SUBSURFACE INVESTIGATION REPORT

of the

GENESEE SCRAP & TIN BALING CORP. 80 Steel Street City of Rochester Monroe County, New York

Prepared for:

WEITSMAN SHREDDING, L.L.C.

15 Main Street Owego, New York 13827-3213

Prepared by:

8232 Loop Road Baldwinsville, New York 13027 (315) 638-8587 Project No. 2011030

> April 2011 Revised April 28, 2011

TABLE OF CONTENTS

	<u>I</u>	PAGE
1.0	INTRODUCTION	1
2.0	SCOPE OF WORK	1
3.0	FINDINGS	4
3.1	SITE HYDROGEOLOGY	4
3.2	SOIL CONDITION	5
3.3	PERCHED GROUNDWATER CONDITION	6
4.0	CONCLUSIONS	7
4.1	HYDROGEOLOGY	7
4.2	SOIL	7
4.3	PERCHED GROUNDWATER	8
5.0	RECOMMENDATIONS	9

FIGURES

FIGURE 1 - SITE LOCATION MAP

FIGURE 2 - SITE PLAN

TABLES

- TABLE 1 SOIL OBSERVATION DATA
- TABLE 2 SOIL ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS
- TABLE 3 SOIL ANALYTICAL RESULTS SEMI-VOLATILE ORGANIC COMPOUNDS
- TABLE 4 SOIL ANALYTICAL RESULTS METALS AND GENERAL CHEMISTRY
- TABLE 5 SOIL ANALYTICAL RESULTS POLYCHLORINATED BIPHENYLS

TABLE OF CONTENTS (Continued)

TABLES (Continued)

- TABLE 6 WATER ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS
- TABLE 7 WATER ANALYTICAL RESULTS SEMI-VOLATILE ORGANIC COMPOUNDS
- TABLE 8 WATER ANALYTICAL RESULTS METALS
- TABLE 9 WATER ANALYTICAL RESULTS POLYCHLORINATED BIPHENYLS

APPENDICES

- APPENDIX A BORING LOGS
- APPENDIX B GROUNDWATER SAMPLING FIELD LOGS
- APPENDIX C LABORATORY REPORTS

1.0 INTRODUCTION

Weitsman Shredding, LLC retained Plumley Engineering, P.C. to complete a subsurface investigation at Genesee Scrap & Tin, LLC (GS&T), a metal recycling facility located at 80 Steel Street in the City of Rochester, Monroe County, New York. The property is comprised of two adjacent parcels and is 6.6 acres in size. Zoning is for industrial use and has been operated as a scrap yard by GS&T since 1977. Prior to its purchase by GS&T, the Leach Steel Company owned the property. The location is a delisted hazardous waste site and has an adjacent Brownfield Cleanup Program (BCP) property to the south. This investigation was performed at the request of Weitsman Shredding, LLC to investigate the potential for environmental impacts resulting from current and past site activities.

Refer to the attached $Figure\ 1$ – $Site\ Location\ Map$ for additional information. The fieldwork for this project was completed in March 2011. This report describes the activities completed and the results obtained.

2.0 SCOPE OF WORK

The key existing site features and test locations are provided on the attached $Figure\ 2-Site\ Plan$. For this investigation, a driller was subcontracted (Trec Environmental, Inc.) to complete soil borings and monitoring well installations. Drilling and other investigation activities completed included:

- Twenty-three soil borings (B-1 through B-23) were completed on March 9-11, 2011.
 Refer to *Appendix A Boring Logs* for additional information.
- A geologist from Plumley Engineering was on-site to observe the drilling work and record appropriate subsurface data. Photoionization detection (PID) meter readings were recorded on all soil samples collected. PID readings and visual observations regarding indicators of potential impact are summarized in *Table 1 Soil Observation Data*.

- A truck-mounted Geoprobe rig completed the borings to depths ranging from 5.8 to 14.2 feet and retrieved soil samples with 4-foot macro cores.
- Five surface soil samples were collected and submitted for analytical testing for Target Analyte List (TAL) metals per various EPA Methods, polychlorinated biphenyls (PCBs) per EPA Method 8082 and base/neutral semi-volatile organic compounds (SVOCs) per EPA Method 8270.
- Ten subsurface soil samples were collected from the borings and submitted to the laboratory for analysis of TAL metals per various EPA Methods, PCBs per EPA Method 8082, base/neutral SVOCs per EPA Method 8270, and full list volatile organic compounds (VOCs) per EPA Method 8260.
- Ten 1-inch diameter PVC temporary monitoring wells (B-1/TW, B-3/TW, B-4/TW, B-5/TW, B-8/TW, B-12/TW, B-13/TW, B-18/TW, B-20/TW and B-23/TW) were installed in open boreholes with sand pack and bentonite surface seals.
- Well depth to water measurements were taken on March 10 and 14, 2011.
- Wells were developed and sampled with a peristaltic pump on March 14, 2011.
 Conductivity, temperature, pH and visual turbidity were recorded. Wells were sampled after stable readings were obtained.
- Water samples were collected on March 14, 2011 from eight temporary monitoring wells B-1/TW, B-3/TW, B-5/TW, B-8/TW, B-12/TW, B-13/TW, B-18/TW and B-20/TW and submitted to the laboratory for analysis for TAL metals per various EPA Methods, PCBs per EPA Method 8082, base/neutral SVOCs per EPA Method 8270, and full list VOCs per EPA Method 8260. Refer to *Appendix B Water Sampling Field Logs* for additional information.
- No free product was observed at temporary monitoring w B-23/TW, however, a sheen
 was observed in purged water. Due to limited water recovery (availability), the volume
 of water recovered was sufficient for only one analysis. This sample was submitted for
 VOC analysis.

- Temporary monitoring well B-4/TW was dry on March 14, 2011 and no sample was able to be collected.
- After the perched groundwater sampling event, Trec Environmental, Inc. removed all temporary monitoring wells and backfilled the borings with bentonite.

Surface and subsurface soil and perched groundwater samples were collected and submitted to the project environmental laboratory for analysis. Subsurface soil samples were collected from depths based on field indicators of PID readings, staining or odors. The table below summarizes the analytical work completed.

	N	umber of Sample	es
Analysis	Surface	Subsurface	Water
VOCs per EPA Method 8260 (Full List)	1	10	9
SVOCs per EPA Method 8270 (Base/Neutral Compounds Only)	5	10	8
TAL Metals [Arsenic, Barium, Beryllium, Cadmium, Chromium (Hexavalent and Trivalent), Copper, Total Cyanide, Lead, Manganese, Total Mercury, Nickel, Selenium, Silver and Zinc] per various EPA Methods	5	10	8
PCBs per EPA Method 8082	5	10	8

The analytical data collected for the investigation have been summarized in Tables 2 through 9. Refer to *Appendix C – Laboratory Reports* for raw laboratory data reports.

3.0 FINDINGS

3.1 SITE HYDROGEOLOGY

The site is located within the City of Rochester limits. The area immediately surrounding this site is one of low topographic relief in the physiographic region south of Lake Ontario. The site elevation is approximately 525 feet and both Lake Ontario and the Genesee River are at an approximate elevation of 245 feet. The site is located approximately 2 miles southwest of the Genesee River and approximately 7 miles southwest of Lake Ontario. Immediately west of the site is a wetland and the western portion of the site has been filled. Bedrock is shallow on the eastern side of the site, rising to within 6 feet of ground surface in some locations. Moving toward the western side of the site, bedrock depth increases to as much as 14 feet below ground surface. The underlying bedrock is the Guelph Dolostone, a hard erosion resistant rock that will contain water flow controlling fractures.

Regional groundwater flow is toward the river and ultimately Lake Ontario. Localized groundwater flow will generally follow surface topography. However, as the site topography is relatively flat, there is likely a strong influence from the bedrock topography. This indicates a localized groundwater movement from east to west across this site. As this conflicts with the regional groundwater movement, at some distance from this site the flow direction would be redirected to match the regional groundwater movement.

Depth-to-water measurements from the ground surface varied from approximately 1.10 to 7.25 feet. Based on significant site variability of the depth to water levels measured in the temporary monitoring wells, no groundwater contouring was completed. Many borings were dry at the top of the bedrock. Due to these factors, a site-specific groundwater flow direction was unable to be determined from the water level data obtained from this site.

Subsurface soils were described as fine to medium sands with gravel and some silt across much of the site. To the east, soil descriptions were of silt and sand in this area where shallow bedrock was encountered (typically 6 to 8 feet below ground surface).

3.2 SOIL CONDITION

Field observations and PID screening of soil samples collected from the borings are summarized in Table 1. Visual indicators of impact, consisting of sheen (and a small amount of free product in B-23/TW), were observed in four borings and black soil staining was recorded in three of these four borings. Olfactory observations (odors) were recorded as follows: petroleum odors were observed in eight borings and gasoline odors were observed in three borings (B-9, B-22 and B-23).

The analytical results for the subsurface soil samples collected are summarized in Tables 2 through 5. The analytical results are compared against the CP-51 Industrial Soil Cleanup Objectives (SCOs). Significant soil data findings are summarized below.

- No soils contained VOCs in concentrations above the Industrial SCOs.
- One of fifteen (five surface and ten subsurface) soil samples contained SVOCS above the
 SCO for one constituent.
- In five SVOC samples, two constituents [benzo(a)pyrene and dibenzo(a,h)anthracene] had reported limits of detection (LOD) that were 1.4 to 1.8 times the respective SCO. However, the results of the remaining ten soil samples were all below the SCOs.
- At location B-17, the surface soil PCB concentration was less than, but close to the SCO.
- Metals in soils were less than their SCOs with the exception of manganese at one location
 B-3 (sample depth 4 to 8 feet below ground surface), which was 2.4 times the SCO.

¹New York State Department of Environmental Conservation (DEC) Final Commissioner Policy, *CP-51/Soil Cleanup Guidance*, issued October 21, 2010.

3.3 PERCHED GROUNDWATER CONDITION

The analytical results of the perched groundwater samples are summarized in Tables 6 through 9 and are compared with State groundwater standards.² The following is indicated from the analytical results:

- A total of 44 VOC compound exceedances were detected in the nine temporary monitoring wells sampled. Among these exceedances, the results from wells B-1/TW and B-13/TW were the most significant. These two wells are located near former spill and remediation locations associated with the "motor block" (B-1/TW) and "metal punching" (B-13/TW) areas. Both of these areas were the subject of DEC Spill No. 0170284, which prompted site remediation resulting in the issuance of a "no further action" letter from the DEC on May 28, 2004.
- Methyl-tertiary-butyl ether (MTBE) was reported present in six of nine samples. The highest concentration was found in B-1/TW (near the shredder feed) at 9,540 micrograms per liter (μg/L), compared to the State standard of 10 μg/L. The second highest concentration of MTBE was 16.6 μg/L. MTBE is a former oxygenate in gasoline (banned in New York since 2004, but used from about 1985 to 2004), is highly water-soluble and moves easily through the ground.
- Some low concentrations of six chlorinated hydrocarbons were reported present in five of the nine wells at concentrations exceeding groundwater standards. These compounds ranged in concentration from 4.5 to 83.5 µg/L. The groundwater standards for the compounds range from 2 to 5 µg/L.
- PCBs were below the limit of detection (non-detect) in all eight water samples.

²DEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1, *Ambient Water Quality Standards and Guidance Values*, dated June 1998 and April 2002 Addendum.

- SVOCs were below the limit of detection (non-detect) in seven of eight water samples. The only compound detected in the eight samples, naphthalene, was present at 13.1 μ g/L, compared to a State standard of 10 μ g/L.
- Sixteen metals were analyzed in eight samples. In B-1/TW, the lead was reported at a concentration of 1,320 μ g/L, compared to the State standard of 1,000 μ g/L.

4.0 CONCLUSIONS

4.1 HYDROGEOLOGY

Granular fill, with some fines and of variable thickness up to 8 feet, but typically less than 4 feet, has been placed at this site. Much of the site contains soils consisting of sand and gravel with some silt, indicating good movement of water through these materials. The eastern portion of the site (east of the main building) contains significant silts, which impede the movement of water through them.

Depth to water in the temporary monitoring wells varied significantly across this site. On the relatively flat site, measured depths to water ranged over a difference of 6 feet – a considerable variation. This data inconsistency suggests this water is present in wet zones that are either perched or infiltrating surface water. This leads to an interpretation that the groundwater table was not intercepted by these shallow borings (i.e. the groundwater table is within the bedrock). This represents a potential data gap in this investigation, as the true groundwater quality may not have been assessed.

4.2 SOIL

Laboratory analyses of subsurface soil samples indicate the subsurface soils are impacted with VOCs at the location of B-13 and likely the vicinity around this boring, however no industrial SCOs were exceeded.

B-3 contained a moderate manganese exceedance and surface sample S-1 contained a moderate benzo(a)pyrene exceedance. Elevated surface soil results for SVOCs at B-17 were detected, but no values exceed the SCOs. SS-2 contained an elevated PCB compound (Arochlor 1242) concentration that was just under the SCO. The remainder of site soils results did not provide data of substantive concern.

4.3 PERCHED GROUNDWATER

Perched groundwater was collected and analyzed from eight of the wells for VOCs, SVOCs, metals and PCBs. Sufficient water could be extracted from a ninth well for only one analysis. This well, B-23/TW, was therefore only analyzed for VOCs. Perched groundwater results showing detected compounds are presented in Tables 6 through 9.

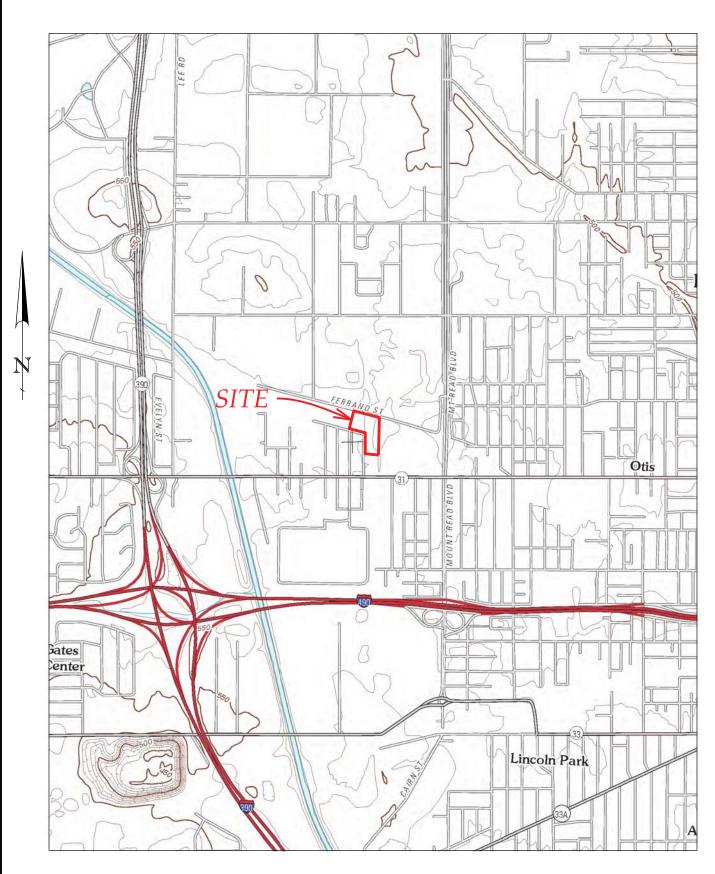
A total of 44 VOC compound exceedances were detected in the nine temporary monitoring wells sampled. Among these exceedances, the results from wells B-1/TW and B-13/TW were the most significant. These two wells are located near former spill and remediation locations associated with the "motor block" (B-1/TW) and "metal punching" (B-13/TW) areas. Both of these areas were the subject of DEC Spill No. 0170284, which prompted site remediation resulting in the issuance of a "no further action" letter from the DEC on May 28, 2004.

The remedial report for the motor block area indicated that substantial remediation of this location was completed in 2003. No subsurface soil sample from this location was submitted for analysis because little evidence (PID, visual or olfactory) was observed in the field. A surface sample at this location was submitted for SVOC, metals and PCB analyses, with no results of significance. However, the water sample collected from this location did contain substantial impact (MTBE at 9,540 μ g/L), indicating that a nearby gasoline release to the ground has occurred. The second highest concentration of MTBE was 16.6 μ g/L, indicating this MTBE result is not widespread at the site.

The report of remediation for the metal punching area (B-13/TW) states that "A 3-4 foot layer of petroleum-impacted soil beneath the existing concrete pad, the Bailer Building, and the

stormwater pond was left in place so that these structures did not have to be disturbed." Since 2004, however, the bailer operation has shut down, the bailer building removed and two of the three former stormwater detention ponds filled in.

5.0 RECOMMENDATIONS


This investigation was performed as part of a due diligence inquiry to evaluate whether significant environmental impact exists at this site that requires address. Significant impacts are shown in the area at B-13/TW in both the soils and perched groundwater. There is significant impact in the perched groundwater at B-1/TW. The following additional work is recommended for this site:

- Investigate/remediate soils under the concrete pad in the vicinity and north of B-13/TW.
 The operation, building and stormwater detention ponds that limited the remediation previously are no longer an impediment.
- Evaluate the source of the impact found in the perched groundwater in B-1.

With resolution of these two recommendations, this site does not have known significant impacts known as a result of this investigation that could reasonably be foreseen to require additional investigation/remediation.

A copy of this report should be submitted to the DEC for review.

FIGURES

REF.: USGS - ROCHESTER WEST (NY) QUAD., 2010, 7.5 MIN. SCALE: 1"=2000'

PLUMLEY ENGINEERING, P.C.
8232 LOOP ROAD
BALDWINSVILLE, NY 13027

TELEPHONE: (315) 638-9587
FAX: (315) 638-9740
WWW.PLUMLEYENG.COM

Vivil and Environmental Engineering

PROJECT:

80 STEEL STREET

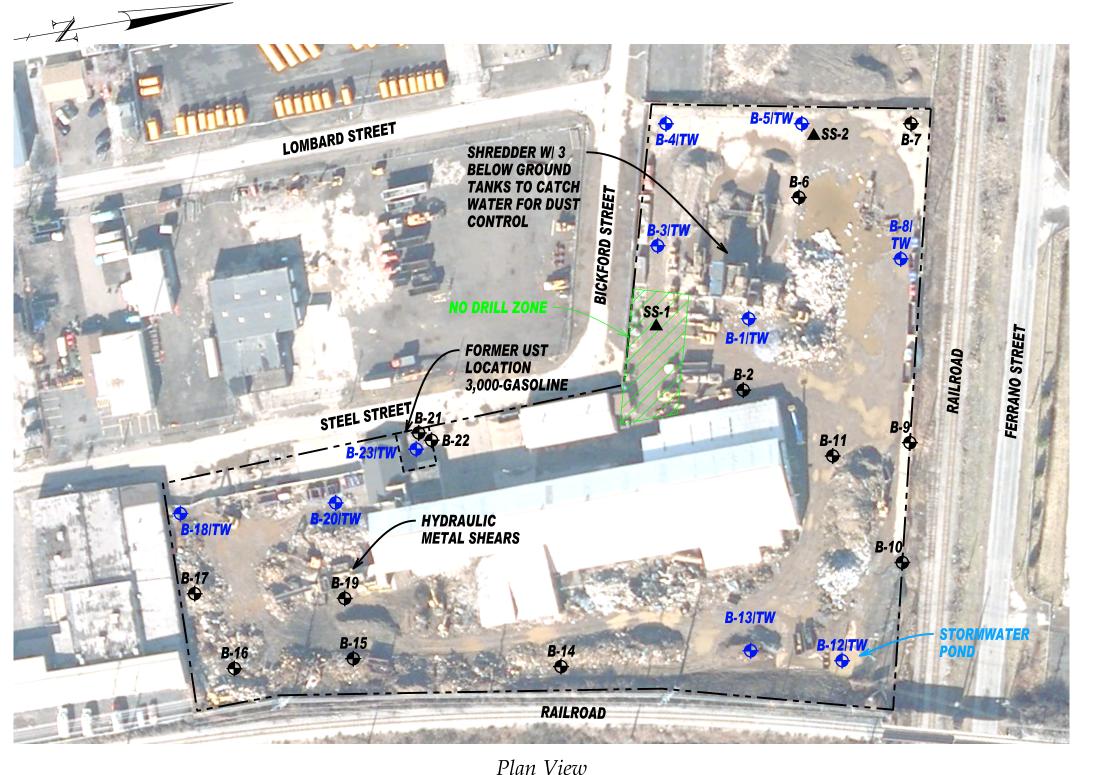
DWG. TITLE:

SITE LOCATION MAP

CLIENT: WEITSMAN RECYCLING, LLC
LOCATION: CITY ROCHESTER, MONROE COUNTY, NEW YORK

Note: No alteration permitted hereon except as provided under Section 7209 Subdivision 2 of the New York State Education Law.

© Plumley Engineering, P.C. 2011


PROJECT No.: 2011030
FILE NAME.: FIGURE 1
SCALE: AS NOTED

 SCALE:
 AS NOTED

 DATE:
 FEB. 2011

 ENG/D BY:
 DTH

DRAWN BY: JMD
CHECKED BY: DTH

<u>Key</u>

Property Line (Approximate)

B-2 ◆

Approximate Location of Soil Boring (Completed 03/09/11 & 03/10/11)

B-1/ TW ◆

Approximate Location of Soil Boring w/ 1"-dia. Temporary Monitoring Well (Completed 03/09/11 & 03/10/11)

SS-2▲

Approximate Location of Surface Sample (Collected 03/ /11

Plan View

1 = 100

NYS GIS Clearinghouse - City of Rochester, Monroe County, New York, 1-Foot Resolution Natural Color Orthoimagery, 2009.

LUMLEY ENGINEERING, P.C. 8232 LOOP ROAD BALDWINSVILLE, NY 13027 DATE: TELEPHONE: (315) 638-8587 FAX: (315) 638-9740 WWW.PLUMLEYENG.COM These plans & specifications are the property of Plumley Engineering, P.C. These documents may not be copied, reproduced, used or implemented in any way, in part or in whole, without the written consent of Plumley Engineering, P.C. All common law rights of copyright are hereby specifically reserved Civil and Environmental Engineering

GENESEE SCRAP & TIN BALING CORP

SITE PLAN CLIENT:

WEITSMAN RECYCLING, LLC LOCATION: CITY OF ROCHESTER, MONROE COUNTY, NEW YORK

Note: No alteration permitted hereon except as provided under Section 7209 Subdivision 2 of the New York State Education Law.

PROJECT No.: 2011030

FILE NAME.: EV01P SCALE: AS NOTED DATE: ENG'D BY: DTH

MAR. 2011 DRAWN BY: JMD CHECKED BY: ___ DTH

SHEET NO.:

FIGURE 2

© Plumley Engineering, P.C. 2011

TABLES

80 Steel Street

City of Rochester, Monroe County, New York

TABLE 1 - SOIL OBSERVATION DATA

BORING	DEPTH	PID READING	EIELD INDICATORS*
LOCATION	(feet)	(ppm)	FIELD INDICATORS*
B-1/TW	0 to 1	21	
	1 to 4	5	
	4 to 8	0	1
B-2	8 to 8.2 0 to 4	0 0.4	geoprobe refusal
D-2	4 to 6.2	0.4	geoprobe refusal
B-3/TW	0 to 4	0	gooprobe rerusur
	4 to 8	1.7	
	8 to 10.2	0	geoprobe refusal
B-4/TW	0 to 4	0.7	
D 5 /TW	4 to 8	0	geoprobe refusal
B-5/TW	0 to 4 4 to 8	1.5 0.5	only 3" of recovery
	8 to 12	0.5	petroleum odor (motor oil/gear oil)
	12 to 14.2	0	geoprobe refusal
B-6	0 to 4	1.7	
	4 to 8	0.4	tire odor, possible black staining
	8 to 9.8	0	geoprobe refusal
B-7	0 to 4 4 to 7.8	0	geoprobe refusal
B-8/TW	0 to 4	0	geoprobe refusar
D-0/ 1 VV	4 to 8	0	
	8 to 11.5	0	slight petroleum odor at 11.5' bgs, geoprobe refusal
B-9	0 to 4	0	
	4 to 7.8	127	slight grey staining at 3.5' bgs, gasoline odor, geoprobe refusal
B-10	0 to 4	0	
	4 to 8	3	
B-11	8 to 8.2 0 to 2	0 2.8	
D-11	2 to 5.8	0	geoprobe refusal
B-12/TW	0 to 4	1.3	sheen present in the water
	4 to 7.8	0	geoprobe refusal
B-13/TW	0 to 1.5	1.3	sheen present in the water
	4 to 8	453	black staining with petroleum odor
B-14	8 to 8.5 0 to 1.5	2 0	geoprobe refusal
D-14	4 to 6	0	
	6 to 6.75	0	geoprobe refusal
B-15	0 to 0.5	3	petroleum odor, fuel oil
	0.5 to 4	2	petroleum odor, fuel oil
	4 to 8	0	petroleum odor, fuel oil
7.11	8 to 9.5	0	geoprobe refusal
B-16	0 to 4 4 to 8	0	
	4 to 8 8 to 11.7	0	
B-17	0 to 4	0	
	4 to 8	0	
	8 to 8.4	3.9	fuel oil odor, geoprobe refusal
B-18/TW	0 to 4	0	
	4 to 8	0	
B-19	8 to 8.4 0 to 4	0.8	fuel oil odor, geoprobe refusal
D-17	4 to 8	0.7	
1	8 to 9.7	0.7	geoprobe refusal
B-20/TW	0 to 4	0	8-1
	4 to 8	0	
	8 to 9.7	0	geoprobe refusal
B-21	0 to 4	50	1 0 1
D 22	4 to 4.2	0	geoprobe refusal
B-22	0 to 4 4 to 8	40 48	
	8 to 9	48	slight sheen, black staining, gasoline odor, geoprobe refusal
B-23/TW	0 to 4	0	onghi oncen, once stanning, gasonne odor, geoprove terusar
	4 to 8	0	
	8 to 9.1	60	slight sheen, black staining, gasoline odor, geoprobe refusal

Notes:

TW Temporary well (1-inch diameter) installed in the boring to be sampled, if needed.

PID Photoionization detection meter

ppm Parts per million

* Staining, sheens, free-product. Blank cells indicate no field indicators observed.

80 Steel Street

City of Rochester, Monroe County, New York

TABLE 2 - SOIL ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS [EPA METHOD 8260]

Date Sampled: March 9 and 10, 2011

Page	Date Sampled: March 9	and 10	, 2011										
Labes Sample Part	Client Sample ID:			_	_	_		_	_				B-23 (8'-9.1')
Personant Per	Lab Sample ID:			M98417-4	M98417-5	M98417-6	M98417-13	M98417-7	M98417-8	M98417-9	M98417-10	M98417-11	M98417-12
Account 19	Date Sampled:		375-12/06)1										03/10/11
Service 1965 1970					GC/MS	Volatiles (S	SW846 8260I	B)	-	-			
Sementenemen	Acetone	μg/kg	1,000,000										
Semanticularization 1988			89,000					6,440				31	
Brossofiction cerebany 19-58													
Brosselfer 1968 1969 1													
Bonnesenbare 1968 1.000,000 0.													
Sammone (MEK) 1942 1,000,000													
Cheysbersene			1 000 000										
Sex-Baychacacae 1988 1,500,000 517 517 517 518	` /		, ,										
International	•		, ,										
Carbon standard 195/kg	•												
Columentation	·												
Chlorediane	Carbon tetrachloride		44,000										
Chleerofam	Chlorobenzene	μg/kg	1,000,000										
Chloroschane	Chloroethane	μg/kg											
			700,000										
Section of the company Section													
Incompanies													
1988 1989													
12-Dehtomechane	ablaranranana												
13-Dichlorobeancene													
13-Dichloroschenzen 19/18 250,000	,		1 000 000										
Ja-Dichlorocharene Pg-Kg 250,000 .													
Dehlorochiane	,-		,										
14Dichloroethane			200,000										
1.2.Dishloroethane			480,000										
Control Cont	1,2-Dichloroethane		60,000										
Common 1.2-Dichloropenane 19/kg 1.000,000 1.2.	1,1-Dichloroethene	μg/kg	1,000,000										
1.2-Dichloropropane 19/kg	cis-1,2-Dichloroethene	μg/kg	1,000,000										
1.3-Dichloropropane		μg/kg	1,000,000										
1,1-Dichloropropane 1g/kg													
1.1-Dischloropropene													
Cis-1,3-Dichloropropene													
Ethylbenzene													
Ethylbenzene 1g/kg 780,000 8,950 .													
Hexachlorobutadiene			780.000										
2-Hexanone μg/kg	•		,										
Indomethane													
p-Isopropyltoluene	Iodomethane												
Methyl Terr Butyl Ether µg/kg 1,000,000	Isopropylbenzene	μg/kg						1,090				399	397
Helly lene bromide Hg/kg 1,000,000 1,000,000 1,11,12-Tertachloroethane Hg/kg 1,000,000 1,000,000 1,11,12-Trichloroethane Hg/kg 1,000,000	p-Isopropyltoluene	μg/kg						750					
Methylene bromide	Methyl Tert Butyl Ether		1,000,000										
Methylene chloride μg/kg 1,000,000 1,150 870 n-Propylbenzene μg/kg 1,000,000 </td <td>(MIDV)</td> <td></td>	(MIDV)												
Naphthalene μg/kg 1,000,000 1,810 879 1,150 870 n-Propylbenzene μg/kg 1,000,000	•		1 000 000										
n-Propylbenzene	•												
Styrene µg/kg -	•											-	
1,1,2-Tetrachloroethane			1,000,000										
1,1,2,2-Tetrachloroethane													
Tetrachloroethene μg/kg 300,000													
1.2,3-Trichlorobenzene μg/kg <t< td=""><td>Tetrachloroethene</td><td></td><td>300,000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Tetrachloroethene		300,000										
1.2.4-Trichlorobenzene μg/kg <t< td=""><td></td><td></td><td>1,000,000</td><td></td><td></td><td></td><td></td><td>51,000</td><td></td><td></td><td></td><td></td><td></td></t<>			1,000,000					51,000					
1,1,1-Trichloroethane μg/kg 1,000,000	1,2,3-Trichlorobenzene												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
Trichloroethene μg/kg 400,000	, ,		1,000,000										
Trichlorofluoromethane μg/kg			400,000										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			400,000										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			380 000										
Vinyl Acetate μg/kg <td>·</td> <td></td> <td>, and the second second</td> <td></td>	·		, and the second										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•		222,000										
m,p-Xylene $\mu g/kg$ 1,000,000 30,900 224 o-Xylene $\mu g/kg$ 1,000,000 14,800	Vinyl chloride		27,000										
o-Xylene μg/kg 1,000,000 14,800	m,p-Xylene		1,000,000					30,900				224	
Xylene (total) μg/kg 1,000,000 45,700 268	o-Xylene		1,000,000					14,800					
	Xylene (total)	μg/kg	1,000,000					45,700				268	

Notes:

¹New York Codes, Rules and Regulations, Title 6 (6NYCRR) Part 375-6 Remedial Program Soil Cleanup Objectives.

 $\mu g/kg$ micrograms per kilogram, equivalent to parts per billion (ppb)

Table lists positive detections only. Non-detected levels are denoted by ---.

GENESEE SCRAP & TIN BALING CORP. 80 Steel Street

City of Rochester, Monroe County, New York

TABLE 3 - SOIL ANALYTICAL RESULTS -SEMI-VOLATILE ORGANIC COMPOUNDS [EPA METHOD 8270 B/N]

Date Sampled: March 9, 10, and 14 2011

		NY SCO -	B-12	B-13	B-15	B-17	B-19	B-22	B-23	B-3	B-5	B-9		B-10	B-17		-
Client Sample ID:		Industrial w/	(0'-8')	(4'-8')	(4'-8')	(8'-8.4')	(4'-8')	(8'-9')	(8'-9.1')	(4'-8')	(12'-14.2')	(4'-7.8')	B-1 (surface)	(surface)	(surface)	SS-1	SS-2
Lab Sample ID:		CP-51 (6NYCRR	M98417-13	M98417-7	M98417-8	M98417-9	M98417-10	M98417-11	M98417-12	M98417-4	M98417-5	M98417-6	M98417-1	M98417-2	M98417-3	M98416-10	M98416-11
Date Sampled:	1	375-12/06)1	03/09/11	03/09/11	03/10/11	03/10/11	03/10/11	03/10/11	03/10/11	03/09/11	03/09/11	03/09/11	03/09/11	03/09/11	03/10/11	03/14/11	03/14/11
Date Samplea.	<u> </u>		03/07/11	03/07/11	03/10/11	03/10/11		ni-volatiles (SW		03/07/11	03/07/11	03/03/11	03/07/11	03/07/11	03/10/11	03/14/11	03/14/11
Acenaphthene	μg/kg	1.000.000															
Acenaphthylene	μg/kg μg/kg	1.000,000															
Anthracene	μg/kg μg/kg	1.000,000															1,940
Benzidine	μg/kg μg/kg	1,000,000															1,540
Benzo(a)anthracene	μg/kg μg/kg	11,000								297					869	2,020	
Benzo(a)pyrene	μg/kg μg/kg	1,100					431	ND (1400)	ND (1400)	260				ND (1400)	874	1,990	ND (1800)
Benzo(b)fluoranthene	μg/kg μg/kg	11.000					399								722	1,980	2,010
Benzo(g,h,i)perylene		1.000.000					508			1			+		610	2,140	1,940
Benzo(k)fluoranthene	μg/kg	110,000					360								664	1,930	
	μg/kg	110,000														· · · · · · · · · · · · · · · · · · ·	
4-Bromophenyl phenyl ether	μg/kg															4.740	2.220
Butyl benzyl phthalate	μg/kg															4,740	2,230
2-Chloronaphthalene	μg/kg	<u> </u>															
4-Chloroaniline	μg/kg	110,000								298					021	2,250	
Chrysene	μg/kg	110,000													921	1	
bis(2-Chloroethoxy)methane	μg/kg																
bis(2-Chloroethyl)ether	μg/kg																
bis(2-Chloroisopropyl)ether	μg/kg																
4-Chlorophenyl phenyl ether	μg/kg																
1,2-Dichlorobenzene	μg/kg	1,000,000															
1,2-Diphenylhydrazine	μg/kg																
1,3-Dichlorobenzene	μg/kg	560,000															
1,4-Dichlorobenzene	μg/kg	250,000															
2,4-Dinitrotoluene	μg/kg																
2,6-Dinitrotoluene	μg/kg																
3,3'-Dichlorobenzidine	μg/kg																
Dibenzo(a,h)anthracene	μg/kg	1,100						ND (1400)	ND (1400)					ND (1400)		ND (1500)	ND (1800)
Di-n-butyl phthalate	μg/kg																
Di-n-octyl phthalate	μg/kg				272											31,800	6,820
Diethyl phthalate	μg/kg																
Dimethyl phthalate	μg/kg																
bis(2-Ethylhexyl)phthalate	μg/kg			567	709			2,460		661					1,340	58,600	117,000
Fluoranthene	μg/kg	1,000,000					603			576					1,190		
Fluorene	μg/kg	1,000,000															4,330
Hexachlorobenzene	μg/kg	12,000															
Hexachlorobutadiene	μg/kg																
Hexachlorocyclopentadiene	μg/kg																
Hexachloroethane	μg/kg																
Indeno(1,2,3-cd)pyrene	μg/kg	11,000					413								624	1,780	
Isophorone	μg/kg	,															
Naphthalene	μg/kg	1,000,000						2,360									5,280
Nitrobenzene	μg/kg	140,000															
n-Nitrosodimethylamine	μg/kg	-,															
N-Nitroso-di-n-propylamine	μg/kg																
N-Nitrosodiphenylamine	μg/kg																
Phenanthrene	μg/kg μg/kg	1.000.000					395			299					465	2,230	12,700
Pyrene	μg/kg μg/kg	1,000,000					665			608					1,280	4,480	5,320
1,2,4-Trichlorobenzene	μg/kg μg/kg	1,000,000													1,280	4,460	3,320
1,2, 4 -1110110100e11Ze11e	µg/Kg																

¹New York Codes, Rules and Regulations, Title 6 (6NYCRR) Part 375-6 Remedial Program Soil Cleanup Objectives Compounds with reported detections are denoted in **BOLD**.

 $\begin{array}{ll} \mu g/kg & \text{micrograms per kilogram, equivalent to parts per billion (ppb)} \\ \text{ND (1400)} & \text{Indicates Laboratory method detection limit (MDL) was greater than the Soil Clean-up Objectives} \end{array}$

Denoted Non-detected levels.
Denotes surface sample (I.e. SS-1)

80 Steel Street

City of Rochester, Monroe County, New York

TABLE 4 - SOIL ANALYTICAL RESULTS - METALS AND GENERAL CHEMISTRY

Date Sampled: March 9, 10 and 14 2011

Client Sample ID:		NY SCO - Industrial w/	B-3 (4'-8')	B-5 (12'-14.2')	B-9 (4'-7.8')	B-12 (0'-8')	B-13 (4'-8')	B-15 (4'-8')	B-17 (8'-8.4')	B-19 (4'-8')	B-22 (8'-9')	B-23 (8'-9.1')	SS-1	SS-2	B-1 (surface)	B-10 (surface)	B-17 (surface)
Lab Sample ID:		CP-51 (6NYCRR	M98417-4	M98417-5	M98417-6	M98417-13	M98417-7	M98417-8	M98417-9	M98417-10	M98417-11	M98417-12	M98416-10	M98416-11	M98417-1	M98417-2	M98417-3
Date Sampled:		375-12/06)1	03/09/11	03/09/11	03/09/11	03/09/11	03/09/11	03/10/11	03/10/11	03/10/11	03/10/11	03/10/11	03/14/11	03/14/11	03/09/11	03/09/11	03/10/11
							Me	etals Analysis									
Arsenic	mg/kg	16	7.2	2.4	3.4	7.1	4.6	1.8	2.8	5.7	3.5	5	11.9	14	2.8	3.8	6.8
Barium	mg/kg	10,000	571	17	44	41.3	13.7	16.9	10.3	35.2	26.3	16.2	440	783	24.7	44.3	92.2
Beryllium	mg/kg	2,700	0.75														0.49
Cadmium	mg/kg	60	7.5							1.3	0.71		14.4	26.1			1.6
Chromium	mg/kg	NA	1,710	9	12.1	8.6	17.6	9	4.8	33.7	22.1	6.5	477	1,110	7.6	53.8	29
Copper	mg/kg	10,000	327	11.8	13.8	11.5	23.9	6	10.2	950	116	13.1	1,580	1,830	12.9	14.8	430
Lead	mg/kg	3,900	127	31.3	11	22.3	21.2	4	11.7	79.9	81.5	30.1	1,010	1,090	6.6	14.5	188
Manganese	mg/kg	10,000	24,400	401	344	157	364	250	245	414	228	220	4,510	5,700	449	781	261
Mercury	mg/kg	5.7	0.14		0.054	0.18	0.052			1.1	0.26	0.028	1.9	4		0.067	0.29
Nickel	mg/kg	10,000	63	6.3	11.4	8.6	12.7	4.5	6	20.4	23.1	5.9	191	502	6.9	8.3	26
Selenium	mg/kg	6,800	<2.1 a				<2.0 a						<2.3 b	<2.7 b			
Silver	mg/kg	6,800	2.9							1.3	1	< 0.51	12.3	16.2			7.1
Zinc	mg/kg	10,000	738	76.4	49.9	58	446	13.2	8.1	1,010	119	27.7	45,50	8,440	52.5	62.8	486
							Gen	eral Chemistr	y								
Chromium, Hexavalent	mg/kg	800	4.5							2.4							
Chromium, Trivalent	mg/kg	6,800	1,710 ^b	8.8 b	11.7 ^b	8.4 ^b	17.6 ^b	8.8 b	4.6 ^b	31.3 b	21.7 в	6.5 ^b	477 ^b	1,110 ^b	7.6 ^b	53.6 ^b	28.5 b
Cyanide	mg/kg	10,000	0.13										0.38	0.33			
Redox Potential Vs H2	mv	NA	331	338	358	376	367	397	384	383	373	362	395	349	349	374	374
Solids, Percent	%	NA	91.1	88.6	81.5	84.1	91	91.4	90.4	91.2	86.3	88.1	81.4	67.2	91.9	84.6	76.1
рН	su	NA	11.7	8.7	8.1	7.4	8.3	8.4	8.4	8.2	8	8.2	7.5	8.7	8.6	7.6	7.5

Notes:

¹New York Codes, Rules and Regulations, Title 6 (6NYCRR) Part 375-6 Remedial Program Soil Cleanup Objectives.

Table lists positive detections only in parts per million (ppm). Non-detected levels are denoted by ---.

NA Not available

--- Denotes Non-Detected Levels

* Allowable limits are 1,000 ppb for SS (Surface Samples) and 10,000 ppb for SB (Soil Boring Samples)

mg/kg milligrams per killogram (equivalent to parts per million ppm)

mv milli-volts

su standard units

^a Elevated RL due to dilution required for matrix interference.

Calculated as: (Chromium) - (Chromium, Hexavalent)

Compounds with reported detections are denoted in **BOLD**.

80 Steel Street

City of Rochester, Monroe County, New York

TABLE 5 - SOIL ANALYTICAL RESULTS - POLYCHLORINATED BIPHENYLS [EPA METHOD 8082]

Date Sampled: March 9, 10 and 14 2011

Client Sample ID:		NY SCO - Industrial w/	B-3 (4'-8')	B-5 (12'-14.2')	B-9 (4'-7.8')	B-12 (0'-8')	B-13 (4'-8')	B-15 (4'-8')	B-17 (8'-8.4')	B-19 (4'-8')	B-22(8'-9')	B-23 (8'-9.1')	SS-1	SS-2	B-1 (surface)	B-10 (surface)	B-17 (surface)
Lab Sample ID:		CP-51 (6NYCRR	M98417-4	M98417-5	M98417-6	M98417-13	M98417-7	M98417-8	M98417-9	M98417-10	M98417-11	M98417-12	M98416-10	M98416-11	M98417-1	M98417-2	M98417-3
Date Sampled:		375-12/06)1	09/03/11	09/03/11	09/03/11	09/03/11	09/03/11	10/03/11	10/03/11	10/03/11	10/03/11	10/03/11	14/03/11	14/03/11	09/03/11	09/03/11	10/03/11
							GC Ser	ni-volatiles (S	W846 8082)								
Aroclor 1016	μg/kg	25,000															
Aroclor 1221	μg/kg	25,000															
Aroclor 1232	μg/kg	25,000														-	
Aroclor 1242	μg/kg	25,000	652										4,410	24,300			1,110
Aroclor 1248	μg/kg	25,000					138			269 a	135						
Aroclor 1254	μg/kg	25,000	267 ª							375			2,680 a	7,660 a			695 ^a
Aroclor 1260	μg/kg	25,000															

Notes:

¹New York Codes, Rules and Regulations, Title 6 (6NYCRR) Part 375-6 Remedial Program Soil Cleanup Objectives.

μg/kg micrograms per kilogram, equivalent to parts per billion (ppb)

--- Denotes non-detected levels

Estimated value due to the presence of other Arochlor pattern.

80 Steel Street

City of Rochester, Monroe County, New York

TABLE 6 - WATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS [EPA METHOD 8260]

Date Sampled: March 14, 2011

Client Sample ID:	State Standard ¹	B-1/TW	B-3/TW	B-5/TW	B-8/TW	B-12/TW	B-13/TW	B-18/TW	B-20/TW	B-23/TW
Lab Sample ID:	(µg/L)	M98416-3	M98416-4		M98416-6		M98416-8	M98416-1	M98416-2	
•	•	•		latiles (SW8		•	•		•	
Acetone	5	1,170	370	276	131	71.8	160		15.6	
Benzene	0.7	78.2	1.1	7	0.68	1.6	2,200		0.94	
Bromobenzene	5									
Bromochloromethane Bromodichloromethane	50 50									
Bromoform	50									
Bromomethane	5									
2-Butanone (MEK)	-	1,070 ^a	61.1	45.3	13.3	9	36.6			
n-Butylbenzene	5									
sec-Butylbenzene	5									8.6
tert-Butylbenzene	-									
Carbon disulfide Carbon tetrachloride	60 5									
Chlorobenzene	5									
Chloroethane	5									
Chloroform	7									
Chloromethane	5		2.7							
o-Chlorotoluene	5									
p-Chlorotoluene	5									
1,2-Dibromo-3-chloropropane	0.04									
Dibromochloromethane 1,2-Dibromoethane	5									
1,2-Dichlorobenzene	3									
1,3-Dichlorobenzene	3									
1,4-Dichlorobenzene	3									
Dichlorodifluoromethane	5									
1,1-Dichloroethane	5									
1,2-Dichloroethane	0.6			22.2						
1,1-Dichloroethene cis-1,2-Dichloroethene	5	83.5	21.9	32.2 6.6	6.3 4.5	5.3				
trans-1,2-Dichloroethene	5				4.3	5.5				
1,2-Dichloropropane	1									
1,3-Dichloropropane	5									
2,2-Dichloropropane	5									
1,1-Dichloropropene	5									
cis-1,3-Dichloropropene	-									
trans-1,3-Dichloropropene Ethylbenzene	5	0.0		2.5			297			
Hexachlorobutadiene	5 0.5	9.9		3.5			287			
2-Hexanone	-									
Iodomethane	-	18.2	7.3							
Isopropylbenzene	5						12.9			15.5
p-Isopropyltoluene	5									
Methyl Tert Butyl Ether	10	9,540	16.6	7.8	2.4	1.8	6.9			
4-Methyl-2-pentanone (MIBK)	-	195	36.4	40.8	10.1		36.4		6.9	
Methylene bromide Methylene chloride	5 10									
Naphthalene	10	10.5					30.3			
n-Propylbenzene	5						20.4			37.5
Styrene	5									
1,1,1,2-Tetrachloroethane	5									
1,1,2,2-Tetrachloroethane	5									
Tetrachloroethene	5		1.5	12.3			2.260			
Toluene 1,2,3-Trichlorobenzene	5	77.8	1.5	10.7			3,360			
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	5									
1,1,1-Trichloroethane	5									
1,1,2-Trichloroethane	1									
Trichloroethene	5			7.7						
Trichlorofluoromethane	5	3.6	6.9							
1,2,3-Trichloropropane	0.04									
1,2,4-Trimethylbenzene	5	11.8					173			
1,3,5-Trimethylbenzene	5						34.6			
Vinyl Acetate	- 2			10.3		4.3	 1 <i>A</i>			
Vinyl chloride m,p-Xylene	2	34.4		10.3		1.7	1.4 846			
o-Xylene	-	20.6		7		3.3	447			
Xylene (total)	5	55		17.3		5	1,290			

Notes:

 $\mu g/L$ micrograms per liter, approximately equivalent to parts per billion (ppb)

Exceeded method detection limit.

- Not available

--- Denotes non-detect levels

Compounds with reported detections are denoted in **BOLD**.

¹State standard is in reference to the DEC Division of Water's Technical and Operational Guidance Series (TOGS) 1.1.1, *Ambient Water Quality Standards and Guidance Values*, dated October 22, 1993.

80 Steel Street City of Rochester, Monroe County, New York

TABLE 7 - WATER ANALYTICAL RESULTS - SEMI-VOLATILE ORGANIC COMPOUNDS [EPA METHOD 8270 B/N]

Date Sampled: March 14, 2011

Client Sample ID:	State Standard ¹	B-1/TW	B-3/TW	B-5/TW	B-8/TW	B-12/TW	B-13/TW	B-18/TW	B-20/TW	B-23/TW
Lab Sample ID:	(μg/L)	M98416-3	M98416-4	M98416-5						M98416-9
Zuo Sumpie IZ	,,,,			latiles (SW8		11201107	1/1/01100	1,12,01101	111701102	111701107
Acenaphthene										_
Acenaphthylene										_
Anthracene	50									_
Benzidine	30									_
Benzo(a)anthracene	0.002									_
Benzo(a)pyrene	0.002									_
Benzo(b)fluoranthene	0.002									_
Benzo(g,h,i)perylene	0.002									
Benzo(k)fluoranthene	0.002									
4-Bromophenyl phenyl ether	0.002									
Butyl benzyl phthalate	50									
2-Chloronaphthalene	30									-
4-Chloroaniline										-
	0.002									-
Chrysene	0.002									-
bis(2-Chloroethoxy)methane	5									-
bis(2-Chloroethyl)ether	1									-
bis(2-Chloroisopropyl)ether										-
4-Chlorophenyl phenyl ether										-
1,2-Dichlorobenzene	3									-
1,2-Diphenylhydrazine	_									-
1,3-Dichlorobenzene	3									-
1,4-Dichlorobenzene	3									-
2,4-Dinitrotoluene	5									-
2,6-Dinitrotoluene	5									-
3,3'-Dichlorobenzidine	5									-
Dibenzo(a,h)anthracene	50									-
Di-n-butyl phthalate	50									-
Di-n-octyl phthalate	50									-
Diethyl phthalate	50									-
Dimethyl phthalate	50									-
bis(2-Ethylhexyl)phthalate	5									-
Fluoranthene	50									-
Fluorene	50									-
Hexachlorobenzene	0.35									-
Hexachlorobutadiene	0.5									1
Hexachlorocyclopentadiene	5									1
Hexachloroethane	5									-
Indeno(1,2,3-cd)pyrene	0.002									-
Isophorone	50									-
Naphthalene	10						13.1			-
Nitrobenzene	0.4									-
n-Nitrosodimethylamine	50									-
N-Nitroso-di-n-propylamine	50									-
N-Nitrosodiphenylamine	50									-
Phenanthrene	50									-
Pyrene	50									-
1,2,4-Trichlorobenzene	5									_

Notes:

¹State standard is in reference to the DEC Division of Water's Technical and Operational Guidance Series (1.1.1)

Ambient Water Quality Standards and Guidance Values, dated October 22, 1993.

 $\mu g/L$ micrograms per liter, equivalent to parts per billion (ppb)

- Not Analyzed

--- Denotes non-detect levels

Compounds with reported detections are denoted in $\boldsymbol{BOLD}.$

80 Steel Street

City of Rochester, Monroe County, New York

TABLE 8 - WATER ANALYTICAL RESULTS - METALS

Date Sampled: March 14, 2011

Client Sample ID:	State Standard ¹	B-1/TW	B-3/TW	B-5/TW	B-8/TW	B-12/TW	B-13/TW	B-18/TW	B-20/TW	B-23/TW
Lab Sample ID:	(µg/L)	M98416-3	M98416-4	M98416-5	M98416-6	M98416-7	M98416-8	M98416-1	M98416-2	M98416-9
]	Metals Anal	ysis					
Arsenic	25		5.5	17.7						-
Barium	1,000	900	361	2,220	196	< 50	< 50	60.5	61.3	-
Beryllium	3									-
Cadmium	5									-
Chromium	50		97.2	19.3						-
Copper	200		123	61.2						-
Lead	25		32.8	56.8		6.7	8.1	7.4	10	-
Manganese	300	1,320	265	181	1,820	374	239	62.6	204	-
Mercury	0.7			0.3						-
Nickel	100			<40						-
Selenium	10			<10						-
Silver	50			< 5.0						-
Zinc	2,000		76.1	454	21.8	48.6	82	26.4	42.5	-
			G	eneral Chen	nistry					
Chromium, Hexavalent	50		0.055							-
Chromium, Trivalent	50	<0.020 a	0.042 a	<0.020 a	<0.020 a	<0.020 a	<0.020 a	<0.020 a	<0.020 a	-
Cyanide	200									-

Notes:

¹State standard is in reference to the DEC Division of Water's Technical and Operational Guidance Series (TOGS) 1.1.1, *Ambient Water Quality Standards and Guidance Values*, dated October 22, 1993.

μg/L micrograms per liter, equivalent to parts per billion (ppb)

- Not Analyzed

^a Calculated as: (Chromium) - (Chromium, Hexavalent)

--- Denotes non-detect levels

Compounds with reported detections are denoted in **BOLD**.

80 Steel Street

City of Rochester, Monroe County, New York

TABLE 9 - WATER ANALYTICAL RESULTS - POLYCHLORINATED BIPHENYLS [EPA METHOD 8082]

Date Sampled: March 14, 2011

Client Sample ID:	National Drinking Water	State Standard ¹	B-1/TW	B-3/TW	B-5/TW	B-8/TW	B-12/TW	B-13/TW	B-18/TW	B-20/TW	B-23/TW
Lab Sample ID:	Standards (40 CFR 141)	(μg/L)	M98416-3	M98416-4	M98416-5	M98416-6	M98416-7	M98416-8	M98416-1	M98416-2	M98416-9
Aroclor 1016	0.5	NA	ND (0.27)	ND (0.27)	ND (0.25)	ND (0.25)	ND (0.27)	ND (0.25)	ND (0.27)	ND (0.27)	-
Aroclor 1221	0.5	NA	ND (0.27)	ND (0.27)	ND (0.25)	ND (0.25)	ND (0.27)	ND (0.25)	ND (0.27)	ND (0.27)	-
Aroclor 1232	0.5	NA	ND (0.27)	ND (0.27)	ND (0.25)	ND (0.25)	ND (0.27)	ND (0.25)	ND (0.27)	ND (0.27)	-
Aroclor 1242	0.5	NA	ND (0.27)	ND (0.27)	ND (0.25)	ND (0.25)	ND (0.27)	ND (0.25)	ND (0.27)	ND (0.27)	-
Aroclor 1248	0.5	NA	ND (0.27)	ND (0.27)	ND (0.25)	ND (0.25)	ND (0.27)	ND (0.25)	ND (0.27)	ND (0.27)	-
Aroclor 1254	0.5	NA	ND (0.27)	ND (0.27)	ND (0.25)	ND (0.25)	ND (0.27)	ND (0.25)	ND (0.27)	ND (0.27)	-
Aroclor 1260	0.5	NA	ND (0.27)	ND (0.27)	ND (0.25)	ND (0.25)	ND (0.27)	ND (0.25)	ND (0.27)	ND (0.27)	-
Total	NA	0.09	ND (0.27)	ND (0.27)	ND (0.25)	ND (0.25)	ND (0.27)	ND (0.25)	ND (0.27)	ND (0.27)	-

Notes:

¹State Standard is in reference to the DEC Division of Water's Technical and Operational Guidance Series (TOGS) 1.1.1, *Ambient Water Quality Standards and Guidance Values*, dated October 22, 1993.

 $\mu g/L$ micrograms per liter

ND Not detected (limit of detection shown)

NA Not Available
- Not Analyzed

APPENDICES

APPENDIX A BORING LOGS

PROJECT: Genesee Scrap & Tin HOLE NO. B-1/TW JOB NO. 2011030 **HOLE LOCATION:** East of Shredder 80 Steel Street, Rochester, New York LOCATION: SURF. EL. NA 03/09/11 **GROUNDWATER DEPTH: DATE STARTED:** DATE COMPLETED: 03/09/11 ~6' bgs

INSPECTOR: DTH
DRILLER: Trec Environmental - Jim/Mike

DRILLING METHOD:

NG METHOD:

Geoprobe Direct Push

SAMPLER TYPE:

4' Macro Core Sampler

			Sampl				
DEPTH (Ft.)	SAMPLE DEPTH (Ft.)	SAMPLE#	RECOVERY (Ft.)	Staining	PID (ppm)	DESCRIPTION OF MATERIAL	CONTACT DEPTH (Ft.)
	0-1	1		NP	21	Brown, dry, fine-medium sand, little fine gravel, trace debris	±1
						Light brown, dry silt and fine sand, trace fine gravel	
						=-g 2.0, a, o aa oaa, i.a.oo o g.a.o.	
4	1-4	2	2	NP	5.2		
-					0.2		
							±6
						Brown, wet, fine sand, some silt, lttle-few fine gravel	10
8	4-8	3	1.8	NP	0	blown, wet, line sand, some siit, ittle-lew line graver	
-	8-8.2	4	2.7	NP	0	Geoprobe refusal B.O.B.	±8.2
	0-0.2	4	2.1	INP	U	Geoprobe refusal B.O.B.	±0.2
						Notes:	
						Installed 1" diameter temporary well	
						5' of 10-slot screen, 8' to 3' bgs	
						Hard riser pipe 3' to+2'	
						Sand packed well and installed bentonite surface seal	
						B.O.B Bottom of boring	
						NA Not available	
						NP Not present	
-						bgs Below ground surface	
	-						
						Poss Possible	
						NR No recovery	
						P Present	
			<u> </u>		1		
			 		 		
			 				
			 		-		

PROJECT: Genesee Scrap & Tin HOLE NO. B-2 JOB NO. 2011030 **HOLE LOCATION:** West Side of Building 80 Steel Street, Rochester, New York LOCATION: SURF. EL. NA 03/09/11 **GROUNDWATER DEPTH:** NP **DATE STARTED:**

DATE STARTED: 03/09/11 DATE COMPLETED: 03/09/11 GROUNDWATER DEPTH:

INSPECTOR: DTH

TIME | CASING/HOLE CONDITION

INSPECTOR: DTH

DRILLER: Trec Environmental - Jim/Mike

DRILLING METHOD:

TIME CASING/HOLE CONDITION DEPTH

Geoprobe Direct Push

SAMPLER TYPE:

4' Macro Core Sampler

_				Sampi				
	DEPTH (Ft.)	SAMPLE DEPTH (Ft.)	SAMPLE#	RECOVERY (Ft.)	Staining	PID (ppm)	DESCRIPTION OF MATERIAL	CONTACT DEPTH (Ft.)
							Dark brown, fine-medium sand and gravel	±1
							Brown, dry, fine-medium sand, little-some fine gravel	
								±3.5
	4	0-4	1	2.2	NP	0.4	Brown, moist, fine sand, some silt	
		4-6.2	2	1.2	NP	0	Possible bedrock	
							Geoprobe refusal B.O.B.	±6.2
	8						2.0.2.	
							Notes: Filled bore hole with bentonite chips No well installed B.O.B Bottom of boring NA Not available NP Not present bgs Below ground surface ags Above ground surface Poss Possible NR No recovery P Present	
							•	

PROJECT: Genesee Scrap & Tin HOLE NO. B-3/TW

JOB NO. 2011030 HOLE LOCATION: Job Trailer, West of Shredder

LOCATION: 80 Steel Street, Rochester, New York SURF. EL. NA
DATE STARTED: 03/09/11 DATE COMPLETED: 03/09/11 GROUNDWATER DEPTH: ~4' bgs

INSPECTOR: DTH

DRILLER: Trec Environmental - Jim/Mike
DRILLING METHOD:

TIME

Geoprobe Direct Push

SAMPLER TYPE:

4' Macro Core Sampler

			Samp			•	
DEPTH (Ft.)	SAMPLE DEPTH (Ft.)	SAMPLE#	RECOVERY (Ft.)	Staining	PID (ppm)	DESCRIPTION OF MATERIAL	CONTACT DEPTH (Ft.)
						Black/gray fine-medium gravel and fine-coarse sand	
						(antifreeze odor)	±1.5
						Brown, wet, fine-medium sand, some silt, trace fine-gravel	
4	0-4	1	1.5	Poss	0	graver	
	U T		1.0	1 000	-		
	-		<u> </u>	+			
		_					
8	4-8	2	1.8	NP	1.7		
							±9.8
	8-10.2	3	1.4	NP	0	Brown/gray, dry, hard fine-medium gravel, little-some fine sand	
						Geoprobe refusal B.O.B.	±10.2
12							
						Notes:	
						Installed 1" diameter temporary well	
						5' of 10-slot screen	
	-						
						5' of hard riser pipe	
						Sand packed well and installed bentonite surface seal	
						B.O.B Bottom of boring	
						NA Not available	
						NP Not present	
						bgs Below ground surface	
						ags Above ground surface	
						Poss Possible	
			i -			NR No recovery	
						P Present	
			1			7 1030Ht	
			 				
			-				
				<u> </u>			

Comments:

CASING/HOLE CONDITION

DEPTH

PROJECT: Genesee Scrap & Tin HOLE NO. B-4/TW JOB NO. 2011030 **HOLE LOCATION:** Southwest Corner 80 Steel Street, Rochester, New York LOCATION: SURF. EL. NA 03/09/11 DATE COMPLETED: 03/09/11 **GROUNDWATER DEPTH:** NP **DATE STARTED:**

INSPECTOR: DTH

DRILLER: Trec Environmental - Jim/Mike

DRILLING METHOD:

Geoprobe Direct Push

SAMPLER TYPE:

4' Macro Core Sampler

	4 macro core sampler						
DEPTH (Ft.)	SAMPLE DEPTH (Ft.)	SAMPLE#	RECOVERY (Ft.)	Staining	PID (ppm)	DESCRIPTION OF MATERIAL	CONTACT DEPTH (Ft.)
						Brown/black, dry fine-coarse sand, some fine-medium gravel,	
						Brick, possible cinders	±1.5
						Brown, moist-wet, fine sand, some fine-medium gravel	
4	0-4	1	1.8	NP	0.7	g	
							±6
						Brown, moist-wet, fine sand (odor tip of drive shoe)	±7.8
8	4-8	2	2.6	NP	0	brown, moist-wet, fine sand (odor tip of drive shoe)	±1.0
	7-0		2.0	141	-	Geoprobe refusal B.O.B.	±8.0
						Geoprobe refusal B.O.B.	±8.0
						Notes:	
	-					Installed 1" diameter temporary well	
						5' of 10-slot screen, 8' to 3' bgs	
						5' of hard riser pipe	
						Sand packed well and installed bentonite surface seal	
						B.O.B Bottom of boring	
						NA Not available	
						NP Not present	
						bgs Below ground surface	
	-						
	-						
	-					Poss Possible	
						NR No recovery	
						P Present	
	\vdash			-	-		
	1		1	 	 		
							
							1

PROJECT: Genesee Scrap & Tin HOLE NO. B-5/TW Motor Block VES Area JOB NO. 2011030 **HOLE LOCATION:** 80 Steel Street, Rochester, New York LOCATION: SURF. EL. NA 03/09/11 **DATE STARTED:** DATE COMPLETED: 03/09/11 **GROUNDWATER DEPTH:** ~6-8' bgs

INSPECTOR: DTH

DRILLER: Trec Environmental - Jim/Mike

DRILLING METHOD:

TIME CASING/HOLE CONDITION DEPTH

Geoprobe Direct Push

SAMPLER TYPE:

4' Macro Core Sampler

	4 Wacio Core Sampler					-	1
DEPTH (Ft.)	SAMPLE DEPTH (Ft.)	SAMPLE#	RECOVERY (Ft.)	Staining	PID (ppm)	DESCRIPTION OF MATERIAL	CONTACT DEPTH (Ft.)
	0-3"	1			1.5	Concrete and metal (old motor block storage area)	
						(3" soil recovery)	
						(2 - 2 - 2 - 2 , 7 ,	
4	03"-4	2	NR	NP	NR		
	00 1		1111				
l 0	4-8	3	0.5	NP	0.5	Missallanasus anaval fill with brief mastel and was d	
8	4-8	3	0.5	NP	0.5	Miscellaneous gravel fill, with brick, metal and wood	
12	8-12	4	NR	NP	0	No recovery	
						Black/brown (petroleum odor (oil/gear oil)/gray, wet silt,	
	12-14	5	1.8	Poss	0	Little fine sand, trace fine gravel	
						B.O.B.	. ±14.2
16							
-							
						Notes:	
						Installed 1" diameter temporary well	
						10' of 10-slot screen, 14' to 4.8' bgs	
						5' of hard riser pipe	
						Sand packed well and installed bentonite surface seal	
						B.O.B Bottom of boring	
						NA Not available	
						NP Not present	
						bgs Below ground surface	
						ags Above ground surface	
						Poss Possible	
						NR No recovery	
			1			P Present	
						VES Vapor Extraction System	
L							

PROJECT: Genesee Scrap & Tin HOLE NO. B-6 JOB NO. 2011030 **HOLE LOCATION:** North of Shredder 80 Steel Street, Rochester, New York LOCATION: SURF. EL. NA 03/09/11 **GROUNDWATER DEPTH: DATE STARTED:** DATE COMPLETED: 03/09/11 ~6.5' bgs INSPECTOR: DTH TIME **CASING/HOLE CONDITION DEPTH**

DRILLER: Trec Environmental - Jim/Mike

DRILLING METHOD:

Geoprobe Direct Push

SAMPLER TYPE:

4' Macro Core Sampler

in the second se	4 IVIACI						T
DEPTH (Ft.)	SAMPLE DEPTH (Ft.)	SAMPLE#	RECOVERY (Ft.)	Staining	PID (ppm)	DESCRIPTION OF MATERIAL	CONTACT DEPTH (Ft.)
						Brown, fine-medium sand and gravel fill, trace metals, fluff	
4	0-4	1	2.3	Poss	1.7		
							±6.5
						Brown/black, wet silt and fine sand	
8	4-8	2	1.4	Poss	04	(tire odor, possible black staining)	
	8-9.8	3	0.5	NP	0		
						Geoprobe refusal B.O.B.	±9.8
12							
						Notes:	
						Filled bore hole with bentonite chips	
						No well installed	
						B.O.B Bottom of boring	
						NA Not available	
						NP Not present	
						bgs Below ground surface	
						ags Above ground surface	
						Poss Possible	
						NR No recovery	
						P Present	

PROJECT: Genesee Scrap & Tin HOLE NO. B-7 JOB NO. 2011030 **HOLE LOCATION: Northwest Corner** 80 Steel Street, Rochester, New York LOCATION: SURF. EL. NA 03/09/11 DATE COMPLETED: 03/09/11 **GROUNDWATER DEPTH:** NP **DATE STARTED:**

INSPECTOR: DTH

DRILLER: Trec Environmental - Jim/Mike

DRILLING METHOD:

Geoprobe Direct Push

SAMPLER TYPE:

4' Macro Core Sampler

	DEPTH (Ft.)	SAMPLE DEPTH (Ft.)	SAMPLE#	RECOVERY (Ft.)	Staining	PID (ppm)	DESCRIPTION OF MATERIAL	CONTACT DEPTH (Ft.)
							Asphalt	±0.3
							Brown, dry, fine sand and fine-medium gravel	±0.7
							Brown, moist, fine sand, some silt, trace fine gravel	
	4	0-4	1	2'	NP			
	8	4-8	2	1.8	NP	0	Geoprobe refusal B.O.B.	±7.8
							Notes: Filled bore hole with bentonite chips No well installed B.O.B Bottom of boring NA Not available NP Not present bgs Below ground surface ags Above ground surface Poss Possible NR No recovery P Present	
1					I			I

PROJECT: Genesee Scrap & Tin HOLE NO. B-8

JOB NO. 2011030 HOLE LOCATION: North of Detention Pond

LOCATION: 80 Steel Street, Rochester, New York SURF. EL. NA

DATE STARTED: 03/09/11 DATE COMPLETED: 03/09/11 GROUNDWATER DEPTH: ~6.8' bgs

INSPECTOR: DTH TIME CASING/HOLE CONDITION DEPTH

DRILLER: Trec Environmental - Jim/Mike
DRILLING METHOD:

Geoprobe Direct Push

SAMPLER TYPE:

4' Macro Core Sampler

			Sampi				
DEPTH (Ft.)	SAMPLE DEPTH (Ft.)	SAMPLE#	RECOVERY (Ft.)	Staining	PID (ppm)	DESCRIPTION OF MATERIAL	CONTACT DEPTH (Ft.)
						Brown, moist, fine-coarse sand and fine-medium gravel	
						g	
							±3.4
4	0-4	1	1	NP	0	Brown, wet, fine sand, some silt, lttle fine gravel	
•	0 1	•			Ŭ	graver	
							±6.8
						Brown, wet, fine-medium sand	±0.0
8	4-8	2	3	NP	0	brown, wet, fine-medium sand	
0	4-0		3	INF	0		
	0.44.5	_	0.0	ND	_		.44.0
4.0	8-11.5	3	3.2	NP	0		±11.3
12						Gray, dry, fine-medium sand and gravel	
						Slight petroleum odor & B.O.B.	±11.5
						Tight overburden from 11.3' to 11.5'	
						Notes:	
						Installed 1" diameter temporary well	
						10' of 10-slot screen, 11.5' to 1.5' bgs	
						5' of hard riser pipe	
						Sand packed well and installed bentonite surface seal	
						B.O.B Bottom of boring	
						NA Not available	
						NP Not present	
						bgs Below ground surface	
						ags Above ground surface Poss Possible	
						NR No recovery	
						P Present	
			1				1

PROJECT: Genesee Scrap & Tin HOLE NO. B-9 JOB NO. 2011030 **HOLE LOCATION:** Car drop off area 80 Steel Street, Rochester, New York LOCATION: SURF. EL. NA 03/09/11 DATE COMPLETED: 03/09/11 **GROUNDWATER DEPTH:** NP **DATE STARTED:**

INSPECTOR: DTH

DRILLER: Trec Environmental - Jim/Mike

DRILLING METHOD:

TIME CASING/HOLE CONDITION DEPTH

SAMPLER TYPE:

4' Macro Core Sampler

Geoprobe Direct Push

	4 IVIACI						
DEPTH (Ft.)	SAMPLE DEPTH (Ft.)	SAMPLE#	RECOVERY (Ft.)	Staining	PID (ppm)	DESCRIPTION OF MATERIAL	CONTACT DEPTH (Ft.)
						Brown, moist sand and gravel fill	±1.4
4	0-4	1	1.2	NP	0	Brown, moist, fine sand and silt, trace fine gravel (no saturated zone was present, only moist soils, no well installed,	
·						slight staining at ±3.5 with gasoline odor)	
8	4-7.8	2	2.3	Poss	127		
						Geoprobe refusal B.O.B.	±7.8
						Notes:	
						Lab sample collected	
						Filled bore hole with bentonite chips	
						No well installed	
						B.O.B Bottom of boring	
						NA Not available	
						NP Not present	
						bgs Below ground surface ags Above ground surface	
						ags Above ground surface Poss Possible	
						NR No recovery	
						P Present	
			-				

PROJECT: Genesee Scrap & Tin HOLE NO. B-10 JOB NO. 2011030 **HOLE LOCATION:** Car drop off area 80 Steel Street, Rochester, New York LOCATION: SURF. EL. NA 03/09/11 DATE COMPLETED: 03/09/11 **GROUNDWATER DEPTH:** NP **DATE STARTED:**

INSPECTOR: DTH

DRILLER: Trec Environmental - Jim/Mike

DRILLING METHOD:

Geoprobe Direct Push

SAMPLER TYPE:

4' Macro Core Sampler

DEPTH (Ft.)	SAMPLE DEPTH (Ft.)	SAMPLE#	RECOVERY (Ft.)	Staining	PID (ppm)	DESCRIPTION OF MATERIAL	CONTACT DEPTH (Ft.)
						Brown, dry, fine-coarse sand and fine-medium gravel fill	±3
4	0-4	1	2.5	NP	0	Brown, moist, fine-medium sand, silt, trace gravel	
8	4-8 8-8.2	2	1.7	NP NP	3	no saturated zone present Geoprobe refusal B.O.B.	±8.2
12						Notes: Filled bore hole with bentonite chips No well installed B.O.B Bottom of boring NA Not available NP Not present bgs Below ground surface ags Above ground surface Poss Possible NR No recovery P Present	

PROJECT: Genesee Scrap & Tin HOLE NO. B-11 JOB NO. 2011030 **HOLE LOCATION:** Car drop off area 80 Steel Street, Rochester, New York LOCATION: SURF. EL. NA 03/09/11 DATE COMPLETED: 03/09/11 **GROUNDWATER DEPTH:** NP **DATE STARTED:**

INSPECTOR: DTH

DRILLER: Trec Environmental - Jim/Mike

DRILLING METHOD:
Geoprobe Direct Push

SAMPLER TYPE:

4' Macro Core Sampler

	4 Waci						
DEPTH (Ft.)	SAMPLE DEPTH (Ft.)	SAMPLE#	RECOVERY (Ft.)	Staining	PID (ppm)	DESCRIPTION OF MATERIAL	CONTACT DEPTH (Ft.)
						Black sand and gravel fill	±1.7
	0-2	1	1.5	NP	2.8		
						Black, moist silt, little-few fine-medium sand, trace fine gravel	
4	2-4	2	1.9	NP	0	g.a.o.	
•		_	1.0		Ŭ		
	4-5.8	3	0.7	NP	0		
	7 0.0		0.7	141	-	Geoprobe refusal B.O.B.	±5.8
8							±3.0
							ļ
						Natar	
						Notes:	
						Filled bore hole with bentonite chips	
						No well installed	
						B.O.B Bottom of boring	
						NA Not available	
						NP Not present	
						bgs Below ground surface	
						ags Above ground surface	
						Poss Possible	
						NR No recovery	
						P Present	
	-						
			 				
				ļ			
			 				

PROJECT: Genesee Scrap & Tin HOLE NO. B-12/TW

JOB NO. 2011030 HOLE LOCATION: Former bailing area

LOCATION: 80 Steel Street, Rochester, New York SURF. EL. NA

DATE STARTED: 03/09/11 DATE COMPLETED: 03/09/11 GROUNDWATER DEPTH:

INSPECTOR: DTH

DRILLER: Trec Environmental - Jim/Mike

DRILLING METHOD:

TIME CASING/HOLE CONDITION DEPTH

CASING/HOLE CONDITION DEPTH

Geoprobe Direct Push

SAMPLER TYPE:

4' Macro Core Sampler

DEPTH (Ft.)	SAMPLE DEPTH (Ft.)	SAMPLE#	RECOVERY (Ft.)	Staining	PID (ppm)	DESCRIPTION OF MATERIAL	CONTACT DEPTH (Ft.)
8	0-4	1 2	3.2	NP NP	1.3	Brown, moist, fine-coarse sand and fine-medium gravel (a sheenpresent in perched water) Brown/gray silt, trace fine-medium sand, trace fine gravel Geoprobe refusal B.O.B	±3.8 . ±7.5
						Notes: Installed 1" diameter temporary well 5' of 10-slot screen, 7.8' to 2.8' bgs Hard riser pipe 2.8' to +2.2' ags Sand packed well and installed bentonite surface seal B.O.B Bottom of boring NA Not available NP Not present bgs Below ground surface ags Above ground surface Poss Possible NR No recovery P Present	

PROJECT: Genesee Scrap & Tin HOLE NO. B-13/TW JOB NO. 2011030 **HOLE LOCATION:** Turnings storage pad area

LOCATION: 80 Steel Street, Rochester, New York SURF. EL. NA **DATE STARTED:** 03/09/11 DATE COMPLETED: 03/09/11 **GROUNDWATER DEPTH:** ~2' bgs

INSPECTOR: DTH TIME CASING/HOLE CONDITION

DEPTH DRILLER: Trec Environmental - Jim/Mike

DRILLING METHOD:

Geoprobe Direct Push

SAMPLER TYPE:

4' Macro Core Sampler

DEPTH (Ft.)	SAMPLE DEPTH (Ft.)	SAMPLE #	RECOVERY (Ft.)	Staining	PID (ppm)	DESCRIPTION OF MATERIAL	CONTACT DEPTH (Ft.)
						Black/gray, moist-wet, fine-coarse gravel, little fin-coarse sand	
	0-1.5	1	1.2	Poss	1.3	Black petroleum staining 0-1.5' bgs, w/sheen	
4	0-4	2	2.9	Poss	453	1.5' - 6.70 = 453 ppm	
	4.0.75		4.0	D		One	±6.7
8	4-6.75	3	1.6	Poss		Gray, moist silt (2.3 ppm) Geoprobe refusal B.O.B.	±6.75
0						B.O.B.	±0.75
						Notes: Installed 1" diameter temporary well 5' of 10-slot screen, 6.75' to 1.75' bgs Hard riser pipe 1.75' to 3.25' ags Sand packed well and installed bentonite surface seal B.O.B Bottom of boring NA Not available NP Not present bgs Below ground surface ags Above ground surface Poss Possible NR No recovery P Present	

PROJECT: Genesee Scrap & Tin HOLE NO. B-14 JOB NO. 2011030 **HOLE LOCATION:** Eastern Property Line 80 Steel Street, Rochester, New York LOCATION: SURF. EL. NA **GROUNDWATER DEPTH:** NP **DATE STARTED:** 03/10/11 DATE COMPLETED: 03/10/11

INSPECTOR: DTH
DRILLER: Trec Environmental - Jim/Mike

TIME CASING/HOLE CONDITION DEPTH

DRILLER: Trec Environmental - Jim/Mike

DRILLING METHOD:

Geoprobe Direct Push

SAMPLER TYPE:

4' Macro Core Sampler

			Sampi	_			
DEPTH (Ft.)	SAMPLE DEPTH (Ft.)	SAMPLE#	RECOVERY (Ft.)	Staining	PID (ppm)	DESCRIPTION OF MATERIAL	CONTACT DEPTH (Ft.)
						Brown, dry, fine-coarse sand and fine-medium gravel fill	±3.5
4	0-4	1	2.3	NP	0	Brown, moist, fine sand and silt	
							±7.5
8	4-8	2	3.2	NP	0	Brown, dry, fine sand and silt	
J	4-8.5	3	0.4	NP	0	B.O.B.	±8.5
						Notes: Filled bore hole with bentonite chips No well installed B.O.B Bottom of boring NA Not available NP Not present bgs Below ground surface ags Above ground surface Poss Possible NR No recovery P Present	

PROJECT: Genesee Scrap & Tin HOLE NO. B-15 JOB NO. 2011030 **HOLE LOCATION:** Eastern Property Line LOCATION: 80 Steel Street, Rochester, New York SURF. EL. NA NP

DATE STARTED: 03/10/11 DATE COMPLETED: 03/10/11 **GROUNDWATER DEPTH:**

INSPECTOR: DTH TIME **CASING/HOLE CONDITION DEPTH** DRILLER: Trec Environmental - Jim/Mike **DRILLING METHOD:**

Geoprobe Direct Push

SAMPLER TYPE:

4' Macro Core Sampler

	4 Maci						
DEPTH (Ft.)	SAMPLE DEPTH (Ft.)	SAMPLE#	RECOVERY (Ft.)	Staining	PID (ppm)	DESCRIPTION OF MATERIAL	CONTACT DEPTH (Ft.)
	0-0.5	1	0.5	Р	3	Gray, stained silt and fine sand, trace fine gravel	±0.5
4	0.5-4	2	3.1	P	2	Gray, dry silt, trace fine sand Fuel oil odor, 0-8' bgs	20.0
8	4-8	3	2.6	NP	0		
							±9.2
	8-9.5	4	1.1		0	Gray, moist silt and fine gravel	
				NP		Geoprobe refusal B.O.B.	±9.5
						Notes: Filled bore hole with bentonite chips	
						No well installed	
						B.O.B Bottom of boring	
						NA Not available	
						NP Not present	
						bgs Below ground surface	
						ags Above ground surface	
						Poss Possible	
						NR No recovery	
						P Present	

PROJECT: Genesee Scrap & Tin

JOB NO. 2011030

HOLE NO. B-16

HOLE LOCATION: Southeast property corner

LOCATION: 80 Steel Street, Rochester, New York SURF. EL. NA
DATE STARTED: 03/10/11 DATE COMPLETED: 03/10/11 GROUNDWATER DEPTH: NP

INSPECTOR: DTH TIME CASING/HOLE CONDITION DEPTH

DRILLER: Trec Environmental - Jim/Mike
DRILLING METHOD:

Geoprobe Direct Push

SAMPLER TYPE:

4' Macro Core Sampler

			Sampl			•	
DEPTH (Ft.)	SAMPLE DEPTH (Ft.)	SAMPLE#	RECOVERY (Ft.)	Staining	PID (ppm)	DESCRIPTION OF MATERIAL	CONTACT DEPTH (Ft.)
						Brown/gray, dry, fine-coarse sand and fine-medium gravel	±0.5
						Brown, dry, fine-medium sand and silt, trace fine gravel	
4	0-4	1	2.7	NP	0		
-	0-4	'	2.1	INI	0		
	-						
							±7.2
8	4-8	2	3.4	NP	0	Brown/gray, dry silt, few fine sand, trace fine gravel	
	8-11.7	3	1.2	NP	0		
12						Geoprobe refusal B.O.B.	±11.7
						Notes:	
						Filled bore hole with bentonite chips	
						No well installed	
						B.O.B Bottom of boring	
						NA Not available	
						NP Not present	
						bgs Below ground surface	
	-					ags Above ground surface	
	-		<u> </u>			Poss Possible	
						NR No recovery	
						P Present	
				 	 		
	1		1	}	}		
				ļ	ļ		
			İ				
			 	 	 		

PROJECT: Genesee Scrap & Tin HOLE NO. B-17 JOB NO. 2011030 **HOLE LOCATION:** Southern property line LOCATION: 80 Steel Street, Rochester, New York SURF. EL. NA **GROUNDWATER DEPTH:** NP **DATE STARTED:** 03/10/11 DATE COMPLETED: 03/10/11

INSPECTOR: DTH TIME CASING/HOLE CONDITION

DRILLER: Trec Environmental - Jim/Mike

DRILLING METHOD:

Geoprobe Direct Push

SAMPLER TYPE:

4' Macro Core Sampler

		0 00.	e Sampi				
DEPTH (Ft.)	SAMPLE DEPTH (Ft.)	SAMPLE#	RECOVERY (Ft.)	Staining	PID (ppm)	DESCRIPTION OF MATERIAL	CONTACT DEPTH (Ft.)
(Ft.) 4 8	0-4 4-8 8-8.4	1 2 3 3	3.2	NP NP	0	Brown, dry, fine-coarse sand and fine-medium gravel with concrete, metal, black cinders Brown, dry-moist silt, little fine sand, little-trace fine-medium gravel Brown/gray, hard, dry, fine sand and silt, some fine-medium gravel Fuel oil, odor 8.0-8.4 Geoprobe refusal Notes: Filled bore hole with bentonite chips No well installed B.O.B Bottom of boring NA Not available NP Not present bgs Below ground surface ags Above ground surface ags Above ground surface Poss Possible NR No recovery P Present	±3.8 ±8

Comments:

DEPTH

PROJECT: Genesee Scrap & Tin

JOB NO. 2011030

HOLE NO. B-18/TW

HOLE LOCATION: Southern property line

LOCATION: 80 Steel Street, Rochester, New York SURF. EL. NA

DATE STARTED: 03/10/11 DATE COMPLETED: 03/10/11 GROUNDWATER DEPTH: Seam@~6'

INSPECTOR: DTH TIME

DRILLER: Trec Environmental - Jim/Mike
DRILLING METHOD:

Geoprobe Direct Push

SAMPLER TYPE:

4' Macro Core Sampler

			Sampl				
DEPTH (Ft.)	SAMPLE DEPTH (Ft.)	SAMPLE#	RECOVERY (Ft.)	Staining	PID (ppm)	DESCRIPTION OF MATERIAL	CONTACT DEPTH (Ft.)
						Brown, dry, fine-medium sand, little fine gravel, trace debris	±1
						Light brown, dry silt and fine sand, trace fine gravel	
						1 g	
4	0-4	1	2'	NP	0		
'	0 1						
							±6
						Brown, wet, fine sand, some silt, lttle-few fine gravel	<u>±0</u>
8	4-8	2	1.8	NP	0		
- 0	8-8.4	3	2.7	NP	0	Geoprobe refusal B.O.B.	±8.4
	0-0.4	3	2.1	INF	U	Geoprobe relusar B.O.B.	±0.4
						Notes:	
						Installed 1" diameter temporary well	
						5' of 10-slot screen, 8.4' to 3.4' bgs	
						Hard riser pipe 3.4' to 1.6' ags	
						Sand packed well and installed bentonite surface seal	
						B.O.B Bottom of boring	
						NA Not available	
						NP Not present	
						bgs Below ground surface	
						ags Above ground surface	
						Poss Possible	
						NR No recovery	
						P Present	
			i e				
			-				
			-				
			1				
			1	1	i e		
			 		 		
			 		-		
			-				
							I

Comments:

CASING/HOLE CONDITION

DEPTH

PROJECT: Genesee Scrap & Tin HOLE NO. B-19 JOB NO. 2011030 **HOLE LOCATION:** East of shear 80 Steel Street, Rochester, New York LOCATION: SURF. EL. NA DATE COMPLETED: 03/10/11 **GROUNDWATER DEPTH:** NP **DATE STARTED:** 03/10/11

INSPECTOR: DTH

DRILLER: Trec Environmental - Jim/Mike

DRILLING METHOD:

TIME CASING/HOLE CONDITION DEPTH

Geoprobe Direct Push

SAMPLER TYPE:

4' Macro Core Sampler

	4 Waci						
DEPTH (Ft.)	SAMPLE DEPTH (Ft.)	SAMPLE#	RECOVERY (Ft.)	Staining	PID (ppm)	DESCRIPTION OF MATERIAL	CONTACT DEPTH (Ft.)
						Brown, dry, fine-coarse sand and fine-medium gravel fill	
						, · · · · , · · · · · · · · · · · ·	±1.5
4	0-4	-1	3.7	NP	0	Drown dry maintailt come fine agares and trace four	
4	0-4	1	3.1	INF	0	Brown, dry-moist silt, some fine-coarse sand, trace-few	
						fine gravel, trace cobbles	
8	4-8	2	4.0	NP	0.7		±8.3
						Gray, dry, hard silt, little fine sand	
	8-9.7	3	1.2	NP	0.2		
						Geoprobe refusal B.O.B.	±9.7
12							
						Notes:	
						Filled bore hole with bentonite chips	
						No well installed	
						B.O.B Bottom of boring	
						NA Not available	
						NP Not present	
						bgs Below ground surface	
						ags Above ground surface	
						Poss Possible	
						NR No recovery	
						P Present	
			1			1 1000/10	
			 				
			-	-			
				ļ			
			1	1	1		
			 				
			 		-		
				ļ			

PROJECT: Genesee Scrap & Tin HOLE NO. B-20/TW JOB NO. 2011030 **HOLE LOCATION:** West of shear LOCATION: 80 Steel Street, Rochester, New York SURF. EL. NA **GROUNDWATER DEPTH:** Seam @~6' **DATE STARTED:** 03/10/11 DATE COMPLETED: 03/10/11 INSPECTOR: DTH TIME CASING/HOLE CONDITION DEPTH DRILLER: Trec Environmental - Jim/Mike

DRILLING METHOD:

Geoprobe Direct Push

SAMPLER TYPE:

4' Macro Core Sampler

			e Sampi				
DEPTH (Ft.)	SAMPLE DEPTH (Ft.)	SAMPLE#	RECOVERY (Ft.)	Staining	PID (ppm)	DESCRIPTION OF MATERIAL	CONTACT DEPTH (Ft.)
						Brown major fine accres and come fine madium gravel	
						Brown, moist, fine-coarse sand, some fine-medium gravel,	
						metal, miscellaneous fills	
4	0-4	1	2.7	NP	0		±3.5
						Cray majet fine madicum cond little face ground	
						Gray, moist, fine-medium sand, little-few gravel,	
						trace silt (wet seam @ ~6' bgs)	
8	4-8	2	3.2	NP	0		
	0.07	_	4.0	NID	_		
	8-9.7	3	1.0	NP	0		
						Geoprobe refusal B.O.B.	±9.7
12							
	-						
						Notes:	
						Installed 1" diameter temporary well	
						5' of 10-slot screen, 9.7' to 4.7' bgs	
						Hard riser pipe 4.7' to 2' ags	
						Sand packed well and installed bentonite surface seal	
						B.O.B Bottom of boring	
						NA Not available	
						NP Not present	
						bgs Below ground surface	
						ags Above ground surface	
					<u> </u>	Poss Possible	1
						NR No recovery	1
			Ì			P Present	1
	<u> </u>		1		}	1 1030111	1
					<u> </u>		1
							1
							1
	-				-		1
							1
							1
							1
			1		l	1	1
	-		1		 		1
							1
							1
			Ì				1
							1

PROJECT: Genesee Scrap & Tin HOLE NO. B-21

JOB NO. 2011030 HOLE LOCATION: Former site of 3K-gal gas UST

LOCATION: 80 Steel Street, Rochester, New York SURF. EL. NA
DATE STARTED: 03/09/11 DATE COMPLETED: 03/09/11 GROUNDWATER DEPTH: NP

INSPECTOR: DTH TIME CASING/HOLE CONDITION

DRILLER: Trec Environmental - Jim/Mike
DRILLING METHOD:

Geoprobe Direct Push

SAMPLER TYPE:

4' Macro Core Sampler

		U CUI	e Sampi	ei			
DEPTH (Ft.)	SAMPLE DEPTH (Ft.)	SAMPLE#	RECOVERY (Ft.)	Staining	PID (ppm)	DESCRIPTION OF MATERIAL	CONTACT DEPTH (Ft.)
						Asphalt	±0.3
						Gravel subbase	±1.1
						Brown, moist, fine sand, some silt	
4	0-4.2	1	3.6		50		
						Geoprobe refusal B.O.B.	±4.2
8							
						Notes:	
						Filled bore hole with bentonite chips	
						No well installed	
						B.O.B Bottom of boring	
						NA Not available	
						NP Not present	
						bgs Below ground surface	
						ags Above ground surface	
						Poss Possible	
						NR No recovery	
						P Present	
			<u> </u>				
			<u> </u>				
			<u> </u>				
			 				
			 				
			 				
			 				
			 				

Comments:

DEPTH

PROJECT: Genesee Scrap & Tin HOLE NO. B-22

JOB NO. 2011030 HOLE LOCATION: Former site of 3K-gal gas UST

LOCATION: 80 Steel Street, Rochester, New York SURF. EL. NA

DATE STARTED: 03/10/11 DATE COMPLETED: 03/10/11 GROUNDWATER DEPTH:

INSPECTOR: DTH
DRILLER: Trec Environmental - Jim/Mike

TIME CASING/HOLE CONDITION DEPTH

DRILLING METHOD:

Geoprobe Direct Push

SAMPLER TYPE:

4' Macro Core Sampler

	4' Macı	O CON		ier			
DEPTH (Ft.)	SAMPLE DEPTH (Ft.)	SAMPLE#	RECOVERY (Ft.)	Staining	PID (ppm)	DESCRIPTION OF MATERIAL	CONTACT DEPTH (Ft.)
						Asphalt	±0.3
						Gravel subbase	±0.9
4	0-4	1	2.4	NP	40	Brown, dry, fine-coarse sand, little silt, fine-medium gravel	
							±5.8
						Gray, moist-wet silt	
8	4-8	2	3.3	NP	48	Slight sheen w/black staining 8-9', weathered gasoline odor	
	8-9	3	1.0	Black	49	Geoprobe refusal B.O.B.	±9
12							
						Notes:	
						Filled bore hole with bentonite chips	
						Finished off with asphalt patch	
						No well installed	
						B.O.B Bottom of boring NA Not available	
						•	
						ags Above ground surface Poss Possible	
						NR No recovery	
						P Present	
	+					1 1 1030H	
			1	1 1			
			1	1			
			1				

PROJECT: Genesee Scrap & Tin HOLE NO. B-23/TW

JOB NO. 2011030 HOLE LOCATION: Former site of 3K-gal gas UST

LOCATION: 80 Steel Street, Rochester, New York SURF. EL. NA

DATE STARTED: 03/10/11 DATE COMPLETED: 03/10/11 GROUNDWATER DEPTH:

INSPECTOR: DTH

DRILLER: Trec Environmental - Jim/Mike

TIME CASING/HOLE CONDITION

DRILLING METHOD:

Geoprobe Direct Push

SAMPLER TYPE:

4' Macro Core Sampler

	4 IVIACI						
DEPTH (Ft.)	SAMPLE DEPTH (Ft.)	SAMPLE#	RECOVERY (Ft.)	Staining	PID (ppm)	DESCRIPTION OF MATERIAL	CONTACT DEPTH (Ft.)
						Asphalt	±0.3
						Gravel subbase	±1.0
						Brown, moist, fine-medium sand, few fine-medium gravel (fill)	±2
4	0-4	1	3.4	NP	0	Brown, moist, and mediam carra, remaine mediam graver (m)	
	0 4	'	0.4	141		Brown, moist silt, little fine-medium sand	
						Black staining at 6'-7'	
	-					Sheen and black staining 8'-9'	
	4.0	_	2.0	Р	_	Sheen and black staining 6-9	
8	4-8	2	2.8		0		
	8-9.1	3	0.7	NP	60		
						Geoprobe refusal B.O.B.	±9.1
12							
						Notes:	
						Installed 1" diameter temporary well	
						5' of 10-slot screen, 8' to 3' bgs	
						Hard riser pipe 3' to 2' ags	
						Sand packed well and installed bentonite surface seal	
						B.O.B Bottom of boring	
						NA Not available	
						NP Not present	
						·	
						bgs Below ground surface	
	-					ags Above ground surface	
						Poss Possible	
						NR No recovery	
						P Present	
			<u> </u>		<u> </u>		
			 		 		
			 		-		
			 		 		

Comments:

DEPTH

APPENDIX B GROUNDWATER SAMPLING FIELD LOGS

Client/Site:	Censop	Simo		Project No.: 2 0/1030
Monitoring Locatio	n: 1'- tem	P Well 1		Date: 3/4///
Source Description:	B-1/M)		Sampler: MTM
Well & Water Leve	l Data:	Tota	l Depth of W	ell: 9,79 feet
		Initial 3	Depth to War	ter: 3.03 feet
	Le	ngth of Water (Column (LW	C): <u>676</u> feet
Purge Volume Calc	ulation:			
Well Diameter		Calculated W	ell Volume T	o Be Removed
1	,	LWC * 0.041		L Gallons
1.25		LWC * 0.064	* 3 =	Gallons
1.5		LWC * 0.092	* 3 =	Gallons
2		LWC * 0.163	* 3 =	Gallons
3		LWC * 0.367	* 3 =	Gallons
4		LWC * 0.653	* 3 =	Gallons
6		LWC * 1.469	* 3 =	Gallons
Free Product Check	k: Free Pro Measured Thickn	oduct Present: ess/Comment:	Yes	No
Purge Data:	Purge Date:	3/14/11		
	Purging Time:	From:	1:00	To: 1:30
	Type of Purging Equ Purged Wat	uipment Used: er Comments:	Geoph hight a	comutic comell, maybe (1, tan se
Sampling Data:	Depth to Water	r at Sampling:	8.'-	- low rechargeet
eg	Color of Sample:	· cleur	Sample Da Sample Ti	
• · · · · · · · · · · · · · · · · · · ·	Type of Sampling Equ	uipment Used:	Geo	pum law flow
Field Indicator	s Present During Samj	ole Collection:	Odor	<u>see</u> above
			Sheen	
	/		Free Produ None	ct
Notes:	4.03			
cond	2.904			
PH	6.98	24		
' Weather:	Temperature °F	• 30	Sunny Clou	Rain Snow

Client/Site:	652T	•	,a :	Project No.:	2011030
Monitoring Location	: 11/2 Ten	ip Well		Date:	3/14/11
Source Description:	15-3/	<i>TW</i>		Sampler:	мтм
Well & Water Level		Initial	ol Depth of Well: Depth to Water: Column (LWC):	6.00	feet feet 1.4 b
Purge Volume Calcu	lation:			,	
Well Diameter (Calculated W	ell Volume To Bo	e Removed	
1		LWC * 0.041		Gallons	
1.25		LWC * 0.064	*3 =	— Gallons	
1.5		LWC * 0.092	*3 =	Gallons	
2		LWC * 0.163	*3 =	Gallons	
3		LWC * 0.367	*3 =	Gallons	potent and the second
4		LWC * 0.653	* 3 =	Gallons	A Company of the Comp
6		LWC * 1.469	*3 =	Gallons	, * *
Free Product Check:	Free Pro Measured Thickne	duct Present: ss/Comment:	Yes	No	
Purge Data:	Purge Date:	3/14/			
	Purging Time:	From:	2:10	To:	2:45
	Type of Purging Equi Purged Wate	•	tun, no od	P / Seen	Albara.
Sampling Data:	Depth to Water	at Sampling:			feet
	Color of Sample:	cleur	Sample Date:		
- V	Turbidity:		Sample Time:		
T	ype of Sampling Equi	ipment Used:	Con 1	9en	
Field Indicators	Present During Samp	le Collection:	Odor Sheen Free Product None		
Notes: fom 3.66					
0N 1.23					
					:
Weather:	Temperature ⁰ F	35	Sunny Cloudy	Rain Snow	

Client/Site:	Genesee	S+T		Project No.:	2011030
Monitoring Location:	1"-Temp We	. //		Date:	3/14/11
Source Description:	13-41	TW		Sampler:	MTM
Well & Water Level D	ata:	Tota	l Depth of Well:		feet
TOTAL CONTROL ELECTRICAL			Depth to Water:	NIZY	feet
•	${f L}$	ength of Water (feet
		· ·	`		•
Purge Volume Calcula					
Well Diameter (ir	iches):		ell Volume To Bo		
1			* 3 =		
1.25		LWC * 0.064		Gallons	
1.5		LWC * 0.092		Gallons	
2		LWC * 0.163	•	Gallons	
3		LWC * 0.367		Gallons	
4		LWC * 0.653		Gallons	
6		LWC * 1.469	*3 =	Gallons	
Free Product Check:	Free P	roduct Present:	Yes	NO	
rice i roduci Ciiccixi	Measured Thick		103	(O)	
		-			
Purge Data:	Purge Date: _	2/12	1/11		
	Purging Time:	From:		To:	
Т	'vne of Purging F	aninment Used:	C no co	had plant	
•	Type of Purging Ed Purged Wa	ater Comments:	DRY	<u> </u>	
	Turgeu ***	itei Comments.	ا ال		
Sampling Data:	Depth to Wat	er at Sampling:			feet
	Color of Sample:		Sample Date:	٠,	
	Turbidity:	······································	Sample Time:		-
					-
Ту	pe of Sampling Ed	quipment Used: _			
Field Indicators P	resent During San	nple Collection:	Odor		
		I	Sheen		-
			Free Product		-
			None		-
Notes:			- · - 		-
F	No	Sample v	Vell Dru		
		<u> </u>	<u> </u>		

Weather:	Temperature ⁰ F		Sunny Cloudy	Rain Snow	

Client/Site:	Con	esee Simp		Project No.:	201030
Monitoring Location	: <u>''</u> '- 7	Temp Well		Date:	
Source Description:	<u></u>	5/1W		Sampler:	more
Well & Water Level		Initial	l Depth of Well: Depth to Water: Column (LWC):	8.71	feet 7.0 4
Purge Volume Calcu	lation:			,	
Well Diameter (Calculated W	ell Volume To B	e Removed	
1	,	LWC * 0.041		d ^r	
1.25		LWC * 0.064	*3 =	— Gallons	
1.5		LWC * 0.092	* 3 =	Gallons	
2		LWC * 0.163	* 3 =	Gallons	
3		LWC * 0.367	*3 =	— Gallons	
4		LWC * 0.653	* 3 =	— Gallons	
6		LWC * 1.469	*3 =	Gallons	
Free Product Check:	Free Pr Measured Thickn	oduct Present: ess/Comment:	Yes	No	•;
Purge Data:	Purge Date:	3/14/11			-
	Purging Time:	From:	3:02	To:	3120
	Type of Purging Eq Purged Wat	uipment Used: er Comments:		& high 1 where	
Sampling Data:	Depth to Wate	r at Sampling:		···	feet
	Color of Sample: Turbidity:	clans	Sample Date: Sample Time:		-
Т	ype of Sampling Eq	uipment Used:	Low	Plove	
Field Indicators	Present During Sam	ple Collection:	Odor Sheen Free Product None		- - -
Notes: temp 5.67	C		None		-
coul 9.925	smb/ca				
pH 7.17	•				
Weather:	Temperature ⁰ F		Sunny Cloudy	Rain Snow	

Client/Site:	654 T			Project No.:	Z01	1030
Monitoring Location:	1"- Temp V	Je 11		Date:	3/1	4/1/
Source Description:	B-8/TW	·		Sampler:	<u></u>	M
Well & Water Level D)ata:	Tota	l Depth of Well:	181.87	feet	
			Depth to Water:	8.15	feet	4.40
	Length	of Water	Column (LWC):	6.72	feet	1. 10
Purge Volume Calcula	ation•					
Well Diameter (in		culated W	ell Volume To Be	Removed		
1	,	/C * 0.041		Gallons		
1.25		VC * 0.064		_ Gallons		
1.5		VC * 0.092	·	Gallons		
2		VC * 0.163		Gallons		
3	LW	VC * 0.367	*3 =	— Gallons		
4	LW	VC * 0.653	* 3 =	— Gallons		
6	LW	VC * 1.469	*3 =	Gallons		
Free Product Check:	Free Product Measured Thickness/C		Yes	No		
Purge Data:	Purge Date:	114/11				
	Purging Time:	From:	3:32	To:		
7	Type of Purging Equipmo Purged Water Co	-	Geogram Red silt	, no ador,	rs sp	en
Sampling Data:	Depth to Water at S	ampling:		•	feet	
•	Color of Sample:		Sample Date:	2/14/11		 **
	Turbidity:		Sample Time:	<u> Stritis</u>	-	الم الم
Ту	ype of Sampling Equipm	ent Used:	Law Flow		•	
Field Indicators P	resent During Sample C	allection:	Odor			
ricia maicators r	resent buring sample e	oncenon.	Sheen		-	
			Free Product		_	
			None	~	-	
Notes: Jump le.16	,	٠	- -		-	
cm 1,545	0					
PM 7.19			at .			
Weather:	Temperature °F	8	Sunny Cloudy	Rain Snow		

Revised 08/15/07

Client/Site:	Conisse Sera		Project No.:	2011030
Monitoring Location	: I' Temp Well		Date:	314111
Source Description:	B-12/W		Sampler:	non
Well & Water Level	Initia	tal Depth of Well: _ il Depth to Water: _ r Column (LWC): _	3,91	feet 4
Purge Volume Calcu	lation:		1	
Well Diameter		Well Volume To Be	e Removed	
1	LWC * 0.04		Gallons	
1.25	LWC * 0.00		Gallons	
1.5	LWC * 0.09	-	— Gallons	
2	LWC * 0.10	63 * 3 =	— Gallons	
3	LWC * 0.30	67 * 3 =	 Gallons	
4	LWC * 0.69	53 * 3 =	Gallons	
6	LWC * 1.4	69 * 3 =	Gallons	
Free Product Check:	Free Product Present Measured Thickness/Comment		(No)	
Purge Data:	Purge Date: 3/14/11			
·	Purging Time: From	ı: 3:59	To:	4.20
	Type of Purging Equipment Used Purged Water Comments		· ·	idir differ
Sampling Data:	Depth to Water at Sampling	g: <u>4.09</u>	, 	feet
	Color of Sample: Turbidity:	Sample Date: Sample Time:	3/14/11	
·	Type of Sampling Equipment Used	1: Low Fl	w	
Field Indicators	Present During Sample Collection	Sheen Free Product None	<u> </u>	٠.
Notes: tomp 3,43 and 0,57 pM 684		140HC		
Weather:	Temperature F	_ Sunny Cloudy	Rain Snow	

Client/Site: Monitoring Location: Source Description:	65 17.	itemp we	1	Project No.: Date: Sampler:	31911
Well & Water Level D			l Depth of Wel Depth to Water Column (LWC)	: 4.1	_feet _feet
Purge Volume Calcula	tion:				
Well Diameter (in	iches):	Calculated W	ell Volume To	Be Removed	
1	·	LWC * 0.041	*3 =	Gallons	
1.25		LWC * 0.064	*3 =	Gallons	
1.5		LWC * 0.092	*3 =	Gallons	
2		LWC * 0.163	* 3 =	Gallons	
3		LWC * 0.367	*3 =	Gallons	
4		LWC * 0.653	*3 =	Gallons	·
6		LWC * 1.469	*3 =	Gallons	
Free Product Check:	Free Pr Measured Thickn	oduct Present: ess/Comment:	Yes	No	
Purge Data:	Purge Date:	3/14/11			
	Purging Time:	From:	4:25		: 4150
Т	ype of Purging Eq Purged Wat	uipment Used: er Comments:	Geo pum Black, s	P Lee1 peros	odur
Sampling Data:	Depth to Wate	r at Sampling:		, 	_feet
ar Andrews	Color of Sample: Turbidity:	~ 20	Sample Date Sample Time		
Ty	pe of Sampling Eq	uipment Used:			
Field Indicators P	resent During Sam	ple Collection:	Qdor		_
			Sheen		_
			Free Product None	•	-
Notes:					- - Sa , , , , , , , , , , , , , , , , , ,
temp 280		٠			1
cond 5.93 ph 6.72	<u></u>				
Weather:	Temperature °F	5	Sunny Cloud	Rain Snow	

Client/Site:	Genesee	Scrap & 7	300	Project No.:	Z	011030
Monitoring Location		p well		Date:		3/14/11
Source Description:)		Sampler:		MITM
Well & Water Level		Initial	l Depth of Well: _ Depth to Water: _ Column (LWC): _	9,40 4,51 4,89	feet feet feet	2486
Purge Volume Calcu	ulation•					2,4 654
Well Diameter		Calculated W	ell Volume To Be	Removed		
1	(11101105)*	LWC * 0.041		Gallons		
1.25		LWC * 0.064		Gallons		
1.5		LWC * 0.092	*3 =	 _ Gallons		
2		LWC * 0.163	*3 =	Gallons		
3		LWC * 0.367		_ Gallons		
4		LWC * 0.653		_ Gallons		
6		LWC * 1.469	*3 =	_ Gallons		
Free Product Check	: Free Pr Measured Thickn	oduct Present: ness/Comment:	Yes	No		
Purge Data:	Purge Date:	3/14/4				
	Purging Time:	From:	1120	To:	1	1,45
ţ	Type of Purging Eq Purged Wat	uipment Used: ter Comments:	GOO PAMP	lowflo		
Sampling Data:	Depth to Wate	r at Sampling:	4,84		feet	
	Color of Sample: Turbidity:	clew	Sample Date: _ Sample Time: _	31.4/11	•	
,	Type of Sampling Eq	uipment Used:	Oco Pump	· low Plan	√	
Field Indicators	Present During Sam	ple Collection:	Odor			**************************************
		-	Sheen Free Product None			
Notes:	4.9°C	4				
hu.	0.327 mS/cm					
<u>Cond</u> *	7.41			· · ·		
Weather:	Temperature ⁰ F	35	Sunny (cloudy)	Rain Snow		

Revised 08/15/07

Client/Site:	General &	was a Tim	7	Project No.:	2011030
Monitoring Location		8 Wa'11		Date:	2/14/1
Source Description:	B-20/T	نُ نُ		Sampler:	NIN
Well & Water Level		Initial	ll Depth of Well Depth to Water Column (LWC)	: 1.8%	feet feet feet
Purge Volume Calcu	lation:			•	
Well Diameter		Calculated W	Vell Volume To	Be Removed	
1	(LWC * 0.041			
1.25		LWC * 0.064		Gallons	
1.5		LWC * 0.092		Gallons	
2		LWC * 0.163	·	Gallons	
3		LWC * 0.367		Gallons	
4		LWC * 0.653		Gallons	
6		LWC * 1.469	· · · · · · · · · · · · · · · · · · ·	Gallons	
Free Product Check:	Free Pro Measured Thickn	oduct Present: ess/Comment:	Yes	No	
Purge Data:	Purge Date:	3/14/4			
	Purging Time:	From:	12:20		17:35
	Type of Purging Equ Purged Wat	nipment Used: er Comments:	Geopump grey silt,	dump al	er (organic
Sampling Data:	Depth to Water	r at Sampling:			feet
	Color of Sample:	eleer	Sample Date	: 3/14/4	
	Turbidity:	0	Sample Time		
т	Type of Sampling Equ	nipment Used:	Low F	low	
Field Indicators	Present During Sam	ple Collection:	Odor Sheen Free Product None	decom o	
Notes: <u>Temp 7.85</u> <u>Con 1.23</u> pM 6.9	l ms/c~		лоце		
Weather:	Temperature °F	36	Sunny Cloudy	Rain Snow	

Client/Site:	Comese	T+2 =			Project No.:	20 11630
Monitoring Location	1:	ento well			Date:	
Source Description:	B- 6	3/TW			Sampler:	MTM
Well & Water Level			Depth	th of Well: _ to Water: _ in (LWC): _	7.15 3.01 4.14	feet feet feet
Purge Volume Calcu	ılation•			_		_
Well Diameter		Calculated W	all Vo	luma Ta Ra	Damovad	
1	(menes).	LWC * 0.041			Gallons ~	. 1
1.25		LWC * 0.064			_ Gallons Gallons	•
1.5		LWC * 0.092			_ Gallons	
2		LWC * 0.163		h	Ganons Gallons	
3		LWC * 0.367			_ Gallons	
4		LWC * 0.653			_ Gallons	
6		LWC * 1.469			Ganous . Gallons	
V		L WC " 1.403	· · · · · ·		_ Ganons	
Free Product Checks	: Free Pr Measured Thickn	oduct Present: ness/Comment:		Yes	(No)	
Purge Data:	Purge Date:	3/14/11				
	Purging Time:	From:			To:	
	Type of Purging Eq Purged Wat	uipment Used: _ ter Comments: _	Ra	j	FP/Sheen	a hip
Sampling Data:	Depth to Wate	r at Sampling: _		<u> 351</u>		_feet
	Color of Sample: Turbidity: Type of Sampling Eq	uinment Used:		mple Date: _ iple Time: _ R. (1)	3114110	-
	Present During Sam	_		Odor	~	
		•	S Free	Sheen Product None		- - -
Notes:	4.2	h				
	YOC sac	ken				

Revised 08/15/07

APPENDIX C LABORATORY REPORTS

03/25/11

Technical Report for

Plumley Environmental Engineers

80 Steel Street (GS&T)

2011030

Accutest Job Number: M98417

Sampling Dates: 03/09/11 - 03/10/11

Report to:

Plumley Environmental Engineers

dhudson@plumleyeng.com

ATTN: Derk Hudson

Total number of pages in report: 102

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Kristen Blanchard 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) ISO 17025:2005 (L2235) This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

N

Table of Contents

-1-

Section 1: Sample Summary 3	3
Section 2: Sample Results	4
2.1: M98417-1: B-1 (SURFACE SAMPLE)	5
2.2: M98417-2: B-10 (SURFACE SAMPLE)	
2.3: M98417-3: B-17 (SURFACE SAMPLE)	15
2.4: M98417-4: B-3 (4'-8')	20
2.5: M98417-5: B-5 (12-14.2)	28
	36
	44
	52
	60
	68
	76
	84
2.13: M98417-13: B-12(0'-8')	92
	100
3.1: Chain of Custody	101

_

Sample Summary

Job No:

M98417

Plumley Environmental Engineers

80 Steel Street (GS&T) Project No: 2011030

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
M98417-1	03/09/11	00:00 DTH	03/15/11	SO	Soil	B-1 (SURFACE SAMPLE)
M98417-2	03/09/11	00:00 DTH	03/15/11	SO	Soil	B-10 (SURFACE SAMPLE)
M98417-3	03/10/11	00:00 DTH	03/15/11	SO	Soil	B-17 (SURFACE SAMPLE)
M98417-4	03/09/11	00:00 DTH	03/15/11	SO	Soil	B-3 (4'-8')
M98417-5	03/09/11	00:00 DTH	03/15/11	SO	Soil	B-5 (12-14.2)
M98417-6	03/09/11	00:00 DTH	03/15/11	SO	Soil	B-9 (4-7.8)
M98417-7	03/09/11	00:00 DTH	03/15/11	SO	Soil	B-13(4-8)
M98417-8	03/10/11	00:00 DTH	03/15/11	SO	Soil	B-15(4'-8')
M98417-9	03/10/11	00:00 DTH	03/15/11	so	Soil	B-17(8-8.4)
M98417-10	03/10/11	00:00 DTH	03/15/11	so	Soil	B-19(4'-8')
M98417-11	03/10/11	00:00 DTH	03/15/11	so	Soil	B-22(8'-9')
M98417-12	03/10/11	00:00 DTH	03/15/11	SO	Soil	B-23(8-9.1)
M98417-13	03/09/11	00:00 DTH	03/15/11	SO	Soil	B-12(0'-8')

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

Sample Results	
Report of Analysis	
1	

Page 1 of 2

Client Sample ID: B-1 (SURFACE SAMPLE)

Lab Sample ID: M98417-1 **Date Sampled:** 03/09/11 Matrix: SO - Soil **Date Received:** 03/15/11 Method: SW846 8270C SW846 3546 Percent Solids: 91.9

Project: 80 Steel Street (GS&T)

DF **Analytical Batch** File ID Analyzed By **Prep Date Prep Batch** Run #1 I71147.D 1 03/21/11 KR 03/16/11 OP24354 MSI2524

Run #2

Final Volume Initial Weight

Run #1 1.0 ml 20.7 g

Run #2

BN PPL List

CAS No.	Compound	Result	RL	Units Q	
83-32-9	Acenaphthene	ND	260	ug/kg	
208-96-8	Acenaphthylene	ND	260	ug/kg	
120-12-7	Anthracene	ND	260	ug/kg	
92-87-5	Benzidine	ND	1100	ug/kg	
56-55-3	Benzo(a)anthracene	ND	260	ug/kg	
50-32-8	Benzo(a)pyrene	ND	260	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	260	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	260	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	260	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	260	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	260	ug/kg	
91-58-7	2-Chloronaphthalene	ND	260	ug/kg	
106-47-8	4-Chloroaniline	ND	530	ug/kg	
218-01-9	Chrysene	ND	260	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	260	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	260	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	260	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	260	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	260	ug/kg	
122-66-7	1,2-Diphenylhydrazine	ND	260	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	260	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	260	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	530	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	530	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	260	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	260	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	260	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	260	ug/kg	
84-66-2	Diethyl phthalate	ND	260	ug/kg	
131-11-3	Dimethyl phthalate	ND	260	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	260	ug/kg	
206-44-0	Fluoranthene	ND	260	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

Client Sample ID: B-1 (SURFACE SAMPLE)

 Lab Sample ID:
 M98417-1
 Date Sampled:
 03/09/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8270C
 SW846 3546
 Percent Solids:
 91.9

Project: 80 Steel Street (GS&T)

BN PPL List

CAS No.	Compound	Result	RL	Units Q
86-73-7	Fluorene	ND	260	ug/kg
118-74-1	Hexachlorobenzene	ND	260	ug/kg
87-68-3	Hexachlorobutadiene	ND	260	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	530	ug/kg
67-72-1	Hexachloroethane	ND	260	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	260	ug/kg
78-59-1	Isophorone	ND	260	ug/kg
91-20-3	Naphthalene	ND	260	ug/kg
98-95-3	Nitrobenzene	ND	260	ug/kg
62-75-9	n-Nitrosodimethylamine	ND	260	ug/kg
621-64-7	N-Nitroso-di-n-propylamine	ND	260	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	260	ug/kg
85-01-8	Phenanthrene	ND	260	ug/kg
129-00-0	Pyrene	ND	260	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	260	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	55%		30-130%
321-60-8	2-Fluorobiphenyl	60%		30-130%
1718-51-0	Terphenyl-d14	79%		30-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank
 N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: B-1 (SURFACE SAMPLE)

 Lab Sample ID:
 M98417-1
 Date Sampled:
 03/09/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8082
 SW846 3546
 Percent Solids:
 91.9

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 BK1722.D 1 03/19/11 AP 03/16/11 OP24355 GBK69

Run #2

Run #1 Initial Weight Final Volume
15.9 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	Units Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND ND	100 100 100 100 100 100 100	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	51%		30-150%
877-09-8	Tetrachloro-m-xylene	50%		30-150%
2051-24-3	Decachlorobiphenyl	60%		30-150%
2051-24-3	Decachlorobiphenyl	127%		30-150%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: B-1 (SURFACE SAMPLE)

 Lab Sample ID:
 M98417-1
 Date Sampled:
 03/09/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Percent Solids:
 91.9

Project: 80 Steel Street (GS&T)

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	2.8	1.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Barium	24.7	5.0	mg/kg	1	03/16/11	03/18/11 PY	SW846 6010C ³	SW846 3050B ⁵
Beryllium	< 0.40	0.40	mg/kg	1	03/16/11	03/18/11 PY	SW846 6010C ³	SW846 3050B ⁵
Cadmium	< 0.40	0.40	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Chromium	7.6	1.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Copper	12.9	2.5	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Lead	6.6	1.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Manganese	449	1.5	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Mercury	< 0.035	0.035	mg/kg	1	03/16/11	03/17/11 CF	SW846 7471A ¹	SW846 7471A ⁴
Nickel	6.9	4.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Selenium	< 1.0	1.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Silver	< 0.50	0.50	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Zinc	52.5	2.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵

(1) Instrument QC Batch: MA12748
(2) Instrument QC Batch: MA12756
(3) Instrument QC Batch: MA12761
(4) Prep QC Batch: MP16722
(5) Prep QC Batch: MP16723

N

Report of Analysis

Page 1 of 1

Client Sample ID: B-1 (SURFACE SAMPLE)

 Lab Sample ID:
 M98417-1
 Date Sampled:
 03/09/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Percent Solids:
 91.9

Project: 80 Steel Street (GS&T)

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium Hovevelent	< 0.43	0.43	ma/lra	1	03/21/11 15:38	МС	CW1946 2060 A /7106 A
Chromium, Hexavalent	< 0.45	0.43	mg/kg	1	05/21/11 15.56	MC	SW846 3060A/7196A
Chromium, Trivalent ^a	7.6	1.4	mg/kg	1	03/21/11 15:38	MC	SW846 6010/7196A M
Cyanide	< 0.12	0.12	mg/kg	1	03/18/11 14:56	MA	SW846 9012 M
Redox Potential Vs H2	349		mv	1	03/16/11	CF	ASTM D1498-76M
Solids, Percent	91.9		%	1	03/16/11	HS	SM21 2540 B MOD.
pН	8.6		su	1	03/16/11	MA	SW846 9045

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Page 1 of 2

Client Sample ID: B-10 (SURFACE SAMPLE)

Lab Sample ID: M98417-2 **Date Sampled:** 03/09/11 Matrix: SO - Soil **Date Received:** 03/15/11 Method: SW846 8270C SW846 3546 **Percent Solids:** 84.6

Project: 80 Steel Street (GS&T)

DF **Prep Date Analytical Batch** File ID Analyzed By **Prep Batch** Run #1 I71148.D 1 03/21/11 KR 03/16/11 OP24354 MSI2524

Run #2

Final Volume Initial Weight

Run #1 5.0 ml 20.7 g

Run #2

BN PPL List

CAS No.	Compound	Result	RL	Units	Q
83-32-9	Acenaphthene	ND	1400	ug/kg	
208-96-8	Acenaphthylene	ND	1400	ug/kg	
120-12-7	Anthracene	ND	1400	ug/kg	
92-87-5	Benzidine	ND	5700	ug/kg	
56-55-3	Benzo(a)anthracene	ND	1400	ug/kg	
50-32-8	Benzo(a)pyrene	ND	1400	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	1400	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	1400	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	1400	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	1400	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	1400	ug/kg	
91-58-7	2-Chloronaphthalene	ND	1400	ug/kg	
106-47-8	4-Chloroaniline	ND	2800	ug/kg	
218-01-9	Chrysene	ND	1400	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	1400	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	1400	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	1400	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	1400	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	1400	ug/kg	
122-66-7	1,2-Diphenylhydrazine	ND	1400	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	1400	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	1400	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	2800	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	2800	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	1400	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	1400	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	1400	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	1400	ug/kg	
84-66-2	Diethyl phthalate	ND	1400	ug/kg	
131-11-3	Dimethyl phthalate	ND	1400	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	1400	ug/kg	
206-44-0	Fluoranthene	ND	1400	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

Client Sample ID: B-10 (SURFACE SAMPLE)

 Lab Sample ID:
 M98417-2
 Date Sampled:
 03/09/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8270C
 SW846 3546
 Percent Solids:
 84.6

Project: 80 Steel Street (GS&T)

BN PPL List

CAS No.	Compound	Result	RL	Units Q
86-73-7	Fluorene	ND	1400	ug/kg
118-74-1	Hexachlorobenzene	ND	1400	ug/kg
87-68-3	Hexachlorobutadiene	ND	1400	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	2800	ug/kg
67-72-1	Hexachloroethane	ND	1400	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1400	ug/kg
78-59-1	Isophorone	ND	1400	ug/kg
91-20-3	Naphthalene	ND	1400	ug/kg
98-95-3	Nitrobenzene	ND	1400	ug/kg
62-75-9	n-Nitrosodimethylamine	ND	1400	ug/kg
621-64-7	N-Nitroso-di-n-propylamine	ND	1400	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	1400	ug/kg
85-01-8	Phenanthrene	ND	1400	ug/kg
129-00-0	Pyrene	ND	1400	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	1400	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	92%		30-130%
321-60-8	2-Fluorobiphenyl	104%		30-130%
1718-51-0	Terphenyl-d14	109%		30-130%

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: B-10 (SURFACE SAMPLE)

 Lab Sample ID:
 M98417-2
 Date Sampled:
 03/09/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8082
 SW846 3546
 Percent Solids:
 84.6

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 BK1723.D 1 03/19/11 AP 03/16/11 OP24355 GBK69

Run #2

Initial Weight Final Volume Run #1 15.9 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	Units Q
12674-11-2	Aroclor 1016	ND	110	ug/kg
11104-28-2	Aroclor 1221	ND	110	ug/kg
11141-16-5	Aroclor 1232	ND	110	ug/kg
53469-21-9	Aroclor 1242	ND	110	ug/kg
12672-29-6	Aroclor 1248	ND	110	ug/kg
11097-69-1	Aroclor 1254	ND	110	ug/kg
11096-82-5	Aroclor 1260	ND	110	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	71%		30-150%
877-09-8	Tetrachloro-m-xylene	79%		30-150%
2051-24-3	Decachlorobiphenyl	52%		30-150%
2051-24-3	Decachlorobiphenyl	85%		30-150%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: B-10 (SURFACE SAMPLE)

 Lab Sample ID:
 M98417-2
 Date Sampled:
 03/09/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Percent Solids:
 84.6

Project: 80 Steel Street (GS&T)

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	3.8	1.1	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Barium	44.3	5.5	mg/kg	1	03/16/11	03/18/11 PY	SW846 6010C ³	SW846 3050B ⁵
Beryllium	< 0.44	0.44	mg/kg	1	03/16/11	03/18/11 PY	SW846 6010C ³	SW846 3050B ⁵
Cadmium	< 0.44	0.44	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Chromium	53.8	1.1	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Copper	14.8	2.8	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Lead	14.5	1.1	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Manganese	781	1.7	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Mercury	0.067	0.039	mg/kg	1	03/16/11	03/17/11 CF	SW846 7471A ¹	SW846 7471A ⁴
Nickel	8.3	4.4	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Selenium	< 1.1	1.1	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Silver	< 0.55	0.55	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Zinc	62.8	2.2	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵

(1) Instrument QC Batch: MA12748
(2) Instrument QC Batch: MA12756
(3) Instrument QC Batch: MA12761
(4) Prep QC Batch: MP16722
(5) Prep QC Batch: MP16723

Page 1 of 1

Client Sample ID: B-10 (SURFACE SAMPLE)

 Lab Sample ID:
 M98417-2
 Date Sampled:
 03/09/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Percent Solids:
 84.6

Project: 80 Steel Street (GS&T)

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.46	0.46	mg/kg	1	03/16/11 16:45	CF	SW846 3060A/7196A
Chromium, Trivalent ^a	53.6	1.6	mg/kg	1	03/17/11 20:09	PY	SW846 6010/7196A M
Cyanide	< 0.14	0.14	mg/kg	1	03/18/11 14:56	MA	SW846 9012 M
Redox Potential Vs H2	374		mv	1	03/16/11	CF	ASTM D1498-76M
Solids, Percent	84.6		%	1	03/16/11	HS	SM21 2540 B MOD.
pН	7.6		su	1	03/16/11	MA	SW846 9045

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Page 1 of 2

Client Sample ID: B-17 (SURFACE SAMPLE)

 Lab Sample ID:
 M98417-3
 Date Sampled:
 03/10/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8270C
 SW846 3546
 Percent Solids:
 76.1

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 I71149.D 1 03/21/11 KR 03/16/11 OP24354 MSI2524

Run #2

Initial Weight Final Volume

Run #1 20.9 g 1.0 ml

Run #2

BN PPL List

CAS No.	Compound	Result	RL	Units	Q
83-32-9	Acenaphthene	ND	310	ug/kg	
208-96-8	Acenaphthylene	ND	310	ug/kg	
120-12-7	Anthracene	ND	310	ug/kg	
92-87-5	Benzidine	ND	1300	ug/kg	
56-55-3	Benzo(a)anthracene	869	310	ug/kg	
50-32-8	Benzo(a)pyrene	874	310	ug/kg	
205-99-2	Benzo(b)fluoranthene	722	310	ug/kg	
191-24-2	Benzo(g,h,i)perylene	610	310	ug/kg	
207-08-9	Benzo(k)fluoranthene	664	310	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	310	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	310	ug/kg	
91-58-7	2-Chloronaphthalene	ND	310	ug/kg	
106-47-8	4-Chloroaniline	ND	630	ug/kg	
218-01-9	Chrysene	921	310	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	310	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	310	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	310	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	310	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	310	ug/kg	
122-66-7	1,2-Diphenylhydrazine	ND	310	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	310	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	310	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	630	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	630	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	310	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	310	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	310	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	310	ug/kg	
84-66-2	Diethyl phthalate	ND	310	ug/kg	
131-11-3	Dimethyl phthalate	ND	310	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	1340	310	ug/kg	
206-44-0	Fluoranthene	1190	310	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: B-17 (SURFACE SAMPLE)

 Lab Sample ID:
 M98417-3
 Date Sampled:
 03/10/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8270C
 SW846 3546
 Percent Solids:
 76.1

Project: 80 Steel Street (GS&T)

BN PPL List

CAS No.	Compound	Result	RL	Units Q
86-73-7	Fluorene	ND	310	ug/kg
118-74-1	Hexachlorobenzene	ND	310	ug/kg
87-68-3	Hexachlorobutadiene	ND	310	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	630	ug/kg
67-72-1	Hexachloroethane	ND	310	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	624	310	ug/kg
78-59-1	Isophorone	ND	310	ug/kg
91-20-3	Naphthalene	ND	310	ug/kg
98-95-3	Nitrobenzene	ND	310	ug/kg
62-75-9	n-Nitrosodimethylamine	ND	310	ug/kg
621-64-7	N-Nitroso-di-n-propylamine	ND	310	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	310	ug/kg
85-01-8	Phenanthrene	465	310	ug/kg
129-00-0	Pyrene	1280	310	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	310	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	66%		30-130%
321-60-8	2-Fluorobiphenyl	78%		30-130%
1718-51-0	Terphenyl-d14	87%		30-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: B-17 (SURFACE SAMPLE)

Lab Sample ID: M98417-3 **Date Sampled:** 03/10/11 Matrix: SO - Soil **Date Received:** 03/15/11 Method: SW846 8082 SW846 3546 Percent Solids: 76.1

Project: 80 Steel Street (GS&T)

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK1724.D	1	03/19/11	AP	03/16/11	OP24355	GBK69
Run #2	BK1743.D	5	03/19/11	AP	03/16/11	OP24355	GBK70

	Initial Weight	Final Volume
Run #1	15.3 g	10.0 ml
Run #2	15.3 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	Units Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 b	ND ND ND 1110 ^a ND 695	130 130 130 640 130	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
11096-82-5 CAS No.	Aroclor 1260 Surrogate Recoveries	ND Run# 1	130 Run# 2	ug/kg Limits
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	60% 63% 54% 94%	61% 65% 72% 106%	30-150% 30-150% 30-150% 30-150%

⁽a) Result is from Run# 2

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

⁽b) Estimated value due to the presence of other Arochlor pattern.

Page 1 of 1

Client Sample ID: B-17 (SURFACE SAMPLE)

 Lab Sample ID:
 M98417-3
 Date Sampled:
 03/10/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Percent Solids:
 76.1

Project: 80 Steel Street (GS&T)

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	6.8	1.2	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Barium	92.2	5.8	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Beryllium	0.49	0.47	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Cadmium	1.6	0.47	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Chromium	29.0	1.2	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Copper	430	2.9	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Lead	188	1.2	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Manganese	261	1.7	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Mercury	0.29	0.043	mg/kg	1	03/16/11	03/17/11 CF	SW846 7471A ¹	SW846 7471A ³
Nickel	26.0	4.7	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Selenium	< 1.2	1.2	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Silver	7.1	0.58	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Zinc	486	2.3	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA12748(2) Instrument QC Batch: MA12756(3) Prep QC Batch: MP16722(4) Prep QC Batch: MP16723

1

Report of Analysis

Page 1 of 1

Client Sample ID: B-17 (SURFACE SAMPLE)

 Lab Sample ID:
 M98417-3
 Date Sampled:
 03/10/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Percent Solids:
 76.1

Project: 80 Steel Street (GS&T)

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium Hovevelent	< 0.52	0.52	ma/lra	1	03/16/11 16:45	CE	CVV04C 20C04/710C4
Chromium, Hexavalent	< 0.32	0.32	mg/kg	1	05/10/11 10:43	CF	SW846 3060A/7196A
Chromium, Trivalent ^a	28.5	1.7	mg/kg	1	03/17/11 20:22	PY	SW846 6010/7196A M
Cyanide	< 0.16	0.16	mg/kg	1	03/18/11 14:57	MA	SW846 9012 M
Redox Potential Vs H2	374		mv	1	03/16/11	CF	ASTM D1498-76M
Solids, Percent	76.1		%	1	03/16/11	HS	SM21 2540 B MOD.
pН	7.5		su	1	03/16/11	MA	SW846 9045

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Page 1 of 3

Client Sample ID: B-3 (4'-8')
Lab Sample ID: M98417-4
Matrix: SO - Soil

Method: SW846 8260B

Date Sampled: 03/09/11 **Date Received:** 03/15/11 **Percent Solids:** 91.1

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 K50951.D 1 03/18/11 GK n/a n/a MSK1685

Run #2

Initial Weight Final Volume Methanol Aliquot

Run #1 10.1 g 10.0 ml 100 ul

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
67-64-1	Acetone	ND	290	ug/kg	
71-43-2	Benzene	ND	29	ug/kg	
108-86-1	Bromobenzene	ND	290	ug/kg	
74-97-5	Bromochloromethane	ND	290	ug/kg	
75-27-4	Bromodichloromethane	ND	120	ug/kg	
75-25-2	Bromoform	ND	120	ug/kg	
74-83-9	Bromomethane	ND	120	ug/kg	
78-93-3	2-Butanone (MEK)	ND	290	ug/kg	
104-51-8	n-Butylbenzene	ND	290	ug/kg	
135-98-8	sec-Butylbenzene	ND	290	ug/kg	
98-06-6	tert-Butylbenzene	ND	290	ug/kg	
75-15-0	Carbon disulfide	ND	290	ug/kg	
56-23-5	Carbon tetrachloride	ND	120	ug/kg	
108-90-7	Chlorobenzene	ND	120	ug/kg	
75-00-3	Chloroethane	ND	290	ug/kg	
67-66-3	Chloroform	ND	120	ug/kg	
74-87-3	Chloromethane	ND	290	ug/kg	
95-49-8	o-Chlorotoluene	ND	290	ug/kg	
106-43-4	p-Chlorotoluene	ND	290	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	290	ug/kg	
124-48-1	Dibromochloromethane	ND	120	ug/kg	
106-93-4	1,2-Dibromoethane	ND	120	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	120	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	120	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	120	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	120	ug/kg	
75-34-3	1,1-Dichloroethane	ND	120	ug/kg	
107-06-2	1,2-Dichloroethane	ND	120	ug/kg	
75-35-4	1,1-Dichloroethene	ND	120	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	120	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	120	ug/kg	
78-87-5	1,2-Dichloropropane	ND	120	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

 Client Sample ID:
 B-3 (4'-8')

 Lab Sample ID:
 M98417-4
 Date Sampled:
 03/09/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 91.1

80 Steel Street (GS&T)

VOA 8260 List

Project:

CAS No.	Compound	Result	RL	Units	Q
142-28-9	1,3-Dichloropropane	ND	290	ug/kg	
594-20-7	2,2-Dichloropropane	ND	290	ug/kg	
563-58-6	1,1-Dichloropropene	ND	290	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	120	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	120	ug/kg	
100-41-4	Ethylbenzene	ND	120	ug/kg	
87-68-3	Hexachlorobutadiene	ND	290	ug/kg	
591-78-6	2-Hexanone	ND	290	ug/kg	
74-88-4	Iodomethane	ND	290	ug/kg	
98-82-8	Isopropylbenzene	ND	290	ug/kg	
99-87-6	p-Isopropyltoluene	ND	290	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	120	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	290	ug/kg	
74-95-3	Methylene bromide	ND	290	ug/kg	
75-09-2	Methylene chloride	ND	120	ug/kg	
91-20-3	Naphthalene	ND	290	ug/kg	
103-65-1	n-Propylbenzene	ND	290	ug/kg	
100-42-5	Styrene	ND	290	ug/kg	
630-20-6	1,1,1,2-Tetrachloroethane	ND	290	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	120	ug/kg	
127-18-4	Tetrachloroethene	ND	120	ug/kg	
108-88-3	Toluene	ND	290	ug/kg	
87-61-6	1,2,3-Trichlorobenzene	ND	290	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	290	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	120	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	120	ug/kg	
79-01-6	Trichloroethene	ND	120	ug/kg	
75-69-4	Trichlorofluoromethane	ND	120	ug/kg	
96-18-4	1,2,3-Trichloropropane	ND	290	ug/kg	
95-63-6	1,2,4-Trimethylbenzene	ND	290	ug/kg	
108-67-8	1,3,5-Trimethylbenzene	ND	290	ug/kg	
108-05-4	Vinyl Acetate	ND	290	ug/kg	
75-01-4	Vinyl chloride	ND	120	ug/kg	
	m, p-Xylene	ND	120	ug/kg	
95-47-6	o-Xylene	ND	120	ug/kg	
1330-20-7	Xylene (total)	ND	120	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
1868-53-7	Dibromofluoromethane	105%		70-13	30%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

N

Report of Analysis

Date Sampled: 03/09/11

Date Received: 03/15/11

Percent Solids: 91.1

Page 3 of 3

Client Sample ID: B-3 (4'-8') **Lab Sample ID:** M98417-4

Matrix: SO - Soil Method: SW846 8260B

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No. Surrogate Recoveries I	Run# 1	Run# 2	Limits
--------------------------------	--------	--------	--------

 2037-26-5
 Toluene-D8
 108%
 70-130%

 460-00-4
 4-Bromofluorobenzene
 103%
 70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $J = \ Indicates \ an \ estimated \ value$

Page 1 of 2

Client Sample ID: B-3 (4'-8') Lab Sample ID: M98417-4

Matrix: SO - Soil Method: SW846 8270C SW846 3546

Project: 80 Steel Street (GS&T)

Date Sampled: 03/09/11 **Date Received:** 03/15/11 Percent Solids: 91.1

DF **Prep Date Analytical Batch** File ID Analyzed By **Prep Batch** Run #1 S22255.D 1 03/21/11 PR 03/16/11 OP24354 MSS943

Run #2

Final Volume Initial Weight

Run #1 1.0 ml 21.0 g

Run #2

BN PPL List

CAS No.	Compound	Result	RL	Units	Q
83-32-9	Acenaphthene	ND	260	ug/kg	
208-96-8	Acenaphthylene	ND	260	ug/kg	
120-12-7	Anthracene	ND	260	ug/kg	
92-87-5	Benzidine	ND	1000	ug/kg	
56-55-3	Benzo(a)anthracene	297	260	ug/kg	
50-32-8	Benzo(a)pyrene	260	260	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	260	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	260	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	260	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	260	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	260	ug/kg	
91-58-7	2-Chloronaphthalene	ND	260	ug/kg	
106-47-8	4-Chloroaniline	ND	520	ug/kg	
218-01-9	Chrysene	298	260	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	260	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	260	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	260	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	260	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	260	ug/kg	
122-66-7	1,2-Diphenylhydrazine	ND	260	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	260	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	260	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	520	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	520	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	260	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	260	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	260	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	260	ug/kg	
84-66-2	Diethyl phthalate	ND	260	ug/kg	
131-11-3	Dimethyl phthalate	ND	260	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	661	260	ug/kg	
206-44-0	Fluoranthene	576	260	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Date Sampled: 03/09/11

Date Received: 03/15/11

Percent Solids: 91.1

Page 2 of 2

Client Sample ID: B-3 (4'-8')
Lab Sample ID: M98417-4
Matrix: SO - Soil

 Matrix:
 SO - Soil

 Method:
 SW846 8270C
 SW846 3546

Project: 80 Steel Street (GS&T)

BN PPL List

CAS No.	Compound	Result	RL	Units Q
86-73-7	Fluorene	ND	260	ug/kg
118-74-1	Hexachlorobenzene	ND	260	ug/kg
87-68-3	Hexachlorobutadiene	ND	260	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	520	ug/kg
67-72-1	Hexachloroethane	ND	260	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	260	ug/kg
78-59-1	Isophorone	ND	260	ug/kg
91-20-3	Naphthalene	ND	260	ug/kg
98-95-3	Nitrobenzene	ND	260	ug/kg
62-75-9	n-Nitrosodimethylamine	ND	260	ug/kg
621-64-7	N-Nitroso-di-n-propylamine	ND	260	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	260	ug/kg
85-01-8	Phenanthrene	299	260	ug/kg
129-00-0	Pyrene	608	260	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	260	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	39%		30-130%
321-60-8	2-Fluorobiphenyl	67%		30-130%
1718-51-0	Terphenyl-d14	78%		30-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: B-3 (4'-8')
Lab Sample ID: M98417-4
Matrix: SO - Soil

Method: SW846 8082 SW846 3546

Project: 80 Steel Street (GS&T)

Date Sampled:	03/09/11
Date Received:	03/15/11
Percent Solids	91.1

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	BK1725.D	1	03/19/11	AP	03/16/11	OP24355	GBK69
Run #2	BK1744.D	5	03/19/11	AP	03/16/11	OP24355	GBK70

	Initial Weight	Final Volume
Run #1	15.4 g	10.0 ml
Run #2	15.4 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	Units Q
12674-11-2	Aroclor 1016	ND	110	ug/kg
11104-28-2	Aroclor 1221	ND	110	ug/kg
11141-16-5	Aroclor 1232	ND	110	ug/kg
53469-21-9	Aroclor 1242	652 a	530	ug/kg
12672-29-6	Aroclor 1248	ND	110	ug/kg
11097-69-1	Aroclor 1254 b	267	110	ug/kg
11096-82-5	Aroclor 1260	ND	110	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	83%	91%	30-150%
877-09-8	Tetrachloro-m-xylene	84%	89%	30-150%
2051-24-3	Decachlorobiphenyl	83%	101%	30-150%
2051-24-3	Decachlorobiphenyl	133%	119%	30-150%

⁽a) Result is from Run# 2

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

⁽b) Estimated value due to the presence of other Arochlor pattern.

Page 1 of 1

 Client Sample ID:
 B-3 (4'-8')

 Lab Sample ID:
 M98417-4

 Matrix:
 SO - Soil

 Date Received:
 03/15/11

 Percent Solids:
 91.1

Project: 80 Steel Street (GS&T)

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	7.2	1.1	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁶
Barium	571	5.3	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁶
Beryllium	0.75	0.42	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁶
Cadmium	7.5	0.42	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁶
Chromium	1710	2.1	mg/kg	2	03/16/11	03/18/11 PY	SW846 6010C ³	SW846 3050B ⁶
Copper	327	2.6	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁶
Lead	127	1.1	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁶
Manganese	24400	79	mg/kg	50	03/16/11	03/20/11 PY	SW846 6010C ⁴	SW846 3050B ⁶
Mercury	0.14	0.034	mg/kg	1	03/16/11	03/17/11 CF	SW846 7471A ¹	SW846 7471A ⁵
Nickel	63.0	4.2	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁶
Selenium ^a	< 2.1	2.1	mg/kg	2	03/16/11	03/18/11 PY	SW846 6010C ³	SW846 3050B ⁶
Silver	2.9	0.53	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁶
Zinc	738	2.1	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁶

(1) Instrument QC Batch: MA12748
(2) Instrument QC Batch: MA12756
(3) Instrument QC Batch: MA12761
(4) Instrument QC Batch: MA12762
(5) Prep QC Batch: MP16722
(6) Prep QC Batch: MP16723

(a) Elevated RL due to dilution required for matrix interference.

Page 1 of 1

Client Sample ID: B-3 (4'-8')
Lab Sample ID: M98417-4

Matrix: SO - Soil

Date Sampled: 03/09/11

Percent Solids: 91.1

Project: 80 Steel Street (GS&T)

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Characium Hayayalant	1 5	0.42	~ /lr ~	1	02/16/11 16.45	CE	CVV 0.4.6. 20.60 A /7.10.6 A
Chromium, Hexavalent	4.5	0.43	mg/kg	1	03/16/11 16:45	CF	SW846 3060A/7196A
Chromium, Trivalent ^a	1710	2.5	mg/kg	1	03/18/11 18:05	PY	SW846 6010/7196A M
Cyanide	0.13	0.13	mg/kg	1	03/18/11 14:58	MA	SW846 9012 M
Redox Potential Vs H2	331		mv	1	03/16/11	CF	ASTM D1498-76M
Solids, Percent	91.1		%	1	03/16/11	HS	SM21 2540 B MOD.
pН	11.7		su	1	03/16/11	MA	SW846 9045

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Client Sample ID: B-5 (12-14.2) Lab Sample ID: M98417-5 **Matrix:** SO - Soil

Method: SW846 8260B

Date Sampled: 03/09/11 **Date Received:** 03/15/11 Percent Solids: 88.6

Project: 80 Steel Street (GS&T)

Analytical Batch File ID DF Analyzed By **Prep Date Prep Batch** Run #1 K50952.D 1 03/18/11 GKMSK1685 n/an/a

Run #2

Final Volume Initial Weight Methanol Aliquot

Run #1 10.0 ml 100 ul 10.2 g

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
67-64-1	Acetone	ND	310	ug/kg	
71-43-2	Benzene	ND	31	ug/kg	
108-86-1	Bromobenzene	ND	310	ug/kg	
74-97-5	Bromochloromethane	ND	310	ug/kg	
75-27-4	Bromodichloromethane	ND	120	ug/kg	
75-25-2	Bromoform	ND	120	ug/kg	
74-83-9	Bromomethane	ND	120	ug/kg	
78-93-3	2-Butanone (MEK)	ND	310	ug/kg	
104-51-8	n-Butylbenzene	ND	310	ug/kg	
135-98-8	sec-Butylbenzene	ND	310	ug/kg	
98-06-6	tert-Butylbenzene	ND	310	ug/kg	
75-15-0	Carbon disulfide	ND	310	ug/kg	
56-23-5	Carbon tetrachloride	ND	120	ug/kg	
108-90-7	Chlorobenzene	ND	120	ug/kg	
75-00-3	Chloroethane	ND	310	ug/kg	
67-66-3	Chloroform	ND	120	ug/kg	
74-87-3	Chloromethane	ND	310	ug/kg	
95-49-8	o-Chlorotoluene	ND	310	ug/kg	
106-43-4	p-Chlorotoluene	ND	310	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	310	ug/kg	
124-48-1	Dibromochloromethane	ND	120	ug/kg	
106-93-4	1,2-Dibromoethane	ND	120	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	120	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	120	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	120	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	120	ug/kg	
75-34-3	1,1-Dichloroethane	ND	120	ug/kg	
107-06-2	1,2-Dichloroethane	ND	120	ug/kg	
75-35-4	1,1-Dichloroethene	ND	120	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	120	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	120	ug/kg	
78-87-5	1,2-Dichloropropane	ND	120	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 3

 Client Sample ID:
 B-5 (12-14.2)

 Lab Sample ID:
 M98417-5
 Date Sampled:
 03/09/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 88.6

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
142-28-9	1,3-Dichloropropane	ND	310	ug/kg	
594-20-7	2,2-Dichloropropane	ND	310	ug/kg	
563-58-6	1,1-Dichloropropene	ND	310	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	120	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	120	ug/kg	
100-41-4	Ethylbenzene	ND	120	ug/kg	
87-68-3	Hexachlorobutadiene	ND	310	ug/kg	
591-78-6	2-Hexanone	ND	310	ug/kg	
74-88-4	Iodomethane	ND	310	ug/kg	
98-82-8	Isopropylbenzene	ND	310	ug/kg	
99-87-6	p-Isopropyltoluene	ND	310	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	120	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	310	ug/kg	
74-95-3	Methylene bromide	ND	310	ug/kg	
75-09-2	Methylene chloride	ND	120	ug/kg	
91-20-3	Naphthalene	ND	310	ug/kg	
103-65-1	n-Propylbenzene	ND	310	ug/kg	
100-42-5	Styrene	ND	310	ug/kg	
630-20-6	1,1,1,2-Tetrachloroethane	ND	310	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	120	ug/kg	
127-18-4	Tetrachloroethene	ND	120	ug/kg	
108-88-3	Toluene	ND	310	ug/kg	
87-61-6	1,2,3-Trichlorobenzene	ND	310	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	310	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	120	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	120	ug/kg	
79-01-6	Trichloroethene	ND	120	ug/kg	
75-69-4	Trichlorofluoromethane	ND	120	ug/kg	
96-18-4	1,2,3-Trichloropropane	ND	310	ug/kg	
95-63-6	1,2,4-Trimethylbenzene	ND	310	ug/kg	
108-67-8	1,3,5-Trimethylbenzene	ND	310	ug/kg	
108-05-4	Vinyl Acetate	ND	310	ug/kg	
75-01-4	Vinyl chloride	ND	120	ug/kg	
	m,p-Xylene	ND	120	ug/kg	
95-47-6	o-Xylene	ND	120	ug/kg	
1330-20-7	Xylene (total)	ND	120	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its
1868-53-7	Dibromofluoromethane	106%		70-1	30%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 3 of 3

Client Sample ID: B-5 (12-14.2)

 Lab Sample ID:
 M98417-5
 Date Sampled:
 03/09/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 88.6

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	115%		70-130%
460-00-4	4-Bromofluorobenzene	117%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 2

Client Sample ID: B-5 (12-14.2)

 Lab Sample ID:
 M98417-5
 Date Sampled:
 03/09/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8270C
 SW846 3546
 Percent Solids:
 88.6

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 S22256.D 1 03/21/11 PR 03/16/11 OP24354 MSS943

Run #2

Initial Weight Final Volume

Run #1 20.2 g 1.0 ml

Run #2

BN PPL List

CAS No.	Compound	Result	RL	Units	Q
83-32-9	Acenaphthene	ND	280	ug/kg	
208-96-8	Acenaphthylene	ND	280	ug/kg	
120-12-7	Anthracene	ND	280	ug/kg	
92-87-5	Benzidine	ND	1100	ug/kg	
56-55-3	Benzo(a)anthracene	ND	280	ug/kg	
50-32-8	Benzo(a)pyrene	ND	280	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	280	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	280	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	280	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	280	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	280	ug/kg	
91-58-7	2-Chloronaphthalene	ND	280	ug/kg	
106-47-8	4-Chloroaniline	ND	560	ug/kg	
218-01-9	Chrysene	ND	280	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	280	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	280	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	280	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	280	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	280	ug/kg	
122-66-7	1,2-Diphenylhydrazine	ND	280	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	280	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	280	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	560	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	560	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	280	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	280	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	280	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	280	ug/kg	
84-66-2	Diethyl phthalate	ND	280	ug/kg	
131-11-3	Dimethyl phthalate	ND	280	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	280	ug/kg	
206-44-0	Fluoranthene	ND	280	ug/kg	

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Date Sampled: 03/09/11

Date Received: 03/15/11

Percent Solids: 88.6

Page 2 of 2

Client Sample ID: B-5 (12-14.2) **Lab Sample ID:** M98417-5

 Matrix:
 SO - Soil

 Method:
 SW846 8270C
 SW846 3546

Project: 80 Steel Street (GS&T)

BN PPL List

CAS No.	Compound	Result	RL	Units Q
86-73-7	Fluorene	ND	280	ug/kg
118-74-1	Hexachlorobenzene	ND	280	ug/kg
87-68-3	Hexachlorobutadiene	ND	280	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	560	ug/kg
67-72-1	Hexachloroethane	ND	280	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	280	ug/kg
78-59-1	Isophorone	ND	280	ug/kg
91-20-3	Naphthalene	ND	280	ug/kg
98-95-3	Nitrobenzene	ND	280	ug/kg
62-75-9	n-Nitrosodimethylamine	ND	280	ug/kg
621-64-7	N-Nitroso-di-n-propylamine	ND	280	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	280	ug/kg
85-01-8	Phenanthrene	ND	280	ug/kg
129-00-0	Pyrene	ND	280	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	280	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	59%		30-130%
321-60-8	2-Fluorobiphenyl	78%		30-130%
1718-51-0	Terphenyl-d14	94%		30-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: B-5 (12-14.2) Lab Sample ID: M98417-5

Matrix: SO - Soil

Method: SW846 8082 SW846 3546 **Project:** 80 Steel Street (GS&T)

Date Sampled: 03/09/11 **Date Received:** 03/15/11 Percent Solids: 88.6

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** GBK69 Run #1 BK1726.D 1 03/19/11 AP 03/16/11 OP24355

Run #2

Initial Weight Final Volume 10.0 ml 15.6 g

Run #1 Run #2

PCB List

CAS No.	Compound	Result	RL	Units Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248	ND ND ND ND	110 110 110 110 110	ug/kg ug/kg ug/kg ug/kg ug/kg
11097-69-1 11096-82-5	Aroclor 1254 Aroclor 1260	ND ND	110 110	ug/kg ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8 877-09-8 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl	59% 56% 60%		30-150% 30-150% 30-150%
2051-24-3	Decachlorobiphenyl	70%		30-150%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

 Client Sample ID:
 B-5 (12-14.2)

 Lab Sample ID:
 M98417-5

 Date Sampled:
 03/09/11

 Matrix:
 SO - Soil

 Date Received:
 03/15/11

 Percent Solids:
 88.6

Project: 80 Steel Street (GS&T)

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	2.4	1.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Barium	17.0	5.1	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Beryllium	< 0.41	0.41	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Cadmium	< 0.41	0.41	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Chromium	9.0	1.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Copper	11.8	2.5	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Lead	31.3	1.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Manganese	401	1.5	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Mercury	< 0.036	0.036	mg/kg	1	03/16/11	03/17/11 CF	SW846 7471A ¹	SW846 7471A ³
Nickel	6.3	4.1	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Selenium	< 1.0	1.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Silver	< 0.51	0.51	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Zinc	76.4	2.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA12748(2) Instrument QC Batch: MA12756(3) Prep QC Batch: MP16722(4) Prep QC Batch: MP16723

Page 1 of 1

 Client Sample ID:
 B-5 (12-14.2)

 Lab Sample ID:
 M98417-5

 Date Sampled:
 03/09/11

 Matrix:
 SO - Soil

 Date Received:
 03/15/11

 Percent Solids:
 88.6

Project: 80 Steel Street (GS&T)

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.45	0.45	mg/kg	1	03/16/11 16:45	CF	SW846 3060A/7196A
Chromium, Trivalent ^a	8.8	1.5	mg/kg	1	03/17/11 20:31	PY	SW846 6010/7196A M
Cyanide	< 0.13	0.13	mg/kg	1	03/18/11 14:59	MA	SW846 9012 M
Redox Potential Vs H2	338		mv	1	03/16/11	CF	ASTM D1498-76M
Solids, Percent	88.6		%	1	03/16/11	HS	SM21 2540 B MOD.
pH	8.7		su	1	03/16/11	MA	SW846 9045

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Page 1 of 3

Client Sample ID: B-9 (4-7.8) **Lab Sample ID:** M98417-6

 Matrix:
 SO - Soil

 Method:
 SW846 8260B

80 Steel Street (GS&T)

Date Sampled: 03/09/11 **Date Received:** 03/15/11 **Percent Solids:** 81.5

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 K50953.D 1 03/18/11 GK n/a n/a MSK1685

Run #2

Project:

Initial Weight Final Volume Methanol Aliquot

Run #1 10.2 g 10.0 ml 100 ul

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
67-64-1	Acetone	ND	360	ug/kg	
71-43-2	Benzene	ND	36	ug/kg	
108-86-1	Bromobenzene	ND	360	ug/kg	
74-97-5	Bromochloromethane	ND	360	ug/kg	
75-27-4	Bromodichloromethane	ND	140	ug/kg	
75-25-2	Bromoform	ND	140	ug/kg	
74-83-9	Bromomethane	ND	140	ug/kg	
78-93-3	2-Butanone (MEK)	ND	360	ug/kg	
104-51-8	n-Butylbenzene	ND	360	ug/kg	
135-98-8	sec-Butylbenzene	ND	360	ug/kg	
98-06-6	tert-Butylbenzene	ND	360	ug/kg	
75-15-0	Carbon disulfide	ND	360	ug/kg	
56-23-5	Carbon tetrachloride	ND	140	ug/kg	
108-90-7	Chlorobenzene	ND	140	ug/kg	
75-00-3	Chloroethane	ND	360	ug/kg	
67-66-3	Chloroform	ND	140	ug/kg	
74-87-3	Chloromethane	ND	360	ug/kg	
95-49-8	o-Chlorotoluene	ND	360	ug/kg	
106-43-4	p-Chlorotoluene	ND	360	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	360	ug/kg	
124-48-1	Dibromochloromethane	ND	140	ug/kg	
106-93-4	1,2-Dibromoethane	ND	140	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	140	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	140	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	140	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	140	ug/kg	
75-34-3	1,1-Dichloroethane	ND	140	ug/kg	
107-06-2	1,2-Dichloroethane	ND	140	ug/kg	
75-35-4	1,1-Dichloroethene	ND	140	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	140	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	140	ug/kg	
78-87-5	1,2-Dichloropropane	ND	140	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

 Client Sample ID:
 B-9 (4-7.8)

 Lab Sample ID:
 M98417-6
 Date Sampled:
 03/09/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 81.5

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
142-28-9	1,3-Dichloropropane	ND	360	ug/kg	
594-20-7	2,2-Dichloropropane	ND	360	ug/kg	
563-58-6	1,1-Dichloropropene	ND	360	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	140	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	140	ug/kg	
100-41-4	Ethylbenzene	ND	140	ug/kg	
87-68-3	Hexachlorobutadiene	ND	360	ug/kg	
591-78-6	2-Hexanone	ND	360	ug/kg	
74-88-4	Iodomethane	ND	360	ug/kg	
98-82-8	Isopropylbenzene	ND	360	ug/kg	
99-87-6	p-Isopropyltoluene	ND	360	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	140	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	360	ug/kg	
74-95-3	Methylene bromide	ND	360	ug/kg	
75-09-2	Methylene chloride	ND	140	ug/kg	
91-20-3	Naphthalene	ND	360	ug/kg	
103-65-1	n-Propylbenzene	ND	360	ug/kg	
100-42-5	Styrene	ND	360	ug/kg	
630-20-6	1,1,1,2-Tetrachloroethane	ND	360	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	140	ug/kg	
127-18-4	Tetrachloroethene	ND	140	ug/kg	
108-88-3	Toluene	ND	360	ug/kg	
87-61-6	1,2,3-Trichlorobenzene	ND	360	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	360	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	140	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	140	ug/kg	
79-01-6	Trichloroethene	ND	140	ug/kg	
75-69-4	Trichlorofluoromethane	ND	140	ug/kg	
96-18-4	1,2,3-Trichloropropane	ND	360	ug/kg	
95-63-6	1,2,4-Trimethylbenzene	ND	360	ug/kg	
108-67-8	1,3,5-Trimethylbenzene	ND	360	ug/kg	
108-05-4	Vinyl Acetate	ND	360	ug/kg	
75-01-4	Vinyl chloride	ND	140	ug/kg	
	m, p-Xylene	ND	140	ug/kg	
95-47-6	o-Xylene	ND	140	ug/kg	
1330-20-7	Xylene (total)	ND	140	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
1868-53-7	Dibromofluoromethane	111%		70-13	30%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 3 of 3

Client Sample ID: B-9 (4-7.8)

 Lab Sample ID:
 M98417-6
 Date Sampled:
 03/09/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 81.5

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	118%		70-130%
460-00-4	4-Bromofluorobenzene	110%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

By

PR

Page 1 of 2

MSS943

Client Sample ID: B-9 (4-7.8) **Lab Sample ID:** M98417-6

File ID

S22257.D

Matrix: SO - Soil

Method: SW846 8270C SW846 3546

Project: 80 Steel Street (GS&T)

Date Sampled: 03/09/11 Date Received: 03/15/11 Percent Solids: 81.5

03/16/11

Prep Date Prep Batch Analytical Batch

OP24354

Run #1 Run #2

Initial Weight Final Volume

DF

1

Analyzed

03/21/11

Run #1 20.4 g 1.0 ml

Run #2

BN PPL List

CAS No.	Compound	Result	RL	Units	Q
83-32-9	Acenaphthene	ND	300	ug/kg	
208-96-8	Acenaphthylene	ND	300	ug/kg	
120-12-7	Anthracene	ND	300	ug/kg	
92-87-5	Benzidine	ND	1200	ug/kg	
56-55-3	Benzo(a)anthracene	ND	300	ug/kg	
50-32-8	Benzo(a)pyrene	ND	300	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	300	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	300	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	300	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	300	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	300	ug/kg	
91-58-7	2-Chloronaphthalene	ND	300	ug/kg	
106-47-8	4-Chloroaniline	ND	600	ug/kg	
218-01-9	Chrysene	ND	300	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	300	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	300	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	300	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	300	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	300	ug/kg	
122-66-7	1,2-Diphenylhydrazine	ND	300	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	300	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	300	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	600	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	600	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	300	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	300	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	300	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	300	ug/kg	
84-66-2	Diethyl phthalate	ND	300	ug/kg	
131-11-3	Dimethyl phthalate	ND	300	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	300	ug/kg	
206-44-0	Fluoranthene	ND	300	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Date Sampled: 03/09/11

Date Received: 03/15/11

Percent Solids: 81.5

Page 2 of 2

Client Sample ID: B-9 (4-7.8) **Lab Sample ID:** M98417-6

 Matrix:
 SO - Soil

 Method:
 SW846 8270C
 SW846 3546

Project: 80 Steel Street (GS&T)

BN PPL List

CAS No.	Compound	Result	RL	Units Q
86-73-7	Fluorene	ND	300	ug/kg
118-74-1	Hexachlorobenzene	ND	300	ug/kg
87-68-3	Hexachlorobutadiene	ND	300	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	600	ug/kg
67-72-1	Hexachloroethane	ND	300	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	300	ug/kg
78-59-1	Isophorone	ND	300	ug/kg
91-20-3	Naphthalene	ND	300	ug/kg
98-95-3	Nitrobenzene	ND	300	ug/kg
62-75-9	n-Nitrosodimethylamine	ND	300	ug/kg
621-64-7	N-Nitroso-di-n-propylamine	ND	300	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	300	ug/kg
85-01-8	Phenanthrene	ND	300	ug/kg
129-00-0	Pyrene	ND	300	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	300	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	71%		30-130%
321-60-8	2-Fluorobiphenyl	80%		30-130%
1718-51-0	Terphenyl-d14	94%		30-130%
	= -			

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Date Sampled: 03/09/11

Page 1 of 1

Client Sample ID: B-9 (4-7.8) Lab Sample ID: M98417-6

Matrix: SO - Soil Method:

Date Received: 03/15/11 SW846 8082 SW846 3546 **Percent Solids:** 81.5

Project: 80 Steel Street (GS&T)

DF **Prep Date Analytical Batch** File ID Analyzed By **Prep Batch** Run #1 BK1727.D 1 03/19/11 AP 03/16/11 OP24355 GBK69

Run #2

Final Volume Initial Weight 10.0 ml 15.4 g

Run #1 Run #2

PCB List

CAS No.	Compound	Result	RL	Units	Q
12674-11-2	Aroclor 1016	ND	120	ug/kg	
11104-28-2	Aroclor 1221	ND	120	ug/kg	
11141-16-5	Aroclor 1232	ND	120	ug/kg	
53469-21-9	Aroclor 1242	ND	120	ug/kg	
12672-29-6	Aroclor 1248	ND	120	ug/kg	
11097-69-1	Aroclor 1254	ND	120	ug/kg	
11096-82-5	Aroclor 1260	ND	120	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	S
877-09-8	Tetrachloro-m-xylene	58%		30-15	0%
877-09-8	Tetrachloro-m-xylene	58%		30-15	0%
2051-24-3	Decachlorobiphenyl	70%		30-15	0%
2051-24-3	Decachlorobiphenyl	77%		30-15	0%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: B-9 (4-7.8)
Lab Sample ID: M98417-6
Matrix: SO - Soil
Date Received: 03/15/11
Percent Solids: 81.5

Project: 80 Steel Street (GS&T)

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	3.4	1.1	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Barium	44.0	5.5	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Beryllium	< 0.44	0.44	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Cadmium	< 0.44	0.44	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Chromium	12.1	1.1	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Copper	13.8	2.7	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Lead	11.0	1.1	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Manganese	344	1.6	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Mercury	0.054	0.038	mg/kg	1	03/16/11	03/17/11 CF	SW846 7471A ¹	SW846 7471A ³
Nickel	11.4	4.4	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Selenium	< 1.1	1.1	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Silver	< 0.55	0.55	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Zinc	49.9	2.2	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA12748(2) Instrument QC Batch: MA12756(3) Prep QC Batch: MP16722(4) Prep QC Batch: MP16723

Page 1 of 1

Client Sample ID: B-9 (4-7.8)
Lab Sample ID: M98417-6
Matrix: SO - Soil
Date Received: 03/15/11
Percent Solids: 81.5

Project: 80 Steel Street (GS&T)

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Change III	. 0. 40	0.40	/1	1	02/16/11 16:45	ar.	CYYYO 1 5 20 50 1 /710 5 1
Chromium, Hexavalent	< 0.49	0.49	mg/kg	1	03/16/11 16:45	CF	SW846 3060A/7196A
Chromium, Trivalent ^a	11.7	1.6	mg/kg	1	03/17/11 20:35	PY	SW846 6010/7196A M
Cyanide	< 0.14	0.14	mg/kg	1	03/18/11 15:00	MA	SW846 9012 M
Redox Potential Vs H2	358		mv	1	03/16/11	CF	ASTM D1498-76M
Solids, Percent	81.5		%	1	03/16/11	HS	SM21 2540 B MOD.
pН	8.1		su	1	03/16/11	MA	SW846 9045

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Page 1 of 3

 Client Sample ID:
 B-13(4-8)

 Lab Sample ID:
 M98417-7
 Date Sampled:
 03/09/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 91.0

Project: 80 Steel Street (GS&T)

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	K50954.D	1	03/18/11	GK	n/a	n/a	MSK1685
Run #2	K51001.D	1	03/21/11	GK	n/a	n/a	MSK1686

	Initial Weight	Final Volume	Methanol Aliquot
Run #1	10.3 g	10.0 ml	100 ul
Run #2	10.3 g	10.0 ml	25.0 ul

VOA 8260 List

CAS No.	Compound	Result	RL	Units (Q
67-64-1	Acetone	ND	290	ug/kg	
71-43-2	Benzene	6440	29	ug/kg	
108-86-1	Bromobenzene	ND	290	ug/kg	
74-97-5	Bromochloromethane	ND	290	ug/kg	
75-27-4	Bromodichloromethane	ND	120	ug/kg	
75-25-2	Bromoform	ND	120	ug/kg	
74-83-9	Bromomethane	ND	120	ug/kg	
78-93-3	2-Butanone (MEK)	ND	290	ug/kg	
104-51-8	n-Butylbenzene	ND	290	ug/kg	
135-98-8	sec-Butylbenzene	708	290	ug/kg	
98-06-6	tert-Butylbenzene	ND	290	ug/kg	
75-15-0	Carbon disulfide	ND	290	ug/kg	
56-23-5	Carbon tetrachloride	ND	120	ug/kg	
108-90-7	Chlorobenzene	ND	120	ug/kg	
75-00-3	Chloroethane	ND	290	ug/kg	
67-66-3	Chloroform	ND	120	ug/kg	
74-87-3	Chloromethane	ND	290	ug/kg	
95-49-8	o-Chlorotoluene	ND	290	ug/kg	
106-43-4	p-Chlorotoluene	ND	290	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	290	ug/kg	
124-48-1	Dibromochloromethane	ND	120	ug/kg	
106-93-4	1,2-Dibromoethane	ND	120	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	120	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	120	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	120	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	120	ug/kg	
75-34-3	1,1-Dichloroethane	ND	120	ug/kg	
107-06-2	1,2-Dichloroethane	ND	120	ug/kg	
75-35-4	1,1-Dichloroethene	ND	120	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	120	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	120	ug/kg	
78-87-5	1,2-Dichloropropane	ND	120	ug/kg	

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

- 44

Page 2 of 3

 Client Sample ID:
 B-13(4-8)

 Lab Sample ID:
 M98417-7
 Date Sampled:
 03/09/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 91.0

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Compound	Result	RL	Units Q
142-28-9	1,3-Dichloropropane	ND	290	ug/kg
594-20-7	2,2-Dichloropropane	ND	290	ug/kg
563-58-6	1,1-Dichloropropene	ND	290	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	120	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	120	ug/kg
100-41-4	Ethylbenzene	8950	120	ug/kg
87-68-3	Hexachlorobutadiene	ND	290	ug/kg
591-78-6	2-Hexanone	ND	290	ug/kg
74-88-4	Iodomethane	ND	290	ug/kg
98-82-8	Isopropylbenzene	1090	290	ug/kg
99-87-6	p-Isopropyltoluene	750	290	ug/kg
1634-04-4	Methyl Tert Butyl Ether	ND	120	ug/kg
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	290	ug/kg
74-95-3	Methylene bromide	ND	290	ug/kg
75-09-2	Methylene chloride	ND	120	ug/kg
91-20-3	Naphthalene	1810	290	ug/kg
103-65-1	n-Propylbenzene	2780	290	ug/kg
100-42-5	Styrene	ND	290	ug/kg
630-20-6	1,1,1,2-Tetrachloroethane	ND	290	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	120	ug/kg
127-18-4	Tetrachloroethene	ND	120	ug/kg
108-88-3	Toluene	51000 a	1200	ug/kg
87-61-6	1,2,3-Trichlorobenzene	ND	290	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	290	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	120	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	120	ug/kg
79-01-6	Trichloroethene	ND	120	ug/kg
75-69-4	Trichlorofluoromethane	ND	120	ug/kg
96-18-4	1,2,3-Trichloropropane	ND	290	ug/kg
95-63-6	1,2,4-Trimethylbenzene	17300	290	ug/kg
108-67-8	1,3,5-Trimethylbenzene	4710	290	ug/kg
108-05-4	Vinyl Acetate	ND	290	ug/kg
75-01-4	Vinyl chloride	ND	120	ug/kg
	m,p-Xylene	30900	120	ug/kg
95-47-6	o-Xylene	14800	120	ug/kg
1330-20-7	Xylene (total)	45700	120	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	109%	107%	70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

N.

Report of Analysis

Page 3 of 3

 Client Sample ID:
 B-13(4-8)

 Lab Sample ID:
 M98417-7
 Date Sampled:
 03/09/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 91.0

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	119%	115%	70-130%
460-00-4	4-Bromofluorobenzene	112%	122%	70-130%

(a) Result is from Run# 2

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 2

Client Sample ID: B-13(4-8) Lab Sample ID: M98417-7

 Matrix:
 SO - Soil

 Method:
 SW846 8270C
 SW846 3546

Project: 80 Steel Street (GS&T)

Date Sampled: 03/09/11 Date Received: 03/15/11 Percent Solids: 91.0

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 S22258.D 1 03/21/11 PR 03/16/11 OP24354 MSS943

Run #2

Initial Weight Final Volume

Run #1 20.4 g 1.0 ml

Run #2

BN PPL List

CAS No.	Compound	Result	RL	Units Q	
83-32-9	Acenaphthene	ND	270	ug/kg	
208-96-8	Acenaphthylene	ND	270	ug/kg	
120-12-7	Anthracene	ND	270	ug/kg	
92-87-5	Benzidine	ND	1100	ug/kg	
56-55-3	Benzo(a)anthracene	ND	270	ug/kg	
50-32-8	Benzo(a)pyrene	ND	270	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	270	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	270	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	270	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	270	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	270	ug/kg	
91-58-7	2-Chloronaphthalene	ND	270	ug/kg	
106-47-8	4-Chloroaniline	ND	540	ug/kg	
218-01-9	Chrysene	ND	270	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	270	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	270	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	270	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	270	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	270	ug/kg	
122-66-7	1,2-Diphenylhydrazine	ND	270	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	270	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	270	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	540	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	540	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	270	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	270	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	270	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	270	ug/kg	
84-66-2	Diethyl phthalate	ND	270	ug/kg	
131-11-3	Dimethyl phthalate	ND	270	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	567	270	ug/kg	
206-44-0	Fluoranthene	ND	270	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Date Sampled: 03/09/11

Date Received: 03/15/11

Percent Solids: 91.0

Page 2 of 2

Client Sample ID: B-13(4-8)
Lab Sample ID: M98417-7
Matrix: SO - Soil

Method: SW846 8270C SW846 3546

Project: 80 Steel Street (GS&T)

BN PPL List

CAS No.	Compound	Result	RL	Units Q
86-73-7	Fluorene	ND	270	ug/kg
118-74-1	Hexachlorobenzene	ND	270	ug/kg
87-68-3	Hexachlorobutadiene	ND	270	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	540	ug/kg
67-72-1	Hexachloroethane	ND	270	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	270	ug/kg
78-59-1	Isophorone	ND	270	ug/kg
91-20-3	Naphthalene	ND	270	ug/kg
98-95-3	Nitrobenzene	ND	270	ug/kg
62-75-9	n-Nitrosodimethylamine	ND	270	ug/kg
621-64-7	N-Nitroso-di-n-propylamine	ND	270	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	270	ug/kg
85-01-8	Phenanthrene	ND	270	ug/kg
129-00-0	Pyrene	ND	270	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	270	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	73%		30-130%
321-60-8	2-Fluorobiphenyl	77%		30-130%
1718-51-0	Terphenyl-d14	93%		30-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: B-13(4-8) Lab Sample ID: M98417-7

Matrix: SO - Soil Method: SW846 8082 SW846 3546

Project: 80 Steel Street (GS&T)

Date Sampled: 03/09/11 **Date Received:** 03/15/11 Percent Solids: 91.0

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 BK1728.D 1 03/19/11 AP 03/16/11 OP24355 GBK69

Run #2

Initial Weight Final Volume 15.7 g 10.0 ml

Run #1 Run #2

PCB List

CAS No.	Compound	Result	RL	Units Q
12674-11-2	Aroclor 1016	ND	110	ug/kg
11104-28-2	Aroclor 1221	ND	110	ug/kg
11141-16-5	Aroclor 1232	ND	110	ug/kg
53469-21-9	Aroclor 1242	ND	110	ug/kg
12672-29-6	Aroclor 1248	138	110	ug/kg
11097-69-1	Aroclor 1254	ND	110	ug/kg
11096-82-5	Aroclor 1260	ND	110	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	67%		30-150%
877-09-8	Tetrachloro-m-xylene	69%		30-150%
2051-24-3	Decachlorobiphenyl	66%		30-150%
2051-24-3	Decachlorobiphenyl	80%		30-150%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

 Client Sample ID:
 B-13(4-8)

 Lab Sample ID:
 M98417-7

 Matrix:
 SO - Soil

 Date Received:
 03/15/11

 Percent Solids:
 91.0

Project: 80 Steel Street (GS&T)

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	4.6	1.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Barium	13.7	5.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Beryllium	< 0.40	0.40	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Cadmium	< 0.40	0.40	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Chromium	17.6	1.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Copper	23.9	2.5	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Lead	21.2	1.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Manganese	364	1.5	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Mercury	0.052	0.037	mg/kg	1	03/16/11	03/17/11 CF	SW846 7471A ¹	SW846 7471A ⁴
Nickel	12.7	4.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Selenium a	< 2.0	2.0	mg/kg	2	03/16/11	03/18/11 PY	SW846 6010C ³	SW846 3050B ⁵
Silver	< 0.50	0.50	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Zinc	446	2.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵

(1) Instrument QC Batch: MA12748
(2) Instrument QC Batch: MA12756
(3) Instrument QC Batch: MA12761
(4) Prep QC Batch: MP16722
(5) Prep QC Batch: MP16723

(a) Elevated RL due to dilution required for matrix interference.

Page 1 of 1

Client Sample ID: B-13(4-8)
Lab Sample ID: M98417-7

Matrix: SO - Soil

Date Sampled: 03/09/11

Percent Solids: 91.0

Project: 80 Steel Street (GS&T)

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Method
Chromium, Hexavalent	< 0.42	0.42	mg/kg	1	03/16/11 16:45	CF	SW846 3060A/7196A
Chromium, Trivalent ^a	17.6	1.4	mg/kg	1	03/17/11 20:40	PY	SW846 6010/7196A M
Cyanide	< 0.13	0.13	mg/kg	1	03/18/11 15:01	MA	SW846 9012 M
Redox Potential Vs H2	367		mv	1	03/16/11	CF	ASTM D1498-76M
Solids, Percent	91		%	1	03/16/11	HS	SM21 2540 B MOD.
pН	8.3		su	1	03/16/11	MA	SW846 9045

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Page 1 of 3

Client Sample ID: B-15(4'-8') Lab Sample ID: M98417-8

Matrix: SO - Soil Method: SW846 8260B

Project: 80 Steel Street (GS&T)

Date Sampled: 03/10/11 **Date Received:** 03/15/11 Percent Solids: 91.4

Analytical Batch File ID DF Analyzed By **Prep Date Prep Batch** Run #1 K50955.D 1 03/18/11 GKMSK1685 n/an/a

Run #2

Final Volume Methanol Aliquot Initial Weight

Run #1 10.0 ml 100 ul 10.2 g

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
67-64-1	Acetone	ND	290	ug/kg	
71-43-2	Benzene	ND	29	ug/kg	
108-86-1	Bromobenzene	ND	290	ug/kg	
74-97-5	Bromochloromethane	ND	290	ug/kg	
75-27-4	Bromodichloromethane	ND	120	ug/kg	
75-25-2	Bromoform	ND	120	ug/kg	
74-83-9	Bromomethane	ND	120	ug/kg	
78-93-3	2-Butanone (MEK)	ND	290	ug/kg	
104-51-8	n-Butylbenzene	ND	290	ug/kg	
135-98-8	sec-Butylbenzene	ND	290	ug/kg	
98-06-6	tert-Butylbenzene	ND	290	ug/kg	
75-15-0	Carbon disulfide	ND	290	ug/kg	
56-23-5	Carbon tetrachloride	ND	120	ug/kg	
108-90-7	Chlorobenzene	ND	120	ug/kg	
75-00-3	Chloroethane	ND	290	ug/kg	
67-66-3	Chloroform	ND	120	ug/kg	
74-87-3	Chloromethane	ND	290	ug/kg	
95-49-8	o-Chlorotoluene	ND	290	ug/kg	
106-43-4	p-Chlorotoluene	ND	290	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	290	ug/kg	
124-48-1	Dibromochloromethane	ND	120	ug/kg	
106-93-4	1,2-Dibromoethane	ND	120	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	120	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	120	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	120	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	120	ug/kg	
75-34-3	1,1-Dichloroethane	ND	120	ug/kg	
107-06-2	1,2-Dichloroethane	ND	120	ug/kg	
75-35-4	1,1-Dichloroethene	ND	120	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	120	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	120	ug/kg	
78-87-5	1,2-Dichloropropane	ND	120	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Date Sampled: 03/10/11

Date Received: 03/15/11

Percent Solids: 91.4

Client Sample ID: B-15(4'-8') Lab Sample ID: M98417-8

Matrix: SO - Soil Method: SW846 8260B

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Compound	Result	RL	Units Q
142-28-9	1,3-Dichloropropane	ND	290	ug/kg
594-20-7	2,2-Dichloropropane	ND	290	ug/kg
563-58-6	1,1-Dichloropropene	ND	290	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	120	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	120	ug/kg
100-41-4	Ethylbenzene	ND	120	ug/kg
87-68-3	Hexachlorobutadiene	ND	290	ug/kg
591-78-6	2-Hexanone	ND	290	ug/kg
74-88-4	Iodomethane	ND	290	ug/kg
98-82-8	Isopropylbenzene	ND	290	ug/kg
99-87-6	p-Isopropyltoluene	ND	290	ug/kg
1634-04-4	Methyl Tert Butyl Ether	ND	120	ug/kg
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	290	ug/kg
74-95-3	Methylene bromide	ND	290	ug/kg
75-09-2	Methylene chloride	ND	120	ug/kg
91-20-3	Naphthalene	879	290	ug/kg
103-65-1	n-Propylbenzene	ND	290	ug/kg
100-42-5	Styrene	ND	290	ug/kg
630-20-6	1,1,1,2-Tetrachloroethane	ND	290	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	120	ug/kg
127-18-4	Tetrachloroethene	ND	120	ug/kg
108-88-3	Toluene	ND	290	ug/kg
87-61-6	1,2,3-Trichlorobenzene	ND	290	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	290	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	120	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	120	ug/kg
79-01-6	Trichloroethene	ND	120	ug/kg
75-69-4	Trichlorofluoromethane	ND	120	ug/kg
96-18-4	1,2,3-Trichloropropane	ND	290	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	290	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	290	ug/kg
108-05-4	Vinyl Acetate	ND	290	ug/kg
75-01-4	Vinyl chloride	ND	120	ug/kg
	m,p-Xylene	ND	120	ug/kg
95-47-6	o-Xylene	ND	120	ug/kg
1330-20-7	Xylene (total)	ND	120	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits

1868-53-7 Dibromofluoromethane 107% 70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 3 of 3

Client Sample ID: B-15(4'-8')

 Lab Sample ID:
 M98417-8
 Date Sampled:
 03/10/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 91.4

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	116%		70-130%
460-00-4	4-Bromofluorobenzene	113%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 2

Client Sample ID: B-15(4'-8') **Lab Sample ID:** M98417-8

 Lab Sample ID:
 M98417-8
 Date Sampled:
 03/10/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8270C
 SW846 3546
 Percent Solids:
 91.4

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 S22259.D 1 03/21/11 PR 03/16/11 OP24354 MSS943

Run #2

Initial Weight Final Volume

Run #1 20.6 g 1.0 ml

Run #2

BN PPL List

CAS No.	Compound	Result	RL	Units	Q
83-32-9	Acenaphthene	ND	270	ug/kg	
208-96-8	Acenaphthylene	ND	270	ug/kg	
120-12-7	Anthracene	ND	270	ug/kg	
92-87-5	Benzidine	ND	1100	ug/kg	
56-55-3	Benzo(a)anthracene	ND	270	ug/kg	
50-32-8	Benzo(a)pyrene	ND	270	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	270	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	270	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	270	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	270	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	270	ug/kg	
91-58-7	2-Chloronaphthalene	ND	270	ug/kg	
106-47-8	4-Chloroaniline	ND	530	ug/kg	
218-01-9	Chrysene	ND	270	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	270	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	270	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	270	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	270	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	270	ug/kg	
122-66-7	1,2-Diphenylhydrazine	ND	270	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	270	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	270	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	530	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	530	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	270	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	270	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	270	ug/kg	
117-84-0	Di-n-octyl phthalate	272	270	ug/kg	
84-66-2	Diethyl phthalate	ND	270	ug/kg	
131-11-3	Dimethyl phthalate	ND	270	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	709	270	ug/kg	
206-44-0	Fluoranthene	ND	270	ug/kg	

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Date Sampled: 03/10/11

Date Received: 03/15/11

Percent Solids: 91.4

Page 2 of 2

Client Sample ID: B-15(4'-8') Lab Sample ID: M98417-8

Matrix: SO - Soil Method: SW846 8270C SW846 3546

Project: 80 Steel Street (GS&T)

BN PPL List

CAS No.	Compound	Result	RL	Units Q
86-73-7	Fluorene	ND	270	ug/kg
118-74-1	Hexachlorobenzene	ND	270	ug/kg
87-68-3	Hexachlorobutadiene	ND	270	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	530	ug/kg
67-72-1	Hexachloroethane	ND	270	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	270	ug/kg
78-59-1	Isophorone	ND	270	ug/kg
91-20-3	Naphthalene	ND	270	ug/kg
98-95-3	Nitrobenzene	ND	270	ug/kg
62-75-9	n-Nitrosodimethylamine	ND	270	ug/kg
621-64-7	N-Nitroso-di-n-propylamine	ND	270	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	270	ug/kg
85-01-8	Phenanthrene	ND	270	ug/kg
129-00-0	Pyrene	ND	270	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	270	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	66%		30-130%
321-60-8	2-Fluorobiphenyl	75%		30-130%
1718-51-0	Terphenyl-d14	91%		30-130%

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Client Sample ID: B-15(4'-8') **Lab Sample ID:** M98417-8

 Matrix:
 SO - Soil

 Method:
 SW846 8082
 SW846 3546

Project: 80 Steel Street (GS&T)

Date Sampled: 03/10/11 **Date Received:** 03/15/11 **Percent Solids:** 91.4

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1BK1737.D103/19/11AP03/16/11OP24355GBK69

Run #2

Initial Weight Final Volume 15.7 g 10.0 ml

Run #1 Run #2

PCB List

CAS No.	Compound	Result	RL	Units (Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND ND ND ND	100 100 100 100 100 100 100	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	62% 62% 52% 67%		30-150 30-150 30-150 30-150	% %

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

 Client Sample ID:
 B-15(4'-8')

 Lab Sample ID:
 M98417-8

 Matrix:
 SO - Soil

 Date Received:
 03/15/11

 Percent Solids:
 91.4

Project: 80 Steel Street (GS&T)

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	1.8	1.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Barium	16.9	5.2	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Beryllium	< 0.41	0.41	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Cadmium	< 0.41	0.41	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Chromium	9.0	1.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Copper	6.0	2.6	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Lead	4.0	1.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Manganese	250	1.5	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Mercury	< 0.034	0.034	mg/kg	1	03/16/11	03/17/11 CF	SW846 7471A ¹	SW846 7471A ³
Nickel	4.5	4.1	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Selenium	< 1.0	1.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Silver	< 0.52	0.52	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴
Zinc	13.2	2.1	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA12748(2) Instrument QC Batch: MA12756(3) Prep QC Batch: MP16722(4) Prep QC Batch: MP16723

Page 1 of 1

 Client Sample ID:
 B-15(4'-8')

 Lab Sample ID:
 M98417-8

 Date Sampled:
 03/10/11

 Matrix:
 SO - Soil

 Date Received:
 03/15/11

 Percent Solids:
 91.4

Project: 80 Steel Street (GS&T)

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
	0.40	0.42	/1		00/01/11 15 00		
Chromium, Hexavalent	< 0.43	0.43	mg/kg	1	03/21/11 15:38	MC	SW846 3060A/7196A
Chromium, Trivalent ^a	8.8	1.4	mg/kg	1	03/21/11 15:38	MC	SW846 6010/7196A M
Cyanide	< 0.13	0.13	mg/kg	1	03/18/11 15:02	MA	SW846 9012 M
Redox Potential Vs H2	397		mv	1	03/16/11	CF	ASTM D1498-76M
Solids, Percent	91.4		%	1	03/16/11	HS	SM21 2540 B MOD.
pН	8.4		su	1	03/16/11	MA	SW846 9045

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Page 1 of 3

Client Sample ID: B-17(8-8.4) Lab Sample ID: M98417-9

Matrix: SO - Soil Method: SW846 8260B

Project: 80 Steel Street (GS&T)

Date Sampled: 03/10/11 **Date Received:** 03/15/11 Percent Solids: 90.4

Analytical Batch File ID DF Analyzed By **Prep Date Prep Batch** Run #1 K50956.D 1 03/18/11 GKMSK1685 n/an/a

Run #2

Final Volume Methanol Aliquot Initial Weight

Run #1 10.0 ml 100 ul 10.1 g

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	Units Q	
67-64-1	Acetone	ND	300	ug/kg	
71-43-2	Benzene	ND	30	ug/kg	
108-86-1	Bromobenzene	ND	300	ug/kg	
74-97-5	Bromochloromethane	ND	300	ug/kg	
75-27-4	Bromodichloromethane	ND	120	ug/kg	
75-25-2	Bromoform	ND	120	ug/kg	
74-83-9	Bromomethane	ND	120	ug/kg	
78-93-3	2-Butanone (MEK)	ND	300	ug/kg	
104-51-8	n-Butylbenzene	ND	300	ug/kg	
135-98-8	sec-Butylbenzene	ND	300	ug/kg	
98-06-6	tert-Butylbenzene	ND	300	ug/kg	
75-15-0	Carbon disulfide	ND	300	ug/kg	
56-23-5	Carbon tetrachloride	ND	120	ug/kg	
108-90-7	Chlorobenzene	ND	120	ug/kg	
75-00-3	Chloroethane	ND	300	ug/kg	
67-66-3	Chloroform	ND	120	ug/kg	
74-87-3	Chloromethane	ND	300	ug/kg	
95-49-8	o-Chlorotoluene	ND	300	ug/kg	
106-43-4	p-Chlorotoluene	ND	300	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	300	ug/kg	
124-48-1	Dibromochloromethane	ND	120	ug/kg	
106-93-4	1,2-Dibromoethane	ND	120	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	120	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	120	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	120	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	120	ug/kg	
75-34-3	1,1-Dichloroethane	ND	120	ug/kg	
107-06-2	1,2-Dichloroethane	ND	120	ug/kg	
75-35-4	1,1-Dichloroethene	ND	120	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	120	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	120	ug/kg	
78-87-5	1,2-Dichloropropane	ND	120	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Date Sampled: 03/10/11

Date Received: 03/15/11

Percent Solids: 90.4

Page 2 of 3

Client Sample ID: B-17(8-8.4) Lab Sample ID: M98417-9

Matrix: SO - Soil Method: SW846 8260B

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
142-28-9	1,3-Dichloropropane	ND	300	ug/kg	
594-20-7	2,2-Dichloropropane	ND	300	ug/kg	
563-58-6	1,1-Dichloropropene	ND	300	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	120	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	120	ug/kg	
100-41-4	Ethylbenzene	ND	120	ug/kg	
87-68-3	Hexachlorobutadiene	ND	300	ug/kg	
591-78-6	2-Hexanone	ND	300	ug/kg	
74-88-4	Iodomethane	ND	300	ug/kg	
98-82-8	Isopropylbenzene	ND	300	ug/kg	
99-87-6	p-Isopropyltoluene	ND	300	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	120	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	300	ug/kg	
74-95-3	Methylene bromide	ND	300	ug/kg	
75-09-2	Methylene chloride	ND	120	ug/kg	
91-20-3	Naphthalene	ND	300	ug/kg	
103-65-1	n-Propylbenzene	ND	300	ug/kg	
100-42-5	Styrene	ND	300	ug/kg	
630-20-6	1,1,1,2-Tetrachloroethane	ND	300	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	120	ug/kg	
127-18-4	Tetrachloroethene	ND	120	ug/kg	
108-88-3	Toluene	ND	300	ug/kg	
87-61-6	1,2,3-Trichlorobenzene	ND	300	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	300	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	120	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	120	ug/kg	
79-01-6	Trichloroethene	ND	120	ug/kg	
75-69-4	Trichlorofluoromethane	ND	120	ug/kg	
96-18-4	1,2,3-Trichloropropane	ND	300	ug/kg	
95-63-6	1,2,4-Trimethylbenzene	ND	300	ug/kg	
108-67-8	1,3,5-Trimethylbenzene	ND	300	ug/kg	
108-05-4	Vinyl Acetate	ND	300	ug/kg	
75-01-4	Vinyl chloride	ND	120	ug/kg	
	m,p-Xylene	ND	120	ug/kg	
95-47-6	o-Xylene	ND	120	ug/kg	
1330-20-7	Xylene (total)	ND	120	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its
1868-53-7	Dibromofluoromethane	103%		70-13	30%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 3 of 3

Client Sample ID: B-17(8-8.4)

Lab Sample ID: M98417-9 **Date Sampled:** 03/10/11 Matrix: **Date Received:** 03/15/11 SO - Soil Method: SW846 8260B Percent Solids: 90.4

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	114%		70-130%
460-00-4	4-Bromofluorobenzene	112%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client Sample ID: B-17(8-8.4) **Lab Sample ID:** M98417-9

File ID

S22260.D

Matrix: SO - Soil **Method:** SW846 8270C SW846 3546

Project: 80 Steel Street (GS&T)

Date Sampled: 03/10/11 Date Received: 03/15/11 Percent Solids: 90.4

AnalyzedByPrep DatePrep BatchAnalytical Batch03/21/11PR03/16/11OP24354MSS943

Run #1 Run #2

Initial Weight Final Volume

DF

1

Run #1 20.2 g 1.0 ml

Run #2

BN PPL List

CAS No.	Compound	Result	RL	Units Q	
83-32-9	Acenaphthene	ND	270	ug/kg	
208-96-8	Acenaphthylene	ND	270	ug/kg	
120-12-7	Anthracene	ND	270	ug/kg	
92-87-5	Benzidine	ND	1100	ug/kg	
56-55-3	Benzo(a)anthracene	ND	270	ug/kg	
50-32-8	Benzo(a)pyrene	ND	270	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	270	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	270	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	270	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	270	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	270	ug/kg	
91-58-7	2-Chloronaphthalene	ND	270	ug/kg	
106-47-8	4-Chloroaniline	ND	550	ug/kg	
218-01-9	Chrysene	ND	270	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	270	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	270	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	270	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	270	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	270	ug/kg	
122-66-7	1,2-Diphenylhydrazine	ND	270	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	270	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	270	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	550	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	550	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	270	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	270	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	270	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	270	ug/kg	
84-66-2	Diethyl phthalate	ND	270	ug/kg	
131-11-3	Dimethyl phthalate	ND	270	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	270	ug/kg	
206-44-0	Fluoranthene	ND	270	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

BN PPL List

Date Sampled: 03/10/11

Date Received: 03/15/11

Percent Solids: 90.4

Client Sample ID: B-17(8-8.4) Lab Sample ID: M98417-9

Matrix: SO - Soil

Method: SW846 8270C SW846 3546

Project: 80 Steel Street (GS&T)

CAS No.	Compound	Result	RL	Units	Q
86-73-7	Fluorene	ND	270	ug/kg	
118-74-1	Hexachlorobenzene	ND	270	ug/kg	
87-68-3	Hexachlorobutadiene	ND	270	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	550	ug/kg	
67-72-1	Hexachloroethane	ND	270	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	270	ug/kg	
78-59-1	Isophorone	ND	270	ug/kg	
91-20-3	Naphthalene	ND	270	ug/kg	
98-95-3	Nitrobenzene	ND	270	ug/kg	
62-75-9	n-Nitrosodimethylamine	ND	270	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	270	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	270	ug/kg	
85-01-8	Phenanthrene	ND	270	ug/kg	
129-00-0	Pyrene	ND	270	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	270	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
4165-60-0	Nitrobenzene-d5	69%		30-1	30%
321-60-8	2-Fluorobiphenyl	74%		30-1	30%
1718-51-0	Terphenyl-d14	89%		30-1	30%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Client Sample ID: B-17(8-8.4) **Lab Sample ID:** M98417-9

Matrix: SO - Soil
Method: SW846 8082 SV

SW846 8082 SW846 3546 80 Steel Street (GS&T)

Date Received: 03/15/11 **Percent Solids:** 90.4

Date Sampled: 03/10/11

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** GBK69 Run #1 BK1738.D 1 03/19/11 AP 03/16/11 OP24355 Run #2

Run #1 15.9 g Final Volume

Run #2

Project:

PCB List

CAS No.	Compound	Result	RL	Units Q
12674-11-2	Aroclor 1016	ND	100	ug/kg
11104-28-2	Aroclor 1221	ND	100	ug/kg
11141-16-5	Aroclor 1232	ND	100	ug/kg
53469-21-9	Aroclor 1242	ND	100	ug/kg
12672-29-6	Aroclor 1248	ND	100	ug/kg
11097-69-1	Aroclor 1254	ND	100	ug/kg
11096-82-5	Aroclor 1260	ND	100	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	54%		30-150%
877-09-8	Tetrachloro-m-xylene	53%		30-150%
2051-24-3	Decachlorobiphenyl	61%		30-150%
2051-24-3	Decachlorobiphenyl	74%		30-150%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

 Client Sample ID:
 B-17(8-8.4)

 Lab Sample ID:
 M98417-9
 Date Sampled:
 03/10/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Percent Solids:
 90.4

Project: 80 Steel Street (GS&T)

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	2.8	0.99	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Barium	10.3	4.9	mg/kg	1	03/16/11	03/18/11 PY	SW846 6010C ³	SW846 3050B ⁵
Beryllium	< 0.40	0.40	mg/kg	1	03/16/11	03/18/11 PY	SW846 6010C ³	SW846 3050B ⁵
Cadmium	< 0.40	0.40	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Chromium	4.8	0.99	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Copper	10.2	2.5	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Lead	11.7	0.99	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Manganese	245	1.5	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Mercury	< 0.035	0.035	mg/kg	1	03/16/11	03/17/11 CF	SW846 7471A ¹	SW846 7471A ⁴
Nickel	6.0	4.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Selenium	< 0.99	0.99	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Silver	< 0.49	0.49	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Zinc	8.1	2.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵

(1) Instrument QC Batch: MA12748
(2) Instrument QC Batch: MA12756
(3) Instrument QC Batch: MA12761
(4) Prep QC Batch: MP16722
(5) Prep QC Batch: MP16723

Page 1 of 1

Client Sample ID: B-17(8-8.4) Lab Sample ID: M98417-9 **Date Sampled:** 03/10/11 Matrix: SO - Soil

Date Received: 03/15/11 **Percent Solids:** 90.4

Project: 80 Steel Street (GS&T)

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.44	0.44	mg/kg	1	03/21/11 15:38	MC	SW846 3060A/7196A
Chromium, Trivalent ^a	4.6	1.4	mg/kg	1	03/21/11 15:38	MC	SW846 6010/7196A M
Cyanide	< 0.13	0.13	mg/kg	1	03/18/11 15:05	MA	SW846 9012 M
Redox Potential Vs H2	384		mv	1	03/16/11	CF	ASTM D1498-76M
Solids, Percent	90.4		%	1	03/16/11	HS	SM21 2540 B MOD.
рH	8.4		su	1	03/16/11	MA	SW846 9045

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Page 1 of 3

Client Sample ID: B-19(4'-8') **Lab Sample ID:** M98417-10

Matrix: SO - Soil Method: SW846 8260B

Project: 80 Steel Street (GS&T)

Date Sampled: 03/10/11 **Date Received:** 03/15/11 **Percent Solids:** 91.2

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 K50957.D 1 03/18/11 GK n/a n/a MSK1685

Run #2

Initial Weight Final Volume Methanol Aliquot

Run #1 10.1 g 10.0 ml 100 ul

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
67-64-1	Acetone	ND	300	ug/kg	
71-43-2	Benzene	ND	30	ug/kg	
108-86-1	Bromobenzene	ND	300	ug/kg	
74-97-5	Bromochloromethane	ND	300	ug/kg	
75-27-4	Bromodichloromethane	ND	120	ug/kg	
75-25-2	Bromoform	ND	120	ug/kg	
74-83-9	Bromomethane	ND	120	ug/kg	
78-93-3	2-Butanone (MEK)	ND	300	ug/kg	
104-51-8	n-Butylbenzene	ND	300	ug/kg	
135-98-8	sec-Butylbenzene	ND	300	ug/kg	
98-06-6	tert-Butylbenzene	ND	300	ug/kg	
75-15-0	Carbon disulfide	ND	300	ug/kg	
56-23-5	Carbon tetrachloride	ND	120	ug/kg	
108-90-7	Chlorobenzene	ND	120	ug/kg	
75-00-3	Chloroethane	ND	300	ug/kg	
67-66-3	Chloroform	ND	120	ug/kg	
74-87-3	Chloromethane	ND	300	ug/kg	
95-49-8	o-Chlorotoluene	ND	300	ug/kg	
106-43-4	p-Chlorotoluene	ND	300	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	300	ug/kg	
124-48-1	Dibromochloromethane	ND	120	ug/kg	
106-93-4	1,2-Dibromoethane	ND	120	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	120	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	120	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	120	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	120	ug/kg	
75-34-3	1,1-Dichloroethane	ND	120	ug/kg	
107-06-2	1,2-Dichloroethane	ND	120	ug/kg	
75-35-4	1,1-Dichloroethene	ND	120	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	120	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	120	ug/kg	
78-87-5	1,2-Dichloropropane	ND	120	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 Client Sample ID:
 B-19(4'-8')

 Lab Sample ID:
 M98417-10
 Date Sampled:
 03/10/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 91.2

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
142-28-9	1,3-Dichloropropane	ND	300	ug/kg	
594-20-7	2,2-Dichloropropane	ND	300	ug/kg	
563-58-6	1,1-Dichloropropene	ND	300	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	120	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	120	ug/kg	
100-41-4	Ethylbenzene	ND	120	ug/kg	
87-68-3	Hexachlorobutadiene	ND	300	ug/kg	
591-78-6	2-Hexanone	ND	300	ug/kg	
74-88-4	Iodomethane	ND	300	ug/kg	
98-82-8	Isopropylbenzene	ND	300	ug/kg	
99-87-6	p-Isopropyltoluene	ND	300	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	120	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	300	ug/kg	
74-95-3	Methylene bromide	ND	300	ug/kg	
75-09-2	Methylene chloride	ND	120	ug/kg	
91-20-3	Naphthalene	ND	300	ug/kg	
103-65-1	n-Propylbenzene	ND	300	ug/kg	
100-42-5	Styrene	ND	300	ug/kg	
630-20-6	1,1,1,2-Tetrachloroethane	ND	300	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	120	ug/kg	
127-18-4	Tetrachloroethene	ND	120	ug/kg	
108-88-3	Toluene	ND	300	ug/kg	
87-61-6	1,2,3-Trichlorobenzene	ND	300	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	300	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	120	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	120	ug/kg	
79-01-6	Trichloroethene	ND	120	ug/kg	
75-69-4	Trichlorofluoromethane	ND	120	ug/kg	
96-18-4	1,2,3-Trichloropropane	ND	300	ug/kg	
95-63-6	1,2,4-Trimethylbenzene	ND	300	ug/kg	
108-67-8	1,3,5-Trimethylbenzene	ND	300	ug/kg	
108-05-4	Vinyl Acetate	ND	300	ug/kg	
75-01-4	Vinyl chloride	ND	120	ug/kg	
	m,p-Xylene	ND	120	ug/kg	
95-47-6	o-Xylene	ND	120	ug/kg	
1330-20-7	Xylene (total)	ND	120	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its
1868-53-7	Dibromofluoromethane	107%		70-13	30%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 3 of 3

Client Sample ID: B-19(4'-8')

 Lab Sample ID:
 M98417-10
 Date Sampled:
 03/10/11

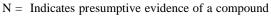
 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 91.2

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	117%		70-130%
460-00-4	4-Bromofluorobenzene	115%		70-130%


ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: B-19(4'-8') Lab Sample ID: M98417-10

Matrix: SO - Soil

Method: SW846 8270C SW846 3546

Project: 80 Steel Street (GS&T)

Date Sampled: 03/10/11 **Date Received:** 03/15/11

Percent Solids: 91.2

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 S22261.D 1 03/21/11 PR 03/16/11 OP24354 MSS943

Run #2

Final Volume Initial Weight

Run #1 1.0 ml $20.2 \mathrm{~g}$

Run #2

BN PPL List

CAS No.	Compound	Result	RL	Units	Q
83-32-9	Acenaphthene	ND	270	ug/kg	
208-96-8	Acenaphthylene	ND	270	ug/kg	
120-12-7	Anthracene	ND	270	ug/kg	
92-87-5	Benzidine	ND	1100	ug/kg	
56-55-3	Benzo(a)anthracene	ND	270	ug/kg	
50-32-8	Benzo(a)pyrene	431	270	ug/kg	
205-99-2	Benzo(b)fluoranthene	399	270	ug/kg	
191-24-2	Benzo(g,h,i)perylene	508	270	ug/kg	
207-08-9	Benzo(k)fluoranthene	360	270	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	270	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	270	ug/kg	
91-58-7	2-Chloronaphthalene	ND	270	ug/kg	
106-47-8	4-Chloroaniline	ND	540	ug/kg	
218-01-9	Chrysene	ND	270	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	270	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	270	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	270	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	270	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	270	ug/kg	
122-66-7	1,2-Diphenylhydrazine	ND	270	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	270	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	270	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	540	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	540	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	270	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	270	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	270	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	270	ug/kg	
84-66-2	Diethyl phthalate	ND	270	ug/kg	
131-11-3	Dimethyl phthalate	ND	270	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	270	ug/kg	
206-44-0	Fluoranthene	603	270	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Date Sampled: 03/10/11

Date Received: 03/15/11

Percent Solids: 91.2

Page 2 of 2

Client Sample ID: B-19(4'-8') **Lab Sample ID:** M98417-10

 Matrix:
 SO - Soil

 Method:
 SW846 8270C
 SW846 3546

Project: 80 Steel Street (GS&T)

BN PPL List

CAS No.	Compound	Result	RL	Units Q
86-73-7	Fluorene	ND	270	ug/kg
118-74-1	Hexachlorobenzene	ND	270	ug/kg
87-68-3	Hexachlorobutadiene	ND	270	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	540	ug/kg
67-72-1	Hexachloroethane	ND	270	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	413	270	ug/kg
78-59-1	Isophorone	ND	270	ug/kg
91-20-3	Naphthalene	ND	270	ug/kg
98-95-3	Nitrobenzene	ND	270	ug/kg
62-75-9	n-Nitrosodimethylamine	ND	270	ug/kg
621-64-7	N-Nitroso-di-n-propylamine	ND	270	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	270	ug/kg
85-01-8	Phenanthrene	395	270	ug/kg
129-00-0	Pyrene	665	270	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	270	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	58%		30-130%
321-60-8	2-Fluorobiphenyl	67%		30-130%
1718-51-0	Terphenyl-d14	87%		30-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: B-19(4'-8') Lab Sample ID: M98417-10

Matrix: SO - Soil Method:

SW846 8082 SW846 3546 **Project:** 80 Steel Street (GS&T)

Date Sampled: 03/10/11 **Date Received:** 03/15/11 **Percent Solids:** 91.2

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 BK1739.D 1 03/19/11 AP 03/16/11 OP24355 GBK69

Run #2

Final Volume Initial Weight Run #1 10.0 ml 15.9 g

Run #2

PCB List

CAS No.	Compound	Result	RL	Units Q)
12674-11-2	Aroclor 1016	ND	100	ug/kg	
11104-28-2	Aroclor 1221	ND	100	ug/kg	
11141-16-5	Aroclor 1232	ND	100	ug/kg	
53469-21-9	Aroclor 1242	ND	100	ug/kg	
12672-29-6	Aroclor 1248 a	269	100	ug/kg	
11097-69-1	Aroclor 1254	375	100	ug/kg	
11096-82-5	Aroclor 1260	ND	100	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
877-09-8	Tetrachloro-m-xylene	60%		30-1509	%
877-09-8	Tetrachloro-m-xylene	60%		30-1509	%
2051-24-3	Decachlorobiphenyl	59%		30-1509	%
2051-24-3	Decachlorobiphenyl	72%		30-1509	%

(a) Estimated value due to the presence of other Arochlor pattern.

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

 Client Sample ID:
 B-19(4'-8')

 Lab Sample ID:
 M98417-10

 Matrix:
 SO - Soil

 Date Received:
 03/15/11

 Percent Solids:
 91.2

Project: 80 Steel Street (GS&T)

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	5.7	0.99	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Barium	35.2	4.9	mg/kg	1	03/16/11	03/18/11 PY	SW846 6010C ³	SW846 3050B ⁵
Beryllium	< 0.40	0.40	mg/kg	1	03/16/11	03/18/11 PY	SW846 6010C ³	SW846 3050B ⁵
Cadmium	1.3	0.40	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Chromium	33.7	0.99	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Copper	950	2.5	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Lead	79.9	0.99	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Manganese	414	1.5	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Mercury	1.1	0.067	mg/kg	2	03/16/11	03/17/11 CF	SW846 7471A ¹	SW846 7471A ⁴
Nickel	20.4	4.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Selenium	< 0.99	0.99	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Silver	1.3	0.49	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Zinc	1010	2.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵

(1) Instrument QC Batch: MA12748
(2) Instrument QC Batch: MA12756
(3) Instrument QC Batch: MA12761
(4) Prep QC Batch: MP16722
(5) Prep QC Batch: MP16723

1

Report of Analysis

Page 1 of 1

 Client Sample ID:
 B-19(4'-8')

 Lab Sample ID:
 M98417-10

 Matrix:
 SO - Soil

 Date Received:
 03/15/11

 Percent Solids:
 91.2

Project: 80 Steel Street (GS&T)

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	2.4	0.43	mg/kg	1	03/21/11 15:38	MC	SW846 3060A/7196A
Chromium, Trivalent ^a	31.3	1.4	mg/kg	1	03/21/11 15:38	MC	SW846 6010/7196A M
Cyanide	< 0.13	0.13	mg/kg	1	03/18/11 15:05	MA	SW846 9012 M
Redox Potential Vs H2	383		mv	1	03/16/11	CF	ASTM D1498-76M
Solids, Percent	91.2		%	1	03/16/11	HS	SM21 2540 B MOD.
pН	8.2		su	1	03/16/11	MA	SW846 9045

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Client Sample ID: B-22(8'-9') Lab Sample ID: M98417-11 **Matrix:** SO - Soil Method: SW846 8260B

10.7 g

Project: 80 Steel Street (GS&T)

Date Sampled: 03/10/11 **Date Received:** 03/15/11 **Percent Solids:** 86.3

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 K50958.D 1 03/18/11 GKMSK1685 n/an/aRun #2

100 ul

Final Volume Methanol Aliquot Initial Weight 10.0 ml

Run #1 Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
67-64-1	Acetone	ND	310	ug/kg	
71-43-2	Benzene	31.2	31	ug/kg	
108-86-1	Bromobenzene	ND	310	ug/kg	
74-97-5	Bromochloromethane	ND	310	ug/kg	
75-27-4	Bromodichloromethane	ND	120	ug/kg	
75-25-2	Bromoform	ND	120	ug/kg	
74-83-9	Bromomethane	ND	120	ug/kg	
78-93-3	2-Butanone (MEK)	ND	310	ug/kg	
104-51-8	n-Butylbenzene	564	310	ug/kg	
135-98-8	sec-Butylbenzene	ND	310	ug/kg	
98-06-6	tert-Butylbenzene	ND	310	ug/kg	
75-15-0	Carbon disulfide	ND	310	ug/kg	
56-23-5	Carbon tetrachloride	ND	120	ug/kg	
108-90-7	Chlorobenzene	ND	120	ug/kg	
75-00-3	Chloroethane	ND	310	ug/kg	
67-66-3	Chloroform	ND	120	ug/kg	
74-87-3	Chloromethane	ND	310	ug/kg	
95-49-8	o-Chlorotoluene	ND	310	ug/kg	
106-43-4	p-Chlorotoluene	ND	310	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	310	ug/kg	
124-48-1	Dibromochloromethane	ND	120	ug/kg	
106-93-4	1,2-Dibromoethane	ND	120	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	120	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	120	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	120	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	120	ug/kg	
75-34-3	1,1-Dichloroethane	ND	120	ug/kg	
107-06-2	1,2-Dichloroethane	ND	120	ug/kg	
75-35-4	1,1-Dichloroethene	ND	120	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	120	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	120	ug/kg	
78-87-5	1,2-Dichloropropane	ND	120	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

 Client Sample ID:
 B-22(8'-9')

 Lab Sample ID:
 M98417-11
 Date Sampled:
 03/10/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 86.3

80 Steel Street (GS&T)

VOA 8260 List

Project:

CAS No.	Compound	Result	RL	Units	Q
142-28-9	1,3-Dichloropropane	ND	310	ug/kg	
594-20-7	2,2-Dichloropropane	ND	310	ug/kg	
563-58-6	1,1-Dichloropropene	ND	310	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	120	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	120	ug/kg	
100-41-4	Ethylbenzene	ND	120	ug/kg	
87-68-3	Hexachlorobutadiene	ND	310	ug/kg	
591-78-6	2-Hexanone	ND	310	ug/kg	
74-88-4	Iodomethane	ND	310	ug/kg	
98-82-8	Isopropylbenzene	399	310	ug/kg	
99-87-6	p-Isopropyltoluene	ND	310	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	120	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	310	ug/kg	
74-95-3	Methylene bromide	ND	310	ug/kg	
75-09-2	Methylene chloride	ND	120	ug/kg	
91-20-3	Naphthalene	1150	310	ug/kg	
103-65-1	n-Propylbenzene	1410	310	ug/kg	
100-42-5	Styrene	ND	310	ug/kg	
630-20-6	1,1,1,2-Tetrachloroethane	ND	310	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	120	ug/kg	
127-18-4	Tetrachloroethene	ND	120	ug/kg	
108-88-3	Toluene	ND	310	ug/kg	
87-61-6	1,2,3-Trichlorobenzene	ND	310	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	310	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	120	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	120	ug/kg	
79-01-6	Trichloroethene	ND	120	ug/kg	
75-69-4	Trichlorofluoromethane	ND	120	ug/kg	
96-18-4	1,2,3-Trichloropropane	ND	310	ug/kg	
95-63-6	1,2,4-Trimethylbenzene	755	310	ug/kg	
108-67-8	1,3,5-Trimethylbenzene	ND	310	ug/kg	
108-05-4	Vinyl Acetate	ND	310	ug/kg	
75-01-4	Vinyl chloride	ND	120	ug/kg	
	m,p-Xylene	224	120	ug/kg	
95-47-6	o-Xylene	ND	120	ug/kg	
1330-20-7	Xylene (total)	268	120	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
1868-53-7	Dibromofluoromethane	107%		70-13	30%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

2

Report of Analysis

Page 3 of 3

Client Sample ID: B-22(8'-9')

 Lab Sample ID:
 M98417-11
 Date Sampled:
 03/10/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 86.3

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	116%		70-130%
460-00-4	4-Bromofluorobenzene	119%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

By

PR

Page 1 of 2

Client Sample ID: B-22(8'-9') Lab Sample ID: M98417-11

File ID

S22262.D

Matrix: SO - Soil Method: SW846 8270C SW846 3546

Project: 80 Steel Street (GS&T)

Date Sampled: 03/10/11 **Date Received:** 03/15/11 **Percent Solids:** 86.3

Prep Date Analytical Batch Prep Batch 03/16/11 OP24354 MSS943

Run #1 Run #2

> **Final Volume Initial Weight**

DF

1

Analyzed

03/21/11

Run #1 5.0 ml 20.1 g

Run #2

BN PPL List

CAS No.	Compound	Result	RL	Units	Q
83-32-9	Acenaphthene	ND	1400	ug/kg	
208-96-8	Acenaphthylene	ND	1400	ug/kg	
120-12-7	Anthracene	ND	1400	ug/kg	
92-87-5	Benzidine	ND	5800	ug/kg	
56-55-3	Benzo(a)anthracene	ND	1400	ug/kg	
50-32-8	Benzo(a)pyrene	ND	1400	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	1400	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	1400	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	1400	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	1400	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	1400	ug/kg	
91-58-7	2-Chloronaphthalene	ND	1400	ug/kg	
106-47-8	4-Chloroaniline	ND	2900	ug/kg	
218-01-9	Chrysene	ND	1400	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	1400	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	1400	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	1400	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	1400	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	1400	ug/kg	
122-66-7	1,2-Diphenylhydrazine	ND	1400	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	1400	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	1400	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	2900	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	2900	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	1400	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	1400	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	1400	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	1400	ug/kg	
84-66-2	Diethyl phthalate	ND	1400	ug/kg	
131-11-3	Dimethyl phthalate	ND	1400	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	2460	1400	ug/kg	
206-44-0	Fluoranthene	ND	1400	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Date Sampled: 03/10/11

Date Received: 03/15/11

Percent Solids: 86.3

Page 2 of 2

Client Sample ID: B-22(8'-9') Lab Sample ID: M98417-11

Matrix: SO - Soil Method: SW846 8270C SW846 3546

Project: 80 Steel Street (GS&T)

BN PPL List

CAS No.	Compound	Result	\mathbf{RL}	Units	Q
0.4.		175			
86-73-7	Fluorene	ND	1400	ug/kg	
118-74-1	Hexachlorobenzene	ND	1400	ug/kg	
87-68-3	Hexachlorobutadiene	ND	1400	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	2900	ug/kg	
67-72-1	Hexachloroethane	ND	1400	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1400	ug/kg	
78-59-1	Isophorone	ND	1400	ug/kg	
91-20-3	Naphthalene	2360	1400	ug/kg	
98-95-3	Nitrobenzene	ND	1400	ug/kg	
62-75-9	n-Nitrosodimethylamine	ND	1400	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	1400	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	1400	ug/kg	
85-01-8	Phenanthrene	ND	1400	ug/kg	
129-00-0	Pyrene	ND	1400	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	1400	ug/kg	
				0 0	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its
4165 60 0	Nituahannana d5	600/		20.1	200/
4165-60-0	Nitrobenzene-d5	69%		30-13	
321-60-8	2-Fluorobiphenyl	78%		30-13	
1718-51-0	Terphenyl-d14	90%		30-13	30%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: B-22(8'-9') Lab Sample ID: M98417-11

Date Sampled: 03/10/11 Matrix: SO - Soil Method: SW846 8082 SW846 3546

Project: 80 Steel Street (GS&T) **Date Received:** 03/15/11 Percent Solids: 86.3

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 BK1734.D 1 03/19/11 AP 03/16/11 OP24355 GBK69

Run #2

Initial Weight Final Volume Run #1 15.4 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	Units Q	
12674-11-2	Aroclor 1016	ND	110	ug/kg	
11104-28-2	Aroclor 1221	ND	110	ug/kg	
11141-16-5	Aroclor 1232	ND	110	ug/kg	
53469-21-9	Aroclor 1242	ND	110	ug/kg	
12672-29-6	Aroclor 1248	135	110	ug/kg	
11097-69-1	Aroclor 1254	ND	110	ug/kg	
11096-82-5	Aroclor 1260	ND	110	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
877-09-8	Tetrachloro-m-xylene	64%		30-150%	
877-09-8	Tetrachloro-m-xylene	62%		30-150%	
2051-24-3	Decachlorobiphenyl	54%		30-150%	
2051-24-3	Decachlorobiphenyl	76%		30-150%	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

 Client Sample ID:
 B-22(8'-9')

 Lab Sample ID:
 M98417-11
 Date Sampled:
 03/10/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Percent Solids:
 86.3

Project: 80 Steel Street (GS&T)

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	3.5	1.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Barium	26.3	5.0	mg/kg	1	03/16/11	03/18/11 PY	SW846 6010C ³	SW846 3050B ⁵
Beryllium	< 0.40	0.40	mg/kg	1	03/16/11	03/18/11 PY	SW846 6010C ³	SW846 3050B ⁵
Cadmium	0.71	0.40	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Chromium	22.1	1.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Copper	116	2.5	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Lead	81.5	1.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Manganese	228	1.5	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Mercury	0.26	0.037	mg/kg	1	03/16/11	03/17/11 CF	SW846 7471A ¹	SW846 7471A ⁴
Nickel	23.1	4.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Selenium	< 1.0	1.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Silver	1.0	0.50	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Zinc	119	2.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵

(1) Instrument QC Batch: MA12748
(2) Instrument QC Batch: MA12756
(3) Instrument QC Batch: MA12761
(4) Prep QC Batch: MP16722
(5) Prep QC Batch: MP16723

Page 1 of 1

 Client Sample ID:
 B-22(8'-9')

 Lab Sample ID:
 M98417-11

 Matrix:
 SO - Soil

 Date Received:
 03/15/11

 Percent Solids:
 86.3

Project: 80 Steel Street (GS&T)

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.46	0.46	mg/kg	1	03/21/11 15:38	MC	SW846 3060A/7196A
Chromium, Trivalent ^a	21.7	1.5	mg/kg	1	03/21/11 15:38	MC	SW846 6010/7196A M
Cyanide	< 0.14	0.14	mg/kg	1	03/18/11 15:06	MA	SW846 9012 M
Redox Potential Vs H2	373		mv	1	03/16/11	CF	ASTM D1498-76M
Solids, Percent	86.3		%	1	03/16/11	HS	SM21 2540 B MOD.
pН	8.0		su	1	03/16/11	MA	SW846 9045

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Page 1 of 3

Client Sample ID: B-23(8-9.1) **Lab Sample ID:** M98417-12

Matrix: SO - Soil

Method: SW846 8260B

Project: 80 Steel Street (GS&T)

Date Sampled: 03/10/11 **Date Received:** 03/15/11 **Percent Solids:** 88.1

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 K50959.D 1 03/18/11 GK n/a n/a MSK1685

Run #2

Initial Weight Final Volume Methanol Aliquot

Run #1 10.6 g 10.0 ml 100 ul

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
67-64-1	Acetone	ND	300	ug/kg	
71-43-2	Benzene	ND	30	ug/kg	
108-86-1	Bromobenzene	ND	300	ug/kg	
74-97-5	Bromochloromethane	ND	300	ug/kg	
75-27-4	Bromodichloromethane	ND	120	ug/kg	
75-25-2	Bromoform	ND	120	ug/kg	
74-83-9	Bromomethane	ND	120	ug/kg	
78-93-3	2-Butanone (MEK)	ND	300	ug/kg	
104-51-8	n-Butylbenzene	ND	300	ug/kg	
135-98-8	sec-Butylbenzene	517	300	ug/kg	
98-06-6	tert-Butylbenzene	ND	300	ug/kg	
75-15-0	Carbon disulfide	ND	300	ug/kg	
56-23-5	Carbon tetrachloride	ND	120	ug/kg	
108-90-7	Chlorobenzene	ND	120	ug/kg	
75-00-3	Chloroethane	ND	300	ug/kg	
67-66-3	Chloroform	ND	120	ug/kg	
74-87-3	Chloromethane	ND	300	ug/kg	
95-49-8	o-Chlorotoluene	ND	300	ug/kg	
106-43-4	p-Chlorotoluene	ND	300	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	300	ug/kg	
124-48-1	Dibromochloromethane	ND	120	ug/kg	
106-93-4	1,2-Dibromoethane	ND	120	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	120	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	120	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	120	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	120	ug/kg	
75-34-3	1,1-Dichloroethane	ND	120	ug/kg	
107-06-2	1,2-Dichloroethane	ND	120	ug/kg	
75-35-4	1,1-Dichloroethene	ND	120	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	120	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	120	ug/kg	
78-87-5	1,2-Dichloropropane	ND	120	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

Client Sample ID: B-23(8-9.1)

Lab Sample ID: M98417-12 **Date Sampled:** 03/10/11 Matrix: **Date Received:** 03/15/11 SO - Soil Method: Percent Solids: 88.1 SW846 8260B

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Compound	Result	RL	Units Q
142-28-9	1,3-Dichloropropane	ND	300	ug/kg
594-20-7	2,2-Dichloropropane	ND	300	ug/kg
563-58-6	1,1-Dichloropropene	ND	300	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	120	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	120	ug/kg
100-41-4	Ethylbenzene	ND	120	ug/kg
87-68-3	Hexachlorobutadiene	ND	300	ug/kg
591-78-6	2-Hexanone	ND	300	ug/kg
74-88-4	Iodomethane	ND	300	ug/kg
98-82-8	Isopropylbenzene	397	300	ug/kg
99-87-6	p-Isopropyltoluene	ND	300	ug/kg
1634-04-4	Methyl Tert Butyl Ether	ND	120	ug/kg
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	300	ug/kg
74-95-3	Methylene bromide	ND	300	ug/kg
75-09-2	Methylene chloride	ND	120	ug/kg
91-20-3	Naphthalene	870	300	ug/kg
103-65-1	n-Propylbenzene	1550	300	ug/kg
100-42-5	Styrene	ND	300	ug/kg
630-20-6	1,1,1,2-Tetrachloroethane	ND	300	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	120	ug/kg
127-18-4	Tetrachloroethene	ND	120	ug/kg
108-88-3	Toluene	ND	300	ug/kg
87-61-6	1,2,3-Trichlorobenzene	ND	300	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	300	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	120	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	120	ug/kg
79-01-6	Trichloroethene	ND	120	ug/kg
75-69-4	Trichlorofluoromethane	ND	120	ug/kg
96-18-4	1,2,3-Trichloropropane	ND	300	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	300	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	300	ug/kg
108-05-4	Vinyl Acetate	ND	300	ug/kg
75-01-4	Vinyl chloride	ND	120	ug/kg
	m,p-Xylene	ND	120	ug/kg
95-47-6	o-Xylene	ND	120	ug/kg
1330-20-7	Xylene (total)	ND	120	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	107%		70-130%

Dibromofluoromethane 70-130% 1868-53-7 107%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

of 3

Report of Analysis

Page 3 of 3

Client Sample ID: B-23(8-9.1)

 Lab Sample ID:
 M98417-12
 Date Sampled:
 03/10/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 88.1

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	117%		70-130%
460-00-4	4-Bromofluorobenzene	109%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: B-23(8-9.1)

Lab Sample ID: M98417-12 **Matrix:** SO - Soil

Method: SW846 8270C SW846 3546

Project: 80 Steel Street (GS&T)

Date Sampled: 03/10/11 Date Received: 03/15/11 Percent Solids: 88.1

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 S22263.D 1 03/21/11 PR 03/16/11 OP24354 MSS943

Run #2

Initial Weight Final Volume

Run #1 20.1 g 5.0 ml

Run #2

BN PPL List

CAS No.	Compound	Result	RL	Units	Q
83-32-9	Acenaphthene	ND	1400	ug/kg	
208-96-8	Acenaphthylene	ND	1400	ug/kg	
120-12-7	Anthracene	ND	1400	ug/kg	
92-87-5	Benzidine	ND	5600	ug/kg	
56-55-3	Benzo(a)anthracene	ND	1400	ug/kg	
50-32-8	Benzo(a)pyrene	ND	1400	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	1400	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	1400	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	1400	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	1400	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	1400	ug/kg	
91-58-7	2-Chloronaphthalene	ND	1400	ug/kg	
106-47-8	4-Chloroaniline	ND	2800	ug/kg	
218-01-9	Chrysene	ND	1400	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	1400	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	1400	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	1400	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	1400	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	1400	ug/kg	
122-66-7	1,2-Diphenylhydrazine	ND	1400	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	1400	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	1400	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	2800	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	2800	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	1400	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	1400	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	1400	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	1400	ug/kg	
84-66-2	Diethyl phthalate	ND	1400	ug/kg	
131-11-3	Dimethyl phthalate	ND	1400	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	1400	ug/kg	
206-44-0	Fluoranthene	ND	1400	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Date Sampled: 03/10/11

Date Received: 03/15/11

Percent Solids: 88.1

Page 2 of 2

Client Sample ID: B-23(8-9.1) **Lab Sample ID:** M98417-12

Matrix: SO - Soil

Method: SW846 8270C SW846 3546

Project: 80 Steel Street (GS&T)

BN PPL List

CAS No.	Compound	Result	RL	Units Q
86-73-7	Fluorene	ND	1400	ug/kg
118-74-1	Hexachlorobenzene	ND	1400	ug/kg
87-68-3	Hexachlorobutadiene	ND	1400	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	2800	ug/kg
67-72-1	Hexachloroethane	ND	1400	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1400	ug/kg
78-59-1	Isophorone	ND	1400	ug/kg
91-20-3	Naphthalene	ND	1400	ug/kg
98-95-3	Nitrobenzene	ND	1400	ug/kg
62-75-9	n-Nitrosodimethylamine	ND	1400	ug/kg
621-64-7	N-Nitroso-di-n-propylamine	ND	1400	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	1400	ug/kg
85-01-8	Phenanthrene	ND	1400	ug/kg
129-00-0	Pyrene	ND	1400	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	1400	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	79%		30-130%
321-60-8	2-Fluorobiphenyl	90%		30-130%
1718-51-0	Terphenyl-d14	105%		30-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: B-23(8-9.1) **Lab Sample ID:** M98417-12

 Lab Sample ID:
 M98417-12
 Date Sampled:
 03/10/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8082
 SW846 3546
 Percent Solids:
 88.1

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 BK1735.D 1 03/19/11 AP 03/16/11 OP24355 GBK69

Run #2

Run #1 15.2 g Final Volume 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	Units	Q
12674-11-2	Aroclor 1016	ND	110	ug/kg	
11104-28-2	Aroclor 1221	ND	110	ug/kg	
11141-16-5	Aroclor 1232	ND	110	ug/kg	
53469-21-9	Aroclor 1242	ND	110	ug/kg	
12672-29-6	Aroclor 1248	ND	110	ug/kg	
11097-69-1	Aroclor 1254	ND	110	ug/kg	
11096-82-5	Aroclor 1260	ND	110	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	s
877-09-8	Tetrachloro-m-xylene	59%		30-150	0%
877-09-8	Tetrachloro-m-xylene	59%		30-150	0%
2051-24-3	Decachlorobiphenyl	63%		30-150	0%
2051-24-3	Decachlorobiphenyl	79%		30-150	0%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

 Client Sample ID:
 B-23(8-9.1)

 Lab Sample ID:
 M98417-12

 Matrix:
 SO - Soil

 Date Received:
 03/15/11

 Percent Solids:
 88.1

Project: 80 Steel Street (GS&T)

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	5.0	1.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Barium	16.2	5.1	mg/kg	1	03/16/11	03/18/11 PY	SW846 6010C ³	SW846 3050B ⁵
Beryllium	< 0.41	0.41	mg/kg	1	03/16/11	03/18/11 PY	SW846 6010C ³	SW846 3050B ⁵
Cadmium	< 0.41	0.41	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Chromium	6.5	1.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Copper	13.1	2.5	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Lead	30.1	1.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Manganese	220	1.5	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Mercury	0.028	0.022	mg/kg	1	03/16/11	03/17/11 CF	SW846 7471A ¹	SW846 7471A ⁴
Nickel	5.9	4.1	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Selenium	< 1.0	1.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Silver	< 0.51	0.51	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Zinc	27.7	2.0	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵

(1) Instrument QC Batch: MA12748
(2) Instrument QC Batch: MA12756
(3) Instrument QC Batch: MA12761
(4) Prep QC Batch: MP16722
(5) Prep QC Batch: MP16723

Page 1 of 1

Report of Analysis

 Client Sample ID:
 B-23(8-9.1)

 Lab Sample ID:
 M98417-12

 Matrix:
 SO - Soil

 Date Received:
 03/15/11

 Percent Solids:
 88.1

Project: 80 Steel Street (GS&T)

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.45	0.45	mg/kg	1	03/21/11 15:38	MC	SW846 3060A/7196A
,			2 2	1			
Chromium, Trivalent ^a	6.5	1.5	mg/kg	1	03/21/11 15:38	MC	SW846 6010/7196A M
Cyanide	< 0.13	0.13	mg/kg	1	03/18/11 15:07	MA	SW846 9012 M
Redox Potential Vs H2	362		mv	1	03/16/11	CF	ASTM D1498-76M
Solids, Percent	88.1		%	1	03/16/11	HS	SM21 2540 B MOD.
pН	8.2		su	1	03/16/11	MA	SW846 9045

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Page 1 of 3

Client Sample ID: B-12(0'-8')

 Lab Sample ID:
 M98417-13
 Date Sampled:
 03/09/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 84.1

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 K50960.D 1 03/18/11 GK n/a n/a MSK1685

Run #2

Initial Weight Final Volume Methanol Aliquot

Run #1 10.3 g 10.0 ml 100 ul

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
67-64-1	Acetone	ND	340	ug/kg	
71-43-2	Benzene	ND	34	ug/kg	
108-86-1	Bromobenzene	ND	340	ug/kg	
74-97-5	Bromochloromethane	ND	340	ug/kg	
75-27-4	Bromodichloromethane	ND	130	ug/kg	
75-25-2	Bromoform	ND	130	ug/kg	
74-83-9	Bromomethane	ND	130	ug/kg	
78-93-3	2-Butanone (MEK)	ND	340	ug/kg	
104-51-8	n-Butylbenzene	ND	340	ug/kg	
135-98-8	sec-Butylbenzene	ND	340	ug/kg	
98-06-6	tert-Butylbenzene	ND	340	ug/kg	
75-15-0	Carbon disulfide	ND	340	ug/kg	
56-23-5	Carbon tetrachloride	ND	130	ug/kg	
108-90-7	Chlorobenzene	ND	130	ug/kg	
75-00-3	Chloroethane	ND	340	ug/kg	
67-66-3	Chloroform	ND	130	ug/kg	
74-87-3	Chloromethane	ND	340	ug/kg	
95-49-8	o-Chlorotoluene	ND	340	ug/kg	
106-43-4	p-Chlorotoluene	ND	340	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	340	ug/kg	
124-48-1	Dibromochloromethane	ND	130	ug/kg	
106-93-4	1,2-Dibromoethane	ND	130	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	130	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	130	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	130	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	130	ug/kg	
75-34-3	1,1-Dichloroethane	ND	130	ug/kg	
107-06-2	1,2-Dichloroethane	ND	130	ug/kg	
75-35-4	1,1-Dichloroethene	ND	130	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	130	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	130	ug/kg	
78-87-5	1,2-Dichloropropane	ND	130	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 3

 Client Sample ID:
 B-12(0'-8')

 Lab Sample ID:
 M98417-13
 Date Sampled:
 03/09/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 84.1

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
142-28-9	1,3-Dichloropropane	ND	340	ug/kg	
594-20-7	2,2-Dichloropropane	ND	340	ug/kg	
563-58-6	1,1-Dichloropropene	ND	340	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	130	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	130	ug/kg	
100-41-4	Ethylbenzene	ND	130	ug/kg	
87-68-3	Hexachlorobutadiene	ND	340	ug/kg	
591-78-6	2-Hexanone	ND	340	ug/kg	
74-88-4	Iodomethane	ND	340	ug/kg	
98-82-8	Isopropylbenzene	ND	340	ug/kg	
99-87-6	p-Isopropyltoluene	ND	340	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	130	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	340	ug/kg	
74-95-3	Methylene bromide	ND	340	ug/kg	
75-09-2	Methylene chloride	ND	130	ug/kg	
91-20-3	Naphthalene	ND	340	ug/kg	
103-65-1	n-Propylbenzene	ND	340	ug/kg	
100-42-5	Styrene	ND	340	ug/kg	
630-20-6	1,1,1,2-Tetrachloroethane	ND	340	ug/kg	
79-34-5	1, 1, 2, 2-Tetrachloroethane	ND	130	ug/kg	
127-18-4	Tetrachloroethene	ND	130	ug/kg	
108-88-3	Toluene	ND	340	ug/kg	
87-61-6	1,2,3-Trichlorobenzene	ND	340	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	340	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	130	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	130	ug/kg	
79-01-6	Trichloroethene	ND	130	ug/kg	
75-69-4	Trichlorofluoromethane	ND	130	ug/kg	
96-18-4	1,2,3-Trichloropropane	ND	340	ug/kg	
95-63-6	1,2,4-Trimethylbenzene	ND	340	ug/kg	
108-67-8	1,3,5-Trimethylbenzene	ND	340	ug/kg	
108-05-4	Vinyl Acetate	ND	340	ug/kg	
75-01-4	Vinyl chloride	ND	130	ug/kg	
	m,p-Xylene	ND	130	ug/kg	
95-47-6	o-Xylene	ND	130	ug/kg	
1330-20-7	Xylene (total)	ND	130	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its
1868-53-7	Dibromofluoromethane	110%		70-13	30%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 3 of 3

Client Sample ID: B-12(0'-8')

 Lab Sample ID:
 M98417-13
 Date Sampled:
 03/09/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 84.1

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	114%		70-130%
460-00-4	4-Bromofluorobenzene	112%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 2

Client Sample ID: B-12(0'-8')

 Lab Sample ID:
 M98417-13
 Date Sampled:
 03/09/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8270C
 SW846 3546
 Percent Solids:
 84.1

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 S22264.D 1 03/21/11 PR 03/16/11 OP24354 MSS943

Run #2

Initial Weight Final Volume

Run #1 20.1 g 1.0 ml

Run #2

BN PPL List

CAS No.	Compound	Result	RL	Units	Q
83-32-9	Acenaphthene	ND	300	ug/kg	
208-96-8	Acenaphthylene	ND	300	ug/kg	
120-12-7	Anthracene	ND	300	ug/kg	
92-87-5	Benzidine	ND	1200	ug/kg	
56-55-3	Benzo(a)anthracene	ND	300	ug/kg	
50-32-8	Benzo(a)pyrene	ND	300	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	300	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	300	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	300	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	300	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	300	ug/kg	
91-58-7	2-Chloronaphthalene	ND	300	ug/kg	
106-47-8	4-Chloroaniline	ND	590	ug/kg	
218-01-9	Chrysene	ND	300	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	300	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	300	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	300	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	300	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	300	ug/kg	
122-66-7	1,2-Diphenylhydrazine	ND	300	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	300	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	300	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	590	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	590	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	300	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	300	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	300	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	300	ug/kg	
84-66-2	Diethyl phthalate	ND	300	ug/kg	
131-11-3	Dimethyl phthalate	ND	300	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	300	ug/kg	
206-44-0	Fluoranthene	ND	300	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 $N = \ Indicates \ presumptive \ evidence \ of \ a \ compound$

Date Sampled: 03/09/11

Date Received: 03/15/11

Percent Solids: 84.1

Client Sample ID: B-12(0'-8') Lab Sample ID: M98417-13

Matrix: SO - Soil Method: SW846 8270C SW846 3546

Project:

80 Steel Street (GS&T)

BN PPL List

CAS No.	Compound	Result	RL	Units Q
86-73-7	Fluorene	ND	300	ug/kg
118-74-1	Hexachlorobenzene	ND	300	ug/kg
87-68-3	Hexachlorobutadiene	ND	300	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	590	ug/kg
67-72-1	Hexachloroethane	ND	300	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	300	ug/kg
78-59-1	Isophorone	ND	300	ug/kg
91-20-3	Naphthalene	ND	300	ug/kg
98-95-3	Nitrobenzene	ND	300	ug/kg
62-75-9	n-Nitrosodimethylamine	ND	300	ug/kg
621-64-7	N-Nitroso-di-n-propylamine	ND	300	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	300	ug/kg
85-01-8	Phenanthrene	ND	300	ug/kg
129-00-0	Pyrene	ND	300	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	300	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	63%		30-130%
321-60-8	2-Fluorobiphenyl	72%		30-130%
1718-51-0	Terphenyl-d14	96%		30-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Date Sampled: 03/09/11

Percent Solids: 84.1

Page 1 of 1

Client Sample ID: B-12(0'-8') Lab Sample ID: M98417-13

Matrix: SO - Soil **Date Received:** 03/15/11 Method: SW846 8082 SW846 3546

Project: 80 Steel Street (GS&T)

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** GBK69 Run #1 BK1736.D 1 03/19/11 AP 03/16/11 OP24355

Run #2

Initial Weight Final Volume 10.0 ml

Run #1 15.2 g Run #2

PCB List

CAS No.	Compound	Result	RL	Units Q
12674-11-2	Aroclor 1016	ND	120	ug/kg
11104-28-2	Aroclor 1221	ND	120	ug/kg
11141-16-5	Aroclor 1232	ND	120	ug/kg
53469-21-9	Aroclor 1242	ND	120	ug/kg
12672-29-6	Aroclor 1248	ND	120	ug/kg
11097-69-1	Aroclor 1254	ND	120	ug/kg
11096-82-5	Aroclor 1260	ND	120	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	60%		30-150%
877-09-8	Tetrachloro-m-xylene	60%		30-150%
2051-24-3 2051-24-3	Decachlorobiphenyl Decachlorobiphenyl	60% 71%		30-150% 30-150%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

 Client Sample ID:
 B-12(0'-8')

 Lab Sample ID:
 M98417-13

 Matrix:
 SO - Soil

 Date Received:
 03/15/11

 Percent Solids:
 84.1

Project: 80 Steel Street (GS&T)

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	7.1	1.1	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Barium	41.3	5.3	mg/kg	1	03/16/11	03/18/11 PY	SW846 6010C ³	SW846 3050B ⁵
Beryllium	< 0.42	0.42	mg/kg	1	03/16/11	03/18/11 PY	SW846 6010C ³	SW846 3050B ⁵
Cadmium	< 0.42	0.42	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Chromium	8.6	1.1	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Copper	11.5	2.6	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Lead	22.3	1.1	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Manganese	157	1.6	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Mercury	0.18	0.038	mg/kg	1	03/16/11	03/17/11 CF	SW846 7471A ¹	SW846 7471A ⁴
Nickel	8.6	4.2	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Selenium	< 1.1	1.1	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Silver	< 0.53	0.53	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵
Zinc	58.0	2.1	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁵

(1) Instrument QC Batch: MA12748
(2) Instrument QC Batch: MA12756
(3) Instrument QC Batch: MA12761
(4) Prep QC Batch: MP16722
(5) Prep QC Batch: MP16723

Page 1 of 1

Client Sample ID: B-12(0'-8')
Lab Sample ID: M98417-13
Matrix: SO - Soil

Date Sampled: 03/09/11 **Date Received:** 03/15/11 **Percent Solids:** 84.1

Project: 80 Steel Street (GS&T)

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.47	0.47	mg/kg	1	03/21/11 15:38	MC	SW846 3060A/7196A
Chromium, Trivalent ^a	8.4	1.6	mg/kg	1	03/21/11 15:38		SW846 6010/7196A M
Cyanide	< 0.14	0.14	mg/kg	1	03/18/11 15:08	MA	SW846 9012 M
Redox Potential Vs H2	376		mv	1	03/16/11	CF	ASTM D1498-76M
Solids, Percent	84.1		%	1	03/16/11	HS	SM21 2540 B MOD.
pН	7.4		su	1	03/16/11	MA	SW846 9045

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Certification Exceptions
- Certification Exceptions (NY)
- Chain of Custody

a typera with the temper	•	- (Marc. 1 ·		
	CHAIN	OF CUSTODY		PAGE OF
- ACCUTEST	Accutest La	boratories of New England	FED-EX Tracking #	Bottle Order Control #
LABORATORIES	TEL. 508-48	gy Center West, Building One 1-6200 FAX: 508-481-7753	Accutest Quote #	
		ww.accutest.com	Accutest Gobie #	Accutest Job # M98417
Client / Reporting Information		ject Information	Requested Analysis (see	TEST CODE sheet) Matrix Codes
Company Name Plumley Street Address	Project Name 80 Stee.	15+(65&T)	\	DW - Drinking Wate
8232 LOOP Rd	1	Billing Information (If different from Report to)	\$##	WW - Water SW - Surface Water
Bald Wins Ville NY 1302	Chy: Rachester Projects 2011030 Client POH	Company Name	1, 4, 1	SO - Soil SL - Sludge SED-Sediment
Project Contact E-mail	Project#	Street Address	 	Of - Oil LIQ - Other Liquid
Derk T Hudson	0011030 Client PO#	City State Zip	13 1	AIR - Air SOL - Other Solic
Phone # 15. 638-8587			13/2/201	WP - Wipe FB-Field Blank
Sampler(s) Name(s) Phone #	Derkt, Hudsor	Attention: PO#		EB- Equipment Bla RB- Rinse Blank TB-Trip Blank
	Collection	Number of preserved Battles	0 2 7 8	1 10-1119 Blank
Accutest Sample # Field ID / Point of Collection	MEOH/DI Vial # Date I ima	Palmer Matrix # of pottles H H NO3 H H NO4 M MECOH M M MECOH M M M M M M M M M M M M M M M M M M M	8260 8270 Matal 7.18	LAB USE ONL
-1 B-1 (Surface Souple)	3/9/11 am	DTH-50 1 X	XXX	
-2 B-10 (Surface Sample)	3/9/1/ PM		X X X	
-3 B-17 (Suchare Sample)	3/10/11 am		X X X	
-4 R-2 (4-81)	3)91/ AM	1 2	XXXXX	
-5 B-5 (12-14.7.)	319/11 AW	1 2 1		
-6 B-9 (4-7.8)	31911 AW		\(\frac{1}{\sqrt{1}}\frac{1}\frac{1}{\sqrt{1}}\frac{1}{\sqrt{1}}\f	
-7 B-13 (4-8)	3)9/11 PM			
8 B-15 (4-81	3/10/11 AW	1) 1 2 1 1 1 1 1	7 X 7 7	
9 8-17 (8-8.4)	3/10/11 AM			
10 8-19/4-8)	3/10/11 AU	1 2	 	++++-
11 8-27 (8-9)	3/10/11 AM	1 2	 	
12 8-23 (8-91)	3/10/11 DW	V V 2 V		+ + + + + + + + + + + + + + + + + + + +
-13 B-12 10-817	3 9 11 PM	Data Deliverable In Fination	1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1	nents / Special Instructions
Turnaround Time (Business days)	Approved By (Accutest PM): / Date:	Commercial "A" (Level 1) NYASP Categ		Bitta / Speciar instructions
Std. 10 Business Days Std. 5 Business Days (By Contract only)		Commercial "B" (Level 2) NYASP Categ	ory B	
5 Day RUSH		FULLT1 (Level 3+4) State Forms EDD Format		10A, 6F4
3 Day EMERGENCY		MA MCP Other		
2 Day EMERGENCY 1 Day EMERGENCY		Commercial "A" = Results Only Commercial "B" = Results + QC Summary		
Emergency & Rush T/A data available VIA Lablink				
Reflequished by Sampler: Date Time:	Sample Custody must be docum	ented below each time samples change possession inc		
Date Time:	4/11-4/55 1 AMM AL	n min h	3/4/11 19:30	Received By: 2 FED Ex
Refinquished by Sampler: Date Time:	Received By:	Relinquished By:	Date Time:	Received By:
3 Fedex 3/15/11	1 10:15 3/1 Bollant	//4 // //		4

M98417: Chain of Custody

On ice 2.1/1.9/1.4/1.8

Page 1 of 2

ACCUTEST.

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: M98417 Client: PLUMLEY			Immediate Client Services Action Requi				uired:	No		
Date / Time Received: 3/15/2	011		Delive	ry Method:		Client Service Action R	equire	ed at	Login:	No
Project: 80 STEEL ST ROCHE	STER		No. Co	olers:	4	Airbill #'s: N/A				
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature	or N	4. Sm	COC Present: pl Dates/Time OK	<u>Y</u> or N ✓ □ ✓ □		Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree:	Y	or	N 	
Temp criteria achieved: Cooler temp verification: Cooler media: Quality Control Preservatio		ed gun (bag)	N/A			Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample:	Y ✓	or Intaci	<u>N</u>	
1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free: Comments						Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear: 5. Filtering instructions clear:	Y	or		N/A
Accutest Laboratories V:508.481.6200				495 Technology Ce F: 508.4						orough, MA /accutest.com

M98417: Chain of Custody

Page 2 of 2

03/31/11

Technical Report for

Plumley Environmental Engineers

80 Steel Street (GS&T)

2011030

Accutest Job Number: M98416

Sampling Date: 03/14/11

Report to:

Plumley Environmental Engineers

dhudson@plumleyeng.com

ATTN: Derk Hudson

Total number of pages in report: 83

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Kristen Blanchard 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) ISO 17025:2005 (L2235) This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

1 of 83

Lab Director

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Sample Results	4
2.1: M98416-1: B-18/TW	
2.2: M98416-2: B-20/TW	13
2.3: M98416-3: B-1/TW	21
2.4: M98416-4: B-3/TW	28
2.5: M98416-5: B-5/TW	36
2.6: M98416-6: B-8/TW	44
2.7: M98416-7: B-12/TW	52
2.8: M98416-8: B-13/TW	60
2.9: M98416-9: B-23/TW	68
2.10: M98416-10: SS-1	71
2.11: M98416-11: SS-2	76
Section 3: Misc. Forms	81
3.1: Chain of Custody	82

Sample Summary

Plumley Environmental Engineers

Job No:

M98416

80 Steel Street (GS&T) Project No: 2011030

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
M98416-1	03/14/11	11:45 MM	03/15/11	AQ	Ground Water	B-18/TW
M98416-2	03/14/11	12:35 MM	03/15/11	AQ	Ground Water	B-20/TW
M98416-3	03/14/11	13:30 MM	03/15/11	AQ	Ground Water	B-1/TW
M98416-4	03/14/11	14:45 MM	03/15/11	AQ	Ground Water	B-3/TW
M98416-5	03/14/11	15:20 MM	03/15/11	AQ	Ground Water	B-5/TW
M98416-6	03/14/11	15:50 MM	03/15/11	AQ	Ground Water	B-8/TW
M98416-7	03/14/11	16:20 MM	03/15/11	AQ	Ground Water	B-12/TW
M98416-8	03/14/11	16:50 MM	03/15/11	AQ	Ground Water	B-13/TW
M98416-9	03/14/11	17:30 MM	03/15/11	AQ	Ground Water	B-23/TW
M98416-10	03/14/11	00:00 MM	03/15/11	so	Soil	SS-1
M98416-11	03/14/11	00:00 MM	03/15/11	so	Soil	SS-2

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

Sample Results	
Report of Analysis	
Report of Analysis	

Page 1 of 3

Client Sample ID: B-18/TW

 Lab Sample ID:
 M98416-1
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 G104094.D 1 03/21/11 TD n/a n/a MSG4199

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
67-64-1	Acetone	ND	5.0	ug/l	
71-43-2	Benzene	ND	0.50	ug/l	
108-86-1	Bromobenzene	ND	5.0	ug/l	
74-97-5	Bromochloromethane	ND	5.0	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	ug/l	
75-25-2	Bromoform	ND	1.0	ug/l	
74-83-9	Bromomethane	ND	2.0	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	ug/l	
75-15-0	Carbon disulfide	ND	5.0	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	ug/l	
108-90-7	Chlorobenzene	ND	1.0	ug/l	
75-00-3	Chloroethane	ND	2.0	ug/l	
67-66-3	Chloroform	ND	1.0	ug/l	
74-87-3	Chloromethane	ND	2.0	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	ug/l	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 3

Client Sample ID: B-18/TW

 Lab Sample ID:
 M98416-1
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Compound	Result	RL	Units Q	
142-28-9	1,3-Dichloropropane	ND	5.0	ug/l	
594-20-7	2,2-Dichloropropane	ND	5.0	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	ug/l	
591-78-6	2-Hexanone	ND	5.0	ug/l	
74-88-4	Iodomethane	ND	5.0	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	ug/l	
74-95-3	Methylene bromide	ND	5.0	ug/l	
75-09-2	Methylene chloride	ND	2.0	ug/l	
91-20-3	Naphthalene	ND	5.0	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	ug/l	
100-42-5	Styrene	ND	5.0	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	ug/l	
108-88-3	Toluene	ND	1.0	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/l	
79-01-6	Trichloroethene	ND	1.0	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	ug/l	
75-01-4	Vinyl chloride	ND	1.0	ug/l	
	m,p-Xylene	ND	1.0	ug/l	
95-47-6	o-Xylene	ND	1.0	ug/l	
1330-20-7	Xylene (total)	ND	1.0	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	

87%

ND = Not detected

1868-53-7

RL = Reporting Limit

E = Indicates value exceeds calibration range

Dibromofluoromethane

J = Indicates an estimated value

70-130%

Page 3 of 3

Client Sample ID: B-18/TW

 Lab Sample ID:
 M98416-1
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	107%		70-130%
460-00-4	4-Bromofluorobenzene	94%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 2

Client Sample ID: B-18/TW

 Lab Sample ID:
 M98416-1
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 S22212.D 1 03/18/11 PR 03/16/11 OP24348 MSS941

Run #2

Initial Volume Final Volume

Run #1 930 ml 1.0 ml

Run #2

BN PPL List

CAS No.	Compound	Result	RL	Units	Q
83-32-9	Acenaphthene	ND	5.4	ug/l	
208-96-8	Acenaphthylene	ND	5.4	ug/l	
120-12-7	Anthracene	ND	5.4	ug/l	
92-87-5	Benzidine	ND	22	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.4	ug/l	
50-32-8	Benzo(a)pyrene	ND	5.4	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.4	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.4	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.4	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.4	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.4	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.4	ug/l	
106-47-8	4-Chloroaniline	ND	11	ug/l	
218-01-9	Chrysene	ND	5.4	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.4	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.4	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.4	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.4	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	5.4	ug/l	
122-66-7	1,2-Diphenylhydrazine	ND	5.4	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.4	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.4	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	11	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	11	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.4	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.4	ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.4	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.4	ug/l	
84-66-2	Diethyl phthalate	ND	5.4	ug/l	
131-11-3	Dimethyl phthalate	ND	5.4	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	ug/l	
206-44-0	Fluoranthene	ND	5.4	ug/l	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

Client Sample ID: B-18/TW

 Lab Sample ID:
 M98416-1
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

BN PPL List

CAS No.	Compound	Result	RL	Units Q
86-73-7	Fluorene	ND	5.4	ug/l
118-74-1	Hexachlorobenzene	ND	5.4	ug/l
87-68-3	Hexachlorobutadiene	ND	5.4	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	11	ug/l
67-72-1	Hexachloroethane	ND	5.4	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.4	ug/l
78-59-1	Isophorone	ND	5.4	ug/l
91-20-3	Naphthalene	ND	5.4	ug/l
98-95-3	Nitrobenzene	ND	5.4	ug/l
62-75-9	n-Nitrosodimethylamine	ND	5.4	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	5.4	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.4	ug/l
85-01-8	Phenanthrene	ND	5.4	ug/l
129-00-0	Pyrene	ND	5.4	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	5.4	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	84%		30-130%
321-60-8	2-Fluorobiphenyl	82%		30-130%
1718-51-0	Terphenyl-d14	59%		30-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: B-18/TW

 Lab Sample ID:
 M98416-1
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8082
 SW846 3510C
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 YZ64894.D 1 03/17/11 CZ 03/15/11 OP24345 GYZ6354

Run #2

Initial Volume Final Volume

Run #1 930 ml 5.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	Units Q
12674-11-2	Aroclor 1016	ND	0.27	ug/l
11104-28-2	Aroclor 1221	ND	0.27	ug/l
11141-16-5	Aroclor 1232	ND	0.27	ug/l
53469-21-9	Aroclor 1242	ND	0.27	ug/l
12672-29-6	Aroclor 1248	ND	0.27	ug/l
11097-69-1	Aroclor 1254	ND	0.27	ug/l
11096-82-5	Aroclor 1260	ND	0.27	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	71%		30-150%
877-09-8	Tetrachloro-m-xylene	69%		30-150%
2051-24-3	Decachlorobiphenyl	48%		30-150%
2051-24-3	Decachlorobiphenyl	49%		30-150%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: B-18/TW

Lab Sample ID:M98416-1Date Sampled:03/14/11Matrix:AQ - Ground WaterDate Received:03/15/11Percent Solids:n/a

Project: 80 Steel Street (GS&T)

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	< 4.0	4.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Barium	60.5	50	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Beryllium	< 4.0	4.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Cadmium	< 4.0	4.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Chromium	< 10	10	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Copper	< 25	25	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Lead	7.4	5.0	ug/l	1	03/16/11	03/17/11 PY	SW846 6010C ³	SW846 3010A ⁴
Manganese	62.6	15	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	03/17/11	03/17/11 MA	SW846 7470A ²	SW846 7471A ⁵
Nickel	< 40	40	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Silver	< 5.0	5.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Zinc	26.4	20	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴

(1) Instrument QC Batch: MA12750
(2) Instrument QC Batch: MA12751
(3) Instrument QC Batch: MA12756
(4) Prep QC Batch: MP16720
(5) Prep QC Batch: MP16727

Page 1 of 1

Client Sample ID: B-18/TW

Lab Sample ID:M98416-1Date Sampled:03/14/11Matrix:AQ - Ground WaterDate Received:03/15/11Percent Solids:n/a

Project: 80 Steel Street (GS&T)

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	03/15/11 10:42	MC	SW846 7196A
Chromium, Trivalent ^a	< 0.020	0.020	mg/l	1	03/16/11 21:37	DA	6010/7196A M/200.7
Cyanide	< 0.010	0.010	mg/l	1	03/16/11 10:33	MA	SW846 9012

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Page 1 of 3

Client Sample ID: B-20/TW

 Lab Sample ID:
 M98416-2
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 G104141.D 1 03/22/11 TD n/a n/a MSG4202

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
67-64-1	Acetone	15.6	5.0	ug/l	
71-43-2	Benzene	0.94	0.50	ug/l	
108-86-1	Bromobenzene	ND	5.0	ug/l	
74-97-5	Bromochloromethane	ND	5.0	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	ug/l	
75-25-2	Bromoform	ND	1.0	ug/l	
74-83-9	Bromomethane	ND	2.0	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	ug/l	
75-15-0	Carbon disulfide	ND	5.0	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	ug/l	
108-90-7	Chlorobenzene	ND	1.0	ug/l	
75-00-3	Chloroethane	ND	2.0	ug/l	
67-66-3	Chloroform	ND	1.0	ug/l	
74-87-3	Chloromethane	ND	2.0	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	ug/l	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 3

Client Sample ID: B-20/TW

Lab Sample ID: M98416-2 **Date Sampled:** 03/14/11 Matrix: **Date Received:** 03/15/11 AQ - Ground Water Method: SW846 8260B Percent Solids: n/a

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
142-28-9	1,3-Dichloropropane	ND	5.0	ug/l	
594-20-7	2,2-Dichloropropane	ND	5.0	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	ug/l	
591-78-6	2-Hexanone	ND	5.0	ug/l	
74-88-4	Iodomethane	ND	5.0	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	6.9	5.0	ug/l	
74-95-3	Methylene bromide	ND	5.0	ug/l	
75-09-2	Methylene chloride	ND	2.0	ug/l	
91-20-3	Naphthalene	ND	5.0	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	ug/l	
100-42-5	Styrene	ND	5.0	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	ug/l	
108-88-3	Toluene	ND	1.0	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/l	
79-01-6	Trichloroethene	ND	1.0	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	ug/l	
75-01-4	Vinyl chloride	ND	1.0	ug/l	
	m,p-Xylene	ND	1.0	ug/l	
95-47-6	o-Xylene	ND	1.0	ug/l	
1330-20-7	Xylene (total)	ND	1.0	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
1868-53-7	Dibromofluoromethane	86%		70-1	30%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 3 of 3

Client Sample ID: B-20/TW

 Lab Sample ID:
 M98416-2
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	98%		70-130%
460-00-4	4-Bromofluorobenzene	77%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 2

Client Sample ID: B-20/TW

 Lab Sample ID:
 M98416-2
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 S22213.D 1 03/18/11 PR 03/16/11 OP24348 MSS941

Run #2

Initial Volume Final Volume

Run #1 1000 ml 1.0 ml

Run #2

BN PPL List

CAS No.	Compound	Result	RL	Units Q
83-32-9	Acenaphthene	ND	5.0	ug/l
208-96-8	Acenaphthylene	ND	5.0	ug/l
120-12-7	Anthracene	ND	5.0	ug/l
92-87-5	Benzidine	ND	20	ug/l
56-55-3	Benzo(a)anthracene	ND	5.0	ug/l
50-32-8	Benzo(a)pyrene	ND	5.0	ug/l
205-99-2	Benzo(b)fluoranthene	ND	5.0	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	5.0	ug/l
207-08-9	Benzo(k)fluoranthene	ND	5.0	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	5.0	ug/l
85-68-7	Butyl benzyl phthalate	ND	5.0	ug/l
91-58-7	2-Chloronaphthalene	ND	5.0	ug/l
106-47-8	4-Chloroaniline	ND	10	ug/l
218-01-9	Chrysene	ND	5.0	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	5.0	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	5.0	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.0	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.0	ug/l
95-50-1	1,2-Dichlorobenzene	ND	5.0	ug/l
122-66-7	1,2-Diphenylhydrazine	ND	5.0	ug/l
541-73-1	1,3-Dichlorobenzene	ND	5.0	ug/l
106-46-7	1,4-Dichlorobenzene	ND	5.0	ug/l
121-14-2	2,4-Dinitrotoluene	ND	10	ug/l
606-20-2	2,6-Dinitrotoluene	ND	10	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	5.0	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	5.0	ug/l
84-74-2	Di-n-butyl phthalate	ND	5.0	ug/l
117-84-0	Di-n-octyl phthalate	ND	5.0	ug/l
84-66-2	Diethyl phthalate	ND	5.0	ug/l
131-11-3	Dimethyl phthalate	ND	5.0	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	ug/l
206-44-0	Fluoranthene	ND	5.0	ug/l

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 2

Client Sample ID: B-20/TW

 Lab Sample ID:
 M98416-2
 Date Sampled:
 03/14/11

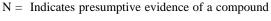
 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

BN PPL List

CAS No.	Compound	Result	RL	Units Q
86-73-7	Fluorene	ND	5.0	ug/l
118-74-1	Hexachlorobenzene	ND	5.0	ug/l
87-68-3	Hexachlorobutadiene	ND	5.0	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	10	ug/l
67-72-1	Hexachloroethane	ND	5.0	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.0	ug/l
78-59-1	Isophorone	ND	5.0	ug/l
91-20-3	Naphthalene	ND	5.0	ug/l
98-95-3	Nitrobenzene	ND	5.0	ug/l
62-75-9	n-Nitrosodimethylamine	ND	5.0	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	5.0	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.0	ug/l
85-01-8	Phenanthrene	ND	5.0	ug/l
129-00-0	Pyrene	ND	5.0	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	79%		30-130%
321-60-8	2-Fluorobiphenyl	80%		30-130%
1718-51-0	Terphenyl-d14	79%		30-130%


ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: B-20/TW

 Lab Sample ID:
 M98416-2
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8082
 SW846 3510C
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 YZ64895.D 1 03/17/11 CZ 03/15/11 OP24345 GYZ6354

Run #2

Initial Volume Final Volume

Run #1 940 ml 5.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	Units	Q
12674-11-2	Aroclor 1016	ND	0.27	ug/l	
11104-28-2	Aroclor 1221	ND	0.27	ug/l	
11141-16-5	Aroclor 1232	ND	0.27	ug/l	
53469-21-9	Aroclor 1242	ND	0.27	ug/l	
12672-29-6	Aroclor 1248	ND	0.27	ug/l	
11097-69-1	Aroclor 1254	ND	0.27	ug/l	
11096-82-5	Aroclor 1260	ND	0.27	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
877-09-8	Tetrachloro-m-xylene	74%		30-1:	50%
877-09-8	Tetrachloro-m-xylene	35%		30-13	50%
2051-24-3	Decachlorobiphenyl	40%		30-13	50%
2051-24-3	Decachlorobiphenyl	39%		30-13	50%

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: B-20/TW Lab Sample ID: M98416-2

Lab Sample ID:M98416-2Date Sampled:03/14/11Matrix:AQ - Ground WaterDate Received:03/15/11Percent Solids:n/a

Project: 80 Steel Street (GS&T)

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	< 4.0	4.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Barium	61.3	50	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Beryllium	< 4.0	4.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Cadmium	< 4.0	4.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Chromium	< 10	10	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Copper	< 25	25	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Lead	10.0	5.0	ug/l	1	03/16/11	03/17/11 PY	SW846 6010C ³	SW846 3010A ⁴
Manganese	204	15	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	03/17/11	03/17/11 MA	SW846 7470A ²	SW846 7471A ⁵
Nickel	< 40	40	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Silver	< 5.0	5.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Zinc	42.5	20	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴

(1) Instrument QC Batch: MA12750
(2) Instrument QC Batch: MA12751
(3) Instrument QC Batch: MA12756
(4) Prep QC Batch: MP16720
(5) Prep QC Batch: MP16727

Page 1 of 1

Client Sample ID: B-20/TW

Lab Sample ID:M98416-2Date Sampled:03/14/11Matrix:AQ - Ground WaterDate Received:03/15/11Percent Solids:n/a

Project: 80 Steel Street (GS&T)

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	03/15/11 10:42	MC	SW846 7196A
Chromium, Trivalent ^a	< 0.020	0.020	mg/l	1	03/16/11 21:50	DA	6010/7196A M/200.7
Cyanide	0.018	0.010	mg/l	1	03/16/11 10:34	MA	SW846 9012

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Page 1 of 2

Client Sample ID: B-1/TW

 Lab Sample ID:
 M98416-3
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 G104095.D 1 03/21/11 TD n/a n/a MSG4199

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
71-43-2	Benzene	78.2	0.50	ug/l	
108-86-1	Bromobenzene	ND	5.0	ug/l	
74-97-5	Bromochloromethane	ND	5.0	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	ug/l	
75-25-2	Bromoform	ND	1.0	ug/l	
74-83-9	Bromomethane	ND	2.0	ug/l	
78-93-3	2-Butanone (MEK)	1070	5.0	ug/l	E
104-51-8	n-Butylbenzene	ND	5.0	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	ug/l	
75-15-0	Carbon disulfide	ND	5.0	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	ug/l	
108-90-7	Chlorobenzene	ND	1.0	ug/l	
75-00-3	Chloroethane	ND	2.0	ug/l	
67-66-3	Chloroform	ND	1.0	ug/l	
74-87-3	Chloromethane	ND	2.0	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l	
75-35-4	1,1-Dichloroethene	83.5	1.0	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	ug/l	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 2

Client Sample ID: B-1/TW

 Lab Sample ID:
 M98416-3
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
594-20-7	2,2-Dichloropropane	ND	5.0	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ug/l	
100-41-4	Ethylbenzene	9.9	1.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	ug/l	
591-78-6	2-Hexanone	ND	5.0	ug/l	
74-88-4	Iodomethane	18.2	5.0	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	195	5.0	ug/l	
74-95-3	Methylene bromide	ND	5.0	ug/l	
75-09-2	Methylene chloride	ND	2.0	ug/l	
91-20-3	Naphthalene	10.5	5.0	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	ug/l	
100-42-5	Styrene	ND	5.0	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	ug/l	
108-88-3	Toluene	77.8	1.0	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/l	
79-01-6	Trichloroethene	ND	1.0	ug/l	
75-69-4	Trichlorofluoromethane	3.6	1.0	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	ug/l	
95-63-6	1,2,4-Trimethylbenzene	11.8	5.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	ug/l	
75-01-4	Vinyl chloride	ND	1.0	ug/l	
	m,p-Xylene	34.4	1.0	ug/l	
95-47-6	o-Xylene	20.6	1.0	ug/l	
1330-20-7	Xylene (total)	55.0	1.0	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
1868-53-7	Dibromofluoromethane	89%		70-1	130%
2037-26-5	Toluene-D8	103%			130%
460-00-4	4-Bromofluorobenzene	89%			130%
					, ,

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 2

Client Sample ID: B-1/TW

 Lab Sample ID:
 M98416-3
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

DF **Analytical Batch** File ID Analyzed By **Prep Date Prep Batch** Run #1 S22214.D 1 03/18/11 PR 03/16/11 OP24348 MSS941 Run #2 a S22277.D 1 03/21/11 PR 03/16/11 OP24348 MSS943

	Initial Volume	Final Volume
Run #1	890 ml	1.0 ml
Run #2	890 ml	1.0 ml

BN PPL List

CAS No.	Compound	Result	RL	Units	Q
83-32-9	Acenaphthene	ND	5.6	ug/l	
208-96-8	Acenaphthylene	ND	5.6	ug/l	
120-12-7	Anthracene	ND	5.6	ug/l	
92-87-5	Benzidine	ND	22	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.6	ug/l	
50-32-8	Benzo(a)pyrene	ND	5.6	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.6	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.6	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.6	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.6	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.6	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.6	ug/l	
106-47-8	4-Chloroaniline	ND	11	ug/l	
218-01-9	Chrysene	ND	5.6	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.6	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.6	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.6	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.6	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	5.6	ug/l	
122-66-7	1,2-Diphenylhydrazine	ND	5.6	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.6	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.6	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	11	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	11	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.6	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.6	ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.6	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.6	ug/l	
84-66-2	Diethyl phthalate	ND	5.6	ug/l	
131-11-3	Dimethyl phthalate	ND	5.6	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	ug/l	
206-44-0	Fluoranthene	ND	5.6	ug/l	

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: B-1/TW

Lab Sample ID: M98416-3 **Date Sampled:** 03/14/11 Matrix: AQ - Ground Water **Date Received:** 03/15/11 SW846 8270C SW846 3510C Method: Percent Solids: n/a

Project: 80 Steel Street (GS&T)

BN PPL List

CAS No.	Compound	Result	RL	Units Q
86-73-7	Fluorene	ND	5.6	ug/l
118-74-1	Hexachlorobenzene	ND	5.6	ug/l
87-68-3	Hexachlorobutadiene	ND	5.6	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	11	ug/l
67-72-1	Hexachloroethane	ND	5.6	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.6	ug/l
78-59-1	Isophorone	ND	5.6	ug/l
91-20-3	Naphthalene	ND	5.6	ug/l
98-95-3	Nitrobenzene	ND	5.6	ug/l
62-75-9	n-Nitrosodimethylamine	ND	5.6	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	5.6	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.6	ug/l
85-01-8	Phenanthrene	ND	5.6	ug/l
129-00-0	Pyrene	ND	5.6	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	5.6	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	20% b	20% b	30-130%
321-60-8	2-Fluorobiphenyl	18% b	18% b	30-130%
1718-51-0	Terphenyl-d14	17% b	17% b	30-130%

⁽a) Confirmation run.

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Outside control limits due to possible matrix interference. Confirmed by reanalysis. Insufficient sample volume for re-extraction.

Page 1 of 1

Client Sample ID: B-1/TW

 Lab Sample ID:
 M98416-3
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8082
 SW846 3510C
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 YZ64896.D 1 03/17/11 CZ 03/15/11 OP24345 GYZ6354

Run #2

Initial Volume Final Volume

Run #1 920 ml 5.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	Units	Q
12674-11-2	Aroclor 1016	ND	0.27	ug/l	
11104-28-2	Aroclor 1221	ND	0.27	ug/l	
11141-16-5	Aroclor 1232	ND	0.27	ug/l	
53469-21-9	Aroclor 1242	ND	0.27	ug/l	
12672-29-6	Aroclor 1248	ND	0.27	ug/l	
11097-69-1	Aroclor 1254	ND	0.27	ug/l	
11096-82-5	Aroclor 1260	ND	0.27	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
877-09-8	Tetrachloro-m-xylene	40%		30-150	%
877-09-8	Tetrachloro-m-xylene	41%		30-150	%
2051-24-3	Decachlorobiphenyl	32%		30-150	%
2051-24-3	Decachlorobiphenyl	27%		30-150	%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: B-1/TW
Lab Sample ID: M98416-3
Date Sampled: 03/14/11
Matrix: AQ - Ground Water
Date Received: 03/15/11

Date Received: 03/15/11 **Percent Solids:** n/a

Project: 80 Steel Street (GS&T)

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	< 4.0	4.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Barium	900	50	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Beryllium	< 4.0	4.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Cadmium	< 4.0	4.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Chromium	< 10	10	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Copper	< 25	25	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Lead	< 5.0	5.0	ug/l	1	03/16/11	03/17/11 PY	SW846 6010C ³	SW846 3010A ⁴
Manganese	1320	15	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	03/17/11	03/17/11 MA	SW846 7470A ²	SW846 7471A ⁵
Nickel	< 40	40	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Silver	< 5.0	5.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Zinc	< 20	20	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴

(1) Instrument QC Batch: MA12750
(2) Instrument QC Batch: MA12751
(3) Instrument QC Batch: MA12756
(4) Prep QC Batch: MP16720
(5) Prep QC Batch: MP16727

Page 1 of 1

Client Sample ID: B-1/TW

Lab Sample ID:M98416-3Date Sampled:03/14/11Matrix:AQ - Ground WaterDate Received:03/15/11Percent Solids:n/a

Project: 80 Steel Street (GS&T)

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	03/15/11 10:42		SW846 7196A
Chromium, Trivalent ^a	< 0.020	0.020	mg/l	1	03/16/11 21:54	- DA	6010/7196A M/200.7
Cyanide	< 0.010	0.010	mg/l	1	03/16/11 10:35	MA	SW846 9012

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Page 1 of 3

Client Sample ID: B-3/TW

 Lab Sample ID:
 M98416-4
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 G104096.D 1 03/21/11 TD n/a n/a MSG4199

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	Units Q
67-64-1	Acetone	370	5.0	ug/l
71-43-2	Benzene	1.1	0.50	ug/l
108-86-1	Bromobenzene	ND	5.0	ug/l
74-97-5	Bromochloromethane	ND	5.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
75-25-2	Bromoform	ND	1.0	ug/l
74-83-9	Bromomethane	ND	2.0	ug/l
78-93-3	2-Butanone (MEK)	61.1	5.0	ug/l
104-51-8	n-Butylbenzene	ND	5.0	ug/l
135-98-8	sec-Butylbenzene	ND	5.0	ug/l
98-06-6	tert-Butylbenzene	ND	5.0	ug/l
75-15-0	Carbon disulfide	ND	5.0	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	ug/l
108-90-7	Chlorobenzene	ND	1.0	ug/l
75-00-3	Chloroethane	ND	2.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
74-87-3	Chloromethane	2.7	2.0	ug/l
95-49-8	o-Chlorotoluene	ND	5.0	ug/l
106-43-4	p-Chlorotoluene	ND	5.0	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	ug/l
124-48-1	Dibromochloromethane	ND	1.0	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethene	21.9	1.0	ug/l
156-59-2	cis-1,2-Dichloroethene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ug/l
78-87-5	1,2-Dichloropropane	ND	2.0	ug/l

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 3

Client Sample ID: B-3/TW

 Lab Sample ID:
 M98416-4
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Compound	Result	RL	Units (Q
142-28-9	1,3-Dichloropropane	ND	5.0	ug/l	
594-20-7	2,2-Dichloropropane	ND	5.0	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	ug/l	
591-78-6	2-Hexanone	ND	5.0	ug/l	
74-88-4	Iodomethane	7.3	5.0	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	16.6	1.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	36.4	5.0	ug/l	
74-95-3	Methylene bromide	ND	5.0	ug/l	
75-09-2	Methylene chloride	ND	2.0	ug/l	
91-20-3	Naphthalene	ND	5.0	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	ug/l	
100-42-5	Styrene	ND	5.0	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	ug/l	
108-88-3	Toluene	1.5	1.0	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/l	
79-01-6	Trichloroethene	ND	1.0	ug/l	
75-69-4	Trichlorofluoromethane	6.9	1.0	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	ug/l	
75-01-4	Vinyl chloride	ND	1.0	ug/l	
	m,p-Xylene	ND	1.0	ug/l	
95-47-6	o-Xylene	ND	1.0	ug/l	
1330-20-7	Xylene (total)	ND	1.0	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
1060 52 7	D.1 Cl 4	0.60/		70.120	0/

86%

ND = Not detected

1868-53-7

RL = Reporting Limit

E = Indicates value exceeds calibration range

Dibromofluoromethane

J = Indicates an estimated value

70-130%

Page 3 of 3

Client Sample ID: B-3/TW

 Lab Sample ID:
 M98416-4
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	101%		70-130%
460-00-4	4-Bromofluorobenzene	80%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 2

Client Sample ID: B-3/TW

 Lab Sample ID:
 M98416-4
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 S22215.D 1 03/18/11 PR 03/16/11 OP24348 MSS941

Run #2

Initial Volume Final Volume

Run #1 960 ml 1.0 ml

Run #2

BN PPL List

CAS No.	Compound	Result	RL	Units Q	
83-32-9	Acenaphthene	ND	5.2	ug/l	
208-96-8	Acenaphthylene	ND	5.2	ug/l	
120-12-7	Anthracene	ND	5.2	ug/l	
92-87-5	Benzidine	ND	21	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.2	ug/l	
50-32-8	Benzo(a)pyrene	ND	5.2	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.2	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.2	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.2	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.2	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.2	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.2	ug/l	
106-47-8	4-Chloroaniline	ND	10	ug/l	
218-01-9	Chrysene	ND	5.2	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.2	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.2	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.2	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.2	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	5.2	ug/l	
122-66-7	1,2-Diphenylhydrazine	ND	5.2	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.2	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.2	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	10	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	10	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.2	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.2	ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.2	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.2	ug/l	
84-66-2	Diethyl phthalate	ND	5.2	ug/l	
131-11-3	Dimethyl phthalate	ND	5.2	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	ug/l	
206-44-0	Fluoranthene	ND	5.2	ug/l	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: B-3/TW

 Lab Sample ID:
 M98416-4
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

BN PPL List

CAS No.	Compound	Result	RL	Units Q
86-73-7	Fluorene	ND	5.2	ug/l
118-74-1	Hexachlorobenzene	ND	5.2	ug/l
87-68-3	Hexachlorobutadiene	ND	5.2	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	10	ug/l
67-72-1	Hexachloroethane	ND	5.2	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.2	ug/l
78-59-1	Isophorone	ND	5.2	ug/l
91-20-3	Naphthalene	ND	5.2	ug/l
98-95-3	Nitrobenzene	ND	5.2	ug/l
62-75-9	n-Nitrosodimethylamine	ND	5.2	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	5.2	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.2	ug/l
85-01-8	Phenanthrene	ND	5.2	ug/l
129-00-0	Pyrene	ND	5.2	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	5.2	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	81%		30-130%
321-60-8	2-Fluorobiphenyl	88%		30-130%
1718-51-0	Terphenyl-d14	85%		30-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: B-3/TW

Lab Sample ID: M98416-4 **Date Sampled:** 03/14/11 **Matrix:** AQ - Ground Water **Date Received:** 03/15/11 Method: SW846 8082 SW846 3510C Percent Solids: n/a

Project: 80 Steel Street (GS&T)

Analytical Batch File ID DF Analyzed By **Prep Date Prep Batch** Run #1 YZ64897.D 1 03/17/11 CZ03/15/11 OP24345 GYZ6354

Run #2

Final Volume Initial Volume

Run #1 940 ml 5.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	Units	Q
12674-11-2	Aroclor 1016	ND	0.27	ug/l	
11104-28-2	Aroclor 1221	ND	0.27	ug/l	
11141-16-5	Aroclor 1232	ND	0.27	ug/l	
53469-21-9	Aroclor 1242	ND	0.27	ug/l	
12672-29-6	Aroclor 1248	ND	0.27	ug/l	
11097-69-1	Aroclor 1254	ND	0.27	ug/l	
11096-82-5	Aroclor 1260	ND	0.27	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	S
877-09-8	Tetrachloro-m-xylene	54%		30-15	0%
877-09-8	Tetrachloro-m-xylene	49%		30-15	0%
2051-24-3	Decachlorobiphenyl	31%		30-15	0%
2051-24-3	Decachlorobiphenyl	28% a		30-15	0%
877-09-8 2051-24-3	Tetrachloro-m-xylene Decachlorobiphenyl	49% 31%		30-15 30-15	0% 0%

(a) Outside control limits due to possible matrix interference.

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: B-3/TW

Lab Sample ID:M98416-4Date Sampled:03/14/11Matrix:AQ - Ground WaterDate Received:03/15/11Percent Solids:n/a

Project: 80 Steel Street (GS&T)

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	5.5	4.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Barium	361	50	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Beryllium	< 4.0	4.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Cadmium	< 4.0	4.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Chromium	97.2	10	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Copper	123	25	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Lead	32.8	5.0	ug/l	1	03/16/11	03/17/11 PY	SW846 6010C ³	SW846 3010A ⁴
Manganese	265	15	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	03/17/11	03/17/11 MA	SW846 7470A ²	SW846 7471A ⁵
Nickel	< 40	40	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Silver	< 5.0	5.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Zinc	76.1	20	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴

(1) Instrument QC Batch: MA12750
(2) Instrument QC Batch: MA12751
(3) Instrument QC Batch: MA12756
(4) Prep QC Batch: MP16720
(5) Prep QC Batch: MP16727

Page 1 of 1

Client Sample ID: B-3/TW

Lab Sample ID:M98416-4Date Sampled:03/14/11Matrix:AQ - Ground WaterDate Received:03/15/11Percent Solids:n/a

Project: 80 Steel Street (GS&T)

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	0.055	0.010	mg/l	1	03/15/11 10:42	MC	SW846 7196A
Chromium, Trivalent ^a	0.042	0.020	mg/l	1	03/16/11 21:59	DA	6010/7196A M/200.7
Cyanide	< 0.010	0.010	mg/l	1	03/16/11 10:36	MA	SW846 9012

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Page 1 of 3

Client Sample ID: B-5/TW

 Lab Sample ID:
 M98416-5
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 G104097.D 1 03/21/11 TD n/a n/a MSG4199

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
67-64-1	Acetone	276	5.0	ug/l	
71-43-2	Benzene	7.0	0.50	ug/l	
108-86-1	Bromobenzene	ND	5.0	ug/l	
74-97-5	Bromochloromethane	ND	5.0	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	ug/l	
75-25-2	Bromoform	ND	1.0	ug/l	
74-83-9	Bromomethane	ND	2.0	ug/l	
78-93-3	2-Butanone (MEK)	45.3	5.0	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	ug/l	
75-15-0	Carbon disulfide	ND	5.0	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	ug/l	
108-90-7	Chlorobenzene	ND	1.0	ug/l	
75-00-3	Chloroethane	ND	2.0	ug/l	
67-66-3	Chloroform	ND	1.0	ug/l	
74-87-3	Chloromethane	ND	2.0	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l	
75-35-4	1,1-Dichloroethene	32.2	1.0	ug/l	
156-59-2	cis-1,2-Dichloroethene	6.6	1.0	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	ug/l	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: B-5/TW

Lab Sample ID: M98416-5 **Date Sampled:** 03/14/11 Matrix: **Date Received:** 03/15/11 AQ - Ground Water Method: SW846 8260B Percent Solids: n/a

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
142-28-9	1,3-Dichloropropane	ND	5.0	ug/l	
594-20-7	2,2-Dichloropropane	ND	5.0	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ug/l	
100-41-4	Ethylbenzene	3.5	1.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	ug/l	
591-78-6	2-Hexanone	ND	5.0	ug/l	
74-88-4	Iodomethane	ND	5.0	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	7.8	1.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	40.8	5.0	ug/l	
74-95-3	Methylene bromide	ND	5.0	ug/l	
75-09-2	Methylene chloride	ND	2.0	ug/l	
91-20-3	Naphthalene	ND	5.0	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	ug/l	
100-42-5	Styrene	ND	5.0	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ug/l	
127-18-4	Tetrachloroethene	12.3	1.0	ug/l	
108-88-3	Toluene	10.7	1.0	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/l	
79-01-6	Trichloroethene	7.7	1.0	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	ug/l	
75-01-4	Vinyl chloride	10.3	1.0	ug/l	
	m,p-Xylene	10.4	1.0	ug/l	
95-47-6	o-Xylene	7.0	1.0	ug/l	
1330-20-7	Xylene (total)	17.3	1.0	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its
1868-53-7	Dibromofluoromethane	88%		70-1	30%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 3 of 3

Client Sample ID: B-5/TW

 Lab Sample ID:
 M98416-5
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	98%		70-130%
460-00-4	4-Bromofluorobenzene	82%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 2

Client Sample ID: B-5/TW

 Lab Sample ID:
 M98416-5
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 S22216.D 1 03/18/11 PR 03/16/11 OP24348 MSS941

Run #2

Initial Volume Final Volume

Run #1 960 ml 1.0 ml

Run #2

BN PPL List

CAS No.	Compound	Result	RL	Units	Q
83-32-9	Acenaphthene	ND	5.2	ug/l	
208-96-8	Acenaphthylene	ND	5.2	ug/l	
120-12-7	Anthracene	ND	5.2	ug/l	
92-87-5	Benzidine	ND	21	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.2	ug/l	
50-32-8	Benzo(a)pyrene	ND	5.2	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.2	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.2	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.2	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.2	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.2	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.2	ug/l	
106-47-8	4-Chloroaniline	ND	10	ug/l	
218-01-9	Chrysene	ND	5.2	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.2	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.2	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.2	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.2	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	5.2	ug/l	
122-66-7	1,2-Diphenylhydrazine	ND	5.2	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.2	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.2	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	10	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	10	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.2	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.2	ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.2	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.2	ug/l	
84-66-2	Diethyl phthalate	ND	5.2	ug/l	
131-11-3	Dimethyl phthalate	ND	5.2	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	ug/l	
206-44-0	Fluoranthene	ND	5.2	ug/l	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: B-5/TW

 Lab Sample ID:
 M98416-5
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

BN PPL List

CAS No.	Compound	Result	RL	Units Q
86-73-7	Fluorene	ND	5.2	ug/l
118-74-1	Hexachlorobenzene	ND	5.2	ug/l
87-68-3	Hexachlorobutadiene	ND	5.2	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	10	ug/l
67-72-1	Hexachloroethane	ND	5.2	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.2	ug/l
78-59-1	Isophorone	ND	5.2	ug/l
91-20-3	Naphthalene	ND	5.2	ug/l
98-95-3	Nitrobenzene	ND	5.2	ug/l
62-75-9	n-Nitrosodimethylamine	ND	5.2	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	5.2	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.2	ug/l
85-01-8	Phenanthrene	ND	5.2	ug/l
129-00-0	Pyrene	ND	5.2	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	5.2	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	81%		30-130%
321-60-8	2-Fluorobiphenyl	81%		30-130%
1718-51-0	Terphenyl-d14	78%		30-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: B-5/TW

 Lab Sample ID:
 M98416-5
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8082
 SW846 3510C
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	YZ64898.D	1	03/17/11	CZ	03/15/11	OP24345	GYZ6354
Run #2							

Run #1 1000 ml 5.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND ND ND ND	0.25 0.25 0.25 0.25 0.25 0.25 0.25	ug/l ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	-
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	42% 47% 28% ^a 30%		30-150 30-150 30-150 30-150	0% 0%

(a) Outside control limits due to possible matrix interference.

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: B-5/TW Lab Sample ID: M98416-5

Lab Sample ID:M98416-5Date Sampled:03/14/11Matrix:AQ - Ground WaterDate Received:03/15/11Percent Solids:n/a

Project: 80 Steel Street (GS&T)

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	17.7	4.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Barium	2220	50	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Beryllium	< 4.0	4.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Cadmium	< 4.0	4.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Chromium	19.3	10	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Copper	61.2	25	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Lead	56.8	5.0	ug/l	1	03/16/11	03/17/11 PY	SW846 6010C ³	SW846 3010A ⁴
Manganese	181	15	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Mercury	0.30	0.20	ug/l	1	03/17/11	03/17/11 MA	SW846 7470A ²	SW846 7471A ⁵
Nickel	< 40	40	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Silver	< 5.0	5.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Zinc	454	20	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴

(1) Instrument QC Batch: MA12750
(2) Instrument QC Batch: MA12751
(3) Instrument QC Batch: MA12756
(4) Prep QC Batch: MP16720
(5) Prep QC Batch: MP16727

Page 1 of 1

Client Sample ID: B-5/TW

Lab Sample ID:M98416-5Date Sampled:03/14/11Matrix:AQ - Ground WaterDate Received:03/15/11Percent Solids:n/a

Project: 80 Steel Street (GS&T)

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	03/15/11 10:45	MC	SW846 7196A
Chromium, Trivalent ^a	< 0.020	0.020	mg/l	1	03/16/11 22:03	DA	6010/7196A M/200.7
Cyanide	< 0.010	0.010	mg/l	1	03/16/11 10:37	MA	SW846 9012

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Page 1 of 3

Client Sample ID: B-8/TW

 Lab Sample ID:
 M98416-6
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 G104098.D 1 03/21/11 TD n/a n/a MSG4199

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	Units Q
67-64-1	Acetone	131	5.0	ug/l
71-43-2	Benzene	0.68	0.50	ug/l
108-86-1	Bromobenzene	ND	5.0	ug/l
74-97-5	Bromochloromethane	ND	5.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
75-25-2	Bromoform	ND	1.0	ug/l
74-83-9	Bromomethane	ND	2.0	ug/l
78-93-3	2-Butanone (MEK)	13.3	5.0	ug/l
104-51-8	n-Butylbenzene	ND	5.0	ug/l
135-98-8	sec-Butylbenzene	ND	5.0	ug/l
98-06-6	tert-Butylbenzene	ND	5.0	ug/l
75-15-0	Carbon disulfide	ND	5.0	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	ug/l
108-90-7	Chlorobenzene	ND	1.0	ug/l
75-00-3	Chloroethane	ND	2.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
74-87-3	Chloromethane	ND	2.0	ug/l
95-49-8	o-Chlorotoluene	ND	5.0	ug/l
106-43-4	p-Chlorotoluene	ND	5.0	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	ug/l
124-48-1	Dibromochloromethane	ND	1.0	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethene	6.3	1.0	ug/l
156-59-2	cis-1,2-Dichloroethene	4.5	1.0	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ug/l
78-87-5	1,2-Dichloropropane	ND	2.0	ug/l

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: B-8/TW

Lab Sample ID: M98416-6 **Date Sampled:** 03/14/11 Matrix: **Date Received:** 03/15/11 AQ - Ground Water Method: SW846 8260B Percent Solids: n/a

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
142-28-9	1,3-Dichloropropane	ND	5.0	ug/l	
594-20-7	2,2-Dichloropropane	ND	5.0	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	ug/l	
591-78-6	2-Hexanone	ND	5.0	ug/l	
74-88-4	Iodomethane	ND	5.0	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	2.4	1.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	10.1	5.0	ug/l	
74-95-3	Methylene bromide	ND	5.0	ug/l	
75-09-2	Methylene chloride	ND	2.0	ug/l	
91-20-3	Naphthalene	ND	5.0	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	ug/l	
100-42-5	Styrene	ND	5.0	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	ug/l	
108-88-3	Toluene	ND	1.0	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/l	
79-01-6	Trichloroethene	ND	1.0	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	ug/l	
75-01-4	Vinyl chloride	ND	1.0	ug/l	
	m,p-Xylene	ND	1.0	ug/l	
95-47-6	o-Xylene	ND	1.0	ug/l	
1330-20-7	Xylene (total)	ND	1.0	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
1868-53-7	Dibromofluoromethane	85%		70-13	30%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 3 of 3

Client Sample ID: B-8/TW

 Lab Sample ID:
 M98416-6
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	89%		70-130%
460-00-4	4-Bromofluorobenzene	83%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 2

Client Sample ID: B-8/TW

 Lab Sample ID:
 M98416-6
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1S22217.D103/18/11PR03/16/11OP24348MSS941

Run #2

Initial Volume Final Volume

Run #1 960 ml 1.0 ml

Run #2

BN PPL List

CAS No.	Compound	Result	RL	Units	Q
83-32-9	Acenaphthene	ND	5.2	ug/l	
208-96-8	Acenaphthylene	ND	5.2	ug/l	
120-12-7	Anthracene	ND	5.2	ug/l	
92-87-5	Benzidine	ND	21	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.2	ug/l	
50-32-8	Benzo(a)pyrene	ND	5.2	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.2	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.2	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.2	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.2	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.2	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.2	ug/l	
106-47-8	4-Chloroaniline	ND	10	ug/l	
218-01-9	Chrysene	ND	5.2	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.2	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.2	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.2	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.2	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	5.2	ug/l	
122-66-7	1,2-Diphenylhydrazine	ND	5.2	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.2	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.2	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	10	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	10	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.2	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.2	ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.2	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.2	ug/l	
84-66-2	Diethyl phthalate	ND	5.2	ug/l	
131-11-3	Dimethyl phthalate	ND	5.2	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	ug/l	
206-44-0	Fluoranthene	ND	5.2	ug/l	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 2

Client Sample ID: B-8/TW

Lab Sample ID: M98416-6 **Date Sampled:** 03/14/11 Matrix: **Date Received:** 03/15/11 AQ - Ground Water SW846 8270C SW846 3510C Method: Percent Solids: n/a

80 Steel Street (GS&T) **Project:**

BN PPL List

CAS No.	Compound	Result	RL	Units Q
86-73-7	Fluorene	ND	5.2	ug/l
118-74-1	Hexachlorobenzene	ND	5.2	ug/l
87-68-3	Hexachlorobutadiene	ND	5.2	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	10	ug/l
67-72-1	Hexachloroethane	ND	5.2	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.2	ug/l
78-59-1	Isophorone	ND	5.2	ug/l
91-20-3	Naphthalene	ND	5.2	ug/l
98-95-3	Nitrobenzene	ND	5.2	ug/l
62-75-9	n-Nitrosodimethylamine	ND	5.2	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	5.2	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.2	ug/l
85-01-8	Phenanthrene	ND	5.2	ug/l
129-00-0	Pyrene	ND	5.2	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	5.2	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	78%		30-130%
321-60-8	2-Fluorobiphenyl	78%		30-130%
1718-51-0	Terphenyl-d14	81%		30-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: B-8/TW

 Lab Sample ID:
 M98416-6
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8082
 SW846 3510C
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 YZ64899.D 1 03/17/11 CZ 03/15/11 OP24345 GYZ6354

Run #2

Initial Volume Final Volume

Run #1 1000 ml 5.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	Units Q
12674-11-2	Aroclor 1016	ND	0.25	ug/l
11104-28-2	Aroclor 1221	ND	0.25	ug/l
11141-16-5	Aroclor 1232	ND	0.25	ug/l
53469-21-9	Aroclor 1242	ND	0.25	ug/l
12672-29-6	Aroclor 1248	ND	0.25	ug/l
11097-69-1	Aroclor 1254	ND	0.25	ug/l
11096-82-5	Aroclor 1260	ND	0.25	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	50%		30-150%
877-09-8	Tetrachloro-m-xylene	56%		30-150%
2051-24-3	Decachlorobiphenyl	49%		30-150%
2051-24-3	Decachlorobiphenyl	52%		30-150%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: B-8/TW

Lab Sample ID:M98416-6Date Sampled:03/14/11Matrix:AQ - Ground WaterDate Received:03/15/11Percent Solids:n/a

Project: 80 Steel Street (GS&T)

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	< 4.0	4.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Barium	196	50	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Beryllium	< 4.0	4.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Cadmium	< 4.0	4.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Chromium	< 10	10	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Copper	< 25	25	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Lead	< 5.0	5.0	ug/l	1	03/16/11	03/17/11 PY	SW846 6010C ³	SW846 3010A ⁴
Manganese	1820	15	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	03/17/11	03/17/11 MA	SW846 7470A ²	SW846 7471A ⁵
Nickel	< 40	40	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Silver	< 5.0	5.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Zinc	21.8	20	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴

(1) Instrument QC Batch: MA12750
(2) Instrument QC Batch: MA12751
(3) Instrument QC Batch: MA12756
(4) Prep QC Batch: MP16720
(5) Prep QC Batch: MP16727

Page 1 of 1

Client Sample ID: B-8/TW

Lab Sample ID:M98416-6Date Sampled:03/14/11Matrix:AQ - Ground WaterDate Received:03/15/11Percent Solids:n/a

Project: 80 Steel Street (GS&T)

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	03/15/11 10:45	MC	SW846 7196A
Chromium, Trivalent ^a	< 0.020	0.020	mg/l	1	03/16/11 22:08	DA	6010/7196A M/200.7
Cyanide	< 0.010	0.010	mg/l	1	03/16/11 10:38	MA	SW846 9012

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Page 1 of 3

Client Sample ID: B-12/TW

 Lab Sample ID:
 M98416-7
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 G104142.D 1 03/22/11 TD n/a n/a MSG4202

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
67-64-1	Acetone	71.8	5.0	ug/l	
71-43-2	Benzene	1.6	0.50	ug/l	
108-86-1	Bromobenzene	ND	5.0	ug/l	
74-97-5	Bromochloromethane	ND	5.0	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	ug/l	
75-25-2	Bromoform	ND	1.0	ug/l	
74-83-9	Bromomethane	ND	2.0	ug/l	
78-93-3	2-Butanone (MEK)	9.0	5.0	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	ug/l	
75-15-0	Carbon disulfide	ND	5.0	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	ug/l	
108-90-7	Chlorobenzene	ND	1.0	ug/l	
75-00-3	Chloroethane	ND	2.0	ug/l	
67-66-3	Chloroform	ND	1.0	ug/l	
74-87-3	Chloromethane	ND	2.0	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	ug/l	
156-59-2	cis-1,2-Dichloroethene	5.3	1.0	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	ug/l	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 3

Client Sample ID: B-12/TW

Lab Sample ID: M98416-7 **Date Sampled:** 03/14/11 Matrix: **Date Received:** 03/15/11 AQ - Ground Water Method: Percent Solids: n/a SW846 8260B

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Compound	Result	RL	Units Q
142-28-9	1,3-Dichloropropane	ND	5.0	ug/l
594-20-7	2,2-Dichloropropane	ND	5.0	ug/l
563-58-6	1,1-Dichloropropene	ND	5.0	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ug/l
100-41-4	Ethylbenzene	ND	1.0	ug/l
87-68-3	Hexachlorobutadiene	ND	5.0	ug/l
591-78-6	2-Hexanone	ND	5.0	ug/l
74-88-4	Iodomethane	ND	5.0	ug/l
98-82-8	Isopropylbenzene	ND	5.0	ug/l
99-87-6	p-Isopropyltoluene	ND	5.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	1.8	1.0	ug/l
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	ug/l
74-95-3	Methylene bromide	ND	5.0	ug/l
75-09-2	Methylene chloride	ND	2.0	ug/l
91-20-3	Naphthalene	ND	5.0	ug/l
103-65-1	n-Propylbenzene	ND	5.0	ug/l
100-42-5	Styrene	ND	5.0	ug/l
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/l
79-01-6	Trichloroethene	ND	1.0	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
96-18-4	1,2,3-Trichloropropane	ND	5.0	ug/l
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	ug/l
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	ug/l
108-05-4	Vinyl Acetate	ND	5.0	ug/l
75-01-4	Vinyl chloride	4.3	1.0	ug/l
	m,p-Xylene	1.7	1.0	ug/l
95-47-6	o-Xylene	3.3	1.0	ug/l
1330-20-7	Xylene (total)	5.0	1.0	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1070 52 7	D'1	070/		70.1200/

70-130% 1868-53-7 Dibromofluoromethane 87%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 3 of 3

Client Sample ID: B-12/TW

 Lab Sample ID:
 M98416-7
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	97%		70-130%
460-00-4	4-Bromofluorobenzene	92%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 2

Client Sample ID: B-12/TW

 Lab Sample ID:
 M98416-7
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 S22218.D 1 03/18/11 PR 03/16/11 OP24348 MSS941

Run #2

Initial Volume Final Volume

Run #1 950 ml 1.0 ml

Run #2

BN PPL List

CAS No.	Compound	Result	RL	Units	Q
83-32-9	Acenaphthene	ND	5.3	ug/l	
208-96-8	Acenaphthylene	ND	5.3	ug/l	
120-12-7	Anthracene	ND	5.3	ug/l	
92-87-5	Benzidine	ND	21	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.3	ug/l	
50-32-8	Benzo(a)pyrene	ND	5.3	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.3	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.3	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.3	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.3	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.3	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.3	ug/l	
106-47-8	4-Chloroaniline	ND	11	ug/l	
218-01-9	Chrysene	ND	5.3	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.3	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.3	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.3	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.3	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	5.3	ug/l	
122-66-7	1,2-Diphenylhydrazine	ND	5.3	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.3	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.3	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	11	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	11	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.3	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.3	ug/l	
84-74-2	Di-n-butyl phthalate	ND	5.3	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.3	ug/l	
84-66-2	Diethyl phthalate	ND	5.3	ug/l	
131-11-3	Dimethyl phthalate	ND	5.3	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	ug/l	
206-44-0	Fluoranthene	ND	5.3	ug/l	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 2

Client Sample ID: B-12/TW

 Lab Sample ID:
 M98416-7
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

BN PPL List

CAS No.	Compound	Result	RL	Units Q
86-73-7	Fluorene	ND	5.3	ug/l
118-74-1	Hexachlorobenzene	ND	5.3	ug/l
87-68-3	Hexachlorobutadiene	ND	5.3	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	11	ug/l
67-72-1	Hexachloroethane	ND	5.3	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.3	ug/l
78-59-1	Isophorone	ND	5.3	ug/l
91-20-3	Naphthalene	ND	5.3	ug/l
98-95-3	Nitrobenzene	ND	5.3	ug/l
62-75-9	n-Nitrosodimethylamine	ND	5.3	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	5.3	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.3	ug/l
85-01-8	Phenanthrene	ND	5.3	ug/l
129-00-0	Pyrene	ND	5.3	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	5.3	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	69%		30-130%
321-60-8	2-Fluorobiphenyl	66%		30-130%
1718-51-0	Terphenyl-d14	66%		30-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: B-12/TW

 Lab Sample ID:
 M98416-7
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8082
 SW846 3510C
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 YZ64901.D 1 03/17/11 CZ 03/15/11 OP24345 GYZ6354

Run #2

Initial Volume Final Volume

Run #1 920 ml 5.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	Units Q
12674-11-2	Aroclor 1016	ND	0.27	ug/l
11104-28-2	Aroclor 1221	ND	0.27	ug/l
11141-16-5	Aroclor 1232	ND	0.27	ug/l
53469-21-9	Aroclor 1242	ND	0.27	ug/l
12672-29-6	Aroclor 1248	ND	0.27	ug/l
11097-69-1	Aroclor 1254	ND	0.27	ug/l
11096-82-5	Aroclor 1260	ND	0.27	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	85%		30-150%
877-09-8	Tetrachloro-m-xylene	47%		30-150%
2051-24-3	Decachlorobiphenyl	32%		30-150%
2051-24-3	Decachlorobiphenyl	33%		30-150%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: B-12/TW

Lab Sample ID:M98416-7Date Sampled:03/14/11Matrix:AQ - Ground WaterDate Received:03/15/11Percent Solids:n/a

Project: 80 Steel Street (GS&T)

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	< 4.0	4.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Barium	< 50	50	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Beryllium	< 4.0	4.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Cadmium	< 4.0	4.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Chromium	< 10	10	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Copper	< 25	25	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Lead	6.7	5.0	ug/l	1	03/16/11	03/17/11 PY	SW846 6010C ³	SW846 3010A ⁴
Manganese	374	15	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	03/17/11	03/17/11 MA	SW846 7470A ²	SW846 7471A ⁵
Nickel	< 40	40	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Silver	< 5.0	5.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Zinc	48.6	20	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴

(1) Instrument QC Batch: MA12750
(2) Instrument QC Batch: MA12751
(3) Instrument QC Batch: MA12756
(4) Prep QC Batch: MP16720
(5) Prep QC Batch: MP16727

Page 1 of 1

Client Sample ID: B-12/TW

Lab Sample ID:M98416-7Date Sampled:03/14/11Matrix:AQ - Ground WaterDate Received:03/15/11Percent Solids:n/a

Project: 80 Steel Street (GS&T)

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	03/15/11 10:45	MC	SW846 7196A
Chromium, Trivalent ^a	< 0.020	0.020	mg/l	1	03/16/11 22:12	DA	6010/7196A M/200.7
Cyanide	< 0.010	0.010	mg/l	1	03/16/11 10:40	MA	SW846 9012

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Page 1 of 3

Client Sample ID: B-13/TW

 Lab Sample ID:
 M98416-8
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	G104099.D	1	03/21/11	TD	n/a	n/a	MSG4199
Run #2	G104144.D	50	03/22/11	TD	n/a	n/a	MSG4202

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

VOA 8260 List

CAS No.	Compound	Result	RL	Units Q	
67-64-1	Acetone	160	5.0	ug/l	
71-43-2	Benzene	2200 a	25	ug/l	
108-86-1	Bromobenzene	ND	5.0	ug/l	
74-97-5	Bromochloromethane	ND	5.0	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	ug/l	
75-25-2	Bromoform	ND	1.0	ug/l	
74-83-9	Bromomethane	ND	2.0	ug/l	
78-93-3	2-Butanone (MEK)	36.6	5.0	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	ug/l	
135-98-8	sec-Butylbenzene	ND	5.0	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	ug/l	
75-15-0	Carbon disulfide	ND	5.0	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	ug/l	
108-90-7	Chlorobenzene	ND	1.0	ug/l	
75-00-3	Chloroethane	ND	2.0	ug/l	
67-66-3	Chloroform	ND	1.0	ug/l	
74-87-3	Chloromethane	ND	2.0	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	ug/l	

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 3

Client Sample ID: B-13/TW

 Lab Sample ID:
 M98416-8
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
142-28-9	1,3-Dichloropropane	ND	5.0	ug/l	
594-20-7	2,2-Dichloropropane	ND	5.0	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ug/l	
100-41-4	Ethylbenzene	287	1.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	ug/l	
591-78-6	2-Hexanone	ND	5.0	ug/l	
74-88-4	Iodomethane	ND	5.0	ug/l	
98-82-8	Isopropylbenzene	12.9	5.0	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	6.9	1.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	36.4	5.0	ug/l	
74-95-3	Methylene bromide	ND	5.0	ug/l	
75-09-2	Methylene chloride	ND	2.0	ug/l	
91-20-3	Naphthalene	30.3	5.0	ug/l	
103-65-1	n-Propylbenzene	20.4	5.0	ug/l	
100-42-5	Styrene	ND	5.0	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	ug/l	
108-88-3	Toluene	3360 a	50	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/l	
79-01-6	Trichloroethene	ND	1.0	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	ug/l	
95-63-6	1,2,4-Trimethylbenzene	173	5.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	34.6	5.0	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	ug/l	
75-01-4	Vinyl chloride	1.4	1.0	ug/l	
	m,p-Xylene	846 ^a	50	ug/l	
95-47-6	o-Xylene	447 ^a	50	ug/l	
1330-20-7	Xylene (total)	1290 a	50	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
1868-53-7	Dibromofluoromethane	83%	86%	70-1	30%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 3 of 3

Client Sample ID: B-13/TW

 Lab Sample ID:
 M98416-8
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	96%	100%	70-130%
460-00-4	4-Bromofluorobenzene	83%	89%	70-130%

(a) Result is from Run# 2

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 2

Client Sample ID: B-13/TW

 Lab Sample ID:
 M98416-8
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 S22219.D 1 03/18/11 PR 03/16/11 OP24348 MSS941

Run #2

Initial Volume Final Volume

Run #1 940 ml 1.0 ml

Run #2

BN PPL List

CAS No.	Compound	Result	RL	Units Q
83-32-9	Acenaphthene	ND	5.3	ug/l
208-96-8	Acenaphthylene	ND	5.3	ug/l
120-12-7	Anthracene	ND	5.3	ug/l
92-87-5	Benzidine	ND	21	ug/l
56-55-3	Benzo(a)anthracene	ND	5.3	ug/l
50-32-8	Benzo(a)pyrene	ND	5.3	ug/l
205-99-2	Benzo(b)fluoranthene	ND	5.3	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	5.3	ug/l
207-08-9	Benzo(k)fluoranthene	ND	5.3	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	5.3	ug/l
85-68-7	Butyl benzyl phthalate	ND	5.3	ug/l
91-58-7	2-Chloronaphthalene	ND	5.3	ug/l
106-47-8	4-Chloroaniline	ND	11	ug/l
218-01-9	Chrysene	ND	5.3	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	5.3	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	5.3	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.3	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.3	ug/l
95-50-1	1,2-Dichlorobenzene	ND	5.3	ug/l
122-66-7	1,2-Diphenylhydrazine	ND	5.3	ug/l
541-73-1	1,3-Dichlorobenzene	ND	5.3	ug/l
106-46-7	1,4-Dichlorobenzene	ND	5.3	ug/l
121-14-2	2,4-Dinitrotoluene	ND	11	ug/l
606-20-2	2,6-Dinitrotoluene	ND	11	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	5.3	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	5.3	ug/l
84-74-2	Di-n-butyl phthalate	ND	5.3	ug/l
117-84-0	Di-n-octyl phthalate	ND	5.3	ug/l
84-66-2	Diethyl phthalate	ND	5.3	ug/l
131-11-3	Dimethyl phthalate	ND	5.3	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	ug/l
206-44-0	Fluoranthene	ND	5.3	ug/l

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 2

Client Sample ID: B-13/TW

 Lab Sample ID:
 M98416-8
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8270C
 SW846 3510C
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

BN PPL List

CAS No.	Compound	Result	RL	Units Q
86-73-7	Fluorene	ND	5.3	ug/l
118-74-1	Hexachlorobenzene	ND	5.3	ug/l
87-68-3	Hexachlorobutadiene	ND	5.3	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	11	ug/l
67-72-1	Hexachloroethane	ND	5.3	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.3	ug/l
78-59-1	Isophorone	ND	5.3	ug/l
91-20-3	Naphthalene	13.1	5.3	ug/l
98-95-3	Nitrobenzene	ND	5.3	ug/l
62-75-9	n-Nitrosodimethylamine	ND	5.3	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	5.3	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.3	ug/l
85-01-8	Phenanthrene	ND	5.3	ug/l
129-00-0	Pyrene	ND	5.3	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	5.3	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	71%		30-130%
321-60-8	2-Fluorobiphenyl	67%		30-130%
1718-51-0	Terphenyl-d14	53%		30-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: B-13/TW

 Lab Sample ID:
 M98416-8
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8082
 SW846 3510C
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 YZ64902.D 1 03/17/11 CZ 03/15/11 OP24345 GYZ6354

Run #2

Run #1 1000 ml Final Volume 5.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	Units Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND ND	0.25 0.25 0.25 0.25 0.25 0.25 0.25	ug/l ug/l ug/l ug/l ug/l ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	23% ^a 63% 31% 39%		30-150% 30-150% 30-150% 30-150%

(a) Outside control limits due to possible matrix interference.

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: B-13/TW

Lab Sample ID:M98416-8Date Sampled:03/14/11Matrix:AQ - Ground WaterDate Received:03/15/11Percent Solids:n/a

Project: 80 Steel Street (GS&T)

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	< 4.0	4.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Barium	< 50	50	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Beryllium	< 4.0	4.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Cadmium	< 4.0	4.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Chromium	< 10	10	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Copper	< 25	25	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Lead	8.1	5.0	ug/l	1	03/16/11	03/17/11 PY	SW846 6010C ³	SW846 3010A ⁴
Manganese	239	15	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	03/17/11	03/17/11 MA	SW846 7470A ²	SW846 7471A ⁵
Nickel	< 40	40	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Silver	< 5.0	5.0	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴
Zinc	82.0	20	ug/l	1	03/16/11	03/16/11 DA	SW846 6010C ¹	SW846 3010A ⁴

(1) Instrument QC Batch: MA12750
(2) Instrument QC Batch: MA12751
(3) Instrument QC Batch: MA12756
(4) Prep QC Batch: MP16720
(5) Prep QC Batch: MP16727

Page 1 of 1

Client Sample ID: B-13/TW

Lab Sample ID:M98416-8Date Sampled:03/14/11Matrix:AQ - Ground WaterDate Received:03/15/11Percent Solids:n/a

Project: 80 Steel Street (GS&T)

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	03/15/11 10:45	MC	SW846 7196A
Chromium, Trivalent ^a	< 0.020	0.020	mg/l	1	03/16/11 22:16	DA	6010/7196A M/200.7
Cyanide	< 0.010	0.010	mg/l	1	03/16/11 10:41	MA	SW846 9012

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Page 1 of 3

Client Sample ID: B-23/TW

 Lab Sample ID:
 M98416-9
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 G104100.D 1 03/21/11 TD n/a n/a MSG4199

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
67-64-1	Acetone	ND	5.0	ug/l	
71-43-2	Benzene	ND	0.50	ug/l	
108-86-1	Bromobenzene	ND	5.0	ug/l	
74-97-5	Bromochloromethane	ND	5.0	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	ug/l	
75-25-2	Bromoform	ND	1.0	ug/l	
74-83-9	Bromomethane	ND	2.0	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	ug/l	
104-51-8	n-Butylbenzene	ND	5.0	ug/l	
135-98-8	sec-Butylbenzene	8.6	5.0	ug/l	
98-06-6	tert-Butylbenzene	ND	5.0	ug/l	
75-15-0	Carbon disulfide	ND	5.0	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	ug/l	
108-90-7	Chlorobenzene	ND	1.0	ug/l	
75-00-3	Chloroethane	ND	2.0	ug/l	
67-66-3	Chloroform	ND	1.0	ug/l	
74-87-3	Chloromethane	ND	2.0	ug/l	
95-49-8	o-Chlorotoluene	ND	5.0	ug/l	
106-43-4	p-Chlorotoluene	ND	5.0	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	ug/l	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 3

Client Sample ID: B-23/TW

Lab Sample ID: M98416-9 **Date Sampled:** 03/14/11 Matrix: **Date Received:** 03/15/11 AQ - Ground Water Method: Percent Solids: n/a SW846 8260B

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Compound	Result	RL	Units	Q
142-28-9	1,3-Dichloropropane	ND	5.0	ug/l	
594-20-7	2,2-Dichloropropane	ND	5.0	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	ug/l	
591-78-6	2-Hexanone	ND	5.0	ug/l	
74-88-4	Iodomethane	ND	5.0	ug/l	
98-82-8	Isopropylbenzene	15.5	5.0	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	ug/l	
74-95-3	Methylene bromide	ND	5.0	ug/l	
75-09-2	Methylene chloride	ND	2.0	ug/l	
91-20-3	Naphthalene	ND	5.0	ug/l	
103-65-1	n-Propylbenzene	37.5	5.0	ug/l	
100-42-5	Styrene	ND	5.0	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	ug/l	
108-88-3	Toluene	ND	1.0	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/l	
79-01-6	Trichloroethene	ND	1.0	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	ug/l	
108-05-4	Vinyl Acetate	ND	5.0	ug/l	
75-01-4	Vinyl chloride	ND	1.0	ug/l	
	m,p-Xylene	ND	1.0	ug/l	
95-47-6	o-Xylene	ND	1.0	ug/l	
1330-20-7	Xylene (total)	ND	1.0	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
1868-53-7	Dibromofluoromethane	85%		70-1	30%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 3 of 3

Client Sample ID: B-23/TW

 Lab Sample ID:
 M98416-9
 Date Sampled:
 03/14/11

 Matrix:
 AQ - Ground Water
 Date Received:
 03/15/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 80 Steel Street (GS&T)

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	105%		70-130%
460-00-4	4-Bromofluorobenzene	88%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 2

Client Sample ID: SS-1

 Lab Sample ID:
 M98416-10
 Date Sampled:
 03/14/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8270C
 SW846 3546
 Percent Solids:
 81.4

Project: 80 Steel Street (GS&T)

DF **Analytical Batch** File ID Analyzed By **Prep Date Prep Batch** Run #1 S22253.D 03/21/11 PR 03/16/11 OP24354 MSS943 1 Run #2 S22265.D 10 03/21/11 PR 03/16/11 OP24354 MSS943

	Initial Weight	Final Volume
Run #1	20.4 g	5.0 ml
Run #2	20.4 g	5.0 ml

BN PPL List

CAS No.	Compound	Result	RL	Units	Q
83-32-9	Acenaphthene	ND	1500	ug/kg	
208-96-8	Acenaphthylene	ND	1500	ug/kg	
120-12-7	Anthracene	ND	1500	ug/kg	
92-87-5	Benzidine	ND	6000	ug/kg	
56-55-3	Benzo(a)anthracene	2020	1500	ug/kg	
50-32-8	Benzo(a)pyrene	1990	1500	ug/kg	
205-99-2	Benzo(b)fluoranthene	1980	1500	ug/kg	
191-24-2	Benzo(g,h,i)perylene	2140	1500	ug/kg	
207-08-9	Benzo(k)fluoranthene	1930	1500	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	1500	ug/kg	
85-68-7	Butyl benzyl phthalate	4740	1500	ug/kg	
91-58-7	2-Chloronaphthalene	ND	1500	ug/kg	
106-47-8	4-Chloroaniline	ND	3000	ug/kg	
218-01-9	Chrysene	2250	1500	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	1500	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	1500	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	1500	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	1500	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	1500	ug/kg	
122-66-7	1,2-Diphenylhydrazine	ND	1500	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	1500	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	1500	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	3000	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	3000	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	1500	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	1500	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	1500	ug/kg	
117-84-0	Di-n-octyl phthalate	31800	1500	ug/kg	
84-66-2	Diethyl phthalate	ND	1500	ug/kg	
131-11-3	Dimethyl phthalate	ND	1500	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	58600 a	15000	ug/kg	
206-44-0	Fluoranthene	ND	1500	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: SS-1

 Lab Sample ID:
 M98416-10
 Date Sampled:
 03/14/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

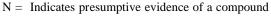
 Method:
 SW846 8270C
 SW846 3546
 Percent Solids:
 81.4

Project: 80 Steel Street (GS&T)

BN PPL List

CAS No.	Compound	Result	RL	Units Q
86-73-7	Fluorene	ND	1500	ug/kg
118-74-1	Hexachlorobenzene	ND	1500	ug/kg
87-68-3	Hexachlorobutadiene	ND	1500	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	3000	ug/kg
67-72-1	Hexachloroethane	ND	1500	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	1780	1500	ug/kg
78-59-1	Isophorone	ND	1500	ug/kg
91-20-3	Naphthalene	ND	1500	ug/kg
98-95-3	Nitrobenzene	ND	1500	ug/kg
62-75-9	n-Nitrosodimethylamine	ND	1500	ug/kg
621-64-7	N-Nitroso-di-n-propylamine	ND	1500	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	1500	ug/kg
85-01-8	Phenanthrene	2230	1500	ug/kg
129-00-0	Pyrene	4480	1500	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	1500	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	27% b	33%	30-130%
321-60-8	2-Fluorobiphenyl	85%	79%	30-130%
1718-51-0	Terphenyl-d14	100%	84%	30-130%

⁽a) Result is from Run# 2


ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Outside control limits due to possible matrix interference.

Page 1 of 1

Client Sample ID: SS-1

 Lab Sample ID:
 M98416-10
 Date Sampled:
 03/14/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8082
 SW846 3546
 Percent Solids:
 81.4

Project: 80 Steel Street (GS&T)

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK1720.D	1	03/19/11	AP	03/16/11	OP24355	GBK69
Run #2	BK1741.D	20	03/19/11	AP	03/16/11	OP24355	GBK70

	Initial Weight	Final Volume
Run #1	15.6 g	10.0 ml
Run #2	15.6 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	Units Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 b Aroclor 1260	ND ND ND 4410 ^a ND 2680 ^a ND	120 120 120 2400 120 2400 120	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	56% 46% 84% 373% ^d	0% c 0% c 0% c	30-150% 30-150% 30-150% 30-150%

- (a) Result is from Run# 2
- (b) Estimated value due to the presence of other Arochlor pattern.
- (c) Outside control limits due to dilution.
- (d) Outside control limits due to possible matrix interference.

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: SS-1

 Lab Sample ID:
 M98416-10
 Date Sampled:
 03/14/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Percent Solids:
 81.4

Project: 80 Steel Street (GS&T)

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	11.9	1.1	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁶
Barium	440	5.7	mg/kg	1	03/16/11	03/18/11 PY	SW846 6010C ³	SW846 3050B ⁶
Beryllium	< 0.46	0.46	mg/kg	1	03/16/11	03/18/11 PY	SW846 6010C ³	SW846 3050B ⁶
Cadmium	14.4	0.46	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁶
Chromium	477	1.1	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁶
Copper	1580	2.8	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁶
Lead	1010	1.1	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁶
Manganese	4510	17	mg/kg	10	03/16/11	03/18/11 PY	SW846 6010C ³	SW846 3050B ⁶
Mercury	1.9	0.20	mg/kg	5	03/16/11	03/17/11 CF	SW846 7471A ¹	SW846 7471A ⁵
Nickel	191	4.6	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁶
Selenium ^a	< 2.3	2.3	mg/kg	2	03/16/11	03/21/11 PY	SW846 6010C ⁴	SW846 3050B ⁶
Silver	12.3	0.57	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁶
Zinc	4550	23	mg/kg	10	03/16/11	03/18/11 PY	SW846 6010C ³	SW846 3050B ⁶

(1) Instrument QC Batch: MA12748
(2) Instrument QC Batch: MA12756
(3) Instrument QC Batch: MA12761
(4) Instrument QC Batch: MA12764
(5) Prep QC Batch: MP16722
(6) Prep QC Batch: MP16723

(a) Elevated RL due to dilution required for matrix interference.

Page 1 of 1

Client Sample ID: SS-1

 Lab Sample ID:
 M98416-10
 Date Sampled:
 03/14/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Percent Solids:
 81.4

Project: 80 Steel Street (GS&T)

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.44	0.44	mg/kg	1	03/16/11 16:45	CF	SW846 3060A/7196A
Chromium, Trivalent ^a	477	1.5	mg/kg	1	03/17/11 19:29		SW846 6010/7196A M
Chromium, Trivalent ^a	477	1.5	mg/l	1	03/17/11 19:29	PY	6010/7196A M/200.7
Cyanide	0.38	0.15	mg/kg	1	03/18/11 14:54	MA	SW846 9012 M
Redox Potential Vs H2	395		mv	1	03/16/11	CF	ASTM D1498-76M
Solids, Percent	81.4		%	1	03/17/11	MC	SM21 2540 B MOD.
pН	7.5		su	1	03/16/11	MA	SW846 9045

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Page 1 of 2

Client Sample ID: SS-2

 Lab Sample ID:
 M98416-11
 Date Sampled:
 03/14/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8270C
 SW846 3546
 Percent Solids:
 67.2

Project: 80 Steel Street (GS&T)

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	S22254.D	1	03/21/11	PR	03/16/11	OP24354	MSS943
Run #2	S22266.D	10	03/21/11	PR	03/16/11	OP24354	MSS943

	Initial Weight	Final Volume
Run #1	20.3 g	5.0 ml
Run #2	20.3 g	5.0 ml

BN PPL List

CAS No.	Compound	Result	RL	Units	Q
83-32-9	Acenaphthene	ND	1800	ug/kg	
208-96-8	Acenaphthylene	ND	1800	ug/kg	
120-12-7	Anthracene	1940	1800	ug/kg	
92-87-5	Benzidine	ND	7300	ug/kg	
56-55-3	Benzo(a)anthracene	ND	1800	ug/kg	
50-32-8	Benzo(a)pyrene	ND	1800	ug/kg	
205-99-2	Benzo(b)fluoranthene	2010	1800	ug/kg	
191-24-2	Benzo(g,h,i)perylene	1940	1800	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	1800	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	1800	ug/kg	
85-68-7	Butyl benzyl phthalate	2230	1800	ug/kg	
91-58-7	2-Chloronaphthalene	ND	1800	ug/kg	
106-47-8	4-Chloroaniline	ND	3700	ug/kg	
218-01-9	Chrysene	ND	1800	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	1800	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	1800	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	1800	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	1800	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	1800	ug/kg	
122-66-7	1,2-Diphenylhydrazine	ND	1800	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	1800	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	1800	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	3700	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	3700	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	1800	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	1800	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	1800	ug/kg	
117-84-0	Di-n-octyl phthalate	6820	1800	ug/kg	
84-66-2	Diethyl phthalate	ND	1800	ug/kg	
131-11-3	Dimethyl phthalate	ND	1800	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	117000 a	18000	ug/kg	
206-44-0	Fluoranthene	ND	1800	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 2

Client Sample ID: SS-2

 Lab Sample ID:
 M98416-11
 Date Sampled:
 03/14/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Method:
 SW846 8270C
 SW846 3546
 Percent Solids:
 67.2

Project: 80 Steel Street (GS&T)

BN PPL List

CAS No.	Compound	Result	RL	Units Q
86-73-7	Fluorene	4330	1800	ug/kg
118-74-1	Hexachlorobenzene	ND	1800	ug/kg
87-68-3	Hexachlorobutadiene	ND	1800	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	3700	ug/kg
67-72-1	Hexachloroethane	ND	1800	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1800	ug/kg
78-59-1	Isophorone	ND	1800	ug/kg
91-20-3	Naphthalene	5280	1800	ug/kg
98-95-3	Nitrobenzene	ND	1800	ug/kg
62-75-9	n-Nitrosodimethylamine	ND	1800	ug/kg
621-64-7	N-Nitroso-di-n-propylamine	ND	1800	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	1800	ug/kg
85-01-8	Phenanthrene	12700	1800	ug/kg
129-00-0	Pyrene	5320	1800	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	1800	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	91%	20% b	30-130%
321-60-8	2-Fluorobiphenyl	72%	63%	30-130%
1718-51-0	Terphenyl-d14	86%	74%	30-130%

(a) Result is from Run# 2

(b) Outside control limits due to dilution.

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: SS-2

Lab Sample ID: M98416-11 Matrix: SO - Soil Method: SW846 8082 SW846 3546 **Date Sampled:** 03/14/11 **Date Received:** 03/15/11 **Percent Solids:** 67.2

Project: 80 Steel Street (GS&T)

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK1721.D	1	03/19/11	AP	03/16/11	OP24355	GBK69
Run #2	BK1742.D	50	03/19/11	AP	03/16/11	OP24355	GBK70

	Initial Weight	Final Volume
Run #1	15.7 g	10.0 ml
Run #2	15.7 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	Units Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 b Aroclor 1260	ND ND ND 24300 ^a ND 7660 ^a ND	140 140 140 7100 140 7100 140	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	93% 65% 92% 579% ^d	0% c 0% c 0% c	30-150% 30-150% 30-150% 30-150%

- (a) Result is from Run# 2
- (b) Estimated value due to the presence of other Arochlor pattern.
- (c) Outside control limits due to dilution.
- (d) Outside control limits due to possible matrix interference.

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: SS-2

 Lab Sample ID:
 M98416-11
 Date Sampled:
 03/14/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Percent Solids:
 67.2

Project: 80 Steel Street (GS&T)

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	14.0	1.4	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁶
Barium	783	6.8	mg/kg	1	03/16/11	03/18/11 PY	SW846 6010C ³	SW846 3050B ⁶
Beryllium	< 0.55	0.55	mg/kg	1	03/16/11	03/18/11 PY	SW846 6010C ³	SW846 3050B ⁶
Cadmium	26.1	0.55	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁶
Chromium	1110	1.4	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁶
Copper	1830	3.4	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁶
Lead	1090	1.4	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁶
Manganese	5700	20	mg/kg	10	03/16/11	03/18/11 PY	SW846 6010C ³	SW846 3050B ⁶
Mercury	4.0	0.25	mg/kg	5	03/16/11	03/17/11 CF	SW846 7471A ¹	SW846 7471A ⁵
Nickel	502	5.5	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁶
Selenium ^a	< 2.7	2.7	mg/kg	2	03/16/11	03/21/11 PY	SW846 6010C ⁴	SW846 3050B ⁶
Silver	16.2	0.68	mg/kg	1	03/16/11	03/17/11 PY	SW846 6010C ²	SW846 3050B ⁶
Zinc	8440	27	mg/kg	10	03/16/11	03/18/11 PY	SW846 6010C ³	SW846 3050B ⁶

(1) Instrument QC Batch: MA12748
(2) Instrument QC Batch: MA12756
(3) Instrument QC Batch: MA12761
(4) Instrument QC Batch: MA12764
(5) Prep QC Batch: MP16722
(6) Prep QC Batch: MP16723

(a) Elevated RL due to dilution required for matrix interference.

Page 1 of 1

Client Sample ID: SS-2

 Lab Sample ID:
 M98416-11
 Date Sampled:
 03/14/11

 Matrix:
 SO - Soil
 Date Received:
 03/15/11

 Percent Solids:
 67.2

Project: 80 Steel Street (GS&T)

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.51	0.51	mg/kg	1	03/16/11 16:45	CF	SW846 3060A/7196A
Chromium, Trivalent ^a	1110	1.9	mg/kg	1	03/17/11 19:33		SW846 6010/7196A M
Chromium, Trivalent ^a	1110	1.9	mg/l	1	03/17/11 19:33	PY	6010/7196A M/200.7
Cyanide	0.33	0.15	mg/kg	1	03/18/11 14:55	MA	SW846 9012 M
Redox Potential Vs H2	349		mv	1	03/16/11	CF	ASTM D1498-76M
Solids, Percent	67.2		%	1	03/17/11	MC	SM21 2540 B MOD.
pН	8.7		su	1	03/16/11	MA	SW846 9045

(a) Calculated as: (Chromium) - (Chromium, Hexavalent)

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Certification Exceptions
- Certification Exceptions (NY)
- Chain of Custody

CUTEST
LABORATORIES

		C :	HAIN	OF	CU	JST	OD	Y										PAGE		O	F
ACCUTEST	Accutest Laboratories of New England									FED E	X Trackin	g#			_	Bottle Order Control #					
LABORATORIES	495 Technology Center West, Building One TEL. 508-481-6200 FAX: 508-481-7753									Accute	Accutest Quote #										
	www.accutest.com Project Information								- Lucitor												
Client / Reporting Information Company Name	Project Name						. 13			100		31,745.00	Rec	ueste	d Ana	lysis (see T	EST CODE sheet)		25 T. J.	Matrix Codes
Plumlen	Street:	Geneses	e Sory	2 4	<u> ፓ/</u> ሶ		7.41			1247.5											DW - Drinking Water GW - Ground Water
8232 Loup Kd	80 5	Geneses The St			Billing Ir	formatic	n (If	differ	ent fr	om Re	eport to)										WW - Water SW - Surface Water SO - Soil
Baldwinsuilb NY 13090	City: Zoch	Company Name																	SL- Sludge SED-Sediment OI - Oil		
Perk Huden dhadson John by o	Project#	26/103	٥		t Address	<u>_</u>	n	ي	_				.2		_	M ₊	tal				LIQ - Other Liquid AIR - Air
3/5 638 8587 Fax#" J	Clent PO#			City				State			Zip	72	1/8	1	60	5	to				SOL - Other Solid WP - Wipe FB-Field Blank
Sampler(s) Name(s) Phone #	Project Manager Derk	Hulson		Attent	tion:				PO#				8		12	e	(FB- Equipment Blank RB- Rinse Blank TB-Trip Blank
			Collection				-	Numb	er of pr	eserved	Bottles	82260	17	N	13	ارثرا	5				
Accutosi Sample # Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	Sampled by	Matrix	# of bottle	. 무	NaOH MNO3	H2SO4	NONE DI Wate	MEOH	asinita Bisnita	0	2	`))				LAB USE ONLY
-1 B-18/TW		3/14/11	11:45	MI	GW	8	3	1 1	Π.	3		×	<u> </u>	-7	TI	\vdash	×				
-1 B-20/7W		, ,	12:35	1		6	3	1 1	П	iΓ		×-	\vdash	Ε,	+11		1				
-3 B1/TV			1:30			8	3	Ш				DQ.			<u> </u>		-14				
-4 B-3/TN			2:45			8	3	Ш				<-		_	111		×.	Francis (C. S. S. S.	\perp		
-5 B-5/TN			3120			8	3	Ш	Ш	Ш		oc	_		44		~		\Box		
-6 B-8 AN			2.5D	\perp		8	3	Ш	Ш	Щ		×.			M_		�<		\rightarrow		
-7 (S-12/TW			4:20		Ш	8	3	Ш	Ш	Ш	Ш	000	_		44		\sim				
-8 B-13/2~			4:SD	1		8	3	114	11	4		05	┢═		911		⋖				
-9 B-23/TW			5/30		_	3,8	3	1	Ш		Ш	_X	_								
-10 55-1					5		1.		Ш	1			X	X					_		
-11 <u>55-2</u>		•		Θ,	ڪ		Ш		Ш	4			X	X	X					_	
					-	-	+	±.	Н	+	\sqcup	_	<u> </u>	<u> </u>				ents / Special Instr			
Turnaround Time (Business days)	Approved By (Acc	utest PM); / Date:	1,150		Commer	cial "A" (a Deli Level		le int		YASP Cat	egory A	3 357	i i		- Li	omme	ents / Special Instr			=0
Std. 10 Business Days						cial "B" (2)	Ē	N	YASP Cat	egory B		ļ					IOF	1/1	GA,5B,
Std. 5 Business Days (By Contract only) 5 Day RUSH					FULLT1 CT RCP	(Level 3	H4)		Ļ	_	tate Form DD Form								41	6ر	
3 Day EMERGENCY					МА МСР				Ē	<u> </u>	ther										
2 Day EMERGENCY 1 Day EMERGENCY						Commer				,	ımman.								—		
Emergency & Rush T/A data available VIA Lablink	Commercial "B" ≃ Results + QC Summary																				
Relinquished of Samples Date Time:	Sar	nple Custody mu	st be docume	en/ed b	elow ea	ch time :	Relin	es ch	ange	poss	essiop, i	ncluding	couri			mer		Recoium By:	55.1	- 170	
1 / 3/14/1	y - 19:20	1/11	N	¥	_		2/	4//	שיזו	\not	νŋ				-	7/11 2	-				
Relinquished by Sampler: Date Time: 3/15/1	1 10:15	Racofred By:	Barst	4				quishe	d By:		0				Date Ti	me:		Received By:			
Relinquished by: Date Time:		Received By:		•			Custo	ody Sea	al #			Intact		Preserv	ved wher	e applicat	ble	On Ice	_	Cooler	Temp.

M98416: Chain of Custody Page 1 of 2

2.1/1.9/1.4/1.8

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: M98416 Client: PLUMLEY							Immediate Client Services	Actio	n Red	No		
Date / Time Received: 3/15/2011 Delive				ry Meth	od:		Client Service Action Re	ce Action Required at Login:				
Project: GERESEE SCRAP+TIN ROCHESTER N No.				olers:		4	Airbill #'s: N/A					
1. Custody Seals Present:	or N		C Present:	Y or ✓			Sample Integrity - Documentation 1. Sample labels present on bottles:	Y	or	<u>N</u>		
2. Custody Seals Intact:		4. Smpl I	Dates/Time OK	✓			2. Container labeling complete:	✓				
Cooler Temperature	Y or	N					3. Sample container label / COC agree:	✓				
Temp criteria achieved: Cooler temp verification: Cooler media:	Infare	•					Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for:	Y	or	<u>N</u>		
Quality Control Preservatio Y or		N	N/A				3. Condition of sample:		Intac	_		
1. Trip Blank present / cooler:			✓				Sample Integrity - Instructions	Υ	or	N	N/A	
2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCa have been a few and a few a			V				Analysis requested is clear: Bottles received for unspecified tests			□ ∑		
VOCs headspace free:	•						3. Sufficient volume recvd for analysis:4. Compositing instructions clear:5. Filtering instructions clear:				y	
Comments												
Accutest Laboratories V:508.481.6200				495 Techi	nology C e F: 508.		West, Bldg One 1753				orough, MA /accutest.com	

M98416: Chain of Custody

Page 2 of 2

