May 19, 2006

Mr. James Craft New York Department of Environmental Conservation Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road Avon, New York 14414-9519

Re: Soil Vapor Intrusion Tennessee Gas Pipeline Compressor Station 237 (Site # 835011) Lafayette, New York

Dear Mr. Craft

Tennessee Gas Pipeline (TGPL) is pleased to submit this Soil Vapor Intrusion Evaluation at TGPL Compressor Station 237 (Station 237) in Clifton Springs, New York (Figure 1). These activities are in response to the Soil Vapor Intrusion Evaluation requested by the New York Department of Environmental Conservation (NYSDEC) and New York State Department of Health NYSDOH) in a letter dated March 13, 2006.

Eco-Systems, Inc. (Eco-Systems) on behalf of TGPL has performed a comprehensive review of volatile organic compound (VOC) data collected at Station 237. The purpose hereby of the historic hazardous substance list (HSL) review was to review previous reports and sampling results at Station 237 to determine if there was a need to conduct further soil vapor intrusion studies.

SUMMARY OF CHARACTERIZATION AND CORRECTIVE ACTION

Groundwater monitoring began at Station 237 in the early 1990s with the installation of five monitoring wells (Monitoring Wells MW-1 through MW-5) and focused on delineating the extent of polychlorinated biphenyls (PCBs)¹. These monitoring wells are screened in the overburden and the upper fractured bedrock zone. Four rounds of groundwater sampling were completed from 1990 through 1993. Results of these groundwater sampling efforts indicated that the chlorinated VOC compounds chloroethane, 1,1-dichloroethene (1,1-DCE), 1,1-dichloroetnane (1,1-DCA), and 1,1,1-trichloroethane (1,1,1-TCA) were reported above the New York Standards, Criteria, and Guidance (NY SCG) in groundwater samples collected from Monitoring Well WM-2S (Table 1). Concentrations of 1,1-DCA and 1,1-TCA were reported above the NY SCG in groundwater samples collected from Monitoring Well MW-3 above the NY SCG.

The presence of chlorinated VOCs identified in groundwater samples from Monitoring Wells MW-2 and MW-3 indicated the necessity to characterize soil near these monitoring wells. A soil gas survey was performed between August and September 1992 near the ART Areas A

¹Roy F. Weston. <u>Remedial Investigation, Tennessee Gas Pipeline Company, Compressor Station 237 at Clifton</u> <u>Springs, New York.</u> 1991.

and B and the compressor building to define the distribution of VOCs in subsurface soil and groundwater². Eleven VOCs were detected above the detection limits in the soil gas samples. The results of the soil gas samples nearest to Monitoring Wells MW-2S and MW-3 had the highest detections of VOCs.

A Phase I groundwater characterization program to delineate the distribution of VOCs was conducted during October 1993³. The primary objective was to delineate the lateral extent of VOCs in groundwater, if any downgradient of Monitoring Wells MW-2S and MW-3. This program included the collection of groundwater samples from temporary drive points installed in a series of transects downgradient from Monitoring Wells MW-2S and MW-3. Soil samples were also collected at two-foot (ft) intervals during the installation of the temporary drive points for lithologic logging and for field screening of VOCs with a photoionization detector (PID). Selected soil samples were collected for laboratory analysis of VOCs from locations where VOCs were previously reported⁴. Upon completion of the temporary drive points, groundwater samples were collected.

Soil samples were planned for collection where elevated PID responses were observed. PID responses were elevated above 10 parts per million (ppm) in soil samples collected adjacent to and downgradient from Monitoirng Wells MW-2S and MW-3. Soil samples collected for laboratory analysis were generally collected at locations where the PID responses were elevated and where VOCs were reported in soil or groundwater nearby. No VOCs were reported in any of the soil samples analyzed⁵.

The groundwater samples collected from the temporary drive points were submitted for VOC analysis. Elevated levels of the VOCs chloroethane, 1,1,1-TCA, and 1,1-DCA were detected in five of the eight groundwater samples collected from the temporary drive points downgradient of Monitoring Wells MW-2S and MW-3. Additional VOCs detected consisted of benzene, total xylenes, toluene, ethylbenzene, 1,3,5-trimethylbenzene (1,3,5-TMB), and 1,2,4-trimethylbenzene (1,2,4-TMB). Most of the VOCs were non-chlorinated aromatics.

As a result of the Phase I activities, a Phase II work plan was prepared to further define the lateral and vertical extent of VOCs in groundwater at Station 237. The Phase II characterization program was initiated in 1994 and consisted of the installation of seven additional confirmatory monitoring wells. Monitoring Wells MW-2D and MW-6 were installed adjacent to Monitoring Wells MW-2S and MW-3, respectively to determine if vertical migration of VOCs had occurred in the deeper groundwater zone. Monitoring Well MW-7 was installed in the shallow bedrock downgradient from Monitoring Well MW-2S. Monitoring Wells MW-8S and MW-9S were installed in the shallow groundwater zone and Monitoring Wells MW-8D and MW-9D were installed in the deeper groundwater zone

² Ecology and Environment, Inc. <u>Soil Gas Survey, Tennessee Gas Pipeline Company, Compressor Station 237,</u> <u>Lafayette, New York</u>. January 1993.

³ Roy F. Weston. <u>Report on Phase I Additional Groundwater Characterization - Volatile Organic Compounds</u>, Tennessee Gas Pipeline Company, Compressor Station 241 at Lafayette, New York. February 1994.

⁴ Ibid.

⁵ Ibid.

downgradient from Monitoring Well MW-2S and MW-3 to determine the lateral and vertical extent of any VOC migration (Figure 2)⁶.

During the Phase II activities, groundwater samples from the seven new groundwater monitoring wells were submitted for VOC analysis. The VOCs similar to those detected in previous sampling events were detected in groundwater at all seven Phase II monitoring wells⁷. The VOC's detected included 1,1,1-TCA, benzene, toluene, ethylbenzene, and total xylenes (BTEX), 1,3,5-TMB, and 1,2,4-TMB. The highest concentration of individual VOCs were primarily detected in groundwater samples collected from the shallow bedrock monitoring wells, located downgradient of existing Monitoring Well MW-2S and the compressor building area.

An evaluation of the groundwater results discussed above suggested that the soil in the vicinity of monitoring wells MW-2S and MW-3 (located in ART Areas A and B) may be potential sources of VOCs that are present in the groundwater in these areas. Therefore, the focus of the VOC source characterization was to delineate, if present, the distribution of any VOCs in these soils.

Following the Phase II activities, a Feasibility Study⁸ was prepared that presented remedial options. A Proposed Remedial Action Plan was issued by NYSDEC in February 1995 which addressed contaminated on-site soils and groundwater⁹. A comprehensive VOC source characterization program was implemented to determine if there were any sources of VOCs in the overburden that may be contributing to VOCs identified in the groundwater¹⁰. A follow up soil gas survey was performed to ensure optimal selection of locations for a confirmatory soil boring program to determine if VOCs are in the subsurface soils. Soil samples were collected from numerous locations based on the soil gas survey, OVA response, and visual observations. Many of the soil samples were collected in the vadose zone. In the ART Areas A and B, VOCs were detected at low concentrations in soil samples within the capillary fringe and well below the saturated overburden¹¹. These VOCs were the same compounds identified in groundwater and are present in soils at similar or lower concentrations. The VOCs in soils do not represent a likely source for the VOCs in groundwater.

A proposed remedy was selected and issued for public comment and a Record of Decision $(ROD)^{12}$ was issued that specifies certain remedial goals related to soils, sediments, and drainlines at Station 237. The ROD also identifies remedial goals/action levels for certain constituent levels in groundwater including 1,1,1-TCA and 1,1-DCA.

⁶ Roy F. Weston. <u>Report on Phase II Groundwater Characterization - Volatile Organic Compounds, For</u> Tennessee Gas Pipeline Company, Compressor Station 237 at Lafayette, New York. July 1994.

Ibid.

⁸ ENVION Corp. Feasibility Study, Tennessee Gas Pipeline Company, Compressor Station 241 at Lafayette, New York. July 1996.

⁹ NYSDEC. Proposed Remedial Action Plan. February 1995.

¹⁰ Roy F. Weston. <u>Report on VOC Source characterization at Tennessee Gas Pipeline Company Compressor</u> Station 237, Clifton Springs, Ney York. July 1995

¹² NYSDEC. <u>Record of Decision</u>. March 1995.

A Remedial Design Work Plan¹³ was prepared and remediation was completed in 1996¹⁴. Remediation was performed at seven main areas of the site: Air Receiver Tank A, Air Receiver Tank B, Drainage Ditch F and Retired Burn Pit. Within these areas approximately 199 in-place cubic yards (yd³) of soil/sediment were excavated and disposed of off site. Drainline remediation was performed for two on-site drainage systems. Approximately 1,895 linear ft of Drainline A and 1,590 linear ft of drainline B were closed via filling with non-shrink grout.

Upon completion of remediation activities, Monitoring Wells MW-10S and MW-11S were installed in the shallow groundwater zone and Monitoring Wells MW-10D and MW-11D were installed in the deeper groundwater zone (Figure 2)¹⁵. A site specific Groundwater Monitoring and contingency Plan (GMCP) was developed to implement the remedy selected (natural attenuation) in the ROD¹⁶. In 1996 TGPL began a post remediation groundwater monitoring program. Groundwater samples were collected from the Monitoring Wells and analyzed for VOCs. Groundwater sampling and analysis were conducted in accordance with the procedures specified in the <u>Quality Assurance Project Plan for Soil/Drainline</u> Remediation, New York Compressor Stations (QAPP)¹⁷.

BTEX as well as 1,2,4- and 1,3,5-TMB have been detected in several monitoring wells at Station 237. In July 2000, Borehole BH-14 (Figure 2), was advanced into the deep zone hydraulically upgradient of all station activities to determine if BTEX and TMBs were naturally present at this location. The shale sample from 45.0 to 45.67 ft below ground surface (bgs), was retained for laboratory analysis, and a grab groundwater sample was also collected¹⁸. The concentrations of BTEX, 1,3,5-TMB and 1,2,4-TMB in the groundwater sample collected from Borehole BH-14 were generally higher than the groundwater samples collected from the monitoring wells at Station 237. The BTEX, 1,3,5-TMB and 1,2,4-TMB detections were determined to be naturally occurring in the Devonian Shale.

In November 2001 during the collection of depth-to-water measurements from the monitoring wells, a 0.23 ft thick layer of light non-aqueous phase liquid (LNAPL) was measured from Monitoring Well MW-2S. A sample of the LNAPL was collected from Monitoring Well MW-2S and was determined to be oil containing polychlorinated biphenyls (PCBs) at 1.8 milligrams per liter $(mg/L)^{19}$.

Upon completion of the required five year monitoring program concentrations the chlorinated VOC compounds 1,1,1-TCA, 1,1-DCA, and 1,1-DCE, and chloroethane were reported above the NY SCG limit of five micrograms per liter (μ g/L) in the groundwater samples collected from Monitoring Well MW-2S (Table 1). The chlorinated VOC compounds 1,1,1-TCA and

¹³ BB&L. <u>Remedial Design Work Plan, Compressor Station 237, Clifton Springs, New York</u>. March 1996.

¹⁴ BB&L. <u>Final Documentation Report for Soil, Sediment, and Drainline Remediation Activities, Compressor</u> Station 237, Clifton Springs, New York, Site No. 835001. November 1996.

¹⁵ Ibid.

¹⁶ Roy F. Weston. <u>Groundwater Monitoring and Contingency Plan, Tennessee Gas Pipeline Company</u>, <u>Compressor Station 237, Clifton Springs, New York</u>. April 1996.

¹⁷ BB&L. May 1995 and TGPL. February 1996.

¹⁸ Eco-Systems, Inc. <u>TGPL Compressor Station 237 (Site# 835011)</u>, Letter Report – Field Activity Report. October 2000.

¹⁹ Eco-Systems, Inc. <u>TGPL Compressor Station 237 Clifton Springs, New York, Fifth Annual Report</u>. April 2002.

Mr. James Craft May 19, 2006 Page 5 of 7

1,1-DCA were reported above the NY SCG limit in the groundwater samples collected from Monitoring Wells MW-3, MW-8S, and MW-9S (Table 1). A <u>Source Investigation and Corrective Action Work Plan²⁰</u>, was submitted to NYSDEC. NYSDEC provided comments to the work plan in a letter dated June 19, 2003, and TGPL provided a response to the comments in a letter dated July 23, 2003. NYSDEC granted approval of the source delineation and corrective action work plan in a letter dated August 20, 2003. The source investigation and corrective action activities were initiated at Station 237 in October of 2003.

The source investigation and first HRC injection into the subsurface at Station 237 were conducted during October 2003. The results of the soil samples collected near the ART areas revealed there was no continuing source of chlorinated VOCs. The objective of the HRC injection project was to transform historically oxidizing subsurface conditions into reducing conditions and promote the production of hydrogen by naturally occurring bacteria. In these reducing conditions, the naturally occurring microorganisms use hydrogen to progressively remove chlorine atoms from chlorinated hydrocarbon contaminants (i.e. 1,1,1-TCA to 1,1-DCA to chloroethane to ethane)²¹.

Concentrations of 1,1,1-TCA, 1,1-DCA, and chloroethane were showing a decreasing trend, but remained above the NY SCG levels in the 20th month after HRC was initially injected into the subsurface. The field parameters and natural attenuation geochemical data also indicated that the HRC may be losing effectiveness. According to the manufacturer, the effectiveness of HRC is expected to be approximately 12 to 18 months. TGPL recommended in the June 2005 Semi-annual Groundwater Monitoring Event Report²² that a second application of HRC be injected into the subsurface in the vicinity of Monitoring Wells MW-2S, MW-3, MW-8S, and MW-9S. NYSDEC approved the re-application of HRC on August 3, 2005. The re-application of HRC was conducted during October 25 through 28, 2005 in accordance with the procedures followed in the October 2003 HRC application²³.

TGPL also recommended in the June 2005 Semi-annual Groundwater Monitoring Event <u>Report</u>²⁴ the plugging and abandonment of Monitoring Wells MW-1, MW-11S, and MW-11D because they were upgradient and VOCs had not been reported in groundwater samples from these monitoring wells. TGPL also recommended to plug and abandon Monitoring Wells MW-8D, MW-9D, and MW-10D, because VOCs had either never been reported or were well below the NY SCG in groundwater samples collected from these monitoring wells. Additionally, plug and abandon Monitoring Wells MW-2D and MW-6 because BTEX, 1,3,5-TMB and 1,2,4-TMB constituents reported in groundwater samples were found to be naturally occurring, and plug and abandon the five piezometers at Station 237. Finally, plug and abandon Monitoring Well MW-2S, remove affected soil in a small area near Monitoring Well MW-2S location.

²⁰ Eco-Systems, Inc. July 2002.

²¹ Wiedemeier, T.H., J.T. Wilson, J.E. Hansen, and F.H. Chapelle. <u>Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater</u>. 1996.

²² Eco-Systems, Inc. 2005.

²³ Eco-Systems, Inc. July 2002.

²⁴ Eco-Systems, Inc. August 2005.

Mr. James Craft May 19, 2006 Page 6 of 7

NYSDEC approved the plugging and abandonment on October 5, 2005. Monitoring Wells MW-1, MW-2S, MW-11S, MW-11D, MW-8D, MW-9D, MW-10D, MW-2D and MW-6 as well the five piezometers at Station 237 were abandoned on November 2, 3, and 4, 2005²⁵. Replacement Monitoring Well MW-2SR was installed on November 4, 2005.

SOIL VAPOR

The nature and extent of VOCs have been defined at Station 237. As described in the Summary of Characterization and Corrective Action of this document, during the spring of 1988 through May 1996, TGPL implemented characterization activities at Station 237. A preliminary sampling program was conducted by TGPL in 1988 to determine if PCBs were present in the starting air system, the drainage system, or the drainage system receiving area. An extensive site characterization program was performed between October 1990 and April 1991. This program consisted of the collection and analysis of soil, sediment and water samples to define the presence of PCBs and screen for the presence of HSL constituents based on Target Compound List (TCL)/Target Analyte List (TAL) analysis.

A limited number of soil samples were collected in ART Areas A and B during the RI. Four grab soil samples were collected from ART Area A (two samples at each location, from 0-6 inches below ground surface (bgs) and 6-12 inches bgs, respectively. Four grab samples were also collected from ART Area B. Concentrations of 1,1,1-TCA was detected in two of these samples at concentrations ranging from 0.058 mg per kilogram (mg/kg) to 0.015mg/kg. One grab soil sample was also collected and analyzed during the drilling and installation of monitoring well MW-2. In this sample, collected from the 10-ft to 12-ft bgs depth interval, 1,1,1-TCA (0.8 mg/kg) 1,1-DCE (0.076 mg/kg), and 1,1-DCA (0.015 mg/kg) were detected. Depth to water in this monitoring well was noted to be 8 feet bgs.

The results from these investigations indicate the presence of chlorinated VOCs generally in the area near Monitoring Well MW-2S, MW-3 near the ART A and B areas and Monitoring Well MW-9S. The TAL levels are below levels of concern for these constituents.

In addition, a soil gas survey was conducted in the area near the ART A and B areas and the compressor building in August and September 1992 and in March 1995 as part of the VOC source characterization to define the distribution of VOCs in subsurface soil and groundwater. The results from these soil gas survey indicated that the soils are not a significant, continuing source of VOCs to groundwater. VOCs were not reported in soil gas samples collected nearest to the compressor building and upgradient of Monitoring Wells MW-2S and MW-3 except for low levels of methylene chloride which is considered a common laboratory contaminant. In the absence of a source of VOCs in soil, the current groundwater conditions are likely to be localized with the enhanced natural attenuation and natural attenuation further downgradient. The VOCs noted in soil samples collected in the vicinity of ART areas A and B were predominately at a depth greater than five ft which is within the capillary fringe below the top of the saturated overburden. These VOCs are the same compounds identified in groundwater and are present at similar or lower concentrations. As the above activities show, Station 237 has been properly characterized and no further soil gas sampling is necessary.

²⁵ Eco-Systems, Inc. December 2005.

The likelihood of a soil vapor problem on or off site is extremely low. The facility is an industrial site with limited access. TGPL's compressor building is the only building on the property with a basement. The floor of the basement is partially below grade and has windows for ventilation. It is also upgradient from Monitoring Wells MW-2S and MW-3 which are the monitoring wells that indicates the presence of chlorinated VOCs. The rest of the building has a crawl space that is at grade. The basement is only occupied during periodic maintenance activities (i.e., valve, gauge, and engine repair and inspection) and for far less than 40 hours a week. The crawl space is rarely entered except during major maintenance events (i.e., engine repair during a shutdown). The compressor building houses the reciprocating compressor engines and is well ventilated.

Recent depth-to-water measurements from the shallow Monitoring Wells were utilized to create a generalized water-table map for Station 237 (Figure 2). The general direction of shallow groundwater flow shown by this map is to the north to northeast. This is consistent with historically observed groundwater flow direction at Station 237. The concentrations of VOCs in the downgradient perimeter monitoring wells, upgradient monitoring well and the residences to the north were proven to be naturally occurring.

Finally, the soil gas data collected at Station 237 is representative. The methods used in the soil gas survey are consistent with the procedures recommended by Guidance for Evaluating Soil Vapor Intrusion in the State of New York. The soil gas samples were collected using temporary stainless-steel probes and tedlar bags. One soil gas sample was collected using a tenax tube. Soil gas was extracted from the ground through the probe using a vacuum chamber and pump. The soil gas passed directly from the subsurface to the tedlar bag or tenax tube without exposure to the pump or ambient air. The soil gas from the tedlar bag was analyzed by gas chromatography using a Hall/PID and the tenax tube analyzed using gas chromatography using a Hall/PID and the state of New York are to be used as guidance for Evaluating Soil Vapor Intrusion in the State of New York are to be used as guidance and may be changed with the States approval. There is no need for further soil gas sampling. TCE is no longer used at the facility.

CONCLUSIONS

The Guidance for Evaluating Soil Vapor Intrusion in the State of New York also mentions that no two sites are exactly alike; the approach in evaluating soil vapor intrusion is dependant on site specific conditions. A thorough understanding of the site including history of use, characteristics, and potentially exposed populations is used to develop an investigation plan. The appropriate data is gathered and reviewed until the following questions are answered.

1. Are subsurface vapors contaminated (i.e., soil vapor as defined in section 1.1, including vapors located immediately beneath the foundation or slab of a building. What is/are the sourc(s) of the contamination?

As mentioned previously in this document the mobility of VOCs is limited both vertically and laterally in the overburden deposits, most likely due to the relatively low hydraulic

conductivity and fine grained nature of these deposits. Natural attenuation is expected to be a significant factor in the fate of VOCs in groundwater. The groundwater is currently being successfully treated for accelerated anaerobic natural attenuation in the area of Monitoring Well MW-2S. Additionally, a soil gas survey was conducted in the area near the ARTs and the compressor building in August and September 1992 and March 1995 defined the distribution of VOCs in subsurface soil and groundwater. The results from these soil gas survey indicated that the soils are not a significant, continuing source of VOCs to groundwater.

2. What are the current and potential exposures to contaminated subsurface vapors?

The results of the groundwater characterization indicate that the chlorinated VOCs detected above the NY SCG are confined to near Monitoring Well MW-2S and MW-3. The results from the soil gas surveys also indicated that the soils are not a significant, continuing source of VOCs. Concentrations of VOCs in the soil gas samples collected downgradient near the property boundary and nearby residences were either not detected, were proven to be naturally occurring, or were false positive from substances considered a common laboratory contaminant.

The facility is and will continue to be an industrial site with limited access. TGPL's compressor building is the only building on the property with a basement. The floor of the basement is partially below grade and has windows for ventilation. The basement is only occupied during periodic maintenance activities (i.e. valve, gauge, and engine repair and inspection) and for far less than 40 hours a week. The crawl space is rarely entered except during major maintenance events (i.e. engine repair during a shutdown). The compressor building houses the reciprocating compressor engines and is well ventilated.

3. What actions, if any, are needed to prevent or mitigate exposures and to remediate subsurface vapor contamination?

As mentioned previously the compressor building has limited access and is well ventilated. As evidenced by reports submitted to NYSDEC the remediation of VOCs in groundwater is performing as expected. The long term monitoring indicates the groundwater conditions are stable and the concentrations of VOCs are reducing over time. The remedial program included the application of HRC to stimulate the anaerobic biodegradation of chlorinated VOCs.

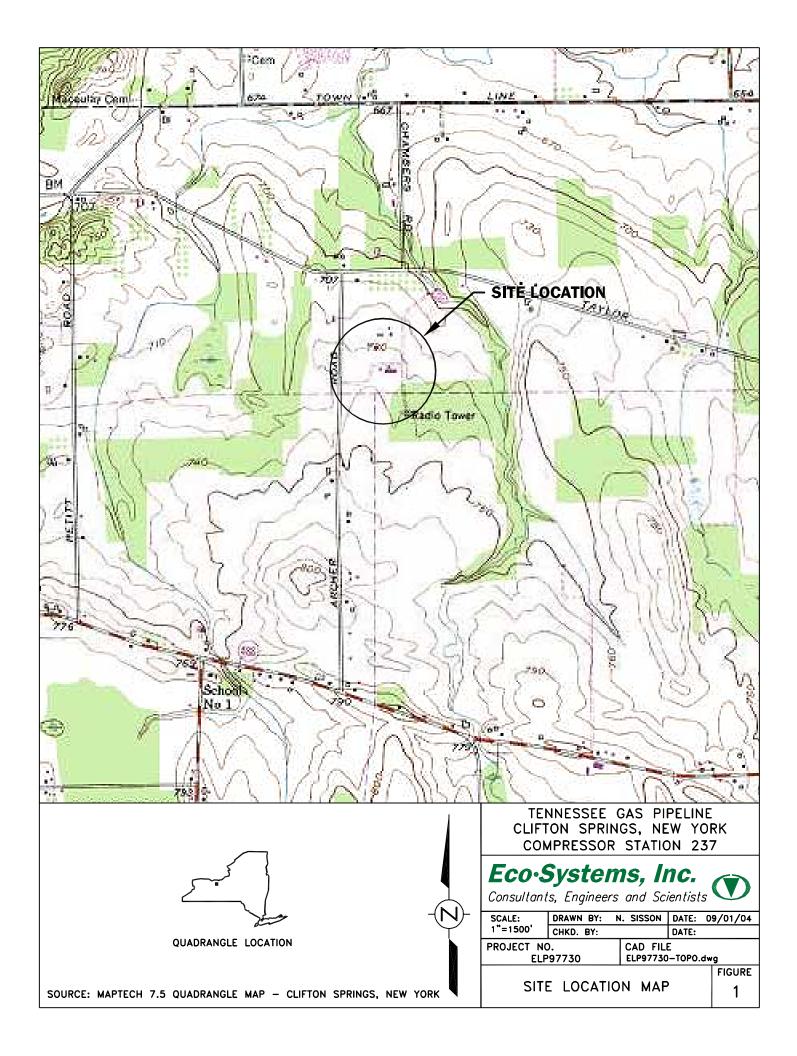
The nature and extent of VOCs in all environmental media, factors affecting vapor migration and intrusion, current and future uses, off-site land uses, presence of alternative sources of volatile chemicals, and completed or proposed remedial actions have been addressed. Our evaluation is no further soil vapor intrusion work is warranted at Station 237.

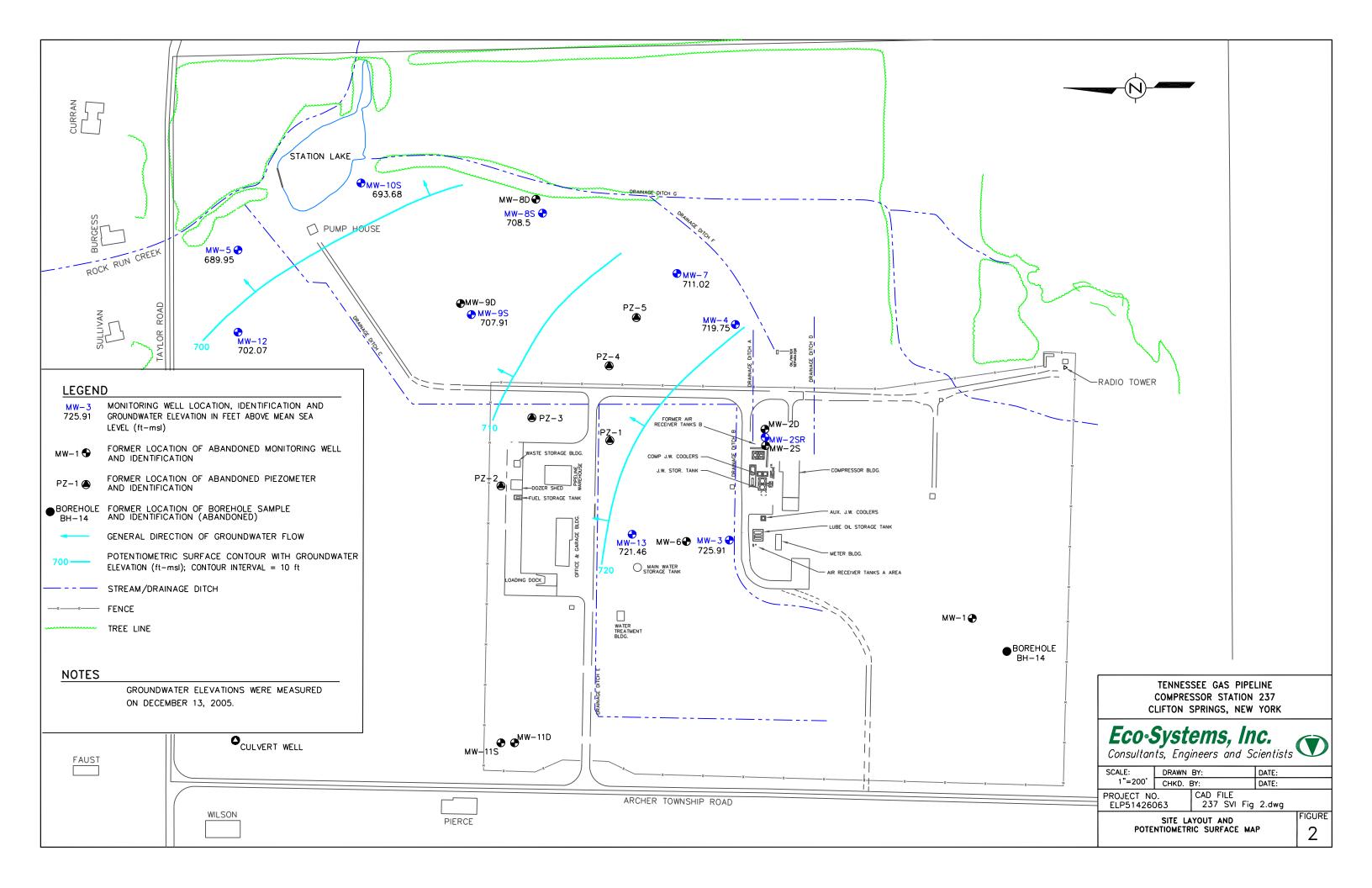
Neither this letter, performance of the evaluation or the provision of any information, nor the results or contents of same shall be construed (i) as an admission, adjudication or finding of liability or of any issue of law or fact; (ii) as a concession by TGPL that the Department or State of New York has the right to compel TGPL to conduct the evaluation or take any

Mr. James Craft May 19, 2006 Page 9 of 7

subsequent action; or (iii) as barring, diminishing, adjudicating or in any way affecting any of TGPLs rights including, but not limited to, its rights under Order on Consent No. A7-0349-9510 and its right to defend against any action brought by the Department or the State of New York.

CLOSING


Eco-Systems appreciates the opportunity to assist TGPL on this project. If you have any questions or require additional information, please do not hesitate to contact us.


Sincerely yours,

Ian Yanagisawa, P. E., P. G. Principal Environmental Engineer

Figures and Table

cc: Scott Lewis, TGPL Mark Van Valkenburg, NYSDOH Tim Webster, Webster, Szanyi, LLP Marty Grimes, TGPL Compressor Station 237 Jim Connors, Eco-Systems Eco-Systems - Central File FIGURES

TABLE

DADAMETEDC												MW-1													MW-1 (DUP)	NY SCG
PARAMETERS	1/91	4/91	7/92	8/93	7/96	1/97	8/97	1/98	6/98	1/99	5/99	8/99	12/99	6/00	11/00	6/01	6/02	11/02	5/03	12/03	6/04	12/04	6/05	12/05	6/00	Level
VOCs																										
Acetone	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	ns	R	23.6J	39.1J	8.3J		ns	
Benzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	1
Bromochloromethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	700
Bromodichloromethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	A	U	
Bromoform	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	E	U	10000
2-Butanone	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	ns	R	U	R	UJ	õ	ns	
sec-Butylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	D D	U	5
Carbon Disulfide	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	z	U	
Chloroethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	A I	U	5
Chloroform	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	Å	U	7
p-Cymene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	ns	ns	ns	ns	×	U	5
Dibromochloromethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	
1,1-Dichloroethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	5
1,2-Dichloroethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	0.6
1,1-Dichloroethene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	5
Ethylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	5
Isopropylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	5
Methylene Chloride	9	9	1	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	5
n-Propylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	D	U	5
Tetrachloroethene	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	E	Ū	5
Toluene	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Z	Ū	5
1,2,3-Trichlorobenzene	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	0	Ŭ	5
1,1,1-Trichloroethane	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	D N	U	5
1,1,2-Trichloroethane	U	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	A P	U	1
1,2,4-Trimethylbenzene	U	Ŭ	Ŭ	U	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	B	U	5
1,3,5-Trimethylbenzene	U	Ŭ	Ŭ	U	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ		U	5
Vinyl Chloride	U	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	7	U	2
Xylenes (Total)	U	Ŭ	Ŭ	U	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ		U	15
ALTERNATIVE	Ũ	U	Ũ	C	Ũ	Ũ	Ũ	Ũ	Ũ	Ũ	U	Ũ	C	C	C	C	Ũ	C	Ũ	Ũ	Ũ	U	Ũ		Ũ	
GEOCHEMICAL																										
PARAMETERS																										
Chloride	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	1600	5300	4000	1200	2600	2000	1200	3400	1400	U	U	U	U		ns	
Ethane	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	U	5500 U	4000 U	1200 U	2000 U	2000 U	1200 U	5400 U	1400 U	U	U	U	0.15		ns	
Ethanol	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	U	U	U	U	U	U	U	U	U	U	U	U	U.15		ns	
Ethene	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	U	ns	ns	ns	ns	ns	ns	ns	ns	ns	D	ns	
Ferric Iron	ns	ns	ns		ns		ns	ns		ns	420	200	5300	140	ns		ns	ns	ns		ns	ns	ns	E	ns	
Ferrous Iron	ns	ns	ns	ns ns	ns	ns ns	ns	ns	ns ns	ns	720	200	90	U	ns	ns ns	ns	ns	ns	ns ns	ns	ns	ns	Z	ns	
Total Iron	ns	ns										ns	ns	ns	1250	U	U	205	U	U	U	126	199	0	ns	
Methane		ns	ns	ns	ns	ns	ns ns	ns	ns	ns	ns U	2300	1400	ns	500	1100	4.7	203 340	32	U	32.6	70.6	271	D	ns	
Nitrate	ns ns	ns	ns ns	ns ns	ns ns	ns ns	ns	ns ns	ns ns	ns ns	190	2300 U	1400 U	11s 140	300 U	1100 U	230	540 U	32 140	1900	220	70.0 960	211	Z	ns	
SOC											76400	2200	12600	140	4200	1800	230 U	1200	140 U	2800	220 U	1000	210 U	× ×		
SUC	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	20600	2200	20100	1400	4200 23100	1800	10800	7500	20100	2800 U	U	1000 U	14500	АB	ns	
Sulfide	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	20600 U	23600 U	20100 U		23100 U	18900 U	10800 U	7500 U	20100 U	U	U	U	14500 U	V	ns	
Sulfite	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns				ns U											ns	
Total Alkalinity	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns 361000	ns 341000	ns 359000		ns 361000	ns 386000	ns 329000	ns 289000	ns 277000	ns 391000	ns 383000	ns 381000	ns 406000		ns	
TOC	ns ns	ns ns	ns ns	ns ns	ns ns	ns ns	ns ns	ns ns	ns ns	ns ns	2100	2400	12400	2700	1600	1500	1200	289000	277000 U	1700	1400	1200	406000 U		ns ns	
	ns Notes:	115	115	115	115	115	115	115	115	115	2100	2400	12400	2700	1000	1300	1200	2000	U	1/00	1400	1200	U		115	1

All data in micrograms per liter ($\mu g/L$)

NY Standards, Criteria, and Guidance (SCG) Levels are equal to NYS groundwater quality standards per 6NYCRR part 703

Analytical results in red indicate value exceeds NY SCG Level

"U" indicates parameter was not detected above the reported numerical value

"J" indicates estimated value

"R" indicates value was rejected due to relative response factor below quality control limits

"E" indicates compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analysis

"D" indicates compound identified at a secondary dilution factor

PARAMETERS														MW-2	s											MW-2SR]	MW-2S (D	UP)					MW	/-2D			NY SCG
	1/91	4/91	7/92	8/93	11/93	3 7/9	6 1/2	97 8	8/97	1/98	6/98	1/99	5/99	8/99	12/99	6/00	11/00) 6/01	11/0	1 3/0	4 (6/04	9/04	12/04	6/05	12/05	7/96	8/97	6/98	1/99	5/99	8/99	6/00	4/94	1/99	6/00	6/01	6/02	12/05	Level
VOCs																																								
Acetone	U	U	U	U	U	U	U U	U	U	U	U	U	U	U	U	U	U	U	U	59.	2J 6	8.4DJ	7.6J	9.4J	R	R	U	U	U	U	U	U	U	U	U	U	U	U		
Benzene	U	U	U	U	0.4J	U	U U	U	U	U	U	U	U	U	U	U	U	U	U	U	ſ	U	0.16J	U	0.81J	U	U	U	U	U	U	U	U	0.7J	U	0.35J	U	U		1
Bromochloromethane	U	U	U	U	U	U	U U	U	U	U	U	U	U	U	U	U	U	U	U	U	ſ	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	Ω	700
Bromodichloromethane	U	U	U	U	U	U	U U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	ы	
Bromoform	U	U	U	U	U	U	U U	U	U	U	U	U	U	U	U	U	U	U	U	U	ſ	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	z	10000
2-Butanone	U	U	U	U	U	U	U U	U	U	U	U	U	U	U	U	U	U	U	U	106	DJ 1	176D	69.3DJ	21.8J	R	R	U	U	U	U	U	U	U	U	U	U	U	U	0	
sec-Butylbenzene	U	U	U	U	U	U	U	U	U	U	U	0.21J	U	U	U	U	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	A	5
Carbon Disulfide	U	U	U	U	U	U	l l	U	U	U	U	U	U	U	U	U	U	U	U	U		U	0.14J	0.14J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	z	_
Chloroethane	U	U	7.5	29	20	57	7 L	U 3	34D	7.2	33	30D	14	67D	72	13	39	31D	61I) 36.	.4 5	52.8D	78.1D	126D	230D	U	58	24D	36D	29	15	55D	13	U	U	U	U	U	V	5
Chloroform	U	U	U	U	U	U	l (U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	2	U	U	U	U	В	7
p-Cymene	U	U	U	U	U	U	l t	Ú	U	U	U	U	U	U	U	U	U	U	U	ns	3	ns	ns	ns	ns	U	U	U	U	U	U	U	U	U	U	U	U	U	¥	5
Dibromochloromethane	U	U	U	U	U	U	J U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		_
1,1-Dichloroethane	350	350	260	360E	1201	E 13	0 T	U 1	00D	21D	60	31D	16	73D	52	16	66	23D	731		.4 4	14.5D	36.2	32.9	23.9	U	130	83D	64D	30	17	58D	16	5	U	U	U	U		5
1,2-Dichloroethane	U	U	U	U	0.2J	-		U	U	U	U	U	U	.62J	U	U	U	0.31.				U	0.56	0.80D	0.96	U	U	U	U	U	U	0.64J	U	U	U	U	U	U		0.6
1,1-Dichloroethene	U	U	35	42	0.7J		• T	U 1	12D	3.7	U	4	1.6	8.9	9.7	2.2	6.5	5.2	8.5			2.3	4.8	5.7	6.6	U	14 U	7.4D	5.4	4.5J	1.6	9.1	2.2	U	U	U	U	U		5
Ethylbenzene	U	U	U	U	0.5J	U	l (U	U	U	U	U	U	U	U	U	U	U	U	0.7	1J	1.2	U	U	U	U	0	U	U	U	U	U	U	2	U	U	U	U		5
Isopropylbenzene	U	U	U	U	U	U	U U	U	U	0.12J	U	U	U	U	U	U	U	U	U	U		U	U	U	0.064J	U	U	U	U	U	U	U	U	U	U	U	U	U		5
Methylene Chloride	130J	130J	25	U	0.04	JU	l (U 7.	.7DJ	U	U	U	U	U	2J	U	U	U	1.21	oj U		U	U	U	U	U	U	6.6DJ	U	U	U	U	U	U	U	U	U	U	Ω	5
n-Propylbenzene	U	U	U	U	U	U	U U	U	U	0.11J	U	U	U	U	U	U	U	U	U	U	ſ	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	Ē	5
Tetrachloroethene	U	U	U	U	U	U	U U	U	U	U	U	U	U	U	U	U	U	U	U	U	ſ	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	z	5
Toluene	U	U	U	U	1	U	U U	U	U	U	U	U	U	U	U	U	U	U	U	U		0.24J	U	0.80J	0.10J	U	U	U	U	U	U	U	U	4	U	0.30J	U	U	0	5
1,2,3-Trichlorobenzene	U	U	U	U	U	U	U U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	Ω	5
1,1,1-Trichloroethane	2000	2300	1000	1300	E 2	19	0 U	U 2	00D	45D	72	52D	19	79D	84	15	36	17	721	1.1	J	3.3	1.8	1.3	0.60	U	200	150D	78D	51	20	65D	16	2	U	U	U	U	z	5
1,1,2-Trichloroethane	U	U	U	0.8J	2	U	U U	U	U	U	U	U	U	U	U	U	U	U	U	U	ſ	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	V	1
1,2,4-Trimethylbenzene	U	U	U	1J	7	U	U U	U	U	0.25J	U	U	U	U	U	U	U	U	U	U		U	U	U	0.18J	U	U	U	U	U	U	U	U	8	U	U	U	U	В	5
1,3,5-Trimethylbenzene	U	U	U	U	6	U	U U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	14	U	U	U	U	¥	5
Vinyl Chloride	U	U	U	U	U	U	l (U	U	U	U	U	U	U	U	U	U	U	U	U		U	0.67	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		2
Xylenes (Total)	U	U	U	U	16	U	l (U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	35	U	U	U	U		15
<u>ALTERNATIVE</u> GEOCHEMICAL																																								
PARAMETERS																																								
Chloride	ns	ns	ns	ns	ns	ns	s n	ns	ns	ns	ns	ns	5200	4100	3800	2500	3000	2800	270	0 11	r	U	U	U	U	U	ns	ns	ns	ns	5200	4000	ns	ns	ns	ns	10400	ns		
Ethane	ns	ns	ns	ns	ns	ns	s n	15	ns	ns	ns	ns	5200 U	-100 U	U	2300 U	U	U 2000	, 270 ns	1	7	0.9	0.32	0.25	0.33	1.9	ns	ns	ns	ns	5200 U	4000 U	ns	ns	ns	ns	10400 U	ns		
Ethanol	ns	ns	ns	ns	ns	ns	s n	15	ns	ns	ns	ns	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	U	ns	U	ſ	U	U	U	U	11400	ns	ns	ns	ns	Ŭ	U	ns	ns	ns	ns	Ŭ	ns		
Ethene	ns	ns	ns	ns	ns	ns	s n	15	ns	ns	ns	ns	ns	ns	ns	Ŭ	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	Ω	
Ferric Iron	ns	ns	ns	ns	ns	ns	. 11 s n	15	ns	ns	ns	ns	790	U	480	340	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	ns	ns	ns	510	53	ns	ns	ns	ns	16300	ns	E	
Ferrous Iron	ns	ns	ns	ns	ns	ns	s n	15	ns	ns	ns	ns	Ū	49	500	140	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	ns	ns	ns	290	18	ns	ns	ns	ns	ns	ns	Z	
Total Iron	ns	ns	ns	ns	ns	ns	s n	15	ns	ns	ns	ns	ns	ns	ns	ns	1500	110	ns	476	00 4	4800	11400	9640	6430	209000	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	0	
Methane	ns	ns	ns	ns	ns	ns	. 11 s n	15	ns	ns	ns	ns	68	3100	46	ns	280			418		5310	5020D	7700D	7430D	1750	ns	ns	ns	ns	81	2500	ns	ns	ns	ns	390	ns	D Z	
Nitrate	ns	ns	ns	ns	ns	ns	. 11 s n	15	ns	ns	ns	ns	U	U	U	U	200 U	U	U		 I	U	U	110	U	U	ns	ns	ns	ns	U	2300 U	ns	ns	ns	ns	5600	ns	N N	
SOC	ns	ns	ns	ns	ns	ns	. 11 s n	15	ns	ns	ns	ns	71200	5000	8100		0	0			000 30	60000	148000	33800	7700	9040000	ns	ns	ns	ns	70000	6000	ns	ns	ns	ns	8400	ns	BA	
Sulfate	ns	ns	ns	ns	ns	ns	s n	15	ns	ns	ns	ns	26600	32800	67500						r	U	U	U	U	U	ns	ns	ns	ns	22500	33500	ns	ns	ns	ns	159000	ns	A F	
Sulfide	ns	ns	ns	ns	ns	ns	s n	15	ns	ns	ns	ns	U	U	U	ns	U	U 2000	U 2100		r	Ū	Ŭ	U	Ŭ	860000	ns	ns	ns	ns	22500 U	U	ns	ns	ns	ns	U	ns	7	
Sulfite	ns	ns	ns	ns	ns	ns	s n	15	ns	ns	ns	ns	ns	ns	ns	U	ns	ns	ns	ns	5	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		
Total Alkalinity	ns	ns	ns	ns	ns	ns	s n	15	ns	ns	ns	ns 2) 27400		0 31900		00 1110	000 10)50000	740000	675000	501000	2360000	ns	ns	ns	ns	272000	327000		ns	ns	ns	833000	ns		
TOC	ns	ns			ns			15	ns					5200						0 7150			131000	35100	8100	9300	ns	ns	ns	ns	4900	6000	ns	ns	ns	ns	7100	ns		
	Notes					.10		~						2 200	2000	2000	., 50	2000	000	, , , , , , , , , , , , , , , , , , , ,						,,,,,,,					.,,,,,	2000					. 100			

All data in micrograms per liter (μ g/L)

NY Standards, Criteria, and Guidance (SCG) Levels are equal to NYS groundwater quality standards per 6NYCRR part 703

Analytical results in red indicate value exceeds NY SCG Level

"U" indicates parameter was not detected above the reported numerical value

"J" indicates estimated value

"R" indicates value was rejected due to relative response factor below quality control limits

"E" indicates compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analysis

"D" indicates compound identified at a secondary dilution factor

PARAMETERS												MV	7-3																					MW-	-3 (DUP	2)					NY
	1/91	4/91	7/92	8/93	11/93	7/96	1/97	8/97	1/98	6/98	1/99	5/99	8/99	12/99	6/00	11/00	6/01	11/01	6/02	11/02	5/03	12/03	3/04	6/04	9/04	12/04	6/05	12/05	12/99	6/01	6/02	11/02	5/03			/	9/04	12/04	6/05	12/05	Le
VOCs																																									1
Acetone	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	R	12.1J	38.5J	17.1J	36.6J	19.8J	R	U	U	U	U	U	R	14.3J	39.6J	R	36.2J	62.3J	129J	
Benzene	U	U	U	U	0.5J	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	0.091J	0.075J	0.14J	U	U	U	U	U	U	U	U	U	U	U	0.23J	U	
nochloromethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	7
odichloromethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
Bromoform	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	1
2-Butanone	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	R	3.4J	13.8	33.5DJ	23.7J	17.6J	R	U	U	U	U	U	R	5.0J	13.8	59.2DJ	21.0J	65.3J	R	
Butylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
bon Disulfide	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	0.08J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
Chloroethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	U	0.67	2.1	U	U	U	U	U	U	U	2.5	U	U	U	2.7	U	
Chloroform	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
p-Cymene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	ns	U	U	U	U	U	ns	ns	ns	ns	ns	ns	U							
nochloromethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	1
Dichloroethane	U	U	4.2	6	10	24	U	6.2D	U	U	U	U	4.2J	U	UJ	U	1.7	6 J	U	4.6J	U	2.4	2.7	7.6	9.5	8.1	8.0	14.2J	U	1.5	U	5.4	U	2.1	3.8	7.5	8.3	8.4	14.4	U	
Dichloroethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
Dichloroethene	U	U	3.9	1	0.3J	U	U	U	1.2J	U	5.1J	U	U	U	UJ	U	2.7	U	U	U	U	U	U	2.0	1.2	1.2	0.75J	U	U	U	U	U	U	U	U	1.8	1.4	1.4	0.97J	U	
thylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	0.19J	U	
propylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
ylene Chloride	7	U	11	U	0.03BJ	U	U	7.3DJ	1.9J	U	U	U	U	U	27J	U	U	U	4.1BJ	U	U	U	U	U	U	U	U	U	U	U	4.1BJ	U	U	U	U	U	U	U	U	U	
ropylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
achloroethene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
Toluene	U	U	U	U	1	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	U	U	0.10J	U	U	U	U	U	U	U	U	U	U	U	0.26J	U	
richlorobenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
Trichloroethane	140	200	260	140E	26E	220J	280D	220D	66	220D	150	190	160	290	130J	330	160D	180	120	190	170	68.6	42.5	72.5DJ	52.3D	72.0	53.1	19.8J	330	160D	130	180D	170	67.4	47.2	81D	78.7D	93.6D	49.0	U	
Trichloroethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
rimethylbenzene	U	U	U	U	1	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	0.10J	0.10J	0.25J	U	U	U	U	U	U	U	U	0.12J	U	0.073J	0.036J	U	
rimethylbenzene	U	U	U	U	2	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	U	U	0.17J	U	U	U	U	U	U	U	U	U	U	U	0.25J	U	
nyl Chloride	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
lenes (Total)	U	U	U	U	1	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	0.12J	U	0.11J	0.19J	U	U	U	U	U	U	U	U	0.12J	U	0.066J	0.28J	U	
TERNATIVE																																									
OCHEMICAL																																									
RAMETERS																																									
Chloride	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	2400	4400	5000	1600	2300	2200	3000	1600	1900	U	U	U	U	U	U	U	U	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Ethane	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	U	U	U	U	U	U	U	U	U	U	0.14	0.83	0.93	0.22	0.34	1.2	1.3	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Ethanol	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	U	U	U	U	U	U	U	U	U	U	1760	679	U	U	U	U	4130	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Ethene	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	U	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
erric Iron	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	310	U	1600	150	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
errous Iron	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	U	53	60	U	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Fotal Iron	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	1450	U	540	U	U	50.7	U	20600	41100	14800	6110	12300	68200	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Methane	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	U	4.1	U	ns	2	3	ns	U	U	U	99.2	168	139	154	268	368	354	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Nitrate	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	850	1400	730	880	1500	1900	3000	2600	3100	2800	3700	1600	U	2200	2800	U	U	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
SOC	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	65600	1600	5200	3400	4000	2300	2000	1400	1200	U	136000	142000	141000	174000	22200	58200	2920000	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Sulfate	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	20400	33900	18800	12900	21300	22000	26400	11200	16200	16400	U	U	U	U	U	11500	U	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Sulfide	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	U	U	U	ns	U	U	U	U	U	U	U	U	U	U	U	U	2000	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	I
Sulfite	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	U	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
tal Alkalinity	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	280000	290000	354000	286000		313000	311000	288000	254000	222000	454000	504000	591000	493000	408000	408000		ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	1
													1600	3900	1100		1800	4200	1100	1200								3080000	ns									ns			

All data in micrograms per liter (μ g/L)

NY Standards, Criteria, and Guidance (SCG) Levels are equal to NYS groundwater quality standards per 6NYCRR part 703

Analytical results in red indicate value exceeds NY SCG Level

"U" indicates parameter was not detected above the reported numerical value

"J" indicates estimated value

"R" indicates value was rejected due to relative response factor below quality control limits

"E" indicates compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analysis

"D" indicates compound identified at a secondary dilution factor

PARAMETERS			MW-	4																MW-5	;													MW-5 (DUP)	NY SC
	1/91	4/91	7/92	11/93	1/99	1/91	4/91	7/92	8/93	7/96	10/96	11/96	1/97	8/97	10/97	1/98	1/99	5/99	8/99		11/00	11/01	3/02	6/02	11/02	5/03	12/03	3/04	6/04	9/04	12/04	6/05	12/05	3/02	Level
VOCs																																			
Acetone	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	27.6J	2.8J	R	R	R	R	27.6	U	
Benzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	1
Bromochloromethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	700
Bromodichloromethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
Bromoform	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	1000
2-Butanone	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	R	R	U	R	R	R	U	U	
sec-Butylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Carbon Disulfide	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
Chloroethane	U	U	U	U	1.4	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Chloroform	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	7
p-Cymene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	ns	ns	ns	ns	ns	ns	ns	U	5
Dibromochloromethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
1,1-Dichloroethane	U	U	U	U	U	U	U	0.8	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	0.3J	U	U	U	U	U	U	U	U	U	U	5
1,2-Dichloroethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	0.6
1,1-Dichloroethene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Ethylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Isopropylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Methylene Chloride	U	U	1.4	U	U	U	U	1.1	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
n-Propylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Tetrachloroethene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Toluene	U	U	U	0.8J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
1,2,3-Trichlorobenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
1,1,1-Trichloroethane	U	U	U	U	U	U	U	1.6	U	U	U	U	U	U	U	2.2	0.22J	U	U	U	U	0.28J	1.5	U	U	U	2.6	1.4	U	0.54	0.57	U	0.35J	1.4	5
1,1,2-Trichloroethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	1
1,2,4-Trimethylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
1,3,5-Trimethylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Vinyl Chloride	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	2
Xylenes (Total)	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	15
ALTERNATIVE																																			
GEOCHEMICAL																																			
PARAMETERS																																			
Chloride	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	9200	10200	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Ethane	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	U	U	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Ethanol	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	Ŭ	Ŭ	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Ethene	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Ferric Iron	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	6700	160	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Ferrous Iron	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	280	92	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Total Iron	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Methane	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	8997	3300	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Nitrate	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	U	U	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
SOC	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	97600	3600	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Sulfate	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	2000	3400	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Sulfide	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	2000 U	J400 U	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Sulfite	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Total Alkalinity	ns	ns	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	ns	ns	ns		406000	386000	ns	ns		ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
TOC	ns	ns	ns	ns	ns	ns	ns ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	3900	3600	ns	ns	ns ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
100	Notes:		115	115	115	115	115	115	115	115	115	115	115	115	115	115	115	3900	5000	115	115	115	115	115	115	115	115	115	115	115	115	115	115	115	

All data in micrograms per liter (μ g/L)

NY Standards, Criteria, and Guidance (SCG) Levels are equal to NYS groundwater quality standards per 6NYCRR part 703

Analytical results in red indicate value exceeds NY SCG Level

"U" indicates parameter was not detected above the reported numerical value

"J" indicates estimated value

"R" indicates value was rejected due to relative response factor below quality control limits

"E" indicates compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analysis

"D" indicates compound identified at a secondary dilution factor

																MW-6																				T	
PARAMETERS								MW	-6							(DUP)										MV	N-7										NY SCG
	4/94	7/96	1/97	8/97	1/98	6/98	1/99	5/99	12/99	6/00	6/01	11/01	6/02	11/02	12/05	1/97	4/94	7/96	1/97	8/97	1/98	6/98	1/99	5/99	12/99	6/00	11/00	6/01	6/02	11/02	5/03	12/03	6/04	12/04	6/05	12/05	Level
VOCs																																				1	
Acetone	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	R	R	R	2.0J	174J	
Benzene	0.4J	11	U	2	0.74J	U	UJ	0.82J	0.54J	0.35J	0.22J	1.1	0.78J	0.34J		U	2D	U	U	U	U	U	0.22J	U	U	U	U	U	U	U	U	U	U	U	U	U	1
Bromochloromethane	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	•	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	700
Bromodichloromethane	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	ED	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
Bromoform	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	z	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	10000
2-Butanone	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	0	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	R	U	R	R	R	
sec-Butylbenzene	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	Ã	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Carbon Disulfide	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	z	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
Chloroethane	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	A	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Chloroform	0.07J	U	U	U	U	U	UJ	U	U	U	U	U	U	U	æ	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	7
p-Cymene	U	UJ	U	U	U	U	UJ	U	U	U	U	U	U	U	V	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	ns	ns	ns	ns	ns	5
Dibromochloromethane	U	UJ	U	U	U	U	UJ	U	U	U	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
1,1-Dichloroethane	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
1,2-Dichloroethane	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	0.6
1,1-Dichloroethene	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Ethylbenzene	1	U	U	U	U	U	UJ	U	0.52J	0.34J	0.54J	0.62J	0.32J	0.31J		U	6D	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Isopropylbenzene	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Methylene Chloride	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	-	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
n-Propylbenzene	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	Q	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Tetrachloroethene	U	UJ	U	U	U	U	UJ	U	U	U	U	U	U	U	E	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Toluene	2	U	U	1	0.23J	U	0.28J	U	U	0.32J	U	U	U	U	0	U	30D	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
1,2,3-Trichlorobenzene	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	ă	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
1,1,1-Trichloroethane	U	U	U	U	U	U	UJ	U	U	U	0.28J	U	U	U	z	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
1,1,2-Trichloroethane	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	Ā	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	1
1,2,4-Trimethylbenzene	14	U	U	U	U	U	0.31J	U	2	0.73J	2.2	2.6	1.2	1.3	B	U	3D	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
1,3,5-Trimethylbenzene	10	U	U	U	U	U	0.29J	U	1.3	0.57J	1.4	1.6	0.55J	0.88J	¥	U	19D	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Vinyl Chloride	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	2
Xylenes (Total)	39	2.3	U	1.2	0.39J	4.1	2.2J	U	8	3.7	5.5	3.7	1.7	2.7		U	72D	U	U	U	U	U	0.23J	U	U	U	U	U	0.26J	U	U	U	U	U	U	U	15
ALTERNATIVE																																					
GEOCHEMICAL																																					
PARAMETERS																																					
Chloride	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Ethane	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Ethanol	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	-	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Ethene	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	D	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Ferric Iron	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	E	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Ferrous Iron	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	0	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Total Iron	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ă	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Methane	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	z	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Nitrate	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	Ā	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
SOC	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	B	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Sulfate	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	I V	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Sulfide	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Sulfite	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Total Alkalinity	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
TOC	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
	Notes:																																				

<u>Notes:</u> All data in micrograms per liter (µg/L)

NY Standards, Criteria, and Guidance (SCG) Levels are equal to NYS groundwater quality standards per 6NYCRR part 703

Analytical results in red indicate value exceeds NY SCG Level

"U" indicates parameter was not detected above the reported numerical value

"J" indicates estimated value

"R" indicates value was rejected due to relative response factor below quality control limits

"E" indicates compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analysis

"D" indicates compound identified at a secondary dilution factor

RAMETERS												W-8S																				MW							
	4/94	7/96	1/97	8/97	1/98	6/98	1/99	5/99	8/99	12/99	6/00	11/00	6/01	11/01	6/02	11/02	5/03	12/03	3/04	6/04	9/04	12/04	6/05	12/05	4/94 (6/04	7/96 1	1/97 8/	97 1/98	8 6/98	1/99	5/99 1	12/99	6/00 1	1/00 6/	01 11	/01 6/02	2 11/02	2 12/05
VOCs																																							
Acetone	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	14.5J	7.1J	R	R	R	R	28.2J	U 2	23.6J	U	υu	U U	U	UJ	U	U	U	υu	U I	U U	U	
Benzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	1	1	U	UU	U U	U	UJ	3.6	2	1.2	U 0.3	.32J U	U U	U	-
chloromethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	U	U	U	U	υu	U U	U	UJ	U	U	U	UI	U I	U U	U	A
ichloromethane	U	U	U	U	U	Ū	Ū	Ū	Ū	Ū	Ū	Ū	U	Ū	U	Ū	Ū	U	Ū	Ū	U	Ū	U	U	U	Ū	Ū	Ū I	U U	U	UJ	U	U	U	UI	Ū I	U U	Ū	E
omoform	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ŭ	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	U I	U U	Ū	UI	Ū	Ū	Ū	U I	Ū į	Ū Ū	Ū	Z
Butanone	Ŭ	U	Ŭ	Ŭ	U U	U U	U U	U U	U U	U U	U U	U U	Ŭ	U U	Ŭ	U U	U U	R	R	U U	R	R	R	R	Ŭ	U U	U U	U I	U U	Ŭ	ш	Ŭ	й П	U U	U I	י ח	и п	U U	0
utylbenzene	U	U	U	U	U U	U U	U U	U U	U U	U U	U U	U U	U U	U U	U U	U	U	II.	II.	U U	I	II.	U	U	U	U	U U	U I	и и	U U	UI	U U	U U	U U	пи	л т	и п	U U	Q
on Disulfide	U	U	U	U	U U	U	U	U	U	U	U U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U			1		U	U	U	U U	л ч		U U	Z
oroethane	U	U	U	U	0	U	U	U	U	0.211	U	U	U	1.1	U	U	U	U	U	U	U	U	U	U	U	U	U			0	UJ	U	U	U		JU		0	A
	U	U			U	U	U	U	U	0.311	U	U	U	1.1	U	U	U	U	U	U	U	U	U	-	0	U	U			U	UJ	U	U	0		JU	JU	U	B
nloroform	U	U	U	U	0	U	U	U	U	U	U	U	U	U	0	U	0	U	U	U	U	U	U	-	0.2J	U	U	0 0	0 0	U	UJ	U	U	0	0 1	J	JU	U	A
-Cymene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	ns	ns	ns	ns	ns	ns	ns	U	U	U	U	0 0	U	UJ	U	U	U	U	J	U U	U	
ochloromethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UU	U U	U	UJ	U	U	U	UU	JI	JU	U	
chloroethane	4D	3.4	3.9	0.64	3.6	U	U	2.6	0.65J	2.4	2.5	2	0.7J	2.5	2.6	1.3	1.3	1	0.93	1.1	1.3	1.2	0.51	1.4	U	U	U	υu	U U	U	UJ	U	U	U	υt	U I	U U	U	
chloroethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UU	U U	U	UJ	U	U	U	UI	U I	U U	U	
chloroethene	U	U	U	U	0.27J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UU	U U	U	UJ	U	U	U	UI	U I	U U	U	
ylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UU	U U	U	UJ	U	U	U	UI	U I	U U	U	
opylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U U	U U	U	UJ	U	U	U	UI	U 1	U U	U	
ene Chloride	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	υu	J 2.9	I U	UJ	U	U	U	UI	U I	U U	U	
opylbenzene	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ŭ	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	U I	U U	Ū	UI	Ū	Ū	Ū	U I	Ū į	Ū Ū	Ū	
hloroethene	U	U	U	U	U U	U U	U U	U U	U U	U U	U U	U U	U U	U U	U U	U	U	U	U U	U U	U	U U	U	U	U U	U	U U	U I	и и	U U	UI	U U	U U	U U	пи	л т	и п	U U	D
Toluene	U	U	U	U	U U	U	U	U	U	U	U U	U	U	0.481	U	U	U	U	U	U	U	U	U	U	4	4	U	U I		U	UI	U	U	U		561		0.3J	, 🖾
richlorobenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	0.46J	U	U	U	U	U	U	U	U	U	U	4 11	4 11	U			U	UI	U	U	U	U 0.5	505 (TT '		0.55	
richloroethane	32D	13	19		25D	53	0	10	3.2	4.7	15	21	3.8	1	10	10	0 1	165	140	13.2	14.8	10.4	4.5	6.8	U	U	U			0	UJ	U	U	U		J (0	0
	32D			3.1		53	0.1	12	3.2	4./	15	2.1	3.8	1	18	10	9.1	10.5	14.9	13.2	14.8	10.4			0	0	0	0 0	0 0	0	UJ	0	0	0		J (J U	0	D
richloroethane	0	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UU	U	UJ	U	U	U	Ul	J	U U	0	Z
methylbenzene	U	U	4.2	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	2	2	U	U 0.	26 U	U	UJ	U	U	U	U 0.2		U 0.57		~ ~
methylbenzene	0.3DJ	U	2.8	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	11	11	U	υu	U U	U	UJ	U	U	U).2J U	U 0.35		
yl Chloride	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UU	U U	U	UJ	U	U	U	υu	υu	U U		¥
enes (Total)	U	U	4.2	U	U	U	U	U	U	U	U	U	U	0.48J	U	U	U	U	U	U	U	U	U	U	11	11	U	U 0.	38 U	U	UJ	U	U	U	U 0.	.6J U	U 1.8	3 1.2	
ERNATIVE																																							
CHEMICAL																																							
AMETERS																																							
Chloride	ns	ns	ns	ns	ns	ns	ns	5100	ns	ns	7000	6700	6500	14300	11700	9200	9400	U	U	U	U	U	3100	U	ns	ns	ns	ns r	ns ns	ns	ns	ns	ns	ns	ns r	ns r	as ns	ns	
Ethane	ns	ns	ns	ns	ns	ns	ns	U	ns	ns	U	U	U	14	U	U	U	Ū	Ū	Ū	Ū	Ū	U	Ū	ns	ns	ns	ns r	ns ns	ns	ns	ns	ns	U	ns r	ns i	ns ns	ns	
Ethanol	ns	ns	ns	ns	ns	ns	ns	U U	ns	ns	U U	1800	U U	I	U U	U U	U	U	U U	U U	U	U U	U U	U	ns	ns	ns	ns r	ns ns	ns	ns	ns	ns	17000	ns r	ns i	ns ns		
Ethene	ns	ns	ns	ns	ns	nc	ns	ns	ne	ns	U U	1000	ns	ne	ns	ne	ne	ne	ne	ne	ne	ne	ne	ns	ns	ne	ne	no n	15 115 NG 116	nc	ne	nc	nc	63	no r	ne i	no no	n	
rric Iron	ns	ns	ns		ns	115	115	115	115	ns	190	115	115	115	115	115	115	115	115	115	115	115	115	ns		115	115	no n	15 115	115	115	115	115	0.5	ns n	15 II	15 115 na na	115	Ω
				ns	IIS	IIS	IIS	110	IIS	115	180	115	118	115	IIS	IIS	115	115	115	115	IIS	115	115		ns	115	115	115 1	15 115	115	IIS	118	115	115	IIS II	15 1)	15 115	115	Ξ
rous Iron	ns	ns	ns	ns	ns	ns	ns	110	ns	ns	U	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns r	is ns	ns	ns	ns	ns	ns	ns n	1S P	is ns	ns	Z
otal Iron	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	U	U	3000	U	85.4	U	U	U	203	U	U	360	998	ns	ns	ns	ns r	is ns	ns	ns	ns	ns	ns	ns n	is r	is ns	ns	0
Iethane	ns	ns	ns	ns	ns	ns	ns	U	ns	ns	ns	440	4.3	650	U	86D	U	0.28	9.36	0.37	3.04			8.68	ns	ns	ns	ns r	ns ns	ns	ns	ns	ns	ns	ns n	.1s r	is ns	ns	Ω
Nitrate	ns	ns	ns	ns	ns	ns	ns	330	ns	ns	230	U	370	67	560	490	400	1300	1100	150	1100	330	260	U		32.6	ns	ns r	ns ns	ns	ns	ns	ns	ns	ns r	.1s r	is ns	ns	Z
SOC	ns	ns	ns	ns	ns	ns	ns	69200	ns	ns	1600	4300	1900	2700	U	1200	1000	3600	1600	U	5200			2700	ns	220	ns	ns r	ns ns	ns	ns	ns	ns	ns	ns r	as r	is ns	ns	V
Sulfate	ns	ns	ns	ns	ns	ns	ns	31700	ns	ns	26500	24000	28200	10800	24100	24900	23400	29600	21300	21200	U	22100	18600	25600	ns	ns	ns	ns r	ns ns	ns	ns	ns	ns	ns	ns r	as r	is ns	ns	В
Sulfide	ns	ns	ns	ns	ns	ns	ns	U	ns	ns	ns	U	U	U	U	U	U	U	U	U	U	U	U	U	ns	ns	ns	ns r	ns ns	ns	ns	ns	ns	ns	ns r	ns r	as ns	ns	V
Sulfite	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	U	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns n	ns ns	ns	ns	ns	ns	ns	ns r	as r	as ns	ns	
al Alkalinity	ns	ns	ns	ns	ns	ns	ns	284000		ns				313000	309000			367000		339000		359000 3				ns	ns	ns n	is ns	ns	ns	ns	ns	ns	ns n	ns r	ns ns	ns	
TOC	ns	ns	ns	ns	ns	ns		2200		ns	1600					1200			1200	U	U		U		ns 38			ns r		ns	ns	ns	ns	ns			ns ns		

<u>Notes:</u> All data in micrograms per liter (μ g/L)

NY Standards, Criteria, and Guidance (SCG) Levels are equal to NYS groundwater quality standards per 6NYCRR part 703

Analytical results in red indicate value exceeds NY SCG Level

"U" indicates parameter was not detected above the reported numerical value

"J" indicates estimated value

"R" indicates value was rejected due to relative response factor below quality control limits

"E" indicates compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analysis

"D" indicates compound identified at a secondary dilution factor

																									MW-9S															1	MW-9D	
PARAMETERS													MW-9S												(DUP)								MW-9D								(DUP)	NY SCG
TARAMETERS	4/94	7/96	1/97	8/97	1/98	6/98	1/99	5/99	8/99	12/99	6/00			11/01	6/02	11/02	5/03	12/03	3/04	6/04	9/04	12/04	6/05	12/05	1/98	4/94	7/96	1/97	8/97	1/98 6	/98 1/	99 5/99	9 12/99		11/00) 6/01	1 11/01	6/02	11/02 1	12/05	6/00	Level
VOCs		.,,,,			0		>															,											//				/1		-,			
Acetone	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	R	3.1J	29.3J	7.7J	R	R	44.6J	U	U	U	U	U	U	υι	JJ U	U	UJ	U	U	U	U	U		UJ	
Benzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	0.4J	U	U	0.48	U	υu	JJ U	U	UJ	U	0.24	JU	U	U	-	UJ	1
Bromochloromethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	υu	JJ U	U	UJ	U	U	U	U		ЕD	UJ	700
Bromodichloromethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	υu	JJ U	U	UJ	U	U	U	U		ž	UJ	
Bromoform	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	υι	JJ U	U	UJ	U	U	U	U		õ	UJ	10000
2-Butanone	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	26.9J	0.79J	3.8J	5.6J	R	R	R	U	U	U	U	U	U	υι	JJ U	U	UJ	U	U	U	U		ă	UJ	
sec-Butylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	υu	JJ U	U	UJ	U	U	U	U		z	UJ	5
Carbon Disulfide	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	2.2	U	U	U	U	U	U	U	U	U	U	U	U	υu	JJ U	U	UJ	U	U	U	U	U	A]	UJ	
Chloroethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	1.5	12.0	16.4	13.0	U	U	U	U	U	U	υu	JJ U	U	UJ	U	U	U	U	U	B	UJ	5
Chloroform	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	υu	JJ U	U	UJ	U	U	U	U	U	¥	UJ	7
p-Cymene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	ns	ns	ns	ns	ns	ns	ns	U	U	U	U	U	U	υu	JJ U	U	UJ	U	U	U	U	U		UJ	5
Dibromochloromethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	υu	JJ U	U	UJ	U	U	U	U	U		UJ	1
1,1-Dichloroethane	U	U	U	U	U	1	0.6J	U	1.4J	1	U	U	0.47J	U	U	U	U	4.1	7.0	8.8	17.4	11.8	6.3	0.39J	U	U	U	U	U	U	υu	JJ U	U	UJ	U	U	U	U	U		UJ	5
1,2-Dichloroethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	υι	JJ U	U	UJ	U	U	U	U	U		UJ	0.6
1,1-Dichloroethene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	1.2J	U	U	U	U	U	υu	JJ U	U	UJ	U	U	U	U	U		UJ	5
Ethylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	0.6J	U	U	0.41	U	υu	JJ U	0.22J	0.22J	U	U	U	U	U		0.22J	5
Isopropylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	υu	JJ U	U	UJ	U	U	U	U	U		UJ	5
Methylene Chloride	U	U	U	U	1.6J	U	U	U	U	U	12	U	U	U	3.8BJ	U	U	U	U	U	U	U	U	U	1.4J	U	U	U	U	U	υu	JJ U	0.24J	UJ	U	U	U	U	U		UJ	5
n-Propylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	υu	JJ U	U	UJ	U	U	U	U	U		UJ	5
Tetrachloroethene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	υu	JJ U	U	UJ	U	U	U	U		ED	UJ	5
Toluene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	0.062J	U	U	U	2	1.3	U	0.84	U	U 0.3	35J U	0.27J	0.49J	U	0.72	JU	U	TI	z	0.47J	5
1,2,3-Trichlorobenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	υu	JJ U	U	UJ	U	U	U	U	T.T.	0	UJ	5
1,1,1-Trichloroethane	45D	100.	I 65E	84D	54	4.5	50D	51	87	75D	48	68	39D	64	42	70	41	39.5	16.7	15.8	2.2	U	U	U	55	U	U	U	U	U	υu	JJ U	U	UJ	U	U	U	U		<u> </u>	UJ	5
1,1,2-Trichloroethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	υu	JJ U	U	UJ	U	U	U	U	U	z	UJ	1
1,2,4-Trimethylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	0.10J	U	0.54	U	2	3.7	1.4	2	U	U 0.6	59J U	0.73J	1.2J	U	0.67	J U	U	U	¥	0.89J	5
1,3,5-Trimethylbenzene	0.2DJ	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	0.083J	U	0.27J	U	2	2.4	U	0.72	U	U 0.4	45J U	0.50J	0.38J	U	0.57	J U	U	U	B	0.4J	5
Vinyl Chloride	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	υu	JJ U	U	U	U	U	U	U	U	¥	U	2
Xylenes (Total)	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	0.15J	0.051J	0.92	U	9	8.6	3.8	5.6	U	U 3.	2J U	3.3	3.4J	1.1	4	U	U	U		3.5J	15
ALTERNATIVE																																										
GEOCHEMICAL																																										
PARAMETERS																																										
Chloride	ns	ns	ns	ns	ns	ns	ns	11200	20500	31700) 13100	15400	9100	39700	ns	35500	16100	U	U	U	U	U	9200	22200	ns	ns	ns	ns	ns	ns	ns r	is ns	ns	41600	ns	ns	ns	ns	ns		ns	
Ethane	ns	ns	ns	ns	ns	ns	ns	U	U	U	U	U	U	U	ns	U	U	0.78	0.30	0.21	0.13	0.11	U	15.4	ns	ns	ns	ns	ns	ns	ns r	is ns	ns	U	ns	ns	ns	ns	ns		ns	Ĩ
Ethanol	ns	ns	ns	ns	ns	ns	ns	U	U	U	U	U	U	U	ns	U	U	1350	U	U	U	U	U	U	ns	ns	ns	ns	ns	ns	ns r	is ns	ns	1400	ns	ns	ns	ns	ns		ns	
Ethene	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	U	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns r	ns ns	ns	19	ns	ns	ns	ns	ns	<u> </u>	ns	1
Ferric Iron	ns	ns	ns	ns	ns	ns	ns	U	U	U	U	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns r	ns ns	ns	1400	ns	ns	ns	ns	ne	E	ns	1
Ferrous Iron	ns	ns	ns	ns	ns	ns	ns	80	U	U	U	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns r	ns ns	ns	350	ns	ns	ns	ns		z	ns	
Total Iron	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	1150	U	U	ns	8030	406	1450	9730	5270	3400	2570	2910	3410	ns	ns	ns	ns	ns	ns	ns r	is ns	ns	ns	ns	ns	ns	ns	ns	0	ns	
Methane	ns	ns	ns	ns	ns	ns	ns	8200	U	U	ns	3	U	U	ns	U	U	9.45	65.2	172	303	506	758	9930	ns	ns	ns	ns	ns	ns	ns r	is ns	ns	ns	ns	ns	ns	ns	ns	Â	ns	
Nitrate	ns	ns	ns	ns	ns	ns	ns	1400	1400		1.00	1800	1400	2400	ns	2100	1300	U	U	U	U	U	U	U	ns	ns	ns	ns	ns	ns	ns r	ns ns	ns	U	ns	ns	ns	ns	ns	z	ns	1
SOC	ns	ns	ns	ns	ns	ns	ns	76800					2000	4300	ns	1800	U	369000	107000	43300	24900	11900	1300	4600	ns	ns	ns	ns	ns	ns	ns r	ns ns	ns	5700	ns	ns	ns	ns	ns	¥	ns	1
Sulfate	ns	ns	ns	ns	ns	ns	ns	25300					27200		ns	19600	31400	U	U	U	U	U	8200	U	ns	ns	ns	ns	ns	ns	ns r	is ns	ns	16400	ns	ns	ns	ns	ns	в	ns	Ĩ
Sulfide	ns	ns	ns	ns	ns	ns	ns	U	U	U	ns	U	U	U	ns	U	U	U	U	U	U	U	U	U	ns	ns	ns	ns	ns	ns	ns r	ns ns	ns	ns	ns	ns	ns	ns	ns	¥	ns	1
Sulfite	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	U	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns r	ns ns	ns	U	ns	ns	ns	ns	ns		ns	1
Total Alkalinity	ns	ns	ns	ns	ns	ns	ns							334000						479000				362000	ns	ns	ns	ns	ns	ns	ns r	ns ns	ns	272000		ns	ns	ns	ns		ns	
TOC	ns	ns	ns	ns	ns	ns	ns	2300	1700	6200	1600	1400	2000	3600	ns	1600	U	401000	107000	37200	28800	12400	1300	4900	ns	ns	ns	ns	ns	ns	ns r	is ns	ns	5900	ns	ns	ns	ns	ns		ns	
	Notes:																																									

<u>Notes:</u> All data in micrograms per liter (μ g/L) NY Standards, Criteria, and Guidance (SCG) Levels are equal to NYS groundwater quality standards per 6NYCRR part 703

Analytical results in red indicate value exceeds NY SCG Level

"U" indicates parameter was not detected above the reported numerical value

"J" indicates estimated value

"R" indicates value was rejected due to relative response factor below quality control limits

"E" indicates compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analysis

"D" indicates compound identified at a secondary dilution factor

PARAMETERS														MW	-10S																		I	MW-10I)							W-10D DUP)	NY SO
	7/96	9/96	10/90	5 11/9	6 1	2/96	1/97	8/97	10/97	1/98	1/99	5/99	8/99	12/99	11/00	11/01	3/02	11/02	5/03	12/03	3/04	6/04	9/04	12/04	6/05	12/05	7/96	9/96	10/96	11/96	12/96	1/97	8/97	10/97	1/98	1/99	12/99	11/00	11/01	11/02 1	2/05 1	12/96	Leve
VOCs																											1																
Acetone	ns	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	9.1J	6.2J	4.0J	R	R	2.6J	9.4J	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	
Benzene	U	U	U	U		U	U	U	U	U	U	U	U	U	U	0.33J	U	U	0.28J	U	U	U	0.19J	0.14J	0.11J	0.13J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	Ω	U	1
Bromochloromethane	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		I E	U	70
romodichloromethane	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	II	z	U	
Bromoform	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		0	U	1000
2-Butanone	ns	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	R	R	U	R	R	R	R	U	U	U	U	U	U	U	U	U	U	U	U	U	U	A	U	
sec-Butylbenzene	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	z	U	5
Carbon Disulfide	ns	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		V	U	
Chloroethane	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		m	U	5
Chloroform	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		•	U	7
p-Cymene	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	0.31J	ns	ns	ns	ns	ns	ns	ns	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	5
bibromochloromethane	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	
1,1-Dichloroethane	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	5
1,2-Dichloroethane	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	0.6
1,1-Dichloroethene	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	5
Ethylbenzene	2.5	0.68	U U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	5
Isopropylbenzene	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	0.29J	U	0.3J	U	U	U	0.18J	0.078J		0.096J	_	U	U	U	U	U	U	U	U	U	U	U	U	U		U	5
Methylene Chloride	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	5
n-Propylbenzene	U	U	U	U		U	U	U	U	U	U	U	U	U	U	0.28J	0.36J	U	0.4J	U	U	U	0.19J	0.091J		0.10J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	A	U	5
Tetrachloroethene	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	Ē	U	5
Toluene	6.8	1.7	U	U		U	U	U	U	U	U	U	U	U	U	0.30J	U	U	0.26J	U	U	U	0.099J	U	U	U	-	0.55J	U	U	U	U	U	U	U	U	U	U	U	U	z	U	5
1,2,3-Trichlorobenzene	U	U	U	U		U	U	U	U	.24J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	0	U	5
1,1,1-Trichloroethane	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	Ω	U	5
1,1,2-Trichloroethane	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	z	U	1
,2,4-Trimethylbenzene	7.4	1.5	U	U		U	U	U	U	U	U	U	U	U	2.9	4.8	5.8	1.6	5.8	1.6	0.47J	1.4	2.8	1.1	1.4	1.6	_	0.32J	U	0.36J	U	U	U	U	U	0.70J	0.24J	U			V	U	5
,3,5-Trimethylbenzene		1.4	U	0.2		U	U	U	U	U	U	U	U	U	1.8	2.4	4	1.1	3.3	0.9	U	0.52	1.4	0.58	0.46J	0.66		0.26J	U	0.41J	U	U	U	U	0.16J	0.50J	U				B	U	5
Vinyl Chloride	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U			U	2
Xylenes (Total)	40	11	U	0.54	4J	U	U	U	U	U	0.26J	U	U	U	5.2	8.4	14	5.1	18	4.1	1.5	3.5	5.6	2.1	1.8	2.2	1.6	1	U	0.96J	U	U	0.34	0.26J	0.14J	1.8	0.57J	1.4	1.9	1.5		U	15
ALTERNATIVE																																											
GEOCHEMICAL																																											
PARAMETERS																																											
Chloride	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	7800	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		ns	
Ethane	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	U	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		ns	
Ethanol	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	U	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		ns	
Ethene	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	Ð	ns	
Ferric Iron	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	U	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	E	ns	
Ferrous Iron	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	140	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		z	ns	
Total Iron	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		0	ns	
Methane	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	105	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		Ω	ns	
Nitrate	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	U 104000	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		z	ns	
SOC	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	124000	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		¥	ns	
Sulfate	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	1200	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		m	ns	
Sulfide	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	U	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		¥	ns	
Sulfite	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		ns	
Total Alkalinity	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	508000		ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		ns								
TOC	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	2100	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		ns	

All data in micrograms per liter (µg/L) NY Standards, Criteria, and Guidance (SCG) Levels are equal to NYS groundwater quality standards per 6NYCRR part 703

Analytical results in red indicate value exceeds NY SCG Level

"U" indicates parameter was not detected above the reported numerical value

"J" indicates estimated value

"R" indicates value was rejected due to relative response factor below quality control limits

"E" indicates compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analysis

"D" indicates compound identified at a secondary dilution factor

108 108 108 108 108 108 108 108 108 108	PARAMETERS											MW	-115												MW	V-11S (DUP)						MW-1 1	1D					MW-11D (DUP)	NY SCG
MCL Acting Number (1) U U <		7/96	9/96	10/96	11/96	12/96	1/97	8/97	10/97	1/98	1/99	8/99	12/99	6/00	11/00	6/01	6/02	11/02	5/03	12/03	6/04	12/04	6/05	12/05	9/96	10/96	11/96	7/96	11/96	1/97	8/97	10/97	1/98	1/99	12/99	11/00	11/02	12/05	10/97	Level
	Acetone	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	19.9J	R	R	R		U	U	U	U	U	U	U	U	U	U	U	U	U		U	
	Benzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	-	U	U	U	U	U	U	U	U	U	U	U	U	U	-	U	1
			U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U			700
Besome U U U U U U U U		Ū	Ū	Ū	U	Ū	U	Ū	U	U	U	Ū	Ū	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	U	U	Ū	U	Ū	U	U	U			
b b			Ū	Ŭ	Ū.	Ū	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ū	Ŭ	Ŭ	Ŭ	Ū.	Ū			Ŭ	-	Ū.	Ŭ	Ŭ	Ŭ	Ū	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ			10000
sectory sectory <t< td=""><td></td><td></td><td></td><td></td><td></td><td>U U</td><td>Ŭ</td><td>U U</td><td>Ŭ</td><td>й П</td><td>U U</td><td>U U</td><td>U U</td><td>Ŭ</td><td>Ŭ</td><td>Ŭ</td><td>Ŭ</td><td>U U</td><td>U U</td><td>R</td><td>Ŭ</td><td>R</td><td>R</td><td></td><td></td><td>-</td><td></td><td></td><td>U U</td><td>Ŭ</td><td>Ŭ</td><td>Ŭ</td><td>Ŭ</td><td>U U</td><td>Ŭ</td><td>Ŭ</td><td>-</td><td>-</td><td></td><td>10000</td></t<>						U U	Ŭ	U U	Ŭ	й П	U U	U U	U U	Ŭ	Ŭ	Ŭ	Ŭ	U U	U U	R	Ŭ	R	R			-			U U	Ŭ	Ŭ	Ŭ	Ŭ	U U	Ŭ	Ŭ	-	-		10000
Chresolution U U U U U U U U U U U U U U U U U U U <						0	U U	U U	U U	U U	U U	U U	U U	U U	U	U U	U	U U	U	II	U	I	II		_		-	-	U U	U U	U U	U	U U	U U	U U	U U	0			5
Characteries U U U U				-		0	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		-	-	-	-	U	U	U	U	0	U	U	U	-			5
b c v v v v v v v v v v v v v v v v <							U	U	U	U U	U	U	U	U	U	U	U	U	U	U	U	U	U		_	-	-		U	U	U	U		U	U	U	-			5
i.b. i.b. <th< td=""><td></td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>B</td><td></td><td></td><td></td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>0</td><td>U</td><td>U</td><td>U</td><td>0</td><td></td><td></td><td>5</td></th<>				0	0	0	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	B				U	U	U	U	U	0	U	U	U	0			5
Displan Displan <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>0</td><td>0</td><td>0</td><td>A</td><td></td><td>-</td><td></td><td>-</td><td>U</td><td>U</td><td>U</td><td>U</td><td>-</td><td>U</td><td>U</td><td>0</td><td>-</td><td>¥</td><td></td><td>5</td></t<>							U	U	U	U	U	U	U	U	U	U	U	U	U	U	0	0	0	A		-		-	U	U	U	U	-	U	U	0	-	¥		5
Li-Decharge-charge				-	-	-	U	U	U	U	U	U	U	U	U	U	U	U	U	ns	ns	ns	ns					-	U	U	U	U	U	U	U		-			2
L3. Alg L3. Alg <thl3. alg<="" th=""> <thl3. alg<="" th=""> <thl< td=""><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td></td><td></td><td>-</td><td>-</td><td></td><td>U</td><td>U</td><td>U</td><td>U</td><td>-</td><td>U</td><td>U</td><td></td><td>-</td><td></td><td></td><td>I .</td></thl<></thl3.></thl3.>					-	-	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U			-	-		U	U	U	U	-	U	U		-			I .
Li-Li-discissione U U U U U U U U U U U U U U U U U U U U U U U U U U U U <th<< td=""><td>/</td><td></td><td></td><td></td><td></td><td></td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>-</td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>U</td><td>U</td><td>U</td><td>U</td><td>-</td><td>U</td><td>U</td><td>U</td><td></td><td></td><td></td><td>5</td></th<<>	/						U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	-			-	-	-	U	U	U	U	-	U	U	U				5
is black-sec V U U U <th<< td=""><td>/</td><td></td><td></td><td>-</td><td></td><td></td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>0</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>U</td><td>U</td><td>U</td><td>U</td><td>0</td><td>U</td><td>U</td><td>U</td><td>-</td><td></td><td></td><td>0.6</td></th<<>	/			-			U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	0		-	-	-	-	U	U	U	U	0	U	U	U	-			0.6
book book <th< td=""><td>,</td><td></td><td></td><td></td><td></td><td></td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td></td><td></td><td></td><td>5</td></th<>	,						U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		-	-	-	-	U	U	U	U	U	U	U	U				5
methy methy <td>Ethylbenzene</td> <td>U</td> <td></td> <td>U</td> <td></td> <td></td> <td>U</td> <td>5</td>	Ethylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U			U	5
n-Program 1 0 0 0	Isopropylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U		U	5
Tetrashores U U U U <td>Methylene Chloride</td> <td>U</td> <td></td> <td>U</td> <td></td> <td>U</td> <td>5</td>	Methylene Chloride	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U		U	5
Interval	n-Propylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	-	U	U	U	U	U	U	U	U	U	U	U	U	U	-	U	5
Image: bit is series in the series		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	U		U	5
1,1,1-ricklore/serveteme U U U U					0.22J	Ū	U	Ū	U	U	U	Ū	Ū	0.24J	U	U	U	U	U	U	U	0.16J	0.073J			U	0.18J	U	U	U	U	Ū	U	Ū	U	U	U			5
i,i,i,rickloreethame U							Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	U	Ŭ	Ŭ	Ŭ	Ū	Ŭ	Ŭ	Ŭ								Ŭ	Ŭ	Ŭ	Ū	Ŭ	Ŭ	Ŭ	Ŭ				5
1.1.2 reliable U U U U U							U U	U U	U U	U U	U U		U U	U U	U	U	U	U U	U		U	U U	U U			-	-	U	U U	U U	U U	U U	U U	U U	U U	U U				5
1.2.4.7 0.5.8 0.8 0.4.3 <th< td=""><td></td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>_</td><td></td><td>· ·</td><td>-</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>0</td><td></td><td></td><td>1</td></th<>				0	0	0	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	_		· ·	-	U	U	U	U	U	U	U	U	U	0			1
1,3,5 1,1 1 </td <td>, ,</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0.2</td> <td>0.291</td> <td>0.211</td> <td>0.001</td> <td>0</td> <td>U</td> <td>U</td> <td>U</td> <td>U</td> <td>0 221</td> <td>0.291</td> <td>U</td> <td>-</td> <td>0.21</td> <td>0 421</td> <td></td> <td></td> <td></td> <td>· ·</td> <td></td> <td>0</td> <td>U</td> <td>U</td> <td>U</td> <td>U</td> <td>0</td> <td>U</td> <td>U</td> <td>U</td> <td>-</td> <td></td> <td>-</td> <td>5</td>	, ,					0	0	0.2	0.291	0.211	0.001	0	U	U	U	U	0 221	0.291	U	-	0.21	0 421				· ·		0	U	U	U	U	0	U	U	U	-		-	5
Ving U. U. U. U. U.							-						U	U	U	U	0.255	0.565	U									-	U	U	0	U	0	U	U	0	-	•		5
Nymee (Total) N 0.65 V 0.65 V 0.85 V 0.85 V COULD V <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td>0.45</td> <td>-</td> <td>0.41</td> <td>0.40</td> <td></td> <td>U</td> <td>U</td> <td>U</td> <td>U</td> <td>U</td> <td>U</td> <td>U</td> <td>-</td> <td>-</td> <td>0.255</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>U</td> <td>0</td> <td>U</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>•</td> <td></td> <td></td> <td></td>			-		-		-	0.45	-	0.41	0.40		U	U	U	U	U	U	U	-	-	0.255							0	U	0	U	0	0	0	0	•			
LiternArtive GCOLEMICAT PARAMENT Sub S						0	0	U	0	U	U	U	U	U	U	U	U	U	U	0	<u> </u>	U	0	A				-	0	U	U	U	0	U	U	U	-	¥		2
GEOCHEMICAL PARNIFTER NG NS N	Xylenes (Total)	3.6	0.65J	U	0.93J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		0.65J	U	0.86J	U	U	U	U	U	U	U	U	U	U		U	15
PARAMETERS Chloride ns <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																																								
Chloride ns <td></td>																																								
Ethane ns																																								
Ethanol ns <td>Chloride</td> <td>ns</td> <td></td> <td>ns</td> <td></td> <td>ns</td> <td></td>	Chloride	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		ns	
Ethene ns	Ethane	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		ns	
Ferric Iron ns	Ethanol	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		ns	
Ferric Iron ns	Ethene	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	•	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		ns	
Ferrous Ironns	Ferric Iron	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	A	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		ns	
Total Iron ns ns<			ns			ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	H		ns			ns	ns	ns	ns	ns	ns	ns	ns	ns			
Methane ns <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ns</td> <td></td> <td></td> <td></td> <td>ns</td> <td>Z</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ns</td> <td>ns</td> <td>ns</td> <td>ns</td> <td>ns</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								ns				ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	Z						ns	ns	ns	ns	ns						
Nitrate ns <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ns</td> <td>ns</td> <td></td> <td>ns</td> <td></td> <td></td> <td></td> <td>ns</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ns</td> <td>ns</td> <td>ns</td> <td>ns</td> <td>ns</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>							ns	ns		ns				ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	0						ns	ns	ns	ns	ns				-		
SOC ns ns <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>ns</td><td>ns</td><td></td><td>ns</td><td></td><td></td><td></td><td>ns</td><td>ns</td><td>ns</td><td>ns</td><td>ns</td><td>ns</td><td>ns</td><td>ns</td><td>ns</td><td>ns</td><td>9</td><td></td><td></td><td></td><td></td><td></td><td>ns</td><td>ns</td><td>ns</td><td>ns</td><td>ns</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							ns	ns		ns				ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	9						ns	ns	ns	ns	ns						
Sulfate ns								115		115					no	nc	115	115			no	ne	115	Z						115	115	115								
Sulfide ns								115		115				115	115	115	115	115	115		115	115	115	A						115	115	115						-		
Sulfite ns							ns	ns	ns	ns			ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	В					ns	ns	ns	ns	ns	ns	ns			8		
Total Alkalinity ns							ns	ns	ns	ns			ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	A					ns	ns	ns	ns	ns	ns	ns			A		
																					ns										ns									
n an	•																																							
	TOC	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns		ns	

<u>Notes:</u> All data in micrograms per liter (µg/L)

NY Standards, Criteria, and Guidance (SCG) Levels are equal to NYS groundwater quality standards per 6NYCRR part 703

Analytical results in red indicate value exceeds NY SCG Level

"U" indicates parameter was not detected above the reported numerical value

"J" indicates estimated value

"R" indicates value was rejected due to relative response factor below quality control limits

"E" indicates compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analysis

"D" indicates compound identified at a secondary dilution factor

PARAMETERS													MW	/-12																	М	IW-13							V-13 UP)	NY SCO
	10/96	11/96	12/96	1/97	8/97	10/9	/ 1/98	3 1/99	5/99	8/99) 12/99	6/00	11/00	6/01	11/01	6/02	11/02	5/03	12/03	3/04	6/04	9/04	12/04	6/05	12/05	7/00	11/00	6/01	11/01	6/02	11/02	5/03	12/03	6/04	12/04	6/05	12/05	7/00	11/00	Level
VOCs																																								
Acetone	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	R	R	12.3J	R	R	R	R	UJ	U	U	U	U	U	U	30.4J	7.9J	27.2J	U	182J	UJ	U	
Benzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	U	U	UJ	U	1
Bromochloromethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	U	U	UJ	U	700
Bromodichloromethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	7J	U	U	U	U	U	U	U	U	U	U	U	3.5J	U	
Bromoform	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	7J	U	U	U	U	U	U	U	U	U	U	U	3.5J	U	10000
2-Butanone	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	R	R	U	R	R	R	R	UJ	U	U	U	U	U	U	R	U	R	R	R	UJ	U	
sec-Butylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	U	U	UJ	U	5
Carbon Disulfide	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	U	U	UJ	U	
Chloroethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	U	U	UJ	U	5
Chloroform	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	42J	U	0.36J	U	U	U	U	U	U	U	U	U	23J	1.9	7
p-Cymene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	ns	ns	ns	ns	ns	ns	ns	UJ	U	U	U	U	0.24J	U	ns	ns	ns	ns	ns	UJ	U	5
Dibromochloromethane	Ū	Ū	U	U	U	U	U	U	U	Ū	U	U	U	U	Ū	U	U	U	U	U	U	U	U	U	U	1.8J	U	Ū	U	U	U	U	U	U	U	U	U	UJ	Ū	
1,1-Dichloroethane	Ū	U	U	U	Ū	Ū	Ū	Ū	Ŭ	Ū	Ű	U	U	U	Ū	U	U	U	Ū	U	U	Ū	Ū	Ū	Ū	UJ	Ū	U	U	U	U	U	Ū	U	U	Ū	Ū	UJ	Ū	5
1,2-Dichloroethane	Ŭ	Ŭ	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ŭ	Ŭ	Ŭ	Ŭ	UJ	Ū	Ū	Ū	Ū	Ū	Ū	Ŭ	Ū	Ū	Ū	Ŭ	UJ	Ŭ	0.6
1,1-Dichloroethene	U	Ŭ	Ŭ	Ŭ	Ŭ	Ū	Ū	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	U	Ŭ	U	U	UJ	U	Ū	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	U	UJ	U	5
Ethylbenzene	Ŭ	U	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	U	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	UJ	Ŭ	Ŭ	0 221	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	UJ	U	5
Isopropylbenzene	U	U	U U	U U	U U	U U	U U	U U	U U	U U	U U	U U	U U	U U	U U	U U	U U	U U	U U	U U	U U	U	U	U	U	UJ	U U	U U	U.223	U U	U U	U U	U U	U U	U	0.078J	0	UJ	U	5
Methylene Chloride	U	U	U	U U	U U	U	U	U U	U U	U U	U U	U U	U	U	U	U	U	U U	U	U U	U	U	U	U	U	UJ	U	U	U	U	U	U U	U	U	U	U.0703	U	UJ	U	5
n-Propylbenzene	U	U	U	U U	U U	U	U	U	U	U U	U	U	U	U	U	U	U	U U	U U	U	U	U	U	U U	U	UJ	U	U U	0.22J	U	U	U	U U	U	U	0.097J	U U	UJ	U	5
Tetrachloroethene	U	U	U	U U	U U	U U	U U		U U	U U	U	U	U	U	U	U	U	U	U	U	U	U U	U U	U	U U	UJ	U	U U	U.22J	U	U	U U	U U	U	U	U.U973	U	UJ	U	5
Toluene	U	U	U	U U	U U	U U	U U		U U	U U	U	U	U	U	U	U	U	U	U U	0.121	U	U	U	U	U	1.4J	U	U	U	U	U	U	П	U	U U	U	U	UJ	U	5
1,2,3-Trichlorobenzene	U	U	U	U U	U U	U U	U U		U U	U U	U	U	U	U	U	U	U	U	U	0.155 U	U	U	U	U	U	UJ	U	U	U	U	U	U U	U U	U	U U	U	U	UJ	U	5
1,1,1-Trichloroethane	U	U	U U	U U	U U	U U	U U	U U	U U	U U	U U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U U	U	U	U	U	UJ	U	5
1,1,2-Trichloroethane	U	U	U	U U	U U	U U	U U	U U	U 11	U U	U U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	U	U	UJ	U	3
1,2,4-Trimethylbenzene	U	U	U	U U	U	0	0	U U	U	U U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	6.2J	U	2.2	47	2.6	1.6	1.1	0.49	1.2	0.81	1.6	0.32J	2.8J	2.3	5
1,3,5-Trimethylbenzene	U	U	0	0	0	0	0	0	U	U U	0	U	U	0	U	U	U	U	U	0.75	U	U	U	U	U	4.2J	U	3.4	4./	2.0 U	1.0 U	1.1	0.49 U	1.2 U		1.0	0.32J U		2.5	5
	U	U	U	U		U	0	U	U	U	0	U	U	U	U	U	U	U	U	0.75 11	U	U	U	U	U	4.2J U	U	3.4 U	U	U	U U	U	U	U	0.10J U	U	U	UJ	2.2 U	5
Vinyl Chloride	UU	-	U	U	U	U	U	U	U	U	U	U	0	U	U	U	U	U	U	U	U	U	U	UU	U	-					U	U	UU					UJ		2
Xylenes (Total) <u>ALTERNATIVE</u> GEOCHEMICAL	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	11J	U	1.7	0.91J	0.6J	U	U	U	0.5	0.23J	0.34J	0.85J	5.1J	3.5	15
PARAMETERS																																								
Chloride	ns	ne	ne	nc	ne	ne	ne	ne	8300) ns	1280) 9700	8900	7800	11700	9300	16700	9200	U	II	U	U	U	10300	U	ns	ns	ne	ne	ne	ne	ne	nc	ne	nc	ne	ns	ns	ns	
Ethane	ns	ns	ne	nc	ne	ne	ne	ne	3300 TT	ns ns	1200	J 9700 II	8900 U	7800 U	6.8	9300 U	10700 U	11	1.3	1.4	1.0	1.0	0.9	0.7	3.77	ns	ns	ne	ne	ne	ne	ne	ne	ne	ns	ns	ns	ns	ns	
Ethanol	ns	ns	ns	ne	ns	115	115 pc	ns	U	ns	1	24000		U	0.8 U	U	U	U U	1.5 U	1.4 U	1.0 U	1.0 U	U.9	U.7	J.77	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Ethene	ns	ns	ns	ne	ne	11S	11S	115	ne	ns	ns	4.4	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	115	115 ns	115	115 ns	115	115 ns	ns	ns	ns	ns	ns	
Ferric Iron		ns	115	115	ns	115	115	115	115	ns	800	4.4 150	115	ns	ns	115	115	115	ns	115	115	ns	115			ns	ns	115	115	115	115	115	ns	115		ns			ns	
Ferrous Iron	ns		115	115	115	115	115	115	590	ns	800	130 U	115	ns		115	115	115	ns	ns	115		115	ns	ns			115	115	115	115	115		115	ns	ns	ns	ns		
Total Iron	ns	ns	115	IIS	IIS DC	ns		iis	590		00		ns 698	ns U	ns 1200	ns 54.6	ns 66.7	ns 104	ns 2610	115	ns U	ns U	ns U	ns 204	ns U	ns	ns	115	115	115	115	115	ns	115	ns		ns	ns	ns	
	ns	ns	ns	ns	ns	ns	IIS	ns	ns L	ns	ns	ns								883	1940		830		-	ns	ns	ns	115	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Methane	ns	ns	ns	ns	ns	ns	ns	ns	U	ns	1400		6100D	3500	4500D	580E	6100D	750	1150 U	883 U	- /	652	830	262 U	3200 U	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Nitrate	ns	ns	ns	ns	ns	ns	ns	ns	U	ns	U	53	U 2500	U	U 2200	U	U	U	-	0	U	U	U	U	0	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
SOC	ns	ns	ns	ns	ns	ns	ns	ns	74800		5200			1600	2200	U	4100	U	2600	U	U	5200	U	U	U	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Sulfate	ns	ns	ns	ns	ns	ns	ns	ns	49400		34400			57800	18800	34400		53700		45900		40500	42300	47500	41500	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Sulfide	ns	ns	ns	ns	ns	ns	ns	ns	U	ns	U	ns	U	1300	3700	1900	2600	U	3700	2300		2500	U	U	3700	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Sulfite	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	1000	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Total Alkalinity	ns	ns	ns	ns	ns	ns	ns		30300												333000					ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
TOC	ns	ns	ns	ns	ns	ns	ns	ns	2000) ns	5400	1200	1100	1600	1800	U	2300	U	1200	1000	U	U	U	U	1900	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	

<u>Notes:</u> All data in micrograms per liter (µg/L)

NY Standards, Criteria, and Guidance (SCG) Levels are equal to NYS groundwater quality standards per 6NYCRR part 703

Analytical results in red indicate value exceeds NY SCG Level

"U" indicates parameter was not detected above the reported numerical value

"J" indicates estimated value

"R" indicates value was rejected due to relative response factor below quality control limits

"E" indicates compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analysis

"D" indicates compound identified at a secondary dilution factor

	1		1	PZ-2	r	I	r	1			BURGESS	1	CULVERT	1					1			1			1			1		
DADAMETER	BH-14	PZ-1	PZ-2	(DUP)	PZ-3	PZ-4	PZ-5	в	URGE	SS	(DUP)	CURRAN	WELL			FAUST	Г 1			FAUST	2	р	PIERC	F	S	ULLIV	AN	WII	SON	NY SCG
PARAMETERS	7/00	11/01	11/01	11/01	11/01	11/01	11/01	7/96			5/99	11/02	6/00	7/96	5/99	8/99		5/03		5/99	6/00		5/99	11/02			11/02	7/96		Level
VOCs	.,		/										.,				0,00	.,				.,, .						.,		
Acetone	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
Benzene	U	U	U	U	U	U	0.32J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	1
Bromochloromethane	U	U	U	U	U	U	U	U	U	U	U	0.31J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	700
Bromodichloromethane	U	U	U	U	U	U	U	U	U	U	U	3.1	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
Bromoform	U	U	U	U	U	U	U	U	U	U	U	1.2	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	10000
2-Butanone	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
sec-Butylbenzene	U	U	U	U	U	U	0.28J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Carbon Disulfide	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
Chloroethane	U	U	U	U	U	1.4	2	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Chloroform	5.5	U	U	U	U	U	U	U	U	U	U	1.7	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	7
p-Cymene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Dibromochloromethane	U	U	U	U	U	U	U	U	U	U	U	4	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
1,1-Dichloroethane	U	1	0.37J	0.43J	0.45J	0.99J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
1,2-Dichloroethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	0.6
1,1-Dichloroethene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Ethylbenzene	1	U	U	U	U	0.64J	2.1	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Isopropylbenzene	U	U	0.22J	0.23J	U	0.33J	0.92J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Methylene Chloride	U	U	U	U	U	U	U	U	U	U	U	0.26J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
n-Propylbenzene	U	U	0.22J	0.22J	U	0.39J	1.2	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Tetrachloroethene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	0.21J	U	U	U	U	U	5
Toluene	11	U	U	U	U	0.62J	0.61J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
1,2,3-Trichlorobenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
1,1,1-Trichloroethane	U	U	U	U	0.46J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5
1,1,2-Trichloroethane	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	1
1,2,4-Trimethylbenzene	6.8	U	1	1	U	7.6	6.7	U	U	U	U	U	U	U	0.91J	U	0.86J	0.33J	U	U	U	U	U	U	U	U	U	U	U	5
1,3,5-Trimethylbenzene	5	U	U	U	U	5.3	2.2	U	U	U	U	U	U	U	0.42J	U	0.53J	U	U	U	U	U	U	U	U	U	U	U	U	5
Vinyl Chloride	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	2
Xylenes (Total)	12	U	0.91J	0.97J	U	15	11	U	U	U	U	U	U	U	0.52J	U	0.64J	0.33J	U	U	U	U	U	U	U	U	U	U	U	15
ALTERNATIVE																														
GEOCHEMICAL																														
PARAMETERS				1	1																									
Chloride	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Ethane	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Ethanol	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Ethene	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Ferric Iron	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Ferrous Iron	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Total Iron	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Methane	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Nitrate	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
SOC	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Sulfate	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Sulfide	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Sulfite	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Total Alkalinity	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
TOC	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
	Notes:																													

<u>Notes:</u> All data in micrograms per liter (μg/L)

NY Standards, Criteria, and Guidance (SCG) Levels are equal to NYS groundwater quality standards per 6NYCRR part 703

Analytical results in red indicate value exceeds NY SCG Level

"U" indicates parameter was not detected above the reported numerical value

"J" indicates estimated value

"R" indicates value was rejected due to relative response factor below quality control limits

"E" indicates compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analysis

"D" indicates compound identified at a secondary dilution factor