

Fidle

HARTER.SECREST&EMERY.LLP ATTORNEYS AND COUNSELORS

WWW HSELAW.COM

March 28, 2005

VIA FEDERAL EXPRESS PRIORITY OVERNIGHT

David Pratt Project Manager NYS DEC - Region 8 6274 East Avon-Lima Road Avon, New York 14414-9519

> Re: Erdle Perforating DEC Site #828072 Our File No. 12622.5

Dear David:

As per my e-mail to you today, I am enclosing a copy of the full SSI Report by Barron & Associates with respect to the above-captioned site.

Very truly yours,

HARTER, SECREST & EMERY LLP

Craig A. Slate

DIRECT DIAL: 716-845-4223 E-MAIL: CSLATER@HSELAW.COM

CAS:jp Enclosure cc: F. Pfau

MAR 3 0 2005

DER/HAZ. LE REMED REGION 8

TWELVE FOUNTAIN PLAZA, SUITE 400 BUFFALO, NEW YORK 14202-2293 PHONE: 716.853.1616 FAX: 716.853.1617

BARRON & ASSOCIATES, P.C.

10440 Main Street Clarence, New York 14031

Tel: (716) 759-7821

www.barronandassociatespc.com

Fax: (716) 759-7823

February 28, 2005

Job No.: 02-555A

Harter, Secrest & Emery LLP Twelve Fountain Plaza, Suite 400 Buffalo, New York 14202-2228

Attn: Craig A. Slater, Esq.

Re: **Submittal:** Monitoring Well Installation, Groundwater Sampling and Analysis, Erdle Perforating, 100 Pixley Industrial Parkway, Gates, NY 14264 (NYSDEC Inactive Hazardous Waste Site #828072)

Gentlemen:

Barron & Associates, P.C. (B&A) is pleased to submit this report discussing the field methodology that was utilized and presenting the data generated during the above referenced investigation at Erdle Perforating, 100 Pixley Industrial Parkway, Gates, NY (Figure 1, Attachment #1).

The investigative scope of services included the following activities (refer to Figure #2 for monitoring well locations):

Installed three monitoring wells. Installed a bedrock monitoring well adjacent to MW-11, monitoring well MW-11D. Installed an overburden/bedrock monitoring well couplet southwest of MW-11 at the north end of the residential road, monitoring wells, MW-13 and MW-13D. Test borings were advanced at each monitoring well location. Continuous split spoon samples were obtained through the unconsolidated material to the top of bedrock (i.e., auger refusal). The soil samples were visually characterized and screened with a photoionization detector (PID). This field information was recorded in a waterproof field book and, subsequently, transcribed to Observation Well Schematics, Attachment #2 and Table 1, Attachment #1.

At the completion of the test boring at the overburden (top of bedrock) monitoring well, MW-13,, a two-inch I.D., 5-foot long, Sch. 40 PVC, #10 slot screen with attached riser was installed. A sand pack was placed around the screen and one foot above the screen. A two-foot bentonite seal was placed above the sand pack and the well was completed to approximately one foot below ground surface with cement/bentonite grout. The monitoring well was completed at ground surface with a locking J-plug and a curb box that was placed in cement. Refer to the Observation Well Schematic for MW-13, Attachment #2, for the specific monitoring well construction details

At the completion of the test borings for the two bedrock monitoring wells, MW-11D and MW-13D, a permanent, 4-inch I.D. steel casing was installed at each bedrock monitoring well location into a one- to one and half-foot deep rock socket that was created by drilling with a 5 7/8-inch roller bit. The steel casings were grouted to ground surface. Prior to placement of the 4-inch I.D. steel casings at each bedrock monitoring well location, the steel casings was steamed cleaned. The grout at each well was allowed to cure for approximately 24 hours. An open bedrock borehole was advanced to 8.5 feet below the bottom of the rock socket at MW-11D using a 3 7/8inch diameter roller bit. At MW-13D, as the open bedrock hole was being advanced below the four-inch steel casing using the 3 7/8-inch diameter roller bit, highly

Geotechnical and Environmental Consulting Engineers

MAR 3 0 2005

Submittal Harter, Secrest & Emery. Page 2

fractured bedrock was encountered at approximately 12.5 feet below ground surface. As the borehole was advanced within this highly fractured bedrock to 16 feet below ground surface, cave- in was encountered up to a depth of 12.5 feet below ground surface as the roller bit was extracted from the borehole; hence, precluding the advancement of an open bedrock hole to the proposed depth of approximately 20 feet below ground surface without abandonment of this borehole and modification of the drilling technique. In conversation with the NYSDEC, it was agreed upon that, at this time, the bedrock monitoring well would be completed at 12.5 feet. At each bedrock monitoring well boring, the water generated during roller biting was recirculated and subsequently containerized in drums. The drums were staged on the Erdle site for characterization and disposal by Erdle. Refer to the Observation Well Schematics for MW-11D and MW-13D, Attachment #2, for the specific monitoring well construction details

- Between each test boring and monitoring well construction, the drilling equipment and split spoons were steam cleaned in a decon area that was located on the Erdle property. The decon waters were drummed for characterization and disposal by Erdle. Between split spoon samples, the split spoons were cleaned using potable water and alconox detergent and subsequently rinsed with potable water. The waters generated during this cleaning process were also drummed and handle in the same manner as noted in the item above.
- During the above intrusive field activities (i.e., sampling of the unconsolidated material), breathing zone air monitoring was performed for VOCs and particulates to comply with the site H&S plan and the NYSDOH CAMP. During the construction of the bedrock monitoring well, since coring was performed using water, breathing zone air monitoring was performed for VOCs.
 - Following installation of the monitoring wells, B&A personnel returned to the site to develop the newly installed wells. Development activities were performed using dedicated, pre-cleaned PVC bailer for the newly installed monitoring wells. The bailers were pre-cleaned prior to arrival on site and were sealed separately in plastic. Waters generated during the development activity were placed in drums and staged on the Erdle property for characterization and disposal by Erdle.
 - Following development of the newly installed monitoring wells, B&A personnel returned to the site to sample the three newly installed wells, MW-11D, MW-13 and MW-13D and 10 existing monitoring wells. The 10 existing monitoring wells that were sampled were MW-3D, MW-6 & 6D, MW-8 & 8D, MW-11, MW-12, GPZ-1D, GPZ-2D and GPZ-6D. Sampling activities were performed using a separate, precleaned PVC bailers for each monitoring well. The bailers were pre-cleaned prior to arrival on site and were sealed separately in plastic. During sampling, field measurements for static water levels, ph, conductivity, temperature, ORP, TDS and turbidity were obtained.
 - Analysis of the groundwater samples were performed for volatile organic compounds using USEPA Method 8260 TCL and for iron, manganese, TOC, alkalinity, sulfate and chloride and reported in a NYS ASP B deliverable package. The contracted laboratory was Adirondack Environmental Services, Inc., Albany, New York, a NYSDOH ELAP-approved laboratory.

Submittal Harter, Secrest & Emery. Page 3

Test Borings/Monitoring Wells

The field activities that were associated with the installation of three monitoring wells, MW-11D, MW-13 and MW-13D were conducted on August 24 and 25, 2004. *B&A's* affiliate company, *Buffalo Drilling Company, Inc. (BDC),* mobilized a truck-mounted drill rig to the site.

During the drilling and sampling of the test borings associated with the monitoring wells, provisions for monitoring worker's breathing zone upwind and downwind for total volatile organic compounds and particulates were implemented. The on-site equipment included a RAE Systems Inc., MiniRAE Plus, Model PGM-761 S photoionization detector and two MIE DataRam Portable Real-Time Aerosol Monitor and DataRam Accessories for real time PM-10 sampling. The information that was generated during this air monitoring activity is presented on the Worker's Breathing Zone Data Sheet, Attachment #1.

Monitoring Well Development and Sampling

B&A personnel mobilized to the site on September 21, 2004 to develop the three newly installed monitoring wells, MW-11D, MW-13 and MW-13D using a separate, pre-cleaned PVC bailer at each well. Before the development process, depth to static water level and total depth of the wells were obtained using an Heron Instruments Oil/Water Interface Meter. The Heron Instruments Oil/Water Interface Meter was cleaned between wells using soap, potable water and a final distilled water rinse. The monitoring wells were developed by removing ten static-water, well volumes. The evacuated waters that were generated during development were placed into 55-gallon drums and staged at Erdle for subsequent characterization and disposal by Erdle. During the development process at each monitoring well, an initial and final pH, conductivity and temperature readings were obtained. The reader is requested to refer to the Field Development and Sampling Data Sheet, Attachment #1, for the information recorded during well development.

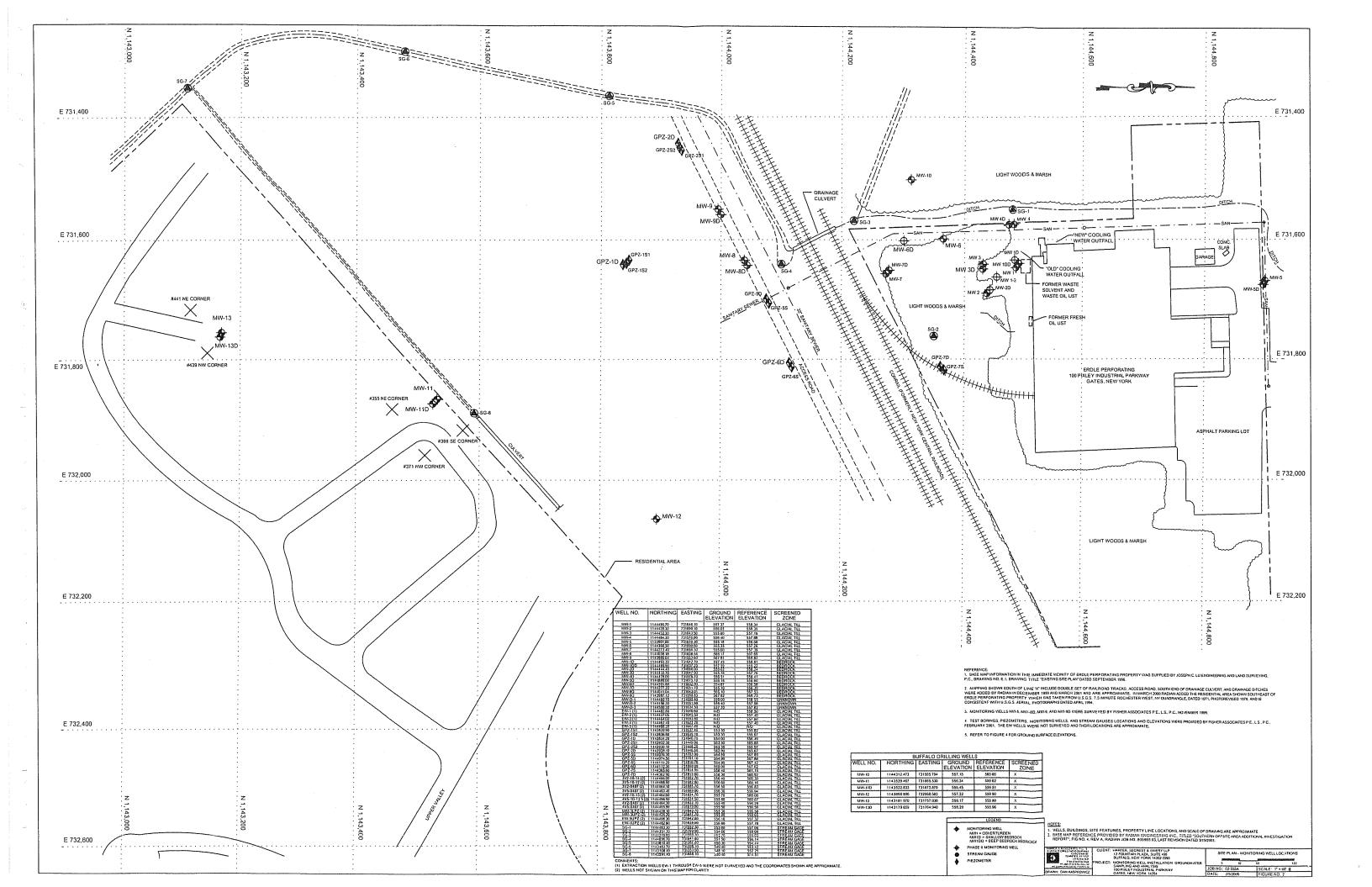
On October 5 and 6, 2004, B&A personnel returned to the site to sample the aforementioned three newly installed monitoring wells and ten existing monitoring wells. Prior to sampling the monitoring wells, a static water level and total depth of well were obtained at each well utilizing the same cleaning procedure for the Heron Instruments Oil/Water Interface Meter as discussed above between monitoring wells. Once the static water levels were obtained, three well volumes were removed from each well. The monitoring wells were then allowed to return to static water level condition. A pre-cleaned, designated PVC bailer was slowly lowered into the well to retrieve groundwater samples, which were then placed directly into pre-cleaned, laboratory containers provided by the analytical laboratory. The samples were labeled, chain-of-custody initiated, and placed in a cooler with ice and freighted to Adirondack Environmental Services, Inc., Albany, New York under chain of custody.

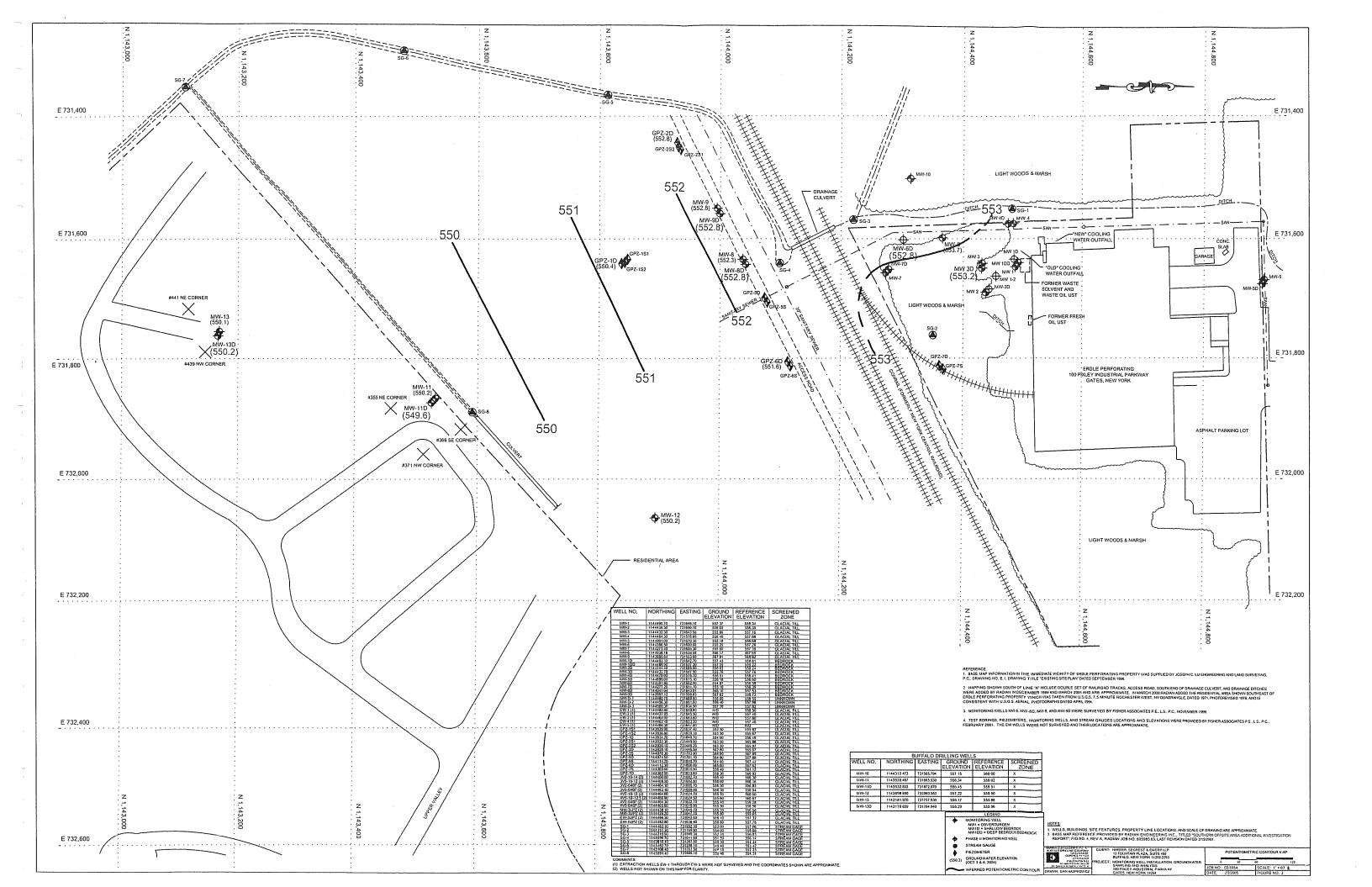
A potentiometric contour map of the upper bedrock water bearing zone has been prepared (refer to Figure #3, Attachment #1) based on the static water levels obtained during sampling from the bedrock monitoring wells. As depicted on Figure #3, groundwater flow within the bedrock is generally in a southern direction.

Groundwater Sample Analytical Program and Results

Analysis of the groundwater samples were performed for USEPA Method 8260 TCL compounds, iron, manganese, TOC, alkalinity, chloride and sulfate and reported in a NYS ASP B deliverable

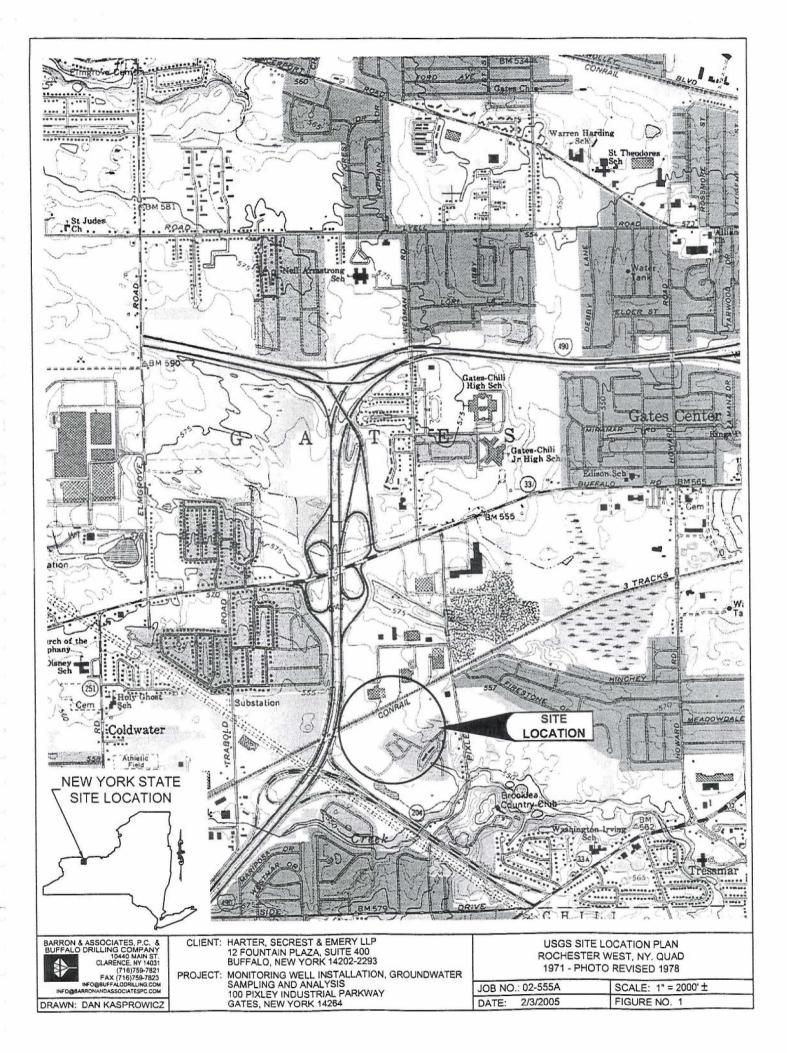
Submittal Harter, Secrest & Emery. Page 4


package. Adirondack Environmental Services, Inc.'s NYS ASP B deliverable package for the groundwater samples is presented in Attachment #3. Table 2 presents the detectable analytical results for the groundwater samples.


Barron & Associates, P.C. appreciates the opportunity to assist in the performance of this monitoring well installation and groundwater sampling and analysis. Please call at your earliest convenience, if questions should arise.

Yours truly, Barron & Associates, P.C.

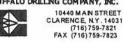
Richard L. Crouch, Jr. Senior Hydrogeologist


attachments

ATTACHMENT #1

Figures and Tables Worker's Breathing Zone Monitoring Data Sheet Field Development & Sampling Data Sheet

VELL NO.	NORTHING	EASTING	GROUND ELEVATION	REFERENCE ELEVATION	SCREENED ZONE
MW-1	1144490.70	731646.10	557.37	558.34	GLACIAL TILL
MW-2	1144439.30	731690.10	556.05	558.35	GLACIAL TILL
MW-3	1144432.30	731643.50	555.80	557.16	GLACIAL TILL
MW-4	1144484.30	731576.80	556.40	557.88	GLACIAL TILL
MW-5	1144901.00	731670.30	555.18	556.68	GLACIAL TILL
MW-6	1144366.50	731600.60	555.25	557.26	GLACIAL TILL
MW-7	1144273.40	731656.30	555.60	557.39	GLACIAL TILL
MW-8	1144038.18	731638.58	566.17	567.69	GLACIAL TILL
MW-9	1143995.64	731553.60	567.81	569.82	GLACIAL TILL
MW-1D	1144493.30	731642.70	557.43	559.81	BEDROCK
MW-1DD	1144489.90	731637.20	557 59	559.22	BEDROCK
MW-2D	1144444.40	731637.20 731686.00	557.59 556.62	559.22 558.24	BEDROCK
MW-3D	1144432.70	731647.90	555.78	557.76	BEDROCK
MW-4D	1144478.00	731576.70	556.51	558.41	BEDROCK
MW-5D	1144899.00	731675.10	556.18	556.60	BEDROCK
MW-6D	1144301.80	731602.90	554.87	556.58	BEDROCK
MW-7D	1144277.20	731651.70	555.10	556.39	BEDROCK
MW-8D	1144041.04	731643.01	566.10	567.53	BEDROCK
MW-9D	1143997.12	731558.83	567.62	569.73	BEDROCK
MW-D-1 MW-D-2	1144480.70 1144456.30	731609.80	556.00	558.55	UNKNOWN
MW-D-3		731661.80	556.40	557.98	UNKNOWN
EW-1 (1)	1144500.30 1144482.80	731634.50 731640.80	557.70 N/D	557.82 558.50	GLACIAL TILL
EW-2 (1)	1144437.05	731645.50	N/D	557.40	GLACIAL TILL
EW-3 (1)	1144464.00	731683.80	N/D	557.80	GLACIAL TILL
EW-4 (1)	1144462.40	731623.20	N/D	557.40	GLACIAL TILL
EW-5 (1)	1144466.30	731647.80	N/D	N/D	GLACIAL TILL
GPZ-1S1	1143839.90	731637.40	553.50	555.82	GLACIAL TILL
GPZ-1S2	1143836.80	731639.10	553.30	555.67	GLACIAL TILL
GPZ-1D	1143834.20	731640.70	554.00	556.49	, GLACIAL TILL
GPZ-2S1	1143932.30	731449.90	563.50	565.88	GLACIAL TILL
GPZ-2S2	1143930.10	731448.20	563.30	565.97	GLACIAL TILL
GPZ-2D	1143928.10	731446.50	562.80	565.67	GLACIAL TILL
GPZ-5S	1144076.30	731703.90	564.80	567.89	GLACIAL TILL
GPZ-5D	1144074.50	731701.10	564.80	567.88	GLACIAL TILL
GPZ-6S	1144114.20	731810.70	564.80	567.42	GLACIAL TILL
GPZ-6D	1144112.30	731808.00	565.00	567.62	GLACIAL TILL
GPZ-7S	1144365.60	731814.90	558.40	561.15	GLACIAL TILL
GPZ-7D	1144362.90	731813.60	558.30	560.92	GLACIAL TILL
3V2-10-14 (2)	1144466.00	731682.70	556.40	560.30	GLACIAL TILL
3V5-10-12 (2)	1144468.50	731682.80	556.60	560.16	GLACIAL TILL
3V2-0407 (2)	1144464.10	731685.70	556.50	556.83	GLACIAL TILL
3V5-0407 (2)	1144463.40	731689.00	556.30	556.94	GLACIAL TILL
4V2-10-13 (2)	1144464.00	731624.70	555.70	560.00	GLACIAL TILL
4V5-10-12.5 (2)		731624.50	555.80	560.67	GLACIAL TILL
4V2-0407 (2) 4V5-0407 (2)	1144464.30 1144465.90	731622.10 731619.90	555.40 555.50	556.28 556.56	GLACIAL TILL GLACIAL TILL
MW-3LPZ (2)	1144438.10	731649.70	555.30	556,58	GLACIAL TILL
MW-3UPZ (2)	1144426.20	731647.70	555.80	559.65	GLACIAL TILL
EW-5UPZ (2)	1144466.30	731642.80	556.10	557.32	GLACIAL TILL
EW-1UPZ (2)	1144482.80	731638.80	556.80	557.78	GLACIAL TILL
SG-1	1144483.30	731552.30	553.00	557.06	STREAM GAGE
SG-2	1144351.30	731760.90	554.00	558.08	STREAM GAGE
SG-3	1144219.90	731569.30	552.70	556.03	STREAM GAGE
SG-4	1144096.70	731641.80	551.50	556.14	STREAM GAGE
SG-5	1143810.40	731367.80	550.30	554.44	STREAM GAGE
SG-6	1143483.70	731298.10	549.40	553.42	STREAM GAGE
SG-7	1143108.40	731353.50	548.10	552.25	STREAM GAGE
SG-8	1143591.40	731888.10	550.40	554.51	STREAM GAGE


COMMENTS:

EXTRACTION WELLS EW-1 THROUGH EW-5 WERE NOT SURVEYED AND THE COORDINATES SHOWN ARE APPROXIMATE.
WELLS NOT SHOWN ON THIS MAP FOR CLARITY.

	В	UFFALO DI	RILLING WELL	S	
WELL NO.	NORTHING	EASTING	GROUND	REFERENCE ELEVATION	SCREENED ZONE
MW-10	1144312.473	731505.794	557.15	560.00	X
MW-11	1143539.467	731865.530	556.34	559.02	X
MW-11D	1143532.833	731872.870	556.45	559.51	X
MW-12	1143898.890	732060.583	557.22	559.90	X
MW-13	1143181.970	731757.930	556.17	555.88	x
MW-13D	1143179.659	731764.940	556.29	555.96	X

e-mail: INFO@BUFFALCORILLING.COM	12 FOUNTAIN PLAZA, SUITE 400 BUFFALO, NEW YORK 14202-2293 PROJECT: MONITORING WELL INSTALLATION, GROUNDWATEF		0	NFORMATION CHARTS	
INFO@BARRONANDASSOCIATESPC.COM		SAMPLING AND ANALYSIS 100 PIXLEY INDUSTRIAL PARKWAY	JOB NO .:	02-555A	SCALE: NOT TO SCALE
DRAWN: DAN KASPROWICZ		GATES, NEW YORK 14264	DATE:	2/3/2005	FIGURE NO. 4

BARRON & ASSOCIATES, P.C. & BUFFALO DRILLING COMPANY, INC.

TABLE NO. 1 PHOTOIONIZATION DETECTOR SUMMARY OF ORGANIC VAPOR SCREENING

Harter, Secrest & Emery LLP CLIENT:

PROJECT: Monitoring Well Installation

100 Pixley Industruial Parkway, Gates, NY

TECHNICIAN: R. Crouch DATE: 8/24-8/25/2004 PAGE: 1 of 1

JOB NO: 02-555A

TOTAL IONIZABLES PRESENT

(ft.) ind in air 0-2 2-4	(ppm)		(ft.)	(ppm)
0-2	A DECEMBER OF A		and the second se	
and the second second second second second	and the second	the second se		
2.4	0.0			
	0.0			
4-6	0.0		an and a second s	
6-8	0.0			
8-10	0.0		a ran and a statement	
10-10.8	0.0			
0-2	0.0		and a start of a start	
2-4	0.0			
4-6	0.0		And a state	
6-7.8	0.0			
0-2	0.0	and the second	and the second	
2-4	0.0			
4-6	0.0			
6-8	0.0			
8-10	0.0			
				a support of the second
	6-7.8 0-2 2-4 4-6 6-8	6-7.8 0.0 0-2 0.0 2-4 0.0 4-6 0.0 6-8 0.0	6-7.8 0.0 0-2 0.0 2-4 0.0 4-6 0.0 6-8 0.0	6-7.8 0.0 0-2 0.0 2-4 0.0 4-6 0.0 6-8 0.0

Petroleum-type odors detected.

* Earthy-type odors detected.

NOTES:

- 1. Screening of the headspace of sample containers was done using a MiniRae hand-held air monitor/photoionization detector (PID) equipped with a 10.6 eV bulb.
- 2. The PID was calibrated prior to sample screening using isobutylene in air at an equivalent concentration of 57.0 ppm benzene in air.
- 3. The detected concentration in sample headspace does not represent actual concentration in soil, but rather a relative measure of total ionizables present with an ionization potential of less than 10.6 eV

TABLE 2

Detectable Analytical Results - Groundwater Samples Erdle Perforating 100 Pixley Industrial Parkway Gates, New York

		GROUNDWATER SAMPLES							
DETECTABLE COMPOUNDS	CONC. UNIT	GPZ-1D	GPZ-2D	GPZ-6D	MW-3D	MW-6	MW-6D	MW-8	
vinyl chloride	ppb	52	10U	41	ЗJ	10U	17J	100U	
carbon disulfide	ppb	4J	20	10U	10U	3J	20U	100U	
acetone	ppb	12B	40B	34B	10U	10U	20U	100U	
1,1-dichloroethane	ppb	19	10U	9J	10U	10U	20U	100U	
cis-1,2-dichloroethene	ppb	27	16	56	49	9J	220	1100	
chloroform	ppb	10U	10U	10U	10U	10U	20U	39J	
trichloroethene	ppb	5J	28	10U	34	10U	210	410	
1,2,4-trichlorobenzene	ppb	10U	10U	10U	10U	10U	20U	100U	
iron	ppb	14,200	5,750	3,000	18,100	247	5,480	2,040	
manganese	ppb	1090	2230	228	139	1350	172	69.6	
total organic carbon	ppb	9300	4000	5800	2800	7300	2600	3000	
sulfate	ppb	NA	83,400	72,100	86,600	318,000	74,700	94,000	
total alkalinity	ppb	NA	580,000	410,000	315,000	325,000	305,000	325,000	
chloride	ppb	NA	789,000	577,000	738,000	44,400	760,000	877,000	

TABLE 2 (cont.)

Detectable Analytical Results - Groundwater Samples Erdle Perforating 100 Pixley Industrial Parkway Gates, New York

				GROUN	DWATER S	AMPLES		
DETECTABLE COMPOUNDS	CONC. UNIT	MW-8D	MW-11	MW-11D	MW-12	MW-13	MW-13D	TRIP BLANK
vinyl chloride	ppb	11	17	22	10U	6J	6J	10U
carbon disulfide	ppb	11	10U	4J	10U	12	11	10U
acetone	ppb	10U	10U	10U	10U	21B	10B	10U
1,1-dichloroethane	ppb	10U	10U	10U	10U	10U	10U	10U
cis-1,2-dichloroethene	ppb	130	34	130	10U	120	120	10U
trichloroethene	ppb	170	10U	18	10U	28	27	10U
1,2,4-trichlorobenzene	ppb	10U	10U	10U	10U	10U	10U	10U
iron	ppb	4,500	2,660	2,330	1,300	3,170	3,040	NA
manganese	ppb	235	173	155	453	130	132	NA
chemical oxygen demand	ppb	3,100	3,000	3,500	6,000	3,500	3,300	NA
sulfate	ppb	79,000	339,000	63,600	55,800	83,500	84,700	NA
total alkalinity	ppb	325,000	410,000	340,000	520,000	320,000	315,000	NA
chloride	ppb	780,000	300,000	115,000	15,600	796,000	808,000	NA

TABLE 2 (cont.)

Detectable Analytical Results - Groundwater Samples Erdle Perforating 100 Pixley Industrial Parkway Gates, New York

NOTES:

- 1. U indicates compound was analyzed, but not detected.
- 2. J indicates the presence of a compound that meets identification criteria, but the result is less than sample quantitation limit but greater than zero. The value shown is an estimated value.
- 3. MDL method detection limit (e.g., 5 U).
- 4. B-
- 5. NA not analyzed

WORKER'S BREATHING ZONE MONITORING DATA SHEET

Erdle Perforating 100 Pixley Industrial Parkway Gates, New York

August 24, 2004

The following air monitoring results were measured during the drilling of MW-13D:

time		During the Drilling of MW downwind (µg/m ³)	upwind (μ g/m ³)
12:40 PM	real time	0.2 (before drilling)	0.0 (before drilling)
	TWA	0.5 (before drilling)	0.0 (before drilling)
12:55 PM	real time	7.0	0.0
	TWA	10.2	0.4
1:07 PM	real time	5.2	2.2
	TWA	9.0	2.0
1:12 PM	real time	5.9	0.1
	TWA	8.7	2.7
1:19 PM	real time	5.9	0.0
	TWA	8.3	2.5
1:33 PM	real time	5.1	0.0
	TWA	8.2	2.0

No detectable PID readings at the top of the hollow stem augers during drilling of MW-13D nor upwind or downwind at the above specified times.

August 25, 2004

The following air monitoring results were measured during the drilling of MW-11D and MW-13:

PM-10 Particulate Levels During the Drilling of MW-11D

time		downwind (µg/m³)	upwind (μ g/m ³)
8:52 AM	real time	133.6 (before drilling)	107.3 (before drilling)
	TWA	138.0 (before drilling)	111.3 (before drilling)
9:05 AM	real time	133.0	100.5
	TWA	145.6	103.2
9:16 AM	real time	129.4	96.6
	TWA	136.3	104.1
9:24 AM	real time	125.5	95.5
	TWA	133.7	101.5
9:41 AM	real time	128.3	95.9
	TWA	130.4	97.7

WORKER'S BREATHING ZONE MONITORING (Continued)

Erdle Perforating 100 Pixley Industrial Parkway Gates, New York

PM-10 Part	iculate Levels	During the Drilling of MW	/-11D (cont.)
time		downwind (µg/m ³)	upwind (μ g/m ³)
9:48 AM	real time	139.9	83.8
	TWA	134.4	96.9

No detectable PID readings at the top of the hollow stem augers during drilling of MW-11D nor upwind or downwind at the above specified times.

PM-10 Partie	culate Levels	During the Drilling of MW-13	
time		downwind (μ g/m ³)	upwind (μ g/m ³)
1:36 PM	real time	136.7 (before drilling)	110.9 (before drilling)
	TWA	124.3 (before drilling)	133.6 (before drilling)
1:51 PM	real time	115.6	108.5
	TWA	120.9	115.9
2:04 PM	real time	110.0	111.2
	TWA	123.0	114.6
2:14 PM	real time	116.1	112.9
	TWA	122.6	114.2

No detectable PID readings at the top of the hollow stem augers during drilling of MW-13 nor upwind or downwind at the above specified times.

FIELD DEVELOPMENT & SAMPLING DATA SHEET

Erdle Perforating 100 Pixley Industrial Parkway Gates, New York

Monitoring Well Development

Date: September 21, 2004

Field Equipment:

Heron Instruments Oil/Water Interface Meter Cole Palmer Model 59002-30 pH Meter Cole Palmer Model 19815 Conductivity Meter

Calibration: Calibration of pH and conductivity meters was performed in the field prior to development activities by B&A field personnel.

Monitoring Well MW-11D

Depth to Static Water: 9.6' from top of steel casing, no free product Depth of Well: 23.75' from top of steel casing Volume of Water Removed: 65 gallons Initial pH, conductivity and temperature: 7.16 s.u. ,904 μ S and 14.2°C Final pH, conductivity and temperature: 7.05 s.u., 890 μ S and 12.9°C Observation: slightly turbid, no odors, no sheen

Monitoring Well MW-13

Depth to Static Water: 4.6' from top of PVC riser, no free product Depth of Well: 7.8' from top of PVC riser Volume of Water Removed: 1.5 gallons (Bailed to dryness) Initial pH, conductivity and temperature: 6.78 s.u., 1334 μ S and 18.3°C Final pH, conductivity and temperature: 6.7 s.u., 1243 μ S and 18.3°C Observation: moderately turbid, no odors, no sheen

Monitoring Well MW-13D

Depth to Static Water: 5.67' from top of PVC riser, no free product Depth of Well: 12.25' from top of PVC riser Volume of Water Removed: 45 gallons Initial pH, conductivity and temperature: 7.17 s.u., 2.96 mS and 15.3°C Final pH, conductivity and temperature: 7.04 s.u., 2.90 mS and 15.2°C Observation: slightly turbid, no odors, no sheen

FIELD DEVELOPMENT & SAMPLING DATA SHEET

Erdle Perforating 100 Pixley Industrial Parkway Gates, New York

Monitoring Well Sampling

Date: October 5, 2004

Field Equipment:

Heron Instruments Oil/Water Interface Meter LaMotte Turbidity Meter Model 2020 Myron Ultrameter Model 6P

Calibration: Calibration of turbidity meter and Myron Ultrameter Model 6P was performed by Ashtead Technology Rentals on October 5, 2004

Monitoring Well MW-11D

Depth to Static Water: 9.95' from top of steel casing, no free product Depth of Well: 23.65' from top of steel casing Volume of Water Removed: 25 gallons pH, conductivity and temperature: 6.80 s.u., 1066 µS and 13.9°C ORP, TDS and Turbidity: -27 mv, 747.8 ppm and 14.1 NTU

Monitoring Well MW-11

Depth to Static Water: 8.9' from top of PVC riser, no free product Depth of Well: 13.35' from top of PVC riser Volume of Water Removed: 7.5 gallons pH, conductivity and temperature: 6.83 s.u., 2080 μ S and 13.1°C ORP, TDS and Turbidity: -30 mv, 1505 ppm and 88.5 NTU

Monitoring Well MW-12

Depth to Static Water: 9.67' from top of PVC riser, no free product Depth of Well: 12.0' from top of PVC riser Volume of Water Removed: 2 gallons (Bailed to dryness) pH, conductivity and temperature: 6.74 s.u., 1001 μ S and 13.1°C ORP, TDS and Turbidity: 42 mv, 693.7 ppm and 396 NTU

Monitoring Well Sampling

Date: October 5, 2004 (cont.)

Monitoring Well MW-13 Depth to Static Water: 9.95' from top of PVC riser, no free product Depth of Well: 23.65' from top of PVC riser Volume of Water Removed: 25 gallons pH, conductivity and temperature: Parameters were not measured due to small well volume and slow recharge. ORP, TDS and Turbidity: Parameters were not measured due to small well volume and slow recharge.

Monitoring Well MW-13D

Depth to Static Water: 5.8' from top of PVC riser, no free product Depth of Well: 12.25' from top of PVC riser Volume of Water Removed: 22 gallons pH, conductivity and temperature: 6.52 s.u., 2917 μ S and 14.9°C ORP, TDS and Turbidity: 234 mv, 3112 ppm and 14.2 NTU

Monitoring Well MW-3D

Depth to Static Water: 4.6' from top of steel casing, no free product Depth of Well: 20.25' from top of steel casing Volume of Water Removed: 60 gallons pH, conductivity and temperature: 7.01 s.u., 2755 μ S and 14.2°C ORP, TDS and Turbidity: -70 mv, 2033 ppm and 74.7 NTU

FIELD DEVELOPMENT & SAMPLING DATA SHEET

Erdle Perforating 100 Pixley Industrial Parkway Gates, New York

Monitoring Well Sampling

Date: October 6, 2004

Field Equipment:

Heron Instruments Oil/Water Interface Meter LaMotte Turbidity Meter Model 2020 Myron Ultrameter Model 6P

Calibration: Calibration of turbidity meter and Myron Ultrameter Model 6P was performed by Ashtead Technology Rentals on October 5, 2004

Monitoring Well MW-6

Depth to Static Water: 3.55' from top of PVC riser, no free product Depth of Well: 10.1' from top of PVC riser Volume of Water Removed: 4 gallons pH, conductivity and temperature: 6.79 s.u., 1041 μ S and 16.1°C ORP, TDS and Turbidity: 92 mv, 718 ppm and 8.17 NTU

Monitoring Well MW-6D

Depth to Static Water: 3.75' from top of steel casing, no free product Depth of Well: 25.6' from top of steel casing Volume of Water Removed: 64 gallons pH, conductivity and temperature: 7.26 s.u., 2717 μ S and 15.4°C ORP, TDS and Turbidity: -131 mv, 2002 ppm and 9.2 NTU

Monitoring Well GPZ-2D

Depth to Static Water: 12.9' from top of steel casing, no free product Depth of Well: 27.5' from top of steel casing Volume of Water Removed: 3 gallons pH, conductivity and temperature: 7.01 s.u., 2847 μ S and 13.0°C ORP, TDS and Turbidity: 5 mv, 1223 ppm and Over Range NTU

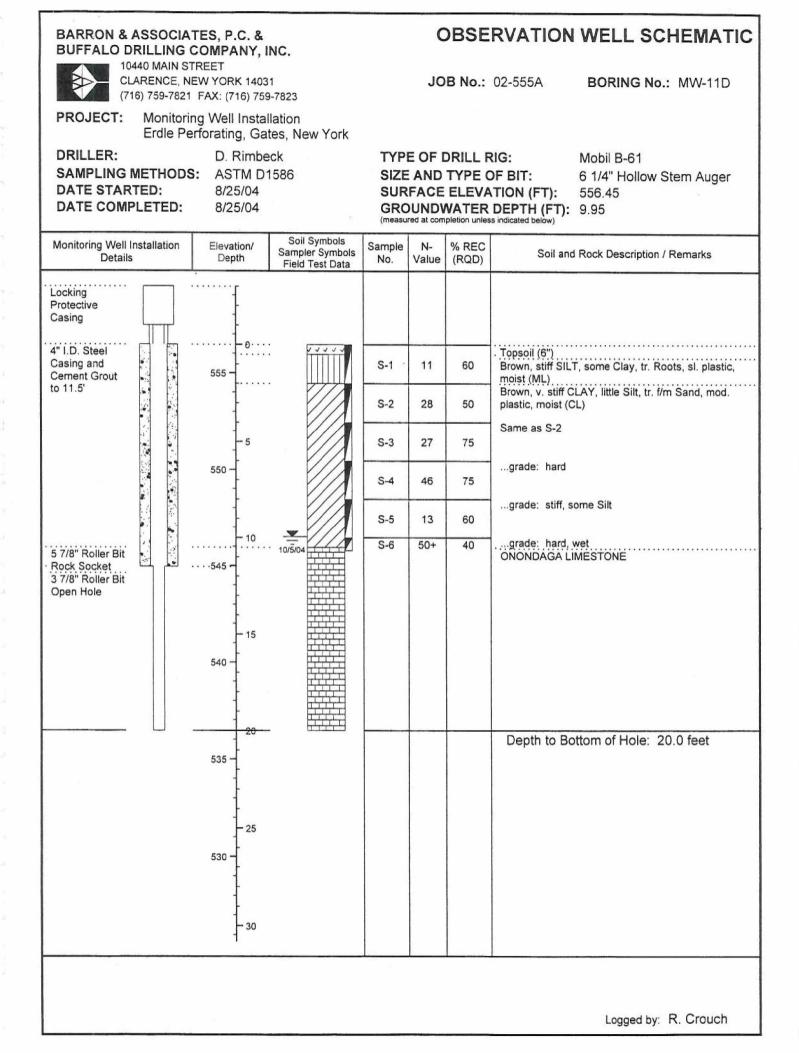
Monitoring Well GPZ-1D

Depth to Static Water: 6.05' from top of PVC riser, no free product Depth of Well: 15.5' from top of PVC riser Volume of Water Removed: <1 gallons (Bailed to dryness) pH, conductivity and temperature: 7.45 s.u., 2963 µS and 14.9°C ORP, TDS and Turbidity: -89 mv, 2205ppm and Over Range NTU

Monitoring Well GPZ-6D

Depth to Static Water: 16.0' from top of PVC riser, no free product Depth of Well: 28.4' from top of PVC riser Volume of Water Removed: <1 gallons (Bailed to dryness) pH, conductivity and temperature: 7.30 s.u., 2346 μ S and 14.5°C ORP, TDS and Turbidity: -45 mv, 1703 ppm and 253 NTU

Monitoring Well MW-8


Depth to Static Water: 15.4' from top of PVC riser, no free product Depth of Well: 27.9' from top of PVC riser Volume of Water Removed: 6 gallons pH, conductivity and temperature: 7.08 s.u., 2332 μ S and 14.2°C ORP, TDS and Turbidity: -80 mv, 2332ppm and 11.2 NTU

Monitoring Well MW-8D

Depth to Static Water: 14.7' from top of steel casing, no free product Depth of Well: 38.7' from top of steel casing Volume of Water Removed: 110 gallons pH, conductivity and temperature: 7.29 s.u., 2102 μ S and 14.5°C ORP, TDS and Turbidity: -116 mv, 2102 ppm and 9.33 NTU

ATTACHMENT #2

Observation Well Schematics

BARRON & ASSOCIA BUFFALO DRILLING	COMPANY, II	NC.		C	BSE	RVATION WELL SCHEMATIC	
	FREET EW YORK 1403 ⁻ FAX: (716) 759			JO	B No.:	02-555A BORING No.: MW-13	
	ng Well Install erforating, Gat	ation es, New York					
DRILLER:D. RimbeckSAMPLING METHODS:ASTM D1586DATE STARTED:8/24/04DATE COMPLETED:8/24/04		SIZE	TYPE OF DRILL RIG:Mobil B-61SIZE AND TYPE OF BIT:6 1/4" Hollow Stem AugerSURFACE ELEVATION (FT):556.17GROUNDWATER DEPTH (FT):6.1				
Monitoring Well Installation Details	Elevation/ Depth	Soil Symbols Sampler Symbols Field Test Data	Sample No.	N- Value	% REC (RQD)	Soil and Rock Description / Remarks	
PVC Casing and Cement	555 – -		S-1	24	50	. Topsoil (6") Brown, hard SILT, some f. Sand, tr. Clay, tr. c. Sand, sl. plastic, moist (ML)	
Grout Bentonite Chips			S-2	22	60	Brown, v. stiff CLAY, some Silt, mod. plastic, moist (CL)	
Slotted PVC			S-3	26	60	grade: little Silt, tr. f/c Sand, tr. Gravel	
	550 -	9/21/04	S-4	46	55	grade: some Silt	
	- 10 545 10 545 15 540 15 540 20 535 20 535 25 530 25	REFÚSAL					

(716) 759-7821 PROJECT: Monitori Erdle Pe	EW YORK 14031 FAX: (716) 759 ng Well Install erforating, Gat	-7823 ation es, New York				02-555A BORING No.: MW-13D	
DRILLER: SAMPLING METHODS DATE STARTED: DATE COMPLETED:	D. Rimber S: ASTM D1 8/24/04 8/24/04		SIZE SUR	TYPE OF DRILL RIG: Mobil B-61 SIZE AND TYPE OF BIT: 6 1/4" Hollow Stem August SURFACE ELEVATION (FT): 556.29 GROUNDWATER DEPTH (FT): 5.8 (measured at completion unless indicated below) 5.8			
Monitoring Well Installation Details	Elevation/ Depth	Soil Symbols Sampler Symbols Field Test Data	Sample No.	N- Value	% REC (RQD)	Soil and Rock Description / Remarks	
2"PVC Riser	555 -		S-1	35	50	. Topsoil(6") Brown, hard Silt, some f. Sand, tr. Clay, tr. c. Sand, sl plastic, moist (ML)	
	1		S-2	17	80	Brown, v. stiff CLAY, some Silt, mod. plastic, moist (CL)	
	5	-	S-3	16	80	Same as S-2	
	550 -	10/5/04	S-4	13	25	grade: stiff, some f/m Sand, tr. Gravel, wet	
]		S-5	9	10	Gray, loose f/c SAND, some Clay, tr. Gravel, saturate (SW)	
5 7/8" Roller Bit			S-6	50+	10	ONONDAGA LIMESTONE	
3 7/8" Roller Bit						Caving occurred at 12.5 feet	
	- - 15 540 - - -					Depth to Bottom of Hole: 12.5 feet	
	- 20 535						
	530						

ATTACHMENT #3

Adirondack Environmental Services, Inc NYS ASP B Deliverable Package

(Refer to accompanying separate documents)