CONSTRUCTION COMPLETION REPORTfor the

DEBRIS PILE AREA REMEDIATION

at

BEN WEITSMAN OF ROCHESTER, LLC 80 Steel Street City of Rochester, Monroe County, New York

Prepared for:

BEN WEITSMAN OF ROCHESTER, LLC and WEITSMAN ROCHESTER REALTY, LLC

Prepared by:

8232 Loop Road Baldwinsville, NY 13027 (315) 638-8587

Project No. 2018107

200 North George Street Rome, NY 13440 (315) 281-1005

December 2018

TABLE OF CONTENTS

		<u>PAGE</u>
1.0	BACKGROUND AND SITE HISTORY	. 1
2.0	REMEDIAL ACTION OBJECTIVES	. 3
3.0	SUMMARY OF REMEDY	. 4
3.1	Quality Assurance/Quality Control (QA/QC) Protocols	. 6
3.2	Field Screening and Health and Safety Monitoring	. 7
3.3	Onsite Truck Traffic	. 8
3.4	Metal and Debris Resizing	. 8
3.5	Transportation Procedures	. 8
4.0	DEBRIS PILE REMEDIAL CONSTRUCTION ACTIVITIES	. 9
4.1	Debris Pile Characterization	. 9
	4.1.1 Estimated Debris Pile Disposal Volumes	. 10
4.2	Preparation for Removal of Debris Piles	. 10
	4.2.1 Waste Characterization and Disposal Facility Approval	
	4.2.2 Gravel Access Road Extension and Stone Placement	
4.3	Removal of Debris Piles	. 12
4.4	Management and Disposal of Gas Cylinders	. 12
4.5	Asbestos-Containing Materials	. 13
4.6	Equipment Decontamination	. 13
4.7	Topographic Survey	. 14
5.0	CONFIRMATORY SOIL SAMPLES	. 14
6.0	REMEDIAL CONSTRUCTION ACTIVITIES FOR SOILS BELOW FORMER DEBRIS PILES	. 15
6.1	Soils with Total PCBs Exceeding 48 ppm	. 15
6.2	Soils with Total PCBs of 10 to 48 ppm	. 15
6.3	Disposal of Additional Gas Cylinders and Investigation-Derived Waste Drums	. 15
6.4	Confirmation Soil Samples	. 16
6.5	Equipment Decontamination and Confirmatory Wipe Samples	. 16

TABLE OF CONTENTS (Continued)

			<u>PAGE</u>		
7.0			T OF SOILS WITH TOTAL PCBs M		
7.1	Removal of Rail Spurs, Miscellaneous Metals and Concrete Pads				
7.2	Installation of Stormwater Infrastructure				
7.3	Grading, Placement and Compaction of Soils Equipment Decontamination				
7.4					
8.0					
9.0					
ATT	ACHMENTS				
	ATTACHMENT 1	-	SITE LOCATION MAP		
	ATTACHMENT 2	-	SITE PLAN		
	ATTACHMENT 3	-	SOIL SAMPLE LOCATIONS		
	ATTACHMENT 4	-	OPERATIONS AND MANAGEMENT PLAN		
	ATTACHMENT 5	-	AIR MONITORING LOGS		
	ATTACHMENT 6	-	DISPOSAL RECORDS*		
	ATTACHMENT 7	-	TABULAR ASBESTOS ANALYTICAL RESULTS*		
	ATTACHMENT 8	-	TOPOGRAPHIC AND BOUNDARY SURVEY		
	ATTACHMENT 9	-	TABULAR CONFIRMATION SAMPLE RESULTS*		
	ATTACHMENT 10	-	CONCRETE SAMPLE RESULTS		
	ATTACHMENT 11	-	SEWER DISCHARGE PERMIT		
	ATTACHMENT 12	-	CAP MATERIALS		

^{*}Full Records Available Upon Request

Certification Pursuant to 40 CFR 761.61(a)(3)(i)(E)

Regarding the August 29, 2014 Self-Implementing Cleanup Work Plan for the Debris Pile Remediation Area, located at 80 Steel Street, City of Rochester, Monroe County, New York:

I hereby certify all sampling plans, sample collection procedures, sample preparation procedures, extraction procedures, and instrumental/chemical analysis procedures used to assess or characterize the polychlorinated biphenyls (PCB) contamination at the cleanup site, as prepared by O'Brien & Gere Engineers, Inc., are on file and available for United States Environmental Protection Agency (USEPA) inspection at the following location:

Ben Weitsman of Rochester, LLC 80 Steel Street Rochester, New York 14606

Aaron Weiner, Authorized Agent

Facility General Manager

12/31/2018

1.0 BACKGROUND AND SITE HISTORY

This Construction Completion Report (CCR) has been prepared based upon records and a draft CCR provided by O'Brien & Gere Engineers, Inc. (OBG) documenting the remedial activities performed from 2013 to 2017 at the Ben Weitsman of Rochester, LLC (Weitsman) facility, located at 80 Steel Street in the City of Rochester, Monroe County, New York. The remedial activities were consistent with the requirements of 40 CFR 761.61. Refer to *Attachment 1 – Site Location Map* and *Attachment 2 – Site Plan* for additional information. Plumley Engineering, P.C. has been retained to finalize the CCR and provide compliance with any future requirements related to this remediation.

During 2013 and 2014, remedial actions included the removal of historic debris piles and associated impacted soils. Subsequent site work was performed in accordance with a self-implementing polychlorinated biphenyl (PCB) cleanup work plan, entitled *Debris Pile Area Remediation Work Plan* (Work Plan), approved by the United States Environmental Protection Agency (USEPA) on October 7, 2014 and by the New York State Department of Environmental Conservation (DEC) on November 20, 2014.

Soils and debris with PCB concentrations greater than or equal to 10 parts per million (ppm) were transported offsite for disposal at permitted facilities. Soils with PCB concentrations less than 10 ppm were managed onsite in accordance with the approved Work Plan.

A scrap metal recovery facility has operated on the site for numerous years. The facility was purchased by Weitsman Rochester Realty, LLC in August 2011. The debris piles located along the eastern boundary of the property were present at the time of purchase. Following a site inspection by the DEC during the summer of 2012, four rounds of characterization samples were collected from the debris piles. Analytical results from these samples indicated varying concentrations of PCBs.

The following documents were submitted by OBG and pertinent reports have been reviewed by Plumley Engineering. Associated regulatory approval dates are also provided:

Document	Submission Date	DEC Approval Date	EPA Approval Date
Debris Pile Characterization Work Plan	04/08/13	05/20/13	NA
Debris Pile Characterization Report	08/13/13	NA	12/31/13
Debris Pile Management Work Plan	10/01/13	NA	12/31/13
Notification of Self-Implementation of Onsite Cleanup and Disposal of PCBs, Including Owner Certification	10/31/13	NA	12/31/13
E-Mail Clarification and Characterization Sample Summary Results Table	11/25/13	NA	NA
Waste Management's Mill Seat Landfill Permit	11/29/13	NA	NA
Seneca Meadow's Approval Letter to Accept Non-Hazardous PCB Waste	12/01/13	NA	NA
Confirmatory Soil Sampling Plan	01/16/14	02/03/14	NA
Debris Pile Area Remediation Work Plan	08/29/14	11/20/14	10/7/14
Notification/Modification of Work Plan Implementation Schedule	01/16/15	NA	01/28/15
Notification/Modification of Work Plan Implementation Schedule	09/14/16	NA	12/02/16
Request to Monroe County Department of Environmental Services to Discharge Stormwater to Municipal Sewer System (approved 11/03/16)	NA	NA	NA

As detailed on the *Site Plan*, a property line delineation completed in August 2014 indicated a narrow strip of property along the eastern boundary line that had historically been used by scrap metal recovery operations was actually owned by the adjacent property owner, the Rochester & Southern Railroad, Inc. An agreement was reached between Weitsman and the Railroad to allow the completion of remedial activities in this area.

Five areas were designated as Areas of Concern (AOCs) (refer to the *Site Plan*). AOCs 1 through 4 included the onsite debris piles and AOC 5 was debris located on the property owned

in part by the adjacent Railroad. The material in the AOCs was excavated and transported for offsite disposal, as described below:

- In 2013, a total of 130 tons of hazardous PCB bulk remediation debris was removed and disposed of at Chemical Waste Management's Model City Landfill (CWM) located in Lewiston, New York. Total PCB concentrations in this material exceeded 48 ppm.
- In 2014, approximately 9,146 tons of debris with total PCB concentrations less than 48 ppm were removed and disposed of at Seneca Meadows Landfill (SML) near Waterloo, New York.
- A total of 312 gas cylinders associated with a debris pile were inspected, emptied as needed, and punctured or opened. These cylinders were transported to SML on June 9, 2014 for disposal as non-hazardous waste.
- A remaining 272 tons of non-hazardous debris, previously mixed with the gas cylinders, was transported to SML between June 19 and 24, 2014 for disposal as non-hazardous PCB bulk remediation debris.

Confirmation surface soil samples were collected, with four areas found to have PCB concentrations exceeding 48 ppm and ten areas having PCB concentrations between 10 and 48 ppm. Based on these findings, it was determined further remedial work would be performed. Sample results and locations from the OBG sampling are provided in Attachment 3 – Soil Sample Locations.

2.0 REMEDIAL ACTION OBJECTIVES

As stated in the August 29, 2014 Work Plan, the objective was to remediate soils with PCB concentrations exceeding 10 ppm via excavation and offsite disposal. Soils with PCB concentrations between 1 and 10 ppm were to be managed via the installation of an asphalt cap

on the majority of the area and a gravel cap on the sloped area within AOC 5. Deed restrictions would also be enacted as an institutional control.

3.0 SUMMARY OF REMEDY

The August 29, 2014 Work Plan was approved by the EPA and DEC. A Notification of Self-Implementation of Onsite Cleanup and Disposal of PCB Remediation Waste Including Owner Certification per 40 CFR 761.61(a)(3)(i) was submitted October 31, 2013 and approved by the EPA on December 31, 2013.

In addition to the previously noted actions, OBG performed the following activities after approval of the August 29, 2014 Work Plan:

- Prior to initiating site activities, OBG contacted Dig Safely New York to locate and mark underground utilities.
- Hay bales and temporary construction fencing were installed around the anticipated work area.
- A decontamination pad consisting of timbers and polyethylene sheeting was constructed near the gravel access road.
- Vegetation and miscellaneous debris (including wood, metal and remnants of old chain link fencing) located near the outside perimeter of the planned remedial area were removed and transported to SML for disposal as non-hazardous PCB bulk remediation debris.
- Per the EPA's request, a gravel road was installed to provide separation between vehicles using the access road and surface soils that were found to contain total PCBs greater than 1 ppm. This road was eventually extended to the northern fence line. Truck tires were prevented from contact with soils containing total PCBs greater than 1 ppm.

- Stone was placed at the northern end of the property to facilitate access to the debris pile remediation area.
- Excavation water was sampled for characterization on December 5, 2014. The excavation was dewatered on December 17, 2014.
- Soils underlying the former debris piles found to contain total PCBs greater than 48 ppm were excavated and transported for offsite disposal at approved facilities. On December 17 and 19, 2014, a total of 157 tons of hazardous PCB bulk remediation waste was disposed of at CWM.
- Four additional gas cylinders were found during site excavations in December 2014. These were inspected, segregated, emptied if necessary, and punctured/opened on May 12, 2015. Two cylinders were transported and disposed of by Abscope Environmental, Inc. (Abscope) as non-hazardous PCB bulk remediation debris on September 6, 2017. The remaining two cylinders were transported and disposed of by Abscope as asbestos-containing material (ACM) on September 15, 2017.
- A total of 387 tons of soils underlying the former debris piles found to contain total PCB concentrations between 10 and 48 ppm were excavated and transported to SML for disposal on December 23, 24, 29 and 30, 2014.
- A total of 16,004 tons found to contain PCBs between 10 and 48 ppm were excavated and transported to Ontario County Landfill (OCL) for disposal as non-hazardous PCB bulk remediation waste between December 2016 and August 2017.
- The concrete surface pad located in the northeast portion of the site was sampled for total PCBs on July 7, 2015. Analytical results indicated total PCB concentrations ranging from non-detect to detectable but less than 2 ppm. Therefore, the concrete and embedded rebar was designated as PCB-contaminated, non-hazardous construction and demolition (C&D) debris, and was removed and disposed of on December 30, 2016 and January 4, 2017.

- An abandoned railroad spur located in the remedial area was removed on March 21 to 24,
 2017.
- Stone rip-rap was placed on the eastern slope of AOC 5 on July 17, 18, 20, 21 and August 2 to 4, 2017.
- Stormwater management structures, including a lined detention basin, were installed between July and August 2017.
- An asphalt cap was installed by Tandoi Paving and Riccelli Enterprises between September 15 and 21, 2017.
- Various site walkovers were conducted (most recently in September 2018 by Plumley Engineering) to confirm site conditions and completion of work.
- Deed restrictions were prepared for the Weitsman and Rochester & Southern Railroad properties. The Weitsman Deed Restriction was filed with the Monroe County Clerk's Office in Rochester, New York and the Rochester & Southern Railroad is in receipt of the Deed Restriction required to be filed. A filed copy will be forwarded to EPA when received.
- An Operations and Management Plan has been prepared and approved by DEC. Refer to *Attachment 4 Operations and Management Plan* for additional information.

3.1 Quality Assurance/Quality Control (QA/QC) Protocols

QA/QC protocols employed included the following:

 A sample identification system was used that allowed each sample to be uniquely identified. Before samples were collected, OBG established a sampling grid system and staked sample locations.

- An OBG representative was present when site activities were occurring to manage and document work that was performed.
- Areas to be sampled or excavated were marked using stakes, flagging or marking paint, as appropriate, prior to initiating work.
- Dedicated sampling equipment, including disposable plastic trowels and pre-cleaned sample containers provided by the laboratory, were used to collect soil samples.
- Following final decontamination of equipment, confirmatory wipe samples were collected from the cleaned equipment to document decontamination was completed.
- New neoprene gloves were worn by OBG personnel at each sample location.
- Sample containers were labeled and stored in coolers with ice prior to being delivered to the laboratory. Samples were analyzed within the holding times specified by the analytical method.
- A chain of custody was completed for each batch of samples delivered to the laboratory.

Paradigm Environmental Services, Inc. (Paradigm), certified by the New York State Department of Health (DOH) Environmental Laboratory Accreditation Program (ELAP) (Certification No. 10958) provided analytical services.

3.2 Field Screening and Health and Safety Monitoring

To protect against potential safety hazards, a Job Safety Analysis (JSA) was prepared prior to initiation of remedial activities and followed by OBG personnel involved in site work. Operators and laborers working on portions of the debris piles containing total PCBs greater than 48 ppm complied with 29 CFR 1910.120 (OSHA Hazardous Waste Operations Training, or HazWoper), including up-to-date refresher training.

As required by the JSA, particulate air monitoring was conducted during field activities, and instrument readings were recorded in OBG's dedicated field book. Refer to Attachment 5 - Air Monitoring Logs for additional information. To minimize dust generation, a water truck or other water source was used to wet exposed surfaces, as necessary.

3.3 Onsite Truck Traffic

A decontamination pad constructed of timbers and polyethylene sheeting was constructed in the staging area south of AOC 1 near the water source. Access to the road running north-south through the remedial area was limited to vehicles associated with remedial activities. Trucks were instructed to drive through the main facility and around the north end of the buildings before entering the remedial area. Trucks were required to stay on the road, including when being loaded. Vehicles leaving the remedial area exited via the south end of the access road before entering Steel Street. Additional temporary construction fencing was installed around the proposed onsite areas used to manage soils removed during remediation containing PCB concentrations between 1 and 10 ppm.

3.4 Metal and Debris Resizing

Metal and other debris were resized prior to being loaded onto trucks for transport and disposal as necessary to meet disposal site requirements. Resizing was performed using a mobile shear or torch. Equipment was decontaminated prior to reuse outside of the remediation area.

3.5 Transportation Procedures

Landfill approval, in conjunction with DEC as appropriate, was obtained prior to any wastes leaving the site. Material containing total PCB concentrations greater than 48 ppm was transported to CWM for disposal, along with a Hazardous Waste Manifest. Copies of the weigh tickets and the manifest signed by the landfill were provided to Weitsman and the DEC. Material transported offsite with total PCB concentrations less than 48 ppm was sent to SML or OCL for disposal, accompanied by non-hazardous Bills of Lading signed by a Weitsman representative. Copies of weigh tickets and Bills of Lading, signed by the landfill, were provided to Weitsman.

4.0 DEBRIS PILE REMEDIAL CONSTRUCTION ACTIVITIES

4.1 Debris Pile Characterization

A Debris Pile Characterization Work Plan (DPCWP) was prepared by OBG and submitted for review and approval. The DPCWP was approved on May 20, 2013. The DPCWP included the following:

- Air monitoring requirements for particulates.
- QA/QC protocols.
- Layouts of grid locations and previously identified AOCs.
- Procedures for installing test pits using onsite equipment.
- Procedures for staging debris pile material.
- Procedures for collecting and analyzing 42 soil samples from the debris piles.
- Equipment decontamination procedures when moving to new sample locations.
- Construction of a decontamination pad and final decontamination procedures via a double wash/rinse using acetone at the completion of the sampling program.
- Collection and analysis for PCBs of wipe samples from the grapple and loader bucket to allow the equipment to be returned to routine use elsewhere on the property.

A Debris Pile Characterization Report was submitted to the EPA and the DEC on August 13, 2013. The report was approved on December 31, 2013.

4.1.1 Estimated Debris Pile Disposal Volumes

Based on a topographic survey completed by Fisher Associates, the total volume of the debris piles was estimated at approximately 4,550 cubic yards. Using soil sample results, the components of the combined Debris Piles were estimated by OBG as follows:

Total PCB Concentrations	Estimated Volume
> 48 ppm	94 cubic yards (cy)
25 to 48 ppm	890 cy
< 25 ppm	3,566 cy

The estimated breakdowns by AOC location were as follows:

Total PCB	Estimated Volume				
Concentrations	AOC 1	AOC 2	AOC 3	AOC 4	AOC 5
> 48 ppm	64 cy	0 cy	30 cy	0 cy	0 cy
25 to 48 ppm	707 cy	183 cy	0 cy	0 cy	0 cy
< 25 ppm	259 cy	567 cy	415 cy	1,570 cy	755 cy
Total Estimated Volume	1,030 cy	750 cy	445 cy	1,570 cy	755 cy

4.2 Preparation for Removal of Debris Piles

The approved DPMWP presented the procedures to excavate, load, transport and dispose of the debris piles, as well as appropriate procedures to comply with the disposal facilities' requirements.

4.2.1 Waste Characterization and Disposal Facility Approval

Material destined for offsite disposal was divided into two categories: material containing total PCB concentrations greater than 48 ppm and material with total PCB concentrations exceeding 10 ppm but less than 48 ppm. Waste Profiles were prepared for each waste stream and submitted to the appropriate disposal sites for approval.

Material with total PCB concentrations exceeding 48 ppm was transported to CWM and placed as direct fill. As required by CWM, the material was sized to a maximum dimension of 6 inches prior to being loaded for transportation. CWM used the previously existing Generator Waste Profile for material containing total PCBs greater than 48 ppm. However, the facility required one additional sample be analyzed for Toxicity Characteristic Leaching Potential (TCLP) metals. The analytical results were submitted to CWM and approved. Weitsman's EPA Hazardous Waste Identification Number was used for material transported and disposed of at CWM.

Material containing total PCB concentrations between 10 and 48 ppm was transported to SML and OCL. SML used the previously approved Generator Waste Profile (#14-005) for disposal of non-hazardous wastes with total PCB concentrations less than 48 ppm. Weitsman also provided a letter indicating the material was consistent with the material previously approved. A new Generator Waste Profile (#6807) was obtained for OCL for material containing total PCB concentrations less than 48 ppm. A Beneficial Use Determination (BUD) was also obtained from the DEC for the material to be used as Alternative Daily Cover (ADC) at the landfill.

Disposal records are available at the facility.

4.2.2 Gravel Access Road Extension and Stone Placement

The previously installed access road to the southern portion of the remedial area was extended to the fence near the northern boundary. The road construction included a geotextile separation fabric placed on the ground surface and covered with 6 inches of placed and compacted washed gravel.

To improve the truck access route for loading out material, additional washed stone was placed west of the pond area on the north portion of the site. Following completion of excavation activities, this stone was incorporated into the base layer for the asphalt cap.

4.3 Removal of Debris Piles

The debris piles were loaded and transported to the disposal facilities from November 2013 through May 2014. It was anticipated the base of the debris piles would approximate the adjacent grades. However, the base of the piles appeared to be approximately 2 to 4 feet below the surrounding grades following removal.

Four areas were delineated where total PCB concentrations exceeded 48 ppm (Attachment 3). Three of these areas were in AOC 1 and the fourth was in AOC 3. These areas were addressed first to minimize the potential for cross contamination. They were excavated, loaded and transported to CWM for disposal in November 2013.

AOC 5 was excavated next, and the material loaded and transported to SML for disposal. AOC 4 was then excavated, from the northern end and proceeding in a southerly direction, and the material loaded and transported to SML for disposal. Work at AOC 3 proceeded in the same manner as AOC 4, but was halted when work began to encroach on the area containing gas cylinders.

Remedial equipment did not require decontamination prior to proceeding from AOC 5 to AOC 4 or from AOC 4 to AOC 3 since the material in all three AOCs contained total PCB concentrations less than 48 ppm.

4.4 Management and Disposal of Gas Cylinders

OBG identified numerous previously unknown compressed gas cylinders of unknown condition in AOCs 2 and 3 during the 2013 sampling event. A total of 312 compressed gas cylinders containing various materials was inspected, segregated, degassed as necessary, and punctured/opened following removal of the AOC materials. These activities occurred on March 31 and April 3, 7, 8 and 11, 2014. Since total PCB concentrations in AOCs 2 and 3 ranged from 4.84 to 16.61 ppm, the cylinders were transported under a separate waste profile (#14-069A) to SML as non-hazardous PCB bulk remediation debris on June 9, 2014. One cylinder was assumed to contain refrigerant and was segregated from the others. This cylinder was transported for

recycling by Environmental Products & Services of Vermont (EPS) on April 11, 2014. Disposal records are available at the facility.

4.5 Asbestos-Containing Materials

As removal of the debris piles progressed, some materials (insulation and gas cylinder coatings) suspected of potentially containing asbestos were noted and sampled for analysis. Samples were collected by a New York State-certified inspector and submitted to an ELAP-certified laboratory for analysis. A summary of the sample results, along with the analytical reports, are provided in *Attachment 7 – Asbestos Analytical Results*. One acetylene gas cylinder was sampled and found to contain asbestos. This cylinder and another acetylene cylinder presumed to contain ACMs were segregated, wrapped in 6-mil polyethylene sheeting, sealed with duct tape and transported to SML for disposed under a separate approved waste profile (#14-069A).

4.6 Equipment Decontamination

Equipment in contact with PCB-impacted materials was decontaminated prior to being used in areas with lower PCB concentrations. Equipment was also decontaminated upon completion of the remedial work. Weitsman's grapple and excavation equipment bucket were cleaned using potable water and a high-pressure steam cleaner. Decontamination fluids were discharged onto the AOC in close proximity to its respective location of similar PCB concentrations. The equipment bucket was then cleaned with an acetone double wash/rinse in accordance with Subpart S of 40 CFR 761. One wipe sample of the bucket surface was collected and submitted to Paradigm for laboratory analysis of PCBs.

Following completion of work in a given area, final equipment decontamination was conducted over a decontamination pad constructed of polyethylene sheeting and timbers. When laboratory results confirmed the equipment was clean, the equipment was allowed to be used in areas with lower PCB concentrations. This procedure was also followed when the project was completed, prior to returning the equipment back to Weitsman for use elsewhere on the site.

Spent solvents, used polyethylene sheeting and used timbers were transported to permitted facilities for disposal.

4.7 Topographic Survey

Fisher Associates prepared a topographic and boundary survey of the property following removal of the debris piles in August 2014. Refer to *Attachment 8 – Topographic and Boundary Survey* for additional information. The survey identified site elevations (including those in the debris pile remediation area), drainage patterns, finished building floor elevations, other site improvements and visible utility services (including those marked by the Dig Safely New York service) such as water, natural gas, electric and storm and sanitary sewers. The purpose of the survey was to confirm site property lines and to stake the northeast, southwest and southeast property corners in the vicinity of the debris pile remediation area. The survey was also used to plan site grading and earthwork calculations for cut/fill, and placement and capping of residual PCB-impacted soils to comply with regulatory requirements.

The topographic survey was used to estimate the volume of soil to be removed from the remedial area to allow the surface of the cap to be installed at an appropriate elevation.

5.0 CONFIRMATORY SOIL SAMPLES

OBG collected confirmation soil samples following removal of the debris piles in accordance with the January 16, 2014 Confirmatory Soil Sampling Plan that was prepared in accordance with 40 CFR Part 761, Subpart O and approved by the DEC.

A total of 115 composite soil samples and one concrete chip composite sample were collected and submitted to Paradigm for total PCB analysis. As shown on the tables and figures included in Attachments 3 and 9, some sample areas contained total PCB concentrations greater than 48 ppm, and some contained total PCBs between 10 and 48 ppm. Based on these results, additional excavations were implemented.

6.0 REMEDIAL CONSTRUCTION ACTIVITIES FOR SOILS BELOW FORMER DEBRIS PILES

6.1 Soils with Total PCBs Exceeding 48 ppm

Areas around the four sample locations exhibiting total PCB concentrations greater than 48 ppm were excavated based on previous sampling results. The areal extents consisted of 3 by 3-meter grids excavated to depths of 3 feet below surrounding grade. Approximately 157 tons of material were excavated and disposed as hazardous waste in December 2014. Equipment used to load and resize the material was then decontaminated using the procedures presented in Section 4.6. Confirmation samples do not indicate any remaining soils with total PCB concentrations exceeding 48 ppm.

6.2 Soils with Total PCBs of 10 to 48 ppm

Confirmation soil samples were collected from the excavation floors following removal of hazardous waste soils (soils with total PCB concentrations greater than 48 ppm). A summary of the analytical results from these samples is provided in *Attachment 9 – Confirmation Sample Results*. Since analytical results indicated total PCB concentrations were all less than 48 ppm, the equipment was decontaminated and confirmatory wipe samples collected per the procedures described in Section 4.6.

Additional soil was excavated in 10 by 10-foot grids to depths of 3 feet for those areas where PCB concentrations exceeded 10 ppm. Approximately 387 tons of soil were excavated and transported to SML for disposal as non-hazardous waste in December 2014.

6.3 Disposal of Additional Gas Cylinders and Investigation-Derived Waste Drums

Four additional gas cylinders were uncovered in the area of remediation during 2015. As with the previous cylinders addressed during the removal of the debris piles, these four cylinders were inspected, segregated, degassed as necessary and punctured/opened on May 12, 2015 by EPS.

Two cylinders were transported to High Acres Landfill (HAL) on September 15, 2017 for disposal as ACM under Waste Profile #506306. The remaining two cylinders were placed in onsite roll-off containers with other non-hazardous waste debris and transported to OCL on September 6, 2017 for disposal under Waste Profile #7728.

Seven drums of investigation-derived waste were generated during remedial activities. These drums were disposed of by EPS and consisted of the following:

Drum Number	Contents
1	Personal Protective Equipment (PPE), Absorbent Pads
2	Absorbent Pads
3	Soils, PPE, Miscellaneous Sampling Supplies
4	Oil, Water
5	Waste Oil
Overpack #1	Former Pond Sludge and Drum
Overpack #2	Waste Oil and Drum Liner

Disposal documentation for the cylinders and drums is available at the site.

6.4 Confirmation Soil Samples

Fifteen additional confirmation soil samples were collected in the same manner as described in Section 5.0. Analytical results from these samples indicated remaining soils had total PCB concentrations less than 10 ppm.

6.5 Equipment Decontamination and Confirmatory Wipe Samples

Decontamination procedures described in Section 4.6 were implemented again for equipment or resizing equipment in contact with PCB-contaminated soils during this phase of work. Confirmatory wipe samples were collected and submitted to Paradigm. Analytical results indicated the equipment had been adequately decontaminated.

7.0 ONSITE MANAGEMENT OF SOILS WITH TOTAL PCBs BETWEEN 1 AND 10 PPM

7.1 Removal of Rail Spurs, Miscellaneous Metals and Concrete Pads

The onsite railroad spurs, rail ties and miscellaneous scrap metals located in the Debris Pile Remediation Area were removed, placed in roll-off containers and transported to Wayne Disposal, Inc. in Belleville, Michigan on March 21 to 24, 2017 for disposal as hazardous waste under Waste Profile #C170060WDI. Similar materials located outside the Debris Pile Remediation Area were transported to OCL for disposal as non-hazardous waste under Waste Profile #7728.

The concrete surface pad formerly located in the northeast portion of the site was sampled for total PCBs on July 7, 2015. Analytical results indicated total PCB concentrations ranging from less than 1 to less than 2 ppm. Therefore, the concrete and embedded rebar was designated as PCB-contaminated, non-hazardous C&D debris. The concrete pad was removed during the summer of 2015 and staged onsite through December 2016, when it was transported to OCL for disposal. Disposal documentation is provided in *Attachment 10 – Concrete Sample Results*.

7.2 Installation of Stormwater Infrastructure

A Stormwater Modification Plan was prepared incorporating the completed remedial actions, including the cap system (refer to Section 8.0) and the management of onsite soils containing total PCB concentrations between 1 and 10 ppm. The Plan included the following:

- A grading plan for both the Debris Pile Remediation Area and other areas of the site.
- Stormwater conveyance modifications to incorporate the cap system.
- An asphalt pavement cap system.

The approved discharge of stormwater to a Monroe County Department of Environmental Services (MCDES) occurred at a sanitary sewer manhole, located near the northeast corner of the site. A sewer connection permit was approved on July 7, 2017.

A Long-Term Discharge Permit (No. 1018) was approved by MCDES on June 26, 2017. The discharge of water began on September 14, 2017. Refer to *Attachment 11 – Sewer Discharge Permit* for additional information.

The Stormwater Modification Plan to address the cap placement included design drawings and was submitted to the EPA and DEC on November 1, 2016. The design drawings included stormwater infrastructure features and the capping system. The stormwater management area (SWMA) includes a 1.5-acre, three basin stormwater system with an outlet structure connecting to the MCDES sanitary sewer manhole (Outfall 004). The SWMA is considered to be a low occupancy area, as defined in 40 CFR 761.3. Therefore, a cap system is not required since the total PCB concentration is less than or equal to 25 ppm. The EPA approved the use of a liner to protect underlying soils containing total PCB concentrations less than 10 ppm. The liner system was installed August 1, 2017 and includes a Skaps Transnet geocomposite (330 Series) underlayment and a Solmax 40-mil liner. These components were installed in coordination with the asphalt cap system. Concrete barriers were installed around the pond area to prevent vehicle traffic from entering the SWMA in conjunction with the cap construction.

7.3 Grading, Placement and Compaction of Soils

Grading of the area was initiated near the southern boundary following completion of the remedial activities. Grade stakes were placed and spot elevations measured to achieve the desired grade. Excavated material was transported to OCL for disposal. The gravel access road was removed and transported with site soils to OCL as work proceeded northward. Where necessary, excavated areas were backfilled and compacted in 1-foot lifts with a vibratory roller.

7.4 Equipment Decontamination

Equipment was decontaminated upon completion of this work phase in the same manner as described in Section 6.5. Following the double wash/rinse procedure of the equipment bucket, grapple and resizing equipment, OBG collected a confirmatory wipe sample from each item.

8.0 CAP SYSTEM

The approved cap was installed over the remediated area following completion of the final grading, consistent with the approved Work Plan. A minimum thickness of 9 inches of asphalt was placed over the majority of the area, except for the sloped area along the eastern property line which was covered with a minimum of 10 inches of stone rip-rap.

The stone cap was placed on the eastern slope of AOC 5 (owned by the adjacent Railroad), which is a low-occupancy area as defined in 40 CFR 761.3. The EPA approved the use of the stone rip-rap as a barrier to exposure of underlying soils with total PCB concentrations less than 10 ppm. A geotextile fabric was first placed on the ground surface. Stone rip-rap was then installed to a minimum thickness of 10 inches in this area between July 17 and August 4, 2017.

As previously noted, an asphalt cap was installed over the majority of the remediated area. A polypropylene integrally formed biaxial geogrid (Tensar BX1200) was placed on the ground surface for base reinforcement after grading and compacting area soils. Refer to *Attachment 12 – Cap Materials* for additional information. A 9-inch thick layer of crushed stone was then installed and compacted. A below-grade electrical line was protected in a concrete encased underground electrical duct bank, which was covered with a magnetic strip tape to facilitate future identification. The top of the concrete was approximately equal to the top of the subbase layer. A minimum of 9 inches of asphalt was installed above the base layer across the eastern portion of the site, including the Debris Pile Remediation Area (outside of the stormwater management area). The asphalt layer included 5 inches of New York State Department of Transportation (NYSDOT) Item No. 403.118902 Type 1 Base Course covered with 4 inches of

NYSDOT Item No. 403.138902 Type 3 Binder Course. Asphalt was installed between September 15 and 21, 2017 by Tandoi Paving. Core samples were collected across the asphalt areas to document proper thicknesses were achieved. Additional asphalt was later applied as needed in deficient areas by Riccelli Enterprises.

9.0 INSTITUTIONAL CONTROLS AND OPERATIONS AND MANAGEMENT PLAN

Institutional controls implemented at the site include scheduled inspections and deed restrictions on both the Weitsman and adjacent property. Copies of the deed restrictions are provided in *Attachment 4 – Operations and Management Plan*. The Operations and Management Plan presents required management controls at the site and the adjacent Railroad property.

ATTACHMENTS

ATTACHMENT 1 SITE LOCATION MAP

Note: Based on a figure prepared by O'Brien & Gere, and provided on October 23, 2018.

ATTACHMENT 2 SITE PLAN

ATTACHMENT 3

SOIL SAMPLE LOCATIONS

I:\Ben

NOTES:

- 1. GRID SPACING IS 1.5M (4.922-FEET).
- 2. ALL LOCATIONS ARE APPROXIMATE.
- 3. CONFIRMATORY SOIL SAMPLES EXHIBITING TOTAL PCBs >48 PPM INCLUDE CS-47, CS-54, CS-55 AND CS-105.
- 3. CONFIRMATORY SOIL SAMPLES EXHIBITING TOTAL PCBs >10 PPM BUT ≤48 PPM INCLUDE CS-10, CS-41, CS-45, CS-49, CS-84, CS-95, CS-102, CS-104, CS-106 AND CS-114.

LEGEND

PROPOSED EXCAVATION WITH TOTAL PCBs >10 BUT ≤48 PPM (NON-HAZARDOUS)

PROPOSED EXCAVATION WITH TOTAL PCBs ≥48 PPM (HAZARDOUS)

PREVIOUSLY COLLECTED - 1 COMPOSITE "LINEAR" SAMPLE FROM A MAXIMUM OF 9 GRABS AT GRID INTERSECTS

PREVIOUSLY COLLECTED - 1 COMPOSITE SAMPLE FROM UP TO 9 GRABS AT GRID INTERSECTS

PREVIOUSLY COLLECTED -CONFIRMATORY SAMPLE NUMBER

BEN WEITSMAN OF ROCHESTER, LLC
WEITSMAN ROCHESTER REALTY, LLC
WORK PLAN
DEBRIS PILE AREA REMEDIATION
80 STEEL STREET
ROCHESTER, NEW YORK

PROPOSED LOCATIONS
FOR FURTHER
EXCAVATION AND
OFF-SITE DISPOSAL

FILE NO. 6084.50162 AUGUST 2014

ATTACHMENT 4

OPERATIONS AND MANAGEMENT PLAN

BEN WEITSMAN OF ROCHESTER, LLC 80 STEEL STREET MONROE COUNTY ROCHESTER, NEW YORK

Operations and Management Plan ("Plan")

Prepared for:

Ben Weitsman of Rochester, LLC / Weitsman Rochester Realty, LLC 80 Steel Street

Rochester, New York 14606

Prepared by:

O'Brien & Gere Engineers, Inc.
Updated by Plumley Engineering, P.C.

This Operation and Maintenance Plan follows the general template of a New York State Plan to the extent applicable to the requirements under 40 CFR Section 761-61 (Self Implementation Plan).

BEN WEITSMAN OF ROCHESTER

80 STEEL STREET

MONROE COUNTY

ROCHESTER, NEW YORK

Table of Contents

ES	EXECUTIVE SUMMARY	i
1.0	Introduction	1
1.1	General	1
1.2		
1.3	Notifications	1
2.0	Summary of Previous Remedial Investigations and Remedial Actions	
2.1	Site Location and Description.	2
2.2	, 8	2
2	2.2.1 Land Use	
2.3	Investigation and Remedial History	2
2.4		
2	2.4.1 Soil	
2	2.4.2 Sediment	3
2	2.4.3 Surface Water	3
3.0	Institutional Control Plan	4
3.1		
3.2	Institutional Controls	4
3.3		4
4.0.	Engineered Controls	5
4.1	Pavement Cap	5
4.2	Rip-rap Cap	5
4.3	Stormwater Pond	5
4	3.1 Discharges	6
4	3.2 Maintenance	6
5.0. R	eporting Requirements	6
5.1	Site Management Reports	6
5.2	Certification of Institutional Controls	7
5.3	Corrective Measures Work Plan	8
6.0	References	8

BEN WEITSMAN OF ROCHESTER 80 STEEL STREET MONROE COUNTY ROCHESTER, NEW YORK

Table of Contents (Continued)

List of Tables

1. No	otifications	2
2. Sc	hedule of Inspection Reports/BMP Stormwater Management	6
List of	f Appendices	
1.	Site Location Map	
2.	Historical Sampling and Removals	
3.	Post Remediation Site Layout: Cap Dimensions	
4.	List of Site Contacts	
5.	Excavation Work Plan	
6.	Remedial Party/Owner Responsibilities	
7.	Deed Restrictions	
8.	Health and Safety Plan	
9.	Inspection Form	
10.	Stormwater Pond Depth Volume Table	

List of Common Acronyms

AS Air Sparging

ASP Analytical Services Protocol
BCA Brownfield Cleanup Agreement
BCP Brownfield Cleanup Program

CERCLA Comprehensive Environmental Response, Compensation and Liability Act

CAMP Community Air Monitoring Plan
C/D Construction and Demolition
CFR Code of Federal Regulation
CLP Contract Laboratory Program
COC Certificate of Completion

C02 Carbon Dioxide CP Commissioner Policy

DER Division of Environmental Remediation

ECL Environmental Conservation Law

ELAP Environmental Laboratory Approval Program

ERP Environmental Restoration Program

GHG Green House Gas

GWE&T Groundwater Extraction and Treatment

HASP Health and Safety Plan IC Institutional Control

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health
NYCRR New York Codes, Rules and Regulations
OSHA Occupational Safety and Health Administration

Ou Operable Unit

PID Photoionization Detector
PRP Potentially Responsible Party
PRR Periodic Review Report

QA/QC Quality Assurance/Quality Control
QAPP Quality Assurance Project Plan
RAO Remedial Action Objective
RAWP Remedial Action Work Plan

RCRA Resource Conservation and Recovery Act RI/FS Remedial Investigation/Feasibility Study

ROD Record of Decision
RP Remedial Party

SAC State Assistance Contract

SCG Standards, Criteria and Guidelines

SCO Soil Cleanup Objective PLAN Soil Management Plan

SOP Standard Operating Procedures

SOW Statement of Work

SPDES State Pollutant Discharge Elimination System

SSD	Sub-slab Depressurization
SVE	Soil Vapor Extraction
SVI	Soil Vapor Intrusion
TAL	Target Analyte List
TCL	Target Compound List

Toxicity Characteristic Leachate Procedure
United States Environmental Protection Agency
Underground Storage Tank TCLP USEPA

EST

EXECUTIVE SUMMARY

The following provides a brief summary of the controls implemented, as well as the required inspections, monitoring and reporting activities following remediation of polychlorinated bi-phenol (PCB) contamination. The Site consists of a portion of Tax Parcel 105.53-1-4, in the City of Rochester, New York. The Site was remediated under the auspices of the United Sates Environmental Protection Agency (USEPA) pursuant to 49 CFR §761.61 with concurrence of the New York State Department of Environmental Conservation (NYSDEC).

Site Identification:

Institutional Controls	1.	The Site may be used for it	ndustrial use;
regarding cap and occupancy areas:	2.	-	tinent to Site management shall be nd in a manner as defined in this Plan;
	3.		will disturb remaining contaminated d in accordance with this Plan;
	4.5.	other representatives of the with reasonable prior not compliance with the re Restriction; and	be provided to agents, employees or e USEPA and the State of New York ice to the property owner to assure estrictions identified in the Deed ming on the Site are prohibited.
Inspections:	,		Frequency
Site-Wide Inspe	ction		Annually
Reporting:			
Inspections/Certification			Annually/Annual Stormwater Report

1.0 INTRODUCTION

1.1 General

This Plan is a required element of the EPA approved remedial program for portions of the Ben Weitsman of Rochester, LLC scrap metal yard located in Rochester, Monroe County, New York. The restricted area of the property is hereinafter referred to as the "Site".

Ben Weitsman of Rochester, LLC/ Weitsman Rochester Realty, LLC submitted a Notification of Self-Implementation of On-site Cleanup and Disposal of PCB Remediation Waste (herein referred to as "Cleanup Program") which was approved by the United States Environmental Protection Agency (USEPA) December 31, 2013 in consultation with the NYSDEC to remediate PCB and related contamination. The boundaries of the remediated Site subject to this O&M Plan are more fully described in the metes and bounds Site description that is part of the Deed Restriction provided in Appendix 7.

After completion of the remedial work, some contamination remains at this Site¹, which is hereafter referred to as "remaining contamination". Institutional Controls (ICs) have been incorporated into the Site remedy to control exposure to remaining contamination to ensure protection of public health and the environment. A Deed Restriction has been recorded with the Monroe County Clerk pursuant to 40 CFR § 761.

All reports associated with the Site can be viewed by contacting the USEPA or NYSDEC or its successor agency managing environmental issues in New York State. A list of contacts for persons involved with the Site is provided in Appendix 4.

This Plan was prepared by O'Brien & Gere Engineers, Inc. on behalf of Ben Weitsman of Rochester, LLC / Weitsman Rochester Realty, LLC, in accordance with the requirements of the USEPA Self-Implementation of on-site Cleanup and Disposal of PCB Remediation requirements and applicable New York State provisions. This Plan addresses the means for implementing the ICs, operation and maintenance appropriate as required for the Site.

1.2 Revisions

Revisions to this Plan will be proposed in writing to the appropriate regulatory authorities. Revisions will be necessary upon, but not limited to, the following occurring: a post-remedial removal of contaminated soil beneath the cap, or other significant change to the Site conditions, or a proposed change of use.

1.3 Notifications

Notifications will be submitted by the property owner to the USEPA and NYSDEC, as needed:

- Written 60-day advance notice of any proposed changes in use; and
- Written 15-day advance notice of any proposed ground-intrusive activity at the Site pursuant to the Excavation Work Plan (EWP).

Any change in the ownership of the Site or the responsibility for implementing this Plan will include notification of at least 60 days written notice prior to the change. This will include a certification that any Final Construction Report Prospective Purchaser/Remedial Party has been provided with a copy of the Report, and all approved Work Plans and reports, including this Plan.

¹ Limited areas of the Site exceed 1 ppm PCBs but do not exceed 25 ppm.

Table 1 includes contact information for the above notification. The information on this table will be updated as necessary to provide accurate contact information. A full listing of Site-related contact information is provided in Appendix 4.

Table 1: Notifications*

Name	Contact Information
Mike Khalil, NYSDEC Region 8	(585) 226-5415 / mike.kahlil@dec.ny.gov
James S. Haklar, Ph.D.	(732) 906-6817
Sr. PCB Disposal Specialist	
USEPA Region 2	
Division of Enforcement	
and Compliance Assistance	

^{*} Note: Notifications are subject to change and will be updated as necessary.

2.0 SUMMARY OF PREVIOUS REMEDIAL INVESTIGATIONS AND REMEDIAL ACTIONS

2.1 Site Location and Description

The Site is located in Rochester, Monroe County, New York within Section 105.53 Block 1 and Lot 4 on the City of Rochester Tax Map (see Figure included in Appendix 7). The Site is approximately 2.06 acres. The Lot is bounded by railroad tracks to the north, Olindo Enterprises, Inc. to the south, Rochester & Southern Railroad ("Railroad") to the east, and Steel Street to the west. The boundaries are more fully described in Appendix 7 – Deed Restrictions. The owner of the Site parcel(s) at the time of the approval of the Work Plan and issuance of this Plan is: Weitsman Rochester Realty, LLC. Impacts from the Site to the east on property owned by the Rochester & Southern Railroad, Inc. are (120.21-1-5.1) noted in Appendix 7 – Deed Restriction.

2.2 Physical Setting

2.2.1 Land Use

The portion of the Site affected by the remediation is zoned M-l industrial and is currently utilized for industrial uses. The Site occupant is Ben Weitsman of Rochester, LLC, a scrap metal recycling facility.

The properties adjoining the Site and in the neighborhood surrounding the Site primarily include railroads and industrial properties. The properties immediately south of the Site include industrial properties; the properties immediately north of the Site include Conrail property; the properties immediately east of the Site include Rochester & Southern Railroad, Inc. property; and the properties to the west of the Site include industrial properties.

2.3 Investigation and Remedial History

The following narrative provides a remedial history timeline and a brief summary of the available project records to document key investigative and remedial milestones for the Site. Full titles for each of the reports referenced below are provided in Section 6.0 – References.

Weitsman Rochester Realty, LLC (Weitsman) purchased the Site and its scrap metal operations in August 2011. Debris piles were located along the eastern side of the Site and the railroad embankment at the time of purchase. During a routine Site walkover by NYSDEC in the summer of 2012, NYSDEC inquired of Weitsman as to the debris piles. As a result, and in direct consultation with NYSDEC, Weitsman subsequently performed four rounds of characterization sampling of the Debris Piles from August 9, 2012 through June 19, 2013.

Weitsman submitted the results of the characterization sampling, as well as work Plans and responses to requests for additional information, to both United States Environmental Protection Agency (USEPA) and NYSDEC. These submissions included:

- □ August 13, 2013 Debris Pile Characterization Report
- □ October 1, 2013 Debris Pile Management Work Plan
- □ October 31, 2013 Notification of Self-Implementation of On-site Cleanup and Disposal of PCB Remediation including Owner Certification
- □ November 25, 2013- E-Mail Clarification and Characterization Sample Summary Results Table
- □ November 29, 2013 Waste Management's Mill Seat Landfill Permit
- □ December 1, 2013 Seneca Meadows, Inc. Landfill Permit and Approval Letter to Accept Non-Hazardous PCB Remediation Waste
- □ January 16, 2014 Confirmatory Soil Sampling Plan
- □ August 29, 2014 Debris Pile Area Remediation Work Plan

The piles of staged debris were removed during the fall of 2013 and winter/spring of 2014 in accordance with the USEPA-approved self-implementing PCB cleanup Work Plan (approval dated December 31, 2013). Underlying soils below the former debris piles were removed during December 2014, and the on-site management of soils exhibiting total PCB concentrations <10 milligrams/kilogram (mg/kg), or parts per million (ppm), were completed in the summer 2015 in accordance with the USEPA- approved self-implementing PCB cleanup Work Plan (approval dated October 7,2014) and USEPA-approved schedule modification (approval dated January 28, 2015).

Confirmation soil sampling conducted as part of removing the staged debris, the former access road and underlying soils exhibited residual total PCB concentrations < 10 ppm remaining at the Site. Per the approved Work Plan, these soils have been capped with 10" of stone rip-rap in that area of the Site with low occupancy (eastern railroad embankment) and 9" of asphalt pavement in high-occupancy areas of the Site.

2.4 Remaining Contamination

2.4.1 Soil

The underlying soils within the Deed Restriction exhibit residual total PCB concentrations <10 ppm. These soils are addressed by the ICs, as detailed in Section 3. Soils encountered directly below the pavement, rip-rap on the railroad embankment, and retention pond liner are to be considered residual PCB-impacted.

2.4.2 Sediment

The sediment present within the retention pond installed pursuant to the USEPA Approved Work Plan Action is not to be considered PCB-impacted as the pond liner was placed above the PCB-impacted soils.

2.4.3 Surface Water

Surface water at the Site is collected in the retention pond and allowed to settle before being discharged to the Monroe County Pure Waters sewer system. Routine sampling is now required by the MCPW permit (See Section 3).

3.0 INSTITUTIONAL CONTROL PLAN

3.1 General

Since remaining contamination exists at the Site, Institutional Controls (ICs) are required to protect human health and the environment. This IC Plan describes the procedures for the implementation and management of all ICs at the Site. The IC Plan is one component of the Plan, subject to revision.

This Plan provides:

- A description of all ICs on the Site;
- The basic implementation and intended role of each IC;
- A description of the key components of the ICs set forth in the Deed Restriction;
- A description of the controls to be evaluated during any inspection and periodic review;
- A description of Plans and procedures to be followed for implementation of ICs, such as the implementation of the Excavation Work Plan (EWP) (as provided in Appendix 5) for the proper handling of remaining contamination that may be disturbed during maintenance or redevelopment work on the Site.

3.2 Institutional Controls

A series of ICs is required by the USEPA Approved Work Plan to: (1) prevent future exposure to remaining contamination; and, (2) limit the use and development of the Site to industrial uses only. Adherence to these ICs on the Site is required by the Deed Restriction and will be implemented under this Plan. ICs identified in the Deed Restriction may not be discontinued without an amendment to or extinguishment of the Deed Restriction. The IC boundaries are shown on the figure included in the Deed Restrictions included in Appendix 7. These ICs are:

- The property may be used for industrial use;
- Data and information pertinent to Site management must be documented at the frequency and in a manner as defined in this Plan;
- All future activities that will disturb remaining contaminated material must be conducted in accordance with this Plan;
- Access to the Site must be provided to agents, employees or any regulatory representatives with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Deed Restriction;
 - Vegetable gardens and farming on the Site are prohibited; and
 - Low occupancy area will be restricted pursuant to 40 CFR 761.61.

3.3 Sitewide Inspection

Sitewide inspections will be performed at a minimum of once per year; with ongoing inspections to repair any identified breach of the cap and will be reported to NYSDEC as an Appendix to the Annual Stormwater Monitoring Report for the Property as part of Best Management Practices.

During an inspection, an inspection form will be completed to document the following:

- Compliance with all ICs, including Site usage;
- General Site conditions at the time of the inspection, to include the capped area and retention pond
- Any Site management activities being conducted including, where appropriate, confirmation sampling and a health and safety inspection; and
- If these controls continue to be protective of human health and the environment;
- Compliance with requirements of this Plan, Deed Restrictions, Stormwater Best Management Practices and Discharges to the Monroe County WWTP; and
- If Site records are complete and up to date.

Reporting requirements are outlined in Section 5.0 of this Plan.

Inspections will also be performed in the event of an emergency. An inspection of the Site will be conducted within 5 days of the event to verify the effectiveness of the ICs implemented at the Site by a qualified environmental professional. Written confirmation must be provided within 7 days of the event that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public.

4.0. ENGINEERED CONTROLS

4.1 Pavement Cap

The Site's pavement cap is constructed of 9 inches of asphalt on 9 inches of compacted stone subbase and covers approximately 64,100 square feet. All drainage from the pavement cap drains to the constructed stormwater pond located in the Northeast corner of the Site.

The pavement cap shall be inspected annually for cracks and deformations, and continually pursuant to the above references. Cracks and deformities found to compromise the integrity of the cap shall be repaired by a qualified paving contractor.

4.2 Rip-rap Cap

The rip-rap cap is located along the eastern edge of the Site on the Railroad embankment. The rip-rap material is a fine stone fill.

The rip-rap cap shall be monitored annually for sloughing and/or sliding, and the results of the inspection recorded on the inspection sheet included in Appendix 9. Stones that have slid from the embankment onto the pavement cap shall be evenly distributed back on the embankment. Significant sloughing or sliding may compromise the integrity of the cap shall be inspected by a qualified environmental professional.

4.3 Stormwater Pond

The stormwater pond which is part of the USEPA approved cap is in the northeast corner of the Site and is approximately 1.5 acre-feet in size. The pond is lined will a 40 mil HDPE liner and an HDPE geocomposite underlayment. The stormwater pond, per se, is a low occupancy area as defined in 40 CFR 761.61. Forebays at the north and south ends of the pond function to capture sediment and debris. The main pond cell provides storage

for stormwater, which is released via the outlet structure at the north end of the pond and conveyed to a permitted Monroe County Pure Waters (MCPW) combined sewer manhole. Water is released from the pond by opening a slide gate that is operated from on top of the outlet structure. The slide gate will remain closed when not in use.

4.3.1 <u>Discharges</u>

The pond water levels shall be monitored bi-weekly and after every storm event. Water levels are read on a staff gauge installed on the pond outlet structure. Pond discharges should occur under the following conditions:

- 1. Cumulative pond water level reaches approximately 6 inches from the top of outlet structure, or a reading of 1.3 feet on the staff gauge.
- 2. A major storm with more than 1 feet of rain is imminent; and
- 3. Prior to pond maintenance.

Records of discharges are maintained and reported to the Monroe County Department of Environmental Services in accordance with Long Term Discharge Permit #1018.

Under each of these conditions the analytical water testing shall be ordered per the sewer use permit and sent to MCPW for approval. The discharge may occur when MCPW grants permission.

At the time of each discharge the operator shall record a digital photograph of the water level on the pond staff gauge and estimate the amount of water to be discharged using the table in Appendix 10. Note the table provides discharge volume versus pond depth relative to the top 8 inches pond orifice (for typical gravity discharge) and relative to the pond sump (in case of pumped discharge). The estimated discharge volume will be reported to MCPW.

4.3.2 Maintenance

The stormwater pond will be inspected annually to assess the integrity of the liner and to perform maintenance deemed necessary to protect the liner. If holes and/or tears in the liner are identified, they will be repaired as soon as practically possible by a qualified HDPE lining contractor.

5.0. REPORTING REQUIREMENTS

5.1 Site Management Reports

All inspection events will be recorded on the appropriate Site management forms provided, subject to revisions.

Table 2: Schedule of Inspection Reports/BMP Stormwater Management

Task/Report	Frequency
Inspection Report	Annually

All inspections reports will include, at a minimum:

• Date of event or reporting period;

- Name, company, and position of person(s) conducting monitoring/inspection activities;
- Description of the activities performed;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents noted (included either on the checklist/form or on an attached sheet);
- Any observations, conclusions, or recommendations; and
- A determination as to whether contaminant conditions have changed since the last reporting event.

Non-routine event reporting forms will include, at a minimum:

- Date of event;
- Name, company, and position of person(s) conducting non-routine maintenance/repair activities;
- Description of non-routine activities performed;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents (included either on the form or on an attached sheet).

5.2 Certification of Institutional Controls

Within 30 days after the end of each certifying period, as determined by the NYSDEC, the following certification will be provided to NYSDEC and USEPA:

"For each institutional control identified for the Site, I certify all of the following statements are true:

- The institutional control employed at this Site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any Plan for this control;
- Access to the Site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- *Use of the Site is compliant with the Deed Restriction.*
- *The information presented in this report is accurate and complete.*

I certify all information and statements in this certification form are true. I understand a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, of [business address], am certifying as [Owner or Owner's Designated Site Representative and 1 have been authorized and designated by all Site owners to sign this certification] for the Site."

The signed certification will be included in the Annual Stormwater Report forwarded to NYSDEC.

5.3 Corrective Measures Work Plan

If any component of the remedy is found to have failed, or if the periodic certification cannot be provided due to the failure of an institutional control, a Corrective Measures Work Plan will be developed by the engineer and submitted to USEPA with a copy submitted to NYSDEC for approval. This Plan will explain the failure and provide the details and schedule for performing work necessary to correct the failure. Unless an emergency condition exists, no work will be performed pursuant to the Corrective Measures Work Plan until it has been approved, as required. Upon completion of the Corrective Measure, a signed certification form must be submitted to the Agency and the Department.

6.0 REFERENCES

40 CFR Part 761

NYSDEC DER-10 - "Technical Guidance for Site Investigation and Remediation".

APPENDIX 4 - LIST OF SITE CONTACTS

Name	Phone / Email Address
Aaron Weiner, Remedial Party / Owner's Agent	(585) 303-0873 / <u>aweiner@weitsman.com</u>
Doreen Simmons, Remedial Party / Owner's Attorney	(315) 440-2690 / dsimmons@hancocklaw.com
O'Brien & Gere Engineers, Inc., Professional Engineers	(315) 956-6100
Mike Khalil, NYSDEC Project Manager	(585) 226-5415 / mike.khalil@dec.ny.gov
NYSDEC Regional HW Engineer	(585) 226-5315
Alan Stone, Rochester & Southern Railroad, Inc.	(585) 329-1174

APPENDIX 5 – EXCAVATION WORK PLAN (EWP)

1. NOTIFICATION

At least 15 days prior to the start of any activity that is anticipated to encounter remaining contamination, the Site owner or their representative will notify the NYSDEC and the Agency. Table 2-1 includes contact information for the above notification. The information on this table will be updated as necessary to provide accurate contact information. A full listing of Site-related contact information is provided in Appendix 4.

Table 1: Notifications*

Name	Phone / Email Address
Central Office NYSDEC Representative	(518) 402-9764
Mike Khalil, NYSDEC Project Manager	(585) 226-5415 / mike.khalil@dec.ny.gov
Kelly Lewandowski, NYSDEC Site Control	(518) 402-9764 / kelly.lewandowski@dec.ny.gov
James S. Haklar, Ph.D., Sr. PCB Disposal Specialist	(732) 906-6817 / Haklar.james@epamail.epa.gov
Division of Enforcement and Compliance Assistance	

^{*}Note: Notifications are subject to change and will be updated as necessary.

This notification will include:

- A detailed description of the work to be performed, including the location and areal extent of excavation, plans/drawings for Site regrading, intrusive elements or utilities to be installed below the soil cover, estimated volumes of contaminated soil to be excavated and any work that may impact an engineering control;
- A summary of environmental conditions anticipated to be encountered in the work areas, including the nature and concentration levels of contaminants of concern, potential presence of grossly contaminated media, and Plans for any pre-construction sampling;
- A schedule for the work, detailing the start and completion of all intrusive work;
- A summary of the applicable components of this EWP;
- A statement that the work will be performed in compliance with this EWP and 29 CFR 1910.120;
- A copy of the contractor's health and safety Plan (HASP), in electronic format, if it differs from the HASP provided in Appendix 5 of this PLAN;
- Identification of disposal facilities for potential waste streams; and
- Identification of sources of any anticipated backfill, along with all required chemical testing results.

2. SOIL SCREENING METHODS

Visual, olfactory and instrument-based (e.g. photo ionization detector) soil screening will be performed by a qualified environmental professional during all excavations into known or potentially contaminated material (remaining contamination). Soil screening will be performed when invasive work is done and will include all excavation and invasive work performed during development, such as excavations for foundations and utility work, after issuance of the COC.

Soils will be segregated based on previous environmental data and screening results into material that requires offsite disposal and material that requires testing to determine if the material can be returned or reused

onsite as soil beneath a cover. Further discussion of offsite disposal of materials and onsite reuse is provided in Section 6 of this Appendix.

3. SOIL STAGING METHODS

Soil stockpiles will be continuously encircled with a berm and/or silt fence. Hay bales will be used as needed near catch basins, surface waters and other discharge points.

Stockpiles will be kept covered at all times with appropriately anchored tarps. Stockpiles will be routinely inspected, and damaged tarp covers will be promptly replaced.

Stockpiles will be inspected at a minimum once each week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the Site and available for inspection by the NYSDEC.

4. MATERIALS EXCAVATION AND LOAD-OUT

In the event soils are removed from the restricted areas, a qualified environmental professional or person under their supervision will oversee all invasive work and the excavation, and load-out of all excavated material.

The owner of the property and remedial party (if applicable) and its contractors are responsible for safe execution of all invasive and other work performed under this Plan.

The presence of utilities and easements on the Site will be investigated by the qualified environmental professional. It will be determined whether a risk or impediment to the planned work under this Plan is posed by utilities or easements on the Site.

Loaded vehicles leaving the Site will be appropriately lined, tarped, securely covered, manifested and placarded in accordance with appropriate Federal, State, local, and NYSDOT requirements (and all other applicable transportation requirements).

A truck wash will be operated onsite, as appropriate. The qualified environmental professional will be responsible for ensuring all outbound trucks will be washed at the truck wash before leaving the Site. Truck wash waters will be collected and disposed of offsite in an appropriate manner.

Locations where vehicles enter or exit the Site shall be inspected daily for evidence of offsite soil tracking. The qualified environmental professional will be responsible for ensuring all egress points for truck and equipment transport from the Site are clean of dirt and other materials derived from the Site during intrusive excavation activities. Cleaning of the adjacent streets will be performed, as needed, to maintain a clean condition with respect to Site-derived materials.

5. MATERIALS TRANSPORT OFFSITE

All transport of materials, if any, from the restricted area will be performed by licensed haulers in accordance with appropriate Federal, State and local regulations, including 6 NYCRR Part 364. Haulers will be appropriately licensed and trucks properly placarded.

Material transported by trucks exiting the Site will be secured with tight-fitting covers. Loose-fitting canvas-type truck covers will be prohibited. If loads contain wet material capable of producing free liquid, truck liners will be used.

Truck transport routes are as follows: Bickford Street to Lombard Street or Steel Street, then to Lyell Avenue. All trucks loaded with Site materials will exit the vicinity of the Site using only these approved truck routes. This is the most appropriate route and takes into account: (a) limiting transport through residential areas and past sensitive Sites; (b) use of city mapped truck routes; (c) prohibiting offsite queuing of trucks entering the facility; (d) limiting total distance to major highways; (e) promoting safety in access to highways; and (f) overall safety in transport.

Trucks will be prohibited from stopping and idling in the neighborhood outside the project Site.

Egress points for truck and equipment transport from the Site will be kept clean of dirt and other materials during Site remediation and development.

Queuing of trucks will be performed onsite in order to minimize offsite disturbance. Offsite queuing will be prohibited.

6. MATERIALS DISPOSAL OFFSITE

All material excavated and removed from the restricted areas will be treated as contaminated and regulated material and will be transported and disposed in accordance with all Federal, State (including 6NYCRR Part 360) and local regulations. If disposal of material from this Site is proposed for unregulated offsite disposal (i.e. clean soil removed for development purposes), a formal request with an associated Plan will be made to the NYSDEC. Unregulated offsite management of materials from this Site will not occur without formal NYSDEC approval.

Offsite disposal locations for excavated soils will be identified in the pre-excavation notification. This will include estimated quantities and a breakdown by class of disposal facility if appropriate, i.e. hazardous waste disposal facility, solid waste landfill, petroleum treatment facility, C/D recycling facility, etc. Actual disposal quantities and associated documentation will be reported to the NYSDEC in the Periodic Review Report. This documentation will include: waste profiles, test results, facility acceptance letters, manifests, bills of lading and facility receipts.

Non-hazardous historic fill and contaminated soils taken offsite will be handled, at minimum, as a Municipal Solid Waste per 6NYCRR Part 360-1.2. Materials that do not meet Unrestricted SCOs are prohibited from being taken to a New York State recycling facility (6N YCRR Part 360-16 Registration Facility).

7. MATERIALS REUSE ONSITE

The qualified environmental professional will ensure procedures defined for materials reuse in this Plan are followed and unacceptable material does not remain onsite unless returned to the previously capped area.

Any demolition material proposed for reuse onsite will be sampled for asbestos and the results will be reported to the NYSDEC for acceptance. Concrete crushing or processing onsite will not be performed without prior NYSDEC approval. Organic matter (wood, roots, stumps, etc.) or other solid waste derived from clearing and grubbing of the Site will not be reused onsite.

8. FLUIDS MANAGEMENT

All liquids to be removed from the Site, including but not limited to, excavation dewatering, and decontamination waters, will be handled, transported and disposed in accordance with applicable Federal, State, and local regulations. Discharge of water generated during large-scale construction activities to surface waters (i.e. a local pond, stream or river) will be performed under a SPDES permit.

9. RESERVED

10. BACKFILL FROM OFF-SITE SOURCES

All materials proposed for import onto the Site will be approved by the qualified environmental professional and will be in compliance with provisions in this Plan prior to receipt at the Site. Material from industrial sites, spill sites, or other environmental remediation sites or potentially contaminated Sites will not be imported to the Site.

All imported soils will meet backfill and cover soil quality standards established in 6NYCRR 375-6.7(d). Soils that meet 'exempt' fill requirements under 6 NYCRR Part 360, but do not meet backfill or cover soil objectives for this Site, will not be imported onto the Site without prior approval by NYSDEC. Solid waste will not be imported onto the Site.

Trucks entering the Site with imported soils will be securely covered with tight fitting covers. Imported soils will be stockpiled separately from excavated materials and covered to prevent dust releases.

11. STORMWATER POLLUTION PREVENTION

During invasive construction in the restricted area, barriers and hay bale checks will be installed and inspected once a week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the Site and available for inspection by the NYSDEC. All necessary repairs shall be made immediately. Accumulated sediments will be removed as required to keep the barrier and hay bale check functional. All undercutting or erosion of the silt fence toe anchor shall be repaired immediately with appropriate backfill materials. Manufacturer's recommendations will be followed for replacing silt fencing damaged due to weathering. Erosion and sediment control measures identified in the Plan shall be observed to ensure that they are operating correctly. Where discharge locations or points are accessible, they shall be inspected to ascertain whether erosion control measures are effective in preventing significant impacts to receiving waters. Silt fencing or hay bales will be installed around the entire perimeter of the construction area.

12. EXCAVATION CONTINGENCY PLAN

If underground tanks or other previously unidentified contaminant sources are found during post-remedial subsurface excavations or development related construction, excavation activities will be suspended until sufficient equipment is mobilized to address the condition.

Sampling will be performed on product, sediment and surrounding soils, etc., as necessary, to determine the nature of the material and proper disposal method, with consideration of previous sampling results. The analyte selection will be proposed to the NYSDEC for approval prior to sampling.

Identification of unknown or unexpected contaminated media identified by screening during invasive Site work will be promptly communicated by phone to NYSDEC. Reportable quantities of petroleum product will also be reported to the NYSDEC spills hotline. These findings will be also included in the Periodic Review Report.

13. COMMUNITY AIR MONITORING PLAN

Air sampling stations will be located based on generally prevailing wind conditions. These locations will be adjusted on a daily or more frequent basis based on actual wind directions to provide an upwind and at least two downwind monitoring stations.

Exceedances of action levels listed in the CAMP will be reported to NYSDEC and NYSDOH Project Managers on the day of exceedance. All data is to be reported in the final report for the excavation activity.

14. ODOR CONTROL PLAN

Based on historical handling of soils at this Site, odor control is not expected to be necessary during future excavations.

15. DUST CONTROL PLAN

A dust suppression Plan addressing dust management during invasive onsite work will include, at a minimum, the items listed below:

- Dust suppression will be achieved through the use of a dedicated onsite water truck for road wetting. The truck will be equipped with a water cannon capable of spraying water directly onto off-road areas including excavations and stockpiles.
- Clearing and grubbing of larger sites will be done in stages to limit the area of exposed, unvegetated soils vulnerable to dust production.
- Gravel will be used on roadways to provide a clean and dust-free road surface.
- Onsite roads will be limited in total area to minimize the area required for water truck sprinkling.

16. OTHER NUISANCES

No other nuisances were identified.

17. REPORTING

A report is to be submitted to the Agency, with copies to NYSDEC within 90 days of completion of any activities performed under this EWP. This report shall contain a summary of the activities performed; a summary of all data gathered and results; information about any media that was removed from the Site: volume, contamination levels, area from which removed; and any other information that may be indicate a change to the "remaining contamination" that is at the Site. Such changes may require revision of the Plan.

APPENDIX 6 – REMEDIAL PARTY / OWNER RESPONSIBILITIES

Responsibilities:

The responsibilities for implementing the Plan ("Plan") for the Site is Weitsman Rochester Realty, LLC, 80 Steel Street, Rochester, New York, 14606, Contact: Aaron Weiner, (585) 303-0873 ("Owner").

Nothing on this page shall supersede the provisions of any Deed Restriction, or other legally binding document that affects rights and obligations relating to the Site.

Site Owner's Responsibilities:

- 1) The Owner shall follow the provisions of the Plan as they relate to future construction and excavation within the restricted areas, as depicted on the Deed Restriction.
- 2) The Owner or its designee, shall certify, in writing, that all Institutional Controls set forth in the Deed Restrictions as part of the Annual Stormwater Report.
- 3) The Owner shall grant access to the Site to the USEPA, NYSDEC and their agents for the purposes of, and assuring compliance, with the Plan.
- The Owner is responsible for assuring the security of the remedial components located on its property to the best of its ability. In the event damage to the remedial components or vandalism is evident, the owner shall notify the NYSDEC in accordance with the timeframes indicated in Section 1.3 Notifications of the Operations and Management Plan.
- 5) In the event some action or inaction by the Owner adversely impacts the Site, the Owner must notify the NYSDEC in accordance with the time frame indicated in Section 1.3 of the Operations and Management Plan, and coordinate the performance of necessary corrective actions.
- The Owner must notify the NYSDEC of any change in ownership of the Site property (identifying the tax map numbers in any correspondence) and provide contact information for the new owner of the Site property and any changes in ownership. Among the notification requirements is the following: 60 days prior written notification must be made to the NYSDEC consistent with this Plan.

Remedial Party Responsibilities:

1) Future Site owners and their successors and assigns are required to carry out the activities set forth above.

APPENDIX 7 – DEED RESTRICTIONS

This Appendix includes: (1) a copy of the filed Deed Restriction for the Site, which includes a figure/survey showing the restricted areas, and (2) a copy of the filed Deed Restriction of the Rochester & Southern Railroad, Inc. for the impacted area adjacent to the Site.

Adam J. Bello, County Clerk

Monroe County Clerk 39 West Main Street Rochester, NY 14614

Receipt #:

1918122

Transaction #:

7539464

Transaction Date:

12/27/2018 11:54:22 AM

Payment Comment:

Fees for: DECLARATION OF RESTRICTION

AND COVENANTS

WEITSMAN ROCHESTER REALTY LLC,

Book / Page: D 12128 0413 Instrument #: 201812270448

WEITSMAN ROCHESTER REALTY LLC,

Ref#: TT0000010166

Recorded: 12/27/2018 11:54:22 AM

Recording Fee Pages Fee \$26.00 \$15.00

State Fee Cultural Education State Fee Records Management \$14.25 \$4.75

TP-584 Form Fee

\$5.00

Total Charges for Transaction	on:	
--------------------------------------	-----	--

\$65.00

\$0.00

Payments	Received:	

Check (335435)

\$65.00

Change

\$0.00

Cashier: DA

DECLARATION of COVENANTS and RESTRICTIONS

THIS COVENANT is made the 29 of November 2018, by WEITSMAN ROCHESTER REALTY, LLC, having an office for the transaction of business at 80 Steel Street, Rochester, New York ("Weitsman Rochester" or "Owner").

WHEREAS, Weitsman Rochester is the owner in fee simple of a certain parcel of real property located at 80 Steel Street in the City of Rochester, County of Monroe, State of New York, consisting of approximately 6.663 acres (the "Property"), a 2.06 acre portion of which is specifically subject to this Declaration of Covenants and Restrictions. The lands were conveyed by 80 Steel Street Corp. to Weitsman Rochester by Deed dated August 1, 2011 recorded in the County of Monroe at Book 11032/Page 00457 and also having Monroe County Tax Parcel Numbers 105.53-1-4 and 105.53-1-46. The restricted portion of the property is more specifically described in Appendix "A" (the "Restricted Area");

WHEREAS, pursuant to 40 CFR Part §761, Weitsman Rochester implemented a self-implemented cleanup at the Property; and

WHEREAS, The United States Environmental Protection Agency ("Agency") requires that certain restrictions be placed on the Property by Owner pursuant to 40 CFR §761.61.

NOW, THEREFORE, Weitsman Rochester, for itself and its successors and/or assigns, covenants that:

First, the Restricted Area is subject to a PCB remediation waste self-implementing cleanup pursuant to CFR §761.61, and as depicted on Appendix "A" is restricted in further part for use as a low occupancy area as defined in CFR §761.3.

Second, the cap within the Restricted Area is required to be maintained where permissible; cleanup levels have been left in place under the cap as depicted on Appendix "A".

Third, any structures or development activity on the Restricted Area shall not interfere with or damage or disturb the cap without prior written approval of regulatory authorities including the Agency.

Fourth, this Declaration is and shall be deemed a covenant that will run with the land and shall be binding upon all future owners, and shall provide that the owner and its successors and assigns consent to enforcement by any relevant Federal or State Agency ("Relevant Agency") of the above prohibitions and restrictions and hereby consent not to contest the authority of any relevant agency to seek their enforcement.

Fifth, any deed of conveyance of the Property shall recite that said conveyance is subject to this Declaration of Covenants and Restrictions.

Sixth, this Declaration is and shall be deemed a covenant that shall run with the land and shall be binding upon all future owners of the Property, and shall provide that the Owner of the Property and its successors and assigns consent to enforcement by the Relevant Agency of the above prohibitions and restrictions and hereby covenant not to contest the authority of the Relevant Agency to seek their enforcement.

Seventh, the Owner of the Property shall annually prepare a certification to be made available to any regulatory State, local or Federal official that the above restrictions have been complied with and remain in place which shall be prepared by a professional engineer or other qualified environmental professional consistent with all applicable local State and Federal laws and regulations.

IN WITNESS WHEREOF, the undersigned has executed this instrument	t ille day
written below.	
By: Weren W	
Print Name: Aaron Weiner	
Title: Authorized Signatory Date: November 291.2018 General Manager	1
STATE OF NEW YORK)	
) s.s.:	
COUNTY OF MONROE)	

On the 2 day of November in the year 2018, before me, the undersigned, personally appeared Aaron Weiner, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their noted capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.

SHERRY Y HEBERT
NOTARY PUBLIC
STATE OF NEW YORK
COUNTY OF MONROE

COMM EXPIRES SEPT 4 20

Notary Public State of New York

01HE4971584

APPENDIX 8 – HEALTH AND SAFETY PLAN

A Health and Safety Plan (HASP) and associated Community Air Monitoring Plan (CAMP) will be prepared by a qualified person in accordance with the most recently adopted and applicable general industry (29 CFR 1910) and construction (29 CFR 1926) standards of OSHA, the U.S. Department of Labor, as well as any other Federal, State or local applicable statutes or regulations. The CAMP must include the appropriate requirements identified by the NYSDOH. Both documents shall be prepared in accordance with NYSDEC'S DER-10. At a minimum, the HASP will include a description of the health and safety procedures associated with both performance monitoring of the remedial system(s) and effectiveness monitoring. A copy of the HASP will be available at the Site during the conduct of all activities to which it is applicable.

APPENDIX 10 – STORMWATER POND DEPTH VOLUME TABLE

Gauge Depth (feet)	Volume Discharged via Orifice (gallons)	Volume Pumped from Sump (gallons)
-2.0	0	0
-1.9	0	400
-1.8	0	1,700
-1.7	0	3,800
-1.6	0	6,700
-1.5	0	10,400
-1.4	0	15,000
-1.3	0	20,300
-1.2	0	26,600
-1.1	0	33,600
-1.0	0	41,500
-0.9	0	49,900
-0.8	0	58,400
-0.7	0	67,200
-0.6	0	76,100
-0.5	0	85,200
-0.4	0	94,500
-0.3	0	103,900
-0.2	0	113,600
-0.1	0	123,400
0.0	0	133,400
0.1	10,200	143,600
0.2	20,600	154,000
0.3	31,100	164,500
0.4	41,800	175,200
0.5	52,600	186,000
0.6	63,700	197,100
0.7	74,900	208,300
0.8	86,200	219,600
0.9	97,800	231,200
1.0	109,500	242,900
1.1	121,600	255,000
1.2	134,500	267,900
1.3	148,000	281,400
1.4	162,300	295,700
1.5	177,400	310,800
1.6	193,100	326,500
1.7	209,600	343,000
1.8	226,700	360,100

Gauge Depth (feet)	Volume Discharged via Orifice (gallons)	Volume Pumped from Sump (gallons)
1.9	244,600	378,000
2.0	263,300	396,700
2.1	283,300	416,700
2.2	305,700	439,100
2.3	330,200	463,600
2.4	357,000	490,400
2.5	386,100	519,500
2.6	417,400	550,800
2.7	450,900	584,300
2.8	486,600	620,000
2.9	524,600	658,000
3.0	564,800	698,200

Notes:

- 1. If discharge is not completed to the level of the orifice or sump, take the difference between volumes at starting and ending depths.
- 2. At time of writing, staffing gauge zeroed at 22.25 inches below top of outlet structure, and level with the outlet orifice.

ATTACHMENT 5 AIR MONITORING LOGS

Client:	Ben Weitsman.6084	Date of Sampling: 11//	2/13
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range: 29°	-35°F
Project Location:	Rochester, NY	Approx. Wind Dir:	
Job#:	50162	Weather Conditions: P. Sunny	PM Snow
Instrument Used:	TSI Side Pak AM510 Auso	of Monitor	, , , ,
Instruments Serial #:	10609063		
Sampler/Monitor Name:	Logan Reid	Signature: Jozensker	i
SSHC Review:	3	Signature:	

Site Activities:	Digging through buthet. Culting , torch.	PCB-cont	aminated s	oil debris	pile
with excavator	burket Culting	we tal lare	ger than	b" w/sau	12-9/1
and for acetylene	torch.	V		/	
Work Area Activities:					
Level of Protection (sp	ecify PPE) in Sampling Area	a: Level C	w/1/2 face	respira for to	or debri
operator			/	/	

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m;)	VOC (ppm)	
1	0120	Background or Upwind Level			0.005	_	
2	0945	Work Area Broathung			0.021		
3	1030	Work Area Breathing			0.018		
4	1330	Work Area Breathing			0.082	_	
5	1400	West Area Brathing	_		0.037	/	
6	1530	Work Area Brothing			0.05		
7	1600	Work Arca Brashing			0.051	/	
8		Work Arca Breathers					
9							
10							
11							
12							
13							
14							
15							
16							

Client:	Ben Weitsman.6084	Date of Sampling:	11/13/13
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	19º-30° F
Project Location:	Rochester, NY	Approx. Wind Dir:	
Job#:	50162	Weather Conditions:	P. Sunny Wind Storpla le
Instrument Used:	TSI Side Pak AM510		"
Instruments Serial #:	10609063		
Sampler/Monitor Name:	1 1 1	Signature:	frei
SSHC Review:	J	Signature:	

Site Activities:	P	1 Den		1. 1-1-		11
Site Activities.	NESTZING !	of PUD-C	contaminata	a metals	using acc	rylene
torch and sawza	11, sosting	of RB-con	nfaminaled	sails + de	bris w	lan
Site Activities: both and sawza excavator.	,					
Work Area Activities:	Same As	Above				
Level of Protection (sp	ecify PPE) in Sa	mpling Area:	Level C-	Truck est	lu alusces	reen on hi
face shirt, got		mpmig / moun	20010	Tyvek, safe	y J (#3522)	respired;

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m;)	VOC (ppm)	
1	0900	Background or Upwind Level			0.021	/	
2	0930	Culting Area Breathing Zone Background Culting Area B.Z.			0.125	/	
3	1000	Background			0.041		
4	1030	Cutting Arca B.Z.			0.060	/	
5		Battery dies one to temperate	re				
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							

Client:	Ben Weitsman.6084	Date of Sampling:	11/14/13
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	201-
Project Location:	Rochester, NY	Approx. Wind Dir:	
Job#:	50162	Weather Conditions:	
Instrument Used:	TSI Side Pak AMSIO	The same of the same and the sa	
Instruments Serial #:			57
Sampler/Monitor Name:	Logan Rad	Signature: Jogsny	Rui
SSHC Review:		Signature:	

Site Activities: R	But Metal outling whateful touch & saw zal
Joi Find and loading	1 100-confaminate 3011 with control
Work Area Activities:	Same As Above
Level of Protection (spe	softy PPE) in Sampling Area: Level C W//2 face resp., softhy glasses, faceshield, glaves for melal culter

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m;)	VOC (ppm)	
1	0845	Background or Upwind Level			0.023		
2	0900	Breathing Zone Cuthing			0.045		
3	0915	Background Cutting Area			0.031		
4	0930	Background Cutting Area			0.028	/	
5	0915	Background Cultury Area			0.038		
6	1000	Background	/		0.021	/	
7	1015	Breathing tone			0.025		
8	1045	Browthing Zone Loading Truck			0.028	/	
9	1100	Breathery Zane Loading Touck	_		0.029		
10	1115	Breating Zone Loading Truck			0.045		
11	1130	Browthing zone Loading Truk	(_		0.031	/	
12	1195	Browthing love Loading Truck			0.029		
13)					
14							
15							
16							

Client:	Ben Weitsman.6084	Date of Sampling:	1/15/14
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	3401
Project Location:	Rochester, NY	Approx. Wind Dir:	
Job#:	50162	Weather Conditions:	windy
Instrument Used:	Minikae 3010 PID and	particulate meter	
Instruments Serial #:			
Sampler/Monitor Name:	Anthony DiNardo	Signature:	M
SSHC Review:	7 0	Signature:	

Site Activities:	
Work Area Activities:	
Level of Protection (specify PPE) in Sampling Area:	

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m;)	VOC (ppm)	
1		Background or Upwind Level					
2	0900	Breathing Zone Breathy Zone			0.007	0.0	
3	0930	Breath Zone			0.006	0.0	
4	1000	, i			0.008	2.0	
5	1015)1 V			0.004	0.0	
6	1030	" "			0.006	0.0	
7	1045	Maitoring halted- Breathing Force	no wo	k C	onavete	ed.	
8	1315	Breathing force			0.010	0.0	
9	1330	" "			0,008	0.0	
10	1345	11 1			0.012	0,0	
11	1400	1. 11			0.009	0.0	
12	1415	12 ()			0,604	0.0	
13	1430	11 11			0,006	0.0	
14	1445	n "			0,000	9-0	
15	Wor	kended for day					
16							

Client:	Ben Weitsman.6084	Date of Sampling:	1/16/14
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	27°F
Project Location:	Rochester, NY	Approx. Wind Dir:	Calm
Job#:	50162	Weather Conditions:	light snowam
Instrument Used:	Minirae 3000 PID and	particulate meter	my store am
Instruments Serial #:		^	0
Sampler/Monitor Name:	Anthony DiNardo	Signature:	
SSHC Review:	/	Signature:	

CU	en
TA	pm pm
(ارو

land ACC 2.	debris pile in area of AOC
k Area Activities: (15. of 2 x a x a t x	to laced 100 coll into
KArea Activities: Use of excavator	uchs and trailers.

	Time (Hrs)	Loc	ation	% LEL	% O ₂	Dust (mg/m;)	VOC (ppm)	
1		Background (or Upwind Level					
2	0730	Breathing	Zne			0.012	0.0	
3	0745	4				0.037	0.0	
4	0800	.1				0.009	0,0	
5	0820	и	*/			0.021	0.0	
6	0845	4	11			0.014	0.0	
7	Worl	k halted	and air	monitori	ng st	opped.		
8	1030	Breathirs			J	0.022	0.0	
9	1045	57	"			0.004	0,1	Bkg-d 0-1
10	1100	11	11			0,009	0.2	
11	1115	51	17			0.008	0.1	1
12	11 45	H	17			0.013	0.0	
13	1215	<i>y-</i>	" work !	halted.		0.010	0,0	,
14	1330	r.	-15			0,609	0.)	Brg.d,
15	1345	47	21			0,014	0.)	1
16	1400	41	h,			0,021	0.2	Bhyrd 0,2

Client:	Ben Weitsman.6084	Date of Sampling: (//7///	
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range: 30 °F	
Project Location:	Rochester, NY	Approx. Wind Dir:	
Job#:	50162	Weather Conditions: Mostly cloudy slig	Him
Instrument Used:	Mini RAE 3000 PID and		
Instruments Serial #:			
Sampler/Monitor Name:	Anthony DiNardo	Signature:	
SSHC Review:		Signature:	

Site Activities:	Removal of AOC5 debris pile.
Vork Area Activities:	Use of excavator to load AOC soils
into vari	Use of excavator to load AOC soils
Level of Protection (sp	ecify PPE) in Sampling Area:

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m;)	VOC (ppm)	
1		Background or Upwind Level					
2	0730	Breathing Zone			0.602	0.0	
3	0745	") "			0.024	0.0	
4	0830	10 11			0.017	0.0	J. Jane
5	0840	<i>μ</i>			0.016	0.3	Bkged 0,3
6	0900	4) 11			0.004	0,4	Buged 0.4
7	0820	7.1			0,009	0.2	Bhydo12
8	0940	1,			0,011	00	***
9	1000). I.			0.006	00	
10	1020	<i>>></i>			0.020	0.0	
11	WOX	EK HALTED UNT	12 MO	RE 7	RUCKS	MSH	te.
12	1100	11			0.007	0,0	
13	1120	<i>P</i>			0,068	0.0	
14	1140	J. 12			0.017	0,0	
15	1230	17 1			0,002	0.0	
16	1300	11					

workeha	Keep 1 copy of	Air Monitoring Result	on site for the project duration	
1500		Hone	Page	

Client:	Ben Weitsman.6084	Date of Sampling:	1/20/14
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	AM: 30 F. PM: 18
Project Location:	Rochester, NY	Approx. Wind Dir:	
Job#:	50162	Weather Conditions:	
Instrument Used:	miniKAE 3000 PID, TSI Side Pak	AM310	
Instruments Serial #:	,	3	1
Sampler/Monitor Name:	L. Reid	Signature: Jogan	fleis
SSHC Review:		Signature:	

Site Activities:	Truck fraffic, loading, removal of non-Haz
Nork Area Activities:	Same As Above
l evel of Protection (sn	pecify PPE) in Sampling Area:

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m;)	VOC (ppm)	
1	0745	Background or Upwind Level		_	0.019	0.0	
2	0800	Work Arca (Enclusion Tore)	_		0.021	0-1	
3	0815	Work Ares Work Area			0.028	0.0	,
4	0830	Work Array	_		0.019	0.0	
5	1100	Work Area			0.012	0.0	
6	1135	Work Area Work Area	/		0.019	0.0	
7	1320	Work Arca			0.018	0.0	
8							
9							
10							
11							
12							
13							
14							
15							
16							

Client:	Ben Weitsman.6084	Date of Sampling:	1/27/14
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	, ,,,
Project Location:	Rochester, NY	Approx. Wind Dir:	5W, 25-30 mph
Job#:	50162	Approx. Wind Dir: Weather Conditions:	190F
Instrument Used:	TSI SidePak AMSIO		
Instruments Serial #:			
Sampler/Monitor Name:	L. Krid	Signature:	
SSHC Review:		Signature:	

be hauled off site.	PCB-antaninale sail to
he hauled off site.	2
July 2017	

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m;)	VOC (ppm)	
1	0800	₩Z Background or Upwind Level			0.012	0.0	
2	0815	WZ WZ			0.041	0.0	
3	0830	WZ		-	0.053	0.0	
4	0845	11/6	_		0.043	0.0	
5	0900	WE WE WZ			0.031	0.0	
6	0915	WE			0.087	0.0	
7	0930	WZ			0.029	00	
8	0945	WE		_	0.025	0.0	
9		•					
10							
11							
12							
13							
14							
15							
16							

Client:	Ben Weitsman.6084	Date of Sampling: 1/29/14
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range: -1 -5°F (-WFwmsol
Project Location:	Rochester, NY	Approx. Wind Dir: WSW 15-20 wah
Job#:	50162	Weather Conditions: Sunny, dry
Instrument Used:	TSI Sidepak AM 510	- //
Instruments Serial #:		
Sampler/Monitor Name:	1100 8069 Logan Reid	Signature: Sanfluis
SSHC Review:		Signature:

Site Activities:			
fork Area Activities: La	Ing non-huzardan	us PCB-contaminated deb	v5
IND TOURS TOP	077 217 015/03	A(.	
Level of Protection (specify	PPE) in Sampling Area:	Leur I D	

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m;)	VOC (ppm)	
1	0730	Background or Upwind Level	_		0.04-0.13	/	Diesel exhoust in h
2	0745	WZ	_	_	0.03-0.12		
3	0900	WZ Background	_	_	0.013	/	
4	0905	WE			0.04-0.12	/	
5	0930	Backgroun 2 WZ	/		0.016	/	
6	0940	WZ			0.04-0.16	/	
7	1070	Backgroun 2	/		0.018	/	
8	1015	WZ	_		0.04-0.13	/	
9	~ 1045	Battery 1005es power due	to extre	me cold	1		
10							
11							
12							
13							
14							
15							
16							

Client:	Ben Weitsman.6084	Date of Sampling:	1/30/14
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	
Project Location:	Rochester, NY	Approx. Wind Dir:	
Job#:	50162	Weather Conditions:	
Instrument Used:	TSI Sidepak AM 510		
Instruments Serial #:			
Sampler/Monitor Name:	Lagan Rold	Signature: Joque	Ru
SSHC Review:	<u>a</u> .	Signature:	-

Site Activities:				
Work Area Activities:	Ramoval of nog-haz	PCB-contaminaled	debris ura	excevator
Level of Protection (sp	ecify PPE) in Sampling Area	a: D		

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m;)	VOC (ppm)	
1		Background or Upwind Level					
2	0725	Egup. Shufs off despite bein	a charact all	night.	Called ver	der for no	en one.
3	0830	Background		4	0.010	/	
4	0835	Eguip. shuls off Jospik bein Background WE	_		0.180	/	Dieselenho
5	0900	WZ	0	_	0.052	-0.0	
6	1005	WZ			0.083	D. 0	
7	1115	Background WZ	_		0.015	0.1	
8	1118		_		0.055	0.1	
9	1210	Background	_	_	0.008	0.1	
10	1212	11/2	_		0.023	0.1	
11	1320	Bachground			0.009	0.1	
12	1323	Background WZ			0.043	0.1	
13	1350	Backgound W Z			0.012	0.2	
14	1355	WZ	_	_	0.043	0.2	
15							
16							

Client:	Ben Weitsman.6084	Date of Sampling:	1131/14
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	34°F
Project Location:	Rochester, NY	Approx. Wind Dir:	5W
Job#:	50162	Weather Conditions:	Overcost
Instrument Used:	TSI Sidopuk AMSIO	MiniRAE 3000	
Instruments Serial #:	TSI Sidopuk AM510 11003013	592-909736	
Sampler/Monitor Name:	,	Signature: Joges	Rus
SSHC Review:		Signature:	

Site Activities:	
Work Area Activities: Rumoval of non-	nge PLB-contaminaded soil Idobris.
Level of Protection (specify PPE) in Sampling Area:	D

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m;)	VOC (ppm)	
1	0730	Background or Upwind Level			0.018	0.0	
2	0740	Background Level WZ WZ WZ Background L WZ WZ	_		0.028	0.0	
3	0800	Brend	_	_	0.018-0.0	0-1	
4	0805	WZ	_	-	0.038-0.0	4 0-1	
5	0905	WZ	_	_	0.035-0.0	5 0.1	
6	1200	WZ			0.041-0.05	6.1	
7	1200	Backgronal			0.019	0.1	
8	1205	WZ	_		0.038	0.1	
9	1326	WE			0.035	0.1	
10							
11							
12							
13							
14							
15							
16							

Client:	Ben Weitsman.6084	Date of Sampling:	2/3/14
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	22"
Project Location:	Rochester, NY	Approx. Wind Dir:	N
Job#:	50162	Weather Conditions:	Lt save
Instrument Used:	TSI & Sidelak AMSIO	Paris de la constante de la co	
Instruments Serial #:	11003013	,	1
Sampler/Monitor Name:	Logan Reid	Signature: Jogan	Deil
SSHC Review:	4	Signature:	

Site Activities:					
Work Area Activities:	Loading	£	non-hazardaus	PCB-contam maked	debris and
Level of Protection (spe	ecify PPE) in	Samp	ling Area:		

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m ² ;)	VOC (ppm)	
1	0745	Background or Upwind Level			0.018		
2	0755	WE Background WE		/	0.043		
3	0815	Background			0.021		
4	0820	WE	_		0.043		
5	0845	WZ WZ Background Background WZ			0.049	_	
6		WZ			0.091	/	
7	0950	Background			0.016		
8	1115	Background			0.018		
9	1120	WZ	_		0.056		
10							
11							
12							
13							
14							
15							
16							

Client:	Ben Weitsman.6084		Date of Sampling:	2/4/14
Project Name:	80 Steel Street Soil Pile		Approx. Temp Range:	15°F -287
Project Location:	Rochester, NY		Approx. Wind Dir:	5
Job#:	50162		Weather Conditions:	Clear
Instrument Used:	TSI Sidepak AM510	mini KAE	3000	
Instruments Serial #:	11003013	592-90		
Sampler/Monitor Name:	Logan Roll		Signature: Symp	eré !
SSHC Review:	- 		Signature:	

Site Activities:		
lork Area Activities:	Loading towks no excavator w/ non-horz	PlB-consummented
Level of Protection (sp	ecify PPE) in Sampling Area:	

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/ms)	VOC (ppm)	Background Dast / voc	
1	0730	Background or Upwind Level			0.021	0.0	_	
2	0740	WZ	_		0.043	0.0	0.030/0.0	
3	0300	WZ			0.038	0.0	0.029/0.0	
4	0920	WZ	/		0.041	0.0	0.031/00	
5	1025	WZ	_	_	0.039	0.0	0.024 10.0	
6	1215	WZ	_		0.098	0.5	0.015/0.0	Diese) expans
7	1230	WZ	_		0.079	0.1	0.014/0.0	-070077
8								
9								
10								
11								
12								
13								
14								
15								
16								

Client:	Ben Weitsman.6084	Date of Sampling:	2/5/14
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	22°F
Project Location:	Rochester, NY	Approx. Wind Dir:	NE
Job#:	50162	Weather Conditions:	Lt Snow
Instrument Used:	TSI Sidepak AMSIO	MINIRAE 3000	
Instruments Serial #:		592-909736	
Sampler/Monitor Name:	Logan Reid	Signature: Joga	n fled
SSHC Review:	3.,,,,,	Signature:	,

Work Area Activities:	Loading	trucks	w/non-	hazardous	5 POB-CO	ntaminateL	debris
	J		′				
	if. DDE	in Com	oling Area	N			

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m;)	VOC (ppm)	Backgroup Dust / VOC
1	0735 0745 0815 0845	Background or Upwind Level			0.018	0.0	,
2	0745	WZ WZ WZ WZ WZ	_		0.031	0.0	0.018 10.0
3	0815	WZ	_	_	0.035	0.0	0.016/0.0
4	0845	WZ			0.041	0.0	0.015/0.0.
5	0925	WZ	-		0.088	0.0	0.015/0.0
6	1030	WE			0.031	0.0	0.015/0.0
7	1145	WZ			0.033	0.0	0.013/0.0
8							,
9							
10							
11							
12							
13							
14							
15							
16							

Client:	Ben Weitsman.6084	Date of Sampling:	2/6/14
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	8°F - 15°F
Project Location:	Rochester, NY	Approx. Wind Dir:	5W
Job#:	50162	Weather Conditions:	Clear Skras
Instrument Used:	TSI Sidepuk AMSIO	miniKAE 3000	
Instruments Serial #:	751 Side pak AM510 11003013 Logan Raid	592-909736	
Sampler/Monitor Name:	Logan Raid	Signature:	Ru
SSHC Review:	0	Signature:	

Site Activities:		
Vork Area Activities: Londing of frucks whom Collecting of Soil (Surface 0-6") sample	-nazardans PCB	-contaminated debris.
Egelling of Soll (Surjace 0-6) sample	3,	j
Level of Protection (specify PPE) in Sampling Area:	D	

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m͡ἐ)	VOC (ppm)	Background Dust/Val
1	0750	Background or Upwind Level			0.003	0-0	
2	0800	WZ	_	_	0.010	0-0	
3	0815	WZ			0.613	0.0	0.008/0.0
4	Work ha	Its due to truck scale Radi	ahon a lav	m. LR	ceases a	r moni	burne
5	to review	Its due to truck scale Radio Radio Radio Anna dolar de Trucks	dump /	ads but	in ava	south	of Aocs:
6			/				
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							

Client:	Ben Weitsman.6084	Date of Sampling:	2/10/14
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	14°F
Project Location:	Rochester, NY	Approx. Wind Dir:	WSW
Job #:	50162	Weather Conditions:	LYSnow
Instrument Used:	751 Sidepak AMSIO		
Instruments Serial #:	751 Sidepak AM510 11003013		1
Sampler/Monitor Name:		Signature: Joyeup	Rei
SSHC Review:	0	Signature:	

Site Activities:									
Work Area Activities: W/cordless hand	Londiny of 1-held drill	non-haz	ardus	PCB-	contami	nafed	de bris.	Sui/ 2	samp ling
Level of Protection (sp					nodified				

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m;)	VOC (ppm)	
1	0755	Background or Upwind Level Y dics, Was full changed			0.021		
2	Batter	y dies, Was full changed	as of	7PM MITO	+ before.		
3	10 11	J		3			
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							

Client:	Ben Weitsman.6084	Date of Sampling:	2/11/14
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	WF
Project Location:	Rochester, NY Approx. Wind D		5W
Job#:	50162	Weather Conditions:	Snowing
Instrument Used:	TSI Sidepak AMSIO	miniRAE 3000	,
Instruments Serial #:		592-909736	_
Sampler/Monitor Name:	/ 1	Signature: Jugar	Loid
SSHC Review:	4	Signature:	

Site Activities:	
Work Area Activities: Loading of non-hi Soil sampling w Condless hand	nazarfous PCB-contammated deterrs.

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/mg)	VOC (ppm)	Buckground Dust / VOC
1	0730	Background or Upwind Level			0.023	0.0	
2	0815	WE	_		0.018	0. 1	0.0)6 /00
3	0845	WZ		_	0.031	0.1	0.05/0
4	1030	WZ			0.045	0.1	0.013/0.0
5	1100	WZ WZ		_	0.083	0.1	0.014 /0.0
6	1115	WZ			0.092	0.1	0.014/00
7	1130	WZ			0.063	0.1	0.016/0
8	1145	WZ WZ			0.052	0.1	0.019/00
9	1215	WZ			0.042	0.1	0.017/0.0
10	End l	oading Isampling activities for	the day	1-			
11		01 1	/				
12							
13							
14							
15							
16							

Client:	Ben Weitsman.6084	Date of Sampling: 2/12/14
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:
Project Location:	Rochester, NY	Approx. Wind Dir:
Job#:	50162	Weather Conditions:
Instrument Used:	TSI Sidepak AM510	miniRAE 3000
Instruments Serial #:		59Z -909736 n
Sampler/Monitor Name:	Logan Reid	Signature: Jayou fail
SSHC Review:	1	Signature:

Site Activities:			
Work Area Activities:	Loading of	non-hazardous	PCB-contaminated debris.
Level of Protection (spe	cify PPE) in Sampli	ng Area:	

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/mx)	VOC (ppm)	Bockyrami Pust /VDC
1	0735	Background or Upwind Level		_	0.028	0.0	/
2	0800	WE WE WE WE	-		0.038	0.0	0.026 10.0
3	0825	WE			0.065	0.0	0.030 /0.0
4	1030	WZ			0.058	0.0	0.015/0.0
5	1/30	WE			0.045	0.1	0.06 0.1
6	1/30 1215	WF	/		0.041	0.1	0.015 10.0
7	1245	WZ			0.053	0.1	0.015/0.0
8							
9							
10							
11							
12						1-1	
13							
14							
15							
16							

Client:	Ben Weitsman.6084	Date of Sampling:	2/13/14
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	17°F
Project Location:	Rochester, NY	Approx. Wind Dir:	ESE
Job#:	50162	Weather Conditions:	
Instrument Used:	TSI Sidepak AMSIO	mmKAE 3000 592-909736	
Instruments Serial #:	TS1 Sidepak AM510 11003013	592-909736	
Sampler/Monitor Name:	Logan Rrid	Signature: Joganha	V
SSHC Review:	0	Signature: pg.n/k	

	4
Area Activities:	Loading of non-hazardas PB-contaminated debris
	J
	0

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m²)	(bbm)	Brokgeline Drit /VOE
1	0745	Background or Upwind Level		_	0.030	/	
2	0800	WZ	_	_	0.095		0.03/-
3	0815	WZ			0.051	/	0.029/-
4	0830	WZ WZ WZ WZ		_	0.048		0.021/-
5	0845	WZ			0.049	/	0.028/-
6	(900)	WB			0.051	/	0.026/-
7	0930	WZ	_		0.048		0.029/-
8	1000	WZ	_		0.049	/	0.030/-
9	1038	WZ	_	/	0.045		0.032/-
10	1115	WZ WZ		_	0.042	/	0.002/-
11	1230	WZ			0.048	/	0.021/-
12	1330	WZ			0.041	/	0.021/-
13	1400	WB	-	_	0.038	/	0.020/
14							
15							
16							

-- Keep 1 copy of Air Monitoring Result on site for the project duration --

Page	 of	

* No petroinquoted soits suspected in Abc 5; no Pilo screanings

Client:	Ben Weitsman.6084	Date of Sampling: Z/	14/14
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range: 240	1=
Project Location:	Rochester, NY	Approx. Wind Dir: W	
Job#:	50162	Weather Conditions: Clady	
Instrument Used:	TSI Sidepark AM510	mini KAE 3000	
Instruments Serial #:	.,	597-909736	
Sampler/Monitor Name:	Logan Reid	Signature: Segue 111	/
SSHC Review:		Signature:	

Site Activities:	
Work Area Activities:	Loading trucks w/non-hazardous FCB-contaminated
d	Loadmy trucks w non-hazardous PCB-contaminated
Level of Protection (spe	ecify PPE) in Sampling Area: D (Louding), modified D (sampline)

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m ² ,)	VOC (ppm)	Dust/Va
1	0730	Background or Upwind Level			0.030	/	1
2	0739	WZ WZ			0.039	/	0.029 /-
3	0800	WZ			0.045		0.031/-
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							

Client:	Ben Weitsman.6084	Date of Sampling:	2/21/14
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	42-
Project Location:	Rochester, NY	Approx. Wind Dir:	SE
Job#:	50162	Weather Conditions:	2+ Rain
Instrument Used:		,	
Instruments Serial #:			1
Sampler/Monitor Name:		Signature:	Mass
SSHC Review:		Signature:	

Site Activities:			
Work Area Activities:	Loading of	non-hazardaus	PLB-antaminated debris.
Level of Protection (spe	ecify PPE) in San	npling Area:)

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m ³)	VOC (ppm)	Backgood Des 1 /UC
1	0745	Background or Upwind Level			0.025	/	
2	0810	WZ	_		0.03/		0.023
3	074 <u>5</u> 0 71 0 0 3 40	WZ			0.024		0.018
4		WZ No more frucks for da	4.				
5	1	/					
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							

Client:	Ben Weitsman.6084	Date of Sampling:	2/24/14
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	21%-
Project Location:	Rochester, NY	Approx. Wind Dir:	W
Job #:	50162	Weather Conditions:	P. Clardy
Instrument Used:	TSI Sidepak AMSIO		
Instruments Serial #:	11003013		
Sampler/Monitor Name:	Logan Last Sayather	Signature:	
SSHC Review:		Signature:	

Nork Area Activities:	cading of	non-hazardous	PCB-contaminaled	debris.
	7			

* No observable petroleum impached areas,

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m;)	VOC-4 (ppm)	& Kgnod Dust
1	0730	Background or Upwind Level			0.021	/	
2	0930	WZ	_		0.024	/	0.016
3	1045	WZ			0.022	/	0.015
4	1245	WZ			0.028		0.014
5	0930 1645 1245 1330	WZ WZ WZ WZ	_		0.024 0.022 0.028 0.024		0.015
6		1					
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							

Client:	Ben Weitsman.6084	Date of Sampling:	2/25/14
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	' '
Project Location:	Rochester, NY	Approx. Wind Dir:	5W
Job #:	50162	Weather Conditions:	Ltsron
Instrument Used:		A STATE OF THE STA	
Instruments Serial #:		,	1
Sampler/Monitor Name:	Logan Reid	Signature:	afleros
SSHC Review:	J	Signature:	

Site Activities:				a.	
Nork Area Activities:	Loading of OC4	non-hazari	lous PCK	s-contammakd	debris from
Level of Protection (sp	ecify PPE) in Sar	npling Area:	D		

* No observable signs of petroleum impact

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m;)	VOC*	Bigund Dust
1	0720	Background or Upwind Level			0.009	/	
2	0725	WZ WZ WZ WZ			0.023	/	0.006
3	0815	WZ			0.025		0.007
4	0845	WZ			0.021	/	0.006
5	1015	WZ			0.070	/	0.008
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							

Client:	Ben Weitsman.6084	Date of Sampling:	2/26/14
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	10°F-12°F
Project Location:	Rochester, NY	Approx. Wind Dir:	100
Job#:	50162	Weather Conditions:	
Instrument Used:	TSI Sidepak AMSIO	III.	
Instruments Serial #:	1/003013		
Sampler/Monitor Name:	Logan Red	Signature:	uffice
SSHC Review:	J	Signature:	0

Site Activities:			
Work Area Activities:	Loading of	non-hazardous	PCB-confamirated
Level of Protection (spec	ify PPE) in Sampling Ar	rea: 📐	

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m²)	VOC (ppm)	Bkgrod Dust
1	0730	Background or Upwind Level	-		0.013		_
2	0730	WZ			0.024	/	0.010
3	0930	WE		_	0.022		0.011
4	1000	WZ			0.021		0.010
5	1100	WZ WZ		_	0.021		0.010
6	1230	WZ	_		0.020		0.008
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							

OBRIEN 5 GERE

Air Monitoring Log File Name: AIR_MONITORING_LOG.docx Revised: July 30, 2003

Client:	Ben Weitsman.6084	Date of Sampling:	3/4/14	
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	4ºF-12ºF	
Project Location:	Rochester, NY	Approx. Wind Dir:	SW	
Job #:	50162	Weather Conditions:		
Instrument Used:	TSI Sidepak AM510			
Instruments Serial #:	751 Sidapa K AM510 11003013		7	
Sampler/Monitor Name:				
SSHC Review:	3 , , , , ,	Signature:		

	Time (Hrs)	Location	% LEL	% O ₂	Dust	voc	Backgrown
					(mg/m ²)	(ppm)	Dust
1	0740	Background or Upwind Level			0.010		
2	0745	WZ			0.048	/	0-011
3	0800	WZ WZ WZ WZ			0.042		0.011
4	0925	WE			0.038	/	2.020
5	10:25	WZ			0.049		0.022
6	12:35	wz			0.049		0.023
7							
8							
9							
10							
11	×						
12							
13							
14							
15							
16							

Client:	Ben Weitsman.6084	Date of Sampling:	3/5/14
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	17° - 19° F
Project Location:	Rochester, NY	Approx. Wind Dir:	NW
Job#:	50162	Weather Conditions:	Ltsnow
Instrument Used:	TSI Sidepak AMSIO	I and the second	
Instruments Serial #:	TS1 Sidepak 1M5/0 11003013		
Sampler/Monitor Name:	Logan Reid	Signature: Jogu	Reis
SSHC Review:		Signature:	

Site Activities:	5 %				
Work Area Activities:	Loading of	non-ha	rarlaus	PCB-contaminaki	debris.
	J				
Level of Protection (spe	cify PPE) in Samplin	g Area:	4		

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m³)	VOC (ppm)	Background Dust
1	0735	Background or Upwind Level			0.017	_	
2	0740	WZ			0.028	/	0.017
3	0815	WZ			0.030	_	0.018
4	0850 1050 1115 1250	WZ			0.032		0.017
5	1050	WE WE		-	0.024	/	000
6	11/5	WE			0.022	/	0.010
7	1250	WE			0.018	/	0.006
8							
9							
10							
11							
12							
13							
14							
15							
16							

Client:	Ben Weitsman.6084	Date of Sampling:	3/6/14
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	-8°F-20°F
Project Location:	Rochester, NY	Approx. Wind Dir:	S
Job #:	50162	Weather Conditions:	Clear
Instrument Used:	TSI Sidepak AMSIO		
Instruments Serial #:	,		0
Sampler/Monitor Name:	Logan Red	Signature: Jogga	Reid
SSHC Review:	0	Signature:	

Site Activities:			
Work Area Activities: Loading of non-ha	gzardous	PCB-conlaminated	debnis.

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m;)	VOC (ppm)	B Rg now
1	0730	Background or Upwind Level			0.042		
2	0735	WE			0.056		0-042
3	0735 0810 1255 1435	WZ WZ WZ			0.086		0.038
4	1255	WZ			0.032		0.006
5	1435	WZ			0.025		0.012
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							

OBRIEN 5 GERE

Client:	Ben Weitsman.6084	Date of Sampling:	3/7/14
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	16°F
Project Location:	Rochester, NY	Approx. Wind Dir:	5
Job #:	50162	Weather Conditions:	Sunny
Instrument Used:	1010.010	The state of the s	
Instruments Serial #:	,	,	1
Sampler/Monitor Name:	. 0 .	Signature: Lambe	ii)
SSHC Review:		Signature:	

Work Area Activities: Loading of non-hazardous PCB-contaminated	debres.
Level of Protection (specify PPE) in Sampling Area:	

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m²)	VOC (ppm)	Bulgrand
1	0725	Background or Upwind Level			0.012		-
2	2728	WZ			0.023		0.012
3	0745	WE			0.031		0.013
4	0800	WE WE WE WE WE	_		0.085		0.014
5	0815	WE			0.068		0.013
6	0845	WE			0.075	/	0.013
7	0915	WZ	_		0.072		0.015
8	1015	WZ			0.045		0.012
9							
10							
11							
12							
13							
14							
15							
16							

OBRIEN 5 GERE

Air Monitoring Log File Name: AIR_MONITORING_LOG.docx Revised: July 30, 2003

Client:	Ben Weitsman.6084	Date of Sampling:	12.29-14
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	30°F-
Project Location:	Rochester, NY	Approx. Wind Dir:	
Job#:	50162	Weather Conditions:	
Instrument Used:	151 Side Pak AM510		
Instruments Serial #:		,	4
Sampler/Monitor Name:	Logan Reid	Signature: Jaga	Rec
SSHC Review:	J	Signature:	

Site Activities:	Loud out of non-haz PCB-contaminated soil dels
VIA Cocavan	or to damp truck.
Work Area Activities:	Same As Above
Level of Protection (spe	cify PPE) in Sampling Area: Level D

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m ³ ,)	VOC (ppm)	
1	0800	Background or Upwind Level	_		0.021		
2	0810	WZ	_		0.045	_	
3	0820	WE			0.051		
4	0830	WE	-		0.069		
5	0930	WE WE Lt-Straly Snowfall - cease	air monitor	ing			
6)			
7							
8	*						
9							
10							
11							
12							
13							
14							
15							
16							

Client:	Ben Weitsman.6084	Date of Sampling:	11/30/16
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	11217
Project Location:	Rochester, NY	Approx. Wind Dir:	
Job#:	60307	Weather Conditions:	
Instrument Used:			i
Instruments Serial #:			
Sampler/Monitor Name:	A Guisa	Signature:	LA
SSHC Review:		Signature:	

vo	te Activities: Excavating Nut Domp soils
	ea Activities:
Level	Protection (specify PPE) in Sampling Area:

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m;)	VOC (ppm)	
1		Background or Upwind Level					
2							
3							
4							
5							
6							
7							
8							
9							-
10							
11		***************************************					
12							
13							

Work Area Activities:

Level of Protection (specify PPE) in Sampling Area:

Client:	Ben Weitsman.6084	Date of Sampling: 12	11/10
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	1
Project Location:	Rochester, NY	Approx. Wind Dir:	
Job#:	60307	Weather Conditions:	
Instrument Used:			
Instruments Serial #:			
Sampler/Monitor Name:	A. Co4155	Signature:	4
SSHC Review:		Signature:	
Site Activities:	Excavaling xxeT	damp soils No	

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m;)	VOC (ppm)	
1		Background or Upwind Level					
2							
3							
4							
5							
6							
7							
8)					
9							
10							
11						***************************************	
12							
13							

Client:	Ben Weitsman.6084	Date of Sampling:	12/2/11
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	1-1-5
Project Location:	Rochester, NY	Approx. Wind Dir:	
Job #:	60307	Weather Conditions:	
Instrument Used:			
Instruments Serial #:			10
Sampler/Monitor Name:		Signature:	Lu
SSHC Review:		Signature:	2

No Air Meniterity roguer	ed .	damp	Salg
Work Area Activities:			
Level of Protection (specify PPE) in Sampling Area:			71117

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m;)	VOC (ppm)	
1		Background or Upwind Level					
2							
3				The De Letter of the Letter of			
4							
5							
6							-
7							
8							***************************************
9							
10							
11							
12							
13							

Page	of

Client:	Ben Weitsman.6084	Date of Sampling:	12/5
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	
Project Location:	Rochester, NY	Approx. Wind Dir:	7,11
Job #:	60307	Weather Conditions:	
Instrument Used:			
Instruments Serial #:			
Sampler/Monitor Name:	16458	Signature:	2/11
SSHC Review:		Signature:	<i>)</i>

Site Activities:	Franki	12/1	1.	0.1/	0.4-
1 Su Marita	Excavating	VYET	dany	- will	108
TIV /VIOLITE	my refurer		(many)		
Work Area Activities:					
1	***************************************	****			
	4 174				
Level of Protection (spe	ecify PPE) in Sampling Area	a:			
Level of Protection (spe	ecify PPE) in Sampling Area	a:			

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m;)	VOC (ppm)	
1		Background or Upwind Level					
2							
3							
4							
5							
6							
7		The second secon					
8							
9							
10							
11							
12							
13							

n		
Page	of	

Client:	Ben Weitsman.6084	Date of Sampling:	12/6/11
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	
Project Location:	Rochester, NY	Approx. Wind Dir:	
Job #:	60307	Weather Conditions:	
Instrument Used:			
Instruments Serial #:			
Sampler/Monitor Name:	Anthen Suiss	Signature.	12
SSHC Review:		Signature:	

Site Activities:	Exogration	in met	damp	Soite
No air	Monder in,	vegrine	,	
		· · · · · · · · · · · · · · · · · · ·		
Work Area Activities:		~		
Level of Protection (s	pecify PPE) in Sampling	g Area:		
- Contract of the property of the contract of		Marie		

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m;)	VOC (ppm)	
1		Background or Upwind Level					
2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
3		, , , , , , , , , , , , , , , , , , , ,					
4							
5							
6							
7							
8							
9							
10		**************************************					
11		-					
12							
13							

Client:	Ben Weitsman.6084	Date of Sampling:	12/1/16
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	/ /
Project Location:	Rochester, NY	Approx. Wind Dir:	
Job #:	60307	Weather Conditions:	
Instrument Used:	1		
Instruments Serial #:			A
Sampler/Monitor Name:	A GY159	Signature:	Dor
SSHC Review:		Signature:	

Site Activities:	Excex	ating	in	wet	ardas	NE
Site Activities:	cui,	vegun	-0			
		V				
Work Area Activities:						
						-
Level of Protection (sp	ecity PPE) in	Sampling Ar	ea:			

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m;)	VOC (ppm)	
1		Background or Upwind Level					
2							
3							
4							
5							
6							
7							
8						-	
9							
10							
11							
12							
13							

Client:	Ben Weitsman.6084	Date of Sampling: 12/9/	-
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	6
Project Location:	Rochester, NY	Approx. Wind Dir:	-
Job#:	60307	Weather Conditions:	
Instrument Used:			
Instruments Serial #:			
Sampler/Monitor Name:	A. Cariss	Signature:	_
SSHC Review:	,	Signature:	

Site Activities: Exac valing	e guirec
110 Hir Meritaring	eguire
Work Area Activities:	
Level of Protection (specify PPE) in Sampling Area:	

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m;)	VOC (ppm)	
1		Background or Upwind Level					
2							
3		4					
4							
5							
6							
7							
8							
9							
10				*****			
11							
12							
13							

Page (of
--------	----

Client:	Ben Weitsman.6084	Date of Sampling:	12/8/16
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	
Project Location:	Rochester, NY	Approx. Wind Dir:	
Job #:	60307	Weather Conditions:	
Instrument Used:			
Instruments Serial #:	1		10 2
Sampler/Monitor Name:	A. C4199	Signature: Tul	27
SSHC Review:		Signature:	

Site Activities:	FRANK	moni	toring	Wet requir	damps
Vork Area Activities:					
			1201-100-000-000-000		
Level of Protection (spe	cify PPE) in Sa	ampling Area:			

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m;)	VOC (ppm)	
1		Background or Upwind Level					
2							
3							
4		<u> </u>					
5							
6							
7		The second secon					
8							
9							
10		A CONTRACTOR OF THE CONTRACTOR					
11							
12							
13							

Client:	Ben Weitsman.6084	Date of Sampling:	12/9/11
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	
Project Location:	Rochester, NY	Approx. Wind Dir:	
Job #:	60307	Weather Conditions:	
Instrument Used:			
Instruments Serial #:			
Sampler/Monitor Name:	A. Couss	Signature:	1
SSHC Review:		Signature:	

Site Activities:	Ke Air Monitory refused
Work Area Activities:	, , ,
Level of Protection (sp	ecify PPE) in Sampling Area:

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m;)	VOC (ppm)	
1		Background or Upwind Level					-
2							_
3							_
4							_
5							
6							_
7							
8							_
9			 				_
10							_
11							_
12							
13							

i

Client:	Ben Weitsman.6084	Date of Sampling:	12/12/16
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:	1 / / /
Project Location:	Rochester, NY	Approx. Wind Dir:	
Job #:	60307	Weather Conditions:	
Instrument Used:			
Instruments Serial #:			
Sampler/Monitor Name:	A 6-4195	Signature:	22
SSHC Review:	,	Signature:	

Site Activities:	Execuating in Mut Ausers
IVO AV	Monitoria requirel
Work Area Activities:	
Level of Protection (sp	ecify PPE) in Sampling Area:

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m;)	VOC (ppm)	
1		Background or Upwind Level					
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							

Client:	Ben Weitsman.6084	Date of Sampling: 12 /10	116	
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:		
Project Location:	Rochester, NY	Approx. Wind Dir:		
Job#:	60307	Weather Conditions:		
Instrument Used:				
Instruments Serial #:				
Sampler/Monitor Name:	A. Guiss	Signature:	1	
SSHC Review:		Signature:		

Site Activities:	Exanyated	Wet	Seil	Avecs
Work Area Activities:		-		
Level of Protection (s	pecify PPE) in Sampling Area:			

	Time (Hrs)	Location	% LEL	% O ₂	Dust (mg/m;)	VOC (ppm)	
1		Background or Upwind Level					
2							
3							
4							
5			1				
6							
7							
8							
9						2	
10							
11							
12							
13		,					

Page	of	
------	----	--

Client:	Ben Weitsman.6084	Date of Sampling:		01/03/17	
Project Name:	80 Steel Street Soil Pile	Approx. Temp Range:		<30	
Project Location:	Rochester, NY	Approx. Wind Dir:		NW	
Job #:	60307	Weather Conditions:		Cold	
Instrument Used:	Fluke 985 particle counter				
Instruments Serial #:	1403993896				
Sampler/Monitor Name:	Brian Garrett	Signature: Brian Garrett			
SSHC Review:		Signature:			

Site Activities:	Excavation and Truck Loading				
Work Area Activities:	Excavation and Grading				
Level of Protection (s	pecify PPE) in Sampling Area: D				

	Time (Hrs)	Location	% LEL	% O 2	Dust (mg/m;)	VOC (ppm)	
1	10am	Downwind Level			0		
2	2pm	Downwind Level			0		
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							

14				
15				
16				

⁻⁻ Keep 1 copy of Air Monitoring Result on site for the project duration --

ATTACHMENT 6 DISPOSAL RECORDS

[FULL RECORDS AVAILABLE UPON REQUEST]

ATTACHMENT 7

TABULAR ASBESTOS ANALYTICAL RESULTS

[FULL RECORDS AVAILABLE UPON REQUEST]

Table 1 Summary of Debris Asbestos Sampling Analytical Results Debris Pile Remediation 80 Steel Street Rochester, New York

Sample ID	Material Description	Material Location	%Asbestos Content ²	Condition	Friable (Y/N)	Estimated Quantity ¹
AOC 3-1	White Fibrous Insulation	AOC 3 – Blue Boiler	NAD	NA	F	
AOC 3-2	White Fibrous Insulation	AOC 3 – Blue Boiler	NAD	NA	F	
AOC 3-3	White Fibrous Insulation	AOC 3 – Blue Boiler	NAD	NA	F	
Cylinder-01	White Insulation (Acetylene Cylinder)	Debris Pile Acetylene Cylinder	57	Damaged	F	102 LF
Cylinder-02	White Insulation (Acetylene Cylinder)	Debris Pile Acetylene Cylinder	67	Damaged	F	102 LF

Notes:

NAD = No Asbestos Detected

NA = Not Applicable

LF = linear feet

¹ - Quantities are estimated based on 3 LF per acetylene cylinder, 34 acetylene cylinders present.

ATTACHMENT 8

TOPOGRAPHIC AND BOUNDARY SURVEY

LEGEND

ABBREVIATIONS

CLF - CHAIN LINK FENCE

FF - FINISH FLOOR

LP - LIGHT POLE
CONC - CONCRETE

WV - WATER VALVE

GV - GAS VALVE

GM - GAS METER

MH - MANHOLE

T.O.P. - TOP OF PIPE

SURVEY NOTES:

- 1. COORDINATES AND NORTH ORIENTATION SHOWN HEREON ARE REFERENCED TO THE NEW YORK STATE PLANE COORDINATE SYSTEM, WEST ZONE, TRANSVERSE MERCATOR PROJECTION, NAID 83 (2011) EPOCH 2010.00 USING GPS PROCEDURES AND THE NEW YORK STATE DOT CORS NETWORK.
- 2. ELEVATIONS SHOWN HEREON ARE REFERENCED TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 USING GPS PROCEDURES.
- 3. UNDERGROUND UTILITIES SHOWN HEREON WERE PLOTTED FROM FIELD LOCATIONS, USEBLE AT THE TIME OF SURVEY. THE LOCATIONS OF ALL UNDERGOUND UTILITIES SHOULD BE STAKED BY THE RESPECTIVE UTILITY COMPANY PRIOR TO ANY CONSTRUCTION.

WE: FISHER ASSOCIATES, P.E., L.S., P.C., HEREBY CERTIFY THAT THIS MAP WAS PREPARED FROM NOTES OF AN INSTRUMENT SURVEY COMPLETED BY US ON AUGUST 7, 2014 USING REFERENCES AND EVIDENCE SHOWN HEREON. THIS MAP IS SUBJECT TO ANY EASEMENTS OR ENCUMBRANCES THAT AN UPDATED ABSTRACT OF TITLE MAY SHOW.

BY: DATE:
SCOTT V. SMITH N.Y.S.P.L.S. NO. 050561

REET CITY OF ROCHESTER MONROE COUNTY

TITLE OF DRAWING

AWING NO.

SHEET 1 OF 1

ONLY THE STANDARD STANDARD STANDARD TO SECOND STANDARD ST

ATTACHMENT 9

TABULAR CONFIRMATION SAMPLE RESULTS

[FULL RECORDS AVAILABLE UPON REQUEST]

							Sample Identification Sample Date	CS-037-021814 2/18/2014	CS-038-021814 2/18/2014	CS-039-021814 2/18/2014	CS-040-021814 2/18/2014	CS-041-021814 2/18/2014	CS-042-021814 2/18/2014	CS-043-021814 2/18/2014	CS-044-021814 2/18/2014	CS-045-021814 2/18/2014	CS-046-021814 2/18/2014	CS-047-021814 2/18/2014	CS-048-021814 2/18/2014	CS-049-021814 2/18/2014
							Sample Time	1100	1112	1126	1135	1145	1402	1412	1430	1440	1449	1458	1514	1525
	Analyte	Cas No.	Units	USEPA Part 761.61 "High Occupancy Area" Soil Cleanup Level	Part 375 Protection of Groundwater SCO	Part 375 Industrial Use SCO	Part 375 Residential Use SCO	Result												
	PCB- 1016**	12674-11-2	mg/kg	NA	NA	NA	NA	<0.555	<0.540	<0.400	<0.516	<3.07	<0.447	<0.334	<0.406	<4.20	<0.407	<56.7	<0.459	<2.05
	PCB- 1221**	11104-28-2		NA	NA	NA	NA	<0.555	<0.540	<0.400	<0.516	<3.07	<0.447	<0.334	<0.406	<4.20	<0.407	<56.7	<0.459	<2.05
	PCB- 1232**	11141-16-5	mg/kg	NA	NA	NA	NA	<0.555	<0.540	<0.400	<0.516	<3.07	<0.447	<0.334	<0.406	<4.20	<0.407	<56.7	<0.459	<2.05
v _o	PCB- 1242**	53469-21-9	mg/kg	NA	NA	NA	NA	<0.555	<0.540	<0.400	<0.516	<3.07	<0.447	3.44	<0.406	23.5	<0.407	<56.7	<0.459	<2.05
2	PCB- 1248**	12672-29-6		NA	NA	NA	NA	1.13	0.988	1.93	2.96	14.4	<0.447	<0.334	0.573	<4.20	2.67	270	<0.459	12.2
	PCB- 1254**	11097-69-1		NA	NA	NA	NA	4.53	2.38	1.26	1.29	19.8	1.00	4.04	0.611	<4.20	2.54	<56.7	8.29	7.35
	PCB- 1260**	11096-82-5		NA NA	NA NA	NA	NA NA	<0.555	<0.540	<0.400	<0.516	<3.07	<0.447	<0.334	<0.406	<4.20	<0.407	<56.7	<0.459	<2.05
	PCB- 1262** PCB- 1268**	37324-23-5		NA NA	NA NA	NA NA	NA NA	<0.555 <0.555	<0.540	<0.400	<0.516	<3.07 <3.07	<0.447	<0.334	<0.406	<4.20 <4.20	<0.407	<56.7 <56.7	<0.459 <0.459	<2.05 <2.05
	Total PCB's	11100-14-4 NA	mg/kg mg/kg	1	3.2	25	1 1	5.660	3.368	3.190	<0.516 4.250	34.200	1.000	7.480	1.184	23.500	5.210	270.000	8.290	19.550
	1,1-Biphenyl	92-52-4	μg/kg	NA NA	NA	NA	NA NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	1,2,4,5-Tetrachlorobenzene	95-94-3	μg/kg	NA NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	1,2,4-Trichlorobenzene	120-82-1	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	1,2-Dichlorobenzene	95-50-1	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	1,3-Dichlorobenzene	541-73-1	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	1,4-Dichlorobenzene	106-46-7	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	2,3,4,6-Tetrachlorophenol	58-90-2	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	2,4,5-Trichlorophenol*	95-95-4	μg/kg	NA	100	NA	NA	NT	NT	NT	NT	NT	NT	<3,610	NT	NT	NT	NT	NT	NT NT
	2,4,6-Trichlorophenol	88-06-2	μg/kg	NA NA	NA 400	NA NA	NA NA	NT NT	NT	NT NT	NT	NT	NT	<1,800	NT	NT	NT	NT NT	NT	NT NT
	2,4-Dichlorophenol* 2,4-Dimethylphenol	120-83-2 105-67-9	μg/kg	NA NA	400 NA	NA NA	NA NA	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	<1,800 <1,800	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
	2,4-Dinitrophenol*	51-28-5	μg/kg μg/kg	NA NA	200	NA NA	NA NA	NT	NT	NT	NT	NT	NT	<3,610	NT	NT	NT	NT	NT	NT
	2,4-Dinitrotoluene	121-14-2	μg/kg	NA NA	NA NA	NA NA	NA NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	2,6-Dinitrotoluene*	606-20-2	μg/kg	NA	1,000	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	2-Chloronaphthalene	91-58-7	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	2-Chlorophenol	95-57-8	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	2-Methylnapthalene*	91-57-6	μg/kg	NA	36,400	NA	NA	NT	NT	NT	NT	NT	NT	2,670	NT	NT	NT	NT	NT	NT
	2-Methylphenol	95-48-7	μg/kg	NA	330	1,000,000	100,000	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	2-Nitroaniline*	88-74-4	μg/kg	NA	400	NA	NA	NT	NT	NT	NT	NT	NT	<3,610	NT	NT	NT	NT	NT	NT
	2-Nitrophenol*	88-75-5	μg/kg	NA	300	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	3&4-Methylphenol	108-39-4	μg/kg	NA	330	1,000,000	100,000	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	3,3'-Dichlorobenzidine 3-Nitroaniline*	91-94-1 99-09-2	μg/kg	NA NA	NA 500	NA NA	NA NA	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	<1,800 <3,610	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
	4,6-Dinitro-2-methylphenol	534-52-1	μg/kg μg/kg	NA NA	NA NA	NA NA	NA NA	NT	NT	NT	NT	NT	NT	<3,610	NT	NT	NT	NT	NT	NT NT
<u>:</u> 2	4-Bromophenyl phenyl ether		μg/kg μg/kg	NA NA	NA NA	NA NA	NA NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT NT
gan	4-Chloro-3-methylphenol	59-50-7	μg/kg	NA NA	NA NA	NA	NA NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
ŏ	4-Chloroaniline*	106-47-8	μg/kg	NA	220	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
tile	4-Chlorophenyl phenyl ether	7005-72-3	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
/ola	4-Nitroaniline	100-01-6	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<3,610	NT	NT	NT	NT	NT	NT
<u></u>	4-Nitrophenol*	100-02-7	μg/kg	NA	100	NA	NA	NT	NT	NT	NT	NT	NT	<3,610	NT	NT	NT	NT	NT	NT
Ser	Acenaphthene	83-32-9	μg/kg	NA	98,000	1,000,000	100,000	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	Acenaphthylene	208-96-8	μg/kg	NA	107,000	1,000,000	100,000	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT NT
	Acetophenone	98-86-2	μg/kg	NA NA	NA 1,000,000	NA 1 000 000	NA 100,000	NT NT	NT	NT NT	NT	NT	NT NT	<1,800	NT	NT NT	NT NT	NT NT	NT NT	NT NT
	Anthracene Atrazine	120-12-7 1912-24-9	μg/kg	NA NA	1,000,000 NA	1,000,000 NA	100,000 NA	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	<1,800 <1,800	NT NT	NT	NT	NT NT	NT NT	NT NT
	Benzaldehyde	1912-24-9	μg/kg μg/kg	NA NA	NA NA	NA NA	NA NA	NT	NT	NT	NT	NT	NT	2,040	NT	NT	NT	NT	NT	NT
	Benzo (a) anthracene	56-55-3	μg/kg μg/kg	NA NA	1,000	11,000	1,000	NT	NT	NT	NT	NT	NT	2,010	NT	NT	NT	NT	NT	NT
	Benzo (a) pyrene	50-32-8	μg/kg	NA NA	22,000	1,100	1,000	NT	NT	NT	NT	NT	NT	2,000	NT	NT	NT	NT	NT	NT
	Benzo (b) fluoranthene	205-99-2	μg/kg	NA	1,700	11,000	1,000	NT	NT	NT	NT	NT	NT	1,880	NT	NT	NT	NT	NT	NT
	Benzo (g,h,i) perylene		μg/kg	NA	1,000,000	1,000,000	100,000	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	Benzo (k) fluoranthene	207-08-9	μg/kg	NA	1,700	110,000	1,000	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	Bis (2-chloroethoxy) methane	111-91-1	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT

							Sample Identification Sample Date Sample Time	2/18/2014	CS-038-021814 2/18/2014 1112	CS-039-021814 2/18/2014 1126	CS-040-021814 2/18/2014 1135	CS-041-021814 2/18/2014 1145	CS-042-021814 2/18/2014 1402	CS-043-021814 2/18/2014 1412	CS-044-021814 2/18/2014 1430	CS-045-021814 2/18/2014 1440	CS-046-021814 2/18/2014 1449	CS-047-021814 2/18/2014 1458	CS-048-021814 2/18/2014 1514	CS-049-021814 2/18/2014 1525
	Analyte	Cas No.	Units	USEPA Part 761.61 "High Occupancy Area" Soil Cleanup Level	Part 375 Protection of Groundwater SCO	Part 375 Industrial Use SCO	Part 375 Residential Use SCO	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
	Bis (2-chloroethyl) ether	111-44-4	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	Bis (2-chloroisopropyl) ether	39638-32-9	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	Bis (2-ethylhexyl) phthalate*	117-81-7	μg/kg	NA	435,000	NA	NA	NT	NT	NT	NT	NT	NT	7,080	NT	NT	NT	NT	NT	NT
	Butylbenzylphthalate*	85-68-7	μg/kg	NA	122,000	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	Caprolactam	105-60-2	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	Carbazole	86-74-8	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	Chrysene	218-01-9	μg/kg	NA	1,000	110,000	1,000	NT	NT	NT	NT	NT	NT	2,130	NT	NT	NT	NT	NT	NT
	Di-n-butyl phthalate*	84-74-2	μg/kg	NA	8,100	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	Di-n-octylphthalate*	117-84-0	μg/kg	NA	120,000	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	Dibenz (a,h) anthracene	53-70-3	μg/kg	NA	1,000,000	1,100	330	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	Dibenzofuran	132-64-9	μg/kg	NA	210,000	1,000,000	14,000	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	Diethyl phthalate*	84-66-2	μg/kg	NA	7,100	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	Dimethyl phthalate*	131-11-3	μg/kg	NA	27,000	NA	NA	NT	NT	NT	NT	NT	NT	19,000	NT	NT	NT	NT	NT	NT
	Fluoranthene	206-44-0	μg/kg	NA	1,000,000	1,000,000	100,000	NT	NT	NT	NT	NT	NT	4,890	NT	NT	NT	NT	NT	NT
	Fluorene	86-73-7	μg/kg	NA	386,000	1,000,000	100,000	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	Hexachlorobenzene	118-74-1	μg/kg	NA	3,200	12,000	330	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	Hexachlorobutadiene	87-68-3	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	Hexachlorocyclopentadiene	77-47-4	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
<u>S</u>	Hexachloroethane	67-72-1	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
au	Indeno (1,2,3-cd) pyrene	193-39-5	μg/kg	NA	8,200	11,000	500	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
<u>မှာ</u> _	Isophorone*	78-59-1	μg/kg	NA	4,400	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	N-Nitroso-di-n-propylamine	621-64-7	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
lat L	N-Nitrosodiphenylamine	86-30-6	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
}	Naphthalene	91-20-3	μg/kg	NA	12,000	1,000,000	100,000	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
L	Nitrobenzene*	98-95-3	μg/kg	NA	170	140,000	NA	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
ň	Pentachlorophenol	87-86-5	μg/kg	NA	800	55,000	2,400	NT	NT	NT	NT	NT	NT	<3,610	NT	NT	NT	NT	NT	NT
	Phenanthrene	85-01-8	μg/kg	NA	1,000,000	1,000,000	100,000	NT	NT	NT	NT	NT	NT	4,440	NT	NT	NT	NT	NT	NT
	Phenol	108-95-2	μg/kg	NA	330	1,000,000	100,000	NT	NT	NT	NT	NT	NT	<1,800	NT	NT	NT	NT	NT	NT
	Pyrene	129-00-0	μg/kg	NA	1,000,000	1,000,000	100,000	NT	NT	NT	NT	NT	NT	4,510	NT	NT	NT	NT	NT	NT
	Total SVOCs		μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	52,650	NT	NT	NT	NT	NT	NT
	Total SVOC tics		μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	123,460	NT	NT	NT	NT	NT	NT
	1,1,1-Trichloroethane	71-55-6	μg/kg	NA	680	1,000,000	100,000	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
	1,1,2,2-Tetrachloroethane*	79-34-5	μg/kg	NA	600	NA	NA	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
	1,1,2-Trichloroethane	79-00-5	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
	1,1-Dichloroethane	75-34-3	μg/kg	NA	270	480,000	19,000	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
	1,1-Dichloroethene	75-35-4	μg/kg	NA	330	1,000,000	100,000	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
	1,2,3-Trichlorobenzene	87-61-6	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<153	NT	NT	NT	NT	NT	NT
	1,2,4-Trichlorobenzene*	120-82-1	μg/kg	NA	3400	NA	NA	NT	NT	NT	NT	NT	NT	<153	NT	NT	NT	NT	NT	NT
	1,2,4-Trimethylbenzene	526-73-8	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	3,040	NT	NT	NT	NT	NT	NT
1	1,2-Dibromo-3-Chloropropane		μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<306	NT	NT	NT	NT	NT	NT
	1,2-Dibromoethane	106-93-4	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
	1,2-Dichlorobenzene	95-50-1	μg/kg	NA	1,100	1,000,000	100,000	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
	1,2-Dichloroethane	107-06-2	μg/kg	NA	20	60,000	2,300	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
	1,2-Dichloropropane	78-87-5	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
	1,3,5-Trimethylbenzene	108-67-8	μg/kg	NA	8,400	380,000	47,000	NT	NT	NT	NT	NT	NT	1,180	NT	NT	NT	NT	NT	NT
	1,3-Dichlorobenzene	541-73-1	μg/kg	NA	2,400	560,000	17,000	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
	1,4-Dichlorobenzene	106-46-7	μg/kg	NA	1,800	250,000	9,800	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
	1,4-dioxane	123-91-1	μg/kg	NA	100	250,000	9,800	NT	NT	NT	NT	NT	NT	<612	NT	NT	NT	NT	NT	NT
	2-Butanone	78-93-3	μg/kg	NA	120	1,000,000	100,000	NT	NT	NT	NT	NT	NT	<306	NT	NT	NT	NT	NT	NT
	2-Hexanone	591-78-6	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<153	NT	NT	NT	NT	NT	NT
	4-Methyl-2-pentanone*	108-10-1	μg/kg	NA	1000	NA	NA	NT	NT	NT	NT	NT	NT	<153	NT	NT	NT	NT	NT	NT
	Acetone	67-64-1	μg/kg	NA	50	1,000,000	100,000	NT	NT	NT	NT	NT	NT	4,000	NT	NT	NT	NT	NT	NT

							Sample Identification Sample Date Sample Time	2/18/2014	CS-038-021814 2/18/2014 1112	CS-039-021814 2/18/2014 1126	CS-040-021814 2/18/2014 1135	CS-041-021814 2/18/2014 1145	CS-042-021814 2/18/2014 1402	CS-043-021814 2/18/2014 1412	CS-044-021814 2/18/2014 1430	CS-045-021814 2/18/2014 1440	CS-046-021814 2/18/2014 1449	CS-047-021814 2/18/2014 1458	CS-048-021814 2/18/2014 1514	CS-049-021814 2/18/2014 1525
	Analyte	Cas No.	Units	USEPA Part 761.61 "High Occupancy Area" Soil Cleanup Level	Part 375 Protection of Groundwater SCO	Part 375 Industrial Use SCO	Part 375 Residential Use SCO	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
nic	Benzene	71-43-2	μg/kg	NA	60	89,000	2,900	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
rga	Bromochloromethane	74-97-5	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<153	NT	NT	NT	NT	NT	NT
o O	Bromodichloromethane	75-27-4	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
aţi	Bromoform	75-25-2	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<153	NT	NT	NT	NT	NT	NT
	Bromomethane	74-83-9	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
	Carbon disulfide*	75-15-0	μg/kg	NA	2,700	NA	NA	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
	Carbon Tetrachloride	56-23-5	μg/kg	NA	760	44,000	1,400	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
	Chlorobenzene	108-90-7	μg/kg	NA	1,100	1,000,000	100,000	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
	Chloroethane*	75-00-3	μg/kg	NA	1,900	NA	NA	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
	Chloroform	67-66-3	μg/kg	NA	370	700,000	10,000	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
	Chloromethane	74-87-3	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
	cis-1,2-Dichloroethene	156-59-2	μg/kg	NA	250	1,000,000	59,000	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
		10061-01-5	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
	Cyclohexane	110-82-7	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<306	NT	NT	NT	NT	NT	NT
	Dibromochloromethane	124-48-1	μg/kg	NA NA	NA	NA	NA	NT	NT NT	NT	NT	NT	NT NT	<61.2	NT	NT NT	NT NT	NT	NT	NT NT
	Dichlorodifluoromethane	75-71-8	μg/kg	NA NA	NA 1.000	NA TOO DOO	NA	NT NT		NT NT	NT NT	NT	NT NT	<61.2	NT			NT	NT NT	NT NT
	Ethylbenzene	100-41-4	μg/kg	NA NA	1,000	780,000	30,000 NA	NT NT	NT	NT NT	NT NT	NT		415	NT	NT NT	NT	NT NT		NT NT
	Freon 113*	76-13-1 98-82-8	μg/kg	NA NA	6,000 2,300	NA NA	NA NA	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	<61.2 101	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
	Isopropylbenzene*	136777-61-2	μg/kg	NA NA	1,600	1,000,000	100,000	NT	NT	NT	NT	NT	NT	1,120	NT	NT	NT	NT	NT	NT
	m,p-Xylene Methyl acetate	79-20-9	μg/kg μg/kg	NA NA	1,600 NA	1,000,000 NA	NA	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
	Methyl tert-butyl Ether	1634-04-4	μg/kg μg/kg	NA NA	930	1,000,000	62,000	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
	Methylcyclohexane	108-87-2	μg/kg	NA NA	NA NA	NA	NA	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
	Methylene chloride	75-09-2	μg/kg	NA NA	50	1,000,000	51,000	NT	NT	NT	NT	NT	NT	<153	NT	NT	NT	NT	NT	NT
	Naphthalene	91-20-3	μg/kg	NA NA	NA NA	NA	NA	NT	NT	NT	NT	NT	NT	571	NT	NT	NT	NT	NT	NT
	n-Butylbenzene	104-51-8	μg/kg	NA NA	12,000	1,000,000	100,000	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
	n-Propylbenzene	103-65-1	μg/kg	NA NA	3,900	1,000,000	100,000	NT	NT	NT	NT	NT	NT	249	NT	NT	NT	NT	NT	NT
	o-Xylene	95-47-6	μg/kg	NA NA	1,600	1,000,000	100,000	NT	NT	NT	NT	NT	NT	1,140	NT	NT	NT	NT	NT	NT
	p-Isopropyltoluene	99-87-6	μg/kg	NA NA	NA NA	NA	NA	NT	NT	NT	NT	NT	NT	221	NT	NT	NT	NT	NT	NT
	sec-Butylbenzene	135-98-8	μg/kg	NA	11,000	1,000,000	100,000	NT	NT	NT	NT	NT	NT	147	NT	NT	NT	NT	NT	NT
	Styrene	100-42-5	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<153	NT	NT	NT	NT	NT	NT
isi	tert-Butylbenzene	98-06-6	μg/kg	NA	5,900	1,000,000	100,000	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
gar	Tetrachloroethene	127-18-4	μg/kg	NA	1,300	300,000	5,500	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
ō	Toluene	108-88-3	μg/kg	NA	700	1,000,000	100,000	NT	NT	NT	NT	NT	NT	205	NT	NT	NT	NT	NT	NT
≕	trans-1,2-Dichloroethene	156-60-5	μg/kg	NA	190	1,000,000	100,000	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
o <mark>a</mark>	· · · · · · · · · · · · · · · · · · ·	10061-02-6	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
>	Trichloroethene	79-01-6	μg/kg	NA	470	400,000	10,000	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
	Trichlorofluoromethane	75-69-4	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
	Vinyl chloride	75-01-4	μg/kg	NA	20	27,000	210	NT	NT	NT	NT	NT	NT	<61.2	NT	NT	NT	NT	NT	NT
	Total VOCs	NA	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	12,389	NT	NT	NT	NT	NT	NT
	Total VOC TICS		NA	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	23,481	NT	NT	NT	NT	NT	NT

OBG | THERE'S A WAY

Table 2
Sebris Piles 1 and 2 - Summary of Confirmatory Soil Sample Analytical Resultd
Debris Pile Remediation
80 Steel Street
Rochester, New York

							Sample Identification Sample Date Sample Time	CS-050-021814 2/18/2014 1539			CS-052-021914 2/19/2014 1138	CS-053-021914 2/19/2014 1200	CS-054-021914 2/19/2014 1240	CS-055-021914 2/19/2014 1300	CS-056-021914 2/19/2014 1340	CS-057-021914 2/19/2014 1400	CS-058-021914 2/19/2014 1435	CS-102-031114 3/11/2014 1302	CS-103-031114 3/11/2014 1307	CS-104-031114 3/11/2014 1312	CS-105-031114 3/11/2014 1318
	Analyte	Cas No.	Units	USEPA Part 761.61 "High Occupancy Area" Soil Cleanup Level	Part 375 Protection of Groundwater SCO	Part 375 Industrial Use SCO	Part 375 Residential Use SCO	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
	PCB- 1016**	12674-11-2	mg/kg	NA	NA	NA	NA	<0.387	<0.442	NT	<0.464	<0.419	<27.2	<11.1	<0.485	<0.447	<0.489	<2.11	<0.406	<0.477	<3.86
	PCB- 1221**	11104-28-2	mg/kg	NA	NA	NA	NA	<0.387	<0.442	NT	<0.464	<0.419	<27.2	<11.1	<0.485	<0.447	<0.489	<2.11	<0.406	<0.477	<3.86
	PCB- 1232**	11141-16-5	mg/kg	NA	NA	NA	NA	<0.387	<0.442	NT	<0.464	<0.419	<27.2	<11.1	<0.485	<0.447	<0.489	<2.11	<0.406	<0.477	<3.86
S.	PCB- 1242**	53469-21-9	mg/kg	NA	NA	NA	NA	<0.387	<0.442	NT	<0.464	<0.419	<27.2	145	5.05	<0.447	<0.489	11.4	4.77	<0.477	<3.86
PCE	PCB- 1248**	12672-29-6		NA	NA	NA	NA	3.31	0.85	NT	<0.464	<0.419	94.5	<11.1	<0.485	<0.447	<0.489	33	3.37	6.26	51.7
_	PCB- 1254**			NA	NA	NA	NA	2.02	<0.442	NT	<0.464	<0.419	42.6	<11.1	3.2	<0.447	<0.489	<2.11	<0.406	5.03	17.1
	PCB- 1260**	11096-82-5		NA	NA	NA	NA	<0.387	<0.442	NT	<0.464	<0.419	<27.2	<11.1	<0.485	<0.447	<0.489	<2.11	<0.406	<0.477	<3.86
	PCB- 1262**	37324-23-5	mg/kg	NA	NA	NA	NA	<0.387	<0.442	NT	<0.464	<0.419	<27.2	<11.1	<0.485	<0.447	<0.489	<2.11	<0.406	<0.477	<3.86
	PCB- 1268**	11100-14-4	mg/kg	NA	NA	NA	NA	<0.387	<0.442	NT	<0.464	<0.419	<27.2	<11.1	<0.485	<0.447	<0.489	<2.11	<0.406	<0.477	<3.86
	Total PCB's	NA 02.52.4	mg/kg	1	3.2	25	1	5.330	0.850	NT	ND	ND	137.100	145.000	8.250	ND	ND	44.400	8.140	11.290	68.800
	1,1-Biphenyl	92-52-4	μg/kg	NA NA	NA NA	NA NA	NA NA	<1,690	NT	NT	NT NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene	95-94-3 120-82-1	μg/kg	NA NA	NA NA	NA NA	NA NA	<1,690 <1,690	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
	1,2-Dichlorobenzene	95-50-1	μg/kg μg/kg	NA NA	NA NA	NA NA	NA NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,3-Dichlorobenzene	541-73-1	μg/kg	NA NA	NA NA	NA	NA NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,4-Dichlorobenzene	106-46-7	μg/kg	NA	NA	NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	2,3,4,6-Tetrachlorophenol	58-90-2	μg/kg	NA	NA	NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	2,4,5-Trichlorophenol*	95-95-4	μg/kg	NA	100	NA	NA	<3,390	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	2,4,6-Trichlorophenol	88-06-2	μg/kg	NA	NA	NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	2,4-Dichlorophenol*	120-83-2	μg/kg	NA	400	NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	2,4-Dimethylphenol	105-67-9	μg/kg	NA	NA	NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	2,4-Dinitrophenol*	51-28-5	μg/kg	NA	200	NA	NA	<3,390	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	2,4-Dinitrotoluene	121-14-2	μg/kg	NA	NA	NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	2,6-Dinitrotoluene*	606-20-2	μg/kg	NA	1,000	NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	2-Chloronaphthalene	91-58-7	μg/kg	NA	NA	NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	2-Chlorophenol	95-57-8	μg/kg	NA	NA	NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	2-Methylnapthalene*	91-57-6	μg/kg	NA NA	36,400	NA	NA 100.000	<1,690	NT	NT	NT NT	NT NT	NT	NT NT							
	2-Methylphenol 2-Nitroaniline*	95-48-7 88-74-4	μg/kg	NA NA	330 400	1,000,000 NA	100,000 NA	<1,690 <3,390	NT NT	NT NT	NT NT	NT	NT NT	NT							
	2-Nitrophenol*	88-75-5	μg/kg μg/kg	NA NA	300	NA NA	NA NA	<1,690	NT	NT	NT	NT	NT NT	NT	NT	NT	NT	NT	NT	NT	NT
	3&4-Methylphenol	108-39-4	μg/kg μg/kg	NA NA	330	1,000,000	100,000	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	3,3'-Dichlorobenzidine	91-94-1	μg/kg	NA NA	NA NA	NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	3-Nitroaniline*	99-09-2	μg/kg	NA	500	NA	NA	<3,390	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	4,6-Dinitro-2-methylphenol	534-52-1	μg/kg	NA	NA	NA	NA	<3,390	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
ics	4-Bromophenyl phenyl ether	101-55-3	μg/kg	NA	NA	NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
gal	4-Chloro-3-methylphenol	59-50-7	μg/kg	NA	NA	NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
ō	4-Chloroaniline*	106-47-8	μg/kg	NA	220	NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
ı≝	4-Chlorophenyl phenyl ether	7005-72-3	μg/kg	NA	NA	NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
/ok	4-Nitroaniline	100-01-6	μg/kg	NA	NA	NA	NA	<3,390	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
<u>-</u>	4-Nitrophenol*	100-02-7	μg/kg	NA	100	NA	NA	<3,390	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Sei	Acenaphthene	83-32-9	μg/kg	NA	98,000	1,000,000	100,000	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Acenaphthylene	208-96-8		NA	107,000	1,000,000	100,000	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Acetophenone	98-86-2	μg/kg	NA NA	NA 1 000 000	NA 1.000.000	NA 100.000	<1,690	NT	NT	NT	NT	NT	NT	NT NT	NT	NT	NT	NT NT	NT	NT
	Anthracene	120-12-7 1912-24-9	μg/kg	NA NA	1,000,000 NA	1,000,000 NA	100,000 NA	<1,690 <1,690	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
	Atrazine Benzaldehyde	1912-24-9	μg/kg μg/kg	NA NA	NA NA	NA NA	NA NA	<1,690	NT NT	NT	NT	NT	NT NT	NT	NT	NT NT	NT NT	NT	NT	NT NT	NT
	Benzo (a) anthracene	56-55-3	μg/kg μg/kg	NA NA	1,000	11,000	1,000	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Benzo (a) pyrene	50-32-8	μg/kg	NA NA	22,000	1,100	1,000	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Benzo (b) fluoranthene	205-99-2	μg/kg	NA	1,700	11,000	1,000	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Benzo (g,h,i) perylene	191-24-2	μg/kg	NA	1,000,000	1,000,000	100,000	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Benzo (k) fluoranthene		μg/kg	NA	1,700	110,000	1,000	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Bis (2-chloroethoxy) methane	111-91-1		NA	NA	NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT

							Sample Identification Sample Date Sample Time	CS-050-021814 2/18/2014 1539			CS-052-021914 2/19/2014 1138	CS-053-021914 2/19/2014 1200	CS-054-021914 2/19/2014 1240	CS-055-021914 2/19/2014 1300	CS-056-021914 2/19/2014 1340	CS-057-021914 2/19/2014 1400	CS-058-021914 2/19/2014 1435	CS-102-031114 3/11/2014 1302	CS-103-031114 3/11/2014 1307	CS-104-031114 3/11/2014 1312	CS-105-031114 3/11/2014 1318
	Analyte	Cas No.	Units	USEPA Part 761.61 "High Occupancy Area" Soil Cleanup Level	Part 375 Protection of Groundwater SCO	Part 375 Industrial Use SCO	Part 375 Residential Use SCO	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
	Bis (2-chloroethyl) ether	111-44-4	μg/kg	NA	NA	NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Bis (2-chloroisopropyl) ether	39638-32-9	μg/kg	NA	NA	NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Bis (2-ethylhexyl) phthalate*	117-81-7	μg/kg	NA	435,000	NA	NA	11,900	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Butylbenzylphthalate*	85-68-7	μg/kg	NA	122,000	NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Caprolactam	105-60-2	μg/kg	NA	NA	NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Carbazole	86-74-8	μg/kg	NA	NA	NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Chrysene	218-01-9	μg/kg	NA	1,000	110,000	1,000	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Di-n-butyl phthalate*	84-74-2	μg/kg	NA	8,100	NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
-	Di-n-octylphthalate*	117-84-0	μg/kg	NA	120,000	NA 1.100	NA 222	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
-	Dibenz (a,h) anthracene	53-70-3	μg/kg	NA NA	1,000,000	1,100	330	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Dibenzofuran	132-64-9 84-66-2	μg/kg	NA NA	7,100	1,000,000 NA	14,000 NA	<1,690 <1,690	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
	Diethyl phthalate*	131-11-3	μg/kg μg/kg	NA NA	27,000	NA NA	NA NA	<3,390	NT	NT	NT	NT	NT	NT	NT NT	NT	NT NT	NT	NT NT	NT NT	NT
	Fluoranthene	206-44-0	μg/kg μg/kg	NA NA	1,000,000	1,000,000	100,000	2,050	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Fluorene	86-73-7	μg/kg	NA NA	386,000	1,000,000	100,000	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Hexachlorobenzene	118-74-1	μg/kg	NA	3,200	12,000	330	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Hexachlorobutadiene	87-68-3	μg/kg	NA	NA	NA NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Hexachlorocyclopentadiene	77-47-4	μg/kg	NA	NA	NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
છ	Hexachloroethane	67-72-1	μg/kg	NA	NA	NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
anić	Indeno (1,2,3-cd) pyrene	193-39-5	μg/kg	NA	8,200	11,000	500	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
) rg	Isophorone*	78-59-1	μg/kg	NA	4,400	NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
e e	N-Nitroso-di-n-propylamine	621-64-7	μg/kg	NA	NA	NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
lati	N-Nitrosodiphenylamine	86-30-6	μg/kg	NA	NA	NA	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
٥	Naphthalene	91-20-3	μg/kg	NA	12,000	1,000,000	100,000	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Ë	Nitrobenzene*	98-95-3	μg/kg	NA	170	140,000	NA	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
ŭ	Pentachlorophenol	87-86-5	μg/kg	NA	800	55,000	2,400	<3,390	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Phenanthrene	85-01-8	μg/kg	NA	1,000,000	1,000,000	100,000	1,970	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Phenol	108-95-2	μg/kg	NA	330	1,000,000	100,000	<1,690	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Pyrene	129-00-0	μg/kg	NA	1,000,000	1,000,000	100,000	2,150	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Total SVOCs		μg/kg	NA	NA	NA	NA NA	18,070	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Total SVOC tics	74 55 6	μg/kg	NA NA	NA COO	NA	NA 100.000	120,310	NT	NT 12.00	NT										
	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane*	71-55-6 79-34-5	μg/kg	NA NA	680	1,000,000 NA	100,000 NA	<135 <135	NT NT	<2.00 <2.00	NT NT										
	1,1,2-Trichloroethane	79-34-5	μg/kg	NA NA	NA	NA NA	NA NA	<135	NT	<2.00	NT	NT	NT	NT	NT	NT	NT NT	NT	NT	NT	NT
	1,1,2-menioroethane	75-34-3	μg/kg μg/kg	NA NA	270	480,000	19,000	<135	NT	<2.00	NT										
	1,1-Dichloroethene	75-34-3	μg/kg μg/kg	NA NA	330	1,000,000	100,000	<135	NT	<2.00	NT										
	1,2,3-Trichlorobenzene	87-61-6	μg/kg	NA NA	NA NA	NA	NA	<338	NT	<5.00	NT										
	1,2,4-Trichlorobenzene*	120-82-1	μg/kg	NA NA	3400	NA	NA NA	<338	NT	<5.00	NT										
	1,2,4-Trimethylbenzene	526-73-8	μg/kg	NA	NA	NA	NA	3,980	NT	<2.00	NT										
	1,2-Dibromo-3-Chloropropane		μg/kg	NA	NA	NA	NA	<676	NT	<10.0	NT										
	1,2-Dibromoethane	106-93-4	μg/kg	NA	NA	NA	NA	<135	NT	<2.00	NT										
	1,2-Dichlorobenzene	95-50-1	μg/kg	NA	1,100	1,000,000	100,000	<135	NT	<2.00	NT										
	1,2-Dichloroethane	107-06-2	μg/kg	NA	20	60,000	2,300	<135	NT	<2.00	NT										
	1,2-Dichloropropane	78-87-5	μg/kg	NA	NA	NA	NA	<135	NT	<2.00	NT										
	1,3,5-Trimethylbenzene	108-67-8	μg/kg	NA	8,400	380,000	47,000	3,900	NT	<2.00	NT										
	1,3-Dichlorobenzene	541-73-1	μg/kg	NA	2,400	560,000	17,000	<135	NT	<2.00	NT										
	1,4-Dichlorobenzene	106-46-7	μg/kg	NA	1,800	250,000	9,800	<135	NT	<2.00	NT										
	1,4-dioxane	123-91-1	μg/kg	NA	100	250,000	9,800	<1,350	NT	<20.00	NT										
	2-Butanone	78-93-3	μg/kg	NA	120	1,000,000	100,000	<676	NT	<10.00	NT										
	2-Hexanone	591-78-6	μg/kg	NA	NA	NA	NA	<338	NT	<5.00	NT										
	4-Methyl-2-pentanone*	108-10-1	μg/kg	NA	1000	NA	NA	<338	NT	<5.00	NT										
v	Acetone	67-64-1	μg/kg	NA	50	1,000,000	100,000	1,450	NT	<10.0	NT										

			USEPA Part 761.61 "High	Part 375	Part 375	Sample Identification Sample Date Sample Time	CS-050-021814 2/18/2014 1539	CS-051-021814 2/18/2014 1559		CS-052-021914 2/19/2014 1138	CS-053-021914 2/19/2014 1200	CS-054-021914 2/19/2014 1240	CS-055-021914 2/19/2014 1300	CS-056-021914 2/19/2014 1340	CS-057-021914 2/19/2014 1400	CS-058-021914 2/19/2014 1435	CS-102-031114 3/11/2014 1302	CS-103-031114 3/11/2014 1307	CS-104-031114 3/11/2014 1312	4 CS-105-0 3/11/2 131
Analyte	Cas No.	Units	Occupancy Area" Soil Cleanup Level	Protection of Groundwater SCO	Industrial	Part 375 Residential Use SCO	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Resu
Benzene	71-43-2	μg/kg	NA	60	89,000	2,900	<135	NT	<0.700	NT	NT									
Bromochloromethane	74-97-5	μg/kg	NA	NA	NA	NA	<338	NT	<5.00	NT	NT									
Bromodichloromethane	75-27-4	μg/kg	NA	NA	NA	NA	<135	NT	<2.00	NT	N'									
Bromoform	75-25-2	μg/kg	NA	NA	NA	NA	<338	NT	<5.00	NT	N									
Bromomethane	74-83-9	μg/kg	NA	NA	NA	NA	<135	NT	<2.00	NT	N									
Carbon disulfide*	75-15-0	μg/kg	NA	2,700	NA	NA	<135	NT	<2.00	NT	N									
Carbon Tetrachloride	56-23-5	μg/kg	NA	760	44,000	1,400	<135	NT	<2.00	NT	N									
Chlorobenzene	108-90-7	μg/kg	NA	1,100	1,000,000	100,000	<135	NT	<2.00	NT	N									
Chloroethane*	75-00-3	μg/kg	NA	1,900	NA	NA	<135	NT	<2.00	NT										
Chloroform	67-66-3	μg/kg	NA	370	700,000	10,000	<135	NT	<2.00	NT	ı									
Chloromethane	74-87-3	μg/kg	NA	NA	NA	NA	<135	NT	<2.00	NT	ı									
cis-1,2-Dichloroethene	156-59-2	μg/kg	NA	250	1,000,000	59,000	<135	NT	<2.00	NT	ı									
cis-1,3-Dichloropropene	10061-01-5	μg/kg	NA	NA	NA	NA	<135	NT	<2.00	NT	ı									
Cyclohexane	110-82-7	μg/kg	NA	NA	NA	NA	<676	NT	<10.0	NT	ı									
Dibromochloromethane	124-48-1	μg/kg	NA	NA	NA	NA	<135	NT	<2.00	NT										
Dichlorodifluoromethane	75-71-8	μg/kg	NA	NA	NA	NA	<135	NT	<2.00	NT										
Ethylbenzene	100-41-4	μg/kg	NA	1,000	780,000	30,000	253	NT	<2.00	NT	1									
Freon 113*	76-13-1	μg/kg	NA	6,000	NA	NA	<135	NT	<2.00	NT	1									
Isopropylbenzene*	98-82-8	μg/kg	NA	2,300	NA	NA	227	NT	<2.00	NT	- 1									
m,p-Xylene	136777-61-2	μg/kg	NA	1,600	1,000,000	100,000	227	NT	<2.00	NT										
Methyl acetate	79-20-9	μg/kg	NA	NA	NA	NA	<135	NT	<2.00	NT										
Methyl tert-butyl Ether	1634-04-4	μg/kg	NA	930	1,000,000	62,000	<135	NT	<2.00	NT										
Methylcyclohexane	108-87-2	μg/kg	NA	NA	NA	NA	<135	NT	<2.00	NT										
Methylene chloride	75-09-2	μg/kg	NA	50	1,000,000	51,000	<338	NT	<5.00	NT										
Naphthalene	91-20-3	μg/kg	NA	NA	NA	NA	<338	NT	<5.00	NT										
n-Butylbenzene	104-51-8	μg/kg	NA	12,000	1,000,000	100,000	2,130	NT	<2.00	NT										
n-Propylbenzene	103-65-1	μg/kg	NA	3,900	1,000,000	100,000	610	NT	<2.00	NT										
o-Xylene	95-47-6	μg/kg	NA	1,600	1,000,000	100,000	634	NT	<2.00	NT										
p-Isopropyltoluene	99-87-6	μg/kg	NA	NA	NA	NA	1,320	NT	<2.00	NT										
sec-Butylbenzene	135-98-8	μg/kg	NA	11,000	1,000,000	100,000	732	NT	<2.00	NT										
Styrene	100-42-5	μg/kg	NA	NA	NA	NA	<338	NT	<5.00	NT	ı									
tert-Butylbenzene	98-06-6	μg/kg	NA	5,900	1,000,000	100,000	<135	NT	<2.00	NT	1									
Tetrachloroethene	127-18-4	μg/kg	NA	1,300	300,000	5,500	<135	NT	<2.00	NT	1									
Toluene	108-88-3	μg/kg	NA	700	1,000,000	100,000	<135	NT	<2.00	NT										
trans-1,2-Dichloroethene	156-60-5	μg/kg	NA	190	1,000,000	100,000	<135	NT	<2.00	NT										
trans-1,3-Dichloropropene	10061-02-6	μg/kg	NA	NA	NA	NA	<135	NT	<2.00	NT	1									
Trichloroethene	79-01-6	μg/kg	NA	470	400,000	10,000	<135	NT	<2.00	NT										
Trichlorofluoromethane	75-69-4	μg/kg	NA	NA	NA	NA	<135	NT	<2.00	NT	ı									
Vinyl chloride	75-01-4	μg/kg	NA	20	27,000	210	<135	NT	<2.00	NT										
Total VOCs	NA	μg/kg	NA	NA	NA	NA	15,463	NT	<20.00	NT	1									
Total VOC TICS		NA	NA	NA	NA	NA	61,630	NT	<20.00	NT	1									

							Sample Identification	CS-106-031114	CS-107-041014	CS-112-041014
							Sample Date	3/11/2014	4/10/2014	4/10/2014
							Sample Time	1323	0905	0945
	Analyte	Cas No.	Units	USEPA Part 761.61 "High Occupancy Area" Soil Cleanup Level	Part 375 Protection of Groundwater SCO	Part 375 Industrial Use SCO	Part 375 Residential Use SCO	Result	Result	Result
	PCB- 1016**	12674-11-2	mg/kg	NA	NA	NA	NA	<2.27	<0.340	<0.490
	PCB- 1221**	11104-28-2	mg/kg	NA	NA	NA	NA	<2.27	<0.340	<0.490
	PCB- 1232**	11141-16-5	mg/kg	NA	NA	NA	NA	<2.27	<0.340	<0.490
v	PCB- 1242**	53469-21-9	mg/kg	NA	NA	NA	NA	<2.27	<0.340	<0.490
PCBs	PCB- 1248**	12672-29-6	mg/kg	NA	NA	NA	NA	16.7	2.86	1.18
	PCB- 1254**	11097-69-1	mg/kg	NA	NA	NA	NA	15.7	1.65	1.4
	PCB- 1260**	11096-82-5	mg/kg	NA	NA	NA	NA	<2.27	<0.340	<0.490
	PCB- 1262**	37324-23-5	mg/kg	NA	NA	NA	NA	<2.27	<0.340	<0.490
	PCB- 1268**	11100-14-4	mg/kg	NA	NA	NA	NA	<2.27	<0.340	<0.490
	Total PCB's	NA	mg/kg	1	3.2	25	1	32.400	4.510	2.580
	1,1-Biphenyl	92-52-4	μg/kg	NA	NA	NA	NA	NT	NT	NT
	1,2,4,5-Tetrachlorobenzene	95-94-3	μg/kg	NA	NA	NA	NA	NT	NT	NT
	1,2,4-Trichlorobenzene	120-82-1	μg/kg	NA	NA	NA	NA	NT	NT	NT
	1,2-Dichlorobenzene	95-50-1	μg/kg	NA	NA	NA	NA	NT	NT	NT
	1,3-Dichlorobenzene	541-73-1	μg/kg	NA	NA	NA	NA	NT	NT	NT
	1,4-Dichlorobenzene	106-46-7	μg/kg	NA	NA	NA	NA	NT	NT	NT
	2,3,4,6-Tetrachlorophenol	58-90-2	μg/kg	NA	NA	NA	NA	NT	NT	NT
	2,4,5-Trichlorophenol*	95-95-4	μg/kg	NA	100	NA	NA	NT	NT	NT
	2,4,6-Trichlorophenol	88-06-2	μg/kg	NA	NA	NA	NA	NT	NT	NT
	2,4-Dichlorophenol*	120-83-2	μg/kg	NA	400	NA	NA	NT	NT	NT
	2,4-Dimethylphenol	105-67-9	μg/kg	NA NA	NA NA	NA NA	NA NA	NT	NT	NT
	2,4-Dinitrophenol*	51-28-5	μg/kg	NA NA	200	NA NA	NA NA	NT	NT	NT
	2,4-Dinitrotoluene	121-14-2		NA NA	NA NA	NA NA	NA NA	NT	NT	NT
			μg/kg	NA NA						
	2,6-Dinitrotoluene* 2-Chloronaphthalene	606-20-2	μg/kg	NA NA	1,000 NA	NA NA	NA NA	NT NT	NT NT	NT NT
	· · · · · · · · · · · · · · · · · · ·	91-58-7	μg/kg							NT
	2-Chlorophenol	95-57-8	μg/kg	NA NA	NA	NA NA	NA NA	NT	NT	
	2-Methylnapthalene*	91-57-6	μg/kg	NA NA	36,400	NA	NA 100,000	NT	NT	NT
	2-Methylphenol	95-48-7	μg/kg	NA	330	1,000,000	100,000	NT	NT	NT
	2-Nitroaniline*	88-74-4	μg/kg	NA NA	400	NA	NA NA	NT	NT	NT
	2-Nitrophenol*	88-75-5	μg/kg	NA	300	NA	NA	NT	NT	NT
	3&4-Methylphenol	108-39-4	μg/kg	NA	330	1,000,000	100,000	NT	NT	NT
	3,3'-Dichlorobenzidine	91-94-1	μg/kg	NA	NA	NA	NA	NT	NT	NT
	3-Nitroaniline*	99-09-2	μg/kg	NA	500	NA	NA	NT	NT	NT
8	4,6-Dinitro-2-methylphenol	534-52-1	μg/kg	NA	NA	NA	NA	NT	NT	NT
ij	4-Bromophenyl phenyl ether	101-55-3	μg/kg	NA	NA	NA	NA	NT	NT	NT
rg	4-Chloro-3-methylphenol	59-50-7	μg/kg	NA	NA	NA	NA	NT	NT	NT
Semi-Volatile Organics	4-Chloroaniline*	106-47-8	μg/kg	NA	220	NA	NA	NT	NT	NT
a #	4-Chlorophenyl phenyl ether	7005-72-3	μg/kg	NA	NA	NA	NA	NT	NT	NT
9	4-Nitroaniline	100-01-6	μg/kg	NA	NA	NA	NA	NT	NT	NT
- ≟	4-Nitrophenol*	100-02-7	μg/kg	NA	100	NA	NA	NT	NT	NT
Sei	Acenaphthene	83-32-9	μg/kg	NA	98,000	1,000,000	100,000	NT	NT	NT
	Acenaphthylene	208-96-8	μg/kg	NA	107,000	1,000,000	100,000	NT	NT	NT
	Acetophenone	98-86-2	μg/kg	NA	NA	NA	NA	NT	NT	NT
	Anthracene	120-12-7	μg/kg	NA	1,000,000	1,000,000	100,000	NT	NT	NT
	Atrazine	1912-24-9	μg/kg	NA	NA	NA	NA	NT	NT	NT
	Benzaldehyde	100-52-7	μg/kg	NA	NA	NA	NA	NT	NT	NT
	Benzo (a) anthracene	56-55-3	μg/kg	NA	1,000	11,000	1,000	NT	NT	NT
	Benzo (a) pyrene	50-32-8	μg/kg	NA	22,000	1,100	1,000	NT	NT	NT
	Benzo (b) fluoranthene	205-99-2	μg/kg	NA	1,700	11,000	1,000	NT	NT	NT
	Benzo (g,h,i) perylene	191-24-2	μg/kg	NA	1,000,000	1,000,000	100,000	NT	NT	NT
	Benzo (k) fluoranthene	207-08-9	μg/kg	NA	1,700	110,000	1,000	NT	NT	NT
	Bis (2-chloroethoxy) methane	111-91-1	μg/kg	NA	NA	NA	NA	NT	NT	NT

							Sample Identification Sample Date Sample Time	CS-106-031114 3/11/2014 1323	CS-107-041014 4/10/2014 0905	CS-112-041014 4/10/2014 0945
	Analyte	Cas No.	Units	USEPA Part 761.61 "High Occupancy Area" Soil Cleanup Level	Part 375 Protection of Groundwater SCO	Part 375 Industrial Use SCO	Part 375 Residential Use SCO	Result	Result	Result
	Bis (2-chloroethyl) ether	111-44-4	μg/kg	NA	NA	NA	NA	NT	NT	NT
	Bis (2-chloroisopropyl) ether	39638-32-9	μg/kg	NA	NA	NA	NA	NT	NT	NT
	Bis (2-ethylhexyl) phthalate*	117-81-7	μg/kg	NA	435,000	NA	NA	NT	NT	NT
	Butylbenzylphthalate*	85-68-7	μg/kg	NA	122,000	NA	NA	NT	NT	NT
	Caprolactam	105-60-2	μg/kg	NA	NA	NA	NA	NT	NT	NT
	Carbazole	86-74-8	μg/kg	NA	NA	NA	NA	NT	NT	NT
	Chrysene	218-01-9	μg/kg	NA	1,000	110,000	1,000	NT	NT	NT
	Di-n-butyl phthalate*	84-74-2	μg/kg	NA	8,100	NA	NA	NT	NT	NT
	Di-n-octylphthalate*	117-84-0	μg/kg	NA	120,000	NA	NA	NT	NT	NT
	Dibenz (a,h) anthracene	53-70-3	μg/kg	NA	1,000,000	1,100	330	NT	NT	NT
	Dibenzofuran	132-64-9	μg/kg	NA	210,000	1,000,000	14,000	NT	NT	NT
	Diethyl phthalate*	84-66-2	μg/kg	NA	7,100	NA	NA	NT	NT	NT
	Dimethyl phthalate*	131-11-3	μg/kg	NA	27,000	NA	NA	NT	NT	NT
	Fluoranthene	206-44-0	μg/kg	NA	1,000,000	1,000,000	100,000	NT	NT	NT
	Fluorene	86-73-7	μg/kg	NA	386,000	1,000,000	100,000	NT	NT	NT
	Hexachlorobenzene	118-74-1	μg/kg	NA	3,200	12,000	330	NT	NT	NT
	Hexachlorobutadiene	87-68-3	μg/kg	NA	NA	NA	NA	NT	NT	NT
	Hexachlorocyclopentadiene	77-47-4	μg/kg	NA	NA	NA	NA	NT	NT	NT
ics	Hexachloroethane	67-72-1	μg/kg	NA	NA	NA	NA	NT	NT	NT
Semi-Volatile Organics	Indeno (1,2,3-cd) pyrene	193-39-5	μg/kg	NA	8,200	11,000	500	NT	NT	NT
ō	Isophorone*	78-59-1	μg/kg	NA	4,400	NA	NA	NT	NT	NT
≓	N-Nitroso-di-n-propylamine	621-64-7	μg/kg	NA	NA	NA	NA	NT	NT	NT
<u> </u>	N-Nitrosodiphenylamine	86-30-6	μg/kg	NA	NA	NA	NA	NT	NT	NT
.₹	Naphthalene	91-20-3	μg/kg	NA	12,000	1,000,000	100,000	NT	NT	NT
ē	Nitrobenzene*	98-95-3	μg/kg	NA	170	140,000	NA	NT	NT	NT
S	Pentachlorophenol	87-86-5	μg/kg	NA	800	55,000	2,400	NT	NT	NT
	Phenanthrene	85-01-8	μg/kg	NA	1,000,000	1,000,000	100,000	NT	NT	NT
	Phenol	108-95-2	μg/kg	NA	330	1,000,000	100,000	NT	NT	NT
	Pyrene	129-00-0	μg/kg	NA	1,000,000	1,000,000	100,000	NT	NT	NT
	Total SVOCs		μg/kg	NA	NA NA	NA	NA NA	NT	NT	NT
	Total SVOC tics	74.55.6	μg/kg	NA NA	NA Saa	NA 1 000 000	NA 100,000	NT	NT	NT
	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane*	71-55-6 79-34-5	μg/kg	NA NA	680 600	1,000,000	100,000 NA	NT NT	NT NT	NT NT
			μg/kg			NA NA				
	1,1,2-Trichloroethane	79-00-5	μg/kg	NA NA	NA 270	NA 480,000	NA 10.000	NT NT	NT NT	NT NT
	1,1-Dichloroethane 1,1-Dichloroethene	75-34-3 75-35-4	μg/kg	NA NA	330	480,000 1,000,000	19,000 100,000	NT	NT	NT
	1,2,3-Trichlorobenzene	87-61-6	μg/kg μg/kg	NA NA	NA NA	NA	NA	NT	NT	NT
	1,2,4-Trichlorobenzene*	120-82-1	μg/kg μg/kg	NA NA	3400	NA NA	NA NA	NT	NT	NT
	1,2,4-Trichlorobenzene	526-73-8	μg/kg μg/kg	NA NA	NA	NA NA	NA NA	NT	NT	NT
	1,2-Dibromo-3-Chloropropane	96-12-8	μg/kg μg/kg	NA NA	NA NA	NA NA	NA NA	NT	NT	NT
	1,2-Dibromoethane	106-93-4	μg/kg	NA NA	NA NA	NA NA	NA NA	NT	NT	NT
	1,2-Dichlorobenzene	95-50-1	μg/kg	NA NA	1,100	1,000,000	100,000	NT	NT	NT
	1,2-Dichloroethane	107-06-2	μg/kg	NA NA	20	60,000	2,300	NT	NT	NT
	1,2-Dichloropropane	78-87-5	μg/kg	NA NA	NA NA	NA	NA	NT	NT	NT
	1,3,5-Trimethylbenzene	108-67-8	μg/kg	NA NA	8,400	380,000	47,000	NT	NT	NT
	1,3-Dichlorobenzene	541-73-1	μg/kg	NA NA	2,400	560,000	17,000	NT	NT	NT
	1,4-Dichlorobenzene	106-46-7	μg/kg	NA NA	1,800	250,000	9,800	NT	NT	NT
	1,4-dioxane	123-91-1	μg/kg	NA NA	100	250,000	9,800	NT	NT	NT
	2-Butanone	78-93-3	μg/kg	NA NA	120	1,000,000	100,000	NT	NT	NT
	2-Hexanone	591-78-6	μg/kg	NA NA	NA NA	NA	NA NA	NT	NT	NT
	4-Methyl-2-pentanone*	108-10-1	μg/kg	NA	1000	NA	NA	NT	NT	NT
	Acetone	67-64-1	μg/kg	NA	50	1,000,000	100,000	NT	NT	NT
S			1.070		•	, ,	/	· ·	***	·

Table 2
Sebris Piles 1 and 2 - Summary of Confirmatory Soil Sample Analytical Resultd
Debris Pile Remediation
80 Steel Street
Rochester, New York

							Sample Identification			
							Sample Date	3/11/2014	4/10/2014	4/10/2014 0945
				USEPA Part 761.61 "High	Part 375	Part 375	Sample Time	1323	0905	0945
	Analyte	Cas No.	Units	Occupancy Area" Soil	Protection of	Industrial	Part 375 Residential	Result	Result	Result
				Cleanup Level	Groundwater SCO	Use SCO	Use SCO			
nic	Benzene	71-43-2	μg/kg	NA	60	89,000	2,900	NT	NT	NT
Volatile Organic	Bromochloromethane	74-97-5	μg/kg	NA	NA	NA	NA	NT	NT	NT
e 0	Bromodichloromethane	75-27-4	μg/kg	NA	NA	NA	NA	NT	NT	NT
atil	Bromoform	75-25-2	μg/kg	NA	NA	NA	NA	NT	NT	NT
lo N	Bromomethane	74-83-9	μg/kg	NA	NA	NA	NA	NT	NT	NT
	Carbon disulfide*	75-15-0	μg/kg	NA	2,700	NA	NA	NT	NT	NT
	Carbon Tetrachloride	56-23-5	μg/kg	NA	760	44,000	1,400	NT	NT	NT
	Chlorobenzene	108-90-7	μg/kg	NA	1,100	1,000,000	100,000	NT	NT	NT
	Chloroethane*	75-00-3	μg/kg	NA	1,900	NA	NA	NT	NT	NT
	Chloroform	67-66-3	μg/kg	NA	370	700,000	10,000	NT	NT	NT
	Chloromethane	74-87-3	μg/kg	NA	NA	NA	NA	NT	NT	NT
	cis-1,2-Dichloroethene	156-59-2	μg/kg	NA	250	1,000,000	59,000	NT	NT	NT
	cis-1,3-Dichloropropene	10061-01-5	μg/kg	NA	NA	NA	NA	NT	NT	NT
	Cyclohexane	110-82-7	μg/kg	NA	NA	NA	NA	NT	NT	NT
	Dibromochloromethane	124-48-1	μg/kg	NA	NA	NA	NA	NT	NT	NT
	Dichlorodifluoromethane	75-71-8	μg/kg	NA	NA	NA	NA	NT	NT	NT
	Ethylbenzene	100-41-4	μg/kg	NA	1,000	780,000	30,000	NT	NT	NT
	Freon 113*	76-13-1	μg/kg	NA	6,000	NA	NA	NT	NT	NT
	Isopropylbenzene*	98-82-8	μg/kg	NA	2,300	NA	NA	NT	NT	NT
	m,p-Xylene	136777-61-2	μg/kg	NA	1,600	1,000,000	100,000	NT	NT	NT
	Methyl acetate	79-20-9	μg/kg	NA	NA	NA	NA	NT	NT	NT
	Methyl tert-butyl Ether	1634-04-4	μg/kg	NA	930	1,000,000	62,000	NT	NT	NT
	Methylcyclohexane	108-87-2	μg/kg	NA	NA	NA	NA	NT	NT	NT
	Methylene chloride	75-09-2	μg/kg	NA NA	50	1,000,000	51,000	NT	NT	NT
	Naphthalene	91-20-3	μg/kg	NA NA	NA 12.000	NA	NA 100,000	NT	NT	NT
	n-Butylbenzene	104-51-8	μg/kg	NA NA	12,000	1,000,000	100,000	NT	NT	NT
	n-Propylbenzene	103-65-1	μg/kg	NA NA	3,900	1,000,000	100,000	NT NT	NT	NT
	o-Xylene	95-47-6	μg/kg	NA NA	1,600	1,000,000	100,000	NT	NT NT	NT
	p-Isopropyltoluene sec-Butylbenzene	99-87-6 135-98-8	μg/kg	NA NA	NA 11,000	NA 1,000,000	NA 100,000	NT NT	NT	NT NT
	· · · · · · · · · · · · · · · · · · ·		μg/kg	NA NA	11,000 NA	1,000,000 NA	NA	NT	NT	NT
្ន	Styrene tert-Butylbenzene	100-42-5 98-06-6	μg/kg	NA NA	5,900	1,000,000	100,000	NT	NT	NT
ani	Tetrachloroethene	127-18-4	μg/kg μg/kg	NA NA	1,300	300,000	5,500	NT	NT	NT NT
Ong	Toluene			NA NA			<u> </u>	NT	NT	
Volatile Organics	trans-1,2-Dichloroethene	108-88-3 156-60-5	μg/kg	NA NA	700 190	1,000,000	100,000	NT NT	NT NT	NT NT
olat	trans-1,3-Dichloropropene	10061-02-6	μg/kg μg/kg	NA NA	NA	1,000,000 NA	100,000 NA	NT	NT	NT
_ ×	Trichloroethene	79-01-6		NA NA	470	400,000	10,000	NT	NT	NT
	Trichlorofluoromethane	75-69-4	μg/kg	NA NA	NA	400,000 NA	10,000 NA	NT	NT	NT
	Vinyl chloride	75-69-4	μg/kg μg/kg	NA NA	20	27,000	210	NT NT	NT	NT NT
	Total VOCs	75-01-4 NA	μg/kg μg/kg	NA NA	NA	27,000 NA	NA	NT	NT	NT
	Total VOCS	IVA	μg/kg NA	NA NA	NA NA	NA NA	NA NA	NT	NT	NT
	TOTAL VOC TICS		IVA	IVA	INA	IVA	IVM	IVI	INI	INI

							Sample Identification Sample Date Sample Time	CS-095-031114 3/11/2014 1024	CS-096-031114 3/11/2014 1105	CS-097-031114 3/11/2014 1114	CS-098-031114 3/11/2014 1123	CS-099-031114 3/11/2014 1131	CS-100-031114 3/11/2014 1139	CS-101-031114 3/11/2014 1149	CS-108-041014 4/10/2014 0915	CS-109-041014 4/10/2014 0925	CS-110-041014 4/10/2014 0935	CS-111-041014 4/10/2014 0942	CS-113-041014 4/10/2014 0950	CS-114-041014 4/10/2014 1000	CS-115-041014 4/10/2014 1005
	Analyte	Cas No.	Units	USEPA Part 761.61 "High Occupancy Area" Soil Cleanup Level	Part 375 Protection of Groundwater SCO	Part 375 Industrial Use SCO	Part 375 Residential Use SCO	Result													
	PCB- 1016**	12674-11-2		NA	NA	NA	NA	<0.537	<0.487	<0.445	<0.454	<0.398	<0.441	<0.449	<0.350	<0.407	<0.400	<0.506	<0.466	<0.489	<0.472
		11104-28-2		NA	NA	NA	NA	<0.537	<0.487	<0.445	<0.454	<0.398	<0.441	<0.449	<0.350	<0.407	<0.400	<0.506	<0.466	<0.489	<0.472
		11141-16-5		NA NA	NA NA	NA NA	NA NA	<0.537	<0.487	<0.445	<0.454	<0.398	<0.441	<0.449	<0.350	<0.407	<0.400	<0.506	<0.466	<0.489	<0.472
S S	PCB- 1242** PCB- 1248**	53469-21-9 12672-29-6		NA NA	NA NA	NA NA	NA NA	6.66 8.73	2.27	<0.445 4.46	<0.454 3.31	<0.398	<0.441 4.47	<0.449 3.99	<0.350 2.66	<0.407 1.88	<0.400 1.79	<0.506 2.6	<0.466 2.46	<0.489 5.92	<0.472 2.57
₹	PCB- 1254**	11097-69-1		NA NA	NA NA	NA NA	NA NA	<0.537	<0.487	3.3	2.44	3.13	4.39	3.73	1.89	1.51	1.27	2.82	2.18	5.21	2.31
	PCB- 1260**	11096-82-5		NA	NA	NA	NA	<0.537	<0.487	<0.445	<0.454	<0.398	<0.441	<0.449	<0.350	<0.407	<0.400	<0.506	<0.466	<0.489	<0.472
	PCB- 1262**	37324-23-5	mg/kg	NA	NA	NA	NA	<0.537	<0.487	<0.445	<0.454	<0.398	<0.441	<0.449	<0.350	<0.407	<0.400	<0.506	<0.466	<0.489	<0.472
	PCB- 1268**	11100-14-4	mg/kg	NA	NA	NA	NA	<0.537	<0.487	<0.445	<0.454	<0.398	<0.441	<0.449	<0.350	<0.407	<0.400	<0.506	<0.466	<0.489	<0.472
	Total PCB's	NA	mg/kg	1	3.2	25	1	15.390	5.030	7.760	5.750	6.990	8.860	7.720	4.550	3.390	3.060	5.420	4.640	11.130	4.880
	1,1-Biphenyl 1,2,4,5-Tetrachlorobenzene	92-52-4 95-94-3	μg/kg	NA NA	NA NA	NA NA	NA NA	NT NT													
	1,2,4,5-Tetracillorobenzene	120-82-1	μg/kg μg/kg	NA NA	NA NA	NA NA	NA NA	NT													
	1,2-Dichlorobenzene	95-50-1	μg/kg μg/kg	NA NA	NA NA	NA NA	NA NA	NT													
	1,3-Dichlorobenzene	541-73-1	μg/kg	NA	NA	NA	NA	NT													
	1,4-Dichlorobenzene	106-46-7	μg/kg	NA	NA	NA	NA	NT													
	2,3,4,6-Tetrachlorophenol	58-90-2	μg/kg	NA	NA	NA	NA	NT													
	2,4,5-Trichlorophenol*	95-95-4	μg/kg	NA NA	100	NA	NA NA	NT NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT NT	NT	NT
	2,4,6-Trichlorophenol 2,4-Dichlorophenol*	88-06-2 120-83-2	μg/kg μg/kg	NA NA	NA 400	NA NA	NA NA	NT NT													
	2,4-Dimethylphenol	105-67-9	μg/kg	NA NA	NA NA	NA NA	NA NA	NT													
	2,4-Dinitrophenol*	51-28-5	μg/kg	NA	200	NA	NA	NT													
	2,4-Dinitrotoluene	121-14-2	μg/kg	NA	NA	NA	NA	NT													
	2,6-Dinitrotoluene*	606-20-2	μg/kg	NA	1,000	NA	NA	NT													
	2-Chloronaphthalene	91-58-7	μg/kg	NA	NA	NA	NA	NT													
	2-Chlorophenol	95-57-8	μg/kg	NA NA	NA 25, 400	NA	NA NA	NT NT	NT	NT NT	NT	NT NT	NT NT	NT							
	2-Methylnapthalene* 2-Methylphenol	91-57-6 95-48-7	μg/kg μg/kg	NA NA	36,400 330	NA 1,000,000	NA 100,000	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT							
	2-Nitroaniline*	88-74-4	μg/kg	NA NA	400	NA	NA	NT													
	2-Nitrophenol*	88-75-5	μg/kg	NA	300	NA	NA	NT													
	3&4-Methylphenol	108-39-4	μg/kg	NA	330	1,000,000	100,000	NT													
	3,3'-Dichlorobenzidine	91-94-1	μg/kg	NA	NA	NA	NA	NT													
	3-Nitroaniline*	99-09-2	μg/kg	NA NA	500	NA	NA NA	NT	NT	NT	NT	NT NT	NT	NT	NT	NT	NT	NT	NT NT	NT	NT
<u>:</u> 2	4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether	534-52-1 101-55-3	μg/kg μg/kg	NA NA	NA NA	NA NA	NA NA	NT NT													
gan	4-Chloro-3-methylphenol	59-50-7	μg/kg	NA NA	NA NA	NA NA	NA NA	NT													
ō	4-Chloroaniline*	106-47-8	μg/kg	NA	220	NA	NA	NT													
atile	4-Chlorophenyl phenyl ether	7005-72-3	μg/kg	NA	NA	NA	NA	NT													
No.	4-Nitroaniline	100-01-6	μg/kg	NA	NA	NA	NA	NT													
Ë	4-Nitrophenol*	100-02-7	μg/kg	NA NA	98,000	NA 1,000,000	NA 100,000	NT NT													
S	Acenaphthene Acenaphthylene	83-32-9 208-96-8	μg/kg μg/kg	NA NA	107,000	1,000,000	100,000	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT						
	Acetophenone	98-86-2	μg/kg	NA NA	NA NA	NA	NA	NT													
	Anthracene	120-12-7	μg/kg	NA	1,000,000	1,000,000	100,000	NT													
	Atrazine	1912-24-9	μg/kg	NA	NA	NA	NA	NT													
	Benzaldehyde	100-52-7	μg/kg	NA	NA	NA	NA	NT													
	Benzo (a) anthracene	56-55-3	μg/kg	NA NA	1,000	11,000	1,000	NT	NT	NT	NT	NT	NT	NT NT	NT	NT	NT	NT	NT NT	NT	NT
	Benzo (a) pyrene Benzo (b) fluoranthene	50-32-8 205-99-2	μg/kg μg/kg	NA NA	22,000 1,700	1,100 11,000	1,000 1,000	NT NT													
	Benzo (g,h,i) perylene	191-24-2		NA NA	1,000,000	1,000,000	100,000	NT													
	Benzo (k) fluoranthene	207-08-9	μg/kg	NA	1,700	110,000	1,000	NT													
	Bis (2-chloroethoxy) methane	111-91-1		NA	NA	NA	NA	NT													
	Bis (2-chloroethyl) ether	111-44-4	μg/kg	NA	NA	NA	NA	NT													
	Bis (2-chloroisopropyl) ether			NA NA	NA 135,000	NA	NA NA	NT													
		117-81-7		NA NA	435,000 122,000	NA NA	NA NA	NT NT													
	Butylbenzylphthalate* Caprolactam	85-68-7 105-60-2	μg/kg μg/kg	NA NA	122,000 NA	NA NA	NA NA	NT NT	NT NT	NT NT	NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT	NT NT	NT NT	NT NT	NT NT
	Carbazole	86-74-8	μg/kg	NA NA	NA NA	NA NA	NA NA	NT													
	Chrysene	218-01-9	μg/kg	NA	1,000	110,000	1,000	NT													

							Sample Identification	CS-095-031114	CS-096-031114	CS-097-031114	CS-098-031114	CS-099-031114	CS-100-031114	CS-101-031114	CS-108-041014	CS-109-041014	CS-110-041014		CS-113-041014		CS-115-041014
Part																		4/10/2014		4/10/2014	4/10/2014
Application							Sample Time	1024	1105	1114	1123	1131	1139	1149	0915	0925	0935	0942	0950	1000	1005
Part	Amaluta	Coc No	Unite				Part 375 Residential	Pocult	Pocult.	Docult	Pocult	Pocult	Bosult	Pocult	Pocult	Pocult	Pocult	Regult	Bosult	Pocult	Result
Product Prod	Analyte	Cas IVU.	Offics				Use SCO	Result	Result	Result	Result	Result	Result	Nesuit	Result	Result	Result	Result	Result	Result	Result
A	Di-n-hutyl phthalate*	84-74-2	ug/kg	· ·			NΔ	NT	NT	NT	NT	NT									
Part																					NT
Description March March	Dibenz (a,h) anthracene	53-70-3	μg/kg	NA	1,000,000	1,100	330	NT	NT	NT	NT	NT									
Control probability 25, 41.5 1986 10 1986 100																					NT
Proceedings Procedings Pr																					NT NT
Part																					NT
Pear-Information Pear-Inform	Fluorene	86-73-7		NA	386,000	1,000,000	100,000	NT	NT	NT	NT	NT									
Needlescape-lear																					NT
Secondarecontenses C-72-12 URL NA																					NT
March Cold Set Seymons 193 b) March Ma																					NT NT
Part																					NT
Manual Parameter Manual Para	Isophorone*		μg/kg																		NT
Mage-brane 19.20 Mage Max 12.00 12.00 12.00 10.00 MT MT MT MT MT MT MT																					NT
Mill																					NT NT
Penter/incopenion 27-85 MyE NA 850 55,500 2.400 NT NT NT NT NT NT NT																					NT
Phone 10-98-52 suffle NA 330 1,000,000 NT NT NT NT NT NT NT	Pentachlorophenol	87-86-5		NA	800	55,000	2,400	NT	NT	NT	NT	NT									
Person 12-90.0 Mg/Rg NA 1,000,000 1,000,000 1,000,000 NT NT NT NT NT NT NT							· · · · · · · · · · · · · · · · · · ·														NT
Tetal SVGC 15							· · · · · · · · · · · · · · · · · · ·														NT NT
Total SVOC ties		123-00-0																			NT
1.1.2.2-freachoroethane 73-45 µg/kg NA SO NA NA NA NA NA NA NI NI							NA	NT		NT	NT	NT	NT		NT		NT	NT	NT		NT
1.1.2.Princhrotestane 79.05 Me/Rg NA NA NA NA NA NA NA N							100,000														NT
1.1-Dichlorocethane 75-34-3 µg/kg NA 270 480,000 15,000 NT																					NT NT
1.10-Ichlorocheme																					NT
1,2,4-Trichlorobenzene* 120-82-1								NT		NT	NT	NT	NT	NT							
1,2,4-Trimethylbenzene 526-73-8 µg/kg NA NA NA NA NT																					NT
1,2-Dibromo-s-Chloropropane 96-12-8 µg/kg NA																					NT NT
1,2-Dibromoethane 106-93-4 µg/kg NA																					NT
1,2-Dichloroethane 107-06-2 µg/kg NA 20 60,000 2,300 NT					NA		NA	NT	NT	NT	NT	NT									
1,2-Dichloropropane 78-87-5 µg/kg NA NA NA NA NA NT NT <t< td=""><td></td><td></td><td>μg/kg</td><td></td><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NT</td></t<>			μg/kg				· · · · · · · · · · · · · · · · · · ·														NT
1,3,5-Trimethylbenzene 108-67-8 µg/kg NA 8,400 380,000 47,000 NT																			***		NT
1,3-Dichlorobenzene 541-73-1 µg/kg NA 2,400 560,000 17,000 NT																					NT NT
1,4-dioxane 123-91-1 µg/kg NA 100 250,000 9,800 NT							· · · · · · · · · · · · · · · · · · ·														NT
2-Butanone 78-93-3 µg/kg NA 120 1,000,000 100,000 NT							· ·														NT
2-Hexanone 591-78-6 µg/kg NA NA NA NA NA NA NT							· · · · · · · · · · · · · · · · · · ·														NT NT
4-Methyl-2-pentanone* 108-10-1 μg/kg NA 1000 NA NA NA NT																					NT
																					NT
Acetone 67-64-1 µg/kg NA 50 1,000,000 100,000 NT							· · · · · · · · · · · · · · · · · · ·														NT
Benzene 71-43-2 µg/kg NA 60 89,000 2,900 NT																					NT
Bromochloromethane 74-97-5 µg/kg NA NA NA NA NA NA NT																					NT NT
Bromoform 75-25-2 µg/kg NA NA NA NA NA NT																					NT
Bromomethane 74-83-9 μg/kg NA NA NA NA NA NT			μg/kg			NA															NT
Carbon disulfide* 75-15-0 µg/kg NA 2,700 NA NA NT																					NT
Carbon Tetrachloride 56-23-5 µg/kg NA 760 44,000 1,400 NT																					NT NT
Chloroethane* 75-00-3 µg/kg NA 1,900 NA NA NT																					NT
Chloroform 67-66-3 μg/kg NA 370 700,000 10,000 NT								NT	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT		NT
Chloromethane 74-87-3 µg/kg NA NA NA NA NA NA NT																					NT
cis-1,2-Dichloroethene 156-59-2 µg/kg NA 250 1,000,000 59,000 NT																					NT NT
Cyclohexane 110-82-7 µg/kg NA NA NA NA NA NT																					NT

		0950	4/10/2014 1000	4/10/2014 1005
Analyte Cas No. Units USEPA Part 761.61 "High Occupancy Area" Soil Cleanup Level Groundwater SCO School Use SCO Use SC	Result	Result	Result	Result
Dibromochloromethane 124-48-1 μg/kg NA NA NA NA NT	NT	NT	NT	NT
Dichlorodifluoromethane 75-71-8 μg/kg NA NA NA NA NT	NT	NT	NT	NT
Ethylbenzene 100-41-4 µg/kg NA 1,000 780,000 30,000 NT	NT	NT	NT	NT
Freon 113* 76-13-1 µg/kg NA 6,000 NA NA NT	NT	NT	NT	NT
Isopropylbenzene* 98-82-8 µg/kg NA 2,300 NA NA NA NT	NT	NT	NT	NT
m,p-Xylene 136777-61-2 µg/kg NA 1,600 1,000,000 100,000 NT	NT	NT	NT	NT
Methyl acetate 79-20-9 µg/kg NA NA NA NA NA NT	NT	NT	NT	NT
Methyl tert-butyl Ether 1634-04-4 µg/kg NA 930 1,000,000 62,000 NT	NT	NT	NT	NT
Methylcyclohexane 108-87-2 µg/kg NA NA NA NA NT	NT	NT	NT	NT
Methylene chloride 75-09-2 µg/kg NA 50 1,000,000 51,000 NT	NT	NT	NT	NT
Naphthalene 91-20-3 µg/kg NA NA NA NA NA NT	NT	NT	NT	NT
n-Butylbenzene 104-51-8 µg/kg NA 12,000 1,000,000 100,000 NT	NT	NT	NT	NT
n-Propylbenzene 103-65-1 µg/kg NA 3,900 1,000,000 100,000 NT	NT	NT	NT	NT
o-Xylene 95-47-6 µg/kg NA 1,600 1,000,000 100,000 NT	NT	NT	NT	NT
p-Isopropyltoluene 99-87-6 µg/kg NA NA NA NA NA NT	NT	NT	NT	NT
sec-Butylbenzene 135-98-8 µg/kg NA 11,000 1,000,000 100,000 NT	NT	NT	NT	NT
Styrene 100-42-5 µg/kg NA NA NA NA NA NT	NT	NT	NT	NT
tert-Butylbenzene 98-06-6 µg/kg NA 5,900 1,000,000 100,000 NT	NT	NT	NT	NT
Tetrachloroethene 127-18-4 µg/kg NA 1,300 300,000 5,500 NT	NT	NT	NT	NT
Toluene 108-88-3 µg/kg NA 700 1,000,000 100,000 NT	NT	NT	NT	NT
trans-1,2-Dichloroethene 156-60-5 µg/kg NA 190 1,000,000 100,000 NT	NT	NT	NT	NT
trans-1,3-Dichloropropene 10061-02-6 µg/kg NA NA NA NA NA NT	NT	NT	NT	NT
Trichloroethene 79-01-6 µg/kg NA 470 400,000 10,000 NT	NT	NT	NT	NT
Trichlorofluoromethane 75-69-4 µg/kg NA NA NA NA NA NT	NT	NT	NT	NT
Vinyl chloride 75-01-4 µg/kg NA 20 27,000 210 NT	NT	NT	NT	NT
1,4-Dichlorobenzene 106-46-7 µg/kg 7500 7500 NT	NT	NT	NT	NT
2,4,5-Trichlorophenol 95-95-4 µg/kg 400000 400000 NT	NT	NT	NT	NT
2,4,6-Trichlorophenol 88-06-2 µg/kg 2000 2000 NT	NT	NT	NT	NT
2,4-Dinitrotoluene 121-14-2 µg/kg 130 130 130 NT	NT NT	NT	NT	NT
		NT	NT	NT
Hexachlorobenzene 118-74-1 µg/kg 130 130 130 NT	NT	NT	NT	NT
Hexachlorobutadiene 87-68-3 µg/kg 500 500 NT	NT	NT	NT	NT
Hexachloroethane 67-72-1 μg/kg 3000 3000 3000 NT NT NT NT NT NT NT	NT	NT	NT	NT
	NT NT	NT NT	NT NT	NT NT
. 10-0	NT	NT	NT NT	NT
Pyridine 110-86-1 μg/kg 5000 5000 NT NT<	NT NT	NT NT	NT NT	NT NT
Total VOCs NA µg/kg NA NA NA NA NA NT	NT	NT	NT	NT
Total VOC TICS NA NA NA NA NA NA NA NA NA NT	NT NT	NT NT	NT NT	NT NT

							Sample Identification Sample Date Sample Time	CS-067-031014 3/10/2014 1033	CS-068-031014 3/10/2014 1044	CS-069-031014 3/10/2014 1055	CS-070-031014 3/10/2014 1108	CS-071-031014 3/10/2014 1122	CS-072-031014 3/10/2014 1137	CS-073-031014 3/10/2014 1146	CS-074-031014 3/10/2014 1200	CS-075-031014 3/10/2014 1208	CS-076-031014 3/10/2014 1341	CS-077-031014 3/10/2014 1353	CS-078-031014 3/10/2014 1421	CS-079-031014 3/10/2014 1436	CS-080-031014 3/10/2014 1447	CS-081-031014 3/10/2014 1456
	Analyte	Cas No.	Units	USEPA Part 761.61 "High Occupancy Area" Soil Cleanup Level	Part 375 Protection of Groundwater SCO	Part 375 Industrial Use SCO	Part 375 Residential Use SCO	Result														
	PCB- 1016**	12674-11-2	mg/kg	NA	NA	NA	NA	<0.420	<0.374	<0.384	<0.433	<0.496	<0.440	<0.365	<0.339	<0.395	<0.391	<0.364	<0.446	<0.405	<0.426	<0.428
	PCB- 1221**		mg/kg	NA	NA	NA	NA	<0.420	<0.374	<0.384	<0.433	<0.496	<0.440	<0.365	<0.339	<0.395	<0.391	<0.364	<0.446	<0.405	<0.426	<0.428
	PCB- 1232**	11141-16-5		NA	NA	NA	NA	<0.420	<0.374	<0.384	<0.433	<0.496	<0.440	<0.365	<0.339	<0.395	<0.391	<0.364	<0.446	<0.405	<0.426	<0.428
æ	PCB- 1242** PCB- 1248**	53469-21-9 12672-29-6		NA NA	NA NA	NA NA	NA NA	3.07 4.56	<0.374 2.82	<0.384 2.09	<0.433 3.55	<0.496 6.53	<0.440 2.08	<0.365 1.16	<0.339 1.93	2.44	<0.391 2.92	<0.364 3.11	<0.446 3.47	<0.405 1.02	<0.426 0.436	<0.428 0.96
2	PCB- 1254**		mg/kg	NA NA	NA NA	NA NA	NA NA	<0.420	2.19	1.73	3.13	3.4	2.11	1.1	2.05	<0.395	2.18	3.48	2.49	1.12	<0.426	0.603
	PCB- 1260**	11096-82-5		NA	NA	NA	NA	<0.420	<0.374	<0.384	<0.433	<0.496	<0.440	<0.365	<0.339	<0.395	<0.391	<0.364	<0.446	<0.405	<0.426	<0.428
	PCB- 1262**	37324-23-5	mg/kg	NA	NA	NA	NA	<0.420	<0.374	<0.384	<0.433	<0.496	<0.440	<0.365	<0.339	<0.395	<0.391	<0.364	<0.446	<0.405	<0.426	<0.428
	PCB- 1268**	11100-14-4	mg/kg	NA	NA	NA	NA	<0.420	<0.374	<0.384	<0.433	<0.496	<0.440	<0.365	<0.339	<0.395	<0.391	<0.364	<0.446	<0.405	<0.426	<0.428
	Total PCB's	NA	mg/kg	1	3.2	25	1	7.630	5.010	3.820	6.680	9.930	4.190	2.260	3.980	4.310	5.100	6.590	5.960	2.140	0.436	1.563
	1,1-Biphenyl 1,2,4,5-Tetrachlorobenzene	92-52-4 95-94-3	μg/kg μg/kg	NA NA	NA NA	NA NA	NA NA	NT NT	<1630 <1630	NT NT	NT NT	NT NT	NT NT									
	1,2,4,5-Tetracifiorobenzene	120-82-1	μg/kg μg/kg	NA NA	NA NA	NA NA	NA NA	NT	<1630	NT	NT	NT	NT									
	1,2-Dichlorobenzene	95-50-1	μg/kg	NA	NA	NA	NA	NT	<1630	NT	NT	NT	NT									
	1,3-Dichlorobenzene	541-73-1	μg/kg	NA	NA	NA	NA	NT	<1630	NT	NT	NT	NT									
	1,4-Dichlorobenzene	106-46-7	μg/kg	NA	NA	NA	NA	NT	<1630	NT	NT	NT	NT									
	2,3,4,6-Tetrachlorophenol	58-90-2	μg/kg	NA NA	NA 100	NA	NA NA	NT	NT	NT	NT	NT	NT NT	NT	NT	NT	NT	<1630	NT	NT	NT	NT
	2,4,5-Trichlorophenol* 2,4,6-Trichlorophenol	95-95-4 88-06-2	μg/kg μg/kg	NA NA	100 NA	NA NA	NA NA	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	<3270 <1630	NT NT	NT NT	NT NT	NT NT
	2,4-Dichlorophenol*	120-83-2	μg/kg	NA NA	400	NA	NA NA	NT	<1630	NT	NT	NT	NT									
	2,4-Dimethylphenol	105-67-9	μg/kg	NA	NA	NA	NA	NT	<1630	NT	NT	NT	NT									
	2,4-Dinitrophenol*	51-28-5	μg/kg	NA	200	NA	NA	NT	<3270	NT	NT	NT	NT									
	2,4-Dinitrotoluene	121-14-2	μg/kg	NA	NA	NA	NA	NT	<1630	NT	NT	NT	NT									
	2,6-Dinitrotoluene* 2-Chloronaphthalene	606-20-2 91-58-7	μg/kg	NA NA	1,000 NA	NA NA	NA NA	NT NT	<1630 <1630	NT NT	NT NT	NT NT	NT NT									
	2-Chlorophenol	95-57-8	μg/kg μg/kg	NA NA	NA NA	NA NA	NA NA	NT	<1630	NT	NT	NT	NT									
	2-Methylnapthalene*	91-57-6	μg/kg	NA	36,400	NA	NA	NT	<1630	NT	NT	NT	NT									
	2-Methylphenol	95-48-7	μg/kg	NA	330	1,000,000	100,000	NT	<1630	NT	NT	NT	NT									
	2-Nitroaniline*	88-74-4	μg/kg	NA	400	NA	NA	NT	<3270	NT	NT	NT	NT									
	2-Nitrophenol* 3&4-Methylphenol	88-75-5 108-39-4	μg/kg μg/kg	NA NA	300 330	NA 1,000,000	NA 100,000	NT NT	<1630 <1630	NT NT	NT NT	NT NT	NT NT									
	3,3'-Dichlorobenzidine	91-94-1	μg/kg μg/kg	NA NA	NA NA	NA	NA	NT	<1630	NT	NT	NT	NT									
	3-Nitroaniline*	99-09-2	μg/kg	NA	500	NA	NA	NT	<3270	NT	NT	NT	NT									
	4,6-Dinitro-2-methylphenol	534-52-1	μg/kg	NA	NA	NA	NA	NT	<3270	NT	NT	NT	NT									
	4-Bromophenyl phenyl ether	101-55-3	μg/kg	NA NA	NA NA	NA	NA NA	NT	NT	NT NT	NT	NT	NT	NT	NT	NT	NT NT	<1630	NT	NT NT	NT	NT
sics	4-Chloro-3-methylphenol 4-Chloroaniline*	59-50-7 106-47-8	μg/kg μg/kg	NA NA	NA 220	NA NA	NA NA	NT NT	NT NT	NT	NT NT	<1630 <1630	NT NT	NT NT	NT NT	NT NT						
89	4-Chlorophenyl phenyl ether	7005-72-3	μg/kg	NA	NA	NA	NA	NT	<1630	NT	NT	NT	NT									
Ō	4-Nitroaniline	100-01-6	μg/kg	NA	NA	NA	NA	NT	<3270	NT	NT	NT	NT									
iji	4-Nitrophenol*	100-02-7	μg/kg	NA	100	NA	NA	NT	<3270	NT	NT	NT	NT									
9	Acenaphthene Acenaphthylene	83-32-9 208-96-8	μg/kg μg/kg	NA NA	98,000 107,000	1,000,000	100,000	NT NT	<1630 <1630	NT NT	NT NT	NT NT	NT NT									
宦	Acetophenone	98-86-2	μg/kg μg/kg	NA NA	NA	NA	NA	NT	<1630	NT	NT	NT	NT									
S	Anthracene	120-12-7	μg/kg	NA	1,000,000	1,000,000	100,000	NT	<1630	NT	NT	NT	NT									
	Atrazine	1912-24-9	μg/kg	NA	NA	NA	NA	NT	<1630	NT	NT	NT	NT									
	Benzaldehyde	100-52-7	μg/kg	NA	NA	NA	NA	NT	<1630	NT	NT	NT	NT									
	Benzo (a) anthracene	56-55-3	μg/kg	NA NA	1,000	11,000	1,000	NT NT	<1630 1810	NT NT	NT NT	NT NT	NT NT									
	Benzo (a) pyrene Benzo (b) fluoranthene	50-32-8 205-99-2	μg/kg μg/kg	NA NA	22,000 1,700	1,100	1,000	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	2010	NT NT	NT NT	NT NT	NT NT
	Benzo (g,h,i) perylene	191-24-2	μg/kg	NA NA	1,000,000	1,000,000	100,000	NT	<1630	NT	NT	NT	NT									
	Benzo (k) fluoranthene	207-08-9	μg/kg	NA	1,700	110,000	1,000	NT	<1630	NT	NT	NT	NT									
	Bis (2-chloroethoxy) methane		μg/kg	NA	NA	NA	NA	NT	<1630	NT	NT	NT	NT									
	Bis (2-chloroethyl) ether	111-44-4	μg/kg	NA NA	NA NA	NA	NA NA	NT NT	NT	NT NT	<1630	NT NT	NT NT	NT NT	NT NT							
	Bis (2-chloroisopropyl) ether Bis (2-ethylhexyl) phthalate*	39638-32-9 117-81-7	μg/kg μg/kg	NA NA	NA 435,000	NA NA	NA NA	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	<1630 6080	NT NT	NT NT	NT NT	NT NT
	Butylbenzylphthalate*	85-68-7	μg/kg	NA NA	122,000	NA	NA NA	NT	<1630	NT	NT	NT	NT									
	Caprolactam	105-60-2	μg/kg	NA	NA	NA	NA	NT	<1630	NT	NT	NT	NT									
	Carbazole	86-74-8	μg/kg	NA	NA	NA	NA	NT	<1630	NT	NT	NT	NT									
	Chrysene	218-01-9	μg/kg	NA NA	1,000	110,000	1,000	NT	1750	NT	NT	NT	NT									
	Di-n-butyl phthalate* Di-n-octylphthalate*	84-74-2 117-84-0	μg/kg	NA NA	8,100 120,000	NA NA	NA NA	NT NT	<1630 <1630	NT NT	NT NT	NT NT	NT NT									
	Dibenz (a,h) anthracene	53-70-3	μg/kg μg/kg	NA NA	1,000,000	1,100	330	NT	<1630	NT	NT	NT	NT NT									
	Dibenzofuran	132-64-9	μg/kg	NA	210,000	1,000,000	14,000	NT	<1630	NT	NT	NT	NT									

							Sample Identification Sample Date Sample Time	CS-067-031014 3/10/2014 1033	CS-068-031014 3/10/2014 1044	CS-069-031014 3/10/2014 1055	CS-070-031014 3/10/2014 1108	CS-071-031014 3/10/2014 1122	CS-072-031014 3/10/2014 1137	CS-073-031014 3/10/2014 1146	CS-074-031014 3/10/2014 1200	CS-075-031014 3/10/2014 1208	CS-076-031014 3/10/2014 1341	CS-077-031014 3/10/2014 1353	CS-078-031014 3/10/2014 1421	CS-079-031014 3/10/2014 1436	CS-080-031014 3/10/2014 1447	CS-081-031014 3/10/2014 1456
	Analyte	Cas No.	Units	USEPA Part 761.61 "High Occupancy Area" Soil Cleanup Level	Part 375 Protection of Groundwater SCO	Part 375 Industrial Use SCO	Part 375 Residential Use SCO	Result														
	Diethyl phthalate*	84-66-2	μg/kg	NA	7,100	NA	NA	NT	<1630	NT	NT	NT	NT									
	Dimethyl phthalate*	131-11-3	μg/kg	NA	27,000	NA	NA	NT	<3270	NT	NT	NT	NT									
	Fluoranthene Fluorene	206-44-0 86-73-7	μg/kg μg/kg	NA NA	1,000,000 386,000	1,000,000	100,000	NT NT	3180 <1630	NT NT	NT NT	NT NT	NT NT									
	Hexachlorobenzene	118-74-1	μg/kg	NA NA	3,200	12,000	330	NT	<1630	NT	NT	NT	NT									
	Hexachlorobutadiene	87-68-3	μg/kg	NA	NA	NA	NA	NT	<1630	NT	NT	NT	NT									
	Hexachlorocyclopentadiene	77-47-4	μg/kg	NA	NA	NA	NA	NT	<1630	NT	NT	NT	NT									
	Hexachloroethane Indeno (1,2,3-cd) pyrene	67-72-1 193-39-5	μg/kg	NA NA	NA 8,200	NA 11,000	NA 500	NT NT	<1630 <1630	NT NT	NT NT	NT NT	NT NT									
S	Isophorone*	78-59-1	μg/kg μg/kg	NA NA	4,400	NA	NA NA	NT	<1630	NT	NT	NT	NT									
gani	N-Nitroso-di-n-propylamine		μg/kg	NA	NA	NA	NA	NT	<1630	NT	NT	NT	NT									
ő	N-Nitrosodiphenylamine	86-30-6	μg/kg	NA	NA	NA	NA	NT	<1630	NT	NT	NT	NT									
흝	Naphthalene	91-20-3	μg/kg	NA NA	12,000	1,000,000	100,000	NT NT	<1630	NT NT	NT NT	NT NT	NT									
\oldredge	Nitrobenzene* Pentachlorophenol	98-95-3 87-86-5	μg/kg μg/kg	NA NA	170 800	140,000 55,000	NA 2,400	NT NT	NT	NT	NT	NT NT	NT	NT	NT NT	NT	NT	<1630 <3270	NT	NT NT	NT	NT NT
這	Phenanthrene	85-01-8	μg/kg	NA	1,000,000	1,000,000	100,000	NT	1720	NT	NT	NT	NT									
Ser	Phenol	108-95-2	μg/kg	NA	330	1,000,000	100,000	NT	<1630	NT	NT	NT	NT									
	Pyrene	129-00-0	μg/kg	NA	1,000,000	1,000,000	100,000	NT	2790	NT	NT	NT	NT									
	Total SVOCs Total SVOC tics		μg/kg μg/kg	NA NA	NA NA	NA NA	NA NA	NT NT	19353.2 2529.0	NT NT	NT NT	NT NT	NT NT									
	1,1,1-Trichloroethane	71-55-6	μg/kg	NA NA	680	1,000,000	100,000	NT	<7.54	NT	NT	NT	NT									
	1,1,2,2-Tetrachloroethane*	79-34-5	μg/kg	NA	600	NA	NA	NT	<7.54	NT	NT	NT	NT									
	1,1,2-Trichloroethane	79-00-5	μg/kg	NA	NA	NA	NA	NT	<7.54	NT	NT	NT	NT									
	1,1-Dichloroethane 1,1-Dichloroethene	75-34-3 75-35-4	μg/kg	NA NA	270 330	480,000 1,000,000	19,000 100,000	NT NT	<7.54 <7.54	NT NT	NT NT	NT NT	NT NT									
	1,2,3-Trichlorobenzene	87-61-6	μg/kg μg/kg	NA NA	NA NA	NA	NA	NT	<18.8	NT	NT	NT	NT									
	1,2,4-Trichlorobenzene*	120-82-1	μg/kg	NA	3400	NA	NA	NT	<18.8	NT	NT	NT	NT									
	1,2,4-Trimethylbenzene	526-73-8	μg/kg	NA	NA	NA	NA	NT														
	1,2-Dibromo-3-Chloropropane		μg/kg	NA NA	NA NA	NA NA	NA NA	NT NT	<37.7 <7.54	NT NT	NT NT	NT NT	NT NT									
	1,2-Dibromoethane 1,2-Dichlorobenzene	106-93-4 95-50-1	µg/kg µg/kg	NA NA	NA 1,100	1,000,000	100,000	NT	<7.54	NT	NT	NT	NT									
	1,2-Dichloroethane	107-06-2	μg/kg	NA	20	60,000	2,300	NT	<7.54	NT	NT	NT	NT									
	1,2-Dichloropropane	78-87-5	μg/kg	NA	NA	NA	NA	NT	<7.54	NT	NT	NT	NT									
	1,3,5-Trimethylbenzene	108-67-8	μg/kg	NA NA	8,400 2,400	380,000 560,000	47,000	NT NT	<7.54 <7.54	NT NT	NT NT	NT NT	NT NT									
	1,3-Dichlorobenzene 1,4-Dichlorobenzene	541-73-1 106-46-7	μg/kg μg/kg	NA NA	1,800	250,000	17,000 9,800	NT	NT NT	NT	NT	NT	NT	NT	NT	NT NT	NT	<7.54	NT NT	NT	NT	NT
	1,4-dioxane	123-91-1	μg/kg	NA	100	250,000	9,800	NT	<75.4	NT	NT	NT	NT									
	2-Butanone	78-93-3	μg/kg	NA	120	1,000,000	100,000	NT	<37.7	NT	NT	NT	NT									
	2-Hexanone 4-Methyl-2-pentanone*	591-78-6	μg/kg	NA NA	NA 1000	NA NA	NA NA	NT NT	<18.8 <18.8	NT NT	NT NT	NT NT	NT NT									
	Acetone	108-10-1 67-64-1	μg/kg μg/kg	NA NA	50	1,000,000	100,000	NT	117	NT	NT	NT	NT									
	Benzene	71-43-2	μg/kg	NA	60	89,000	2,900	NT	<7.54	NT	NT	NT	NT									
	Bromochloromethane	74-97-5	μg/kg	NA	NA	NA	NA	NT	<18.8	NT	NT	NT	NT									
	Bromodichloromethane Bromoform	75-27-4	μg/kg	NA NA	NA NA	NA NA	NA NA	NT NT	<7.54 <18.8	NT NT	NT NT	NT NT	NT NT									
nics	Bromotorm	75-25-2 74-83-9	μg/kg μg/kg	NA NA	NA NA	NA NA	NA NA	NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	<7.54	NT NT	NT NT	NT NT	NT
rgal	Carbon disulfide*	75-15-0	μg/kg	NA NA	2,700	NA	NA	NT	<7.54	NT	NT	NT	NT									
e 0	Carbon Tetrachloride	56-23-5	μg/kg	NA	760	44,000	1,400	NT	<7.54	NT	NT	NT	NT									
atii	Chlorobenzene	108-90-7	μg/kg	NA NA	1,100	1,000,000 NA	100,000 NA	NT NT	<7.54 <7.54	NT NT	NT NT	NT NT	NT NT									
0 >	Chloroethane* Chloroform	75-00-3 67-66-3	μg/kg μg/kg	NA NA	1,900 370	700,000	10,000	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	<7.54 <7.54	NT NT	NT NT	NT NT	NT NT
	Chloromethane	74-87-3	μg/kg	NA NA	NA NA	NA NA	NA NA	NT	<7.54	NT	NT	NT	NT									
	cis-1,2-Dichloroethene	156-59-2	μg/kg	NA	250	1,000,000	59,000	NT	<7.54	NT	NT	NT	NT									
	cis-1,3-Dichloropropene	10061-01-5		NA NA	NA NA	NA NA	NA NA	NT	NT NT	NT	<7.54	NT	NT	NT	NT							
	Cyclohexane Dibromochloromethane	110-82-7 124-48-1	μg/kg μg/kg	NA NA	NA NA	NA NA	NA NA	NT NT	<37.7 <7.54	NT NT	NT NT	NT NT	NT NT									
	Dichlorodifluoromethane	75-71-8	μg/kg	NA NA	NA NA	NA NA	NA NA	NT	<7.54	NT	NT	NT	NT									
	Ethylbenzene	100-41-4	μg/kg	NA	1,000	780,000	30,000	NT	<7.54	NT	NT	NT	NT									
	Freon 113*	76-13-1	μg/kg	NA NA	6,000	NA	NA NA	NT	<7.54	NT	NT	NT	NT									
	Isopropylbenzene* m,p-Xylene	98-82-8 136777-61-2	μg/kg μg/kg	NA NA	2,300 1,600	NA 1,000,000	NA 100,000	NT NT	<7.54 10.3	NT NT	NT NT	NT NT	NT NT									
	Methyl acetate	79-20-9	μg/kg	NA NA	NA	NA	NA	NT	<7.54	NT	NT	NT	NT									
	Methyl tert-butyl Ether	1634-04-4	μg/kg	NA	930	1,000,000	62,000	NT	<7.54	NT	NT	NT	NT									

						Sample Identification Sample Date	CS-067-031014 3/10/2014	CS-068-031014 3/10/2014	CS-069-031014 3/10/2014	CS-070-031014 3/10/2014	CS-071-031014 3/10/2014	CS-072-031014 3/10/2014	CS-073-031014 3/10/2014	CS-074-031014 3/10/2014	CS-075-031014 3/10/2014	CS-076-031014 3/10/2014	CS-077-031014 3/10/2014	CS-078-031014 3/10/2014	CS-079-031014 3/10/2014	CS-080-031014 3/10/2014	CS-081-031014 3/10/2014
						Sample Time	1033	1044	1055	1108	1122	1137	1146	1200	1208	1341	1353	1421	1436	1447	1456
Analyte	Cas No.	Units	USEPA Part 761.61 "Higl Occupancy Area" Soil Cleanup Level	Part 375 Protection of Groundwater SCO	Part 375 Industrial Use SCO	Part 375 Residential Use SCO	Result														
Methylcyclohexane	108-87-2	μg/kg	NA	NA	NA	NA	NT	<7.54	NT	NT	NT	NT									
Methylene chloride	75-09-2	10.0	NA	50	1,000,000	51,000	NT	<18.8	NT	NT	NT	NT									
Naphthalene	91-20-3	μg/kg	NA	NA	NA	NA	NT														
n-Butylbenzene	104-51-8	μg/kg	NA	12,000	1,000,000	100,000	NT														
n-Propylbenzene	103-65-1	μg/kg	NA	3,900	1,000,000	100,000	NT														
o-Xylene	95-47-6	μg/kg	NA	1,600	1,000,000	100,000	NT	18.6	NT	NT	NT	NT									
p-Isopropyltoluene	99-87-6	10.0	NA	NA	NA	NA	NT														
sec-Butylbenzene	135-98-8		NA	11,000	1,000,000	100,000	NT														
Styrene	100-42-5	μg/kg	NA	NA	NA	NA	NT	<18.8	NT	NT	NT	NT									
tert-Butylbenzene	98-06-6	μg/kg	NA	5,900	1,000,000	100,000	NT														
Tetrachloroethene	127-18-4	μg/kg	NA	1,300	300,000	5,500	NT	<7.54	NT	NT	NT	NT									
Toluene	108-88-3	μg/kg	NA	700	1,000,000	100,000	NT	<7.54	NT	NT	NT	NT									
trans-1,2-Dichloroethen	e 156-60-5	μg/kg	NA	190	1,000,000	100,000	NT	<7.54	NT	NT	NT	NT									
trans-1,3-Dichloroprope	ie 10061-02-6	6 μg/kg	NA	NA	NA	NA	NT	<7.54	NT	NT	NT	NT									
Trichloroethene	79-01-6	μg/kg	NA	470	400,000	10,000	NT	<7.54	NT	NT	NT	NT									
Trichlorofluoromethan	75-69-4	μg/kg	NA	NA	NA	NA	NT	<7.54	NT	NT	NT	NT									
Vinyl chloride	75-01-4	μg/kg	NA	20	27,000	210	NT	<7.54	NT	NT	NT	NT									
Total VOCs	NA	μg/kg	NA	NA	NA	NA	NT	145.9	NT	NT	NT	NT									
Total VOC TICS	NA	NA	NA	NA	NA	NA	NT	40	NT	NT	NT	NT									

Analyse	Result Result
PSE-0115** 122**1.110**292 mg/kg NA	<0.452 <0.464 <0.452 <0.464 <0.452 <0.464 <0.452 <0.464 <0.452 <0.464 <0.452 <0.464 <0.452 <0.464 <0.452 <0.464 <0.452 <0.464 <0.70 3.140 NT NT NT NT
Fig. 1221*** 1150-129** mg/lg MA MA MA MA MA MA MA M	<0.452 <0.464 <0.452 <0.464 <0.452 <0.464 <0.452 <0.464 <0.452 <0.464 <0.452 <0.464 <0.452 <0.464 <0.452 <0.464 <0.452 <0.464 <0.70 3.140 NT NT NT NT
Fig. 1224 1124 15 m/hg NA NA NA NA 0.022 0.518 0.035 0.043 0.042 0.047 0.047 0.047 0.049	<0.452
Fig. 1261*** 1267:29	2.14 1.67 1.53 1.47 <0.452 <0.464 <0.452 <0.464 <0.452 <0.464 3.670 3.140 NT NT NT NT NT NT NT NT NT NT NT NT NT NT
Fig. 1264** 11076-49 mg/kg NA NA NA NA NA NA NA N	1.53 1.47 <0.452 <0.464 <0.452 <0.464 <0.452 <0.464 3.670 3.140 NT NT NT NT NT NT NT NT NT NT NT NT NT NT
Pich 1200** 11968-95 mg/kg NA NA NA NA NA 04.27 0.518 0.955 0.431 0.442 0.509 0.436 0.417 0.475 0.479 0.498	<0.452
PCS: 1258** 1101-144 mg/kg NA NA NA NA 40.427 <0.518 <0.955 <0.431 <0.432 <0.909 <0.436 <0.417 <0.475 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.479 <0.47	<0.452
Total PGS NA mg/kg 1 3.2 55 1 7.520 7.790 12.500 0.997 3.650 4.500 8.230 2.299 5.660 4.220 5.710 1.1.49 planed 9.5514 yg/kg NA NA NA NA NA NA NA NA NI	3.670 3.140 NT NT
1.1.8-planew) 9.5.2-4 kg/kg NA NA NA NA NA NA NA NI	NT NT
1.2,4,5/=Tetachlorophenzene	NT
1.2-Dichlorobenzene 541-54	NT NT NT NT NT NT NT
13-Delichiorbenzene 541-72-1	NT NT NT
1.4-Ollobrobenzence 106-67 196/8 NA NA NA NA NA NA NA N	
2,4,5-frichlorophenol* 95-95-4	
2,4,6-Trichlorophenol	NT NT
2,4-Dichlorophenol* 120-83-2 µg/kg NA 400 NA NA NA NT	NT NT
2,4-Dinitrophenol* 51-28-5 µg/kg NA 200 NA NA NT NT <t< td=""><td>NT NT</td></t<>	NT NT
2,4-Dinitrotoluene 121-14-2 µg/kg NA NA NA NA NA NA NT NT <t< td=""><td>NT NT</td></t<>	NT NT
2,6-Dinitrotoluene* 666-20-2 µg/kg NA 1,000 NA NA NA NT	NT NT NT
2-Chloronaphthalene 91-58-7 μg/kg NA	NT NT
2-Methylnpthalene* 91-57-6 µg/kg NA 36,400 NA NA NA NT	NT NT
2-Methylphenol 95-48-7 μg/kg NA 330 1,000,000 100,000 NT	NT NT
2-Nitroaniline* 88-744 μg/kg NA 400 NA NA NA NT	NT NT NT
3&4-Methylphenol 108-39-4 µg/kg NA 330 1,000,000 100,000 NT NT <td< td=""><td>NT NT</td></td<>	NT NT
3,3'-Dichlorobenzidine 91-94-1 µg/kg NA NA NA NA NA NA NT	NT NT
3-Nitroaniline* 99-09-2 μg/kg NA 500 NA NA NA NT	NT NT NT
	NT NT
A-Bromonhenyl phenyl ph	NT NT
	NT NT NT
4-Chloro-3-methylphenol 59-50-7 μg/kg NA NA NA NA NA NA NT	NT NT
4-Chlorophenyl phenyl ether 7005-72-3 μg/kg NA NA NA NA NA NT	NT NT
4-Nitroaniline 100-01-6 µg/kg NA NA NA NA NT	NT NT
4-Nitrophenol* 100-02-7 µg/kg NA 100 NA NA NA NT	NT NT NT
Acenaphthylene 208-96-8 µg/kg NA 107,000 1,000,000 NT	NT NT
Acetophenone 98-86-2 µg/kg NA NA NA NA NA NT	NT NT
Anthracene 120-12-7 µg/kg NA 1,000,000 1,000,000 100,000 NT	NT NT NT
Benzaldehyde	NT NT
Benzo (a) anthracene 56-55-3 µg/kg NA 1,000 11,000 1,000 NT	NT NT
Benzo (a) pyrene 50-32-8 µg/kg NA 22,000 1,100 1,000 NT	NT NT NT
Benzo (b) fluoranthene 205-99-2 µg/kg NA 1,700 11,000 1,000 NT	NT NT
Benzo (k) fluoranthene 207-08-9 µg/kg NA 1,700 110,000 1,000 NT	NT NT
Bis (2-chloroethoxy) methane 111-91-1 µg/kg NA NA NA NA NA NT	NT NT
Bis (2-chloroethyl) ether 111-44-4 µg/kg NA NA NA NA NA NA NA NT	NT NT NT
Bis (2-ethylhexyl) phthalate* 117-81-7 µg/kg NA 435,000 NA NA NT	NT NT
Butylbenzylphthalate* 85-68-7 μg/kg NA 122,000 NA NA NT	NT NT
Carbazole 86-74-8 µg/kg NA NA NA NA NA NA NT	NT NT NT
Cardazole 80-74-8 µg/kg NA 1,000 110,000 1,000 NT	NT NT
Di-n-butyl phthalate* 84-74-2 µg/kg NA 8,100 NA NA NA NT	NT NT
Di-n-octylphthalate* 117-84-0 µg/kg NA 120,000 NA NA NA NT	NT NT NT
Dibenz (a,h) anthracene 53-70-3 μg/kg NA 1,000,000 1,100 330 NT	NT NT

Part								Sample Identification CS Sample Date Sample Time	S082-031014 3/10/2014 1504	CS-083-031014 3/10/2014 1511	CS-084-031014 3/10/2014 1519	CS-085-031014 3/10/2014 1529	CS-086-031014 3/10/2014 1542	CS-087-031014 3/10/2014 1549	CS-088-031014 3/10/2014 1558	CS-089-031014 3/10/2014 0914	CS-090-031014 3/10/2014 0928	CS-091-031014 3/10/2014 0937	CS-092-031014 3/10/2014 0946	CS-093-031014 3/10/2014 1002	CS-094-031014 3/10/2014 1007
Property		Analyte	Cas No.	Units					Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Company progression 13-11 19-20		, many to	0.00 1101	05				Use SCO		nes u ne										n.eoun	1180411
Procedure		Diethyl phthalate*	84-66-2	μg/kg	NA	7,100	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
France 18-7-7 color color 18-7-7 color color color color color color																					NT
Neederlands 18-74 1964 196 18-20 1								· · · · · · · · · · · · · · · · · · ·													NT NT
Memore processes 77-74 1962 1964 1865 187						·		· · · · · · · · · · · · · · · · · · ·													NT
Peaclifunctions Co. 10 May M		Hexachlorobutadiene		μg/kg	NA					NT				NT							NT
					****																NT NT
Processor 75 9-2 1985																					NT
Author/Defender March Ma	<u>:</u>					·							NT		NT		NT	NT	NT	NT	NT
Magnification 17-93 1976 MA 1,000 1,000,000 1,000,000 NT NT NT NT NT NT NT	gan																				NT
Management 19.9 19.9 19.5 1	e O																				NT NT
Present 19-01 Present 19-02 Present	atil	<u> </u>						· · · · · · · · · · · · · · · · · · ·													NT
Premail 1989-72 MSR MA 3.00 1,000,000 NI NI NI NI NI NI NI	0 >-																				NT
Pyroco 19-9	emi							· · · · · · · · · · · · · · · · · · ·													NT NT
Total SMCS	Š							· · · · · · · · · · · · · · · · · · ·													NT
1,1,1-finderschema							NA	<u>_</u>	NT	NT	NT	NT	NT	NT	NT	NT	NT				NT
1.3.2-2-7-11-11-11-11-11-11-11-11-11-11-11-11-1																					NT
1.1,2-7:ficihorocheme								· · · · · · · · · · · · · · · · · · ·													NT NT
1.13-Delivorochemene 75-34 May NA 330 1,000,000 100,000 NT NT NT NT NT NT NT																					NT
1.2.3-Trichopheneme 87.6.16 µR NA NA NA NA NA NA NA NI NT		1,1-Dichloroethane	75-34-3	μg/kg	NA	270	480,000	19,000										NT	NT	NT	NT
1.2.4 Friendly-beneares 26-73 8 Mg/kg NA 3400 NA								· · · · · · · · · · · · · · · · · · ·													NT
1.2-Diction-sechane \$67-28 µg/kg NA NA NA NA NA NA NA N																					NT NT
1.2-Discorposchane 1.2-Di					****																NT
1.2 Dichlorophenzene 95-50.1 μg/kg NA 1.100 1.000.000 1.000.000 NT																					NT
1.2-Dichloroptopane 78-87-5 µg/kg NA 20 60.000 2.300 NT																					NT NT
1,2,016/horporpane 78-875 \(\mu_k \nkg \) MA						·		· · · · · · · · · · · · · · · · · · ·													NT
1,3-Dichlorobenzene 541-73-1 µg/kg NA 2,400 560,000 17,000 NT		1,2-Dichloropropane	78-87-5		NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,4-Dichlorobenzene 106-46-7 µg/kg NA 1,800 250,000 9,800 NT NT NT NT NT NT NT						·		·													NT NT
1,4-dioxane 123-91-1						·															NT NT
2-Hexanone 591-78-6 µg/kg NA NA NA NA NA NA NA N						·															NT
4-Methyl-2-pentanone* 108-10-1 µg/kg NA 1000 NA NA NA NT								· · · · · · · · · · · · · · · · · · ·													NT
Acetone 67-64-1 µg/kg NA 50 1,000,000 100,000 NT																					NT NT
Bromochloromethane 74-97-5 µg/kg NA NA NA NA NA NA NA N																					NT
Bromodichloromethane 75-27-4 µg/kg NA NA NA NA NA NA NA NT			71-43-2	μg/kg															***		NT
Bromoform 75-25-2 µg/kg NA NA NA NA NA NA NA NT																					NT NT
Bromomethane 74-83-9 µg/kg NA NA NA NA NA NA NA NT	S																				NT NT
Carbon Tetrachloride 56-23-5 µg/kg NA 760 44,000 1,400 NT	nic				NA	NA															NT
Chlorobenzene 108-90-7 μg/kg NA 1,100 1,000,000 100,000 NT	Orga																				NT
Chloroethane* 75-00-3 μg/kg NA 1,900 NA NA NT	ile (·													NT NT
	olat					·		· · · · · · · · · · · · · · · · · · ·													NT
Chloroform 67-66-3 µg/kg NA 370 700,000 10,000 NT	Š			μg/kg				· · · · · · · · · · · · · · · · · · ·													NT
Chloromethane 74-87-3 µg/kg NA NA NA NA NA NA NT																					NT NT
cis-1,2-Dichloroethene 156-59-2 µg/kg NA 250 1,000,000 59,000 NT NT NT NT NT NT NT								·													NT NT
Cyclohexane 110-82-7 µg/kg NA NA NA NA NA NT									NT												NT
Dibromochloromethane 124-48-1 µg/kg NA NA NA NA NA NT																					NT
Dichlorodifluoromethane 75-71-8 µg/kg NA NA NA NA NA NT NT NT																					NT NT
Freon 113* 76-13-1 µg/kg NA 6,000 NA NA NT						·		·													NT
Isopropylbenzene* 98-82-8 µg/kg NA 2,300 NA NA NA NT				μg/kg																	NT
m,p-Xylene 136777-61-2 µg/kg NA 1,600 1,000,000 100,000 NT						·															NT NT
Methyl acetate 79-20-9 µg/kg NA NA NA NA NA NT																					NT

							Sample Identification Sample Date Sample Time		CS-083-031014 3/10/2014 1511	CS-084-031014 3/10/2014 1519	CS-085-031014 3/10/2014 1529	CS-086-031014 3/10/2014 1542	CS-087-031014 3/10/2014 1549	CS-088-031014 3/10/2014 1558	CS-089-031014 3/10/2014 0914	CS-090-031014 3/10/2014 0928	CS-091-031014 3/10/2014 0937	CS-092-031014 3/10/2014 0946	CS-093-031014 3/10/2014 1002	CS-094-031014 3/10/2014 1007
Analyte	Cas	s No.	Units	USEPA Part 761.61 "High Occupancy Area" Soil Cleanup Level	Part 375 Protection of Groundwater SCO	Part 375 Industrial Use SCO	Part 375 Residential Use SCO	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Methylcyclohex	ane 108	8-87-2	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Methylene chlo			μg/kg	NA	50	1,000,000	51,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Naphthalene	91-	L-20-3	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
n-Butylbenzer	ne 104	4-51-8	μg/kg	NA	12,000	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
n-Propylbenze	ne 103	3-65-1	μg/kg	NA	3,900	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
o-Xylene	95-	-47-6	μg/kg	NA	1,600	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
p-Isopropyltolu	ene 99-	9-87-6	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
sec-Butylbenze	ene 135	5-98-8	μg/kg	NA	11,000	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Styrene	100	0-42-5	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
tert-Butylbenze	ene 98-	3-06-6	μg/kg	NA	5,900	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Tetrachloroethe	ene 127	7-18-4	μg/kg	NA	1,300	300,000	5,500	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Toluene	108	8-88-3	μg/kg	NA	700	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
trans-1,2-Dichloroe	ethene 156	6-60-5	μg/kg	NA	190	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
trans-1,3-Dichlorop	ropene 1006	61-02-6	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Trichloroether	ne 79-	9-01-6	μg/kg	NA	470	400,000	10,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Trichlorofluorome	thane 75-	-69-4	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Vinyl chloride	e 75-	5-01-4	μg/kg	NA	20	27,000	210	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Total VOCs	1	NA	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Total VOC TIC	CS 1	NA	NA	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT

							Sample Identification Sample Date Sample Time	CS-001-021014 2/10/2014 0954	CS-002-021014 2/10/2014 1012	CS-003-021014 2/10/2014 1105	CS-004-021014 2/10/2014 1134	CS-005-021014 2/10/2014 1202	CS-006-021014 2/10/2014 1223	CS-007-021014 2/10/2014 1420	CS-008-021014 2/10/2014 1440	CS-009-021014 2/10/2014 1524	CS-010-021014 2/10/2014 1540	CS-011-021114 2/11/2014 0952
	Analyte	Cas No.	Units	USEPA Part 761.61 "High Occupancy Area" Soil Cleanup Level	Part 375 Protection of Groundwater SCO	Part 375 Industrial Use SCO	Part 375 Residential Use SCO	Result										
	PCB- 1016**	12674-11-2	mg/kg	NA	NA	NA	NA	<0.362	<0.414	<0.449	<0.500	<0.446	<0.490	<0.400	<0.460	<0.634	<0.776	<0.469
	PCB- 1221**	11104-28-2	mg/kg	NA	NA	NA	NA	<0.362	<0.414	<0.449	<0.500	<0.446	<0.490	<0.400	<0.460	<0.634	<0.776	<0.469
	PCB- 1232**	11141-16-5	mg/kg	NA	NA	NA	NA	<0.362	<0.414	<0.449	<0.500	<0.446	<0.490	<0.400	<0.460	<0.634	<0.776	<0.469
SS	PCB- 1242**	53469-21-9	mg/kg	NA	NA	NA	NA	<0.362	<0.414	<0.449	<0.500	<0.446	<0.490	<0.400	<0.460	<0.634	<0.776	<0.469
2	PCB- 1248**	12672-29-6	mg/kg	NA	NA	NA	NA	0.855	1.44	2.97	1.2	2.11	1.55	1.58	4.17	2.16	5.06	2.16
	PCB- 1254**	11097-69-1	mg/kg	NA	NA	NA	NA	0.762	2.33	3.48	1.47	2.52	1.83	1.72	4.14	2.37	6.61	2.23
	PCB- 1260**	11096-82-5	mg/kg	NA	NA	NA	NA	<0.362	<0.414	<0.449	<0.500	<0.446	<0.490	<0.400	<0.460	<0.634	<0.776	<0.469
	PCB- 1262**	37324-23-5	mg/kg	NA	NA	NA	NA	<0.362	<0.414	<0.449	<0.500	<0.446	<0.490	<0.400	<0.460	<0.634	<0.776	<0.469
	PCB- 1268**	11100-14-4	mg/kg	NA .	NA 2.2	NA 25	NA 1	<0.362	<0.414	<0.449	<0.500	<0.446	<0.490	<0.400	<0.460	<0.634	<0.776	<0.469
	Total PCB's	NA 02.52.4	mg/kg	1	3.2	25	-	1.617	3.770	6.450	2.670	4.630	3.380	3.300	8.310	4.530	11.670	4.390
	1,1-Biphenyl 1,2,4,5-Tetrachlorobenzene	92-52-4 95-94-3	μg/kg	NA NA	NA NA	NA NA	NA NA	NT NT	<347 <347	NT NT	NT NT	NT NT	NT NT	NT NT	<385 <385	NT NT	<658 <658	NT NT
			μg/kg					NT	<347	NT	NT	NT	NT					NT
	1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	120-82-1 95-50-1	μg/kg μg/kg	NA NA	NA NA	NA NA	NA NA	NT NT	<347	NT NT	NT	NT NT	NT NT	NT NT	<385 <385	NT NT	<658 <658	NT NT
	1,3-Dichlorobenzene	541-73-1	μg/kg μg/kg	NA NA	NA NA	NA NA	NA NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	1,4-Dichlorobenzene	106-46-7	μg/kg	NA NA	NA NA	NA NA	NA NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	2,3,4,6-Tetrachlorophenol	58-90-2	μg/kg	NA NA	NA NA	NA NA	NA NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	2,4,5-Trichlorophenol*	95-95-4	μg/kg	NA NA	100	NA NA	NA NA	NT	<695	NT	NT	NT	NT	NT	<771	NT	<1320	NT
	2,4,6-Trichlorophenol	88-06-2	μg/kg	NA NA	NA NA	NA	NA NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	2,4-Dichlorophenol*	120-83-2	μg/kg	NA NA	400	NA	NA NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	2,4-Dimethylphenol	105-67-9	μg/kg	NA NA	NA NA	NA NA	NA NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	2,4-Dinitrophenol*	51-28-5	μg/kg	NA	200	NA	NA	NT	<695	NT	NT	NT	NT	NT	<771	NT	<1320	NT
	2,4-Dinitrotoluene	121-14-2	μg/kg	NA	NA NA	NA	NA NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	2,6-Dinitrotoluene*	606-20-2	μg/kg	NA	1,000	NA	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	2-Chloronaphthalene	91-58-7	μg/kg	NA	NA	NA	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	2-Chlorophenol	95-57-8	μg/kg	NA	NA	NA	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	2-Methylnapthalene*	91-57-6	μg/kg	NA	36,400	NA	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
S	2-Methylphenol	95-48-7	μg/kg	NA	330	1,000,000	100,000	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
a ⊒	2-Nitroaniline*	88-74-4	μg/kg	NA	400	NA	NA	NT	<695	NT	NT	NT	NT	NT	<771	NT	<1320	NT
Org	2-Nitrophenol*	88-75-5	μg/kg	NA	300	NA	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
<u>•</u>	3&4-Methylphenol	108-39-4	μg/kg	NA	330	1,000,000	100,000	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
a <u>ti</u>	3,3'-Dichlorobenzidine	91-94-1	μg/kg	NA	NA	NA	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
9	3-Nitroaniline*	99-09-2	μg/kg	NA	500	NA	NA	NT	<695	NT	NT	NT	NT	NT	<771	NT	<1,320	NT
Ė	4,6-Dinitro-2-methylphenol	534-52-1	μg/kg	NA	NA	NA	NA	NT	<695	NT	NT	NT	NT	NT	<771	NT	<1,320	NT
Ser	4-Bromophenyl phenyl ether	101-55-3	μg/kg	NA	NA	NA	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	4-Chloro-3-methylphenol	59-50-7	μg/kg	NA	NA	NA	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	4-Chloroaniline*	106-47-8	μg/kg	NA	220	NA	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	4-Chlorophenyl phenyl ether	7005-72-3	μg/kg	NA	NA	NA	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	4-Nitroaniline	100-01-6	μg/kg	NA	NA	NA	NA	NT	<695	NT	NT	NT	NT	NT	<771	NT	<1,320	NT
	4-Nitrophenol*	100-02-7	μg/kg	NA	100	NA	NA	NT	<695	NT	NT	NT	NT	NT	<771	NT	<1,320	NT
	Acenaphthene	83-32-9	μg/kg	NA	98,000	1,000,000	100,000	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	Acenaphthylene	208-96-8	μg/kg	NA	107,000	1,000,000	100,000	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	Acetophenone	98-86-2	μg/kg	NA	NA	NA	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	Anthracene	120-12-7	μg/kg	NA	1,000,000	1,000,000	100,000	NT	635	NT	NT	NT	NT	NT	<385	NT	703	NT
	Atrazine	1912-24-9	μg/kg	NA	NA	NA	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	Benzaldehyde	100-52-7	μg/kg	NA	NA	NA	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	Benzo (a) anthracene	56-55-3	μg/kg	NA	1,000	11,000	1,000	NT	1,220	NT	NT	NT	NT	NT	<385	NT	2,350	NT
	Benzo (a) pyrene	50-32-8	μg/kg	NA	22,000	1,100	1,000	NT	1,380	NT	NT	NT	NT	NT	<385	NT	2,500	NT
	Benzo (b) fluoranthene	205-99-2	μg/kg	NA	1,700	11,000	1,000	NT	1,400	NT	NT	NT	NT	NT	390	NT	2,620	NT
	Benzo (g,h,i) perylene	191-24-2	μg/kg	NA	1,000,000	1,000,000	100,000	NT	1,300	NT	NT	NT	NT	NT	<385	NT	2,350	NT
	Benzo (k) fluoranthene	207-08-9	μg/kg	NA	1,700	110,000	1,000	NT	1,070	NT	NT	NT	NT	NT	<385	NT	1,510	NT

Table 5

Debris Pile 5 - Summary of Confirmatory Soil Sample Analytical Results

Debris Pile Remediation

80 Steel Street

Rochester, New York

							Sample Identification Sample Date Sample Time		CS-002-021014 2/10/2014 1012	CS-003-021014 2/10/2014 1105	CS-004-021014 2/10/2014 1134	CS-005-021014 2/10/2014 1202	CS-006-021014 2/10/2014 1223	CS-007-021014 2/10/2014 1420	CS-008-021014 2/10/2014 1440	CS-009-021014 2/10/2014 1524	CS-010-021014 2/10/2014 1540	CS-011-021114 2/11/2014 0952
	Analyte	Cas No.	Units	USEPA Part 761.61 "High Occupancy Area" Soil Cleanup Level	Part 375 Protection of Groundwater SCO	Part 375 Industrial Use SCO	Part 375 Residential Use SCO	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
	Bis (2-chloroethoxy) methane	111-91-1	μg/kg	NA	NA	NA	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	Bis (2-chloroethyl) ether	111-44-4	μg/kg	NA	NA	NA	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	Bis (2-chloroisopropyl) ether	39638-32-9	μg/kg	NA	NA	NA	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	Bis (2-ethylhexyl) phthalate*	117-81-7	μg/kg	NA	435,000	NA	NA	NT	6,950	NT	NT	NT	NT	NT	<385	NT	6,180	NT
	Butylbenzylphthalate*	85-68-7	μg/kg	NA	122,000	NA	NA	NT	537	NT	NT	NT	NT	NT	<385	NT	3,650	NT
	Caprolactam	105-60-2	μg/kg	NA	NA	NA	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	Carbazole	86-74-8	μg/kg	NA	NA	NA	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	Chrysene	218-01-9	μg/kg	NA	1,000	110,000	1,000	NT	1,400	NT	NT	NT	NT	NT	394	NT	2,590	NT
	Di-n-butyl phthalate*	84-74-2	μg/kg	NA	8,100	NA	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	Di-n-octylphthalate*	117-84-0	μg/kg	NA	120,000	NA	NA	NT	3,800	NT	NT	NT	NT	NT	<385	NT	9,310	NT
	Dibenz (a,h) anthracene	53-70-3	μg/kg	NA	1,000,000	1,100	330	NT	368	NT	NT	NT	NT	NT	<385	NT	742	NT
	Dibenzofuran	132-64-9	μg/kg	NA	210,000	1,000,000	14,000	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
S	Diethyl phthalate*	84-66-2	μg/kg	NA	7,100	NA	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
ij	Dimethyl phthalate*	131-11-3	μg/kg	NA	27,000	NA	NA	NT	<695	NT	NT	NT	NT	NT	<771	NT	<1,320	NT
Org	Fluoranthene	206-44-0	μg/kg	NA	1,000,000	1,000,000	100,000	NT	2,540	NT	NT	NT	NT	NT	607	NT	3,960	NT
0 0	Fluorene	86-73-7	μg/kg	NA	386,000	1,000,000	100,000	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
i <u>i</u>	Hexachlorobenzene	118-74-1	μg/kg	NA	3,200	12,000	330	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
lj Voj	Hexachlorobutadiene	87-68-3	μg/kg	NA	NA	NA	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
_≟	Hexachlorocyclopentadiene	77-47-4	μg/kg	NA	NA	NA	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
eπ	Hexachloroethane	67-72-1	μg/kg	NA	NA	NA	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
S	Indeno (1,2,3-cd) pyrene	193-39-5	μg/kg	NA	8,200	11,000	500	NT	1,280	NT	NT	NT	NT	NT	<385	NT	2,430	NT
	Isophorone*	78-59-1	μg/kg	NA	4,400	NA	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	N-Nitroso-di-n-propylamine	621-64-7	μg/kg	NA	NA	NA	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	N-Nitrosodiphenylamine	86-30-6	μg/kg	NA	NA	NA	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	Naphthalene	91-20-3	μg/kg	NA	12,000	1,000,000	100,000	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	Nitrobenzene*	98-95-3	μg/kg	NA	170	140,000	NA	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	Pentachlorophenol	87-86-5	μg/kg	NA	800	55,000	2,400	NT	<695	NT	NT	NT	NT	NT	<771	NT	<1,320	NT
	Phenanthrene	85-01-8	μg/kg	NA	1,000,000	1,000,000	100,000	NT	1,380	NT	NT	NT	NT	NT	<385	NT	1,740	NT
	Phenol	108-95-2	μg/kg	NA	330	1,000,000	100,000	NT	<347	NT	NT	NT	NT	NT	<385	NT	<658	NT
	Pyrene	129-00-0	μg/kg	NA	1,000,000	1,000,000	100,000	NT	2,280	NT	NT	NT	NT	NT	523	NT	3,820	NT
	Total SVOCs		μg/kg	NA	NA	NA	NA	NT	27,540	NT	NT	NT	NT	NT	1,914	NT	46,455	NT
	Total SVOC tics		μg/kg	NA	NA	NA	NA	NT	27,506	NT	NT	NT	NT	NT	13,094	NT	44,061	NT
	1,1,1-Trichloroethane	71-55-6	μg/kg	NA	680	1,000,000	100,000	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
	1,1,2,2-Tetrachloroethane*	79-34-5	μg/kg	NA	600	NA	NA	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
	1,1,2-Trichloroethane	79-00-5	μg/kg	NA	NA	NA	NA	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
	1,1-Dichloroethane	75-34-3	μg/kg	NA	270	480,000	19,000	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
	1,1-Dichloroethene	75-35-4	μg/kg	NA	330	1,000,000	100,000	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
	1,2,3-Trichlorobenzene	87-61-6	μg/kg	NA	NA	NA	NA	NT	<156	NT	NT	NT	NT	NT	<1,810	NT	<36.9	NT
	1,2,4-Trichlorobenzene*	120-82-1	μg/kg	NA	3400	NA	NA	NT	<156	NT	NT	NT	NT	NT	<1,810	NT	<36.9	NT
	1,2,4-Trimethylbenzene	526-73-8	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,2-Dibromo-3-Chloropropane		μg/kg	NA	NA	NA	NA 	NT	<312	NT	NT	NT	NT	NT	<3,630	NT	<73.8	NT
	1,2-Dibromoethane	106-93-4	μg/kg	NA NA	NA 1.100	NA	NA 100 000	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
	1,2-Dichlorobenzene	95-50-1	μg/kg	NA NA	1,100	1,000,000	100,000	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
<u>:</u> 2	1,2-Dichloroethane	107-06-2	μg/kg	NA NA	20	60,000	2,300	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
an	1,2-Dichloropropane	78-87-5	μg/kg	NA NA	NA 8.400	NA	NA 47,000	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	< 14.8	NT
Org	1,3,5-Trimethylbenzene	108-67-8	μg/kg	NA NA	8,400	380,000	47,000	NT	NT *C2.2	NT	NT	NT	NT	NT	NT 472.C	NT	NT 11.0	NT
<u>o</u>	1,3-Dichlorobenzene	541-73-1	μg/kg	NA NA	2,400	560,000	17,000	NT	<62.3	NT	NT	NT	NT NT	NT	<726	NT	<14.8	NT
at	1,4-Dichlorobenzene	106-46-7	μg/kg	NA NA	1,800	250,000	9,800	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
%	1,4-dioxane	123-91-1	μg/kg	NA NA	100	250,000	9,800	NT	<623	NT	NT	NT	NT	NT	<7,260	NT	<148	NT
	2-Butanone	78-93-3	μg/kg	NA NA	120	1,000,000	100,000	NT	<312	NT	NT	NT	NT	NT	<3,630	NT	<73.8	NT
	2-Hexanone	591-78-6	μg/kg	NA	NA	NA	NA	NT	<156	NT	NT	NT	NT	NT	<1,810	NT	<36.9	NT

							Sample Identification Sample Date Sample Time	CS-001-021014 2/10/2014 0954	CS-002-021014 2/10/2014 1012	CS-003-021014 2/10/2014 1105	CS-004-021014 2/10/2014 1134	CS-005-021014 2/10/2014 1202	CS-006-021014 2/10/2014 1223	CS-007-021014 2/10/2014 1420	CS-008-021014 2/10/2014 1440	CS-009-021014 2/10/2014 1524	CS-010-021014 2/10/2014 1540	CS-011-021114 2/11/2014 0952
	Analyte	Cas No.	Units	USEPA Part 761.61 "High Occupancy Area" Soil Cleanup Level	Part 375 Protection of Groundwater SCO	Part 375 Industrial Use SCO	Part 375 Residential Use SCO	Result										
	4-Methyl-2-pentanone*	108-10-1	μg/kg	NA	1000	NA	NA	NT	<156	NT	NT	NT	NT	NT	<1,810	NT	<36.9	NT
	Acetone	67-64-1	μg/kg	NA	50	1,000,000	100,000	NT	4,530	NT	NT	NT	NT	NT	17,300	NT	220	NT
	Benzene	71-43-2	μg/kg	NA	60	89,000	2,900	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
_	Bromochloromethane	74-97-5	μg/kg	NA	NA	NA	NA	NT	<156	NT	NT	NT	NT	NT	<1,810	NT	<36.9	NT
_	Bromodichloromethane	75-27-4	μg/kg	NA	NA	NA	NA	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
-	Bromoform	75-25-2	μg/kg	NA	NA	NA	NA	NT	<156	NT	NT	NT	NT	NT	<1,810	NT	<36.9	NT
-	Bromomethane	74-83-9	μg/kg	NA NA	NA 2,700	NA NA	NA NA	NT NT	<62.3 <62.3	NT NT	NT NT	NT NT	NT NT	NT NT	<726 <726	NT NT	<14.8 <14.8	NT NT
-	Carbon disulfide* Carbon Tetrachloride	75-15-0 56-23-5	μg/kg μg/kg	NA NA	760	44,000	1,400	NT NT	<62.3 <62.3	NT NT	NT NT	NT NT	NT NT	NT NT	<726 <726	NT NT	<14.8	NT NT
-	Chlorobenzene	108-90-7	μg/kg μg/kg	NA NA	1,100	1,000,000	100,000	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
	Chloroethane*	75-00-3	μg/kg μg/kg	NA NA	1,900	NA	NA	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
-	Chloroform	67-66-3	μg/kg	NA NA	370	700,000	10,000	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
	Chloromethane	74-87-3	μg/kg	NA	NA	NA	NA NA	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
	cis-1,2-Dichloroethene	156-59-2	μg/kg	NA	250	1,000,000	59,000	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
	cis-1,3-Dichloropropene	10061-01-5	μg/kg	NA	NA	NA	NA	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
	Cyclohexane	110-82-7	μg/kg	NA	NA	NA	NA	NT	<312	NT	NT	NT	NT	NT	<3,630	NT	<73.8	NT
	Dibromochloromethane	124-48-1	μg/kg	NA	NA	NA	NA	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
	Dichlorodifluoromethane	75-71-8	μg/kg	NA	NA	NA	NA	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
	Ethylbenzene	100-41-4	μg/kg	NA	1,000	780,000	30,000	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
	Freon 113*	76-13-1	μg/kg	NA	6,000	NA	NA	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
	Isopropylbenzene*	98-82-8	μg/kg	NA	2,300	NA	NA	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
	m,p-Xylene	136777-61-2	μg/kg	NA	1,600	1,000,000	100,000	NT	72	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
_	Methyl acetate	79-20-9	μg/kg	NA	NA	NA	NA	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
ខ	Methyl tert-butyl Ether	1634-04-4	μg/kg	NA	930	1,000,000	62,000	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
ani	Methylcyclohexane	108-87-2	μg/kg	NA	NA	NA	NA	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
Org	Methylene chloride	75-09-2	μg/kg	NA NA	50	1,000,000	51,000	NT	<156	NT	NT	NT	NT	NT	<726	NT	<36.9	NT
<u>e</u> -	Naphthalene	91-20-3	μg/kg	NA NA	NA 13,000	NA 1 000 000	NA 100.000	NT	NT	NT NT	NT							
lati	n-Butylbenzene n-Propylbenzene	104-51-8 103-65-1	μg/kg μg/kg	NA NA	12,000 3,900	1,000,000	100,000	NT NT	NT NT	NT NT	NT NT							
8	o-Xylene	95-47-6	μg/kg μg/kg	NA NA	1,600	1,000,000	100,000	NT	180	NT NT	NT	NT NT	NT	NT	949	NT	15	NT
	p-Isopropyltoluene	99-87-6	μg/kg μg/kg	NA NA	NA	NA	NA	NT	NT NT	NT								
	sec-Butylbenzene	135-98-8	μg/kg	NA NA	11,000	1,000,000	100,000	NT										
	Styrene	100-42-5	μg/kg	NA	NA	NA	NA NA	NT	<156	NT	NT	NT	NT	NT	<1,810	NT	<36.9	NT
	tert-Butylbenzene	98-06-6	μg/kg	NA	5,900	1,000,000	100,000	NT										
	Tetrachloroethene	127-18-4	μg/kg	NA	1,300	300,000	5,500	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
	Toluene	108-88-3	μg/kg	NA	700	1,000,000	100,000	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
	trans-1,2-Dichloroethene	156-60-5	μg/kg	NA	190	1,000,000	100,000	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
	trans-1,3-Dichloropropene	10061-02-6	μg/kg	NA	NA	NA	NA	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
	Trichloroethene	79-01-6	μg/kg	NA	470	400,000	10,000	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
	Trichlorofluoromethane	75-69-4	μg/kg	NA	NA	NA	NA	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
	Vinyl chloride	75-01-4	μg/kg	NA	20	27,000	210	NT	<62.3	NT	NT	NT	NT	NT	<726	NT	<14.8	NT
	Total VOCs	NA	μg/kg	NA	NA	NA	NA	NT	4,782	NT	NT	NT	NT	NT	18,249	NT	235	NT
	Total VOC TICS	NA	NA	NA	NA	NA	NA	NT	729	NT	NT	NT	NT	NT	2,010	NT	81	NT

							Sample Identification	CS-012-021114	CS-013-021114	CS-014-021114	CS-015-021114	CS-016-021114	CS-017-021114	CS-018-021414	CS-019-021414	CS-020-021414	CS-021-021414	CS-022-021414	CS-023-021414
							Sample Date	2/11/2014	2/11/2014	2/11/2014	2/11/2014	2/11/2014	2/11/2014	2/14/2014	2/14/2014	2/14/2014	2/14/2014	2/14/2014	2/14/2014
							Sample Time	1018	1100	1122	1135	1202	1221	0940	1005	1020	1041	1059	1134
				USEPA Part 761.61 "High	Part 375	Part 375													
	Analyte	Cas No.	Units	Occupancy Area" Soil	Protection of	Industrial	Part 375 Residential	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
				Cleanup Level	Groundwater SCO	Use SCO	Use SCO												
	PCB- 1016**	12674-11-2	mg/kg	NA	NA	NA	NA	<0.380	<0.579	<0.461	<0.487	<0.465	<0.468	<1.17	<0.557	<0.499	<0.514	<0.498	<0.460
	PCB- 1221**	11104-28-2	mg/kg	NA	NA	NA	NA	<0.380	<0.579	<0.461	<0.487	<0.465	<0.468	<1.17	<0.557	<0.499	<0.514	<0.498	<0.460
	PCB- 1232**	11141-16-5	mg/kg	NA	NA	NA	NA	<0.380	<0.579	<0.461	<0.487	<0.465	<0.468	<1.17	<0.557	<0.499	<0.514	<0.498	<0.460
SS	PCB- 1242**	53469-21-9	mg/kg	NA	NA	NA	NA	<0.380	<0.579	<0.461	<0.487	<0.465	<0.468	<1.17	<0.557	<0.499	<0.514	<0.498	<0.460
2	PCB- 1248**	12672-29-6	mg/kg	NA	NA	NA	NA	3.02	3.22	2.57	1.72	2.97	0.948	1.98	1.71	1.68	1.91	1.51	1.12
	PCB- 1254**	11097-69-1	mg/kg	NA NA	NA NA	NA	NA NA	3.68	3.03	2.50	1.80	2.58	1.15	2.11	1.72	4.68	2.87	2.43	1.54
	PCB- 1260** PCB- 1262**	11096-82-5 37324-23-5	mg/kg mg/kg	NA NA	NA NA	NA NA	NA NA	<0.380	<0.579 <0.579	<0.461 <0.461	<0.487	<0.465 <0.465	<0.468 <0.468	<1.17 <1.17	<0.557 <0.557	<0.499 <0.499	<0.514 <0.514	<0.498 <0.498	<0.460 <0.460
	PCB- 1268**	11100-14-4	mg/kg	NA NA	NA NA	NA NA	NA NA	<0.380	<0.579	<0.461	<0.487	<0.465	<0.468	<1.17	<0.557	<0.499	<0.514	<0.498	<0.460
	Total PCB's	NA NA	mg/kg	1	3.2	25	1	6.700	6.250	5.070	3.520	5.550	2.098	4.090	3.430	6.360	4.780	3.940	2.660
	1,1-Biphenyl	92-52-4	μg/kg	NA NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,2,4,5-Tetrachlorobenzene	95-94-3	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,2,4-Trichlorobenzene	120-82-1	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,2-Dichlorobenzene	95-50-1	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,3-Dichlorobenzene	541-73-1	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,4-Dichlorobenzene	106-46-7	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	2,3,4,6-Tetrachlorophenol	58-90-2	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	2,4,5-Trichlorophenol*	95-95-4	μg/kg	NA	100	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	2,4,6-Trichlorophenol	88-06-2	μg/kg	NA	NA 100	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	2,4-Dichlorophenol*	120-83-2	μg/kg	NA NA	400 NA	NA NA	NA NA	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
	2,4-Dimethylphenol 2,4-Dinitrophenol*	105-67-9 51-28-5	μg/kg μg/kg	NA NA	200	NA NA	NA NA	NT	NT	NT	NT	NT NT	NT NT	NT	NT NT	NT NT	NT	NT	NT
	2,4-Dinitrophenor	121-14-2	μg/kg μg/kg	NA NA	NA	NA NA	NA NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	2,6-Dinitrotoluene*	606-20-2	μg/kg	NA NA	1,000	NA NA	NA NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	2-Chloronaphthalene	91-58-7	μg/kg	NA NA	NA	NA NA	NA NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	2-Chlorophenol	95-57-8	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	2-Methylnapthalene*	91-57-6	μg/kg	NA	36,400	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
<u>:S</u>	2-Methylphenol	95-48-7	μg/kg	NA	330	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
gan	2-Nitroaniline*	88-74-4	μg/kg	NA	400	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
ő	2-Nitrophenol*	88-75-5	μg/kg	NA	300	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
<u>=</u>	3&4-Methylphenol	108-39-4	μg/kg	NA	330	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
<u>at</u>	3,3'-Dichlorobenzidine	91-94-1	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
ک ج	3-Nitroaniline*	99-09-2	μg/kg	NA	500	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Ē	4,6-Dinitro-2-methylphenol	534-52-1	μg/kg	NA NA	NA	NA	NA NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Š	4-Bromophenyl phenyl ether	101-55-3	μg/kg	NA NA	NA NA	NA NA	NA NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	4-Chloro-3-methylphenol 4-Chloroaniline*	59-50-7 106-47-8	μg/kg μg/kg	NA NA	NA 220	NA NA	NA NA	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
	4-Chlorophenyl phenyl ether	7005-72-3	μg/kg μg/kg	NA NA	NA	NA NA	NA NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	4-Chlorophenyr phenyr ether	100-01-6	μg/kg μg/kg	NA NA	NA NA	NA NA	NA NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	4-Nitrophenol*	100-01-0	μg/kg	NA NA	100	NA NA	NA NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Acenaphthene	83-32-9	μg/kg	NA	98,000	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Acenaphthylene	208-96-8	μg/kg	NA	107,000	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Acetophenone	98-86-2	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Anthracene	120-12-7	μg/kg	NA	1,000,000	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Atrazine	1912-24-9	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Benzaldehyde	100-52-7	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Benzo (a) anthracene	56-55-3	μg/kg	NA	1,000	11,000	1,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Benzo (a) pyrene	50-32-8	μg/kg	NA	22,000	1,100	1,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Benzo (b) fluoranthene	205-99-2	μg/kg	NA	1,700	11,000	1,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Benzo (g,h,i) perylene	191-24-2	μg/kg	NA	1,000,000	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Benzo (k) fluoranthene	207-08-9	μg/kg	NA	1,700	110,000	1,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT

							Sample Identification	CS-012-021114	CS-013-021114	CS-014-021114	CS-015-021114	CS-016-021114	CS-017-021114	CS-018-021414	CS-019-021414	CS-020-021414	CS-021-021414	CS-022-021414	CS-023-02141
							Sample Date	2/11/2014	2/11/2014	2/11/2014	2/11/2014	2/11/2014	2/11/2014	2/14/2014	2/14/2014	2/14/2014	2/14/2014	2/14/2014	2/14/2014
							Sample Time	1018	1100	1122	1135	1202	1221	0940	1005	1020	1041	1059	1134
				LICEDA Deut 704 CA UNISTA	D 275	David 275													
				USEPA Part 761.61 "High	Part 375	Part 375	Part 375 Residential												
	Analyte	Cas No.	Units	Occupancy Area" Soil	Protection of	Industrial	Use SCO	Result	Result										
				Cleanup Level	Groundwater SCO	Use SCO													
	Bis (2-chloroethoxy) methane	111-91-1	μg/kg	NA	NA	NA	NA	NT	NT										
	Bis (2-chloroethyl) ether	111-44-4	μg/kg	NA	NA	NA	NA	NT	NT										
	Bis (2-chloroisopropyl) ether	39638-32-9	μg/kg	NA	NA	NA	NA	NT	NT										
	Bis (2-ethylhexyl) phthalate*	117-81-7	μg/kg	NA	435,000	NA	NA	NT	NT										
	Butylbenzylphthalate*	85-68-7	μg/kg	NA	122,000	NA	NA	NT	NT										
	Caprolactam	105-60-2	μg/kg	NA	NA	NA	NA	NT	NT										
	Carbazole	86-74-8	μg/kg	NA	NA	NA	NA	NT	NT										
	Chrysene	218-01-9	μg/kg	NA	1,000	110,000	1,000	NT	NT										
	Di-n-butyl phthalate*	84-74-2	μg/kg	NA	8,100	NA	NA	NT	NT										
	Di-n-octylphthalate*	117-84-0	μg/kg	NA	120,000	NA	NA	NT	NT										
	Dibenz (a,h) anthracene	53-70-3	μg/kg	NA	1,000,000	1,100	330	NT	NT										
	Dibenzofuran	132-64-9	μg/kg	NA	210,000	1,000,000	14,000	NT	NT										
S	Diethyl phthalate*	84-66-2	μg/kg	NA	7,100	NA	NA	NT	NT										
nic	Dimethyl phthalate*	131-11-3	μg/kg	NA	27,000	NA	NA	NT	NT										
rga	Fluoranthene	206-44-0	μg/kg	NA	1,000,000	1,000,000	100,000	NT	NT										
e Ori	Fluorene	86-73-7	μg/kg	NA	386,000	1,000,000	100,000	NT	NT										
ij	Hexachlorobenzene	118-74-1	μg/kg	NA	3,200	12,000	330	NT	NT										
ola	Hexachlorobutadiene	87-68-3	μg/kg	NA	NA	NA	NA	NT	NT										
<u>.</u>	Hexachlorocyclopentadiene	77-47-4	μg/kg	NA	NA	NA	NA	NT	NT										
e I	Hexachloroethane	67-72-1	μg/kg	NA	NA	NA	NA	NT	NT										
S	Indeno (1,2,3-cd) pyrene	193-39-5	μg/kg	NA	8,200	11,000	500	NT	NT										
	Isophorone*	78-59-1	μg/kg	NA	4,400	NA	NA	NT	NT										
	N-Nitroso-di-n-propylamine	621-64-7	μg/kg	NA	NA	NA	NA	NT	NT										
	N-Nitrosodiphenylamine	86-30-6	μg/kg	NA	NA	NA	NA	NT	NT										
	Naphthalene	91-20-3	μg/kg	NA	12,000	1,000,000	100,000	NT	NT										
	Nitrobenzene*	98-95-3	μg/kg	NA	170	140,000	NA	NT	NT										
	Pentachlorophenol	87-86-5	μg/kg	NA	800	55,000	2,400	NT	NT										
	Phenanthrene	85-01-8	μg/kg	NA	1,000,000	1,000,000	100,000	NT	NT										
	Phenol	108-95-2	μg/kg	NA	330	1,000,000	100,000	NT	NT										
	Pyrene	129-00-0	μg/kg	NA	1,000,000	1,000,000	100,000	NT	NT										
	Total SVOCs		μg/kg	NA	NA	NA	NA	NT	NT										
	Total SVOC tics		μg/kg	NA	NA	NA	NA	NT	NT										
	1,1,1-Trichloroethane	71-55-6	μg/kg	NA	680	1,000,000	100,000	NT	NT										
	1,1,2,2-Tetrachloroethane*	79-34-5	μg/kg	NA	600	NA	NA	NT	NT										
	1,1,2-Trichloroethane	79-00-5	μg/kg	NA	NA	NA	NA	NT	NT										
	1,1-Dichloroethane	75-34-3	μg/kg	NA	270	480,000	19,000	NT	NT										
	1,1-Dichloroethene	75-35-4	μg/kg	NA	330	1,000,000	100,000	NT	NT										
	1,2,3-Trichlorobenzene	87-61-6	μg/kg	NA	NA	NA	NA	NT	NT										
	1,2,4-Trichlorobenzene*	120-82-1	μg/kg	NA	3400	NA	NA	NT	NT										
	1,2,4-Trimethylbenzene	526-73-8	μg/kg	NA	NA	NA	NA	NT	NT										
	1,2-Dibromo-3-Chloropropane		μg/kg	NA	NA	NA	NA	NT	NT										
	1,2-Dibromoethane	106-93-4	μg/kg	NA	NA	NA	NA	NT	NT										
	1,2-Dichlorobenzene	95-50-1	μg/kg	NA	1,100	1,000,000	100,000	NT	NT										
ខ	1,2-Dichloroethane	107-06-2	μg/kg	NA	20	60,000	2,300	NT	NT										
ani	1,2-Dichloropropane	78-87-5	μg/kg	NA	NA	NA	NA	NT	NT										
Org	1,3,5-Trimethylbenzene	108-67-8	μg/kg	NA	8,400	380,000	47,000	NT	NT										
9 _	1,3-Dichlorobenzene	541-73-1	μg/kg	NA	2,400	560,000	17,000	NT	NT										
ati	1,4-Dichlorobenzene	106-46-7	μg/kg	NA	1,800	250,000	9,800	NT	NT										
<u> </u>	1,4-dioxane	123-91-1	μg/kg	NA	100	250,000	9,800	NT	NT										
_	2-Butanone	78-93-3	μg/kg	NA	120	1,000,000	100,000	NT	NT										
	2-Hexanone	591-78-6	μg/kg	NA	NA	NA	NA	NT	NT										

							Sample Identification Sample Date Sample Time	CS-012-021114 2/11/2014 1018	CS-013-021114 2/11/2014 1100	CS-014-021114 2/11/2014 1122	CS-015-021114 2/11/2014 1135	CS-016-021114 2/11/2014 1202	CS-017-021114 2/11/2014 1221	CS-018-021414 2/14/2014 0940	CS-019-021414 2/14/2014 1005	CS-020-021414 2/14/2014 1020	CS-021-021414 2/14/2014 1041	CS-022-021414 2/14/2014 1059	CS-023-021414 2/14/2014 1134
	Analyte	Cas No.	Units	USEPA Part 761.61 "High Occupancy Area" Soil Cleanup Level	Part 375 Protection of Groundwater SCO	Part 375 Industrial Use SCO	Part 375 Residential Use SCO	Result											
	4-Methyl-2-pentanone*	108-10-1	μg/kg	NA	1000	NA	NA	NT											
	Acetone	67-64-1	μg/kg	NA	50	1,000,000	100,000	NT											
	Benzene	71-43-2	μg/kg	NA	60	89,000	2,900	NT											
	Bromochloromethane	74-97-5	μg/kg	NA	NA	NA	NA	NT											
	Bromodichloromethane	75-27-4	μg/kg	NA	NA	NA	NA	NT											
	Bromoform	75-25-2	μg/kg	NA	NA	NA	NA	NT											
	Bromomethane	74-83-9	μg/kg	NA	NA	NA	NA	NT											
	Carbon disulfide*	75-15-0	μg/kg	NA	2,700	NA	NA	NT											
	Carbon Tetrachloride	56-23-5	μg/kg	NA	760	44,000	1,400	NT											
	Chlorobenzene	108-90-7	μg/kg	NA	1,100	1,000,000	100,000	NT											
	Chloroethane*	75-00-3	μg/kg	NA	1,900	NA TOO OOO	NA 12.222	NT											
	Chloroform	67-66-3	μg/kg	NA	370	700,000	10,000	NT											
	Chloromethane	74-87-3	μg/kg	NA	NA 252	NA 1 222 222	NA 50.000	NT											
	cis-1,2-Dichloroethene	156-59-2	μg/kg	NA NA	250 NA	1,000,000	59,000	NT	NT	NT NT	NT NT	NT	NT	NT	NT	NT	NT NT	NT	NT
	cis-1,3-Dichloropropene	10061-01-5	μg/kg	NA NA		NA	NA NA	NT	NT NT		NT NT	NT NT	NT	NT NT	NT	NT		NT	NT
	Cyclohexane	110-82-7	μg/kg	NA NA	NA NA	NA	NA NA	NT NT		NT NT	NT NT	NT	NT NT	NT NT	NT NT	NT	NT NT	NT	NT NT
	Dibromochloromethane Dichlorodifluoromethane	124-48-1 75-71-8	μg/kg	NA NA	NA NA	NA NA	NA NA	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
		100-41-4	μg/kg	NA NA	1.000	780.000	30.000	NT	NT NT	NT NT	NT NT	NT NT	NT	NT NT	NT	NT NT	NT NT	NT NT	NT NT
	Ethylbenzene Freon 113*	76-13-1	μg/kg	NA NA	6.000	780,000 NA	30,000 NA	NT	NT NT	NT	NT NT	NT	NT	NT NT	NT	NT NT	NT NT	NT NT	NT NT
	Isopropylbenzene*	98-82-8	μg/kg μg/kg	NA NA	2,300	NA NA	NA NA	NT	NT NT	NT	NT NT	NT	NT	NT NT	NT	NT	NT NT	NT	NT NT
	m,p-Xylene	136777-61-2		NA NA	1,600	1,000,000	100,000	NT											
	Methyl acetate	79-20-9	μg/kg μg/kg	NA NA	1,600 NA	1,000,000 NA	NA	NT											
	Methyl tert-butyl Ether	1634-04-4	μg/kg	NA NA	930	1,000,000	62,000	NT											
ဋ်	Methylcyclohexane	108-87-2	μg/kg	NA NA	NA NA	NA	NA	NT											
Organi	Methylene chloride	75-09-2	μg/kg	NA NA	50	1,000,000	51,000	NT											
ō	Naphthalene	91-20-3	μg/kg	NA NA	NA NA	NA	NA	NT											
ë	n-Butylbenzene	104-51-8	μg/kg	NA NA	12,000	1,000,000	100,000	NT											
Volatile	n-Propylbenzene	103-65-1	μg/kg	NA NA	3,900	1,000,000	100,000	NT											
>	o-Xylene	95-47-6	μg/kg	NA NA	1,600	1,000,000	100,000	NT											
	p-Isopropyltoluene	99-87-6	μg/kg	NA NA	NA NA	NA NA	NA NA	NT											
	sec-Butylbenzene	135-98-8	μg/kg	NA	11,000	1,000,000	100,000	NT											
	Styrene	100-42-5	μg/kg	NA	NA	NA	NA NA	NT											
	tert-Butylbenzene	98-06-6	μg/kg	NA	5,900	1,000,000	100,000	NT											
	Tetrachloroethene	127-18-4	μg/kg	NA	1,300	300,000	5,500	NT											
	Toluene	108-88-3	μg/kg	NA	700	1,000,000	100,000	NT											
	trans-1,2-Dichloroethene	156-60-5	μg/kg	NA	190	1,000,000	100,000	NT											
	trans-1,3-Dichloropropene	10061-02-6	μg/kg	NA	NA	NA	NA	NT											
	Trichloroethene	79-01-6	μg/kg	NA	470	400,000	10,000	NT											
	Trichlorofluoromethane	75-69-4	μg/kg	NA	NA	NA	NA	NT											
	Vinyl chloride	75-01-4	μg/kg	NA	20	27,000	210	NT											
	Total VOCs	NA	μg/kg	NA	NA	NA	NA	NT											
	Total VOC TICS	NA	NA	NA	NA	NA	NA	NT											

							Sample Identification	CS-024-021414	CS-025-021414	CS-026-021414	CS-027-021714	CS-028-021714	CS-029-021714	CS-030-021714	CS-031-021714	CS-032-021714	CS-033-021714	CS-034-021714	CS-035-021714
							Sample Date	2/14/2014	2/14/2014	2/14/2014	2/17/2014	2/17/2014	2/17/2014	2/17/2014	2/17/2014	2/17/2014	2/17/2014	2/17/2014	2/17/2014
							Sample Time	1150	1219	1229	0933	1040	1057	1115	1136	1321	1337	1401	1413
				USEPA Part 761.61 "High	Part 375	Part 375													
	Analyte	Cas No.	Units	Occupancy Area" Soil	Protection of	Industrial	Part 375 Residential	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
				Cleanup Level	Groundwater SCO	Use SCO	Use SCO												
	PCB- 1016**	12674-11-2	mg/kg	NA	NA	NA	NA	<0.468	<0.476	<0.460	<0.362	<0.349	<0.333	<0.354	<0.360	<0.358	<0.386	<0.410	<0.393
	PCB- 1221**	11104-28-2		NA	NA	NA	NA	<0.468	<0.476	<0.460	<0.362	<0.349	<0.333	<0.354	<0.360	<0.358	<0.386	<0.410	<0.393
	PCB- 1232**	11141-16-5		NA	NA	NA	NA	<0.468	<0.476	<0.460	<0.362	<0.349	<0.333	<0.354	<0.360	<0.358	<0.386	<0.410	<0.393
S	PCB- 1242**	53469-21-9	mg/kg	NA	NA	NA	NA	<0.468	<0.476	<0.460	<0.362	<0.349	<0.333	<0.354	<0.360	<0.358	<0.386	<0.410	<0.393
8	PCB- 1248**	12672-29-6	mg/kg	NA	NA	NA	NA	1.23	1.63	<0.460	1.46	<0.349	1.42	1.97	1.47	2.82	2.16	0.648	0.644
_	PCB- 1254**	11097-69-1	mg/kg	NA	NA	NA	NA	2.59	2.45	1.03	1.76	1.58	1.81	2.76	1.67	3.42	2.16	0.852	0.818
	PCB- 1260**	11096-82-5		NA	NA	NA	NA	<0.468	<0.476	<0.460	<0.362	<0.349	<0.333	<0.354	<0.360	<0.358	<0.386	<0.410	<0.393
	PCB- 1262**	37324-23-5		NA	NA	NA	NA	<0.468	<0.476	<0.460	<0.362	<0.349	<0.333	<0.354	<0.360	<0.358	<0.386	<0.410	<0.393
	PCB- 1268** Total PCB's	11100-14-4	mg/kg	NA 1	NA 3.2	NA 25	NA 1	<0.468 3.820	<0.476 4.080	<0.460 1.030	<0.362 3.220	<0.349 1.580	<0.333 3.230	<0.354 4.73	<0.360 3.140	<0.358 6.240	<0.386 4.320	<0.410	<0.393
	1,1-Biphenyl	NA 92-52-4	mg/kg μg/kg	NA NA	NA	NA	NA NA	NT	4.080 NT	NT	< 378	NT	< 330	NT	3.140 NT	NT	4.320 NT	1.500 NT	1.462 NT
	1,2,4,5-Tetrachlorobenzene	95-94-3	μg/kg	NA NA	NA NA	NA NA	NA NA	NT	NT	NT	< 378	NT	< 330	NT	NT	NT	NT	NT	NT
	1,2,4-Trichlorobenzene	120-82-1	μg/kg	NA NA	NA	NA	NA	NT	NT	NT	< 378	NT	< 330	NT	NT	NT	NT	NT	NT
	1,2-Dichlorobenzene	95-50-1	μg/kg	NA	NA	NA	NA	NT	NT	NT	< 378	NT	< 330	NT	NT	NT	NT	NT	NT
	1,3-Dichlorobenzene	541-73-1	μg/kg	NA	NA	NA	NA	NT	NT	NT	< 378	NT	< 330	NT	NT	NT	NT	NT	NT
	1,4-Dichlorobenzene	106-46-7	μg/kg	NA	NA	NA	NA	NT	NT	NT	< 378	NT	< 330	NT	NT	NT	NT	NT	NT
	2,3,4,6-Tetrachlorophenol	58-90-2	μg/kg	NA	NA	NA	NA	NT	NT	NT	< 378	NT	< 330	NT	NT	NT	NT	NT	NT
	2,4,5-Trichlorophenol*	95-95-4	μg/kg	NA	100	NA	NA	NT	NT	NT	< 756	NT	< 660	NT	NT	NT	NT	NT	NT
	2,4,6-Trichlorophenol	88-06-2	μg/kg	NA	NA 100	NA	NA	NT	NT	NT	< 378	NT	< 330	NT	NT	NT	NT	NT	NT
	2,4-Dichlorophenol* 2,4-Dimethylphenol	120-83-2 105-67-9	μg/kg	NA NA	400 NA	NA NA	NA NA	NT NT	NT NT	NT NT	< 378 < 378	NT NT	< 330 < 330	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
	2,4-Dinitrophenol*	51-28-5	μg/kg μg/kg	NA NA	200	NA NA	NA NA	NT	NT	NT	< 756	NT	< 660	NT	NT	NT	NT	NT	NT
	2,4-Dinitrophenol	121-14-2	μg/kg	NA NA	NA NA	NA NA	NA NA	NT	NT	NT	< 378	NT	< 330	NT	NT	NT	NT	NT	NT
	2,6-Dinitrotoluene*	606-20-2	μg/kg	NA	1,000	NA	NA	NT	NT	NT	< 378	NT	< 330	NT	NT	NT	NT	NT	NT
	2-Chloronaphthalene	91-58-7	μg/kg	NA	NA	NA	NA	NT	NT	NT	< 378	NT	< 330	NT	NT	NT	NT	NT	NT
	2-Chlorophenol	95-57-8	μg/kg	NA	NA	NA	NA	NT	NT	NT	< 378	NT	< 330	NT	NT	NT	NT	NT	NT
vo	2-Methylnapthalene*	91-57-6	μg/kg	NA	36,400	NA	NA	NT	NT	NT	< 378	NT	< 330	NT	NT	NT	NT	NT	NT
ë	2-Methylphenol	95-48-7	μg/kg	NA	330	1,000,000	100,000	NT	NT	NT	< 378	NT	< 330	NT	NT	NT	NT	NT	NT
rga	2-Nitroaniline* 2-Nitrophenol*	88-74-4 88-75-5	μg/kg	NA NA	400 300	NA NA	NA NA	NT NT	NT NT	NT NT	< 756 < 378	NT NT	< 660 < 330	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
o O	3&4-Methylphenol	108-39-4	μg/kg μg/kg	NA NA	330	1,000,000	100,000	NT	NT	NT	< 378	NT	< 330	NT	NT	NT	NT	NT	NT
ij	3,3'-Dichlorobenzidine	91-94-1	μg/kg	NA NA	NA NA	NA	NA	NT	NT	NT	< 378	NT	< 330	NT	NT	NT	NT	NT	NT
ğ	3-Nitroaniline*	99-09-2	μg/kg	NA	500	NA	NA	NT	NT	NT	< 756	NT	< 660	NT	NT	NT	NT	NT	NT
<u>=</u>	4,6-Dinitro-2-methylphenol	534-52-1	μg/kg	NA	NA	NA	NA	NT	NT	NT	< 756	NT	< 660	NT	NT	NT	NT	NT	NT
Sel	4-Bromophenyl phenyl ether	101-55-3	μg/kg	NA	NA	NA	NA	NT	NT	NT	< 378	NT	< 330	NT	NT	NT	NT	NT	NT
	4-Chloro-3-methylphenol	59-50-7	μg/kg	NA	NA	NA	NA	NT	NT	NT	< 378	NT	< 330	NT	NT	NT	NT	NT	NT
	4-Chloroaniline*	106-47-8	μg/kg	NA	220	NA	NA	NT	NT	NT	< 378	NT	< 330	NT	NT	NT	NT	NT	NT
			μg/kg	NA NA	NA NA	NA NA	NA NA	NT	NT	NT	< 378	NT	< 330	NT	NT	NT	NT	NT NT	NT
	4-Nitroaniline 4-Nitrophenol*	100-01-6 100-02-7	μg/kg μg/kg	NA NA	NA 100	NA NA	NA NA	NT NT	NT NT	NT NT	< 756 < 756	NT NT	< 660 < 660	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
	Acenaphthene	83-32-9	μg/kg μg/kg	NA NA	98,000	1,000,000	100,000	NT	NT	NT	< 378	NT	< 330	NT	NT	NT	NT	NT	NT
	Acenaphthylene	208-96-8	μg/kg	NA	107,000	1,000,000	100,000	NT	NT	NT	< 378	NT	< 330	NT	NT	NT	NT	NT	NT
	Acetophenone	98-86-2	μg/kg	NA	NA	NA	NA	NT	NT	NT	< 378	NT	721	NT	NT	NT	NT	NT	NT
	Anthracene	120-12-7	μg/kg	NA	1,000,000	1,000,000	100,000	NT	NT	NT	< 378	NT	<330	NT	NT	NT	NT	NT	NT
	Atrazine	1912-24-9	μg/kg	NA	NA	NA	NA	NT	NT	NT	< 378	NT	<330	NT	NT	NT	NT	NT	NT
	Benzaldehyde	100-52-7	μg/kg	NA	NA	NA	NA	NT	NT	NT	< 378	NT	<330	NT	NT	NT	NT	NT	NT
	Benzo (a) anthracene	56-55-3	μg/kg	NA NA	1,000	11,000	1,000	NT NT	NT	NT	964	NT	446	NT NT	NT	NT NT	NT	NT NT	NT NT
	Benzo (a) pyrene Benzo (b) fluoranthene	50-32-8 205-99-2	μg/kg μg/kg	NA NA	22,000 1,700	1,100 11,000	1,000	NT	NT NT	NT NT	1,070 1,180	NT NT	523 610	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
	Benzo (g,h,i) perylene	191-24-2	μg/kg μg/kg	NA NA	1,000,000	1,000,000	100,000	NT	NT	NT	997	NT	469	NT	NT	NT	NT	NT	NT
	Benzo (k) fluoranthene	207-08-9	μg/kg	NA NA	1,700	110,000	1,000	NT	NT	NT	825	NT	353	NT	NT	NT	NT	NT	NT

Table 5

Debris Pile 5 - Summary of Confirmatory Soil Sample Analytical Results

Debris Pile Remediation

80 Steel Street

Rochester, New York

						Sample Identification Sample Date	2/14/2014	2/14/2014	2/14/2014	2/17/2014	2/17/2014	2/17/2014	2/17/2014	CS-031-021714 2/17/2014	CS-032-021714 2/17/2014	CS-033-021714 2/17/2014	CS-034-021714 2/17/2014	CS-035-021714 2/17/2014
Analyte	Cas No.	Units	USEPA Part 761.61 "High Occupancy Area" Soil Cleanup Level	Part 375 Protection of Groundwater SCO	Part 375 Industrial Use SCO	Sample Time Part 375 Residential Use SCO	1150 Result	1219 Result	1229 Result	0933 Result	1040 Result	1057 Result	1115 Result	1136 Result	1321 Result	1337 Result	1401 Result	1413 Result
Bis (2-chloroethoxy) methane	111-91-1	μg/kg	NA	NA	NA	NA	NT	NT	NT	<378	NT	<330	NT	NT	NT	NT	NT	NT
Bis (2-chloroethyl) ether	111-44-4	μg/kg	NA	NA	NA	NA	NT	NT	NT	<378	NT	<330	NT	NT	NT	NT	NT	NT
Bis (2-chloroisopropyl) ether	39638-32-9	μg/kg	NA	NA	NA	NA	NT	NT	NT	<378	NT	<330	NT	NT	NT	NT	NT	NT
Bis (2-ethylhexyl) phthalate*	117-81-7	μg/kg	NA	435,000	NA	NA	NT	NT	NT	3,190	NT	616	NT	NT	NT	NT	NT	NT
Butylbenzylphthalate*	85-68-7	μg/kg	NA	122,000	NA	NA	NT	NT	NT	831	NT	<330	NT	NT	NT	NT	NT	NT
Caprolactam	105-60-2	μg/kg	NA	NA	NA	NA	NT	NT	NT	<378	NT	<330	NT	NT	NT	NT	NT	NT
Carbazole	86-74-8	μg/kg	NA	NA	NA	NA	NT	NT	NT	<378	NT	<330	NT	NT	NT	NT	NT	NT
Chrysene	218-01-9	μg/kg	NA	1,000	110,000	1,000	NT	NT	NT	1,040	NT	468	NT	NT	NT	NT	NT	NT
Di-n-butyl phthalate*	84-74-2	μg/kg	NA	8,100	NA	NA	NT	NT	NT	<378	NT	<330	NT	NT	NT	NT	NT	NT
Di-n-octylphthalate*	117-84-0	μg/kg	NA	120,000	NA	NA	NT	NT	NT	<378	NT	<330	NT	NT	NT	NT	NT	NT
Dibenz (a,h) anthracene	53-70-3	μg/kg	NA	1,000,000	1,100	330	NT	NT	NT	<378	NT	<330	NT	NT	NT	NT	NT	NT
Dibenzofuran	132-64-9	μg/kg	NA	210,000	1,000,000	14,000	NT	NT	NT	<378	NT	<330	NT	NT	NT	NT	NT	NT
Diethyl phthalate*	84-66-2	μg/kg	NA	7,100	NA	NA	NT	NT	NT	<378	NT	<330	NT	NT	NT	NT	NT	NT
Dimethyl phthalate*	131-11-3	μg/kg	NA	27,000	NA	NA	NT	NT	NT	<756	NT	<660	NT	NT	NT	NT	NT	NT
Fluoranthene	206-44-0	μg/kg	NA	1,000,000	1,000,000	100,000	NT	NT	NT	1,730	NT	797	NT	NT	NT	NT	NT	NT
Fluorene	86-73-7	μg/kg	NA	386,000	1,000,000	100,000	NT	NT	NT	<378	NT	<330	NT	NT	NT	NT	NT	NT
Hexachlorobenzene	118-74-1	μg/kg	NA	3,200	12,000	330	NT	NT	NT	<378	NT	<330	NT	NT	NT	NT	NT	NT
Hexachlorobutadiene	87-68-3	μg/kg	NA	NA	NA	NA	NT	NT	NT	<378	NT	<330	NT	NT	NT	NT	NT	NT
Hexachlorocyclopentadiene	77-47-4	μg/kg	NA	NA	NA	NA	NT	NT	NT	<378	NT	<330	NT	NT	NT	NT	NT	NT
Hexachloroethane	67-72-1	μg/kg	NA	NA	NA	NA	NT	NT	NT	<378	NT	<330	NT	NT	NT	NT	NT	NT
Indeno (1,2,3-cd) pyrene	193-39-5	μg/kg	NA	8,200	11,000	500	NT	NT	NT	1,190	NT	684	NT	NT	NT	NT	NT	NT
Isophorone*	78-59-1	μg/kg	NA NA	4,400	NA NA	NA	NT	NT	NT	<378	NT	<330	NT	NT	NT	NT	NT	NT
N-Nitroso-di-n-propylamine	621-64-7	μg/kg	NA NA	NA NA	NA	NA	NT	NT	NT	<378	NT	<330	NT	NT	NT	NT	NT	NT
N-Nitrosodiphenylamine	86-30-6	μg/kg	NA	NA	NA	NA	NT	NT	NT	<378	NT	<330	NT	NT	NT	NT	NT	NT
Naphthalene	91-20-3	μg/kg	NA	12,000	1,000,000	100,000	NT	NT	NT	<378	NT	<330	NT	NT	NT	NT	NT	NT
Nitrobenzene*	98-95-3	μg/kg	NA NA	170	140,000	NA	NT	NT	NT	<378	NT	<330	NT	NT	NT	NT	NT	NT
Pentachlorophenol	87-86-5	μg/kg	NA	800	55,000	2,400	NT	NT	NT	<756	NT	<660	NT	NT	NT	NT	NT	NT
Phenanthrene	85-01-8	μg/kg	NA NA	1,000,000	1,000,000	100,000	NT	NT	NT	825	NT	403	NT	NT	NT	NT	NT	NT
Phenol	108-95-2	μg/kg	NA NA	330	1,000,000	100,000	NT	NT	NT	<378	NT	<330	NT	NT	NT	NT	NT	NT
Pyrene	129-00-0	μg/kg	NA NA	1,000,000	1,000,000	100,000	NT	NT	NT	1,750	NT	729	NT	NT	NT	NT	NT	NT
Total SVOCs	125-00-0	μg/kg	NA NA	NA	NA	NA	NT	NT	NT	15,592	NT	6,819	NT	NT	NT	NT	NT	NT
Total SVOCs		μg/kg μg/kg	NA NA	NA NA	NA NA	NA NA	NT	NT	NT	13,732	NT	6,966	NT	NT	NT	NT	NT	NT
1,1,1-Trichloroethane	71-55-6	μg/kg μg/kg	NA NA	680	1,000,000	100,000	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
1,1,2,2-Tetrachloroethane*	79-34-5	μg/kg μg/kg	NA NA	600	1,000,000 NA	NA	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
1,1,2-Trichloroethane	79-00-5	μg/kg	NA NA	NA NA	NA	NA NA	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
1,1-Dichloroethane	75-34-3		NA NA	270	480,000	19,000	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
1,1-Dichloroethene	75-34-3	μg/kg μg/kg	NA NA	330	1,000,000	19,000	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
			NA NA		1,000,000 NA	NA	NT	NT	NT				NT	NT	NT	NT	NT	NT
1,2,3-Trichlorobenzene	87-61-6	μg/kg	NA NA	NA 3400	NA NA	NA NA	NT NT	NT NT	NT NT	<26.8 <26.8	NT NT	< 87.6 < 87.6	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
1,2,4-Trichlorobenzene*	120-82-1	μg/kg	NA NA	3400 NA	NA NA	NA NA	NT NT	NT NT	NT NT	<26.8 <10.7	NT NT		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
1,2,4-Trimethylbenzene	526-73-8	μg/kg					NT NT		NT NT		NT NT	< 35.0		NT NT		NT NT	NT NT	NT NT
1,2-Dibromo-3-Chloropropane		μg/kg	NA NA	NA NA	NA NA	NA NA		NT		<53.6		< 175	NT		NT			
1,2-Dibromoethane	106-93-4	μg/kg	NA NA	NA 1 100	NA 1 000 000	NA 100.000	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
1,2-Dichlorobenzene	95-50-1	μg/kg	NA NA	1,100	1,000,000	100,000	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
1,2-Dichloroethane	107-06-2	μg/kg	NA NA	20	60,000	2,300	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
1,2-Dichloropropane	78-87-5	μg/kg	NA NA	NA	NA	NA 47.000	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
1,3,5-Trimethylbenzene	108-67-8	μg/kg	NA NA	8,400	380,000	47,000	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
1,3-Dichlorobenzene	541-73-1	μg/kg	NA NA	2,400	560,000	17,000	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
1,4-Dichlorobenzene	106-46-7	μg/kg	NA NA	1,800	250,000	9,800	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
1,4-dioxane	123-91-1	μg/kg	NA NA	100	250,000	9,800	NT	NT	NT	<107	NT	< 350	NT	NT	NT	NT	NT	NT
2-Butanone	78-93-3	μg/kg	NA	120	1,000,000	100,000	NT	NT	NT	<53.6	NT	< 175	NT	NT	NT	NT	NT	NT
2-Hexanone	591-78-6	μg/kg	NA	NA	NA	NA	NT	NT	NT	<26.8	NT	< 87.6	NT	NT	NT	NT	NT	NT

							Sample Identification	CS 024 021414	CS 025 021414	CS 026 021414	CS 027 021714	CS 028 021714	CS 029 021714	CS 030 021714	CS 021 021714	CS-032-021714	CS-033-021714	CS-034-021714	CS 025 021714
							Sample Date	2/14/2014	2/14/2014	2/14/2014	2/17/2014	2/17/2014	2/17/2014	2/17/2014	2/17/2014	2/17/2014	2/17/2014	2/17/2014	2/17/2014
							Sample Time	1150	1219	1229	0933	1040	1057	1115	1136	1321	1337	1401	1413
	Analyte	Cas No.	Units	USEPA Part 761.61 "High Occupancy Area" Soil Cleanup Level	Part 375 Protection of Groundwater SCO	Part 375 Industrial Use SCO	Part 375 Residential Use SCO	Result											
	4-Methyl-2-pentanone*	108-10-1	μg/kg	NA	1000	NA	NA	NT	NT	NT	<26.8	NT	< 87.6	NT	NT	NT	NT	NT	NT
	Acetone	67-64-1	μg/kg	NA	50	1,000,000	100,000	NT	NT	NT	<53.6	NT	1,210	NT	NT	NT	NT	NT	NT
	Benzene	71-43-2	μg/kg	NA	60	89,000	2,900	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	Bromochloromethane	74-97-5	μg/kg	NA	NA	NA	NA	NT	NT	NT	<26.8	NT	< 87.6	NT	NT	NT	NT	NT	NT
	Bromodichloromethane	75-27-4	μg/kg	NA	NA	NA	NA	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	Bromoform	75-25-2	μg/kg	NA	NA	NA	NA	NT	NT	NT	<26.8	NT	< 87.6	NT	NT	NT	NT	NT	NT
	Bromomethane	74-83-9	μg/kg	NA	NA	NA	NA	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	Carbon disulfide*	75-15-0	μg/kg	NA	2,700	NA	NA	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	Carbon Tetrachloride	56-23-5	μg/kg	NA	760	44,000	1,400	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	Chlorobenzene	108-90-7	μg/kg	NA	1,100	1,000,000	100,000	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	Chloroethane*	75-00-3	μg/kg	NA	1,900	NA	NA	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	Chloroform	67-66-3	μg/kg	NA	370	700,000	10,000	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	Chloromethane	74-87-3	μg/kg	NA	NA	NA	NA	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	cis-1,2-Dichloroethene	156-59-2	μg/kg	NA	250	1,000,000	59,000	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	cis-1,3-Dichloropropene	10061-01-5	μg/kg	NA	NA	NA	NA	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	Cyclohexane	110-82-7	μg/kg	NA	NA	NA	NA	NT	NT	NT	<53.6	NT	< 175	NT	NT	NT	NT	NT	NT
	Dibromochloromethane	124-48-1	μg/kg	NA	NA	NA	NA	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	Dichlorodifluoromethane	75-71-8	μg/kg	NA	NA	NA	NA	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	Ethylbenzene	100-41-4	μg/kg	NA	1,000	780,000	30,000	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	Freon 113*	76-13-1	μg/kg	NA	6,000	NA	NA	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	Isopropylbenzene*	98-82-8	μg/kg	NA	2,300	NA	NA	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	m,p-Xylene	136777-61-2	μg/kg	NA	1,600	1,000,000	100,000	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	Methyl acetate	79-20-9	μg/kg	NA	NA	NA	NA	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
v	Methyl tert-butyl Ether	1634-04-4	μg/kg	NA	930	1,000,000	62,000	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
jë _	Methylcyclohexane	108-87-2	μg/kg	NA	NA	NA	NA	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
Orga	Methylene chloride	75-09-2	μg/kg	NA	50	1,000,000	51,000	NT	NT	NT	<26.8	NT	< 87.6	NT	NT	NT	NT	NT	NT
Ō	Naphthalene	91-20-3	μg/kg	NA	NA	NA	NA	NT	NT	NT	<26.8	NT	< 87.6	NT	NT	NT	NT	NT	NT
atile	n-Butylbenzene	104-51-8	μg/kg	NA	12,000	1,000,000	100,000	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
ola	n-Propylbenzene	103-65-1	μg/kg	NA	3,900	1,000,000	100,000	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
>	o-Xylene	95-47-6	μg/kg	NA	1,600	1,000,000	100,000	NT	NT	NT	<10.7	NT	55	NT	NT	NT	NT	NT	NT
	p-Isopropyltoluene	99-87-6	μg/kg	NA	NA	NA	NA	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	sec-Butylbenzene	135-98-8	μg/kg	NA	11,000	1,000,000	100,000	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	Styrene	100-42-5	μg/kg	NA	NA	NA	NA	NT	NT	NT	<26.8	NT	< 87.6	NT	NT	NT	NT	NT	NT
	tert-Butylbenzene	98-06-6	μg/kg	NA	5,900	1,000,000	100,000	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	Tetrachloroethene	127-18-4	μg/kg	NA	1,300	300,000	5,500	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	Toluene	108-88-3	μg/kg	NA	700	1,000,000	100,000	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	trans-1,2-Dichloroethene	156-60-5	μg/kg	NA	190	1,000,000	100,000	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	trans-1,3-Dichloropropene	10061-02-6	μg/kg	NA	NA	NA	NA	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	Trichloroethene	79-01-6	μg/kg	NA	470	400,000	10,000	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	Trichlorofluoromethane	75-69-4	μg/kg	NA	NA	NA	NA	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	Vinyl chloride	75-01-4	μg/kg	NA	20	27,000	210	NT	NT	NT	<10.7	NT	< 35.0	NT	NT	NT	NT	NT	NT
	Total VOCs	NA	μg/kg	NA	NA	NA	NA	NT	NT	NT	< 26.8	NT	1,265	NT	NT	NT	NT	NT	NT
	Total VOC TICS	NA	NA	NA	NA	NA	NA	NT	NT	NT	< 26.8	NT	126	NT	NT	NT	NT	NT	NT

							Sample Identification Sample Date Sample Time	CS-036-021714 2/17/2014 1428	CS-059-030314 3/3/2014 1034	CS-060-030314 3/3/2014 1051	CS-061-030314 3/3/2014 1105	CS-062-030314 3/3/2014 1115	CS-063-030314 3/3/2014 1127	CS-064-030314 3/3/2014 1140	CS-065-030314 3/3/2014 1156	CS-066-030314 3/3/2014 1220
	Analyte	Cas No.	Units	USEPA Part 761.61 "High Occupancy Area" Soil Cleanup Level	Part 375 Protection of Groundwater SCO	Part 375 Industrial Use SCO	Part 375 Residential Use SCO	Result	Result	Result	Result	Result	Result	Result	Result	Result
	PCB- 1016**	12674-11-2	mg/kg	NA	NA	NA	NA	<0.405	<0.374	<0.424	<0.362	<0.405	<0.390	<0.397	<0.446	<0.400
1	PCB- 1221**	11104-28-2	mg/kg	NA	NA	NA	NA	<0.405	<0.374	<0.424	<0.362	<0.405	<0.390	<0.397	<0.446	<0.400
1	PCB- 1232**	11141-16-5	mg/kg	NA	NA	NA	NA	<0.405	<0.374	<0.424	<0.362	<0.405	<0.390	<0.397	<0.446	<0.400
Ŋ.	PCB- 1242**	53469-21-9	mg/kg	NA	NA	NA	NA	<0.405	<0.374	<0.424	<0.362	<0.405	<0.390	<0.397	<0.446	<0.400
PCBs	PCB- 1248**	12672-29-6	mg/kg	NA	NA	NA	NA	<0.405	0.908	<0.424	1.11	<0.405	2.16	<0.397	<0.446	<0.400
- 1	PCB- 1254**	11097-69-1	mg/kg	NA	NA	NA	NA	1.57	1.35	3.77	1.7	<0.405	4.09	4.18	6.31	2.52
1	PCB- 1260**	11096-82-5	mg/kg	NA	NA	NA	NA	<0.405	<0.374	2.71	<0.362	<0.405	<0.390	2.48	2.11	<0.400
1	PCB- 1262**	37324-23-5	mg/kg	NA	NA	NA	NA	6.61	<0.374	<0.424	<0.362	<0.405	<0.390	<0.397	<0.446	4.29
1	PCB- 1268**	11100-14-4	mg/kg	NA	NA	NA	NA	<0.405	<0.374	<0.424	<0.362	<0.405	<0.390	<0.397	<0.446	<0.400
	Total PCB's	NA	mg/kg	1	3.2	25	1	8.180	2.258	6.480	2.810	0.000	6.250	6.660	8.420	6.810
1	1,1-Biphenyl	92-52-4	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,2,4,5-Tetrachlorobenzene	95-94-3	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
1	1,2,4-Trichlorobenzene	120-82-1	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
1	1,2-Dichlorobenzene	95-50-1	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
1	1,3-Dichlorobenzene	541-73-1	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
1	1,4-Dichlorobenzene	106-46-7	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
1	2,3,4,6-Tetrachlorophenol	58-90-2	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	2,4,5-Trichlorophenol*	95-95-4	μg/kg	NA	100	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
1	2,4,6-Trichlorophenol	88-06-2	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
1	2,4-Dichlorophenol*	120-83-2	μg/kg	NA	400	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	2,4-Dimethylphenol	105-67-9	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
1	2,4-Dinitrophenol*	51-28-5	μg/kg	NA	200	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
1	2,4-Dinitrotoluene	121-14-2	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
1	2,6-Dinitrotoluene*	606-20-2	μg/kg	NA	1,000	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
1	2-Chloronaphthalene	91-58-7	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	2-Chlorophenol	95-57-8	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
1	2-Methylnapthalene*	91-57-6	μg/kg	NA	36,400	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
<u>:S</u>	2-Methylphenol	95-48-7	μg/kg	NA	330	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
Organics	2-Nitroaniline*	88-74-4	μg/kg	NA	400	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
O I	2-Nitrophenol*	88-75-5	μg/kg	NA	300	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	3&4-Methylphenol	108-39-4	μg/kg	NA	330	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
<u>ati</u>	3,3'-Dichlorobenzidine	91-94-1	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
mi-Volatile	3-Nitroaniline*	99-09-2	μg/kg	NA	500	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
<u> </u>	4,6-Dinitro-2-methylphenol	534-52-1	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
Ser	4-Bromophenyl phenyl ether	101-55-3	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	4-Chloro-3-methylphenol	59-50-7	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	4-Chloroaniline*	106-47-8	μg/kg	NA	220	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	4-Chlorophenyl phenyl ether	7005-72-3	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	4-Nitroaniline	100-01-6	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	4-Nitrophenol*	100-02-7	μg/kg	NA	100	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Acenaphthene	83-32-9	μg/kg	NA	98,000	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Acenaphthylene	208-96-8	μg/kg	NA	107,000	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Acetophenone	98-86-2	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Anthracene	120-12-7	μg/kg	NA	1,000,000	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Atrazine	1912-24-9	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Benzaldehyde	100-52-7	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Benzo (a) anthracene	56-55-3	μg/kg	NA	1,000	11,000	1,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Benzo (a) pyrene	50-32-8	μg/kg	NA	22,000	1,100	1,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Benzo (b) fluoranthene	205-99-2	μg/kg	NA	1,700	11,000	1,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Benzo (g,h,i) perylene	191-24-2	μg/kg	NA	1,000,000	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Benzo (k) fluoranthene	207-08-9	μg/kg	NA	1,700	110,000	1,000	NT	NT	NT	NT	NT	NT	NT	NT	NT

Table 5

Debris Pile 5 - Summary of Confirmatory Soil Sample Analytical Results

Debris Pile Remediation

80 Steel Street

Rochester, New York

						Sample Identification Sample Date Sample Time	CS-036-021714 2/17/2014 1428	CS-059-030314 3/3/2014 1034	CS-060-030314 3/3/2014 1051	CS-061-030314 3/3/2014 1105	CS-062-030314 3/3/2014 1115	CS-063-030314 3/3/2014 1127	CS-064-030314 3/3/2014 1140	CS-065-030314 3/3/2014 1156	CS-066-0303 3/3/2014 1220
Analyte	Cas No.	Units	USEPA Part 761.61 "High Occupancy Area" Soil Cleanup Level	Part 375 Protection of Groundwater SCO	Part 375 Industrial Use SCO	Part 375 Residential Use SCO	Result	Result	Result	Result	Result	Result	Result	Result	Result
Bis (2-chloroethoxy) methane	111-91-1	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
Bis (2-chloroethyl) ether	111-44-4	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
Bis (2-chloroisopropyl) ether	39638-32-9	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
Bis (2-ethylhexyl) phthalate*	117-81-7	μg/kg	NA	435,000	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
Butylbenzylphthalate*	85-68-7	μg/kg	NA	122,000	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
Caprolactam	105-60-2	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
Carbazole	86-74-8	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
Chrysene	218-01-9	μg/kg	NA	1,000	110,000	1,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
Di-n-butyl phthalate*	84-74-2	μg/kg	NA	8,100	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
Di-n-octylphthalate*	117-84-0	μg/kg	NA	120,000	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
Dibenz (a,h) anthracene	53-70-3	μg/kg	NA	1,000,000	1,100	330	NT	NT	NT	NT	NT	NT	NT	NT	NT
Dibenzofuran	132-64-9	μg/kg	NA	210,000	1,000,000	14,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
Diethyl phthalate*	84-66-2	μg/kg	NA	7,100	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
Dimethyl phthalate*	131-11-3	μg/kg	NA	27,000	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
Fluoranthene	206-44-0	μg/kg	NA	1,000,000	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
Fluorene	86-73-7	μg/kg	NA	386,000	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
Hexachlorobenzene	118-74-1	μg/kg	NA	3,200	12,000	330	NT	NT	NT	NT	NT	NT	NT	NT	NT
Hexachlorobutadiene	87-68-3	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
Hexachlorocyclopentadiene	77-47-4	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
Hexachloroethane	67-72-1	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
Indeno (1,2,3-cd) pyrene	193-39-5	μg/kg	NA	8,200	11,000	500	NT	NT	NT	NT	NT	NT	NT	NT	NT
Isophorone*	78-59-1	μg/kg	NA	4,400	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
N-Nitroso-di-n-propylamine	621-64-7	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
N-Nitrosodiphenylamine	86-30-6	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
Naphthalene	91-20-3	μg/kg	NA	12,000	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
Nitrobenzene*	98-95-3	μg/kg	NA	170	140,000	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
Pentachlorophenol	87-86-5	μg/kg	NA	800	55,000	2,400	NT	NT	NT	NT	NT	NT	NT	NT	NT
Phenanthrene	85-01-8	μg/kg	NA	1,000,000	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
Phenol	108-95-2	μg/kg	NA	330	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
Pyrene	129-00-0	μg/kg	NA	1,000,000	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
Total SVOCs		μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
Total SVOC tics		μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,1,1-Trichloroethane	71-55-6	μg/kg	NA	680	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,1,2,2-Tetrachloroethane*	79-34-5	μg/kg	NA	600	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,1,2-Trichloroethane	79-00-5	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,1-Dichloroethane	75-34-3	μg/kg	NA	270	480,000	19,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,1-Dichloroethene	75-35-4	μg/kg	NA	330	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,2,3-Trichlorobenzene	87-61-6	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,2,4-Trichlorobenzene*	120-82-1	μg/kg	NA	3400	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,2,4-Trimethylbenzene	526-73-8	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,2-Dibromo-3-Chloropropane	96-12-8	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,2-Dibromoethane	106-93-4	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,2-Dichlorobenzene	95-50-1	μg/kg	NA	1,100	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,2-Dichloroethane	107-06-2	μg/kg	NA	20	60,000	2,300	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,2-Dichloropropane	78-87-5	μg/kg	NA NA	NA NA	NA	NA NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,3,5-Trimethylbenzene	108-67-8	μg/kg	NA NA	8,400	380,000	47,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,3-Dichlorobenzene	541-73-1	μg/kg	NA NA	2,400	560,000	17,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,4-Dichlorobenzene	106-46-7	μg/kg	NA NA	1,800	250,000	9,800	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,4-dioxane	123-91-1	μg/kg	NA NA	100	250,000	9,800	NT	NT	NT	NT	NT	NT	NT	NT	NT
2-Butanone	78-93-3	μg/kg	NA NA	120	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
2-Hexanone	591-78-6	μg/kg	NA NA	NA NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT

							Sample Identification Sample Date Sample Time	CS-036-021714 2/17/2014 1428	CS-059-030314 3/3/2014 1034	CS-060-030314 3/3/2014 1051	CS-061-030314 3/3/2014 1105	CS-062-030314 3/3/2014 1115	CS-063-030314 3/3/2014 1127	CS-064-030314 3/3/2014 1140	CS-065-030314 3/3/2014 1156	CS-066-030314 3/3/2014 1220
	Analyte	Cas No.	Units	USEPA Part 761.61 "High Occupancy Area" Soil Cleanup Level	Part 375 Protection of Groundwater SCO	Part 375 Industrial Use SCO	Part 375 Residential Use SCO	Result	Result	Result	Result	Result	Result	Result	Result	Result
	4-Methyl-2-pentanone*	108-10-1	μg/kg	NA	1000	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Acetone	67-64-1	μg/kg	NA	50	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Benzene	71-43-2	μg/kg	NA	60	89,000	2,900	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Bromochloromethane	74-97-5	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Bromodichloromethane	75-27-4	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Bromoform	75-25-2	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Bromomethane	74-83-9	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Carbon disulfide*	75-15-0	μg/kg	NA	2,700	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Carbon Tetrachloride	56-23-5	μg/kg	NA	760	44,000	1,400	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Chlorobenzene	108-90-7	μg/kg	NA	1,100	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Chloroethane*	75-00-3	μg/kg	NA	1,900	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Chloroform	67-66-3	μg/kg	NA	370	700,000	10,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Chloromethane	74-87-3	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	cis-1,2-Dichloroethene	156-59-2	μg/kg	NA	250	1,000,000	59,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
	cis-1,3-Dichloropropene	10061-01-5	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Cyclohexane	110-82-7	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Dibromochloromethane	124-48-1	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Dichlorodifluoromethane	75-71-8	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Ethylbenzene	100-41-4	μg/kg	NA	1,000	780,000	30,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Freon 113*	76-13-1	μg/kg	NA	6,000	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Isopropylbenzene*	98-82-8	μg/kg	NA	2,300	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
	m,p-Xylene	136777-61-2	μg/kg	NA	1,600	1,000,000	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Methyl acetate	79-20-9	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
S	Methyl tert-butyl Ether	1634-04-4	μg/kg	NA	930	1,000,000	62,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
ani	Methylcyclohexane	108-87-2	μg/kg	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
Org	Methylene chloride	75-09-2	μg/kg	NA	50	1,000,000	51,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
<u>e</u>	Naphthalene	91-20-3	μg/kg	NA	NA 12.222	NA	NA 100 000	NT	NT	NT	NT	NT	NT	NT	NT	NT
/olatile Organics	n-Butylbenzene	104-51-8	μg/kg	NA NA	12,000	1,000,000	100,000	NT	NT	NT	NT	NT NT	NT NT	NT	NT	NT
9	n-Propylbenzene	103-65-1	μg/kg	NA NA	3,900	1,000,000	100,000	NT	NT	NT	NT	NT	NT NT	NT	NT	NT
	o-Xylene	95-47-6	μg/kg	NA NA	1,600 NA	1,000,000	100,000	NT NT	NT NT	NT NT	NT	NT NT	NT NT	NT NT	NT NT	NT NT
	p-Isopropyltoluene	99-87-6	μg/kg	NA NA		NA 1 000 000	NA 100,000	NT NT	NT NT		NT	NT NT	NT NT	NT NT	NT NT	
	sec-Butylbenzene	135-98-8 100-42-5	μg/kg	NA NA	11,000 NA	1,000,000 NA	100,000		NT NT	NT	NT	NT NT	NT NT		NT NT	NT
	Styrene tert-Butylbenzene	98-06-6	μg/kg	NA NA	5,900	1,000,000	NA 100,000	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
	Tetrachloroethene	127-18-4	μg/kg μg/kg	NA NA	1,300	300,000	5,500	NT	NT	NT	NT	NT	NT	NT	NT NT	NT
	Toluene	108-88-3		NA NA	700	1,000,000	100,000	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT
	trans-1,2-Dichloroethene	156-60-5	μg/kg μg/kg	NA NA	190	1,000,000	100,000	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT	NT NT	NT NT
	trans-1,3-Dichloropropene	10061-02-6	μg/kg μg/kg	NA NA	NA	1,000,000 NA	NA	NT NT	NT	NT NT	NT	NT	NT NT	NT	NT NT	NT
	Trichloroethene	79-01-6	μg/kg μg/kg	NA NA	470	400,000	10,000	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Trichlorofluoromethane	75-69-4	μg/kg μg/kg	NA NA	NA	400,000 NA	10,000 NA	NT	NT	NT	NT	NT	NT NT	NT	NT NT	NT
	Vinyl chloride	75-09-4	μg/kg μg/kg	NA NA	20	27,000	210	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Total VOCs	75-01-4 NA	μg/kg μg/kg	NA NA	NA	27,000 NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT
			μg/kg NA	NA NA		NA NA	NA NA	NT	NT NT	NT						
	Total VOC TICS	NA	NA	NA	NA	NA	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT

OBG | THERE'S A WAY

Table 6 Summary of Concrete Slab PCB Chip Sample Analytical Results Debris Pile Remediation 80 Steel Street Rochester, New York

							Sample Identification Sample Date Sample Time	2/18/2014	Conc. Slab NE-1 7/7/2015 1050	Conc. Slab NE-2 7/7/2015 1200
	Analyte	Cas No.	Units	USEPA Part 761.61 "High Occupancy Area" Soil Cleanup Level	Part 375 Protection of Groundwater SCO	Part 375 Industrial Use SCO	Part 375 Residential Use SCO	Result	Result	Result
	PCB- 1016**	12674-11-2	mg/kg	NA	NA	NA	NA	<0.421	<0.337	<0.325
	PCB- 1221**	11104-28-2	mg/kg	NA	NA	NA	NA	<0.421	<0.337	<0.325
	PCB- 1232**	11141-16-5	mg/kg	NA	NA	NA	NA	<0.421	<0.337	<0.325
S	PCB- 1242**	53469-21-9	mg/kg	NA	NA	NA	NA	1.70	<0.337	<0.325
PCBs	PCB- 1248**	12672-29-6	mg/kg	NA	NA	NA	NA	<0.421	<0.337	0.713
-	PCB- 1254**	11097-69-1	mg/kg	NA	NA	NA	NA	0.982	<0.337	<0.325
	PCB- 1260**	11096-82-5	mg/kg	NA	NA	NA	NA	<0.421	<0.337	<0.325
	PCB- 1262**	37324-23-5	mg/kg	NA	NA	NA	NA	<0.421	<0.337	<0.325
	PCB- 1268**	11100-14-4	mg/kg	NA	NA	NA	NA	<0.421	<0.337	<0.325
	Total PCB's	NA	mg/kg	1	3.2	25	1	2.682	ND	0.713

							Sample Identification			
							Sample Date	7/7/2015	7/7/2015	7/7/2015
							Sample Time	1320	1400	1415
	Analyte	Cas No.	Units	USEPA Part 761.61 "High Occupancy Area" Soil Cleanup Level	Part 375 Protection of Groundwater SCO	Part 375 Industrial Use SCO	Part 375 Residential Use SCO	Result	Result	Result
	PCB- 1016**	12674-11-2	mg/kg	NA	NA	NA	NA	<0.328	<0.328	<0.322
	PCB- 1221**	11104-28-2	mg/kg	NA	NA	NA	NA	<0.328	<0.328	<0.322
	PCB- 1232**	11141-16-5	mg/kg	NA	NA	NA	NA	<0.328	<0.328	<0.322
	PCB- 1242**	53469-21-9	mg/kg	NA	NA	NA	NA	<0.328	<0.328	<0.322
CBs	PCB- 1248**	12672-29-6	mg/kg	NA	NA	NA	NA	0.839	<0.328	1.33
	PCB- 1254**	11097-69-1	mg/kg	NA	NA	NA	NA	<0.328	<0.328	0.413
	PCB- 1260**	11096-82-5	mg/kg	NA	NA	NA	NA	<0.328	<0.328	<0.322
	PCB- 1262**	37324-23-5	mg/kg	NA	NA	NA	NA	<0.328	<0.328	<0.322
	PCB- 1268**	11100-14-4	mg/kg	NA	NA	NA	NA	<0.328	<0.328	<0.322
	Total PCB's	NA	mg/kg	1	3.2	25	1	0.839	ND	1.743

ATTACHMENT 10

CONCRETE SAMPLE RESULTS

Table 6 Summary of Concrete Slab PCB Chip Sample Analytical Results Debris Pile Remediation 80 Steel Street Rochester, New York

							Sample Identification Sample Date Sample Time	2/18/2014	Conc. Slab NE-1 7/7/2015 1050	Conc. Slab NE-2 7/7/2015 1200
	Analyte	Cas No.	Units	USEPA Part 761.61 "High Occupancy Area" Soil Cleanup Level	Part 375 Protection of Groundwater SCO	Part 375 Industrial Use SCO	Part 375 Residential Use SCO	Result	Result	Result
	PCB- 1016**	12674-11-2	mg/kg	NA	NA	NA	NA	<0.421	<0.337	<0.325
	PCB- 1221**	11104-28-2	mg/kg	NA	NA	NA	NA	<0.421	<0.337	<0.325
	PCB- 1232**	11141-16-5	mg/kg	NA	NA	NA	NA	<0.421	<0.337	<0.325
S	PCB- 1242**	53469-21-9	mg/kg	NA	NA	NA	NA	1.70	<0.337	<0.325
PCBs	PCB- 1248**	12672-29-6	mg/kg	NA	NA	NA	NA	<0.421	<0.337	0.713
-	PCB- 1254**	11097-69-1	mg/kg	NA	NA	NA	NA	0.982	<0.337	<0.325
	PCB- 1260**	11096-82-5	mg/kg	NA	NA	NA	NA	<0.421	<0.337	<0.325
	PCB- 1262**	37324-23-5	mg/kg	NA	NA	NA	NA	<0.421	<0.337	<0.325
	PCB- 1268**	11100-14-4	mg/kg	NA	NA	NA	NA	<0.421	<0.337	<0.325
	Total PCB's	NA	mg/kg	1	3.2	25	1	2.682	ND	0.713

							Sample Identification			
							Sample Date	7/7/2015	7/7/2015	7/7/2015
							Sample Time	1320	1400	1415
	Analyte	Cas No.	Units	USEPA Part 761.61 "High Occupancy Area" Soil Cleanup Level	Part 375 Protection of Groundwater SCO	Part 375 Industrial Use SCO	Part 375 Residential Use SCO	Result	Result	Result
	PCB- 1016**	12674-11-2	mg/kg	NA	NA	NA	NA	<0.328	<0.328	<0.322
	PCB- 1221**	11104-28-2	mg/kg	NA	NA	NA	NA	<0.328	<0.328	<0.322
	PCB- 1232**	11141-16-5	mg/kg	NA	NA	NA	NA	<0.328	<0.328	<0.322
	PCB- 1242**	53469-21-9	mg/kg	NA	NA	NA	NA	<0.328	<0.328	<0.322
CBs	PCB- 1248**	12672-29-6	mg/kg	NA	NA	NA	NA	0.839	<0.328	1.33
	PCB- 1254**	11097-69-1	mg/kg	NA	NA	NA	NA	<0.328	<0.328	0.413
	PCB- 1260**	11096-82-5	mg/kg	NA	NA	NA	NA	<0.328	<0.328	<0.322
	PCB- 1262**	37324-23-5	mg/kg	NA	NA	NA	NA	<0.328	<0.328	<0.322
	PCB- 1268**	11100-14-4	mg/kg	NA	NA	NA	NA	<0.328	<0.328	<0.322
	Total PCB's	NA	mg/kg	1	3.2	25	1	0.839	ND	1.743

ATTACHMENT 11 SEWER DISCHARGE PERMIT

INITIAL SEWER USE PERMIT

County of Mor	onroe Pure Waters District No. 8575	Permit No: <u>)(0)</u> 8
		Expires: 8/31/2020
		Fee: \$125.00
Firm Name	Weitsman Rochester Realty, LLC (Owner), Ben	Weitsman of Rochester, LLC (Operator)
Address	80 Steel Street	
	Rochester, New York 14606	
Type of Busine	ness or Service <u>Scrap Metal Reclam</u>	ation
Tributary there Director of Pur	named applicant is permitted to discharge wastes into the reto as applied for by an application dated ure Waters requires the following terms and conditions	and verified by the applicant except the
в		
U,		
II. The applica	ant further agrees to:	
	abide by all provisions of the Sewer Use Law of Monro ow in force or shall be adopted in the future.	oe County and of all pertinent rules or
wastes discharg	Director of Pure Waters in writing of any revision to the rge to the public sewers listed in Exhibit "B". The latte ily volume or strength of wastes listed in Exhibit "B" or	r encompasses either (1) an increase or decrease
	Director of Pure Waters upon request any additional in for which this permit is sought.	formation related to the installation or use of
4. Operate and the public sewe County.	d maintain any waste pretreatment facilities, as may be a ver of the industrial wastes involved, in an efficient man	required as a condition of the acceptance into mer at all times, and at no expense to the
5. Cooperate w wastes, or the f	with the Director of Pure Waters or his representatives i facilities provided for pretreatment.	in their inspecting, sampling, and study of
equipment, or o	•	sewers of any wastes or process waters not
Applicant's Na	ame (please print) Aaron Weiner, Authorized Agent	Phone
Applicant's Sig		Date 3/2-/17
Applicant's Tit	Facility General Manager	
Emergency Co	ontact Aaron Weiner Pho	ne
Renewal Appro	roved by: Mulacoffall	Issued this 31 day of July 2011.
	Michael J. Garland, P.E. Director of Environmental Services-	Pure Waters

and the second of the second o

COUNTY OF MONROE SEWER USE PERMIT ENCLOSURE

Weitsman Rochester Realty, LLC

80 Steel Street

Rochester, NY 14606

PERMIT NUMBER: 1018 DISTRICT NUMBER: 8575

TYPE OF BUSINESS: Metal Scrap Yard

SIC CODE: 5093

SAMPLE POINT: 1018.1 - Outlet to Retention Pond

REQUIRED MONITORING & EFFLUENT LIMITS

Sample Point: 1018.1 - Outlet to Retention Pond

SELF MONITORING FREQUENCY: 1. Each and every batch discharge for first 8 releases of pond

SAMPLING PROTOCOL: Sampling and analysis shall be performed in accordance with the techniques prescribed in 40 CFR Part 136 and amendments thereto. In the absence of 40 CFR Part 136 testing methodology, a New York State Department of Health, approved method is acceptable. A representative grab sample, collected from the above noted sample point shall be analyzed for the following:

	Sewer Use Limit
Antimony (Sb)	1.0 mg/l
Arsenic (As)	0.5 mg/l
Barium (Ba)	2.0 mg/l
Beryllium (Be)	5.0 mg/l
Cadmium (Cd)	1.0 mg/l
Chromium (Cr)	3.0 mg/l
Copper (Cu)	3.0 mg/l
Iron (Fe)	5.0 mg/l
Lead (Pb)	1.0 mg/l
Manganese (Mn)	5.0 mg/l
Mercury (Hg)	0.05 mg/l
Nickel (Ni)	3.0 mg/l
Selenium (Se)	2.0 mg/l
Silver (Ag)	2.0 mg/l
Thallium (Tl)	1.0 mg/l
Zinc (Zn)	5.0 mg/l
Volatile Organic Compounds	*
Semi-Volatile Organic Compounds	*
PCBs	*

. . .

^{*} The summation of all volatile organic compounds, semi-volatile organic compounds, and PCBs reported greater than 10 µg/l shall not exceed 2.13mg/L.

SPECIAL CONDITIONS:

- 1. Sample results must be reviewed and approved by Monroe County prior to each discharge.
- 2. Discharge rate is not to exceed 25 gpm.
- 3. Total monthly discharge volumes must be reported to the Office of Industrial Waste via email to IWC@monroecounty.gov. It is important that these reports are submitted in a timely manner. If no discharge has occurred during the past calendar month, please submit a letter stating such.
- 4. The slide gate outlet control must be kept shut for normal daily operation, only opened when active discharge is taking place, in which sample results have been approved by the Office of Industrial Waste.

TERMS AND CONDITIONS

GENERAL REQUIREMENTS:

- A. The permittee agrees to accept and abide by all provisions of the Sewer Use Law of Monroe County(MCSUL) and of all pertinent rules or regulations now in force or shall be adopted in the future.
- **B.1** In addition to the parameters/limits outlined, the total facility discharge shall meet all other concentration values listed within the MCSUL and as described in Article III, Section 3.3(d) of the Law.
- B.2 Included in Article II, Section 2.1, is the definition of "Normal Sewage". "Normal Sewage" may be discharged to the sewer system in excess of the concentrations outlined in the definition, however, the facility will be subject to the imposition of a sewer surcharge and possible self monitoring requirements as a result. Surcharging procedures are outlined in Article X of the MCSUL.
- **B.3** Regulatory sampling for analytes not specified under "required monitoring" shall be conducted by Monroe County at a minimum frequency of once every three (3) years.
- C. This permit is not assignable or transferable. The permit is issued to a specific user and location.
- D. Per Article IX, section 9.9 of the MCSUL, a violation by the permittee of the permit conditions may be cause for revocation or suspension of the permit after a Hearing by the Administrative Board, or if the violation is found to be within the emergency powers of the Director under Section 9.6. The revocation is immediate upon receipt of notice to the Industrial User. If the revocation or suspension is issued under Section 9.6, a Hearing shall be held as soon as possible.
- E. As provided under Article VI, Section 6.1, the Director and/or his duly authorized representatives shall gain entry on to private lands by permission or duly issued warrant for the purpose of inspection, observation, measurement sampling and testing in accordance with the provisions of this law and its implementing Rules and Regulations. The Director or his representatives shall not have authority to inquire into any processes used in any industrial operation beyond that information having a direct bearing on the kind and source of discharge to the sewers or the on-site facilities for waste treatment. While performing the necessary work on private lands, referred to above, the Director or his duly authorized representative shall observe all safety rules applicable to the premises as established by the owner and/or occupant.

SPECIAL CONDITIONS:

- A. All required monitoring shall be analyzed by a New York State Department of Health certified laboratory. All sampling and analysis must be performed in accordance with Title 40 Code of Federal Regulations Part 136.
- B. The pH range for this permit is 5.0 12.0 su. This range is specifically permitted by the Director as allowed under Article III, Section 3.3(b) of the MCSUL. pH must be analyzed within 15 minutes of the time of collection as specified in 40 CFR, part 136.
- C. The summation of all Total Toxic Organics(TTO) Compounds as defined in the Code of Federal Regulations (40 CFR part 433.11(e)) with detection levels above 10 ug/l shall not exceed 2.13 mg/l as imposed by the Director under Article III, Section 3.3 of the MCSUL unless Federal limits are more stringent under which the Federal limits will apply.
- D. Discharges of wax, fats, oil or grease shall not exceed 100 mg/l as imposed by the Director under Article III, Section 3.3 of the MCSUL.
- E. Discharges containing Phenolic compounds shall not exceed 2.13 mg/l as imposed by the Director under Article III, Section 3.3 of the MCSUL unless otherwise specified in the permit. These limits are applicable unless Federal limits are more stringent under which Federal limits will apply.

F. SURCHARGE CONCENTRATIONS:

Concentration and/or characteristics of normal sewage:

"Normal Sewage" shall mean sewage, industrial wastes or other wastes, which when analyzed, show concentration values with the following characteristics based on daily maximum limits:

a. B. O. D.	300 mg/l
b. Total Suspended Solids	300 mg/l
c. Total Phosphorus, as P	10 mg/l

Annual average concentrations above normal sewage are subject to surcharge as defined in Article X, section 10.7 of the MCSUL.

DISCHARGE LIMITATIONS (SEWER USE LIMITS)

Permissible concentrations of toxic substances and/or substances the Department wishes to control:

The concentration in sewage of any of the following toxic substances and/or substances the Department wishes to control shall not exceed the concentration limits specified when discharged into the County Sewer System; metal pollutants are expressed as <u>total</u> metals in mg/l (ppm): the following pollutant limits are based on daily maximum values:

a. Antimony (Sb)	1.0 mg/l
b. Arsenic (As)	0.5 mg/l
c. Barium (Ba)	2.0 mg/l
d. Beryllium (Be)	5.0 mg/l
e. Cadmium (Cd)	1.0 mg/l
f. Chromium (Cr)	3.0 mg/l
g. Copper (Cu)	3.0 mg/l
h. Cyanide (CN)	1.0 mg/l
i. Iron (Fe)	5.0 mg/l
j. Lead (Pb)	1.0 mg/l
k. Manganese (Mn)	5.0 mg/l
l. Mercury (Hg)	0.05 mg/l
m. Nickel (Ni)	3.0 mg/l
n. Selenium (Se)	2.0 mg/l
o. Silver (Ag)	2.0 mg/l
p. Thallium (Tl)	1.0 mg/l
q. Zinc (Zn)	5.0 mg/l

REPORTING REQUIREMENTS:

- A. Per the requirements of 40 CFR, Part 403.5, Significant Industrial Users must submit Periodic Reports on Continued Compliance to the Control Authority on a biannual (2/yr) basis. Deadline dates of submission for these reports will be August 15 and February 15, respectively.
- **B.** Discharge monitoring reports shall be submitted to the Control Authority upon receipt from the permittee's testing laboratory. Reports submitted from industrial users identified as Significant Industrial Users (SIU) must be accompanied by a certification statement as required by 40 CFR part 403 and the MCSUL, Article VI, section 6.12.
- C. Any Industrial User subject to the reporting requirements of the General Pretreatment Regulations shall maintain records of all information resulting from any monitoring activities required by 40 CFR, part 403.12 for a minimum of three (3) years. These records shall be available for inspection and copying by the Control Authority. This period of retention shall be extended during the course of any unresolved litigation regarding the discharge of pollutants by the Industrial User or the operation of the POTW Pretreatment Program or when requested by the Director or the Regional Administrator.

NOTIFICATION REQUIREMENTS:

- A. Pursuant to Article VI, Section 6.10(5), the permittee shall notify the Department within 24 hours of becoming aware that discharge monitoring is in violation of any permit limit. This notification shall be directed to the Industrial Waste Section at 585-753-7600 Option 4. The User shall also repeat sampling and analysis for the analyte in non-compliance and submit the results of the repeat analysis to Monroe County within 30 days after becoming aware of the violation.
- B. Notify the Director in writing when considering a revision to the plant sewer system or any change in industrial waste discharges to the public sewers. The later encompasses either an increase or decrease in average daily volume or strength of waste or new wastes.
- C. Notify the Director immediately of any accident, negligence, breakdown of pretreatment equipment or other occurrence that occasions discharge to the public sewer of any waste or process waters not covered by this permit.

SLUG CONTROL

An Industrial User shall be required to report any/all slug discharges to the Monroe County sewer system by calling 585-753-7600 option 4. For the purpose of this permit enclosure, a slug discharge shall be identified as any discharge of a non-routine, episodic nature, including but not limited to an accidental spill or a non-customary batch discharge. Following a review process, the Control Authority (Monroe County) shall determine the applicability of a facility slug control plan. If the Control Authority decides that a Slug Discharge Control Plan (SDCP) is needed, the plan shall contain, at a minimum, the following elements:

- 1. Description of discharge practices, including non-routine batch discharges.
- Description of stored chemicals.
- 3. Procedures for immediately notifying the Control Authority of slug discharges, including any discharge that would violate a prohibition under 40 CFR 403.5 (b), with procedures for follow up written notification within five (5) days.
- 4. If necessary, procedures to prevent adverse impact from accidental spills, including, but not limited to, inspection and maintenance of storage areas, handling and transfer of materials, loading and unloading operations, control of plant site run-off, worker training, building of containment structures or equipment, measures for containing toxic organic pollutants (including solvents) and/or measures and equipment for emergency purposes.

SNC DEFINITION:

In accordance with 40 CFR 403.8 (f) (vii), an Industrial User is in significant noncompliance (SNC) if its violations meet one or more of the following criteria:

- A. Chronic violations of wastewater discharge limits defined as those which 66% or more of all the measurements taken during a six-month period exceed (by any magnitude) the daily maximum limit or the average limit for the same pollutant parameter (ref. Article IX, section 9.19 MCSUL). This criteria does NOT apply to the following Monroe County surchargeable parameters: Biochemical Oxygen Demand, Total Suspended Solids, Chlorine Demand and Total Phosphorus.
- B. Technical review criteria (TRC) violations defined as those in which 33% or more of all the measurements for each pollutant parameter taken during a six month period equal or exceed the product of the daily maximum limit or the average limit times the applicable TRC (ref. Article IX, section 9.19 MCSUL). This criteria does NOT apply to the following Monroe County surchargeable parameters: Biochemical Oxygen Demand, Total Suspended Solids, Chlorine Demand and Total Phosphorus.
- C. Any other violation of a pretreatment effluent limit (daily maximum or longer-term average) that the Control Authority determines has caused, alone or in combination with other discharges, interference or pass-through (including endangering the health or POTW personnel or the general public).
- **D.** Any discharge of a pollutant that has caused imminent endangerment to human health, welfare or the environment or has resulted in the POTW's exercise of its emergency authority under paragraph (t)(1)(vi)(8) of 40 CFR part 403 to prevent such a discharge.
- E. Failure to meet, within 90 days after the scheduled date, a compliance schedule milestone contained in a local control mechanism or enforcement order, for starting construction, completing construction or attaining final compliance.
- **F.** Failure to provide, within 30 days after the due date, required reports such as BMRs, 90 day compliance reports, periodic reports on continued compliance.
- **G.** Failure to accurately report noncompliance.
- **H.** Any other violation or group of violations that the Control Authority determines will adversely affect the operation and implementation of the local Pretreatment Program.

PENALTIES

Should the facility be considered in Significant Non-Compliance (SNC), based on the above mentioned criteria, the minimum enforcement response by Monroe County will be the publication of the company name in the Gannett Rochester newspaper. The company will be published as an Industrial User in Significant Non-Compliance (SNC). Fines and criminal penalties may follow this publication (ref. Article IX – MCSUL).

Nothing in this permit shall be construed to relieve the permittees from civil/criminal penalties for noncompliance under Article IX, Section 9.7(a)(5) MCSUL. Article IX provides that any person who violates a permit condition is subject to a civil penalty not to exceed \$25,000 for any one case and an additional penalty not to exceed \$25,000 for each day of continued violation.

ATTACHMENT 12 CAP MATERIALS

SKAPS TRANSNETTM HDPE GEOCOMPOSITE WITH TN 330 GEONET

SKAPS INDUSTRIES

571 Industrial Pkwy, Commerce, GA 30529 Phone: (706) 336-7000 Fax: (706) 336-7007

E-Mail: contact@skaps.com

SKAPS TRANSNETTM Geocomposite consists of SKAPS Geonet made from HDPE resin with nonwoven polypropylene geotextile fabric heat bonded on one side or both sides of Geonet.

PROPERTY	TEST METHOD	UNIT	VA	LUE	QUALIFIER
GEONET					
Thickness	ASTM D 5199	mil	300	300	MAV ⁽³⁾
Carbon Black	ASTM D 4218	%	2.0	2.0	MAV
Tensile Strength	ASTM D 7179	lb/in	75	75	MAV
Melt Flow	ASTM D 1238 ⁽²⁾	g/10 min	1.0	1.0	Maximum
Density	ASTM D 1505	g/cm ³	0.94	0.94	MAV
Transmissivity ⁽¹⁾	ASTM D 4716	gal/min/ft (m²/sec)	38.67 (8.0 x 10 ⁻³)	38.67 (8.0 x 10 ⁻³)	MAV
GEOCOMPOSITE	a direct		6 oz/yd²	8 oz/yd ² ×	WHO SHA
Ply Adhesion	ASTM D 7005	lb/in	1.00	1.00	MAV
(1)	ACTA D 4746	11 . 15 . 1 21	TN 330-2-6	TN 330-2-8	
Transmissivity ⁽¹⁾ DS	ASTM D 4716	gal/min/ft (m²/sec)	4.35 (9.0 x 10 ⁻⁴)	4.35 (9.0 x 10 ⁻⁴)	MAV
(1)	ACTN A D 474 C	gal/min/ft (m²/sec)	TN 330-1-6	TN 330-1-8	
Transmissivity ⁽¹⁾ SS	ASTM D 4716		14.50 (3.0 X 10 ⁻³)	14.50 (3.0 X 10 ⁻³)	MAV
GEOTEXTILE				· por Jacob	
Fabric Weight	ASTM D 5261	oz/yd²	6	8	MARV ⁽⁴⁾
Grab Tensile	ASTM D 4632	lb	160	225	MARV
Grab Elongation	ASTM D 4632	%	50	50	MARV
Trapezoid Tear	ASTM D 4533	lb	65	90	MARV
CBR Puncture	ASTM D 6241	lb	450	600	MARV
Water Flow ⁽⁵⁾	ASTM D 4491	gpm/ft ²	125	100	MARV
Permittivity ⁽⁵⁾	ASTM D 4491	sec ⁻¹	1.63	1.26	MARV
Permeability ⁽⁵⁾	ASTM D 4491	cm/sec	0.30	0.30	MARV
AOS	ASTM D 4751	US Sieve	70	80	MaxARV

Notes

- (1) Transmissivity measured using water at 21 ± 2 °C (70 ± 4 °F) with a gradient of 0.1 and a confining pressure of 10,000 psf between steel plates after 15 minutes. Values may vary with individual labs.

 DS Double Sided, SS Single Sided
- (2) Condition 190/2.16
- (3) Minimum average value.
- (4) MARV is statistically defined as mean minus two standard deviations and it is the value which is exceeded by 97.5% of all the test data.
- (5) At the time of manufacturing. Handling may change these properties.

This information is provided for reference purposes only and is not intended as a warranty or guarantee.

SKAPS assumes no liability in connection with the use of this information. Geotextile and Geonet properties are prior to lamination.

Tensar.

2500 Northwinds Pkwy, Suite 500 Alpharetta, Georgia 30009 Phone: 800-TENSAR-1 www.tensarcorp.com

Product Specification Tensar Biaxial Geogrid

- Biaxial Geogrid BX1100
- Biaxial Geogrid BX1120
- Biaxial Geogrid BX1200
- Biaxial Geogrid BX1220
- Biaxial Geogrid BX1300
- Biaxial Geogrid BX1500
- Biaxial Geogrid BX4100
- Biaxial Geogrid BX4200

2500 Northwinds Pkwy, Suite 500 Alpharetta, Georgia 30009 Phone: 800-TENSAR-1 www.tensarcorp.com

Product Specification - Biaxial Geogrid BX1100

Tensar International Corporation reserves the right to change its product specifications at any time. It is the responsibility of the specifier and purchaser to ensure that product specifications used for design and procurement purposes are current and consistent with the products used in each instance.

Product Type: Integrally Formed Biaxial Geogrid

Polymer: Polypropylene

Load Transfer Mechanism: Positive Mechanical Interlock

Primary Applications: Spectra System (Base Reinforcement, Subgrade Improvement)

Product Properties

Index Properties	Units	MD Values ¹	XMD Values ¹
 Aperture Dimensions² 	mm (in)	25 (1.0)	33 (1.3)
 Minimum Rib Thickness² 	mm (in)	0.76 (0.03)	0.76 (0.03)
 Tensile Strength @ 2% Strain³ 	kN/m (lb/ft)	4.1 (280)	6.6 (450)
 Tensile Strength @ 5% Strain³ 	kN/m (lb/ft)	8.5 (580)	13.4 (920)
 Ultimate Tensile Strength³ 	kN/m (lb/ft)	12.4 (850)	19.0 (1,300)
Structural Integrity			
 Junction Efficiency⁴ 	%	93	
 Flexural Stiffness⁵ 	mg-cm	250,000	
 Aperture Stability⁶ 	m-N/deg	0.32	
Durability			
 Resistance to Installation Damage⁷ 	%SC / %SW / %GP	95 / 93 / 90	
 Resistance to Long Term Degradation⁸ 	%	100	
Resistance to UV Degradation ⁹	%	100	

Dimensions and Delivery

The biaxial geogrid shall be delivered to the jobsite in roll form with each roll individually identified and nominally measuring 3.0 meters (9.8 feet) or 4.0 meters (13.1 feet) in width and 75.0 meters (246 feet) in length. A typical truckload quantity is 185 to 250 rolls.

- Unless indicated otherwise, values shown are minimum average roll values determined in accordance with ASTM D4759-02. Brief descriptions of test procedures are given in the following notes.
- 2. Nominal dimensions.
- 3, Determined in accordance with ASTM D6637-10 Method A.
- 4. Load transfer capability determined in accordance with ASTM D7737-11.
- 5. Resistance to bending force determined in accordance with ASTM D7748-12, using specimens of width two ribs wide, with transverse ribs cut flush with exterior edges of longitudinal ribs, and of length sufficiently long to enable measurement of the overhang dimension.
- 6. Resistance to in-plane rotational movement measured by applying a 20 kg-cm (2 m-N) moment to the central junction of a 9 inch x 9 inch specimen restrained at its perimeter in accordance with GRI GG9.
- 7. Resistance to loss of load capacity or structural integrity when subjected to mechanical installation stress in clayey sand (SC), well graded sand (SW), and crushed stone classified as poorly graded gravel (GP). The geogrid shall be sampled in accordance with ASTM D5818 and load capacity shall be determined in accordance with ASTM D6637.
- Resistance to loss of load capacity or structural integrity when subjected to chemically aggressive environments in accordance with EPA 9090 immersion testing.
- Resistance to loss of load capacity or structural integrity when subjected to 500 hours of ultraviolet light and aggressive weathering in accordance with ASTM D4355-05.

2500 Northwinds Pkwy, Suite 500 Alpharetta, Georgia 30009 Phone: 800-TENSAR-1 www.tensarcorp.com

Product Specification - Biaxial Geogrid BX1120

Tensar International Corporation reserves the right to change its product specifications at any time. It is the responsibility of the specifier and purchaser to ensure that product specifications used for design and procurement purposes are current and consistent with the products used in each instance.

Product Type: Integrally Formed Biaxial Geogrid

Polymer: Polypropylene

Load Transfer Mechanism: Positive Mechanical Interlock

Primary Applications: SierraScape System, ADD³ System (Exposed Wall Face Wrap)

Product Properties

Index Properties	Units	MD Values ¹	XMD Values ¹
 Aperture Dimensions² 	mm (in)	25 (1.0)	33 (1.3)
 Minimum Rib Thickness² 	mm (in)	0.76 (0.03)	0.76 (0.03)
Tensile Strength @ 2% Strain ³	kN/m (lb/ft)	4.1 (280)	6.6 (450)
 Tensile Strength @ 5% Strain³ 	kN/m (lb/ft)	8.5 (580)	13.4 (920)
 Ultimate Tensile Strength³ 	kN/m (lb/ft)	12.4 (850)	19.0 (1,300)
Carbon Black Content	%	2.0	
Structural Integrity			
 Junction Efficiency⁴ 	%	93	
 Flexural Stiffness⁵ 	mg-cm	250,000	
 Aperture Stability⁶ 	m-N/deg	0.32	
Durability			
Resistance to Installation Damage ⁷	%SC / %SW / %GP	95 / 93 / 90	
Resistance to Long Term Degradation ⁸	%	100	
 Resistance to UV Degradation⁹ 	%	100	

Dimensions and Delivery

The biaxial geogrid shall be delivered to the jobsite in roll form with each roll individually identified and nominally measuring 3.0 meters (9.8 feet) or 4.0 meters (13.1 feet) in width and 50.0 meters (164 feet) in length. A typical truckload quantity is 260 to 350 rolls

- Unless indicated otherwise, values shown are minimum average roll values determined in accordance with ASTM D4759-02. Brief
 descriptions of test procedures are given in the following notes.
- 2. Nominal dimensions.
- 3. Determined in accordance with ASTM D6637-10 Method A.
- 4. Load transfer capability determined in accordance with ASTM D7737-11.
- 5. Resistance to bending force determined in accordance with ASTM D7748-12, using specimens of width two ribs wide, with transverse ribs cut flush with exterior edges of longitudinal ribs, and of length sufficiently long to enable measurement of the overhang dimension.
- 6. Resistance to in-plane rotational movement measured by applying a 20 kg-cm (2 m-N) moment to the central junction of a 9 inch x 9 inch specimen restrained at its perimeter in accordance with GRI GG9.
- 7. Resistance to loss of load capacity or structural integrity when subjected to mechanical installation stress in clayey sand (SC), well graded sand (SW), and crushed stone classified as poorly graded gravel (GP). The geogrid shall be sampled in accordance with ASTM D5818 and load capacity shall be determined in accordance with ASTM D6637.
- 8. Resistance to loss of load capacity or structural integrity when subjected to chemically aggressive environments in accordance with EPA 9090 immersion testing.
- Resistance to loss of load capacity or structural integrity when subjected to 500 hours of ultraviolet light and aggressive weathering in accordance with ASTM D4355-05.

2500 Northwinds Pkwy, Suite 500 Alpharetta, Georgia 30009 Phone: 800-TENSAR-1 www.tensarcorp.com

Product Specification - Biaxial Geogrid BX1200

Tensar International Corporation reserves the right to change its product specifications at any time. It is the responsibility of the specifier and purchaser to ensure that product specifications used for design and procurement purposes are current and consistent with the products used in each instance.

Product Type: Integrally Formed Biaxial Geogrid

Polymer: Polypropylene

Load Transfer Mechanism: Positive Mechanical Interlock

Primary Applications: Spectra System (Base Reinforcement, Subgrade Improvement)

Product Properties

Index Properties	Units	MD Values ¹	XMD Values ¹
Aperture Dimensions ²	mm (in)	25 (1.0)	33 (1.3)
 Minimum Rib Thickness² 	mm (in)	1.27 (0.05)	1.27 (0.05)
 Tensile Strength @ 2% Strain³ 	kN/m (lb/ft)	6.0 (410)	9.0 (620)
■ Tensile Strength @ 5% Strain ³	kN/m (lb/ft)	11.8 (810)	19.6 (1,340)
■ Ultimate Tensile Strength ³	kN/m (lb/ft)	19.2 (1,310)	28.8 (1,970)
Structural Integrity			
 Junction Efficiency⁴ 	%	93	
 Flexural Stiffness⁵ 	mg-cm	750,000	
 Aperture Stability⁶ 	m-N/deg	0.65	
Durability			
 Resistance to Installation Damage⁷ 	%SC / %SW / %GP	95 / 93 / 90	
 Resistance to Long Term Degradation⁸ 	%	100	
 Resistance to UV Degradation⁹ 	%	100	

Dimensions and Delivery

The biaxial geogrid shall be delivered to the jobsite in roll form with each roll individually identified and nominally measuring 3.0 meters (9.8 feet) or 4.0 meters (13.1 feet) in width and 50.0 meters (164 feet) in length. A typical truckload quantity is 160 to 210 rolls.

- 1. Unless indicated otherwise, values shown are minimum average roll values determined in accordance with ASTM D4759-02. Brief descriptions of test procedures are given in the following notes.
- 2. Nominal dimensions.
- 3. Determined in accordance with ASTM D6637-10 Method A.
- 4. Load transfer capability determined in accordance with ASTM D7737-11.
- 5. Resistance to bending force determined in accordance with ASTM D7748-12, using specimens of width two ribs wide, with transverse ribs cut flush with exterior edges of longitudinal ribs, and of length sufficiently long to enable measurement of the overhang dimension.
- 6. Resistance to in-plane rotational movement measured by applying a 20 kg-cm (2 m-N) moment to the central junction of a 9 inch x 9 inch specimen restrained at its perimeter in accordance with GRI GG9.
- 7. Resistance to loss of load capacity or structural integrity when subjected to mechanical installation stress in clayey sand (SC), well graded sand (SW), and crushed stone classified as poorly graded gravel (GP). The geogrid shall be sampled in accordance with ASTM D5818 and load capacity shall be determined in accordance with ASTM D6637.
- Resistance to loss of load capacity or structural integrity when subjected to chemically aggressive environments in accordance with EPA 9090 immersion testing.
- Resistance to loss of load capacity or structural integrity when subjected to 500 hours of ultraviolet light and aggressive weathering in accordance with ASTM D4355-05.

2500 Northwinds Pkwy, Suite 500 Alpharetta, Georgia 30009 Phone: 800-TENSAR-1 www.tensarcorp.com

Product Specification - Biaxial Geogrid BX1220

Tensar International Corporation reserves the right to change its product specifications at any time. It is the responsibility of the specifier and purchaser to ensure that product specifications used for design and procurement purposes are current and consistent with the products used in each instance.

Product Type: Integrally Formed Biaxial Geogrid

Polymer: Polypropylene

Load Transfer Mechanism: Positive Mechanical Interlock

Primary Applications: SierraScape System, ADD³ System (Exposed Wall Face Wrap)

Product Properties

Index Properties	Units	MD Values ¹	XMD Values ¹
 Aperture Dimensions² 	mm (in)	25 (1.0)	33 (1.3)
 Minimum Rib Thickness² 	mm (in)	1.27 (0.05)	1.27 (0.05)
 Tensile Strength @ 2% Strain³ 	kN/m (lb/ft)	6.0 (410)	9.0 (620)
 Tensile Strength @ 5% Strain³ 	kN/m (lb/ft)	11.8 (810)	19.6 (1,340)
 Ultimate Tensile Strength³ 	kN/m (lb/ft)	19.2 (1,310)	28.8 (1,970)
■ Carbon Black Content	%	2.0	
Structural Integrity			
 Junction Efficiency⁴ 	%	93	
 Flexural Stiffness⁵ 	mg-cm	750,000	
 Aperture Stability⁶ 	m-N/deg	0.65	
Durability			
 Resistance to Installation Damage⁷ 	%SC / %SW / %GP	95 / 93 / 90	
 Resistance to Long Term Degradation⁸ 	%	100	
Resistance to UV Degradation ⁹	%	100	

Dimensions and Delivery

The biaxial geogrid shall be delivered to the jobsite in roll form with each roll individually identified and nominally measuring 3.0 meters (9.8 feet) or 4.0 meters (13.1 feet) in width and 50.0 meters (164 feet) in length. A typical truckload quantity is 160 to 210 rolls.

- 1. Unless indicated otherwise, values shown are minimum average roll values determined in accordance with ASTM D4759-02. Brief descriptions of test procedures are given in the following notes.
- 2. Nominal dimensions.
- 3. Determined in accordance with ASTM D6637-10 Method A.
- 4. Load transfer capability determined in accordance with ASTM D7737-11.
- 5. Resistance to bending force determined in accordance with ASTM D7748-12, using specimens of width two ribs wide, with transverse ribs cut flush with exterior edges of longitudinal ribs, and of length sufficiently long to enable measurement of the overhang dimension.
- 6. Resistance to in-plane rotational movement measured by applying a 20 kg-cm (2 m-N) moment to the central junction of a 9 inch x 9 inch specimen restrained at its perimeter in accordance with GRI GG9.
- 7. Resistance to loss of load capacity or structural integrity when subjected to mechanical installation stress in clayey sand (SC), well graded sand (SW), and crushed stone classified as poorly graded gravel (GP). The geogrid shall be sampled in accordance with ASTM D5818 and load capacity shall be determined in accordance with ASTM D6637.
- Resistance to loss of load capacity or structural integrity when subjected to chemically aggressive environments in accordance with EPA 9090 immersion testing.
- Resistance to loss of load capacity or structural integrity when subjected to 500 hours of ultraviolet light and aggressive weathering in accordance with ASTM D4355-05.

2500 Northwinds Pkwy, Suite 500 Alpharetta, Georgia 30009 Phone: 800-TENSAR-1 www.tensarcorp.com

Product Specification - Biaxial Geogrid BX1300

Tensar International Corporation reserves the right to change its product specifications at any time. It is the responsibility of the specifier and purchaser to ensure that product specifications used for design and procurement purposes are current and consistent with the products used in each instance.

Product Type: Integrally Formed Biaxial Geogrid

Polymer: Polypropylene

Load Transfer Mechanism: Positive Mechanical Interlock

Primary Applications: Spectra System (Base Reinforcement, Subgrade Improvement)

Product Properties

Index Properties	Units	MD Values ¹	XMD Values ¹
 Aperture Dimensions² 	mm (in)	46 (1.8)	64 (2.5)
 Minimum Rib Thickness² 	mm (in)	1.27 (0.05)	1.27 (0.05)
 Tensile Strength @ 2% Strain³ 	kN/m (lb/ft)	5.5 (380)	9.5 (650)
 Tensile Strength @ 5% Strain³ 	kN/m (lb/ft)	10.5 (720)	17.5 (1,200)
 Ultimate Tensile Strength³ 	kN/m (lb/ft)	16.0 (1,100)	28.0 (1,920)
Structural Integrity			
 Junction Efficiency⁴ 	%	93	
 Flexural Stiffness⁵ 	mg-cm	450,000	
 Aperture Stability⁶ 	m-N/deg	0.58	
Durability			
 Resistance to Installation Damage⁷ 	%SC / %SW / %GP	91 / 83 / 72	
 Resistance to Long Term Degradation⁸ 	%	100	
 Resistance to UV Degradation⁹ 	%	100	

Dimensions and Delivery

The biaxial geogrid shall be delivered to the jobsite in roll form with each roll individually identified and nominally measuring 4.0 meters (13.1 feet) in width and 50.0 meters (164 feet) in length. A typical truckload quantity is 180 rolls.

- 1. Unless indicated otherwise, values shown are minimum average roll values determined in accordance with ASTM D4759-02. Brief descriptions of test procedures are given in the following notes.
- 2. Nominal dimensions.
- 3. Determined in accordance with ASTM D6637-10 Method A.
- 4. Load transfer capability determined in accordance with ASTM D7737-11.
- 5. Resistance to bending force determined in accordance with ASTM D7748-12, using specimens of width two ribs wide, with transverse ribs cut flush with exterior edges of longitudinal ribs, and of length sufficiently long to enable measurement of the overhang dimension.
- 6. Resistance to in-plane rotational movement measured by applying a 20 kg-cm (2 m-N) moment to the central junction of a 9 inch x 9 inch specimen restrained at its perimeter in accordance with GRI GG9.
- 7. Resistance to loss of load capacity or structural integrity when subjected to mechanical installation stress in clayey sand (SC), well graded sand (SW), and crushed stone classified as poorly graded gravel (GP). The geogrid shall be sampled in accordance with ASTM D5818 and load capacity shall be determined in accordance with ASTM D6637.
- Resistance to loss of load capacity or structural integrity when subjected to chemically aggressive environments in accordance with EPA 9090 immersion testing.
- Resistance to loss of load capacity or structural integrity when subjected to 500 hours of ultraviolet light and aggressive weathering in accordance with ASTM D4355-05.

2500 Northwinds Pkwy, Suite 500 Alpharetta, Georgia 30009 Phone: 800-TENSAR-1 www.tensarcorp.com

Product Specification - Biaxial Geogrid BX1500

Tensar International Corporation reserves the right to change its product specifications at any time. It is the responsibility of the specifier and purchaser to ensure that product specifications used for design and procurement purposes are current and consistent with the products used in each instance.

Product Type: Integrally Formed Biaxial Geogrid

Polymer: Polypropylene

Load Transfer Mechanism: Positive Mechanical Interlock

Primary Applications: Spectra System (Base Reinforcement, Subgrade Improvement)

Product Properties

Index Properties	Units	MD Values ¹	XMD Values ¹
 Aperture Dimensions² 	mm (in)	25 (1.0)	30.5 (1.2)
 Minimum Rib Thickness² 	mm (in)	1.78 (0.07)	1.78 (0.07)
 Tensile Strength @ 2% Strain³ 	kN/m (lb/ft)	8.5 (580)	10.0 (690)
Tensile Strength @ 5% Strain ³	kN/m (lb/ft)	17.5 (1,200)	20.0 (1,370)
 Ultimate Tensile Strength³ 	kN/m (lb/ft)	27.0 (1,850)	30.0 (2,050)
Structural Integrity			
 Junction Efficiency⁴ 	%	93	
 Flexural Stiffness⁵ 	mg-cm	2,000,000	
 Aperture Stability⁶ 	m-N/deg	0.75	
Durability			
 Resistance to Installation Damage⁷ 	%SC / %SW / %GP	95 / 93 / 90	
 Resistance to Long Term Degradation⁸ 	%	100	
 Resistance to UV Degradation⁹ 	%	100	

Dimensions and Delivery

The biaxial geogrid shall be delivered to the jobsite in roll form with each roll individually identified and nominally measuring 4.0 meters (13.1 feet) in width and 50.0 meters (164 feet) in length. A typical truckload quantity is 180 rolls.

- 1. Unless indicated otherwise, values shown are minimum average roll values determined in accordance with ASTM D4759-02. Brief descriptions of test procedures are given in the following notes.
- 2. Nominal dimensions.
- 3. Determined in accordance with ASTM D6637-10 Method A.
- 4. Load transfer capability determined in accordance with ASTM D7737-11.
- 5. Resistance to bending force determined in accordance with ASTM D7748-12, using specimens of width two ribs wide, with transverse ribs cut flush with exterior edges of longitudinal ribs, and of length sufficiently long to enable measurement of the overhang dimension.
- 6. Resistance to in-plane rotational movement measured by applying a 20 kg-cm (2 m-N) moment to the central junction of a 9 inch x 9 inch specimen restrained at its perimeter in accordance with GRI GG9.
- 7. Resistance to loss of load capacity or structural integrity when subjected to mechanical installation stress in clayey sand (SC), well graded sand (SW), and crushed stone classified as poorly graded gravel (GP). The geogrid shall be sampled in accordance with ASTM D5818 and load capacity shall be determined in accordance with ASTM D6637.
- 8. Resistance to loss of load capacity or structural integrity when subjected to chemically aggressive environments in accordance with EPA 9090 immersion testing.
- Resistance to loss of load capacity or structural integrity when subjected to 500 hours of ultraviolet light and aggressive weathering in accordance with ASTM D4355-05.

Tensar International Corporation 2500 Northwinds Pkwy, Suite 500 Alpharetta, Georgia 30009

Phone: 800-TENSAR-1 www.tensarcorp.com

Product Specification - Biaxial Geogrid BX4100

Tensar International Corporation reserves the right to change its product specifications at any time. It is the responsibility of the specifier and purchaser to ensure that product specifications used for design and procurement purposes are current and consistent with the products used in each instance.

Product Type: Integrally Formed Biaxial Geogrid

Polymer: Polypropylene

Load Transfer Mechanism: Positive Mechanical Interlock

Primary Applications: Spectra System (Base Reinforcement, Subgrade Improvement)

Product Properties

Index Properties	Units	MD Values ¹	XMD Values ¹
Aperture Dimensions ²	mm (in)	33 (1.3)	33 (1.3)
 Minimum Rib Thickness² 	mm (in)	0.76 (0.03)	0.76 (0.03)
Tensile Strength @ 2 % Strain ³	kN/m (lb/ft)	4.0 (270)	5.5 (380)
 Tensile Strength @ 5% Strain³ 	kN/m (lb/ft)	8.0 (550)	10.5 (720)
 Ultimate Tensile Strength³ 	kN/m (lb/ft)	12.8 (880)	13.5 (920)
Structural Integrity			
 Junction Efficiency⁴ 	%	93	
 Flexural Stiffness⁵ 	mg-cm	250,000	
 Aperture Stability⁶ 	m-N/deg	0.28	
Durability			
 Resistance to Installation Damage⁷ 	%SC / %SW / %GP	90 / 83 / 70	
 Resistance to Long Term Degradation⁸ 	%	100	
Resistance to UV Degradation ⁹	%	100	

Dimensions and Delivery

The biaxial geogrid shall be delivered to the jobsite in roll form with each roll individually identified and nominally measuring 3.0 meters (9.8 feet) or 4.0 meters (13.1 feet) in width and 75.0 meters (246 feet) in length. A typical truckload quantity is 185 to 250 rolls.

- 1. Unless indicated otherwise, values shown are minimum average roll values determined in accordance with ASTM D4759-02. Brief descriptions of test procedures are given in the following notes.
- 2. Nominal dimensions.
- 3. Determined in accordance with ASTM D6637-10 Method A.
- 4. Load transfer capability determined in accordance with ASTM D7737-11.
- 5. Resistance to bending force determined in accordance with ASTM D7748-12, using specimens of width two ribs wide, with transverse ribs cut flush with exterior edges of longitudinal ribs, and of length sufficiently long to enable measurement of the overhang dimension.
- 6. Resistance to in-plane rotational movement measured by applying a 20 kg-cm (2 m-N) moment to the central junction of a 9 inch x 9 inch specimen restrained at its perimeter in accordance with GRI GG9.
- 7. Resistance to loss of load capacity or structural integrity when subjected to mechanical installation stress in clayey sand (SC), well graded sand (SW), and crushed stone classified as poorly graded gravel (GP). The geogrid shall be sampled in accordance with ASTM D5818 and load capacity shall be determined in accordance with ASTM D6637.
- 8. Resistance to loss of load capacity or structural integrity when subjected to chemically aggressive environments in accordance with EPA 9090 immersion testing.
- Resistance to loss of load capacity or structural integrity when subjected to 500 hours of ultraviolet light and aggressive weathering in accordance with ASTM D4355-05.

2500 Northwinds Pkwy, Suite 500 Alpharetta, Georgia 30009 Phone: 800-TENSAR-1 www.tensarcorp.com

Product Specification - Biaxial Geogrid BX4200

Tensar International Corporation reserves the right to change its product specifications at any time. It is the responsibility of the specifier and purchaser to ensure that product specifications used for design and procurement purposes are current and consistent with the products used in each instance.

Product Type: Integrally Formed Biaxial Geogrid

Polymer: Polypropylene

Load Transfer Mechanism: Positive Mechanical Interlock

Primary Applications: Spectra System (Base Reinforcement, Subgrade Improvement)

Product Properties

Index Properties	Units	MD Values ¹	XMD Values ¹
Aperture Dimensions ²	mm (in)	33 (1.3)	33 (1.3)
 Minimum Rib Thickness² 	mm (in)	1.27 (0.05)	1.27 (0.05)
 Tensile Strength @ 2% Strain³ 	kN/m (lb/ft)	6 (410)	7.4 (510)
 Tensile Strength @ 5% Strain³ 	kN/m (lb/ft)	11.7 (800)	14.6 (1,000)
 Ultimate Tensile Strength³ 	kN/m (lb/ft)	20.5 (1,400)	23.5 (1,610)
Structural Integrity			
 Junction Efficiency⁴ 	%	93	
 Flexural Stiffness⁵ 	mg-cm	750,000	
 Aperture Stability⁶ 	m-N/deg	0.48	
Durability			
 Resistance to Installation Damage⁷ 	%SC / %SW / %GP	90 / 83 / 75	
 Resistance to Long Term Degradation⁸ 	%	100	
 Resistance to UV Degradation⁹ 	%	100	

Dimensions and Delivery

The biaxial geogrid shall be delivered to the jobsite in roll form with each roll individually identified and nominally measuring 3.0 meters (9.8 feet) or 4.0 meters (13.1 feet) in width and 50.0 meters (164 feet) in length. A typical truckload quantity is 150 to 240 rolls.

- 1. Unless indicated otherwise, values shown are minimum average roll values determined in accordance with ASTM D4759-02. Brief descriptions of test procedures are given in the following notes.
- 2. Nominal dimensions.
- 3, Determined in accordance with ASTM D6637-10 Method A.
- 4. Load transfer capability determined in accordance with ASTM D7737-11.
- 5. Resistance to bending force determined in accordance with ASTM D7748-12, using specimens of width two ribs wide, with transverse ribs cut flush with exterior edges of longitudinal ribs, and of length sufficiently long to enable measurement of the overhang dimension.
- 6. Resistance to in-plane rotational movement measured by applying a 20 kg-cm (2 m-N) moment to the central junction of a 9 inch x 9 inch specimen restrained at its perimeter in accordance with GRI GG9.
- 7. Resistance to loss of load capacity or structural integrity when subjected to mechanical installation stress in clayey sand (SC), well graded sand (SW), and crushed stone classified as poorly graded gravel (GP). The geogrid shall be sampled in accordance with ASTM D5818 and load capacity shall be determined in accordance with ASTM D6637.
- 8. Resistance to loss of load capacity or structural integrity when subjected to chemically aggressive environments in accordance with EPA 9090 immersion testing.
- Resistance to loss of load capacity or structural integrity when subjected to 500 hours of ultraviolet light and aggressive weathering in accordance with ASTM D4355-05.