400	53,400	25,500	303,000	143,000	158,000	20,000
Thallium	ug/l	200.7	ND	ND	ND	ND	ND	ND	0.5
Vanadium	ug/l	200.7	ND	ND	ND	ND	ND	ND	NS
Zinc	ug/l	200.7	7,400	314	1,190	144	658	ND	2,000
Wet Chemistry									
Chloride	mg/l	300.0	160	86	26	630	220	290	250
Sulfate	mg/l	300.0	880	1,100	700	88	110	870	250

Bold Type - Exceeds NYCRR Part 703 Groundwater Standard from NYSDEC Technical and Operational Guidance Series (1.1.1) - Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

NA - Not Applicable

ND<5.0 denotes that the constituent was not detected above the reported laboratory method detection limit.

NS - No Groundwater Standard

B - This flag indicates the compound was also detected in the associated Method Blank. The B flag has an alternative meaning for Inorganics analyses reported using CLP ILM-type metals forms, indicating a "trace" concentration below the reporting limit and equal to or above the detection limit.

^{--- -} Not Sampled

Table 3 Elderlee, Inc. Oaks Corners Facility - MW-4A

			6NYCRR Part703		T						1					Τ			1	T	T							$\overline{\Box}$	<u> </u>
Field Parameters	UNITS	METHOD	MCL/std.	05/10/19	05/02/18	05/01/17	05/11/16	06/11/15	06/20/14	07/01/13	04/11/12	07/22/11	05/15/09	05/27/08	06/14/07	06/13/06	06/01/05	12/06/04	06/02/04	12/16/03	07/10/03	02/19/03	06/06/02	12/06/01	06/22/01	12/14/00	06/01/00	### Arithmetic Mean	Standard Deviation
Static Water Level	feet	NA	NS	3.31	3.16	3.07	3.36	2.95	3.75	3.55	5.48	4.42	3.7	3.81	3.85	3.75	3.79	3.93	3.31	3.66	4.01	4.67	3.43	4.66	3.98	3.77	3.25	NA 3.80	0.58
Specific Conductance	umhos/cm	NA	NS	1,890	3,100	3,930	2,520	3,140	3,340	2,550	1,910	3,730	2,833	2,810	3,190	3,320	2,920	3,350	3,160	3,590	3,630	3,539	2,610	3,020	2,520	3,380	3,060	NA 3093.57	471.27
Temperature	Degrees F	NA	NS	12.9	11.7	14	15.2	16.5	21.16	20.21	52.5	23.81	15.4	58.60	64.40	62.40	70.20	48.40	59.20	50.40	65.80	46.50	60.60	60.60	68.50	46.00	62.80	NA 44.13	21.16
рН	S.U.	NA	6.58.5	6.65	6.75	5.07	7.17	6.82	6.74	6.75	6.57	8.2	7.77	7.62	6.85	7.07	7.12	6.85	6.68	6.75	6.21	6.97	6.68	6.69	6.74	6.52	6.81	NA 6.84	0.58
Turbidity	NTU	NA	NS	2.21	2.6	12	21	22.8	12.5	15.2	3.0	33.5	9.8	44.00	30.00	8.00	5.00	100.00	18.00	3.00	6.00	8.04	2.89	7.63	NA	12.00	11.50	NA 18.36	21.61
Metals																													
Aluminum	ug/l	200.7	NS	ND	ND	532.0	1,080.0	470.0	ND	ND	70.9 B	ND	190	269	ND	102	ND	241	ND	ND	ND	ND	13	209	149	71 I	3 ND	В 265.39	290.20
Antimony	ug/l	200.7	3	ND	ND<60	ND	20.5 I	3 ND	ND	NA																			
Arsenic	ug/l	200.7	25	ND	ND	ND	ND	11.4	ND	ND	ND J	4.9 J	ND<10	ND	3.4 B	ND	ND	ND	NA										
Barium	ug/l	200.7	1,000	ND	ND	ND	ND	ND	30.1 B	ND	15.7 B	43 J	ND<20	ND	37.4	ND	18.1	ND	22.9	14.1 I	3 44.5	В 27.74	11.68						
Beryllium	ug/l	200.7	3	ND	ND	ND	ND	ND	ND	24.2 B	ND	ND	ND<5	ND	0.9	ND	ND	12.55	16.48										
Cadmium	ug/l	200.7	5	ND	ND	ND	ND	ND	4.0 B	ND	3.9 B	3.2 J	ND<5	ND	ND	ND	ND	ND	6.1	7.3	ND	5.2	3.4	ND	4.0 B	4.3 I	3 7.0	4.84	1.48
Calcium	ug/l	200.7	NS	320,000	572,000	592,000	425,000	607,000	523,000	475,000	347,000	560,000	425,000	497,000	557,000	596,000	495,000	584,000	443,000	551,000	498,000	553,000	536,000	503,000	347,000	575,000	572,000	523,500.00	92095.96
Chromium	ug/l	200.7	50	ND	ND	21.2	47.7	16.4	3.2 B	2.7 B	10.5 B	1.1 J	11	11.3	ND	ND	ND	17.5	11.9	11.7	12.8	ND	3.4	43.8	14.2	2.6 I	3 ND	14.29	13.19
Cobalt	ug/l	200.7	5	ND	ND	ND	ND	ND	1.5 B	2.0 B	1.5 B	1.5 J	ND<50	ND	2.7 B	3 I	B ND	В 1.93	0.67										
Copper	ug/l	200.7	200	ND	ND	ND	ND	ND	3.8 B	ND	4.6 B	ND	ND<20	ND	0.88 B	ND	ND	ND	NA										
Iron	ug/l	200.7	300	1,420	6,460	2,860	6,070	1,980	6,790	5,660	2,350	8,300	2,480	4,190	8,770	12,300	7,160	14,800	7,250	9,690	5,950	15,300	13,100	13,300	5,200	14,700	12,900	9,245.71	5,416.27
Lead	ug/l	200.7	25	ND	ND	84.3	178.0	46.7	13.6	4.7 B	18.3	ND	ND<50	22.4	9.1	11.4	ND	29.6	11.0	5.9	7.3	ND	2.5	17.5	11.4	ND	ND	29.61	44.52
Magnesium	ug/l	200.7	35,000	38,900	65,700	69,500	46,800	39,100	80,100	69,900	55,900	81,000	75,000	71,000	79,600	74,300	81,200	76,900	89,800	103,000	103,000	83,200	72,300	57,400	54,200	78,100	82,600	70,800.00	20,321.11
Manganese	ug/l	200.7	300	408	472	122	276	296	561	548	551	560	698	635	670	578	652	537	596	705	739	619	647	331	646	697	719	565.14	162.08
Mercury	ug/l	200.7	0.7	ND	ND	ND	ND	ND	ND	0.043 B	ND	ND	ND<0.3	ND	0.17	0.17													
Nickel	ug/l	200.7	100	ND	ND	ND	ND	ND	7.2 B	8.1 B	7.6 B	6.6 J	ND<40	ND	8	ND	8 B	10.5	ND	В 8.34	1.57								
Potassium	ug/l	200.7	NS	2,960	4,190	5,890	3,660	5,390	6,930	4,960	4,660	7,300	7,700	6,850	7,880	7,690	7,970	7,010	7,690	7,370	8,670	5,190	6,160	5,830	5,620	5,300	6,360	6,375.00	1,575.01
Selenium	ug/l	200.7	10	ND	ND	ND	ND	1.6	ND	21.7 B	ND	ND	ND<10	ND	ND W	ND	2.8 B	ND	ND	8.51	9.06								
Silver	ug/l	200.7	50	ND	ND<10	ND	3 B	ND	ND	1.91	NA																		
Sodium	ug/l	200.7	20,000	88,400	168,000	265,000	164,000	161,000	203,000	199,000	177,000	230,000	198,000	161,000	175,000	181,000	162,000	228,000	194,000	231,000	189,000	154,000	111,000	97,700	78,900	115,000	114,000	165,864.29	59,031.44
Гhallium	ug/l	200.7	0.5*	ND	ND<10	ND	12.00	NA																					
Vanadium	ug/l	200.7	NS	ND	ND<50	ND	NA																						
Zinc	ug/l	200.7	2,000	7,400	10,500	16,600	18,000	12,900	13,500	11,400	12,300	12,000	13,100	12,000	13,200	8,100	11,000	9,150	14,400	15,100	13,400	11,600	10,300	5,910 E	14,500 E	11,900	13,800	12,073.33	2,816.76
Wet Chemistry																													
																					⇒							—	

297

1510

1210

1600

1550

1420

316

1060

Bold Type - Exceeds NYCRR Part 703 Groundwater Standard from NYSDEC Technical and Operational Guidance Series (1.1.1) - Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

310

1,200

1,400

970

1,250

340 B

1,400 B

250

1,300

ND<5.0 denotes that the constituent was not detected above the reported laboratory method detection limit.

300.0

250

250

mg/l

NS - No Groundwater Standard

1324.12 244.64

Table 4 Elderlee, Inc. Oaks Corners Facility - MW-5A

Field Parameters	UN	NITS MET	ΓHOD Pa	YCRR art703 CL/std.	05/10/19	05/02/18	05/01/17	05/11/16	06/11/15	06/20/14	07/01/13	04/11/12	07/22/11	05/15/09	05/27/08	06/14/07	06/13/06	06/01/05	12/06/04	06/02/04	12/16/03	07/10/03	02/19/03	06/06/02	12/06/01	06/22/01	12/14/00	06/01/00	12/16/99	12/11/97	12/12/96	09/12/95	Arithmetic Mean	Standard Deviatioin
Static Water Level	fee	eet N	NA	NS	2.60	2.02	2.20	2.72	1.88	3.00	2.23	2.70	3.57	3.80	3.28	3.45	3.14	3.32	2.92	2.71	2.94	3.58	4.01	3.02	4.10	3.60	2.44	2.32	4.00	NA	NA	NA	3.05	0.66
Specific Conductance	umho	ios/cm N	NA	NS	2,170	2,381	2,690	2,520	2,820	2,550	2,680	2,764	3,200	2,780	2,940	2,790	2,800	2,740	2,730	2,890	3,380	3,610	2,775	2,270	2,720	2,750	2,870	2,470	2,570	NA	NA	NA	2778.75	293.42
Геmperature	Degre	rees F N	NA	NS	9.2	9.5	9.1	10.9	14.20	16.35	16.5	48.8	21.2	12.8	52.2	59.0	60.1	60.4	45.9	55.2	45.0	61.0	43.1	57.0	56.1	62.1	43.9	59.9	47.9	NA	NA	NA	40.34	20.06
ьН	S.U	.U. N	NA 6.	58.5	6.86	7.07	5.47	7.10	6.89	6.65	6.95	6.92	7.87	7.81	7.61	7.02	7.24	7.48	7.06	7.05	6.99	6.44	7.06	6.99	6.94	7.08	7.03	6.92	7.38	NA	NA	NA	7.04	0.47
Γurbidity	NT	TU N	NA	NS	1.1	0.7	1.2	1.6	4.1	13.2	5	0.7	80	8	7	16	4	5	16	5	4	3	6	6	7	NA	1	5	2	NA	NA	NA	9.10	16.46
Metals																																		
Aluminum	ug	ıg/l 20	00.7	NS	ND	ND	ND	ND<100	ND	31.3	44.9	ND	ND	ND	ND	109.0	61.73	41.50																
Antimony	ug	ıg/l 20	00.7	3	ND	ND	ND	ND<60	ND	NA																								
Arsenic	ug	ıg/l 20	00.7	25	ND	ND	ND	ND	16	ND	ND	4.6 B	19 J	ND<100	ND	ND	ND	ND	ND	ND	10.6	ND	ND	ND	ND	20.8	7.1	ND	ND	20.8	13.8	ND	14.09	6.20
Barium	ug	ıg/l 20	00.7 1	,000	ND	ND	ND	ND	ND	12.2	3 13.9	3 13.3 B	14 J	ND<20	ND	12.1	ND	14.6	16.4	ND	ND	ND	ND	15.6	14.01	1.51								
Beryllium	ug	ıg/l 20	00.7	3	ND	ND	ND	ND<5	ND	1.2	ND	ND	ND	ND	ND	ND	1.20	NA																
Cadmium	ug	ıg/l 20	00.7	5	ND	ND	ND	ND<5	ND	1.2	ND	ND	ND	ND	ND	1.20	NA																	
Calcium	ug	ıg/l 20	00.7	NS	451,000	435,000	596,000	641,000	655,000	584,000	576,000	586,000	600,000	606,000	625,000	629,000	624,000	641,000	641,000	572,000	545,000	610,000	603,000	567,000	605,000	603,000	589,000	566,000	525,000	547,000	631,000	712,000	596,814.81	50,534.86
Chromium	ug	ıg/l 20	00.7	50	ND	ND	0.68 J	ND<100	ND	2	ND	1	ND	ND	ND	ND	ND	ND	1.26	0.61														
Cobalt	ug	ıg/l 20	00.7	5	ND	ND	ND	ND	ND	1.7	3 1.8	3 1.9 B	1.9 J	ND<50	ND	4	ND	ND	ND	ND	ND	ND	2.28	NA										
Copper	ug	ıg/l 20	00.7	200	ND	ND	ND	ND<20	ND	1	3	ND	ND	ND	ND	ND	1.92	1.39																
ron	ug	ıg/l 20	00.7	300	1,740	1,600	2,330	2,490	3,200	4,010	3,940	2,440	5,300	4,800	5,610	4,380	6,380	5,140	7,080	5,430	6,280	8,260	5,960	4,590	6,020	7,480	8,540	7,090	6,040	6,860	4,160	1,900	5,085.56	1,924.67
ead	ug	ıg/l 20	00.7	25	ND	ND	ND	ND<50	ND	5	ND	ND	5.00	NA																				
Magnesium	ug	ıg/l 20	00.7 3	5,000	29,900	21,500	27,800	39,800	39,900	42,500	33,600	37,600	40,000	47,700	36,800	45,000	42,500	44,300	32,300	40,900	32,200	39,700	43,300	39,000	38,900	46,200	27,600	29,300	31,900	38,700	67,400	71,200	39,911.11	10,552.96
Manganese	ug	ıg/l 20	00.7	300	440	296	502	600	834	725	613	788	710	684	672	567	651	557	608	637	651	1,110	556	553	572	582	884	766	636	726	804	805	669.96	132.49
Mercury	ug	ıg/l 20	00.7	0.7	ND	ND	ND	ND	ND	ND	0.037	B ND	ND	ND<0.3	ND	0	ND	0.03	NA															
Nickel	ug	ıg/l 20	00.7	100	ND	ND	ND	ND	ND	2.8	6.4	3 2.5 B	2.7 J	ND<40	ND	3	ND	ND	5	ND	ND	ND	ND	7	4.11	1.94								
Potassium	ug	ıg/l 20	00.7	NS	ND	ND	ND	ND	ND	1,890	1,880	1,850	2,300	ND<2,000	ND	ND	ND	ND	ND	ND	2,020	2,130	ND	1,580	ND	1,580	1,430	ND	ND	ND	2,580	3,420	2,060.00	561.00
Selenium	ug	ıg/l 20	00.7	10	ND	ND	ND	ND	14.6	15	17.5	B ND	ND	ND<10	ND	4	ND	ND	10	ND	15	ND	12.70	4.87										
Silver	ug	ıg/l 20	00.7	50	ND	ND	ND	ND<10	ND	4	ND	ND	ND	ND	ND	1	2.60	2.26																
Sodium	ug	ıg/l 20	00.7 20	0,000	53,400	52,200	58,100	67,400	68,500	68,200	66,500	61,800	71,000	78,900	72,400	72,200	84,500	69,700	82,200	109,000	242,000	248,000	55,300	46,700	44,600	39,600	33,900	37,400	38,900	48,600	85,700	80,700	76,335.71	50,706.56
Γhallium	ug	ıg/l 20	00.7	0.5*	ND	ND	ND	ND<10	ND	NA																								
Vanadium	ug	ıg/l 20	00.7	NS	ND	ND	ND	ND<50	ND	NA																								
Zinc	ug	1g/l 20	00.7 2	2,000	314	273	363	364	306	366	290	332	300	246	238	208	221	186	215	210	206	223	207	157	165	119	247	173	160	232	211	302	244.07	67.40

Bold Type - Exceeds NYCRR Part 703 Groundwater Standard from NYSDEC Technical and Operational Guidance Series (1.1.1) - Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

1,400

1,300

110 B 100

1,300 B 1,100

100

1,200

1,300

174

1,340

1,140

1,300

1,320

1,190 1,310

1,270

1,110

NA - Not Applicable
ND<5.0 denotes that the constituent was not detected above the reported laboratory method detection limit.

1,100

ND<5.0 denotes that the constitue NS - No Groundwater Standard

Table 5
Elderlee, Inc. Oaks Corners Facility - MW-8

Field Parameters	UNITS	METHOD	6NYCRR Part703	05/10/19	05/02/18	05/01/17	05/11/16	06/11/15	06/20/14	07/01/13	04/11/12	07/22/11	05/15/09	05/27/08	06/14/07	06/13/06	06/02/05	12/06/04	06/02/04	12/16/03	07/10/03	02/19/03	06/06/02	12/06/01	06/22/01	12/14/00	06/01/00	12/16/99	12/11/97	12/12/96	09/12/95	Arithmetic	
			MCL/std.			7.01																										Mean	Deviation
Static Water Level	feet	NA	NS	6.36	5.75	5.91	6.36	5.79	5.20	4.44	7.80	5.63	5.5	5.78	5.66	5.30	5.55	5.09	4.99	5.09	NR	6.21	5.24	6.33	5.91	4.55	4.52	NA	NA	NA	NA NA	5.47	0.56
Specific Conductance	umhos/cm	NA	NS	1,610	2,910	2,700	1,520	1,320	2,040	3,230	3,315	2,400	2,055	3,010	2,780	2,830	3,210	2,400	2,570	2,570	4,060	3,660	2,570	3,560	4,100	1,478	2,510	NA	NA	NA	NA NA	2730.35	751.99
Temperature	Degrees F	NA NA	NS C 5 9 5	10.3	11.7	12.0	12.7	14.50	20.72	17.4	52.4	16.2	13.4	49.5	61.5	59.2	58.1	46.8	55.9	45.9	57.9	43.4	58.1	56.5	69.8	43.5	55.6	NA NA	NA NA	NA NA	NA NA	40.55	20.16
pH	S.U.	NA NA	6.58.5	6.84	6.85	6.98	7.26	6.98 4.50	9.66	6.90	6.83	8.16	7.74	7.68	7.11	7.33	7.51	7.27	7.10	6.89	6.58	6.98	6.85	6.87	6.92	7.10	6.89	NA NA	NA NA	NA NA	NA NA	7.12	0.36
Turbidity	NTU	NA	NS	2.14	0.10	3.10	2.74	4.30	9.00	0.35	1.8	123	8.7	1	25	2	0	21	0	0	0	1	3	10	NA	10	/	NA	NA	NA	NA	12.04	26.24
Metals																																	
Aluminum	ug/l	200.7	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND<100	ND	113	142	86.2	ND	ND	ND	ND	92.7	108.48	25.10									
Antimony	ug/l	200.7	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND<60	ND	NA																		
Arsenic	ug/l	200.7	25	ND	ND	ND	ND	ND	ND	ND	6.2	3 11 J	ND<10	ND	5	ND	ND	ND	19.5	ND	ND	10.43	6.58										
Barium	ug/l	200.7	1,000	ND	ND	ND	ND	ND	32.5 B	80.4 B	68.3 I	3 59 J	ND<20	23.2	34.7	31.2	28.3	41.8	37	20.7	22	39.1	30.6	20.3	25.1	33	27.1	25.3	30.1	50	56.4	37.10	16.18
Beryllium	ug/l	200.7	3	ND	ND	ND	ND	ND	ND	ND	В	ND	ND<5	ND	2.1	ND	ND	ND	ND	ND	ND	2.10	NA										
Cadmium	ug/l	200.7	5	ND	ND	ND	ND	ND	ND	ND	В	ND	ND<5	ND	0.67	ND	ND	1	ND	ND	ND	ND	1.6	1.09	0.47								
Calcium	ug/l	200.7	NS	312,000	284,000	305,000	204,000	215,000	485,000	468,000	475,000	470,000	506,000	580,000	559,000	530,000	617,000	430,000	360,00	510,000	643,000	559,000	483,000	489,000	6340,00	562,000	477,000	511,000	359,000	296,000	418,000	451,807.69	119,635.45
Chromium	ug/l	200.7	50	ND	ND	ND	ND	ND	ND	1.3 B	В	ND	ND<10	ND	1.9	ND	1.60	NA															
Cobalt	ug/l	200.7	5	ND	ND	ND	ND	ND	1.2 B	1.3 B	2.7 I	3 2.2 J	ND<50	ND	3.2	ND	ND	ND	ND	ND	1.1	1.95	0.88										
Copper	ug/l	200.7	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND<20	ND	NA																		
Iron	ug/l	200.7	300	2,650	1,780	1,720	1,090	962	5,850	5,570	6,330	5,600	8,150	5,460	4,960	6,620	6,110	6,090	5,350	6,230	10,100	12,500	9,660	9,200	11,400	7,100	8,500	9,400	5,660	4,530	516	6,038.86	3,146.87
Lead	ug/l	200.7	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND<50	ND	NA																		
Magnesium	ug/l	200.7	35,000	23,000	36,400	30,800	22,300	24,300	29,800	35,100	27,800	31,000	32,300	38,500	44,100	45,400	36,300	37,600	20,200	26,000	44,900	66,200	44,300	63,600	60,400	11,600	48,700	53,000	53,100	33,800	36,800	37,760.71	13,406.01
Manganese	ug/l	200.7	300	637	321	352	285	353	452	417	496	950	892	1070	1030	651	566	521	376	624	768	846	709	753	917	1000	1030	738	437	538	1140	673.89	258.13
Mercury	ug/l	200.7	0.7	ND	ND	ND	ND	ND	ND	0.054	ND	ND	ND<0.3	ND	0.02	ND	0.04	NA															
Nickel	ug/l	200.7	100	ND	ND	ND	ND	ND	5.1 B	6.4 B	7.1 I	3 5.5 J	ND<40	ND	4.9	ND	6.4	6.5	ND	ND	ND	ND	8.3	6.28	1.12								
Potassium	ug/l	200.7	NS	ND	ND	ND	ND	ND	1,280	2,040	2,440	3,700	2100	3330	2340	3730	3110	4030	ND	3590	6220	6300	5630	4560	6090	1930	4670	6010	6620	4960	3120	3,990.91	1,640.29
Selenium	ug/l	200.7	10	ND	ND	ND	ND	ND	ND	17.6 B	ND	ND	ND<10	ND	5.5	ND	ND	12.8	ND	7.74	2.5	9.23	6.00										
Silver	ug/l	200.7	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND<10	ND	4.2	ND	ND	ND	ND	ND	0.71	2.46	2.47										
Sodium	ug/l	200.7	20,000	25,500	295,000	252,000	115,000	39,400	69,400	304,000	240,000	61,000	62,500	115,000	97,800	148,000	200,000	112,000	111,000	130,000	237,000	174,000	123,000	246,000	224,000	131,000	50,400	191,000	243,000	152,000	121,000	152,500.00	79,101.95
Thallium	ug/l	200.7	0.5*	ND	ND	ND	ND	ND	ND	ND	7.1 I	3 ND	ND<10	ND	7.10	NA																	
Vanadium	ug/l	200.7	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND<50	ND	NA																		
Zinc	ug/l	200.7	2,000	1,190	1,550	1,870	1,930	2,710	1,260	1,920	2,490	2,000	762	576	673	436	185	437	640	188	233	381	288	465	529	686	1,790	485	548	752	6,490	1,195.14	1,273.14

Wet	Chemistry
GI I	

440 430 mg/l 300 250 85 263 193 Chloride 250 700 470 530 320 810 970 860 1,020 1,100 1,200 1,230 1,230 1,060 1,000 834 Sulfate mg/l 300 250 **700 470 530 330 320 900 B 810 970 860**Bold Type - Exceeds NYCRR Part 703 Groundwater Standard from NYSDEC Technical and Operational Guidance Series (1.1.1) - Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. 330 900 B

233.79 151.61 856.71 296.65

NA - Not Applicable
ND<5.0 denotes that the constituent was not detected above the reported laboratory method detection limit.

NS - No Groundwater Standard

Table 6
Elderlee, Inc. Oaks Corners Facility - MW-9R

Field Parameters	UNITS	МЕТНОО	6NYCRR Part703 MCL/std.	05/10/19	05/02/18	05/01/17	05/11/16	06/11/15	06/20/14	07/01/13	Arithmetic Mean	Standard Deviation
Static Water Level	feet	NA	NS	10.23	9.60	9.73	10.22	9.65	10.60	9.80	9.98	0.38
Specific Conductance	umhos/cm	NA	NS	2,620	913	1,620	1,430	2,030	1540	1410.00	1651.86	539.67
Temperature	Degrees F	NA	NS	10.5	10.5	10.6	11.1	13.20	15.72	13.14	12.11	1.99
рН	S.U.	NA	6.58.5	6.88	7.04	6.33	7.27	7.10	6.62	7.13	6.91	0.33
Turbidity	NTU	NA	NS	2.69	1.60	1.22	1.39	2.30	4.54	1.54	2.18	1.16

Metals

Aluminum	ug/l	200.7	NS	ND	NA	NA						
Antimony	ug/l	200.7	3	ND	ND	ND	ND	ND	9.7 B	ND	NA	NA
Arsenic	ug/l	200.7	25	ND	NA	NA						
Barium	ug/l	200.7	1,000	ND	ND	ND	ND	ND	40.8 B	41.6 B	41.20	0.57
Beryllium	ug/l	200.7	3	ND	NA	NA						
Cadmium	ug/l	200.7	5	ND	NA	NA						
Calcium	ug/l	200.7	NS	162,000	122,000	191,000	146,000	149,000	159,000	168,000	156714.29	21,273.73
Chromium	ug/l	200.7	50	ND	ND	ND	ND	ND	ND	1.10 B	NA	NA
Cobalt	ug/l	200.7	5	ND	ND	ND	ND	ND	ND	0.95 B	NA	NA
Copper	ug/l	200.7	200	ND	NA	NA						
Iron	ug/l	200.7	300	120	ND	168	220	222	158 B	424	238.40	107.79
Lead	ug/l	200.7	25	ND	NA	NA						
Magnesium	ug/l	200.7	35,000	39,000	33,400	48,000	37,200	36,100	40,700	4,500	34128.57	13,850.60
Manganese	ug/l	200.7	300	88	167	110	125	76	101	302	138.41	77.90
Mercury	ug/l	200.7	0.7	ND	ND	ND	ND	ND	ND	0.043 B	NA	NA
Nickel	ug/l	200.7	100	ND	ND	ND	ND	ND	1.0 B	3.9 B	2.45	2.05
Potassium	ug/l	200.7	NS	4,530	3,170	4,130	3,610	3,270	3,260	2,810	3540.00	599.19
Selenium	ug/l	200.7	10	ND	ND	ND	ND	ND	ND	15.1 B	NA	NA
Silver	ug/l	200.7	50	ND	NA	NA						
Sodium	ug/l	200.7	20,000	303,000	32,500	76,800	134,000	215,000	174,000	63,700	142714.29	95,487.00
Thallium	ug/l	200.7	0.5*	ND	NA	NA						
Vanadium	ug/l	200.7	NS	ND	NA	NA						
Zinc	ug/l	200.7	2,000	144	276	398	357	149	246	419	284.14	112.46

Wet Chemistry

Chloride	mg/l	300.0	250	630	54	250	180	380	250	В	83	3 261.00	196.49
Sulfate	mg/l	300	250	88	130	160	210	61	170	В	250	152.71	66.10

Bold Type - Exceeds NYCRR Part 703 Groundwater Standard from NYSDEC Technical and Operational Guidance Series (1.1.1) - Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

NA - Not Applicable

ND<5.0 denotes that the constituent was not detected above the

reported laboratory method detection limit.

NS - No Groundwater Standard

Table 7
Elderlee, Inc. Oaks Corners Facility - MW-10 and MW-10R

Field Parameters	UNITS	метноі	6NYCRR Part703 MCL/std.	05/10/19	05/02/18	05/01/17	05/11/16	06/11/15	06/20/14	07/01/13	07/22/11	05/15/09	05/27/08	06/14/07	06/13/06	06/01/05	12/06/04	06/02/04	12/16/03	07/10/03	02/19/03	06/06/02	12/06/01	06/22/01	12/14/00	06/01/00	12/16/99	12/11/97	12/12/96	Arithmetic Mean	Standard Deviation
Static Water Level	feet	NA	NS	6.87	6.26	6.39	6.90	6.26	7.30	6.50	5.49	4.3	4.39	4.60	4.19	4.42	3.95	3.85	3.97	4.70		4.26	5.20	4.86	3.40	2.32	NA	NA	NA	5.02	1.31
Specific Conductance	umhos/cm	NA	NS	1,390	1,165	1,170	1,620	2,100	1,920	1,210	2,790	1,087	2,690	3,020	2,950	2,560	2,870	2,710	3,070	3,320		2,600	3,390	3,110	1,838	2,450	NA	NA	NA	2319.55	768.06
Temperature	Degrees F	NA	NS	10.7	10.7	11.3	12.5	14.5	15.1	17.5	19.8	14.6	50.9	62.1	57.0	61.2	49.3	54.7	49.8	58.3	Could Not Locate	56.3	57.0	64.0	42.4	55.2	NA	NA	NA	38.40	21.29
pН	S.U.	NA	6.58.5	6.91	7.01	6.84	7.22	7.05	6.61	7.09	8.01	7.74	7.61	7.09	7.30	7.45	7.19	7.07	6.91	6.57		6.91	6.87	6.97	6.86	6.94	NA	NA	NA	7.10	0.35
Turbidity	NTU	NA	NS	2.8	2.8	2.5	1.5	1.3	32.1	38	101	7.96	13	66	8	10	1	38	0	7		3	6	NA	8	7	NA	NA	NA	16.97	25.53
Metals																															
Aluminum	ug/l	200.7	NS	199	ND	ND<100	ND	NA	10.7	ND	29.8	70.7	ND	ND	132	108	91.70	69.62													
Antimony	ug/l	200.7	3	ND	ND<60	ND	NA	ND	NA	NA																					
Arsenic	ug/l	200.7	25	ND	ND	ND	ND	ND	ND	4.6 B	13 J	ND<10	ND	NA	ND	10.9	11.6	ND	ND	ND	22	ND	14.43	5.26							
Barium	ug/l	200.7	1,000	ND	ND	ND	ND	ND	91.40 B	101 B	17 J	64	ND	23.6	ND	ND	ND	33.8	25.2	36.4	NA	28.3	22.5	30.7	128	25.2	20.9	40.8	31.3	41.27	30.70
Beryllium	ug/l	200.7	3	ND	ND<5	ND	NA	ND	ND	1.6	ND	ND	ND	ND	ND	1.60	NA														
Cadmium	ug/l	200.7	5	ND	ND<5	ND	NA	ND	ND	ND	1	ND	ND	ND	ND	1.00	NA														
Calcium	ug/l	200.7	NS	109,000	102,000	128,000	137,000	131,000	154,000	127,000	520,000	338,000	521,000	465,000	574,000	492,000	598,000	406,000	514,000	581,000	27.4	399,000	565,000	446,000	170,000	426,000	345,000	351,000	289,000	355520.00	175130.22

																												+			+
Antimony	ug/l	200.7	3	ND	ND	ND<60	ND	NA	ND	NA	NA																				
Arsenic	ug/l	200.7	25	ND	ND	ND	ND	ND	ND	4.6 B	13 J	ND<10	ND	NA	ND	10.9	11.6	ND	ND	ND	22	ND	14.43	5.26							
Barium	ug/l	200.7	1,000	ND	ND	ND	ND	ND	91.40 B	101 B	17 J	64	ND	23.6	ND	ND	ND	33.8	25.2	36.4	NA	28.3	22.5	30.7	128	25.2	20.9	40.8	31.3	41.27	30.70
Beryllium	ug/l	200.7	3	ND	ND	ND<5	ND	NA	ND	ND	1.6	ND	ND	ND	ND	ND	1.60	NA													
Cadmium	ug/l	200.7	5	ND	ND	ND<5	ND	NA	ND	ND	ND	1	ND	ND	ND	ND	1.00	NA													
Calcium	ug/l	200.7	NS	109,000	102,000	128,000	137,000	131,000	154,000	127,000	520,000	338,000	521,000	465,000	574,000	492,000	598,000	406,000	514,000	581,000	NA	399,000	565,000	446,000	170,000	426,000	345,000	351,000	289,000	355520.00	175130.22
Chromium	ug/l	200.7	50	ND	83.4	ND	ND	12.20	ND	ND	ND	ND<10	ND	11.6	NA	1.9	ND	27.28	37.71												
Cobalt	ug/l	200.7	5	ND	ND	ND	ND	ND	0.76 B	1.2 B	1.9 J	ND<50	ND	NA	3.2	ND	3.9	ND	ND	ND	ND	ND	2.19	1.33							
Copper	ug/l	200.7	200	ND	ND	ND<20	ND	NA	ND	NA	NA																				
Iron	ug/l	200.7	300	446	515	410	445	736	1940	2770	7,200	1,980	7,290	6,530	9,820	7,310	9,160	12,300	10,800	13,000	NA	8,190	9,590	9,160	8,020	7,830	6,070	6,780	5,310	6144.08	3931.20
Lead	ug/l	200.7	25	ND	ND	ND<50	ND	NA	2.2	ND	2.20	NA																			
Magnesium	ug/l	200.7	35,000	25,000	25,300	27,200	26,700	23,600	29,300	25,800	27,000	19,500	34,800	29,200	45,800	48,100	36,500	42,000	46,200	47,500	NA	42,300	36,100	38,700	19,700	39,700	39,300	44,500	37,100	34276.00	9024.15
Manganese	ug/l	200.7	300	1,150	990	1,380	1,060	1,010	848	894.00	860	904	702	689	763	580	595	778	686	1,170	NA	906	871	622	880	496	610	592	536	822.88	221.65
Mercury	ug/l	200.7	0.7	ND	ND	ND	ND	ND	ND	0.04 B	ND	ND<0.3	ND	NA	ND	0.04	ND														
Nickel	ug/l	200.7	100	ND	ND	ND	ND	ND	2.10 B	4.70 B	7.2 J	ND<40	ND	NA	6.9	ND	8.2	ND	ND	ND	ND	ND	5.82	2.44							
Potassium	ug/l	200.7	NS	ND	ND	ND	ND	ND	1,070	1,020	3,300	2,200	ND	2,340	3,320	2,540	3,950	4,090	5,360	3,960	NA	3,500	4,580	4,460	1,190	3,220	3,640	4,500	4,260	3289.47	1259.72
Selenium	ug/l	200.7	10	ND	ND	ND	ND	ND	ND	17.9 B	ND	ND<10	ND	NA	ND	ND	4	ND	ND	8.9	ND	10.9	7.93	3.55							
Silver	ug/l	200.7	50	ND	ND	ND<10	ND	NA	ND	ND	3.3	ND	ND	ND	ND	ND	3.30	NA													
Sodium	ug/l	200.7	20,000	143,000	105,000	84,000	187,000	283,000	237,000	117,000	81,000	92,600	81,000	206,000	124,000	81,600	130,000	171,000	205,000	184,000	NA	183,000	194,000	135,000	176,000	81,100	116,000	172,000	154,000	148932.00	54304.70
Thallium	ug/l	200.7	0.5*	ND	ND	ND	ND	ND	ND	6.20	ND	ND<10	ND	NA	ND	6.20	NA														
Vanadium	ug/l	200.7	NS	ND	ND	ND<50	ND	NA	ND	NA	NA																				
Zinc	ug/l	200.7	2,000	658	430	566	528	605	727	416	1,000	1.700	738	632	861	743	857	760	925	974	NA	667	1,010	799	185	622	486	448	430	722.96	291.74

Wet Chemistry																			
Chloride	mg/l	300.0	250	220	160	130	310	410	390 B	130	230	213	140	359	256	202	230	329	415
Sulfate	mg/l	300	250	110	62	83	99	120	110 B	88	870	702	1,000	928	1,340	1,030	1,270	1,010	1,170

247.27	99.20
624 50	503.07

Table 8
Elderlee, Inc. Oaks Corners Facility - MW-11

Field Parameters	UNITS	METHOD	6NYCRR Part703 MCL/std.	05/10/19	05/02/18	05/01/17	05/11/16	08/06/15	06/20/14	07/01/13	04/11/12	07/22/11	05/15/09	05/27/08	06/14/07	06/13/06	06/01/05
Static Water Level	feet	NA	NS	1.04	0.73	1.06	1.57	1.72	2.50	1.02	1.40	2.02	1.8	2.09	1.85	1.55	1.73
Specific Conductance	umhos/cm	NA	NS	2,670	2,811	2,450	2,420	1,940	2,680	2,520	3,025	2,990	3,076	3,790	3,520	3,880	41,000
Temperature	Degrees F	NA	NS	10.4	11.3	10.9	11.9	18.4	20.19	18.2	47.8	20.8	13.5	51.4	61.0	59.2	57.4
pН	S.U.	NA	6.58.5	6.73	6.96	7.02	7.10	7.65	6.75	6.99	7.01	8.46	7.75	7.64	7.03	7.32	7.37
Turbidity	NTU	NA	NS	12.4	9.8	26.9	11.0	22.0	12.0	19.9	0.94	69	8.5	14	16	52	10

Metals

Metals																						
Aluminum	ug/l	200.7	NS	115		205	278	ND	1050	ND		199	В	ND		81	J	ND<100	192	ND	ND	ND
Antimony	ug/l	200.7	3	ND		ND	ND	ND	ND	ND		ND		ND		ND		ND<60	ND	ND	ND	ND
Arsenic	ug/l	200.7	25.0	18.7		13.6	163	22.3	26.7	5.1	В	13.4	В	9.6	В	22		10	11	ND	ND	13
Barium	ug/l	200.7	1,000	ND		ND	ND	ND	131	73.2	В	76.3	В	67.0	В	51	J	71	71.4	82.3	102	97.5
Beryllium	ug/l	200.7	3	ND		ND	ND	ND	ND	ND		ND		В		ND		ND<5	ND	ND	ND	ND
Cadmium	ug/l	200.7	5	ND		ND	ND	ND	ND	ND		ND		В		ND		ND<5	ND	ND	ND	ND
Calcium	ug/l	200.7	NS	364,000	41	15,000	385,000	450,000	422,000	487,000		375,000		430,000		370,000		316,000	361,000	353,000	340,000	380,000
Chromium	ug/l	200.7	50	ND		ND	ND	ND	ND	ND		1.6	В	ND		0.98	J	ND<10	ND	ND	ND	ND
Cobalt	ug/l	200.7	5	ND		ND	ND	ND	ND	1.4	В	1.8	В	1.4	В	1.2	J	ND<50	ND	ND	ND	ND
Copper	ug/l	200.7	200	ND		ND	ND	ND	ND	ND		ND		ND		ND		ND<20	ND	ND	ND	ND
Iron	ug/l	200.7	300	6,190	7	7,530	7,550	9,510	12,600	9,180		8,780		8,760		9,600		8,930	6,770	4,580	8,810	8,760
Lead	ug/l	200.7	25	ND		ND	ND	ND	ND	ND		ND		ND		ND		ND<50	ND	ND	ND	ND
Magnesium	ug/l	200.7	35,000	60,300	5:	3,800	48,800	57,100	51,400	68,300		53,100		72,100		74,000		75,000	77,900	80,100	81,200	99,800
Manganese	ug/l	200.7	300	1,110	1	1,100	1,110	1,210	1,810	1,680		1,570		1,600		1,300		1,260	1,250	1,290	1,500	1,530
Mercury	ug/l	200.7	0.7	ND		ND	ND	ND	ND	ND		0.041	В	ND		ND		ND<0.3	ND	ND	0.02	ND
Nickel	ug/l	200.7	100	ND		ND	ND	ND	ND	2.6	В	6.5	В	2.7	В	2.9	J	ND<40	ND	ND	ND	ND
Potassium	ug/l	200.7	NS	3,860	3	3,480	4,010	3,990	6,530	5,200		5,310		5,190		6,700		6,100	6,300	6,670	7,440	7,770
Selenium	ug/l	200.7	10	ND		ND	ND	ND	18	13	В	21.3	В	ND		ND		ND<10	ND	ND	ND	ND
Silver	ug/l	200.7	50	ND		ND	ND	ND	ND	ND		ND		ND		ND		ND<10	ND	ND	ND	ND
Sodium	ug/l	200.7	20,000	158,000	18	82,000	134,000	126,000	130,000	157,000		168,000		215,000		190,000		285,000	334,000	337,000	430,000	413,000
Thallium	ug/l	200.7	0.5*	ND		ND	ND	ND	ND	ND		ND		ND		ND		ND<10	ND	ND	ND	ND
Vanadium	ug/l	200.7	NS	ND		ND	ND	ND	ND	ND		ND		ND		ND		ND<50	ND	ND	ND	ND
Zinc	ug/l	200.7	2,000	ND	,	70.1	94.5	ND	229	46.8	В	82.2		48.0	В	100		46	37.3	88.8	73	53.4

Wet Chemistry

Chloride	mg/l	300.0	250	290	320	230	200	270	230 B	250	350	280	579	534	560	725	710
Sulfate	mg/l	300.0	250	870	1,000	780	1,000	980	1,000 B	480	1,100	800	759	739	916	749	805

Bold Type - Exceeds NYCRR Part 703 Groundwater Standard from NYSDEC Technical and Operational Guidance Series (1.1.1) - Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

NA - Not Applicable

ND<5.0 denotes that the constituent was not detected above the reported laboratory method detection limit.

NS - No Groundwater Standard

- 1

Field Parameters	12/06/04	06/01/04	12/16/03	07/10/03	02/19/03	06/06/02	12/06/01	06/22/01	12/14/00	06/01/00	12/16/99	12/11/97	12/12/96	Arithmetic Mean	Standard Deviation
Static Water Level	1.34	0.94	1.15	1.91	2.31	1.11	2.43			0.72	2.35	NA	NA	1.59	0.56
Specific Conductance	3,870	4,660	4,300	5,190	4195	3,190	4,200			3,990	1930.00	NA	NA	4969.43	7902.05
Temperature	45.9	58.5	46.4	61.9	42	57.4	55.2	_	Damaged Well Not Sampled	54.7	41.90	NA	NA	38.10	19.94
рН	7.16	7.04	6.91	6.57	7.12	6.96	6.97		- · · · · · · · · · · · · · · · · · · ·	7.01	7.48	NA	NA	7.17	0.41
Turbidity	94	35	4	8	9.72	9	8			9	5.80	NA	NA	21.18	22.68

Metals

11200010															
Aluminum			169	209	118	146	335	NA	NA	133	NA	132	NA	240.14	242.66
Antimony	ND	NA	NA	NA	NA	NA	NA	ND	NA						
Arsenic	ND	ND	ND	ND	ND	5.3	ND	NA	NA	NA	NA	19	NA	25.17	40.19
Barium	121	129	113	151	89.6	71.7	95.4	NA	NA	123	45.3	11.3	110	90.80	33.56
Beryllium	ND	NA	NA	NA	NA	NA	NA	ND	NA						
Cadmium	ND	NA	NA	NA	NA	NA	NA	ND	NA						
Calcium	429,000	356,000	389,000	443,000	353,000	322,000	383,000	NA	NA	500,000	210,000	265,000	286,000	375360.00	66138.04
Chromium	ND	ND	ND	ND	ND	3	ND	NA	NA	NA	NA	NA	NA	1.93	1.15
Cobalt	ND	NA	NA	NA	NA	NA	NA	1.45	0.25						
Copper	ND	NA	NA	NA	NA	NA	NA	ND	NA						
Iron	10,700	8,010	7,870	9,890	9,180	6,600	6,700	NA	NA	10,100	2,450	3,840	6,070	7958.40	2233.34
Lead	ND	ND	ND	7.2	ND	ND	ND	NA	NA	NA	NA	NA	NA	7.20	NA
Magnesium	91,400	85,200	88,900	104,000	92,800	83,900	99,200	NA	NA	93,700	59,500	60,200	64,900	75064.00	16771.67
Manganese	1,890	1,920	2,060	1,630	1,630	1,850	2,100	NA	NA	2,110	1,600	2,560	2,080	1630.00	380.50
Mercury	ND	NA	NA	NA	NA	NA	NA	0.03	0.02						
Nickel	ND	ND	ND	ND	ND	3	ND	NA	NA	NA	NA	NA	NA	3.56	1.65
Potassium	8,870	8,050	8,200	9,730	7,120	6,130	7,020	NA	NA	8,920	3,680	3,750	4,470	6179.60	1839.82
Selenium	ND	ND	ND	ND	3	ND	ND	NA	NA	NA	6.9	NA	13.7	12.65	6.79
Silver	ND	NA	NA	NA	NA	NA	NA	ND	NA						
Sodium	408,000	542,000	484,000	544,000	403,000	374,000	381,000	NA	NA	269,000	237,000	297,000	320,000	300720.00	129426.47
Thallium	ND	NA	NA	NA	NA	NA	NA	ND	NA						
Vanadium	ND	NA	NA	NA	NA	NA	NA	ND	NA						
Zinc	104	103	102	185	164	234	546	NA	NA	422	418	560	351	186.82	165.09

Wet Chemistry

<u> </u>			
Chloride	729	1180	1100
Sulfate	909	708	746

Bold Type - Exceeds NYCRR P

NA - Not Applicable

ND<5.0 denotes that the constit

NS - No Groundwater Standard

502.18	304.04
843.59	150.53

APPENDIX C GROUNDWATER SAMPLING LOGS

	LLE, LLC			Low F	low Grour	nd Water S	ampling Lo	g
Date	5/ 10 /2019	Perso	onnel	Jim Moor	e	Weather 1	Maury	60.F
Site Name	Elderlee, Inc	Evac	uation Method	Low Flow		Well#	MW4	
Site Location	Oaks Corners, NY	Samı	oling Method	Low Flow		Project #		
Well informa	ition:							
Depth of Well	*	204 ft.		* Measure	ements taken from	m		
Depth to Wat		2. 4 6 ft.			X	Top of Well Ca	sina	
Length of Wa	ter Column	7.64 ft.				Top of Protective		
						(Other, Specify)	
Start Purge T	ime:							
Elapsed	Depth		T		Oxidation	Dissolved	T	"
Time	To Water	Temperature		Conductivity	Reduction	Oxygen	Turbidity	Flow
(mill)	(4)	(oe)	рН	(Ms/a)	Potential	(mg/l)	(NTU)	Rate (ml/mir
50	2.40						43.1	400
10	4.93	13.0	7.42	.092	138.5	7.64	26.8	400
.15	4.96	/3.1	1.14	0.154	160.3	6.67	28.8	400
·30	4.95	13.2	6.73	6.930	166.8	3.27	211	408
.25	4.94	13.0	6.70	1.43	1415	2.43	16.6	400
30	4,93	13.0	6.67	1.69	128.3	1.67	6.71	400
35	4.93	12.9	6.65	1,80	111.4	0.84	3.56	400
b 45	4.93	12.8	6.65	1.86	98.9	0.60	4.04	400
	7.13	12.7	664	1.89	96.5	0.40	2.21	400
	/							
1	2							1
136			-					
	14.							
/ /								
	1							
nd Purge Tim	e: 1420							
-								1
Vater sample: ime collected:	11190						4	
ine collected:	1100		Т	otal volume of p	ourged water rem	oved:	18 UTM	8
							·	
hysical appear	rance at start				Dhusiaal assa			
	Color Colonus					nce at sampling	0	
C	Odor NOW					Color Odor	COLONLUSS	
heen/Free Pro	duct NO		•		Sheen/Free	_	USIUS	•
							NO	
						*		
nalytical Para	meters:					370		
								27
Container Siz	ze Contain	er Type	# Collected	Field	Filtered	Preservativ	e I C	ontainer pH
				3		. 10001 Vally		ontainer pri
		1						
								* '
								1

NEU-VE	LLE, LLC			Low F	low Grou	nd Water S	ampling La	oa
Date	5/ // /2019	Perso	onnel	Jim Moor		Weather		mister 60 of
Site Name	Elderlee, Inc	Evac	uation Method	Low Flow			MW 3	4
Site Location	Oaks Corners, NY	Samp	oling Method	Low Flow		Project #		
Well informa	ition:				v			
Depth of Wel	1*	1.30 ft.		* Measure	ements taken fro	om		
Depth to Wat		2.60 ft.			X	Top of Well Ca	sina	
Length of Wa	ter Column	3.7 ft.			6	Top of Protecti		
						Other, Specify	_	
Start Purge T	ime:							
Elapsed	Depth		T		lo	Γ		-
Time	To Water	Temperature		Conductivity	Oxidation Reduction	Dissolved		
(min)	((3)	(0 -)	рН	(MS/Com)	Potential	Oxygen	Turbidity	Flow
b 0	2.30		-	1	Oteritian	(mg/l)	(NTU)	Rate (ml/min).
5	2.89	9.2	7.08	257	120.9	0.53	7.01	400
10	2.93	9.3	7.04	2.58	78.6	0.55	6.74	400
15	2.93	9.3	5.98	2.58	58.9	6.45	6.46	400
30	2.93	9,2	6.94	2.55	47.0	6.42	2.18	400
<u>35</u>	2.94	9.2	6.90	2.42	34.6	0.45	1.43	400
35	2.94	9.2	6.86	2.25	24.8	0.47	1.23	400
40	2,94	9.2	6.86	2.17	16.9	0.49	1.33	400
			6.00	Dioli (15.7	0.50	1.14	400
							<u> </u>	
	laga							
Ind Purge Tim								*
Vater sample								
ime collected	1330		7	otal volume of	ourged water re	moved:	16 U	Tues
hysical appea	rance at start							
					Physical appea	rance at sampling		
	Odor Colonus					Color	carrie	<u> </u>
heen/Free Pro					Character (Face	Odor	Now	_
					Sneen/Fre	ee Product	W	_
nalytical Para	ameters:							
Container Si	ze Contain	or Tuno	40.0					
Ol	Contain	Gi Type	# Collected	Field	Filtered	Preservati	/e (Container pH
				-1				
		- 1		1				

NEU-VE	LLLC			Low FI	<u>ow Groun</u>	<u>d Water Sa</u>	mpling Loc	1
Date	5/ // /2019	Person	nel	Jim Moore		Weather	Claudy	
Site Name	Elderlee, Inc	– Evacua	ation Method	Low Flow		Well#	MW 8	
	Oaks Corners, NY	– Sampli	ng Method	Low Flow		Project #		
Well informated Depth of Well		3. 90 ft.		* Measure	ments taken fror	n		
Depth to Wat		ft.		Measure	×	Top of Well Cas	sing	
Length of Wa		754 ft.				Top of Protectiv		
Longar or vo		1,5				(Other, Specify)		
Start Purge T	ime:				_			
Elapsed	Depth				Oxidation	Dissolved	Tl. i dife.	Flour
Time	To Water	Temperature		Conductivity	Reduction	Oxygen	Turbidity (NTU)	Flow Rate (ml/min).
(mid)	(+)	(30)	pH 	(rga_)	Potential	(mg/l)	4,36	400
400	6.20	70.4	6.89	1.69	21.3	0.37	4.91	400
10	6.24	18.3	6.87	1.68	188	0.21	5.51	400
15	6.24	10.3	6.86	1.69	17.7	0.21	4.50	400
20	6.24	10.3	6.65	1.64	16.7	0.21	3.47	400
20	6.24	10.3	6.84	1.40	16.9	0.21	3.06	400
30	6-24	10.3	6.83	1.61	16.1	0.22	2.14	400
					ļ			
						-	ļ	
						-		
						1		
						 	 	
	1110							
End Purge Ti	me: ///0							
Water samp	le:							
Time collecte	ed: ///ø			Total volume of	purged water re	emoved:	124	Tues
Physical app	earance at start				Physical appea	arance at samplin	g	
	Color Coloq	1455				Color	COLORLE	5
		WY				Odor	LUNK	
Sheen/Free I	Product	20			Sheen/F	ree Product	ha	outstanding.
						-		
Analytical P	arameters:							
Container	Size Cont	ainer Type	# Collect	ed Fie	eld Filtered	Preserva	tive	Container pH
					mero 18 <u>1.</u>			
			 					
			2.45 7/2007/2007					
L			<u></u>					

NEU-VE	LLE, LLC		Low Flow Ground Water Sampling Log						
Date	5/ /0 /2019	Perso	nnel	Jim Moore	9	Weather	CLOUDY/HUM	UYRIN	
Site Name	Elderlee, Inc	Evacu	ation Method	Low Flow	Bladder	Well#	MW 9R		
Site Location	Oaks Corners, NY	Samp	ling Method	Low Flow	Bladder	Project #			
Well informa	ation:								
Depth of Wel		720.0 ft.		* Measure	ments taken fro	m			
Depth to Wat		16 ft.			×	Top of Well Ca	asing		
Length of Wa	ter Column 9	64 ft.				Top of Protect			
					L	(Other, Specify	y)		
Start Purge T	ime:								
Elapsed	Depth		T		Oxidation	Dissolved	T	I	
Time	To Water	Temperature	5	Conductivity	Reduction	Oxygen	Turbidity	Flow	
()	(cf)	(oc)	рН	(Ms/cm)	Potential	(mg/l)	(NTU)	Rate (ml/min).	
0	10.16	2_					-767	250	
. 5	10.16	10.8	643	3.06	1687	0.52	23.5	250	
15	10.16	10.5	6.79	2.47	157.2	0.83	140	250	
20	10.16	10.5	6.65	2.61	1464	0.81	7.33	250	
25	10.14	10.5	6.67	2.61	141.5	0.80	2.63	250	
36	10.16	10.5	6.88	2.62	140.9	0.90	2.69	250	
		ļ							
		 				+	-	u	
		_			<u> </u>	<u> </u>			
						_			
						+			
End Purge Tir	me: 0935		<u>'' </u>						
-	•								
Water sample	A							for -ion	
Time collected	d: 0777			Total volume of	purged water re	moved:	1,500 1	NL (7.500	
Physical appe	arance at start				Physical appea	rance at samplir	na		
,	Color MILLA				. nyoroan appoo	Color	Coloneuss		
	Odor W					Odor	NINE		
Sheen/Free P	roduct No			į	Sheen/Fr	ee Product	140		
							,		
Analytical Pa	rameters:								
yuvai Fa									
Container S		ner Type	# Collecte	ed Fiel	d Filtered	Preserva	tive Co	ontainer pH	
250	HOL		1.		No	ww			
950	H0	75			M	HNO	3 + 4	22	

NEU-VE	LLE, LLC			Low F	low Groun	nd Water Sa	ampling Loc	2
Date	5/ /8 /2019	Perso	nnel	Jim Moor		Weather	CLOUDY KA	
Site Name	Elderlee, Inc	 Evacı	uation Method Low Flow			Well#	MW-10R	
Site Location	Oaks Corners, NY	_ _ Samp	ling Method	Low Flow		Project #	7400-10	
Well informa	ation:							
Depth of Wel	1*	5.8 ft.		* Measure	ements taken from	m		
Depth to Wat		3.78 ft.			×	Top of Well Cas	sina	
Length of Wa	iter Column	£22 ft.				Top of Protectiv	-	
						(Other, Specify)		
Start Purge T	îme:							
Elapsed	Depth	T	г .	T	Oxidation	Discolated	T	
Time	To Water	Temperature		Conductivity	Reduction	Dissolved	Touch latte.	
()	(Ct)	(00)	pН	(ms/a-)	Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow
0.	6.78			1	- Otoricia	(mgn)	2.8	Rate (ml/min).
10005		10.6	7.05	0.84	43.7	0.39	2.6	400
10	6.78	10.6	7.00	6.98	48.5	0.28	4,2	400
15	6,78	10.7	1.9/	1.31	55.1	0.24	2.87	400
30	6.78	10.7	6.91	1.36	55.2	0.22	0.85	400
25	6.78	10.7	691	1.39	55.5	0.20	2.79	400
30	6.78	10.7	6.91	1.39	54.9	0.19	2.83	400
						 		
								
End Purge Tir	ne: <u>/025</u>							1
Water sample								,
Time collected	1: 1025			Total volume of	purged water ren	noved:	12 154	is "
Physical anno	arance at start							
	Color Count	AC.			Physical appear	ance at sampling		
	Odor Www					Color	COLOURS	≥
Sheen/Free Pi					01	Odor	Ment	-
0001//. 1001	Dudoi No				Sheen/Fre	e Product	10	-
Analytical Par	ameters:							
Containe								
Container S	oize Contair	ner Type	# Collecte	d Field	d Filtered	Preservativ	/e C	ontainer pH

NEU	-VEL	LE, LLC	Low Flow Ground Water Sampling Log						
Date		5/ /6 /2019				Jim Moore		Sunar	
Site Na	me <u>l</u>	Elderlee, Inc	Evacu	ation Method	Low Flow			Mw-1	7/
Site Lo	cation _	Oaks Corners, NY	_ Samp	ling Method	Low Flow		Project #		
Well in	formati	on:							
1	of Well *		.3 ft.		* Moosuro	ments taken fro			
	o Water		## ft.		ivicasule	Sinelits taken iro	Top of Well Ca	oina	
		er Column	1). 26 ft.			~	Top of Protectiv		
							(Other, Specify)		
Start Pr	urge Tim	ne.							
Elapse			T	T		T			
Time	a	Depth To Water	Temperature		0	Oxidation	Dissolved		
(Min)) ((рН	Conductivity	Reduction Potential	Oxygen	Turbidity	Flow
25 0		0.79		pii	(10/00)	Potential	(mg/l)	(NTU) 95.8	Rate (ml/min).
5		2.02	10.9	6.79	2.55	-22.1	0.37	119	400
10		2.09	10.8	6.76	2.64	-15.6	0.24	73.7	400.
15		2.09	10.7	6.75	2.64	-15.3	0.24	50.3	400
20		2.09	16.5	6.75	2.64	-15.5	0.23	365	400
30		2.11	10.6	6.74	2.65	-16.3	0.22	21.6	400
0 35	•	2.11	10.3	6.74	8.67	-17.2	0.22	12.1	400
40		2.11	10.4	6.73	2.66	-18.9	0.22	12.3	400
45		2.11	10.4	6.73	2.67	-18.4	0.21	12.4	410
	-+								
End Purg	ge Time	1210							
Water sa	ample:								
Time col		1210		. т	otal volume of r	ourged water ren	aayaad.	1010	1
					otal volume of p	diged water fen	novea:	18 LITOUS	
Physical	appeara	ance at start			1	Physical appear	ance at sampling		
		olor <u>Colorer</u>	85				Color	COUNTESS	1 1
Chann/F		dor Wwe					Odor	Klans	
Sheen/Fr	ree Prod	luct				Sheen/Fre	e Product	NO	
Analytica	al Paran	neters:							
Conta	iner Size	e Contain	er Type	# Collected	Field	Filtered	Preservativ	re C	ontainer pH
	-								
	***************************************	_1							

APPENDIX D

LABORATORY ANALYTICAL DATA

Analytical Report For

Neu-Velle

For Lab Project ID

192055

Referencing

Elderlee-GW Annual 2019

Prepared

Tuesday, May 21, 2019

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client: <u>Neu-Velle</u>

Project Reference: Elderlee-GW Annual 2019

Sample Identifier: MW-9R

Lab Sample ID:192055-01Date Sampled:5/10/2019Matrix:GroundwaterDate Received:5/13/2019

Chloride

Analyte Result Units Qualifier Date Analyzed

Chloride **630** mg/L 5/18/2019

Method Reference(s): EPA 300.0 Rev 2.1

Subcontractor ELAP ID: 10709

<u>Mercury</u>

Analyte Result Units Qualifier Date Analyzed

Mercury < 0.000200 mg/L D 5/16/2019 09:53

Method Reference(s):EPA 7470APreparation Date:5/15/2019Data File:Hg190516A

TAL Metals (ICP)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Aluminum	< 0.100	mg/L		5/16/2019 14:49
Antimony	< 0.0600	mg/L		5/16/2019 14:49
Arsenic	< 0.0100	mg/L		5/16/2019 14:49
Barium	< 0.100	mg/L		5/16/2019 14:49
Beryllium	< 0.00500	mg/L		5/16/2019 14:49
Cadmium	< 0.00500	mg/L		5/16/2019 14:49
Calcium	162	mg/L		5/16/2019 14:49
Chromium	< 0.0100	mg/L		5/16/2019 14:49
Cobalt	< 0.0500	mg/L		5/16/2019 14:49
Copper	< 0.0400	mg/L		5/16/2019 14:49
Iron	0.120	mg/L		5/16/2019 14:49
Lead	< 0.0100	mg/L		5/16/2019 14:49
Magnesium	39.0	mg/L		5/16/2019 14:49
Manganese	0.0880	mg/L		5/16/2019 14:49
Nickel	< 0.0400	mg/L		5/16/2019 14:49
Potassium	4.53	mg/L		5/16/2019 14:49

Client: <u>Neu-Velle</u>

Project Reference: Elderlee-GW Annual 2019

Sample Identifier: MW-9R

Lab Sample ID: 192055-01 **Date Sampled:** 5/10/2019

Matrix: Groundwater Date Received: 5/13/2019

Selenium 5/16/2019 14:49 < 0.0200 mg/L Silver < 0.0100 mg/L 5/16/2019 14:49 Sodium 303 mg/L 5/16/2019 14:49 Thallium < 0.0250 mg/L 5/16/2019 14:49 Vanadium < 0.0250 mg/L 5/16/2019 14:49 Zinc 0.144 mg/L 5/14/2019 18:49

Method Reference(s): EPA 6010C

EPA 3005A

Preparation Date: 5/14/2019 **Data File:** 190516B

Sulfate

AnalyteResultUnitsQualifierDate AnalyzedSulfate88mg/L5/18/2019

Method Reference(s): EPA 300.0 Rev 2.1

Subcontractor ELAP ID: 10709

Client: <u>Neu-Velle</u>

Project Reference: Elderlee-GW Annual 2019

Sample Identifier: MW-10R

Lab Sample ID:192055-02Date Sampled:5/10/2019Matrix:GroundwaterDate Received:5/13/2019

Chloride

Analyte Result Units Qualifier Date Analyzed

Chloride **220** mg/L 5/18/2019

Method Reference(s): EPA 300.0 Rev 2.1

Subcontractor ELAP ID: 10709

<u>Mercury</u>

Analyte Result Units Qualifier Date Analyzed

Mercury < 0.000200 mg/L D 5/16/2019 10:01

Method Reference(s):EPA 7470APreparation Date:5/15/2019Data File:Hg190516A

TAL Metals (ICP)

Analyte	Result	<u>Units</u>	Qualifier	Date Analy	zed
Aluminum	0.199	mg/L		5/16/2019	14:54
Antimony	< 0.0600	mg/L		5/16/2019	14:54
Arsenic	< 0.0100	mg/L		5/16/2019	14:54
Barium	< 0.100	mg/L		5/16/2019	14:54
Beryllium	< 0.00500	mg/L		5/16/2019	14:54
Cadmium	< 0.00500	mg/L		5/16/2019	14:54
Calcium	109	mg/L		5/16/2019	14:54
Chromium	< 0.0100	mg/L		5/16/2019	14:54
Cobalt	< 0.0500	mg/L		5/16/2019	14:54
Copper	< 0.0400	mg/L		5/16/2019	14:54
Iron	0.446	mg/L		5/16/2019	14:54
Lead	< 0.0100	mg/L		5/16/2019	14:54
Magnesium	25.0	mg/L		5/16/2019	14:54
Manganese	1.15	mg/L		5/16/2019	14:54
Nickel	< 0.0400	mg/L		5/16/2019	14:54
Potassium	< 2.50	mg/L		5/16/2019	14:54

Client: <u>Neu-Velle</u>

Project Reference: Elderlee-GW Annual 2019

Sample Identifier: MW-10R

Lab Sample ID: 192055-02 **Date Sampled:** 5/10/2019

Matrix: Groundwater Date Received: 5/13/2019

 Selenium
 < 0.0200</td>
 mg/L
 5/16/2019
 14:54

 Silver
 < 0.0100</td>
 mg/L
 5/16/2019
 14:54

Sodium 143 mg/L 5/16/2019 14:54

Thallium < 0.0250 mg/L 5/16/2019 14:54

Vanadium < 0.0250 mg/L 5/16/2019 14:54

Zinc **0.658** mg/L 5/16/2019 14:54

Method Reference(s): EPA 6010C

EPA 3005A

Preparation Date: 5/14/2019

Data File: 190516B

Sulfate

Analyte Result Units Qualifier Date Analyzed

Sulfate **110** mg/L 5/18/2019

Method Reference(s): EPA 300.0 Rev 2.1

Subcontractor ELAP ID: 10709

Client: <u>Neu-Velle</u>

Project Reference: Elderlee-GW Annual 2019

Sample Identifier: MW-8

Lab Sample ID:192055-03Date Sampled:5/10/2019Matrix:GroundwaterDate Received:5/13/2019

Chloride

Analyte Result Units Qualifier Date Analyzed

Chloride **26** mg/L 5/18/2019

Method Reference(s): EPA 300.0 Rev 2.1

Subcontractor ELAP ID: 10709

<u>Mercury</u>

Analyte Result Units Qualifier Date Analyzed

Mercury < 0.000200 mg/L D 5/16/2019 10:04

Method Reference(s):EPA 7470APreparation Date:5/15/2019Data File:Hg190516A

TAL Metals (ICP)

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
Aluminum	< 0.100	mg/L		5/16/2019 14:58
Antimony	< 0.0600	mg/L		5/16/2019 14:58
Arsenic	< 0.0100	mg/L		5/16/2019 14:58
Barium	< 0.100	mg/L		5/16/2019 14:58
Beryllium	< 0.00500	mg/L		5/16/2019 14:58
Cadmium	< 0.00500	mg/L		5/16/2019 14:58
Calcium	312	mg/L		5/16/2019 14:58
Chromium	< 0.0100	mg/L		5/16/2019 14:58
Cobalt	< 0.0500	mg/L		5/16/2019 14:58
Copper	< 0.0400	mg/L		5/16/2019 14:58
Iron	2.65	mg/L		5/16/2019 14:58
Lead	< 0.0100	mg/L		5/16/2019 14:58
Magnesium	23.0	mg/L		5/16/2019 14:58
Manganese	0.637	mg/L		5/16/2019 14:58
Nickel	< 0.0400	mg/L		5/16/2019 14:58
Potassium	< 2.50	mg/L		5/16/2019 14:58

Client: <u>Neu-Velle</u>

Project Reference: Elderlee-GW Annual 2019

Sample Identifier: MW-8

Lab Sample ID:192055-03Date Sampled:5/10/2019Matrix:GroundwaterDate Received:5/13/2019

Selenium	< 0.0200	mg/L	5/16/2019 14:58
Silver	< 0.0100	mg/L	5/16/2019 14:58
Sodium	25.5	mg/L	5/16/2019 14:58
Thallium	< 0.0250	mg/L	5/16/2019 14:58
Vanadium	< 0.0250	mg/L	5/16/2019 14:58
Zinc	1.19	mg/L	5/16/2019 14:58

Method Reference(s): EPA 6010C

EPA 3005A

Preparation Date: 5/14/2019 **Data File:** 190516B

Sulfate

AnalyteResultUnitsQualifierDate AnalyzedSulfate700mg/L5/18/2019

Method Reference(s): EPA 300.0 Rev 2.1

Subcontractor ELAP ID: 10709

Client: <u>Neu-Velle</u>

Project Reference: Elderlee-GW Annual 2019

Sample Identifier: MW-11

Lab Sample ID:192055-04Date Sampled:5/10/2019Matrix:GroundwaterDate Received:5/13/2019

Chloride

Analyte Result Units Qualifier Date Analyzed

Chloride **290** mg/L 5/18/2019

Method Reference(s): EPA 300.0 Rev 2.1

Subcontractor ELAP ID: 10709

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 D
 5/16/2019
 10:07

Method Reference(s): EPA 7470A
Preparation Date: 5/15/2019
Data File: Hg190516A

TAL Metals (ICP)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analy	yzed
Aluminum	0.115	mg/L		5/16/2019	15:02
Antimony	< 0.0600	mg/L		5/16/2019	15:02
Arsenic	0.0187	mg/L		5/14/2019	19:03
Barium	< 0.100	mg/L		5/16/2019	15:02
Beryllium	< 0.00500	mg/L		5/16/2019	15:02
Cadmium	< 0.00500	mg/L		5/16/2019	15:02
Calcium	364	mg/L		5/16/2019	15:02
Chromium	< 0.0100	mg/L		5/16/2019	15:02
Cobalt	< 0.0500	mg/L		5/16/2019	15:02
Copper	< 0.0400	mg/L		5/16/2019	15:02
Iron	6.19	mg/L		5/16/2019	15:02
Lead	< 0.0100	mg/L		5/16/2019	15:02
Magnesium	60.3	mg/L		5/16/2019	15:02
Manganese	1.11	mg/L		5/16/2019	15:02
Nickel	< 0.0400	mg/L		5/16/2019	15:02
Potassium	3.86	mg/L		5/16/2019	15:02

Client: <u>Neu-Velle</u>

Project Reference: Elderlee-GW Annual 2019

Sample Identifier: MW-11

Lab Sample ID:192055-04Date Sampled:5/10/2019Matrix:GroundwaterDate Received:5/13/2019

Selenium	< 0.0200	mg/L	5/16/2019 15:02
Silver	< 0.0100	mg/L	5/16/2019 15:02
Sodium	158	mg/L	5/16/2019 15:02
Thallium	< 0.0250	mg/L	5/16/2019 15:02
Vanadium	< 0.0250	mg/L	5/16/2019 15:02
Zinc	< 0.0600	mg/L	5/14/2019 19:03

Method Reference(s): EPA 6010C

EPA 3005A

Preparation Date: 5/14/2019 **Data File:** 190516B

Sulfate

AnalyteResultUnitsQualifierDate AnalyzedSulfate870mg/L5/18/2019

Method Reference(s): EPA 300.0 Rev 2.1

Subcontractor ELAP ID: 10709

Client: <u>Neu-Velle</u>

Project Reference: Elderlee-GW Annual 2019

Sample Identifier: MW-4A

Lab Sample ID:192055-05Date Sampled:5/10/2019Matrix:GroundwaterDate Received:5/13/2019

Chloride

Analyte Result Units Qualifier Date Analyzed

Chloride **160** mg/L 5/18/2019

Method Reference(s): EPA 300.0 Rev 2.1

Subcontractor ELAP ID: 10709

<u>Mercury</u>

Analyte Result Units Qualifier Date Analyzed

Mercury < 0.000200 mg/L D 5/16/2019 10:10

Method Reference(s):EPA 7470APreparation Date:5/15/2019Data File:Hg190516A

TAL Metals (ICP)

Analyte	Result	<u>Units</u>	Qualifier	Date Analyz	zed
Aluminum	< 0.100	mg/L		5/16/2019 1	L5:07
Antimony	< 0.0600	mg/L		5/16/2019 1	15:07
Arsenic	< 0.0100	mg/L		5/16/2019 1	15:07
Barium	< 0.100	mg/L		5/16/2019 1	15:07
Beryllium	< 0.00500	mg/L		5/16/2019 1	15:07
Cadmium	< 0.00500	mg/L		5/16/2019 1	15:07
Calcium	320	mg/L		5/16/2019 1	15:07
Chromium	< 0.0100	mg/L		5/16/2019 1	15:07
Cobalt	< 0.0500	mg/L		5/16/2019 1	15:07
Copper	< 0.0400	mg/L		5/16/2019 1	15:07
Iron	1.42	mg/L		5/16/2019 1	15:07
Lead	< 0.0100	mg/L		5/16/2019 1	15:07
Magnesium	38.9	mg/L		5/16/2019 1	15:07
Manganese	0.408	mg/L		5/16/2019 1	15:07
Nickel	< 0.0400	mg/L		5/16/2019 1	L5:07
Potassium	2.96	mg/L		5/16/2019 1	15:07

Client: <u>Neu-Velle</u>

Project Reference: Elderlee-GW Annual 2019

Sample Identifier: MW-4A

Lab Sample ID: 192055-05 **Date Sampled:** 5/10/2019

Matrix: Groundwater Date Received: 5/13/2019

Selenium 5/16/2019 15:07 < 0.0200 mg/L Silver < 0.0100 mg/L 5/16/2019 15:07 Sodium 88.4 mg/L 5/16/2019 15:07 Thallium < 0.0250 mg/L 5/16/2019 15:07 Vanadium < 0.0250 mg/L 5/16/2019 15:07 Zinc 5/16/2019 15:07 7.40 mg/L

Method Reference(s): EPA 6010C

EPA 3005A

Preparation Date: 5/14/2019

Data File: 190516B

Sulfate

AnalyteResultUnitsQualifierDate AnalyzedSulfate880mg/L5/18/2019

Method Reference(s): EPA 300.0 Rev 2.1

Subcontractor ELAP ID: 10709

Client: <u>Neu-Velle</u>

Project Reference: Elderlee-GW Annual 2019

Sample Identifier: MW-5A

Lab Sample ID:192055-06Date Sampled:5/10/2019Matrix:GroundwaterDate Received:5/13/2019

Chloride

Analyte Result Units Qualifier Date Analyzed

Chloride **86** mg/L 5/18/2019

Method Reference(s): EPA 300.0 Rev 2.1

Subcontractor ELAP ID: 10709

<u>Mercury</u>

Analyte Result Units Qualifier Date Analyzed

Mercury < 0.000200 mg/L D 5/16/2019 10:19

Method Reference(s):EPA 7470APreparation Date:5/15/2019Data File:Hg190516A

TAL Metals (ICP)

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
Aluminum	< 0.100	mg/L		5/16/2019 15:11
Antimony	< 0.0600	mg/L		5/16/2019 15:11
Arsenic	< 0.0100	mg/L		5/16/2019 15:11
Barium	< 0.100	mg/L		5/16/2019 15:11
Beryllium	< 0.00500	mg/L		5/16/2019 15:11
Cadmium	< 0.00500	mg/L		5/16/2019 15:11
Calcium	451	mg/L		5/16/2019 15:11
Chromium	< 0.0100	mg/L		5/16/2019 15:11
Cobalt	< 0.0500	mg/L		5/16/2019 15:11
Copper	< 0.0400	mg/L		5/16/2019 15:11
Iron	1.74	mg/L		5/16/2019 15:11
Lead	< 0.0100	mg/L		5/16/2019 15:11
Magnesium	29.9	mg/L		5/16/2019 15:11
Manganese	0.440	mg/L		5/16/2019 15:11
Nickel	< 0.0400	mg/L		5/16/2019 15:11
Potassium	< 2.50	mg/L		5/16/2019 15:11

Client: <u>Neu-Velle</u>

Project Reference: Elderlee-GW Annual 2019

Sample Identifier: MW-5A

Lab Sample ID: 192055-06 **Date Sampled:** 5/10/2019

Matrix: Groundwater Date Received: 5/13/2019

Selenium < 0.0200 mg/L 5/16/2019 15:11 5/16/2019 15:11 Silver < 0.0100 mg/L Sodium 53.4 mg/L 5/16/2019 15:11 Thallium < 0.0250 mg/L 5/16/2019 15:11 Vanadium < 0.0250 mg/L 5/16/2019 15:11

Zinc 0.314 mg/L 5/16/2019 15:11

Method Reference(s): EPA 6010C

EPA 3005A

Preparation Date: 5/14/2019 Data File: 190516B

Sulfate

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Sulfate
 1100
 mg/L
 5/21/2019

Method Reference(s): EPA 300.0 Rev 2.1

Subcontractor ELAP ID: 10709

Method Blank Report

Client:

Neu-Velle

Project Reference:

Elderlee-GW Annual 2019

Lab Project ID:

192055

Matrix:

Groundwater

Mercury

<u>Analyte</u> <u>Result</u> <u>Units</u> <u>Qualifier</u> <u>Date Analyzed</u>

Mercury <0.000200 mg/L 5/16/2019 09:45

Method Reference(s):

EPA 7470A

Preparation Date:

5/15/2019

Data File:

Hg190516A

QC Batch ID:

QC190515Hgwater

QC Number:

1

QC Report for Laboratory Control Sample and Control Sample Duplicate

Page 45 of 54

Client: <u>Neu-Velle</u>

Project Reference: Elderlee-GW Annual 2019

Lab Project ID: 192055

Groundwater

Matrix:

Mercury

Mercury Analyte Method Reference(s): Preparation Date: 0.00200 0.00200 Added LCS Added LCSD 5/15/2019 EPA 7470A mg/L Spike Units Result 0.00177 0.00227 LCS Result LCSD Recovery Recovery LCS % 88.5 LCSD % 114 85 - 115 % Rec Limits **Outliers** LCS Outliers Difference LCSD Relative % 24.9 Limit RPD 20 **Outliers** RPD 5/16/2019 Analyzed Date

Data File: Hg190516A
QC Number: 1

QC Batch ID:

QC190515Hgwater

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "I" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, tern or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB. Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against

any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

CHAIN OF CUSTODY

			ATTN:		PROJECT REFERENCE
Email: jmare & nou-velle		111	PHONE:	PHONE: 585 313 4771	
Quotation #:	ZIP:	STATE:	CITY:	OTTY: ROCHESTER STATE: NY ZIP 1445	
142055	175		ADDRESS:	DDRESS: 1667 LAKE ANE, BULS9, SUITE ID!	line
LAB PROJECT ID		SAMIE	CLIENT:	CLIENT: NEW-VELLE	
		INVOICE TO:		REPORT TO:	

itional maga for sample sanditi					
onditions (reverse).	By signing this form, client agrees to Paradigm Terms and Conditions (reverse).	By signing this form, c	Other EDD please indicate EDD needed :	Other please indicate package needed:	Date Needed
	J S/13/19 090	Received @ Lab By	-E) Insper	Category B	Rush 2 day
P.I.F.	S/10/19 1635	Received By	NYSDEC EDD X	Category A	Rush 3 day
		Refinquished By	Basic EDD	Batch QC	10 day
Total Cost:	Date/Time	Sample By	None Required	None Required	Standard 5 day
	5/10/19	LAMES A. MORE	Availability contingent upon lab approval; additional fees may apply.	t upon lab appi	Availability contingen
			Report Supplements		Turnaround Time
5/101/5 MM 201/20		0 10		e L	n la 1 is 1 iv
1 2 pm 1 3 1 mm		901 or po			
	8	« «	MW-SA	×	W 1330
4	87	X	MWYA	R	0611
	X X	×	Mm-11	8	1210
	*	× *	MW-8	8	dill
	X X	_	MW-IOR	8	1035
	X X	W6 2 X	MW-9R	×	5/11/19 0935
process	THE	о по и п п г	tog time a scalen a. (To a ayeat fla c'. ida ayeat fla c'. ida ayeat fla a'. ida		2/10/14 borrowns 1/10/15
REMARKS	E CHL		SAMPLE IDENTIFIER	ωου ΣΣΖΟ	DATE COLLECTED COLLECTED
	02106	0 8 C Z 4 Z O O	or the survivors of the		stopic of sort con- presentation of an and an are set
	REQUESTED ANALYSIS				
SD - Solid WP - Wipe PT - Paint CK - Caulk	DW - Drinking Water SO - Soil WW - Wastewater SL - Sludge	WA - Water WG - Groundwater	Matrix Codes: AQ - Aqueous Liquid NQ - Non-Aqueous Liquid	2019	EDRUGE- GN ANNUAL 2019
		ATTN:	ATTN: MINTE	NCE	PROJECT REFERENCE
Email: jmove & now-velle.com			585 313 4771		
Quotation #:	STATE: ZIP:	- 4	CITY: POCHESTER STATE: NY		
142055		SUITE ID! ADDRESS:	ADDRESS: 1667 LAKE AVE, BUKS		
LAB PROJECT ID	SAME	CLIENT:	CLIENT: NEW-VELLE	<u> </u>	TARADIGI
				W Comment	

see additional page for sample conditions.

Chain of Custody Supplement

			,
Client:	Neu-velle	Completed by:	nolpail
Lab Project ID:	192055	Date:	5/13/19
T T	Sample Condition Per NELAC/ELAP 2	on Requirements 10/241/242/243/244	
Condition	NELAC compliance with the sample Yes	condition requirements u No	ipon receipt N/A
Container Type Comments	\		
Transferred to method- compliant container			L
Headspace (<1 mL) Comments			
Preservation Comments	met		Sy Kate, Chloride
Chlorine Absent (<0.10 ppm per test strip) Comments			
Holding Time Comments	<u> </u>		
Temperature Comments	2'6'44		met
Compliant Sample Quantity/T			
Comments			

179 Lake Avenue, Rochester, NY 14608 Office (585) 647-2530 Fax (585) 647-3311

190514008

CHAIN OF CUSTODY

					100000000000000000000000000000000000000	The second secon	
TURNAROUND TIME: (WORKING DAYS)	ZIP:	STATE:		CITY:	ZIP:	STATE:	
				ADDRESS:			:SS:
LAB PROJECT #: CLIENT PROJECT #:			Same	COMPANY:	ntal	Paradigm Environmenta	:YNA
		OICE TO:	VNI		が対象を持ち	REPORT TO:	
ADIRONDACK: ELAP ID: 10	ADIR		ODY	CUST	HAIN OF CUSTODY	CHA	

	4: 24 pm		5- [4-[9] Date/Time		ab By	Received @ Lab By	z O	C	ature:	Temperature:	Comments:
	P.I.F.		Date/Time			Received By	~		Time:	Holding Time:	Comments:
	830		5/14/16 Daté/Time		Ву	Relinquished By	z		ration:	Preservation:	Comments:
St.	Total Cost:		Date/Time		nt	Client Sampled By	z 		r Type:	Container Type:	Comments:
							ELAC Compliance	4717471147	Receipt Parameter N	Receipt F	Sample Collu
								INEX	ZUABIUSE ONLY BELOW THIS LINE	ONLY BE	*LAB USE
											10
											9
											8
											7
	900	1		X	4-	de	80 - 550 tb)	X		1330	6
	005	† G		X			192055-05	メ		1428	Oī
	400	ì		X			192055 -OH	メ		1210	4
	003	1		X			192055-03	×		1110	ω
	200	1		X	_		20-25066)	*		1025	2
	001	10		X X	.gar	E)G	10-SSOED1	X		0935	15/10/19
PARADIGM LAB SAMPLE NUMBER	REMARKS			Chloride. Sulfate.	202 H K - Z M K	Z 4 F 57 X	SAMPLE LOCATIONFIELD ID	ω×α	0 O Z E O O - F- M	TIME	DATE
	Date Due: 0/6		ED ANALYSIS	REQUESTED							
-	7			env.com	aradigm	reporting@p	Please email results to reporting@paradigmenv.com	COMMENTS:			•
3 7 -	1 2		Accounts Payable	Accounts	ATTN:		Reporting	ATTN:		TE NAME:	PROJECT NAME/SITE NAME:
Q18			FAX:		PHONE:		FAX:	PHONE:			
RKING DAYS)	TURNAROUND TIME: (WORKING DAYS)	ZIP:	STATE:		CITY:	ZIP:	STATE:	CITY:			
10.00					ADDRESS:			ADDRESS:			200
CLIENT PROJECT #:	LAB PROJECT #:		THE TAXABLE TO	San	COMPANY:	ıtal	Paradigm Environmental	COMPANY:	(c) 	PARADIGM	70
			INVICTOR TO		語があれる	高いは 19 13 13 13 13 13 13 13 13 13 13 13 13 13	ロロコンロココン				

APPENDIX E PHOTO LOGS

Photo Location No. 1 – Area A – Looking East on South Edge of Cover

Photo Location No. 2 - Area A - Looking North on West Edge of Cover

Photo Location No. 3 – Area A – Looking West on North Edge of Cover

Photo Location No. 4 – Area A – Looking North on East Edge of Cover

Representative Photos - Area A

May 10, 2019

Photo Location No. 5 – Area A – Center overview - Looking Northeast at Cover

