Former Hall-Welter Site

MONROE COUNTY

Rochester, NEW YORK

INTERIM SITE MANAGEMENT PLAN

NYSDEC Site Number: 828194

Prepared for:

Center Properties of Rochester, Inc. 1000 Elmwood Avenue, Rochester, NY

Prepared by:

LaBella Associates, DPC 300 State Street, Suite 201, Rochester, NY (585)454-6110

Revisions to Final Approved Site Management Plan:

Revision No.	Date Submitted	Summary of Revision	NYSDEC Approval Date

NOVEMBER 2019

CERTIFICATION STATEMENT

I DANCEL P. Not certify that I am currently a NYS registered professional engineer as defined in 6 NYCRR Part 375 and that this Site Management Plan was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

P.E. 11/20/19 DATE

TABLE OF CONTENTS

Former Hall-Welter Site MONROE COUNTY ROCHESTER, NEW YORK

INTERIM SITE MANAGEMENT PLAN

Table of Contents

Description

Page

LIST OF ACRONYMS

Section

ES	EXE	CUTIVE SUMMARY	1
1.0	INTI	RODUCTION	2
	1.1	General	
	1.2	Revisions	
	1.3	Notifications	3
2.0	SUM	IMARY OF PREVIOUS INVESTIGATIONS AND REM	IEDIAL
	ACT	TONS	6
	2.1	Site Location and Description	6
	2.2	Physical Setting	6
		2.2.1 Land Use	
		2.2.2 Geology	
		2.2.3 Hydrogeology	7
	2.3	Investigation and Remedial History	
	2.4	Remedial Action Objectives	
	2.5	Remaining Contamination	
		2.5.1 Soil	
		2.5.2 Groundwater	
		2.5.3 Soil Vapor	

TABLE OF CONTENTS (Continued)

Section		Description	
3.0	INST	TITUTIONAL AND ENGINEERING CONTROL PLAN	15
	3.1 3.2	General Institutional Controls	
	3.2 3.3	Engineering Controls	
	5.5	3.3.1 Sub-slab Depressurization System	
		3.3.2 Criteria for Completion of Remediation/Termination of	
		Remedial Systems	
4.0	MON	NITORING AND SAMPLING PLAN	17
	4.1	General	17
	4.2	Treatment System Monitoring and Sampling (for active ECs)	
	т.2	4.2.1 Remedial System Monitoring	
	4.3	Media Monitoring and Sampling	
5.0	OPE	RATION AND MAINTENANCE PLAN	20
	5.1	General	20
	5.2	Operation and Maintenance of Sub-slab Depressurization	
		System	
		5.2.1 System Start-up and Testing	
		5.2.2 Routine System Operation and Maintenance	
		5.2.3 Non-Routine Operation and Maintenance5.2.4 System Monitoring Devices and Alarms	
6.0	DED	IODIC ASSESSMENTS/EVALUATIONS	
0.0	PEK	IODIC ASSESSMENTS/EVALUATIONS	
	6.1	Climate Change Vulnerability Assessment	22
	6.2	Green Remediation Evaluation	
	6.3	Remedial System Optimization	
7.0	REP	ORTING REQUIREMENTS	23
	7.1	Site Management Reports	23
	7.2	Periodic Review Reports	23
		7.2.1 Certification of Institutional and Engineering Controls	
	7.3	Corrective Measures Work Plan	25

TABLE OF CONTENTS (Continued)

Section	Description	Page
8.0	REFERENCES	
List of Ta	ables	
	Table 1A – NotificationsTable 1B – Remedial System Monitoring RequirementsTable 1C – Sampling Requirements and ScheduleTable 2 – VOC Impacts in GroundwaterTable 3 – VOC Impacts in Soil VaporTable 4 – VOC Concentrations in Indoor Air	
List of Fi	gures	
	Figure 1 – Site Location Map Figure 2 – Monroe County Tax Map Figure 3 – Site Layout Map Figure 4 – Groundwater Contour Map Figure 5 – Sample Location Map Figure 6 – SSDS As Built Drawing Figure 6A – SSDS Details	Attached Attached Attached Attached Attached Attached
List of A	opendices	
Boring Lo Site Mana O&M Ma CCR – SS	e Contacts ogs ugement Forms nual – SSDS SDS Installation pilities of Owners and Remedial Party	Appendix 2 Appendix 3 Appendix 4 Appendix 5

List of Acronyms

AS	Air Snorring
	Air Sparging
ASP	Analytical Services Protocol
BCA	Brownfield Cleanup Agreement
BCP	Brownfield Cleanup Program
CERCLA	Comprehensive Environmental Response, Compensation and Liability Act
CAMP	Community Air Monitoring Plan
C/D	Construction and Demolition
CFR	Code of Federal Regulation
CLP	Contract Laboratory Program
COC	Certificate of Completion
CO2	Carbon Dioxide
СР	Commissioner Policy
DER	Division of Environmental Remediation
EC	Engineering Control
ECL	Environmental Conservation Law
ELAP	Environmental Laboratory Approval Program
ERP	Environmental Restoration Program
EWP	Excavation Work Plan
GHG	Green House Gas
GWE&T	Groundwater Extraction and Treatment
HASP	Health and Safety Plan
IC	Institutional Control
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
NYCRR	New York Codes, Rules and Regulations
O&M	Operation and Maintenance
OM&M	Operation, Maintenance and Monitoring
OSHA	Occupational Safety and Health Administration
OU	Operable Unit
PID	Photoionization Detector
PRP	Potentially Responsible Party
PRR	Periodic Review Report
QA/QC	Quality Assurance/Quality Control
QAPP	Quality Assurance Project Plan
RAO	Remedial Action Objective
RAWP	Remedial Action Work Plan
RCRA	Resource Conservation and Recovery Act
RI/FS	Remedial Investigation/Feasibility Study
ROD	Record of Decision
RP	Remedial Party
RSO	Remedial System Optimization
SAC	State Assistance Contract
SAC	State Assistance Contract Standards, Criteria and Guidelines
500	Standards, Ontonia and Outdonnes

SCO	Soil Cleanup Objective
SMP	Site Management Plan
SOP	Standard Operating Procedures
SOW	Statement of Work
SPDES	State Pollutant Discharge Elimination System
SSD	Sub-slab Depressurization
SVE	Soil Vapor Extraction
SVI	Soil Vapor Intrusion
TAL	Target Analyte List
TCL	Target Compound List
TCLP	Toxicity Characteristic Leachate Procedure
USEPA	United States Environmental Protection Agency
UST	Underground Storage Tank
VCA	Voluntary Cleanup Agreement
VCP	Voluntary Cleanup Program

ES EXECUTIVE SUMMARY

Site Identification:

The following provides a brief summary of the controls implemented for the Site, as well as the inspections, monitoring, maintenance and reporting activities required by this Interim Site Management Plan:

Former Hall-Welter Site, Site 828194

)		
	38-46 Mt. Hope Avenue, Rochester, NY		
Institutional Controls: 1. The property may be used for commercial use		mmercial use;	
	2. All ECs must be inspected at a frequency and in a manner defined in the SMP.		
Engineering Controls:	1. Sub Slab Depressurization Syste	em (SSDS)	
Inspections: Frequency		Frequency	
1. SSDS Inspection		Quarterly	
Monitoring:			
Indoor Air Sampling Annually			
Maintenance:			
1. SSDS		As needed	
Reporting:			
1. Periodic Review Report Annually			

Further descriptions of the above requirements are provided in detail in the latter sections of this Site Management Plan.

1.0 INTRODUCTION

1.1 General

This Interim Site Management Plan (ISMP) is a required element of the remedial program for the Former Hall-Welter Site located in Rochester, New York (hereinafter referred to as the "Site"). See Figure 1. The Site is currently in the New York State (NYS) Inactive Hazardous Waste Disposal Site Remedial Program, Site No. 828194 which is administered by New York State Department of Environmental Conservation (NYSDEC).

Center Properties of Rochester, Inc. entered into an Order on Consent, on June 23, 2017 with the NYSDEC solely to install and operate a soil vapor intrusion mitigation system at the site. A figure showing the site location and boundaries of this site is provided in Figure 1

This ISMP was prepared to manage the potential for soil vapor intrusion at the site until a Site Remedy and Final SMP are developed and approved by the NYDEC. This ISMP may only be revised with the approval of the NYSDEC.

It is important to note that:

• Failure to comply with this ISMP is also a violation of Environmental Conservation Law, 6NYCRR Part 375 and the Order on Consent (Index #R8-2017-0303-29; Site #828194) for the site, and thereby subject to applicable penalties.

All reports associated with the site can be viewed by contacting the NYSDEC or its successor agency managing environmental issues in New York State. A list of contacts for persons involved with the site is provided in Appendix 1 of this ISMP.

This ISMP was prepared by LaBella Associates, DPC, on behalf of Center Properties, LLC in accordance with the requirements of the NYSDEC's DER-10 ("Technical Guidance for Site Investigation and Remediation"), dated May 2010, and the guidelines provided by the NYSDEC.

1.2 Revisions

Revisions to this plan will be proposed in writing to the NYSDEC's project manager. Revisions will be necessary upon, but not limited to, the following occurring: a change in media monitoring requirements, upgrades to or shut-down of a remedial system, post-remedial removal of contaminated sediment or soil, or other significant change to the site conditions. In accordance with the Environmental Easement for the site, the NYSDEC will provide a notice of any approved changes to the ISMP, and append these notices to the ISMP that is retained in its files.

1.3 Notifications

Notifications will be submitted by the property owner to the NYSDEC, as needed, in accordance with NYSDEC's DER -10 for the following reasons:

- 60-day advance notice of any proposed changes in site use that are required under the terms of the, Order on Consent, 6NYCRR Part 375 and/or Environmental Conservation Law.
- 7-day advance notice of any field activity associated with the remedial program.
- 15-day advance notice of any proposed ground-intrusive activity pursuant to the Excavation Work Plan.
- Notice within 48-hours of any damage or defect to the foundation, structures or EC that reduces or has the potential to reduce the effectiveness of an EC, and likewise, any action to be taken to mitigate the damage or defect.
- Verbal notice by noon of the following day of any emergency, such as a fire; flood; or earthquake that reduces or has the potential to reduce the effectiveness of ECs in place at the site, with written confirmation within 7 days that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public.

• Follow-up status reports on actions taken to respond to any emergency event requiring ongoing responsive action submitted to the NYSDEC within 45 days describing and documenting actions taken to restore the effectiveness of the ECs.

Any change in the ownership of the site or the responsibility for implementing this ISMP will include the following notifications:

- At least 60 days prior to the change, the NYSDEC will be notified in writing of the proposed change. This will include a certification that the prospective purchaser has been provided with a copy of the Order on Consent, including this ISMP.
- Within 15 days after the transfer of all or part of the site, the new owner's name, contact representative, and contact information will be confirmed in writing to the NYSDEC.

Table 1A on the following page includes contact information for the above notification. The information on this table will be updated as necessary to provide accurate contact information. A full listing of site-related contact information is provided in Appendix 1.

Table 1A: Notifications*

Name	Contact Information
NYSDEC Project Manager	(585) 226-5356
Adam Morgan	adam.morgan@dec.ny.gov
NYSDEC Regional HW Engineer	(585) 226-5353
David Pratt	david.pratt@dec.ny.gov
NYSDEC Site Control	(518) 402-9547
Kelly Kewandowski	kelly.lewandowski@dec.ny.gov
NYSDOH Project Manager	(518) 402-7860
Mark Sergott	mark.sergott@health.ny.gov

* Note: Notifications are subject to change and will be updated as necessary.

2.0 SUMMARY OF PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIONS

2.1 Site Location and Description

The site is located in Rochester, Monroe County, New York and is identified as Section 121, Subsection 48, Block 1 and Lot 80 on the Monroe County Tax Map (see Figure 2). The Site is an approximately 0.390-acre area and is bounded by an automotive repair facility to the north, Orion Alley and residential properties to the south, residential and commercial properties to the east, and Mt. Hope Avenue to the west (see Figure 3 – Site Layout Map). The owner of the site parcel at the time of issuance of this ISMP is Center Properties of Rochester, Inc. The Site has been the subject of a land contract between the Site owner, Center Properties of Rochester, Inc., and the tenant/contract vendee, JERSAM LLC. A portion of the Site building is occupied currently by a dance studio.

2.2 Physical Setting

2.2.1 Land Use

The Site consists of the following: one single story, 13,701 square foot structure constructed in 1940. The remainder of the site consists of asphalt paved parking and concrete sidewalks. The Site is zoned CCD-R Center City Riverfront and is currently vacant. The most recent Site occupants included a church and various small retail tenants.

The properties adjoining the Site and in the neighborhood surrounding the Site primarily include commercial and residential properties. The properties immediately south of the Site include residential properties; the properties immediately north of the Site include commercial properties; the properties immediately east of the Site include commercial and residential properties; and the properties to the west of the Site include commercial properties.

2.2.2 Geology

Overburden soils encountered in soil borings advanced as part of previous investigations consisted generally of brown fine to medium sand with varying amounts of fine to medium gravel. Apparent fill material consisting of sand and gravel with varying amounts of ash and cinders was encountered in borings overlying native soils.

Bedrock is present at the Site at depths ranging between 14 and 17 feet below ground surface (bgs). Bedrock beneath the site consists of light gray limestone of the Upper Silurian Lockport Group.

Boring logs from previous investigations are include in Appendix 2.

2.2.3 Hydrogeology

Overburden groundwater at the Site is present at depths of approximately 9 to 10 feet bgs. Overburden groundwater flow is to the northwest, towards the Genesee River.

A City of Rochester ordinance forbids use of groundwater for potable purposes within City limits. Sources of municipal water primarily include Canadice and Hemlock Lakes, located approximately 25 miles south of the Site.

A groundwater contour map is shown in Figure 4.

2.3 Investigation and Remedial History

The following environmental assessments/investigations have been performed at the Site:

Phase I ESA – LCS, September 2013

LCS, Inc. completed a Phase I ESA for the Site in September 2013. The LCS Phase I identified six known or suspected recognized environmental conditions (RECs) including lack of documentation relative to the removal of an 6,000-gallon heating oil underground

storage tank (UST) in 1988, historical manufacturing operations including solvent use at the Site and at adjacent properties to the north and west by a former owner.

Phase II ESA – LaBella, October 2013

In October 2013 LaBella performed a Phase II ESA at the Site to address the following issues:

- An assessment of soil and groundwater conditions in the location of a 6,000gallon heating oil underground storage tank (UST) reportedly removed from the north side of the Site building.
- 2. Historic Site use, including automotive service, machine shop/manufacturing and chemical use at the Site.

Eight outdoor soil borings were completed at the Site on October 22, 2013. Based on the findings of the investigation, petroleum impacts were not identified in the location of the former 6,000-gallon heating oil UST. The distribution of soil borings and samples collected are consistent with those typically collected during closure of a tank of this size, and the sand and gravel material encountered in the proximate center of the former UST is consistent with commonly used fill material. As such, the former UST was determined to no longer be of concern.

The chlorinated volatile organic compound (VOCs) tetrachloroethene (PCE) was detected in soil and groundwater samples collected during the investigation. Trichloroethene (TCE) and cis-1,2-Dichloroethene (DCE) were detected in groundwater at the Site as well. The concentrations of PCE detected in soil were below NYSDEC Unrestricted Use Soil Cleanup Objectives (SCOs). Groundwater concentrations, while relatively low, were above NYSDEC groundwater standards.

Based on the findings of the Phase II ESA it could not be determined if the PCE, TCE and DCE concentrations detected at the Site originate from the Site, or from an off-site location. LaBella recommended additional investigation to determine the presence of a source area beneath the Site building or a potential off-site location.

Supplemental Phase II ESA – LaBella, November 2013

An additional seven (7) soil borings and four (4) overburden groundwater monitoring wells were installed within the footprint of the Site building in November 2013. The combined findings of the investigations performed indicated that low concentrations of VOCs were present in soils site wide at concentrations below 6 NYCRR Part 375-6.8(a) Unrestricted Use SCOs. Chlorinated VOCs were detected in groundwater site wide at concentrations exceeding NYSDEC TOGS 1.1.1 standards. Overburden groundwater flow at the Site is to the northwest, towards Mt. Hope Avenue and the Genesee River. Based on field observations and laboratory analysis an on-site source of chlorinated VOC impacts was not identified. A vertical column of impacted soil was not observed in soil borings, and the highest headspace readings encountered in Site soils were from saturated soils, indicating likely transport in groundwater from an up gradient location. Based on the potential for an up gradient off-site source of chlorinated VOC impacts, additional investigation was recommended.

Bedrock Well Installation/Vapor Intrusion Assessment – LaBella, February 2014

In February 2014 a bedrock groundwater monitoring well was installed upgradient of the Site building, south of the loading dock. TCE was detected in overburden soil, with the highest concentration, $3,500 \mu g/Kg$, detected at one (1) foot below ground surface (bgs). The high concentrations detected in shallow soil are indicative of a nearby surface release in the vicinity of BW-01. It should be noted that BW-01 was installed approximately 15 feet south of the loading dock door and outside of the Site boundaries due to the presence of the storm sewer and overhead obstructions. A vertical column was not observed in the soil boring, however given the presence of the foundation wall it is unlikely that the source of the release was inside the Site building.

Sub slab and corresponding indoor air samples were collected from three locations in the Site building. The findings of the vapor intrusion assessment indicate that chlorinated VOCs were present in significant concentrations in sub-slab vapor and in concentrations above NYSDOH mitigation criteria in the ambient air in the Site building. It was apparent

that a vapor intrusion concern was present at the Site. LaBella recommended that a sub slab depressurization system be installed at the Site to mitigate sub slab vapors.

Mitigation Activities

In 2014 a sub slab depressurization system (SSDS) was installed on behalf of Center Properties in the basement section of the Site building. In December 2015, upgrades to the existing SSDS were performed which included the following:

- 1. Sealing all openings in cracks in the basement floor.
- 2. Installation of an alarm and U-tube style manometer on the SSDS system piping.
- 3. Extension of the SSDS exhaust piping above the roofline.
- 4. Performance of a pressure field extension test in the basement.

The pressure field extension test indicated sub slab pressure measurements ranging from -0.026 to -0.473 inches of water column measured on a digital micromanometer.

In February 2016 Center Properties engaged LaBella to install a second SSDS in the storage area on the south side of the Site building to address vapor intrusion issues identified in the southern section of the building. The system consisted of a four inch diameter PVC pipe installed into a suction pit proximate GPMW-11. The piping penetrates the southern exterior wall and is equipped with a Radonaway GP-501 centrifugal vent fan. The exhaust piping extends above the roofline and is equipped with a bird screen. The system is equipped with an alarm on a separate circuit and a U-tube style manometer. Post-mitigation indoor air sampling indicated a significant reduction in TCE concentrations in indoor air, however concentrations remained above the NYSDEC air guideline of $2.0 \,\mu g/m^3$. Laboratory analysis of indoor air samples before and after installation of the 2016 SSD system are presented in Table 4.

In March 2017 Mitigation Tech was retained to perform pressure field extension testing and design an SSDS to ensure entire Site building coverage, incorporating previously installed systems. The system was installed in October 2017 and consists of three additional roof mounted fans connected by manifold piping to vapor extraction points. A performance evaluation conducted subsequent to installation indicated that the combined SSDS were depressurizing the entire sub slab area to a minimum negative pressure of 0.004 inches of water column. Subsequent indoor air testing determined that TCE concentrations in indoor air were below the NYSDEC air guideline of 2.0 μ g/m³. This sampling is summarized in the SSDS Construction Completion Report which is included as Appendix 5.

2.4 Remedial Action Objectives

The Remedial Action Objectives (RAOs) for the Site have not been established. The NYSDEC generic RAOs are as follows:

Groundwater

RAOs for Public Health Protection

- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of, volatiles from contaminated groundwater.

RAOs for Environmental Protection

- Restore ground water aquifer to pre-disposal/pre-release conditions, to the extent practicable.
- Prevent the discharge of contaminants to surface water.
- Remove the source of ground or surface water contamination.

Soil

RAOs for Public Health Protection

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of or exposure from contaminants volatilizing from contaminants in soil.

RAOs for Environmental Protection

- Prevent migration of contaminants that would result in groundwater or surface water contamination.
- Prevent impacts to biota from ingestion/direct contact with soil causing toxicity or impacts from bioaccumulation through the terrestrial food chain.

Surface Water

RAOs for Public Health Protection

- Prevent ingestion of water impacted by contaminants.
- Prevent contact or inhalation of contaminants from impacted water bodies.
- Prevent surface water contamination which may result in fish advisories.

RAOs for Environmental Protection

- Restore surface water to ambient water quality criteria for the contaminant of concern.
- Prevent impacts to biota from ingestion/direct contact with surface water causing toxicity and impacts from bioaccumulation through the marine or aquatic food chain.

Sediment

RAOs for Public Health Protection

- Prevent direct contact with contaminated sediments.
- Prevent surface water contamination which may result in fish advisories.

RAOs for Environmental Protection

- Prevent releases of contaminant(s) from sediments that would result in surface water levels in excess of (ambient water quality criteria).
- Prevent impacts to biota from ingestion/direct contact with sediments causing toxicity or impacts from bioaccumulation through the marine or aquatic food chain.
- Restore sediments to pre-release/background conditions to the extent feasible.

Soil Vapor

RAOs for Public Health Protection

• Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at a site.

2.5 Remaining Contamination

Remedial actions have not been performed to date. The information provided in this section is based on the results of prior sampling at the Site by the Site owner. Soil and groundwater samples collected at the Site have not been analyzed for the full suite of contaminants. Any testing performed by NYSDEC or its contractors has not been incorporated into this document. To date, sampling by the Site owner has been limited to VOCs and in limited cases SVOS (i.e., in soil samples proximate the former heating oil underground storage tank).

2.5.1 <u>Soil</u>

Previous sampling results indicate that tetrachloroethene (PCE), trichloroethene (TCE) and cis-1,2-Dichloroethene (DCE) were detected in soil samples collected from beneath the Site building. However, all detected concentrations were below Unrestricted Use SCOs.

2.5.2 Groundwater

Groundwater samples were collected from overburden groundwater monitoring wells installed within the Site building during prior investigations. PCE was detected all samples at concentrations ranging from 13 μ g/L (GPMW-10) to 430 μ g/L (GPMW-12). TCE was detected in all samples at concentrations ranging from 48 μ g/L (GPMW-9) to 150 μ g/L (GPMW-11). DCE was detected in all samples at concentrations ranging from 2.4 μ g/L (GPMW-9) to 17 μ g/L (GPMW-10).

Table 2 and Figure 5 summarize the results of all samples of groundwater that exceed Part 703 groundwater standards.

2.5.3 Soil Vapor

A vapor intrusion assessment was performed at the Site in February 2014. The results of the sampling indicated that PCE was present in sub slab vapor at concentrations of up to $350 \ \mu g/m3$. TCE was present at concentrations of up to $33,000 \ \mu g/m3$.

Table 3 and Figure 5 summarize the results of all samples of soil vapor.

3.0 INSTITUTIONAL AND ENGINEERING CONTROL PLAN

3.1 General

Since remaining contamination exists at the site, Institutional Controls (ICs) and Engineering Controls (ECs) are required to protect human health and the environment. This IC/EC Plan describes the procedures for the implementation and management of all IC/ECs at the site. The IC/EC Plan is one component of the SMP and is subject to revision by the NYSDEC.

This plan provides:

- A description of all IC/ECs on the site;
- The basic implementation and intended role of each IC/EC;
- A description of plans and procedures to be followed for implementation of IC/ECs, such as the implementation of the Excavation Work Plan (EWP) (as provided in Appendix 3) for the proper handling of remaining contamination that may be disturbed during maintenance or redevelopment work on the site; and
- Any other provisions necessary to identify or establish methods for implementing the IC/ECs required by the site remedy, as determined by the NYSDEC.

3.2 Institutional Controls

The final SMP for the Site will include all applicable ICs/ECs as defined in the remedy for the Site.

3.3 Engineering Controls

3.3.1 Sub-slab Depressurization System

A sub slab depressurization system (SSDS) was installed at the Site to mitigate vapor intrusion into the Site building. The system consists of five (5) roof mounted fans connected by manifold piping to vapor extraction points.

Procedures for operating and maintaining the SSDS are documented in the Operation and Maintenance Plan (Section 5.0 of this SMP). An as built drawing, signed and sealed by a professional engineer, is included as Figure 6.

3.3.2 Criteria for Completion of Remediation/Termination of Remedial Systems

Generally, remedial processes are considered completed when monitoring indicates that the remedy has achieved the remedial action objectives identified by the decision document. The framework for determining when remedial processes are complete is provided in Section 6.4 of NYSDEC DER-10.

The active SSD system will not be discontinued unless prior written approval is granted by the NYSDEC and the NYSDOH. In the event that monitoring data indicates that the SSD system may no longer be required, a proposal to discontinue the SSD system will be submitted by the remedial party to the NYSDEC and NYSDOH.

4.0 MONITORING AND SAMPLING PLAN

4.1 General

This Monitoring and Sampling Plan describes the requirements for operating and maintaining the SSDS.

This Monitoring and Sampling Plan describes the methods to be used for:

- Sampling and analysis of all appropriate media (e.g., groundwater, indoor air, soil vapor, soils);
- Assessing compliance with applicable NYSDEC standards, criteria and guidance (SCGs)

To adequately address these issues, this Monitoring and Sampling Plan provides information on:

- Sampling locations, protocol and frequency;
- Analytical sampling program requirements;
- Annual inspection and periodic certification.

Reporting requirements are provided in Section 7.0 of this SMP.

4.2 Treatment System Monitoring and Sampling

4.2.1 <u>Remedial System Monitoring</u>

Monitoring of the SSDS will be performed on a routine basis, as identified in Table 1B Remedial System Monitoring Requirements and Schedule (see below). Modification to the frequency or sampling requirements will require approval from the NYSDEC. A visual inspection of the complete system will be conducted during each monitoring event. Site Management Plan, Site # 828194 Unscheduled inspections and/or sampling may take place when a suspected failure of the SSDS system has been reported or an emergency occurs that is deemed likely to affect the operation of the system. SSDS system components to be monitored include, but are not limited to, the components included in Table 1B below.

Table B –	Remedial	System	Monitoring	Requi	irements a	and Schedule

Remedial System	Monitoring	Operating Range	Monitoring
Component	Parameter		Schedule
U-tube manometer	Visual inspection	Negative pressure	Monthly
Fans	Visual inspection	NA	Annually
Alarms	Function check, disconnect power	NA	Annually

A complete list of components to be inspected is provided in the Inspection Checklist, provided in Appendix 4 - Site Management Forms. If any equipment readings are not within their specified operation range, any equipment is observed to be malfunctioning or the system is not performing within specifications; maintenance and repair, as per the Operation and Maintenance Plan, is required immediately.

4.3 Media Monitoring and Sampling

Samples shall be collected from the indoor air on a routine basis. Sampling locations, required analytical parameters and schedule are provided in Table 1C – Sampling Requirements and Schedule below. Modification to the frequency or sampling requirements will require approval from the NYSDEC.

	Analytical Parameters	
Sampling	VOC (EPA Method TO-15)	Schedule
Location		
IA-1	Х	Annually
IA-2	X	Annually
IA-3	Х	Annually
IA-4	Х	Annually
IA-5	X	Annually
IA-6	Х	Annually
IA-7	Х	Annually

Table C–Sampling Requirements and Schedule

5.0 OPERATION AND MAINTENANCE PLAN

5.1 General

This Operation and Maintenance Plan provides a brief description of the measures necessary to operate, monitor and maintain the mechanical components of the SSDS. This Operation and Maintenance Plan:

• Includes the procedures necessary to allow individuals unfamiliar with the site to operate and maintain the SSDS.

Further detail regarding the Operation and Maintenance of the SSDS is provided in Appendix 4 - Operation and Maintenance Manual. A copy of this Operation and Maintenance Manual, along with the complete ISMP, is to be maintained at the site. This Operation and Maintenance Plan is not to be used as a stand-alone document, but as a component document of this ISMP. Further detail regarding the installation and poststartup data collected is provided in the Construction Completion Report – Interim Remedial Measures, Sub Slab Depressurization System Installation, which is included as Appendix 5.

5.2 Operation and Maintenance of Sub-Slab Depressurization System

The following sections provide a description of the operations and maintenance of the SSDS.

5.2.1 System Start-Up and Testing

After the SSDS is installed or modified a start-up test will be performed to evaluate the effectiveness of the SSDS. The first step will be to start each of the SSDS fans on the roof of the building to document that the fans are functioning properly. Once the fans are fully operational at the roof level, a digital micromanometer will be used to collect vacuum readings from the pressure field extension (PFE) monitoring points in the basement of the building. PFE measurements will need to achieve a minimum of 0.01 inches of water vacuum in order to meet the performance requirements of the October 2006 NYSDOH Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York. If these criteria are not met, adjustments will be made to the SSDS fans to increase air flow and vacuum influence including replacement of the fans with larger fans, if necessary.

The system testing described above will be conducted if, in the course of the SSDS lifetime, the system goes down or significant changes are made to the system and the system must be restarted.

5.2.2 Routine System Operation and Maintenance

All fans must be kept in continuous operation. Fans must restart automatically in event of power loss. Fan gauges must be regularly inspected to verify that values have not changed significantly.

5.2.3 Non-Routine Operation and Maintenance

In the event of unusual fan noise, failure to start, physical damage or repeated circuit breaker trip, turn fan off and service or replace. Any changes in the structure, HVAC systems, slab conditions, etc. will require a re-evaluation of the SSDS.

5.2.4 System Monitoring Devices and Alarms

The SSDS has warning devices to indicate that the system is not operating properly. In the event that warning device is activated, applicable maintenance and repairs will be conducted, as specified in the Operation and Maintenance Plan, and the SSDS will be restarted. Operational problems will Reported to the NYSDEC project manager.

6.0 PERIODIC ASSESSMENTS/EVALUATIONS

6.1 Climate Change Vulnerability Assessment

Increases in both the severity and frequency of storms/weather events, an increase in sea level elevations along with accompanying flooding impacts, shifting precipitation patterns and wide temperature fluctuation, resulting from global climactic change and instability, have the potential to significantly impact the performance, effectiveness and protectiveness of a given site and associated remedial systems. Vulnerability assessments provide information so that the site and associated remedial systems are prepared for the impacts of the increasing frequency and intensity of severe storms/weather events and associated flooding.

The final SMP will provide a summary of vulnerability assessments that will be conducted for the site during periodic assessments, and will briefly summarize the vulnerability of the site and/or engineering controls to severe storms/weather events and associated flooding.

6.2 Green Remediation Evaluation

NYSDEC's DER-31 Green Remediation requires that green remediation concepts and techniques be considered during all stages of the remedial program including site management, with the goal of improving the sustainability of the cleanup and summarizing the net environmental benefit of any implemented green technology. The final SMP will provide a summary of any green remediation evaluations to be completed for the site during site management, and as reported in the Periodic Review Report (PRR).

6.3 Remedial System Optimization

Remedial Site Optimization (RSO) will be addressed in the final SMP.

7.0 **REPORTING REQUIREMENTS**

7.1 Site Management Reports

All site management inspection, maintenance and monitoring events will be recorded on the appropriate site management forms provided in Appendix 3. These forms are subject to NYSDEC revision.

All applicable inspection forms and other records, including media sampling data and system maintenance reports, generated for the site during the reporting period will be provided in electronic format to the NYSDEC in accordance with the requirements of Table C and summarized in the Periodic Review Report.

Table C: Schedule of Interim Monitoring/Inspection Reports

Task/Report	Reporting Frequency*
Periodic Review Report	Annually

* The frequency of events will be conducted as specified until otherwise approved by the NYSDEC.

Data will be reported in digital format as determined by the NYSDEC. Currently, data is to be supplied electronically and submitted to the NYSDEC EQuISTM database in accordance with the requirements found at this link

http://www.dec.ny.gov/chemical/62440.html.

7.2 Periodic Review Report

A Periodic Review Report (PRR) will be submitted to the Department beginning sixteen (16) months after the NYSDEC acceptance of the Construction Completion Report. After submittal of the initial Periodic Review Report, the next PRR shall be submitted annually to the Department or at another frequency as may be required by the Department. The report will be prepared in accordance with NYSDEC's DER-10 and submitted within 30 days of the end of each certification period. Media sampling results will also be incorporated into the Periodic Review Report. The report will include:

- Identification, assessment and certification of all ECs/ICs required identified in this ISMP.
- Results of the required annual site inspections and severe condition inspections, if applicable.
- All applicable site management forms and other records generated for the site during the reporting period in the NYSDEC-approved electronic format, if not previously submitted.
- A summary of any discharge monitoring data and/or information generated during the reporting period, with comments and conclusions.
- Data summary tables and graphical representations of contaminants of concern by media (groundwater, soil vapor, etc.), which include a listing of all compounds analyzed, along with the applicable standards, with all exceedances highlighted. These will include a presentation of past data as part of an evaluation of contaminant concentration trends.
- Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted in digital format as determined by the NYSDEC. Currently, data is supplied electronically and submitted to the NYSDEC EQuISTM database in accordance with the requirements found at this link: http://www.dec.ny.gov/chemical/62440.html.

7.2.1 <u>Certification of Institutional and Engineering Controls</u>

Following the last inspection of the reporting period, a qualified environmental professional or Professional Engineer licensed to practice in New York State will prepare, and include in the Periodic Review Report, the following certification as per the requirements of NYSDEC DER-10:

"For each institutional or engineering control identified for the site, I certify that all of the following statements are true:

• The inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;

- The institutional control and/or engineering control employed at this site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- If a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for the intended purpose under the document;
- Use of the site is compliant with the environmental easement;
- The engineering control systems are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program and generally accepted engineering practices; and
- The information presented in this report is accurate and complete.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, [name], of [business address], am certifying as [Owner or Owner's Designated Site Representative]

7.3 Corrective Measures Work Plan

If any component of the SSDS is found to have failed, or if the periodic certification cannot be provided due to the failure of an engineering control, a Corrective Measures Work Plan will be submitted to the NYSDEC for approval. This plan will explain the failure and provide the details and schedule for performing work necessary to correct the failure. Unless an emergency condition exists, no work will be performed pursuant to the Corrective Measures Work Plan until it has been approved by the NYSDEC.

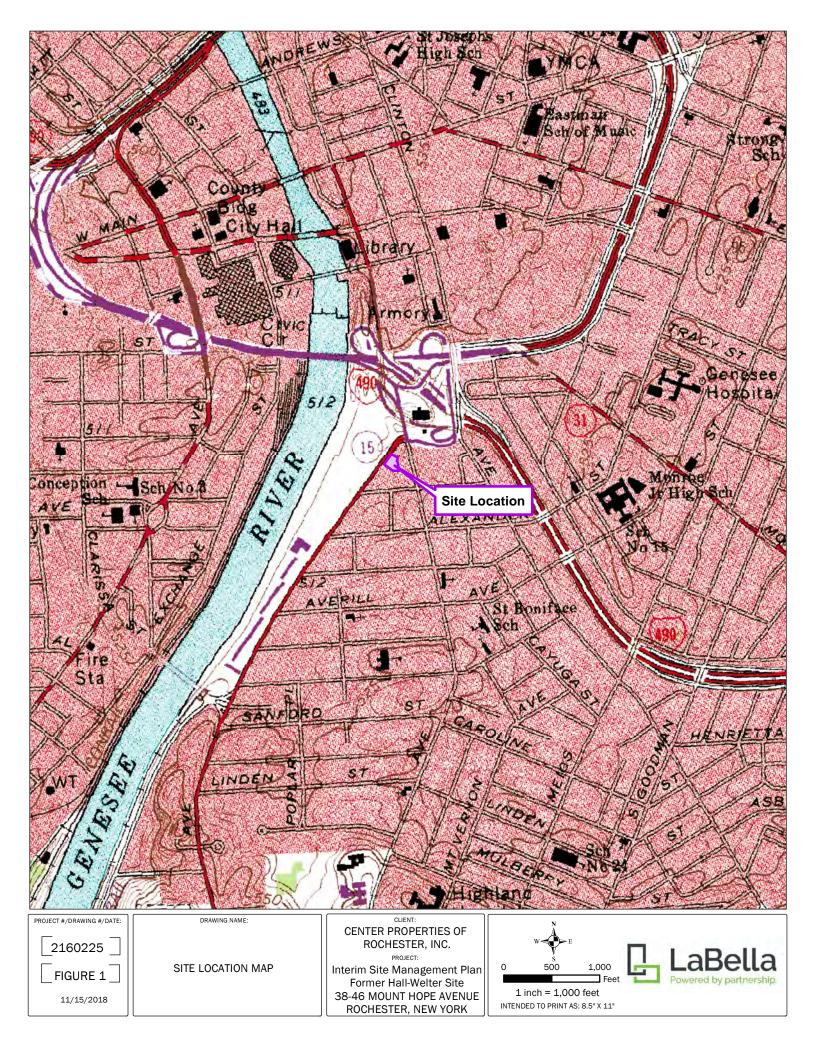
8.0 **REFERENCES**

6NYCRR Part 375, Environmental Remediation Programs. December 14, 2006.

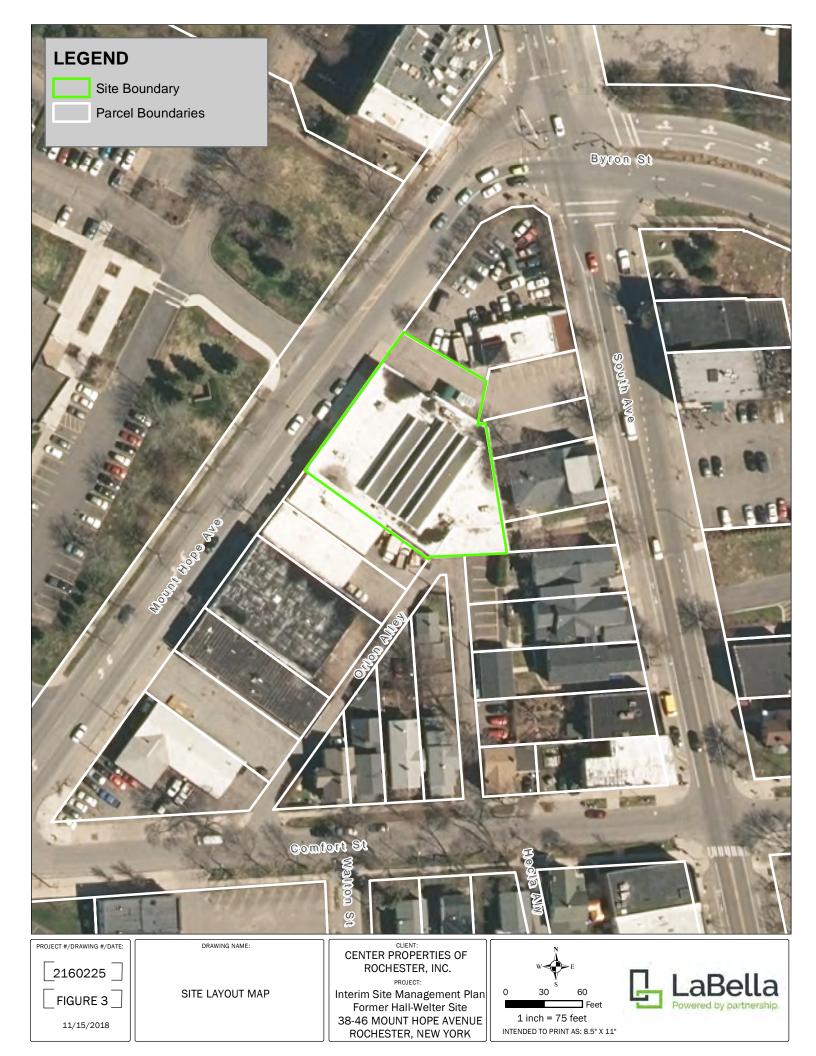
NYSDEC DER-10 -- "Technical Guidance for Site Investigation and Remediation".

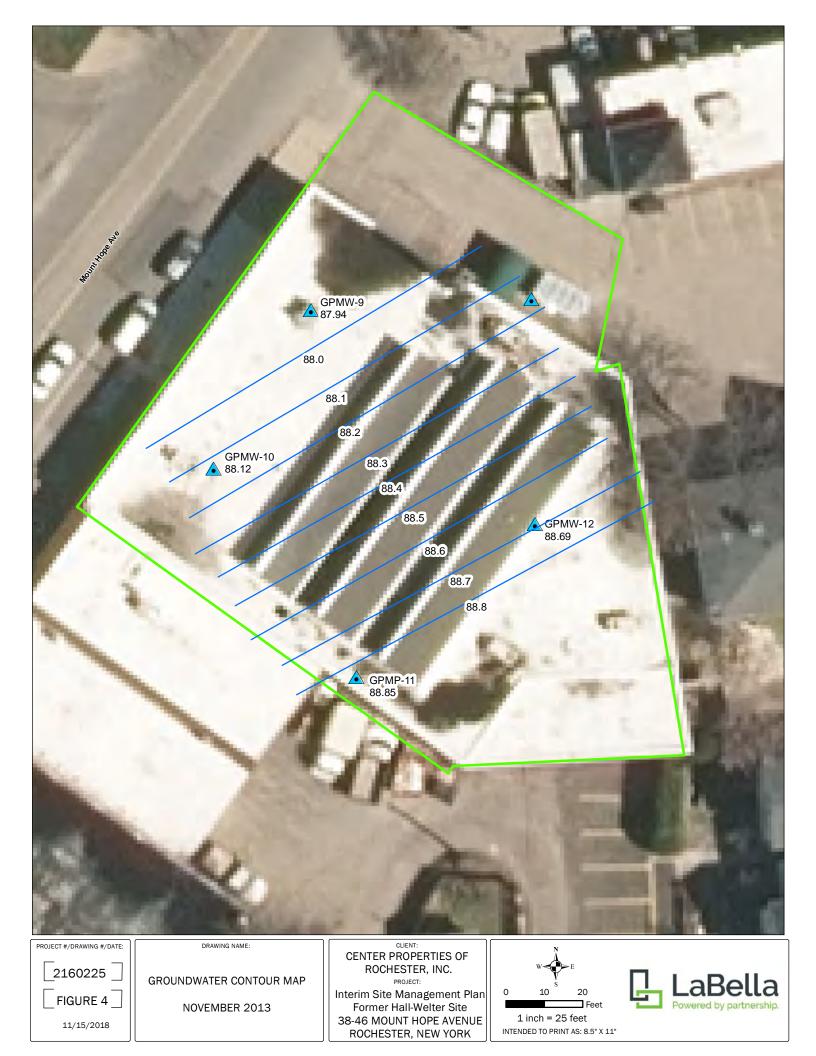
NYSDEC, 1998. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1. June 1998 (April 2000 addendum).

Phase I ESA – LCS, Inc., September 2013

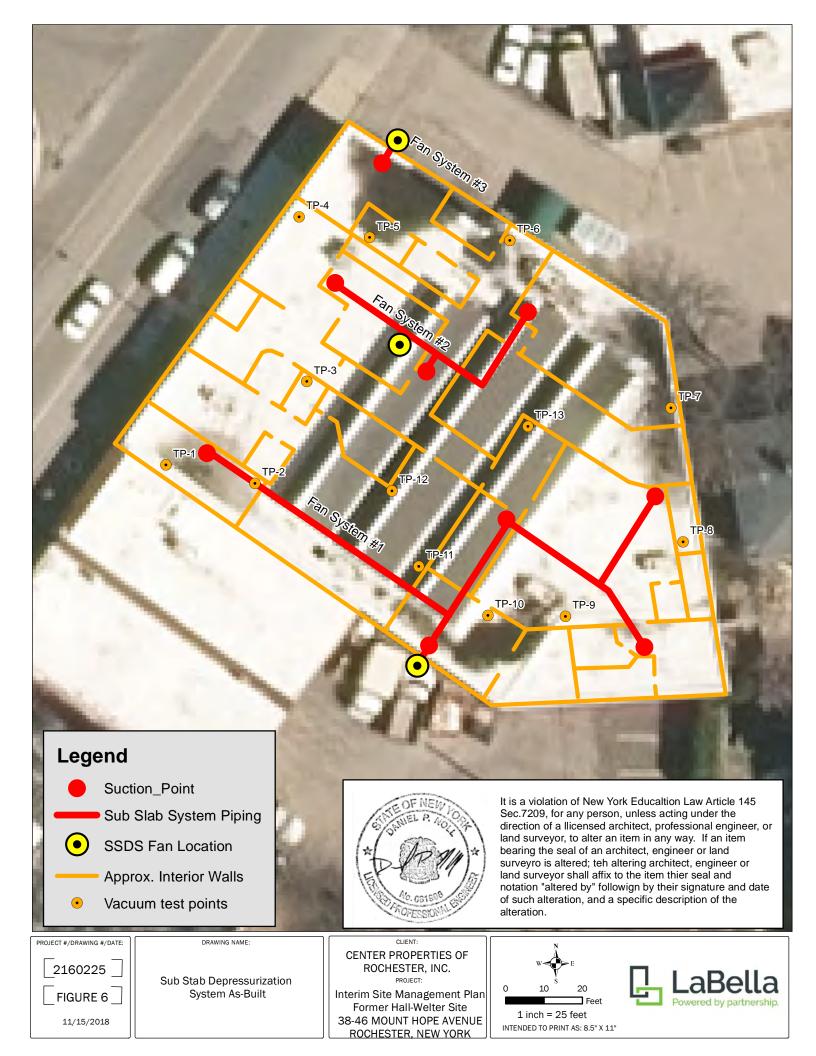

Phase II ESA – LaBella, October 2013

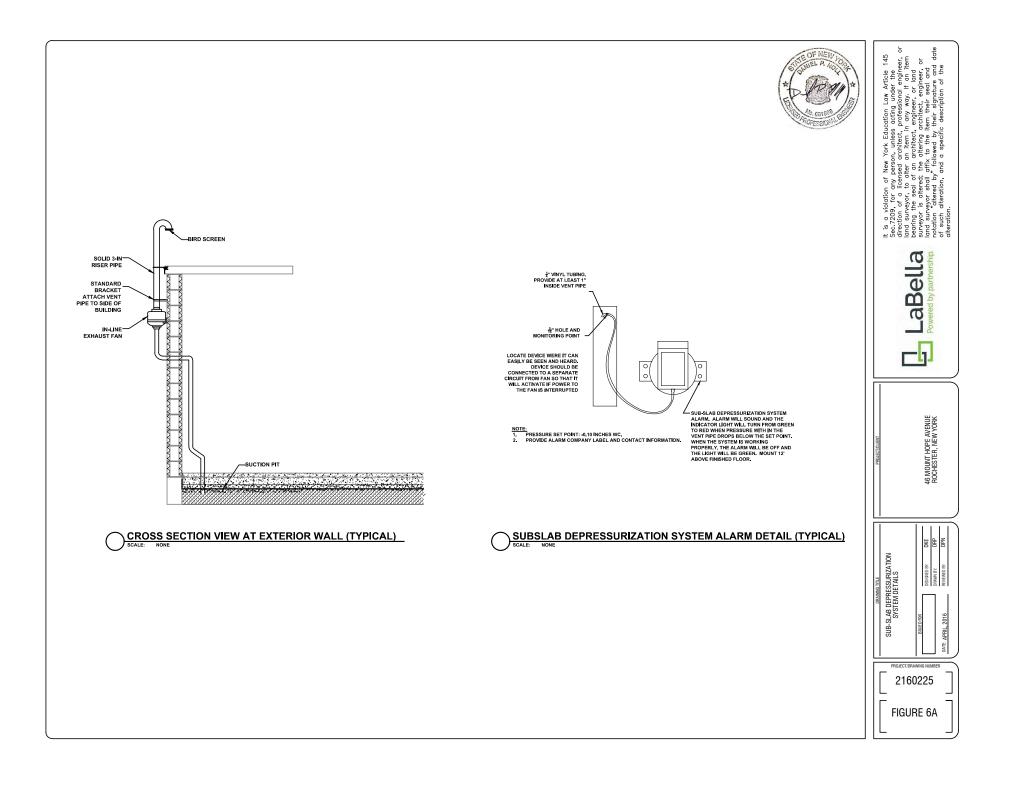
Supplemental Phase II ESA – LaBella, November 2013


Bedrock Well Installation/Vapor Intrusion Assessment - LaBella, February 2014


SSDS Construction Completion Report – LaBella, November 2018

FIGURES





TABLES

TABLE 2

46 Mt. Hope Avenue, Rochester, NY Volatile Organic Compounds in Groundwater USEPA Method 8260 SAMPLE DATE - 11/27/13

Well ID / Location	Units	NYSDEC Division of Water TOGS 1.1.1 Groundwater Standard	GPMW-6	GPMW-9	GPMW-10	GPMW-11	GPMW-12
Acetone	μg/L	50	50 U	50 U	50 U	500 U	50 U
Benzene	μg/L	1	1.0 U	1 U	1 U	10 U	1 U
Bromochloromethane	μg/L	5	1.0 U	1 U	1 U	10 U	1 U
Bromodichloromethane	μg/L	50	1.0 U	1 U	1 U	10 U	1 U
Bromoform	μg/L	50	1.0 U	1 U	1 U	10 U	1 U
Bromomethane	μg/L	5	5.0 U	5 U	5 U	5 U	5 U
Carbon Disulfide	μg/L	120	1.0 U	1 U	1 U	10 U	1 U
Carbon Tetrachloride	μg/L	5	1.0 U	1 U	1 U	10 U	1 U
Chlorobenzene	μg/L	5	1.0 U	1 U	1 U	10 U	1 U
Chlorodibromoethane	μg/L	50	1.0 U	1 U	1 U	10 U	1 U
Chloroethane	μg/L	5	5.0 U	5 U	5 U	50 U	5 U
Chloroform	μg/L	7	5.0 U	5 U	5 U	50 U	5 U
Chloromethane	μg/L	NR	2.5 U	2.5 U	2.5 U	25 U	2.5 U
Cyclohexane	μg/L	NR	1.0 U	1 U	1 U	10 U	1 U
1,2-Dibromo-3-Chloropropane	μg/L	0.04	5.0 U	5 U	5 U	50 U	5 U
· · · ·		2			1 U		
1,2-Dibromoethane 1,2-Dichlorobenzene	μg/L μg/L	3	1.0 U 1.0 U	1 U 1 U	1 U	10 U 10 U	1 U 1 U
,	-	3		-			
1,3-Dichlorobenzene	μg/L	3	1.0 U	1 U	1 U	10 U	1 U
1,4-Dichlorobenzene	μg/L		1.0 U	1 U	1 U	10 U	1 U
Dichlorodifluoromethane	μg/L	5	5.0 U	5 U	5 U	50 U	5 U
1,1-Dichloroethane	μg/L	5	1.0 U	1 U	1 U	10 U	1 U
1,2-Dichloroethane	μg/L	5	1.0 U	1 U	1 U	10 U	1 U
1,1-Dichloroethene	μg/L	5	1.0 U	1 U	1 U	10 U	1 U
cis-1,2-Dichloroethene	μg/L	5	<mark>19.0</mark>	2.4	<mark>17</mark>	<mark>10</mark>	<mark>7.9</mark>
trans-1,2-Dichloroethene	μg/L	5	1.6	1 U	1.5	10 U	1.4
1,2-Dichloropropane	μg/L	1	1.0 U	1 U	1 U	10 U	1 U
cis-1,3-Dichloropropene	μg/L	0.4	1.0 U	1 U	1 U	10 U	1 U
trans-1,3-Dichloropropene	μg/L	0.4	1.0 U	1 U	1 U	10 U	1 U
Ethylbenzene	μg/L	5	1.0 U	1 U	1 U	10 U	1 U
2-Hexanone	μg/L	50	10.0 U	10 U	10 U	100 U	10 U
Isopropylbenzene	μg/L	5	1.0 U	1 U	1 U	10 U	1 U
2-Butanone	μg/L	50	10.0 U	10 U	10 U	10 U	10 U
Methyl acetate	μg/L	NR	20.0 U	20 U	20 U	200 U	20 U
Methyl cyclohexane	μg/L	NR	1.0 U	1 U	1 U	10 U	1 U
Methylene Chloride	μg/L	5	50.0 U	5 U	5 U	50 U	5 U
4-Methyl-2-pentanone	μg/L	NR	10.0 U	10 U	10 U	100 U	10 U
Methyl ter-Butyl Ether	μg/L	10	1.0 U	1 U	1 U	10 U	1 U
Styrene	μg/L	5	1.0 U	1 U	1 U	10 U	1 U
1.1.2.2-Tetrachloroethane	μg/L	5	1.0 U	1 U	1 U	10 U	1 U
Tetrachloroethene	μg/L	5	330.0	24	13	51	430
Toluene	μg/L	5	5.0 U	5	5 U	50 U	5 U
1.2.3-Trichlorobenzene		5	1.0 U		1 U	10 U	<u> </u>
7 7	μg/L			-			-
1,2,4-Trichlorobenzene	μg/L	5	1.0 U	1 U	1 U		• •
1,1,1-Trichloroethane	μg/L	5	1.0 U	1 U	1 U	10 U	1 U
1,1,2-Trichloroethane	μg/L	5	1.0 U	1 U	1 U	10 U	1 U
Trichloroethene	μg/L	5	31.0 U	<mark>48</mark>	<mark>58</mark>	<u>150</u>	<mark>84</mark>
Trichlorofluoromethane	μg/L	5	1.0 U	5 U	5 U	50 U	5 U
1,1,2-Trichlorotrifluoroethane	μg/L	5	1.0 U	1 U	1 U	10 U	1 U
Vinyl Chloride	μg/L	2	1.0 U	1 U	1 U	10 U	1 U
Xylene (Total)	μg/L	5	2.0 U	3 U	3 U	30 U	3 U
n-Butylbenzene	μg/L	5	1.0 U	NA	NA	NA	NA
sec-Butylbenzene	μg/L	5	1.0 U	NA	NA	NA	NA
tert-Butylbenzene	μg/L	5	1.0 U	NA	NA	NA	NA
p-lsopropyltoluene	μg/L	5	1.0 U	NA	NA	NA	NA
n-Propylbenzene	μg/L	5	1.0 U	NA	NA	NA	NA
1,2,4-Trimethylbenzene	μg/L	5	1.0 U	NA	NA	NA	NA
1,3,5-Trimethylbenzene	μg/L	5	1.0 U	NA	NA	NA	NA

TABLE 3

46 Mt. Hope Avenue, Rochester, NY Summary of Detected VOCs in Sub-Slab Soil Gas United States Environmental Protection Agency Method TO-15 Sample Date - 02/02/14

Sample Type		Su	ıb-Slab Soil Vapor Samp	les	NYSDOH Sub-Slab
Sample ID	Units	SS-1	SS-2	SS-3	Vapor Concentration Decision Matrix (minimum action level) (1)
1,1,1-Trichloroethane	ug/m ³	ND	ND	ND	<100***
1,2,4-Trimethylbenzene	ug/m ³	10	46	ND	NL
1,1-Dichloroethane	ug/m ³	ND	ND	ND	NL
1,1-Dichloroethene	ug/m ³	ND	ND	ND	<100***
1,2-Dichlorobenzene	ug/m ³	ND	ND	ND	NL
1,3,5-Trimethylbenzene	ug/m ³	6.4	ND	ND	NL
Acetone	ug/m ³	20	ND	21	NL
Benzene	ug/m ³	15	ND	3.8	NL
Carbon Disulfide	ug/m ³	3.7	ND	5	NL
Chloroethane	ug/m ³	ND	ND	ND	NL
Chloroform	ug/m ³	ND	34	ND	NL
Chloromethane	ug/m ³	ND	ND	ND	NL
Dichlorodifluoromethane	ug/m ³	ND	ND	ND	NL
Ethanol	ug/m ³	ND	ND	ND	NL
cis-1,2,-Dichloroethene	ug/m ³	ND	ND	52	<100***
Cyclohexane	ug/m ³	21	ND	1.2	NL
Ethylbenzene	ug/m ³	33	31	ND	NL
Heptane	ug/m ³	78	28	11	NL
Hexane	ug/m ³	39	ND	ND	NL
Isopropyl Alcohol	ug/m ³	4.7	ND	ND	NL
Isopropyl Benzene	ug/m ³	ND	ND	ND	NL
m&p-Xylene	ug/m ³	130	140	24	NL
Methyl Ethyl Ketone	ug/m ³	ND	ND	ND	NL
Methyl Isobutyl Ketone	ug/m ³	ND	ND	ND	NL
Methylene Chloride	ug/m ³	ND	ND	4.9	NL
o-Xylene	ug/m ³	42	48	4.8	NL
Tetrachloroethylene	ug/m ³	6.8	350	ND	<100***
Toluene	ug/m ³	120	ND	19	NL
trans-1,2-Dichloroethene	ug/m ³	ND	ND	6.3	NL
Trichloroethene	ug/m ³	41	33000	5900	<5**
Vinyl Chloride	ug/m ³	ND	ND	ND	<5**

1. New York State Department of Health (NYSDOH), Guidance for Evaluating Soil Vapor Intrusion in the State of New York. [Note: This Guidance uses a combination of indoor air and sub-slab soil vapor when comparing to the matrices.

** = Guideline Value obtained from Soil Vapor/I000r Air Matrix 1 (minimum action level), NYSDOH, Guidance for Evaluating Soil Vapor Intrusion in the State of

*** = Guidance Value obtained from Soil Vapor/I0000 Air Matrix 2 (minimum action level), NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of * = Guideline Values obtained from Table 3.1, NYSDOH, Guidance for Evaluating Soil Vapor Intrusion in the State of New York.

NL denotes that the USEPA and/or NYSDOH does not list a Target Concentration and/or Guidance Value for this compound.

ND denotes the compound was not detected above the laboratory reporting limit

TABLE 446 Mt. Hope Avenue, Rochester, NYSummary of Detected VOCs in Sub-Slab Soil Gas and Ambient Air SamplesUnited States Environmental Protection Agency Method TO-15

Sample Type						Indoor A	ir Sample						Outdoor Ambient Air		NYSDOH Indoor
	Units	Ambien	t-1 / IA-03		Ambient-2 / IA-04			Ambient-3 / IA-02		IA-01	IA-05		Outdoor Amblent An		Air Concentration (minimum action
Sample ID		2/4/2014	4/22/2016	2/4/2014	12/31/2015	4/22/2016	2/4/2014	12/31/2015	4/22/2016	4/22/2016	4/22/2016	2/4/2014	12/31/2015	4/22/2016	level) (1)
1,1,1-Trichloroethane	ug/m ³	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<3***
1,2,4-Trimethylbenzene	ug/m ³	ND	2	ND	6.2	3.4	ND	3.06	5.3	2	3	ND	ND	0.88	NL
1,1-Dichloroethane	ug/m ³	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
1,1-Dichloroethene	ug/m ³	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<3***
1,2-Dichlorobenzene	ug/m ³	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
1,3,5-Trimethylbenzene	ug/m ³	ND	0.88	ND	1.77	1.5	ND	6.27	1.9	ND	1.5	ND	ND	ND	NL
Acetone	ug/m ³	ND	29	8.8	28.2	45	6.3	37	41	22	60	4	3.08	26	NL
Benzene	ug/m ³	ND	1.5	0.89	12.5	2.7	0.83	5.06	5.4	1.3	2.4	0.89	1.04	0.64	NL
Carbon Disulfide	ug/m ³	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
Chloroethane	ug/m ³	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
Chloroform	ug/m ³	ND	ND	ND	ND	0.78	ND	ND	ND	ND	0.59	ND	ND	ND	NL
Chloromethane	ug/m ³	ND	0.93	1	1.54	0.87	0.99	1.59	0.74	ND	0.99	1.2	1.41	0.99	NL
Dichlorodifluoromethane	ug/m ³	ND	NA	ND	ND	NA	ND	ND	NA	NA	NA	ND	ND	NA	NL
Ethanol	ug/m ³	ND	NA	ND	326	NA	ND	236	NA	NA	NA	ND	8.4	NA	NL
cis-1,2,-Dichloroethene	ug/m ³	ND	ND	ND	1.29	ND	0.83	3.03	ND	ND	ND	ND	ND	ND	<3***
Cyclohexane	ug/m ³	ND	2.6	ND	12.3	5.7	ND	3.67	10	2.8	3.7	ND	ND	ND	NL
Ethylbenzene	ug/m ³	ND	1.3	ND	5.13	2.2	ND	2.24	3.8	1.1	3.9	ND	ND	1.1	NL
Heptane	ug/m ³	ND	2.3	ND	14.8	4.3	ND	5.48	8.6	2.3	4	ND	ND	0.45	NL
Hexane	ug/m ³	ND	3.5	4.6	38.9	6.3	ND	11.9	14	3.7	6.5	ND	0.853	0.6	NL
Isopropyl Alcohol	ug/m ³	ND	23	ND	ND	42	ND	ND	36	22	120	ND	ND	13	NL
Isopropyl Benzene	ug/m ³	ND	NA	ND	ND	NA	ND	ND	NA	NA	NA	ND	ND	NA	NL
m&p-Xylene	ug/m ³	ND	4.4	2.4	19.9	8.4	ND	ND	12	4.3	10	ND	ND	4.2	NL
Methyl Ethyl Ketone	ug/m ³	ND	2.6	ND	ND	3.2	ND	ND	13	1	5.8	ND	ND	0.71	NL
Methyl Isobutyl Ketone	ug/m ³	ND	ND	ND	ND	0.41	ND	ND	ND	ND	ND	ND	ND	ND	NL
Methylene Chloride	ug/m ³	ND	2.7	5.6	1.22	3	ND	1.25	2.4	1.6	4	0.76	ND	2.5	60*
o-Xylene	ug/m ³	ND	1.4	ND	6.07	2.5	ND	ND	3.7	1.3	4.8	ND	ND	0.87	NL
Tetrachloroethylene	ug/m ³	ND	ND	2.3	4.81	0.81	2	5.04	ND	ND	0.95	ND	ND	ND	<3***
Toluene	ug/m ³	ND	7.3	2	43	11	1.8	17.1	24	7.6	8.3	1.1	1.9	1.7	NL
trans-1,2-Dichloroethene	ug/m ³	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
Trichloroethene	ug/m ³	ND	1.9	16	63.3	8.6	20	158	5.1	1.9	4.2	ND	ND	0.32	<0.25**
Vinyl Chloride	ug/m ³	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.25**

1. New York State Department of Health (NYSDOH), Guidance for Evaluating Soil Vapor Intrusion in the State of New York. [Note: This Guidance uses a combination of indoor air and sub-slab soil vapor when comparing to the matrices.

** = Guideline Value obtained from Soil Vapor/I000r Air Matrix 1 (minimum action level), NYSDOH, Guidance for Evaluating Soil Vapor Intrusion in the State of New York.

*** = Guidance Value obtained from Soil Vapor/I0000 Air Matrix 2 (minimum action level), NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York.

* = Guideline Values obtained from Table 3.1, NYSDOH, Guidance for Evaluating Soil Vapor Intrusion in the State of New York.

NL denotes that the USEPA and/or NYSDOH does not list a Target Concentration and/or Guidance Value for this compound.

ND denotes the compound was not detected above the laboratory reporting limit

Brown highlighted cell indicates compound not analyzed (NA)

APPENDIX 1 – LIST OF SITE CONTACTS

Name

Site Owner/Remedial Party Center Properties of Rochester, Inc. Contact – Tom O'Connor

Qualified Environmental Professional: David Engert, LaBella Associates

NYSDEC DER Project Manager: Adam Morgan

NYSDEC Regional HW Engineer: David Pratt

NYSDEC Site Control Kelly Lewandowski

NYSDOH Project Manager Mark Sergott

Tenent/Land Contract Vendee JERSAM LLC Contact – Donald C. Swartz

Phone/Email Address

585-442-4102 x 8945 toconnor@alsigl.com

585-295-6630 dengert@labellapc.com

585-226-5356 adam.morgan@dec.ny.gov

585-226-5353 david.pratt@dec.ny.gov

518-402-9547 kelly.lewandowski@dec.ny.gov

518-402-7860 mark.sergott@health.ny.gov

585-414-8777 atranswartz@aol.com

APPENDIX 2 – BORING LOGS

Site Management Plan, Site # 828194

00 STA1	STATE STREET, ROCHESTER, NY IRONMENTAL ENGINEERING CONSULTANT			Phase	PROJEC Il Environmental 46 Mt. Hope A Rochester, Ne	BORING: SHEET JOB: CHKD BY:	GP-1 1 OF 1 213818 	
DR	ILLER:	LaBella Environmental SENTATIVE: D.Engert	LLC	BORING LOCA GROUND SURF START DATE:	ACE ELEVATION	NA END DATE: 10/22/13	TIME: DATUM:	TO NA
	AUGER SIZE	LL RIG: Geoprobe Moo AND TYPE: N/A N SAMPLING METHOD				DRIVE SAMPLER TYPE: 4-foot Macro INSIDE DIAMETER: 1.8-Inch ID OTHER:	ocore	
DEPTH (FEET)	SAMPLE						PID FIELD SCREEN	
DEP'	RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	CHANGE (FEET)		VISUAL	CLASSIFICATION	(PPM)	REMARKS
0			0.3	Asphalt Sand & gravel fi	l, dry, no odor			
2	24						0.8	Likely former tank pit
4							1.0	
-							1.2	
6	20						0.9	-
8							0.9	-
10	15						0.6	
12							0.8	
12	16		12'	Brown m SAND,	trace rounded fm g	ravel, wet, possible solvent odor	22.0	Native soil
14		GP1-13-14'		Refusal at 14' bo	js		350.0	
16								
			DOTTOUG	DEPTH (FT)		NOTES:		
DATE	TIME	LEVEL DATA ELAPSED TIME	BOTTOM OF CASING	BOTTOM OF BORING	GROUNDWATER ENCOUNTERED	BGS = Below the Ground Surface		
GE		ATION LINES REPRE				NA = Not Applicable TYPES, TRANSITIONS MAY BE GRA S STATED, FLUCTUATIONS OF GRO		
	and = 35 to 5 some = 20 to		little = 10 to 209 trace = 1 to 109		c - coarse m = medium f = fine	ND = Non Detect BGS = Below the Ground Surface NA = Not Applicable		BORING: GP-1

00 STAT	As:	CHESTER, NY		Phase	PROJEC II Environmental 46 Mt. Hope Rochester, No	Site Assessment Avenue	BORING: SHEET JOB: CHKD BY:	GP-2 1 OF 1 213818
DR	ILLER:	LaBella Environmental SENTATIVE: D.Engert	LLC	BORING LOCA GROUND SURF START DATE:	ACE ELEVATION	NA END DATE: 10/22/13	TIME: DATUM:	TO NA
	AUGER SIZE	LL RIG: Geoprobe Mod AND TYPE: N/A N SAMPLING METHOI				DRIVE SAMPLER TYPE: 4-foot Mac INSIDE DIAMETER: 1.8-Inch ID OTHER:	rocore	
DEPTH (FEET)	SAMPLE	SAMPLE	STRATA	-			PID FIELD SCREEN	
DEP	RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	CHANGE (FEET)		VISUAL	CLASSIFICATION	(PPM)	REMARKS
0			0.3	Asphalt Sand & gravel fi	ll, dry, no odor			
2	16						0.0	-
4							0.0	
			4'	Brown m SAND	trace f gravel, dry,	no odor	0.0	
6	30						0.0	
8		GP2-8'					0.0	-
10	44		10'	Brown f SAND, 1	race fm gravel, dry	no odor		-
12			12'	Brown/red f SAN	ID, some fm gravel,	moist. no odor	0.0	
14	48				, yi u voi,	,	0.0	
16							0.0	
				DEPTH (FT)	 [NOTES:		
DATE	WATER TIME	LEVEL DATA ELAPSED TIME	BOTTOM OF CASING	BOTTOM OF BORING	GROUNDWATER ENCOUNTERED	ND = Non Detect BGS = Below the Ground Surface NA = Not Applicable		
GE	2) WATER LE	CATION LINES REPRE	E BEEN MADE A	T TIMES AND U	NDER CONDITION	. TYPES, TRANSITIONS MAY BE GR S STATED, FLUCTUATIONS OF GRO		
	and = $35 \text{ to } \frac{1}{2}$ some = 20 to		little = 10 to 20% trace = 1 to 10%		c - coarse m = medium f = fine	ND = Non Detect BGS = Below the Ground Surface NA = Not Applicable		BORING: GP-2

00 STA1	ASSOCIATES, P.C.			Phase	PROJEC Il Environmental 46 Mt. Hope A Rochester, Ne	SHEET	GP-3 1 OF 1 213818 	
DR	ILLER:	LaBella Environmental SENTATIVE: D.Engert	LLC	BORING LOCAT GROUND SURF START DATE:	ACE ELEVATION	NA END DATE: 10/22/13	TIME: DATUM:	TO NA
	AUGER SIZE	LL RIG: Geoprobe Moo AND TYPE: N/A N SAMPLING METHOI				DRIVE SAMPLER TYPE: 4-foot Macr INSIDE DIAMETER: 1.8-Inch ID OTHER:	rocore	
DEPTH (FEET)	SAMPLE	SAMPLE	STRATA	-			PID FIELD SCREEN	
DEP'	RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	CHANGE (FEET)		VISUAL (CLASSIFICATION	(PPM)	REMARKS
0			0.3	Asphalt Fill, sand & grav	el, some cinders, dr	y, no odor		
2	20						0.0	
4				As above, with li	ttle ash		0.0	
6	24						0.0	
8			7'	Mottled SILT, so	me f gravel, moist, i	no odor	0.0	
10	40	GP3-8'	10'				0.0	
				Brown mf SAND	, moist, no odor			
12			11'	Red/Brown cmf	SAND and mf GRA	/EL, dry, no odor	0.0	
14	24						0.0	
16				Refusal @ 14' b	gs			
16				DEPTH (FT)	1	NOTES:	1	
DATE	WATER TIME	LEVEL DATA ELAPSED TIME	BOTTOM OF CASING	BOTTOM OF BORING	GROUNDWATER ENCOUNTERED	BGS = Below the Ground Surface		
GE	2) WATER LE	CATION LINES REPRES	E BEEN MADE A	T TIMES AND UI		NA = Not Applicable TYPES, TRANSITIONS MAY BE GRA S STATED, FLUCTUATIONS OF GRC		
	and = 35 to 5 some = 20 to		little = 10 to 20% trace = 1 to 10%		c - coarse m = medium f = fine	ND = Non Detect BGS = Below the Ground Surface NA = Not Applicable	[BORING: GP-3

0 STAT	ABELIA Associates, P.C. ATE STREET, ROCHESTER, NY DIMENTAL ENGINEERING CONSULTANT			PROJECT Phase II Environmental Site Assessment 46 Mt. Hope Avenue Rochester, New York				GP-4 1 OF 1 213818
DR	ILLER:	LaBella Environmental SENTATIVE: D.Engert	LLC	BORING LOCA GROUND SURF START DATE:	FACE ELEVATION	NA END DATE: 10/22/13	TIME: DATUM:	TO NA
	AUGER SIZE	LL RIG: Geoprobe Moo AND TYPE: N/A N SAMPLING METHO				DRIVE SAMPLER TYPE: 4-foot Macr INSIDE DIAMETER: 1.8-Inch ID OTHER:	ocore	
DEPTH (FEET)	SAMPLE	SAMPLE	STRATA				PID FIELD SCREEN	
DEPT	RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	CHANGE (FEET)		VISUAL	CLASSIFICATION	(PPM)	REMARKS
0	(INOTIES)		0.3	Asphalt Fill, sand & grav	el, little ash & cinde	rs, dry, no odor		
2	24						0.0	
4							0.0	
6	24						0.0	
8			7'	Mottled SILT, sc	ome f gravel, moist,	no odor	0.0	
10	46	GP4-8'	10'				0.0	
10	40		11'	Brown mf SAND Red/Brown cmf	, moist, no odor SAND and mf GRA	/EL, moist, no odor	0.0	
12	36						0.0	
14							0.0	
16				Refusal @ 15' b	gs			
			BOTTOM OF	DEPTH (FT) BOTTOM OF	GROUNDWATER	NOTES:		
ATE	TIME	LEVEL DATA ELAPSED TIME	CASING	BORING		BGS = Below the Ground Surface		
GE		CATION LINES REPRES				NA = Not Applicable TYPES, TRANSITIONS MAY BE GR/ S STATED, FLUCTUATIONS OF GRC		
	and = 35 to 5 some = 20 to		little = 10 to 20% trace = 1 to 10%		c - coarse m = medium f = fine	ND = Non Detect BGS = Below the Ground Surface NA = Not Applicable		BORING: GP-4

DO STAT	ASSOCIATES, P.C. TE STREET, ROCHESTER, NY INMENTAL ENGINEERING CONSULTANT;		Phase	PROJEC II Environmental 46 Mt. Hope / Rochester, Ne	SHEET	GP-5 1 OF 1 213818 		
DR	ILLER:	LaBella Environmental SENTATIVE: D.Engert		BORING LOCA GROUND SURF START DATE:	ACE ELEVATION	NA END DATE: 10/22/13	TIME: DATUM:	TO NA
	AUGER SIZE	LL RIG: Geoprobe Mod AND TYPE: N/A N SAMPLING METHOI				DRIVE SAMPLER TYPE: 4-foot Mac INSIDE DIAMETER: 1.8-Inch ID OTHER:	rocore	
DEPTH (FEET)	SAMPLE	SAMPLE	STRATA	-			PID FIELD SCREEN	
DEPT	RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	CHANGE (FEET)		VISUAL	CLASSIFICATION	(PPM)	REMARKS
0			0.3	Asphalt Fill, sand & grav				
2	24						0.0	
4							0.0	
6	30		6'				0.0	
				Mottled SILT, so	me f gravel, moist,	no odor	0.0	
8		GP5-8'					0.0	
10	30		10' 11'	Brown mf SAND Red/Brown cmf	, moist, no odor SAND and mf GRA	/EL, dry, no odor	0.0	
12	10						0.0	
14	12			Refusal @ 13' b	gs			
16				DEPTH (FT)		NOTES:		
	WATER	LEVEL DATA	BOTTOM OF	BOTTOM OF	GROUNDWATER			
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED	BGS = Below the Ground Surface		
GE		CATION LINES REPRE				NA = Not Applicable TYPES, TRANSITIONS MAY BE GR. S STATED, FLUCTUATIONS OF GRC		
	and = 35 to 5 some = 20 to		little = 10 to 20% trace = 1 to 10%		c - coarse m = medium f = fine	ND = Non Detect BGS = Below the Ground Surface NA = Not Applicable		BORING: GP-5

00 STA	STATE STREET, ROCHESTER, NY			Phase	PROJEC II Environmental 46 Mt. Hope / Rochester, Ne	BORING: SHEET JOB: CHKD BY:	GP-6 1 OF 2 213818 	
DR	ILLER:	LaBella Environmental SENTATIVE: D.Engert		BORING LOCA GROUND SURF START DATE:	FACE ELEVATION	NA END DATE: 10/22/13	TIME: DATUM:	TO NA
	AUGER SIZE	LL RIG: Geoprobe Mo AND TYPE: N/A N SAMPLING METHO				DRIVE SAMPLER TYPE: 4-foot Macro INSIDE DIAMETER: 1.8-Inch ID OTHER:	ocore	
DEPTH (FEET)	SAMPLE	SAMPLE	STRATA	-	VICUAL		PID FIELD SCREEN	DEMARKO
DEP	RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	CHANGE (FEET)		VISUAL	CLASSIFICATION	(PPM)	REMARKS
0			0.3	Asphalt Sand & gravel fi	ll, dry, no odor			
2	24						0.0	-
4							0.0	-
6	30						0.0	
8			7'	Mottled f SAND,	moist, no odor		0.0	
10	36						0.0	
			10.5'	Brown cmf SAN	D and GRAVEL, mo	ist, no odor	0.0	
12	36		14'				0.0	
40				Brown c SAND,	wet, no odor		0.0	
16				DEPTH (FT)	1	NOTES:	I	
	WATER	LEVEL DATA	BOTTOM OF	BOTTOM OF	GROUNDWATER	ND = Non Detect		
DATE	TIME	ELAPSED TIME	CASING	BORING		BGS = Below the Ground Surface		
GE	,	ATION LINES REPRE				NA = Not Applicable TYPES, TRANSITIONS MAY BE GRA S STATED, FLUCTUATIONS OF GRO		
	and = 35 to 5 some = 20 to		little = 10 to 20% trace = 1 to 10%		c - coarse m = medium f = fine	ND = Non Detect BGS = Below the Ground Surface NA = Not Applicable		BORING: GP-6

L				Phase	PROJEC Il Environmental 46 Mt. Hope A	Site Assessment	BORING: SHEET JOB:	GP-6 2 OF 2 213818
	E STREET, ROO	Associates, P.C. E STREET, ROCHESTER, NY MENTAL ENGINEERING CONSULTANT;			Rochester, New York			
DR	ILLER:	LaBella Environmental SENTATIVE: D.Engert	LLC	BORING LOCA GROUND SURF START DATE:	ACE ELEVATION	NA END DATE: 10/22/13	TIME: DATUM:	TO NA
	AUGER SIZE	LL RIG: Geoprobe Moc AND TYPE: N/A N SAMPLING METHOE				DRIVE SAMPLER TYPE: 4-foot Mac INSIDE DIAMETER: 1.8-Inch ID OTHER:	rocore	
DEPTH (FEET)	SAMPLE SAMPLE SAMPLE NO. AND CHANGE			-			PID FIELD SCREEN	DEMADIZO
DEF	(INCHES)	DEPTH	(FEET)		VISUAL	CLASSIFICATION	(PPM)	REMARKS
16				Brown f SAND a	nd f GRAVEL, trace	silt, wet, no odor	0.0	1" well installed @ 18'
18	30						0.0	
				Refusal @ 18.5'				
20								
22								
24								
26								
28								
30								
32	I			DEPTH (FT)		NOTES:		
	WATER	LEVEL DATA	BOTTOM OF	BOTTOM OF	GROUNDWATER			
DATE	TIME	ELAPSED TIME		BORING		BGS = Below the Ground Surface		
GE		ATION LINES REPRE				NA = Not Applicable TYPES, TRANSITIONS MAY BE GR S STATED, FLUCTUATIONS OF GRO		
	and = 35 to 5 some = 20 to		little = 10 to 209 trace = 1 to 109		c - coarse m = medium f = fine	ND = Non Detect BGS = Below the Ground Surface NA = Not Applicable		BORING: GP-6

0 STAT	As:	CHESTER, NY NEERING CONSULTANT		Phase	PROJEC Il Environmental 46 Mt. Hope / Rochester, Ne	Site Assessment Avenue	SHEET	GP-7 1 OF 2 213818
DR	ILLER:	LaBella Environmental	LLC	BORING LOCA GROUND SURF START DATE:	ACE ELEVATION	NA END DATE: 10/22/13	TIME: DATUM:	TO NA
	AUGER SIZE	LL RIG: Geoprobe Mod AND TYPE: N/A N SAMPLING METHOI				DRIVE SAMPLER TYPE: 4-foot Macro INSIDE DIAMETER: 1.8-Inch ID OTHER:	ocore	
DEPTH (FEET)	SAMPLE RECOVERY	SAMPLE	STRATA CHANGE	-	VISUAL	CLASSIFICATION	PID FIELD SCREEN (PPM)	REMARKS
B	(INCHES)	DEPTH	(FEET) 0.3	Asphalt				
0					vel, some ash & cin	ders, dry, no odor		
2	24						0.0	
4							0.0	
6	30		5'	Mottled f SAND,	trace f gravel, mois	t, no odor	0.0	
8			8'				0.0	
10	36			Brown m SAND,	some fm gravel, m	no odor	0.0	
12							0.0	
14	36						0.0	
		GP7-15'			vn f SAND and f GR	AVEL, wet, no odor	0.0	
16				Refusal @ 15' DEPTH (FT)		NOTES:		
	WATER	LEVEL DATA	BOTTOM OF	BOTTOM OF	GROUNDWATER			
ATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED	BGS = Below the Ground Surface		
GE		CATION LINES REPRE				NA = Not Applicable TYPES, TRANSITIONS MAY BE GRA S STATED, FLUCTUATIONS OF GRO		
	and = 35 to 5 some = 20 to		little = 10 to 209 trace = 1 to 109		c - coarse m = medium f = fine	ND = Non Detect BGS = Below the Ground Surface NA = Not Applicable		BORING: GP-7

00 STAT	As:	EET, ROCHESTER, NY AL ENGINEERING CONSULTANT		PROJECT Phase II Environmental Site Assessment 46 Mt. Hope Avenue Rochester, New York			SHEET	GP-8 1 OF 2 213818
DR	ILLER:	LaBella Environmental SENTATIVE: D.Engert	LLC	BORING LOCA GROUND SURF START DATE:	ACE ELEVATION	NA END DATE: 10/22/13	TIME: DATUM:	TO NA
	AUGER SIZE	LL RIG: Geoprobe Moo AND TYPE: N/A N SAMPLING METHOE				DRIVE SAMPLER TYPE: 4-foot Macroo INSIDE DIAMETER: 1.8-Inch ID OTHER:	core	
DEPTH (FEET)	SAMPLE	SAMPLE	STRATA	-			PID FIELD SCREEN	
DEP	RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	CHANGE (FEET)		VISUAL	CLASSIFICATION	(PPM)	REMARKS
0			0.3	Asphalt Fill - Sand & gra	vel, some ash & cin	ders, dry, no odor		
2	30						0.0	
4							0.0	
6	36		5'	Mottled f SAND,	trace f gravel, mois	t, no odor	0.0	
0	30						0.0	
8			8'	Brown m SAND	some fm gravel, m	sist, no odor	0.0	
10	40						0.0	
12								
14	36		14'	Vorudorea ha		AVEL upt po eder	0.0	
		GP8-15'		-	vn f SAND and f GR	AVEL, WET, NO OGOF	0.0	
16				Refusal @ 15' DEPTH (FT)		NOTES:		
	WATER	LEVEL DATA	BOTTOM OF	BOTTOM OF	GROUNDWATER			
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED	BGS = Below the Ground Surface		
GE		ATION LINES REPRES				NA = Not Applicable TYPES, TRANSITIONS MAY BE GRAE S STATED, FLUCTUATIONS OF GROU		
	and = 35 to 5 some = 20 to		little = 10 to 209 trace = 1 to 109		c - coarse m = medium f = fine	ND = Non Detect BGS = Below the Ground Surface NA = Not Applicable		BORING: GP-8

00 STA	As:	CHESTER, NY		Supplemental	PROJEC Phase II Environ 46 Mt. Hope / Rochester, Ne	mental Site Assessment Avenue	BORING: SHEET JOB: CHKD BY:	GP-9 1 OF 1 214051
DR	ILLER:	LaBella Environmental SENTATIVE: I.Poplar-J		BORING LOCA GROUND SURF START DATE:	ACE ELEVATION	NA END DATE: 11/26/13	TIME: DATUM:	TO NA
	AUGER SIZE	LL RIG: Geoprobe Mo AND TYPE: N/A N SAMPLING METHO				DRIVE SAMPLER TYPE: 4-foot Mac INSIDE DIAMETER: 1.8-Inch ID OTHER:	crocore	
DEPTH (FEET)	SAMPLE	SAMPLE	STRATA	-			PID FIELD SCREEN	
DEP	RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	CHANGE (FEET)		VISUAL	CLASSIFICATION	(PPM)	REMARKS
0			0.5	Concrete Sand & gravel fi	II, trace cinders, dry	, no odor		
2	36						0.38	
4							0.04	
4			4'	Brown m SAND,	trace f gravel, dry,	no odor		
6	36						0.04	
8							0.24	
10	45						0.74	
			10'	Brown f SAND, s	some silt, trace fm g	ravel, moist no odor	1.10	
12 14	48		12'	Brown/red f SAN	ID, some silt, some	fm gravel, wet, no odor	0.81	
							1.65	
16		GP-9 16'	<u> </u>	DEPTH (FT)	<u></u>	NOTES:Temporary well installed - G	iPMW-9	
	WATER	LEVEL DATA	BOTTOM OF	BOTTOM OF	GROUNDWATER			
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED	BGS = Below the Ground Surface		
GE		ATION LINES REPRE				NA = Not Applicable . TYPES, TRANSITIONS MAY BE GR S STATED, FLUCTUATIONS OF GR(
	and = 35 to s some = 20 to		little = 10 to 20% trace = 1 to 10%		c - coarse m = medium f = fine	ND = Non Detect BGS = Below the Ground Surface NA = Not Applicable		BORING: GP-9

00 STA1	As:	CHESTER, NY REERING CONSULTANT		Supplemental	PROJEC Phase II Environ 46 Mt. Hope / Rochester, Ne	mental Site Assessment Avenue	BORING: SHEET JOB: CHKD BY:	GP-10 1 OF 1 214051
DR	ILLER:	LaBella Environmental SENTATIVE: I.Poplar-J		BORING LOCA GROUND SURF START DATE:	ACE ELEVATION	NA END DATE: 11/26/13	TIME: DATUM:	TO NA
	AUGER SIZE	LL RIG: Geoprobe Mo AND TYPE: N/A N SAMPLING METHO				DRIVE SAMPLER TYPE: 4-foot Mac INSIDE DIAMETER: 1.8-Inch ID OTHER:	crocore	
DEPTH (FEET)	SAMPLE RECOVERY (INCHES)	SAMPLE SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET)		VISUAL	CLASSIFICATION	PID FIELD SCREEN (PPM)	REMARKS
0	(INCHES)	DEFTH	0.5	Concrete Sand & gravel fi	I, trace cinders, dry	no odor		
2	36				,		0.00	-
4							0.00	
6	36		4'	Brown f SAND, 1	race f gravel, dry, n	o odor	0.00	
8							0.00	
10	42						0.25	
12			10'	Brown f SAND, s	some silt, trace fm g	ravel, moist no odor	36.90	
14	48	GP-10 14'	12'	Brown/red f SAN	ID, some fm gravel,	wet, no odor	38.00	
16							10.20	
				DEPTH (FT)		NOTES:Temporary well installed - G	PMW-10	
DATE	WATER TIME	LEVEL DATA ELAPSED TIME	BOTTOM OF CASING	BOTTOM OF BORING	GROUNDWATER ENCOUNTERED	ND = Non Detect BGS = Below the Ground Surface		
	NERAL NOTES		13	16.0		NA = Not Applicable		
						. TYPES, TRANSITIONS MAY BE GR S STATED, FLUCTUATIONS OF GRO		
	and = 35 to 5 some = 20 to		little = 10 to 20% trace = 1 to 10%		c - coarse m = medium f = fine	ND = Non Detect BGS = Below the Ground Surface NA = Not Applicable		BORING: GP-10

0 STAT	As:	CHESTER, NY REERING CONSULTANT		Supplemental	PROJEC Phase II Environ 46 Mt. Hope / Rochester, Ne	mental Site Assessment Avenue	SHEET	GP-11 1 OF 2 214051
DR	ILLER:	LaBella Environmental SENTATIVE: I.Poplar-J		BORING LOCA GROUND SURF START DATE:	ACE ELEVATION	NA END DATE: 11/26/13	TIME: DATUM:	TO NA
	AUGER SIZE	LL RIG: Geoprobe Mod AND TYPE: N/A N SAMPLING METHOI				DRIVE SAMPLER TYPE: 4-foot Macro INSIDE DIAMETER: 1.8-Inch ID OTHER:	core	
DEPTH (FEET)	SAMPLE RECOVERY	SAMPLE	STRATA CHANGE	_	VICUAL		PID FIELD SCREEN	REMARKS
DEF	(INCHES)	DEPTH	(FEET)	-	VISUAL	CLASSIFICATION	(PPM)	REMARKS
0			0.5	Concrete Fill - sand & grav	vel, cinders, ash, dr	y, no odor		
2	24						2.80	
4							2.80	
4			5'	Brown SILT, sor	ne f sand, dry, no oo	dor	3.33	
6	40							
8			7'	Brown f SAND, o	dry, no odor		3.40	
10	42			mild solvent odo	r		5.40	
40							10.00	
12			12'	Brown cmf GRA	VEL, wet solvent oc	lor	43.00	
14	48	GP-11 14'	14'	Brown f SAND, t	race silt, trace f gra	vel, wet, mild odor	156.00	
16							46.0	
	\A/ATES		DOTTON OF	DEPTH (FT)		NOTES:Temporary well installed - GPI	MW-11	
ATE	TIME	LEVEL DATA ELAPSED TIME	BOTTOM OF CASING	BOTTOM OF BORING	GROUNDWATER ENCOUNTERED	ND = Non Detect BGS = Below the Ground Surface		
			13	17.0		NA = Not Applicable		
GE		ATION LINES REPRE				. TYPES, TRANSITIONS MAY BE GRAI S STATED, FLUCTUATIONS OF GROL		
	and = 35 to 5 some = 20 to		little = 10 to 20% trace = 1 to 10%		c - coarse m = medium f = fine	ND = Non Detect BGS = Below the Ground Surface NA = Not Applicable		BORING: GP-11

DO STAT	As:	CHESTER, NY		Supplemental	PROJEC Phase II Environ 46 Mt. Hope A Rochester, Ne	mental Site Assessment Avenue	BORING: SHEET JOB: CHKD BY:	GP-11 2 OF 2 214051
DR	ILLER:	LaBella Environmental SENTATIVE: I.Poplar-J		BORING LOCA GROUND SURF START DATE:	ACE ELEVATION	NA END DATE: 11/26/13	TIME: DATUM:	TO NA
	AUGER SIZE	LL RIG: Geoprobe Mo AND TYPE: N/A N SAMPLING METHO				DRIVE SAMPLER TYPE: 4-foot Ma INSIDE DIAMETER: 1.8-Inch ID OTHER:	crocore	
DEPTH (FEET)	SAMPLE	SAMPLE	STRATA	-			PID FIELD SCREEN	
DEP	RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	CHANGE (FEET)		VISUAL	CLASSIFICATION	(PPM)	REMARKS
16	12			Brown c SAND,	some fm gravel, we	t, solvent odor	93.00	
18				Refusal @ 17'				
19								
20								
20								
22								
24								
26								
28								
30								
		LEVEL DATA	BOTTOM OF	DEPTH (FT) BOTTOM OF	GROUNDWATER	NOTES:Temporary well installed - (GPMW-11	
ATE	TIME	ELAPSED TIME	CASING	BORING		BGS = Below the Ground Surface		
			13	17.0		NA = Not Applicable		
GE		CATION LINES REPRE				TYPES, TRANSITIONS MAY BE GI S STATED, FLUCTUATIONS OF GR		
	and = 35 to 5 some = 20 to		little = 10 to 20% trace = 1 to 10%		c - coarse m = medium f = fine	ND = Non Detect BGS = Below the Ground Surface NA = Not Applicable		BORING: GP-11

DO STAT	As:	CHESTER, NY		Supplemental	PROJEC Phase II Enviror 46 Mt. Hope Rochester, No	mental Site Assessment Avenue	SHEET	GP-12 1 OF 1 214051
DR	ILLER:	LaBella Environmental SENTATIVE: I.Poplar-J		BORING LOCA GROUND SURF START DATE:	ACE ELEVATION	NA END DATE: 11/26/13	TIME: DATUM:	TO NA
	AUGER SIZE	LL RIG: Geoprobe Moo AND TYPE: N/A N SAMPLING METHOI				DRIVE SAMPLER TYPE: 4-foot Ma INSIDE DIAMETER: 1.8-Inch ID OTHER:	crocore	
DEPTH (FEET)	SAMPLE RECOVERY	SAMPLE	STRATA CHANGE	-	\/ISI1A1	CLASSIFICATION	PID FIELD SCREEN	REMARKS
DEF	(INCHES)	DEPTH	(FEET)	-	VISUAL	CLASSIFICATION	(PPM)	REWARKS
0	36		0.5	Concrete Sand & gravel fi	II, trace cinders, dry	, no odor	0.12	
4			4'	Brown f SAND 1	race f gravel, dry, r	o odor	1.50	
6	40				1999 - Gravol, aly, i		3.20	
8							2.60	
10	40	GP12 10'	10'	Brown (SAND)	roos oilt troos fm a		3.90	
		GF 12 10	10	BIOWITT SAIND, T	race sin, trace in g	ravel, moist no odor	3.90	
12	48		13'	Brown/red f SAN	ID, some fm gravel	trace silt, wet, no odor	2.10	
16							0.58	
	-			DEPTH (FT)		NOTES:Temporary well installed - (GPMW-12	
ATE	WATER TIME	LEVEL DATA ELAPSED TIME	BOTTOM OF CASING	BOTTOM OF BORING	GROUNDWATER ENCOUNTERED	ND = Non Detect BGS = Below the Ground Surface		
GE		ATION LINES REPRE				NA = Not Applicable . TYPES, TRANSITIONS MAY BE GI S STATED, FLUCTUATIONS OF GR		
	and = 35 to 5 some = 20 to		little = 10 to 20% trace = 1 to 10%		c - coarse m = medium f = fine	ND = Non Detect BGS = Below the Ground Surface NA = Not Applicable		BORING: GP-12

00 STAT	Ase E STREET, ROO	CHESTER, NY		Supplemental	PROJEC Phase II Environ 46 Mt. Hope A Rochester, Ne	mental Site Assessment Avenue	BORING: SHEET JOB: CHKD BY:	GP-13 1 OF 1 214051
DR	ILLER:	LaBella Environmental SENTATIVE: I.Poplar-J		BORING LOCA GROUND SURF START DATE:	ACE ELEVATION	NA END DATE: 11/26/13	TIME: DATUM:	TO NA
	AUGER SIZE	LL RIG: Geoprobe Moo AND TYPE: N/A N SAMPLING METHOI				DRIVE SAMPLER TYPE: 4-foot Mac INSIDE DIAMETER: 1.8-Inch ID OTHER:	crocore	
DEPTH (FEET)	SAMPLE	SAMPLE	STRATA	-			PID FIELD SCREEN	DEMARKO
DEP	RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	CHANGE (FEET)		VISUAL	CLASSIFICATION	(PPM)	REMARKS
0	36		0.5	Concrete Sand & gravel fi	II, trace cinders, dry	no odor	0.36	
2							1.90	-
4	40		4'	Brown m SAND	trace f gravel, dry,	no odor	1.50	
8							1.60	
10	40		10'	Brown f SAND	race silt trace fm a	avel, moist no odor	1.80	
12		GP-13 11.5'					4.40	
14	24		13'		ID and SILT, some t	m gravel, wet, no odor	1.90	
16				Refusal @ 14'				
				DEPTH (FT)		NOTES:		
DATE	WATER TIME	LEVEL DATA ELAPSED TIME	BOTTOM OF CASING	BOTTOM OF BORING	GROUNDWATER ENCOUNTERED	BGS = Below the Ground Surface		
GE		ATION LINES REPRE				NA = Not Applicable TYPES, TRANSITIONS MAY BE GR S STATED, FLUCTUATIONS OF GR		
	and = 35 to 5 some = 20 to		little = 10 to 20% trace = 1 to 10%		c - coarse m = medium f = fine	ND = Non Detect BGS = Below the Ground Surface NA = Not Applicable		BORING: GP-13

00 STAT	As:	CHESTER, NY		Supplemental	PROJE Phase II Enviror 46 Mt. Hope Rochester, N	nmental Site Assessment Avenue	BORING: SHEET JOB: CHKD BY:	GP-14 1 OF 1 214051
DR	ILLER:	LaBella Environmental SENTATIVE: I.Poplar-Je		BORING LOCA GROUND SURI START DATE:	FACE ELEVATION	NA END DATE: 11/26/13	TIME: DATUM:	TO NA
	AUGER SIZE	LL RIG: Geoprobe Mod AND TYPE: N/A N SAMPLING METHOE				DRIVE SAMPLER TYPE: 4-foot Mac INSIDE DIAMETER: 1.8-Inch ID OTHER:	crocore	
DEPTH (FEET)	SAMPLE SAMPLE STRATA		STRATA	-			PID FIELD SCREEN	
DEP ⁻	RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	CHANGE (FEET)		VISUAL	CLASSIFICATION	(PPM)	REMARKS
0	, <i>, , , , , , , , , , , , , , , , , , </i>			Concrete Wood, creosote	odor 2" thick			
Ū				Concrete				
			0.8	Asn & cinders, t	race brick fragment	3	0.00	
2	36							
							0.00	
4				Sand & gravel, s	some ash & cinders			
							0.00	
6	12							
							0.00	
8								
			9'	Brown f SAND,	some fm gravel, mo	ist	0.38	
10	36							
								1
12		GP-14 12'					35.80	
							0.29	
14	24							
							0.02	
							0.02	
16								
				DEPTH (FT)		NOTES:		
			BOTTOM OF	BOTTOM OF		ND = Non Detect		
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED	BGS = Below the Ground Surface		
GE	NERAL NOTES	3		1	1	NA = Not Applicable		
02			SENT APPROXI	MATE BOUNDA	RY BETWEEN SOI	_ TYPES, TRANSITIONS MAY BE GF	ADUAL.	
	2) WATER LE	EVEL READINGS HAVE	BEEN MADE A	T TIMES AND U	NDER CONDITION	S STATED, FLUCTUATIONS OF GR	OUNDWATER	
	and = 35 to 5	50 %	little = $10 \text{ to } 20\%$	%	c - coarse	ND = Non Detect		
	some = 20 to	050/	trace = 1 to 10%	/	m = medium	BGS = Below the Ground Surface		

DO STAT	As:	Chester, NY		Supplemental	PROJEC Phase II Environ 46 Mt. Hope / Rochester, Ne	mental Site Assessment Avenue	SHEET	GP-15 1 OF 1 214051
DR	LLER:	LaBella Environmental SENTATIVE: I.Poplar-J		BORING LOCAT GROUND SURF START DATE:	ACE ELEVATION	NA END DATE: 11/26/13	TIME: DATUM:	TO NA
	AUGER SIZE	LL RIG: Geoprobe Moo AND TYPE: N/A N SAMPLING METHOI				DRIVE SAMPLER TYPE: 4-foot Macro INSIDE DIAMETER: 1.8-Inch ID OTHER:	core	
DEPTH (FEET)	SAMPLE RECOVERY	SAMPLE SAMPLE NO. AND	STRATA CHANGE		VISUAL	CLASSIFICATION	PID FIELD SCREEN (PPM)	REMARKS
DE	(INCHES)	DEPTH	(FEET) 0.5'	Concrete			. ,	
0			0.5	Wood, creosote	odor, 2" thick			
2	36		1'	Concrete Sand & gravel fil	II, dry, no odor		0.05	
							0.09	
4			4'	Brown f SAND, t	race f gravel, dry, n	o odor	0.20	
6 8	42						0.19	
	10						0.57	
10	42		10'	Brown f SAND, s	some silt, trace fm g	ravel, moist no odor	0.69	
12 14	48		12'	Brown/red f SAN	ID, some silt, some	fm gravel, wet, no odor	0.83	
16							1.87	
10				DEPTH (FT)	1	NOTES:Temporary well installed	I	
DATE	WATER TIME	LEVEL DATA ELAPSED TIME	BOTTOM OF CASING	BOTTOM OF BORING	GROUNDWATER ENCOUNTERED	BGS = Below the Ground Surface		
GE		ATION LINES REPRE				NA = Not Applicable TYPES, TRANSITIONS MAY BE GRAI S STATED, FLUCTUATIONS OF GROU		
	and = 35 to 5 some = 20 to		little = 10 to 20% trace = 1 to 10%		c - coarse m = medium f = fine	ND = Non Detect BGS = Below the Ground Surface NA = Not Applicable		BORING: GP-15

APPENDIX 3

SITE MANAGEMENT FORMS

Site Management Plan, Site # 828194

LaBella Powered by partnership.	SUB-SLAB DEPRESSURIZATION SYSTEM INSPECTION FORM Project Name: Former Hall-Welter Site - Site No. 828194 Location: 38-46 Mount Hope Ave, Rochester, New York
300 State Street, Suite 201	LaBella Project No.: 2160225
Rochester, New York 14614	Inspected By:
Phone: (585) 454-6110	Date of Inspection:
Fax: (585) 454-3066	Weather Conditions:
INSPECTION FINDINGS:	

Sub-Slab Depressurization System - Fan #1:

Operational -	Yes	No
Vacuum Gauge Reading (inches of water) -		
Alarm Check -	Alarm Sounded?	Alarm Failed?

Sub-Slab Depressurization System - Fan #2:		
Operational -	Yes	No
Vacuum Gauge Reading (inches of water) -		
Alarm Check -	Alarm Sounded?	Alarm Failed?

Sub-Slab Depressurization System - Fan #3:							
Operational -	Yes	No					
Vacuum Gauge Reading (inches of water) -	100	110					
Alarm Check -	Alarm Sounded?	Alarm Failed?					

SSDS Piping Check (Note Condition - Good/Fair/Poor):						
(include pictures if warranted)	As-Found Condition	As-Left Condition				
Piping on Roof -						
Exhaust Point Above Roof -						
Tubing -						
Vacuum Gauges -						
Integrity of Joint Seals -						
Condition of Labels -						
Overall Physical Condition of SSDS -						

Comments:

APPENDIX 4

O&M MANUAL - SSDS

Site Management Plan, Site # 828194

Operation, Maintenance and Monitoring Plan Former Hall-Welter Site

38-46 Mount Hope Ave., Rochester, NY

Sub-Slab Depressurization System

This Operation, Maintenance and Monitoring (OM&M) Plan describes the measures necessary to operate, monitor and maintain the mechanical components of the sub-slab depressurization system (SSDS) for the building located at 38-46 Mount Hope Ave., Rochester, New York. The OM&M items identified include the following:

- The steps necessary to allow individuals unfamiliar with the Site to operate and maintain the SSDS;
- an operation and maintenance contingency plan; and,
- the required regulatory reporting.

A copy of this Plan should be kept at the Site.

SYSTEM LAYOUT AND COMPONENTS

The system consists of three (3) roof mounted fans connected by manifold piping to vapor extraction points as detailed on the As Built Drawings (See SMP Figure 6). The suction points consist of a five (5) inch core boring into the concrete floor slab through which approximately 1-2 cubic feet of sub slab material was removed. Mechanically suspended three (3) inch schedule 40 PVC riser pipes were installed through the slab and sealed with urethane sealant. Riser piping connects to a four (4) inch trunk line then to exterior mounted fans. Vent pipes were installed at a pitch that ensures that any rainwater or condensation within the pipes drains downward into the ground beneath the slab. Three models of fans were utilized based on the building assessment; one RadonAway Model RP-265, one Fantech Model HP-190 and one AMG FESTA Model "Force". Each riser pipe is equipped with a vacuum indicator mounted on the riser pipe or interior wall. Each vacuum indicator consists of an oil filled U-tube style manometer. The indicator is inspected by observing the level of the colored fluid. In addition, each riser pipe is equipped with a system alarm that provides a visual and audible alarm in the event of a loss of system vacuum.

Following the installation of the SSDS, testing was conducted to evaluate the effectiveness and to confirm that there is adequate negative pressure beneath the entire floor slab of the building. The following post start-up testing was completed:

- <u>Component Check</u> all components of the system were confirmed to be in-place
- <u>Alarm Test</u> On October 10th, 2017 the alarms were tested to confirm proper operation. The alarm test consisted of disconnecting the fan power and confirming both the light and audible alarm were triggered.

<u>Pressure Field Extension Testing</u> - Subsequent to activation of the system, a pressure field extension test was performed to evaluate the effectiveness of the SSDS. The testing consisted of drilling ³/₄ inch holes in the concrete slab in locations detailed on ISMP Figure 6. A digital micromonometer was used to record pressure readings. Recorded pressure readings were as follows:

Test Point #	Measurement (inches of water column)
1	-0.006
2	-0.004
3	-0.065
4	-0.030
5	-0.526
6	-0.040

7	-0.009
8	-0.006
9	-0.020
10	-0.012
11	-0.081
12	-0.039
13	-0.029

SYSTEM MAINTENANCE

The system was designed and installed to operate with minimal maintenance. In the event of an alarm, the system should be inspected for obvious damage. In the event no damage is apparent, the system can be shut-off and restarted. In the event the alarm continues, the fan should be evaluated and the manufacturer contacted or a mitigation contractor (e.g., radon mitigation specialist) should be contacted for servicing the fan. Information on contacts for the system are provided below.

In the event that maintenance is required of the system, reports and any other information generated during regular operations at the Site will be reported to the NYSDEC. Maintenance events must be documented and documentation must include the following information:

- Date;
- Condition of SSDS upon arrival;
- Name, company, and position of person(s) conducting maintenance activities;
- Maintenance activities conducted;
- Any modifications to the system;
- Other documentation such as copies of invoices or work orders for maintenance work, receipts for replacement equipment, etc., (attached to the checklist/form); and,
- Condition of SSDS when finished.

In the event that the system and/or system components are observed to require non-routine maintenance (e.g., broken components, alarm sounding, etc.) the following persons can be contacted to assist with repairs to the system:

Tom O'Connor Center Properties, LLC 1000 Elmwood Avenue Rochester, NY 14620 (585) 442-4102 x 8945

Adam Morgan, EIT NYSDEC 6274 East Avon-Lima Road Avon, NY 14414-9516 (585) 226-5356 Dave Engert, CHMM LaBella Associates, D.P.C. 300 State Street Rochester, New York 14614 (585) 295-6630

Nick Mouganis Mitigation Tech 55 Shumway Road Brockport, NY 14420 (585) 637-7430

All non-routine maintenance of the SSDS will be documented and these documents will be kept on-file.

MONITORING

Quarterly monitoring of the Site's SSDS will be performed to ensure that the system is operating properly. A visual inspection of the accessible portions of the system will be conducted during each monitoring event. Accessible portions of the system are to be defined as those that are not located behind finished walls/ceilings or requiring a ladder to access (e.g., components mounted on the roof of the Site building). In addition, the U-tube manometer reading should be recorded. In the event that a vent fan appears to be malfunctioning, the manometer reading shows lower than usual or no negative pressure, or piping or wiring appears damaged, the component(s) in question should be promptly repaired or replaced, following the manufacturer's recommendations and instructions. Vent fan failure(s), repair(s), replacement(s), and/or operational problems should be documented and reported to the NYSDEC project manager. Information from quarterly inspections shall be recorded on the Sub-Slab Depressurization System Inspection form attached to this O&M Manual and in Appendix 3 of the ISMP.

LaBella Powered by partnership.	SUB-SLAB DEPRESSURIZATION SYSTEM INSPECTION FORM Project Name: Former Hall-Welter Site - Site No. 828194 Location: 38-46 Mount Hope Ave, Rochester, New York	
300 State Street, Suite 201	LaBella Project No.: 2160225	
Rochester, New York 14614	Inspected By:	
Phone: (585) 454-6110	Date of Inspection:	
Fax: (585) 454-3066	Weather Conditions:	
INSPECTION FINDINGS:		

Sub-Slab Depressurization System - Fan #1:

Operational -	Yes	No
Vacuum Gauge Reading (inches of water) -		
Alarm Check -	Alarm Sounded?	Alarm Failed?

Sub-Slab Depressurization System - Fan #2:					
Operational -	Yes	No			
Vacuum Gauge Reading (inches of water) -					
Alarm Check -	Alarm Sounded?	Alarm Failed?			

Sub-Slab Depressurization System - Fan #3:				
Operational -	Yes	No		
Vacuum Gauge Reading (inches of water) -	100	110		
Alarm Check -	Alarm Sounded?	Alarm Failed?		

SSDS Piping Check (Note Condition - Good/Fair/Poor):						
(include pictures if warranted)	As-Found Condition	As-Left Condition				
Piping on Roof -						
Exhaust Point Above Roof -						
Tubing -						
Vacuum Gauges -						
Integrity of Joint Seals -						
Condition of Labels -						
Overall Physical Condition of SSDS -						

Comments:

INSTALLS WHITE, STAYS WHITE

Radon Mitigation Fan

All RadonAway[®] fans are specifically designed for radon mitigation. RP Series Fans provide superb performance, run ultra-quiet and are attractive. They are ideal for most sub-slab radon mitigation systems.

Features

- NEW Stay-White[™] housing
- Energy efficient
- RP140 ENERGY STAR Most Efficient 2018
- Ultra-quiet operation
- Meets all electrical code requirements
- Water-hardened motorized impeller
- Seams sealed to inhibit radon leakage (RP140 & RP145 double snap sealed)
- ETL Listed for indoor or outdoor use
- Thermally protected motor
- Rated for commercial and residential use

MODEL	RECOM. MAX. OP.		TYPICAL CFM vs. STATIC PRESSURE W				RE WC		
MODEL	P/N	DIAMETER	WATTS	PRESSURE "WC	0"	.5"	1.0"	1.5"	2.0"
RP140	28460	4"	15-21	0.7	135	70	-	-	-
RP145	28461	4"	41-72	1.7	166	126	82	41	3
RP260	28462	6"	47-65	1.3	251	157	70	-	-
RP265	28463	6"	95-139	2.3	375	282	204	140	70
RP380*	28208	8"	96-138	2.0	531	415	268	139	41

*Currently not stay-white material.

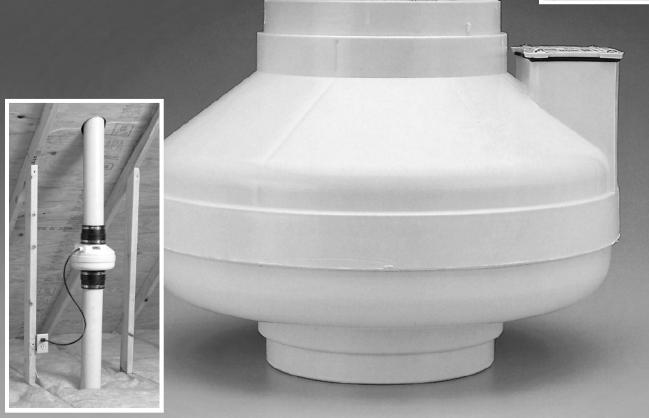
All RadonAway[®] inline radon fans are covered by our 5-year, hassle-free warranty.

		•		
0	Rate of the second seco	IonAway	North States	-
	A			
Model	Α	В	С	
RP140	4.5"	9.7"	8.5"	
DD145	4.5"	0.7"	0.5"	1

В

Model	A	B	С
RP140	4.5"	9.7"	8.5"
RP145	4.5"	9.7"	8.5"
RP260	6"	11.75"	8.6"
RP265	6"	11.75"	8.6"
RP380	8"	13.41"	10.53"

For Further Information, Contact Your Radon Professional


С

HP SERIES FANS FOR RADON APPLICATIONS

WITH IMPROVED UV RESISTANCE!

TRUST THE INDUSTRY STANDARD. Here's Why:

Don't put your reputation at stake by installing a fan you know won't perform like a Fantech! For nearly twenty years, Fantech has manufactured quality ventilation equipment for Radon applications. Fantech is the fan

Radon contractors have turned to in over 1,000,000 successful Radon installations worldwide.

Fantech external rotor motor

FANTECH HP SERIES FANS MEET THE CHALLENGES OF RADON APPLICATIONS:

HOUSING

- UV resistant, UL Listed durable plastic
- UL Listed for use in commercial applications
- Factory sealed to prevent leakage
- Watertight electrical terminal box
- Approved for mounting in wet locations i.e. Outdoors MOTOR
- Totally enclosed for protection
- High efficiency EBM motorized impeller
- Automatic reset thermal overload protection
- Average life expectancy of 7-10 years under continuous load conditions

RELIABILITY

- Five Year Full Factory Warranty
- Over 1,000,000 successful radon installations worldwide

HP Series Fans are Specially Designed with Higher Pressure Capabilities for Radon Mitigation Applications

MOST RADON MITIGATORS WHO PREVIOUSLY USED THE FANTECH FR SERIES FANS HAVE SWITCHED TO THE NEW HP SERIES.

PERFORMANCE DATA

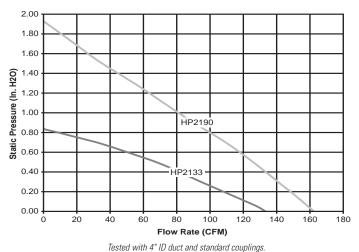
Fan	Volts	Wattage	Max.	CFM vs. Static Pressure in Inches W.G.								
Model	VOIIS	Range	Amps	0"	0.5"	0.75"	1.0"	1.25"	1.5"	1.75"	2.0"	Ps
HP2133	115	14 - 20	0.17	134	68	19	-	-	-	-	-	0.84
HP2190	115	60 - 85	0.78	163	126	104	81	58	35	15	-	1.93
HP175	115	44 - 65	0.57	151	112	91	70	40	12	-	-	1.66
HP190	115	60 - 85	0.78	157	123	106	89	67	45	18	1	2.01
HP220	115	85 - 152	1.30	344	260	226	193	166	137	102	58	2.46

PERFORMANCE CURVES

Fantech provides you with independently tested performance specifications.

The performance curves shown in this brochure are representative of the actual test results recorded at Texas Engineering Experiment Station/Energy Systems Lab, a recognized testing authority for HVI. Testing was done in accordance with AMCA Standard 210-85 and HVI 916 Test Procedures. Performance graphs show air flow vs. static pressure.

Use of HP Series fans in low resistance applications such as bathroom venting will result in elevated sound levels. We suggest FR Series or other Fantech fans for such applications.

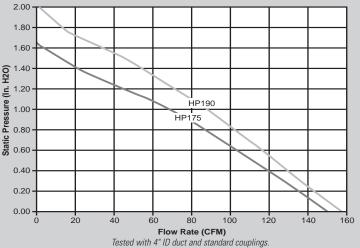

HP FEATURES INCLUDE

- Improved UV resistant housings approved for commercial applications.
- UL Approved for Wet Locations (Outdoors)
- Sealed housings and wiring boxes to prevent Radon leakage or water penetration
- Energy efficient permanent split capacitor motors
- External wiring box
- Full Five Year Factory Warranty

NOTE:

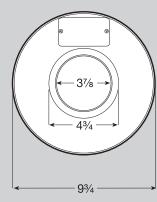
4 1/2"

Installations that will result in condensate forming in the outlet ducting should have a condensate bypass installed to route the condensate outside of the fan housing. Conditions that are likely to produce condensate include but are not limited to: outdoor installations in cold climates, long lengths of outlet ducting, high moisture content in soil and thin wall or aluminum outlet ducting. Failure to install a proper condensate bypass may void any warranty claims.


Record low power consumption of 14-20 watts! Often used where there good sub slab communication and lower Radon levels.

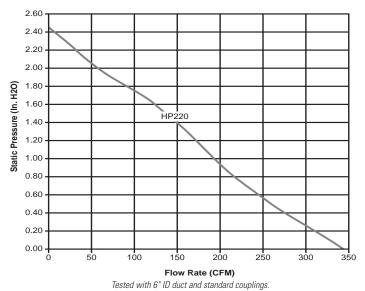
HP2190 – Performance like the HP190 but in a smaller housing. Performance suitable for the majority of installations.

Fans are attached to PVC pipe using flexible couplings.

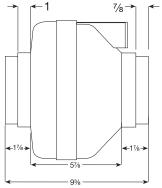

For 4" PVC pipe use Indiana Seals #156-44, Pipeconx PCX 56-44 or equivalent. For 3" PVC pipe use Indiana Seals #156-43, Pipeconx PCX 56-43 or equivalent.

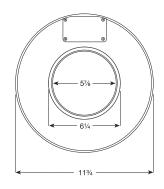
HP2133 – For applications where lower pressure and flow are needed. Record low power consumption of 14-20 watts! Often used where there is

_7⁄8 7⁄8 -2 2 61/8 101/8



HP175 - The economical choice where slightly less air flow is needed. Often used where there is good sub slab communication and lower Radon levels.

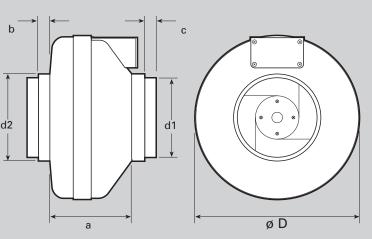

HP190 - The standard for Radon Mitigation. Ideally tailored performance curve for a vast majority of your mitigations.


Fans are attached to PVC pipe using flexible couplings. For 4" PVC pipe use Indiana Seals #151-44, Pipeconx PCX 51-44 or equivalent.

For 3" PVC pipe use Indiana Seals #156-43, Pipeconx PCX 56-43 or equivalent.

HP220 RADON MITIGATION FAN

HP 220 - Excellent choice for systems with elevated radon levels, poor communication, multiple suction points and large subslab footprint. Replaces FR 175.


Fans are attached to PVC pipe using flexible couplings.

For 4" PVC pipe use Indiana Seals #156-64, Pipeconx PCX 56-64 or equivalent. For 3" PVC pipe use Indiana Seals #156-63, Pipeconx PCX 56-63 or equivalent.

HP175 & HP190 RADON MITIGATION FANS

FR SERIES THE ORIGINAL MITIGATOR

DIMENSIONAL DATA model øD d1 d2 а FR100 9 1/2 3 7/8 4 7/8 6 1/8 FR110 9 1/2 3 7/8 4 7/8 6 1/8 FR125 9 1/2 4 7/8 6 1/8

7/8 11 3/4 5 7/8 FR140 5 7/8 7/8 6 1/4 1 6 1/4 FR150 11 3/4 5 7/8 5 7/8 1 7/8 FR160 11 3/4 5 7/8 6 1/4 6 3/8 1 7/8 FR200 13 1/4 7 7/8 6 1/4 9 7/8 1 1/2 1 1/2 FR225 13 1/4 7 7/8 9 7/8 6 1/4 1 1/2 1 1/2 FR250 13 1/4 97/8 6 1/4 $1 \frac{1}{2}$

b

7/8

7/8

С

7/8

7/8

All dimensions in inches

PERFORMANCE DATA

Fan					Wattage	Max.	CFM vs. Static Pressure in Inches W.G.							Max.	Duct
Model	Star	RPM	Volts	Watts	Range	Amps	0"	.2"	.4"	.6"	.8"	1.0"	1.5"	Ps	Dia.
FR100	\checkmark	2950	120	21.2	13 - 22	0.18	137	110	83	60	21	-	-	0.90"	4"
FR125	<	2950	115	18	15 - 18	0.18	148	120	88	47	-	-	-	0.79"	5"
FR150	\checkmark	2750	120	71	54 - 72	0.67	263	230	198	167	136	106	17	1.58"	6"
FR160	-	2750	115	129	103 - 130	1.14	289	260	233	206	179	154	89	2.32"	6"
FR200	\checkmark	2750	115	122	106 - 128	1.11	408	360	308	259	213	173	72	2.14"	8"
FR225	\checkmark	3100	115	137	111 - 152	1.35	429	400	366	332	297	260	168	2.48"	8"
FR250*	-	2850	115	241	146 - 248	2.40	649	600	553	506	454	403	294	2.58"	10"

FR Series performance is shown with ducted outlet. Per HV/s Certified Ratings Program, charted air flow performance has been derated by a factor based on actual test results and the certified rate at .2 inches WG. * Also available with 8" duct connection. Model FR 250-8. Special Order.

NOTE

Installations that will result in condensate forming in the outlet ducting should have a condensate bypass installed to route the condensate outside of the fan housing. Conditions that are likely to produce condensate include but are not limited to: outdoor installations in cold climates, long lengths of outlet ducting, high moisture content in soil and thin wall or aluminum outlet ducting. Failure to install a proper condensate bypass may void any warranty claims.

EVE DURING ENTIRE WARRANTY PERIOD:

FANTECH will replace any fan which has a factory defect in workmanship or material. Product may need to be returned to the Fantech factory, together with a

WARRANTY copy of the bill of sale and identified with RMA number.

FOR FACTORY RETURN YOU MUST:

- Have a Return Materials Authorization (RMA) number. This may be obtained by calling FANTECH either in the USA at 1.800.747.1762 or in CANADA at 1.800.565.3548. Please have bill of sale available.
- The RMA number must be clearly written on the outside of the carton, or the carton will be refused.
- All parts and/or product will be repaired/replaced and shipped back to buyer, no credit will be issued.
- 0R
- The Distributor may place an order for the warranty fan and is invoiced.

The Distributor will receive a credit equal to the invoice only after product is returned prepaid and verified to be defective.

FANTECH WARBANTY TERMS DO NOT PROVIDE FOR REPLACEMENT WITHOUT CHARGE PRIOR TO INSPECTION FOR A DEFECT. REPLACEMENTS ISSUED IN ADVANCE OF DEFECT INSPECTION ARE INVOICED, AND CREDIT IS PENDING INSPECTION OF RETURNED MATERIAL. DEFECTIVE MATERIAL RETURNED BY END USERS SHOULD NOT BE REPLACED BY THE DISTRIBUTOR WITHOUT CHARGE TO THE END USER, AS CREDIT TO DISTRIBUTOR'S ACCOUNT WILL BE PENDING INSPECTION AND VERIFI-CATION OF ACTUAL DEFECT BY FANTECH.

THE FOLLOWING WARRANTIES DO NOT APPLY:

• Damages from shipping, either concealed or visible. Claim must be filed with freight company.

2. Misuse, abuse, abnormal use, or accident, and 3. Incorrect electrical voltage or current.

· Damages resulting from improper wiring or installation.

• Removal or any alteration made on the FANTECH label control number or date of manufacture.

Damages or failure caused by acts of God, or resulting from improper consumer procedures, such as:

 Any other warranty, expressed, implied or written, and to any consequential or incidental damages, loss or property, revenues, or profit, or costs of removal, installation or reinstallation, for any breach of warranty.

WARRANTY VALIDATION

1. Improper maintenance

- The user must keep a copy of the bill of sale to verify purchase date.
- . These warranties give you specific legal rights, and are subject to an applicable consumer protection legislation. You may have additional rights which vary from state to state.

DISTRIBUTED BY:

United States 10048 Industrial Blvd. • Lenexa, KS 66215 • 1.800.747.1762 • www.fantech.net Canada 50 Kanalflakt Way • Bouctouche, NB E4S 3M5 • 1.800.565.3548 • www.fantech.net

Item #: 411741 Rev Date: 021010

Fantech, reserves the right to modify, at any time and without notice, any or all of its products' features, designs, components and specifications to maintain their technological leadership position.

APPENDIX 5

CONSTRUCTION COMPLETION REPORT INTERIM REMEDIAL MEASURES SUB SLAB DEPRESSURIZATION SYSTEM INSTALLATION

Former Hall-Welter Site MONROE COUNTY, NEW YORK

Construction Completion Report INTERIM REMEDIAL MEASURES SUB SLAB DEPRESSURIZATION SYSTEM INSTALLATION

NYSDEC Site Number: 828194

Prepared for:

Center Properties of Rochester, Inc. 1000 Elmwood Avenue, Rochester, NY

Prepared by:

LaBella Associates, DPC 300 State Street, Suite 201, Rochester, NY (585)454-6110

NOVEMBER 2018

CERTIFICATION

I, Dan Noll, am currently a registered professional engineer licensed by the State of New York, I had primary direct responsibility for implementation of the remedial program activities, and I certify that the Interim Remedial Measures Work Plan was implemented and that all construction activities were completed in substantial conformance with the Department-approved Interim Remedial Measures Work Plan .

I certify that all documents generated in support of this report have been submitted in accordance with the DER's electronic submission protocols and have been accepted by the Department.

I certify that all data generated in support of this report has been or will be submitted in accordance with the Department's electronic data deliverable.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Dan Noll, of LaBella Associates, DPC, am certifying as Owner's Designated Site Representative for the site.

081996

NYS Professional Engineer #

u/15/18

P. 40

Date

Signature

TABLE OF CONTENTS

CERTIFICATIONII
TABLE OF CONTENTSIII
LIST OF ACRONYMSIV
1.0 BACKGROUND AND SITE DESCRIPTION 1
2.0 SUMMARY OF SITE REMEDY 2
2.1 REMEDIAL ACTION OBJECTIVES
2.1.1 Groundwater RAOs
2.1.3 Surface Water RAOs 3 2.1.4 Sediment RAOs 3
3.0 INTERIM REMEDIAL MEASURE 4
4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED
4.1 GOVERNING DOCUMENTS 5
4.2 BUILDING ASSESSMENT AND SYSTEM CONSTRUCTION 5
4.3 SSDS GENERAL DESCRIPTION 6
4.4 PERFORMANCE EVALUATION/DOCUMENTATION SAMPLING

LIST OF ACRONYMS

AS	Air Sparging
ASP	Analytical Services Protocol
BCA	Brownfield Cleanup Agreement
BCP	Brownfield Cleanup Program
CERCLA	Comprehensive Environmental Response, Compensation and Liability Act
CAMP	Community Air Monitoring Plan
C/D	Construction and Demolition
CFR	Code of Federal Regulation
CLP	Contract Laboratory Program
COC	Certificate of Completion
CO2	Carbon Dioxide
CP CP	Commissioner Policy
DER	Division of Environmental Remediation
EC	Engineering Control
ECL	Environmental Conservation Law
ELAP	Environmental Laboratory Approval Program
ERP	Environmental Restoration Program
EWP	Excavation Work Plan
GHG	Green House Gas
GWE&T	Groundwater Extraction and Treatment
HASP	Health and Safety Plan
IC	Institutional Control
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
NYCRR	New York Codes, Rules and Regulations
O&M	Operation and Maintenance
OM&M	Operation, Maintenance and Monitoring
OSHA	Occupational Safety and Health Administration
OU	Operable Unit
PID	Photoionization Detector
PRP	Potentially Responsible Party
PRR	Periodic Review Report
QA/QC	Quality Assurance/Quality Control
QAPP	Quality Assurance Project Plan
RAO	Remedial Action Objective
RAWP	Remedial Action Work Plan
RCRA	Resource Conservation and Recovery Act
RI/FS	Remedial Investigation/Feasibility Study
ROD	Record of Decision
RP	Remedial Party
RSO	Remedial System Optimization
SAC	State Assistance Contract
SCG	Standards, Criteria and Guidelines
SCO	Soil Cleanup Objective

SMP	Site Management Plan
SOP	Standard Operating Procedures
SOW	Statement of Work
SPDES	State Pollutant Discharge Elimination System
SSD	Sub-slab Depressurization
SVE	Soil Vapor Extraction
SVI	Soil Vapor Intrusion
TAL	Target Analyte List
TCL	Target Compound List
TCLP	Toxicity Characteristic Leachate Procedure
USEPA	United States Environmental Protection Agency
UST	Underground Storage Tank
VCA	Voluntary Cleanup Agreement
VCP	Voluntary Cleanup Program

CONSTRUCTION COMPLETION REPORT INTERIM REMEDIAL MEASURE SUB SLAB DEPRESSURIZATION SYTEM INSTALLATION

1.0 BACKGROUND AND SITE DESCRIPTION

Center Properties of Rochester, Inc. entered into an Order on Consent, on June 23, 2017 with the NYSDEC to install and operate a soil vapor intrusion mitigation system at the site.

The site is located in Rochester, Monroe County, New York and is identified as Section 121, Subsection 48, Block 1 and Lot 80 on the Monroe County Tax Map (see Figure 2). The site is an approximately 0.390-acre area and is bounded by an automotive repair facility to the north, Orion Alley and residential properties to the south, residential and commercial properties to the east, and Mt. Hope Avenue to the west (see Figure 3 – Site Layout Map).

2.0 SUMMARY OF SITE REMEDY

2.1 REMEDIAL ACTION OBJECTIVES

The Remedial Action Objectives (RAOs) for the Site have not been established. The NYSDEC generic RAOs are as follows:

2.1.1 Groundwater RAOs

RAOs for Public Health Protection

- Prevent ingestion of groundwater containing contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of, volatiles emanating from contaminated groundwater.

RAOs for Environmental Protection

- Restore ground water aquifer, to the extent practicable, to pre-disposal/prerelease conditions.
- Prevent the discharge of contaminants to surface water.
- Remove the source of ground or surface water contamination.

2.1.2 Soil RAOs

RAOs for Public Health Protection

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of, or exposure to, contaminants volatilizing from contaminated soil.

RAOs for Environmental Protection

• Prevent migration of contaminants that would result in groundwater or surface water contamination.

• Prevent impacts to biota due to ingestion/direct contact with contaminated soil that would cause toxicity or bioaccumulation through the terrestrial food chain.

2.1.3 Surface Water RAOs

RAOs for Public Health Protection

- Prevent ingestion of contaminated water.
- Prevent contact or inhalation of contaminants from impacted water bodies.
- Prevent surface water contamination that may result in fish advisories.

RAOs for Environmental Protection

- Restore surface water to ambient water quality standards for each contaminant of concern.
- Prevent impacts to biota due to ingestion/direct contact with contaminated surface water that would cause toxicity or bioaccumulation through the marine or aquatic food chain.

2.1.4 Sediment RAOs

RAOs for Public Health Protection

- Prevent direct contact with contaminated sediments.
- Prevent surface water contamination that may result in fish advisories.

RAOs for Environmental Protection

- Prevent release(s) of contaminant(s) from sediments that would result in surface water levels in excess of (ambient water quality criteria).
- Prevent impacts to biota due to ingestion/direct contact with contaminated sediments that would cause toxicity or bioaccumulation through the marine or aquatic food chain.

3.0 INTERIM REMEDIAL MEASURE

This CCR documents the first IRM for this Site; no prior IRMs, operable units or separate construction contracts have been identified or performed.

4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED

The objective of this IRM was to mitigate chlorinated VOC impacts identified in indoor air samples collected in February 2014. This objective was accomplished via the installation of a SSDS within portions of the Site building. The Site is currently vacant. The most recent Site occupants included a church and various small retail tenants.

The Remedial Goals in the IRM WP were as follows:

- Install a SSDS to create negative sub-slab pressure, thus mitigating soil vapor intrusion issues within the Site building.
- Install gauges and alarms associated with the SSDS as well as vacuum monitoring points to confirm system performance.
- SSDS designs for the Site building were submitted to the NYSDEC and NYSDOH in the IRMWP dated August 2017 and were conditionally approved by NYSDEC in a letter dated August 18, 2017.

The system installation was completed on October 10, 2017. The SSDS was installed in accordance with the NYSDOH's Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York dated October 2006. The majority of the system was constructed of Schedule 40 polyvinyl chloride (PVC) piping and fittings.

4.1 GOVERNING DOCUMENTS

Remedial activities completed at the Site were conducted in accordance with the NYSDEC-approved Interim Remedial Measures Work Plan (IRMWP) for the Former Hall-Welter site (August 2017). All deviations from the IRMWP are noted below.

4.2 BUILDING ASSESSMENT AND SYSTEM CONSTRUCTION

Confirmatory sub-slab air communication testing was performed at job start September 25, 2017 to refine data obtained from the preliminary building assessment. Work continued with an analysis of appropriate locations for fan, suction cavities and other SSD system components. Both for physical protection and minimum impact on active use areas, riser pipes were surface mounted on columns or interior walls; horizontal pipe was installed as close to ceiling and established raceways as possible. Work was coordinated with client to minimize disturbance of work areas, relocate obstacles and control dust. Vacuum and air flow measurements were performed continuously during construction to ensure integrity of design. Various fans were evaluated in place and in combination to determine the most effective configuration. At commissioning, all components inspected for condition and proper operation.

4.3 SSDS GENERAL DESCRIPTION

The SSDS is maintaining sub-slab vacuum at all subject areas. The system consists of (3) roof mounted fans connected by manifold piping to vapor extraction points. The SSDS was installed as permanent, integral addition to the structure.

Each suction point consists of a 5 inch core boring into the slab through which 1-2 cubic feet of sub-slab material has been removed. Mechanically suspended 3 inch Sch 40 PVC pipe was inserted into the boring and sealed with urethane sealant. The riser piping consists of 3 inch Sch 40 PVC pipe that follows a route from the extraction point to a 4 inch trunk line, then to an exterior mounted vacuum fan. Weatherproof flashing or sealant has been applied to all penetrations. Vent pipes were installed at a pitch that ensures that any rainwater or condensation within the pipes drains downward into the ground beneath the slab. Piping is independently supported, and not supported from existing building mechanical systems. Piping is labeled at each level as "Sub-Slab Vent". Piping is connected using manufacturer's approved methods.

Exhaust fans were field selected for specific performance properties based on the requirements of pressure field extension testing. Fan System #3 was rebuilt to relocate a previously improperly placed fan from the basement to the roof. Each fan has an exterior disconnect switch. All fans are mounted with rubber Fernco couplings for simplified replacement. No air intakes are present within 10 feet of the exhaust points. The three specific fan models that were used consist of:

- Fan System #1 AMG FESTA Model "Force" South sidewall mount with five suction points.
- Fan System #2 RadonAway Model RP-265 Central roof mount with three suction points

 Fan System #3 – Fantech Model HP-190 – North sidewall mount with one suction point.

There is no centralized instrumentation or control for the SSDS. Fans can be switched either from the adjacent positioned disconnect or at the marked breaker. The exhaust fan system is equipped with a vacuum indicator mounted in a visible location on a riser pip. The indicator consists of an oil filled U-tube style manometer. The indicator can be inspected by observing the level of colored fluid. The indicator is designed primarily to give a simple visual check that vacuum is present in the riser pipe, specifically by observation that the fluid levels on each side of the indicator are not even. In addition, each fan system is equipped with a plug-in audible alarm to alert the occupants upon loss of system vacuum.

Polyurethane sealants were applied to control joints, floor cracks and slab penetrations to enhance the barrier between sub-slab and ambient air and improve the efficiency of the SSD System. Smoke testing was employed to guide sealing operations. Materials used include Sika Sikaflex 1c-SLselfleveling joint sealant and Sika 1a Sealant.

Monitoring points consist of ³/₄" drill points through the slab into which a digital micromanometer probe can be inserted. They are semi-permanently closed These were established to aid in original system design and confirmatory testing, and in some cases are difficult to access. The primary future use would be in recertification of system effectiveness.

Fan, suction point, piping and vacuum monitoring point locations are detailed on Figure 2 – SSDS As-Built Drawings. SSDS component details are included as Figure 2A.

4.4 PERFORMANCE EVALUATION/DOCUMENTATION SAMPLING

In order to verify system effectiveness and as a performance evaluation, test points were established at various distances from the suction cavities suitable to verify that the sub-slab of the entire subject area was being depressurized at least to the objective. The testing was completed on October 10, 2017.

7

Test Point #	Measurement (inches of water column)
1	-0.006
2	-0.004
3	-0.065
4	-0.030
5	-0.526
6	-0.040
7	-0.009
8	-0.006
9	-0.020
10	-0.012
11	-0.081
12	-0.039
13	-0.029

Follow up indoor air sampling was performed on November 2, 2017 at seven interior sample locations. Laboratory reports indicated that trichloroethene (TCE) concentrations in indoor air ranged from 0.27 μ g/m³ to 4.6 μ g/m³, exceeding the NYSDEC air guidance value of 2.0 μ g/m³.

On April 6, 2018 a building survey was conducted with a photo-ionization detector (PID) capable of detecting VOCs at parts per billion (ppb) concentrations. Areas of screening included concrete slab joints/cracks, SSDS suction points, piping joints and vent/utility chases. Elevated PID readings were not observed during the building survey.

On April 10, 2018 a second round of indoor air samples were collected. Laboratory reports indicated that the highest concentration of TCE detected in laboratory analysis was $1.8 \ \mu g/m^3$.

Indoor air sampling locations are detailed on Figure 3. Results of indoor air sampling are summarized on Table 1. Laboratory reports are attached in Appendix 2. The Data Usability Summary Report (DUSR) is attached in Appendix 3.

LIST OF TABLES

Table 1 – Summary of VOCs in Indoor Air

LIST OF FIGURES

- Figure 1 Site Location Map
- Figure 2 SSDS As-Built Drawings
- Figure 2A SSDS Details
- Figure 3 Indoor Air Sample Locations

LIST OF APPENDICES

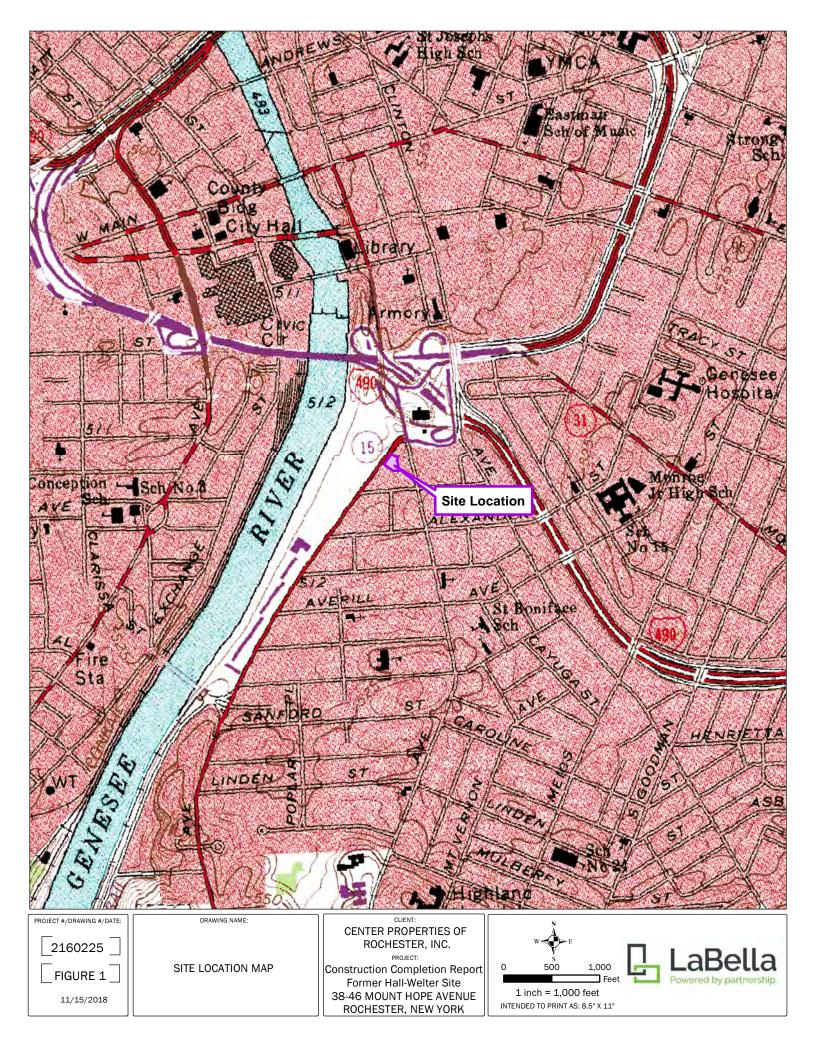
Appendix A – Agency Approvals Appendix B – Laboratory Data Appendix C – DUSR TABLES

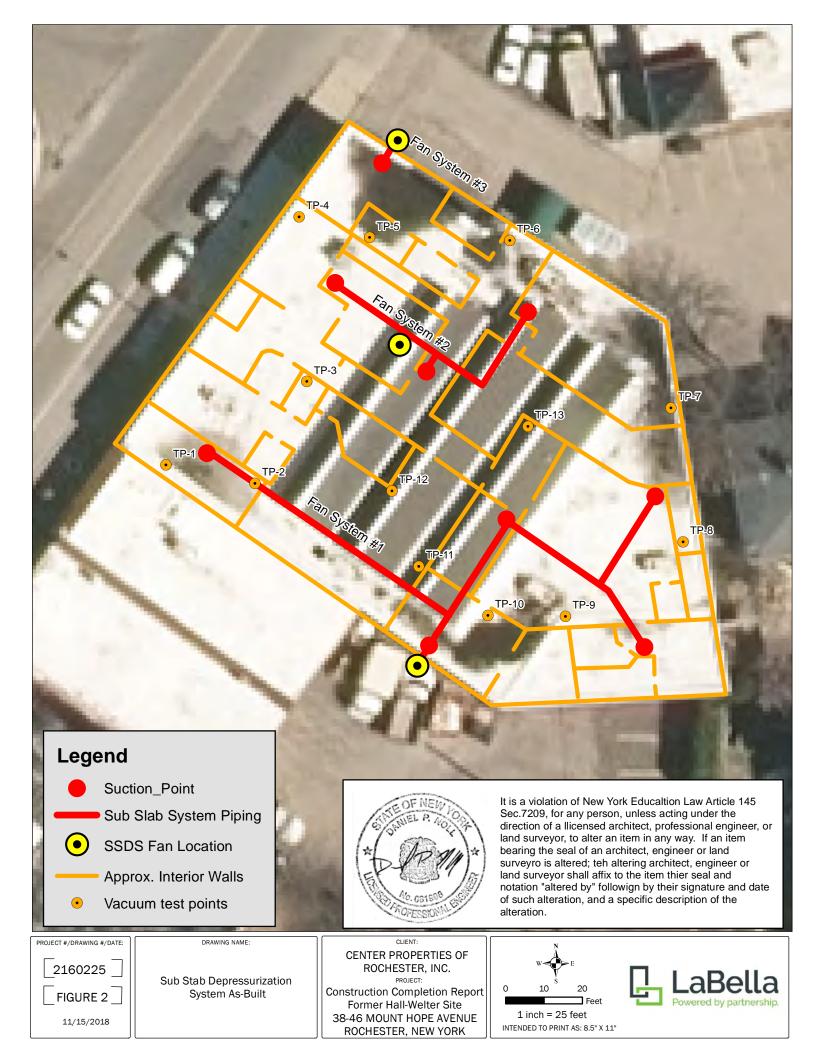
Table 1 - Summary of Volatiles Analysis in Air 38-46 Mount Hope Avenue, Rochester, New York Results in micrograms per cubic meter (µg/m3)

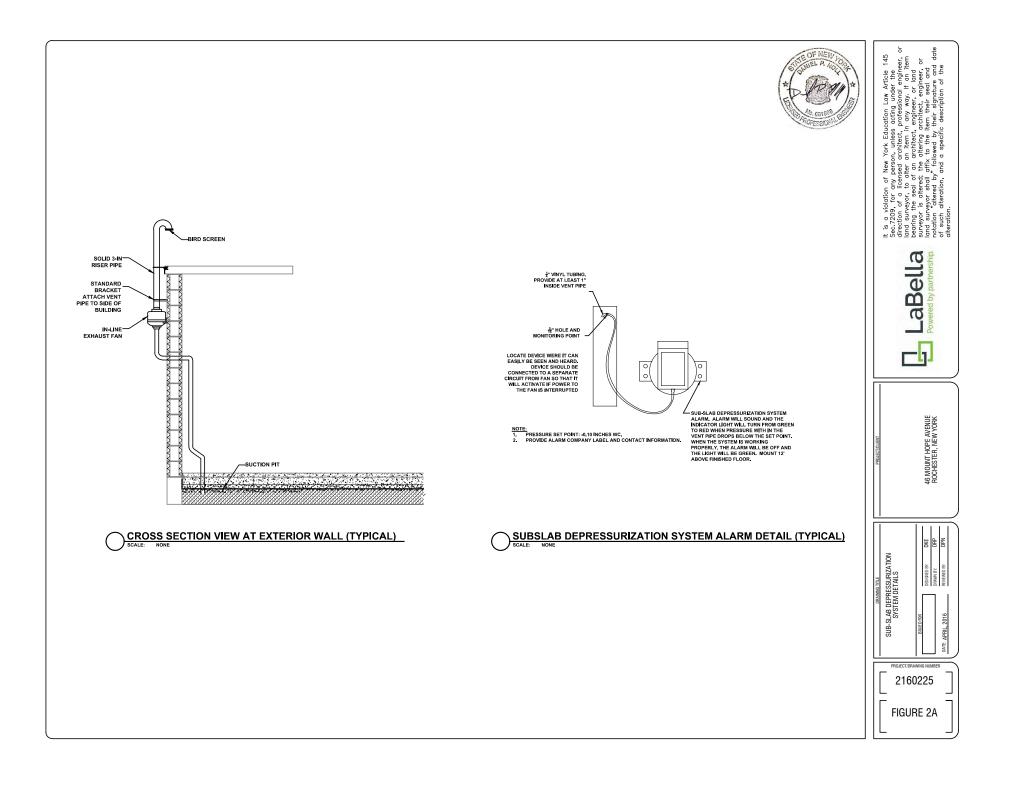
Sample ID	IA-1	IA-2	IA-3	IA-4	IA-5	IA-6	IA-7	IA-8	0A-1
Date Collected	4/10/2018	4/10/2018	4/10/2018	4/10/2018	4/10/2018	4/10/2018	4/10/2018	4/10/2018	4/10/2018
Matrix	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Outdoor Air
1,1,1-Trichloroethane	<0.82	<0.82	<0.82	<0.82	<0.82 UJ	<0.82	<0.82	<0.82	<0.82 UJ
1,1,2,2-Tetrachloroethane	<1.0	<1.0	<1.0	<1.0	<1.0 UJ	<1.0	<1.0	<1.0	<1.0 UJ
1,1,2-Trichloroethane	<0.82	<0.82	<0.82	<0.82	<0.82 UJ	<0.82	<0.82	<0.82	<0.82 UJ
1,1-Dichloroethane	<0.61	<0.61	<0.61	<0.61	<0.61 UJ	<0.61	<0.61	<0.61	<0.61 UJ
1,1-Dichloroethene	<0.16	<0.16	<0.16	<0.16	<0.16 UJ	<0.16	<0.16	<0.16	<0.16 UJ
1,2,4-Trichlorobenzene	<1.1	<1.1	<1.1	<1.1	<1.1 UJ	<1.1	<1.1	<1.1	<1.1 UJ
1,2,4-Trimethylbenzene	0.79	0.69 J	0.59 J	1.4	0.98 J	0.59 J	0.64 J	0.49 J	0.84 J
1,2-Dibromoethane	<1.2	<1.2	<1.2	<1.2	<1.2 UJ	<1.2	<1.2	<1.2	<1.2 UJ
1,2-Dichlorobenzene	<0.90	<0.90	<0.90	<0.90	<0.90 UJ	<0.90	<0.90	<0.90	<0.90 UJ
1,2-Dichloroethane	<0.61	<0.61	<0.61	<0.61	<0.61 UJ	<0.61	<0.61	<0.61	<0.61 UJ
1,2-Dichloropropane	<0.69	<0.69	<0.69	<0.69	<0.69 UJ	<0.69	<0.69	<0.69	<0.69 UJ
1,3,5-Trimethylbenzene	0.59 J	<0.74	0.69 J	0.79	0.54 J	<0.74	<0.74	<0.74	0.59 J
1,3-butadiene	<0.33	<0.33	<0.33	<0.33	<0.33 UJ	<0.33	<0.33	<0.33	<0.33 UJ
1,3-Dichlorobenzene	<0.90	<0.90	<0.90	<0.90	<0.90 UJ	<0.90	<0.90	<0.90	<0.90 UJ
1,4-Dichlorobenzene	<0.90	<0.90	<0.90	<0.90	<0.90 UJ	<0.90	<0.90	<0.90	0.84 J
1,4-Dioxane	<1.1	<1.1	<1.1	<1.1	<1.1 UJ	<1.1	<1.1	<1.1	<1.1 UJ
2,2,4-trimethylpentane	<0.70	<0.70	<0.70	<0.70	<0.70 UJ	<0.70	<0.70	<0.70	0.61 J
4-ethyltoluene	<0.74	<0.74	<0.74	<0.74	<0.74 UJ	<0.74	<0.74	<0.74	<0.74 UJ
Acetone	24 J	24 J	43 J	30 J	26 J	35 J	31 J	18 J	21 J
Allyl chloride	<0.47	<0.47	<0.47	<0.47	<0.47 UJ	<0.47	<0.47	<0.47	<0.47 UJ
Benzene	0.70	0.70	0.67	0.73	0.73 J	0.67	0.67	0.70	1.2 J
Benzyl chloride	<0.86	<0.86	<0.86	<0.86	<0.86 UJ	<0.86	<0.86	<0.86	<0.86 UJ
Bromodichloromethane	<1.0	<1.0	<1.0	<1.0	<1.0 UJ	<1.0	<1.0	<1.0	<1.0 UJ
Bromoform	<1.6	<1.6	<1.6	<1.6	<1.6 UJ	<1.6	<1.6	<1.6	<1.6 UJ
Bromomethane	<0.58	<0.58	<0.58	<0.58	<0.58 UJ	<0.58	<0.58	<0.58	<0.58 UJ
Carbon disulfide	<0.47	<0.47	<0.47	<0.47	<0.47 UJ	<0.47	<0.47	<0.47	<0.47 UJ
Carbon tetrachloride	0.50	0.50	0.50	0.57	0.50 J	0.50	0.57	0.50	0.57 J
Chlorobenzene	<0.69	<0.69	<0.69	<0.69	<0.69 UJ		<0.69	<0.69	<0.69 UJ
Chloroethane	<0.40	<0.40	<0.40	<0.40	<0.40 UJ	<0.40	<0.40	<0.40	<0.40 UJ
Chloroform	0.59 J	0.54 J	0.63 J	<0.73	0.49 J	0.68 J	0.49 J	0.73	<0.73 UJ
Chloromethane	0.83	0.89	0.89	0.93	0.91 J	0.95	0.99	0.85	1.2 J
cis-1,2-Dichloroethene	<0.16	<0.16	<0.16	<0.16	<0.16 UJ	<0.16	<0.16	<0.16	<0.16 UJ
cis-1,3-Dichloropropene	<0.68	<0.68	<0.68	<0.68	<0.68 UJ	<0.68	<0.68	< 0.68	<0.68 UJ
Cyclohexane	<0.52	<0.52	<0.52	<0.52	<0.52 UJ	<0.52	<0.52	< 0.52	1.3 J
Dibromochloromethane	<1.3	<1.3	<1.3	<1.3	<1.3 UJ	<1.3	<1.3	<1.3	<1.3 UJ
Ethyl acetate	7.6 J	7.9 J	4.7 J	8.3 J	8.3 J	9.7 J	5.8 J	3.4	9.9 J
Ethylbenzene	<0.65	<0.65	<0.65	<0.65	<0.65 UJ	< 0.65	<0.65	< 0.65	1.8 J
Freon 11	1.2	1.2	1.2	1.3	1.2 J	1.3	1.3	1.2	1.4 J
Freon 113	<1.1	<1.1	<1.1	<1.1	<1.1 UJ	<1.1	<1.1	<1.1	<1.1 UJ
Freon 114	<1.0	<1.0	<1.0	<1.0	<1.0 UJ	<1.0	<1.0	<1.0	<1.0 UJ
Freon 12	2.4	2.5	2.5	2.6	2.4 J	2.6	3.5	2.6	8.4 J
Heptane	4.7	5.3	7.5	7.6	4.8 J	8.6 J	9.4 J	0.70	1.5 J
Hexachloro-1,3-butadiene	<1.6	<1.6	<1.6	<1.6	<1.6 UJ	<1.6	<1.6	<1.6	<1.6 UJ
Hexane	0.78	0.74	0.67	0.63	1.4 J	0.60	0.81	0.67	5.6 J
Isopropyl alcohol	13 J	12 J	5.7 J	7.4 J	5.9 J	7.9 J	6.9 J	3.0	5.7 J
m&p-Xylene	1.3 J	12 J	0.91 J	1.3	1.1 J	0.91 J	0.9 J	0.91 J	5.7 J
Methyl Butyl Ketone	<1.2	<1.2	0.66 J	<1.2	<1.2 UJ	<1.2	<1.2	<1.2	<1.2 UJ
Methyl Ethyl Ketone	2.0	2.2	1.8	1.6	1.5 UJ	1.3	1.3	1.5	1.7 J
Methyl Isobutyl Ketone	<1.2	<1.2	0.74 J	<1.2	<1.2 UJ	<1.2	<1.2	<1.2	0.90 J
Methyl tert-butyl ether	<0.54	<0.54	<0.54	<0.54	<0.54 UJ	<0.54	<0.54	<0.54	<0.54 UJ
Methylene chloride	1.0	<0.54 1.6	<0.54 1.0	<0.54 1.7	<0.54 UJ 1.9 J	<0.54 1.3	1.3	0.83	<0.54 UJ 6.7 J
o-Xylene	0.52 J	0.48 J	<0.65	0.61 J	0.52 J	3 <0.65	<0.65	< 0.83	1.5 J
Propylene	<0.26	<0.26	<0.85	<0.26	<0.22 J	< 0.85	< 0.85	<0.85	<0.26 UJ
	<0.26	<0.26	<0.26	<0.26	<0.26 UJ <0.64 UJ	<0.26	<0.26	<0.26	0.26 UJ
Styrene Totrachloroothylopo	<0.64	<0.64 <1.0	<0.64 <1.0	<0.64 <1.0	<0.64 UJ 1.3 J	<0.64 <1.0	<0.64 <1.0	<0.64	<1.0 UJ
Tetrachloroethylene				<1.0 0.74					
Tetrahydrofuran	0.71	0.88	<0.44		<0.44 UJ	< 0.44	< 0.44	< 0.44	
Toluene	5.6	6.0	6.4 J	7.5 J	5.8 J	9.8 J	10 J	1.7	17 J
trans-1,2-Dichloroethene	< 0.59	< 0.59	<0.59	< 0.59	<0.59 UJ	< 0.59	< 0.59	< 0.59	0.59 J
trans-1,3-Dichloropropene	<0.68	< 0.68	< 0.68	<0.68	<0.68 UJ	<0.68	<0.68	<0.68	<0.68 UJ
Trichloroethene	0.64	0.70	0.91	0.97	0.64 J	1.2	1.8	0.32	<0.16 UJ
Vinyl acetate	<0.53	<0.53	<0.53	<0.53	<0.53 UJ	<0.53	<0.53	<0.53	<0.53 UJ
Vinyl Bromide	<0.66	<0.66	<0.66	<0.66	<0.66 UJ	<0.66	<0.66	<0.66	<0.66 UJ
Vinyl chloride	<0.10	<0.10	<0.10	<0.10	<0.10 UJ	<0.10	<0.10	<0.10	<0.10 UJ

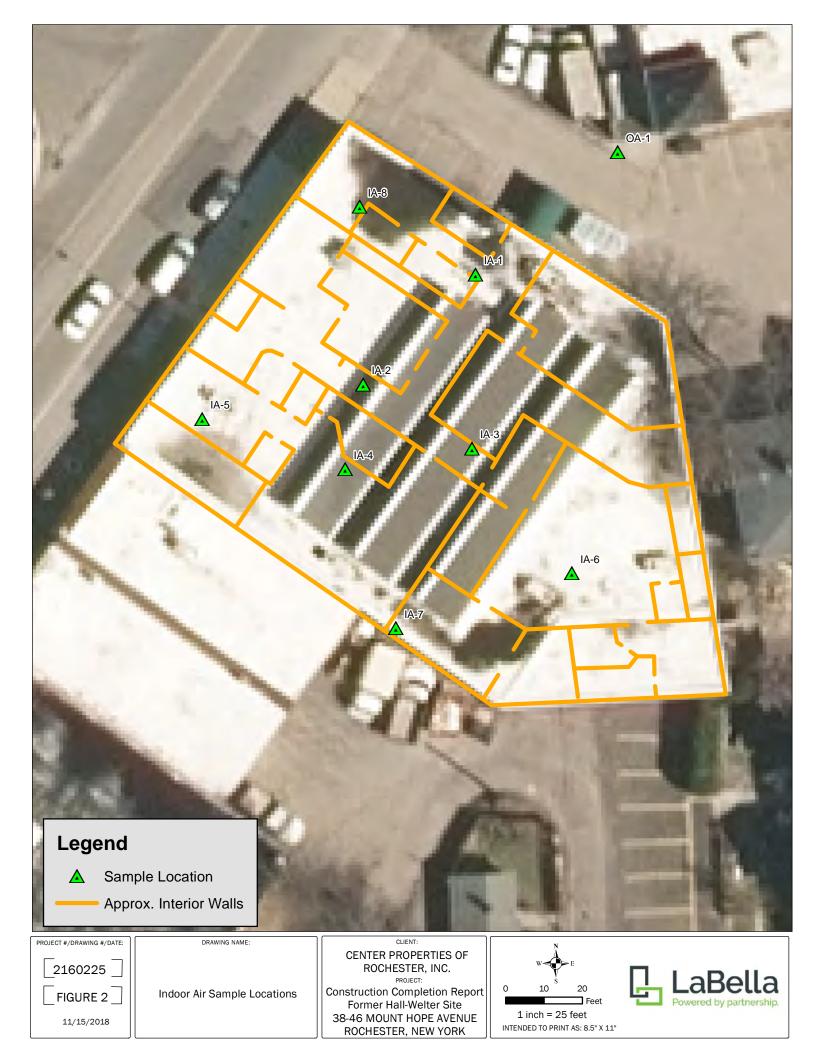
NOTES:

Volatiles analysis in air completed by TO-15


"<" indicates not detected above laboratory method detection limit (MDL)


"NA" indicates not applicable.


"J" Qualifier indicates analyte detected below quantitation limit and is considered estimated


All concentrations are in micrograms per cubic meter ($\mu g/m^3$)

FIGURES

APPENDIX A

Agency Approvals

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road, Avon, NY 14414-9516 P: (585) 226-5353 | F: (585) 226-8139 www.dec.ny.gov

August 18, 2017

Center Properties of Rochester, LLC 1000 South Avenue Rochester, New York 14620

Dear Center Properties,

RE: Former Hall-Welter Site; #828194

The NYS Department of Environmental Conservation and NYS Department of Health have completed their review of the document entitled "Interim Remedial Measures Work Plan," dated August 2017. This document is hereby <u>conditionally approved</u> with the stipulations below;

- 1. Post mitigation indoor air sampling of tenant occupied spaces will be included in the plan. Indoor air sampling would be conducted no less than 30 days after the sub slab depressurization system is started.
- 2. The plan will also include a contingency that if indoor air levels are not adequately reduced, additional steps will be taken. If the results of post mitigation air sampling indicate site related volatile organic compounds remain above air guidelines or levels typical of background, a separate investigation work plan should be submitted to determine other indoor air sources (e.g., chemical products, building materials) or other factors potentially influencing soil vapor intrusion (e.g., building construction and/or foundation type/integrity).
- 3. Tenant notifications for post mitigation sampling results should also be included in the plan. Also, please verify whether historic air sampling data has been provided to the current tenant and sub tenants of the onsite building. As you are aware, previous air sampling identified elevated levels of trichloroethene in the indoor air above the NYSDOH air guideline (2 ug/m3), as well as the level at which we recommend that immediate and effective action be taken to reduce exposure (20 ug/m3).
- 4. The as-built drawings to be included in the construction completion report will include all systems currently operating on site with their associated piping, including the two systems previously installed and new systems.

In addition, one printed copy and one electronic copy should be sent to myself as the DEC project manager. The electronic copy should also be sent to Mark Sergott at the NYS Department of Health.

As a reminder, all final documents and reports are to be in electronic format on compact computer discs (CDs). The disk should contain an Adobe® Acrobat® Portable Document Format (PDF) file and must be searchable. All data submitted to the DER must be in the DEC-approved Electronic Data Deliverable (EDD). Moreover, new data must be submitted on a continuous basis immediately after data validation occurs but in no event more than 90 days after the data have been submitted to the remedial party or its consultant(s). In other words, data are not to be held and submitted with the related reports.

If you have questions or concerns on this matter, please contact me at (585) 226-5356 or adam.morgan@dec.ny.gov.

Sincerely,

adam I May

Adam Morgan, E.I.T. Engineer Trainee

ec: Dave Engert, Labella Paul Sylvestri, HSE Law Dusty Tinsley, NYSDEC Mark Sergott, NYSDOH Bernette Schilling, NYSDEC Frank Sowers, NYSDEC

APPENDIX B

Laboratory Data

CLIENT:	LaBella Associates, P.C.	Client Sample ID: IA-1
Lab Order:	C1804042	Tag Number: 1191,342
Project:	46 Mount Hope Ave	Collection Date: 4/10/2018
Lab ID:	C1804042-001A	Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	то	-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/18/2018 9:19:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/18/2018 9:19:00 PM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/18/2018 9:19:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/18/2018 9:19:00 PM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	4/18/2018 9:19:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/18/2018 9:19:00 PM
1,2,4-Trimethylbenzene	0.79	0.74		ug/m3	1	4/18/2018 9:19:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/18/2018 9:19:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/18/2018 9:19:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/18/2018 9:19:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/18/2018 9:19:00 PM
1,3,5-Trimethylbenzene	0.59	0.74	J	ug/m3	1	4/18/2018 9:19:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/18/2018 9:19:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/18/2018 9:19:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/18/2018 9:19:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/18/2018 9:19:00 PM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	4/18/2018 9:19:00 PM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	4/18/2018 9:19:00 PM
Acetone	24	3.6		ug/m3	5	4/21/2018 1:41:00 AM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/18/2018 9:19:00 PM
Benzene	0.70	0.48		ug/m3	1	4/18/2018 9:19:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/18/2018 9:19:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/18/2018 9:19:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	4/18/2018 9:19:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	4/18/2018 9:19:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	1	4/18/2018 9:19:00 PM
Carbon tetrachloride	0.50	0.19		ug/m3	1	4/18/2018 9:19:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/18/2018 9:19:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	4/18/2018 9:19:00 PM
Chloroform	0.59	0.73	J	ug/m3	1	4/18/2018 9:19:00 PM
Chloromethane	0.83	0.31	-	ug/m3	1	4/18/2018 9:19:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	4/18/2018 9:19:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/18/2018 9:19:00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	4/18/2018 9:19:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/18/2018 9:19:00 PM
Ethyl acetate	7.6	2.7		ug/m3	5	4/21/2018 1:41:00 AM
Ethylbenzene	< 0.65	0.65		ug/m3	1	4/18/2018 9:19:00 PM
Freon 11	1.2	0.84		ug/m3	1	4/18/2018 9:19:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	4/18/2018 9:19:00 PM
Freon 114	< 1.0	1.1		ug/m3 ug/m3	1	4/18/2018 9:19:00 PM

Qualifiers: ** Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

.

Date: 24-Apr-18

CLIENT:	LaBella Associates, P.C.
Lab Order:	C1804042
Project:	46 Mount Hope Ave
Lab ID:	C1804042-001A

Client Sample ID: IA-1 Tag Number: 1191,342 Collection Date: 4/10/2018 Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed	
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		то	-15			Analyst: RJP	
Freon 12	2.4	0.74		ug/m3	1	4/18/2018 9:19:00 PM	
Heptane	4.7	0.61		ug/m3	1	4/18/2018 9:19:00 PM	
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/18/2018 9:19:00 PM	
Hexane	0.78	0.53		ug/m3	1	4/18/2018 9:19:00 PM	
Isopropyl alcohol	13	1.8		ug/m3	5	4/21/2018 1:41:00 AM	
m&p-Xylene	1.3	1.3	J	ug/m3	1	4/18/2018 9:19:00 PM	
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/18/2018 9:19:00 PM	
Methyl Ethyl Ketone	2.0	0.88		ug/m3	1	4/18/2018 9:19:00 PM	
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/18/2018 9:19:00 PM	
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/18/2018 9:19:00 PM	
Methylene chloride	1.0	0.52		ug/m3	1	4/18/2018 9:19:00 PM	
o-Xylene	0.52	0.65	J	ug/m3	1	4/18/2018 9:19:00 PM	
Propylene	< 0.26	0.26		ug/m3	1	4/18/2018 9:19:00 PM	
Styrene	< 0.64	0.64		ug/m3	1	4/18/2018 9:19:00 PM	
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	4/18/2018 9:19:00 PM	
Tetrahydrofuran	0.71	0.44		ug/m3	1	4/18/2018 9:19:00 PM	
Toluene	5.6	0.57		ug/m3	1	4/18/2018 9:19:00 PM	
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/18/2018 9:19:00 PM	
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/18/2018 9:19:00 PM	
Trichloroethene	0.64	0.16		ug/m3	1	4/18/2018 9:19:00 PM	
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/18/2018 9:19:00 PM	
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/18/2018 9:19:00 PM	
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/18/2018 9:19:00 PM	

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected	
	В	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	D O O O
	S	Spike Recovery outside accepted recovery limits			Page 2 of 18

CLIENT:	LaBella Associates, P.C.	Client Sample ID: IA-2
Lab Order:	C1804042	Tag Number: 546,250
Project:	46 Mount Hope Ave	Collection Date: 4/10/2018
Lab ID:	C1804042-002A	Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15				Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/18/2018 10:00:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/18/2018 10:00:00 PM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/18/2018 10:00:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/18/2018 10:00:00 PM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	4/18/2018 10:00:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/18/2018 10:00:00 PM
1,2,4-Trimethylbenzene	0.69	0.74	J	ug/m3	1	4/18/2018 10:00:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/18/2018 10:00:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/18/2018 10:00:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/18/2018 10:00:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/18/2018 10:00:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	4/18/2018 10:00:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/18/2018 10:00:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/18/2018 10:00:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/18/2018 10:00:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/18/2018 10:00:00 PM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	4/18/2018 10:00:00 PM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	4/18/2018 10:00:00 PM
Acetone	24	7.1		ug/m3	10	4/21/2018 2:17:00 AM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/18/2018 10:00:00 PM
Benzene	0.70	0.48		ug/m3	1	4/18/2018 10:00:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/18/2018 10:00:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/18/2018 10:00:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	4/18/2018 10:00:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	4/18/2018 10:00:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	1	4/18/2018 10:00:00 PM
Carbon tetrachloride	0.50	0.19		ug/m3	1	4/18/2018 10:00:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/18/2018 10:00:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	4/18/2018 10:00:00 PM
Chloroform	0.54	0.73	J	ug/m3	1	4/18/2018 10:00:00 PM
Chloromethane	0.89	0.31		ug/m3	1	4/18/2018 10:00:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	4/18/2018 10:00:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/18/2018 10:00:00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	4/18/2018 10:00:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/18/2018 10:00:00 PM
Ethyl acetate	7.9	5.4		ug/m3	10	4/21/2018 2:17:00 AM
Ethylbenzene	< 0.65	0.65		ug/m3	1	4/18/2018 10:00:00 PM
Freon 11	1.2	0.84		ug/m3	1	4/18/2018 10:00:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	4/18/2018 10:00:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	4/18/2018 10:00:00 PM

Qualifiers: ** Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

.

Date: 24-Apr-18

CLIENT:	LaBella Associates, P.C.	Client Sample ID: IA-2
Lab Order:	C1804042	Tag Number: 546,250
Project:	46 Mount Hope Ave	Collection Date: 4/10/2018
Lab ID:	C1804042-002A	Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15				Analyst: RJP
Freon 12	2.5	0.74		ug/m3	1	4/18/2018 10:00:00 PM
Heptane	5.3	0.61		ug/m3	1	4/18/2018 10:00:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/18/2018 10:00:00 PM
Hexane	0.74	0.53		ug/m3	1	4/18/2018 10:00:00 PM
Isopropyl alcohol	12	3.7		ug/m3	10	4/21/2018 2:17:00 AM
m&p-Xylene	1.1	1.3	J	ug/m3	1	4/18/2018 10:00:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/18/2018 10:00:00 PM
Methyl Ethyl Ketone	2.2	0.88		ug/m3	1	4/18/2018 10:00:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/18/2018 10:00:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/18/2018 10:00:00 PM
Methylene chloride	1.6	0.52		ug/m3	1	4/18/2018 10:00:00 PM
o-Xylene	0.48	0.65	J	ug/m3	1	4/18/2018 10:00:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/18/2018 10:00:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/18/2018 10:00:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	4/18/2018 10:00:00 PM
Tetrahydrofuran	0.88	0.44		ug/m3	1	4/18/2018 10:00:00 PM
Toluene	6.0	0.57		ug/m3	1	4/18/2018 10:00:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/18/2018 10:00:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/18/2018 10:00:00 PM
Trichloroethene	0.70	0.16		ug/m3	1	4/18/2018 10:00:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/18/2018 10:00:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/18/2018 10:00:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/18/2018 10:00:00 PM

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected	
	В	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	D 4 616
	S	Spike Recovery outside accepted recovery limits			Page 4 of 18

CLIENT:	LaBella Associates, P.C.	Client Sample ID: IA-3
Lab Order:	C1804042	Tag Number: 328,1156
Project:	46 Mount Hope Ave	Collection Date: 4/10/2018
Lab ID:	C1804042-003A	Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	то)-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/18/2018 10:42:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/18/2018 10:42:00 PM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/18/2018 10:42:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/18/2018 10:42:00 PM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	4/18/2018 10:42:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/18/2018 10:42:00 PM
1,2,4-Trimethylbenzene	0.59	0.74	J	ug/m3	1	4/18/2018 10:42:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/18/2018 10:42:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/18/2018 10:42:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/18/2018 10:42:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/18/2018 10:42:00 PM
1,3,5-Trimethylbenzene	0.69	0.74	J	ug/m3	1	4/18/2018 10:42:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/18/2018 10:42:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/18/2018 10:42:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/18/2018 10:42:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/18/2018 10:42:00 PM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	4/18/2018 10:42:00 PM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	4/18/2018 10:42:00 PM
Acetone	43	7.1		ug/m3	10	4/21/2018 2:54:00 AM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/18/2018 10:42:00 PM
Benzene	0.67	0.48		ug/m3	1	4/18/2018 10:42:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/18/2018 10:42:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/18/2018 10:42:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	4/18/2018 10:42:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	4/18/2018 10:42:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	1	4/18/2018 10:42:00 PM
Carbon tetrachloride	0.50	0.19		ug/m3	1	4/18/2018 10:42:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/18/2018 10:42:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	4/18/2018 10:42:00 PM
Chloroform	0.63	0.73	J	ug/m3	1	4/18/2018 10:42:00 PM
Chloromethane	0.89	0.31	-	ug/m3	1	4/18/2018 10:42:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	4/18/2018 10:42:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/18/2018 10:42:00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	4/18/2018 10:42:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/18/2018 10:42:00 PM
Ethyl acetate	4.7	5.4	J	ug/m3	10	4/21/2018 2:54:00 AM
Ethylbenzene	< 0.65	0.65	5	ug/m3	10	4/18/2018 10:42:00 PM
Freon 11	1.2	0.84		ug/m3	1	4/18/2018 10:42:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	4/18/2018 10:42:00 PM
Freon 114	< 1.0	1.0		ug/m3 ug/m3	1	4/18/2018 10:42:00 PM

** Quantitation Limit

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

.

Date: 24-Apr-18

of 18

CLIENT:	LaBella Associates, P.C.	(
Lab Order:	C1804042	
Project:	46 Mount Hope Ave	
Lab ID:	C1804042-003A	

Client Sample ID: IA-3 Tag Number: 328,1156 Collection Date: 4/10/2018 Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	TO-15				Analyst: RJP
Freon 12	2.5	0.74		ug/m3	1	4/18/2018 10:42:00 PM
Heptane	7.5	0.61		ug/m3	1	4/18/2018 10:42:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/18/2018 10:42:00 PM
Hexane	0.67	0.53		ug/m3	1	4/18/2018 10:42:00 PM
Isopropyl alcohol	5.7	3.7		ug/m3	10	4/21/2018 2:54:00 AM
m&p-Xylene	0.91	1.3	J	ug/m3	1	4/18/2018 10:42:00 PM
Methyl Butyl Ketone	0.66	1.2	J	ug/m3	1	4/18/2018 10:42:00 PM
Methyl Ethyl Ketone	1.8	0.88		ug/m3	1	4/18/2018 10:42:00 PM
Methyl Isobutyl Ketone	0.74	1.2	J	ug/m3	1	4/18/2018 10:42:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/18/2018 10:42:00 PM
Methylene chloride	1.0	0.52		ug/m3	1	4/18/2018 10:42:00 PM
o-Xylene	< 0.65	0.65		ug/m3	1	4/18/2018 10:42:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/18/2018 10:42:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/18/2018 10:42:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	4/18/2018 10:42:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/18/2018 10:42:00 PM
Toluene	6.4	5.7		ug/m3	10	4/21/2018 2:54:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/18/2018 10:42:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/18/2018 10:42:00 PM
Trichloroethene	0.91	0.16		ug/m3	1	4/18/2018 10:42:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/18/2018 10:42:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/18/2018 10:42:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/18/2018 10:42:00 PM

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected	
	В	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	P
	S	Spike Recovery outside accepted recovery limits			Page

CLIENT:	LaBella Associates, P.C.	Client Sample ID: IA-4
Lab Order:	C1804042	Tag Number: 544,256
Project:	46 Mount Hope Ave	Collection Date: 4/10/2018
Lab ID:	C1804042-004A	Matrix: AIR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-1	5		Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/18/2018 11:23:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	4/18/2018 11:23:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	4/18/2018 11:23:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/18/2018 11:23:00 PM
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	4/18/2018 11:23:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	4/18/2018 11:23:00 PM
1,2,4-Trimethylbenzene	1.4	0.74	ug/m3	1	4/18/2018 11:23:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	4/18/2018 11:23:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/18/2018 11:23:00 PM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	4/18/2018 11:23:00 PM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	4/18/2018 11:23:00 PM
1,3,5-Trimethylbenzene	0.79	0.74	ug/m3	1	4/18/2018 11:23:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	4/18/2018 11:23:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/18/2018 11:23:00 PM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/18/2018 11:23:00 PM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	4/18/2018 11:23:00 PM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	4/18/2018 11:23:00 PM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	4/18/2018 11:23:00 PM
Acetone	30	7.1	ug/m3	10	4/21/2018 3:31:00 AM
Allyl chloride	< 0.47	0.47	ug/m3	1	4/18/2018 11:23:00 PM
Benzene	0.73	0.48	ug/m3	1	4/18/2018 11:23:00 PM
Benzyl chloride	< 0.86	0.86	ug/m3	1	4/18/2018 11:23:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	4/18/2018 11:23:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	4/18/2018 11:23:00 PM
Bromomethane	< 0.58	0.58	ug/m3	1	4/18/2018 11:23:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	4/18/2018 11:23:00 PM
Carbon tetrachloride	0.57	0.19	ug/m3	1	4/18/2018 11:23:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	4/18/2018 11:23:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/18/2018 11:23:00 PM
Chloroform	< 0.73	0.73	ug/m3	1	4/18/2018 11:23:00 PM
Chloromethane	0.93	0.31	ug/m3	1	4/18/2018 11:23:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	4/18/2018 11:23:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/18/2018 11:23:00 PM
Cyclohexane	< 0.52	0.52	ug/m3	1	4/18/2018 11:23:00 PM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	4/18/2018 11:23:00 PM
Ethyl acetate	8.3	5.4	ug/m3	10	4/21/2018 3:31:00 AM
Ethylbenzene	< 0.65	0.65	ug/m3	1	4/18/2018 11:23:00 PM
Freon 11	1.3	0.84	ug/m3	1	4/18/2018 11:23:00 PM
Freon 113	< 1.1	1.1	ug/m3	1	4/18/2018 11:23:00 PM
Freon 114	< 1.0	1.0	ug/m3	1	4/18/2018 11:23:00 PM

Qualifiers: ** Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

.

Date: 24-Apr-18

CLIENT:	LaBella Associates, P.C.	Client Sample ID: IA-4
Lab Order:	C1804042	Tag Number: 544,256
Project:	46 Mount Hope Ave	Collection Date: 4/10/2018
Lab ID:	C1804042-004A	Matrix: AIR

Analyses	Result	**Limit	Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-I	DCE-1,1DCE	TO	-15		Analyst: RJP
Freon 12	2.6	0.74	ug/m3	1	4/18/2018 11:23:00 PM
Heptane	7.6	0.61	ug/m3	1	4/18/2018 11:23:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	4/18/2018 11:23:00 PM
Hexane	0.63	0.53	ug/m3	1	4/18/2018 11:23:00 PM
Isopropyl alcohol	7.4	3.7	ug/m3	10	4/21/2018 3:31:00 AM
m&p-Xylene	1.3	1.3	ug/m3	1	4/18/2018 11:23:00 PM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	4/18/2018 11:23:00 PM
Methyl Ethyl Ketone	1.6	0.88	ug/m3	1	4/18/2018 11:23:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	4/18/2018 11:23:00 PM
Methyl tert-butyl ether	< 0.54	0.54	ug/m3	1	4/18/2018 11:23:00 PM
Methylene chloride	1.7	0.52	ug/m3	1	4/18/2018 11:23:00 PM
o-Xylene	0.61	0.65	J ug/m3	1	4/18/2018 11:23:00 PM
Propylene	< 0.26	0.26	ug/m3	1	4/18/2018 11:23:00 PM
Styrene	< 0.64	0.64	ug/m3	1	4/18/2018 11:23:00 PM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	4/18/2018 11:23:00 PM
Tetrahydrofuran	0.74	0.44	ug/m3	1	4/18/2018 11:23:00 PM
Toluene	7.5	5.7	ug/m3	10	4/21/2018 3:31:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/18/2018 11:23:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/18/2018 11:23:00 PM
Trichloroethene	0.97	0.16	ug/m3	1	4/18/2018 11:23:00 PM
Vinyl acetate	< 0.53	0.53	ug/m3	1	4/18/2018 11:23:00 PM
Vinyl Bromide	< 0.66	0.66	ug/m3	1	4/18/2018 11:23:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/18/2018 11:23:00 PM

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected	
	В	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	D 0 010
	S	Spike Recovery outside accepted recovery limits			Page 8 of 18

CLIENT:	LaBella Associates, P.C.	Client Sample ID: IA-5
Lab Order:	C1804042	Tag Number: 136,281
Project:	46 Mount Hope Ave	Collection Date: 4/10/2018
Lab ID:	C1804042-005A	Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	то	-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/19/2018 12:06:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/19/2018 12:06:00 AM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/19/2018 12:06:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/19/2018 12:06:00 AM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	4/19/2018 12:06:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/19/2018 12:06:00 AM
1,2,4-Trimethylbenzene	0.98	0.74		ug/m3	1	4/19/2018 12:06:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/19/2018 12:06:00 AM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/19/2018 12:06:00 AM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/19/2018 12:06:00 AM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/19/2018 12:06:00 AM
1,3,5-Trimethylbenzene	0.54	0.74	J	ug/m3	1	4/19/2018 12:06:00 AM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/19/2018 12:06:00 AM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/19/2018 12:06:00 AM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/19/2018 12:06:00 AM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/19/2018 12:06:00 AM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	4/19/2018 12:06:00 AM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	4/19/2018 12:06:00 AM
Acetone	26	7.1		ug/m3	10	4/21/2018 4:08:00 AM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/19/2018 12:06:00 AM
Benzene	0.73	0.48		ug/m3	1	4/19/2018 12:06:00 AM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/19/2018 12:06:00 AM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/19/2018 12:06:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	4/19/2018 12:06:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	4/19/2018 12:06:00 AM
Carbon disulfide	< 0.47	0.47		ug/m3	1	4/19/2018 12:06:00 AM
Carbon tetrachloride	0.50	0.19		ug/m3	1	4/19/2018 12:06:00 AM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/19/2018 12:06:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	4/19/2018 12:06:00 AM
Chloroform	0.49	0.73	J	ug/m3	1	4/19/2018 12:06:00 AM
Chloromethane	0.91	0.31		ug/m3	1	4/19/2018 12:06:00 AM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	4/19/2018 12:06:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/19/2018 12:06:00 AM
Cyclohexane	< 0.52	0.52		ug/m3	1	4/19/2018 12:06:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/19/2018 12:06:00 AM
Ethyl acetate	8.3	5.4		ug/m3	10	4/21/2018 4:08:00 AM
Ethylbenzene	< 0.65	0.65		ug/m3	1	4/19/2018 12:06:00 AM
Freon 11	1.2	0.84		ug/m3	1	4/19/2018 12:06:00 AM
Freon 113	< 1.1	1.1		ug/m3	1	4/19/2018 12:06:00 AM
Freon 114	< 1.0	1.0		ug/m3	1	4/19/2018 12:06:00 AM

Qualifiers: ** Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

.

Date: 24-Apr-18

CLIENT:	LaBella Associates, P.C.	Client Sample ID: IA-5
Lab Order:	C1804042	Tag Number: 136,281
Project:	46 Mount Hope Ave	Collection Date: 4/10/2018
Lab ID:	C1804042-005A	Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
IUG/M3 W/ 0.2UG/M3 CT-TCE-VC	C-DCE-1,1DCE	то)-15			Analyst: RJP
Freon 12	2.4	0.74		ug/m3	1	4/19/2018 12:06:00 AM
Heptane	4.8	0.61		ug/m3	1	4/19/2018 12:06:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/19/2018 12:06:00 AM
Hexane	1.4	0.53		ug/m3	1	4/19/2018 12:06:00 AM
Isopropyl alcohol	5.9	3.7		ug/m3	10	4/21/2018 4:08:00 AM
m&p-Xylene	1.1	1.3	J	ug/m3	1	4/19/2018 12:06:00 AM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/19/2018 12:06:00 AM
Methyl Ethyl Ketone	1.5	0.88		ug/m3	1	4/19/2018 12:06:00 AM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/19/2018 12:06:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/19/2018 12:06:00 AM
Methylene chloride	1.9	0.52		ug/m3	1	4/19/2018 12:06:00 AM
o-Xylene	0.52	0.65	J	ug/m3	1	4/19/2018 12:06:00 AM
Propylene	< 0.26	0.26		ug/m3	1	4/19/2018 12:06:00 AN
Styrene	< 0.64	0.64		ug/m3	1	4/19/2018 12:06:00 AM
Tetrachloroethylene	1.3	1.0		ug/m3	1	4/19/2018 12:06:00 AM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/19/2018 12:06:00 AM
Toluene	5.8	0.57		ug/m3	1	4/19/2018 12:06:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/19/2018 12:06:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/19/2018 12:06:00 AN
Trichloroethene	0.64	0.16		ug/m3	1	4/19/2018 12:06:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/19/2018 12:06:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/19/2018 12:06:00 AN
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/19/2018 12:06:00 AM

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected
	В	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection
	S	Spike Recovery outside accepted recovery limits		Page 10 of 1

CLIENT:	LaBella Associates, P.C.	Client Sample ID: IA-6
Lab Order:	C1804042	Tag Number: 561,298
Project:	46 Mount Hope Ave	Collection Date: 4/10/2018
Lab ID:	C1804042-006A	Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	DCE-1,1DCE	тс)-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/19/2018 12:47:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/19/2018 12:47:00 AM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/19/2018 12:47:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/19/2018 12:47:00 AM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	4/19/2018 12:47:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/19/2018 12:47:00 AM
1,2,4-Trimethylbenzene	0.59	0.74	J	ug/m3	1	4/19/2018 12:47:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/19/2018 12:47:00 AM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/19/2018 12:47:00 AM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/19/2018 12:47:00 AM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/19/2018 12:47:00 AM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	4/19/2018 12:47:00 AM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/19/2018 12:47:00 AM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/19/2018 12:47:00 AM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/19/2018 12:47:00 AM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/19/2018 12:47:00 AM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	4/19/2018 12:47:00 AM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	4/19/2018 12:47:00 AM
Acetone	35	7.1		ug/m3	10	4/21/2018 4:45:00 AM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/19/2018 12:47:00 AM
Benzene	0.67	0.48		ug/m3	1	4/19/2018 12:47:00 AM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/19/2018 12:47:00 AM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/19/2018 12:47:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	4/19/2018 12:47:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	4/19/2018 12:47:00 AM
Carbon disulfide	< 0.47	0.47		ug/m3	1	4/19/2018 12:47:00 AM
Carbon tetrachloride	0.50	0.19		ug/m3	1	4/19/2018 12:47:00 AM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/19/2018 12:47:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	4/19/2018 12:47:00 AM
Chloroform	0.68	0.73	J	ug/m3	1	4/19/2018 12:47:00 AM
Chloromethane	0.95	0.31	-	ug/m3	1	4/19/2018 12:47:00 AM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	4/19/2018 12:47:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/19/2018 12:47:00 AM
Cyclohexane	< 0.52	0.52		ug/m3	1	4/19/2018 12:47:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/19/2018 12:47:00 AM
Ethyl acetate	9.7	5.4		ug/m3	10	4/21/2018 4:45:00 AM
Ethylbenzene	< 0.65	0.65		ug/m3	10	4/19/2018 12:47:00 AM
Freon 11	1.3	0.84		ug/m3	1	4/19/2018 12:47:00 AM
Freon 113	< 1.1	1.1		ug/m3	1	4/19/2018 12:47:00 AM
Freon 114	< 1.0	1.0		ug/m3	1	4/19/2018 12:47:00 AM

Qualifiers: ** Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

.

Date: 24-Apr-18

CLIENT:	LaBella Associates, P.C.	Client Sample ID: IA-6
Lab Order:	C1804042	Tag Number: 561,298
Project:	46 Mount Hope Ave	Collection Date: 4/10/2018
Lab ID:	C1804042-006A	Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	,1DCE TO-15				Analyst: RJP
Freon 12	2.6	0.74		ug/m3	1	4/19/2018 12:47:00 AM
Heptane	8.6	6.1		ug/m3	10	4/21/2018 4:45:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/19/2018 12:47:00 AM
Hexane	0.60	0.53		ug/m3	1	4/19/2018 12:47:00 AM
Isopropyl alcohol	7.9	3.7		ug/m3	10	4/21/2018 4:45:00 AM
m&p-Xylene	0.91	1.3	J	ug/m3	1	4/19/2018 12:47:00 AM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/19/2018 12:47:00 AM
Methyl Ethyl Ketone	1.3	0.88		ug/m3	1	4/19/2018 12:47:00 AM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/19/2018 12:47:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/19/2018 12:47:00 AM
Methylene chloride	1.3	0.52		ug/m3	1	4/19/2018 12:47:00 AM
o-Xylene	< 0.65	0.65		ug/m3	1	4/19/2018 12:47:00 AM
Propylene	< 0.26	0.26		ug/m3	1	4/19/2018 12:47:00 AM
Styrene	< 0.64	0.64		ug/m3	1	4/19/2018 12:47:00 AM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	4/19/2018 12:47:00 AM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/19/2018 12:47:00 AM
Toluene	9.8	5.7		ug/m3	10	4/21/2018 4:45:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/19/2018 12:47:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/19/2018 12:47:00 AM
Trichloroethene	1.2	0.16		ug/m3	1	4/19/2018 12:47:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/19/2018 12:47:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/19/2018 12:47:00 AM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/19/2018 12:47:00 AM

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected
	В	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation range
	Η	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection
	S	Spike Recovery outside accepted recovery limits		Page 12 of 1

CLIENT:	LaBella Associates, P.C.	Client Sample ID: IA-8
Lab Order:	C1804042	Tag Number: 163,276
Project:	46 Mount Hope Ave	Collection Date: 4/10/2018
Lab ID:	C1804042-007A	Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	то	-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/19/2018 1:27:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/19/2018 1:27:00 AM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/19/2018 1:27:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/19/2018 1:27:00 AM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	4/19/2018 1:27:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/19/2018 1:27:00 AM
1,2,4-Trimethylbenzene	0.49	0.74	J	ug/m3	1	4/19/2018 1:27:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/19/2018 1:27:00 AM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/19/2018 1:27:00 AM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/19/2018 1:27:00 AM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/19/2018 1:27:00 AM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	4/19/2018 1:27:00 AM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/19/2018 1:27:00 AM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/19/2018 1:27:00 AM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/19/2018 1:27:00 AM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/19/2018 1:27:00 AM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	4/19/2018 1:27:00 AM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	4/19/2018 1:27:00 AM
Acetone	18	3.6		ug/m3	5	4/21/2018 5:22:00 AM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/19/2018 1:27:00 AM
Benzene	0.70	0.48		ug/m3	1	4/19/2018 1:27:00 AM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/19/2018 1:27:00 AM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/19/2018 1:27:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	4/19/2018 1:27:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	4/19/2018 1:27:00 AM
Carbon disulfide	< 0.47	0.47		ug/m3	1	4/19/2018 1:27:00 AM
Carbon tetrachloride	0.50	0.19		ug/m3	1	4/19/2018 1:27:00 AM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/19/2018 1:27:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	4/19/2018 1:27:00 AM
Chloroform	0.73	0.73		ug/m3	1	4/19/2018 1:27:00 AM
Chloromethane	0.85	0.31		ug/m3	1	4/19/2018 1:27:00 AM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	4/19/2018 1:27:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/19/2018 1:27:00 AM
Cyclohexane	< 0.52	0.52		ug/m3	1	4/19/2018 1:27:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/19/2018 1:27:00 AM
Ethyl acetate	3.4	0.54		ug/m3	1	4/19/2018 1:27:00 AM
Ethylbenzene	< 0.65	0.65		ug/m3	1	4/19/2018 1:27:00 AM
Freon 11	1.2	0.84		ug/m3	1	4/19/2018 1:27:00 AM
Freon 113	< 1.1	1.1		ug/m3	1	4/19/2018 1:27:00 AM
Freon 114	< 1.0	1.0		ug/m3	1	4/19/2018 1:27:00 AM

Qualifiers: ** Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

.

Date: 24-Apr-18

CLIENT:	LaBella Associates, P.C.	Client Sample ID: IA-8
Lab Order:	C1804042	Tag Number: 163,276
Project:	46 Mount Hope Ave	Collection Date: 4/10/2018
Lab ID:	C1804042-007A	Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-15			Analyst: RJP	
Freon 12	2.6	0.74		ug/m3	1	4/19/2018 1:27:00 AM
Heptane	0.70	0.61		ug/m3	1	4/19/2018 1:27:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/19/2018 1:27:00 AM
Hexane	0.67	0.53		ug/m3	1	4/19/2018 1:27:00 AM
Isopropyl alcohol	3.0	0.37		ug/m3	1	4/19/2018 1:27:00 AM
m&p-Xylene	0.91	1.3	J	ug/m3	1	4/19/2018 1:27:00 AM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/19/2018 1:27:00 AM
Methyl Ethyl Ketone	1.5	0.88		ug/m3	1	4/19/2018 1:27:00 AM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/19/2018 1:27:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/19/2018 1:27:00 AM
Methylene chloride	0.83	0.52		ug/m3	1	4/19/2018 1:27:00 AM
o-Xylene	< 0.65	0.65		ug/m3	1	4/19/2018 1:27:00 AM
Propylene	< 0.26	0.26		ug/m3	1	4/19/2018 1:27:00 AM
Styrene	< 0.64	0.64		ug/m3	1	4/19/2018 1:27:00 AM
Tetrachloroethylene	1.1	1.0		ug/m3	1	4/19/2018 1:27:00 AM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/19/2018 1:27:00 AM
Toluene	1.7	0.57		ug/m3	1	4/19/2018 1:27:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/19/2018 1:27:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/19/2018 1:27:00 AM
Trichloroethene	0.32	0.16		ug/m3	1	4/19/2018 1:27:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/19/2018 1:27:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/19/2018 1:27:00 AM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/19/2018 1:27:00 AM

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected
	В	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range
	Η	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection
	S	Spike Recovery outside accepted recovery limits		Page 14 of 1

CLIENT:	LaBella Associates, P.C.	Client Sample ID: IA-7
Lab Order:	C1804042	Tag Number: 479,406
Project:	46 Mount Hope Ave	Collection Date: 4/10/2018
Lab ID:	C1804042-008A	Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	то	-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/19/2018 2:09:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/19/2018 2:09:00 AM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/19/2018 2:09:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/19/2018 2:09:00 AM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	4/19/2018 2:09:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/19/2018 2:09:00 AM
1,2,4-Trimethylbenzene	0.64	0.74	J	ug/m3	1	4/19/2018 2:09:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/19/2018 2:09:00 AM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/19/2018 2:09:00 AM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/19/2018 2:09:00 AM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/19/2018 2:09:00 AM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	4/19/2018 2:09:00 AM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/19/2018 2:09:00 AM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/19/2018 2:09:00 AM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/19/2018 2:09:00 AM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/19/2018 2:09:00 AM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	4/19/2018 2:09:00 AM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	4/19/2018 2:09:00 AM
Acetone	31	7.1		ug/m3	10	4/21/2018 5:59:00 AM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/19/2018 2:09:00 AM
Benzene	0.67	0.48		ug/m3	1	4/19/2018 2:09:00 AM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/19/2018 2:09:00 AM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/19/2018 2:09:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	4/19/2018 2:09:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	4/19/2018 2:09:00 AM
Carbon disulfide	< 0.47	0.47		ug/m3	1	4/19/2018 2:09:00 AM
Carbon tetrachloride	0.57	0.19		ug/m3	1	4/19/2018 2:09:00 AM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/19/2018 2:09:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	4/19/2018 2:09:00 AM
Chloroform	0.49	0.73	J	ug/m3	1	4/19/2018 2:09:00 AM
Chloromethane	0.99	0.31	-	ug/m3	1	4/19/2018 2:09:00 AM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	4/19/2018 2:09:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/19/2018 2:09:00 AM
Cyclohexane	< 0.52	0.52		ug/m3	1	4/19/2018 2:09:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/19/2018 2:09:00 AM
Ethyl acetate	5.8	5.4		ug/m3	10	4/21/2018 5:59:00 AM
Ethylbenzene	< 0.65	0.65		ug/m3	10	4/19/2018 2:09:00 AM
Freon 11	1.3	0.84		ug/m3	1	4/19/2018 2:09:00 AM
Freon 113	< 1.1	1.1		ug/m3	1	4/19/2018 2:09:00 AM
Freon 114	< 1.0	1.0		ug/m3	1	4/19/2018 2:09:00 AM

Qualifiers: ** Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

.

Date: 24-Apr-18

CLIENT:	LaBella Associates, P.C.	Client Sample ID: IA-7
Lab Order:	C1804042	Tag Number: 479,406
Project:	46 Mount Hope Ave	Collection Date: 4/10/2018
Lab ID:	C1804042-008A	Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	то	-15			Analyst: RJP
Freon 12	3.5	0.74		ug/m3	1	4/19/2018 2:09:00 AM
Heptane	9.4	6.1		ug/m3	10	4/21/2018 5:59:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/19/2018 2:09:00 AM
Hexane	0.81	0.53		ug/m3	1	4/19/2018 2:09:00 AM
Isopropyl alcohol	6.9	3.7		ug/m3	10	4/21/2018 5:59:00 AM
m&p-Xylene	0.87	1.3	J	ug/m3	1	4/19/2018 2:09:00 AM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/19/2018 2:09:00 AM
Methyl Ethyl Ketone	1.3	0.88		ug/m3	1	4/19/2018 2:09:00 AM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/19/2018 2:09:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/19/2018 2:09:00 AM
Methylene chloride	1.3	0.52		ug/m3	1	4/19/2018 2:09:00 AM
o-Xylene	< 0.65	0.65		ug/m3	1	4/19/2018 2:09:00 AM
Propylene	< 0.26	0.26		ug/m3	1	4/19/2018 2:09:00 AM
Styrene	< 0.64	0.64		ug/m3	1	4/19/2018 2:09:00 AM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	4/19/2018 2:09:00 AM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/19/2018 2:09:00 AM
Toluene	10	5.7		ug/m3	10	4/21/2018 5:59:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/19/2018 2:09:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/19/2018 2:09:00 AM
Trichloroethene	1.8	0.16		ug/m3	1	4/19/2018 2:09:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/19/2018 2:09:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/19/2018 2:09:00 AM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/19/2018 2:09:00 AM

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected
	В	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection
	S	Spike Recovery outside accepted recovery limits		Page 16 of 1

CLIENT:	LaBella Associates, P.C.	Client Sample ID: OA-1
Lab Order:	C1804042	Tag Number: 157,337
Project:	46 Mount Hope Ave	Collection Date: 4/10/2018
Lab ID:	C1804042-009A	Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	то	-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/19/2018 2:49:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/19/2018 2:49:00 AM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/19/2018 2:49:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/19/2018 2:49:00 AM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	4/19/2018 2:49:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/19/2018 2:49:00 AM
1,2,4-Trimethylbenzene	0.84	0.74		ug/m3	1	4/19/2018 2:49:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/19/2018 2:49:00 AM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/19/2018 2:49:00 AM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/19/2018 2:49:00 AM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/19/2018 2:49:00 AM
1,3,5-Trimethylbenzene	0.59	0.74	J	ug/m3	1	4/19/2018 2:49:00 AM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/19/2018 2:49:00 AM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/19/2018 2:49:00 AM
1,4-Dichlorobenzene	0.84	0.90	J	ug/m3	1	4/19/2018 2:49:00 AM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/19/2018 2:49:00 AM
2,2,4-trimethylpentane	0.61	0.70	J	ug/m3	1	4/19/2018 2:49:00 AM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	4/19/2018 2:49:00 AM
Acetone	21	3.6		ug/m3	5	4/21/2018 6:36:00 AM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/19/2018 2:49:00 AM
Benzene	1.2	0.48		ug/m3	1	4/19/2018 2:49:00 AM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/19/2018 2:49:00 AM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/19/2018 2:49:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	4/19/2018 2:49:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	4/19/2018 2:49:00 AM
Carbon disulfide	< 0.47	0.47		ug/m3	1	4/19/2018 2:49:00 AM
Carbon tetrachloride	0.57	0.19		ug/m3	1	4/19/2018 2:49:00 AM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/19/2018 2:49:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	4/19/2018 2:49:00 AM
Chloroform	< 0.73	0.73		ug/m3	1	4/19/2018 2:49:00 AM
Chloromethane	1.2	0.31		ug/m3	1	4/19/2018 2:49:00 AM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	4/19/2018 2:49:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/19/2018 2:49:00 AM
Cyclohexane	1.3	0.52		ug/m3	1	4/19/2018 2:49:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/19/2018 2:49:00 AM
Ethyl acetate	9.9	2.7		ug/m3	5	4/21/2018 6:36:00 AM
Ethylbenzene	1.8	0.65		ug/m3	1	4/19/2018 2:49:00 AM
Freon 11	1.0	0.84		ug/m3	1	4/19/2018 2:49:00 AM
Freon 113	< 1.1	1.1		ug/m3	1	4/19/2018 2:49:00 AM
Freon 114	< 1.0	1.0		ug/m3	1	4/19/2018 2:49:00 AM

Qualifiers: ** Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

.

Date: 24-Apr-18

CLIENT:	LaBella Associates, P.C.
Lab Order:	C1804042
Project:	46 Mount Hope Ave
Lab ID:	C1804042-009A

Client Sample ID: OA-1 Tag Number: 157,337 Collection Date: 4/10/2018 Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	TO	-15			Analyst: RJP
Freon 12	8.4	0.74		ug/m3	1	4/19/2018 2:49:00 AM
Heptane	1.5	0.61		ug/m3	1	4/19/2018 2:49:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/19/2018 2:49:00 AM
Hexane	5.6	0.53		ug/m3	1	4/19/2018 2:49:00 AM
Isopropyl alcohol	5.7	1.8		ug/m3	5	4/21/2018 6:36:00 AM
m&p-Xylene	5.7	1.3		ug/m3	1	4/19/2018 2:49:00 AM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/19/2018 2:49:00 AM
Methyl Ethyl Ketone	1.7	0.88		ug/m3	1	4/19/2018 2:49:00 AM
Methyl Isobutyl Ketone	0.90	1.2	J	ug/m3	1	4/19/2018 2:49:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/19/2018 2:49:00 AM
Methylene chloride	6.7	0.52		ug/m3	1	4/19/2018 2:49:00 AM
o-Xylene	1.5	0.65		ug/m3	1	4/19/2018 2:49:00 AM
Propylene	< 0.26	0.26		ug/m3	1	4/19/2018 2:49:00 AM
Styrene	0.60	0.64	J	ug/m3	1	4/19/2018 2:49:00 AM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	4/19/2018 2:49:00 AM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/19/2018 2:49:00 AM
Toluene	17	2.8		ug/m3	5	4/21/2018 6:36:00 AM
trans-1,2-Dichloroethene	0.59	0.59		ug/m3	1	4/19/2018 2:49:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/19/2018 2:49:00 AM
Trichloroethene	< 0.16	0.16		ug/m3	1	4/19/2018 2:49:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/19/2018 2:49:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/19/2018 2:49:00 AM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/19/2018 2:49:00 AM

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected
	В	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection
	S	Spike Recovery outside accepted recovery limits		Page 18 of 18

	Centek Labs - Chain of Custody	ain of Cust	•	ne: 46 Mount	Hope Avenue	Detection Limit	Report Level
Cantek Leborabores				* Intrior Aur	Surpling		Level
	Syracuse, NY 13206			<u>א</u>		1 IgA3)
ŀ	315-431-9730	Vapor Intrusion & IAQ		Quote # ローント Canister Order # フレント		EMPERATION SALAR	
TAT	k Rush TAT	Company: /	ABCUS A	~	Company:		
Turnaround Time:	One Surchange % Date:	81		Ŋ,	Check here if same.		
5 Business Days	75%	Address: 2	ALEX BOA	and usur energy	Address:	Accounts purable	
3 Business Days	5,5	<u>m</u>	전	ER NY 14614	ie, Zip	2ANUE	
2 Business Days	75%						
"Next Day by 5pm	100%	Email: A.S. ext.(2)	Ha Lalsali	Le Plican.	EMBIE ATW LAN	ATOUADUSTLUM	
Same Dav	200%	Phone: <7	-05-454-61	611 0	Phone: 585-4	54-6110	
For Same and Next Day TAT	Please Not	Canister	Regulator	Analysis Request	Field Vacuum	Labs Vacuum**	T- Comments
Sample ID	Date Sampled	Number	Number		Start / Stop	RecVIAnalysis	START STODY
TA-1	81/01/4	1191	342	10-15	-301-5	121	0858 1545
TA-2		SA S	250		-291-4	141	0891 1630
IA-3		328	1155		-30+1 -5	-4-	0911 1554
TA-4		544	326		-29.57 - 4	13-	7891 924
IA-S		126	1 28		-30+1-8	1 2 1	0021 6260
1		26 1	398		-	121	0916 1643
I.		163	112		-30+1 -4	+2-	0942 1645
1		479	406		1 PE-	24 1	N32 1532
0A - 1	4	157	337	4	-30 1-4	12-	0950 1330 TEND
					-	****	
					-		
							
							
						-	
						-	
					,	-	
					•	1	
					i I	1	
Chain of Custody	Print Name		Signature		Date/Time	Courier: CIRCLE ONE	Ē
Sampled by:	Alex Breft		las	c Rud	4-13-18	UPS	Pickup/Dropoff
Relinguished by:	Aux Brett		She was	- AND	4-13-18	"For LAB USE ONLY	
Deceived at 1 ah hv		6_	P	led -	4-18-18	Work Order # C (01804042-3

オボ

e de

APPENDIX C DUSR DATA USABILITY SUMMARY REPORT

for

LaBella Associates, P.C.

300 State Street

Rochester, NY 14614

46 Mt. Hope Drive Project 2160225 SDG: C1804042 Sampled 4/10/2018

TO-15 AIR SAMPLES

IA-1	(C1804042-01)
IA-2	(C1804042-02)
IA-3	(C1804042-03)
IA-4	(C1804042-04)
IA-5	(C1804042-05)
IA-6	(C1804042-06)
IA-8	(C1804042-07)
IA-7	(C1804042-08)
OA-1	(C1804042-09)

DATA ASSESSMENT

A TO-15 data package containing analytical results for nine air samples was received from LaBella Associates, P.C. on 21May18. The ASP deliverables package included formal reports, raw data, the necessary QC, and supporting information. The samples, taken from the 46 Mt. Hope Avenue site, were identified by Chain of Custody documents and traceable through the work of Centek Laboratories, LLC, the laboratory contracted for analysis. The analyses were performed using US EPA Method TO-15 and addressed measurements of sixty-two volatile organic compounds. Laboratory data was evaluated according to the quality assurance / quality control requirements of the New York State Department of Environmental Conservation's Analytical Services Protocol (ASP), September 1989, Rev. 07/2005. When the required protocol was not followed, the current EPA Region II Functional Guidelines (SOP HW-31, Rev. #4, October 2006, Volatile Organic Analysis of Ambient Air in Canisters by Method TO-15) was used as a technical reference.

Page 1

The results reported from IA-5 and OA-1 have been qualified as estimations because the sampling equipment did not function properly.

acetone, ethyl acetate, isopropyl alcohol, toluene The and heptane results reported from the dilutions of each sample have been qualified as estimations due to a low internal standard response.

CORRECTNESS AND USABILITY

Reported data should be considered technically defensible and completely usable in its present form. Reported concentrations that are felt to provide a usable estimation of the conditions being measured have been flagged "J" or "UJ". Estimated data should be used with caution. A detailed discussion of the review process follows.

Two facts should be considered by all data users. No compound concentration, even if it has passed all QC testing, can be guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error. Secondly. DATAVAL, Inc. guarantees the quality of this data assessment. However, DATAVAL, Inc. does not warrant any interpretation or utilization of this data by a third party.

Reviewer's signature:

James B. Baldwin Date: 23 May 18

VDATAVAL, Inc.

SAMPLE HISTORY

Analyte concentrations can deteriorate with time due to chemical instability, bacterial degradation or volatility. Samples that are not properly preserved or are not analyzed within established holding times may no longer be considered representative. Holding times are calculated from the date of sampling. TO-15 samples must be analyzed within 14 days of collection.

This group of nine air samples was collected from the 46 Mt. Hope Ave. site on 10Apr18. Each sample was collected in a 1-liter SUMMA canister that was set in the laboratory to collect an eighthour sample. After sampling, the canisters were shipped back to the laboratory, via FedEx-Ground, on 13Apr18 and were received on 18Apr18. Although the sample canisters were received intact, custody seals were not present on the packaging.

Although each SUMMA canister was set in the laboratory to collect an 8-hour sample, sampling was terminated after 3.75-8.5 hours based on each canister's vacuum gauge reading. The post sampling vacuum reading from IA-5 did not satisfy the ASP requirement of $-5\pm1"$ Hg. The results reported from this sample have been qualified as estimations. The results from OA-1 have been similarly qualified because the sample was only collected for 3.6 hours.

The agreement between the post sampling vacuum readings and the readings at the time of analysis indicates that the integrity of the canisters was maintained throughout this period.

SAMPLE	PRIOR TO	PRIOR TO	POST	LAB	LAB
	SHIPMENT	SAMPLING	SAMPLING	RECEIPT	ANALYSIS
	(``Hg)	(``Hg)	("Hg)	("Hg)	("Hg)
IA-1	-30	-30	-5	-3	-3
IA-2	-30	-29	-4	-4	- 4
IA-3	-30	-30	-5	- 4	-4
IA-4	-30	-29.5	-4	-3	-3
IA-5	-30	-30	-8	-7	-7
IA-6	-30	-30	-4	-2	-2
IA-8	-30	-30	-4	-2	-1
IA-7	-30	-29	-5	- 4	-4
IO-1	-30	-30	-4	-2	-1

The analysis of this group of samples was completed on 21Apr18, satisfying the ASP holding time limitation.

CANISTER CERTIFICATION

The canisters used for this project were pressure tested at 30 psig for 24 hours. Each canister demonstrated a change ≤ 0.5 psig over this period.

The canisters for this project were cleaned in three batches. A blank analysis of a clean canister from each batch was free of

targeted analyte contamination exceeding the laboratory's reporting limit.

Page 3

BLANKS

Blanks are analyzed to evaluate various sources of sample contamination. Trip Blanks monitor sampling activities, sample transport and storage. Method blanks are analyzed to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank.

Two method blanks were analyzed with this group of samples. Both of these blanks demonstrated acceptable chromatography and were free of targeted analyte contamination.

MS TUNING

Mass spectrometer tuning and performance criteria are established to ensure sufficient mass resolution and sensitivity to accurately detect and identify targeted analytes. Verification is accomplished using a certified standard.

BFB ion abundance criteria was reported from standards that were processed before the initial instrument calibration and prior to the analysis of program samples on 18Apr18 and 20Apr18. Each of these checks satisfied the ASP acceptance criteria.

CALIBRATION

Requirements for instrument calibration are established to ensure that laboratory equipment is capable of producing accurate, quantitative data. Initial calibrations demonstrate a range through which measurements may be made. Continuing calibration check standards verify instrument stability.

The initial instrument calibration was performed on 12Apr18. Standards of 0.03, 0.04, 0.10, 0.15, 0.30, 0.50, 0.75, 1.0, 1.25, 1.50 and 2.0 ppbV were included. Each targeted analyte produced the required levels of instrument response and demonstrated an acceptable degree of linearity during this calibration.

Continuing calibration checks were performed on 18Apr18 and 20Apr18, prior to the 24-hour periods of instrument operation that included samples from this program. When compared to the initial calibration, each targeted analyte demonstrated and acceptable level of instrument stability during both calibration checks.

SURROGATES

Each sample, blank and standard is spiked with surrogate compounds prior to analysis. The structures of surrogates are similar to analytes of interest, but they are not normally found in environmental samples. Surrogate recoveries are monitored to evaluate overall laboratory performance and the efficiency of laboratory technique.

Although surrogate summary sheets were properly prepared, an incorrect acceptance criteria was applied. When compared to the

ASP requirement, however, an acceptable recovery was reported for each surrogate addition to this group of samples.

INTERNAL STANDARDS

Internal standards are added to each sample, blank and standard just prior to injection. Analyte concentrations are calculated relative to the response of a specific internal standard. Internal standard performance criteria ensure that GC/MS sensitivity and response are stable during the analysis of each sample. The area of internal standard peaks may not vary by more than 40%. When compared to the preceding calibration check, retention times may not vary by more than ±10 seconds.

The laboratory recorded the response of each internal standard addition to this group of samples and the response obtained from the preceding CCV standard. Although the control limits based on the response of the CCV were not reported, they were calculated by this reviewer. When compared to these limits, acceptable performance was reported for the internal standard additions to each initial, undiluted program sample. A low response was reported for the bromochloromethane additions to dilutions of IA-5, IA-6 and IA-8; and the 1,4-difluorobenzene and chlorobenzene-d5 additions to each diluted sample. Based on this performance, the results reported from each diluted sample have been qualified as estimations.

ATRIX SPIKES / MATRIX SPIKE DUPLICATES / MATRIX SPIKED BLANKS

Matrix spiking refers to the addition of known analyte concentrations to a sample, prior to analysis. Analyte recoveries provide an indication of laboratory accuracy. The analysis of a duplicate spiked aliquot provides a measurement of precision.

Although a sample from this program was not selected for matrix spiking, two pairs of spiked blanks (LCS/LCSD) were prepared and analyzed with this group of samples. The recoveries reported from these LCS samples included high recoveries of 1,2,4-trichlorobenzene (139%) and hexachloro-1,3-butadiene (141%). These indications of positive bias, however, warrant no concern because these analytes were not detected in this group of smaples.

DUPLICATES

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. The results produced by the analysis of this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects or poor laboratory technique.

A field split duplicate sample was not included in this delivery group.

REPORTED ANALYTES

Formal reports were provided for each sample. The data package also included total ion chromatograms and raw instrument print

outs. Reference mass spectra were provided to confirm the identification of each analyte that was detected in this group of samples.

Page 5

SUMMARY OF QUALIFIED DATA

46 MT. HOPE AVE. SITE

SAMPLED APRIL 2018

•

INT STD HEPTANE	8.6J 9.4J
INT STD TOLUENE	6.4J 7.5J 9.8J 10J 17J
INT STD ISOPROPANOL	130 120 5.94 7.95 7.90 7.90 7.70
INT STD ETHYL ACETATE	7.67 9.70 9.30 9.80 9.90 9.90
INT STD ACETONE	244 244 244 244 214 214 214 214 214
INT SAMPLING ACI	ALL J/UJ ALL J/UJ
	(C1804042-01) (C1804042-02) (C1804042-03) (C1804042-04) (C1804042-06) (C1804042-06) (C1804042-06) (C1804042-06) (C1804042-09) (C1804042-09)
	IA-1 IA-2 IA-3 IA-5 IA-6 IA-8 IA-8 OA-1 OA-1

**

₿

Н

IN

S

Quantitation Limit

Freon 113

Freon 114

Qualifiers:

Project: 46 Mount Hope Ave Collection D	1191, Date: 4/10/2 Atrix: AJR DF 1 1 1 1 1 1 1 1 1 1 1 1 1	
Lab ID: C1804042-001A Mail Analyses Result **Limit Qual Units IUG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE TO-15 1,1,1-Trichloroethane < 0.82	trix: AIR DF 1 1 1 1 1 1 1 1 1	Date Analyzed Analyst: RJF 4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM
Analyses Result **Limit Qual Units Aug/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE TO-15 1,1,1-Trichloroethane < 0.82 0.82 ug/m3 1,1,2,2-Tatrachloroethane < 0.82 0.82 ug/m3 1,1,2,2-Tatrachloroethane < 0.82 0.82 ug/m3 1,1,2,2-Tatrachloroethane < 0.82 0.82 ug/m3 1,1-Dichloroethane < 0.61 0.61 ug/m3 1,1-Dichloroethane < 0.16 0.16 ug/m3 1,2,4-Trichlorobenzene < 1.1 1.1 ug/m3 1,2,4-Trinethylbenzene < 0.79 0.74 ug/m3 1,2,4-Trinethylbenzene < 0.79 0.74 ug/m3 1,2,2-Dichlorobenzene < 0.90 0.90 ug/m3 1,2-Dichloroptane < 0.69 0.69 ug/m3 1,2-Dichloroppane < 0.69 0.69 ug/m3 1,3-Dichlorobenzene < 0.90 ug/m3 1,3-Dichlorobenzene < 0.90 ug/m3 1,4-Dichorobenzene < 0.90 0.90	DF 1 1 1 1 1 1 1	Analyst: RJF 4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM
TUG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE TO-15 1,1,1-Trichloroethane < 0.82 0.82 ug/m3 1,1,2,2-Tatrachloroethane < 1.0 1.0 ug/m3 1,1,2-Trichloroethane < 0.82 0.82 ug/m3 1,1,2-Trichloroethane < 0.82 0.82 ug/m3 1,1,2-Trichloroethane < 0.61 0.61 ug/m3 1,1-Dichloroethane < 0.61 0.61 ug/m3 1,2-Trichloroethane < 0.16 0.16 ug/m3 1,2-Trichloroethane < 0.16 0.16 ug/m3 1,2-Trichlorobenzene < 1.1 1.1 ug/m3 1,2,4-Trichlorobenzene < 0.79 0.74 ug/m3 1,2-Dichlorobenzene < 0.90 0.90 ug/m3 1,2-Dichloropenzene < 0.69 0.69 ug/m3 1,2-Dichloropenzene < 0.69 0.69 ug/m3 1,2-Dichloropenzene < 0.59 0.74 J ug/m3 1,3-5-Trimethylbenzene < 0.59 0.74 J ug/m3	1 1 1 1 1 1 1 1	Analyst: RJF 4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM
1,1,1-Trichloroethane< 0.82	1 1 1 1 1	4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM
1,1,2,2-Tatrachloroethane< 1.01.0 $ug/m3$ $1,1,2$ -Trichloroethane< 0.62	1 1 1 1 1	4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM
1,1,2-Trichloroethane< 0.820.82ug/m3 $1,1$ -Dichloroethane< 0.61	t t 1 1 1	4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM
1.1-Dichloroethane< 0.610.61ug/m31.1-Dichloroethane< 0.16	t 5 1 1	4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM
1,1-Dichloroethene< 0.160.16ug/m31,2,4-Trichlorobenzene< 1.1	5 1 1 1	4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM
1,2,4-Trichlorobenzene< 1,11,1ug/m3 $1,2,4$ -Trimethylbenzene0.790.74ug/m3 $1,2$ -Dibromoethane< 1.2	1 1 1	4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM
1,2,4-Trimethylbenzene 0.79 0.74 $ug/m3$ $1,2$ -Dibromoethane < 1.2 1.2 $ug/m3$ $1,2$ -Dichlorobenzene < 0.90 0.90 $ug/m3$ $1,2$ -Dichlorobenzene < 0.61 0.61 $ug/m3$ $1,2$ -Dichlorobenzene < 0.61 0.61 $ug/m3$ $1,2$ -Dichloroptopane < 0.69 0.69 $ug/m3$ $1,3$ -Dichlorobenzene < 0.69 0.74 J $1,3$ -Dichlorobenzene < 0.33 0.33 $ug/m3$ $1,3$ -Dichlorobenzene < 0.90 0.90 $ug/m3$ $1,4$ -Dichlorobenzene < 0.90 0.90 $ug/m3$ $1,4$ -Dichlorobenzene < 0.70 0.70 $ug/m3$ $2,2,4$ -trimethylpentane < 0.70 0.70 $ug/m3$ 4 -ethyltoluene < 0.74 0.74 $ug/m3$ Acetone — 24 3.6 $ug/m3$ Allyl chloride < 0.47 0.47 $ug/m3$ Benzene — 0.70 0.48 $ug/m3$	1	4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM
1,2-Dibromoethane< 1.21.2 $ug/m3$ 1,2-Dichlorobenzene< 0.90	1	4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM
1,2-Dichlorobenzene< 0.900.90ug/m3 $1,2$ -Dichloroethane< 0.61	•	4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM
1,2-Dichloroethane< 0.610.61ug/m3 $1,2$ -Dichloropropane< 0.69	1 1 1	4/18/2018 9:19:00 PM 4/18/2018 9:19:00 PM
1,2-Dichloropropane< 0.690.69ug/m3 $1,3,5$ -Trimethylbenzene0.590.74Jug/m3 $1,3$ -butadiene< 0.33	1 1 1	4/18/2018 9:19:00 PM
1.3.5-Trimethylbenzene 0.59 0.74 Jug/m3 1.3 -butadiene < 0.33 0.33 $ug/m3$ 1.3 -Dichlorobenzene < 0.90 0.90 $ug/m3$ 1.4 -Dichlorobenzene < 0.90 0.90 $ug/m3$ 1.4 -Dichlorobenzene < 1.090 0.90 $ug/m3$ 1.4 -Dichlorobenzene < 1.1 1.1 $ug/m3$ $2.2.4$ -trimethylpentane < 0.70 0.70 $ug/m3$ 4 -ethyltoluene < 0.74 0.74 $ug/m3$ Acetone 24 3.6 $ug/m3$ Allyl chloride < 0.47 0.47 $ug/m3$ Benzene 0.70 0.48 $ug/m3$ Benzyl chloride < 0.86 0.86 $ug/m3$	1 1 1	
1,3-butadiene < 0.33	1	4/18/2018 9:19:00 PM
1,3-butadiene < 0.33	1	
1.3-Dichlorobenzene < 0.90	•	4/18/2018 9:19:00 PM
1,4-Dioxane < 1.1	1	4/18/2018 9:19:00 PM
1,4-Dioxane < 1,1	1	4/18/2018 9:19:00 PM
2,2,4-trimethylpentane < 0.70	1	4/18/2018 9:19:00 PM
4-ethyltoluene < 0.74 0.74 ug/m3 Acetone - 24 J 3.6 ug/m3 Allyl chloride < 0.47	1	4/18/2018 9:19:00 PM
Acetone 24 3.6 ug/m3 Allyl chloride < 0.47	1	4/18/2018 9:19:00 PM
Allyl chloride < 0.47 0.47 ug/m3 Benzene - 0.70 0.48 ug/m3 Benzyl chloride < 0.86	5	4/21/2018 1:41:00 AM
Benzena 0.70 0.48 ug/m3 Benzyl chloride < 0.86	1	4/18/2018 9:19:00 PM
Benzyl chloride < 0.86 0.86 ug/m3	1	4/18/2018 9:19:00 PM
	1	4/18/2018 9:19:00 PM
	1	4/18/2018 9:19:00 PM
Bromoform < 1.6 1.6 ug/m3	1	4/18/2018 9:19:00 PM
Bromomethane < 0.58 0.58 ug/m3	1	4/18/2018 9:19:00 PM
Carbon disulfide < 0.47 0.47 ug/m3	1	4/18/2018 9:19:00 PM
Carbon tetrachloride - 0.50 0.19 ug/m3	1	4/18/2018 9:19:00 PM
Chlorobenzene < 0.69 0.69 ug/m3	1	4/18/2018 9:19:00 PM
Chloroethane < 0.40 0.40 ug/m3	1	4/18/2018 9:19:00 PM
Chloroform - 0.59 0.73 J ug/m3	1	4/18/2018 9:19:00 PM
Chloromethane – 0.83 0.31 ug/m3	1	4/18/2018 9:19:00 PM
cis-1,2-Dichloroethane < 0.16 0.16 ug/m3	1	4/18/2018 9:19:00 PM
cis-1,2-Dichloropropene < 0.68 0.68 ug/m3	1	4/18/2018 9:19:00 PM
Cyclohexane < 0.52 0.52 ug/m3	1	4/18/2018 9:19:00 PM
Dibromochloromethane <1.3 1.3 ug/m3	1	4/18/2018 9:19:00 PM
	5	4/21/2018 1:41:00 AM
	1	4/18/2018 9:19:00 PM
Ethylbenzene < 0.65 0.65 ug/m3 Freon 11 – 1.2 0.84 ug/m3	1	4/18/2018 9:19:00 PM

1.1

1.0

< 1.1

< 1.0

Analyte detected in the associated Method Blank

Spike Recovery outside accepted recovery limits

Non-routine analyte. Quantitation estimated.

Holding times for preparation or analysis exceeded

Date: 16-May-18

Results reported are not blank corrected

1

1

E

ug/m3

ug/m3

.

J ND Not Detected at the Limit of Detection

Page 1 of 18

4/18/2018 9:19:00 PM

4/18/2018 9:19:00 PM

- Estimated Value above quantitation range
- Analyte detected below quantitation limit

В

Н

JN

S

** Quantitation Limit

Analyte detected in the associated Method Blank

Spike Recovery outside accepted recovery limits

Non-routine analyte. Quantitation estimated.

Holding times for preparation or analysis exceeded

Qualifiers:

CLIENT:	LaBella Associates, P.C.	Client Sample ID; 1A-1	kantila artis
Lab Order:	C1804042	Tag Number: 1191,342	
Project:	46 Mount Hope Ave	Collection Date: 4/10/2018	
Lab ID:	C1804042-001A	Matrix: AIR	

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	DOCE-1,1DCE	тс)-15			Analyst: RJP
Freon 12 -	2.4	0.74		ug/m3	1	4/18/2018 9:19:00 PM
Heptane-	4.7	0.61		ug/m3	1	4/18/2018 9:19:00 PM
Hexachloro-1,3-butadiene	< 1.6	1. 6		ug/m3	\$	4/18/2018 9:19:00 PM
Hexane -	0.78	0.53		ug/m3	1	4/18/2018 9:19:00 PM
Isopropyl alcohol -	13 J	1.8		ug/m3	5	4/21/2018 1:41:00 AM
m&p-Xylene –	1.3	1.3	J	ug/m3	1	4/18/2018 9:19:00 PM
Mathyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/18/2018 9:19:00 PM
Methyl Ethyl Ketone -	2.0	0.88		ug/m3	1	4/18/2018 9:19:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/18/2018 9:19:00 PM
Methyl tert-butyl ether	< 0.64	0.54		ug/m3	1	4/18/2018 9:19:00 PM
Methylene chloride -	1.0	0.52		ug/m3	1	4/18/2018 9:19:00 PM
o-Xylene –	0.52	0.65	J	ug/m3	1	4/18/2018 9:19:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/18/2018 9:19:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/18/2018 9:19:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	4/18/2018 9:19:00 PM
Tetrahydrofuran -	0.71	0.44		ug/m3	1	4/18/2018 9:19:00 PM
Toluena -	5.6	0.57		ug/m3	1	4/18/2018 9:19:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/18/2018 9:19:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/18/2018 9:19:00 PM
Trichloroethene-	0.64	0.16		ug/m3	1	4/18/2018 9:19:00 PM
Vinyl ecetate	< 0.53	0.53		ug/m3	1	4/18/2018 9:19:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/18/2018 9:19:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/18/2018 9:19:00 PM

Λ	Ń	{
- (

,	Results reported are not blank corrected
---	--

and a second second development of the state of the second second second second second second second second sec

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 2 of 18

Date: 16-May-18

CLIENT:	LaBella Associates, P.C	2.		C	lient Sample ID:	IA-2	
Lab Order;	C1804042				Tag Number:	546,2:	50
Project:	46 Mount Hope Ave				Collection Date:	4/10/2	2018
Lab ID:	C1804042-002A				Matrix:	AIR	
Analyses	an an ann an Anna an An	Result	**Limit	Qual	Ųnits	DF	Date Analyzed
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE-1	1,1DCE	то	-15			Analyst: RJP
1,1,1-Trichloroe	ethane	< 0.82	0.82		ug/m3	1	4/18/2018 10:00:00 PM
1,1,2,2-Tetrach	loroethane	< 1.0	1.0		ug/m3	1	4/18/2018 10:00:00 PM
1,1,2-Trichloroe	athane	< 0.82	0.82		ug/m3	1	4/16/2018 10:00:00 PM
1.1-Dichloroeth	ane	< 0.61	0.61		ug/m3	1	4/18/2018 10:00:00 PM
1,1-Dichloroeth	ene	< 0,18	0.16		ug/m3	1	4/18/2018 10:00:00 PM
1,2,4-Trichlorol	senzene	< 1.1	1.1		ug/m3	1	4/18/2018 10:00:00 PM
1.2.4-Trimethyl	hanzana _	0.69	0.74	J	ug/m3	1	4/18/2018 10:00:00 PM

1,1-DICHQLOB(1016	- 0, IV	W. IV		agrino	•	
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/18/2018 10:00:00 PM
1,2,4-Trimethylbenzene -	0.69	0.74	J	ug/m3	1	4/18/2018 10:00:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/18/2018 10:00:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/18/2018 10:00:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/18/2018 10:00:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/18/2018 10:00:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	4/18/2018 10:00:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/18/2018 10:00:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/18/2018 10:00:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/18/2018 10:00:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/18/2018 10:00:00 PM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	4/18/2018 10:00:00 PM
4-ethyltoluene	< 0,74	0.74		ug/m3	1	4/18/2018 10:00:00 PM
Acetone -	24 J	7.1		սք/m3	10	4/21/2018 2:17:00 AM
Allyt chloride	< 0.47	0.47		ug/m3	1	4/18/2018 10:00:00 PM
Benzene -	0.70	0.48		ug/m3	1	4/18/2018 10:00:00 PM
Benzył chloride	< 0.86	0.86		ug/m3	1	4/18/2018 10:00:00 PM
Bromodichloromethane	< 1,0	1.0		ug/m3	1	4/18/2018 10:00:00 PM
Bromoform	< 1.6	1,6		ug/m3	1	4/18/2018 10:00:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	4/18/2016 10:00:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	1	4/18/2018 10:00:00 PM
Carbon tetrachloride -	0.50	0.19		ug/m3	1	4/18/2018 10:00:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/18/2018 10:00:00 PM
Chioroethane	< 0.40	0.40		ug/m3	1	4/18/2018 10:00:00 PM
Chloroform-	0.54	0.73	J	ug/m3	1	4/18/2018 10:00:00 PM
Chioromethane -	0.89	0.31		ug/m3	1	4/18/2018 10:00:00 PM
cis-1,2-Dichloroethene	< 0.18	0.16		ug/m3	1	4/18/2018 10:00:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/18/2018 10:00:00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	4/18/2018 10:00:00 PM
Dibromochloromethane	< 1,3	1.3		ug/m3	1	4/18/2018 10:00:00 PM
Ethyl acetate ~	7.9	5.4		ug/m3	10	4/21/2018 2:17:00 AM
Ethylbenzene	< 0.65	0.65		ug/m3	1	4/18/2018 10:00:00 PM
Freen 11 -	1,2	0.84		ug/m3	1	4/18/2018 10:00:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	4/18/2018 10:00:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	4/18/2018 10:00:00 PM

Qualifiers: ** Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantilation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

Date: 16-May-18

- E Estimated Value above quantitation range
- J Analyze detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 3 of 18

S

Qualifiers:

B Analyte detected in the associated Method Blank

JN Non-routine analyte, Quantitation estimated.

H Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

** Quantitation Limit

Date: 16-May-18

Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
Lab ID:	C1804042-002A				Matrix:	AIR	
Project:	46 Mount Hope Ave				Collection Date:	4/10/201	8
Lab Order:	C1804042				Tag Number:		
CLIENT:	LaBella Associates, P.C.			C	lient Sample ID:	IA-2	

UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1.1DCE	TO-	15			Analyst: RJF
Freen 12	2.5	0.74		ug/m3	1	4/18/2018 10:00:00 PM
Heptane -	5,3	0.61		ug/m3	1	4/18/2018 10:00:00 PM
Hexachloro-1,3-butadiene	< 1.6	1,6		ug/m3	1	4/18/2018 10:00:00 PI
Hexane —	0.74	0.53		ug/m3	1	4/18/2018 10:00:00 Pl
Isopropyl alcohol -	12 J	3.7		ug/m3	10	4/21/2018 2:17:00 AM
m&p-Xylene -	1.1	1.3	J	ug/m3	1	4/18/2018 10:00:00 P
Methyl Butyl Ketone	< 1,2	1.2		ug/m3	1	4/18/2018 10:00:00 P
Methyl Ethyl Kelone -	2.2	0.88		ug/m3	1	4/18/2018 10:00:00 P
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/18/2018 10:00:00 P
Viethyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/18/2018 10:00:00 P
Viethylene chloride –	1.6	0.52		ug/m3	1	4/18/2018 10:00:00 F
-Xylene -	0.48	0.65	J	ug/m3	1	4/18/2018 10:00:00 F
Propylene	< 0.26	0.26		ug/m3	1	4/18/2018 10:00:00 P
Styrene	< 0.64	0.64		ug/m3	1	4/18/2018 10:00:00 F
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	4/18/2018 10:00:00 F
Tetrahydrofuran -	0.88	0.44		ug/m3	1	4/18/2018 10:00:00 F
Toluene -	6.0	0.57		ug/m3	1	4/18/2018 10:00:00 F
rans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/18/2018 10:00:00 F
rans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/18/2018 10:00:00 F
Trichloroethene -	0.70	0.16		ug/m3	1	4/18/2018 10:00:00 F
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/18/2018 10:00:00 F
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/18/2018 10:00:00 F
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/18/2018 10:00:00 F

AL

Results reported are not blank corrected ,

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 4 of 18

CLIENT: LaBella Associates, P.C. Client Sample ID: 1A-3 Lab Order: C1804042 Tag Number: 328,1156 Collection Date: 4/10/2018 **Project:** 46 Mount Hope Ave Matrix: AIR Lab ID: C1804042-003A ------

Analyses	Result	**Limit	Quai	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	DCE-1,1DCE	тс)-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/18/2018 10:42:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/18/2018 10:42:00 PM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/18/2018 10:42:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/18/2018 10:42:00 PN
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	4/18/2018 10:42:00 PN
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/18/2018 10:42:00 PN
1,2,4-Trimethylbenzene -	0.59	0.74	J	ug/m3	1	4/18/2018 10:42:00 PN
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/18/2018 10:42:00 PN
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/18/2018 10:42:00 PN
1,2-Dichloroethane	< 0.61	0.61		ug/m3	i	4/18/2018 10:42:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/18/2018 10:42:00 PM
1,3,5-Trimethylbenzene -	0.69	0.74	J	ug/m3	1	4/18/2018 10:42:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/18/2018 10:42:00 PN
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/18/2018 10:42:00 PN
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/18/2018 10:42:00 PN
1,4-Dioxane	< 1.1	1,1		ug/m3	1	4/18/2018 10:42:00 PN
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	4/18/2018 10:42:00 PN
4-ethyltoluene	< 0.74	0.74		ug/m3	1	4/18/2018 10:42:00 PN
Acetone -	43 J	7.1		ug/m3	10	4/21/2018 2:54:00 AM
Aliyi chloride	< 0.47	0.47		ug/m3	1	4/18/2018 10:42:00 PN
Benzane —	0,67	0.48		ug/m3	1	4/18/2018 10:42:00 PN
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/18/2018 10:42:00 PN
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/18/2018 10:42:00 PN
Bromoform	< 1,6	1.6		ug/m3	1	4/18/2018 10:42:00 PN
Bromomethane	< 0.58	0.58		ug/m3	1	4/18/2018 10:42:00 PM
Carbon disuifide	< 0.47	0.47		ug/m3	1	4/18/2018 10:42:00 PN
Carbon tetrachloride -	0.50	0.19		ug/m3	t	4/18/2018 10:42:00 PN
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/18/2018 10:42:00 PN
Chloroethane	< 0.40	0.40		ug/m3	1	4/18/2018 10:42:00 PM
Chloroform-	0.63	0.73	J	ug/m3	1	4/18/2018 10:42:00 PM
Chloromethane -	0.89	0.31		ug/m3	1	4/18/2018 10:42:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	4/18/2018 10:42:00 PN
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/18/2018 10:42:00 PN
Cyclohexane	< 0.52	0.52		ug/m3	1	4/18/2018 10:42:00 PN
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/18/2018 10:42:00 PN
Ethyl acetate	4.7]	5.4	J	ug/m3	10	4/21/2018 2:54:00 AM
Ethylbenzene	< 0.65	0.85		ug/m3	1	4/18/2018 10:42:00 PM
Freon 11-	1.2	0.84		ug/m3	1	4/18/2018 10:42:00 PN
Freon 113	< 1.1	1.1		ug/m3	1	4/18/2018 10:42:00 PN
Freon 114	< 1.0	1.0		ug/m3	1	4/18/2018 10:42:00 PN

** Quantitation Limit Qualifiers:

Analyte detected in the associated Method Blank B

Holding times for preparation or analysis exceeded Н

Non-routine analyte. Quantitation estimated, JN Spike Recovery outside accepted recovery limits S

Results reported are not blank corrected .

E Estimated Value above quantitation range

- 3 Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 5 of 18

Date: 16-May-18

C1804042

LaBella Associates, P.C.

46 Mount Hope Ave

C1804042-003A

.....

CLIENT:

Lab Order:

Project:

Lab ID:

Analyses

UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-1	5			Analyst: RJP
Freon 12 –	2.5	0.74		ug/m3	1	4/18/2018 10:42:00 PN
Heptane -	7.5	0.61		ug/m3	1	4/18/2018 10:42:00 PM
Hexachtoro-1,3-butadiene	< 1.6	1. 6		ug/m3	1	4/18/2018 10:42:00 PM
Hexane -	0.67	0.53		ug/m3	1	4/18/2018 10:42:00 PM
isopropyl alcohol –	5.7 J	3.7		ug/m3	10	4/21/2018 2:54:00 AM
m&p-Xylene -	0.91	1.3	J	ug/m3	1	4/18/2018 10:42:00 PM
Methyl Butyl Ketone –	0.66	1.2	J	ug/m3	1	4/18/2018 10:42:00 PI
Methyl Ethyl Ketone -	1.8	0.88		ug/m3	1	4/18/2018 10:42:00 Pl
Vethyl Isobulyl Ketone 🗕	0.74	1.2	J	ug/m3	1	4/18/2018 10:42:00 PI
Vethyl tert-butyl ether	< 0.54	0.54		սց/m3	1	4/18/2018 10:42:00 P
Vethylene chloride 🗕	1.0	0.52		ug/m3	1	4/18/2018 10:42:00 P
-Xylene	< 0.65	0.65		ug/m3	1	4/18/2018 10:42:00 P
Propylene	< 0.26	0.26		ug/m3	1	4/18/2018 10:42:00 P
Styrene	< 0.64	0.64		ug/m3	1	4/18/2018 10:42:00 P
Fetrachloroethylene	< 1.0	1.0		ug/m3	1	4/18/2018 10:42:00 P
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/18/2018 10:42:00 P
Foluene -	6.4 J	5.7		ug/m3	10	4/21/2018 2:54:00 AN
rans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/18/2018 10:42:00 P
rans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/18/2018 10:42:00 P
Frichloroethene -	0.91	0.16		ug/m3	1	4/18/2018 10:42:00 P
/inyl acetate	< 0.53	0.53		ug/m3	1	4/18/2018 10:42:00 P
vinyi Bromide	< 0.66	0.66		ug/m3	1	4/18/2018 10:42:00 P
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/18/2018 10:42:00 P

**Limit Qual Units

Result

and the second second second states as the				
Qualifiers:	**	Quantitation Limit		Results reported are
	B	Analyte detected in the associated Method Blank	E	Estimated Value ab
	н	Holding times for preparation or analysis exceeded	1	Analyte detected be

- JN Non-routine analyte. Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 6 of 18

Date: 16-May-18

DF

Date Analyzed

Client Sample ID: IA-3

Tag Number: 328,1156 Collection Date: 4/10/2018

Matrix: AIR

Date: 16-May-18

CLIENT:	LaBella Associates, P.C	2.		C	lient Sample ID:	IA-4	
Lab Order:	C1804042				Tag Number:	544,256	
Project:	46 Mount Hope Ave				Collection Date:	4/10/2013	8
Lab ID:	C1804042-004A				Matrix:	AIR	
Analyses		Result	**Limit			DF	Date Analyzed

Analyses	Result	**Limit	Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	DOCE-1,1DCE	то	-15		Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/18/2018 11:23:00 PN
1,1,2,2-Tetrachioroethane	< 1.0	1.0	ug/m3	1	4/18/2018 11:23:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	4/18/2018 11:23:00 PN
1,1-Dichloroethane	< 0.81	0.61	ug/m3	1	4/18/2018 11:23:00 PM
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	4/18/2018 11:23:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.t	ug/m3	1	4/18/2018 11:23:00 PM
- 1,2,4-Trimethylbenzene	1.4	0.74	ug/m3	1	4/18/2018 11:23:00 PN
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	4/18/2018 11:23:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/18/2018 11:23:00 PM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	4/18/2018 11:23:00 PN
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	4/18/2018 11:23:00 PN
1,3,5-Trimethylbenzene	0.79	0.74	ug/m3	í	4/18/2018 11:23:00 PN
1,3-butadiene	< 0.33	0.33	ug/m3	1	4/18/2018 11:23:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/18/2018 11:23:00 PN
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/18/2018 11:23:00 PM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	4/18/2018 11:23:00 PN
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	4/18/2018 11:23:00 PM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	4/18/2018 11:23:00 PN
Acetone	30 J	7.1	ug/m3	10	4/21/2018 3:31:00 AM
Allyl chloride	< 0.47	0.47	ug/m3	1	4/18/2018 11:23:00 PN
Benzene -	0.73	0.48	ug/m3	1	4/18/2018 11:23:00 PN
Benzyl chloride	< 0.86	0.66	ug/m3	1	4/18/2018 11:23:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	4/18/2018 11:23:00 PN
Bromoform	< 1,6	1.6	ug/m3	1	4/18/2018 11:23:00 PN
Bromomethane	< 0.58	0.58	ug/m3	1	4/18/2018 11:23:00 PN
Carbon disulfide	< 0.47	0.47	ug/m3	1	4/18/2018 11:23:00 PN
Carbon tetrachloride -	0.67	0.19	ug/m3	1	4/18/2018 11:23:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	4/18/2018 11:23:00 PN
Chloroethane	< 0.40	0,40	ug/m3	1	4/18/2018 11:23:00 PM
Chloroform	< 0.73	0.73	ug/m3	1	4/18/2018 11:23:00 PM
Chloromethane ~	0.93	0.31	ug/m3	1	4/18/2018 11:23:00 PN
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	4/18/2018 11:23:00 PN
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/18/2018 11:23:00 PM
Cyclohexane	< 0.52	0.52	ug/m3	1	4/18/2018 11:23:00 PN
Dibromochloromethane	< 1.3	1.3	ug/m3	1	4/18/2018 11:23:00 PN
Ethyl acetate ~	8.3 J	5.4	ug/m3	10	4/21/2018 3:31:00 AM
Ethylbenzene	< 0.65	0.65	ug/m3	t	4/18/2018 11:23:00 PN
Freon 11 -	1.3	0.84	ug/m3	1	4/18/2018 11:23:00 PM
Freon 113	< 1.1	1,1	ug/m3	1	4/18/2018 11:23:00 PN
Freon 114	< 1.0	1.0	ug/m3	1	4/18/2018 11:23:00 PM

Qualifiers: ** Quantitation Limit

в Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded Н

Non-routine analyte, Quantitation estimated, JN

Spike Recovery outside accepted recovery limits s

Results reported are not blank corrected .

E Estimated Value above quantitation range Analyte detected below quantitation limit

J ND Not Detected at the Limit of Detection

and the triangle collected as a family of head of a standard state of the state of	د. می از مربع می مربع است است از مربع از مربع از می از می از می از می از می م می از موجد است	
CLIENT:	LaBella Associates, P.C.	Client Sample ID: 1A-4
Lab Order:	C1804042	Tag Number: 544,256
Project:	46 Mount Hope Ave	Collection Date: 4/10/2018
Lab ID:	C1804042-004A	Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	DCE-1,1DCE	TO	-15			Analyst: RJP
Freon 12 -	2.6	0.74		ug/m3	1	4/18/2018 11:23:00 PM
Heptane -	7.6	0,61		ug/m3	1	4/18/2018 11:23:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/18/2018 11:23:00 PM
Hexane -	0.63	0.53		ug/m3	1	4/18/2018 11:23:00 PM
Isopropyl alcohol -	7.4 7	3.7		ug/m3	10	4/21/2018 3:31:00 AM
m&p-Xylene —	1.3	1.3		ug/m3	1	4/18/2018 11:23:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/18/2018 11:23:00 PM
Methyl Ethyl Ketone -	1,6	0.88		ug/m3	1	4/18/2018 11:23:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/18/2018 11:23:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/18/2018 11:23:00 PM
Methylene chloride -	1,7	0.52		ug/m3	1	4/18/2018 11:23:00 PM
o-Xylene 🛥	0.61	0.65	J	ug/m3	1	4/18/2018 11:23:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/18/2018 11:23:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/18/2018 11:23:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	4/18/2018 11:23:00 PM
Tetrahydrofuran -	0.74	0,44		ug/m3	1	4/18/2018 11:23:00 PM
Toluene -	7.5 J	5.7		ug/m3	10	4/21/2018 3:31:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/18/2018 11:23:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/18/2018 11:23:00 PM
Trichtoroethene -	0.97	0.16		ug/m3	1	4/18/2018 11:23:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/18/2018 11:23:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/18/2018 11:23:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/18/2018 11:23:00 PM

1	N	3
1	N	

Results reported are not blank corrected Qualifiers: ** Quantitation Limit . E Estimated Value above quantitation range B Analyte detected in the associated Method Blank Analyte detected below quantitation limit 1 H Holding times for preparation or analysis exceeded ND Not Detected at the Limit of Detection Non-routine analyte. Quantitation estimated. JN Spike Recovery outside accepted recovery limits \$

Page 8 of 18

Date: 16-May-18

		er anne a se an an sea ann a bhliachte a' the star ann an sea ann a The sea ann ann ann ann ann an ann an ann an sea an Sharachte a' a baile ann ann an sea ann ann an seachte ann a	an a
CLIENT:	LaBella Associates, P.C.	Client Sample 1D:	IA-5
Lab Order:	C1804042	Tag Number:	136,281
Project:	46 Mount Hope Ave	Collection Date:	4/10/2018
Lab ID:	C1804042-005A	Matrix:	AIR

Analyses	Result *	*Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCI	E-1,1DCE	то	-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/19/2018 12:06:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/19/2018 12:06:00 AM
1,1,2-Trichloroethane	_ر] < 0.82 <	0.82		ug/m3	1	4/19/2018 12:06:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/19/2018 12:06:00 AM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	4/19/2018 12:06:00 AM
1,2,4-Trichlorobenzene	< 1.1 [/]	1.1		ug/m3	1	4/19/2018 12:06:00 AM
1,2,4-Trimethylbenzene	0.98 J	0.74		ug/m3	1	4/19/2018 12:06:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/19/2018 12:06:00 AM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/19/2018 12:06:00 AM
1,2-Dichloroethane	< 0.61 (UJ	0.61		ug/m3	1	4/19/2018 12:05:00 AM
1,2-Dichloropropane	< 0.69)	0.69		ug/m3	1	4/19/2018 12:06:00 AM
1,3,5-Trimethylbenzene	0.54)	0.74	J	ug/m3	1	4/19/2018 12:06:00 AM
1.3-butadiene	< 0.33	0.33		ug/m3	1	4/19/2018 12:06:00 AM
1.3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/19/2018 12:06:00 AM
1.4-Dichlorobenzene	< 0.90 入り	0.90		vg/m3	1	4/19/2018 12:06:00 AM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/19/2018 12:06:00 AM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	4/19/2018 12:06:00 AM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	4/19/2018 12:06:00 AM
Acetone	26 J	7.1		ug/m3	10	4/21/2018 4:08:00 AM
Allyl chloride	< 0.47 UJ	0.47		ug/m3	1	4/19/2018 12:06:00 AM
Benzene	0.73 J	0.48		ug/m3	1	4/19/2018 12:06:00 AM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/19/2018 12:06:00 AM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/19/2018 12:06:00 AM
Bromoform	< 1.5 (V)	1.6		ug/m3	1	4/19/2018 12:06:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	4/19/2018 12:06:00 AM
Carbon disulfide	< 0.47	0.47		ug/m3	1	4/19/2018 12:06:00 AM
Carbon tetrachloride	0.50	0.19		ug/m3	1	4/19/2018 12:06:00 AM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/19/2018 12:06:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	4/19/2018 12:06:00 AM
Chloroform	0.49]	0.73	Ł	ug/m3	1	4/19/2018 12:06:00 AM
Chloromethane	0.91	0.31		ug/m3	1	4/19/2018 12:06:00 AM
cis-1.2-Dichloroethene	< 0.16	0.16		ug/m3	1	4/19/2018 12:06:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/19/2018 12:06:00 AM
Cyclohexane	< 0.52	0.52		ug/m3	1	4/19/2018 12:08:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/19/2018 12:06:00 AM
Ethyl acetate	8.3 J	5.4		ug/m3	10	4/21/2018 4:08:00 AM
Ethylbenzene	< 0.65	0.65		ug/m3	1	4/19/2018 12:06:00 AM
Freon 11	1.2 J	0.84		ug/m3	1	4/19/2018 12:06:00 AM
Freon 113	< 1.1	1 1.1		ug/m3	1	4/19/2018 12:06:00 AM
Freon 114	< 1.0	J 1,0		ug/m3	1	4/19/2018 12:06:00 AM

** Quantitation Limit Qualifiers:

Results reported are not blank corrected . J

Analyte detected in the associated Method Blank B

Holding times for preparation or analysis exceeded Н

Non-routine analyte, Quantitation estimated. JN

Spike Recovery outside accepted recovery limits s

Estimated Value above quantitation range Е

Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 9 of 18

I - M - I Color that Minks also that it is the solution of the solution			
CLIENT:	LaBella Associates, P.C.	Client Sample ID: 1A-5	
Lab Order:	C1804042	Tag Number: 136,281	
Project:	46 Mount Hope Ave	Collection Date: 4/10/2018	
Lab ID:	C1804042-005A	Matrix: AIR	

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	тс)-15			Analyst: RJP
Freen 12 🗶	2.4 J	0.74		ug/m3	1	4/19/2018 12:06:00 AM
Heptane -	4.8 J	0.61		ug/m3	1	4/19/2018 12:06:00 AM
Hexachloro-1,3-butadiene	< 1.6UJ	1.6		ug/m3	1	4/19/2018 12:06:00 AM
Hexane 🗶	1.4 J	0.53		ug/m3	t	4/19/2018 12:06:00 AM
isopropyl alcohol —	5.9J	3.7		ug/m3	10	4/21/2018 4:08:00 AM
m&p-Xylene –	1.1 🕽	1.3	Ŀ	ug/m3	1	4/19/2018 12:06:00 AM
Methyl Butyl Ketone	< 1.2 UJ	1.2		ug/m3	1	4/19/2018 12:06:00 AM
Methyl Ethyl Ketone 🚽	1.5丁	0.88		ug/m3	1	4/19/2018 12:06:00 AM
Methyl Isobutyl Ketone	<1.20プ	1.2		ug/m3	1	4/19/2018 12:06:00 AM
Mathyl tert-butyl ether	< 0.54 Uプ	0.54		ug/m3	1	4/19/2018 12:06:00 AM
Methylens chloride -	1.9 T	0.52		ug/m3	1	4/19/2018 12:06:00 AM
o-Xylene —	0.52 J	0.65	J	ug/m3	i	4/19/2018 12:06:00 AM
Propylene	< 0.2603	0.26		ug/m3	1	4/19/2018 12:06:00 AM
Styrene	< 0.64 しつ	0.64		ug/m3	1	4/19/2018 12:06:00 AM
Tetrachloroethylene -	1.3 J	1.0		ug/m3	1	4/19/2018 12:06:00 AM
Tetrahydrofuran	< 0.44 0 丁	0.44		ug/m3	1	4/19/2018 12:06:00 AM
Toluene -	5.8 J	0.57		ug/m3	1	4/19/2018 12:06:00 AM
trans-1,2-Dichloroethene	< 0.59 しつ	0.59		ug/m3	1	4/19/2018 12:05:00 AM
trans-1,3-Dichloropropene	< 0.68 UJ	0.68		ug/m3	1	4/19/2018 12:06:00 AM
Trichloroethene -	0.64 J	0.16		ug/m3	1	4/19/2018 12:06:00 AM
Vinyl acetate	< 0.53 UT	0.53		ug/m3	1	4/19/2018 12:06:00 AM
Vinyl Bromlde	< 0.66 U 1	0.66		ug/m3	1	4/19/2018 12:06:00 AM
Vinyl chloride	< 0.10 UI	0.10		ug/m3	1	4/19/2018 12:06:00 AM

AN?

Qualifiers:	* *	Quantitation Limit		Results reported are not blank corrected
	В	Analyte detected in the associated Method Blank	Б	Estimated Value above quantitation range
	Ħ	Holding times for preparation or analysis exceeded	L	Analyte detected below quantitation limit
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection

- ted
- range
 - limit
- ND Not Detected at the Limit of Detection

Page 10 of 18

.

Date: 16-May-18

CLIENT:	LaBella Associates, P.C.	Cilent Sample ID: IA-6
Lab Order:	C1804042	Tag Number: 561,298
Project:	46 Mount Hope Ave	Collection Date: 4/10/2018
Lab ID:	C1804042-006A	Matrix: AIR
	د میں ایک	

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed	
UG/M3 W/ 0.2UG/M3 CT-TCE-VC	DOCE-1,1DCE	то	TO-15			Analyst: RJP	
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/19/2018 12:47:00 AN	
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/19/2018 12:47:00 AN	
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/19/2018 12:47:00 AN	
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/19/2018 12:47:00 AN	
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	4/19/2018 12:47:00 AN	
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/19/2018 12:47:00 AN	
1,2,4-Trimethylbenzene	0.69	0.74	J	ug/m3	1	4/19/2018 12:47:00 AN	
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/19/2018 12:47:00 AN	
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/19/2018 12:47:00 AN	
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/19/2018 12:47:00 AN	
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/19/2018 12:47:00 AM	
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	4/19/2018 12:47:00 AN	
1,3-butadlene	< 0.33	0.33		ug/m3	1	4/19/2018 12:47:00 AN	
1,3-Dichlorobenzene	< 0,90	0.90		ug/m3	1	4/19/2018 12:47:00 AN	
1.4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/19/2018 12:47:00 AN	
1.4-Dioxane	< 1.1	1.1		ug/m3	1	4/19/2018 12:47:00 AM	
2,2,4-trimethylpentane	< 0,70	0.70		ug/m3	1	4/19/2018 12:47:00 AN	
4-ethyltoluene	< 0.74	0.74		ug/m3	1	4/19/2018 12:47:00 AM	
Acetone -	35 (7.1		ug/m3	10	4/21/2018 4:45:00 AM	
Allyi chloride	< 0.47	0.47		ug/m3	1	4/19/2018 12:47:00 AN	
Benzene -	0.67	0.48		ug/m3	1	4/19/2018 12:47:00 AM	
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/19/2018 12:47:00 AM	
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/19/2018 12:47:00 AM	
Bromoform	< 1.6	1.6		ug/m3	1	4/19/2018 12:47:00 AN	
Bromomethane	< 0.58	0.58		ug/m3	1	4/19/2018 12:47:00 AN	
Carbon disulfide	< 0.47	0.47		ug/m3	1	4/19/2018 12:47:00 AM	
Carbon tetrachloride-	0.60	0.19		ug/m3	1	4/19/2018 12:47:00 AM	
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/19/2018 12:47:00 AM	
Chloroethane	< 0.40	0.40		ug/m3	1	4/19/2018 12:47:00 AM	
Chioroform ~	0.68	0.73	J	ug/m3	1	4/19/2018 12:47:00 AM	
Chioromethane -	0.95	0.31		ug/m3	1	4/19/2018 12:47:00 AM	
cis-1.2-Dichloroethene	< 0.16	0.16		ug/m3	1	4/19/2018 12:47:00 AM	
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/19/2018 12:47:00 AM	
Cyclohexane	< 0.52	0.52		ug/m3	1	4/19/2018 12:47:00 Al	
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/19/2018 12:47:00 AM	
Ethyl acetate -	9.7 J	5.4		ug/m3	10	4/21/2018 4:45:00 AM	
Ethylbenzene	< 0.65	0.65		vg/m3	1	4/19/2018 12:47:00 At	
Freon 11-	1.3	0.84		ug/m3	1	4/19/2018 12:47:00 A	
Freon 113	< 1,1	1.1		ug/m3	1	4/19/2018 12:47:00 Al	
Freon 114	< 1.0	1.0		ug/m3	1	4/19/2018 12:47:00 Al	

Quantitation Limit Qualifiers: **

Analyte detected in the associated Method Blank

B Holding times for preparation or analysis exceeded H

Non-routine analyte. Quantitation estimated. JN

Spike Recovery outside accepted recovery limits S

Results reported are not blank corrected

Estimated Value above quantitation range £ 3

.

Analyte detected below quantitation limit ND Not Detected at the Limit of Detection

CLIENT: LaBella Associates, P.C. Client Sample ID: IA-6 Lab Order: C1804042 Tag Number: 561,298 **Project:** 46 Mount Hope Ave Collection Date: 4/10/2018 Matrix: AIR Lab ID: C1804042-006A Analyses Result **Limit Qual Units DF **Date Analyzed**

1111,000	Result	2.000	ual Onio		bitte retury 200
UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-1	5		Analyst: RJP
Freon 12 -	2.6	0,74	ug/m	3 1	4/19/2018 12:47:00 AM
Heptane —	8.6 J	6.1	ug/m	3 10	4/21/2018 4:45:00 AM
Hexachloro-1,3-butadiene	< 1,6	1.6	ug/m	3 1	4/19/2018 12:47:00 AM
Hexane -	0.60	0.53	ug/m	3 1	4/19/2018 12:47:00 AM
isopropyl alcohol -	7.9 J	3.7	ug/m	3 10	4/21/2018 4:45:00 AM
m&p-Xylene	0.91	1.3	J ug/m	3 1	4/19/2018 12:47:00 AM
Methyl Butyl Ketone	< 1.2	1.2	ug/m	3 1	4/19/2018 12:47:00 AM
Methyl Ethyl Ketone -	1.3	0.88	ug/m	3 1	4/19/2018 12:47:00 AM
Methyl isobutyl Ketone	< 1,2	1.2	ug/m	3 1	4/19/2018 12:47:00 AM
Melhyi tert-butyl ether	< 0.54	0.54	ug/m	3 1	4/19/2018 12:47:00 AM
Methylene chloride	1.3	0.52	ug/m	3 1	4/19/2018 12:47:00 AM
o-Xylene	< 0.65	0.65	ug/m	3 1	4/19/2018 12:47:00 AM
Propylene	< 0.26	0.28	ug/m	3 1	4/19/2018 12:47:00 AM
Styrene	< 0.64	0.64	ug/m	3 1	4/19/2018 12:47:00 AM
Tetrachloroethylene	< 1.0	1.0	ug/m	3 1	4/19/2018 12:47:00 AM
Tetrahydrofuran	< 0,44	0.44	ug/m	3 1	4/19/2018 12:47:00 AM
Toluene -	9.8 🗍	5.7	ug/m	3 10	4/21/2018 4:45:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m	3 t	4/19/2018 12:47:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m	3 1	4/19/2018 12:47:00 AM
Trichloroethene -	1,2	0.16	ug/m	3 1	4/19/2018 12:47:00 AM
Vinyl acetate	< 0.53	0.53	បុព្វ/កា	3 1	4/19/2018 12:47:00 AM
Vinyl Bromide	< 0.66	0.66	ug/m	3 1	4/19/2018 12:47:00 AM
Vinyl chloride	< 0.10	0.10	ug/m	3 1	4/19/2018 12:47:00 AM

Qualifiers:	**	Quantitation Limit		Results reported are not
-	B	Analyte detected in the associated Method Blank	E	Estimated Value above
	Н	Holding times for preparation or analysis exceeded	3	Analyte detected below
		• • • • •		

- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits S
- of blank corrected
- e quantitation range
- w quantitation limit
- ND Not Detected at the Limit of Detection

Date: 16-May-18

Page 199 of 360

CLIENT:	LaBella Associates, P.C.	Client Sample ID: 1A-8
Lab Order:	C1804042	Tag Number: 163,276
Project:	46 Mount Hope Ave	Collection Date: 4/10/2018
Lab ID:	C1804042-007A	Matrix: AIR

Analyses	Result	**Limit	Qual Units	DF	Date Analyzed
UG/M3 W/ 0.2UG/M3 CT-TCE-VC	DCE-1,1DCE	TO-	15		Analyst: RJP
1, 1, 1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/19/2018 1:27:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	4/19/2018 1:27:00 AM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	4/19/2018 1:27:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/19/2018 1:27:00 AM
1,1-Dichloraethene	< 0.16	0.16	ug/m3	1	4/19/2018 1:27:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	4/19/2018 1:27:00 AM
1,2,4-Trimethylbenzene-	0.49	0.74	J ug/m3	1	4/19/2018 1:27:00 AM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	4/19/2018 1:27:00 AM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/19/2018 1:27:00 AM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	4/19/2018 1:27:00 AM
1.2-Dichloropropane	< 0.69	0.69	ug/m3	1	4/19/2018 1:27:00 AM
1.3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/19/2018 1:27:00 AM
1,3-butadiene	< 0.33	0.33	ug/m3	1	4/19/2018 1:27:00 AM
1,3-Dichlorobenzené	< 0.90	0.90	ug/m3	1	4/19/2018 1:27:00 AM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/19/2018 1:27:00 AM
1,4-Dioxane	< 1.1	1,1	ug/m3	1	4/19/2018 1:27:00 AM
2,2,4-trimethylpentane	< 0,70	0.70	ug/m3	1	4/19/2018 1:27:00 AM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	4/19/2018 1:27:00 AM
Acetone —	18 J	3.6	ug/m3	5	4/21/2018 5:22:00 AM
Allyl chloride	< 0.47	0.47	ug/m3	1	4/19/2018 1:27:00 AM
Senzene -	0.70	0.48	ug/m3	1	4/19/2018 1:27:00 AM
Benzyl chloride	< 0.86	0.86	ug/m3	1	4/19/2018 1:27:00 AM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	4/19/2018 1:27:00 AM
Bromoform	< 1.6	1.6	ug/m3	1	4/19/2018 1:27:00 AM
Bromomethane	< 0.58	0.58	ug/m3	1	4/19/2018 1:27:00 AM
Carbon disulfide	< 0.47	0.47	ug/m3	t	4/19/2018 1:27:00 AM
Carbon tetrachloride -	0.50	0.19	ug/m3	1	4/19/2018 1:27:00 AM
Chlorobenzene	< 0.69	0.69	ug/m3	1	4/19/2018 1:27:00 AM
Chioroethane	< 0.40	0.40	ug/m3	1	4/19/2018 1:27:00 AM
Chioroform -	0.73	0.73	ug/m3	1	4/19/2018 1:27:00 AM
Chloromethane -	0.85	0.31	ug/m3	1	4/19/2018 1:27:00 AM
cis-1.2-Dichloroethene	< 0.16	0.16	ug/m3	1	4/19/2018 1:27:00 AM
cls-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/19/2018 1:27:00 AM
Cyclohexane	< 0.52	0.52	ug/m3	1	4/19/2018 1:27:00 AM
Dibromochloromethane	< 1.3	1,3	ug/m3	1	4/19/2018 1:27:00 AM
Ethyl acetate -	3,4	0.54	ug/m3	1	4/19/2018 1:27:00 AM
Ethylbenzene	< 0.65	0.65	ug/m3	1	4/19/2018 1:27:00 AM
Freon 11-	1.2	0.84	ug/m3	1	4/19/2018 1:27:00 AM
Freon 113	< 1.1	1.1	ug/m3	1	4/19/2018 1:27:00 AM
Freon 114	< 1.0	1.0	ug/m3	1	4/19/2018 1:27:00 AM
	fer i fel i sam mana sa mana na mana ng dangan gina paga apa na na n	a data manana di karaka ng manana 1976 (1977		united are not 1	ank corrected
Qualifiers: ** Quantitation Limit		louk			uantitation range
	the associated Method B				pantitation limit
H Holding times for p	preparation or analysis exc		· · · ·	ad at the firm	

- Results reported are not blank corrected .
- B Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded н
- Non-routine analyte. Quantitation estimated. JN

- Spike Recovery outside accepted recovery limits s
- E Estimated Value above quantitation range 3
- Analyte detected below quantitation limit ND Not Detected at the Limit of Detection

Page 13 of 18

Date: 16-May-18

Date: 16-May-18

CLIENT:		Client Sample ID: 1A-8	
Lab Order:	C1804042	Tag Number: 163,276	
Project:	46 Mount Hope Ave	Collection Date: 4/10/2018	
Lab ID:	C1804042-007A	Matrix: AIR	
			-

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	DCE-1,1DCE	ΤĊ)-15			Analyst: RJF
Freon 12 -	2.6	0.74		ug/m3	1	4/19/2018 1:27:00 AM
Heptana -	0.70	0.61		ug/m3	1	4/19/2018 1:27:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/19/2018 1:27:00 AM
Hexane	0.67	0.53		ug/m3	1	4/19/2018 1:27:00 AM
Isopropyl alcohol —	3.0	0.37		ug/m3	1	4/19/2018 1:27:00 AM
m&p-Xyiene —	0.91	1.3	J	ug/m3	1	4/19/2018 1:27:00 AM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/19/2018 1:27:00 AM
Methyl Ethyl Ketone -	1.5	0.88		ug/m3	1	4/19/2018 1:27:00 AM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/19/2018 1:27:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/19/2018 1:27:00 AM
Methylene chloride -	0.83	0.52		ug/m3	1	4/19/2018 1:27:00 AM
o-Xylene	< 0.65	0.65		ug/m3	1	4/19/2018 1:27:00 AM
Propylene	< 0.26	0.26		ug/m3	1	4/19/2018 1:27:00 AM
Styrene	< 0.64	0.64		ug/m3	1	4/19/2018 1:27:00 AM
Tetrachloroethylene 🗖	1.1	1.0		ug/m3	1	4/19/2018 1:27:00 AM
Tetrahydrofuran	< 0.44	0,44		ug/m3	1	4/19/2018 1:27:00 AM
Toluene -	1.7	0.57		ug/m3	1	4/19/2018 1:27:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/19/2018 1:27:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/19/2018 1:27:00 AM
Trichloroethene -	0.32	0.16		ug/m3	1	4/19/2018 1:27:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/19/2018 1:27:00 AM
Vinyl Bromide	< 0.66	0,66		ug/m3	1	4/19/2018 1:27:00 AM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/19/2018 1:27:00 AM

MS

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range	
	н	Holding times for preparation or analysis exceeded	3	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection Page 14 (0118
	S	Spike Recovery outside accepted recovery limits		1 290 34 0	2110

Date:	16-May-18
-------	-----------

CLIENT:	LaBella Associates, P.C	∽ 		C	lient Sample ID:	IA-7		
lab Order:	C1804042	Tag Number				: 479,406		
Project:	46 Mount Hope Ave				Collection Date:	4/10/2	.018	
Lab ID:	C1804042-008A				Matrix:	AIR		
Analyses	************	Result	**Limit	Qual	Units	ĎF	Date Analyzed	
UG/M3 W/ 0.21	JG/M3 CT-TCE-VC-DCE-1	I,1DCE	тс)-15			Analyst: RJF	
1,1,1-Trichloroet	hane	< 0.82	0.82		ug/m3	1	4/19/2018 2:09:00 AM	
1,1,2,2-Tetrachic	proethane	< 1.0	1.0		ug/m3	1	4/19/2018 2:09:00 AM	
1,1,2-Trichloroet	hane	< 0.82	0.82		ug/m3	1	4/19/2018 2:09:00 AM	
1,1-Dichloroetha	ne	< 0.61	0.61		ug/m3	1	4/19/2018 2:09:00 AM	
1,1-Dichloroethe	ne	< 0.16	0,16		ug/m3	1	4/19/2018 2:09:00 AM	
1,2,4-Trichlorobe	Inzene	< 1.1	1.1		ug/m3	1	4/19/2018 2:09:00 AM	
1,2,4-Trimethylb	enzene —	0.64	0.74	J	ug/m3	1	4/19/2018 2:09:00 AM	
1,2-Dibromoetha	ine	< 1.2	1.2		ug/m3	1	4/19/2018 2:09:00 AM	
1,2-Dichlorobenz	tene	< 0.90	0.90		ug/m3	1	4/19/2018 2:09:00 AM	
1,2-Dichloroetha	ne	< 0.61	0.61		ug/m3	1	4/19/2018 2:09:00 AM	
1,2-Dichloroprop	ane	< 0.69	0.69		ug/m3	1	4/19/2018 2:09:00 AM	
1.3,5-Trimethylb	enzene	< 0.74	0.74		ug/m3	1	4/19/2018 2:09:00 AM	
1,3-butadiene		< 0.33	0.33		ug/m3	1	4/19/2018 2:09:00 AM	
1,3-Dichlorobena	lene	< 0.90	0.90		ug/m3	1	4/19/2018 2:09:00 AM	
1.4-Dichlorobenz	tene	< 0.90	0.90		ug/m3	1	4/19/2018 2:09:00 AM	
1,4-Dioxane		< 1,1	1.1		ug/m3	1	4/19/2018 2:09:00 AM	
2,2,4-trimethylpe	intane	< 0.70	0.70		ug/m3	1	4/19/2018 2:09:00 AM	
4-ethyltoluene		< 0.74	0.74		ug/m3	1	4/19/2018 2:09:00 AM	
Acetone _		31 J	7,1		ug/m3	10	4/21/2018 5:59:00 AM	
Ally! chloride		< 0.47	0.47		ug/m3	1	4/19/2018 2:09:00 AM	
Benzene -		0.67	0.48		ug/m3	1	4/19/2018 2:09:00 AM	
Benzyl chloride		< 0.86	0.86		ug/m3	1	4/19/2018 2:09:00 AM	
Bromodichiorom	ethane	< 1.0	1.0		ug/m3	1	4/19/2018 2:09:00 AM	
Bromoform		< 1.6	1.6		ug/m3	1	4/19/2018 2:09:00 AM	
Bromomethane		< 0.58	0.58		ug/m3	1	4/19/2018 2:09:00 AM	
Carbon disulfide		< 0.47	0.47		ug/m3	1	4/19/2018 2:09:00 AM	
Carbon tetrachlo	ride _	0.57	0.19		ug/m3	1	4/19/2018 2:09:00 AM	
Chiorobenzene		< 0.69	0.69		ug/m3	1	4/19/2018 2:09:00 AM	
Chloroethane		< 0.40	0.40		ug/m3	1	4/19/2018 2:09:00 AM	
Chloroform -		0.49	0.73	J	ug/m3	1	4/19/2018 2:09:00 AM	
Chloromethane -	•	0.99	0.31		ug/m3	1	4/19/2018 2:09:00 AM	
cis-1,2-Dichloroe	thene	< 0.16	0.16		ug/m3	1	4/19/2018 2:09:00 AM	
cis-1,3-Dichlorop	ropene	< 0.68	0.68		ug/m3	1	4/19/2018 2:09:00 AM	
Cyclohexane		< 0.52	0.52		ug/m3	1	4/19/2018 2:09:00 AM	
Dibromochiorom	elhane	< 1.3	1.3		ug/m3	1	4/19/2018 2:09:00 AM	
Ethyl acetate -		5.8 J	5.4		ug/m3	10	4/21/2018 5:59:00 AM	
Ethylbenzene		< 0.65	0.65		ug/m3	1	4/19/2018 2:09:00 AM	
Freon 11 -		1.3	0.84		ug/m3	1	4/19/2018 2:09:00 AM	
Freon 113		< 1.1	1.1		ug/m3	1	4/19/2018 2:09:00 AM	
Freon 114		< 1.0	1.0		ug/m3	1	4/19/2018 2:09:00 AM	

Page 217 of 360

Analyte detected in the associated Method Blank B

Н Holding times for preparation or analysis exceeded

JN Non-routine analyte, Quantitation estimated.

S Spike Recovery outside accepted recovery limits Е Estimated Value above quantitation range

Analyte detected below quantitation limit 1

ND Not Detected at the Limit of Detection

Page 15 of 18

C1804042

LaBella Associates, P.C.

46 Mount Hope Ave

C1804042-008A

......

CLIENT:

Project:

Lab ID:

Lab Order:

Client Sample ID: IA-7

Tag Number: 479,406 Collection Date: 4/10/2018

Matrix: AIR

Analyses	Result	**Limit	Quał	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE	1,1DCE	το	-15			Analyst: RJF
Freon 12 -	3,5	0.74		ug/m3	1	4/19/2018 2:09:00 AM
Heptane –	9.4 J	6.1		ug/m3	10	4/21/2018 5:59:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/19/2018 2:09:00 AM
Hexane 🦟	0.81	0.53		ug/m3	1	4/19/2018 2:09:00 AM
isopropyl alcohol -	6.9 J	3.7		ug/m3	10	4/21/2018 5:59:00 AM
m&p-Xylene –	0.87	1.3	J	ug/m3	1	4/19/2018 2:09:00 AM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/19/2018 2:09:00 AM
Methyl Ethyl Ketone –	1.3	88.0		ug/m3	1	4/19/2018 2:09:00 AM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/19/2018 2:09:00 AM
Methyl tert-butyl ether	< 0,54	0.54		ug/m3	1	4/19/2018 2:09:00 AM
Methylene chloride -	1.3	0.52		ug/m3	1	4/19/2018 2:09:00 AM
o-Xylene	< 0.65	0.65		ug/m3	1	4/19/2018 2:09:00 AM
Propylene	< 0.26	0.26		ug/m3	1	4/19/2018 2:09:00 AM
Styrene	< 0.64	0.64		ug/m3	1	4/19/2018 2:09:00 AM
Tetrachioroethylene	< 1.0	1.0		ug/m3	1	4/19/2018 2:09:00 AM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/19/2018 2:09:00 AM
Toluene -	10丁	5.7		ug/m3	10	4/21/2018 5:59:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/19/2018 2:09:00 AM
trans-1,3-Dichloropropene	< 0,68	0.68		ug/m3	1	4/19/2018 2:09:00 AM
Trichloroethene -	1.8	0.16		ug/m3	1	4/19/2018 2:09:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/19/2018 2:09:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/19/2018 2:09:00 AM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/19/2018 2:09:00 AM

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected	
-	в	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range	¢
	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	L
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	Page 16 of 18
	S	Spike Recovery outside accepted recovery limits			rage to or to

Page 218 of 360

Date: 16-May-18

Analyses

DF

Date Analyzed

CLIENT:	LaBella Associates, P.C.	Client Sample ID: OA-1
Lab Order:	C1804042	Tag Number: 157,337
Project:	46 Mount Hope Ave	Collection Date: 4/10/2018
Lab ID:	C1804042-009A	Matrix: AIR

**Limit Qual Units

Result

matyaca	Iteguit	runt Ar			
UG/M3 W/ 0.2UG/M3 CT-TCE-VC-	DCE-1,1DCE	TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/19/2018 2:49:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	4/19/2018 2:49:00 AM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	4/19/2018 2:49:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/19/2018 2:49:00 AM
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	4/19/2018 2:49:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	4/19/2018 2:49:00 AM
1,2,4-Trimethylbenzene	0.84 J	0.74	ug/m3	1	4/19/2018 2:49:00 AM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	4/19/2018 2:49:00 AM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/19/2018 2:49:00 AM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	4/19/2018 2:49:00 AM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	4/19/2018 2:49:00 AM
1,3,5-Trimethylbenzene	0.59 7	0,74	J ug/m3	1	4/19/2018 2:49:00 AM
1.3-butadiene	< 0.33 SUD	0.33	ug/m3	1	4/19/2018 2:49:00 AM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/19/2018 2:49:00 AM
1.4-Dichlorobenzene -	0.84 J	0.90	J ug/m3	1	4/19/2018 2:49:00 AM
1,4-Dioxane	<1.1ŪJ	1.1	ug/m3	1	4/19/2018 2:49:00 AM
2,2,4-trimethylpentane -	0.61J	0.70) ug/m3	1	4/19/2018 2:49:00 AM
4-ethyltoluene	< 0.74 UJ	0.74	ug/m3	1	4/19/2018 2:49:00 AM
Acetone -	21 7	3.6	ug/m3	5	4/21/2018 6:36:00 AM
Allyl chloride	< 0.47UT	0.47	ug/m3	1	4/19/2018 2:49:00 AM
Benzene -	1.2 J	0.48	ug/m3	1	4/19/2018 2:49:00 AM
Benzyi chloride	< 0.86)	0.86	ug/m3	1	4/19/2018 2:49:00 AM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	4/19/2018 2:49:00 AM
Bromoform	< 1.6	1.6	ug/m3	1	4/19/2018 2:49:00 AM
Bromomethane	< 0.58	0.58	ug/m3	1	4/19/2018 2:49:00 AM
Carbon disulfide	< 0.47	0,47	ug/m3	1	4/19/2018 2:49:00 AM
Carbon tetrachloride -	0.57 J	0.1 9	ug/m3	1	4/19/2018 2:49:00 AM
Chlorobenzene	< 0.69	0.69	ug/m3	1	4/19/2018 2:49:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/19/2018 2:49:00 AM
Chloroform	< 0.73 UJ	0.73	ug/m3	1	4/19/2018 2:49:00 AM
Chloromethane	1.2 J	0.31	ug/m3	1	4/19/2018 2:49:00 AM
cis-1,2-Dichloroethene	< 0.16 JUT	0.16	ug/m3	1	4/19/2018 2:49:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/19/2018 2:49:00 AM
Cyclohexane	1.3 J	0.52	ug/m3	1	4/19/2018 2:49:00 AM
Dibromochloromethane	<1.300	1.3	ug/m3	1	4/19/2018 2:49:00 AM
Ethyl acetate -	9.9 J	2.7	ug/m3	5	4/21/2018 6:36:00 AM
Ethylbenzene.~	1.8J	0.65	ug/m3	1	4/19/2018 2:49:00 AM
Freon 11	1.4.5	0.84	ug/m3	1	4/19/2018 2:49:00 AM
Freon 113	<1.15.00	1.1	ug/m3	1	4/19/2018 2:49:00 AM
Freen 114	< 1.0	1.0	ug/m3	1	4/19/2018 2:49:00 AM
Qualifiers: ** Quantitation Limit	the associated Method Blan		. Results rep		blank corrected pantitation range
	reparation or analysis exceed				jugntitation limit
ri nototug anca tar pi	eparation of analysis evere	477	•		-

Non-routine analyte. Quantitation estimated. JN

Spike Recovery outside accepted recovery limits S

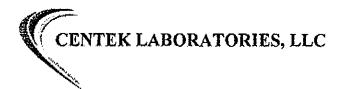
Analyte detected below quantitation limit 1 ND Not Detected at the Limit of Detection

Page 17 of 18

CLIENT: LaBella Associates, P.C. Client Sample ID: OA-1 Lab Order: C1804042 Tag Number: 157,337 Collection Date: 4/10/2018 **Project:** 46 Mount Hope Ave Matrix: AIR Lab ID: C1804042-009A محمد فيحمله بالدائية بالمتقدة بالوكارة لركز أروابور وحراويه _____ DP

Analyses	Result	**Limit	Quai	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	то	-15			Analyst: RJP
Freon 12 🛰	8.4J	0,74		ug/m3	1	4/19/2018 2:49:00 AM
Heptane -	1.5 J	0.61		ug/m3	1	4/19/2018 2:49:00 AM
Hexachloro-1,3-butadiene	< 1.6 ()]	1,6		ug/m3	1	4/19/2018 2:49:00 AM
Hexane -	5.6 J	0.53		ug/m3	1	4/19/2018 2:49:00 AM
isopropyl alcohol 🗝	5.7 J	1.8		ug/m3	5	4/21/2018 6:36:00 AM
m&p-Xylene –	5.7 J	1.3		ug/m3	1	4/19/2018 2:49:00 AM
Methyi Butyi Ketone	< 1,203	1.2		ug/m3	1	4/19/2018 2:49:00 AM
Methyl Ethyl Ketone -	1.7 J	0.88		ug/m3	1	4/19/2018 2:49:00 AM
Methyl Isobutyl Ketone —	0.90 J	1.2	J	ug/m3	1	4/19/2018 2:49:00 AM
Methyl tert-butyl ether	< 0.54 ()コ	0.54		ug/m3	1	4/19/2018 2:49:00 AM
Methylene chioride -	67 J	0.52		ug/m3	1	4/19/2018 2:49:00 AM
o-Xylene -	1.5 J_	0.65		ug/m3	1	4/19/2018 2:49:00 AM
Propylene	< 0.26 0フ	0.26		ug/m3	1	4/19/2018 2:49:00 AM
Styrene-	0.60 J	0.64	J	ug/m3	1	4/19/2018 2:49:00 AM
Tetrachloroethylene	<1.0 03	1.0		ug/m3	1	4/19/2018 2:49:00 AM
Tetrahydrofuran	< 0.44 UJ	0.44		ug/m3	1	4/19/2018 2:49:00 AM
Toluene -	17 J	2.8		ug/m3	5	4/21/2018 6:36:00 AM
trans-1,2-Dichloroethene	0.59 J	0,59		ug/m3	1	4/19/2018 2:49:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/19/2018 2:49:00 AM
Trichloroethene	< 0.16	0.15		ug/m3	1	4/19/2018 2:49:00 AM
Vinyl acetate	< 0.16 < 0.53	0.53		ug/m3	1	4/19/2018 2:49:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/19/2018 2:49:00 AM
Vinyi chloride	< 0.10	0.10		ug/m3	1	4/19/2018 2:49:00 AM

Qualifiers:	**	Quantitation Limit		Results
	в	Analyte detected in the associated Method Blank	E	Estimate
	н	Holding times for preparation or analysis exceeded	J	Analyte


- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quantitation range
 - Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 18 of 18

of the state in the second state and the state of the sta

Date: 16-May-18

Date: 16-May-18

QC SUMMARY REPORT SURROGATE RECOVERIES

CLIENT:	LaBella Associates, P.	С.
Work Order:	C1804042	
Project:	46 Mount Hope Ave	
Test No:	TO-15	Matrix: A
Sample ID	BR4F8Z	
ALCSIUG-041818	104	
ALCS1UG-042018	102	
ALCSIUGD-04201	8 105	
ALCSD1UG-04181	8 99.0	
AMBIUG-041818	83.0	
AMB1UG-042018	85.0	
C1804042-001A	97.0	
C1804042-002A	90.0	
C1804042-003A	95.0	
C1804042-004A	94.0	
C1804042-005A	93.0	
C1804042-006A	92.0	
C1804042-007A	92.0	
C1804042-008A	90.0	
C1804042-009A	98.0	

Acronym	Surrogate	QC Limits
BR4FBZ	= Bromofluorobenzene	70-130
* Surr	ogate recovery outside ac	ceptance limits

	Centek Laborato GC/MS_QA-QQ	•		rt				
	: C:\HPCHEM\1\1 : 18 Apr 2018			2.D				
	pration File : //8//8 //:07 Sample	(BFB))	DATA A 7 /2.7 te Reco	_	49907 (IS1) 43023	222776 (152) 192050 76/322 Standard R	187854 (153) 161943 136032 esponses
AP041803.D	ALCS1UG-041816	104		******		40851	183142V	154794
AP041804.D	AMB1UG-041818	83				39261	178630	142255
AP041815.D	C1804042-001A	97	10,47	12.71	17.46	41473	196545	172482
AP041816.D	C1804042-002A	90	10.47	12.71	17.46	40683	191639	171625
AP041817.D	C1804042-003A			12.71			180574	151433
AP041818.D	C1804042-004A	94	10,47	12.71	17,46	38559	172583	145873
AP041819.D	C1804042-005A	93	10,47	12.71	17.46		174418	152860
AP041820,D	C1804042-006A	92	10,48	12.71	17.46	38217	178548	156912
AP041821.D	C1804042-007A	92	10,46	12,71	17.46	37052	168520	142487
AP041822.D	C1804042-008A	90	10,47	12.71	17,45	37518	170680	143241
AP041823.D	C1804042-009A	98	10,47	12,71	17,46	35484	165979	146596
AP041824.D	ALCSD1UG-04181	****	· · · · · · · · · · · · · · · · · · ·			36550	165389	143485
و معر ب	1 .	· · · ·		e	- 2 44 4 44 5 4			

,

t - fails 24hr time check * - fails criteria

Created: Wed May 16 08:47:33 2018 MSD #1/

Centek Laboratories, GC/MS_QA-QC_Che		
Tune File : C:\HPCHEM\1\DATA\ Tune Time : 20 Apr 2018 11:3		
Daily Calibration File : C:\H	PCHEM\1\DATA\AP042002.D	198 193009 160905
CCV 4/20/18 11:33	(BFB) 10,46 (1)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
File Sample DL	Surrogate Recovery % Inter	
AP042003.D ALCS1UG-042018		469 164353 138975
AP042005.D AMB1UG-042018	85 34	818 151169 121375
AP042022.D C1804042-001A 5X	86 10.48 12,70 1746 31	263 138695 112377
AP042023.D C1804042-002A 10X	86 10,47 12,71 17,46 31	243 136990 115999
AP042024.D C1804042-003A 10X	82 10,47 D.71 17,46 30	823 137796 110947
AP042025.D C1804042-004A 10X	84 10,47 12,71 17,46 31	523 136423 105786
AP042026.D C1804042-005A 10X	81 10 HC 12.71 17.46 29	883) 132190 107796
AP042027.D C1804042-006A 10X	83 10:47 12,71 17.46 (30	023 134422 105517
AP042028.D C1804042-007A 5X	86 10.47 12.71 17.45 (29	586 134436 106885
AP042029.D C1804042-008A 10X	84 10,47 12,70 17,46 30	428 134665 105476
AP042030.D C1804042-009A 5X	89 10,47 12,71 17,46 30	511 135065 112774
AP042031.D ALCS1UGD-042018	105 32	224 137307 (116044)

t - fails 24hr time check * - fails criteria

Created: Wed May 16 08:48:57 2018 MSD #1/

CENTEK LABORATORIES, LLC	
CENTEK LA	

ANALYTICAL QC SUMMARY REPORT

Date: 16-May-18

- H	
j!	
11	
11	
11	
11	
11	
- li	
-11	
į	
-14	
11	
-1(
- B	
- 13	
11	
- E	
12	
-11	
-11-	
- i i	
-11	
1	
1	
- 11	
-11	
11	
- 11	
-11	
11	
-9	U.
	<u> </u>
	_
	ŝ
11	÷.
-11	Ξ.
- 11	×.
-11	×.
-11	ŝ
-11	4
	LaBella Associates, P.C.
11	47
	œ
	1
11	_

46 Mount Hope Ave C1804042 Work Order: Project:

CLIENT:

Page 56 of 360

TestCode: 0.20_NYS

	Commits ID: ALCORITO ANDRES	ComeTune 1 CC	Tother	376 00 0	f latter and the		And and		December 19710	
Result PCI. SPK feat Value	Sentitive ILL ALLASTUG-ALLATO	Batch ID: D13E45	TaetMo-	TO 46	Office. ppp	14	rich Date Instate Date		Runno. 13346 Creho: 466665	
Result PQL SPK ratively officingitante MGM RPP Ret Val SREC Lowaline High Linit RPP Ret Val SRPC SPD Ret Val SRPC SPD Ret Val	CHERNIN, CLARK			2		-	שופרו הוכנופות		Cedian: 130033	
1.050 0.15 1 0 105 70 130 1.110 0.15 1 0 111 70 130 0.0300 0.15 1 0 109 70 130 0.3000 0.15 1 0 114 70 130 1.280 0.040 1 0 128 70 130 1.146 0.15 1 0 114 70 130 1.150 0.15 1 0 114 70 130 1.1200 0.15 1 0 114 70 130 0.3200 0.15 1 0 114 70 130 1.1200 0.15 1 0 122 70 130 0.3200 0.15 1 0 122 70 130 0.3200 0.15 1 <th>Analyte</th> <th>Result</th> <th></th> <th>SPK value</th> <th>SPK Ref Val</th> <th>%REC</th> <th></th> <th></th> <th>%RPD</th> <th>Qual</th>	Analyte	Result		SPK value	SPK Ref Val	%REC			%RPD	Qual
(110) 0.15 1 0 111 70 120 (080) 0.15 1 0 109 70 120 0.8300 0.15 1 0 900 70 120 0.8300 0.040 1 0 126 0.70 120 1.260 0.15 1 0 114 70 120 1.140 0.15 1 0 114 70 120 1.140 0.15 1 0 114 70 120 0.9200 0.15 1 0 122 70 120 1.120 0.15 1 0 122 70 120 1.180 0.15 1 0 122 70 120 1.190 0.15 1 0 122 70 120 1.1220 0.15 1	1,1,1-Trichioroethane	1.050	0.15	-	0	105	70	130		
1090 0.15 1 0 1090 71 70 730 0.5300 0.15 1 0 90.0 70 70 730 1.260 0.15 1 0 83.0 70 730 70 730 1.260 0.15 1 0 114 70 70 730 1.140 0.15 1 0 126 7 70 730 1.150 0.15 1 0 71 70 730 1.150 0.15 1 0 92.0 70 730 1.150 0.15 1 0 92.0 70 70 70 1.220 0.15 1 0 713 70 70 70 70 1.220 0.15 1 0 71 70 70 70 70 1.220 0.15 1 0 71 70 70 70 <td< td=""><td>1,1,2,2-Tetrachioroethane</td><td>1.110</td><td>0.15</td><td>-</td><td>0</td><td>111</td><td>70</td><td>130</td><td></td><td></td></td<>	1,1,2,2-Tetrachioroethane	1.110	0.15	-	0	111	70	130		
0.9000 0.15 1 0 90.0 70 70 130 1.260 0.15 1 0 83.0 70 70 130 1.140 0.15 1 0 114 70 130 1.140 0.15 1 0 114 70 130 1.150 0.15 1 0 115 7 70 130 1.150 0.15 1 0 92.0 70 130 1.180 0.15 1 0 92.0 70 130 1.180 0.15 1 0 92.0 70 130 1.180 0.15 1 0 92.0 70 130 1.180 0.15 1 0 122 70 130 1.1220 0.15 1 0 122 70 130 1.120 0.15 1 0 122 70 130 </td <td>1,1,2-Trichloroethane</td> <td>1.090</td> <td>0.15</td> <td>T</td> <td>o</td> <td>109</td> <td>70</td> <td>130</td> <td></td> <td></td>	1,1,2-Trichloroethane	1.090	0.15	T	o	109	70	130		
0.6300 0.040 1 0 83.0 70 130 1.260 0.15 1 0 126 70 130 1.140 0.15 1 0 115 70 130 1.140 0.15 1 0 115 70 130 1.150 0.15 1 0 123 70 130 1.230 0.15 1 0 123 70 130 0.3900 0.15 1 0 123 70 130 1.180 0.15 1 0 70 130 70 130 1.220 0.15 1 0 70 70 70 130 1.220 0.15 1 0 122 70 70 130 1.220 0.15 1 0 122 70 70 130 1.220 0.15 1 0 122 70 70	1,1-Dichloroethane	0006:0	0.15	-	D	0.06	70	130		
1.260 0.15 1 0 126 70 130 1.140 0.15 1 0 114 70 130 1.150 0.15 1 0 115 70 130 1.150 0.15 1 0 123 70 130 1.230 0.15 1 0 123 70 130 1.230 0.15 1 0 98.0 70 130 0.3800 0.15 1 0 98.0 70 130 1.180 0.15 1 0 98.0 70 130 1.180 0.15 1 0 97.0 70 130 1.220 0.15 1 0 97.0 70 130 1.220 0.15 1 0 122 70 130 1.220 0.15 1 0 97.0 70 130 1.220 0.15 1 0 122 70 130 1.200 0.120 0.120	1,1-Dichtoroethene	0.6300	0.040	***	Ö	83.0	70	130		
1.140 0.15 1 0 144 70 130 1.150 0.15 1 0 115 70 130 1.150 0.15 1 0 123 70 130 1.230 0.15 1 0 70 70 130 0.9200 0.15 1 0 92.0 70 130 1.180 0.15 1 0 92.0 70 130 1.180 0.15 1 0 92.0 70 130 1.180 0.15 1 0 97.0 70 130 1.120 0.15 1 0 97.0 70 130 1.220 0.15 1 0 70 70 70 1.220 0.15 1 0 122 70 70 70 1.220 0.15 1 0 122 70 70 70 70 1.120 0.30 1 0 122 70 70 70 70	1,2,4-Trichlorobenzene	1.260	0.15	***	Ċ	126	70	130		
1.150 0.15 1 0 115 70 130 1.230 0.15 1 0 123 70 130 0.9200 0.15 1 0 92.0 70 130 0.9200 0.15 1 0 92.0 70 130 1.180 0.15 1 0 92.0 70 130 1.180 0.15 1 0 97.0 70 130 1.180 0.15 1 0 97.0 70 130 1.1200 0.15 1 0 97.0 70 130 1.220 0.15 1 0 122 70 130 1.220 0.15 1 0 122 70 130 1.1200 0.15 1 0 122 70 130 1.1500 0.15 1 0 122 70 70 130 1.1500 0.15 1 0 122 70 70 130 1.1500	1,2,4-Trimethylbenzene	1,140	0.15	**	Ö	114	ę	130		
1230 0.15 1 0 123 70 130 0.9200 0.15 1 0 92.0 70 130 0.9200 0.15 1 0 92.0 70 130 1.180 0.15 1 0 93.0 70 130 1.180 0.15 1 0 97.0 70 130 1.180 0.15 1 0 97.0 70 130 0.9700 0.15 1 0 97.0 70 130 1.220 0.15 1 0 97.0 70 130 1.220 0.15 1 0 122 70 130 1.220 0.15 1 0 70 70 130 1.220 0.30 1 0 122 70 130 1.220 0.30 1 0 122 70 130 1.120 0.30 1 0 145 70 130 1.150 0.350 0.45	1,2-Dibromoethane	1.150	0.15	**	Ð	115	2	130		
$\begin{array}{ccccccc} 0.3200 & 0.15 & 1 & 0 & 32.0 & 70 & 130 \\ 0.3800 & 0.15 & 1 & 0 & 98.0 & 70 & 130 \\ 1.180 & 0.15 & 1 & 0 & 118 & 70 & 130 \\ 1.220 & 0.15 & 1 & 0 & 172 & 70 & 130 \\ 1.220 & 0.15 & 1 & 0 & 122 & 70 & 130 \\ 1.220 & 0.15 & 1 & 0 & 122 & 70 & 130 \\ 1.220 & 0.15 & 1 & 0 & 122 & 70 & 130 \\ 1.220 & 0.15 & 1 & 0 & 122 & 70 & 130 \\ 1.150 & 0.15 & 1 & 0 & 95.0 & 70 & 130 \\ 0.9500 & 0.15 & 1 & 0 & 95.0 & 70 & 130 \\ 0.9500 & 0.15 & 1 & 0 & 95.0 & 70 & 130 \\ 1.160 & 0.15 & 1 & 0 & 98.0 & 70 & 130 \\ 1.170 & 0.15 & 1 & 0 & 98.0 & 70 & 130 \\ 1.170 & 0.15 & 1 & 0 & 117 & 70 & 130 \\ 1.170 & 0.15 & 1 & 0 & 117 & 70 & 130 \\ 1.170 & 0.15 & 1 & 0 & 117 & 70 & 130 \\ 1.170 & 0.15 & 1 & 0 & 117 & 70 & 130 \\ 1.170 & 0.15 & 1 & 0 & 117 & 70 & 130 \\ 1.170 & 0.15 & 1 & 0 & 117 & 70 & 130 \\ 1.170 & 0.15 & 1 & 0 & 117 & 70 & 130 \\ 1.170 & 0.15 & 1 & 0 & 117 & 70 & 130 \\ 1.170 & 0.15 & 1 & 0 & 117 & 70 & 130 \\ 1.170 & 0.16 & 1 & 0 & 117 & 70 & 130 \\ 1.170 & 0.16 & 1 & 0 & 117 & 70 & 130 \\ 1.170 & 0.16 & 1 & 0 & 117 & 70 & 130 \\ 1.170 & 0.16 & 1 & 0 & 117 & 70 & 130 \\ 1.170 & 0.16 & 1 & 0 & 110 & 70 & 130 \\ 1.170 & 0.16 & 1 & 0 & 110 & 70 & 130 \\ 1.170 & 0.16 & 1 & 0 & 110 & 70 & 130 \\ 1.110 & 1.10 & 0.16 & 130 & 130 \\ 1.110 & 0.16 & 130 & 130 & 130 \\ 1.110 & 0.16 & 130 & 130 & 130 \\ 1.110 & 0.16 & 0.16 & 130 & 130 \\ 1.110 & 0.16 & 0.16 & 130 & 130 \\ 1.110 & 0.16 & 0.16 & 130 & 130 \\ 1.110 & 0.16 & 0.16 & 130 & 130 \\ 1.110 & 0.16 & 0.16 & 130 & 130 \\ 1.110 & 0.16 & 0.16 & 130 & 130 \\ 1.110 & 0.16 & 0.16 & 130 & 130 \\ 1.110 & 0.16 & 0.16 & 130 & 130 \\ 1.110 & 0.16 & 0.16 & 130 & 130 \\ 1.110 & 0.16 & 0.16 & 130 & 130 \\ 1.110 & 0.16 & 0.16 & 130 & 130 \\ 1.110 & 0.16 & 0.16 & 130 & 130 \\ 1.110 & 0.16 & 0.16 & 130 & 130 \\ 1.110 & 0.16 & 0.16 & 130 & 130 \\ 1.110 & 0.16 & 0.16 & 130 & 130 \\ 1.110 & 0.16 & 0.16 & 130 & 130 \\ 1.110 & 0.16 & 0.16 & 130 & 130 \\ 1.110 & 0.16 & 0.16 & 130 & 130 \\ 1.110 & 0.16 & 0.16 & 0.16 & 130 \\ 1.110 & 0.16 & 0.16 & 0.16 & 0.16 & 130 \\ 1.110 & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 & 0.16 & 0.$	1,2-Dichlorobenzene	1.230	0.15	*	0	123	02	130		
0.9800 0.15 1 0 98.0 70 130 1.180 0.15 1 0 118 70 130 1.180 0.15 1 0 97.0 70 130 1.180 0.15 1 0 97.0 70 130 1.220 0.15 1 0 97.0 70 130 1.220 0.15 1 0 122 70 130 1.220 0.15 1 0 122 70 130 1.150 0.15 1 0 95.0 70 130 0.9500 0.15 1 0 95.0 70 130 1.150 0.15 1 0 70 70 130 0.9500 0.15 1 0 95.0 70 70 130 1.150 0.15 1 0 70 70 70 130 1.170 0.15 1 0 87.0 70 130 1.170 <t< td=""><td>1,2-Dichloroethane</td><td>0.9200</td><td>0.15</td><td>-</td><td>0</td><td>92.0</td><td>2</td><td>130</td><td></td><td></td></t<>	1,2-Dichloroethane	0.9200	0.15	-	0	92.0	2	130		
1.180 0.15 1 0 118 70 130 0.9700 0.15 1 0 97.0 70 130 1.220 0.15 1 0 122 70 130 1.220 0.15 1 0 122 70 130 1.220 0.15 1 0 122 70 130 1.220 0.30 1 0 122 70 130 1.220 0.30 1 0 122 70 130 1.1020 0.30 1 0 72 70 130 1.150 0.15 1 0 87.0 70 130 0.9800 0.30 0.41 0 87.0 70 130 0.9800 0.15 1 0 87.0 70 130 1.170 0.15 1 0 87.0 70 130 1.170 0.15 1 0 70 130 140 140 1.170 <td>1,2-Dichloropropane</td> <td>0.9800</td> <td>0.15</td> <td></td> <td>0</td> <td>98.0</td> <td>20</td> <td>130</td> <td></td> <td></td>	1,2-Dichloropropane	0.9800	0.15		0	98.0	20	130		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,3,5-Trimethylbenzene	1.180	0.15	-	0	118	20	130		
1.220 0.15 1 0 122 70 130 1.220 0.15 1 0 122 70 130 1.220 0.30 1 0 122 70 130 1.020 0.30 1 0 122 70 130 1.020 0.300 0.15 1 0 95.0 70 130 1.150 0.15 1 0 95.0 70 130 0.3800 0.30 1 0 95.0 70 130 0.38700 0.36 1 0 96.0 70 130 0.38700 0.15 1 0 87.0 70 130 1.170 0.15 1 0 102 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 70 130 130 1.170 0.15	1,3-butadiene	0.9700	0.15	-	0	97.0	20	130		
1.220 0.15 1 0 122 70 130 1.020 0.30 1 0 102 70 130 1.020 0.30 1 0 102 70 130 1.150 0.15 1 0 115 70 130 1.150 0.15 1 0 95.0 70 130 1.150 0.15 1 0 98.0 70 130 0.8700 0.15 1 0 87.0 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 717 70 130 1.170 0.15 1 0 717 70 130 1.18 1.170 0.117 70 70 130 0.99.00 0.15 1 0 <	1,3-Dichlorobenzene	1.220	0.15	-	0	122	70	130		
1.020 0.30 1 0 102 70 130 0.9500 0.15 1 0 95.0 70 130 1.150 0.15 1 0 95.0 70 130 1.150 0.15 1 0 95.0 70 130 1.150 0.15 1 0 98.0 70 130 0.9800 0.15 1 0 98.0 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 117 70 130 0.9100 0.15 1 0 717 70 130 0.9100 0.15 1 0 717 70 130 0.9100 0.15 1 0 717 70 130 0.9100 0.15 1	1,4-Dichtorobenzene	1.220	0.15	-	0	122	8	130		
0.9500 0.15 1 0 95.0 70 130 1.150 0.15 1 0 115 70 130 0.9500 0.30 1 0 98.0 70 130 0.9500 0.315 1 0 98.0 70 130 0.9500 0.3500 0.15 1 0 87.0 70 130 1.020 0.15 1 0 117 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 70 130 2.9100 0.15 1 0 70 70 130 2.9100 0.15 1 0 70 70 130 2.9100 0.15 1 0 70 70 130 2.9100 0.15 1 0 70 70 130 2.9100 0.15 <td< td=""><td>1,4-Dioxane</td><td>1.020</td><td>0:30</td><td></td><td>0</td><td><u>1</u>02</td><td>20</td><td>130</td><td></td><td></td></td<>	1,4-Dioxane	1.020	0:30		0	<u>1</u> 02	20	130		
1.150 0.15 1 0 115 70 130 0.3800 0.30 1 0 98.0 70 130 0.8700 0.30 1 0 98.0 70 130 0.8700 0.15 1 0 87.0 70 130 1.020 0.15 1 0 117 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 70 70 130 0.9100 0.15 1 0 710 70 70 130 0.9100 0.15 1 0 70 70 70 130 131srported are not blank corrected E E Estimated Value above quantitation tange 70 70	2,2,4-trimethylpentane	0.9500	0.15	***	0	95.0	2	130		
0.5800 0.30 1 0 98.0 70 130 0.8700 0.15 1 0 87.0 70 130 1.020 0.15 1 0 87.0 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 117 70 130 1.18 <r></r> 2.9100 0.15 1 0 91.0 70 130	4-ethylioluene	1.150	0.15	-	0	115	2	061		
0.8700 0.15 1 0 87.0 70 130 1.020 0.15 1 0 102 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 110 70 130 1.170 0.15 1 0 117 70 130 0.9100 0.15 1 0 117 70 130 1.18 <r></r> reported are not blank corrected E Eximated Value above quantitation tange 14 14	Acetone	0.9800	0.30	•	0	98. 0	2	130		
1.020 0.15 1 0 102 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 117 70 130 0.9100 0.15 1 0 117 70 130 1.170 0.15 1 0 117 70 130 0.9100 0.15 1 0 70 70 130 1.170 0.510 0.15 1 0 70 70 130 1.170 0.510 0.15 1 0 70 70 130 1.18 1 0 117 70 70 130 1.18 1 0 70 70 130 1.18 1 0 70 70 130 1.18 1 0 70 70 130 1.18 1 0 70 70 130	Allyt chloride	0.8700	0.15	4.	0	87.0	2	130		
1.170 0.15 1 0 117 70 130 1.100 0.15 1 0 110 70 130 1.170 0.15 1 0 117 70 130 0.9100 0.15 1 0 117 70 130 0.9100 0.15 1 0 117 70 130 0.9100 0.15 1 0 70 70 130 1.170 0.910 0.15 1 0 117 70 130 1.18 1.170 0.15 1 0 70 70 130 1.18 1.170 0.15 1 0 70 70 130 1.18 1.17 0 70 70 130 70 130 1.18 1 0 91.0 70 70 130 1.18 1 0 70 70 70 130	Benzene	1.020	0.15	*	ø	102	Ŕ	130		
1.100 0.15 1 0 110 70 130 1.170 0.15 1 0 117 70 130 0.9100 0.15 1 0 91.0 70 130 0.9100 0.15 1 0 91.0 70 130 11 reported are not blank corrected E Estimated Value above quantitation tange H	Benzyl chloride	1,170	0.15		٥	117	70	130		
1.170 0.15 1 0 117 70 130 0.9100 0.15 1 0 91.0 70 130 0.sulls reported are not blank corrected E Estimated Value above quantitation tunge H	Bromodichloromethane	1.100	0.15	*	þ	110	20	130		
0.9100 0.15 1 0 91.0 70 130 . Results reported are not blank corrected E Estimated Value above quantitation tunge H	Bromotorm	1.170	0.15	-	o	117	2	130		
Results reported are not blank corrected E Estimated Value above quantitation tange H	Bromomethane	0.9100	0.15	*	o	91.0	02	130		
		Ted are not blank corrected			ated Value above output	itation cons		ł	mes for preparation of analysis exceede	-
							2			

rutaryte uctored verow yuantitation minit Spike Recovery oniside accepted recovery listifis Ś

Page 1 of 5

Work Order: C1804042	C1804042								
Project: 46 Mount Hope Ave	lope Ave						TestCode:	: 0.20_NYS	
Sample ID: ALCS1UG-042018	SampType: LCS	TestCode	TestCode: 0.20_NYS	Units: ppbV		Prep Date:		RunNo: 13545	
Client ID: ZZZZ	Batch ID: R13546	TestNo	TestNo: TO-15		-	Analysis Dale:	4/20/2018	SeqNo: 156895	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	Val %RPD RPDLimit	Quai
Carbon disulfide	0.9500	0.15	-	0	95.0	202	130		
Carbon letrachloride	1.000	0.030	ſ	¢	<u>1</u> 0	70	130		
Chiorobenzene	1.110	0.15	*	0	111	2	130		
Chloroethane	0.9200	0.15	*	0	92.0	6 2	130		
Chloroform	0.9600	0,15	-	Ģ	96.0	70	130		
Chioromelhane	0.9600	0.15	-	¢	96.0	70	130		
cis-1,2-Dichlonoethene	0.8100	0.040	-	D	81.0	70	130		
cis-1,3-Dichloropropene	1.060	0.15	•	D	106	70	130		
Cyclofiexane	0.9600	0.15	-	0	96.0	02	130		
Dibromochloromethane	1.160	0.15	***	0	116	70	130		
Ethyt acetate	0.9200	0.15	***	0	92.0	70	130		
Elhyłbenzene	1.060	0.15	*-	0	<u>1</u> 06	70	130		
Freon 11	0.9200	0.15	**	0	92.0	ę.	130		
Freen 113	0.9800	0.15	•	0	98.0	70	130		
Freon 114	0.9400	0.15		Q	94.0	P.	130		
Freon 12	0.9800	0.15	~~	Ģ	<u>98.0</u>	02	130		
Heptane	0.9200	0.15	~	0	92.0	70	130		
Hexachloro-1,3-butadiene	1.250	0.15	F	o	125	02	130		
Hexane	0.8800	0.15	~	0	88.0	70	130		
isopropył akcohoł	0.9400	0.15	-	ð	94.0	02	130		
måp-Xylene	2.210	0.30	7	o	110	70	130		
Methyl Butyl Kelone	0.9100	0.30		0	91.0	9 2	130		
Melhyi Elhyi Kelone	0.9300	0.30	-	0	30.0	Q2	130		
Methyl isobutyl Ketone	0.8500	0.30	-	c	85.0	70	130		
Methyl tert-butyl ether	0.8900	0.15	-	٥	69.0	70	130		
Methylene chloride	0.9700	0.15	-	0	97.0	02	130		
a-Xylene	1.120	0.15	-	0	112	70	130		
Propylene	0.9000	0.15	-	Ċ	0.06	02	130		
Styrene	1.160	0.15	**	Ċ	116	70	130		
Tetrachioroethylene	1.150	0.15	**	0	115	70	130		
Tetrahydrofuran	0.8400	0,15	*	0	B4.0	02	130		
	Results reported are not blank corrected		i	Estimated Value above quantifiation mage	ntitation mn6	ų		Holding times for preparation or analysis exceeded	c.
J Analyte dete	Analyte detected below quantitation limit			Not Detected at the Limit of Detection	Delection		K XPU ORISIGC	ALTU ORISIGE RECEDIED ANOVERY HIRDRY	

Page 57 of 360

Table G.0Cols: 6.2	CLIENT: LaBella A	LaBella Associates, P.C. CUSMMAD										
Samptifyse TestCole Joint Montole Randoe		+1 nt Hope Ave						Tes		SAN_02.(
ZZZZ Banh IC, F1346 Tenks: To-15 Ambyaic Date: 420, 2010 Serve: 4500 4500 4500 4500 4500 4500 4500 4500 4500 45	Sample ID: ALCS1UG-04201		TestCoc	e: 0.20_NYS	Units: ppbV		Prep Dati			RunNo: 135	8	
Result PQL SPK real SPK real SPK real SPC pot_mit High Link RSD Red Ya SPC pot_mit		Batch ID: R13546	Test	lo: TO-15		~	Analysis Dat			SeqNo: 156	895	
1,040 0,15 1 0 1,04 7 70 130 130 130 130	Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit		PD Ref Val	0dX%	RPDLimit	Qual
0 0 330 70 130 015 1 0 130 015 1 0 130 015 1 0 130 130 1	Toluene	1.040	0.15	-	0	2 2 2	20	130				
1130 015 1 0 113 70 130 0,8000 0,130 1 0 800 70 130 0,8000 0,130 1 0 800 70 130 0,8000 0,140 1 0 800 70 130 0,8400 0,040 1 0 800 70 130 0,8400 0,040 1 0 800 70 130 8auh, 194, Lors Teshtor, 10-15 Analysis Date: Analysis Date: Analysis Date: Analysis Date: Analysis Date: 8auh 10 0.15 1 0 120 70 130 8auh 11 0 112 7 70 130 5eqNo: 15546 8auh 11 0 11 0 120 70 130 11200 015 1 0 120 70 130 11200 015 1 0 120 70 <	trans-1,2-Dichloroethene	0.9300	0.15	*	Ð	93.0	02	130				
0.8000 0.000 1 0 900 70 130 0.8000 0.15 1 0 840 70 130 0.8000 0.15 1 0 840 70 130 0.8000 0.040 1 0 840 780 70 130 811 SampType: LCS TestCodic: 0.04 WS Unlik: ppW Analysis Date: M18/2018 Ranko: 13548 Batch D: Freiscodic: 0.04 WS Unlik: ppW Analysis Date: M18/2018 SeqUo: 15804 Batch D: Freiscodic: 0.01 WS 1/2 XFEC Low M18/2018 SeqUo: 15804 Fash: PCL SYMER XFEC Low M18/2018 SeqUo: 15804 1 100 015 1 0 110 N18/2018 SeqUo: 15804 1 1 0 112 N18/2018 SeqUo: 15804 SeqUo: 15804 1 1 0 112 N18/2018 SeqUo: 15804 SeqUo: 15804	trans-1,3-Dichloropropene	1.130	0.15	Ţ	0	113	70	130				
	Trichkoroethene	0.9900	0:030	4	Ð	0.66	22	130				
Image: constraint of the	Vinyl acetate	0.8900	0.15	-	0	89.0	82	130				
	Vinył Bromide	0.9500	0.15	**	0	95.0	70	130				
SampType: LC3 TestCode: D.IIs: ppb Date: RanNo: 13548 RanNo: 13548 SeqNo: 15504 Batch ID: R13548 TestCode: Joints: ppc Analysis Date: Analysis SeqNo: 15504 SeqNo: 15504 Batch ID: R13548 TestCode: Joints Joints Mailysis Date: Analysis Date: Analysis SeqNo: 15504 SeqNo: 15504 Result PCL SPC Mail SPC Mail Mailysis Mailysis SeqNo: 15504 Mailysis	Vinyt chloride	0.8400	0.040	•	0	84.0	02	130				
Batch ID. R1344Tesho: TO-15Analysis Date:Value Service:Analysis Date:Service: <td>Sample ID: ALCS1UG-04181</td> <td></td> <td>TestCo</td> <td>ie: 0.20_NYS</td> <td>Units: ppbV</td> <td></td> <td>Prep Dat</td> <td>di</td> <td></td> <td>RunNo: 135</td> <td>48</td> <td></td>	Sample ID: ALCS1UG-04181		TestCo	ie: 0.20_NYS	Units: ppbV		Prep Dat	di		RunNo: 135	48	
Arrent intervention PCI SPK value SPK flat val «FFC Lowin HelpLinit RPD Ret Val «FPD RPDLinit reinforcentrare 1.020 0.15 1 0 102 70 130 reinforcentrare 1.100 0.15 1 0 112 70 130 dicontentrare 1.120 0.15 1 0 112 70 130 dicontentrare 1.120 0.15 1 0 114 70 130 dicontentrare 1.130 0.15 1 0 114 70 130 dicontentrare 1.130 0.15 1 0 114 70 130 dicontentrare 1.130 0.15 1 0 114 70 130 dicontentrare 1.170 0.15 1 0 122 70 130 dicontentrare 1.170 0.15 1 0 122 70 130		Batch ID: R13548	Tesh	lo: TO-15			Analysis Dat			SeqNo: 156	304	
1 1020 0.15 1 0 102 70 130 1 1 0 112 70 130 130 1 1 0 112 70 130 130 1 1 1 0 112 70 130 130 0.8600 0.040 1 0 113 70 130 130 1 1 0 113 70 130 130 130 1 1 0 113 70 130 130 130 1 1 0 113 70 130 130 130 1 1 0 113 70 130 130 130 1 1 0 113 70 130 130 130 1 1 1 1 1 1 1<1	Analyte	Result	POL	SPK value	SPK Ref Val	%REC	Lowilmit		PD Ref Val	Q47%	RPDLimit	Quai
1.100 0.15 1 0 10 70 130 0.3300 0.15 1 0 112 70 130 0.3660 0.040 1 0 112 70 130 0.8600 0.040 1 0 860 70 130 1.1300 0.15 1 0 133 70 130 1.140 0.15 1 0 114 70 130 1.1300 0.15 1 0 114 70 130 1.140 0.15 1 0 114 70 130 0.3900 0.15 1 0 114 70 130 0.3900 0.15 1 0 117 70 130 1.170 0.15 1 0 117 70 130 1.170 0.15 1 0 130 130 130 1.170 0.15 1	1,1,1-Trichloroethane	1.020	0.15	-	0	102	62	135 1				
1,120 0.15 1 0 12 70 130 0,9300 0.15 1 0 85.0 70 130 1,390 0.15 1 0 86.0 70 130 1,140 0.15 1 0 114 70 130 1,130 0.15 1 0 113 70 130 1,1200 0.15 1 0 113 70 130 1,1200 0.15 1 0 113 70 130 1,170 0.15 1 0 113 70 130 1,170 0.15 1 0 94.0 70 130 1,170 0.15 1 0 94.0 70 130 1,170 0.15 1 0 140 70 130 1,170 0.15 1 0 130 130 130 1,170 0.15 1 0 130 130 130 1,200 1.1 0	1,1,2,2-Tetrachioroethane	1.100	0.15	***	o	110	70	130				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.1.2-Trichloroethane	1,120	0.15	÷	0	112	70	130				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.1-Dichloroethane	0.9300	0.15	-	0	93.0	70	130				
1.360 0.15 1 0 (33) 70 130 1.140 0.15 1 0 114 70 130 1.130 0.15 1 0 113 70 130 1.130 0.15 1 0 113 70 130 1.130 0.15 1 0 113 70 130 0.3400 0.15 1 0 122 70 130 0.3400 0.15 1 0 910 70 130 0.3400 0.15 1 0 910 70 130 0.3400 0.15 1 0 117 70 130 0.3400 0.15 1 0 120 70 130 1.2200 0.15 1 0 120 70 130 1.300 1.30 70 130 70 130 70 1.400 0.15 1 0 70 130 70 130 1.400 0.15	1,1-Dichloroethene	0.8600	0.040	•	¢	86.0	02	130				
Denczene 1.140 0.15 1 0 114 70 130 Anne 1.130 0.15 1 0 113 70 130 Anne 1.130 0.15 1 0 113 70 130 Anne 0.9400 0.15 1 0 122 70 130 Dame 0.9400 0.15 1 0 122 70 130 Dencane 0.9900 0.15 1 0 117 70 130 Dencane 0.9400 0.15 1 0 117 70 130 Anne 1.170 0.15 1 0 130 70 130 Areane 1.2200 0.15 1 0 123 70 130 Areane 1.300 0.12 70 130 70 130 Areane 1.140 0.15 1 0 130 70 130 <	1,2,4-Trichlorobenzene	1.390	0.15	•	0	BE E	02	130				S
ane 1.130 0.15 1 0 133 70 130 name 1.220 0.15 1 0 122 70 130 name 0.3400 0.15 1 0 122 70 130 name 0.3400 0.15 1 0 94.0 70 130 opane 0.3400 0.15 1 0 94.0 70 130 opane 0.3400 0.15 1 0 94.0 70 130 permane 1.170 0.15 1 0 122 70 130 nzene 1.220 0.15 1 0 123 70 130 nzene 1.230 0.15 1 0 123 70 130 nzene 1.340 0.330 1 0 130 70 130 pertane 1.400 0.30 1 0 130 70 <t< td=""><td>1.2,4-Trimethylbenzene</td><td>1.140</td><td>0.15</td><td></td><td>a</td><td>114</td><td>02</td><td>130</td><td></td><td></td><td></td><td></td></t<>	1.2,4-Trimethylbenzene	1.140	0.15		a	114	02	130				
Rzene 1.220 0.15 1 0 120 130 nane 0.9400 0.15 1 0 94.0 70 130 ppane 0.9400 0.15 1 0 94.0 70 130 ppane 0.9400 0.15 1 0 94.0 70 130 ppane 0.9400 0.15 1 0 117 70 130 ppane 0.9400 0.15 1 0 120 70 130 nzene 1.200 0.15 1 0 123 70 130 nzene 1.300 1.140 0.30 1 0 130 70 130 pentiane 0.9700 0.15 1 0 130 70 130 nonlyte detected below quantitation no 0.14 70 130 70 130 $remults removery outside accepted at the Limit of Detected at the Limit of Detection N No Dete$	1,2-Dibromoethane	1.130		-	0	113	70	130				
name 0.9400 0.15 1 0 94.0 70 130 ppane 0.9900 0.15 1 0 94.0 70 130 ppane 0.9900 0.15 1 0 94.0 70 130 proteine 1.700 0.15 1 0 120 70 130 azene 1.200 0.15 1 0 123 70 130 azene 1.200 0.15 1 0 123 70 130 azene 1.200 0.315 1 0 173 70 130 azene 1.140 0.316 1 0 173 70 130 pentane 0.9710 0.15 1 0 173 70 130 pentane 0.9710 0.16 70 130 70 130 pentane 1.140 0.15 70 70 130 130	1,2-Dichlorobenzene	1.220	0.15	-	o	122	2	130				
opane 0.9900 0.15 1 0 930 70 130 Ibenzane 1.170 0.16 1 0 117 70 130 Denzene 0.9400 0.15 1 0 94,0 70 130 nzene 1.200 0.15 1 0 120 70 130 nzene 1.230 0.15 1 0 123 70 130 nzene 1.190 0.30 1 0 123 70 130 pentane 1.190 0.30 1 0 130 70 130 pentane 0.9700 0.15 1 0 114 70 130 pentane 0.150 1 0 70 130 130 pentane 0.150 0 14 0 130 130 pentane 1.140 0.15 70 130 130 panotyte detected are not bl	1,2-Dichloroethane	0.9400	0.15	+	Ċ	0.10	5	130				
Interface 1.170 0.15 1 0 130 nzene 0.9400 0.15 1 0 94.0 70 130 nzene 1.200 0.15 1 0 120 70 130 nzene 1.200 0.15 1 0 123 70 130 nzene 1.190 0.30 1 0 113 70 130 nzene 1.190 0.30 1 0 130 70 130 pentane 0.9700 0.15 1 0 114 70 130 pentane 0.9700 0.15 1 0 114 70 130 pentane 0.9700 0.15 1 0 114 70 130 nautyse detected are not blank corrected 1 0 114 70 130 . Results reported are not blank corrected E Estimated Value above quantitation range H Holding tinnes	1,2-Dichloropropane	00660	0.15		0	0.99.0	R	130				
nzene 0.9400 0.15 1 0 94.0 70 130 nzene 1.200 0.15 1 0 120 70 130 nzene 1.190 0.15 1 0 123 70 130 nzene 1.190 0.30 1 0 133 70 130 pentane 0.9700 0.15 1 0 97.0 70 130 pentane 0.9700 0.15 1 0 97.0 70 130 pentane 0.9700 0.15 1 0 97.0 70 130 pentane 1.140 0.15 1 0 114 70 130 nubbe detected below quantitation tame 1 1 14 70 130 i Analyte detected below quantitation time ND Not Detected at the Limit of Detection RPD outside accepted recovery limits i Spice Recovery outside accepted recovery limits R RPD outside accepted recovery limits	1,3.5-Trimethylbenzene	1.170	0.15	•	Q	117	8	130				
nzene 1.200 0.15 1 0 120 70 130 rzene 1.230 0.15 1 0 123 70 130 rzene 1.190 0.30 1 0 119 70 130 pertane 0.9700 0.15 1 0 97.0 70 130 pertane 0.9700 0.15 1 0 114 70 130 results reported are not blank corrected E E Estimated Value above quantitation range H Holding times for preparation or analysis excets J Analyte detected below quantitation timit ND Not Detected at the Limit of Detection R RPD outside accepted recovery limits S Spice Recovery outside accepted recovery limits ND Not Detected at the Limit of Detection R RPD outside accepted recovery limits	1,3-butadiene	0.9400	0.15		0	94.0	2	130				
rtzene 1.230 0.15 1 0 123 70 130 nentane 1.190 0.30 1 0 119 70 130 pentane 0.9700 0.15 1 0 97.0 70 130 n 1.140 0.15 1 0 97.0 70 130 r Results reported are not blank corrected E E stimated Value above quantitation range H Holding times for preparation or analysis excets J Analyte detected below quantitation timet ND Not Detected at the Limit of Detection R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits R R RPD outside accepted recovery limits	1,3-Dichlorobenzene	1.200	0.15	*	0	120	2	130				
1.190 0.30 1 0 119 70 130 pertane 0.9700 0.15 1 0 97.0 70 130 1.140 0.15 1 0 97.0 70 130 . Results reported are not blank corrected E Estimated Value above quantitation range H Holding times for preparation or analysis excets . Results reported are not blank corrected E Estimated Value above quantitation range H Holding times for preparation or analysis excets . Spike Recovery outside accepted recovery limits ND Not Detected at the Limit of Detection R RPD outside accepted recovery limits	1,4-Dichlorobenzene	1.230	0.15	-	o	123	02	130				
pertane 0.9700 0.15 1 0 97.0 70 130 1.140 0.15 1 0 114 70 130 . Results reported are not blank corrected E Estimated Value above quantitation range H Holding times for preparation or analysis excet . Results reported are not blank corrected E Estimated Value above quantitation range H Holding times for preparation or analysis excet . Results recovery outside accepted recovery limit ND Not Detection R RPD outside accepted recovery limits	1,4-Dioxane	1.190	0:30	-	0	119	2	130				
1.140 0.15 1 0 114 70 130 Results reported are not blank corrected E Estimated Value above quantitation range H Holding times for preparation or analysis excet J Analyte detected below quantitation timet ND Not Detected at the Limit of Detection R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits ND Not Detection R RPD outside accepted recovery limits	2,2,4-trimethylpentane	0.9700	0.15	-	Ð	97.0	2	130				
. Results reported are not blauk corrected E Estimated Value above quantitation range II Holding times for preparation or analysis excee J Analyse detected below quantitation timit ND Not Detected at the Limit of Detection R RPD outside accepted recovery limits S Spite Recovery outside accepted recovery limits	4-ethyltotuene	1.140	0.15	-	o	114	70	130				
Analyse detected below quantitation limit ND Not Detected at the Limit of Detection R PD outside accepted recovery limits Spike Recovery outside accepted recovery limits		reported are not blauk corrected		i	ated Value above quar	witation can	56		lding times fo	r preparation or m	nalysis exceed	ed
Spike Recovery outside accepted recovery limits		detected below quantitation limit			etected at the Limit of	Detection			D outside acc	epted recovery lin	nits	
		ecovery outside accepted recovery	limits								-	Page 3 of 5

Sample ID: ALCS1UG-041818	SampType: LCS	TestCoc	TestCode: 0.20_NYS	Units: ppbV		Prep Dale:			RunNo: 13548	
Client ID: ZZZZ	Batch ID: R13548	Testh	TestNo: TO-15		-	Analysis Date:	4/18/2018		SeqNo: 156904	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD	RPD Ref Val	%RPD RPDLimit	it Qual
Acetone	1.050	0:0	-	Q	105 1	02	130			
Allyl chloride	0.8900	0.15	-	Q	89.0	02	130			
Benzene	1.020	0.15	۲	0	102	20	130			
Benzyl chloride	1.160	0.15	٣	0	116	20	130			
Bromodichloromethane	1.050	0.15	•	0	105	8	130			
Bromoform	1.140	0.15	-	Ð	114	20	130			
Bromomethane	0.6800	0.15	+	0	88.0	70	130			
Carbon disulfide	0.9800	0.15	**	0	98 .0	70	130			
Carbon tetrachloride	0.9500	0.030	*-	0	95.0	70	130			
Chiorobenzene	1.110	0.15	-	0	111	70	130			
Chloroethane	0.9300	0.15	-	0	93.0	2	130			
Chlaroform	0.9600	0.15	-	Ģ	96.0	70	130			
Chloromethane	0.9100	0.15		o	91.0	02	130			
cis-1,2-Dichloroethene	0.8400	0.040	-	a	84.0	62	130			
cis-1,3-Dichloropropene	1.040	0,15	-	٥	104	02	130			
Cyclohexane	0:3700	0.15	-	0	97.0	70	130			
Dibromochloromethane	1,110	0.15		c	111	02	130			
Ethyl acetate	0:9500	0.15	***	G	95.0	70	130			
Ethylbenzene	1.070	0.15	•	Ð	107	0 2	130			
Freen 11	0.9300	0.15	•••	0	93.0	£	130			
Freen 113	0.9800	0.15	4	0	98.0	R	130			
Freen 114	0.9100	0.15	**	Q	91.0	6 2	130			
Freon 12	0.9400	0.15	-	Ģ	94.0	0Ľ	130			
Heptane	0.9800	0.15	-	٥	98.0	20	130			
Hexachioro-1,3-butadiene	1.260	0.15	-	0	126	20	130			
Hexane	0.8800	0.15	+-	a	88.0	20	130			
isopropyi atcohot	0066'0	0,15	-	ð	99.0	70	130			
m&p-Xylene	2.160	0.30	2	0	108	02	130			
Methyl Butyl Ketone	0.9400	0:30	-	0	94.0	70	130			
Methyl Ethyl Ketone	1.020	0:30	Ŧ	0	102	<u>7</u>	130			
Methyl Isobutyl Ketone	1.050	0.30	••	0	105	02	130			
Qualifiers: Results report	Results reported are not blank corrected		E Estima ND Not De	Estimated Value above quantitation range Not Detected at the 1 inni of Outection	ititation ran. Detection	맖	H Holding R RPD M	g times for pr utside accent	Holding times for preparation or analysis exceeded RPD onside accounted recovery limits	eeded

CLIENT: LaBella Associates, P.C.

Work Order: C1804042	2										
Project: 46 Mount	46 Mount Hope Ave						Ţ	TestCode: 0.20_NYS	20_NYS		
Sample ID: ALCS1UG-041818	SampType: LCS	TestCoc	festCode: 0.20_NYS	Units: ppbV		Prep Date:	ai		RunNo: 13548	48	
Client ID: ZZZZ	Batch ID: R13548	Testh	TestNo: TO-15		<u> </u>	Analysis Date: 4/18/2018	e: 4/18/201	8	SeqNo: 156904	904	
Analyte	Resut	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	RPDLimit	Qual
Methyl tert-butyl ether	0.9100	0,15	-	0	91.0	ę	130				
Methylene chloride	0.9800	0.15	-	0	98.0	92	130				
o-Xylene	1.110	0.15	Ŀ	0	111	Q2	130				
Propylene	0.9400	0.15	-	0	94,0	01	130				
Styrene	1.120	0.15	-	0	112	2	130				
Tetrachkoroethylene	1.120	0.15	-	o	112	2	130				
Tetrahydrofuran	0.9100	0.15	-	D	91.0	20	130				
Toluene	1.040	0.15	-	0	5	70	130				
trans-1,2-Dichloroethene	0.9500	0.15	•	0	95.0	Q2	130				
trans-1,3-Dichloropropene	1.030	0.15	**	0	103	82	130				
Trichloroethene	0.9700	0.030	**	Ð	97.0	92	130				
Vinyi acetate	0.9200	0.15	۲	Q	92.D	22	130				
Vinyl Bromide	0.9300	0.15	~~	Ð	93.0	8	130				
Vinyi chłoride	0.8000	0.040	••••	Q	80.0	70	130				

1

Ì

CLIENT:

LaBella Associates, P.C.

- E Estimated Volue above quantitation range ND Not Detected at the Limit of Detection Results reported are not blank corrected Qualifiers: ------
 - Analyte detected below quantitation limit
- Spike Recovery outside accepted recovery limits

Page 5 of 5

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits

x ~

Date: 16-May-18

CENTEK LABORATORIES, LLC

Secto

CLIENT:

ANALYTICAL QC SUMMARY REPORT

LaBella Associates, P.C.

	I of 5
	Page
4	

Project: 46 Mount Hope Ave	lope Ave						žm	TestCode: 0.20_NYS	1.20_NYS		
Sample ID: ALCS1UGD-042018	SampType: LCSD	TestCode	TestCode: 0.20_NYS	Units: ppbV		Prep Date:	le.		RunNo: 13	13546	
Client ID: ZZZZ	Batch ID: R13546	TestNo	estNo: TO-15			Analysis Date:	le: 4/21/2018	18	SeqNo: 156896	5896	
Anahte	Result	ЪQL	SPK value	SPK Ref Vat	%REC	LowLimit	HighLimit	RPD Ref Vaf	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	1.150	0.15	-	0	115	67	130	1.05	60'6	Ř	
1,1,2,2-Tetrachioroethane	1.240	0.15	•	9	124	5	130	1.11	11.1	Ř	
1,1,2-Trichforoethane	1.220	0.15		Ð	122	2	130	1.09	11.3	30	
1,1-Dichloroethane	0.9400	0.15	-	0	94.0	02	130	0.9	4.35	30	
1,1-Dichloroethene	0.7700	0.040	-	0	0.77	<u>6</u>	130	0.83	7.50	ଟି	
1,2,4-Trichlorobenzene	1.340	0.15	+	0	134	02	130	1.26	6.15	б С	ŝ
1,2,4-Trimethytbenzene	1.250	0.15	+-	0	125	92	130	1,14	9.21	<u>е</u>	
1,2-Dibromoethane	1.200	0.15	-	0	120	02	130	1.15	4.26	99	
f, 2-Dichkorbenzene	1.350	0.15	~~	0	135	70	130	1.23	9.30	8	s
1,2-Dichloroethane	0.9900	0.15	-	C	0.06	20	130	0.92	7.33	ß	
1,2-Dichloropropane	1.070	0.15	••	0	t07	<u>2</u>	130	95.0	8.78	30	
1,3,5-Trimethylbenzene	1.290	0.15	-	O	129	02	130	1.18	8.91	30	
1,3-butadiene	1.010	0.15	Ţ	G	101	2	130	0.97	4.04	30	
1,3-Dichlorobenzene	1.350	0.15	•	¢	135	5	130	122	10.1		S
1,4-Dichlorobenzene	1.300	0.15	-	0	130	70	130	1.22	6.35		
1,4-Dioxane	1.290	0:30	-	Ð	<u>8</u> 2	02	130	1.02	23,4	8	
2,2,4-trimethylpentane	1.020	0.15	-	ð	102	02	130	0.95	7.11		
4-ethyttoluene	1.280	0.15	~ **	0	128	8	130	1.15	10.7		
Acetone	0.9100	0.30	ų.	0	91.0	2	130	0.98	7.41	æ	
Allyl chloride	0.8100	0.15	-	0	81.0	62	130	0.87	7.14		
Benzene	1.080	0.15		G	108	2	130	1.02	5.71	30	
Benzyl chloride	1.280	0.15	-	0	128	20	130	1.17	6.93	30	
Bromodichloromethane	1.190	0.15	•	0	119	02	130		7.86		
Bromotorm	1.300	0,15	Ţ	o	130	\$	130	1.17	10.5	90	
Bromomethane	0.9800	0.15	۲	0	0 .86	70	130	0.91	7.41	00 D	
Qualifiers: Results repo	Results reported are not blank corrected		E Estin	Estimated Value above quantitation range	nitation ran	2	H	Holding times for preparation or analysis exceeded	preparation or	analysis excect	lei.
Ē	Analyte detected below quantitation limit		ND Not I	Not Detected at the Limit of Detection	f Detection		æ	RPD outside accepted recovery limits	pted recovery li	imits	
S Spike Recov	Spike Recovery outside accepted recovery limits	imits									Page 1 of 5

LaBella Associates, P.C.

CLIENT:

C1804042 Work Order:

Project: 46 Mount Hope Ave	tope Ave						T	TestCode: 0	0.20_NYS		
Sample ID: ALCS1UGD-042018	SampType: LCSD	TestCode	TestCode: 0.20_NYS	Units: ppbV		Prep Date:			RunNo: 13546	546	
Client ID: ZZZZ	Batch ID: R13546	TesiNo	TestNo: TO-15		a	Analysis Date:	4/21/2018	8	SegNo: 156896	9686	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quat
Carbon disultide	0.9400	0.15	ł	Ð	94.0	70	130	96.0	1.06	R	
Carbon tetrachloride	1,110	0.030	-	0	111	2	130	-	10.4	30	
Chiorobenzene	1.200	0.15	~~	0	120	2	130	1.11	7.79	30	
Chloroethane	0.9900	0.15	•••	0	0.66	5	130	0.92	7.33	90	
Chlaroform	1.020	0.15	*	O	102	2	130	0.96	6.06	30	
Chloromethane	1.050	0.15	~	¢	105	R	130	0.96	8.96	90	
cis-1,2-Dichloroethene	0.8300	0.040	•	¢	83.0	ę	130	0.81	2.44	30	
cis-1,3-Dichloropropene	1.150	0.15	•••	Q	115	ę	130	1.06	8.14	б Я	
Cyclohexane	1.020	0.15	•	Ģ	<u>1</u> 02	02	130	0.96	6.06	0E	
Dibromochloromethane	1.270	0.15	-	a	127	02	130	1.16	9.05	ଝ	
Ethyl acelate	0.8900	0.15	F	0	89.0	02	130	0.92	3.31	ଞ	
Ethylbenzene	1.130	0.15	*	0	113	2	130	1.06	6.39	30	
Freon 11	1.050	0.15	~-	Ð	105	92	130	0.92	13.2	ନ	
Frean 113	0.9700	0,15	*	o	97.0	70	130	0.98	1.03	8	
Fibon 114	1.040	0.15	*	0	₫	62	130	0.94	10.1	æ	
Freon 12	1.060	0.15	*	0	<u>1</u> 66	70	130	0.98	7.84	8	
Heplane	0.9700	0.15		0	0.79	70	130	0.92	5.29	8	
Hexachtoro-1,3-butadlene	1.410	0.15	<u>•</u>	0	IFI I	70	130	1.25	12.0	8	S
Hexane	0.8400	0.15	-	۵	E	70	130	0.33	4.65	8	
tsopropyl alcohol	0.9600	0.15	-	o	96.0	20	130	0.94	2.11	8	
m&p-Xylene	2.430	0.30	2	0	122	70	130	2.21	9.48	0£	
Methyl Butyl Ketone	1.020	0:30	**	G	102	70	130	0.91	11.4	ġ	
Methyl Ethyl Ketone	0.9600	0:30	+	Ċ	96.0	70	130	0.93	3.17	ଛ	
Methyl Isobutyl Ketone	1,060	0.30	•	¢	106	70	130	0.85	22.0	8	
Methyl tert-butyl ather	0.9200	0.15	***	Ċ	92.0	70	130	0.89	3.31	90	
Meinviene chloride	1.000	0.15	-	0	0 0‡	Q2	130	0.97	3.05	8	
o-Xylene	1.270	0.15	***	0	127	20	130	1.12	12.6	90	
Propylene	0.9300	0.15	-	¢	93.0	70	130	0.9	3.28	8	
Styrene	1.250	0.15	-	D	125	02	130	1.16	7.47	ខ្ល	
Teirachiomethylene	1.240	0.15	£	0	124	70	130	1.15	7.53	Ř	
Tetrahydrofuran	0.8700	0.15	-	0	87.0	20	130	0.64	3.51	ЭĊ Э́С	
Onalifiere: Results reno	Results remorted are not blank corrected		E Estima	Estimated Value above quantitation range	hiation rang	2	H	Holding times for preparation or analysis exceeded	preparation or a	malysis exceed	ß
	Analyse detected below quantitation limit		~	Not Detected at the Limit of Detection	Detection		×	RPD outside accepted recovery limits	pted recovery his	mits	

Spike Recovery outside accepted recovery limits Analyse detected below quantitation limit
 Spike Recovery outside accepted recovery

Project: 46	C1804042 46 Mount Hope Ave	C1804042 46 Mount Hope Ave						ţ	TestCode: (0.20_NYS		
Sample ID: ALCS1UGD-042018	D-042018	SampType: LCSD	TestCod	TestCode: 0.20_NYS	Units: ppbV		Prep Date			RunNo: 13546	546	
Client ID: ZZZZ		Batch ID: R13546	TestN	estNo: TO-15		-	Analysis Date:	te: 4/21/2018	18	SeqNo: 156896	9689	
Analyte		Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	G4X%	RPDLimit	Qual
Tokene		1.090	0.15	-	0	109	62	130	1.04	4.69	8	
trans-1,2-Dichloroethene	ě	0,9200	0.15	-	0	92.0	70	130	0.93	1.08		
trans-1,3-Dichloropropene	sne	1.140	0.15	£	0	114	22	130	1.13	0.861		
Trichloroethene		1.050	0:030	*-	0	105	20	130	0.09	5.88		
Vinyl acetate		0006-0	0.15		0	90.06	22	130	0.89	1.12	8	
Viny! Bromide		1.020	0.15	**	Ð	102	02	130	0.95	7.11	90	
Vinył chloride		0.9100	0,040	1	o	91.0	20	130	0.84	8.00	8	
Sample ID: ALCSD1UG-041818	G-041818	SampType: LCSD	TestCod	TestCode: 0.20_NYS	Units: ppbV		Prep Date:	ei.		Runho: 13548	548	
Client ID: ZZZZ		Batch ID: R13548	TestN	estNo: TO-15		`	Analysis Dale:	le: 4/19/2018	18	SeqNo: 156905	6905	
Analyte		Result	PQL	SPK value	SPK Ref Val	√ %REC	LowLimit	HighLimit	RPD Ref Val	0d3%	RPDLimit	Qual
1,1,1-Trichloroethane		1.010	0.15		0	101	02	130	1.02	0.985	8	
1,1,2,2-Tetrachloroethane	ane	1.080	0.15	•	0	108	0,	130	÷	1.83		
1,1,2-Trichloroethane		1.120	0.15	-	0	112	02	130	1.12	0	8	
I, 1-Dichloroethane		000610	0.15	•	Q	90.06	20	130	0.93	3.28	80	
,1-Dichloroethene		0.8600	0.040	•	o	86.0	70	130	0.86	0	8	
,2,4-Trichlorabenzene	A 1	1.150	0.15	-	o	115	70	130	1.39	18.9		
2,4-Trimethylbenzene	¢	1.130	0.15	*	D	113	Q2	130	1.14	0.881	30	
I,2-Dibromoethane		1.100	0.15	***	0	110	70	130	1.13	2.69		
1,2-Dichlorobenzene		1.170	0.15	***	o	117	62	130	1.22	4.18		
1,2-Dichloroethane		0.9200	0.15	*	Ð	92.0	2	130	0.94	2.15		_
1.2-Dichloropropane		0.9600	0.15	~~	Ō	96.0	2	130	0.99	3.08		
1,3,5-Trimelhylbenzene	Ŧ	1.150	0.15		0	115	01	130	1.17	1.72		
1,3-butadiene		0.9800	0.15	•••	0	98.0	02	130	0.94	4.17		
.3-Dichlorobenzene		1.170	0.15	•	o	117	92	130	1.2	2.53		
1,4-Dichlorobenzene		1.150	0.15	£	0	115	70	130	1.23	6.72	30	
1,4-Dioxane		1.160	0:30	-	۵	116	10	130	1.19	2.55		
2,2,4-trimethylpentane		0.9500	0.15	۲	Ð	95.0	0/	130	0.97	2.08		
4-ethyttotuene		1.130	0.15	-	0	113	70	130	1.14	D.881	90	_
	tesuits report	Results reported are not blank corrected		E Estim	Estimated Value above quantitation range	utitation rang	a,		folding times for	Holding times for preparation or analysis exceeded	analysis excor	ded
•	and a state							4			•	

LaBella Associates, P.C. C1804007

CLIENT:	CLIENT: LaBella Associate
Work Order:	C1804042

Project:	46 Mount Hope Ave	ope Ave						Ţ	TestCode: 0	0.20_NYS		
Sample ID: ALCSD1UG-041818	tUG-041818	SampType: LCSD	TestCode	TestCode: 0.20_NYS	Units: ppbV		Prep Date:			RunNo: 13548	<u>7</u> 48	
Client ID: ZZZZZ		Batch ID: R13548	TestN	TestNa: TO-15		-	Analysis Dale:	4/19/2018	81	SeqNo: 156905	3905	fali '
Analyte		Result	PQL	SPK value	SPK Ref Val	× <	LowLimit H	HighLimit	RPD Ref Val	048%	RPDLimit	Guał
Acetone		0.9300	05.0		0	93.0	20	130	1.05	12.1	8	
Allyt chloride		0.8800	0.15	~	0	38.0	20	130	0.89	1.13	8	
Benzene		0.9900	0.15	-	o	0.99	70	130	1.02	2.99	8	
Benzyl chloride		1.100	0.15	-	•	110	70	130	1.16	5.31	8	
Bromodichloromethane	ane	1.030	0.15	-	0	103	02	130	t.05	1.92	8	
Bromoform		1.120	0.15	۴	Ð	112	20	130	1.14	1.77	30	
Bromomethane		0.9200	0.15	~~	0	92.0	70	130	0.88	4.44	30	
Carbon disulfide		0.9200	0,15	~~	0	92.0	70	130	0.98	6.32	30	
Carbon tetrachloride	ń	0.9500	0.030	*	Q	95.0	20	130	0.95	٥	30	
Chlorobenzene		1.110	0.15	**	0	113	70	130	1.11	0	8	
Chloroethane		0.9100	0.15	-	¢	91.0	70	<u>98</u>	0.93	2.17	30	
Chloroform		0.9500	0.15	•	0	95.0	20	130	0.96.0	1.05	30	
Chloromethane		0066'0	0.15		0	99.0	02	130	0.91	8.42	30	
cis-f,2-Dichloroethene	ane	0.8300	0.040		¢	83.0	6 2	130	0.84	1.20	8	
cis-1,3-Dichioropropene	sene	1.060	0.15		Q	106 1	ę	130	<u>5</u>	1.90	œ	
Cyclohexane		0.9800	0.15	-	0	98.0	70	130	0.97	1.03	8	
Dibromochloromethane	ane	1.090	0.15	+-	o	109	70	130	1.11	1.82	00	
Ethyl acetate		0.9300	0.15	-	o	03.0	70	130	0.95	2.13	ଝ	
Ethylbenzene		1.060	0.15	**	o	106 1	70	130	1.07	0.939	0E	
Freen 11		0.9300	0.15	-	0	93.0	70	130	0.93	¢	ଳ	
Freen 113		0.9800	0.15	•	0	98.0	70	130	0.98	¢	8	
Freon 114		0.9500	0.15	+	0	95.0	70	130	0.91	4.30	8	
Freon 12		1.020	0.15	-	0	102	67	130	0.94	8.16	30	
Heptane		0.9200	0.15		0	92.0	07	130	0.98	6.32	30	
Hexachloro-1,3-butadiene	adiene	1.210	0.15	-	0	121	07	130	1.26	4.05	8	
Hexane		0.8600	0.15	-	•	86.0	\$	130	0.88	2.30	8	
isopropyl akohol		0.9600	0.15	-	0	96.0	02	130	66'0	3.08	8	
m&p-Xylene		2.120	0.30	2	ø	106	70	130	2.16	1.87	8	
Methyl Butyl Kelone	ð	1.040	0.30	***	o	ş	70	130	0.94	10.1	æ	
Methyl Ethyl Ketone	ź	0.9500	0.30	•	Ð	95.0	70	130	1.02	7.11	8	
Methyl Isobutyl Ketone	one	1.010	0.30	4	o	101	2	130	1.05	3.88	ខ្ល	
Oualifiers:	Results repor	Results reported are not blank corrected		E Estimat	Estimated Value above quantitation range	litation cang	af.	H	Holding times for preparation or analysis exceeded	preparation or a	nalysis exceed	cđ
- ,	Analyte deto:	Analyte detected below quantitation limit		ND Not De	Not Detected at the Limit of Detection	Detection		Я	RPD outside accepted recovery limits	pted recovery lin	nits	
Ś	Spike Recovi	Spike Recovery outside accepted recovery limits	imits								4	Page 4 of 5

LaBella Associates, P.C. C1804042 Work Order: CLIENT:

Page 65 of 360

Project: 46 Mount Hope Ave	ope Ave						T	TestCode: 0.20_NYS	20_NYS		
Sample ID: ALCSD1UG-041818	SampType: LCSO	TestCoc	TestCode: 0.20_NYS	Units: ppbV		Prep Date:	iii iii		RunNo: 13548	4 8	
Ckient ID; ZZZZ	Batch (D: R13548	TestA	TestNo: TO-15		-	Analysis Date:	e: 4/19/2018	8	SeqNo: 156905	305	
Analyte	Result	PQL	SPK value	SPK Ref Vai	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quai
Methyl tert-butyf ether	0.9200	0.15	1	•	92.0	65	130	0.91	1.09	8	
Methylene chloride	0.9200	0.15	*-	Ð	92.0	<u>6</u> 2	130	0.98	6.32	30	
o-Xylene	1.070	0.15	***	¢	107	6	130	1.11	3.67	8	
Propylene	0.9800	0.15	*-	ø	0.82	70	130	0.94	4.17	8	
Styrene	1.100	0.15	*-	0	110	92 92	130	1.12	1.80	8	
Tetrachioroethylene	1.110	0.15	* -	0	111	<u>6</u> 2	130	1,12	0.897	8	
Tetrahydrofuran	0.8800	0.15	••	o	88.0	02	130	0.91	3.35	g	
Toluene	1.000	0.15	-	Q	<u>6</u>	67	130	1.04	3.92	8	
trans-1,2-Dichloroethene	0.9200	0.15	-	0	92.0	67	130	0.95	3.21	30	
trans-1,3-Dichloropropene	1.030	0.15	**	Q	103	02	130	1.03	Ð	œ	
Frichloroethene	0.9800	0.030		9	98.0	5	130	0.97	1.03	ଞ	
Vinyl acetate	0.9100	0.15	٣	¢	91.0	5	130	0.92	1.09	ଞ	
Vinyi Bromide	0.9200	0.15	-	0	92.0	02	130	0.93	1.03	<u>ଚ</u>	
Vinyt chloride	0.8700	0.040	-	D	87.0	70	130	0.8	8.38	8	

Analyte detected below quantitation timit Results reported are not blank corrected . -,

Qualifiers:

Spike Recovery outside accepted recovery limits

ŝ

Estimated Value above quantitation range E Estimated Value above quantitation ran ND Not Detected at the Limit of Detection

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits щ e

Page 5 of 5

Centek Laboratories, LLC

der: LaBella Associ der: C1804042 46 Mount Hop 46 Mount Hop 46 Mount Hop 22222 22222 22222 22222 22222 22222 2222	°.C. pe: MBLK ID: R13546 C.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15	82	Units: ppbV SPK Ref Vat	ANALYTICA Prep Date: Analysis Date: 4/20	TICAL QC SUN	ANALYTICAL QC SUMMARY REPORT	
SNT: LaBella Associ SNT: LaBella Associ ect: 46 Mount Hop ect: 46 Mount Hop ect: 46 Mount Hop ect: 22222 t ID: 22222 Afe Trichloroethane Chloroethane Chloroethane Dichloroethane Dichloroethane Dichlorobenze	•.C. pe: MBLK ID: R13546 Rasult < 0.15 <	BatCode: 0.20 Testho: 10- 0L SPK 115 115 115 115 115	Units: ppbV SPK Ref Vat	Prep Da Analysis Da			
C1804042 46 Mount Hop 46 Mount Hop 222 222 222 222 222 222 222 222 222 2	pe: MBLK ID: R13546 Result < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15	sstCode: 0.20 TestNo: TO- OL SPK 0L SPK 115 115 115 115 115	Units: ppbV SPK Ref Vat	Prep Da Analysis Da			
D: AMB1UG-042018 Si chloroethane etrachloroethane etrachloroethane loroethane chlorobenzene methylbenzene borobenzene diene ane horobenzene diene ane huene huene huene	pe: MBLK 10: R13546 Result < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15	International Sector 10-20 Testivo: TO- Cull SPK Cull 115 115 115 115 115 115 115 115	Units: ppbV SPK Ref Vat	Prep Di Analysis Do	TestCode: 0	0.20 NYS	
ŭ		astCode: 0.20 TestNo: TO- OL SPK 04 115 115 115 115 115 115 115	Units: ppbV SPK Ref Vat	Prep Da Analysis Da			
ZZZZZ Morcethane Alorcethane alorcethane inforcethane incethane intrytbenzene isttrytbenzene iethybenzene iene iene iene iene iene iene ien	\rightarrow	11Yo	ue SPK Ref Val	Analysis Da	ite:	RunNo: 13546	
Analyte 1,1,1-Trichkoroethane 1,1,2,2-Tetrachtoroethane 1,1,2,2-Tetrachtoroethane 1,1,2,2-Trichtoroethane 1,1,2,4-Trichtorobenzene 1,2,4-Trimethytbenzene 1,2,4-Trimethytbenzene 1,2-Dichtorobenzene 1,2-Dichtorobenzene 1,2-Dichtorobenzene 1,3-buladiene	× °		SPK Ref Val		ste: 4/20/2018	SeqNo: 156894	
1, 1, 1-Trichloroethane 1, 1, 2-Trichloroethane 1, 1, 2-Trichloroethane 1, 1, 2-Trichloroethane 1, 1-Dichlorobenzene 1, 2-A-Trichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 3-Dichlorobenzene 1, 3-Dichlorobenzene 1, 4-Dichlorobenzene 1, 4-Dichlorobenzene 1, 4-Dichlorobenzene 1, 4-Dichlorobenzene 1, 4-Dioxane 2, 2, 4-trimethylpentane 4-ethylkoluene Acetone Allyl chtoride	>	8년 8		%REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit Q	Quat
1, 1, 2, 2-Tetrachtoroethane 1, 1, 2-Frichboroethane 1, 1-Dichboroethane 1, 2, 4-Trichborobenzene 1, 2, 4-Trimethybenzene 1, 2, 4-Trimethybenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 3-Dichlorobenzene 1, 3-Dichlorobenzene 1, 3-Dichlorobenzene 1, 3-Dichlorobenzene 1, 4-Dichlorobenzene 1, 3-Dichlorobenzene 1, 3-Dichl		51 51 54 54 51 51 51 51 51					
1, 1, 2-Trichbroethane 1, 1-Dichloroethane 1, 1-Dichloroethane 1, 2, 4-Trichlorobenzene 1, 2, 4-Trimethytbenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 3-Dichlorobenzene 1, 3-Dichlorobenzene 1, 4-Dichlorobenzene 1, 2-Dichlorobenzene 1, 3-Dichlorobenzene 1, 3-Dichlorobenzene 1	G	15 15 16 15 11 15					
1, 1-Dichloroethane 1, 2, 4-T richloroethane 1, 2, 4-T richlorobenzene 1, 2, 4-T rimethytbenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 3-Dichlorobenzene 1, 3-Dichlorobenzene 1, 4-Dichlorobenzene 1, 5-Dichlorobenzene 1, 2-Dichlorobenzene 1, 3-Dichlorobenzene 1, 3-Dich	U U	115 040 115 115					
1,1-Dichloroelthene 1,2,4-Trichlorobenzene 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropenane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2,2,4-trimethylpentane 4-ethytkoluene Acetone Ally1 chtoride	0	040 115 115					
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2,4-trimethylbentane 4-ethylkoluene Acetone Allyi chtoride		1.15 1.15					
1,2,4-Trimethytbenzene 1,2-Dibromoethane 1,2-Dichloropethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-buladiene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2,2,4-trimethylpentane 4-ethytkoluene Allyl chtoride		l,15					
1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloropropana 1,3,5-Trimethylbenzene 1,3-Duladiene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2,2,4-trimethylpentane 4-ethylkoluene Allyl chloride							
1,2-Dichlorobenzene 1,2-Dichloropropana 1,2-Dichloropropana 1,3-Duladiene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2,2,4-trimethylpentane 4-ethylkoluene Allyi chloride		0.15					
1,2-Dichloroethane 1,2-Dichloropropana 1,3-5-Trimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dicklorobenzene 2,2,4-trimethylpentane 4-ethylkoluene Allyi chloride	< 0.15 0	0.15					
1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2,2,4-trimethylpentane 4-ethytkoluene Acetone Allyl chtoride		0.15					
1, 3,5-Trimethylbenzene 1,3-Duladiene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2,4-trimethylpentane 4-ethytkoluene Acetone Allyi chtoride	< 0.15 (0.15					
1,3-butadiene 1,3-Dichtorobenzene 1,4-Dichtorobenzene 2,2,4-trimethytpentane 4-ethyttotuene Acetone Allyi chtoride		0.15					
1, 3-Dichforobenzene 1, 4-Dichlorobenzene 2, 2, 4-trimethylpentane 4-ethyttoluene Acetone Allyi chtoride	< 0.15 (0,15					
1,4-Dichlorobenzene 1,4-Dioxane 2,2,4-trimethylpentane 4-ethyttotuene Acetone Allyi chtoride		0.15					
1.4-Dioxane 2.2.4-trimethylpentane 4-ethytkotuene Acetone Allyi chtoride		0.15					
2,2,4-trimethylpentane 4-ethykoluene Acetone Allyi chtoride		0.30					
4-ethytkoluene Acetone Allyi chtoride	< 0.15 (0.15					
Acetone Allyi chtoride	< 0.15 (0.15					
Ally! chtoride	< 0.30	0.30					
Derrowe	< 0.15 (0.15					
auazuaci	< 0.15 (0.15					
Benzyl chloride	< 0.15 (0.15					
Bromodichioromethane	< 0.15	0.15					
Bromoform	< 0.15 (0.15					
Bromomethane	< 0.15 (0.15					
Qualifiers: Results reported are not blonk corrected	tot blank corrected	ш	Estimated Value above quantitation range	ation range	1	Holding times for preparation or analysis exceeded	
J Analyte detected below quantitation limit	w quantitation limit	Q	Not Detected at the Limit of Detection	ctection	R RPD outside acce	RPD outside accepted recovery limits	
Spike Recovery outside	Spike Recovery outside accepted recovery limits					Page	Page 1 of 5

Date: 16-May-18

	C1804042										
Project: 46	46 Mount Hope Ave							-	TestCode: 0	0.20_NYS	
11 8	ы У		[estCode	TestCode: 0.20_NYS	Units: ppbV		Prep Date:	11		RunNo: 13546	
Client IU: 22222	Batch IU. MTSS46	,	I ESINO	1 ESTINO: 10-13		-	Anarysis Uale;	16: 4/2/1/2/18	5		
Analyte	Result	\backslash	ğ	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Carbon disulfide	< 0.15	_	0.15								
Carbon tetrachloride	< 0.030	-	0.030								
Chlorobenzene	< 0.15		0.15								
Chloroethane	< 0.15		0.15								
Chloroform	< 0.15		0.15								
Chloromethane	< 0.15		0.15								
cls-1,2-Dichloroethene	v		0.040								
cis-1,3-Dichloropropene			0.15								
Cyclofiexane	< 0.15		0.15								
Dibromochloromethane			0.15								
Ethyl acetate	< 0.15		0.15								
Ethylbenzene	< 0.15		0.15								
Freon 11	C.15		0.15								
Freon 113	< 0.15										
Freon 114	< 0,15										
Freon 12	< 0.15										
Heptane	< 0.15		0.15								
Hexachloro-1,3-butadiene			0.15								
Hexane	< 0.15		0.15								
Isopropyt atcohol	< 0.15		0.15								
m&p-Xytene	< 0.30		0.30								
Methyl Butyl Ketone	< 0.30		0.30								
Methyl Ethył Ketone			0.30								
Methyl isobutyl Kelone			0.30								
Methyl tert-butyl ether	< 0.15		0.15								
Methylene chloride	< 0.15		0.15								
o-Xylene	< 0.15		0.15								
Propylene	< 0.15		0.15								
Styrene	< 0.15		0,15								
Tetrachloroethylene	< 0.15		0,15								
Tetrahydrofuran	< 0.15		0.15								
Qualifiers: R	Results reported are not blank corrected	G			Estimated Value above quantitation range	tation rang	<u>.</u>	H	Holding times for	Holding times for preparation or analysis exceeded	eded
	bratic detected before constitution limit	i i			Not Detected at the Limit of Detection	Cotaction 1		~	RPD misside accented recovery limits	news recovery limits	

CLIENT: La Work Order: CI	CI804042							
Project: 46	46 Mount Hope Ave					TestCode:	: 0.20_NYS	
Sample ID: AMB1UG-042018 Client ID: 22222	042018 SampType: MBLK Batch ID: R13546	TestCode: 0.20_NYS TestNo: TO-15	0.20_NYS TO-15	Units: ppbV	Prep Date: AnaMsis Date:	ke: ate: 4/2/1/2018	RunNo: 13546 SerMo: 155894	
	Resut		đ	SPK Ref Val	%RFC 1 owd imit			
						- 1	1	
Toluene		0.15						
trans-1,2-Dichloroethene		0.15						
trans-1,3-Dichloropropene	ene < 0.15	0.15						
Trichloroethene	< 0.030	0:030						
Vinyl acetate	< 0.15	0.15						
Vinyl Bromide	< 0.15	0.15						
Vinyi chłoride	< 0.040	0.040						
Sample ID: AMB1UG-041818	041818 SampType: MBLK	TestCode:	TestCode: 0.20_NYS	Units: ppbV	Prep Date:	ite:	RunNo: 13548	
Client ID: ZZZZ	Balch ID: R13548	TesiNo: TO-15	10-15		Analysis Date:	ate: 4/18/2018	SeqNo: 156903	
Analyte	Result	/ Pat	SPK value	SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	/al %RPD RPDLimit	Qual
1,1,1-Trichloroethane	< 0.15	0.15						
1,1,2,2-Tetrachioroethane	ane < 0.15	0.15						
1,1,2-Trichloroethane	< 0.15	0.15						
1,1-Dichloroethane	< 0.15	0.15						
1,1-Dichloroethene	< 0.040	0.040						
1,2,4-Trichlorobenzene	e < 0.15	0.15						
1,2,4-Trimethylbenzene	e < 0.15	0.15						
1,2-Dibromoethane	< 0.15	0.15						
1,2-Dichlorobenzene	< 0.15	0.15						
1,2-Dichloroethane	< 0.15	0.15						
1.2-Dichloropropane	< 0.15	0.15						
1,3,5-Trimethylbenzene	le < 0.15	0.15						
1,3-butadiene	< 0.15	0.15						
1,3-Dichlorobenzene	< 0.15	0.15						
1,4-Dichlorobenzene	< 0.15	0.15						
1,4-Dioxane	< 0.30	0.30						
2,2,4-trimethylpentane		0.15						
4-ethyttoluene	< 0.15	0.15						
Qualifiers. B	Results reported are not blank corrected		E Estimat	Estimated Value above quantitation range	tion range		Holding times for preparation or analysis exceeded	cded
7 [Analyte detected below quantitation limit	4.4	ND Not De	Not Detected at the Limit of Detection	tection	R RPD outside	RPD outside accepted recovery limits	
1								

Page 68 of 360

Wurk Order:	C1804042	Labour resolutions, r.C. C1804042						
Project:	46 Mount Hope Ave	lope Ave					TestCode: (0.20_NYS
	11/13-041818	SampType: MBLK	TestCode: 0.20_NYS	20_NYS	Units: ppbV	Prep Date:		RunNo: 13548
Client ID: ZZZZ	7	Batch IO: R13548	TestNo: TO-15)-15)-15		Analysis Date: 4/1	4/18/2018	SeqNo: 156903
Analyte		Result /	PQL SP	SPK value SPk	SPK Ref Vai 🛛 🐝	%REC LowLimit HighLimit	Imit RPD Ref Val	%RPD RPDLimit Qual
Acetone		< 0.30 V	0.30					
Allyl chloride		< 0.15	0.15					
Benzéne		< 0.15						
Benzyl chloride		< 0.15	0.15					
Bromodichloromethane	thane	< 0.15	0.15					
Bromotorm		< 0.15						
Bromomethane		< 0.15						
Carbon disulfide		< 0.15	0.15					
Carbon letrachloride	ide	< 0.030	0.030					
Chlorobenzene		< 0.15	0.15					
Chioroethane		< 0.15	0.15					
Chlaraform		< 0.15	0.15					
Chloromethane		< 0.15	0.15					
cis-1,2-Dichloroethene	hene	< 0.040	0.040					
cis-1,3-Dichloropropene	opene	< 0.15	0.15					
Cyclohexane		< 0.15	0.15					
Dibromochioromethane	sthane	< 0.15	0.15					
Ethyt acetate		< 0.15	0.15					
Ethylbenzene		< 0.15	0.15					
Freon 11		< 0.15	0.15					
Freon 113		< 0.15	0.15					
Freon 114		< 0.15	0.15					
Freon 12		< 0.15	0.15					
Heptane		< 0.15	0.15					
Hexachloro-1,3-butadiene	utadiene	< 0.15	0.15					
Hexane		< 0.15	0.15					
Isopropyl alcohol		< 0.15	0.15					
m&p-Xylene		< 0.30	0.30					
Methyi Bulyi Kelone	yhe	C D 30	0.30					
Methyl Ethyl Kelone	Me	< 0.30	0.30					
Methyl Isobutyl Ketone	etone	< 0.30	0.30					
Qualifiers:	Results repe	Results reported are not blank corrected	щĢ		Estimated Value above quantitation range Mor Detected at the Limit of Detection		 H. Holding times for P.D. meide access 	Holding times for preparation or analysis exceeded PDD musticle account recovery limits
•	י הוומוץ וג שבו	chight accord acoust fuguesiant main						

	CLIENT: LaBella As Work Order: C1804042	LaBella Associates, P.C. C1804042										
IG-041815 SampType: MBLK TestCode: 0.20 Wris: pb/v Prep Date: RunNo: 13548 Batch ID: R13548 TestNo: TestNo: TestNo: TestNo: TestNo: 7364 RunNo: 13548 Batch ID: R13548 TestNo: TestNo: To Analysis Date: 418/2016 SeqNo: 15548 Result PQL SPK waite SPK Raf Val %REC LowLimit HighLimit RPD Ref Val %RPD RPD limit Ret < 0.15 0.15 0.15 SeqNo: 15548 Ret < 0.15 0.15 0.15 RPD Ref Val %RPD RPD Interval		Hope Ave						-	CestCode: 0	SYN_02.		
Batch ID: R13543 TestNo:: TO-15 Analysis Date: 418/2016 SeqNo:: 165003 Result PCI. SPK value SPK Kaf Val %REC LowLinit RPD Ref Naple RPPL rinit Result PCI. SPK Kaf Val %REC LowLinit RPD Ref Naple RPD Linit Ref <015 015 Naple Naple NAPD RPD Ref NAPD RPD Linit Ref <015 015 NAPD RPD Linit	Sample ID: AMB1UG-041818	SampType: MBLK	TestCod	e: 0.20 NYS	Units: ppbV		Prep Da	te:		RunNo: 135	48	
Result PQL SPK Raf Val %REC LowLimit HgNLimit RPD Ref Val %RPD RPD Interval ertburyl ether < 0.15 0.15 0.15 0.15 %RPL Interval %RPL RPD Ref Val %RPD Ref Val	Client ID: ZZZZ	Batch ID: R13548	TestN	lo: TO-1 5			Analysis Da	te: 4/18/24	118	SeqNo: 156	205	
-burly ether < 0.15 V chloride < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15	Analyte	Result	Par	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD		Quai
chloride < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15	Methyl tert-butyl ether	< 0.15 V	0.15									
 < 0.15 < 0.15	Methylene chloride	< 0.15	0.15									
 < 0.15 < 0.15	o-Xytene	< 0.15	0.15									
 < 0.15 oroethylene < 0.15 frofuran < 0.15 	Propylene	< 0.15	0.15									
 < 0.15 < 0.16 	Styrene	< 0.15	0.15									
 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.040 	Tetrachloroethytene	< 0.15	0.15									
 < 0.15 0.15 0.15 0.030 0.15 0.15 0.15 0.040 	Tetrahydrofuran	< 0.15	0.15									
 < 0.15 0.15 0.030 < 0.15 < 0.15 < 0.15 < 0.15 < 0.16 	Toluene	< 0.15	0.15									
 0.15 0.030 0.15 0.15 0.040 	trans-1,2-Dichloroethene	< 0.15	0.15									
e < 0.030 < 0.15 < 0.15 < 0.040	trans-1,3-Dichloropropene	< 0.15	0.15									
< 0.15 < 0.15 < 0.040	Trichloroethene	< 0.030	0:030									
< 0.15 < 0.040	Vinyl acetale	< 0.15	0.15									
< 0.040	Vinyl Bromide	< 0.15	0.15									
	Vinyi chloride	< 0.040	0.040									

Page 70 of 360

Analyte detected below quantitation limit Results reported are not blank corrected • -

Qualifiers:

Spike Recovery outside accepted recovery limits

s

Estimated Value above quantitation range Not Detected at the Limit of Detection ۳đ

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits Ξ× Page 5 of 5

APPENDIX 6

RESPONSIBILITIES of OWNER and REMEDIAL PARTY

Responsibilities

The responsibilities for implementing the Interim Site Management Plan ("ISMP") for the Former Hall Welter site (the "site"), number 828194, are divided between the site owner(s) and a Remedial Party, as defined below. The owner is currently listed as:

Center Properties of Rochester, Inc. Contact – Tom O'Connor 585-442-4102 x 8945 toconnor@alsigl.com 1000 Elmwood Avenue, Rochester, NY (the "owner").

Solely for the purposes of this document and based upon the facts related to a particular site and the remedial program being carried out, the term Remedial Party ("RP") refers to any of the following: certificate of completion holder, volunteer, applicant, responsible party, and, in the event the New York State Department of Environmental Conservation ("NYSDEC") is carrying out remediation or site management, the NYSDEC and/or an agent acting on its behalf. The RP is:

Center Properties of Rochester, Inc. Contact – Tom O'Connor 585-442-4102 x 8945 <u>toconnor@alsigl.com</u> 1000 Elmwood Avenue, Rochester, NY .

Nothing on this page shall supersede the provisions of an Environmental Easement, Consent Order, Consent Decree, agreement, or other legally binding document that affects rights and obligations relating to the site.

Site Owner's Responsibilities:

- 1) The owner shall follow the provisions of the ISMP as they relate to future construction and excavation at the site.
- 2) The owner shall provide a written certification to the RP, upon the RP's request, in order to allow the RP to include the certification in the site's Periodic Review Report (PRR) certification to the NYSDEC.

- 3) The owner shall grant access to the site to the RP and the NYSDEC and its agents for the purposes of performing activities required under the ISMP and assuring compliance with the ISMP.
- 4) The owner is responsible for assuring the security of the remedial components located on its property to the best of its ability. In the event that damage to the remedial components or vandalism is evident, the owner shall notify the site's RP and the NYSDEC in accordance with the timeframes indicated in Section 1.3 Notifications.
- 5) In the event some action or inaction by the owner adversely impacts the site, the owner must (i) notify the site's RP and the NYSDEC in accordance with the time frame indicated in Section 1.3 Notifications and (ii) coordinate the performance of necessary corrective actions with the RP.
- 6) The owner must notify the RP and the NYSDEC of any change in ownership of the site property (identifying the tax map numbers in any correspondence) and provide contact information for the new owner of the site property. 6 NYCRR Part 375-1.11 contains notification requirements applicable to any construction or activity changes and changes in ownership. Among the notification requirements is the following: Sixty days prior written notification must be made to the NYSDEC. Notification is to be submitted to the NYSDEC Division of Environmental Remediation's Site Control Section. Notification requirements for a change in use are detailed in Section 1.3 of the ISMP. A 60-Day Advance Notification Form and Instructions are found at http://www.dec.ny.gov/chemical/76250.html.
- 7) Until such time as the NYSDEC deems the vapor mitigation system unnecessary, the owner shall cause: (a) the SSD system to be operated; (b) utilities for the system's operation be paid for; (c) and any maintenance issues be reported to the RP and the NYSDEC.
- 8) In accordance with the tenant notification law, within 15 days of receipt, the owner must supply a copy of any vapor intrusion data, that is produced with respect to structures and that exceeds NYSDOH or OSHA guidelines on the site, whether produced by the NYSDEC, RP, or owner, to the tenants on the property. The owner must otherwise comply with the tenant and occupant notification provisions of Environmental Conservation Law Article 27, Title 24.

Remedial Party Responsibilities

- 1) The RP must follow the ISMP provisions regarding any construction and/or excavation it undertakes at the site.
- 2) The RP shall report to the NYSDEC all activities required for remediation, operation, maintenance, monitoring, and reporting. Such reporting includes, but is not limited to, periodic review reports and certifications, electronic data deliverables, corrective action work plans and reports, and updated ISMPs.

- 3) Before accessing the site property to undertake a specific activity, the RP shall provide the owner advance notification that shall include an explanation of the work expected to be completed. The RP shall provide to (i) the owner, upon the owner's request, (ii) the NYSDEC, and (iii) other entities, if required by the ISMP, a copy of any data generated during the site visit and/or any final report produced.
- 4) If the NYSDEC determines that an update of the ISMP is necessary, the RP shall update the ISMP and obtain final approval from the NYSDEC. Within 5 business days after NYSDEC approval, the RP shall submit a copy of the approved ISMP to the owner(s).
- 5) The RP shall notify the NYSDEC and the owner of any changes in RP ownership and/or control and of any changes in the party/entity responsible for the operation, maintenance, and monitoring of and reporting with respect to any remedial system (Engineering Controls). The RP shall provide contact information for the new party/entity. Such activity constitutes a Change of Use pursuant to 375-1.11(d) and requires 60-days prior notice to the NYSDEC. A 60-Day Advance Notification Form and Instructions are found at http://www.dec.ny.gov/chemical/76250.html.
- 6) The RP shall notify the NYSDEC of any damage to or modification of the systems as required under Section 1.3 Notifications of the ISMP.
- 7) The RP is responsible for the proper maintenance of any installed vapor intrusion mitigation systems associated with the site, as required in Section 3.3.2 or Appendix 4 (Operation , Monitoring and Maintenance Manual) of the ISMP.
- 8) Prior to a change in use that impacts the remedial system or requirements and/or responsibilities for implementing the ISMP, the RP shall submit to the NYSDEC for approval an amended ISMP.
- 9) Any change in use, change in ownership, change in site classification (e.g., delisting), reduction or expansion of remediation, and other significant changes related to the site may result in a change in responsibilities and, therefore, necessitate an update to the ISMP and/or updated legal documents. The RP shall contact the Department to discuss the need to update such documents.

Change in RP ownership and/or control and/or site ownership does not affect the RP's obligations with respect to the site unless a legally binding document executed by the NYSDEC releases the RP of its obligations.

Future site owners and RPs and their successors and assigns are required to carry out the activities set forth above.