FINAL SITE CHARACTERIZATION REPORT ACE CLEANERS SITE SITE NO. 8-28-133

WORK ASSIGNMENT NO. D004434-33

Prepared for:

New York State Department of Environmental Conservation Albany, New York

Prepared by:

MACTEC Engineering and Consulting, PC Portland, Maine

MACTEC No. 3612092135

JUNE 2010

FINAL SITE CHARACTERIZATION REPORT ACE CLEANERS SITE SITE NO. 8-28-133

WORK ASSIGNMENT NO. D004434-33

Prepared for:

New York State Department of Environmental Conservation Albany, New York

Prepared by:

MACTEC Engineering and Consulting, PC Portland, Maine

MACTEC No. 3612092135

JUNE 2010

Submitted by:

Approved by:

Charles R. Staples

Site Manager

John W. Peterson

Principal Professional

TABLE OF CONTENTS

LIS	ТО	F TABLES.		iii
LIS	ΤО	F FIGURES	S	iv
GL	OSS	ARY OF A	CRONYMS AND ABBREVIATIONS	V
1.0		INTRODU	CTION	. 1-1
2.0		SITE BACI	KGROUND AND PHYSICAL SETTING	. 2-1
	2.1	SITE I	LOCATION	. 2-1
	2.2	SITE I	HISTORY	. 2-1
	2.3	PREV	IOUS INVESTIGATIONS	. 2-2
	2.4	PHYS	ICAL SETTING	. 2-2
	2.5		REVIEW	
	2.6		MARY OF DATA RECORDS SEARCH AND ASSESSMENT FINDINGS.	
3.0		SCOPE OF	WORK	. 3-1
	3.1		3 - FIELD INVESTIGATIONS	
		3.1.1	General Field Activities	
		3.1.1.1		
		3.1.1.2		
		3.1.1.3	•	
		3.1.1.4		
		3.1.2	Existing Monitoring Well Sampling	
		3.1.3	Surface Water/Sediment Sampling	
		3.1.4	Floor Sump Sampling	
		3.1.5	Geoprobe® Borings and Sampling	
		3.1.6	Optional Sub-Slab Soil Vapor Sampling	
		3.1.7	Site Survey	
4.0		DATA ASS	SESSMENT	. 4-1
	4.1	ANAL	LYTICAL RESULTS	. 4-1
		4.1.1	Soil Sample Results	. 4-2
		4.1.2	Groundwater Sample Results	
		4.1.3	Surface Water Sample Results	. 4-4
		4.1.4	Sediment Sample Results	
		4.1.5	Soil Vapor Sample Results	
	4.2	GROU	JNDWATER FLOW	
5.0		INVESTIG	ATION FINDINGS	. 5-1
6.0		REFEREN	CES	. 6-1

TABLE OF CONTENTS (CONTINUED)

TABLES

FIGURES

APPENDICES

APPENDIX A SITE PHOTOS

APPENDIX B FIELD RECORDS

APPENDIX C SITE SURVEY

APPENDIX D DATA USABILITY SUMMARY REPORT

LIST OF TABLES

Table

- 4.1 VOCs in Soil
- 4.2 VOCs in Groundwater
- 4.3 VOCs in Surface Water
- 4.4 VOCs in Sediment
- 4.5 VOCs in Soil Vapor
- 4.6 Groundwater Elevations

LIST OF FIGURES

Figure

- 1.1 Site Location
- 3.1 Site Features and Sample Locations
- 4.1 PCE, TCE, cis-1,2-DCE, and VC in Groundwater November 2009
- 4.2 Overburden Groundwater Contours November 2009

GLOSSARY OF ACRONYMS AND ABBREVIATIONS

1,1-DCE 1,1-Dichloroethene
1,2-DCE 1,2-Dichloroethene

ASTM American Standards of Testing and Measurements

bgs below ground surface

cis-1,2-DCE cis-1,2-Dichloroethene

Con-Test Analytical Laboratories

DUSR Data Usability Summary Report

EDR Environmental Data Resources, Inc.

°F degrees Fahrenheit

IDW investigation-derived waste

MACTEC Engineering and Consulting, P.C.

mg/kg milligrams per kilogram

msl mean sea level

NYCRR New York Codes, Rules, and Regulations

NYS New York State

NYSDEC New York State Department of Environmental Conservation

NYSDOH State of New York Department of Health

PCE tetrachloroethene

PID photoionization detector

GLOSSARY OF ACRONYMS AND ABBREVIATIONS (CONTINUED)

QAPP Quality Assurance Program Plan

QC Quality Control

SC Site Characterization

SCGs standards, criteria, or guidance

SCOs Soil Cleanup Objectives

Site Ace Cleaners Site

SWQG Surface Water Quality Guidance

TCE Trichloroethylene

TCL Target Compound List

TICs Tentatively Identified Compounds

trans-1,2-DCE trans-1,2-Dichlorothene

μg/L micrograms per liter

μg/m³ micrograms per cubic meter

USDOT United States Department of Transportation

USEPA United States Environmental Protection Agency

VC vinyl chloride

VOC volatile organic compound

WA Work Assignment

1.0 INTRODUCTION

MACTEC Engineering and Consulting, P.C. (MACTEC), is submitting this Data Summary Report to the New York State Department of Environmental Conservation (NYSDEC). This Report addresses the Site Characterization (SC) at the Ace Cleaners site (Site) in the Village of Brockport, Monroe County New York (Figure 1.1). This Report was prepared in response to Work Assignment (WA) No. D004434 (NYSDEC, 2009a), and in accordance with the April 2005 Superfund Standby Contract No. D004434 between the NYSDEC and MACTEC.

The Ace Cleaners site, Site No. 8-28-133, is currently listed as a potential hazardous waste site, or "P" site, by the NYSDEC, because insufficient information exists to determine whether wastes were disposed of at the site and whether, if present, those wastes pose a potential significant threat to public health or the environment (New York State (NYS), 2006).

The purpose of the SC is to provide information to be used by the NYSDEC to reclassify the site to one of the following categories:

Class 2	Hazardous waste sites presenting a significant threat to public health or the environment; defined by the NYSDEC as sites that had a release(s) resulting in violation of the NYSDEC environmental quality standards and guidelines.
Class 3	Hazardous waste sites not presenting a significant threat to public health or the environment

Delist Sites where hazardous waste disposal is not documented.

To complete its reclassification, the NYSDEC requires information to establish the following:

- The existence of documented hazardous waste disposal, as defined in Title 6 of the New York Codes, Rules, and Regulations (NYCRR) Part 371 (NYS, 1999a).
- The Site's significance with respect to the threat it poses to public health and the environment as defined in 6 NYCRR Part 375 (NYS, 2006).
- Identification of contaminant source.

MACTEC collected reclassification documentation and is presenting it to the NYSDEC in this report so it can recommend follow up action for the site (i.e., reclassify, delist, or perform additional investigation).

During Task 1 of WA No. D003826-29, MACTEC conducted a search of state and county site records, and performed a site inspection to develop information necessary for reclassification or delisting. The information collected is presented in Section 2 of this document. Task 1 activities did not develop adequate data on which to base a delist or reclassification recommendation. Therefore, additional field investigations were conducted to develop the required data.

Section 3 of this report presents the scope of work completed for the field investigations. Section 4 of this report presents the results of the field investigation and Section 5 of the report presents conclusions.

Resources used to prepare this report include: (1) information provided in the WA, (2) appropriate guidelines in the NYSDEC DER-10 Guidance (NYSDEC, 2010), and (3) results of previous investigations.

2.0 SITE BACKGROUND AND PHYSICAL SETTING

May 2, 2006, MACTEC personnel reviewed available records from the NYSDEC office in Albany, New York, and visited the Village of Brockport. Information was also collected from the Site owner by the NYSDEC. As part of the review, MACTEC ordered a copy of an Environmental Data Resources, Inc. (EDR) report which provides a listing of federal and state governmental information pertaining to potential and documented environmental impacts, both at the Site and within the American Standards of Testing and Measurements (ASTM) recommended search radii. Complete lists of recommended ASTM record searches for standard due diligence requirements are included in the EDR report provided under separate cover. This information was reviewed to support a Site classification, and to help prepare the scope of work for the SC field investigations. The information collected from these sources is summarized below.

2.1 SITE LOCATION

Ace Cleaners is located at 4626 South Lake Road in an area zoned as retail/commercial in the Village of Brockport, Monroe County, New York (Figure 1.1). The Ace Cleaners property consists of approximately 1.1 acres and contains a one-story building, a paved parking area (west side), and a dirt drive (east side). The east side of the Site property is undeveloped and consists mostly of trees.

Commercial properties border the north (Gas station), south (Auto Parts Store), and western sides of the property (Video Store, former Filling Station). Residential properties border the site to the East. Forested property and an unnamed stream are located between Ace Cleaners and the residential properties to the east.

2.2 SITE HISTORY

According to the EDR-City Directory, the location has been a dry cleaning facility since at least 1967. Site use prior to 1967 is unknown; however the building was observed on a 1958 aerial photo. The dry cleaner is abandoned, and no operations are occurring at the Site (NYSDEC, 2009b).

2.3 PREVIOUS INVESTIGATIONS

A site investigation was conducted in 2005 by NYSDEC's Environmental Enforcement to confirm allegations that waste water containing dry cleaning solvents (tetrachloroethene [PCE]) were discharged to a sump inside the building and to the ground behind the facility. Based on the results of this investigation, a soil removal effort excavated approximately 225 cubic feet of soil impacted with PCE. Confirmation soil sample results indicate additional soil characterization was needed; therefore the site was turned over to the Hazardous Waste Remediation Group.

The property owner signed a consent order with the NYSDEC in the fall of 2006 to investigate the presence of chlorinated solvents in site media above regulatory criteria. Investigations were never completed and the Site was referred to the State Superfund program for the completion of the site's remedial program.

2.4 PHYSICAL SETTING

Topography

The Site is located within the Village of Brockport, NY (Figure 1.1), at approximately 561 feet above mean sea level (msl). The topography slopes down towards Lake Ontario, located about 11 miles to the North, at an elevation of near 245 feet above msl. The topography rises slightly to the south of the site, reaching a small ridge at an elevation of approximately 800 feet msl in 0.8 miles.

The topography to the east and west of the Site is relatively consistent with the Site elevation and has the same general slope down to the north (United States Geological Survey, 1978).

Climate

The climate of the area is characterized by moderately warm summers and cold winters. Mean monthly temperatures range from 24 degrees Fahrenheit (°F) in January to 71°F in July. Average annual precipitation is 34 inches. Average annual snowfall is 96 inches (National Climatic Data Center, 2004).

Surface Water Hydrology

Surface drainage from the site generally follows the topography, flowing toward low areas and then

infiltrating into the ground. Rainwater from the paved sections of the site flows to storm drains

located on South Lake Road and Sweden Lane. Surface water on the eastern portion of the Site

flows to a small unnamed stream. The unnamed stream flows north and eventually becomes

Brockport Creek, a Class C Stream. Brockport Creek flows to the northeast, joining Salmon Creek

approximately 9.5 miles northeast of the Site, and eventually into Braddock Bay of Lake Ontario

approximately 14.3 miles northeast of the Site.

Groundwater Hydrology

Lake Ontario is the regional groundwater discharge area. Some local groundwater may discharge

into small streams prior to arrival at Lake Ontario. Groundwater at the Site was noted during the

SC investigation to be present at approximately five feet below ground surface (bgs), or

approximately 554 feet above msl. Groundwater in the vicinity of the site is interpreted to flow

north-northeast, towards Lake Ontario. Additional groundwater information based on the field

investigation is presented in Section 4.

Geology

Overburden at the site are mapped as Mb, or made land and are assumed to consist of fill material

(U.S. Department of Agriculture, 1973). Overburden logged as part of the field program consisted

primarily of silts and sands, with some gravel lenses noted. In addition, a clay layer was noted in

boring GW-5 from approximately 6.5 to 12 feet bgs. This clay layer was not noted in the other

borings.

The average depth to bedrock in the Brockport area is 14 feet bgs (Leggette and Gould, 1935).

Although depth to bedrock was not confirmed during the field program, assumed bedrock based on

Geoprobe refusal ranged from 8.5 feet bgs at GW-08 (548.5 feet above msl) to 17 feet bgs at GW-2

(538.5 feet bgs. Geoprobe refusal and assumed bedrock was noted at approximately 13 feet bgs

(555 feet above msl) in the rear (east side) of the Ace Cleaners building. Bedrock in the vicinity of

2-3

the site is mapped as Sm; Upper Ordivician Medina Group Queenstown Formation; consisting primarily of sandstones. The site is in the vicinity of the contact with the Clinton Group which lies to the South. The Clinton Group is Lower Silurian in age and consists of limestones, dolostones, shales and sandstones (Richard and Fisher, 1970).

Site Walkover

In May, 2006 the MACTEC Site lead, Chuck Staples and the NYSDEC project manager (PM), Matthew Dunham conducted a walkover of the Site area.

The site walkover consisted of viewing the Ace Cleaners property (from the outside), and the surrounding neighborhood to assess possible contamination sources and the logistical concerns for the field program. MACTEC personnel documented the walkover with photographs (Appendix A).

Visible sources of contamination (e.g., leaking drums) were not observed. Detailed inspections of potential sources (i.e., site soils and the interior sump and/or potential floor drains) were not conducted during the site walkover.

2.5 FILE REVIEW

MACTEC reviewed files from various state and local agency offices to develop information to support a reclassification or delisting, and to help prepare the scope of work for future the SC field investigations. In addition, the EDR report was reviewed for relevant background information.

2.6 SUMMARY OF DATA RECORDS SEARCH AND ASSESSMENT FINDINGS

Under federal and state regulations a solid waste may be regulated as a hazardous waste if it is a material included in one of the United States Environmental Protection Agency's (USEPA) or the NYSDEC's lists of hazardous wastes. If a material is regulated because of its inclusion on a federal or state list, it is commonly referred to as a "listed hazardous waste." A waste may also be regulated under the Resource Conservation and Recovery Act as a "characteristic hazardous waste" if it exhibits one of the characteristics of toxicity, corrosivity, reactivity, or flammability.

Results of previous sampling and analysis of the confirmation soil samples taken after excavation of discharged waste water indicated the potential for chlorinated solvents (PCE) in groundwater. Spent chlorinated solvents not originating from household sources, including PCE are included on both the USEPA's and the NYSDEC's lists of hazardous wastes. Under 6 NYCRR Part 371.4(a) (1), these spent solvents constitute hazardous waste from non-specified sources. Disposal of these chlorinated solvents has been confirmed by available analytical results from the site, but the source area had not been characterized.

As defined by 6 NYCRR Part 375, significant threat can be established by documenting a contravention of environmental standards. Soil, surface water and groundwater are the only media for which NYS has promulgated standards. Under NYS Water Quality Regulations (6 NYCRR Parts 701) the state has set numeric standards that are the maximum concentration of compounds in groundwater and surface water that protect public health and/or the environment (NYS, 1999b). Under 6 NYCRR Part 375, the state has set numeric standards for the maximum concentration of compounds in soil that protect public health and/or the environment (NYS, 2006).

Limited analytical data had been collected previously from the Site, and no groundwater data had been collected and therefore it was not known if additional source areas are present and/or if the Site poses a significant threat. The purpose of the SC investigation was to:

- collect the data necessary to verify the likelihood of uncontrolled waste disposal,
- determine if potential contamination is located on the Site and is migrating offsite, and
- provide sufficient information to allow the NYSDEC to re-classify the site.

3.0 SCOPE OF WORK

To reclassify the Site, the NYSDEC requires data documenting hazardous waste disposal as set forth in 6 NYCRR Part 371, and the potential significant threat to human health and the environment as defined by 6 NYCRR Part 375. Because data necessary to determine if potential contamination present in Site media are migrating off-site and pose a potential significant threat to human health and the environment were not available in federal and state files reviewed during Task 1, additional field investigations were performed as described below. Task 3 activities included the Field Investigation (there is no scoped Task 2 for this project). The objective of Task 3 activities was to determine, if possible, whether potential onsite volatile organic compound (VOC) contamination is migrating offsite. Task 4 is the preparation and distribution of this SC Data Summary Report.

3.1 TASK 3 - FIELD INVESTIGATIONS

The following subsections describe the activities conducted during the field investigation portion of the Site SC. The field investigation was conducted in accordance with the specifications presented in the Quality Assurance Program Plan (QAPP) (MACTEC, 2007) and the site specific QAPP, included as Appendix A to the Site Work Plan (MACTEC 2009). Off-site laboratory analyses was performed by Con-Test Analytical Laboratories (Con-Test), a New York State Department of Health (NYSDOH) approved laboratory, in accordance with the NYSDEC Analytical Services Protocols (NYSDEC, 2005).

3.1.1 General Field Activities

General field activities, including mobilization, health and safety, and decontamination, are described in the following subsections.

3.1.1.1 Mobilization

Upon receiving the NYSDEC authorization to begin fieldwork, MACTEC and its subcontractors mobilized to the Site and began the field exploration program on November 2, 2009.

Prior to commencing work, a field team orientation meeting was held on-site with MACTEC personnel and subcontractors to familiarize field workers with site history, health and safety requirements, equipment calibration procedures, and other field procedures.

3.1.1.2 Health and Safety

The field investigation activities were conducted at Level D personal protection. Work was conducted in accordance with the Site specific health and safety plan and no health and safety incidence were recorded.

3.1.1.3 Decontamination

Sampling methods and equipment for this field program were chosen to minimize investigation derived wastes (IDW) and minimize possibility of cross contamination. Disposable sampling equipment was used as much as practical to minimize decontamination time and water disposal. Non disposable sampling equipment was decontaminated before and after the collection of each sample.

Non disposable sampling equipment was decontaminated by 1) scrubbing the sample collection equipment with potable water and Liquinox, rinsing with potable water, rinsing with deionized water, and then allowing the equipment to air dry. Decontamination fluids were released on-site to the ground surface in the area of decontamination, so as to allow the liquids to infiltrate into the soil and not run off-site.

3.1.1.4 Investigation Derived Wastes

The method of disposing IDW generated during this SC is described in the following paragraphs.

Personal Protective Equipment. Used disposable equipment and protective clothing was double bagged in polyethylene trash bags, sealed with twist ties, and disposed of as non-hazardous refuse.

Well Purge Water. Purge water was released on-site to the ground surface in the area of well/boring, so as to allow the liquids to infiltrate into the soil and not run off-site.

Drill Cuttings. Geoprobe[®] soil cuttings were used as backfill for the borings at the approximate interval from which they were extracted. Remaining soils were spread evenly on the ground surface in unpaved areas of the Site in the general vicinity of the boring from which they were extracted.

3.1.2 Existing Monitoring Well Sampling

Monitoring wells located at the Former Sunoco site, located west of the Site across Lake Street were proposed to be sampled in the SC Work Plan (MACTEC, 2009). During the Site field work, it was noted that the wells had been paved over and may have been abandoned. Based on discussions with the NYSDEC PM, it was decided that it would not be practical to cut the new pavement to determine if the wells were still in place.

3.1.3 Surface Water/Sediment Sampling

To characterize environmental conditions downgradient of the site, three locations were chosen for surface water and sediment sampling along the unnamed stream that crosses the eastern edge of the Site (Figure 3.1). The sample locations, labeled on Figure 3.1 as SW-1 to SW-3, were from upgradient, at, and downgradient of the Site. Samples were collected starting with the most downstream location (SW-3), and working up-stream. At each location, surface water samples were collected first, followed by sediment samples. In some of the locations, samples were collected through a storm grate. Surface water and sediment samples were sent to Con-Test and analyzed for Target Compound List (TCL) VOCs using USEPA Method 8260. In addition, sediment samples were analyzed for total organic carbon via USEPA Method 415.1. Laboratory analysis included Category B deliverables.

3.1.4 Floor Sump Sampling

Access to the inside of the Site building was not available; therefore, samples were not collected from interior floor drains or sumps. One sample was collected from a hose noted to be present outside the Site building to determine if the hose was used to drain potential VOC containing waste water to exterior locations.

3.1.5 Geoprobe® Borings and Sampling

Field investigation activities included the completion of 19 Geoprobe[®] borings, the collection and analysis of groundwater, soil, and soil gas samples, and the installation of microwells. The purpose of the activities was to provide groundwater data for comparison to NYS Class GA Groundwater Quality Standards set forth under 6 NYCRR Parts 700-705 (NYS, 1999b), soil data for comparison to Soil Cleanup Objectives set forth under 6 NYCRR Part 375 (NYS, 2006), and to assist the NYSDEC in evaluating significant threat to public health and the environment as defined by 6 NYCRR Part 375 (NYS, 2006). Soil sample analyses were also used to confirm, if possible, a source of chlorinated solvents. Soil gas sample results were used to evaluate whether VOCs present in soil and/or groundwater are migrating towards occupied buildings via vapor migration.

MACTEC used a Geoprobe[®] sampling device to collect groundwater, soil, and soil gas samples to identify potential chlorinated solvents. The Geoprobe[®] pushes and/or hammers rods and probe tips into the subsurface for sample collection. MACTEC completed fifteen exterior borings for the collection of 28 groundwater samples (plus quality control [QC]) and five soil samples (plus QC). In addition, four Geoprobe[®] borings were completed for the collection of four soil vapor samples.

MACTEC worked closely with the NYSDEC, the neighboring property owners, and utility companies to obtain access to the exploration locations. Boring locations are shown on Figure 3.1. Locations were chosen to evaluate groundwater conditions upgradient, at, and downgradient of the site building and the previous soil removal action.

Soil Sampling. Soil samples were collected using a four-foot long 2 inch diameter core sampler with an acrylic liner for the collection of discrete subsurface soil samples. Soil samples were collected continuously from the ground surface to refusal, which varied in depth from 8.5 to 17.5

feet below ground surface. Photoionization Detector (PID) headspace readings were used to screen soil samples for the presence of VOCs as each soil sample was removed from the sample collection tube. Samples were described using the Unified Soil Classification System. The sample description and classification, VOC headspace reading, and boring observations were recorded on the Field Data Record (Included in Appendix B). Based on the PID readings and physical evidence such as color or odor five unsaturated soil samples from the Site property were submitted to an off-site laboratory for analysis. Samples exhibiting the highest PID readings and physical evidence of contamination were selected for analysis. Soil samples were shipped to an off-site laboratory for analyses of TCL VOCs using USEPA Method 8260, including calculation of percent moisture. Off-site laboratory analysis included Category B deliverables.

Groundwater Sampling. Groundwater samples were collected using a small diameter stainless steel wire wound screen that was exposed to the aquifer, after being pushed to the desired depth interval. A check valve was used for the collection of discrete groundwater samples. One tubing volume of water was purged and if sufficient groundwater flow was available, one set of parameters including temperature, conductivity, pH, and turbidity were collected before sampling. VOC samples were collected at a low purge rate (approximately 100 milliliters per minute) to minimize potential volatilization.

To assess vertical extent of contamination, groundwater samples were collected from two locations in each boring, the water table and at refusal (assumed to be top of rock), if possible. Location GW-13 was not completed due to access issues, and only one groundwater sample was obtained from locations GW-8 and GW-14. Groundwater samples were shipped to an off-site laboratory for analyses for VOCs by USEPA Method 8260. Off-site laboratory analysis included Category B deliverables.

Microwell Installation. To determine groundwater flow direction at the Site, four Geoprobe[®] borings, GW-2, GW-8, GW-12, and GW-14, were completed as microwells. Microwell locations are shown in Figure 3.1. Microwells were constructed with schedule 40 polyvinyl chloride, with 10 foot lengths of 0.01-inch machine slotted well screens, with the exception of GW-8, which was constructed with a 5 foot screen length due to boring refusal at 8.5 feet bgs. The well screens were set with approximately two feet of screen above the water table to determine water table elevations and create a potentiometric map. The wells were constructed with a # 0 sand pack to one foot

above the screen, and a bentonite seal to the ground surface. The wells were completed with a locking cap and a six inch flush mount cover. The wells were developed for twenty minutes with a peristaltic pump.

Soil Vapor Sampling. Based on proximity to nearby residences and/or businesses, and discussions with the NYSDEC, four soil vapor samples were collected to evaluate the potential vapor migration of contaminants from the groundwater (Figure 3.1). Soil vapor samples were collected using a Geoprobe® sampling device.

The Geoprobe[®] rods were pushed to between 3.5 and four feet bgs to collect samples just above the water table.

Soil gas samples were collected from the Geoprobe[®] points using the Geoprobe[®] PRT system, which allows for the collection of a discrete soil vapor sample at depth using Teflon lined tubing. The soil vapor samples were collected with six-liter SUMMA[®]-type canisters with flow valves (set to approximately 30 minutes per sample). Flow into the canisters was less than 0.2 liters per minute, as requested by the NYSDOH. Samples were sent to Con-Test for VOC analysis by USEPA Method TO-15.

3.1.6 Optional Sub-Slab Soil Vapor Sampling

Access to the Site building was not available; therefore, sub-slab soil vapor samples were not collected from inside the Site building.

3.1.7 Site Survey

Upon completion of field investigation activities, MACTEC's survey subcontractor, Popli Design group, completed a survey of the Site and surrounding area and created a base map. The Site survey is included in Appendix C. Horizontal locations were tied to the NYS Plane Coordinate System using North American Datum of 1983. The site plan provides horizontal locations of relevant Site features, including surrounding homes and businesses at a scale of 1 inch to 50 feet. Relevant visible features include, but are not limited to structures, buildings, roads, fences, new

monitoring wells, underground utilities, fire plugs, and power poles. The survey also includes a certified boundary survey of the Site property.

Vertical elevations of the four new micro wells were tied to msl, North Atlantic Vertical Datum of 1988, and measured to an accuracy of 0.01 feet. Horizontal well locations are accurate to 0.1 foot. Horizontal measurements also included the Geoprobe® sample points.

The base map was also used to locate the surface water and sediment sample points with field tape measurements.

4.0 DATA ASSESSMENT

This section presents results of the laboratory analyses for soil, groundwater, surface water, sediment, and soil vapor samples collected during Task 3, as well as results of the water level surveys.

4.1 ANALYTICAL RESULTS

Soil and groundwater analytical results were compared to appropriate standards, criteria, or guidance (SCGs). There are no exterior soil vapor standards or guidance values, but if detected concentrations exceeded the NYSDOH sub-slab soil vapor guidance values recommended for mitigation, these concentrations were noted as potential concern. Reported concentrations of individual analytes indicating contravention of standards or guidelines are summarized in the following sections, and noted on Tables 4.1 to 4.5.

A Data Usability Summary Report (DUSR) was completed in accordance with the NYSDEC's Guidance for the Development of DUSRs (NYSDEC, 2002). This report and complete analytical results, including tentatively identified compounds (TICS), are presented in Appendix D. TICS were not evaluated as part of the DUSR.

Based on laboratory or data usability review, some of the data was qualified with a J, R, and/or D. Compounds were qualified J if the concentration listed was an estimated value, which was less than the specified minimum reporting limit but greater than the instrument detection limit. Compounds qualified J were analyzed for and determined to be present in the sample and the mass spectrum of the compound met the identification criteria of the method.

A number of groundwater results for acetone were qualified R indicated that the compound was rejected due to laboratory calibrations being out of acceptable range.

Compounds qualified D indicated that the compound was reported from an analytical run that required a dilution due to concentrations greater than the highest calibration standard.

Analytical results were compared to the SCGs described below.

Soil Samples. Analytical results are compared to the 6 NYCRR Part 375 Soil Cleanup Objectives (SCOs) for Unrestricted Use (NYS, 2006).

Sediment samples. Off-site analytical results are compared to the NYSDEC Division of Fish, Wildlife and Marine Resources Technical Guidance for Screening Contaminated Sediment (NYSDEC, 1999).

Groundwater and Surface Water Samples. Analytical results are compared to the NYS Class GA Groundwater Quality Standards and the Class C Surface Water Quality Standards from 6 NYCRR Parts 700-705 (NYS, 1999b).

Soil Vapor Samples. There are currently no SCOs for concentrations of compounds in external soil vapor. Soil vapor samples were collected to determine whether this environmental medium is contaminated, characterize the nature and extent of contamination, and identify possible sources of the contamination.

4.1.1 Soil Sample Results

A summary of target VOCs detected in the five soil samples is presented in Table 4.1. Complete analytical results are included in Appendix D. Boring locations are shown on Figure 3.1 (GS locations are same as GW locations). Boring locations for soil sampling targeted the reported area of the historic contaminated soil removal to determine if residual contamination remained above the SCO's for unrestricted use. Chlorinated solvents (primarily PCE) were detected in borings GS-4 (13 milligrams per kilogram [mg/kg]), GS-5 (40 mg/kg), and GS-15 (35 mg/kg), at concentrations above unrestricted use SCO of 1.3 mg/kg. VOCs were not detected in the remaining two samples from borings GS-3 and GS-16.

Trichloroethylene (TCE) (0.56 mg/kg), cis-1,2-dichloroethene (cis-1,2-DCE) (0.94 mg/kg), and vinyl chloride (VC) (0.88 mg/kg) were also detected in boring GS-15 at concentrations above their unrestricted use SCO of 0.47 mg/kg, 0.25 mg/kg, and 0.03 mg/kg respectfully. These compounds are breakdown products of PCE and were not detected in the other borings.

Several fuel related VOCs were also detected in borings GS-4 and GS-15, but at concentrations below their respective SCO for unrestricted use.

4.1.2 Groundwater Sample Results

A summary of target VOCs detected in groundwater samples collected is presented in Table 4.2. Maximum detections of PCE, TCE, cis-1,2-DCE, and VC in each boring are presented on Figure 4.1. Complete analytical results are included in Appendix D.

PCE was detected in groundwater at 12 of the 15 Geoprobe[®] boring locations. Detected concentrations ranged from 24 micrograms per liter (μ g/L) (GW-1) to 67,000 μ g/L (GW-15), in comparison to the NYS Class GA groundwater standard for PCE of 5 μ g/L (see Table 4.2). PCE was not detected in the up-gradient locations GW-8, GW-9 and GW-10.

TCE was detected in groundwater at 12 of the 15 Geoprobe[®] boring locations. Detected concentrations ranged from 11 μ g/L (GW-3) to 2,600 μ g/L (GW-15), in comparison to the NYS Class GA groundwater standard for TCE of 5 μ g/L (see Table 4.2). TCE was not detected in the up-gradient locations GW-8, GW-9 and GW-10.

Cis-1,2-DCE was detected in groundwater at 12 of the 15 Geoprobe[®] boring locations. Detected concentrations ranged from 18 μ g/L (GW-7) to 4,200 μ g/L (GW-15), in comparison to the NYS Class GA groundwater standard for cis-1,2-DCE of 5 μ g/L (see Table 4.2). Cis-1,2-DCE was not detected in the up-gradient locations GW-8, GW-9 and GW-10.

VC was detected in groundwater at five of the 15 Geoprobe[®] boring locations. Detected concentrations ranged from 2.8 μ g/L (GW-12) to 2,800 μ g/L (GW-15), compared to the NYS Class GA groundwater standard for VC of 2 μ g/L. VC was not detected in the up-gradient locations GW-8, GW-9 and GW-10.

Additional VOCs were detected in groundwater but less frequently. These included 1,1-dichloroethene (1,1-DCE), trans-1,2-dichloroethene (trans-1,2-DCE), and 1,2,4-trimethylbenzene (Table 4.2).

Several potentially fuel related TICs were also detected in the VOC groundwater samples collected. TICs are reported in Appendix D.

In addition to the groundwater samples, acetone was detected at a concentration of $51 \mu g/L$ and PCE was detected at a concentration of $1.2 \mu g/L$ in a water sample collected from a hose noted to be present outside the Site building. The sample was collected to evaluate if the hose may have been used to transport PCE contaminated water from inside the dry cleaner to the outside.

4.1.3 Surface Water Sample Results

A summary of target VOCs detected in surface water samples is presented in Table 4.3. Complete analytical results are included in Appendix D. Sample locations are shown on Figure 3.1.

PCE was detected in the surface water sample at sample location SW-3 at a concentration of 1.2 μ g/L, above the NYS Class C Surface Water Quality Guidance (SWQG) value for PCE of 1 μ g/L.

Cis-1,2-DCE was detected in the surface water sample at sample location SW-2 at a concentration of 5.4 μ g/L and at the sample at sample location SW-3 at a concentration of 3.4 μ g/L. There is no established NYS Class C SWQG values for cis-1,2-DCE.

4.1.4 Sediment Sample Results

A summary of target VOCs detected in sediment samples is presented in Table 4.4. Complete analytical results are included in Appendix D. Sample locations are shown on Figure 3.1.

VOC target compounds were not detected in the sediment samples.

4.1.5 Soil Vapor Sample Results

A summary of target VOCs detected in soil vapor samples is presented in Table 4.5. Complete analytical results are included in Appendix D.

Although the NYSDOH has promulgated guidance values for soil vapor for several chlorinated solvents, these guidance values are only applicable when evaluating sub-slab soil vapor samples in relation to indoor air concentrations, and not exterior soil vapor samples. The Geoprobe soil vapor samples were therefore not compared to guidance values.

The highest concentrations of chlorinated solvents were detected in the immediate vicinity of the Ace Cleaners building at GV-1 and GV-4. PCE was detected at all four sample locations at concentrations ranging from 21 micrograms per cubic meter (μ g/m³) to 110,000 μ g/m³. TCE was detected in three soil vapor samples (GV-1, GV-2, and GV-4) at concentrations ranging from 250 μ g/m³ to 1,700 μ g/m³. Cis-1,2-DCE was detected in three soil vapor samples (GV-1, GV-2, and GV-3) at concentrations ranging from 130 μ g/m³ to 2,100 μ g/m³. VC was detected in GV-1 and GV-4 at concentrations of 41,000 μ g/m³ and 5.9 μ g/m³, respectfully. Concentrations of 1,1-DCE (50 μ g/m³) and trans-1,2-DCE (54 μ g/m³) were also detected in GV-1.

Several fuel related compounds were also detected in the soil vapor samples (Table 4.5).

4.2 GROUNDWATER FLOW

The microwell survey and depth to water measurements were used to evaluate groundwater flow. Microwell survey and water elevation data are presented in Table 4.6. Depth to water across the survey area in November 2009 varied from approximately 3.75 feet bgs to 5.49 feet bgs, and measured groundwater elevations ranged from 548.27 feet above msl in GW-12 to 555.63 feet above msl in GW-8. The groundwater table gradient in November 2009, based on a measured elevation change of 7.4 feet over 370 feet of distance (GW-8 to GW-12), was 0.02 feet/foot. November 2009 interpreted groundwater contours are presented on Figure 4.2. Based on topography, analytical data, and interpreted groundwater contours, groundwater flow is anticipated to be to the northeast, towards the unnamed stream, but there also appears to be a component of flow from the site building to the north and northwest.

Based on elevations of the culvert along the east side of the Site, as well as the detections of chlorinated solvents in the stream running through this culvert, this culvert and stream channel are likely a groundwater discharge location and thus may influence local groundwater flow.

5.0 INVESTIGATION FINDINGS

A review of physical and chemical data collected during the SC resulted in the following findings:

- 1) PCE was detected in soil samples collected from the vicinity of the former soil removal action. PCE was detected at concentrations up to 35 mg/kg (location GS-15 at seven to eight feet bgs), compared to the soil cleanup objective for unrestricted use for PCE of 1.3 mg/kg. Based on this information, it appears that the previous soil removal action did not remove all soil contamination above the soil cleanup objectives for unrestricted use.
- 2) PCE was detected at concentrations above its NYS standard of 5 μg/L in groundwater samples from 12 of the 15 Geoprobe boring locations across the Site area. Detected concentration of PCE in groundwater ranged from 24 μg/L to 67,000 μg/L. TCE, a breakdown product of PCE was also detected at concentrations above its NYS standard of 5 μg/L in groundwater samples from 12 of the 15 Geoprobe boring locations. Detected concentration of TCE in groundwater ranged from 11 μg/L to 2,600 μg/L. The four samples with the highest detections of PCE and TCE were collected from borings (GW-4, GW-5, GW-15, and GW-16) located in the area adjacent to and east of the Site building. Several other breakdown products of PCE, including cis-1,2-DCE and Vinyl Chloride were also detected in the groundwater samples. Chlorinated solvents were not detected in the three up gradient sample locations, GW-8, GW-9, and GW-10. Based on this data, it appears that chlorinated solvent contamination (primarily PCE), has migrated from soil to groundwater and is migrating off-site in groundwater at concentrations above NYS groundwater standards. The downgradient extent of this contamination is not known.
- 3) Based on groundwater measurements collected, topography, and groundwater VOC concentrations, groundwater at the Site and vicinity is interpreted to flow primarily to the northwest, with some flow from the Site to the north and northeast. Hydraulic gradients from GW-8 to GW-12 are relatively flat (0.02 feet/foot).
- 4) PCE was detected in the four soil vapor samples collected, with the samples collected nearest the Site building containing the highest PCE concentrations. The highest concentrations of PCE (110,000 $\mu g/m^3$), TCE (1,700 $\mu g/m^3$), cis-1,2-DCE (2,100 $\mu g/m^3$), and vinyl chloride (41,000 $\mu g/m^3$) were detected in the sample from location GV-1, located adjacent to the south side of the dry cleaner building. These concentrations are high enough for there to be a potential that soil vapor intrusion is occurring at the Site buildings and at buildings adjacent to the south side of the Site.

Data Gaps. Based on the SC, the following data gaps still exist:

- 1) The aerial and vertical extent of soil contamination above SCOs for unrestricted use in the vicinity of the former removal action has not been defined.
- 2) The source of the chlorinated solvent concentrations detected in the groundwater west of the site building has not been confirmed. Although this could be the result of soil contamination located on the east side of the Site building, no soil sampling was conducted

below the Site building. It is not known if potential PCE contamination exists in soil below the Site building's concrete slab (i.e. from cracks in the building floor or historic floor drains).

- 3) The vapor intrusion pathway at the site and adjacent buildings has not been evaluated.
- 4) The downgradient extent of groundwater contamination above NYS standards has not been defined.

6.0 REFERENCES

- Leggette and Gould, 1935. Groundwater Resources of Monroe County. 1935.
- MACTEC Engineering and Consulting, P.C., 2009. Site Work Plan. Prepared for the New York State Department of Environmental Conservation, Albany, New York. [DATE], 2009.
- MACTEC Engineering and Consulting, P.C., 2007. Program Quality Assurance Program Plan. Prepared for the New York State Department of Environmental Conservation, Albany, New York. October 2007.
- National Climactic Data Center, 2004. Comparative Climactic Data for the United States, 1971 to 2000. February, 2004.
- New York State (NYS), 1999a. New York Codes, Rules, and Regulations, Title 6, Part 371 Identification and Listing of Hazardous Wastes. Amended November 1999.
- New York State (NYS), 1999b. New York Codes, Rules, and Regulations, Title 6, Part 700-705 Water Quality Regulations Surface Water and Groundwater Classifications and Standards. Amended August 1999.
- New York State (NYS), 2006. New York Codes, Rules, and Regulations, Title 6, Part 375 Inactive Hazardous Waste Disposal Sites Remedial Program. Re-issued October 2006.
- New York State Department of Environmental Conservation (NYSDEC), 2009a. Work Assignment Issuance/Conflict of Interest Letter for Ace Cleaners Site; dated July 16, 2009.
- New York State Department of Environmental Conservation (NYSDEC), 2006. Work Assignment #D003826-29 Region 8 Dry Cleaners Group 2 letter dated March 28, 2006.
- New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; 6/05 Edition; June 2005.
- New York State Department of Environmental Conservation (NYSDEC), 2010. DER-10, Technical Guidance for Site Investigation and Remediation. June 2010.

New York State Department of Environmental Conservation (NYSDEC), 1999. *Technical Guidance for Screening Contaminated Sediment*; Division of Fish, Wildlife, and Marine Resources. Amended January 1999.

- Richard and Fisher, 1970. Geologic Map of New York, Niagara Sheet, New York State Map and Chart Series 15, by L.V. Richard and D.W. Fisher. March, 1970.
- United States Department of Agriculture, 1973. USDA Soil Conservation Service soil survey for Monroe County, New York. March 1973.
- United States Geological Survey, 1978. 7.7 Minute USGS Topographic Map for the Brockport, New York Quadrangle. Photo revised 1978.

TABLES

	Location	GS-3		GS-3		GS-4		GS-5		GS-15		GS	-16
	Sample Date	11/3/2009		11/3/2009		11/3/2009		11/3/2009		11/3/2009		11/3/	/2009
	Sample ID	ACGS0030601XD		ACGS0030601XX		ACGS0040601XX		ACGS0051001XX		ACGS0150701XX		ACGS01	60701XX
S	ample Depth	6-7		6-7		6-7		10-11		7-8		7	-8
	QC Code	FD		FS		FS		FS		FS			FS
Param Name	Criteria	Result	Qualifier	Result	Qualifier								
1,2,4-Trimethylbenzene	NA	0.0017	UJ	0.0014	UJ	0.98		0.2	U	0.28		0.0019	U
1,3,5-Trimethylbenzene	8.4	0.0017	UJ	0.0014	UJ	0.2		0.2	U	0.2	U	0.0019	U
Cis-1,2-Dichloroethene	0.25	0.0017	U	0.0014	U	0.19	U	0.2	U	0.94		0.0019	U
n-Butylbenzene	12	0.0087	UJ	0.0071	UJ	0.31		0.2	U	0.2	U	0.0094	UJ
Tetrachloroethene	1.3	0.0017	U	0.0014	U	13		40	D	35	D	0.0019	U
Trichloroethene	0.47	0.0017	U	0.0014	U	0.19	U	0.2	U	0.56		0.0019	U
Vinyl chloride	0.02	0.0087	UJ	0.0071	UJ	0.38	UJ	0.4	UJ	0.88	J	0.0094	UJ
Percent Solids	NA	86	·	86.9	·	87		85.4	·	87.2		84.4	l

Results in milligrams per kilogram (mg/Kg)

Only detected compounds shown.

Percent Solids in percent (%)

Depth in feet below ground surface

Samples analyzed for VOCs by EPA Method 8260B

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from dilution run

Criteria - 6 NYCRR 375 Soil Cleanup Objectives

for unrestricted use.

NA = Not Applicable

Detections are indicated in **BOLD**

	Location	Exterior Hose		GW-1		GW-1		GW-2		GW-2		GV	V-3
	Sample Date	11/3/2009		11/2/2009		11/2/2009		11/2/2009		11/2/2009		11/3/	/2009
	Sample ID	AC-Exterior Hose-2009 A		ACGW0010801XX		ACGW0011601XX		ACGW0020801XX		ACGW0021601XX		ACGW00)30601XX
	Sample Depth	NA			8		16		8		16		6
	QC Code	FS	FS		FS		FS		FS		FS		S
Parameter	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1-Dichloroethene	5	1	U	1	U	1	U	1	U	50	UD	1.8	J
1,2,4-Trimethylbenzene	5	1	U	1	U	1	U	1	U	50	UD	1	UJ
Acetone	50*	51	J	50	U	50	U	50	U	2500	U	50	UJ
Cis-1,2-Dichloroethene	5	1	U	21		15		12		52	D	34	J
Tetrachloroethene	5	1.2		24	J	1	U	56	J	1800	JD	140	JD
trans-1,2-Dichloroethene	5	1	U	2		1	U	1	U	50	UD	1	UJ
Trichloroethene	5	1	U	36	J	1	U	6	J	54	JD	11	J
Vinyl chloride	2	2	U	2	U	5.4		2	U	100	UD	65	J

Results in microgram per liter ($\mu g/L$) Only detected compounds shown. Samples analyzed for VOCs by EPA Method 8260B NA = Not Applicable

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from dilution run

R = Result rejected during data validation

 $Criteria = Values \ from \ Technical \ and \ Operational$

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998).

Criteria is New York State Standard unless *

* Criteria is NYSDEC Guidance Value

Detections are indicated in \boldsymbol{BOLD}

	Location		GW-3		GW-4		GW-4		GW-4		GW-5		V-5
	Sample Date	11/3/2009		11/3/2009		11/3/2009		11/3/2009		11/3/2009		11/3/	/2009
	Sample ID	ACGW00	ACGW0031201XX A		ACGW0040601XD.		ACGW0040601XX		ACGW0041201XX		ACGW0050601XX)51201XX
	Sample Depth	1	12		6		6		12		6		.2
	QC Code	FS		FD		FS		FS		FS		FS	
Parameter	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1-Dichloroethene	5	100	UD	100	UJD	100	U	100	U	100	UD	100	UD
1,2,4-Trimethylbenzene	5	100	UD	100	UJD	100	U	100	U	100	UD	100	UD
Acetone	50*		R	5000	UJD		R		R		R		R
Cis-1,2-Dichloroethene	5	100	UD	330	JD	320	D	1000	D	200	D	100	UD
Tetrachloroethene	5	790	D	7500	JD	7500	D	20000	JD	27000	JD	2600	D
trans-1,2-Dichloroethene	5	100	UD	100	UJD	100	UD	100	UD	100	UD	100	UD
Trichloroethene	5	100	UD	570	JD	560	D	820	D	300	D	100	U
Vinyl chloride	2	200	UJD	360	UJD	280	UJD	700	UJD	200	UJD	200	UJD

Results in microgram per liter ($\mu g/L$) Only detected compounds shown. Samples analyzed for VOCs by EPA Method 8260B NA = Not Applicable

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from dilution run

R = Result rejected during data validation

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998)

Criteria is New York State Standard unless *

* Criteria is NYSDEC Guidance Value

Detections are indicated in **BOLD**

	Location	n GW-6		GW-6		GW-7		GW-7		GW-8		GV	W-9
	Sample Date	11/3/2009		11/3/2009		11/2/2009		11/2/2009		11/2/2009		11/2	/2009
	Sample ID	ACGW00	ACGW0060601XX		ACGW0061401XX		ACGW0070501XX		ACGW0071001XX		ACGW0080601XX)90601XX
\$	Sample Depth	6	6		14		5		10		6		6
	QC Code		FS		FS								
Parameter	Criteria	Result	Qualifier	Result	Qualifier								
1,1-Dichloroethene	5	1	UJ	3.1	J	1	U	10	UD	1	U	1	UJ
1,2,4-Trimethylbenzene	5	1	UJ	1	UJ	1	U	10	UD	1	U	1	UJ
Acetone	50*	50	UJ	50	UJ	50	U	500	U	50	U	50	UJ
Cis-1,2-Dichloroethene	5	31	J	800	JD	18		10	U	1	U	1	UJ
Tetrachloroethene	5	1.4	J	220	JD	240	D	250	JD	1	U	1	UJ
trans-1,2-Dichloroethene	5	24	J	9.2	J	1	U	10	UD	1	U	1	UJ
Trichloroethene	5	1	UJ	96	JD	23	J	11	JD	1	U	1	UJ
Vinyl chloride	2	2	UJ	2	UJ	2	U	20	UD	2	U	2	UJ

Results in microgram per liter ($\mu g/L$) Only detected compounds shown. Samples analyzed for VOCs by EPA Method 8260B NA = Not Applicable

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from dilution run

R = Result rejected during data validation

 $Criteria = Values \ from \ Technical \ and \ Operational$

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998)

Criteria is New York State Standard unless *

* Criteria is NYSDEC Guidance Value

Detections are indicated in **BOLD**

	Location	GW-9	GW-10	GW-10	GW-11	GW-11	GW-12
	Sample Date	11/2/2009	11/4/2009	11/4/2009	11/4/2009	11/4/2009	11/4/2009
	Sample ID	ACGW0091201XX	ACGW0100601XX	ACGW0101201XX	ACGW0110601XX	ACGW0111601XX	ACGW0120701XX
	Sample Depth	12	6	12	6	16	7
	QC Code	FS	FS	FS	FS	FS	FS
Parameter	Criteria	Result Qualifier					
1,1-Dichloroethene	5	1 UJ	1 U	1 U	100 UD	10 UD	1 U
1,2,4-Trimethylbenzene	5	1 UJ	1 U	1 U	100 UD	10 UD	1 U
Acetone	50*	50 UJ	50 U	50 U	5000 UD	500 U	50 U
Cis-1,2-Dichloroethene	5	1 UJ	1 U	1 U	760 D	290 D	54
Tetrachloroethene	5	1 UJ	1 U	1 U	2000 D	480 D	32
trans-1,2-Dichloroethene	5	1 UJ	1 U	1 U	100 UD	10 UD	1 U
Trichloroethene	5	1 UJ	1 U	1 U	190 D	98 D	15
Vinyl chloride	2	2 UJ	2 U	2 U	200 U	20 U	2.8

Results in microgram per liter (µg/L) Only detected compounds shown. Samples analyzed for VOCs by EPA Method 8260B NA = Not Applicable

QC Code:

FS = Field Sample

FD = Field Duplicate

Oualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from dilution run

R = Result rejected during data validation

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998)

Criteria is New York State Standard unless *

* Criteria is NYSDEC Guidance Value

Detections are indicated in BOLD

	Location	GW	<i>V</i> -12	GW	-12	GW	7-14	GW	7-15	GW	<i>V</i> -15	GW	7-16
	Sample Date	11/4/	2009	11/4/	2009	11/2/	/2009	11/3	/2009	11/3/	/2009	11/3/	/2009
	Sample ID	ACGW01	21201XD	ACGW01	21201XX	ACGW01	41201XX	ACGW01	50601XX	ACGW01	51101XX	ACGW01	61201XX
\$	Sample Depth	1	2	1.	2	1	2		6	1	1	1	2
	QC Code	F	D	F	S	F	S	F	S	F	⁷ S	F	S
Parameter	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1-Dichloroethene	5	1	UJ	1	U	10	UJD	260	D	100	UD	100	UD
1,2,4-Trimethylbenzene	5	1	UJ	1	U	10	UJD	210	D	100	UD	100	UD
Acetone	50*	50	UJ	50	U	500	UJD		R		R		R
Cis-1,2-Dichloroethene	5	96	JD	160	D	36	JD	4200	D	1700	D	280	D
Tetrachloroethene	5	24	J	24		390	JD	67000	JD	25000	JD	9500	JD
trans-1,2-Dichloroethene	5	1	UJ	1	U	10	UJD	100	UD	100	UD	100	UD
Trichloroethene	5	21	J	20		33	JD	2600	D	730	D	250	D
Vinyl chloride	2	2	UJ	2	U	20	UJD	2800	JD	460	UJ	210	JD

Results in microgram per liter ($\mu g/L$) Only detected compounds shown. Samples analyzed for VOCs by EPA Method 8260B NA = Not Applicable

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from dilution run

R = Result rejected during data validation

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998)

Criteria is New York State Standard unless *

* Criteria is NYSDEC Guidance Value

Detections are indicated in BOLD

	Location	GW-16
	Sample Date	11/3/2009
	Sample ID	ACGW0160701XX
	Sample Depth	n 7
	QC Code	FS
Parameter	Criteria	Result Qualifier
1,1-Dichloroethene	5	10 UJD
1,2,4-Trimethylbenzene	5	10 UJD
Acetone	50*	500 UJD
Cis-1,2-Dichloroethene	5	10 UJD
Tetrachloroethene	5	63 JD
trans-1,2-Dichloroethene	5	10 UJD
Trichloroethene	5	10 UJD
Vinyl chloride	2	20 UJD

Results in microgram per liter ($\mu g/L$) Only detected compounds shown. Samples analyzed for VOCs by EPA Method 8260B

NA = Not Applicable

QC Code:

FS = Field Sample

FD = Field Duplicate

Oualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from dilution run

R = Result rejected during data validation

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998)

Criteria is New York State Standard unless *

* Criteria is NYSDEC Guidance Value

Detections are indicated in **BOLD**

	Location	SW	'-1	SW-1		SW-2		SW-3	
	Sample Date	11/4/2	2009	11/4/2009		11/3/2009		11/3/2009	
	Sample ID	ACSW001	00001XD	ACSW001	00001XX	ACSW002	00001XX	ACSW003	00001XX
	QC Code	FI)	FS	3	FS	5	FS	5
Parameter	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Cis-1,2-Dichloroethene	NA	1	U	1	U	5.4		3.4	
Tetrachloroethene	1	1	U	1	U	1	U	1.2	

Results in microgram per liter $(\mu g/L)$

Only detected compounds shown.

Samples analyzed for VOCs by EPA Method 8260B

Criteria = Class C surface waters values from Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance values and Groundwater Effluent Limitations (NYSDEC, 1998).

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

Detections are indicated in **BOLD**

	Location	SD-1		SD) -1	SD) -2	SD-3	
Sa	ample Date	11/4/2009		11/4/2009		11/3/2009		11/3/2009	
	Sample ID	ACSD00100001XD A		ACSD001	00001XX	XX ACSD00200001XX		X ACSD00300001XX	
	Qc Code	Fl	D	F	S	F	S	F	S
Parameter	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
VOC Target Compounds	NA	ND		ND		ND		ND	
Total Organic Carbon	NA	36,200		27,110		24,770		22,650	
Percent Solids	NA	80.9		74.1		75.9		81.6	

Results in milligrams per kilogram (mg/Kg)

Percent Solids in percent (%)

Only detected compounds shown.

Samples analyzed for VOCs by EPA Method 8260B and TOC by Lloyd Kahn Method

QC Code:

FS = Field Sample

FD = Field Duplicate

NA = Not Applicable

ND = Not Detected

MACTEC Engineering and Consulting, P.C., 3612092135

Location	GV	-1	GV	-2	GV	-3	GV	-4
Sample Date	11/4/2	2009	11/4/2	2009	11/4/2	2009	11/4/2	2009
Sample ID	ACGV001	0401XX	ACGV002	20401XX	ACGV003	30401XX	ACGV004	0401XX
QC Code	FS	S	FS FS		S FS		\mathbf{S}	
Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1-Dichloroethene	50		4	U	4	U	4	U
1,2,4-Trimethylbenzene	14			U	4.9		10	
1,3,5-Trimethylbenzene	9		4.9	U	4.9	U	4.9	U
1,3-Butadiene	2.2	U	52		150		290	
2-Butanone	44		65		41		82	
2-Hexanone	4.1	U	8.6		4.1		4.1	
4-Methyl-2-pentanone	4.1	U	5.5		4.1	U	4.1	U
Acetone	85		250		170		330	
Benzene	31		18		56		180	
Carbon disulfide	9		10		7.4		57	
Chloroethane	16		2.6		2.6		2.6	UJ
Chloroform	4.9		4.9		4.9	U	5.7	
Chloromethane	2.1	U	2.1	U	6.5		33	
Cis-1,2-Dichloroethene	2100		170			U	130	
Cyclohexane	36		3.4	U	9.3		27	
Ethanol	37	J	75	J	65	J	100	J
Ethyl benzene	6.1		4.9		6.9		15	
Heptane	420		18		37		120	
Hexane	970		29		69		190	
Propylene	2500		290		870		1200	
Styrene	4.3	U	6.7		5.6		16	
Tetrachloroethene	110000	D	8000	D	21		24000	D
Toluene	57		21		35		100	
trans-1,2-Dichloroethene	54		4	U		U	4	U
Trichloroethene	1700		380		5.4		250	
Vinyl chloride	41000	D	2.6		2.6	U	5.9	
Xylene, m/p	13		8.7		11		29	
Xylene, o	7.4		4.3	U	5.9		14	

Notes:

Only Detected Compounds shown; detections are indicated in **BOLD** Samples analyzed for VOCs by USEPA Method TO-15.

Results in microgram per cubic meter (µg/m3)

QC Code: FS = Field Sample

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

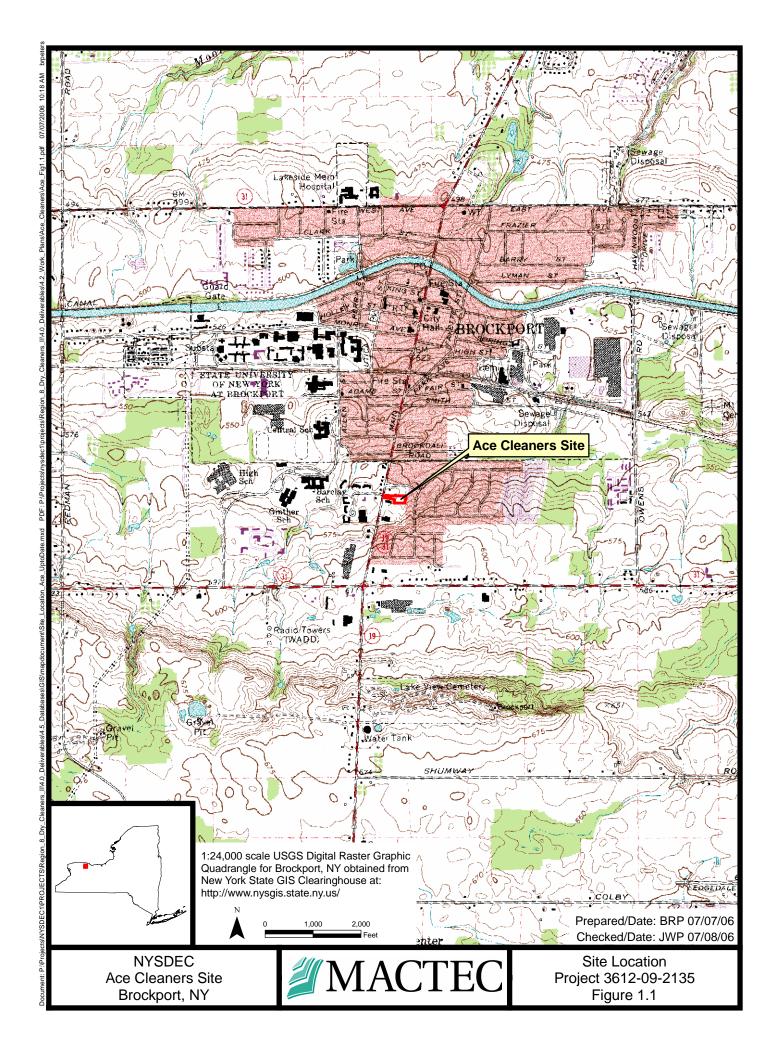
D = Result from dilution run

Table 4.6: Groundwater Elevations

Well ID	Northing	Easting	Casing Elevation	Riser Elevation	Depth to Water 11/5/2009	Groundwater Elevation 11/5/2009	Depth to Water 2/2/2010	Groundwater Elevation 2/2/2010
GW-2	1167902.3	1319315.0	559.47	559.14	5.49	553.65	4.76	554.38
GW-8	1167776.6	1319588.2	559.87	559.61	3.98	555.63	NM	NM
GW-12	1168082.8	1319796.6	552.27	552.02	3.75	548.27	3.49	548.53
GW-14	1167901.8	1319510.8	559.57	559.31	5.04	554.27	3.12	556.19

Microwells surveyed by Popli Design Group, November 2009

Horizontal Datum is in feet, using NAD 83(CORS) - New York State Plane Coordinate system, west zone


Vertical Elevation Datum is feet above mean sea level, NAVD 88

Depth to water measured in feet below top of riser.

Groundwater measurements collected by MACTEC 11/5/2009

NM = Groundwater measurements not available due to frozen water in riser pipe.

FIGURES

APPENDIX A

SITE PHOTOS

ACE CLEANERS SITE PHOTOGRAPHS

Front of Ace Cleaners, looking east.

North Side of Ace Cleaners Building – looking south across Sweden Lane.

Page 1 of 1

ACE CLEANERS SITE PHOTOGRAPHS

Rear of Ace Cleanerers (east side), looking southwest

Rear (east side) of Ace Cleaners Building in area of historic soil removal (PVC in ground are sample points)(photo collected during Site Investigation).

ACE CLEANERS SITE PHOTOGRAPHS

Sample location SW-1 (culvert on southeast corner of site property) (photo collected during Site Investigation).

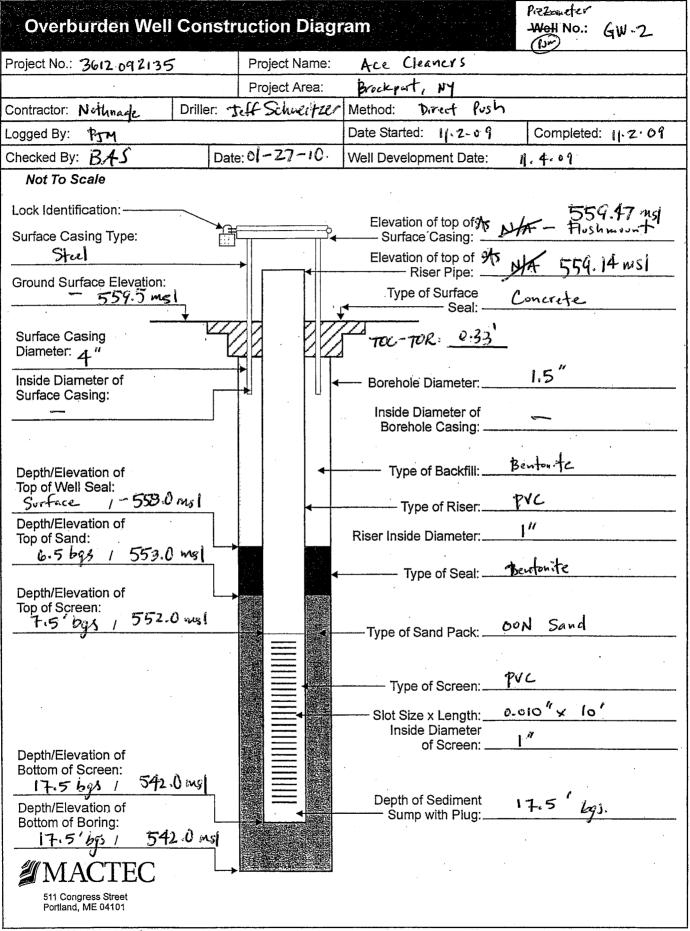
SW-3 sample location – outfall of culvert to northeast of Site property (photo collected during Site Investigation).

APPENDIX B

FIELD RECORDS

		INDOOR AIR S	SAMPLING RECORD						
Project Name: <u> Aင</u> င	Cleaners	Client:P	DEL Location	on ID: <u> </u>					
Project Number:3	6120921	Collector: Pa	Date:	11 . 4 . 09					
(Pim)	SUMMA Canister Record Information:								
SUBSLAB SOIL VAPO	OR SAMPLE	INDOOR AIR - BASEME	ENT INDOOR AIR - FIRST FLO	OOR ASSOCIATED AMBIENT					
Flow Regulator No:	3243	Flow Regulator No:	Flow Regulator No:	Flow Regulator No:					
Flow Rate (mL/min):	50	Flow Rate (mL/min):	Flow Rate (mL/min):	Flow Rate (mL/min):					
Canister Serial No:	1443	Canister Serial No:	Canister Serial No:	Canister Serial No:					
Start Date/Time:	11-4-09	Start Date/Time:	Start Date/Time:	Start Date/Time:					
Start Pressure ("Hg):		Start Pressure ("Hg):	Start Pressure ("Hg):	Start Pressure ("Hg):					
Stop Date/Time:	11.4.09	Stop Date/Time:	Stop Date/Time:	Stop Date/Time:					
Stop Pressure ("Hg):		Stop Pressure ("Hg):	Step Pressure ("Hg):	Stop Pressure ("Hg):					
Sample ID: ACGV001 04 01									
	Other Sampling Information:								
Finished Basement, Crawl Space, Unfinished Basement		Story/Level:	Story/Level:	Direction from Building:					
Floor Slab Thickness:		Room:	Room:	Distance from Building:					
Potential Vapor Entry Points:	خڪ	Potential Vapor Entry Points:	Potential Vapor Entry Points:	Distance from Roadway:					
Floor Surface:		Floor Surface:	Floor Surface:	Ground Surface:					
Noticable Odor:	None	Noticable Odor:	Noticable Odor:	Noticable Odor:					
PID Reading (ppp):	32	PID Reading (ppb):	PID Reading (ppb):	PID Reading (ppb);					
Intake Depth/Height:		∘ Intake Height:	Intake Height:	Intake Hieght Above Ground Surface:					
Helium Test Conducted? Breakthrough %:	No	Indoor Air Temp:	Indoor Air Temp:	Intake Tubing Used?					
Comments/Location	ո Sketch:	intake @ 3.5' be	15. Porsed 1 L soil	gas w/ PID					
·			\int						

FIGURE 4-18 INDOOR AIR SAMPLING RECORD


NYSDEC QUALITY ASSURANCE PROJECT PLAN

511 Congress Street, Portland, ME 04101

·								
ASSOCIATED AMBIENT								
or No:								
./min):								
al No:								
ime:								
("Hg):								
ime:								
("Hg):								
A C GV 00 2 0 4 0 1 大火 Other Sampling Information:								
on from uilding:								
uilding: ce from uilding:								
uilding: ce from								
uilding: ce from uilding: ce from								
uilding: ce from uilding: ce from adway:								
uilding: ce from uilding: ce from adway: surface: e Odor: g (ppb):								
uilding: ce from uilding: ce from adway: curface:								
uilding: ce from uilding: ce from adway: curface: e Odor: g (ppb):								
uilding: ce from uilding: ce from adway: surface: e Odor: g (ppb): t Above surface:								
uilding: ce from uilding: ce from adway: surface: e Odor: g (ppb): t Above surface:								
uilding: ce from uilding: ce from adway: surface: e Odor: g (ppb): t Above surface:								
uilding: ce from uilding: ce from ladway: curface: e Odor: g (ppb): d Above Surface:								
uilding: ce from uilding: ce from adway: surface: e Odor: g (ppb): t Above surface:								
uilding: ce from uilding: ce from adway: surface: e Odor: g (ppb): t Above surface:								

		INDOOR A	AIR SAME	PLING RECORD					
Project Name:	Ace Clean	Client:	NYSDEL		Location ID:	64-3			
Project Number: 3	61209213	Collector:_	Pom		Date:	1/.3.09	·		
(P) W)	SUMMA Canister Record Information:								
SUBSLAB SOIL VAPO	OR SAMPLE	INDOOR AIR - BA	SEMENT	INDOOR AIR - FIR	ST FLOOR	ASSOCIATED A	MBIENT		
Flow Regulator No:	3237	Plow Regulator No:		Flow Regulator No:		Flow Regulator No:			
Flow Rate (mL/min):	50	Flow Rate (mL/min):		Flow Rate (mL/min):		Flow Rate (mL/min):			
Canister Serial No:	1889	Canister Serial No:		Canister Serial No:		Canister Serial No:			
Start Date/Time:	1610	Start Date/Time:		Start Date/Time:		Start Date/Time:			
Start Pressure ("Hg):	-30+	Start Pressure ("Hg):		Start Pressure ("Hg):		Start Pressure ("Hg):			
Stop Date/Time:	11.3.09	Stop Date/Time:		Stop Date/Time:		Stop Date/Time:			
Stop Pressure ("Hg):		Stop Pressure ("Hg):		Stop Pressure ("Hg):		Stop Pressure ("Hg):			
Sample ID: ACG v 003 040	1××	Sample ID:		Sample ID:		Sample ID:			
Other Sampling Information:									
Finished Basement, Crawl Space, Unfinished Basement		Story/Level:	·	Story/Level:		Direction from Building:			
Floor Slab Thickness:		Room:		Room:		Distance from Building:			
Potential Vapor Entry Points:		Potential Vapor Entry Points:		Potential Vapor Entry Points:		Distance from Roadway:	i		
Floor Surface:		Floor Surface:	,	Floor Surface:		Ground Surface:			
Noticable Odor:	none	Noticable Odor:		Noticable Odor:		Naticable Odor:			
PID Reading (pp)	12	PID Reading (ppb):		PID Reading (ppb):		PID Reading (ppb):			
Intake Depth/Height:	4 hss	v Intake Height:		Intake Height:		Intake Hieght Above Ground Surface:	N .		
Helium Test Conducted? Breakthrough %:		Indoor Air Temp:		Indoor Air Temp:		Intake Tubing Used?			
Comments/Location	Sketch:	PRT system.	Purged	1 liter of	sul gas	before			
		sample collecti							
, .		•							
		l 1ster	canister						
			/			· · · · ·			
MA	CT	EC a	BAS 1-27-10	s.	INDOOR	FIG AIR SAMPLING	URE 4-18		
511 Congress St			, , ,			URANCE PROJE			

		INDOOR AI	R SAMPLING R	ECORD		
Project Name:	ce Cleane	Client: N	YSDEC	Location I	D: GV-4	
Project Number: 3				Date:	11.4.09	
		SUMMA Cai	nister Record Info	mation:		
SUBSLAB SOIL VAPO	OR SAMPLE	INDOOR AIR - BASI	EMENT INDOOR	AIR - FIRST FLOOF	ASSOCIATED A	MBIENT
Flow Regulator No:	3220	Flow Regulator No:	Flow Re	gulator No:	Flow Regulator No:	
Flow Rate (mL/min):	50	Flow Rate (mL/min):	Flow Rate	e (mL/min):	Flow Rate (mL/min):	
Canister Serial No:	1533	Canister Serial No:	Caniste	Serial No:	Canister Serial No:	
Start Date/Time:	1414	Start Date/Time:	Start	Date/Time:	Start Date/Time:	
Start Pressure ("Hg):	-25.5	Start Pressure ("Hg):	Start Pres	sure ("Hg):	Start Pressure ("Hg):	
Stop Date/Time:	1434	Stop Date/Time:	Stop	Date/Time:	Stop Date/Time:	
Stop Pressure ("Hg):	-3.5	Stop Pressure ("Hg):	Stop Pres	sure ("Hg):	Stop Pressure ("Hg):	
Sample ID: ACGV 004 04 01	\XX	Sample ID:	Sample ID:		Sample ID:	
		Other S	Sampling Informati	初之		
Finished Basement, Crawl Space, Unfinished Basement	_	Story/Level:		Story/Level: .	Direction from Building:	
Floor Slab Thickness:		Room:		Room:	Distance from Building:	
Potential Vapor Entry Points:		Potential Vapor Entry Points:	Potential \	/apor Entry Points:	Distance from Roadway:	
Floor Surface:		Floor Surface:	Flo	or Surface:	Ground Surface:	
Noticable Odor:	None	Noticable Odor:	Notio	cable Odor:	Noticable Odor:	
PID Reading (pp):	29	PID Reading (ppb):	PID Rea	iding (ppb):	PID Reading (ppb):	
Intake Depth/Height:	3.5	v Intake Height:	Int	ake Height:	Intake Hieght Above Ground Surface:	
Helium Test Conducted? Breakthrough %:	No	Indoor Air Temp:	Indoo	r Air Temp:	Intake Tubing Used?	
Comments/Location	Sketch:	Purged 1 L	J 710.			
		•	.*			
		/				
	•	V	۸c			i
		6/	7 ⁵ 1-27-10·			
SIN TA			1-21-10.			:
MA		EC		INDOO	FIG R AIR SAMPLING	URE 4-18 RECORD
511 Congress St	reet, Portlan	d, ME 04101	NYSE		SURANCE PROJE	

Project No.: 3612 0.92135	Project Name:	Ace Cleaners	
	Project Area:	Brockport, NY	
Contractor: Nothinagle Driller:	Jeff Schweitze		h .
ogged By: PM		Date Started: 11.2-09	Completed: 11.2.09
	Date: 01-27-10	Well Development Date:	11.4.09
Not To Scale			
Lock Identification:		· .	·
Surface Casing Type:		Elevation of top of ——— Surface Casing: ——	- 559.8/msj
Steel		Elevation of top of Riser Pipe:	- 559.61 ms1.
Ground Surface Elevation: 557.0 msl		Type of Surface Seal: —	Concrete
Surface Casing Diameter:		TOC-TOR . 6	.26
Inside Diameter of Surface Casing:		— Borehole Diameter:	1.5"
		Inside Diameter of Borehole Casing:	
Depth/Elevation of Top of Well Seal:		Type of Backfill:	Bentonte
Surface 1		Type of Riser:	PVC
Depth/Elevation of Top of Sand:		Riser Inside Diameter:	1111
2.5 bgs / 554.5 msl		Type of Seal:	Benforte
Depth/Elevation of Top of Screen: 3.5 bq\$ / 553.5 msl	*	Type of Sand Pack:	OON Sand
,		Type of ourid r doll.	
		Type of Screen:	PAC
•		Slot Size x Length:	0.010"X 5"
		Inside Diameter of Screen:	1 3/
Depth/Elevation of Bottom of Screen:		oi screen.	
B-5 bgs / 548.5 ms Depth/Elevation of		Depth of Sediment ——— Sump with Plug:	8.5 bys.
Bottom of Boring: 8.5 1098 / 548.5 msi		Oump will Flug.	θ
#MACTEC	→	•	

Overburden Well Constr	uction Diagr	am	Prezoneter WeTNO .: GW-12
Project No.: 361209 2135	Project Name:	Ace Cleaners	
	Project Area:	Brockport, NY	
Contractor: Nothingle Driller:	Jeff Shweiteen	Method: Direct Pu	sh
Logged By: Рум		Date Started: 11-4.0	9 Completed: N-4.09
Checked By: 13.45 Date	e: 01-27 - 10	Well Development Date:	11.4.09
Not To Scale			
Lock Identification:	·	Elevation of top of	552.27 ms/
Surface Casing Type:		Surface Casing: _Elevation of top of	TEO 10 inst
Ground Surface Elevation:		Type of Surface Seal: -	Concrete
Surface Casing Diameter: 4"		70C-TOR 0.	25 1
Inside Diameter of Surface Casing:		Borehole Diameter: Inside Diameter of Perchale Coning	
Depth/Elevation of Top of Well Seal:		Borehole Casing: Type of Backfill: _	Beubute
Suffece / ~ 552 mg		Type of Riser:_	. 4
Top of Sand: 2 bgs / 550.3 ms/ Depth/Elevation of	-	Riser Inside Diameter:_ Type of Seal: _	•
Top of Screen: 3 549.7 ms/	*	——Type of Sand Pack: _	oon Sand
		Type of Screen:	PVL
		Slot Size x Length:_ Inside Diameter	0.010" × 10'
Depth/Elevation of Bottom of Screen: 13' bg\$ / 539.3 msl Depth/Elevation of Bottom of Boring: 13' bg\$ / 539.3 msl		of Screen: _ Depth of Sediment —— Sump with Plug:_	13' bgs
511 Congress Street Portland, ME 04101			

Project No.: 3612 09 2135		Project Name:	Ace Cleaners	
		Project Area:	Brockport, NY	
Contractor: Nothnesic D	riller:	Jeff Schweiter	T	ysh .
Logged By: Pom			Date Started: 11.2. c 9	Completed: 11.2.09
Checked By: BAS	Dat	e:01-27-10	Well Development Date:	11.4.09
Not To Scale	Dat	e.() -2 10	vveii Developinent Date.	11.4.01
		•		
Lock Identification:	\		Elevation of top of .	559.57 ms
Surface Casing Type:		•	—— Surface Casing:∯	N/A - Flustmount
Steel		→	Elevation of top of Riser Pipe:	- 559.31 ms/
Ground Surface Elevation:			Type of Surface	
	,		Seal:	Concrete
Surface Casing	724			261
Diameter: 4	- 12	48 AR	TOC-TOP O	
Inside Diameter of		* ₄	— Borehole Diameter:	1.5"
Surface Casing: 559.6 m	el	*		46
75 1.0 00	<u> </u>		Inside Diameter of Borehole Casing:	<u> </u>
•				
Depth/Elevation of			Type of Backfill:	Bentonte
Top of Well Seal:	20.44		·	₩L
Depth/Elevation of	12001		Type of Riser:	
Top of Sand:	,		Riser Inside Diameter:_	
2.5 bys 1 557.1 w	15 ! T			Bentonte
Depth/Elevation of			Type of Seal:	
Top of Screen:	i i			
3.5' bgs / 556.1 w	151		——Type of Sand Pack: _	OON Sand
	*		••	
			T	PVL
			Type of Screen:	
•			Slot Size x Length:	0-010" x 10"
			Inside Diameter of Screen: _	A CC
Depth/Elevation of Bottom of Screen:				•
13.5' bys 1 546.1	ms/		Daniel of Oak Park	
Depth/Elevation of			Depth of Sediment Sump with Plug:	13.5' bg1
Bottom of Boring: 546. La	18 l			
			,	
MACTEC	└		•	
511 Congress Street Portland, ME 04101				

	A 1 (1) (1) (1)	SOIL BOF	RING LOG						
Project Ace Cleane	ers			ng/Well N		Project N	10. 09213	35	
Client NYSDEC	S	Site Brockport, NY		,	Sheet No	ì	of	1	
Logged By FTM	G	Fround Elevation — 559.5	Start Date	-09	Fini	sh Date	2.09		
Drilling Contractor	د	Driller's Name	Jeff Schul	HCTZER	Rig Type	Geopro	re 66	,16	
Drilling Method		Protection Level	D (3) 11.	eV)	Casing Size	9 5"	Auger	Size	
Soil Drilled Yes Rock Di	rilled N ,	Total Depth いれら	Depth to Grou	ndwater/	'Date	Piez	Well	Boring	9
Sample No. & Penetration/ Recovery (Feet) SPT Blows/6" or Core Rec./Rqd. %	SPI-N (Blows/Ft.)	Sampl	e Descriptio			USCS Group Symbol	PI Meter Field Scan do giu	m)	Lab Tests ID Sample
S-1 2 4/3.0 - 4 S-2	_ 0,.	- 0.4' Sand and 4- 4.0' reddish Some 5:1	brown 7	F. SAN	D,	SM SM	0		
4/3.7 -	- 5.	.3-5.3' Same a .3-6.2' reddish 2-8' reddish bro	brown f	SANI	b, ary	SM SM ML	0 0	1 1 1	
5-3 10-4/3.4 -	1	.6-12' Yeddish tr. Gravel	briwn f. s		-	SP/E			
S-4 14-4/4.0 16-5-5 1-5/0		2-14' reddish brow bravel, wet 1-15' red SILT, dv 5-16' reddish grev refusal @ 17.5'	y SILT and t			SM			all and the second of the second
20 —	*		awatawayay wagayaan saladay saladay saladay bahash ehaladay	· CHEMICALIANS SERVICE S	auch Zillaczyn gyppericzin neu William 15 new 22.	en e	31.	S. SMARIS, CU.	army agreement
		R				-			
iNote: GW Sample ACGW GW Sample ACGW MACTEC 511 Congress Steet Portland, ME 04101		iolkk collected be	ween 15-18 tween 7-10 SDEC QUAL	ibgs o	g location	l Awa F SOIL BO	1 fr IGURI RING	~ <i>Gw</i> ≣ 4-4 LOG	 - Z .

						SOIL	BO	RIN	G LOG							
Projec	t Ace		CI	eaner:	5	·			Boring/	Well W-		F	Project N 3612 0	10. 1921	35	
Client	nys	DEC			Site	Brockport	<u> </u>	MA			Sheet N	10	l	of	l	
Logge	d By	PSM			Groun 55	d Elevation		St	art Date	·3 · (09	Finisi	h Date	11-3	. 09	
Drilling	g Contract	or .	Noti	magle		Driller's Nam	ne .	Jef	f Schwei	tær	Rig Ty	pe G	eoprob.	e 6	610	
Drilling	g Method	ď	ect	Push		Protection L	evel	D	P.I.D. (eV)		Casing	ا Size ک ، آ	ir	Auge	Size	
Soil D	rilled Ye	5	Rock	Drilled	Ио	Total Depth	5.	Dep	th to Ground ろ ん	vate 11-	r/Date. 3 - <9)		Piez	Well	Boring	9
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6"	or Core Rec./Rqd. %	SPT-N (Blows/Ft.)		S	Samp	ole D	escription				USCS Group Symbol	PI Meter Field Scan 10 ju	Ф	Lab Tests ID Sample
	S. Re	S	Ço			··-							Ū	PI Me Field	PI Meter Head Sp	
	5-1					Z'grass				•		,	GW	٥		
,	4/3.2"	-	-	-		0.6' SA 3.2' red			_	ik a	and file	r -	a.v.	C		
3						r. Gravel				· ·	,,,,,,	· -	SM	0	_	
5	S-2 1 /2.5'	_	·		5.5-	8' reddi Silt itr.	ch Gr	brw avel,	n f. SAM wet	ι	Some	- -	SM	6.1 (6.5°)		OOBECEIKK @
7-			•									-		0.1 (7.4)		AC45009
9 -	5-3 4/1.5	_	-		10.5 +	-12 red r. Silt, w	ish ret	brown	· F. SANI	> / ⁵	tome G	ravel	sp	Ð		
11												•				
13	5-4 1/1.51	_	_	_	12-12	6' reddish Gravel, ve		wn	f- to med	· 5A	ND, t	r	SW	0	-	
			_			13.5° elivi		ey f	SAND, SON	ne S	ith, ho	ard	5°P	O	u-manh	
#	MAC 511 Congre	TE	EC ,		हेट ज्या	sal 0 13 samples also ongs, and	e Col	lected	<i> A೭4Տ</i> Խ30 C QUALIT`				IL BO		LOG	

PORT2007022w.mac Note: Gw sample AcGW co31201XX 010.5-13.51 bgs, 1'away from GW-3.

Gw sample AcGW co30801XX Collected @ 4-9' bgs at GW-3.

VBJS 01-27-10.

						SOIL BOF	ING	LOG					
Projec	ct Ace	Ci	Laner	.5				Boring/Well	No. -4	Project N 36120	No. 9213	5	
Client	MSD	EC			Site	Brockport, N			Sheet No.	l	of	1	
Logge	1.	JM			Groun 554	nd Elevation วิศญ์ —	Star	Date	fin Fin	ish Date 【[- ' プ・			
Drillin	g Contract	or	Vothe	ragle		Driller's Name	eff?	chweitzer.	3	Geopre	be b	610	
Drillin	Illing Method Direct Push Protection Level P.I.D. (eV) Casing S									e r	Auge	Size	
Soil D	il Drilled Rock Drilled Total Depth Depth to Groundwater/Day 13' 5' (11 - 3 - 9)									Piez	Well	Boring X	g
-eet)	Sample No. & Penetration/ Recovery (Feet) SPT Blows/6" or Ore Rec./Rqd. % SPT-N (Blows/Ft.) Core bec./Rqd. % SPT-N (Blows/Ft.)									S ymbol	Moni (pp		ssts nple
Depth(Feet)	Sample Penetra Recovery	SPT Blows/6" Ore Rec./Rqd. % SPT-N (Blows/Ft.) Samble Description								USCS Group Symbol	PI Meter Field Scan	PI Meter Head Space	Lab Tests ID Sample
	5-1			_	0-0								
J	4/2.8					0.7° SAND AN				GW	0	,	
3.—	Silt , fr. Gravel , moist										0	-	
4	5-2				4.6 -	5-3' reddish b	nyowa	f. SAND	right land bed. Lay year region method to an device of the Colombia	SP	6		y y
6	4/3.4	-			S	6' stained AND (solvent ode	r) (fr. Silt, fr.	Clay, moist	sw	14		43 00 4 06 01 KK
7 -	-				6-8'	reddish brow	n f	SAND, WE	+	- 5P	0	_	AC430
9_	5-3 4/1	ga			8-12	' reddish br	own t	f. SAND, fr	. Gravel	- SP			
10-													
12-						· · · · · · · · · · · · · · · · · · ·					4,0	_	
13	5-4 - 12-13' Yellowish brown for SAND and SiLT, SM 5 -												
	MACTEC Gw Sample ACGW00412 DIXX Collected @ 10-13' bgs, I' away from Gw-4 MACTEC Gw Sample ACGW00406 OKX Collected @ 4-9' bgs at Gw-4 FIGURE 4-4 The Congress Steet Soil BORING LOG Portland, ME 04101 KAS 01-27-18. NYSDEC QUALITY ASSURANCE PROGRAM PLAN												

Y 1			ર, કરા કરાનું ક		SOIL BOI	SING	LOG		didirectly.				
Projec	t Ace	Cleane	v 5				Boring/V	Vell I	No.	Project		5	
Client	NISD	EC		Site	Bruckport, N	1			Sheet No.	.(_ of	1	
Logge	15	М	•	Groun	nd Elevation	Sta	rt Date	, , ,) ¶	ish Date	4.3	3.59	;
Drillin	g Contract	or Noth	nagle		Driller's Name	Jef	f Schwid			Greope	be 6	G1 0	
Drillin	g Method,	Direct	Push			>	P.I.D. (eV)		Casing Siz	e 7.2	Auge	r Size	
Soil D	rilled Yes	Rock	c Drilled	No	Total Depth	Depth	to Groundw		/Date		Well	Boring	g
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.)		Samp	le De	scription			USCS Group Symbol		0	Lab Tests ID Sample
2	5-1 412.6' 0.1' Grass and Organic Material 0.1-0.3' SAND and GRAVEL 0.3-2.6' Ak. brown to reddish brown f. SAND and SILT, Some Gravel, dry SM 0.1 -												
 	5-2 4/ _{3.5}	-	1		64' reddish tr. Gravel , w 8' brown Cl Solvent odar	et		•		SP	6		
9	5-3 4/2.9 9.1-12 brown/grey CLAY tr. Sitt, tr. Gravel, wet, solvent odor - CH 15 - 25.50 5.00												
13	5-4			12-13	yellowish SAND, So	brow me s	n f. SAN	drav	o coarse	sw	0	_	
Note:	Vefusal @ 13' bgs ote: GW sample ACGW 005 12 01xx collected @ 10-13' bgs, I away from GW-5. GW Sample ACGW 005060 00x collected @ 4-9' bgs in GW-5. FIGURE 4-4 SOIL BORING LOG Portland, ME 04101 NYSDEC QUALITY ASSURANCE PROGRAM PLAN												

					SOIL BOI	RING L	.OG					
Project	Ąc	e Cle	aner S				Boring/Well	No. Ø	Project N	10. 1 9 21 :	35	
Client	274	DEC		Site	Brockport, A	14.		Sheet No.		of	ı	
Logged	13	1 4 /1	rle	55	und Elevation 7.0 x 1 - —	Start [Date 11-2-09		ish Date	11.2	09	
Drilling	Contract	or Not	hnagle		Driller's Name	2 that	inweitzer	Rig Type		~ .	6610	
Drilling	Method		ect Pus		Dunka atlan Laval	L.	I.D. (eV), 6	Casing Siz	e.,	Auge	r Size	
Soil Dri	iled Yes	R	lock Drille	ed No	Total Depth 8.5		Groundwate		Piez X	Well	Boring	3
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet) SPT Blows/6" or Core Rec./Rqd. % SPT-N (Blows/Ft.) Core Bec./Rqd. %										PI Meter (3) Head Space	Lab Tests ID Sample
=	5-1 4/2.8'	<u> </u>		0-	1.1' dk.brown damp, i	Silty no odor	Sand , t	r. Organies	SM	o	ā Ī	
3—	1.1 - #2.8' reddish brown SAND, fr. Silt											
53	5-2 4 3-5				5.0' reddish brou damp, no - 7.5' light	odor	, fr. Grav	el	SM SPH ML	P.	_	
7-					wet, no refusal @	odor			- SM	0	_	
	5-3 0.5 0.5		- -	- 8-	8.5' reddish br tr. Grav refusal 0			Clay	MH	0		
/º					refusal @	85' bg	5		-			
1	MAC 511 Congre	TEO	v C		oixx Callected oi −27 −i0 N		ezoneter QUALITY A		, SOIL BO	IGUR RING	E 4-4 LOG	

			.ss.y)		SOIL BOF	RING	LOG					
Projec	t Ace	Clean	ers				Boring/Wel	I No. 2	Project I	Vo. 19213	35	
Client	NYSDE	EC.		Site	Brockport	NY		Sheet No.		of	1	
Logge	1.	sM_			nd Elevation วิเศร ์ —	Start	Date 11. 4. 0 9	Fir	nish Date	1.4	. 09	
Drilling	g Contract	or Nothn	ragle		Driller's Name	reff:	Schweitzer	Rig Type	втеоров	e 66	10	
	g Method	Direct			Protection Level)	P.I.D. (eV)	Casing Siz	ze 5"	Auge	r Size	
Soil D	rilled Yes	Rock	Drilled	μo	Total Depth	Depth t	o Groundwate	er/Date	Piez	Well	Boring	g
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.)		Samp	le Des	cription		USCS Group Symbol	PI Meter Field Scan 13 io	0	- Lab Tests ID Sample
2	5-1 4/3.3'	-		0.1 -	1' Gress 0.5' Black loa 3.3' reddish Gravel, dry		SILT and	1 f. SAND) ML	0		
5 - 7 - 7	5-2- 4/3.3'	•			-8' reddish SAND, fr. G lenses @ G	ravel 1	wet, Gre		ML	Ô		
9	5-3 4/4.0°		_,	8 -12	' reddish boo	wn f	sand, t	r. Silt, we	t sm	D	-	
12-	5-4		_	12-1	13' feddish b tr. 5.1t;		F. SAND, S	ome Grave	l, sm	0		
Note:	refusal @ 13' bgs Note: GW sample ACGW0121201XX and ACGW0121201XD collected @ 10-13' bgs, I'away from GW-12. GW sample ACGW0120701XX collected @ 6-9' bgs, I'away from GW-12. FIGURE 4-4 SOIL BORING LOG Portland, ME 04101 BAS Q(-27-10 NYSDEC QUALITY ASSURANCE PROGRAM PLAN											

			de Spije en West		SOIL BOF	RING	LOG						
Project	Ace	Clean	iers				Boring/Wel	I No.	P	roject 1 3612	10. 1921	35	
Client	rzpa	EL		Site	Brockport, MY			Sheet No		1	of	i	_
Logged	Ву	BM		Groun	nd Elevation	Start	Date Z-	6 F	inish	Date	11.2	. 09	
Drilling	Contracto	or No	thnagle		Driller's Name		Schwedze	Rig Type	ि				
Drilling	Method	Drect	Push		Protection Level		P.I.D. (eV)	Casing 9	Size	14	Auger	Size	
Soil Dri	lied Yes	Ro	ck Drilled	o o	Total Depth	Depth to	o Groundwate				Well	Boring	g
et)	5. & on/ =eet)	.9/s	qd. %	-						loqu	Monit		ts le
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or	SPT-N (Blows/Ft.)		·		cription	· · · · · · · · · · · · · · · · · · ·		USCS Group Symbol	Pl Meter Field Scan	PI Meter Head Space	Lab Tests ID Sample
	5-1			00	.2 GRASS	and !	orown SAND	•		SW			
2	1/3.2		_	6.2	tr. Gravel,	to Sawi dry	D some Si	îH,	-	SM	ð	_	
3—					. *				-				
	5-2 4/25'		-	5.5 -	-8' brown Some f. San	and d _i m	brown/gr	ey Sil	τ, _	ML	Ø.	_	
7 -						ruojajo, s., Magengyanakse provi		facuum tinya maki ki kiki politir (nyaéhi *********	-				· ·
9 -	s-3 4/28'	_	_ ,		-12° reddish Grarel, wet	brown	f. SAND	, tre	-	sp	0		
1/	. \								-				
1 7	s-4 1.5/1.2'	_	-	12,3-12	3.5 yellow brow moust. Ref	usal I	brown \$16 @ 13.5 'b	-T, tr. G	rave (3	11	
		TEC	V	.olxx	Collected @ 10.	5 - 13.	S' Þ35, i'	away fo	sc	6w - 14 F OIL BO	IGUR RING	LOG	

emiga i si						SOIL	BOF	RING	LOG				(*) 		
Projec	ot Ac	e (Clean	ers					Boring/We			Project N 3612-c		35	
Client	t Ms	DEC			Site	Brockpor	H,	44		Sheet N	۰ ۰ ۰	1	_ of	1	
Logge	ed By	Вт			Grou 554	ind Elevation		Star	t Date	9	Finis	h Date	11 .3	1.09	
Drillin	g Contract	or	Jothn.	agle		Driller's Nam	ne	Teff S	Schwatze	Dia Tv	pe E	Teoprol	De. 6	610	
l	g Method			Push		Protection L	evel .	Þ	P.I.D. (eV)	Casing			Auge		
Soil D	orilled Y-cs		1	Drilled	Йo	Total Depth		Depth	to Groundwate	er/Date	_!``		Well	Boring	g
	•							[Moni	toring	
et)). &)n/ =eet)	,9/8	qd. %					•				loqu	(pp		ა <u>თ</u>
h(Fe	le Nc tratic	3lows	or ec./Ri	SPT-N (Blows/Ft.)		S	Samp	le Des	scription			USCS up Sym	ے	gce	Test
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6"	or Core Rec./Rqd. %	SF (Blo				• = .	201 Pr 1			USCS Group Symbol	Pl Meter Field Scan	PI Meter Head Space	Lab Tests ID Sample
-	N - R	(O	Ö									ا م	Pl M	PI M	
	5-1 4/				0- 0	ol' Gras						 			
, _=	4/2.9	-	-	-		-		rand (CLAY for G	ravel, d	lry.	MH	٥	-	
		ĺ			1	_			ome f. San			ML			
2-								,		•		-			
3 —											-	<u> </u>			
4									•						
	5-2				5.5 .	-6.7' bro	wn SI	LT,	Some fo Sai	nd, tr.		1.4.			
5—	4/2.5	-	- !		6	gravel, we	f			•	-	HL	8		\ <u>,</u>
_ ا			!		1.7	al ateu	. 4	l., ,,, ,	4. SAND, S	boxa	i				SolsozolXX
-			1			-6. grey tr. Silt	Y 1.	to me	a - 2640 / 2	oine Urn	ruj	SW	32	-	507
7 —			. !			1, - >		•			-	-			4501
გ —			·								=				Aca
	5-3		!		is -1	2' brown	and	grey	fo SAND	fr. Sil	t ,		10	-	
9 —	4/2.0	-	-	_		tre Gravel		,	• -	<i>,</i> .		-SP	5	-	
/o=			1								-	_			
	!		ı											İ	
\(\alpha - \)			,						• *			1			
12 <u>-</u>	 				Tierra constitution	THE WOOD CONTRACTOR OF THE PARTY OF THE PART	Tirest-elle-inner-pp	Disputaça Mighali Misal de Lido (1811)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
13	5-4 0.5/0.5		<u></u>	_	12-12	.5' brown Some	sit	grec	r FESANO	and b	#RAVEL	5W	0		
	•				refus	ial @ 12	ا 'کار	263							
Note	GW SA	mple	L AC	.GW 015	il oix	× Collecte	d @	9.5-	-12.5' 635,	1 aw	ay 7	from .	GW-15		
	MAC	TE	C^{ϵ}	åW San	npie. A	C6W01506	OIXX	colle	eted @ 4-	9 695	at o	6w-15 €	IGURI	E 4-4	
	511 Congres		et	\checkmark		27-10			QUALITY AS		SC	IL BO	RING	LOG	
l .	Fulland, itis	こしてい	<i>J</i> 1	100	~ ~ ~ ~	~/~··			~~·····	JC-0	1	1			

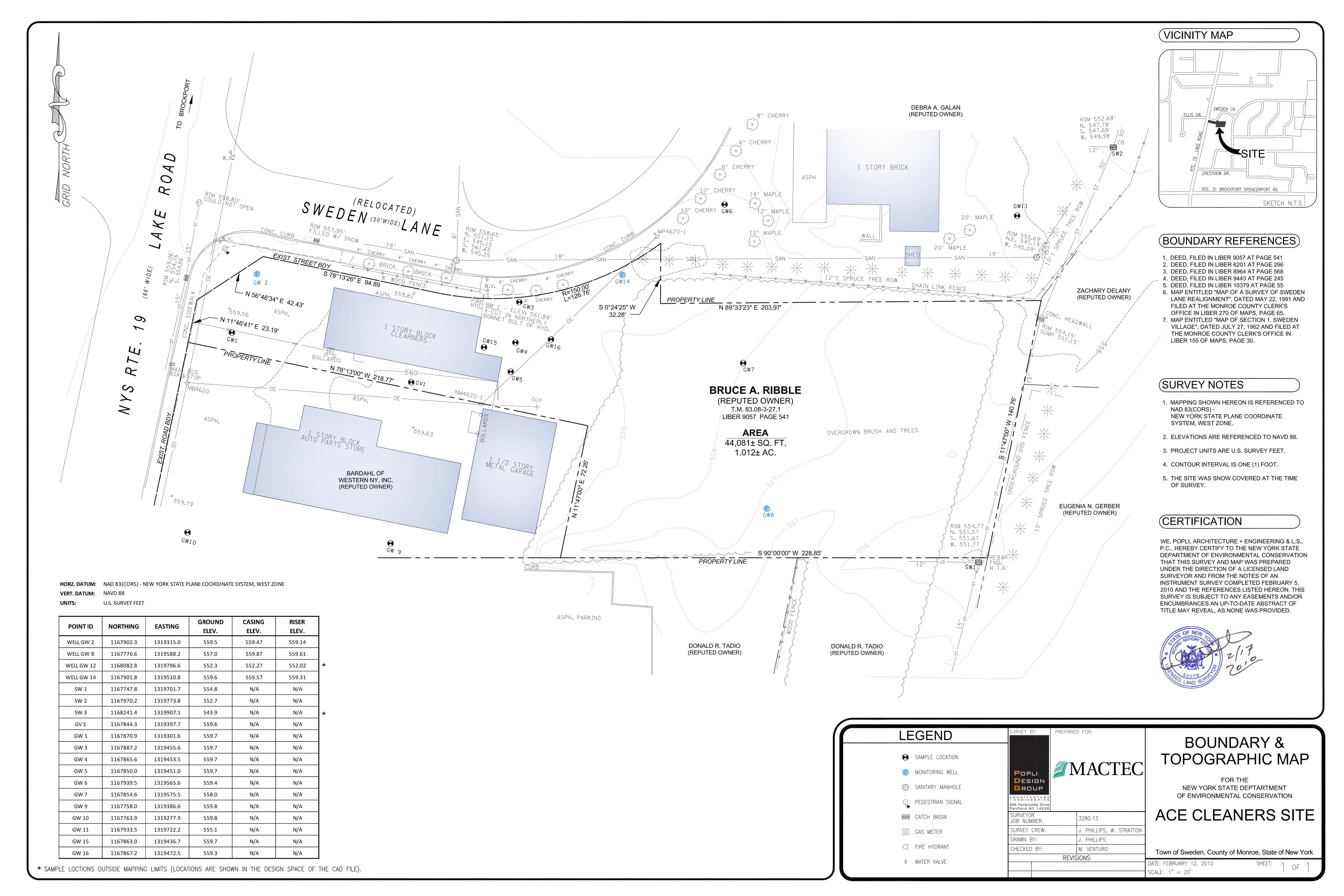
, v. 34			(4.1.24)			SOIL BO	RING	LOG						
Projec	t Ace	Cleav	ners					Boring/We	ll No. ا ل	F	Project I 3612		35	
Client	hisd	ec			Site	·Brockport, N'	1		Sheet N		1	_ of	ı	
Logge	ed By	BM			Ground	nd Elevation	Star	t Date		Finisl	h Date	-3-6	9	
Drillin	g Contrac	tor No	əthn	agle		Driller's Name	Teff	Schweitze	Rig Ty	na	Geogra			
Drillin	g Method	Die	rect	Push		Protection Level	ď	P.I.D. (eV)	Casing	Size	4	Auge	Size	
Soil D	rilled	R	lock	Drilled	rilled No Total Depth Depth to Groundwater/Date 5' (11-3.09)							Well	Boring	9
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or	Core Rec./Rqd. %	SPT-N (Blows/Ft.)		Samp		USCS Group Symbol	PI Meter	m)	Lab Tests ID Sample			
23	5-1 4/2.6				0.9-	9' dK.brown le 2.6' feddish tr. Gravel,		SP	9 0					
5 6 7 8	5-2 4/2.5				5.5 - tr	B' reddish b . Gravel , we	t	f. sand	and SIL	π, .	SM	C		ACES OIG OFOIXX
9 —	S-3 4/ _{3.5}				8,5-	12' reddish Wet	brow	n f. SAND	and G	ZAVEL,	4w/	0		
12	5-4			_	12-13	.5' Yellowish	brow	on f. SAN	gravel,	rse, vet	SW	0	_	
Note:	MAC 511 Congre	TE(ss Steet	$\subset \epsilon$	WOIGHT	2.01XX	Sal @ 13.5 1 Collected @ 10.9 ACGWO160701X)	0g5 5-13-5 C Coll	- Chas IC	away for -9'bgs	ion la at l	F OIL BO	IGURI RING	LOG	

SURFACE WATER AND SEDIMENT	SAMPLE FIELD DATA RECORD
Project: NYSDEC	Site: Ace Cleaners
Project Number: 3612092135	Date: 11-4-69
Sample Location ID: SW/SD~	
Time: Start: 1000 End: 1120	Signature of Sampler:
	RIVER 3 ALL USED
DEPTH OF SAMPLE FROM TOP OF WATER Dedicated tubing EQUIPMENT USED FO [] NONE, GRAB INTO [] BOMB SAMPLER Dedicated tubing	DBOTTLE []HNO ₃ SOLUTION []POTABLE WATER []NONE
VELOCITY MEASUREMENTS OBTAINED? [] YES, SEE FLOW MEASURE	MENT DATA RECORD
TEMPERATURE 9.4 Deg. C. SPEC. COND. 2.19	µmhos/cm pH
FIELD GC DATA: [X] FIELD DUPLICATE COLLECTED DUPLICATE ID	SAMPLE LOCATION SKETCH: METHOD USED: []WINKLER []NO T./ C >= MIPROBE
DUP/MS/MSD collected ORP= G2 mV	I INO TUBE O. YENTU PROBE
[] GRAVITY COREF [] S.S. SPLIT SPOO [] DREDGE [] HAND SPOON [] ALUMINUM PANS [] SS BUCKET [] SS SPOON	I ETHYL ALCOHOL [] 25% METHANOL/75% ASTM TYPE II WATER DEIONIZED WATER LIQUINOX SOLUTION [] HEXANE [] HNO 3 SOLUTION [] POTABLE WATER
TYPE OF SAMPLE C DISCRETE COMPOSITE SAMPLE OBSERVAT ODOR DORE COLOR DARK B	SEDIMENT TYPE: [] CLAY TIONS: MY SAND [MY ORGANIC (Trace)
	D/Duf collected
MATRIX	1) Sets of bottles collected
3 IF REQUIRED AT THIS LOCATION S S S S S S S S S S S S S	
[] VOC 8a60B X [] (a) DI Pre [] [] WOC 8a60B [] X [] (] (] Metho [] TOC 10/0 Solled X [] (1) Jar	
NOTES/SKETCH Auto Parts Store	e cleaners 5 N
Colvert >	Sweden (Lane) Sweden (Sw) Sweden (Sw) Sw-3 (S
0[-27-10	
9404014D(z) L 21	

SURFACE WATER AND SEDIMENT	SAMPLE FIELD DATA RECORD
Project: NYSDEC	Site: Ace Cleaners
Project Number: 3612092 35	Date: 11-3-09
Sample Location ID: SW/SD - 2	σ_{i}
Time: Start: 1545 End: WNFWWY.	Signature of Sampler:
I =	AIVER 3 ALL USED [] ETHYL ALCOHOL [] 25% METHANOL/75% ASTM TYPE II WATER [] DEIONIZED WATER [] LIQUINOX SOLUTION COLLECTION: [] HEXANE BOTTLE [] POTABLE WATER [] NONE — dedicated tubing
TEMPERATURE /0.2 Deg. C. SPEC. COND. 2.06	ms/cm pH 8.18 Units DISS. 02 10.72 ppm
FIELD GC DATA: [] FIELD DUPLICATE COLLECTED DUPLICATE ID	SAMPLE LOCATION SKETCH: METHOD USED:
ORP= 21 mV	[] NO Turb = (.07 NTU 14 PROBE - U - 22
DEPTH OF SEDIMENT SAMPLE O GRAVITY CORER	3 ALL USED [] ETHYL ALCOHOL [] 25% METHANOL/75% ASTM TYPE II WATER [] DEIONIZED WATER M LIQUINOX SOLUTION [] HEXANE [] HNO 3 SOLUTION [] POTABLE WATER LECTED: SEDIMENT TYPE: [] CLAY NS: M SAND
SAMPLES COLLECTED	
_ MATRIX	Sample time = 16:05
3 IF REQUIRED AT THIS LOCATION AT THIS LOCATION ACID-BASE REQUIRED ACID-BASE REQUIR	3 IF SAMPLE SAMPLE BOTTLE IDS
NOTES/SKETCH	V
	FIGURE 4-3 IMENT SAMPLE FIELD DATA RECORD JALITY ASSURANCE PROGRAM PLAN

SURFACE WATER AND SEDIMENT	SAMINGE FIEL	D DATA RECOR	
Project: NYSDEC	Site: Ac	e Cleanor	
Project Number: 36 12092135	Date:	[[-3-09	
Sample Location ID: SW-3/Sed-3			-/
Time: Start: 1445 End: LINEMONN.	Signature of Sa	ımpler:	he
SURFACE WATER INFORMATION TYPE OF SURFACE WA		CONTAMINATION FLUID	OS USED:
		ALL USED ETHYL ALCOHOL	
WATER DEPTH AND SAMPLE LOCATION		25% METHANOL/ 75% /	ASTM TYPE II WATER
WATER DEPTH AND SAMPLE LOCATION		DEIONIZED WATER	
EQUIPMENT USED FOR	: :	HEXANE	
DEPTH OF SAMPLE FROM TOP OF WATER O. 25 (ft) [] NONE, GRAB INTO E		HNO ₃ SOLUTION POTABLE WATER	
FROM TOP OF WATER (ft) BOMB SAMPLER PUMP Fee Au		NONE	•
VELOCITY MEASUREMENTS OBTAINED? [] YES, SEE FLOW MEASUREMENTS		rose	
* TEOOR I WENDOMENIA TO BE INNEED: [] TEO, SEE LEON WENDOMENIA		V. 19	
TEMPERATURE 10.8 Deg. C. SPEC. COND. 2.23	MS/CM 8	Ol Heite Dies	. 0, 11.68 ppm
50g. 5. 5. 25. 55.15.	Tc) PH	Units DISS	. U ₂ ppm
FIELD GC DATA: [] FIELD DUPLICATE COLLECTED DUPLICATE ID	SAMPLE LOCATION		HOD USED:
	[]YES []NO	• •	/INKLER ROBE
Turb 2.23 N	·Ú	~	
SEDIMENT INFORMATION EQUIPMENT USED FO	R COLLECTION: DI	ECONTAMINATION FLUI	DS USED:
[] GRAVITY CORER	3	ALL USED	· · · · · · · · · · · · · · · · · · ·
[] S.S. SPLIT SPOON I 1 DREDGE] ETHYL ALCOHOL] 25% METHANOL/75%	ASTM TYPE II WATER
DEPTH OF SEDIMENT SAMPLE 0. /3 (ft) [] HAND SPOON	Ĩ] DEIONIZED WATER	ACTION TO LIN WATER
[] ALUMINUM PANS [] SS BUCKET] LIQUINOX SOLUTION] HEXANE	
1	•] HNO 3 SOLUTION	•
Type of control Type of carrier		POTABLE WATER	
Fram 8" Selow [A DISCRETE [] COMPOSITE	EECTED: [NONE	
Tram & Selow [] COMPOSITE		DIMENT TYPE:	
Water Surface SAMPLE OBSERVATION	NS: Ñx	CLAY SAND	S
1 12 ODOR		ORGANIC	
i color	>	GRAVEL .	
FIELD GC DATA: [] FIELD DUPLICATE COLLECTED			
DUPLICATE ID	•	•	•
SAMPLES COLLECTED -			
SAMPLES COLLECTED 9	ima of S	imple: 1500	
MATRIX	"" O . "	- 1 - 1.000	
3 IF REQUIRED B.H. L.			
3 IF REQUIRED SHE	3 IF SAMPLE	· SAMPL	E BOTTLE IDS
M VOC'S M [] ACID-BASE REQUIRED	COLLECTED		3,000 à 1 XX
	— i i		1 1
X VOC's [] X , [] (2) 40 mL w/ DI	water []	ACSDOO	3 00001XX
[] [] [] [] (<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	(20# []		
10/650 lid 4 [] X) [] (1) 402 Jo		ACS0/003	XX1000C
17 toc 11 11		/	
NOTES/SKETCH April 3	\ \(\frac{1}{2}\)	3'cul V	evt
	トル		-
Parkinglot			open
/ 2 /		, A	of Stream
1 / 2 /	(ra	45	Flow
1 / 150	-		
11		-> /	OUDE 4.0
DAK CHIDEACE WATER AND CED	INJENIT CARRE		GURE 4-3
SURFACE WATER AND SED			
01-27-10 . NYSDEC QI	JALITY ASSU	RANCE PROGR	AM PLAN
	ΔΒ	B Environmental S	anzicae Inc.

WELL D	EVELOPMENT RECORD		
Project: Ace Cleaners	Well Installation Date: 11-2-20	109	Project No. 3612092135
Client: WSDEZ	Weil Development Date: 11-4-2009	Logged by:	Checked by:
Well/Site I.D.: GW-2	Weather: Lack Cool, 50 degrees F, Clear	Start Date:	Finish Date: -11-4-01
Well Construction Record Data: Bottom of Screen Sediment Sump/Plug AA ft.	Well Diameter in. rom Ground Surface □ From Top of Riser □	Start Time:	Finish Time:
Screen Length	Fluids Lost during Drilling		
Protective Casing Stick-up ft. Protecti	ive Casing/Well Diff.	Ambient Well Mou	ppm
Initial 5.50 ft. We End of Development Dvy ft. We 24 Hours after Development N ft. Sec.	ment: ell Depth before Development ft. 7.5 ft. diment Depth Removed ft. 1.68* gal/ft. 7.1 ft. 1.68* gal/ft. 1.68* gal/ft.	(from top of PV) gal./vol. *for 4" HSA In	
☐ Surge Block	Gallons Removed Well water clear Sediment thickner well is <1.0% of 5x calculated 5x drilling fluid lo Yes No Total water removed 5x drilling fluid lo Turbidity < 5NTU 10% change in fi	to unaided eye ess remaining in screen length oved = a minimum well volume plus ist	Yes No U
Water Parameter Measurements Record at start, twice during and at the end of developments Time Volume Total Gallons Well Developer's Signature	ent (minimum): pH Temp. Conductance		Pumping Rate
MACTEC for Phil 511 Congress Steet Portland, ME 04101	WELL DEVE NYSDEC QUALITY ASSURANCE	LOPMENT R	


WELL D	EVELOPMENT RECORD			
Project: Ace Cleaners	Well Installation Date: 11-4-2	009		Project No. 36 1209 1235
Client: NYSDEC	Well Development Date:		Logged by:	Checked by:
Well/Site I.D.: GW -8	Weather: Cool, 50 degrees F, Clear		Start Date:	Finish Date:
Well Construction Record Data: Bottom of Screen	Well Diameter	in.	Start Time: /630	Finish Time:
	om Ground Surface 🗹 From Top of Ri	ser 🗚	A	
Screen Length ft.	Fluids Lost during Drilling	gal.		
Protective Casing Stick-up -2.8 ft. Protection	ve Casing/Well Diff. 0.26 ft. Pli	D Read	Ambient Well Mou	ppm
Well Levels: Sedin	nent:		· · · · · · · · · · · · · · · · · · ·	
Initialft. Wel	II Depth before Development	ft.	(from top of PV	C)
End of Development Office to Wel	II Depth after Development -	ft.		
24 Hours after Developmentft. Sed	liment Depth Removed	ft.		
HT of Water Column ft. x 1	.68* gal./ft.		gal./vol. *for 4" HSA In:	stalled Wells
☐ Surge Block /	Gallons Removed	gpm gal.		v m ant
Well Development Criteria Met: Notes:	well is <1.0 Total water of 5x calcul 5x drilling fl Yes No	nicknes % of so remov ated w uid los 5NTUs	es remaining in creen length ed = a minimum ell volume plus t	-
End of Well Development Sample (1 pint) Collected?	□ 🖬 🔳 10% chang	e in fie	d parameters	
Water Parameter Measurements Record at start, twice during and at the end of developments Time Volume Total Gallons	ent (minimum): pH Temp. Conductan	ice	Turbidity I	Pumping Rate
77				
Well Developer's Signature Phil Multure	Jan W fl		nisson	
MACTEC 511 Congress Steet Portland, ME 04101	- 30000	EVEL	FIG OPMENT R	

Project: ACE Cleane	W	Well Instal	lation Date:	1-4-200	9	Project No. 36/2<i>9</i>/2/3
Client: NYSDEZ		Well Deve	lopment Date:	2009	Logged by:	Checked by:
Client: NYSDEZ Vell/Site I.D.: GW-12		Weather: Cool, 50	degrees F, C	ear	Start Date:	Finish Date:
Well Construction Record Da	a:	·····	Well Diamet	er ,	Start Time:	Finish Time:
Bottom of Screen	~/3 _"			in.	1420	~ /630
Sediment Sump/Plug	1-12	From Ground	Surface 🗹 Fr	om Top of Riser D	3	
Screen Length	10 ft.	Fluids Los	t during Drilling	9 gal		
Protective Casing Stick-up	f t. Prot	ective Casing/V	Vell Diff. Ø-2		adings: Ambier	ppm
Well Levels:		ediment:	*************************************			
Initial	3.75 ft.	Well Depth bef	ore Developmer	at NA ft.	(from top of F	PVC)
End of Development		Well Depth afte	r Development	13 ft.	7	,
24 Hours after Development	NA. ft.	Sediment Dept		γA ft		
HT of Water Column		1.68* gal./ft.	≂ .	-1.6	gal./vol.	Installed Wells
☐ Grundfos Pump 2"	4"	· · · · · · · · · · · · · · · · · · ·		Well water clear Sediment thickr well is <1.0% of Total water rem of 5x calculated 5x drilling fluid le Turbidity < 5NT	less remaining i screen length oved = a minimi well volume plu ost	MK ROW
End of Well Development Sai	mple (1 pint) Collected	Yes No		10% change in t		
Water Parameter Measureme	nts					
Record at start, twice during an Time Volume	d at the end of develo Total Gallons	,	m): Temp.	Conductance	Turbidity	Pumping Rate
1530	< 1 < 1	7.20	13.3	1.38	7/400	~500
1300	_ <1	7.12	13.7	1.40	432	-500
1600 <1		7.03	13.7	1.38	284	-500
						
1600 <1						
1600 <1						
1600 <1					· · · · · · · · · · · · · · · · · · ·	
1600 <1	This ke					
1600 <1	Trý ko				:	GURE 4-9
1600 <1 (610 <1	This ke			WELL DEVI	· FI	GURE 4-9

	WELL DEVELO				
Project: Ace Clean	Well Instal	lation Date:	-09		36120121
Client: NYS DEC	Well Deve	lopment Date:	.09	ogged by: TレC	Checked by:
Vell/Site I.D.: GW-14	Weather:	col 50°F cl		tart Date:	Finish Date:
Well Construction Record Data:		Well Diameter	. s	tart Time:	Finish Time:
Bottom of Screen	. 05 ft. From Ground		in.	1445	1700.
Sediment Sump/Plug	From Ground	Surface D From Top	of Riser 🕱 🕒		
Screen Length		t during Drilling	O gal. J	sirect As	h Geofrobe
Protective Casing Stick-up	ft. Protective Casing/V	Vell Diff. 0.26 ft.	PID Readin	gs: Ambient	$^{Air}\mathcal{O}$ ppm
				Well Mou	ith O ppm
Weil Levels:	Sediment:	· ·		·	
Initial 5.0	7 ft. Well Depth before	ore Development	1 A ft. (fi	rom top of PV	C)
End of Development Dry.	ft. Well Depth after	er Development	13.5 ft.		
24 Hours after Development NA	• ft. Sediment Dept	h Removed U	nK. ft.		
HT of Water Column	ft. × 1.68* gai./ft.	=	1.5 g	ai./vol. Dire	stalled Wells
Surge Block Bailer 2" 4" 4" Grundfos Pump 2" 4" Well Development Criteria Met: Notes: End of Well Development Sample (1)	Total Gallons Re	■ Well well is Sedin well is Total of 5x 5x dri	gal. water clear to unent thickness s <1.0% of screwater removed calculated well liling fluid lost dity < 5NTUs change in field	remaining in en length l = a minimum volume plus	Yes No.
Water Parameter Measurements	· · · · · · · · · · · · · · · · · · ·				
Record at start, twice during and at the Time Volume Tot	tal Gallons pH	Temp. Cond		ນຕູ້ urbidity F 508	m/s/m/h Pumping Rate 500
1300 Well is dry P					
1310 Water is comit	5 //			30.5	100
1650 Well Dy.				<u> </u>	
	<u>`</u>			*	_
01-27-					
Well Developer's Signature	Tily les		····		<u> </u>
	Fig les		L DEVELO		URE 4-9

APPENDIX C

SITE SURVEY

APPENDIX D

DATA USABILITY SUMMARY REPORT

DATA USABILITY SUMMARY REPORT NOVEMBER 2009 SOIL, SEDIMENT AND WATER SAMPLING PROGRAM ACE CLEANERS BROCKPORT, NY

1.0 Introduction:

Soil, Sediment and Water Volatile Organic Analyses by SW846 Method 8260B

Sediment Total Organic Carbon Analysis by SW846 Method 9060

Samples Collected: November 3, 2009

Samples Received at Con-Test Analytical Laboratory on November 4, 2009

Sample Delivery Group: 09K0085 Laboratory Reference Numbers:

Field Comple ID	Laboratom, Sample ID	Matrix
Field Sample ID ACSW00200001XX	Laboratory Sample ID 09K0085-01	Surface Water
ACSW00200001XX ACSW00300001XX	09K0085-02	Surface Water
ACSD00200001XX	09K0085-02	Soil
ACSD00200001XX ACSD00300001XX	09K0085-04	Soil
ACGS0030601XX	09K0085-05	Soil
ACGS0030601XX	09K0085-06	Soil
ACGS0030601MS	09K0085-06 MS	Soil
ACGS0030601MD	09K0085-06 MSD	Soil
ACGS0030001WD ACGS0040601XX	09K0085-07	Soil
ACGS0040001XX ACGS0051001XX	09K0085-07	Soil ML
ACGS0051001XX ACGS0051001XX	09K0085-08 10X	Soil ML
ACGS0051001XX ACGS0150701XX	09K0085-09	Soil ML
ACGS0150701XX ACGS0150701XX	09K0085-09 10X	Soil ML
ACGS0150701XX ACGS0160701XX	09K0085-10	Soil
ACGW0030601XX	09K0085-11	Groundwater
ACGW0030601XX	09K0085-11 10X	Groundwater
ACGW0030601XX	09K0085-11 100X	Groundwater
ACGW0031201XX	09K0085-11 100X	Groundwater
ACGW0031201XX ACGW0041201XX	09K0085-13 100X	Groundwater
ACGW0041201XX ACGW0041201XX	09K0085-13 100X	Groundwater
ACGW0041201XX ACGW0040601XD	09K0085-14 100X	Groundwater
ACGW0040601XX	09K0085-15 100X	Groundwater
ACGW0050601XX	09K0085-16 100X	Groundwater
ACGW0050601XX	09K0085-16 500X	Groundwater
ACGW0051201XX	09K0085-17 100X	Groundwater
ACGW0061401XX	09K0085-18	Groundwater
ACGW0061401XX	09K0085-18 10X	Groundwater
ACGW0061401XX	09K0085-18 100X	Groundwater
ACGW0060601XX	09K0085-19	Groundwater
ACGW0150601XX	09K0085-20 100X	Groundwater
ACGW0150601XX	09K0085-20 5000X	Groundwater
ACGW0151101XX	09K0085-21 100X	Groundwater
ACGW0151101XX	09K0085-21 1000X	Groundwater
ACGW0160701XX	09K0085-22 10X	Groundwater
ACGW0161201XX	09K0085-23 100X	Groundwater
ACGW0161201XX	09K0085-23 500X	Groundwater
ACQT001XXX01XX	09K0085-24	Trip Blank Water
ACQT002XXX01XX	09K0085-25	Trip Blank Soil
	-	ı

AC-Exterior Hose-2009

09K0085-26

Water

Deliverables for the off-site laboratory analyses included a Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005) for SDG 09K0085. The analysis of sediment samples for total organic carbon (TOC) by SW846 Method 9060 was performed by First Light Power lab in West Springfield, Massachusetts. Results for TOC were not reported in a Category B deliverable and were not validated. TOC results are reported as received from the laboratory.

A project chemist review was completed based on NYSDEC Division of Environmental Remediation guidance for Data Usability Summary Reports (NYSDEC, 2002) for SDG 09K0085. Soil and water samples were reviewed using criteria in the US EPA Region II checklist, Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B (SOP # HW-24, Revision #2, October 2006). The following parameters were reviewed.

- * Data Completeness
- * GC/MS Tuning
- * Holding Times
 - Calibrations
 - Laboratory Blanks
 - Trip Blank
- * Surrogate Compound Recoveries
- * Internal Standard Recoveries
 - Matrix Spike
 - Laboratory Control Sample
- * Compound Identification
- * Compound Quantitation

2.0 DATA VALIDATION SUMMARY

It was not possible to correlate the quality control summary data with the raw data because the laboratory used two different file numbers which could not be correlated. The laboratory supplied an email which correlated the two file numbers. Original copies of laboratory logs showing the correlation were not provided.

Raw data for extraction logs were not initially provided. A copy was received from the lab on 1/5/2009.

Holding Times

The laboratory's case narrative notes that the pH of several samples were greater than 2, which is the required limit for the 14 day holding time.

^{* -} Indicates that all criteria were met for this parameter.

The following samples had a pH greater than 2 and were analyzed 1 day beyond the 7 day holding time for non-preserved water samples.

ACGW0030601XX	09K0085-11	Groundwater
ACGW0030601XX	09K0085-11 10X	Groundwater
ACGW0041201XX	09K0085-13 1000X	Groundwater
ACGW0040601XD	09K0085-14 100X	Groundwater
ACGW0050601XX	09K0085-16 500X	Groundwater
ACGW0061401XX	09K0085-18	Groundwater
ACGW0061401XX	09K0085-18 10X	Groundwater
ACGW0060601XX	09K0085-19	Groundwater
ACGW0150601XX	09K0085-20 5000X	Groundwater
ACGW0151101XX	09K0085-21 1000X	Groundwater
ACGW0160701XX	09K0085-22 10X	Groundwater
ACGW0161201XX	09K0085-23 500X	Groundwater

The data for these samples were flagged with the "J" qualifier and are estimated values.

All other soil and preserved water samples were analyzed within 14 days of collection.

Tunes

No problems were detected with the tunes associated with the samples of this delivery group. The NYS DEC ASP FORM V was not included in the data package.

Surrogate Compound Recoveries

All surrogate compound recoveries were within the 70% - 130% quality assurance limits.

Calibrations

The 11/6/2009 initial calibration (page 176, A1105015) is associated with samples:

ACSW00200001XX	09K0085-01	Surface Water
ACSW00300001XX	09K0085-02	Surface Water
ACGW0030601XX	09K0085-11 100X	Groundwater
ACGW0031201XX	09K0085-12 100X	Groundwater
ACGW0041201XX	09K0085-13 100X	Groundwater
ACGW0040601XX	09K0085-15 100X	Groundwater
ACGW0050601XX	09K0085-16 100X	Groundwater
ACGW0051201XX	09K0085-17 100X	Groundwater
ACGW0061401XX	09K0085-18 100X	Groundwater
ACGW0150601XX	09K0085-20 100X	Groundwater
ACGW0151101XX	09K0085-21 100X	Groundwater
ACGW0161201XX	09K0085-23 100X	Groundwater
ACGS0040601XX	09K0085-07	Soil ML
ACGS0051001XX	09K0085-08	Soil ML
ACGS0051001XX	09K0085-08 10X	Soil ML
ACGS0150701XX	09K0085-09	Soil ML

ACGS0150701XX

09K0085-09 10X

Soil ML

All of the %RSDs were less than 20% with the exceptions of bromomethane (63%) acetone (36%). 1.4-dioxane (27%) and isopropylbenzene (28%).

All of the relative response factors (rrfs) were greater than 0.05 with the exceptions of acetone (0.037), t-butyl alcohol (0.049) and 1,4-dioxane (0.003).

Both the run log and raw data for the highest standard in this initial calibration were noted as 80 ug/l, (page 200) but a concentration of 100 ug/l was noted on the initial calibration summary form. The rrfs were calculated on the basis of 100 ug/l. The laboratory verified in a 1/8/2009 email that the correct concentration was 100 ug/l.

All of the percent differences in the one 11/10/2009 continuing calibration (page 459/ A1110020) associated with the following samples were less than 20% with the exceptions of carbon tetrachloride (23%), 1,1,1,2-tetrachloroethane (21%), trans-1,4-dichloro-2-butene (21%), 1,2-dibromo-3-chloropropane (23%) and bromoform (31%).

ACSW00200001XX	09K0085-01	Surface Water
ACSW00300001XX	09K0085-02	Surface Water
ACGW0030601XX	09K0085-11 100X	Groundwater
ACGW0031201XX	09K0085-12 100X	Groundwater
ACGW0041201XX	09K0085-13 100X	Groundwater
ACGW0040601XX	09K0085-15 100X	Groundwater
ACGW0050601XX	09K0085-16 100X	Groundwater
ACGW0051201XX	09K0085-17 100X	Groundwater
ACGW0061401XX	09K0085-18 100X	Groundwater
ACGW0150601XX	09K0085-20 100X	Groundwater
ACGW0151101XX	09K0085-21 100X	Groundwater
ACGW0161201XX	09K0085-23 100X	Groundwater

The 11/9/2009 continuing calibration (page 609, A1109003) is associated is associated with samples:

ACGS0040601XX	09K0085-07	Soil SM
ACGS0051001XX	09K0085-08	Soil SM
ACGS0051001XX	09K0085-08 10X	Soil SM
ACGS0150701XX	09K0085-09	Soil SM
ACGS0150701XX	09K0085-09 10X	Soil SM

All of the percent differences were less than 20% with the exceptions of bromomethane (22%), 1,4-dioxane (33%) and 1,2-dibromo-3-chloropropane (21%).

The 11/11/2009 initial calibration (page 333, B1111002) associated is associated with samples:

ACGW0030601XX	09K0085-11	Groundwater
ACGW0030601XX	09K0085-11 10X	Groundwater
ACGW0041201XX	09K0085-13 1000X	Groundwater

ACGW0040601XD	09K0085-14 100X	Groundwater
ACGW0050601XX	09K0085-16 500X	Groundwater
ACGW0061401XX	09K0085-18	Groundwater
ACGW0061401XX	09K0085-18 10X	Groundwater
ACGW0060601XX	09K0085-19	Groundwater
ACGW0150601XX	09K0085-20 5000X	Groundwater
ACGW0151101XX	09K0085-21 1000X	Groundwater
ACGW0160701XX	09K0085-22 10X	Groundwater
ACGW0161201XX	09K0085-23 500X	Groundwater
ACQT001XXX01XX	09K0085-24	Trip Blank Water
AC-Exterior Hose-2009	09K0085-26	Water

All of the %RSDs were less than 20% with the exceptions acetone (48%), acrylonitrile (59%), methylene chloride (116%), bromoform (36%), 1,2-dibromo-3-chloropropane (26%) and naphthalene (25%)

All of the relative response factors (rrfs) were greater than 0.05 with the exception of 1,4-dioxane (0.005).

All of the percent differences in the 11/11/2009 continuing calibration (page 742) associated with the following samples were less than 20% with the exceptions of bromomethane (44%), acetone (32%), t-butyl alcohol (28%), acrylonitrile (28%), methylene chloride (59%), bromoform (24%) and naphthalene (23%).

ACGW0060601XX	09K0085-19	Groundwater
ACGW0150601XX	09K0085-20 5000X	Groundwater
ACGW0151101XX	09K0085-21 1000X	Groundwater
ACGW0160701XX	09K0085-22 10X	Groundwater
ACGW0161201XX	09K0085-23 500X	Groundwater
ACQT001XXX01XX	09K0085-24	Trip Blank Water
AC-Exterior Hose-2009	09K0085-26	Water

The 11/9/2009 initial calibration (page 416, D1106004) is associated is associated with samples:

ACSD00200001XX	09K0085-03	Soil
ACSD00300001XX	09K0085-04	Soil
ACGS0030601XX	09K0085-05	Soil
ACGS0030601XD	09K0085-06	Soil
ACGS0030601MS	09K0085-06 MS	Soil
ACGS0030601MD	09K0085-06 MSD	Soil
ACGS0160701XX	09K0085-10	Soil
ACQT002XXX01XX	09K0085-25	Trip Blank Soil

All %RSDs were less than 20% with the exceptions of isopropylbenzene (34%), n-propylbenzene (26%), 1,3,5-trimethylbenzene (22%), 1,2,4-trimethylbenzene (25%), n-butylbenzene (32%), 1,2,4-trichlorobenzene (35%), naphthalene (53%) and 1,2,3-trichlorobenzene (36%).

All relative response factors were greater than 0.05 with the exceptions of t-butyl alcohol (0.035), tetrahydrofuran (0.033) and 1,4-dioxane (0.003)

All of the percent differences in the 11/9/2009 continuing calibration (page 577) associated with sample ACGS0160701XX (09K0085-10) were less than 20% with the exceptions of 1,4-dioxane (33%) and n-butylbenzene (26%)

Compounds with %RSDs or percent differences above 20% were flagged with the "J" qualifier and are estimated values.

Compounds with %RSDs or percent differences above 90% were flagged with the "J" qualifier when they were detected in a sample and flagged with the "R" qualifier and technically rejected when not detected.

Compounds with relative response factors less than 0.05 were flagged with the "J" qualifier when they were detected in a sample and flagged with the "R" qualifier and technically rejected when not detected.

Matrix Spike

Soil sample ACGS0030601XD (09K0085-06) was used as the matrix spike and matrix spike duplicate. All recoveries and RPDs were within the required limits with the following exceptions:

Compound	MS % Rec	MSD % Rec.	RPD
Bromomethane	65%	69%	
Dichlorodifluoromethane	52%	54%	
Naphthalene	62%	67%	
1,3,5-Trichlorobenzene	132%	131%	
Vinyl Chloride	59%	61%	

Compounds with high recoveries were not qualified if they were not detected in a sample.

The data for compounds with low recoveries in all of the soil samples were flagged with the "J" qualifier and are estimated values.

A water matrix spike was not analyzed.

Laboratory Control Sample

The laboratory's in-house QC limits noted on their summary forms were often wider than the 70% - 130% Region 2 limits. The data were validated on the basis of the Region 2 limits.

All of the laboratory control samples were within the 70% - 130% limits in the LCS pair B006941 / A1110021 associated with the analyses of the following samples with the exceptions of dichlorodifluoromethane (52%) and vinyl chloride (66%).

ACSW00200001XX	09K0085-01	Surface Water
ACSW00300001XX	09K0085-02	Surface Water
ACGW0030601XX	09K0085-11 100X	Groundwater
ACGW0031201XX	09K0085-12 100X	Groundwater
ACGW0041201XX	09K0085-13 100X	Groundwater
ACGW0040601XX	09K0085-15 100X	Groundwater

ACGW0050601XX	09K0085-16 100X	Groundwater
ACGW0051201XX	09K0085-17 100X	Groundwater
ACGW0061401XX	09K0085-18 100X	Groundwater
ACGW0150601XX	09K0085-20 100X	Groundwater
ACGW0151101XX	09K0085-21 100X	Groundwater
ACGW0161201XX	09K0085-23 100X	Groundwater

All of the laboratory control samples were within the 70% - 130% limits in the LCS pair B006952 / D1106013 associated with the analyses of the below samples with the exceptions of bromomethane (52%), dichlorodifluoromethane (55%), 1,3,5-trichlorobenzene (133%) and vinyl chloride (62%).

ACSD00200001XX	09K0085-03	Soil
ACSD00300001XX	09K0085-04	Soil
ACGS0030601XX	09K0085-05	Soil
ACGS0030601XD	09K0085-06	Soil

All of the laboratory control samples were within the 70% - 130% limits in the LCS pair D1109003 / B007006 associated with the analyses of the below sample with the exceptions of bromomethane (54%), dichlorodifluoromethane (47%), 1,3,5-trichlorobenzene (132%) and vinyl chloride (57%).

ACGOUTOUTOTAX 0310000-10 0011 0	ACGS0160701XX	09K0085-10	Soil SM
---------------------------------	---------------	------------	---------

All of the laboratory control samples were within the 70% - 130% limits in the LCS pair B007005 / B1111013 associated with the analyses of the below samples with the exception of with the exceptions of bromomethane (64%) and tert-butyl alcohol (59%). The RPD of tert-butyl alcohol was 39%.

ACGW0030601XX	09K0085-11	Groundwater
ACGW0030601XX	09K0085-11 10X	Groundwater
ACGW0041201XX	09K0085-13 1000X	Groundwater
ACGW0040601XD	09K0085-14 100X	Groundwater
ACGW0050601XX	09K0085-16 500X	Groundwater
ACGW0061401XX	09K0085-18	Groundwater
ACGW0061401XX	09K0085-18 10X	Groundwater

All of the laboratory control samples were within the 70% - 130% limits in the LCS pair B007003 / B1111029 associated with the analyses of the below samples with the exception of tert-butyl alcohol (66%).

ACGW0060601XX	09K0085-19	Groundwater
ACGW0150601XX	09K0085-20 5000X	Groundwater
ACGW0151101XX	09K0085-21 1000X	Groundwater
ACGW0160701XX	09K0085-22 10X	Groundwater
ACGW0161201XX	09K0085-23 500X	Groundwater
ACQT001XXX01XX	09K0085-24	Trip Blank Water
AC-Exterior Hose-2009	09K0085-26	Water

The data for the compounds associated with laboratory control samples with low recoveries were flagged with the "J" qualifier and are estimated values.

The data for compounds with high recoveries or RPDs in the laboratory control samples were only flagged with the "J" qualifier if they were detected in a sample since high recoveries do not affect undetected data.

Method Blanks

Naphthalene (2.0 ug/l) was detected in the method blank associated with the analyses of samples:

ACGW0030601XX	09K0085-11	Groundwater
ACGW0030601XX	09K0085-11 10X	Groundwater
ACGW0041201XX	09K0085-13 1000X	Groundwater
ACGW0040601XD	09K0085-14 100X	Groundwater
ACGW0050601XX	09K0085-16 500X	Groundwater
ACGW0061401XX	09K0085-18	Groundwater
ACGW0061401XX	09K0085-18 10X	Groundwater

This compound was not detected in any of the samples and the data were not affected by the blank contamination.

No other compounds were detected in the other method blanks.

Trip Blanks

No compounds were detected in either the soil or water trip blanks.

Internal Standard Areas and Retention Times

The areas and retention times of all internal standards were within the required quality control limits.

Sample Results

Validated results are presented in Table 2.

Samples ACGS0051001XX (09K0085-08) and Sample ACGW0050601XX 100X (09K0085-16)

The data for tetrachloroethene were flagged with the DP qualifier by the laboratory in the EDD and not on the Form 1's. The P qualifier was not referenced in the laboratory report. The lab was contacted for a reference to the meaning of the P qualifier. The response from the laboratory was that the P qualifier was inadvertently added to the EDD. The P qualifier was therefore removed from the final data set during validation.

Tentatively Identified Compounds (TICs)

Tentatively identified compounds (TICs) were reported by the laboratory. TICs reported in samples are presented in Table 3. Only samples that had TICs reported are included on Table 3. If a sample is not listed, no TICs were reported.

No other problems were found with the reported results of any of the samples in SDG09K0085.

References:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; July 2005.

New York State Department of Environmental Conservation (NYSDEC), 2002. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; Draft DER-10; Division of Environmental Remediation; December 2002.

Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B (SOP # HW-24, Revision #2, October 2006).

Validated by Nancy Potak

January 28, 2010

1796 Craftsbury Road PO Box 278

Greensboro, VT 05841

(802) 533-9206 npotak@vtlink.net

Reviewed by Tige Comingham (MACTEC)

Light he 4/20/10

TABLE 2 - RESULTS SUMMARY SDG 09K0085

DATA USABILITY SUMMARY REPORT

			BRC	CKPORT, NY				
		Sample Delivery Group	09K0085	09K0085	09K0085	09K0085	09K0085	
		Location		GS-15	GS-15	GS-16	GS-16	
		Sample Date	11/3/2009	11/3/2009	11/3/2009	11/3/2009	11/3/2009	
		Sample ID		ACGS0150701XX	ACGS0150701XX	ACGS0160701XX	ACGS0160701XX	
		Qc Code Units	FS .UG/L	FS mg/Kg	FS PERCENT	FS mg/Kg	FS PERCENT	
Analysis	Fraction	Param Name	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	
SW8260	N	1,1,1,2-Tetrachloroethane	1 U	0.2 U	Trocuit Qualifior	0.0019 U	resour Gaamor	
	N	1,1,1-Trichloroethane	1 U	0.2 U		0.0019 U		
	N	1,1,2,2-Tetrachloroethane	0.5 U	0.098 U		0.00094 U		
	N	1,1,2-Trichloro-1,2,2-Trifluoroethane	1 U	0.2 U		0.0094 U		
	N	1,1,2-Trichloroethane	1 U	0.2 U		0.0019 U		
SW8260 SW8260	N N	1,1-Dichloroethane 1,1-Dichloroethene	1 U	0.2 U		0.0019 U 0.0038 U		
	N	1,1-Dichloropropene	2 U	0.39 U	• • • • • • • • • • • • • • • • • • • •	0.0030 U		
SW8260	N	1,2,3-Trichlorobenzene	5 U	0.98 U		0.0094 U		
SW8260	N	1,2,3-Trichloropropane	2 U	0.39 U		0.0019 U		
SW8260	N	1,2,4-Trichlorobenzene	1 U	0.2 U		0.0094 U		
SW8260	N	1,2,4-Trimethylbenzene	1 U	0.28		0.0019 U	·	
SW8260 SW8260	N N	1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	5 UJ 0.5 U	0.98 UJ 0.098 U		0.0019 U 0.00094 U		
	N	1,2-Dibromoetriane 1,2-Dichlorobenzene	0.5 U	0.098 U		0.00094 U		
SW8260	N	1,2-Dichloroethane	1 U	0.2 U		0.0019 U		
SW8260	N	1,2-Dichloropropane	1 U	0.2 U		0.0019 U		
	N	1,3,5-Trichlorobenzene	1 U	0.2 U		0.0019 U		
	N N	1,3,5-Trimethylbenzene	1 U	0.2 U		0.0019 U		
SW8260 SW8260	N N	1,3-Dichlorobenzene 1,3-Dichloropropane	1 U 0.5 U	0.2 U 0.098 U		0.0019 U 0.00094 U		
SW8260	N N	1,4-Dichlorobenzene	1 U	0.096 U		0.00094 U		
SW8260	N	1,4-Dioxane	R	R R		R R		
SW8260	N	2,2-Dichloropropane	1 UJ	0.2 U		0.0019 U		
SW8260	N	2-Butanone	20 U	3.9 U		0.038 U		
SW8260	N	2-Chlorotoluene	1 U	0.2 U		0.0019 U		
SW8260	N N	2-Hexanone	10 U	2 U 0.2 U		0.094 U 0.0019 U		
SW8260 SW8260	N	4-Chlorotoluene 4-iso-Propyltoluene	1 0	0.2 U		0.0019 U		
SW8260	N	4-Methyl-2-pentanone	10 U	2 U		0.094 U		
SW8260	N	Acetone	51 J	R		R		
SW8260	N	Acrylonitrile	5 UJ	0.98 U		0.0056 U		
SW8260	N	Benzene	1 U	0.2 U		0.0019 U		
SW8260 SW8260	N N	Bromobenzene	1 U 1 U	0.2 U 0.2 U		0.0019 UJ 0.0019 U		
SW8260	N	Bromochloromethane Bromodichloromethane	0.5 U	0.2 U	· ·	0.0019 U		
SW8260	N	Bromoform	5 UJ	2 U		0.0019 U		
SW8260	N	Bromomethane	2 UJ	2 UJ		0.0094 UJ		
SW8260	N	Butane, 2-methoxy-2-methyl-	0.5 U	0.098 U		0.00094 U		
SW8260	N	Carbon disulfide	3 U	0.59 U		0.0056 U		
SW8260 SW8260	N	Carbon tetrachloride Chlorobenzene	1 U	0.2 U 0.2 U		0.0094 U 0.0019 U		
SW8260		Chlorodibromomethane	5 U	0.098 U		0.0019 U		
SW8260		Chloroethane	2 U	0.39 U		0.019 U		
SW8260	N	Chloroform	2 U	0.39 U		0.0038 U		
	N	Chloromethane	2 U	2 U		0.0094 U		
SW8260		Cis-1,2-Dichloroethene	10	0.94		0.0019 U		
	N N	cis-1,3-Dichloropropene Dibromomethane	0.5 U 1 U	0.098 U 0.2 U		0.0094 U 0.0019 U		
	N	Dichlorodifluoromethane	2 0	0.39 UJ		0.019 UJ	'	
	N	Diethyl ether	2 U	0.39 U		0.019 U		
SW8260	N	Diisopropylether	0.5 U	0.098 U		0.00094 U		
	N	Ethyl benzene	1 U	0.2 U		0.0019 U		
SW8260	N	Ethyl-t-Butyl Ether	0.5 U	0.098 U		0.00094 U 0.0019 U		
SW8260 SW8260	N N	Hexachlorobutadiene Isopropylbenzene	0.5 U 1 U	0.2 U 0.2 U		0.0019 U 0.0094 U		
SW8260	N	Methyl Tertbutyl Ether	1 0	0.2 U		0.0034 U		
SW8260	N	Methylene chloride	R	0.98 U		0.019 U		
SW8260	N	n-Butylbenzene	1 U	0.2 U		0.0094 UJ		
SW8260	N	Naphthalene	5 UJ	2 UJ		0.019 UJ		
SW8260	N_	Propylbenzene	1 U	0.2 U		0.0019 U		
SW8260 SW8260	N N	sec-Butylbenzene Styrene	1 U	0.2 U 0.2 U		0.0019 U 0.0094 U		
SW8260		t-Butyl alcohol	20 UJ	0.2 0 R		0.0094 B		
SW8260		tert-Butylbenzene	1 U	0.2 U		0.0094 U		
SW8260		Tetrachloroethene	1.2	35 D		0.0019 U		

TABLE 2 - RESULTS SUMMARY SDG 09K0085 DATA: USABILITY SUMMARY REPORT

		Cample Delivery Creve	001/000		09K00	05	001000	05 1	00100	05 1	001400	0.5	
	Sample Delivery Group			09K0085			09K00		09K00		09K0085		
		Location		C-Exterior Hose-2009				GS-15		GS-16 11/3/2009		GS-16	
		Sample Date				11/3/2009		11/3/2009			11/3/20		
		Sample ID		se-2009	ACGS0150	701XX	ACGS0150	701XX	ACGS0160	701XX	ACGS0160)701XX	
		Qc Code			. FS		FS		FS		FS		
		Units	UG/L		mg/K	g	PERCE	NT	mg/K		PERCE	ENT	
Analysis	Fraction	Param Name	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	
SW8260	N	Tetrahydrofuran	10	U		U			0.0094	U			
SW8260	N	Toluene	1	U	0.2	U			0.0019	U			
SW8260	N	trans-1,2-Dichloroethene	1	U	0.2	U			0.0019	U		•	
SW8260	N	trans-1,3-Dichloropropene	0.5	U	0.098	U			0.00094	U			
SW8260	N	trans-1,4-Dichloro-2-butene	2	U	0.39	U			0.0038	U			
SW8260	N	Trichloroethene	1	U	0.56				0.0019	U			
SW8260	N	Trichlorofluoromethane	2	U	0.39	U			0.0094	U			
SW8260	N	Vinyl chloride	2	U	0.88	J			0.0094	UJ			
SW8260	N	Xylene, m/p	2	U	0.39	U			0.0038	U			
SW8260	N	Xylene, o	1	U	0.2	Ū			0.0019	U			
SW9060	N	Total Organic Carbon											
SM2540G	N	Percent Solids					87.2		•		84.4		
Notes:													
mg/kg = m	illigrams p	oer kilogram		,									
ug/L = mic	rograms p	per liter											
QC Code:	FS = Field	d Sample FD = Field Duplicate											
TB=	Trip Blan	k EB = Equipment Rinse Blank											
Qualifiers:	U = not d	ectected at the reporting limit									•		
	J = esti	mated value . R = rejected											
	D = res	ult from a dilution analysis											

TABLE 2 - RESULTS SUMMARY SDG 09K0085 DATA USABILITY SUMMARY REPORT

		Sample Delivery Group	09K0085	09K0085	09K0085	09K0085	09K0085
		Location	GS-3	GS-3	GS-3	GS-3	GS-4
		Sample Date	11/3/2009	11/3/2009	11/3/2009 ACGS0030601XX	11/3/2009	11/3/2009 ACGS0040601XX
		Sample ID Qc Code	ACGS0030601XD FD	ACGS0030601XD FD	FS	ACGS0030601XX FS	FS
	 	Units	mg/Kg	PERCENT	mg/Kg	PERCENT	mg/Kg
Analysis	Fraction	Param Name	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifie
SW8260	N	1,1,1,2-Tetrachloroethane	0.0017 U		0.0014 U		0.19 U
SW8260	N	1,1,1-Trichloroethane	0.0017 U	·	0.0014 U		0.19 U
SW8260	N	1,1,2,2-Tetrachloroethane	0.00087 U 0.0087 U		0.00071 U 0.0071 U	i	0.096 U 0.19 U
SW8260 SW8260	N N	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.0067 U		0.0071 U		0.19 U
SW8260	N	1,1-Dichloroethane	0.0017 U		0.0014 U		0.19 U
SW8260	N	1,1-Dichloroethene	0.0035 U		0.0028 U		0.19 U
SW8260	N	1,1-Dichloropropene	0.0017 U		0.0014 U		0.38 U
SW8260	N	1,2,3-Trichlorobenzene	0.0087 UJ		0.0071 UJ		0.96 U 0.38 U
SW8260 SW8260	N N	1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	0.0017 U 0.0087 UJ		0.0014 U 0.0071 UJ		0.36 U
SW8260	N	1,2,4-Trimethylbenzene	0.0007 UJ		0.0014 UJ		0.98
SW8260	N	1,2-Dibromo-3-chloropropane	0.0017 U		0.0014 U		0.96 UJ
SW8260	N	1,2-Dibromoethane	0.00087 U		0.00071 U		0.096 U
SW8260	N	1,2-Dichlorobenzene	0.0017 U		0.0014 U		0.19 U
SW8260	N	1,2-Dichloroethane	0.0017 U 0.0017 U		0.0014 U 0.0014 U		0.19 U 0.19 U
SW8260 SW8260	N	1,2-Dichloropropane	0.0017 U		0.0014 U		0.19 U
SW8260	N	1,3,5-Trimethylbenzene	0.0017 UJ		0.0014 UJ		0.2
SW8260	N	1,3-Dichlorobenzene	0.0017 U		0.0014 U		0.19 U
SW8260	N	1,3-Dichloropropane	0.00087 U		0.00071 U		0.096 U
SW8260	N	1,4-Dichlorobenzene	0.0017 U		0.0014 U		0.19 U R
SW8260 SW8260	N N	1,4-Dioxane 2,2-Dichloropropane	0.0017 U		0.0014 U		0.19 U
SW8260	N	2-Butanone	0.035 U		0.028 U		3.8 U
SW8260	N	2-Chlorotoluene	0.0017 U		0.0014 U		0.19 U
SW8260	N	2-Hexanone	0.017 U		0.014 U		1.9 U
SW8260	N	4-Chlorotoluene	0.0017 U		0.0014 U		0.19 U
SW8260	N	4-iso-Propyltoluene	0.0017 U		0.0014 U		0.19 U 1.9 U
SW8260 SW8260	N	4-Methyl-2-pentanone Acetone	0.017 U 0.087 U		0.014 U 0.071 U		1.90 R
SW8260	N	Acrylonitrile	0.0052 U		0.0043 U		0.96 U
SW8260	N	Benzene	0.0017 U		0.0014 U		0.19 U
SW8260	N	Bromobenzene	0.0017 U		0.0014 U		0.19 U
SW8260	N	Bromochloromethane	0.0017 U		0.0014 U		0.19 U 0.19 U
SW8260 SW8260	N N	Bromodichloromethane Bromoform	0.0017 U 0.0017 U		0.0014 U 0.0014 U		1.9 U
SW8260	N	Bromomethane	0.0017 UJ		0.0071 UJ		1.9 UJ
SW8260	N	Butane, 2-methoxy-2-methyl-	0.00087 U		0.00071 U		0.096 U
SW8260	N	Carbon disulfide	0.0052 U		0.0043 U		0.57 U
SW8260	N	Carbon tetrachloride	0.0087 U		0.0071 U	·	0.19 U
SW8260	N	Chlorodingomenthone	0.0017 U 0.00087 U		0.0014 U 0.00071 U		0.19 U 0.096 U
SW8260 SW8260		Chlorodibromomethane	0.00087 U		0.00071 U		0.38 U
SW8260		Chloroform	0.0035 U		0.0028 U		0.38 U
SW8260	N	Chloromethane	0.0087 U		0.0071 U		1.9 U
SW8260		Cis-1,2-Dichloroethene	0.0017 U		0.0014 U		0.19 U
SW8260		cis-1,3-Dichloropropene	0.0087 U 0.0017 U		0.0071 U 0.0014 U		0.096 U 0.19 U
SW8260 SW8260	N N	Dibromomethane Dichlorodifluoromethane	0.0017 UJ		0.0014 UJ		0.19 UJ
SW8260	N	Diethyl ether	0.017 U		0.014 U		0.38 U
SW8260	N N	Diisopropylether	0.00087 U		0.00071 U		0.096 U
SW8260	N	Ethyl benzene	0.0017 U		0.0014 U		0.19 U
SW8260	N	Ethyl-t-Butyl Ether	0.00087 U		0.00071 U		0.096 U
SW8260		Hexachlorobutadiene	0.0017 U 0.0087 UJ		0.0014 U 0.0071 UJ		0.19 U 0.19 U
SW8260 SW8260		Isopropylbenzene Methyl Tertbutyl Ether	0.0087 U3		0.0071 UJ 0.0028 U		0.19 U
SW8260		Methylene chloride	0.0035 U		0.0028 U		0.96 U
SW8260		n-Butylbenzene	0.0087 UJ		0.0071 UJ		0.31
SW8260	N	Naphthalene	0.017 UJ		0.014 UJ		1.9 UJ
SW8260		Propylbenzene	0.0017 UJ		0.0014 UJ		0.19 U
SW8260		sec-Butylbenzene	0.0017 U 0.0087 U		0.0014 U 0.0071 U	<u> </u>	0.19 U 0.19 U
SW8260 SW8260		Styrene t-Butyl alcohol	0.008710 R		0.0071 B		0.19 U
SW8260		tert-Butylbenzene	0.0087 U		0.0071 U		0.19 U
SW8260		Tetrachloroethene	0.0017 U		0.0014 U		13

TABLE 2 - RESULTS SUMMARY

SDG 09K0085 DATA USABILITY SUMMARY REPORT

NOVEMBER 2009 SOIL, SEDIMENT AND WATER SAMPLING PROGRAM

ACE CLEANERS BROCKPORT, NY

		Sample Delivery Group	09K00	85	09K00	85	09K00	85	09K00	85	09K00	085
		Location	GS-		GS-3		GS-3		GS-3		GS-	
		Sample Date	11/3/20		11/3/20	009	11/3/20	009	11/3/20	009	11/3/2	.009
		Sample ID	ACGS0030	601XD	ACGS0030	601XD	ACGS0030	601XX	ACGS0030	0601XX	ACGS004	0601XX
		Qc Code	FD		FD		FS		FS		FS	,
		Units	mg/K	g	PERCE	NT	mg/K	g .	PERCE	NT	mg/ł	
Analysis	Fraction	Param Name	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
	N	Tetrahydrofuran		R				R				U
SW8260	N	Toluene	0.0017				0.0014				0.19	
SW8260	N	trans-1,2-Dichloroethene	0.0017				0.0014				0.19	
SW8260	N	trans-1,3-Dichloropropene	0.00087				0.00071				0.096	
SW8260	N	trans-1,4-Dichloro-2-butene	0.0035				0.0028				0.38	
SW8260	N	Trichloroethene	0.0017				0.0014				0.19	
SW8260	N	Trichlorofluoromethane	0.0087	U		•	0.0071				0.38	
SW8260	N	Vinyl chloride	0.0087				0.0071					3 UJ
SW8260	N	Xylene, m/p	0.0035	U	,		0.0028	U			0.38	
SW8260	N	Xylene, o	0.0017	U			0.0014	U			0.19	} U
SW9060	N	Total Organic Carbon										
SM2540G	N	Percent Solids			86				86.9			
Notes:												
		per kilogram						·				
ug/L = mic												
		d Sample FD = Field Duplicate										
		k EB = Equipment Rinse Blank										
Qualifiers:		ectected at the reporting limit										
		mated value R = rejected										
	. D = res	ult from a dilution analysis										

TABLE 2 - RESULTS SUMMARY SDG 09K0085

DATA USABILITY SUMMARY REPORT

				ROCKPORT, NY			
		Sample Delivery Group	09K0085	09K0085	09K0085	09K0085	09K0085
	<u> </u>	Location	GS-4	GS-5	GS-5	GW-15	GW-15
	ļ	Sample Date	11/3/2009	11/3/2009 ACGS0051001XX	11/3/2009 ACGS0051001XX	11/3/2009 ACGW0151101XX	11/3/2009 ACGW0150601XX
	 	Sample ID Qc Code	ACGS0040601XX FS	FS	FS	FS	FS
-	 	Units	PERCENT	mg/Kg	PERCENT	UG/L	UG/L
Analysis	Fraction	Param Name	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260	N	1,1,1,2-Tetrachloroethane		0.2 U		100 UD	100 UD
SW8260	N	1,1,1-Trichloroethane		0.2 U		100 UD	100 UD
SW8260	N	1,1,2,2-Tetrachloroethane		0.1 U		50 UD	50 UD
SW8260	N	1,1,2-Trichloro-1,2,2-Trifluoroethane		0.2 U 0.2 U		100 UD 100 UD	100 UD 100 UD
SW8260 SW8260	N N	1,1-Dichloroethane		0.2 U		100 UD	100 UD
SW8260	N	1,1-Dichloroethene		0.2 U		100 UD	260 D
SW8260	N	1,1-Dichloropropene		0.4 U		200 UD	200 UD
SW8260	N	1,2,3-Trichlorobenzene		1 U		500 UD	500 UD
SW8260	N	1,2,3-Trichloropropane		0.4 U		200 UD	200 UD
SW8260	N	1,2,4-Trichlorobenzene		0.2 U 0.2 U		100 UD 100 UD	100 UD 210 D
SW8260 SW8260	N N	1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane		1 UJ		500 UJ	500 UJD
SW8260	N	1,2-Dibromoethane		0.1 U		50 UD	50 UD
SW8260	N	1,2-Dichlorobenzene		0.2 U		100 UD	100 UD
SW8260	N	1,2-Dichloroethane		0.2 U		100 UD	100 UD
SW8260	N	1,2-Dichloropropane		0.2 U		100 UD	100 UD
SW8260 SW8260	N N	1,3,5-Trichlorobenzene 1,3,5-Trimethylbenzene		0.2 U 0.2 U		100 UD 100 UD	100 UD 100 U
SW8260	N N	1,3-Dichlorobenzene		0.2 U		100 UD	100 UD
SW8260	N	1,3-Dichloropropane		0.1 U		50 UD	50 UD
SW8260	N	1,4-Dichlorobenzene		0.2 U		100 UD	100 UD
SW8260	N	1,4-Dioxane		R		R	R
SW8260	N	2,2-Dichloropropane		0.2 U		100 UD	100 UD
SW8260	N	2-Butanone	·	4 U		2000 UD 100 UD	2000 UD 100 UD
SW8260 SW8260	N N	2-Chlorotoluene 2-Hexanone	·	0.2 U 2 U		1000 UD	1000 UD
SW8260	N	4-Chlorotoluene		0.2 U		100 UD	100 UD
SW8260	N	4-iso-Propyltoluene		0.2 U	- i -	100 UD	100 UD
SW8260	N	4-Methyl-2-pentanone		2 U		1000 UD	1000 UD
SW8260	N	Acetone		R		R	R
SW8260	N	Acrylonitrile		1 U 0.2 U		500 UD 100 UD	500 UD 100 UD
SW8260 SW8260	N N	Benzene Bromobenzene		0.2 U		100 UD	100 UD
SW8260	N	Bromochloromethane		0.2 U		100 UD	100 UD
SW8260	N	Bromodichloromethane		0.2 U		50 UD	50 UD
SW8260	N	Bromoform		2 U		500 UJ	500 UJD .
SW8260	N	Bromomethane		2 UJ		500 UJ	500 UJD
SW8260 SW8260	N N	Butane, 2-methoxy-2-methyl- Carbon disulfide		0.1 U 0.6 U		50 UD 300 UD	50 UD 300 UD
SW8260	N	Carbon distillide Carbon tetrachloride		0.0 U	<u> </u>	100 UJ	100 UJD
SW8260	N	Chlorobenzene		0.2 U		100 UD	100 UD
SW8260	N	Chlorodibromomethane	•	0.1 U		50 UD	50 UD
SW8260		Chloroethane		0.4 U		200 UD	200 UD
		Chloroform		0.4 U	`	200 U 500 UD	200 U 500 UD
SW8260 SW8260		Chloromethane Cis-1,2-Dichloroethene		2 U 0.2 U		1700 D	4200 D
SW8260		cis-1,3-Dichloropropene	-	0.2 U		50 UD	50 UD
SW8260		Dibromomethane		0.2 U		100 UD	100 UD
SW8260	N	Dichlorodifluoromethane		0.4 UJ		200 UJ	200 UJD
SW8260		Diethyl ether		0.4 U		200 UD	200 UD
SW8260		Diisopropylether		0.1 U		50 UD 100 UD	50 UD 100 UD
SW8260 SW8260		Ethyl benzene Ethyl-t-Butyl Ether		0.2 U 0.1 U		50 UD	50 UD
SW8260		Hexachlorobutadiene		0.1 U		50 UD	50 UD
SW8260		Isopropylbenzene		0.2 U		100 UD	100 UD
SW8260	N	Methyl Tertbutyl Ether		0.2 U		100 UD	100 UD
SW8260		Methylene chloride		1 U		500 UD	500 UD
SW8260		n-Butylbenzene		0.2 U 2 UJ		100 UD 500 UD	100 UD 500 U
SW8260 SW8260		Naphthalene Propylbenzene		0.2 U		100 UD	100 UD
SW8260		sec-Butylbenzene		0.2 U	-	100 UD	100 UD
SW8260	N	Styrene		0.2 U		100 UD	100 UD
SW8260	N	t-Butyl alcohol		R		R	R
SW8260	N	tert-Butylbenzene		0.2 U		100 UD	100 UD
SW8260	IN	Tetrachloroethene		40 D		25000 JD	67000 JD

TABLE 2 - RESULTS SUMMARY SDG 09K0085 DATA USABILITY SUMMARY REPORT

		Sample Delivery Group	09K00)85 T	09K00	85 T	09K00	85	09K00	85	09K0	385
		Location	GS-	4	GS-	5	GS-	5	GW-1	5	GW-	15
		Sample Date	11/3/20	009	11/3/20	09	11/3/20	009	11/3/20	009	11/3/2	009
	<u> </u>	Sample ID	ACGS0040	0601XX	ACGS0051	001XX	ACGS0051	001XX	ACGW015	1101XX	ACGW015	0601XX
		Qc Code	FS		FS		FS		FS		FS	1
		Units	PERCE	NT	mg/K		PERCE	NT	UG/I		UG	
Analysis	Fraction	Param Name	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260	N	Tetrahydrofuran				U			1000) UD
SW8260	N	Toluene			0.2				100			UD
SW8260	N	trans-1,2-Dichloroethene			0.2				100) UD
SW8260	N	trans-1,3-Dichloropropene	•		0.1	U			50	UD	50	UD
SW8260	N	trans-1,4-Dichloro-2-butene			0.4	U			200	UJ	200) UJD
SW8260	N	Trichloroethene			0.2	U			730		2600	
SW8260	N	Trichlorofluoromethane			0.4	U			200	UD	200	UD
SW8260	N	Vinyl chloride			0.4	UJ			460	UJ	2800	JD
SW8260	N	Xylene, m/p			0.4	U			200	UD		UD
SW8260	N	Xylene, o			0.2	U		4	100	UD	100	UD
SW9060	N	Total Organic Carbon										
SM2540G	N	Percent Solids	87				85.4					
Notes:												
mg/kg = m	nilligrams p	per kilogram					1					
ug/L = mic	rograms p	per liter			•							
QC Code:	FS = Fiel	d Sample FD = Field Duplicate				•						
TB =	Trip Blar	k EB = Equipment Rinse Blank										
Qualifiers:	U = not d	ectected at the reporting limit										
	J = esti	mated value R = rejected	·									
	D = res	ult from a dilution analysis										

TABLE 2 - RESULTS SUMMARY SDG 09K0085

DATA USABILITY SUMMARY REPORT

		Sample Delivery Group	09K008		09K0085		09K008		09K0085	09K0085
		Location	GW-16		GW-16		GW-3		GW-3	GW-4
	-	Sample Date Sample ID	11/3/200 ACGW0161		11/3/2009 ACGW0160701X	XX /	11/3/200 ACGW0031:		11/3/2009 ACGW0030601XX	11/3/2009 ACGW0041201XX
	 	Qc Code	FS	201//	FS	~	FS	201/00	FS	FS FS
		Units	UG/L		UG/L		UG/L		UG/L	UG/L
		Param Name		Qualifier	Result Qual			Qualifier	Result Qualifier	Result Qualifie
SW8260	N	1,1,1,2-Tetrachloroethane	100		10 UJD		100		1 UJ	100 UD
SW8260 SW8260	N N	1,1,1-Trichloroethane	100 50	מט	10 UJD 5 UJD		100		1 UJ 0.5 UJ	100 UD 50 UD
SW8260	N	1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane	100		10 UJD		100		1 UJ	100 UD
SW8260	N	1,1,2-Trichloroethane	100		10 UJD		100		1 UJ	100 UD
SW8260	N	1,1-Dichloroethane	100		10 UJD)	100		1 UJ	100 UD
SW8260	N	1,1-Dichloroethene	100		10 UJD		100		1.8 J	100 U
SW8260	N	1,1-Dichloropropene	200 500		20 UJD 50 UJD		200 S		2 UJ 5 UJ	200 UD 500 UD
SW8260 SW8260	N N	1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	200		20 UJD		200		2 UJ	200 UD
SW8260	N	1,2,4-Trichlorobenzene	100		10 UJD		100		1 UJ	100 UD
SW8260	N	1,2,4-Trimethylbenzene	100	UD	10 UJD		100		1 UJ	100 U
SW8260	N	1,2-Dibromo-3-chloropropane	500		50 UJD		500		5 UJ	500 UJD
SW8260	N	1,2-Dibromoethane	50		5 UJD		50		0.5 UJ	50 UD
SW8260 SW8260	N N	1,2-Dichlorobenzene 1,2-Dichloroethane	100 100		10 UJD 10 UJD		100 100		1 UJ 1 UJ	100 UD 100 UD
SW8260	N	1,2-Dichloropropane	100		10 UJD		100		1 UJ	100 UD
SW8260	N	1,3,5-Trichlorobenzene	100	UD	10 UJD)	100	UD	1 UJ	100 UD
SW8260	N	1,3,5-Trimethylbenzene	100		10 UJD)	100		1 UJ	100 UD
SW8260	N _	1,3-Dichlorobenzene	100		10 UJD		100		1 UJ	100 UD
SW8260 SW8260	N N	1,3-Dichloropropane 1,4-Dichlorobenzene	50 100		5 UJD 10 UJD		50 100		0.5 UJ 1 UJ	50 UD 100 UD
SW8260	N	1,4-Dioxane		R	10 03D	, 		R	R	R
SW8260	N .	2,2-Dichloropropane	100		10 UJD	, -	100		1 UJ	100 UD
SW8260	N	2-Butanone	2000	UD	200 UJD)	2000		20 UJ	2000 UD
SW8260	N	2-Chlorotoluene	100		10 UJD		100		1 UJ	100 UD
SW8260	N	2-Hexanone	1000		100 UJD		1000		10 UJ 1 UJ	1000 UD
SW8260 SW8260	N N	4-Chlorotoluene 4-iso-Propyltoluene	100 100		10 UJD 10 UJD		100		1 UJ	100 UD
SW8260	N	4-Methyl-2-pentanone	1000		100 UJD		1000		10 UJ	1000 UD
SW8260	N	Acetone		R	500 UJD			R	50 UJ	R
SW8260	N	Acrylonitrile	500		50 UJD		500		5 UJ	500 UD
SW8260	N	Benzene	100		10 UJD		100		1 UJ	100 UD
SW8260 SW8260	N N	Bromobenzene Bromochloromethane	100 100		10 UJD 10 UJD		100 100		1 UJ 1 UJ	100 UD 100 UD
SW8260	N	Bromodichloromethane	50		5 UJD		50		0.5 UJ	50 UD
SW8260	N	Bromoform	500		50 UJD		500		5 UJ	500 UJD
SW8260	N	Bromomethane	500		20 UJD		500		2 UJ	500 UD
SW8260	N	Butane, 2-methoxy-2-methyl-	50		5 UJD		50		0.5 UJ	50 UD
SW8260	N	Carbon disulfide	300 100		30 UJD 10 UJD		300 100		3 UJ 1 UJ	300 UD 100 UJD
SW8260 SW8260	N N	Carbon tetrachloride Chlorobenzene	100		10 UJD		100		1 UJ	100 UD
SW8260		Chlorodibromomethane	50		50 UJD		50		5 UJ	50 UD
SW8260	N	Chloroethane	200	UĎ	20 UJD)	200	UD	2 UJ	200 UD
SW8260	N	Chloroform	200		20 UJD		200		2 UJ	200 U
SW8260	N	Chloromethane	500 280		20 UJD 10 UJD		500 100		2 UJ 34 J	500 UD 1000 D
SW8260 SW8260	N	Cis-1,2-Dichloroethene cis-1,3-Dichloropropene	50		5 UJD		50		0.5 UJ	50 UD
SW8260	N	Dibromomethane	100		10 UJD		100		1 UJ	100 UD
SW8260	N	Dichlorodifluoromethane	200	UJD	20 UJD)	200	UD	2 UJ	200 UJD
SW8260	N	Diethyl ether	200		20 UJD)	200		2 UJ	200 UD
SW8260	N	Diisopropylether	50		5 UJD	2	50		0.5 UJ	50 UD
SW8260 SW8260	N N	Ethyl benzene Ethyl-t-Butyl Ether	100 50		10 UJD 5 UJD		100 50		1 UJ 0.5 UJ	100 UD 50 UD
SW8260		Hexachlorobutadiene	50		5 UJD		50		0.5 UJ	50 UD
SW8260		Isopropylbenzene	100	UD	10 UJD		100	ÚD	1 UJ	100 UD
SW8260	N	Methyl Tertbutyl Ether	100	UD	10 UJD		100	UD	1 UJ	100 UD
SW8260	N	Methylene chloride	500		R		500		5 UJ	500 UD
		n-Butylbenzene	100	UD	10 UJD		100		1 UJ	100 UD
SW8260 SW8260		Naphthalene Propylbenzene	500 100		50 UJD 10 UJD		500 100		5 UJ 1 UJ	500 UD 100 UD
SW8260		sec-Butylbenzene	100		10 UJD		100		1 UJ	100 UD
SW8260		Styrene	100		10 UJD)	100		1 UJ	100 UD
SW8260	N	t-Butyl alcohol .		R	200 UJD)		R	20 UJ	R
SW8260		tert-Butylbenzene	100		10 UJD		100		1 UJ	100 UD
SW8260	IN	Tetrachloroethene	9500	JD	63 JD		790	ט	140 JD	20000 JD

TABLE 2 - RESULTS SUMMARY SDG 09K0085

DATA USABILITY SUMMARY REPORT

NOVEMBER 2009 SOIL, SEDIMENT AND WATER SAMPLING PROGRAM

ACE CLEANERS BROCKPORT, NY

	1	Sample Delivery Group	09K00	85	09K00	85 T	09K00	85	09K00	85	09K00	85
		Location	GW-		GW-1		GW-		GW-		GW-	
		Sample Date	11/3/20	009	11/3/20	009	11/3/20	009	11/3/20	009	11/3/20	J09
		Sample ID	ACGW016	1201XX	ACGW0160	701XX	'ACGW003	1201XX	ACGW0030	0601XX	ACGW004	1201XX
		Qc Code	FS		FS		FS		FS		FS	
		Units	UG/I		UG/L		UG/I		UG/I		UG/	
	Fraction	Param Name	Result	Qualifier	Result	Qualifier		Qualifier	Result	Qualifier	Result	Qualifier
	N	Tetrahydrofuran	1000			UJD	1000			UJ	1000	
SW8260		Toluene		UD		UJD		UD		UJ		UD .
SW8260	I	trans-1,2-Dichloroethene		UD [.]		UJD		UD		UJ		UD
SW8260		trans-1,3-Dichloropropene		UD		UJD		UD	0.5			UD
SW8260	N	trans-1,4-Dichloro-2-butene	. 200	UJD		UJD		UJD		UJ		UJD
SW8260	N	Trichloroethene	250			UJD		UD	11		820	
SW8260	N	Trichlorofluoromethane	200	UD		UJD		UD		UJ		UD
SW8260		Vinyl chloride	210			UJD		UJD	65			UJD
SW8260		Xylene, m/p	200			UJD		UD		UJ		UD
SW8260	N	Xylene, o	100	UD	10	UJD	100	UD	1	UJ	100	UD
	N	Total Organic Carbon							· · ·			
SM2540G	N	Percent Solids										
Notes:												
		oer kilogram		<u> </u>								
ug/L ≃ mic					·							
		d Sample FD = Field Duplicate										
		k EB = Equipment Rinse Blank							***************************************			
		ectected at the reporting limit										
		mated value R = rejected					J					
	D = res	ult from a dilution analysis										

TABLE 2 - RESULTS SUMMARY

SDG 09K0085 DATA USABILITY SUMMARY REPORT

		Sample Delivery Group	09K0085	09K0085	09K0085	09K0085	09K0085
		Location	GW-4	GW-4	GW-5	GW-5	GW-6
		Sample Date	11/3/2009	11/3/2009	11/3/2009	11/3/2009	11/3/2009
		Sample ID	ACGW0040601XD	ACGW0040601XX	ACGW0051201XX	ACGW0050601XX	ACGW0061401XX
		Qc Code Units	FD UG/L	FS UG/L	FS UG/L	FS UG/L	FS UG/L
Analysis	Fraction	Param Name	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
	N	1,1,1,2-Tetrachioroethane	100 UJD	100 UD	100 UD	100 UD	1 UJ
	N	1,1,1-Trichloroethane	100 UJD	100 UD	100 UD	100 UD_	1 UJ
	N	1,1,2,2-Tetrachioroethane	50 UJD	50 UD	50 UD	50 UD	0.5 UJ
	N	1,1,2-Trichloro-1,2,2-Trifluoroethane	100 UJD	100 UD	100 UD	100 UD	1 UJ
	N	1,1,2-Trichloroethane	100 UJD 100 UJD	100 UD 100 UD	100 UD 100 UD	100 UD 100 UD	1 UJ 1 UJ
	N N	1,1-Dichloroethane	100 UJD	100 U	100 UD	100 UD	3.1 J
	N	1,1-Dichloropropene	200 UJD	200 UD	200 UD	200 UD	2 UJ
	N	1,2,3-Trichlorobenzene	500 UJD	500 UD	500 UD	500 UD	5 UJ
	N	1,2,3-Trichloropropane	200 UJD	200 UD	200 UD	200 UD	2 UJ
	N	1,2,4-Trichlorobenzene	100 UJD	100 UD	100 UD	100 UD	1 UJ
	N	1,2,4-Trimethylbenzene	100 UJD	, 100 U	100 UD	100 UD	1 UJ
	N N	1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	500 UJD 50 UJD	500 UJD 50 UD	500 UJD 50 UD	500 UJD 50 UD	5 UJ 0.5 UJ
SW8260	N	1,2-Dichlorobenzene	100 UJD	100 UD	100 UD	100 UD	1 UJ
SW8260	N	1,2-Dichloroethane	100 UJD	100 UD	100 UD	100 UD	1 UJ
SW8260	N	1,2-Dichloropropane	100 UJD	100 UD	100 UD	100 UD	1 UJ
SW8260	N	1,3,5-Trichlorobenzene	100 UJD	100 UD	100 UD	100 UD	1 UJ
SW8260	N	1,3,5-Trimethylbenzene	100 UJD 100 UJD	100 UD	100 UD	100 UD	1 UJ 1 UJ
SW8260 SW8260	N N	1,3-Dichlorobenzene 1,3-Dichloropropane	100 UJD 50 UJD	100 UD 50 UD	100 UD : 50 UD	100 UD 50 UD	0.5 UJ
SW8260	N	1,4-Dichlorobenzene	100 UJD	100 UD	100 UD	100 UD	1 UJ
SW8260	N	1,4-Dioxane	R	R	R	R	R
	N	2,2-Dichloropropane	100 UJD	100 UD	100 UD	100 UD	1 UJ
	N	2-Butanone	2000 UJD	2000 UD	2000 UD	2000 UD	20 UJ
	N	2-Chlorotoluene	100 UJD	100 UD	100 UD	100 UD	1 UJ
SW8260 SW8260	N N	2-Hexanone 4-Chlorotoluene	1000 UJD 100 UJD	1000 UD 100 UD	1000 UD 100 UD	1000 UD 100 UD	10 UJ 1 UJ
SW8260	N	4-iso-Propyltoluene	100 UJD	100 UD	100 UD	100 UD	1 UJ
SW8260	N	4-Methyl-2-pentanone	1000 UJD	1000 UD	1000 UD	1000 UD	10 UJ
SW8260	N	Acetone	5000 UJD	R	R	R	50 UJ
	N	Acrylonitrile	500 UJD	500 UD	500 UD	500 UD	5 UJ
	N	Benzene	100 UJD 100 UJD	100 UD 100 UD	100 UD	100 UD 100 UD	1 UJ 1 UJ
SW8260 SW8260	N	Bromobenzene Bromochloromethane	100 UJD	100 UD	100 UD	100 UD	1 UJ
SW8260	N	Bromodichloromethane	50 UJD	50 UD	50 UD	50 UD	0.5 UJ
SW8260	N	Bromoform	500 UJD	500 UJD	500 UJD	500 UJD	- 5 UJ
SW8260	N	Bromomethane	200 UJD	500 UJD	500 UD	500 UD	2 UJ
SW8260	N	Butane, 2-methoxy-2-methyl-	50 UJD	50 UD	50 UD	50 UD	0.5 UJ
SW8260 SW8260	N N	Carbon disulfide Carbon tetrachloride	300 UJD 100 UJD	300 UD 100 UJD	300 UD 100 UJD	300 UD 100 UJD	3 UJ 1 UJ
SW8260	N	Chlorobenzene	100 UJD	100 UD	100 UD	100 UD	1 UJ
SW8260		Chlorodibromomethane	500 UJD	50 UD	50 UD	50 UD	5 UJ
SW8260	N	Chloroethane	200 UJD	200 UD	200 UD	200 UD	2 UJ
SW8260	N	Chloroform	200 UJD	200 U	200 U	200 U	2 UJ
SW8260	N	Chloromethane	200 UJD 330 JD	500 UD	500 UD 100 UD	500 UD 200 D	2 UJ 800 JD
SW8260 SW8260	N N	Cis-1,2-Dichloroethene cis-1,3-Dichloropropene	330 JD 50 UJD	320 D 50 UD	100 UD	50 UD	0.5 UJ
SW8260	N	Dibromomethane	100 UJD	100 UD	100 UD	100 UD	1 UJ
SW8260	N	Dichlorodifluoromethane	. 200 UJD	200 UJD	200 UJD	200 UJD	2 UJ
SW8260	N	Diethyl ether	200 UJD	200 UD	200 UD	200 UD	2 UJ
SW8260	N	Diisopropylether	50 UJD	50 UD	50 UD	50 UD	0.5 UJ
SW8260	N N	Ethyl benzene	100 UJD 50 UJD	100 UD 50 UD	100 UD 50 UD	100 UD 50 UD	1 UJ 0.5 UJ
SW8260 SW8260		Ethyl-t-Butyl Ether Hexachlorobutadiene	50 UJD	50 UD	50 UD	50 UD	0.5 UJ
SW8260	N	Isopropylbenzene	100 UJD	100 UD	100 UD	100 UD	1 UJ
SW8260	N	Methyl Tertbutyl Ether	100 UJD	100 UD	100 UD	100 UD	1 UJ
SW8260	N	Methylene chloride	R	500 UD	500 UD	500 UD	R
SW8260	N	n-Butylbenzene	100 UJD	100 UD	100 UD	100 UD	1 UJ
SW8260	N	Naphthalene	500 UJD	500 UD	500 UD	500 UD	5 UJ
SW8260 SW8260		Propylbenzene sec-Butylbenzene	100 UJD 100 UJD	100 UD 100 UD	100 UD 100 UD	100 UD 100 UD	1 UJ 1 UJ
SW8260		Styrene .	100 UJD	100 UD	100 UD	100 UD	1 UJ
SW8260		t-Butyl alcohol	2000 UJD	R	R	R	20 UJ
SW8260		tert-Butylbenzene	100 UJD	100 UD	100 UD	100 UD	1 UJ
SW8260		Tetrachloroethene	7500 JD	7500 D	2600 D	27000 JD	220 JD

TABLE 2 - RESULTS SUMMARY

SDG 09K0085 DATA USABILITY SUMMARY REPORT

							<u> </u>					
		Sample Delivery Group	09K00		09K00		09K00		09K00		09K0	
		Location	GW-	4	GW-	4	GW-	5	GW-		GW	
		Sample Date	11/3/20	009	11/3/20	009	11/3/20	009	11/3/20	009	11/3/2	:009
		Sample ID	ACGW004	0601XD	ACGW0040	0601XX	ACGW005	1201XX	ACGW0050	0601XX	ACGW006	31401XX
		Qc Code	FD		FS		FS		FS		FS	3
		Units	UG/I	Ĺ	UG/L	-	UG/I	_	UG/L	_	UG	/L
Analysis	Fraction	Param Name	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260	N	Tetrahydrofuran	1000	UJD	1000	ŲD	1000	UD	1000	UD		UJ
SW8260	N	Toluene	100	UJD	100	UD	100	UD	100	UD	1	l UJ
SW8260	N	trans-1,2-Dichloroethene	100	UJD	100	UD	100	ŲD	100	UD	9.2	2 J
SW8260	N	trans-1,3-Dichloropropene	50	UJD	50	UD	50	UD	50	UD	0.5	UJ
SW8260	N	trans-1,4-Dichloro-2-butene	200	UJD	200	UJD	200	UJD	200	UJD	2	2 UJ
SW8260	N	Trichloroethene	570	JD	560	D	100	U	300	D	96	3 JD
SW8260	N	Trichlorofluoromethane	200	UJD	. 200	UD	200	UD	200	UD	2	2 UJ
SW8260	N	Vinyl chloride	360	UJD	. 280	UJD	200	UJD	200	UJD	2	2 UJ
SW8260	N	Xylene, m/p	200	UJD	200	UD	200	UD	200		2	2 UJ
SW8260	N	Xylene, o	100	UJD	100	UD	100	UD	100	UD	1	1 UJ
SW9060	N	Total Organic Carbon										
SM2540G	N	Percent Solids										
Notes:												
mg/kg = m	nilligrams p	oer kilogram										
ug/L = mic	rograms p	per liter										
QC Code:	FS = Fiel	d Sample FD = Field Duplicate										
TB =	Trip Blar	k EB = Equipment Rinse Blank										
Qualifiers:	U = not d	ectected at the reporting limit										
	. J = esti	mated value R = rejected										
	D = res	ult from a dilution analysis							•			

TABLE 2 - RESULTS SUMMARY SDG 09K0085 DATA USABILITY SUMMARY REPORT

						NY					
		Sample Delivery Group	09K0085		09K00	85	09K0085	09K00		09K00	
	_	Location	GW-6		QC 11/3/20		QC	SD-2		SD-:	
		Sample Date Sample ID	11/3/2009 ACGW0060601		11/3/20 ACQT001X		11/3/2009 ACQT002XXX01XX	11/3/20 ACSD0020		11/3/20 ACSD0020	
		Qc Code	FS		TB	00100	TB	FS	3001700	FS	
		Units	UG/L		UG/L		mg/Kg	mg/K	a	PERCE	
Analysis	Fraction	Param Name		alifier	Result	Qualifier	Result Qualifier	Result	Qualifier	Result	Qualifie
SW8260	N	1,1,1,2-Tetrachloroethane	1 UJ		1		0.002 U	0.0014			
SW8260	N	1,1,1-Trichloroethane	1 UJ		1		0.002 U	0.0014			
SW8260	N	1,1,2,2-Tetrachloroethane	0.5 UJ		0.5		0.001 U	0.00071			ļ
SW8260 SW8260	N N	1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloroethane	1 UJ 1 UJ		<u>1</u>		0.01 U 0.002 U	0.0071 0.0014			ļ
SW8260	N	1,1-Dichloroethane	1 UJ		. 1		0.002 U	0.0014			
SW8260	N	1,1-Dichloroethene	1 UJ		1		0.004 U	0.0028			
SW8260	N	1,1-Dichloropropene	2 UJ		2		0.002 U	0.0014			
SW8260	N	1,2,3-Trichlorobenzene	5 UJ			U	0.01 U	0.0071			
SW8260	N	1,2,3-Trichloropropane	2 UJ		2		0.002 U	0.0014			1
SW8260 SW8260	N N	1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	1 UJ 1 UJ		1	U	0.01 U 0.002 U	0.0071 0.0014			
SW8260	N	1,2-Dibromo-3-chloropropane	5 UJ			UJ	0.002 U	0.0014			
SW8260	N	1,2-Dibromoethane	0.5 UJ		0.5		0.001 U	0.00071			
SW8260	N	1,2-Dichlorobenzene	1 UJ		1	U	0.002 U	0.0014	U		
SW8260	N	1,2-Dichloroethane	1 UJ		1		0.002 U	0.0014			
SW8260	N	1,2-Dichloropropane	1 UJ		1		0.002 U	0.0014	U		1
SW8260 SW8260	N N	1,3,5-Trichlorobenzene 1,3,5-Trimethylbenzene	1 UJ 1 UJ		<u>1</u> 1		0.002 U 0.002 U	0.0014 0.0014			
SW8260	N	1,3-Dichlorobenzene	. 1 UJ			U	0.002 U	0.0014			
SW8260	N	1,3-Dichloropropane	0.5 UJ		0.5		0.001 U	0.00071			
SW8260	N	1,4-Dichlorobenzene	1 UJ		1	U	0.002 U	0.0014	·		
SW8260	N	1,4-Dioxane	R			R	R		IR		
SW8260	N	2,2-Dichloropropane	1 UJ		20	UJ	0.002 U 0.04 U	0.0014 0.028			
SW8260 SW8260	N N	2-Butanone 2-Chlorotoluene	20 UJ 1 UJ			Ü	0.002 U	0.028			-
SW8260	N	2-Hexanone	10 UJ		10		0.02 U	0.014			
SW8260	N	4-Chlorotoluene	1 UJ			U	0.002 U	0.0014			
SW8260	N	4-iso-Propyltoluene	1 UJ			U	0.002 U	0.0014			
SW8260	N ·	4-Methyl-2-pentanone	10 UJ		10		0.02 U	0.014			
SW8260	N	Acetone	50 UJ			IJ	0.006 U	0.071 0.0043			
SW8260 SW8260	N N	Acrylonitrile Benzene	5 UJ 1 UJ			UJ U	0.000 U	0.0043			
SW8260	N	Bromobenzene	1 UJ	-		Ü	0.002 UJ	0.0014			
SW8260	N	Bromochloromethane	1 UJ			Ū	0.002 U	0.0014			
SW8260	N	Bromodichloromethane	0.5 UJ		0.5		0.002 U	0.0014			
SW8260	N	Bromoform	5 UJ			UJ	0.002 U	0.0014			
SW8260 SW8260	N N	Bromomethane .	2 UJ 0.5 UJ		0.5	UJ	0.01 UJ 0.001 U	0.0071 0.00071			
SW8260	N	Butane, 2-methoxy-2-methyl- Carbon disulfide	3 UJ			U	0.001 U	0.00071			
SW8260	N	Carbon tetrachloride	1 UJ			Ū	0.01 U	0.0071			
SW8260	N	Chlorobenzene	1 UJ		1	U	0.002 U	0.0014	U		
SW8260		Chlorodibromomethane	5 UJ			U	0.001 U	0.00071			
SW8260		Chloroform	2 UJ	 -		U	0.02 U	0.014			1
SW8260 SW8260		Chloroform Chloromethane	2 UJ 2 UJ			U U	0.004 U 0.01 U	0.0028			1
SW8260		Cis-1,2-Dichloroethene	31 J			Ü	0.002 U	0.0071			1
SW8260		cis-1,3-Dichloropropene	0.5 UJ		0.5		0.01 U	0.0071			
SW8260		Dibromomethane	1 UJ			U	0.002 U	0.0014			
SW8260		Dichlorodifluoromethane	2 UJ			U	0.02 UJ	0.014			-
SW8260		Diethyl ether	2 UJ			U	0.02 U 0.001 U	0.014 0.00071			
SW8260 SW8260		Diisopropylether Ethyl benzene	0.5 UJ 1 UJ		0.5	U	0.001 U	0.00071			+
SW8260		Ethyl-t-Butyl Ether	0.5 UJ		0.5		0.002 U	0.00071			—
SW8260		Hexachlorobutadiene	0.5 UJ		0.5	υ	0.002 U	0.0014	U		
SW8260	N	Isopropylbenzene	1 UJ		1	U	0.01 U	0.0071			
SW8260		Methyl Tertbutyl Ether	1 UJ		1	U	0.004 U	0.0028			1
SW8260		Methylene chloride	R			R	0.02 U	0.014			+
SW8260 SW8260		n-Butylbenzene Naphthalene	1 UJ 5 UJ			UJ	0.01 UJ 0.02 UJ	0.0071 0.014			-
SW8260		Propylbenzene	1 UJ			U	0.02 U	0.0014			+
SW8260		sec-Butylbenzene	1 UJ			Ū	0.002 U	0.0014			1
SW8260	N	Styrene	1 UJ		1	U	0.01 U	0.0071	U		
SW8260 SW8260		t-Butyl alcohol	20 UJ		20	UJ	R		R		
	N	tert-Butylbenzene	1 UJ	- 1	1	U	0.01 U	0.0071	IU	l	1

TABLE 2 - RESULTS SUMMARY SDG 09K0085 DATA USABILITY SUMMARY REPORT

		Sample Delivery Group	09K00	85	09K00	85	09K00	85	09K00	85	09K00	85
		Location	GW-	6	QC		QC		SD-2	2	SD-2	2
		Sample Date	11/3/20	009	11/3/20	09	11/3/20	009	11/3/20	009	11/3/20	009
		Sample ID	ACGW006	0601XX	ACQT001X	XX01XX	ACQT002X	XX01XX	ACSD0020	0001XX	ACSD00200	0001XX
		Qc Code	FS		TB		TB		FS		FS	
		Units	ÜG/	L	UG/L		mg/K		mg/K		PERCE	NT
Analysis	Fraction	Param Name	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifie
	N	Tetrahydrofuran		UJ	10		0.01			R		
SW8260	N	Toluene		UJ	1		0.002		0.0014			
SW8260	N	trans-1,2-Dichloroethene	24	J	1	U	0.002		0.0014	U		
SW8260	N	trans-1,3-Dichloropropene	0.5	UJ	0.5	U	0.001	Ų	0.00071	U		
SW8260	N	trans-1,4-Dichloro-2-butene		UJ	2	U	0.004		0.0028	U .		
SW8260	N	Trichloroethene	1	UJ		U	0.002	U	0.0014	U		
SW8260	N	Trichlorofluoromethane	2	UJ	2	U	0.01	U	0.0071	U		
	N	Vinyl chloride		UJ	. 2	U	0.01		0.0071			
	N	Xylene, m/p		UJ	2	U	0.004		0.0028	U		
SW8260	N	Xylene, o	1	UJ	1	U	0.002	U	0.0014	U		
SW9060	N	Total Organic Carbon		l								
SM2540G	N	Percent Solids									75.9	
Notes:												
mg/kg = m	illigrams p	oer kilogram										
ug/L = mic												
		d Sample FD = Field Duplicate										
TB =	: Trip Blan	k EB = Equipment Rinse Blank										
		ectected at the reporting limit										
	J = esti	mated value R = rejected			,							
	D = res	ult from a dilution analysis										

TABLE 2 - RESULTS SUMMARY SDG 09K0085

DATA USABILITY SUMMARY REPORT NOVEMBER 2009 SOIL, SEDIMENT AND WATER SAMPLING PROGRAM ACE CLEANERS BROCKPORT, NY

		Sample Delivery Group	09K0085	09K0085	09K0085	09K0085
		Location	SD-3	SD-3	SW-2	SW-3
		Sample Date	11/3/2009	11/3/2009	11/3/2009	11/3/2009
		Sample ID	ACSD00300001XX	ACSD00300001XX	AC\$W00200001XX	ACSW00300001XX
		Qc Code	FS	FS	FS	FS
		Units	mg/Kg	PERCENT	UG/L	UG/L
		Param Name	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifi
W8260	N	1,1,1,2-Tetrachloroethane	0.0016 U		1 UJ	1 UJ
	N	1,1,1-Trichloroethane	0.0016 U		1 U	1 U
	N	1,1,2,2-Tetrachloroethane	0.0008 U		0.5 U	0.5 U
W8260	N	1,1,2-Trichloro-1,2,2-Trifluoroethane	U 800.0		1 U	1 U
SW8260	N	1,1,2-Trichloroethane	0.0016 U		1 U	1 U
W8260	N	1,1-Dichloroethane	0.0016 U		1 U	1 U
SW8260	N	1,1-Dichloroethene	0.0032 U		1 U	1 U
SW8260	N	1,1-Dichloropropene	0.0016 U		2 U	2 U
SW8260	N	1,2,3-Trichlorobenzene	0.008 UJ		5 U	5 U
SW8260	N	1,2,3-Trichloropropane	0.0016 U		2 U	2 U
SW8260	N	1,2,4-Trichlorobenzene	0.008 UJ		1 U	1 U
SW8260	N	1,2,4-Trimethylbenzene	0.0016 UJ		1 U	1 U
SW8260	N	1,2-Dibromo-3-chloropropane	0.0016 U		5 UJ	5 UJ
SW8260	N	1,2-Dibromoethane	0.0008 U		0.5 U	0.5 U
SW8260	N	1,2-Dichlorobenzene	0.0016 U		1 U	1 U
SW8260	N	1,2-Dichloroethane	0.0016 U		1 U	1 U
SW8260	N	1,2-Dichloropropane	0.0016 U		1 U	1 U
SW8260	N	1,3,5-Trichlorobenzene	0.0016 U		1 U	1 U
SW8260	N	1,3,5-Trimethylbenzene	0.0016 UJ		1 U	1 U
SW8260	N	1,3-Dichlorobenzene	0.0016 U		1 U	1 U
SW8260	N	1,3-Dichloropropane	0.0008 U		0.5 U	0.5 U
SW8260	N	1,4-Dichlorobenzene	0.0016 U		1 U	1 U
SW8260	N .	1,4-Dioxane	R		R ·	R
SW8260	N	2,2-Dichloropropane	0.0016 U		1 U	1 U
SW8260	N	2-Butanone	0.032 U		20 U	20 U
SW8260	N	2-Chlorotoluene	0.0016 U		1 U	1 U
SW8260	N	2-Hexanone	0.016 U		10 U	10 U
SW8260	N	4-Chlorotoluene	0.0016 U		· 1 U	1 U
SW8260	N	4-iso-Propyltoluene	0.0016 U	· · · · · · · · · · · · · · · · · · ·	1 U	1 U
SW8260	N	4-Methyl-2-pentanone	0.016 U		10 U	10 U
SW8260	N	Acetone	0.08 U		R	R
SW8260	N	Acrylonitrile	0.0048 U		5 U	5 U
SW8260	N	Benzene	0.0016 U		1 U	1 U
SW8260	N	Bromobenzene	0.0016 U		1 U	1 U
SW8260	N	Bromochloromethane	0.0016 U		1 U	1 U
SW8260	N	Bromodichloromethane	0.0016 U		0.5 U	0.5 U
SW8260	N	Bromoform	0.0016 U		5 UJ	5 UJ
SW8260	N	Bromomethane	0.008 UJ		5 UJ	5 UJ
SW8260	N	Butane, 2-methoxy-2-methyl-	0.0008 U		0.5 U	0.5 U
SW8260	N	Carbon disulfide	0.0048 U		3 U	3 U
SW8260	N	Carbon tetrachloride	0.008 U		1 UJ	1 UJ
SW8260	N	Chlorobenzene	0.0016 U		1 U	1 U
SW8260	N	Chlorodibromomethane	0.0008 U		0.5 U	0.5 U
	N	Chloroethane	0.016 U		2 U	2 U
	N	Chloroform	0.0032 U		2 U	2 U
SW8260		Chloromethane	0.008 U		5 U	5 U
	N	Cis-1,2-Dichloroethene	0.0016 U		5.4	3.4
SW8260	N	cis-1,3-Dichloropropene	0.008 U		0.5 U	0.5 U
SW8260	N	Dibromomethane	0.0016 U		1 U	1 U
SW8260	N	Dichlorodifluoromethane	0.016 UJ		2 UJ	2 UJ
SW8260	N	Diethyl ether	0.016 U		2 U	2 U
SW8260	N	Diisopropylether	0.0008 U		0.5 U	0.5 U
SW8260	N	Ethyl benzene	0.0016 U		1 U	1 U
SW8260	N	Ethyl-t-Butyl Ether	0.0008 U		0.5 U	0.5 U
SW8260	N	Hexachlorobutadiene	0.0016 U		0.5 U	0.5 U
SW8260	N	Isopropylbenzene	0.008 UJ		1 U	1 U
SW8260	N	Methyl Tertbutyl Ether	0.0032 U		. 1 U	1 U
SW8260	N	Methylene chloride	0.016 U		5 U	5 U
SW8260	N	n-Butylbenzene	0.008 UJ		1 U	1 U
SW8260	N	Naphthalene	0.016 UJ		5 U	5 U
SW8260	N	Propylbenzene	0.0016 UJ		1 0	1 U
SW8260	N	sec-Butylbenzene	0.0016 U		1 U	1 U
SW8260	N	Styrene	0.008 U		1 U	1 U
SW8260	N	t-Butyl alcohol	R		R	R
SW8260	N	tert-Butylbenzene	0.008 U		1 0	1 U
SW8260	N	Tetrachloroethene	0.0016 U	 	1 0	1.2

TABLE 2 - RESULTS SUMMARY

SDG 09K0085 DATA USABILITY SUMMARY REPORT

		Sample Delivery Group	09K00	85	09K00	85	09K00	85	09K00	85
		Location	SD-3	3	SD-3	3	SW-2	2	SW-	
		Sample Date	11/3/20	009	11/3/20	09	11/3/20	009	11/3/20	009
		Sample ID	ACSD00300	0001XX	ACSD00300	0001XX	ACSW0020	0001XX	ACSW0030	0001XX
		Qc Code	FS		FS		FS		FS	
		Units	mg/K		PERCE	.NT	UG/L		UG/l	
Analysis	Fraction	Param Name	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260	N	Tetrahydrofuran		R			10		10	
SW8260	N ·	Toluene	0.0016					U		U
SW8260	N	trans-1,2-Dichloroethene	0.0016					U		U
SW8260	N	trans-1,3-Dichloropropene	0.0008	U			0.5		0.5	
SW8260	N	trans-1,4-Dichloro-2-butene	0.0032					UJ		UJ
SW8260	N	Trichloroethene	0.0016					U		U
SW8260	N	Trichlorofluoromethane	0.008					U		Ü
SW8260	N	Vinyl chloride	0.008					UJ		UJ
	N	Xylene, m/p	0.0032					U		U
SW8260	N	Xylene, o	0.0016	U			1	U	1	U
SW9060	N	Total Organic Carbon	22650							
SM2540G	N	Percent Solids			81.6					
Notes:				-						
mg/kg = m	nilligrams p	oer kilogram								
ug/L = mic										
		d Sample FD = Field Duplicate								
		k EB = Equipment Rinse Blank								
Qualifiers:		ectected at the reporting limit								
		mated value R = rejected								
	D = res	sult from a dilution analysis				<u> </u>		<u> </u>		

Table 3 - TIC's SDG 09K0085 DATA USABILITY SUMMARY REPORT NOVEMBER 2009 SOIL, SEDIMENT AND WATER SAMPLING PROGRAM ACE CLEANERS BROCKPORT, NY

Sample Type Chemical Name
- 1
- 1
ļ
١.
١.
ļ

DATA USABILITY SUMMARY REPORT NOVEMBER 2009 SOIL, SEDIMENT AND WATER SAMPLING PROGRAM ACE CLEANERS BROCKPORT, NEW YORK

1.0 Introduction:

Soil, Sediment and Water Volatile Organic Analyses by SW846 Method 8260B Sediment Total Organic Carbon Analysis by SW846 Method 9060

Samples Collected: November 4, 2009

Samples Received at Con-Test Analytical Laboratory on November 5, 2009

Sample Delivery Group: 09K0130 Laboratory Reference Numbers:

Field Sample ID	Laboratory Sample ID	Matrix
ACSW00100001XX	09K0130-01	Water
ACSW00100001XD	09K0130-02	Water
ACSW00100001MS	09K0130-02 MS	Water
ACSW00100001MD	09K0130-02 MSD	Water
ACSD00100001XX	09K0130-03	Sediment
ACSD00100001XD	09K0130-04	Sediment
ACSD00100001MS	09K0130-04 MS	Sediment MS
ACSD00100001MD	09K0130-04 MSD	Sediment MSD
ACSD00200001XX	09K0130-05	Sediment TOC Only
ACGW0121201XD	09K0130-06 1X	Water
ACGW0121201XD	09K0130-06 100X	Water
ACGW0100601XX	09K0130-07	Water
ACGW0101201XX	09K0130-08	Water
ACGW0101201MS	09K0130-08 MS	Water
ACGW0101201MD	09K0130-08 MSD	Water
ACGW0111601XX	09K0130-09 10X	Water
ACQS001XXX01XX	09K0130-10	Equipment Rinse Blank
ACQS002XXX01XX	09K0130-11	Equipment Rinse Blank
ACGW0110601XX	09K0130-12 100X	Water
ACGW0120701XX	09K0130-13	Water
ACGW0121201XX	09K0130-14 1X	Water
ACGW0121201XX	09K0130-14 100X	Water
ACQT004XXX01XX	09K0130-16	Trip Blank Soil

Note: The laboratory's case narrative notes that "Due to log-in error, sample 09K0130-15 (water trip blank) was not analyzed for this batch."

Deliverables for the off-site laboratory analyses included a Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005) for SDG 09K0130. The analysis of sediment samples for total organic carbon (TOC) by SW846 Method 9060 was performed by First Light Power lab in West Springfield, Massachusetts. Results for TOC were not reported in a Category B deliverable and were not validated. TOC results are reported as received from the laboratory.

A project chemist review was completed based on NYSDEC Division of Environmental Remediation guidance for Data Usability Summary Reports (NYSDEC, 2002) for SDG 09K0130. Soil and water samples were reviewed using criteria in the US EPA Region II checklist, Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B (SOP # HW-24, Revision #2, October 2006). The following parameters were reviewed.

- * Data Completeness
- * GC/MS Tuning
 - Holding Times
 - Calibrations
 - Laboratory Blanks
 - Trip Blank
- * Surrogate Compound Recoveries
- * Internal Standard Recoveries
 - Matrix Spike
 - Laboratory Control Sample
- * Compound Identification
- * Compound Quantitation

2.0 DATA VALIDATION SUMMARY

It was not possible to correlate the quality control summary data with the raw data because the laboratory used two different file numbers which could not be correlated. The laboratory supplied an email which correlated the two file numbers. Original copies of laboratory logs showing the correlation were not provided.

Raw data for extraction logs were not received from the laboratory.

Holding Times

Sample ACQT004XXX01XX (09K0130-16), the soil trip blank was analyzed 7 days beyond the 14 day holding time.

Sample ACGW0121201XD (09K0130-06) had a pH greater than 2 and was analyzed 5 days past the 7 day holding time for unpreserved samples

The data for these samples were flagged with the "J" qualifier and are estimated values.

All other soil and preserved water samples were analyzed within 14 days of collection.

Tunes

No problems were detected with the tunes associated with the samples of this delivery group. The NYS DEC ASP FORM V was not included in the data package.

^{* -} Indicates that all criteria were met for this parameter.

Surrogate Compound Recoveries

All surrogate compound recoveries were within the 70% - 130% quality assurance limits.

Calibrations

The 11/12/2009 initial calibration (page 228, C110902) is associated with samples:

09K0130-02	Water
	Water
	Water
09K0130-09 10X	Water
09K0130-10	Water
09K0130-11	Water
09K0130-12 100X	Water
09K0130-13	Water
09K0130-14 1X	Water
09K0130-14 100X	Water
	09K0130-10 09K0130-11 09K0130-12 100X 09K0130-13 09K0130-14 1X

All of the %RSDs were less than 20% with the exceptions of methylene chloride (107%), bromoform (24%) 1,2,4-trichlorobenzene (34%), naphthalene (45%) and 1,2,3-trichlorobenzene (36%)

All of the relative response factors (rrfs) were greater than 0.05 with the exception of 1,4-dioxane (0.002).

All of the percent differences in the 11/13/2009 continuing calibration (C111307, page 531) associated with the following samples were less than 20% with the exceptions of methylene chloride (83%), 1,2-dibromo-3-chloropropane (34%) and naphthalene (30%).

ACGW0100601XX	09K0130-07	Water
ACGW0101201XX	09K0130-08	Water
ACGW0111601XX	09K0130-09 10X	Water
ACQS001XXX01XX	09K0130-10	Water
ACQS002XXX01XX	09K0130-11	Water
ACGW0110601XX	09K0130-12 100X	Water
ACGW0120701XX	09K0130-13	Water
ACGW0121201XX	09K0130-14 1X	Water

All of the percent differences in the 11/12/2009 continuing calibration (C110930, page 502) associated with the following samples were less than 20% with the exceptions of bromomethane (21%), methylene chloride (85%) and bromoform (22%).

ACSW00100001XD	09K0130-02	Water
ACGW0121201XX	09K0130-14 100X	Water

The 11/11/2009 initial calibration (B1111002) associated is associated with samples:

ACSW00100001XX	09K0130-01	Water
ACGW0121201XD	09K0130-06	Water
ACGW0121201XD	09K0130-06 100X	Water

All of the %RSDs were less than 20% with the exceptions acetone (48%), acrylonitrile (59%), methylene chloride (116%), bromoform (36%), 1,2-dibromo-3chloropropane (26%) and naphthalene (25%)

All of the relative response factors (rrfs) were greater than 0.05 with the exception of 1,4-dioxane (0.005).

All of the percent differences in the 11/16/2009 continuing calibration (B116002. page 594) associated with the following samples were less than 20% with the exceptions of dichlorodifluoromethane (39%), chloromethane (31%), bromomethane (49%), acetone (27%), acrylonitrile (24%), methylene chloride (59%), bromoform (72%), carbon disulfide (32%), 2,2-dichloropropane (26%), bromodichloromethane (25%), and bromoform (45%).

ACGVV0121201AD U3R0130-00 VVale	ACGW0121201XD	09K0130-06	Water
---------------------------------	---------------	------------	-------

The 11/9/2009 initial calibration (D1106004) is associated is associated with samples:

ACSD00100001XX	09K0130-03	Sediment
ACSD00100001XD	09K0130-04	Sediment
ACQT004XXX01XX	09K0130-16	Trip Blank Soil

All %RSDs were less than 20% with the exceptions of isopropylbenzene (34%), n-propylbenzene (26%), 1,3,5-trimethylbenzene (22%), 1,2,4-trimethylbenzene (25%), n-butylbenzene (32%), 1,2,4-trichlorobenzene (35%), naphthalene (53%) and 1,2,3-trichlorobenzene (36%).

All relative response factors were greater than 0.05 with the exceptions of t-butyl alcohol (0.035), tetrahydrofuran (0.033) and 1,4-dioxane (0.003)

All of the percent differences in the 11/9/2009 continuing calibration (D1109002. page 431) associated with the following samples were less than 20% with the exceptions of 1,4-dioxane (35%) and n-butylbenzene (25%).

ACSD00100001XX	09K0130-03	Sediment
ACSD00100001XD	09K0130-04	Sediment

All of the percent differences in the 11/9/2009 continuing calibration (D1109002, page 431) associated with the following samples were less than 20% with the exceptions of dichlorodifluoromethane (48%), chloromethane (22%), acetone (22%), t-butyl alcohol (23%), 2-butanone (25%) and 2-hexanone (31%).

ACQT004XXX01XX 09K0130-16 Trip Blank Soil Compounds with %RSDs or percent differences above 20% were flagged with the "J" qualifier and are estimated values.

Compounds with %RSDs or percent differences above 90% were flagged with the "J" qualifier when they were detected in a sample and flagged with the "R" qualifier and technically rejected when undetected.

Compounds with relative response factors less than 0.05 were flagged with the "J" qualifier when they were detected in a sample and flagged with the "R" qualifier and technically rejected when not detected.

Matrix Spike

Sample ACSD00100001XD (09K0130-04) was used as the sediment matrix spike and matrix spike duplicate. All recoveries and RPDs were within the required limits with the following exceptions:

Compound	MS % Rec	MSD % Rec.	RPD
Acetone	138%	142%	
Bromomethane	64%	66%	
Dichlorodifluoromethane	48%	49%	
Naphthalene	50%	56%	
1,2,3-Trichlorobenzene	62%	65%	
1,2,4-Trichlorobenzene	61%	64%	
Vinyl Chloride	58%	59%	

Sample ACGW0101201XX (09K0130-08) was used as the water matrix spike and matrix spike duplicate. All recoveries and RPDs were within the required limits with the following exceptions:

Compound	MS % Rec	MSD % Rec.	RPD
Carbon Disulfide	136%	140%	
1,2-Dibromo-3-chloropropane	65%	(ok)	
Dichlorodifluoromethane	55%	64%	
Diethyl ether	(ok)	134%	
Diisopropyl ether	(ok)	131%	
Methylene Chloride	58%	50%	
Naphthalene	143%	(ok)	56%
1,2,3-Trichlorobenzene	66%	67%	
1,1,2-Trichloro-1,2,2-trifluoroethane	133%	140%	

Sample ACSW00100001XD (09K0130-02) was used as the water matrix spike and matrix spike duplicate. All recoveries and RPDs were within the required limits with the following exceptions:

Compound	MS % Rec	MSD % Rec.	RPD
1,2-Dibromo-3-chloropropane	69%	(ok)	
Dichlorodifluoromethane	39%	42%	
Naphthalene	63%	(ok)	
1,2,3-Trichlorobenzene	60%	(ok)	
1,2,4-Trichlorobenzene	60%	(ok)	

1,1,1-Trichloroethane	160%	138%
Vinyl Chloride	58%	62%

The data for these compounds with low recoveries in water samples ACSW00100001XX (09K0130-01) and ACSW00100001XD (09K0130-02) were flagged with the "J" qualifier and are estimated values.

The data for compounds with low recoveries were flagged with the "J" qualifier and are estimated values.

Compounds with high recoveries were only qualified when they were detected in a sample since high recoveries do not affect undetected data.

Laboratory Control Sample

The laboratory's in-house QC limits noted on their summary forms were often wider than the 70% - 130% Region 2 limits. The data were validated on the basis of the Region 2 limits.

All of the laboratory control samples were within the 70% - 130% limits in the LCS pair B1111029 / B007003 analyzed on 11/11/2009 and associated with the analyses of the following samples with the exception of tert- butyl alcohol (66%),

ACSW00100001XX	09K0130-01	Water
ACGW0121201XD	09K0130-06 100X	Water

All of the laboratory control samples were within the 70% - 130% limits in the LCS pair D1109003 / B007006 analyzed on 11/09/2009 and associated with the analyses of the following samples with the exceptions of bromomethane (54%), dichlorodifluoromethane (47%), vinyl chloride (57%), tert-butyl ethyl ether (134% Dup only), trans-1,3-dichloropropene (139%) and 1,3,5-trichlorobenzene (132%).

ACSD00100001XX	09K0130-03	Sediment
ACSD00100001XD	09K0130-04	Sediment

All of the laboratory control samples were within the 70% - 130% limits in the LCS pair C111308 / B007019 analyzed on 11/13/2009 and associated with the analyses of the following samples with the exceptions of methylene chloride (33%), naphthalene (63%), 1,2,3-trichlorobenzene (67%), carbon disulfide (137% dup), 1,2-dibromo-3-chloropropane (69% Dup), 2,2-dichloropropane (68%) and 1,2,4-trichlorobenzene (59% dup). The RPD of methylene chloride was 54%.

ACGW0100601XX	09K0130-07	Water
ACGW0101201XX	09K0130-08	Water
ACGW0111601XX	09K0130-09 10X	Water
ACQS001XXX01XX	09K0130-10	Water
ACQS002XXX01XX	09K0130-11	Water
ACGW0110601XX	09K0130-12 100X	Water
ACGW0120701XX	09K0130-13	Water
ACGW0121201XX	09K0130-14 1X	Water

All of the laboratory control samples were within the 70% - 130% limits in the LCS pair C110931 / B007122 analyzed on 11/12/2009 and associated with the analyses of the following samples with the exceptions of methylene chloride (46%), naphthalene (66%), dichlorodifluoromethane (69.6% OK) and 1,4-dioxane (37%). The RPD of 1,4-dioxane was 84%.

ACSW00100001XD 09K0130-02 Water ACGW0121201XX 09K0130-14 100X Water

All of the laboratory control samples were within the 70% - 130% limits in the LCS pair B1116003 / B007292 analyzed on 11/16/2009 and associated with the analyses of the following samples with the exceptions of dichlorodifluoromethane (41%), hexachlorobutadiene (69%), naphthalene (61%), 1,2,4-trichlorobenzene (61%), vinyl chloride (61%), carbon disulfide (146% dup) and 1,1,2-trichloro-1,2,2-trifluoroethane (138%). The RPDs of acetone (29%), chloromethane (35%)dichlorodifluoromethane (67%), hexachlorobutadiene (46%), methylene chloride (45%), naphthalene (43%), 1,2,3-trichlorobenzene (29%), 1,2,4-trichlorobenzene (45%) and vinyl chloride (30%).

ACGW0121201XD

09K0130-06

Water

All of the laboratory control samples were within the 70% - 130% limits in the LCS pair D1124005/ B007772 analyzed on 11/24/2009 and associated with the analyses of the following samples with the exceptions of acetone (146%), bromomethane (56%), chloromethane (67%), dichlorodifluoromethane (20%) and vinyl chloride (50%).

ACQT004XXX01XX

09K0130-16

Trip Blank Soil

The data for the compounds associated with laboratory control samples with low recoveries were flagged with the "J" qualifier and are estimated values.

Compounds with high recoveries or RPDs were only qualified if they were detected in a sample since high recoveries do not affect undetected data.

Method Blanks

Low concentrations of naphthalene (6.6 ug/kg), 1,2,3-trichlorobenzene (3.1 ug/kg), and 1,2,4-trichlorobenzene (3.4 ug/kg) were detected in the soil method blank D1124005/ B007772 analyzed on 11/24/2009 which was associated with the soil trip blank, ACQT004XXX01XX.

All of these compounds were detected in the trip blank (ACQT004XXX01XX).

No other compounds were detected in the other method blanks.

Trip Blank

Low concentrations of naphthalene (6.3 ug/kg), 1,2,3-trichlorobenzene (2.8 ug/kg), and 1,2,4-trichlorobenzene (3.2 ug/kg) were detected in the soil trip blank ACQT004XXX01XX.

None of these compounds were detected in either of the two soil samples and the blank contamination does not affect the use of the data.

The "Sample Extraction Data" on page 54 (hard copy) seems to indicate that the trip blank was analyzed at a 2X dilution. The concentrations in the raw data (page 649 PDF) have to be multiplied by 2 to obtain the concentrations reported by the lab, but a dilution was not noted in the raw data.

Internal Standard Areas and Retention Times

The areas and retention times of all internal standards were within the required quality control limits.

Sample Results

Sample ACGW0121201XD (09K0130-06)

cis-1,2-Dichloroethene was detected in the undiluted analysis at a concentration of 122E ug/L. The reported concentration in the 100x dilution (96 ug/l) was less than the reporting limit. Professional judgment was used to report cis-1,2-dichloroethene from the undiluted analysis at 122E ug/L and qualify the result estimated "EJ".

Validated results are presented in Table 2.

Tentatively Identified Compounds (TICs)

Tentatively identified compounds (TICs) were reported by the laboratory. TICs reported in samples are presented in Table 3. Only samples that had TICs reported are included on Table 3. If a sample is not listed, no TICs were reported.

No other problems were found with the reported results of any of the samples in SDG09K0130.

References:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; July 2005.

New York State Department of Environmental Conservation (NYSDEC), 2002. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; Draft DER-10; Division of Environmental Remediation; December 2002.

Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B (SOP # HW-24, Revision #2, October 2006).

Validated by Nancy Potak

January 28, 2010

1796 Craftsbury Road PO Box 278

Greensboro, VT 05841

(802) 533-9206 npotak@vtlink.net

Reviewed by Tige Countingham (Mactec)
Trigs here 4/20/10

DATA USABILITY SUMMARY REPORT

	_			BROCKPORT, NY			
		Sample Delivery Group	09K0130	09K0130	09K0130	09K0130	09K0130
		Location	GW-10 11/4/2009	GW-10 11/4/2009	GW-11 11/4/2009	GW-11 11/4/2009	GW-12 11/4/2009
		Sample Date Sample ID	ACGW0101201XX	ACGW0100601XX	ACGW0111601XX	ACGW0110601XX	ACGW0121201XD
		Qc Code	FS	FS	FS	FS	FD
		Units	UG/L	UG/L	UG/L	UG/L	UG/L
Analysis	Fraction	Parameter	Result Qualifier				
SW8260	N	1,1,1,2-Tetrachloroethane	1 U	1 U	10 UD	100 UD	1 UJ
SW8260	N	1,1,1-Trichloroethane	1 U	1 U	10 UD	100 UD	1 UJ
SW8260	N	1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	5 UD	50 UD	0.5 UJ
SW8260 SW8260	N N	1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloroethane	1 U 1 U	1 U	10 UD 10 UD	100 UD 100 UD	1 UJ 1 UJ
SW8260	N	1,1-Dichloroethane	1 U	10	10 UD	100 UD	1 UJ
	N	1,1-Dichloroethene	1 U	1 0	10 UD	100 UD	1 UJ
	N	1,1-Dichloropropene	2 U	2 U	20 UD	200 UD	2 UJ
SW8260	N	1,2,3-Trichlorobenzene	5 UJ	5 UJ	50 UJD	500 UJD	5 UJ
SW8260_	N	1,2,3-Trichloropropane	2 U	2 U	20 UD	200 UD	2 UJ
SW8260	N	1,2,4-Trichlorobenzene	5 UJ	5 UJ .	50 UJD 10 UD	500 UJD 100 UD	1 UJ 1 UJ
SW8260 SW8260	N N	1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	1 U 5 UJ	1 U 5 UJ	50 UJD	500 UJD	5 UJ
	N	1,2-Dibromoethane	0.5 U	0.5 U	5 UD	50 UD	0.5 UJ
SW8260	N	1,2-Dichlorobenzene	1 U	1 U	10 UD	100 UD	1 UJ
SW8260	N	1,2-Dichloroethane	1 U	1 U	10 UD	100 UD	1 UJ
SW8260	N	1,2-Dichloropropane	1 U	1 U	10 UD	100 UD	1 UJ
SW8260	N	1,3,5-Trichlorobenzene	1 U	1 U	10 UD	100 UD	1 UJ
SW8260	N	1,3,5-Trimethylbenzene	1 U 1 U	1 U 1 U	10 UD 10 UD	100 UD 100 UD	1 UJ 1 UJ
SW8260 SW8260	N N	1,3-Dichlorobenzene 1,3-Dichloropropane	0.5 U	0.5 U	5 UD	50 UD	0.5 UJ
SW8260	N	1,4-Dichlorobenzene	1 U	1 U	10 UD	100 UD	1 UJ
SW8260	N	1,4-Dioxane	R	R	R	R	R
SW8260	N	2,2-Dichloropropane	1 UJ	1 UJ	10 UJD	100 UJD	1 UJ
SW8260	N	2-Butanone	20 U	20 U	200 UD	2000 UD	20 UJ
SW8260	N	2-Chlorotoluene	1 U	1 U	10 UD	100 UD	1 UJ 10 UJ
SW8260 SW8260	N .	2-Hexanone 4-Chlorotoluene	10 U 1 U	10 U	100 UD 10 UD	1000 UD 100 UD	1 UJ
SW8260	N	4-iso-Propyltoluene	1 U	1 U	10 UD	100 UD	1 UJ
SW8260	N	4-Methyl-2-pentanone	10 U	10 U	100 UD	1000 UD	10 UJ
SW8260	N	Acetone	50 U	50 U	500 U	5000 UD	50 UJ
SW8260	N	Acrylonitrile	5 U	5 U	50 UD	500 UD	5 UJ
SW8260	N	Benzene	1 U	1 U	10 UD	100 UD	1 UJ
SW8260 SW8260	N N	Bromobenzene Bromochloromethane	1 U	1 U 1 U	10 UD 10 UD	100 UD 100 UD	1 UJ 1 UJ
SW8260	N	Bromodichloromethane	1 U	1 0	10 UD	100 UD	0.5 UJ
SW8260	N .	Bromoform	5 UJ	5 UJ	50 UJD	500 UJD	5 UJ
SW8260	N .	Bromomethane	. 5 U	5 U	50 UD	500 UD	2 UJ
SW8260	N	Butane, 2-methoxy-2-methyl-	0.5 U	0.5 U	5 UD	50 UD	0.5 UJ
SW8260	N	Carbon disulfide	3 U	3 U	30 UD	300 UD	3 UJ
SW8260 SW8260	N N	Carbon tetrachloride Chlorobenzene	1 U 1 U	1 U 1 U	10 UD 10 UD	100 UD 100 UD	1 UJ 1 UJ
SW8260		Chlorodibromomethane	1 0	1 0	10 UD	100 UD	5 UJ
SW8260		Chloroethane	2 U	2 U	20 UD	200 UD	2 UJ
SW8260	N	Chloroform	2 U	2 U	20 UD	200 UD	2 UJ
SW8260		Chloromethane	2 U	2 U	20 UD	200 UD	2 UJ
SW8260	N	Cis-1,2-Dichloroethene	1 U	1 0	290 D	760 D 50 UD	96 JD
SW8260 SW8260	N N	cis-1,3-Dichloropropene Dibromomethane	0.5 U 1 U	0.5 U 1 U	5 UD 10 UD	100 UD	0.5 UJ 1 UJ
SW8260	N	Dichlorodifluoromethane	2 UJ	2 UJ	20 UJD	200 UJD	2 UJ
SW8260	N	Diethyl ether	2 U	2 U	20 UD	200 UD	2 UJ
SW8260	N	Diisopropylether	0.5 U	0.5 U	5 UD	50 UD	0.5 UJ
SW8260	N	Ethyl benzene	1 U	10	10 UD	100 UD	1 UJ
SW8260	N	Ethyl-t-Butyl Ether	0.5 U	0.5 U	5 UD	50 UD 50 UD	0.5 UJ 0.5 UJ
SW8260 SW8260	N	Hexachlorobutadiene Isopropylbenzene	0.5 U 1 U	0.5 U 1 U	5 UD 10 UD	100 UD	0.5 UJ 1 UJ
SW8260	N	Methyl Tertbutyl Ether	1 U	10	10 UD	100 UD	1 UJ
SW8260	N	Methylene chloride		R	R	R	R
SW8260	N	n-Butylbenzene	1 U	1 U	10 UD	100 UD	1 UJ
SW8260	N	Naphthalene	2 UJ	2 UJ	20 UJD	200 UJD	5 UJ
SW8260	N	Propylbenzene	1 U	1 U	10 UD	100 UD	1 UJ
SW8260	N	sec-Butylbenzene	1 U	1 U	10 UD	100 UD	1 UJ
SW8260 SW8260	N N	Styrene t-Butyl alcohol	1 U 50 U	1 U 50 U	10 UD 500 UD	100 UD 5000 UD	1 UJ 20 UJ
	[13		30 U	30 0			
SW8260	N	tert-Butylbenzene .	1 U	1 U	10 UD	100 UD	1 1 UJ

TABLE 2 - RESULTS SUMMARY

SDG 09K0130 DATA USABILITY SUMMARY REPORT

NOVEMBER 2009 SOIL, SEDIMENT AND WATER SAMPLING PROGRAM

ACE CLEANERS BROCKPORT, NY

		Sample Delivery Group	09K01	30	09K01	30	09K01	30	09K01	30	09K01	30	
		Location	GW-	GW-10		GW-10		GW-11		GW-11		GW-12	
		Sample Date	11/4/2	11/4/2009		009	11/4/2	009	11/4/20	009	11/4/2009		
		Sample ID	ACGW010	1201XX	ACGW0100	0601XX	ACGW011	1601XX	ACGW011	0601XX	ACGW012	1201XD	
		Qc Code	FS		FS		FS		FS		FD		
		Units	UG/		UG/L		UG/		UG/		UG/		
Analysis	Fraction	Parameter	Result	Qualifier		Qualifier		Qualifier	Result	Qualifier	Result	Qualifier	
	N	Tetrahydrofuran	10	U	10			UD	1000			UJ	
SW8260	N	Toluene		U	1			UD	100			UJ	
SW8260	N	trans-1,2-Dichloroethene		U	1			UD	100			UJ	
SW8260	N	trans-1,3-Dichloropropene	0.5	U	0.5			UD	50	UD	0.5	UJ	
SW8260	N	trans-1,4-Dichloro-2-butene	2	U	2			UD	200			UJ	
SW8260	N	Trichloroethene		U	1		98		190		21		
SW8260	N	Trichlorofluoromethane		U	2			UD	200	UD	2	UJ	
SW8260	N	Vinyl chloride		U	2		20		200			UJ	
SW8260	N	Xylene, m/p		U	2			UD	200			UJ	
SW8260	N	Xylene, o	1	U	1	U	10	UD	100	UD	1	UJ	
SW9060	N	Total Organic Carbon											
SM2540G	N	Percent Solids											
Notes:							•						
mg/kg = m	illigrams p	oer kilogram											
ug/L = mic					,								
		d Sample FD = Field Duplicate											
		EB = Equipment Rinse Blank						· .					
Qualifiers:		ectected at the reporting limit											
		mated value R = rejected											
	D = res	ult from a dilution analysis											

TABLE 2 - RESULTS SUMMARY

TABLE 2 - RESULTS SUMMARY SDG 09K0130 DATA USABILITY SUMMARY REPORT NOVEMBER 2009 SOIL, SEDIMENT AND WATER SAMPLING PROGRAM ACE CLEANERS BROCKPORT, NY

		BROCKPORT, NY								
		Sample Delivery Group	09K0130 GW-12	09K0130 GW-12	09K0130 QC	09K0130 QC	09K0130 QC			
		Location Sample Date	11/4/2009	11/4/2009	11/4/2009	11/5/2009	11/5/2009			
l		Sample ID	ACGW0121201XX		ACQT004XXX01XX	ACQS001XXX01XX	ACQS002XXX01XX			
		Qc Code	FS	FS	TB	EB	EB			
		Units	UG/L	UG/L	mg/Kg	UG/L	UG/L			
Analysis	Fraction	Parameter	Result Qualifi	er Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier			
		1,1,1,2-Tetrachloroethane	1 U	1 U	0.002 UJ	1 U	1 U			
	N	1,1,1-Trichloroethane	1 U	1 U	0.002 UJ	1 U	1 U			
	N	1,1,2,2-Tetrachioroethane	0.5 U	0.5 U	0.001 UJ	0.5 U	0.5 U			
	N	1,1,2-Trichloro-1,2,2-Trifluoroethane	1 U	1 U	0.01 UJ	1 U	1 U			
	N ·	1,1,2-Trichloroethane 1,1-Dichloroethane	1 U	1 U 1 U	0.002 UJ 0.002 UJ	1 U 1 U	1 U 1 U			
		1,1-Dichloroethene	1 U	10	0.002 UJ	1 U	1 U			
		1,1-Dichloropropene	2 U	2 U	0.002 UJ	2 U	2 U			
	N	1,2,3-Trichlorobenzene	5 UJ	5 UJ	0.0028 JB	5 UJ	5 UJ			
SW8260	N	1,2,3-Trichloropropane	2 U	2 U	0.002 UJ	2 U	2 U			
		1,2,4-Trichlorobenzene	5 UJ	5 UJ	0.0032 JB	5 UJ	5 UJ			
	N	1,2,4-Trimethylbenzene	1 U	1 U	0.002 UJ	1 U	1 U			
	N	1,2-Dibromo-3-chloropropane	5 UJ	5 UJ	0.002 UJ	5 UJ	5 UJ			
	N	1,2-Dibromoethane	0.5 U	0.5 U	0.001 UJ	0.5 U 1 U	0.5 U			
	N N	1,2-Dichlorobenzene 1,2-Dichloroethane	1 U 1 U	1 U	0.002 UJ 0.002 UJ	1 U	1 U 1 U			
SW8260		1,2-Dichloropropane	1 U	10	0.002 UJ	1 U	1 U			
SW8260	N	1,3,5-Trichlorobenzene	1 0	10	0.002 UJ	1 U	1 U			
SW8260		1,3,5-Trimethylbenzene	1 U	1 U	0.002 UJ	1 U	1 U			
SW8260	N	1,3-Dichlorobenzene	1 U	1 U	0.002 UJ	1 U	1 U			
SW8260		1,3-Dichloropropane	0.5 U	0.5 U	0.001 UJ	0.5 U	0.5 U			
SW8260		1,4-Dichlorobenzene	1 U	1 U	0.002 UJ	1 U	1 U			
		1,4-Dioxane	R	R	R	R	R			
SW8260		2,2-Dichloropropane	1 UJ	1 UJ	0.002 UJ	1 UJ	1 UJ			
SW8260 SW8260		2-Butanone 2-Chlorotoluene	20 U 1 U	20 U	0.04 UJ 0.002 UJ	20 U 1 U	20 U 1 U			
	N	2-Hexanone	10 U	10 U	0.002 UJ	10 U	10 U			
SW8260	N	4-Chlorotoluene	1 U	10	0.002 UJ	1 U	1 U			
SW8260	N	4-iso-Propyltoluene	1 U	1 U	0.002 UJ	1 U	1 U			
SW8260	N	4-Methyl-2-pentanone	10 UJ	10 U	0.02 UJ	10 U	10 U			
SW8260	N	Acetone	50 U	50 U	0.1 UJ	50 U	50 U			
	N	Acrylonitrile	5 U	5 U	0.006 UJ	5 U	5 U			
SW8260	N	Benzene	1 U	1 U	0.002 UJ	1 U	1 U			
SW8260	N	Bromobenzene	1 U	1 U	0.002 UJ	1 U	1 U			
	N	Bromochloromethane	1 U	1 U	0.002 UJ	1 U	1 U			
SW8260 SW8260	N N	Bromodichloromethane Bromoform	1 U 5 UJ	1 U	0.002 UJ 0.002 UJ	1 U 5 UJ	1 U 5 UJ			
SW8260	N	Bromomethane	5 U	5 UJ 5 U	0.002 UJ	5 U .	5 U			
SW8260	N ·	Butane, 2-methoxy-2-methyl-	0.5 U	0.5 U	0.001 UJ	0.5 U	0.5 U			
SW8260	N	Carbon disulfide	3 U	3 U	0.006 UJ	3 U	3 U			
SW8260	N	Carbon tetrachloride	1 U	1 U	0.002 UJ	1 U	1 U			
	N	Chlorobenzene	1 U	1 U	0.002 UJ	1 U	1 U			
SW8260	N	Chlorodibromomethane	1 U	1 U	0.001 UJ	1 U	1 U			
SW8260		Chloroethane	2 U	2 U	0.02 UJ	2 U	2 U			
SW8260		Chloroform	2 U	2 U	0.004 UJ	2 U	2 U			
SW8260		Chloromethane	2 U	2 U	0.01 UJ	2 U 1 U	2 U 1 U			
	N N	Cis-1,2-Dichloroethene cis-1,3-Dichloropropene	160 D 0.5 U	54 0.5 U	0.002 UJ 0.001 UJ	0.5 U	0.5 U			
	N	Dibromomethane	1 U	0.5 U	0.001 UJ	1 U	0.5 U			
	N	Dichlorodifluoromethane	2 UJ	2 UJ	0.02 UJ	2 UJ	2 UJ			
SW8260	N	Diethyl ether	2 U	2 U	0.02 UJ	2 U	2 U			
SW8260	N	Diisopropylether	0.5 U	0.5 U	0.001 UJ	0.5 U	0.5 U			
SW8260	N	Ethyl benzene	1 U	1 U	0.002 UJ	1 U	1 U			
SW8260		Ethyl-t-Butyl Ether	0.5 U	0.5 U	0.001 UJ	0.5 U	0.5 U			
	N	Hexachlorobutadiene	0.5 U	0.5 U	0.002 UJ	0.5 U	0.5 U			
		Isopropylbenzene	1 U	1 U	0.002 UJ	1 0	1 U			
		Methylone shloride	1 U	1 U	0.004 UJ	1 U	1 U R			
SW8260	N N	Methylene chloride n-Butylbenzene	1 U	1 U	0.02 UJ 0.002 UJ	1 U	1 U			
SW8260	N	Naphthalene	2 UJ	2 UJ	0.002 03 0.0063 JB	2 UJ	2 UJ			
SW8260	N	Propylbenzene	1 U	1 U	0.0003 JB	1 U	1 U			
SW8260	N	sec-Butylbenzene	1 U	1 0	0.002 UJ	1 U	1 U			
SW8260	N	Styrene	1 0	1 0	0.002 UJ	1 0	1 U			
SW8260	N	t-Butyl alcohol	50 U	50 U	R	50 U	50 U			
SW8260	N	tert-Butylbenzene	1 U	1 U	0.002 UJ	1 U	1 U			
SW8260	N	Tetrachloroethene	24	32	0.002 UJ	1 0	1 U			

DATA USABILITY SUMMARY REPORT

		Sample Delivery Group	ery Group 09K0130 09K0130		09K01	30	09K01	30	09K0130			
		Location	GW-	GW-12 11/4/2009		12	QC		QC		QC	;
		Sample Date	11/4/2			009	11/4/2	009	11/5/2	009	11/5/2	:009
		Sample ID	ACGW012	1201XX	ACGW012	0701XX	ACQT004X	XX01XX	ACQS001X	XX01XX	ACQS002X	CXX01XX
		Qc Code	FS		FS	··	TB		EB		E	5
		Units	UG/	L	UG/	L	mg/K	(g	UG/	L	UG	/L
Analysis	Fraction	Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifie
SW8260	N	Tetrahydrofuran	10	U	10	Ü	0.01	IJ	10	U	10	U
SW8260	N	Toluene	1	U	1	υ	0.002	UJ	1	U		U
SW8260	N	trans-1,2-Dichloroethene	1	U	1	U	0.002	UJ	1	U	1	U
SW8260	N	trans-1,3-Dichloropropene	0.5	U	0.5	Ū	0.001	UJ	0.5	U	0.5	U
SW8260	N	trans-1,4-Dichloro-2-butene	2	Ü	2	U	0.004	UJ	2	U	2	υ
SW8260	N	Trichloroethene	20		15		0.002	UJ .	1	U	1	U
SW8260	N	Trichlorofluoromethane	2	Ü	2	U	0.01	UJ	2	U	· 2	2 U
SW8260	N	Vinyl chloride	2	U	2.8		0.01			U	2	2 U ·
SW8260	N	Xylene, m/p		U	2	U	0.004	UJ	2	U		2 U
SW8260	N	Xylene, o	1	U	1	υ	0.002	UJ	1	U	1	U
SW9060	N	Total Organic Carbon										
SM2540G	N	Percent Solids										
Notes:												
mg/kg = n	nilligrams	oer kilogram								<u> </u>		
ug/L = mid												
		d Sample FD = Field Duplicate										
		EB = Equipment Rinse Blank										
Qualifiers:	U = not d	ectected at the reporting limit										
		mated value R = rejected										
	D = res	ult from a dilution analysis										

TABLE 2 - RESULTS SUMMARY

SDG 09K0130 DATA USABILITY SUMMARY REPORT

				BROCKPORT, NY			
		Sample Delivery Group	09K0130	09K0130	09K0130 SD-1	09K0130 SD-1	09K0130 SD-2
		Location Sample Date	SD-1 11/4/2009	SD-1 11/4/2009	11/4/2009	11/4/2009	11/3/2009
		Sample ID	ACSD001000012		ACSD00100001XX	ACSD00100001XX	ACSD00200001XX
		Qc Code	FD	FD	FS	F\$	FS
		Units	mg/Kg	PERCENT	mg/Kg	PERCENT	mg/Kg
		Parameter	Result Qual	lifier Result Qualifie	r Result Qualifier 0.0015 U	Result Qualifier	Result Qualifier
SW8260 SW8260	N N	1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	0.0015 U		0.0015 U		·
SW8260	N	1,1,2,2-Tetrachloroethane	0.00074 U		0.00075 U		
SW8260	N	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.0074 U		0.0075 U		
SW8260	N	1,1,2-Trichloroethane	0.0015 U		0.0015 U		
SW8260	N	1,1-Dichloroethane	0.0015 U		0.0015 U 0.003 U		
SW8260 SW8260	N N	1,1-Dichloroethene 1,1-Dichloropropene	0.003 U 0.0015 U		0.003 U		
SW8260	N	1,2,3-Trichlorobenzene	0.0074 UJ		0.0075 UJ		
SW8260	N	1,2,3-Trichloropropane	0.0015 U		0.0015 U		
SW8260	N	1,2,4-Trichlorobenzene	0.0074 UJ		0.0075 UJ		
SW8260	N	1,2,4-Trimethylbenzene	0.0015 UJ		0.0015 UJ		
SW8260 SW8260	N N	1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	0.0015 U 0.00074 U		0.0015 U 0.00075 U		
SW8260	N ·	1,2-Dibromoetriane	0.00074 U		0.00075 U		
SW8260	N	1,2-Dichloroethane	0.0015 U		0.0015 U		
SW8260	N	1,2-Dichloropropane	0.0015 U		0.0015 U		
SW8260	N	1,3,5-Trichlorobenzene	0.0015 U		0.0015 U		
SW8260 SW8260	N N	1,3,5-Trimethylbenzene	0.0015 UJ 0.0015 U		0.0015 UJ 0.0015 U		· · · · · · · · · · · · · · · · · · ·
SW8260	N	1,3-Dichlorobenzene 1,3-Dichloropropane	0.0015 U		0.0015 U		
SW8260	N	1,4-Dichlorobenzene	0.0015 U		0.0015 U		
SW8260	N	1,4-Dioxane	R		R		
SW8260	N	2,2-Dichloropropane	0.0015 U		0.0015 U		
SW8260	N	2-Butanone	0.03 U		0.03 U		
SW8260 SW8260	N N	2-Chlorotoluene 2-Hexanone	0.0015 U 0.074 U		0.0015 U 0.075 U		
SW8260	N	4-Chiorotoluene	0.0015 U		0.0015 U		
SW8260	N	4-iso-Propyltoluene	0.0015 U		0.0015 U		
SW8260	N	4-Methyl-2-pentanone	0.074 U		0.075 U		
SW8260	N	Acetone	0.074 U		0.075 U		
SW8260 SW8260	N N	Acrylonitrile Benzene	0.0045 U 0.0015 U		0.0045 U 0.0015 U		
SW8260	N	Bromobenzene	0.0015 U		0.0015 U		
SW8260	N	Bromochloromethane	0.0015 U		0.0015 U		
SW8260	N	Bromodichloromethane	0.0015 U		0.0015 U		
SW8260	N	Bromoform	0.0015 U		0.0015 U	·	
SW8260 SW8260	N N	Bromomethane Butane, 2-methoxy-2-methyl-	0.0074 UJ 0.00074 U		0.0075 UJ 0.00075 U		
SW8260	N	Carbon disulfide	0.00074 U		0.00075 U		
SW8260	N	Carbon tetrachloride	0.0074 U		0.0075 U		
SW8260	N	Chlorobenzene	0.0015 U		0.0015 U		
SW8260		Chlorodibromomethane	0.00074 U		0.00075 U		
SW8260 SW8260		Chloroform	0.015 U 0.003 U		0.015 U 0.003 U		
SW8260_ SW8260		Chloroform Chloromethane	0.003 U		0.003 U		
SW8260	N	Cis-1,2-Dichloroethene	0.0074 U		0.0015 U		
SW8260	N .	cis-1,3-Dichloropropene	0.0074 U		0.0075 U		
SW8260	N	Dibromomethane	0.0015 U		0.0015 U		
SW8260		Dichlorodifluoromethane	0.015 UJ		0.015 UJ		
SW8260 SW8260		Diethyl ether Diisopropylether	0.015 U 0.00074 U		0.015 U 0.00075 U		
SW8260		Ethyl benzene	0.00074 U		0.00075 U		
SW8260		Ethyl-t-Butyl Ether	0.00074 U		0.00075 U		
SW8260	N	Hexachlorobutadiene	0.0015 U		0.0015 U		
SW8260	N	Isopropylbenzene	0.0074 UJ		0.0075 UJ		
SW8260		Methyl Tertbutyl Ether	0.003 U		0.003 U		
SW8260 SW8260		Methylene chloride n-Butylbenzene	0.015 U 0.0074 UJ		0.015 U 0.0075 UJ		
SW8260		Naphthalene	0.0074 03 0.015 UJ		0.0075 UJ		
SW8260		Propylbenzene	0.0015 U		0.0015 U		
SW8260	N	sec-Butylbenzene	0.0015 U		0.0015 U		
SW8260		Styrene	0.0074 U		0.0075 U		
SW8260		t-Butyl alcohol	0.0074 H		0.0075 U		
SW8260 SW8260		tert-Butylbenzene Tetrachloroethene	0.0074 U 0.0015 U		0.0075 U 0.0015 U		
10000A	TIN	Trenaciliordeniene	U 0.00 15 U		1 0.0010 0	<u> </u>	<u> </u>

TABLE 2 - RESULTS SUMMARY SDG 09K0130 DATA USABILITY SUMMARY REPORT

Sample Delivery Group	09K0130	22112122
		09K0130
Location SD-1 SD-1 SD-1	SD-1	SD-2
Sample Date 11/4/2009 11/4/2009 11/4/2009	11/4/2009	11/3/2009
Sample ID ACSD00100001XD ACSD00100001XD ACSD00100001XX A	ACSD00100001XX	ACSD00200001XX
Qc Code FD FD FS	FS	FS
. Units mg/Kg PERCENT mg/Kg	PERCENT	mg/Kg
Analysis Fraction Parameter Result Qualifier Result Qualifier Result Qualifier	Result Qualifier	Result Qualifier
SW8260 N Tetrahydrofuran R R		
SW8260 N Toluene 0.0015 U 0.0015 U 0.0015 U		
SW8260 N trans-1,2-Dichloroethene 0.0015 U 0.0015 U 0.0015 U		
SW8260 N trans-1,3-Dichloropropene 0.00074 U 0.00075 U		
SW8260 N trans-1,4-Dichloro-2-butene 0.003 U 0.003 U 0.003 U		
SW8260 N Trichloroethene 0.0015 U 0.0015 U		
SW8260 N Trichlorofluoromethane 0.0074 U 0.0075 U		
SW8260 N Vinyl chloride 0.0074 UJ 0.0075 UJ		
SW8260 N Xylene, m/p 0.003 U 0.003 U 0.003 U		
SW8260 N Xylene, o 0.0015 U 0.0015 U 0.0015 U		-
SW9060 N Total Organic Carbon 36200 27110		24770
SM2540G N Percent Solids 80.9	74.1	
Notes:		
mg/kg = milligrams per kilogram		
ug/L = micrograms per liter		
QC Code: FS = Field Sample FD = Field Duplicate		
TB = Trip Blank EB = Equipment Rinse Blank		
Qualifiers: U = not dectected at the reporting limit		
J = estimated value R = rejected		
D = result from a dilution analysis		

TABLE 2 - RESULTS SUMMARY SDG 09K0130 DATA USABILITY SUMMARY REPORT NOVEMBER 2009 SOIL, SEDIMENT AND WATER SAMPLING PROGRAM ACE CLEANERS

BROCKPORT, NY

					BROCKPORT	, , , ,
		Sample Delivery Group	09K01		09K01	
		Location	SW-		SW-	
		Sample Date	11/4/20		11/4/20	
			ACSW0010	0001XD	ACSW0010	0001XX
		Qc Code Units	FD UG/I		FS UG/I	
Analysis	Eraction	Parameter	Result	- Qualifier	Result	Qualifie
SW8260	N	1,1,1,2-Tetrachloroethane		U	1	
SW8260	N	1,1,1-Trichloroethane		Ü		
SW8260	N	1,1,2,2-Tetrachloroethane		Ū	0.5	
SW8260	N	1,1,2-Trichloro-1,2,2-Trifluoroethane		U	1	U
SW8260	N	1,1,2-Trichloroethane	1	U	1	U
SW8260	N	1,1-Dichloroethane		U	1	U
SW8260	N	1,1-Dichloroethene		Ų		
SW8260	N	1,1-Dichloropropene		U		Ü
SW8260	N	1,2,3-Trichlorobenzene		UJ		UJ
SW8260	N	1,2,3-Trichloropropane		U		U
SW8260	N	1,2,4-Trichlorobenzene		UJ		
SW8260	N	1,2,4-Trimethylbenzene		U	1	UJ
SW8260 SW8260	N N	1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	0.5	UJ	0.5	
SW8260	N	1,2-Dibromoetriane 1,2-Dichlorobenzene		U		U
SW8260	N N	1,2-Dichloroethane		Ü		U
SW8260	N	1,2-Dichloropropane	1			Ü
SW8260	N	1,3,5-Trichlorobenzene		Ŭ	1	U
SW8260	N	1,3,5-Trimethylbenzene		Ü	. 1	U
SW8260	N	1,3-Dichlorobenzene	1	U	. 1	U
SW8260	N	1,3-Dichloropropane	0.5	U	0.5	U
SW8260	N	1,4-Dichlorobenzene	1	U	1	U
SW8260	N	1,4-Dioxane		R		R
SW8260	N .	2,2-Dichloropropane	1	U	1	U
SW8260	N	2-Butanone		U	20	
SW8260	N	2-Chlorotoluene	1	U		U
SW8260	N N	2-Hexanone	10	U	10	U
SW8260 SW8260	N N	4-Chlorotoluene 4-iso-Propyltoluene		U		U
SW8260	N	4-Methyl-2-pentanone	10		10	
SW8260	N	Acetone	50			UJ
SW8260	N	Acrylonitrile		Ü		UJ
SW8260	N	Benzene		U		U
SW8260	N	Bromobenzene		U	1	U
SW8260	N	Bromochloromethane		U	1	U .
SW8260	N	Bromodichloromethane	0.5		0.5	
SW8260	N	Bromoform		UJ		UJ
SW8260	N	Bromomethane		UJ ,		UJ
SW8260	N	Butane, 2-methoxy-2-methyl-	0.5		0.5	
SW8260 SW8260	N N	Carbon disulfide Carbon tetrachloride		U		U
SW8260	N	Chlorobenzene		U		U
	N	Chlorodibromomethane	0.5		0.5	
SW8260	N	Chloroethane	2.5	Ū	2	Ü
SW8260	N	Chloroform	2	U	2	U
SW8260	N	Chloromethane	2	Ū	2	Ü
SW8260	N	Cis-1,2-Dichloroethene	1	U	1	U
SW8260	N	cis-1,3-Dichloropropene	0.5	U	0.5	U
SW8260	N	Dibromomethane	1	U	1	U
SW8260	N	Dichlorodifluoromethane		UJ		UJ
SW8260	N.	Diethyl ether	2	U	2	U
SW8260	N	Diisopropylether	0.5		0.5	U
SW8260 SW8260	N N	Ethyl benzene Ethyl-t-Butyl Ether	0.5	U	0.5	
SW8260	N	Hexachlorobutadiene	0.5	11	0.5	
SW8260	N	Isopropylbenzene	0.5	U		U
SW8260	N	Methyl Tertbutyl Ether	1	Ü		Ü
SW8260	N	Methylene chloride	<u> </u>	R	<u>'</u>	R
SW8260	N	n-Butylbenzene	1	Ū.	1	Ü
SW8260	N	Naphthalene	2	UJ	2	UJ
SW8260	N	Propylbenzene	1	U	1	U
	N	sec-Butylbenzene	1	U	1	U
SW8260		0.00	1	U	1	U
SW8260	N	Styrene				
	N N	t-Butyl alcohol tert-Butylbenzene	20	U U	20	UJ

TABLE 2 - RESULTS SUMMARY SDG 09K0130 DATA USABILITY SUMMARY REPOR

DATA USABILITY SUMMARY REPORT NOVEMBER 2009 SOIL, SEDIMENT AND WATER SAMPLING PROGRAM ACE CLEANERS

ACE CLEANERS BROCKPORT, NY

		Sample Delivery Group	09K01	30	09K01	30
		Location	SW-		SW-	
		Sample Date			. 11/4/20	009
		Sample ID			ACSW0010	0001XX
		Qc Code	FD		FS	
		Units	UG/		UG/	Ĺ
Analysis	Fraction	Parameter	Result	Qualifier	Result	Qualifier
SW8260	N	Tetrahydrofuran	10	U	10	U
SW8260	N	Toluene	1	U	1	U
SW8260	N	trans-1,2-Dichloroethene	1	U	1	U
SW8260	N	trans-1,3-Dichloropropene	0.5	U	0.5	U
SW8260	N	trans-1,4-Dichloro-2-butene	2	U	2	U
SW8260	N	Trichloroethene	1	U	1	U
SW8260	N	Trichlorofluoromethane	2	U ,	2	U
SW8260	N	Vinyl chloride	2	UJ	. 2	UJ
SW8260	N	Xylene, m/p	2	U	2	U
SW8260	N	Xylene, o	1	U	1	υ
SW9060	N	Total Organic Carbon ·				
SM2540G	N	Percent Solids				
Notes:						
mg/kg = m	nilligrams p	oer kilogram				
	rograms p					
		d Sample FD = Field Duplicate				
		EB = Equipment Rinse Blank				
Qualifiers:		ectected at the reporting limit				
		mated value R = rejected				
	D = res	ult from a dilution analysis				·

Table 3 - TIC's SDG 09K0130 DATA USABILITY SUMMARY REPORT

09K0130 ACGW0121201XD 11/4/2009	SDG Field Sample ID Sample Date
11/4/2009 09K0130-06	Sample Date Lab Sample ID
FD	Sample Type
Propene	Sample Type Chemical Name Concentrat
6	Concentration
μg/L	Units
JN	Qualifier

DATA USABILITY SUMMARY REPORT NOVEMBER 2009 SOIL AND WATER SAMPLING PROGRAM ACE CLEANERS SITE Brockport, New York

1.0 introduction:

Water Volatile Organic Analyses by SW846 Method 8260B

Samples Collected: November 2, 2009

Samples Received at Con-Test Laboratory on November 5, 2009

Sample Delivery Group: 09K0152 Laboratory Reference Numbers:

Laboratory Sample ID
09K0152-01
09K0152-02
09K0152-02 MS
09K0152-02 MSD
09K0152-03
09K0152-04 50X
09K0152-05 10X
09K0152-06
09K0152-06 100X
09K0152-07
09K0152-08
09K0152-08 100X
09K0152-09
09K0152-09 100X
09K0152-10 10X
09K0152-10 100X

Deliverables for the off-site laboratory analyses included a Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005) for SDG 09K0152.

A project chemist review was completed based on NYSDEC Division of Environmental Remediation guidance for Data Usability Summary Reports (NYSDEC, 2002) for SDG09K0085. Soil and water samples were reviewed using criteria in the US EPA Region II checklist, Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B (SOP # HW-24, Revision #2, October 2006). The following parameters were reviewed.

- * Data Completeness
- * GC/MS Tuning
- * Holding Times
 - Calibrations
- * Laboratory Blanks
 - Trip Blank
- * Surrogate Compound Recoveries
- * Internal Standard Recoveries
 - Matrix Spike
 - Laboratory Control Sample
- * Compound Identification
- * Compound Quantitation
- * Indicates that all criteria were met for this parameter.

2.0 DATA VALIDATION SUMMARY

Spectra illegible

It was not possible to correlate the quality control summary data with the raw data because the laboratory used two different file numbers which could not be correlated. The laboratory supplied an email which correlated the two file numbers. Original copies of laboratory logs showing the correlation were not provided.

Raw data for extraction logs were not received from the laboratory.

Holding Times

The laboratory's case narrative notes that the pH of several samples were greater than 2, which is the required limit for the 14 day holding time.

The following samples had a pH greater than 2 and were analyzed 7 days beyond the 7 day holding time for non-preserved water samples.

ACGW0091201XX 09K0152-08 ACGW0090601XX 09K0152-09 ACGW0141201XX 10X 09K0152-10 10X

The data for the 100X dilution of sample ACGW0141201XX 10X (09K0152-10) were analyzed 3 days beyond the 7 day holding time.

The data for these compounds were flagged with the "J" qualifier and are estimated values.

All other preserved water samples were analyzed within 14 days of collection.

Tunes

No problems were detected with the tunes associated with the samples of this delivery group. The NYS DEC ASP FORM V was not included in the data package.

Surrogate Compound Recoveries

All surrogate compound recoveries were within the 70% - 130% quality assurance limits.

Calibrations

The 11/12/2009 initial calibration (C110902) is associated with samples:

ACGW0011601XX	09K0152-01	11/12
ACGW0010801XX	09K0152-02	11/12
ACGW0020801XX	09K0152-03	11/12
ACGW0021601XX 50X	09K0152-04 50X	11/12
ACGW0071001XX 10X	09K0152-05 10X	11/12
ACGW0070501XX	09K0152-06	11/12
ACGW0070501XX 100X	09K0152-06 100X	11/12
ACGW0080601XX	09K0152-07	11/13
ACGW0141201XX 100X	09K0152-10 100X	11/12

All of the %RSDs were less than 20% with the exceptions of methylene chloride (107%), bromoform (24%) 1,2,4-trichlorobenzene (34%), naphthalene (45%) and 1,2,3-trichlorobenzene (36%).

All of the relative response factors (rrfs) were greater than 0.05 with the exception of 1,4-dioxane (0.002).

All of the percent differences in the 11/13/2009 continuing calibration (C111307) associated with the following samples were less than 20% with the exceptions of methylene chloride (83%), 1,2-dibromo-3-chloropropane (34%) and naphthalene (30%).

ACGW0011601XX	09K0152-01	11/12
ACGW0010801XX	09K0152-02	11/12
ACGW0020801XX	09K0152-03	11/12
ACGW0021601XX 50X	09K0152-04 50X	11/12
ACGW0071001XX 10X	09K0152-05 10X	11/12
ACGW0070501XX	09K0152-06	11/12
ACGW0080601XX	09K0152-07	11/13

All of the percent differences in the 11/12/2009 continuing calibration (C110930, page 502) associated with the following samples were less than 20% with the exceptions of bromomethane (21%), methylene chloride (85%) and bromoform (22%).

ACGW0070501XX 100X	09K0152-06 100X	11/12
ACGW0141201XX 100X	09K0152-10 100X	11/12

The 11/11/2009 initial calibration (B1111002) associated is associated with samples:

ACGW0091201XX	09K0152-08	11/16
ACGW0090601XX	09K0152-09	11/16
ACGW0141201XX 10X	09K0152-10 10X	11/16

All of the %RSDs were less than 20% with the exceptions acetone (48%), acrylonitrile (59%), methylene chloride (116%), bromoform (36%), 1,2-dibromo-3-chloropropane (26%) and naphthalene (25%).

All of the relative response factors (rrfs) were greater than 0.05 with the exception of 1,4-dioxane (0.005).

All of the percent differences in the 11/16/2009 continuing calibration (B116002) associated with the above samples were less than 20% with the exceptions of dichlorodifluoromethane (39%), chloromethane (31%), bromomethane (49%), acetone (27%), acrylonitrile (24%), methylene chloride (72%), carbon disulfide (32%), 2,2-dichloropropane (26%), bromodichloromethane (25%), and bromoform (45%).

Compounds with %RSDs or percent differences above 20% were flagged with the "J" qualifier and are estimated values.

Compounds with %RSDs or percent differences above 90% were flagged with the "J" qualifier when they were detected in a sample and flagged with the "R" qualifier and technically rejected when undetected.

Compounds with relative response factors less than 0.05 were flagged with the "J" qualifier when they were detected in a sample and flagged with the "R" qualifier and technically rejected when undetected.

Matrix Spike

Sample ACGW0010801XX (09K0152-02)) was used as the water matrix spike and matrix spike duplicate. All recoveries and RPDs were within the required limits with the following exceptions:

Compound	MS % Rec	MSD % Rec.	RPD
Carbon Disulfide	(ok)	135%	
1,2-Dibromo-3-chloropropane	66%	64%	
Dichlorodifluoromethane	52%	51%	
Methylene Chloride	50%	57%	
Naphthalene	60%	55%	
Tetrachloroethylene	146%	132%	
1,2,3-Trichlorobenzene	56%	58%	
1,2,4-Trichlorobenzene	61%	63%	
Trichloroethylene	144%	(ok)	

The data for these compounds with low recoveries were flagged with the "J" qualifier and are estimated values.

Compounds with high recoveries were only qualified when they were detected in a sample since high recoveries do not affect undetected data.

Laboratory Control Sample

The laboratory's in-house QC limits noted on their summary forms were often wider than the 70% - 130% Region 2 limits. The data were validated on the basis of the Region 2 limits.

All of the laboratory control samples were within the 70% - 130% limits in the LCS pair C111308 / B007019 analyzed on 11/13/2009 and associated with the analyses of the following samples with the exceptions of methylene chloride (33%), naphthalene (63%), 1,2,3-trichlorobenzene (67%), carbon disulfide (137% dup), 1,2-dibromo-3-chloropropane (69% Dup), 2,2-dichloropropane (68%) and 1,2,4-trichlorobenzene (59% dup). The RPD of methylene chloride was 54%.

09K0152-01	11/12
09K0152-02	11/12
09K0152-03	11/12
09K0152-04 50X	11/12
09K0152-05 10X	11/12
09K0152-06	11/12
09K0152-07	11/13
	09K0152-02 09K0152-03 09K0152-04 50X 09K0152-05 10X

All of the laboratory control samples were within the 70% - 130% limits in the LCS pair C110931 / B007122 analyzed on 11/12/2009 and associated with the analyses of the following samples with the exceptions of methylene chloride (46%), naphthalene (66%), dichlorodifluoromethane (69.6% OK) and 1,4-dioxane (37%). The RPD of 1,4-dioxane was 84%.

ACGW0070501XX 100X	09K0152-06 100X	11/12
ACGW0141201XX 100X	09K0152-10 100X	11/12

All of the laboratory control samples were within the 70% - 130% limits in the LCS pair B1116003 / B007292 analyzed on 11/16/2009 and associated with the analyses of the following samples with the exceptions of dichlorodifluoromethane (41%), hexachlorobutadiene (69%), naphthalene (61%), 1,2,4-trichlorobenzene (61%), vinyl chloride (61%), carbon disulfide (146% dup) and 1,1,2-trichloro-1,2,2-trifluoroethane (138%). The RPDs of acetone (25%), chloromethane (35%)dichlorodifluoromethane (67%), hexachlorobutadiene (46%), methylene chloride (45%), naphthalene (43%), 1,2,3-trichlorobenzene (29%), 1,2,4-trichlorobenzene (45%) and vinyl chloride (30%).

ACGW0091201XX	09K0152-08	11/16
ACGW0090601XX	09K0152-09	11/16
ACGW0141201XX 10X	09K0152-10 10X	11/16

The data for the compounds associated with laboratory control samples with low recoveries were flagged with the "J" qualifier and are estimated values.

Compounds with high recoveries or RPDs were only qualified if they were detected in a sample since high recoveries do not affect undetected data.

Method Blanks

No compounds were detected in the method blanks.

Trip Blank

Trip blanks were not analyzed with this sample delivery group.

Internal Standard Areas and Retention Times

The areas and retention times of all internal standards were within the required quality control limits.

Sample Results

Samples ACGW0091201XX (09K0152-08) and ACGW0090601XX (09K0152-09)

The data summary for these samples (page 28) lists each compound twice – the first at the 1X dilution, the second at the 100X dilution. Only the data from the 1X dilution was used in the final data set. No compounds were detected in the sample.

Sample ACGW0141201XX 10X (09K0152-10 10X)

The data summary for this sample (page 38) lists each compound twice – the first at the 10X dilution, the second at the 100X dilution. The 100X dilution was not needed. Only the data from the 10X dilution was used in the final data set.

Validated results are presented in Table 2.

Tentatively Identified Compounds (TICs)

Tentatively identified compounds (TICs) were reported by the laboratory. TICs reported in samples are presented in Table 3. Only samples that had TICs reported are included on Table 3. If a sample is not listed, no TICs were reported.

No other problems were found with the reported results of any of the samples in SDG09K0152.

References:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; July 2005.

New York State Department of Environmental Conservation (NYSDEC), 2002. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; Draft DER-10; Division of Environmental Remediation; December 2002.

Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B (SOP # HW-24, Revision #2, October 2006).

Validated by Nancy Potak

January 28, 2010

1796 Craftsbury Road PO Box 278

Sto 8 Juno A

Greensboro, VT 05841

(802) 533-9206 npotak@vtlink.net

Reviewed by Tige Conningham (Mactec)

DATA USABILITY SUMMARY REPORT

					ROCKPO	/K1, N1							
		Sample Del		09K01		09K0		09K0		09K0		09K0	
			Location	GW-		GW 11/2/2		GW- 11/2/2		GW 11/2/2		GW 11/2/2	
			Sample Date Sample ID	11/2/2 ACGW001		ACGW00		ACGW014		ACGW002		ACGW002	
			Qc Code	FS		FS		FS		FS		F8	
Analysis F	raction	Parameter	Units		Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifie
SW8260 N		1,1,1,2-Tetrachloroethane	UG/L	1	U		U		UJD		UD		U
SW8260 N		1,1,1-Trichloroethane	UG/L	1			U		UJD		UD		U
SW8260 N		1,1,2,2-Tetrachloroethane	UG/L	0.5		0.5			UJD		UD	0.5	
SW8260 N		1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L UG/L	1	`		U U		UJD		UD		U
SW8260 N		1,1,2-Trichloroethane	UG/L				U		UJD		UD		Ü
SW8260 N		1,1-Dichloroethane	UG/L	1			Ü		UJD		UD		Ū
SW8260 N	<u>, </u>	1,1-Dichloropropene	UG/L	2			U		UJD	100	UD		U
SW8260 N	1	1,2,3-Trichlorobenzene	UG/L		UJ		UJ		UJD		UJD		UJ
SW8260 N		1,2,3-Trichloropropane	UG/L	2			U		UJD		UD		U
SW8260 N		1,2,4-Trichlorobenzene	UG/L		UJ		บ บ		UJD		UD		UJ
SW8260 N		1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	UG/L UG/L	1	UJ .		UJ		UJD		ODD		UJ
SW8260 N		1,2-Dibromoethane	UG/L	0.5		0.5			UJD		UD	0.5	
SW8260 N		1,2-Dichlorobenzene	UG/L	1			Ü	10	UJD	50	UD	1	U
SW8260 N	V	1,2-Dichloroethane	UG/L	1	U	1	U		UJD	50	UD		U
SW8260 N		1,2-Dichloropropane	UG/L	1			U		UJD		UD		U
SW8260 N		1,3,5-Trichlorobenzene	UG/L	1			U		UJD		UD		U
SW8260 N		1,3,5-Trimethylbenzene	UG/L UG/L	1			U		UJD		UD		U
SW8260 N		1,3-Dichlorobenzene	UG/L UG/L	0.5		0.5			OJD		UD	0.5	
SW8260 N		1,4-Dichlorobenzene	UG/L	1			U		UJD		UD		U
SW8260 N		1,4-Dioxane	UG/L		R		R		R		R		R
SW8260 N		2,2-Dichloropropane	UG/L		UJ		UJ		UJD		UJD		UJ
SW8260 N		2-Butanone	UG/L	20		20			UJD	1000			υ
SW8260 N		2-Chlorotoluene	UG/L	1			U		UJD		UD	<u> </u>	U
SW8260 N		2-Hexanone 4-Chlorotoluene	UG/L UG/L	10			U		UJD		UD		U
SW8260 N		4-iso-Propyltoluene	UG/L		Ü		Ü		UJD		UD		Ü
SW8260 N		4-Methyl-2-pentanone	UG/L	. 10			U		UJD		UD		Ū
SW8260 N		Acetone	UG/L	50			U		UJD	2500			U
SW8260 N		Acrylonitrile	UG/L		U		U		UJD		UD		U
SW8260 N		Benzene	UG/L		U		U	10	UJD		UD		U
SW8260 N		Bromobenzene	UG/L UG/L		U		U		UJD		UD		I U
SW8260 N		Bromochloromethane Bromodichloromethane	UG/L		Ü		υ		UJD		UD		i U
SW8260 N		Bromoform	UG/L		ÜJ		UJ		UJD		UJD		5 UJ
SW8260 N		Bromomethane	UG/L	5	IJ	5	UJ		UJD		UJD		UJ
SW8260 N		Butane, 2-methoxy-2-methyl-	UG/L.	0.5		0.5			UJD		UD		U
SW8260 N		Carbon disulfide	UG/L		UJ		U		UJD		UD		3 U
SW8260 N		Carbon tetrachloride	UG/L UG/L		บ		U		UJD		UD UD		I U
SW8260 N		Chlorobenzene Chlorodibromomethane	UG/L UG/L		U		U.		UJD		UD		ίŪ
SW8260 1		Chloroethane	UG/L		υ		2 U		UJD		UD	2	2 U
SW8260 I		Chloroform	UG/L	2	U	2	2 U	20	UJD	100	UD	2	2 U
SW8260 I		Chloromethane	UG/L		U		2 U		UJD		UD		2 U
SW8260 I		Cis-1,2-Dichloroethene	UG/L	15		21			JD		D D	12	2 5 U
SW8260 I		cis-1,3-Dichloropropene Dibromomethane	UG/L UG/L	0.5	U		U U		UJD		UD UD		1 U
SW8260 I		Dichlorodifluoromethane	UG/L		UJ		2 UJ		UJD	100	UJD		2 UJ
SW8260 I		Diethyl ether	UG/L	2	U		2 U	20) UJD	100) UD	2	2 U
SW8260 I	N	Diisopropylether	UG/L	0.5	U		5 U		UJD	25	UD		5 U
SW8260		Ethyl benzene	UG/L		U		U	10	OUD		UD		1 U
SW8260		Ethyl-t-Butyl Ether	UG/L	0.5			5 U		UJD	25	UD UD		5 U
SW8260 I		Hexachlorobutadiene	UG/L UG/L	0.5	n.		5 U 1 U		O UJD		OUD		1 U
SW8260 SW8260		Isopropylbenzene Methyl Tertbutyl Ether	UG/L		U		1 U		UJD		UD		1 0
SW8260		Methylene chloride	UG/L	† '	R		R	†	R	1	R	†	R
SW8260		n-Butylbenzene	UG/L		U		1 U		UJD		UD		1 U
SW8260	N	Naphthalene	UG/L	2	UJ		2 UJ	50	UJD		UJD		2 UJ
SW8260		Propylbenzene	UG/L	1	U		1 U		UJD		UD		1 U
SW8260		sec-Butylbenzene	UG/L		U		1 U	1 1	O UJD		D UD		1 U 1 U
SW8260 SW8260		Styrene t-Butyl alcohol	UG/L UG/L		U		1 U		O D D D D		O UD		0 U
SW8260 SW8260		tert-Butylbenzene	UG/L		U		1 U		OLUJD		DUD		1 U
SW8260	N	Tetrachloroethene	UG/L	_	Ū		4 J		JD		JD		6 J
SW8260		Tetrahydrofuran	UG/L		Ū		0 U		UJD	500	UD	1(0 U

DATA USABILITY SUMMARY REPORT NOVEMBER 2009 SOIL, SEDIMENT AND WATER SAMPLING PROGRAM ACE CLEANERS

BROCKPORT, NY

				00140	150	00140	450	001/0	450	001/0	450.	00140	450
		Sample De	livery Group			09K0		09K0		09K0		09K0	
			Location	GW	-1	GW		GW-	·	GW		GW	
1			Sample Date	11/2/2	2009	11/2/2	2009	11/2/2	2009	11/2/2	:009	11/2/2	2009 -
			Sample ID	ACGW00	11601XX	ACGW00	10801XX	ACGW014	11201XX	ACGW002	21601XX	ACGW00	20801XX
			Qc Code	FS	3	FS	3	FS	3	FS	;	F	3
Analysis	Fraction	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260	N	Toluene	UG/L	1	U	1	U	. 10	UJD	50	UD	1	U
SW8260	N	trans-1,2-Dichloroethene	UG/L	1	U	2		10	UJD	50	UD	1	U
SW8260	N	trans-1,3-Dichloropropene	UG/L	0.5	U	0.5	U	5	UJD .	25	UD	0.5	U
SW8260	N	trans-1,4-Dichloro-2-butene	UG/L	2	U	2	U	20	OJD	100	UD		U
SW8260	N	Trichloroethene	UG/L	1	U	36	J	33	JD	54	JD	6	J
SW8260	N	Trichlorofluoromethane	UG/L	2	U	2	Ü	20	UJD	100	UD		U
SW8260	N	Vinyl chloride	UG/L	5.4			U	20	UJD	100	UD		U
SW8260	N	Xylene, m/p	UG/L	2	U	2	U	20	UJD	100	UD	2	U
SW8260	N	Xylene, o	UG/L	1	U	1	U U	10	UJD	50	ÜD	1	U
Notes:													
ug/L = mi	crograms	per liter											
QC Code	FS = Fie	ld Sample FD = Field Duplicate											
TB. =	Trip Blan	k EB = Equipment Rinse Blank											
Qualifiers	: U = not	dectected at the reporting limit											
	J=.es	timated value R = rejected											-
,	D = re	sult from a dilution analysis											

DATA USABILITY SUMMARY REPORT NOVEMBER 2009 SOIL, SEDIMENT AND WATER SAMPLING PROGRAM ACE CLEANERS BROCKPORT, NY

Γ	1	Sample Del	ivery Group	09K0152		09K0	152	09K0152	09K015	2	09K0152	\neg
			Location	GW-7		GW		GW-8	GW-9		GW-9	
		S	ample Date	11/2/2009		11/2/2		11/2/2009 ACGW0080601XX	11/2/200 ACGW0091		11/2/2009 ACGW00906012	ѿ
			Sample ID Qc Code	ACGW007100 FS	J1XX	ACGW007		FS	FS	201	FS	~-
Analysis	Fraction	Parameter	Units		alifier		Qualifier	Result Qualifier		Qualifier	Result Quali	ifier
SW8260		1,1,1,2-Tetrachloroethane	UG/L	10 UD			U	1 U	1 U		1 UJ	
SW8260	N	1,1,1-Trichloroethane	UG/L	10 UD			U	1 U	1 U		1 UJ .	
SW8260		1,1,2,2-Tetrachloroethane	UG/L	5 UD		0.5		0.5 U	0.5 U		0.5 UJ	
SW8260		1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	10 UD			U	1 U	1 U		1 UJ	
SW8260 SW8260		1,1,2-Trichloroethane 1,1-Dichloroethane	UG/L UG/L	10 UD 10 UD			U	1 U	1 U		1 UJ 1 UJ	
SW8260		1,1-Dichloroethene	UG/L	10 UD			U	1 0	1 0		1 UJ	
SW8260		1,1-Dichloropropene	UG/L	20 UD			Ü	2 U	2 U		2 UJ	_
SW8260		1,2,3-Trichlorobenzene	UG/L	50 UJI		5	IJ	5 UJ	5 U		5 UJ	
SW8260		1,2,3-Trichloropropane	UG/L	20 UD			U	2 U	2 U		2 UJ	
SW8260		1,2,4-Trichlorobenzene	UG/L	50 UJI			UJ	5 UJ	1 U		1 UJ	
SW8260		1,2,4-Trimethylbenzene	UG/L UG/L	10 UD 50 UJI			UJ	1 U 5 UJ	1 U		1 UJ 5 UJ	—
SW8260 SW8260		1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	UG/L	5 UD		0.5		0.5 U	0.5 L		0.5 UJ	-
SW8260		1,2-Dichlorobenzene	UG/L	10 UD			Ü	1 U	1 L	IJ	1 UJ	
SW8260	N	1,2-Dichloroethane	UG/L	10 UD)		U	1 U	1 L	IJ	1 UJ	
SW8260		1,2-Dichloropropane	UG/L	10 UD			U	1 U	1 L		1 UJ	
SW8260		1,3,5-Trichlorobenzene	UG/L	10 UD			UJ	1 U	1 L		1 UJ	
SW8260 SW8260		1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	UG/L UG/L	10 UD 10 UD	' 		U	1 U 1 U	1 1		1 UJ 1 UJ	\dashv
SW8260		1,3-Dichloropropane	UG/L	5 UD		0.5		0.5 U	0.5 L		0.5 UJ	
SW8260		1,4-Dichlorobenzene	UG/L	10 UD			Ü	1 U	1 1		1 UJ	
SW8260		1,4-Dioxane	UG/L	R			R	R	F		R	
SW8260		2,2-Dichloropropane	UG/L	10 UJI			UJ	1 UJ	1 L		1 UJ	
SW8260		2-Butanone	UG/L	200 UD		20		20 U	20 L		20 UJ 1 UJ	-
SW8260 SW8260		2-Chlorotoluene 2-Hexanone	UG/L UG/L	10 UD 100 UD		10	U	1 U 10 U	10 0		10 UJ	
SW8260	N	4-Chlorotoluene	UG/L	10 UD			U	1 U	111		1 UJ	
SW8260		4-iso-Propyltoluene	UG/L	10 UD			Ū	1 U	1 L		1 UJ	_
SW8260		4-Methyl-2-pentanone	UG/L	100 UD)	10		10 U	10 L		10 UJ	
SW8260		Acetone	UG/L	500 U		50		50 U	50 L		50 UJ	
SW8260		Acrylonitrile	UG/L	50 UD			U	5 U	5 L		5 UJ 1 UJ	
SW8260 SW8260		Benzene Bromobenzene	UG/L UG/L	10 UD 10 UD			U	1 U	1 1		1 UJ	
SW8260		Bromochloromethane	UG/L	10 UD			Ü	10	1 1		1 UJ	
SW8260		Bromodichloromethane	UG/L	10 UD			Ü	1 U	0.5 L		0.5 UJ	
SW8260	N .	Bromoform	UG/L	50 UJI	ID		UJ	5 UJ	5 L		5 UJ	
SW8260		Bromomethane	UG/L	50 UJI			ÚJ	5 UJ	2 (IJ	2 UJ	
SW8260		Butane, 2-methoxy-2-methyl-	UG/L	5 UD		0.5		0.5 U	0.5 U).)	0.5 UJ 3 UJ	
SW8260 SW8260		Carbon disulfide Carbon tetrachloride	UG/L UG/L	30 UD 10 UD			U	3 U 1 U .	1 1		1 UJ	—
SW8260		Chlorobenzene	UG/L	10 UD			Ü	1 U	1 1		1 UJ	
SW8260		Chlorodibromomethane	UG/L	10 UD			Ū	1 U	5 L		5 UJ	
SW8260		Chloroethane	UG/L	20 UD		2	Ü	2 U	. 2 l		2 UJ	
SW8260		Chloroform	UG/L	20 UD			U	2 U	2 (2 UJ	
SW8260		Chloromethane	UG/L	20 UD	ا ر	2 18	U	2 U 1 U	2 l		2 UJ 1 UJ	
SW8260 SW8260		Cis-1,2-Dichloroethene	UG/L UG/L	10 U 5 UD	, -	0.5		0.5 U	0.5 (0.5 UJ	
SW8260		Dibromomethane	UG/L	10 UD			Ü	1 U	1 1		1 UJ	
SW8260		Dichlorodifluoromethane	UG/L	20 UJ	JD	2	UJ	2 UJ	2 (IJ	2 UJ	
SW8260	N	Diethyl ether	UG/L	20 UD	Ò	2	U	2 U	2 (JJ	2 UJ	
SW8260		Diisopropylether	UG/L	5 UD		0.5		0.5 U	0.5 l		0.5 UJ	
SW8260	N N	Ethyl benzene	UG/L UG/L	10 UD		0.5	U	1 U 0.5 U	0.5 L		1 UJ 0.5 UJ	
SW8260 SW8260		Ethyl-t-Butyl Ether Hexachlorobutadiene	UG/L UG/L	5 UE		0.5		0.5 U	0.5 (0.5 UJ	
SW8260		Isopropylbenzene	UG/L	10 UE			Ü	1 U	1 1		1 UJ	
SW8260		Methyl Tertbutyl Ether	UG/L	10 UE			Ü	1 0	1 1		1 UJ	
SW8260	N	Methylene chloride	UG/L	R			R	R		₹	R	
SW8260		n-Butylbenzene	UG/L	10 UC			U	1 U	1 0		1 UJ	
SW8260		Naphthalene	UG/L	20 UJ			UJ	2 UJ	5 l	JJ	5 UJ	
SW8260		Propylbenzene	UG/L UG/L	10 UE			U	1 U	1 1		1 UJ 1 UJ	
SW8260		sec-Butylbenzene Styrene	UG/L UG/L	10 UE			U	1 U	1 1		1 UJ	
SW8260		t-Butyl alcohol	UG/L	500 UE	 D		Ū	50 U	20 (20 UJ	
SW8260		tert-Butylbenzene	UG/L	10 UE	D	1	U	1 U	1 (JJ	1 UJ	
SW8260		Tetrachloroethene	UG/L	250 JD		240		1 U	1 0		1 UJ	
SW8260	N	Tetrahydrofuran	UG/L	100 UE	D	10	U	10 U	10	JJ	10 UJ	

DATA USABILITY SUMMARY REPORT NOVEMBER 2009 SOIL, SEDIMENT AND WATER SAMPLING PROGRAM ACE CLEANERS BROCKPORT, NY

		Sample Del	ivery Group	09K0	152	09K0	152	09K0	152	09K0	152	09K)152
		•	Location	GW	'-7	G۷	V-7	GW	'-8	GW-9		GW-9	
			Sample Date	11/2/2	2009	11/2/	2009	11/2/2	2009	11/2/2	2009	11/2/	2009
			Sample ID	ACGW007	71001XX	ACGW00	70501XX	ACGW008	30601XX	ACGW009	91201XX	ACGW00	90601XX
			Qc Code	FS	3	F	S	FS	3	F8	3	F	S
Analysis	Fraction	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260	N	Toluene	UG/L	10	UD	1	U	1	U		UJ		I UJ
SW8260	N	trans-1,2-Dichloroethene	UG/L	10	UD	1	U	1	U		UJ		I UJ
SW8260	Z	trans-1,3-Dichloropropene	UG/L	5	UD	0.5		0.5	U	0.5			5 UJ
SW8260	N	trans-1,4-Dichloro-2-butene	UG/L	20	UD		U	2	U		UJ		2 UJ
SW8260	N	Trichloroethene	UG/L	11	JD	23	3 J		U		UJ		1 UJ
SW8260	N	Trichlorofluoromethane	UG/L	20	UD		2 U		U		ŲJ	I	2 UJ
SW8260	N	Vinyl chloride	UG/L	20	UD		! U		U		ŲJ		2 UJ
SW8260	N	Xylene, m/p	UG/L		UD	2	2 U		U		UJ		2 UJ
SW8260	N	Xylene, o	UG/L	10	UD	. 1	U	. 1	U	1	UJ		1 UJ
Notes:													
ug/L = mi													
		eld Sample FD = Field Duplicate											
TB.=	Trip Blan	ik EB = Equipment Rinse Blank											
Qualifiero	· II - not	dectected at the reporting limit	l . I		1					ŀ			1

J = estimated value R = rejected D = result from a dilution analysis

Table 3 - TIC's
SDG 09K0152
DATA USABILITY SUMMARY REPORT
NOVEMBER 2009
SOIL, SEDIMENT AND WATER SAMPLING PROGRAM
ACE CLEANERS
BROCKPORT, NY

							,	5
SDG	Field Sample ID	Sample Date L	Lab Sample ID Sample T	Sample Type	Chemical Name	Concentration	Units	Qualifier
)								F
09K0152	700906013	11/2/2009	09K0152-09	FS	1-Propene, 2-methyl-	4.3	μg/L	N
2017/2017/0	100 COO H COT 1 70 TO	i = i = -				,	٤	ŗ
09K0152	700906013	11/2/2009	11/2/2009 09K0152-09	FS	Propene	2	ng/L	N
201777777		1 i i i i z						

SUMMARY OF THE ANALYTICAL DATA USABILITY NOVEMBER 2009 SOIL GAS SAMPLING PROGRAM ACE CLEANERS Brockport, New York

1.0 Introduction:

Soil Gas Volatile Organic Analyses by Method TO-15

Samples Collected: November 3rd & 4th, 2009

Samples Received: November 5, 2009 Sample Delivery Group: 09K0173 Laboratory Reference Numbers:

Field sample ID	Laboratory Sample ID
ACGV0010401XX	09K0173-01 20X
ACGV0010401XX	09K0173-01 2000X
ACGV0020401XX	09K0173-02 20X
ACGV0020401XX	09K0173-02 20X LAB DUP
ACGV0020401XX	09K0173-02 40X
ACGV0020401XX	09K0173-02 40X
ACGV0030401XX	09K0173-03 20X
ACGV0040401XX	09K0173-04 20X
ACGV0040401XX	09K0173-04 400X

Deliverables for the off-site laboratory analyses included a Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005) for SDG 09K0173.

A project chemist review was completed based on NYSDEC Division of Environmental Remediation guidance for Data Usability Summary Reports (NYSDEC, 2002) for SDG 09K0173. Soil Gas samples were reviewed using criteria in the US EPA Region II checklist, Validating Volatile Organic Analysis of Ambient Air in canister by Method TO-15, SOP HW-31 Revision 4 (USEPA, 2006). The following parameters were reviewed.

- * Data Completeness
- * GC/MS Tuning
- * Holding Times
 - Calibrations
 - Laboratory Blanks
- * Laboratory Duplicate
- * Surrogate Compound Recoveries
- * Internal Standard Recoveries
- * Laboratory Control Sample
- * Compound Identification
- * Compound Quantitation

^{* -} Indicates that all criteria were met for this parameter.

2.0 DATA VALIDATION SUMMARY

Holding Times

All samples were analyzed within 30 days of collection.

Tunes

No problems were detected with the tunes associated with the samples of this delivery group. The NYS DEC ASP FORM V was not included in the data package.

Surrogate Compound Recoveries

All surrogate compound recoveries were within the 70% - 130% quality assurance limits.

Calibrations

All %RSDs in the initial calibration were less than 30% with the exceptions of ethanol (34%), methylene chloride (62%), 1,2,4-trichlorobenzene (32%) and hexachlorobutadiene (32%)

All %Ds in the continuing calibrations were less than 30% with the exception of chloroethane (34%).

Data for these compounds were flagged with the "J" qualifier and are estimated values.

All RRF's were greater than the required limits.

Laboratory Control Sample

All of the laboratory control samples were within the required 70% - 130% limits.

Laboratory Duplicate

Sample ACGV0020401XX (09K0173-02 20X) was used as the laboratory duplicate. All RPDs which could be accurately calculated were less than 20%

Method Blanks

Methylene chloride (0.28 ug/m3/ 0.555 ppbv) was detected in the method blank associated with the analyses of all of the samples.

An action level was calculated at five times the concentration in the blank and compared to sample results.

Only low concentrations of methylene chloride approximately equal to the concentration in the method blank were found in all of the samples.

All of the methylene chloride data were flagged with the "U" qualifier.

Internal Standard Areas and Retention Times

The areas and retention times of all internal standards were within the required quality control limits (+40% - 40%).

Sample Results

Validated results are presented in Table 2.

No other problems were found with the reported results of any of the samples in SDG 09K0173.

References:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; July 2005.

New York State Department of Environmental Conservation (NYSDEC), 2002. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; Draft DER-10; Division of Environmental Remediation; December 2002.

USEP Hazardous Waste Support Branch - Validation Air Samples - Volatile Organic Analysis of Ambient Air in Canister By Method TO-15 (SOP #HW-31. Revision #4, October 2006)

Validated by Nancy Potak

January 28, 2010

2 our & song 1796 Craftsbury Road PO Box 278

Greensboro, VT 05841

(802) 533-9206 npotak@vtlink.net

Reviewed by Tige Cunningham (Mactec)

Fig lune 4-20-10

TABLE 2 - RESULTS SUMMARY SDG 09K0173 SUMMARY OF THE ANALYTICAL DATA USABILITY NOVEMBER 2009 SOIL GAS SAMPLING PROGRAM ACE CLEANERS BROCKPORT, NY

		Sample Deli		09K0173	09K0173	09K0173	09K0173
			Location ample Date	GV-1 11/4/2009	GV-2 11/4/2009	GV-3 11/4/2009	GV-4 11/4/2009
		S.	Sample ID	ACGV0010401XX	ACGV0020401XX	ACGV0030401XX	ACGV0040401XX
			Qc Code	FS	FS	FS	FS
Analysis	Fraction	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifie
TO15		1,1,1-Trichloroethane	UG/M3	5.5 UD	5.5 UD	5.5 UD	5.5 UD
		1,1,2,2-Tetrachloroethane	UG/M3	6.9 UD	6.9 UD	6.9 UD	6.9 UD
		1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/M3	7.7 UD	7.7 UD	7.7 UD	7.7 UD
	N	1,1,2-Trichloroethane	UG/M3	5.5 UD	5.5 UD	5.5 UD	5.5 UD
	<u>N</u>	1,1-Dichloroethane	UG/M3 UG/M3	4 UD 50 D	4 UD 4 UD	4 UD 4 UD	4 UD 4 UD
	N	1,1-Dichloroethene	UG/M3 UG/M3	15 UDJ	15 JUD	15 UDJ	15 UDJ
TO15 TO15		1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	UG/M3	14 D	4.9 UD	4.9 UD	10 D
TO15	N	1,2-Dibromoethane	UG/M3	7.7 UD	7.7 UD	7.7 UD	7.7 UD
TO15	N	1,2-Dichloro-1,1,2,2-tetrafluoroethane	UG/M3	7 UD	7 UD	7 UD 、	7 UD
	N	1,2-Dichlorobenzene	UG/M3	6 UD	6 UD	6 UD	6 UD
TO15	N	1,2-Dichloroethane	UG/M3	4 UD	4 UD	4 UD	4 UD
TO15	N	1,2-Dichloropropane	UG/M3	4.6 UD	4.6 UD	4.6 UD	4.6 UD
TO15	N	1,3,5-Trimethylbenzene	UG/M3	9 D	4.9 UD	4.9 UD	4.9 UD
TO15	N	1,3-Butadiene	UG/M3	2.2 UD	52 D	150 D	290 D
TO15	N	1,3-Dichlorobenzene	UG/M3	6 UD 6 UD	6 UD 6 UD	6 UD 6 UD	6 UD 6 UD
	N N	1,4-Dichlorobenzene 2-Butanone	UG/M3 UG/M3	44 D	65 D	41 D	82 D
	N N	2-Hexanone	UG/M3	4.1 UD	8.6 D	4.1 UD	4.1 UD
	N	2-Propanol	UG/M3	4.9 UD	4.9 UD	4.1 UD	4.9 UD
TO15	N	4-Ethyltoluene	UG/M3	4.9 UD	4.9 UD	4.9 UD	4.9 UD
TO15	N	4-Methyl-2-pentanone	UG/M3	4.1 UD	5.5 D	4.1 UD	4.1 UD
TO15	N	Acetone	UG/M3	85 D	250 D	170 D	330 D
TO15	N	Benzene	UG/M3	31 D	18 D	. 56 D	180 D
TO15	N	Benzyl chloride	UG/M3	5.2 UD	5.2 UD	5.2 UD	5.2 UD
TO15	N	Bromodichloromethane	UG/M3	6.7 UD	6.7 UD	6.7 UD	6.7 UD
	N	Bromoform	UG/M3	10 UD 3.9 UD	10 UD 3.9 UD	10 UD 3.9 UD	10 UD 3.9 UD
TO15 TO15	N N	Bromomethane Carbon disulfide	UG/M3 UG/M3	3.9 DD	3.9 0D 10 D	7.4 D	57 D
TO15	N	Carbon tetrachloride	UG/M3	6.3 UD	6.3 UD	6.3 UD	6.3 UD
TO15	N	Chlorobenzene	UG/M3	4.6 UD	4.6 UD	4.6 UD	4.6 UD
TO15	N	Chlorodibromomethane	UG/M3	8.5 UD	8.5 UD	8.5 UD	8.5 UD
TO15	N	Chloroethane	UG/M3	16 JD	2.6 UDJ	2.6 UDJ	2.6 UDJ
	N	Chloroform	UG/M3	4.9 UD	4.9 UD	4.9 UD	5.7 D
TO15	N	Chloromethane	UG/M3	2.1 UD	2.1 UD	6.5 D	33 D
TO15	N	Cis-1,2-Dichloroethene	UG/M3	2,100 D	170 D	4 UD	130 D
TO15	N	cis-1,3-Dichloropropene	UG/M3	4.5 UD	4.5 UD 3.4 UD	4.5 UD	4.5 UD
TO15	N	Cyclohexane	UG/M3 UG/M3	36 D 4.9 UD	4.9 UD	9.3 D 4.9 UD	27 D 4.9 UD
TO15 TO15	N N	Dichlorodifluoromethane Ethanol	UG/M3	37 JD	75 JD	65 JD	100 JD
TO15	N	Ethyl acetate	UG/M3	3.6 UD	3.6 UD	3.6 UD	3.6 UD
TO15	N	Ethyl benzene	UG/M3	6.1 D	4.9 D	6.9 D	15 D
TO15	N	Heptane	UG/M3	420 D	18 D	37 D	120 D
	N	Hexachlorobutadiene	UG/M3	21 UDJ	21 UDJ	21 UDJ	21 UDJ
TO15	N	Hexane	UG/M3	970 D	29 D	69 D	190 D
TO15	N	Methyl Tertbutyl Ether	UG/M3	3.6 UD	3.6 UD	3.6 UD	3.6 UD
TO15	N	Methylene chloride	UG/M3	47 UBDJ	38 UBDJ	38 UBDJ	46 UJBD
TO15	N	Propylene	UG/M3	2,500 D	290 D	870 D	1,200 D
TO15	N	Styrene	UG/M3	4.3 UD	6.7 D 8,000 D	5.6 D 21 D	16 D 24,000 D
TO15	N	Tetrachloroethene	UG/M3 UG/M3	110,000 D 2.9 UD	2.9 UD	2.9 UD	24,000 D 2.9 UD
TO15 TO15	N N	Tetrahydrofuran Toluene	UG/M3	57 D	2.9 OD	35 D	100 D
TO15	N	trans-1,2-Dichloroethene	UG/M3	54 D	4 UD	4 UD	4 UD
TO15	N	trans-1,3-Dichloropropene	UG/M3	4.5 UD	4.5 UD	4.5 UD	4.5 UD
TO15	N	Trichloroethene	UG/M3	1,700 D	380 D	5 UD	250 D
TO15	N	Trichlorofluoromethane	UG/M3	5.6 UD	5.6 UD	5.6 UD	5.6 UD
TO15	N	Vinyl acetate	UG/M3	7 UD	7 UD	7 UD	7 UD
TO15	N	Vinyl chloride	UG/M3	41,000 D	3 UD	3 UD	6 D
TO15	N	Xylene, m/p	UG/M3	13 D	8.7 U	11 D	29 D
TO15	N	Xylene, o	UG/M3	7.4 D	4.3 UD	5.9 D	14 D
Notes:		ma nos quibia medee			-	 	
		ms per cubic meter eld Sample FD = Field Duplicate				 	
		dectected at the reporting limit	+				
- Qualifiel		stimated value R = rejected					
		esult from a dilution analysis	<u> </u>				
		nalyted detected in associated method	blank				l i