

## FEASIBILITY STUDY AND REMEDIAL ALTERNATIVES ANALYSIS

## **Former Hall Welter**

38-46 Mt. Hope Ave. Rochester, New York, 14620

Prepared For:

NYS Department of Environmental Conservation Division of Environmental Remediation Bureau of Program Management 625 Broadway, 12th Floor Albany, NY 12233-7012

Prepared By:

HRP Associates, Inc. Fairchild Square, Suite 110 Clifton Park, NY 12065

HRP #: DEC1008.P3 NYSDEC SITE#:828194

Issued On: November 1, 2021



#### **TABLE OF CONTENTS**

| 1.0 | INTE                         | RODUCTION                                                                                                                                                                      | 1                  |  |  |  |  |  |
|-----|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|--|
| 2.0 | SITE DESCRIPTION AND HISTORY |                                                                                                                                                                                |                    |  |  |  |  |  |
|     | 2.1<br>2.2                   | Land Use<br>Geology<br>2.2.1 Surficial Geology<br>2.2.2 Bedrock Geology                                                                                                        | 2<br>2             |  |  |  |  |  |
|     | 2.3                          | Hydrogeology<br>2.3.1 Surface Water<br>2.3.2 Overburden Groundwater<br>2.3.3 Bedrock Aquifer<br>2.3.4 Wetlands                                                                 | 3<br>3<br>3        |  |  |  |  |  |
| 3.0 | SUM                          | SUMMARY OF REMEDIAL INVESTIGATION AND EXPOSURE ASSESSMENT4                                                                                                                     |                    |  |  |  |  |  |
|     | 3.1<br>3.2                   | Contaminants of Concern<br>Nature and Extent of Site Contamination<br>3.2.1 Soil<br>3.2.2 Groundwater<br>3.2.3 Soil Vapor.<br>3.2.4 Data Gaps                                  | 4<br>4<br>5<br>5   |  |  |  |  |  |
|     | 3.3<br>3.4                   | Exposure Assessment<br>Presumed Area for Treatment                                                                                                                             | 8                  |  |  |  |  |  |
| 4.0 |                              | EDIAL ACTION OBJECTIVES (RAOS)                                                                                                                                                 |                    |  |  |  |  |  |
|     | 4.1                          | Remedial Goals.4.1.1Soil RAOs4.1.2Groundwater RAOs.4.1.3Soil Vapor RAOs                                                                                                        | . 10<br>. 10       |  |  |  |  |  |
| 5.0 | DEVE                         | ELOPMENT AND ANALYSIS OF ALTERNATIVES                                                                                                                                          | 11                 |  |  |  |  |  |
|     | 5.1                          | General Response Actions<br>5.1.1 Soil<br>5.1.2 Groundwater<br>5.1.3 Soil Vapor                                                                                                | . 11<br>. 11       |  |  |  |  |  |
|     | 5.2                          | Identification and Screening of Technologies.5.2.1 Institutional / Engineering Controls IC/EC5.2.2 In-Situ Treatment5.2.3 Ex-Situ Treatment5.2.4 Removal for Off-site Disposal | .12<br>.12<br>.13  |  |  |  |  |  |
|     | 5.3                          | <ul> <li>Development of Remedial Alternatives</li></ul>                                                                                                                        | . 13<br>. 14<br>it |  |  |  |  |  |

P-ny-fs1\shared\Data\NNYDEC - NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION\ROCHESTER (MONROE)\38-46 MOUNT HOPE AVENUE - Hall Welter\DEC1008P3\WPAFeasibility Study\FS.hw.828194.2021.10.27.docx

|     |      | 5.3.3   | Alternative 3: Soil Vapor Extraction, Engineering and Institutional Contro<br>and a Site Management Plan                |     |  |  |  |
|-----|------|---------|-------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|
|     |      | 5.3.4   | Alternative 4: Soil Vapor Extraction, In-Situ Enhanced Biological Treatme<br>of Groundwater, and a Site Management Plan | ent |  |  |  |
|     |      | 5.3.5   | Alternative 5: Source Area Excavation with In-Situ Enhanced Biological                                                  |     |  |  |  |
|     |      |         | Treatment of Groundwater, and a Site Management Plan                                                                    | 16  |  |  |  |
| 6.0 | DETA | ILED E  | VALUATION OF ALTERNATIVES                                                                                               | 18  |  |  |  |
|     | 6.1  | Individ | dual Analysis of Alternatives                                                                                           | 18  |  |  |  |
|     |      | 6.1.1   |                                                                                                                         | 18  |  |  |  |
|     |      | 6.1.2   | Alternative 2: Engineering and Institutional Controls with Site Managem                                                 | ent |  |  |  |
|     |      |         | Plan (SMP)                                                                                                              |     |  |  |  |
|     |      | 6.1.3   | Alternative 3: Soil Vapor Extraction, Engineering and Institutional Contro<br>and a Site Management Plan                |     |  |  |  |
|     |      | 6.1.4   | Alternative 4: Soil Vapor Extraction, In-Situ Enhanced Biological Treatme                                               | ent |  |  |  |
|     |      |         | of Groundwater, and a Site Management Plan                                                                              | 20  |  |  |  |
|     |      | 6.1.5   | Alternative 5: Source Area Excavation with In-Situ Enhanced Biological                                                  |     |  |  |  |
|     |      |         | Treatment of Groundwater, and a Site Management Plan                                                                    |     |  |  |  |
|     | 6.2  |         | arative Analysis of Alternatives                                                                                        |     |  |  |  |
|     |      |         | Long-Term Effectiveness and Permanence                                                                                  |     |  |  |  |
|     |      | 6.2.2   | Reduction of Toxicity, Mobility, and Volume through Treatment                                                           |     |  |  |  |
|     |      | 6.2.3   | Short-Term Impact and Effectiveness                                                                                     |     |  |  |  |
|     |      | 6.2.4   | Feasibility                                                                                                             |     |  |  |  |
|     |      | 6.2.5   |                                                                                                                         |     |  |  |  |
|     |      | 6.2.6   | Land Use                                                                                                                | 25  |  |  |  |
| 7.0 | REME | EDY SEI | LECTION                                                                                                                 | 26  |  |  |  |
| 8.0 | REFE | RENCE   | S                                                                                                                       | 27  |  |  |  |
|     |      |         |                                                                                                                         |     |  |  |  |



#### FIGURES

| Figure 1 | Site Location Map |
|----------|-------------------|
|----------|-------------------|

- Figure 2 Site Plan
- Figure 3 Nature and Extent of Soil Impacts (Exceedances Only)
- Figure 4 Nature and Extent of Groundwater Impacts
- Figure 5 Nature and Extent of Soil Vapor Impacts (Exceedances Only)
- Figure 6 Conceptual Layout of Remedial Alternatives

#### TABLES

- Table 1
   Alternative 1 Cost Analysis No Action
- Table 2Alternative 2 Cost Analysis Engineering and Institutional Controls with Site<br/>Management Plan
- Table 3Alternative 3 Cost AnalysisSoil Vapor Extraction, Engineering Controls, with Site<br/>Management Plan
- Table 4Alternative 4 Cost Analysis Soil Vapor Extraction, In-Situ Groundwater Treatment,<br/>and a Site Management Plan
- Table 5Alternative 5 Cost Analysis Source Area Excavation, In-Situ Groundwater Treatment,<br/>and a Site Management Plan
- Table 6Comparative Summary of Alternatives

## ATTACHMENTS

Appendix A HDR Remedial Investigation Report, February 2020



#### **General Information**

#### **Project/Site Information:**

Former Hall Welter 38-46 Mount Hope Avenue Rochester, New York, 14620

#### Consultant Information:

HRP Associates, Inc. 1 Fairchild Square, Suite 110 Clifton Park, NY 12065 Phone: 518-877-7101 Fax: 518-877-8561 E-mail: Mark.Wright@hrpassociates.com Project Number: DEC1008.P3

#### **Client Information:**

New York State Department of Environmental Conservation Division of Environmental Remediation Bureau of Program Management 625 Broadway, 12th Floor Albany, NY 12233-7012

Report Date:

11/1/2021

Mark Wright

**Report Authors:** 

Mark Wright, P.G. Project Manager

Jessica Kruczek Assistant Contract Manager

#### PE Certification:

I Thomas S. Seguljic certify that I am currently a [NYS registered professional engineer or Qualified Environmental Professional as defined in 6 NYCRR Part 375] and that this Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

Than SS

Thomas S. Seguljic, P.E., P.G. – Vice President and Contract Manager



#### 1.0 INTRODUCTION

This report presents a feasibility study for remediation prepared by HRP Associates, Inc. (HRP) in connection with the Former Hall Welter Facility at 38-46 Mount Hope Avenue in the City of Rochester, Monroe County, New York (Site # 828194), referred to herein as the Site (**Figure 1**).

A Remedial Investigation (RI) was completed at the Site from February 2017 through January 2020, the extent of which is shown on **Figure 2**. The purpose of the RI was to identify and characterize the source(s) of contamination and define the nature and extent of contamination at the Site. The RI is included as **Appendix A**.

To address soil vapor intrusion issues, three Sub-Slab Depressurization Systems (SSDSs) were installed and continue to be operated by the Site owner. One SSDS was installed in the basement of the on-site building in 2014 and the second was installed in a storage area in the southern portion of the building in 2016 and the final SSDS was installed in 2017 to increase the coverage area to the entire building.

This report summarizes the findings of the RI report (**Appendix A**) and presents and compares potential remedial alternatives for the Site. This report identifies, evaluates, and selects a remedy to address the contamination identified by the RI.



#### 2.0 SITE DESCRIPTION AND HISTORY

#### 2.1 Land Use

The Site is located in the South Wedge area of the City of Rochester, Monroe County, New York. The Site is currently developed with a vacant 13,700 square-foot multi-occupant commercial structure (site building) and a small parking lot. The main building, a one-story, pentagon-shaped structure of approximately 160-feet (ft) long by 100-ft wide, is the dominant feature of the Site and was used to repair vehicles and as a brass warehouse prior to 1942. The 0.39-acre Site consists of one tax parcel (Tax I.D.#121.48-1-80).

According to the City of Rochester Property Information Portal (online tax maps), the Site is currently zoned as "CCDR" which stands for Center City District – Riverfront, a commercial designation. Areas surrounding the Site to the North, East, South, and West, are described below:

- To the North: L & S Auto Parts, Rochester Used Car Dealers, and Much More Cars, a used car dealer
- To the East: South Avenue, followed by St. Joseph's House-Hospitality, a Catholic Community Center
- To the South: Tellmorr International, MacInTak Computers Sales and Service, Krudko Skate Shop, and Orion Alley, followed to the south by Comfort Street
- To the West: Mount Hope Avenue, followed by a telecommunications office complex (Spectrum)

#### 2.2 Geology

#### 2.2.1 **Surficial Geology**

Surficial Geology at the Site is reported by the United States Geological Survey (USGS) Surficial Geologic Map of New York, Finger Lakes Sheet, 1986 to consist of lacustrine silt and clay (lsc), generally described as laminated. Lacustrine silt and clay is typically deposited in proglacial lakes, and is generally calcareous. Land instability may result in areas overlain with lsc, as thickness is variable, and may extend up to 50 meters.

Soil at the Site is described by the United State Department of Agriculture (USDA) Web Soils Survey (WSS) as Urban Land (ub), encompassing the entire Site.

Overburden at the Site was reported during previous subsurface investigation to consist of fill material (approximately four to five feet in thickness) overlaying native lsc. Fill material at the Site was described to consist of fine to brown sand with varying amounts of silt and gravel, overlaying a thin layer of light gray fine sand with varying amounts of gravel overlaying the bedrock. Fill was also noted to contain black cinders, gray ash, and black staining. Sand and gravel fill indicative of a former tank excavation was encountered during a Phase II Environmental Site Assessment (ESA) by LaBella Associates (LaBella) of Rochester, New York in boring GP-1 from below the asphalt to a depth of approximately 12.0 feet below ground surface (ft. bgs).



#### 2.2.2 Bedrock Geology

Bedrock at the Site is described by the USGS as Lockport Group Dolostone and Limestone and was reported by HDR during the RI at a depth of approximately 17 to 19 ft. bgs. The general bedrock elevation on-site was determined by HDR to be approximately 495 feet above mean sea level (amsl). Bedrock encountered during the 2014 Phase II ESA was described by Labella as gray limestone. Several horizontal fractures were noted from 18.1 to 18.3 ft bgs.

#### 2.3 Hydrogeology

#### 2.3.1 Surface Water

The nearest water body to the Site is the Genesee River, located approximately 700 feet west of the Site. Precipitation at the Site is not expected to enter the subsurface because the entire site is covered with impervious surfaces (site building and paved area).

#### 2.3.2 Overburden Groundwater

The overburden water table was reported by HDR at a depth of 9 to 12 ft bgs during groundwater gauging events in June 2018 and in January 2020. The highest groundwater elevation at the Site was reported by HDR at MW203 at 501.95 ft amsl. The lowest groundwater elevation was observed at MW205 at 500.5 ft amsl, located northwest (downgradient) of the Site. Groundwater gauging conducted during HDR's June 2018 sampling event indicated a groundwater flow direction to the northwest, at a horizontal hydraulic gradient of 0.007 feet/foot (ft/ft).

#### 2.3.3 Bedrock Aquifer

The potentiometric surface of groundwater observed in the bedrock aquifer at the Site was reported by HDR at elevations ranging from 501.70 ft amsl in BW1, located south (upgradient) of the Site building to 493.9 ft amsl in BW201, located northwest (downgradient) of the Site. Groundwater gauging conducted during the June 2018 sampling event indicated a bedrock groundwater flow direction to the northwest, similar to overburden groundwater, with an overall horizontal hydraulic gradient of 0.05 ft/ft.

#### 2.3.4 Wetlands

The Site is situated in an urban setting, and no obvious wetlands are present on-site. No state wetlands were reported according to the NYSDEC Online Resource Mapper, and no U.S. Fish and Wildlife National Wetland Inventory areas were identified or reported on the Site.



#### 3.0 SUMMARY OF REMEDIAL INVESTIGATION AND EXPOSURE ASSESSMENT

In February of 2020, HDR prepared a Remedial Investigation Report (RIR), to document the nature and extent of contamination identified within soil and groundwater at the Site during the RI, and previous investigations. The RI also evaluated off-site soil vapor and indoor air impacts to nearby properties (**Figure 2**). Compounds detected in the various media tested during the RI Investigation were compared to the following New York State guidance documents and standards (SCGs):

- <u>Groundwater:</u> NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1); Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations dated October 1993; Revised June 1998; ERRATA Sheet dated January 1999; and Addendum dated April 2000 (NYSDEC Class GA).
- <u>Soil:</u> NYSDEC Regulation, 6 NYCRR Subpart 375-6: "Remedial Program Soil Cleanup Objectives" which applies to the development and implementation of the remedial programs for soil and other media set forth in subparts 375-2 through 375-4 (Inactive Hazardous Waste Disposal Site Remedial Program, Brownfield Cleanup Program, and Environmental Restoration Program) and includes the soil cleanup objective (SCO) tables developed pursuant to ECL 27-1415(6). During the RI, soil sample results were compared to the restricted use commercial (Commercial SCOs), and protection of groundwater (PGW SCOs) SCOs.
- <u>Soil Vapor</u>: NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York dated October 2006.

#### 3.1 Contaminants of Concern

Based on the results of the RI and previous investigations, Contaminants of Concern (COCs) at the Site consist of chlorinated solvents, including tetrachloroethylene (PCE), trichloroethylene (TCE) and the associated degradation byproducts including cis-1-2, dichloroethylene (cis-1-2-DCE) and limited vinyl chloride. COCs were detected at concentrations above applicable criteria in on-site soil, groundwater, and soil vapor.

In addition to the COCs, additional parameters were analyzed during the RI, including semi-volatile organic compounds (SVOCs), metals, pesticides, polychlorinated biphenyls (PCBs), and Emerging Contaminants (PFAS and 1,4-dioxane). These compounds were not detected at concentrations exceeding applicable clean-up criteria.

#### 3.2 Nature and Extent of Site Contamination

#### 3.2.1 Soil

A complete discussion of soil contamination at the Site is presented in the RIR (**Appendix A**). In summary, COCs at concentrations exceeding the Commercial SCOs were not detected at the Site. COCs at concentrations exceeding the PGW SCOs were detected in four sample locations during the RI (SB201, SB204, SB205, and MW206). These locations and concentrations are depicted on **Figure 3**.



HRP Associates, Inc., NYSDEC Standby Contract WA # D009808-08, Site No. 828194 Feasibility Study – November 1, 2021 Page 5 of 27

#### 3.2.2 Groundwater

#### <u>Overburden</u>

During the RI sampling events, chlorinated volatile organic compounds (VOCs), mainly PCE and its degradation products (TCE and cis-1,2-DCE) were detected at concentrations exceeding TOGS 1.1.1 criteria in all six overburden monitoring wells. The highest concentrations were detected in MW203, which is located southwest of the Site building, at the most upgradient edge of the Site boundary. The lowest concentrations were detected in MW-205, located downgradient and side gradient from MW-203. Well locations and detected concentrations of COCs are depicted on **Figure 4**.

#### <u>Bedrock</u>

During the RI sampling events, chlorinated VOCs, mainly PCE and its degradation products (TCE and cis-1,2-DCE), were detected at concentrations exceeding TOGS 1.1.1 criteria in all three bedrock wells. In general, the highest detected concentrations were observed in BW-1, the most upgradient location, located to the south of the building, and the lowest detected concentrations were observed in BW-202, the most downgradient location, located to the north of the building. Well locations and detected concentrations of COCs are depicted on **Figure 4**.

#### 3.2.3 Soil Vapor

Exceedances of the NYSDOH Sub-Slab Vapor Concentration Decision Matrix Minimum Action Levels were encountered at two properties located directly west of the Site building: 48 and 50 Mount Hope Avenue. TCE concentrations exceeded the sub-slab minimum action level of six micrograms per cubic meter ( $\mu$ g/m<sup>3</sup>) at 50 Mount Hope Avenue, with the highest concentration (3,170  $\mu$ g/m<sup>3</sup>) detected in SVI201-SS1 located in the basement. TCE was detected at a concentration of 93  $\mu$ g/m<sup>3</sup> at SVI201-SS2 located in the ground-floor warehouse and at a concentration 407  $\mu$ g/m<sup>3</sup> at SVI207-SS located in the basement of 48 Mount Hope Avenue. The only other exceedance of the criteria (greater than six  $\mu$ g/m<sup>3</sup>) was cis-1,2-DCE detected at a concentration of 112  $\mu$ g/m<sup>3</sup> at SVI201-SS1, located in the basement of 50 Mount Hope Avenue property.

Three additional properties were sampled during the RI that did not exhibit concentrations of VOCs exceeding the NYSDOH Sub-Slab Vapor Concentration Decision Matrix Minimum Action Levels. A full discussion of soil vapor results is included in the RIR (**Appendix A**) and soil vapor sample locations and vapor concentrations greater than Standards, Criteria, and Guidance (SCGs) are depicted in **Figure 5**.

Based on the data, Sub-Slab Depressurization Systems (SSDS), were recommended at the 48 and 50 Mount Hope Avenue buildings. SSDSs were offered to be installed and maintained by the NYSDEC at the 48 and 50 Mount Hope Avenue properties, however, the owner of the properties declined the offer and instead elected to install and maintain SSDSs without NYSDEC involvement. These SSDSs are not considered IRMs since they were installed and maintained without NYSDEC oversite.



#### 3.2.4 Data Gaps

There are several gaps in the data that limit our understanding of the subsurface contamination onsite. Based on the data collected to date the release area of chlorinated solvents has not been definitively located on-site. While a Phase I Environmental Site Assessment was performed for the Site, locations for most of the Recognized Environmental Conditions were not identified, instead denoting the footprint of the building as broadly having "solvent use in historical operations". It is unknown how or where in the building chlorinated VOCs (CVOCs) were used or how they may have been released to the subsurface.

Based on the data collected during the RI it appears that a source area is likely to exist at or near the loading dock - on the southern, upgradient portion of the Site. However, direct sampling at the loading dock was not completed during the RI due to overhead utilities, underground utilities and a concrete slab reported to be greater than one foot in thickness. As there is only limited data from the area under the Site building, it is not known if a second release area exists under the Site building or under the buildings directly to the west of the Site building. Sub-slab soil vapor concentrations detected under the Site building and adjacent buildings suggest that a source area, or alternatively a preferential pathway exists in the soil beneath one or both buildings that are impacted by sub-slab soil vapor intrusion.

These data gaps do not significantly impact the Exposure Assessment, or the development of remedial alternatives; however, if an active remedial approach is implemented a pre-design investigation will be required to close the gaps prior to designing and implementing a remedy.

#### 3.3 Exposure Assessment

An exposure pathway describes how an individual may be exposed to contaminants originating from the Site. As defined by the NYSDEC, an exposure pathway has five (5) elements: 1) a contaminant source, 2) contaminant release and transport mechanisms, 3) a point of exposure, 4) a route of exposure, and 5) a receptor population. An exposure pathway is complete when all five (5) elements of an exposure pathway exist. An exposure pathway is considered a potential pathway when one or more of the elements currently does not exist but could in the future.

#### 3.3.1 Subsurface and Surface Soils

| Exposure Pathway Element                       | Analysis                                                                                                                                                                                                                            |  |  |  |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Contaminant Source                             | Based on data collected to date a contaminant source exists in the on-<br>site soils, as described in Section 3.2.1 of this report and in the RIR<br>(Appendix A).                                                                  |  |  |  |
| Contaminant Release and<br>Transport Mechanism | Contaminants in on-site soils could transport to an exposed population via volatilization into the soil vapor or leaching into the groundwater.                                                                                     |  |  |  |
| Point of Exposure                              | There is currently no direct exposure pathway to on-site soils. The entire<br>Site is covered with buildings or paved surfaces and no intrusive activities<br>are occurring on-site that disturb soils and generate inhalable dust. |  |  |  |

The five exposure pathway elements for on-site soils are evaluated below:



|                     | During possible future development or during the remedial action, specifically disturbance of soils, the potential for exposures to subsurface and surface soils would increase for on-site workers, utility workers, trespassers, and visitors. |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Route of Exposure   | Potential routes of exposure to soils include dermal contact, ingestion, and inhalation of soil particulates.                                                                                                                                    |
| Receptor Population | The Receptor population includes Site visitors, trespassers, or future Site workers                                                                                                                                                              |

Based on the above analysis an exposure pathway is reasonably expected to exist if on-site soils are distributed during future construction activities.

#### 3.3.2 Overburden and Bedrock Groundwater

The five exposure pathway elements for the overburden and bedrock groundwater on and around the Site are evaluated below:

| Exposure Pathway<br>Element                 | Analysis                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Contaminant Source                          | Based on data collected to date a contaminant source exists in the on-sit bedrock and over burden aquifers, as described in Section 3.2.2 of this report and in the RIR ( <b>Appendix A</b> ).                                                                                                                                                                      |  |  |  |  |
| Contaminant Release and Transport Mechanism | Contaminants in on-site groundwater are expected to transport off-site due<br>to the groundwater movement. Both on-site aquifers flow to the north and<br>west, toward the Genesee River. During transport it is expected that the<br>concentrations of contaminants in the groundwater will reduce due to<br>natural attenuation and dilution.                     |  |  |  |  |
|                                             | Additionally, it is possible for contaminants in the overburden aquifer to volatilize into the on-site soil vapor.                                                                                                                                                                                                                                                  |  |  |  |  |
| Point of Exposure                           | There is currently no direct exposure pathway to groundwater<br>contamination at or around the Site. The Site and surrounding area are<br>served by public drinking water and there are no known domestic water<br>supply wells in the area of the Site. People could come into contact with<br>on-site groundwater if private wells are installed at the property. |  |  |  |  |
|                                             | An additional potential exposure exists if ground intrusive activities are<br>completed at the Site. During possible future development or during the<br>remedial action, the potential for direct exposure to groundwater would<br>increase for on-site workers, utility workers, trespassers, and visitors.                                                       |  |  |  |  |
| Route of Exposure                           | Potential routes of exposure to groundwater include dermal contact and ingestion of groundwater.                                                                                                                                                                                                                                                                    |  |  |  |  |
| Receptor Population                         | The Receptor population includes Site visitors, trespassers, or future Site workers or occupants.                                                                                                                                                                                                                                                                   |  |  |  |  |

Based on the above analysis an exposure pathway is reasonably expected to exist if on-site groundwater is encountered during future construction activities or if a new water supply well is constructed at the Site.

#### 3.3.3 Soil Vapor

The five exposure pathway elements for the soil vapor on and around the Site are evaluated below:

| Exposure Pathway<br>Element                 | Analysis                                                                                                                                                                                                                                                                                    |  |  |  |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Contaminant Source                          | Based on data collected to date a contaminant source exists in the on-site soil vapor, as described in Section 3.2.3 of this report and in the RIR ( <b>Appendix A</b> ).                                                                                                                   |  |  |  |
| Contaminant Release and Transport Mechanism | Contaminants in on-site soil vapor are currently not expected to transport<br>to the indoor air and impact indoor air quality because sub-slab<br>depressurization systems (SSDSs) have been installed in on-site and off-<br>site buildings where soil vapor contamination was documented. |  |  |  |
|                                             | A contaminant transport mechanism could exist if operation of one or more of the SSDSs were discontinued.                                                                                                                                                                                   |  |  |  |
| Point of Exposure                           | There is currently no point of exposure for soil vapor at the Site because<br>there are SSDSs in operation to prevent soil vapor from impacting indoor<br>air quality.                                                                                                                      |  |  |  |
|                                             | A point of exposure could exist if operation of one or more of the SSDSs were discontinued.                                                                                                                                                                                                 |  |  |  |
| Route of Exposure                           | Potential routes of exposure to soil vapor includes the inhalation of contaminants in indoor air.                                                                                                                                                                                           |  |  |  |
| Receptor Population                         | The Receptor population includes Site workers, visitors, trespassers, or future Site workers or occupants.                                                                                                                                                                                  |  |  |  |

Based on the above analysis an exposure pathway is reasonably expected to exist if operation of one or more of the SSDSs were discontinued.

#### 3.4 **Presumed Area for Treatment**

Taking into account the distribution of chlorinated solvents in soil vapor, soils, and groundwater on and in the vicinity of the Site and former on-site operations (specifically, the presence of the loading dock), it appears that a source area is likely to exist at or near the loading dock - on the southern, upgradient portion of the Site. Direct sampling at the loading dock was not completed during the RI due to overhead utilities, underground utilities and a concrete slab reported to be greater than one foot in thickness, however samples collected adjacent to the suspected source area contained concentrations of CVOCs exceeding PGW SCOs.



For the purposes of this FS, HRP has assumed that the predominant source of chlorinated solvent concentrations in the sub-slab soil vapor both on and off-site is sorbed mass that may be located in vadose zone soils on the southern portion of the Site.



#### 4.0 REMEDIAL ACTION OBJECTIVES (RAOS)

#### 4.1 Remedial Goals

Goals for the remedial program have been established through the remedy selection process stated in 6 NYCRR Part 375. At a minimum, the remedy selected must eliminate or mitigate all significant threats to public health and/or the environment presented by the hazardous substances disposed at the Site through the proper application of scientific and engineering principles. The remedial action objectives (RAOs) for public health and environmental protection for the Site follow.

#### 4.1.1 Soil RAOs

#### **RAOs for Public Health Protection**

- Prevent ingestion/direct contact with contaminated soil
- Prevent inhalation exposure to contaminants volatilizing from soil

#### **RAOs for Environmental Protection**

- Prevent migration of contaminants that would result in groundwater contamination
- Prevent impacts to biota from ingestion/direct contact with soil causing toxicity or impacts from bioaccumulation through the terrestrial food chain

#### 4.1.2 Groundwater RAOs

#### **RAOs for Public Health Protection**

- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards
- Prevent contact with, or inhalation of volatiles, from contaminated groundwater

#### **RAOs for Environmental Protection**

- Restore ground water aquifer to pre-disposal/pre-release conditions, to the extent practicable
- Remove the source of groundwater contamination

#### 4.1.3 Soil Vapor RAOs

• Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at a Site and surrounding properties



#### 5.0 DEVELOPMENT AND ANALYSIS OF ALTERNATIVES

In accordance with DER-10, an initial screening was performed to develop a list of potential remedial technologies applicable to Site conditions, contaminants, and contaminated media. Applicable technologies passing the initial screen are then formulated into remedial alternatives that undergo a detailed comparative analysis. Potential remediation technologies are screened and described below.

#### 5.1 General Response Actions

General Response Actions are broad non-technology specific categories to address site-specific contaminants and media. Identified actions are then further refined into potential remedial technologies for screening and development into remedial alternatives as presented in **Section 6**.

## 5.1.1 Soil

General Response Actions to address RAOs for soils include the following:

- Institutional controls (e.g., environmental easement, Site use restrictions)
- Engineering controls (e.g., perimeter fencing)
- Containment (e.g., surface cap)
- In-situ treatment (e.g., thermal destruction, solidification/stabilization, chemical oxidation/enhanced bioremediation)
- Ex-situ treatment (e.g., thermal destruction, solidification/stabilization, chemical oxidation)
- Removal and off-site disposal (e.g., excavation and landfill disposal)

## 5.1.2 Groundwater

General Response Actions to address the RAOs for groundwater include the following:

- Monitored natural attenuation
- Institutional controls (e.g., environmental easement, groundwater use restrictions)
- Containment (e.g., slurry wall)
- In-situ treatment (e.g., chemical oxidation, enhanced bioremediation, permeable reactive barrier)
- Ex-situ treatment (e.g., pump-and-treat [air sparge/stripping, treatment with activated carbon])

## 5.1.3 Soil Vapor

General Response Actions to address the RAOs for soil vapor include the following:

- Active mitigation (e.g., sub-slab depressurization system)
- Engineering controls (e.g., vapor barrier, maintaining positive pressure through HVAC controls)
- Source area treatment (e.g., soil and groundwater remediation)



#### 5.2 Identification and Screening of Technologies

The screening of remedial technology types and process options is based on effectiveness for remediating impacted soils, groundwater, and indoor air. Technologies considered for screening include institutional/engineering controls, in-situ treatment, ex-situ treatment, and removal for off-site disposal.

#### **5.2.1** Institutional / Engineering Controls IC/EC

Engineering Controls (EC) are a physical barrier or method employed to actively or passively contain, stabilize, or monitor contamination, restrict the movement of contamination to ensure the long-term effectiveness of a remedial program, or eliminate potential exposure pathways to contamination. Engineering controls include, but are not limited to, pavement, caps, covers, subsurface barriers, vapor barriers, slurry walls, building ventilation systems, fences, access controls, provision of alternative water supplies via connection to an existing public water supply, adding treatment technologies to such water supplies, and installing filtration devices on private water supplies.

Institutional Controls (IC) are any non-physical means of enforcing a restriction on the use of real property that limits human or environmental exposure, restricts the use of groundwater, provides notice to potential owners, operators, or members of the public, or prevents actions that would interfere with the effectiveness of a remedial program or with the effectiveness and/or integrity of site management activities at or pertaining to a remedial site. ICs accomplish their goal by limiting land or resource use and/or by providing information that helps modify or guide human behavior at the Site.

IC/ECs are retained for further consideration as they are implementable, and if paired with additional remedial technologies, effective to meet the RAOs at the Site.

#### 5.2.2 In-Situ Treatment

In-situ treatment technologies include biological, thermal, and physical/chemical treatment processes. These processes involve treating the contaminant mass in place to reduce concentrations or mobility and are specifically designed for site conditions. In-situ treatment can address both soil and groundwater impacts. Evaluated in-situ treatment technologies include thermal treatment, solidification/stabilization, permeable reactive barriers, and chemical/biological treatment.

Thermal treatment requires substantial infrastructure and electrical power to heat soil to volatilize, collect, and treat contaminants. Due to the relatively low contaminant concentrations, thermal treatment will not be practical at the Site. Therefore, thermal treatment is not considered further.

Solidification/stabilization involves physically binding contaminants in-situ, thereby decreasing the potential for further leaching and mobility. Due to the relatively low contaminant concentrations, solidification/stabilization treatment will not be practical at the Site. Therefore, solidification/stabilization is not considered further.



Permeable reactive barriers are applicable for dissolved-phase contaminants by treating groundwater as it passes through a barrier of reactive media. Groundwater impacts occur predominantly in bedrock at the Site, therefore this technology is not implementable and not considered further.

Chemical and biological treatment involves application of chemicals or substrates to support bioremediation through injection into groundwater or direct mixing of soil. No external infrastructure or electrical sources are required, contaminants are treated following application both short- and long-term, depending upon the chemical or substrate used. Chlorinated VOCs are amenable to chemical and biological treatment and this technology is readily implementable, therefore this technology is retained for further consideration in developing remedial alternatives.

## 5.2.3 Ex-Situ Treatment

Ex-situ treatment is applicable to contaminated groundwater and includes pump-and-treat technologies where contaminated groundwater is extracted from the Site, treated in an aboveground treatment system, and either reinjected to groundwater, discharged to surface water, or discharged to a publicly owned treatment works. This technology requires substantial infrastructure and electrical power and is not practical for remediation of the relatively low concentrations of CVOCs detected in groundwater in the vicinity of the Site. Therefore, groundwater pump-and-treat is not considered further.

Soil Vapor Extraction (SVE) can be used to actively reduce sorbed contaminant mass from vadose zone soils in the overburden. By employing SVE at the Site, sorbed mass can be removed from vadose zone soils thereby reducing concentrations in Site soils, reducing concentrations in soil vapor over time, and reducing the contribution of contaminant mass to Site groundwater and ultimately potential vapor from the dissolved-phase plume. SVE is implementable and has the potential to be effective at meeting RAOs at the Site.

Excavated soils can be treated using ex-situ methods (e.g., treatment in soil piles by circulating air or mixing with various chemicals to incite chemical/biological reduction), a technique often retained for large-scale removal of soils to reduce disposal costs, or for on-site soil reuse. In this instance, the likelihood of using a method such as this is not likely cost effective compared to direct disposal costs of excavated material and is therefore not retained for treatment of impacted soils.

#### 5.2.4 Removal for Off-site Disposal

Excavation and removal for off-site disposal is applicable to contaminated soil and physically removes contaminated media from the Site. This technology has proven effectiveness and can be readily implemented with conventional construction equipment provided direct access to soils is feasible (i.e., if the building were to be demolished).

#### 5.3 **Development of Remedial Alternatives**

Technologies passing the preliminary screen were combined to develop the following six primary remedial alternatives and the media most affected by each alternative:

Alternative 1: No Action



- <u>Alternative 2</u>: Engineering and Institutional Controls with Site Management Plan (SMP)
- Alternative 3: Soil Vapor Extraction (SVE), Engineering Controls, and an SMP •
- Alternative 4: SVE, In-Situ Biological Treatment of Groundwater, and an SMP
- <u>Alternative 5</u>: Source Area Excavation with In-Situ Biological Treatment of Groundwater, and an SMP

Each alternative is presented in an increasing order of cost and complexity. Each alternative is discussed below as to how it may be implemented at the Site to address RAOs.

## 5.3.1 Alternative 1: No Action

The "No Action" Alternative is evaluated as a procedural requirement and as a basis for comparison. This alternative would leave the Site in its present condition and would not provide any additional protection to human health or the environment. The No Action alternative would not involve any surface soil, subsurface soil, groundwater, or soil vapor remedial activity. In addition, the No Action alternative would not place any institutional or engineering controls on the Site property, such as future land use restrictions, groundwater use limitations, and/or continued operation of SSDSs.

#### 5.3.2 Alternative 2: Engineering and Institutional Controls with Site Management Plan (SMP)

This alternative would not seek to actively remove or treat the contaminated media on-site but would disrupt the current or future exposure pathways through the imposition of Engineering Controls (ECs) and Institutional Controls (ICs). Engineering controls have already been enacted at the Site by the Site Owner. Three on-site SSDSs, and one off-site SSDS (48-50 Mount Hope Avenue) have been installed at the Site to mitigate soil vapor intrusion. Additionally, a site-wide cover already exists on the Site in the form of the Site building and pavement, preventing access to the contaminated soils on-site.

Institutional controls (ICs) would be required to prevent future exposure pathways from developing by controlling exposure during potential future construction and limiting the use of groundwater. An Environmental Easement would be recorded to provide an enforceable legal instrument to ensure ICs are met.

A Site Management Plan (SMP) would be required to specify the methods necessary to ensure compliance with all ECs and ICs placed on the Site. The SMP would provide a detailed description of all procedures required to manage remaining contamination at the Site after completion of the Remedial Action, including: (1) implementation and management of all Engineering and Institutional Controls; (2) performance of periodic inspections, certification of results and submittal of Periodic Review Reports. Specifically, the SMP would include a restriction on future land use, and a provision for soil and groundwater management plan for any future Site excavation or development.



#### 5.3.3 Alternative 3: Soil Vapor Extraction, Engineering and Institutional Controls, and a Site Management Plan

This Alternative includes all of Alternative 2, plus one additional active remedy to reduce sorbed contaminant mass from vadose zone soils in the overburden beneath the Site. Soil vapor extraction (SVE) can be used to actively reduce sorbed contaminant mass from vadose zone soils in the overburden. Though not tested to date, based on data collected from other areas of the Site, it appears that there is mass in subsurface soils towards the rear (southeast) of the building. The presence of this mass in soils has the potential to contribute to an accumulation of concentrations of COCs in soil vapor beneath the Site building, as well as serve as a potential on-going source to groundwater, thereby adversely affecting both groundwater quality, and contribution to vapor migration concerns to other properties nearby.

While vertical or horizontal SVE wells may be utilized, given both the thickness of the slab in this area, which to date has impeded remedial investigations and collection of empirical data, the presumed shallow impacts to soils based on the relatively shallow water table, and the historic approach of conducting Site investigation from the exterior, traditional vertical soil vapor extraction points may not be the most economical or feasible method to employ at this Site. Horizontal SVE wells have the greatest potential to reach the targeted zone for treatment, being able to be installed from the exterior of the building while keeping the screened intervals in the shallow-most, and presumably, most impacted subsurface soils. Conceptual locations of the SVE wells are depicted on Figure 6.

By employing SVE at the Site, sorbed mass can be removed from vadose zone soils thereby reducing concentrations in Site soils, reducing concentrations in soil vapor over time, and reducing the contribution of contaminant mass to Site groundwater and ultimately potential vapor from the dissolved-phase plume.

SVE can be used in combination with ongoing SSDS as an engineering control, as well as monitoring of soil vapor and groundwater conditions through an SMP. This approach would be effective at removing mass if air permeability testing of the Site soils supports soil venting in support of longterm monitored natural attenuation of groundwater, as well as reducing the period that SSDS operation may be necessary at the Site and neighboring properties.

Additional data would be necessary for design of such an approach including air permeability testing, additional soils testing, as well as obtaining interior access.

#### 5.3.4 Alternative 4: Soil Vapor Extraction, In-Situ Enhanced Biological Treatment of Groundwater, and a Site Management Plan

This Alternative includes all Alternative 3, plus one additional active remedy to reduce concentrations in the dissolved phase beneath the Site. This Alternative includes SVE to address source mass in the vadose zone, an engineering control to continue operation of the SSDSs, as well as long-term monitoring under the SMP. The presence of PCE degradation products in groundwater presently suggest that anaerobic degradation is occurring at the Site, the degree of which should be confirmed



prior to selection of an injectant during full design and implementation. Conceptual locations of the SVE wells and injection points are depicted on Figure 6.

In addition to the description in Section 5.3.3, this alternative can use an injectant that supports enhanced reductive dechlorination (ERD) such as any number of electron donor solutions (e.g., CarbStrate, HRC, emulsified oil/lactate/bio-enhanced solution) to enhance a reducing environment in the subsurface saturated zone.

The Site has elevated concentrations in groundwater above standards in both the overburden groundwater, as well as in the bedrock beneath the Site. At this time, the full extent of the groundwater plume is not well understood beyond the immediate vicinity of the Site. However, known concentrations in both the overburden and bedrock are similar in magnitude, with a few hundred parts per billion of CVOCs present, which suggests that dense non-aqueous phase liquid (DNAPL) is not present.

This Alternative takes one more step to reduce concentrations in groundwater over Alternative 3, in concept reducing the duration of active treatment periods via an engineered control (SSDS).

An SMP may be necessary for Site monitoring until such time that groundwater conditions meet criteria.

As with Alternative 3, additional data would be necessary for design of such an approach including permeability testing (air) and evaluation for site-specific seepage velocities, additional soils testing, as well as obtaining interior access. In addition, groundwater geochemical data would be necessary to specify the chemical and dose to be used for in-situ groundwater treatment.

#### 5.3.5 Alternative 5: Source Area Excavation with In-Situ Enhanced Biological Treatment of Groundwater, and a Site Management Plan

In order to return the Site to pre-release conditions, removal of source material and active remediation of dissolved-phase contamination is the best means of achieving this objective. Based on the data available, it is probable that subsurface soils are impacted beneath the thickest part of the Site building's slab. For this reason, this remedy is most likely to be implemented in a scenario where the building would be razed allowing free access to the slab and what lies beneath.

This alternative includes the demolition of the on-site building and slab to support extensive soils testing beneath the building. Extensive testing of subsurface soils could pinpoint the location for soil excavation and allow installation of active groundwater treatment infrastructure. By locating impacted soils, the volume for soil excavation could be greatly reduced. To evaluate this alternative in Section 6, an assumption has been made that 1,750 cubic yards of soil may be excavated from the southeastern loading dock area. Persistent VOC concentrations in the bedrock aguifer could be further reduced over a reduced time period by injecting oxidant or amendment to support increased dichlorination of dissolved contaminants. Conceptual boundaries of the remedial excavation and injection points are depicted on Figure 6.



A short-term IC and SMP would need to be implemented to ensure groundwater at the site is not used for drinking water until such time that groundwater conditions meet criteria (expected to be approximately 5 years).



#### 6.0 DETAILED EVALUATION OF ALTERNATIVES

This section presents an evaluation of the remedial alternatives to identify advantages and disadvantages and evaluate the extent that each alternative meets the remedial objectives. Each alternative was evaluated against the following criteria set forth in DER-10.

Threshold Criteria:

- Overall Protectiveness of Public Health and the Environment
- Compliance with SCGs

If an evaluated remedial alternative meets the above Threshold Criteria, it will be further evaluated using the Balancing Criteria below:

- Long-Term Effectiveness, Permanence and Sustainability
- Reduction of Toxicity, Mobility, and Volume through Treatment
- Short-Term Impact and Effectiveness
- Feasibility
- Cost Effectiveness
- Land Use
- Sustainability/Green Remediation Concepts

Community and State acceptance are also considered through the receipt and review of public comments. The Record of Decision (ROD) for the Site will address community and State acceptance.

#### 6.1 Individual Analysis of Alternatives

#### 6.1.1 Alternative 1: No Action

#### Threshold Criteria

*Overall Protectiveness of Public Health and the Environment.* Alternative 1 is not protective of human health and the environment. All contaminated media will remain with no measures to treat, remove, or otherwise decrease contaminant levels. Exposure routes will remain for on-site workers by inhalation of impacted soil vapor or direct contact with subsurface impacted soil during ground disturbance activities.

*Compliance with SCGs.* Chemical-specific SCGs and site-specific cleanup levels will not be achieved for soil or groundwater.

#### **Balancing Criteria**

Alternative 1, "No Action" does not meet the Threshold Criteria of being protective of human health and the environment or being compliant with SCGs and is removed from future consideration therefore the balancing criteria were not evaluated. Estimated capital and long-term costs for Alternative 1 are presented in **Table 1**.



#### 6.1.2 Alternative 2: Engineering and Institutional Controls with Site Management Plan (SMP)

#### **Threshold Criteria**

Overall Protectiveness of Public Health and the Environment: Alternative 2 is protective of human health and the environment. Institutional controls (e.g., land use restrictions) will decrease the likelihood of human exposure, but contaminated soil and groundwater will remain. Contaminants in the vapor-phase (soil gas) beneath the building will continue to be removed through operation of the SSDS. Exposure routes will remain for on-site workers that excavate impacted soil by inhalation of impacted soil vapor or direct contact with subsurface impacted soil during ground disturbance activities.

Compliance with SCGs: Chemical-specific SCGs and Site-specific cleanup levels will not be achieved for soil or groundwater.

#### **Balancing Criteria**

Alternative 2, "Engineering and Institutional Controls with Site Management Plan (SMP)" does not meet the Threshold Criteria of being compliant with SCGs and is removed from future consideration therefore the balancing criteria were not evaluated. Estimated capital and long-term costs for Alternative 2 are presented in Table 2.

#### 6.1.3 Alternative 3: Soil Vapor Extraction, Engineering and Institutional Controls, and a Site Management Plan

#### **Threshold Criteria**

Overall Protectiveness of Public Health and the Environment: Alternative 3 is protective of public health and the environment by reducing contaminant mass in the vadose zone soils through SVE and vapor mitigation via the active SSDS. This alternative reduces sorbed CVOCs on soils, thereby reducing potential transport of contaminants to the dissolved and vapor-phases. The current use of SSDS at the Site further provides protection by mitigation potential vapor intrusion into indoor air. The potential for short-term exposure to impacted soil by on-site workers and remediation personnel via ingestion and inhalation of airborne dust and emissions during construction is mitigated by use of personal protective equipment and adherence to a Health and Safety Plan. Conventional measures are effective and readily implementable to mitigate fugitive dust and emissions during remediation construction.

*Compliance with SCGs:* Alternative 3 is expected to achieve compliance with chemical specific SCGs and site-specific cleanup levels in soil by reducing contaminant concentrations through physical treatment via SVE. Over time, reduction of sorbed mass in soils will reduce, then eliminate, contributions to the dissolved phase leading to an improvement in groundwater quality over time. In addition, remediation of CVOCs in vadose zone soils will improve soil vapor concentrations, eliminating the vapor intrusion pathway, and allowing for discontinuation of the SSDS over time.



#### **Balancing Criteria**

Long-Term Effectiveness, Permanence and Sustainability: Alternative 3 provides long-term effectiveness and permanence by treating contaminants sorbed to soils and reducing concentrations in soils, groundwater, and vapor phases. Alternative 3 will result in the indirect emissions of Greenhouse Gasses (GHGs) via the long-term use of electricity necessary to operate the SVE and SSDS systems. Alternative 3 will require the least use of heavy equipment of the alternative which pass the Threshold Criteria. This would result in an overall lower environmental footprint of remediation compared to the other alternatives.

Reduction of Toxicity, Mobility and Volume Through Treatment: Alternative 3 will reduce the contaminant mass through physical treatment via SVE, and mitigation through existing SSDS. Decreased concentrations and mass will also reduce chemical toxicity and, indirectly, mobility. While there is no known non-aqueous phase liquid (NAPL) at the Site to consider a reduction in mobility, presumably, reduction in contaminant concentrations in soil will reduce dissolution to the dissolvedphase, and thereby limit plume extents over time.

Short-Term Impact and Effectiveness: Alternative 3 will have a short-term impact during remediation construction. The potential will exist during remediation for fugitive dust and emissions that may impact the surrounding community. Alternative 3 can be effective because SVE removes contaminants sorbed to vadose zone soils by partitioning CVOCs from the sorbed-phase to vapor phase for removal from the subsurface. Based on low soil and groundwater concentrations, an expected active treatment duration <5 years followed by a period of monitoring to confirm soil vapor has been reduced sufficiently and could lead to discontinued operation of the SSDSs. Finally, longterm groundwater monitoring may be required under the SMP, as no direct treatment of groundwater is proposed under this alternative.

*Implementability:* Alternative 3 is readily implementable using traditional drilling or alternative horizontal drilling techniques, along with standard equipment installation.

*Cost Effectiveness:* Estimated capital and long-term costs for Alternative 3 are presented in **Table** 3.

Land Use: Alternative 3 does not alter the current land use of the Site, although restrictions on future use may be applied through institutional controls.

#### 6.1.4 Alternative 4: Soil Vapor Extraction, In-Situ Enhanced Biological Treatment of Groundwater, and a Site Management Plan

#### **Threshold Criteria**

**Overall Protectiveness of Public Health and the Environment:** Alternative 4 is protective of public health and the environment by reducing contaminant mass in the vadose zone soils through SVE and vapor mitigation via the active SSDS and removing COVCs through in-situ treatment in overburden and shallow zone bedrock groundwater. Alternative 4 reduces sorbed CVOCs on soils, thereby reducing potential transport of contaminants to the dissolved and vapor-phases, and also



eliminates potential transport of contaminants by treating and converting contaminants to non-toxic byproducts (e.g., carbon dioxide and water, or ethene and chloride). The current use of SSDSs at the Site and neighboring properties provides protection by mitigation potential vapor intrusion into indoor air. The potential for short-term exposure to impacted soil by on-site workers and remediation personnel via ingestion and inhalation of airborne dust and emissions during construction is mitigated by use of personal protective equipment and adherence to a Health and Safety Plan. Conventional measures are effective and readily implementable to mitigate fugitive dust and emissions during remediation construction.

*Compliance with SCGs:* Alternative 4 is expected to achieve chemical-specific SCGs and Sitespecific cleanup levels in soil by reducing contaminant concentrations through physical treatment via SVE. Remediation of CVOCs in vadose zone soils will improve soil vapor concentrations, eliminating the vapor intrusion pathway, and allowing for discontinuation of the SSDS over time. Over time, reduction of sorbed mass in soils will reduce, then eliminate, contributions to the dissolved phase leading to an improvement in groundwater quality. Finally, chemical-specific SCGs and Site-specific cleanup levels are expected to be achieved in the dissolved-phase by reducing contaminant concentrations through biological treatment.

#### **Balancing Criteria**

Long-Term Effectiveness, Permanence and Sustainability: Alternative 4 provides long-term effectiveness and permanence by treating contaminants sorbed to soils and reducing concentrations in soils, groundwater, and vapor phases. Alternative 4 will result in the indirect emissions of Greenhouse Gases (GHGs) via the long-term use of electricity necessary to operate the SVE and SSDS systems. Alternative 4 will require slightly use of heavy equipment than Alternitive 3, but significantly less than Alternative 5. This would result in an overall slightly higher environmental footprint of remediation compared Alternative 3, but a much lower environmental footprint of remediation compared Alternative 5.

Reduction of Toxicity, Mobility and Volume Through Treatment: Alternative 4 will reduce the contaminant mass through physical treatment via SVE, mitigation through existing SSDS, and will reduce the contaminant mass through biological treatment. Decreased concentrations and mass will also reduce chemical toxicity and, indirectly, mobility. While there is no known NAPL at the Site to consider a reduction in mobility, presumably, reduction in contaminant concentrations in soil and groundwater will reduce plume extents over time.

Short-Term Impact and Effectiveness: Alternative 4 will have a short-term impact during remediation construction. The potential will exist during remediation for fugitive dust and emissions that may impact the surrounding community. Alternative 4 is effective because SVE removes contaminants sorbed to vadose zone soils by partitioning CVOCs from the sorbed-phase to vapor phase for removal from the subsurface. Alternative 4 is effective because the biological treatment will remove dissolved-phase contaminants through biological dechlorination to innocuous byproducts. Treatment time is anticipated to be relatively short owning to the relatively low concentrations found presently in Site soils and groundwater (<5 years), followed by a period of monitoring to confirm soil vapor has been reduced sufficiently to discontinue operation of SSDS.



*Implementability:* Alternative 4 is readily implementable using traditional drilling or alternately horizontal drilling techniques, along with standard equipment installation. The biological amendments are commercially available for nationwide distribution. Regarding installation of off-site wells, access agreement and permits may need to be obtained prior to implementation.

*Cost Effectiveness:* Estimated capital and long-term costs for Alternative 4 are presented in **Table** 4.

Land Use: Alternative 4 does not alter the current land use of the Site, although restrictions on future use may be applied through institutional controls.

#### 6.1.5 Alternative 5: Source Area Excavation with In-Situ Enhanced Biological Treatment of Groundwater, and a Site Management Plan

## **Threshold Criteria**

Overall Protectiveness of Public Health and the Environment: Alternative 5 is protective of public health and the environment through excavation of contaminated soil and treatment of overburden and shallow zone bedrock groundwater. This alternative eliminates all readily accessible source material in the vadose zone, and potential transport of contaminants in the dissolved-phase by biologically treating and converting contaminants to non-toxic byproducts (e.g., carbon dioxide and water, or ethene and chloride). The potential for short-term exposure to impacted soil by onsite workers and remediation personnel via ingestion and inhalation of airborne dust and emissions during construction is mitigated by use of personal protective equipment and adherence to a Health and Safety Plan. Conventional measures are effective and readily implementable to mitigate fugitive dust and emissions during remediation construction. Long-term groundwater monitoring may be necessary and may be addressed with an SMP. This is the only Alternative that returns the Site to pre-release conditions.

*Compliance with SCGs:* Alternative 5 is expected to achieve chemical-specific SCGs and Sitespecific cleanup levels by removing contaminants and reducing dissolved-phase concentrations through biological treatment.

#### **Balancing Criteria**

Long-Term Effectiveness, Permanence and Sustainability: Alternative 5 provides long-term effectiveness and permanence by treating contaminants to reduce concentrations to pre-release conditions. Although Alternative 5 would not require use of electricity to operate SVE or SSDS systems on-site, This alternative has the largest environmental remediation footprint of the evaluatied remedies. The removal of soil requires the expenditure of fuel which produces GHGs. The impacted soil also occupies the limited available space in non-hazardous and hazardous waste landfills. The environmental impact of the remedy would be reduced if non impacted soil remained on-site as fill. The demolition of the on-site building would also produce additional waste that would need to be removed.



*Reduction of Toxicity, Mobility and Volume Through Treatment:* Alternative 5 will reduce the contaminant mass through excavation, and biological treatment. Decreased concentrations and mass will also reduce chemical toxicity and, mobility, indirectly. While there is no known NAPL at the Site to consider a reduction in mobility, presumably, reduction in contaminant concentrations in soil and groundwater will reduce plume extents over time.

*Short-Term Impact and Effectiveness:* Alternative 5 will have a short-term impact during remediation construction and excavation. The potential will exist during remediation and excavation actions for fugitive dust and emissions that may impact the surrounding community. Alternative 5 is effective because the excavation removes contaminants for off-site disposal, while biological treatment of groundwater reducing concentrations in groundwater reductive dechlorination. The expected treatment time is anticipated to be less than one year.

*Implementability:* Alternative 5 is best implemented if the existing building were to be removed. It is not readily implementable (large-scale excavation) should the building remain in place as access to the sub-slab materials would not be feasible. The biological amendment is commercially available for nationwide distribution, and best applied to the areas where source material was formerly present (presumed to be beneath the building footprint).

*Cost Effectiveness:* Estimated capital costs for Alternative 5 are presented in **Table 5**. No long-term costs are expected with this Alternative as active treatment returns the Site to pre-release conditions.

*Land Use:* Alternative 5 does alter the current land use of the Site, as it is best applied in circumstances where the current building is demolished. The land use could remain the same (commercial) without concern, and in fact could be modified to be used for restricted residential purposes under this Alternative.

#### 6.2 Comparative Analysis of Alternatives

Potential remedial alternatives are compared to criteria defined in 6 NYCRR Part 375. The first two evaluation criteria are termed "threshold criteria" and must be satisfied for an alternative to be considered for selection.

Threshold Criteria:

- Overall Protectiveness of Public Health and the Environment This criterion is an overall evaluation of each alternative's ability to protect public health and the environment.
- Compliance with SCGs Compliance with SCGs addresses whether a remedy will meet environmental laws, regulations, and other standards and criteria.

Balancing Criteria:

• Long-Term Effectiveness and Permanence - This criterion evaluates the long-term effectiveness of the remedial alternatives after implementation. If wastes or treated



residuals remain on-site after the selected remedy has been implemented, the following items are evaluated: 1) the magnitude of the remaining risks, 2) the adequacy of the engineering and/or institutional controls intended to limit the risk, and 3) the reliability of these controls.

- Reduction of Toxicity, Mobility, and Volume through Treatment For this criterion, . preference is given to alternatives that permanently and significantly reduce the toxicity, mobility and volume of the contamination at the Site.
- Short-Term Impact and Effectiveness This criterion evaluates potential short-term • impacts on the community, workers, and the environment during remedial construction. The length of time needed to achieve RAOs is also estimated and compared against the other alternatives.
- Implementability This criterion evaluates the technical and administrative feasibility to • implement each remedial alternative. Technical feasibility includes difficulties associated with the implementation of the remedy and the ability to monitor its effectiveness. Administrative feasibility includes the availability of the necessary personnel and materials along with potential difficulties in obtaining specific operating approvals, access for construction, institutional controls, etc.
- Cost Effectiveness Capital costs and annual operation, maintenance, and monitoring • costs are estimated for each remedial alternative and compared on a present worth basis. In addition, a long-term evaluation of costs is evaluated to weigh the cost/benefit ratio of applying a more active remedy versus a passive remedy over time, particularly if all other factors are equal to discern a preferred remedy for selection.
- Land Use This criterion evaluates each remedial alternative with respect to the current, • intended, and reasonably anticipated future land use.
- Community Acceptance Community concerns regarding selection of a remedial • alternative will be considered.

Alternatives 1 and 2 do not meet the Threshold Criteria and were eliminated from further consideration. Alternatives 3, 4 and 5 were evaluated relative to each other using the balancing criteria. A summary of the alternative evaluation is provided in **Table 6**, and a discussion of the relative evaluation is below.

#### 6.2.1 Long-Term Effectiveness and Permanence

All three remaining alternatives provide long-term effectiveness and permanence of remedy, however the rate to achieve permanence is variable. For this reason, Alternative 5 scored slightly higher than Alternatives 3 and 4, as the duration of treatment is less, and therefore would reduce the need for EC/IC to mitigate the risk until remaining contamination meets SCGs.



#### **6.2.2** Reduction of Toxicity, Mobility, and Volume through Treatment

All three remaining alternatives will reduce contaminant toxicity, mobility, and volume. The reduction in volume and then toxicity is best achieved through full removal, leading to the highest score for Alternative 5. Alternative 4 scored slightly higher than Alternative 3 with respect to improving groundwater quality (toxicity) through direct treatment of concentrations in groundwater via in-situ remediation, as opposed to waiting for the indirect positive effect source removal would have on groundwater quality.

#### 6.2.3 Short-Term Impact and Effectiveness

All three remaining alternatives provide short-term impact and effectiveness. Alternative 5 scored the highest for this criteria because it will meet the RAOs in the shortest time period. Alternatives 3 and 4 will prove effective in the short-term (<5 years), but in slightly varying degrees. While the exact period of treatment under Alternatives 3 and 4 are not known, HRP assumes that active remediation of groundwater (Alternative 4) would meet SCGs more quickly than relying solely on source removal (Alternative 3) as a mechanism to improve groundwater quality.

## 6.2.4 Feasibility

Alternative 5 is not readily feasible due to the existing Site buildings presence in the footprint of the proposed excavation and presumed source area. Alternative 4 is inclusive of Alternative 3 and would require additional infrastructure be constructed requiring off-site access, therefore Alternative 3 scored slightly higher than Alternative 4.

## 6.2.5 Cost Effectiveness

Capital and long-term (30-year) costs were evaluated for each alternative, as capital (short-term) savings may be negated by long-term costs. Alternative 3 was found to be the most cost-effective approach having lower capital cost, and only nominally higher costs beyond the initial remedial action period over Alternative 4. Alternative 5 scored the lowest cost around twice as much as the other alternatives.

## 6.2.6 Land Use

Alternatives 3 and 4 do not change the current land use in any significant way. Alternative 5 scored lower in this category due to the removal of the on-site building that would be required to implement it.



#### 7.0 <u>REMEDY SELECTION</u>

The recommended alternative is Alternative 3: Soil Vapor Extraction, Institutional Controls, Engineering Controls, and a Site Management Plan. Alternative 3 is protective of public health and the environment by reducing contaminant mass in the vadose zone soils through SVE and vapor mitigation via the active SSDS. This alternative reduces sorbed CVOCs on soils, thereby reducing potential transport of contaminants to the dissolved and vapor-phases. Alternative 3 is expected to achieve compliance with chemical-specific SCGs and site-specific cleanup levels in soil by reducing contaminant concentrations through physical treatment via SVE.

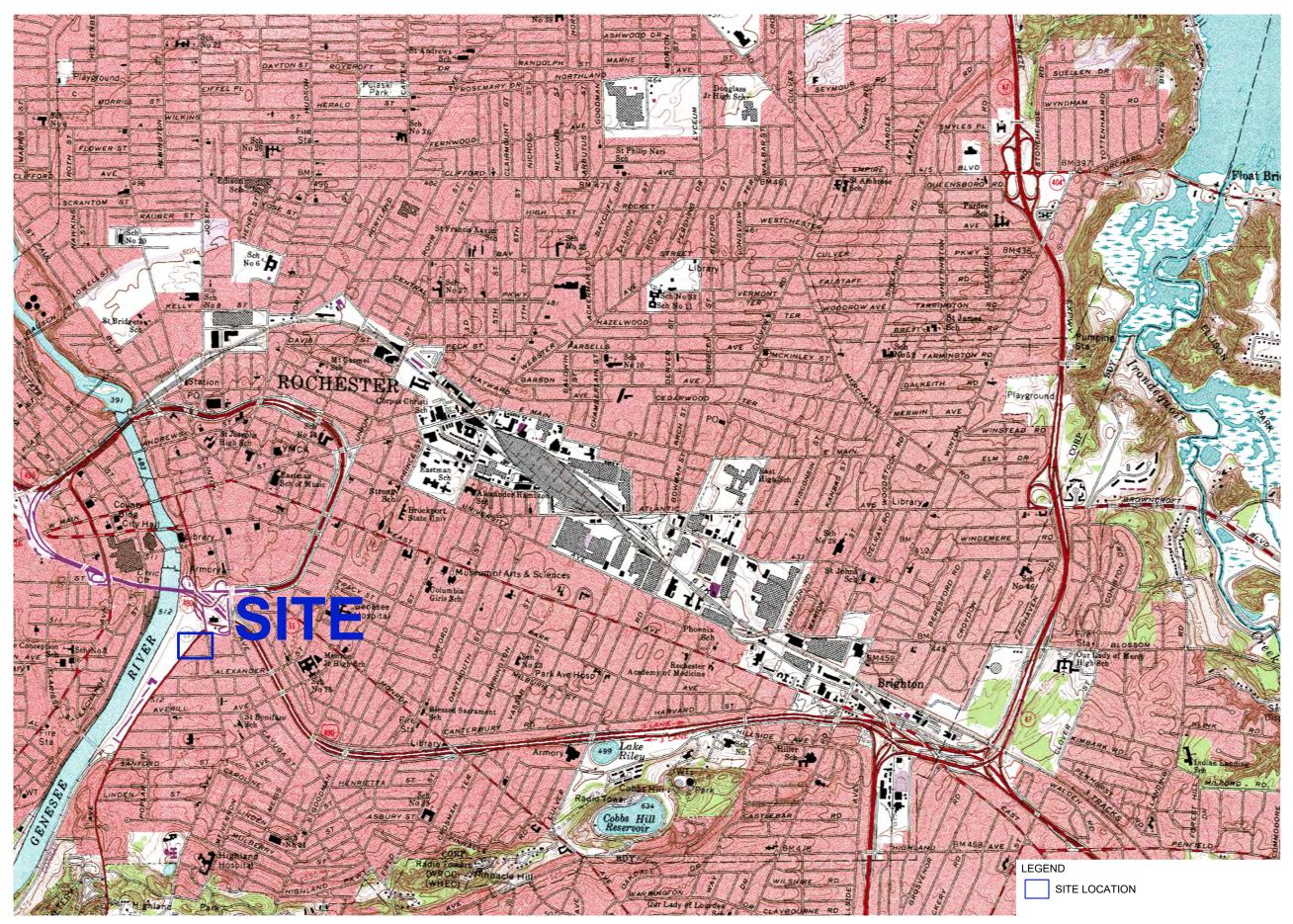
In addition to meeting the Threshold Criteria of being protective of human health and the environment, and achieving compliance with SCGs, Alternative 3 provides the best balance of the balancing criteria (Long-Term Effectiveness and Permanence; Reduction of Toxicity, Mobility, and Volume through Treatment; Short-Term Impact and Effectiveness; Feasibility; Cost Effectiveness; and Land Use).

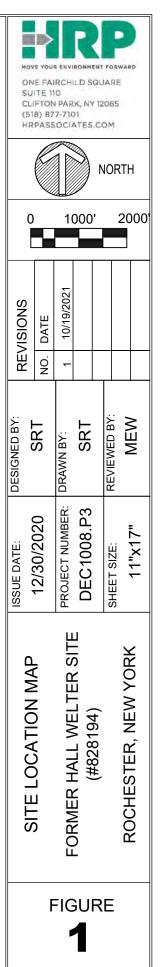


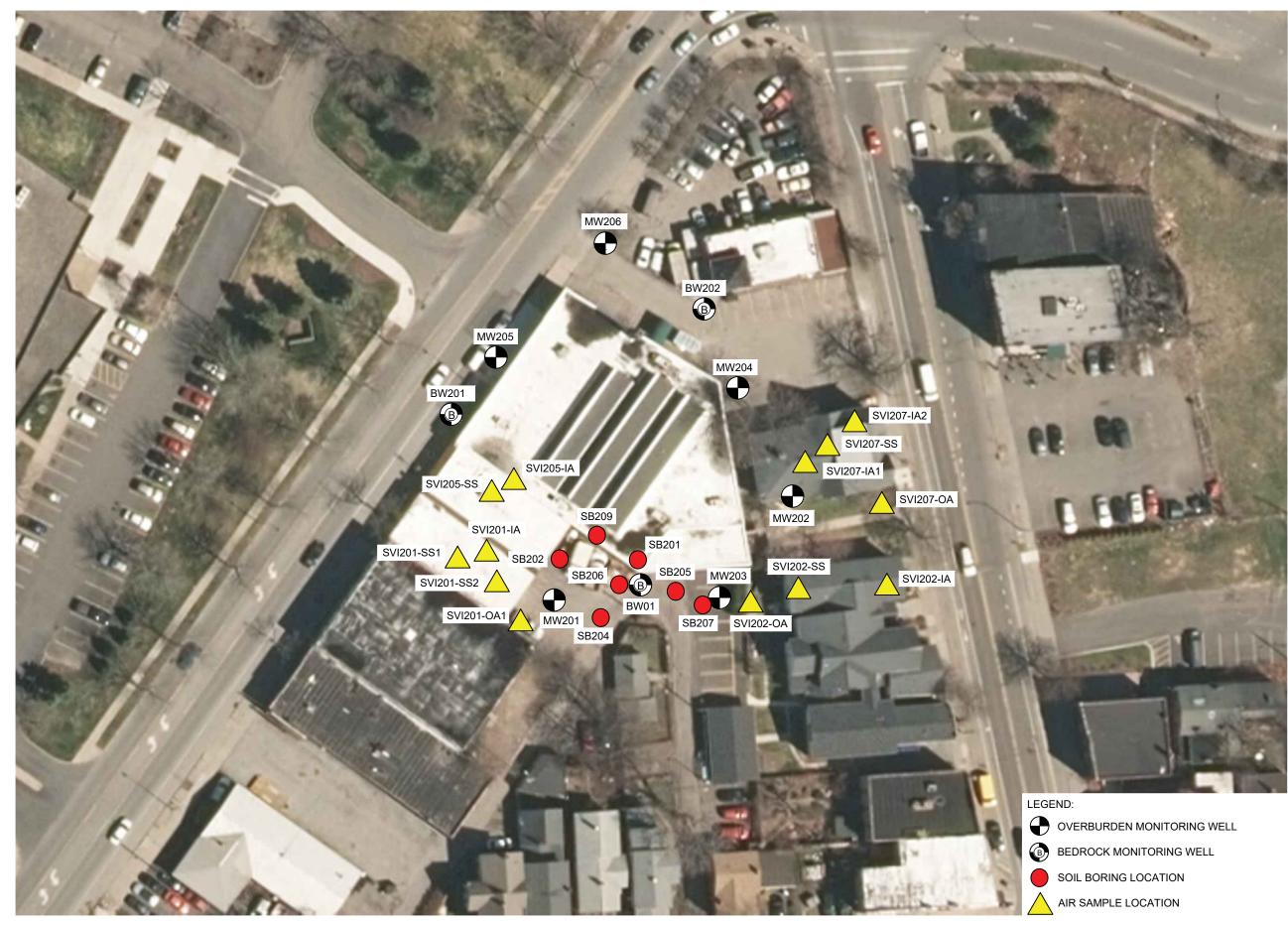
#### 8.0 **REFERENCES**

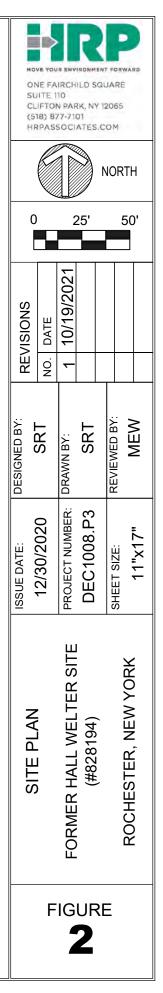
USGS Geologic Names lexicon found at: http://ngmdb.usgs.gov/Geolex/ https://ngmdb.usgs.gov/Geolex/search

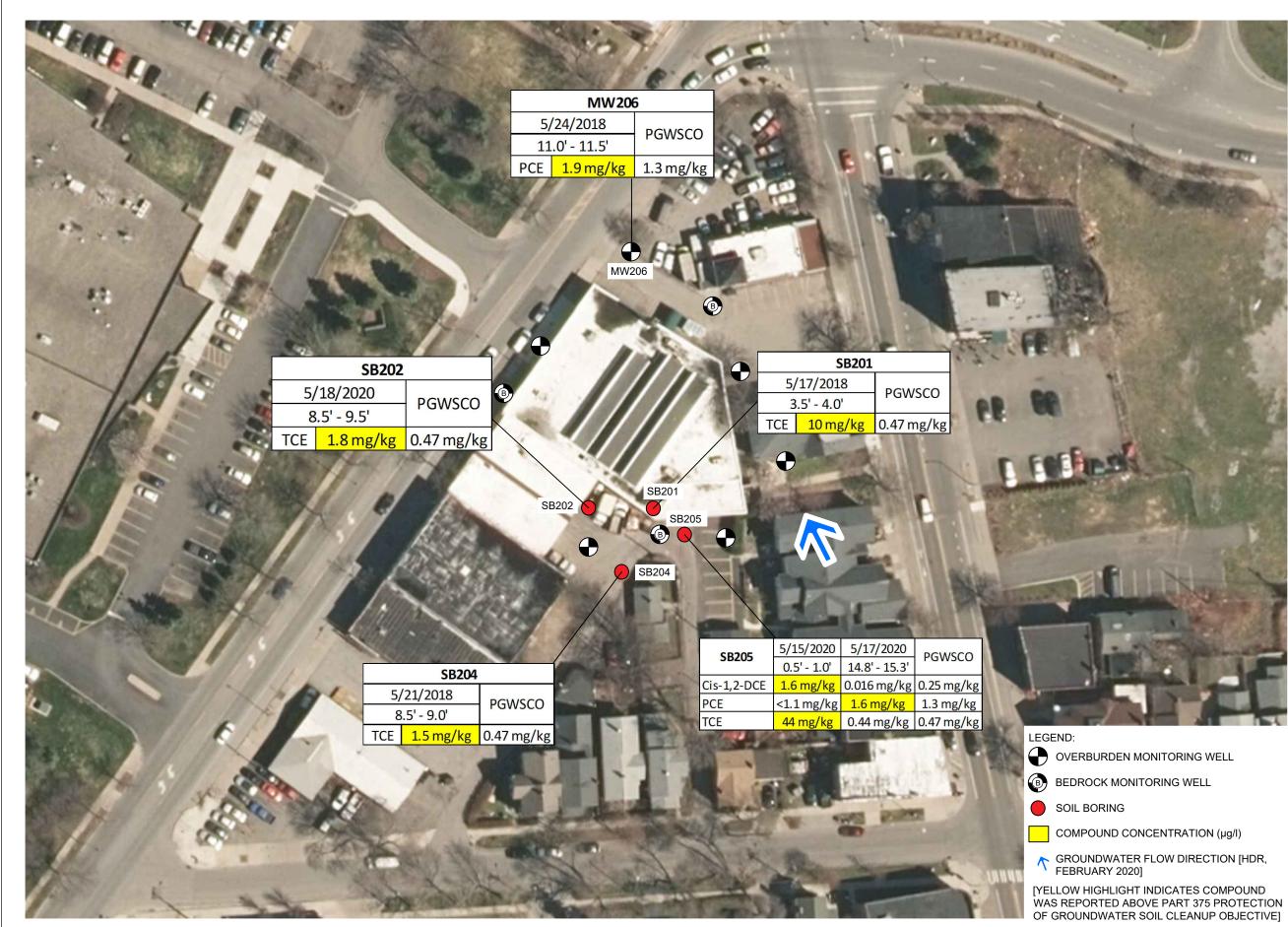
United States Geological Survey (USGS) Surficial Geologic Map of New York, Finger Lakes Sheet, 1986





HRP Associates, Inc., NYSDEC Standby Contract WA # D009808-08, Site No. 828194 DRAFT Feasibility Study – December 27, 2020


# **FIGURES**





In the second state of the





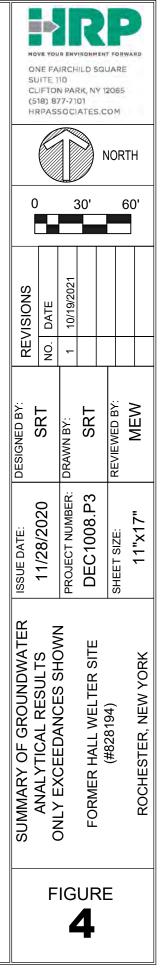


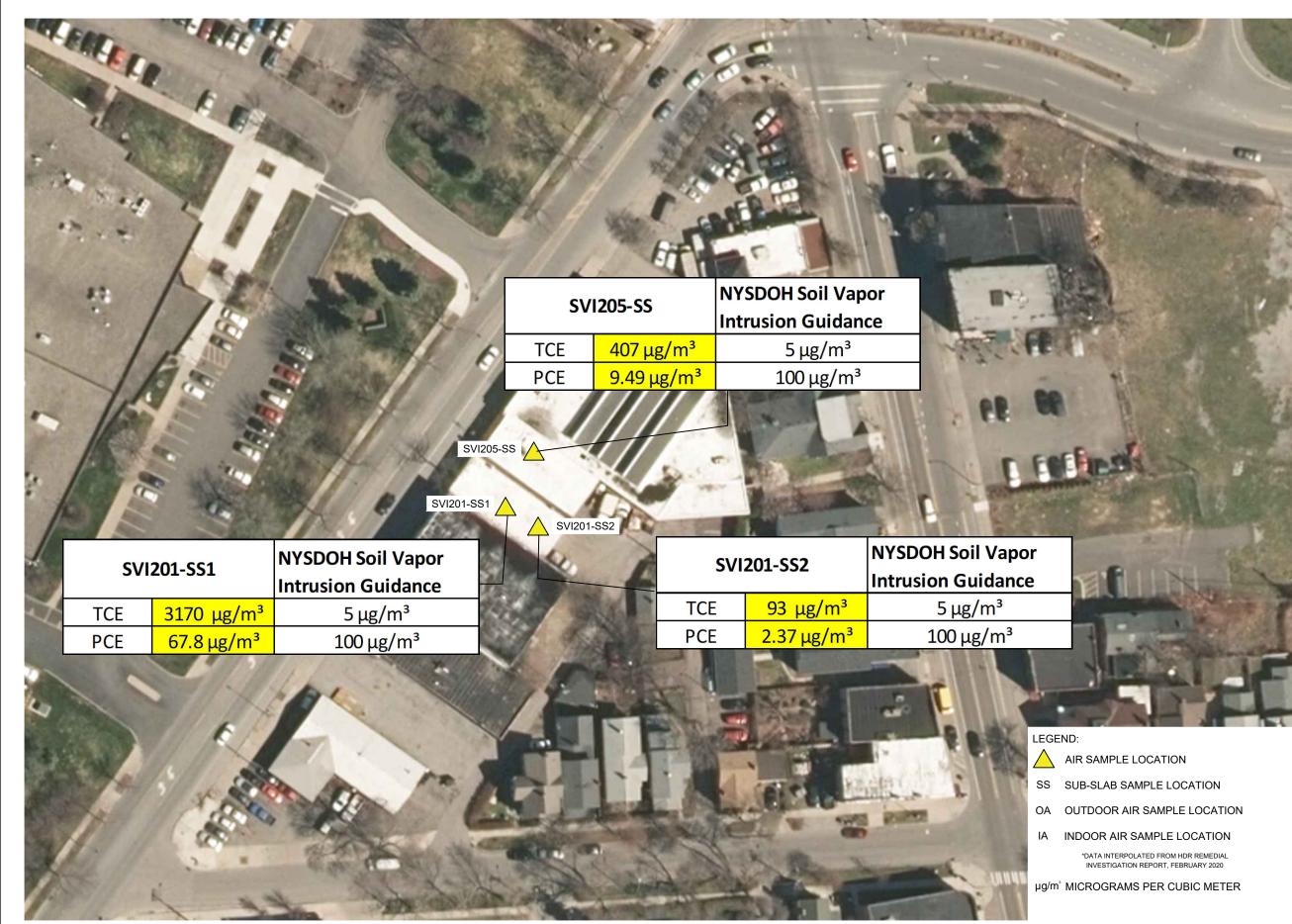




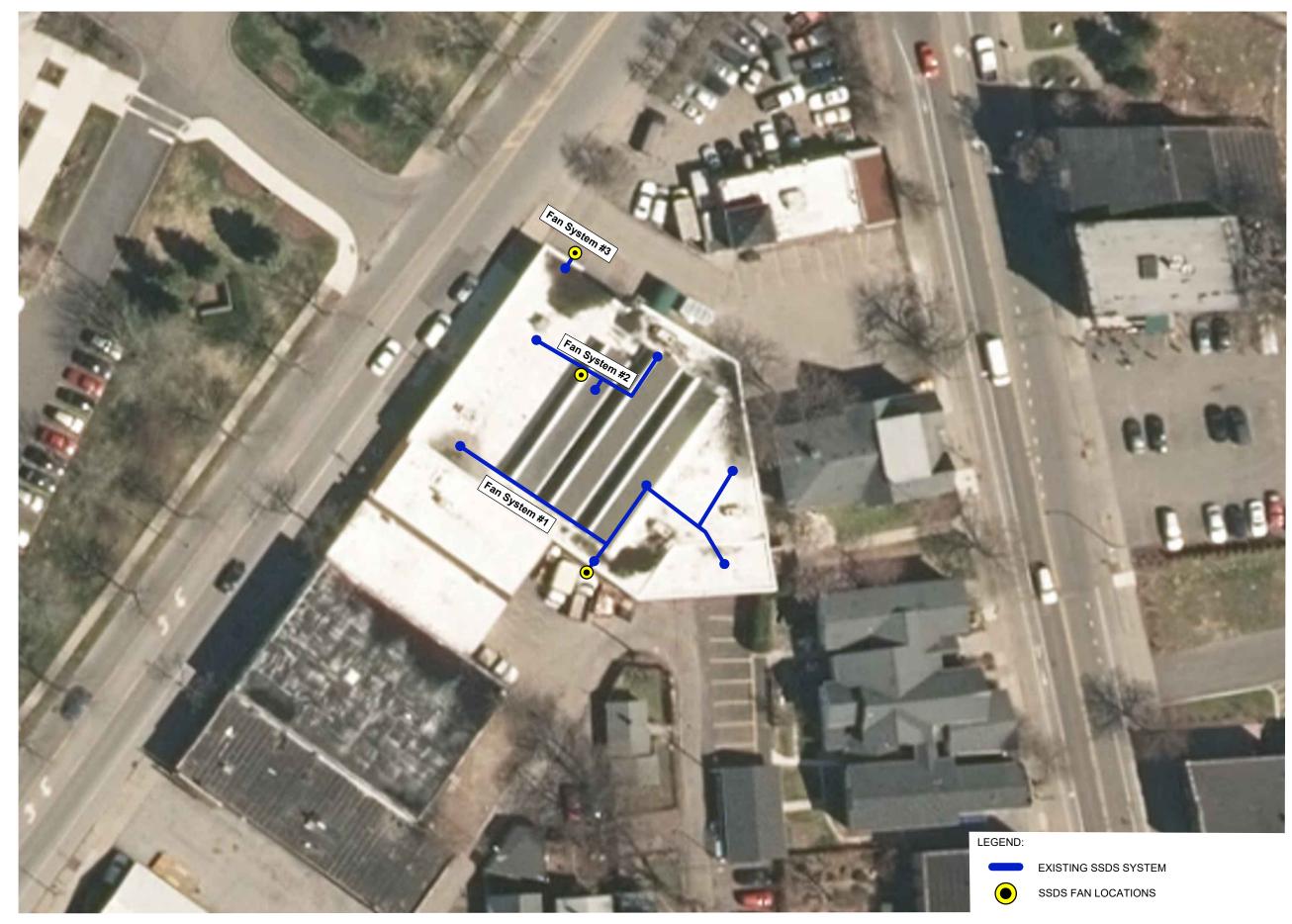
| NOVE YOUR ENVIRONMENT FORWARD<br>ONE FAIRCHILD SQUARE<br>SUITE 110<br>CLIFTON PARK, NY 12065<br>(S18) 877-7101<br>HRPASSOCIATES.COM |                                    |                        |                         |  |           |   |   |                     |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------|-------------------------|--|-----------|---|---|---------------------|
| NORTH                                                                                                                               |                                    |                        |                         |  |           | ł |   |                     |
| 0                                                                                                                                   |                                    | ŝ                      | 30'                     |  |           | 6 | 0 | '                   |
| REVISIONS                                                                                                                           | NO. DATE                           | 1 10/19/2021           |                         |  |           |   |   |                     |
| DESIGNED BY:                                                                                                                        |                                    | DRAWN BY:              | SRT                     |  |           |   |   |                     |
| ISSUE DATE:                                                                                                                         | 0707/97/11                         | <b>PROJECT NUMBER:</b> | DEC1008.P3              |  |           |   |   | / LXLL              |
| SUMMARY OF SOIL ANALYTICAL                                                                                                          | AESULIS<br>ONI V EVCEEDANCES SHOWN |                        | FORMER HALL WELTER SITE |  | (#070134) |   |   | ROCHESTER, NEW YORK |
| FIGURE                                                                                                                              |                                    |                        |                         |  |           |   |   |                     |

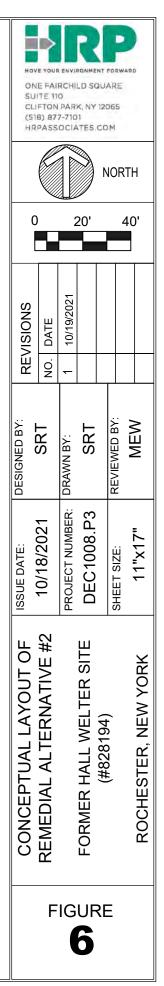
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONTRACTOR OF                                            | And and a second se | AND DO NOT THE OWNER.                         | 16 Martin Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | In the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWN                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FRA PARTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | St. States                                               |                                                                                                                | and the the                                   | 11 man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - L'agenter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | STATE OF STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ENTER DE CONTRACTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a start of                                               |                                                                                                                | ID                                            | MW 206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | тодѕ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ALC: NO. OF THE OWNER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A REAL PROPERTY AND A REAL | The second second                                        | and the second second                                                                                          | Screen Interval                               | 10' - 20'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second s |
| ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MW205                                                    | TOGS                                                                                                           | Date                                          | 6/19/2018 1/9/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Screen Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.7' - 18.7'                                             | 1.1.1.                                                                                                         | Cis-1,2-DCE                                   | 12 μg/l 8.2 μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The Party of the local division of the local |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6/18/2018 1/9/20                                         | 20                                                                                                             | PCE                                           | 290 μg/l 160 μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cis-1,2-DCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <mark>6.7 µg/l</mark> 2.9 µg                             | /l 5 µg/l                                                                                                      | TCE                                           | <mark>56 μg/l 33 μ</mark> ξ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <mark>/l </mark> 5 µg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BW202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | — т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16 µg/l 9.5 µg                                           | <mark>/I</mark> 5 µg/I                                                                                         |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Screen Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.3' - 30.3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39 μg/l 18 μg/                                           | <mark>/Ι 5 μg/Ι</mark>                                                                                         | A Sta                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12. 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6/19/2018 1/8/202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/5                                                      | 1 Carlor                                                                                                       | H when                                        | CRAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and the state of t | Cis-1,2-DCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>11 μg/l 58 μg/</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 All                                                    |                                                                                                                | · ·                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PCE<br>TCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>390 μg/l</u> 7.3 μg/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | And the second                                           |                                                                                                                | MW206                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <mark>26 µg/l   11 µg/</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ID BW2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01 TOGS                                                  |                                                                                                                | 1111200                                       | 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ALC: NOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Screen Interval 21.3' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31.3'                                                    |                                                                                                                |                                               | <b>O</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 191253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date 6/18/2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/9/2020                                                 |                                                                                                                |                                               | BW202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MW204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120 μg/l 5 μg/l                                          |                                                                                                                |                                               | C. John                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 8' - 17 8'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TOGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PCE         <5.0 μg/l           Trans-1,2-DCE         26 μg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22 μg/l 5 μg/l                                           | MW2                                                                                                            | 205                                           | MW204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2018 1/8/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.1.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Trans-1,2-DCE         26 μg/l           TCE         20 μg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.3 μg/l         5 μg/l           11 μg/l         5 μg/l | 3                                                                                                              |                                               | 1 2 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 µg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | BW201                                                                                                          |                                               | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ALC: NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 µg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AND A REAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          |                                                                                                                |                                               | MW20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sec. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TCE 35 µ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 µg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW201                                                    | ~                                                                                                              | BWO                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Screen Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6' - 16'                                                 | TOGS                                                                                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MW202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6/20/2018 1/8/2020                                       | 1.1.1.                                                                                                         |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Screen Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.3' - 14.3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cis-1,2-DCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36 μg/l 40 μg/l                                          | 5 μg/l                                                                                                         | MW201                                         | MW203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6/19/2018 1/9/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Trans-1,2-DCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.2 μg/l 7.6 μg/l                                        |                                                                                                                | and the second second second second           | Contraction of the local division of the loc |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $10 \mu_{\sigma}/l = 11 \mu_{\sigma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| And the second s |                                                          | Sμg/i                                                                                                          | PRODUCT OF                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cis-1,2-DCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19 μg/l 11 μg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <mark>/  5</mark><br>/  9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          | A DECK OF THE OWNER                                                                                            | 7 Star                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <mark>110 µg/l 61 µg</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <mark>;/ </mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          | 5 μg/l                                                                                                         | A F                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Contraction of the local division of the loc |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <mark>;/ </mark> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          | A DECK OF THE OWNER                                                                                            | ID                                            | BW1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <mark>110 µg/l 61 µg</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <mark>;/ </mark> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          | A DECK OF THE OWNER                                                                                            | ID<br>Screen Interval                         | <b>BW1</b><br>16.5' - 25'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TOGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <mark>110 µg/l 61 µg</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <mark>;/ </mark> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          | A DECK OF THE OWNER                                                                                            | Screen Interval                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <mark>110 µg/l 61 µg</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <mark>;/ </mark> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          | A DECK OF THE OWNER                                                                                            | Screen Interval                               | 16.5' - 25'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>1.1.1.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <mark>110 µg/l 61 µg</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <mark>;/ </mark> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          | A DECK OF THE OWNER                                                                                            | Screen Interval<br>Date<br>Cis-1,2-DCE<br>PCE | 16.5' - 25'<br>6/20/2018 1/8/20<br>7.6 µg/l 4.6 µg<br>66 µg/l 71 µg,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.1.1.           20           /l         5 μg/l           'l         5 μg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110 µg/I 61 µg<br>12 µg/I 7.5 µg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ;/  <u></u><br>g/l <u>c</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          | A DECK OF THE OWNER                                                                                            | Screen Interval<br>Date<br>Cis-1,2-DCE        | 16.5' - 25'<br>6/20/2018 1/8/20<br><mark>7.6 μg/l</mark> 4.6 μg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1.1.           20         5 μg/l           /l         5 μg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110 µg/I 61 µg<br>12 µg/I 7.5 µg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ;/  <u></u><br>;/  <u></u><br>;/  <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | A DECK OF THE OWNER                                                                                            | Screen Interval<br>Date<br>Cis-1,2-DCE<br>PCE | 16.5' - 25'<br>6/20/2018 1/8/20<br>7.6 µg/l 4.6 µg<br>66 µg/l 71 µg,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.1.1.           20           /l         5 μg/l           'l         5 μg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110 µg/I 61 µg<br>12 µg/I 7.5 µg<br>LEGEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ;/1 <u>5</u><br>;/1 <u>5</u><br>;/1 <u>5</u><br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | A DECK OF THE OWNER                                                                                            | Screen Interval<br>Date<br>Cis-1,2-DCE<br>PCE | 16.5' - 25'<br>6/20/2018 1/8/20<br>7.6 µg/l 4.6 µg<br>66 µg/l 71 µg,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.1.1.           20           /l         5 μg/l           'l         5 μg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110 µg/I 61 µg<br>12 µg/I 7.5 µg<br>LEGEND<br>€ 0 V<br>€ 0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | j/l <u>s</u><br>j/l <u>s</u><br>j/l <u>s</u><br>/s<br>/erbur<br>DROCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | A DECK OF THE OWNER                                                                                            | Screen Interval<br>Date<br>Cis-1,2-DCE<br>PCE | 16.5' - 25'<br>6/20/2018 1/8/20<br>7.6 µg/l 4.6 µg<br>66 µg/l 71 µg,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.1.1.           20           /l         5 μg/l           'l         5 μg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110 µg/I 61 µg<br>12 µg/I 7.5 µg<br>LEGEND<br>€ 0 V<br>€ 0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | j/l <u>s</u><br>j/l <u>s</u><br>j/l <u>s</u><br>/s<br>/erbur<br>DROCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | A DECK OF THE OWNER                                                                                            | Screen Interval<br>Date<br>Cis-1,2-DCE<br>PCE | 16.5' - 25'<br>6/20/2018 1/8/20<br>7.6 µg/l 4.6 µg<br>66 µg/l 71 µg,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.1.1.           20           /l         5 μg/l           'l         5 μg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110 µg/I 61 µg<br>12 µg/I 7.5 µg<br>LEGEND<br>0 0V<br>0 0<br>0 8E<br>1 0 0V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3/1 5<br>3/1 5<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          | A DECK OF THE OWNER                                                                                            | Screen Interval<br>Date<br>Cis-1,2-DCE<br>PCE | 16.5' - 25'<br>6/20/2018 1/8/20<br>7.6 µg/l 4.6 µg<br>66 µg/l 71 µg,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.1.1.           20           /l         5 μg/l           'l         5 μg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110 µg/I 61 µg<br>12 µg/I 7.5 µg<br>LEGEND<br>0 0V<br>0 0<br>0 8<br>ВЕ<br>↑ 0 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | j/l <u>s</u><br>j/l <u>s</u><br>j/l <u>s</u><br>/s<br>/erbur<br>DROCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | A DECK OF THE OWNER                                                                                            | Screen Interval<br>Date<br>Cis-1,2-DCE<br>PCE | 16.5' - 25'<br>6/20/2018 1/8/20<br>7.6 µg/l 4.6 µg<br>66 µg/l 71 µg,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.1.1.           20           /l         5 μg/l           'l         5 μg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110 µg/I 61 µg<br>12 µg/I 7.5 µg<br>LEGEND<br>€ 0V<br>€ 8E<br>↑ 6R<br>FEI<br>VYELLOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | g/l     g       g/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | A DECK OF THE OWNER                                                                                            | Screen Interval<br>Date<br>Cis-1,2-DCE<br>PCE | 16.5' - 25'<br>6/20/2018 1/8/20<br>7.6 µg/l 4.6 µg<br>66 µg/l 71 µg,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.1.1.           20           /l         5 μg/l           'l         5 μg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110 µg/I 61 µg<br>12 µg/I 7.5 µg<br>LEGEND<br>0 00<br>0 8<br>0 8<br>0 8<br>0 8<br>0 8<br>0 8<br>0 8<br>0 8<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Image: Application of the second state of the sec                  |

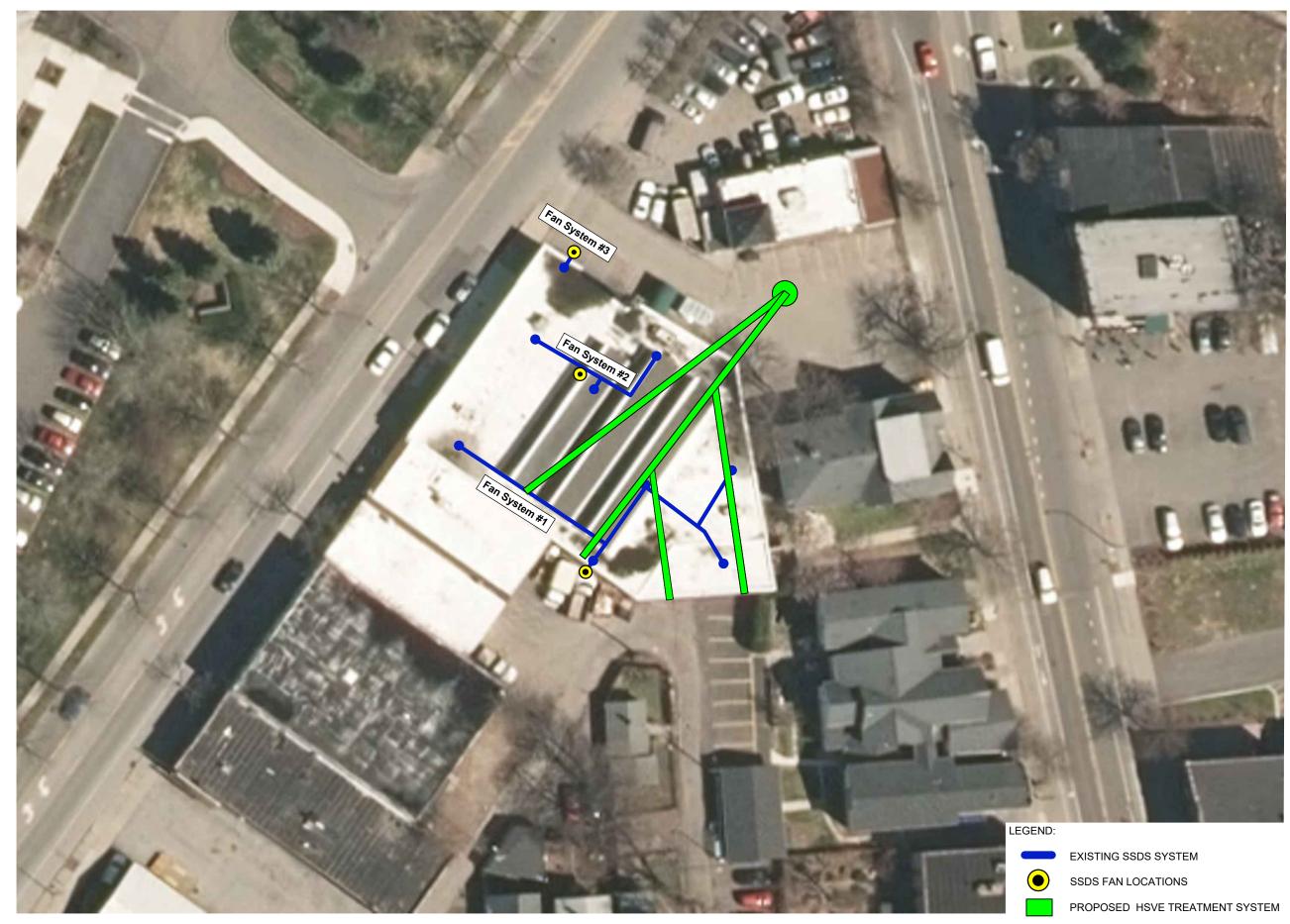


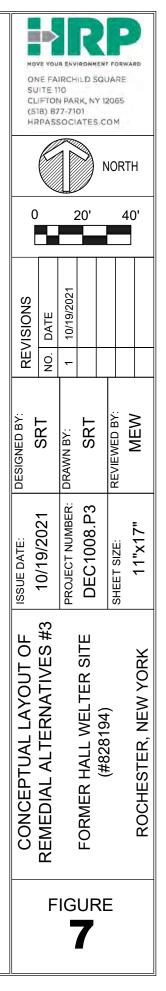


URDEN MONITORING WELL

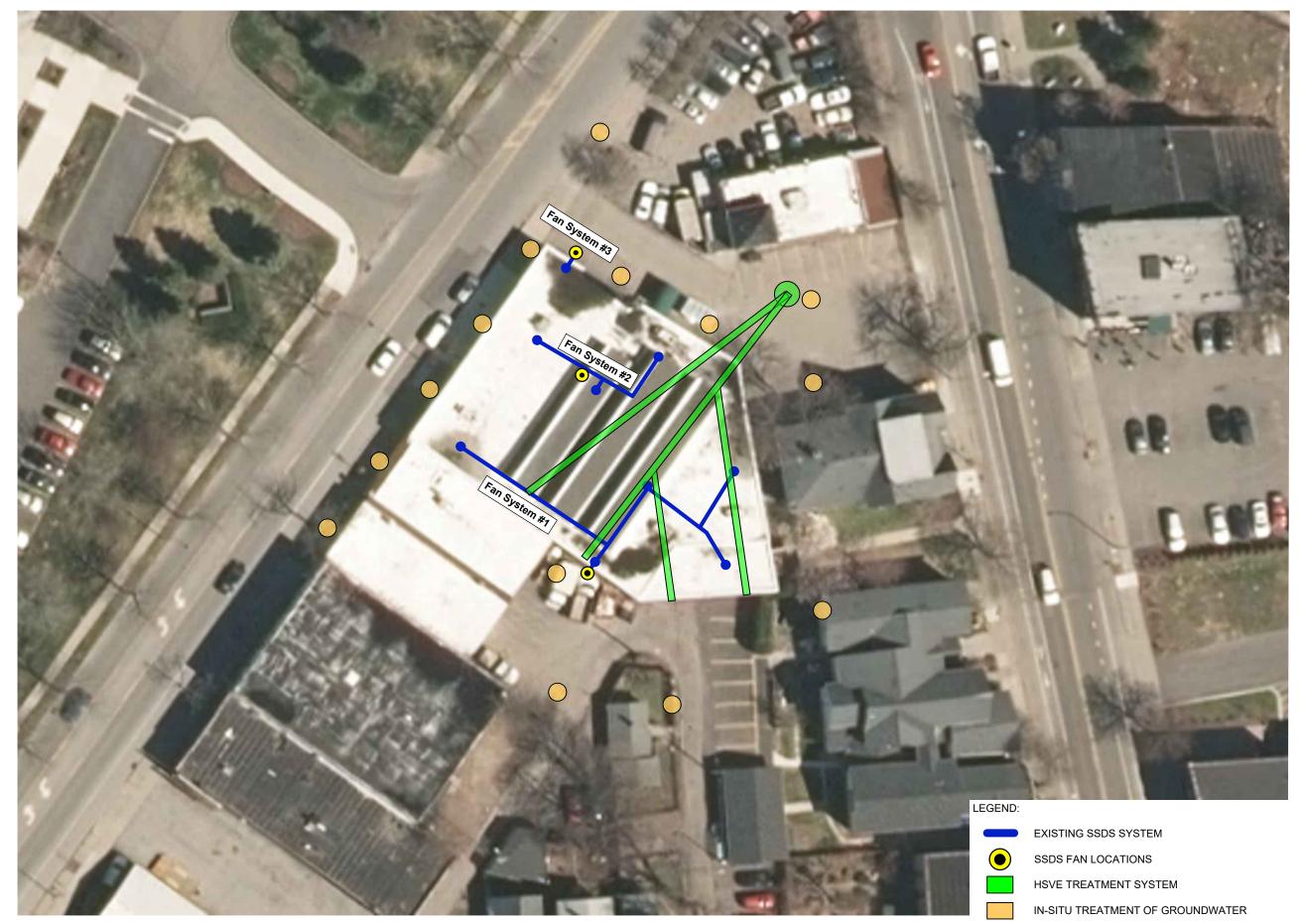

CK MONITORING WELL


- NDWATER FLOW DIRECTION [HDR, ARY 2020]
- DUND CONCENTRATION (µg/l) [DATE, AS TED]


GHLIGHT INDICATES COMPOUND ITED ABOVE TOGS 1.1.1. TER STANDARDS AND GUIDANCE


















═┝ MOVE YOUR ENVIRONMENT FORWAR ONE FAIRCHILD SQUARE SUITE 110 CLIFTON PARK, NY 12065 (51B) 877-7101 HRPASSOCIATES.COM NORTH 20' 40' 0 REVISIONS NO. DATE REVIEWED BY: MEW DRAWN BY: SRT SRT DESIGNED BY: PROJECT NUMBER: DEC1008.P3 10/19/2021 SHEET SIZE: 11"X17" ISSUE DATE: CONCEPTUAL LAYOUT OF REMEDIAL ALTERNATIVE #5 FORMER HALL WELTER SITE (#828194) ROCHESTER, NEW YORK FIGURE 9

HRP Associates, Inc., NYSDEC Standby Contract WA # D009808-08, Site No. 828194 DRAFT Feasibility Study – December 27, 2020

# **TABLES**



shared/Data/WNYDEC - NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION/ROCHESTER (MONROE)\38-46 MOUNT HOPE AVENUE - Hall Welter/DEC1008P3\WPVFeasibility Study/FS.hw 828194.2021.10.27.docx

#### Table 1 - Alternative 1 Cost Analysis No Action Hall Welter Site, 38-46 Mount Hope Avenue, Rochester, NY D009808-08 HRP# DEC1008.P3

| Alternative | Description | Remedy Description                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Task                                          |                  |     |              |              |              | Year         |              |              |              |              |              |              |            |                                      |
|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------|-----|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|--------------------------------------|
|             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | Capital<br>Costs | 1   | 2            | 3            | 4            | 5            | 6            | 7            | 8            | 9            | 10-20        | 21-30        | Total Cost | Total Present<br>Value Cost at<br>7% |
| 1           | No Action   | This alternative would leave the Site in its present condition and<br>would not provide any additional protection to human health or<br>the environment. The No Action alternative would not involve<br>any surface soil, subsurface soil, groundwater, or soil vapor<br>remedial activity. In addition, the No Action alternative would<br>not place any institutional or engineering controls on the Site<br>property, such as future land use restrictions, groundwater use | Record of Decision                            | \$10,000         |     |              |              |              |              |              |              |              |              |              |              |            |                                      |
|             |             | limitations, and/or continued operation of SSDS's.                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Cost by Year                            | \$10,000         | \$0 | \$0          | \$0          | \$0          | \$0          | \$0          | \$0          | \$0          | \$0          | \$0          | \$0          | \$10,000   |                                      |
|             |             | This Alternative is not protective and does not meet SCGs.                                                                                                                                                                                                                                                                                                                                                                                                                     | Discount Factor @ 7%<br>Present Value by Year |                  |     | 0.873<br>\$0 | 0.816<br>\$0 | 0.763<br>\$0 | 0.713<br>\$0 | 0.666<br>\$0 | 0.623<br>\$0 | 0.582<br>\$0 | 0.544<br>\$0 | 4.079<br>\$0 | 1.815<br>\$0 |            | \$10,000                             |

#### Table 2 - Alternative 2 Cost Analysis Engineering and Institutional Controls with Site Management Plan Hall Welter Site, 38-46 Mount Hope Avenue, Rochester, NY D009808-08 HRP# DEC1008.P3

| Alternative | Description                                                       | Remedy Description                                                                                                                                                                                                                                  | Task                                               |                  |                     |                     |                     |                     | Yea                | r                   |                     |                     |                     |                       |                       |            |                                      |
|-------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------|---------------------|---------------------|---------------------|---------------------|--------------------|---------------------|---------------------|---------------------|---------------------|-----------------------|-----------------------|------------|--------------------------------------|
|             | <b>•</b>                                                          |                                                                                                                                                                                                                                                     |                                                    | Capital<br>Costs | 1                   | 2                   | 3                   | 4                   | 5                  | 6                   | 7                   | 8                   | 9                   | 10-20                 | 21-30                 | Total Cost | Total Present<br>Value Cost at<br>7% |
| 2           | Engineering and Institutional<br>Controls<br>Site Management Plan | This alternative would not seek to actively remove or treat the<br>contaminated media onsite but would disrupt the current or<br>future exposure pathways through the imposition of Engineering<br>Controls (ECs) and Institutional Controls (ICs). | Record of Decision                                 | \$10,000         |                     |                     |                     |                     |                    |                     |                     |                     |                     |                       |                       |            |                                      |
|             | Site Management Plan                                              | Engineering controls have already been enacted at the site as                                                                                                                                                                                       | Environmental Easement                             | \$ 5,000         |                     |                     |                     |                     |                    |                     |                     |                     |                     |                       |                       |            |                                      |
|             |                                                                   | exposure during potential future construction and limiting the                                                                                                                                                                                      | Site Management Plan (periodic review and updates) | \$ 10,000        |                     |                     |                     |                     | \$2,500            |                     |                     |                     |                     | \$ 7,500              | \$ 5,000              |            |                                      |
|             |                                                                   | use of groundwater. An Environmental Easement would be<br>recorded to provide an enforceable legal instrument to ensure<br>ICs are met. A Soil Management Plan (SMP) would be required                                                              | Operation and Maintenance                          |                  |                     |                     |                     |                     |                    |                     |                     |                     |                     |                       |                       |            |                                      |
|             |                                                                   | to specify the methods necessary to ensure compliance with all ECs and ICs placed on the Site.                                                                                                                                                      | Monthly O&M<br>Annual Indoor Air Testing           |                  | \$10,560<br>\$2,100 | \$10,560<br>\$2,100 | \$10,560<br>\$2,100 | \$10,560<br>\$2,100 |                    | \$10,560<br>\$2,100 | \$10,560<br>\$2,100 | \$10,560<br>\$2,100 | \$10,560<br>\$2,100 | \$116,160<br>\$23,100 | \$105,600<br>\$21,000 |            |                                      |
|             |                                                                   | The amount of contaminant mass removed by this Alternative is<br>negligible, and therefore only serves to mitigate rather than<br>remediate.                                                                                                        | Semi-annual GW Monitoring<br>Annual Report         |                  | \$7,940<br>\$2,500  | \$7,940<br>\$2,500  | \$7,940<br>\$2,500  | \$7,940<br>\$2,500  | \$7,940<br>\$2,500 | \$7,940<br>\$2,500  | \$7,940<br>\$2,500  | \$7,940<br>\$2,500  | \$7,940<br>\$2,500  | \$87,340<br>\$27,500  | \$79,400<br>\$25,000  |            |                                      |
|             |                                                                   | The duration for operation of an SSDS is assumed to be at least<br>30 years. Costs for O&M assume monthly O&M, annual indoor                                                                                                                        | Contingency (~20%)                                 | \$5,000          | \$4,120             | \$4,120             | \$4,120             | \$4,120             | \$4,620            | \$4,120             | \$4,120             | \$4,120             | \$4,120             | \$46,820              | \$41,200              |            |                                      |
|             |                                                                   | air monitoring (5 locations), and seminannual groundwater monitoring for VOCs only (8 locations).                                                                                                                                                   | Total Cost by Year                                 | \$30,000         | \$27,220            | \$27,220            | \$27,220            | \$27,220            | \$30,220           | \$27,220            | \$27,220            | \$27,220            | \$27,220            | \$308,420             | \$277,200             | \$863,600  |                                      |
|             |                                                                   | This Alternative does not meet SCGs.                                                                                                                                                                                                                | Discount Factor @ 7%                               | 1.00             |                     | 0.873               | 0.816               | 0.763               | 0.713              | 0.666               | 0.623               | 0.582               | 0.544               | 4.079                 | 1.815                 |            |                                      |
|             |                                                                   |                                                                                                                                                                                                                                                     | Present Value by Year                              | \$30,000         | \$25,439            | \$23,775            | \$22,220            | \$20,766            | \$21,546           | \$18,138            | \$16,951            | \$15,842            | \$14,806            | \$115,884             | \$56,690              |            | \$382,058                            |

Present Value for Years 10-20 includes an annual cost of \$27,720 (including contingency) at a discount rate of 4.079. Periodic SMP reviews at \$2,500 each at Years 10, 15 and 20 are added at their respective discount rates of 0.508, 0.362 and 0.258.

Present Value for Years 21-30 includes an annual cost of \$27,720 (including contingency) at a discount rate of 1.815. Periodic SMP reviews at \$2,500 each at Years 25 and 30 are added at their respective discount rates of 0.184 and 0.131.

#### Table 3 - Alternative 3 Cost Analysis Soil Vapor Extraction, Engineering Controls, with Site Management Plan Hall Welter Site, 38-46 Mount Hope Avenue, Rochester, NY D009808-08 HRP# DEC1008.P3

| Alternative | Description                   | Remedy Description                                                                                                            | Task                           |                  |          |          |          |          | Yea      | r        |          |         |         |          |       |            |                                    |
|-------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------|----------|----------|----------|----------|----------|----------|----------|---------|---------|----------|-------|------------|------------------------------------|
|             |                               |                                                                                                                               |                                | Capital<br>Costs | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8       | 9       | 10-15    | 16-30 | Total Cost | Total Presen<br>Value Cost a<br>7% |
| 3           | Soil Vapor Extraction         | Soil vapor extraction (SVE) can be used to actively reduce                                                                    |                                |                  |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               | sorbed contaminant mass from vadose zone soils in the                                                                         | Record of Decision             | \$10,000         |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             | Engineering and Institutional | overburden. The presence of this mass in soils has the                                                                        |                                |                  |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             | Controls                      | potential to contribute to an accumulation of concentrations of                                                               |                                | +20.000          |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             | Cito Managamant Dian          | COCs in soil vapor beneath the Site building, as well as serve as                                                             | Remedial Design Work Plan      | \$20,000         |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             | Site Management Plan          | a potential ongoing source to groundwater, thereby adversely<br>affecting both groundwater quality, and contribution to vapor |                                |                  |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               | migration concerns to other properties nearby.                                                                                | Construction Completion Depart | ¢7 500           |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               | inigration concerns to other properties hearby.                                                                               | Construction Completion Report | \$7,500          |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               | Horizontal SVE wells have the greatest potential to reach the                                                                 |                                |                  |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               | targeted zone for treatment, being able to be installed from the                                                              | Environmental Escoment         | ¢ E 000          |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               | exterior of the building while keeping the screened intervals in                                                              | Environmental Easement         | \$ 5,000         |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               | the shallow-most, and presumably, most impacted subsurface                                                                    |                                |                  |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               | soils.                                                                                                                        | Site Management Plan (periodic | \$ 10,000        |          |          |          |          | \$2,500  |          |          |         |         | \$2,500  |       |            |                                    |
|             |                               |                                                                                                                               | review and updates)            | \$ 10,000        |          |          |          |          | \$2,500  |          |          |         |         | \$2,500  |       |            |                                    |
|             |                               | SVE can be used in combination with ongoing SSDS as an                                                                        |                                |                  |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               | engineering control, as well as monitoring of soil vapor and                                                                  | Installation of Horizontal SVE |                  |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               | groundwater conditions through an SMP.                                                                                        |                                |                  |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               |                                                                                                                               | Drilling Subcontractor         | \$ 35,000        |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               | This Alternative does not actively remediate concentrations fo                                                                | Management                     |                  |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               | CVOCs in groundwater, and relies soley upon mass reduction in                                                                 | -                              |                  |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               | soil to reduce future contribution of source material to the                                                                  | Oversight                      | \$ 15,000        |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               | dissolved-phase plume.                                                                                                        | Equipment and Installation     | \$ 50,000        |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               | Costs assume that no additional data collection will be                                                                       | Waste Disposa                  | \$ 15,000        |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               | necessary to design the SVE system, and that the SSDS in                                                                      | Electrica                      |                  |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               | place may continue to operate without significant modifications.                                                              |                                |                  |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               | Costs assume monthly O&M after an initial startup period                                                                      | Permitting                     | \$ 5,000         |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               | (includes system testing for carbon breakthrough), and periodic                                                               | Startup, Troubleshooting and   | \$ 19,800        |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               | testing of indoor air on an annual basis (5 locations). Costs                                                                 | O&M                            | \$ 19,800        |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               | assume semi-annual groundwater monitoring for VOCs only (8                                                                    |                                |                  |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               | locations) for a period of 7 years, and biennially thereafter until                                                           | Operation and Maintenance      |                  |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               | 15 years. Assmes the SVE system will operate for a period of                                                                  |                                |                  |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               | no longer than 5 years, with discontinuation of SSDS two years                                                                | SSDS and SVE Monthly O&M       | \$25,200         | \$25,200 | \$25,200 | \$7,200  | \$7,200  | \$7,200  | \$7,200  | \$7,200  |         |         |          |       |            |                                    |
|             |                               | following completion of SVE operation as an added measure of                                                                  | Annual Indoor Air Testing      |                  |          |          | \$2,100  | \$2,100  | \$2,100  | \$2,100  | \$2,100  |         |         |          |       |            |                                    |
|             |                               | safety along with post-remediation monitoring.                                                                                | -                              |                  |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               |                                                                                                                               | Semi-annual GW Monitoring      | \$7,900          | \$7,900  | \$7,900  | \$7,900  | \$7,900  | \$7,900  | \$7,900  | \$7,900  |         |         |          |       |            |                                    |
|             |                               |                                                                                                                               | Annual GW Monitoring           |                  |          |          |          |          |          |          |          |         | \$4,000 | \$11,900 | \$0   |            |                                    |
|             |                               |                                                                                                                               | Annual Report                  | \$2,500          | \$2,500  | \$2,500  | \$2,500  | \$2,500  | \$2,500  | \$2,500  | \$2,500  | \$2,500 | \$2,500 | \$12,500 | \$0   |            |                                    |
|             |                               |                                                                                                                               |                                |                  |          |          |          |          |          |          |          |         |         |          |       |            |                                    |
|             |                               |                                                                                                                               | Contingency (~20%)             | \$48,600         | \$7,500  | \$7,500  | \$3,900  | \$3,900  | \$4,400  | \$3,900  | \$3,900  | \$500   | \$1,300 | \$5,400  | \$0   |            |                                    |
|             |                               |                                                                                                                               |                                |                  |          |          |          | , ,      |          |          |          | ,       | , ,     | , ,      | 1.    |            |                                    |
|             |                               |                                                                                                                               | Total Cost by Year             | \$291,400        | \$45,200 | \$45,200 | \$23,600 | \$23,600 | \$26,600 | \$23,600 | \$23,600 | \$3,000 | \$7,800 | \$32,300 | \$0   | \$545,900  |                                    |
|             |                               |                                                                                                                               | Discount Factor @ 7%           |                  |          |          | 0.816    | 0.763    | 0.713    | 0.666    | 0.623    | 0.582   | 0.544   | 2.593    | 3.301 | -          |                                    |
|             |                               |                                                                                                                               | Present Value by Year          | \$291,400        |          |          | \$19,265 | \$18,004 | \$18,965 |          | \$14,697 | \$1,746 | \$4,243 | \$13,788 | \$0   |            | \$479,556                          |

Present Value for Years 10-15 includes an annual cost of \$3,000 (including contingency) at a discount rate of 2.593, and three biennial groundwater monitoring events at Years 11, 13 and 15 at a relative discount rates of 0.475, 0.415 and 0.362.

# Table 4 - Alternative 4 Cost AnalysisSoil Vapor Extraction, In-Situ Groundwater Treatment, and a Site Management PlanHall Welter Site, 38-46 Mount Hope Avenue, Rochester, NYD009808-08HRP# DEC1008.P3

| Alternative | Description                   | Remedy Description                                                                                                                   | Task                                             |                  |          |          |          |          | Year           |          |          |       |       |       |            |                                      |
|-------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------|----------|----------|----------|----------|----------------|----------|----------|-------|-------|-------|------------|--------------------------------------|
|             |                               |                                                                                                                                      |                                                  | Capital<br>Costs | 1        | 2        | 3        | 4        | 5              | 6        | 7        | 8     | 9     | 10-30 | Total Cost | Total Present<br>Value Cost at<br>7% |
| 4           | Soil Vapor Extraction         | This Alternative includes all of Alternative 3, plus one additional                                                                  | Record of Decision                               | \$10,000         |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             | In Situ Groundwater Treatment | active remedy to reduce concentrations in the dissolved-phase beneath the Site.                                                      | Remedial Design Work Plan                        | \$20,000         |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             | Site Management Plan          | Soil vapor extraction (SVE) can be used to actively reduce                                                                           | Construction Completion Report                   | \$7,500          |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               | sorbed contaminant mass from vadose zone soils in the                                                                                | Environmental Easement                           | \$ 5,000         |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               | overburden. The presence of this mass in soils has the                                                                               | Site Management Plan (periodic                   | \$ 10,000        |          |          |          |          | \$2,500        |          |          |       |       |       |            |                                      |
|             |                               | potential to contribute to an accumulation of concentrations of<br>COCs in soil vapor beneath the Site building, as well as serve as | review and updates)                              | \$ 10,000        |          |          |          |          | <i>φ</i> 2,500 |          |          |       |       |       |            |                                      |
|             |                               | a potential ongoing source to groundwater, thereby adversely                                                                         | Installation of Horizontal SVE                   |                  |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               | affecting both groundwater quality, and contribution to vapor                                                                        | Drilling Subcontractor                           | \$ 35,000        |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               | migration concerns to other properties nearby.                                                                                       | Management                                       | \$ 2,800         |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               |                                                                                                                                      | Oversight                                        | \$ 15,000        |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               | Horizontal SVE wells have the best potential to reach the                                                                            | -                                                |                  |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               | targeted zone for treatment, being able to be installed from the                                                                     | Equipment and Installation                       | \$ 50,000        |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               | exterior of the building while keeping the screened intervals in                                                                     | Waste Disposal                                   | \$ 15,000        |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               | the shallow-most, and presumably, most impacted subsurface                                                                           | Electrical                                       | \$ 10,000        |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               | soils. While vertical SVE wells may be possible, horizontal wells<br>are considered for this cost evaluation.                        | Permitting                                       | \$ 5,000         |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               |                                                                                                                                      | Startup, Troubleshooting and                     |                  |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               | SVE can be used in combination with ongoing SSDS as an                                                                               | O&M                                              | \$ 19,800        |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               | engineering control, as well as monitoring of soil vapor and                                                                         | GW In-situ Treatment                             |                  |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               | groundwater conditions through an SMP.                                                                                               | Drilling Subcontractor                           | \$ 35.000        |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               | In addition, this alternative adds an active remedy to actively                                                                      | Management                                       | \$ 4,200         |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               | reduce concentrations in the dissolved-phase plume through                                                                           | 5                                                |                  |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               | biological treatment via donor circulation to reduce the overall                                                                     | Oversight                                        | \$ 24,000        |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               | duration of monitoring.                                                                                                              | Equipment and Installation<br>(per vendor Quote) | \$ 75,000        |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               | Costs assume that no additional data collection will be                                                                              | Waste Disposal                                   | \$ 15,000        |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               | necessary to design the SVE system, and that the SSDS in                                                                             | Electrical                                       | \$ 10,000        |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               | place may continue to operate without significant modifications.                                                                     | Permitting                                       | \$ 5,000         |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               | Costs assume monthly O&M after an initial startup period                                                                             | Startup, Troubleshooting and                     |                  |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               | (includes system testing for carbon breakthrough), and periodic                                                                      | O&M                                              | \$ 6,000         |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               | testing of indoor air on an annual basis (5 locations). Assumes                                                                      | Operation and Maintenance                        |                  |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               | the SVE system will operate for a period of no longer than 5 years, with SSDS to continue for a 2-year period following.             |                                                  |                  |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               | years, with 55D5 to continue for a 2-year period following.                                                                          | SSDS, SVE and GWM Injection                      | \$35,750         | \$35,750 | \$35,750 | \$7,200  | \$7,200  | \$7,200        | \$7,200  | \$7,200  |       |       |       |            |                                      |
|             |                               | Assumes an insitu application of electron donor (CarbStrate or                                                                       | Monthly O&M                                      |                  |          |          |          |          |                |          |          |       |       |       |            |                                      |
|             |                               | similar) through a recirculation loop for continuous application                                                                     | Annual Indoor Air Testing                        | \$2,100          | \$2,100  | \$2,100  | \$2,100  | \$2,100  | \$2,100        | \$2,100  | \$2,100  |       |       |       |            |                                      |
|             |                               | (14 treatment wells). Assumes treatment objectives can be                                                                            | Quarterly GW Monitoring                          | \$15,000         | \$15,000 | \$15,000 | \$15,000 |          |                |          |          |       |       |       |            |                                      |
|             |                               | reached in 3 years of operation. Costs assume quarterly                                                                              | Annual GW Monitoring                             |                  |          |          |          | \$7,500  | \$7,500        |          |          |       |       |       |            |                                      |
|             |                               | groundwater monitoring for VOCs and monitored natural                                                                                | Annual Report                                    | ¢2 500           | ¢3 E00   | ¢3 E00   | ¢3 E00   | \$2,500  | \$2,500        | ¢2 E00   | ¢3 E00   |       |       |       |            |                                      |
|             |                               | attenuation parameters (iron, manganese, sulfate, nitrate, field                                                                     |                                                  | \$2,500          | \$2,500  | \$2,500  | \$2,500  |          |                | \$2,500  | \$2,500  |       |       |       |            |                                      |
|             |                               | parameters) (8 locations) for a period of 3 years during                                                                             | Contingency (~20%)                               | \$86,900         | \$11,100 | \$11,100 | \$5,400  | \$3,900  | \$4,400        | \$2,400  | \$2,400  | \$0   | \$0   | 1 -   |            |                                      |
|             |                               | treatment and annually for a period of 2 years following.                                                                            | Total Cost by Year                               | \$521,550        | \$66,450 | \$66,450 | \$32,200 | \$23,200 | \$26,200       | \$14,200 | \$14,200 | \$0   | \$0   | \$0   | \$764,450  |                                      |
|             |                               |                                                                                                                                      | Discount Factor @ 7%                             | 1.00             | 0.935    | 0.873    | 0.816    | 0.763    | 0.713          | 0.666    | 0.623    | 0.582 | 0.544 |       |            | +722 CC2                             |
|             |                               |                                                                                                                                      | Present Value by Year                            | \$521,550        | \$62,103 | \$58,040 | \$26,285 | \$17,699 | \$18,680       | \$9,462  | \$8,843  | \$0   | \$0   | \$0   |            | \$722,662                            |

# Table 5 - Alternative 5 Cost AnalysisSource Area Excavation, In-Situ Groundwater Treatment, and a Site Management Plan<br/>Hall Welter Site, 38-46 Mount Hope Avenue, Rochester, NY<br/>D009808-08<br/>HRP# DEC1008.P3

| Alternative | Description                   | Remedy Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Task                                  |       |           |          | ,        | Year     |          |       |       |             |                            |
|-------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------|-----------|----------|----------|----------|----------|-------|-------|-------------|----------------------------|
|             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |       |           | 1        | 2        | 3        | 4        | 5     | 6-30  |             | <b>Total Present Value</b> |
|             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Capit | al Costs  |          |          |          |          |       |       | Total Cost  | Cost at 7%                 |
| 5           | Source Excavation             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Record of Decision                    |       | \$10,000  |          |          |          |          |       |       |             |                            |
|             | (Assumes Building Demolition) | (costs are not considered for this effort), and that the slab can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Remedial Design Work Plan             |       | \$20,000  |          |          |          |          |       |       |             |                            |
|             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |       | \$20,000  |          |          |          |          |       |       |             |                            |
|             | In Situ Groundwater Treatment | extensive soils testing beneath the building. Extensive testing of subsurface soils could pinpoint the location for soil excavation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Investigation to Delineate Excavation |       | \$25,000  |          |          |          |          |       |       |             |                            |
|             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |       |           |          |          |          |          |       |       |             |                            |
|             | Site Management Plan          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remedial Investigation and Design     |       | \$35,000  |          |          |          |          |       |       |             |                            |
|             |                               | infrastructure to achieve compliance with groundwater criteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Construction Completion Report        |       |           | \$7,500  |          |          |          |       |       |             |                            |
|             |                               | Additonal investigation is included for this reason.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Construction Completion Report        |       |           | ¢7,500   |          |          |          |       |       |             |                            |
|             |                               | In order to evaluate this Alternative, an assumption has been                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Environmental Easement                | \$    | -         |          |          |          |          |       |       |             |                            |
|             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Site Management Plan (periodic review |       |           |          |          |          |          |       |       |             |                            |
|             |                               | excavated from the southeastern loading dock area and the area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | \$    | 5,000     |          |          |          |          |       |       |             |                            |
|             |                               | near MW-5. Active injection of ERD chemical into the overbuden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Building Demolition                   |       |           |          |          |          |          |       |       |             |                            |
|             |                               | and bedrock aquifer could be achieved by installing injection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                     |       |           |          |          |          |          |       |       |             |                            |
|             |                               | wells and adding donor to polish residual dissolved-phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Management                            | \$    | 5,000     |          |          |          |          |       |       |             |                            |
|             |                               | concentrations of CVOCs. Costs assume injection into up to 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Demolition and disposal               | \$    | 150,000   |          |          |          |          |       |       |             |                            |
|             |                               | had had had been de Elemente a de la construction d | Excavation                            |       |           |          |          |          |          |       |       |             |                            |
|             |                               | injection events.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Management                            | \$    | 3,500     |          |          |          |          |       |       |             |                            |
|             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bonding and Insurance, Permitting     |       | 35,000    |          |          |          |          |       |       |             |                            |
|             |                               | The following additional assumptions have been made to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Survey                                |       | 15,000    |          |          |          |          |       |       |             |                            |
|             |                               | develop costs presented here:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Oversight                             |       | 75,000    |          |          |          |          |       |       |             |                            |
|             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Shoring (Mob./Demobe., materials, and |       |           |          |          |          |          |       |       |             |                            |
|             |                               | - Project duration of 60 days.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | installation/removal)                 |       | 495,000   |          |          |          |          |       |       |             |                            |
|             |                               | - Shoring will be required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Excavation and Stockpiling (\$15.cy)  |       | 26,250    |          |          |          |          |       |       |             |                            |
|             |                               | - Groundwater encountered and removed from de-watering (14,000 gpd over 14 days) can be treated onsite and discharged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Delending for Disposal (49/a)         |       | 14,000    |          |          |          |          |       |       |             |                            |
|             |                               | to sewer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Waste Disposal (soil)                 |       |           |          |          |          |          |       |       |             |                            |
|             |                               | - Given known concentrations of CVOCs in soil, though currently                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$130/ton non-haz T&D - 2,450 tons    |       | 318,500   |          |          |          |          |       |       |             |                            |
|             |                               | a listed waste (waste solvent), an exemption can be obtained to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wastewater Treatment and Disposal     | l \$  | 45,000    |          |          |          |          |       |       |             |                            |
|             |                               | allow soil disposal as non-hazardous.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Backfill and Compaction (\$35/cy)     |       | 61,250    |          |          |          |          |       |       |             |                            |
|             |                               | - Bonding and insurance may be necessary.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Site Restoration (2,700 sf @ \$10/sf) | \$    | 27,000    |          |          |          |          |       |       |             |                            |
|             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Groundwater Injections                |       |           |          |          |          |          |       |       |             |                            |
|             |                               | An SMP may be necessary for Site monitoring until such time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Drilling Subcontractor                | \$    | 47,500    |          |          |          |          |       |       |             |                            |
|             |                               | that groundwater conditions meet criteria. Given the relatively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Management                            | \$    | 2,800     |          |          |          |          |       |       |             |                            |
|             |                               | low groundwater concentrations present prior to source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Drilling Oversight                    | \$    | 12,000    |          |          |          |          |       |       |             |                            |
|             |                               | removal, this duration is assumed to be relatively short, not to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GWM Injection (x 2)                   | )     | \$25,000  | \$25,000 |          |          |          |       |       |             |                            |
|             |                               | exceed 3 years post active treatment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Quarterly GW Monitoring               | 1     | \$29,900  | \$29,900 |          |          |          |       |       |             |                            |
|             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Semi-annual GW Monitoring             |       |           |          | \$15,000 | \$15,000 |          |       |       |             |                            |
|             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Annual GW Monitoring                  | I     |           |          |          |          | \$7,500  |       |       |             |                            |
|             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Annual Reporting                      |       | \$2,500   | \$2,500  | \$2,500  | \$2,500  | \$2,500  |       |       |             |                            |
|             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contingency (~20%)                    |       | \$297,000 | \$13,000 | \$3,500  | \$3,500  | \$2,000  | \$0   | \$0   |             |                            |
|             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Cost by Year                    |       | 1,782,200 | \$77,900 | \$21,000 | \$21,000 | \$12,000 | \$0   | \$0   | \$1,914,100 |                            |
|             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Discount Factor @ 7%                  |       | 1.00      | 0.935    | 0.873    | 0.816    | 0.763    | 0.713 | 8.309 | , ,,        |                            |
|             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Present Value by Year                 |       | 1,782,200 | \$72,804 | \$18,342 | \$17,142 | \$9,155  | \$0   | \$0   |             | \$1,899,643                |

#### Table 6 - Comparative Summary of Alternatives

## Hall Welter Site, 38-46 Mount Hope Avenue, Rochester, NY D009808-08 HRP# DEC1008.P3

|                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Threshol                                                          | d Criteria                  |                                              |                                                                     |                                        | Balancin         | g Criteria         |          |                         |                   |             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------|----------------------------------------------|---------------------------------------------------------------------|----------------------------------------|------------------|--------------------|----------|-------------------------|-------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternative                                                                                                            | Remedy Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Overall Protectiveness<br>of Public Health and<br>the Environment | Compliance with the<br>SCGs | Long-Term<br>Effectiveness and<br>Permanence | Reduction of Toxicity,<br>Mobility, and Volume<br>Through Treatment | Short-Term Impact<br>and Effectiveness | Implementability | Cost Effectiveness | Land Use | Community<br>Acceptance | Green Remediation | TOTAL SCORE | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1<br>No Action                                                                                                         | This alternative would leave the Site in its present condition and would<br>not provide any additional protection to human health or the<br>environment. The No Action alternative would not involve any surface<br>soil, subsurface soil, groundwater, or soil vapor remedial activity. In<br>addition, the No Action alternative would not place any institutional or<br>engineering controls on the Site property, such as future land use<br>restrictions, groundwater use limitations, and/or continued operation<br>of SSDS's.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NO                                                                | NO                          | NA                                           | NA                                                                  | NA                                     | NA               | NA<br>\$10,000     | NA       | NA                      | NA                | NA          | Though the least expensive and most<br>readily implementable option, this<br>Alternative does not meet SCGs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2<br>Engineering and<br>Institutional Controls<br>Site Management Plan                                                 | This alternative would not seek to actively remove or treat the<br>contaminated media onsite but would disrupt the current or future<br>exposure pathways through the imposition of Engineering Controls<br>(ECs) and Institutional Controls (ICs).<br>Engineering controls have already been enacted at the site as Interim<br>Remedial Measures. ICs would be required to prevent future exposure<br>pathways from developing by controlling exposure during potential<br>future construction and limiting the use of groundwater. An<br>Environmental Easement would be recorded to provide an enforceable<br>legal instrument to ensure ICs are met. A Soil Management Plan (SMP)<br>would be required to specify the methods necessary to ensure<br>compliance with all ECs and ICs placed on the Site.                                                                                                                                                                                                                                                                                                                                                                          | YES                                                               | NO                          | NA                                           | NA                                                                  | NA                                     | NA               | NA<br>\$863,600    | NA       | NA                      | NA                | NA          | This Alternative keeps the current<br>mitigation of soil vapor through SSDS<br>operation in place for the long-term with no<br>appreciable reduction in contaminant mass.<br>Though this Alternative is protective of the<br>primary receptor pathway, by leaving the<br>majority of contamination in place, this<br>Alternative fails to comply with SCGs.                                                                                                                                                                                                                                                                                                                               |
| 3<br>Soil Vapor Extraction<br>Engineering Controls<br>Site Management Plan                                             | Soil vapor extraction (SVE) can be used to actively reduce sorbed<br>contaminant mass from vadose zone soils in the overburden. The<br>presence of this mass in soils has the potential to contribute to an<br>accumulation of concentrations of COCs in soil vapor beneath the Site<br>building, as well as serve as a potential ongoing source to<br>groundwater, thereby adversely affecting both groundwater quality,<br>and contribution to vapor migration concerns to other properties<br>nearby.<br>Horizontal SVE wells have the greatest potential to reach the targeted<br>zone for treatment, being able to be installed from the exterior of the<br>building while keeping the screened intervals in the shallow-most, and<br>presumably, most impacted subsurface soils.<br>SVE can be used in combination with ongoing SSDS as an engineering<br>control, as well as monitoring of soil vapor and groundwater<br>conditions through an SMP.                                                                                                                                                                                                                            | YES                                                               | YES                         | 4                                            | 3                                                                   | 4                                      | 4                | 4<br>\$545,900     | 4        | 5                       | 4                 |             | This Alternative keeps the current<br>mitigation of soil vapor through SSDS<br>operation in place while also taking action<br>to reduce sorbed soil mass to improve the<br>long-term outcome.<br>This Alternative is protective of receptors by<br>mitigating soil vapor while reducing sorbed<br>soil mass, which in turn reduces impacts to<br>groundwater and soil vapor. While costs<br>are higher for this alternative than for<br>Alternative 2, it limits the duration needed<br>for mitigation, and can meet SCGs with<br>time.<br>Finally, this Alternative is the least-cost<br>option to meet SCGs with a nomically<br>longer treatment duration than Alternative<br>4 below.  |
| 4<br>Soil Vapor Extraction<br>In Situ Groundwater<br>Treatment<br>Site Management Plan                                 | This Alternative includes all of Alternative 3, plus one additional active<br>remedy to reduce concentrations in the dissolved-phase beneath the<br>Site. This Alternative includes SVE to address source mass in the<br>vadose zone, an engineering control to continue operation of the<br>SSDS, as well as long-term monitoring under the SMP. In addition,<br>this alternative adds an active remedy to actively reduce<br>concentrations in the dissolved-phase plume through in-situ chemical<br>or biological treatment to reduce the overall duration of monitoring.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | YES                                                               | YES                         | 4                                            | 4                                                                   | 4                                      | 3                | 3<br>\$764,450     | 4        | 4                       | 3                 | 29          | Similar to Alternative 3, this Alternative<br>reduces the duration for long-term<br>monitoring of groundwater, as active<br>treatment of groundwater is included.<br>Though this Alternative scores similarly to<br>Alternative 3, costs for this Alternative are<br>higher than Alternative 3, with little added<br>benefit apart from a shortened monitored<br>duration.                                                                                                                                                                                                                                                                                                                |
| 5<br>Source Excavation<br>(Assumes Building<br>Demolition)<br>In Situ Groundwater<br>Treatment<br>Site Management Plan | This Alternative assumes that the building has been removed (costs<br>are not considered for this effort), and that the slab can be readily<br>removed/ penetrated to support extensive soils testing beneath the<br>building. Extensive testing of subsurface soils could pinpoint the<br>location for soil excavation and allow installation of in-situ<br>groundwater treatment infrastructure to achieve compliance with<br>groundwater criteria.<br>In order to evaluate this Alternative, an assumption has been made<br>that 1,700 cubic yards of soil may be excavated from the southeastern<br>loading dock area and the area near MW-5, and an amendment<br>applied to the backfill to support residual treatment of soils and<br>improve conditions to support degradation of CVOCs in groundwater in<br>the overburden aquifer.<br>Active injection of some ISCO or ERD chemical into the overbuden and<br>bedrock aquifer could be achieved by installing injection wells and<br>adding chemical to polish residual disolved-phase concentrations of<br>CVOCs. An SMP may be necessary for Site monitoring until such time<br>that groundwater conditions meet criteria. |                                                                   | YES                         | 5                                            | 5                                                                   | 5                                      | 1                | 1<br>\$1,914,100   | 1        | 3                       | 1                 | 22          | This Alternative was included to consider a<br>remedial option whereby the Site may be<br>returned to pre-release conditions. This<br>Alterntive is best applied if the building is<br>razed and the slab removed to allow for<br>free access to the building footprint, which<br>does not agree with current land use.<br>Given that the major pathway to a receptor<br>is presumably via soil vapor intrusion of<br>sorbed contaminants beneath the building,<br>full removal of impacted soils and<br>groundwater may not be desirable, as the<br>feasibility of carrying out this remedial<br>option are low, and costs an order of<br>magnitude above Alternatives 3 and 4<br>above. |

Scoring above was evaluated on a scale of 1 to 5, where 1 = Lowest likelihood of meeting a criteria, and 5 = Highest likelihood of meeting a criteria.

NA = Not Applicable. This Alternative was not evaluated on the balancing criteria because the threshold criteria were not met.

Overall Protectiveness of Public Health and the Environment - This criterion is an overall evaluation of each alternative's ability to protect public health and the environment.

Compliance with SCGs - Compliance with SCGs addresses whether a remedy will meet environmental laws, regulations, and other standards and criteria.

Long-Term Effectiveness and Permanence - This criterion evaluates the long-term effectiveness of the remedial alternatives after implementation. If wastes or treated residuals remain onsite after the selected remedy has been implemented, the following items are evaluated: 1) the magnitude of the remaining risks, 2) the adequacy of the engineering and/or institutional controls intended to limit the risk, and 3) the reliability of these controls.

Reduction of Toxicity, Mobility, and Volume through Treatment - For this criterion, preference is given to alternatives that permanently and significantly reduce the toxicity, mobility and volume of the contamination at the Site.

Short-Term Impact and Effectiveness - This criterion evaluates potential short-term impacts on the community, workers, and the environment during remedial construction. The length of time needed to achieve RAOs is also estimated and compared against the other alternatives.

Implementability - This criterion evaluates the technical and administrative feasibility to implement each remedial alternative. Technical feasibility includes difficulties associated with the implementation of the remedy and the ability to monitor its effectiveness. Administrative feasibility includes the availability of the necessary personnel and materials along with potential difficulties in obtaining specific operating approvals, access for construction, institutional controls, etc.

Cost Effectiveness - Capital costs and annual operation, maintenance, and monitoring costs are estimated for each remedial alternative and compared on a present worth basis. In addition, a long-term evaluation of costs is evaluated to weigh the cost/benefit ratio of applying a more active remedy versus a passive remedy over time, particularly if all other factors are equal to discern a preferred remedy for selection.

Land Use – This criterion evaluates each remedial alternative with respect to the current, intended, and reasonably anticipated future land use.

Community Acceptance - Community concerns regarding selection of a remedial alternative will be considered.

Green Remediation - Considers all environmental effects of the remedy implementation, evaluates the size of the environmental footprint.

HRP Associates, Inc., NYSDEC Standby Contract WA # D009808-08, Site No. 828194 DRAFT Feasibility Study – December 27, 2020

# APPENDIX A

## HDR Remedial Investigation Report, February 2020



## FINAL REMEDIAL INVESTIGATION REPORT

## Former Hall Welter Site

(NYSDEC Site Number 828194)



Department of Environmental Conservation

NYSDEC STANDBY ENGINEERING CONTRACT Work Assignment #D007625-39

PREPARED FOR

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

> 625 BROADWAY ALBANY, NEW YORK 12233

> > FEBRUARY 2020



This page intentionally left blank.

## **CERTIFICATION**

I, <u>Erich Zimmerman</u>, certify that I am currently a NYS registered professional engineer as defined in 6 NYCRR Part 375 and that this Remedial Investigation Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.



NYS Professional Engineer # 081831

Date: February 27, 2020

This page intentionally left blank.

#### TABLE OF CONTENTS

| 1.0  | INTRODUCTION                                                         | 1   |
|------|----------------------------------------------------------------------|-----|
| 1.1  | Background                                                           | 1   |
| 1.1. | 1 Site Description                                                   | . 1 |
| 1.1. | ,                                                                    |     |
| 1.2  | Remedial Investigation Objectives                                    |     |
| 2.0  | SUMMARY OF PREVIOUS INVESTIGATIONS                                   | 3   |
| 2.1  | Phase I Environmental Site Assessment (September 2013)               | 3   |
| 2.2  | Phase II Environmental Site Assessment (October 2013)                | 3   |
| 2.3  | Supplemental Phase II Environmental Site Assessment (November 2013)  | 4   |
| 2.4  | Bedrock Well Installation/Vapor Intrusion Assessment (February 2014) | 4   |
| 2.5  | Installation of Sub-Slab Depressurization System (2014-2015)         | 5   |
| 2.6  | 2016 - Additional SSDS Installation                                  |     |
| 2.7  | Summary of Previous Investigations                                   |     |
| 3.0  | RI SITE INVESTIGATION                                                | 6   |
| 3.1  | Soil Vapor Intrusion Investigation                                   | 6   |
| 3.2  | Subsurface Investigation                                             | 7   |
| 3.3  | Monitoring Well Completion                                           |     |
| 3.4  | Monitoring Well Development                                          | 8   |
| 3.5  | Groundwater Sampling                                                 | 9   |
| 3.6  | Site Survey                                                          |     |
| 3.7  | Investigation-Derived Waste Handling                                 |     |
| 4.0  | PHYSICAL CHARACTERISTICS1                                            |     |
| 4.1  | Geology and Hydrogeology1                                            | 1   |
| 5.0  | NATURE AND EXTENT OF CONTAMINATION1                                  | 2   |
| 5.1  | Applicable Criteria1                                                 | 2   |
| 5.2  | Data Validation1                                                     | 2   |
| 5.3  | Air Sampling Results1                                                | 3   |
| 5.4  | Soil Sampling Results1                                               | 4   |
| 5.5  | Groundwater Sampling Results1                                        | 5   |
| 6.0  | CONCLUSIONS AND RECOMMENDATIONS1                                     | 7   |
| 6.1  | Results Summary and Data Interpretation1                             | 7   |
| 7.0  | REFERENCES1                                                          | 8   |

#### LIST OF TABLES

| Table 1  | Air Sampling Summary                                    |
|----------|---------------------------------------------------------|
| Table 2  | Sampling Locations                                      |
| Table 3  | Soil Sampling Summary                                   |
| Table 4  | Monitoring Well Construction Details                    |
| Table 5  | Groundwater Sampling Summary                            |
| Table 6  | Groundwater Elevation Data                              |
| Table 7  | Sub-Slab Gas and Ambient Air Sample Results Summary     |
| Table 8A | Soil Sample Results Summary – VOCs Only                 |
| Table 8B | Soil Sample Results Summary – All Other Analytes        |
| Table 9A | Groundwater Sample Results Summary – VOCs only          |
| Table 9B | Groundwater Sample Results Summary – All Other Analytes |

#### LIST OF FIGURES

| Figure 1 | Site Location Map                                         |
|----------|-----------------------------------------------------------|
| Figure 2 | Site Plan and Sample Locations                            |
| Figure 3 | Interpreted Groundwater Elevation Map                     |
| Figure 4 | Summary of Soil Vapor Intrusion Sample Analytical Results |
| Figure 5 | Summary of Soil Sample Analytical Results                 |
| Figure 6 | Summary of Groundwater Sample Analytical Results          |
| Figure 7 | Interpreted Groundwater Iso-Concentration Map             |

#### APPENDICES

| Appendix A | Previous Investigation Figures                                                   |
|------------|----------------------------------------------------------------------------------|
| Appendix B | NYSDOH Indoor Air Quality Questionnaire and Building Inventory Forms             |
| Appendix C | Soil Boring, Well Construction, Well Development, and Well Purging Logs and COCs |
| Appendix D | Survey                                                                           |
| Appendix E | Investigation Derived Waste Information                                          |
| Appendix F | Site Photographs                                                                 |
| Appendix G | Laboratory Data Reports                                                          |
| Appendix H | Data Validation Reports                                                          |

#### ACRONYMS AND ABBREVIATIONS

| "Hg<br>µg/kg<br>µg/l<br>µg/m <sup>3</sup><br>amsl<br>bgs<br>Cis-1,2-DCE<br>COC<br>DPT<br>DUSR<br>DVS<br>ESA<br>FAP<br>ft<br>ft/ft<br>HSA<br>IDW<br>L<br>LaBella<br>LCS<br>mg/kg<br>Nothnagle<br>NRC<br>NYCRR<br>NYSDEC<br>NYSDOH<br>PCB<br>PCE<br>PFAS/PFOA<br>PID<br>ppm<br>QA/QC<br>QAPP<br>Ravi<br>RECs | Inches of Mercury<br>Micrograms per Kilogram<br>Micrograms per Liter<br>Micrograms per Cubic Meter<br>Above Mean Sea Level<br>Below Ground Surface<br>Cis-1,2-Dichloroethylene<br>Chain of Custody<br>Direct Push Technology<br>Data Usability Summary Report<br>Data Validation Services<br>Environmental Site Assessment<br>Field Activities Plan<br>Feet<br>Feet/Foot<br>Hollow-Stem Auger<br>Investigation-Derived Waste<br>Liter<br>LaBella Associates, P.C.<br>LCS, Inc.<br>Milligrams per Kilogram<br>Nothnagle Drilling, Inc.<br>National Response Corporation<br>New York State Department of Environmental Conservation<br>New York State Department of Health<br>Polychlorinated Biphenyl<br>Tetrachloroethylene<br>Per- and Polyfluoroalkyl Substances/Perfluorooctanoic Acid<br>Photoionization Detector<br>Parts per Million<br>Quality Assurance/Quality Control<br>Quality Assurance Project Plan<br>Ravi Engineering & Land Surveying P.C.<br>Recognized Environmental Conditions |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QA/QC                                                                                                                                                                                                                                                                                                      | Quality Assurance/Quality Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                            | Recognized Environmental Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RI<br>SCO                                                                                                                                                                                                                                                                                                  | Remedial Investigation<br>Soil Cleanup Objective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SSDS                                                                                                                                                                                                                                                                                                       | Sub-Slab Depressurization System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SVI<br>SVOC                                                                                                                                                                                                                                                                                                | Soil Vapor Intrusion<br>Semi-Volatile Organic Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TCE                                                                                                                                                                                                                                                                                                        | Trichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TOGS                                                                                                                                                                                                                                                                                                       | Technical and Operation Guidance Series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| UST<br>VOC                                                                                                                                                                                                                                                                                                 | Underground Storage Tank<br>Volatile Organic Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

This page intentionally left blank.

#### 1.0 INTRODUCTION

This Final Remedial Investigation (RI) Report for the Former Hall Welter Site (the "site") was prepared by Henningson, Durham & Richardson, Architecture and Engineering PC (HDR), in association with HDR Engineering, Inc. as part of New York State Department of Environmental Protection (NYSDEC) Contract D007625, Work Assignment #39.

This RI Report has been developed to summarize RI environmental data, along with historical data for on-site as well as off-site areas of the Site. The RI field activities were conducted by HDR in 2017, 2018, and 2020 in an effort to further characterize and delineate the extent of subsurface contamination at the Site. The RI, which covered seven residential/commercial properties, targeted on-site soil and groundwater contamination and off-site soil vapor intrusion (SVI).

#### 1.1 Background

#### 1.1.1 Site Description

The Former Hall Welter Site is located at 38-46 Mt Hope Ave on a 0.39-acre parcel. The site is located in the South Wedge area of the City of Rochester, Monroe County, New York (**Figure 1**). The site is currently developed with a vacant 13,700 square-foot multi-occupant commercial structure (site building) and a small parking lot. It is bordered to the north and south by commercial properties (Rochester Used Car Dealers and AmeriGlide Rochester), to the east by residential properties (SBL No. 121.48-1-76 and 121.48-1-75) and Orion Alley, and to the west by Mt Hope Ave. **Figure 2** provides an aerial image of the site, with property boundaries, buildings, and other reference features. The main building, a one-story, pentagon-shaped structure of approximately 160-feet (ft) long by 100-ft wide, is the dominant feature of the site and was used to repair vehicles and as a brass warehouse prior to 1942. The site is currently zoned as mixed commercial and residential.

#### 1.1.2 Site History

Prior to 1942, the site was used to repair vehicles and as a brass warehouse. The Hall-Welter Company, Inc. purchased the property in 1942 and did defense contracting during World War II. Hall-Welter later manufactured check printing machines until they sold the property in 1988. The site was occupied by The Rochester Rehabilitation Center from 1988-2014.

#### 1.2 Remedial Investigation Objectives

The objective of this Remedial Investigation was to better delineate the extent of volatile organic compounds (VOCs) identified within soil and groundwater at the site during previous investigations (see Section 2.0 below). Previous investigation could not identify an on-site source of chlorinated VOC impacts to groundwater. A vertical column of impacted soil was not observed in soil borings, and the highest headspace readings encountered in site soils were observed to be from saturated soils, indicating likely transport in groundwater from an upgradient location.

The RI activities were therefore conducted to delineate the VOC source area and evaluate offsite soil vapor and indoor air impacts to nearby properties. Groundwater samples from the existing as well as new monitoring wells were also collected and evaluated to further delineate the contamination plume.

#### 2.0 SUMMARY OF PREVIOUS INVESTIGATIONS

Historic site operations and material handling practices have led to impacts to on-site and off-site environmental media including, but not necessarily limited to, soil, groundwater, and indoor air. Previous environmental assessments/investigations were performed in 2013-2014 to determine the source of soil, groundwater, and indoor air contamination at the site, and are summarized below.

#### 2.1 Phase I Environmental Site Assessment (September 2013)

A Environmental Site Assessment (ESA) was completed by LCS, Inc. (LCS) in September 2013. The LCS's ESA report identified six known or suspected recognized environmental conditions (RECs) including lack of documentation relative to the removal of an 6,000-gallon heating oil underground storage tank (UST) in 1988, historical manufacturing operations including solvent use at the site by a former owner, and use of the adjacent properties to the north and west of the site.

#### 2.2 Phase II Environmental Site Assessment (October 2013)

In October 2013, LaBella Associates, P.C. (LaBella) performed a Phase II ESA (LaBella, 2013a) at the site to address the following issues:

- An assessment of soil and groundwater conditions in the location of a 6,000-gallon heating oil UST reportedly removed from the north side of the site building.
- Historic site use, including automotive service, machine shop/manufacturing, and chemical use at the site.

Eight outdoor soil borings (designated GP-1 through GP-8) were completed at the site on October 22, 2013. Based on the findings of the investigation, petroleum impacts were not identified in the location of the former 6,000-gallon heating oil UST. The distribution of soil borings and samples collected were consistent with those typically collected during closure of a tank of this size, and the sand and gravel material encountered in the proximate center of the former UST was consistent with commonly used fill material. As such, the former UST was determined to no longer be of concern. Temporary overburden groundwater monitoring wells were installed in boreholes GP-05 and GP-06, designated as GPMW-5 and GPMW-6, respectively.

The chlorinated VOC tetrachloroethene (PCE) was detected in soil and groundwater samples collected during the investigation. Trichloroethene (TCE) and cis-1,2-Dichloroethene (DCE) were detected in groundwater at the site as well. The concentrations of PCE detected in soil were below NYSDEC Unrestricted Use Soil Cleanup Objectives (SCOs). Groundwater concentrations, while relatively low, were above NYSDEC Technical and Operation Guidance Series (TOGS) 1.1.1 standards.

Based on the findings of the Phase II ESA, it could not be determined if the PCE, TCE, and Cis-1,2-DCE concentrations detected at the site originate from the site or from an off-site location. LaBella recommended additional investigation to determine the presence of a source area beneath the site building or a potential off-site location.

#### 2.3 Supplemental Phase II Environmental Site Assessment (November 2013)

An additional seven (7) soil borings (designated GP-9 through GP-15) and four (4) temporary overburden groundwater monitoring wells were installed within the footprint of the site building by LaBella in November 2013 (LaBella, 2013b). Temporary overburden groundwater monitoring wells were installed in boreholes GP-9, GP-10, GP-11, and GP-12 (designated as GPMW-9 through GPMW-12, respectively). The combined findings of the investigations performed indicated that low concentrations of VOCs were present in soils site-wide at concentrations below 6 New York Codes, Rules and Regulations (NYCRR) Part 375-6.8(a) Unrestricted Use SCOs. Chlorinated VOCs were detected in groundwater flow at the site was determined to the northwest, towards Mt Hope Ave and the Genesee River. Based on field observations and laboratory analysis, an on-site source of chlorinated VOC impacts was not identified. A vertical column of impacted soil was not observed in soil borings, and the highest headspace readings encountered in site soils were from saturated soils, indicating likely transport in groundwater from an upgradient location. Based on the potential for an upgradient off-site source of chlorinated VOC impacts, additional investigation was recommended by LaBella.

#### 2.4 Bedrock Well Installation/Vapor Intrusion Assessment (February 2014)

In February 2014, a bedrock groundwater monitoring well (BW-01) was installed upgradient of the site building in the access street located south of the loading dock of the site building (LaBella, 2014). TCE was detected in a soil sample obtained during the well installation at a concentration of 3,500 micrograms per kilogram ( $\mu$ g/kg), at a depth of one (1) ft below ground surface (bgs). The high concentration detected in shallow soil is indicative of a nearby surface release in the vicinity of monitoring well BW-01. It should be noted that BW-01 was installed approximately 15 feet south of the loading dock door due to the presence of the storm sewer and overhead obstructions. A vertical column was not observed in the soil boring; however, given the presence of the foundation wall it is unlikely that the source of the release was inside the site building.

Sub-slab and corresponding indoor air samples were collected from three locations in the building. The findings of the vapor intrusion assessment indicate that chlorinated VOCs were present at significant concentrations in sub-slab vapor and at concentrations above New York State Department of Health (NYSDOH) mitigation criteria in the ambient air in the building. Based on the air sampling results, LaBella recommended that a sub-slab depressurization system (SSDS) be installed at the site to mitigate sub-slab vapors.

Previous investigation sampling locations are depicted in figures provided in Appendix A.

#### 2.5 Installation of Sub-Slab Depressurization System (2014-2015)

In 2014, an SSDS was installed in the basement of the site building. In December 2015, upgrades to the SSDS were performed, including the following:

- 1. Sealing all openings in cracks in the basement floor.
- 2. Installation of an alarm and U-tube style manometer on the SSDS system piping.
- 3. Extension of the SSDS exhaust piping above the roofline.
- 4. Performance of a pressure field extension test in the basement.

The pressure field extension test indicated sub-slab pressure measurements ranging from -0.026 to -0.473 inches of water column measured on a digital micromanometer.

On December 31, 2015, indoor air sampling was performed at locations corresponding to previous sample locations (**Appendix A**). TCE was detected in indoor air at elevated concentrations in two of the three sample locations. Thereafter, LaBella sealed boreholes that went through the concrete (including one adjacent to sample location Ambient Air 3) that were left after the previous investigations.

#### 2.6 2016 - Additional SSDS Installation

In February 2016, Center Properties engaged LaBella to install a second SSDS in the storage area on the south side of the site building (**Appendix A**). The system consisted of a four-inch diameter PVC pipe installed into a suction pit proximate to GPMW-11. The piping penetrated the southern exterior wall and was equipped with a Radonaway® GP-501 centrifugal vent fan. The exhaust piping extended above the roofline and was equipped with a bird screen. The system was equipped with an alarm on a separate circuit and a U-tube style manometer. At the time of system installation, the boreholes from previous investigations were sealed with concrete. Follow-up indoor air sampling and/or pressure field extension tests have been performed, and upgrades to the existing systems have been in progress since then.

#### 2.7 Summary of Previous Investigations

Based upon previous investigation conducted at the site, the primary contaminants of concern include PCE, TCE, and Cis-1,2-DCE. Chlorinated VOCs were present in soils but only at concentrations below unrestricted use SCOs, with the exception of one sample which had a concentration of 3.5 milligrams per kilogram (mg/kg) at location BW-1 from 3 inches to 1 ft bgs. PCE was detected in groundwater at concentrations up to 430 micrograms per liter ( $\mu$ g/l). TCE was detected in groundwater at concentrations up to 150  $\mu$ g/l. Sub-slab soil vapor samples taken on-site indicate that PCE (350 micrograms per cubic meter [ $\mu$ g/m<sup>3</sup>]), TCE (33,000  $\mu$ g/m<sup>3</sup>), and Cis-1,2-DCE (52  $\mu$ g/m<sup>3</sup>) are present in the soil vapor.

#### 3.0 RI SITE INVESTIGATION

Components of the RI included SVI investigation conducted in February 2018 for five off-site properties surrounding the site. The second mobilization of the RI included geophysical survey for buried utility clearance conducted in May 2018, followed by direct push technology (DPT) soil boring installation and monitoring well drilling during May and June 2018. Once intrusive activities were completed, HDR collected groundwater samples/elevation data and surveyed the six newly installed, as well as one existing, monitoring wells.

All field activities were conducted in accordance with the HDR – NYSDEC Program Field Activities Plan (FAP) and Program Quality Assurance Project Plan (QAPP). Details of the RI are outlined in the sections that follow.

#### 3.1 Soil Vapor Intrusion Investigation

Prior to initiating SVI sampling, a field-inspection was conducted to identify proposed soil vapor sample locations within the study area (comprised of approximately 5 commercial/residential properties). NYSDEC provided available parcel ownership records for the area outlined for the program and helped secure access to five properties, including 48 and 50 Mt Hope Ave, 407-409 and 417 South Ave, and

The SVI investigation began during the week of February 25, 2018 at five properties in the vicinity of the site, including 48 and 50 Mt Hope Ave, 407-409 and 417 South Ave, and **Example**. In total, 16 air samples were collected for VOCs analysis, including five sub-slab (SS) samples, four outdoor ambient air (OA) samples, six indoor ambient air (IA) samples, and one duplicate IA sample. Field staff mobilized again on December 19, 2018 to collect an additional IA parent sample, IA duplicate sample, and OA sample at **Example**. Approximate sample locations were sketched in the field notes and are shown in **Figure 2**, and a summary of air samples collected is provided in **Table 1**.

Samples were collected in six-liter (L) Summa canisters via 24-hour flow regulators. Regulator intakes for IA and OA samples were positioned several feet above the ground/floor surface, near the breathing zone. The IA duplicate sample setup was comprised of two Summa canisters connected to a common regulator via a T-fitting. Temporary SS points were installed to just below the concrete slab using a 3/8-inch drill and hand tools. Tubing was inserted into the SS point, and the annulus between the tubing and temporary point was sealed using VOC-free sealing gum. The seal was checked by flooding the outside of the seal with tracer gas while monitoring the concentration of tracer out of the tubing. Once an acceptable seal was achieved, the tubing was attached to a sample canister/regulator setup, and sampling began.

Sample collection was considered complete when the canister's vacuum reached approximately -5 inches of mercury ("Hg) or 24 hours had elapsed from the sample start time, whichever occurred first. Upon retrieval of filled sample canisters, the SS points were cleared and patched with cement.

NYSDOH Indoor Air Quality Questionnaire and Building Inventory forms were completed for each property and are included in **Appendix B**. Information on each building's construction and use was obtained by interviewing the property owner or knowledgeable occupant. The product inventory portion of the form was completed for each property by visual inspection of any chemicals, paints, enamels, etc. found stored near the sample locations. In the warehouse at 50 Mt Hope Ave, the inventory includes estimated quantities of product, as a large portion of products was not readily accessible. Each property/building was sketched showing the approximate locations of the sample canisters, exterior/interior walls, supports, stairs, doors, utilities, sumps, slab penetrations, product storage areas, and other notable features.

Sampling logs detailing the sample collection parameters and sample chain of custody (COC) forms are included in **Appendix C**.

Deviations from Work Plan:

- Due to the large footprint and multiple rooms in the basement at 407-409 South Ave, an additional IA sample was included for this property.
- Since the basement at 50 Mt Hope Ave does not extend to the southeast end of the property beneath the warehouse, an additional SS sample location in the ground-level warehouse was included for this property.
- An OA sample was not collected at 48 Mt Hope Ave, due to the proximity to the OA sample location for 50 Mt Hope Ave.
- With DEC's approval, the proposed SS sample at was not collected, as the basement floor was of dirt construction, and the soil vapor was in direct communication with the indoor ambient air.
- A duplicate IA sample was collected at **a second second** on March 1, 2018; however, due to a regulator malfunction, both the parent and duplicate samples canisters collected inadequate sample volumes for analysis. To address this data gap, an additional IA parent sample, IA duplicate sample, and OA sample were collected at **a second second** during the December 2018 mobilization.

#### 3.2 Subsurface Investigation

HDR mobilized to the site on May 14, 2018 to begin subsurface investigation by conducting onand off-site soil borings and installing monitoring wells. All intrusive work was performed by Nothnagle Drilling, Inc. (Nothnagle). Prior to drilling, each location was cleared for utilities using surface geophysics, performed by Ravi Engineering & Land Surveying P.C. (Ravi), and subsurface hand-clearing by Nothnagle.

Seven soil borings were installed on-site and on nearby properties, including 48 and 50 Mt Hope Ave; 401-405, 407-409, 415, and 417 South Ave; and along Orion Alley. Locations of all soil borings were surveyed by Ravi and are listed in **Table 2** and shown on **Figure 2**. The 2.25-inch diameter borings were installed via DPT and were logged and screened via photoionization detector (PID) continuously and sampled using the split-spoon method. All soil cores were continuously assessed by a geologist for soil type and evidence of impairment. Elevated PID

readings (i.e., greater than 1 part per million [ppm]) were only observed in one of the seven soil borings, with the highest PID reading (1.2 ppm) measured at location SB201 between 3.5 and 4.5 ft bgs. Soil boring logs are provided in **Appendix C**.

In general, two to three soil samples were collected per drilling location at intervals of interest: at the surface, at intervals coincident with high PID readings, immediately above the groundwater table, and/or immediately above the bedrock. A total of 38 soil samples plus 15 Quality Assurance/Quality Control (QA/QC) samples were collected. All samples were analyzed for VOCs. Five of the 38 samples were also analyzed for semi-volatile organic compounds (SVOCs), pesticides, polychlorinated biphenyls (PCBs), and metals. A summary of soil samples collected during this mobilization is provided in **Table 3**, and sample COCs are provided in **Appendix C**.

Deviations from Work Plan:

- SB201 and SB209 were advanced via hand auger due to the low clearance inside the site building. Only two samples were collected at each of these locations.
- SB208 was cancelled due to carpeting covering the proposed location. No samples were collected at this location.
- MW205 was offset by about five feet away from its planned location to a nearby tree pit due to a utility line uncovered at the proposed location.

#### 3.3 Monitoring Well Completion

During the week of May 21, 2018, six overburden monitoring wells and two bedrock monitoring wells were installed on-site and off-site on properties including 48 and 50 Mt Hope Ave; 401-405, 407-409, 415, and 417 South Ave; and along Orion Alley. Overburden wells (designated as MW201 to MW206) were installed to approximately 14 to 20 ft bgs, and two bedrock monitoring wells (designated as BW201 and BW202) were installed to approximately 30 ft bgs.

Borehole diameters of 2.25 inches were drilled using the hollow-stem auger (HSA) method. All wells were constructed with 2-inch PVC risers and a 10-ft long 0.01-inch PVC slot screen and finished with a flush mount casing and concrete skirt. The sand pack installed at each well extended 2 feet above the top of the screen, and was sealed with minimum of 2 feet of a bentonite seal. After the bentonite seal, the remainder of the boring at each well was filled with bentonite/Portland cement grout to 2 feet below the ground surface.

Monitoring well installation logs are provided in **Appendix C**. Surveyed well locations are shown on **Figure 2** and well construction details are summarized in **Table 4**.

#### 3.4 Monitoring Well Development

Beginning on May 30, 2018, all newly installed monitoring wells and the existing bedrock well (BW1) were developed. A proactive mini typhoon pump was used to develop the wells and a water quality meter and a turbidity meter were used to measure stabilization criteria of the development water at regular intervals. Development continued until stable criteria were achieved over three successive readings or three full well volumes were removed, whichever occurred first.

However, due to prohibitively slow recharge rates at MW201, MW202, MW205, and MW206, neither stabilization nor three full well volumes were attained; instead, these wells were pumped dry, allowed to recharge, and then pumped dry several more times. Well development logs are provided in **Appendix C**.

Development water was stored in 55-gallon drums at the dock area of the main building off of Orion Alley. All investigation-derived waste (IDW) lids were properly sealed, and the staging area was secured with traffic cones and caution tape.

## 3.5 Groundwater Sampling

Two rounds of groundwater sampling were conducted at the site: the first round of groundwater sampling in June 2018 and the second round in January 2020. Prior to each sampling, a synoptic round of groundwater levels was collected using a depth to water indicator. Low flow purging was performed using bladder pumps in the first round and peristaltic pumps in the second round. A water quality meter and a turbidity meter were used to measure stabilization criteria of the purge water at regular intervals. Purging continued until stable criteria were achieved over three successive readings. During round one sampling, an additional groundwater sample was collected from the sump inside the site building via bailing.

A total of ten groundwater samples were collected from six overburden monitoring wells, three bedrock monitoring wells, and an on-site sump during the June 2018 sampling event. A total of nine groundwater samples were collected from six overburden and three bedrock monitoring wells during the January 2020 sampling event. Groundwater samples were shipped to Test America for laboratory analyses. Five QA/QC samples were also collected. All samples from both rounds of sampling were analyzed for VOCs; in addition, during the 2018 sampling event only, two samples were also analyzed for SVOCs, pesticides, PCBs, 1,4-Dioxane, per- and polyfluoroalkyl substances/perfluorooctanoic acid (PFAS/PFOA), and metals. A summary of groundwater samples collected during both mobilizations is provided in **Table 5**, and sample COCs are provided in **Appendix C**.

## 3.6 Site Survey

A site survey was conducted on May 31, 2018 by Ravi Engineering and Land Surveying, P.C. and included the site building outline, marked utilities, all monitoring well locations, tops of monitoring well casings, and soil borings locations installed during the RI. The horizontal datum was references NAD83 (US-feet); elevation data references NAVD88 (US-feet) for all surveys and mapping. Survey vertical accuracy is 0.01 feet and horizontal accuracy is 0.1 feet. Survey documents are provided in **Appendix D**.

## 3.7 Investigation-Derived Waste Handling

All 55-gallon drums filled with IDW were positioned at the dock area of the main building directly off Orion Alley. Drum corrosion was observed when the drums were picked up for disposal. National Response Corporation (NRC) decanted IDW water into new drums for transportation.

One soil sample and one aqueous sample were collected for waste characterization analysis. Both of the analytical results were in accordance with the disposal facility requirements.

The estimated total quantities of the drums requiring disposal increased from 6 to 18 due to additional soil/groundwater generation during drilling. The subsequent loading and transportation as well as effort associated with providing Vac-Truck and operator to extract IDW water from corroded on-site drums to new drums, supplying seven additional new drums and labor requiring to decontaminate, crush, and dispose as steel scrap of 11 55-gallon drums resulted in additional costs for the IDW management.

In total, 18 IDW drums were disposed by NRC to a solid waste disposal facility. IDW handling documents are contained in **Appendix E**. Site photographs are shown in **Appendix F**.

During the January 2020 groundwater sampling event, two IDW drums were disposed by NRC to a solid waste facility. IDW handling documents are contained in **Appendix E.** 

#### 4.0 PHYSICAL CHARACTERISTICS

#### 4.1 Geology and Hydrogeology

The geology of the site consists of fill material overlaying native material consisting of fine to brown sand with varying amounts of silt and gravel, overlaying a thin layer of light gray fine sand with varying amounts of gravel overlaying the bedrock. Below the asphalt and gravel bedding, approximately 4- to 5-ft thick layer of fill material consisting of dark brown medium sand and gravel with concrete pieces and debris was observed to a depth of approximately 5 feet bgs. Underlying the fill material, an approximately 10-ft thick layer of native soil generally consisting of brown fine to medium sand with varying amounts of silt and fine gravel was observed to a depth of approximately 15 feet bgs. Underlying the brown sand layer, approximately 3 to 5 feet of soil consisting of light gray fine sand with fine to medium gravel was observed to a depth of approximately 15 to 18 feet bgs. Bedrock consisting of gray limestone was observed at a depth of approximately 17 to 19 feet bgs. Saturated soils, indicative of perched groundwater, were encountered at a depth of approximately 9 to 12 feet bgs. The general bedrock elevation onsite was determined to be approximately 495 feet above mean sea level (amsl).

The water table was encountered at a depth of 9 to 12 ft bgs during the gauging event conducted in June 2018 and in January 2020. Groundwater elevations are provided in **Table 6**. The highest groundwater elevation was observed at MW203, located north (upgradient) of the site building (501.7/501.95 ft amsl). The lowest groundwater elevation was observed at MW205 and MW206 (500.5 ft and 500.64 ft amsl), located northwest (downgradient) of the site. Groundwater gauging conducted during the June 2018 sampling event indicated a groundwater flow direction to the northwest, with an overall horizontal hydraulic gradient of 0.007 feet/foot (ft/ft) between wells MW203 and MW205.

Similarly, the highest bedrock groundwater elevation was observed at BW1, located north (upgradient) of the site building (501.7/502.09 ft amsl). The lowest bedrock groundwater elevation was observed at BW201 (493.9 ft amsl), located northwest (downgradient) of the site. Groundwater gauging conducted during the June 2018 sampling event indicated a bedrock groundwater flow direction to the northwest, similar to overburden groundwater, with an overall horizontal hydraulic gradient of 0.05 ft/ft between wells BW1 and BW201. An interpreted groundwater contour map illustrating the direction of groundwater flow for the June 2018 event is shown in **Figure 3**.

#### 5.0 NATURE AND EXTENT OF CONTAMINATION

This section presents the results of the 2018 RI sampling and laboratory analysis. The investigation results are presented below by the media of concern, including SVI, soil, and groundwater. The sample locations, sampling method, and analytical methods conducted for the 2018 RI were completed in accordance with the HDR – NYSDEC Program QAPP. The data are summarized, with corresponding figures and tables illustrating the sampling locations, sample identification numbers, and laboratory analytical results. An evaluation of these data and screening criteria comparisons are discussed in the sections below.

#### 5.1 Applicable Criteria

The applicable criteria selected for comparison to the analyte concentrations detected in soil vapor, soil, and groundwater are listed below:

#### Soil-Vapor

Air sample analytical results were compared to NYSDOH Sub-Slab Vapor Concentration Decision Matrix Minimum Action Levels and Indoor Air Guideline Values.

#### Soil

Soil sample analytical results were compared to NYCRR Restricted Use SCOs – Protection of Groundwater and NYCRR Restricted Use SCO – Commercial.

#### Groundwater

Groundwater sample analytical results were compared to NYSDEC TOGS 1.1.1 Groundwater Standards.

#### 5.2 Data Validation

SVI, soil, and groundwater analytical data from Chem Tech and Test America were submitted to Data Validation Services (DVS) for data validation. Data validation included a review of pertinent QA/QC data such as sample extraction and analysis, holding times, calibration, a review of laboratory blanks and QA/QC sample results, and a review of the analytical case narrative.

Upon receipt of the analytical laboratory reports (provided in **Appendix G**), a preliminary review of the data was performed by HDR to verify that all of the necessary paperwork, such as COCs, traffic reports, analytical reports, and deliverable packages, were present. HDR then sent the sample delivery groups to DVS which verified the qualitative and quantitative reliability of the data as the laboratory provided it and then performed a detailed quality assurance review.

DVS prepared detailed Data Usability Summary Reports (DUSRs) after conducting the data validation. A separate DUSR was prepared for each of the sample delivery groups associated with this RI. The DUSRs consist of a review of the laboratory deliverables, followed by a section that describes, on an item-by-item basis, the analytical results and any qualifications that were considered when evaluating the data. The qualifications were made by assessing the results submitted by the laboratory in terms of the technical requirements of the analytical methods

(including QA/QC criteria) and data validation requirements. The DUSRs highlighted the data results that did not meet QC limits and therefore, may have required data qualification. The reports also indicated the data qualification actions taken as a result of these criteria. DUSRs for this RI are provided in **Appendix H**.

The analytical results for samples collected as part of the investigation are valid and usable with qualifications as noted in each DUSR. Data qualifiers were taken into account during the interpretation of the analytical results. Qualifier flags were limited to "U" for non-detects, "J" for estimated values based upon results of the validation, "UJ" for non-detect values that were estimated based on the validation, and "R" for values that were deemed as unusable during the validation process based on QC deficiencies. The results of TCE in sample, SB202-8.5-9.5-20180518, and its field duplicate were rejected due to inconsistent concentrations/elevated correlation. Overall, there was no significant impact regarding the usability of the data set.

Groundwater sampling data from the January 2020 event was not validated per NYSDEC request.

#### 5.3 Air Sampling Results

All 17 SVI investigation samples were collected for TO-15 analysis. A total VOCs concentration for each SVI sample are provided on **Figure 4** and analytical results are summarized in **Table 7**.

#### Sub-Slab Sample Results

Exceedances of the NYSDOH Sub-Slab Vapor Concentration Decision Matrix Minimum Action Levels were encountered at two properties: 48 and 50 Mt Hope Ave. TCE exceeded the SS minimum action level of 6  $\mu$ g/m<sup>3</sup> at 50 Mt Hope Ave, with highest concentration (3170  $\mu$ g/m<sup>3</sup>) detected in SVI201-SS1 located in the basement. TCE was detected at a concentration of 93  $\mu$ g/m<sup>3</sup> at SVI201-SS2 located in the ground-floor warehouse and at a concentration 407  $\mu$ g/m3 at SVI207-SS located in the basement of 48 Mt Hope Ave. The only other exceedance of the criteria (greater than 6  $\mu$ g/m<sup>3</sup>) was Cis-1,2-DCE detected at a concentration of 112  $\mu$ g/m<sup>3</sup> at SVI201-SS1, located in the basement of 50 Mt Hope Ave property.

Similarly, elevated sub-slab total VOCs concentrations were detected at properties 48 and 50 Mt Hope Ave, located immediately southwest of the site building. These elevated concentrations include: 1566.2  $\mu$ g/m<sup>3</sup> in the basement of 50 Mt Hope Ave, 560.1  $\mu$ g/m<sup>3</sup> in the basement of 48 Mt Hope Ave, and 237.6  $\mu$ g/m<sup>3</sup> in the ground-level warehouse of 50 Mt Hope Ave. A total VOCs concentration of less than 140  $\mu$ g/m<sup>3</sup> was detected at all other sub-slab sampling locations.

#### Indoor Air Sample Results

No indoor air sample results exceeded NYSDOH Indoor Air Guideline Values.

The total VOCs in indoor air was detected at a concentration of 560.6  $\mu$ g/m<sup>3</sup> in SVI207-IA2 (northeast corner of the 407-409 South Ave basement), at 176.3  $\mu$ g/m<sup>3</sup> in SVI201-IA (50 Mt Hope Ave basement), and at 166.0  $\mu$ g/m<sup>3</sup> in SVI207IA1 (center of the 407-409 South Ave basement).

#### **Outdoor Air Sample Results**

Total VOCs in outdoor air was detected at a concentration of 63.3 µg/m<sup>3</sup> at SVI203-OA at during the December 2018 sampling.

#### 5.4 Soil Sampling Results

The surface and subsurface soil sampling locations for the 2018 RI are summarized on **Figure 5**. In total, 38 soil samples soil samples were collected from a total of 15 locations. All soil samples were analyzed for VOCs. Five (5) of 38 samples were also analyzed for SVOCs, pesticides, PCBs, and metals. The laboratory analytical results were compared to the NYCRR Restricted Use SCO – Protection of Groundwater and NYCRR Restricted Use SCO – Commercial to evaluate the nature and extent of potential soil impacts in this RI. The soil contaminants of concern included Cis-1,2-DCE, PCE, and TCE, and concentrations exceeding the soil criteria for these analytes are summarized on **Figure 5** and discussed below. Soil analytical results with validated result qualifiers are summarized in **Tables 8A** and **8B**.

SVOCs, pesticides, PCBs, and metals were not detected at concentrations greater than either the NYCRR Restricted Use SCO – Protection of Groundwater or NYCRR Restricted Use SCO – Commercial criteria in any of the soil samples collected from 15 locations.

A total of nine (9) different VOCs were detected in the surface and/or subsurface soil samples collected at the site. No VOCs were detected at concentrations greater than the NYCRR Restricted Use SCO – Commercial criteria. Of the nine (9) detected VOCs, only Cis-1,2-DCE, PCE, and TCE were detected at concentrations greater than the NYCRR Restricted Use SCO – Protection of Groundwater at five (5) of the 15 sample locations (SB201, SB202, SB204, SB205, and MW206). The exceedance at SB202 was rejected during the data validation process since the field duplicate soil sample results did not co-relate well with the sample collected at this location. Of VOCs, only PCE was detected above the criteria by more than a factor of ten at two sampling locations (SB201 and SB205) located in the southwest corner of the site building. The VOCs detected at each location are shown on **Figure 5** and all concentrations that exceed the NYCRR Restricted Use SCO – Protection of Groundwater criteria are shown in bold font on the figure.

The soil VOC concentrations exceed the NYCRR Restricted Use SCO – Protection of Groundwater criteria by the greatest factor at soil boring SB205 from the depth interval of 0.5-1 ft bgs, where Cis-1,2-DCE and TCE were detected at concentrations of 1.6 and 44 mg/kg, respectively. At soil boring SB204 from the depth interval of 8.5-9 feet bgs, TCE was detected at the second highest concentration of 1.5 mg/kg. At soil boring MW206 from the depth interval of 11-11.5 feet bgs, PCE was also detected at a concentration of 1.9 mg/kg, slightly higher than the 1.3 mg/kg criteria. At soil boring SB205, from the deepest depth interval of 14.8-15.3 feet bgs, PCE was detected at a concentration of 1.6 mg/kg.

Overall, the VOC soil sampling results show that relative to the NYCRR Restricted Use SCO – Protection of Groundwater criteria, the VOC concentrations detected in the site soil are relatively low in magnitude, and limited to the southwest corner of the site Building.

### 5.5 Groundwater Sampling Results

Groundwater sampling locations for the 2018 RI are shown on **Figure 6**. In total, ten (10) groundwater samples were collected from six (6) overburden monitoring wells, three (3) bedrock monitoring wells, and one (1) on-site sump located inside the site building during the June 2018 sampling event. In January 2020, all monitoring wells except for the on-site sump were resampled at NYSDEC's request. All groundwater samples were analyzed for VOCs. Two (2) of ten (10) samples were also analyzed for SVOCs, pesticides, PCBs, 1,4-Dioxane, PFAS/PFOA, and metals. The laboratory analytical results were compared to the NYSDEC TOGS 1.1.1 Groundwater Standards to evaluate nature and extent of groundwater impacts in this RI. The groundwater contaminants of concern included Cis-1,2-DCE, dichloromethane, PCE, trans-1,2-DCE, and TCE. Analytical results are summarized on **Figure 6** and are discussed below. Groundwater analytical results with result qualifiers are summarized in **Tables 9A** and **9B**. Interpreted iso-concentration lines of PCE and TCE in groundwater are depicted on **Figure 7**.

SVOCs, pesticides, PCBs, 1,4-Dioxane, and PFAS/PFOA were not detected at concentrations greater than NYSDEC TOGS 1.1.1 Groundwater Standards in any of the groundwater samples collected from 10 locations.

A total of seven (7) different VOCs were detected in the groundwater samples collected at the site. Of the seven (7) detected VOCs, only Cis-1,2-DCE, dichloromethane, PCE, trans-1,2-DCE, and/or TCE were detected at concentrations greater than the NYSDEC TOGS 1.1.1 Groundwater Standards at all locations except for the on-site sump location. No VOCs were detected in groundwater sample collected from the on-site sump.

### Overburden Groundwater Samples (June 2018):

Cis-1,2-DCE was detected in all groundwater samples from on- and off-site overburden wells at concentrations ranging from 6.7  $\mu$ g/l at MW205 (8.7-18.7 feet bgs) to 36  $\mu$ g/l at MW201 (6-16 feet bgs). Dichloromethane was detected at only one location, MW204 (9.5  $\mu$ g/l at 7.8-17.8 feet bgs). PCE was detected in all groundwater samples from on- and off-site overburden wells at concentrations ranging from 0.45  $\mu$ g/l at MW201 (6-16 feet bgs) to 960  $\mu$ g/l at MW203 (4.8-14.8 feet bgs). Trans-1,2-DCE was detected slightly higher than the respective criteria of 5  $\mu$ g/l at only one location, MW201 (5.2  $\mu$ g/l at 6-16 feet bgs). TCE was detected in all groundwater samples from on- and off-site overburden wells at concentrations ranging from 0.45  $\mu$ g/l at 6-16 feet bgs). TCE was detected in all groundwater samples from on- and off-site overburden wells at concentrations ranging from 12  $\mu$ g/l at MW202 (4.3-14.3 feet bgs) to 93  $\mu$ g/l at MW203 (4.8-14.8 feet bgs).

The most elevated contaminants of concern were detected at monitoring well MW203 which is located south of the site building, upgradient from the site.

### Bedrock Groundwater Samples (June 2018):

Cis-1,2-DCE was detected at concentrations ranging from 7.6  $\mu$ g/l at BW1 (16.5-25 feet bgs) to 110  $\mu$ g/l at BW201 (21.3-31.3 feet bgs) in all groundwater samples from bedrock well locations. Dichloromethane was not detected in any of the bedrock wells. PCE was detected at concentrations ranging from non-detect at BW201 (21.3-31.3 feet bgs) to 390  $\mu$ g/l at BW202

(23.1-30.3 feet bgs). Trans-1,2-DCE was detected at a concentration greater than the NYSDEC TOGS 1.1.1 Groundwater Standard at only one location, BW201 (21.3-31.3 feet bgs). TCE was detected in all bedrock groundwater samples at concentrations ranging from 20  $\mu$ g/l at BW201 (21.3-31.3 feet bgs) to 26  $\mu$ g/l at BW202 (23.1-30.3 feet bgs).

The most elevated contaminants of concern were detected at bedrock monitoring wells BW201 located downgradient and BW202 located side-gradient from the site.

### Groundwater Resampling (January 2020):

Analytical results from the January 2020 sampling event appear to be similar to the analytical results from the June 2018 sampling event, except at bedrock monitoring well location BW202. PCE was detected at concentration 390 ug/l in June 2018 versus non-detect in January 2020. In contrast, cis-DCE was detected at concentration 11 ug/l in June 2018 versus 58 ug/l in January 2020.

### 6.0 CONCLUSIONS AND RECOMMENDATIONS

### 6.1 Results Summary and Data Interpretation

SVOCs, pesticides, PCBs, and metals were not detected at concentrations greater than either the NYCRR Restricted Use SCO – Protection of Groundwater or NYCRR Restricted Use SCO – Commercial criteria in any of the soil samples collected from 15 locations. No VOCs were detected at concentrations greater than the NYCRR Restricted Use SCO – Commercial criteria. Only Cis-1,2-DCE, PCE, and TCE were detected at concentrations greater than the NYCRR Restricted Use SCO – Protection of Groundwater at five (5) of the 15 sample locations (SB201, SB202, SB204, SB205 and MW206). The findings of the subsurface investigation conducted at the site indicate that relative to the NYCRR Restricted Use SCO – Protection of Groundwater criteria, the VOC concentrations detected in the site soil are relatively low in magnitude, and limited to the southwest corner of the site Building. Based on these data, there does not appear to be a significant VOC source in soil, and any continued contribution of VOC concentrations from soil into groundwater will be minimal due to the asphalt/concrete cover present at the site.

Chlorinated VOCs, principally cis-1,2-DCE, TCE and PCE, were identified in overburden groundwater in side-gradient, as well as upgradient, portions of the site. Contaminants of concern were detected at the highest concentrations in monitoring well MW203, which is located southwest of the site building, at the most upgradient edge of the site boundary, indicating that constituents detected at this location are most likely from a source around MW203. The potential exists that a significant source of these compounds is present at the southwest corner of the site building in the vicinity of SB205/MW203.

Chlorinated solvents, mainly PCE and its degradation products (TCE and cis-1,2-DCE), were also identified in bedrock groundwater downgradient and upgradient from the site. The concentrations of chlorinated VOCs in bedrock groundwater, above groundwater standards for cis-1,2-DCE, PCE, and TCE, are indicative of significant impacts. As the groundwater flows northwest, the concentrations of PCE/TCE generally decrease. Vinyl chloride was not detected in any of the groundwater samples collected as part of this RI, indicating that limited biodegradation is occurring within the shallow/bedrock aquifer.

The highest total VOCs sub-slab results were encountered at SVI201 and SVI205, located at 50 and 48 Mt Hope Ave, respectively. Of the five properties that underwent sub-slab sampling, three require no further action (**Constitution**, 407-409 South Ave, and 417 South Ave), and SSDS is recommended at the remaining two (48 and 50 Mt Hope Ave).

The extent of subsurface soil and groundwater contamination within the on-site area has been adequately delineated, characterized, and documented in this RI report. The data collected to evaluate the nature and extent of contamination are sufficient to develop remedial alternatives for the Site.

### 7.0 REFERENCES

LaBella Associates, P.C., 2013a. Phase II Environmental Site Assessment, 46 Mount Hope Avenue, Rochester, New York. November 2013.

LaBella Associates, P.C., 2013b. Supplemental Phase II Environmental Site Assessment, 46 Mount Hope Avenue, Rochester, New York. December 2013.

LaBella Associates, P.C., 2014. Bedrock Groundwater Evaluation & Vapor Intrusion Assessment, 46 Mount Hope Avenue, Rochester, NY. February 2014.

LaBella Associates, P.C., 2016a. Indoor Air Sampling Work Plan, 46 Mount Hope Avenue, Rochester, NY. April 2016.

LaBella Associates, P.C., 2016b. Preliminary Data – Indoor Air Sampling, 46 Mount Hope Avenue, Rochester, NY. August 2016.

NYSDEC, 2017. Inactive Hazardous Waste Disposal Site Classification Notice, Former Hall-Welter Site. February 2017.



### Tables



### Table 1 - Air Sampling Summary Former Hall Welter Site, NYSDEC Site Number: 828194 Rochester, Monroe County, New York

|             |                              |                    |                 |              | Analytical Method |
|-------------|------------------------------|--------------------|-----------------|--------------|-------------------|
| Location ID | Sample ID                    | Type of Air Sample | Sample Type     | Date Sampled | TO-15             |
| SVI201      | SVI201-IA-20180227-20180227  | Indoor Air         | Normal          | 2/27/2018    | Х                 |
| SVI201      | SVI201-OA-20180227-20180227  | Outdoor Air        | Normal          | 2/27/2018    | Х                 |
| SVI201      | SVI201-SS1-20180227-20180227 | Sub-Slab           | Normal          | 2/27/2018    | Х                 |
| SVI201      | SVI201-SS2-20180227-20180227 | Sub-Slab           | Normal          | 2/27/2018    | Х                 |
| SVI202      | SVI202-IA-20180227-20180227  | Indoor Air         | Normal          | 2/27/2018    | Х                 |
| SVI202      | SVI202-OA-20180227-20180227  | Outdoor Air        | Normal          | 2/27/2018    | Х                 |
| SVI202      | SVI202-SS-20180227-20180227  | Sub-Slab           | Normal          | 2/27/2018    | Х                 |
| SVI203      | SVI203-OA-20180301-20180301  | Outdoor Air        | Normal          | 3/1/2018     | Х                 |
| SVI203      | SVI-IA1-2018-12-19-20181220  | Indoor Air         | Normal          | 12/20/2018   | Х                 |
| SVI203      | SVI-IA1D-2018-12-19-20181220 | Indoor Air         | Field Duplicate | 12/20/2018   | Х                 |
| SVI203      | SVI-OA1-2018-12-19-20181220  | Outdoor Air        | Normal          | 12/20/2018   | Х                 |
| SVI205      | SVI205-IA-20180227-20180227  | Indoor Air         | Normal          | 2/27/2018    | Х                 |
| SVI205      | SVI205-SS-20180227-20180227  | Sub-Slab           | Normal          | 2/27/2018    | Х                 |
| SVI207      | SVI207-IA1-20180227-20180227 | Indoor Air         | Normal          | 2/27/2018    | Х                 |
| SVI207      | SVI207-IA2-20180227-20180227 | Indoor Air         | Normal          | 2/27/2018    | Х                 |
| SVI207      | SVI207-OA-20180227-20180227  | Outdoor Air        | Normal          | 2/27/2018    | Х                 |
| SVI207      | SVI207-SS-20180227-20180227  | Sub-Slab           | Normal          | 2/27/2018    | Х                 |

Notes:

TO Toxic Organics

### Table 2 - Sampling Locations Former Hall Welter Site, NYSDEC Site Number: 828194 Rochester, Monroe County, New York

| Client:          | NYSDEC                    |                                         |             |                 |                 |                         |
|------------------|---------------------------|-----------------------------------------|-------------|-----------------|-----------------|-------------------------|
| Facility:        | Former Hall Welter Site   |                                         |             |                 |                 |                         |
|                  | : Rochester, Monroe Count | v. New York                             |             |                 |                 |                         |
| Survey Date      | ,                         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |             |                 |                 |                         |
|                  | 0,01,2020                 |                                         |             |                 |                 |                         |
| Horizontal Datum | : NAD83 NYSPCS Western Z  | one                                     |             |                 |                 |                         |
|                  |                           | NYSPCS We                               | stern Zone  | Geographic Coor | dinates (NAD83) |                         |
| Location ID      | Street Address            | Northing                                | Easting     | Latitude        | Longitude       | Elevation*<br>(ft amsl) |
| BP-1             | 38-46 Mt. Hope Avenue     | 1148600.512                             | 1408888.173 | 43.1481824°     | -077.6068144°   | 512                     |
| BW-1             |                           | 1148452.625                             | 1408946.936 | 43.1477748°     | -077.6066007°   | 510.3237                |
| BW-201           | 38-46 Mt. Hope Avenue     | 1148549.762                             | 1408836.779 | 43.1480448°     | -077.6070092°   | 511.6563                |
| BW-202           | 22-32 Mt. Hope Avenue     | 1148608.241                             | 1408964.439 | 43.1482012°     | -077.6065283°   | 513.1765                |
| MW-201           | 50 Mt. Hope Avenue        | 1148453.078                             | 1408895.861 | 43.1477777°     | -077.6067920°   | 511.1403                |
| MW-202           | 415 South Avenue          | 1148499.119                             | 1409016.178 | 43.1479001°     | -077.6063392°   | 511.9861                |
| MW-203           | 417 South Avenue          | 1148459.429                             | 1408981.558 | 43.1477924°     | -077.6064707°   | 510.5369                |
| MW-204           | 401-405 South Avenue      | 1148563.765                             | 1408980.818 | 43.1480786°     | -077.6064689°   | 513.1713                |
| MW-205           | 38-46 Mt. Hope Avenue     | 1148578.972                             | 1408854.483 | 43.1481244°     | -077.6069416°   | 511.7399                |
| MW-206           | 22-32 Mt. Hope Avenue     | 1148636.198                             | 1408922.211 | 43.1482792°     | -077.6066853°   | 512.9612                |
| SB-201           | 38-46 Mt. Hope Avenue     | 1148480.79                              | 1408925.123 | 43.1478528°     | -077.6066812°   | 512.5751                |
| SB-202           | 48 Mt. Hope Avenue        | 1148488.059                             | 1408911.273 | 43.1478732°     | -077.6067328°   | 512.6557                |
| SB-204           | 50 Mt. Hope Avenue        | 1148443.472                             | 1408910.355 | 43.1477509°     | -077.6067382°   | 510.9567                |
| SB-205           |                           | 1148453.887                             | 1408959.009 | 43.1477779°     | -077.6065554°   | 510.4987                |
| SB-206           | 48 Mt. Hope Avenue        | 1148470.708                             | 1408920.267 | 43.1478253°     | -077.6066998°   | 511.2644                |
| SB-207           | 417 South Avenue          | 1148449.793                             | 1408975.452 | 43.1477661°     | -077.6064940°   | 510.626                 |
| SB-209           | 38-46 Mt. Hope Avenue     | 1148486.941                             | 1408899.209 | 43.1478705°     | -077.6067780°   | 511.774                 |
| SVI-201          | 50 Mt. Hope Avenue        | NA                                      | NA          | NA              | NA              | NA                      |
| SVI-202          | 417 South Avenue          | NA                                      | NA          | NA              | NA              | NA                      |
| SVI-203          |                           | NA                                      | NA          | NA              | NA              | NA                      |
| SVI-205          | 48 Mt. Hope Avenue        | NA                                      | NA          | NA              | NA              | NA                      |
| SVI-207          | 407-409 South Avenue      | NA                                      | NA          | NA              | NA              | NA                      |

Notes:

| amsl Above mean sea level |  |
|---------------------------|--|
|---------------------------|--|

BTOC Below top of inner casing

- in Inches
- ft Feet
- NA Not available

NAD North American 1983 Datum

NYSPCS New York State Plane Coordinate System

\* Elevation of inner casing for well locations; elevation of ground surface for all other location types

### Table 3 - Soil Sampling Summary Former Hall Welter Site, NYSDEC Site Number: 828194 Rochester, Monroe County, New York

|             |                            |                 |             |             |                 |                | Analytica    | l Method | SW6010C | SW8081B    | SW8082A | SW8260C | SW8270D |
|-------------|----------------------------|-----------------|-------------|-------------|-----------------|----------------|--------------|----------|---------|------------|---------|---------|---------|
| Location ID | Sample ID                  | Sample Type     | Easting     | Northing    | Date<br>Sampled | Start<br>Depth | End<br>Depth | Unit     | Metals  | Pesticides | PCBs    | VOCs    | SVOCs   |
| BW201       | BW201-1.5-2-20180516       | Normal          | 1408836.779 | 1148549.762 | 5/16/2018       | 1.5            | 2            | ft bgs   |         |            |         | Х       |         |
| BW201       | BW201-8.5-9.5-1-20180529   | Field Duplicate | 1408836.779 | 1148549.762 | 5/29/2018       | 8.5            | 9.5          | ft bgs   | Х       | Х          | Х       | Х       | Х       |
| BW201       | BW201-8.5-9.5-20180529     | Normal          | 1408836.779 | 1148549.762 | 5/29/2018       | 8.5            | 9.5          | ft bgs   | Х       | Х          | Х       | Х       | Х       |
| BW202       | BW202-0.5-1-20180516       | Normal          | 1408964.439 | 1148608.241 | 5/16/2018       | 0.5            | 1            | ft bgs   |         |            |         | Х       |         |
| BW202       | BW202-11-12-1-20180524     | Field Duplicate | 1408964.439 | 1148608.241 | 5/24/2018       | 11             | 12           | ft bgs   | Х       | Х          | Х       | Х       | Х       |
| BW202       | BW202-11-12-20180524       | Normal          | 1408964.439 | 1148608.241 | 5/24/2018       | 11             | 12           | ft bgs   | Х       | Х          | Х       | Х       | Х       |
| MW201       | MW201-0.5-1-20180515       | Normal          | 1408895.861 | 1148453.078 | 5/15/2018       | 0.5            | 1            | ft bgs   |         |            |         | Х       |         |
| MW201       | MW201-15.5-16-20180521     | Normal          | 1408895.861 | 1148453.078 | 5/21/2018       | 15.5           | 16           | ft bgs   |         |            |         | Х       |         |
| MW201       | MW201-8.5-9-20180521       | Normal          | 1408895.861 | 1148453.078 | 5/21/2018       | 8.5            | 9            | ft bgs   |         |            |         | Х       |         |
| MW202       | MW202-0.5-1-20180516       | Normal          | 1409016.178 | 1148499.119 | 5/16/2018       | 0.5            | 1            | ft bgs   |         |            |         | Х       |         |
| MW202       | MW202-9.5-10-20180525      | Normal          | 1409016.178 | 1148499.119 | 5/25/2018       | 9.5            | 10           | ft bgs   |         |            |         | Х       |         |
| MW203       | SB203-0.5-1-20180515       | Normal          | 1408981.558 | 1148459.429 | 5/15/2018       | 0.5            | 1            | ft bgs   |         |            |         | Х       |         |
| MW203       | SB203-18.5-19-20180517     | Normal          | 1408981.558 | 1148459.429 | 5/17/2018       | 18.5           | 19           | ft bgs   |         |            |         | Х       |         |
| MW203       | SB203-9-9.5-20180517       | Normal          | 1408981.558 | 1148459.429 | 5/17/2018       | 9              | 9.5          | ft bgs   |         |            |         | Х       |         |
| MW204       | MW204-0.5-1-20180516       | Normal          | 1408980.818 | 1148563.765 | 5/16/2018       | 0.5            | 1            | ft bgs   |         |            |         | Х       |         |
| MW204       | MW204-11-11.5-20180523     | Normal          | 1408980.818 | 1148563.765 | 5/23/2018       | 11             | 11.5         | ft bgs   |         |            |         | Х       |         |
| MW204       | MW204-16.5-17.5-1-20180523 | Field Duplicate | 1408980.818 | 1148563.765 | 5/23/2018       | 16.5           | 17.5         | ft bgs   | Х       | Х          | Х       | Х       | Х       |
| MW204       | MW204-16.5-17.5-20180523   | Normal          | 1408980.818 | 1148563.765 | 5/23/2018       | 16.5           | 17.5         | ft bgs   | Х       | Х          | Х       | Х       | Х       |
| MW205       | MW205-0.5-1-20180516       | Normal          | 1408854.483 | 1148578.972 | 5/16/2018       | 0.5            | 1            | ft bgs   |         |            |         | Х       |         |
| MW205       | MW205-9-10-1-20180529      | Field Duplicate | 1408854.483 | 1148578.972 | 5/29/2018       | 9              | 10           | ft bgs   | Х       | Х          | Х       | Х       | Х       |
| MW205       | MW205-9-10-20180529        | Normal          | 1408854.483 | 1148578.972 | 5/29/2018       | 9              | 10           | ft bgs   | Х       | Х          | Х       | Х       | Х       |
| MW206       | MW206-0.5-1-20180516       | Normal          | 1408922.211 | 1148636.198 | 5/16/2018       | 0.5            | 1            | ft bgs   |         |            |         | Х       |         |
| MW206       | MW206-11-11.5-20180524     | Normal          | 1408922.211 | 1148636.198 | 5/24/2018       | 11             | 11.5         | ft bgs   |         |            |         | Х       |         |

### Table 3 - Soil Sampling Summary Former Hall Welter Site, NYSDEC Site Number: 828194 Rochester, Monroe County, New York

|             |                          |                 |             |             |                 |                | Analytica    | l Method | SW6010C | SW8081B    | SW8082A | SW8260C | SW8270D |
|-------------|--------------------------|-----------------|-------------|-------------|-----------------|----------------|--------------|----------|---------|------------|---------|---------|---------|
| Location ID | Sample ID                | Sample Type     | Easting     | Northing    | Date<br>Sampled | Start<br>Depth | End<br>Depth | Unit     | Metals  | Pesticides | PCBs    | VOCs    | SVOCs   |
| SB201       | SB201-0.5-1-20180517     | Normal          | 1408925.123 | 1148480.79  | 5/17/2018       | 0.5            | 1            | ft bgs   |         |            |         | Х       |         |
| SB201       | SB201-3.5-4-20180517     | Normal          | 1408925.123 | 1148480.79  | 5/17/2018       | 3.5            | 4            | ft bgs   |         |            |         | Х       |         |
| SB202       | SB202-0.5-1-20180515     | Normal          | 1408911.273 | 1148488.059 | 5/15/2018       | 0.5            | 1            | ft bgs   |         |            |         | Х       |         |
| SB202       | SB202-15-15.5-20180521   | Normal          | 1408911.273 | 1148488.059 | 5/21/2018       | 15             | 15.5         | ft bgs   |         |            |         | Х       |         |
| SB202       | SB202-8.5-9.5-1-20180518 | Field Duplicate | 1408911.273 | 1148488.059 | 5/18/2018       | 8.5            | 9.5          | ft bgs   | Х       | Х          | Х       | Х       | Х       |
| SB202       | SB202-8.5-9.5-20180518   | Normal          | 1408911.273 | 1148488.059 | 5/18/2018       | 8.5            | 9.5          | ft bgs   | Х       | Х          | Х       | Х       | Х       |
| SB204       | SB204-0.5-1-20180515     | Normal          | 1408910.355 | 1148443.472 | 5/15/2018       | 0.5            | 1            | ft bgs   |         |            |         | Х       |         |
| SB204       | SB204-15-15.5-20180521   | Normal          | 1408910.355 | 1148443.472 | 5/21/2018       | 15             | 15.5         | ft bgs   |         |            |         | Х       |         |
| SB204       | SB204-8.5-9-20180521     | Normal          | 1408910.355 | 1148443.472 | 5/21/2018       | 8.5            | 9            | ft bgs   |         |            |         | Х       |         |
| SB205       | SB205-0.5-1-20180515     | Normal          | 1408959.009 | 1148453.887 | 5/15/2018       | 0.5            | 1            | ft bgs   |         |            |         | Х       |         |
| SB205       | SB205-14.8-15.3-20180517 | Normal          | 1408959.009 | 1148453.887 | 5/17/2018       | 14.8           | 15.3         | ft bgs   |         |            |         | Х       |         |
| SB205       | SB205-8.5-9-20180517     | Normal          | 1408959.009 | 1148453.887 | 5/17/2018       | 8.5            | 9            | ft bgs   |         |            |         | Х       |         |
| SB206       | SB206-0.5-1-20180515     | Normal          | 1408920.267 | 1148470.708 | 5/15/2018       | 0.5            | 1            | ft bgs   |         |            |         | Х       |         |
| SB206       | SB206-17.5-18-20180521   | Normal          | 1408920.267 | 1148470.708 | 5/21/2018       | 17.5           | 18           | ft bgs   |         |            |         | Х       |         |
| SB206       | SB206-8-8.5-20180518     | Normal          | 1408920.267 | 1148470.708 | 5/18/2018       | 8              | 8.5          | ft bgs   |         |            |         | Х       |         |
| SB207       | SB207-0.5-1-20180515     | Normal          | 1408975.452 | 1148449.793 | 5/15/2018       | 0.5            | 1            | ft bgs   |         |            |         | Х       |         |
| SB207       | SB207-15-15.5-20180517   | Normal          | 1408975.452 | 1148449.793 | 5/17/2018       | 15             | 15.5         | ft bgs   |         |            |         | Х       |         |
| SB207       | SB207-9-9.5-20180517     | Normal          | 1408975.452 | 1148449.793 | 5/17/2018       | 9              | 9.5          | ft bgs   |         |            |         | Х       |         |
| SB209       | SB209-0.5-1-20180517     | Normal          | 1408899.209 | 1148486.941 | 5/17/2018       | 0.5            | 1            | ft bgs   |         |            |         | Х       |         |
| SB209       | SB209-5-5.5-20180517     | Normal          | 1408899.209 | 1148486.941 | 5/17/2018       | 5              | 5.5          | ft bgs   |         |            |         | Х       |         |

Notes:

ft bgs Feet below ground surface

PCBs Polychlorinated biphenyls

SVOCs Semi-volatile organic compounds

VOCs Volatile organic compounds

### Table 4 - Monitoring Well Construction Details Former Hall Welter Site, NYSDEC Site Number: 828194 Rochester, Monroe County, New York

| Client:                                                                            | NYSDEC                  |                         |                 |                                         |  |  |  |
|------------------------------------------------------------------------------------|-------------------------|-------------------------|-----------------|-----------------------------------------|--|--|--|
| Facility:                                                                          | Former Hall Welter Site |                         |                 |                                         |  |  |  |
| Location:                                                                          | Rochester, Monroe Count | y, New York             |                 |                                         |  |  |  |
| Wells Installed                                                                    | May 21 - 29, 2018       |                         |                 |                                         |  |  |  |
| Wells Installed May 21 - 29, 2018<br>Drilling Contractor: Nothnagle Drilling, Inc. |                         |                         |                 |                                         |  |  |  |
| Horizontal Datum:                                                                  | NAD83 NYSPCS Western Z  | lone                    |                 |                                         |  |  |  |
| Location ID                                                                        | Street Address          | Monitoring Well<br>Type | Casing Material | Top of Casing<br>Elevation<br>(ft amsl) |  |  |  |
| BP-1                                                                               | 38-46 Mt. Hope Avenue   | Sump                    | NA              | 512                                     |  |  |  |
| BW-1                                                                               |                         | Bedrock                 | PVC             | 510.3237                                |  |  |  |

| Location ID | Street Address        | Monitoring Well | Casing Material | Top of Casing<br>Elevation | Well<br>Diameter | Well Depth | Screen Interval |  |
|-------------|-----------------------|-----------------|-----------------|----------------------------|------------------|------------|-----------------|--|
| Location ID | Street Address        | Туре            |                 | (ft amsl)                  | (in)             | (ft BTOC)  | (ft BTOC)       |  |
| BP-1        | 38-46 Mt. Hope Avenue | Sump            | NA              | 512                        | NA               | NA         | NA              |  |
| BW-1        |                       | Bedrock         | PVC             | 510.3237                   | 2                | 25         | 16.5 - 25       |  |
| BW-201      | 38-46 Mt. Hope Avenue | Bedrock         | PVC             | 511.6563                   | 2                | 31.33      | 21.33 - 31.33   |  |
| BW-202      | 22-32 Mt. Hope Avenue | Bedrock         | PVC             | 513.1765                   | 2                | 30         | 21.33 - 30.33   |  |
| MW-201      | 50 Mt. Hope Avenue    | Overburden      | PVC             | 511.1403                   | 2                | 16         | 6 - 16          |  |
| MW-202      | 415 South Avenue      | Overburden      | PVC             | 511.9861                   | 2                | 14.25      | 4.25 - 14.25    |  |
| MW-203      | 417 South Avenue      | Overburden      | PVC             | 510.5369                   | 2                | 14.833     | 4.833 - 14.833  |  |
| MW-204      | 401-405 South Avenue  | Overburden      | PVC             | 513.1713                   | 2                | 17.75      | 7.75 - 17.75    |  |
| MW-205      | 38-46 Mt. Hope Avenue | Overburden      | PVC             | 511.7399                   | 2                | 18.833     | 8.833 - 18.833  |  |
| MW-206      | 22-32 Mt. Hope Avenue | Overburden      | PVC             | 512.9612                   | 2                | 20         | 10 - 20         |  |

Notes:

amsl Above mean sea level

BTOC Below top of inner casing

in Inches

ft Feet

NA Not Applicable

NYSPCS New York State Plane Coordinate System

PVC Polyvinyl chloride

### Table 5 - Groundwater Sampling Summary Former Hall Welter Site, NYSDEC Site Number: 828194 Rochester, Monroe County, New York

|                |                           |                 |             |             |                 | Α              | nalytical    | Method | E537-LL       | SW6010C | SW8081B    | SW8082A | SW8260C | SW8270D | SW8270DSIM  |
|----------------|---------------------------|-----------------|-------------|-------------|-----------------|----------------|--------------|--------|---------------|---------|------------|---------|---------|---------|-------------|
| Location<br>ID | Sample ID                 | Sample Type     | Easting     | Northing    | Date<br>Sampled | Start<br>Depth | End<br>Depth | Unit   | PFAS/<br>PFOA | Metals  | Pesticides | PCBs    | VOCs    | SVOCs   | 1,4-Dioxane |
| June 2018      |                           |                 |             |             |                 |                |              | -      |               | -       | -          | -       |         |         |             |
| BP-1           | SUMP-20180618             | Normal          | 1408888.173 | 1148600.512 | 6/18/2018       | 0              | 0            | ft bgs |               |         |            |         | Х       |         |             |
| BW1            | BP-1-20180620             | Normal          | 1408946.936 | 1148452.625 | 6/20/2018       | 16.5           | 25           | ft bgs |               |         |            |         | Х       |         |             |
| BW201          | BW201-20180618            | Normal          | 1408836.779 | 1148549.762 | 6/18/2018       | 21.3           | 31.3         | ft bgs | Х             | Х       | Х          | Х       | Х       | Х       | Х           |
| BW202          | BW202-20180619            | Normal          | 1408964.439 | 1148608.241 | 6/19/2018       | 21.3           | 30.3         | ft bgs |               |         |            |         | Х       |         |             |
| MW201          | MW201-20180620            | Normal          | 1408895.861 | 1148453.078 | 6/20/2018       | 6              | 16           | ft bgs |               |         |            |         | Х       |         |             |
| MW202          | MW202-20180619            | Normal          | 1409016.178 | 1148499.119 | 6/19/2018       | 4.3            | 14.3         | ft bgs |               |         |            |         | Х       |         |             |
| MW203          | MW203-20180620            | Normal          | 1408981.558 | 1148459.429 | 6/20/2018       | 4.8            | 14.8         | ft bgs |               |         |            |         | Х       |         |             |
| MW204          | MW204-20180618            | Normal          | 1408980.818 | 1148563.765 | 6/18/2018       | 7.8            | 17.8         | ft bgs |               |         |            |         | Х       |         |             |
| MW205          | MW205-20180618            | Normal          | 1408854.483 | 1148578.972 | 6/18/2018       | 8.7            | 18.7         | ft bgs | Х             | Х       | Х          | Х       | Х       | Х       | Х           |
| MW205          | MW205-20180618-1          | Field Duplicate | 1408854.483 | 1148578.972 | 6/18/2018       | 8.7            | 18.7         | ft bgs | Х             | Х       | Х          | Х       | Х       | Х       | Х           |
| MW206          | MW206-20180619            | Normal          | 1408922.211 | 1148636.198 | 6/19/2018       | 10             | 20           | ft bgs |               |         |            |         | Х       |         |             |
| January 2      | 020                       |                 |             |             |                 |                |              |        |               |         |            |         |         |         |             |
| BW1            | BW1-16.5-25-20200108      | Normal          | 1408946.936 | 1148452.625 | 1/8/2020        | 16.5           | 25           | ft bgs |               |         |            |         | Х       |         |             |
| BW201          | BW201-21.3-31.3-20200109  | Normal          | 1408836.779 | 1148549.762 | 1/9/2020        | 21.3           | 31.3         | ft bgs |               |         |            |         | Х       |         |             |
| BW202          | BW202-21.3-30.3-20200108  | Normal          | 1408964.439 | 1148608.241 | 1/8/2020        | 21.3           | 30.3         | ft bgs |               |         |            |         | Х       |         |             |
| MW201          | MW201-6-16-20200108       | Normal          | 1408895.861 | 1148453.078 | 1/8/2020        | 6              | 16           | ft bgs |               |         |            |         | Х       |         |             |
| MW202          | MW202-4.3-14.3-20200109   | Normal          | 1409016.178 | 1148499.119 | 1/9/2020        | 4.3            | 14.3         | ft bgs |               |         |            |         | Х       |         |             |
| MW203          | MW203-4.8-14.8-20200108   | Normal          | 1408981.558 | 1148459.429 | 1/8/2020        | 4.8            | 14.8         | ft bgs |               |         |            |         | Х       |         |             |
| MW203          | MW203-4.8-14.8-20200108-1 | Field Duplicate | 1408981.558 | 1148459.429 | 1/8/2020        | 4.8            | 14.8         | ft bgs |               |         |            |         | Х       |         |             |
| MW204          | MW204-7.8-17.8-20200108   | Normal          | 1408980.818 | 1148563.765 | 1/8/2020        | 7.8            | 17.8         | ft bgs |               |         |            |         | Х       |         |             |
| MW205          | MW205-8.7-18.7-20200109   | Normal          | 1408854.483 | 1148578.972 | 1/9/2020        | 8.7            | 18.7         | ft bgs |               |         |            |         | Х       |         |             |
| MW206          | MW206-10-20-20200109      | Normal          | 1408922.211 | 1148636.198 | 1/9/2020        | 10             | 20           | ft bgs |               |         |            |         | Х       |         |             |

Notes:

ft bgs Feet below ground surface

PCBs Polychlorinated biphenyls

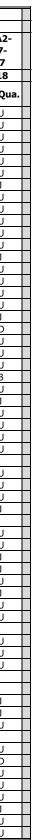
PFAS Perfluoroalkyl substances

PFOA Perfluorooctanoic acid

SVOCs Semi-volatile organic compounds

VOCs Volatile organic compounds

### Table 6 - Groundwater Elevation Data Former Hall Welter Site, NYSDEC Site Number: 828194 Rochester, Monroe County, New York


| Well ID     | NYSPCS Western Zone |             | • •         | Coordinates<br>D83) | Top of Casing<br>Elevation | Depth to Water<br>(ft BTOC) | Water Elevation<br>(ft amsl) | Depth to Water<br>(ft BTOC) | Water Elevation<br>(ft amsl) |
|-------------|---------------------|-------------|-------------|---------------------|----------------------------|-----------------------------|------------------------------|-----------------------------|------------------------------|
|             | Northing            | Easting     | Latitude    | Longitude           | (ft amsl)                  | June 2018                   | June 2018                    | January 2020                | January 2020                 |
| BP-1 (Sump) | 1148600.512         | 1408888.173 | 43.1481824° | -077.6068144°       | 512                        | NA                          | NA                           | NA                          | NA                           |
| BW-1        | 1148452.625         | 1408946.936 | 43.1477748° | -077.6066007°       | 510.3237                   | 8.62                        | 501.70                       | 8.23                        | 502.09                       |
| BW-201      | 1148549.762         | 1408836.779 | 43.1480448° | -077.6070092°       | 511.6563                   | 17.76                       | 493.90                       | 17.76                       | 493.90                       |
| BW-202      | 1148608.241         | 1408964.439 | 43.1482012° | -077.6065283°       | 513.1765                   | 13.28                       | 499.90                       | 12.70                       | 500.48                       |
| MW-201      | 1148453.078         | 1408895.861 | 43.1477777° | -077.6067920°       | 511.1403                   | 9.34                        | 501.80                       | 9.08                        | 502.06                       |
| MW-202      | 1148499.119         | 1409016.178 | 43.1479001° | -077.6063392°       | 511.9861                   | 10.39                       | 501.60                       | 10.20                       | 501.79                       |
| MW-203      | 1148459.429         | 1408981.558 | 43.1477924° | -077.6064707°       | 510.5369                   | 8.84                        | 501.70                       | 8.59                        | 501.95                       |
| MW-204      | 1148563.765         | 1408980.818 | 43.1480786° | -077.6064689°       | 513.1713                   | 12.07                       | 501.10                       | 11.89                       | 501.28                       |
| MW-205      | 1148578.972         | 1408854.483 | 43.1481244° | -077.6069416°       | 511.7399                   | 11.24                       | 500.50                       | 11.03                       | 500.71                       |
| MW-206      | 1148636.198         | 1408922.211 | 43.1482792° | -077.6066853°       | 512.9612                   | 12.46                       | 500.50                       | 12.32                       | 500.64                       |

### Notes:

| ft     | Feet                                   |
|--------|----------------------------------------|
| amsl   | Above mean sea level                   |
| BTOC   | Below top of inner casing              |
| NA     | Not Applicable                         |
| NAD    | North American 1983 Datum              |
| NYSPCS | New York State Plane Coordinate System |
| *      | Survey performed May 31, 2018          |
|        |                                        |
|        |                                        |

### Table 7 - Sub-Slab Gas and Ambient Air Sample Results Summary Former Hall Welter Site, NYSDEC Site Number: 828194 Rochester, Monroe County, New York

|                                                           | Sample Type                    |                |                                |                      |                                | Indoor Air Sample         |                                     |                                     |                                |
|-----------------------------------------------------------|--------------------------------|----------------|--------------------------------|----------------------|--------------------------------|---------------------------|-------------------------------------|-------------------------------------|--------------------------------|
|                                                           | Location ID                    |                | SVI201                         | SVI202               | SVI203                         | SVI203                    | SVI205                              | SVI207                              | SVI207                         |
|                                                           |                                | NYSDOH         | SV1201-IA-                     | SV1202-IA-           | SVI-IA1-                       | SVI-IA1D-                 | SV1205-IA-                          | SV1207-IA1-                         | SV1207-IA2-                    |
|                                                           | Sample ID                      | Indoor Air     | 20180227-                      | 20180227-            | 20181219-                      | 20181219-                 | 20180227-                           | 20180227-                           | 20180227-                      |
|                                                           |                                | Guideline      | 20180227                       | 20180227             | 20181220                       | 20181220                  | 20180227                            | 20180227                            | 20180227                       |
|                                                           | Sample Date                    | Values (2)     | 2/27/2018                      | 2/27/2018            | 12/20/2018                     | 12/20/2018                | 2/27/2018                           | 2/27/2018                           | 2/27/2018                      |
| Analyte                                                   | Cas No.                        |                | Result<br>(ug/m <sup>3</sup> ) | (ug/m <sup>-</sup> ) | Result<br>(ug/m <sup>3</sup> ) | (ug/m <sup>-</sup> )      | Result<br>(ug/m <sup>3</sup> ) Qua. | Result<br>(ug/m <sup>3</sup> ) Qua. | Result<br>(ug/m <sup>3</sup> ) |
| 1,1,1-Trichloroethane                                     | 71-55-6                        | NA             | 0.16 U                         | 0.16 U               | 0.03 U                         | 0.03 U                    | 0.16 U                              | 0.16 U                              | 0.16 U                         |
| 1,1,2,2-Tetrachloroethane                                 | 79-34-5                        | NA             | 3.43 U                         | 3.43 U               | 0.5 U                          | 0.5 U                     | 3.43 U                              | 3.43 U                              | 3.43 U                         |
| 1,1,2-Trichloroethane                                     | 79-00-5<br>75-34-3             | NA<br>NA       | 2.73 U<br>2.02 U               | 2.73 U<br>2.02 U     | 0.5 U<br>0.5 U                 | 0.5 U                     | 2.73 U<br>2.02 U                    | 2.73 U<br>2.02 U                    | 2.73 U<br>2.02 U               |
| 1,1-Dichloroethane<br>1,1-Dichloroethene                  | 75-34-3                        | NA             | 1.98 U                         | 1.98 U               | 0.5 U                          | 0.5 U<br>0.5 U            | 1.98 U                              | 1.98 U                              | 1.98 U                         |
| 1,2,4-Trichlorobenzene                                    | 120-82-1                       | NA             | 3.71 U                         | 3.71 U               | 0.5 U                          | 0.5 U                     | 3.71 U                              | 3.71 U                              | 3.71 U                         |
| 1,2,4-Trimethylbenzene                                    | 95-63-6                        | NA             | 4.52                           | 2.46 U               | 0.5 U                          | 0.5 U                     | 0.98 J                              | 0.84 J                              | 1.28 J                         |
| 1,2-Dibromoethane                                         | 106-93-4                       | NA             | 3.84 U                         | 3.84 U               | 0.5 U                          | 0.5 U                     | 3.84 U                              | 3.84 U                              | 3.84 U                         |
| 1,2-Dichlorobenzene                                       | 95-50-1                        | NA             | 3.01 U                         | 3.01 U               | 0.5 U                          | 0.5 U                     | 3.01 U                              | 3.01 U                              | 3.01 U                         |
| 1,2-Dichloroethane                                        | 107-06-2                       | NA             | 2.02 U                         | 2.02 U               | 0.5 U                          | 0.5 U                     | 2.02 U                              | 2.02 U                              | 2.02 U                         |
| 1,2-Dichloropropane                                       | 78-87-5                        | NA             | 2.31 U                         | 2.31 U               | 0.5 U                          | 0.5 U                     | 2.31 U                              | 2.31 U                              | 2.31 U                         |
| 1,2-Dichlorotetrafluoroethane                             | 76-14-2                        | NA             | 3.49 U                         | 3.49 U               | 0.5 U                          | 0.5 U                     | 3.49 U                              | 3.49 U                              | 3.49 U                         |
| 1,3,5-Trimethylbenzene                                    | 108-67-8                       | NA             | 1.38 J                         | 2.46 U               | 0.5 U                          | 0.5 U                     | 2.46 U                              | 2.46 U                              | 0.49 J                         |
| 1,3-Butadiene                                             | 106-99-0                       | NA             | 1.11 U                         | 1.11 U               | 0.5 U                          | 0.5 U                     | 1.11 U                              | 1.11 U                              | 1.11 U                         |
| 1,3-Dichlorobenzene                                       | 541-73-1                       | NA             | 3.01 U                         | 3.01 U               | 0.5 U                          | 0.5 U                     | 3.01 U                              | 3.01 U                              | 3.01 U                         |
| 1,4-Dichlorobenzene                                       | 106-46-7                       | NA             | 3.01 U                         | 3.01 U               | 0.5 U                          | 0.5 U                     | 3.01 U                              | 3.01 U                              | 3.01 U                         |
| 1,4-Dioxane                                               | 123-91-1                       | NA             | 1.8 U                          | 1.8 U                | 0.5 U                          | 0.5 U                     | 1.8 U                               | 1.8 U                               | 1.8 U                          |
| 2,2,4-Trimethylpentane                                    | 540-84-1                       | NA<br>NA       | 1.96 J<br>5.31                 | 2.34 U<br>0.77 J     | 0.5 U                          | 0.5 U                     | 0.79 J<br>1.53                      | 0.89 J                              | 1.21 J                         |
| 2-Butanone<br>2-Chlorotoluene                             | 78-93-3<br>95-49-8             | NA<br>NA       | 2.59 U                         | 2.59 U               | 0.12 J<br>0.5 U                | 0.1 J<br>0.5 U            | 2.59 U                              | 19.2<br>2.59 U                      | 112 D<br>2.59 U                |
| 4-Ethyltoluene                                            | 622-96-8                       | NA             | 2.59 U<br>1.77 J               | 2.39 U               | 0.5 U                          | 0.5 U                     | 2.39 U<br>2.46 U                    | 2.39 U<br>2.46 U                    | 2.39 U<br>2.46 U               |
| 4-Methyl-2-Pentanone                                      | 108-10-1                       | NA             | 2.05 U                         | 2.40 U               | 0.5 U                          | 0.5 U                     | 2.40 U                              | 2.40 U                              | 2.40 U                         |
| Acetone                                                   | 67-64-1                        | NA             | 99.5 DB                        | 7.6 B                | 2.4                            | 2.4                       | 15.2 B                              | 2.05 0<br>24 B                      | 27.1 B                         |
| Allyl Chloride                                            | 107-05-1                       | NA             | 1.57 U                         | 1.57 U               | 0.5 U                          | 0.5 U                     | 1.57 U                              | 1.57 U                              | 1.57 U                         |
| Benzene                                                   | 71-43-2                        | NA             | 0.99 J                         | 0.67 J               | 0.13 J                         | 0.12 J                    | 0.96 J                              | 1.21 J                              | 1.31 J                         |
| Bromodichloromethane                                      | 75-27-4                        | NA             | 3.35 U                         | 3.35 U               | 0.5 U                          | 0.5 U                     | 3.35 U                              | 3.35 U                              | 3.35 U                         |
| Bromoform                                                 | 75-25-2                        | NA             | 5.17 U                         | 5.17 U               | 0.5 U                          | 0.5 U                     | 5.17 U                              | 5.17 U                              | 5.17 U                         |
| Bromomethane                                              | 74-83-9                        | NA             | 1.94 U                         | 1.94 U               | 0.5 U                          | 0.5 U                     | 1.94 U                              | 1.94 U                              | 1.94 U                         |
| Carbon Disulfide                                          | 75-15-0                        | NA             | 1.56 U                         | 1.56 U               | 0.5 U                          | 0.5 U                     | 1.56 U                              | 1.56 U                              | 1.56 U                         |
| Carbon Tetrachloride                                      | 56-23-5                        | NA             | 0.44                           | 0.44                 | 0.09                           | 0.08                      | 0.44                                | 0.5                                 | 0.5                            |
| Chlorobenzene                                             | 108-90-7                       | NA             | 2.3 U                          | 2.3 U                | 0.5 U                          | 0.5 U                     | 2.3 U                               | 2.3 U                               | 2.3 U                          |
| Chlorodibromomethane                                      | 124-48-1                       | NA             | 4.26 U                         | 4.26 U               | 0.5 U                          | 0.5 U                     | 4.26 U                              | 4.26 U                              | 4.26 U                         |
| Chloroethane<br>Chloroform                                | 75-00-3<br>67-66-3             | NA<br>NA       | 1.32 U<br>2.44 U               | 1.32 U<br>2.44 U     | 0.5 U<br>0.5 U                 | 0.5 U<br>0.5 U            | 1.32 U<br>2.44 U                    | 1.32 U<br>0.73 J                    | 1.32 U<br>1.12 J               |
| Chloromethane                                             | 74-87-3                        | NA<br>NA       | 1.26                           | 1.03                 | 0.50                           | 0.50                      | 1.28                                | 1.42                                | 1.12 J                         |
| Cis-1,2-Dichloroethene                                    | 156-59-2                       | NA             | 1.20<br>1.98 U                 | 1.05<br>1.98 U       | 0.5 U                          | 0.5 U                     | 1.98 U                              | 1.98 U                              | 1.91<br>1.98 U                 |
| Cis-1,3-Dichloropropene                                   | 10061-01-5                     | NA             | 2.27 U                         | 2.27 U               | 0.5 U                          | 0.5 U                     | 2.27 U                              | 2.27 U                              | 2.27 U                         |
| Cvclohexane                                               | 110-82-7                       | NA             | 0.76 J                         | 1.72 U               | 0.5 U                          | 0.5 U                     | 1.72 U                              | 1.72 U                              | 1.17 J                         |
| Dichlorodifluoromethane                                   | 75-71-8                        | NA             | 3.41 J                         | 3.66 J               | 0.63                           | 0.61                      | 3.76 J                              | 3.26 J                              | 2.92 J                         |
| Dichloromethane                                           | 75-09-2                        | 60             | 2.54 U                         | 1.91 U               | 1.5 B                          | 3.6 B                     | 2.92 U                              | 4.17 U                              | 1.95 U                         |
| Ethylbenzene                                              | 100-41-4                       | NA             | 3.69                           | 2.17 U               | 0.5 U                          | 0.5 U                     | 0.87 J                              | 0.78 J                              | 1.35 J                         |
| Freon 113                                                 | 76-13-1                        | NA             | 3.83 U                         | 3.83 U               | 0.5 U                          | 0.5 U                     | 3.83 U                              | 3.83 U                              | 3.83 U                         |
| Hexachlorobutadiene                                       | 87-68-3                        | NA             | 5.33 U                         | 5.33 U               | 0.5 U                          | 0.5 U                     | 5.33 U                              | 5.33 U                              | 5.33 U                         |
| m,p-Xylene                                                | 179601-23-1                    | NA             | 16.9                           | 0.69 J               | 1 U                            | 1 U                       | 3.47 J                              | 3.21 J                              | 4.34                           |
| Methyl Methacrylate                                       | 80-62-6                        | NA             | 2.05 U                         | 2.05 U               | 0.5 U                          | 0.5 U                     | 2.05 U                              | 2.05 U                              | 2.05 U                         |
| Methyl T-Butyl Ether                                      | 1634-04-4                      | NA             | 1.8 U                          | 1.8 U                | 0.5 U                          | 0.5 U                     | 1.8 U                               | 1.8 U                               | 1.8 U                          |
| Naphthalene                                               | 91-20-3                        | NA             | 2.62 U                         | 2.62 U               | 0.5 U                          | 0.5 U                     | 1 J                                 | 2.62 U                              | 2.62 U                         |
| N-Heptane<br>N-Hexane                                     | 142-82-5<br>110-54-3           | NA<br>NA       | 2.01 J<br>2.93                 | 0.49 J<br>2.08       | 0.5 U<br>0.5                   | 0.5 U<br>0.59             | 0.78 J<br>3.52                      | 3.69<br>4.23                        | 23.8<br>3.88                   |
| O-Xylene                                                  | 95-47-6                        | NA             | 5.65                           | 2.08<br>2.17 U       | 0.5 U                          | 0.59<br>0.5 U             | 1.48 J                              | 4.25<br>1.17 J                      | 1.35 J                         |
| Styrene                                                   | 100-42-5                       | NA             | 0.89 J                         | 2.17 U               | 0.5 U                          | 0.5 U                     | 2.13 U                              | 1.11 J                              | 1.41 J                         |
| Tert-Butyl Alcohol                                        | 75-65-0                        | NA             | 1.52 U                         | 1.52 U               | 0.5 U                          | 0.5 U                     | 1.52 U                              | 1.52 U                              | 1.52 U                         |
| Tetrachloroethene                                         | 127-18-4                       | 30             | 1.76                           | 0.2 U                | 0.03 U                         | 0.03 U                    | 0.27                                | 0.27                                | 0.47                           |
| Tetrahydrofuran                                           | 109-99-9                       | NA             | 1.70                           | 1.47 U               | 0.5 U                          | 0.5 U                     | 0.59 J                              | 0.8 J                               | 1.47 U                         |
| Toluene                                                   | 108-88-3                       | NA             | 20.4                           | 2.52                 | 0.23 J                         | 1.4 J                     | 5.28                                | 76.1 D                              | 452 D                          |
| Trans-1,2-Dichloroethene                                  | 156-60-5                       | NA             | 1.98 U                         | 1.98 U               | 0.5 U                          | 0.5 U                     | 1.98 U                              | 1.98 U                              | 1.98 U                         |
| Trans-1,3-Dichloropropene                                 | 10061-02-6                     | NA             | 2.27 U                         | 2.27 U               | 0.5 U                          | 0.5 U                     | 2.27 U                              | 2.27 U                              | 2.27 U                         |
| Trichloroethylene                                         | 79-01-6                        | 2              | 0.38                           | 0.16 U               | 0.06                           | 0.03 U                    | 0.86                                | 0.16 U                              | 0.16 U                         |
|                                                           |                                | A/A            | 4 05 1                         | 1 25 1               | 0.071                          | 0.261                     | 1 46 1                              | 1.46 J                              | 1 4 1                          |
| Trichlorofluoromethane                                    | 75-69-4                        | NA             | 1.35 J                         | 1.35 J               | 0.27 J                         | 0.26 J                    | 1.46 J                              |                                     | 1.4 J                          |
| Trichlorofluoromethane<br>Vinyl Bromide<br>Vinyl Chloride | 75-69-4<br>593-60-2<br>75-01-4 | NA<br>NA<br>NA | 1.35 J<br>2.19 U<br>0.08 U     | 2.19 U<br>0.08 U     | 0.27 J<br>0.5 U<br>0.03 U      | 0.26 J<br>0.5 U<br>0.03 U | 2.19 U<br>0.08 U                    | 2.19 U<br>0.08 U                    | 2.19 U<br>0.08 U               |



### Table 7 - Sub-Slab Gas and Ambient Air Sample Results Summary Former Hall Welter Site, NYSDEC Site Number: 828194 Rochester, Monroe County, New York

|                                             | Sample Type        |                 |                                |                                  | Sub-Slab Soil Vapor Samples Outdoor Ambie |                                     |                                     |                                     |                                     |                                     |                                     | ir                                  |                                     |
|---------------------------------------------|--------------------|-----------------|--------------------------------|----------------------------------|-------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
|                                             | Location ID        | NYSDOH Sub-     | SVI201                         | SVI                              |                                           | SVI202                              | SVI205                              | SVI207                              | SVI201                              | SVI202                              | SVI203                              | SVI203                              | SVI207                              |
|                                             |                    | Slab Vapor      | SV1201-SS1                     | - SV120                          | -SS2-                                     | SV1202-SS-                          | SV1205-SS-                          | SV1207-SS-                          | SV1201-0A-                          | SV1202-0A-                          | SV1203-0A-                          | SVI-OA1-                            | SV1207-0A-                          |
|                                             | Sample ID          | Concentration   | 20180227-                      |                                  |                                           | 20180227-                           | 20180227-                           | 20180227-                           | 20180227-                           | 20180227-                           | 20180301-                           | 20181219-                           | 20180227-                           |
|                                             |                    | Decision Matrix | 20180227                       | 2018                             |                                           | 20180227                            | 20180227                            | 20180227                            | 20180227                            | 20180227                            | 20180301                            | 20181220                            | 20180227                            |
|                                             | Sample Date        | (minimum action | 2/27/2018                      |                                  |                                           | 2/27/2018                           | 2/27/2018                           | 2/27/2018                           | 2/27/2018                           | 2/27/2018                           | 3/1/2018                            | 12/20/2018                          | 2/27/2018                           |
| Analyte                                     | Cas No.            | level) (1)      | Result<br>(ug/m <sup>3</sup> ) | ua. Result<br>(ug/m <sup>3</sup> | Qua.                                      | Result<br>(ug/m <sup>3</sup> ) Qua. | Result<br>(ug/m <sup>3</sup> ) Qua. | Result<br>(ug/m <sup>3</sup> ) Qua. | Result<br>(ug/m <sup>3</sup> ) Qua. | Result<br>(ug/m <sup>3</sup> ) Qua. | Result<br>(ug/m <sup>3</sup> ) Qua. | Result<br>(ug/m <sup>3</sup> ) Qua. | Result<br>(ug/m <sup>3</sup> ) Qua. |
| 1,1,1-Trichloroethane                       | 71-55-6            | 100             | 6                              |                                  | 55                                        | 0.16 U                              | 1.42                                | 0.16 U                              | 0.16 U                              | 0.16 U                              | 0.16 U                              | 0.03 U                              | 0.16 U                              |
| 1,1,2,2-Tetrachloroethane                   | 79-34-5            | NA              | 3.43 U                         |                                  | 43 U                                      | 3.43 U                              | 3.43 U                              | 3.43 U                              | 3.43 U                              | 3.43 U                              | 3.43 U                              | 0.5 U                               | 3.43 U                              |
| 1,1,2-Trichloroethane<br>1,1-Dichloroethane | 79-00-5<br>75-34-3 | NA<br>NA        | 2.73 U<br>2.02 U               |                                  | 73 U<br>02 U                              | 2.73 U<br>2.02 U                    | 2.73 U<br>2.02 U                    | 2.73 U<br>2.02 U                    | 2.73 U<br>2.02 U                    | 2.73 U<br>2.02 U                    | 2.73 U<br>2.02 U                    | 0.5 U<br>0.5 U                      | 2.73 U<br>2.02 U                    |
| 1,1-Dichloroethane                          | 75-34-3            | <br>6           | 2.02 U<br>1.98 U               |                                  | 98 U                                      | 1.98 U                              | 1.98 U                              | 1.98 U                              | 1.98 U                              | 1.98 U                              | 1.98 U                              | 0.5 U                               | 1.98 U                              |
| 1,2,4-Trichlorobenzene                      | 120-82-1           | NA              | 3.71 U                         |                                  | 71 U                                      | 3.71 U                              | 3.71 U                              | 3.71 U                              | 3.71 U                              | 3.71 U                              | 3.71 U                              | 0.5 U                               | 3.71 U                              |
| 1,2,4-Trimethylbenzene                      | 95-63-6            | NA              | 2.46 U                         |                                  | 59 J                                      | 2.46 U                              | 2.46 U                              | 0.93 J                              | 2.46 U                              | 2.46 U                              | 2.46 U                              | 0.5 U                               | 1.08 J                              |
| 1,2-Dibromoethane                           | 106-93-4           | NA              | 3.84 U                         |                                  | 84 U                                      | 3.84 U                              | 3.84 U                              | 3.84 U                              | 3.84 U                              | 3.84 U                              | 3.84 U                              | 0.5 U                               | 3.84 U                              |
| 1,2-Dichlorobenzene                         | 95-50-1            | NA              | 3.01 U                         |                                  | 01 U                                      | 3.01 U                              | 3.01 U                              | 3.01 U                              | 3.01 U                              | 3.01 U                              | 3.01 U                              | 0.5 U                               | 3.01 U                              |
| 1,2-Dichloroethane                          | 107-06-2           | NA              | 2.02 U                         |                                  | 02 U                                      | 2.02 U                              | 2.02 U                              | 2.02 U                              | 2.02 U                              | 2.02 U                              | 2.02 U                              | 0.5 U                               | 2.02 U                              |
| 1,2-Dichloropropane                         | 78-87-5            | NA              | 2.31 U                         |                                  | 31 U                                      | 2.31 U                              | 2.31 U                              | 2.31 U                              | 2.31 U                              | 2.31 U                              | 2.31 U                              | 0.5 U                               | 2.31 U                              |
| 1,2-Dichlorotetrafluoroethane               | e 76-14-2          | NA              | 3.49 U                         | 3.                               | 49 U                                      | 3.49 U                              | 3.49 U                              | 3.49 U                              | 3.49 U                              | 3.49 U                              | 3.49 U                              | 0.5 U                               | 3.49 U                              |
| 1,3,5-Trimethylbenzene                      | 108-67-8           | NA              | 2.46 U                         |                                  | 46 U                                      | 2.46 U                              | 2.46 U                              | 2.46 U                              | 2.46 U                              | 2.46 U                              | 2.46 U                              | 0.5 U                               | 2.46 U                              |
| 1,3-Butadiene                               | 106-99-0           | NA              | 1.11 U                         | 1                                | 11 U                                      | 1.11 U                              | 1.11 U                              | 1.11 U                              | 1.11 U                              | 1.11 U                              | 1.11 U                              | 0.5 U                               | 1.11 U                              |
| 1,3-Dichlorobenzene                         | 541-73-1           | NA              | 3.01 U                         |                                  | 01 U                                      | 3.01 U                              | 3.01 U                              | 3.01 U                              | 3.01 U                              | 3.01 U                              | 3.01 U                              | 0.5 U                               | 3.01 U                              |
| 1,4-Dichlorobenzene                         | 106-46-7           | NA              | 3.01 U                         |                                  | 01 U                                      | 3.01 U                              | 3.01 U                              | 3.01 U                              | 3.01 U                              | 3.01 U                              | 3.01 U                              | 0.5 U                               | 3.01 U                              |
| 1,4-Dioxane                                 | 123-91-1           | NA              | 1.8 U                          |                                  | .8 U                                      | 1.8 U                               | 1.8 U                               | 1.8 U                               | 1.8 U                               | 1.8 U                               | 1.8 U                               | 0.5 U                               | 1.8 U                               |
| 2,2,4-Trimethylpentane                      | 540-84-1           | NA              | 2.66                           |                                  | 46                                        | 7.94                                | 6.54                                | 5.6                                 | 2.34 U                              | 2.34 U                              | 2.34 U                              | 0.14 J                              | 0.61 J                              |
| 2-Butanone                                  | 78-93-3            | NA              | 8.26                           | 4                                |                                           | 1.53                                | 7.08                                | 11.2                                | 0.74 J                              | 0.68 J                              | 1.47 U                              | 0.23 J                              | 1.18 J                              |
| 2-Chlorotoluene                             | 95-49-8            | NA              | 2.59 U                         |                                  | 59 U                                      | 2.59 U                              | 2.59 U                              | 2.59 U                              | 2.59 U                              | 2.59 U                              | 2.59 U                              | 0.5 U                               | 2.59 U                              |
| 4-Ethyltoluene                              | 622-96-8           | NA              | 2.46 U                         |                                  | 46 U                                      | 2.46 U                              | 2.46 U                              | 2.46 U                              | 2.46 U                              | 2.46 U                              | 2.46 U                              | 0.5 U                               | 2.46 U                              |
| 4-Methyl-2-Pentanone                        | 108-10-1           | NA              | 2.95                           |                                  | .5                                        | 2.05 U                              | 6.97                                | 2.05 U                              | 2.05 U                              | 2.05 U                              | 2.05 U                              | 0.5 U                               | 2.05 U                              |
| Acetone                                     | 67-64-1            | NA              | 53.2 DE                        |                                  | .3 DB                                     | 13.5 J                              | 36.1 DB                             | 35.2 J                              | 7.13 B                              | 5.7 B                               | 4.75 B                              | 5.1                                 | 6.18 B                              |
| Allyl Chloride                              | 107-05-1           | NA<br>NA        | 1.57 U                         |                                  | 57 U<br>75                                | 1.57 U<br>1.12 J                    | 1.57 U<br>3.51                      | 1.57 U<br>1.57 J                    | 1.57 U<br>0.67 J                    | 1.57 U<br>0.64 J                    | 1.57 U<br>0.45 J                    | 0.5 U                               | 1.57 U<br>0.77 J                    |
| Benzene<br>Bromodichloromethane             | 71-43-2<br>75-27-4 | NA<br>NA        | 1.25 J<br>3.35 U               |                                  | 75<br>35 U                                | 3.35 U                              | 3.35 U                              | 3.35 U                              | 3.35 U                              | 3.35 U                              | 3.35 U                              | 0.47 J<br>0.5 U                     | 3.35 U                              |
| Bromoform                                   | 75-25-2            | <br>NA          | 5.17 U                         |                                  | 17 U                                      | 5.17 U                              | 5.17 U                              | 5.17 U                              | 5.17 U                              | 5.17 U                              | 5.17 U                              | 0.5 U                               | 5.17 U                              |
| Bromomethane                                | 74-83-9            | NA              | 1.94 U                         |                                  | 94 U                                      | 1.94 U                              | 1.94 U                              | 1.94 U                              | 1.94 U                              | 1.94 U                              | 1.94 U                              | 0.5 U                               | 1.94 U                              |
| Carbon Disulfide                            | 75-15-0            | NA              | 1.4 J                          |                                  | 36                                        | 0.75 J                              | 15.9                                | 1.49 J                              | 1.56 U                              | 1.56 U                              | 1.56 U                              | 0.5 U                               | 1.56 U                              |
| Carbon Tetrachloride                        | 56-23-5            | 6               | 0.25                           | 0                                |                                           | 0.19 U                              | 0.31                                | 0.44                                | 0.44                                | 0.44                                | 0.44                                | 0.08                                | 0.44                                |
| Chlorobenzene                               | 108-90-7           | NA              | 2.3 U                          |                                  | .3 U                                      | 2.3 U                               | 2.3 U                               | 2.3 U                               | 2.3 U                               | 2.3 U                               | 2.3 U                               | 0.5 U                               | 2.3 U                               |
| Chlorodibromomethane                        | 124-48-1           | NA              | 4.26 U                         | 4                                | 26 U                                      | 4.26 U                              | 4.26 U                              | 4.26 U                              | 4.26 U                              | 4.26 U                              | 4.26 U                              | 0.5 U                               | 4.26 U                              |
| Chloroethane                                | 75-00-3            | NA              | 1.32 U                         | 1.                               | 32 U                                      | 1.32 U                              | 1.32 U                              | 1.08 J                              | 1.32 U                              | 1.32 U                              | 1.32 U                              | 0.5 U                               | 1.32 U                              |
| Chloroform                                  | 67-66-3            | NA              | 9.28                           |                                  | 2 J                                       | 2.44 U                              | 19                                  | 4.83                                | 2.44 U                              | 2.44 U                              | 2.44 U                              | 0.5 U                               | 2.44 U                              |
| Chloromethane                               | 74-87-3            | NA              | 1.26                           | 1.                               | 03 U                                      | 1.03 U                              | 1.03 U                              | 12.8                                | 1.09                                | 1.03                                | 1.09                                | 0.69                                | 1.32                                |
| Cis-1,2-Dichloroethene                      | 156-59-2           | 6               | 112 D                          |                                  | 98 U                                      | 1.98 U                              | 2.54                                | 1.98 U                              | 1.98 U                              | 1.98 U                              | 1.98 U                              | 0.5 U                               | 1.98 U                              |
| Cis-1,3-Dichloropropene                     | 10061-01-5         | NA              | 2.27 U                         |                                  | 27 U                                      | 2.27 U                              | 2.27 U                              | 2.27 U                              | 2.27 U                              | 2.27 U                              | 2.27 U                              | 0.5 U                               | 2.27 U                              |
| Cyclohexane                                 | 110-82-7           | NA              | 0.83 J                         |                                  | 88                                        | 8.95                                | 3.1                                 | 2.51                                | 1.72 U                              | 1.72 U                              | 1.72 U                              | 0.5 U                               | 1.72 U                              |
| Dichlorodifluoromethane                     | 75-71-8            | NA              | 1.98 J                         |                                  | 13 J                                      | 1.93 J                              | 2.18 J                              | 1.78 J                              | 3.16 J                              | 3.41 J                              | 3.12 J                              | 0.61                                | 3.21 J                              |
| Dichloromethane                             | 75-09-2            | 100             | 2.12                           |                                  | 25                                        | 2.5                                 | 1.49 J                              | 4.52                                | 1.91 U                              | 2.92 U                              | 1.74 U                              | 4.1 B                               | 1.74 U                              |
| Ethylbenzene                                | 100-41-4           | NA              | 0.87 J                         |                                  | 43 J                                      | 0.87 J                              | 1.74 J                              | 1.22 J                              | 2.17 U                              | 2.17 U                              | 2.17 U                              | 0.5 U                               | 2.17 U                              |
| Freon 113<br>Hexachlorobutadiene            | 76-13-1<br>87-68-3 | NA<br>NA        | 3.83 U<br>5.33 U               |                                  | 83 U<br>33 U                              | 3.83 U<br>5.33 U                    | 0.61 J<br>5.33 U                    | 3.83 U<br>5.33 U                    | 3.83 U<br>5.33 U                    | 3.83 U<br>5.33 U                    | 3.83 U<br>5.33 U                    | 0.5 U<br>0.5 U                      | 3.83 U<br>5.33 U                    |
| m,p-Xylene                                  | 179601-23-1        | NA<br>NA        | 5.33 U<br>3 J                  |                                  | 95<br>95                                  | 2.95 J                              | 5.33 0                              | 4.13 J                              | 0.74 J                              | 0.65 J                              | 4.34 U                              | 0.5 0                               | 0.78 J                              |
| m,p-xylene<br>Methyl Methacrylate           | 80-62-6            | NA<br>NA        | 2.05 U                         |                                  | 95<br>05 U                                | 2.95 J<br>2.05 U                    | 2.05 U                              | 2.05 U                              | 2.05 U                              | 2.05 U                              | 2.05 U                              | 0.27 J                              | 2.05 U                              |
| Methyl T-Butyl Ether                        | 1634-04-4          | NA<br>NA        | 1.8 U                          |                                  | .8U                                       | 1.8 U                               | 1.8 U                               | 1.8 U                               | 1.8 U                               | 2.05 U                              | 1.8 U                               | 0.5 U                               | 1.8 U                               |
| Naphthalene                                 | 91-20-3            | NA              | 2.62 U                         |                                  | 52 U                                      | 2.62 U                              | 2.62 U                              | 2.62 U                              | 2.62 U                              | 2.62 U                              | 2.62 U                              | 0.5 U                               | 2.62 U                              |
| N-Heptane                                   | 142-82-5           | NA              | 1.8 J                          |                                  | .1                                        | 3.16                                | 6.97                                | 4.92                                | 2.02 U                              | 0.41 J                              | 2.02 U                              | 0.5 U                               | 2.02 U                              |
| N-Hexane                                    | 110-54-3           | NA              | 4.58                           |                                  | .2                                        | 7.4                                 | 10.2                                | 5.99                                | 1.9                                 | 2.5                                 | 0.92 J                              | 1.3                                 | 2.47                                |
| O-Xylene                                    | 95-47-6            | NA              | 1.87 J                         |                                  | 78                                        | 2.48                                | 3.3                                 | 2 J                                 | 2.17 U                              | 2.17 U                              | 2.17 U                              | 0.1 J                               | 2.17 U                              |
| Styrene                                     | 100-42-5           | NA              | 1.66 J                         |                                  | 45 J                                      | 1.92 J                              | 2.64                                | 1.79 J                              | 2.13 U                              | 2.13 U                              | 2.13 U                              | 0.5 U                               | 2.13 U                              |
| Tert-Butyl Alcohol                          | 75-65-0            | NA              | 3.94 J                         | 3                                | 33 J                                      | 1.09 J                              | 2.46 J                              | 2.61 J                              | 1.52 U                              | 1.52 U                              | 1.52 U                              | 0.5 U                               | 1.52 U                              |
| Tetrachloroethene                           | 127-18-4           | 100             | 67.8                           |                                  | 37                                        | 0.2 U                               | 9.49                                | 10.2                                | 0.2 U                               | 0.2 U                               | 0.2 U                               | 0.03 U                              | 0.2 U                               |
| Tetrahydrofuran                             | 109-99-9           | NA              | 1.47 U                         |                                  | 56 J                                      | 1.47 U                              | 0.5 U                               | 1.47 U                              |
| Toluene                                     | 108-88-3           | NA              | 4.52                           |                                  | .1                                        | 4.15                                | 11.7                                | 18.8                                | 1.77 J                              | 2.37                                | 0.72 J                              | 5.7                                 | 2.98                                |
| Trans-1,2-Dichloroethene                    | 156-60-5           | NA              | 9.52                           |                                  | 98 U                                      | 1.98 U                              | 1.98 U                              | 1.98 U                              | 1.98 U                              | 1.98 U                              | 1.98 U                              | 0.5 U                               | 1.98 U                              |
| Trans-1,3-Dichloropropene                   | 10061-02-6         | NA              | 2.27 U                         |                                  | 27 U                                      | 2.27 U                              | 2.27 U                              | 2.27 U                              | 2.27 U                              | 2.27 U                              | 2.27 U                              | 0.5 U                               | 2.27 U                              |
| Trichloroethylene                           | 79-01-6            | 6               | 3170 D                         |                                  | 93 D                                      | 0.16 U                              | 407 D                               | 0.32                                | 0.16 U                              | 0.16 U                              | 0.16 U                              | 0.03 U                              | 0.16 U                              |
| Trichlorofluoromethane                      | 75-69-4            | NA              | 1.29 J                         |                                  | 18 J                                      | 1.12 J                              | 1.57 J                              | 1.18 J                              | 1.29 J                              | 1.29 J                              | 1.29 J                              | 0.28 J                              | 1.29 J                              |
| Vinyl Bromide                               | 593-60-2           | NA              | 2.19 U                         |                                  | 19 U                                      | 2.19 U                              | 2.19 U                              | 2.19 U                              | 2.19 U                              | 2.19 U                              | 2.19 U                              | 0.5 U                               | 2.19 U                              |
| Vinyl Chloride                              | 75-01-4            | 6               | 0.08 U                         | 0.                               | 08 U                                      | 0.08 U                              | 0.08 U                              | 0.08 U                              | 0.08 U                              | 0.08 U                              | 0.08 U                              | 0.03 U                              | 0.08 U                              |

#### Table 7 - Sub-Slab Gas and Ambient Air Sample Results Summary Former Hall Welter Site, NYSDEC Site Number: 828194 Rochester, Monroe County, New York

Notes:

- NYSDOH New York State Department of Health
- NA Not Available
- ug/m3 Micrograms per cubic meter
  - U Analytical Non-Detect Value
  - J Estimated Analytical Value
  - B Analyte is found in associated blank sample
  - D Analyte identified in an analysis at a secondary dilation factor.
- 0.38 Results that are **bold** exceed the NYSDOH guidance values for evaluating soil vapor intrusion.
- (1) NYSDOH, Guidance for Evaluating Soil Vapor Intrusion in the State of New York. Soil Vapor/Indoor Air Matrix A, B & C as of May 2017 [Note: This Guidance uses a combination of indoor air and sub-slab soil vapor when comparing to the matrices.
- (2) NYSDOH, Guidance for Evaluating Soil Vapor Intrusion in the State of New York. Table 3.1 Air Guidline values derived by the NYSDOH, new ambient air guideline for trichloroethene (August 2015) and tetrachloroethene (September 2013).

|                                      |                    |                                  | Location ID                           | BW2               | -      | BW201                     | BW201                     |      | BW202                   |     | BW202                   |       | BW202                     | MW201                    | MW2               | -       | MW20              |          | MW202                   | MW202                   | MW20              |            |
|--------------------------------------|--------------------|----------------------------------|---------------------------------------|-------------------|--------|---------------------------|---------------------------|------|-------------------------|-----|-------------------------|-------|---------------------------|--------------------------|-------------------|---------|-------------------|----------|-------------------------|-------------------------|-------------------|------------|
|                                      |                    |                                  | Comula ID                             | BW201-:           | 1.5-2- | BW201-8.5-9.5-1-          | BW201-8.5-9               | 9.5- | BW202-0.5-1             | L-  | BW202-11-:              | 12-1- | BW202-11-12-              | MW201-0.5-1-             | MW201-1           | 5.5-16- | MW201-8           | .5-9-    | MW202-0.5-1-            | MW202-9.5-10-           | SB203-0           | ).5-1-     |
|                                      |                    |                                  | Sample ID                             | 20180             |        | 20180529                  | 20180529                  |      | 20180516                |     | 2018052                 |       | 20180524                  | 20180515                 | 20180             | -       | 201805            |          | 20180516                | 20180525                | 201805            |            |
|                                      |                    |                                  | Sample Date                           | 5/16/2            |        | 5/29/2018                 | 5/29/201                  | -    | 5/16/2018               | ;   | 5/24/20                 | -     | 5/24/2018                 | 5/15/2018                | 5/21/2            |         | 5/21/20           |          | 5/16/2018               | 5/25/2018               | 5/15/2            |            |
|                                      |                    |                                  | Start Depth (ft bgs)                  | 1.5 -             | 2      | 8.5 - 9.5                 | 8.5 - 9.5                 |      | 0.5 - 1                 |     | 11 - 12                 | 2     | 11 - 12                   | 0.5 - 1                  | 15.5 -            | 16      | 8.5 -             | 9        | 0.5 - 1                 | 9.5 - 10                | 0.5 -             | 1          |
| Analyte                              | Cas No.            | PART375REST -<br>POGW<br>(mg/kg) | PART375REST-<br>COMMERCIAL<br>(mg/kg) | Result<br>(mg/kg) | Qua.   | Result<br>(mg/kg) Qua.    | Result<br>(mg/kg)         | Qua. | Result<br>(mg/kg)       | בוו | Result<br>(mg/kg)       | Qua.  | Result<br>(mg/kg) Qua.    | Result<br>(mg/kg) Qua.   | Result<br>(mg/kg) | Qua.    | Result<br>(mg/kg) | Qua.     | Result<br>(mg/kg) Qua.  | Result<br>(mg/kg) Qua.  | Result<br>(mg/kg) | Qua.       |
| ,1,1-Trichloroethane                 | 71-55-6            | 0.68                             | 500                                   | < 0.0037          | 7 U    | < 0.0039 UJ               | < 0.0040 U                | J    | < 0.0077 U              |     | < 0.0044 U              | JJ    | < 0.0050 UJ               | < 0.0043 U               | < 0.003           | 7 U     | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          | 00         |
| 1,2,2-Tetrachloroethane              | 79-34-5            | NA                               | NA                                    | < 0.0037          | 7 U    | < 0.0039 UJ               | < 0.0040 UJ               | J    | < 0.0077 U              |     | < 0.0044 L              | JJ    | < 0.0050 UJ               | < 0.0043 U               | < 0.003           | 7 U     | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          | δU         |
| 1,2-Trichloroethane                  | 79-00-5            | NA                               | NA                                    | < 0.0037          | 7 U    | < 0.0039 UJ               | < 0.0040 UJ               | ]    | < 0.0077 U              |     | < 0.0044 L              | JJ    | < 0.0050 UJ               | < 0.0043 U               | < 0.003           | 7 U     | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          | งบ         |
| 1-Dichloroethane                     | 75-34-3            | 0.27                             | 240                                   | < 0.0037          | 'U     | < 0.0039 UJ               | < 0.0040 UJ               | ]    | < 0.0077 U              |     | < 0.0044 L              | JJ    | < 0.0050 UJ               | < 0.0043 U               | < 0.003           | 7 U     | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          | งบ         |
| 1-Dichloroethene                     | 75-35-4            | 0.33                             | 500                                   | < 0.0037          |        | < 0.0039 UJ               | < 0.0040 UJ               |      | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           |         | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| 2,4-Trichlorobenzene                 | 120-82-1           | NA                               | NA                                    | < 0.0037          |        | < 0.0039 UJ               | < 0.0040 UJ               |      | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           | 7 U     | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| 2-Dibromo-3-chloropropane (DBCP)     | 96-12-8            | NA                               | NA                                    | < 0.0037          |        | < 0.0039 UJ               | < 0.0040 UJ               |      | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           |         | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| 2-Dibromoethane (Ethylene dibromide) | 106-93-4           | NA                               | NA                                    | < 0.0037          | -      | < 0.0039 UJ               | < 0.0040 UJ               |      | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           | -       | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| 2-Dichlorobenzene                    | 95-50-1            | 1.1                              | 500                                   | < 0.0037          |        | < 0.0039 UJ               | < 0.0040 UJ               |      | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           |         | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| 2-Dichloroethane                     | 107-06-2           | 0.02                             | 30                                    | < 0.0037          | -      | < 0.0039 UJ               | < 0.0040 UJ               |      | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           | -       | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| 2-Dichloropropane                    | 78-87-5            | NA                               | NA                                    | < 0.0037          |        | < 0.0039 UJ               | < 0.0040 UJ               |      | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           | -       | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| ,3-Dichlorobenzene                   | 541-73-1           | 2.4                              | 280                                   | < 0.0037          |        | < 0.0039 UJ               | < 0.0040 UJ               |      | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           |         | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| ,4-Dichlorobenzene                   | 106-46-7           | 1.8                              | 130                                   | < 0.0037          |        | < 0.0039 UJ               | < 0.0040 UJ               |      | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           | -       | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| Butanone                             | 78-93-3            | 0.12                             | 500                                   | < 0.018           |        | < 0.019 UJ                | < 0.02 U                  |      | < 0.039 U               |     | < 0.022 L               |       | < 0.025 UJ                | < 0.021 U                | < 0.01            |         | < 0.02            | <u>U</u> | < 0.025 U               | < 0.024 U               | < 0.02            |            |
| -Hexanone                            | 591-78-6           | NA                               | NA                                    | < 0.018           |        | < 0.019 UJ                | < 0.02 U                  |      | < 0.039 U               |     | < 0.022 L               |       | < 0.025 UJ                | < 0.021 U                | < 0.019           |         | < 0.02            | 0        | < 0.025 U               | < 0.024 U               | < 0.02            |            |
| -Methyl-2-Pentanone                  | 108-10-1           | NA                               | NA                                    | < 0.018           |        | < 0.019 UJ                | < 0.02 UJ                 |      | < 0.039 U               |     | < 0.022                 |       | < 0.025 UJ                | < 0.021 U                | < 0.019           |         | < 0.02            | 0        | < 0.025 U               | < 0.024 U               | < 0.02            |            |
| cetone                               | 67-64-1<br>71-43-2 | 0.05                             | 500<br>44                             | < 0.019           | -      | < 0.036 UJ<br>< 0.0039 UJ | < 0.036 UJ<br>< 0.0040 UJ |      | < 0.039 U<br>< 0.033 U  |     | < 0.046 L<br>< 0.0044 L |       | < 0.036 UJ<br>< 0.0050 UJ | < 0.021 U<br>< 0.0043 U  | < 0.03            |         | < 0.028           | 0        | < 0.025 U<br>< 0.0049 U | < 0.045 U<br>< 0.0047 U | < 0.02            |            |
| enzene<br>romodichloromethane        |                    | 0.06<br>NA                       | H44<br>NA                             | < 0.0037          | -      | < 0.0039 UJ               | < 0.0040 UJ               |      | < 0.033 U<br>< 0.0077 U |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U<br>< 0.0043 U | < 0.003           | -       | < 0.00021         | J        | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| romotorm                             | 75-27-4<br>75-25-2 | NA                               | NA                                    | < 0.0037          | -      | < 0.0039 UJ               | < 0.0040 UJ               |      | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U<br>< 0.0043 U | < 0.003           | -       | < 0.0040          |          | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| romomethane                          | 73-23-2            | NA                               | NA                                    | < 0.0037          |        | < 0.0039 UJ               | < 0.0040 UJ               |      | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           | -       | < 0.0040          |          | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| arbon Disulfide                      | 75-15-0            | NA                               | NA                                    | < 0.0037          | -      | < 0.0039 UJ               | < 0.0040 UJ               |      | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           | -       | < 0.0040          | <u> </u> | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| arbon Tetrachloride                  | 56-23-5            | 0.76                             | 22                                    | < 0.0037          |        | < 0.0039 UJ               | < 0.0040 U                |      | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           |         | < 0.0040          | <u> </u> | < 0.0019 U              | < 0.0017 U              | < 0.0040          |            |
| hlorobenzene                         | 108-90-7           | 1.1                              | 500                                   | < 0.0037          |        | < 0.0039 UJ               | < 0.0040 U                |      | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           | -       | < 0.0040          | <u>u</u> | < 0.0019 U              | < 0.0017 U              | < 0.0040          |            |
| hlorodibromomethane                  | 124-48-1           | NA                               | NA                                    | < 0.0037          |        | < 0.0039 UJ               | < 0.0040 U                |      | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           | -       | < 0.0040          | U<br>U   | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| hloroethane                          | 75-00-3            | NA                               | NA                                    | < 0.0037          |        | < 0.0039 UJ               | < 0.0040 U                |      | < 0.0077 U              |     | < 0.0044 U              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           |         | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| hloroform                            | 67-66-3            | 0.37                             | 350                                   | < 0.0037          |        | < 0.0039 UJ               | < 0.0040 U                | ]    | < 0.0077 U              |     | < 0.0044 U              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           |         | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          | 00         |
| Chloromethane                        | 74-87-3            | NA                               | NA                                    | < 0.0037          | -      | < 0.0039 UJ               | < 0.0040 U                |      | < 0.0077 U              |     | < 0.0044 U              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           | -       | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| Cis-1,2-Dichloroethene               | 156-59-2           | 0.25                             | 500                                   | < 0.0037          | νU     | 0.00062 JL                | < 0.0040 UJ               | J    | < 0.0077 U              |     | 0.0042 J                | JL    | 0.0064 JL                 | < 0.0043 U               | 0.06              | 5       | 0.019             | -        | < 0.0049 U              | < 0.0047 U              | < 0.0040          | งบ         |
| is-1,3-Dichloropropene               | 10061-01-5         | NA                               | NA                                    | < 0.0037          | 'U     | < 0.0039 UJ               | < 0.0040 UJ               | J    | < 0.0077 U              |     | < 0.0044 L              | JJ    | < 0.0050 UJ               | < 0.0043 U               | < 0.003           | 7 U     | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          | งบ         |
| Cyclohexane                          | 110-82-7           | NA                               | NA                                    | < 0.0037          | 'U     | < 0.0039 UJ               | < 0.0040 UJ               | I    | < 0.0077 U              |     | < 0.0044 L              | JJ    | < 0.0050 UJ               | < 0.0043 U               | < 0.003           | 7 U     | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          | งบ         |
| Dichlorodifluoromethane              | 75-71-8            | NA                               | NA                                    | < 0.0037          | 'U     | < 0.0039 UJ               | < 0.0040 UJ               | J    | < 0.0077 U              |     | < 0.0044 L              | JJ    | < 0.0050 UJ               | < 0.0043 U               | < 0.003           | 7 U     | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          | <u>ງ</u> U |
| Dichloromethane                      | 75-09-2            | 0.05                             | 500                                   | < 0.0037          |        | < 0.0039 UJ               | < 0.0040 UJ               |      | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           |         | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| thylbenzene                          | 100-41-4           | 1                                | 390                                   | < 0.0037          |        | < 0.0039 UJ               | < 0.0040 UJ               |      | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           |         | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| reon 113                             | 76-13-1            | NA                               | NA                                    | < 0.0037          |        | < 0.0039 UJ               | < 0.0040 UJ               |      | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           | -       | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| opropyl benzene                      | 98-82-8            | NA                               | NA                                    | < 0.0037          |        | < 0.0039 UJ               | < 0.0040 UJ               |      | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           | -       | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| lethyl acetate                       | 79-20-9            | NA                               | NA                                    | < 0.018           | -      | < 0.019 UJ                | < 0.02 UJ                 |      | < 0.039 U               |     | < 0.022 L               |       | < 0.025 UJ                | < 0.021 U                | < 0.01            | -       | < 0.02            | U        | < 0.025 U               | < 0.024 U               | < 0.02            |            |
| ethyl T-Butyl Ether (MTBE)           | 1634-04-4          | 0.93                             | 500                                   | < 0.0037          |        | < 0.0039 UJ               | < 0.0040 UJ               |      | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           | -       | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| ethylcyclohexane                     | 108-87-2           | NA                               | NA                                    | < 0.0037          | -      | < 0.0039 UJ               | < 0.0040 UJ               |      | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           | -       | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| yrene                                | 100-42-5           | NA                               | NA                                    | < 0.0037          |        | < 0.0039 UJ               | < 0.0040 UJ               |      | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           |         | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| trachloroethene                      | 127-18-4           | 1.3                              | 150                                   | < 0.0037          |        | < 0.0039 UJ               | < 0.0040 UJ               |      | < 0.0077 U              |     | 0.091 J                 |       | 0.11 JL                   | < 0.0043 U               | < 0.003           |         | 0.00076           | ]        | < 0.0049 U              | 0.015                   | < 0.0040          |            |
| luene                                | 108-88-3           | 0.7                              | 500                                   | < 0.0037          | -      | < 0.0039 UJ               | < 0.0040 UJ               |      | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           | -       | 0.00043           | J        | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| ans-1,2-Dichloroethene               | 156-60-5           | 0.19                             | 500                                   | < 0.0037          |        | 0.00041 JL                | < 0.0040 UJ               |      | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U               | 0.005             |         | 0.0036            | J        | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| ans-1,3-Dichloropropene              | 10061-02-6         | NA                               | NA                                    | < 0.0037          |        | < 0.0039 UJ               | < 0.0040 UJ               | I    | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           |         | < 0.0040          | U        | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| ichloroethylene                      | 79-01-6            | 0.47                             | 200                                   | < 0.0037          |        | 0.0031 JL                 | 0.0018 JL                 |      | 0.15                    |     | 0.12 J                  |       | 0.16 JL                   | < 0.0043 U               | 0.070             |         | 0.094             |          | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| ichlorofluoromethane                 | 75-69-4            | NA                               | NA<br>12                              | < 0.0037          |        | < 0.0039 UJ               | < 0.0040 UJ               |      | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U               | < 0.003           |         | < 0.0040          | <u>U</u> | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| nyl Chloride                         | 75-01-4            | 0.02                             | 13                                    | < 0.0037          | -      | < 0.0039 UJ               | < 0.0040 UJ               |      | < 0.0077 U              |     | < 0.0044 L              |       | < 0.0050 UJ               | < 0.0043 U               | 0.0004            | -       | < 0.0040          | <u>U</u> | < 0.0049 U              | < 0.0047 U              | < 0.0040          |            |
| ylenes, Total                        | XYLENES            | NA                               | NA                                    | < 0.0073          | υ      | < 0.0077 UJ               | < 0.0080 UJ               | J    | < 0.015 U               |     | < 0.0089 L              | JJ    | < 0.01 UJ                 | < 0.0085 U               | < 0.007           | มป      | < 0.0079          | U        | < 0.0098 U              | < 0.0095 U              | < 0.0081          | TIU        |

ft bgs Feet below ground surface ID Identification

mg/kg Milligrams per kilogram NA Not available

No. Number PART375REST - POGW 6 New York Codes, Rules and Regulations Part 375 -Protection of Groundwater PART375REST- COMMERCIAL 6 New York Codes, Rules and Regulations Part 375 -

Commercial

- Qua. Qualifier VOCs Volatile organic compounds B Analyte found in associated blank sample J Estimated analytical value JL Definition not known

R Rejected
 U Analytical non-detect value
 UJ Compound was analyzed but not detected;
 the value given is an estimate
 Results that are bold exceed the PART375REST - POGW

|                                        |                    |                 | Location ID           | MW203                    | MW203                    | MW204                    | 4    | MW204                    | 4    | MW20                 | 4                  | MW204              | MW20              | 05   | MW205                      | MW205                      | Т     | MW206                    | MW20              | 06   | SB20              | 1       |
|----------------------------------------|--------------------|-----------------|-----------------------|--------------------------|--------------------------|--------------------------|------|--------------------------|------|----------------------|--------------------|--------------------|-------------------|------|----------------------------|----------------------------|-------|--------------------------|-------------------|------|-------------------|---------|
|                                        |                    |                 |                       | SB203-18.5-19-           | SB203-9-9.5-             | MW204-0.                 |      | MW204-11-                |      | MW204-16.5-          |                    | 4-16.5-17.5-       | MW205-0           |      | MW205-9-10-1-              | MW205-9-10                 | )-    | MW206-0.5-1-             | MW206-11          |      | SB201-0.          |         |
|                                        |                    |                 | Sample ID             | 20180517                 | 20180517                 | 2018051                  |      | 2018052                  |      | 201805               |                    | 0180523            | 201805            |      | 20180529                   | 20180529                   | ,<br> | 20180516                 | 201805            |      | 201805            |         |
|                                        |                    |                 | Sample Date           | 5/17/2018                | 5/17/2018                | 5/16/20                  | -    | 5/23/20                  | -    | 5/23/20              | -                  | 23/2018            | 5/16/2            |      | 5/29/2018                  | 5/29/2018                  |       | 5/16/2018                | 5/24/2            |      | 5/17/2            |         |
|                                        |                    | s               | Start Depth (ft bgs)  | 18.5 - 19                | 9 - 9.5                  | 0.5 - 1                  |      | 11 - 11.                 | -    | 16.5 - 17            |                    | 5.5 - 17.5         | 0.5 -             |      | 9 - 10                     | 9 - 10                     |       | 0.5 - 1                  | 11 - 11           |      | 0.5 -             |         |
|                                        |                    | PART375REST -   | PART375REST-          |                          |                          |                          | -    |                          | -    |                      |                    |                    |                   | -    |                            |                            |       |                          |                   |      |                   | Ē       |
| Analyte                                | Cas No.            | POGW<br>(mg/kg) | COMMERCIAL<br>(mg/kg) | Result<br>(mg/kg) Qua.   | Result<br>(mg/kg) Qua.   | Result<br>(mg/kg)        | Qua. | Result<br>(mg/kg)        | Qua. | Result<br>(mg/kg)    | Qua. Resu<br>(mg/l |                    | Result<br>(mg/kg) | Qua. | Result<br>(mg/kg) Qua.     | Result<br>(mg/kg) Q        | )ua.  | Result<br>(mg/kg) Qua.   | Result<br>(mg/kg) | Qua. | Result<br>(mg/kg) | Qua.    |
| 1,1,1-Trichloroethane                  | 71-55-6            | 0.68            | 500                   | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | J    | < 0.0036             | U < 0              | .0037 U            | < 0.0042          | U    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           | U    | < 0.0050          | U       |
| 1,1,2,2-Tetrachloroethane              | 79-34-5            | NA              | NA                    | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | J    | < 0.0036             | U < 0              | .0037 U            | < 0.0042          | U    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           |      | < 0.0050          | U       |
| 1,1,2-Trichloroethane                  | 79-00-5            | NA              | NA                    | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | J    | < 0.0036             | U < 0              | .0037 U            | < 0.0042          | U    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           | U    | < 0.0050          | U       |
| 1,1-Dichloroethane                     | 75-34-3            | 0.27            | 240                   | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | J    | < 0.0036             | U < 0              | .0037 U            | < 0.0042          | U    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           | U    | < 0.0050          | U       |
| 1,1-Dichloroethene                     | 75-35-4            | 0.33            | 500                   | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | J    | < 0.0036             | U < 0              | .0037 U            | < 0.0042          | U    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           | U    | < 0.0050          | U       |
| 1,2,4-Trichlorobenzene                 | 120-82-1           | NA              | NA                    | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | J    | < 0.0036             | U < 0              | .0037 U            | < 0.0042          | U    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           | U    | < 0.0050          | U       |
| 1,2-Dibromo-3-chloropropane (DBCP)     | 96-12-8            | NA              | NA                    | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | J    | < 0.0036             | U < 0              | .0037 U            | < 0.0042          | U    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           | U    | < 0.0050          | U       |
| 1,2-Dibromoethane (Ethylene dibromide) | 106-93-4           | NA              | NA                    | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | J    | < 0.0036             | U < 0              | .0037 U            | < 0.0042          | U    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           | U    | < 0.0050          | U       |
| 1,2-Dichlorobenzene                    | 95-50-1            | 1.1             | 500                   | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | J    | < 0.0036             | U < 0              | .0037 U            | < 0.0042          | U    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           | U    | < 0.0050          |         |
| 1,2-Dichloroethane                     | 107-06-2           | 0.02            | 30                    | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | J    | < 0.0036             |                    | .0037 U            | < 0.0042          | U    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           |      | < 0.0050          |         |
| 1,2-Dichloropropane                    | 78-87-5            | NA              | NA                    | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | J    | < 0.0036             |                    | .0037 U            | < 0.0042          | U    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           | -    | < 0.0050          | -       |
| 1,3-Dichlorobenzene                    | 541-73-1           | 2.4             | 280                   | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | J    | < 0.0036             | -                  | .0037 U            | < 0.0042          | U    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           | -    | < 0.0050          | -       |
| 1,4-Dichlorobenzene                    | 106-46-7           | 1.8             | 130                   | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | -    | < 0.0036             | -                  | .0037 U            | < 0.0042          | U    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           |      | < 0.0050          | -       |
| 2-Butanone                             | 78-93-3            | 0.12            | 500                   | < 0.019 U                | < 0.02 U                 | < 0.033 l                | J    | < 0.023 L                | J    | < 0.018              |                    | 0.019 U            | < 0.021           | U    | < 0.02 UJ                  | < 0.022 UJ                 |       | < 0.03 U                 | < 0.27            |      | < 0.025           |         |
| 2-Hexanone                             | 591-78-6           | NA              | NA                    | < 0.019 U                | < 0.02 U                 | < 0.033 l                | J    | < 0.023 L                | J    | < 0.018              |                    | 0.019 U            | < 0.021           | U    | < 0.02 UJ                  | < 0.022 UJ                 |       | < 0.03 U                 | < 0.27            |      | < 0.025           |         |
| 4-Methyl-2-Pentanone                   | 108-10-1           | NA              | NA                    | < 0.019 U                | < 0.02 U                 | < 0.033 l                | -    | < 0.023 L                | -    | < 0.018              | -                  | 0.019 U            | < 0.021           | U    | < 0.02 UJ                  | < 0.022 UJ                 |       | < 0.03 U                 | < 0.27            | -    | < 0.025           | -       |
| Acetone                                | 67-64-1            | 0.05            | 500                   | < 0.02 U                 | < 0.02 U                 | < 0.033 l                | J    | < 0.045 L                | J    | < 0.039              | -                  | 0.027 U            | < 0.021           | -    | < 0.032 UJ                 | < 0.055 UJ                 |       | < 0.036 U                | < 0.27            | -    | < 0.031           | -       |
| Benzene                                | 71-43-2            | 0.06            | 44                    | < 0.0037 U               | < 0.0039 U               | < 0.0067 U               | J    | < 0.0047 L               | J    | < 0.0036             |                    | .0037 U            | < 0.0042          | U    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           | -    | < 0.0050          | -       |
| Bromodichloromethane<br>Bromoform      | 75-27-4            | NA              | NA                    | < 0.0037 U               | < 0.0039 U               | < 0.0067 L               | J    | < 0.0047 L               | J    | < 0.0036             |                    | .0037 U<br>.0037 U | < 0.0042          | U    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           |      | < 0.0050          |         |
| Bromomethane                           | 75-25-2<br>74-83-9 | NA<br>NA        | NA<br>NA              | < 0.0037 U<br>< 0.0037 U | < 0.0039 U<br>< 0.0039 U | < 0.0067 L<br>< 0.0067 L | J    | < 0.0047 L<br>< 0.0047 L | J    | < 0.0036<br>< 0.0036 | -                  | .0037 U            | < 0.0042          | -    | < 0.0040 UJ<br>< 0.0040 UJ | < 0.0044 UJ<br>< 0.0044 UJ |       | < 0.0060 U<br>< 0.0060 U | < 0.055           |      | < 0.0050          | -       |
| Carbon Disulfide                       | 74-83-9            | NA              | NA                    | < 0.0037 U<br>< 0.0037 U | < 0.0039 U               | < 0.0067 L               | J    | < 0.0047 L               | J    | < 0.0036             |                    | .0037 U            | < 0.0042          | -    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           |      | < 0.0050          |         |
| Carbon Tetrachloride                   | 56-23-5            | 0.76            | 22                    | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 l               | J    | < 0.0036             |                    | .0037 U            | < 0.0042          | -    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           |      | < 0.0050          | -       |
| Chlorobenzene                          | 108-90-7           | 0.76            | 500                   | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 l               | J    | < 0.0036             | -                  | .0037 U            | < 0.0042          | -    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           | -    | < 0.0050          | -       |
| Chlorodibromomethane                   | 124-48-1           | NA              | NA                    | < 0.0037 U               | < 0.0039 U               | < 0.0067 L               | J    | < 0.0047 L               | J    | < 0.0036             | -                  | .0037 U            | < 0.0042          | -    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           | -    | < 0.0050          | -       |
| Chloroethane                           | 75-00-3            | NA              | NA                    | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | J    | < 0.0036             |                    | .0037 U            | < 0.0042          | -    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           |      | < 0.0050          | -       |
| Chloroform                             | 67-66-3            | 0.37            | 350                   | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | 1    | < 0.0036             |                    | .0037 U            | < 0.0042          | -    | < 0.0010 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           | -    | 0.00036           | -       |
| Chloromethane                          | 74-87-3            | NA              | NA                    | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | 1    | < 0.0036             |                    | .0037 U            | < 0.0042          |      | < 0.0010 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           |      | < 0.0050          |         |
| Cis-1,2-Dichloroethene                 | 156-59-2           | 0.25            | 500                   | 0.0057                   | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | 1    | 0.00091              |                    | 00055 1            | < 0.0042          | -    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           | -    | 0.0011            | -       |
| Cis-1,3-Dichloropropene                | 10061-01-5         | NA              | NA                    | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 l               | J    | < 0.0036             |                    | .0037 U            | < 0.0042          | -    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           | -    | < 0.0050          |         |
| Cvclohexane                            | 110-82-7           | NA              | NA                    | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | J    | < 0.0036             | U < 0              | .0037 U            | < 0.0042          | Ŭ    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           | -    | < 0.0050          | ÚŬ      |
| Dichlorodifluoromethane                | 75-71-8            | NA              | NA                    | < 0.0037 U               | < 0.0039 U               | < 0.0067 L               | J    | < 0.0047 L               | J    | < 0.0036             | U < 0              | .0037 U            | < 0.0042          | -    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           | -    | < 0.0050          | -       |
| Dichloromethane                        | 75-09-2            | 0.05            | 500                   | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | J    | < 0.0036             | U < 0              | .0037 U            | < 0.0042          | U    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           |      | < 0.0050          | U       |
| Ethylbenzene                           | 100-41-4           | 1               | 390                   | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | J    | < 0.0036             |                    | .0037 U            | < 0.0042          | U    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           | -    | < 0.0050          | -       |
| Freon 113                              | 76-13-1            | NA              | NA                    | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | J    | < 0.0036             | U < 0              | .0037 U            | < 0.0042          | U    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           | U    | < 0.0050          | U       |
| Isopropyl benzene                      | 98-82-8            | NA              | NA                    | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | J    | < 0.0036             | U < 0              | .0037 U            | < 0.0042          | U    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           | U    | < 0.0050          | U       |
| Methyl acetate                         | 79-20-9            | NA              | NA                    | < 0.019 U                | < 0.02 U                 | < 0.033 l                | J    | < 0.023 L                | J    | < 0.018              | U <                | 0.019 U            | < 0.021           | U    | < 0.02 UJ                  | < 0.022 UJ                 |       | < 0.03 U                 | < 0.27            | U    | < 0.025           | U       |
| Methyl T-Butyl Ether (MTBE)            | 1634-04-4          | 0.93            | 500                   | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | J    | < 0.0036             | U < 0              | .0037 U            | < 0.0042          | U    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           | U    | < 0.0050          | U       |
| Methylcyclohexane                      | 108-87-2           | NA              | NA                    | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | J    | < 0.0036             | -                  | .0037 U            | < 0.0042          |      | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           |      | < 0.0050          |         |
| Styrene                                | 100-42-5           | NA              | NA                    | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | J    | < 0.0036             | -                  | .0037 U            | < 0.0042          | -    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           | -    | < 0.0050          | -       |
| Tetrachloroethene                      | 127-18-4           | 1.3             | 150                   | 0.0011 J                 | 0.0070                   | < 0.0067 l               | J    | 0.047                    |      | < 0.0036             |                    | .0037 U            | < 0.0042          | -    | < 0.0040 UJ                | < 0.0044 UJ                |       | 0.0034 J                 | 1.9               |      | < 0.0050          | -       |
| Toluene                                | 108-88-3           | 0.7             | 500                   | < 0.0037 U               | 0.00034 J                | < 0.0067 l               | J    | < 0.0047 L               | J    | < 0.0036             |                    | .0037 U            | < 0.0042          | U    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           |      | 0.00043           | J       |
| Trans-1,2-Dichloroethene               | 156-60-5           | 0.19            | 500                   | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | J    | < 0.0036             |                    | .0037 U            | < 0.0042          | U    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           |      | < 0.0050          | U       |
| Trans-1,3-Dichloropropene              | 10061-02-6         | NA              | NA                    | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | J    | < 0.0036             |                    | .0037 U            | < 0.0042          | U    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           |      | < 0.0050          | U       |
| Trichloroethylene                      | 79-01-6            | 0.47            | 200                   | < 0.0037 U               | 0.00095 J                | < 0.0067 l               | J    | 0.0019 J                 | J    | < 0.0036             |                    | .0037 U            | < 0.0042          | U    | 0.0012 JL                  | 0.0019 JL                  |       | 0.023                    | 0.14              |      | 0.16              | <b></b> |
| Trichlorofluoromethane                 | 75-69-4            | NA              | NA                    | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | J    | < 0.0036             | -                  | .0037 U            | < 0.0042          | U    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           | -    | < 0.0050          | U       |
| Vinyl Chloride                         | 75-01-4            | 0.02            | 13                    | < 0.0037 U               | < 0.0039 U               | < 0.0067 l               | J    | < 0.0047 L               | J    | < 0.0036             | -                  | .0037 U            | < 0.0042          | -    | < 0.0040 UJ                | < 0.0044 UJ                |       | < 0.0060 U               | < 0.055           | -    | < 0.0050          | -       |
| Kylenes, Total                         | XYLENES            | NA              | NA                    | < 0.0074 U               | < 0.0078 U               | < 0.013 l                | J    | < 0.0093 L               | J    | < 0.0071             | U < 0              | .0074 U            | < 0.0084          | U    | < 0.0080 UJ                | < 0.0089 UJ                |       | < 0.012 U                | < 0.11            | U    | < 0.01            | U       |

Notes:

ft bgs Feet below ground surface ID Identification

mg/kg Milligrams per kilogram NA Not available

No. Number PART375REST - POGW 6 New York Codes, Rules and Regulations Part 375 -Protection of Groundwater PART375REST- COMMERCIAL 6 New York Codes, Rules and Regulations Part 375 -

Commercial

- Qua. Qualifier VOCs Volatile organic compounds B Analyte found in associated blank sample J Estimated analytical value JL Definition not known

R Rejected U Analytical non-detect value UJ Compound was analyzed but not detected; the value given is an estimate 300 Results that are bold exceed the PART375REST - POGW

|                                        |                     |                                  | Location ID                           | SB201                    | SB202                    | SB2                   | 202     | SB202                    |         | SB202                    |     | SB204                    | SB204                    | SB204                    | SB20              | 5    | SB205                    | SB2                   | 05     | SB206                | 6          |
|----------------------------------------|---------------------|----------------------------------|---------------------------------------|--------------------------|--------------------------|-----------------------|---------|--------------------------|---------|--------------------------|-----|--------------------------|--------------------------|--------------------------|-------------------|------|--------------------------|-----------------------|--------|----------------------|------------|
|                                        |                     |                                  | 6 J 70                                | SB201-3.5-4-             | SB202-0.5-1              | SB202-1               | 5-15.5- | SB202-8.5-9.             | .5-1- 5 | SB202-8.5-9.5            | -   | SB204-0.5-1-             | SB204-15-15.5-           | SB204-8.5-9-             | SB205-0.          | 5-1- | SB205-14.8-15            | .3- SB205-8           | 3.5-9- | SB206-0.             | .5-1-      |
|                                        |                     |                                  | Sample ID                             | 20180517                 | 20180515                 | 2018                  | 0521    | 20180518                 | в       | 20180518                 |     | 20180515                 | 20180521                 | 20180521                 | 201805            | 15   | 20180517                 | 20180                 | 517    | 201805               | <b>j15</b> |
|                                        |                     |                                  | Sample Date                           | 5/17/2018                | 5/15/2018                | 5/21/                 | 2018    | 5/18/201                 | 8       | 5/18/2018                |     | 5/15/2018                | 5/21/2018                | 5/21/2018                | 5/15/20           | 018  | 5/17/2018                | 5/17/2                | 2018   | 5/15/20              | J18        |
|                                        |                     | S                                | Start Depth (ft bgs)                  | 3.5 - 4                  | 0.5 - 1                  | 15 -                  | 15.5    | 8.5 - 9.5                |         | 8.5 - 9.5                |     | 0.5 - 1                  | 15 - 15.5                | 8.5 - 9                  | 0.5 - 1           | 1    | 14.8 - 15.3              | 8.5                   | 9      | 0.5 - 1              | 1          |
| Analyte                                | Cas No.             | PART375REST -<br>POGW<br>(mg/kg) | PART375REST-<br>COMMERCIAL<br>(mg/kg) | Result<br>(mg/kg) Qua.   | Result<br>(mg/kg) Q      | ua. Result<br>(mg/kg) | Qua.    | Result<br>(mg/kg)        |         | Result<br>ng/kg) Qu      | Ja. | Result<br>(mg/kg) Qua.   | Result<br>(mg/kg) Qua.   | Result<br>(mg/kg) Qua.   | Result<br>(mg/kg) | Qua. | Result<br>(mg/kg)        | ua. Result<br>(mg/kg) | Qua.   | Result<br>(mg/kg)    | Qua.       |
| 1,1,1-Trichloroethane                  | 71-55-6             | 0.68                             | 500                                   | < 0.0049 U               | < 0.0042 U               | < 0.003               | 36 U    | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             | U    | < 0.0034 U               | < 0.003               | 7 U    | < 0.0055             | U          |
| 1,1,2,2-Tetrachloroethane              | 79-34-5             | NA                               | NA                                    | < 0.0049 U               | < 0.0042 U               | < 0.003               | 36 U    | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             | UJ   | < 0.0034 U               | < 0.003               | 7 U    | < 0.0055             | U          |
| 1,1,2-Trichloroethane                  | 79-00-5             | NA                               | NA                                    | < 0.0049 U               | < 0.0042 U               | < 0.003               | 36 U    | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             | U    | < 0.0034 U               | < 0.003               | 7 U    | < 0.0055             | U          |
| 1,1-Dichloroethane                     | 75-34-3             | 0.27                             | 240                                   | < 0.0049 U               | < 0.0042 U               | < 0.003               | 36 U    | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             | U    | < 0.0034 U               | < 0.003               | 7 U    | < 0.0055             | U          |
| 1,1-Dichloroethene                     | 75-35-4             | 0.33                             | 500                                   | < 0.0049 U               | < 0.0042 U               | < 0.003               | 36 U    | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             | U    | < 0.0034 U               | < 0.003               | 7 U    | < 0.0055             | U          |
| 1,2,4-Trichlorobenzene                 | 120-82-1            | NA                               | NA                                    | < 0.0049 U               | < 0.0042 U               | < 0.003               | 36 U    | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             | U    | < 0.0034 U               | < 0.003               | 7 U    | < 0.0055             | U          |
| 1,2-Dibromo-3-chloropropane (DBCP)     | 96-12-8             | NA                               | NA                                    | < 0.0049 U               | < 0.0042 U               | < 0.003               | 36 U    | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             | U    | < 0.0034 U               | < 0.003               | 7 U    | < 0.0055             | U          |
| 1,2-Dibromoethane (Ethylene dibromide) | 106-93-4            | NA                               | NA                                    | < 0.0049 U               | < 0.0042 U               | < 0.003               | 36 U    | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             | U    | < 0.0034 U               | < 0.003               | 7 U    | < 0.0055             | U          |
| 1,2-Dichlorobenzene                    | 95-50-1             | 1.1                              | 500                                   | < 0.0049 U               | < 0.0042 U               | < 0.003               |         | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             |      | < 0.0034 U               | < 0.003               |        | < 0.0055             |            |
| 1,2-Dichloroethane                     | 107-06-2            | 0.02                             | 30                                    | < 0.0049 U               | < 0.0042 U               | < 0.003               |         | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             | -    | < 0.0034 U               | < 0.003               |        | < 0.0055             |            |
| 1,2-Dichloropropane                    | 78-87-5             | NA                               | NA                                    | < 0.0049 U               | < 0.0042 U               | < 0.003               |         | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             |      | < 0.0034 U               | < 0.003               | -      | < 0.0055             |            |
| 1,3-Dichlorobenzene                    | 541-73-1            | 2.4                              | 280                                   | < 0.0049 U               | < 0.0042 U               | < 0.003               | 36 U    | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             | U    | < 0.0034 U               | < 0.003               | 7 U    | < 0.0055             | -          |
| 1,4-Dichlorobenzene                    | 106-46-7            | 1.8                              | 130                                   | < 0.0049 U               | < 0.0042 U               | < 0.003               |         | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             |      | < 0.0034 U               | < 0.003               |        | < 0.0055             |            |
| 2-Butanone                             | 78-93-3             | 0.12                             | 500                                   | < 0.024 U                | < 0.021 U                | < 0.01                |         | < 0.021 U                |         | < 0.02 U                 |     | < 0.025 U                | < 0.019 U                | < 0.022 U                | < 5.6             |      | < 0.017 U                | < 0.01                |        | < 0.027              | -          |
| 2-Hexanone                             | 591-78-6            | NA                               | NA                                    | < 0.024 U                | < 0.021 U                | < 0.01                |         | < 0.021 U                |         | < 0.02 U                 |     | < 0.025 U                | < 0.019 U                | < 0.022 U                | < 5.6             | -    | < 0.017 U                | < 0.01                |        | < 0.027              | -          |
| 4-Methyl-2-Pentanone                   | 108-10-1            | NA                               | NA                                    | < 0.024 U                | < 0.021 U                | < 0.01                |         | < 0.021 U                |         | < 0.02 U                 |     | < 0.025 U                | < 0.019 U                | < 0.022 U                | < 5.6             |      | < 0.017 U                | < 0.01                |        | < 0.027              |            |
| Acetone                                | 67-64-1             | 0.05                             | 500                                   | < 0.025 U                | < 0.021 U                | < 0.01                |         | 0.02 J                   |         | 0.011 J                  |     | < 0.025 U                | < 0.035 U                | < 0.054 U                | < 5.6             | -    | < 0.018 U                | < 0.01                |        | < 0.031              | -          |
| Benzene                                | 71-43-2             | 0.06                             | 44                                    | < 0.0049 U               | < 0.0042 U               | < 0.003               |         | < 0.0042 U               |         | < 0.0040 U               |     | 0.00043 J                | < 0.0037 U               | 0.00038 J                | < 1.1             | -    | < 0.0034 U               | < 0.003               | -      | < 0.0055             | -          |
| Bromodichloromethane                   | 75-27-4             | NA                               | NA                                    | < 0.0049 U               | < 0.0042 U               | < 0.003               |         | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             |      | < 0.0034 U               | < 0.003               | -      | < 0.0055             | -          |
| Bromoform                              | 75-25-2             | NA                               | NA                                    | < 0.0049 U               | < 0.0042 U               | < 0.003               |         | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             | -    | < 0.0034 U               | < 0.003               | -      | < 0.0055             | -          |
| Bromomethane                           | 74-83-9             | NA                               | NA                                    | < 0.0049 U               | < 0.0042 U               | < 0.003               |         | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             |      | < 0.0034 U               | < 0.003               |        | < 0.0055             |            |
| Carbon Disulfide                       | 75-15-0             | NA                               | NA                                    | < 0.0049 U               | < 0.0042 U               | < 0.003               |         | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             | -    | < 0.0034 U               | < 0.003               | -      | < 0.0055             | -          |
| Carbon Tetrachloride                   | 56-23-5             | 0.76                             | 22                                    | < 0.0049 U               | < 0.0042 U               | < 0.003               |         | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             |      | < 0.0034 U               | < 0.003               | -      | < 0.0055             | -          |
| Chlorobenzene                          | 108-90-7            | 1.1                              | 500                                   | < 0.0049 U               | < 0.0042 U               | < 0.003               |         | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             | -    | < 0.0034 U               | < 0.003               | -      | < 0.0055             | -          |
| Chlorodibromomethane                   | 124-48-1            | NA                               | NA                                    | < 0.0049 U               | < 0.0042 U               | < 0.003               |         | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             | -    | < 0.0034 U               | < 0.003               | -      | < 0.0055             | -          |
| Chloroethane                           | 75-00-3             | NA                               | NA                                    | < 0.0049 U               | < 0.0042 U               | < 0.003               |         | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             |      | < 0.0034 U               | < 0.003               |        | < 0.0055             |            |
| Chloroform                             | 67-66-3             | 0.37                             | 350                                   | < 0.0049 U               | < 0.0042 U               | < 0.003               |         | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             | -    | < 0.0034 U               | < 0.003               |        | < 0.0055             |            |
| Chloromethane                          | 74-87-3             | NA                               | NA                                    | < 0.0049 U               | < 0.0042 U               | < 0.003               |         | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             |      | < 0.0034 U               | < 0.003               |        | < 0.0055             |            |
| Cis-1,2-Dichloroethene                 | 156-59-2            | 0.25                             | 500                                   | 0.0036 J                 | < 0.0042 U               | 0.03                  |         | 0.0012 J                 |         | 0.0062                   |     | 0.026                    | 0.011                    | 0.042                    | 1.6               |      | 0.016 J                  | 0.0007                |        | < 0.0055             |            |
| Cis-1,3-Dichloropropene                | 10061-01-5          | NA                               | NA                                    | < 0.0049 U               | < 0.0042 U               | < 0.003               |         | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             | -    | < 0.0034 U               | < 0.003               | -      | < 0.0055             | -          |
| Cyclohexane                            | 110-82-7            | NA                               | NA                                    | < 0.0049 U               | < 0.0042 U               | < 0.003               |         | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             |      | < 0.0034 U               | < 0.003               | -      | < 0.0055             |            |
| Dichlorodifluoromethane                | 75-71-8             | NA                               | NA<br>F00                             | < 0.0049 U               | < 0.0042 U               | < 0.003               |         | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             | -    | < 0.0034 U               | < 0.003               | -      | < 0.0055             | -          |
| Dichloromethane                        | 75-09-2             | 0.05                             | 500                                   | < 0.0049 U               | < 0.0042 U<br>< 0.0042 U | < 0.003               |         | < 0.0042 U               |         | < 0.0040 U<br>< 0.0040 U |     | < 0.0050 U<br>< 0.0050 U | < 0.0037 U<br>< 0.0037 U | < 0.0043 U               | < 1.1             |      | < 0.0034 U<br>< 0.0034 U | < 0.003               | -      | < 0.0055             |            |
| Ethylbenzene<br>Freon 113              | 100-41-4<br>76-13-1 | 1<br>NA                          | 390<br>NA                             | < 0.0049 U<br>< 0.0049 U | < 0.0042 U<br>< 0.0042 U | < 0.003               |         | < 0.0042 U<br>< 0.0042 U |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U<br>< 0.0037 U | < 0.0043 U<br>< 0.0043 U | < 1.1 < 1.1       |      | < 0.0034 U<br>< 0.0034 U | < 0.003               |        | < 0.0055<br>< 0.0055 |            |
|                                        | 76-13-1<br>98-82-8  | NA                               | NA                                    | < 0.0049 U               | < 0.0042 U<br>< 0.0042 U | < 0.003               |         | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U<br>< 0.0037 U | < 0.0043 U               |                   | -    | < 0.0034 U<br>< 0.0034 U | < 0.003               | -      | < 0.0055             | -          |
| Isopropyl benzene<br>Methyl acetate    | 98-82-8<br>79-20-9  | NA                               | NA<br>NA                              | < 0.0049 U<br>< 0.024 U  | < 0.0042 U<br>< 0.021 U  | < 0.003               |         | < 0.0042 U<br>< 0.021 U  |         | < 0.0040 U<br>< 0.02 U   |     | < 0.0050 U<br>< 0.025 U  | < 0.0037 U<br>< 0.019 U  | < 0.0043 U<br>< 0.022 U  | < 1.1<br>< 5.6    |      | < 0.0034 U<br>< 0.017 U  | < 0.003               | -      | < 0.0055             | -          |
| Methyl T-Butyl Ether (MTBE)            | 1634-04-4           | 0.93                             | 500                                   | < 0.024 U<br>< 0.0049 U  | < 0.021 U                | < 0.00                |         | < 0.021 U                |         | < 0.02 U<br>< 0.0040 U   |     | < 0.025 U<br>< 0.0050 U  | < 0.019 U                | < 0.022 U<br>< 0.0043 U  | < 5.6             | -    | < 0.017 U<br>< 0.0034 U  | < 0.003               |        | < 0.027              |            |
| Methylcyclohexane                      | 108-87-2            | 0.93<br>NA                       | SUU<br>NA                             | < 0.0049 U               | < 0.0042 U<br>< 0.0042 U | < 0.003               |         | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             | -    | < 0.0034 U<br>< 0.0034 U | < 0.003               |        | < 0.0055             |            |
| Styrene                                | 100-42-5            | NA                               | NA                                    | < 0.0049 U               | < 0.0042 U               | < 0.003               |         | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             |      | < 0.0034 U               | < 0.003               |        | < 0.0055             |            |
| Tetrachloroethene                      | 100-42-5            | 1.3                              | 150                                   | 0.00049 0                | < 0.0042 U               | < 0.003               |         | 0.00042 0                |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 0<br>0.0021 J   | < 1.1             |      | < 0.0034 0<br><b>1.6</b> | < 0.003               | -      | < 0.0055             | -          |
| Toluene                                | 108-88-3            | 0.7                              | 500                                   | 0.00040 J                | < 0.0042 U               | < 0.003               |         | < 0.00087 J              |         | < 0.0040 U               |     | 0.00067 J                | < 0.0037 U               | 0.0021 J                 | < 1.1             |      | 0.00027 J                | 0.003                 |        | < 0.0055             | -          |
| Trans-1,2-Dichloroethene               | 156-60-5            | 0.19                             | 500                                   | < 0.0040 J               | < 0.0042 U               | 0.003                 |         | < 0.0042 U               |         | 0.00071 J                |     | 0.02                     | 0.012                    | 0.0012 5                 | < 1.1             | -    | 0.00027 J                | < 0.003               |        | < 0.0055             | -          |
| Trans-1,3-Dichloropropene              | 10061-02-6          | 0.19<br>NA                       | NA                                    | < 0.0049 U               | < 0.0042 U               | < 0.003               |         | < 0.0042 U               |         | < 0.00071 J              |     | < 0.02                   | < 0.012                  | < 0.0047                 | < 1.1             |      | < 0.0034 U               | < 0.003               |        | < 0.0055             |            |
| Trichloroethylene                      | 79-01-6             | 0.47                             | 200                                   | < 0.0049 0<br>10         | < 0.0042 U               | < 0.003               |         | 0.01 R                   |         | < 0.0040 0<br>1.8 R      |     | 0.063                    | 0.095                    | < 0.0045 0<br>1.5        | < 1.1<br>44       |      | 0.0034 0                 | < 0.003               |        | < 0.0055             |            |
| Trichlorofluoromethane                 | 75-69-4             | 0.47<br>NA                       | NA                                    | < 0.0049 U               | < 0.0042 U               | < 0.003               | -       | < 0.001 K                |         | < 0.0040 U               |     | < 0.0050 U               | < 0.095                  | < 0.0043 U               | < 1.1             |      | < 0.0034 U               | < 0.003               | -      | < 0.0055             |            |
| Vinvl Chloride                         | 75-09-4             | 0.02                             | 13                                    | < 0.0049 U               | < 0.0042 U               | < 0.003               |         | < 0.0042 U               |         | < 0.0040 U               |     | < 0.0050 U               | < 0.0037 U               | < 0.0043 U               | < 1.1             | -    | < 0.0034 U               | < 0.003               | -      | < 0.0055             | -          |
|                                        | XYLENES             | 0.02<br>NA                       | NA                                    | < 0.0049 U               | < 0.0042 U               | < 0.007               |         | < 0.0042 U               |         | < 0.0079 U               |     | < 0.0000                 | < 0.0037 U               | < 0.0045 U               | < 2.2             | -    | < 0.0034 U               | < 0.003               | -      | < 0.0033             | -          |
| Xylenes, Total                         | IXTLENES            | NA                               | NA                                    | < 0.009810               | < 0.0085 0               | < 0.007               | U11/    | < 0.0084 0               | ĺ       | < 0.00/910               |     | < 0.01                   | < 0.00/4 0               | < 0.008610               | < 2.2             | U    | < 0.0068 U               | < 0.007               | ŧυ     | < 0.011              | U          |

Notes:

ft bgs Feet below ground surface ID Identification

mg/kg Milligrams per kilogram NA Not available

No. Number PART375REST - POGW 6 New York Codes, Rules and Regulations Part 375 -Protection of Groundwater PART375REST- COMMERCIAL 6 New York Codes, Rules and Regulations Part 375 -

Commercial

- Qua. Qualifier VOCs Volatile organic compounds B Analyte found in associated blank sample J Estimated analytical value JL Definition not known

R Rejected
 U Analytical non-detect value
 UJ Compound was analyzed but not detected;
 the value given is an estimate
 Results that are bold exceed the PART375REST - POGW

|                                        |            |                 | Location ID           | SB20              |       | SB20              |       | SB207             |      | SB20              |        | SB20              |       | SB20              | -    | SB20              |        |
|----------------------------------------|------------|-----------------|-----------------------|-------------------|-------|-------------------|-------|-------------------|------|-------------------|--------|-------------------|-------|-------------------|------|-------------------|--------|
|                                        |            |                 | Sample ID             | SB206-17          | 5-18- | SB206-8-          | ·8.5- | SB207-0.          | 5-1- | SB207-15          | -15.5- | SB207-9           | -9.5- | SB209-0.          | 5-1- | SB209-5           | 5-5.5- |
|                                        |            |                 | Sample 1D             | 201805            | 521   | 201805            | 18    | 201805            | 15   | 201805            | 517    | 201805            | 517   | 201805            | 17   | 201805            | 517    |
|                                        |            |                 | Sample Date           | 5/21/2            | 018   | 5/18/2            | 018   | 5/15/20           | )18  | 5/17/2            | 018    | 5/17/2            | 018   | 5/17/2            | )18  | 5/17/2            | 2018   |
|                                        |            | St              | art Depth (ft bgs)    | 17.5 -            | 18    | 8 - 8.            | 5     | 0.5 - 1           | 1    | 15 - 15           | 5.5    | 9 - 9.            | 5     | 0.5 -             | 1    | 5 - 5.            | .5     |
|                                        |            | PART375REST -   | PART375REST-          |                   |       |                   |       |                   |      |                   |        |                   |       |                   |      |                   |        |
| Analyte                                | Cas No.    | POGW<br>(mg/kg) | COMMERCIAL<br>(mg/kg) | Result<br>(mg/kg) | Qua.  | Result<br>(mg/kg) | Qua.  | Result<br>(mg/kg) | Qua. | Result<br>(mg/kg) | Qua.   | Result<br>(mg/kg) | Qua.  | Result<br>(mg/kg) | Qua. | Result<br>(mg/kg) | Qua.   |
| 1,1,1-Trichloroethane                  | 71-55-6    | 0.68            | 500                   | < 0.0035          | U     | < 0.0044          | U     | < 0.0049          | U    | < 0.0035          | U      | < 0.0043          | U     | < 0.0048          | U    | < 0.0052          | 2 U    |
| 1,1,2,2-Tetrachloroethane              | 79-34-5    | NA              | NA                    | < 0.0035          | U     | < 0.0044          | U     | < 0.0049          | U    | < 0.0035          | U      | < 0.0043          | U     | < 0.0048          | U    | < 0.0052          | 2 U    |
| 1,1,2-Trichloroethane                  | 79-00-5    | NA              | NA                    | < 0.0035          | U     | < 0.0044          | U     | < 0.0049          | U    | < 0.0035          | U      | < 0.0043          | U     | < 0.0048          | U    | < 0.0052          | 2 U    |
| 1,1-Dichloroethane                     | 75-34-3    | 0.27            | 240                   | < 0.0035          | U     | < 0.0044          | U     | < 0.0049          | U    | < 0.0035          | U      | < 0.0043          | U     | < 0.0048          | U    | < 0.0052          | 2 U    |
| 1,1-Dichloroethene                     | 75-35-4    | 0.33            | 500                   | < 0.0035          | U     | < 0.0044          | U     | < 0.0049          | U    | < 0.0035          | U      | < 0.0043          | U     | < 0.0048          | U    | < 0.0052          | 2 U    |
| 1,2,4-Trichlorobenzene                 | 120-82-1   | NA              | NA                    | < 0.0035          | U     | < 0.0044          | U     | < 0.0049          | U    | < 0.0035          | U      | < 0.0043          | U     | < 0.0048          | U    | < 0.0052          | 2 U    |
| 1,2-Dibromo-3-chloropropane (DBCP)     | 96-12-8    | NA              | NA                    | < 0.0035          | U     | < 0.0044          | U     | < 0.0049          | U    | < 0.0035          | U      | < 0.0043          | U     | < 0.0048          | U    | < 0.0052          | 2 U    |
| 1,2-Dibromoethane (Ethylene dibromide) | 106-93-4   | NA              | NA                    | < 0.0035          | U     | < 0.0044          | U     | < 0.0049          | U    | < 0.0035          | U      | < 0.0043          | U     | < 0.0048          | U    | < 0.0052          | 2 U    |
| 1,2-Dichlorobenzene                    | 95-50-1    | 1.1             | 500                   | < 0.0035          | U     | < 0.0044          | U     | < 0.0049          | U    | < 0.0035          | U      | < 0.0043          | U     | < 0.0048          | U    | < 0.0052          | 2 U    |
| 1,2-Dichloroethane                     | 107-06-2   | 0.02            | 30                    | < 0.0035          |       | < 0.0044          | U     | < 0.0049          |      | < 0.0035          |        | < 0.0043          |       | < 0.0048          |      | < 0.0052          |        |
| 1,2-Dichloropropane                    | 78-87-5    | NA              | NA                    | < 0.0035          | U     | < 0.0044          | U     | < 0.0049          | U    | < 0.0035          | U      | < 0.0043          | U     | < 0.0048          | U    | < 0.0052          | 2 U    |
| 1,3-Dichlorobenzene                    | 541-73-1   | 2.4             | 280                   | < 0.0035          |       | < 0.0044          | U     | < 0.0049          |      | < 0.0035          |        | < 0.0043          | U     | < 0.0048          |      | < 0.0052          | 2 U    |
| 1,4-Dichlorobenzene                    | 106-46-7   | 1.8             | 130                   | < 0.0035          | U     | < 0.0044          | U     | < 0.0049          | U    | < 0.0035          | U      | < 0.0043          | U     | < 0.0048          | U    | < 0.0052          | 2 U    |
| 2-Butanone                             | 78-93-3    | 0.12            | 500                   | < 0.017           | U     | < 0.022           | U     | < 0.024           | U    | < 0.017           | U      | < 0.021           | U     | < 0.024           | U    | < 0.026           |        |
| 2-Hexanone                             | 591-78-6   | NA              | NA                    | < 0.017           |       | < 0.022           | U     | < 0.024           |      | < 0.017           |        | < 0.021           | U     | < 0.024           |      | < 0.026           | 5 U    |
| 4-Methyl-2-Pentanone                   | 108-10-1   | NA              | NA                    | < 0.017           | U     | < 0.022           | U     | < 0.024           | U    | < 0.017           | U      | < 0.021           | U     | < 0.024           | U    | < 0.026           | 5 U    |
| Acetone                                | 67-64-1    | 0.05            | 500                   | < 0.019           | U     | 0.028             |       | < 0.024           | U    | < 0.017           | U      | < 0.021           | U     | < 0.028           | U    | < 0.031           | U      |
| Benzene                                | 71-43-2    | 0.06            | 44                    | < 0.0035          | U     | < 0.0044          | U     | < 0.0049          | U    | < 0.0035          | U      | < 0.0043          | U     | < 0.0048          | U    | < 0.0052          | 2 U    |
| Bromodichloromethane                   | 75-27-4    | NA              | NA                    | < 0.0035          | U     | < 0.0044          | U     | < 0.0049          | U    | < 0.0035          | U      | < 0.0043          | U     | < 0.0048          | U    | < 0.0052          | 2 U    |
| Bromoform                              | 75-25-2    | NA              | NA                    | < 0.0035          | U     | < 0.0044          | U     | < 0.0049          | U    | < 0.0035          | U      | < 0.0043          | U     | < 0.0048          | U    | < 0.0052          | 2 U    |
| Bromomethane                           | 74-83-9    | NA              | NA                    | < 0.0035          | U     | < 0.0044          | U     | < 0.0049          | U    | < 0.0035          | U      | < 0.0043          | U     | < 0.0048          | U    | < 0.0052          | 20     |
| Carbon Disulfide                       | 75-15-0    | NA              | NA                    | < 0.0035          | U     | < 0.0044          | U     | < 0.0049          | U    | < 0.0035          | U      | < 0.0043          | U     | < 0.0048          | U    | < 0.0052          | 2 U    |
| Carbon Tetrachloride                   | 56-23-5    | 0.76            | 22                    | < 0.0035          | U     | < 0.0044          | U     | < 0.0049          | U    | < 0.0035          | U      | < 0.0043          | U     | < 0.0048          | U    | < 0.0052          | 2 U    |
| Chlorobenzene                          | 108-90-7   | 1.1             | 500                   | < 0.0035          | U     | < 0.0044          | U     | < 0.0049          | U    | < 0.0035          | U      | < 0.0043          | U     | < 0.0048          | U    | < 0.0052          | 2 U    |
| Chlorodibromomethane                   | 124-48-1   | NA              | NA                    | < 0.0035          | U     | < 0.0044          | U     | < 0.0049          | U    | < 0.0035          | U      | < 0.0043          | U     | < 0.0048          | U    | < 0.0052          | 2 U    |
| Chloroethane                           | 75-00-3    | NA              | NA                    | < 0.0035          |       | < 0.0044          |       | < 0.0049          |      | < 0.0035          |        | < 0.0043          |       | < 0.0048          |      | < 0.0052          |        |
| Chloroform                             | 67-66-3    | 0.37            | 350                   | < 0.0035          | U     | < 0.0044          | U     | < 0.0049          | U    | < 0.0035          | U      | < 0.0043          | U     | < 0.0048          | U    | < 0.0052          | 2 U    |
| Chloromethane                          | 74-87-3    | NA              | NA                    | < 0.0035          | U     | < 0.0044          | U     | < 0.0049          | U    | < 0.0035          | U      | < 0.0043          | U     | < 0.0048          | U    | < 0.0052          | 2 U    |
| Cis-1,2-Dichloroethene                 | 156-59-2   | 0.25            | 500                   | 0.0051            |       | 0.0030            | J     | < 0.0049          |      | < 0.0035          |        | < 0.0043          |       | 0.0010            |      | 0.0040            | ) ]    |
| Cis-1,3-Dichloropropene                | 10061-01-5 | NA              | NA                    | < 0.0035          |       | < 0.0044          |       | < 0.0049          |      | < 0.0035          |        | < 0.0043          |       | < 0.0048          |      | < 0.0052          |        |
| Cyclohexane                            | 110-82-7   | NA              | NA                    | < 0.0035          |       | < 0.0044          | U     | < 0.0049          | U    | < 0.0035          |        | < 0.0043          | U     | < 0.0048          | U    | < 0.0052          | 2 U    |
| Dichlorodifluoromethane                | 75-71-8    | NA              | NA                    | < 0.0035          | U     | < 0.0044          | U     | < 0.0049          | U    | < 0.0035          |        | < 0.0043          | U     | < 0.0048          | U    | < 0.0052          | 2 U    |
| Dichloromethane                        | 75-09-2    | 0.05            | 500                   | < 0.0035          |       | < 0.0044          | -     | < 0.0049          |      | < 0.0035          |        | < 0.0043          |       | < 0.0048          |      | < 0.0052          |        |
| Ethylbenzene                           | 100-41-4   | 1               | 390                   | < 0.0035          |       | < 0.0044          |       | < 0.0049          |      | < 0.0035          |        | < 0.0043          |       | < 0.0048          |      | < 0.0052          | 2 U    |
| Freon 113                              | 76-13-1    | NA              | NA                    | < 0.0035          |       | < 0.0044          | -     | < 0.0049          | -    | < 0.0035          |        | < 0.0043          | -     | < 0.0048          | -    | < 0.0052          |        |
| sopropyl benzene                       | 98-82-8    | NA              | NA                    | < 0.0035          |       | < 0.0044          |       | < 0.0049          |      | < 0.0035          |        | < 0.0043          |       | < 0.0048          |      | < 0.0052          | 2 U    |
| Methyl acetate                         | 79-20-9    | NA              | NA                    | < 0.017           |       | < 0.022           |       | < 0.024           |      | < 0.017           |        | < 0.021           |       | < 0.024           |      | < 0.026           | 5 U    |
| Methyl T-Butyl Ether (MTBE)            | 1634-04-4  | 0.93            | 500                   | < 0.0035          |       | < 0.0044          |       | < 0.0049          |      | < 0.0035          |        | < 0.0043          |       | < 0.0048          | U    | < 0.0052          | 2 U    |
| 1ethylcyclohexane                      | 108-87-2   | NA              | NA                    | < 0.0035          | -     | < 0.0044          | -     | < 0.0049          | -    | < 0.0035          | -      | < 0.0043          | -     | < 0.0048          | -    | < 0.0052          |        |
| Styrene                                | 100-42-5   | NA              | NA                    | < 0.0035          | -     | < 0.0044          | U     | < 0.0049          | -    | < 0.0035          | -      | < 0.0043          | U     | < 0.0048          | U    | < 0.0052          | -      |
| Fetrachloroethene                      | 127-18-4   | 1.3             | 150                   | < 0.0035          | -     | 0.0025            | J     | 0.0016            | -    | < 0.0035          | -      | 0.038             |       | 0.00098           | J    | 0.0047            | -      |
| oluene                                 | 108-88-3   | 0.7             | 500                   | < 0.0035          | U     | 0.00035           | J     | < 0.0049          |      | 0.00026           |        | < 0.0043          | -     | < 0.0048          |      | < 0.0052          | -      |
| rans-1,2-Dichloroethene                | 156-60-5   | 0.19            | 500                   | 0.01              |       | < 0.0044          | U     | < 0.0049          | -    | < 0.0035          | -      | < 0.0043          | -     | < 0.0048          | U    | 0.00062           | -      |
| Frans-1,3-Dichloropropene              | 10061-02-6 | NA              | NA                    | < 0.0035          | U     | < 0.0044          | U     | < 0.0049          |      | < 0.0035          |        | < 0.0043          |       | < 0.0048          | U    | < 0.0052          |        |
| Trichloroethylene                      | 79-01-6    | 0.47            | 200                   | 0.023             |       | 0.028             |       | 0.0014            | -    | < 0.0035          |        | 0.0015            | J     | 0.044             |      | 0.16              |        |
| Trichlorofluoromethane                 | 75-69-4    | NA              | NA                    | < 0.0035          |       | < 0.0044          | U     | < 0.0049          |      | < 0.0035          |        | < 0.0043          | U     | < 0.0048          | U    | < 0.0052          |        |
| Vinyl Chloride                         | 75-01-4    | 0.02            | 13                    | < 0.0035          | U     | < 0.0044          | U     | < 0.0049          | U    | < 0.0035          | U      | < 0.0043          | U     | < 0.0048          | U    | < 0.0052          | 2 U    |
| Xylenes, Total                         | XYLENES    | NA              | NA                    | < 0.0070          | U     | < 0.0088          |       | < 0.0098          |      | < 0.0070          | 11     | < 0.0085          | 11    | < 0.0096          |      | < 0.01            |        |

ft bgs Feet below ground surface ID Identification

mg/kg Milligrams per kilogram NA Not available

No. Number PART375REST - POGW 6 New York Codes, Rules and Regulations Part 375 -Protection of Groundwater PART375REST- COMMERCIAL 6 New York Codes, Rules and Regulations Part 375 -

 5REST- COMMERCIAL
 6 New York Codes, Rules and Regulations Part 375 - Commercial

 Qua.
 Qualifier

 VOCS
 Volatile organic compounds

 B
 Analyte found in associated blank sample

 J
 Estimated analytical value

 JL
 Definition not known

 R
 Rejected

 U
 Analytical non-detect value

 UJ
 Compound was analyzed but not detected;

 the value given is an estimate

 300
 Results that are bold exceed the PART375REST - POGW

| Image: second participant second partite second partite second participant second participant second pa                                         |                      |            |      | Location ID | BW201      | BW201      | BW202      | BW202      | MW204       | MW204       | MW205      | MW205      | SB202      | SB202                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|------|-------------|------------|------------|------------|------------|-------------|-------------|------------|------------|------------|--------------------------|
| Line         Line         Line         Junk 2/2         Junk 2/2 <thjunk 2="" 2<="" th=""> <thjunk 2="" 2<<="" th=""><th></th><th></th><th></th><th></th><th></th><th>-</th><th>-</th><th></th><th>-</th><th>-</th><th></th><th></th><th></th><th>SB202-8.5-9.5-</th></thjunk></thjunk>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |      |             |            | -          | -          |            | -           | -           |            |            |            | SB202-8.5-9.5-           |
| Normal         Description         Description         Description         65.9.2         65.9.2         11.7.2         11.7.2         11.7.2         15.7.5         15.7.5         9.1.2         15.7.5         9.1.2         15.7.5         9.1.2         15.7.5         9.1.2         15.7.5         9.1.2         15.7.5         9.1.2         15.7.5         9.1.2         15.7.5         9.1.2         15.7.5         9.1.2         15.7.5         9.1.2         15.7.5         9.1.2         15.7.5         9.1.2         15.7.5         9.1.2         15.7.5         9.1.2         15.7.5         9.1.2         15.7.5         9.1.2         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5         15.7.5 </th <th></th> <th></th> <th></th> <th>Sample ID</th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>20180518</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |            |      | Sample ID   |            |            | -          |            |             |             |            |            |            | 20180518                 |
| house         Pert Protect         Merry States         Band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |            |      |             |            |            |            |            |             |             |            |            |            | 5/18/2018                |
| boltom         construct         low         low        low         low <th< th=""><th></th><th></th><th></th><th></th><th>8.5 - 9.5</th><th>8.5 - 9.5</th><th>11 - 12</th><th>11 - 12</th><th>16.5 - 17.5</th><th>16.5 - 17.5</th><th>9 - 10</th><th>9 - 10</th><th>8.5 - 9.5</th><th>8.5 - 9.5</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |            |      |             | 8.5 - 9.5  | 8.5 - 9.5  | 11 - 12    | 11 - 12    | 16.5 - 17.5 | 16.5 - 17.5 | 9 - 10     | 9 - 10     | 8.5 - 9.5  | 8.5 - 9.5                |
| Aperbon         Physic         Am         Auto         June         June        June         June         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyte              | Case No.   | POGW | COMMERCIAL  |            | Oua        | 001        | Oua        |             | 0112        | 0113       | 0113       |            | 0112                     |
| Pres $ m _{1}$ B $ m _{2}$ </td <td>Aluminum</td> <td>7429-90-5</td> <td></td> <td></td> <td>5150</td> <td>5900</td> <td>5080 J</td> <td>312 J</td> <td>2940</td> <td>2710</td> <td>5180</td> <td>3870</td> <td>4000 B</td> <td>4100 B</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Aluminum             | 7429-90-5  |      |             | 5150       | 5900       | 5080 J     | 312 J      | 2940        | 2710        | 5180       | 3870       | 4000 B     | 4100 B                   |
| baum         Path         Path <th< td=""><td>Antimony</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>0.52 J</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Antimony             |            |      |             |            |            |            | -          |             |             |            |            |            | 0.52 J                   |
| jergen         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0         (94)-0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |            |      |             |            |            |            |            |             |             |            |            |            | 1.6 J                    |
| Selence         World P         7.5         9.3           0.101         0.000         0.001         0.001         0.001         0.000         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001 <td></td> <td>20.4</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |            |      |             |            |            |            |            |             |             |            |            |            | 20.4                     |
| Calam         PAD2         WA         MA         M4600         M3000         M3000<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |      |             |            |            |            |            |             |             |            |            |            | 0.23<br>0.096 J          |
| Doman         Perton         Perton         Perton         Particle         Paritite         Pariticle         Par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |            |      |             |            |            |            |            |             |             |            |            |            | 42000 B                  |
| Data         PH0-54         M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |            |      |             |            |            |            |            |             |             |            |            |            | 7.9                      |
| Int         Yest-P6         MA         MA         MA         Type         Bill         Type         Bar         Display         State         Type         State         Type         State         Type         State         Type         State         Type         Type        <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |      |             |            |            |            |            |             |             |            |            |            | 3.6 B                    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | 7440-50-8  |      | 270         |            |            |            | 2.2 J      | 5.1         |             |            |            |            | 11.2                     |
| Ingressim         Name         No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |            |      |             |            |            |            |            |             |             |            |            |            | 9900 B                   |
| Index         PROPAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |            |      |             |            |            |            |            |             |             |            |            |            | 9.9 ]                    |
| Index         P44-00-0         130         100         11.0   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1                                                                              |                      |            |      |             |            |            |            |            |             |             |            |            |            | 13700 J                  |
| Protection         PH40 (b7)         NA         NA         1980         1200         1980         518         778         614         1080         885         987         11          Comm         778         614         1080         685         987         11          Comm         778         614         1080         614         1080         635         617         618         1080         618         1080         618         1080         618         1080         618         1080         618         1080         618         1080         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |            |      |             |            |            |            |            |             |             |            |            |            | 260 B<br>10.2            |
| Stelem         782-9-2         4         150 $< < 4/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < 6/10$ $< < < 6/10$ $< < < < < < < < < < < < < < < < < < < $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |            |      |             |            |            |            |            | _           |             |            |            |            | 1160                     |
| Sher $\gamma 40_2 24$ 8 $190$ $< 0.70$ $< 0.70$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.73$ $< 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |            |      |             |            |            |            |            |             |             |            |            |            | < 4.3 U                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |      |             |            |            |            |            | -           |             |            |            |            | < 0.65 U                 |
| Versition         2449-52         NA         NA         12.6         11.6         11.6 $< 0.039$ 8.5         9.8         12.6         11.6         11.8         11.1           Cac         24406         200         34.5         37.7         32.0         13.2         13.2         13.8         12.6         12.6         34.5         33.6         23.6           4.4 G00         72.54.8         14         9.2         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0000         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.00010         <0.00010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.0010         <0.00010         <0.0010         <0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sodium               | 7440-23-5  | NA   | NA          | 649        | 608        | 107 J      | 62.7 J     | 209         | 163         | 433        | 314        | 138 J      | 128 J                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Thallium             |            |      |             |            |            |            |            |             | < 6.5 U     |            | < 7.3 U    |            | < 6.5 U                  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |            |      |             |            |            |            |            |             |             |            | -+         |            | 12.0 B                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |      |             |            |            |            |            |             |             |            |            |            | 29.2                     |
| $ \begin{array}{c} 0.4^{+} \text{ODT} & 50.293 & 136 & 47 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.0019   0 & < 0.00$ |                      |            |      |             |            |            |            |            |             |             |            |            |            | < 0.0018 U               |
| Admin         399-00-2         0.19         0.68         < 0.0019 U         < 0.0019 U         < 0.0019 U         < 0.0018 U         < 0.0019 U         < 0.0019 U         < 0.0019 U         < 0.0018 U         < 0.0019 U         < 0.0018 U         < 0.0018 U         < 0.0018 U         < 0.0019 U         < 0.0018 U <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>&lt; 0.0018 U</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |            |      |             |            |            |            |            |             |             |            |            |            | < 0.0018 U               |
| Apple-BirC         319-84-6         0.02         3.4 $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$ $< 0.0019$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |            |      |             |            |            |            |            |             |             |            |            |            | < 0.0018 U               |
| Beta-BitC         319-857         0.09         3         < 0.0019  U         < 0.0019  U         < 0.0019  U         < 0.0018  U         < 0.0010  U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |            |      |             |            |            |            |            |             |             |            |            |            | < 0.0018 U               |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | 5103-71-9  | 2.9  | 24          | < 0.0019 U | < 0.0019 U | < 0.0019 U | < 0.0019 U | < 0.0018 U  | < 0.0018 U  | < 0.0019 U | < 0.0020 U | < 0.0018 U | < 0.0018 U               |
| Defenenc         199-86.         0.25         500         < 0.0019  U         < 0.0019  U <td>Beta-BHC</td> <td>319-85-7</td> <td>0.09</td> <td>3</td> <td>&lt; 0.0019 U</td> <td>&lt; 0.0019 U</td> <td>&lt; 0.0019 U</td> <td>&lt; 0.0019 U</td> <td>&lt; 0.0018 U</td> <td>&lt; 0.0018 U</td> <td>&lt; 0.0019 U</td> <td>&lt; 0.0020 U</td> <td>&lt; 0.0018 U</td> <td>&lt; 0.0018 U</td>                                                                                                                                                                                                                                                                                                                                                                                               | Beta-BHC             | 319-85-7   | 0.09 | 3           | < 0.0019 U | < 0.0019 U | < 0.0019 U | < 0.0019 U | < 0.0018 U  | < 0.0018 U  | < 0.0019 U | < 0.0020 U | < 0.0018 U | < 0.0018 U               |
| Operation         60-57-1         0.1         1.4         < 0.0019         U         < 0.0018         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |            |      |             |            |            |            |            |             |             |            |            |            | < 0.018 U                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |      |             |            |            |            |            |             |             |            |            |            | < 0.0018 U               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |      |             |            |            |            |            |             |             |            |            |            | < 0.0018 U               |
| Index         1010         200         < 0.0019         < 0.0019         < 0.0019         < 0.0018         < 0.0018         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0018         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |            |      |             |            |            |            |            |             |             |            |            |            | < 0.0018 U               |
| Incrim         72-0-8         0.06         89         < 0.0019 UT         < 0.0018 U         < 0.0018 U         < 0.0018 U         < 0.0019 UT         < 0.0018 U         < 0.0018 U         < 0.0018 U         < 0.0019 U         < 0.0018 U         < 0.0018 U         < 0.0018 U         < 0.0019 U         < 0.0018 U         < 0.0018 U         < 0.0019 U         < 0.0018 U         < 0.0018 U         < 0.0018 U         < 0.0019 U         < 0.0018 U         < 0.0018 U         < 0.0019 U         < 0.0019 U         < 0.0018 U         < 0.0018 U         < 0.0019 U         < 0.0018 U         < 0.0018 U         < 0.0019 U         < 0.0018 U         < 0.0018 U         < 0.0019 U         < 0.0018 U         < 0.0018 U         < 0.0019 U         < 0.0018 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |            |      |             |            |            |            |            |             |             |            |            |            | < 0.0018 U               |
| Indim Adehyde         YA         NA         Ox0019         C<0.0019         C<0.0019         C<0.0019         C<0.0018         C<0.0018         C<0.0019         C<0.0010         Ox0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |            |      |             |            |            |            |            |             |             |            |            |            | < 0.0018 U               |
| Gamma-BHC (Lindane)         58-89-9         0.1         9.2         < 0.0019         U         < 0.0018         U         < 0.0019         U         < 0.0018         U         < 0.0019         U         < 0.0019         U         < 0.0018         U         < 0.0018         U         < 0.0018         U         < 0.0019         U         < 0.0018         U         < 0.0018         U         < 0.0018         U         < 0.0018U         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |            |      |             |            |            |            |            |             |             |            |            |            | 0.00099 J                |
| Gamma-Chlordane         5103-74-2         NA         NA         < 0.0019         U         < 0.0019         U         < 0.0018         U         < 0.0019         U         < 0.0019U         < 0.0019         U         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Endrin Ketone        |            |      |             |            |            |            |            | < 0.0018 U  |             |            |            |            | < 0.0018 U               |
| Heptachlor         76-44-8         0.38         15         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |            |      |             |            |            |            |            |             |             |            |            |            | < 0.0018 U               |
| Heptachlor Epoxide         1024-57-3         NA         NA         < 0.0019 U         < 0.0018 U         < 0.0018 U         < 0.0019 U         < 0.0018 U         < 0.0019 U         < 0.0018 U         < 0.0018 U         < 0.0019 U         < 0.0018 U         < 0.0018 U         < 0.0019 U         < 0.0018 U         < 0.0018 U         < 0.0019 U         < 0.0018 U         < 0.0018 U         < 0.0019 U         < 0.0018 U         < 0.0018 U         < 0.0019 U         < 0.0018 U         < 0.0018 U         < 0.0019 U         < 0.0018 U         < 0.0018 U         < 0.0019 U         < 0.0018 U         < 0.0018 U         < 0.0019 U         < 0.0018 U         < 0.0018 U         < 0.0019 U         < 0.0018 U         < 0.0018 U         < 0.0019 U         < 0.0018 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |            |      |             |            |            |            |            |             |             |            |            |            | < 0.0018 U               |
| Methoxychor         72-43-5         NA         NA         < 0.0019         U         < 0.0019         U         < 0.0019         U         < 0.0018         U         < 0.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |            |      |             |            |            |            |            |             |             |            |            |            | < 0.0018 U               |
| Araclor 1016       12674-11-2       NA       NA       < 0.24 U       < 0.23 U       < 0.24 U       < 0.22 U       < 0.28 U       < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |            |      |             |            |            |            |            |             |             |            |            |            | < 0.0018 U<br>< 0.0018 U |
| Arocior 1221       11104-28-2       NA       NA       < 0.24 U       < 0.22 U       < 0.24 U       < 0.25 U       < 0.28 U       < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                    |            |      |             |            |            |            |            |             |             |            |            |            | < 0.0018 U<br>< 0.22 U   |
| Arodor 1232       1141-16-5       NA       NA       < 0.24       U       < 0.23       U       < 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |      |             |            |            |            |            |             |             |            |            |            | < 0.22 U                 |
| Aroclor 1242       53469-21-9       NA       NA       < 0.24       U       < 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |            |      |             |            |            |            |            |             |             |            |            |            | < 0.22 U                 |
| Aroclor 1254       11097-69-1       NA       NA       < 0.24       U       < 0.26       U       < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | 53469-21-9 |      |             |            | < 0.26 U   | < 0.23 U   | < 0.24 U   |             | < 0.22 U    | < 0.28 U   |            | < 0.28 U   | < 0.22 U                 |
| Aroclor 1260       11096-82-5       NA       NA       < 0.2       U       < 0.2       U <td></td> <td>&lt; 0.22 U</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |            |      |             |            |            |            |            |             |             |            |            |            | < 0.22 U                 |
| 1/1-Biphenyl       92-52-4       NA       NA       < 0.2       U       < 0.19       U       < 0.19       U       < 0.2       U       < 0.19       U       < 0.19       U       < 0.18       U       < 0.2       U       < 0.19       U       < 0.19       U       < 0.19       U       < 0.18       U       < 0.2       U       < 0.19       U       < 0.19       U       < 0.19       U       < 0.18       U       < 0.18       U       < 0.2       U       < 0.19       U       < 0.18       U       < 0.18       U       < 0.2       U       < 0.19       U       < 0.19       U       < 0.19       U       < 0.19       U       < 0.18       U       < 0.18       U       < 0.2       U       < 0.19       U       < 0.19       U       < 0.19       U       < 0.18       U       < 0.18       U       < 0.18       U       < 0.2       U       < 0.19       U       < 0.19       U       < 0.18       U       < 0.18       U       < 0.2       U       < 0.19       U       < 0.19       U       < 0.18       U       < 0.18       U <td></td> <td>&lt; 0.22 U</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |            |      |             |            |            |            |            |             |             |            |            |            | < 0.22 U                 |
| 2/4,5-Trichlorophenol         95-95-4         NA         NA         < 0.2         U         < 0.19         U         < 0.2         U         < 0.19         U         < 0.2         U         < 0.19         U         < 0.19         U         < 0.18         U         < 0.2         U         < 0.19         U         < 0.19         U         < 0.18         U         < 0.2         U         < 0.19         U         < 0.19         U         < 0.19         U         < 0.18         U         < 0.2         U         < 0.19         U         < 0.19         U         < 0.19         U         < 0.18         U         < 0.2         U         < 0.19         U         < 0.19         U         < 0.19         U         < 0.18         U         < 0.2         U         < 0.19         U         < 0.19         U         < 0.19         U         < 0.18         U         < 0.12         U         < 0.19         U         < 0.19         U         < 0.18         U         < 0.12         U         < 0.19         U         < 0.18         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |            |      |             |            |            |            |            |             |             |            |            |            | < 0.22 U                 |
| 2,4,6-Trichlorophenol 88-06-2 NA NA < 0.2 U < 0.19 U < 0.19 U < 0.19 U < 0.2 U < 0.18 U < 0.2 U < 0.2 U < 0.2 U < 0.2 U < 0.19 U                  | · · · ·              |            |      |             |            |            |            |            |             |             |            |            |            | < 0.19 U                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · ·                |            |      |             |            |            |            |            |             |             |            |            |            | < 0.19 U<br>< 0.19 U     |
| 124-1/101070000000 1124-83-2 I NA I NA I < 0.210 I < 0.1910 I < 0.1910 I < 0.210 I < 0.1810 I < 0.210 I < 0.210 I < 0.1910 I < 0.1910 I < 0.1910 I < 0.1910 I < 0.1810 I < 0.210 I < 0.210 I < 0.1910 I < 0.1910 I < 0.1910 I < 0.1910 I < 0.1810 I < 0.1810 I < 0.210 I < 0.1910 I < 0.1910 I < 0.1910 I < 0.1910 I < 0.1810 I < 0.1810 I < 0.210 I < 0.1910 I < 0.1910 I < 0.1910 I < 0.1810 I < 0.1810 I < 0.1810 I < 0.1910 I < 0.1910 I < 0.1910 I < 0.1910 I < 0.1810 I < 0.1810 I < 0.1810 I < 0.1910 I < 0.1910 I < 0.1910 I < 0.1910 I < 0.1810 I < 0.1810 I < 0.1910 I < 0.1810 I < 0.1810 I < 0.1910 I < 0.1910 I < 0.1910 I < 0.1810 I < 0.1810 I < 0.1910 I < 0.1810 I < 0.1810 I < 0.1910 I                  | 2,4,0-micriorophenol | 120-83-2   | NA   | NA          | < 0.2 U    | < 0.19 U   | < 0.19 U   | < 0.2 U    | < 0.18 U    | < 0.18 U    | < 0.2 U    | < 0.2 U    | < 0.19 U   | < 0.19 U                 |

|                                               |                       |                                  | Location ID                         | BW201                  | BW201                  | BW202                  | BW202                  | MW204                  | MW204                  | MW205                 | MW205                  | SB202                  | SB202                  |
|-----------------------------------------------|-----------------------|----------------------------------|-------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-----------------------|------------------------|------------------------|------------------------|
|                                               |                       |                                  | Sample ID                           | BW201-8.5-9.5-1-       | BW201-8.5-9.5-         | BW202-11-12-1-         | BW202-11-12-           | MW204-16.5-17.5-1-     | MW204-16.5-17.5-       | MW205-9-10-1-         | MW205-9-10-            | SB202-8.5-9.5-1-       | SB202-8.5-9.5-         |
|                                               |                       |                                  | •                                   | 20180529               | 20180529               | 20180524               | 20180524               | 20180523               | 20180523               | 20180529              | 20180529               | 20180518               | 20180518               |
|                                               |                       | <b>6</b>                         | Sample Date                         |                        | 5/29/2018              | 5/24/2018              | 5/24/2018              | 5/23/2018              | 5/23/2018              | 5/29/2018             | 5/29/2018              | 5/18/2018              | 5/18/2018              |
|                                               | _                     | San<br>PART375REST -             | nple Depth (ft bgs)<br>PART375REST- | 8.5 - 9.5              | 8.5 - 9.5              | 11 - 12                | 11 - 12                | 16.5 - 17.5            | 16.5 - 17.5            | 9 - 10                | 9 - 10                 | 8.5 - 9.5              | 8.5 - 9.5              |
| Analyte                                       | Case No.              | PARTS75REST -<br>POGW<br>(mg/kg) | COMMERCIAL<br>(mg/kg)               | Result<br>(mg/kg) Qua. | Result<br>(mg/kg) Qua | Result<br>(mg/kg) Qua. | Result<br>(mg/kg) Qua. | Result<br>(mg/kg) Qua. |
| 2,4-Dimethylphenol                            | 105-67-9              | NA                               | NA                                  | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |
| 2,4-Dinitrophenol                             | 51-28-5               | NA                               | NA                                  | < 1.9 U                | < 1.9 U                | < 1.9 U                | < 1.9 U                | < 1.8 U                | < 1.8 U                | < 1.9 U               | < 1.9 U                | < 1.8 U                | < 1.8 U                |
| 2,4-Dinitrotoluene                            | 121-14-2              | NA                               | NA                                  | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |
| 2,6-Dinitrotoluene                            | 606-20-2              | NA                               | NA                                  | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |
| 2-Chloronaphthalene                           | 91-58-7<br>95-57-8    | NA<br>NA                         | NA<br>NA                            | < 0.2 U<br>< 0.2 U     | < 0.19 U<br>< 0.19 U   | < 0.19 U<br>< 0.19 U   | < 0.2 U<br>< 0.2 U     | < 0.18 U               | < 0.18 U               | < 0.2 U<br>< 0.2 U    | < 0.2 U<br>< 0.2 U     | < 0.19 U               | < 0.19 U               |
| 2-Chlorophenol<br>2-Methylnaphthalene         | 95-57-8               | NA                               | NA                                  | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U<br>< 0.2 U     | < 0.18 U<br>< 0.18 U   | < 0.18 U<br>< 0.18 U   | < 0.2 U<br>< 0.2 U    | < 0.2 U                | < 0.19 U<br>< 0.19 U   | < 0.19 U<br>< 0.19 U   |
| 2-Methylphenol                                | 95-48-7               | 0.33                             | 500                                 | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |
| 2-Nitroaniline                                | 88-74-4               | NA                               | NA                                  | < 0.38 U               | < 0.38 U               | < 0.19 U               | < 0.2 U                | < 0.36 U               | < 0.36 U               | < 0.38 U              | < 0.38 U               | < 0.36 U               | < 0.36 U               |
| 2-Nitrophenol                                 | 88-75-5               | NA                               | NA                                  | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |
| 3,3`-Dichlorobenzidine                        | 91-94-1               | NA                               | NA                                  | < 0.38 U               | < 0.38 U               | < 0.38 U               | < 0.38 U               | < 0.36 U               | < 0.36 U               | < 0.38 U              | < 0.38 U               | < 0.36 U               | < 0.36 U               |
| 3-Nitroaniline                                | 99-09-2               | NA                               | NA                                  | < 0.38 U               | < 0.38 U               | < 0.38 U               | < 0.38 U               | < 0.36 U               | < 0.36 U               | < 0.38 U              | < 0.38 U               | < 0.36 U               | < 0.36 U               |
| 4,6-Dinitro-2-Methylphenol                    | 534-52-1              | NA                               | NA                                  | < 0.38 U               | < 0.38 U               | < 0.38 U               | < 0.38 U               | < 0.36 U               | < 0.36 U               | < 0.38 U              | < 0.38 U               | < 0.36 U               | < 0.36 U               |
| 4-Bromophenyl Phenyl Ether                    | 101-55-3              | NA                               | NA                                  | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |
| 4-Chloro-3-Methylphenol                       | 59-50-7               | NA                               | NA                                  | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |
| 4-Chloroaniline                               | 106-47-8              | NA                               | NA                                  | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |
| 4-Chlorophenyl Phenylether                    | 7005-72-3<br>106-44-5 | NA<br>0.33                       | NA<br>500                           | < 0.2 U<br>< 0.38 U    | < 0.19 U<br>< 0.38 U   | < 0.19 U<br>< 0.38 U   | < 0.2 U<br>< 0.38 U    | < 0.18 U<br>< 0.36 U   | < 0.18 U<br>< 0.36 U   | < 0.2 U<br>< 0.38 U   | < 0.2 U<br>< 0.38 U    | < 0.19 U<br>< 0.36 U   | < 0.19 U<br>< 0.36 U   |
| 4-Methylphenol<br>4-Nitroaniline              | 100-44-5              | 0.33<br>NA                       | NA                                  | < 0.38 U               | < 0.38 U               | < 0.38 U               | < 0.38 U               | < 0.36 U               | < 0.36 U               | < 0.38 U              | < 0.38 U               | < 0.36 U               | < 0.36 U               |
| 4-Nitrophenol                                 | 100-01-0              | NA                               | NA                                  | < 0.38 U               | < 0.38 U               | < 0.38 U               | < 0.38 U               | < 0.36 U               | < 0.36 U               | < 0.38 U              | < 0.38 U               | < 0.36 U               | < 0.36 U               |
| Acenaphthene                                  | 83-32-9               | 98                               | 500                                 | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | 0.041 J                | 0.057 J                |
| Acenaphthylene                                | 208-96-8              | 107                              | 500                                 | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |
| Acetophenone                                  | 98-86-2               | NA                               | NA                                  | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |
| Anthracene                                    | 120-12-7              | 1000                             | 500                                 | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | 0.11 J                 | 0.089 J                |
| Atrazine                                      | 1912-24-9             | NA                               | NA                                  | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |
| Benzaldehyde                                  | 100-52-7              | NA                               | NA                                  | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |
| Benzo(A)Anthracene                            | 56-55-3               | 1                                | 5.6                                 | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | 0.43                   | 0.41                   |
| Benzo(A)Pyrene<br>Benzo(B)Fluoranthene        | 50-32-8<br>205-99-2   | 22<br>1.7                        | 5.6                                 | < 0.2 U<br>< 0.2 U     | < 0.19 U<br>< 0.19 U   | < 0.19 U<br>< 0.19 U   | < 0.2 U<br>< 0.2 U     | < 0.18 U<br>< 0.18 U   | < 0.18 U<br>< 0.18 U   | < 0.2 U<br>< 0.2 U    | < 0.2 U<br>< 0.2 U     | 0.44<br>0.66           | 0.41 0.63              |
| Benzo(G,H,I)Perylene                          | 191-24-2              | 1000                             | 500                                 | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | 0.34                   | 0.34                   |
| Benzo(K)Fluoranthene                          | 207-08-9              | 1.7                              | 56                                  | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.10 U               | < 0.2 U               | < 0.2 U                | 0.28                   | 0.34                   |
| Bis(2-Chloroethoxy) Methane                   | 111-91-1              | NA                               | NA                                  | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |
| Bis(2-Chloroethyl) Ether                      | 111-44-4              | NA                               | NA                                  | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |
| Bis(2-Ethylhexyl) Phthalate                   | 117-81-7              | NA                               | NA                                  | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |
| Bis-Chloroisopropyl Ether                     | 108-60-1              | NA                               | NA                                  | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |
| Butyl Benzyl Phthalate                        | 85-68-7               | NA                               | NA                                  | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |
| Caprolactam                                   | 105-60-2              | NA                               | NA                                  | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |
| Carbazole                                     | 86-74-8<br>218-01-9   | NA<br>1                          | NA<br>56                            | < 0.2 U<br>< 0.2 U     | < 0.19 U<br>< 0.19 U   | < 0.19 U<br>< 0.19 U   | < 0.2 U<br>< 0.2 U     | < 0.18 U<br>< 0.18 U   | < 0.18 U<br>< 0.18 U   | < 0.2 U<br>< 0.2 U    | < 0.2 U<br>< 0.2 U     | 0.13 J<br>0.57         | 0.13 J<br>0.57         |
| Chrysene<br>Dibenzo(A,H)Anthracene            | 53-70-3               | 1000                             | 0.56                                | < 0.2 U<br>< 0.2 U     | < 0.19 U<br>< 0.19 U   | < 0.19 U               | < 0.2 U<br>< 0.2 U     | < 0.18 U<br>< 0.18 U   | < 0.18 U<br>< 0.18 U   | < 0.2 U<br>< 0.2 U    | < 0.2 U                | 0.57<br>< 0.19 U       | 0.098 J                |
| Dibenzofuran                                  | 132-64-9              | 210                              | 350                                 | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | 0.034 J                | 0.098 J                |
| Diethylphthalate                              | 84-66-2               | NA                               | NA                                  | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |
| Dimethylphthalate                             | 131-11-3              | NA                               | NA                                  | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |
| Di-N-Butylphthalate                           | 84-74-2               | NA                               | NA                                  | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |
| Di-N-Octyl Phthalate                          | 117-84-0              | NA                               | NA                                  | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |
| Fluoranthene                                  | 206-44-0              | 1000                             | 500                                 | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | 1.2                    | 1.3                    |
| Fluorene                                      | 86-73-7               | 386                              | 500                                 | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | 0.066 J                | 0.063 J                |
| Hexachlorobenzene                             | 118-74-1              | 3.2                              | 6                                   | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |
| Hexachlorobutadiene                           | 87-68-3               | NA                               | NA                                  | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |
| Hexachlorocyclopentadiene<br>Hexachloroethane | 77-47-4<br>67-72-1    | NA<br>NA                         | NA<br>NA                            | < 0.2 U<br>< 0.2 U     | < 0.19 U<br>< 0.19 U   | < 0.19 U<br>< 0.19 U   | < 0.2 U<br>< 0.2 U     | < 0.18 U<br>< 0.18 U   | < 0.18 U<br>< 0.18 U   | < 0.2 U<br>< 0.2 U    | < 0.2 U<br>< 0.2 U     | < 0.19 U<br>< 0.19 U   | < 0.19 U<br>< 0.19 U   |
| Indeno(1,2,3-Cd)Pyrene                        | 193-39-5              | 8.2                              | 5.6                                 | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U<br>< 0.2 U     | < 0.18 U               | < 0.18 U<br>< 0.18 U   | < 0.2 U<br>< 0.2 U    | < 0.2 U                | 0.190                  | < 0.19 0               |
| Isophorone                                    | 78-59-1               | NA                               | NA                                  | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |
| Naphthalene                                   | 91-20-3               | 12                               | 500                                 | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |
| Nitrobenzene                                  | 98-95-3               | NA                               | NA                                  | < 0.2 U                | < 0.19 U               | < 0.19 U               | < 0.2 U                | < 0.18 U               | < 0.18 U               | < 0.2 U               | < 0.2 U                | < 0.19 U               | < 0.19 U               |

|                            |          |                                  | Location ID<br>Sample ID              | BW201-8.5-9.5-1-<br>20180529 | BW201<br>BW201-8.5-9.5-<br>20180529 | BW202<br>BW202-11-12-1-<br>20180524 | BW202<br>BW202-11-12-<br>20180524 | MW204<br>MW204-16.5-17.5-1-<br>20180523 | MW204<br>MW204-16.5-17.5-<br>20180523 | MW205<br>MW205-9-10-1-<br>20180529 | MW205<br>MW205-9-10-<br>20180529 | SB202<br>SB202-8.5-9.5-1-<br>20180518 | SB202<br>SB202-8.5-9.5-<br>20180518 |
|----------------------------|----------|----------------------------------|---------------------------------------|------------------------------|-------------------------------------|-------------------------------------|-----------------------------------|-----------------------------------------|---------------------------------------|------------------------------------|----------------------------------|---------------------------------------|-------------------------------------|
|                            |          | Sar                              | Sample Date<br>mple Depth (ft bgs)    | 5/29/2018<br>8.5 - 9.5       | 5/29/2018<br>8.5 - 9.5              | <u>5/24/2018</u><br>11 - 12         | 5/24/2018<br>11 - 12              | 5/23/2018<br>16.5 - 17.5                | 5/23/2018<br>16.5 - 17.5              | 5/29/2018<br>9 - 10                | 5/29/2018<br>9 - 10              | 5/18/2018<br>8.5 - 9.5                | 5/18/2018<br>8.5 - 9.5              |
| Analyte                    | Case No. | PART375REST -<br>POGW<br>(mg/kg) | PART375REST-<br>COMMERCIAL<br>(mg/kg) | Result<br>(mg/kg) Qua.       | Result<br>(mg/kg) Qua.              | Result<br>(mg/kg) Qua.              | Result<br>(mg/kg) Qua.            | Result<br>(mg/kg) Qua.                  | Result<br>(mg/kg) Qua.                | Result<br>(mg/kg) Qua.             | Result<br>(mg/kg) Qua.           | Result<br>(mg/kg) Qua.                | Result<br>(mg/kg) Qua.              |
| N-Nitroso-Di-N-Propylamine | 621-64-7 | NA                               | NA                                    | < 0.2 U                      | < 0.19 U                            | < 0.19 U                            | < 0.2 U                           | < 0.18 U                                | < 0.18 U                              | < 0.2 U                            | < 0.2 U                          | < 0.19 U                              | < 0.19 U                            |
| N-Nitrosodiphenylamine     | 86-30-6  | NA                               | NA                                    | < 0.2 U                      | < 0.19 U                            | < 0.19 U                            | < 0.2 U                           | < 0.18 U                                | < 0.18 U                              | < 0.2 U                            | < 0.2 U                          | < 0.19 U                              | < 0.19 U                            |
| Pentachlorophenol          | 87-86-5  | 0.8                              | 6.7                                   | < 0.38 U                     | < 0.38 U                            | < 0.38 U                            | < 0.38 U                          | < 0.36 U                                | < 0.36 U                              | < 0.38 U                           | < 0.38 U                         | < 0.36 U                              | < 0.36 U                            |
| Phenanthrene               | 85-01-8  | 1000                             | 500                                   | < 0.2 U                      | < 0.19 U                            | < 0.19 U                            | < 0.2 U                           | < 0.18 U                                | < 0.18 U                              | < 0.2 U                            | < 0.2 U                          | 0.74                                  | 0.79                                |
| Phenol                     | 108-95-2 | 0.33                             | 500                                   | < 0.2 U                      | < 0.19 U                            | < 0.19 U                            | < 0.2 U                           | < 0.18 U                                | < 0.18 U                              | < 0.2 U                            | < 0.2 U                          | < 0.19 U                              | < 0.19 U                            |
| Pyrene                     | 129-00-0 | 1000                             | 500                                   | < 0.2 U                      | < 0.19 U                            | < 0.19 U                            | < 0.2 U                           | < 0.18 U                                | < 0.18 U                              | < 0.2 U                            | < 0.2 U                          | 0.96                                  | 1                                   |

Notes:

ft bgs Feet below ground surface

- ID Identification
- mg/kg Milligrams per kilogram

NA Not available

No. Number

PART375REST - POGW 6 New York Codes, Rules and Regulations Part 375 -

Protection of Groundwater

PART375REST- COMMERCIAL 6 New York Codes, Rules and Regulations Part 375 -

- Commercial
- Qua. Qualifier
- VOCs Volatile organic compounds
- B Analyte found in associated blank sample
- J Estimated analytical value
- JL Definition not known
- NJ The analysis indicate the presence of an analyte "tentatively identified"
- R Rejected
- U Analytical non-detect value UJ Compound was analyzed but not detected;
- the value given is an estimate
- UT Non-detect value but value reported is less than the
- laboratory method detection limit.

|                             | La          | cation ID | BP-1          | BW1           | BW1           | BW201     |       | BW201         | BW202         | BW202         | MW201         | MW201         | MW202         |
|-----------------------------|-------------|-----------|---------------|---------------|---------------|-----------|-------|---------------|---------------|---------------|---------------|---------------|---------------|
|                             |             |           | SUMP-20180618 |               | BW1-16.5-25-  | BW201     |       | BW201-21.3-   | BW202-        | BW202-21.3-   | MW201-        | MW201-6-16-   | MW202-        |
|                             |             | -         |               |               | 20200108      | 2018061   |       | 31.3-20200109 | 20180619      | 30.3-20200108 | 20180620      | 20200108      | 20180619      |
|                             |             | nple Date | 6/18/2018     | 6/20/2018     | 1/8/2020      | 6/18/20   |       | 1/9/2020      | 6/19/2018     | 1/8/2020      | 6/20/2018     | 1/8/2020      | 6/19/2018     |
|                             | Sample Dept |           | 0 - 0         | 16.5 - 25     | 16.5 - 25     | 21.3 - 31 | 3     | 21.3 - 31.3   | 21.3 - 30.3   | 21.3 - 30.3   | 6 - 16        | 6 - 16        | 4.3 - 14.3    |
|                             |             | NYS GW    |               |               |               |           |       |               |               |               |               |               |               |
| Analyte                     | Cas No.     | Criteria  | Results Qual. | Results Qual. | Results Qual. | Results   | Qual. | Results Qual. |
|                             |             | (ug/l)    |               |               |               |           |       |               |               |               |               |               |               |
| 1,1,1-Trichloroethane       | 71-55-6     | 5         | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     |       | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| 1,1,2,2-Tetrachloroethane   | 79-34-5     | 5         | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     |       | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| 1,1,2-Trichloroethane       | 79-00-5     | 1         | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     |       | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| 1,1-Dichloroethane          | 75-34-3     | 5         | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     |       | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| 1,1-Dichloroethene          | 75-35-4     | 5         | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     |       | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| 1,2,4-Trichlorobenzene      | 120-82-1    | NA        | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     |       | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| 1,2-Dibromo-3-chloropropane | 96-12-8     | 0.04      | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     |       | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| 1,2-Dibromoethane           | 106-93-4    | 0.0006    | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     |       | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| 1,2-Dichlorobenzene         | 95-50-1     | 3         | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     |       | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| 1,2-Dichloroethane          | 107-06-2    | 0.6       | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     |       | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| 1,2-Dichloropropane         | 78-87-5     | 1         | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     |       | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| 1,3-Dichlorobenzene         | 541-73-1    | 3         | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     |       | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| 1,4-Dichlorobenzene         | 106-46-7    | 3         | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     |       | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| 2-Butanone                  | 78-93-3     | 50        | < 40 U        | < 10 U        | < 10 U        | < 50      |       | < 50 U        | < 50 U        | < 10 U        | < 10 U        | < 10 U        | < 20 U        |
| 2-Hexanone                  | 591-78-6    | 50        | < 20 U        | < 5.0 U       | < 5.0 U       | < 25      |       | < 25 U        | < 25 U        | < 5.0 U       | < 5.0 U       | < 5.0 U       | < 10 U        |
| 4-Methyl-2-Pentanone        | 108-10-1    | NA        | < 20 U        | < 5.0 U       | < 5.0 U       | < 25      |       | < 25 U        | < 25 U        | < 5.0 U       | < 5.0 U       | < 5.0 U       | < 10 U        |
| Acetone                     | 67-64-1     | 50        | < 40 U        | < 10 U        | < 10 U        | < 50      |       | < 50 U        | < 50 U        | < 10 U        | < 10 U        | < 10 U        | < 20 U        |
| Benzene                     | 71-43-2     | 1         | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     | U     | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| Bromodichloromethane        | 75-27-4     | 50        | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     |       | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| Bromoform                   | 75-25-2     | 50        | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     | U     | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| Bromomethane                | 74-83-9     | 5         | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     | U     | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| Carbon Disulfide            | 75-15-0     | 60        | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     | U     | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| Carbon Tetrachloride        | 56-23-5     | 5         | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     | U     | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| Chlorobenzene               | 108-90-7    | 5         | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     | U     | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| Chlorodibromomethane        | 124-48-1    | 50        | < 4.0 U       | < 1.0 UT      | < 1.0 U       | < 5.0     | U     | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 UT      | < 1.0 U       | < 2.0 U       |
| Chloroethane                | 75-00-3     | 5         | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     | U     | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| Chloroform                  | 67-66-3     | 7         | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     | U     | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| Chloromethane               | 74-87-3     | 5         | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     | U     | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| Cis-1,2-Dichloroethene      | 156-59-2    | 5         | < 4.0 U       | 7.6           | 4.6           | 110       |       | 120           | 11            | 58            | 36            | 40            | 19            |
| Cis-1,3-Dichloropropene     | 10061-01-5  | NA        | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     | U     | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| Cyclohexane                 | 110-82-7    | NA        | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     |       | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| Dichlorodifluoromethane     | 75-71-8     | 5         | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     |       | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| Dichloromethane             | 75-09-2     | 5         | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     |       | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| Ethylbenzene                | 100-41-4    | 5         | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     |       | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| Freon 113                   | 76-13-1     | 5         | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     |       | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |
| Isopropyl benzene           | 98-82-8     | 5         | < 4.0 U       | < 1.0 U       | < 1.0 U       | < 5.0     |       | < 5.0 U       | < 5.0 U       | < 1.0 U       | < 1.0 U       | < 1.0 U       | < 2.0 U       |

|                           | Lo          | ocation ID  | BP-1        | BW1                | BW1                      | BW201              | BW201                        | BW202              | BW202                        | MW201              | MW201                   | MW202              |
|---------------------------|-------------|-------------|-------------|--------------------|--------------------------|--------------------|------------------------------|--------------------|------------------------------|--------------------|-------------------------|--------------------|
|                           | S           | Sample ID   | SUMP-201806 | 18 BP-1-20180620   | BW1-16.5-25-<br>20200108 | BW201-<br>20180618 | BW201-21.3-<br>31.3-20200109 | BW202-<br>20180619 | BW202-21.3-<br>30.3-20200108 | MW201-<br>20180620 | MW201-6-16-<br>20200108 | MW202-<br>20180619 |
|                           | Sar         | nple Date   | 6/18/2018   | 6/20/2018          | 1/8/2020                 | 6/18/2018          | 1/9/2020                     | 6/19/2018          | 1/8/2020                     | 6/20/2018          | 1/8/2020                | 6/19/2018          |
|                           | Sample Dept | :h (ft bgs) | 0 - 0       | 16.5 - 25          | 16.5 - 25                | 21.3 - 31.3        | 21.3 - 31.3                  | 21.3 - 30.3        | 21.3 - 30.3                  | 6 - 16             | 6 - 16                  | 4.3 - 14.3         |
|                           |             | NYS GW      |             |                    |                          |                    |                              |                    |                              |                    |                         |                    |
| Analyte                   | Cas No.     | Criteria    | Results Q   | ual. Results Qual. | Results Qual.            | Results Qual.      | Results Qual.                | Results Qual.      | Results Qual.                | Results Qual.      | Results Qual.           | Results Qual.      |
|                           |             | (ug/l)      |             |                    |                          |                    |                              |                    |                              |                    |                         |                    |
| Methyl acetate            | 79-20-9     | NA          | < 10 U      | < 2.5 U            | < 2.5 U                  | < 13 U             | < 13 U                       | < 13 U             | < 2.5 U                      | < 2.5 U            | < 2.5 U                 | < 5.0 U            |
| Methyl T-Butyl Ether      | 1634-04-4   | 10          | < 4.0 U     | < 1.0 U            | < 1.0 U                  | < 5.0 U            | < 5.0 U                      | < 5.0 U            | 1                            | 0.24 J             | 0.17 J                  | < 2.0 U            |
| Methylcyclohexane         | 108-87-2    | NA          | < 4.0 U     | < 1.0 U            | < 1.0 U                  | < 5.0 U            | < 5.0 U                      | < 5.0 U            | < 1.0 U                      | 0.16 J             | < 1.0 U                 | < 2.0 U            |
| Styrene                   | 100-42-5    | 5           | < 4.0 U     | < 1.0 U            | < 1.0 U                  | < 5.0 U            | < 5.0 U                      | < 5.0 U            | < 1.0 U                      | < 1.0 U            | < 1.0 U                 | < 2.0 U            |
| Tetrachloroethene         | 127-18-4    | 5           | < 4.0 U     | 66                 | 71                       | < 5.0 U            | 22                           | 390                | < 1.0 U                      | 0.45 J             | 0.41 J                  | 110                |
| Toluene                   | 108-88-3    | 5           | < 4.0 U     | < 1.0 U            | < 1.0 U                  | < 5.0 U            | < 5.0 U                      | < 5.0 U            | < 1.0 U                      | < 1.0 U            | < 1.0 U                 | < 2.0 U            |
| Trans-1,2-Dichloroethene  | 156-60-5    | 5           | < 4.0 U     | 1.1                | < 1.0 U                  | 26                 | 5.3                          | < 5.0 U            | 7.3                          | 5.2                | 7.6                     | < 2.0 U            |
| Trans-1,3-Dichloropropene | 10061-02-6  | NA          | < 4.0 U     | < 1.0 U            | < 1.0 U                  | < 5.0 U            | < 5.0 U                      | < 5.0 U            | < 1.0 U                      | < 1.0 U            | < 1.0 U                 | < 2.0 U            |
| Trichloroethylene         | 79-01-6     | 5           | < 4.0 U     | 25                 | 25                       | 20                 | 11                           | 26                 | 11                           | 16                 | 17                      | 12                 |
| Trichlorofluoromethane    | 75-69-4     | 5           | < 4.0 U     | < 1.0 U            | < 1.0 U                  | < 5.0 U            | < 5.0 U                      | < 5.0 U            | < 1.0 U                      | < 1.0 U            | < 1.0 U                 | < 2.0 U            |
| Vinyl Chloride            | 75-01-4     | 2           | < 4.0 U     | < 1.0 U            | < 1.0 U                  | < 5.0 U            | < 5.0 U                      | < 5.0 U            | 3.2                          | < 1.0 U            | < 1.0 U                 | < 2.0 U            |
| Xylenes, Total            | XYLENES     | NA          | < 8.0 U     | < 2.0 U            | < 2.0 U                  | < 10 U             | < 10 U                       | < 10 U             | < 2.0 U                      | < 2.0 U            | < 2.0 U                 | < 4.0 U            |

Notes:

ft bgs Feet below ground surface

ID Identification

NA Not available

No. Number

Qua. Qualifier

ug/I Micrograms per liter

VOCs Volatile organic compounds

J Estimated analytical value

U Analytical non-detect value

 $\ensuremath{\mathsf{UT}}$  Non-detect value but value reported is less than the laboratory method detection limit.

25 Results that are bold and highlighted exceed the New York State Department of Environmental Conservation (NYSDEC) Technical & Operation Guidance Series (TOGS) 1.1.1 Groundwater Standards

|                             | Lo          | ocation ID | MW202          | MW203         | MW203            | MW203         | MW204        | MW204           | MW205         | MW205        | MW205           | MW206         | MW206         |
|-----------------------------|-------------|------------|----------------|---------------|------------------|---------------|--------------|-----------------|---------------|--------------|-----------------|---------------|---------------|
|                             |             |            | MW202 4 2 14 2 | MW203-        | MW203-4.8-14.8-1 |               | MW204-       | MW204-7.8-17.8- | MW205-        | MW205-       | MW205-8.7-18.7- | MW206-        | MW206-10-20-  |
|                             | 9           | Sample ID  | 20200109       | 20180620      | 20200108         | 20200108-1    | 20180618     | 20200108        | 20180618      | 20180618-1   | 20200109        | 20180619      | 20200109      |
|                             | Sa          | mple Date  |                | 6/20/2018     | 1/8/2020         | 1/8/2020      | 6/18/2018    | 1/8/2020        | 6/18/2018     | 6/18/2018    | 1/9/2020        | 6/19/2018     | 1/9/2020      |
|                             | Sample Dept |            | 4.3 - 14.3     | 4.8 - 14.8    | 4.8 - 14.8       | 4.8 - 14.8    | 7.8 - 17.8   | 7.8 - 17.8      | 8.7 - 18.7    | 8.7 - 18.7   | 8.7 - 18.7      | 10 - 20       | 10 - 20       |
|                             |             | NYS GW     |                |               |                  |               |              |                 |               |              |                 |               |               |
| Analyte                     | Cas No.     | Criteria   | Results Qual.  | Results Qual. | Results Qual.    | Results Qual. | Results Qual | . Results Qual. | Results Qual. | Results Qual | . MW205 Qual.   | Results Qual. | Results Qual. |
|                             |             | (ug/l)     |                | -             |                  |               | -            |                 | -             | -            |                 | -             | -             |
| 1,1,1-Trichloroethane       | 71-55-6     | 5          | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| 1,1,2,2-Tetrachloroethane   | 79-34-5     | 5          | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| 1,1,2-Trichloroethane       | 79-00-5     | 1          | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| 1,1-Dichloroethane          | 75-34-3     | 5          | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| 1,1-Dichloroethene          | 75-35-4     | 5          | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| 1,2,4-Trichlorobenzene      | 120-82-1    | NA         | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| 1,2-Dibromo-3-chloropropane | 96-12-8     | 0.04       | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| 1,2-Dibromoethane           | 106-93-4    | 0.0006     | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| 1,2-Dichlorobenzene         | 95-50-1     | 3          | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| 1,2-Dichloroethane          | 107-06-2    | 0.6        | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| 1,2-Dichloropropane         | 78-87-5     | 1          | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| 1,3-Dichlorobenzene         | 541-73-1    | 3          | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| 1,4-Dichlorobenzene         | 106-46-7    | 3          | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| 2-Butanone                  | 78-93-3     | 50         | < 10 U         | < 200 U       | < 200 U          | < 200 U       | < 100 U      | < 100 U         | < 10 U        | < 10 U       | < 10 U          | < 40 U        | < 40 U        |
| 2-Hexanone                  | 591-78-6    | 50         | < 5.0 U        | < 100 U       | < 100 U          | < 100 U       | < 50 U       | < 50 U          | < 5.0 U       | < 5.0 U      | < 5.0 U         | < 20 U        | < 20 U        |
| 4-Methyl-2-Pentanone        | 108-10-1    | NA         | < 5.0 U        | < 100 U       | < 100 U          | < 100 U       | < 50 U       | < 50 U          | < 5.0 U       | < 5.0 U      | < 5.0 U         | < 20 U        | < 20 U        |
| Acetone                     | 67-64-1     | 50         | < 10 U         | < 200 U       | < 200 U          | < 200 U       | < 100 U      | < 100 U         | < 10 U        | < 10 U       | < 10 U          | < 40 U        | < 40 U        |
| Benzene                     | 71-43-2     | 1          | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| Bromodichloromethane        | 75-27-4     | 50         | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| Bromoform                   | 75-25-2     | 50         | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| Bromomethane                | 74-83-9     | 5          | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| Carbon Disulfide            | 75-15-0     | 60         | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| Carbon Tetrachloride        | 56-23-5     | 5          | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| Chlorobenzene               | 108-90-7    | 5          | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| Chlorodibromomethane        | 124-48-1    | 50         | < 1.0 U        | < 20 UT       | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| Chloroethane                | 75-00-3     | 5          | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| Chloroform                  | 67-66-3     | 7          | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| Chloromethane               | 74-87-3     | 5          | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| Cis-1,2-Dichloroethene      | 156-59-2    | 5          | 11             | 26            | 28               | 25            | 13           | 15              | 6.4           | 6.7          | 2.9             | 12            | 8.2           |
| Cis-1,3-Dichloropropene     | 10061-01-5  | NA         | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| Cyclohexane                 | 110-82-7    | NA         | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| Dichlorodifluoromethane     | 75-71-8     | 5          | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| Dichloromethane             | 75-09-2     | 5          | < 1.0 U        | < 20 U        | < 20 U           | 12 J          | 9.5 J        | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| Ethylbenzene                | 100-41-4    | 5          | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| Freon 113                   | 76-13-1     | 5          | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| Isopropyl benzene           | 98-82-8     | 5          | < 1.0 U        | < 20 U        | < 20 U           | < 20 U        | < 10 U       | < 10 U          | < 1.0 U       | < 1.0 U      | < 1.0 U         | < 4.0 U       | < 4.0 U       |

|                           | Lo          | cation ID  | MW202           | MW203       | MW203            | MW203           | MW204       | MW204            | MW205         | MW205       | MW205           | MW206         | MW206         |
|---------------------------|-------------|------------|-----------------|-------------|------------------|-----------------|-------------|------------------|---------------|-------------|-----------------|---------------|---------------|
|                           | G           | ample ID   | MW202-4.3-14.3- | MW203-      | MW203-4.8-14.8-  | MW203-4.8-14.8- | MW204-      | MW204-7.8-17.8-  | MW205-        | MW205-      | MW205-8.7-18.7- | MW206-        | MW206-10-20-  |
|                           |             |            | 20200109        | 20180620    | 20200108         | 20200108-1      | 20180618    | 20200108         | 20180618      | 20180618-1  | 20200109        | 20180619      | 20200109      |
|                           | Sar         | nple Date  | 1/9/2020        | 6/20/2018   | 1/8/2020         | 1/8/2020        | 6/18/2018   | 1/8/2020         | 6/18/2018     | 6/18/2018   | 1/9/2020        | 6/19/2018     | 1/9/2020      |
|                           | Sample Dept | h (ft bgs) | 4.3 - 14.3      | 4.8 - 14.8  | 4.8 - 14.8       | 4.8 - 14.8      | 7.8 - 17.8  | 7.8 - 17.8       | 8.7 - 18.7    | 8.7 - 18.7  | 8.7 - 18.7      | 10 - 20       | 10 - 20       |
|                           |             | NYS GW     |                 |             |                  |                 |             |                  |               |             |                 |               |               |
| Analyte                   | Cas No.     | Criteria   | Results Qual.   | Results Qua | I. Results Qual. | Results Qual.   | Results Qua | I. Results Qual. | Results Qual. | Results Qua | l. MW205 Qual.  | Results Qual. | Results Qual. |
|                           |             | (ug/l)     |                 |             |                  |                 |             |                  |               |             |                 |               |               |
| Methyl acetate            | 79-20-9     | NA         | < 2.5 U         | < 50 U      | < 50 U           | < 50 U          | < 25 U      | < 25 U           | < 2.5 U       | < 2.5 U     | < 2.5 U         | < 10 U        | < 10 U        |
| Methyl T-Butyl Ether      | 1634-04-4   | 10         | < 1.0 U         | < 20 U      | < 20 U           | < 20 U          | < 10 U      | < 10 U           | < 1.0 U       | < 1.0 U     | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| Methylcyclohexane         | 108-87-2    | NA         | < 1.0 U         | < 20 U      | < 20 U           | < 20 U          | < 10 U      | < 10 U           | < 1.0 U       | < 1.0 U     | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| Styrene                   | 100-42-5    | 5          | < 1.0 U         | < 20 U      | < 20 U           | < 20 U          | < 10 U      | < 10 U           | < 1.0 U       | < 1.0 U     | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| Tetrachloroethene         | 127-18-4    | 5          | 61              | 960         | 880              | 850             | 440         | 460              | 16            | 15          | 9.5             | 290           | 160           |
| Toluene                   | 108-88-3    | 5          | < 1.0 U         | < 20 U      | < 20 U           | < 20 U          | < 10 U      | < 10 U           | < 1.0 U       | < 1.0 U     | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| Trans-1,2-Dichloroethene  | 156-60-5    | 5          | < 1.0 U         | < 20 U      | < 20 U           | < 20 U          | < 10 U      | < 10 U           | < 1.0 U       | < 1.0 U     | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| Trans-1,3-Dichloropropene | 10061-02-6  | NA         | < 1.0 U         | < 20 U      | < 20 U           | < 20 U          | < 10 U      | < 10 U           | < 1.0 U       | < 1.0 U     | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| Trichloroethylene         | 79-01-6     | 5          | 7.5             | 93          | 93               | 91              | 35          | 49               | 39            | 39          | 18              | 56            | 33            |
| Trichlorofluoromethane    | 75-69-4     | 5          | < 1.0 U         | < 20 U      | < 20 U           | < 20 U          | < 10 U      | < 10 U           | < 1.0 U       | < 1.0 U     | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| Vinyl Chloride            | 75-01-4     | 2          | < 1.0 U         | < 20 U      | < 20 U           | < 20 U          | < 10 U      | < 10 U           | < 1.0 U       | < 1.0 U     | < 1.0 U         | < 4.0 U       | < 4.0 U       |
| Xylenes, Total            | XYLENES     | NA         | < 2.0 U         | < 40 U      | < 40 U           | < 40 U          | < 20 U      | < 20 U           | < 2.0 U       | < 2.0 U     | < 2.0 U         | < 8.0 U       | < 8.0 U       |

Notes:

ft bgs Feet below ground surface

ID Identification

NA Not available

No. Number

Qua. Qualifier

ug/I Micrograms per liter

VOCs Volatile organic compounds

J Estimated analytical value

U Analytical non-detect value

 $\ensuremath{\mathsf{UT}}$  Non-detect value but value reported is less than the laboratory method detection limit.

**25** Results that are bold and highlighted exceed the New York State Department of Environmental Conservation (NYSDEC) Technical & Operation Guidance Series (TOGS) 1.1.1 Groundwater Standards

# Table 9B - Groundwater Sample Results Summary - All Other AnalytesFormer Hall Welter Site, NYSDEC Site Number: 828194Rochester, Monroe County, New York

| Analyte         Case N         Provide<br>Criteria (Cag)()         Provide<br>(Cag)()         Provide<br>(Cag)() <th></th> <th>Sa</th> <th>ocation ID<br/>Sample ID<br/>Imple Date</th> <th>BW20<br/>BW201-201<br/>6/18/2</th> <th>180618<br/>018</th> <th>MW20<br/>MW205-203<br/>6/18/20</th> <th>L80618<br/>D18</th> <th>MW20<br/>MW205-2013<br/>6/18/20</th> <th>80618-1<br/>018</th>                                                                                                                                                        |                                    | Sa        | ocation ID<br>Sample ID<br>Imple Date | BW20<br>BW201-201<br>6/18/2 | 180618<br>018 | MW20<br>MW205-203<br>6/18/20 | L80618<br>D18 | MW20<br>MW205-2013<br>6/18/20 | 80618-1<br>018 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------|---------------------------------------|-----------------------------|---------------|------------------------------|---------------|-------------------------------|----------------|
| Chr. Methy perfuse actives and methy is and the set of the set o                                             | Analyte                            | • •       | NYS GW                                | Result                      |               | Result                       |               |                               | 8.7<br>Qua.    |
| K Bitty M. (Repetaceal/Jourdon)(9 uprime         2991-59-6         NA <ul> <li>0.00071</li> <li>0.0015</li> <li>0.00171</li> <li>0.0015</li> <li>0.0016</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                  |           |                                       |                             | _             | (ug/l)                       | Qua.          | (ug/l)                        | Qua.           |
| Start.         Start.         NA         0.00001/1         0.0017         1         0.0017           Verticostudyr. Kod (PfMA)         375 72.3         NA         0.0018         0.0018         0.0019           Verticostudyr. Kod (PfMA)         335 77.2         NA         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019         0.0019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |           |                                       |                             |               |                              |               |                               |                |
| Terflurockspic Add (PFBA)         375-22-4         NA         0.012            0.015            0.015            0.015            0.015            0.015            0.015            0.015            0.015            0.015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015            0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |           |                                       |                             |               |                              |               |                               |                |
| Perfuncescience Sufforic Acid         355 77-3         NA         <         <         0.0019         <         0.0019           Perfuncescience CAI (PENA)         307-35-1         NA         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |           |                                       |                             |               |                              |               |                               |                |
| Perfluceotecnic Acid (PFDA)         325 76 2         NA         <         0.0019         <         0.0019           Perfluceotecnic Acid (PFDA)         375 52.8         NA         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |           |                                       |                             |               |                              |               |                               |                |
| Territoriologranic Acid (PPDA)         307-55.1         NA         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |           |                                       |                             |               |                              |               |                               |                |
| Perfunctonspanner, Acid (PHIA)         375-85-9         NA         0.0015         0.0016         0.0016           Perfunctonscance, Acid (PHIA)         307-24-4         NA         4.0012         0.0051         0.0051           Perfunctonscance, Acid (PHIA)         307-24-4         NA         0.0022         0.0052         0.0051           Perfunctonscance, Acid (PHIA)         307-24-1         NA         0.0023         0.0011         <0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |           |                                       |                             |               |                              |               |                               |                |
| Perfunctionaneum         SS-46-1         NA         < 0.0019  U         < 0.0019  U         < 0.0019  U         < 0.0051           Perfunctionance Add (PFNA)         375-95-1         NA         0.00020  V         < 0.0019  U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Perfluoroheptane Sulfonate (PFHpS) | 375-92-8  | NA                                    | < 0.0019                    | U             | < 0.0019                     | U             | < 0.0019                      | U              |
| Perflurentearine Acid (PFNA)         307-24-4         NA         0.0028         0.0052         0.0051           Perflurenceature Sufforwinde (PGA)         75-51         NA         0.00591         0.00510         0.00510           Perflurenceature Sufforwinde (PGA)         75-32-1         NA         0.00581         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00510         0.00110         0.00510         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |           |                                       |                             |               |                              |               |                               |                |
| Perfuse         Output                                                                                                                      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |           |                                       |                             |               |                              | U             |                               |                |
| Perfluxoncatine Sufforwardie (POSA)         754-91-5         NA         < 0.0019         U         < 0.0019         U         < 0.0019           Perfluxoncation Cacid (PFOA)         335-67-1         NA         0.00058         < 0.0019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |           |                                       |                             |               |                              |               |                               |                |
| Perfunctorations         United (PFGS)         1753-23.1         NA         0.00055 []         -         0.0019 [U]         <         0.0019 [U]           Perfunctorations         0.0018 [U]         2.0019 [U]         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |           |                                       |                             |               |                              |               |                               |                |
| Perflurozostanic acid (PF0A)         335-67-1         NA         0.0028         < 0.0019         < 0.0036         0.00086         0.00087           Perflurozostanica, Acid (PFFA)         375-65-7         NA         < 0.0019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |           |                                       |                             |               |                              |               |                               |                |
| Perfluoropertance Acid (PPAa)         2706-90.3         NA         0.0033         0.0085         0.0087           Perfluorotridancio Acid (PFIA)         2750-97         NA         <0.0019 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · /                            |           |                                       |                             |               |                              |               |                               |                |
| Perflucenteralsecanoc Add (PFTA)         37:06-7         NA         < 0.0019  U         < 0.019  U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>U</td> <td></td> <td>U</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |           |                                       |                             |               |                              | U             |                               | U              |
| Perfluorizidancic Add (PFTIA)         72629-94         NA         < 0.0019 [U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |           |                                       |                             |               |                              | 11            |                               |                |
| Perfluronalizanoic Add (PPUA)         2059-94.8         NA         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.0019         < 0.019         < 0.019         < 0.019         < 0.019         < 0.019         < 0.019         < 0.019         < 0.019         < 0.019         < 0.019         < 0.019         < 0.019         < 0.019         < 0.019         < 0.019         < 0.019         < 0.019         < 0.019         < 0.019         < 0.019         < 0.019         < 0.019         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |           |                                       |                             |               |                              |               |                               |                |
| SODUM 11, 11, 12, 12, HERELUORODECANE         39108-34-4         NA         < 0.019         U         < 0.019         U </td <td>· /</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · /                                |           |                                       |                             |               |                              |               |                               |                |
| $\begin{split} & \text{SULPDATE (8:2)} & 340.8:^{44} & \text{(NA} & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.019 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.010 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & < 0.020 & & < 0.020 & & < 0.020 & & < 0.020 & & < 0.020 & & < 0.020 & & < 0.0$ |                                    |           |                                       |                             |               |                              |               |                               |                |
| SULPONTE (6:2) $2763 \cdot 97/2$ (va.         < 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SULFONATE (8:2)                    |           |                                       |                             |               |                              |               |                               |                |
| Ardimory         740-38-0         3         < 20  U         <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SULFONATE (6:2)                    |           |                                       |                             |               |                              |               |                               |                |
| Areenic         740-39-2         25         < 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |           |                                       |                             |               |                              |               |                               |                |
| Barlum         740-39-3         1000         200         160         160         160           Cadmium         740-41-7         3         < 2.0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                  |           |                                       |                             |               |                              |               |                               |                |
| Beryllum $740 + 39$ $\leq 2.0$  U $< 2.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |           |                                       |                             | U             |                              | U             |                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |           |                                       |                             | 11            |                              | 11            |                               |                |
| Calcium         PAA         PA2000         PAR000         PA2000         PA2000 </td <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                  |           |                                       |                             |               |                              |               |                               |                |
| Chromium         240-47-3         50         1.8]         1.1]         < 4.0           Cobalt         240-484-         NA         < 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |           |                                       |                             |               |                              | 0             |                               |                |
| Cabalt         7440-88-8         NA         < 4.0  U         < 4.0  U         < 4.0  U         < 0.73           Tron         7440-50-8         200         < 0  U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |           |                                       |                             |               |                              | ]             |                               |                |
| Copper $240-50-8$ $200$ $< 10$ U $1.6$ J $1.7$ J           Iron $2439-92.1$ $25$ $< 10$ U $< 10$ U $< 10$ U           Magnesium $7439-95.4$ $3800$ $41900$ $38600$ $39500$ Magnese $7439-95.4$ $3800$ $41900$ $38600$ $39500$ Nickel $7440-02-0$ $100$ $1.5$ J $3.4$ J $3.7$ J           Potassium $7440-02-0$ $100$ $1.5$ J $3.4$ J $3.7$ J           Selenium $7782-49-2$ $10$ $< 25$ U $< 25$ U $< 5.0$ U $< 2.0$ U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |           |                                       |                             |               |                              |               |                               |                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Copper                             |           |                                       |                             |               |                              |               |                               |                |
| Magnesium         7439-95-4         35000         41900         38600         39500           Manganese         7439-96-5         300         270         180         180           Nickel         7440-02-0         100         1.5         3.4         J         3.7           Potassium         7740-02-7         NA         11400         9800         10000           Silver         7782-94-2         10         < 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Iron                               |           | 300                                   | 2500                        |               | 300                          |               | 310                           |                |
| Manganese         7439-96-5         300         270         180         180           Nickel         7440-02-0         100         1.5         3.4         3.7         P           Potassium         7440-09-7         NA         11400         9800         10000           Selenium         7782-49-2         10         < 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lead                               | 7439-92-1 | 25                                    | < 10                        | U             | < 10                         | U             | < 10                          | U              |
| Nickei         7440-02-0         100         1.5         3.4         1         3.7         Patassium           Patassium         7440-09-7         NA         11400         9800         10000           Selenium         7782-49-2         10         < 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |           |                                       |                             |               |                              |               |                               |                |
| Protassium         7440-09-7         NA         11400         9800         10000           Selenium         7782-49-2         10         < 25 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |           |                                       |                             |               |                              |               |                               |                |
| Selenium $7782-49-2$ 10 $< 25$ U $< 6.0$ U $< 2.0$ U $< 2.0$ U $< 6.0$ U $< 2.0$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>J</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |           |                                       |                             |               |                              | J             |                               |                |
| Silver $7440-22-4$ $50$ $< 6.0$ [U $< 50.0$ [U $< 50.0$ [U $< 2000$ ] $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 283000$ $> 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |           |                                       |                             |               |                              |               |                               |                |
| Sodium         7440-23-5         20000         307000         283000         293000           Thallium         7440-28-0         0.5         < 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |           |                                       |                             |               |                              |               |                               |                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |           |                                       |                             | U             |                              | U             |                               | U              |
| Vanadium         7440-62-2         NA         < 5.0         U         < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |           |                                       |                             | 11            |                              | 11            |                               |                |
| Zinc         7440-66-6         2000         2.4         J         2.1         J         1.6         J           4,4'-DDD         72:54-8         0.3         < 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |           |                                       |                             |               |                              |               |                               |                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |           |                                       |                             |               |                              |               |                               |                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |           |                                       |                             |               |                              |               |                               |                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                  |           |                                       |                             |               |                              |               |                               |                |
| Aldrin $309-00-2$ NA $< 0.060$ U $< 0.050$ U $< 0.052$ UAlpha-BHC $319-84-6$ $0.01$ $< 0.060$ U $< 0.050$ U $< 0.052$ UAlpha-Chlordane $5103-71-9$ NA $< 0.060$ U $< 0.050$ U $< 0.052$ UBeta-BHC $319-85-7$ $0.04$ $< 0.060$ U $< 0.050$ U $< 0.052$ UChlorinated Camphene $8001-35-2$ $0.06$ $< 0.60$ U $< 0.050$ U $< 0.052$ UDelta-Bhc $319-86-8$ $0.04$ $< 0.060$ U $< 0.050$ U $< 0.052$ UDelta-Bhc $399-98-8$ NA $0.014$ $3$ $< 0.050$ U $< 0.052$ UEndosulfan I $959-98-8$ NA $0.014$ $3$ $< 0.050$ U $< 0.052$ UEndosulfan Sulfate $1031-07-8$ NA $< 0.060$ U $< 0.050$ U $< 0.052$ UEndrin Aldehyde $7421-93-4$ $5$ $< 0.060$ U $< 0.050$ U $< 0.052$ UEndrin Ketone $53494-70-5$ $5$ $< 0.060$ U $< 0.050$ U $< 0.052$ UGamma-BHC (Lindane) $58-89-9$ $0.05$ $0.012$ $2$ $< 0.050$ U $< 0.052$ UGamma-Chlordane $5103-74-2$ NA $< 0.060$ U $< 0.050$ U $< 0.052$ UHeptachlor $76-44-8$ $0.04$ $< 0.060$ U $< 0.050$ U $< 0.052$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                                  |           |                                       |                             |               |                              |               |                               |                |
| Alpha-BHC         319-84-6         0.01         < 0.060         U         < 0.050         U         < 0.052         U           Alpha-Chiordane         5103-71-9         NA         < 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·                                  |           |                                       |                             |               |                              |               |                               |                |
| Alpha-Chlordane         5103-71-9         NA         < 0.060         U         < 0.050         U         < 0.052         U           Beta-BHC         319-85-7         0.04         < 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |           |                                       |                             |               |                              |               |                               |                |
| Beta-BHC         319-85-7         0.04         < 0.060         U         < 0.050         U         < 0.052         U           Chlorinated Camphene         8001-35-2         0.06         < 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |           |                                       |                             |               |                              |               |                               |                |
| Delta-Bhc         319-86-8         0.04         < 0.060         U         < 0.050         U         < 0.052         U           Dieldrin         60-57-1         0.004         < 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |           |                                       | < 0.060                     | U             | < 0.050                      | U             | < 0.052                       | U              |
| Dieldrin         60-57-1         0.004         < 0.060         U         < 0.050         U         < 0.052         U           Endosulfan I         959-98-8         NA         0.014         J         < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                  |           |                                       |                             |               |                              |               |                               |                |
| Endosulfan I         959-98-8         NA         0.014         I         < 0.050         U         < 0.052         U           Endosulfan II         33213-65-9         NA         < 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |           |                                       |                             |               |                              |               |                               |                |
| Endosulfan II         33213-65-9         NA         < 0.060         U         < 0.050         U         < 0.052         U           Endosulfan Sulfate         1031-07-8         NA         < 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |           |                                       |                             |               |                              |               |                               |                |
| Endosulfan Sulfate         1031-07-8         NA         < 0.060         U         < 0.050         U         < 0.052         U           Endrin         72-20-8         NA         < 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |           |                                       |                             |               |                              |               |                               |                |
| Endrin         72-20-8         NA         < 0.060         U         < 0.050         U         < 0.052         U           Endrin Aldehyde         7421-93-4         5         < 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |           |                                       |                             |               |                              |               |                               |                |
| Endrin Aldehyde         7421-93-4         5         < 0.060         U         < 0.050         U         < 0.052         U           Endrin Ketone         53494-70-5         5         < 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |           |                                       |                             |               |                              |               |                               |                |
| Endrin Ketone         53494-70-5         5         < 0.060         U         < 0.050         U         < 0.052         U           Gamma-BHC (Lindane)         58-89-9         0.05         0.012         J         < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |           |                                       |                             |               |                              |               |                               |                |
| Gamma-BHC (Lindane)       58-89-9       0.05       0.012       J       < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |           |                                       |                             |               |                              |               |                               |                |
| Gamma-Chlordane         5103-74-2         NA         < 0.060         U         < 0.050         U         < 0.052         U           Heptachlor         76-44-8         0.04         < 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |           | -                                     |                             |               |                              |               |                               |                |
| Heptachlor       76-44-8       0.04       < 0.060       U       < 0.050       U       < 0.052       U         Heptachlor Epoxide       1024-57-3       0.03       < 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |           |                                       |                             |               |                              |               |                               |                |
| Heptachlor Epoxide       1024-57-3       0.03       < 0.060       U       < 0.050       U       < 0.052       U         Methoxychlor       72-43-5       35       < 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |           |                                       |                             |               |                              |               |                               |                |
| Methoxychlor       72-43-5       35       < 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                  |           |                                       |                             |               |                              |               |                               |                |
| Aroclor 1016       12674-11-2       NA       < 0.50       U       < 0.50       U       < 0.50       U         Aroclor 1221       11104-28-2       NA       < 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |           |                                       |                             |               |                              |               |                               |                |
| Aroclor 1221       11104-28-2       NA       < 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |           |                                       |                             |               |                              |               |                               |                |
| Aroclor 1232       11141-16-5       NA       < 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |           |                                       | < 0.50                      | U             | < 0.50                       | U             | < 0.50                        | U              |
| Aroclor 1242       53469-21-9       NA       < 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |           |                                       |                             |               |                              |               |                               |                |
| Aroclor 1254         11097-69-1         NA         < 0.50         U         < 0.50         U         < 0.50         U           Aroclor 1260         11096-82-5         NA         < 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |           |                                       | < 0.50                      | U             | < 0.50                       | U             | < 0.50                        | U              |
| Aroclor 1260         11096-82-5         NA         < 0.50         U         < 0.50 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |           |                                       |                             |               |                              |               |                               |                |
| 1,1-Biphenyl 92-52-4 5 < 5.0 U < 5.0 U < 5.0 U < 5.0 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |           |                                       |                             |               |                              |               |                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |           |                                       |                             |               |                              |               |                               |                |
| 245-Trichlorophenol 105-05-4 I NA I COLU I COLU I COLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |           |                                       |                             |               |                              |               |                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,4,5-Trichlorophenol              | 95-95-4   | NA                                    | < 5.0                       |               | < 5.0                        |               | < 5.0                         |                |
| 2,4,6-Trichlorophenol         88-06-2         NA         < 5.0         U         < 5.0 </td <td></td> <td></td> <td>NA</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |           | NA                                    |                             |               |                              |               |                               |                |

### Table 9B - Groundwater Sample Results Summary - All Other Analytes Former Hall Welter Site, NYSDEC Site Number: 828194 Rochester, Monroe County, New York

| Location ID<br>Sample ID                      |                            |                       | BW201<br>BW201-20180618<br>6/18/2018 |             | MW205<br>MW205-20180618<br>6/18/2018 |            | MW205<br>MW205-20180618-1 |      |
|-----------------------------------------------|----------------------------|-----------------------|--------------------------------------|-------------|--------------------------------------|------------|---------------------------|------|
| Sample Date                                   |                            | 6/18/2                |                                      |             |                                      |            | 018                       |      |
|                                               |                            | Sample Depth (ft bgs) |                                      | 21.3 - 31.3 |                                      | <b>.</b> 7 | 8.7 - 18.7                |      |
|                                               |                            | NYS GW                |                                      |             |                                      |            |                           |      |
| Analyte                                       | Cas No.                    | Criteria<br>(ug/l)    | Result<br>(ug/l)                     | Qua.        | Result<br>(ug/l)                     | Qua.       | Result<br>(ug/l)          | Qua. |
| 2,4-Dimethylphenol                            | 105-67-9                   | 1                     | < 5.0                                | U           | < 5.0                                | U          | < 5.0                     | U    |
| 2,4-Dinitrophenol                             | 51-28-5                    | 1                     | < 10                                 | U           | < 10                                 | U          | < 10                      | U    |
| 2,4-Dinitrotoluene                            | 121-14-2                   | 5                     | < 5.0                                | U           | < 5.0                                | U          | < 5.0                     | U    |
| 2,6-Dinitrotoluene                            | 606-20-2                   | 5                     | < 5.0                                | U           | < 5.0                                | U          | < 5.0                     | U    |
| 2-Chloronaphthalene                           | 91-58-7                    | 10                    | < 5.0                                | U           | < 5.0                                | U          | < 5.0                     | U    |
| 2-Chlorophenol                                | 95-57-8                    | NA                    | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| 2-Methylnaphthalene                           | 91-57-6                    | NA                    | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| 2-Methylphenol                                | 95-48-7                    | NA                    | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| 2-Nitroaniline                                | 88-74-4                    | 5                     | < 10                                 |             | < 10                                 |            | < 10                      |      |
| 2-Nitrophenol                                 | 88-75-5                    | NA                    | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| 3,3`-Dichlorobenzidine                        | 91-94-1                    | 5                     | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| 3-Nitroaniline                                | 99-09-2                    | 5                     | < 10                                 |             | < 10                                 |            | < 10                      |      |
| 4,6-Dinitro-2-Methylphenol                    | 534-52-1                   | NA                    | < 10                                 |             | < 10                                 |            | < 10                      |      |
| 4-Bromophenyl Phenyl Ether                    | 101-55-3                   | NA                    | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| 4-Chloro-3-Methylphenol                       | 59-50-7                    | NA                    | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| 4-Chloroaniline                               | 106-47-8                   | 5                     | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| 4-Chlorophenyl Phenylether                    | 7005-72-3                  | NA                    | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| 4-Methylphenol                                | 106-44-5                   | NA                    | < 10                                 |             | < 10                                 |            | < 10                      |      |
| 4-Nitroaniline                                | 100-01-6                   | 5                     | < 10                                 |             | < 10                                 |            | < 10                      |      |
| 4-Nitrophenol                                 | 100-02-7                   | NA                    | < 10                                 |             | < 10                                 |            | < 10                      |      |
| Acenaphthene                                  | 83-32-9                    | 20                    | < 5.0<br>< 5.0                       |             | < 5.0<br>< 5.0                       |            | < 5.0<br>< 5.0            |      |
| Acenaphthylene Acetophenone                   | 208-96-8<br>98-86-2        | NA<br>NA              | < 5.0<br>< 5.0                       |             | < 5.0                                |            | < 5.0                     |      |
| Acetophenone                                  | 120-12-7                   | 50                    | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| Atrazine                                      | 1912-24-9                  | 7.5                   | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| Benzaldehyde                                  | 100-52-7                   | NA                    | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| Benzo(A)Anthracene                            | 56-55-3                    | 0.002                 | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| Benzo(A)Pyrene                                | 50-32-8                    | 0.002<br>NA           | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| Benzo(B)Fluoranthene                          | 205-99-2                   | 0.002                 | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| Benzo(G,H,I)Perylene                          | 191-24-2                   | NA                    | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| Benzo(K)Fluoranthene                          | 207-08-9                   | 0.002                 | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| Bis(2-Chloroethoxy) Methane                   | 111-91-1                   | 5                     | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| Bis(2-Chloroethyl) Ether                      | 111-44-4                   | 1                     | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| Bis(2-Ethylhexyl) Phthalate                   | 117-81-7                   | 5                     | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| Bis-Chloroisopropyl Ether                     | 108-60-1                   | 5                     | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| Butyl Benzyl Phthalate                        | 85-68-7                    | 50                    | < 5.0                                | U           | < 5.0                                | U          | < 5.0                     | U    |
| Caprolactam                                   | 105-60-2                   | NA                    | < 5.0                                | U           | 6.5                                  |            | 7.1                       |      |
| Carbazole                                     | 86-74-8                    | NA                    | < 5.0                                |             | < 5.0                                | U          | < 5.0                     | U    |
| Chrysene                                      | 218-01-9                   | 0.002                 | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| Dibenzo(A,H)Anthracene                        | 53-70-3                    | NA                    | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| Dibenzofuran                                  | 132-64-9                   | NA                    | < 10                                 |             | < 10                                 |            | < 10                      |      |
| Diethylphthalate                              | 84-66-2                    | 50                    | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| Dimethylphthalate                             | 131-11-3                   | 50                    | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| Di-N-Butylphthalate                           | 84-74-2                    | 50                    | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| Di-N-Octyl Phthalate                          | 117-84-0                   | NA                    | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| Fluoranthene                                  | 206-44-0                   | 50                    | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| Fluorene                                      | 86-73-7                    | 50                    | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| Hexachlorobenzene                             | 118-74-1                   | 0.04                  | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| Hexachlorobutadiene                           | 87-68-3                    | 0.5                   | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| Hexachlorocyclopentadiene<br>Hexachloroethane | 77-47-4                    | 5<br>5                | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
|                                               | 67-72-1                    | -                     | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| Indeno(1,2,3-Cd)Pyrene                        | 193-39-5                   | 0.002                 | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| Isophorone<br>Naphthalene                     | 78-59-1                    | 50<br>10              | < 5.0<br>< 5.0                       |             | < 5.0<br>< 5.0                       |            | < 5.0<br>< 5.0            |      |
| Naphthalene<br>Nitrobenzene                   | 91-20-3                    | 0.4                   | < 5.0<br>< 5.0                       |             |                                      |            |                           |      |
| Nitrobenzene<br>N-Nitroso-Di-N-Propylamine    | <u>98-95-3</u><br>621-64-7 | 0.4<br>NA             | < 5.0<br>< 5.0                       |             | < 5.0<br>< 5.0                       |            | < 5.0<br>< 5.0            |      |
| N-Nitrosodiphenylamine                        | 86-30-6                    | 50                    | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| Pentachlorophenol                             | 87-86-5                    | 50<br>1               | < 5.0                                |             | < 5.0                                |            | < 5.0                     |      |
| Phenanthrene                                  | 87-00-5                    | 50                    | < <u>10</u><br>< 5.0                 |             | < 10                                 |            | < 10                      |      |

| Phenanthrene | 85-01-8  | 50 | < 5.0 U  | < 5.0 U  | < 5.0 U  |
|--------------|----------|----|----------|----------|----------|
| Phenol       | 108-95-2 | 1  | < 5.0 U  | < 5.0 U  | < 5.0 U  |
| Pyrene       | 129-00-0 | 50 | < 5.0 U  | < 5.0 U  | < 5.0 U  |
| 1,4-Dioxane  | 123-91-1 | NA | < 0.22 U | < 0.20 U | < 0.20 U |

Notes:

ft bgs Feet below ground surface

ID Identification

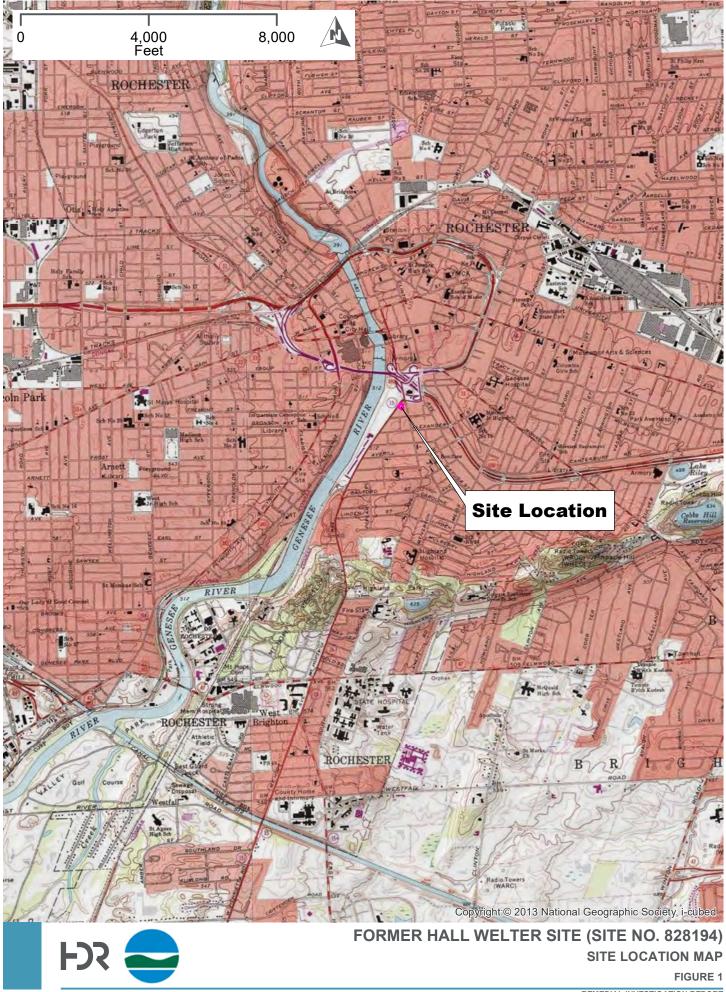
NA Not available

No. Number

Qua. Qualifier

- ug/I Micrograms per liter
- VOCs Volatile Organic Compounds
  - B Analyte is found in associated blank sample
  - J Estimated Analytical Value
  - J+ Estimated Analytical Value is High
  - U Analytical Non-Detect Value

### 300


Results that are bold and highlighted exceed the New York State Department of Environmental Conservation (NYSDEC) Technical & Operation Guidance Series (TOGS) 1.1.1 Groundwater Standards

## FJS


## Figures



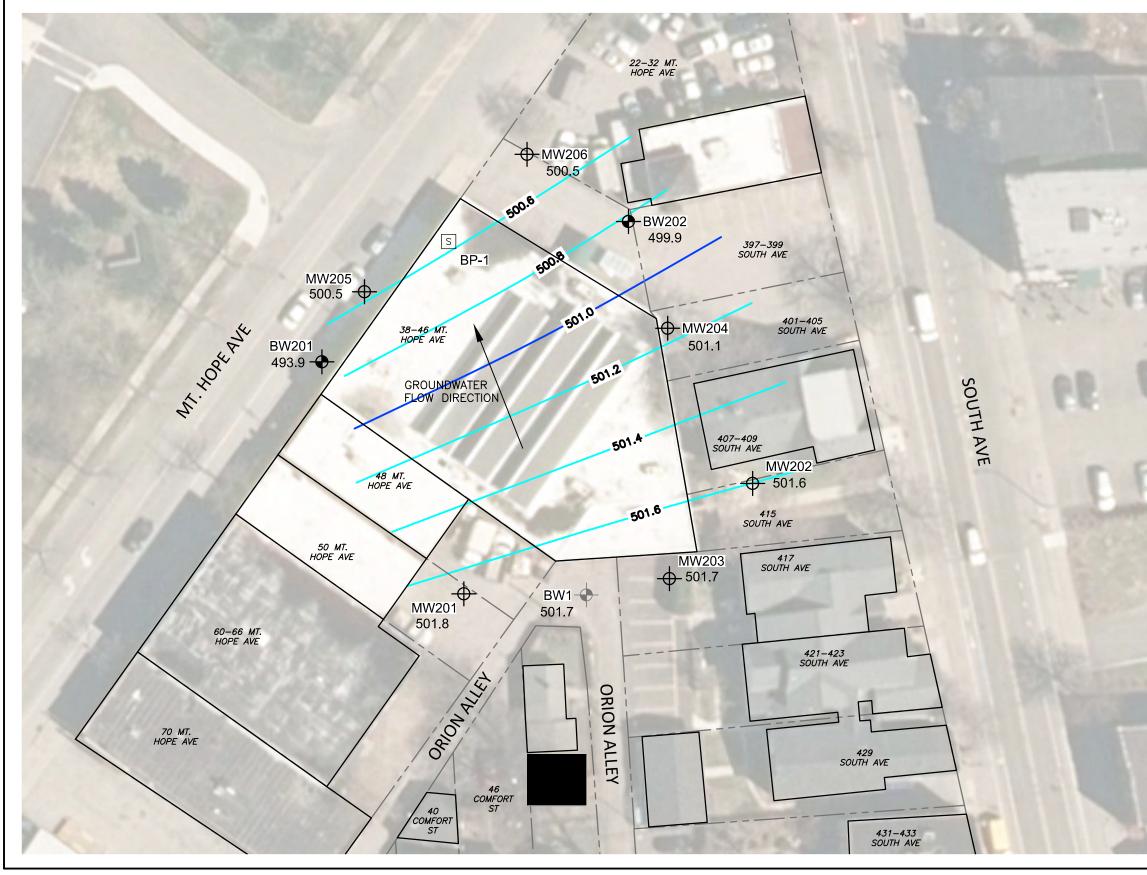




PATH: C:/USERS\APATEL\DESKTOP\MY DOCUMENTS\NYSDEC - FORMER HALL WETLER SITE\SITE LOCATION MAP.MXD - USER: APATEL - DATE: 9/22/2017



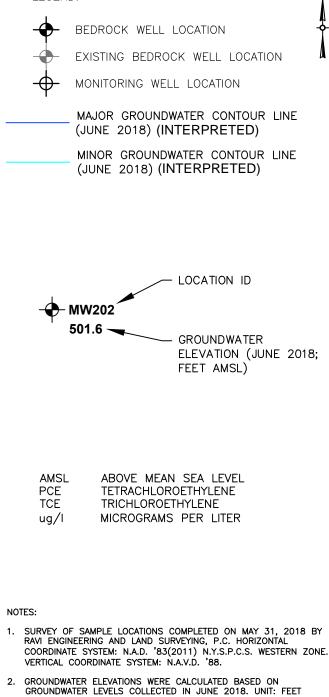
SITE PLAN AND


FSS

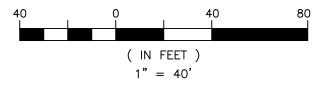
FORME

|             | LEGENI   | ):       |                                 |          |                                                      | N       |
|-------------|----------|----------|---------------------------------|----------|------------------------------------------------------|---------|
| 100         | -        | BEDRO    | DCK WELL                        | LOCAT    | ION                                                  | Ň       |
| 1.1         | -        | EXISTI   | NG BEDRO                        | OCK WE   | LL LOCATION                                          |         |
|             | <b>+</b> | MONIT    | ORING WEI                       | LL LOC   | ATION                                                |         |
|             | ė        | SOIL     | BORING LO                       | OCATION  | 1                                                    |         |
| 192         | ۵        | SVI S    | AMPLE LOO                       | CATION   |                                                      | Ц       |
|             |          | SVI      |                                 |          | RUSION                                               |         |
|             |          |          | SUB SLA                         |          |                                                      |         |
|             |          |          | OUTDOOR                         |          |                                                      |         |
| C8          |          | BUILD    | ING                             |          |                                                      |         |
| - 15        |          | PROP     | ERTY LINE                       |          |                                                      |         |
|             | S        | SUMP     | LOCATION                        |          |                                                      |         |
| -           |          |          |                                 |          |                                                      |         |
| 1           |          |          |                                 |          |                                                      |         |
|             |          |          |                                 |          |                                                      |         |
|             |          |          |                                 |          |                                                      |         |
| FI          |          |          |                                 |          |                                                      |         |
| -           |          |          |                                 |          |                                                      |         |
| 10          |          |          |                                 |          |                                                      |         |
|             |          |          |                                 |          |                                                      |         |
|             |          |          |                                 |          |                                                      |         |
| 2           |          |          |                                 |          |                                                      |         |
|             | NOTES:   |          |                                 |          |                                                      |         |
|             | 31,      | 2018 B   |                                 | EERING A | OMPLETED ON MAY<br>ND LAND SURVEYI<br>STEM: N.A.D.   |         |
| 10.11       |          |          | I.Y.S.P.C.S. WE<br>SYSTEM: N.A. |          | ONE. VERTICAL                                        |         |
|             |          |          | LOCATIONS W<br>BASED ON FIE     |          | SURVEYED BUT A<br>S.                                 | RE      |
|             | WEF      | RE NOT S | SURVEYED BUT                    | T ARE ES | PROPERTY LINES<br>TIMATED BASED O<br>MAP, RESPECTIVE |         |
|             | AN       | ALKIAL F | HUTUGRAPH /                     | AND TAX  | MAP, RESPECTIVE                                      | LT.     |
| 4           | FO<br>I  | 1        | 0                               | I        | 40<br>I                                              | 80<br>I |
| 100         |          |          | ( IN )                          | FEET)    |                                                      |         |
|             |          |          | •                               | = 40'    |                                                      |         |
|             |          |          |                                 |          | DATE                                                 |         |
| D SAMPI     | LEL      | .OC      | ATIO                            | NS       | 2020-02                                              | 2       |
| R HALL WELT | ER SITE  | =        |                                 |          | FIGURE                                               |         |

**REMEDIAL INVESTIGATION** NYSDEC SITE# 828194 ROCHESTER, NEW YORK


2





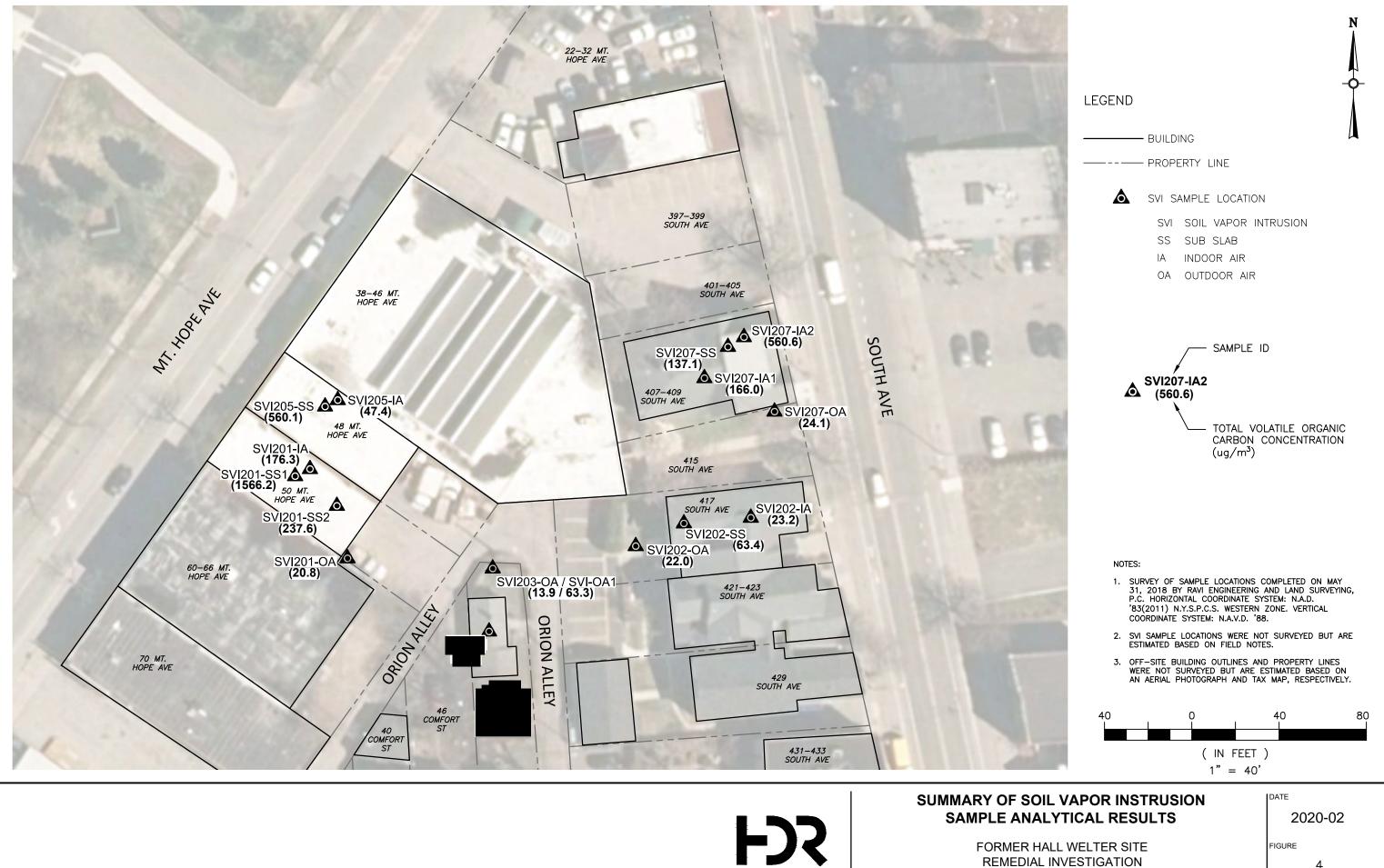

**H**R



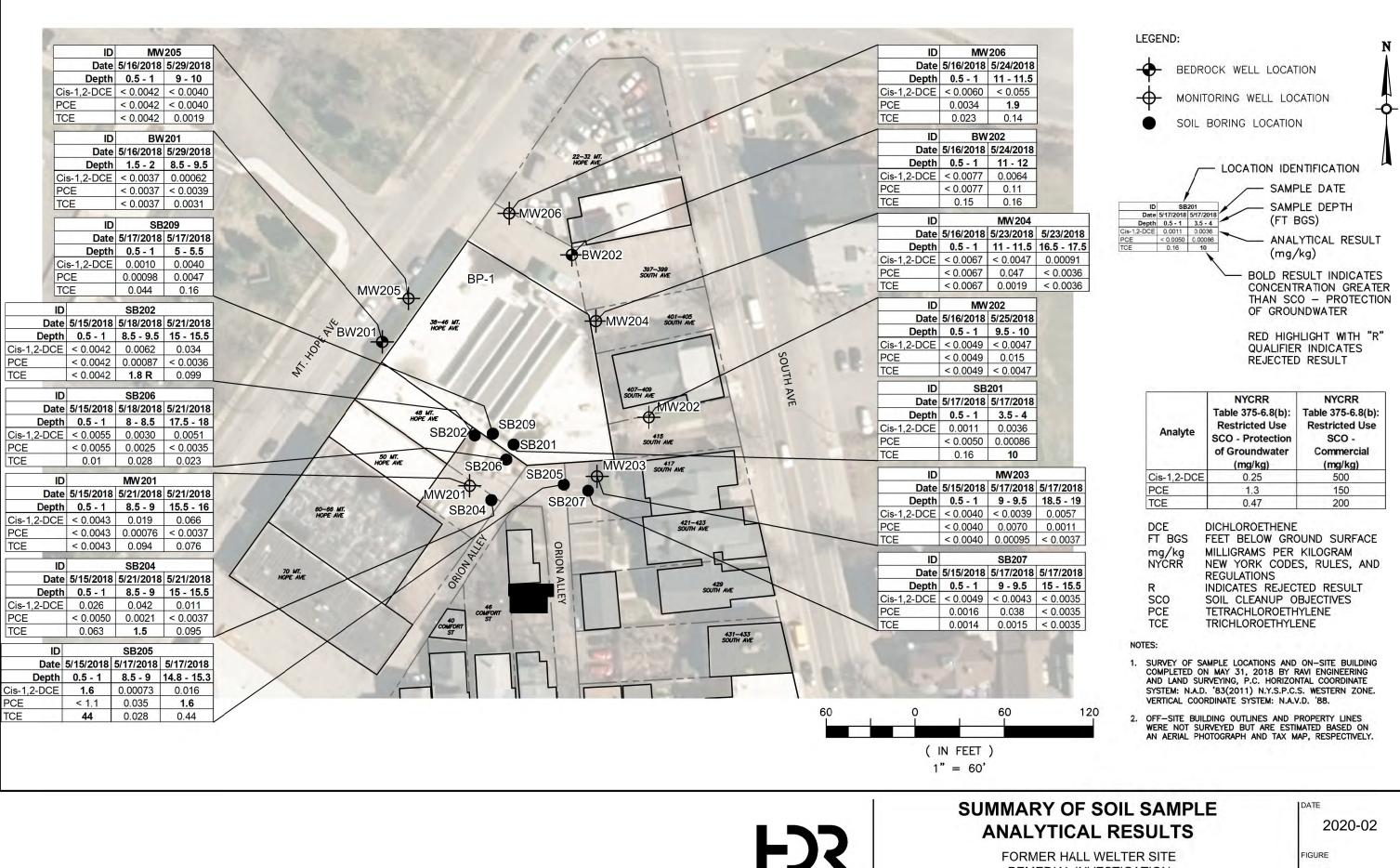


- AMSI 3. OFF-SITE BUILDING OUTLINES AND PROPERTY LINES WERE NOT
- SURVEYED BUT ARE ESTIMATED BASED ON AN AERIAL PHOTOGRAPH AND TAX MAP, RESPECTIVELY.




### **INTERPRETED GROUNDWATER ELEVATION MAP (JUNE 2018)**

FORMER HALL WELTER SITE REMEDIAL INVESTIGATION NYSDEC SITE# 828194 ROCHESTER, NEW YORK

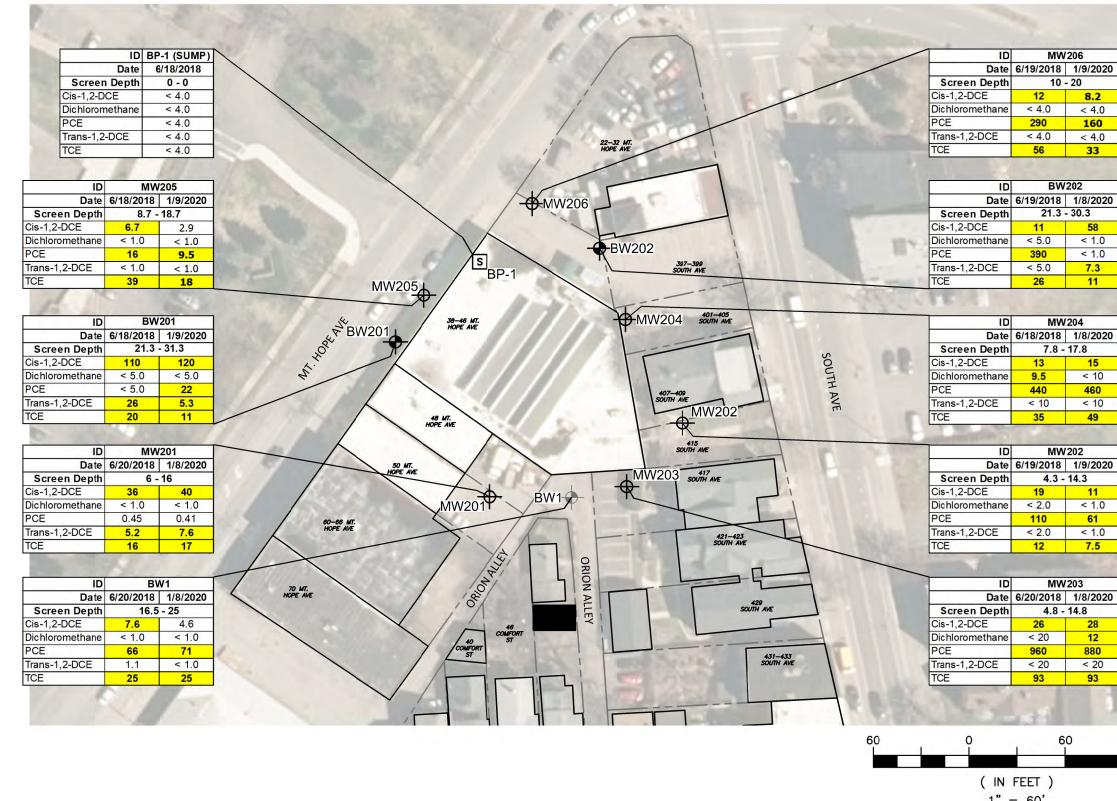

2020-02 FIGURE

3

DATE

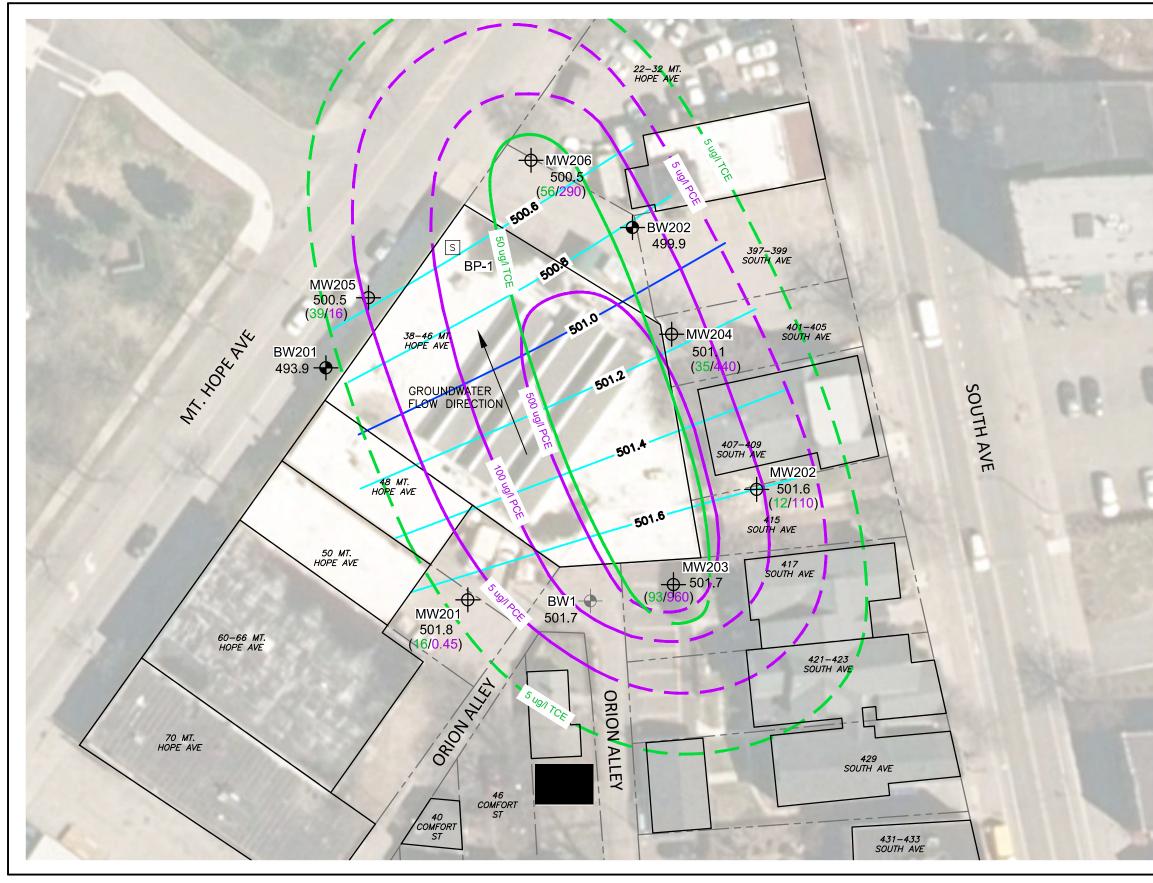


REMEDIAL INVESTIGATION NYSDEC SITE# 828194 ROCHESTER, NEW YORK




REMEDIAL INVESTIGATION NYSDEC SITE# 828194 ROCHESTER, NEW YORK

5

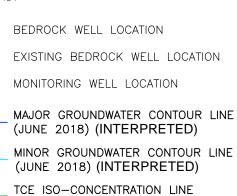

## 1" = 60' SUMMARY OF GRO **F**





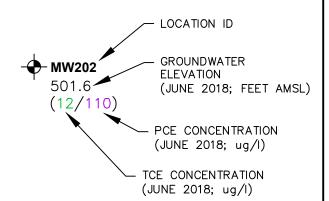
| LEGEND: N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |                                                                                                               |                                   |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |                                                                                                               |                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MONITORING WELL LOCATION                        |                                                                                                               |                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 | DROCK WELL LO                                                                                                 |                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S SUMP LOCA                                     | TION                                                                                                          | Δ                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 | - LOCATION I                                                                                                  | DENTIFICATION                     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ID MW206                                        | - SAMPLE DA                                                                                                   | TE                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Da te 6/19/2018 1/9/2020<br>creen Depth 10 - 20 | - SCREEN INT                                                                                                  | ERVAL                             |  |  |  |
| Dich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,2-DCE 12 8.2<br>nloromethane < 4.0 < 4.0      | (FT BGS)                                                                                                      |                                   |  |  |  |
| PCE<br>Trar<br>TCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ns-1,2-DCE < 4.0 < 4.0 -                        | —— ANALYTICAL<br>(ug/l)                                                                                       | RESULT                            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 | BOLD RESULT W<br>HIGHLIGHT INDIC<br>CONCENTRATION<br>THAN NYSDEC<br>WATER TOGS 1.<br>GROUNDWATER<br>STANDARD. | CATES<br>I GREATER<br>DIVISION OF |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analyte                                         | NYSDEC<br>Division of Water<br>TOGS 1.1.1<br>Groundwater<br>Standard (ug/l)                                   |                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cis-1,2-DCE                                     | 5                                                                                                             |                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dichloromethane                                 | 5                                                                                                             |                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PCE                                             | 5                                                                                                             |                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Trans-1,2-DCE<br>TCE                            | 5                                                                                                             |                                   |  |  |  |
| <ul> <li>DCE DICHLOROETHENE<br/>FT BGS FEET BELOW GROUND SURFACE<br/>NYSDEC NEW YORK STATE DEPARTMET OF<br/>ENVIRONMENTAL CONSERVATION<br/>PCE TETRACHLOROETHYLENE<br/>TCE TRICHLOROETHYLENE<br/>ug/l MICROGRAMS PER LITER</li> <li>NOTES:         <ol> <li>SURVEY OF WELL LOCATIONS AND ON-SITE BUILDING<br/>WAS COMPLETED ON MAY 31, 2018 BY RAVI<br/>ENGINEERING AND LAND SURVEYING, P.C. HORIZONTAL<br/>COORDINATE SYSTEM: N.A.D. '83(2011) N.Y.S.P.C.S.<br/>WESTERN ZONE. VERTICAL COORDINATE SYSTEM:<br/>N.A.V.D. '88.</li> </ol> </li> <li>OFF-SITE BUILDING OUTLINES AND PROPERTY LINES<br/>WERE NOT SURVEYED BUT ARE ESTIMATED BASED ON<br/>AN AERIAL PHOTOGRAPH AND TAX MAP, RESPECTIVELY.</li> <li>THE BP-1 SUMP LOCATION WAS NOT SURVEYED BUT<br/>IS ESTIMATED BASED ON FIELD NOTES: SAMPLE DEPTH<br/>FOR THE LOCATION WAS NOT SURVEYED BUT<br/>IS ESTIMATED BASED ON FIELD NOTES. SAMPLE DEPTH</li> </ul> |                                                 |                                                                                                               |                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FOR THIS LOCATION IS                            |                                                                                                               |                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |                                                                                                               |                                   |  |  |  |
| CAL R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ESULTS                                          | 2                                                                                                             | 020-02                            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TER SITE                                        | FIGURE                                                                                                        |                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IGATION                                         | 6                                                                                                             |                                   |  |  |  |
| SITE# 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 0                                                                                                             |                                   |  |  |  |

NYSDEC SITE# 828194 ROCHESTER, NEW YORK




### **INTERPRETED GROUNDWATER ISO-CONCENTRATION MAP (JUNE 2018)**

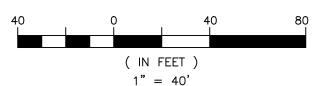
**H**R








(JUNE 2018; DASHED WHERE INFERRED)


PCE ISO-CONCENTRATION LINE (JUNE 2018; DASHED WHERE INFERRED)



| AMSL | ABOVE MEAN SEA LEVEL |
|------|----------------------|
| PCE  | TETRACHLOROETHYLENE  |
| TCE  | TRICHLOROETHYLENE    |
| ug/l | MICROGRAMS PER LITER |

#### NOTES:

- SURVEY OF SAMPLE LOCATIONS COMPLETED ON MAY 31, 2018 BY RAVI ENGINEERING AND LAND SURVEYING, P.C. HORIZONTAL COORDINATE SYSTEM: N.A.D. '83(2011) N.Y.S.P.C.S. WESTERN ZONE. VERTICAL COORDINATE SYSTEM: N.A.V.D. '88.
- 2. GROUNDWATER ELEVATIONS WERE CALCULATED BASED ON GROUNDWATER LEVELS COLLECTED IN JUNE 2018. UNIT: FEET AMSL.
- 3. ISO-CONCENTRATION LINES WERE DRAWN BASED ON JUNE 2018 GROUNDWATER LEVELS AND JUNE 2018 ANALYTICAL DATA.
- OFF-SITE BUILDING OUTLINES AND PROPERTY LINES WERE NOT SURVEYED BUT ARE ESTIMATED BASED ON AN AERIAL PHOTOGRAPH AND TAX MAP, RESPECTIVELY. 4.



FORMER HALL WELTER SITE REMEDIAL INVESTIGATION NYSDEC SITE# 828194 ROCHESTER, NEW YORK

DATE

2020-02

FIGURE

7