REMEDIAL INVESTIGATION REPORT DOLLINGER FACILITY BRIGHTON, NEW YORK VOLUME I

by

H&A of New York Rochester, New York

for

Dollinger - A Filtrona Company Richmond, Virginia

File No. 70007-43 November 1991

H&A OF NEW YORK

Geotechnical Engineers & Environmental Consultants

27 November 1991 File No. 70007-43

Dollinger - A Filtrona Company 3951 Westerre Parkway, Suite 300 Richmond, Virginia 23233

Attention: Mr. Anthony M. Vincent Mr. Michael L. Burge

Subject: Dollinger Site Remedial Investigation Report

Gentlemen:

H&A is pleased to provide this report on the Dollinger Remedial Investigation, prepared in accordance with the Work Plan dated 15 February 1991. Copies have been sent to representatives of NYSDEC, NYSDOH, Monroe County Department of Health and the Document Repository.

Thank you for the opportunity to assist you with this project.

Sincerely yours, H&A OF NEW YORK

Juzanne J. WI

Suzanne B. Wheatcraft Staff Hydrogeologist

Vincent B. Dick Senior Env. Geologist

SBW/LPS/VBD/slc:vbd146

Lawrence P. Smith, P.E. Partner

$(d_{i}, q_{i}) \in \{1, \dots, n\}$

Mary A. California.
Carta Martina.

EXECUTIVE SUMMARY

This report presents results of the Remedial Investigation at the Dollinger Facility Site in Brighton, New York. The RI was undertaken on behalf of Dollinger-A Filtrona Company (former site owner) for NYSDEC Registry Site No. 828078, pursuant to an Order on Consent between Dollinger and the New York State Department of Environmental Conservation (NYSDEC) signed on 13 May 1991. The remedial investigation was performed in accordance with NYSDEC-approved RI Work Plan dated 15 February 1991, and addendum dated 11 March 1991.

The project site is an $18.5\pm$ acre property on which an approximately 140,000 square foot building is located. Industrial filters were manufactured and assembled in the building between 1970 and 1987. The site was vacated in 1987 and sold in 1989 to the current owners, Wil-Ray. The building is currently understood to be unoccupied.

Previous investigations at the site had identified three areas of concern which were the subject of this RI: a former TCE degreaser area, a former drum storage area and a former dumpster area. Additionally, an on site drainage pond and a **waste/fill** area purportedly located north of the Dollinger building were investigated under the RI.

The **purported** waste/fill area, identified by NYSDEC as a potential area of concern, was investigated using test pit explorations. As a result of visual observations, real-time sample screening with an OVA and TCL analysis of samples, no waste was identified in this area. A thin mantle of soil fill overlying native soils was identified and laboratory analyses detected no compounds associated with former Dollinger site activities or other areas of concern.

Previous site investigations (Sear-Brown, P.C. and H&A of New York) concluded that VOCs (volatile organic compounds - primarily TCE and its breakdown products) and semi-volatile compounds, present in surface soils at the remaining above-referenced areas of concern, may be associated with former site activities. RI investigations in these areas consisted of a grid boring program (to obtain soil samples to a maximum depth of 12 feet), installation of monitoring wells and groundwater sampling, and shallow soil, surface water and sediment sampling.

The nature and extent of contaminants in each of the media investigated has been defined as follows:

 Groundwater - compounds in groundwater primarily are limited to TCE and its breakdown products (1,2-DCE, 1,1-DCE and vinyl chloride) present immediately below the three areas of

rsaturate 1.

concern (TCE degreaser area, drum storage area, and dumpster area). The highest concentration of these compounds was detected in the phreatic zone beneath the former TCE degreaser area. Sampling and analysis of the deepest site well, installed across the overburden bedrock interface below the former TCE degreaser area, did not detect chlorinated compounds, nor were chlorinated compounds detected in wells located north, south, east, or west of the three areas of concern.

 Sediment/Soil - The shallow pond sediment nearest the storm sewer outfall pipe, and shallow soil at each of the three areas of concern, contain detectable concentrations of chlorinated VOCs, semi-volatile phthalates and polyaromatic hydrocarbons (PAHs).

Results of contaminant fate and transport evaluations indicate that the VOCs, PAHs and phthalates are confined to on site areas and do not appear to be migrating to off site areas.

Results of the human health risk assessment conducted indicate that noncarcinogenic hazard indices for exposure cases were less than 1, the USEPA threshold value for this index. Carcinogenic risk for the typical case and reasonable maximum exposure conditions for a child trespass and on site worker scenario fell within or **below** the range identified by USEPA as acceptable $(1 \times 10^{-4} \text{ to } 1 \times 10^{-6})$.

Results of this RI indicate that a sufficient database exists at this time to evaluate and select remedial action alternatives through the performance of a Feasibility Study (FS).

Supporting documentation for the above conclusions, prepared in accordance with USEPA guidance for RI report preparation, is contained in the attached RI Report. Volume I contains text, tables, figures and appendices with the primary summary material. Volume II contains laboratory analytical result summary sheets.

TABLE OF CONTENTS

LIST	TIVE SU OF TABL OF FIGU	ES	l vi viii
I.	INTROD	UCTION	1
	1.1 1.2 1.3 1.4	Purpose of the Report Site Description and History Summary of Previous Investigations Report Organization	1 1 2 4
II.	<u>STUDY</u> .	AREA INVESTIGATION	5
	2.1 2.2 2.3	Surface Features Investigation of Areas of Concern Background Soil, Surface Water and Sediment Sampling	5 5 5
	2.4 2.5 2.6 2.7 2.8	 2.3.1 Storm Sewer Sampling 2.3.2 Surface Water Sampling 2.3.3 Background Soil Sampling 2.3.4 Sediment Sampling Test Pit Explorations Shallow Boring Grid Explorations Test Boring/Observation Well Installations Human Population Surveys Ecological Investigations 	5 6 6 7 8 12 12
III.	PHYSIC	AL CHARACTERIZATION OF THE STUDY AREA	13
	3.1 3.2 3.3 3.4 3.5	Site Surface Water, sediment and Pond Site Geology and Soils Site Hydrogeology Demography and Land Use Ecology	13 13 15 16 17
IV.	NATURE	AND EXTENT OF CONTAMINANTS	18
	4.1 4.2 4.3 4.4 4.5 4.6	Soil Vapor Soil Groundwater Surface Water and Sediment Laboratory Data Validation Air	19 20 21 22 23 23

100

1

TABLE OF CONTENTS (Continued)

<u>Paqe</u>

V.	CONTAM	IINANT F.	ATE AND TRANSPORT	25
	5.1 5.2	Potent 5.2.1 5.2.2	inant Persistence and Migration ial Routes of Migration Soil Groundwater Surface Water Air	25 26 27 27 27 27
VI.	<u>risk a</u>	SSESSME	NT	28
	6.1 6.2 6.3	 6.1.1 6.1.2 6.1.3 6.1.4 Environ Level of Level o	Health Evaluation Identification of Compounds of Concern 6.1.1.1 Data Evaluation Exposure Assessment 6.1.2.1 Site Setting 6.1.2.2 Potentially Exposed Populations Toxicity Assessment 6.1.3.1 Hazard Identification 6.1.3.2 Dose-Response Assessment Risk Characterization 6.1.4.1 Risk Characterization Results nmental Evaluation of Confidence/Uncertainty in the Estimate	28 28 30 30 36 45 49 50 50
VII.	SUMMAR	Y AND CO	ONCLUSIONS	52
	7.1	7.1.3	Nature and Extent of Contaminants Fate and Transport Risk Assessment	52 52 54 55
	7.2	Conclus 7.2.1	sions Data Limitations and Recommendations for Future Work	57 57
		7.2.2	Recommended Remedial Action Objectives and Alternatives	58

عنق

TABLE OF CONTENTS (Continued)

VIII. <u>CERTIFICATION</u>	59
RISK ASSESSMENT REFERENCES APPENDICES	60
APPENDIX A - Test Pit Reports APPENDIX B - Test Boring Reports	

APPENDIX C - Overburden Groundwater Monitoring Well Reports APPENDIX D - Laboratory Soil Physical Testing Results APPENDIX E - Rising Head Permeability Tests APPENDIX F - Laboratory Data Validation APPENDIX G - NYSDEC Laboratory Data APPENDIX H - Laboratory Data (Volume II)

ASA

LIST OF TABLES

<u>Table No</u> .	Title
I	Summary of Monitoring Well Physical Data
II	Apparent Compounds Detected in Soil Vapor Shield Point Screening
III	Shallow Soil and Test Pit Organic Analyses
IV	Test and Grid Boring Soil Organic Analyses
V	Shallow Soils, Test Pit Soils, Grid and Test Boring Soils
VI	Groundwater Organic Analyses - 100 Series Wells
VII	Groundwater Organic Analyses - 200 Series Wells
VIII	Surface Water and Groundwater Inorganic Analyses
IX	Surface Water Organic Analyses
х	Sediment Organic Analyses
XI	Sediment Inorganic Analyses
XII	Borehole and Ambient Air Portable Gas Chromatograph Readings
XIII	Tentatively Identified Compounds
XIV	Quality Assurance/Quality Control Samples - Organic Analyses
xv	Quality Assurance/Quality Control Samples - Inorganic Analyses
XVI	Physical - Chemical and Fate Data of Organic Chemicals and Significance
XVII	Soil, Sediment, Groundwater and Soil Vapor Contaminant and Concentrations Used to Prepare Exposure Estimates
XVIII	Child Trespass Exposure Scenario - Ingestion of Chemicals in Soil

100

.

LIST OF TABLES (Cont.)

<u>Table No</u> .	Title
XIX	Child Trespass Exposure Scenario - Dermal Contact with Chemicals in Soil
XX	Child Trespass Exposure Scenario - Ingestion of Pond Sediment
XXI	On Site Worker Exposure Scenario - Inhalaton of Vapors
XXII	Chronic Toxicity Values: Potential Noncarcinogenic Effects - Oral Exposure
XXIII	Toxicity Values: Potential Carcinogenic Effects-Chemical Classification and Slope Factors
XXIV	Typical Exposure Case - Child Trespass Scenario-Potential Noncarcinogenic Effects
XXV	Reasonable Maximum Exposure Case - Child Trespass Scenario - Potential Noncarcinogenic Effects
XXVI	Typical Exposure Case - Child Trespass Scenario- Potential Carcinogenic Effects
XXVII	Reasonable Maximum Exposure Case - Child Trespass Scenario - Potential carcinogenic Effects
XXVIII	Reasonable Maximum Exposure Case - On Site Worker - Potential Noncarcinogenic Effects
XXIX	Typical Exposure Case - On Site Worker Scenario- Potential Carcinogenic Effects
XXX	Reasonable Maximum Exposure Case - On Site Worker - Potential Carcinogenic Effects
XXXI	Summary of Estimated Noncarcinogenic Hazard Indices Under Current Land Use Conditions
XXXII	Summary of Estimated Excess Lifetime Cancer Risks Under Current Land Use Conditions

LIST OF FIGURES

Figure No.	Title
1	Project Locus
2	Site Area Plan
3	Cover-Type Map
4	Subsurface Exploration and sampling Plan
5	Soil Screening Grid
6	Grid Screening and Sampling Results
7	Subsurface Profiles
8	Soil Vapor Sampling Location Plan
9	Organic Analytical Results - Surface, Test Pit and Test Boring Soil Sample Results in PPK
10	Organic Analytical Results - Surface Water, Storm Sewer Water, Shallow Sediment and Deep Sediment Sample Results in PPM

I. <u>INTRODUCTION</u>

This remedial investigation (RI) report is for the Dollinger facility located in Brighton, New York. This RI report has been prepared in conformance with the United States Environmental Protection Agency (USEPA) document entitled "Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA" dated October 1988. This report follows the H&A Work Plan dated February 1991 (Work Plan) and subsequent addenda which were added before and during the site investigations, with the concurrence of NYSDEC representatives.

1.1 PURPOSE OF THE REPORT

The intent of this report is to describe the site investigations that have taken place, present and summarize the data collected., and evaluate the presence and extent of site compounds of concern. This RI will serve as the basis for the forthcoming feasibility study (FS). This work was performed by Dollinger - A Filtrona Company, under an Order on Consent with the New York State Department of Environmental Conservation (NYSDEC). Although Dollinger sold the property and building in 1989, the facility will be referred to as the Dollinger facility for the purposes of this RI report.

This report provides a summary of previous site investigations regarding the presence of hazardous substances on site and describes the work and quality assurance procedures which were conducted in the performance of the RI Work Plan investigation to characterize the nature and extent of the site compounds of concern in soil, sediment, surface water and groundwater.

1.2 <u>SITE DESCRIPTION AND HISTORY</u>

The site (NYSDEC Registry No. 828078) is an $18.5\pm$ acre property which is roughly rectangular in shape. An approximately 140,000 square foot, one story, slab-on-grade building is centrally located on the site. The site is located in Brighton, New York at 1 Town Line Circle. It is bounded on all sides by other commercial and industrial lots and buildings.

The site building was the location of the manufacture and assembly of industrial filters between 1970 and 1987. The building is serviced by electrical, natural gas, telephone, water, and sanitary sewer lines. In addition, a storm sewer, drainage swale and detention pond are present to the west, north, and northwest of the site building. Operations at the facility ceased in approximately 1987 and the building was vacated of personnel, equipment and operations prior to its sale in 1989. The facility is located on industrial-zoned property which is adjacent to industrial and general commercial-zoned properties.

Adjacent property uses are generally **commercial** and industrial in nature. Property to the west of the site is occupied by the Beam Mack Sales and Service Facility, for the sale and service of large trucks. Residential properties are present approximately 1200<u>+</u> feet south of the site. A small office building is located to the north of the site. To the south of the site is the remainder of the light industrial-office complex in which the Dollinger facility is located. East of the facility is a vacant lot associated with the Metro Park office-light industrial complex.

Since the sale of the building in 1989, the building facility has been owned by the Wil-Ray partnership and has been leased on short-term basis for a PBS television station auction and by Hansford Manufacturing for assembly line manufacturing. The building is currently unoccupied.

1.3 <u>SUMMARY OF PREVIOUS INVESTIGATIONS</u>

A two-phase environmental investigation of this site was conducted by Sear-Brown Associates with a third-phase of work completed by H&A. The first phase of the investigation involved the collection and analysis of historical site data and a field investigation using an Hnu photoionization detector and a metal detector. Soil, sediment and surface water samples were collected and analyzed by a laboratory for the presence of metals, volatile organics, base neutral and acid extractable compounds (semi-volatiles organics), pesticides and PCBs.

Based on the investigations and analytical results, Sear-Brown drew the following conclusions at the close of its Phase One investigation:

- Hnu screening of sample headspace vapors detected the possible presence of volatile organic compounds in samples adjacent to a former TCE degreaser area, at a former drum storage area, and at a former dumpster area.
- A possible fill area was identified on the northeast corner of the property. Scattered empty paint cans were observed on the adjoining property to the east. Testing of samples from the area of apparent fill on the northeast portion of the site ("waste can areaⁿ) for priority pollutant metals did not indicate the presence of these analytes.
- Analyses of soil samples from the drum storage area indicated detectable concentrations of volatile organic compounds, semi-volatiles organic compounds, priority pollutant metals, and the pesticide Endrin.
- Analyses of surface water and sediment samples from the pond and a drainage ditch flowing into the pond indicated detectable concentrations of petroleum hydrocarbons, volatile organics and priority pollutant metals.

• Analyses of soil samples from the dumpster area indicated detectable concentrations of priority pollutant metals.

Additional site samples were collected and analyzed in Phase Two of the Sear-Brown investigation. This work was conducted in order to verify the first phase results and better identify the surficial distribution of compounds. Shallow soil samples were collected from the dumpster area, drum storage area, TCE degreaser area, and the granular fill bedding of the storm sewer line located north of the building. Water samples and sediment samples were collected from the pond. All samples were analyzed for volatile organic compounds.

At the conclusion of the Phase Two investigation, volatile and semi-volatile organic compounds had been detected in the site surface water and shallow soil samples, the dumpster area soil samples, samples of the pond sediment, samples of water from the pond, soil samples from the drum storage area, and a soil sample from along the sewer line. At that time is was decided that additional investigations were appropriate to determine the presence, if any, and extent of the compounds in the site groundwater.

The third phase of investigation at the site was conducted by H&A to further identify the presence of volatile organic compounds in site soils and to determine whether and to what extent these compounds have migrated to the groundwater.

Subsurface explorations performed at the site as part of the H&A investigation consisted of a soil vapor survey, seven test borings, 12 groundwater observation wells, and three test pits.

The results of the H&A investigation concluded the following:

- Soil sampling, soil vapor screening and soil headspace screening detected volatile organic compounds to a depth of approximately 12 feet immediately north of the Dollinger building, in the drum storage area outside the TCE degreaser room. Volatile organic compounds in the sub-parts per million range were also detected in both the shallow and deep groundwater in these areas (OW103-S, OW104-S, and OW104-D).
- Headspace screening of soil samples from B106 detected volatile organic compounds in the area northwest of the TCE degreaser and drum storage areas along the storm sewer line.
- A sample of groundwater from monitoring well OW101-D contained volatile organic compounds in the sub-part per million range. This well is located southeast of the TCE degreaser/drum storage area.

1.4 <u>REPORT ORGANIZATION</u>

This remedial investigation report is organized in accordance with the format recommended by the "Guidance For Conducting Remedial Investigation And Feasibility Studies Under CERCLA", dated October 1988. Accordingly, the RI report is presented as follows.

- Study Area Investigation summarizes site field activities consisting of shallow soil, sediment, and surface water sampling, test pit and test boring explorations, and observation well installation and sampling. A discussion of the methods and materials used is included in this section. The ecological characterization of the site (Habitat Based Assessment modified from NYSDEC guidance as described by the site Work Plan) is also included in this section.
- Physical Characterization of the Study Area summarizes field investigation results and discusses site physical characteristics. Such characteristics include surface water flow, overburden soils, bedrock geology, hydrogeology and site ecology.
- Nature and Extent of Contaminants presents the results of site characterization including laboratory analytical and sample screening results from site media.
- Contaminant Fate and Transport presents migration routes, persistence of site compounds, and factors affecting compound migration.
- Baseline Risk Assessment summarizes human health and environment evaluations.
- Summary and Conclusions summarizes the nature and extent of site compounds of concern and the fate and transport of these compounds in the assessment of site risks. This section also discusses data limitations and recommendations for future Feasibility Study work.

Figures and tables referenced in the text are included following the text. These serve to present the data in a concise manner and/or graphically present site information. Appendices to this report include field data such as exploration logs, well completion reports, permeability test records and laboratory data reports. The full laboratory data reports consist of approximately five file boxes of documentation which are not included with this report. A full copy of this documentation is maintained at H&A of New York's Rochester office and one copy has been provided to the NYSDEC Albany office.

-4-

II. STUDY AREA INVESTIGATION

2.1 <u>SURFACE FEATURES</u>

Elevations at the site vary between 548 and 536 feet in elevation above mean sea level across the approximately 1000 foot wide site (see Figure 1). A drainage ditch flows along the western edge of the property into a detention pond on the northwest site corner. The southern half of the site faces the front of the property and is landscaped with driveways and parking lots (see Figure 2). The northern half of the site (behind the building) is an undeveloped open field with grasses, shrubs and a row of trees along the northern property line (see Figure 3, Cover-Type Map). There is a slight east-west ridge on the northern end of the site. It appears that this ridge, which slopes down to the south somewhat sharply, is the result of the removal of topsoil between the building and the northern edge of the property.

2.2 INVESTIGATION OF AREAS OF CONCERN

The previous site investigations have identified three areas of concern on site: the TCE degreaser area, the former drum storage area adjacent to the north-central portion of the building, and the former dumpster area at the end of the entrance drive at the northeast corner of the paved portion of the site.

These previously identified areas of concern were investigated further in this RI. The grid borings described below (three rows of nine borings spaced 50 feet apart) were laid out to include both the dumpster and drum storage areas. The TCE degreaser area was investigated using a pair of observation wells installed inside the building (201), a well to the top of rock (205) located adjacent to the degreaser area outside the building, and one of the grid borings (GS-A8).

Soil, sediment, surface water, water in a storm sewer line and groundwater were sampled for this RI. Samples were collected from test pits, test borings, observation wells, surficial soils, the site pond, pond sediments, and the storm sewer on site. Figure 4, Subsurface Exploration and Sampling Plan, shows sample locations. Sampling and laboratory analytical methods are also described below.

2.3 BACKGROUND SOIL, SURFACE WATER AND SEDIMENT SAMPLING

2.3.1 Storm Sewer Sampling

The storm sewer water sampling was performed using a stainless steel beaker attached with screws to an inflexible PVC pole. Storm sewer water samples were taken at STW-201 and STW-202

(Figure 4) and were analyzed for volatiles, semi-volatiles and metals. Location STW-202 was sampled on 1 August and STW-201 on 21 August 1991 because less than one inch of water was present at STW-201 on 1 August. A maximum of three inches of water depth was observed in the sewer on both occasions.

2.3.2 <u>Surface Water Sampling</u>

Three surface water samples (SW-201, SW-202, and SW-204) were collected from the pond and analyzed for volatile organic compounds, semi-volatile organic compounds, petroleum hydrocarbons and metals. Although there was as much as 2 feet of water depth in some areas of the pond, at sample locations SW-202 and SW-204 it was necessary to create sumps (depressions) in the pond sediment to allow nearby surface water to collect until a sufficient quantity had flowed into the depression to fill sample containers. This collection method was observed and approved by Mr. David Crosby, NYSDEC representative. Surface water samples were not filtered. Figure 4 shows surface water sample locations.

2.3.3 Background Soil Sampling

The two background soil samples, collected from below the root zone and up to 6 inches in depth, are designated SO-201 and SO-202 and are located as shown on Figure 4. These locations were selected due to their distance from the areas of concern. The two background soil samples were analyzed for the full TCL analytes.

2.3.4 <u>Sediment Sampling</u>

Eight sediment samples were collected from the pond and adjacent drainageways and analyzed for volatile organic compounds, semi-volatile organic compounds, petroleum hydrocarbons and metals. Sediment samples were collected at four locations: SS-201, SS-202, SS-203, and SS-204 (Figure 4). Two of these sediment samples were also analyzed for total organic carbon using the analytical method agreed upon by Mr. John Munn of the New York State Department of Environmental Conservation (NYSDEC). A shallow sediment sample from approximately six inches below the surface and a deep sediment sample from approximately two feet below the surface were obtained at each location.

2.4 <u>TEST PIT EXPLORATIONS</u>

Six test pits were excavated on 5 August 1991, to approximately 11.0 ft. in depth in the areas on the northern portion of the site referred to as the "waste areaⁿ and "fill area" in the Sear-Brown

Phase One report. The purpose of these investigations was to further investigate site subsurface conditions to determine if fill and/or waste appeared to be present below ground surface. The test pits were excavated by **Trimaldi** Enterprises under the observation of H&A personnel and served to supplement the test borings in evaluating the nature of the glaciolacustrine sediments on the site. The test pit explorations were specifically used to (1) evaluate the presence and nature of possible bedding or other primary sedimentary features in the lacustrine deposits observed in the previous site borings and (2) collect samples of **waste/fill** if such materials were observed. Test pit locations are shown on Figure 4 and test pit reports are provided in Appendix A.

No waste or fill was observed in the pits, however. As required by the Work Plan, confirmatory samples from test pits TP-201 and TP-204 were submitted to the laboratory for full TCL analysis. The samples from test pits TP-202, TP-203, TP-205, and TP-206 were analyzed for volatile organic compounds. At the time the samples were analyzed for volatiles, extractions for semi-volatile and pesticide analyses were also performed. Upon evaluation of the full TCL results on samples from TP-201 and TP-204, it was decided that further analyses of the extracts from the other test pits were not necessary.

2.5 <u>SHALLOW BORING GRID EXPLORATIONS</u>

Twenty-five test borings in a grid configuration were drilled during 12 to 15 August 1991 in accordance with test boring procedures described in the Work Plan. The location of these borings is shown on Figure 5. The test borings were completed by Nothnagle Drilling to depths of 4.0 ft. to 12.0 ft. below ground surface by a truck-mounted **Diedrich** D-25 rotary drill rig using hollow stem auger casing. The drill rig and boring equipment were steam-cleaned prior to entering the site, between each test boring performed, and prior to exiting the property. Split-spoons were cleaned by hand between uses, using the decontamination sequence provided in the Work Plan.

Soil samples were obtained with standard split spoon samplers (2.0-in. O.D., 1.375-in. I.D.), in accordance with ASTM Specification D-1586-87. Field measurements of in-situ soil conditions consisted of the Standard Penetration Test (SPT); the Standard Penetration Resistance (N) (defined as the number of blows required to drive the standard split spoon sampler 1.0 ft. into undisturbed soil with a 140-pound weight falling freely for 30 inches) was recorded on test boring logs as drilling progressed. Soil sample descriptions were based on the Unified and Burmister soil classification systems. Descriptions of the subsurface conditions encountered at each test boring location are presented in Appendix B, Test Boring Reports.

Split spoon samples from the borings were collected and preserved by placing soil samples in a cooler where they were cooled to approximately 4°C. Soil grid samples were collected at two-foot Samples were placed in sample jars (two jars per intervals. sample) and sealed with aluminum foil. One of the samples was held for possible laboratory analysis, while the sample headspace of the second was screened using a Foxboro 128 GC Organic Vapor Analyzer This was done by placing a portion of the soil from a split (OVA). spoon sample into an eight ounce, wide-mouth glass jar using a stainless steel knife. The jar was covered with aluminum foil, capped with a screw-on lid, and shaken for about 30 seconds. The sample was then placed in ambient temperatures of approximately 24^o-29^oC for no less than 30 minutes. Following this, the lid was removed and the aluminum foil was pierced with an OVA in order to measure the organic vapor concentration in the headspace above the sample. The observed organic vapor concentration was recorded, the lid replaced and the jar was labeled with sample identification information (project number, date, boring number, sample depth, and OVA reading). As stated in the Work Plan, when the upper two samples from a location (0-2 ft. and 2-4 ft.) were "ND" (no volatiles detected with the OVA) or within a site background concentration range of detected volatiles, no further (deeper) samples were collected from that location.

Three samples collected from grid area boring (one boring at each of the drum storage area, dumpster area and degreaser area) were analyzed for the full TCL analytes. Additional samples were collected based on OVA readings and analyzed for volatile and semi-volatile organic compounds. Samples GS-A4, GS-A8, GS-B1, GS-B2, GS-B4 and GS-B5 were analyzed. See Figure 6 for grid boring layout, sample locations and grid sample OVA readings.

2.6 TEST BORING/OBSERVATION WELL INSTALLATIONS

Nine test borings and nine well installations were completed (between 16 and 31 August 1991) in accordance with test **boring/well** installation procedures described in the Work Plan. The location of these borings and observation wells is shown on Figure 4. The test borings were completed by Nothnagle Drilling Company to depths of approximately 15 to 83 ft. by truck-mounted Diedrich D-25 and Diedrich D-50 rotary drill rigs using hollow stem auger casing.

The drill rigs and boring equipment were steam-cleaned prior to entering the site, between each test boring performed, and prior to exiting the property. The split spoons were hand cleaned between uses according to the Work Plan decontamination specifications. Four two-well clusters, consisting of a shallow overburden and a deep overburden observation well, were installed. Locations of the wells are shown on Figure 4. The depths of the wells at these locations are consistent with the previously-installed shallow and deep overburden wells. The depths of these previous wells were

based on headspace vapor screening results from the split spoon soil samples and on the apparent location of saturated zones and silt seams. The shallow overburden wells were installed and screened from approximately 6.0 ft. to 16.0 ft. so that the screened zone included the apparent top of the saturated zone. The deeper of the two overburden wells at each cluster was screened from approximately 20.0 ft. to 30.0 ft. As stated in the Work Plan, the well was screened below the apparent water table across the depth zone of highest volatile organic compound (VOC) concentration as detected by the OVA and confirmed with the portable GC. The borings were then continued until below the apparent presence of volatile organic compounds in the soil as detected with the OVA. This procedure, described in the Work Plan, was derived in consultation with NYSDEC personnel who reviewed the Work Plan.

Although attempts were made to locate the thin sand seams observed during previous well installation at the site, no such seams were observed during split spoon sampling. Therefore, screens were located based on results of headspace screening and apparent saturation of split spoon samples.

The ninth well installed in this investigation was the deep overburden well (OW205) screened from approximately 62.0 ft. to V 83.0 ft. using a 21.0 ft. length of slotted PVC screen, as directed in the field by Mr. David Crosby of the NYSDEC. This length of well screen was necessary to include both the gravel zone and the overburden - top of rock interface in the screened interval. This well is located immediately outside the building adjacent to the TCE degreaser area.

During drilling of the first boring at each well cluster location, split spoon samples were collected continuously at two-foot intervals from the ground surface to total depth of boring, in accordance with the procedures of the Standard Penetration Test (ASTM D-1586-87). Representative samples from each split-spoon were classified in the field as they were collected, in accordance with the Burmister and Unified Soil Classification Systems. A portion of the sample was placed in labeled jars, subjected to field OVA screening, and was held in storage for future reference.

The installed overburden monitoring wells consist of a two-inch diameter PVC factory slotted well screen (No. 10 slot size), and a two-inch diameter PVC riser. Each of the eight overburden monitoring wells were constructed as followed:

- The **borehole** was advanced to the target depth using a 6-inch inside diameter hollow stem auger.
- o Split-spoon samples were collected in accordance with the procedures previously discussed.

- o The well screen and riser were equipped with centralizers and placed to the bottom of the borehole. As the augers were slowly removed, the sand pack was placed in the annular space around the well screen and riser from the base of the screen to approximately two feet above the screen. The sand used was clean, washed (#4Q size silica) sand.
- o Three feet of bentonite pellets were placed above the sand pack except in those instances where the top of the sand pack was above the apparent water table, which occurred in all four shallow overburden wells. Since hydration of the bentonite pellets would not be guaranteed, a granular bentonite was mixed with water to form a pre-hydrated slurry which was tremied into place.
- Cement/bentonite grout was placed from the top of the bentonite pellets seal to approximately four feet below ground surface. The grout consisted of one bag (94 lbs) of Portland Cement and five pounds of bentonite mixed with six gallons of potable water.
- A four-inch square steel protective casing five feet in length was placed in the remaining annulus so that approximately one-half of its length remained above grade. The casing was equipped with a secure lockable lid to prevent entry to the well. This was done for well clusters OW204, OW202 and observation well OW205.
- For the wells at clusters OW201 and OW203, the well was terminated below grade within a flush mounted "curb box." To protect against surface water infiltration, the area around the well was mounded up approximately 3 inches. The well casing was capped with a secure locking well cap.

The deep overburden monitoring well consists of a two-inch diameter, factory slotted PVC well screen (No. 10 slot size), and a two-inch diameter PVC riser. The well was constructed as follows:

- A nominal 12-in. diameter boring was advanced to 20.0 ft. in depth, to a depth equal to the bottom of the adjacent shallow overburden well.
- o 20.9 ft. of nominal 10-in. diameter steel riser pipe was installed to the bottom of the boring, extending above ground surface.
- o The 10-in. steel riser was grouted in place from the bottom of the **borehole** to ground surface with a cement bentonite grout installed using a tremie pipe. The tremie pipe was gradually withdrawn from the well bore during the grouting process.
- To allow the grout to set, a period of 12+ hours was allowed to elapse before resumption of well construction activity.

- A nominal 10-in. boring was advanced to 40.0 ft., a depth equal to the bottom of the adjacent intermediate overburden well.
- Approximately 42 ft. of nominal 6-in. diameter steel riser pipe was installed to the bottom of the boring, extending above ground surface.
- The 6-in. diameter riser was grouted in place as previously described.
- After the requisite time had elapsed for the grout to set, well construction continued by advancing a hollow stem auger assembly with continuous split spoon sampling in accordance with ASTM D-1586-87 methodologies from the 6-in. casing seat at 43 feet to an approximate total depth of 83 feet below ground surface.
- One-half a foot of 4Q quartz sand was installed in the bottom of the boring.
- A twenty foot length of 2-in. ID, 0.010-in. slot (No. 10 size), PVC well screen threaded to 70.0 ft. of 2-in. ID PVC riser of sufficient length to extend from the bottom of the borehole to 2 feet above ground surface was installed. The screen was equipped with a threaded bottom cap. The screen-riser assembly was equipped with 2 centralizers. This screen length was selected following the decision in the field with Mr. David Crosby (NYSDEC representative) to screen the gravel zone encountered near the base of the overburden deposit the overburden bedrock interface.
- Well construction, including installation of the sand pack, annular seals and protective casing, proceeded as described in the previous sections describing the shallow overburden well construction.

Groundwater Monitoring Well Reports are provided in Appendix C of this report. These documents provide specific details on well installation procedures and materials.

During test boring explorations, soil samples were selected for analysis for physical characteristics to evaluate the nature of subsurface soils. Samples from B-202d, B-203d and B-204d were selected as uncontaminated samples. Laboratory permeability tests, Atterberg Limits, sieve analyses and hydrometer analyses were performed. The discussion of these results is provided in Section 3.2 and the test reports are provided in Appendix D.

Soil samples from OW201-S and OW201-D, the **borings/wells** located nearest the former TCE degreaser area, were selected based on OVA headspace screening results and were analyzed for the full TCL analytes. Samples from the OW202 and OW203 clusters were also selected by screening and were analyzed for semi-volatile organic compounds.

The completed observation wells were developed as described in the Work Plan. Mechanical surging and bailing were used in well development. The wells were developed until they exhibited less than 50 **NTUs** or until two consecutive rising head permeability test results (separated by fifteen minutes of well development) agreed within one order of magnitude.

Following well development, the groundwater was sampled for laboratory analysis. Each well sample was analyzed for volatile and semi-volatile organic compounds. The OW201-S and OW-201D wells, adjacent to the TCE degreaser area, were analyzed for the full TCL analytes.

2.7 <u>HUMAN POPULATION SURVEYS</u>

Based on observations and information provided in the previous investigations, the nearest residence appears to be approximately 1200± feet south of the site. The site is surrounded by commercial and industrial properties and the area is generally commercial and industrial.

2.8 <u>ECOLOGICAL INVESTIGATIONS</u>

Representatives of H&A of New York conducted a site walkover to characterize ecosystems and confirm the environmental setting described in previous reports. The area surrounding the Dollinger facility building can be divided into three ecosystems. First, the area south and immediate east and west of the facility building is landscaped with maintained lawn and ornamental trees and shrubs. The second area, located on the north-northeast part of the site, is an open field bordered by a wooded lot and a shallow marshy area at the northeast corner, characterized by reeds and flanked by willow trees. At the north-northwest corner is a drainage retention pond and associated drainage channels. The ecological assessment is focused on areas to the north of the facility building including the field, site pond and drainage areas.

III. PHYSICAL CHARACTERIZATION OF THE STUDY AREA

The study area investigations described in Section II of this report were conducted to collect site samples for laboratory analysis and to document site physical characteristics. The following sections describe site surface water hydrology (the pond), site sediment, site subsurface geology and soils, and site hydrogeology based on information gathered during the RI.

3.1 <u>SITE SURFACE WATER, SEDIMENT AND POND</u>

A pond on the northwest corner of the site receives site drainage from two directions. A drainage ditch flows northward along the western property line into the pond. This ditch drains the western portion of the site as well as the adjacent properties to the south and west. At the time of sampling, this ditch contained flowing water. A site storm sewer also flows into the pond. This storm sewer receives run off from the paved areas on the east side of the site, the open field north of the site building and flow from the building roof drains. Storm sewer sampling location STW-202 was sampled on 1 August and STW-201 on 21 August 1991. Location STW-201 did not contain enough water to sample on the first date. Although it was proposed in the Work Plan to sample sediment from the storm sewer locations, there was insufficient sediment to sample. During the pond water and sediment sampling the pond average depth was 2+ feet deep. During subsequent site visits in October the pond water level was noticeably higher (3-4 feet).

The percentage of organic carbon in two site sediment samples collected from the pond was found to be 14% and 24%, based on the testing method arrived at through discussions with Mr. John Munn of the NYSDEC. This information was used in the formula for deriving screening values for sediment contaminants, as shown on Table X.

3.2 <u>SITE GEOLOGY AND SOILS</u>

Test pit excavations and test boring explorations were conducted to collect subsurface soil samples and observe subsurface geology. Specifically, in the previous H&A investigation silt seams were observed in the subsurface lacustrine strata. There was not enough information from the previous explorations to determine if these seams were continuous or if they could be acting as a groundwater transport mechanism. Therefore, test pits were included in this investigation because they provide a better view of subsurface structures than test borings, although to a limited depth.

At test pit TP-205, a zone of discontinuous buff colored fine sand" stringers 1 to 2 centimeters thick were observed at 3-4 feet. Also observed in each test pit were iron-stained planar partings in the silt. Descriptions of the soils encountered in each test pit were prepared by H&A of New York and are presented in the Test Pit -13Reports (Appendix A). None of the silt seams noted in previous explorations were observed during this round of test pits and test borings.

Subsurface test boring explorations encountered mostly lacustrine sediments. Exceptions to this were the presence of 3 ft. or less of surficial soil fill in many of the grid borings and test borings and the presence of weathered bedrock at the base of boring B205. Descriptions of the deposits as encountered by explorations are as follows:

- o <u>Soil Fill</u> (surficial) was encountered in 21 of the test borings, generally consisting of gray and brown SAND or GRAVEL in thicknesses of less than 3 ft.
- Lacustrine deposits were encountered in all explorations at the site, generally consisting of hard brown clayey SILT over stiff gray-brown silty CLAY. Several thin, wet SILT seams (less than 1 inch thick) were previously observed in the drilling of the 100 series borings, but not the 200 series borings. At a depth of 43 feet, where continuous sampling was begun on B205, an interval of gray SAND with silt and gravel was present to 60 feet. Between 60 and 79 feet, gray silt deposits were encountered. A sandy gravel was encountered at 65-67 feet, underlain by more gray silt. Lacustrine deposits approached 79+ ft. in thickness.
- <u>Vernon Shale</u> as weathered bedrock was encountered at the bottom (79.0 ft.) of the deepest boring (B205), consisting of very dense green-gray rock fragments.

Figure 7, Subsurface Profiles, provides a cross-sectional view across three subsurface transects: A-A', **B-B'** and **C-C'** as located on Figure 4. These cross-sections show site elevations, subsurface geology and other features discussed later in this section.

Physical characteristics of selected soils samples were evaluated in H&A's laboratory. Non-contaminated samples were selected for an evaluation of site geology. Laboratory permeability tests were performed on two samples from B202-d, one from 10-12 feet and one from 16-18 feet. This data is used in conjunction with rising head permeability data to evaluate hydraulic conductivity. Atterberg limits were performed on the 8-10 foot sample from B202-d and the 10-12 foot sample from B204-d. Generally, this test allows for the differentiation between silts and clays based on plastic behavior. Sieve and hydrometer analyses were conducted on samples B203-d, 10-12 feet; **B202-d**, 26-28 feet; and B203-d, 26-28 feet. Sieves are used to determine sample grain size; the hydrometer test more accurately evaluates the fine-grained fraction of the sample. The laboratory data sheets are provided in Appendix D and results discussed below.

Laboratory permeability tests were performed in general accordance with ASTM Standard D5084. This test provides a laboratory measurement of hydraulic conductivity (or coefficient of permeability) of water-saturated porous materials using a flexible wall permeameter. This test method is designed for use with samples that have a hydraulic conductivity less than or equal to 1 $\times 10^{-5}$ cm/sec.

The laboratory measured permeabilities were 3.84 x 10^{-8} cm/sec and 2.42 x 10^{-7} cm/sec. This range of values represents a generally fine-grained material with relatively low permeability similar to a clayey to silty deposit.

Atterberg limits (liquid limit, plastic limit and plasticity index) were determined for two samples, in general accordance with ASTM Standard D4318. The liquid limit is defined as the water content of a soil (in percent) at the boundary between the liquid and plastic states. The plastic limit is the soil water content, in percent, at the boundary between the plastic and brittle states. The plasticity index is the difference between the liquid limit and the plastic limit and represents the range of water content over which a soil behaves plastically. Measured liquid limits were 35.0 and 29.0; plastic limits were 14.4 and 12.7; resulting in plasticity indices of 20.6 and 16.3. Typically, plasticity indices in this range represent an inorganic clay of low to medium plasticity which may be gravelly, sandy or silty.

The sieve and hydrometer tests (after ASTM D422) were used to determine the distribution of particle sizes in site soil samples. The size of particles which pass the No. 200 sieve is determined by a sedimentation process, using a hydrometer. The grain size distribution curves show that between 80 and 95 percent of each of the three samples is comprised of silt or clay sized particles.

In summary, site soils testing shows the materials to be silty clays with laboratory permeabilities in the range of 1×10^{-7} to 1×10^{-8} . This laboratory-derived description generally agrees with the field observations and field-determined permeabilities, as described below.

3.3 <u>SITE HYDROGEOLOGY</u>

To evaluate hydrogeologic conditions at the site, rising head permeability tests and water level measurements were performed and groundwater contour plans developed.

Rising head permeability tests had been performed on some of the site wells as part of the previous H&A investigation. These results were checked and presented in a similar format to the new test results. Those 100-series wells not originally tested, and the newly installed 200 series wells, were tested as part of

this RI. The resulting permeability values are presented on Table I, Summary of Monitoring Well Physical Data. As shown, these values range over three orders of magnitude from 9 x 10^{-8} cm/sec to 1 x 10^{-6} cm/sec.

The tests were performed for a minimum of one hour each, as described in Appendix I of the Work Plan. The field data sheets are presented in Appendix E of this RI. None of the wells tested recovered to static level within the hour. The resulting permeabilities match those seen in the laboratory permeability testing and appear to be representative for the site. Figure 7, Subsurface Profiles, has the rising head test permeabilities plotted on it opposite each well screen. A check of permeability versus geologic unit was made; no correlation between well screen placement and permeability was observed.

Ground surface, top of riser and top of casing elevations were surveyed and are presented on Table I. This data, with measured depth to water, was used to calculate groundwater elevations. Groundwater elevations for the shallow wells and the deep wells were plotted on separate plans to evaluate groundwater flow directions and gradients for the top of the saturated zone (shallow wells) and the deeper overburden flow (deep wells). Because of the low permeability of the site soils, it appears that water levels measured in the wells this fall are not representative (unusually low) due to slowness to recover from development, rising head testing and/or sampling, all of which require the removal of significant quantities of water from the well. This slow recovery to static water levels also occurred after the installation of the 100-series wells and is due to low soil permeabilities.

By plotting the groundwater contours using water levels measured in January of 1990 (100 series wells only), the flow direction in both shallow and deep wells is shown to be toward the pond in the northwest corner. This is similar to the surface topography of the site. The gradient of these flow maps is 0.01 feet per foot. Water levels are being measured periodically and updated information will be utilized once available.

3.4 DEMOGRAPHY AND LAND USE

As previously discussed in other sections of this report, the site is industrially zoned. The surrounding areas are predominantly light industrial and commercial with low residential density. Residences are present along Brighton-Henrietta **Townline** Road, separated by commercial buildings and properties.

3.5 <u>ECOLOGY</u>

The property lies within the Red Creek drainage basin. The drainage ditch and pond on the western boundary of the property receive run off from the site and adjacent properties. The drainage then proceeds in a northwesterly and then westerly direction between Cortese Suzuki and Conway GMC (businesses on W. Henrietta Road), through a culvert under W. Henrietta Road, continues west passing through a residentially-zoned area and empties into a class D stream #ONT-117-14-1b, approximately one half-mile west of the Dollinger property.

Much of the pond area was dry during July and August site investigations; evidence of flooding was observed at the pond in late October. A high water line was noted in the October 1991 visit indicating seasonal flooding.

Plant life typical of marshes and wetlands surrounds the pond and drainage ditch. Plant species identified include: cattails, dogwood, poison sumac, swamp candles and thistle. Willow and oak trees flank the northern border. Approximate locations of cover are shown on the Cover-Type Map, Figure 3.

Remnants of a mature woodlot border the northern portions of the property. An open field is present in the area between the woodlot and the facility building. The field contains transition type plant species typical of **abandoned** farm land returning to a wild state. The field contains a variety of grasses, shrubs, bushes and wildflowers. Representative species noted during the site walkover are shown on Figure 3.

A marshy area, approximately 14 foot in circumference near the northeastern property boundary, appears to be formed where the groundwater table occurs at ground surface. An area marked by wet soils is apparent between the marshy area on the northeast property boundary and the drainage retention pond. Site history indicates soil may have been removed from these areas when the site was graded. During periods of heavy rains, the shallow groundwater table (2 feet below original ground surface) probably keeps portions of the field saturated.

The Natural Heritage Program and Significant Habitat Unit were contacted for information regarding sensitive species and/or habitats which may have been identified in the area. Results of this inquiry will be included in this report if they become available.

In general, the site appears to provide good cover and food for wildlife. Numerous indicators of good habitat were observed including deer tracks and bedding area, raccoon tracks and scat, numerous small seed eating birds including a variety of sparrows, gold finches, and house finches.

IV. NATURE AND EXTENT OF CONTAMINANTS

The areas of concern at this site have previously been defined as the former TCE degreaser area, a former drum storage area north of and adjacent to the building and a former dumpster location northeast of the building at the pavement edge. These areas all lie within 400 feet of one another. Because of their close proximity to each other, it is not practical to separate the areas of concern for purposes of evaluating source areas. Therefore, the discussion that follows is structured by media evaluated (soil, sediment, water, vapor or air) and pertinent analytical results. For each media, organic results are summarized first, followed by a summary of inorganic results. The site media were evaluated using several field investigation techniques and laboratory analyses.

In order for this data to be meaningful, it is compared with screening values that have been selected for purposes of this RI. The screening values discussed below and shown on Tables II through XI are used in this RI report for comparison purposes only. During the feasibility study, **Dollinger** will evaluate appropriate criteria (including the screening values) to be used in evaluating the need for remediation at the site.

Soil vapor, soil, groundwater, surface water, sediment and air were evaluated. The soil vapor and air screening was performed by H&A personnel using a portable gas chromatograph. There are no State or Federal standardized screening values for comparison of data collected from these media and sampled in this manner. Therefore, these results were compared to other screening events at the same sample points or evaluated relative to neighboring results to provide an areal depiction of the data.

The soil organic results were compared to a recommended soil cleanup goal provided by the NYSDEC Division of Hazardous Waste Management. As shown by the formula provided on Table III, this screening value is dependent on the groundwater standard and octanol water partition coefficient for each compound, as well as the amount of organic carbon in the soil.

The groundwater and surface water screening values used for organic and inorganic comparison are the standards and quidance values for human health provided in the 25 September 1990 NYSDEC document "Ambient Water Quality Standards and Guidance Values." For inorganic data comparison, values from analysis of filtered samples from 58 wells installed in Monroe County for the CSOAP (Combined Sewer Overflow Abatement Program) investigation are also presented in Table VIII. These may be more indicative of background concentrations in this area. Furthermore, the NYSDEC values are for drinking water supplies and as such may not represent local background values. GA or hockide

-18-

The sediment organic screening values used are from the USEPA formula which is provided on Table X. Variables in this formula are the ambient water quality data and octanol water partition coefficient for each compound, and the amount of organic carbon in the sediment. The organic carbon values used are from the previously disscussed site-specific sampling results.

The inorganic results for sediment and soils are compared to ranges in eastern U.S. soils as referenced on the data tables. For additional inorganic data comparison, soil and sediment clean up goals, from a detention pond clean up project, as provided by the NYSDEC for Inactive Hazardous Waste Site #851015, are also provided in Tables V and XI.

4.1 SOIL VAPOR

The four soil vapor shield points installed in August of 1991 were sampled on two occasions. On 2 August and 25 October 1991 soil vapor was pumped from these sample points and a sample was collected into tedlar bags. Table **II**, Apparent Compounds Detected In Soil Vapor Shield Point Screening, **summarizes** the results of the screening.

No compounds were detected during either sampling event at SV-201, on the east side of the building, or SV-204, near the site pond. SV-202, located in the vicinity of the former dumpster area, yielded soil vapor shield point samples containing the highest concentration of the chlorinated hydrocarbon compounds tested for (1,1-DCE, 1,2-DCE, TCE and vinyl chloride). TCE was used on site; DCE and vinyl chloride are breakdown products of TCE. SV-203 exhibited total TCE and breakdown product compound concentrations at approximately one-fifth to one-third of SV-202 during both sampling events, with TCE comprising the majority of the sample concentration.

Although groundwater level measurements were not collected at the same time as the soil vapor sampling, the site pond level was observed both times. During the 25 October sampling, the pond level was 1-2 feet higher than in early August. Correspondingly, the soil vapor concentrations were higher in August than in the October sampling. Dilution of shallow groundwater concentrations may have occurred as a result of infiltration of precipitation, resulting in lower soil vapor concentrations when the groundwater elevations were higher.

Based on the recent soil and groundwater analytical results (Sections 4.2 and 4.3 below), it was apparent that the former TCE degreaser area contains the highest detected site VOC

concentrations in soil and groundwater (borings/wells OW-201s and OW-201d). Therefore, the results of the soil vapor sampling for H&A's 1988 report were reviewed and recalculated using only the values for TCE and its breakdown products since these are the components of the original soil vapor survey which were subsequently verified by laboratory analysis of soil and groundwater samples from beneath the slab.

Figure 8, Soil Vapor Sampling Location Plan, has been modified from the 1988 site investigation report prepared by H&A. This figure shows the concentration of total chlorinated hydrocarbons (TCE, Perc, DCE and Vinyl Chloride) in soil vapor samples from the site at that time. The highest soil vapor concentration recorded in this 1988 investigation is from the area adjacent to the TCE degreaser area. The concentrations generally drop off radially moving away from the degreaser area. Other elevated concentrations were detected in the vicinity of the former drum storage and dumpster areas.

4.2 <u>SOIL</u>

Soil samples were collected from background locations, test pits, grid borings, and test borings completed as monitoring wells.

The shallow soil samples used for background information were collected from the southwest portion of the site. Organic analytical results are presented on Table III. None of the organic compounds for which analyses were performed were found to be present in concentrations exceeding soil screening values. Inorganic results are shown on Table V. The majority of metals concentrations for the background samples are consistent with the mean concentration for metals in eastern U.S. soils. Those which exceed the mean still fall within the 95% confidence interval for the range of expected concentrations. The concentrations also fall within the clean up goals presented for NYSDEC registry site **#851015**.

Analysis of the test pit soil samples showed similar low concentrations for volatile organic compounds, also shown on Table III. No exceedances of the screening values were found. For the inorganic analyses, the calcium concentrations were elevated above the mean concentration of calcium in eastern U.S. soils. This is attributable to the abundance of calcium carbonate in the overburden deposits at the site.

In the grid boring soil sample organic analyses, one chlorinated hydrocarbon (TCE) and one BTX (benzene-toluene-xylene) compound (total xylenes) were found to be present in exceedance of the

corresponding screening value. This sample, **GS-A8**, is located immediately adjacent to the exterior door to the former TCE degreaser area. Other elevated levels were detected at sample points adjacent to the former drum storage and degreaser areas. At these locations TCE was present at higher concentrations than the other organic compounds. These results are presented on Figure 6 and in Table IV. As in each of the figures which are used to present analytical results, this figure contains only those results which were not diluted, estimated or present in the blank. Nevertheless, the qualified data values are shown in each table with the corresponding qualifiers.

The test boring soil analyses also detected TCE concentrations in excess of the screening value. The 201 shallow and deep borings were sampled and found to contain TCE at levels exceeding those of the screening values at a depth of 8 to 14 feet below ground surface. As in the test pit soil inorganic analyses, calcium was detected at similarly elevated concentrations. Figure 9 shows the organic concentrations is soil.

4.3 <u>GROUNDWATER</u>

Groundwater organic analytical results are presented in Tables VI and VII. Figure 7, Subsurface Profiles, shows the compound detections (again for only those data with no analytical qualifiers) for each well on the cross-sections. Also shown on Figure 7 is the data from groundwater analyses conducted in the previous phase of site investigations. Only the 100-series wells were present at that time. In most cases the concentrations of chlorinated hydrocarbons have decreased or degraded (TCE degrades first to 1,2-DCE and then to vinyl chloride) since the previous sample analysis.

VOC concentrations higher than groundwater standards or guidance values were primarily detected only at wells in the three previously identified areas of concern. TCE and its degradation products were not detected at the following locations: the 105 and 106 clusters which are generally down-slope (and down gradient) of the areas of concern; the 202 cluster located less than 200 feet northeast of the TCE degreaser area (acetone, a common lab contaminant, was present in one sample); the 203 cluster at the southwest corner of the building; the 204 cluster at the southeast corner of the building (acetone was again present here in one sample); and the deep well (OW-205) adjacent to the former TCE degreaser area. Based on this data, it appears that the presence of organic compounds in groundwater and soils is limited to the vicinity of the three areas of concern. Results of the inorganic analyses of groundwater show iron, magnesium, manganese, and sodium to exceed the groundwater screening values. These are common rock/soil forming minerals, likely present as a result of sediment in the samples. Further, these compounds are generally not associated with industrial operations reportedly conducted by Dollinger at the site. comparison to the filtered CSOAP well data from Monroe County shows that sodium values are within the average for the area, as are most of the iron concentrations.

4.4 <u>SURFACE WATER AND SEDIMENT</u>

Figure 10 graphically displays the distribution of organics in the site surface water and sediment. Surface water samples were collected from the storm sewer and site pond; results are shown on Table IX. The pond sample closest to the storm sewer outlet, SW-201, contained 1,2-DCE and an estimated detection of vinyl chloride in excess of the surface water screening values. The pond water sample from location SW-204 contained bis(2-ethylhexyl)phthalate in excess of the screening value. No pattern was apparent to the low, isolated concentrations detected. The inorganic analyses, as shown on Table VIII, show exceedances for aluminum, iron, lead, magnesium, manganese, silver, sodium and zinc. Again, many of these are common, rock/soil/sediment forming minerals, none of which were reportedly used by Dollinger at the site. As discussed above, site sodium and iron concentrations fall within or close to the area averages.

Sediment samples were collected from four locations at the pond. Both a shallow (65 inches) and a deep (2± feet) sample were collected at each location. The shallow sample from SS-201 contains the volatile compounds benzene and chlorobenzene, and the semi-volatiles phenol and **benzo(a)pyrene** in exceedance of the screening values, as shown on Table X. Although many of the other samples contain volatile and semi-volatile compounds, none are in excess of the screening values calculated. The concentration and number of compounds detected at SS-201 is an isolated occurrence not reproduced at the other sediment sample locations.

Inorganic analyses of the sediment samples are summarized on Table XI. In most samples, calcium is present in excess of the 95th percentile screening value. Copper, lead, magnesium and zinc are also present in one or more sample at a concentration above the expected range for metals in soils for the eastern U.S. (95th percentile as shown on Table XI). All of the copper, lead and zinc results except two fall below the clean up goals provided by the NYSDEC for registry site **#851015.** The shallow sample at SS-201 generally contains both the greatest number of metal compounds and the highest concentrations relative to other site samples. The compound distribution does not exhibit a pattern; these inorganics may be naturally occurring or their presence may be related to the presence of the organic compounds at this location.

4.5 <u>LABORATORY DATA VALIDATION</u>

All of the above-presented data was validated by an NYSDECapproved validator as prescribed in the Work Plan. Data validation text is in Appendix F. Tables XIII, XIV and XV contain quality assurance/quality control data including the blank analyses and the tentatively identified compounds (TICs). The validation indicates that all of the data is usable except reported results for **semi-volatile** analyses of samples **GS-A8**, SS-202s and SS-204s and pesticide analyses of SO-201 and SO-202, which were conducted outside the required holding time. These compounds were generally not otherwise indicated to be associated with the three Dollinger areas of concern and therefore this limitation does not appear to affect the RI results. Validation also resulted in confirmation or modification of data qualifiers by the lab used to identify limitations to data use. These include: estimated concentrations (E), results from diluted samples (D), compounds which were detected in a lab or cleaning blank (B), and estimated compounds (J)

4.6 <u>AIR</u>

Air sample collection was conducted at the B-205 **borehole** for **borehole** flux evaluation as described in the Work Plan. Table XII contains the **borehole** and ambient air readings. Samples were also taken during drilling at the drilling platform located approximately 4 feet above the borehole, and at $2\pm$ inches above ground surface at the location of 205, following the completion of drilling. Samples were collected in Tedlar bags and analyzed using the portable GC.

Results of the **borehole** flux evaluation indicate that concentrations detected in the sealed **borehole** appear to increase with the depth of the boring. Concentrations in the **borehole** increased from 881.9 ppm at 2-4 feet in depth to 4411 ppm at 9-11 feet in depth. Since approximately the same surface area of soil was exposed inside the **borehole** at the time of sampling, these increased concentrations are likely related to decreasing distance between the **borehole** bottom and the source of the volatile vapors (which, in this case, is likely to be groundwater) and/or a result of chlorinated VOC vapor density being heavier than air. For purposes of remediation planning, a flux of **VOCs** per sq. ft. of soil exposed may be estimated based on depth of excavation, proximity to groundwater, and proximity to each area of concern.

The concentration detected at the drill rig was measured during air rotary drilling in which air is forced from the borehole as part of the drilling process. Therefore, this concentration is not representative of ambient air quality, but does indicate the attenuation that occurs between the subsurface VOC source and a potential breathing zone during investigation operations. this case the attenuation was 3 orders of magnitude. A concentration of 0.14 ppm total VOCs was measured at ground surface following drilling, but was not apparent by odor or in blanks. Assuming a similar 3 orders of magnitude decrease in concentration takes place between undisturbed ground surface and the breathing zone, no detectable concentrations would be apparent in outdoor area breathing zones. Although vapors might affect only indoor, poorly ventilated areas, based on the risk assessment (Section VI), and available data, no unacceptable health risks appear to exist.

> Does this include utility works in an excavation?

A = A

v. CONTAMINANT FATE AND TRANSPORT

The environmental persistence of site compounds of concern and contaminant migration routes are described in this section.

5.1 CONTAMINANT PERSISTENCE AND MIGRATION

Table XVI contains information on the physio-chemistry and fate of organic chemicals and its significance. The significance of the listed properties is related to the relative mobility of compounds. This characteristic is a function of several criteria, briefly summarized in the following:

- <u>Water Solubility</u> is the maximum concentration of a 0 chemical that dissolves in pure water at a specific temperature and pH. It is a critical property affecting environmental fate and transport.
- <u>Vapor Pressure</u> is a relative measure of the volatility of Ο a chemical in its pure state and is an important determinant of the rate of vaporization from a particular media.
- Henry's Law Constant is important in evaluating air exposure pathways. Values for Henry's Law Constant (H) can Ο be calculated using the following equation and the values previously recorded for solubility, vapor pressures, and molecular weight:

Vapor Pressure (atm) x MW (g/mole) $H(atm-m^3) =$ Water Solubility (g/m^{3})

<u>Oraanic Carbon Partition Coefficient</u> - (K_{OC}) is a measure of the tendency for organics to be **adsorbed** by soil and Ο sediment and is expressed as:

Koc = _____ mg chemical adsorbed/kg organic carbon
mg chemical dissolved/liter of solution

The ${\tt K}_{{\tt OC}}$ is chemical-specific and is largely independent of soil properties.

Octanol-Water Partition Coefficient - (K.ow) is a measure of how a chemical is distributed at equilibrium between Ο octanol and water. It is an important parameter and is often used in the assessment of environmental fate and transport for organic chemicals. Additionally, $K_{\mbox{ow}}$ is a key variable used in the estimation of other properties.

Ο

<u>Retardation factors</u> - provide an estimate of the degree to which compounds are retarded in their movement through the subsurface relative to the groundwater velocity and sorption to soil particles. Estimated retardation factors can be calculated using the formula:

 $R = 1 + \underline{P} K_d$

Where: P = Bulk density of the soil (1.75 g/cm³ assumed)<math>O = Effective porosity (25% assumed) $K_d = (K_{OC} (soil organic carbon fraction)$

The very low solubility and high octanol water partition coefficients of the pyrenes and **PAHs** indicate that they will be strongly adsorbed to sediments and other organic matter and will be relatively immobile. Similarly, the high solubilities and moderate to low octanol water partition coefficients of the chlorinated hydrocarbons and BTX compounds indicates that they will generally be preferentially present in a liquid media: surface water or groundwater.

Metals may occur in a metallic form, sorbed or chelated by organic matter or oxides, sorbed on exchange sites of waste constituents or soil colloids, or in the soil solution. Most metals are immobile at usual soil pH ranges and become significantly leachable only if acidic solutions percolate through the soils. At the normal range of soil pH values, metals have low concentrations in the soil solution and will not be leached at an appreciable rate. Other environmental factors which influence metal mobility include soil clay content, organic content, oxidation-reduction potential, carbonate content, and groundwater chemistry.

In general, it appears that the more mobile organic compounds (chlorinated hydrocarbons and BTEXs) are less persistent in site media and will therefore degrade as they move within or between given media. The less mobile site compounds (semi-volatiles) are also the more persistent and thus, although they may remain on site for a relatively long time they generally will not migrate within or between given site media. The inorganic compounds have a similarly low mobility and do not readily migrate within or between site media.

5.2 <u>POTENTIAL ROUTES OF MIGRATION</u>

5.2.1 <u>Soil</u>

Compounds present in soil at values higher than the screening values previously described, occur at only two locations sampled: the GS-A8 grid boring (located

adjacent to the exterior door of the former TCE degreaser area) at 4-6 feet in depth, and the 201 borings beneath the building at 8-14 feet in depth. Since no shallow soil contaminants were detected outdoors during this investigation, there is not likely to be release of soil contaminants to the air. Migration to indoor air is a potential pathway, but only if there are cracks in the floor slab and poor indoor ventilation (this is evaluated further in the Risk Assessment, Section VI). Through groundwater flow and surface infiltration, soil contaminants can migrate into groundwater under certain physio-chemical conditions.

5.2.2 Groundwater

Site groundwater contaminants are not likely to be released to the air unless groundwater is present at the ground surface. This condition may exist inside the building at the sump.

Soluble contaminants will migrate with the groundwater at rates that depend on the groundwater flow velocity and the degree of retardation of contaminants associated with the presence of organic carbon in the subsurface.

5.2.3 Surface Water

With the generally low concentrations detected in the surface water sampling, the absence of contaminants in the well cluster adjacent to the pond (OW-105), the absence of contaminants present downstream (as presented in the NYSDEC sample results), and the isolated nature of the sediment contaminants at SS-201s, it does not appear that surface However, provious water is acting as a primary migration pathway.

5.2.4 Air

deta indicates a PLOBLER Air as a migration route was evaluated through borehole and ambient air monitoring at the site. Results indicate that selected volatile organic compounds are released to air when soil containing the compounds is disturbed by drilling. However, the compounds are not persistent in air and are quickly dispersed and diluted.

VI. <u>RISK ASSESSMENT</u>

This baseline risk assessment (RA) evaluates potential impacts on human health and the environment from compounds identified at the Dollinger facility. This assessment was prepared in accordance with **USEPA's** Risk Assessment Guidance (RAG) document (1*) as recommended by the New York State Department of Health, Bureau of Toxic Substances Assessment (2).

6.1 <u>HUMAN HEALTH EVALUATION</u>

The four components of the human health RA are:

- o Identification of Compounds of Concern
- o Exposure Assessment
- o Toxicity Assessment
- o Risk Characterization

6.1.1 Identification of Compounds of Concern

Compounds of potential concern, as defined by USEPA's RAG, are chemicals that are potentially site-related and for which analytical data are of sufficient quality for use in the quantitative RA. The process of identifying a list of chemicals of potential concern is based on evaluating analytical data for the site, analysis of naturally occurring levels of chemicals, and comparison with possible Federal and/or State regulatory criteria for concentrations of chemicals in the environment.

6.1.1.1 <u>Data Evaluation</u>

Analytical data for the Dollinger facility site were available from the Phase One investigation conducted in October 1988, and the Phase Two investigation conducted in July 1991. Data from available sources were gathered and reviewed for inclusion in the risk assessment.

*Number in parentheses refers to sources of information listed in "References" at the end of this section.

Analytical data quality is discussed in Appendix F (data validation) of this report. The nature and extent of contaminants and a comparison with background concentrations is presented in Section IV. Based on this review, compounds included in the risk assessment are summarized in Table XVII for soils, sediment, surface water and groundwater.

All organic compounds identified by laboratory evaluation were included in the RA except those associated with apparent laboratory or other sample handling contamination. Such compounds are identified in the data evaluation discussion and include: 1,1,1-Trichloroethane in samples SO201 and SS202 which were also identified in the associated laboratory blank and the pesticide 4-4-'DDE which was identified at an estimated concentration much lower than the detection limit.

Acetone and methylene chloride are used in a number of laboratory extraction procedures and are common laboratory contaminants. These compounds were identified in a number of samples and could not be ruled out as present due only to laboratory contamination and so are included in the RA. However, their detection may not represent actual site conditions.

A number of polynuclear aromatic hydrocarbons (PAHs) were identified in the sediment sample **SS201**. Laboratory quantification problems may have resulted in an overestimation of the compound concentrations. Therefore, these compounds are only included in the RA in the reasonable maximum exposure (RME) scenario.

All inorganic compounds identified at concentrations above background concentrations were included except for calcium which is not considered a toxic compound and would not be expected to pose a threat to human health or the environment. Inorganic compounds included in the RA are: copper, lead, mercury, nickel and zinc in sediment, and lead in surface water.

Only analytical results from the 1991 site investigation were included in the RA as these are considered most representative of current site conditions. Fate and transport processes which may affect previously identified compounds are discussed in Section V of this report.

6.1.2 <u>Exposure Assessment</u>

In the exposure assessment, compounds identified at the site are evaluated in terms of complete pathways by which humans may come in contact with them. The magnitude, frequency and duration of potential exposures are evaluated using scenarios of exposure. These scenarios are derived from site use and setting under current and predicted reasonable future conditions (3).

6.1.2.1 <u>Site Setting</u>

The 18.5± acre industrial-zoned property is located within a light industrial and commercial area of Brighton, Monroe County, New York (see Site Location Map - Figure 1). The nearest residential area is approximately 1200 feet south of the site.

Prior to its current industrial use, the site was used for agricultural and residential purposes.

An undeveloped field and woodland is located immediately north of the site. **Conrail** railroad tracks border the eastern portion of the property. The back of commercial facilities bordering on W. Henrietta Road are located on the western property boundary. An access road, commercial properties and a landscaped approach border the south side of the property off Brighton-Henrietta Town Line Road.

6.1.2.2 <u>Potentially Exposed Populations</u>

Characterization of potentially exposed populations is dependent on the nature and location of constituents identified at the Dollinger site, presence of potential pathways of migration **offsite**, and the land use and demographics of areas around the site. Based on a review of analytical data and land use activities, the apparent areas of potential concern include: surficial soils in the former drum storage area, former degreaser area, storm water drainageway; sediment from the drainage retention pond; and groundwater.

Potential exposure scenarios were developed to evaluate reasonable hypothetical exposure conditions for the Dollinger facility site based on USEPA's RAG and site zoning/use. Based on the industrial land-use zoning and locations of chemicals of concern, a non-resident trespass scenario and an on site worker scenario were

evaluated. Planned future use of the site considers continued usage of the facility as an industrial/commercial property for the forseeable future. Therefore, potential future exposure scenarios would be the same as the current use scenarios. The future site usage would include the following groups:

- welnde utility 1 Trespassers (including children) on the property potentially exposed to chemicals of concern in soils and sediments through accidental ingestion and skin contact.
 - 2. On site workers potentially exposed to chemicals of concern in soil through inhalation of a vapor phase.

in floor chan bee The first scenario developed to evaluate site conditions considers off-site residents entering the The closest residence is **1200** feet from the site. Therefore, older children were chosen to site. evaluate exposure conditions. It was considered unlikely that young children or adults would enter the property regularly or come in contact with contaminated soils.

> The on site worker population evaluated considers inhalation of constituents of concern in the vapor phase. The ingestion and dermal absorption exposure routes are not considered likely to occur.

> Both scenarios were developed considering potential exposure routes which exist on the property based on areal extent and migration as discussed previously.

Potential Future Use of Groundwater as Drinking Water

Groundwater on the site is not currently being used as a drinking water source, and is not planned for use in the foreseeable future (the area is on municipal water), and is unlikely to be used due to the low site permeabilities. Compounds in groundwater were identified at concentrations above NYSDEC Drinking Water Screening Values (see Tables VI and VII). In light of low site permeabilities, migration of compounds in groundwater has not been identified as a likely exposure pathway.

Identification of Exposure Pathways

For the child trespass scenario, all soil-related exposures are assumed to occur outdoors at or near the -31-

workers in à tresch operation senspio.

Note hage lessels

contaminated soils. For the on site worker scenario exposures are assumed to occur in the degreaser work area. All pond water and sediment related exposures are assumed to occur outdoors at the contaminated sediments.

These conservative (human-health protective) assumptions were used to evaluate exposure by the following routes:

- Ingestion of soil contaminants by children trespassing on the site.
- Dermal absorption of soil contaminants by children trespassing on the site.
- o Ingestion of contaminated pond water and sediment by children trespassing on the site.
- o Inhalation by on site workers of vapors which infiltrate and collect in the building.

Two levels of exposures were considered:

- o A routine or typical case.
- o A reasonable maximum exposure case.

The typical case employs average soil concentrations and intake parameters (e.g., amount of soil ingested, amount of soil on skin as specified in the USEPA Exposure Factors Handbook) and average soil contaminant values (3).

The reasonable maximum exposure (RME) case employs average intake parameters and maximum identified contaminant values.

The conservative nature of assumptions built into these potential exposures must be emphasized. For the child exposure scenario, a trespass must take place and the child must locate the specific location of the detected concentrations on site. For the on site worker, vapors must infiltrate the building and collect in a relatively confined space.

Source Media Contaminant Concentrations

The exposure pathways identified in Section 6.1.2 originate from soils within the site boundaries. No current or likely future **offsite** migration of contaminants was identified by RI sampling performed by H&A or NYSDEC's separate sampling effort. Compounds that were detected at least once in soil or sediment samples from the site were included. The "representative" or typical case exposure concentrations were obtained by averaging the detected results for each contaminant. When averaging, duplicate analytical results were averaged to obtain the sample concentration used. Sample detection limits were not used as surrogate concentrations because quantitation limits were low enough to allow for detection above toxicity reference values.

Chemicals that were detected in only one sample are considered only in the reasonable maximum exposure (RME) scenario and at the concentration identified rather than averaging over the total number of samples analyzed. Maximum observed concentrations of chemicals detected at more than one location were used in the RME scenario.

Table XXVII presents the chemicals detected in soil, sediment, surface water, groundwater and soil vapor and their respective exposure concentration for the typical and RME scenarios.

Exposure Estimation Methods

This section integrates populations, activities and exposure pathways into exposure scenarios representing typical and reasonable maximum exposure conditions for the evaluation of human health risks.

These scenarios estimate absorbed doses using the following equation:

(Contact Rate or (Exposure (Exposure (Absorption Absorbed (Conc.) Ingestion Rate) Frequency) Duration) Fraction)

Dose

(Body Weight) (Averaging Time)

As presented in the equation, absorbed dose is directly proportional to the product of contaminant concentration, contact rate, frequency of exposure and exposure duration, divided by the product of body weight and averaging time. Scenarios assume absorption fractions of 1 in keeping with USEPA practice and the need for maintaining consistency with procedures used for deriving chronic toxicity indices. Such equations enable estimation of both lifetime average daily doses

(LADDs) used in the evaluation of potential carcinogenic risks, and chronic daily doses (CDD) calculated for pathway specific exposure periods, which are used in the evaluation of noncarcinogenic risks.

The two scenarios evaluated in this document are:

Bcenario 1: Non-Resident Bite Trespass Exposure Bcenario 2: On Bite Work Exposure

<u>Scenario 1</u> - addresses potential **exposures** to 6 to 12 year old children, an age group that, if trespass occurred, would most likely come in contact with soil. Exposure routes addressed in this scenario include inadvertent ingestion of soil due to play activity and/or hand to mouth contact and direct contact with soil and sediment. Parameter values (based on the USEPA Exposure Factors Handbook, 1989) specific to this scenario are (4):

- Ingestion Rate (IR) of 100 mg/day for age groups older than 6 years old.
- Fraction Ingested (FI) = Fraction ingested from contaminated source = 1.0.
- Exposure frequency of 26 days/year (1 time/week for 26 weeks/year to account for the fact that the site contains an active industrial facility and access would occur mostly during non-working hours and primarily within the 6-month period between April and October).
- Exposure duration (ED) of 6 years assuming entire age period between 6 to 12 years old.
- Body Weight (BW) of 31 kg, the average of 9 year olds.
- Averaging time of 70 years for the pathway specific period of exposure for carcinogens or 6 years for noncarcinogens.

Parameter values specific for the dermal contact exposure route (based on the **USEPA** Exposure Factors Handbook, 1989) are (4):

 Skin surface area available for contact (cm²/event): typical case = 1200 cm² (hands and 1/3 of arms and legs); reasonable maximum exposure = 1800 cm² (hands and one-half of arms and legs)

- o A soil to skin adherence factor of 0.5 mg/cm^2
- An exposure frequency of 26 days/year (1 day/week, 26 weeks/year) for the typical case and reasonable maximum exposure case
- o Exposure duration of 6 years
- o Body weight of 31 kg

<u>Scenario 2</u> - addresses potential exposures to on site workers. Key variables in the worker exposure scenario include (4):

- o Inhalation Rate (IR) of 0.8 m³/hr typical case corresponding to light activity and 2.5 m³/hr reasonable maximum exposure for moderate activity.
- o Exposure Time (ET) assumed at 8 hours/day typical and reasonable maximum exposure.
- Exposure Frequency (EF) of 250 days/year (5 days/week, 50 weeks/year).
- o Body Weight (BW) of 70 kg for both typical and reasonable maximum exposure case.

Concentrations of compounds in air were calculated using the following exposure criteria:

- o 1 liter of groundwater entered the degreaser room through cracks in the floor, sewer pipe and sump pump and volatilized completely.
- o Exposure occurs in the degreaser room, with the room treated **conservatively** as an enclosed room of approximately 384 m³ volume.
- Assume six complete air changeover/24 hours (conservative, usually see 0.5 changes/hr.).
- Assume steady state contaminant concentration conditions (very conservative, would expect concentrations to decrease over time).

This simple mathematical model only evaluates migration of groundwater into the building. Maximum detected compound concentrations in groundwater were used to

represent groundwater beneath the building. Vapor phase chemicals may also be entering the building through soil gas migration. Concentrations of 1,1-DCE, TCE and VC identified in the soil gas were higher than their associated OSHA PELS, indicating this is a potential migration pathway. It should be emphasized, however, that routine air monitoring during interior drilling did not detect total volatiles above background and OVA/HNu detection limits of ±1 ppm. Therefore, this scenario assumes a change in building conditions that would limit air circulation in the TCE degreaser areas and the total number of air changes.

Exposure Estimates

Estimates of potential exposure to site compounds that could occur were prepared by combining the source media contaminant concentrations with the exposure estimation methods discussed previously. The exposure estimates obtained by this process are given as chronic daily intake (CDIs) for each complete pathway and exposure case in the risk estimation tables (Tables XVIII to XXI).

6.1.3 <u>Toxicity Assessment</u>

The toxicity assessment identifies human health toxicity and carcinogenicity data for the compounds identified at the **Dollinger** site through a hazard identification and dose-response evaluation in accordance with **USEPA** guidance.

6.1.3.1 <u>Hazard Identification</u>

The hazard identification as defined by USEPA (1) is a qualitative description of the potential toxic properties of compounds of concern at the site. These are discussed in brief health effects summaries below. Toxicity and compound use data were obtained from the Agency for Toxic Substances and Disease Registry (ATSDR), Toxicity Profiles (5), and other references regarding occupational health and safety (6,7). Compound descriptions are arranged alphabetically.

<u>Acetone</u>

Acetone is a commonly used solvent. It also occurs naturally as a product of plant and animal metabolism, and therefore may be detected in soils, sediments, or water in contact with decaying vegetation or animal remains. The general population may be exposed to acetone by inhalation, ingestion or adsorption through the skin.

Acetone is not considered very persistent in the environment. Half life estimates range from **13** to 79 days in the atmosphere.

Acetone is generally regarded as having a low toxicity. Prolonged inhalation of high concentrations may produce irritation of the respiratory tract, coughing, headache, drowsiness, lack of coordination, and in severe cases, coma. No chronic health hazards have been associated with acetone.

<u>Benzene</u>

Benzene has a long history of industrial use, most notably as a solvent and as a starting material for the synthesis of other chemicals. It is also a constituent of gasoline, therefore it is a common anthropogenic non-point source compound found in roadway and parking lot run off.

Benzene is readily absorbed by **inhalation** and ingestion, but is relatively poorly absorbed through skin. Since benzene is quite volatile, inhalation is the most likely route of exposure.

Benzene is toxic to the blood-forming organs and the immune system. Excessive exposure (inhalation of concentrations of 10 to 100 ppm) can result in anemia, a weakened immune system, and headaches. Occupational exposure to benzene may also be associated with spontaneous abortions and miscarriages (supported by limited animal data) and certain developmental abnormalities such as low birth weight, delayed bone formation, and bone marrow toxicity. Benzene is regarded as a human carcinogen based on numerous studies documenting excess leukemia mortality among occupationally exposed workers.

<u>Chromium</u>

Chromium is a naturally-occurring element used industrially in making steel and other alloys. Chromium compounds are used in refractory brick for the metallurgical industry and in metal plating, manufacture of pigments, and other processes. Exposure to chromium can result from inhalation of air containing chromium-bearing particles and ingestion of water or food containing chromium. Chromium is considered an essential nutrient which helps to

maintain normal glucose, cholesterol, and fat metabolism. The minimum daily requirement of chromium for optimal health has not been established, but a daily ingestion of 20-500 ug/day has been estimated to be safe and adequate.

There are two major forms of chromium which differ in their effects. One form, chromium VI, acts as an irritant and short-term high-level exposure can result in adverse effects at the site of contact, such as ulcers of the skin, irritation and perforation of the nasal mucosa, and irritation of the gastrointestinal tract. Minor to severe damage to the mucous membranes of the respiratory tract and to the skin have resulted from occupational exposure to as little as 0.1 mg/m3 chromium VI compounds. Chromium VI may also cause adverse effects in the kidney and liver and long-term occupational exposure to low levels of chromium VI compounds has been associated with lung cancer in humans.

The second form of chromium, chromium III, does not result in these effects and is the form thought to be an essential nutrient.

<u>Copper</u>

Copper is a naturally-occurring element which is used to make electrical wiring, water pipe and is a component of alloys such as bronze and brass. Copper is an essential element at low dose levels but may induce toxic effects at high dose levels. Copper may enter the body by breathing air, drinking water, or eating food containing copper, and by skin contact with soil, water and other copper-containing substances. Long-term overexposure to copper dust can irritate the nose, mouth, and eyes and cause headaches, dizziness, nausea, and diarrhea. Ingestion of higher than normal concentrations of copper can cause vomiting, diarrhea, stomach cramps, and nausea. Liver and kidney damage and possibly death may occur if exposure continues. Concentrations of 3 mg/L in water caused liver damage in infants drinking the water for 9 months. Ingestion of water containing concentrations of 30 mg/L (single dose) by adult humans caused vomiting, diarrhea, and stomach cramps.

The minimum risk level (MRL) for copper has not been established. The National Academy of Science has recommended that 2-3 mg/day of copper is a safe and adequate daily intake.

1,1-Dichloroethene (1,1-DCE)

1,1-Dichloroethene (1,1-DCE, VDC, vinyldene chloride) is used to make certain plastics such as packaging materials and flame-retardant fabrics. It is a man-made chemical that is not found naturally in the environment. It may occur in the environment as a breakdown or degradation product of TCE or 1,1,1-TCA. The general public may come in contact with 1,1-DCE through contact with media contaminated by environmental releases or by contact with consumer products made with 1,1-DCE. 1,1-DCE can easily enter the body through the lungs as an air contaminant or through the digestive tract as a contaminant of food or water. It is expected to readily enter the body through the skin as well.

The effects of human exposure to 1,1-DCE have not been well documented. Prolonged exposures to high amounts of 1,1-DCE in animal studies have been associated with liver, kidney, heart and lung damage. In one animal study, an increased incidence of tumors was shown. The Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) for 1,1-DCE is 1 ppm.

1,2-Dichloroethene (1,2-DCE)

1,2-DCE is a synthetic organic chemical which is primarily used in the production of solvents and as an additive to dyes, lacquer solutions, perfumes, and thermoplastics. There are two forms of 1,2-DCE: cis-1,2-DCE and trans-1,2-DCE, which may occur separately or as a mixture. 1,2-DCE may occur as a degradation product of polychlorinated compounds such as TCE. 1,2-DCE can enter the body through drinking water, eating food, or breathing air which contains 1,2-DCE. Inhalation of high levels of 1,2-DCE can cause nausea, drowsiness, and may result in death. Liver, heart, and lung damage were observed in laboratory animals after short- or long-term exposure to 1,2-DCE in air or The relative potencies of the cis- and transfood. isomers have not been adequately characterized to allow conclusions as to their individual potential to cause adverse health effects. Permissible Occupational Exposure Levels are 200 ppm based on an eight-hour Time Weighted Average (TWA) exposure period.

<u>Ethylbenzene</u>

Ethylbenzene is an organic chemical which occurs naturally in coal tars and petroleum. It is also found

in man-made products such as paints, inks, and insecticides. Gasoline contains approximately 2% ethylbenzene by weight and therefore this compound is also frequently present as a component of anthropogenic sources such as roadway and parking lot run off. Ethylbenzene is readily absorbed into the body following inhalation, or eating or drinking contaminated food or water. Ethylbenzene as a liquid can be absorbed by the skin, but vapors are not as readily absorbed. Humans exposed to levels of ethylbenzene as low as 460 ppm in the air for short periods of time have complained of eye and throat irritation.

The OHSA PEL value for ethylbenzene exposure in the work place is **100** ppm for an 8-hour TWA.

<u>Lead</u>

Lead is a naturally occurring element and is a major constituent of more than 200 identified minerals. It is also used in such processes as the manufacture of storage batteries and in a variety of metal products (e.g., sheet lead, solder, pipes), production of ammunition and various chemicals including pigments. Lead is a constituent of leaded gasoline (tetra ethyl lead) which were once a predominant automobile fuel but are now in limited use. Lead therefore is a common component of roadway run off. Humans are generally exposed to small amounts of lead on a daily basis. Lead is not a necessary nutrient, rather it is toxic at high concentrations.

The major source of daily intake of lead for adults and children is food and beverages. Air is another source for lead exposure. Target organs for lead toxicity include the blood, gastrointestinal tract, and the central nervous system. Lead is also a suspected human carcinogen. An acceptable daily intake for humans has not been firmly established, as toxicity research continues. The acceptable daily intake of **0.0014 mg/kg/day** has been used by **USEPA** but no reference dose has been approved (8,9).

Polycyclic Aromatic Hydrocarbons (PAHs)

PAHs contain only carbon and hydrogen and consist of two or more fused benzene rings in linear, angular or cluster arrangements. PAHs are formed during the incomplete burning of fossil fuel, garbage, or any organic matter and may be carried into the air on dust

particles and distributed into water and soil. Exposure may occur by inhalation of dust or particles, drinking water or accidental ingestion of soil or dust particles containing PAHs. Smoking or charcoal-broiling food can cause PAHs to be formed in the food which may be absorbed through the digestive tract.

Some PAHs are known carcinogens and potential health effects caused by PAHs are usually discussed in terms of the individual PAH compound's carcinogenic or noncarcinogenic effects. Proliferating tissues, such as the intestinal epithelium, bone marrow, lymphoid organs, and testes, seem to be especially susceptible targets. Concentrations of 150 mg/kg or more administered to laboratory animals have been shown to inhibit body growth. In general, no apparent reproductive, teratogenic, embryotoxic, and fetotoxic effects would be expected at background levels of Cancer has been found in animals breathing PAHs. approximately 1.25 ug/m /day Benzo(a)pyrene (one of the potentially carcinogenic PAHs), eating 5 mg/kg B(a)P per day or having 0.05 mg/kg B(a)P applied to their skin throughout their lives. These levels are at least 1,000 times higher than those to which humans are normally exposed. By USEPA convention, B(a)P is used as the surrogate for evaluation of the toxicity of all of the carcinogenic PAHs in this assessment.

Phthalates

Phthalates are a group of compounds which are esters of phthalic acid with various alcohols and a number of diesters.

Phthalates are used in the plastics industry for producing flexible or "soft" polyvinyl chloride (FVC). They are also used for the production of lacquers, dispersion agents, lubricants, insect repellants and agents for high vacuum pumps among others. Phthalatates are often associated with laboratory contamination due to their presence in the vacuum oil of laboratory equipment. Phthalates identified in Dollinger site media were Bis (2-ethylhexyl) phthalate, Di-n-butyl phthalate and Diethyl phthalate.

Humans may come in contact with phthalates through media contaminated following accidental or incidental release or by contact with consumer products containing it. The acute toxicity of phthalates is considered very slight and decreases generally with the increasing molecular weight. Symptoms observed following ingestion of 10 grams by humans included mild gastric disorders. The very low levels to which humans may be exposed have not been shown to cause adverse effects. Several phthales have been linked to embryotoxicity and teratogenicity at high concentrations in laboratory studies. Laboratory studies have indicated some of the phthalates are potential human carcinogens. Liver disease has also been associated with phthalate exposure in laboratory animals.

<u>Toluene</u>

Toluene is used as a solvent in the production of a variety of products and as a constituent in the automotive and aviation fuels. It therefore may be present in non-point sources such as roadway run off. Toluene can affect the body if it is inhaled, comes in contact with the eyes or skin, or is swallowed. It may also enter the body through the skin. Toluene may cause irritation of the eyes, respiratory tract, and skin; fatigue; weakness; confusion; headache; dizziness; and drowsiness. The symptoms have been reported in association with occupational exposure to airborne **concentrations** of toluene ranging from 50 ppm (189 mg/m³) to 1,500 ppm (5,600 mg/m³). These symptoms generally increase in severity with increases in toluene concentration.

1,1,1-Trichloroethane (1,1,1-TCA)

1,1,1-TCA is a man-made chemical which has many industrial and household uses including as a cleaning solvent to remove oil or grease from manufactured metal parts, drycleaning and as a solvent to dissolve other substances such as glue and paint. 1,1,1-TCA is readily absorbed into the body following exposure by inhalation of air containing the vapor and ingestion of water or food containing 1,1,1-TCA. It also readily leaves the body with exhaled air. Inhalation of high levels of 1,1,1-TCA for a short time by humans resulted in effects such as dizziness, lightheadedness, and loss of balance and coordination. Studies in animals have shown that mild liver effects resulted from long-term exposure. The effects of long-term low level exposure in humans has not been established. The OSHA PEL value is 350 ppm for an 8-hour TWA exposure.

1,1,2-Trichloroethane

1,1,2-Trichloroethane (1,1,2-TCA) is a solvent and is used in the manufacture of 1,1-Dichloroethene. Humans may be exposed to 1,1,2-TCA by breathing air that contains it or by eating food or drinking water that contains it. 1,1,2-TCA is expected to be readily adsorbed through the skin. Toxicity hazards to humans have not been well documented. 1,1,2-TCA has been experimentally shown to induce liver tumors in mice and has been linked to liver and kidney damage in dogs. The OSHA PEL value is 10 ppm for an 8-hour TWA exposure.

Trichloroethene (TCE)

TCE is used as a cleaning agent and solvent for degreasing operations. TCE may cause adverse health effects following exposure via inhalation, ingestion, or skin or eye contact. TCE may cause drowsiness, dizziness, headache, blurred vision, lack of coordination, mental confusion, flushed skin, tremors, nausea, vomiting, fatigue, and heart arrhythmia. Exposure of laboratory animals to TCE has been associated with an increased incidence of a variety of tumors and TCE is considered a probable human carcinogen. An occupational PEL-TWA of 50 ppm has been set by OSHA.

Vinyl Chloride (VC)

VC is primarily used in the chemical manufacturing industry in the production of polymeric chemicals which are in turn used to manufacture a variety of plastic and vinyl products. VC may also occur as a degradation product of other polychlorinated compounds such as TCE and DCE. VC may cause adverse health effects following exposure by inhalation, ingestion, or by dermal or eye contact. VC is a known human and animal carcinogen. Liver cancer was reported in workers occupationally exposed to air concentrations in the range of less than 25 ppm to greater than 200 ppm. An occupational PEL-TWA of 1 ppm has been set by OSHA.

Noncarcinogenic effects associated with exposure include hepatitis-like changes in the liver, thyroid depression, alteration in blood chemistries, and dermatitis.

<u>Xylenes</u>

Xylenes are natural components of coal tar and petroleum. The majority of xylenes used commercially are man-made. There are three isomers of xylene (ortho-, meta-, and para-xylene) which can occur as a

mixture referred to herein as xylenes. Xylenes are used in solvent mixtures and cleaning agents and as an ingredient in airplane fuel and gasoline. Xylenes, like benzene, toluene and ethylbenzene, are frequently detected in anthropogenic environmental sources such as roadway run off. Exposure to xylene may occur by breathing xylene fumes, or eating or drinking xylene-contaminated food or water. Xylene is rapidly absorbed following inhalation or ingestion. Short-term exposure of humans to high levels of xylene (100-299 ppm) causes irritation of the skin, eyes, nose and throat, increased reaction time to a visual stimulus, impaired memory, stomach discomfort, and possible changes in the liver and kidneys. Long-term exposure of laboratory animals to xylene in air (12-800 ppm) resulted in changes in the cardiovascular system, changes in liver weights, and hearing loss.

No studies were located regarding the long-term effects of inhalation or ingestion of xylene by humans. Xylene may be fatal if large enough concentrations are inhaled or ingested. Ingestion of 5,000 ppm of xylene in food by laboratory rats results in impaired visual function. Decreased body weight and increased numbers of birth defects in unborn rats were observed at higher concentrations. The occupational exposure PEL-TWA value for xylenes is 100 ppm.

<u>Zinc</u>

Zinc is an essential element and its absorption from the gastrointestinal tract is regulated by homeostatic mechanisms. Zinc appears to be toxic only at levels at least an order of magnitude greater than the recommended daily allowance. Toxicity appears to result from an overload of the homeostatic mechanism for absorption and excretion of zinc. Symptoms of overexposure may include severe diarrhea, abdominal cramping, nausea, and vomiting. Inhalation of zinc fumes or dusts has been associated with a condition called "metal fume feverⁿ characterized by flu-like symptoms including throat irritation, body aches, weakness, and fatigue.

The maximum recommended level for zinc has not been established. The National Academy of Science has estimated that the recommended dietary allowance for zinc is 15 mg/day for an adult or 0.21 mg/kg body weight/day.

6.1.3.2 Dose-Response Assessment

For the dose-response assessment, quantitative indices of toxicity were compiled for estimating the relationship between the extent of potential exposure to a contaminant and the potential increased likelihood and/or severity of adverse effects. The methods for deriving indices of toxicity and estimating potential adverse effects are presented below. The indices of toxicity for the chemicals of concern are presented in Tables XXII and XXIII.

<u>Categorization of Chemicals as Carcinogens or</u> <u>Noncarcinosens</u>

As recommended by the USEPA RAG (1) and in accordance standard risk assessment practice, chemicals of concern were divided into two groups: potential carcinogens and noncarcinogens. The risks posed by these two types of compounds are assessed differently because noncarcinogens generally exhibit a threshold dose below which no adverse effects occur, while no such threshold is thought to exist for carcinogens.

As used here, the term <u>carcinogen</u> means any chemical for which there is sufficient evidence that exposure may result in continuing uncontrolled cell division (cancer) in humans and/or animals. Conversely, the term <u>noncarcinogen</u> means any chemical for which the carcinogenic evidence is negative or insufficient.

It should be noted that definitions are not static; rather, compounds may be reclassified when additional evidence becomes available. Chemicals of concern have been classified as carcinogens or noncarcinogens, based on weight-of-evidence criteria contained in the USEPA Carcinogenicity Evaluation Guidelines (10).

According to these USEPA guidelines, chemicals in the first three groups, A, B and C, are classified as carcinogens, probable human carcinogens and possible human carcinogens, respectively, and are subjected to non-threshold carcinogenic risk estimation procedures. The remaining chemicals, in groups D and E, are defined as noncarcinogens and are not classified as to carcinogenicity and are subjected to threshold-based toxicological risk estimation procedures.

Assessment of Noncarcinosens

For this risk assessment, methods were used to evaluate potential noncarcinogenic effects of chemicals of concern in accordance with USEPA RAG document recommended methods. Specifically, risks associated with noncarcinogenic effects (e.g., organ damage, immunological effects, birth defects, skin irritation) are assessed by comparing the estimated average exposure to the reference dose (RfD) derived by USEPA. The RfDs are derived by literature searches to obtain no observed or lowest observed adverse effects level (NOAEL or LOAEL), then applying a suitable uncertainty factor (usually ranging from 10 to 1,000) to allow for differences between the study conditions and the human exposure situation to which the acceptable daily dose is to be applied. NOAELS and LOAELS are usually based on laboratory experiments on animals in which relatively high doses are used. Consequently, uncertainty or safety factors are required when deriving RfDs to compensate for experimental data limitations and the lack of precision in extrapolating from high doses in animals to lower doses in humans.

RfDs are generally calculated using the formula:

RfD (in mg/kg/day) = <u>NOAEL or LOAEL (in mg/kg/day)</u> (Uncertainity Factor(s)) (MF)

If the estimated exposure exceeds the estimated acceptable intake, some adverse effects are presumed to be possible, and the exposure level may be of potential concern. Conversely, if the estimated exposure is less than the estimated acceptable intake, no adverse affects would be expected, and the exposure level is considered acceptable.

Noncarcinogenic risks are usually assessed by calculating a hazard index which is the ratio of the estimated exposure to the RfD as follows:

$$HI = \underline{EE}$$
RfD

where:

HI = Hazard Index **RfD** = Reference Dose EE = Estimated Exposure A hazard index greater than 1 indicates that adverse effects may occur, while a value less than 1 means that adverse effects would not be expected. Chronic oral RfDs for the chemicals of concern at the Dollinger site are presented in Table XXII.

Assessment of Carcinosens

In contrast to noncarcinogenic effects, for which thresholds are thought to exist, scientists have been unable to experimentally demonstrate a threshold for carcinogenic effects. For carcinogens, USEPA assumes that a small number of molecular events can evoke changes in a single cell that can lead to uncontrolled cellular proliferation and eventually to a clinical state of disease.

This hypothetical mechanism for carcinogenesis is referred to as "non-threshold" because there is believed to be essentially no level of exposure to such a chemical that does not pose a probability of generating a carcinogenic response. However, depending on the potency of a specific carcinogen, and the level of exposure, such a risk could be vanishingly small.

For evaluating carcinogenic effects, USEPA uses a two-part evaluation in which the substance first is assigned a weight-of-evidence classification, and then a slope factor (SF) (formerly called carcinogenic potency factor) is calculated. The weight-of-evidence classification was discussed previously (Categorization of Chemicals as Carcinogens or Noncarcinogens). Slope factors are typically calculated for potential carcinogens categorized as A, B, and C carcinogens based on mathematical models and assumptions on dose, current theories on carcinogenesis, and confidence limits from human and animal studies. Noncarcinogenic compounds detected on site are presented in Table XXII, and potential carcinogens in Table XXIII.

By using these procedures the regulatory agencies have indicated they are unlikely to underestimate the actual slope factors for humans. The SF is a plausible upper-bound estimate of the probability of a response per unit intake of a chemical over a lifetime. Using SFs, lifetime excess cancer risks can be estimated by: Risk = (LADD; x SF;)

where:

Therefore, following this method, the carcinogenic risks for the oral and dermal routes of exposure are calculated as follows:

 $Risk = LADD_{o} SF_{o} + LADD_{d} SF_{d}$

Subscript "o" indicates the oral route and subscript "d" the dermal route. SFs for the chemicals of concern for the oral exposure route are presented in Table XXIII. USEPA's weight-of-evidence classification for the chemical is included.

Once substances have been absorbed by the oral or dermal routes, their distribution, metabolism, and elimination patterns (pharmacokinetics) are usually similar. For this reason, and because dermal route RfDs and SFs are usually not available, oral route RfDs and SFs are often used to evaluate exposures to substances by both the oral and dermal routes. This approach is not appropriate and is not used if the adverse effect occurs at the point of exposure. Examples would be skin irritation or skin cancer resulting from dermal exposure. Therefore, depending on the compound, oral, or dermal and oral routes were evaluated as appropriate.

Exposure to some chemicals may result in both carcinogenic and noncarcinogenic effects. In these cases, both the carcinogenic and noncarcinogenic effects were evaluated and considered in the risk assessment process.

6.1.4 <u>Risk Characterization</u>

The risk characterization is the final step of the baseline health risk assessment process. The potential carcinogenic risks were assessed by multiplying the estimated LADD or Chronic Daily Intake (CDI) for a compound by its estimated slope factor (SF) to obtain the estimated risk. The estimated risk is expressed as the probability of that exposure resulting in an excess incidence of cancer. The risk range of 10^{-4} to 10^{-6} (is 1 in 10,000 to 1 in 1,000,000 probability

or risk of an increased incidence of cancer) is used by USEPA to evaluate cancer risk estimates. USEPA generally considers that acceptable exposures to known or suspected carcinogens are those that represent an excess upper bound lifetime of between 10^{-4} and 10^{-6} .

As stated previously, noncarcinogenic compounds were evaluated by comparing the CDI of a substance to its chronic RfD. The hazard index obtained by dividing the CDI by the RfD is compared to unity (1.0). Following USEPA guidelines, significant risks are assumed likely if the index exceeds 1.0. The hazard index is not a measure of risk, but rather a measurement of whether the exposure dosage exceeds an acceptable level.

The cancer risk estimates or the hazard index (HI) for exposure to each chemical by each route of exposure, exposure pathway, category of receptor (on site worker or child) and exposure case (typical or RME) are initially estimated separately. The separate cancer risk estimates are then summed across chemicals and across exposure routes to obtain the total excess cancer risk for that population. HI's for noncarcinogens are summed across chemicals that produce the same type of adverse effect (such as liver damage) but are kept separate if their effects are different.

Tables XXVI to XXX summarize cancer risk estimates and hazard indexes for chemicals of concern by exposure pathway, exposed population and exposure case (8).

6.1.4.1 <u>Risk Characterization Results</u>

The site investigations performed to date were designed to characterize the nature, extent and limits of compounds in site media at the Dollinger facility. Possible areas of concern were identified based on a review of available information on past activities at the site and previous analytical data. Three possible areas of concern (former TCE degreaser, drum and dumpster areas) were then investigated using various field techniques.

Based on a review of analytical and site investigation information for the site, the site areas of concern were adequately identified and evaluated. Samples were collected from the central parts of the areas of concern and therefore are most likely representational of actual conditions.

<u>Risk Summary</u> - Results of the risk characterization are summarized in Tables XXXI and XXXII along with exposure routes and chemicals primarily responsible for the derived risk.

Noncarcinogenic Risk - In summary, based on the detected compound concentrations on site and the evaluation described above, noncarcinogenic hazard indices for the exposure routes and typical and RME cases were less than 1. Noncarcinogenic adverse health effects are not expected to occur with current site use conditions.

<u>Carcinosenic Risk</u> - For the typical case and RME case exposure conditions, carcinogenic risks for the child trespass and on site worker scenarios fell within the range identified by USEPA as acceptable (10⁻⁴ to 10⁻⁶). Specifically, the calculated risk values are:

	<u>Typical Case</u>	<u>RME Case</u>	
Child Trespass	2.04×10^{-6}	2.19 x 10 ⁻⁵	
Worker Exposure	2.8 x 10^{-6}	3.5 x 10 ⁻⁵	

6.2 <u>ENVIRONMENTAL EVALUATION</u>

Characterization of site ecologic resources was completed as required by the Work Plan and is described in Sections 2.8 and 3.5 of this document. Results of H&A site and NYSDEC off site sampling were evaluated to determine if site contaminants are moving to off site areas. No off site migration is apparent from these results and therefore no further environmental evaluation is required by the Work Plan.

6.3 LEVEL OF CONFIDENCE/UNCERTAINTY IN THE RISK ESTIMATE

The nature of the risk assessment process strongly favors overestimating the true risks. Accordingly, the risk estimates presented here are quite likely to overestimate the true risks and unlikely to underestimate them. Because the risk characterization combines and integrates the information developed in the exposure and toxicity assessment, uncertainities associated with these assessments also affect the degree of confidence that can be placed in risk characterization results. The primary factors contributing to exposure and toxicity uncertainties include but are not limited to:

• The use of only positive detection results to estimate soil, groundwater and sediment contaminant concentrations;

- The use of steady state assumptions for source concentration estimates. For example, highest concentrations of compounds present on site were used in estimating risk. Changing concentrations, such as breakdown of TCE to viny chloride, are not known and are therefore not considered in the baseline risk assessment.
- The use of concentrations of compounds in subsurficial soil as if they were present in surficial soils;
- The use of isolated positive samples as if they represented site-wide conditions;
- Uncertainties arising from the design, execution or relevance of the scientific studies that form the basis of the assessment; and
- Uncertainties involved in extrapolating from the underlying scientific studies to the exposure situation being evaluated, variable responses to chemical exposures within human and animal populations, between species and between routes of exposure.

Conservative assumptions used in deriving exposure scenarios can also contribute to overestimation of risk and lead to uncertainties in the final risk characterization process.

A=A

VII. <u>SUMMARY AND CONCLUSIONS</u>

7.1 <u>SUMMARY</u>

7.1.1 <u>Nature and Extent of Contaminants</u>

The Dollinger Remedial Investigation Work Plan was developed in order to further evaluate three previously identified areas of concern (former TCE degreaser, former drum storage, and former dumpster areas), as well as additional associated areas of concern identified by NYSDEC. These additional areas involved compounds that may be present in the site drainage pond, and the role the pond may serve in migration of site compounds, and a waste/fill area purportedly located north of the Dollinger building. As described by this RI report, several investigative techniques (test pits, borings, groundwater monitoring wells, soil vapor and air sampling) and various laboratory analytical methods were used to evaluate these areas.

The Remedial Investigation Work Plan, Section 5.1.5, identified ten Data Needs and Data Quality Objectives to satisfy the intent of the RI. The following summary of remedial investigation results satisfies the Data Needs and Data Quality Objectives to describe the nature and extent of contaminants according to each area of concern and the media affected.

<u>Waste/Fill Area</u> - The reported waste/fill area was identified by NYSDEC as a potential area of concern, and was investigated using test pit exploration techniques. As result of observation of exposed subsurface materials, screening of samples, and laboratory analysis of confirmation samples obtained, no waste was identified in this potential area of concern. The only fill identified consisted of a mantle of soil fill overlying native soils. OVA screening of samples obtained from the pits revealed no detectable volatile organic compounds, and laboratory analysis for volatile and semi-volatile compounds and TCL analysis did not detect chemical compounds potentially associated with other areas of concern on the site.

Former TCE Desreaser, Drum Storase, and Dumpster Areas - The Sear-Brown, P.C. and H&A of New York investigations performed in 1988 concluded that volatile organic compounds consisting primarily of TCE and associated chlorinated hydrocarbons, and semi-volatile compounds in limited surface soils, may be associated with activities performed in three adjacent but distinct areas on the north side of the Dollinger facility. These were then identified and have continued to be termed the former TCE degreaser area, drum storage area and dumpster area.

Investigations performed for this RI consisted of a grid sampling program which encompassed all three areas, sample screening, additional groundwater monitoring wells and groundwater sampling to evaluate groundwater. Results of the investigation confirm that chlorinated volatile organic compounds, semi-volatile phthalates, and polynuclear aromatic hydrocarbons (PAHs) are the primary compounds present which may have been associated with the former activities. results of the grid sampling program show elevated concentrations of volatile organic compounds centered on each of the previously identified areas of concern. These results from the grid sampling program also agree with the previous soil sampling program as reported in H&A's 1988 data report for the Dollinger facility. Comparison of the three areas indicate that the former TCE degreaser area contains the highest VOC concentrations in soil of the three, followed by the drum storage area and the former dumpster area. Highest concentrations of VOCs in soil are generally at 2 ft. or greater in depth below ground surface.

Media that appear to be affected by compounds in each of the areas of concern include shallow soils, surface water (at one location), sediment in the site pond, and groundwater. The nature and extent of contaminants in each of these media is as follows:

Groundwater - The contaminants in groundwater appear to Ο be limited primarily to TCE and its breakdown products. Groundwater wells immediately below the three areas of concern contain TCE and its degradation products (1,2-DCE, 1,1-DCE, and vinyl chloride) in varying concentrations. The highest concentration of these compounds in groundwater is associated with the phreatic zone beneath the former TCE degreaser area. Concentrations beneath the former drum storage area are next highest followed by groundwater concentrations beneath the former dumpster area. Chlorinated VOC concentrations decrease by several orders of magnitude with depth, and results of analyses of other wells located west, north, south, and east of the areas of concern did not detect chlorinated volatile organics. Further, the deepest well installed across the overburden bedrock interface below the former TCE degreaser area also did not detect chlorinated VOCs.

> The low permeability of site soils, the relatively flat gradient and the retardation of site compounds all combine to result in a site groundwater velocity of approximately 0.01 feet per year and a velocity of site VOCs in groundwater of 0.004 feet per year.

Sediments/Soil - Contaminants associated with sediment and soils in or affected by the three areas of concern include chlorinated VOCs, semi-volatile PAHs and phthalates. All three classes of compounds occur in shallow surficial soils centered on each of the three areas, and in drainage pond sediments nearest the outfall pipe for the storm sewer that drains this portion of the facility. Results of the grid sampling performed under this RI and the previous Sear-Brown, P.C. sampling show that the lateral extent of compound presence in shallow soils is limited to an area defined by the adjacent 50 ft. grid nodes in the grid sampling The extent of compound presence in pond plan. sediments is limited to the area around sample location SS-201 located at the end of the pond **outfall** pipe. Depth extent at this location appears to be limited to a depth between the shallow and deep soil samples, approximately less than 2 ft. However, decam

7.1.2 Fate and Transport

Ο

Sediment samples have

Fate and transport for the compounds detected on site are summarized as follows:

Field and lab permeability testing indicate the 0 geologic materials on the site to be relatively impermeable. Calculated groundwater flow velocities for nearly all of the wells at the site are on the order of 1 ft. per year or less. Assuming retardation of the volatile compounds detected in groundwater, volatile compound transport rate is less than 1 foot per year. Comparison of groundwater analyses conducted in the 100-series wells in 1988 with those from the op is this A Seasonal Fluctuation -> 1991 remedial investigation indicate that the chlorinated VOCs appear to be degrading "in place." For example, at both the 104 and 103 observation well clusters, concentration of TCE in groundwater decreased between 1988 and 1991, while the concentration of the degradation product 1,2-DCE increased over the same time period.

> Chlorinated VOC fate and transport in site soil appear to be limited to infiltration from the three areas of concern downward into groundwater, however at a relatively slow rate limited by the low hydraulic conductivities of site soils. Depth profiling of headspace screening data gathered from the grid sample borings indicates that the fate and transport of the chlorinated VOCs in soil is impacted by volatilization from the shallow soils.

Fate and transport processes affecting chlorinated VOCs in site sediment appear to be limited. Organic carbon concentrations measured in pond sediments are sufficiently high so as to adsorb the chlorinated VOCs. Further, analyses of shallow and deep sediments at locations downstream from the pipe **outfall** indicate that sediment erosion processes have not carried VOCs adsorbed to sediment to the downstream ends of the pond.

0

Neither PAHs nor phthalates were detected in groundwater on the site and therefore migration to groundwater is not a fate and transport mechanism associated with these compounds at the site.

PAHs and phthalates were detected in highest concentrations in site sediments (near the pond outfall) and soil (in the case of the three areas of concern). Chemical properties of these compounds show them to be persistent in the environment, but relatively immobile. Low solubility of the compounds limits them from being carried with site groundwater or surface water to any **significant** distance from their source areas. However, because they are tightly adsorbed to soil organic matter particles they tend to travel with sediment and therefore would be subjected to transport through erosion processes. Based on sampling performed in the three areas of concern and the pond sediments, it appears that the areal distribution of PAHs and phthalates is limited to relatively confined areas in each of the three areas of concern defined by the 50 ft. spaced nodes of the sampling grid, and to pond sediments relatively close to the **outfall** pipe at the eastern end of the retention pond.

7.1.3 <u>Risk Assessment</u>

The Baseline Health Risk Assessment was performed for the Dollinger Remedial Investigation by evaluating the compounds present on site, the media in which they occur, the range of concentrations detected in those media, and potential exposure routes by which humans may be exposed to these materials. USEPA Risk Assessment Guidance dictates that compounds known to be associated with site activities be included in the risk assessment, as well as compounds that may be associated with anthropogenic non-point sources such as routine car or other emissions, storm water run off from roadways and parking lots, etc. Therefore, health risks reported for this site result from both chemical compounds that may have been associated with Dollinger site activities as well as from compounds that cannot be definitively distinguished from other anthropogenic sources.

The risk assessment was based on current and reasonably expected site use consistent with site zoning. For the **Dollinger** facility, the Health Risk Evaluation was limited to a typical and Reasonable Maximum Exposure (RME) for the on site worker exposure scenario, and a typical and RME exposure scenario for a child trespassing on the site. Further, exposure pathways were limited to dermal contact, ingestion and inhalation of compounds from site soils or sediments. Contaminated groundwater on site is not currently or likely to be used in the future. No complete exposure pathways for contact with site surface waters were identified.

Results of the baseline risk assessment indicate the following:

- Noncarcinogenic risk Based on the detected compound concentrations on site and the risk evaluation performed, noncarcinogenic hazard indices for the typical and RME cases were both less than 1. Noncarcinogenic adverse health effects are not expected to occur as a result of current site use conditions or reasonably expected future site use conditions.
- O <u>Carcinogenic Risk</u> For the typical case exposure conditions, carcinogenic risk for the child trespass scenario and site worker scenario fell within or bel w the range identified by USEPA as acceptable (1 x 10-0 to 1 x 10-).

For the reasonable maximum exposure (RME) case carcinogenic risk for the child trespass and on site worker exposure scenarios, carcinogenic risks fell within the range identified by USEPA as acceptable (1 x 10^{-4} to 1 x 10^{-6}).

As described previously in Section 6, the reader is cautioned that the nature of the risk assessment process strongly favors overestimation of true site risks. Accordingly, the risk estimates presented here are quite likely to overestimate the true risks, and unlikely to underestimate them. Further, the risk characterization process combines and integrates information developed from exposure and toxicity assessment, experimental laboratory results, and assumption of hypothetical conditions which may never exist on the site. Therefore, there is a level of uncertainty associated with the risk assessment process. However, **USEPA** criteria for performing the assessment require a conservative approach to account for these uncertainties, again favoring overestimation rather than true risk.

7.2 <u>CONCLUSIONS</u>

H&A of New York has conducted this Remedial Investigation on behalf of the **Dollinger** Corporation in accordance with the approved **RI/FS** Work Plan dated 15 February 1991. Results of the remedial investigation, as summarized in Section 7.1, indicate that a sufficient database exists at this time to evaluate potential remedial action alternatives through performance of a Feasibility Study.

Results of the investigation indicate that chlorinated volatile organic compounds primarily in soil and groundwater, and PAHs and phthalates in shallow soil and pond sediments are the primary compounds associated with the site. Results of the risk assessment indicate that the presence of these compounds under current and reasonable expected future site use conditions do not pose noncarcinogenic risks. Conservative assumptions in the risk assessment also indicate that carcinogenic risks fall within the USEPA acceptable range of 1×10^{-4} to 1×10^{-6} .

Results of the contaminant fate and transport evaluation performed under this RI indicate that the chlorinated VOCs, PAHs, and phthalates are confined to on site areas and do not appear to be migrating to off site areas. In particular, results from groundwater monitoring indicate that degradation of the chlorinated VOCs may be occurring essentially in place.

7.2.1 <u>Data Limitations and Recommendations for Future Work</u>

With respect to chlorinated VOC data gathered for the site there appear to be no limitations that would apply to use of the data. Validation of the laboratory results gathered under this investigation indicate all the volatile organic compound data to be usable and the analytical methods to be sufficient to detect concentrations low enough to identify apparent health risks. Further, comparison of the data gathered under this RI effort to information gathered under the previous H&A and Sear-Brown, P.C. investigations (1988) shows relatively good agreement among the data as to types of compounds present, and their location and areal extent. During the sampling for this RI, Mr. Crosby of the NYSDEC collected splits of H&A samples as well as additional samples at and down stream of the site. The NYSDEC data, summarized and presented in Appendix G, generally agree qualitatively and quantitatively with either the data from the H&A split samples or the results from the closest H&A sample location. This agreement in data also supports the reproducibility of the RI data results, using the sampling and analytical methods described by this investigation.

With respect to semi-volatile data, results of the RI data validation indicate that certain sediments and/or soils present on site produce matrix interference that limit quantitation of the semi-volatile data (specifically the phthalate and **PAH** data) at high concentrations. These matrix interferences did not appear to affect lower concentration samples. Since the matrix interferences did not appear to affect lower concentration semi-volatile samples, activities such as confirmation sampling, if required for remediation, should not be affected.

7.2.2 <u>Recommended Remedial Action Objectives and Alternatives</u>

Remedial action, as defined by USEPA, is intended to respond to releases in a way consistent with permanent remedy, to prevent or minimize the release of hazardous materials so that they do not migrate to cause danger to public welfare or the environment.

Potential remedial alternatives discussed with NYSDEC (based on information available from the H&A of New York and Sear-Brown **1988** investigations) included, among other things, lining of the storm sewer bed to reduce migration potential. Based on results of this remedial investigation, it appears that this is a relatively minor migration pathway and that excavation and lining of the storm sewer bed would not likely be cost-effective. Therefore, it is recommended that this alternative not be carried through to the FS. The other alternatives described in the Work Plan will be reviewed with NYSDEC at initiation of and for consideration in the FS.

As indicated by the February **1991** approved **RI/FS** Work Plan, remedial alternatives will be screened in the feasibility study in terms of the following criteria:

- o Overall protection of human health and the environment
- o Compliance with Applicable or Relevant and Appropriate Requirements (ARARS)
- o Long-term effectiveness and permanence
- Reduction of toxicity, mobility and/or volume through treatment
- o Short-term effectiveness
- o Implementability
- o Cost

Short and long-term effectiveness, implementability and cost will _____ be the primary criteria in the selection of the remedial alternative(s).

VIII. <u>CERTIFICATION</u>

H&A of New York hereby states that, to the best of knowledge and opinion, the activities, sampling and analyses described by the following:

- 1. AFC-Dollinger Work Plan, Remedial Investigation/Feasibility Study, dated 15 February 1991.
- 2. Work Plan Addendum I, AFC-Dollinger Facility, dated **11** March **1991.**

Work has been performed in accordance with the above-noted approved Work Plan and addendum. This report is an accounting of the work performed. The conclusions provided are based solely on scope of work conducted and sources of information referenced in the report. This work has been undertaken in accordance with generally accepted environmental consulting practices; no other warranty, express or implied, is made.

Lawrence P. Smith, P.E. Partner

SBW:VBD:LPS:gma vbd146

RISK ASSESSMENT REFERENCES

- 1. Environmental Protection Agency, 1989, Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual, Part B Environmental Evaluation Manual, Interim Final.
- 2. H&A of New York, personal communication between C. Foley and NYSDOH Bureau of Toxic Substances Assessment.
- 3. Environmental Protection Agency, 1988, Exposure Assessment Manual.
- 4. Environmental Protection Agency, 1989, Exposure Factors Handbook, Office of Health and Environmental Assessment.
- 5. Agency for Toxic Substances and Disease Registry (ATSDR), 1988, 1989 Toxicological Profiles for Compounds Listed in Hazard Identification.
- 6. Environmental Protection Agency, 1985, Chemical, Physical and Biological Properties of Compounds Present at Hazardous Waste Sites, Prepared by Clement Association, Inc.
- 7. Parmeggiani, L. (editor), 1983, Encyclopedia of Occupational Health and Safety Volume 2, International Labour Organization, Geneva, Switzerland.
- 8. Environmental Protection Agency, 1989, Health Effects Assessment Summary Tables, FY 1991.
- 9. Environmental Protection Agency, 1986, Superfund Public Health Evaluation Manual, Office of Emergency and Remedial Response.
- 10. USEPA, 1986, USEPA Carcinogenicity Evaluation Guidelines, Federal Register, 51: 33992-34012, September 22, 1986.

VBD:gma vbd146

-60-

<u>Table I</u>
Summary of Monitoring Well Physical Data
Dollinger - A Filtrona Company
Remedial Investigation

Monitoring	Groundsurface	Top of Riser	Top of Outer	Screened	Groundwater	Groundwater	In-situ Hydraulic
Well No.	Elevation	Elevation	Casing Elevation	Interval	Elevation	Elevation	Conductivity
					4&7 Oct. 91	6 Nov. 91	cm/sec
OW101-S	543.9	545.9	546.0	519.3-528.3	532.1	532.8	1.0E-06
OW101-D	543.7	545.7	545.8	507.7-515.7	529.9	530.4	3.9E-06
OW102-S	541.1	543.7	543.9	514.1-524.1	520.6	520.3	9.4E-07
OW102-D	540.8	543.1	543.3	490.1-505.1	521.6	523.5	4.0E-07
OW103-S	541.5	543.5	543.7	517.0-527.0	527.3	528.0	4.9E-08
OW103-D	541.6	542.5	542.7	505.6-515.6	527.6	527.0	5.3E-08
OW104-S	542.7	544.9	545.1	518.7-528.7	534.6	534.7	5.2E-08
OW104-D	542.7	545.6	545.8	504.5-514.5	526.1	526.3	9.0E-08
OW105-S	536.2	538.3	538.5	516.2-526.2	532.9	532.9	7.2E-07
OW105-D	536.1	538.0	538.2	501.0-511.0	529.4	529.8	8.2E-08
OW106-S	542.2	544.5	544.7	519.2-527.2	532.9	533.0	9.7E-07
OW106-D	542.0	544.5	544.7	507.0-517.0	530.1	530.0	6.7E-07
OW201-S	542.9	542.6	542.9	528.6-538.4	533.4	537.9	1.3E-06
OW201-D	542.9	542.6	542.9	515.2-525.3	532.7	535.5	8.5E-08
OW202-S	542.3	544.7	544.9	523.9-533.8	531.8	530.5	8.0E-08
OW202-D	542.6	545.2	545.3	510.0-520.1	521.0	529.2	4.8E-08
OW203-S	542.5	542.4	542.7	526.7-536.9	534.2	534.0	6.8E-08
OW203-D	542.4	542.2	542.5	512.7-523.1	522.1	532.4	6.3E-08
OW204-S	540.6	543.5	543.6	521.7-531.9	526.0	525.4	7.3E-08
OW204-D	539.5	542.3	542.5	506.7-516.8	516.1	519.6	2.1E-08
OW205	542.7	544.8	545.0	458.0-478.2	521.4	521.1	2.4E-06

NOTES:

1. All elevations are in feet and referenced to USC&GS Mean Sea Level Datum.

2. For the water level measurements from 4 and 7 October 1991, all wells were measured on 4 October except OW201–S and OW201–D which were measured on 7 October 1991.

70007-43 vbd:tbl gma

<u>Table II</u>

Apparent Compounds Detected in Soil Vapor Shield Point Screening Dollinger - A Filtrona Company Remedial Investigation

Sample	Date	Vinyl					
Location	Sampled	Chloride	1,1-DCE	t-1,2-DCE	c-1,2-DCE	TCE	Total
SV-201	812191						0
SV-202	812191			2.0	170	410	582
duplicate					170	400	570
duplicate					173	411	584
duplicate							
SV-203	8/2/91				26	102	128
duplicate					28	107	135
SV-204	8/2/91						0
SV-201	10/25/91						0
SV-202*	10125191	11.4	3.19	1.28	110	170	295.87
duplicate	10125191	11.4	3.80	1.20	110	170	319.70
triplicate	10125191	16.4	3.80	1.30	110	178	312.61
SV-203	10/25/91	0.06	0.10	0.57	39.7	63.1	103.53
duplicate	10/25/91	0.09	0.10	0.22	39.4	62.4	102.21
SV-204	10/25/91					 	0

NOTES:

1. See Figure 4 for sample shield point location.

2. Depth of installation of shield points in feet below ground surface.

sv-2015.5SV-2026.8SV-2036.6SV-2043.0

3. Compound concentrations are in parts per million on molar volume basis of analyte in air.

4. Analysis performed on HP-5890 Series II Gas Chromatograph.

5. When SV-202 was sampled on 10125191, water was encountered in the probe.

6. See accompanying text for additional information.

vbd:tb2 gma

<u>Table III</u> Shallow Soil and Test Pit Organic Analyses Dollinger – A Filtrona Company Remedial Investigation

			SAMPLE LO	DCATION AN	D IDENTIFIC	CATION			
PARAMETER	SO-201	SO-202	TP-201	TP-202	TP-203	TP-204	TP-205	TP-206	Soil Screening Value
Volatiles									
1,1,1-Trichloroethane	0.004JB	0.003JB		0.003J		0.002J			1.9
Trichloroethene		0.002J							1.6
Acetone	0.016		0.011JB	0.013JB		0.012B	0.034B	—	NP
Methylene Chloride		—	0.003JB	0.004JB	0.003JB	0.003JB	0.006JB	0.005JB	NP
Semi-Volatiles									
				NA	NA		NA	NA	
Bis(2-Ethylhexyl)Phthalate	-	0.15J	0.85			0.167			NP
Anthracene			0.069J						1750
Benzo(a)Anthracene			0.15J						6.9
Benzo(b)Fluoranthene	0.16J	0.094J	0.167						2.75
Benzo(a)Pyrene	0.082J		0.11J						NP
Chrysene	0.16J	0.093J							1.0
Fluoranthene	0.30J	0.180J	0.48J						47.50
Indeno(1,2,3-cd)Pyrene	0.066J		0.071J						8.0
Phenanthrene	0.15J	0.093J	0.41J						17.50
Pyrene	1	0.15J	0.33J						47.50
Pesticides & PCB's			l	1		<u> </u>		ļ	-
4,4'-DDE	1	0.010J		NA	NA		NA	NA	NP

NOTES:

- 1. Analyte was analyzed for but not detected.
- 2. NA Sample not analyzed for this parameter.
- NP Screening Value not provided as all variables needed for calculation not available in references used.
- 4. J Indicates an estimated value. The mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit and greater than zero.
- 5. B Analyte detected in the associated method blank.

dmc/123/soils

- 6. Results reported in milligrams per kilogram (ppm).
- 7. Soil Screening Value calculated using NYSDEC Soil Cleanup goals calculation.

Cs = f x Cw x Koc

Cs = Soil concentration allowed, f = 2.5% organic carbon,

Cw = Groundwater Criteria (mg/l), Koc = Octanol water coefficient (mgfl).

Soil Cleanup goal (ppm) = Cs x Dilution and Attenuation Multiplier (100).

Koc from USEPA 1986 Superfund Public Health Evaluation Manual.

<u>VI əlds</u>T

Test and Grid Boring Soil Organic Analyses

Dollinger - A Filtrona Company

Remedial Investigation

dN	¥N	AN			AN		AN	₩N		AN		
												esticides/PCB's
09'27											LS.1	yrene
09'21											1.3J	enerthrener
0.8								······			0,380J	deno(1,2,3-cd)Pyrene
09'27											1.31	uoranthene
0.1											L018.0	eueskiu
dN	-										L064.0	enery9(a)Pyrene
SI,8											0.290J	enely1e9(i,1,g)ozne
2.75							-				0.350J	euso(k)Eluoranthene
2.75			_								0.660J	enzo(b)Fluoranthene
6'9											0.560J	enso(a)Anthracene
0921											0.250J	enesardt
dN	89.1	4.8B	0.660J	9°Z		0.26JB	858.0		86.1			i-n-butyi phthalate
92.71							L001.0		L12.0			ethyl Phthalate
dN	2.1		0'1401	L08.0	·····				0.085J	0.30BJ		s(2-ethylhexyl)phthalate
					AN			AN				
												selitsioV ime
dN											L9.1	-Methyl-2-pentanone
dN					0.0498DJ	410.0		8910.0		710.0		etone
0.6	_				0.023DJ		0.034J		61.0	0.002J	0.02	/lenes (Total)
0.4.0			<u> </u>						0.022J		2.5	euenic
14.0		1			.—				0.044		1.8	euezueqiku
9.1			5.5	3.2	(DE8.0) D+E.0	1.3E	88.0	0.002J	02.0	120.0	0.13	ichloroethene
ζ.0					0.008DJ	010.0	L870.0					1,2-Trichloroethane
55.4											0.23J	otrachloroethene
7.0			0'2 2 1	0+31	0.01 LDJ	690'0						2-Dichloroethene (Total)
	٨N	AN					-					
												selitsk
Soil Screening Value	B203d	B202d(6-8)	B201d(8-10)	B201s(12-14)	0(9-7)98-89	GS-85(4-6)	GS-B4(10-12)	GS-A4(4-6)	GS-B2(2-4)	(S1-01)18-SD	GS-A8(4-6)	RAMARA
					NG LOCATION	IROB 3J9MAS						

18910N

Analyte was analyzed for but not detected.

2. D - Compounds identified at a secondary dilution factor.

3. B - Analyte detected in blank.

of a compound that meets the identification criteria but the result is less than the 4. J - Indicates an estimated value. The mass spectral data indicate the presence

sample quantitation limit and greater than zero.

6. NP - Screening Value not provided as all variables needed for calculation not 5. NA - Not analyzed for this parameter.

available in references used.

agninod/221/omb

9. Results reported in milligrams per kilogram (ppm).

N. (#-#) – Represents depth of sample collection.

Cs = f x Cw x Koc

Koc from USEPA 1986 Superfund Public Health Evaluation Manual.

Cs = Soil concentration allowed, f = 2.5% organic carbon,

.(001) TeilqitluM noiteunettA bas noitulio x s0 = (mqq) lsog quasel0 lio2 Cw = Groundwater Criteria (mg/l), Koc = Octanol water coefficient (mg/l).

8. Soil Screening Value calculated using NYSDEC Soil Cleanup goals calculation.

<u>Table V</u> Shallow Soils, Test Pit Soils, Grid and Test Boring Soils Inorganic Analyses Dollinger - A Filtrona Company Remedial Investigation

				SAM	PLE LOCAT	ION AND ID	DENTIFICAT	TION			
PARAMETER	SO-201	SO-202	TP-201	TP-204	B-201d	B-201s	GS-A8	GS-B2	GS-B5	Geometric Mean	95th Percent
Aluminum	19.400	11,800	13,100	8,820	7,520	6,850	11,600	9,140	10,200	33,000	272,000
Antimony					1			-		1	3
Arsenic	4.4	6.0	4.9	4.1	3.1	3.5	4.9	3.3	2.8	(20) 5	32
Barium	85	72	73	82	68	62.6	125	79	88.3	290	1,602
Beryllium					-					1	4
Cadmium	/									(3) <1	<10
calcium	13,300	3,430	15,300B	62.700	61,100B	63,400B	71,900B	70,200B	60,600B	3,400	32,250
Chromium	23	20	15	15	15	13	26	17	21	(100) 33	223
Cobalt	11	8.5B	6.6B	8.3B	1	6.7B	8.7B	9.5B	9.1B	6	39
Copper	12	11	8.5	17	15	14	23	17	20	(170) 13	102
Iron	23,900	19,700	16,900	18.900	16,800	14,800	20,400	17,900	19,100	14.000	115,000
Lead	32	32	15	7.9	7.9	8.0	11	8.3	10	(500) 14	53
Magnesium	7,140	3,560	5,990	16,200	14,900	14,400	15,400	14,900	18,900	2,100	26,500
Manganese	474	354	371	519	494	16	621	537	497	260	3,800
Mercury					1		0.12	1		0	1
Nickel	23	20	17	22	23	19	35	23	, 26	(100) 11	77
Potassium	1,450	1,370	1,280	1,810	1,520	1.490	2,600	2,120	2,750	12,000	21,300
Selenium			1	l	1			1		0	2
Silver	1.7B	-	6.1	3.8	-	11			1	(5) NP	NP
Sodium	273B	237B	218B	357B	225B	254B	397B	325B	517B	2,500	51,800
Thallium			-			-	_	1	-	(5) 8	19
Vanadium	26	25	22	20	16	17	28	20	22	43	271
Zinc	73	63	51	45	46	38	60	43	55	(350) 40	178
Cyanide					NA					NP	NP

Notes:

123

1. — Analyte was analyzed for but not detected.

2. B - Value is greater than or equal to the instrument detection limit but less than the contract required detection limit.

3. NA - Sample not analyzed for this parameter.

4. NP - Screening Value not provided in reference used.

5. Results reported in milligrams per kilogram (ppm).

6. 'Element Concentrations in Soils and Other Surficial Materials Of the Conterminous United States'', USCS, 1984, used for Screening Values. The **95th** percent defined in RI text. The value in parentheses is a soil clean up goal provided by the NYSDEC for a site where inorganics are present in the soil and sediment.

<u>Table VI</u> Groundwater Organic Analyses 100 Series Wells Dollinger - A Filtrona Company Remedial Investigation

	1				SAMPLE	LOCATION	AND IDE	NTIFICAT	ION				
PARAMETER	OW101s	OW101d	OW102s	OW102d	OW103s	OW103d	OW104s	OW104d	OW105s	OW105d	OW106s	OW106d	Groundwater Screening Value
Volatile~													
1,1-Dichloroethene													0.005
1,2-Dichloroethene (Total)			0.0021	_	0.073	0.0007J	0.13	0.007					0.005
Tetrachloroethene									~			-	0.005
1,1,1-Trichloroethane						0.16							0.005
Trichloroethene	0.008JB	0.003JB	0.0808	0.020B	0.0006JB	0.016B	0.010B	0.009B	_				0.005
Vinyl chloride	-				0.064								0.002
Toluene			-										0.005
Acetone													0.005
Semi-Volatiles										I			
	<u> </u>											-	
Pesticides\PCB's]					
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NP

NOTES:

1. B – Analyte detected in the method blank.

2. J – Indicates an estimated value. The mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit and greater than zero.

- 3. NA Sample not analyzed for this parameter.
- 4. Analyte was analyzed for but not detected.
- 5. NP Screening Value not provided in NYSDEC reference used.
- **6.** Groundwater Screening Value from NYSDEC Ambient Water Quality Standards and Guidance Values, 25 September 1990.
- 7. Results reported in milligrams per liter (ppm).

dmc\123\oldgrwt

<u>Table VII</u> Groundwater Organic Analyses 200 Series Wells Dollinger – A Filtrona Company Remedial Investigation

					SAMPLE L	OCATION A	AND IDENT	TIFICATION	I			
PARAMETER	OW201s	OW201sDL1	OW201sDL2	OW201d	OW202s	OW202d	OW203s	OW203d	OW204s	OW204d	OW205	Groundwater Screening Value
Volatiles							juined.	<u></u>				m 11
1,1-Dichloroethene	0.019											0.005
1,2-Dichloroethene (Total)	4.8E	9.5ED	11.0D	0.056								0.005
Tetrachloroethene	0.023											0.005
Trichloroethene	4.9E	50EDB	36.0D	0.082				0.0004JB	- 1			0.005
Vinyl chloride	0.24E	0.16JD		0.007J							-	0.02
Benzene	0.0006J											ND
Toluene	0.012	—		`		—					-	0.005
Acetone						0.023				0.041		0.005
Chloroform	0.004JB				-	0.006J					0.001J	θ.1
Methylene Chloride	0.0006J							-				0.005
Semi-Volatiles							·					
Pesticides\PCB's												
		NA	NA		NA	NA	NA	NA	NA	NA	NA	NP

NOTES:

- 1. B Analyte detected in the method blank.
- 2. D Sample dilution required.
- 3. E Compounds whose concentrations exceed the calibration range.
- 4. J Indicates an estimated value. The mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit and greater than zero.
- 5. NA Sample not analyzed for this parameter.
- 6. Analyte was analyzed for but not detected.
- 7. NP Screening Value not provided in NYSDEC reference used.
- 8. ND Not detected.
- 9. Groundwater Screening Value from NYSDEC Ambient Water Quality Standards and Guidance Values, 25 September 1990.
- 10. Results reported in **milligrams** per liter (ppm).

dmc\123\newgrwt

Table VIIISurface Water and Groundwater Inorganic AnalysesDollinger - A Filtrona CompanyRemedial Investigation

					SAMPLE L	OCATION AND	INDENTIFICATION			
PARAMETER	STW-201	STW-202	SW- 201	SW-202	SW-204	SW-204DUP	Surface Water Screening Value	OW-201s	OW-201d	Groundwater Screening Value
Aluminum	0.22	1.47	0.26	1.00	6.10	4.82	0.10	0.626	6.69	NP
Antimony						-	0.003			0.003
Arsenic							(0.0116) 0.025			(0.0116) 0.025
Barium	0.0551B	0.122B	0.0519B	0.104B	0.128B	0.123B	(0.21) 1.00	0.0877B	0.234	(0.21) 1.00
Beryllium							0.003			0.003
Cadmium		0.006			—		(0.0122) 0.010			(0.0122) 0.010
Calcium	40.40B	92.60	41.30	220.0	110.0	110.0	NP	58.7	78.9	NP
Chromium		0.024			—	0.012	(0.03) 0.050		0.0125	(0.03) 0.050
Cobalt		-					NP			NP
Copper	0.062	0.079	0.0235B		0.038	0.036	0.20	0.0178B	0.037	0.20
Iron	1.24	7.08	1.35	8.42	8.23	7.59	(6.3) 0.30	0.942	10.2	(6.3) 0.30
Lead	0.028	0.415	0.022	0.033	0.045	0.045	(0.098) 0.025	0.013	0.017	(0.098) 0.025
Magnesium	16.2	43.0	14.4	39.2	22.2	22.0	(0.385) 35.0	28.1	74.9	(0.385) 35.0
Manganese	0.060	0.222	0.206	2.17	0.489	0.484	0.30	0.173	0.422	0.30
Mercury	0.00024				0.00051	0.00029	0.002			0.002
Nickel				0.0307B			NP	0.0307B	0.0297B	NP
Potassium	5.64	8.51	1.76B	0.667B	5.19	4.71B	NP	10.8	7.17	NP
Selenium							0.010			0.010
Silver	0.096	-		0.007B			0.050	0.015	0.018	0.050
Sodium	42.6	96.1	23.9	72.6	33.7	33.9	(190.7) 20.0	30.5	36.6	(190.7) 20.0
Thallium					-		0.004	-		0.004
Vanadium							NP			NP
Zinc	0.273	1.18	0.366	0.044	0.242	0.238	0.30	0.0586	0.11	0.30
Cyanide	NA	NA	NA	NA	NA	NA	0.10		-	0.10

Notes:

1. — Analyte was analyzed for but not detected.

2. B - Value is greater than or equal to the instrument detection limit but less than the contract required detection limit.

3. NA - Sample not analyzed for this parameter.

4. NP - Screening Value not provided in NYSDEC reference used.

5. Results reported in milligrams per liter (ppm).

6. NYSDEC Ambient Water Quality **Standards** and Guidance Values, 25 September 1990 used for Screening Values. The 95th percent d e f i in RI text. The value in parentheses is an average dissolved concentration for inorganics in Monroe County based on 58 groundwater samples performed for the CSOAP (combined sewer overflow abatement program) investigations.

dmc/123/watrmetls

<u>Table **IX**</u>

Surface Water Organic Analyses Dollinger – A Filtrona Company Remedial Investigation

			SAMPLE I	LOCATION	AND INDE	NTIFICATION	
PARAMETER	STW-202	STW-201	SW-201	SW-202	SW-204	SW-204 DUP.	Surface Water Screening Value
Volatiles							
1,2-Dichlorothene (Total)		0.0008J	0.011				0.005
Trichloroethene		0.0027					0.003
Vinyl Chloride			0.006J				0.003
Semi-Volatiles							
Bis(2-Ethylhexyl)Phthalate	0.004J				0.007J		0.004
Butyl Benzyl Phthalate	0.003J						0.050
Benzoic Acid			0.0027				NP
Fluoranthene				0.0027			0.050
4 Methyl phenol			0.001J				0.001
Petroleum Hydrocarbons							
	NA	NA			en 29		

NOTES:

- 1. -- Analyte was analyzed for but not detected.
- 2. NA Sample not analyzed for this parameter.
- 3. NP Screening Value not provided in NYSDEC reference used.
- 4. J Indicates an estimated value. The mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit and greater than zero.
- 5. Results reported in milligrams per liter (ppm).
- 6. Surface Water Screening Values from NYSDEC Ambient Water Quality Standards and Guidance Values, 25 September 1990.

dmc\123\surfwatr.wk1

Table XSediment Organic AnalysesDollinger - A Filtrona CompanyRemedial InvestigationSample Locations and Identifications

PARAMETER	SS-2018	SS-201sRE	SS-201sDL	SS-201d	SS-2028	SS-2028 DUP	SS-2028 DUPDL	SS-202d	SS-2038	SS-203sDUP	SS-203d	SS-2048	SS-204d	Sediment Screening Value
Volatile~														
		NA	NA											
1,1-Dichloroethene	1.55				***									181.0
1,2-Dichloroethene (Total)		1		0.018		~~~~					~~~			136.4
1,1,1-Trichloroethane	DL-360	3		0.004JB	0.007JB	0.003JB		0.004JB	0.00458	0.004JB	0.00658		0.004JB	1138.2
Trichloroethene		1		0.059										0.33
Benzene	1.55													0.12
Chlorobenzene	1.45													0.396
Itthylbenzene	59.0			0.018						0.00045	فرمن			8448
Toluene	5.3			0.001 J			0.005JD						-	1260
Xylenes (Total)	220.0			0.075										NP
Acetone				0.023	0.039	0.49E	0.140D	0.049	0.078	0.074	0.13	0.075	0.011	NP
2-Butanone	N_700			0.023	0.039	0.069	0.1400	0.043	0.078	0.074	0.13	0.075	0.011	NP
Methylene Chloride	0.91J					0.003	0.015JD							NP
	0.010						0.01300	1						INF
Semi-Volatiles	<u>.</u>				·				1	1	ł	1		1
Cern-+Games	1					1	NA	F	,					
Di-n-butylphthalate	8.8	6.8			5.5JB							6.8JB		NP
Bis(2-ethylhexyl)phthalate	110E	130	82D		0.69J	4.2		1.0	1.5	1.1	0.99	2.45		NP
Butylbenzylphthalate	120E	140E	78D	0.00885	0.33J	0.485				0.0077J		1.3J		NP
Acenaphthene	5.4	5.0	3.7JD	0.00000	0.135	0.12J		0.024J		0.00773		0.080J		1817
Acenaphthylene		0.29J	3.750		0.135	0.125		0.0240						1817
Anthracene	25t	21	16JD	0.0135	0,68J	0,60J			0.0595	0.0052J				1008
Benzo(a)anthracene	110E	120t	56JD	0.0133	2.55	35		0.52J	0.0393	0.30J	0.33J	2.45		99.360
Benzo(b)fluoranthene	140t	140t	71D	0.40J	6.0J	6.0		0.64J	0.320 0.47J	0.51 J	0.48J	8.5J		39,600 <u>.</u>
Benzo(k)fluoranthene	11	10	31JD	0.165	2.25	2.5		0.34J	0.470	0.24J	0.400	3.55		39,600
Benzo(g,h,i)perylene	Q.9	11	27JD	0.165	1.45	1 6J		0.23J	0.24J	0.27J	0.100	0.8J		117,360
Benzo(a)pyrene	43t	38 t	46JD	0.26J	3.65	3.7		0.42J	0.26J	0.295	0.225	4.1 J		1.58
Chrysene	7.3	8.0	81D		3.45	4.2		0.61J	0.475	0.425	0.435	4.W		14,400
Dibenz(a,h)anthracene	1.6	46	5,8JD		0.31J	0.043			0.0305	0.038J		0.245		237,600
Dibenzoluran	2.7E	2.8		~~~										NP
2.4 Dimethyl Phenol	0.073J													NP
Fluoranthene	220E	160t	140D	0.92	7.1 J	10.0		1.5	0.79J	0.84J	1.1	7.75		35.568
Fluorene	10	8.2	6.3JD											525.60
Indeno(1,2,3-cd)pyrene	14	17	36JD	0.20J	2.05	2.8		0.295	0.28J	0.355	0.21 J	1.45		115.200
2-Methylnaphthalene	0.33J	0.415										-		NP
Naphthalene	0.80J	0.81 J										-		NP
Phenanthrene	120t	100E	97D	0.505	3.8J	3.8		0.72J	0.34J	0.27J	0.565	2.05	-	1008
Phenol	1.0JB	1.1JB												0.017
Pyrene	140t	150E	140D	0.73J	5.8J	7.2		1.4	0.695	0.65J	0.87J	6.75		2736
														1
Petroleum as SAE 30														
	DET	NA	NA		DET				DET			DET		
	1	1	1	1	1	1	1	1	1	1	1	·	1	1

NOTES:

1. **B** - Analyte detected in the method blank.

2. D - Sample dilution required.

3. E – Concentrations exceed the calibration range.

4. Analyte was analyzed for but not detected.

5. DET - Analyte detected and present but not quantified.

6. NA - Sample not analyzed for this parameter.

dmc/123/sediment

7. NP - Screening Values not provided as all variables needed for calculation were not available in references used.

8. J - Indicates an estimated value. The mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the **sample quantitation** limit and greater than zero.

9. Results reported in milligrams per kilogram (ppm).

 Sediment Screening Values based on USEPA 2/89. Sediment criteria = AWQS/GV x Kow x Foc. AWQS/GV = Surface water criteria, Kow = Koc from USEPA 1986 Superfund Public Health Evaluation Manual, Foc = Fraction of organic carbon measured in sediment.

<u>Table XI</u> Sediment Inorganic Analyses Dollinger – A Filtrona Company Remedial Investigation

				SAMI	PLE LOCAT	ION AND IN	IDENTIFICAT	ION				
PARAMETER	SS-201s	SS-201d	SS-202s	SS-202sDUP	SS-202d	SS-203s	SS-203sDUP	SS-203d	SS-204s	SS-204d	Geometric Mean	95th Percent
Aluminum	8,250	12,600	8,810	10,600	10,300	16,100	15,700	18,100	14,200	14,300	33,000	272,000
Antimony							-	1			1	3
Arsenic	12	3.9	5.8	3.0	3.4	6.4	4.8	7.1	4.6	5.2	(20) 5	32
Barium	319	94	95	76	93	127	135	128	146	118	290	1,602
Beryllium								i.			1	4
Cadmium						-		-			(3) <1	<10
Calcium	61,500	60,700	19,600	31,200	63,200	43,400	37,700	58,300	44,600	56,700	3,400	32,250
Chromium	70	23	23	19	22	28	27	30	36	25	11100) 33	223
Cobalt	23.1B	8.0B	7.4B	6.5B	8.0B	13.6B	18	12.2B	11.1B	10.4B	6	39
Copper	174	17	24	30	15	40	34	28	52	18	(170) 13	102
Iron	36,200	19,500	17,600	13,900	18,700	24,300	25,100	26,800	27,000	23,100	14.000	115,000
Lead	137	11	55	53	16	67	79	22	99	13	(500) 14	53
Magnesium	17,400	15,700	8,330	15,000	18,500	15,800	12,400	27,200	14,000	13,800	2,100	26,500
Manganese	728	477	318	253	506	418	409	547	412	509	260	3,800
Mercury	0.85										C	1
Nickel	93	22	24	21	19	29	32	34	35	26	(100) 11	77
Potassium	4,700	2,250	1,600	1,380	1,650	2,600	2,680	2,200	2,580	1,700	12,000	21,300
Selenium	-		_								C	2
Silver	2.8B	2.5	2.8	1.2B	2.1B	2.4B	2.3B	2.4B	2.7B	2.1B	(5) NI	P NP
Sodium	798B	416B	320B	341B	509B	474B	414B	475B	565B	548B	2,500	51,800
Thallium		-									(5) 8	19
Vanadium	43	22	20	18	21	30	31	30	30	24	43	271
Zinc	2,890	72	214	210	65	222	202	116	554	117	(350) 40	178
Cyanide	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NF	NP

Notes:

1. — Analyte was analyzed for but not detected.

2. **B** - Value is greater than or equal to the instrument detection limit but less than the contract required detection limit.

3. NA - Sample not analyzed for this parameter.

4. NP - Screening Value not provided in reference used.

5. Results reported in milligrams per kilogram (ppm).

6. 'Element Concentrations in Soils and Other Surficial Materials Of the Conterminous United States", USGS, 1984, used for Screening Values. The 95th percent **defined** in RI text. The value in parentheses is a sediment clean up goal provided

by the NYSDEC for a site where inorganics are present in the soil and sediment.

dmc\123\sedmetls

<u>Table XU</u>
Borehole and Ambient Air Portable Gas Chromatograph Readings
Dollinger - A Filtrona Company
Remedial Investigation

		B205	Auger								
Probe	Date	Borehole	Pullback	Vinyl	1,1-DCE	trans-1,2-	cis-1,2-	TCE	Toluene	PERC	Total
Depth(ft)	Sampled	Depth(ft)	Depth(ft)	Chloride		DCE	DCE				
2.0-4.0	8123191	4.0	2.0			0.3	85.5	796		0.1	881.9
2.0-4.0	8/23/91	4.0	2.0		*		67.9	658			725.9
5.0-7.0	8/23/91	7.0	5.0	3.0	4.9	1.6	56.1	1690*	52.8	1.8	1810.2
5.0-7.0	8/23/91	7.0	5.0	2.3	5.0	1.7	72.8	3040*	51.6	2.6	3176.0
9.0-11.0	8/23/91	11.0	9.0	14.6	13.5	1.6	450	2400*	63.3	2.5	2945.5
9.0-11.0	8/23/91	11.0	9.0	12.3	13.1	1.7	610	3700*	69.8	4.1	4411.0
										<u> </u>	
drill rig(5)	8/23/91	20.0					0.02	5.6	0.01		5.63
										<u> </u>	
above ground				{		<u> </u>					
ambient (5)	10/29/91							0.141			0.141
	10/29/91							0.089			0.089
	10/29/91							0.086			0.086

NOTES:

- 1. All data expressed in parts per million on molar volume of analyte in air.
- 2. * Chromatogram peak exceeded scale; value is an approximate measure based on peak area.
- 3. Analyses performed on Photovac **10s70** portable gas chromatograph, except "above ground ambient" **sample** run on Hewlett Packard HP-5890 Series II gas chromatograph.
- 4. See accompanying text for additional information.
- 5. Sample "at drill rig" collected above drilling platform approximately 4 ft. above **borehole** during air rotary drilling. Sample "above ground ambient" collected at 2–inches above ground surface with tedlar bag after drilling completed at location OW–205.

vbd:tab12 gma 70007-43

Tentatively Identified Compounds Dollinger - A Filtrona Company Remedial Investigation

Analysis	Sample ID	Matrix	TIC Compound	Estimated
	-			Concentration
Volatiles	B201s(12-14)	Boring Soil	Unknown	0.66J
Volatiles	SS201d	Sediment	Alkyl Benzene	6.8J
			Derivative	
Volatiles	SS202sDUPDL	Sediment	Dichlorinated	0.15J
			Compound	
Volatiles	OW105d	Groundwater	Iodo-methyl-	0.014J
			benzene isomer	
Volatiles	OW204d	Groundwater	Unknown	0.006J
			Hydrocarbon	
Semi Volatiles	B201s(12-14)	Boring Soil	Unknown	0.74J
Semi Volatiles	B201s(12-14)	Boring Soil	Unknown	0.43J
Semi Volatiles	B201d(8-10	Boring Soil	Unknown	0.427
Semi Volatiles	GSA8(2-4)	Grid Soil	Unknown	9.20J
Semi Volatiles	GSA8(2-4)	Grid Soil	Unknown	8.8J
Semi Volatiles	GSA8(2-4)	Grid Soil	Alkyl Sub-	0.67J
			stituted Compound	
Semi Volatiles	GSB2(2-4)	Grid Soil	Unknown	2.1J
Semi Volatiles	GSB2(2-4)	Grid Soil	Unknown	0.57J
Semi Volatiles	GSB2(2-4)	Grid Soil	Alkyl Sub-	2.0J
			stituted Compound	
Semi Volatiles	GSB5(4-6)	Grid Soil	Unknown	2.2JB
Semi Volatiles	GSB5(4-6)	Grid Soil	Unknown	0.52J
Semi Volatiles	GSB5(4-6)	Grid Soil	Oxybisethanol	0.427
			Derivative	1
Semi Volatiles	GSB1(10-12)	Grid Soil	Unknown	2.1JB
Semi Volatiles	GSB4(10-12)	Grid Soil	Unknown	1.5JB
Semi Volatiles	GSB4(10-12)	Grid Soil	Unknown	0.33JB
Semi Volatiles	GSB4(10-12)	Grid Soil	Unknown	0.42J
Semi Volatiles	GSB4(10-12)	Grid Soil	Unknown	0.30J
Semi Volatiles	GSB4(10-12)	Grid Soil	Unknown	0.30J
Semi Volatiles	GSB4(10-12)	Grid Soil	Fluoronitro-	0.37J
			phenol isomer	1
Semi Volatiles	SO201	Surface Soil	Unknown	1.8JB
Semi Volatiles	SO201	Surface Soil	Unknown Hydro.	0.64J
Semi Volatiles	SO201	Surface Soil	Unknown Hydro.	1.6J
Semi Volatiles	SO201	Surface Soil	Unknown Hydro.	1.5J
Semi Volatiles	SO201	Surface Soil	Alkyl Hydro.	4.3J
Semi Volatiles	SO201	Surface Soil	Alkyl Hydro.	0.76J

Notes:

1. L.C. - Long Chain

2. PAH - Polyaromatic hydrocarbon

Tentatively Identified Compounds Dollinger – A Filtrona Company Remedial Investigation

r			<u> </u>	
Semi Volatiles	SO202	Surface Soil	Unknown	2.9JB
Semi Volatiles	SO202	Surface Soil	L.C. Hydro.	2.3J
Semi Volatiles	SO202	Surface Soil	L.C. Hydro.	5.1J
Semi Volatiles	SO202	Surface Soil	L.C. Hydro.	3.3J
Semi Volatiles	SO202	Surface Soil	L.C. Hydro.	12.0J
Semi Volatiles	SO202	Surface Soil	Unknown Hydro.	0.42J
Semi Volatiles	SO202	Surface Soil	Alkyl Hydro.	3.2J
Semi Volatiles	SO202	Surface Soil	Unknown	0.34J
Semi Volatiles	SO202	Surface Soil	unknown	~ **
Semi Volatiles	SS201d	Sediment	Unknown	1.5J
Semi Volatiles	SS201d	Sediment	Alkyl Saturated	0.50J
			Hydrocarbon	
Semi Volatiles	SS201d	Sediment	Unknown	1.1J
Semi Volatiles	SS201d	Sediment	Unknown	0.44J
Semi Volatiles	SS201d	Sediment	Unknown	0.46J
Semi Volatiles	SS201d	Sediment	Unknown	0.927
Semi Volatiles	SS201s	Sediment	Dimethyl Benzene	427
		1	Isomer	[
Semi Volatiles	SS201s	Sediment	Unknown	210J
Semi Volatiles	SS201s	Sediment	Unknown	180J
Semi Volatiles	SS201s	Sediment	PAH Derivative	21J
Semi Volatiles	SS201s	Sediment	Unknown	28J
Semi Volatiles	SS201s	Sediment	Unknown	53J
Semi Volatiles	SS201s	Sediment	Unknown	11J
Semi Volatiles	SS201s	Sediment	Unknown Ester	13J
Semi Volatiles	SS201s	Sediment	Unknown Ester	19J
Semi Volatiles	SS201s	Sediment	Unknown	95J
Semi Volatiles	SS201s	Sediment	Unknown	8.5J
Semi Volatiles	SS201s	Sediment	Unknown	23J
Semi Volatiles	SS201s	Sediment	Unknown	15J
Semi Volatiles	SS201s	Sediment	Unknown	150J
Semi Volatiles	SS201s	Sediment	Unknown	33J
Semi Volatiles	SS201s	Sediment	Unknown	12J
Semi Volatiles	SS201s	Sediment	Unknown	8.5J
Semi Volatiles	SS201s	Sediment	Unknown	7.4J
Semi Volatiles	SS201s	Sediment	Unknown	9.1J
Semi Volatiles	SS201s	Sediment	Unknown	5.6J
Semi Volatiles	SS201sRE	Sediment	Dimethylbenzene	39J
			Isomer	
Semi Volatiles	SS201sRE	Sediment	РАН	140J

Notes:

1

1. L.C. - Long Chain

2. PAH - Polyaromatic hydrocarbon

Tentatively Identified Compounds Dollinger - A Filtrona Company

Remedial Investigation

			Derivative	1
Semi Volatiles	SS201sRE	Sediment	Unknown	1 1 OJ
Semi Volatiles	SS201sRE	Sediment	Unknown	200J
Semi Volatiles	SS201sRE	Sediment	unknown	36J
Semi Volatiles	SS201sRE	Sediment	Unknown Ester	50J
Semi Volatiles	SS201sRE	Sediment	Unknown Ester	76J
			Unknown Ester	290J
Semi Volatiles	SS201sRE	Sediment		290J 14J
Semi Volatiles	SS201sRE	Sediment Sediment	Unknown Ester Unknown Ester	
Semi Volatiles	SS201sRE			39J
Semi Volatiles	SS201sRE	Sediment	Unknown Ester	91J
Semi Volatiles	SS201sRE	Sediment	Unknown Ester	68J
Semi Volatiles	SS201sRE	Sediment	Unknown Ester	12J
Semi Volatiles	SS201sRE	Sediment	Unknown Ester	59J
Semi Volatiles	SS201sRE	Sediment	Unknown Ester	23J
Semi Volatiles	SS201sRE	Sediment	Unknown Ester	37J
Semi Volatiles	SS201sRE	Sediment	Unknown Ester	38J
Semi Volatiles	SS201sRE	Sediment	Unknown Ester	26J
Semi Volatiles	SS201sRE	Sediment	Long Chain	40J
			Hydrocarbon	
Semi Volatiles	SS201sDL	Sediment	PAH Derivative	26J
Semi Volatiles	SS202d	Sediment	Unknown	0.95J
Semi Volatiles	SS202s	Sediment	Tertmethylbutyl	0.71J
			phenol isomer	
Semi Volatiles	SS202s	Sediment	Unknown	0.97J
Semi Volatiles	SS202s	Sediment	Unknown	1.1J
Semi Volatiles	SS202s	Sediment	Unknown	0.54JB
Semi Volatiles	SS202s	Sediment	PAH Derivative	0.58J
Semi Volatiles	SS202s	Sediment	Unknown	0.92J
Semi Volatiles	SS202s	Sediment	Unknown	1.3J
Semi Volatiles	SS202s	Sediment	PAH Derivative	0.60J
Semi Volatiles	SS202s	Sediment	PAH Derivative	0.36J
Semi Volatiles	SS202s	Sediment	PAH Derivative	0.44J
Semi Volatiles	SS202s	Sediment	PAH Derivative	0.36J
Semi Volatiles	SS202s	Sediment	Unknown	0.97J
Semi Volatiles	SS202s	Sediment	PAH Derivative	1.8J
Semi Volatiles	SS202s	Sediment	Unknown	0.37J
Semi Volatiles	SS202s	Sediment	Unknown	0.38J
Semi Volatiles	SS202sDUP	Sediment	Unknown	1.2J
Semi Volatiles	SS202sDUP	Sediment	Unknown	0.58J
Semi Volatiles	SS202sDUP	Sediment	Unknown	0.51J

'otes:

1. L.C. - Long Chain

2. PAH – Polyaromatic hydrocarbon

Tentatively Identified Compounds Dollinger - A Filtrona Company Remedial Investigation

Semi Volatiles	SS202sDUP	Sediment	PAH Derivative	2.4J
Semi Volatiles	SS202sDUP	Sediment	Unknown	3.2J
Semi Volatiles	SS202sDUP	Sediment	Unknown Acid	2.6J
Semi Volatiles	SS202sDUP	Sediment	Unknown	0.93J
Semi Volatiles	SS202sDUP	Sediment	Unknown	1.2J
Semi Volatiles	SS202sDUP	Sediment	Unknown	0.99J
Semi Volatiles	SS202sDUP	Sediment	Unknown	1.6J
Semi Volatiles	SS202sDUP	Sediment	Unknown	1.4J
Semi Volatiles	SS202sDUP	Sediment	Long Chain	0.69J
			Hydrocarbon	
Semi Volatiles	SS202sDUP	Sediment	Unknown	1.1J
Semi Volatiles	SS202sDUP	Sediment	Unknown	0.92J
Semi Volatiles	SS202sDUP	Sediment	Unknown	0.68J
Semi Volatiles	SS202sDUP	Sediment	Unknown	1.1J
Semi Volatiles	SS202sDUP	Sediment	Unknown	0.86J
Semi Volatiles	SS202sDUP	Sediment	Unknown	0.65J
Semi Volatiles	SS202sDUP	Sediment	Unknown	2.5J
Semi Volatiles	SS203d	Sediment	Unknown	2.1J
Semi Volatiles	SS203d	Sediment	Alkyl Saturated	0.71J
[Hydrocarbon	
Semi Volatiles	SS203d	Sediment	Alkyl Saturated	0.49J
			Hydrocarbon	
Semi Volatiles	SS203d	Sediment	Unknown	1.4J
Semi Volatiles	SS203d	Sediment	Alkyl Saturated	0.50J
			Hydrocarbon	
Semi Volatiles	SS203d	Sediment	Alkyl Saturated	2.2J
			Hydrocarbon	
Semi Volatiles	SS203d	Sediment	Alkyl Saturated	0.46J
			Hydrocarbon	
Semi Volatiles	SS203d	Sediment	Unknown	0.59J
Semi Volatiles	SS203d	Sediment	Unknown	0.59J
Semi Volatiles	SS203d	Sediment	Unknown	1.1J
Semi Volatiles	SS203s	Sediment	Unknown	1.2J
Semi Volatiles	SS203s	Sediment	Alkyl Hydrocarbon	0.68J
Semi Volatiles	SS203s	Sediment	Alkyl Hydrocarbon	0.86J
Semi Volatiles	SS203s	Sediment	Alkyl Hydrocarbon	2.7J
Semi Volatiles	SS203s	Sediment	Alkyl Hydrocarbon	1.6J
Semi Volatiles	SS203s	Sediment	Unknown	0.41J
Semi Volatiles	SS203s	Sediment	Alkyl Hydrocarbon	1.4J
Semi Volatiles	SS203s	Sediment	Unknown	∩ 17 7

Notes:

1. L.C. - Long Chain

2. PAH - Polyaromatic hydrocarbon

<u>Table XIII</u> Tentatively Identified Compounds **Dollinger -** A Filtrona Company Remedial Investigation

			·r	<u></u>	
Semi Volatiles	SS203s	Sediment	Hydrocarbon		
Semi Volatiles	SS203s	Sediment	Alkyl Hydrocarbon	1.5J	
Semi Volatiles	SS203s	Sediment	Sediment Unknown		
Semi Volatiles	SS203s	Sediment	Unknown	0.92J	
Semi Volatiles	SS203s	Sediment	Hydrocarbon		
Semi Volatiles	SS203s	Sediment	Unknown	0.54J	
Semi Volatiles	SS203s	Sediment	Unknown	0.86J	
Semi Volatiles	SS203s	Sediment	Long Chain	2.6J	
			Hydrocarbon		
Semi Volatiles	SS203s	Sediment	Unknown	1.2J	
Semi Volatiles	SS203s	Sediment	Unknown	1.1J	
Semi Volatiles	SS203s	Sediment	Unknown	0.75J	
Semi Volatiles	SS203s	Sediment	Unknown	0,52J	
Semi Volatiles	SS203s	Sediment	Unknown	1.0J	
Semi Volatiles	SS203s	Sediment	Unknown	2.0J	
Semi Volatiles	SS203sDUP	Sediment	Alkyl Hydrocarbon	2.8J	
Semi Volatiles	SS203sDUP	Sediment	Long Chain	1.9J	
			Hydrocarbon		
Semi Volatiles	SS203sDUP	Sediment	Long Chain	2.1J	
			Hydrocarbon		
Semi Volatiles	SS203sDUP	Sediment	Long Chain	0.93J	
	i		Hydrocarbon		
Semi Volatiles	SS203sDUP	Sediment	Long Chain	0.96J	
			Hydrocarbon		
Semi Volatiles	SS203sDUP	Sediment	Unknown	1.1J	
Semi Volatiles	SS203sDUP	Sediment	Long Chain	1.7J	
			Hydrocarbon		
Semi Volatiles	SS203sDUP	Sediment	Unknown	2.2J	
Semi Volatiles	SS203sDUP	Sediment	Unknown	0.53J	
Semi Volatiles	SS203sDUP	Sediment	Unknown	0.77J	
Semi Volatiles	SS203sDUP	Sediment	Long Chain	0.96J	
			Hydrocarbon		
Semi Volatiles	SS203sDUP	Sediment	Long Chain	0.75J	
			Hydrocarbon		
Semi Volatiles	SS203sDUP	Sediment	Unknown	0.57J	
Semi Volatiles	SS203sDUP	Sediment	Unknown	0.96J	
Semi Volatiles	SS203sDUP	Sediment	Unknown	4.1J	
Semi Volatiles	SS203sDUP	Sediment	Unknown	0.72J	
Semi Volatiles	SS204d	Sediment	Unknown	0.95J	
Semi Volatiles	SS204d	Sediment	Unknown	0 531	

Notes:

1. L.C. - Long Chain

2. PAH - Polyaromatic hydrocarbon

Table XIII Tentatively Identified Compounds Dollinger - A Filtrona Company Remedial Investigation

	000041		<u> </u>	0.071
Semi Volatiles	SS204d	Sediment	Unknown	0.37J
Semi Volatiles	SS204d	Sediment	Unknown	1.0J
Semi Volatiles	SS204dRE	Sediment Unknown		0.68J
Semi Volatiles	SS204dRE	Sediment	unknown	0.49J
Semi Volatiles	SS204dRE	Sediment	Unknown	0.47J
Semi Volatiles	SS204dRE	Sediment	Unknown	1.6J
Semi Volatiles	SS204s	Sediment	Tetramethylbutyl	1.5J
			phenol isomer	
Semi Volatiles	SS204s	Sediment	Unknown	2.1J
Semi Volatiles	SS204s	Sediment	Nonyl phenol	4.5J
			isomer	
Semi Volatiles	SS204s	Sediment	Unknown	4.5J
Semi Volatiles	SS204s	Sediment	Unknown	5.4J
Semi Volatiles	SS204s	Sediment	Tetramethylbutyl	4.6J
			phenol isomer	
Semi Volatiles	SS204s	Sediment	Unknown	3.3J
Semi Volatiles	SS204s	Sediment	Unknown	0.78J
Semi Volatiles	SS204s	Sediment	Unknown	1.7J
			Hydrocarbon	
Semi Volatiles	SS204s	Sediment	Unknown	1.5J
Semi Volatiles	SS204s	Sediment	Unknown	0.81J
Semi Volatiles	SS204s	Sediment	Unknown	2.4J
Semi Volatiles	SS204s	Sediment	Unknown	4.5J
			Hydrocarbon	
Semi Volatiles	SS204s	Sediment	Unknown	4.5J
Semi Volatiles	SS204s	Sediment	Unknown	3.3J
Semi Volatiles	SS204s	Sediment	Unknown	8.3J
Semi Volatiles	SS204s	Sediment	Unknown	4.6J
Semi Volatiles	SS204s	Sediment	Unknown	3.1J
Semi Volatiles	SS204s	Sediment	Unknown	1.4J
Semi Volatiles	TP201	Test Pit Soil	Unknown	0.99J
Semi Volatiles	TP201	Test Pit Soil	Unknown	0.74J
Semi Volatiles	TP201	Test Pit Soil	Unknown	0.35J
Semi Volatiles	TP201	Test Pit Soil	Unknown	1.2J
			Hydrocarbon	
Semi Volatiles	TP201	Test Pit Soil	Alkyl Hydrocarbon	2.2J
Semi Volatiles	TP201	Test Pit Soil	Alkyl Hydrocarbon	0.74J
Semi Volatiles	TP201	Test Pit Soil	Cyclo Alkane	2.0J
Semi Volatiles	TP201	Test Pit Soil	Alkyl Hydrocarbon	0.54J
Semi Volatiles	TP204	Test Pit Soil	Unknown	0.75J
Notes:				N

Notes:

1. L.C. - Long Chain

2. PAH – Polyaromatic hydrocarbon

<u>Table XIII</u> Tentatively Identified **Compounds Dollinger –** A **Filtrona** Company Remedial Investigation

Semi Volatiles	STW202	Stormwater	Unknown	0.024J
			Hydrocarbon	
Semi Volatiles	SW201	Surface Water	Unknown	0.41J
			Hydrocarbon	
Semi Volatiles	SW201	Surface Water	Unknown	0.0127
			Hydrocarbon	
Semi Volatiles	SW204	Surface Water	Unknown	0.045J
			Hydrocarbon	
Semi Volatiles	SW204DUP	Surface Water	Unknown	0.010J
Semi Volatiles	SW204DUP	Surface Water	Unknown	0.038J
			Hydrocarbon	
Semi Volatiles	Field Blk2	SDG: GSA8	Diphenyl Methanone	0.010J
Semi Volatiles	Field Blk2	SDG: GSA8	Phenyl Methanone	0.010J
			Derivative	
Semi Volatiles	Field Blk2	SDG: GSA8	Unknown	0.0127
Semi Volatiles	Field Blk	SDG: OW201s	Unknown	0.046J
Semi Volatiles	Field Blk	SDG: OW201s	Unknown	0.0127

Notes:

1. L.C. - Long Chain

2. PAH - Polyaromatic hydrocarbon

<u>Table XIV</u> Quality Assurance1 Quality Control Samples Organic Analyses Dollinger - A Filtrona Company Remedial Investigation

						S	AMPLE LOCA	TION AND ID	ENTIFICATI	ON					
PARAMETER	FBLK	TRIP BLK1	TRIP BLK2	TRIP BLK3	FIELD BLK1	FIELD BLK2	FIELD BLK3	FIELD BLK4	TRIP BLK1	TRIP BLK2	TRIP BLK3	TRIP BLK4	FBLNK	TRIP BLK	TRIP BLK
Sample Delivery Group	STW-202	STW-202	STW-202	STW-202	GSA8	GSA8	GSA8	GSA8	GSA8	GSA8	GSA8	GSA8	OW-201d	SS-201d	OW-101d
Volatiles															
												-			
Acetone	-			_	0.010	0.016		—				1	1 –		-
Methylene Chloride		0.002JB	0.002JB	0.001JB			~		-	0.0004JB		-		0.001J	0.0008J
Toluene					0.005J								-		
Trichloroethylene			—		0.017	0.0005J			—			-			0.0004J
Xylenes (Total)	-				0.002J	—	_	—							
Semi-Volatiles															
		NA	NA	NA					NA	NA	NA	NA		NA	NA
Butylbenzylphthalate	0.003J														
Phenanthrene					0.006J		<u></u>				ĺ				
Fluoranthene		-			0.004J										
Pyrene					0.002J			-							
Pesticides															
	-	NA	NA	NA					NA	NA	NA	NA	NA	NA	NA

NOTES:

1. Analyte was analyzed for but not detected.

2. NA - Sample not analyzed for this parameter.

3. J - Indicates an estimated value. The mass spectral data indicate the presence

of a compound that meets the identification criteria but the result is less than the **sample** quantitation **limit** and greater than zero.

4. Results reported In milligrams per liter (ppm).

dmc\123\QAQCORG.WK1

<u>Table XV</u> Quality Assurance1 Quality Control Samples Inorganic Analyses **Dollinger -** A **Filtrona** Company Remedial Investigation

	SAMPLE LOCATION AND IDENTIFICATION						
PARAMETER	FLDBLK1	FLBLK2	FLDBLK	FLDBNK	FLDBLK	FLDBLNK	
Sample Delivery Group	GSA8	GSA8	GSA8	GSA8	STW 202	OW201d	
Aluminum	9.9	10.0	4.25				
Antimony							
Arsenic							
Barium	0.094B	0.091B	0.039B				
Beryllium							
Cadmium							
Calcium	52.9	56.8	24.6	8.8	0.59B	3.02B	
Chromium	0.070	0.042	0.022		'		
Cobalt							
Copper	0.082	0.052	0.052	0.038	0.030		
Iron	24.5	21.1	9.76		0.12		
Lead				0.017	0.0050		
Magnesium	11.4	12.5	5.3				
Manganese	0.44	0.46	0.20	0.15			
Mercury							
Nickel	0.028B	0.020B				~~~	
Potassium	4.57B	3.82B	1.6B				
Selenium			-				
Silver				0.22			
Sodium	3.72B	3.14B	0.88B		0.47B	0.34B	
Thallium							
Vanadium							
Zinc	0.86	0.22	0.15		0.016B		
Cyanide			NA				

Notes:

1. -- Analyte was analyzed for but not detected.

2. Results reported in milligrams per liter (ppm).

3. B - Indicates a value greater than or equal to the instrument detection

limit but less than the contract required detection limit.

dmc/123\qaqcinor.wkI

TABLE XVI

Dollinger - A Filtrona Company

Remedial Investigation

Physical - Chemical and Fate Data of Organic Chemicals and Significance

Chemical	Cas. No.	Weight (g/mole)	Solubility (mg/L)	Vapor Pressure (mm Hg)	Henry's Lau Constant (atm-m-mole)	Koc (m/g)	Log Kou
CHLORINATED HYDROCARBONS							
1,1 dichloroethene	75-35-4	97	2250	600	3.4E-2	65	1.84
1,2 dichloroethene (trans)	540-59-0	97	6300	324	6.5E-3	59	0.48
tetrach loroethene	127-18-4	166	150	17.8	2.59E-2	364	2.6
1,1,1-trichloroethane	71-55-6	133	1500	123	1.44E-2	152	2.5
trichloroethene	79-01-06	131	1100	57.9	9.1E-3	126	2.38
vinyl chloride	75-01-4	63	2670	2660	8.19E-2	57	1.38
<u>BTX</u>							
benzene	71-43-2	78	1750	95.2	5.59E-3	83	2.12
chlorobenzene	108-90-7	113	466	11.7	3.72E-3	330	2.84
t o l uene	108-88-3	92	535	28.1	6.37E-3	300	2.73
xylene (total)	1330-20-7	106	198	10	7.04E-3	240	3.26
SEMI-VOLATILES							
benzo(a)pyrene	50-32-8	252	1.2E-3	5.6E-9	1.55E-6	5.5E+6	6.06
bis(2-ethylhexyl)phthalate	117-81-7	391					
phenol	108-95-2	94	93000	0.341	4.54E-7	14.2	1.46

NOTE:

1. Data from USEPA Superfund Public Health Evaluation Manual, October 1986.

Relative Mobility	Vapor Pressure Solubility (mmHg at 25 ⁰ C)	Henry's Lau Constant (mg/L at 25 ⁰ C)	K _{oc 3} (atm-m ⁻ mole)*	(mL/g)**
High	>100	>100	>5.5x10 ⁻³	<10
Moderate	10-99	10-99	5.5x10 ⁻⁴ to 5.5x10 ⁻³	10-99
Lou	0.1-9.9	0.1-9.9	5.5x10 ⁻⁵ to 5.5x10 ⁻⁴	100-999
Very Lou	<0. 1	<0.1	<5.5x10 ⁻⁵	>1,000

Notes:

- 1. * Using as a reference point the value 5.5x10⁻³, considered by Smith et.al. (1980) to be indicative of high volatility from water.
- **Using as a reference point the value ≤100 mL/g, reported by Kenaga (1980) to correspond to moderate to high mobility.

TABLE XVII SOIL, SEDIMENT, SURFACE WATER, GROUNDWATER AND SOIL VAPOR CONTAMINANT AND CONCENTRATIONS USED TO PREPARE EXPOSURE ESTIMATES

	Typical or Representative	RME Case Reason Le Manimum
Chemical	Case	(mg/kg)
SOIL mg/kg	check previous	; investigations
Acetone	0.024	0.049
Ethylbenzene	4.07	8.1
Toluene	1.26	2.5
Xylenes 🔪	10.04	50.0
1,2-Dichloroethene 🔪 🔪		0.04
Tetrachloroethene		0.25
Trichloroethene	7.75	51.0
1,1,2-Trichloroethane		0.009
1,1,1-Trichloroethane		0.003
Anthracene	0.16	0.25
Benzo(a) anthracene	0.36	0.56
Chrysene	0.29	0.61
Benzo(b)fluoranthene	0.27	0.66
Benzo(k)fluoranthene		0.35
Benzo(a) pyrene	0.23	0.49
Indeno (1,2,3-cd)pyrene	0.17	0.38
Benzo(g,h,i)perylene		0.29
Phenanthrene		1.3
Fluoranthene		1.3
Pyrene		1.2
Bis(2-ethylhexyl)phthalate	0.44	1.7
Diethyl Phthalate	.158	0.21
<u>Surface Water</u>		
Benzoic Acid		0.002
Bis(2-ethylhexyl)phthalate		0.00075
1,2-Dichloroethene		0.011
-Methyl Phenol		0.001
Vinyl Chloride		0.006
No TCE		

- need to check previous mustigethe

,

TABLE XVII (Cont.) SOIL, SEDIMENT, SURFACE WATER, GROUNDWATER AND SOIL VAPOR CONTAMINANT AND CONCENTRATIONS USED TO PREPARE EXPOSURE ESTIMATES

Chemical	Typical or Representative Case	RME Case (mg/kg)
<u>Sediment mg/kg</u> - NO	TLE NO VC	<- (I.Spen) TCE
Acetone	0.12	0.49
Benzene		1.5
2-Butanone		0.069
Chlorobenzene		1.4
2,4-Dimethyl Phenol		0.073
Ethylbenzene	19.67	59.0
Toluene	1.77	5.3
Xylenes	110.04	220.0
1,2-Dichloroethene		0.018
Methylene Chloride	0.46	0.91
Trichloroethene		0.059
Acenaphthalene		0.29
Acenaphthene	1.79	5.4
Anthracene	6.78	25.0
Benzo(a) Anthracene	22.05	120.0
Benzo(b)fluoranthene	30.29	140.0
Benzo(k) fluoranthene	3.04	11.0
Benzo(g,h,i)perylene	2.58	11.0
Benzo(a) pyrene	5.52	43.0
Chrysene	3.60	8.0
Dibenz(a,h)anthracene	0.98	4.6
Dibenzofuran	2.75	2.8
Fluoranthene	41.0	220.0
Fluorene	9.1	10.0
Indeno(1,2,3-cd)pyrene	3.85	17.0
Naphthalene	0.8	0.8
2-methylnaphthalene	0.37	0.41
Phenanthrene	23.2	120.0
Pyrene	31.40	150.0
Copper		174.0
Lead		137.0
Mercury		1.0
Nickel		93.0
Zinc		2,890.0

- 1989) - 1941

.

CONCENTRATIONS USED TO PREPARE EXPOSURE ESTIMATES				
Chemical	Typical or Representat Case (mg/kg)	ive RME Case (mg/kg)		
Total Polynuclear Aromatic Hydrocarbons				
Di-n-butylphthalate Butylbenzylphthalate Bis-2ethylhexylphthalate	6.98 37.46 27.99	8.8 140.0 130.0		
<u>Groundwater (mg/L)</u>				
Acetone Toluene 1,2-Dichloroethene 1,1-Dichloroethene 1,1,1-Trichloroethane Trichloroethene Vinyl Chloride	0.032 2.25 18.0 0.112	$\begin{array}{c} 0.041 \\ 0.012 \\ 11.0 \\ 0.019 \\ 0.16 \\ 36.0 \\ \end{array}$		
Soil Vapor (parts per mill	ion on molar '	volume of analyte in air)		
1,1-Dichloroethene 1,2-Dichloroethene (cis) 1,2-Dichloroethene (trans) Trichloroethene Vinyl Chloride	2.20 98.51 1.16 208.55 8.87	3.80 173 2.0 411 16.4		

TABLE XVII (Cont.) SOIL, SEDIMENT, SURFACE WATER, GROUNDWATER AND SOIL VAPOR CONTAMINANT AND CONCENTRATIONS USED TO PREPARE EXPOSURE ESTIMATES

<u>NOTES</u>:

--- Only one sample contained detectable concentrations

RME: Reasonable maximum exposure value is the maximum detected concentration from the July 1991 Site Investigation.

Typical: Value is the average of detected compound concentrations from the July 1991 Site Investigation.

TABLE XVIII

CHILD TRESPASS EXPOSURE SCENARIO INGESTION OF CHEMICALS IN SOIL

Equation:

where:

- CDI = Chemical Daily Intake (mg/kg-day)
- Cs = Chemical concentration in soil (mg/kg)
- $CF = Converson factor (10^{-6}kg/mg)$
- FI = Fraction ingested from contaminated source 1.0
- EF = Exposure frequency: 26 days/year (equivalent to 1 time/week for 26 weeks/year)
- BW = Body weight 31 kg (9 year old average; EPA 1989)
- AT = Pathway specific period of exposure

NOTE:

1. EPA 1989, Exposure Factors Handbook.

TABLE XIX

CHILD TRESPASS EXPOSURE SCENARIO DERMAL CONTACT WITH CHEMICALS IN SOIL

Equation:						
Absorbed dose = (Cs) (ABS) (CF) (SA) (AF) (EF) (ED) (BW) (AT)						
where:						
Absorbed dose = Chemical Daily Intake (CDI)						
CS = Chemical concentration in soil						
ABS = Fraction absorbed (unitless)						
$CF = Conversion factor (10^{-6}kg/mg)$						
<pre>SA = Skin surface area available for contact (cm²/event) Typical case = 1200 cm² (hands and 1/3 of arms and legs, surface area; EPA 1989)</pre>						
RME case 1800 ${\tt cm}^2$ (hands and one-half of arms and legs, surface areas; EPA 1989)						
AF = Soil to skin adherence factor (mg/cm ²) Typical and RME = 0.5 mg/cm ² (LePow 1975)						
<pre>EF = Exposure frequency (events/year) Typical case = 26 days/year (1 day/week, 26 weeks/year) RME case = 26 days/year (1 day/week, 26 weeks/year)</pre>						
ED = Exposure duration - 6 years (period between 6 and 12 years old)						
BW = 31 kg (9 years old average; EPA 1989)						
AT = Pathway specific period of exposure						

NOTE:

1. EPA 1989, Exposure Factors Handbook.

TABLE XX

CHILD TRESPASS EXPOSURE SCENARIO INGESTION OF POND SEDIMENT

Equation: Absorbed dose (mg/kg-day) = (Csd) (D) (F) (I) (Abs) (BW) (AT) where: Csd = Chemical concentration in pond sediment The duration of exposure (5 years) D = The frequency of exposure (10 day/year) F = The daily intake of sediment (50 mg/day) Ι = ABS = The absorption factor (assume 1.0 by convention) Body Weight (31 kg) BW = Pathway specific period of exposure (i.e. 70 AΤ = years/lifetime, 365 days/year.

TABLE XXI

ON SITE WORKER EXPOSURE SCENARIO INHALATION OF VAPORS

```
Equation:
Absorbed dose (mg/kg-day) = (Ca) (ABS) (IR) (ET) (EF) (ED)
(BW) (AT)
where:
Ca = Contaminant Concentration in Air (mg/m<sup>3</sup>)
ABS = Fraction Absorbed (unitless)
IR = Inhalation Rate (m<sup>3</sup>/hr)
ET = Exposure Time (hours/day)
EF = Exposure Frequency (days/year)
ED = Exposure Duration (years)
BW = Body Weight
```

```
AT = Averaging Time (days)
```

VARIABLE	CASE	RECEPTOR	VALUE Rationale/Source
CA	Typical/RME	Adult	Modeled Value
ABS	Typical/RME	Adult	1.0 (assumed, by convention)
IR	Typical	Adult	0.8 m ³ /hr (light activity, EPA 1989)
	RME	Adult	2.5 m ³ /hr (moderate activity, EPA 1989)
ET	Typical/RME	Adult	8 hours/day
EF	Typical/RME	Adult	250 days/year (5 days/ week, 50 weeks)
ED	Typical	Adult	10 years
	RME	Adult	40 years
BW	Typical/RME	Adult	70 kg(adult average EPA 1989)
AT	Typical/RME	Adult	EDx365 days/year

TABLE XXII

E.

CHRONIC TOXICITY VALUES: POTENTIAL NONCARCINOGENIC EFFECTS ORAL EXPOSURE

chemical	Chronic RfD (oral) mg/kg-day	Critical Effect	RfD Basis/ RfD Source	Uncertainty (UF) and Modifying (MF) Factors
Acetone	1×10^{-1}	Wt. changes, Liver Kidney	Rat/oral HEAST	1000
2-Butanone	5×10^{-2}	CNS Effects,feto tox	Rat/inhal HEAST	1000
Chlorobenzene	2×10^{-2}	Liver, Kidney Effects	Rat/oral HEAST	1000
2,4-Dimethylphenol	2×10^{-2}	Neuro signs, blood changes	Mouse/oral HEAST	3000
Ethylbenzene	1×10^{-1}	Liver, Kidney TOX., development TOX	Rat/oral HEAST	300
Toluene	2×10^{-1}	CNS Effects	Rat/oral HEAST	1000
Xylenes	2.0	CNS Effects, Irritation	Rat/oral HEAST	100
cis-1,2-Dichloroethene	1×10^{-2}	Blood Changes	Rat/oral HEAST	3000
methylene chloride	6 x 10 ⁻²	Liver Tox.	Rat/Water HEAST	100
1,1,2-Trichloroethane	4×10^{-3}	Clinical Chem. Changes	Mouse/oral HEAST	1000

TABLE XXII (Cont.)

Ê

CHRONIC TOXICITY VALUES: POTENTIAL NONCARCINOGENIC EFFECTS ORAL EXPOSURE

B

Chemical	Chronic RfD (oral) mg/kg-day	Critical Effect	RfD Basis/ RfD Source	Uncertainty (UF) and Modifying (MF) Factors
1,1,1-Trichloroethane	9 x 10 ⁻²	Liver Tox.	Guinea pig HEAST	NS
Anthracene	3 x 10 ⁻¹	NOEL	Mouse/oral HEAST	3000
Fluoranthene	4×10^{-2}	Liver, Kidney, Blood	Mouse/oral HEAST	300
Fluorene	4×10^{-2}	Blood Changes	Mouse/oral HEAST	3000
Pyrene	3 x 10 ⁻²	Kidney Effects	Mouse/oral HEAST	3000
Di-n-butyl phthalate	1 x 10 ⁻¹	Mortality	Rat/diet HEAST	1000
Diethyl phthalate	8×10^{-1}	Body Weight	Rat/diet HEAST	1000
Butylbenzyl phthalate	2×10^{-1}	Body Wt. change	Rat/diet HEAST	1000
Bis2-ethylhexyl phthalat	e 2 x 10 ⁻²	Liver Wt. Change	Guinea Pig/diet HEAST	1000
Copper	3.7 x 10 ⁻²	Local GI irrit.	Human/NS	NS
Lead	1.4×10^{-3} (5) NS	NS	NS
Nickel	2×10^{-2}	Body Wt., organ changes	Rat/diet HEAST	300

TABLE XXII (Cont.)

CHRONIC TOXICITY VALUES: POTENTIAL NONCARCINOGENIC EFFECTS ORAL EXPOSURE

and Factors			
Uncertainty (UF) and Modifying (MF) Factors	10	10	
RfD Basis/ RfD Source	Human/oral HEAST	NS/HEAST	
Critical Effect	Anemia	CNS Effects	
Chronic RfD (oral) mg/kg-day	2 x 10 ⁻¹	3 x 10 ⁻⁴	
Chemical	Zinc	Mercury	

Notes:

RfD = Reference Dose NOEL: No observed effect level HEAST = Health Effects Assessment Summary Tables NS = Not Specified EPA 1986, Superfund Public Health Evaluation Manual NAS-RDI National Academy of Science, Recommended Daily Intake.

TABLE XXIII

.

TOXICITY VALUES: POTENTIAL CARCINOGENIC EFFECTS CHEMICAL CLASSIFICATION AND SLOPE FACTORS

Chemical	Slope Factor (mg/kg/day) ⁻¹	Weight of Evidence	Type of Cancer	SF Basis/ SF Source
1,1-Dichloroethene	6×10^{-1}	С		Diet/HEAST
1,1,2-Trichloroethane	5.7 x 10^{-2}	С		Water/HEAST
Trichloroethene	1.1×10^{-2}	B2	Liver	Oral/HEAST
Vinyl Chloride	1.9	A	Lung	Diet/HEAST
Benzo(a)anthracene	NA	B2	NA	HEAST
Benzo(a) pyrene	11.5	B2	Stomach	Mouse/Diet/HEAST
Benzo(b) fluoranthene	NA	B2	NA	HEAST
Benzo(k)fluoranthene	NA	B2	NA	HEAST
Chrysene	NA	B2	NA	HEAST
Dibenzo(a,h)anthracene	NA	B2	NA	HEAST
Indeno(1,2,3-c,d)pyrene	NA	B2	NA	HEAST
Bis(2-ethylhexyl) phthalate	1.4×10^{-2}	B2	Liver	HEAST
Butylbenzyl phthalate	NA	С	NA	HEAST

Notes:

1. HEAST = Health Effects Assessment Summary Tables

2. NA: Not Available

3. SF: Slope Factor

TABLE XXIV

.

(

F

.

TYPICAL EXPOSURE CASE - CHILD TRESPASS SCENARIO POTENTIAL NONCARCINOGENIC EFFECTS

Chemical	CDI (mg/kg-day)	RfD (mg/kg-day)	Hazard Quotient (CDI/Rf D)	Pathway Specific Hazard Index
Exposure Pathway: Ingestion	n of soil			
Acetone Ethylbenzene Toluene Xylene Anthracene Bis(2-ethylhexyl) phthalate Diethyl phthalate	5.52×10^{-9} 9.36×10^{-7} 2.90×10^{-7} 2.31×10^{-6} 3.68×10^{-8} 1.01×10^{-7} 3.11×10^{-9}	0.1 0.2 2.0 0.3 0.02 0.8	5.52×10^{-8} 9.36 x 10 ⁻⁶ 1.45 x 10 ⁻⁶ 1.16 x 10 ⁻⁶ 1.23 x 10 ⁻⁷ 5.05 x 10 ⁻⁶ 3.89 x 10 ⁻⁹	
				1.72×10^{-5}

TABLE XXIV (Cont.)

TYPICAL EXPOSURE CASE - CHILD TRESPASS SCENARIO POTENTIAL NONCARCINOGENIC EFFECTS

Chemical	CDI (mg/kg-day)	RfD (mg/kg-day)	Hazard Quotient (CDI/Rf D)	Pathway Specific Hazard Index
Exposure Pathway: Dermal Co	ontact			
Acetone Ethylbenzene Toluene Xylene Anthracene Bis(2-ethylhexyl) phthalate Diethyl phthalate	$3.36 \times 10^{-8} \\ 5.7 \times 10^{-6} \\ 1.76 \times 10^{-6} \\ 1.4 \times 10^{-5} \\ 2.24 \times 10^{-7} \\ 6.16 \times 10^{-7} \\ 1.86 \times 10^{-8} \\ 1.86 \times$	0.1 0.1 0.2 2.0 0.3 0.02 0.8	$3.36 \times 10^{-7} \\ 5.7 \times 10^{-5} \\ 8.8 \times 10^{-6} \\ 7.0 \times 10^{-6} \\ 7.47 \times 10^{-7} \\ 3.08 \times 10^{-5} \\ 2.33 \times 10^{-8} \\ \end{array}$	
				1.047×10^{-4}
Total Exposure Hazard Index				1.22 x 10 ⁻⁴

Notes:

Ē

1. CDI = Chemical Daily Intake

2. **RfD** = Reference Dose

TABLE XXV

REASONABLE MAXIMUM EXPOSURE CASE - CHILD TRESPASS SCENARIO POTENTIAL NONCARCINOGENIC EFFECTS

Chemical	CDI (mg/kg-day)	RfD (mg/kg-day)	Hazard Quotient (CDI/RfD)	Pathway Specific Hazard Index
Exposure Pathway: Ingestion	of Soil			
Acetone Ethylbenzene Toluene Xylene 1,2-Dichloroethylene 1,1,2-Trichloroethane 1,1,1-Trichloroethane Anthracene Pyrene Bis(2-ethylhexyl) phthalate Diethyl phthalate	1.13 x 10 ⁻⁸ 1.86 x 10 ⁻⁶ 5.75 x 10 ⁻⁷ 1.15 x 10 ⁻⁹ 9.2 x 10 ⁻⁹ 2.07 x 10 ⁻⁹ 6.9 x 10 ⁻¹⁰ 5.75 x 10 ⁻⁸ 2.76 x 10 ⁻⁷ 3.91 x 10 ⁻⁹ 4.14 x 10 ⁻⁹	0.1 0.2 2.0 0.01 0.004 0.09 0.3 0.03 0.03 0.02 0.8	1.13×10^{-7} 1.86×10^{-5} 2.88×10^{-6} 5.75×10^{-6} 9.2×10^{-7} 5.18×10^{-7} 7.67×10^{-9} 1.92×10^{-7} 9.20×10^{-6} 1.96×10^{-5} 5.18×10^{-9}	

5.78 x 10^{-5}

TABLE XXV (Cont.)

1

1

.

REASONABLE MAXIMUM EXPOSURE CASE - CHILD TRESPASS SCENARIO POTENTIAL NONCARCINOGENIC EFFECTS

Chemical	CDI (mg/kg-day)	RfD (mg/kg-day)	Hazard Quotient (CDI/RfD)	Pathway Specifi Hazard Index
Exposure Pathway: Dermal Con	ntact			
Acetone Ethylbenzene Toluene Xylene 1,2-Dichloroethylene 1,1,2-Trichloroethane 1,1,1-Trichloroethane Anthracene Fluoranthene Bis(2-ethylhexyl) phthalate Diethyl phthalate Pyrene	1.01×10^{-7} 1.67×10^{-5} 5.15×10^{-6} 1×10^{-4} 8.24×10^{-8} 1.85×10^{-8} 6.18×10^{-9} 5.15×10^{-7} 2.68×10^{-6} 3.5×10^{-6} 3.72×10^{-8} 2.47×10^{-6}	0.1 0.2 2.0 0.01 0.004 0.09 0.3 0.04 0.1 0.8 0.03	$1.01 \times 10^{-6} 1.67 \times 10^{-4} 2.58 \times 10^{-5} 5 \times 10^{-5} 8.24 \times 10^{-6} 4.63 \times 10^{-6} 6.87 \times 10^{-8} 1.72 \times 10^{-6} 6.7 \times 10^{-5} 3.5 \times 10^{-5} 4.65 \times 10^{-8} 8.23 \times 10^{-5} $	

 4.43×10^{-4}

R

vbd149

TABLE XXV (Cont.)

Æ

REASONABLE MAXIMUM EXPOSURE CASE - CHILD TRESPASS SCENARIO POTENTIAL NONCARCINOGENIC EFFECTS

Chemical	CDI (mg/kg-day)	RfD (mg/kg-day)	Hazard Quotient (CDI/RfD)	Pathway Specific Hazard Index
Exposure Pathway: Ingestion	of Pond Sediment			
Acetone 2-Butanone Chlorobenzene Methylene Chloride 2,4-Dimethyl Phenol Ethylbenzene Toluene Xylene 1,2-Dichloroethylene Anthracene Fluoranthene Fluorene Pyrene Copper Lead Nickel Mercury Zinc Di-n-butyl phthalate Butyl benzyl phthalate Bis(2-ethylhexyl) phthalate	2.17 x 10^{-8} 3.05 x 10^{-9} 6.19 x 10^{-8} 4.02 x 10^{-8} 3.22 x 10^{-9} 2.61 x 10^{-6} 2.34 x 10^{-7} 9.72 x 10^{-6} 7.96 x 10^{-10} 1.11 x 10^{-6} 9.72 x 10^{-6} 4.42 x 10^{-7} 6.63 x 10^{-6} 7.69 x 10^{-6} 6.06 x 10^{-6} 4.11 x 10^{-8} 1 x 10^{-8} 1 x 10^{-7} 3.89 x 10^{-7} 5.31 x 10^{-7} 4.93 x 10^{-7}	$\begin{array}{c} 0.1\\ 0.05\\ 0.02\\ 0.06\\ 0.02\\ 0.1\\ 0.2\\ 2.0\\ 0.01\\ 0.3\\ 0.04\\ 0.04\\ 0.04\\ 0.04\\ 0.04\\ 0.03\\ 0.04\\ 1.4 \times 10^{-3}\\ 0.02\\ 3 \times 10^{-4}\\ 0.2\\ 0.1\\ 0.2\\ 0.1\\ 0.2\\ 0.02 \end{array}$	2.17 \times 10 ⁻⁷ 6.1 \times 10 ⁻⁸ 3.09 \times 10 ⁻⁶ 6.7 \times 10 ⁻⁷ 1.61 \times 10 ⁻⁷ 2.61 \times 10 ⁻⁵ 1.17 \times 10 ⁻⁶ 4.8 \times 10 ⁻⁶ 7.96 \times 10 ⁻⁸ 3.7 \times 10 ⁻⁶ 2.43 \times 10 ⁻⁴ 1.1 \times 10 ⁻⁵ 2.21 \times 10 ⁻⁴ 1.99 \times 10 ⁻⁴ 4.33 \times 10 ⁻⁴ 1.47 \times 10 ⁻⁴ 3.89 \times 10 ⁻⁶ 2.66 \times 10 ⁻⁶ 2.47 \times 10 ⁻⁵	

 5.93×10^{-3}

Total Exposure Hazard Index

Notes:

- CDI = Chemical Daily Intake
 RfD = Reference Dose

 6.43×10^{-3}

TABLE XXVI

1

f

TYPICAL EXPOSURE CASE - CHILD TRESPASS SCENARIO POTENTIAL CARCINOGENIC EFFECTS

Chemical	CDI (mg/kg-day)	SF (mg/kg-day)	Chemical Specific Risk (CDI x SF)	Total Pathway Risk
Exposure Pathway: Ingesti	on of Soil			
Trichloroethylene Benzo(a) anthracene Chrysene Benzo(b)fluoranthene Benzo(a) pyrene Indeno-1,2,3-cd pyrene Bis(2-ethylhexyl) phthalate	1.53×10^{-7} 7.09×10^{-9} 5.71×10^{-9} 5.32×10^{-10} 4.53×10^{-9} 3.35×10^{-9} 8.67×10^{-9}	1.1×10^{-2} 11.5 (*) 11.5 (*) 11.5 (*) 11.5 (*) 11.5 (*) 1.4×10^{-2}	1.68×10^{-9} 8.15×10^{-8} 6.57×10^{-8} 6.12×10^{-9} 5.21×10^{-8} 3.85×10^{-8} 1.21×10^{-10}	
				2.46 x 10^{-7}

	TABI	TABLE XXVI (Cont.)		
	TYPICAL EXPOSURE CASE POTENTIAL CAR	EXPOSURE CASE - CHILD TRESPASS POTENTIAL CARCINOGENIC EFFECTS	PASS SCENARIO FECTS	
Chemical	CDI (mg/kg-day)	SF (mg/kg-day)	Chemical Specific Risk (CDI x SF)	Total Pathway Risk
Exposure Pathway: Dermal C	Contact			
Trichloroethylene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno-1,2,3-cd pyrene Bis(2-ethylhexyl)phthalate	9.15 \times 10 ⁻⁷ 4.23 \times 10 ⁻⁸ 3.42 \times 10 ⁻⁸ 3.19 \times 10 ⁻⁸ 2.71 \times 10 ⁻⁸ 2.0 \times 10 ⁻⁸ 5.19 \times 10 ⁻⁸	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
				1.80 x 10 ⁻⁶
Total Exposure Risk				2.04 x 10 ⁻⁶
<u>Notes</u> :				
 CDI = Chemical Daily Intake SF = Slope Factor * = SF for Benzo(a)pyrene 	Intake rene			

vbd149

TABLE XXVII

8

.

1

REASONABLE MAXIMUM EXPOSURE CASE - CHILD TRESPASS SCENARIO POTENTIAL CARCINOGENIC EFFECTS

Chemical	CDI (mg/kg-day)	SF (mg/kg-day)	Chemical Specific Risk (CDI x SF)	Total Pathway Risk
Exposure Pathway: Ingestic	on of Soil			
Trichloroethylene 1,1,2-Trichloroethane Benzo(a) anthracene Chrysene . Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno-1,2,3-cd pyrene Bis(2-ethylhexyl)phthalate	1.0×10^{-6} 1.77×10^{-10} 1.1×10^{-8} 1.2×10^{-8} 1.3×10^{-8} 6.9×10^{-9} 9.65×10^{-9} 7.49×10^{-9} 3.35×10^{-8}	1.1×10^{-2} 5.7×10^{-2} 11.5 (*) 11.5 (*) 11.5 (*) 11.5 (*) 11.5 (*) 11.5 (*) 11.5 (*) 1.4×10^{-2}	1.11×10^{-8} 1.01×10^{-11} 1.27×10^{-7} 1.38×10^{-7} 1.5×10^{-7} 7.94×10^{-8} 1.11×10^{-7} 8.61×10^{-8} 4.69×10^{-10}	
· · · · · · · · · · · · · · · · · · ·				7.03×10^{-7}

7.03 x 10

TABLE XXVII (Cont.)

.

.

1

1

ŧ.

REASONABLE MAXIMUM EXPOSURE CASE - CHILD TRESPASS SCENARIO POTENTIAL CARCINOGENIC EFFECTS

Chemical	CDI (mg/kg-day)	SF (mg/kg-day)	Chemical Specific Risk (CDI x SF)	Total Pathway Risk
Exposure Pathway: Dermal Co	ontact			
Trichloroethylene 1,1,2-Trichloroethane Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno-1,2,3-cd pyrene Bis(2-ethylhexyl)phthalate	9.03 \times 10 ⁻⁶ 1.85 \times 10 ⁻⁸ 9.91 \times 10 ⁻⁸ 1.08 \times 10 ⁻⁷ 1.17 \times 10 ⁻⁷ 6.2 \times 10 ⁻⁸ 8.67 \times 10 ⁻⁸ 6.73 \times 10 ⁻⁸ 3.01 \times 10 ⁻⁷	1.1×10^{-2} 5.7×10^{-2} 11.5 (*) 11.5 (*) 11.5 (*) 11.5 (*) 11.5 (*) 11.5 (*) 11.5 (*) 1.4×10^{-2}	9.9×10^{-8} 1.05×10^{-9} 1.14×10^{-6} 1.24×10^{-6} 1.35×10^{-6} 7.13×10^{-7} 9.97×10^{-7} 7.74×10^{-7} 3.31×10^{-9}	

6.31.x 10⁻⁶

TABLE XXVII (Cont.)

.

1

E

в

REASONABLE MAXIMUM EXPOSURE CASE - CHILD TRESPASS SCENARIO POTENTIAL CARCINOGENIC EFFECTS

Chemical	CDI (mg/kg-day)	SF (mg/kg-day)	Chemical Specific Risk (CDI x SF)	Total Pathway Risk
Exposure Pathway: Ingestion	n of Pond Sediment			
Benzene Trichloroethylene Acenaphthalene Benzo(a) anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a) pyrene Chrysene Dibenz(a,h)anthracene Indeno-1,2,3-cd pyrene Bis(2-ethylhexyl)phthalate	1.74×10^{-8}	6×10^{-1} 1.1 x 10 ⁻² 11.5 (*) 11.5 (*) 11.5 (*) 11.5 (*) 11.5 (*) 11.5 (*) 11.5 (*) 11.5 (*) 11.5 (*) 11.5 (*) 1.4 x 10 ⁻²	3.41 x 10^{-9} 2.87 x 10^{-11} 1.27 x 10^{-8} 5.12 x 10^{-6} 6.11 x 10^{-6} 4.80 x 10^{-7} 1.87 x 10^{-6} 3.48 x 10^{-7} 2.00 x 10^{-7} 7.41 x 10^{-7} 6.9 x 10^{-9}	
				1.49×10^{-5}
Total Exposure Risk				2.19 x 10 ⁻⁵

Notes:

CDI = Chemical Daily Intake
 SF = Slope Factor

TABLE XXVIII

1

1

R

REASONABLE MAXIMUM EXPOSURE CASE - ON SITE WORKER POTENTIAL NONCARCINOGENIC EFFECTS

Chemical	CDI (mg/kg-day)	RfD (mg/kg-day)	Hazard Risk	Pathway Specific Hazard Index
Exposure Pathway: Inhala	ation of Volatiles			
Acetone Toluene 1,2-Dichloroethene 1,1,1-Trichloroethene	3.6 x 10^{-6} 1.0 x 10^{-6} 9.5 x 10^{-4} 8.2 x 10^{-5}	$1 \times 10^{-1} \\ 2 \times 10^{-1} \\ 1 \times 10^{-2} \\ 9 \times 10^{-2}$	3.6 $\times 10^{-5}$ 5.1 $\times 10^{-6}$ 9.5 $\times 10^{-2}$ 9.0 $\times 10^{-2}$	

 1.8×10^{-1}

.

1

CDI = Chemical Daily Intake RfD - Reference Dose

vbd149

.

f

TABLE XXIX

1

1

1

1

TYPICAL EXPOSURE CASE - ON SITE WORKER SCENARIO POTENTIAL CARCINOGENIC EFFECTS

Chemical	CDI (mg/kg-day)	SF (mg/kg-day)	Chemical Specific Risk	Total Pathway Risk
Exposure Pathway: Inha	lation of Volatiles			
1,1-Dichlorethene Trichloroethene Vinyl Chloride	7.5×10^{-8} 1.4 x 10 ⁻⁴ 6.3 x 10 ⁻⁷	6×10^{-1} 1.1 x 10 ⁻² 1.9	4.5×10^{-8} 1.6 × 10^{-6} 1.2 × 10^{-6}	
				2.8×10^{-6}

.

vbd149

E

TABLE XXX

- E - 👔

.

.

.

· · 💼

REASONABLE MAXIMUM EXPOSURE CASE - ON SITE WORKER POTENTIAL CARCINOGENIC EFFECTS

Chemical	CDI (mg/kg-day)	SF (mg/kg-day)	Chemical Specific Risk	Total Pathway Risk
Exposure Pathwav: Inhal	ation of Volatiles			
1,1-Dichloroethene Trichloroethene Vinyl Chloride	5.6 x 10^{-6} 1.8 x 10^{-3} 7.8 x 10^{-6}	6×10^{-1} 1.1 × 10 ⁻² 1.9	3.35×10^{-6} 1.93 × 10^{-5} 1.5 × 10^{-5}	
				3.4×10^{-5}

1.

SF = Slope Factor CDI = Chemical Daily Intake 2.

1 1

1

T

vbd149

ŧ

TABLE XXXI SUMMARY OF ESTIMATED NONCARCINOGENIC HAZARD INDICES UNDER CURRENT LAND USE CONDITIONS

Exposure Scenario	<u>Receptor</u> Adult	c Child	Exposure Routes in Order of Importance	Chemicals Primarily Responsible For Risks In Order of Importance
Typical Case				
Child Trespass On site Worker	NA ND	1.22 x 10 ⁻⁴ NA	Derm.	1,2-DCE
<u>RME Case</u>	a			
Child Trespass	NA	6.43 x 10 ⁻³	Ingest.	Lead, Zinc
On site Worker	1.8 x 10 ⁻¹	NA	Pond Sed. Inhal.	1,2-DCE

Notes:

RME = Reasonable Maximum Exposure
 NA = Not Applicable

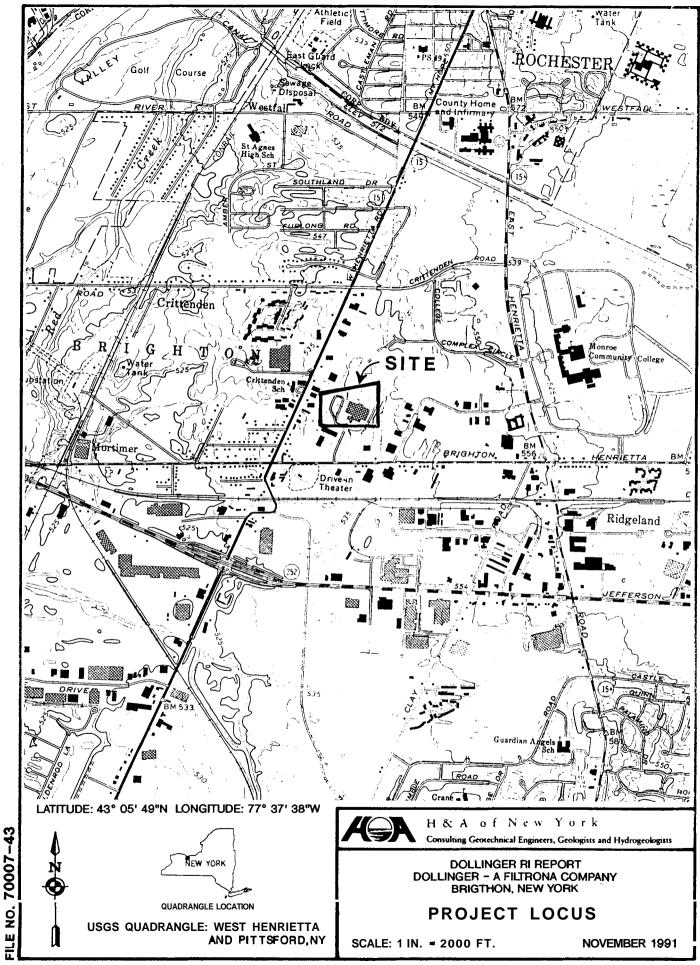
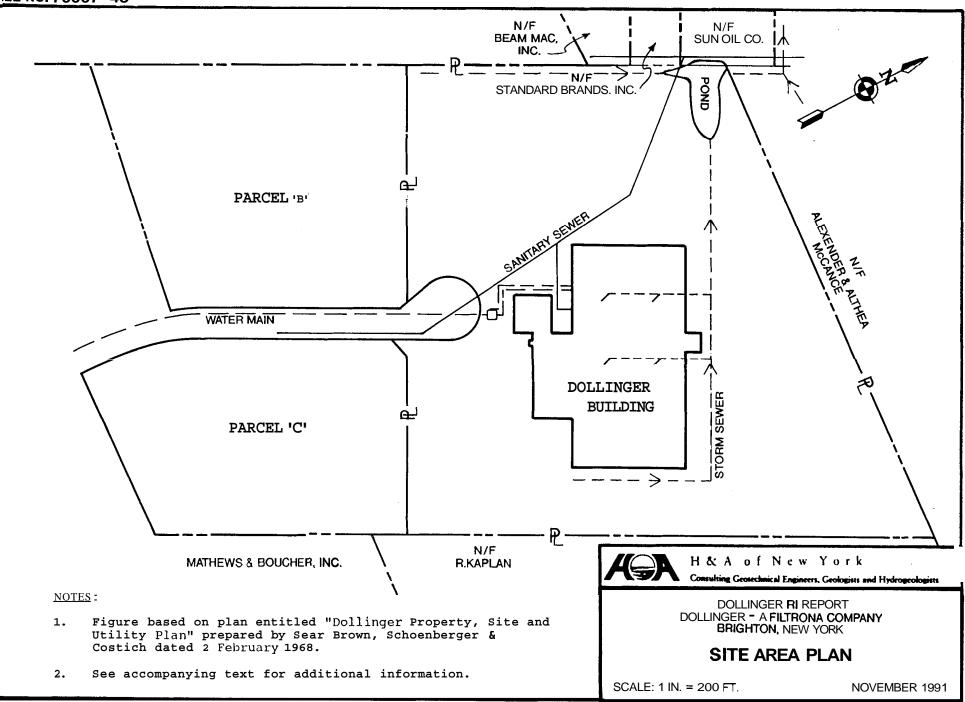
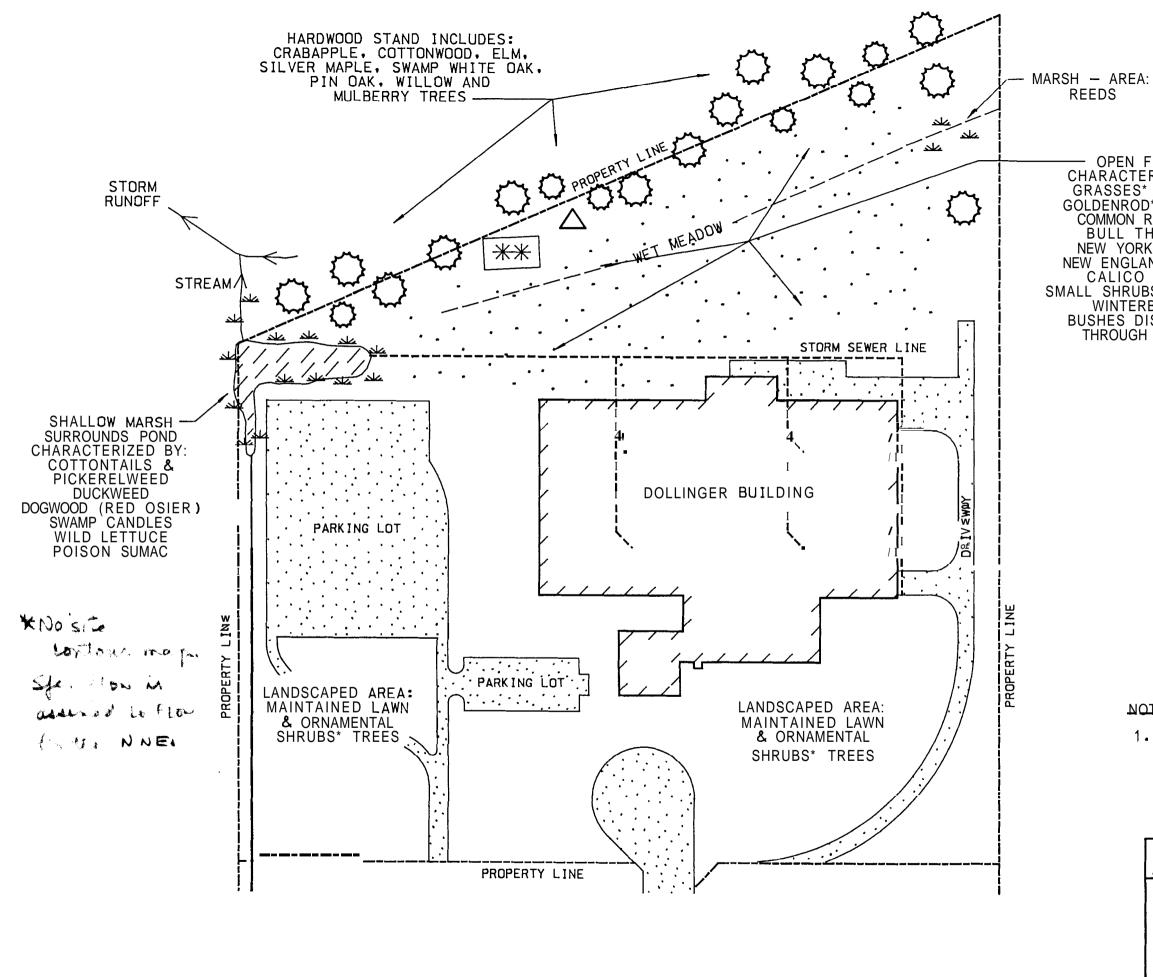

vbd149

TABLE XXXII SUMMARY OF ESTIMATED EXCESS LIFETIME CANCER RISKS UNDER CURRENT LAND USE CONDITIONS

Exposure Scenario	<u>Receptor</u> Adult	Child	Exposure Routes in Order of Importance	Chemicals Primarily Responsible For Risks In Order of Importance
Typical Case				
Child Trespass	NA	2.04 x 10 ⁻⁶	Derm,	PAH's
On site Worker	2.8×10^{-6}	NA	Ingest. Inhal.	TCE, VC
RME Case				
Child Trespass	NA	2.19×10^{-5}	Dermal,	PAH's
On site Worker	3.4 x 10 ⁻⁵	NA	Ingest. Pond Sed. Inhal.	TCE,VC

Notes:


RME = Reasonable Maximum Exposure
 NA = Not Applicable
 PAHs = Polynuclear Aromatic Hydrocarbons


FIGURE 1

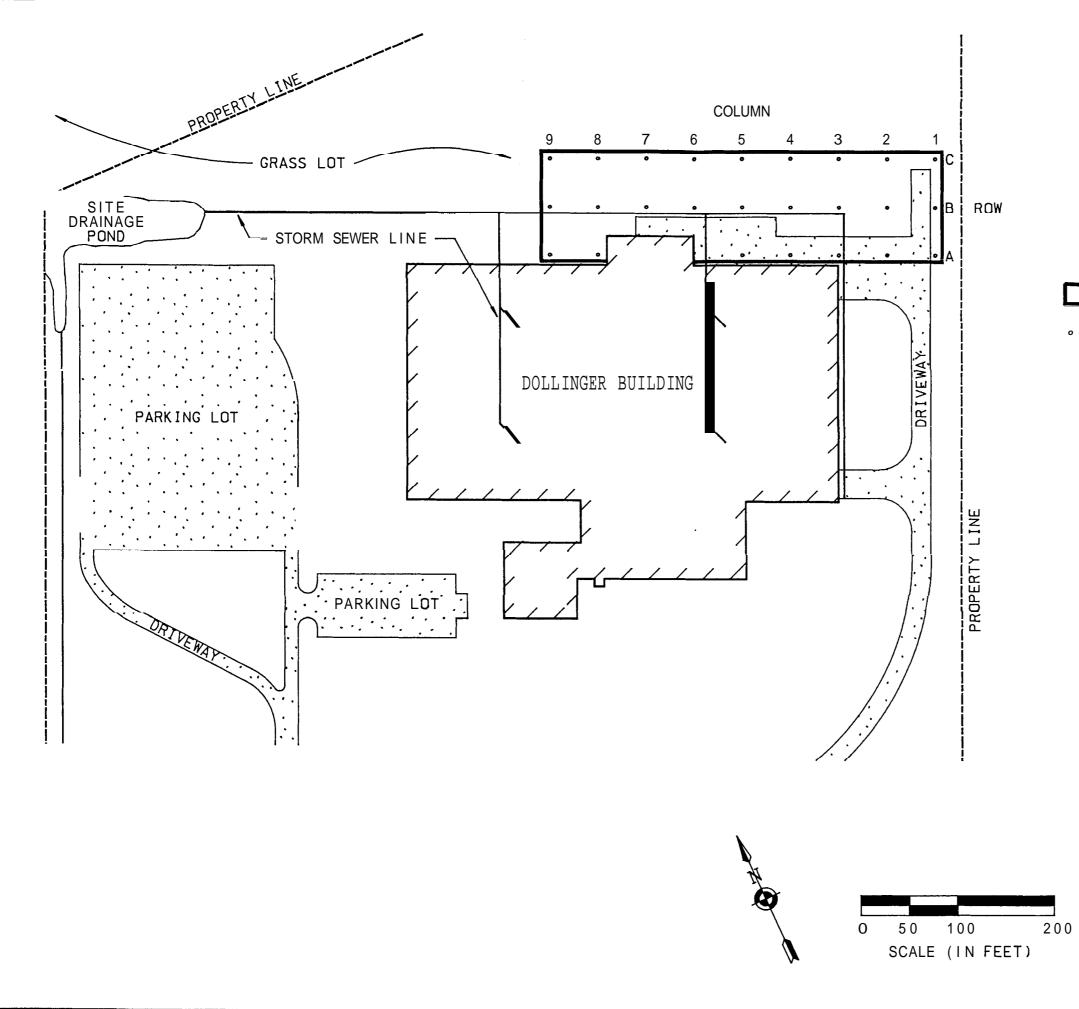
CHARRETTE

FIGURE 2

70007 NO. ш FIL

-43


OPEN FIELD CHARACTERIZED BY: GRASSES* SEDGES GRASSES SEDGES GOLDENROD* CLOVER COMMON RAGWEED BULL THISTLE NEW YORK ASTER NEW ENGLAND ASTER CALICO ASTER SMALL SHRUBS SUCH AS: WINTERBERRY BUSHES DISPERSED THROUGH FLLD


LEGEND:

NOTES:

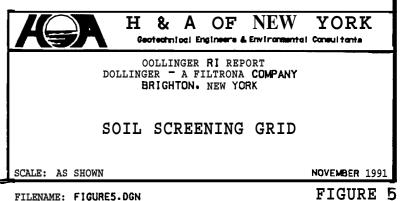
1. REPRESENTATIVE SPECIES NOTED DURING SITE WALKOVER NOT INCLUSIVE SURVEY* SEE TEXT FOR ADDITIONAL INFORMATION.

70007 NO. ы FIL

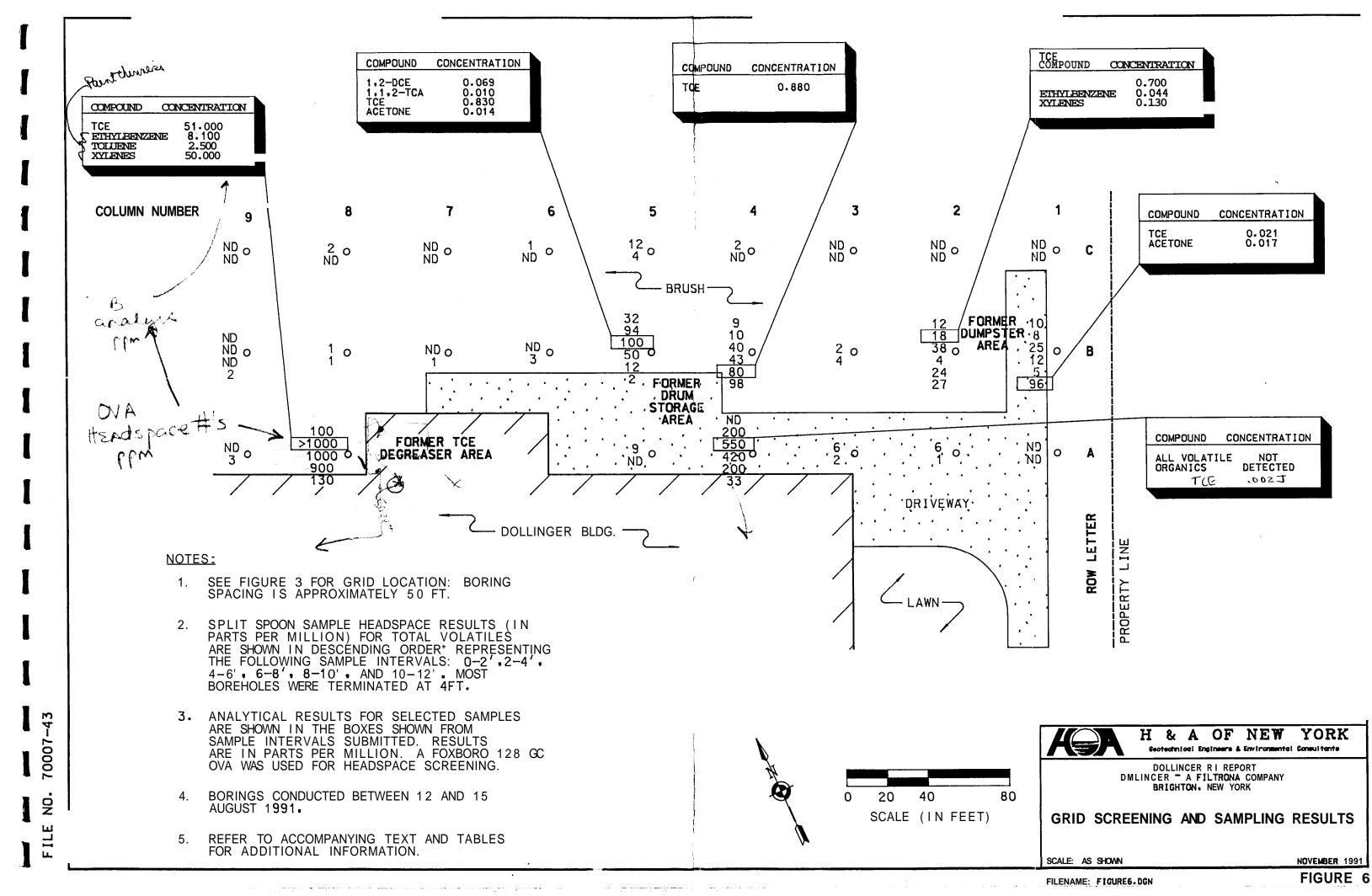
-43

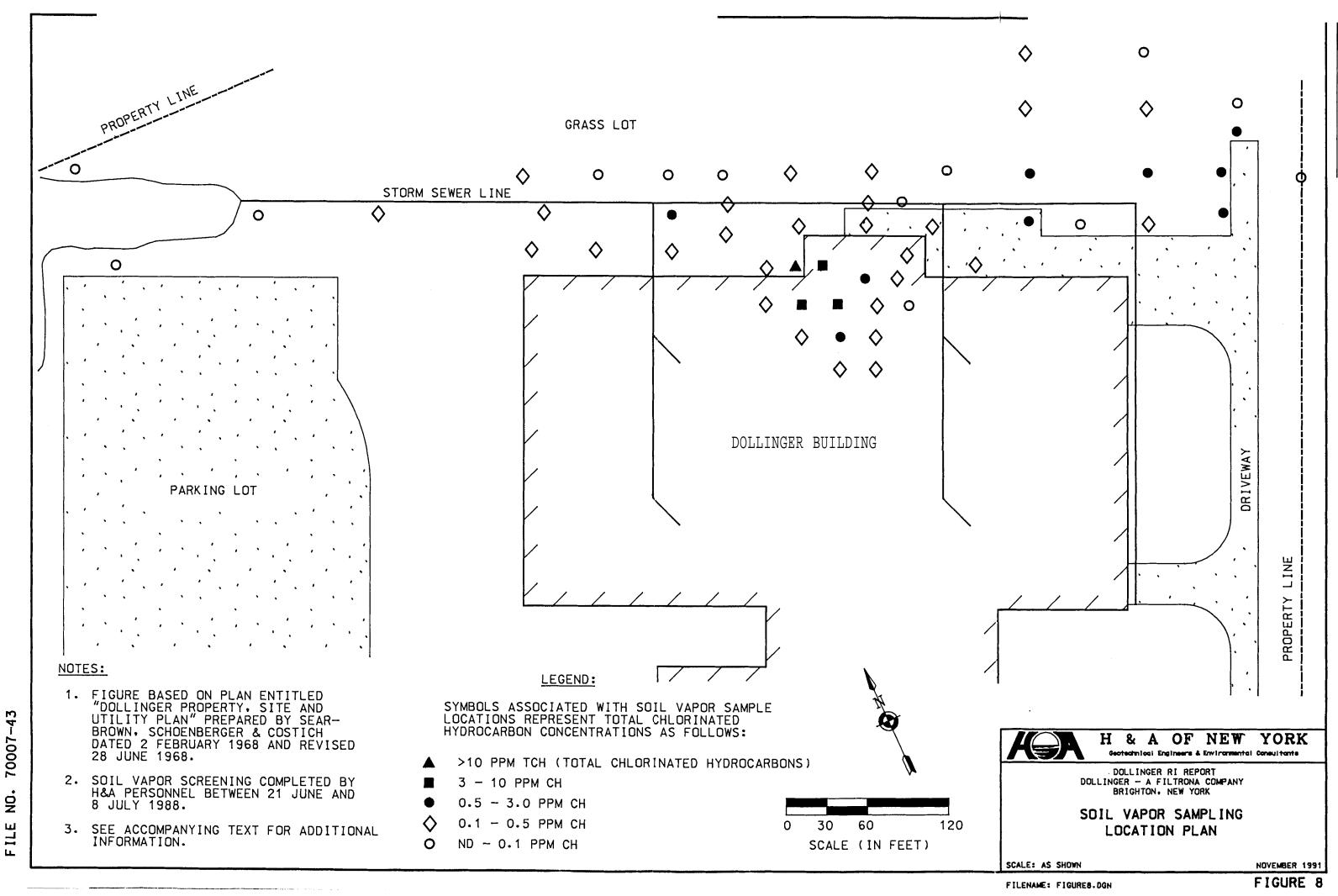
LEGEND:

SOIL SCREENING GRID AREA

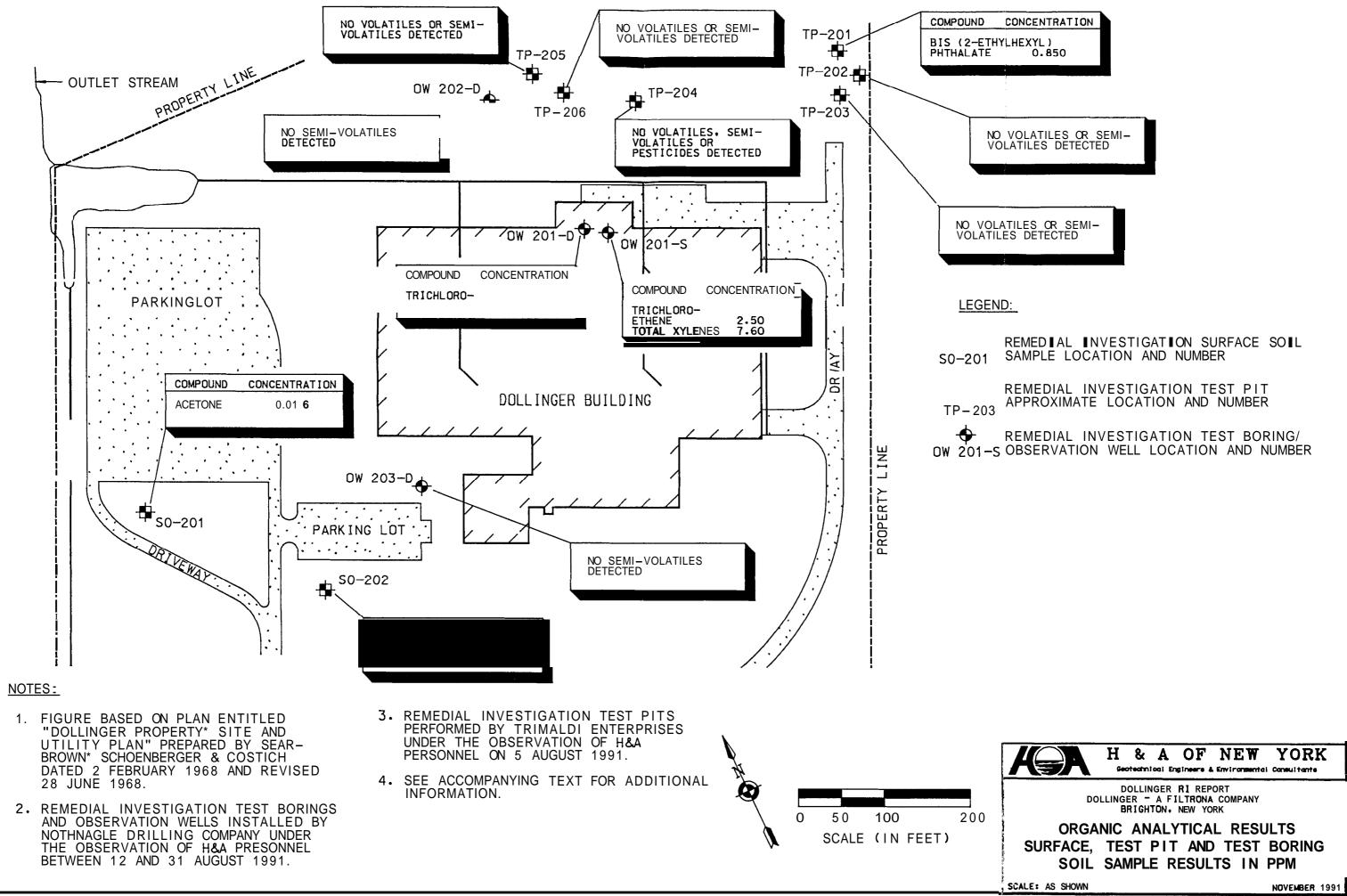

SOIL SCREENING LOCATION

NOTES:


1. FIGURE BASED ON PLAN ENTITLED "DOLLINGER PROPERTY. SITE AND UTILITY PLAN" PREPARED BY SEAR-BROWN. SCHOENBERGER & COSTICH DATED 2 FEBRUARY 1968 AND REVISED 28 JUNE 1968.

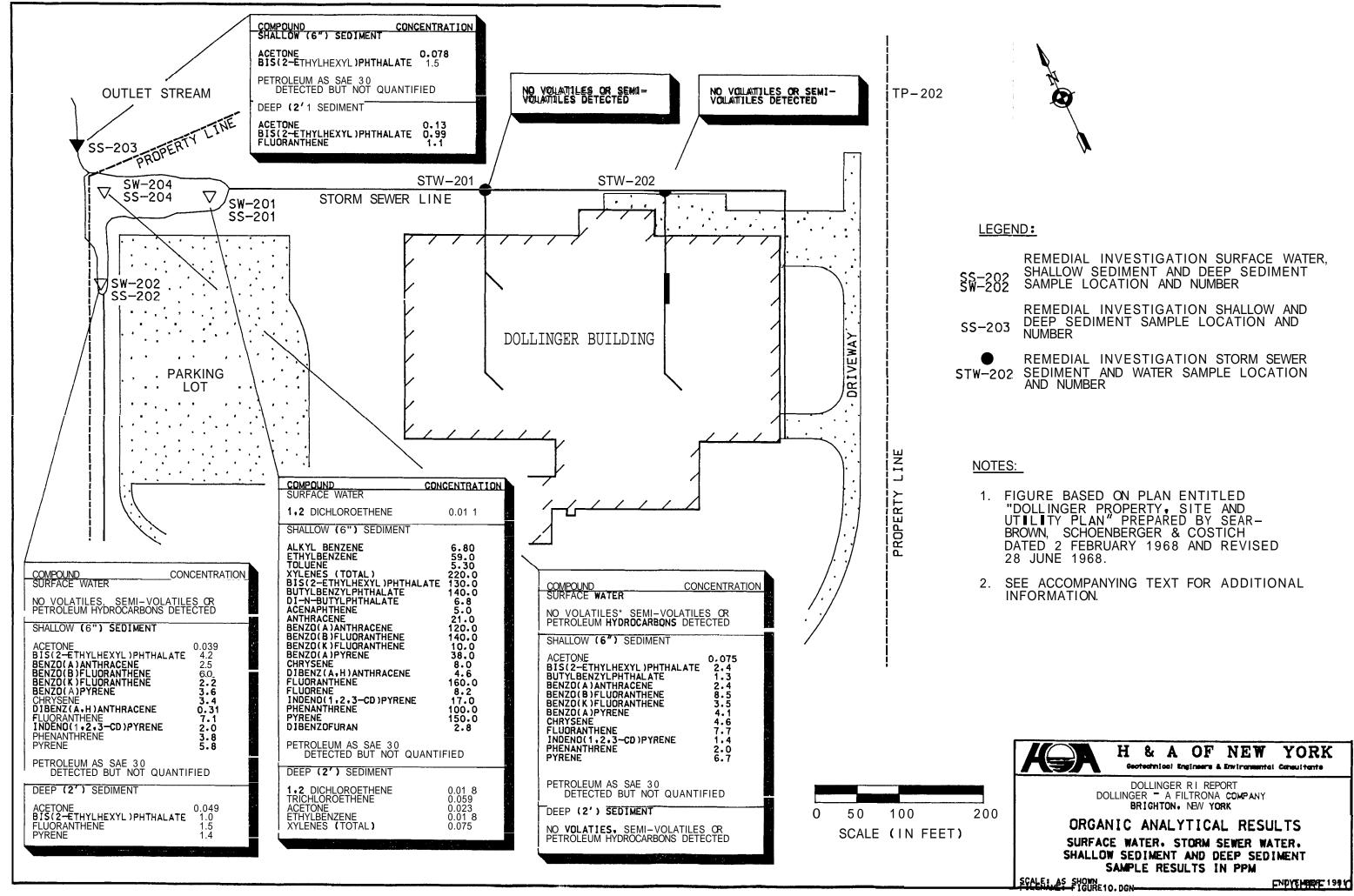

2. SOIL SCREENING WAS CONDUCTED USING AN OVA ON THE HEADSPACE OF UP TO 6 AN OVA ON THE HEADSPACE OF OF TO 8 SAMPLES FROM EACH SOIL SCREENING LOCATION: A SAMPLE FROM 0-2', 2-4', 4-6', 6-8', 8-10', AND 10-12' BELOW GROUND SURFACE. LABORATORY ANALYSIS WAS CONDUCTED ON SELECTED SAMPLES.

3. SEE ACCOMPANYING TEXT AND FIGURES FOR ADDITIONAL INFORMATION.



FILENAME: FIGURE5.DGN

70007 Q FILE



-43 70007 0 N ILE LL.

ND	CONCENTRATION
-ETHY ATE	(LHEXYL) 0.850
	1
	VOLATILES OR SEMI- LATILES DETECTED
	ATILES OR SEMI- ES DETECTED

FILENAME: FIGURE9.DGN

FIGURE 9

4 0001 ~ 2 ш _____1

m

Ξ

ш

	REMEDIAL INVESTIGATION SURFACE WATER,	
-202	SHALLOW SEDIMENT AND DEEP SEDIMENT SAMPLE LOCATION AND NUMBER	

	Consu	Iting Ge	otechnical	ER, NEW YORK Engineers, eologists	Т	EST PIT REPORT		PIT NO. TP-201	
PROJEC LOCAT CLIEN CONTR EQUIP	on : T: Actor:	BRIGH DOLLII TRIMA	NGER RI/F ITON, NEW NGER - A ALDI ENTER 5800 BACKI	YORK FILTRONA COMPANY RPRISES	<u></u>		ELE\ EXPL	ATION: See PL /ATION: .ORATION DATE: REP:: J. Tal	8/5/91
SCALE IN FEET	SAMPLE Number	Sample Depth Range			DESCRIPTION C	- MATERIALS		REMAR	KS
	F F-101	1.5-2.0		Brom gravelly SILT	, trace medium -FIL		crumbly.	Sample TP-101 for Laborator	
-2	Bag Sample	3.0	- 3.0	Black-brom loamy S trace carbonized wo	ILT, Little cla od fragments a -SWAMP DI	nd soft woody debris	bers, with	Lou density s	oil.
			4.5 5.0	Light gray fine san weathered gravel Dark brown CLAY, Li	dry. -GLACIAL MELTWA	TER DEPOSIT- t, medium plasticit	- <u>.</u>	Non-cohesive s	soil.
-6			6.2	Brom clayey SILT, with some rusty iro	-LACUSTF trace gravel a n staining.		crunbly,		
-8					-LACUST	INE-			
-10 —			9.5	Gray silty CLAY, mo	oist, plastic. -LACUSTR	NE-			
 -12 -				Boti	om of Explora	ion at 11.0 ft.		No organic va readings detec excavation.	
		ER LEVEL		APPR	OXIMATE PIT DIM	ENSIONS AT SURFACE			۲۲ 11.0
DAT		TIME*	DEPTH FT	LENGTH 14.0 fe	et	UIDTH 2.4	feet	DEPTH: JAR SAMPLES:	11.0 1
					BOLI	DERS		BAG SAMPLES:	1
_				8" to 18" DIAN		= Vol.	cu ft	UATER LEVEL:	None
÷		r comple				= Vol.	cu ft	TEST PIT NO.	TP-20

PROJEC		-	NGER RI/F	geologists S	FILE NO	
LOCAT CLIENT CONTRA	10N: F: ACTOR:	BRIGH DOLLIN TRIMA	TON, NEU	YORK FILTRONA COMPANY RPRISES	ELEVATI	ion: Ation date: 8/5/91
	Sample Number		S TRATA CHANGE	DESCRIPTION OF MATERIALS		REWARKS
				Brown fine sandy SILT, some cobbles, dry, hard, with rough vertical cracks (dessication) packed by root fibers, crumbly texture. -FILL-		
-2			2.5			
				Brown-gray mottled clayey SILT, damp, hard.	t	Hard digging from 2 o 5.5 ft. Sides o excavation smooth, lick, competent.
				-LACUSTRINE-		
-6,			5.5 <u>+</u>	Grades to broun SILT, some clay, damp, hard, with iron-stainir along rough planar soil partings, blocky texture, trace granu black mineralization along soil partings.	lar w	apparent soil fractu vith Localized rust ron staining.
				-LACUSTRINE-		
-8	rP-202	3.5-9.0				
-10 -	Bag Sample	10.5 11.5	-			ample TP-202 submi or laboratory anal
-12				Bottom of Exploration at 11.5 ft.	r€	o organic vapor eadings detected in xcavation.
	WATE	R LEVEL	<u> </u>	APPROXIMATE PIT DIMENSIONS AT SURFACE		SUMMARY
DATE			DEPTH FT	LENGTH 18.0 feet WIDTH 2.4 feet		EPTH: 11.5 AR SAMPLES: 1
_				BOULDERS	В	AG SAMPLES: 1
				8" to 18" DIAMETER: No. ≃ Vol. cuft	L.	ATER LEVEL: None

(internet)

	Consu	ting Geo	otechnica	TER, NEW YORK I Engineers, geologists	TE	ST PIT REPORT		TEST P	PIT NO. TP-203 NO. 70007-43
PROJEC LOCATI CLIENT CONTRA EQUIPM	ion: T: Actor:	BRIGH DOLLIN TRIMA	NGER RI/ TON, NEW NGER - A NLDI ENTEI 580D BACH	YORK FILTRONA COMPANY RPRISES			E	LOCATIO	TION: RATION DATE: 8/5/91
SCALE IN FEET	FRVPLE NUMBER	Sample Depth Range	STRATA CHANGE		DESCRIPTION OF	MATERIALS			REMARKS
				Brown to red-brown cracked, dry, with	SILT, trace fin root fibers alo	e sand, crumbly a ng cracks, worms.	d extensive		Vertical cracking of soil mass (dessication)
	TP-203	1.0-1.5	1.5		-FILL	-			Sample TP-203 submitte for laboratory analysis
-2 —			1.5	Grades to brown to feu polished cobble surfaces.	brown-gray SILT s, and rusty ir (some clay, damp, on staining on so	hard, with il parting		Hard digging from approximately 2.5 to 5.0 ft.
					-LACUSTR	INE-			
_4									
-6									
			6.5 <u>+</u>	Grades down to brown with rusty iron-sta soil partings, damp.	ining and black	day, trace coarse granular minerali	to fine sa zation alon	g i	Excavated soil breaks into rough blocky chunks, 10–20 cm wide.
-8					-LACUSTRI	NE-			
10 —									
-				Bott	om of Explorati	on at 10.5 ft.		r	No organic vapor readings detected in excavation.
12 —			1						
	WATE	R LEVEL		APPRO	DXIMATE PIT DIME	NSIONS AT SURFACE			SUMMARY
DATE	Е Т	IME*	DEPTH FT	LENGTH 14.0 fee	et	WIDTH 2.0	feet		DEPTH: 10.0 JAR SAMPLES: 1
·=					BOULD	ERS			BAG SAMPLES: None
				8" to 18" DIAM	ETER: No.	= Vol.	cu ft	v	WATER LEVEL: None
* н	rs after	complet	ed	Over 18 " DIAM	ETER: No.	= Vol.	cu ft	Т	TEST PIT NO. TP-203

-

. الک

PROJECT: LOCATION CLIENT: CONTRACT	= TOR:	DOLLIN BRIGH DOLLIN TRIMA	IGER RI/I TON, NEW	S YORK FILTROWA COMPANY RPRISES	FILE NO. 70007-43 LOCATION: See Plan ELEVATION: EXPLORATION DATE: 8/5/91 H&A REP.: J. Talpey
SCALE IN 5A	MPLE	AMPLE DEPTH	STRATA CHANGE	DESCRIPTION OF MATERIALS	REMARKS
			0.5 <u>+</u>	Brown silty LOAM, with occasional pebbles and gravel, root fibe -TOPSOIL FILL- Brown SILT, trace clay, hard, crumbly, dry, occasional cobbles and one angular boulder. -LACUSTRINE-	
			6.0 <u>+</u>	Grades to brown SILT, Little clay, trace coarse to fine sand, hard, crumbly, mist, with horizontal partings closely set 1 to 2 cm. apart, iron staining along partings. -LACUSTRINE-	. D
8 TF TF - 10	P-204	3.0		Potton of Evolution of 400 (t	Sample TP-204 submi for Laboratory anal
12 —				Bottom of Excavation at 10.0 ft.	No organic vapor readings detected i excavation.
DATE			DEPTH FT	APPROXIMATE PIT DIMENSIONS AT SURFACE LENGTH 13.0 feet WIDTH 2.6 feet BOULDERS	SWHARY DEPTH: 10.0 JAR SAMPLES: 1 BAG SAMPLES: None
					INONE SHIVIFLES. INONE

.

Consulting	YORK, ROCHES g Geotechnica sts and Hydro		TEST PIT REPORT	TEST FILE	PIT NO. TP-205 NO. 70007-43
LOCATION: E	TRIMALDI ENTE	YORK FILTRONA COMPANY RPRISES		ELEV/	TION: See Plan ATION: DRATION DATE: 8/5/91 REP.: J. Talpey
IN SAMPLE DI	MPLE EPTH STRATA ANGE CHANGE		DESCRIPTION OF MATERIALS		REWARKS
2		Dark brown fine sar abundant root fibers	dy, SILT, trace pebbles and gravel, uit s, worms, damp. -TOPSOIL-	h	
 -4 	3.0 5-4.0 4.0	rusty iron-staining uith buff colored fi surface, discontin f Brown-gray mottled o	ayey SILT, with wood fibers and twigs, along soil partings, moist. Interlaye ne SAND stringers 1 to 2 cm thick alon uous. -SWAWP DEPOSIT- clayey SILT, moist, slightly	g upper	Deposit is lens-shape not a continuous laye Sample TP-205 submitt for Laboratory analysi
-6		plastic.	-LACUSTRINE-		Easy digging from 2. to 6.0 ft.
 - 8 - 10	7.5 <u>+</u>	Grades to hard brown staining along rough mist.	n SILT, Little clay, crumbly, uith iron n planar soil partings, with very few co -LACUSTRINE-		
- 12		Bott	om of Exploration at 12.0 ft.		No organic vapor readings detected in excavation.
WATER LI	EVEL	APPRO	DXIMATE PIT DIMENSIONS AT SURFACE		SUMMARY
DATE TIME	* DEPTH FT	LENGTH 15.0 fee	et WIDTH 2.2 feet		DEPTH: 15.0 JAR SAMPLES: 1
			BOULDERS		BAG SAMPLES: None
					DHO OHMI LLO. NORE

	Consul	Iting Geo	otechnica	NTER, NEW YORK Il Engineers, ogeologists	TEST PIT REPORT	FILE	PIT NO. TP-206 NO. 70007-43			
PROJEC LOCATI CLIENT CONTRA EQUIPIV	ON: : CTOR:	BRIGHT DOLLIN TRIMA	NGER RI/I TON, NEW NGER • A ALDI ENTEI 580D BACK	YORK FJLTRONA COMPANY RPRISES		LOCATION: See PI ELEVATION: EXPLORATION DATE: 8, H&A REP.: J. Tal				
	SAMPLE NUMBER		S TRATA CHANGE		DESCRIPTION OF MATERIALS		REMARKS			
		0.0		Dark broun gravelly abundant roots.	SILT, with cobbles and pebbles, and	d	Sample TP-206 submitt for laboratory analys			
	rp-206	1.2	10		-TOPSOIL FILL-					
			1.2	Light broun, iron-st oxidized surface pre	tained layer from 1.2 to 2.0 ft. (F eviously exposed to surficial ueathe	Possible ering.)				
_2				Brown, red-broun to gravel, very feu cob	gray mottled SILT, trace clay, fine obles, moist.	e sand,				
					-LACUSTRINE-					
-4										
							Sides of excavation smooth, slick, competent.			
-6 —			6.0 <u>+</u>	Grades to hard broun	n SILT, trace clay, cr⊔mbly, damp, u	uith rusty				
				iron-stained partings mineralization on pa pebbles.	s, and some black granular to dend artings, very feu smooth polished co	lritic obbles and				
-8					-LACUSTRINE-		lard digging from approximately 6.0 to 9.0 ft.			
				Botte	om of Exploration at 9.0 ft.		No organic vapor readings detected in			
-10 -							excavation.			
,										
-12 —										
DATE		R LEVEL	DEPTH FT		XIMATE PIT DIMENSIONS AT SURFACE		SUMMARY DEPTH: 9.0			
-				LENGTH 14.0 feet	t WIDTH 2.2 f	eet	JAR SAMPLES: 1			
_					BWLDERS		BAG SAMPLES: None			
		1		8" to 18" DIAME	ETER: No. = Vol.	cu ft	WATER LEVEL: None			

-

1

Test Boring Reports

A=A

W

.

-

-

÷

	onsulting	YORK, ROCHE g Geotechnic sts and Hydr	al Engineer	s,		TEST BORING REPORT		BORING NO. B201-D
PROJECT: CLIENT: CONTRAC	DOI	LINGER RI/F LLINGER - A THNAGLE DRILI	FILTRONA CC	OMPANY				FILE NO. 70007-43 SHEET NO. 1 OF 2 LOCATION: See Plan
	TEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PRO	CEDURES	ELEVATION: 542.9
type Inside I Hammer Hammer		(IN) (LB) (IN)	Auger 4-1/4 	SS 1-3/8, 3 140 30		RIG TYPE: Diedrich D-25 BIT TYPE: DRILL MUD: OTHER: Advanced augers t while continuous split spor		DATUM: NGVD START: 16 August 1 FINISH: 16 August 1 DRILLER: N. Short H&A REP: M. Corrige
DEPTH (FT)	CASING BLOWS PER FT	SAMPLER BLOWS PER 6 IN	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA Change (FT)	VISUAL CLASS	SIFICATION AN	D REMARKS
			S1	0.0	0.5	Cored through concrete.		······································
]	1 1 2	8"/24"	2.0	2.0	Very soft red-brown claye little gravel, wet.	y SILT, litt -FILL-	le coarse to medium , sam
		10 39	s2	2.0		Hard red-brown clayey SILT,	trace coar	se to mediun sand.
	1	29 32	24"/24"	4.0		trace gravel, moist.	LACUSTRINE -	
5		12 20	S3	4.0		Same, except with brown si		
		28 30	24"/24"	6.0				
	1	20 30	S4	6.0		Same.		
		32 45	1 24"/24"	8.0				
		10 20	S5	8.0		Same, except wet.	LACUSTRINE-	
10	4	24 32	22"/24"	10.0				
		6 14	S6	10.0		Same, except very stiff, w	ith iron stai	ining.
		14 17	22"/24"	12.0				
		15 18	s7	12.0		Same, except with iron stai	ning.	
	4	20 22	15"/24"	14.0				
— 15 —	-	10 11	S8	14.0		Same. - L	LACUSTRINE-	
	-	13 14	18"/24"	16.0	15.5	Very stiff gray silty CLAY,		um sand, wet.
	4	12 11	S9	16.0			LACUSTRINE-	
	-	11 9	24"/24"	18.0		Same, except trace gravel.		
	-	VOR VOR	S10	18.0		Very soft gray CLAY, little wet.		e medium to coarse sar
20	4	UCH WDH	24"/24" \$11	20.0 20.0			LACUSTRINE-	
	-	2 3 3	24"/24"	20.0		Same, except medium stiff.		
	-	3 4 9	s12	22.0		Same, except very stiff.		
		11 11	24"/24"	24.0			ACUSTRINE -	
	1	12 3 5	s13	24.0		Same, exceptstiff and trac	ce gravel.	
		WATER LEVEL	J	<u> </u>		SAMPLE IDENTIFICATION	T	SUMARY
-				H (FT) TO:			OVERBURDEN	
DATE	TIME	ELAPSED TIME (HR)	BOTTOM OF CASING	BOTTOM OF HOLE	WATER	0 Open End Rod T Thin Wall Tube U Undisturbed Sample	ROCK CORED	
			G CASING	u nue		S Split Spoon	SAMPLES:	145
							BORING NO.	8201-D

e

H8 (LA OF NEW Consulting Geologi	YORK, ROCH g Geotechnic sts and Hyd	ESTER, NEW Notes the second se	YORK 's, ;;		TEST BORING REPORT	BORING NO. B201-D FILE NO. 70007-43 SHEET NO. 2 CF 2
DEPTH (FT)	CASING BLOWS PER FT	SAMPLER BLOWS PER 6 IN	SAMPLE NUMBER & RECOVERY	Sample Depth (FT)	STRATA Change (FT)	VISUAL CLASSIFICATION /	AND REMARKS
·····		8	20"/24"	26.0		Same, exceptstiff and trace gravel.	
		9	S14	26.0		Same, except very stiff.	
		9 11	18"/24"	28.0		-LACUSTRINE-	
		' 14	10-724	20.0		· · · · · · · · · · · · · · · · · · ·	
						Bottom of Boring at 2	28.0 ft.
30							
_						<u>Note</u> :	
						1. See Groundwater Monitoring Well In	stallation Report.
35							
- 7	i .						
- 40							
-]				:			
1							
- 45							
{							
<u>ر</u> آ							
- 50							
· -							
· -{	ļ						
. 55				ĺ			
• 1							
· -	1			ļ			
· -							
· -							
60							
1	I				/		

	Geologi	g Geotechnic sts and Hydro	ar Engineer xgeologists	s,		TEST BORING REPORT		BORING NO. B201-S
PROJECT: CLIENT: CONTRACTO	DOI	LLINGER RI/FS LLINGER – A F THNAGLE DRILL	ILTRONA CO	MPANY				FILE NO. 70007-4 SHEET NO. 1 OF LOCATION: See PL a
	ГЕМ		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PROC	CEDURES	ELEVATION: 542.9
TYPE INSIDE D HAMMER ¥ HAMMER F	IAMETER EIGHT	(IN) (LB) (IN)	Auger 4-1/4	SAMPLER SS 3 140 3 0	•••	RIG TYPE: Diedrich D-25 BIT TYPE: DRILL MUD: OTHER: Advanced augers t prior to split spo c	o 8.0 ft. On sampling	DATUM: NGVD START: 19 August FINISH: 19 August DRILLER: N. Shor H&A REP: M. Corr
DEPTH (FT)	CASING BLOWS PERFT	SAMPLER BLOWS PER 6 IN	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASS	IFICATION AN	D REMARKS
		10 16 19 25 8 13 14 23	\$1 24"/24" \$2 24"/24"	8.0 10.0 12.0 14.0		Same, except very stiff. -L	ACUSTRINE - ACUSTRINE - Boring at 1	5.0 ft.
<u> </u>		WATER LEVEL	DATA			SAMPLE IDENTIFICATION		SUMMARY
				H (FT) TO:			OVERBURDEN	
DATE	TIME	ELAPSED TIME (HR)	BOTTOM OF CASING	BOTTOM OF HOLE	WATER	O Open End Rod T Thin Wall Tube U Undisturbed Sample	ROCK CORED	(LIN FT):
		┲───────────────────			t	- S Split Spoon	SAMPLES:	25

	Iting Geote logists and		0	,		TEST BORING REPORT		BORING NO. B202-D	
PROJECT: CLIENT : CONTRACTOR:		- A F	ILTRONA CC	MPANY				FILE NO. 70007-43 SHEET NO. 1 OF 2 LOCATION: See Plan	
ITEM			CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PROC	CEDURES	ELEVATION: 542.6	
TYPE INSIDE DIAME HAMMER MIGH HAMMER FALL			Auger 6-1/4	SS 1 -3/8 140 30	···· ···	RIG TYPE: Diedrich D-25 BIT TYPE: DRILL MUD: OTHER: Advanced augers t uhile continuous split spoo		DATUM: NGVD START: 22 August FINISH: 23 August DRILLER: N. Short H&A REP: M. Corrig	
BLC	ING SAMF WS BLO FT PER 6	ws	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASS	IFICATION AN	D REMARKS	
	3		S1	0.0	0.2	Loose brown Loamy SILT, ui	ith roots, d	ryTOPSOIL-	
		10 10	8"/24"	2.0		Medium dense Light broun fi	ne sandy SII -FILL-	LT, dry.	
	7 7		\$2 \$2	2.0	3.0	Same.			
	5	11 16	12"/24" \$3	4.0 4.0		Very stiff dark brown SILT, sand, uith wood fibers, dam SameSWA			
5	7	8	12"/24"	6.0	5.0	Very stiff red-brown mott le		LT, trace medium sad	
	8	10	S4	6.0		dampL Same, except trace gravel,	.ACUSTRINE- moist.		
	11	17	20"/24"	8.0					
	3	28	S5	8.0		Very stiff red-brown clayey	/ SILT, trac	e to medium sand, tra	
	8	14	20"/24"	10.0		gravel, moist.			
— 10 —		23	\$6	10.0		Shelby tube sample taken.			
			13"/24"	12.0					
	3		S7	12.0		Very stiff red-brown clayey	/SILT, trac	e medium sand, moist.	
	°	11	יי24יי	14.0					
	7	13	S 8	14.0		Same.	ACUSTRING		
		10 12	18"/24"	16.0	15.5	<u>-</u>	ACUSTRINE-		
		12	S 9	16.0		Very stiff gray silty CLAY, -L	ACUSTRINE -	um sand, moist to wet	
			21"/24"	18.0		Shelby tube sample taken.			
	2		S10	18.0		Same, exceptstiff.			
20		4 5	18"/24"	20.0					
	4	-	S11	20.0		Stiff gray silty CLAY, trac gravel, wet.	e medium to	coarse sand, trace	
		7 6	18"/24"	22.0			ACUSTRINE-		
	2	-	s12	22.0		Same.			
	_	5 8	24"/24"	24.0					
	2 3		S13	24.0		Same.			
	UATER LI	EVEL D	ATA			SAMPLE IDENTIFICATION		SUMMARY	
DATE TIM	E ELAPS		DEPT	H (FT) TO:		0 Open End Rod	OVERBURDEN	(LIN FT): 30.0 ft.	
		(HR)	BOTTOM OF CASING	BOTTOM OF HOLE	WATER	T Thin Wall Tube U Undisturbed Sample	ROOK CORED	(LIN FT):	
						S Split Spoon	SAMPLES: 15S		
		1					BORING NO.		

но (Consulting Geologi	YORK, ROCHE g Geotechnic sts and Hydr	al Engineer ogeologists	rs,		TEST BORING REPORT	FILE NO. 70007-4 SHEET NO. 2 OF
DEPTH (FT)	CASING BLOWS PER FT	SAMPLER BLOWS PER 6 IN	Sample Number & Recovery	:SAMPLE DEPTH (FT)	STRATA CHANGE (FT)		ON AND REMARKS
	1	6	24"/24"	26.0		Same.	
		7	S14	26.0		Same.	
		4 7	24"/24"	28.0			
		8 5	s15	28.0		Same.	
	-	8 12	21 "/24"	30.0		-LACUSTRIN	IE-
	-	16				Bottom of Boring a	t 30.0 ft.
	-						
						N <u>ote</u> :	
						1. See Groundwater Monitoring Well	Installation Report.
	1						
<u> </u>	4						
L -							
L -	-						
_							
40	1	-					
	1						
	1						
	1						
- 45	4						
	-						
	4						
	-						
	-						
- 50	-						
	4						
	-						
	4						
L -	4						
55							
- -							
	1						
	1						
	1						
- 60	1						

Co	nsulting	YORK, ROCHES g Geotechnic sts and Hydr	al Engineers	`S,		TEST BORING REPORT	BORING	NO. 8202-S
PROJECT: CLIENT: CONTRACTO	DOL	LLINGER RI/F S LLINGER • A F THNAGLE DRILL	FILTRONA CO)MPANY			FILE NO SHEET N LOCATIO	0. 1 OF
 	TEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PROC	ELEVATIO	
TYPE INSIDE D HAMMER M HAMMER F	IGHT	(N) (LB) (IN)	Auger 6-1/4	 	 	RIG TYPE: Diedrich D-50 BIT TYPE: \$RILL MUD: OTHER: Advanced augers t without split spot	DATUM: START: FINISH: DRILLER on sanpling H&A REP	: F. Grat
DEPTH (FT)	CASING BLOWS PER FT	SAMPLER BLOWS PER 6 IN	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASS	IFICATION AND REMARK	S
						Bottom of <u>Notes</u> : 1. See Test Boring Report 2. See Groundwater Monitor		
 25							SUMMA	
		WATER LEVEL	1	ГН (FT) ТО:		SAMPLE IDENTIFICATION	SUMMA OVERBURDEN (LIN FT	
DATE	TIME	ELAPSED TIME (HR)	BOTTOM	BOTTOM	WATER	O Open End Rod T Thin Wall Tube	ROCK CORED (LIN FT	
			OF CASING	OF HOLE		U Undisturbed Sanple S Split Spoon	SAMPLES:	,

H&A OF NEW YORK, ROCHESTER, NEW YORK Consulting Geotechnical Engineers, Geologists and Hydrogeologists PROJECT: DOLLINGER RI/FS CLIENT: DOLLINGER - A FILTRONA COMPANY CONTRACTOR: NOTHNAGLE DRILLING						TEST BORING REPORT	BORING NO. B203-D		
							FILE NO. 70007-43 SHEET NO. 1 OF 2 LOCATION: See Plan		
· · · · · ·	ITEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT 8 PROCED	URES ELEVATION: 542.4		
Type Inside Hammer Hammer		(IN) (LB) (IN)	Auger 6-1/4 	SS 1-3/8 140 30		RIG TYPE: Diedrich D-50 BIT TYPE: DRILL MUD: OTHER: Advanced augers to while continuous split spoon			
DEPTH (FT)	CASING BLOWS PER FT	SAMPLER BLOWS PER 6 IN	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASSIFI	CATION AND REMARKS		
	_	10 38	\$1 12"/24"	0.0	0.4	Loose brown loamy SILT, litt gravel, uith roots, dryTO	le coarse to medium sand, trace PSOIL-		
		68 42 16 19 20		2.0 2.0 4.0		Dense gray-brown silty GRAVEL, some coarse to fine sand, dry. -FILL- Same, except dense. *Split spoon sampled through apparent cobbleFILL-			
5		9 8 15	\$3 12"/24"	4.0 6.0	4.0	medium sand, dry.	ry stiff red-brown mottled clayey SILT, trace coarse to dium sand, dry. -LACUSTRINE-		
 		16 17 24 33		6.0		Same, except hard.			
	-	7 13	s5	8.0		Same, except hard, dry to dam -LAC	p, trace iron staining. USTRINE-		
- 10 -		17 20 5 10	20"/24" \$6	10.0 10.0		Same, except trace staining,	damp.		
	-	12 14 9	24"/24" \$7	12.0 12.0		Same, except moist.			
		12 16 25 4	24"/24" S8	14.0	13.5	Hard gray silty CLAY, trace in	-LACUSTRINE- iff and gray-brown silt seam at 14.9 f ist to wet.		
— 15 — 	4	7 8 8	24"/24"	16.0		Same, except medium stiff and with iron staining, moist to			
		7 11 15 15	\$9 24"/24"	16.0 18.0		Very stiff gray silty CLAY, moist to wet. -LACUSTRINE- Medium stiff gray silty CLAY, trace coarse to medium sand, w			
	-	3 4 4	\$10 24"/24"	18.0 20.0					
20 		6 1 3 4	\$11 24"/24"	20.0 22.0		Same.			
		5 4 7 9	24"/24"	24.0		Same, except very stiff. -LAC	USTRINE-		
	-	12 1 1	s13	24.0		Same, except with trace brown	silt seams.		
		WATER LEVEL	DATA			SAMPLE IDENTIFICATION	SUMMARY		
DATE	TIME	ELAPSED TIME (HR)	DEPT BOTTOM OF CASING	1 1	WATER	0 Open End Rod	MERBURDEN (LIN FT): 30.0 ft. OCK CORED (LIN FT):		
				·		S Split Spoon S	AMPLES: 15S		

-

H&A OF NEW YORK, ROCHESTER, NEW YORK Consulting Geotechnical Engineers, Geologists and Hydrogeologists						BORING NO. B203-D TEST BORING REPORT SHEET NO. 2 OF 2			
DEPTH (FT)	CASING BLOWS PER FT	SAMPLER BLOUS PER 6 IN	Sample Mumber & Recovery	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASSIFICATION AND REMARKS			
		4	24"/24"	26.0		Same, except with trace brown silt seams.			
		7 4	s14	26.0		Same, except very stiff.			
	4	10 11	24"/24"	28.0					
		16 4	s15	28.0		Same, except stiff.			
		5 6	10"/24"	30.(-LACUSTRINE-			
— 30 —	1	8		, 		Bottom of Boring at 3	0.0 ft.		
	4								
						Note:			
						1. See Groundwater Monitoring Well In	stallation Report.		
						,			
— 35 -—									
			:						
_40									
- 45									
	ļ								
- 50									
-)(
]								
	1								
• •									
- 55 —									
- 60									
					1				

~

H&A OF NEW YORK, ROCHESTER, NEW YORK Consulting Geotechnical Engineers, Geologists and Hydrogeologists						TEST BORING REPORT			BORING NO. B203-S	
PROJECT: DOLLINGER RI/FS CLIENT: DOLLINGER - A FILTRONA COMPANY CONTRACTOR: NOTHNAGLE DRILLING									70007-43 1 OF 1 See Plan	
					CORE BARREL	DRILLING EQUIPMENT & PRO	CEDURES	ELEVATION: 542.5		
TYPE INSIDE DIAMETER (IN) HAMMER MIGHT (LB) HAMMER FALL (IN)			Auger 6-1/4	 	•••	RIG TYPE: Diedrich D-50 BIT TYPE: \$RILL MUD: OTHER: Advanced augers without sampling.		DATUM: START: FINISH: DRILLER: H&A REP:	NGVD 20 August 20 August N. Shor M. Corri	
DEPTH (FT)	CASING BLOWS PER FT	SAMPLER Blows PER 6 IN	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA Change (FT)	VISUAL CLASS	IFICATION AN	ID REMARKS		
						Bottom of <u>Notes</u> :	Boring at 1	6.0 ft.		
20 						 See soil classification See Groundwater Monito 			Report	
		WATER LEVEL	DATA	<u> </u>	<u></u>	SAMPLE IDENTIFICATION		SUMMARY		
			DEPTH (FT) TO:				OVERBURDEN	(LIN FT):	16.0 ft.	
DATE	TIME	ELAPSED TIME (HR)	BOTTOM	BOTTOM	WATER	O Open End Rod T Thin Wall Tube	ROCK CORED) (LIN FT):		
			OF CASING	OF HOLE		U Undisturbed Sample S Split Spoon	SAMPLES:			

Consulting Geotechnical Engineers, Geologists and Hydrogeologists						TEST BORING REPORT	BORING NO. B204-D		
PROJECT: CLIENT: CONTRACT	DOL	LINGER RI/FS LINGER - A F HNAGLE DRILL		FILE NO. 70007-4 SHEET NO. 1 OF LOCATION: See Pla					
ITEM TYPE INSIDE DIAMETER (IN) HAVMER WEIGHT (LB) HAVMER FALL (IN)			CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PRO	CEDURES ELEVATION: 539.5		
			Auger 6-1/4	SAUFLER SS 1-3/8 140 30		RIG TYPE: Diedrich D-50 BIT TYPE: DRILL MUD: OTHER: Advanced augers i while continuous split spor	DATUM: NGVD START: 21 Augus FINISH: 21 Augus to 30.0 ft. DRILLER: N Sho		
DEPTH CASING SAMPLER BLOWS BLOWS (FT) PER FT PER 6 IN			Sample Jumber & Recovery	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASSIFICATION AND REMARKS			
		6 10	S1	0.0	0.2		T, with root fibers, damp. -TOPSOIL-		
	ł	12 14	18"/24"	2.0	-	L Very stiff red-brown clayey SILT, trace iron staining, damp.			
		13 17 24	\$2 24"/24"	2.0		Same, except hard.			
	4	29 7	s3	4.0		Same, except trace coarse to medium sand, trace gravel, mois			
5		11 13 18	19"/24"	6.0					
		20 20	S4	6.0		Hard red-brown clayey SILT, gravel, moist.	trace coarse to medium sand, t		
		29 37	20"/24"	8.0			ACUSTRINE-		
		6 10 11 3	s5	8.0	8.5	Very stiff gray silty CLAY, trace coarse to medium sand, mi Possible vertical brown-gray clayey SILT seam from 8.5 ft. t 9.5 ft.			
10			20"/24" \$6	10.0					
		5	18"/24"	12.0			e coarse to medium sand, moist ACUSTRINE-		
		9 9	\$7	12.0	-	Same, exept hard trace gravel, broun silt seam at 13.9 ft.			
		14 17	19"/24"	14.0					
		21 8 4	\$8	14.0		Stiff gray silty CLAY, trac gravel, wet.	e coarse to medium sand, trace		
		7 10	20"/24"	16.0					
		11 12	S9	16.0		Same, exept very stiff.			
		14 17 3	18"/24" s10	18.0 18.0		-1	ACUSTRINE -		
		3 4 5	21"/24"	20.0		Same.			
20		7 3	s11	20.0		Same.			
		5 6	21"/24"	22.0			ACUSTRINE-		
		8 9	s12	22.0		Same, exept very stiff.			
		12 14	22"/24"	24.0					
		17 2 4	S13	24.0		Same.			
= <u>===</u>	'	WATER LEVEL	DATA		<u>.</u>	SAMPLE IDENTIFICATION	SUMMARY		
DATE	TIME	TIME (HR)	DEPT	EPTH (FT) TO:			OVERBURDEN (LIN FT): 30.0 ft		
DATE				BOTTOM OF HOLE	WATER	U Undisturbed Sample	ROCK CORED (LIN FT):		
	† 1				L	S Split Spoon	SAMPLES: 15S		

H&A OF NEW YORK, ROCHESTER, NEW YORK Consulting Geotechnical Engineers, Geologists and Hydrogeologists					TEST BORING REPORT FILE NO. 8204-D FILE NO. 70007-4 SHEET NO. 2 OF			
DEPTH (FT)	BLOWS BLOWS NUMBER & DEPTH				:STRATA Change (FT)	VISUAL CLASSIFICATION AND REWARKS		
		5	22"/24"	26.0		Same.	<u> </u>	
		8 11	S14	26.0		Same, except very stiff.		
		12 14	21"/24"	28.0				
		19 1	S15	28.0		Same, except medium stiff.		
		1 3	21"/24"	30.0		-LACUSTRINE-		
30		5				Bottom of Boring at 3	30.0 ft.	
						Note:		
						1. See Groundwater Monitoring Well R	eport.	
35								
40								
- 45								
- 50								
- 55								
- 60								

Co	onsulting	YORK, ROCHE g Geotechnio sts and Hyd	cal Engineer	S,		TEST BORING REPORT	BORING NO.	B204-S	
PROJECT: CLIENT: CONTRACT	DO	LLINGER RI/F LLINGER - A THNAGLE DRIL	FILTRONA CO	DMPANY				FILE NO. SHEET NO. LOCATION:	70007-43 1 OF 1 See Piar
			CASING	DR IVE SAMPLER	CORE BARREL	DRILLING ECUIPMENT & PROC	CEDURES	ELEVATION:	540.6
TYPE INSIDE D HAMMER W HAMMER F	/EIGHT	(IN) (LB) (IN)	Auger 6-1/4			RIG TYPE: Diedrich D-25 BIT TYPE: ≬RILL MUD: OTHER: Advanced augers t uithout split spoo		DATUM: START: 2	NGVD 2 August 22 August N. Short M. Corri
DEPTH (FT)	CASING BLOWS PER FT	SAMPLER BLOWS PER 6 I N	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASS	IFICATION AN	ID REMARKS	
						<u>Notes</u> :	Boring at 1		
20						 See soil classification See Groundwater Monitor 			eport.
 								SI IMMADV	
		UATER LEVEL		н (ЕГ) то-		SAMPLE IDENTIFICATION	OVERBURDEN	SUMMARY	16.0 ft
25	TIME	UATER LEVEL ELAPSED TIME (HR)		H (FT) TO: BOTTOM OF HOLE	WATER	SAMPLE IDENTIFICATION O Open End Rod T Thin Walt Tube U Undisturbed Sample S Split Spoon	OVERBURDEN ROCK CORED SAMPLES:	(LIN FT):	16.0 ft.

Ì

.

何

	onsulting	YORK, ROCHE g Geotechnic sts and Hydr	al Engineer	s,		TEST BORING REPORT		BORING NO. B205
PROJECT: CLIENT: CONTRACT	DOI	LLINGER RI/F LLINGER – A THNAGLE DRILI	FILTRONA CO	DMPANY				FILE NO. 70007-43 SHEET NO. 1 OF 3 LOCATION: See Plan
	ITEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PRO	CEDURES	ELEVATION: 542.7
TYPE INSIDE I HAMMER N HAMER I		(IN) (LB) (IN)	Auger 6 - 1 / 4	SS 1-3/8 140 30	 	RIG TYPE: Diedrich D-50 BIT TYPE: DRILL MUD: OTHER:		DATUM: NGVD START: 2.3 August 11 FINISH: 23 August 11 DRILLER: S. Lorant H&A REP: M. Corrig
DEPTH (FT)	CASING BLOWS PER FT	BLOWS	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASS	IFICATION AN	D REMARKS
 		⁵ ¹¹ 16 22 6 11 17 21	\$1 20"/24" \$2 11"/24"	2.0 4.0 5.0 7.0		Very stiff red-brown mottle medium sand, damp. -I Same.	ed clayey Sil LACUSTRINE -	-T, trace coarse to
 		3 10 12 17	s3 23"/24"	9.0		Same. -L	ACUSTRINE-	
15 15 20 20 								
25								
		WATER LEVEL				SAMPLE IDENTIFICATION		SUMARY
DATE	TIME	ELAPSED TIME (HR)	DEPT BOTTOM OF CASING	H (FT) TO: BOTTOM OF HOLE	WATER	O Open End Rod T Thin Wall Tube U Undisturbed Sample	OVERBURDEN	(LIN FT):
						S Split Spoon	SAMPLES: BORING NO.	3s
						1-		6205

F

Hå (Consulting	YORK, ROCHE Geotechnic sts and Hydr	al Enginee	rs,		TEST BORING REPORT	BORING NO. B205 FILE NO. 70007 SHEET NO. 2 OF		
DEPTH (FT)	CASING BLOWS PER FT	SAMPLER BLWS PER 6 IN	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT	VISUAL CLASSIFICATION	AND REMARKS		
		1	S4 6"/24"	43.0		Very Loose gray silty SAND.			
- 45		1 1 1 2	s5 6"/24"	45.0		Soft gray fine sandy SILT, Little coar Lay, wet.	rse to medium :	sand, trac	
		3 3 4 6	\$6 4"/24"	47.0 49.0		Loose gray coarse to medium SAND, Litt silt, trace gravel, wet.	tle fine sand,	trace	
50		7 8	s7	49.0		Medium dense gray coarse to medium SAN	ND, Little gra	vel, wet.	
JU —		9 8	6"/24"	51.0		-LACUSTRINE-			
		10	\$8	51.0		Same.			
		7 12	15"/24"	53.0					
		9 14	s9	53.0		Same, except some gravel.			
		7 7	12"/24"	55.0		-LACUSTRINE-			
- 55		10 8	s10	55.0		Nedium dense gray gravelly coarse to r	nedium SAND. w	et.	
		6 8	12"/24"	57.0			· · · · · · · · · · · · · · · · · · ·		
		20 ⁹	s11	57.0		Same, except dense.			
		16							
		25 24	14"/24"	59.0					
- 60		5 12	s12	59.0	60.0	<u></u>			
<u> </u>		21 7	16"/24"	61.0		Very dense gray fine sandy SILT, Littl	le gravel, wet		
	1	1		1 1		1			

	Consulting	YORK, ROCH g Geotechni sts and Hyd	cal Engineer	s,		TEST BORING REPORT BORING NO. 8205 FILE NO. 7000 SHEET NO. 3 O			
DEPTH (FT)	CASING BLOWS PER FT	SAMPLER BLWS PER 6 IN	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA Change (Ft	VISUAL CLASSIFICATION	AND REMARKS		
		$25 \\ 99 \\ 84 \\ 68 \\ 35 \\ 44 \\ 75 \\ 88 \\ 135 \\ 135 \\ .2 \\ 48 \\ 89 \\ 100 \\ .1 \\ 44 \\ 100 \\ .3 \\ 100 \\ .3 \\ 24 \\ 45 \\ 100 \\ .5 \\ 92 \\ 100 \\ .5 \\ .5 \\ .5 \\ .5 \\ .5 \\ .5 \\ .5 \\ .5$	S13 16"/24" S14 16"/24" S15 2"/8" S16 13"/13" S17 9"/9" S18 3"/4" S19 10"/16" S20 18"/18"	61.0 63.0 63.0 65.0 65.0 65.8 67.0 69.0 69.8 71.0 71.3 73.0 73.0 74.3 75.0 76.5	65.0	Same. Very dense gray fine sandy SILT, trace Very dense coarse sandy GRAVEL, wet. Very dense gray SILT, trace coarse san Very dense gray SILT, trace coarse san fragments. -LACUSTRINE- Same. Same.			
 80 80		100/.4 100/.2	\$21 5"/5" \$22 2"/2"	77.0 77.4 79.0 79.2	79.0	Same. Green-gray weathered bedrock.			
 85 						-BEDROCK- Bottom of Boring at & <u>Note:</u> 1. See Grounduater Monitoring Well In 2. Length of 10 in. I.D. steel casing 3. Reedrill SK-35 Air Rotary Drill Ri in. diameter drill bit to 20.0 ft. 4. 10 in. casing required pounding to approximately 15 to 20 it. depth. 5. Grouted borehole annulus from surf 25 to 30 gallons of Portland Cemer 6. Reedrill SK-35 Air Rotary Drill Ri in. diameter drill bit to 40.0 ft.	stallation Report. 20.9 ft. g used to advance 12 seat in borehole fro ace with approximate t Grout. g used to advance 9–		

۳Ľ

肥

1

	onsulting	YORK, ROCHE g Geotechnic sts and Hydi	al Enginee	rs,		TEST BORING REPORT		BORING NO. GS-A1			
PROJECT CLIENT: CONTRAC	DO	LLINGER RI/F LLINGER - A THNAGLE DRIL	FILTRONA O	OMPANY				FILE NO. 70007-43 SHEET NO. 1 OF 1 LOCATION: See Plan			
	ТЕМ		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PROC	CEDURES	ELEVATION:			
TYPE	Diameter Neight	(IN) (LB) (IN)		SS 1 -3/8 140 30		RIG TYPE: Diedrich D-25 BIT TYPE: DRILL MUD: OTHER: Split spoon sam 4.0 ft. without advan	pled to cing augers	DATUM: NGAD START: 14 August 19 FINISH: 14 August 19 DRILLER: N Short H&A REP: M Corriga			
DEPTH (FT)	CASING BLOWS PER FT	SAMPLER BLOWS PER 6 IN	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA Change (FT)	VISUAL CLASS	IFICATION AN	D REMARKS			
		9 17	S1 17"/24"	0.0	0.2	Loose brown Loamy SILT, tr	ace coarse -TOPSOIL-	sand, dry.			
		19 19 11		2.0		Hard red-brown clayey SILT, gravel, damp.	trace medi	um to coarse sand, trac			
		16 21 24	18"/24"	4.0			ACUSTRINE-				
5						Bottom of	Boring at 4	.0 ft.			
_ _						<u>Not</u> e:					
						 Borehole backfilLed to and bentonite pelLets. 	ground surfa	ace with native materia			
<u>10</u>											
		- 									
 — 15 —											
<u> 20 </u>											
25											
	l	JATER LEVEL				SAMPLE IDENTIFICATION		SUMMARY			
DATE	TIME	ELAPSED		H (FT) TO:		0 Open End Rod					
		TIME (HR)	BOTTOM OF CASING	BOTTOM OF HOLE	WATER	T Thin Wall Tube U Undisturbed Sample S Split Spoon	ROCK CORED	(LIN FT): 2S			
					-	1 · · · · · · · · · · · · · · · · · · ·					

	onsulting	g Geotechni	HESTER, NEW cal Engineer drogeologist	rs,		TEST BORING REPORT		BORING NO. GS-A2
PROJECT CLIENT: CONTRAC	DO	LLINGER RI/ LLINGER - A THNAGLE DRI	FILTRONA C	OMPANY				FILE NO. 70007-43 SHEET NO. 1 OF 1 LOCATION: See Plan
	ITEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PRO	CEDURES	ELEVATION:
type Inside Hammer Hammer		(IN) (LB) (IN)	Auger 2-1/4	\$\$ 1 -3/8 140 30		RIG TYPE: Diedrich D-25 BIT TYPE: DRILL MUD: OTHER: Advanced augers asphalt to .5 f		DATUM: NGMD START: 14 August 1991 FINISH: 14 August 1991 DRILLER: N Short H&A REP: M Corrigan
DEPTH (FT)	CASING BLOWS PER FT	SAMPLER BLOWS PER 6 IN	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASS	SIFICATION AN	D REMARKS
	1	Augered	S1	0.5	0.5	Asphalt Pavement.		
]	10 12 5	12"/18"	2.(1.6	Medium dense gray-brown s	andy GRAVEL, -FILL-	some silt, damp.
	4	4 10	S2	2.0		Medium stiff red brown mot	ttled clayey	SILT, trace coarse to
	4	12 15	5 22"/24"	4.0		medium sand, trace gravel, Same, except very stiff.	moist.	
<u> </u>							-LACUSTRINE-	
							Boring at 4	.0 ft.
	1					<u>Note</u> :	around ourf	
]					 Borehole backfilled to and asphalt patch mate 		ace with native materials
· _	-							
• –								
- 15								
-								
20								
			i 1					
				I				
- 25							1	
		ATER LEVEL		H (FT) TO:		SAMPLE IDENTIFICATION		SUMMARY
DATE	TIME	ELAPSED TIME (HR)	BOTTOM	BOTTOM	WATER	0 Open End Rod T Thin Wall Tube	OVERBURDEN	
			OF CASING	OF HOLE		U Undisturbed Sample S Split Spoon	SAMPLES:	28
		:					BORING NO.	GS-A2

	onsultin	YORK, ROCHE g Geotechnic sts and Hydi	al Enginee	rs,		TEST BORING REPORT	BORING NO. GS-A3	
PROJECT CLIENT: CONTRAC	DO	LLINGER RI/F LLINGER - A THNAGLE DRIL	FILTRONA C	OMPANY		-		FILE NO. 70007-43 SHEET NO. 1 OF 1 LOCATION: See Plan
	ITEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT 8 PRO	CEDURES	ELEVATION:
TYPE INSIDE HAMMER HAMMER		(IN) (LB) (IN)	 	SS 1-3/8 140 30	 	RIG TYPE: Diedrich D-25 BIT TYPE: DRILL MUD: OTHER: Split spoon sam 4.0 ft. without advan	npled to cing augers	DATUM: NGVD START: 14 August 19 FINISH: 14 August 19 DRILLER: N. Short H&A REP: M. Corrigan
DEPTH (FT)	CASING BLOWS PER FT	SAMPLER BLOWS PER 6 IN	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASS	IFICATION AN	D REMARKS
		Augered	S1	0.5	0.5	Asphalt Pavement.		
]	15 9 10	6"/18"	2.0	2.0	Loose gray-brown silty GRA	VEL, some san -FILL-	nd, dry .
	-	10 12	s2	2.0		Very stiff red-brown claye		e coarse to fine sand,
	-	1 2 17	24"/24"	4.0		trace gravel, damp.	LACUSTRINE-	
5						Bottom of	Boring at 4.	0 ft
	1					Notee		
						1. Borehole backfilled to		ace with native materia
						and asphalt patch mate	riais.	
10								
20								
<u></u>		WATER LEVEL	DATA	<u> </u>		SAMPLE IDENTIFICATION		SUMMARY
DATE	TIME	ELAPSED		H (FT) TO:		OVERBURDEN (LIN FT):		(LIN FT): 4.0 ft.
		TIME (HR)	BOTTOM OF CASING	BOTTOM OF HOLE	WATER	T Thin Wall Tube U Undisturbed Sample S Split Spoon	ROCK CORED	(LIN FT): 2S
						5 5 5 FTT 5 9 0011	BORING NO.	GS-A3
							BORING NO.	65-A3

	H&A OF NEW YORK, ROCHESTER, NEW YORK Consulting Geotechnical Engineers, Geologists and Hydrogeologists					TEST BORING REPORT		BORING NO. GS-A4
PROJECT: CLIENT: CONTRAC	DOL	LINGER RI/F LINGER - A HNAGLE DRILI	FILTRONA α	OMPANY				FILE NO. 70007-43 SHEET NO. 1 OF 1 LOCATION: See Plan
]	TEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT 8 PRO	CEDURES	ELEVATION:
type Inside (Hammer (Havmer ((IN) (LB) (IN)	Auger 2-1/4	SS 1-3/8 140 30	 	RIG TYPE: Diedrich D-25 BIT TYPE: DRILL RID: OTHER: Advanced augers to 8 Split spoon sampled to		DATUM: NGAD START: 14 August 1991 FINISH: 15 August 1991 DRILLER: N Short H&A REP: M Corrigan
DEPTH (FT)	CASING BLOWS PER FT	SAMPLER BLOWS PER 6 IN	SAMPLE NJMBER 8 RECOVERY	SAMPLE DEPTH (FT)	STRATA Change (FT)	VISUAL CLASS	IFICATION AN	D REMARKS
		Cored	S1	0.5	0.5 0.6	Conc rete slab, uith steel	mesh.	
		3 5	15"/18"	2.0	0.6	Loose gray-brounsandy GRA	VEL, moist.	-FILL-
		6	s2 22"/24"	2.0		Stiff red-brown mottled cla gravel, moist.	iyey SILT, ti	race coarse sand, trace
		12 17 17		4.0		-L Same.	ACUSTRINE-	
5		21 22	18"/24"	6.0				
		22 14		6.0		Same.		
		13 16	14"/24"	8.0		⁻ L	ACUSTRINE-	
		15 5	\$ 5	8.0		Same, except Loose and mois	st to uet, u	ith some silty fine SAND
		6 7	21"/24"	10.0		seams.		
10		9 9	\$6	10.0	10.7	Same.		
		a a 10	24"/24"	12.0	10.7	Stiff gray silty CLAY, trac	e medium sa ACUSTRINE-	nd, moist to wet.
						Bottom of	Boring at 1	2.0 ft.
						<u>Notes</u> :		
15						 Backfilled borehole to borehole to ground surf 		
25								
		WATER LEVEL	DATA			SAMPLE IDENTIFICATION		SUMMARY
DATE	TIME	ELAPSED		H (FT) TO:	<u></u>	O Open End Rod	OVERBURDEN	
		TIME (HR)	BOTTOM OF CASING	BOTTOM OF HOLE	WATER	ATER T Thin Wall Tube ROOK CORED (LIN FT): U Undisturbed Sample		
					····	S Split Spoon	SAMPLES:	6S
							BORING NO.	GS-A4

	H&A OF NEW YORK, ROCHESTER, NEW YORK Consulting Geotechnical Engineers, Geologists and Hydrogeologists					TEST BORING REPORT		BORING NO. GS-A5
PROJECT: CLIENT: CONTRAC	DO	LLINGER RI/F LLINGER - A THNAGLE DRIL	FILTRONA C	OMPANY				FILE NO. 70007-43 SHEET NO. 1 OF 1 LOCATION: See Plan
	TEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PRC	CEDURES	ELEVATION:
Type Inside E Havmer F Havmer F		(1N) (LB) (1N)	Auger 2-1/4	SS 1-3/8 140 30		RIG TYPE: Diedrich D-25 BIT TYPE: DRILL MUD: OTHER: Advanced augers asphalt to 0.5	through ft.	DATUM: HGMD START: 14 August 194 FINISH: 14 August 194 DRILLER: N Short H&A REP: H. Corrigan
DEPTH (FT)	CASING BLOWS PER FT	SAMPLER BLOWS PER 6 IN	Sample Number & Recovery	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASS	SIFICATION AN	D REMARKS
·		Augered	S1	0.5	0.5	Asphalt Pavement		
		6 14 14	12"/18"	2.0	1.8	Medium dense gray-brown si	Ity SAND, so -FILL-	me gravel, dry.
		7 11 14 15	\$2 22"/24"	2.0		Stiff red-brown mottled cla sand, trace gravel, damp. Same, except very stiff.	ayey SILT, t LACUSTRINE-	race coarse to medium
5						[<u> </u>	Boring at 4	.0 ft
						 <u>Note</u>: Borehole backfilled to and asphalt patch mate 		ace with native materia
	<u>_</u>	MATER LEVEL	data	<u>l</u>		SAMPLE IDENTIFICATION	T	SUMMARY
				H (FT) TO:			OVERBURDEN	·····
DATE	TIME	ELAPSED TIME (HR)	BOTTOM OF CASING	BOTTOM OF HOLE	WATER	0 Open End Rod T Thin Wall Tube U Undisturbed Sanple	ROOK CORED	(LIN FT):
						S Split Spoon	SAMPLES:	2\$
							BORING NO.	GS-A5

	H&A OF NEW YORK, ROCHESTER, NEW YORK Consulting Geotechnical Engineers, Geologists and Hydrogeologists					TEST BORING REPORT BORING NO			
PROJECT CLIENT: CONTRAC	DC	DLLINGER RI/F DLLINGER - A DTHNAGLE DRIL	FILTRONA O	OMPANY				FILE NO. 70007-43 SHEET NO. 1 OF 1 LOCATION: See Plan	
	ITEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PRO	CEDURES	ELEVATION:	
TYPE INSIDE HAMMER HAMMER		(IN) (LB) (IN)	Auger 4-1/4	SS 1 -3/8 140 30		RIG TYPE: Diedrich D-25 BIT TYPE: DRILL MUD: OTHER: Split spoon sample S4 collected with 3 in. I.D		DATUM: NGVD START: 14 August 199 FINISH: 14 August 199 DRILLER: N. Short H M REP: M. Corrigan	
DEPTH (FT)	CASING BLOUS PER FT	SAMPLER BLOWS PER 6 IN	Sample Number & Recovery	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASS	IFICATION AN	D REMARKS	
		7 22 16	s1 12"/24"	0.0 2.0		Dense brown sandy GRAVEL, Split spoon sampled through			
 		13 23 30 40	s2 20"/24"	2.0 4.0	2.0	Hard red-brown mottled clay sand, trace gravel, damp, s -I			
 5	-	40 11 12 14	\$3 20"/24"	4.0 6.0		Same, except very stiff and	d moist.		
	-	21 17 22 27	\$4 24"/24"	6.0 8.0		Hard red-brown mottled clay sand, trace gravel, moist.	yey SILT, tra	ace coarse to medium	
_ _	-	31 37 28 39		8.0		-L No recovery.	LACUSTRINE-		
— 10 —	-	31 17 18 25		10.0 12.0	11.8	Same.			
		18				Medium stiff gray silty CL trace gravel, moistL	LAY, trace co ACUSTRINE-	oarse to medium sand,	
							Boring at 1	2.0 ft.	
						<u>Notes</u> : 1. Solvent smell was evide	ent while ba	ckfilling borehole.	
	•					 Borehole backfilled to pellets. 	ground surfa	ace with benrcnite	
 _ 20 —									
25									
		WATER LEVEL	DATA	T		SAMPLE IDENTIFICATION		SUMMARY	
DATE	TIME	ELAPSED		H (FT) TO:		0 Open End Rod			
		TIME (HR)	BOTTOM OF CASING	BOTTOM OF HOLE	WATER	T Thin Wall Tube U Undisturbed Sample S Split Spoon	ROCK CORED	(LIN FT): 6s	
							BORING NO.	GS-A8	

Consulting	YORK, ROCHE Geotechnic sts and Hydr	cal Enginee	rs,		TEST BORING REPORT		BORING NO. G	S-A9
	LINGER RI/F LINGER - A HNAGLE DRILI	FILTRONA O	OMPANY				SHEET NO. 1	0007-43 OF 1 ee Plan
ITEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PRC	CEDURES	ELEVATION:	
TYPE INSIDE DIAMETER HAMMER WEIGHT	(IN) (LB) (IN)		SS 1 -3/8 140 30		RIG TYPE: Diedrich D-25 BIT TYPE: DRILL MUD: OTHER: Split spoon sam 4.0 ft. without advance		DATUM: NO START: 15 A FINISH: 15 A DRILLER: N.	MD August 199 August 199 Short Corrigar
DEPTH CASING BLOUS (FT) PER FT	SAMPLER BLOWS PER 6 IN	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASS	SIFICATION AN	D REMARKS	
	3 11 16	s1 8"/24"	0.0	0.4	Loose brown sandy SILT, so -T(ome gravel, OPSOIL FILL –	trace black pla	stic slag
	17 11 15	s2	2.0		Hard red-brown gravelly SII	LT, some clay	/, trace coarse	sand.
	24 27	18"/24"	4.0		Bottom of	Boring at 4	0 ft.	, <u>u</u> tan,,
- $ -$					<u>Note</u> : 1. Borehole backfilled to and bentonite pellets.	ground surfa	ace with native	material
	IATER LEVEL	DATA			SAMPLE IDENTIFICATION		SUMMARY	
DATE TIME	DATE TIME ELAPSED DEPTH (FT)		H (FT) TO.		0 Open End Rod	OVERBURDEN	(LIN FT): 4.0	ft.
	TIME (HR)	BOTTOM OF CASING	BOTTOM U OF HOLE	JATER	T Thin Wall Tube U Undisturbed Sample S Split Spoon	ROOK CORED SAMPLES:	(LIN FT): 2S	
1 1			I I I					

	onsultin	YORK, ROCH g Geotechni sts and Hyd	cal Enginee	rs,		TEST BORING REPORT BORING NO. G			
PROJECT: CLIENT: CONTRAC	DO	DLLINGER RI/ I DLLINGER - A ITHNAGLE DRIL	FILTRONA (OMPANY				SHEET NO.	70007-43 1 OF 1 See Plan
1	ТЕМ		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PRC	CEDURES	ELEVATION:	
TYPE INSIDE E HAMMER N HAMMER F		(IN) (LB) (IN)	Auger 2-1/4 	SS 1 -3/8 140 30		RIG TYPE: Diedrich D-25 BIT TYPE: DRILL MUD: OTHER:Advanced augers to 8 continuous split spoon san 12.0 ft.		START: 13 FINISH: 13 DRILLER:	NGMD August 199 August 199 N. Short J. Talpey
DEPTH	CASINCI BLOWS PER FT	Sampler Blows Per 6 in	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASS	SIFICATION AN	D REMARKS	
	-	6 14 18	S1 19"/24"	0.0 2C+		Dense brown clayey SILT, s crumbly.	ome gravel i	n upper 0.2 f	t., dry,
		23 20 34 35	s2 21"/24"	2.0 4.0		Same, except very dense, m mineralization on rough un -	noist, with b dulating to LACUSTRINE –	lack granular planar soil p	artings.
		33 27 24 28	\$3 23"/24"	4.0 6.0		Same.			
		28 18 27 24	s4 21"/24"	6.0 8.0		Grades to stiff brown silt; medium plasticity. -	y CLAY, trac LACUSTRINE -	e coarse sand,	moist,
		25 12 17 23	s5 24"/24"	8.0 10.0		Same.			
		30 16 18 20	\$6 20"/24"	10.0 12.0	10.5	Stiff gray CLAY, some silt; -I	moist, med ACUSTRINE-	ium to high p	lasticity.
		21				Bottom of <u>Notes</u> :	Boring at 12	2.0 ft.	
15	-					 Borehole caved upon rer backfilled to surface v 			of borehold
	- - -								
25									
		UATER LEVEL	DATA			SAMPLE IDENTIFICATION		SUMMARY	
DATE	TIME	ELAPSED TIME (HR)	DEPTI	H (FT) TO: BOTTOM	UATER	• O Open End Rod T Thin Wal ∎ Tube	OVERBURDEN		2.0 ft.
			OF CASING	OF HOLE		U Undisturbed Sample S Split Spoon	ROOK CORED		S
I							BORING NO.	(GS-B1

(Constant)

	Consulting	YORK, ROCH g Geotechnio sts and Hyd	cal Enginee	ers,		TEST BORING REPORT		BORING NO. GS-B2	
PROJECT CLIENT: CONTRAC	DO	LLINGER RI/F LLINGER - A THNAGLE DRIL	FILTRONA C	OMPANY				FILE NO. 70007-43 SHEET NO. 1 OF 1 LOCATION: See Plan	
	ITEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PROC	CEDURES	ELEVATION:	
Type Inside Hammer Hammer		(IN) (LB) (IN)	Auger 4-1/4	\$\$ 1-3/8 , 3 140 30		RIG TYPE: Diedrich D-25 BIT TYPE: DRILL MUD: OTHER: Split spoon sanpl collected with 3 in. I.D. s Advanced auger to 4.0 ft. p	spoon. H&A REP: J. Talp		
DEPTH (FT)	CASING BLONS PERFT	Sampler Blows Per 6 in	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA Change (FT)	VISUAL CLASS			
	_	20 44 42 41	s1 19"/24"	0.0 2.0	0.8	Medium dense brown SILT, Li and little fine sand, root -TO			
		29 43 44	s2 24"/24"	2.0 4.0		Dense brown SILT, little cla pebbles. -L	ay, dry, ha ACUSTRINE-	rd, with occasional	
	-	40 11 19 24	s3 24"/24"	4.0 6.0		Very dense brown clayey SIL crumbly. -L	T, with occ ACUSTRINE-	asional gravel, damp,	
 	-	33 29 30 22	s4 24"/24"	6.0 8.0		Same, moist. Same, uith rusty iron stain partings.	ing on rougl	h undulating soil	
]	21 10 16 14		8.0	7.8	Stiff gray silty CLAY, trac plastic.	e medium san ACUSTRINE-	nd, moist, moderately	
— 10 —	-	16 11 10 15	s6 /24"	10.0		Same, uith brown SILT pocke Same, uith very feu pebbles	et, mottled, from 9.0 to 9.4 ft.		
	-	17				Bottom of	Boring at 1	2.0 ft.	
	-					Note: 1. Backfilled borehole to pellets.	ground surfa	ace with bentonite	
	-								
	-								
20	•								
	-								
 25 -									
		WATER LEVEL				SAMPLE IDENTIFICATION		SUMMARY	
DATE	TIME	ELAPSED TIME (HR)	BOTTOM		WATER	0 Open End Rod T Thin Wall Tube	OVERBURDEN		
			OF CASING	OF HOLE		U Undisturbed Sample S Split Spoon	SAMPLES:	6S	
							BORING NO.	GS-B2	

	onsultin	YORK, ROCHI g Geotechnic sts and Hyd	cal Enginee	rs,		TEST BORING REPORT		BORING NO.	GS-B3
PROJECT: CLIENT: CONTRAC	DO	LLINGER RI/I LLINGER – A THNAGLE DRIL	FILTRONA C	OMPANY				FILE NO. SHEET NO. LOCATION:	70007-43 1 OF 1 See Plan
	ITEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PRO	CEDURES	ELEVATION:	
TYPE INSIDE I HAMMER I	ISIDE DIAMETER (IN) 1-3/8 MMER UEIGHT (LB) 140 MMER FALL (IN) 30					RIG TYPE: Diedrich D-25 BIT TYPE: DRILL MUD: OTHER: Split spoon sam 4.0 ft . without advanc	pled to ing augers.	DATUM: START: FINISH: DRILLER: H&A REP:	NGVD 13 August 1 13 August 1 N. Short J. Talpey
DEPTH (FT)	CASING BLOUS PER FT	SAMPLER BLOWS PER 6 IN	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASS	IFICATION AN	ID REMARKS	
		3 9 9							
	1	6 8	S2 2.0					e silt, dry	FILL-
		6 5	18"/24"	4.0		Loose to medium dense brow -	n clayey SIL L <mark>ACUSTRIN</mark> E-	T, damp.	
		3			l	Same.			
5						Bottom of	Boring at 4	.0 ft .	
<u> </u>	1					<u>Note</u> :			
						 Backfilled borehole to pellets. 	ground surf	ace with be	ntcnite
	1								
10									
15									
]								
20									
			ļ						
							1		
	UATER LEVEL DATA			SAMPLE IDENTIFICATION		SUMMARY	4.0 44		
DATE	TIME	ELAPSED TIME (HR)	DEPT BOTTOM OF CASING	BOTTOM OF HOLE	WATER			(LIN FT): (LIN FT):	4.0 ft.
3/13/91	NA	0.5	0.0	4.0	2.5	S Split Spoon SAM	SAMPLES:		2S
J J]7			0.0	- 7. V			BORING NO.		GS-B3

	onsultin	YORK, ROCH g Geotechnic sts and Hyd	cal Enginee	ers,		TEST BORING REPORT		BORING NO. GS-B4		
PROJECT CLIENT: CONTRAC	DO	LLINGER RI/F LLINGER - A THNAGLE DRIL	FILTRONA O	OMPANY				FILE NO. 70007-43 SHEET NO. 1 OF 1 LOCATION: See Plan		
	ITEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PRC	CEDURES	ELEVATION:		
Type Inside Hammer Hammer		(IN) (LB) (IN)	Auger 2-1/4	SS 1 -3/8 140 30	•••• ••• •••	RIG TYPE: Diedrich D-25 BIT TYPE: DRILL MUD: OTHER: Advanced 2-1/4" 8.0 ft. prior to split sp		DATUM: NGMD START: 13 August 199 FINISH: 13 August 199 DRILLER: N Short HBA REP: M. Corrigan		
DEPTH , (FT)	CASING BLOWS PER FT	Sampler Blows Per 6 In	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)					
		4 13	S1	0.0	0.2	Loose brown SILT with roo	t fibers. -TOPSOIL-			
		17	19"/24"	2.0		Very stiff broun SILT, sam		·····		
		24 28	\$2	2.0			-LACUSTRINE-			
		20 29 30	18"/24"	4.0		in a seen oler, build oldy,				
5		27 24 27	s3 12"/24"	4.0		Hard red-brown clayey SILT, moist.	trace coar	se sand, trace gravel,		
	{	27 25 22		6.0		Same.				
	4	27 19	24"/24"	8.0						
	{	3 25		8.0		Same, except very stiff.				
	1	11 13	23"/24"	10.0						
10		16 12		10.0		Same, except moist to wet.				
	1	15 17	24"/24"	12.0			LACUSTR I NE -			
	4	20		<u>├</u> ───┤		Bottom of	Boring at 12	2.0 ft.		
	1					Notes:				
						 Borehole caved to approaugers. Remainder of b grout. 	oximately 4.0 porehole bac	ft. upon removing kfilled with cement		
20										
					i					
		WATER LEVEL	DATA			SAMPLE IDENTIFICATION		SUMMARY		
DATE	TIME	ELAPSED	DEPT	H (FT) TO:		0 Open End Rod	OVERBURDEN	(LIN FT): 12.0 ft.		
		TIME (HR)	BOTTOM OF CASING	BOTTOM OF HOLE	WATER T Thin Wall Tube ROCK CORED (LIN FT): U Undisturbed Sample	(LIN FT):				
						S Split Spoon SAMPLES:	65			
							BORING NO.	GS-B4		

æ

		g Geotechni sts and Hyd		rs,		TEST BORING REPORT		BORING NO.	GS-B5		
PROJECT CLIENT: CONTRAC	DO	DLLINGER RI/ DLLINGER - A THNAGLE DRIL	FILTRONA C	MPANY				FILE NO. SHEET NO. LOCATION:	70007-43 1 OF 1 See Plan		
	ITEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PRO	CEDURES	ELEVATION:			
Type Inside Hammer Hammer		(IN) (LB) (IN)	Auger 4-1/4	SS 3 140 30	 	RIG TYPE: Diedrich D-25 BIT TYPE: DRILL MUD: OTHER: Advanced augers Split spoon sampled		FINISH: 1	NGAD 3 August 19 4 August 19 N Short J. Talpey		
DEPTH (FT)	CASING BLOWS PER FT	SAMPLER BLOWS PER 6 IN	Sample Number & Recovery	Sample Depth (FT)	STRATA Change (FT)	VISUAL CLASS	IFICATION AND REMARKS				
		4 8	S1	0.0	0.2	Loose brown loamy SILT, w -T(ith root fibe OPSOIL FILL-		<u></u>		
		11 11 19 23 26	S2	2.0 2.0 4.0	2.0		clayey SILT, trace gravel, trace mp with crude gray to red-brown -FILL-				
5		44 37 40 3⊟	S3	4.0 6.0		to medium sand, damp.	vey SILT, trace gravel, trace coa _ACUSTRINE-				
		3 0 26 26	s4 21"/24"	6.0 8.0		Same.					
		34 19 22 43	\$5 24"/24"	8.0 10.0		Same.					
10 		50 4 10 11 13	s6 23"/24"	10.0 12.0		moist.	AY, trace medium to coarse sand,				
						Bottom of	Boring at 12	2.0 ft.			
 						Notes: 1. Bcrehole backfilled to cement grout.	ckfilled to ground surface from 4.0 ft. wit				
	•										
	4										
- – - –											
 		WATER LEVEI	DATA				1	SUMMARY	<u> </u>		
		WATER LEVEL		H (FT) TO:		SAMPLE IDENTIFICATION	OVERBURDEN	SLIMMARY (LIN FT):	12.0 ft.		
25 25 DATE	TIME	WATER LEVEL ELAPSED TIME (HR)		<u> </u>	WATER	SAMPLE IDENTIFICATION O Open End Rod T Thin Wall Tube U Undisturbed Sample S Split Spoon	overburden Rock cored Samples:	(LIN FT):	12.0 ft.		

.

	onsultin	YORK, ROCH g Geotechni sts and Hyd	cal Enginee	rs,		TEST BORING REPORT	BORING NO. GS-B6
PROJECT CLIENT: CONTRAC	DO	LLINGER RI/I LLINGER – A THNAGLE DRIL	FILTRONA C	OMPANY	•		FILE NO. 70007-43 SHEET NO. 1 OF 1 LOCATION: See Plan
	ITEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PR	ELEVATION:
TYPE INSIDE HAMMER HAMMER	DIAMETER WEIGHT FALL	(IN) (LB) (IN)		SS 3 140 30		RIG TYPE: Diedrich D-25 BIT TYPE: DRILL MUD: OTHER: Split spoon sa without advance	
DEPTH (FT)	CASING BLOWS PER FT	SAMPLER BLOWS PER 6 IN	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLAS	SIFICATION AND REMARKS
	-	16 55 57	s1 12"/24"	11.0 2.C)	0.2	- Medium dense sandy SILT,	with root fibers, dry. -TOPSOIL-
	-	28 38		2.0	2.5	Very dense brown sandy GR	AVEL, some silt, dry.
	1	30 35	22"/24"	4.0	1	Same.	- FILL-
 5		36				Sand trace gravel, damp.	layey SILT, trace medium to coarse -LACUSTRINE-
						Bottom o	f Boring at 4.0 ft.
						Notes:	
	{					}	ground surface with bentonite pelle
	-						
10							
	-						
]						
 15]						
				ļ			
_20							
		1					
		WATER LEVEL	DATA	<u></u>		SAMPLE IDENTIFICATION	SUMMARY
	TINE		DEPT	H (FT) TO:	<u> </u>	O Open End Dad	OVERBURDEN (LIN FT): 4.0 ft.
DATE	TIME	ELAPSED TIME (HR)	BOTTOM	BOTTOM	WATER	O Open End Rod T Thin Wall Tube ROCK CORED (LIN FT):	
			OF CASING	OF HOLE		U Undisturbed Sample S Split Spoon SAMPLES:	SAMPLES: 2S

CUENT: DOCUMENT: DOCUMENT	Co	nsulting	YORK, ROCHE g Geotechnic sts and Hydr	al Enginee	rs,		TEST BORING REPORT		BORING NO. (S-87	
TTME CASING SMPLER MAREL NO TYPE Diedrich D25 DIATURE NUT TYPE INSIDE DUMETER (IN) INSIDE DUMETER (IN)	CLIENT:	DO	LLINGER • A	FILTRONA α	OMPANY		· · · · · · · · · · · · · · · · · · ·		SHEET NO. 1	0007-43 OF 1 See Plan	
TYPE SS BIT TYPE STATE: Is Aug HMMER FEIGHT (18) 140 GTHER Advanced split spoon FILI MOU augers RARE: IS AURLES NS HMMER FEIGHT (18) SAMPLE Loose brown SILT, trace coarse sand, dryFILL Hard red-brown motified clays SILT FILE No. FILE No. SAMPLE SAMPLE SAMPLE<	IT	ΈM		CASING				CEDURES			
BLOKS BLOKS MARK & DEPTH RECORFY CHANCE VISUAL CLASS/FICATION AD REMARKS	INSIDE DIA HAMMER EI	GHT	(LB)		1 -3/8 140		BIT TYPE: DRILL MUD: OTHER: Advanced split	spoon hout augers	START: 15 FINISH: 15 DRILLER: N	GMD August 19 August 19 I Short I Corriga	
15 13 14 19//24/l 2.0 19 19 18 19//24/l 4.0 19 19 18 19//24/l 4.0 19 18 19//24/l 4.0		BLO₩S	BLOWS	JMBER &	DEPTH	CHANGE	VISUAL CLASS	SIFICATION AN	d Remarks		
Dense brown SILT, some clay, trace coarse sand, dry. 			15			0.4	Loose brown SILT, trace m		with roots, dr	у.	
- 5 - 5 - Bottom of Boring at 4.0 ft. Note: 1. Borehole backfilled to ground surface with bentonit pellets. -10			15 19 19 19 18	\$2	2.0		Hard red-broun mottled clay gravel, damp to moist, with	ay, trace coarse sand, dry. -FILL- ayey SILT, trace coarse sand, tra th trace iron staining. -LACUSTRINE-			
-10 - 10 - 10 - 10 - 11 - 11 - 11 - 11			18				L				
-25 WATER LEVEL DATA SAMPLE IDENTIFICATION SUHWARY DATE TIME ELAPSED DEPTH (FT) TO: 0 Open End Rod OVERBURDEN (LIN FT): 4.0	 						1. Borehole backfilled to	ground surf:	ace with bento	nite	
DATE TIME ELAPSED DEPTH (FT) TO: 0 Open End Rod OVERBURDEN (LIN FT): 4.0											
DATE TIME ELAPSED 0 Open End Rod			WATER LEVEL	DATA			SAMPLE IDENTIFICATION		SUHMARY	<u></u>	
TIME (HR) BOTTOM BOTTOM WATER T Thin Wall Tube ROCK CORED (LIN FT): OF CASING OF HOLE U Undisturbed Sanple S Split Spoon SAMPLES: 2S	DATE	TIME	TIME (HR)	BOTTOM	BOTTOM	WATER	T Thin Wall Tube U Undisturbed Sanple	ROOK CORED	(LIN FT):		

С	onsulting	YORK, ROCHE g Geotechnic sts and Hydr	al Engineer	ſS,		TEST BORING REPORT		BORING NO.	GS-88	
PROJECT: CLIENT: CONTRAC	DO	LLINGER RI/F LLINGER - A THNAGLE DRILI	FILTRONA CC	OMPANY				FILE NO. SHEET NO. LOCATION:	70007-43 1 CF 1 See P l an	
I	TEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PRO	CEDURES	elevation: Datum:	NGVD	
type Inside d Hammer v Hammer f	VEIGHT	(IN) (LB) (IN)	 	SS 1 -3/8 140 30		BIT TYPE: DRILL MUD: OTHER: Split spoon sam 4.0 ft. uithout advanc		START:	14 August 1991 14 August 1991 14 Short M. Corrigan	
DEPTH (FT)	Casing Blows PER FT	SAMPLER BLOWS PER 6 IN	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA Change (FT)	VISUAL CLASS	SIFICATION AN	D REMARKS		
		5 19 10	\$1	0.0	0.2	- Loose broun Loamy SILT, tr	ace coarse -TOPSOIL-	sand, dry.		
		19 15 27 24	19"/24" S2 /24"	2.0 2.0 4.0		Hard red-brom mottled clayey SILT, trace coarse to medium sand, trace gravel, dry. -LACUSTRINE- Same, except danp.				
		31				Bottom of	Boring at 4	.0 ft.		
						Note: 1. Borehole backfilled to pellets.	surface uit	h bentonite		
	,	WATER LEVEL	data	⊨		SAMPLE IDENTIFICATION		SUMMARY		
	ттие		DEPTI	H (FT) TO:		• Open End Ded	OVERBURDEN	(LIN FT):	4.0 ft.	
DATE	TIME	ELAPSED TIME (HR)	BOTTOM OF CASING	BOTTOM OF HOLE	O Open End Rod T Thin Wall Tube U Undisturbed Sample					
						S Split Spoon SAMPLES: 25				
L									GS-B8	

	onsulting	YORK, ROCH g Geotechnio sts and Hyd	cal Enginee	rs,		TEST BORING REPORT		BORING NO. GS-B9			
PROJECT CLIENT: CONTRAC	DO	LLINGER RI/F LLINGER • A THNAGLE DRIL	FILTRONA C	OMPANY				FILE NO.70007-43SHEET NO.1OFLOCATION:See Plan			
	ITEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PRO	CEDURES	ELEVATION:			
TYPE INSIDE HAMMER HAMMER		(IN) (LB) (IN)	Auger 2-1/4	\$\$ 1 -3/8 140 30		RIG TYPE: Diedrich D-25 BIT TYPE: DRILL MUD: OTHER: Advanced augers Split spoon sampled	to 4.0 ft. to 8.0 ft.	DATUM: NGVD START: 15 August 19 FINISH: 15 August 19 DRILLER: N Short H&A REP: M Corriga			
DEPTH (FT)	CASING BLOWS PER FT	SAMPLER BLOWS PER 6 IN	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA Change (FT)	VISUAL CLAS	SIFICATION AN	D REMARKS			
		3 14	S1	0.0	0.2	Loose brown SILT, with ro	ots, dry. -TOPSOIL-				
		17 23 19	18"/24" S2	2.0		Medium dense gravelly SILT	, some coars -FILL-	e sand, dry.			
		13 15 19	19"/24"	4.0	3.0	Hard red-brown mottled clay sand, dry.	yey SILT, trace medium to coars				
5		15 18	s3	4.0			LACUSTRINE-				
		23 21 15	15"/24" \$4	6.0 6.0		Same, except very stiff, ti	race gravel.	moist			
		16 13	12"/24"	8.0			-LACUSTRINE-				
		19				Bottom of	Boring at 8	.0 ft.			
10						Note:					
						 Borehole backfilled to and bentonite pellets. 	surface wit	h native materials			
15											
20					1						
•											
_25											
	I	NATER LEVEL	DATA	<u> </u>		SAMPLE IDENTIFICATION		SUMMARY			
DATE	TIME	ELAPSED		н (FT) то: Т	0 Open End Rod						
_		TIME (HR)	BOTTOM OF CASING	BOTTOM OF HOLE	WATER			(LIN FT): 4s			
							BORING NO.	45 			

t

	onsultin	YORK, ROCH g Geotechnic sts and Hyd	cal Enginee	rs,		TEST BORING REPORT		BORING NO.	GS-C1	
PROJECT: CLIENT : COWTRAC	DO	LLINGER RI/F LLINGER - A THNAGLE DRIL	FILTRONA C	MPANY				FILE NO. SHEET NO. LOCATION:	70007-43 1 CF 1 See Plan	
	ITEM	<u></u>	CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PRO	ELEVATION: DATLM: NGVD START: 13 August FINISH: 13 August spoon DRILLER: N Short			
TYPE	Diameter Ueight	(IN) (LB) (IN)	 	SS 1-3/8 140 30		RIG TYPE: Diedrich D-25 BIT TYPE: DRILL KID: OTHER: Advanced split sampler to 4.0 ft. with				
DEPTH (FT)	CASING BLOWS PER FT	BLOWS	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA Change (FT)	VISUAL CLASS	ASSIFICATION AND REMARKS			
	-	8 12 15 15		0.0		Medium dense brown clayey s dry, crumbly.	-			
	-	ካ6 17 20 24	s2 23"/24"	2.0 4.0		soil partings, trace coarse	e black granular mineralization on e sand. LACUSTRINE-			
5	•					Bottom of	Boring at 4	.0 ft.		
						<u>Note</u> :				
	-					1. Backfilled borehole to	surface wit	h bentonite	pellets.	
- 10 -										
15										
- -										
<u> </u>										
		WATER LEVEL	DATA		<u> </u>	SAMPLE IDENTIFICATION	[SLMMARY		
DATE	TIME	ELAPSED		H (FT) TO:			4.0 ft.			
DATE	11ME	TIME (HR)	BOTTOM OF CASING	BOTTOM OF HOLE	WATER	U Undisturbed Sample		(LIN FT):		
						S Split Spoon SAMPLES: BORING NO.		25		

Consu	NEW YORK, ROCH Iting Geotechni logists and Hyd	cal Enginee	rs,		TEST BORING REPORT		BORING NO. GS-C2		
PROJECT: CLIENT: CONTRACTOR:	DOLLINGER RI/ DOLLINGER - A NOTHNAGLE DRIL	FILTRONA C	OMPANY	·			FILE NO.70007-43SHEET NO.1LOCATION:See Plan		
ITEM	<u></u>	CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PROCEDURES ELEVATION:				
TYPE INSIDE DIAME HAMMER WEIGH HAMMER FALL			SS 1-3/8 140 30		RIG TYPE: Oiedrich D-25 BIT TYPE: DRILL MUD: OTHER: Advanced split sampler to 4.0 ft. with		DATUM: NGVD START: 12 August 19 FINISH: 12 August 19 DRILLER: N. Short H&A REP: J. Talpey		
BLO	ING SAMPLER JS BLOWS FT PER 6 IN	SAMPLE NJMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASS	SIFICATION AND REMARKS			
	7 12	\$1	0.0		Medium dense brown SILT, L	ittle clay, LACUSTRINE-	dry, crumbly.		
	13 16	19"/24"	2.0			LAGOUTATINE			
	23 27	s2	2.0		Same, except very dense, d rusty iron staining.	lamp and with	n some gray mottling and		
	33 33	21"/24"	4.0			LACUSTRINE- Boring at 4.0 ft.			
5					Bottom of				
					Noto				
					<u>Note:</u> 1. Backfilled borehole to	around surf	ace with bentonite		
					pellets.	9.00.000			
- 10									
- 15 -		i							
-20									
	WATER LEVEL	DATA	+		SAMPLE IDENTIFICATION	1	SUMMARY		
		DEPTH (FT) TO: OVERBURDEN (L)		(LIN FT): 4.0 ft.					
DATE TIME	ELAPSED TIME (HR)	BOTTOM OF CASING	BOTTOM OF HOLE	WATER	O Open End Rod T Thin Wall Tube	ROCK CORED (LIN FT):			
		OF CASING	UF HULE		U Undisturbed Sample S Split Spoon SAMPLES: 2S		2\$		
						BORING NO.	GS-C2		

	onsulting	YORK, ROCH g Geotechnic sts and Hyd	cal Enginee	rs,		TEST BORING REPORT		BORING NO. GS-C3			
PROJECT CLIENT: COWTRAC	DO	LLINGER RI/F LLINGER • A THNAGLE DRIL	FILTRONA CO	DMPANY				FILE NO. 70007-43 SHEET NO. 1 0F 1 LOCATION: See Plan 1 <th1< th=""> <th1< th=""> <th1< th=""> 1</th1<></th1<></th1<>			
	ITEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT 8 PRC	CEDURES	ELEVATION:			
TYPE	DIAMETER	(IN) (LB) (IN)		SS 1 -3/8 140 30	 	RIG TYPE: Diedrich D-25 BIT TYPE: DRILL MUD: OTHER: Advanced split sampler without augers	DATW: NGVD START: 12 August 14 FINISH: 12 August 15 DRILLER: N. Short H&A REP: J. Talpey				
DEPTH (FT)	CASING BLOWS PER FT	Sampler Blows Per 6 in	SAMPLE NUMBER 8 TECOMERY	Sample Depth (FT)	STRATA Change (FT)	VISUAL CLASSIFICATION AND REMARKS					
		6 10 11	\$1 12"/24"	0.0		Medium dense brown SILT, I occasional pebbles, dry, c		trace fine sand,			
	-	13 18 22 29	s2 21"/24"	2.0		Same, except dense, and ui mineralization on soil par	th trace black granular tings. LACUSTRINE-				
5		32				Bottom of	Bottom of Boring at 4.0 ft.				
						Note:					
						 Backfilled borehole to and to surface uith be 	3.0 ft. uit ntonite pelle	h native materials, ets.			
 10											
15											
20											
	l	WATER LEVEL	L DATA	<u>_</u>		SAMPLE IDENTIFICATION	<u></u>	SWMARY			
DATE	TIME	ELAPSED	DEPT	H (FT) TO:			(LIN FT): 4.0 ft.				
PATE	1196	TIME (HR)	BOTTOM OF CASING	BOTTOM OF HOLE	WATER	U Undisturbed Sample S Split Spoon SAMPLES:		(LIN FT):			
								25			
							BORING NO.	GS-C3			

Ì

Cor	nsulting	YORK, ROCHE g Geotechnic sts and Hydr	al Engineer	rs,		TEST BORING REPORT		BORING NO. 65-64		
PROJECT: CLIENT: CONTRACTO	DOL	LLINGER RI/F LLINGER - A THNAGLE DRIL	FILTRONA (X	OMPANY				FILE NO. 70007-43 SHEET NO. 1 OF 1 LOCATION: See Plan		
ITE	ΞM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PRO	CEDURES	ELEVATION:		
Type Inside dia Hawver we Hawver fa	Meter Eight	(IN) (LB) (IN)		SS 1-3/8 140 30		 RIG TYPE: Diedrich D-25 BIT TYPE: DRILL MUD: OTHER: Advanced split spoon sampler to 4.0 ft. uithout augers. DATUM: NGAD START: 12 Augus FINISH: 12 Augus DRILLER: N. Sho H&A REP: J. Tal 				
E	CASING BLOWS PER FT	BLOWS	SAMPLE NUMBER & RECOVERY	Sample Depth (FT)	STRATA Change (FT)	VISUAL CLASS	SIFICATION AN	D REMARKS		
		4 7	S1	0.0	<u> </u>	Medium dense brown to red-b	orown clayey LACUSTRINE-	SILT, dry, crumbly.		
		ໍ່ 11 14	18"/24"	2.0			LAUGOINTRE			
		17 27	s2	2.0		Same, verydense, hard.				
		28 29	20"/24"	4.0						
5						Bottom of Boring at 4.0 ft.				
						Note:				
						 Backfilled borehole to topped with bentonite p 		h native materials and		
10										
15										
{										
			1							
_20 _										
	l	WATER LEVEL	data	I		SAMPLE IDENTIFICATION		SUMMARY		
			DEPT	H (FT) TO:		Thin Wall Tube	RVERBORRED	(LIN FT): 4.0 ft.		
DATE T	IME	ELAPSED TIME (HR)	BOTTOM		WATER	0 Open End Rod T Thin Wall Tube	ROCK CORED	(LIN FT):		
			OF CASING	OF HOLE		U Umdfisturbed Sample S Spilit Spoon SAMPLES:		2\$		
							BORING NO.	GS-C4		

.

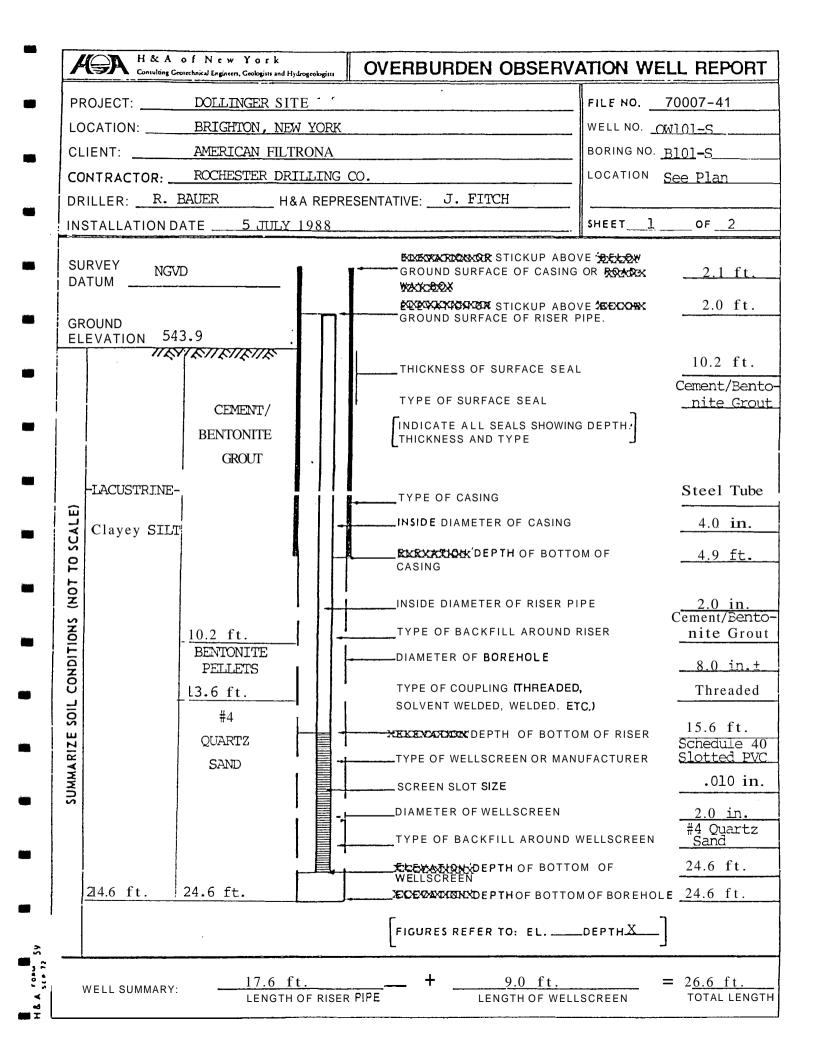
.

н& . С	onsultin	g Geotechni	IESTER, NEW ical Enginee Irogeologist	rs,		TEST BORING REPORT			GS-C5
PROJECT: CLIENT: CONTRACT	DO	LLINGER RI/ LLINGER - A THNAGLE DRI	FILTRONA C	OMPANY				FILE NO. SHEET NO. LOCATION:	70007-43 1 OF 1 See Plan
	TEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PRC	OCEDURES	ELEVATION:	
TYPE INSIDE E HAMMER V HAMMER F	VEIGHT	(IN) (LB) (IN)	 	SS 1-3/8 140 30		RIG TYPE: Diedrich D-25 BIT TYPE: DRILL MUD: OTHER: Advanced split sampler to 4.0 ft. with	spoon out augers.	DATUM: START: 1 FINISH: 1 DRILLER: H&A REP:	NGVD 2 August 1991 2 August 1991 N. Short J. Talpey
DEPTH	CASING BLOWS PERFT	BLOWS	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASS	SIFICATION AN	D REMARKS	
		³ 9 11 1. ¹⁴ 17 24 2.	\$2 20"/24"	0.0 2.0 2.0 4.0		Same, except dense.	Boring at 4	.0 ft.	
		WATER LEVEL	DATA			SAMPLE IDENTIFICATION		SUMMARY	
DATE	TIME	ELAPSED		H (FT) TO:		O Open End Rod	OVERBURDEN		4.0 ft.
		TIME (HR)	BOTTOM OF CASING	BOTTOM OF HOLE	WATER	T Thin Wall Tube U Undisturbed Sample S Split Spoon	ROCK CORED	(LIN FT):	 2s
								<u> </u>	
I						L	BORING NO.		GS-C5

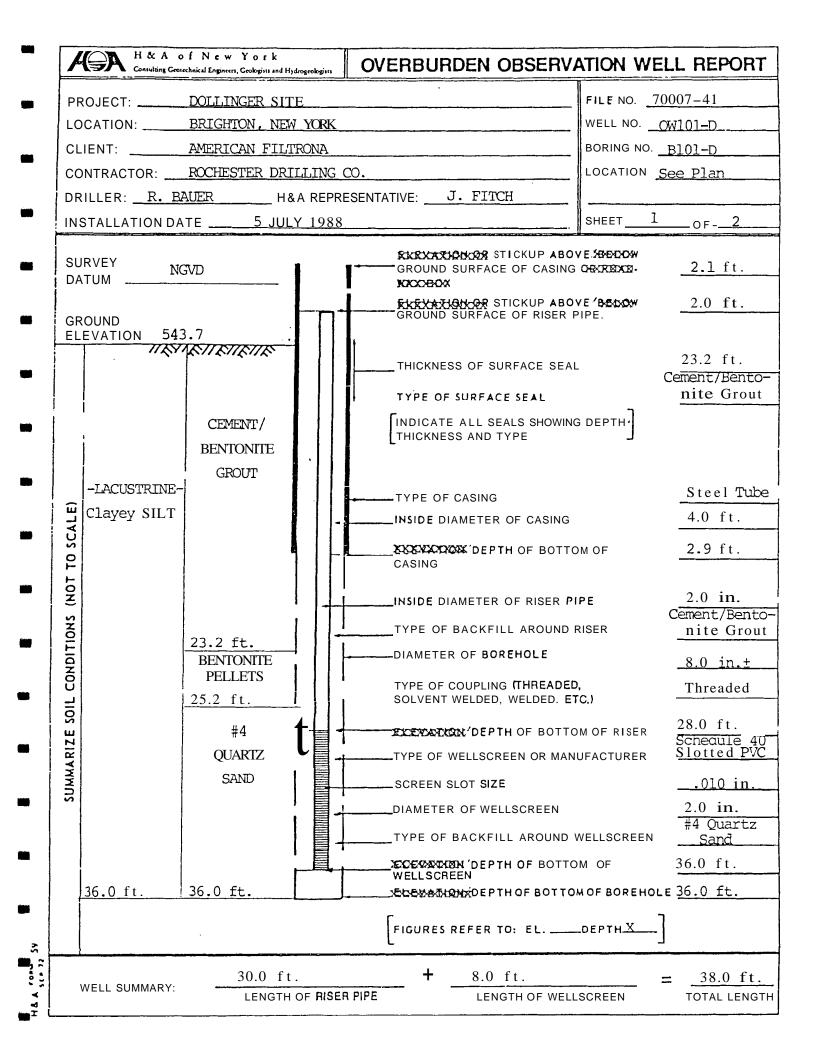
	onsulting	YORK, ROCH g Geotechni sts and Hyd	cal Enginee	rs,		TEST BORING REPORT	TEST BORING REPORT		
PROJECT CLIENT: CONTRAC	DOL	LLINGER RI/ LLINGER - A THNAGLE DRII	FILTRONA C	MPANY				FILE NO. 70007-43 SHEET NO. 1 OF 1 LOCATION: See Plan	
	ITEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PRO	DCEDURES	ELEVATION: DATUM: NGVD	
TYPE INSIDE E HAMMER M HAMMER I		(IN) (LB) (IN)		SS 1 -3/8 140 30		BIT TYPE: DRILL MUD: OTHER: Split spoon san 4.0 ft. without		START: 12 August 1 FINISH: 12 August 1 DRILLER: N. Short H&A REP: J. Talpey	
DEPTH (FT)	CASING BLOWS PER FT	SAMPLER BLOWS PER 6 IN	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASS	SIFICATION AN	D REMARKS	
		3 7 12	\$1 20"/24"	0.0	0.2	Loose dark brown SILT, wi gravel, damp.	ith abundant -TOPSOIL-	rootfibers, moss, tra	
		14 11 22 27	s2 21"/24"	2.0		Medium dense brown clayey mottling, crumbly. Same, except dense.	SILT, trace LACUSTRINE-	gravel, damp with gray	
		28	۱ 			Bottom of	borehole at	4.0 ft.	
						Note:			
 						 Backfilled borehole wi bentonite pellets. 	th native ma	iterials and topped wit	
10									
_20									
						I			
_25									
		JATER LEVEL				SAMPLE IDENTIFICATION		SUMMARY	
DATE	TIME	ELAPSED TIME (HR)	DEPT BOTTOM	H (FT) TO: BOTTOM	WATER	O Open End Rod T Thin Wall Tube	OVERBURDEN ROCK CORED		
— <u> </u>			OF CASING	OF HOLE		U Undisturbed Sample S Split Spoon	SAMPLES:	25	
							BORING NO.	GS-C6	

H&A OF NEW YORK, ROCHESTER, NEW YORK Consulting Geotechnical Engineers, Geologists and Hydrogeologists						TEST BORING REPORT			BORING NO. GS-C7	
PROJECT: CLIENT: CONTRACT	DOI	LINGER RI/ LINGER - A THNAGLE DRIL	FILTRONA C	OMPANY	_			FILE NO. SHEET NO. LOCATION:	70007-43 1 OF 1 See Plan	
	TEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PRO	DCEDURES	ELEVATION:		
TYPE INSIDE D HAMMER W HAMMER F	NAMETER VEIGHT	(IN) (LB) (IN)		SS 1-3/8 140 30		RIG TYPE: Diedrich D-25 BIT TYPE: DRILL MUD: OTHER: Advanced split sampler to 4.0 ft. with	spoon out augers.	DATUM: START:	NGVD 12 August 199 12 August 199 N. Short J. Talpey	
DEPTH (FT)	CASING BLOWS PER FT	SAMPLER BLOWS PER 6 IN	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA Change (FT)	VISUAL CLAS	SIFICATION AN	ID REMARKS		
		6 8	S1	0.0	0.3	Loose dark brown Loamy SI	LT, damp. -TOPSOIL-			
		14 18		2.0		Medium dense dark brown cl	ayey SILT, t	race coarse	sand and	
		16 24 34	S2 241/241	2.0 4.0		gravel, uith gray mottling Same, except dense.	LACUSTRINE-	bers, damp.		
		34 36		4.0		· · · · · · · · · · · · · · · · · · ·	Boring at 4	.0 ft		
5										
						Note:				
					4 6 8	1. Backfilled borehole ui	th native ma	iterials.		
10										
15										
_20										
25		_				=				
	V	VATER LEVEL		• 	·	SAMPLE IDENTIFICATION		SUMMARY		
DATE TIME	T.1.1.5	ELAPSED	DEPTI	H (FT) TO: T		O Open End Rod	OVERBURDEN	(LIN FT):	4.0 ft.	
DATE	TIME				WATER	T Thin Wall Tube ROCK CORED (L U Undisturbed Sample	/ N			
DATE	IIME	TIME (HR)	BOTTOM OF CASING	BOTTOM OF HOLE	WATER		ROCK CORED SAMPLES:	(LIN FT):	 2s	

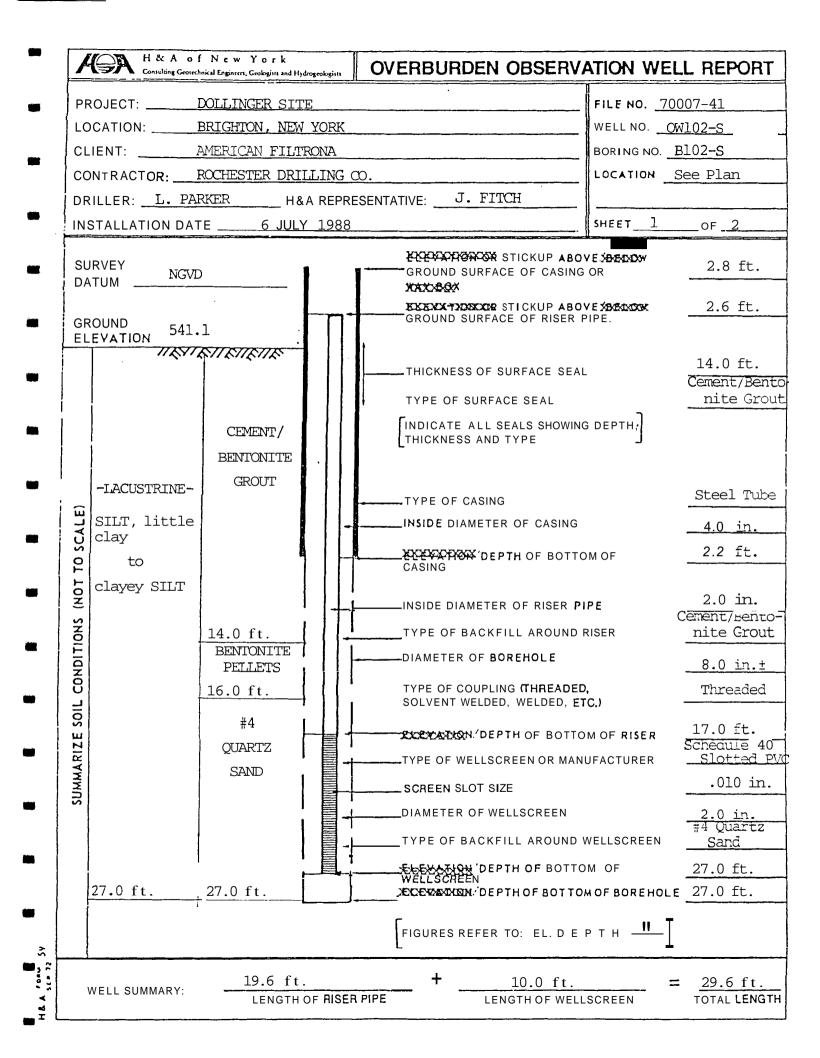
Cons	sulting	YORK, ROCHE g Geotechnic sts and Hydr	al Enginee	rs,		TEST BORING REPORT			GS-C8
PROJECT: CLIENT = CONTRACTOR:	DOI	LINGER RI/F LINGER – A THNAGLE DRIL	FILTRONA C	OMPANY				FILE NO. SHEET NO. LOCATION:	70007-43 1 OF 1 See Plan
ITEN	M		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PRO	OCEDURES	ELEVATION:	
TYPE INSIDE DIAM HAMMER WEIG HAMMER FALL	IETER GHT	(IN) (LB) (IN)		SS 1 -3/8 140 30		RIG TYPE: Diedrich D-25 BIT TYPE: DRILL MUD: OTHER: Advanced split sp to 4.0 ft. withou		DATUM: START: 1 FINISH: 1	NGVD 2 August 19 2 August 19 N. Short J. Talepy
BL	ASING OWS Er Ft	SAMPLER BLOWS PER 6 IN	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASS	SIFICATION AN	D REMARKS	
		3 9 9	s1 22"/24"	0.0 2.0	0.5	Loose dark brown Loamy SI	LT, with roo -TOPSOIL-	t fibers, dr	<i>y</i> .
		1' 5 22 44		2.0 2.0 4.0		Medium dense brown fine cl - Same, except very dense. recovery.	LACUSTRINE-	-	-
 		357				Bottom of	Boring at 4	.0 ft.	
						<u>Note</u> :			
						 Backfilled borehole to materials. 	ground surfa	ace with nati	v e
						,			
10									
- 15									
					:				
_ 20									
			-						
_ 25]		 VATER LEVEL	DATA	 		SAMPLE IDENTIFICATION	<u> </u>	SUMMARY	
				H (FT) TO:			OVERBURDEN		4.0 ft .
DATE TIN	/IE	ELAPSED TIME (HR)	BOTTOM OF CASING	BOTTOM OF HOLE	WATER	O Open End Rod T Thin Wall Tube U Undisturbed Sample	ROCK CORED	(LIN FT):	
						S Split Spoon	SAMPLES:		25
							BORING NO.		GS-C8


		g Geotechnic sts and Hydr				TEST BORING REPORT	BORING NO. GS-C9
PROJECT: CLIENT: CONTRACT	DO	LLINGER RI/F LLINGER - A THNAGLE DRIL	FILTRONA CO	OMPANY			FILE NO. 70007-43 SHEET NO. 1 OF LOCATION: See Pla
			CASING		CORE BARREL	DRILLING EQUIPMENT & PROCEDUR	ELEVATION:
TYPE INSIDE D HAMMER W HAMMER F	VEIGHT	(IN) (LB) (IN)	 	SAMPLER SS 1-3/8 140 30	BARREL	RIG TYPE: Diedrich D-25 BIT TYPE: DRILL MUD: OTHER: Split spoon sampled t 4.0 ft. without advancing at	DATUM: NGVD START: 12 August FINISH: 12 August DRILLER: N. Shor
DEPTH (FT)	CASING BLOWS PERFT	BLOWS	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA Change (FT)	VISUAL CLASSIFICA	FION AND REMARKS
		2 7 11	\$1 21"/24"	0.0 2.0		Medium dense brown SILT, trace g asphalt fragments, d ry, crumbly -FIL	, with root fibers.
		8 8 11 12	\$2 17"/24"	2.0 4.0	2.0	Medium dense dark brown clayey S with trace organic fibers, low p -BURIED TC	lasticity.
		18				Bottom of Borin	g at 4.0 ft.
						<u>Note:</u> 1. Borehole backfilled to surfa	ce with native materials.
15 							
20							
20 25							
 		WATER LEVEL	DATA			SAMPLE IDENTIFICATION	SUMMARY
 	TIME	ELAPSED TIME (HR)		H (FT) TO: BOTTOM OF HOLE	WATER	0 Open End Rod	BURDEN (LIN FT): 4.0 ft. CORED (LIN FT):

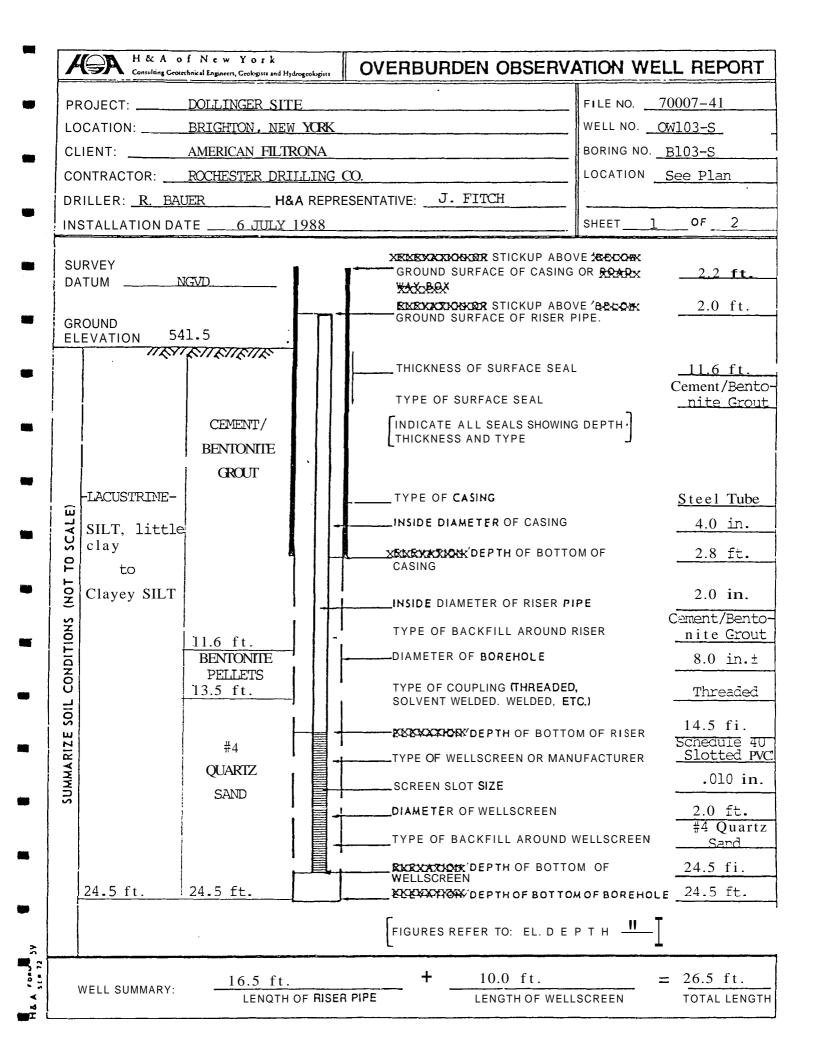
APPENDIX C

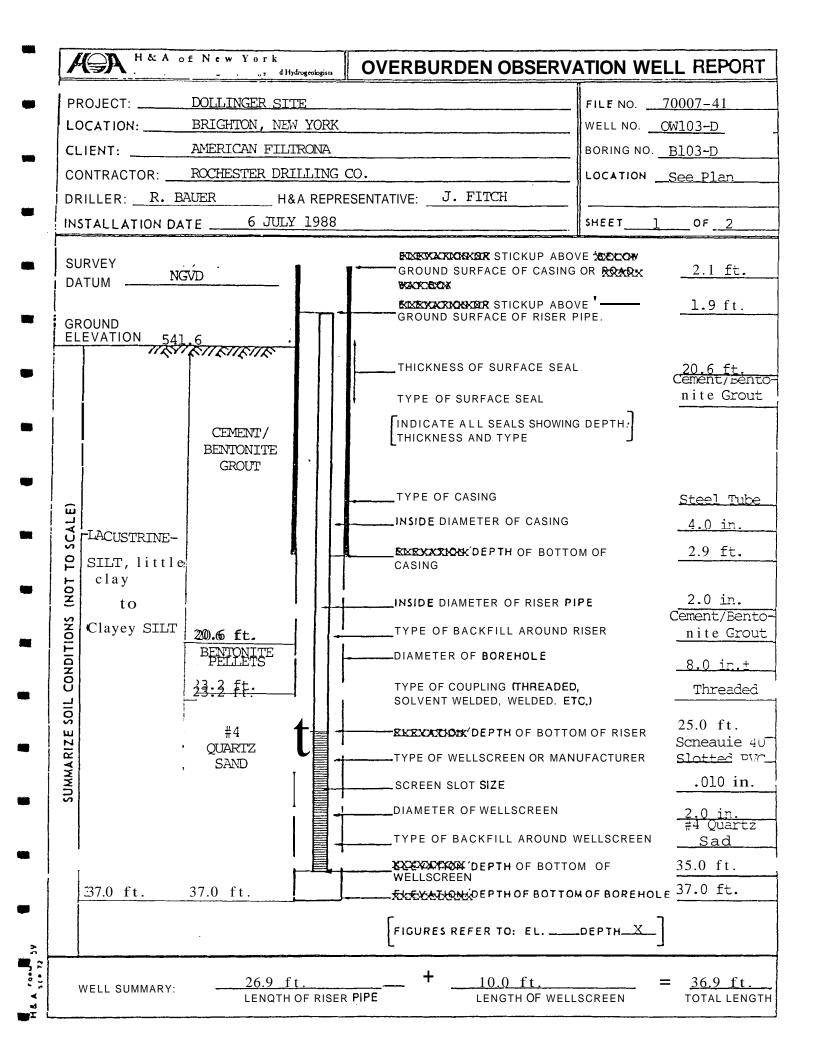

.

Overburden Groundwater Monitoring Well Reports


ASA

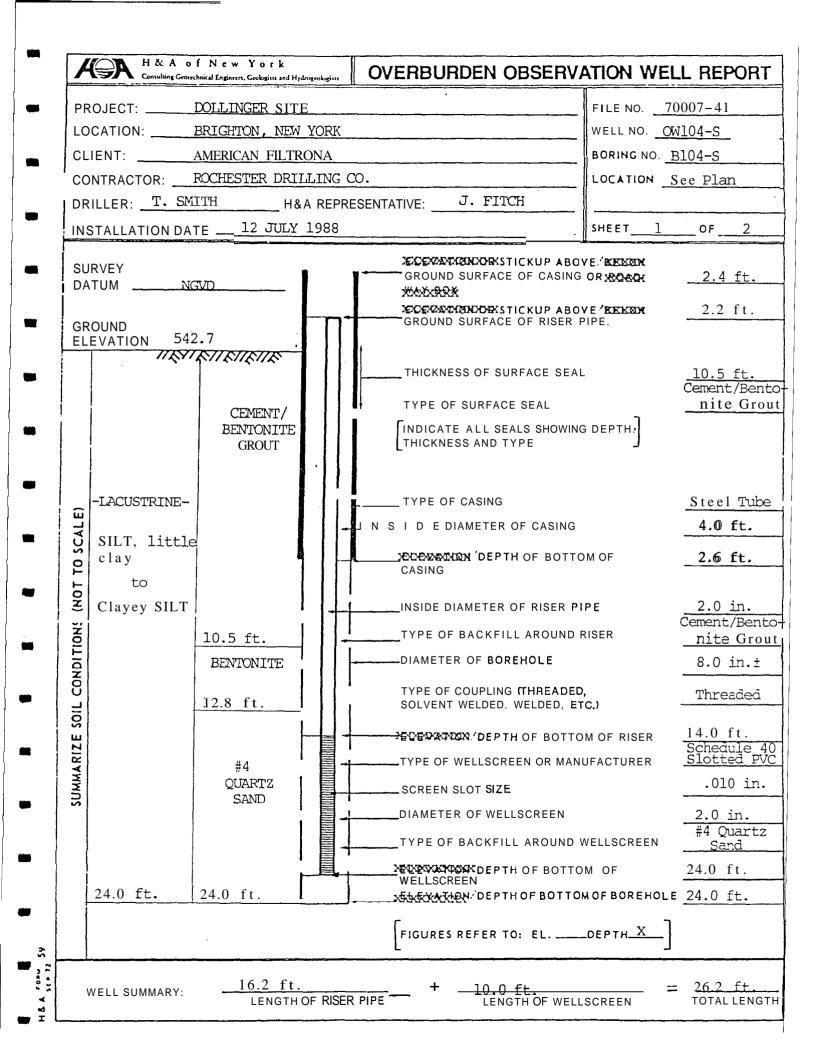
OW/PZ NUMBE	R:	-S	ELEVATION SUBTRA	HEND	FILE NO. 70007-41 PAGE NO. 2 OF 2		
DATE	TIME	ELAPSED TIME	DEPTH OF WATER FROM	ELEVATION OF WATER	REMARKS	READ BY	
7/ 6/88	0800	15 hrs.	9.6 ft.	534.3		JGT	
7/ 7/88	0752	1.5 days	6.9 ft.	537.0		JF	
7/ 8/88	1130	3 days	7.2 ft.	536.7		JT/NL	
7/11/88	0943	6 days	6.6 ft.	537.3		JF	
7/12/88	0754	7 days		536.8		JF	
7/12/88	1130	**wel	l developed by d	cillers**			
7/18/88	1625	13 days	6.2 ft.	537.7	Measured by General Testing Corp.	GTC	
8/03/88	1635	29 days	5.1 ft.	538.8		JF	
8/22/88		48 days	<u>6.9 ft.</u>	537.0		LSD	
1/15/90	1425		2.4 ft.	541.5		SFP	
8/19/91	1030		9.1 ft.	534.8		JGT	
8/19/91	1525		9.1 ft.	534.8		JGT	
8/21/91	1008		9.2 ft.	534.7		JGT	
8/26/91	0906		9.5 ft.	534.4		JGT	
9/05/91			10.0 ft.	533.9		МЈС	
10/04/91			11.8 ft.	532.1		J M	
					· · · · · · · · · · · · · · · · · · ·		
· · · · ·							
				<u></u>		 	
					· · · · · · · · · · · · · · · · · · ·	 	


ASA Consultin		eers, Geologists and Hydro	Geologists	ROUNE	DWATER LEVEL	MONITORING REPO	RT—	
O₩/₽⋥ NUMBER	.: <u>OW101-D</u>		ELEVATION	I SUBTRA	HEND <u>543.7</u>	FILE NO. 70007-41 PAGE NO. 2 of 2		
DATE	ТІМЕ	ELAPSED TIME	DEPTH DF		ELEVATION OF WATER	REMARKS	REAI BY	
7/ 5/88	0830	4 days	21.8	ft.	521.9	In augers.	JF	
7/ 5/88	1540	4 days	29.5	ft.	514.2	40 minutes after bailing	JF	
7/ 6/88	0800	5 days	27.6	ft.	516.1		JGT	
7/ 7/88	0748	6 days	24.5	ft.	519.2		JF	
7/ 8/88	1135	7 days	21.3	ft.	522.4		JF	
7/11/88	0945	10 <u>days</u>	21.7	Et.	522.0		JF	
7/12/88	0800	11 days	20.1		523.6		JF	
7/12/88	1100	**well de	eveloped l	oy dril		remained muddy)**		
7718/88	1625	17 days	19.3 f		524.4	Measured by General Testing Corp.	GTC	
8/03/88	1635	33 days	12.7 f	īt.	531.0		JF	
8/22/88	`	52 days			527.3		LSD	
1/15/90	1430		6.1		537.6		SFP	
8/19/91	1035		9.7	Et.	534.0		JGT	
8/19/91	1520		9.7		533.0	<u></u>	JGT	
8/21/91	1010		9.9	Ét.	533.8		JGT	
8/26/91	0907		10.2	Et.	533.5		JGT	
9/05/91			10.6	Ét.	533 . 1 ·		MJC	
10/04/91	<u></u>		13.8 1	t.	529.9		JM	
	· · · · · · · · · · · · · · · · · · ·							
					<u></u>			
	<u></u>							


		een, Geologius and Hydr	ELEVATION SUBTRAH		FILE NO. 70007-41		
DATE		ELAPSED	DEPTH OF WATER	ELEVATION OF WATER	PAGE NO2 OF 2 REMARKS	READ BY	
7/ 8/88	1140	1.5 day	FROM <u>G.S.</u> dry			JGT/NL	
7/11/88	1042	5 days	26.1 ft.	515.0			
7/12/88	0805	6 days	<u> </u>	515.9		JF JF	
7/18/88	1640	12 days		520.0	Measured by General		
8/03/88	1642	28 days	· 13.1 ft.	528.0	Testing Corp.	_GTC JF	
0 / 22 / 0.0		47 days		522.2			
<u>8/22/88</u> 1/15/90	1435	ar days	7.8 ft.	533.3 538.9 .		LSD	
						SFP	
8/19/91	1515		11.6 ft.	529.5		JGT	
8/21/91	1016		<u>11.9 ft.</u>	529.2	· · ·	JGT	
8/26/91	0917		13.2 ft.	527.9		JGT	
9/06/91			15.1 ft.	526.0		МЈС	
10/04/91		~	20.5 ft.	520.62		JM	
· · · · · · · · · · · · · · · · · · ·				<u> </u>			
					·		
				<u>, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			
				. <u> </u>			

ŀ	H&A o Consulting Georee	INEW YOFK hnical Engineers, Geologists and Hydroge	rologists O	VERBURDEN OBSERV	ATION WEL	L REPOR
PF	ROJECT:I	OLLINGER SITE			FILE NO. 70	0007-41
LC	DCATION:	BRIGHION, NEW YO	ORK		WELL NO. ON	102-D
CL	_IENT:2	MERICAN FILTRON	A		BORING NO. E	3102-D
		COCHESTER DRILL			LOCATION S	See Plan
DR	RILLER: L. PAL	KER H&A	REPRESENT	TATIVE: J. FITCH		
		TE6]			SHEET <u>1</u>	OF
	JRVEY ATUM <u>NGVI</u>)	Ţ	고 2016년 2017년 2017년 STICKUP ABO GROUND SURFACE OF CASING ※요작조망명도 같은 문주주주 전자가 한자 STICKUP ABO	A E \REFLOM	<u>2.5 ft</u> 2.3 ft
	ROUND EVATION 540	.8 .8 .8		GROUND SURFACE OF RISER F	PIPE.	32.0 ft
				TYPE OF SURFACE SEAL	_	Cement/Ber nite Grou
		CEMENT/		INDICATE ALL SEALS SHOWING THICKNESS AND TYPE	G DEPTH,	
E)		BENTONITE		TYPE OF CASING		Steel Tube
TO SCALE)	-LACUSTRINE-	GROUT		INSIDE DIAMETER OF CASING 某来是来众教教教 'DEPTH OF BOTTC CASING	DM OF	<u>2.5 ft</u>
S (NOT	SILT, little clay			INSIDE DIAMETER OF RISER P	IPE	2.0 in Cement/Ber
LIONS	to	32.0 ft.	{	TYPE OF BACKFILL AROUND	RISER	<u>nite</u> Grou
CONDIT	clayey SILT	BENTONITE PELLETS		DIAMETER OF BOREHOLE		8.0 in.
SOIL CO		<u>34.0 ft.</u>		TYPE OF COUPLING (THREADED SOLVENT WELDED, WELDED, ET		Threaded
SUMMARIZE SC		#4 QUARTZ		TYPE OF WELLSCREEN OR MAN		<u>35.7 ft.</u> Scheduled <u>Sl</u> otted <u>F</u>
MML		SAND		SCREEN SLOT SIZE		.010 i
2		ĺ		DIAMETER OF WELLSCREEN		<u>2.0 in.</u>
				TYPE OF BACKFILL AROUND	WELLSCREEN	#4 Quartz
ļ		r-	昌 _十	WELLSCREEN	DM OF	<u>50.7</u> ft.
	50.7 ft.	50.7 ft.		XEXEEXEMAXXXXXXXXXXXXXXXXXXXXXXXXXXX	MOFBOREHOLE	<u>50.7 ft.</u>
				FIGURES REFER TO: EL.	_DEPTH	
_		38.0 ft.		⊥ 15.0 ft.	=	53.0 ft.
1	WELL SUMMARY:	LENGTH OF	RISER PIPE	LENGTH OF WELL	SCREEN	TOTAL LENG

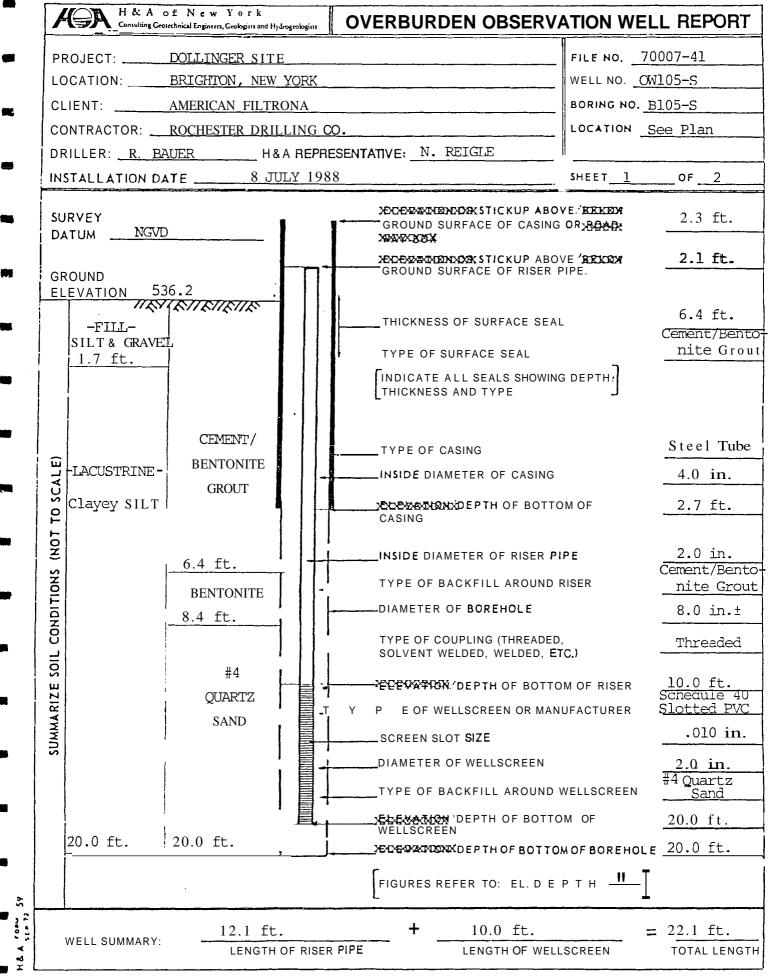
DATETIMEELAPSED TIMEDEPTH OF WATER FROMG.S.ELEVATION OF WATERREMARKS7/ $5/88$ 1630 $1/2$ hr. dry In augers.7/ $6/88$ 0800 15 hrs. 43.8 ft. 497.0 In augers.7/ $7/88$ 0743 1.5 days 50.3 ft. 490.5 (water muddy)7/ $7/188$ 0743 1.5 days 50.3 ft. 490.5 (water muddy)7/ $7/188$ 0743 1.5 days 50.3 ft. 490.5 (water muddy)7/11/88 0949 6 days 30.0 ft. 510.8 $712/88$ 100 7/12/88 1100 **welldeveloped by dr llers** $712/88$ 1100 **welldeveloped by dr llers**7/18/88 1640 13 days 13.6 ft. 527.2 Measured by General Testing Corp.8/03/88 1642 29 days 12.1 ft. 528.7 8/22/88 48 days 10.4 ft. 530.4 1/15/90 1440 5.5 ft. 535.3 8/19/91 1510 12.6 ft. 527.9 8/22/91 0920 13.9 ft. 526.9 9/06/91 $$ 15.0 ft. 525.3 10.0.2 ft. 525.3 521.6	OW/PZ NUMBER: OW102-D			ELEVATION SUBTRAN	1END	FILE NO. 70007-41 PAGE NO. 2 of 2		
7/6/88 0800 $15 hrs.$ $43.8 ft.$ 497.0 In augers. $7/7/88$ 0743 $1.5 days$ $50.3 ft.$ 490.5 (water muddy) $7/11/88$ 0949 $6 days$ $30.0 ft.$ 510.8 $7/12/88$ 0809 $7 days$ $24.4 ft.$ 516.4 $7/12/88$ 1100 **welldeveloped by drillers** $7/18/88$ 1640 $13 days$ $13.6 ft.$ 527.2 $8/03/88$ 1642 $29 days$ $12.1 ft.$ 528.7 $8/22/88$ $48 days$ $10.4 ft.$ 530.4 $1/15/90$ 1440 $5.5 ft.$ 535.3 $8/19/91$ 1510 $12.6 ft.$ 527.9 $8/26/91$ 0920 $13.9 ft.$ 526.9 $9/06/91$ $15.0 ft.$ 525.3 $10.2 ft.$	DATE	TIME	1	DEPTH OF WATER	ELEVATION		READ BY	
7/7/88 0743 $1.5 days$ $50.3 ft.$ 490.5 (water muddy) $7/11/88$ 0949 $6 days$ $30.0 ft.$ 510.8 $7/12/88$ 0809 $7 days$ $.24.4 ft.$ 516.4 $7/12/88$ 1100 **welldeveloped by drillers** $7/12/88$ 1100 **welldeveloped by drillers** $7/18/88$ 1640 $13 days$ $13.6 ft.$ 527.2 $8/03/88$ 1642 $29 days$ $12.1 ft.$ 528.7 $8/22/88$ $48 days$ $10.4 ft.$ 530.4 $1/15/90$ 1440 $5.5 ft.$ 535.3 $8/19/91$ 1510 $12.6 ft.$ 528.2 $8/21/91$ 1019 $12.9 ft.$ 527.9 $8/26/91$ 0920 $13.9 ft.$ 526.9 $9/06/91$ $15.0 ft.$ 525.3 $10.2 ft.$	7/ 5/88	1630	1/2 hr.	dry		In augers.	JF	
7/11/88 0949 6 days 30.0 ft. 510.8 $7/12/88$ 0809 7 days . 24.4 ft. 516.4 $7/12/88$ 1100 **well developed by drillers** $7/18/88$ 1640 13 days 13.6 ft. 527.2 $8/03/88$ 1642 29 days 12.1 ft. 528.7 $8/22/88$ 48 days 10.4 ft. 530.4 $1/15/90$ 1440 5.5 ft. 535.3 $8/19/91$ 1510 12.6 ft. 527.9 $8/21/91$ 1019 12.9 ft. 527.9 $8/26/91$ 0920 13.9 ft. 526.9 $9/06/91$ 15.0 ft. 525.3 1	7/ 6/88	0800	15 hrs.	43.8 ft.	497.0	In augers.	JGT	
7/12/88 0809 7 days $. 24.4$ ft. 510.8 $7/12/88$ 1100 **welldeveloped by drillers** $7/12/88$ 1100 **welldeveloped by drillers** $7/18/88$ 1640 13 days 13.6 ft. 527.2 Measured by General Testing Corp. $8/03/88$ 1642 29 days 12.1 ft. 528.7 $8/22/88$ 48 days 10.4 ft. 530.4 $1/15/90$ 1440 5.5 ft. 535.3 $8/19/91$ 1510 12.6 ft. 528.2 $8/21/91$ 1019 12.9 ft. 527.9 $8/26/91$ 0920 13.9 ft. 526.9 $9/06/91$ 15.0 ft. 525.3 10.2 ft.	7/ 7/88	0743	1.5 days	50.3 ft.	490.5	(water muddy)	JF	
7/12/88 0809 7 days $. 24.4 ft.$ 516.4 $7/12/88$ 1100 **welldeveloped by drillers** $7/18/88$ 1640 $13 days$ $13.6 ft.$ 527.2 Measured by General Testing Corp. $8/03/88$ 1642 $29 days$ $12.1 ft.$ 528.7 $8/22/88$ $48 days$ $10.4 ft.$ 530.4 $1/15/90$ 1440 $5.5 ft.$ 535.3 $8/19/91$ 1510 $12.6 ft.$ 528.2 $8/21/91$ 1019 $12.9 ft.$ 527.9 $8/26/91$ 0920 $13.9 ft.$ 526.9 $9/06/91$ $15.0 ft.$ 525.3 $10.2 ft.$ 525.3 $10.2 ft.$	7/11/88	0949	6 days	30.0 ft.	510.8		JF	
7/12/88 1100 **well developed by drillers** $7/18/88$ 1640 13 days 13.6 ft. 527.2 Measured by General Testing Corp. $8/03/88$ 1642 29 days 12.1 ft. 528.7 Measured by General Testing Corp. $8/22/88$ 48 days 10.4 ft. 530.4 Section Corp. $1/15/90$ 1440 5.5 ft. 535.3 Section Corp. $8/19/91$ 1510 12.6 ft. 528.2 Section Corp. Section Corp. $8/21/91$ 1019 12.9 ft. 527.9 Section Corp. Section Corp. $8/26/91$ 0920 13.9 ft. 526.9 Section Corp. Section Corp. $9/06/91$ 15.0 ft. 525.3 Section Corp. Section Corp.	7/12/88	0809	7 days	. 24.4 ft.			JF	
8/03/88164229 days12.1 ft.528.7 $8/22/88$ 48 days10.4 ft.530.4 $1/15/90$ 14405.5 ft.535.3 $8/19/91$ 151012.6 ft.528.2 $8/21/91$ 101912.9 ft.527.9 $8/26/91$ 092013.9 ft.526.9 $9/06/91$ 15.0 ft.525.3 10.2 ft525.3521.6	7/12/88	1100	**well	developed by dri	llers**			
8/22/88 $48 days$ $10.4 ft.$ 530.4 $1/15/90$ 1440 $5.5 ft.$ 535.3 $8/19/91$ 1510 $12.6 ft.$ 528.2 $8/21/91$ 1019 $12.9 ft.$ 527.9 $8/26/91$ 0920 $13.9 ft.$ 526.9 $9/06/91$ $15.0 ft.$ 525.3 $10.2 ft.$	7/18/88	1640	13 days	13.6 ft.	527.2		GTC	
1/15/90 1440 $5.5 ft.$ 535.3 $8/19/91$ 1510 $12.6 ft.$ 528.2 $8/21/91$ 1019 $12.9 ft.$ 527.9 $8/26/91$ 0920 $13.9 ft.$ 526.9 $9/06/91$ $15.0 ft.$ 525.3 $10.2 ft.$	8/03/88	1642	29 days	12.1 ft.	528.7		JF	
8/19/91 1510 12.6 ft. 528.2 8/21/91 1019 12.9 ft. 527.9 8/26/91 0920 13.9 ft. 526.9 9/06/91 15.0 ft. 525.3 1	8/22/88		48 days	10.4 ft.	530.4		LSD	
8/21/91 1019 12.9 ft. 527.9 8/26/91 0920 13.9 ft. 526.9 9/06/91 15.0 ft. 525.3 1	1/15/90	1440		5.5 ft.	535.3		SFP	
8/26/91 0920 13.9 ft. 526.9 9/06/91 15.0 ft. 525.3 1	8/19/91	1510		12.6 ft.	528.2		JGT	
9/06/91 15.0 ft. 525.3 1	8/21/91	1019		12.9 ft.	527.9		JGT	
	8/26/91	0920		13.9 ft.	526.9		JGT	
10/04/91 19.2 ft. 521.6	9/06/91			15.0 ft.	525.3		МЈС	
	10/04/91			19.2 ft.	521.6		JM	
					<u> </u>			
					uu, <u>,,,,,,</u> ,,,,,,,			
	· · · · · · · · · · · · · · · · · · ·			·				
		·						


OW/PZ NUMBER		err, Crobyjess and Hydr	ELEVATION SUBTRA	HEND 541.5	FILE NO PAGE NO2 of 2		
DATE	TIME	ELAPSED TIME	DEPTH OF WATER FROMG.S.	ELEVATION OF WATER	REMARKS	REA BY	
7/ 8/88	1150	1.5 days	24.0 ft.	517.5		JGT/N	
7/11/88	1036	6 days	9.2 ft.	532.3		JF	
7/12/88	0816	7 days	17.7 ft.	523.8		JF	
7/12/88	1300+	**we	11 developed by d	irillers.			
7/18/88	1650	13 days	• 12.1 ft.	529.4	Measured by General Testing Corp.	GTC	
8/03/88	1646	29 days	5.2 ft.	536.3		JF	
8/22/88		48 days	6.5 ft.	535.0		lsd	
1/15/90	1453		2.9 ft.	538.6		SFP	
8/19/91	1456		8.9 ft.	532.6		JGT	
8/21/91	1022		9.2 ft.	532.3		JGT	
8/26/91	0925		9.7 ft.	531.8		JGT	
9/04/91			10.6 ft.	530.9		MJC	
9/05/91			11.0 ft.	530.5		MJC	
10/04/91			14.2 ft.	527.3		JM	
					•		

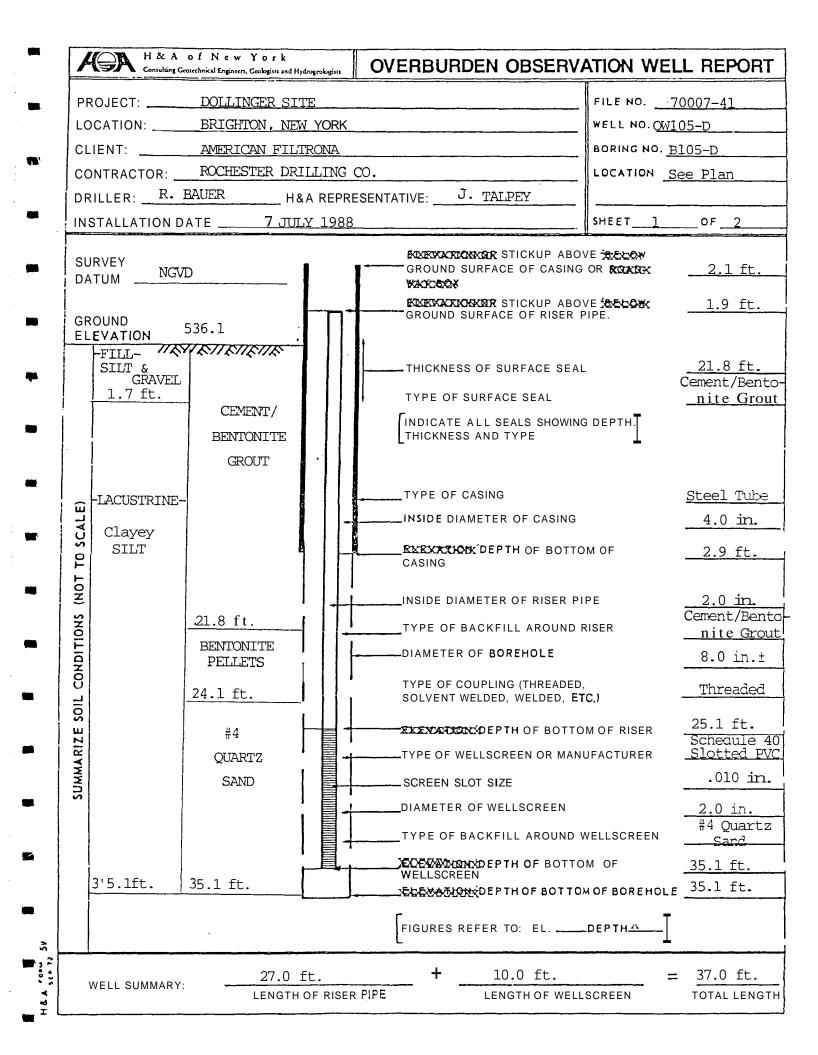
OW/PZ NUMBER	<u>OW10</u>)3-D .	ELEVATION SUBTRAF	1END541.6	FILE NO. 70007-41 PAGE NO. 2 OF 2	
DATE	TIME		DEPTH OF WATER	ELEVATION OF WATER	REMARKS	REA BY
7/ 7/88	0755	15 hrs.	34.6 ft.	507.0		JF
7/ 8/88	1148	1.5 days	30.5 ft.	511.1		JGT/1
7/11/88	1038	5 days	20.1 ft.	521.5		JF
7/12/88	0814	6 days	16.5 ft.	525.1	·	JF
7/12/88	1300+	**we	11 developed by a			
7/18/88	1650	12 days	9.6 ft.	532.0	Measured by General	GT
8/03/88	1646	28 days	6.6 ft.	535.0	Testing Corp.	JF
8/22/88		47 days	7.6 ft.	534.0		LSD
1/15/90	1450		4.6 ft.	537.0		SFI
8/19/91	1500		9.6 ft.	532.0		JGI
8/21/91	1025		9.9 ft.	531.7		JGI
8/26/91	0923		10.3 ft.	531.3		JGT
9/04/91			11.0 ft.	530.6		MJC
9/05/91			11.5 ft.	530.1		_MJC
10/04/91			14.0 ft.	527.6		JM
				<u> </u>		
					······································	
		· · · · · · · · · · · · · · · · · · ·				

•

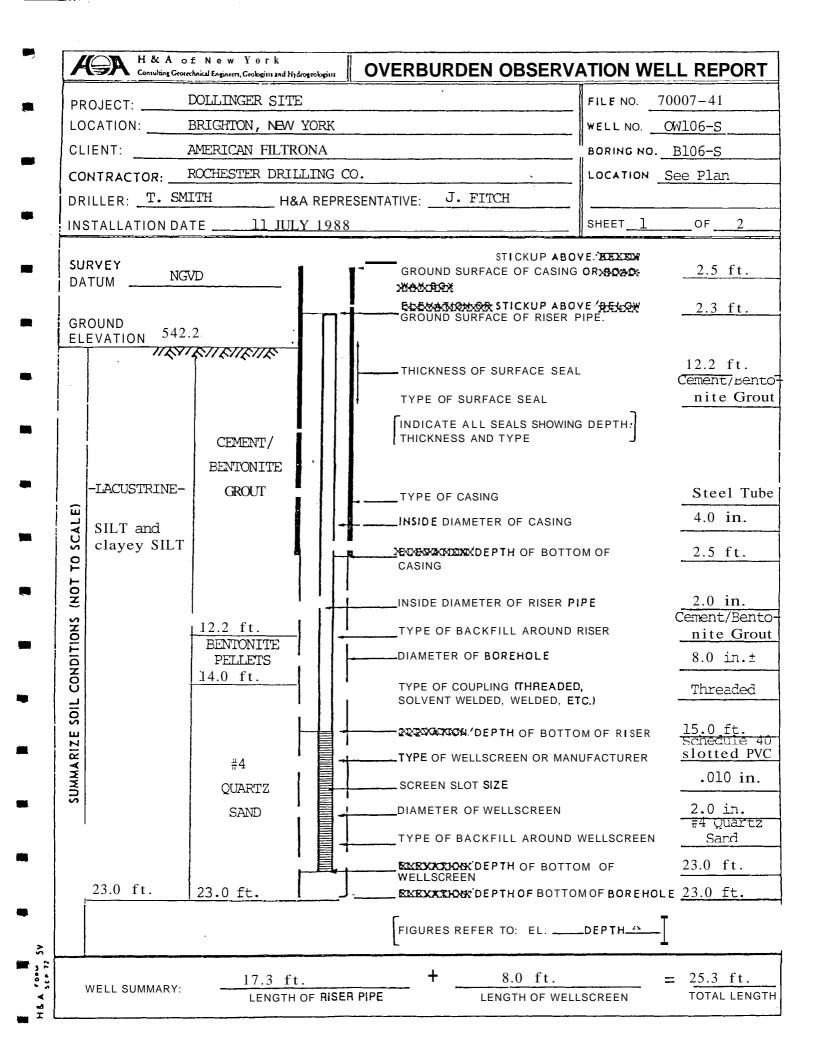
•••

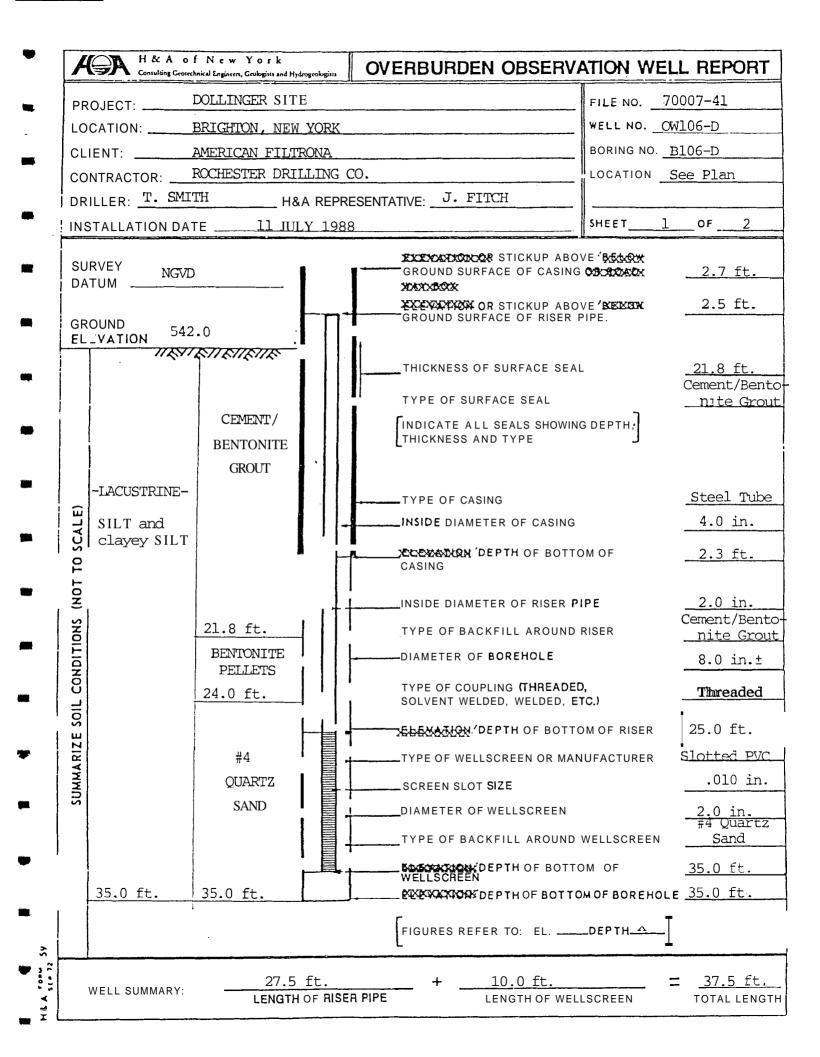


OW/PZ NUMBER	win Owio	4-s	ELEVATION SUBTRAF	542.7	FILE NO. 70007-41 PAGE NO. 2 of 2	
DATE	TIME	ELAPSED TIME	DEPTH OF WATER	ELEVATION OF WATER	REMARKS	READ
7/12/88	1230	2 hours	dry			JF
7/18/88	1705	6 days	20.1 ft.	522.6	Measured by Genral	070
8/03/88	1650	22 days	8.7 ft.	534.0	Testing Corp.	GTC JF
8/22/88		41 days	6.0 ft.	536.7		LSD
1/15/90	1507		4.0 ft.	538.7		SFP
8/19/91	1535		7.6 ft.	535.1		Jet
8/21/91	1042		7.6 ft.	535.1		JGT
8/26/91	0932		7.7 ft.	535.0		JGT
9/06/91			7.4 ft.	535.3		МЈС
9/12/91			17.8 ft.	524.9		MJC
10/04/91			8.1 ft.	534.6		JM
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	·	
			·			


Å		f New York hnical Engineers, Geologists and Hydrogeologist	OVERBURDEN OB	SERVATION WEL	L REPOR
PR	OJECT:	OLLINGER SITE		FILE NO. 70	007-41
LO	CATION:F	BRIGHION, NEW YORK		WELL NO.	W104-D
CL	IENT:	MERICAN FILTRONA		BORING NO.	B104-D
со	NTRACTOR:	OCHESTER DRILLING	CO.	LOCATION S	See Plan
DR	ILLER: L. PAF	KER H&A REI	RESENTATIVE: J. TALPEY	·	
INS	TALLATION DAT	E7 JULY 1988		SHEET	OF2
	RVEY NGVD TUM ~	1	JEXX EXX & STICK GROUND SURFACE OF አዋል የራይሮአ		3.1 ft.
CP	OUND FAD -		GROUND SURFACE OF	(UP ABOVE 'REKRX Friser Pipe.	2.9 ft.
	EVATION D42.	CEMENT/	THICKNESS OF SURFA TYPE OF SURFACE SE INDICATE ALL SEALS THICKNESS AND TYPE	EAL SHOWING DEPTH?	24.7 ft. Cement/Ben nite Gro
T TO SCALE)	-LACUSTRINE- SILT, little clay to	BENTONITE GROUT	TYPE OF CASING INSIDE DIAMETER OF کورونوهی کوری کو که		Steel Tube 4.0 in. 1.9 ft.
(NOT	clayey SILT		INSIDE DIAMETER OF	RISER PIPE	2.0 in. Cement/Ber
IONS		24.7 ft.	TYPE OF BACKFILL A	ROUND RISER	nite Gro
		BENTONITE	DIAMETER OF BOREH	OLE	8.0 in.:
SOIL CONDIT		PELLETS 26.9 ft.	TYPE OF COUPLING (TH SOLVENT WELDED, WE		Threaded
			HECENARIAN DEPTH O	F BOTTOM OF RISER	28.4 ft. Schedule
L RIZ		#4	TYPE OF WELLSCREEN	I OR MANUFACTURER	Slotted I
SUMMARIZE		QUARTZ	SCREEN SLOT SIZE		<u>.010 ir</u>
ร		SAND	DIAMETER OF WELLSC	CREEN	2.0 in.
			TYPE OF BACKFILL A	ROUND WELLSCREEN	#4 Quartz Swd
					38.4 ft.
	38.5 ft.	38.5 ft.	WELLSCREEN	FBOTTOMOFBOREHOLI	E <u>38.5 ft.</u>
			FIGURES REFER TO:	ELDEPTH	
	WELL SUMMARY:	31.1 ft. LENQTH OF RI	+ 10.0 SER PIPE LENGTH	ft. :	= <u>41.1 ft.</u> TOTAL LEN

OW/PZ NUMBE	R:	<u>-D</u> .	ELEVATION SUBTRA	HEND 542.7	FILE NO	
DATE	TIME	ELAPSED TIME	DEPTH OF WATER FROMG.S.	ELEVATION OF WATER	REMARKS	READ BY
7/ 8/88	1155	l day	34.0 ft.	508.7		JGT/N
7/11/88	1034	4 days	18.9 ft.	523.8		J-!?
7/12/88	0833	5 days	16.6 ft.	526.1		J-!?
7/12/88	1300+	5 days	**well deve	loped by drille	rs**	
7/18/88	1705	11 days	-14.4 ft.	528.3	Measured by General Testing Corp.	GTC
8/03/88	· 1650	27 days	14.0 ft.	528.7		JF
8/22/88		46 days	14.9 ft.	527.8		LSD
1/15/90	1502		14.5_ft.	528.2		SFP
8/19/91	1530		15.6 ft.	527.1		JGT
8/21/91	1043		15.7 ft.	527.0		JGT
8/26/91	0929		15.8 ft.	526.9		JGT
9/05/91			16.2 ft.	526.5		MJC
9/07/91			17.4 ft.	525.3		MJC
10/04/91			16.6 ft.	526.1		JM
				······································		
				. <u></u>		
				·		
					·	
· · · ·						


•


OW/PZ NUMBER	c: 0W105	5-S	ELEVATION SUBTRA	HEND	FILE NO. 70007-41 PAGE NO. 2 OF 2	
DATE	TIME	ELAPSED TIME	DEPTH OF WATER	ELEVATION OF WATER	REMARKS	READ BY
7/ 8/88	1205	2 hrs.	dry			JGT/NL
7/11/88	1028	3 days	5.4 ft.	530.8	-	JF
7/12/88	0821	4 days	5.5 ft.	530.7		JF
7/12/88	1300+	**w	ell developed by	drillers*"	_	
7/18/88	1735	10 days	. 2.9 ft.	533.3	Measured by General	GTC
8/03/88	1702	26 days	3.7 ft.	532.5	Testing Corp.	JF
8/22/88		45 days	4.2 ft.	532.0		LSD
1/15/90	1525		2.6 ft.	533.6		SFP
8/21/91	0947		3.2 ft.	533.0		JGT
8/26/91	0946		3.5 ft.	532.7		JGT
9/05/91			3.7 ft.	532.5		MJC
9/08/91			3.7 ft.	532.5		MJC
10/04/91			3.3 ft.	532.9		ЈМ
10,01,71			5.5 20.			511
					+	
		1	(

OW/PZ NUMBER:			ELEVATION SUBTRAN	IEND	FILE NO PAGE NO2 OF 2	
DATE	TIME	ELAPSED TIME	DEPTHOFWATER FROMG.S.	ELEVATION OF WATER	REMARKS	READ BY
7/ 8/88	1200	l day	0.4 ft.	535.7		JGT/NL
7/11/88	1030	4 days	15.4 ft.	520.7	-	JF
7/12/88	0823	5 days	12.8 ft.	523.3		JF
7/12/88	1300+	5 days	**well deve	loped by drille	rs**	
7/18/88	. 1735	ll days	, 8.8 ft.	527.3	Measured by General Testing Corp.	GTC
8/03/88	1702	27 days	6.5 ft.	529.6		JF
8/22/88		46 days	6.8 ft.	529.3		LSD
1/15/90	1535		5.1 ft.	531.0		SFP
8/21/91	0945		5.9 ft.	530.2		JGT
8/26/91	0947		5.9 ft.	530.2		JGT
9/05/91			5.9 ft.	530.2		MJC
10/04/91			6.7 ft.	529.4		JM

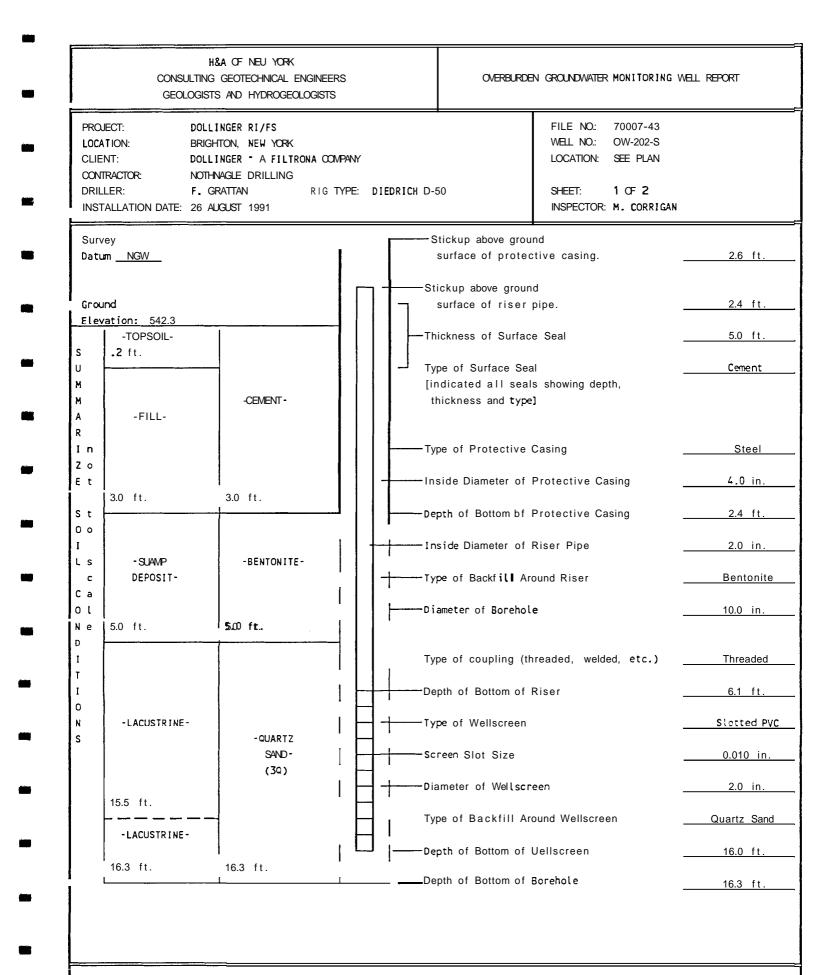
O₩/P≩ NUMBER	R:0W106	i <u>-s</u>	ELEVATION SUBTRAF	1END _542.2	FILE NO. 70007-41 PAGE NO. 2 OF 2	
DATE		ELAPSED TIME	DEPTH OF WATER FROMG.S.	ELEVATION OF WATER	REMARKS	READ BY
7/12/88	1000	17 hrs.				JF
7/18/88	1525	6 days	11.7 ft.	530.5	Measured by General Testing Corp.	GIC
8/03/88	1654	_22 days	4.7 ft.	537.5	_	J-F
8/22/88		41 days	6.0 ft.	536.2		LSD
1/15/90	1514		2.6 ft.	539.6		SFP
8/19/91	1405		7.9 ft.	534.3		JGT
8/20/91	1033		8.1 ft.	531.4		JGT
8/26/91	0937		8.3 ft.	533.9		JGT
9/05/91			8.4 ft.	533.8		MJC
10/04/91			12.1 ft.	530.1		JM
						·

OW/P⊉ NUMBER:	<u>OW10</u>	6-D ·	ELEVATION SUBTRAF	1END 542.0	FILE NO PAGE NO OF 2	
DATE	TIMĖ	ELAPSED TIME	DEPTH OF WATER FROMG.S	ELEVATION OF WATER	REMARKS	READ BY
7/11/88	1022	3 days	30.4 ft.	511.6	Measured in augers	JF
7/12/88	0827	4 hrs.	12.4 ft.	529.6		JF
7/12/88	1300+	**well	developed by dr	iller		
7/18/88	1525	10 days	9.4 ft.	532.6	Measured by General Testing Corp.	GTC
8/03/88	1654	26 days	. 8.5 ft.	533.5		JF
8/22/88		45 days	9.2 ft.	532.8		LSD
1/15/90	1518		7.0 ft.	535.0		SFP
8/19/91	1400		10.6 ft.	531.4		JGT
8/21/91	1035		10.7 ft.	531.3		JGT
8/26/91	0940		10.9 ft.	531.1		JGT
9/05/91	-		11.0 ft.	531.0		MJC
10/04/91			9.1 ft.	532.9		JM
				<u> </u>		
· · · · · · · · · · · · · · · · · · ·					-	
				<u></u>	· · · · · · · · · · · · · · · · · · ·	

LOC. CLIE CON DRII	AT ION: BRIG ENT: DOLL ITRACTOR: NOT		TYPE: DIEDRICH D-25	FILE NO: 70007-43 WELL NO: OW-201-S LOCATION: SEE PLAN SHEET: 1 OF 2 INSPECTOR: M CORRIG	AN
Sur Datu	vey ım <u>NGVD</u>			ow ground of protective casing.	<u> 0.0 ft.</u>
Gro	und <u>va</u> tion: 542.9		Depth belo	w ground of riser pipe.	<u> 0.3 ft.</u>
S U M	-CEMENT- -5 ft.	-CEMENT-	Type of S [indicated	of Surface Seal urface Seal d all seals showing depth, s and type]	<u> 3.75 ft.</u> Cement
A R In	-FILL-	1.75 ft.	Type of P	rotective Casing	Roadway B
Z o E t S t D o	2.0 ft.	-BENTONITE-		ameter of Protective Casing Bottom of Protective Casing	<u>8.0 in.</u> 1.0 ft.
I Ls c		3.75 ft.		ameter of Riser Pipe ackfill Around Riser	2.0 in. Bentonit
Ca Ol Ne D I			(Diametero	of Borehole pupling (threaded, welded, etc.)	8.0 in.
T I O		-QUARTZ SAND -	Depth of E	Bottom of Riser	4.8 ft.
N S	-LACUSTRINE-	(30)	Type of We		<u>Slotted</u> 0.010_in
			Diameter of	of Wellscreen	2. 0 in.
			╵┠┫╹	ackfill Around Wellscreen	Quartz S
	15.0 ft.	14.90 ft.		Bottom of Uellscreen Bottom of Borehole	14.6 ft. 15.0 ft.

Remarks:

÷


Well No. 0w-201-S

	CONSULTING	& A OF NEW Y GEOTECHNIC IS AND HYDRC	AL ENGINEERS		GROUNI	DWATER LEVEL MONITORING REPORT	
WELL NUMBE	R: 0W201-S		GROUND SURFACE ELEVAT	ION: 542.9		FILE NO. 70007-43 PAGE NO. 2 OF 2	
DATE	TIME	ELAPSED TIME	DEPTH OF WA FROM	TER	ELEVATION OF WATER	REMARKS	REAI BY
8/21/91	10:57	2 days	<u> </u>	<u>GS</u> .6	538.3	Measured from top of inner casing; ground surface (concrete	JGT
8/26/91	10:23	7 days	4.6 4	.9	538.0	floor slab) at top of outer casing	JG1
9/6/91			3.6		539.0		MJC
9/12/91			3.9		538.7		MJC
10/07/91			9.2		533.4		IL
10/11/91			6.2		536.4		 ال
<u></u>							
<u></u>							
							<u> </u>
					· · · · · · · · · · · · · · · · · · ·		I
							

		H&A OF NEW YORK ING GEOTECHNICAL ENGINEERS SISTS AND HYDROGEOLOGISTS	04	ERBURGEN GROUNDWATER MONITORING	G WELL REPORT
LOCA CLIE CON DRIL	ATION: BF ENT: DO TRACTOR: NO		any Pe: Diedrich D-25	FILE NO: 70007-43 WELL NO: OW-201-0 LOCATION: SEE PLAN SHEET: 1 OF 2 INSPECTOR: M CORRIGA	N
Surv Datu	vey um <u>NGVD</u>	1	Depth below surface of	ground protective casing.	0.0 ft.
Grou	_		Depth below g	ground riser pipe.	<u>0.3</u> ft.
<u>Elev</u> S U	ration: 542.9	-CEMENT- 1.5 ft.	Thickness of Type of Surfa		17.0 ft.
M M A	.5 ft.		[indicated a thickness ar	ll seals showing depth, nd type]	
2 [n 2 o	-FILL- 2.0 ft.	-BENTONITE/ CEVENT GROUT -	Type of Prote	ective Casing	Roadway Box
t St				ter of Protective Casing om of Protective Casing	8.0 in. 1.0 ft.
) 0 . s		15.0 ft.	Inside Diame	ter of Riser Pipe	2.0 in. Bentonite/Ceme
c a) l	-LACUSTRINE-	-BENTONITE-	Type of Back	kfill Around Riser Borehole	<u> </u>
le)	15 F &	17.0 ft.	Type of coup	ling (threaded, welded, etc.)	Threaded
[]]	15.5 ft.		Depth of Bott	om of Riser	17.9 ft.
1 5		- QUARTZ SAND -	Type of Wells		Slotted PVC
	-LACUSTRINE-	(30)	Screen Slot S		<u> 0.010 in.</u> 2.0 in.
			}- '	ill Arourd Wellscreen	Quartz Sand
	1		Depth of Bott	om of Wellscreen	25.0 ft.
	28.0 ft.	28.0 ft.			

Well No. OU-201-D

	CONSULTING	SA OF NEW GEOTECHN SAND HYD	ICAL ENG				GROUN	DWATER LEVEL MONITORING REPORT	
WELL NUMB	er: 0w201-d		GROUND	SURFACE	ELEVATION:	542.9		FILE NO. 70007-43 PAGE NO. 2 OF 2	
DATE	TIME	ELAPSI TIME		DEPTH FROM	OF WATER TOC		ELEVATION DF WATER	REMARKS	REA BY
8/21/91	10:54	5 days	5	25.6	<u> </u>		517.0	Measured from top of inner casing; ground surface (concrete	JGT
8/26/91	10:21	10 day	ys	22.8	23.1		519.8	floor slab) at top of outer casing	JGT
9/6/91				28.0			514.6		MJC
9/12/91				24.3			518.3		MJC
10/07/91				9.9	<u></u>		532.7		JM
10/11/91				9.7			532.9	······································	JM
<u> </u>									
		<u> </u>						· · · · · · · · · · · · · · · · · · ·	
				/ /					
<u> </u>									
		(

Remarks:

L	CONSULTING G	OF NEW YORK EOTECHNICAL EN AND HYDROGEOLC		GROUN	IDWATER LEVEL MONITORING REPORT	
WELL NUMBE	R: 0W202-S	GRWN	D SURFACE ELEVATION: 542	2.3	FILE NO. 70007-43 PAGE NO. 2 OF 2	
DATE	TIME	ELAPSED TIME	DEPTH OF WATER FROM TOC	ELEVATION OF WATER	REMARKS	F
9/5/91	1500		11.5	533.2	Measured from top of PVC riser.	N
9/11/91			11.5	533.2		N
10/04/91			12.9	531.8		1
			<u></u>			
			· <u>·······</u> ····························			Ť
						1
						$\frac{1}{1}$
						t
						+

LOC CLIE CON DRII	CATION: BRIGHTO ENT: DOLLING		DIEDRICH D-25	FILE NO: 70007-43 WELL NO: 0W-202-D LOCATION: SEE PLAN SHEET: 1 OF 2 INSPECTOR: M. CORRIG/	AN
Datu	rvey um <u>NGVD</u>		Stickuapove grou surface of protec	ctive casing. d	<u> </u>
	ound vation: 542.6	1	surface of riser		<u>2.6 ft.</u>
S U M	-TOPSOIL-	-CEMENT- 2.0 ft.	Type of Surface Sea [indicated all seals	al s shouing depth,	18.8_ft.
M A R In	.2 ft.	- BENTONITE/ CEMENT GROUT-	thickness and type		Steel
Z o E t S t	3.0 ft.	16.8 ft.	Inside Diameter of I Depth of Bottom of I	-	<u> </u>
0 o I L s	-SWAMP DEPOSIT-	-BENTONITE-	Inside Diameter of F		2.0 in. Bentonite/(
Ca Dl Ne	5.0 ft.	18.8 ft.	Type of Backfill Ard		<u> </u>
D I T	-LACUSTRINE-		Type of coupling (th	nreaded, uelded, etc.)	Threaded
1 0 N	15.5 ft.	-QUARTZ SAND-	Depth of Bottom of Riser		<u> 19.9 ft.</u> <u>Slotted P</u> \
S	-LACUSTRINE-	(30)	Screen Slot Size	een	<u> 0.010 ir</u> 2.0 in.
	ļ		Type of Backfill Ard		Quartz_Sa
	30.0 ft.	30.0 ft.	Depth of Bottom of N		<u>30.0_ft</u>

itere (

WELL NUMBER: DATE 9/05/91 9/11/91 10/04/91	······	PSED D	ACE ELEVATION: 542.6 EPTH OF WATER ROM TOC 28.2 30.1 24.2	ELEVATION OF WATER 517.0 515.1	FILE NO. 70007-43 PAGE NO. 2 OF 2 REMARKS Measured from top of pvc riser	RE/ B ¹ MJ(
9/05/91 9/11/91	TIME TI	1	ROM TOC 28.2 30.1	OF WATER 517.0		B,
9/11/91	1505		30.1		Measured from top of pvc riser	
				515.1		t
10/04/91			24.2			∎ MJ
				521.0		
						╂
						
						<u>}</u>
						}
				<u> </u>		
					<u> </u>	
				••••	 	<u> </u>
						<u> </u>
					1	<u> </u>

Loca Clie	ATION BRIGHTO	GER RI/FS ON, NEU YORK GER - A FILTRONA COMPA	ANY	FILE NO.: 70007-43 WELL NO: OW-203- LOCATION: SEE PLAM	S	
DRIL	JTRACTOR: NOTHNA LLER: N. SHOI TALLATION DATE: 20	_	PE: DIEDRICH D-50	SHEET: 1 OF 2 INSPECTOR: M. CORR	IGAN	
Surv				above ground		
Datu	um <u>NGVD</u>		surface	of protective casing.	<u> 0.2 ft</u> .	
			Depth belo	-		
Grou Elev	und vation: 542.5		surface	of riser pipe.	0.1 ft.	
s				of Surface Seal	4.5 ft.	
U M M	-TOPSOIL- 0.4 ft.	- CEMENT -	[indicated	urface Seal d all seals showing depth, s ard type]	Cement	
A R In		2.55 ft.	Type of Pi	rotective Casing	Roadway	
Z o E t	-FILL-	-BENTONITE-	Inside Dia	ameter of Protective Casing	10.0 ir	
St Do	4.0. ft.	4.5 ft.		Bottom of Protective Casing	1.0 ft	
I Ls			Inside Dia	ameter of Riser Pipe	2.0 ir	
c Ca			Type of Ba	ackfill Arourd Riser	Benton	
0l Ne	-LACUSTRINE-		Diameter o	of Borehole	10.0 ir	
D I T		-QUARTZ	Type of co	oupling (threaded, welded, etc.)	Threade	
I D	13.5 ft.	SAND- (30)	Depth of B	5.7 ft.		
N S		-	Type of We	Type of Wellscreen		
-			Screen Slo	ot Size	0.010 in	
	-LACUSTRINE-		Diameter o	of Wellscreen	2.0 ir	
			Type of Ba	ackfill Around Uellscreen	Quartz S	
	16.0 ft.	0 ft. 15.90 ft.		Bottom of Uellscreen	15.90	
	<u> </u>		_IDepth of E	Bottom of Borehole	16.0 f	

	CONSULTING	LA OF NEW YORK GEOTECHNICAL EN AND HYDROGEOLO		GROUN	DWATER LEVEL MONITORING REPORT	
WELL NUMBE	R: OW203-S	GROUN	D SURFACE ELEVATION: 542	.5	FILE NO. 70007-43 PAGE NO. 2 OF 2	
DATE	T IME	ELAPSED TIME	DEPTH OF WATER FROM TOC	ELEVATION OF WATER	REMARKS	READ BY
8/26/91	0956		<u>TOC GS</u> 7.8 8.1	534.6	Measured from top of inner casing; ground surface at top of outer casing	JGT
9/05/91	0915		8.6	533.8		мјс
9/11/91			7.6	534.8		мјс
10/04/01			8.2	534.2		JM
						_
1						

LOCA CLIE CON DRIL	ATION: BRIGHTO	-	FILE NO: 70007- WELL NO: 0W-203 LOCATION: SEE PL : DIEDRICH D-50 SHEET: 1 OF 2 INSPECTOR: M. COR	-D AN
Sur\ Datu	vey um <u>NGND</u>		Stickuøpbove ground surface of protective casing.	0.1 ft.
Grou Elev	und vation: 542.4		Depth below ground surface of riser pipe.	0.2 ft.
s U	-TOPSOIL- 0.4 ft.	-CEMEMT -	Thickness of Surface Seal	<u> 18.5 ft.</u> Cement
M M A		1.0 ft.	[indicated all seals showing depth, thickness and type]	Cenerre
R In Zo	-FILL-	-BENTONITE/ CEMENT	Type of Protective Casing	Roadway B
E t S t	4.0 ft.	GROUT-	Inside Diameter of Protective Casing	<u> 12.0 in.</u> 1.0 ft.
0 o J L s		16.5 ft.	Inside Diameter of Riser Pipe	2.0 in. Bentonite/C
c Ca Ol Ne	- LACUSTR INE -	-BENTONITE-	Type of Backfill Around Riser	Grout
D I T I	13.5 ft.		Type of coupling (threaded, welded, etc.))Threade
O N S		-QUARTZ SAND -	Type of WelLscreen	Slotted P
	-LACUSTRINE-	(30)-	Screen Slot Size	<u> 0.010 in </u> 2.0 in.
			Type of Backfill Around Wellscreen	Quartz S
	30.0 ft.	29.9 ft.	Depth of Bottom of Wellscreen	<u> 29.90 ft</u> 30.0 ft.

	CONSULTING	CA OF NEW YORK GEOTECHNICAL E AND HYDROGEO	ENGINEERS	GROUN	DWATER LEVEL MONITORING REPORT	
WELL NUM	BER: OW203-D	GRW	ND SURFACE ELEVATION: 542.	4	FILE NO. 70007-43 PAGE NO. 2 OF 2	
DATE	TIME	ELAPSED TIME	DEPTH OF WATER FROM TOC	ELEVATION OF WATER	REMARKS	READ Jତ୍ତହ
8//226/091	0958		<u>TOC GS</u> 18.2 18.5	524.0	Measured from top of inner casing; ground surface at top of outer casing	
9/05/91	0920		28.5	513.7		МЈС
9/12/91			26.5	515.7		MJC
10/04/01			20.1	522.1		JM
					-	

	CONSULTING	SA OF NEW YORK GEOTECHNICAL ENGINEERS S AND HYDROGEOLOGISTS		OVERBURDE	EN GROUNDWATER MONITORING V	MELL REPORT
LOCA CLIE CON DRIL	ENT: DOLLINGE	N, NEW YORK ER – A FILTRONA COMPANY LE DRILLING - RIG TYPE:	DIEDRICH D-50		FILE NO: 70007-43 WELL NO.: OW-204-S LOCATION: SEE PLAN SHEET: 1 OF 2 INSPECTOR: M. CORRIGAN	l
Surv Datu	vey im <u>NGVD</u>	1		tickup above grou surface of protec	ctive casing.	<u>3.0</u> ft.
Grou				ckup above groun surface of riser		<u>2.9 ft.</u>
	vation: 540.6 - TOPSOIL -		Th	ickness of Surfac	e Seal -	4.7 ft.
S U M M	0.2 ft.	-CEMENT-	[ir	be of Surface Sea dicated all seal nickness and type	s showing depth,	Cement
A R In	0	2.5 ft.		∞e of Protective	Casing	Steel
Z o E t					Protective Casing	4.0 in.
St		-BENTON ITE -	De	pth of Bottom of	Protective Casing	<u>2.0 ft.</u>
0 o 1 L s	-LACUSTRINE-		In	side Diameter of	Riser Pipe	2.0 in.
C a		4.7 ft.	 ту	🗴 of Backfill Ar	ound Riser	Bentonite
0l Ne		4.7 ft.	☐ ├Di	e <u> </u>	<u> 10.0 in.</u>	
D I T	8.5 ft.		Ту	be of coupling (th	nreaded, uelded, etc.)	Threaded
I O			De	pth of Bottom of	Riser	<u> </u>
N S		-QUARTZ SAND •		be of Wellscreen	_	Slotted P
	-LACUSTRINE-	(30)	sc	reen Slot Size		0.010 in
	I		- I	ameter of Wellscr		2.0 in.
				be of Backfill Ar		Quartz Sa
•	16.2 ft.	16.0 ft.	I	oth of Bottom of		<u> </u>
						<u>16.2_ft</u>
Ren	narks:		<u>*</u>			
						Well No. OW-2

H&A OF NEW YORK CONSULTING GEOTECHNICAL ENGINEERS GEOLOGISTS AND HYDROGEOLOGISTS

GROUNDWATER LEVEL MONITORING REPORT

WELL NUMBE	R: OW204-S		GROUND SURFACE ELEVATION: 540	.6	FILE NO. 70007-43 PAGE NO. 2 OF 2	
DATE	TIME	ELAPSED TIME	DEPTH OF WATER FROM TOC	ELEVATION OF WATER	REMARKS	
8/26/91	1005		<u>TOC GS</u> 17.3 14.5	526.2	Measured from top of inner casing	
9/05/91	0945		17.8	525.7		
9/11/91			17.8	525.7		1
10/04/91			17.5	526.0		
						Ť
					-	
						_
						_1

LOC CLII CON DRI	ENT: BRIGHT		DIEDRICH D-50	WELL NO: 04-2 LOCATION: SEE SHEET: 1 07	07-43 20 4-D PLAN 5 2 CORRIGAN
	vey :umn <u>NGVD</u>]	[Sticku p bove ground surface of protective casing.	3.0 ft.
	vund vation: 539.5			ickup above ground surface of riser pipe. ickness of Surface Seal	<u> </u>
S U M	-TOPSOIL-	-CEMENT- 1.75 ft.	Ty [ir	pe of Surface Seal ndicated all seals showing depth, hickness and type]	Cement
A R In	8.2 ft.	_	Ту	pe of Protective Casing	Steel
Z o E t S t		-BENTONITE/ CEMENT GROUT -		side Diameter of Protective Casing pth of Bottom of Protective Casing	4.0 in. 2.0 ft.
00 J Ls Ca Ol	-LACUSTRINE-	16.3 ft. -BENTONITE-	Ту	side Diameter of Riser Pipe pe of Backfill Around Riser ameter of Boreho le	2.0 in. Bentonite/Cem Grwt 10.0 in.
Ne D I T	8.5 ft.	18.3 ft.		pe of coupling (threaded, welded, et	c.) Threaded
1 0 N				pth of Bottom of Riser pe of Wellscreen	
s	- LACUSTR I NE -	-QUARTZ SAND - (30)	Green	Slot Size ameter of Wellscreen	0.010 in. 2.0 in.
				pe of Backfill Around Wellscreen	Quartz Sand
	`30.0 ft.	30.0 ft.	1	pth of Bottom of Wellscreen pth of Bottom of Borehole	<u> 30.0 ft.</u> <u> 30.0 ft.</u>

	H&A OF NEU YORK CONSULTING GEOTECHNICAL ENGINEERS GEOLOGISTS AND HYDROGEOLOGISTS			GROUNDUATER LEVEL MONITORING REPORT			
WELL NUMBER: OW204-D G			ROUND SURFACE ELEVATION: 539.5		FILE NO. 70007-43 PAGE NO. 2 OF 2		
DATE	TIME	ELAPSED TIME	DEPTH OF UATER FROM TOC	ELEVATION OF UATER	REMARKS		
8/26/91	1002		<u>TOC GS</u> Dry Dry		Measured from top of outer casing		
9/05/91	0945		30.7	511.6			
9/11/91			31.0	511.3			
10/04/91			26.2	516.1		Í	
						-	
•							
			<u></u>				
<u></u>							

 	CONSULTING	H&A OF NEW YORK IG GEOTECHNICAL ENGINEERS STS AND HYDROGEOLOGISTS		OVERBURDE	EN GROUNOWATER MONITORING V	VELL REPORT
CLIEN CONTR DRILL	TION: BRIGHTC NT: DOLLING RACTOR: NOTHNAG		DIEDRICH D-50		FILE NO: 70007-43 WEL NO: 0W-205 LOCATION: SEE PLAN SHEET: 1 OF 2 INSPECTOR: M. CORRIGAN	
Surve Datum	ey m <u>NGVD</u>			Sticku p bove groun surface of protec		2.3 ft.
Grour				ickup above ground surface of riser p		2.1 ft.
	ation: 542.7	<u> </u>	Тh	nickness of Surface	e Seal	60.5 ft.
S U M M	-LACUSTRINE-	-CEMENT- 2.0 ft.	[in	pe of Surface Sea ndicated all seals hickness a d t ype]	s showing depth,	<u>Cement</u>
A R In Zo	15.5 ft.	-BENTONITE/ CEMENT GROUT-	Ту	pe of Protective (Casing	Steel
E t			Ins	side Diameter of F	Protective Casing	4.0 in.
St Oo	-LACUSTRINE-				Protective Casing	<u>2.7 ft.</u>
1 1	60.0 ft.	57.0 ft.		side Diameter of F pe of Backfill Arc		2.0 in. Bentonite/C Grout
Ca Ol Ne	-LACUSTRINE-	-BENTONITE-	Di:	ameter of Borehole	e	10 in.
D 1 T -	65.0 ft.	60.5 ft.	Туг	pe of coupling (th	nreaded, welded, etc.)	Threaded
і 0	-LACUSTRINE- 67.5 ft.		!	pth of Bottom of F	Riser	<u>62.4 ft</u>
N - S	-LACUSTRINE- 79.0 ft.	-QUARTZ SAND -	'	pe of Wellscreen reen Slot Size		<u>Slotted P</u> 0.010 i
	-WEATHERED	(30)	└── -+───Di;	ameter of Wellscre	€en	2.0 in.
	BEDROCK-		— Туг — Туг	pe of Backf <mark>ill</mark> Arc	ound Wellscreen	Quartz S
	83.0 ft.	82.6 ft.	•	pth of Bottom of L pth of Bottom of B		<u>82.6 ft</u> 83.0 ft
		_	_			
Rema						<u></u>
Nome	arks:					Well No. OW

	CONSULTING	&A OF NEW YORK GEOTECHNICAL E S AND HYDROGEOI		GROUNDUATER LEVEL MONITORING REPCRT				
WELL NUMB	er: 0w205	GROU	ND SURFACE ELEVATION: 542	.7	FILE NO. 70007-43 PAGE NO. 2 OF 2			
DATE	TIME	ELAPSED TIME	DEPTH OF WATER FROM TOC	ELEVATION OF WATER	REMARKS	READ BY		
9/11/91			22.9	521.9	Measured from top of PVC riser	MJC		
10/04/91			23.4	521.4		ML		
					<u></u>			
					_			
					-			
1								

APPENDIX D

Laboratory Soil Physical Testing Results

-

.

•

-

1

-

H&A OF NEW YORK LABORATORY PERMEABILITY TEST REPORT

FILE NUMBER: 70007-43 DATE: October 1991		
PROJECT: Dollinger Remedial Investigation CLIENT: Dollinger - A Filtrona Company		
EXPLORATION NUMBER: B202–D SAMPLE NUMBER: S9 SAMPLE DEPTH (FEET): 16–18		
SAMPLE TYPE:Shelby TubePERMEAMETER TYPE:Flexible WallPERMEANT:De-Aired Water		
COMPACTION CHARACTERISTICS METHOD: MAXIMUM DRY DENSITY (PCF): OPTIMUM WATER CONTENT (%): PERCENT COMPACTION:		
	INITIAL	FINAL
SAMPLE HEIGHT (CM): DIAMETER (CM): WET DENSITY (PCF): DRY DENSITY (PCF): WATER CONTENT (%):	8.10 7.14 132.8 115.8 14.7	8.10 7.14 136.3 115.8 17.7
TEST PRESSURES CELL (PSI): 58.5 SAMPLE BOTTOM (PSI): 53.5 SAMPLE TOP (PSI): 50.0		
GRADIENT: 30		
STABILIZED FLOW RATE (CC/SEC): 4.61 x 10 ⁻⁵		

PERMEABILITY (CMISEC): 3.84 x 10⁻⁸

COMMENTS:

H&A OF NEW YORK LABORATORY PERMEABILITY TEST REPORT

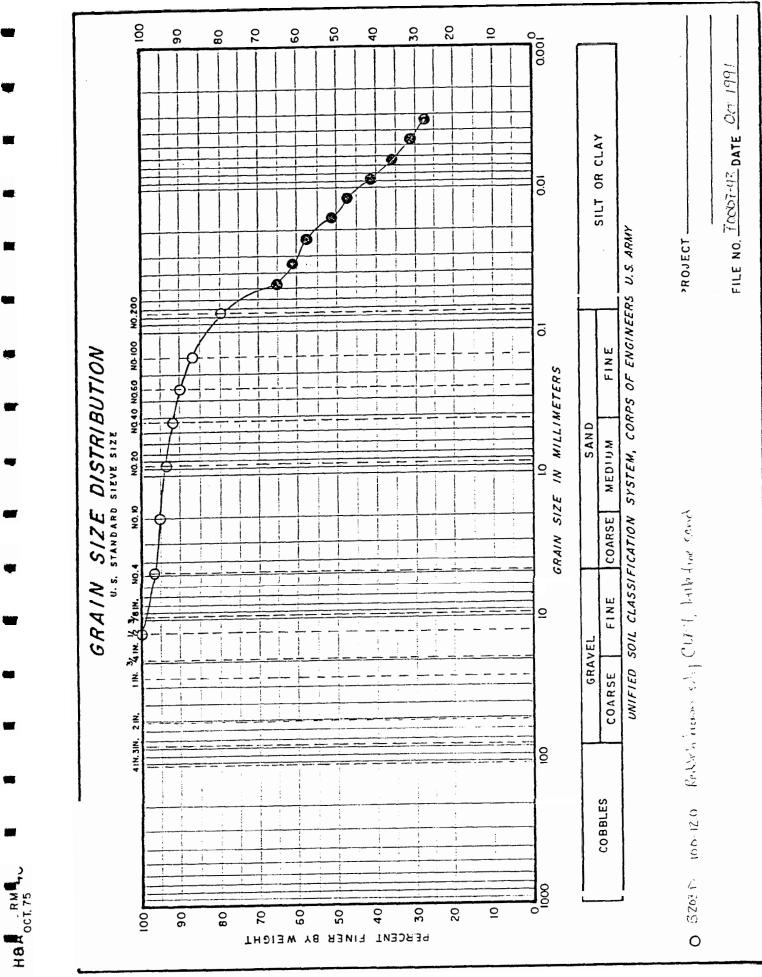
FINAL

135.6

118.5

14.4

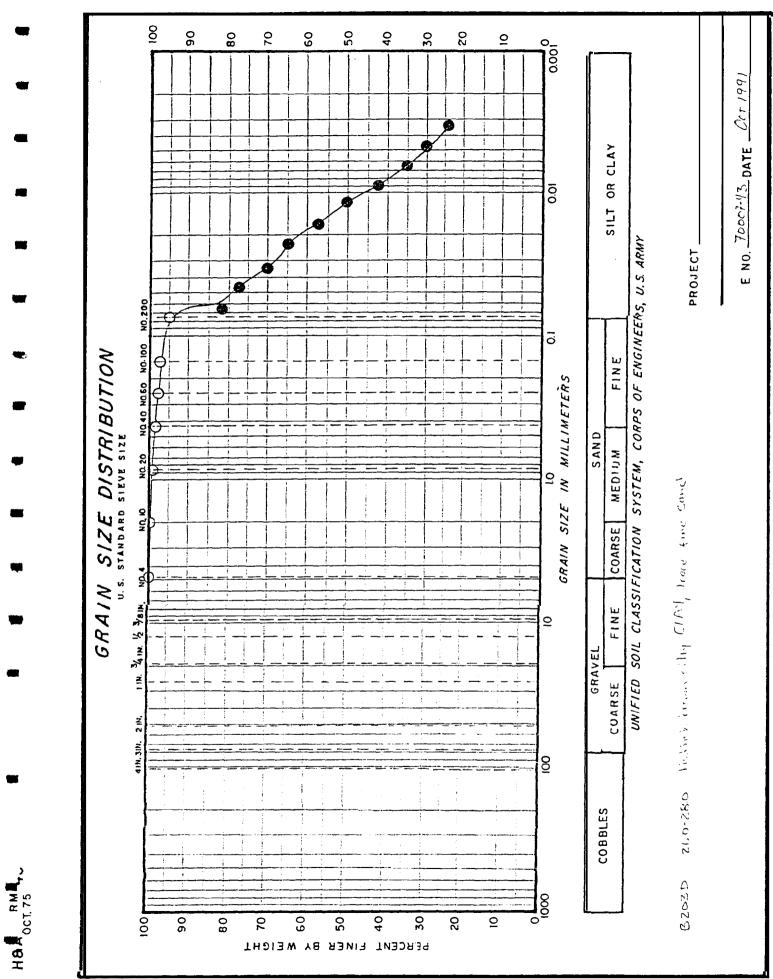
8.06 7.27


FILE NUMBER: 70007-43 DATE: October 1991	
PROJECT: Dollinger Remedial Investigation CLIENT: Dollinger - A Filtrona Company	
EXPLORATION NUMBER: B202–D SAMPLE NUMBER: S6 SAMPLE DEPTH (FEET): 10–12	
SAMPLE TYPE:Shelby TubePERMEAMETER TYPE:Flexible WallPERMEANT:De-Aired Water	
COMPACTION CHARACTERISTICS METHOD: MAXIMUM DRY DENSITY (PCF): OPTIMUM WATER CONTENT (%): PERCENT COMPACTION:	
	INITIAL
SAMPLE HEIGHT (CM): DIAMETER (CM): WET DENSITY (PCF): DRY DENSITY (PCF): WATER CONTENT (%):	8.06 7.27 135.1 118.5 14.0
TEST PRESSURES CELL (PSI): 58.4 SAMPLE BOTTOM (PSI): 53.4 SAMPLE TOP (PSI): 50.0	

GRADIENT: 30

STABILIZED FLOW RATE (CC/SEC): 3.01 x 10⁻⁴

PERMEABILITY (CM/SEC): 2.42 x 10⁻⁷


COMMENTS:

HALEY & ALDRICH, INC.

HALEY & ALDRICH, INC.

HALEY & ALDRICH, INC.

.

SAMPLE NO.	SOIL SAMPLE		8.0-10.0		PROJECT FILE NO TEST NO DATE <u>/5 (</u>	Der 9/
PLASTIC LIMIT BALANCE NO 281 ACTIME of Test DETERMINATION NO. 1 2 3 1 SAMPLE PLETEST DETERMINATION NO. 1 2 3 1 SAMPLE PLETEST DETERMINATION NO. 1 2 3 1 SAMPLE PLETEST WT. CONTAINER NO. 105 10 ALROREDST MICONTAINER NO. SPLIT ON 1: WT. CONTAINER NO. 17.7654 18.4075 18.4911 SPLIT ON 1: SPLIT ON 1: WT. CONTAINER NO. 0 17.7654 18.4075 18.4911 SPLIT ON 1: SPLIT ON 1: <th></th> <th></th> <th></th> <th></th> <th>IESIED BY</th> <th></th>					IESIED BY	
CONTAINER NO. 106 109 110 AIRDRIED: NO WET SOLLIN 9 17.9158 18.40YS 18.3871 AIRDRIED: NO WT CONTAINER A 17.7554 18.40YS 18.3871 SPLIT ext: WT CONTAINER A 17.7554 18.40YS 18.3871 SPLIT ext: SPLIT ext: WT CONTAINER A 0.4554 6.1763 6.1940 SPLIT ext: SPLIT ext: WT.CONTAINER A 0.4554 6.1763 6.1940 SPLIT ext: SPLIT ext: WT.CONTAINER A 0.4554 6.1763 6.1940 SPLIT ext: SPLIT ext: WT.CONTAINER A 0.4554 6.1763 6.1940 SPLIT SPLIT WT.CONTAINER A 1.42349 14004 SPLIT SPLIT SPLIT UOUD LIMIT BALANCE NO_1601 SPLIT SPLIT SPLIT SPLIT DETERMINATION NO. Int Int Int Int SPLIT SPLIT WT.CONTAINER NO. Int Int Int Int Int SPLIT SPLIT WT.CONTAINER NO. Int Int Int Int	PLASTIC LIMIT		BALANCE	NO_ <u>1801</u>	WATER CONTENT AITIME OF	TEST
WT.CONTAINER 6 17.9158 18.4075 18.3671 WT.CONTAINER 8 17.76571 18.1971 57.17 ens: 11.9158 WT.CONTAINER 8 17.76571 18.1971 11.9168 11.9168 WT.CONTAINER 8 17.76571 18.1971 11.9168 11.9168 WT.CONTAINER 8 17.76571 18.1971 11.9168 11.9168 WT.CONTAINER 8 17.76571 17.19.27 16.7907 11.017 11.011 WT.CONTAINER 10.9 11.011 1.2319 11.9004 11.0111 11.011 11.01	DETERMINATION NO.	J	2	3.	ŀ	SAMPLE PRETREATHE
WT.CONTAINER B 17.9158 18.4075 18.387/ WT.CONTAINER B 17.7654 18.4276 18.491/ WT.CONTAINER B 0.7554 0.4767 0.490 WT.CONTAINER B 0.7554 0.490 0.457 WT.CONTAINER B 17.9142 140 0.457 WT.CONTAINER NO. 14.9 14.3 140 DETERMINATION NO. 0.11 112 113 149 WT.CONTAINER NO. 111 112 113 149 WT.CONTAINER NO. 111 112 113 149 WT.CONTAINER NO. 19.7567 19.5732 20.7525 20.3525 WT.CONTAINER NO. 19.7567 19.5761 19.57651 19.57651 WT.CONTAINER NO 19.7567 19.5761 19.57651 <th></th> <th>105</th> <th>109</th> <th>110</th> <th></th> <th></th>		105	109	110		
wf. CONTAINER B 17.7654 18.4226 18.1911 wf. CONTAINER IN g C-1564 C-1765 C-1940 wf. CONTAINER IN g C-1574 C-1769 C-1940 wf. CONTAINER IN g C-1761 C-1940 CVEN SPUIT wf. CONTAINER IN g C-1711 1.2349 1.4004 wf. CONTAINER IN g Container IN% 1.4.9 1.4.0 wf. CONTAINER NO. III III III III DETERMINATION NO. III III III III DETERMINATION NO. III III III III Wf. CONTAINER B IA.7507 19.9732 20.2552 III III Wf. CONTAINER B IA.7507 19.9673 19.4675 19.4675 III.4005 Wf. CONTAINER B IA.7507 19.9674 III.9667 III.9667 III.9667 III.9667 Wf. CONTAINER B IA.6975 19.4675 III.4005 III.4005 III.4005 Wf. CONTAINER B IA.6975 III.9667 III.9667 III.9667 III.9667 Wf. CONTAINER IN G III.9667 <	WT. CONTAINER &	17.9158	18.6045	18.3871		
wr. water in g c.isci c.isc	WT. CONTAINER B	17.7654	18.4276	18.1911		
wr. CONTAINER IN g $16.754'3$ 17.1927 16.7407 (x) Not Sput wr. DAY SOIL IN g 1.011 $1.234'9$ 14004 (x) Not Sput water content IN% 14.9 14.3 14004 (x) Not Sput Data Solution No. $16.724'3$ 14004 (x) Not Sput Determination NO. Determination NO. (x) Not Sput (x) Not Sput Determination NO. 111 112 113 119 wr. Container NO. 19.7507 19.9673 19.720 19.7607 wr. Container NO 9 19.7075 19.1215 19.1405 19.1405 wr. Container NO 22.0 3165 32.7 $2632'4$ 16.7681 wr. Container NO 22.0 345 32.7 $263'4$ 1144						
wt. DRY SOIL IN g 1.011 1.2349 1.4004 CVEN TEMPSZATUR water content in % 14.9 14.9 14.9 14.9 14.9 LIOUID LIMIT BALANCE NO_/bo/ 14.9 14.9 14.9 14.9 Determination no. 0.538 21 24.5 24.5 24.5 CONTAINER NO. 111 112 113 11.9 14.9 14.9 wt container a 19.7567 19.5736 26.2852 20.3525 25.5 26.5 wt container a 19.7567 19.7275 19.74675 19.4665 19.4665 19.4665 wt container in g 17.0567 16.9617 16.9684 15.7661 14.965 14.465 wt container in g 17.0567 16.9617 16.9684 15.7661 14.965 wt container in g 21.0406 21.594 21.594 24.527 14.962 wt container in g 21.0406 21.594 24.527 24.527 14.962 14.975 wt container in g 21.0406 21.594 24.527 24.527 24.527 14.5461	· · · · · · · · · · · · · · · · · · ·					(X) NOT SPLIT
water content in % 14.9 14.3 14.0 1]) 					OVEN TEMPERATUR
LIQUID LIMIT BALANCE NO 160° (χ) loo to llo ^o C DETERMINATION NO. NO. OF BLOWS 45° 26° 38° 21° CONTAINER NO. 111 112 113 114° 113° 114° WT CONTAINER B 9 19.7507 19.7532 20.2552 20.3525° 100° WT CONTAINER B 19.7507 19.7507 19.4005° 100° 100° WT. CONTAINER B 10.6557 19.1215° 19.4005° 19.4005° 100° WT. CONTAINER IN 9 0.5527° 0.9527° 0.9527° 100° 100° WT. ONTAINER IN 9 2.0956° 2.1594° 2.632° 100° 100° WT. ONTAINER IN 9 2.00° 3.45° 32.7° 24.2° 100° WT. ONTAINER IN 9 2.00° 3.45° 32.7° 24.2° 100° WT. ONTENTIN 9, 22.0 3.45° 32.7° 24.2° 1100° 1100° 1100° 100° $1100^$	WATER CONTENT IN%		14.3	//	4.4	
DETERMINATION NO. NO. OF BLOWS 45 26 38 21 CONTAINER NO. III IIZ III IIZ III IIZ WT CONTAINER NO. III IIZ III IIZ III IIZ WT CONTAINER NO. III IIZ III IIZ III IIZ WT CONTAINER NO. III IIZ III IIZ III IIZ WT CONTAINER NO. III. IIZ III IIZ III IIZ WT CONTAINER NO. III. IIZ III IIZ III IIZ WT CONTAINER NO. III. IIZ III. IIZ III. IIZ WT CONTAINER NO. III. IIZ.0567 I9.0752 I9.726 I9.9520 IIZ.054 WT. ORY SOIL IN G Z.0408 Z.1596 Z.1596 Z.1596 Z.1596 Z.1596 Z.1596 Z.1597 Z.627 Z.627 FLOW CURVE IIZ.056 Z.1596 Z.1596 Z.1596 Z.1596 Z.1596 Z.1596 Z.1596 Z.1596 Z.1596 Z.6	· · · · · · · · · · · · · · · · · · ·		t_			(x) loc to 110°C
NO. OF BLOWS 45 26 38 21 CONTAINER NO. 111 112 113 114 WT CONTAINER B 14.7567 19.9736 20.2852 20.3525 WT CONTAINER B 19.9795 19.9736 20.2852 20.3525 WT CONTAINER B 19.9795 19.9767 19.9675 19.9675 WT WATER IN G 0.6532 0.7521 0.1577 0.9520 WT CONTAINER IN G 12.0567 16.9619 16.9684 16.7661 WT ORY SOIL IN G 2.05408 2.1596 2.1592 2.524 WATER CONTENT IN % 2.00 345 32.7 26.2 FLOW CURVE RESULTS SUMMARY NATURAL WATER CONTENT, w,					1	
CONTAINER NO. 111 112 113 114 WT CONTAINER B 19.7567 19.9736 20.2852 20.3525 WT CONTAINER B 19.47567 19.9736 20.2852 20.3525 WT CONTAINER B 19.4075 19.4675 19.4605 DAY SOLL IN G 19.6975 19.1215 19.4675 19.4605 WT WATER IN G 0.6532 0.7521 0.920 10.7661 WT CONTAINER IN G 17.0567 16.9619 16.9684 16.7661 WT ORY SOLL IN G 22.0 345 32.7 26.2 14.11 SC TECONTENT IN % 22.0 345 32.7 26.2 14.11 SC TECONTENT IN % 22.0 345 32.7 26.2 14.11 SC TESULTS SUMMARY NATURAL WATER CONTENT, w, LIQUID LIMIT, w,		<u>и</u> (76	72	71	
WT CONTAINER B 14.7567 19.6736 20.2852 20.3525 WT. CONTAINER B 19.6975 19.1215 19.4675 19.4605 WT. CONTAINER B 0.6532 0.7521 2 ± 177 0.9520 WT. CONTAINER IN 9 0.6532 0.7521 2 ± 177 0.9520 WT. CONTAINER IN 9 0.6532 0.7521 2 ± 177 0.9520 WT. CONTAINER IN 9 2.0405 2.1594 2.4940 16.7681 WT. ORY SOIL IN 9 2.0405 2.1594 2.4921 2.4321 WT. ORY SOIL IN 9 2.0405 2.1594 2.427 2.427 FLOW CURVE RESULTS SUMMARY Sc 9 9 9 9 9 9 Sc 9 9 9 9 9 9 9 Sc 9 9 9 9 9 9 9 9 Sc 9 9 9 9 9 9 9 9 Sc 9 9 9 9 9 9 9 9					·	
wT. CONTAINER B 19.0975 $19.1/215$ 19.4675 19.4675 19.4675 wT. WATER IN 9 0.6532 0.7521 0.9520 wT. CONTAINER IN 9 17.0567 16.9619 16.9684 16.7681 wT. ORY SOLLIN 9 2.0408 2.1594 2.6324 16.7681 wT. ORY SOLLIN 9 2.0408 2.1594 2.6324 16.7681 wT. ORY SOLLIN 9 2.0408 2.1594 2.6324 16.9684 16.7681 wT. ORY SOLLIN 9 2.0408 2.1594 2.6324 2.6324 16.9684 16.7681 wATER CONTENT IN 9% 22.0 345 32.7 26.2 2.6324 19.4024 19.4024 11.944 SC 10.9684 11.9644 11.944				······································	· · · · · · · · · · · · · · · · · · ·	·····
$\frac{1}{2} \frac{1}{2} \frac{1}$	WT. CONTAINER 8		<u>+</u>		+	
wT. CONTAINER IN 9 17.0567 16.9619 16.9684 16.7661 wT. DRY SOIL IN 9 2.0408 2.1596 2.1596 2.6324 wATER CONTENT IN % 22.0 345 32.7 26.2 FLOW CURVE RESULTS SUMMARY 36 Image: Stress of the stress of th			1	1		·····
WT. DRY SOIL IN 9 Z.0408 Z.1596 2.1697 2.6324 WATER CONTENT IN % 22.0 345 32.7 262 FLOW CURVE RESULTS SUMMARY 36 10000 10000 10000 10000 10000 37 100000 10000 100000 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
water content in % $2_{2.0}$ 345 32.7 252 FLOW CURVE RESULTS SUMMARY 36 $1000000000000000000000000000000000000$					++-	
FLOW CURVE 3C $3C$ 1000				+	+	
	ATER Content of the second sec			50 11 11 11 11 11 11 11 11 11 1	NATURAL W LIQUID LIMI PLASTIC LI PLASTICITY FLOW INDE LIQUIDITY PLAS	ATER CONTENT, T, w ₁ , <u>350</u> MIT, w _p , <u>144</u> INDEX <u>205</u> X INDEX <u>205</u> X INDEX <u>205</u>

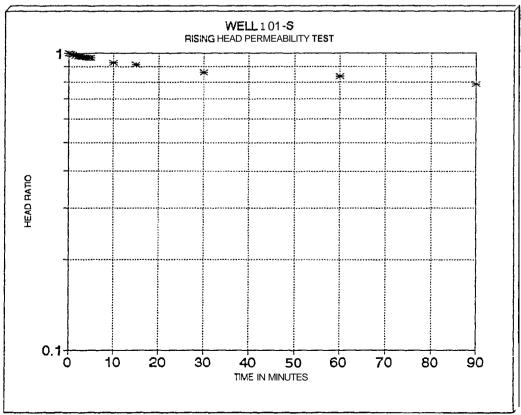
HALEY & ALDRICH. INC.

١.

APPENDIX E

Rising Head Permeability Tests

1000


.

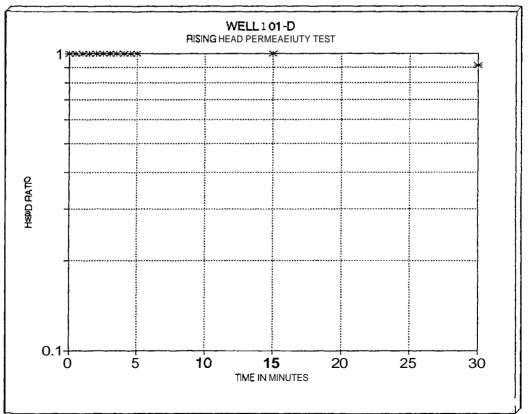
WELL NAME: 101-S DATE OF TEST: 19JUL-89

Rising Head Permeability Calculatio Hvorslev Method Kh≈[((d*d)in((2*m*L)/D))in(H1/H2)		Rising Head Test Field Data		Static Water 8.2	
		Depth	Elapsed	Head	Residual
Test Section Diameter (D), In R	0.67	Water	Time	Ratio	Head
Casing Diameter (d), in R:	0.17	(ft)	(min)		(ft)
Test Length Section (L), In fL:	11	25.10	Ó	1.00	16.90
m = (Kh/Kv)**0.5:	1.73	25.00	0.5	0.99	16.80
		24.90	1	0.99	16.70
t I In min.:	30	24.80	1.5	0.98	16.60
t2 in mln.:	90	24.70	2	0.98	16.50
H1 In feet:	14.60	24.70	25	0.98	16.50
H2 In feet:	13.30	24.60	3	0.97	16.40
		24.60	3.5	0.97	16.40
Kh (cm/sec) =	1.0E-06	24.50	4	0.96	16.30
Kh (ft/min) =	21E-06	24.50	4.5	0.96	16.30
Kh (ft/day) =	3.0E-03	24.50	5	0.96	16.30
		23.90	10	0.93	15.70
		23.60	15	0.91	15.40
		22.80	30	0.86	14.60
		22.30	60	0.83	14.10
		21.50	90	0.79	13.30

NOTES

- 1. m Is the square root of the ratio of horizontal
 - to vertical permeability.
- 2 Test Section Diameter (D) Is equal to the borehole diameter.
- 3 Method taken from Hvorslev. 1951.

RISING HEAD TEST SUMMARY

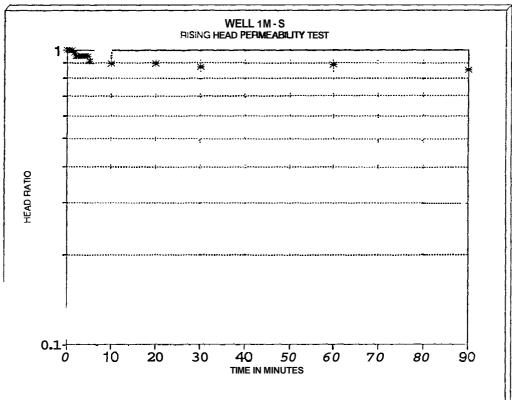

WELL NAME: 101-D DATE OF TEST: 19-JUL-89

Rising Head Permeability Calculatio Hvorslev Method Kh=[((d*d)In((2*m*L)/D))In(H1/H2)		Rising Head	d Test Field [Data	Static Water 21.3
		Depth	Elapsed	Head	Residual
Test Section Diameter (D), in ft.	0.67	Water	Time	Ratio	Head
Casing Diameter (d), in ft:	0.17	(fft)	(min)		(ft)
Test Length Section (L), In ft.:	10.8	38.20	Ó	1.00	16.90
M = (Kh/Kv) **0.5:	1.73	38.20	0.5	1.00	16.90
		38.20	1	1.00	16.90
H in mln.:	16	38.20	1.5	1.00	16.90
t2 In min.:	30	38.20	2	1.00	16.90
H1 in feet:	16.90	38.20	25	1.00	16.90
H2 In feet:	16.60	38.20	3	1.00	16.90
		38.20	3.5	1.00	16.90
Kh (cm/sec) ≈	3.9E-06	38.20	4	1.00	16.90
Kh (ft/min) =	7.8E-06	38.20	4.5	1.00	16.90
Kh (ft/day) ≈	1.1E-02	38.20	5	1.00	16.90
		38.20	15	1.00	16.90
		36.80	30	0.92	15.50

NOTES

-

- **1. m is** the square root of the ratio of horizontal to **vertical** permeability.
- 2 Test Section Diameter (D) Is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.



WELL NAME: 102-S DATE OF TEST: 19-JUL-89

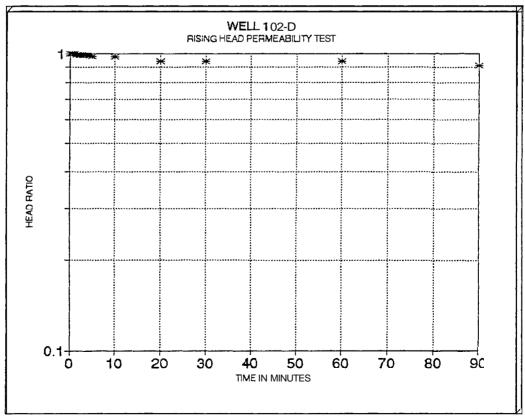
Rising Head Permeability Calculation Hvorslev Method Kh=[((d*d)ln((2*m*L)/D))ln(H1/H2)		Rising Head Test Field Data		Static Water 23.7	
		Depth	Elapsed	Head	Residual
Test Section Diameter (D), in ft	0.67	Water	Time	Ratio	Head
Casing Diameter (d), In fL:	0.17	(ft)	(min)	Italio	(ft)
Test Length Section (L), in fL:	3.3	28.50	0	1.00	4.80
rn = (Kh/Kv)**0.5:	1.73	28.50	0.5	1.00	4.80
		28.50	1	1.00	4.80
t1 In min.:	10	28.40	1.5	0.98	4.70
t2 In mln.:	90	28.30	2	0.96	4.60
H1 In feet:	4.30	28.30	2.5	0.96	4.60
H2 In feet:	4.10	28.30	3	0.96	4.60
		28.30	3.5	0.96	4.60
Kh (cm/sec) =	9.4E-07	28.30	4	0.96	4.60
Kh (ft/min) =	1.8E-06	28.30	4.5	0.96	4.60
Kh (ft/day) =	27E-03	28.10	5	0.92	4.40
		28.00	10	0.90	4.30
		28.00	20	0.90	4.30
		27.90	30	0.87	4.20
		27.98	60	0.89	4.28
		27.80	90	0.85	4.10

NOTES

- 1. m Is the square root of the ratio of horizontal to vertical permeability.
- 2 Test Section Diameter (D) is equal to the borehole diameter.
- 3. Method taken from Hvorslev. 1951.

WELL NAME: 102-D DATE OF TEST: 19-JUL-89

Rising Head Permeability Calculation Hvorslev Method	Rising Hea	Rising Head Test Field Data		Static Water 16.9	
Kh=[((d*d)In((2*m*L)/D))In(H1/H2)] / 8L(t2-t1))				
	Depth	Elapsed	Head	Residual	
Test Section Diameter (D), in R 0.67	Water	Time	Ratio	Head	
Casing Diameter (d), In R: 0.17	(ft)	(min)		(ft)	
Test Length Section (L), In R: 16.7	49.80	Ó	1.00	33,90	
m = (Kh/Kv)**0.5: 1.73	49.80	0.5	1.00	33.90	
	49.70	1	1.00	33.80	
ti in min.: 10	49.50	1.5	0.99	33.60	
t2 In min.: 90	49.50	2	0.99	33.60	
H1 In feet: 33.10	49.50	2.5	0.99	33.60	
H2 in feet: 31.00	49.50	3	0.99	33.60	
	49.40	3.5	0.99	33.50	
Kh (cm/sec) = 4.0E-07	49.40	4	0.99	33.50	
Kh (ft/min) = 7.9E-07	49.30	4.5	0.99	33.40	
Kh (ft/day) = 1.1E-03	49.20	δ	0.98	33.30	
	49.00	10	0.98	33 .10	
	47.90	20	0.94	3200	
	47.70	30	0.94	31.80	
	47.80	60	0.94	31.90	
	46.90	90	0.91	31.00	


NOTES

1. In Is the square root of the ratio of horizontal

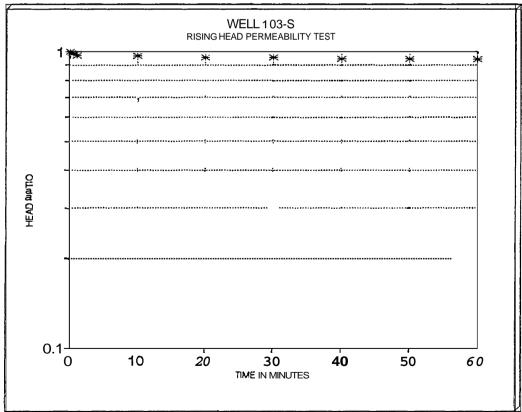
to **vertical** permeability.

2 Test Section Dlameter (D) Is equal to the borehole diameter.

3. Method taken from Hvorslev. 1961.

RISING HEAD TEST SUMMARY

WELL NAME: 103-S DATE OF TEST: 04-SEP-91


Rising Head Permeability Calculatio Hvorslev Method Kh≈[((d*d)In((2*m*L)/D))In(H1/H2)]		Rising Hea	d Test Field [Data	Static Water 1275
		Depth	Elapsed	Head	Residual
Test Section Diameter (D), in R	0.67	Water	Time	Ratio	Head
CasIng Dlameter (d), in R:	0.17	(ft)	(min)		(fl)
Test Length Section (L), in ft.:	11	13.92	Ó	1.00	1.17
m = (Kh/Kv)**0.5:	1.73	1 3.91	0.25	0.99	1.16
		1 3.90	0.5	0.98	1.16
t1 in min.:	0.25	13.89	1	0.97	1.14
t2 In min.:	60	1 3.88	10	0.97	1.1 3
H1 In feet:	13.91	13.87	20	0.96	1.12
H2 h feet:	13.85	13.87	30	0.96	1.12
		1 3.86	40	0.96	1.11
Kh (cm/sec) =	4.9E-08	13.86	60	0.95	1.11
Kh (ft/min) =	9.6E-08	13.85	60	0.94	1.10
Kh (ft/day) =	1.4E-04				

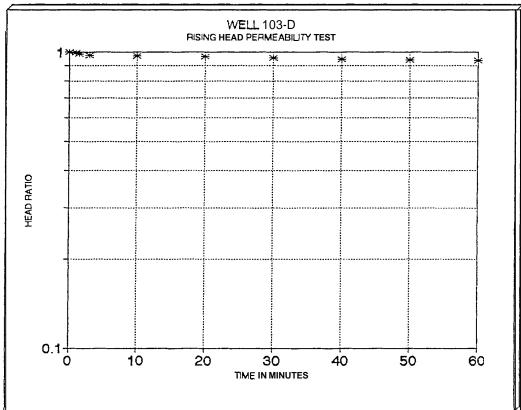
NOTES

1. m Is the square root of the ratio of horizontal

to vertical permeability.

- 2 Test Section Dlameter (D) is equal to the borehole diameter.
- 3 Method taken from Hvorslev, 1961.

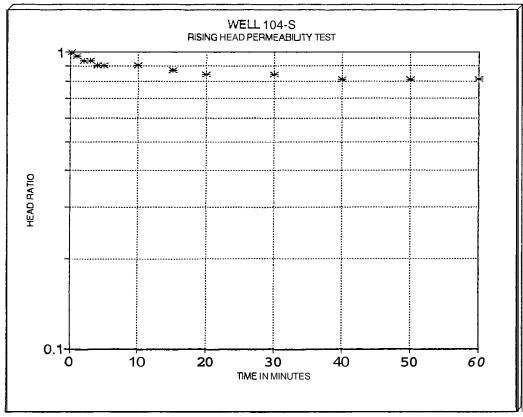
WELL NAME: 103-D DATE OF TEST: 04-SEP-91


RisIng Head Permeability Calculation Hvorslev Method Kh=[((d*d)In((2*m*L)/D))In(H1/H2)] / 8L(t2-t1)		Rising Hea	Rising Head Test Field Data		
		Depth	Elapsed	Head	Residual
Test Section Diameter (D), In ft	0.67	Water	Time	Ratio	Head
Casing Diameter (d), in ft:	0.17	(ft)	(min)		(ft)
Test Length Section (L).in ft:	13.8	14.50	Ō	1.00	1.38
m = (Kh/Kv)**0.5:	1.73	14.49	1	0.99	1.37
		14.48	1.5	0.99	1.36
tin min.:	1	14.47	3	0.98	1.35
t2 in mln.:	60	14.46	10	0.97	1.34
H1 In feet:	14.49	14.45	20	0.96	1.33
H2 In feet:	1 4.41	14.44	30	0.96	1.32
		14.43	40	0.95	1.31
Kh (cm/sec) =	5.3E-08	14.42	50	0.94	1.30
Kh (ft/min) =	1.0E-07	1 4.41	60	0.93	1.29
Kh (ft/day) =	1.5E-04				

NOTES

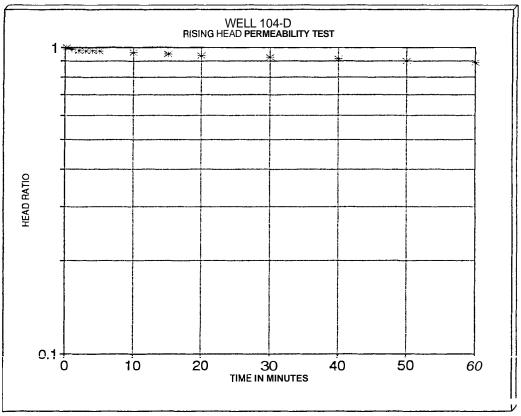
1. rn ls the square root of the ratio of horizontal

to vertical permeability.


- 2 Test Section Dlameter (D) Is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.

WELL NAME: 104-S DATE OF TEST: 1-SEPT-91

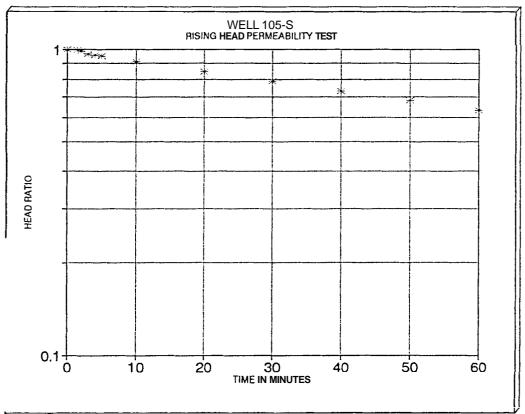
Rising Head Permeability Calculation Hvorslev Method Kh=[((d*d)In((2*m*L)/D))In(H1/H2)				Static Water 20.13)	
		Depth	Elapsed	Head	Residual
Test Section Diameter (D), In R	0.67	Water	Time	Ratio	Head
Casing Dlameter (d), in R:	0.1 7	(ft)	(min)		(ft)
Test Length Section (L), in ft.:	6	20.45	0.25	1.00	0.32
m = (Kh/Kv)**0.5:	1.73	20.44	1	0.97	0.31
		20.43	2	0.94	0.30
ti in mln.:	0.25	20.43	3	0.94	0.30
t² In min.:	60	20.42	4	0.91	0.29
H1 In feet:	20.46	20.42	Б	0.91	0.29
H2 In feet:	20.39	20.42	10	0.91	0.29
		20.41	15	0.88	0.28
Kh (cm/sec) =	5.2E-08	20.40	20	0.84	0.27
Kh (ft/min) =	1.0E-07	20.40	30	0.84	0.27
Kh (ft/day) =	1.5E-04	20.39	40	0.81	0.26
		20.39	50	0.81	0.26
		20.39	60	0.81	0.25


- 1. m ls the square root of the ratio of horizontal
 - to vertical permeability.
- 2 Test Section Diameter (D) Is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.

WELL NAME: 104-D DATE OF TEST: 11-SEPT-91

Rising Head Permeability Calculation Hvorslev Method Kh=[((d*d)In((2*m*L)/D))In(H1/H2)]	ev Method		Data	Static Water 20.2	
		Depth	Elapsed	Head	Residual
Test Section Diameter (D), in ft.:	0.67	Water	Time	Ratio	Head
Casing Diameter (d), in ft.:	0.17	(ft)	(min)		(ft)
Test Length Section (L), in ft.:	11.6	21.83	0.25	1.00	1.63
m = (Kh/Kv)**0.5:	1.73	21.81	0.50	0.99	1.61
		21.80	1	0.98	1.60
tlin min.:	0.25	21.79	2	0.98	1.59
t2 in min.:	60	21.79	3	0.98	1.59
H1 in feet:	21.83	21.79	4	0.98	1.59
H2 in feet:	21.65	21.78	5	0.97	1.58
		21.77	10	0.96	1.57
Kh (cm/sec) =	9.0E-08	21.75	15	0.95	1.55
Kh (ft/min) =	1.8E-07	21.73	20	0.94	1.53
Kh (ft/day) =	2.5E-04	21.71	30	0.93	1.51
		21.69	40	0.91	1.49
		21.67	50	0.90	1.47
		21.65	60	0.89	1.45

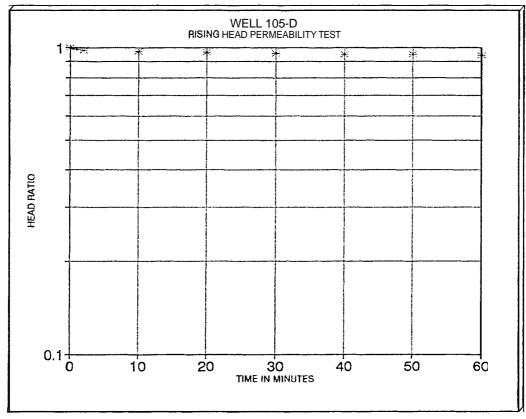
- 1. \mathbf{m} is the square root of the ratio of horizontal
 - to vertical permeability.
- 2. Test Section Diameter (D) is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.



WELL NAME: 105-S DATE OF TEST: 11-SEPT-91

Rising Head Permeability Calculation Hvorslev Method Kh= [((d*d)In((2*m*L)/D))In(H1/H2)]		Rising Hea	d Test Field [Data	Static Wa: 5.84
		Depth	Elapsed	Head	Residual
Test Section Diameter (D), in ft.:	0.67	Water	Time	Ratio	Head
Casing Diameter (d), in ft.:	0.17	(ft)	(min)		(ft)
Test Length Section (L), in ft.:	11.6	7.07	0.00	1.00	1.23
m = (Kh/Kv)**0.5:	1.73	7.06	1.45	0.99	1.22
		7.05	2	0.98	1.21
t1 in min.:	1.75	7.03	3	0.97	1.19
t2 in min.:	60	7.02	4	0.96	1.18
H1 in feet:	7.06	7.01	5	0.95	1.17
H2 in feet:	6.62	6.96	10	0.91	1.12
		6.88	20	0.85	1.04
Kh (cm/sec) =	7.2E-07	6.81	30	0.79	0.97
Kh (ft/min) =	1.4E-06	6.74	40	0.73	0.90
Kh (ft/day) =	2.0E-03	6.68	50	0.68	0.84
		6.62	60	0.63	0.78

NOTES

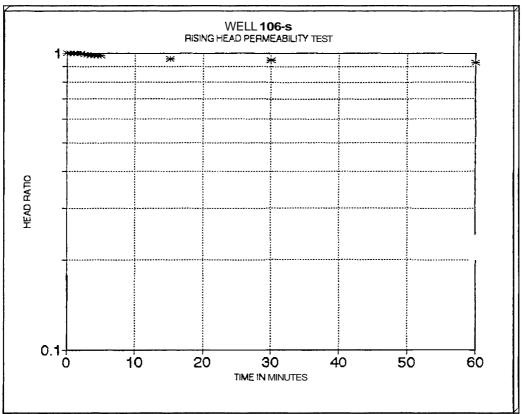

- 1. **m** is the square root of the ratio of horizontal to vertical permeability.
- 2. Test Section Diameter (D) is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.

WELL NAME: 105-D DATE OF TEST: 11SEPT-91

Rising Head Permeability Calculatior Hvorslev Method Kh= [((d*d)ln((2*m*L)/D))ln(H1/H2)]		Rising Hea	d Test Field D	Data	Static Wat 8.31
		Depth	Elapsed	Head	Residual
Test Section Diameter (D), in ft.:	0.67	Water	Time	Ratio	Head
Casing Diameter (d), in ft.:	0.17	(ft)	(min)		(ft)
Test Length Section (L), in ft.:	11	9.71	0.0	1.00	1.40
m = (Kh/Kv)**0.5:	1.73	9.70	0.5	0.99	1.39
		9.69	1	0.99	1.38
t l in min.:	0.5	9.68	2	0.98	1.37
t2 in min.:	60	9.67	10	0.97	1.36
H1 in feet:	9.70	9.66	20	0.96	1.35
H2 in feet:	9.63	9.65	30	0.96	1.34
		9.64	40	0.95	1.33
Kh (cm/sec) =	8.2E-08	9.64	50	0.95	1.33
Kh(ft/min) =	1.6E-07	9.63	60	0.94	1.32
Kh (ft/day) =	2.3E-04				

- 1. \mathbf{m} is the square root of the ratio of horizontal
 - to vertical permeability.
- 2. Test Section Diameter (D) is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.

WELL NAME: 106-S DATE OF TEST: 19-JUL-89


Rising Head Permeability Calculation Hvorslev Method Kh≖[((d*d)In((2*m*L)/D))In(H1/H2)]/	8L(t2-t1)	
Test Section Diameter (D), In R	0.67	

			Depth	Elapsed	Head	Residual
Test Section Diameter (D), In R	0.67		Water	Time	Ratio	Head
Casing Diameter (d), In ft.:	0.17	-	(ff)	(min)		(ft)
Test Length Section (L), in R:	9		25.20	0	1.00	11.20
m = (Kh/Kv) **0.5:	1.73		25.20	0.5	1.00	11.20
			25.20	1	1.00	11.20
t1 In min.:	0.5		25.20	1.5	1.00	11.20
t2 in min.:	60		26.20	2	1.00	11.20
H1 in feet:	11.20		25.10	25	0.99	11.10
н2 In feet:	10.40		25.10	3	0.99	11.10
			25.00	3.6	0.98	11.00
Kh (cm/sec) =	9.7E-07		25.00	4	0.98	11.00
Kh (ft/min) =	1.9E-06		26.00	4.5	0.98	11.00
Kh (ft/day) =	2.8E-03		25.00	5	0.98	11.00
			24.70	15	0.96	1 0.70
			24.60	30	0.95	10.60
			24.40	60	0.93	10.40

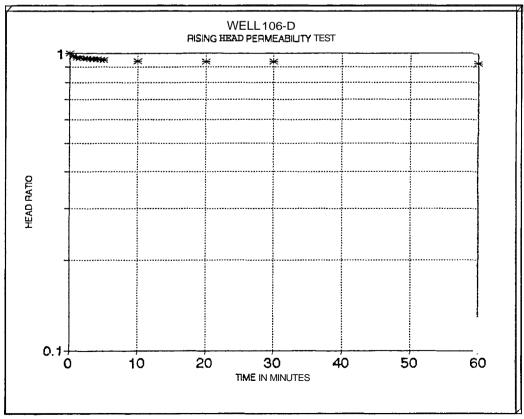
Rising Head Test Field Data

Static Water 14

- 1. **m** is the square root of the **ratio** of horizontal to **vertical** permeability.
- 2 Test Section Diameter (D) Is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.

Rising Head Test Field Data

Static Water 11.9


WELL NAME: 106-D DATE OF TEST: 19-JUL-89

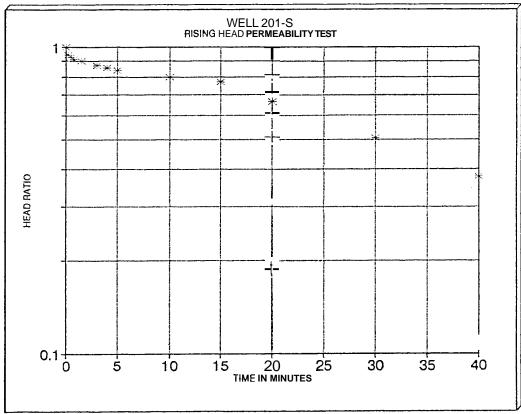
Rising Head Permeability Calculation
Hvorslev Method
Kh = [((d*d)ln((2*m*L)/D))ln(H1/H2)] / 8L(t2-t1)

		Depth	Elapsed	Head	Residual
Test Section Diameter (D), in ft.	0.67	Water	Time	Ratio	Head
Casing Diameter (d), in ft.:	0.1 7	(ft)	(min)		(ft)
Test Length Section (L), in fL :	11	36.90	0	1.00	25.00
m = (Kh/Kv)**0.5:	1.73	36.40	0.5	0.98	24.50
		36.00	1	0.96	24.1 0
t In min.:	0.6	36.00	1.6	0.96	24.10
t2 ln min.:	60	35.90	2	0.96	24.00
H1 In feet:	24.50	36.90	25	0.96	24.00
H2 In feet:	23.10	36.80	3	0.96	23.93
		35.80	3.5	0.96	23.90
Kh (cm/sec) =	6.7E-07	36.80	4	0.96	23.90
Kh (ft/min) =	1.3E-06	36.70	4.5	0.95	23.80
Kh (ft/day) =	1.9E-03	36.70	5	0.95	23.80
		35.50	10	0.94	23.60
		36.30	20	0.94	23.40
		35.30	30	0.94	23.40
		35.00	60	0.92	23.10

NOTES

- 1. m is the square root of the **ratio** of horizontal
 - to veffical **permeability**.
- 2 Test Section Diameter (D) is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.

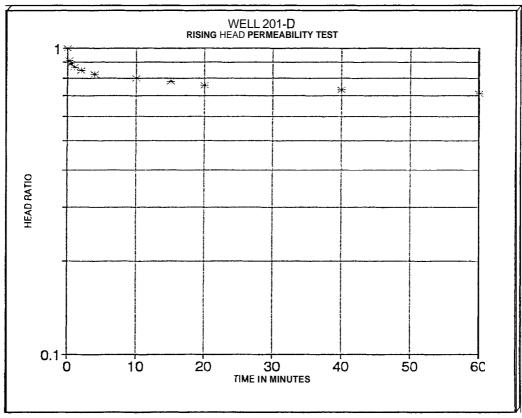
WELL NAME: 201-S DATE OF TEST: 12-SEPT-91


Rising Head Permeability Calculatior Hvorslev Method			Data	Static Wat 3.93	
Kh = [((d*d)ln((2*m*L)/D))ln(H1/H2)]	18L(t2-t1)				
		Depth	Elapsed	Head	Residual
Test Section Diameter (D), in ft.:	0.67	Water	Time	Ratio	Head
Casing Diameter (d), in ft.:	0.17	(ft)	(min)		(ft)
Test Length Section (L), in ft.:	10.3	4.62	`0.0Ó	1.00	0.69
m = (Kh/Kv)**0.5:	1.73	4.58	0.25	0.94	0.65
		4.57	0.50	0.93	0.64
t l in min.:	0.25	4,56	0.75	0,91	0.63
t2 in min.:	60	4.55	1.50	0.90	0.62
H1 in feet:	4.58	4.53	3	0.87	0.60
H2 in feet:	4.10	4.52	4	0.86	0.59
		4.51	5	0.84	0.58
Kh (cm/sec) =	1.3E-06	4.48	10	0.80	0.55
Kh (ft/min) =	2.6E-06	4.46	15	0.77	0.53
Kh (ft/day) =	3.7E-03	4.39	20	0.67	0.46
		4.28	30	0.51	0.35
		4.19	40	0.38	0.26
		4.13	50	0.29	0.20
		4.10	60	0.25	0.17

NOTES

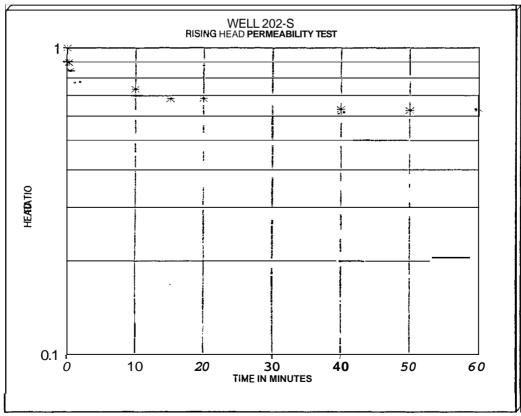
1. m is the square root of the ratio of horizontal

to vertical permeability.


- 2. Test Section Diameter (D) is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.

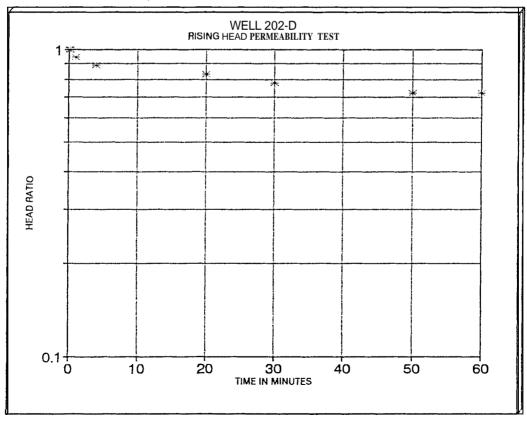
WELL NAME: 201-D DATE OF TEST: 12-SEPT-91

Rising Head Permeability Calculation Hvorslev Method Kh= [((d*d)In((2*m*L)/D))In(H1/H2)] / 8L(t2-t1)		Rising Hea	Rising Head Test Field Data			
	, 02(12-11)	Depth	Elapsed	Head	Residual	
Test Section Diameter (D), in ft.:	0.67	Water	Time	Ratio	Head	
Casing Diameter (d), in ft.:	0.17	(ft)	(min)		(ft)	
Test Length Section (L), in ft.:	4	24.70	0.00	1.00	0.45	
$m = (Kh/Kv)^{**0.5}$	1.73	24.66	0.25	0.91	0.41	
		24.65	0.50	0.89	0.40	
tlin min.:	0.25	24.64	1	0.87	0.39	
t2 in min.:	60	24.63	2	0.84	0.38	
H1 in feet:	24.66	24.62	4	0.82	0.37	
H2 in feet:	24.57	24.61	10	0.80	0.36	
		24.60	15	0.78	0.35	
Kh (cm/sec) =	8.5E-08	24.59	20	0.76	0.34	
Kh (ft/min) =	1.7E-07	24.58	40	0.73	0.33	
Kh (ft/day) =	2.4E-04	24.57	60	0.71	0.32	


- 1. m is the square root of the ratio of horizontal to vertical permeability.
- 2. Test Section Diameter (D) is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.

WELL NAME: 202-S DATE OF TEST: 11-SEPT-91

Rising Head Permeability Calculation Hvorslev Method		Rising Hea	d Test Field I	Data	Static Wat 11.54
Kh = [((d*d)ln((2*m*L)/D))ln(H1/H2)]	/ 8L(t2-t1)	Dooth	Flopood	Head	Decidual
Test Section Dispeter (D) in the	0.92	Depth	Elapsed	Head	Residual
Test Section Diameter (D), in ft.:	0.83	Water	Time	Ratio	Heed
Casing Diameter (d), in ft.:	0.17	(ft)	(min)		(ft)
Test Length Section (L), in ft.:	5	11.73	` Ó	1.00	0.19
m = (Kh/Kv)**0 .5:	1.73	11.71	0.25	0.89	0.17
		11.70	0.5	0.84	0.16
t l in min.:	0.25	11.69	1.5	0.79	0.15
t2 in min.:	60	11.68	10	0.74	0.14
H1 in feet:	11.71	11.67	15	0.68	0.13
H2 in feet:	11.66	11.67	20	0.68	0.13
		11.67	30	0.68	0.13
Kh (cm/sec) =	8.0E-08	11.66	40	0.63	0.12
Kh (ft/min) =	1.6E-07	11.66	50	0.63	0.12
Kh (ft/day) =	2.3E-04	11.66	60	0.63	0.12


- 1. m is the square root of the ratio of horizontal to vertical permeability.
- 2. Test Section Diameter (D) is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.

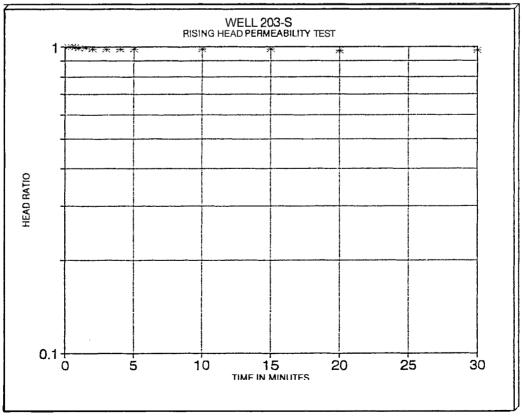
WELL NAME: 202-D DATE OF TEST: 11-SEPT-91

Rising Head Permeability Calculation Hvorslev Method Kh=[((d*d)In((2*m*L)/D))In(H1/H2)]		Rising Hea	d Test Field [Data	Static Wat 30.06
		Depth	Elapsed	Head	Residual
Test Section Diameter (D), in ft.:	0.83	Water	Time	Ratio	Head
Casing Diameter (d), in ft.:	0.17	(ft)	(min)		(ft)
Test Length Section (L), in ft.:	2.5	30.24	0	1.00	0.18
m = (Kh/Kv)**0.5:	1.73	30.24	0.25	1.00	0.18
		30.23	1	0.94	0.17
t l in min.:	0.25	30.22	4	0.89	0.16
t2 in min.:	60	30.21	20	0.83	0.15
H1 in feet:	30.24	30.20	30	0.78	0.14
H2 in feet:	30.19	30.19	50	0.72	0.13
		30.19	60	0.72	0.13
Kh (cm/sec) =	4.8E-08				
Kh (ftlmin) =	9.4E-08				
Kh (ft/day) =	1.4E-04				

- 1. m is the square root of the ratio of horizontal to vertical permeability.
- 2. Test Section Diameter (D) is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.

WELL NAME: 203-S DATE OF TEST: 11-SEPT-91

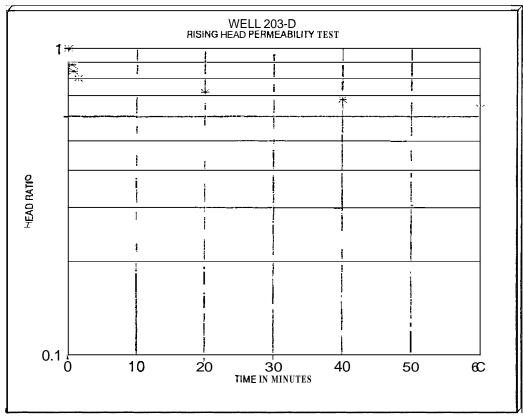
Rising Head PermeabilityCalculation Hvorslev Method Kh= [((d*d)In((2*m*L)/D))In(H1/H2)] / 8L(t2-t1)		Rising Head	Rising Head Test Field Data			
	/ •=(/	Depth	Elapsed	Head	Residual	
Test Section Diameter (D), in ft.:	0.83	Water	Time	Ratio	Head	
Casing Diameter (d), in ft.:	0.17	(ft)	(min)		(ft)	
Test Length Section (L), in ft.:	7	8.75	0.25	1.00	1.15	
$m = (Kh/Kv)^{**}0.5$:	1.73	8.75	0.50	1.00	1.15	
		8.75	0.75	1.00	1.15	
t1 in min.:	0.25	8.74	1	0.99	1.14	
t2 in min.:	60	8.74	1.5	0.99	1.14	
H1 in feet:	8.75	8.73	2	0.98	1.13	
H2 in feet:	8.71	8.73	3	0.98	1.13	
		8.73	4	0.98	1.13	
Kh (cm/sec) =	6.8E-08	8.73	5	0.98	1.13	
Kh (ft/min) =	1.3E-07	8.73	10	0.98	1.13	
Kh (ft/day) =	1.9E-04	8.73	15	0.98	1.13	
		8.72	20	0.97	1.12	
		8.72	30	0.97	1.12	
		8.72	40	0.97	1.12	
		8.72	50	0.97	1.12	
		8.71	60	0.97	1.11	


<u>NOTES</u>

1. m is the square root of the ratio of horizontal

to vertical permeabilrty.

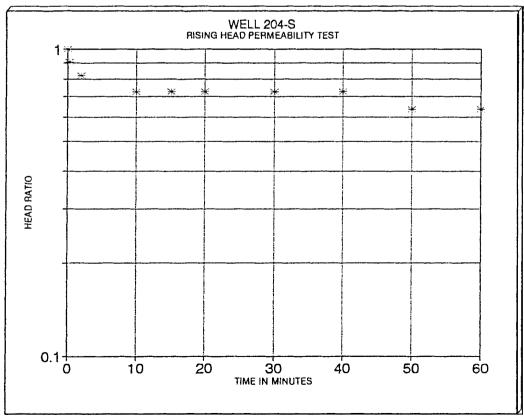
2. Test Section Diameter (D) is equal to the borehole diameter.


3. Method taken from Hvorslev, 1951.

WELL NAME: 203-D DATE OF TEST: 12-SEPT-91

Rising Head Permeability Calculation Hvorslev Method Kh=[((d*d)ln((2*m*L)/D))ln(H1/H2)] / 8L(t2-t1)		Rising Head Test Field Data			
		Depth	Elapsed	Head	Residual
Test Section Diameter (D), in ft .:	0.83	Water	Time	Ratio	Head
Casing Diameter (d), in ft.:	0.17	(ft)	(min)		(ft)
Test Length Section (L), in ft.:	3.4	26.73	`Ó	1.00	0.25
m = (Kh/Kv)**0.5:	1.73	26.71	0.25	0.92	0.23
		26.70	0.50	0.88	0.22
t l in min.:	0.25	26.69	0.75	0.84	0.21
t2 in min.:	60	26.68	1.50	0.80	0.20
H1 in feet:	26.71	26.67	10	0.76	0.19
H2 in feet:	26.64	26.66	20	0.72	0.18
		26.65	40	0.68	0.17
Kh (cmlsec) =	6.3E-08	2 6. 6 4	60	0.64	0.16
Kh (ft/min) =	1.2E-07				
Kh (ft/day) =	1.8E-04				

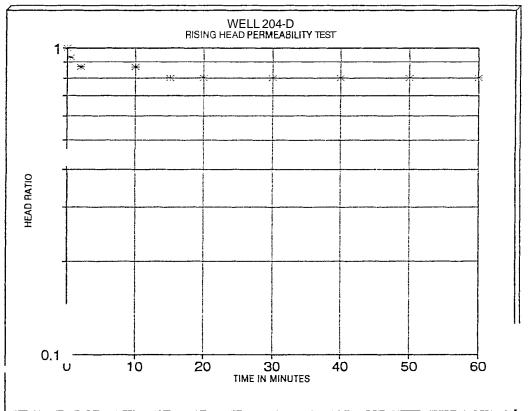
- 1. m is the square root of the ratio of horizontal *to* vertical permeability.
- 2. Test Section Diameter (D) is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.



WELL NAME: 204-S DATE OF TEST: 11-SEPT-91

Rising Head Permeability Calculation Hvorslev Method Kh=[((d*d)ln((2*m*L)/D))ln(H1/H2)] / 8L(t2-t1)		Rising Head	Static Wat 17.83		
		Depth	Elapsed	Head	Residual
Test Section Diameter (D), in ft.:	0.83	Water	Time	Ratio	Head
Casing Diameter (d), in ft.:	0.17	(ft)	(min)		(ft)
Test Length Section (L), in ft.:	1	17.94	` ó	1.00	0.11
m = (Kh/Kv)**0.5:	1.73	17.93	0.25	0.91	0.10
		17.92	2	0.82	0.09
t Lin min.:	0.25	17.91	10	0.73	0.08
t2 in min.:	60	17.91	15	0.73	0.08
H1 in feet:	17.93	17.91	20	0.73	0.08
H2 in feet:	17.90	17.91	30	0.73	0.08
		17.91	40	0.73	0.08
Kh (cm/sec) =	7.3E-08	17.90	50	0.64	0.07
Kh (ft/min) =	1.4E-07	17.90	60	0.64	0.07
Kh (ft/day) =	2.1E-04				

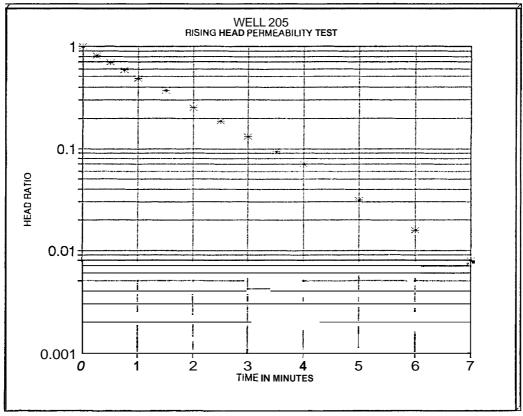
NOTES


- 1. m is the square root of the ratio of horizontal to vertical permeability.
- 2. Test Section Diameter (D) is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.

WELL NAME: 204-D DATE OF TEST: **II**-SEPT-91

Rising Head Permeability Calculatior Hvorslev Method Kh=[((d*d)ln((2*m*L)/D))ln(H1/H2)]		Rising Hea	d Test Field [Data	Static Wat 30.97
		Depth	Elapsed	Head	Residual
Test Section Diameter (D), in ft.:	0.83	Water	Time	Ratio	Head
Casing Diameter (d), in ft.:	0.17	(ft)	(min)		(ft)
Test Length Section (L), in ft.:	2	31.12	` Ó	1.00	0.15
m = (Kh/Kv)**0.5:	1.73	31.11	0.5	0.93	0.14
		31.10	2	0.87	0.13
t1 in min.:	0.5	31.10	10	0.87	0.13
t2 in min.:	60	31.09	15	0.80	0.12
H1 in feet:	31.11	31.09	20	0.80	0.12
H2 in feet:	31.09	31.09	30	0.80	0.12
		31.09	40	0.80	0.12
Kh (cm/sec) =	2.1E-08	31.09	50	0.80	0.12
Kh (ft/min) =	4.1E-08	31.09	60	0.80	0.12
Kh (ft/day) =	6.0E-05				

- 1. rn is the square root of the ratio of horizontal to vertical permeability.
- 2. Test Section Diameter (D) is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.



WELL NAME: 205 DATE OF TEST: 11-SEPT-91

Rising Head Permeability Calculation Hvorslev Method		Rising Head Test Field Data		
BL(t2-t1)				
	Depth	Elapsed	Head	Residual
0.83	Water	Time	Raiio	Head
0.17	(ft)	(mi n)		(ft)
22.1	24.20	` Ó	1.00	1.28
1.73	23.96	0.25	0.81	1.04
	23.81	0.50	0.70	0.89
0.25	23.67	0.75	0.5 9	0.75
7	23.54	1	0.48	0.62
23.96	23.39	1.5	0.37	0.47
22.93	23.24	2	0.25	0.32
	23.16	2.5	0.19	0.24
2.4E-06	23.09	3	0.13	0.17
.8E-06	23.04	3.5	0.09	0.12
5.9E-03	23.01	4	0.07	0.09
	22.96	5	0.03	0.04
	22.94	6	0.02	0.02
	22.93	7	0.01	0.01
	0.83 0.17 22.1 1.73 0.25 7 23.96 22.93 2.4E-06 .8E-06	BL(t2-t1) 0.83 0.17 22.1 24.20 1.73 23.96 23.81 0.25 23.67 7 23.54 23.96 23.39 22.93 22.93 23.24 23.16 24.20 23.09 22.93 23.24 23.16 23.09 23.01 22.96 22.94	$\begin{array}{c ccccc} & & & & & & & & & & \\ \hline BL(t2-t1) & & & & & & & & \\ \hline 0.83 & & & & & & & & & \\ \hline 0.17 & & & & & & & & & \\ \hline 0.17 & & & & & & & & & \\ \hline 1.73 & & & & & & & & & \\ 23.96 & & & & & & & & & \\ 23.81 & & & & & & & & \\ 0.25 & & & & & & & & & & \\ 23.81 & & & & & & & & \\ 0.25 & & & & & & & & & & \\ 23.81 & & & & & & & & \\ 0.25 & & & & & & & & & \\ 23.81 & & & & & & & & \\ 0.25 & & & & & & & & & \\ 23.81 & & & & & & & & \\ 0.25 & & & & & & & & & \\ 23.81 & & & & & & & & \\ 0.25 & & & & & & & & & \\ 23.96 & & & & & & & & & \\ 23.96 & & & & & & & & & \\ 23.96 & & & & & & & & & \\ 23.04 & & & & & & & & \\ 23.01 & & & & & & & \\ 22.96 & & & & & & & \\ 3.9E-03 & & & & & & & & & \\ 22.96 & & & & & & & \\ 22.94 & & & & & & & \\ \end{array}$	$\begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$

NOTES

- 1. m is the square root of the ratio of horizontal
 - to vertical permeability.
- 2. Test Section Diameter (D) is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.

APPENDIX F

Laboratory Data Validation

1

.

۲

I

100

<u>Appendix F</u>

Dollinger **RI/FS** Laboratory Data Validation

INTRODUCTION

The sample laboratory data package representing the analysis of environmental samples collected at the Dollinger site from 1 August to 10 September 1991 is contained in five (5) sample delivery groups (SDGs). Each SDG section is delineated by the H&A of New York sampling identification number for the first sample received by the laboratory for each respective SDG.

This validation report has been prepared to assess the compliance of each SDG with the NYSDEC Analytical Services Protocol Revised December, 1989 (NYSDEC ASP 89) requirements. The report incorporates the review of the five SDGs within each data validation criterion. Any deviation from NYSDEC ASP 89 requirements is designated by the SDG number in which the deviation was noted and the associated samples listed by the H&A of New York identification number that are affected.

The sample analysis data package contains two levels of NYSDEC ASP 89 reporting formats, Category A and full NYSDEC Superfund-CLP deliverables. The sample analytical data were reviewed for as many validation criteria as could be determined with the documentation provided for each level of reporting format. Sample identifications, analysis performed and reporting formats are provided in Table 1 of the report.

<u>FORMAT</u>

The validation report is comprised of two sections - organic analyses and inorganic analyses respectively. Each section is divided into subsections for each validation criterion as defined by "Functional Guidelines for the Evaluation of Organic and Inorganic Analyses" USEPA, Revised February, 1988. At the end of each section of the report, a summary of each noted deviation from NYSDEC ASP 89 protocol requirements is prioritized and the reviewer's opinion is provided as to the effect on the analytical results reported. The anomaly is also determined to be either actionable or non-actionable by the contracted laboratory.

SECTION I. ORGANIC ANALYSES

A. Holding Time Comwliance

<u>Volatiles Analvsis</u>: Volatile analysis of each SDG sample was performed within five days from verified time of sample receipt (VTSR) and within seven days of sample collection as required by NYSDEC ASP 89 protocol.

Semi-Volatiles Analysis: Semi volatiles sample preparation was performed within five days of VTSR as required by NYSDEC ASP 89 for each SDG sample with the exception of samples SS-202s and SS-204s within SDG: SS-201d and GSA8(2-4) within SDG: GSA8. The initial preparation and analysis of samples SS-202s and SS-204s exhibited poor surrogate recoveries and a re-extraction was performed as required by NYSDEC ASP 89 criteria. The re-extraction was performed on 23 August 1991 or 21 days after VTSR. Since the extraction holding time was exceeded by 16 days, analytes detected as present, quantitated and reported should be flagged (J) as an estimated concentration. Analytes not detected and reported as less than (<) the contract required quantitation limit (CRQL) should be flagged (R) as rejected and unusable. Sample extraction holding time was also exceeded for sample GSA8(2-4) within sample SDG: GSA8. The VTSR for GSA8(2-4) was 15 August 1991 with extraction performed on 9 September 1991 or 20 days after expiration of the holding time. Each target analyte detected as present should be flagged (J) as estimated and each non-detect should be flagged (R) as rejected and unusable.

Pesticide/PCB Analysis: Each sample submitted for **Pesticide/PCB** analysis was extracted within five days of the VTSR and seven days of the sample collection as required by NYSDEC ASP 89 protocol with the exception of samples **SO-201** and SO-202 in **SDG: SS-201d**. The initial analysis of each SDG sample exhibited a low surrogate recovery. The samples were re-extracted and analyzed as required by NYSDEC ASP 89 protocol. Although the re-extraction was performed after the expiration of the analytical hold-time, the correlation of the reported results for sample SO-202 (0.0071 and 0.010 ppb for **4,4'** DDE respectively) indicate that this anomaly had no effect on the sample data.

B. <u>GC/MS Tuning Procedure</u>

<u>Volatiles Analvsis</u>: GC/MS instrument tuning was performed utilizing bromofluorobenzene (BFB) within twelve hours prior to the analysis of each SDG sample as required by NYSDEC ASP 89 protocol. Observed relative ion abundance for each instrument tuning were within NYSDEC ASP 89 criteria. Each GC/MS tuning performed prior to each SDG sample analysis batch is provided in Table 2 of this report. <u>Semi Volatiles Analysis</u>: **GC/MS** instrument tuning was performed utilizing decafluorotriphenylphosphine (DFTPP) within twelve hours of the analysis of each SDG sample as required by NYSDEC ASP **89** criteria. Observed relative ion abundance for each instrument tuning were within NYSDEC ASP **89** acceptance criteria. Each **GC/MS** instrument tuning performed prior to SDG sample analysis is provided in Table 3 of the report.

C. <u>Instrument Calibration</u>

Volatiles Analysis: GC/MS volatiles analysis was performed utilizing four instruments with GC/MS identifications of 51D, 51E, 150G, and 150H. Initial calibration for each GC/MS instrument utilized in the analysis of each sample delivery group sample was performed with five calibration standards for each target analyte ranging in concentration from 20 to 200 parts per billion (ppb). The relative standard deviation (RSD) calculated for each target analyte was less than (<) 35 percent (%) as required by NYSDEC ASP 89 criteria. The relative response factor (RRF) calculated for each analyte was greater than (>) 0.05 as required by NYSDEC ASP 89 protocol. Initial calibrations were confirmed every twelve hours utilizing a single continuing calibration standard prepared at a concentration of 50 ppb for each target analyte. The percent difference (\$D) calculated for each target analyte was < 35 \$ and the RRF calculated for each target analyte was > 0.05 as required by NYSDEC ASP 89 protocol.

<u>Semi-Volatiles Analysis</u>: GC/MS semi-volatiles analysis was performed utilizing four instruments with GC/MS identifications of 150W, 150X, 150Y, and 150Z. Initial calibration of each instrument was performed with five calibration standards for each target analyte ranging in concentration from 20 to 160 ppb with the exception of **benzoic** acid, 2,4,5 trichlorophenol, 2-nitroaniline, 3-nitroaniline, 2,4 dinitrophenol, 4-nitrophenol, 4-nitroaniline, 4,6 dinitro-2-methylphenol, and pentachlorophenol. The preceding nine compounds were calibrated on each instrument utilizing four calibration standards ranging from 50 - 160 ppb. The relative standard deviation (RSD) for each target analyte was < 35 % and the RRF for each target analyte was >0.05 as required by NYSDEC ASP 89 protocol. After twelve hours of instrument operation, a single continuing calibration standard at a concentration of 50 ppb for each target analyte was utilized to confirm the initial calibration. The % D for each target analyte was calculated to be < 35 % and the RRF for each target analyte was calculated to be >0.05 as required by NYSDEC ASP 89 protocol.

Pesticide/PCB Analysis: Pesticide/PCB analysis of each SDG sample was performed on GC HP5890A5 utilizing a single split injection technique. Channel A was equipped with a 30 meter capillary column (#114-DB 608) and channel B was equipped with a 30 meter capillary column (#124-DB 1701). Initial and continuing calibration analyses of Evaluation B (Eval B), Independent A (IND A) and Independent B (IND B) standards were performed in the frequency required by NYSDEC ASP 89 protocol. Each Eval B standard mix analyzed concurrently with SDG samples exhibited < 15 % DDT breakdown and < 10 % RSD for each target analyte, Endrin, Aldrin, 4,4'DDT and surrogate dibutylchlorendate as required by NYSDEC ASP 89 protocol. Each IND A and IND B standard mix analyzed concurrently with SDG samples exhibited a calculated RSD of < 10% for each target analyte as required by NYSDEC ASP 89 protocol.

D. <u>Method Blank Analysis</u>

<u>Volatiles Analysis</u>: Target compounds were detected in method blank analyses associated with samples from SDGs STW-202, OW-101d, SS-201d and GSA8. Table 4 of this report provides a list of the target compounds detected, the affected sample analyses and the recommended action levels for each target analyte as defined by "Functional Guidelines for the Evaluation of Organic Analyses" USEPA, Revised February 1988.

Refer to M. <u>Orsanic Section Summary</u> and Table 4 of this report for the recommended corrective action.

<u>Semi-Volatiles Analysis</u>: Semi-volatile target compounds were not detected in method blank analyses associated with SDGs: GSA8, OW-101D, OW-201d and STW-202. Phenol was detected at 0.47 ppm during method blank analysis associated with SDG: SS-201d samples SO-201, SO-202, SS-201d, SS201s, SS201sDL, SS201sRE, SS202d, SS202sDUP, SS203d, SS203s, SS203sDUP, SS204d, SS204dRE, SO201MS and SO 201MSD. The recommended action level for detected phenol concentrations within the sample analyses was determined to be 2.35 ppm as defined by "Functional Guidelines for the Evaluation of Organic Analyses" USEPA, 2/88.

Refer to M. <u>Orsanic Section Summary</u> for the recommended corrective action.

Pesticide/PCB Analvsis: Pesticide/PCB target compounds were not detected in method blank analyses associated with SDGs: STW-202 and OW-201d. Pesticide/PCB analyses were not performed in SDG: OW-101d. Alpha-chlordane was detected at 0.011 ppm during method blank analysis associated with SDG: SS-201d samples. Since alpha-chlordane was not detected within any SDG: SS201d samples, no corrective action is recommended. Beta-BHC and methoxychlor were detected during method blank analyses analyzed concurrently with SDG: GSA8 samples GSA8(2-4), GSB2(2-4), GSB5(4-6), GSA8(2-4)MS/MSD, and B201s(12-14) at concentrations of 0.016 and 0.140 ppm respectively. The action level for associated SDG samples was calculated to be 0.080 and 0.70 ppm for beta-BHC and rnethoxychlor respectively as defined by the "Functional Guidelines for the Evaluation of Organic Analyses", USEPA, Revised February, 1988.

Refer to M. <u>Orsanic Section **Summary**</u> for the recommended corrective action.

E. <u>Surrosate Recovery</u>

<u>Volatiles Analysis</u>: Recovery of surrogates, toluene-d8, bromofluorobenzene and 1,2 dichloroethane-d4 were within NYSDEC ASP 89 criteria for each standard, SDG sample and quality assurance sample analysis.

<u>Semi Volatiles Analysis</u>: Recovery of surrogates, nitrobenzene-d5 (NTB), 2-fluorobiphenyl (2-FBP), terphenyl, phenol-d5, 2-fluorophenol, and 2,4,6 tribromophenol (2,4,6-TBP) were within NYSDEC ASP 89 criteria for each standard, SDG sample and quality assurance sample analysis with the following exceptions.

SDG	Surrogate	Sample ID	%Recovery	Criteria % (NYSDEC)
STW 202 STW 202 STW 202 STW 202 STW 202 STW 202 STW 202 SS-201d GSA8 GSA8	2,4,6 TBP 2,4,6 TBP 2,4,6 TBP 2,4,6 TBP 2,4,6 TBP 2,4,6 TBP 2,4,6 TBP 2-FBP NTB 2-FBP	Field Blank MS Blank SW 201 SW 202 SW 204 SW 204dup SS201sRE STW201msd GSA8 (2-4)	133 124 152 126 148 151 244 118 164	10-123 10-123 10-123 10-123 10-123 10-123 43-116 35-114 43-116
GSA8	2,4,6 TBP	Field Blk4	135	10-123

Since NYSDEC ASP 89 criteria only requires re-extraction and re-analysis for surrogate recoveries < 10 %, no corrective action is recommended.

<u>Pesticide/PCB Analysis</u>: Recovery of surrogate dibutylchlorendate was within NYSDEC ASP 89 criteria for each standard, SDG sample and quality assurance sample analysis with the exception of 19% recovery exhibited in sample SO-201MSD from SDG: SS-201d. Since no target analytes were detected in either sample SO-201 or SO-201MS, no corrective action is recommended.

F. Matrix Spike/Matrix Spike Duplicate Analysis

<u>Volatiles Analysis</u>: Recovery of matrix spike analytes, 1,1 dichloroethene, trichloroethene, benzene, toluene, and chlorobenzene for each volatiles analysis for both soil and water matrices were within NYSDEC ASP 89 criteria with the following exceptions.

SDG	Analyte	Sample ID	%Recovery	Criteria % (NYSDEC)
SS-201d	Trichloroethene	MS blank2	66	75-125
SS-201d	Benzene	MS blank2	71	75-125
SS-201d	Toluene	MS blank2	68	75-125
SS-201d	Chlorobenzene	MS blank2	63	75-125
GSA8	Trichloroethene	GSB1(10-12)	41	62-137
GSA8	Trichloroethene	GSA8(2-4)	140	62-137

The replicate percent difference (RPD) calculated for each matrix spike analyte was within NYSDEC ASP 89 criteria with the following exceptions.

SDG	Analyte	Sample ID	%Recovery	Criteria % (NY SDEC)
OW-201d	Trichloroethene	OW-201s	17	0-14
SS-20ld	1,1 Dichloroethene	SS-201s	23	0-22
SS-20ld	Toluene	SS-201s	22	0-21
SS-20ld	Chlorobenzene	SS-201s	25	0-21

Each matrix spike (MS) analyte recovery and calculated RPD observed outside the NYSDEC ASP 89 criteria was appropriately flagged (*) on Form III VOA-2. Since NYSDEC ASP 89 MS recovery criteria are provided for advisory purposes only, no corrective action is recommended.

<u>Semi-Volatiles Analysis</u>: Generally, recovery of matrix spike analytes, phenol, 2-chlorophenol, **1**,**4** dichlorobenzene, N-nitroso-di-n-propylamine, **1**,**2**,**4** trichlorobenzene, 4-chloro-3-methylphenol, acenaphthene, 4-nitrophenol, **2**,**4** nitrotoluene, pentachlorophenol and pyrene were within NYSDEC ASP 89 criteria.

Generally, the replicate percent difference (RPD) calculated for each matrix spike analyte was also within NYSDEC ASP 89 criteria.

Matrix spike analyte recoveries and calculated **RPDs** observed outside NYSDEC ASP 89 criteria were appropriately flagged (*) on Form III SV-2. Since NYSDEC ASP 89 MS criteria are provided for advisory purposes only, no corrective action is recommended. **Pesticide/PCB** Analysis: Generally, the recovery of matrix spike analytes, gamma-BHC (Lindane), Heptachlor, Aldrin, Dieldrin, Endrin, 4,4'-DDT were within NYSDEC ASP 89 criteria. Each matrix spike analyte recovery observed outside the NYSDEC ASP 89 criteria was appropriately flagged (*) on Form III PEST-2. Since NYSDEC ASP 89 MS criteria are provided for advisory purposes only, no corrective action is recommended.

For each SDG sample for which matrix spike and matrix spike duplicate analysis was performed, the calculated RPD for each MS analyte was within the NYSDEC ASP 89 criteria listed on Form III PEST-2.

Field Duplicate Analysis G.

Three samples were collected in duplicate and analyzed to assess the precision of the sampling and analysis methodology. The results of each target analyte detected as present is presented in the following table. Since there is no comparison criteria established for field duplicate analysis within the NYSDEC ASP 89 protocol, the information can only be utilized to indicate the precision attained during the completion of the sampling and analysis program conducted at the **Dollinger** site.

SDG Mat	crix Sample IDs.	Analyte Detected	[R1]	[R2]	RPD%
SS-201d so SS-201d so SS-201d so	bil SS-202s/DUP SS-202s/DUP bil SS-202s/DUP bil SS-202s/DUP bil SS-202s/DUP bil SS-202s/DUP	Phenanthrene Pyrene Fluoranthrene	0.039 3.8 7.1 5.8	0.14 3.8 10.0 7.2	115 0 34 25
SS-201d sc	bil SS-202s/DUP bil SS-202s/DUP	anthracene Chyrsene Benzo(b) fluoro-	2.5 3.4	3.5 4.2	33 21
	Dil SS-202s/DUP	Benzo(k) fluoro- anthene	6.0 2.2 3.6	6.8 2.5 3.7	12 13 2.7
SS-201d so	Dil SS-202s/DUP Dil SS-202s/DUP	Indeno (123 cd) pyrene Benzo(ghi) -	2.0	2.8	33
	oil SS-202s/DUP	Bis (2-ethylhexyl) phthalate	1.4 1.5 74	1.6 1.1 78	13 5.3 5.3
	ater SW-204/DUP	ACELUIE	ND	ND	

The calculated RPD for each analyte is indicative of representative sampling and analysis determinations normally observed within

environmental media with the exception of acetone in SDG sample SS-202s/DUP. Since acetone is a known common laboratory contaminant and the RPD exhibited for acetone within the sample matrix is high relative to other target analytes detected, the reported result for acetone may not be indicative of the actual site conditions.

H. <u>Internal Standard Summarv</u>

<u>Volatiles Analvsis</u>: Internal standards, bromochloromethane, difluorobenzene and chlorobenzene-d6 exhibited total area counts for each standard, SDG sample and quality assurance sample analysis within the NYSDEC ASP 89 criteria of -50% and +100% relative to the initial or corresponding continuing calibration standard for each analytical batch. Relative retention time (RRT) for each internal standard within each standard, SDG sample and quality assurance sample fell within the NYSDEC ASP 89 criteria of \pm 0.06 RRT units of the corresponding initial or continuing calibration standard.

<u>Semi-Volatiles Analysis</u>: Internal standards, 1,4

dichlorobenzene-d4, naphthalene-d8, acenaphthene-d10, phenanthene-d10, chyrsene-dl2 and perylene-dl2 exhibited total area counts for each standard, SDG sample and quality assurance sample analysis within the NYSDEC ASP 89 protocol criteria of -50% and +100% relative to the initial calibration or corresponding continuing calibration standard for each analytical batch with the exception of Perylene-dl4 in samples SS-204d, SS202s dup, SS204dRE and SS201s from SDG: SS-201d. Due to a low relative response of Perylene-dl4 within the sample matrix, the reported results for Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(123cd)pyrene, Dibenz(a,h)anthracene and Benzo(g,h,i) perylene for each sample analysis may exhibit a "high bias" from the actual concentrations within the sample matrix and may not be indicative of the site conditions.

Refer to M. <u>Oraanic Section Summary</u> for recommended corrective actions.

The relative response time for each internal standard within each standard, SDG sample and quality assurance sample analysis fell within the NYSDEC ASP 89 criteria of ± 0.06 RRT units of the corresponding initial and continuing calibration standard.

I. Target Compound Identification and Quantitation

<u>Volatiles Analvsis</u>: Target compounds detected as present appeared to be identified and quantitated correctly. A random spot check of at least two target compound **quantitations** per SDG indicated that each analyte was reported correctly. <u>Semi Volatiles Analvsis</u>: Target analytes detected as present, quantitated and reported appeared to be correct based on a random spot check of two target analyte quantitations per sample delivery group.

<u>Pesticide/PCB</u> Analysis: Beta-BHC, methoxychlor and **4,4**¹ DDE were the only target analytes detected as present within the SDG samples. The identification and quantitation for each analyte was performed in accordance with NYSDEC ASP 89 protocol.

J. <u>Detection Limit Reporting</u>

<u>Volatile, Semi Volatile and Pesticide\PCB Analvsis</u>: Reported detection limits were adjusted for sample volume analyzed, percent moisture exhibited in soil matrices and post preparation dilutions (if required) to provide accurate quantitation within instrument calibration. A random spot check of two reported detection limits per sample matrix per analysis per SDG indicated that the adjusted reporting limits were reported correctly.

K. <u>Tentatively Identified Compound (TIC) Ouantitations</u>

<u>Volatiles and Semi Volatiles Analvsis</u>: Several tentatively identified compounds were detected as present within the SDG samples during volatiles and semi-volatiles analysis. **TICs** were appropriately identified as to compound classification based on mass spectral characteristics (eg. Unknown hydrocarbon). A random spot check of two TIC **quantitations** per sample analysis per SDG indicated the reported values to be determined in accordance with NYSDEC ASP 89 protocol.

L. <u>Data Packase Completeness</u>

Each SDG was presented with documentation required for compliance with NYSDEC ASP 89 Category A or Superfund-CLP deliverables where applicable with the following exceptions.

- 1. Method Detection Limit Tables for each organic analysis methodology performed were not provided for each SDG.
- 2. NYSDEC Forms 1 through 7 were not provided for SDGs: OW101d and OW201d.

M. Organic Section Summary

Actionable Items:

See attached communication addressed to the contracted laboratory dated 8 November 1991.

Non-actionable Items:

Holding Time Non-Compliance: Semi-Volatiles extraction of samples SS-202s, SS-204s and GSA8(2-4) were performed outside of the analytical holding time requirements. The target analytes detected as present within the samples should be flagged (J) as estimated concentrations. The target analytes not detected as present should be flagged (R) as rejected.

<u>Internal Standard Summary Criteria</u>: Samples SS-201s and SS-202s DUP exhibited a possible matrix interference in the determination of the target analytes benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, benzo(g,h,i)perylene and dibenz(a,h)anthracene. With the corresponding internal standard, Perylene-d14, exhibiting a low relative response within each sample matrix, the quantitated results were reported with an inherent high bias. The reported concentrations for the analytes listed above within samples SS-201s and SS-202sDUP should be flagged (J) as estimated. Based on the reduced response of Perylene-D14 within the sample matrices of greater than one order of magnitude from the response exhibited within the corresponding calibration standard, it is estimated that the reported results are likely to be biased 5 to 10 times higher than the actual concentration within the sample matrix.

Method Blank Analyses

<u>Volatiles Analysis</u>: Several target analytes were detected as present during volatiles analysis of the SDG samples. Table 4 of this report provides the recommended action levels for each target analyte detected during method blank and the corresponding sample analysis. For each target analyte detected concurrently within the method blank and associated SDG samples, the reported SDG sample results should be adjusted to the action levels when the reported result falls between the action level and non-detection. If the sample result is above the action level, the result should remain unchanged.

Refer to Table 4 of this report which provides the detected target analyte, the associated SDG sample numbers and the recommended reporting limit.

<u>Semi-Volatiles Analysis</u>: No target analytes were detected as present during method blank analysis with the exception of phenol detected at 0.47 parts per million (ppm) in method blank SBLK 95 of SDG: SS-201d. The reported concentration of phenol detected within the associated SDG samples was above non-detection and below the calculated action level of 2.35U ppm, the reported results for the associated SDG samples should be changed to <2.35U. **Pesticide/PCB** Analvsis: No target analytes were detected as present during method blank analyses performed with each SDG sample with the exception of beta-BHC and methoxychlor in SDG: GSA8, and alpha-chlordane in SDG: SS-201d. The reported concentration of beta-BHC and methoxychlor detected within the associated SDG samples was below the calculated action level of 0.080 and 0.70 ppm respectively. The reported results should be adjusted to <0.080U and <0.70U for beta-BHC and methoxychlor respectively for the associated SDG samples. Alpha-chlordane was not detected as present in any of the associated SDG samples, therefore, no corrective action is recommended.

Surrosate Recovery

<u>Semi-Volatiles Analvsis</u>: Several surrogate recoveries were calculated to be above the NYSDEC ASP 89 acceptance criteria. The apparent high bias of the surrogate recoveries can be attributed to two possible analytical anomalies. The cause for the observed high bias is most likely a result of low internal standard response observed within the sample matrix of the associated samples. The low internal standard response produces an apparent higher relative response of the surrogate compounds and thus a higher quantitated result than the theoretical surrogate spike concentration. Α second but less likely cause may be an analytical error in either the preparation of the surrogate spike solution or addition of the surrogate spike to the sample matrix. Since high surrogate recoveries indicate a high extraction efficiency was achieved during sample preparation, no corrective action based on the surrogate recovery data is recommended.

Matrix Spike/Matrix Spike Duplicate Analysis

<u>Volatiles Analvsis</u>: The matrix spike recovery of trichloroethene (TCE) outside NYSDEC ASP 89 criteria exhibited in samples GSB1(10-12) and GSA8(2-4) can be attributed to relatively higher concentrations of the target analytes within the sample matrix which masked the recovery of the TCE spike. This anomaly is a matrix specific condition and should not be considered indicative of the accuracy of the laboratory analysis. Therefore, no corrective action is recommended.

<u>Semi-Volatiles Analysis</u>: Several matrix spike analytes exhibited consistently low recovery from the sample matrices. The consistency of the matrix spike recovery bias indicates either a uniform matrix interference throughout the SDG samples or an analytical error in the preparation and analysis of the matrix spike analytes. Matrix spike blanks analyzed concurrently with the SDG samples also exhibited consistently low recoveries for **acid**extractable analytes which indicates a possible method bias for the target analytes may have occurred. Since the quality control limits recommended by NYSDEC ASP 89 are "advisory only" for matrix spike blank recoveries, no corrective action is recommended. <u>Pesticide/PCB Analysis</u>: Matrix spike recoveries calculated for several analytes were outside the NYSDEC ASP 89 protocol criteria. No discernible trend can be determined from the erratic matrix spike recovery data. Since no target analytes were detected above the contract required quantitation limits and the matrix spike data indicates that a majority of the analytes could be determined from the sample matrices, no corrective action is recommended.

Matrix Spike Duplicate Analysis (RPD)

<u>Volatiles, Semi Volatiles and Pesticide/PCB Analyses</u>: Several analytes were determined within the sample matrices exhibiting a replicate percent difference (RPD) above the NYSDEC ASP 89 acceptance criteria. Generally, the variable precision observed appeared to be a function of sample matrix non-homogeniety. No corrective action is recommended.

<u>Data Packase Completeness</u>: Several integral portions of the data package were not available within the first submittal of the data package from the laboratory. These omissions have been requested from the laboratory for inclusion within the final data package.

SECTION II. INORGANICS ANALYSES

INTRODUCTION

Samples were submitted to the contract laboratory for inorganics analysis within sample delivery groups (SDGs) STW-202, SS-201d, GSA8 and OW-201d. Inorganics analyses were not performed within SDG: OW-101d. Inorganics analyses performed included elemental analysis by graphite furnace atomic absorption (GFAA) spectroscopy, flame atomic absorption (FAA) spectroscopy, inductively coupled plasma atomic emission spectroscopy (ICP-AES) and mercury cold vapor atomic absorption analysis (CVAA). For samples submitted within each SDG for "Full TCL" analysis, cyanide analysis was also performed by manual spectrophotometric wet chemistry.

A. <u>Holding Time Compliance</u>

Each mercury analysis performed on SDG samples was prepared and analyzed within 26 days of verified time of sample receipt (VTSR) as required by NYSDEC ASP 89 protocol. Each cyanide analysis was performed within 12 days of VTSR as required by NYSDEC ASP 89 protocol.

B. <u>Instrument Calibration</u>

Six instruments were utilized in elemental analysis of the SDG samples. The following Table lists the instrument identification, type and analytes determined during inorganic analysis.

<u>Identification</u>	<u>Type</u>	Analytes Determined
ARL 3560	ICP-AES	Barium (Ba), Beryllium (Be) Cadmium (Cd), Chromium (Cr), Copper (Cu), Magnesium (Mg), Manganese (Mn), Nickel (Ni), and Zinc (Zn)
PE 3100	FAA	Calcium (Ca), Cobalt (Co) Manganese (Mn)
PE 5100 #1	GFAA	Arsenic (As), Lead (Pb) Thallium (Tl)
PE 5100 #2	GFAA	Lead (Pb), Selenium (Se) Thallium (Tl)
PE 5100 #3	GFAA	Antimony (Sb), Arsenic (As) Lead (Pb), Thallium (Tl)
PE 2380	CVAA	Mercury (Hg)

Initial calibration verification standard recovery of each analyte for each instrumental analysis batch was within NYSDEC ASP 89 criteria of 90-110 % of the true value.

Continuing calibration verification standard recovery analyzed within each instrumental analysis batch was within the NYSDEC ASP 89 criteria of 90 to 110 % of the true value for ICP-AES, GFAA, and FAA analysis and 80 to 120 % recovery of true value for mercury analysis by CVAA, and 85 to 115 % recovery for cyanide analyses.

C. Contract Required Detection Limit (CRDL) Standard Recovery

CRDL standard recovery for each analyte ranged from 80 to 167 % recovery for SDG: **OW-201d**, 63 to 160 % for SDG: STW-202, 33 to 250 % for SDG: SS-201d and 32 to 173 % for SDG: **GSA8**. Since acceptance criteria for CRDL standard is yet to be established by NYSDEC, no corrective action is recommended.

D. <u>Initial Calibration Blank (ICB), Continuing Calibration Blank</u> (CCB) and Preparation Blank (PB) Results

No inorganic analytes were detected at concentrations above the CRDL within the ICB, CCB, or PB analyzed concurrently with each SDG sample.

E. <u>ICP Interference Check Sample Analysis</u>

ICP interference check samples analyzed concurrently with SDG samples exhibited percent recoveries for each target inorganic analyte within NYSDEC ASP 89 criteria of \pm 20 % of the true value.

F. Matrix Spike Sample Analysis

Matrix spike recoveries for each inorganic analyte ranged from 78 to 138% for SDG : STW-202, 70 to 200% for SDG : GSA8, and 60 to 120 % for SDG : OW-201d. Matrix spike recoveries for SDG : SS-201 d sample SO-201s MS were As (24%), Sb (0%), Ba (54%), Be (53%), Cd (38%), Cr (48%), Co (50%), Cu (50%), Pb (73%), Ni (55%), Se (0%), Ag (38%), Tl (68%), V (52%) and Zn (21%). Matrix spike recoveries for SDG : SS-201d sample TP-201 MS were As (34%), Sb (0.0%), Ba (58%), Be (53%), Cd (10%), Cr (55%), Co (51%), Cu (57%), Pb (70%), Mn (461%), Ni (60%), Ag (29%), Tl (54%), V (51%), and Zn (45%).

The consistent low recovery of each respective analyte may indicate that a uniform matrix interference exists within each matrix spike sample for SDG: **SS201d.** Since acceptance criteria are yet to be established by NYSDEC for matrix spike recoveries, no corrective action is recommended.

G. <u>Matrix Duplicate Analvsis</u>

The replicate percent difference (RPD) calculated for matrix duplicate analyses performed within SDG: STW-202, SDG: SS-201d, SDG: GSA8 and SDG: OW-201d for each analyte detected as present were within NYSDEC ASP 89 criteria of \pm 20 % or \pm CRDL for analyte concentrations detected below five times the CRDL.

H. Laboratory Control Sample (LCS) Results

LCS materials analyzed concurrently with each SDG sample were provided by private vendors, ERA and Inorganic Ventures for solid and aqueous matrices respectively. The recovery of each analyte for each LCS determination fell within the criteria established by the manufacturer as presented on Form VII-IN within each SDG data package.

I. <u>ICP Serial Dilution Analysis</u>

ICP serial dilution analysis was performed concurrently with each SDG. Analytes detected at a concentration of > 50 times the instrument detection limit (IDL) for each sample matrix was analyzed at a five fold dilution at least once within each SDG. Analytes which exhibited >10% difference from the original undiluted result were flagged "E" on Form I-IN and Form XI-IN within the SDG data package.

J. Instrument Detection Limits (IDLs)

Each IDL reported was equivalent to or below the NYSDEC ASP 89 CRDL for each analyte **analyzed** by ICP, GFAA, FAA, and CVAA. Each IDL reported was determined within 90 days prior to the analysis of the SDG samples as required by NYSDEC ASP 89 protocol.

K. <u>ICP Interelement Correction Factors (ICFs)</u>

ICP ICFs were determined 4 June 1991 which was within 12 months of the analysis of the SDG samples as required by NYSDEC ASP 89 protocol.

L. <u>ICP Linear Ranges</u>

ICP linear ranges for each analyte were determined 25 April 1991 and 14 September 1991 which bracket the analysis of the SDG samples. Although ICP linear ranges were determined more than 90 days prior to the analysis of the SDG samples as required by NYSDEC ASP 89 protocol, the close correlation of the 25 April 1991 ICP linear range determinations as compared to the 14 September results indicates the analysis of the SDG samples was not affected. No correction action is recommended.

M. Summary

<u>Actionable Items</u>: See attached correspondance with the contracted laboratory dated 8 November 1991 and 14 November 1991.

Non-Actionable Items: None noted by the reviewer.

dmc\16.doc

			Table 1				
	An	alytical	Requiremer	nt Summa	ary		
							Reporting
SDG No.	Sample No.	Volatiles	Semi Volatiles	Pest./PCB	Inorganics	Pet. Hydrocarbons	Criteria
STW-202	STW-202	X	X		X	X	Category A
	SW-201	X	X		X	X	Category A
	SW-202	Х	X		X	X	Category A
	SW-204	Х	x		x	x	Category A
	SW-204DUP	x	x	T	×	x	Category A
	FIELD BLANK	x	x	×	×		Full CLP
	TRIP BLK-1	x					Category A
	TRIP BLK-2	X		<u></u>			Category A
	TRIP BLK-3	x					Category A
SS-201d	SS-201d	x	×	1	x	x	Category A
	SS-202d	x	x	j	x	×	Category A
	SS-203d	X	х		x	x	Category A
	SS-204d	x	x		x	x	Category A
	SS-204s	X	x	ļ — — — — — — — — — — — — — — — — — — —	X	X	(category A
	SS-202s	X	X		X		Category A
	SS-201s	<u>x</u>	X		X		Category A
	SS-202sDUP	<u>x</u>	X		X		Category A
	SO-201	<u>x</u>	X	x	X		Full CLP
	SO-202	X	x	X	X		Full CLP
	TP-201		X		1		Full CLP
	TP-201	X X	X	<u> </u>	X		Category A
	TP-202	× X			· · · · · ·		
	TP-203		<u>x</u>	~	×		Category A
		X	x	X	X		
	TP-205	X	X				Category A
	TP-206	X	X				Category A
		<u> </u>					Category A
ISA8	GSA8	<u>×</u>	X	<u> </u>	X		Full CLP
	GSB2	<u> </u>	×	<u>×</u>	X		Full CLP
	GSA4	X				·	Category A
	GSB5	X	×	X	x		Full CLP
	GSB1	X	<u>x</u>				Category A
	GSB4	x	×			· <u> </u>	Category A
ĺ	B-201d	x	x	×	×		Full CLP
	B-201s	x	×	x	x		Full CLP
	B-202d	X	x				Category A
[B-202s	x	×				Category A
	B-203d	x	X				Category A
	B-203s	x	x				Category A
	STW-201	x	x				Category A
	FBLK-1	x	×	×	×		Full CLP
•	FBLK-2	x	x	x	x		Full CLP

Notes:

1. Volatiles - Target Compound List Volatiles NYSDEC ASP Method 89-1

2. Semi Volatiles - Target Compound List Semi Volatiles NYSDEC ASP Method 89-2

3. Pesticides\PCB - Target Compound List Pesticides\PCB NYSDEC ASP Method 89-3

4. Inorganics - Target Compound List Inorganics CLP SOW Inorganics 2/88

5. Pet. Hydrocarbons - NYSDOH Petroleum Hydrocarbon Method 310.13

	An	alytical	Table 1 Requiremen	t Summa	ry		
SDG No.	Sample No.	Volatiles	Semi Volatiles	Boot /PCP	Inorganics	Pet. Hydrocarbons	Reporting Criteria
SDG NO.	FBLK-3	Volatiles X			T		Full CLP
	FBLK-3		X				Full CLP
	TBLK-1	x x	X				
	TBLK-1						Category A
	TBLK-2 TBLK-3	X					Category A
	TBLK-3	X					Category A
OW-101d	OW-101d	X					Category A
000-1010	OW-1010 OW-101s	X	X	1	1	1	Category A
	OW-1015 OW-102d	<u>x</u>	X	 			Category A
	OW-1020 OW-102S	<u>X</u>	X				Category A
		<u>x</u>	X		<u> </u>		Category A
	OW-103d	X	X	ļ			Category A
	OW-103s	X	X		<u> </u>		Category A
	OW-104d	X	X				Category A
	OW-104s	X	<u>x</u>				Category A
	OW-105d	×	X				Category A
	OW-105s	X	X				Category A
	OW-106d	<u>x</u>	X				Category A
	OW-106s	<u> </u>	X				Category A
	OW-202d	×	X				Category A
	OW-202s	X	X				Category A
	OW-203d	x	x				Category A
	OW-203S	x	X				Category A
	OW-204d	x	x				Category A
	OW-204s	X	X				Category A
	OW-205	X	X				Category A
	TRIP BLANK	X					Category A
OW-201d	OW-201d	X	X	X	X		Full CLP
	OW-201s	X	X	X	X		Full CLP
	FIELD BLANK	X	X		x		Full CLP

Notes:

1. Volatiles - Target Compound List Volatiles NYSDEC ASP Method 89-1

2 Semi Volatiles - Target Compound List Semi Volatiles NYSDEC ASP Method 89-2

3. Pesticides\PCB - Target Compound List Pesticides\PCB NYSDEC ASP Method 89-3

4. Inorganics - Target Compound List Inorganics CLP SOW Inorganics 2/88

5. Pet. Hydrocarbons - NYSDOH Petroleum Hydrocarbon Method 310.13

Table 2GC/MS TUNING PROCEDURE

-

Bromofluorobenzene (BFB) Ion Abundance Criteria 15.0-40.0 % of the base peak 30.0-60.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak ess than 2.0 % of mass 174 greater than 50.0 % of the base peak 5.0-9.0 % of mass 174 greater than 95.0 % but less than 101.0 % of mass 174 5.0-9.0 % of mass 196 GC MS Tuning Criteria–Volatiles Bromofluorobenzene (BFB) on Abundance Criteria 5.0-40.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak base peak, 100 % of the base peak base peak	Date: 5 August 91 Time: 1350 SDG : STW-202 32.7 56.0 100.0 6.1 0.0 52.4 6.9 98.7 5.8 Instrument: I50g Date: 5 August 91 Time: 1447 SDG : STW-202 28.3 55.2 100.0 7.3 0.0	Date: 6 August 91 Time: 0930 SDG : STW-202 31.8 56.8 100.0 5.3 0.0 58.9 6.4 99.8 6.4 99.8 6.4 99.8 6.4 99.8 Construment: I50g Date: 7 August 91 Time: 0935 SDG : STW-202 25.4 56.6 100.0 7.1 0.0	
15.0-40.0 % of the base peak 30.0-60.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak sess than 2.0 % of mass 174 greater than 50.0 % of the base peak 5.0-9.0 % of mass 174 greater than 95.0 % but less than 101.0 % of mass 174 5.0-9.0 % of mass 196 GC MS Tuning Criteria–Volatiles Bromofluorobenzene (BFB) on Abundance Criteria 5.0-40.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak base peak base peak base peak con 2.0 % of mass 174	SDG : STW-202 32.7 56.0 100.0 6.1 0.0 52.4 6.9 98.7 5.8 Instrument: I50g Date: 5 August 91 Time: 1447 SDG : STW-202 28.3 55.2 100.0 7.3 0.0	SDG : STW-202 31.8 56.8 100.0 5.3 0.0 58.9 6.4 99.8 6.4 99.8 6.4 99.8 56.4 Date: 7 August 91 Time: 0935 SDG : STW-202 25.4 56.6 100.0 7.1	
15.0-40.0 % of the base peak 30.0-60.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak sess than 2.0 % of mass 174 greater than 50.0 % of the base peak 5.0-9.0 % of mass 174 greater than 95.0 % but less than 101.0 % of mass 174 5.0-9.0 % of mass 196 GC MS Tuning Criteria–Volatiles Bromofluorobenzene (BFB) on Abundance Criteria 5.0-40.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak base peak base peak base peak con 2.0 % of mass 174	32.7 56.0 100.0 6.1 0.0 52.4 6.9 98.7 5.8 Instrument: I50g Date: 5 August 91 Time: 1447 SDG : STW-202 28.3 55.2 100.0 7.3 0.0	31.8 56.8 100.0 5.3 0.0 58.9 6.4 99.8 6.4 99.8 6.4 99.8 6.4 99.8 5.3 0.0 58.9 6.4 99.8 6.4 99.8 6.4 99.8 50G : STW-202 25.4 56.6 100.0 7.1	
30.0-60.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak ess than 2.0 % of mass 174 greater than 50.0 % of the base peak 5.0-9.0 % of mass 174 greater than 95.0 % but less than 101.0 % of mass 174 5.0-9.0 % of mass 196 GC MS Tuning Criteria–Volatiles Bromofluorobenzene (BFB) on Abundance Criteria 5.0-40.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak base peak cose than 2.0 % of mass 174	56.0 100.0 6.1 0.0 52.4 6.9 98.7 5.8 Instrument: I50g Date: 5 August 91 Time: 1447 SDG : STW-202 28.3 55.2 100.0 7.3 0.0	56.8 100.0 5.3 0.0 58.9 6.4 99.8 6.4 99.8 6.4 99.8 6.4 99.8 5.3 0.0 58.9 6.4 99.8 6.4 99.8 6.4 99.8 6.4 99.8 6.4 99.8 6.4 99.8 6.4 99.8 6.4 99.8 506 : STW-202 25.4 56.6 100.0 7.1	
base peak, 100 % relative abundance 5.0-9.0 % of the base peak ess than 2.0 % of mass 174 greater than 50.0 % of the base peak 5.0-9.0 % of mass 174 greater than 95.0 % but less than 101.0 % of mass 174 5.0-9.0 % of mass 196 GC MS Tuning Criteria–Volatiles Bromofluorobenzene (BFB) on Abundance Criteria 5.0-40.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak base peak base peak con 9.0 % of the base peak base peak con 9.0 % of the base p	100.0 6.1 0.0 52.4 6.9 98.7 5.8 Instrument: 150g Date: 5 August 91 Time: 1447 SDG : STW-202 28.3 55.2 100.0 7.3 0.0	100.0 5.3 0.0 58.9 6.4 99.8 6.4 99.8 6.4 99.8 6.4 99.8 56.4 Time: 0935 SDG : STW-202 25.4 56.6 100.0 7.1	
5.0-9.0 % of the base peak ess than 2.0 % of mass 174 greater than 50.0 % of the base peak 5.0-9.0 % of mass 174 greater than 95.0 % but less than 101.0 % of mass 174 5.0-9.0 % of mass 196 GC MS Tuning Criteria–Volatiles Bromofluorobenzene (BFB) <u>on Abundance Criteria</u> 5.0-40.0 % of the base peak ase peak, 100 % relative abundance 5.0-9.0 % of the base peak ess than 2.0 % of mass 174	6.1 0.0 52.4 6.9 98.7 5.8 Instrument: I50g Date: 5 August 91 Time: 1447 SDG : STW-202 28.3 55.2 100.0 7.3 0.0	5.3 0.0 58.9 6.4 99.8 6.4 99.8 6.4 99.8 6.4 99.8 6.4 99.8 6.4 99.8 6.4 99.8 6.4 99.8 6.4 99.8 6.4 99.8 6.4 99.8 6.4 99.8 6.4 99.8 6.4 99.8 0.4 99.8 0.4 99.8 Date: 7 August 91 Time: 0935 SDG : STW-202 25.4 56.6 100.0 7.1	
ess than 2.0 % of mass 174 greater than 50.0 % of the base peak 5.0-9.0 % of mass 174 greater than 95.0 % but less than 101.0 % of mass 174 5.0-9.0 % of mass 196 GC MS Tuning Criteria–Volatiles Bromofluorobenzene (BFB) on Abundance Criteria .5.0-40.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak base peak base peak cose the base peak base peak cose the base peak	0.0 52.4 6.9 98.7 5.8 Instrument: I50g Date: 5 August 91 Time: 1447 SDG : STW-202 28.3 55.2 100.0 7.3 0.0	0.0 58.9 6.4 99.8 6.4 Instrument: I50g Date: 7 August 91 Time: 0935 SDG : STW-202 25.4 56.6 100.0 7.1	
greater than 50.0 % of the base peak 5.0-9.0 % of mass 174 greater than 95.0 % but less than 101.0 % of mass 174 5.0-9.0 % of mass 196 GC MS Tuning Criteria–Volatiles Bromofluorobenzene (BFB) on Abundance Criteria 5.0-40.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak base peak base peak base peak b	52.4 6.9 98.7 5.8 Instrument: 150g Date: 5 August 91 Time: 1447 SDG : STW-202 28.3 55.2 100.0 7.3 0.0	58.9 6.4 99.8 6.4 99.8 6.4 Jate: 7 August 91 Time: 0935 SDG : STW-202 25.4 56.6 100.0 7.1	
5.0-9.0 % of mass 174 greater than 95.0 % but less than 101.0 % of mass 174 5.0-9.0 % of mass 196 GC MS Tuning Criteria–Volatiles Bromofluorobenzene (BFB) on Abundance Criteria .5.0-40.0 % of the base peak ase peak, 100 % relative abundance 6.0-9.0 % of the base peak ess than 2.0 % of mass 174	6.9 98.7 5.8 Instrument: I50g Date: 5 August 91 Time: 1447 SDG : STW-202 28.3 55.2 100.0 7.3 0.0	6.4 99.8 6.4 Instrument: I50g Date: 7 August 91 Time: 0935 SDG : STW-202 25.4 56.6 100.0 7.1	
greater than 95.0 % but less than 101.0 % of mass 174 5.0–9.0 % of mass 196 GC MS Tuning Criteria–Volatiles Bromofluorobenzene (BFB) on Abundance Criteria 5.0–40.0 % of the base peak 0.0–60.0 % of the base peak base peak, 100 % relative abundance 5.0–9.0 % of the base peak ess than 2.0 % of mass 174	98.7 5.8 Instrument: I50g Date: 5 August 91 Time: 1447 SDG : STW-202 28.3 55.2 100.0 7.3 0.0	99.8 6.4 Instrument: I50g Date: 7 August 91 Time: 0935 SDG : STW-202 25.4 56.6 100.0 7.1	
of mass 174 5.0-9.0 % of mass 196 GC MS Tuning Criteria–Volatiles Bromofluorobenzene (BFB) on Abundance Criteria 5.0-40.0 % of the base peak 30.0-60.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak base peak css than 2.0 % of mass 174	5.8 Instrument: I50g Date: 5 August 91 Time: 1447 SDG : STW-202 28.3 55.2 100.0 7.3 0.0	6.4 Instrument: I50g Date: 7 August 91 Time: 0935 SDG : STW-202 25.4 56.6 100.0 7.1	
5.0-9.0 % of mass 196 GC MS Tuning Criteria–Volatiles Bromofluorobenzene (BFB) on Abundance Criteria 5.0-40.0 % of the base peak 30.0-60.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak ess than 2.0 % of mass 174	Instrument: I50g Date: 5 August 91 Time: 1447 SDG : STW-202 28.3 55.2 100.0 7.3 0.0	Instrument: I50g Date: 7 August 91 Time: 0935 SDG : STW-202 25.4 56.6 100.0 7.1	
GC MS Tuning Criteria–Volatiles Bromofluorobenzene (BFB) on Abundance Criteria 5.0-40.0 % of the base peak 60.0-60.0 % of the base peak base peak, 100 % relative abundance 6.0-9.0 % of the base peak ess than 2.0 % of mass 174	Instrument: I50g Date: 5 August 91 Time: 1447 SDG : STW-202 28.3 55.2 100.0 7.3 0.0	Instrument: I50g Date: 7 August 91 Time: 0935 SDG : STW-202 25.4 56.6 100.0 7.1	
on Abundance Criteria 5.0-40.0 % of the base peak 60.0-60.0 % of the base peak base peak, 100 % relative abundance 6.0-9.0 % of the base peak ess than 2.0 % of mass 174	Date: 5 August 91 Time: 1447 SDG : STW-202 28.3 55.2 100.0 7.3 0.0	Date: 7 August 91 Time: 0935 SDG : STW-202 25.4 56.6 100.0 7.1	
on Abundance Criteria 5.0-40.0 % of the base peak 30.0-60.0 % of the base peak base peak, 100 % relative abundance 5.0-9.0 % of the base peak ess than 2.0 % of mass 174	Time: 1447 SDG : STW-202 28.3 55.2 100.0 7.3 0.0	Time: 0935 SDG : STW-202 25.4 56.6 100.0 7.1	
5.0-40.0 % of the base peak 60.0-60.0 % of the base peak base peak, 100 % relative abundance 6.0-9.0 % of the base peak ess than 2.0 % of mass 174	SDG : STW-202 28.3 55.2 100.0 7.3 0.0	SDG : STW-202 25.4 56.6 100.0 7.1	
5.0-40.0 % of the base peak 60.0-60.0 % of the base peak base peak, 100 % relative abundance 6.0-9.0 % of the base peak ess than 2.0 % of mass 174	28.3 55.2 100.0 7.3 0.0	25.4 56.6 100.0 7.1	
0.0-60.0 % of the base peak base peak, 100 % relative abundance 0.0-9.0 % of the base peak ess than 2.0 % of mass 174	55.2 100.0 7.3 0.0	56.6 100.0 7.1	
base peak, 100 % relative abundance 6.0-9.0 % of the base peak ess than 2.0 % of mass 174	100.0 7.3 0.0	100.0 7.1	
6.0-9.0 % of the base peak ess than 2.0 % of mass 174	7.3	7.1	
ess than 2.0 % of mass 174	0.0		
		0.0	
reater than 50.0 % of the base peak			
	79.9	79.2	
5.0-9.0 % of mass 174	8.9	8.3	
reater than 95.0 % but less than 101.0 % f mass 174	99.8	99.7	
.0–9.0 % of mass 196	7.5	5.1	
GCMS Tuning Criteria-Volatiles	/Instrument: 150h	Instrument:51d	
Bromofluorobenzene (BFB)	Date: 6 August 91	Date: 8 August 91	
	Time:2114	Time: 1752	
on Abundance Criteria	SDG : SS-201d	SDG : GSA8	
5.0-40.0 % of the base peak	21.9	22.7	
0.0-60.0 % of the base peak	52	53.8	
ase peak, 100 % relative abundance	100	100	
.0-9.0 % of the base peak	7.2	6.2	
ess than 2.0 70 of mass 174	0.0	0	
reater than 50.0 % of the base peak	79.4	67.3	
.0-9.0 % of mass 174	6.2	5.9	
reater than 95.0 % but less than 101.0 %	100	95.9	
L 111455 1 / H		6.1	
	on Abundance Criteria 5.0-40.0 % of the base peak 0.0-60.0 % of the base peak ase peak, 100 % relative abundance 0-9.0 % of the base peak ass than 2.0 % of mass 174 reater than 50.0 % of the base peak .0-9.0 % of mass 174	Time:2114on Abundance CriteriaSDG : SS-201d $5.0-40.0 \%$ of the base peak 21.9 $5.0-60.0 \%$ of the base peak 52 ase peak, 100 \% relative abundance 100 $0-9.0 \%$ of the base peak 7.2 ess than 2.0 $\%$ of mass 174 0.0 reater than 50.0 $\%$ of the base peak 79.4 $0-9.0 \%$ of mass 174 6.2 reater than 95.0 $\%$ but less than 101.0 $\%$ 100	

Table 2GC/MS TUNING PROCEDURE

	GCMS Tuning Criteria–Volatiles	Instrument:51d	Instrument:51d	
	Bromofluorobenzene(BFB)	Date:9 Sept. 91	Date:10 Sept. 91	
		Time:0952	Time:1001	
		SDG :OW-101d	SDG :OW-101d	
Mass (m/z)	Ion Abundance Criteria	SDG :OW-201d	SDG :OW-201d	
50	15.0-40.0 $\%$ of the base peak	25.8	23.5	
75	30.0–60.0 % of the base peak	58	55.6	
95	base peak, 100 % relative abundance	100	100	
96	5.0–9.0 % of the base peak	7.6	6.1	
173	less than 2.0 % of mass 174	0	0	
174	greater than 50.0 % of the base peak	57.4	52.8	
175	5.0-9.0 % of mass 174	6.4	6.4	
176	greater than 95.0 \$5 but less than 101.0 %	97.7	95.2	
	of mass 174			
177	5.0-9.0 % of mass 196	6.3	5.8	
	GCMS Tuning Criteria–Volatiles	Instrument:51e	Instrument:51e	
	Bromofluorobenzene(BFB)	Date:10 Sept. 91	Date: 10 Sept. 91	
		Time:0926	Time:2130	
		SDG :OW-101d	SDG :OW-101d	
Mass (m/z)	Ion Abundance Criteria	SDG :OW-201d	SDG :OW-201d	
50	15.0-40.0 % of the base peak	26.8	25.2	
75	30.0-60.0 % cf the base peak	54	51.6	
95	base peak, 100 % relative abundance	100	100	
96	5.0–9.0 % of the base peak	7.6	8.9	
20	1 1 00 7 - 154	0	0	
173	less than 2.0 % of mass 174	0	Ŭ	
	greater than 50.0 % of the base peak	75.4	79	
173			· · · · · · · · · · · · · · · · · · ·	
173 174	greater than 50.0 % of the base peak	75.4	79	
173 174 175	greater than 50.0 % of the base peak 5.0-9.0 % of mass 174	75.4	79 8.6	

Щ°

1

100

1

.

1

	Table 3		
	GCMS Tuning Procedure		
	GC MS Tuning Criteria – Semi-Volatiles	Instrument: 150w	Instrument:150w
	Decafluorotriphenylphosphine (DFTPP)	Date: 21 August 91	Date: 24 August 91
······		Time: 1116	Time: 1225
Mass (m/e)	Ion Abundance Criteria	SDG :STW-202	SDG :STW-202
51	30.0-60.0 % of mass 198	39.6	57.9
68	less than 2.0 % of mass 69	(0.0)1	(1.0)1
70	less than 2.0 % of mass 69	(0.0)1	(0.0)1
127	40.0-60.0 % mass of peak 198	44.6	55.6
197	less than 1.0 % of mass 198	0	0
198	base peak, 100 % Relative Abundance	100	100
199	5.0-9.0 % of mass 198	6.9	6.4
275	10.0-30.0 % of mass 198	23.9	20.3
365	greater than 1.00 % of mass 198	2.45	1.76
441	present but less than mass 443	8.7	7.6
442	greater than 40.0 % of mass 198	64.7	57.5
443	17.0-23.0 % of mass 442	(21.0)2	(18.2)2
440		of mass 69 $2 = \%$ of m	
	GC MS Tuning Criteria – Semi-Volatiles	Instrument: I50w	Instrument:150z
	Decafluorotriphenylphosphine (DFTPP)	Date: 26 August 91	Date:22 August 91
		Time: 1808	Time:1445
Mass (m/e)	Ion Abundance Criteria	SDG :STW-202	SDG:STW-202
51	30.0-60.0 % of mass 198	41	57.9
68	less than 2.0 % of mass 69	(0.0)1	(0.0)1
70	less than 2.0 % of mass 69	(0.0)1	(0.0)1
127	40.0-60.0 % mass of peak 198	49.1	48.9
197	less than 1.0 % of mass 198	0	0
198	base peak, 100 % Relative Abundance	100	100
199	5.0–9.0 % of mass 198		6.4
	10.0-30.0 % of mass 198	7.5	
275		25.9	24.6
365 441	greater than 1.00 % of mass 198 present but less than mass 443	2.63	1.43
442	•		69.8
	greater than 40.0 % of mass 198 17.0-23.0 % of mass 442	78 (21.8)2	(18.6)2
443		of mass 69 $2 = \%$ of mass	
	GC MS Tuning Criteria - Semi-Volatiles	Instrument:150y	Instrument:150y
	Decafluorotriphenylphosphine(DFTPP)	Date:21 August 91	Date:22 August 91
		Time:1134	Time:1015
Mass (m/e)	Ion Abundance Criteria	SDG :SS-201d	SDG :SS-201d
51	30.0-60.0 % of mass 198	38.2	39.8
68	less than 2.0 % of mass 69	(0.0)1	(0.0)1
70	less than 2.0 % of mass 69	(0.0)1	(0.0)1
127	40.0-60.0 % mass of peak 198	44	41.1
197	less than 1.0 % of mass 198	0	0
197	base peak, 100 % Relative Abundance	100	100
198	5.0-9.0 % of mass 198	6	5.9
275	10.0-30.0 % of mass 198	17.1	18.7
	greater than 1.00 % of mass 198		
365 441	present but less than mass 443	1.11	1.17
	-	<u>k</u>	84
442	greater than 40.0 % of mass 198	64.8	(17.8)2
443	17.0-23.0 % of mass 442	of mass 69 $2 = \%$ of mass	<u> </u>

-

Mar'

100

inter a

	Table 3		
	GCMS Tuning Procedure		
<u> </u>	GC MS Tuning Criteria- Semi-Volatiles	Instrument:150y	Instrument:150Y
	Decafluorotriphenylphosphine(DFTPP)	Date:23 August 91	Date:24 August 91
-		Time:1024	Time:1306
<u>Mass (m/e)</u>	Ion Abundance Criteria	SDG :SS-201d	SDG :SS-201d
51	30.0-60.0 % of mass 198	48.6	45.6
68	less than 2.0 % of mass 69	(0.0)1	(0.0)1
70	less than 2.0 % of mass 69	(0.0)1	(0.0)1
127	40.0-60.0 % mass of peak 198	44	40.8
197	less than 1.0 % of mass 198	0	0
198	base peak, 100 % Relative Abundance	100	100
199	5.0-9.0 % of mass 198	6	6.4
275	10.0-30.0 % of mass 198	17.1	19.8
365	greater than 1.00 % of mass 198	1.11	1.3
441	present but less than mass 443	8.2	7.5
442	greater than 40.0 % of mass 198	64.8	69.3
443	17.0-23.0 % of mass 442	(17.7)2	(18.6)2
		of mass 69 2 = % of m	
	GC MS Tuning Criteria- Semi-Volatiles	Instrument:150y	Instrument:150Y
	Decafluorotriphenylphosphine (DFTPP)	Date:29 August 91	Date:2 Sept. 91
		Time:0853	Time:1357
<u>Mass (m/e)</u>	Ion Abundance Criteria SDG :SS-201d		SDG :SS-201d
51	30.0-60.0 % of mass 198	42.2	58
68	less than 2.0 % of mass 69	(0.0)1	(0.0) 1
70	less than 2.0 % of mass 69	(0.6)1	(0.0) 1
127	40.0-60.0 % mass of peak 198	49	55.2
197	less than 1.0 % of mass 198	0	0
198	base peak, 100 % Relative Abundance	100	100
199	5.0-9.0 % of mass 198	6.2	6.4
275	10.0-30.0 % of mass 198	21.3	18
365	greater than 1.00 % of mass 198	1.8	2.02
441	present but less than mass 443	6	4.9
442	greater than 40.0 % of mass 198	44.9	44.7
443	17.0-23.0 % of mass 442	(17.7)2	(19.3)2
		of mass 69 2 = % of m	
	GC MS Tuning Criteria - Semi-Volatiles	Instrument:150z	Instrument:150W
	Decafluorotriphenylphosphine (DFTPP)	Date:23 August 91	Date: 30 August 91
		Time:1132	Time:1542
lass (m/e)	Ion Abundance Criteria	SDG :SS-201d	SDG :GSA8
51	30.0-60.0 % of mass 198	56.8	54.1
68	less than 2.0 % of mass 69	(0.0)1	(1.0)1
70	less than 2.0 % of mass 69	(0.0)1	(0.0)1
127	40.0-60.0 % mass of peak 198	48.3	42
197	less than 1.0 % of mass 198	0	0.2
198	base peak, 100 % Relative Abundance	100	100
199	5.0-9.0 % of mass 198	6.3	7.5
275	10.0-30.0 % of mass 198	27.4	22.2
365	greater than 1.00 % of mass 198	1.9	2.2
441	present but less than mass 443	11.1	8
442	greater than 40.0 % of mass 198	79.3	64.6
443	17.0–23.0 % of mass 442	(17.6)2	(21.3)
		of mass 69 $2 = \%$ of m	

Ľ

1

	Table 3		
	GCMS Tuning Procedure		
<u>., , , , , , , , , , , , , , , , , , , </u>	GC MS Tuning Criteria-Semi-Volatiles	Instrument:I50W	Instrument:150x
	Decafluorotriphenylphosphine(DFTPP)	Date: 18 August 91	Date:4 Sept 91
-		Time:0950	Time:1230
Mass (m/e)	Ion Abundance Criteria	SDG :GSA8	SDG :GSA8
51	30.0-60.0 % of mass 198	53.1	52
68	less than 2.0 % of mass 69	(0.2)1	(0.0)1
70	less than 2.0 % of mass 69	(0.0)1	(0.0)1
127	40.0-60.0 % mass of peak 198	48.4	43.7
197	less than 1.0 % of mass 198	0	0
198	base peak, 100 % Relative Abundance	100	100
199	5.0-9.0% of mass 198	6.5	6.6
275	10.0~30.0 % of mass 198	19.4	21.2
365	greater than 1.00 % of mass 198	1.58	2.51
441	present but less than mass 443	4.8	11.8
442	greater than 40.0 % of mass 198	40.4	91.6
5		(18.4)2	(19.8)2
440	17.0-23.0 % of mass 442		• • • • • • •
	GC MS Tuning Criteria – Semi-Volatiles	Instrument:I50Y	Instrument:150y
	Decafluorotriphenylphosphine(DFTPP)	Date:2 Sept.91	Date:4 Sept. 91
-		Time:1357	Time:1057
Mass (m/e)	Ion Abundance Criteria,	SDG :GSA8	SDG :GSA8
51	30.0-60.0 % of mass 198	58	52.7
68	less than 2.0 % of mass 69	(0.0)1	(0.0)1
70	less than 2.0 % of mass 69	(0.0)1	(0.0)1
127	40.0-60.0 % mass of peak 198	55.2	48.1
197	less than 1.0% of mass 198	0	0
198	base peak, 100 % Relative Abundance	100	100
199	5.0-9.0 % of mass 198	6.4	6.3
275	10.0-30.0 % of mass 198	18	19.9
365	greater than 1.00 % of mass 198	2.02	2.18
441	present but less than mass 443	4.9	7
442	greater than 40.0 % of mass 198	44.7	54.8
443	17.0-23.0 % of mass 442	(19.3)2	(20.1)2
440			•
		of mass 69 2 = % of m	1
	GC MS Tuning Criteria - Semi-Volatiles	Instrument:150y	Instrument:150y
	Decafluorotriphenylphosphine(DFTPP)	Date:5 Sept. 91	Date:6 SEPT 91
		Time:1024	Time:0857
<u>Mass (m/e)</u>	Ion Abundance Criteria	SDG :GSA8	SDG :GSA8
51	30.0-60.0 % of mass 198	51.1	40.4
68	less than 2.0 % of mass 69	(0.0)1	(0.0)1
70	less than 2.0 % of mass 69	(0.0)1	(0.2)1
127	40.0-60.0 % mass of peak 198	48.7	47.3
197	less than 1.0 % of mass 198	0	0
198	base peak, 100 % Relative Abundance	100	100
199	5.0-9.0 % of mass 198	6.4	6.2
275	10.0-30.0 % of mass 198	20.7	21.3
365	greater than 1.00 % of mass 198	2.35	2.6
441	present but less than mass 443	7.8	9.1
442	greater than 40.0 % of mass 198	63.7	67.1
	17.0-23.0 % of mass 442	(18.8)2	(19.1)2
443		of mass 69 $2 = \%$ of m	A

۲

100

	Table 3		
	GCMS Tuning Procedure		
	GC MS Tuning Criteria – Semi-Volatiles	Instrument:150y	Instrument:150z
	Decafluorotriphenylphosphine(DFTPP)	Date:11 Sept 91	Date:20 August 91
· · · · · · · · · · · · · · · · · · ·		Time:0815	Time:1550
Mass (m/e)	Ion Abundance <u>Criteria</u>	SDG :GSA8	SDG :GSA8
51	30.0-60.0 % of mass 198	40.6	45.3
68	less than 2.0 % of mass 69	(0.0)1	(0.6)1
70	less than 2.0 % of mass 69	(0.0)1	(0.0)1
127	40.0-60.0 % mass of peak 198	42.2	46.2
197	less than 1.0 % of mass 198	0	0
198	base peak, 100 % Relative Abundance	100	100
199	5.0-9.0 % of mass 198	6.3	6.5
275	10.0-30.0 % of mass 198	22.6	24
365	greater than 1.00 % of mass 198	2.78	2.78
441	present but less than mass 443	9.9	8.9
442	greater than 40.0 % of mass 198	77.8	75.6
443	17.0-23.0 % of mass 442 (19.7)2		(18.8)2
	1 = 1	% of mass69 2 = % of	mass 442
	GC MS Tuning Criteria – Semi-Volatiles	Instrument:150w	Instrument:150w
	Decafluorotriphenylphosphine (DFTPP)	Date:18 Sept 91	Date:19 Sept 91
		Time:0950	Time:0905
/lass (m/e)	Ion Abundance Criteria	SDG :OW-101d	SDG :OW-1 01d
51	30.0-60.0 % of mass 198	53.1	50.8
68	less than 2.0 % of mass 69	(0.2)1	(0.0)1
70	less than 2.0 % of mass 69	(0.0)1	(0.0)1
127	40.0-60.0 % mass of peak 198	48.4	48.2
197	less than 1.0 % of mass 198	0	0
198	base peak, 100 % Relative Abundance	100	100
199	5.0-9.0 % of mass 198	6.5	6.4
275	10.0–30.0 % of mass 198	19.4	21.4
365	greater than 1.00 % of mass 198	1.58	1.98
441	present but less than mass 443	4.8	5.1
442	greater than 40.0 % of mass 198	40	43.8
443	17.0-23.0 % of mass 442	(18.4)2	(18.7)2
	1 = 9	% of mass 69 2 = % of r	mass 442
	GC MS Tuning Criteria- Semi-Volatiles	Instrument:150w	Instrument:150w
	Decafluorotriphenylphosphine(DFTPP)	Date:24 Sept 91	Date:25 Sept 91
		Time:1550	Time:0828
<u>lass (m/e)</u>	Ion Abundance Criteria	SDG :0W-101d	SDG :OW-101d
51	30.0-60.0 % of mass 198	44	46.8
68	less than 2.0 % of mass 69	(0.0)1	(0.0)1
70	less than 2.0 % of mass 69	(0.0)1	(0.0)1
127	40.0-60.0 % mass of peak 198	48.4	46.4
197	less than 1.0 % of mass 198	0	0
198	base peak, 100 % Relative Abundance	100	100
199	5.0-9.0% of mass 198	6.5	6.9
275	10.0-30.0 % of mass 198	19.4	23.4
365	greater than 1.00 % of mass 198	1.58	2.8
441	present but less than mass 443	4.8	9.3
442	greater than 40.0 % of mass 198	40.4	76.8
443	17.0-23.0 % of mass 442	(18.4)2	(19.3)2
	1 = 9	∕o of mass 69 2 = %, of r	nass 442

	Table 3		
	GCMS Tuning Procedure		
	GC MS Tuning Criteria– Semi–Volatiles	Instrument:150w	Instrument:150w
	Decafluorotriphenylphosphine (DFTPP)	Date:27 Sept 91	Date:27 Sept 91
		Time:0803	Time:1331
Mass <u>(m/e)</u>	Ion Abundance Criteria	SDG :OW-101d	SDG :OW-101d
51	30.0-60.0 % of mass 198	51.8	53.7
68	less than 2.0 % of mass 69	(0.0)1	(0.0)1
70	less than 2.0 % of mass 69	(0.0)1	(0.0)1
127	40.0-60.0 % mass of peak 198	48.4	50.6
197	less than 1 .0 % of mass 198	0	0
198	base peak, 100 % Relative Abundance	100	100
199	5.0-9.0 % of mass 198	6.6	6.8
275	10.0-30.0 % of mass 198	23.3	23.1
365	greater than 1.00 % of mass 198	2.63	2.44
441	present but less than mass 443	8	7
442	greater than 40.0 % of mass 198	65.4	55.1
443	443 17.0-23.0 % of mass 442		(19.3)2
	<u> </u>	of mass 69 2 = % of r	nass 442
	GC MS Tuning Criteria– Semi–Volatiles	Instrument:150z	Instrument:150z
	Decafluorotriphenylphosphine(DFTPP)	Date:17 Sept 91	Date:18 Sept 91
		Time:1925	Time:0814
Mass <u>(m/e)</u>	Ion Abundance Criteria	SDG :OW-201d	SDG :OW-201 d
51	30.0-60.0 % of mass 198	55.7	56.7
68	less than 2.0 % of mass 69	(0.0)1	(0.0)1
70	less than 2.0 % of mass 69	(0.0)1	(0.2)1
127	40.0-60.0 % mass of peak 198	47.9	47.3
197	less than 1.0 % of mass 198	0	0.1
198	base peak, 100 % Relative Abundance	100	100
199	5.0-9.0 % of mass 198	6.6	6.5
275	10.0-30.0 % of mass 198	19.8	21.2
365	greater than 1.00 % of mass 198	1.17	1.44
441	present but less than mass 443	5.6	6.4
442	greater than 40.0 % of mass 198	44.1	49.9
443	17.0-23.0 % of mass 442	(19.2)2	(18.1)2
	1 = % 0	of mass 69 2 = % of n	nass 442

1

-

.

TABLE 4

METHOD BLANK ANALYSES VOLATILES

		Target		}		
		Compound	Concentration		Recommended	H&A Samples
Sample I.D.	SDG No.	Detected	Detected(1)	CRQL	Action Level(2)	Analyzed concurrently
VBLK 07	STW-202	Methylene Chloride	1	5	1QU	Field Blank, SW201, SW-204, SW-204 Dup. Trip Blank 1, Trip Blank 2 Trip Blank 3, SW-201MS SW-201 MSD
VBLK 31	OW-101d	Trichloroethene	1	5	5U	OW-101D, OW-103S, OW-101S OW-102D, OW-104D, OW-102S OW-103D, OW-104S, OW-203D OW-101S, MS/MSD Trip Blank
VBLK 45	SS-201d	1,1,1-Trichloroethane	4	5	20U	SO-201, SS-201D, SS-202D, SS-202S, SS-203D, SS-203S, SS-302S Dup., SS-204D, SO-201MS, S0-201MSD
VBLK 46	SS-201d	1,1,1-Trichloroethane	2	5	10U	S0-202, SS-202S Dup., SS-202S Dup. DL, SS-204S
VBLK 49	SS-201d	Acetone	10	10	100U	TP-101, TP-102, TP-103,
VBLK 49	SS-201d	Methylene Chloride	12	5	20U	TP-104, TP-105, TP-106, TP-101MS, TP-101MSD
VBLK 08	GSA8	Methylene Chloride	0.3	5		Field Blank 1 Field Blank 2 Trip Blank 1'
VBLK 68	GSA8	Acetone	6	10		GSB5(4-6)DL MS Blank GSB1(10-12) MS/MSD
VBLK 70	GSA8	Acetone	3	10	30U	GSA4 (4-6)

Notes:

1. Data presented in parts per billion (ppb)

2. Action Level - The recommended adjusted reporting level for detected target analytes as defined by "Functional Guidelines for Evaluation of Organic Analyses" USEPA, 1 February 1988.

slc/70007-43

H & A OF N EW YOR K

RECRA ENVIRONMENTAL INC.

8 November 1991 File No. 70007-43

RECRA Environmental, Inc. 10 Hazelwood Drive Amherst, New York 14228-2298

Attention: Ms. Deborah Kinecki

Subject: Project Nos. NY91-820, NY91-831R

Ladies and Gentlemen:

Upon performance of data validation of Recra Environmental, Inc. Project Nos. NY91-820 and NY91-831R, the following items were noted as being actionable by the contracted laboratory.

Please provide comment to each item listed in the form of a written response accompanied with support documentation.

Project No. NY91-820: Sample Delivery Group (SDG) STW-202

- <u>Item 1</u>: NYSDEC Form 1, Analytical Requirement Summary appears to be incorrect. **Pesticide/PCB** analysis was requested for the field blank sample only. Please provide a corrected NYSDEC Form 1 for inclusion with the data package.
- Item 2: Method Detection Limits (MDL) were not **provided** for any of the organic analyses performed for the Sample Delivery Group (SDG) samples. Please provide the pertinent MDL data as required by NYSDEC ASP89 protocol.
- Item 3: ICP Linear Ranges were determined 25 April 1991 or greater than 90 days prior to the analysis of the Sample Delivery Group (SDG) samples. Please provide an updated ICP Linear Range table performed within 90 days of the SDG samples analysis as required by NYSDEC ASP89 protocol.

189 North Water Street Rochester, NY 14604 716/232-7386

Affiliate Haley & Aldrich, Inc. Cambridge, Massochusetts Glastonbury, Connecticut Scarborough, Maine Bedford, New Hampshire Recra Environmental Inc. 8 November 1991 Page 2

Project No. NY91-831R Sample Delivery Group SS-201-D

- <u>Item 1</u>: NYSDEC Form 3, Sample Preparation and Analysis Summary, Semi-volatile analysis does not reflect the actual preparation date for sample **SS-204S** of 23 August 1991. Please provide a corrected NYSDEC Form 3 for inclusion in the sample data summary package.
- Item 2: SDG Samples **SS-202S** and **SS-204S** were re-extracted and reanalyzed due to poor surrogate recovery as required by NYSDEC ASP89 protocol. However, the re-extraction appears to have been performed outside of NYSDEC ASP89 holding time criteria (5 days). Please verify that the re-extraction was performed outside of holding time and if so, an opinion from the laboratory of the significance, if any, this has on the precision and accuracy of the analysis.
- <u>Item 3</u>: See Item 2 of Project No. **NY91-820**, SDG: **STW202**. **MDLs** are also needed for this group.
- <u>Item 4</u>: The inorganics portion of the data package was identified as SDG No. "33201 D". Please provide an explanation as to why this identifier was used or provide corrected pages for inclusion in the sample data package.
- <u>Item 5</u>: See Item 3 of Project No. **NY91-820**, SDG: **STW202**. Please provide an updated ICP Linear Range table as requested.
- <u>Item 6</u>: Due to an apparent photocopier malfunction Page No. 3373 of the sample data package, inorganics section, was reproduced off-center and is not legible. Please provide an additional copy of this page for inclusion in the sample data package.

Proiect No. NY91-831R, SDG: OW-101-D

- <u>Item 1</u>: NYSDEC Forms 1, 2, 3, 4, **5**, 6, 7 were omitted from the SDG sample data **summary** package. Please provide NYSDEC **forms** for inclusion in the sample data summary package.
- <u>Item 2</u>: See Item 2 Project No. **NY91-820**, SDG: **STW202**. **MDLs** are needed for this group.

Recra Environmental Inc. 8 November **19**91 Page 3

Project No. NY91-831R, SDG : GSA8

- Item 1: On NYSDEC Form 2, sample preparation and analysis summary, VOA analyses, sample **GSB4** (10-12) and **STW201** verified **time of** sample receipt and date of analysis have been switched. Please provide a corrected copy for inclusion in the sample data package.
- <u>Item 2</u>: See Item 2 Project No. **NY91-820**, SDG: **STW202**. **MDLs** are needed for this group.
- Item _3: Surrogate recoveries in exceedance of NYSDEC ASP89 criteria were noted as follows: nitrobenzene (118%) for sample STW-201 MSD, 2-fluorophenol (164%) for sample GSA (2.0 - 4.0), 2, 4, 5 tribromophenol (135%) for sample Field Blank 4. Please provide an explanation as to why these samples were not reprepared and reanalyzed as required by NYSDEC ASP89 protocol, and an opinion from the laboratory as to the significance, if any, this has on accuracy and/or precision of the sample results.
- <u>Item 4</u>: Quantitation of trichloroethene for sample **GSB5** (4-6) DL appears to be incorrect. Please verify the quantitation and provide a sample calculation with the corrected analyte concentration.

Project NY91-831R, SDG: OW-201-D

- <u>Item 1</u>: NYSDEC Form 4, Sample Preparation and Analysis Summary, **Pesticide/PCB** analysis, appears to be incorrect. Please review chain of custody documents and provide a corrected NYSDEC Form 4 for this **sample** delivery group.
- <u>Item 2</u>: See Item 2, Project No. **NY91-820**, SDG: **STW202**. **MDLs** are needed for this group.
- <u>Item 3</u>: NYSDEC forms 1, 2, 3, 4, 5, 6, **7** do not contain the preparation and analysis chronology of the field blank sample. Please provide corrected NYSDEC forms for inclusion in the sample data package.
- <u>Item 4</u>: Page #33 lists the incorrect SDG No. (OW-201-S) for the field blank sample. Please provide a corrected page for inclusion in the data package.

...

Recra Environmental Inc. 8 November **1991** Page **4**

. . .

 \mathbf{a}

Item 5: The chain of custody records, Page No. 77 of the sample data package requests "Full TCL" analysis for the field blank sample. Upon review of the Pesticide/PCB analysis logs, the field blank sample appears to have not been analyzed. Please provide an explanation why Pesticide/PCB analysis was not performed on the field blank sample.

Please respond to the items listed in the form of a written response by 14 November 1991. This is the date our report must be shipped to NYSDEC to adhere to the project schedule. Therefore, your prompt attention to this matter is greatly appreciated. If you have any questions regarding this letter, please do not hesitate to contact us.

Sincerely yours, .H&A OF NEW YORK

tins M. Denis M. Conley Staff Scientist For Vincent B. Dick

Senior Env. Geologist

DMC/VBD/slc:dmc15

Chemical and Environmental Analysis Services

November 14, 1991

Mr. Denis Conley H&A of New York 189 North Water Street Rochester, NY 14604

RE: Data Validation, Projects NY91-820 and NY91-831R

Dear Mr. Conley:

In response to your letter dated November 8, 1991, Recra Environmental, Inc. has reviewed the indicated data packages and offers the following resolutions to the validation issues.

Proiect NY91-820: SDG STW-202

1) The NYSDEC Form I, Analytical Requirement Summary has been revised to reflect the correct Pesticide/PCB's analysis. The amended form is enclosed.

2) Method Detection Limits are enclosed for insertion into the data package. We apologize for this over sight.

3) ICP Linear Ranges were determined on April 25, 1991, greater than 90 days prior to the analysis of this SDG. Due to a laboratory oversight, ranges were not established again until September 14, 1991, which was after the analysis of this SDG. I have provided a copy of the 9/14/91 Linear Ranges for comparison with those submitted. The values between the two do not vary appreciably, therefore, the data is still usable.

Proiect NY91-831R: SDG SS-201-D

1) The NYSDEC Form 3, Sample Preparation and Analysis Summary has been corrected to reflect an extraction date of August 23, 1991 for sample SS-204S. In reviewing this form we also noted that the extraction date for sample TP-201 should be August 9, 1991. This error has also been corrected. 2) As noted, samples SS-202S and SS-204S required re-extraction outside of holding times due to poor surrogate recoveries. Coincidentally, sample SS202S was initially extracted and analyzed in duplicate. The documented reproducibility between the results of the 8/7 and the 8/23 extractions of this sample attest to the fact that the longer holding time had little significant effect on precision or accuracy.

3) Appropriate Method Detection Limits are enclosed for insertion into the original data package.

4) The SDG number of **33201D** should be **SS201D**. This is a typographical error which does not affect the validity of the data. Due to the short notice for this resubmittel, reprocessing of all forms could not be accomplished. If corrected forms are absolutely necessary please notify me.

5) Please see Item 3 of Project NY91-820; SDG STW202.

6) A legible copy of page 3373 is enclosed.

Project NY91-831R: SDG OW-101-D

1) All NYSDEC **Summary** Forms have been prepared and are enclosed for insertion into the original data package.

2) Appropriate Method Detection Limits are enclosed.

Project NY91-831R: SDG GSA8

1) NYSDEC Form 2, Sample Preparation and Analysis Summary, has been corrected to reflect the proper receipt and analysis dates. The date received for Trip Blank 4 was also incorrect on the Form IA and IE data sheets. These pages have also been corrected.

2) Appropriate Method Detection Limits are enclosed.

3) As stated on page E-55, paragraph 4.3.2 of the NYSDEC 1989 Analytical Services Protocol, no action is necessary by the laboratory for noncompliant surrogate recoveries unless:

- a) "Recovery of any one surrogate compound in <u>either</u> base neutral or acid fraction is below 10%."
- b) "Recoveries of two surrogate compounds in <u>either</u> base neutral or acid fractions are outside surrogate spike recovery limits."

Since the samples in question exhibited only <u>one</u> non-compliant recovery which was <u>qreater</u> than 10%, repreparation and reanalysis were not required. The data is compliant with the NYSDEC Analytical Services Protocol as submitted.

4) Example calculation for Trichloroethene in sample GSB5 (4-6):

 $Concentration(ug/Kg) = \frac{(Ax) (Is)}{(Ais) (RF) (W) (%D)}$

Ax = Area of Compound

Is = Amount Internal Standard Injected (ng)

- Ais = Area of Internal Standard
- RF = Response Factor for Compound
- W = Weight of Sample Purged
- &D = Decimal Percent Dry Weight

concentration(ug/Kg) =
$$\frac{61840 \times 250}{108084 \times 0.489 \times 1.0 \times 0.86}$$

= $\frac{15460000}{45454}$
= 340 ug/Kg

The concentration of Trichloroethene is correct as submitted.

<u>Project NY91-831R: SDG OW-201-D</u>

1) NYSDEC Form 4, Sample Preparation and Analysis Summary has been reviewed and resubmitted. Volume for sample OW-201-S was submitted on two different days. The first aliquot was for sample analysis and the second for MS/MSD analysis. This dual submission has been designated on the Form 4 to clarify any confusion.

2) Appropriate Method Detection Limits are enclosed.

3) Corrected NYSDEC summary forms are enclosed reflecting documentation of the Field Blank sample.

4) A corrected page 33 is enclosed.

5) Samples for this SDG were originally received on September 7, 1991. Due to a laboratory accident, the original Pesticide/PCB extracts were destroyed during Organic Preparation. Additional volume was submitted on September 18, 1991, however, Field Blank volume was not included therefore, extraction and analysis of this sample could not be performed. A Chain of Custody from the September 18 sample receipt is not available.

This response should resolve any issues surrounding these data packages. If you have further questions please do not hesitate to contact me at (716) 691-2600.

Sincerely,

RECRA ENVIRONMENTAL, INC.

••

· . ·

l . Treston Verl D. Preston

Director/Customer Service

VDP/nmm

APPENDIX G

NYSDEC Laboratory Data

K=A

1

1

-

Summary Table NYSDEC Sample Organic Analyses Dollinger - A Filtrona Company Remedial Investigation

	50' Downstre	am of SW203	125' Downstre	eam of SW203	Acid Bath Pit	Split (SS-201s)	Split (B-201s)	Split (OW–201s)
NYSDEC Sample No.	16W*1	16S*1	16W*2	16S*2	16W*3	165*3	16S*4	16W*5
Parameter	Surfacewater	Sediment	Surfacewater	Sediment	Groundwater	Sediment	Soil	Groundwater
Volatiles	Gunacewater	Gediment	Gunacewater	Gediment	Oroundwater	Seument		Gloundwater
Volutioo	ND		ND					
1,1-Dichloroethene				[1	[0.016
1,2-Dichloroethene		1			0.029		0.040	9.8
Tetrachloroethene								0.018
1,1,1-Trichloroethane								0.004BJ
Trichloroethene					0.008	0.20	0.19	39
Vinyl Chloride								0.21E
Toluene						0.12		0.011
Ethylbenzene						40	l	
Xylenes						120		
Acetone		72B		568		0.15B	[
Carbon Disulfide						0.09		
Chloroform						0.33	<u> </u>	0.004J
Styrene						0.088		
•								
Semi-Volatiles								
	ND	1	ND		ND			
Bis(2-ethylhexyl)phthalate		3.1		2.4		210	1.5B	0.003BJ
Butylbenzylphthalate		1.3		0.69J		130		
Di-n-butylphthalate				0.31J		19J		
Acenaphthene						8.8J		
Anthracene						26J		
Benzo(a)anthracene		0.73J		0.8J		67		
Benzo(b)fluoroanthene		2.3		1.9J		68		
Benzo(k)fluoranthene		1.3		2.2		80		
Benzo(g,h,i)perylene		1.5		1.1J		44		
Benzo(a)pyrene		1.4		1.1J		69		
Chrysene		1.6		1.5J		86		
Dibenzo(a,h)anthracene		0.51J				16J		
Dibenzofuran						4.8J		
Fluoranthene		2.0		2.5		210		
Fluorene				0.26J		12J		
Indeno(123cd)pyrene		1.4		1.QJ		44		
4-methylphenol				0.54J				
Phenanthrene		0.84J		1. 4J		140		
Pyrene		1.8		2.0		170		
Pesticides\PCB	ND			ND	ND		ND	ND
Aldrin		0.018				·		
4.4' DDE		0.010				0.14D		
Dieldrin						0.14D		
Endrin						0.100		
						V.200		

NOTES:

1. B - Analyte detected in the method blank.

2. **D** - Sample dilution required.

3. ND or Blank Space - Analyte not detected as present.

4. Tentatively indentified compounds (TICs) were detected in 16S1, 16S2, 16S3 and 16S4.

5. Samples 16S2, 16S3 and 16W5 were also run at dilutions. Only the most valid data is shown.

6. Data presented in parts per million (ppm).

dmc\123\nysdoll

Dollinger Corporation NYSDEC Split Sample Results Site # 828078 November 15, 1991

DEC Sample type Sample # Location -----_____ 16W*1 Offsite drainage swale Surface water & approx. 50ft downstream A955001 of SW-203 **16**S*1 Offsite drainage swalo Sediment same as 16W*1 & A955002 Note: Inorganic sample lost in transport to lah 16W*2 Offsite drainage swale Surface water approx. 125ft downstream & A955003 of SW-203 16S*2 Offsite drainage swale Sediment same as 16W*2 & A955004 16*3 Acid Bath Pit Water & Inside facility A955005 16S*3 Split of SS-201 Sediment & A955006 165*4 Split of soil boring Soil & 201-S, inside facility A955007 16**₩***5 Spilt of groundwater Groundwater å well MW-201S A955009

Ĭ

New York State Department of Environmental Conservation	
50 Wolf Road, Albany, New York 12233	

Commissioner

NOV 15 1991

Mr. Steven Koorse Hunton & Williams Riverfront Plaza, East Tower 951 East Byrd Street Richmond, VA 23219-4074

H&A of New York

NOV1819911

Re: Dollinger Corporation, Site #828075, Monroe County

Dear Mr. Koorse:

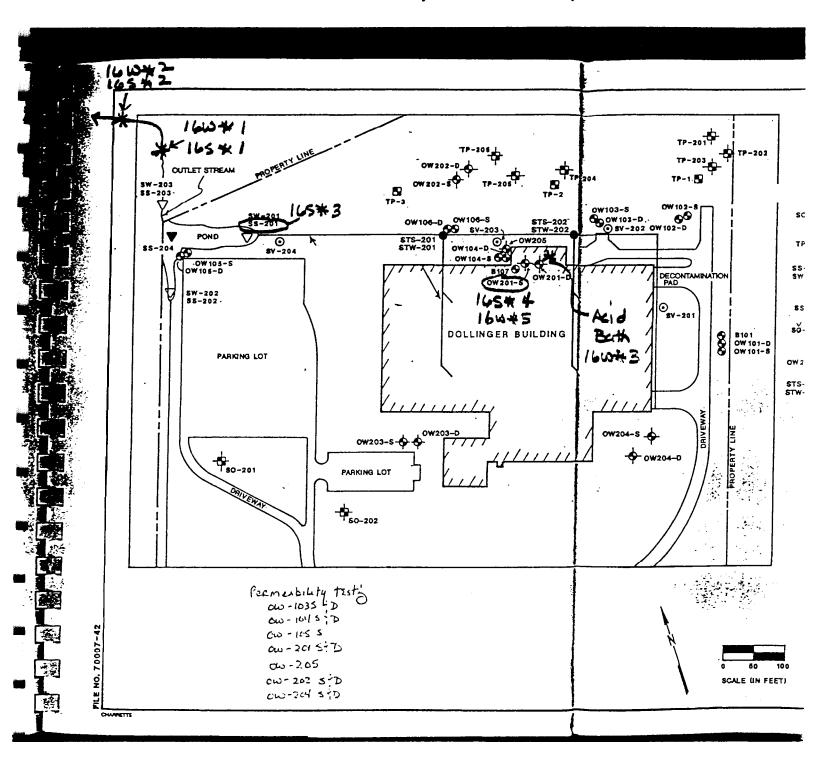
On November 15, 1991, I expressed mailed the split sample results to your clients consultant, H&A of New York. As we discussed on November 8, 1991, the Department agrees with you that the DEC split samples results should be evaluated in the RI report. As such, we will allow 10 days for you to incorporate this data into the RI report.

Please submit the RI report by November 29, 1991. To facilitate the project schedule please have your client's consultant contact me for instruction for mailing of copies of the report directly to various reviewers and we request you utilize overnight mail services. If you have any questions, please contact me at 518/457-3373.

lise Satto to pursue this. U.11 advise of mailing list.

Sincerely,

Ravid a. L. David A. Crosby


Environmental Engineer Remedial Section C Bureau of Western Remedial Action Div. of Hazardous Waste Remediation

cc: G. Bailey, w/out encl

- M. Khalil, w/out encl
- E. Belmore, w/out encl
- T. Caffoe, w/ encl
- L. Rafferty, DOH w/encl
- V. Dick, H&A of New York, W/ encl

c:\dw4\dave\stevedol.dc

DEC Split SAMPLES

Vell'ATTESTICENTOSE AND OTS 1. 1. 1. 1.

EPA SAMPLE MO

Lab Name: ESH Lab Coder ESE

Matrix: (soil/water) WATER 1 Lab Sample Sample wt/vol: 5.000 xg/al) ML SAD FILE. UN BULLES

Level:(low/med) 10W Date Received: 8/ 1/91 Z Molsture: not adec. # 00.

Column: (pack/cap) PACK

Date Analyzed: B/ 9/91 Dilution Factor: 1.00

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L CAS NO. COMPOUND - 0

	· Alexanter (1) ale				
		Chloromethane	10.		
	74-83-9	Bromomethane	1 .	្រះប្រ	
	1 75-01-4	Vinyl Chloride	1 10.	់ ប	
	: 75-00-3	Chloroethane			1
	75-09-2	Methylene Chloride	5.		
		Acetone	1 10.	ាប	
	75-15-0	Carbon Disulfide	1990 - Cag 5 .	្រាប	
	75-35-4	1,1-Dichloroethene	5.	1U 🦷	1
••	75-34-3	1,1-Dichloroethane	5.	ιU	1
	540-59-0	1,2-Dichloroethene (total)	5.	™ .	
		Chloroform	I 5.	iu 👘	1
ł		1,2-Dichloroethane	5.	1 0	
1		2-Butanone	10.	IU	
ł		1,1,1-Trichloroethane	5.	l U	
ļ		Carbon Tetrachloride		່ານ	1
1		Vinyl Acetate	10.	10	
		Bromodichloromethane	5.	10	1
	78-87-5	1,2-Dichloropropane	5.	1U	
		cis-1,3-Dichloropropene	5.	10	
;	79-01-6	Trichloroethene	5.	រប	
1	124-48-1	Dibromochloromethane	5.	10	1
1	79-00-5	1,1,2-Trichloroethane	5.	:0	1
1	71-43-2		5.	ιu	1
1	10061-02-6	trans-1,3-Dichloroorooene	5,	:U	1
1	75-25-2	Bromotormi	5.	١U	:
ł	108-10-1	4-Methy1-2-Pentanone	10.	11U	1
5	591 - 78 - 6	'-2-Hexanone	10.	:0	1
ł	127-18-4	Tetrachloroethene	5 .	i U j	1
ł	79-34-5	1,1,2,2-Tetrachloroethane	5.	1U	1
;	108-88-3	Toluene	. 🛃 5.	10	1
1		Chlorobenzenei	5.	10	1
;	100-41-4	Ethylbenzene	· 5.	រប	t .
1			~ 5.	1 Ú	ł
;	1330-20-7	Xylene ^e (total)	~ 5. 5.	1U .	1
ļ				}	1

NUMBER OF STREET, STREE

692-78¹² - 117 Charles State

Lab-Name: ESE

Lab. Names a set tab. Coder: ESE and the set of the se

Level: (low/med) LOW

X Moisture: not dec. 100.

Column: Ipack/cap? PACK

Contrate DL NEW YORK

EPA GAMPLE NO.

1.00

16H+

Sample wt/vol: 5.000 (g/mL) ML Lab File (D) 91446

Date Received: B/ 1/91 Section and the

Date Analyzed: 8/ 9/91

C. S. Law 4. 5. 75. Number TICs found: 0

Dilution Factor: CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L S. 2. 2. 1. 1

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Ģ	
	2. 1 /			•	, 48226 !	i 1 -
1						
1	3.				!	1
. 1	4.		I I			Ľ
	5					1
	6!					l
· • •	•					i t
1						:
	10					i P
	11	$(-1)^{n} = 1 \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n}$				ł
1	121		!		!	1
4	13					
i			;	i	i	
	16		'	'ee'	;	
1				'	'	
ł	18;		!		!	
. I .				;	!	•
-				!	!	
i					!	
1	23		'		'	
Ì				·		
ł			;		;	
ł			t.		!	
1			!-	!	!	
i	28	!			!	
ł	29 30	· · · · · · · · · · · · · · · · · · ·	'.		!	
1			!-		!	
			'		'	

FORM I VOA-TIC

1/87 Rev.

HAB SEMIVOLATILE DRGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. and Bringer Street

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	A second s	and and the second states	CONTRACT OF STREET	ALL ANT ALL DUS	and the second second	and the second second	Section of the sectio	14 C			
Contraction in the Party	1	Strate and Line and			A DESCRIPTION	A	de Ree des a	CARLES AND ADDRESS	AV. 155 6 48	YIGW¥1	
2 7 2	1	Real Providence of the second	and the second			15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the set		2011年,从第十十日6月		. to range in the
							2 AIVON		A STATE OF THE OF	5707 V	1. 1. 1. 1. A. P.
LAD	Name:	Lol Marken	A CONTRACTOR OF THE STATE	1.1.1		ONTTACT.	1 - 11 1 3 1 1		AN SHALL	14 A	
State inter a SWA	a service and the	and the second second second	AMARTAN WAS STOPPING	A BURE A STATISTICS AT	A STATE OF A	1	A MANY STATE	11 S. C. S.	Sector And D		
ASK ASSA	1. A. B.			C TANK AND LAN	sector de la sector de la	States and States	ALL MANAGERATIN	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	64-58 BEESEZ /	111	
			A ST COMMENT OF A STATE OF A STATE		The standay of the standard and a	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	CALL STREET	VILLACIONA Provident	· · · · · · · · · · · · · · · · · · ·	And a second	20.05
· · · · · · · · · · · · · · · · · · ·	Carles 1		Dese /	DD	A01 4	DAC MA		CONTRACTOR OF		AOFE	
Lad	LODE:	COL		VD.J ND	V71 227 24	383 NU.	8	SD SD	DANUA J	. HJJJ.	
a second s	المراجعة المتحاد ومعرية		PER CLARES &	- A State Law and	and the second			States and states and	A LOT THE ALL AND A		· · · · · · · · · · · · · · · · · · ·
		The survey of the	A SALE LOUT		Are the are				A CONTRACTOR OF A CONTRACTOR A		
and the second states and	and the lite		A STATE OF A SALE		the sector of the sector	Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec.	1. AL	1. A.	A STATE OF A		
Make	/		r) WATE	5			I -L C.	ample I	1		
- 17 A C T	721 (20	JTT / Mate	イン・オイトレ				Lau De	2回して名 浜田	1.2.2.2.		

Lab File ID: 51500 Sample wt/vol: 1000.0 (g/mL) ML Level: (low/med) LOW Date Received: 8/ 1/91

X Moisture: not dec. 100. dec. Date Extracted: 8/ 7/91 Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: \$8/29/91 All the second sec

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.00 CONCENTRATION UNITS:

CAS NO.

(ug/L or ug/Kg) UG/L

1. 1. 1. Mar. 1

Contract New Teel

108-95-2Phenol 10. IU 111-44-4bis(2-Chloroethyl)ether 10. IU 95-57-82-Chlorophenol 10. IU 95-57-8	-					
111-44-4bis(2-Chloroethyl)ether 10. IU 95-57-82-Chlorophenol 10. IU 106-46-71,3-Dichlorobenzene 10. IU 100-51-6Benzyl alcohol 10. IU 95-50-11,2-Dichlorobenzene 10. IU 95-50-1	1			1	1	•
95-57-82-Chlorophenol	1				2 J	
1 541-73-11, 3-Dichlorobenzene 10. IU 1 106-46-71, 4-Dichlorobenzene 10. IU 1 100-51-6Benzyl al cohol 10. IU 95-50-11, 2-Dichlorobenzene 10. IU 95-48-72-Methylphenol 10. IU 1 108-60-1bis(2-Chloroisopropyl)ether 10. IU 1 106-44-54-Methylphenol 10. IU 1 106-44-54-Methylphenol 10. IU 67-72-1Hexachloroethane 10. IU 98-95-3Nitrobenzene 10. IU 98-95-3Nitrobenzene 10. IU 105-67-92-A-Dimethylphenol 10. IU 105-67-92-A-Dimethylphenol 10. IU 105-67-92, 4-Dimethylphenol 10. IU 111-91-1bis(2-Chloroethoxy)methane 10. IU 120-83-22, 4-Dichlorophenol 10. IU 120-83-2	1			• •		
106-46-71,4-Dichlorobenzene 10. IU 100-51-6Benzyl alcohol 10. IU 95-50-1Benzyl alcohol 10. IU 95-48-7Benzyl alcohol 10. IU 95-48-7Benzyl alcohol 10. IU 108-60-1Bis(2-Chloroisopropyl)ether 10. IU 106-44-5	1	95-57-82-Chlorophenol			•	
106-46-71,4-Dichlorobenzene 10. IU 100-51-6Benzyl alcohol 10. IU 95-50-1Benzyl alcohol 10. IU 95-48-7Benzyl alcohol 10. IU 95-48-7Benzyl alcohol 10. IU 108-60-1Bis(2-Chloroisopropyl)ether 10. IU 106-44-5	1	541-73-11,3-Dichlorobenzene			1	
95-50-11,2-Dichlorobenzene 10. IU 95-48-72-Methylphenol 10. IU 108-60-1bis(2-Chloroisopropyl)ether 10. IU 108-64-54-Methylphenol 10. IU 106-44-54-Methylphenol 10. IU 621-64-74-Methylphenol 10. IU 67-72-1Hexachloroethane 10. IU 98-95-3Nitrobenzene 10. IU 105-67-9	1	106-46-71,4-Dichlorobenzene			:	
95-48-72-Methylphenol	1	100-51-6Benzyl alcohol:			1	
108-60-1bis(2-Chloroisopropyl)ether 10. !U 106-44-54-Methylphenol	ł		10.	. –	:	
106-44-54-Methylphenol	ł		10.	łU	1	
621-64-7N-Nitroso-di-n-propylamine! 10. !U 67-72-1Hexachloroethane! 10. !U 98-95-3Nitrobenzene! 10. !U 78-59-1Nitrobenzene! 10. !U 88-75-5	ł	108-60-1bis(2-Chloroisopropyl)ether	10.	1 U	:	
67-72-1Hexachloroethane	1	106-44-54-Methylphenol;		; U	:	
98-95-3Nitrobenzene	ł		10.	10	1	
98-95-3Nitrobenzene	ł	67-72-1Hexachloroethane	10.	ιU	l l	
1 78-59-1Isophorone	1	98-95-3Nitrobenzene	10.	۱U	1	
88-75-52-Nitrophenol 10. !U 105-67-92, 4-Dimethylphenol 10. !U 65-85-0Benzoic acid 50. !U 111-91-1bis(2-Chloroethoxy)methane 10. !U 120-83-22, 4-Dichlorophenol 10. !U 120-82-11, 2, 4-Trichlorobenzene 10. !U 120-82-1	ł	78-59-1Isophorone	10.	۱U		
105-67-92, 4-Dimethylphenol 10. U 65-85-0Benzoic acid 50. U 111-91-1bis(2-Chloroethoxy)methane 10. U 120-83-22, 4-Dichlorophenol 10. U 120-82-11,2, 4-Trichlorobenzene 10. U 106-47-8Naphthalene 10. U 106-47-8	1	88-75-52-Nitrophenol	10.	ιU	1	
65-85-0Benzoic acid	:	105-67-92.4-Dimethylphenol	10.	ιU	1	
111-91-1bis(2-Chloroethoxy)methane 10. U 120-83-22,4-Dichlorophenol 10. U 120-82-11,2,4-Trichlorobenzene 10. U 91-20-3Naphthalene 10. U 106-47-8A-Chloroaniline 10. U 106-47-8	ł	65-85-0Benzoic acid	50.	:0	1	
120-82-11,2,4-Trichlorobenzene 10. IU 91-20-3Naphthalene 10. IU 106-47-84-Chloroaniline 10. IU 87-68-3Hexachlorobutadiene 10. IU 91-57-64-Chloro-3-methylphenol 10. IU 91-57-6	1	111-91-1bis(2-Chloroethoxy)methane:	10.	۱U	1	
91-20-3Naphthalene 10. U 106-47-84-Chloroaniline 10. U 87-68-3Hexachlorobutadiene 10. U 91-57-64-Chloro-3-methylphenol 10. U 91-57-6	:	120-83-22,4-Dichlorophenol	10.	UI	1	
91-20-3Naphthalene 10. U 106-47-84-Chloroaniline 10. U 87-68-3Hexachlorobutadiene 10. U 91-57-64-Chloro-3-methylphenol 10. U 91-57-6	ł	120-82-11,2,4-Trichlorobenzene	10.	10	;	
106-47-B4-Chloroaniline 10. 10 87-68-3Hexachlorobutadiene 10. 10 59-50-74-Chloro-3-methylphenol 10. 10 91-57-62-Methylnaphthalene 10. 10 77-47-4Hexachlorocyclopentadiene 10. 10 88-06-22,4,6-Trichlorophenol 10. 10 91-58-72,4,5-Trichlorophenol 10. 10 91-58-72-Chloronaphthalene 10. 10 88-74-42-Nitroaniline 10. 10 131-11-3Dimethylphthalate 10. 10	1	91-20-3Naphthalene	10.	ιU	1	
87-68-3Hexachlorobutadiene 10. IU 59-50-74-Chloro-3-methylphenol 10. IU 91-57-62-Methylnaphthalene 10. IU 77-47-4Hexachlorocyclopentadiene 10. IU 88-06-22,4,6-Trichlorophenol 10. IU 91-58-72,4,5-Trichlorophenol 10. IU 91-58-72-Chloronaphthalene 10. IU 88-74-42-Nitroaniline 10. IU 131-11-3Dimethylphthalate 10. IU	ł	106-47-B4-Chloroaniline	10.	ιU	1	
91-57-62-Methylnaphthalene 10. IU 77-47-4Hexachlorocyclopentadiene 10. IU 88-06-22,4,6-Trichlorophenol 10. IU 95-95-42,4,5-Trichlorophenol 50. IU 91-58-72-Chloronaphthalene 10. IU 88-74-42-Nitroaniline 10. IU 131-11-3Dimethylphthalate 10. IU	1	87-68-3Hexachlorobutadiene	10.	. I U	1	
91-57-62-Methylnaphthalene 10. IU 77-47-4Hexachlorocyclopentadiene 10. IU 88-06-22,4,6-Trichlorophenol 10. IU 95-95-42,4,5-Trichlorophenol 50. IU 91-58-72-Chloronaphthalene 10. IU 88-74-42-Nitroaniline 10. IU 131-11-3Dimethylphthalate 10. IU	1	59-50-74-Chloro-3-methylphenol:	10.	10	1	
1 77-47-4Hexachlorocyclopentadiene1 10. 10. 10. 1 88-06-22,4,6-Trichlorophenol1 10. 10. 10. 1 95-95-42,4,5-Trichlorophenol1 50. 10. 10. 1 91-58-72-Chloronaphthalene1 10. 10. 10. 1 88-74-42-Nitroaniline1 50. 10. 10. 1 131-11-3Dimethylphthalate1 10. 10. 10.	1	91-57-62-Methylnaphthalene	10.	۱U	1	
! 95-95-42,4,5-Trichlorophenol ! 50. !U ! 91-58-72-Chloronaphthalene ! 10. !U ! 88-74-42-Nitroaniline ! 50. !U ! 131-11-3Dimethylphthalate ! 10. !U	:	77-47-4Hexachlorocyclopentadiene	10.	U	1	
91-58-72-Chloronaphthalene 10. 10. 10. 88-74-42-Nitroaniline 50. 10. 131-11-3Dimethylphthalate 10. 10.	:	88-06-22,4,6-Trichlorophenol	10.	ΙU	:	
91-58-72-Chloronaphthalene 10. 10. 10. 88-74-42-Nitroaniline 50. 10. 131-11-3Dimethylphthalate 10. 10.	1	95-95-42,4,5-Trichlorophenol;	50.	:0	:	
88-74-42-Nitroaniline 50. U 131-11-3Dimethylphthalate 10. U	:	91-58-72-Chloronaphthalene	10.	ιU	:	
1 131-11-3Dimethylphthalate 10. U	:	88-74-42-Nitroaniline	50.	۱U	1	
	:	131-11-3Dimethylphthalate;	10.	۱U	ł	
	1		10.	ιu	!	
: 606-20-22,6-Dinitrotoluene: 10. :U	1		10.	ιU	1	
	:_			_ !	!	

FORM I SV-1

1/87 Rev.

21

SEMIVOLATICE DREANICS ANALYSIS DATA SHEET

ab Name: ESE Contract: NYBDEC

WY16W+1

606 No. 1 4955

EPA SAMPLE NO.

Lab Code ; EBES CONST MONTH RECOIL BAS NON Matrix: (soll/water) WATER

Lab Sample 191 Sample wt/vol: 1000.0 (g/mL) ML Level: (low/med) LOW Date Received: 8/41/91

Date Extracted: SB/ 7/91 Z Moisture: not dec. 100. dec - FE-5

Extraction: (SepF/Cont/Sonc) SEPF pH: 7.0 Dilution Factor: 1.00 (Y/N) N GPC Cleanup:

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

S. 1.				rteta Esta		- 19 P. 1
1.1						िं।
•	99-09-2	3-Nitroaniline			s iu :	I
	83-32-9	Acenaphthene		10.	10	
	51-28-5	2,4-Dinitrophenol	!	50.	្រុះប	
	100-02-7	4-Nitrophenol	i	50.	10°	1
				10.		1
	121-14-2	2,4-Dinitrotoluene		10.	1) U	1
	84-66-2	Diethylphthalate		10.		1
	7005-72-3	4-Chlorophenyl-phenyle	therl	10.	ιU	1
	86-73-7	Fluorene		10.	ιU	1
	100-01-6	4-Nitroaniline		50.	ιU	1
·	534-52-1	4,6-Dinitro-2-methylph	enol¦	50.	ιU	1
	86-30-6	N-Nitrosodiphenylamine	(1)!	10.	IU	ł
i	101-55-3	4-Bromophenyl-phenylet	herl	10.	ΠU	-
i	118-74-1			10.	ιU	1
	87-86-5	Pentachlorophenol	l ·	50.	ιU	1
1	85-01-8	Phenanthrene	!	10.	۱U	1
	120-12-7	Anthracene		10.	۱U	1
	、B4-74-2	Di-n-butylphthalate	1	10.	۱U	1
	206-44-0	Fluoranthene	'	10.	۱U	1
		Pyrene	!	10.	ιU	
1	85-68-7	Butylbenzylphthalate	[:]	10.	ιu	1
	91-94-1	3,3'-Dichlorobenzidine	'	20.	ιU	1
-	56-55-3	Benzo(a)anthracene	i	10.	10	1
	218-01-9	Chrysene		10.	١U	1
1	117-81-7	bis(2-Ethylhexyl)phthal	late	10.	IU.	1
	117-84-0	Di-n-octylphthalate		10.	10	
-		Benzo(b)fluoranthene		10.	10	
i	207-08-9	Benzo(k)fluoranthene	!	10.	10	
	50-32-8	Benzo(a)pyrene	!	10.	10	1
-	193-39-5	Indeno(1,2,3-cd)pyrene_	!	10.	10	1
-	53-70-3	Dibenzo(a,h)anthracene	!	10.	10	
	191-24-2	Benzo(g,h,i)perylene	!	10.	10	i
1					_ '	!
	$1 \rightarrow C \rightarrow $	he constated from diphenylar	100			

(1) - Cannot be separated from diphenylamine

FORM I SV-2

EPA SAMPLE NO. CNICE HEET Lab Name: ESE Contract: NYSDEC Lab Code: ESE Case No.: RB091 (BAS No.: GDG DO HA955 Lab Sample Sil $(-2)^{-1}$ Matrix: (soil/water) WATER : Sample wt/vol: 1000.0 (g/mL) ML Lab File ID: 61500

Level: (low/med) LOW Date Received: 8/ 1/91 7 Moisture: not dec. 100. dec. Date Extracted: 8/ 7/91 Date Analyzed: 8/29/91 Extraction: (SepF/Cont/Sonc) SEPF GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.00 ..-~ • • CONCENTRATIONITS : · 李家等 22

Number TICs found:

(ug/L or ug/Kg) UG/L 0 CAS NUMBER COMPOUND NAME RT EST. CONC. З.

		·	· · · · · · · · · · · · · · · · · · ·	··
1 5		i	!	;;
: 6.	1	1	:	! {
7.		·	*	;
· · · · · · · · · · · · · · · · · · ·	·			!!
: 8		;		۱۱ .
! 9	· · · · · · · · · · · · · · · · · · ·	;	: ·	
; 10.	;	:		:;
11.	· · · · · · · · · · · · · · · · · · ·	,	1	
	•••••••••••••••••••••••••••••••	·	*	
		·	·	
13			!	
; 14	1		{	
			!	!
1 10	,		''	
			!	!
17				
; 18.			!:	
19.				
1.20			,,,,	!
21.	· · · · · · · · · · · · · · · · · · ·		,	'
	·			!
22.				
: 23				
24				;
1 OF	· · · · · · · · · · · · · · · · · · ·			
	*		• •• •• •= •= •= •= • • • •	~~~~!
				i
27				
: 28		1		1
} 29.				
· · · · · · · · · · · · · · · · · · ·	'			
30.				

FORM I SV-TIC

LIGHT MANY STATIST WAT A STEED

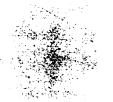
MPLEAR

Lontract: C002687 Leo and set New Yes, Star Party LC OF Lab Sample 10: N

Lab File ID: Level: [lov/med] LOW Date Received: 01/01/9

Date Extracted: 08/07/91 Extraction: SepF/Cont/Sonch Date Analyzed: 09/05/91 SEPE N. 1. 1. 1. Dilution Factor: GPC Cleanup: (Y/N) W

CONCENTRATION UNITS CAS NO. COMPOUND


(ug/L or ug/Kg) UG/L

ş. 1		Broom Access of the second			A SALE ANALY ALL	يتحجر والمجاجر والمحج والمح	Sec. Sec.
िः		West to job		la successive de la succes		1	
- 1		alpha-BHC	an shina an a	Contraction of the second		10 5	
1	58-89-9		(Lindane)		2:0-025	ाण 🦓 व	
1	319-85-7	-beta-BHC	State of the		0.050	10 1	1
	76-44-8 319-86-8	Heptachlo	r - Alexandrea		0.050	ID A	
1	319-86-8	delta-BHC	يو المستوجعين و الم	一日 一日日日日間	0.050		*
1	309-00-2	Aldrin	54		0.050		
. 1	1024-57-3			and Bray Colds Ale Colds 1	0-050		
1	5566-34-7	Gamma - Ch]	ordane				
İ	5103-71-9	alpha_Chl	ordano		0.050		
- 1 j	959-98-8	Endosulfa			0.050		
i	72-55-9	-4,4'-DDE	a a <u></u>	· · · · · · · · · · · · · · · · · · ·	0.050		
;	60-57-1				0.050		
ا را مرز	72-20-8	Dieldrin					and the second
		Endrin			0.050	· · · · ·	
ĩ	72-54-8			and the second	D.10-		Street St.
1	2272-22-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2		n II		0.10		
1	50-29-3	4,4'-DDT_		19 (19 (19 (19 (19 (19 (19 (19 (19 (19 (0.10		* * * * ****
1	1031-07-8	Endosulfa	sulfate	 	0.10	10 1	
1	72-43-5	Methoxych:	lor	a a se	0.50	10 1	
1	53494-70-5	Endrin ket	one	1	0.10	10 1	
1	8001-35-2	Toxaphene	a ta ta <mark>an an a</mark>	•• • • • • • • •	1.0	10 1	
;	12674-11-2	Aroclor-1)16	· · · · · · · · · · · · · · · · · · ·	0.50	10 1	
1	11104-28-2	Aroclor-12	221	1	0.50	10 4 1	
1	11141-16-5	Aroclor-12	232	1		10 1	
1	53469-21-9	Aroclor-12	42	1		10 1	
1	12672-29-6	Aroclor-12	48	1		10 1	
:	11097-69-1	Aroclor-12	54	······		10 1	
	11096-82-5				• • • • •	10 1	
Ī				······	·· JV	1 1	
				(

page 1 of 1

Lab Na

FORM I PEST

1/87 Rev.

VOLATILE ORGANICS ANALYSIS DATA-SHEET

Name: ESE

Lab Code; ESE Case No.: NYCLPE BAS No.: PB091 11-8-91

Matrix: (soil/water) BOIL

CAS NO. COMPOUND

Matrix: (soil/water) SOIL Sample wt/vol: 5.000 (g/mL) 6 Lab File ID: 51470

Level: (low/med) LOW Date Received: 8/ 1/91 2 Comproversion ياني مياجة والرجاق بر Date Analyzed: 8/10/91 7 Moisture: not dec. 50.

Column: (pack/cap) PACK

2000 Q.1

Dilution Factor: 1.00 CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

1		A REAL PROPERTY AND A REAL		
	1 74-87-3	Chloromethane	20.	U .
	1 74-83-9	Bromomethane		U ja
	1 75-01-4	Vinyl Chloride		IU 🕄
	1 75-00-3	Chloroethane	• • • • • •	U
	1 75-09-2	Methylene Chloride	10.	IU ·
	67-64-1	Acetone	1 72. 1	В
	: 75-15-0	Carbon Disulfide	10.	U .
	75-35-4	Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethane	10. 1	U
	: 75-34-3	1,1-Dichloroethane	10. 1	U
	: 5 40-59-0	1,2-Dichloroethene (total)	1 10. 1	U
	67-66-3	Chloroform		U
	107-06-2	1,2-Dichloroethane		U
	: 78-93-3	2-Butanone	• • • • •	U
	71-55-6	1,1,1-Trichloroethane	• • • • •	U
	: 56-23-5	Carbon Tetrachloride	1 10.	U
	108-05-4	Vinyl Acetate	20.	U
	75-27-4	Bromodichloromethane		U
		1,2-Dichloropropane		U
		cis-1,3-Dichloropropene		U
		Trichloroethene		U .
		Dibromochloromethane	•	U
		1,1,2-Trichloroethane		U
		Benzene		U
		trans-1,3-Dichloropropene		U
		Bromoform		U
		4-Methyl-2-Pentanone	• • • • •	U
	; 591-78-6	2-Hexanone	20.	U
		Tetrachloroethene		U
		1,1,2,2-Tetrachloroethane		U
1	108-88-3	Toluene	· · · · · · · · · · · · · · · · · · ·	U
		Chlorobenzene		U
	100-41-4	Ethylbenzene	10.	U
	100-42-5	Styrene	10.	U
1	1330-20-7	Xylene (total)	10.	U
			·	

FORM I YOA

1/87 Rev. 2(

ERA GAMPLE NO.

Contract: NEW YORK

NY165*1

STERILY DEALERS DIGENTION TALLY STER DATA

THE MATCH P STATIS - F

Lab Code: PSE 0.1 RB091 313 Matrixe (soil/water) SOlt CLARKE DO THE

Sample wt/vol: 30.0 (g/mL) 6 - Lab

1.61.10

Level: (low/med) LDW Date Received: B/ 1/91 Z Moisture: not dec. 50. dec. Date Extracted: 8/14/91 A STATISTICS AND A DALED MILLIVERSITE MILLIVES Extraction: (SepF/Cont/Sonc) SONC

GPC Cleanup: (Y/N) Y pH: 7.0 Dilution Factor: 1998 - 199 - 199

CONCENTRATION UNITS:

· · · · · · · · · · · · · · · · · · ·		A TRACE OF ALL	1	Sec. 1 Sec. of
108-95-2-	Pheno1	· Jest Andrew and the set set as	Sector Carton Sector	
111-44-4-	bis(2-Chloroethyl)ether			
		豊かな ひとてい いっちり シュート・・・ だい	나라고 한 한 것 같은 것 같이 했다.	1
106-46-7-	1,4-Dichlorobenzene		200 - C.	1
100-51-6-	Benzyl alcohol	1 300.	ALL CAL	and -
95-50-1-	1,2-Dichlorobenzene	_l 1300 .	់ ាប ាំខ្លាំ	1
95-48-7-	2-Methylphenol	1300.	١U	1
108-60-1-	bis(2-Chloroisopropyl)ether	1300.	1U - 22	1 , 1
			ີ່ນີ	
621-64-7-	N-Nitroso-di-n-propylamine_	: 300.	્રેલું છે છે છે.	1.20
67-72-1-	Hexachloroethane	1300.	່ ເປັ	1
98-95-3-	Nitrobenzene	1 1300.	່ານ	
78-59-1-	Isophorone		່ານ	:
88-75-5-	2-Nitrophenol	1300.	់ រប	1
105-67-9-	2.4-Dimethylphenol	1300.	:0	:
			10	:
		1300.	្រះប	:
			5 IU	:
			UIU	1
			រប	:
		1300.	10	:
			:U	1
		1300.	ιU	:
		: 1300.	1U	:
		1300.	10	1
	· · ·		10	1
			ιU	:
			ιU	;
			י דע	¦ ·
131-11-3-	Dimethylohthalate	1300.	10	:
208-96-8-	Acenaphthylene		~ U .	i
EDE -20-2-	2.6-Dinitrotoluene	1300		1
			1	1
	$\begin{array}{c} 111 - 44 - 4 - \\ 95 - 57 - 8 - \\ 541 - 73 - 1 - \\ 106 - 46 - 7 - \\ 100 - 51 - 6 - \\ 95 - 50 - 1 - \\ 95 - 48 - 7 - \\ 108 - 60 - 1 - \\ 106 - 44 - 5 - \\ 621 - 64 - 7 - \\ 67 - 72 - 1 - \\ 98 - 95 - 3 - \\ 78 - 59 - 1 - \\ 88 - 75 - 5 - \\ 105 - 67 - 9 - \\ 65 - 85 - 0 - \\ 111 - 91 - 1 - \\ 120 - 83 - 2 - \\ 120 - 82 - 1 - \\ 91 - 20 - 3 - \\ 106 - 47 - 8 - \\ 87 - 68 - 3 - \\ 59 - 50 - 7 - \\ 91 - 57 - 6 - \\ 77 - 47 - 4 - \\ 88 - 06 - 2 - \\ 95 - 95 - 4 - \\ 91 - 58 - 7 - \\ 98 - 74 - 4 - \\ 131 + 11 - 3 - \\ 208 - 96 - 8 - \end{array}$	541-73-11, 3-Dichlorobenzene 106-46-71, 4-Dichlorobenzene 100-51-6Benzyl alcohol 95-50-11, 2-Dichlorobenzene 95-4B-72-Methylphenol 108-60-1bis(2-Chloroisopropyl)ether 106-44-5A-Methylphenol 621-64-7N-Nitroso-di-n-propylamine 67-72-1Nitroso-di-n-propylamine 98-95-3Nitrobenzene 98-95-3Nitrobenzene 78-59-1Hexachloroethane 98-95-3Nitrobenzene 78-59-1	111-44-4bis (2-Chloroethyl)ether 1300 95-57-82-Chlorophenol 1300 541-73-11, 3-Dichlorobenzene 1300 106-46-71, 4-Dichlorobenzene 1300 100-51-6Benzyl alcohol 1300 95-50-11, 2-Dichlorobenzene 1300 95-48-72-Methylphenol 1300 106-44-5bis (2-Chloroisopropyl)ether 1300 106-44-5	111-44-4bis(2-Chloropthyl)ether 1300 10 95-57-82-Chlorophenol 1300. 10 541-73-11, 3-Dichlorobenzene 1300. 10 106-46-71, 4-Dichlorobenzene 1300. 10 95-50-11, 2-Dichlorobenzene 1300. 10 95-48-72-Methylphenol 1300. 10 108-60-1bis(2-Chloroisopropyl)ether 1300. 10 108-64-5

FORM I SV-1

1/87 Rev.

0.00000 0.0000

SV-2 FORM I

 $\mathcal{J}_{i},\mathcal{J}_{j} \sim 1$ 1.0 6.5 0 ככ ⊇ D \square \supset 1300. 6300. 1300. 1300. 6300. 300. 300. 6300. 1300. 6300. 1300. 1300. 6300 1300. 840. 1300. 1300. 2000. 6300 1800 1300 730 1600 000 C 2600 3100 1300 2300 510 **8**00 --bis(2-Ethylhexyl)phthalate -4-Chlorophenyl-phenylether 4,6-Dinitro-2-methylphenol --N-Nitrosodiphenylamine (1) from diphenylamine 4-Bromophenyl-phenylether --Butylbenzylphthalate --3,3'-Dichlorobenzidine -cd) pyrene ,h)anthracene --Benzo(b)fluoranthene --Benzo(k)fluoranthene -Renzo(g, h, t)perylene --Di-n-octylphthalate --Di-n-butylphthalate --Fluoranthene____ I --Benzo(a)anthracene_ ---2,4-Dinitrotoluene -2,4-Dinitrophenol --Hexachlorobenzene --Pentachlorophenol ٩ ----Diethylphthalat -3-NITroanIline_ Benzo(a) pyrene --4-Nitrophenol -Acenaphthene ---Dibenzofuran --Phenanthrene --Anthracene_ --Fluorene --Chrysene -Dibenzo(-Indeno(1 separated --Pyřene 1 1 Cannot be 1 99-09-2--1 1 t: T i Í. 1 1 i İ. 1 L Ĺ 129-00-0-85-68-7-91-94-1-56-55-3-534-52-1 132-64-9 4-4 7005-72-3 100-01-6 85-01-8 51-28-5 100-02-7 84-66-2 86-30-6 101-55-3 87-86-5 86-73-7 118-74-1 117-84-0 191-24-2 120-12-7 84-74-2 206-44-0 218-01-9 117-81-7 207-08-9 205-99-2 ò ູ່ 121-1 50-3 193-3 5-2 iń

ġ.

CONCENTRATION UNITS: **Dilution Factor:** COMPOUND (ug/L or ug/Kg) UG/KG Date Analyzi 0 pH: .~7 V.N.V CAS NO. Cleanup:

Date Extr Date g Klou/med> ř. Matrice Sample

Level:

X Moisture: not

Extraction:

NOO onc (SepF 6PC

8

· 59

.

16/22/68

8/14/91

...

10/1

1/87_. Rev

EPA SAMPLE NO

WASSE!

N 4955

SEVENCES IN THE PARTY OF MARKETER DATES THE

Lab Stame BESE

Lab. code: For

Matrix: (coll/Water) SOIL A ab Signa

Sample wt7vol: 30.0 (g/mL) 6 Lab File ID 6/1346

Level: (low/med) LOW

Z Molsture: not dec. 50, andec.

Date Received: 8/ 1/91 Date Extracted: B/14/91

GPC Cleanup: (Y/N) Y pH: 7.0 Dilution Factor: 1.00 CONCENTRATION UNITS:

Number TIÇs found: (ug/L'sor ug/Kg) UG/KG

 	CAS NUMBER	RT SEST.	CONC. 1 Q
}	1 IUNKNOWN METHYL KETONE	5.34	4000. BJ A
4-13	2 IUNKNOWN METHYL KETONE		500. J A
- 1	3 : LINKNOWN		1000. ; J
1	4 !UNKNOWN METHYL KETONE	: 6.92	4000. I J A
;	5 IUNKNOWN HYDROCARBON	1. 16.14	900. ¦ J
;	6 : UNKNOWN	1 16.83	3000. ¦ J
1	7. – – ¦UNKNOWN	16.93	1000. J J
	8 UNKNOWN ALKYL PHENOL		1000. J
- 1	9 IUNKNOWN ALKYL PHENDL	_: 17.10	800. J
;	10. 25154-52-3;Phenol, nonyl	17.27	1000. ; J
. :		• · · · · · · · · · · · · · · · · · · ·	900. J
1	12 IUNKNOWN HYDROCARBON	• · · · · · · · · · · · · · · · · · · ·	800. J
:	13. 57-10-3:Hexadecanoic acid		2000. ¦J
1	14 IUNKNOWN		4000. ¦J
1. 1	15 :UNKNOWN		6000. J
	16 ¦UNKNOWN		3000. J
1	17. – UNKNOWN HYDROCARBON		6000. J
1	18 UNKNOWN HYDROCARBON		3000. J
1	19. 83-47-6:Stigmast-5-en-3-01	31.98	a000 1 1
1	20	-	~~~~``
	21,	- ! !	
i	22	· • • • • • • • • • • • • • • • • • • •	,
i	23	· ¹ · ¹	i 1
i	24	· 1	
1	25		
:	26		~~~~ ⁱ ~~~~
i	27		
	28		
	29///		
	30		'

FORM SV-TIC

DESCRIPTION CONTRACTOR DATE ON THE OWNER OF THE OWNER OWNE

- 210 00 - 2084		્રે કરે દાવસ્ય છે.		
AD FORES SUE	COLES COLEMAN		Э	Det USSel
Matrix: (soll/vat			215	
Sample wt/vol:				
Level: (lov/se			elvel: 2087	
& Molsture: not d		The second second second second second second second second second second second second second second second s	racted: 08/1	ASS DECEMBER
Extraction: (Sep)	r/Lont/Bonc)		Lyzed: ##21/1	

				÷ .	- i i i i i i i i i i i i i i i i i i i	- in .		2.5.5			S	1.1			- F	1.1	2.1.4	1.11	52.2	1.1								
5 A C - 1	- ·			• `	1 S.		-1 - M		0.65,59		Sec.		5	1999 - 1999 -			10.0					5. Sec. 1	14 m			1.24 8 1		
- 61	20	~ ~	anu	m •		1 V	/N		7 . H. S.			1.12	DH	•		1.1.1	· · · · ·	n (T est-	10		'a (* '			÷.,	5 I - M	הח	40
: 196		676	ann	· P •			/ 54						s n	. • i.	1.1													1.2
1.4.1	1.1.1			<u>.</u>	1.00			11 C - 1		10.02		1 B.						111		- Sec. 6.	زر من تقلب		84 505	3027	12	14 - A - A - A - A - A - A - A - A - A -		
s 2 .						1.14			-			5. 7		1.1		10.00			1 A.	· · · · · ·	- 1 - C	5 (M) 7	C 13.25 - 0.	Sec. 12.1	2.5.7	See. 8	8 C	12
- 3 , 11					8-0 G					200 J. C. Y	4						1.00									Children	· · · · ·	
en 11 (:				ويراجد فكر	- 14 S.			1. 3.2.5											-	i in i			*		2.5		21
				A		- Sec. 1		1.1.1.1		S	× .					- C	. C	UN		TR	ALL F	ON.	UN	178	3		a some	- C.a
	2.2.6					Sec. 19. 2		A. F. 3	0					1800														19
1.1.5			~ ~ ~ ~	1 81/	• * *	1.1	1. 1. 1	Sec. 19	A	~~	nnr	1111	·	1.30	ي مد ا	10.00	1.1		/+ 😳	-		12	- 1	110 /	120		1. A	1.00
1. 1.		6 B.	CAS		J. ~	· · · · · · · · · · · · · · · · · · ·	199		Ċ	UΠ	ruu		1.58	18.00				uu.		DI	uu	///		ບຜ	KG			12.1
-	5 . C	1.5	Sex.				× 11.	Cart X	* 7 .34		2.2.32		1. 6 1.	- to get						¥	22 - J 🖉				5	1.1		See. 5
100	1.0	-2-1-X-1	100	1. 19	₹. <u>5</u> . 7	S 22		1 AC	· 7	1.00					10 J	1.	·	4.1	See. 2.	11:003	S. 20. 1	4		A size	A 47	New CH		14
					<	- 1,061	2.00.20		a start and the	- Mr		4								2					A. Second St.	ويوجر بالمريد بالمريد	1. 1. 1. 1.	N2f

	l de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la		1	an an an an an an an an an an an an an a			1
	319-84-6	alpha-BHC	<u></u> 1		.310	•	
[58-89-9	alpha-BHC gamma-BHC (Lindane)			.310	1	1.88
1	319-85-7	beta-BHC	1	- 6	.710		1
1	76-44-8	Heptachlor	I **	- 6	.710		1
1	319-86-8	delta-BHC	<u></u>	6	.710	وفيار مد	1
	309-00-2	→Aldrin	1 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	÷18	• 1		1
1	1024-57-3	Heptachlor epoxide	I		.710		
- 1	5566-34-7	ganna-Chlordane	<u> </u>	. 6	.710		ł
f	5103-71-9	alpha-Chlordane	<u> </u>		.710		1.00
1	959-98-8	gamma-Chlordane Bndosulfan I	1	 6	.710		
	12-33-3			- D			1
	60-57-1	Dieldrin	<u> </u>	6	.710		1
1	72-20-8	Endrin	<u> </u>	6	.710		1
1	72-54-8	4,4'-DDD	1	13	. IV	1	1.1.1
1					. IU		
- 1	50-29-3	4.4'-DDT	1	13	. <u>IU</u>	ĺ	1
1	1031-07-8	Bndosulfan sulfate	I	13	. ÍU		I
- 1	72-43-5	Bndosulfan sulfate	1	. ··· 67.	. IV	1	l
- 1	53494-70-5	Endrin ketone	I .	13.	. IV	- 1	1
1	8001-35-2	Toxapbtnt	I	. 130.	IJ	I	
		Aroclor-1016	!	'67	. IU	I	
1		A roclor-1221	l	67.	10	I 1	
1		Aroclor-1232		67.	U	I	
- 1		Aroclor-1242	I	67.	ប	1	
1		Aroclor-1248	I	67.		- 1	
l		Aroclor-1254	I	67.	U I	1	
1	11096-82-5	Azoclor-1260	1	67.	10	1	
1			1		1	1	

page 1 of 1

FORM I PBST

1/87 Rev.

		and the second second second second second second second second second second second second second second second			
			$\tau_{\rm ext}$		A SAMPLE NO.
	The strength of the second second second second second second second second second second second second second				and the state of the state of the state of the state of the state of the state of the state of the state of the
	INORGAN	IC MANYSIS	DATA SHEET	Terration and	Restaurant when and
					A95501
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Lab Name: ESE,		Sector Sector Sector	Contraction		AND THE REAL PROPERTY OF
				Carl State State State	
Lab Code: ESE	STATES NO	and a second second second second	SAS TOTAL		No.: 3955
The start of the second		We want the start of the start	1		
Matrix (soil/va	ter/: BULL				3 NY 165*1
Level (low/med)	: LOW		Da	te Recili yed	: 08/01/91
		Store and the store of the			
				1999 - N. S.	
Solids:	50.4			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A		الله المراجع المراجع المحالية المحالية المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المحالية المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع		

Conceptuation ()ni	te lugli on	/kg dry weight): MG/KG
- COUCENTITUTION ANY	LE LUY D UI MU	/Kd div weight /: mg/KG
and a second of the second of the second second second second second second second second second second second	and the second second second second second second second second second second second second second second secon	
and the state of the second seco	A. 4. 198	and the second second second second second second second second second second second second second second secon

÷.	· · · · · · · · · · · · · · · · · · ·			Sharpen and all the second second	<u>s</u> 2.
1120				1 Alton State	
	CAS No.	T Analyte	Concentration	ICI O Seria	3
					-!
		Aluminum	1 1300	1 P	
	7440-36-0		6:2	IBIN IP	_1
		<u>Arsenic</u>	3.1	I INS IF	_!
14		Barium		1 <u>_1</u> 1P	
		Beryllium		Children and P	-
1	7440-43-9		1.9	<u> </u> <u> </u> <u> </u>	_
Ī	7440-70-2	1 <u>Calcium</u>	28900	<u> P</u>	
1	7440-47-3		19.4		- ·
1	7440-48-4	1Cobalt		IBI P	-!
	7440-50-8		83.0		
	7439-89-6		17.600	1 I P	-!
	7439-92-1	والأعدية أتحديد المتناب المتحاط والمتحاط والمرارية	- <u>55.3</u>	<u> P</u>	-!
I	7439-95-4	[<u>Magnesium</u>]		[<u> </u>	- <u> </u>
1		Manganese		IN IP	- i
	7439-97-6		0.19		Ži.
	7440-02-0	Nickel	23.8	<u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u>	-1
	7440-09-7	Potassium	1460	1 IP	-!
	7782-49-2	Selenium	and the second se	UINW IF	
-	7440-22-4	ISilver 1	and the Party of t	<u>UI IP</u>	-!
_	7440-23-5	ISodium I		BI IP	-1
	7440-28-0	? <u>Thallium</u> I	And the second s	U: IF	-!
	7440-62-2	Vanadium	24.8	<u> </u>	-!
i	7440-66-6	Zinc	575_	<u> !P</u>	-!
Į.		Cyanide I			- ¹
1		· I		_ · · _ ·	- 1

Color Before:

Clarity Before:

Texture:

Color After:

Clarity After:

Artifacts:

Comments:

FORM I - IN

-

3/90

					30-2 3
a da anti-anti-anti-anti-anti-anti-anti-anti-	N.			Pry Paris 3	
Allow	RES HAR HAR	M. CARLENT AV. DE LA	.⊇ ≮	an an an an an an an an an an an an an a	- 1. S 1.
		Service and the service of the		ELP	
Lab Naper ESE		a second			
		ALL AND A MARKED AND A MARKED AND A MARKED AND A MARKED AND A MARKED AND A MARKED AND A MARKED AND A MARKED AND			
Lab Code: ESE		通知者を行う かいしょう 深端的な しょうかい しょうい しょうしょう しょうしょう			
Matrix: (soil/water		Self Ly		30.3	
					Heer.
Sample wt/vol:	5.000 (g/mL) M	ILLab	FILE DI	17 229	
Level: (low/med)	1 04	5	e Receiveds		
	LUW		e necerveus		(K
X Moisture: not der	. 100.	Dat	e Analyzed:	8/ 9/91	
[Column: (pack/cap)	PALK	D11	ution Factori	1.00	
2 Martin Charles	alle and	CONCENTRA	TION UNITS:		Parts
CAS ND.	COMPOUND	(ug/L or	ug/Kg) UG/L	.	
					24.7
지수는 것은 것은 것이 있는 것이 가지 않는 것이 것이 있는 것이 같이 있는 것이 없다.	Chloromethan		10	. Tri	1.5
	Bromomethane	and the second second second second second second second second second second second second second second second	1. 10		
1 75-01-4	Vinyl Chlori Chloroethane	de	110		
1 75-00-3	Chloroethane		:	. 1U 1	
67-64-1	Methylene Ch	101408	10	าบรา	
75-15-0	Carbon Disul	fide			
75-35-4	1,1-Dichloro	ethene	: 5	. 10 1	

	75-15-0Carbon Disulfide	1. 5. 10.	
1	75-35-41,1-Dichloroethene 75-34-31,1-Dichloroethane	: 3	
1	75-34-31,1-Dichloroethane	1,	1
1	540-59-01,2-Dichloroethene (total)	1 s. IU	1
·	67-66-3Chloroform 107-06-21,2-Dichloroethane 78-93-32-Butanone	1	1
, j. [107-06-21,2-Dichloroethane	: 5. IU	- 1 - Cy
1	78-93-32-Butanone	1 10. 10.	
-	71-55-61.1.1-Trichloroethane	5. 10	l
· •	56-23-5Carbon Tetrachloride	; 5. !U	
1	108-05-4Vinyl Acetate	10. iu	1
ł	75-27-4Bromodichloromethane	I	, 1
1	78-87-51,2-Dichloropropane	1 5. IU	;
1	10061-01-5cis-1.3-Dichloropropene	1 5. IU	1
!	79-01-6Trichloroethene	1 5. IU	1
1	124-48-1Dibromochloromethane	1 5. IU	. 1
ł	79-00-51,1,2-Trichloroethane	1 5. 1U	1
1	71-43-2Benzene	; 5. ;U	;
1	10061-02-6trans-1,3-Dichloropropene	I 5. IU	1
1	75-25-2Bromoform	I 5. IU	1
1	108-10-14-Methyl-2-Pentanone	10. IU	1
1	591-78-62-Hexanone	l 10. lU	1
ł	127-18-4Tetrachloroethene	I	1
	79-34-51,1,2,2-Tetrachloroethane	laa ka Sang 5 !U	i 5
1	108-88-3Toluene	: 5. !U	ł
1	108-90-7Chlorobenzene	I	i .
!	100-41-4Ethylbenzene	5. IU	1
1	100-42-5Styrene	I 5. IU	1
:	1330-20-7Xylene (total)	່ ຼີ 🐔 ເບ	1
1			!

FORM I VOA

L

5.

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: ESE Contract: NEW YDRK 1608+2 Lab Code: ESE Case No.: 1000 mm 1000 mm Matrix: (soil/water) MATER 128 mm 128 mm 1493 Sample wt/vol: 5.000 (g/mL) ML Lab File TD: SI447

Level: (low/med) LOW % Moisture: not dec. 100.

Column: (pack/cap) PACK

Number TICs found: 0

Date Received: 8/ 1/91

EPA SAMPLE NO

1.00

San Hing

Date Analyzed: 8/ 9/91

Dilution Factor: CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

 · · · C		COMPOUND NAME	 RT ======	EST. CONC.	Q
ा=== । 1					
	2		i		
1 4			!		I
. 5 €	5				
• •	•			~	
			•		·
; 10 ; 11	·				
112					
∘13 14					
15	• !				
16					i
1 18					!
20	•				
21					!
23 24	· !			!	!
25					
1 26					
28	·	/			
: 29 : 30					
I					

FORM I VOA-TIC

1/87 Rev.

Anderson and Andrews (1994) Anderson Andrews (1994)

Matrix: (soli/water) MATER Sample wt/vol: : #950:0 (g/mL) ML

Level: (low/med) LDW

7 Molsture: not del

Extraction: (SepF/Cont/Sonc) SEPF BPC Cleanup: (Y/N) N SpH: 7.0 CONCE CAS ND. COMPOUND (ug/L

der Berg üren in der Sterner

Lab Samples

Lab File TD: 51501 Date Received: 8/ 1/91 Date Colvect: 87.7791 Date Analyzed: 8/29/91

115

A955

Dilution Factor: 1:00 CONCENTRATION UNITS:

CONCENTRATION UNITS:

1 108-95-2-	Pheno1	1. 10. U 1 1
: 111-44-4-	Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dithlorobenzene	1 · · · · · · · · · · · · · · · · · · ·
95-57-8-	2-Chlorophenol	1 10. IU I
: 541-73-1-	1,3-Dichlorobenzene	1 10. 1 0
106-46-7-	1,4-Dichlorobenzene Benzylælcohol	10. IU I
1 100-51-6-	Benzylalcohol	10. IU I
95-50-1-	1.2-Dichlorobenzene	
95-48-7-	2-Methylphenol bis(2-Chlorolsopropyl)ether	10. 10
108-60-1-	bis(2-Chloroisopropyl)ether	10. × 10
106-44-5	-4-Methylphenol	1
621-64-7-	N-Nitroso-di-n-propylamine	10.10
67-72-1-	N-Nitroso-di-n-propylamine Hexachloroethane	10. IU
98-95-3-	Nitrobenzene	10. 10. U
1 /0-02-1-		
88-75-5-	2-Nitrophenol	10. 10
105-67-9	2-Nitrophenol 2,4-Dimethylphenol	10. IU
65 -85-0 -	Benzoic acid	1 53. IU 1
111-91-1-	bis(2-Chloroethoxy)methane	1994 Sector 10. et 10 and all sector
120-83-2-	2,4-Dichlorophenol	10. 10 IU
120-82-1-	1, 2, 4-Trichlorobenzene	10. IU
91-20-3-	Naphthalene	10. 1U 1 10. 1U 1
	4-Chloroaniline	
i 87-68-3-	Hexachlorobutadiene	10. IU
i 39-30-/-	4-Chloro-3-methylphenol	10. 10 1 10.
	Hexachlorocyclopentadiene	
, //-4/-4- ! 00-06-2-	2,4;6-Trichlorophenol	10. IU I
- 00-00-2- - 95-05-4-	2,4,5-Trichlorophenol	53. IU
· 50-50-7-	2-Chloronaphthalene	10.
91-38-7-	2-Nitroaniline	53. U
<u>00</u> -74-4- (∜(-1)-2-	Dimethylphthalate	
208-96-8-	Arenaphthylene	10. U I
- 200 00-0 - 608-20-2-	2,6-Dinitrotoluene	10. IU I
·		

FORM I SV-1

1/87 Rev. もち

FORM ы 5V-2

~~		ري اري دو ۲۰۰ مو مد مد ۲۰۰ س		ال () () () () () () () () () (82,823) 9,253 • (***)
1-20- 	218-01-9- 218-01-9- 117-81-7- 117-84-0- 205-99-2- 207-08-9-	16004740	1 1 1 1 1 1 1 1 1 1 1 1 1 1	N UT 4 H N O H U I I I I I I I I I I N O H D N U N O 4 4 N O N N O 4 4 N O N	ָּשָּׁי סַרָּ
enzo(Enzo(1, 447 1, 447 1, 447 1, 447 1, 447 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1			া নি ই নি কি
a)pyrene (1,2,3-cd) o(a,h)anth g,h,i)pery	ayantarace ne Ethylhexyl ctylphthal b)fluorænt k)fluorænt	cene cene utylpht nthene enzylph ichloro	1012043) 11012121	Aphthene Dinitrophenol trophenol nzofuran Dinitrotoluen hylphthalate_ lorophenyl-phu rene	oan11ine
pyrene) philiphi) phthalate ate hene		hylphenol amine (1) amylethær	nenylether	
10. 10.	000000	2200000			
1	CCCCC				

. (

. Kati

Q 8

Level

(low/med) LOW

Sample ut/vol:

Matrix: (soll.

ab Code: ES

ION

•••

BPC

Cleanup

(N/Y)

Extraction:

SepF

S

vice everyondereaseMento The fight a reason Metro Werkens and the

E 2 Y BASIDUE AR

Date Received: 8/ 1/91

Lab Codes (EBE ... Case No. 1 (RE021) CAS No. 1.

Matrix: (soil/water) WATER

Sample wt/vcl: 950.0 (g/mL) ML Lab File/10 51501

Level: (low/med) LOW

 Z Moisture: not dec. 100.
 dec.
 Date Extracted: B/ 7/91.

 Extraction: (SepF/Cont/Sonc) SEPF
 Date Analyzed: B/29/91.

GPC Cleanup: (Y/N) N pH: 7.0 The Dilution Factor: 10 for 1

CY 6 - 1	`. —						_								_			_		_		-						
	•		· . ·	÷.,	. S.	1.651	1.0		1.0	S 14.0	وزيدتها أح	Sec. ale	Sec. 1.	A . 6200	- Sa	St. Yak	1.4 1.4	3	de norte de		2.55		S	er i i	1. A. A.	21 .	grand of	
1	- La -			See. 10		18.00	2.25			124-6			÷	$c \sim 1$	1.5	5	1.0			ं स	. 30 -	- 135	$\zeta = \zeta^{-1}$	14		21	2.1	S
10	4	- CAT	5 N!!	IN TOT	- n 🗟 🕅	1.1				TON	1pm	I INIT	NZ	ME	- · · ·	a) a	4		77		S			201	10 1		n	A
1.1		- 		1. 1000							1.0	CIAD	_ 4 4 F	1 1 (12)			5.1		<u>, , , , , , , , , , , , , , , , , , , </u>		0.000		3.10		κω - 7	•		£
S - 19	1 =	===:	====			==1	==	= = =	===	===	===	===	===	===	= = =		- 1 -	==:	·==	= = 1	==			= = =	= = = 4	-! =	===	-
							- T- T-					7	- ÷	-						1.04		1.1.1	والمسمور	- T T		84 E.	T 747	, – ,
· · · ·	!	1.				s 1, 11			i i stat		· · ·			1. S. S.						19								

	'	!	 			·
2.					Sectores de	
୍ର 3,						
4.						1 cares
	that's					
6.		A reaction read	See State			
.7.						
8.						
9.			99999 AN 1888 AN			
10.		I			a se se se se se se se se se se se se se	
11.				*`		
12						
10		'	 			<u> </u>
1.6		·'·				
15.		·'·				
÷			 			
10.		<u> </u>	 			
1/1		!-	 !			
19.			 !	!		
		!-	 !			
20.		!	 !			
		·	- <u>-</u>			
23.		·				
		·!-	 		!	
		·!		*	!	
25.		!				
		·!,	 			
27.		! _	 !			
28.		!_	 	{	1	
29.		!_	 !			
30.		¦_	 			

FORM I SV-TIC

EPA SAMPLE (NO

A DESCRIPTION AND DESCRIPTION AND A DESCRIPTION

A955003

 Lab Code:
 Sample wt/vol:
 td

Level: (lov/med) LOW Date Received: 08/01/91 3 Moisture: not dec. Gec. M65. Date Extracted: 08/14/91 Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 09/11/91

GPC Cleanup: (Y/N) T SPH: Dilution Factor: 1.00

CAS NO. COMPOUND CONCENTRATION UNITS (ug/L or ug/Kg) UG/KG Q

·· . [319-84-6	alpha-BHC	1.4.91U 1
1	58-89-9	gamma-BHC (Lindane)	1.91U
1	319-85-7		1 9.8IU 1
1	76-44-8	Heptachlor	1 9.81U 1
1	319-86-8	delta-BHC	9.8 U
1	309-00-2	Aldrin	9.8IU
Ī	1024-57-3	Heptachlor epoxide	Į™.s № 1 2 ⁴ 2 9.8 †U 101
Ì	5566-34-7	gamma-Chlordane	9.81U 1
Ì	5103-71-9	alpha-Chlordane	1
1	959-98-8	Endosulfan I	9.8 U
Ì	72-55-9	4,4'-DDB	9.8 U
ł	60-57-1	Aldrin Aldrin Heptachlor epoxide gamma-Chlordane alpha-Chlordane Endosulfan I 4,4'-DDB Dieldrin	9-8 U
-1	72-20-8	Endrin	9.8 U
1	72-54-8	4,4'-DDD	· · · 20 U
1	33213-65-9	Endrin 4,4'-DDD Endosulfan II	20. U
I	50-29-3	Bndosulfan sulfate	20. IV Í
Ι	1031-07-8	Endosulfan sulfate	20. U I
1	~72- 4 3-5	Hethoxychlor	98. IU I.
I	53494-70-5	Endrin ketone	20. IU I
1	8001-35-2	Toxaphene	200.10 1
1		Aroclor-1016	
I		Aroclor-1221	98. IV I
I		Aroclor-1232	98. IU
ł		Aroclor-1242	98. IV I
ļ		Aroclor-1248	98. IU I
ļ		aroclor-1254[98. V
I	11096-82-5	Aroclor-1260	98. IV I

page 1 of 1

FORM I PEST

1/87 Rev.

			4 T 1 1 1 1 1 1 1	Sec		10 M 10 M	1 A A A A A A A A A A A A A A A A A A A	Sec. 5
		 2 f		Pc	1.1			1.295
	- P**					1.60 1.60		1.14
, e.	1.1		Cardle of Street	A	1.0.1			

an an an an an an an an an an an an an a	Realized C. C. Link	115 Auguster		1.	
a (a) dia an					Michel 1
sab: Code: #SP		she there are the	and the second second		AR 1933
GAD COUCE MEDIA			are lo		
Matrix (Soil/wa			····· ··· ··· ··· ··· ·······	-11 PM	NY165+2
Level (low/med)):		Date	1	08/01/91
				Leven en el Stat	V Turba i Vitis
8 Solids:	.34.2.				

on Units Mug/L or mg/kg dry weight): MG/KG Concentra

Ser.	proceeding the sta			A CALL AND A CALL AND A CALL AND A CALL AND A CALL AND A CALL AND A CALL AND A CALL AND A CALL AND A CALL AND A
22.32		Caller - study		
5. 5 <u>5</u>	ICAS No.	Analyte	1Concentration	ntCl 30 IN T
1957.8				
				al Alexander IP
				TBIN TO STIP
(17440-38-2	Arsenic	3.6	MAIN IF I
				at all a base of P 4
· · · · ·	17440-41-7	Beryllium	0.95	HBI BI
			1	
			38500	
	17440-47-3		20.0	. • والاستنجاب المتعندي الاستبصيب بمسبع ينهاي البر
	17440-48-4			1 <u>B1 P</u>
	17440-50-8			
				A CAP 1
	17439-92-1		53.3	a second s
	17439-95-4			
	17439-96-5			الا المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع ال
	17439-97-		and the second se	
و الم	7440-02-0	and the second distance of the second distanc	the second second second second second second second second second second second second second second second s	Net Areas P
1. - 1 1	The second second second second second second second second second second second second second second second se	A DESCRIPTION OF A DESC	1500	الموافقات الشريبات المفتجر بالمستحد بيوج ويهي والتقار
	7782-49-2		0.48	IUINW IF
	7440-22-4	· · · · · · · · · · · · · · · · · · ·	<u>1.3</u>	and the second
	7440-23-5	الأعلوق الالتصفي التخبيب والقرار فيهجها	1030	IBI IP
	7440-28-0	and the second se	0.62	and the second second second second second second second second second second second second second second second
	7440-62-2	the second second second second second second second second second second second second second second second s	35.4	
i	7440-66-6		346	1 <u> </u>
1		Cyanide		!!
	·	·		· • _ • _ • _ • _ • _ • _ • _ • _ • _ •

Color Before:

Color After:

Clarity .Before:

Clarity After:

Texture:

Artifacts:

Comments:

FORM I - IN

3/90

OF ALL CONCANCES ANALYSIS DATA SHEET

and the second second second second second second second second second second second second second second second

COMPOUND

Toluene

Styrene

-Xylene

---Ethylbenzene

108-90-7----Chlorobenzene

O. P. MICIPZ PEAS NO. ab Code: ESE RE- 11 11-9-11 Matrix: (soll/water) HOIL Sample wt/vol: 5.000 (g/mL) 6

Level: (low/med) LOW

CAS ND.

108-88-3----

100-41-4---

100-42-5

1330-20-7-

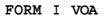
7 Moisture: not dec. 69.

Column: (pack/cap) PACK

Date Analyzed: ______BZ10791,

Dilution Factor: 51.00 CONCENTRATION UNITS:

Lab Sampline


Lab File ID: Di

(ug/L or ug/Kg) UG/KG

그는 그는 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같			
1 74-87-3	Chloromethane	1 32	? ` * 1U
1 74-83-9	Bromomethane	1 32	: 🖓 រប
75-01-4	Vinyl Chloride	1 32	:. ີ ສຸມ
1 75-00-3	Chloroethane	1 32	: <u>-</u> 10
75-09-2	Methylene Chloride	16	. IU
67-64-1	Acetone	1 56	B B
75-15-0	Acetone Carbon Disulfide	1 16	. ាប
: 75-35-4	-1,1-Dichloroethene	16	្លា ប
1 75-34-3	1.1-Dichloroethane	16	ំ ំរប
540-59-0	1,2-Dichloroethene (total)	1 399 16	. 91U
67-66-3			្ទុះប
107-06-2	1,2-Dichloroethane	1 16	IU
1 78-93-3	2-Butanone	and the second second second second second second second second second second second second second second secon	ំ ។ប
71-55-6	1,1,1-Trichloroethane	16	ំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំ
56-23-5	Carbon Tetrachloride		
1 75-27-4	Vinyl Acetate Bromodichloromethane	16	
78-87-5	1,2-Dichloropropane		ំ ារប
	cis-1.3-Dichloropropene	l 16	
1 79-01-6	_=Trichloroethene		
	Dibromochloromethane	16	
1 124-48-1	1,1,2-Trichloroethane	16	
71-43-2	Benzene	16	
	trans-1,3-Dichloropropene		• • –
1 75-25-2		16.	
	4-Methyl-2-Pentanone	• -••	
591-78-6		32.	
127-18-4	-Tetrachloroethene	16.	. 10
! 79-34-5	_1,1,2,2-Tetrachloroethane	16.	. IU
. ,,,,,			

16S+2

Date Received: 8/ 1/91

(total)

6.

6.

16.

16,

16.

10

10

:U

10

:0

qu

EPA SAMPLE NO.

16S+2

THE ALL STREET AND THE STREET AND TH

Labra Name : Hore

Hatrixi Goll/Caler/DebtL Sample wt/volt 5.000 (g/mL) aB

Level: (low/med) LOW

Z Moisture: not dec. 59. Column: (pack/cap) FACK

Number TICs found: 👐 🖬 🕯

SINTZIAR JER 7074

ANY THE ASSAULT OF ANY ISSAULT OF AN

Lab File 10, 291467

Date Received: 8/ 1/91

Date Analyzed: B/10/91 Dilution Factor: 1:00

CONCENTRATION UNITS: Mug/L or ug/Kg) UG/KG

CAS	NUMBER	-10-24	COMPOUND NAME			EST. CONC.	_
===== 1.	nerer: Maria da Sala						13
2	in stiger			1985 - R. 15 - 18	AND HALF LAND	And the state of the second	
4		1					1
5					S Barrell States	ಭಾಗ ಸ್ಪಾತ ಸಿಕ್ಷಣ್ಯ ಕೆತ್ತು	1
							1
7		- <u> </u>		<u></u>			. <u> </u>
8		I					<u> </u>
9		<u> </u>					!
10		<u> </u>					1
				1			1
[2							·
							!
4		!		!			
15		!		!			

·		·!·		!			
8		·!·		<u>-</u> !			
		· ¦ ·					
20		·'·		i			!
···		·¦·		{			!
~~		'-			;		' '
							!
				'	'		!
				'			
				'	'		' '
8.		¦ ·		!	¹		
9.		'-		'	انi +		' '
		¦-			1		''
·		'-		'	*		: '

FORM I VOA-TIC

CRO ALL CONTRACTOR CONTRACT

Eample wt/woll and a second of the second se

Level: (low/med) (DW Date Received: S/1791 I Moisiure: Jobs: Self Med. Dec Date Extracted: BZ44/91 Extraction: (SepF/Cont/Sonc)/SDNC Date Analyzed: S7 5/91

:	٢٠		
1	108-95-2	- TRAPGENCI	1900. U 4
	111-44-4	tas (2-Chloroethyi)ether	_: 1900 : U 202 : ⁻ : - :
1	95-57-8	2-Cnlorophenoi	1900. IU I
- j: I	541-73-1	2-Cnlorophenol	_1
);	106-45-7	1,4-Dichlorobenzene	1900. IU
;	100-51-6	Benzyl alcohol	1900. (U) 1
1	95-50-1	1,2-Dichlorobenzene	_! 1900. IU I
	95-48-7	2-Nethylphenol	1 1900. 12 1
1	108-60-1		19、11、11111111111111111111111111111111
1	· 106-44-5	4-Methylphenol	-1-1, 540. tel J + 1. J 1. J
₹1. ‡	621-64-7	4-Methylphenol	1 1900. 10
1	67-72-1	Hesachioroethane	「「「「「「「「」」」「「「「「「「」」」」「「「」」」」「「」」」」「「」」」」
	98-95-3	Nitrobenzene	1900.2410
1	78-59-1		1 1900. 10 1
;	85-75-5	2-Nitrophenol	[] a geologi 1900. Mai U a a la arriva
	105-67-9		1
:	65-85-0	Benzoic acid <u></u> Benzoic acid	1 9400. IU 1
1	111-91-1	bis(2-Chloroethoxy)methane	1 1900. IU 1
;	120-83-2	2,4-Dichlorophenol	1900. (U) (
:	:20-82-1	1,2,4-Trichlorobenzene	1 3 1900. UU
i	31-20-3	Naphthalene	1 1900. IU .
i	106-47-8	4-Chioroaniline	1900. 11/ 1
	87-68-3	Hexachlorobutadiene	1 1900. IU I
i	59-50-7	4-Chloro-3-methylphenol	1 1900. 10 1
ł		2-Methylnaphthalene	
1		Hexachlorocyclopentadiene	
I	88-06-2	2,4,6-Trichlorophenol	1 1900. IU
1	95-95-4	2,4,5-Trichlorophenci	100 9400. IU
		2-Chloronaphthalene	
i		2-Nitroaniline	1 9400. IU I
;	131-11-3	··-~~Dimethylphthalate	1 3900. IU
:	208-98-0	Acenaphthylene	: 1900. IL ;
1	606-20-2	2,G-Dinitrotoluene	
:_			

1/87 Rev.

EN VOLATION DROMATICS ANALYSIES OVER STELL

CONTRACTOR NYEDES

A DIMENSION AND A DESCRIPTION OF THE PROOF Set 11 yecl / water 1 SDI1 a a a set of the

Lan; - Wt/vol: - 30.0 (g/ml). B size ala: File (g/ml).

Date Receiverant/ 1/91

ie I

Level: (iow/med) LOW 2 Moisture: not dec. E6. Bec.____ Extraction: (Sepl/Cont/Sonc) SONC

Date Extracted: 8/14/91 Date Analyzed;

	CAS NO.	LOMPOUND (ug/L for	STATE AND A STATE OF A	UG/KG	- C G	
				and a second second second second		
l l						an the second
	99-00-3	23-Nitroaniline	<u>ा भ</u> रत्वहा	9400.	ារប 🔬 -	_1 235
· . 1	02-32-9	9Acenaphthene	}	1900.	:U	A sector
: • ₂₂	51-28-	52,4-Dinitrophenoi 74-Nitrophenol	1	9400.	े .। U 🦉	1
1	100-02-2	74-Nitrophenol		9400.	61U 🖓	1.50
	- 132-64-9	8Dibenzofuran		1900.		
	121-14-2	22,4 Dinitrotoluene		1900.	្រាប	1
1		2Diethylphthalate		1900.	ະເ <u>ໄ</u> ດ້ 🖓	1
	7001 72-3	3	1	1900.	1U	1
1	86-73-7	7Fluorene		260.	1 3	ł
	100-01-0	54-Nitroaniline	; .	9400.	$\sim 10^{-1}$. j.
- 2 \$ - a	534-52 1	14,6-Dinitro-2-methylphenol	1	9400.	tu -	1
•	56-30-6	N. Nitrosodiphenylamine (1)		1900.	ារប	1
· · · •	101-55-3	34-Bromophenyl-phenylether		1900.	: : U	4 (1993) - 1
1	118-74-1	llexachlorobenzene	<u>-</u> Perez j	1900.	10	1
i	87-86-5	5Pentachlorophenol	in in provinsion. 	9400.	ະ າບ ິຊິ	
:	0501-E	8Phenanthrene		1400.	: J	.;
1	120-12-7	Anthracene		1900.	16	:
:		?Di-n-butylphthalate		1900.	10	i
	206-44-0)Fluoranthene		2400.	· •	1
:	129-00-0)Ругеле	;	1500.	: J	1
:	85-68-7	Butylbenzylphthalate	;	480.	: J	:
i	91-94-1			3900.	: U	•
:	54-58-3	Benzo(a)anthracene	:	800.	: J	:
1 3	218-01-9	Chrysene		1500.	: J	:
	117-81-7	bis(2-Ethylhexyl)phthalate	:	2200.	:	:
:	117-64-0	Di-n-octylphthalate	;	1900.	:0	;
1	205-99-2	Benzo(b)fluoranthene	;	1800.	¦ J	1
1	207-08-9	Benzo(k)fluoranthene	;	1100.	; J	i
i	50-32-8	Benzo(a)pyrene	:	1100.	¦ J	ŧ
1	153-39-5	Indeno(1,2,3-cd)pyrene		1000.	1.3	:
i	59-70-3	Dibenzo(a,h)anthracene		1900.	10	:
:	191-24-2	Benzo(g, h, i)perylene	I	21100.	1 3	:

FORM I SV-2

1/87 Rev.

ning na ana sa Sin

Macrist verse of a solution of the solution of

Level: Crow/wech Lon: 2 Moisture: not des. EG. dec. Date Extracted: E/14/91 Extraction: MEDEOF/COMMADO (COMPANY AND COMPANY
GPE Eleanup: (Y/N) PH: 7.0 DIJUTION Faitford & 3.00

Number TIC: found: 22

	C:AC	NUMBER		COMPOUND NA	ME	RT	EST. CONC	A
	1.	116-53-	0 Butaini	t Acid, 2-Me	this and	1-1-14:57	N 201 2000.	
1	2.		UNKNOWN	METHYL KETD	NE	: 5.35	6000 .	IBJ A
1	3		UNKNOWN	HYDROCARBON		1.10.25	1000.	1.7
1				acetic acid_				31, J 1
	5.	한 경기 때 다음 강감독	UNKNOWN	HYDROCARBON				
:	6.			HYDROCARBON		: 11.81		ा उ
1	7.					: 12.22		្រារ
• 1	୍ଞ			HYDROCARBON		: 13.01		
1	9.	••••••••••••••••••••••••••••••••••••••	1. A. 1994. 1	HYDROCARBON		- 68.59.2 · · · · · · · · · · · · · · · · · · ·		: J : I
	10.			lene, 2,3-di	methyl			ofili J aari attivitiettiittiittiittiittiittiittiittii
	11.		TUNKNOWN			13.66	: 3000.	
I	12.			HYDROCARBON		13.80		
	13			HYDROCARBON		16.15	7000.	
i	14.		LUNKNUWN	HYDROCARBON		16.82	: 10000.	ា រុះ្មា
	15.			canoic acid_				
• •	10.	57-10.1		angic acid 🔄			20000.	i J
- 1	17. [°] 18.		TUNKNOWN			24.53	30 00.	
	10. 19.		LUNKNOWN	HYDROCARBON			10000.	1
	20.			HYDROCARBON		27.60	i 10000.	
	21.			HYDROCARBON		29.06		
	22.			t-5-en-3-ol _		31.96	10000.	1.3 1
	23.		•			01100	1	1 1
1	25.						; ;	• •
1	26.			بر پیر چا ک دل ک سر پر برا ک در در در				
1	27		;					;;
:	28. []				;			
1	29. 📃					-ERS		_ i i
•								_!!
/								

FORM I SV-TIC

1/87 Rev.

Entering the second second where the property of the

EPA SAMPLE NU.

SHZ RE

and a start of the second second second second second second second second second second second second second s The second second second second second second second second second second second second second second second sec

der der

Matrix: (soil/water) SCIL

Sample wt/vol: S0.0 (g/mL) 5 Lab File ID: 61036

Level: ... (low/med) LOW

Wetteres not cert

Date Received: 8/ 1/91
Date Extracted: 8/14/91

 Extraction:
 (SepF/Cont/Sonc)
 SEPF
 Date Analyzed:
 9/12/91

 GPC Cleanup:
 (Y/N)
 pH:
 7.0
 Dilution
 Factor:
 1.00

 CONCENTRATION UNITS:
 COMPOUND
 (ug/L or ug/Kg)
 UG/KG
 G

1	100 00 0		1		
	108-33-2	Phenol	1900.		
•	111-44-4	bis(2-Chloroethy1)ether	1900.		
1	95-57-8	2-Chlorophenol	1900.	· · · · · · · · · · · · · · · · · · ·	
198	541-73-1	1,3-Dichlorobenzene	1900.	. • •	in the second second second second second second second second second second second second second second second
1 -	106-46-7	1,4-Dichlorobenzene	1900.		-
1	100-51-6	Benzyl alcohol	1900.		i i
1	95-50-1	1,2-Dichlorobenzene	1900.	. 10	i i
ł	95-48-7	2-Methylphenol	: 1900.	•	l j
1.	108-60-1	~bis(2-Chloroisopropyl)ether	l· 300.	1.C	- S I 2 y-
1	106-44-3	4-Methylphenol	i. 4:0.	1.3.	, 1
1	621-64-7	N-Nitroso-di-n-propylamine	1900.	, IU get	1
1	67-72-1		: 1900.	10 B	:
1 .	98-95-3	Nitrobenzene	1900.	lu 🦯	· · · ·
1	78-59-1	Isophorone	1900.	10	1
:	88-75-5	2-Nitrophenol	1900.	10	. I
1	105-67-9	2:4-Dimethylphenol	1900.	10	1. 1
:	65-85-0	Benzoic acid bis(2-Chloroethoxy)methane	9400.	18	1
1 -	111-91-1	bis(2-Chloroethoxy)methane	: 1900.	10	;
1	120-83-2	2,4-Dichlorophenol	1900.	: U	i
1	120-82-1	1,2,4-Trichlorobenzene	: 1900.	10	1
;	91-20-3	Naphthalene	1900.	10	ł
1	106-47-0	4-Chloroaniline	1900.	ŧυ	;
:	87-68-3	Hexachlorobutadiene	1900.	10	:
:		4-Chloro-3-methylphenol	1900.	1U	i
:		2-Methylnaphthalene	1900.	12	1
1		Hexachlorocyclopentadiene		10	:
;	88-06-2	2,4,6-Trichlorophenol	1900.	:0	1
;	95-95-4	2,4,5-Trichlorophenol	9400.	10	1
:	91-58-7	2-Chloronaphthalene	900.	10	ł
:	88-74-4	2-Nitroaniline	9400.	10	1
:	131-11-3	Dimethylphthalate	ever.	រប	1
: 2	208-96-8	Acenaphthylene;	1900.	HĽ	:
: 6	506-20-2	2,6-Dinitrotoluene	1900.	:6	ł
:				_ :	_ !

FORM I SV-1

A STATE AND A STAT

Sample wt/voli 2000 (g/mi) 5 Lab File IV: 61636

 Image: sector (low/med) LGW
 Date Received: -8/1/91

 I Mcisture: notioe: Mot.
 Ber.

 Extraction: (SepF/Cont/Sonc) SEPF
 Date Analyzed: 9/12/91

 GPC Cleanup: (Y/N) Y
 pH: 7.0

 Dilution Factor: 1.00

 DONCENTRATION ANITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

Line Co.				
		and the second second second second second second second second second second second second second second second	4	ed a s
- C				ទាប ្រ
		Acenaphthene	1 1900.	ាប ់
	51-28-5-	2,4-Dinitrophenol	1. 9400.	1U 1
	100-02-7-		1 9400.	- 4U - 4
ł	132-64-9-	Dibenzofuran	1 1900.	ាព ៖
l	121-14-2-	2,4-Dinitrotoluene	1 1900.	. IU I
	84-66-2-	Diethylphthalate	1 1900.	, IU I
i	7005-72-3-	Diethylphthalate 	1 1900.	ាក់ ា
;	86-73-7-	Fluorene	1 1900.	່::U ·:
				#1U :
;	534-52-1-	4,6-Dinitro-2-methylphenol	; 9400.	ាប 💡 រ
1	86-30-6-	4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine (1)	:	3 EU 👘 I
1				alu 👘 🕺 I
;		Hexachlorobenzene	1 1900.	(iU ⁰²⁸ I
	87-86-5-	Pentachlorophenol	9400.	🤆 I U 👘 👘 I
;	85-01-8-	Phenanthrene	1200.	S 1 2 S 1
i	120-12-7-	Anthracene	1 1900.	:U :
:	84-74-2-	Di-n-butylphthalate	310.	: J ;
:	206-44-0-	Fluoranthene	: 2500.	· 1 - 1
-	129-00-0-	Pyrene	: 2000.	: .
:		Butylbenzylphthalate	69 0.	:] ;
:	91-94-1-	3,3'-Dichlorobenzidine	3900.	14 1
:		Benzo(a)anthracene	; 760.	; J !
;	218-01-9-	Chrysene	1500.	:] ;
-	117-81-7-	bis(2-Ethylhexyl)phthalate	l 2400.	: :
:	117-84-0-	Di-n-octylphthalate	1900.	iu :
:		Benzo(b)fluoranthene	: 1900.	JJ
:	207-08-9-	Benzo(k)fluoranthene	: 2200.	: :
:	50-32-8-	Benzo(a)pyrene	: 1100.	1 J
1	193-39-5-	Indeno(1,2,3-cd)pyrene	: 3 910.	13 1
1	53-70-3-	Dibenzo(a,h)anthracene	1 900.	10 1
:	191-24-2-	Benzo(g,h,i)perylene	1000.	1 3 1
1				· · _ ·

(1) - Cannot be separated from diphenylamine

1787 Rev.

MITS

See Arthress on the Less ONDANT HE START START MANY SUSAY COENC

Ball Mamor ESK - Week

Lab Code a sate of the Law more reasons Matrix: (soil/water) GOLLER

E(.stadg/mL) E Lab Fi Sample wt/vol:

Date Received: D/14/91 Level: (low/med) LOW Y Noisture: not Setate 56.

Date Extracted: 8/14791 Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 9/12/91 GPC Cleanup: (Y/N) Y pH: 7.0 Dilution Factor: 1.00

CONCENTRATION LINITS: Number TICs found: 22-2

		EST. CONC.	1 30 AR
1. 116-53-0;Butanoic acid, 2-methyl	4.33	1000.	
2 JUNKNOWN METHYL KETONE	: 5.13 ;	6000.	IBJ AL
3 IUNKNOWN METHYL KETONE	1 6.67 1	2000.	IJAI
4 IUNKNOWN HYDROCARBON	: 10.02 :	1000.	I J I
5 JUNKNOWN	1 10.59 1	1000.	1 J
6 IUNKNOWN HYDROCARBON	1: 10.90 1	3000.	: J :: :
7 ILINKNOWN HYDROCARBON	1. 11, 56 :	. 1000.	1 J I
8. 501-52-0:Benzenepropanoic acid	1 11.84	2000.	- ISJ 69 1
9 JUNKNOWN	1 11.97.1	2000.	ે : ૩ ્રા∳
0 : UNKNOWN HYDROCARBON	1 12.77 ;	3000.	1 J 1
1 ·· ILINKNOWN HYDROCARBON	1 12.03	2000.	1 J
2 IUNKNOWN		4000	J
3 ILINKNOWN HYDROCARBON	· · · · · · · · · · · · · · · · · · ·	. 7000.	1 J 1
4 JUNKNOWN HYDROCARBON	15.88 1	4000.	; J :
5 IUNKNOWN HYDROCARBON	: 16.57 :	10000.	
6. 57-10-3:Hexadecanoic acid	19.35 1	20000.	IJ 1
7 /UNKNOWN	20.55	4000.	: J :
8 IUNKNOWN HYDROCARBON	25.84 :	7000.	; J ;
9 :UNKNOWN HYDROCARBON		20000.	1 3 1
○ :UNKNOWN XYDROCARBON	28.72	10000.	: J :
1 /IUNKNOWN	31.37 :	20000.	: .7 :
2 IUNKNOWN	34.55	10000.	1 J 1
3			'!
4;			
5;			11
6!!			
7!!	!f		
8;			1
9			;
);;;			- .

FORM I SV-TIC

1/87 Rev.

L. VIEWERNING RETREAMING A MINISTREEP, MAN SHEEP,

Date Analyzed: 09/13/91

-1. OF

CONTRICTS SECOND CONTRACTOR OF CONTRACTOR PROVIDED APPLY CONTACTOR AND STANDES CO Sample wit/woll? Solar (g/al) c DD HOLL Date Recelyed: 08/01/91 Level 1 and a glov/med) acort Molsture: not dec. dec. \$2. Date Extracted: 08/14/91 Extraction: Beper/Cent/Sonc) BONC

GPC Cleanup: (1/#) 3 Dilution Factor: 10.0 CONCENTRATION UNITS

CAS NO. COMPOUND lug/L or ug/Kg) UG/KG

بالمعاج		1 E					
		H 3.32			1.		
	317-54-5alpna-BHC	_		44.	IDD	- 60 -	
<u>.</u>	319-84-6alpha-BHC 58-89-9gamma-BHC (Lindane) 319-85-7beta-BHC	_ _		34.	UD		1.2.3.
	Jaly-J5-7Deca-BHC			- 88.	IND	17.38	
	/b-44-BTeptachlor			5.88.	HDD		Eng.
	319-85-7			88.	TUD		- 4 - 1
<u></u> 3	309-D0-2Aldrin		ار در در مربع المربع الم	88.	IDD	Site	
	1024-57-3Heptachlor epoxide		S	88.	10D		1. A.
	5566-34-7ganna-Chlordane	1 38		.88	UD	्रम	67,77
<u>_</u>	5103-71-9alpha-Chlordane	.		88.	IDD		
	959-98-8Bndosulfan I		1. J.	88.	IVD		
÷2	72-55-94,4'-DDE			140.	1D :	8 A S	
	60-57-1Dieldrin	1. 	with a star	100.	D	328	42
୍ତ୍ରା	72-20-8Endr1n	1		290.	D		
1	72-54-84,4'-DDD	1		180.	UD	्रम्	
1	\$0-57-1Dieldrin 72-20-8Endrin 72-54-8	. [1	180.	UD	1	
្ប	50-29-34,4'-DDT	1		180.	1UD	-31	•
1	1031-07-8Endosulfan sulfate	1		180.	UD	<u>`</u> .1	
ł	72-43-5Methoxychlor	1		880.	IUD	1	
्री	53494-70-5Bndrin ketone	1.2		180.	UU	1	
- 1	8001-35-2Toxaphene	1 28	្វី្	800.	IUD		
1	12674-11-2Aroclor-1016 11104-28-2Aroclor-1221 11141-16-5Aroclor-1232	1		880.	UD	- S I	
1	11104-28-2Aroclor-1221	1.00		880.	UD	I I	
I	11141-16-5Aroclor-1232	1	1	880.	UD	- 1	
1	53469-21-9Aroclor-1242	.		880.	UD	1	
÷f	126/2-23-6AIOC10I-1248	1	·	880.	UD	1	
1	11097-69-1Aroclor-1254	1 -	. 1	680.	UD	1	
1	11096-82-5Aroclor-1260	1) چيني د	880.	UD	. 1	
-E		1	· · · ·		· ·	1	

page 1 of 1

d:

FORM I PEST

1/87 Rev.

INORGANIC MANYELS DAVIA SHEET A MARKED

Lab Name: ESE

Lab Code: E6E Matrix (soil/water): SOIL

Level (low/med): LOW

38.5

CONTRACT SAS Ro

EPA SAMPLE NO

A95505

SDG No.: A955 D: NY165*3

Solids:

Concentration Units (ug/L or mg/kg dry weight): MG/KG

a tak					<u></u>
	Trace at the	1-1-1	1 Constanting		
Ç v	ICAS No. S	A Analyte	Concentration		N .2.
	17420 00 5		1		<u></u>
			Contraction of the second second second second second second second second second second second second second s	the second second second second second second second second second second second second second second second se	
			1		
			298		
			1.2		
	7440-43-9		9.8		P
			where we are a second as a second sec	and Charleston a	PI
				े अन्त्र के कि	PI
1	7440-48-4	ICobalt	89.3 24.3		PI
	7440-50-8		l <u></u>		PI
1	7439-89-6	d Iron	1 <u>34400</u> 4	the second second second second second second second second second second second second second second second s	PI
	7439-92-1		250		PI
		1 <u>Magnesium</u>			P
					PI
		Mercury			
	7440-02-0	and the second se			P
	7440-09-7	Potassium	and the second sec		P F
	7440-22-4		Complete State Sta		<u>-</u>
	7440-23-5	صنيعيبية تبقيه ستتقتبني أ		The second second second second second second second second second second second second second second second se	P
_	7440-28-0	Contraction of the local division of the loc	the second second second second second second second second second second second second second second second s	and the second second second second second second second second second second second second second second secon	F
	7440-62-2	and the second second second second second second second second second second second second second second second		المتكارية فالتجرب ويجرو فالمنصرا فتسرخ ويرا	P I
		Zinc I	3390		P
Ī		Cyanide f		1 - 1	
Ť				1 1	-1
•			······································		

Color Before:

Clarity Before:

FORM I - IN

Texture:

Color After:

Clarity After:

Artifacts:

Comments:

3/90

WOLATE CHE ORGANISEST MANAGEST MANAGEST

Lab Name: ESE

Lab Code: ESE Matrix: (soil/water) WATER 138 Mail 38 Sample wt/vol: 5.000 (g/mL) ML

a state of the second s Level: (low/med) LOW

I Moisture: not dec. 100; Column: (pack/cap) PACK

CAS NO.

Lab San

Lab Filen

Date Received: 8/ 6/91

Date Analyzed: 8/ 9/91

EFA SA PLESOD

Y15W*3

Dilution Factor: 1.00

CONCENTRATION UNITS: COMPOUND (ug/Lor ug/Kg)=UG/L

		A PART AND A PART A	and the second second
1 martin and the second states of the		TA ALCON	1 1
1 74-87-3Chloromet	nane	1 1 1 1 1 1	D. 1U 1
1 74-83-9Bromometha	ine distant di Charles de la companya de la companya de la companya de la companya de la companya de la company	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
75-01-4Vinyl Chlo 75-00-3Chloroeth	oride <u>states from</u>	1) . IU
1 75-00-3Chloroeth	ne_ <u></u>). 10 3 4
75-09-2Methylene	Chloride		
67-64-1Acetone		A). IU 🚮
75-15-0Carbon Di	sulfide <u>sservikku</u>		5. 10 1
75-35-41,1-Dichlo	proethene		
1 75-34-31,1-Dichle	proethane		
540-59-01,2-Dichlo	proethene (total)_	_1 * * * :::: : :29	
67-66-3Chloroform	·		5. [IU and]*
107-06-21,2-Dichle	proethane		
1 78-93-32-Butanone			
1 71-55-61,1,1-Tric	hloroethane		
1 56-23-5Carbon Tet			
108-05-4Vinyl Acet			
75-27-4Bromodich	oromethane	-! 5	5. IU - I
1 78-87-51,2-Dichlo	ropropane	ter sina setti	
10061-01-5cis-1,3-Di	chloropropene	-! 5	5. AU
: 79-01-6Trichloroe	thene		i. i i
124-48-1Dibromochl			i. 10 1
<pre>79-00-51,1,2-Tric 71-43-2Benzene</pre>	niordethane		
110061-02-6trans-1,3-	Dichloropropaga		i. 10 l
1 75-25-2Bromoform		_, 5	
108-10-14-Methyl-2			
591-78-62-Hexanone		10	
127-18-4Tetrachlor	oethene	5	
79-34-51,1,2,2-Te			• • • •
108-88-3Toluene			. IU I
108-90-7Chlorobenz	ene	- 5	
100-41-4Ethylbenze	ne	- I	
100-42-5 Styre ne		1 5	
: 1330-20-7Xylene (to	tal)	_ 5	. IU İI
		_!	!;

FORM I VOA

EPA FAMPLE ND

15W+3

MALY GIS BATA BHEET IF FERENCE OF BUILDING

Cart Name Hopels Leb Code (ESE the same

VIBAL ALB SAMPLE AND ALGW+S CALL RIVE CODICIZANCE PARTIE

(low/med) LOW Level: 14 1 6 1 F 10 1 5

7 Moisture: not dec. 100. Column: (pack/cap) PACK ONTRACT: NEW YORK

THE PARTY AND SIDE

Lab File Tor 91443

Date Received: *8/ 6/91

Date Analyzed: 8/ 9/91 Dilution Factors 1.00

Number TICs found: 0

CONCENTRATION UNITS: Xug/L or ug/Kg) UG/L

CAS NUMBER	i si I com		RT	EST. CONC.	0
1.					=====
2 3	 South Constraints South Constraints South Constraints 		이 이 위험되는 것 이 사실 - 이상은 사실이 있는		لې د ور د د ورو که د ورو د د د د ورو که
	1				
5	/				
6					
	!				
8 9.	• • • • • • • • • • • • • • • • • • • •				
o					
0					
2.	· /		·!!	i	
3.			' '	ⁱ	
4.	· '	•••••••••••••••••••••	· · · ·		
	'			i	
				i	
3					
9	!				
·					
·	!				
<	i			!	
·	'		!!	;	
	!			!	
	!		!!	!	
Ż				·^?	
J	!		!	!	
~					
·	!		'7		
	'		!!		

FORM VOA-TIC

THE REAL PROPERTY AND A PROPERTY AND

с разволя с на так и кала

Land Carden Construction Constr

X Moisture: not dec. 100. dec.

Date Extracted: 8/ 7/91 Date Analyzed: 8/29/91

BRA BARRA

NY16W*

38955

GPC Cleanup: 2 (Y/N) N pH: 7.0 _ Dilution Factor: 1.00 CONCENTRATION UNITS:

CAS NO. COMPOUND Sug7L or ug/Kg) UG/L

108-95-2Phenol	10. IU
: 111-44-4bis(2-Chloroethyl)eth	
1. 95-57-82-Chlorophenol	i 10. iu i
1 541-73-11.3-Dichlorobenzene	10. 10
1 106-46-71, 4-Dichlorobenzene	1 10. U - 1
: 100-51-6Benzyl alcohol	10. IU I
1 95-50-11, 2-Dichlorobenzene	10. IU I
1 95-48-72-Methylphenol	10. IU I
111-44-4bis(2-Chloroethyl)eth 95-57-82-Chlorophenol 541-73-11,3-Dichlorobenzene 106-46-71,4-Dichlorobenzene 100-51-6Benzyl alcohol 95-50-11,2-Dichlorobenzene 95-48-72-Methylphenol 108-60-1bis(2-Chloroisopropyl) 106-44-54-Methylphenol 521-64-7N-Nitroso-di-phenol	ether 1 10. IU I
1 106-44-54 Methylphenol	10. 1U 1.
621-64-7N-Nitroso-di-n-propyla	maine_1
: 67-72-1Hexachloroethane	10. IU - I
67-72-1Hexachloroethane 98-95-3Nitrobenzene	; 10. IU ;
i /U-DY-IISODNOTONE	- Present of the second s
88-75-52-Nitrophenol	10. IU I
<pre>105-67-92;4-Dimethylphenol 65-85-0Benzoic acid 111-91-1bis(2-Chloroethoxy)met</pre>	; i i i i 10 i U 🎉 i i
65-85-0Benzoic acid	
111-91-1bis(2-Chloroethoxy)met	hane1
120-83-22,4-Dichlorophenol 120-82-11,2,4-Trichlorobenzene	i 10. iU i
120-82-11,2,4-Trichlorobenzene	10. IU I
91-20-3Naphthalene 106-47-84-Chloroaniline	! 10. !U !
106-47-84-Chloroaniline	10. IU I
87-68-3Hexachlorobutadiene	10. IU I
59-50-74-Chloro-3-methylpheno 91-57-62-Methylnaphthalene	1 10. IU I
77-47-4Hexachlorocyclopentadi	10. IU I
88-06-22,4,6-Trichlorophenol	enei 10. IU i 10. IU
95-95-42,4,5-Trichlorophenol	I II. IU I
91-58-72-Chloronaphthalene	iii
88-74-42-Nitroaniline	10. 10
131-11-3Dimethylphthalate	10. IU
208-96-8Acenaphthylene	
606-20-22,6-Dinitrotoluene	

000047

The start of the

Bide Failly and a film and a film

Sample wi/vol: 1000:0 (g/ml) ML-1

Levels (low/med) LOW

I Moisture: not dec. 100. Nec. Decelexization: B/ 7/91 Extraction: CoopE/Domestor/Decel-

 SPC Cleanup:
 (Y/N) N
 pH:
 7.0
 Dilution Factors
 1.00

 CONCENTRATION UNITS:
 COMPOUND
 CONCENTRATION UNITS:
 0

M	The straight free to		Y CARLES AND AND AND AND AND AND AND AND AND AND		
	9-09-2	3-Nitroaniline	1 50.	'ί	
_ I → B	3-32-9	Acenaphthene	1	29U	WIZ NE
	1-28-5		1	4au	Acres 10
1 10	0-02-7	4-Nitrophenol	50.	- 1 Ü	1. N. C. 18
1 13	2-64-9	Dibenzofuran2,4-Dinitrotoluene	1 10.	ិរប	
1, 12	1-14-2	2,4-Dinitrotoluene	1	្ទាប	
ा ॅ [.] ं8⁄	4-66-2	Diethylphthalate	1	ំរប	
1 700	5-72-3	4-Chlorophenyl-phenylether	1 10.	ះប	1
1 86	5-73-7	Fluorene	1 40.	10	6-7-1 F
1 100)-01-6		: : 50.	3U	1.
: 534	-52-1		:	10	
1 86	5-30-5	N-Nitrosodiphenylamine (1)	1 4 4 4 10.		1.1.1
1 101	-55-3	4-Bromophenyl-phenylether	1 2 10.	ាប	
1 118	3-74-1	Hexachlorobenzene	1 10.	ៃរប	1
1 87	-86-5	Pentachlorophenol	1 50.	ៃរប	- T
1 85	5-01-8	Phenanthrene	1 10.	្រាប	
1 120)-12-7	Anthracene	10.	្រាប	E I
1	-74-2	Di-n-butylphthalate	: 10.	្ពរប	<u>.</u>
1 206	-44-0	Fluoranthene	10.	ີ່ເປ	1
1 129	1-00-0	Pyrene	10.	10	1
l 785	i-68-7	Butylbenzylphthalate	10.	10	1 1
91	-94-1	3,3'-Dichlorobenzidine			:
l 56	-55-3	Benzo(a)anthracene	1 10.	•	1
		Chrysene	10.	۱U	;
1 117	-81-7	bis(2-Ethylhexyl)phthalate	10.	:0	1
1. 117	-84-0	Di-n-octylphthalate	l	:0	1
: 205	-99-2	Benzo(b)fluoranthene	10.	۱U	i
		Benzo(k)fluoranthene	10.	10	1
: 50	-32-8	Benzo(a)pyrene	10.	10	:
193	-39-5	Indeno(1,2,3-cd)pyrene	10.	۱U	ł
: 53	-70-3	Dibenzo(a,h)anthracene		:0	:
191	-24-2	Benzo(g,h,i)perylene	10.	۱U	:
!	ی بادی را مربع هر دو دو دو دو دو			1	!
(1) - 1	Cannot be	cenarated from dichanylaming			

(1) - Cannot be separated from diphenylamine

FORM I SV-2

1/87 Rev.

000043

6. + 1 to 2 to .

Date Never Jack B/ 1/91

GEN OOLAN CORPANICE CANALYSIS DATA SHEET

Lab Names EBE

Matrix: Ksoll/water) WATER Lab Sample 01 Sample wt/vol: 1000.0 (g/ml) ML Lab File (Dev51504

Level: (low/med) LDW Date Received: 8/ 1/91

ERA-SAMPLE MO

Moisture: not det. 100. det. Date Extracted: (B/ 7/91 Extraction: (SepF/Cont/Sonc) BEPF Date Analyzed: 8/29/91

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.00

Number TICs found: 0 CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER I COMPOLIND NAME I RT I EST. CONC. 1 0 3. 4. 5. 6. R. 9. 10. • 12. 13. 15 16. ____ 17.__ ____ 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29.

FORM I SV-TIC

1/87 Rev.

000043

.

<u>600060</u>

FORM I PEST

1 10 1 9psq

.V9A 78/1-

11036-82-5-----Aroclor-1260 01 05-0 11097-69-1----Aroclor-1254 01 05.0 UI 02.0 12672-29-6-----**Arocl**or-1248 01 05-0 23469-21-9----Aroclor-1242 01 05-0 11141-16-5-----Aroclor-1232 11104-28-2----Aroclor-1221 **DI 05.0** 01:05-0 12674-11-2-----Aroclor-1016 01.0.1 8001-35-2-----5ox 1 53494-70-5----Endrin ketone 01 01 0 1 72-43-5------Methoxychlor 01 05.0 1 33213-65-9-----Endosulfan sulfate 01 01-0 Ω1. 01.0 01 01-0 الاسار المار الموضعة بشير المحتجاب بالمعتري عادي كالأعارية 1 72-54-8-----d 4 .- DD UN 01.0 0.0201U -010S0:0 01050-0

Che Cienny: Weishing and the second sectors and and the sectors and and Moteture: not dec. Weter 16/10/80 ipersering end ICANON TEALSON TO A THE STORE STORE STORE STORE STORE STORE STORE Sample at Veol 3 and a second se

The second second second second second second second second second second second second second second second se and the state E ALD'EU

ON EVENNE

100	1. Start 1. Start							Star Astal Star			ار بر دور در در در در در در در در در در در در در
	5. S. S. S. C. V							1.1			nto d
			,		- S.					- ale a cue de	and the second
			1	1.8.1	TRANSPORT	6,	DATA SI			6	
12	Sec. Sec.								1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Post of the second second	0. 1
14.00	中国的 基本	Sec. Sec.	and the second second		ار بار ایک میں اور اور اور اور اور اور اور اور اور اور		· Jacob Standard	A			2453
630	TARE:						5	A State Street		Sector Sector Sector Sector	- Carte
	friend and the	85 A.C		and the second second second					1. A. A. A. A. A. A. A. A. A. A. A. A. A.	Constanting and	
		ESE			$\mathcal{L}_{\mathcal{L}}$		SAS NO.	1000	2 d 2	- 106-1	C.S.
1.2.2			State Bergard		and the second second						
	5										Harris
Hat	IX IS	011/48	ter): A	1.1.5.2.5				Lab 5		1. 1146	1.2 滚
			1.498.24		1 to the starting		5 24		×		1
T AND	1 1 1 2	w/mod)			1		10.7	Date		ane/n	1/01
LE A C		W/ MEU /		3 5 7 6 5	1			Sector Contractor	a the second second		
안 눈 가운다	1. A. S. S. S. S.	ANT CONTRACT	8	The Association of the Associati	Le With the Last	1	the fact of the second	Action Director	8 4 4 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4	Carl State And State	1.1.1

Solids:

(The second					Service State	1.00	n in geword
	ncentration	JUNITE AUG	Lor mg/kg dr	-	elgnt)	: ()U(
						antera	
				1	MILL ON IN		
			Concentration		1		4.27
م الم الم الم الم الم الم الم الم	17429-90-5				10 1729723 4 1917724-0	1 2	1. S. C. S.
			25.1				
S.A.	17440-30-0	Ancimony	3.6	IN		IF	
(b)	7440-30-2	Bariam	120	IN	SALACINE.		and the second
	7440-41-7					IP 1	1.78.25
	17440-43-9			-		IP I	
· · ·	7440-70-2	the second second second second second second second second second second second second second second second se	90400	-	The second second second second second second second second second second second second second second second s	IP I	
	7440-47-3	1 Addition of the local data and the local data and the local data and the local data and the local data and the	11.7		المرجع وجرا	IP I	
	17440-48-4		6.1			IP 4	
	7440-50-8	the state of the s	26.2	1	فوارد بالمجرب والمحادث والمحاد والمحاد	IP I	
	7439-89-6	· · · · · · · · · · · · · · · · · · ·	12000	1 32	a de la companya de la	IP I	
	7439-92-1	والمستعد المستعلقين النبي الترجي الجماري والمتعادينين	26.5	1 -1	4	F	
	7439-95-4	The second second second second second second second second second second second second second second second s	31000	1-1		IP I	
	7439-96-5			1		IP I	
	7439-97-6			101	1.11	ICVI	ې د د و
	7440-02-0	Nickel	1	1BI		IP 1	
	7440-09-7	Potassium	4520	B		IP I	
	7782-49-2			_		IFI	
1	7440-22-4	Silver		101		IP I	
	17440-23-5	المتعبكاني البخيد الدائية تباجيه الكتوب شواني البزني بالبنيان	41800	1_1		IP 1	
	7440-28-0		A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OWNER OF THE OWNER OWNE	101		IF	213 - L
		Vanadium		1 <u>B1</u>		IP I	
1	7440-66-6		200	1_1		<u> </u> P	
	l	Cyanide		1_1			
-				1_1			

Color Before:

Clarity Before:

Texture:

Color After:

Clarity After:

Artifacts:

1 . m +

Comments:

FORM I - IN

3/90

ALL DESCRIPTION OF A DE

Halby Namer- EBE

Lan Boden PEE

Matrix: (soll/water) SDL Sample wt/wpl: 5:000: (g/mL) B Level: (low/med) LOW

2 Noisture not dec. 52.

Column: (pack/cap) PACK

CAS NO. COMPOUND

Lab Fills Date: Received at 8/ 6/

атен дерекки из 1977-<mark>6791.</mark>... Батег полого и с 17710/81.

(ug/L or ug/Kg) UG/KG

		a series and the second states where the second second second second second second second second second second			Ste
17		A AND AND		438-S	ત્રા 💬
1 374-B7-3			130.		4
74-93-9	-Bromonethane	Merce Million	JIBO.	NY 10-10-10-10-10-10-10-10-10-10-10-10-10-1	
1 75-01-4	-Vinyl Chloride		130.	1U 🖓	
1 75-00-3	-Vinyl Chiprice -Chloroethane -Methylene Chloride -Acetone		130.	JU	
1 75-09-2	-Methylene Chloride	1	66.	1 B	-11
67-64-1	-Acetone		150.	IB	
75-15-0	-Carbon Disulfide		90.	4	
75-35-4	-1.1-Dichloroethene		····· 66.	10	
75-74-3	-13 Dichloroethane	a second second	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	าบ	
540-59-0	-1,2-Dichloroethene (tot	al)!	66. 66.	10	
l 67-66-3	-Cutolololm			ាហ	, ₁ , 1
107-06-2	-1,2-Dichloroethane			IU	
78-93-3	-2-Butanone		130.	IU	
71-55-6	-2-Butanone	i	66.		
56-23-5	-Carbon Tetrachloride			រប	
108-05-4	-Vinyl Acetate			ាំព ៊ី	
75-27-4	-Bromodichloromethane			າບ	
78-87-5	-1,2-Dichloropropane			U	
	cis-1,3-Dichloropropene			່ານ	
	-Trichloroethene		200.	1	
	-Dibromochloromethane			10	
	-1,1,2-Trichloroethane _	!	66.	10	i
71-43-2	-Benzene	!	66.		i I
10061-02-6	-trans-1,3-Dichloroprope	ne!	66.	10	í J
75-25-2	-Bromoform		66.	1U 1U ·	
	-4-Methyl-2-Pentanone	i	130.	10	1
591-78-6	-2-Hexanone	i	130.		
127-18-4	-Tetrachloroethene		66 .	10	1
	-1,1,2,2-Tetrachloroetha		66.	10	;
108-88-3	-Toluene	!	Kara Kara		-
	-Chlorobenzene			1U 1 E	:
	-Ethylbenzene		8900 .		1
100-42-5			88.	i I E	1
1330-20-7	-Xylene (total)		12000.		1
·		!		'	- '

EPA SAMPLE NO.

ADE ATA SHEET

- F-16

1.020

A. Der Tan

And Code: E5E And Come No. NVCLO: Matrix: (soll/Water) HDIL Sample wt/vol: 5,000 (g/mL) G

Level: (low/med) 10W Z Moisture: not der. 62.

Column: (pack/cap) PACK

Number TICs found: 0

Las Las

UGHNO 1 AVI Lab Sample VI NY (65*3

Lab File ID: 1468

Date Received: 8/ 6/91

Date Analyzed: B/10/91

Dilution Factors 5.00

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

COMPOUND NAME I RT EST. CONC 1	<u>i 6</u>
[] 3],	11
	!
7.	
	!!
13	
15	
17.	/ /
	!!
19	
20 _	
22	,
24	
25	
26	
27	' '
	_//
	! !

FORM I VOA-TIC

AND THE DOPAND ENDINGLY DIE DATE

		a a she at			A.S. Martin State				í
1					Suscente				
	State Free St. State				-7.(-2				A THE PARTY OF
				ST EE	2		1 - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles		1
	LON CON	राजनार्थ व	NU,			ab Sample		6543	
Samo	le Wt/vol:	4.	000 (a/a	L) B	Sec. also	ab File,			1 N. 1
1.5.5	S. S. States	the second second				ate Recei		2. C - S- S- S- S- S- S- S- S- S- S- S- S- S	1 2011 -
Leve	l:lov/	(med) MED	Sec.			ate Recei	veo: 8/	D/71	1.3.40
1.00	unare e						zach sel	10/91	2 NUMBER OF
200 CON 3 (SON -	COMPANY IS TO MARKEN		THE FORTH AND AND AND AND AND AND AND AND AND AND	States and states and the states of the	THE CONTRACTOR STREET, STRE	CARDING THE REPORT OF THE REPORT OF THE	CONSIGNATION OF COMPANY AND A	BEAR AND ALL AND A LA	

Summ

CAS NO. COMPOUND

Ion Factor: 100.00 CONCENTRATION UNITS: Q

Ч,ч				
				÷ul
÷.,	74-87-3Chloromethane	6600.	San S	, , 1
	74-83-9Bromomethane	. 6600	្តដាក	(2
	75-01-4Vinyl Chloride	I 5600.		
1	75-00-3Chloroethane	6600.	្ឋាប	્ર
	75-09-2Methylene Chloride	3300.	្ដាប	8. Z 1 .
	67-64-1Acetone	6600.	្មាប	5 - 1 -
	75-15-0Carbon Disulfide	3300.	10	1
	75-35-41,1-Dichloroethene	3300.	. .	
	75-34-31,1-Dichloroethane	3300.	៉ ា ប	1
.	540-59-01,2-Dichloroethene (total)	3300.	1 0	
1	67-66-3Configmant	330.]	1
•	107-06-21,2-Dichloroethane	3300.	់ ប្រ	
Į	78-93-32-Butanone	6600.	10	1
	71-55-61,1,1-Trichloroethane	3300.	ΙU	<u> </u>
1	56-23-5Carbon Tetrachloride	3300.	U	1.
	108-05-4Vinyl Acetate	6600.	: U	-
ł	75-27-4Bromodichloromethane	3300.	IU	I
-	78-87-51,2-Dichloropropane	3300.	ីប	ł
1	10061-01-5cis-1,3-Dichloropropene	3300.	10	1
1	79-01-6Trichloroethene	3300.	U	1
1	124-48-1Dibromachloromethane		U	1
	79-00-51,1,2-Trichloroethane	3300.	10	1
-	71-43-2Benzene	3300.	U	ł
j	10061-02-6trace-1.3-Dichloropropene	3300.	IU.	ł
ł	75-25-2Bromotorm	3300.	10	:
ł	108-10-14-Methyl-2-Pentanone	.6600.	U	I .
ł	591-78-62-Hexanone	6600.	IU	l
	127-18-4Tetrachloroethene	3300.	10	1
8	79-34-51,1,2,2-Tetrachloroethane!	3300.		. 1
i	108-88-3Toluene	3000.	ΙĴ	i
1	108-90-7Chlorobenzene 100-41-4Ethylbenzene	3300.	10	ł
ł	100-41-4Ethyldenzene'	39000.	ł	1
ł	100-42-5 Styrene	3300.	U	l
ł	1330-20-7Xylene (total)	120 000.		I
!	· · · · · · · · · · · · · · · · · · ·		i	I

1 22

.

÷

officated ins

(low/med) MED

ar not decarere?.

pack/cepls Make-se

01/21/10/21/2016 87/26/91 0

Dilution Factor: 100.00

RT EST. CONC. J Q MBER Z CASS 4.21 21 22. 23. 24 25 26. 27. 28. 29. - 2 A.

FORM I VOA-TIC

THE ENDRUGANICE ANALYSIE

TA NEW YORK ab Name: Lab Code: ESE NO.1 NYCLP2 BAS NO. 1 Second States

Matrix: (soil/water) BOIL RB041 91-8-91 Lab Sample 10: NY16S*3

Sample wt/vol: 4.000 (g/mL) 6 Lab File ID: 01625 and the second second

Date Received: 28/ 6/91 Level: (low/med) MED te stand a strain for the second nig topares Date Analyzed: #8/10/91 X Moisture: not dec. 62

Column: (pack/cap) PACK

a state and Dilution Factor: 100.00

EPA SAMPLE NO

RE

-31.55 CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

		1	· •	1	
	1 74-87-3Chloromethane	6600 .	- IU -	<u>)</u> - 1 - 7	2
	1 74-83-9Bromomethane	6600.	. IU -	1 1	
	1 75-01-4Vinyl Chloride	6600.	10	1	
	75-00-3Chloroethane	6600.	ាព	. 1 .	•
	1 75-09-2Methylene Chloride	3300.	់ប	1	
	67-64-1Acetone	6 600.	10	!	
	75-15-0Carbon Disulfide	3300.	IU	f -	
	75-35-41,1-Dichloroethene	3300.	ιU	:	
	75-34-31,1-Dichloroethane	3300.	IU	:	
	540-59-01,2-Dichloroethene (total)	3300.	- ! U	1	
	67-66-3Chloroform	3300.	10		
	107-06-21,2-Dichloroethane	3300.	۱U	ł	
	78-93-32-Butanone	6600.	10	1	
	71-55-61,1,1-Trichloroethane	3300.	U	1	
	56-23-5Carbon Tetrachloride	3300.	· 10	· 1	
1	108-05-4Vinyl Acetate	6600.	ιU	1	
	75-27-4Bromodichloromethane	3300.	10	1	
ł	78-87-51,2-Dichloropropane	3300.	ιu	1	
i	10061-01-5cis-1,3-Dichloropropene	3300.	ιU	1	
- 1	79-01-6Trichloroethene	3300.	10	1	
ł	124-48-1Dibromochloromethane	3300.	• =	;	
	79-00-51,1,2-Trichloroethane		. –	1	
ł	71-43-2Benzene	3300.	. –	1	
ł	10061-02-6trans-1,3-Dichloropropene!			1	
1	75-25-2Bromoform	3300.	10	1	
1	108-10-14-Methy1-2-Pentanone	6600.	10		
-	591-78-62-Hexanone	6600.	10	1	
1	127-18-4Tetrachloroethene	3300.	10	1	
	79-34-51,1,2,2-Tetrachloroethane!	3300.	10	1	
-	108-88-3Toluene	3000.	J	ł	
	108-90-7Chlorobenzene	3300.	10	ł	
1	100-41-4Ethylbenzene:	40000.	1	;	
1	100-42-5Styrene	3300.	ΙU	ł	
1	1330-20-7Xylene (total):	26000.	3	i	
ł	; 		_ !	!	

FORM I VOA

* 5

sathanen Est

Natrice Contractory States

Z Moisturei not dec. 762. Column: (pack/cap) PACK

Number TICs found:

ະ ເຈັ້ງສະຫຼາວ ໃນເອັ

> Date Received: B/ 6/91 Date Analyzed: B/10/91

CONCENTRATION UNITS: (ug/L or -ug/Kg) UG/KG

CAS NUMBER		RT	EST. CONC.	
1 1. <u>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1</u>				
1 3.		388.404 e 78.		1
4.	이 문화가 다니라다. 이 이 방문에서 나는 사람들이 가지 않는 것을 통해.			
145 5. The second second second second second second second second second second second second second second se			A STATE AND A STATE AND A STATE	
6.				
7				
: 8				
9			A Martin Anna Anna Anna Anna Anna Anna Anna An	
1 10		6	S. ALL ST. C. ALL ST.	
1 11 1 12				
13.	The second state of the se		(1997年春日 - 1997年1月1日の日本)	
14				I11
1 15.				
16				
17				
: 18	_1			
1 19				
20				
21	_ '			
22 23				II
24				·
1 25				
26.				
27				
28				
		· • • • • • • • • • • • • • • • • • • •		
30				
·	~ ¹			· '

FORM I VOA-TIC

EPA SAMPLE ND.

SEMIVOLATINE DREANICS ANALYSIS DATA SHEET

 Lab Name: #SE
 Contract: NYSDEC

 Lab Code: #SE
 Case No.1 #B091

 Matrix: Tsoil/water? SDIL
 Lab Sample wt/vol:

 Sample wt/vol:
 30.0 (g/mL) 6

Level: (low/med) LOW Date Received: 8/ 1/91

Z Moisture: not dec. 62. dec. _____ Date Extracted: 8/14/91 Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 9/ 5/91

GPC Cleanup: (Y/N) Y pH: 7.0 Dilution Factor: 20.00 CONCENTRATION_UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

:		34000. 1	11
1	108-95-2Phenol		
1	111-44-4bis(2-Chloroethyl)ether		Ū
:	95-57-82-Chlorophenol 541-73-11,3-Dichlorobenzene	34000.	U.
:	541-73-11,3-Dichlorobenzene	34000.	Ŭ
1	a = a = a = a = a = b = a = b = b = b =		U
1	106-46-/Benzyl alcohol	34000.	Ŭ
1	95-50-11,2-Dichlorobenzene		U
:	95-48-72-Methylphenol		ц Ц
1	108-60-1bis(2-Chloroisopropyl)et	iner 1 34000.	
	466 44 E''	· · · · · · · · · · · · · · · · · · ·	LU
:	621-64-7N-Nitroso-di-n-propylami	ITE	1U
Ì	67-72-1Hexachloroethane		10
	98-95-3Nitrobenzene	; 34000.	:U
:	78-59-1Isophorone		10 10
i	88-75-52-Nitrophenol	· i 34000. /	10 10
:	105-67-92,4-Dimethylphenol	; 34000. 1	10 10
	cs osBenzoic acid	i 1/0000. •	10 10
i	111-91-1bis(2-Chloroethoxy)metha	ne_; 34000.	
i	120-83-22.4-Dichlorophenol	'	1U 1U
	too oo t1 2 4-Trichlorobenzene	i 34000.	10 10
:	91-20-3Naphthalene	' 34000. I	:U
÷	106-47-84-Chioroaniiine		•
i	87-68-3Hexachlorobutadiene		មេ មេ
	59-50-74-Chloro-3-methylphenol		10 10
i	91_57_62-Methylnaphthalene		•
i	77-47-4Hexachlorocyclopentadien	1e i 34000.	1U
i	88-06-22,4,6-Trichlorophenol		i U
	95_95_42.4.5-Trichlorophenol	· 170000.	10
	91-58-72-Chloronaphthalene	ⁱ 34000.	:U
-	88-74-42-Nitroaniline		:U
•	131-11-3Dimethylphthalate		:0
	208-96-8Acenaphthylene		IU
1	606-20-22,6-Dinitrotoluene	34000 .	in In
!		;	·

FORM I SV-1

1/87 Rev.

000030

-

DEED AVOLANT (TEXT DE BANTICE ANALYSIS DATA BHEET

EPA SAMPLE NO.

NY165+3

Lab Name: EDE Contract: NYSDEC Matrix: Apoll/Amberl BOIL

Sample wt7vol: B0.0 (g/mL) 6 Lab File Move 1550 6 5 6 Date Received: 8/ 1/91

Level: (low/med) LOW

Date Extracted: 8/14/91 I Moisture: not dec. 62. dec.

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 9/ 5/91 Extraction: (SepF/Cont/Sonc) BUNC EPC Cleanup: (Y/N) Y pH: 7.0 Dilution Factor: 20.00 CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

1	99-09-2	3-Nitroaniline	170000.	ा । 10	
i	83-32-9	Acenaphthenei	8800.		1
	51-28-5	2,4-Dinitrophenol	170000.	ាហ	
			170000.	ាំប	1
	132-64-9		4800.	: J	
ŗ	121-14-2	2,4-Dinitrotoluene	34000.	10	1
i	R4-66-2	Diethylphthalate1	34000.	. 	1
	005-72-3	4-Chlorophenyl-phenylether;	34000.	10	1
	86-73-7	Fluorene;	12000.	J	ł
	100-01-6	4-Nitroaniline:	.170000.	- 1 0	1
	F 24 - F 2 - 1	-4.6-Dinitro-2-methylohenol "	170000.	10	-
	86-30-6	4,6-Dinitro-2-methylphenol_: N-N:trosodiphenylamine (1)_:	34000.	10	
			34000.	10 IV	
	118-74-1	Hexachlorobenzene	34000.	10	1.1.1.1
	97-96-5	Pentachlorophenol	170000.	10	į
	85-01-8	Phenanthrene	140000.	:	:
	120-12-7		26000.	; J	•
	R4-74-2	Di-n-butylphthalate	17000.	1 3	
	206-44-0	Fluorantĥeĥe;	150000.	: -	:
·	129-00-0		150000.	-	:
	85-68-7	Butylbenzylphthalate	130000		!
			69000.	រប	:
		Benzo(a)anthracene	67000.	1	
	218-01-9		84000.		:
		bis(2-Ethylhexyl)phthalate	210000.	· ·	:
	117-84-0	Di-n-octylphthalate	34000.	ม เ	ſ
	205-99-2	-Benzo(b)fluoranthene	57000.	1	
	207-08-9	Benzo(k)fluoranthene	77000.		
		Benzo(a)pyrene;	63000.		
	193-39-5	Indeno(1,2,3-cd)pyrene	44000.		
	53-70-3	Dibenzo(a,h)anthracene	16000.	:] :	
	191_24_2	Benzo(g,h,i) perylene	44000.	1 1	1
			·	· · ·	

FORM I SV-2

1/87 Rev.

BEMIVULATILE DREANICS ANALYEIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDES IN A

CONTRACTI NYSDEC Lab Name: ESE Lab Code: ESE Case No.: RB091 SAS No.:

Matrix: (soil/water) SOIL

Sample wt/vol: 30.0 (g/mL) - 5 Lab File ID: 61550 Level: (low/med) LOW Date Received: 8/ 1/91

I Moisture: not dec. 62. dec.____ Date Extracted: 8/14/91

Extraction:(SepF/Cont/Sonc)SONCDate Analyzed:9/ 5/91GPC Cleanup:(Y/N)YpH:7.0Dilution Factor:20.00

CONCENTRATION UNITS:

Number TICs found: 18 (ug/L or ug/Kg) UG/KG COMPOUND NAME I RT I EST. CONC. I Q CAS NUMBER ___________ ______ 16.16 1 300000. J _______ 16.75 1 500000. J 611-14-3:Benzene, 1-ethyl-2-methyl-_1 6.14 1 400000. 4536-86-1|Benzene, (1-propyloctyl)- ___ 1 16.16 1 2. 629-78-7:Heptadecane з. _____! 16.82 | **500**000. - - IUNKNOWN ____ · 4. 16:94 | 300000. J - IUNKNOWN 5. - . - IUNKNOWN ALKYL PHENOL____ 17.03 1 J 400000. 6. 25154-52-3!Phenol, nonyl-_____ | 17.11 | 300000. J ! 7. - - !UNKNOWN _____! 17.38 ! 300000. J 8. - - !UNKNOWN _____! 17.77 | 400000. .7 9. 86-74-819-H-Carbazole _____: 18.58 : 300000. J : 10. 18.80 1 300000. J - - :UNKNOWN 1 11. 300000. - IUNKNOWN HYDROCARBON _____ : 18.97 ; J 12. - - IUNKNOWN AROMATIC J 19.52 400000. 1 13. 300000. : J 612-94-2:Naphthalene, 2-phenyl-___: 20.01 : 14. 1 22.49 1 800000. : J 15. - - - LUNKNOWN 22.83 : : J - IUNKNOWN PHTHALATE 1000000. 16. - IUNKNOWN PHTHALATE _____: 23.07 : J 900000. _ 17. 1000000. J - :UNKNOWN PHTHALATE 24.22 | : 18. 19. _____ 20. 21. _____ 22. 23._____ 24._____ 25. 26.____!____ 27.____! 1 1-22 28._____ _____ 29._____ ____

EPA SAMPLE ND.

Y165*3

BEALED A FOR BUDGANICES ANAL VELSE PATA SHEEP

Lab Name: ESE Case No.: RB091 SAS No.1

Matrix: (soil/water)/BDIL

Sample wt/vol: 20.0 (g/mL) ~ B Lab File ID: 61637 Level: (low/med) 120

 Z Moisture: not dec.
 62.
 _______ Date Extracted: #B/14/91

 Extraction: (SepF/Cont/Sonc) SEPF
 Date Analyzed: 9/12/91

GPC Cleanup: (Y/N) Y pH: 7.5 Dilution Factors 20.00

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/K5

Lab Sample Di

CAS NO.

a state and the second second second second second second second second second second second second second second 108-95-2----Phenol 34000. ាព 34000. 111-44-4-----bis(2-Chloroethyl)ether 95-57-8-----2-Chlorophenol____ N.S. 34000. 34000. 541-73-1-----1,3-Dichlorobenzene 106-46-7-----1,4-Dichlorobenzene _____ 100-51-6----Benzyl alcohol_____ 95-50-1-----1,2-Dichlorobenzene 34000. 34000. - 34000. 11 95-48-7-----2-Methy1pheno1_____ 34000 10 108-60-1-----bis(2-Chloroisopropyl)ether { 34000 1U 106-44-5-----4-Methy1pheno1____ 34000. 111 34000. 621-64-7----N-Nitroso-di-n-propylamine__ 67-72-1-----Hexachloroethane 34000. 34000. 111 98-95-3-----Nitrobenzene_____ 34000. 10 78-59-1----Isophorone_ 34000. 1U 88-75-5----2-Nitrophenol 105-67-9-----2,4-Dimethylphenol_____ 34000. :0 170000. :11 65-85-0----Benzoic acid 34000. 10 111-91-1----bis(2-Chloroethoxy)methane_; 120-83-2----2,4-Dichlorophenol_____ 34000. :0 34000. 120-82-1-----1, 2, 4-Trichlorobenzene____ :U 34000. 91-20-3----Naphthalene ιU 34000. 106-47-8-----4-Chloroaniline 11 87-68-3-----Hexachlorobutadiene 34000. :U 59-50-7-----4-Chloro-3-methylphenol 34000. :0 .91-57-6----2-Methylnaphthalene 34000. :0 77-47-4-----Hexachlorocyclopentadiene :0 34000. 88-06-2-----2,4,6-Trichlorophenol 10 34000. 95-95-4-----2,4,5-Trichlorophenol 170000. 10 91-58-7-----2-Chloronaphthalene 34000. :0 170000. 88-74-4----2-Nitroaniline_ :0 34000. 131-11-3----Dimethylphthalate :0 34000. 208-96-8----Acenaphthylene_ :0 606-20-2-----2,6-Dinitrotoluene____ 34000. 10

1/87 .Rev.

000053

REPAYSING REEND

NWISSEN RE

65.F A955

VILLERSON CONTRACTOR OF STREET

EPA BAMPLE NO

0.017	A	10.00	1.1				1. 1. 1.	1.000									10 1 14	- -			5 1 5			1.1						1.1	G	and in the second	1	5 / S. (B.	2.2.7	1.5	1	× 1 1 2 1 1	1 P 1 P 1	
1. 11	2 P - 10	10.00				· · ·	·	1.5 . 6 .	1-15	A		1.100			1 100		1.49	1.00	1.19.65		1.1.	10.4	5.6.1		3.00	Sec. 2	20.00	1.1	1.0	1.	1. 1. 1.	1.2.2.2	1. 1	him 1	- A - A		1.0	10.0	5.7.12	1
100.00	19. AN 18	9.2.4	S		2. 8.		1.1			20. 20				14	- 19 A	1.1.1	Sec. 7	1			1			A. 43.44	1 1 1 2	11/17	1.0.1211		1000	4.10		1.1.2.2	G	112	A I M		~			25
100	27.12	1.62. 1	A-0	3	7					1.00				1.12	1.1	1.1.1	1.1	1.00		- 10 C		1		1.1	£ 19	1.1	22.5	S. 2	A		1.1	1.450	2.493	S. 19	1 2 1	-10	38.	- S.	E	
· · · ·	10.10	V NO			25.4.4	Sec. 2		1.4.4.4	()											C 1		10.00		U	19-14	1 A A	1		2.1		1. 14	A. 6 8 4	1.00	QQ. 14	acres.	14.1	1.1.1.1.1.1.1.1		- Tri	π.
	1.04	2.36				5.		()]				5 X .	1.1									1.1	1 2			P		4.1		1997	A.C. 1			2 A	Ser 9(14 1 20	1 - E - A	11/149	SY	0.1
	1.5		C, iai			10.00		. A.	1.1		11.19				1 A -			1.1	1.1.1			6.1			1.00			_ • • • •	- C. 12	1. 1. 1			- e -	1. 1. 1	1.4.5		- C	2 1 1 2 1 2	C. 5	1.
0.67	1.6	2.107	C.E.S.*	0.0534	ALC: NO	10.00	15.024	1.0	1.0				1. 2.		1.1								1000	Contraction of	10.00	1.1	- 1 C				- A-	$h_{1} < h_{2}$	1000					304.231		37
1.15	100	26. C. R.			71.00	- C 3								. 7 . 3.								1. 1. 1.	10.00	12.5	1.4	1. A 1	· · · · ·					1.0	10.00	· · · · ·	1	S 62 40	1100	3 #	-	-
Not	1.1	1.1	14 C 1	3.	1. 1. 1.			· · · ·		5 . L	Sec. 201			S	· · ·	8 37 10			÷		1.1			10.0	1.11		1.5	-	- A.P.C.		1.1.1	1.1	1.5.4	2.3.4	Th	6 11	501 4		2	منوذ
33.1		10.10	1.11	A	2 - A	10	5 C	1.1	1.1	· · · · ·				1.00				 1.1 	1.2	-	1. 1.5		1.1	1.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	1.2. 10	1.1			1010		10	1.1	3.00	K 1. O	1.54	-	$\mathbf{R}_{i} \in \mathcal{I}_{i}$	14 0.55	12.2	ч.
E 62 1	1.00	10.00	S.C. 1.4	102	2				1.1	ميد ج				5.		1.171	1.1.1	1.1.1		• ¥ 2	1.1			5.5	20 C 2			1.20						- C /	1 A 4	12.584	1.1.1			
1.16	101	- T	n 33		72	134	1			1.1.1	Q. 15.					1000	- · · ·		1.50	1			and a		1.10	S 24	S. 6. 4 6 .								1997 - S. S. S. S. S. S. S. S. S. S. S. S. S.	2.5	C	2.16.16	1 X	47
1.1	5 S S P			- A		2.00	The state of	SICE 1			100	- martin	Sec. 10		A	A	30.20	1 91.16	. Second	10.00	35	Second A		1.1			Sec. 77.	- C				· · · ·	·	L	E : 14	A 7		1.00	2415.11	
e	1.10	12.1.6	5 A .	104.4	-bitte	5.6X	1. 1. 1.	10		1	1.1	- 19 M	1.40.1		1.1			10 and 10	1.00	1.1	11, 22 - 1		1943 - P	2.247	40.46		1994	18 8						Sec. 646	1.16	50.01.2	55	1.00	1. 1	
. A	1.6	S - 5 - 5		S. A. S.	1.0		2.11	0.326.	- n #	1.12			1.1		1.2	6 6 1		e		1.1	- C.Y.	11.2	10.00	Sec. 2. 100	a (19		1.1	e, 97		1 S.			- C-	1.555.66	10-01	1000		C. L	1.1	127
10.00	· · · ·			- (C.)				Sec. 2.	3.86	·	1.2.1.		1136.5				1000		<u>.</u>			1. 18.		14	10.27	1.15	1. 1. 1.	1 A A					1.1.2		Sec. 6.	5.00	·	1.1.1.2	1.1	14
2.2	1.11	- A	1.1	62 S MA	- N			1000					10.1	A		- C				A 12 1	1. Sec. 1	10.00		1.0.0	10.55	1.4.5								100.000	- AQ	Sec. Ash		1.	1.1	2. N

 Matrix (soll/disc) SOL
 Lab Sald(sol)

 Sample wt/wol:
 S0.0 (g/mL) as a lab Film discret/537

Level: (low/med) LDN Date Received: 8/ 6/91 Z Moisture: not dec. 62. Bec. Date Extracted: 8/14/91

 Extraction:
 (SepF/Cont/Sonc)
 BEPF
 Date Analyzed:
 9/12/91

 GPC Cleanup:
 (Y/N) Y
 pH: 7.5
 Dilution Factor;
 20.00

à a			- × -	- C	7 . .		1.1.1.1	1.2		2.44		. C.A.					2.4					1.1	1 A 4				. S.		Sec. 24	·
21		- X -	5 - Car		1.1	27.2	1.15	1.1	1	1. 1. 1.	12.3	2.2. 15	1 de 10		C		1.1	2.0	2110		rni		m • • •							
- 15						2014			1	$\partial_{i} g$	·							2	JINL	EN	I KA		ON .	1 101	115	1 - C	A	1.000		
1.1	1 N J	S		· .	· ·			1. 10						- 1. C.F.	3 A															
S. 24.	1.1	414		• A C		s n	13		- C - C		ሮግኑ	100	50 M.S	m 2		14 620	77 Q	1.7		19 332	2		/Ko		10.4	120	1. 1. 1. 1.	-		1.0
÷.,	÷ •	12.1		A 1 C	2 I	w.		Sec.	A. 7		LUF	1r L	NU HY	H. R	. 32 3	4 Y Y Y	3.00	2 P	207	L 74	- 1 () ()		/ 60	1.1	367	KG	2.00	1.1.1		
12			S				<i>ā</i> .	S. S.		6 C	÷		14.1		5 8 Bar	2.57	÷.,	- 1	1. 1.	4.000	51911		1. S. S. S.							
1			A	4. C.N.	1.1		Sec. 1945	11.24	1. 1. 1.	1997 - S. 1997 - S. 1997 - S. 1997 - S. 1997 - S. 1997 - S. 1997 - S. 1997 - S. 1997 - S. 1997 - S. 1997 - S. 1	1.1.1.20	S		5. T.		3. 200	3 - 20	2	11	100 100				S. Service		A 84 445		Sec. 357	E	

T STORAGE STORAGE			
: 99-09-2	3-Nitroaniline	170000.	្រា
1 83-32-9	Acenaphthene	8500.	
1 51-28-5	2,4-Dinitrophenol	4 170000.	
1 100-02-7	4-Nitrophenol	: 170000.	
1 132-64-9		4600.	
1 121-14-2	2,4-Dinitrotoluene	34000.	
84-66-2	Diethylphthalate	1 34000.	ិរប :
1 7005-72-3	4-Chlorophenyl-phenylether	34000.	ាក ។
86-73-7	Fluorene_	.11000.	. I J I
100-01-5	4-Nitroaniline	170000.	ាហ ា
534-52-1	4,6-Dinitro-2-methylphenol_	1 170000.	1U 🖓 🐴
	N-Nitrosodiphenylamine (1)		10 1
101-55-3	4-Bromophenyl-phenylether	34000 .	1U 1
118-74-1	Hexachlorobenzene	: 34000.	រប រ
87-86-5	Pentachlorophenol	170000.	1U I
85-01-8	Phenanthrene	140000.	
120-12-7	Anthracene	: 25000.	1 3 1
84-74-2	Di-n-butylphthalate	: 19000.	1 J
		1 210000.	1 1
129-00-0	Pyrene	1 170000.	1 1
85-68-7	Butylbenzylphthalate	130000.	1 1
91-94-1		690 00.	1U 1
56-55-3	Benzo(a)anthracene	670 00.	1 1
218-01-9	Chrysene	86000.	1 1
	bis(2-Ethylhexyl)phthalate		1 I
117-84-0	Di-n-octylphthalate	340 00.	:0 :
	Benzo(b)fluoranthene	680 00.	1 1
207-08-9	Benzo(k)fluoranthené	BOOOO	: :
50-32-8	Benzo(a)pyrene	690 00.	: :
193-39-5	Indeno(1,2,3-cd)pyrene	41000 .	: :
53-70-3	Dibenzo(a,h)anthracene	34000.	1U 1
191-24-2	Benzo(g,h,i)perylene	40000.	: :
		!	_::

(1) - Cannot be separated from diphenylamine

FORM I SV-2

1/87 Rev.

008654

NYI69=3 m PENDERS NY SOLES INDEAL DI SE

Tabi Sode: Elet Sale Rase No.: 1 80091 SAS No.:

Matrix: (soil/water) SOIL Sample wt/yol: 150.0 (g/mL) 6 Leb File ID: 61637 Level: (low/med) LOW Date Received: 8/ 6/91

Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 9/12/91 GPC Cleanup: (Y/N) Y pH: 7.5 Dilution Factor: 20.00

- North Barry Sector Barry Card Number TICs found: 17

CONCENTRATION UNITS (ug/L or ug/Kg) UG/KG

CAS	NUMBER		COMPOUND NAME	I RT-=	EST. CONC.	1.6
1 1 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.	104-40- 779-02- 612-94-	IUNKNOWN IUNKNOWN IUNKNOWN IUNKNOWN IUNKNOWN IUNKNOWN IUNKNOWN IUNKNOWN IUNKNOWN IUNKNOWN	ene, 9-methyl- AROMATIC_ lene, 2-phenyl	13.90 16.49 16.57 16.67 16.67 16.77 16.77 16.77 16.77 17.51 18.55 19.01 19.22 19.73 22.56 22.73 22.47	300000. 500000. 600000. 400000. 400000. 400000. 400000. 300000. 400000. 400000. 400000. 400000. 400000. 400000. 400000. 400000.	
19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29.		2 Benzó (e)	PHTHALATE pyrene	27.48		

FORM I SV-TIC

1/87 Rev.

SPACESALIPLES OF

Ð CIDE DRGANICS ANALYSIS DATA SREET

EPA SAMPLE NO

Contraction of the 1955006

A955

CF-C	12.1.5	5. St. #2		200 J. 100	10.0				A CANADA A	San Line In		1		in the second	1. 199
dian's	ent di		1.1.1.1		Sec. 24		64 - C. 17 - C.		1. Con		1	Stor Parts		1200	2.50
2.55		NT 10.2	ne - se tupa tre			5.05.0400			S. 1. 19 8	175.47	1. TO 31		Contrary.	Sec. 14	1
<u> 18 - 1</u>			<u> </u>	10000		in right	1.00			1. A. A.	12. States	199 C	7 A	9-36-7-31-31	1
	D No	lme:	ESE :		S. S. S. S. S. S. S. S. S. S. S. S. S. S	1.1	Sec. 9. 44		A. 1. 0.1	LISCI	e, co	125326		228.043	
-20	Later Sec	rd-81075 Co	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Distant And	97 98 S				1				х. - С.	e.C.	47.4.4
See	10 40						1. 10. 19	- 10 H	1	i datate i		1		See. 8	1.
	b Co	de:	ESE	27. 2 S		16.14		10913						Y	
	- Care	a Marsh	and a state	Per to the vi	1. Sec. 1.		S. South Sec.	1. A. A.	15. 11.0		1	Or further	The second	in the second	A.M.
1. J.		17. A.B.		Mar .	1. 1.		1. 200	A. A. P. M.	1000	1.0 10 000			34.	5 	1
	+			water		TED		our the			Sampl				See.
		• • • • •	DULL/	Talel		1 200				, Dao	Dawnyr	and Terrare		1.00	
	2. 2.				1.1.1	1.15	- P. S. M. C.			1. HA 18 194		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		o to presta and	1.0
				1. 2. 5-1					and search		File	and the second second		Y 40 3 3 3	1
ಶತ	wbte	: ¥L/	vol:	1000		U. 19	J/MI)	ML	18 A.	_ L&D	Tlle :	ID:	1. The second second second second second second second second second second second second second second second	24 - Ja - 20	170
1.17				2	No. 1 M.	1	م ومدينة مرج	2	12.0	2018-11-1	1355 7 1 to 1	1. 19 5 5 5	11.55	1 St. Beer	1
						17. A.		· · · · · · · · ·	2014	S. 1.	5-7-1 T		1.969		
Le	vel:		~(low	/med]		W			1.1	Date	Rece	ived:	807	/06/5	11
			- S. 2			1.1					(97) 		24.5	No Contaile	5. X)

Date Extracted: 08/07/91 dec. * Moisture: not dec. in the same

Extraction: (SepF/Cont/Sonc) SEPF Cont/Set Date Analyzed: 309/05/91 GPC Cleanup: (Y/N) N DH: 1.00

IC CIEBNUP. (I/N/ N	DITUCION FACTOL:
	· · · · · · · · · · · · · · · · · · ·
그는 것 같아요. 그는 것 같아요. 이야 하는 것 같아요. 이야 한 것 같아요. 이야 한 것 같아요. 이야 하는 것 이야 하는 것 같아요. 이야 하는 것 같아요. 이야 하는 것 같아요. 이야 하는 것 이야 하는 것 같아요. 이야 하는 것 이야 하는 것 이야. 이야 하는 것 이야 하는 것 이야. 이야 하는 것 이야 하는 것 이야. 이야 하는 것 이야 하는 것 이야 하는 것 이야. 이야 하는 것 이야 하는 것 이야 하는 것 이야. 이야 하는 것 이야 하는 것 이야. 이야 하는 것 이야 하는 것 이야 하는 것 이야. 이야 하는 것 이야 하는 것 이야 하는 이 이야 하는 것 이야. 이야 하는 것 이야 하는 것 이야 하는 것 이야. 이야 하는 것 이야 하는 것 이야. 이야 하는 것 이야 하는 것 이야 하는 것 이야. 이야 하는 것 이야 하는 것 이 이야 하는 것 이야. 이야 하는 것 이야 하는 것 이야. 이야 하는 것 이야 하는 것 이야. 이야 하는 것 이야 하는 것 이야 하는 것 이야. 이야 하는 것 이야 하는 것 이야 하는 것 이야. 이야 하는 것 이야 하는 것 이야. 이야 하는 것 이야 하는 것 이야. 이야 하는 것 이야 하는 것 이야. 이야 하는 것 이야 하는 것 이야. 이야 하는 이야 하는 것 이야. 이야 하는 이 이야. 이야 하는 것 이야 하는 이야 하는 이야. 이야 하는 이야 하는 이야. 이야 이야 하는 이야 하는 이야. 이야 하는 이야 이야. 이야 하는 이야 이야 하는 이야. 이야 이야 하는 이야 하는 이야. 이야 이야 하는 이야. 이야 이야 하는 이야 이야 이야. 이야 이야 이야 이야 이야 이야 이야. 이야 이야 이야 이야. 이야 이야 이야 이야. 이야 이야 이야 이야. 이야 이야 이야 이야. 이야 이야 이야 이야 이야 이야. 이야 이야 이야 이야. 이야 이야 이야 이야. 이야 이야 이야 이야 이 이 이야 이야 이야. 이야 이야 이야 이야. 이야 이야 이야 이야. 이야 이야 이야 이야. 이야 이야 이야. 이야 이야 이야 이야 이야. 이야 이야 이야 이야. 이야 이야 이야 이야. 이야 이야 이야 이야. 이야 이야 이야 이야. 이야 이야 이야 이야. 이야 이야 이야 이야. 이야 이야 이야 이야. 이야 이야 이야 이야 이야 이야. 이야 이야 이야 이야. 이야 이야 이야 이야. 이야 이야 이야. 이야 이야 이야 이야.	
그는 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같	
- 그는 가슴에 가지 않는 것을 알려야 한다. 이 것 2007년 전 이번 가지 방법을 가지 않는 것 같이 가지 않는 것 않는 것 🖉	
이 가는 것이 나는 이곳 이었다. 이렇게 이 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같이 있는 것 같다. 전화 관계 문화 관계	
	CONCENTRATION UNITS

CAS NO.

						CONC	ENTR	ATION	UNIT	5 - 200 5 - 200
	C	MPC	UNE)	2.39 	(ug/	L or	ug/K	g) UG	/L
							÷.,	· · · ·		

1					
- 1	319-84-6	alpha-BRC		0.02510	1
¢1	58-89-9	gamma-BHC (Lindane)	- * * 1 A	0.025IU	1
. 1	319-85-7	beta-BBC	and the second second second	0.050IU	4
1	76-44-8	Heptachlor	ાં અભિવેશ મન્દ્ર નુવારો છે.	0.05010	1.5445
- 1	319-86-8	delta-BHC	1	0. 0501U	1
1		Aldrin		0.05010	1
1	1024-57-3	_Heptachior epoxide		0.050IU	1 · · · ·
1	5566-34-7	gamma-Chlordane	I	0.05010	· • •
1	5103-71-9	alpha-Chlordane	I	0.05010	1 - 27-
1	959-98-8		i en	0.0501U	1 - 1 - T
1	72-55-9	_4,4'-DDE	I	0.05010	1
1	60-57-1	_Dieldrin	I	0.05010	1
1	72-20-8	Endrin		0.0501U	1 I I I I I I I I I I I I I I I I I I I
1	72-54-8	-4,4'-DDD		0.10 IU	1
1	33213-65-9		I	0.10 IU	1
1	50-29-3	-4,4'-DDT	I I	0.10 !U	1
1	1031-07-8	_Endosulfan sulfate	I	0.10 IU	1
1	72-43-5	_Methoxychlor		0.50 IU	;
1	53494-70-5			0.10 IU	:
ł	8001-35-2	_Toxaphene	I	1.0 IU	1
1	12674-1 1-2	-Aroclor-1016	I	0.50 10	:
11	11104-28-2		I	0.50 IU	1
1	11141-16-5	· · ·	1	0.50 IU	1
ł	53469-21-9		1	0.50 IU	1
1	12672-29-6		1	0.50 IU	1
1	11097-69-I		ł	0.56 IU	11
ł	11096-82-5	-Aroclor-1260		0.50 IU	t
1_				I	1

page 1 of 1

FORM I PEST

1/87 Rev.

	n - Erige State State State State State State State State			EP.	SAMPLE N
s. As areas		entro Musici	SOMACHER		N955D6
Lab Name: ES	3 . 7		Contract; N		
Lab Code: ESI	<u>ب</u> ن 2	Nor-1	ENS NO.	-nG	No.: A955
Matrix (soil)	(ater) whitek		den e Lai		NY16W*3
Level (low/me	Mole for	مربع مربع مربع	Dat	er i d	08/06/91
Solids:	0.0	A			

- 5	÷.,	1	10.	SA .		32.0	÷.,	÷.,	14	180		37	6.1		٠. ج	٤.	1.4		23	÷.,	2.5	5	÷.,	2.2				1.17	3.90	22		20		-	250	63.5	- 1	са.,	4.8	1		: E	100	× .	100	797	62.7	24	i
÷	-	1		12	÷.		2			1.1		(\cdot, \cdot)	14	4.1	1	1	9r.	- 1	1.5	÷.	74				1		4.0	\mathcal{T}	. Si	3	1.7	÷.,	1	с.	C. 7		1.1		5	1.0	35	25	12	Υ.F.			3	31	ŝ
1	55	-			<u></u>	04 Y	1	τĽ.	<u> </u>	÷.,	γ.	e	14			1.0	* <u>)</u> ?	Q.,			5 C	95	و ا	-	1	1.5	÷.,	÷.,			۰.		28	4.			ି ଜ			2.54	÷.,	- 2		1		-	_	÷.	ŝ
ĻΡ	<u></u>		01	nc	2€	20	IE.	r	а:	С. 3	L C	٦Ť	1.1	1	n	12	τ	12	- 1	1	Ð	a	1	L	53	o	٣.	22	n C	74	71	10	13	10	r	v		v	A	34	- 1	٠.	E ()	1:2	22	U	g G	"	
22	7	Ξ.			2.2			Ξ.					1.15			1.2 4			÷.	÷.	57	2	٢.,		2.7	\mathbf{T}				54		•7	1.0		-		17		-		2		- C			5.4	_	1.5	í
**]	\$	- C.		25	<u></u>	11	4.5	. T	1.0	6	وتبيده		÷.	22	34	1.0	<u>сэ</u> х.	у.	÷.,	<u>.</u> b	÷.,	. 12		1.1				×	4.1	۲. in 1	1.2		÷.	1.0	÷.,	ార	13	сı.,	1.00	÷.,		1.00	s	1.16	1.	1.1		1.1	

			1.24	
			1	
ICAS No.	ADALYLE	[Concentration]		
		1 31.0		
17440-36-0	Antimony -	125.1	UI	1
17440-38-2	Arsenic -	1	BI	and a second F al
7440-39-3	1Barium ····	1 - Alex - 2.9	BI	Sector P. 1
17440-41-7	TBeryllium	1 MARCE	UI	IP 4
17440-43-9	ICadmium	1	זט	1 P
17440-70-2	Calcium	1 26800 1	ો	and the AP I
17440-47-3	Chromium	1	01	1P 1
17440-48-4		1 6.1 1	UI	See and HP 1
17440-50-8	I Copper	21.0	BI	1P_1
17439-89-6	I Iron	1		1P
47439-92-1	I Lead	2.8	BI	I TIME
17439-95-4	I <u>Magnesium</u>	8590 1	1	<u>* * * ## P</u>
			_1	
17439-97-6	Mercury	0.20 1	D1	<u>1CV1</u>
17440-02-0	INickel	15.2	BI	1P 1
17440-09-7		3430 1	Bl	<u>IP</u> 1
17782-49-2	1 <u>Selenium</u>	2.1 1	01	<u> </u>
17440-22-4	Silver	4.9 1	DI	Provide Inc.
17440-23-5	Sodium	7730 1	-1	<u>IP</u> :
17440-28-0	Thallium	2.7	UI	<u>IF</u> 1
17440-62-2	Vanadium	4.2 1	Ul	<u>IP</u> 1
17440-66-6	Zinc	42.1	1	<u>IP</u> [
1	Cyanide	an a drama tha	1	the State of Land
1	1	1]	!

Color Before:

Clarity Before:

Texture:

Color After:

1

Clarity After:

Artifacts:

Comments:

FORM I - IN

3/90

SAMPLE MC

Ab Name: Et ab Code: ESE Matrix: (soil/water) SOIL

Level: (low/med) 10W in the start

Column: (pack/cap) PACK

Sample wt/vol: 5,000 (10/ml) 6

Moisture: not dec.

CAS NO.

10 3 Del

Seeb File Burghter

Date Received: 8/22/91

Date Mnalyzed: 8728/91

Dilution Factor: 1.00

NIX STATES IN CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

		1 - 4 - 5 - 5		1.2015
1 74-87-	3Chloromethane	1 12	ែ ប	
1 74-83-	3Chloromethane	1	IU -	1 constant
75-01-		1		
1 75-00-	3Chloroethane	1 12.	ie du 👘	1
1 75-09-	3Chloroethane 2Methylene Chloride 1Acetone	1 6.	्राण्डेः	
1 67-64-	1Acetone	1.12.	្រាប	1
1 75-15-	0Carbon Disulfide 41,1-Dichloroethene 31,1-Dichloroethane 01,2-Dichloroethene (total)	J	AU	1
i 75-35-	41,1-Dichloroethene	Г.	ែរប	
1 75-34-	31,1-Dichloroethane	1	ີ IU	1
1 540-59-	01,2-Dichloroethene (total)	1 40.	and the second	1.29
67-66-	3Chloroform de the set of the	1	: : U	1
1 107-06-	21,2-Dichloroethane	1	ា ាហ ់ឡើង	1
1 78-93-	32-Butanone	1	្រ (ប	1
1 71-55-	61,1,1-Trichloroethane	1. 6.	10 e.,	1
1 56-23-	5Carbon Tetrachloride	l 6.	jesatu s≊r	1
108-05-	4Vinyl Acetate	1 ₂₋₁ 2.	1U	1
75-27-	4Bromodichloromethane	18 al 6.	• •	1
1 78-87-	51,2-Dichloropropane	l . 6.	1U -	l se a que
110061-01-	5cis-1,3-Dichloropropene	1	10	1
1 79-01-0	6Trichloroethene	190.		1
	1Dibromochloromethane			12.5
79-00-	51,1,2-Trichloroethane		• • • •	1
	2Benzene	6.		1
10061-02-0	6trans-1,3-Dichloropropene	. 6.		
75-25-	2Bromoform	6.	•	1 (191) 1
	14-Methyl-2-Pentanone		•	1
1 591-78-0	62-Hexanone4Tetrachloroethene	12.		1
				I
	51,1,2,2-Tetrachloroethane			1
108-88-0	3Toluene	5.		1
108-90-7	7Chlorobenzene	6.	• =	i .
: 100-41-4	4Ethylbenzene	6.	IU IU	i
100-42-	5Styrene	6.		
1330-20-7	7Xylene (total)	6.	IJ	
			/	;

FORM I VOA

VOLATILE DREANICS ANALYSIS DATA SHEET JENTATIVELY IDENTIFIED COMPOUNDS

Contracts NEW WORK Lab Name: ESE S LINE Lab Code: ESE

Matrix: (soil/water) 601L 8991 11-891 Lab Sample

Lab File LOC 91564 Sample wt/vol: 5.000 (g/mL) G

Level: (low/med) LOW

30

Z Moisture: not dec. 14. Column: (pack/cap) PACK

÷.*

Date Analyzed: 8/28/91 Dilution Factor: 1.00

Date Received: 8/22/91

1. A. C. C. T.

EPA GAMPLE NO

9755 1-8-5

16S*4

¥168*4

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	CC	IMPOUND NA	AME	I RT	I EST. CONC.	Q
1				an ann an Ann an Ann an Ann an Ann an Ann an Ann an Ann an Ann an Ann an Ann an Ann an Ann an Ann an Ann an An Ann an Ann an		
2						
3 4					·	
5					! · · · · · · · · · · · · · · · ·	
6!						
7						
8					!	
9!					!!	
0					[]	
1						
2			·'		! i	
3I					¦	
5			'		· ·	
!						
7!					!	
B!						
·!					!I	
· / .					''	
!·!·						
!·			ⁱ			
3/.		<u>`</u>	!			
• •			!			
5					· /	
7						
3						
-r f			t (1			
· ۲						

FORM I VOA-TIC

Cart BENTIYOLATI LE URGANICS ANALYSIS DATA SHEET

NY165+4 Lab Nand: EBE Lab Code: EXE ME Case No.: RB091 _ EAS No.: A Se Start Mars Matrix: (soil/water) SOILLab Sample (D)Sample wt/vol:30.0 (g/mL) 6Lab File ID: 51541

Level: (low/med) LOW Date Received: 8/22/91

I Moisture: not dec. 14. dec. Date Extracted: 8/27/91 Extraction: (SepF/Cont/Sonc) SONC Bate Analyzed: 9/ 5/91 GPC Cleanup: (Y/N) Y pH: 7.0 Dilution Factor: 1.00

CONCENTRATION UNITS: CONCENTRATION UNITS:

		!
108-95-2Pheno1	770. IU	1200
111-44-4bis(2-Chloroethyl)ether	1 770. IU	1
95-57-82-Chlorophenol	: 770. JU	1
541-73-11.3-Dichlorobenzene	1 770. JU	1
106-46-71,4-Dichlorobenzene	1 770. 1U	1.5
100-51-6Benzyl alcohol	1 770. IU	1
95-50-11,2-Dichlorobenzene 95-48-72-Methylphenol	: 770. IU	1
95-48-72-Methylphenol	: 770. IU	- 1 S
108-60-1bis(2-Chloroisopropyl)ether	1 770IU	1
106-44-54-Methylphenol	: · · 770. IU	
621-64-7N-Nitroso-di-n-propylamine		F
67-72-1Hexachloroethane		.,
98-95-3Nitrobenzene	: 770. IU	ł
78-59-1Isophorone	: 770. IU	
88-75-52-Nitrophenol		•
105-67-92,4-Dimethylphenol		÷
65-85-0Benzoic acid	3700. IU	ł
111-91-1bis(2-Chloroethoxy)methane		1
120-83-22,4-Dichlorophenol	770. IU -	
120-82-11,2,4-Trichlorobenzene	770. IU	
91-20-3Naphthalene	770. IU	i
106-47-84-Chloroaniline		i
87-68-3Hexachlorobutadiene		i 1
59-50-74-Chloro-3-methylphenol		i i
91-57-62-Methylnaphthalene	770. U	
77-47-4Hexachlorocyclopentadiene		
88-06-22,4,6-Trichlorophenol	•	
95-95-42,4,5-Trichlorophenol		
91-58-72-Chloronaphthalene	770. U	
88-74-42-Nitroaniline		i T
131-11-3Dimethylphthalate	770. IU	4 1
208-96-8Acenaphthylene	770. IU 770. IU	1
606-20-22,6-Dinitrotoluene	770. 10	i
	ⁱ ⁱ	'

FORM I SV-1

1/87 Rev.

SAMPLE NO.

00005.3

		میں کو کر ہے۔ مرکزہ میں کاری کار						argensen Weinselenen Frieder	S		с. ;;		5. Y	
AL ANTING														
	1. Sector													
										<u>ج</u> . ال				
	1 - M	10.00	1. S. C.		5-7-4-	5. 24	<u>.</u>	D _						
		S. 77. 7. 1	 Star P	vined)	115		đ					india ann dia	English of	$(1,1) \in \mathcal{T}_p$

				т.,		7		1. c., .					ter of		120			175-	1.1					1.2	and the second	States.	*** - 2
÷E.	1.12	14.3					r			23		6.0					1 1		4				÷			791	727
	26 5	(4.5-3)	2 yr 11	2 B	$\sim 10^{-1}$	15 21 3	0.00	1.85	6 12	1.1				1.14		的	6 1.2		्री		1.2.1		C.	1.0	ALC		-7
S. S.	1.7 24	5 4 200	30.5	1. St. 4	17. A-4	Sec. 1				2	10.0			1.1	14.	2.29	8 F.S			1.00	9 e (-	2 1 - 1		99 A 5			23 Y 1
R	PC J	11.0	anur		. ()	//N	5 24		Sec. 1	4.6%	DH		7	0		9.52	1.6	31	tτ	Ön	٦F,	ct	or				. 0
	u Harris	A SHAT W.	out the	4. 1. 54	- CA		. S		A Sec.	6		7.22		2.70	S. 84	1.52	en la	37.5		14.1	2.2	53.00		·	<u> </u>	- -	
14		\$4.23	221.99	7.53		43		1.10	Citatio	199	5,751,0	9-199	1.50	346	2.2	195	8 C .		1.4	ГС _ф			÷.;**		1.10	2	
			Sec. 1		1. A.	1.5				÷., t		5 (a)	1. A	- ترسيد	CO	NCF	INT	RAT	r s ñ	N.	Í ÉN 1	TS	• 26	2 × ×	14 T. A.	1.2	-
-1 T.4	62.52	11.4 4 70	0.99 S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.			1.3	2.65	at all a		1000		1													Sec. 19	e _	
	网络拉	~ 20	CAS	ND.	1	1995	2.99	÷CC	DMP	DUN	ID 🚬	- 644	Sugar		۲u	g/1	- 50	r e	10/	Kg) 孔	IG 7.	KG	1	1.1.1	<u> </u>	10
32	S. #	20.00	1.1	1,442.0	E ST	1.1		1231	41.2		Sec.	3643	19. °C	. 15	3.5.2	en de	1.	44.5	Q	2 she	0.5	96 M	12		25	1	
25						74.5			_							11		19 19 19								-	
		47 U 11 1	1.12	1. A. A. A. A. A. A. A. A. A. A. A. A. A.	1000	1.00		1.5		100 C	CT 172 DO 1	2.66		1		1.1	26	107214	A. C. P.	250 500		1.11.12	C 1994 - S				· · · ·

	99-09-2	3-Nitroaniline	3700.	4U - 1
	83-32-9		4	IU Asten Takes
	51-28-5	2, 4 Dinitrophenol		MESS E
	100-02-7	4-Nitrophenol		10 1 1
	132-64-9	Dibenzofuran	770.	10 1 4
	121-14-2	2,4-Dinitrotoluene		
		Diethylphthalate	770.	a service a service ser
		4-Chlorophenyl-phenylether		10 1
	86-73-7	Fluorene	1 770.	IU Staller
	100-01-6	4-Nitroaniline	1 3700.	10 11
		4,6-Dinitro-2-methylphenol	3700.	
	86-30-6	N-Nitrosodiphenylamine (1)	1 770.	
	101-55-3		1 770.	
	118-74-1	Hexachlorobenzene		10
· · ·	87-86-5			U I I
	85-01-8	Phenanthrene		10
	120-12-7	Anthracene		່ານ
an states .		Di+n-butylphthalate		1U
	206-44-0	Fluoranthene		10 1
		Pyrene	• • • • • • • • • • • • • • • • • • • •	10 1 allo
i	85-68-7	Butylbenzylphthalate	770.	iŭ i 🗄
	91-94-1			iu ;
1	56-55-3	Benzo(a)anthracene	770.	IŪ I
i	218-01-9	Chrysene		10 1
1	117-81-7	Chrysene bis(2-Ethylhexyl)phthalate	1500.	B
	117-84-0	Di-n-octylphthalate	770.	IU I
1	205-99-2	Benzo(b)fluoranthene		U I
:		Benzo(k)fluoranthene	770.	IU İ
. :1		Benzo(a)pyrene		IU I
ł		Indeno(1,2,3-cd)pyrene		U · I
1	53-70-3	Dibenzo(a, h)anthracene		
1		Benzo(g, h, i)perylene		
1				
	1) - Cannot be	separated from diphenylamine		
			en en la servició de la servició de la servició de la servició de la servició de la servició de la servició de	

FORM I SV-2

1/87 Rev.

0.000.00

SOURCEST WEEK LAD MANAGE STR

TO SHE SHALL THE SHE SHE SHE SHE SHE

Matrix: (soll/water/soll.

Sample wt/wol: 30.0 %g/mL2 % Tab File/(0) 61041

 GPC Cleanup:
 (Y/N) Y
 pH: 7.0
 Dilution Factor:
 1.00

 CONCENTRATION UNITS:
 CONCENTRATION UNITS:

 Number TICs found:
 2

I Moisture: not dec. 14. Met. Bate Extracted: 8/27/91 Extraction: (SepF/Cont/Sonc) SONC _____ Date Analyzed: 9/ 5/91

PRA-SAMPLE NO

YISSE

COMPOUND NAME CAS NUMBER 1. - - IUNKNOWN METHYL KETONE 5.36 3000. IBJ 2. 123-79-5:Hexanedioic acid, dioctyl es: 23.75 2000. J BJ and the second second and the state of the second second second second second second second second second second 3. 6. ·8. 9. 10. -----12. . . 1 12 ____ _____ 17. _____ ____· 20. . 22. 23. 25. 26. 27. 28. 29._ 30.____

FORM I SV-TIC

1/87 Rev.

SPREIDS TO LIGS UNLOSSED IN STRA

 Lab Name:
 Contract activity

 .ab.code:
 Cites No. (NBD)

 .ab.code:
 Cites No. (NBD)

 Natrix:
 Solid/water

 Sample wt/vol:
 On (g/ml)dG

 Level:
 Lov/med)

GPC Cleanup: (Y/N) T

CAS NO. COMPOUND

Dilution Factor:

(ug/L or ug/Kg) UG/KG

1.144			Affan swafes bir i'r ra chemer few cherer e far i'r f	
5	319-84-6-	alpha-BHC gamma-BHC (Lindane)	1.91	0
-	58-89-9	gamma-BHC (Lindane)	1.91	D
	319-85-7-	beta-BHC	3.91	DAN
	76-44-8	Beptachlor delta-BHC Aldrin	3.91	0 41 220
	319-86-8-	delta-BHC	3.91	U
્ર	309-00-2-	Aldrin	3.91	U
	1024-57-3	Heptachlor epoxide1	3.91	U
	5566-34-7	gamma-Chlordane1	3.91	U I
1	5103-71-9)alpha-Chlordane	3.91	U I
1	959-98-8-	Endosulfan I	3.91	
4	72-55-9	4,4'-DDE	3.91	
1	60-57-1	Dieldrin Endrin 4,4DDD	3.91 3.91	U 1
1	72-20-8	Bndrin	3.91	U
1	72-54-8	4,4 -DDD1	7.81	
1	33213-65-	9Endosulfan II1	7.81	
1	50-29-3	4,4'-DDT1	7.81	•
i		Endosulfan sulfateI	7.81	·
1	72-43-3	NethoxychlorI	39. 1	
1	- 33494-70-	5Endrin ketone!	7.81	
:		Toxaphenei	78.11	-
:		2Aroclor-10161 2Aroclor-1221	39.10	
;		5Aroclor-1232	39. 10	
;		$9 \lambda roclor - 1242$	39. 10	
i			39. IU	
;	11097-69-1	6hroclor-12481 1hroclor-12541	39. IU	
i		5Aroclor-1260	39. 10	
i		1	551 10	1

page 1 of 1

FORM I PEST

21-⁴¹. 1997-94

a contract of the state of the second

1/87 Rev.

Eab: NAME: SIX Six Construction Operation Six Social Eab: Code: Six Code: S	INU.			÷.				and the second second			· · · · · · · · · · · · · · · · · · ·	N. N.	C
Labenhame with the second contract of the second se							1.189 B	an the second states					
				1. A. S.				1. 30 A 18 18 18	an Salation and a set of the			ALL 1 14	
	2 A 1	N	Sec. Sec. Sec.	2014) 2014	1					and a second second		146.25	11.00
Natrix Sould and and		Section and the section of the									م بند المعالم الم المحالية المحالية المحالية المحالية المحالية المحالية المحالية المحالية المحالية المحالية الم	LaD	37° 84
Natrix Sould and and					and and share								
	55B	G NO A955		X.Sc.	SAS NO		October 1		12 . Sec. 17 . 11	Strates .		PgD ?	
	1. C. S. S. S. S. S. S. S. S. S. S. S. S. S.					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Same Speed	22.2					
Level (lovymed): 200 200 Date:	4 5.00	D: NY165+4		F			$\sim 10^{-1}$		15.25	94 . (.).	17 3		
Level 4 lovymed : LOW 20 Annual Date: Cleved: D8/22/91	100	S 341 - 41 - 63					5			1.1		1	
	91	d: 08/22/91		Date				ON PARA		W/Red		Leve	4-27
				1. S. 1.								ar is gan in the Lange gan in the	20 - S.C.

36.

Z. Const	Oncentration Uni	ts log	L or mg/k	dry	weight	: HG	/KG
10^{-1}							
				1546	P Sat	वस्त	
	ICAS No. I An	alyte	Concentra	1011	C1 20	MM 1	
	1					24 Å 34	
ar all a second a second a second a second a second a second a second a second a second a second a second a se	17429-90-5 4A1u					IP I	
	17440-36-0 1Ant					IP I	
	1 <u>7440-38-2</u> 1Ars	enic	Selection and the		日本自己	MF SI	
	17440-39-3 4Bar					IP-1	10
	1 <u>7440-41-7</u> 1Ber					IP I	
	17440-43-9 1Cad					1P 1	
	17440-70-2 1Cal					1P 1	
	17440-47-3 1Chr					1P 1	
a transformation is	17440-48-4 1Cob			.61		IP I	
	17440-50-8 1Cop		l <u>. 12</u>			IP 1	يتوينون والمرادية
	17439-89-6 1 Iro						
	7439-92-1 di Lea						
	17439-95-4 1Mag				al destandance		i santa
n de la composición de la composición de la composición de la composición de la composición de la composición d	17439-96-5 Man						
	1 <u>7439-97-6</u> 1Mer					IAVI	
and the second stands	17440-02-0 INIC				🕷 også statist		
ار این به تواند. ۲ را همه این می است ام اینها	17440-09-7 1Pot						t en la En en se
	17782-49-2 Sel	and the second division of the second divisio	1			1F 1	
	17440-22-4 1511	The second second second second second second second second second second second second second second second s	and the second division of the second divisio	<u>54 10</u>		1P	
	17440-23-5 1Sod	the second second second second second second second second second second second second second second second s	which we are supported in the support of the suppor	<u>58 E</u>		IP I	
	17440-28-0 Tha.	the second second second second second second second second second second second second second second second s	and the second se	<u>30 10</u>		1F :	
	17440-62-2 1Vana	the second second second second second second second second second second second second second second second s	<u> </u>	<u>.9</u> _		IP I	
	17440-66-6 1Zind		<u>. 36</u>	<u>.9</u> _	1	IP I	•.
	11 <u>Cya</u> 1	<u>nide</u> !		I		1 1	
		······		·	1	1	
					-		
	,						

Color Before:

Clarity Before:

Texture:

Color After:

Comments:

Clarity After:

Artifacts:

3/90

STATES STATES AND A STATES AND

MORENCE ETRA CONTRACTOR

Level: (low/med) LOW

I Moisture: not Bath MUD.

Column: (pack/cap) PACK

State Samp La

1331 1310

Sang) Constants

Lab File (): 8:050 Date Received: 9/ 9/91

Date Analyzedi 29/16/91

Dilution Factors 1.00

CONCENTRATION UNITS: COMPOUND (ug/L)or ug/Kg/.ug/L CAS NO. 74-87-3-----Chloromethane 10. 10

 74-87-9-----Bromomethane
 1

 75-01-4----- Vinyl Chloride

 75-00-3---- Chloroethane

 75-09-2----- Methylene Chloride

 67-64-1----- Acetone

 10. IU H E 210. an 🖁 **310.** 5. រិប ្ល U 10. 75-35-4-----1,1-Dichloroethene____1 5. ាប in the second second second second second second second second second second second second second second second 16. 1 5. 75-34-3------1,1-Dichloroethane_ ះប 540-59-0-----1,2-Dichloroethene (total)_4 ្រា 3500. F + [~] J 67-66-3----Chloroform_____ 4. ំហ្វេ 107-06-2-----1,2-Dichloroethane 5. 10. 78-93-3-----2-Butanone **10** 🖘 ି 2. 71-55-6-----1, 1, 1-Trichloroethane _ 1BJ 56-23-5-----Carbon Tetrachloride 5. 10 10. ្តាហ 108-05-4-----Vinyl Acetate 5. 75-27-4----Bromodichloromethane_ ្ទាប **.** 5. 78-87-5-----1,2-Dichloropropane 10 10061-01-5----cis-1,3-Dichloropropene 5. 10 79-01-6----Trichloroethene 3000. াৰ গাঁহ 124-48-1----Dibromochloromethane_ 5. IU 79-00-5-----1,1,2-Trichloroethane ___ 5. 10 71-43-2----Benzene 5. 10 5. 10061-02-6----trans-1,3-Dichloropropene 10 75-25-2-----Bronoform 5. 10 108-10-1-----4-Methyl-2-Pentanone 10. 10 591-78-6----2-Hexanone :0 10. 127-18-4----Tetrachloroethene 18. 1 79-34-5-----1, 1, 2, 2-Tetrachloroethane 5. 10 108-88-3----Toluene 11. 1 108-90-7----Chlorobenzene 10 5.

FORM I VOA

100-41-4----Ethylbenzene_____

| 1330-20-7-----Xylene (total)_____

100-42-5-----Styrene

1/87 Rev. 136

25.

5.

10

10

10

PAY PANRIES NO.

11111

NIVIER ATSSEVIEVE

VOLATILE DREANICS ANALYEIS DATA SHEET

Contracti NEW YORK Lab Name: ESE Lab Code: EBE Case No. A STATE STATE AND A STATE SAS No.1 Matrix: (soll/water) WATER Sample wt/vol: 5.000 (g/mL) ML Lab File (0) INED NO Date Received \$ 9/ 9/91 Level: (low/med) LDW 25 Date Analyzed: 9/16/91

0

Z Moisture: not dec. 100.

Column: (pack/cap) PACK

CONCENTRATION UNITS:

EPA SAMPLEND

1217-

SI LE L

Number TICs found:

(ug/L or ug/Kg) UG/L

2			ંક્ષેલી	and the second				1		
ि	CAS	NUMBER			COMPOL	IND NAM	E	l sert se	EST. CONC.	
			!							
÷ ĵ										
. " I										_11
-	4							!		_!!
	ິ 5							n an an Anna Anna Anna Anna Anna Anna An		
i.	-							1	*	
. !								1	°	
									·	
Ì										
۱.			•					}		_!!
1	4		•					[-!!
i								!	i	
									' !	
i										
ł								!		_!!
ł			!					l		_!!
1										-!!
i										-!!
;								''		- ''
									′ 	
ł	24		· ·							_ : ;
ł	25		!.							-!!
-	26									-!!
1	27	·								
;	00		·							
i										
1								·		

FORM I VOA-TIC

EPA SAMPLE ND.

EU+5 RE

WINNESS WITH THE MARK STREET

LED Namer DEE

teb.Code): Est Fasel Boy I avertes SAS NO. / Matrix: (soli/cater) Water

Sample wt/vola 5,000 (g/al) ML

Level: Clow/med) LOW

Z Molsture: not dec. 200.

Column: (pack/cap) PACK

Lib Bangis Many 60+5

LAB FLD OF CLEFT

Date Received: 9/ 9/91

Date Analyzed: 9/16/91 Dilution Factor: 200.00

CAS ND.		TION UNITS: ug/Kg) UG/L Q
1	and the second second second second second second second second second second second second second second second	a
	Chloromethane	
	Bromomethane	! 2000. IU I
	Vinyl Chloride	
.75-09-2	Chloroethane	1 2000. 1U 1 _1 1000. 1U 1
· · · · · · · · · · · · · · · · · · ·	Methylene Chloride	2000, 10
2 275-15-0	Carbon Digulfide	1000. 111
1 75-35-4	1,1-Dichloroethene	1000. IU 1
75-34-3	1.1-Dichloroethane	1000. IU I
540-59-0	1,2-Dichloroethene (total)	
67-66-3	Chloroform	i 1000. IU i
107-06-2	1.2-Dichloroethane	1000. U
1 78-93-3	2-Butanone	2000. 10 1
1 71-55-6	l,1,1-Trichloroethane	1 1000. IU I
1 56-23-5	Carbon Tetrachloride	1000. IU I
1 108-05-4	Vinyl Acetate	12000. IU1
1 75-27-4	Bromodichloromethane	1000. IU I
1 78-87-5	1,2-Dichloropropane	1000. IU I
110061-01-5	1,2-Dichloropropane	I1000. IU I
1 79-01-6	Trichloroethene	_10 39000. 1 1
124-48-1	Dibromochloromethane	! 1000. !U !
79-00-5	1,1,2-Trichloroethane	
	Benzene	_1 1000. IU I
	trans-1,3-Dichloropropene	
	Bromoform	1 1000. IU
	4-Methyl-2-Pentanone	
1 371-78-8	2-Hexanone	_1 2000. U I 1000. U
1 12/-10-4	Tetrachloroethene	_ 1000. U 1000. U
	1,1,2,2-Tetrachloroethane	1000. IU
100-00-3	Chlorobenzene	
100-41-4	Ethylbenzene	
! 100-42-5		
	Styrene	
	AFTER CODEL/	

20 PARTICUS CHIGANN (SELANALVA) (SE DATAS BHEET

Lab Name) 200 Lab Coder (2005) Caterres (2000) Matrixi (Soli/Water) Matrixi (Soli/Water)

Sample wt/vols 5.000 Kg/ml) M Level: (low/med) LDW 2 Moisture: not dec. 400.

Column: (pack/cap) PACK

्रस

Number TICs found: 0

SUBTACES NEW YORK SAL

EPA SAMPLE NO

1455

Lab Fille (0) 51057

Date Received: 9/9/91

Date Analyzed: 9/16/91

Dilution Factors 200.00

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

	CAS	NUMBER		COMPO	UND N	AME		RT		EST	CONC			
	2.		1	a faire in the										
	4 5 6		1				1	ين ورد در در	64.52					
	8 9 10		<u> </u>				 		ا <u>ندانی</u> اندیکی اند			¦_ ¦_		
	12 13		{	 			I					!- !-		
:	15 16 17		. .	 			 		¦			! _ ! _ ! -		; ; ;
- - - - -	19 20 21	· · · · · · · · · · · · · · · · · · ·	. .	 					1			¦_ ¦_		
 	22 23 24		! . ! .	 					 			!-	 	
	26 27 28		/ . / .	 			 		 			_ _ _		
; ; ;	30		/ . / .	 			i		21			¦ _ ¦ _ ! _	 	ļ

FORM I VOA-TIC

1/87 Rev.

HEVELOPER BUILDED WAYS IS ON VERIES

Lab Namer (2005) Coders ESE (2007) Coders ESE (2007)

 Natrix:
 (soll/water)
 Natrix:
 Lab
 Sample:

 Sample:
 wt/vol:
 1000.01
 (g/mL)
 Clob
 File
 Sample:

Level: (low/med) LOW

2 Moisture: not der. 200, dec. Date Extracted: M0712/9) Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 9/24/91

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.00

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L

				1
i	108-95-2	Phenol	1 10. 1	U A R
1	111-44-4	Phenol	1	
ł	95-57-8	2-Chlorophenol		
1	541-73-1	1.3-Dichlorobenzene	1	U 👘 I 👘 🔊
	106-46-7	1,4-Dichlorobenzene	10. 1	
;	100-51-6	Benzyl alcohol	10. 1	U i i i
1	95-50-1	1,2-Dichlorobenzene	10.	U I
1	95-48-7	2-Methylphenol	1. 10. 201	U I I
ł	100-00-1			U 1 -
ł	106-44-5	4-Methylphenol	1 10. 11	u i tr i
1	621-64-7	N-Nitroso-di-n-propylamine	1 10. !!	J 1
I	67-72-1	Hexachloroethane	1 10. 11	יין דייי ד
ł	98-95-3	Nitrobenzene	10. 11	JII
ł	78-59-1	Isophorone	1 10. 11	
1	88-75-5	2-Nitrophenol	1	
ł	105-67-9	2,4-Dimethylphenol	10. Il	J a l
1	65-85-0	2,4-Dimethylphenol	1 50. 11	1 1
ł	111-91-1	bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene	1	
ł	120-83-2	2,4-Dichlorophenol	10. H	
l	120-82-1	1,2,4-Trichlorobenzene	1 10. IL	
				-
1	106-47-8	4-Chloroaniline		
ļ	87-68-3	Hexachlorobutadiene	10. IL	•
	59-50-7	4-Chloro-3-methylphenol	1 10. IL	
÷	31-2/-6	2-methylmaphthalene	i 10. iL	
i		Hexachlorocyclopentadiene		-
i	88-06-2	2,4,6-Trichlorophenol	1 10. 10	•
I	95-95-4	2,4,5-Trichlorophenol	50. IL	
i	91-58-7	2-Chloronaphthalene	10. IU	
i	88-74-4	2-Nitroaniline	50. 1U	
	131-11-3	Dimethylphthalate	10. IU	•
	208-96-8	Acenaphtnylene	i 10. iU	•
	606-20-2	2,6-Dinitrotoluene	10. IU	
	_	· · · · · · · · · · · · · · · · · · ·	l l	i

1/87 Rev.

000062

8955

Date Received: 9/ 9/91

ENICOLATALE ORGANICS ANALYSIS DATA SHEET

PTD STUELLESSE

TEAL CORRECTION OF A CONTRACT NON TRADUIT CASE NON

Matrix: (soil/water) MATER

Sample wt/vol: 1000.0 (g/mL) ML Level: (low/med) LOW

Z Moisture: not dec. 100. dec.

Extraction: (SepF/Cont/Sonc) SEPF GPC Cleanup: (Y/N) N pH: 7.0

Date Received: 9/ 9/91 Date Estracted: 9/12/91

ar wat Nigea.

MY16H#5

SA955

686

Date Analyzed: 9/24/91

Dilution Factor: 1.00

LED FICE

Contrar a ware

12 6 E ...

CONCENTRATION UNITS: CAS NO; COMPOUND (ug/L or ug/Kg) UG/L 99-09-2-----3-Nitroaniline 50, 10

1 99-09-23-Nitroaniline). JU	
B3-32-9Acenaphthene		0. IU	
51-28-52,4-Dinitrophenol) IL	
1 100-02-74-Nitrophenol	l 5). JU	
1 132-64-9Dibenzofuran), 10	1
1 121-14-22,4-Dinitrotoluene). ຟປ	
: 84-66-2Diethylphthalate	1). du	
1 7005-72-34-Chlorophenyl-phenylether	1). IU	
86-73-7Fluorene	1) IU	
: 100-01-64-Nitroaniline	; 50). ີ ຈຸມ	
534-52-14,6-Dinitro-2-methylphenol	II ⊂ _ 50). 10	
B5-30-6N-Nitrosodiphenylamine (1)). ິນ	
101-55-34-Bromophenyl-phenylether). IU	
118-74-1Hexachlorobenzene	- I).≷⊴iù	14 gr 🛔 🗍
87-86-5Pentachlorophenol	; 50). IU	1
85-01-8Phenanthrene	1). IU	1
120-12-7Anthracene	; 10). IU	1 a 1
B4-74-2Di-n-butylphthalate	1	. 10	1
206-44-0Fluoranthene	1 10	່ ເປັ	1
129-00-0Pyrene	:	. 10	· · · · ·
85-68-7Butylbenzylphthalate	: 10	. : :0	ł
91-94-13,3'-Dichlorobenzidine	: 20	. 10	1
56-55-3Benzo(a)anthracene			
218-01-9Chrysene	10 3	្រះប	1
117-81-7bis(2-Ethylhexyl)phthalate	3	- 1B.	J
117-B4-0Di-n-octylphthalate	I 10	10	1
205-99-2Benzo(b)fluoranthene	1 0		•
207-08-9	10		. 1
207-08-9Benzo(k)fluoranthene 50-32-8	! >> 10		1 -
193-39-5 Indeno(1,2,3-cd)pyrene	_ : 10	. :U	1
53-70-3Dibenzo(a,h)anthracene	_! 10	. !U	1
191-24-2Benzo(g,h,i)perylene	_1 10	. !U	ŧ
		1	:

(1) Cannot be separated from diphenylamine

FORM **I** SV-2

• **1/87** Rev.

10	1000				41.2		1.1		201	1	1.19	1.6.15		4		1.1	1.1	÷			12.00	1.1	14	1.54	19 A.	1.81	1.1		12.95		199	1.1		A	5A	MP	ĿÆ	
e p		1944	insere.	Ύ Γ	14	16	15.1		1	1-34	ALC: A	1.67	12	100	10-2	1000	44		1.	14	1.00		72.0	SD	71.3	10	14	1.	-1	1.15		3.5	City 1		1564		i date	
	2.4		- j 2		£ 12	€j₹			5	12.6	174	24	NI		3.5	•	. i.i.		15	18.5	1981	A T	FA		HE	:E 4		- R.	2,67	$\sim 10^{-1}$			4.20	Airt	1.4	94 - S	Sec.	Н.
			$\mathbb{C}_{\mathcal{L}_{2}}$	100	2017			16	124	16.00	÷	60 da	2.0	- 75	Sec.		\$2.97	1.91	- 1	6.49	200	·	1.1	10- in 1	4.4		14	Sec. 1		C^{*}	Sol.	: A .	100	1.50	100			ċ.
10	, wedg	12	13.0	2.20		10		1.1		10	12		1.	Ð	- 1	1 B .	3.1				1.1	Pf	XP	JD.	5 2	2.24	3.9	100		1	11.2		17	6.24	Buch	191	777	1
	1		17 L S	14	37 °	- 2	6 - D P			100	140	ditri.	1	10	69-2	1.0	$\langle \mathbf{T}^{\dagger} \rangle$			2.7	5.6	estail.	100		- 97) - 1	$\mathcal{A}^{(n)}$	100	7 选	1241			15.4	de à			12.5	- 2	Ş,
	- P	1.57	A						1	1 	1.15			10			فيومانها.		2.2	100			÷3.		5	14	5 N 10	63		100		1.	6 H	PLY.	16	W.S.	. 🤉	Ū,
34	2367	100				1.1								2.36		1.5				~ 0		2.1	6-17		1.0	44.0		12	1.1			82	日本	واللام	1. 100	$\sim e^{-}$	163	÷
	Ξă.	32.	25	2	\mathcal{F}_{i}	· · · ·		1.1	-				-		×.	9.1			. Ľ.	21			1.1	5 .	17	35	24	134		11-1		1.3	de la	10.1	100	1.15	<u> </u>	8
			140	3.0	5.44		1.			501				<u>_</u>			<u> </u>	1.1		100			4 H	1.0	- H	1.16	-162	1 1	". A	20	182		10.5			100	1	Ξ
		.00						1		1. 2. 20		100		Page 1		ю. —						10 A.		Sec. 25.	1.81.5	See. 16.			1.0	1.000	14	11.	CE 2 1	1.000	Sec. 1.	5. 55 . 10	- S. S. S. S. S. S. S. S. S. S. S. S. S.	£9)

SAMPLE NO ALC: N -

N. 1735.2

SOC.00. Lab Foder ESE Pase NO- 1 8209 E SAS No A955 Matrix: (soil/water) MATER Lab Sample Of-

Sample wt/vol: 2000.0 (g/mL) ML Lab File IDI 61686

Leb

Level: (low/med) 2.0W Date Received: 9/ 9/91 I Moisture: not sec. 100. dec. Date Extracted: 9/12/91

Extraction: (SepF/Cont/Sonc) GEPF Date Analyzed: 9/24/91 ini ini seconda di

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.00

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Number_TICs found:

CAS	NUMBER	COMPOLIND NAME	RT .	EST.	CONC.	-0
1.	105-60-2	2H-Azepin-2-one, hexahydro-	10.53		30.	5
2				!		
్తం		(2012) A strategy of the st				
				• <u></u>		
6.				' !	·'	
		📩 کے نیے جب سے ایک کار کار کار کان نیٹنا جو خان کا کار کا کار جات کار جات کار جات کار جات ہے۔		1	·	
				•		
9.						
10.						
11.	;					_
12	;				!	
í3. <u></u>			اری) میں دور میں میں میں دور سے سے			
4	!				{	
5					!	
	!					
17	·					
21.	· • = = = = = = = = • • !		'		' !	
22.	······································		·		;	
23.						
24.						
25					;	
26						
ືອ			1			
:9	I		·		!	
ю			¥4		'.	
-	!		;	215.1 		

FORM I SV-TIC

1/87 Rev.

THIS AND A MUSE AND FITS AND THE SAME

 Lab Walking Size
 Contractine coolses
 2355003

 Lab Walking Size
 Cines Nort 20001
 Size Nort 20002

 Lab code: Misc
 Cines Nort 20001
 Size Nort 20002

 Matrixt-(coll/vrstor)
 NATER
 Lab Sample: (0): 101015

 Sample wit/wolt:
 10001: (g/al) ML
 Lab File 40:

Level: (lov/med) LOW Date Received: 09/09/91 & Molsture: mot dec. Date Extracted: 09/13/91 Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 40/09/91

GPC Cleanup: (Y/N) N pH: Dilution Factor: 1.00 CONCENTRATION UNITS

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L

1	ومرتبة ومرتجعة المها				se I sa Sera	alats a	1	<u>.</u>
1	309-00-2	Aldri	n the second second		_1	D.050	UU 🔊	
	319-84-6	alpha	-BHC			0.025	10	
1	319-85-7	beta-l	BHC			0.050	10	
	319-86-8					0.050	U	
¥.	58-89-9	ganna	-BHC (Lind	ne)	•	0.025	U 🧯	
1	5566-31-7		-Chiordane'	이 지난 것이 아니는 것을 맞을		0.050	10	
1	5103-71-9 72-54-8	alpha-	-Chlordane	in at a		0.050	JU	I
1	72-54-8	4;4'-1	DDDDDD	n an a' an a' an Arainneachadh an Arainneachadh an Arainneachadh an Arainneachadh an Arainneachadh an Arainneach		0.10	U	. 4
1	72-55-9	4,4'-1	WE			0.050	U	्य
1	50-29-3	4,4'-1	DDT	and the second second second second second second second second second second second second second second second		0.10	ប្រ 🍰	
<i>.</i>]	60-57-1	Dieldz	:in <u></u>	and Algebra and see	<u>_</u> l 353307	0.050	10.5%	
4	959-98-8					0.050	U	
ł	33213-65-9					0.10	•	
1	1031-07-8	Endost	lfan sulfa	ite <u> </u>		0.10		1
1	72-20-8				_1	0.050	Î U	
1	53494-70-5	Endrin	ketone		I	0.10	• -	1
1	76-44-8	Heptac	chlor	••	<u>- 1</u> - 12 Sec	0.050		
1	1024-57-3	Heptac	chlor epoxi	ide <u>n en en en en en en en en en en en en en</u>	<u></u>	0.050	10	1
1	72-43-5	Methox	(ychlor <u> </u>	· · · · · · · · · · · · · · · · · · ·	_1	0.50	• •	
1	8001-35-2	Toxaph	ene			1.0	•	1
1	12674-11-2					0.50	1U	
1	11104-28-2	Aroclo	or-1221		_1		U]
	11141-16-5				!	0.50	ប	I
ļ	53469-21-9				_!		U	I
ļ	12672-29-6				<u></u> !	0.00	U	
l	11097-69-1	•			_!		U	I
ł	11096-82-5	Aroclo	or-1260	<u> </u>	!	0.50	เข	
							1	1

page 1 of 1

FORM I PEST

1/87 Rev.

A SANPLE MA

WORGAVICE MINLIGLET DATA SHEET

Dito

THE SEA STAN STAN

Matrix (soil/water): WATER Matrix (boll): LOW

Solids:

Concentration Units Aug/L or mg/kg dry weight): UG/L

1.	ALL SEALS			
2.5	1. Standard States			न ा अन्य स्व
(T.N. 72)	ICAS No.	Analyte	[Concentration	ICI D IM I
			1	
eres Seres	17429-90-5	Aluminum	3290	1 P
	17440-36-0	1Antimony	1 25.1	101 - 4P 1
5	17440-38-2	<u> Arsenic</u>	1 2.6	UI CONSERVIE AL
.	· · · · · · · · · · · · · · · · · · ·		1. N. 2002 Mar 87.4	
. T	17440-41-7	1Beryllium	1.3	1 <u>U1 IP 1</u>
	7440-43-9	-ICadmium	13.0	IUI IPI
	1.7440-70-2-	Calcium and	1 57900	THE PARTY I
			6.5	4 <u>B1 4P</u> 1
	7440-48-4			1 <u>01 / 1P</u> 1
, ind	7440-50-8	Copper	9.3	IBI ARCAIP I
	7439-89-6	1Iron	4690	1 I With P 1
	7439-92-1			1 <u>18* @ 17</u> 1
		Magnesium		1 <u>1</u>
		1 Manganese	267	1 <u>1 1</u> 1
	7439-97-6	Mercury	0.20	IUIN CONTAVI
	7440-02-0			Birth Carrier P
	7440-09-7	Potassium	4810	IBI IP I
1	7782-49-2	Selenium	2.1	IUIN IF I
1	7440-22-4	Silver	4.9	
. 1	7440-23-5	Sodium !	28700	1 <u>1</u> 1 <u>1</u> 1
1	7440-28-0	Thallium	2.7	
· . 1	7440-62-2		and the second se	1 <u>B1 1P</u> 1
- 1	7440-66-6	Zinc	55.6	1 <u>1P</u> 1
1		Cyanide		1_1_1
1		11		

Color Before:

Clarity Before:

Texture:

Color After:

Clarity After:

Artifacts:

Comments:

3/90

FORM I - IN

0000000

Lab Name: ESE, Inc. Lab Code: ESE Case No:: SAS No.: Cose No:: A9558 Matrix (soil/water): WATER

EPA SAMPLES (0)

09/09/91

ene culture :

CAS NO.

Level: (low/med) LDW

6. A S

Column: (pack/cap) PACK

Date Secolved: 0/ 0/ 0 - 2

10.000 milyseda (0/.09/91

Q

Dilution Factor: 1.00

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

2013-1-1-1

74-87-3	Chloromethane	1 10. 10
		10. JU
		51 16. 10. 10
1 75-00-3	Chloroethane	1 10. IU
1 75-09-2	Methylene Chloride	_1 5. <u>I</u> U
1 67-64-1	Acetone	
75-15-0	Carbon Disulfide	_1 5. 10
	1,1-Dichloroethene	
	1,1-Dichloroethane	
	1,2-Dichloroethene (total)_	
	Chloroform	
1 107-06-2	1,2-Dichloroethane	11 S. IU
: 78-93-3	2-Butanone	_: 10. :U
1 71-55-6	1,1,1-Trichloroethane	_1
1 56-23-5	Carbon Tetrachloride	
	Vinyl Acetate	_1 10. IU
	Bromodichloromethane	_15. IU
78-87-5	1,2-Dichloropropane	
10061-01-5	cis-1,3-Dichloropropene	_]
	Trichloroethene	
1 124-48-1	Dibromochloromethane	_I 5. IU
79-00-5	1,1,2-Trichloroethane	
71-43-2		_ ! 5. !U
	trans-1,3-Dichloropropene _	
	Bromoform	_1 5. U
	4-Methyl-2-Pentanone	_ 10. U 10. U
	Tetrachloroethene	_1 10. 10
	1,1,2,2-Tetrachloroethane	
108-88-3		
	Chlorobenzene	_, _, _, _, _, _, _, _, _, _, _, _, _, _
1 100-30-1		

FORM I VOA

1/87 Rev.

10

ιU

1U

1330-20-7----Xylene (total)

100-42-5----Styrene

100-41-4-----

-Ethylbenzene_

EPA SAMPLE TO

150

1.00

WPI KOI

SAL PERSENT

Laty Name : SEGLAS

Cab Code: Post. rix: (soil/water) Sample wt/volv 5,000 ... (g/ml) ML

Level: (low/med) LOW

Z Moisture: not dec. 200. Column: (pack/cap) PACK

DIS ZER PLENELZ PARK

7 BADAD

Lab Sample ADI MB*NONE+0809

Lab File 10/191439

Date Received: "0/ 0/ 0

Date Analyzed: 8/ 9/91 Dilution Factors

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Number TICs found:	1.1

0

In the second state of		1 RT		
1.	I man wat he			And the Area and the
199 2 - Honora Barra - Honora 199 3 - Honora Barra - Honora				
4.	1. A second s	¦		;;
5. 5.				ii
6		· ·		
8				
9		•		· · _ · _ · · · · · · · · · ·
11				
12		 • • • • • • • • • • • • • • • • • • •		!!
13				¦ !
14				'``
16	·			
	· /			11
18	·	!!		
20	•			
21.				
22	!	! !		
23				
24				
26				
27	!!			
				!
29				;
	''			'

FORM I VOA-TIC

OWNER BRANNING AND DAVE

LA PARTITION

Lab coder (and Matrixi and (Anater) MATER

Bample wt/vold 5:000 storel) ML Lab Edit Levels (low/med) 104

Moleturer activity 1005

Column: (pack/cap) PACK Service and the

Date Received: 0/0/0

BENDNEE091

Pater Delyzentis 9/16/91 Dilution Factors

N.L. Market CONCENTRATION UNITS:

STATES AND

CAS NO. COMPOUND (ug/L-or_ug/Kg) UG/L

1.1			
	74-87-3	Chloromethane	1 10. IU I
	1 74-83-9	Bromomethane	1 10. JU - 1
	1 75-01-4	Standard Contraction and a standard s	
	1 75-00-3	Chloroethane	10. IU I
	1 70-03-2	ne uny tene chiorioe	1 . JU - 1
2	1		12.41 3 43
	75-15-0	Carbon Disulfide	I 5. IU 1
.`	1 75-35-4	1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene (total)	5. IU I
÷	1 75-34-3	1,1-Dichloroethane	5. IU I
2	1 540-59-0	1,2-Dichloroethene (total)	5. 10
7	1 67-66-3	Chloroform	
	1 107-06-2	1,2-Dichloroethane	5. 10 1
	1 78-93-3	2-Butanone	10. IU I
	71-55-6	1,1,1-Trichloroethane	1. IJ (1.
•	56-23-5	Carbon Tetrachloride	5. IU ····
	108-05-4	Vinyl Acetate	10. IU I
2	75-27-4	Bromodichloromethane	5. IU· I
	1 78-87-5	1,2-Dichloropropane	5. 30
	10061-01-5	cis-1,3-Dichloropropene	5. IU I
1	79-01-6	Trichloroethene	5. IU I.
	124-48-1	Dibromochloromethane	5. IU I
	1 79-00-5	1,1,2-Trichloroethane	5. IU I
	/ 71-43-2	Benzene	ົ້ 5. ໄປ ເ
1	10061-02-6	trans-1,3-Dichloropropene	5. IU I
-	75-25-2	Bromoform	5. IU I
	108-10-1	4-Methyl-2-Pentanone !	10. IU I
ł	591-78-6	2-Hexanone	10. IU I
1	127-18-4	Tetrachloroethene	5. 10 1
1	79-34-5	1,1,2,2-Tetrachloroethane	5. IU I
1	108-88-3	Toluene	5. IU I
	108-90-7	Chlorobenzene	5, IU I
1	100-41-4	Ethylbenzene	5. IU I
1	100-42-5	Styrene	5. IU
1		Xylene (total)	5. (U)
1			

FORM I VOA

1/87 Rev.

Lap Name : SDE

enservoder: هند بالمحم محمد بالمحمد ب

Level://(low/med))LOW: % Moisture: not dec. 100.

Polymente (paci/cesp)/ c/psc

ປັ້ນໂອະເທັກ (Vzed) - 9746791 - . ເປັນເທັດເຫັນ ສະຫາການ

CONCENTRATION UNITE: (ug/L_or_ug/Kg) UG/L

*** · · · ·	- A -					
		- 	~-			- *****
		- CF 11		- T		.
····		.				• • • • • • • • • • • • • • • • • • •
Numbe					han she Soil o	

CAS NUMBER COMPOUND NAME MIT COMPOUND ADDIT 1						TA ANY ST
						1
	CAS	NUMBER	COMPOUND NAME	I CARD SA		
3. 4. <td< td=""><td>=====</td><td></td><td></td><td></td><td></td><td></td></td<>	=====					
3. 4. <td< td=""><td>H 1.</td><td></td><td></td><td>)</td><td></td><td>1</td></td<>	H 1.)		1
4. 2000 <	1 2		. خىن مى جىن جىن جىن جىن جىن جىن جىن جىن بىن جىن بىن جىن بىن جىن بىن جىن بىن جىن جىن جىن جىن جىن جىن بىن جىن بىن جىن جىن جىن جىن بىن جىن جىن جىن جىن جىن جىن جىن جىن جىن ج	······································	. الله هذه هذه هذه هذه مثلة حمل خيرة خي توق عال أن .	
5.	। з		المترجع فتقالب مترجع مترجع فتناجع ومرجع فتناجع ألتوامح أتتل مترجع ومرجع ومحتوا سرجيا فتتشبه فتتحد ومر		المحاجب والمحاجب والمحاجب والمحاجب والمحاجب والمحاجب والمحاج المحاج محاج المحاج	States 1
6.	1 4		الجروب الحادي وعرجت منه بالماحك بحراجين بين جراجيا جواجي وجرجت فتشرق والمحرف والماحك والمراجع والمراجع والم			``
8.	i - 5					
8.	1 6		المتلاقية المرتقا عبر خال عبر المرجلة عن المركان عبار عبد عبد عبد عبد خلي خلي عن الأرقي عن عن عن عن ا	ومعاطية والمراجعة والمراجعة والمراجعة المراجعة المراجعة	and only only only the deal and and and only only one and	
0.9. 10. 11. 11. 12. 13. 13. 14. 15. 16. 17. 18. 19. 19. 19. 20. 11. 19. 21. 11. 19. 22. 11. 11. 23. 11. 11. 24. 11. 11. 25. 11. 11. 26. 11. 11. 27. 11. 11. 25. 11. 11. 26. 11. 11. 27. 11. 11. 28. 11. 11. 29. 11. 11. 20. 11. 11. 12. 11. 11. 12. 11. 11. 12. 11. 11. 13. 11. 11. 11. 13. 11. 11. 11. 11. 13. 11. 11. 11. 11. 13.	1 7	ಂಭವರ್ಷವರ್ಷ-೧೯೮೩ರ ಮಾ		I Parting Street		1 <u> </u>
10. 11. 12. 13. 14. 15. 16. 17. 16. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 18. 17. 18. 17. 18. 17. 17. 17. 19. 1	; 8. <u> </u>	<u> </u>		1	I	11
11.	``` `9.			}		1 53.1
12. 13. 14. 14. 15. 15. 16. 17. 17. 18. 17. 18. 17. 18. 17. 18. 19. 1	1 10		and the second state of the second second second second second second second second second second second second	and a second second		।ी
13.	1 11	nation traded and the set		Star Barris		1 <u></u> 12
13.	1 12.	and the second second	State and the second state of the second state	and the second states of		<u></u>
14.	1 13.	in the strings are a			n and a state of the state of the state of the state of the state of the state of the state of the state of the	1
16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.			the state of the second s		an an an tha tha an an an an an an an an an an an an an	l
17.	1 15.			The COST AND		1 14 45 X 19 1
18.	1 16.					
18.	17.		a the protocol of the second second second second second second second second second second second second second		i sing sing sing sing sing sing sing sin	<u></u>
20	18.	1				
20	19					
22.	1 20	1				II
23.	1 21					
24.	: 22	- [†]				
25.	·					
26 27 28 29 30.	· - · ·	¹				!
27.	· · · · · · · · · · · · · · · · · · ·					
28.	·	!				1
29 30.		1			· · · · · · · · · · · · · · · · · · ·	
30.		1			. الما الله عليه عليه حديد عليه عليه عليه عليه في في في في الله في ا	
		!		Anna Cara Anna Allin Alle Anna Anna Anna A	and the second s	1
	: 30	!		1		
	¦	!			1	I

FORM I VDA-TIC

264

Shire terre (cro); i/ witers and the respect to the contract of the contract o

- Columnia: (pack/cap) PACK

an de Namer

Lab Samp - Lab Samp - 101 - 14 Samp - 101

Date Received: 0/0/0

PATERAN

7.5

Data Analyzed: 8/10791

CONCENTRATION UNITS: COMPOUND CUG/Lor ug/Kg) UG/KG

20.20 B. 19				
	74-87-3	-grachloromethane	. 10. ·	1U
	T 74-83-9	Brogonethane	A	ាប 🌱
	1 75-01-4	Chloromethane Bromomethane Vinyl Chloride Chloroethane	-1 10.	JU
a server a server a	1 75-00-3	Chloroethane	- - - - 10,	ាក
	1 75-09-2	Methylene Chloride	- 5 , 7	an see
	1 67-64-1	Chloroethane Methylene Chloride <u></u> Acetone	1	ſ
an an an an an an an an an an an an an a	1 75-15-0	Carbon Disulfide Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethene 1,2-Dichloroethene (total)_	_ 5.	-10
8		1,1-Dichloroethene	1	10 3 - 4
- 24	1 75-34-3	1,1-Dichloroethene	*I	ង្ការ ្
	1 540-59-0	1,2-Dichloroethene (total)	_l 5.	10
	1 / / / 		in a star i se se se se se se se se se se se se se	
	1 107-06-2	1,2-Dichloroethane	_1 5. **	ាប 🦾
	1 78-93-3	2-Butanone	_110.	JU
	1 71-55-6	1,2 Dichloroethane 2-Butanone 1,1,1-Trichloroethane	1	1U 🛣
•	1 56-23-5	Carbon Tetrachloride	_1 5	່າບ
- -	108-05-4	Carbon Tetrachloride	_1 10.	1U 🤤 🗄
	1 75-27-4	Bromodichloromethane	. 1 State 5.	ו 💭
	1 78-87-5	1,2-Dichloropropane	그 : 이 : 이 : 이 : 이 : 이 : 🖛 : 이 : 이 : 🖛 : 이 : 이 : 이 : 🖛 : 이 : 이 : 이 : 이 : 🖛 : 이 : 이 : 이 : 이 : 이 : 이 : 이 : 이 : 이 :	្លាល់ 👘 ្រ
	10061-01-5	cis-1,3-Dichloropropene	 	IU I
	79-01-6	Trichloroethene	_l 5.	
	124-48-1	Dibromochloromethane	1 5.	1U
	1 79-00-5	1,1,2-Trichloroethane	<u>i</u> 5.	
		Benzene	_ 5.	10 1
12 N.S.	10061-02-6	trans-1,3-Dichloropropene	_រ ភ្ន.	10 1
	75-25-2	Bromoform	<u> </u>	10 1
		4-Methyl-2-Pentanone	<u> </u>	10 1
	1 591-78-6	2-Hexartone	10.	10 1
				1U I
•		1,1,2,2-Tetrachloroethane	-1	10 1
	108-88-3	Toluene Chlorobenzene	- 5.	1U 1
	108-90-7		2.5.	1U I
	100-41-4	Etwrape	5.	1U . I
	100-42-5	Styrene Xylene (total)		1U
	1330-20-7			10 1
	¦			11

FORM I VOA

a to the state

CONTRACTORY STREET, OF OF

THE REAL PROPERTY OF STATES Number Tilbs Foundit B

13.

-19<u>5</u>0

6 - C

24.

28.

29. State 142

14.

15, 16.

19.

20. 21. 22. 23.

25. 26.__

27.

30.

1 A

CUNCENIRATION UNITE: usai (ug/Lior, ug/Kg)=UG/KG

and straight straight

ALC A MARK OF CALMARK

200 - 200

A Second

the state of the state of the

100

8-24

Farth le

<u>_____</u>

ENGINE AND A

			SECAS IN		A
		139-30-51	NE SECTOR	all of the latter.	
		S 4 1 1 1 1 2 3	CARLED BY NY		
	位生命是主法法	M	an the second states of	منية بالمراجع الم	
	********	State A		Les entertienter	
C 234 450	법 법 법 책 물 문 문,		NAME 線	Creation in souther that the	
	======[=	100 - 10 - 10 - 10 - 10 - 10 - 10 - 10		Sec. Sec.	
		1993 - 1995 -		and see the see at a	28
	1222222	A CARGANY AND	AND EST -	Sec. 1 States to 1	- F
	4.5 2 2 2 2 2 2 2 2	S		Same states a strange	
167	22 22 -	-10-55	1.0	5.35	

S	1	Sec. Con	(4.95 M)	The start	
	11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	(estant)	5 . C. 40		(
	N				
बहुम् इन्द्रिय दुन्द्र भाष	1		1.19		\$ 75
Anter See	1	De Card	Scale (Sec. 19	
	AP N 2		建立设备	SAL 2. TRue 1	2.4
	1. 6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		A	Sp. Ford Carl	

A . (11 + 5% A MARTINE PARAMETER STOCK STATE OF THE PARTY AND THE

A15 1+5 34 States and states

1 9663 58 a.c. A CALL STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE ST

CARGE AND A STATE 1 Sugar States 125-181 the state of the s

FORM 1 YDA-TIC

1