

New York State Department of Environmental Conservation Division of Environmental Remediation Bureau of Hazardous Site Control

ADDITIONS/CHANGES TO REGISTRY: SUMMARY OF APPROVALS

SITE NAME: GAO TROLLEY BOOLEVARD	DEC I.D. NUMBER _	828108
Current Classification 26		(7) below
Activity: Add as Class Class Class	Delist Category	Modify
Approvals:		
1. Regional Hazardous Waste Engineer Yes	No	4/14/2
2. BEEI of NYSDOH Yes	No	5/13/2332
3. DEE	No	4/13/32
4. W. ζηλιλ Remediation Action Bureau Director [Class 2]	No	4/16/232
5. BHSC - Investigation Section Yes	No	4/4/0 i
6. BHSC - O&M Section [Class 4] Yes	No	J/A
7. BPM - Brownfield & Voluntary Cleanup Section	taport	Date <u>5 29 02</u>
8. Site Control Section	- fam	Date
9. Director	1/W/arino	Date 5/30/02
Completion Checklist for Registry Sites	Completed By:	<u>Date</u>
OWNER NOTIFICATION LETTER?	<u> </u>	6-17-02
ADJACENT PROPERTY OWNER NOTIFICATION LETTER?	<u> </u>	7-9-02
ENB / LEGAL NOTICE SENT? (For Deletion Only)		_
COMMENTS SUMMARIZED / PLACE IN REPOSITORY?		
FINAL NOTIFICATION SENT TO OWNER? (For Deletion Only)		

SITE INVESTIGATION INFORMATION

1. SITE NAME		2. SITE NUMBER	3. TOWN/CITY/VILLAGE	4. COUNTY
640 Trolley Boulevard		828108	Gates	Monroe
5. REGION	6. CLASSIFICATION	020100	Gatoc	Weller
8		CURRENT [2A]	PROPOSED [2] MODIFICATION	
	ch U.S.G.S. Topographic Map			
a. Quadrangle: Rochester We		- ·	ntitude 43° 10' 22" Site Longitude 77° 41' 16"	
c. Tax Map Number(s) 104.11		d. Site Street Address	s 640 Trolley Boulevard, Gates, NY 14606	
	SITE (Attach site map showi	ng disposal/sampling locati	ons)	
north, east and west. The cl leaking cutting oils, waste late tenant was removing trees and drums and tested. The test re During the 2002 PSA 19.5 ton	osest water body is the Erie Cax and oil base paints, and poss divegetation behind the back do sults indicated that the materials of hazardous waste (B007) w	anal located about 750 feet no ible solvents. Speedy dry was oor and uncovered a dry well of al contained very high levels of ere removed and disposed of	onroe County. The site is surrounded by commercianth of the site. In 1994, a spill was reported at the samplied to the spilled liquid and the spill was later containing a brown oily liquid. Approximately 20 gal of PCBs, 1,1,1-trichloroethane and other chlorinated. A site plot plan is attached. SI (X) IRM ()RI/FS () Construction () O&M	site due to a dumpster that was closed. In October 2000, a new llons of the liquid were pumped into
F002 - Spent 1,1,1-Trichloroetl	POSED (Include EPA Hazardo nane taining 50 ppm or greater of PC	·		:
ANALYTICAL DATA AVAIL a. ()Air (X)Groundwater b. Contravention of Standar See attached *PSA Sample Standar	(X)Surface Water (X)Sec ds or Guidance Values	liment (X)Soil (X)Waste	()Leachate ()EPTox (X)TCLP	
the rear door. Contamina sediment throughout the wells downgradient. Loca	ntion remains in soil in add rear yard of the building. Il groundwater flow is sout	lition to the 19.5 ton IRM Migration of contaminat theast from the drywell to	! 1,1,1-TCA were disposed of in the drywell learn of the drywell contents. PCBs a ion downgradient of the drywell was not conward the building.	re also in the soils and swale
SITE IMPACT DATA Nearest Surface Water: Disb. Groundwater: Depth 14 - 17 c. Water Supply: Distance 7.5 d. Nearest Building: Distance e. Documented fish or wildlife f. Impact on special status fish g. Controlled Site Access?	ft. miles Oft. mortality?	Direction: North Flow Direction Southeast Direction: North - Lake O Direction: on site ()Y (x)N ()Y (x)N ()Y (x)N	***	Other High-Yield Aquifer ()Y (x)N (? () 1 () 2 (x) 3 HRS NA Score
13. SITE OWNER'S NAME		14. ADDRESS	•	15. TELEPHONE NUMBER
Emerson Enterprises, LLC	~ ~ ^ /	P.O. Box 425, New York	14534	585-426-5570
16. PREPARERI	Lakto.	4/3/02	17. APPROVED My Marin	2 (/20/02
<u> </u>	Date u of Hazardous Site Control, E tte, Organization	rs	Signature Date ROBERT L. MORING, T Name, Title, Organization	Director BHSC
	,			

Flanigan Square, 547 River Street, Troy, New York 12180-2216

Antonia C. Novello, M.D., M.P.H., Dr.P.H. Commissioner Dennis P. Whalen
Executive Deputy Commissioner

May 10, 2002

Mr. Dennis Farrar, Chief Site Control Section Bureau of Hazardous Site Control Division of Environmental Remediation NYS Dept. of Environmental Conservation 625 Broadway, 11th Floor Albany, New York 12233-7015

> Re: Classification Package 640 Trolley Boulevard Site Site #828108 Gates (T), Monroe County

Staff reviewed the Classification Package for the 640 Trolley Boulevard site, located in Gates, Monroe County. I understand that in October 2000 a dry well was discovered on the property and analysis of the well's contents indicate significantly elevated levels of polychlorinated biphenyls (PCBs), 1,1,1,-trichloroethane (TCA), acetone, xylene and other chlorinated compounds. Although the dry well was excavated during a preliminary site assessment investigation and 19.5 tons of visibly contaminated material were removed, post-excavation sample analysis of the remaining soil indicates that significant levels of contaminants remain in the dry well area. PCBs were also found in on-site soils and in on-site and off-site drainage ditch sediments.

I also understand that groundwater quality data have not been established for this site and the extent of contamination at and near the site requires further investigation. Two active commercial facilities currently occupy the site and the potential exists for human exposure to elevated levels of site-related contaminants. With this information, I concur with the proposal to list this site on the NYS Registry of Inactive Hazardous Waste Disposal Sites as a class 2. The signed decision form is enclosed.

If you have any questions, please contact Mark VanValkenburg of my staff at 402-7860.

Sincerely,

bary A Litwin, Director

Bureau of Environmental Exposure Investigation

Enclosure

CLASSIFICATION WORKSHEET

Site	e: 640 TROLLEY BOULEVEOUNTY: M	ONROE Region 8
2.	Hazardous waste disposed? Y (to 2) Consequential amount of Y (to 3) hazardous waste?	N (Stop) U (Stop)
3.	Part 375-1.4(a)(1) applies? N (to 4) Y (as che	U (to 4)
	a. endangered or threatened species	d. fish, shellfish, crustacea or wildlife
	b. streams, wetlands or coastal zone	e. fire, spill, explosion or toxic reaction
	c. bioaccumulation	f. proximity to people or water supplies
- 4. E	Part 375-1.4(a)(2) applies?	op) U (Cl 2a; Stop)
	Factor(s) considered in making this determine Hazardous waste remains or site drywell and extends to the hedrock poundwater (i.e. drywell use) makes it extends to the groundwater.	in the vicinity of the (4'deep). Migration to the
SUMM	ARY Consequential Hazardous Waste Yes	No Unknown
	Significant Threat Yes	No Unknown
,	Proposed Classification	Site Number 8-28-108
-	Date	Signature and Title

NEW YORK STATE DEPARTMENTS OF ENVIRONMENTAL CONSERVATION AND HEALTH INACTIVE HAZARDOUS WASTE DISPOSAL SITE PRIORITY RANKING WORKSHEET

SITE I.D. 8-28-108 SITE NAME 640 TROLLEY BOULEVARD

brioi	<u>fity I</u> - Sites for which remediation should supersede all other Class 2 rity I can be assigned if any one of the following questions can be ans rmatively.	esites. Swered
b) F	Has a public or private water supply which is currently in use been contaminated or threatened?	
r	exposure) been identified which represents a significant nealth risk as determined by DOH?	(1)
r	resulted in a health advisory?	(If 1 or more boxes are
e) I	vildlife mortality?	checked, check this box}
° <u>Priori</u>	ty II - Important Sites. Priority II will be assigned if any of the fons can be answered affirmatively.	ollowing
a) H	las a Class A or AA surface water body or a primary or principal aquifer been contaminated or threatened without	
ь) н	as bioaccumulation of site contaminants in flora or fauna	
c) A	resulted in actionable levels (but not a health advisory)?	(2)
a) H	ish/wildlife?	<pre>[If 1 or more boxes are checked, check this box]</pre>
Priori	ty III - will be assigned unless one or more of the site prioritization ia, specified above, apply to a site. After remedial needs for ty I and II sites have been accommodated, remediation of sites under ategory can be considered. If priority III, check box 3.	(3)
Enter to	the number of the priority box checked 1, 2, or 3 heres the site's priority rank.	[조] ⁽⁴⁾
LIC Facto	FACTORS	
COMMISSI	or - If the site has been identified by the International Joint ion (IJC) as a component in a remedial action plan, subtract (1) from ue in box 4 and enter the result in box 5	(5)
EDZ Facto	or - If the site is within a New York State designated Economic ment Zone (EDZ) should this fact cause the site priority to be raised?	Yes No
supporte	Support Factor - If the site has been targeted for local governmented development, should this fact cause the site priority to be	Yes No
if applic (not 2) w	"yes" box is checked, subtract 1 from the value in box 4 and enter the sto box 6. If "no" is checked, the value in box 6 equals box 4 (or box cable). If both IJC and EDZ/Community Support factors apply, only 1 will be subtracted form the value in box 4. The resultant value in box 2 than 1	5
asure (Should this site be considered a candidate for an Interim Remedial IRM) as defined by 6NYCRR Part 375-1.3n?	Yes No
If "yes",	please explain why:	
Preparer (a. mest white	

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Division of Environmental Remediation

Inactive Hazardous Waste Disposal Report

Site Name: 640 Trolley Boulevard

Site Code: 828108

Class Code: 2

Region: 8

County: Monroe

EPA Id:

Address:

640 Trolley Boulevard / Rochester, NY 14606

Latitude: 43° 10' 26" Longitude: 77° 41' 14"

Site Type: Structure

Estimated Size: 3 Acres

Site Owner / Operator Information:

Current Owner(s)

Name:

Emerson Enterprises

Current Owner(s) Address: PO Box 425 / Pittsford, NY 14534

during disposal: Emerson Enterprises

Operator(s) during disposal: Kenneth Crosby - New York, Inc.

Stated Operator(s) Address: 1001 Lexington Avenue / Rochester, NY 14606

Hazardous Waste Disposal Period: From: unknown

To: 2000

Site Description:

The site is located on the north side of Trolley Boulevard, in the Town of Gates. It is surrounded by commercial and industrial properties on the north, east and west, and a residential area is located south of Trolley Boulevard. The building on the property was constructed in the 1960s. The Clark Witbeck Company, Inc. operated a business here from the 1960s until 1992, when it declared bankruptcy. Clark Witbeck reportedly distributed abrasives, cutting tools, fasteners, and other products. In 1992, the assets of the Company were purchased by Kenneth Crosby, Inc. (KCI). KCI continued the business under the name Kenneth Crosby - New York, Inc. KCI owned three other businesses which were also located on the site; T.T. Bearing Co., Inc., Rochester Tool Corp. and Jasco Tool. KCI and the other companies moved off the property in March of 2000. In 1994, a dumpster located on site was found to have leaked, causing a spill of cutting oils, waste latex and oil based paints, and possible solvents on the ground. The spill was reported and the liquid was covered over with "speedy dry" as a corrective measure. In October of 2000, a new tenant on the property discovered an uncovered dry well as he was cutting and removing trees and brush behind a building. The dry well contained a brown oily liquid. Approximately 20 gallons of this liquid was pumped into a drum, then later sampled. Analysis revealed that the oily liquid contained elevated levels of PCBs, 1,1,1-trichloroethane and other chlorinated solvents as well as acetone and xylene. The dry well area was excavated in January of 2002. Approximately 40 cubic yards of waste was removed from this area and was disposed as hazardous waste (B007). A Preliminary Site Assessment (PSA) was completed in March 2002.

Confirmed Hazardous Waste Disposal:

Spent 1-1-1-trichloroethane (F002 Waste)

Other PCB Wastes (B007 Waste)

Quantity:

unknown

40 cubic yards (approx.)

Analytical Data Available for:

Applicable Standards Exceeded in:

Geotechnical Information:

Soil/Rock Type: Glacial till over dolomitic bedrock.

Depth to

Status:

Groundwater:

Range: 10 to 15 feet.

Legal Action: Type:

Remedial Action:

Nature of action:

Assessment of Environmental Problems:

Soils at the site, in the vicinity of the former dry-well have been found to be contaminated with PCBs and 111-trichloroethane. The groundwater is likely contaminated from the use of the dry-well as well as from the residual contamination in soils. Surface soils at the site are contaminated with PCBs in the 1 ppm range.

Assessment of Health Problems:

Exposure to site-related contaminants in drinking water is not expected as the area is served by public water. A Preliminary Site Investigatio is planned which will characterize the nature and extent of contamination. Potential human exposure pathways will be evaluated during this investigation.

Figure 1-1 SITE LOCATION MAP 640 TROLLEY BLVD PSA SITE ROCHESTER, NEW YORK

PSA Sample Summary

640 Trolley Boulevard April 1, 2002

MEDIA	CONTAMINANT OF CONCERN	CONCENTRATION RANGE (ppb)	FREQUENCY of DETECTION	SCG (ppb)
	PCBs	6 to 200,000	6 of 9	1000
	Mercury	ND to 390	5 of 9	100
Surface Soil	Pesticides	ND (1.7) to 9,060	8 of 9	
	PAHs	ND(450) to 168,310	8 of 9	
	cPAHs (subset of PAHs)	ND(.360) to 72,900	5 of 9	
	PCBs	1800	1 of 5	10,000
Subsurface Soil	Pesticides	ND(2) to 134	4 of 5	
SOII Well	PAHs	ND(360) to 17,460	4 of 5	
Boreholes	cPAHs (subset of PAHs)	ND(330) to 3740	1 of 5	
	PCBs	ND(42) to 2,600	2 of 5	
C - 1:4	Pesticides	25 to 612	5 of 5	
Sediment	PAHs	2,972 to 384,300	5 of 5	
	cPAHs (subset of PAHs)	ND(13000) to 175,100	4 of 5	
	1,1,1 TCA	ND(10) to 240	2 of 5	5
Groundwater	1,1 DCA	ND(10) to 83	2 of 5	5
	Pesticides	0.191 to 0.304	2 of 2	
Surface	PAHs	ND(.010) to 58	1 of 2	
Water	cPAHs (subset of PAHs)	ND(.010) to 19	1 of 2	
Geoprobe Soil Samples	PCBs	500 to 15,000	22 of 22	1000
	PCBs	36,000 to 1,400,000	7 of 7	1000
	1,1,1 TCA	ND(1400) to 190,000	5 of 7	800
Test Trench	Pesticides	1,275 to 57,078	7 of 7	2000
Soils	1,1 DCA	ND(11) to 45,000	4 of 7	200
	PAHs	ND(11000) to 32,690	5 of 7	
	cPAHs (subset of PAHs)	ND (330) to 5,790	3 of 7	

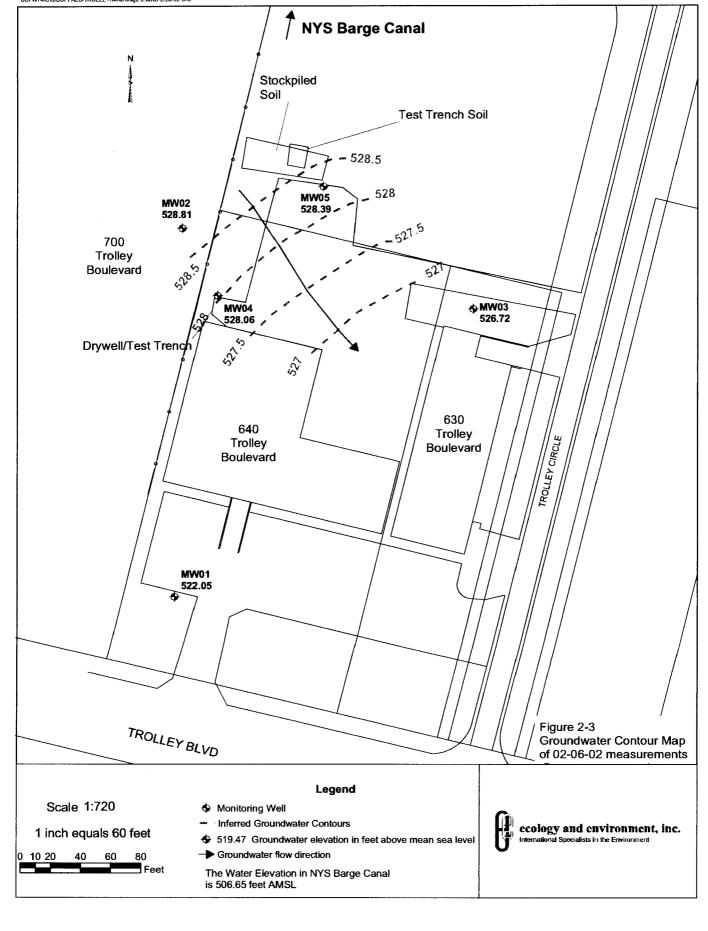


Table 2-11 Summary of Positive Analytical Results for the Solid Waste Sample

Analyte	Sample ID: Date:	STOCKPILE-DRY 11/16/01
Pesticide/PCB by Method OLM04.2 (μ	g/Kg)	
Aroclor 1254		1900000 J
4,4´-DDE		3000 J
4,4'-DDT		25000 J
Aldrin		160 J
Endrin		28000 J
Endrin ketone		220 J
gamma-Chlordane		24000 Ј
Heptachlor epoxide		17000 J
TCLP Pesticides by Method 8081A (m	g/L)	
No TCLP Pesticides detected in the l	DW sample	
TCLP SVOC by Method 8270C (mg/L)		
No TCLP SVOCs detected in the ID	W sample	
TCLP VOCs by Method 8260B(mg/L)		
No TCLP VOCs detected in the IDV	V sample	
TCLP Metals by ICP Method 6010B/74	70A (mg/L)	
Arsenic		0.021 J
Barium		0.32 J
Chromium		0.010 J
Lead		0.018 J
Selenium		0.031 J
Silver		0.0091 J
Ignitability (Flashpoint) by Method 10	30 (mm/sec)	
Ignitability		Did Not Ignite

Key:

 $CaCO_3$ = Calcium carbonate.

DRY = Drywell.

IDW = Investigation-derived waste.

J = Estimated value.

mg/L = Milligrams per liter.

mm/sec = Millimeters per second.

PCB = Polychlorinated biphenyls.

SVOC = Semivolatile organic compound.

TCLP = Toxicity Characteristic Leachate Procedure.

VOC = Volatile organic compound.

 $\mu g/Kg = Micrograms per kilogram.$

Table 3-1 Summary of Positive Analytical Results for the Sediment Samples, 640 Trolley Boulevard

NYSDEC Sediment		Sample ID:	640-SD01	640-SD02	640-5D03	640-SD04	640-SD04/D	640-SD06
Screening		Depth (in):	0 - 2	0-2	0-2	0-2	0-2	0-2
Criteria 1	Analyte	Date;	11/06/01	11/07/01	11/07/01	11/07/01	11/07/01	11/16/01
VOCs by Mei	VOCs by Method OLM04.2 (µg/Kg)							
NA	Acctonc		19	13 U	13 U	13 U	13 U	14 U
Metals by Me	Metals by Method ILM04.0 (mg/Kg)							
NA	Aluminum		5420	1770	5630	4930	4420	5180
2	Antimony				2.0 J			
9	Arsenic							
NA	Barium		41.8 J	12.1 J	41.0 J	71.4	65.1	58.5
NA	Beryllium		0.39 J	0.15 U	0.45 J	0.37 J	0.33 J	0.39 J
9.0	Cadmium		4.7	0.32 J	0.37 J			
ΝA	Calcium		72800	00606	43900	92600	87100	94100
26	Chromium		6'6	4.4	9.4	16.5	15.5	21.6
NA	Cobalt		4.5.5	2.7 J	4,4 J	6.4.1	5.1 J	4.6 J
16	Copper			10.3	10.2			
20000	Iron		14300	9350	13200	15200	13200	11800
31	Lead			14.7	30.2			
NA	Magnesium		34900	47500	21000	40800	40600	43600
460	Manganese		266	252	309			243
0.15	Mercury		0.077 U	0.053 U	0.067 U	0.11 J	0.063 U	
91	Nickel			4.7 J	7.6 J	12.8	11.0	13.7
NA	Potassium		826 J	492 J	649 J	1120 J	892 J	1040 J
NA	Selenium		2.2	2.7	2.7	2.1	2.5	1.9 J
1	Silver							
NA	Sodium		169 U	159 U	175 U	259 U	237 U	148 J
NA	Thallium		2.0 J	2.2 U	2.8 U	3.5 U	1.3 U	1.4 U
NA	Vanadium		11.3 J	\$.0 J	11.7 J	11.0 J	9.8 J	18.5
120	Zinc	71		40.5 J	68.4 J			
Total Cyanid	Total Cyanide by ILM04.0 (mg/Kg)							
NA	Cyanide		0.076 U	0.11 J	0.14 J	0.38 J	0.32 J	0.13 J
Total Organia	Total Organic Carbon (mg/Kg)							
NA	Total Organic Carbon		45300	61200	23900	85800	78400	NS

¹ New York State Department of Environmental Conservation, Guidance for Screening Contaminated Sediments, 1999. The criteria for organic compounds are calculated based on the average TOC of 5.89 %. The lowest value from the available criteria was used (lowest effect level for the metals, and the lowest of human health bioacumulation, wildlife bioaccumulation, benthic life chronic and acute toxicity).

Key:

NS = Not sampled for this analysis. PCB = Polychlorinated biphenyls. mg/Kg = Milligrams per kilogram. NA = Criterion not available. J = Estimated value.

SVOC = Semivolatile organic compound.

VOC = Volatile organic compound. µg/Kg = Micrograms per kilogram.

U = Not detected at the reported value.

Table 3-2 Summary of Positive Analytical Results for Surface Water Samples, 640 Trolley Boulevard

				NYSDEC	
NYSDEC Class D Surface		Sample ID:	640-SW02	Groundwater	640-SW05
Water Criteria	Analyte	Date:	11/12/01	Criteria ²	11/12/01
Pesticide/PCB by Method OLM04.2 (µg/L)	04.2 (µg/L)				
0.000007 [H(FC)]	4,4'-DDE			0.2	0.10 U
0.00001 [H(FC)]	4,4'-DDT			0.2	0.10 U
0.007 [H(FC)]	beta-BHC		0.014 U	0.04	0.022 J
0.0000006 [H(FC)]	Dieldrin		0.10 U	0.004	
0.22 (standard for endosulfan)	Endosulfan I		0.023 J	NA	960'0
0.22 (standard for endosulfan)	Endosulfan II		0.10 U	NA	0.048 J
0.22 (standard for endosulfan)	Endosulfan sulfate		0.078 J	NA	0.10 U
0.002 [H(FC)]	Endrin			QN	
NA	Endrin ketone		0.10 U	53	0.041 J
0.0003 [H(FC)]	Heptachlor epoxide			0.03	0.032 U
NA	Methoxychlor		0.17 J	35	0.049 U
Semivolatile Organics by Method OLM04.2 (ug/L	d OLM04.2 (µg/L)				
NA	4-Nitrophenol		25 U	ŊĄ	3.5
0.23 ³	Benz(a)anthracene		10 U	0.002 3	
0.0012 ³	Benzo(a)pyrene		10 U	ND	
NA	Benzo(b)fluoranthene		10 U	0.002 3	
NA	Benzo(g,h.i)perylene		10 U	NA	5.5
Ϋ́	Benzo(k)fluoranthene		10 U	0.002 3	
NA	Bis(2-ethylhexyl)phthalate	te	10 U	S	5.3
NA	Carbazole		10 U	NA	1.1
NA	Chrysene		10 U	0.002 3	
NA	Dibenz(a,h)anthracene		10 U	NA	1.5
NA	Fluoranthene		10 U	20	10
NA	Indeno(1,2,3-cd)pyrene		10 U	0.002 ³	
45 3	Phenanthrene		10 U	50 ³	5 J
42 ³	Pyrene		10 U	50 ³	63
VOCs by Method OLM04.2 (µg/L)	/L)				
NA	No VOCs were detected in the surface water samples	in the surface water s	amples		

Table 3-2 Summary of Positive Analytical Results for Surface Water Samples, 640 Trolley Boulevard

				NYSDEC	
NYSDEC Class D Surface		Sample ID:	640-SW02	Groundwater	640-SW05
Water Criteria 1	Analyte	Date:	11/12/01	Criteria ²	11/12/01
Metals by Method ILM04.0 (µg/L	[]				
100	Aluminum		444 U	NA	2840 J
340	Arsenic		12.9	25	7.6 J
NA	Barium		32.3 J	1,000	38.4 J
NA	Beryllium		0.24 U	2	0.33 J
NA	Calcium		109000 J	NA	45900 J
1541.1 CV	Chromium		0.98 U	50	9.6 J
42.22 CV	Соррег		5.7 U	200	27.1
300	Iron			300	
353.95 CV	Lead		12.3	25	17.4
NA	Magnesium		22900	35,000 3	0688
NA	Manganese		75.7 J	300	113.5
1308.7 CV	Nickel		2.0 J	100	6.4 J
NA	Potassium		6620	NA	3660 J
NA	Selenium		5.6	10	4.4 U
NA	Sodium		30000	20,000	3220 J
190	Vanadium		0.62 U	NA	4.4 J
328. 03 CV	Zinc		21.8 J	2,0003	149 J
Fotal Cyanide by Method ILM04.0 (µg/L)	4.0 (µg/L)				
22	Cyanide		0.99 J	200	1.4 J
Fotal Hardness by Method EPA 130.2 (mg/L)	130.2 (mg/L)				
AN	Hardness (As CaCO3)		337	NA	SN

¹New York State Department of Environmental Conservation, Technical and Operational Guidance Series1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, 1998. Class D Surface Water Standards and Guidance Values.

²New York State Department of Environmental Conservation, Technical and Operational Guidance Series 1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, 1998. Class GA Groundwater Standards and Guidance Values.

³ Guidance Value is listed for this parameter.

CaCO₃ = Calcium carbonate.

CV = Calculated value of standard based on sample hardness.

H(FC) = The human consumption of fish standard was available/used.

J = Estimated value.

mg/L = Milligrams per liter.

NA = Criteria not available

ND = The detection limit is the standard for this compound.

U = Not detected at the reported value.SVOC = Semivolatile organic compound.

NS = Not sampled for this analysis.

Key:

PCB = Polychlorinated biphenyls.

VOC = Volatile organic compound.

μg/L = Micrograms per liter.

Table 3-3 Summary of Positive Analytical Results for Surface Soil Samples, 640 Trolley Boulevard

NYSDEC TAGM	4		640 DBV 74	CAD Adjatos 74	SAG BRIAIDS 74	EAD PRINTOS 74	EAD METAIDE 74	640 0004	640 8800	640 8502	CAN CENTIN	640 CC04
4046 SOII Cleanup		(inches):	0-2	0 - 2	10.8 - 14.4	0 - 2	4.8 - 9.6	0 - 2	0 - 2	24 - 26	24 - 26	21.6 - 26.4
Objectives ¹	Analyte		11/08/01	11/05/01	11/06/01	11/02/01	11/08/01	11/05/01	11/02/01	11/05/01	11/05/01	11/08/01
Pesticide/PCB	Pesticide/PCB by Method OLM04.2 (µg/kg)	(6)		40011	109	32 11	430 I	840	1 095			144.1
2900	4.4'-DDD		710.3	180	0.18 U	3.2 U	1.8 U	94.6 U	3.5 U	21 U	21 U	0.23 U
2100	4,4'-DDE		210 U	11.3	0.32 U	9.9.1	3.7 U	4.6 U	3.5 U	21 U	21 U	2.4 U
2100	4,4'-DDT		1900 J	46 J	3.6 U	8.0 J	3.7 U	4.6 U	3.5 U	510 J	430 J	3.4 U
41	Aldrin		110 U	210 U	0.14 U	11.5	1.9 U	2.4 U	14	11 U	11 U	1.2 U
540	alpha-Chlordane		110 U	480	0.13 U	4.1 J	1.9 U	1.6 U	1.8 U	וומ	11 U	0.030 U
200	beta-BHC		110 U	21 U	1.9 U	U.7.U	1.9 U	2.4 U	0.87 J	11 U	11 U	1.7 U
44	Dieldrin		210 U		3.6 U	3.2 U	3.7 U	4.6 U	3.5 U	21 U	21 U	2.0 U
006	Endosulfan II		210 U	40 U	0.11 U	4.1 J	0.21 U	0.80 U	3.5 U	5.7 U	4.4 U	0.048 U
000	Endosulfan sulfate		210 U	4.7 J	1.1 U	32 U	4.9 J	12 J	11.3	390 J	290 J	3.4 U
90	Endrin			32 J	0.79 U	3.2 U	4.9 J	4	7.3 J			3.4 U
NA	Endrin aldehyde		210 U	18 J	1.4 J	5.0 U	37 J	98 J	66 J	21 U	21 U	3.4 U
NA	Endrin ketone		210 U	40 U	1.2 U	48	0.93 J	2.4 J	12	21 U	21 U	1.2 U
99	gamma-BHC		110 U	4.6 U	0.18 U	0.69 J	1.9 U	0.34 U	0.71 U	1.6 U	0.084 U	1.7 U
240	gamma-Chlordane			240	0.18 U	1.8 U	6.3 J	14 J	9.3 J	500 J	430 J	1.7 U
100	Heptachlor		81 U	4.3 U	1.9 U	1.7 U	0.40 J	0.92 J	1.1 U	2.6 J	12.3	0.27 U
20	Heptachlor cpoxide				0.41 U		4.0 J	7.5	11			1.7 U
NA A	Methoxychlor		1100 U	130 U	0.56 U	17.0	19 U	24 U	32 J	110 U	110 U	1.7 U
SVOCs by Meth	SVOCs by Method OLM04.2 (µg/Kg)											
20000	Acenaphthene		100 J	430 J	370 U	1600 J	410 U	450 U	340 U	430 U	200 J	360 ∪
41000	Accnaphthylene		59 J	1500 J	370 U	3400 U	410 U	450 U	340 U	430 U	400 U	360 U
NA	Acetophenone		470 U	2400 U	370 U	3400 U	410 U	450 U	51 J	430 U	42 J	360 U
20000	Anthracene		310 J	2700	370 U	3800	410 U	450 U	49 J	430 U	610 J	360 U
224	Benz(a)anthracene				370 U		410 U	450 U	180.5	160]		360 U
AN -	Benzaldehyde		6/3	2400 ∪	3/0 0	3400 U	410 U	450 U	340 U	430 ∪	400 0	360 U
1001	Denzo(h)fl.comthone				3/00		410.0	450 0	200	130 I		360 U
20000	Benzo(e,h.i)nervlene		200.1	4200	370 11	7100	41017	45011	130 I	140 1	330 I	36017
1100	Benzo(k)fluoranthene		470 U		370 U		410 U	450 U	400	150 J	1000	360 U
20000	Bis(2-ethylhexyl)phthalate	te	470 U	2400 U	360 J	3400 U	410 U	450 U	200 J	430 U	400 U	360 U
20000	Buty benzy phthalate		470 U	2400 U	370 U	3400 U	90 J	450 U	340 U	430 U	400 U	69 J
NA	Carbazole		270 J	2100 J	370 U	2000 J	410 U	450 U	340 U	430 U	420 J	360 U
400	Chrysene				0.02E		410 U	450 U	290 J	200 J		360 U
4	Dibenz(a,h)anthracene				370 U		410 U	450 U	340 U	430 U	400 U	360 U
6200	Dibenzofuran		51.5	2400 U	370 U	610 J	410 U	450 U	340 U	430 U	120 J	360 U
20000	Fluoranthene		4800 J	33000 J	370 U	26000	410 U	450 U	460	370 J	4100 J	360 U
20000	Fluorene		130 J	500 J	370 U	1400 J	410 U	450 U	340 ∪	430 U	230 J	360 U
3200	Indeno(1,2,3-cd)pyrene		280 J		370 U	2600 J	410 U	450 U	140 J	150 J	460 J	360 U
1000	Pentachlorophenol		1200 U	O 0009	920 U	2600 U	1000 U	1100 U	39 J	1100 U	1000 I	910 U
20000	Phenanthrene		1400	0066	370 U	15000	410 U	450 U	170 J	190 J	2900 J	360 U
20000	Pyrene		066	14000	370 U	19000	410 U	420 U	440	270 J	1600 J	360 U

Table 3-3 Summary of Positive Analytical Results for Surface Soil Samples, 640 Trolley Boulevard

					•							
NYSDEC TAGM	M											
4046 Soil		Sample ID:	640-DRY-Z1	640-MW01-Z1	640-MW02-Z1	640-MW03-Z1	640-MW05-Z1	640-SS01	640-SS02	640-5503	640-SS03/D	640-5504
Cleanup		(inches):	0 - 2	0 - 2	10.8 - 14.4	0-2	4.8 - 9.6	0-2	0 - 2	24 - 26	24 - 26	21.6 - 26.4
Objectives ¹	Analyte	Date:	11/08/01	11/05/01	11/06/01	11/07/01	11/08/01	11/05/01	11/05/01	11/05/01	11/05/01	11/08/01
VOCs by Metho	VOCs by Method OLM04.2 (µg/Kg)											
200	Acetone		14 U	13 U	61	36 J	13 U	14 U	11 U	13 U	13 U	9.3
2500	Ethylbenzene		14 U	13 U	11 U	32 J	13 U	14 U	11 U	13 U	13 U	11 U
NA	Isopropylbenzene		14 U	13 U	11 U	130	13 U	14 U	11 U	13 U	13 U	11 U
NA	Methylcyclohexane		14 U	13 U	11 U	57 J	UEI	14 U	11 U	13 U	13 U	11 U
Metals by Metho	Metals by Method ILM64.0 (mg/Kg)											
NA	Aluminum		8390	3940	7670	4600	7830	7470	1150	0///	8330	3670
NA	Antimony		4.2 J	2.0 J	5.2 J	2.4 J	3.1 J	3.5 J	1.1 J	6.2.1	4.7 J	1.0 U
7.5	Arsenic		4.2	8.9	5.2	4.4	1.9 J	4.0	1.1 U		4.2	7.2
300	Barium		67.8	42.1 J	65.7	47.8	61.5	47.2 J	14.8 J	166 J	71.4 J	25.6 J
ΝΑ	Beryllium		0.58 U	0.37 J	0.63 J	0.35 J	0.63 U	0.58 J	0.079 U	0.75 J	0.59 J	0.23 U
_	Cadmium				0.30 J	0.24 J	0.56 J	0.28 J	0.55 J			0.34 J
NA	Calcium		22700	50100	21700	65600	5910	77000	145000	0/68	0606	88000
01	Chromium					7.3	10.0	6.4	8.8			5.6
30	Cobalt		5.2 J	3.6 J	7.3 J	4.0 J	3.5 J	4.4 J	1.6 J	11.3 J	6.3 J	4.0 J
25	Соррег		19.5		6.5	9.1	7.7	4.9 J	9.6	20.3 J		10.1
2000	Iron		3									
NA	Lead		54.2 J	179	22.6	19.2	31.0 J	17.7	25.5	59.7	108	11.2 J
ΑΝ	Magnesium		8260	29800	13100	27700	2880	43900	57800	3430	4210	26200
Ϋ́	Manganese		304 J	319	297	359	174 J	359	261	2570 J	505 J	336 J
0.1	Mercury				0.043 U	0.076 J	0.060 U	0.056 J	0.051 U			0.048 U
13	Nickel		7.7 J	9.1 J	9.7	6.0 J	5.9 J	7.8 J	3.8 J	12.3	8.9 J	7.5 J
NA	Potassium		730 J	335 J	357 J	469 J	514 J	505 J	397 J	425 J	556 J	703 J
2	Selenium		1.2 U				1.0 U		0.84 U			1.6 J
NA	Silver		1.5 J	2.8	0.23 J	0.90 J	0.18 U	1.4.1	2.1	1.2 J	0.80	0.50 U
NA	Sodium		190 J	256 U	169 U	118 U	184 J	197 U	157 U	76.6 U	93.8 U	140 J
NA	Thallium		1.8 U	3.6 J	0.96 U	0.97 U	1.6 U	1.8.1	1.5 J	1.4 U	1.2 U	1.5 U
150	Vanadium		15.8	13.1	19.7	9.4	13.6	12.5 J	5.1 J	17.1	16.2	6.6 J
50	Zinc							16.5 J				6.2.1
Total Cyanide b	Total Cyanide by ILM04.0 (mg/Kg)											
NA	Cyanide		0.10 J	0.23 J	0.057 U	0.081 J	0.63 UJ	0.070 U	0.056 U	0.18 J	0.11 J	0.56 UJ

¹ New York State Department of Environmental Conservation. Technical and Administrative Guidance Memornadum #4046: Determination of Soil Cleanup Objectives and Cleanup Levels, 1994. Key:

J = Estimated value.

mg/Kg = Milligrams per kilogram, NA = Criterion not available.

PCB = Polychlorinated biphenyls. SVOC = Semivolatile organic compound. U = Not detected at the reported value.

 $VOC = Volatile organic compound. \\ \mu g/Kg = Micrograms per kilogram.$

Table 3-4 Summary of Positive Analytical Results for the Subsurface Soil Samples, 640 Trolley Boulevard

		Depth (T):	5 - 7	2.2 - 2.8	2.8 - 3.7	2 - 3.6	2.5 - 3.5
Objectives ¹	Analyte	Date:	11/06/01	11/06/01	11/07/01	11/02/01	02/06/02
sticide/PCB by M	Pesticide/PCB by Method OLM04.2 (µg/Kg)						
10000	Aroclor 1254		33 U	19E	38 U	1800 J	Ω \$ε
2900	4,4'-DDD		0.51 U	O 260'0	0.68 J	10 J	3.5 U
2100	4,4'-DDE		0.56 J	0.66 J	O 66'0	3.6 U	3.5 U
2100	4,4'-DDT		3.3 U	2.3 U	2.5 J	31 J	3.5 U
41	Aldrin		1.7 U	1.5 U	1.1 J	1.8 U	1.8 U
540	alpha-Chlordane		1.2 J	0.59 U	2.0 U	1.8 U	1.8 ∪
44	Dieldrin		9.9 J	3.6 U	1.4 U	3.6 U	3.5 U
006	Endosulfan II		0.35 U	0.29 U	0.51 J	3.6 U	3.5 U
1000	Endosulfan sulfate		1.3 U	O 66.0	2.0 J	3.6 U	3.5 U
100	Endrin		0.82 J	2.5 U	3.8 U	28 J	3.5 U
NA	Endrin ketone		0.35 U	1.2 U	3.3 U	0.92 J	3.5 U
540	gamma-Chlordane		0.96 J	0.20 U	1.2 U	47 J	3.5 U
20	Heptachlor epoxide		1.7 J	0.40 J	1.8 J	17.5	1.8 U
NA	Methoxychlor		0.47 U	0.26 U	2.7 U	18 U	18 U
SVOCs by Method OLM04.2 (µg/Kg)	LM04.2 (µg/Kg)						
NA	1,1'-Biphenyl		330 U	360 U	870	360 U	360 U
36400	2-Methylnaphthalene		330 U	360 U	6100 J	360 U	360 U
50000	Acenaphthene		330 U	360 U	330 J	360 U	360 U
41000	Acenaphthylene		330 U	360 U	390 U	360 U	360 U
NA	Acetophenone		330 U	45 J	390 U	360 U	360 U
20000	Anthracene		330 U	360 U	340 J	360 U	O 098
224	Benz(a)anthracene		330 U	360 U		360 U	O 098
61	Benzo(a)pyrene		330 U	360 U		360 U	360 U
1100	Benzo(b)fluoranthene		330 U	360 U	460	360 U	360 U
20000	Benzo(g,h,i)perylene		330 U	360 U	820	360 U	O 09E
1100	Benzo(k)fluoranthene		330 U	360 U	580	360 U	360 U
20000	Bis(2-ethylhexyl)phthalate		68 J	55 J	390 U	360 U	360 U
20000	Butyl benzyl phthalate		330 U	360 U	390 U	360 U	360 U
NA	Carbazole		330 U	360 U	200 J	360 U	360 U
400	Chrysene		330 U	360 U		360 U	360 U
14	Dibenz(a,h)anthracene		330 U	360 U		360 U	360 U
6200	Dibenzofuran		330 U	360 U	250 J	360 U	360 U
20000	Fluoranthene		38 J	360 U	1200	360 U	360 U
20000	Fluorene		330 U	360 U	270 J	360 U	360 U
3200	Indeno(1,2,3-cd)pyrene		330 U	360 U	810	360 U	360 U
13000	Naphthalene		330 U	360 U	1100	360 U	360 U
20000	Phenanthrene		330 U	360 U	100	360 U	360 U
30	Phenol		330 U	360 U	390 U		360 U
50000	Pyrene		34 J	360 U	1200	360 U	360 U
VOCs by Method OLM04.2 (µg/Kg)	M04.2 (ug/Kg)						
	/B B	1					

02:000699_NY08_03_02-B0898 S_3 Tables.xls - Table 3-4 - 3/28'02

Table 3-4 Summary of Positive Analytical Results for the Subsurface Soil Samples, 640 Trolley Boulevard

						77-004444-040
4046 Soil Cleanup	Depth (ft):		2.2 - 2.8	2.8 - 3.7	2 - 3.6	2.5 - 3.5
Objectives ¹	Analyte Da	Date: 11/06/01	11/06/01	11/07/01	11/07/01	02/06/02
200	1,1-Dichloroethane	11 U	1110	12 U	1300 U	11 U
400 [1,1	1,1-Dichloroethene	11 U	UII	12 U	1300 U	11 U
8500	1,4-Dichlorobenzene	11 U	11 U	12 U	1300 U	11 U
200 Ac	Acetone	11 U	11 U	12 U		11 U
5500 Et	Ethylbenzene	11 U	11.0	12 U	1300 U	110
NA Me	Methylcyclohexane	11 U	1.3	12 U	1300 U	110
1500 To	Toluene	11 U	11 U	12 U	1300 U	11 U
1200 X ₃	Xylenes, Total	11 U	11 U	12 U	1300 U	11 U
Metals by Method ILM04.0 (mg/Kg)	4.0 (mg/Kg)					
NA AI	Aluminum	5320	2030	4310	1560	1880
NA Ar	Antimony	3.4 J	13.7 J	3.0 J	1.1 5	0.90
7.5 Ar	Arsenic	6.9	3.2	7.3	4.3	9.9
300 Ba	Barium	31.4 J	16.8 J	33.3 J	12.6 J	14.7 J
NA Be	Beryllium	0.41 J	0.18 J	0.31 J	0.11 U	0.14 U
1 Ca	Cadmium	0.22 J	0.27 J	0.13 J	0.038 U	0.30 J
NA Ca	Calcium	111000	146000	58100	86300	45200
10 Ch	Chromium	8.5	5.5	7.3	6.7	3.7
	Cobalt	3.2 J	4.3 J	5.6 J	1.9 J	2.5 J
	Copper	8.8	4.3 J	7.5	3.0 J	8.2
2000 Iron	nc					
NA Le	Lead	23.9	16.2	9.3	4.4	12.2 J
NA M	Magnesium	67100	70300	23300	42300	38500
NA	Manganese	209	344	585	288	244 J
0.1 Mc	Mercury	0.052 U	0.044 U	0.043 U	0.045 U	0.052 U
13 21	Nickel	7.0 J	4.8 J	9.2 J	3.2 J	3.9 J
NA Po	Potassium	491 J	618 J	374 J	406 J	453 J
2 Se	Selenium		0.88 U	1.5	1.6	1.1 J
NA Sil	Silver	1.0 J	4.1.3	1.1 J	1.2 J	0.46 U
NA So	Sodium	402 U	215 U	113 U	269 U	142 J
	Thallium	1.6 J	1.0 U	1.2 U	1.0 U	1.4 U
	Vanadium	8.4 J	5.7 J	10.5 J	4.7 J	4.2 U
20 Zinc	nc	5.4 U	16.6 J	15.4 J	0.093 U	0.070 U
Fotal Cyanide by ILM04.0 (mg/Kg)	.0 (mg/Kg)					
Y.V			** / * 0			

Table 3-4 Summary of Positive Analytical Results for the Subsurface Soil Samples, 640 Trolley Boulevard

NYSDEC TAGM		Sample ID:	640-DRY-Z2	640-DRY-Z3	640-DRY-Z4	EAST WALL	NORTH WALL SOUTH WALL WEST WALL	SOUTH WALL	WEST WALL
4046 Soil Cleanup	dı	Depth (ft):	2 - 2.75	2.75 - 3.25	3.25 - 3.75	0 - 3.5	0 - 3.5	0 - 3.5	0 - 3.5
Objectives ¹	Analyte	Date:	11/16/01	11/16/01	11/16/01	11/19/01	11/19/01	11/19/01	11/19/01
Pesticide/PCB by	Pesticide/PCB by Method OLM04.2 (µg/Kg)								
10000	Aroclor 1254								
2900	4,4′-DDD		200 U	360 U	3700 U	86 J	41 U	34 U	180 U
2100	4,4'-DDE		1900 J	360 U	370 U	19 U	41 U	190 J	2000 J
2100	4,4'-DDT					400 J	1300 J	1300 J	
41	Aldrin			U 081	190 U	0.6 U	21 U	10 J	35 J
540	alpha-Chlordane		260 U	180 U	190 U	0.6 U	21 U	J 7 U	00 N
44	Dieldrin		200 U	360 U	370 U	19 U	41 U	34 U	180 U
006	Endosulfan II		200 U	360 ∪	370 U	2.0 ∪	8.6 U	34 U	49 U
1000	Endosulfan sulfate		200 U	360 U	370 U	U 61	41 U	34 U	180 U
100	Endrin								
NA	Endrin ketone		180 J	360 U	230 J	U 61	23 J	16 J	99 J
540	gamma-Chlordane				190 U	430 J			
20	Heptachlor epoxide								
NA	Methoxychlor		520 J	1800 U	f 0/1	Ω96	110 J	54 J	440 J
SVOCs by Method OLM04.2 (µg/Kg)	OLM04.2 (µg/Kg)								
NA	1,1'-Biphenyl		2900 J	11000 U	11000 U	360 U	2000 U	330 U	O 089
36400	2-Methylnaphthalene		0069	11000 U	11000 U	360 U	2000 U	330 U	O 089
20000	Acenaphthene		5200 U	11000 U	11000 U	360 U	2000 U	330 U	089 U
41000	Acenaphthylene		5200 ∪	11000 U	11000 U	360 ∪	2000 U	330 U	100 J
AN	Acetophenone		5200 U	11000 U	11000 U	88 J	O000	74 J	95 J
20000	Anthracene		5200 U	11000 U	U 000 I I	50 J	വ 0002	330 U	770
224	Benz(a)anthracene			11000 U	U 00011	95 J	O0007	330 U	160 J
61	Benzo(a)pyrene			11000 U	U 00011		7000 U	330 U	
1100	Benzo(b)fluoranthene			11000 U	11000 U	150 J	2000 U	330 U	280 J
20000	Benzo(g,h,i)perylene		5200 U	11000 U	11000 U	360 U	Z000 U	330 U	120 J
1100	Benzo(k)fluoranthene		5200 U	11000 U	11000 U	360 U	2000 U	330 U	260 J
20000	Bis(2-ethylhexyl)phthalate		5200 U	11000 U	11000 U	360 U	2000 U	330 U	120 J
20000	Butyl benzyl phthalate		5200 U	11000 U	11000 U	360 U	2000 U	330 U	89 J
NA	Carbazole		5200 U	11000 U	11000 U	38 J	2000 U	330 U	089 D
400	Chrysene			11000 U	11000 U	280 J	2000 U	330 U	230 J
14	Dibenz(a,h)anthracene		5200 U	11000 U	11000 U	360 U	2000 U	330 U	089 U
6200	Dibenzofuran		5200 U	11000 U	11000 U	360 U	2000 U	330 U	089 U
50000	Fluoranthene		4100 J	11000 U	11000 U	420	290 J	330 U	540 J
20000	Fluorene		5200 U	1 000 L	U 00011	360 U	2000 U	330 U	O 089
3200	Indeno(1,2,3-cd)pyrene		5200 U	11000 U	1 1000 U	360 U	2000 U	330 U	130 J
13000	Naphthalene		4800 J	11000 U	U 00011	360 U	2000 U	330 U	089 N
20000	Phenanthrene		5200 U	11000 U	11000 U	390	2000 U	330 U	250 J
30	Phenol			11000 U	11000 U		7000 U	330 N	O 089
20000	Pyrene		1100 J	11000 U	11000 U	120 J	230 J	330 U	200 J
VOCs by Method OLM04.2 (μg/Kg)	ΣΕΜ04.2 (μg/Kg)								
800	1,1,1-Trichloroethane					1400 U	1500 U	74	
	7_7								

02:000699_NY08_03_02-B0898 S_3 Tables.xls - Table 3.4 - 3/28'02

Table 3-4 Summary of Positive Analytical Results for the Subsurface Soil Samples, 640 Trolley Boulevard

NYSDEC TAGM		Sample ID:	640-DRY-Z2	640-DRY-Z3	640-DRY-Z4	EAST WALL	NORTH WALL SOUTH WALL	SOUTH WALL	WEST WALL
4046 Soil Cleanup		Depth (ft):	2 - 2.75	2.75 - 3.25	3.25 - 3.75	0 - 3.5	0 - 3.5	0 - 3.5	0 - 3.5
Objectives ¹	Analyte	Date:	11/16/01	11/16/01	11/16/01	11/19/01	11/19/01	11/19/01	11/19/01
200	1,1-Dichloroethane					1400 U	1500 U	11 U	150 J
400	1,1-Dichloroethene		O 0076	1300 U		1400 U	1500 U	11 U	1300 U
8200	1,4-Dichlorobenzene		O 0076	210 J	O 0069	1400 U	1500 U	11 U	1300 U
200	Acetone			1300 U				11 U	
5500	Ethylbenzene		1600 J	1300 U	O 0069	1400 U	1 200 I	2 J	1300 U
NA	Methylcyclohexane		6600 J	1300 U	O 0069	1400 U	N 00\$1	5 J	1300 U
1500	Toluene			1300 U	O 0069	1400 U	1500 U	11 U	1300 U
1200	Xylenes, Total			170 J	O 0069	1400 U	1200 U	81	1300 U
Metals by Method ILM04.0 (mg/Kg)	.M04.0 (mg/Kg)								
NA	Aluminum		4420	2220	2110	15100	12200	5460	8220
ΑN	Antimony		3.1 J	1.1 J	0.80 U	0.81 U	O 83 U	0.73 U	0.77 U
7.5	Arsenic				6.9	6,3	i. Note	0'9	7.2
300	Barium		41.8 J	20.7 J	16.8 J	84.7	78.4	35.5 J	58.7
NA	Beryllium		0.33 J	0.15 J	0.12 J	0.75 J	0.59 J	0.33 U	0.54 J
1	Cadmium		0.91 J	0.35 J	0.25 J	0.46 J	0.73 J	0.42 J	0.51 J
NA	Calcium		00969	89300	74600	26000	16800	92200	51000
10	Chromium		6.6	4.2	4.1			7.5	
30	Cobalt		3.9 J	2.7 J	2.1 J	7.1 J	5.8 J	3.3 J	5.4 J
25	Copper		13.7	8.2	7.5	10.2	9.9	8.0	7.9
2000	Iron								
NA	Lead		35.4	24.7	7.6	22.9	455	11.6	20.0
NA	Magnesium		31700	39600	26000	15800	9040	35100	27600
NA	Manganese		357	292	254	286	621	277	320
0.1	Mercury		0.068 U	0.053 U	0.058 U	0.059 U	. 1. 1. 1. A	0.050 U	0.046 U
13	Nickel		6.5 J	4.0 J	3.8 J	12.9	7.7 J	6.1 J	9.1
NA	Potassium		762 J	531 J	468 J	1940	1020 J	1190	1640
2	Selenium		1.3 U		1.0 U	1.8 J	1.7 J	1.4 J	1.2 J
ΝA	Silver		3.2 J	0.49 U	0.61 U	0.44 ∪	1.5.1	1.2 U	0.57 U
NA	Sodium		1130 J	1270	2430	913 J	257 J	216 J	1200
NA	Thallium		1.5 U	1.2 U	1.2 U	2.8	3.2	1.1 U	1.8 J
150	Vanadium		9.5 J	4.2 J	3.7 J	21.5	18.8	8.4 J	14.8
20	Zinc			8.0 J	15.9 J			17.1 J	
Total Cyanide by ILM04.0 (mg/Kg)	M04.0 (mg/Kg)								
NA	Cyanide		0.89	0.92	2.0	0.19 J	0.24 J	0.091 J	0.41 J

Table 3-5 Summary of Positive Analytical Results for Groundwater Samples, 640 Trolley Boulevard

NYSDEC Water			40-MW01	640-MW02	640-MW02/D	640-MW03	640-MW04	640-MW05
Criteria	Analyte	Date: 1	11/20/01	11/20/01	11/20/01	11/20/01	11/20/01	11/20/01
Pesticide/PCB by Method OLM04.2 (µg/L)	hod OLM04.2 (μg/L)							
NA	No Pesticides or PCBs were detected in the groundwater samples	cted in the groundw.	ater samples					
Semivolatile Organic	Semivolatile Organics by Method OLM04.2 (µg/L)							
5	Bis(2-ethylhexyl)phthalate		2 J	100 U		10 U	1.5	3 J
NA	Caprolactam		10 U	39 J	63	10 U	10 U	10 U
1	Phenol		10 U	100 U	10 U	10 U		10 U
VOCs by Method OLM04.2 (µg/L)	M04.2 (µg/L)							
5	1,1,1-Trichloroethane		10 U	10 U	10 U	10 U		
\$	1,1-Dichloroethane		10 U	2 J	2 J	5 J		
50 ²	2-Butanone		10 U	10 U	10 U	10 U	l 6	10 U
50 2	Acetone		10 U	10 U	10 U	10 U		10 U
5	Chloroethane	White the state of	10 U	10 D	10 U	10 U		10 U
10	Methyl tert-butyl ether		10 U	SJ	5.5	8 J	3.3	9 J
Metals by Method ILM04.0 (µg/L)	M04.0 (µg/L)							
NA	Aluminum		683	46.1.3	201 J	548	514	1410
25	Arsenic		1.8 J	10 U	1.6 J	2.5 J	2.1.3	3.3 J
	Barium		15.9 J	39.9 J	41.8 J	20.1 J	16.7 J	25.2 J
5	Cadmium		s u	s U	s U	0.71 J	SU	0.50 J
NA	Calcium		99200	107000	115000	150000	117000	171000
50	Chromium		6.1 J	3.2 J	4,4 J	4,2 J	4.8 J	5.3 J
200	Copper		32.4	2.1 J	3.4 J	68.1	4.1 J	4.3 J
300	Iron							
25	Lead		2.2 J	3.0	3 U	2.8 J	3 U	1,9 J
35,000 2	Magnesium							
300	Manganese		59.7			6.88	84.8	171
100	Nickel		4.1 J	11.1 J	11.7 J	4.7 J	14.6 J	4.5 J
NA	Potassium		5010 J	2350 J	2640 J	7900 J	4680 J	5560 J
10	Selenium		s U	9.0	2 U	2.6 J	8.0	5 U
20	Silver		10 U	10 U	10 U	10 U	0.34 J	0.33 J
20000	Sodium	38						
NA	Vanadium		1.6 U	0.66 U	0.63 U	1.5 U	1.7 U	2.7 J
2,000 2	Zinc		20.3	7.2 U	9.1 U	32.2	12.6 U	14.3 U
Total Cyanide by Method ILM04.0 (µg/L	hod ILM04.0 (µg/L)					ere (refinemerere) summere makin sukretisk sukretisk sukretisk sekretisk side og det er skrivet fra	Ann anns i destructurad adultar s'etti atumbuladikori koradori sudas sustanti desdik desdika	
200	Cyanide		1.0 U	1.0 U	1.1 J	1.0 U	1.1 J	1.0 U

New York State Department of Environmental Conservation. Technical and Operational Guidance Series 1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, 1998.

2 Guidance Value is listed for this parameter.

Key:

J = Estimated value.

mg/L = Milligrams per liter.

NA = Criterion not available.

NS = Not sampled for this analysis. PCB = Polychlorinated biphenyls.

U = Not detected at the reported value.

 $VOC = \ Volatile \ organic \ compound.$ $\mu g/L = \ Micrograms \ per \ liter.$

02:000699_NY08_03_02-B0898 S_ 3 Tables.kls - Table 3-5 - 3/28/02

Table 3-1 Summary of Positive Analytical Results for the Sediment Samples, 640 Trolley Boulevard

Sediment		Sample ID: 640-SD01	640-SD01	640-SD02	640-SD03	640-SD04	640-SD04/D	640-5006
Screening		Deoth (in):	0.2	0 - 2	0 - 2	0-2	0.2	0 - 0
Criteria 1	Analyte	Date:	11/06/01	11/07/01	11/07/01	11/07/01	11/07/01	11/16/01
esticide/PCB	Pesticide/PCB by Method OLM04.2 (µg/Kg)	Kg)						
0.047136	Aroclor 1254			42 U	42 U	440 U	880 U	
0.5892	4,4'-DDE		4.9 U			34 U	37 U	4.4 U
0.5892	4,4 - DDT							
5.892	Aldrin		3.5 J	11 U	11 U	110 U	450 U	2.3 U
NA	alpha-Chlordane		0.68 J	2.2 J	3.0 J	41 J	60 J	2.3 U
Ϋ́Z	delta-BHC		1.2 U	1.2 J	2.2 U	26 J	613	2.3 U
5.892	Dieldrin		4.9 U	0.90 J	1.3 J			4.4 U
1.7676	Endosulfan II		1.8 U	2.0 U	2.0 U	44 U		4.4 U
ΑN	Endosulfan sulfate		4.9 U	3.5 J	4.0 J	71.5	110 J	4.4 U
47.136	Endrin		5.3 J	1.8 U	1.2 U	36 U	23 U	28 J
Ϋ́	Endrin aldehyde		4.9 U	4.2 U	4.2 U	16.1	30 U	4.4 U
NA	Endrin ketone		5.2	1.5 J	2.0 J	44 U	A88 U	3.8.1
3.5352	gamma-BHC		0.88 U	0.70 U	0.75 U	15 U		2.3 U
0.05892	gamma-Chlordane			2.2 U	2.2 U			
0.047136	Heptachlor epoxide							
35.352	Methoxychlor		25 U	10 U	11 U	220 U	350 U	f 01
VOCs by Me	SVOCs by Method OLM04.2 (µg/Kg)							
8248.8	Acenaphthene		480 U	450 U	470 U	2000 J	2400 J	U 000£1
NA	Acenaphthylene		65 J	450 U	470 U	13000 U	1700 J	U 000E1
NA	Acetophenone		53 J	450 U	470 U	13000 U	4400 U	U 000E1
6304.44	Anthracene		100 J	80 J	50 J			13000 U
707.04	Benz(a)anthracene		330 J	220 J	220 J			13000 U
76.596	Benzo(a)pyrene							13000 U
76.596	Benzo(b)fluoranthene							13000 U
NA	Benzo(g,h,i)perylene							U 000E1
76.596	Benzo(k)fluoranthene							U 000E1
NA	Butyl benzyl phthalate		480 U	450 U	73 J	13000 U	4400 U	U 000E1
NA	Carbazole		100 J	72 J	61.3	4100 J	5300	U 000£1
76.596	Chrysene							13000 U
NA	Dibenz(a,h)anthracene		480 U	70 J	220 J	11000 J	5100	13000 U
NA	Dibenzofuran		480 U	450 U	470 U	13000 U	1200 J	13000 U
60098.4	Fluoranthene		066	650	510	58000		2300 J
471.36	Fluorene		480 U	450 U	470 U			13000 U
76.596	Indeno(1,2,3-cd)pyrene							13000 U
7070.4	Phenanthrene		260 J	170 J	f 061			2300 J
61 (6333	-							

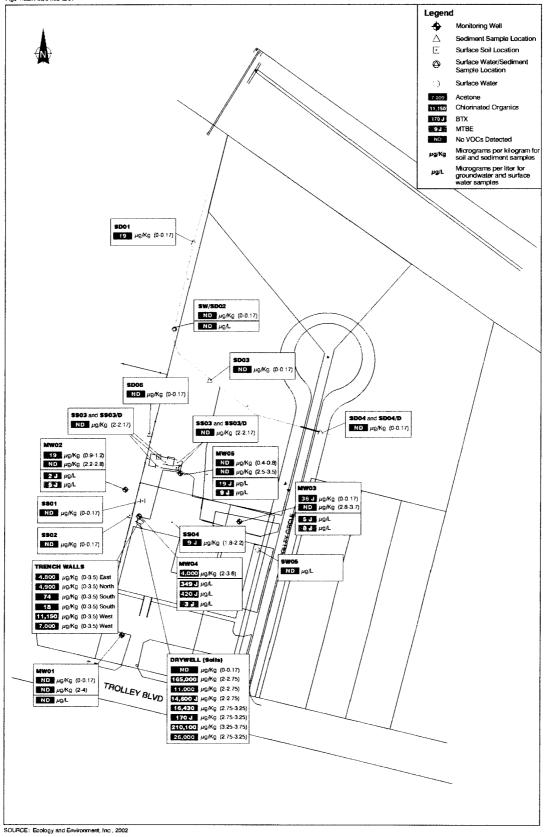


Figure 3-1 VOC CONCENTRATIONS DETECTED AT THE 640 TROLLEY BLVD. SITE

160

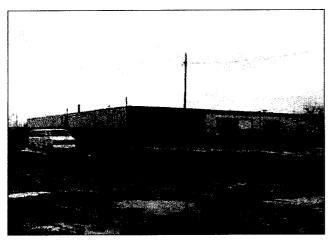
200 240 Feet

APPROXIMATE SCALE

Figure 3-2 PCB FIELD TESTING AND LABORATORY RESULTS FROM SOIL SAMPLES

4. Investigation Findings

MW03-Z2 and MW04-Z2 samples that contained overall lower amounts of PAHs than the surface samples.

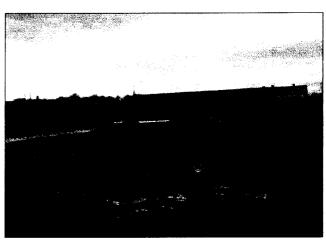

Several metals were found above screening levels in the sediment and soil samples including antimony, arsenic, cadmium, chromium, copper, iron, lead, mercury, nickel, selenium, silver, and zinc. Only selenium and iron were found above screening levels in the subsurface soil samples collected from the boreholes. However, the samples collected from the drywell and test trench also contained arsenic, chromium, mercury, and zinc above screening levels. Only iron, magnesium, manganese, and sodium were found above screening levels in the groundwater samples. These metals are found ubiquitously in geologic formations.

Due to the degree of contamination identified and the potential risks to human health and the environment, several concerns remain at the site due to the following conditions:

- Although a significant amount (19.5 tons) of contaminated soil was removed during the drywell excavation, the remaining soil in the excavated drywell trench and nearby area is still very heavily contaminated with PCBs and VOCs;
- Because of the renovations that took place on the north side of the 640 Trolley building (i.e., grading and installation of a gravel parking lot) and the limited soil sampling, the extent of the PCB-contaminated soil is unknown;
- Because there are no wells downgradient of the drywell, the extent of groundwater contamination is unknown; and
- Due to dry or frozen conditions, and the discovery of the 700 Trolley ditch between 640 and 700 Trolley during the site investigation, the water and sediment in the ditches surrounding the site and the NYSBC have not be fully characterized.

Although the extent of contamination was not identified in this PSA, the main purpose, such as nature of contamination and media affected, has been identified.


Camera: Olympus D-600L Zoom and Kodak DC-240 Digital Cameras


01 Southwest corner of the 640 Trolley Boulevard property March 2001

32 Southeast corner of the 640 Trolley Boulevard property March 2001

03 Northeast corner of the 630 Trolley Boulevard property and rear of 640 Trolley Boulevard property March 2001

North of the 640 Trolley Boulevard building, area cleared fro parking lot expansion and stockpiled soil March 2001

O5 Rear of the 640 Trolley Boulevard building 04-05-01

North portion of the 640 Trolley Boulevard property flooded and view of the east portion of the 700 Trolley Boulevard property 04-05-01

Photographic Log, 640 Trolley Boulevard Site


Camera: Olympus D-600L Zoom and Kodak DC-240 Digital Cameras

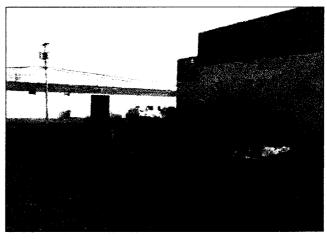
07 Close up of the northwest corner of the 640 Trolley Boulevard building and the door by the drywell 04-05-01

09 New drain at the rear of the 640 Trolley Boulevard building 11-16-01

11 Location of monitoring well 640-MW01 in the front of 640 Trolley Boulevard building 11-19-01

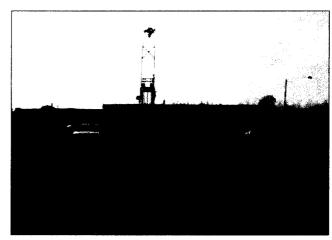
08 Stockpile of soil moved during parking lot expansion at the rear of the 640 Trolley Boulevard building 11-05-01

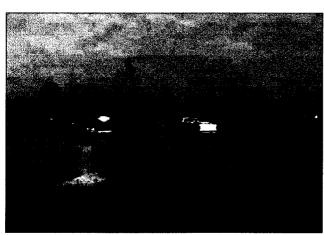
10 Drilling overburden portion of monitoring well 640-MW01 11-06-01

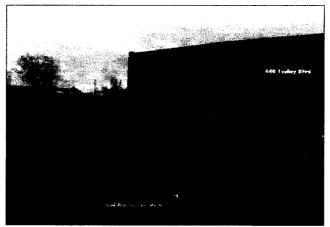

12 Rock coring monitoring well 640-MW02 11-13-01

Photographic Log, 640 Trolley Boulevard Site

Camera: Olympus D-600L Zoom and Kodak DC-240 Digital Cameras

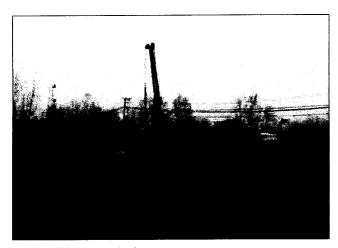

13 Location of monitoring well 640-MW02 on the 700 Trolley Boulevard property 11-16-01


14 Location of monitoring well 640-MW03 north of the 630 Trolley Boulevard building 11-16-01


15 Drilling monitoring well 640-MW04 next to the drywell 11-09-01

16 Drilling monitoring well 640-MW05 next to the stockpile 11-08-01

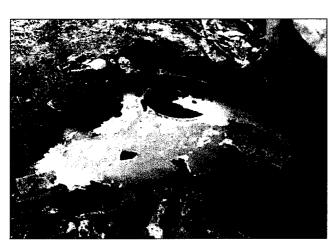
17 Drilling monitoring well 640-MW05 (looking North) 11-08-01



18 Location of soil sample 640-SS04 11-08-01

Photographic Log, 640 Trolley Boulevard Site

Camera: Olympus D-600L Zoom and Kodak DC-240 Digital Cameras


Photographers: V. Cervi (E & E), J. Mackecknie and G. Andrus (Lu Engineers), J. White (NYSDEC)

19 Drill Rig decontamination 11-07-01

21 Close up of the plastic and top 0.5 feet of drywell excavation

Close-up of sludge found in the drywell at the beginning of the excavation 11-16-01

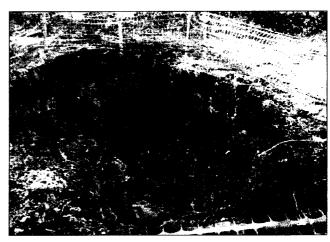
Removing the top material from the drywell during the test trench excavation 11-16-01

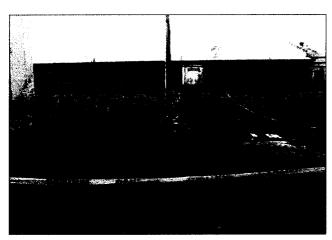


22 Drywell excavation and black sludge 11-16-01

Placing the excavated material on heavy duty polyethylene sheeting 11-16-01

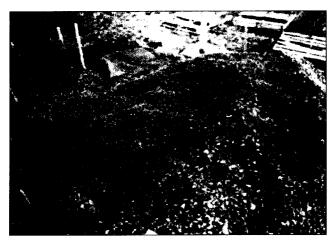
Photographic Log, 640 Trolley Boulevard Site Camera: Olympus D-600L Zoom and Kodak DC-240 Digital Cameras Photographers: V. Cervi (E & E), J. Mackecknie and G. Andrus (Lu Engineers), J. White (NYSDEC)


Close up of excavated material 11-16-01


Sludge gone in deeper layer 11-16-01

27 Excavation of test trench 11-16-01

Nearly completed test trench 11-16-01

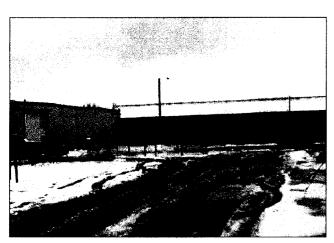


Location of test trench next to the northwest corner of the 640 Trolley Boulevard building 11-16-01

Lining of test trench 11-19-01

Camera: Olympus D-600L Zoom and Kodak DC-240 Digital Cameras

31 Test trench filled with gravel 11-19-01


32 Roll off drop-off and set up for containerizing the IDW 02-01-02

Filling up of roll off with IDW 02-01-02

34 IDW in plastic and equipment used to move it into the roll off 02-01-02

35 Roll off ready for removal 02-01-02

From:

Dale Desnoyers

To:

D'Amato, Paul; Evans, Robert; Finster, Bruce; Putzig, Bart; Ryan, Joseph; Schick,

Robert

Date:

5/22/02 3:25PM

Subject:

Re: Proposed Reclass (2A to 2): 640 Trolley Boulevard ID # 828108

I don't have anything on this site.

>>> Robert Evans 05/22/02 03:01PM >>>

640 Trolley Boulevard, located on the north side of Trolley Boulevard in the Town of Gates, Monroe County is proposed to be reclassified in the Registry of IHWDS to a Class 2. As you know, the Brownfields/Voluntary Cleanup Section must sign off on all listing packages indicating whether there are any voluntary cleanup agreements, Brownfields agreements, or any VC or BF negotiations under way.

We have no information in our files on this site. Please notify me within 3 days if you are aware of any information indicating the site associated with any of the above-referenced programs. Thanks - Bob

New York State Department of Environmental Conservation Division of Environmental Remediation

Bureau of Hazardous Site Control, 11th Floor 625 Broadway, Albany, New York 12233-7014 Phone: (518) 402-9551 • FAX: (518) 402-9020

Website: www.dec.state.ny.us

Erin M. Crotty Commissioner

JUL - 9 2002

Town Clerk Town of Gates 1605 Buffalo Road Rochester, NY 14624

Dear Sir/Madam:

The New York State Department of Environmental Conservation (Department) maintains a Registry of sites where hazardous waste disposal has occurred. Property located at 640 Trolley Boulevard in the Town of Gates and County of Monroe and designated as Tax Map Number 104.11-1-2.2 was recently reclassified as a Class 2 in the Registry. The name and site I.D. number of this property as listed in the Registry is 640 Trolley Boulevard, Site #828108.

The Classification Code 2 indicates that a significant threat to the public health or environment exists – action required.

We are sending this letter to you and others who own property near the site listed above, as well as the county and town clerks. We are notifying you about these activities at this site because we believe it is important to keep you informed.

If you currently are renting or leasing your property to someone else, please share this information with them. If you no longer own the property to which this letter was sent, please provide this information to the new owner and provide this office with the name and address of the new owner so that we can correct our records.

The reason for this recent classification decision is as follows:

There are consequential amounts of hazardous waste at this site. Polychlorinated Biphenyls (PCB) and trichloroethane (1,1,1-TCA) were disposed of in the drywell located immediately north of the rear door. Contamination remains in soil in addition to the 19.5 ton Interim Remedial Measure (IRM) of removal of the drywell contents. PCBs are also in the soils and swale sediment throughout the rear yard of the building. Migration of contamination downgradient of the drywell was not confirmed due to the lack of wells downgradient. Local groundwater flow is southeast from the drywell toward the building.

If you have questions, need additional information, or have information which you believe would be useful to us, please call the Department of Environmental Conservation's toll-free number: 1(800)342-9296. The Department of Health maintains a Health Liaison Program (HeLP) toll-free number: 1(800)458-1158 Ext. 2-7530.

Sincerely,

Dennis J. Farrar

Chief

Site Control Section

bcc:

- M. O'Toole
- D. Weigel
- D. Farrar
- J. Swartwout
- T. Caffoe, R/8
- P. Lent, R/8
- L. Vera, R/8
- A. Sylvester
- G. Litwin
- L. Ennist

AS/srh

New York State Department of Environmental Conservation

Division of Environmental Remediation

Bureau of Hazardous Site Control, 11th Floor 625 Broadway, Albany, New York 12233-7014 Phone: (518) 402-9551 • FAX: (518) 402-9020

Website: www.dec.state.ny.us

JUN 17 2002

Emerson Enterprises, LLC P.O. Box 425 Pittsford, NY 14534

Dear Sir/Madam:

As mandated by Section 27-1305 of the Environmental Conservation Law (ECL), the New York State Department of Environmental Conservation (Department) must maintain a Registry of all inactive disposal sites suspected or known to contain hazardous waste. The ECL also mandates that this Department notify the owner of all or any part of each site or area included in the Registry of Inactive Hazardous Waste Disposal Sites as to changes in site classification.

Our records indicate that you are the owner or part owner of the site listed below. Therefore, this letter constitutes notification of change in the classification of such site in the Registry of Inactive Hazardous Waste Disposal Sites in New York State.

DEC Site No.: 828108

Site Name: 640 Trolley Boulevard

Site Address: 640 Trolley Boulevard, Rochester, NY 14606

Classification change from 2a to 2

The reason for the change is as follows:

- There are consequential amounts of hazardous waste at this site. Polychlorinated Biphenyls (PCB) and trichloroethane (1,1,1-TCA) were disposed of in the drywell located immediately north of the rear door. Contamination remains in soil in addition to the 19.5 ton Interim Remedial Measure (IRM) of removal of the drywell contents. PCBs are also in the soils and swale sediment throughout the rear yard of the building. Migration of contamination downgradient of the drywell was not confirmed due to the lack of wells downgradient. Local groundwater flow is southeast from the drywell toward the building.

Enclosed is a copy of the New York State Department of Environmental Conservation, Division of Environmental Remediation, Inactive Hazardous Waste Disposal Site Report form as it appears in the Registry and Annual Report, and an explanation of the site classifications. The Law allows the owner and/or operator of a site listed in the Registry to petition the

Commissioner of the New York State Department of Environmental Conservation for deletion of such site, modification of site classification, or modification of any information regarding such site, by submitting a written statement setting forth the grounds of the petition. Such petition may be addressed to:

Erin M. Crotty Commissioner New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233-1010

For additional information, please contact me at (518) 402-9553.

Sincerely,

Dennis J. Farrar

Chief

Site Control Section

Enclosures

bcc:

- M. O'Toole
- D. Weigel
- R. Marino
- D. Farrar
- J. Swartwout
- A. Sylvester

w/Enc. (Copy of Site Report form only)

- A. Grant
- G. Litwin, DOH
- C. Vasudevan
- P. D'Amato, R/8
- P. Lent, R/8
- B. Putzig, R/8
- E. Belmore

AS/srh