GROUNDWATER MONITORING REPORT July – September 2021 FORMER SPEEDY'S CLEANERS-BRIGHTON SITE SITE # 828128

WORK ASSIGNMENT NO. D009809-16

Prepared for:

New York State Department of Environmental Conservation Albany, New York

Prepared by:

MACTEC Engineering and Geology, P.C. Portland, Maine

MACTEC Project No. 3616206120

JANUARY 2022

engineering and constructing a better tomorrow

January 21, 2022

Mr. Charles T Gregory New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233-7013

Subject: Former Speedy's Cleaners-Brighton (Site 828128) Quarterly Monitoring Report July – September 2021 (Q3)

Dear Mr. Gregory:

Under our Work Assignment D009809-16, MACTEC Engineering and Geology, P.C. (MACTEC) is submitting to the New York State Department of Conservation (NYSDEC) this Quarterly Monitoring Report (QMR) for the Former Speedy's Cleaners site (Site) (Site 828128) located in Brighton, Monroe County, New York. This report summarizes the groundwater monitoring and sample collection/analysis undertaken at the Site during the month of October for the reporting period of July through September 2021. The following attachments are included with this report:

- Tables
 - Table 1: Groundwater Analytical Results Volatile Organic Compounds
 - Table 2: Groundwater Analytical Results Monitored Natural Attenuation
- Figures
 - Figure 1: Site Location
 - Figure 2: Groundwater Contour Map
 - Figure 3: Groundwater Analytical Concentrations
- Attachment 1 Category A Review Report

Objectives

The site management plan (SMP) includes groundwater monitoring program objectives to evaluate the current and future extent of chlorinated compound contamination in groundwater following the shutdown of the Groundwater Extraction Treatment System at Carriage Cleaners and post biological injections at Former Speedy's Cleaners. The evaluation will also include the feasibility of monitored natural attenuation (MNA) to be considered as a long-term remedy for the off-site plume area at Former Speedy's Cleaners and the potential for contaminant migration from the upgradient Carriage Cleaners Site to identify if these sites should be considered one comingled plume.

Groundwater Monitoring, Sampling and Analysis

A round of synoptic water levels of the motoring wells was completed prior to sampling. Figure 2 presents the groundwater contours and flow direction. The groundwater flows in the easterly direction from the site and is consistent with previous reporting. A comprehensive gauging event is planned for the next round of groundwater sampling to further evaluate groundwater flow direction.

Based off the current Scope of Work, monitoring wells MW-202, MW-203S, MW-204S, MW-205S, MW-206, and MW-212 were sampled by MACTEC on October 25 and 26, 2021, as part of quarterly monitoring well sampling. The table below summarizes groundwater tetrachloroethene (PCE) concentrations in monitoring wells onsite and adjacent to the Site. Historical PCE and trichlorethylene (TCE) concentrations in site monitoring wells are presented in Figure 3. The Category A Review Report is included as Attachment 1.

				Gro	undwater	PCE Co	oncent	ration	(µg/L)				
Date	MW-	MW-	MW-	MW-	MW-	MW-	MW-	MW-	MW-	MW-	MW-	HA-	OW-1
	202	202I	203S	204S	205S	206	206S	210	211	212	213	119	
January 2016	ND	-	-	-	-	-	-	-	1,300	130	250	-	-
4/25/2016	-	-	-	-	-	-	-	1.1	-	-	-	-	-
11/9/2016	-	-	-	-	-	-	-	160	-	-	-	-	-
5/12/2017	-	-	-	-	-	-	-	7.5	-	-	-	-	-
11/1/2017	-	-	-	-	-	-	-	5.6	-	-	-	-	-
5/2/2018	-	-	-	-	-	-	-	2.6	-	-	-	-	-
11/14/2018	-	-	-	-	-	-	-	3.7	-	-	-	-	-
5/1/2019	-	-	-	-	-	-	-	1.2	-	-	-	-	-

Groundwater Monitoring Well PCE Concentrations

Page 2 of 4

8.1.4 report.hw.828118.2022-01-21.Former_Speedys_Cleaners_2021_Q3 Draft

				Gro	undwater	PCE Co	oncent	ration	(µg/L)				
Date	MW-	MW-	MW-	MW-	MW-	MW-	MW-	MW-	MW-	MW-	MW-	HA-	OW-1
	202	202I	203S	204S	205S	206	206S	210	211	212	213	119	
10/16/2019	-	-	-	-	-	-	-	8	-	-	-	-	-
3/30/2020	-	-	-	-	-	-	-	1.7	-	-	-	-	-
11/12/2020	-	-	-	-	-	-	-	8.7	-	-	-	-	-
3/30/2021*	6.3J	ND	-	18	0.071J	-	ND	16	2,100	3,500	53	2U	150
8/17/2021	4.8J	-	0.48J	15	ND	ND	-	-	-	1,900	-	-	-
10/25/2021**	11	-	0.06J	17	0.096J+	ND	-	-	-	2,500	-	-	-

Notes:

• - indicates not sampled

• ND – non-detect

• *Sample for well OW-1 was collected on 3/29/2021; Samples for MW-204S, MW-206S, MW-211 were collected on 3/31/2021; Samples for MW-202, MW-201I, MW-210, MW-212 and MW-213 were collected on 4/1/2021

• ** Samples for MW-203S and MW-205S were collected on 10/26/2021

• Qualifiers: U = not detected; J = result is estimated; J+ = estimated biased high during data validation

Generally, PCE and TCE concentrations increased since the last quarterly sampling in August 2021. A further increase in cis-1,2-dichloroethene (cis-DCE) is seen in monitoring wells MW-202 and MW-212 and an increase in vinyl chloride (VC) is seen in monitoring well MW-202, indicating continued reductive dechlorination is occurring in the areas of these wells in the groundwater as compared to the August 2021 groundwater analytical results.

Conclusions, Recommendations, and Updates

MACTEC recommends continuing the planned quarterly monitoring to further evaluate the site for natural attenuation or the need for additional in-situ biological amendment. The next quarterly sampling activities will be conducted during the October through December 2021 period and will be reported in a corresponding Monthly Report.

Please let us know if you have any questions on the material provided in this report.

Sincerely, MACTEC Engineering and Geology, P.C.

Kevin McKeever, P.E., P.G. Principle Engineer Jean Firth, P.G. Program Manager

Enclosures (3)

Page 3 of 4

GLOSSARY OF ACRONYMS AND ABBREVIATIONS

μg/L	microgram(s) per liter
cis-DCE	cis-1,2-dichloroethene
MACTEC	MACTEC Engineering and Consulting, P.C.
NYSDEC	New York State Department of Environmental Conservation
PCE	tetrachloroethene
QMR	Quarterly Monitoring Report
Site	Former Speedy's Cleaners site
SMP	Site Management Plan
TCE	trichloroethylene
VC	vinyl chloride
VOC	volatile organic compound

Page 4 of 4

TABLES

Table 1: Groundwater Analytical Results - Volatile Organic Compounds

		1													
		Location	HA-119	MW-202	MW-202	MW-202	MW-202I	MW-203S	MW-203S	MW-204S	MW-204S	MW-204S	MW-205S	MW-205S	MW-205S
	5	Sample Date	3/30/2021	4/1/2021	8/17/2021	10/25/2021	4/1/2021	8/17/2021	10/26/2021	3/31/2021	8/17/2021	10/25/2021	3/30/2021	3/30/2021	8/17/2021
		Sample ID	828128HA119013	828128MW202012	828128MW20213	828128MW20213	828128MW202I047	828128MW203S12	828128MW203S12	828128MW204S014	828128MW204S13	828128MW204S13	828128MW205S013	828128MW205S013D	828128MW205S13
		Qc Code	FS	FD	FS										
Parameter	GA	GV	Result Qualifier												
Volatile Organic Compounds															
(ug/L)															
Benzene	1	NS	2 U	10 U	10 U	10 U	1 U	1.8	1.6	1 U	1.4	0.9 J	1 U	1 U	1 U
Chloroform	7	NS	2 U	10 U	10 U	10 U	1 U	18	12	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	5	NS	91	360	760	890	1 U	23	<u>19</u>	2.1	17	<u>9.9</u>	1.4 J+	1.4 J+	1 U
Methyl Tertbutyl Ether	NS	10	0.83 J	10 U	10 U	10 U	1 U	9.9	12	0.19 J	0.76 J	1 U	1 U	1 U	1 U
Tetrachloroethene	5	NS	2 U	6.3 J	4.8 Ј	11	1 U	0.48 J	0.6 J	18	15	17	0.71 J	0.63 J	1 U
Trichloroethene	5	NS	2 U	10 U	10 U	9.5 J	1 U	1 U	1 U	1.3	1.3	1.4	1 U	1 U	1 U
Vinyl chloride	2	NS	33	130	370	400	1 U	<mark>74</mark>	75	0.92 Ј	32	<u>16</u>	1 U	1 U	1 U

		Location	MW-205S	MW-205S	MW-205S	MW-206S	MW-206	MW-210	MW-211	MW-212	MW-212	MW-212	MW-213	OW-1
		Sample Date	8/17/2021	10/26/2021	10/26/2021	3/31/2021	8/17/2021	4/1/2021	3/31/2021	4/1/2021	8/17/2021	10/25/2021	4/1/2021	3/29/2021
		Sample ID	828128MW205S13D	828128MW205S13	828128MW205S13	D 828128MW206S010	828128MW20617	828128MW210015	828128MW211012	828128MW212010	828128MW21209	828128MW21209	828128MW213010	828128OW001026
		Qc Code	FD	FS	FD	FS	FS	FS	FS	FS	FS	FS	FS	FS
Parameter	GA	GV	Result Qualifier	Result Qualifier	Result Qualifi	r Result Qualifier	Result Qualifier							
Volatile Organic Compounds														
(ug/L)														
Benzene	1	NS	1 U	1 U	1 U	1 U	1 U	1 U	50 U	100 U	40 U	80 U	10 U	4 U
Chloroform	7	NS	1 U	1 U	1 U	1 U	1 U	1 U	50 U	100 U	40 U	80 U	10 U	4 U
cis-1,2-Dichloroethene	5	NS	1 U	2.8	2.5	1 U	1 U	3.8	810	1900	2100	3500	650	13
Methyl Tertbutyl Ether	NS	10	1 U	1 U	1 U	1 U	1 U	1 U	50 U	100 U	40 U	80 U	10 U	4 U
Tetrachloroethene	5	NS	1 U	0.96 J+	0.92 J+	1 U	1 U	16	2100	3500	1900	2500	53	150
Trichloroethene	5	NS	1 U	0.81 J+	0.65 J+	1 U	1 U	2.6	320	1000	640	830	10 U	9
Vinyl chloride	2	NS	1 U	1 U	1 U	1 U	1 U	1 U	<u>80</u>	200	1600	420	550	4 U

Notes:

Units: ng/L = nanograms per liter; ug/L = micrograms per liter; mg/L = milligrams per liter

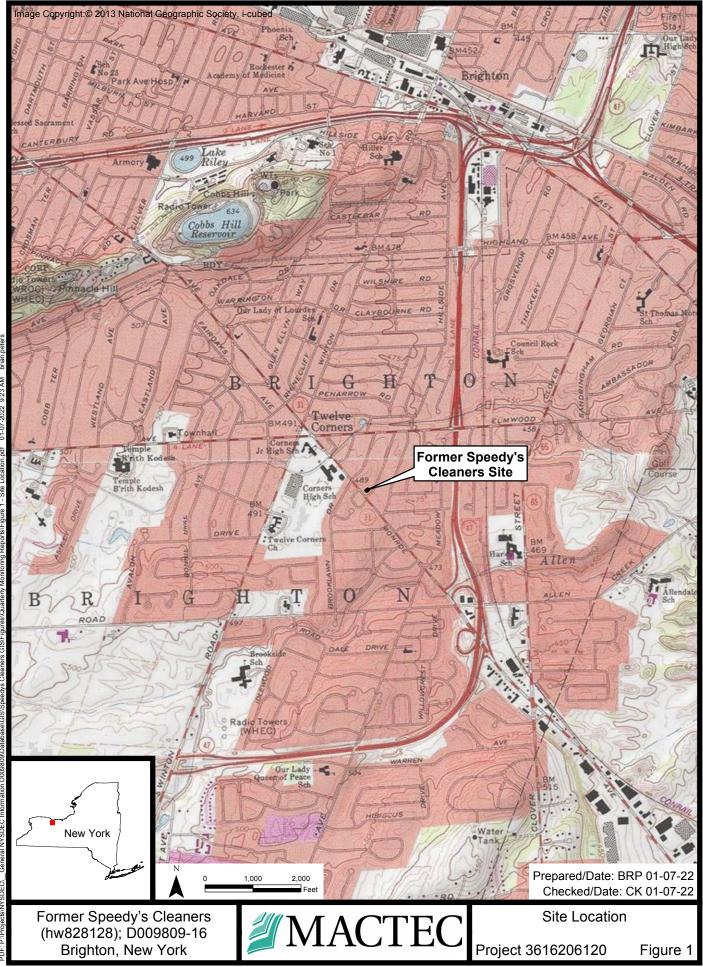
NS = no standard GA = New York State Class GA Groundwater Standards

GV = New York State Guidance Values

QC Codes: FS = field sample; FD = field duplicate

Qualifiers: U = not detected; J = result is estimated; J+ = estimated biased high during data validation

Table 2: Groundwater Analytical Results - Monitored Natural Attenuations

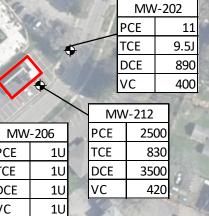

1		Location	HA-119	MW	/-202	MW-202	MW-202	MW-	2048	MW-20)4S	MW-204S	MW	/-206S	MW-206	MW-206	MW-210	MV	W-211	MW-212	MW-212	MW-212	OW-1
		ple Date	3/30/2021		2021	8/17/2021	10/25/2021	3/31/		8/17/20		10/25/2021		1/2021	8/17/2021	10/25/2021	4/1/2021		1/2021	4/1/2021	8/17/2021	10/25/2021	3/29/2021
	Sa	mple ID	828128HA119013	828128M	1W202012	828128MW20213	828128MW20213			828128MW	204S13	828128MW204S13	828128N	1W206S010	828128MW20617	828128MW20617	828128MW210015	828128N	AW211012	828128MW212010	828128MW21209		828128OW001026
		Qc Code	FS	F	FS	FS	FS	F	S	FS		FS		FS	FS	FS	FS	1	FS	FS	FS	FS	FS
Parameter	GA	GV	Result Qualifier	r Result	Qualifier	Result Qualifier	Result Qualifier	Result	Qualifier	Result Q	ualifier	Result Qualifier	Result	Qualifier	Result Qualifier	Result Qualifie	r Result Qualifier	Result	Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
Total Metals (mg/L)																							
Iron	0.3	NS				1.8 B	1.3			0.064 B		0.019 J			1 U	1.8					3.8 B	2.4	
Manganese	0.3	NS	0.099	0.12		0.1 B	0.098	0.0047		0.021 B		0.0097	0.13		1 U	0.19	0.12	0.12	2	0.14	0.38 B	0.22	0.65
Dissolved Metals (mg/L)																							
Iron	0.3	NS				0.05 U	0.05 U			0.05 U		0.05 U			1 U	0.05 U					0.05 U	0.05 U	
Manganese	0.3	NS				0.098 В	0.096			0.0025 J B		0.00077 J			1 U	0.13					0.37 B	0.22	
Iron Complex (mg/L)			-			-									-				-				
Iron, Ferric	NS	NS	0.59 J	1.9	J			0.2	J				1.7	J	1 U		2.5 J	1.9	J	2.2 J			0.51 J
Dissolved Gases (ug/L)																			-				
Methane	NS	NS	4 U	2.4	J	<mark>2.8</mark> Ј	2.9 J	4	U	4 U		4 U	1.3	J	4 U	4 U	1.1 J	1.8	8 J	3.4 J	20	8.6	110
Ethene	NS	NS	7 U	7	U	7 U	7 U	7	U	7 U		7 U	7	U	7 U	7 U	7 U	7	7 U	8.6	100	32	7 U
Inorganics & Wet Chemistry (mg/L)																							
Alkalinity, Total	NS	NS	381	405				355					434				435	404		408			303
Chloride	250	NS	112	283				290					137				131	224	1	254			440
Nitrate as N	10	NS	0.05 U	0.05				1.4					0.05	U			0.05 U	0.05		0.05 U			0.18
Sulfate	250	NS	77.7	72.1		<mark>83.9</mark>	84.6	38.6		63.4		<u>52.8</u>	74.9		78.2	95.2	76.9	70.3	3	73.8	107	90.6	33.3
Total Organic Carbon	NS	NS	2.1	1.8		1.4	2	1.2		1.1		1.5	2.4		2	2.2	2.4	2.1	1	2	1.5	2.2	4.2

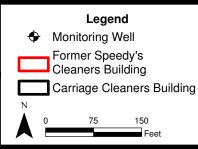
Notes: Units: ng/L = nanograms per liter; ug/L = micrograms per liter; mg/L = milligrams per liter NS = no standard

GA = New York State Class GA Groundwater Standards GV = New York State Guidance Values

QC Codes: FS = field sample; FD = field duplicate Qualifiers: U = not detected; J = result is estimated; J+ = estimated biased high during data validation

FIGURES


01-07-2022 9:23 AM ocation.pdf P.IProjects/INYSDEC/__General NYSDEC Information D009809/Database/GIS/Speedys Cleaners GIS/Map_Documents/Speedys Sile_Location.mxd ajects/NYSDEC/__General NYSDEC Information D009809/Database/GIS/Speedys Cleaners GIS/Figures/Quarterly Monitoring Reports/Figure 1 - Sile urnent: F PDF:


General NYSDEC Infor

s\GW Aug Oct 2021 11x17LS mxc

10		-
	MW	-205S
5m	PCE	0.96J+
7.0	TCE	0.81J+
	DCE	2.8
in.	VC	1U

Notes: All results in ug/L Samples collected 10/25/2021 except for MW-203S and MW-205S collected 10/26/2021 Qualifiers U = not detected J = result is estimated J+ = estimated biased high during data validation

Former Speedy's Cleaners (hw828128); D009809-16

PCE

TCE

DCE

VC

Brighton, New York

	A DOWN	
	MW	-203S
91	PCE	0.6J
-	TCE	1U
	DCE	19
	VC	75

MW	-204S
PCE	17
TCE	1.4
DCE	9.9
VC	16

Prepared/Date: BRP 01-19-22 Checked/Date: CK 01-19-22

Groundwater Analytical Concentrations October 2021

Project 3616206120

Figure 3

ATTACHMENT 1

Category A Review Report

CATEGORY A REVIEW REPORT OCTOBER 2021 GROUNDWATER SAMPLING FORMER SPEEDY'S CLEANERS SITE BRIGHTON, NEW YORK

1.0 INTRODUCTION

Groundwater samples were collected in October 2021 at the Former Speedy's Cleaners Site in Brighton, New York, and shipped to TestAmerica Buffalo Laboratory (TAL) located in Amherst, New York, for analysis. Samples included in the Category A Review were analyzed by the following United States Environmental Protection Agency (USEPA) method:

• Volatile Organic Compounds (VOCs) by Method 8260C

A completeness check was performed for additional sample analyses for total and dissolved iron and manganese, sulfate, ethene, ethane, methane, and total organic carbon. Results were reported in the following sample delivery group (SDG):

• 480-191499-1

Sample event information included in this chemistry review is presented in the following Tables:

- Table 1 Summary of Samples and Analytical Methods
- Table 2 Summary of Analytical Results
- Table 3 Summary of Qualification Actions

A summary of table notes applicable to Tables 1, 2, and 3 is presented just before Table 1.

Laboratory deliverables included:

 Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005).

The Category A Review included the following evaluations. Data review checklists are provided as Attachment A.

- Lab Report Narrative Review
- Data Package Completeness and COC records (Table 1 verification)
- Sample Preservation and Holding Times
- QC Blanks
- Laboratory Control Samples (LCS)
- Matrix Spike and Matrix Spike Duplicate (MS/MSD) (as applicable)
- Field Duplicates (as applicable)
- Surrogates (as applicable)
- Reporting Limits
- Electronic Data Qualification and Verification

The following laboratory data qualifiers or data review qualifiers are used in the final data presentation:

- U = target analyte is not detected at or above the reporting limit
- J = concentration is estimated
- J+ = concentration is estimated, potentially biased high

Results are interpreted to be usable as reported by the laboratory or as qualified in the following section.

2.0 POTENTIAL DATA LIMITATIONS

Based on the Category A Review the data meet the data quality objectives; however, the following potential limitations were identified:

VOCs by 8260C

Results for tetrachloroethene and trichloroethene in sample 828128MW205S013 and associated field duplicate 828128MW205S013D were qualified estimated with potential high bias (J+) based on high recoveries in the associated MS. Percent recoveries for the majority of VOCs in the MS were biased high (>130) while MSD recoveries were all within the 70-130 control limits. Relative percent differences (RPDs) between MS and MSD recoveries were above the QC limit of 20 for the majority of VOCs including tetrachloroethene and trichloroethene. Qualified results for tetrachloroethene and trichloroethene. Qualified results for tetrachloroethene and trichloroethene are included in Table 3 with reason codes MSH and MSRPD. However, it is also noted that based on good agreement between concentrations for VOCs detected in the sample and field duplicate, as well as the consistently high bias associated with all VOCs in the MS, the high MS recoveries may be due to a potential spiking error.

Reporting limits in a subset of samples are elevated due to dilutions as indicated in Table 2. The lab narrative stated dilutions were required to bring the concentration of target analytes within calibration range.

Reference:

NYSDEC, 2005. "Analytical Services Protocols"; July 2005.

NYSDEC, 2010. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; DER-10; Division of Environmental Remediation; May 2010.

USEPA, 2014. "Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B and 8260C"; HW-24, Revision 4; USEPA Region II Hazardous Waste Support Section; September 2014. Former Speedy's Cleaners Site NYSDEC – Site No. 828128 MACTEC Engineering and Consulting, P.C.

Project No. 3616206120.02

Data Validator: Gabrielle Davis

Jabuell D Å

Date: 11/19/21

Reviewed by: Julie Ricardi

Julie Ricardi

Date: 12/27/21

Standard Table Notes:

Sample Type (QC Code)	Qualification Reason Codes
FS – field sample	BL1 – method blank qualifier
FD – field duplicate	BL2 – field or trip blank qualifier
TB – trip blank	CCV – continuing calibration verification recovery outside limits
EB – equipment blank	CCV%D – continuing calibration verification percent difference exceeds goal
FB – field blank	CCVRRF – continuing calibration relative response factor low
	CI – chromatographic interference present
<u>Matrix</u>	DCPD – dual column percent difference exceeds limit
GW – ground water	E – result exceeds calibration range
BW – blank water	FD – field duplicate precision goal exceeded
TW – tap water	FP – false positive interference
SV – soil vapor	HT – holding time for prep or analysis exceeded
SED - sediment	HTG – holding time for prep or analysis grossly exceeded
	ICV – initial calibration verification recovery outside limit
<u>Units</u>	ICVRRF – initial calibration verification relative response factor low
mg/L – milligrams per liter	ICVRSD – initial calibration verification % relative standard deviation exceeds
ng/L – nanograms per liter	goal
μg/L – micrograms per liter	ISH – internal standard response greater than limit
mg/kg – milligrams per kilogram	ISL – internal standard response less than limit
μg/kg – micrograms per kilogram	LCSH – laboratory control sample recovery high
$\mu g/m^3$ – micrograms per cubic meter	LCSL – laboratory control sample recovery low
	LCSRPD – laboratory control sample/duplicate relative % difference precision goal exceeded
Qualifiers	LD – lab duplicate precision goal exceeded
U – not detected above quantitation limit	MSH – matrix spike and/or MS duplicate recovery high
J – estimated quantity	MSL – matrix spike and/or MS duplicate recovery low
J+ - estimated quantity, biased high	MSRPD – matrix spike/duplicate relative % difference precision goal exceeded
J estimated quantity, biased low	N – analyte identification is not certain
R – data unusable	PEM – performance evaluation mixture exceeds limit
	PM – sample percent moisture exceeds EPA guideline
Fraction	SD – serial dilution result exceeds percent difference limit
T – total	SP – sample preservation/collection does not meet method requirement
D – dissolved	SSH – surrogate recovery high
N – normal	SSL – surrogate recovery low

TD – dissolved concentration exceeds total

				Met	hod Class	Sulfate	Diss. Gases	Metals	Metals	VOCs	TOC
				Analysis	s Method	D516	RSK175	SW6010C	SW6010C	SW8260C	SW9060
					Fraction	Ν	N	D	Т	N	т
			Field Sample		Qc						
Lab SDG	Location	Field Sample Id	Date	Media	Code	Parameters	Parameters	Parameters	Parameters	Parameters	Parameters
480-191499-1	MW-202	828128MW20213	10/25/2021	GW	FS	1	3	2	2	48	1
480-191499-1	MW-203S	828128MW203S12	10/26/2021	GW	FS					48	
480-191499-1	MW-204S	828128MW204S13	10/25/2021	GW	FS	1	3	2	2	48	1
480-191499-1	MW-205S	828128MW205S13	10/26/2021	GW	FS					48	
480-191499-1	MW-205S	828128MW205S13D	10/26/2021	GW	FD					48	
480-191499-1	MW-206	828128MW20617	10/25/2021	GW	FS	1	3	2	2	48	1
480-191499-1	MW-212	828128MW21209	10/25/2021	GW	FS	1	3	2	2	48	1
480-191499-1	QC	TRIP BLANK	10/26/2021	BW	ТВ					48	

Notes:

VOCs = Volatile Organic Compounds

TOC = Total Organic Carbon

			SDG	480-19	1499-1	480-19	91499-1	480-19	91499-1	480-19	91499-1
			Location	MW			-2035		-204S		-2055
			Sample Date	10/25/20			021 11:35		021 15:40		021 10:30
			Sample ID	828128N			1W203S12		4W204S13		1W205S13
			Qc Code	F			=S		FS		FS
			200000	Final	Final	Final	Final	Final	Final	Final	Final
Fraction	Method	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
N	SW8260C	1,1,1-Trichloroethane	ug/l	10	U	1	U	1	. U	1	U
Ν	SW8260C	1,1,2,2-Tetrachloroethane	ug/l	10	U	1	U	1	U	1	U
N	SW8260C	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	ug/l	10 U		1	U	1 U		1	U
Ν	SW8260C	1,1,2-Trichloroethane	ug/l	10	U	1 U		1	U	1	U
N	SW8260C	1,1-Dichloroethane	ug/l	10 U		1 U		1	. U	1	U
N	SW8260C	1,1-Dichloroethene	ug/l	10 U		1 U		1	. U	1	U
Ν	SW8260C	1,2,4-Trichlorobenzene	ug/l	10 U		1 U		1 U		1	U
Ν	SW8260C	1,2-Dibromo-3-chloropropane	ug/l	10	U	1 U		1 U		1	U
Ν	SW8260C	1,2-Dibromoethane	ug/l	10	U	1 U		1 U		1	U
Ν	SW8260C	1,2-Dichlorobenzene	ug/l	10	U	1 U		1 U		1	U
Ν	SW8260C	1,2-Dichloroethane	ug/l	10	U	1 U		1	1 U		U
Ν	SW8260C	1,2-Dichloropropane	ug/l	10	U	1	U	1	. U	1	U
Ν	SW8260C	1,3-Dichlorobenzene	ug/l	10	U	1	U	1	. U	1	U
Ν	SW8260C	1,4-Dichlorobenzene	ug/l	10	U	1	U	1	. U	1	U
Ν	SW8260C	2-Butanone	ug/l	100	U	10	U	10) U	10	U
Ν	SW8260C	2-Hexanone	ug/l	50	U	5	U	5	υ	5	U
Ν	SW8260C	4-Methyl-2-pentanone	ug/l	50	U	5	U	5	υ	5	U
Ν	SW8260C	Acetic acid, methyl ester	ug/l	25	U	2.5	U	2.5	υ	2.5	U
Ν	SW8260C	Acetone	ug/l	100	U	10	U	10) U	10	U
Ν	SW8260C	Benzene	ug/l	10	U	1.6		0.9)]	1	U
Ν	SW8260C	Bromodichloromethane	ug/l	10	U	1	U		U		U
Ν	SW8260C	Bromoform	ug/l	10	U	1 U		1 U		1 U	
Ν	SW8260C	Bromomethane	ug/l	10 U		1 U		1 U		1 U	
Ν		Carbon disulfide	ug/l	10 U		1 U		1 U		1 U	
Ν	SW8260C	Carbon tetrachloride	ug/l	10	U	1	U	1	. U	1	U

			SDG	480-191499-1		480-10	1499-1	480-19	91499-1	480-10	91499-1
			Location	MW-202			-2035		-204S		-2055
			Sample Date	10/25/2021 12:5	50		021 11:35		021 15:40		021 10:30
			Sample ID	828128MW2021			W203S12	828128MW204S13			1W205S13
			Qc Code	FS		FS		FS			FS
			Qu couc	Final Final		Final Final		Final	Final	Final	Final
Fraction	Method	Parameter	Units	Result Qualifi		Result	Qualifier	Result	Qualifier	Result	Qualifier
N	SW8260C	Chlorobenzene	ug/l	10 U		1	U	1	. U	1	U
N	SW8260C	Chloroethane	ug/l	10 U		1	U	1	U	1	U
Ν	SW8260C	Chloroform	ug/l	10 U		12		1	U	1	U
Ν	SW8260C	Chloromethane	ug/l	10 U		1	U	1	. U	1	U
N	SW8260C	cis-1,2-Dichloroethene	ug/l	890		19		9.9	1	2.8	
Ν	SW8260C	cis-1,3-Dichloropropene	ug/l	10 U		1	U	1	U	1	U
Ν	SW8260C	Cyclohexane	ug/l	10 U		1	U	1	U	1	U
Ν	SW8260C	Dibromochloromethane	ug/l	10 U		1	U	1	U	1	U
Ν	SW8260C	Dichlorodifluoromethane	ug/l	10 U		1	U	1	U	1	U
Ν	SW8260C	Ethylbenzene	ug/l	10 U		1	U	1	U	1	U
Ν	SW8260C	Isopropylbenzene	ug/l	10 U		1	U	1	U	1	U
Ν	SW8260C	Methyl cyclohexane	ug/l	10 U		1	U	1	U	1	U
Ν	SW8260C	Methyl Tertbutyl Ether	ug/l	10 U		12		1	U	1	U
Ν	SW8260C	Methylene chloride	ug/l	10 U		1	U	1	U	1	U
Ν	SW8260C	Styrene	ug/l	10 U		1	U	1	U	1	U
Ν	SW8260C	Tetrachloroethene	ug/l	11		0.6	J	17	,	0.96	J+
Ν	SW8260C	Toluene	ug/l	10 U		1	U		U		U
Ν	SW8260C	trans-1,2-Dichloroethene	ug/l	10 U		1	U	1	U	1	U
Ν	SW8260C	trans-1,3-Dichloropropene	ug/l	10 U		1	U	1	U	1	U
Ν	SW8260C	Trichloroethene	ug/l	9.5 J		1	U	1.4	ļ	0.81	J+
Ν		Trichlorofluoromethane	ug/l	10 U		1	U	1	U	1	U
Ν	SW8260C	Vinyl chloride	ug/l	400		75		16	i	1	U
Ν	SW8260C	Xylenes, Total	ug/l	20 U		2	U	2	U	2	U
D	SW6010C		mg/l	0.05 U				0.05	U		
D	SW6010C	Manganese	mg/l	0.096				0.00077	'J		

			SDG	SDG 480-191499-1		480-191499-1		480-191499-1		480-191499-1	
			Location	MW-202		MW-203S		MW-204S		MW-205S	
			Sample Date	10/25/2021 12:50		10/26/2021 11:35		10/25/2021 15:40		10/26/2	021 10:30
			Sample ID	828128MW20213		828128MW203S12		828128MW204S13		828128N	1W205S13
			Qc Code	FS		FS			FS		FS
				Final	Final	Final	Final	Final	Final	Final	Final
Fraction	Method	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Т	SW6010C	Iron	mg/l	1.3				0.019 J			
Т	SW6010C	Manganese	mg/l	0.098				0.0097			
Ν	D516	Sulfate	mg/l	84.6				52.8			
Ν	RSK175	Ethane	ug/l	7.5	U			7.5	U		
N	RSK175	Ethene	ug/l	7 U				7 U			
Ν	RSK175	Methane	ug/l	2.9 J				4	U		
Т	SW9060	Total Organic Carbon	mg/l	2				1.5			

			SDG	480-191	499-1	480-19	1499-1	480-19	1499-1	480-19	91499-1
			Location	MW-2			-206		-212		QC
			Sample Date	10/26/202			021 10:10		021 11:30		021 0:00
			Sample ID	828128MW			1W20617		/W21209		BLANK
			Qc Code	FD			S		S		В
			200000	Final	Final	Final	Final	Final	Final	Final	Final
Fraction	Method	Parameter	Units		Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
N	SW8260C	1,1,1-Trichloroethane	ug/l	1 L	J	1	U	40	U	1	U
N	SW8260C	1,1,2,2-Tetrachloroethane	ug/l	1 L	J	1	U	40	U	1	U
N	SW8260C	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	ug/l	1 L	J	1	U	40	U	1	U
N	SW8260C	1,1,2-Trichloroethane	ug/l	1 L	J	1	U	40	U	1	U
N	SW8260C	1,1-Dichloroethane	ug/l	1 L	J	1	U	40	U	1	U
N	SW8260C	1,1-Dichloroethene	ug/l	1 L	J	1	U	40	U	1	U
N	SW8260C	1,2,4-Trichlorobenzene	ug/l	1 L	J	1	U	40	U	1	U
N	SW8260C	1,2-Dibromo-3-chloropropane	ug/l	1 L	J	1	U	40	U	1	U
N	SW8260C	1,2-Dibromoethane	ug/l	1 L	J	1	U	40	U	1	U
N	SW8260C	1,2-Dichlorobenzene	ug/l	1 L	J	1	U	40	U	1	U
N	SW8260C	1,2-Dichloroethane	ug/l	1 L	J	1	U	40	U	1	U
N	SW8260C	1,2-Dichloropropane	ug/l	1 L	J	1	U	40	U	1	U
N	SW8260C	1,3-Dichlorobenzene	ug/l	1 L	J	1	U	40	U	1	U
N	SW8260C	1,4-Dichlorobenzene	ug/l	1 L	J	1	U	40	U	1	U
N	SW8260C	2-Butanone	ug/l	10 L	J	10	U	400	U	10	U
N	SW8260C	2-Hexanone	ug/l	5 L	J	5	U	200	U	5	U
N	SW8260C	4-Methyl-2-pentanone	ug/l	5 L	J	5	U	200	U	5	U
N	SW8260C	Acetic acid, methyl ester	ug/l	2.5 L	J	2.5	U	100	U	2.5	U
N	SW8260C	Acetone	ug/l	10 L	J	10	U	400	U	10	U
N	SW8260C	Benzene	ug/l	1 L	J	1	U	40	U	1	U
Ν	SW8260C	Bromodichloromethane	ug/l	1 L	J	1	U	40	U	1	U
Ν	SW8260C	Bromoform	ug/l	1 L	J	1	U	40	U	1	U
Ν	SW8260C	Bromomethane	ug/l	1 L	J	1	U	40	U	1	U
Ν	SW8260C	Carbon disulfide	ug/l	1 L	J	1	U	40	U	1	U
Ν	SW8260C	Carbon tetrachloride	ug/l	1 L	J	1	U	40	U	1	U

			SDG	480-191499-1	1	/120-10	1499-1	/180_10	91499-1	480-10	91499-1
			Location	480-191499-1 MW-205S	-		/-206		/-212		2C
			Sample Date	10/26/2021 10:	20		-200 021 10:10		021 11:30		2021 0:00
			Sample ID	828128MW2055			/W20617		/W21209		BLANK
			Qc Code	626128101002055	130		S		-S		TB
			QL COUE	Final Final	al	Final Final		Final	Final	Final	Final
Fraction	Method	Parameter	Units	Result Quali	-	Result	Qualifier	Result	Qualifier	Result	Qualifier
N	SW8260C	Chlorobenzene	ug/l	1 U			U	40	-		. U
N	SW8260C	Chloroethane	ug/l	1 U		1	U	40	U	1	. U
N	SW8260C	Chloroform	ug/l	1 U		1	U	40	U	1	. U
Ν	SW8260C	Chloromethane	ug/l	1 U		1	U	40	U	1	. U
Ν	SW8260C	cis-1,2-Dichloroethene	ug/l	2.5		1	U	3500		1	U
Ν	SW8260C	cis-1,3-Dichloropropene	ug/l	1 U		1	U	40	U	1	. U
Ν	SW8260C	Cyclohexane	ug/l	1 U		1	U	40	U	1	. U
Ν	SW8260C	Dibromochloromethane	ug/l	1 U		1 U		40 U		1	. U
Ν	SW8260C	Dichlorodifluoromethane	ug/l	1 U		1 U		40 U		1	. U
Ν	SW8260C	Ethylbenzene	ug/l	1 U		1	U	40	U	1	. U
Ν	SW8260C	Isopropylbenzene	ug/l	1 U		1	U	40	U	1	. U
Ν	SW8260C	Methyl cyclohexane	ug/l	1 U		1	U	40	U	1	. U
Ν	SW8260C	Methyl Tertbutyl Ether	ug/l	1 U		1	U	40	U	1	. U
Ν	SW8260C	Methylene chloride	ug/l	1 U		1	U	40	U	1	. U
Ν	SW8260C	Styrene	ug/l	1 U		1	U	40	U	1	. U
Ν	SW8260C	Tetrachloroethene	ug/l	0.92 J+		1	U	3100		1	. U
Ν	SW8260C	Toluene	ug/l	1 U		1	U	40	U	1	U
Ν	SW8260C	trans-1,2-Dichloroethene	ug/l	1 U		1	U	40	U	1	. U
Ν	SW8260C	trans-1,3-Dichloropropene	ug/l	1 U		1	U	40	U	1	U
Ν	SW8260C	Trichloroethene	ug/l	0.65 J+		1	U	1000		1	. U
Ν		Trichlorofluoromethane	ug/l	1 U		1	U	40	U	1	U
Ν		Vinyl chloride	ug/l	1 U			U	610		1	U
Ν	SW8260C	Xylenes, Total	ug/l	2 U		2	U	80	U	2	U
D	SW6010C		mg/l			0.05	U	0.05			
D	SW6010C	Manganese	mg/l			0.13		0.22			

			SDG	SDG 480-191499-1		480-19	91499-1	480-191499-1		480-191499-1	
			Location	MW-205S		MW-206		MW-212		(QC
			Sample Date	10/26/2021 10:30		10/25/2021 10:10		10/25/2021 11:30		10/26/2	2021 0:00
			Sample ID	828128MW205S13D		828128MW20617		828128MW21209		28128MW21209 TRIP BL	
			Qc Code	FD		I	=S	I	=S	1	ГВ
				Final	Final	Final	Final	Final	Final	Final	Final
Fraction	Method	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Т	SW6010C	Iron	mg/l			1.8		2.4			
Т	SW6010C	Manganese	mg/l			0.19		0.22			
Ν	D516	Sulfate	mg/l			95.2		90.6			
Ν	RSK175	Ethane	ug/l			7.5	U	7.5	U		
N	RSK175	Ethene	ug/l			7	U	32			
Ν	RSK175	Methane	ug/l			4	U	8.6			
Т	SW9060	Total Organic Carbon	mg/l			2.2		2.2			

			Sample					Lab	Final	Final	Val Reason	
SDG	Method	Lab Sample ID	Date	Field Sample ID	Fraction	Parameter	Lab Result	Qualifier	Result	Qualifier	Code	Units
480-191499-1	SW8260C	480-191499-5	10/26/2021	828128MW205S13	N	Tetrachloroethene	0.96	J F1 F2	0.96	J+	MSH, MSRPD	ug/l
480-191499-1	SW8260C	480-191499-5	10/26/2021	828128MW205S13	N	Trichloroethene	0.81	J F1 F2	0.81	J+	MSH, MSRPD	ug/l
480-191499-1	SW8260C	480-191499-6	10/26/2021	828128MW205S13D	N	Tetrachloroethene	0.92	J	0.92	J+	MSH, MSRPD	ug/l
480-191499-1	SW8260C	480-191499-6	10/26/2021	828128MW205S13D	N	Trichloroethene	0.65	J	0.65	J+	MSH, MSRPD	ug/l

Project No. 3616206120

CATEGORY A REVIEW REPORT OCTOBER 2021 GROUNDWATER SAMPLING FORMER SPEEDY'S CLEANERS SITE BRIGHTON, NEW YORK

ATTACHMENT A

VOCs

Pro	JECT CATEGORY A REVIEW RECORD act: Former Speedys Cleaners Brighton	
Lab Dat	od : <u>SW-846 8260C</u> ratory: TAL - Buffalo, NY SDG(s): 480-191499-1 11/18/21	
	ewer: Gabrielle Davis ew Level X CATEGORY A	
1.	Case Narrative Review and COC/Data Package Completeness Completeness Were problems noted?	OMMENTS
	Were all the samples on the COC analyzed for the requested analyses? YES NO	(circle one)
	Are Field Sample IDs and Locations assigned correctly? YES NO (circle one)	
2.	 Holding time and Sample Collection All samples were analyzed within the 14 day holding time. YES NO (circle one)
3.	Image: Optimized contamination QC Blanks Are method blanks free of contamination? YES NO (circle one)	
	Are Trip blanks free of contamination? YES NO (circle one)	
	Are Rinse blanks free of contamination? YES NO NA (circle one)	
4.	Matrix Spike - Region II limits (water and soil 70-130%, water RPD 20, soil R Were MS/MSDs submitted/analyzed? YES NO	PD 35)
	Were all results within the Region II limits? YES NO NA (circle one) See attached - subset J+, MSH, MSRPD	
5.	Laboratory Control Sample Results - Region II (Water and soil 70-130%)	
	Were all results were within Region II control limits? YES NO (circle one)	
6.	Surrogate Recovery - Region II limits (water 80-120%, soil 70-130%)	
	Were all results within Region II limits? YES NO (circle one)	
7.	 Field Duplicates - Region II Limits (water RPD 50, soil RPD 100) Were Field Duplicates submitted/analyzed? YES NO 	
	Were all results within Region II Limits? YES NO NA (circle one)	
8.	Reporting Limits: Were samples analyzed at a dilution? YES NO (circle on See attached case narrative - NDs elevated RLs	e)
9.	Electronic Data Review and Edits Does the EDD match the Form Is? YES NO (circle one)	
10.	□ Table Review Table 1 (Samples and Analytical Methods) Table 2 (Analytical Results) Table 3 (Qualification Actions) Were all tables produced and reviewed? YES NO (circle one)	TD 12/1/21

Table 4 (TICs)Did lab report TICs?YESNO(circle one)

Job ID: 480-191499-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-191499-1

Revision (1)

The report has been revised as requested by the client to correct the site number portion of the sample IDs. **Receipt**

The samples were received on 10/27/2021 10:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.3° C.

GC/MS VOA

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: 828128MW21209 (480-191499-2) and 828128MW20213 (480-191499-3). Elevated reporting limits (RLs) are provided. 80x dilution - 40x refused 10x dilution

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-602737 recovered above the upper control limit for 2-Hexanone, trans-1,3-Dichloropropene and 2-Butanone. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: 828128MW20617 (480-191499-1), 828128MW21209 (480-191499-2), 828128MW20213 (480-191499-3), 828128MW204S13 (480-191499-4), 828128MW205S13 (480-191499-5), 828128MW205S13D (480-191499-6), 828128MW203S12 (480-191499-7) and TRIP BLANK (480-191499-8).

Method 8260C: The continuing calibration verification (CCVIS) associated with batch 480-602838 recovered outside acceptance criteria, low biased, for Cyclohexane. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported. The associated sample is: 828128MW21209 (480-191499-2).

Method 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: 828128MW21209 (480-191499-2). Elevated reporting limits (RLs) are provided. addressed above

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GTD 12/1/21

QC Sample Results

Client: New York State D.E.C. Project/Site: Former Speedys Cleaners Brighton #828128

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-602737/5 Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Job ID: 480-191499-1

5

8

Matrix: Water Analysis Batch: 602737

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methylene Chloride	25.0	28.5		ug/L		114	75 - 124
Styrene	25.0	27.9		ug/L		112	80 - 120
Fetrachloroethene	25.0	27.4		ug/L		110	74 - 122
Foluene	25.0	27.1		ug/L		108	80 - 122
rans-1,2-Dichloroethene	25.0	26.9		ug/L		107	73 - 127
ans-1,3-Dichloropropene	25.0	29.6		ug/L		118	80 - 120
ichloroethene	25.0	26.5		ug/L		106	74 - 123
richlorofluoromethane	25.0	25.3		ug/L		101	62 - 150
/inyl chloride	25.0	26.6		ug/L		106	65 - 133

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	106		77 - 120
4-Bromofluorobenzene (Surr)	107		73 - 120
Dibromofluoromethane (Surr)	111		75 - 123
Toluene-d8 (Surr)	106		80 - 120

Lab Sample ID: 480-191499-5 MS Matrix: Water Analysis Batch: 602737

Analysis Batch: 602737								70-130	
	•	Sample	Spike	MS	MS				%Rec.
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	ND	F1 F2	25.0	35.0	F1	ug/L		140	73 - 126
1,1,2,2-Tetrachloroethane	ND	F1 F2	25.0	32.8	F1	ug/L		131	76 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	ND	F2	25.0	31.2		ug/L		125	61 - 148
ne									
1,1,2-Trichloroethane		F1 F2	25.0	33.5		ug/L		134	76 - 122
1,1-Dichloroethane		F1 F2	25.0	33.1		ug/L		132	77 - 120
1,1-Dichloroethene		F1 F2	25.0	33.3		ug/L		133	66 - 127
1,2,4-Trichlorobenzene	ND	F1 F2	25.0	32.7	F1	ug/L		131	79 - 122
1,2-Dibromo-3-Chloropropane	ND	F2	25.0	32.7		ug/L		131	56 - 134
1,2-Dibromoethane	ND	F1 F2	25.0	33.5	F1	ug/L		134	77 - 120
1,2-Dichlorobenzene	ND	F1 F2	25.0	32.7	F1	ug/L		131	80 - 124
1,2-Dichloroethane	ND	F1 F2	25.0	32.3	F1	ug/L		129	75 - 120
1,2-Dichloropropane	ND	F1 F2	25.0	34.6	F1	ug/L		138	76 - 120
1,3-Dichlorobenzene	ND	F1	25.0	32.9	F1	ug/L		132	77 - 120
1,4-Dichlorobenzene	ND	F1 F2	25.0	32.3	F1	ug/L		129	78 - 124
2-Butanone (MEK)	ND	F2	125	176		ug/L		140	57 _ 140
2-Hexanone	ND	F1 F2	125	175	F1	ug/L		140	65 - 127
4-Methyl-2-pentanone (MIBK)	ND	F1	125	166	F1	ug/L		133	71 - 125
Acetone	ND	F2	125	158		ug/L		126	56 - 142
Benzene	ND	F1 F2	25.0	33.7	F1	ug/L		135	71 - 124
Bromodichloromethane	ND	F1 F2	25.0	34.3	F1	ug/L		137	80 - 122
Bromoform	ND	F1 F2	25.0	33.5	F1	ug/L		134	61 - 132
Bromomethane	ND	F2	25.0	29.9		ug/L		120	55 - 144
Carbon disulfide	ND	F2	25.0	32.2		ug/L		129	59 - 134
Carbon tetrachloride	ND	F1 F2	25.0	35.9	F1	ug/L		144	72 - 134
Chlorobenzene	ND	F1	25.0	33.3	F1	ug/L		133	80 - 120
Chloroethane	ND		25.0	29.5		ug/L		118	69 - 136
Chloroform		F1 F2	25.0	32.7	F1	ug/L		131	73 - 127

Highlighted - ND in sample

GTD 12/1/21

Eurofins TestAmerica, Buffalo

Client Sample ID: 828128MW205S13 Prep Type: Total/NA

Page 24 of 40

QC Sample Results

Client: New York State D.E.C. Project/Site: Former Speedys Cleaners Brighton #828128

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-191499-5 MS Matrix: Water

Analysis Batch: 602737

Sa	ample	Sample	Spike	MS	MS				%Rec.	
Analyte F	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloromethane	ND	F2	25.0	29.2		ug/L		117	68 - 124	
cis-1,2-Dichloroethene	2.8	F1 F2	25.0	34.6	F1	ug/L		127	74 - 124	
cis-1,3-Dichloropropene	ND	F1 F2	25.0	34.1	F1	ug/L		136	74 - 124	
Cyclohexane	ND	F2	25.0	31.7		ug/L		127	59 - 135	
Dibromochloromethane	ND	F1 F2	25.0	35.2	F1	ug/L		141	75 - 125	
Dichlorodifluoromethane	ND	F2	25.0	31.0		ug/L		124	59 - 135	
Ethylbenzene	ND	F1 F2	25.0	33.4	F1	ug/L		134	77 - 123	
Isopropylbenzene	ND	F1 F2	25.0	34.3	F1	ug/L		137	77 - 122	
Methyl acetate	ND	F2	50.0	58.3		ug/L		117	74 - 133	
Methyl tert-butyl ether	ND	F1	25.0	31.7	F1	ug/L		127	77 - 120	
Methylcyclohexane	ND	F2	25.0	30.3		ug/L		121	68 - 134	
Methylene Chloride	ND	F1 F2	25.0	32.8	F1	ug/L		131	75 - 124	
Styrene	ND	F1	25.0	34.5	F1	ug/L		138	80 - 120	
Tetrachloroethene J+, MSH, MSRPD	0.96	J F1 F2	25.0	34.8	F1	ug/L		135	74 - 122	
Toluene	ND	F1 F2	25.0	33.3	F1	ug/L		133	80 - 122	
trans-1,2-Dichloroethene	ND	F1 F2	25.0	33.6	F1	ug/L		134	73 - 127	
trans-1,3-Dichloropropene	ND	F1 F2	25.0	33.8	F1	ug/L		135	80 - 120	
Trichloroethene J+, MSH, MSRPD	0.81	J F1 F2	25.0	34.6	F1	ug/L		135	74 - 123	
Trichlorofluoromethane	ND	F2	25.0	35.4		ug/L		141	62 - 150	
Vinyl chloride	ND	F1 F2	25.0	36.9	F1	ug/L		148	65 - 133	
	MS	MS								

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	108		77 - 120
4-Bromofluorobenzene (Surr)	108		73 - 120
Dibromofluoromethane (Surr)	106		75 - 123
Toluene-d8 (Surr)	108		80 - 120

Highlighted with no comments - ND in sample

GTD 12/1/21

Lab Sample ID: 480-191499-5 MSD Matrix: Water Analysis Batch: 602737

·	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND	F1 F2	25.0	26.8	F2	ug/L		107	73 - 126	27	15
1,1,2,2-Tetrachloroethane	ND	F1 F2	25.0	27.2	F2	ug/L		109	76 - 120	19	15
1,1,2-Trichloro-1,2,2-trifluoroetha	ND	F2	25.0	24.0	F2	ug/L		96	61 - 148	26	20
ne											
1,1,2-Trichloroethane	ND	F1 F2	25.0	27.4	F2	ug/L		110	76 - 122	20	15
1,1-Dichloroethane	ND	F1 F2	25.0	25.3	F2	ug/L		101	77 _ 120	26	20
1,1-Dichloroethene	ND	F1 F2	25.0	25.4	F2	ug/L		102	66 - 127	27	16
1,2,4-Trichlorobenzene	ND	F1 F2	25.0	25.6	F2	ug/L		103	79 - 122	24	20
1,2-Dibromo-3-Chloropropane	ND	F2	25.0	27.5	F2	ug/L		110	56 - 134	17	15
1,2-Dibromoethane	ND	F1 F2	25.0	28.0	F2	ug/L		112	77 - 120	18	15
1,2-Dichlorobenzene	ND	F1 F2	25.0	26.4	F2	ug/L		106	80 - 124	21	20
1,2-Dichloroethane	ND	F1 F2	25.0	25.2	F2	ug/L		101	75 - 120	25	20
1,2-Dichloropropane	ND	F1 F2	25.0	26.7	F2	ug/L		107	76 - 120	26	20
1,3-Dichlorobenzene	ND	F1	25.0	26.9		ug/L		108	77 - 120	20	20
1,4-Dichlorobenzene	ND	F1 F2	25.0	25.9	F2	ug/L		104	78 - 124	22	20
2-Butanone (MEK)	ND	F2	125	140	F2	ug/L		112	57 - 140	22	20
2-Hexanone	ND	F1 F2	125	146	F2	ug/L		117	65 - 127	18	15

Eurofins TestAmerica, Buffalo

Client Sample ID: 828128MW205S13

Prep Type: Total/NA

Job ID: 480-191499-1

Prep Type: Total/NA

Client Sample ID: 828128MW205S13

QC Sample Results

Client: New York State D.E.C. Project/Site: Former Speedys Cleaners Brighton #828128

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-191499-5 MSD Matrix: Water

Analysis Batch: 602737

Analysis Batch. 002757	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
4-Methyl-2-pentanone (MIBK)	ND	F1	125	135		ug/L		108	71 - 125	20	35	
Acetone	ND	F2	125	120	F2	ug/L		96	56 - 142	27	15	
Benzene	ND	F1 F2	25.0	26.0	F2	ug/L		104	71 - 124	26	13	
Bromodichloromethane	ND	F1 F2	25.0	27.5	F2	ug/L		110	80 - 122	22	15	
Bromoform	ND	F1 F2	25.0	28.4	F2	ug/L		113	61 - 132	17	15	
Bromomethane	ND	F2	25.0	24.1	F2	ug/L		96	55 - 144	22	15	
Carbon disulfide	ND	F2	25.0	24.7	F2	ug/L		99	59 - 134	26	15	
Carbon tetrachloride	ND	F1 F2	25.0	28.3	F2	ug/L		113	72 - 134	24	15	
Chlorobenzene	ND	F1	25.0	27.5		ug/L		110	80 - 120	19	25	
Chloroethane	ND	F2	25.0	23.5	F2	ug/L		94	69 - 136	23	15	
Chloroform	ND	F1 F2	25.0	25.4	F2	ug/L		102	73 - 127	25	20	
Chloromethane	ND	F2	25.0	23.0	F2	ug/L		92	68 - 124	24	15	
cis-1,2-Dichloroethene	2.8	F1 F2	25.0	26.3	F2	ug/L		94	74 - 124	27	15	÷
cis-1,3-Dichloropropene	ND	F1 F2	25.0	26.7	F2	ug/L		107	74 - 124	24	15	
Cyclohexane	ND	F2	25.0	24.6	F2	ug/L		98	59 - 135	25	20	
Dibromochloromethane	ND	F1 F2	25.0	29.1	F2	ug/L		117	75 - 125	19	15	
Dichlorodifluoromethane	ND	F2	25.0	23.8	F2	ug/L		95	59 - 135	27	20	
Ethylbenzene	ND	F1 F2	25.0	27.5	F2	ug/L		110	77 - 123	19	15	
Isopropylbenzene	ND	F1 F2	25.0	27.5	F2	ug/L		110	77 - 122	22	20	
Methyl acetate	ND	F2	50.0	46.6	F2	ug/L		93	74 - 133	22	20	
Methyl tert-butyl ether	ND	F1	25.0	24.2		ug/L		97	77 - 120	27	37	
Methylcyclohexane	ND	F2	25.0	23.8	F2	ug/L		95	68 - 134	24	20	
Methylene Chloride	ND	F1 F2	25.0	24.9	F2	ug/L		99	75 - 124	28	15	
Styrene	ND	F1	25.0	28.1		ug/L		113	80 - 120	20	20	
Tetrachloroethene See quals above	0.96	J F1 F2	25.0	27.9	F2	ug/L		108	74 - 122	22	20	
Toluene	ND	F1 F2	25.0	26.9	F2	ug/L		108	80 - 122	21	15	
trans-1,2-Dichloroethene	ND	F1 F2	25.0	25.6	F2	ug/L		103	73 - 127	27	20	
trans-1,3-Dichloropropene	ND	F1 F2	25.0	27.7	F2	ug/L		111	80 - 120	20	15	
Trichloroethene See quals above	0.81	J F1 F2	25.0	26.2	F2	ug/L		102	74 - 123	28	16	
Trichlorofluoromethane	ND	F2	25.0	27.7	F2	ug/L		111	62 - 150	24	20	
Vinyl chloride	ND	F1 F2	25.0	29.1	F2	ug/L		116	65 - 133	24	15	
	MSD	MSD										

	MSD	MSD		
Surrogate	%Recovery	Qualifier	Limits	
1,2-Dichloroethane-d4 (Surr)	107		77 - 120	
4-Bromofluorobenzene (Surr)	115		73 - 120	
Dibromofluoromethane (Surr)	108		75 - 123	
Toluene-d8 (Surr)	113		80 - 120	

GTD 12/1/21

Client Sample ID: Method Blank

Prep Type: Total/NA

Lab Sample ID: MB 480-602838/10 Matrix: Water Analysis Batch: 602838

MB MB							
ult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND	1.0	0.82	ug/L			11/01/21 12:34	1
ND	1.0	0.21	ug/L			11/01/21 12:34	1
ND	1.0	0.31	ug/L			11/01/21 12:34	1
ND	1.0	0.23	ug/L			11/01/21 12:34	1
ND	1.0	0.38	ug/L			11/01/21 12:34	1
	MB MB sult Qualifier ND ND ND ND	Guilt Qualifier RL ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0	Qualifier RL MDL ND 1.0 0.82 ND 1.0 0.21 ND 1.0 0.31 ND 1.0 0.23	Qualifier RL MDL Unit ND 1.0 0.82 ug/L ND 1.0 0.21 ug/L ND 1.0 0.31 ug/L ND 1.0 0.23 ug/L	Built ND Qualifier RL MDL Unit D ND 1.0 0.82 ug/L ug/L ND 1.0 0.21 ug/L ND 1.0 0.31 ug/L ND 1.0 0.23 ug/L	Built ND Qualifier RL MDL Unit D Prepared ND 1.0 0.82 ug/L ug/L	Bult Qualifier RL MDL Unit D Prepared Analyzed ND 1.0 0.82 ug/L 11/01/21 12:34 ND 1.0 0.21 ug/L 11/01/21 12:34 ND 1.0 0.31 ug/L 11/01/21 12:34 ND 1.0 0.31 ug/L 11/01/21 12:34 ND 1.0 0.23 ug/L 11/01/21 12:34

Eurofins TestAmerica, Buffalo

Prep Type: Total/NA

5

8 9

Client Sample ID: 828128MW205S13

Sample ID:

828128MW205S13 / 828128MW205S13D

RPD < 50 - within limits

Compound	Result LabQual	Dup LabQual	RPD
cis-1,2-Dichloroethene	2.8	2.5	11.3

GTD 12/1/21