www.haleyaldrich.com

2022 PERIODIC REVIEW REPORT FORMER XEROX BUILDING 801 FACILITY HENRIETTA, NEW YORK SITE NO. 828069

by Haley & Aldrich of New York Rochester, New York

for Xerox Corporation Webster, New York

File No. 134972-004 February 2023

HALEY & ALDRICH OF NEW YORK 200 Town Centre Drive Suite 2 Rochester, NY 14623 585.359.9000

14 February 2023 File No. 134972-004

Xerox Corporation 800 Phillips Road, 0207-01Z Webster, New York 14580

Attention: Julia Ispentchian

Subject: 2022 Periodic Review Report Former Xerox Building 801 Facility Henrietta, New York Site No: 828069

Dear Ms. Ispentchian:

Haley & Aldrich of New York is pleased to provide Xerox Corporation with this annual Periodic Review Report (PRR) for the Former Xerox Building 801 Facility located at 1350 Jefferson Road in Henrietta, New York. This report summarizes activities performed and presents data collected during the period from 1 January through 31 December 2022 and is intended to satisfy the PRR reporting requirements described in the NYSDEC-approved *Revised Site Management Plan* dated 30 July 2015.

This report is being submitted to the New York State Department of Environmental Conservation (NYSDEC) in electronic format (Adobe Acrobat) conforming to the NYSDEC's electronic document submission requirements.

Please do not hesitate to contact us should you have any questions regarding this report.

Sincerely yours, HALEY & ALDRICH OF NEW YORK

Jonathan M. Sanger Environmental Scientist

Janice D. Szucs, P.E. Senior Project Manager

c: L3Harris Technologies; Attn: Jason Scott

\\haleyaldrich.com\share\roc_common\Xerox\Henrietta B801\Reporting - PRR\2022 Report 13\2023-0214-HANY-2022_Xerox_Annual_Report_F.docx

Haley & Aldrich of New York 200 Town Centre Drive Suite 2 Rochester, NY 14623 585.359.9000

SIGNATURE PAGE FOR

2022 PERIODIC REVIEW REPORT FORMER XEROX BUILDING 801 FACILITY HENRIETTA, NEW YORK SITE NO. 828069

PREPARED FOR

XEROX CORPORATION WEBSTER, NEW YORK

PREPARED BY:

Jonathan Sanger Environmental Specialist Haley & Aldrich of New York

REVIEWED AND APPROVED BY:

un Janice Szucs

Senior Project Manager Haley & Aldrich of New York

Executive Summary

Haley & Aldrich of New York (Haley & Aldrich) has prepared this Periodic Review Report (PRR) for the 2022 reporting year for the Former Xerox Building 801 Facility located at 1350 Jefferson Road, Henrietta, New York (Site). This report presents updates to current Site conditions, confirms that previously investigated and remediated Site risks are effectively managed, and summarizes activities performed and data collected during the period from 1 January through 31 December 2022. This report is intended to satisfy the requirements described in the New York State Department of Environmental Conservation (NYSDEC)-approved *Revised Site Management Plan* (SMP) dated 30 July 2015.

During the 2022 reporting period, the engineering controls/institutional controls (EC/ICs) at the Site were in-place and functioned effectively. The PRR Annual Institutional and Engineering Controls Certification Form is included in Appendix A. Please note that the form was edited (as required within the form instructions) to state the correct PRR period (1 January to 31 December 2022) and the correct Site acreage (85.98 acres).

Based on the results of the most recent groundwater sampling event, impacted groundwater remains within the footprint of the defined Soil and Groundwater Management Area (SGMA). The groundwater analytical results indicate that the reductive dechlorination process is reducing residual contaminant levels and assisting with maintaining overall plume stability. Overall, the data collected during the most recent monitoring event is consistent with the past monitoring events conducted since active remediation was completed at the Site. In general, the source area well data showed an overall decrease in the concentrations of the Site compounds of concern, a stable condition, or a condition of decreasing parent compound and increasing daughter compound concentrations, which is expected under a biologically-mediated degradation process.

During the reporting period, there were no recorded shutdowns of the sub-slab depressurization (SSD) system, with one exception. In March 2022, suction pit fan F-3 failed and was subsequently replaced by Haley & Aldrich on 14 April 2022. The SSD system continues to operate effectively within the design zone of influence to mitigate the potential for impacted soil vapor intrusion to indoor air within the building.

A visual inspection of the SGMA by Haley & Aldrich and correspondence with the property owner, L3Harris Technologies (formerly known as Harris Corporation and herein referred to as L3Harris), indicated that the protective cover and fencing remain in-place and are effective in limiting exposure to the residual contamination within the SGMA. Under the property transfer agreement, current property owner L3Harris is responsible for notifying NYSDEC of any planned excavations within the SGMA and reporting any ground-intrusive activities within the SGMA to Xerox, so that these activities can be included in PRR summary reports. Based on input received from L3Harris, there were no ground intrusive activities completed within the SGMA in 2022.

There were also no ground-intrusive activities conducted outside of the SGMA in 2022.

List	cutive of Tab of Figu		i iii iii
1.	Bac	kground	1
2.	Site	Activities	2
3.	Gro	undwater and Surface Water Monitoring	3
	3.1 3.2 3.3	SOURCE AREA WELLS – HRC-S INJECTION AREA DOWNGRADIENT WELLS SURFACE WATER	3 4 4
4.	Sub	-Slab Depressurization System	5
	4.1 4.2	SYSTEM OPERATION & MAINTENANCE SUMMARY SUB-SLAB VACUUM MONITORING	5
5.	SGN	/A Activities and Site Improvements	6
6.	Rec	ommendations and Future Activities	7

Figures

Appendix A – Annual Engineering and Institutional Controls Certification Form

- Appendix B Laboratory Analytical Data Report
- **Appendix C** Time vs. Concentration Graphs

Appendix D – Groundwater Elevation Trend Graphs

Page

List of Tables

Table No.	Title
I	Total VOCs in Groundwater and Surface Water Since 2011
II	Site Water Level Data
ш	Groundwater & Surface Water Monitoring Analytical Summary
IV	SSD System Floor Point Vacuum Readings
V	SSD System Fan Vacuum Readings

List of Figures

Figure No.	Title
1	Project Locus
2	Site Plan
3	Upper Aquifer Groundwater Contours – Third Quarter 2022
4	Sub-Slab Depressurization System Plan – As Built

1. Background

Haley & Aldrich of New York (Haley & Aldrich) has prepared this 2022 Periodic Review Report (PRR) for the Former Xerox Building 801 Facility located at 1350 Jefferson Road, Henrietta, New York, New York State Department of Environmental Conservation (NYSDEC) Site No. 828069 (see Figure 1). This report presents the current Site conditions, confirms that previously investigated and remediated Site risks are effectively managed, and summarizes activities performed and data collected during the reporting period from 1 January through 31 December 2022. This report is intended to satisfy the requirements described in the NYSDEC-approved *Revised Site Management Plan* (SMP) dated 30 July 2015.

Xerox implemented several remedial actions at this Site from the early 1990s through 2006, when active remediation was deemed complete by the NYSDEC. An overall summary of the remedial actions and Site management activities performed at the Site and their associated time frames are as follows:

- 1. Groundwater pumping and treatment to manage plume migration (1990 to 1994). Stormwater drainage redirection around the source area (1995).
- 2. 2-PHASE Extraction to reduce soil and groundwater contaminant concentrations (1994 to 2001).
- 3. HRC-S (biological amendment) pilot test and larger-scale final corrective action injection to further reduce soil and groundwater residual impacts (2003 to 2006).
- 4. Installation and testing of a sub-slab depressurization (SSD) system (2006 to 2007).
- Expansion of the SSD system following the sale and transfer of the property to Harris Corporation (now known as L3Harris Technologies and herein referred to as L3Harris) on 15 March 2010. Renovations were substantially completed in September 2011. L3Harris currently occupies the building and property, and the expanded SSD system continues to operate.

Corrective Actions for the Site were completed in August 2006 with the implementation of the final large-scale biological amendment addition to stimulate natural degradation processes. No further active remediation has been conducted, nor is any contemplated based on the current Site conditions.

Site activities are currently managed in accordance with the NYSDEC-approved SMP for management of residual contamination and includes:

- 1. Institutional and Engineering Controls,
- 2. Monitoring,
- 3. Operations and maintenance, and
- 4. Periodic reporting.

SMP activities include annual groundwater monitoring; operations, maintenance, and monitoring of the SSD system; management of soil cover and adherence to management protocols for the Soil and Groundwater Management Area (SGMA) of the Site; and, annual certification that prescribed Site engineering controls and institutional controls (EC/ICs) remain in-place.

2. Site Activities

The following activities were implemented during the reporting period as stipulated by the SMP:

- An annual groundwater monitoring event was performed by ALS Environmental of Rochester, New York on 29 August 2022.
- Vacuum testing was conducted on 2 November 2022 by Haley & Aldrich to evaluate the SSD system performance.
- SSD fan (Fan-3) was replaced by Haley & Aldrich on 14 April 2022.

During the 2022 reporting period, the engineering and institutional controls on Site were in-place and functioned effectively. There were no ground-intrusive activities that took place within the SGMA during the reporting period.

On 9 January 2022, a spill occurred at the Site, outside of the SGMA, in which approximately 10 gallons of gasoline from an L3Harris employee vehicle spilled on the blacktop in the southern parking lot, near the traffic light entrance/exit along Jefferson Road. The spill was contained at the Site on the blacktop by the Henrietta Fire Department, and final cleanup was provided by L3Harris. L3Harris called the NYSDEC Spill Hotline on 11 January 2023 to report the spill, and NYSDEC spill record number 2108960 was generated. Photos and information were provided to the NYSDEC, and the spill file was subsequently closed on the same day.

The Institutional and Engineering Controls Certification Form documenting that Site management requirements are being met is included as Appendix A of this report. Please note that the form was edited (as required within the form instructions) to state the correct PRR period (1 January to 31 December 2022) and the Site acreage (85.98 acres).

3. Groundwater and Surface Water Monitoring

On 29 August 2022, groundwater samples were collected from twelve on-Site wells and three surface water locations, as required by the SMP (Figure 2). The monitoring well samples were collected using passive diffusion bags (PDBs), as approved by NYSDEC in 2017. Sampling and laboratory analyses were conducted by ALS Environmental of Rochester, New York. Laboratory analytical results are summarized in Tables I and III, and in the sections below. Table III provides historical data from 2006 to present to show trends since the completion of the final larger-scale HRC-S injection in 2006 and as confirmation that analytical results reflect a stable plume condition. Data collected prior to 2006 can be found in previously submitted semiannual reports prepared for the Site. The laboratory data report is included in Appendix B. Graphical depictions of data trends are included as Appendix C.

Static groundwater levels were collected from the twelve on-Site wells on 29 August 2022. The elevation data is summarized in Table II and historical elevation data is presented in Appendix D for seasonal trends over time. Groundwater contours based on the elevation data are presented on Figure 3. Based on the 2022 groundwater elevation data, groundwater flows generally to the north-northeast, which is consistent with past monitoring results. The groundwater exhibited an overall decrease in elevations in 2022 compared to the elevations found in 2021 but remain within the range of historical elevations observed in Site wells.

3.1 SOURCE AREA WELLS – HRC-S INJECTION AREA

Five wells (VE-6, VE-10, VE-12, VE-15, and RW-4) are located within the final larger-scale HRC-S Injection Area, which is herein referred to as the residual source area. Refer to Figure 2 for the location of the wells. The analytical data is summarized in Tables I and III. Refer to the figures in Appendix C for a graphical depiction of the data trends with time.

Volatile organic compound (VOC) groundwater concentrations within the residual source area are consistent with historical data and indicate that the enhanced reductive dechlorination process stimulated by the injection of the HRC-S remains active and continues in the residual source area. The results for wells VE-10, VE-12, and VE-15 continue to show strong evidence of reductive dechlorination with overall decreasing concentrations of cis-1,2-dichloroethene (cis-1,2-DCE) and 1,1-dichloroethane (1,1-DCA) and generally higher concentrations of daughter products vinyl chloride and chloroethane.

Total concentrations of VOCs increased in well VE-12 in 2022 but were within the range of historical data and lower than total VOC concentrations prior to 2016. In 2022, total VOC concentrations in other source wells decreased or were consistent with historical concentrations. Total VOC concentrations at VE-6 exhibited a decrease in 2022 (13,800 micrograms per liter [μ g/L]) compared to results in 2021 (23,210 μ g/L), and total VOC concentrations at VE-10 exhibited a decrease in 2022 (11,960 μ g/L) compared to 2021 (22,800 μ g/L). Detections of daughter products vinyl chloride and chloroethane were consistent with previous sampling events, confirming that active reductive dechlorination of the parent compounds tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1-TCA) is occurring in this area of the Site.

Parent compounds, PCE, TCE, and 1,1,1-TCA were not detected in any of the residual source area wells during the 2022 sampling event, with the exception of 1,1,1-TCA at VE-12 (770 μ g/L) and a low concentration of TCE at RW-4 (8.1 μ g/L), which continued to exhibit an overall stable or decreasing

trend. Concentrations of parent compounds detected remain well below levels observed before active remediation was completed at the Site.

In general, the residual source area groundwater quality data showed either a significant overall decrease in total VOC concentrations, a stable condition, or a condition of decreasing parent compound and increasing daughter compound concentrations, which is expected under a biologically-mediated degradation process. The groundwater analytical results also indicate that the reductive dechlorination process is progressing to completion, gradually reducing residual contaminant concentrations, and assisting with maintaining overall groundwater plume stability.

3.2 DOWNGRADIENT WELLS

The downgradient well locations, MW-2, MW-10, MW-13S, MW-16, MW-18S, and MW-19 are located outside and primarily downgradient of the HRC-S injection area. Refer to Figure 2 for the location of these wells. The analytical results for the 2022 groundwater monitoring event are summarized in Tables I and III, and historical concentration trends are depicted in Appendix C.

Parent VOC concentrations (PCE, TCE, and 1,1,1-TCA) were generally consistent with the previous sampling event and historical trends, except for MW-19 which exhibited an increase in total VOC concentrations in 2022 (2,380 μ g/L) compared to 2021 (880 μ g/L) and were the highest totals in this well since 2016 but were within historical ranges. Concentrations included detections of parent compounds TCE (620 μ g/L) and 1,1,1-TCA (58 μ g/L) and breakdown products cis-1,2-DCE (1,500 μ g/L), vinyl chloride (43 μ g/L), and 1,1-dichloroethane (1,1-DCA; 120 μ g/L). Concentrations at wells MW-13S and MW-16, which are located downgradient of MW-19, remain non-detect or consistent with historical data. Concentrations for total VOCs detected during the 2022 sampling event were generally lower or consistent with historical fluctuation observed in previous sampling events dating back to 2006 when active remediation was completed at the Site.

Results for the groundwater samples collected at wells MW-13S located within the downgradient limits of the SGMA and at wells MW-16 and MW-18S, located just outside the downgradient limits of the SGMA, indicate that the impacted groundwater plume remains within the SGMA and is stable in this area of the Site.

3.3 SURFACE WATER

Surface water samples were collected from three surface water locations (SW-29, SW-34, and SW-35) in 2022. VOCs were detected in the surface water samples collected at SW-34 and SW-35. The VOC detection at SW-35 consisted of 5.8 μ g/L of cis-1,2-DCE, which is within historical trends. The detection at SW-34 consisted of 11 μ g/L of chloroform, which is considered a laboratory artifact and not a result of Site conditions. Refer to Figure 2 for surface water sample locations. Analytical results are summarized in Table III.

4. Sub-Slab Depressurization System

4.1 SYSTEM OPERATIONS AND MAINTENANCE SUMMARY

The SSD system continues to operate at the Site. The as-built SSD system plan is provided in Figure 4. During the 2022 reporting period, there was one noted shutdown of the system at fan F-3, which was reported to be malfunctioning and was subsequently replaced by Haley & Aldrich on 14 April 2022. Sub-slab vacuum readings observed during the reporting period were consistent with historical levels.

4.2 SUB-SLAB VACUUM MONITORING

On 2 November 2022, sub-slab vacuum readings were collected from vacuum monitoring floor points using a calibrated handheld manometer. Vacuum measurements from the floor monitoring points were greater than the SSD system design criteria of 0.002 inches of water column (in. WC) (see Table IV). These vacuum monitoring results indicate that the SSD system is operating effectively within the zone of influence.

In addition to vacuum monitoring at the floor points, vacuum readings were recorded at the permanently installed gauges at the suction points for each SSD system fan. Vacuum readings from the suction points indicated that the seven SSD system fans in operation during the monitoring event are providing sub-slab depressurization within the area where the SSD system is installed. Suction point vacuum readings are provided in Table V.

5. SGMA Activities and Site Improvements

A visual inspection of the SGMA was performed by Haley & Aldrich on 2 November 2022 and confirmed that the protective cover and fencing remain in-place and are effective in limiting exposure to residual Site contamination within the SGMA. There were no ground-intrusive activities that took place within or outside of the SGMA during the reporting period.

Xerox is not aware of any planned Site improvement activities by L3Harris in 2023.

6. Recommendations and Future Activities

Xerox will continue the following activities as stipulated in the SMP:

- Groundwater elevation monitoring and sampling for analysis of VOCs;
- Monitoring of the SSD system; and,
- Preparation and submittal of the annual PRR.

TABLES

TABLE I TOTAL VOCS IN GROUNDWATER AND SURFACE WATER SINCE 2011 FORMER XEROX BUILDING 801 HENRIETTA, NEW YORK

WELL ID	Oct-11	Aug-12	Sep-13	Jul-14	Aug-15	Aug-16	3/29/2017 Resampling	Sep-17	Aug-18	Aug-19	Sep-20	Aug-21	Aug-22
RW-4	10,631	940	666	1,823	747	227	NS	76	75	59	51	42	36
MW-2	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND
MW-10	2,668	2,885	869	1,686	1,100	1,012	910	1,047	1,259	1,111	1,208	963	1,018
MW-13S	63.4	71	74	68.4	76.8	5.4	NS	6.6	20.0	ND	5.9	5.3	5.1
MW-16	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND
MW-18S	ND	ND	ND	ND	ND	ND	NS	ND	16	ND	ND	ND	ND
MW-19	518	1,371	997	303	606	7,953	973	393	1,269	728	761	880	2,380
MW-24S	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND
VE-6	46,000	39,300	44,400	49,500	25,900	16,530	NS	20,360	17,120	5,970	14,240	23,210	13,800
VE-10	62,000	76,600	62,900	44,100	44,600	88,000	NS	1,394	2,438	4,363	5,010	22,800	11,960
VE-12	173,800	101,700	69,400	97,800	68,400	40,900	NS	2,208	17,110	18,450	14,380	14,600	17,290
VE-15	8,207	1,592	1,248	4,909	830	530	NS	575	349	551	537	372	277
SW-29	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND
SW-34	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	11
SW-35	98	11	ND	102	26	ND	NS	7	25	ND	ND	ND	6

Notes:

1. VOC Concentrations measured in ug/L

2. For the August 2022 sample at SW-34, VOC detections consisted of Chloroform, a common laboratory artifact.

Well ID	Reference Elevation	Depth to W	ater (Feet)
weirib	Reference Elevation	August 2021	August 2022
RW-4	498.84	2.97	3.96
MW-2	498.49	3.08	4.09
MW-10	498.45	2.53	3.94
MW-13S	498.35	3.59	3.96
MW-16	498.83	4.62	6.95
MW-18S	498.81	3.93	4.50
MW-19	498.53	3.57	7.32
MW-24S	503.44	3.90	4.42
VE-6	498.93	2.82	4.48
VE-10	500.04	3.58	4.33
VE-12	501.09	3.93	4.11
VE-15	499.73	3.53	4.48

Notes:

1. Elevations measured in feet above mean sea level.

2. Depth to water measured in feet from the top of the well riser.

3. Water levels measured by ALS.

Oct. Partner Partner Partner Partner Partner Partner Acctone ND (4000) ND (4000) ND (2000) ND (2000) <t< th=""><th>Sample</th><th>ID</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>VE-12</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Sample	ID									VE-12								
Acctor ND (4000 ND (4000 <thnd (4000<="" th=""> <thnd (4000<="" th=""> <thnd< th=""><th>Analyte or Method</th><th>12/12/2006</th><th>6/14/2007</th><th>12/18/2007</th><th>6/12/2008</th><th>12/18/2008</th><th>6/22/2009</th><th>7/1/2010</th><th>10/11/2011</th><th>8/23/2012</th><th>9/5/2013</th><th>7/30/2014</th><th>8/26/2015</th><th>8/31/2016</th><th>9/27/2017</th><th>8/28/2018</th><th>8/26/2019</th><th>09/28/2020</th><th>8/31</th></thnd<></thnd></thnd>	Analyte or Method	12/12/2006	6/14/2007	12/18/2007	6/12/2008	12/18/2008	6/22/2009	7/1/2010	10/11/2011	8/23/2012	9/5/2013	7/30/2014	8/26/2015	8/31/2016	9/27/2017	8/28/2018	8/26/2019	09/28/2020	8/31
sensen No (12000 No (12000 No (12000 No (12000 No (12000 No (12000 No (1200) N	VOCs 8260B (ug/L)																		
anomedicative ND (1000) ND (2000)	Acetone	ND (4000)	ND (4000)	ND (4000)	ND (8000)	• •	ND (4000)	ND (10000)	()	ND (2500)	ND (2500) J	ND (2500)	. ,	ND (2000)	ND (100)		. ,	ND (500)	ND (
Spannothme ND (1200) ND (1200) ND (1200) ND (1300) <	Benzene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND (
Insomethane (Methyl Brownie) ND (12000 ND (12	Bromodichloromethane	ND (1000)	ND (1000)	ND (1000)	ND (2000)		ND (1000)	ND (2500)	ND (2500)		ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)		ND (250)	ND
2bataanoe (wethy) (Edny) (Edny) ND (2000) ND	Bromoform	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND (
Carbon Disultifie ND (2000)	Bromomethane (Methyl Bromide)	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	• •	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND (
Carbon DetraceMonde ND (1000) ND (1000) ND (1000) ND (2000)	2-Butanone (Methyl Ethyl Ketone)	ND (2000)	ND (2000)	ND (2000)	ND (4000)	ND (4000)	ND (2000)	ND (5000)	ND (5000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2,000)	110	ND (500)	930	570	5
Chicorestnee ND (1000 ND (1000) ND (2000) ND (2000) ND (2500) ND (1300)	Carbon Disulfide	ND (2000)	ND (2000)	ND (2000)	ND (4000)	ND (4000)	ND (2000)	ND (5000)	ND (5000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2,000)	ND (100)	ND (1000)	ND (500)	ND (500)	ND
Chieroschane ND (1000) ND (1000) ND (1000) ND (2000)	Carbon Tetrachloride	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND (
Chicorom (Trichloromethane) ND 1000 ND 10000 ND 1000 ND<	Chlorobenzene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND(50)	ND (500)	ND (250)	ND (250)	ND
Chloromethane (Methyl Chloride) ND (1000) ND (2000) ND	Chloroethane	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	1,400	2,700	4,800	9,200	1,400	6,400	7,800	8,600	66
Dibronchloromethane ND (1000) ND (1000) ND (2000) ND (2000) ND (2500) ND (2500) ND (2300) ND (1300)	Chloroform (Trichloromethane)	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND
1.1-Dickloroethane 14,000 9,600 11,000 7,200 18,000 8,800 11,000 17,000 16,000 15,000 4,000 330 960 1,700 850 1,2-Dichloroethane ND (1000)	Chloromethane (Methyl Chloride)	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND
1.2-bickloroethane ND (1000) ND (1000) ND (1000) ND (2000)	Dibromochloromethane	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND
1,-bichloroethene ND (1000) ND (1000) ND (2000) ND (2000) 1,700 ND (2500) ND (1300) ND (1300) ND (1,000) ND (50) ND (50) ND (250) ND (250) 1,-bichloroethene 4,100 23,000 19,000 A0,000 57,000 73,000 A 4,000 27,000 43,000 ND (1300) ND (1300) ND (1300) ND (1300) ND (1000) ND (500)	1,1-Dichloroethane	14,000	9,600	11,000	7,200	18,000	8,800	11,000	12,000	17,000	16,000	16,000	15,000	4,900	330	960	1,700	850	10
cis-1,2-Dichloroethene 4,100 23,000 10,000 x7,000	1,2-Dichloroethane	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND
trans-1,2-Dichloroethene ND 1000 ND 1000 ND 1000 ND 12000 ND <td>1,1-Dichloroethene</td> <td>ND (1000)</td> <td>ND (1000)</td> <td>ND (1000)</td> <td>ND (2000)</td> <td>ND (2000)</td> <td>1,700</td> <td>ND (2500)</td> <td>ND (2500)</td> <td>ND (1300)</td> <td>ND (1300)</td> <td>1,400</td> <td>ND (1300)</td> <td>ND (1,000)</td> <td>ND (50)</td> <td>ND (500)</td> <td>ND (250)</td> <td>ND (250)</td> <td>ND</td>	1,1-Dichloroethene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	1,700	ND (2500)	ND (2500)	ND (1300)	ND (1300)	1,400	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND
1,2-Dichloropropane ND (1000) ND (1000) ND (1000) ND (2000)	cis-1,2-Dichloroethene	4,100	23,000	19,000	40,000	57,000	73,000 D	48,000	100,000	44,000	27,000	45,000	14,000	5,800	ND(50)	ND (500)	1,100	500	11
Cis-1,3-Dichloropropene ND (1000) ND (1000) ND (1000) ND (2000) ND (2000) ND (1000) ND (2000) ND (2000) </td <td>trans-1,2-Dichloroethene</td> <td>ND (1000)</td> <td>ND (1000)</td> <td>ND (1000)</td> <td>ND (2000)</td> <td>ND (2000)</td> <td>ND (1000)</td> <td>ND (2500)</td> <td>ND (2500)</td> <td>ND (1300)</td> <td>ND (1300)</td> <td>ND (1300)</td> <td>ND (1300)</td> <td>ND (1,000)</td> <td>ND (50)</td> <td>ND (500)</td> <td>ND (250)</td> <td>ND (250)</td> <td>ND</td>	trans-1,2-Dichloroethene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND
trans-1,3-Dichloropropene ND (1000) ND (1000) ND (1000) ND (2000)	1,2-Dichloropropane	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND
trans-1,3-Dichloropropene ND (1000) ND (1000) ND (1000) ND (2000)	Cis-1,3-Dichloropropene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND
2-Hexanone ND (2000) ND (2000) ND (2000) ND (4000) ND (2000) <		ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND
Methylene Chloride ND (1000) ND (1000) ND (1000) ND (2000) ND (2500) ND (1300)	Ethylbenzene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) ND (2000) ND (2000) ND (2000) ND (4000) ND (4000) ND (500) ND (500) ND (2500) ND (2500) ND (2000) ND (1000) ND (500) ND (500) ND (2500) ND (1300)	2-Hexanone	ND (2000)	ND (2000)	ND (2000)	ND (4000)	ND (4000)	ND (2000)	ND (5000)	ND (5000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2,000)	ND (100)	ND (500)	ND (250)	ND (250)	ND
Styrene ND (1000) ND (1000) ND (1000) ND (2000)	Methylene Chloride	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	88	ND (500)	ND (250)	ND (250)	ND
1,1,2,2-Tetrachloroethane ND (1000) ND (1000) ND (1000) ND (1000) ND (2000)	4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (2000)	ND (2000)	ND (2000)	ND (4000)	ND (4000)	ND (2000)	ND (5000)	ND (5000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2,000)	ND (100)	ND (1000)	ND (500)	ND (500)	ND (
1,1,2,2-Tetrachloroethane ND (1000) ND (1000) ND (1000) ND (1000) ND (2000) ND (1000) ND (2000) ND (1000) ND (2000)	Styrene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300) J	ND (1300) J	ND (1300) J	ND (1300)	ND (50)	ND (500)	ND (250)	ND (250)	ND
Toluene ND (1000) ND (1000) ND (1000) ND (1000) ND (2000) ND (1000) ND (2000) ND (1000) ND (2000) ND (1000) ND (2000) ND (2000) ND (2000) ND (2500) ND (1300) ND (1300) ND (1300) ND (1,000) ND (50) 650 680 660 1,1,1-Trichloroethane ND (1000) 4,600 1,800 7,200 3,300 11,000 4,000 8,800 2,700 ND (1300) 4,700 1,600 ND (1,000) ND (500) 440 ND (250) 1,1,2-Trichloroethane ND (1000) ND (1000) ND (2000) ND (1000) ND (2000) ND (2000) ND (2500) ND (1300) ND (1300) ND (1,000) ND (50) ND (50) ND (250) ND (1300) ND (1300) ND (1,000) ND (50) ND (250) ND (1300) ND (1300) ND (1300) ND (1,000) ND (50) ND (50) ND (50) ND (250) ND (2500) ND (1300) ND (1300) ND (1,000) ND (50) ND (50) ND (50) ND (50) ND (250)			ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND
1,1,1-Trichloroethane ND (1000) 4,600 1,800 7,200 3,300 11,000 4,000 8,800 2,700 ND (1300) 4,700 1,600 ND (1,000) ND (50) 440 ND (250) 1,1,2-Trichloroethane ND (1000) ND (1000) ND (1000) ND (2000) ND (1000) ND (2000) ND (2000) ND (2500) ND (1300) ND	Tetrachloroethene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND
1,1,1-Trichloroethane ND (1000) 4,600 1,800 7,200 3,300 11,000 4,000 8,800 2,700 ND (1300) 4,700 1,600 ND (1,000) ND (500) 440 ND (250) 1,1,2-Trichloroethane ND (1000) ND (1000) ND (1000) ND (2000) ND (1000) ND (2500) ND (1300) N	Toluene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	650	680	660	4
Trichloroethene ND (1000) ND (1000) ND (1000) ND (2000) ND (1000) ND (2000) ND (1000) ND (2500) ND (1300)	1,1,1-Trichloroethane		4,600	1,800	7,200	3,300	11,000	4,000	8,800	2,700	ND (1300)	4,700	1,600	ND (1,000)	ND (50)	ND (500)	440	ND (250)	ND
Trichloroethene ND (1000) ND (1000) ND (1000) ND (2000) ND (1000) ND (2000) ND (1000) ND (2500) ND (1300)			ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND
Vinyl Chloride 30,000 37,000 44,000 D 31000 42000 33,000 34,000 53,000 38,000 25,000 28,000 33,000 21,000 280 9,100 5,800 3,200															. ,			ND (250)	ND
															. ,			3,200	49
	o-Xylene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND (
		. ,	. ,	. ,	. ,	. ,	. ,	. ,		. ,	. ,	. ,	. ,		ND (50)		. ,	ND (250)	ND

NA: Not Applicable/Not Sampled ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected J: Estimated

J-: Estimated and biased low

 For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not collected

 Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

8/31/2021 8/29/2022 ND (500) ND (500) ND (250) ND (250) ND (250) ND (500) ND (250) ND (250) ND (250) ND (250		
ND (250) ND (250) ND (250) ND (250) ND (250) ND (250) ND (250) ND (250) ND (250) ND (500) ND (500) ND (500) ND (250) ND (250) ND (250) ND (250)<	8/31/2021	8/29/2022
ND (250) ND (250) ND (250) ND (250) S90 ND (500) ND (500) ND (500) ND (250) ND (250)		
ND (250) ND (250) 590 ND (500) ND (500) ND (500) ND (250) ND (250) ND (250) ND (250) ND (250) ND (250) MD (250) ND (250) ND (250) ND (250)	ND (250)	ND (250)
590 ND (500) ND (500) ND (500) ND (250) ND (250)	ND (250)	ND (250)
ND (500) ND (500) ND (500) ND (500) ND (250) ND (250) ND (250) ND (250)<	ND (250)	ND (250)
ND (250) ND (250) ND (250) ND (250) 6600 4300 ND (250) ND (250)	590	ND (500)
ND (250) ND (250) 6600 4300 ND (250) ND (250)	ND (500)	ND (500)
6600 4300 ND (250) ND (250)	ND (250)	ND (250)
ND (250) ND (250) ND (250) ND (250) ND (250) ND (250) 1000 1500 ND (250) ND (250)	ND (250)	ND (250)
ND (250) ND (250) ND (250) ND (250) 1000 1500 ND (250) ND (250)	6600	4300
ND (250) ND (250) 1000 1500 ND (250) ND (250) ND (250) 270 1100 5000 ND (250) ND (250) ND (250) ND (250) <t< td=""><td>ND (250)</td><td>ND (250)</td></t<>	ND (250)	ND (250)
1000 1500 ND (250) ND (250) ND (250) 270 1100 5000 ND (250) ND (250) ND (250) ND (500) ND (250) ND (250)	ND (250)	ND (250)
ND (250) ND (250) ND (250) 270 1100 5000 ND (250) ND (250)	ND (250)	ND (250)
ND (250) 270 1100 5000 ND (250) ND (250)	1000	1500
1100 5000 ND (250) ND (250) Ageod 5100	ND (250)	ND (250)
ND (250) ND (250)	ND (250)	270
ND (250) ND (250)	1100	5000
ND (250) ND (250) ND (250) ND (500) ND (250) ND (250)	ND (250)	ND (250)
ND (250) ND (250) A10 350 ND (250) ND (250)	ND (250)	ND (250)
ND (250) ND (250) ND (250) ND (250) ND (250) ND (250) ND (500) ND (500) ND (250) ND (250) ND (250) ND (250) ND (250) ND (250) A10 350 ND (250) ND (250)	ND (250)	ND (250)
ND (250) ND (250) ND (250) ND (250) ND (500) ND (500) ND (250) ND (250) ND (250) ND (250) ND (250) ND (250) ND (250) ND (250) ND (250) 770 ND (250) ND (250)	ND (250)	ND (250)
ND (250) ND (250) ND (500) ND (500) ND (250) ND (250) ND (250) ND (250) ND (250) ND (250) A10 350 ND (250) ND (250) A10 350	ND (250)	ND (250)
ND (500) ND (500) ND (250) ND (250) ND (250) ND (250) ND (250) ND (250) 410 350 ND (250) ND (250) 4900 5100	ND (250)	ND (250)
ND (250) ND (250) ND (250) ND (250) ND (250) ND (250) 410 350 ND (250) 770 ND (250) ND (250) ND (250) ND (250) ND (250) ND (250) 4900 5100	ND (250)	ND (250)
ND (250) ND (250) ND (250) ND (250) 410 350 ND (250) 770 ND (250) ND (250) ND (250) ND (250) ND (250) ND (250) 4900 5100		
ND (250) ND (250) 410 350 ND (250) 770 ND (250) ND (250) ND (250) ND (250) ND (250) ND (250) 4900 5100	ND (250)	ND (250)
410 350 ND (250) 770 ND (250) ND (250) ND (250) ND (250) ND (250) ND (250) 4900 5100	ND (250)	
ND (250) 770 ND (250) ND (250) ND (250) ND (250) 4900 5100	ND (250)	ND (250)
ND (250) ND (250) ND (250) ND (250) 4900 5100		350
ND (250) ND (250) 4900 5100	ND (250)	
4900 5100	ND (250)	ND (250)
	ND (250)	ND (250)
ND (250) ND (250)		
ND (250) ND (250)	ND (250)	ND (250)

s	ample ID											VE	-10											
Analyte or Method	11/23/2003	11/24/2003 DUPLICATE	12/2/2004	3/29/2005	6/23/2006	12/12/2006	6/13/2007	12/18/2007	6/12/2008	12/17/2008	6/22/2009	7/1/2010	10/11/2011	8/22/2012	9/5/2013	7/30/2014	8/26/2015	8/31/2016	9/27/2017	8/28/2018	8/26/2019	9/28/2020	8/31/2021	8/29/2022
VOCs 8260B (ug/L)																								
Acetone	ND (1000)	ND (2000)	ND (1000)	ND (1000)	ND (5000)	ND (5000)	ND (8000)	ND (5000)	ND (4000)	ND (1000)	ND (4000)	ND (5000)	ND (5000)	ND (2500)	ND (2500) J	ND (2500)	ND (2000)	ND (5,000)	ND (50)	ND (50)	ND (50)	ND (200)	ND (1,000)	ND (1,000)
Benzene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)	ND (500)
Bromodichloromethane	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)	ND (500)
Bromoform	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)	ND (500)
Bromomethane (Methyl Bromide)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)	ND (500)
2-Butanone (Methyl Ethyl Ketone)	ND (500)	ND (1000)	ND (500)	ND (500)	ND (2500)	ND (2500)	ND (4000)	ND (2500)	ND (2000)	ND (500)	ND (2000)	ND (2500)	ND (2500)	ND (2500)	ND (2500) J	ND (2500)	ND (2000)	ND (5,000)	ND (50)	ND (50)	ND (50)	ND (200)	ND (1,000)	ND (1,000)
Carbon Disulfide	ND (500)	ND (1000)	ND (500)	ND (500)	ND (2500)	ND (2500)	ND (4000)	ND (2500)	ND (2000)	ND (500)	ND (2000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2000)	ND (5,000)	ND (50)	ND (50)	ND (50)	ND (200)	ND (1,000)	ND (1,000)
Carbon Tetrachloride	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)	ND (500)
Chlorobenzene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)	ND (500)
Chloroethane	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	1,300	2,100	1,800	2,000	2,600	2,900	2,100	4,500	5,000	670	1,500	1900 J-	1,100	1,100	1,200
Chloroform (Trichloromethane)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)	ND (500)
Chloromethane (Methyl Chloride)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)	ND (500)
Dibromochloromethane	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)	ND (500)
1,1-Dichloroethane	1,200	1,200	1,100	1,300	1,600	1,600	2,600	2,700	3,000	850	1,300	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	64	120	260 J-	180	1,000	760
1,2-Dichloroethane	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (1,000)	ND (1,000)
1,1-Dichloroethene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (1,000)	ND (1,000)
cis-1,2-Dichloroethene	17,000 E	17,000 D	17,000 D	18,000 D	42,000	40,000	79,000	17,000	18,000	4,500	36,000	14,000	23,000	48,000	28,000	22,000	6,100	50,000	ND (25)	79	72 J-	130	1,700	ND (500)
trans-1,2-Dichloroethene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	40	73	76 J-	76 J-	ND (500)	ND (500)
1,2-Dichloropropane	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)	ND (500)
Cis-1,3-Dichloropropene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)	ND (500)
trans-1,3-Dichloropropene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)	ND (500)
Ethylbenzene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)	ND (500)
2-Hexanone	ND (500)	ND (1000)	ND (500)	ND (500)	ND (2500)	ND (2500)	ND (4000)	ND (2500)	ND (2000)	ND (500)	ND (2000)	ND (2500)	ND (2500)	ND (2500)	ND (2500) J	ND (2500)	ND (2000)	ND (5,000)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)	ND (500)
Methylene Chloride	450	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	33	56	55 J-	55 J-	ND (500)	ND (500)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (500)	ND (1000)	ND (500)	ND (500)	ND (2500)	ND (2500)	ND (4000)	ND (2500)	ND (2000)	ND (500)	ND (2000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2000)	ND (5,000)	ND (50)	ND (50)	ND (50)	ND (200)	ND (1,000)	ND (1,000)
Styrene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300) J	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)	ND (500)
1,1,2,2-Tetrachloroethane	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)	ND (500)
Tetrachloroethene	1,100	1,000	820	1,000	2,800	1,700	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)	ND (500)
Toluene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)	ND (500)
1,1,1-Trichloroethane	2,000	2,000	1,600	2,000	4,000	3,200	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)	ND (500)
1,1,2-Trichloroethane	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)	ND (500)
Trichloroethene	1,400	1,300	1,200	ND (250)	4,000	1,800	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)	ND (500)
Vinyl Chloride	ND (250)	ND (500)	ND (250)	1,900	ND (1250)	ND (1250)	ND (2000)	24,000	33,000	41,000 D	51,000 D	28,000	37,000	26,000	32,000	20,000	34,000	33,000	620	610	2000 J-	3,600	19,000	10,000
o-Xylene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)	ND (500)
m,p-Xylenes	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)	ND (500)

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected J: Estimated

J-: Estimated and biased low

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not collected

 Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

Sample	D I									VI	E-6									
Analyte or Method	6/23/2006	12/13/2006	6/13/2007	12/19/2007	6/11/2008	12/18/2008	6/23/2009	6/28/2010	10/12/2011	8/23/2012	9/5/2013	7/30/2014	8/26/2015	8/30/2016	9/26/2017	8/28/2018	8/26/2019	9/28/2020	8/31/2021	8/29/2022
VOCs 8260B (ug/L)																				
Acetone	ND (4000)	ND (2000)	ND (2000)	ND (400)	ND (400)	ND (1000)	ND (2000)	ND (2000)	ND (5000)	ND (2500)	ND (2500) J	ND (2500)	ND (2000)	ND (1,000)	ND (1,000)	ND (1,000)	ND (250)	ND (1,000)	ND (1,000)	ND (1,000)
Benzene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)	ND (500)
Bromodichloromethane	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)	ND (500)
Bromoform	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)	ND (500)
Bromomethane (Methyl Bromide)	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)	ND (500)
2-Butanone (Methyl Ethyl Ketone)	ND (2000)	ND (1000)	ND (1000)	ND (200)	ND (200)	ND (500)	ND (1000)	ND (1000)	ND (2500)	ND (2500)	ND (2500) J	ND (2500)	ND (2000)	ND (1,000)	ND (1,000)	ND (1,000)	ND (250)	ND (1,000)	ND (1,000)	ND (1,000)
Carbon Disulfide	ND (2000)	ND (1000)	ND (1000)	ND (200)	ND (200)	ND (500)	ND (1000)	ND (1000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2000)	ND (1,000)	ND (1,000)	ND (1,000)	ND (250)	ND (1,000)	ND (1,000)	ND (1,000)
Carbon Tetrachloride	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)	ND (500)
Chlorobenzene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)	ND (500)
Chloroethane	ND (1000)	ND (500)	ND (500)	ND (100)	110	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	190 J-	ND (500)	ND (500)	ND (500)
Chloroform (Trichloromethane)	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)	ND (500)
Chloromethane (Methyl Chloride)	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)	ND (500)
Dibromochloromethane	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)	ND (500)
1,1-Dichloroethane	1,100	900	1,800	120	1,800	300	980	2,400	1,700	1,900	2,100	2,200	1,200	720	980	680	300 J-	540	810	ND (500)
1,2-Dichloroethane	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)	ND (500)
1,1-Dichloroethene	ND (1000)	530	820	ND (100)	ND (100)	ND (250)	ND (500)	600	1,300	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	510	520	130 J-	ND (500)	630	ND (500)
cis-1,2-Dichloroethene	22,000	18,000	32,000 D	2,700	8000 D	8,500	18,000	66,000 D	40,000 D	34,000	36,000	39,000	20,000	14,000	14,000	13,000	3900 J-	11,000	19,000	12,000
trans-1,2-Dichloroethene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	570	1,300	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)	ND (500)
1,2-Dichloropropane	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)	ND (500)
Cis-1,3-Dichloropropene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)	ND (500)
trans-1,3-Dichloropropene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)	ND (500)
Ethylbenzene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)	ND (500)
2-Hexanone	ND (2000)	ND (1000)	ND (1000)	ND (200)	ND (200)	ND (500)	ND (1000)	ND (1000)	ND (2500)	ND (2500)	ND (2500) J	ND (2500)	ND (2000)	ND (1,000)	ND (1,000)	ND (1,000)	ND (250)	ND (1,000)	ND (1,000)	ND (1,000)
Methylene Chloride	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)	ND (500)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (2000)	ND (1000)	ND (1000)	ND (200)	ND (200)	ND (500)	ND (1000)	ND (1000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2000)	ND (1,000)	ND (1,000)	ND (1,000)	ND (250)	ND (1,000)	ND (1,000)	ND (1,000)
Styrene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300) J	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)	ND (500)
1,1,2,2-Tetrachloroethane	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)	ND (500)
Tetrachloroethene	11,000	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)	ND (500)
Toluene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)	ND (500)
1,1,1-Trichloroethane	10,000	4,000	6,000	340	920	970	1,700	4,700	2,400	3,400	3,100	5,500	1,600	710	970	620	150 J-	ND (500)	810	ND (500)
1,1,2-Trichloroethane	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)	ND (500)
Trichloroethene	6,800	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)	ND (500)
Vinyl Chloride	ND (1000)	ND (500)	1,400	140	8000 D	ND (250)	4,700	6,700	1,900	ND (1300)	3,200	2,800	3,100	1,100	3,900	2,300	1300 J-	2,700	3,400	1,800
o-Xylene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)	ND (500)
m,p-Xylenes	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)	ND (500)
	(x/	17	v1	1 - 7	1 /	1	1	1	\ - /	(-)	()	(-)	·/	1	()	(- <i>1</i>)	17	x/	

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected J: Estimated

J-: Estimated and biased low

Haley & Aldrich of New York

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not collected

 Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

. G:\Xerox\Henrietta B801\Reporting - PRR\2022 Report 13\Tables\Individual Files\Table III_Annual Monitoring Summary_2022_D1.xlsx

VOCs 8260B (ug/L)AcetoneND (5000)BenzeneND (1250)BromodichloromethaneND (1250)BromodichloromethaneND (1250)Bromomethane (Methyl Bromide)ND (1250)2-Butanone (Methyl Ethyl Ketone)ND (2500)Carbon DisulfideND (2500)Carbon TetrachlorideND (1250)ChlorobenzeneND (1250)Chloroform (Trichloromethane)ND (1250)Chloromethane (Methyl Chloride)ND (1250)DibromochloromethaneND (1250)1,1-DichloroethaneND (1250)1,2-Dichloroethene38,000trans-1,2-DichloropaneND (1250)Cis-1,3-DichloropropeneND (1250)trans-1,3-DichloropropeneND (1250)	ND (2000) ND ND (500) ND ND (500) ND ND (500) ND ND (500) ND ND (1000) ND ND (500) ND	/2007 12/19/2007 2000) ND (2000) (500) ND (500) (500) ND (500) (500) ND (500) (500) ND (500) 1000) ND (1000) 1000) ND (1000) (500) ND (500) (500) ND	6/11/2008 ND (4000) ND (1000) ND (1000) ND (1000) ND (2000) ND (2000) ND (1000) ND (1000) ND (1000)	12/18/2008 ND (1000) ND (250) ND (250) ND (250) 650 ND (500) ND (250) ND (250)	6/23/2009 ND (1000) ND (250) ND (250) ND (250) ND (500) ND (500) ND (250)	250 ND (25) ND (25) ND (25) ND (25) ND (25) 430 ND (50)	10/11/2011 160 ND (25) ND (25) ND (25) ND (25) 300	8/23/2012 140 ND (50) ND (50) ND (50) ND (50)	9/5/2013 94 J ND (25) ND (25) ND (25)	7/30/2014 110 ND (25) ND (25)	8/26/2015 87 ND (25) ND (25)	8/31/2016 ND (50) ND (25) ND (25)	9/26/2017 ND (50) ND (25) ND (25)	8/28/2018 ND (25) ND (13) ND (13)	8/26/2019 ND (25) ND (13) ND (13)	9/28/2020 ND (25) ND (13) ND (13)	8/31/2021 ND (25) ND (13) ND (13)	8/29/2022 ND (25) ND (13)
AcetoneND (5000)NBenzeneND (1250)BromodichloromethaneND (1250)BromoformND (1250)Bromomethane (Methyl Bromide)ND (1250)2-Butanone (Methyl Ethyl Ketone)ND (2500)Carbon DisulfideND (2500)Carbon DisulfideND (1250)Carbon TetrachlorideND (1250)ChlorobenzeneND (1250)Chloroform (Trichloromethane)ND (1250)Chloromethane (Methyl Chloride)ND (1250)DibromochloromethaneND (1250)1,1-DichloroethaneND (1250)1,2-Dichloroethene38,000trans-1,2-DichloroetheneND (1250)1,2-DichloropropaneND (1250)Cis-1,3-DichloropropeneND (1250)trans-1,3-DichloropropeneND (1250)	ND (500) ND ND (500) ND ND (500) ND ND (1000) ND ND (1000) ND ND (500) ND	(500) ND (500) 1000) ND (1000) (500) ND (500)	ND (1000) ND (1000) ND (1000) ND (1000) ND (2000) ND (2000) ND (1000) ND (1000)	ND (250) ND (250) ND (250) ND (250) 650 ND (500) ND (250)	ND (250) ND (250) ND (250) ND (250) ND (500) ND (500)	ND (25) ND (25) ND (25) ND (25) 430	ND (25) ND (25) ND (25) ND (25)	ND (50) ND (50) ND (50)	ND (25) ND (25)	ND (25) ND (25)	ND (25) ND (25)	ND (25) ND (25)	ND (25) ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)
BenzeneND (1250)BromodichloromethaneND (1250)BromoformND (1250)Bromomethane (Methyl Bromide)ND (1250)2-Butanone (Methyl Ethyl Ketone)ND (2500)Carbon DisulfideND (2500)Carbon DisulfideND (1250)ChlorobenzeneND (1250)Chloroferm (Trichloromethane)ND (1250)Chloromethane (Methyl Chloride)ND (1250)Chloromethane (Methyl Chloride)ND (1250)DibromochloromethaneND (1250)1,1-DichloroethaneND (1250)1,2-Dichloroethene38,000trans-1,2-DichloroetheneND (1250)1,2-DichloroptopeneND (1250)Cis-1,3-DichloropponeND (1250)trans-1,3-DichloropponeND (1250)trans-1,3-DichloropponeND (1250)	ND (500) ND ND (500) ND ND (500) ND ND (1000) ND ND (1000) ND ND (500) ND	(500) ND (500) 1000) ND (1000) (500) ND (500)	ND (1000) ND (1000) ND (1000) ND (1000) ND (2000) ND (2000) ND (1000) ND (1000)	ND (250) ND (250) ND (250) ND (250) 650 ND (500) ND (250)	ND (250) ND (250) ND (250) ND (250) ND (500) ND (500)	ND (25) ND (25) ND (25) ND (25) 430	ND (25) ND (25) ND (25) ND (25)	ND (50) ND (50) ND (50)	ND (25) ND (25)	ND (25) ND (25)	ND (25) ND (25)	ND (25) ND (25)	ND (25) ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)
BromodichloromethaneND (1250)BromoformND (1250)Bromomethane (Methyl Bromide)ND (1250)2-Butanone (Methyl Ethyl Ketone)ND (2500)2-Butanone (Methyl Ethyl Ketone)ND (2500)Carbon DisulfideND (2500)Carbon TetrachlorideND (1250)ChlorobenzeneND (1250)Chloroform (Trichloromethane)ND (1250)Chloromethane (Methyl Chloride)ND (1250)DibromochloromethaneND (1250)1,1-DichloroethaneND (1250)1,2-DichloroethaneND (1250)1,1-DichloroethaneND (1250)1,2-Dichloroethene38,000trans-1,2-DichloroetheneND (1250)1,2-DichloropaneND (1250)Cis-1,3-DichloroppeneND (1250)trans-1,3-DichloroppeneND (1250)trans-1,3-DichloroppeneND (1250)	ND (500) ND ND (500) ND ND (500) ND ND (1000) ND ND (1000) ND ND (500) ND	Stop ND (500) (500) ND (500) (500) ND (500) (500) ND (500) 1000) ND (1000) (500) ND (500)	ND (1000) ND (1000) ND (1000) ND (2000) ND (2000) ND (1000) ND (1000) ND (1000)	ND (250) ND (250) ND (250) 650 ND (500) ND (250)	ND (250) ND (250) ND (250) ND (500) ND (500)	ND (25) ND (25) ND (25) 430	ND (25) ND (25) ND (25)	ND (50) ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)		. ,	. ,	. ,	
BromoformND (1250)Bromomethane (Methyl Bromide)ND (1250)2-Butanone (Methyl Ethyl Ketone)ND (2500)2-Butanone (Methyl Ethyl Ketone)ND (2500)Carbon DisulfideND (2500)Carbon TetrachlorideND (1250)ChlorobenzeneND (1250)ChloroethaneND (1250)Chloroform (Trichloromethane)ND (1250)Chloroform (Trichloromethane)ND (1250)DibromochloromethaneND (1250)1,1-DichloroethaneND (1250)1,2-DichloroethaneND (1250)1,2-Dichloroethene38,000trans-1,2-DichloroetheneND (1250)1,2-DichloroetheneND (1250)1,2-DichloroptopeneND (1250)1,2-DichloroptopeneND (1250)	ND (500) ND ND (500) ND ND (1000) ND ND (1000) ND ND (500) ND	(500) ND (500) (500) ND (500) (500) ND (1000) 1000) ND (1000) (500) ND (500)	ND (1000) ND (2000) ND (2000) ND (2000) ND (1000) ND (1000) ND (1000)	ND (250) ND (250) 650 ND (500) ND (250)	ND (250) ND (250) ND (500) ND (500)	ND (25) ND (25) 430	ND (25) ND (25)	ND (50)	. ,		. ,			ND (13)	ND (13)	ND (13)	ND (13)	
Bromomethane (Methyl Bromide) ND (1250) 2-Butanone (Methyl Ethyl Ketone) ND (2500) ND Carbon Disulfide ND (2500) ND Carbon Tetrachloride ND (1250) ND Carbon Tetrachloride ND (1250) ND Chlorobenzene ND (1250) ND Chloroform (Trichloromethane) ND (1250) ND Chloromethane (Methyl Chloride) ND (1250) ND Dibromochloromethane ND (1250) ND 1,1-Dichloroethane 2,600 1,2-Dichloroethane 1,2-Dichloroethane ND (1250) ND 1,2-Dichloroethene 38,000 1 trans-1,2-Dichloroethene ND (1250) ND 1,2-Dichloroptopane ND (1250) ND 1,2-Dichloropropane ND (1250) 1 1,2-Dichloropropene ND (1250) 1	ND (500) ND ND (1000) ND ND (1000) ND ND (500) ND	(500) ND (500) 1000) ND (1000) 1000) ND (1000) (500) ND (500)	ND (1000) ND (2000) ND (2000) ND (1000) ND (1000) ND (1000)	ND (250) 650 ND (500) ND (250)	ND (250) ND (500) ND (500)	ND (25) 430	ND (25)		ND (25)							(-)	(10)	ND (13)
2-Butanone (Methyl Ethyl Ketone)ND (2500)NDCarbon DisulfideND (2500)NDCarbon TetrachlorideND (1250)NDChlorobenzeneND (1250)NDChloroform (Trichloromethane)ND (1250)NDChloromethane (Methyl Chloride)ND (1250)NDDibromochloromethaneND (1250)ND1,1-DichloroethaneND (1250)ND1,2-DichloroethaneND (1250)ND1,2-Dichloroethene38,000ND (1250)trans-1,2-DichloroptheneND (1250)ND1,2-DichloroptheneND (1250)NDtrans-1,3-DichloropropeneND (1250)NDtrans-1,3-DichloropropeneND (1250)NDtrans-1,3-DichloropropeneND (1250)ND	ND (1000) ND (1000) ND (1000) ND (1000) ND (500) ND (500) ND (500) ND (500) ND (500) ND (500) ND (500) ND (500)	1000) ND (1000) 1000) ND (1000) (500) ND (500)	ND (2000) ND (2000) ND (1000) ND (1000) ND (1000)	650 ND (500) ND (250)	ND (500) ND (500)	430	. ,	ND (50)		ND (25)	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)
Carbon DisulfideND (2500)NDCarbon TetrachlorideND (1250)NDChlorobenzeneND (1250)NDChlorothaneND (1250)NDChloroform (Trichloromethane)ND (1250)NDChloromethane (Methyl Chloride)ND (1250)NDDibromochloromethaneND (1250)ND1,1-Dichloroethane2,6001,2-Dichloroethane1,2-Dichloroethene38,000s8,000trans-1,2-DichloropteneND (1250)1,2-Dichloroptene1,2-DichloropteneND (1250)1,2-Dichloroptene1,2-DichloropteneND (1250)1,2-DichloropteneND (1250)ND (1250)ND (1250)Cis-1,3-DichloropropeneND (1250)1trans-1,3-DichloropropeneND (1250)1	ND (1000) ND ND (500) ND	1000 ND (1000) (500) ND (500)	ND (2000) ND (1000) ND (1000) ND (1000)	ND (500) ND (250)	ND (500)		300		ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)
Carbon TetrachlorideND (1250)ChlorobenzeneND (1250)ChloroethaneND (1250)Chloroform (Trichloromethane)ND (1250)Chloromethane (Methyl Chloride)ND (1250)DibromochloromethaneND (1250)1,1-DichloroethaneND (1250)1,2-DichloroethaneND (1250)1,1-DichloroetheneND (1250)1,1-DichloroetheneND (1250)1,2-DichloroetheneND (1250)1,2-DichloroetheneND (1250)1,2-DichloroptopeneND (1250)1,2-DichloropropeneND (1250)Cis-1,3-DichloropropeneND (1250)Cis-1,3-DichloropropeneND (1250)Cis-1,3-DichloropropeneND (1250)	ND (500) ND	(500) ND (500)	ND (1000) ND (1000) ND (1000)	ND (250)	. ,	ND (50)		210	140	130	82	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)
ChlorobenzeneND (1250)ChlorobenzeneND (1250)Chloroform (Trichloromethane)ND (1250)Chloromethane (Methyl Chloride)ND (1250)DibromochloromethaneND (1250)1,1-Dichloroethane2,6001,2-DichloroethaneND (1250)1,1-DichloroetheneND (1250)cis-1,2-Dichloroethene38,000trans-1,2-DichloroptheneND (1250)1,2-DichloroptheneND (1250)1,2-DichloroptheneND (1250)1,2-DichloroptheneND (1250)1,2-DichloroptopeneND (1250)Cis-1,3-DichloropropeneND (1250)	ND (500) ND	(500) ND (500) (500) ND (500) (500) ND (500)	ND (1000) ND (1000)	. ,	ND (250)		ND (50)	ND (100)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)
ChloroethaneND (1250)Chloroform (Trichloromethane)ND (1250)Chloromethane (Methyl Chloride)ND (1250)DibromochloromethaneND (1250)1,1-Dichloroethane2,6001,2-DichloroethaneND (1250)1,1-DichloroetheneND (1250)cis-1,2-Dichloroethene38,000trans-1,2-DichloroetheneND (1250)1,2-DichloropropaneND (1250)Cis-1,3-DichloropropeneND (1250)trans-1,3-DichloropropeneND (1250)	ND (500) ND	(500) ND (500) (500) ND (500)	ND (1000)	ND (250)	ND (230)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)
Chloroform (Trichloromethane)ND (1250)Chloromethane (Methyl Chloride)ND (1250)DibromochloromethaneND (1250)1,1-Dichloroethane2,6001,2-DichloroethaneND (1250)1,1-DichloroetheneND (1250)cis-1,2-Dichloroethene38,000trans-1,2-DichloroetheneND (1250)1,2-DichloroetheneND (1250)1,2-DichloroetheneND (1250)1,2-DichloroptopaneND (1250)Cis-1,3-DichloropropeneND (1250)trans-1,3-DichloropropeneND (1250)	ND (500) ND ND (500) ND ND (500) ND	(500) ND (500)	. ,		ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)
Chloromethane (Methyl Chloride)ND (1250)DibromochloromethaneND (1250)1,1-Dichloroethane2,6001,2-DichloroethaneND (1250)1,1-DichloroetheneND (1250)1,2-Dichloroethene38,000trans-1,2-DichloroetheneND (1250)1,2-DichloroptheneND (1250)1,2-DichloroptheneND (1250)1,2-DichloroptopaneND (1250)Cis-1,3-DichloropropeneND (1250)trans-1,3-DichloropropeneND (1250)	ND (500) ND ND (500) ND			ND (250)	ND (250)	880	2,200	1,100	940	1,400	610	530	540	250	360 J-	370	280	190
Dibromochloromethane ND (1250) 1,1-Dichloroethane 2,600 1,2-Dichloroethane ND (1250) 1,1-Dichloroethane ND (1250) 1,1-Dichloroethane ND (1250) 1,2-Dichloroethene 38,000 trans-1,2-Dichloroethene ND (1250) 1,2-Dichloropropane ND (1250) Cis-1,3-Dichloropropene ND (1250) trans-1,3-Dichloropropene ND (1250)	ND (500) ND	(500) ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)
1,1-Dichloroethane 2,600 1,2-Dichloroethane ND (1250) 1,1-Dichloroethene ND (1250) 1,1-Dichloroethene 38,000 trans-1,2-Dichloroethene ND (1250) 1,2-Dichloropthene ND (1250) 1,2-Dichloropropane ND (1250) Cis-1,3-Dichloropropene ND (1250) trans-1,3-Dichloropropene ND (1250)			ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)
1,1-Dichloroethane 2,600 1,2-Dichloroethane ND (1250) 1,1-Dichloroethene ND (1250) 1,1-Dichloroethene 38,000 trans-1,2-Dichloroethene ND (1250) 1,2-Dichloropthene ND (1250) 1,2-Dichloropropane ND (1250) Cis-1,3-Dichloropropene ND (1250) trans-1,3-Dichloropropene ND (1250)		(500) ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)
1,1-Dichloroethene ND (1250) cis-1,2-Dichloroethene 38,000 trans-1,2-Dichloroethene ND (1250) 1,2-Dichloropropane ND (1250) cis-1,3-Dichloropropene ND (1250) trans-1,3-Dichloropropene ND (1250)	940 3,	100 2,300	2,400	1,900	2,000	400	650	83	41	720	51	ND (25)	25	99	170 J-	150	92	87
1,1-Dichloroethene ND (1250) cis-1,2-Dichloroethene 38,000 trans-1,2-Dichloroethene ND (1250) 1,2-Dichloropropane ND (1250) Cis-1,3-Dichloropropene ND (1250) trans-1,3-Dichloropropene ND (1250)	ND (500) ND	(500) ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)
cis-1,2-Dichloroethene 38,000 trans-1,2-Dichloroethene ND (1250) 1,2-Dichloropropane ND (1250) Cis-1,3-Dichloropropene ND (1250) trans-1,3-Dichloropropene ND (1250)	ND (500) 5	00 ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)
1,2-Dichloropropane ND (1250) Cis-1,3-Dichloropropene ND (1250) trans-1,3-Dichloropropene ND (1250)	12,000 43,	000 D 3,400 D	29,000	19,000 D	9,100	130	1,600	ND (50)	ND (25)	1,200	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)
1,2-Dichloropropane ND (1250) Cis-1,3-Dichloropropene ND (1250) trans-1,3-Dichloropropene ND (1250)	ND (500) ND	(500) ND (500)	ND (1000)	ND (250)	ND (250)	160	540	59	33	250	ND (25)	ND (25)	ND (25)	ND (13)	21 J-	17	ND (13)	ND (13)
trans-1,3-Dichloropropene ND (1250)	ND (500) ND	(500) ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)
trans-1,3-Dichloropropene ND (1250)		(500) ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)
	ND (500) ND	(500) ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)
Ethylbenzene ND (1250)	ND (500) ND	(500) ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)
	ND (1000) ND	1000) ND (1000)	ND (2000)	ND (500)	ND (500)	150	50	ND (100)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)
Methylene Chloride ND (1250)	ND (500) ND	(500) ND (500)	ND (1000)	ND (250)	ND (250)	46	140	ND (50)	-	99	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)
		1000) ND (1000)	ND (2000)	ND (500)	ND (500)	ND (50)	ND (50)	ND (100)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)
		(500) ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25) J	ND (25) J	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)
,	ND (500) ND	(500) ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)
Tetrachloroethene 4,100	ND (500) ND	(500) ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)
Toluene ND (1250)	ND (500) ND	(500) ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)
1,1,1-Trichloroethane 7,500		00 ND (500)	ND (1000)	ND (250)	ND (250)	38	67	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)
		(500) ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)
		(500) ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)
Vinyl Chloride ND (1250)		900 3,100	5,400	8,700	15,000 D	340	2,500	ND (50)	ND (25)	1,000	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)
,	· · · /	(500) ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)
m,p-Xylenes ND (1250)		(500) ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected J: Estimated

J-: Estimated and biased low

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not collected

 Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

Page 4 of 15

Analyte or Method 6/16/2006 11/29/20 VOCs 8260B (ug/L) ND (5000) ND (200) Acetone ND (1300) ND (500) Bromodichloromethane ND (1300) ND (500) Bromomethane (Methyl Bromide) ND (1300) ND (500) Carbon Disulfide ND (2500) ND (100) Carbon Tetrachloride ND (1300) ND (500) Chlorobenzene ND (1300) ND (500) J.1-Dichlo	D000) NA 000) ND (100) 000) ND (50) 000) ND (250) 000) NA 000) ND (50) 000) ND (100) 000) ND (100) 000) ND (100) 000) ND (100) 000) ND (50) 000) ND (50) 000) ND (100) 000) ND (50)	12/20/2007 ND (500) ND (130) ND (130) ND (130) ND (130) ND (250) ND (130) ND (130) ND (130) ND (130) ND (130) ND (130)	6/11/2008 ND (2000) ND (500) ND (500) ND (500) ND (1000) ND (1000) ND (500) ND (500) ND (500) ND (500)	12/17/2008 ND (500) ND (130) ND (130) ND (130) ND (130) ND (250) ND (130) ND (130) ND (130) ND (130)	6/24/2009 ND (1000) ND (250) ND (250) ND (250) ND (500) ND (500) ND (500) ND (250) ND (250)	6/28/2010 ND (100) ND (25) ND (25) ND (25) S5 ND (25) ND (50) ND (25) ND (25)	ND (100) ND (25) ND (25) ND (25) ND (25) ND (25) 100 ND (50) ND (50)	8/23/2012 ND (50) ND (25) ND (25) ND (25) ND (25) ND (50) ND (50)	9/5/2013 ND (50) J ND (25) ND (25) ND (25) ND (25) ND (25) ND (50) J	7/30/2014 ND (50) ND (25) ND (25) ND (25) ND (25)	8/26/2015 ND (50) ND (25) ND (25) ND (25) ND (25) ND (25)	8/31/2016 ND (10) ND (5) ND (5) ND (5) ND (5)	9/26/2017 ND (10) ND (5) ND (5) ND (5)	8/28/2018 ND (10) ND (5) ND (5) ND (5)	8/26/2019 ND (10) ND (5) ND (5) ND (5)	9/28/2020 ND (10) ND (5) ND (5)	8/31/2021 ND (10) ND (5) ND (5)	8/29/2022 ND (10) ND (5) ND (5)
Acetone ND (5000) ND (200 Benzene ND (1300) ND (500 Bromodichloromethane ND (1300) ND (500 Bromodichloromethane ND (1300) ND (500 Bromoform ND (1300) ND (500 Bromomethane (Methyl Bromide) ND (1300) ND (500 2-Butanone (Methyl Ethyl Ketone) ND (2500) ND (100 Carbon Disulfide ND (1300) ND (500 Carbon Tetrachloride ND (1300) ND (500 Chlorobenzene ND (1300) ND (500 Chloroform (Trichloromethane) ND (1300) ND (500 Chloromethane (Methyl Chloride) ND (1300) ND (500 Dibromochloromethane ND (1300) ND (500 1,1-Dichloroethane ND (1300) ND (500 1,2-Dichloroethene 3,100 ND (500 trans-1,2-Dichloroethene ND (1300) ND (500 1,2-Dichloroptopane ND (1300) ND (500 Cis-1,3-Dichloropropene ND (1300) ND (500 trans-1,3-Dichloropropene ND (1300)	ND ND (100) 000 ND (50) 000 ND (200) 000 ND (250) 000 NA (00) 000 NA (00) 000 ND (50) 000 ND (100) 000 ND (100) 000 ND (50) 000 ND (100)	ND (130) ND (130) ND (130) ND (130) ND (250) ND (250) ND (130) ND (130) ND (130) ND (130) ND (130) ND (130)	ND (500) ND (500) ND (500) ND (500) ND (1000) ND (1000) ND (500) ND (500) ND (500) ND (500)	ND (130) ND (130) ND (130) ND (130) ND (250) ND (250) ND (130) ND (130) ND (130)	ND (250) ND (250) ND (250) ND (250) ND (500) ND (500) ND (250) ND (250)	ND (25) ND (25) ND (25) ND (25) 55 ND (50) ND (25)	ND (25) ND (25) ND (25) ND (25) 100 ND (50)	ND (25) ND (25) ND (25) ND (25) ND (25) ND (50)	ND (25) ND (25) ND (25) ND (25) ND (25)	ND (25) ND (25) ND (25) ND (25) ND (25)	ND (25) ND (25) ND (25)	ND (5) ND (5) ND (5)	ND (5) ND (5) ND (5)	ND (5) ND (5)	ND (5) ND (5)	ND (5) ND (5)	ND (5) ND (5)	ND (5)
Benzene ND (1300) ND (500 Bromodichloromethane ND (1300) ND (500 Bromomethane (Methyl Bromide) ND (1300) ND (500 Bromomethane (Methyl Bromide) ND (1300) ND (500 Bromomethane (Methyl Bromide) ND (1300) ND (500 2-Butanone (Methyl Ethyl Ketone) ND (2500) ND (100 Carbon Disulfide ND (1300) ND (500 Chlorobenzene ND (1300) ND (500 Chlorotentane ND (1300) ND (500 Chlorotentane (Methyl Chloride) ND (1300) ND (500 Dibromochloromethane ND (1300) ND (500 1,1-Dichloroethane ND (1300) ND (500 1,2-Dichloroethane ND (1300) ND (500 1,2-Dichloroethene 3,100 ND (500 1,2-Dichloroethene ND (1300) ND (500 Cis-1,2-Dichloroethene ND (1300) ND (500 1,2-Dichloropropane ND (1300) ND (500 Cis-1,3-Dichloropropene ND (1300) ND (500 trans-1,3-Dichloropropene ND (130	ND ND (100) 000 ND (50) 000 ND (200) 000 ND (250) 000 NA (00) 000 NA (00) 000 ND (50) 000 ND (100) 000 ND (100) 000 ND (50) 000 ND (100)	ND (130) ND (130) ND (130) ND (130) ND (250) ND (250) ND (130) ND (130) ND (130) ND (130) ND (130) ND (130)	ND (500) ND (500) ND (500) ND (500) ND (1000) ND (1000) ND (500) ND (500) ND (500) ND (500)	ND (130) ND (130) ND (130) ND (130) ND (250) ND (250) ND (130) ND (130) ND (130)	ND (250) ND (250) ND (250) ND (250) ND (500) ND (500) ND (250) ND (250)	ND (25) ND (25) ND (25) ND (25) 55 ND (50) ND (25)	ND (25) ND (25) ND (25) ND (25) 100 ND (50)	ND (25) ND (25) ND (25) ND (25) ND (25) ND (50)	ND (25) ND (25) ND (25) ND (25) ND (25)	ND (25) ND (25) ND (25) ND (25) ND (25)	ND (25) ND (25) ND (25)	ND (5) ND (5) ND (5)	ND (5) ND (5) ND (5)	ND (5) ND (5)	ND (5) ND (5)	ND (5) ND (5)	ND (5) ND (5)	ND (5)
Bromodichloromethane ND (1300) ND (500 Bromodorm ND (1300) ND (500 Bromomethane (Methyl Bromide) ND (1300) ND (500 2-Butanone (Methyl Ethyl Ketone) ND (2500) ND (100) Carbon Disulfide ND (1300) ND (500 Carbon Tetrachloride ND (1300) ND (500 Chlorobenzene ND (1300) ND (500 Chlorobethane ND (1300) ND (500 1,1-Dichloroethane ND (1300) ND (500 1,2-Dichloroethane X1,000 ND (500 1,2-Dichloropethene ND (1300) ND (500 Cis-1,2-Dichloropethene ND (1300) ND (500 Cis-1,3-Dichloropropene ND (1300) ND (500 tra	00) ND (50) 00) ND (100) 00) ND (250) 000) NA 000) NA (50) 000) NA (50) 000) ND (50) 000) ND (100) 000) ND (100) 000) ND (50)	ND (130) ND (130) ND (130) ND (250) ND (250) ND (130) ND (130) ND (130) ND (130) ND (130) ND (130)	ND (500) ND (500) ND (500) ND (1000) ND (1000) ND (500) ND (500) ND (500) ND (500)	ND (130) ND (130) ND (130) ND (250) ND (250) ND (130) ND (130) ND (130)	ND (250) ND (250) ND (250) ND (500) ND (500) ND (250) ND (250)	ND (25) ND (25) ND (25) 55 ND (50) ND (25)	ND (25) ND (25) ND (25) 100 ND (50)	ND (25) ND (25) ND (25) ND (25)	ND (25) ND (25) ND (25)	ND (25) ND (25) ND (25)	ND (25) ND (25)	ND (5) ND (5)	ND (5) ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	. ,
Bromoform ND (1300) ND (500 Bromomethane (Methyl Bromide) ND (1300) ND (500 2-Butanone (Methyl Ethyl Ketone) ND (2500) ND (100 Carbon Disulfide ND (2500) ND (100 Carbon Tetrachloride ND (1300) ND (500 Chlorobenzene ND (1300) ND (500 Chlorotethane ND (1300) ND (500 J.1-Dichloroethane 7,800 1,300 J.2-Dichloroethane 7,800 1,300 J.1-Dichloroethene 3,100 ND (500 Ly-Dichloroethene 41,000 14,000 Ly-Dichloroptopane ND (1300) ND (500 Ly-Dichloroptopene ND (1300) ND (500 Ly-Dichloroptopene ND (1300) ND (500 Ly-Dichloroptopene ND (1300) ND (500 Ly-Dichloropropene	00) ND (100) 00) ND (250) 000) NA 000) NA 000) ND (50) 000) ND (100) 000) ND (100) 000) ND (50) 000) ND (250) 000) ND (100)	ND (130) ND (130) ND (250) ND (250) ND (130) ND (130) ND (130) ND (130) ND (130) ND (130)	ND (500) ND (500) ND (1000) ND (1000) ND (500) ND (500) ND (500) ND (500) ND (500)	ND (130) ND (130) ND (250) ND (250) ND (130) ND (130) ND (130)	ND (250) ND (250) ND (500) ND (500) ND (250) ND (250)	ND (25) ND (25) 55 ND (50) ND (25)	ND (25) ND (25) 100 ND (50)	ND (25) ND (25) ND (50)	ND (25) ND (25)	ND (25) ND (25)	ND (25)	ND (5)	ND (5)	. ,	. ,	.,	. ,	ND (5)
Bromomethane (Methyl Bromide) ND (1300) ND (500 2-Butanone (Methyl Ethyl Ketone) ND (2500) ND (100) Carbon Disulfide ND (1300) ND (500 Carbon Tetrachloride ND (1300) ND (500 Chlorobenzene ND (1300) ND (500 Chloroform (Trichloromethane) ND (1300) ND (500 Chloroform (Trichloromethane) ND (1300) ND (500 Chloroform (Trichloromethane) ND (1300) ND (500 Dibromochloromethane ND (1300) ND (500 1,1-Dichloroethane 7,800 1,300 1,2-Dichloroethane ND (1300) ND (500 1,2-Dichloroethene 3,100 ND (500 1,2-Dichloroethene 41,000 D 14,000 trans-1,2-Dichloroethene ND (1300) ND (500 1,2-Dichloropropane ND (1300) ND (500 Cis-1,3-Dichloropropene ND (1300) ND (500 trans-1,3-Dichloropropene ND (1300) ND (500 Ethylbenzene ND (1300) ND (500 2-Hexanone ND (2500) <td>ND ND (250) 000) NA NA 000) NA ND (50) 000) ND (100) ND (100) 000) ND (50) ND (50) 000) ND (50) ND (100)</td> <td>ND (130) ND (250) ND (250) ND (130) ND (130) ND (130) ND (130) ND (130) ND (130)</td> <td>ND (500) ND (1000) ND (1000) ND (500) ND (500) ND (500) ND (500) ND (500)</td> <td>ND (130) ND (250) ND (250) ND (130) ND (130) ND (130)</td> <td>ND (250) ND (500) ND (500) ND (250) ND (250)</td> <td>ND (25) 55 ND (50) ND (25)</td> <td>ND (25) 100 ND (50)</td> <td>ND (25) ND (50)</td> <td>ND (25)</td> <td>ND (25)</td> <td></td> <td></td> <td></td> <td>ND (5)</td> <td>ND (5)</td> <td>10 (5)</td> <td></td> <td></td>	ND ND (250) 000) NA NA 000) NA ND (50) 000) ND (100) ND (100) 000) ND (50) ND (50) 000) ND (50) ND (100)	ND (130) ND (250) ND (250) ND (130) ND (130) ND (130) ND (130) ND (130) ND (130)	ND (500) ND (1000) ND (1000) ND (500) ND (500) ND (500) ND (500) ND (500)	ND (130) ND (250) ND (250) ND (130) ND (130) ND (130)	ND (250) ND (500) ND (500) ND (250) ND (250)	ND (25) 55 ND (50) ND (25)	ND (25) 100 ND (50)	ND (25) ND (50)	ND (25)	ND (25)				ND (5)	ND (5)	10 (5)		
2-Butanone (Methyl Ethyl Ketone) ND (2500) ND (100) Carbon Disulfide ND (2500) ND (100) Carbon Tetrachloride ND (1300) ND (500) Chlorobenzene ND (1300) ND (500) Chlorobenzene ND (1300) ND (500) Chlorobenzene ND (1300) ND (500) Chloroform (Trichloromethane) ND (1300) ND (500) Chloromethane (Methyl Chloride) ND (1300) ND (500) Dibromochloromethane ND (1300) ND (500) 1,1-Dichloroethane 7,800 1,300) 1,2-Dichloroethane ND (1300) ND (500) 1,1-Dichloroethene 3,100 ND (500) trans-1,2-Dichloroethene 41,000 D 14,000 trans-1,2-Dichloroptopene ND (1300) ND (500) (is-1,3-Dichloropropene ND (1300) ND (500) trans-1,3-Dichloropropene ND (1300) ND (500) Chloroptipe ND (1300) ND (500) trans-1,3-Dichloropropene ND (1300) ND (500) trans-1,3-Dichloropropene <td< td=""><td>000) NA 000) NA 000) ND (50) 000) ND (100) 000) ND (100) 000) ND (50) 000) ND (50) 000) ND (50) 000) ND (50) 000) ND (250) 000) ND (100)</td><td>ND (250) ND (250) ND (130) ND (130) ND (130) ND (130) ND (130) ND (130)</td><td>ND (1000) ND (1000) ND (500) ND (500) ND (500) ND (500) ND (500)</td><td>ND (250) ND (250) ND (130) ND (130) ND (130)</td><td>ND (500) ND (500) ND (250) ND (250)</td><td>55 ND (50) ND (25)</td><td>100 ND (50)</td><td>ND (50)</td><td>. ,</td><td></td><td>ND (25)</td><td>ND (5)</td><td></td><td></td><td></td><td>ND (5)</td><td>ND (5)</td><td>ND (5)</td></td<>	000) NA 000) NA 000) ND (50) 000) ND (100) 000) ND (100) 000) ND (50) 000) ND (50) 000) ND (50) 000) ND (50) 000) ND (250) 000) ND (100)	ND (250) ND (250) ND (130) ND (130) ND (130) ND (130) ND (130) ND (130)	ND (1000) ND (1000) ND (500) ND (500) ND (500) ND (500) ND (500)	ND (250) ND (250) ND (130) ND (130) ND (130)	ND (500) ND (500) ND (250) ND (250)	55 ND (50) ND (25)	100 ND (50)	ND (50)	. ,		ND (25)	ND (5)				ND (5)	ND (5)	ND (5)
Carbon Disulfide ND (2500) ND (100 Carbon Tetrachloride ND (1300) ND (500 Chlorobenzene ND (1300) ND (500 Chloroform (Trichloromethane) ND (1300) ND (500 Chloromethane (Methyl Chloride) ND (1300) ND (500 Dibromochloromethane ND (1300) ND (500 1,1-Dichloroethane ND (1300) ND (500 1,2-Dichloroethane ND (1300) ND (500 1,2-Dichloroethene 3,100 ND (500 trans-1,2-Dichloroethene 41,000 D 14,000 trans-1,2-Dichloroethene ND (1300) ND (500 trans-1,2-Dichloroptopene ND (1300) ND (500 trans-1,3-Dichloropropene ND (1300) ND (500 trans-1,3-Dichloropropene ND (1300) ND (500 tthylbenzene ND (1300) ND (500 Ethylbenzene ND (1300) ND (500 4-Methyle-Phentanone (Methyl Isobutyl Ketone) ND (1300) ND (500 Styrene ND (1300) ND (500	ND NA ND ND (50) ND ND (100) ND ND (100) ND ND (50) ND ND (50) ND ND (50) ND ND (50) ND ND (250) ND ND (100)	ND (250) ND (130) ND (130) ND (130) ND (130) ND (130) ND (130) ND (130)	ND (1000) ND (500) ND (500) ND (500) ND (500) ND (500)	ND (250) ND (130) ND (130) ND (130)	ND (500) ND (250) ND (250)	ND (50) ND (25)	ND (50)	. ,	ND (50) J				ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Carbon Tetrachloride ND (1300) ND (500 Chlorobenzene ND (1300) ND (500 Chloroethane ND (1300) ND (500 Chloroform (Trichloromethane) ND (1300) ND (500 Chloromethane (Methyl Chloride) ND (1300) ND (500 Dibromochloromethane ND (1300) ND (500 1,1-Dichloroethane 7,800 1,300 1,2-Dichloroethane 7,800 1,300 1,2-Dichloroethene 3,100 ND (500 1,2-Dichloroethene 41,000 D 14,000 1,2-Dichloroethene ND (1300) ND (500 1,2-Dichloroptopane ND (1300) ND (500 Cis-1,3-Dichloropropane ND (1300) ND (500 Chtylbenzene ND (1300) ND (500 Ethylbenzene ND (1300) ND (500 2-Hexanone ND (2500) ND (1300) ND (500 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) ND (1300) ND (500 Styrene ND (1300) ND (500	ND (50) 000) ND (100) 000) ND (100) 000) ND (50) 000) ND (50) 000) ND (50) 000) ND (50) 000) ND (250) 000) ND (100)	ND (130) ND (130) ND (130) ND (130) ND (130) ND (130) ND (130)	ND (500) ND (500) ND (500) ND (500) ND (500)	ND (130) ND (130) ND (130)	ND (250) ND (250)	ND (25)	()	ND (50)		ND (50)	ND (50)	11	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Chlorobenzene ND (1300) ND (500 Chloroethane ND (1300) ND (500 Chloroform (Trichloromethane) ND (1300) ND (500 Chloromethane (Methyl Chloride) ND (1300) ND (500 Dibromochloromethane ND (1300) ND (500 1,1-Dichloroethane 7,800 1,300 1,2-Dichloroethane 7,800 1,300 1,1-Dichloroethane 3,100 ND (500 cis-1,2-Dichloroethene 41,000 D 14,000 trans-1,2-Dichloroethene ND (1300) ND (500 1,2-Dichloropropane ND (1300) ND (500 cis-1,3-Dichloropropene ND (1300) ND (500 trans-1,3-Dichloropropene ND (1300) ND (500 trans-1,3-Dichloropropene ND (1300) ND (500 Ethylbenzene ND (1300) ND (500 2-Hexanone ND (2500) ND (1000) Methylee Chloride ND (2500) ND (500 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) ND (1300) ND (500 5tyrene ND (1300) ND (ND (100) 000) ND (100) 000) ND (100) 000) ND (50) 000) ND (250) 000) ND (100)	ND (130) ND (130) ND (130) ND (130) ND (130)	ND (500) ND (500) ND (500) ND (500)	ND (130) ND (130)	ND (250)	. ,			ND (50)	ND (50)	ND (50)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Chloroethane ND (1300) ND (500 Chloroform (Trichloromethane) ND (1300) ND (500 Chloromethane (Methyl Chloride) ND (1300) ND (500 Dibromochloromethane ND (1300) ND (500 1,2-Dichloroethane 7,800 1,300) ND (500 1,2-Dichloroethane 7,800 1,300) ND (500 1,1-Dichloroethane 3,100 ND (500 1,2-Dichloroethene 3,100 ND (500 1,2-Dichloroethene MD (1300) ND (500 1,2-Dichloroethene ND (1300) ND (500 1,2-Dichloroptopane ND (1300) ND (500 1,2-Dichloropropane ND (1300) ND (500 1,2-Dichloropropene ND (1300) ND (500 1,3-Dichloropropene ND (1300) ND (500 Cis-1,3-Dichloropropene ND (1300) ND (500 Cithylbenzene ND (1300) ND (500 2-Hexanone ND (2500) ND (100 Methylene Chloride ND (1300) ND (500 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) <td>io0 ND (100) io0) ND (50) io0) ND (250) io0) ND (100)</td> <td>ND (130) ND (130) ND (130) ND (130) ND (130)</td> <td>ND (500) ND (500) ND (500)</td> <td>ND (130)</td> <td>. ,</td> <td>ND (25)</td> <td>ND (25)</td> <td>ND (25)</td> <td>ND (25)</td> <td>ND (25)</td> <td>ND (25)</td> <td>ND (5)</td>	io0 ND (100) io0) ND (50) io0) ND (250) io0) ND (100)	ND (130) ND (130) ND (130) ND (130) ND (130)	ND (500) ND (500) ND (500)	ND (130)	. ,	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroform (Trichloromethane) ND (1300) ND (500 Chloromethane (Methyl Chloride) ND (1300) ND (500 Dibromochloromethane ND (1300) ND (500 1,1-Dichloroethane 7,800 1,300) 1,2-Dichloroethane 7,800 1,300) 1,1-Dichloroethane 3,100 ND (500 1,1-Dichloroethene 3,100 ND (500 (is-1,2-Dichloroethene MD (1300) ND (500 1,2-Dichloroethene ND (1300) ND (500 1,2-Dichloropthene ND (1300) ND (500 1,2-Dichloroptopene ND (1300) ND (500 1,2-Dichloropropene ND (1300) ND (500 1,2-Dichloropropene ND (1300) ND (500 (is-1,3-Dichloropropene ND (1300) ND (500 (is-1,3-Dichloropropene ND (1300) ND (500 Ethylbenzene ND (1300) ND (500 2-Hexanone ND (2500) ND (1300) ND (500 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) ND (2500) ND (100 Styrene ND (130	i00)ND (50)i00)ND (250)i00)ND (100)	ND (130) ND (130) ND (130)	ND (500) ND (500)		ND (250)	ND (23)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloromethane (Methyl Chloride) ND (1300) ND (500 Dibromochloromethane ND (1300) ND (500 1,1-Dichloroethane 7,800 1,300 1,2-Dichloroethane 7,800 1,300 1,2-Dichloroethane 3,100 ND (500 1,1-Dichloroethene 3,100 ND (500 cis-1,2-Dichloroethene 41,000 D 14,000 trans-1,2-Dichloroethene ND (1300) ND (500 1,2-Dichloropropane ND (1300) ND (500 cis-1,3-Dichloropropene ND (1300) ND (500 trans-1,3-Dichloropropene ND (1300) ND (500 Ethylbenzene ND (1300) ND (500 2-Hexanone ND (2500) ND (1300) ND (500 Methylene Chloride ND (1300) ND (500 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) ND (2500) ND (100) Styrene ND (1300) ND (500	ND (250) ND (100)	ND (130) ND (130)	ND (500)	ND (130)		36	760	40	43	85	37	7	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Dibromochloromethane ND (1300) ND (500 1,1-Dichloroethane 7,800 1,300 1,2-Dichloroethane ND (1300) ND (500 1,1-Dichloroethane 3,100 ND (500 1,1-Dichloroethane 3,100 ND (500 1,1-Dichloroethene 41,000 D 14,000 trans-1,2-Dichloroethene ND (1300) ND (500 1,2-Dichloropropane ND (1300) ND (500 Cis-1,3-Dichloropropene ND (1300) ND (500 trans-1,3-Dichloropropene ND (1300) ND (500 Ethylbenzene ND (1300) ND (500 2-Hexanone ND (2500) ND (1300) ND (500 Methylene Chloride ND (1300) ND (500 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) ND (2500) ND (100) Styrene ND (1300) ND (500	00) ND (100)	ND (130)			ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethane 7,800 1,300 1,2-Dichloroethane ND (1300) ND (500 1,1-Dichloroethene 3,100 ND (500 1,1-Dichloroethene 3,100 ND (500 1,2-Dichloroethene 41,000 D ND (500 trans-1,2-Dichloroethene ND (1300) ND (500 1,2-Dichloropropane ND (1300) ND (500 Cis-1,3-Dichloropropene ND (1300) ND (500 trans-1,3-Dichloropropene ND (1300) ND (500 Ethylbenzene ND (1300) ND (500 2-Hexanone ND (2500) ND (1300) ND (500 Methylene Chloride ND (1300) ND (500 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) ND (1300) ND (500 Styrene ND (1300) ND (500				ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethane 7,800 1,300 1,2-Dichloroethane ND (1300) ND (500 1,1-Dichloroethene 3,100 ND (500 1,1-Dichloroethene 41,000 D 14,000 trans-1,2-Dichloroethene ND (1300) ND (500 1,2-Dichloroptopane ND (1300) ND (500 Cis-1,3-Dichloropropane ND (1300) ND (500 trans-1,3-Dichloropropene ND (1300) ND (500 thylbenzene ND (1300) ND (500 2-Hexanone ND (1300) ND (500 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) ND (1300) ND (500 Styrene ND (1300) ND (500			ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethene 3,100 ND (500 cis-1,2-Dichloroethene 41,000 D 14,000 trans-1,2-Dichloroethene ND (1300) ND (500 1,2-Dichloropropane ND (1300) ND (500 1,2-Dichloropropane ND (1300) ND (500 Cis-1,3-Dichloropropene ND (1300) ND (500 trans-1,3-Dichloropropene ND (1300) ND (500 Ethylbenzene ND (1300) ND (500 2-Hexanone ND (1300) ND (500 Methylene Chloride ND (1300) ND (500 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) ND (2500) ND (100) Styrene ND (1300) ND (500		1,500	1,500	620	390	150	390	150	75	160	100	64	27	19	16 J-	19	16	13
cis-1,2-Dichloroethene 41,000 D 14,000 trans-1,2-Dichloroethene ND (1300) ND (500 1,2-Dichloropropane ND (1300) ND (500 cis-1,3-Dichloropropene ND (1300) ND (500 trans-1,3-Dichloropropene ND (1300) ND (500 Ethylbenzene ND (1300) ND (500 2-Hexanone ND (1300) ND (500 Methylene Chloride ND (1300) ND (500 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) ND (2500) ND (100) Styrene ND (1300) ND (500	00) ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,2-Dichloroethene ND (1300) ND (500 1,2-Dichloropropane ND (1300) ND (500 Cis-1,3-Dichloropropene ND (1300) ND (500 trans-1,3-Dichloropropene ND (1300) ND (500 trans-1,3-Dichloropropene ND (1300) ND (500 Ethylbenzene ND (1300) ND (500 2-Hexanone ND (2500) ND (100) Methylene Chloride ND (1300) ND (500 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) ND (2500) ND (100) Styrene ND (1300) ND (500)	52	330	ND (500)	ND (130)	ND (250)	ND (25)	ND (30)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,2-Dichloroethene ND (1300) ND (500 1,2-Dichloropropane ND (1300) ND (500 Cis-1,3-Dichloropropene ND (1300) ND (500 trans-1,3-Dichloropropene ND (1300) ND (500 trans-1,3-Dichloropropene ND (1300) ND (500 Ethylbenzene ND (1300) ND (500 2-Hexanone ND (2500) ND (100) Methylene Chloride ND (1300) ND (500 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) ND (2500) ND (100) Styrene ND (1300) ND (500		24,000 D	20,000 D	3,200	690	910	5,000	620	470	1,300	500	92	ND (5)	15	14 J-	16	10	10
1,2-Dichloropropane ND (1300) ND (500 Cis-1,3-Dichloropropene ND (1300) ND (500 trans-1,3-Dichloropropene ND (1300) ND (500 Ethylbenzene ND (1300) ND (500 2-Hexanone ND (2500) ND (100) Methylene Chloride ND (1300) ND (500 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) ND (2500) ND (100) Styrene ND (1300) ND (500)		ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (170)	ND (25)	ND (25)	ND (25)	ND (25)	5	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Cis-1,3-Dichloropropene ND (1300) ND (500 trans-1,3-Dichloropropene ND (1300) ND (500 Ethylbenzene ND (1300) ND (500 2-Hexanone ND (2500) ND (1300) ND (500 Methylene Chloride ND (1300) ND (500 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) ND (1300) ND (100) Styrene ND (1300) ND (500		ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Ethylbenzene ND (1300) ND (500 2-Hexanone ND (2500) ND (100) Methylene Chloride ND (1300) ND (500) 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) ND (2500) ND (100) Styrene ND (1300) ND (500)		ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Hexanone ND (2500) ND (100 Methylene Chloride ND (1300) ND (500 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) ND (2500) ND (100 Styrene ND (1300) ND (500	00) ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Hexanone ND (2500) ND (100 Methylene Chloride ND (1300) ND (500 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) ND (2500) ND (100 Styrene ND (1300) ND (500	00) ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Methylene Chloride ND (1300) ND (500 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) ND (2500) ND (100) Styrene ND (1300) ND (500)		ND (250)	ND (1000)	ND (250)	ND (500)	ND (50)	ND (50)	ND (50)	ND (50) J	ND (50)	ND (50)	12	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) ND (2500) ND (100 Styrene ND (1300) ND (500		ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (31)	ND (25)	ND (25)	ND (25)	ND (25)	7	12	13	13	ND (5)	ND (5)	ND (5)
Styrene ND (1300) ND (500		ND (250)	ND (1000)	ND (250)	ND (500)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
	00) NA	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25) J	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
	00) ND (500)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Tetrachloroethene 1,500 ND (500	00) ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Toluene ND (1300) ND (500	, , ,	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1.1.1-Trichloroethane 14,000 660		1.400	720	ND (130)	ND (250)	29	220	ND (25)	ND (25)	40	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,2-Trichloroethane ND (1300) ND (500		ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Trichloroethene 5,800 ND (500		ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	8	16	13	7.9 J-	7	(-,	8.1
Vinyl Chloride 3,500 1,800		1,900	4.300 D	720	260	50	4,200	130	78	210	110	21	21	15	9.3 J-	9	- 8	5.7
o-Xylene ND (1300) ND (500	00) ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
m,p-Xylenes ND (1300) ND (500	00) ND (50) 00 570		ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected J: Estimated

J-: Estimated and biased low

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not collected

during that sampling period. 3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for

Sample	ID									MV	V-2									
Analyte or Method	6/16/2006	11/29/2006	6/13/2007	12/20/2007	6/11/2008	12/17/2008	6/24/2009	6/28/2010	10/11/2011	8/22/2012	9/5/2013	7/30/2014	8/26/2015	8/31/2016	9/27/2017	8/28/2018	8/26/2019	9/28/2020	8/31/2021	8/29/2022
VOCs 8260B (ug/L)																				
Acetone	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Benzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromodichloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromoform	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromomethane (Methyl Bromide)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Butanone (Methyl Ethyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Disulfide	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Tetrachloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chlorobenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroform (Trichloromethane)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloromethane (Methyl Chloride)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Dibromochloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5.0)	ND (5.0)	ND (5)						
1,1-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
cis-1,2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloropropane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Cis-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Ethylbenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Hexanone	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Methylene Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Styrene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5.0)	ND (5.0)	ND (5)						
1.1.2.2-Tetrachloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Tetrachloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Toluene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1.1.1-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,2-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Trichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Vinyl Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
o-Xylene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
m.p-Xylenes	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
injp Aylenes	(5)									10 (5)	10 (5)		110 (5)	110 (5)	10 (5)	10 (5)	10 (5)	10 (5)	10 (5)	10 (5)

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected J: Estimated

J-: Estimated and biased low

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not collected

during that sampling period. 3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for

Sample ID											MV	V-10										
Analyte or Method	6/16/2006	11/29/2006	6/13/2007	12/20/2007	6/11/2008	12/17/2008	6/24/2009	6/22/2010	10/11/2011	8/22/2012	9/5/2013	7/30/2014	8/26/2015	8/26/2015 DUPLICATE	8/31/2016	3/29/2017 RESAMPLE	9/26/2017	8/28/2018	8/26/2019	9/28/2020	8/31/2021	8/29/2022
VOCs 8260B (ug/L)																						
Acetone	ND (100)	ND (200)	ND (100)	ND (100)	ND (200)	ND (200)	ND (40)	ND (50)	ND (200)	ND (100)	ND (50) J	ND (50)	ND (50)	ND (50)	ND (50)	NA	ND (50)					
Benzene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)					
Bromodichloromethane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)					
Bromoform	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)					
Bromomethane (Methyl Bromide)	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)					
2-Butanone (Methyl Ethyl Ketone)	ND (50)	ND (100)	ND (50)	ND (50)	ND (100)	ND (100)	ND (20)	ND (25)	ND (100)	ND (100)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	NA	ND (50)					
Carbon Disulfide	ND (50)	ND (100)	ND (50)	ND (50)	ND (100)	ND (100)	ND (20)	ND (25)	ND (100)	ND (100)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	NA	ND (50)					
Carbon Tetrachloride	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)					
Chlorobenzene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)					
Chloroethane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)					
Chloroform (Trichloromethane)	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)					
Chloromethane (Methyl Chloride)	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)					
Dibromochloromethane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)					
1,1-Dichloroethane	97	120	73	160	180	190	100	86	200	240	88	170	110	110	99	99	110	130	120 J-	130	110	110
1,2-Dichloroethane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)					
1,1-Dichloroethene	ND (25)	ND (50)	ND (25)	28	ND (50)	ND (50)	16	17	50	ND (50)	ND (25)	28	ND (25)	ND (25)	ND (25)	NA	ND (25)					
cis-1,2-Dichloroethene	1,000 D	1,300	660	1,300 D	1,900	1,800	1,100 D	700 D	1,900 D	2,000	610	1,100	750	780	720	640	720	790	690 J-	740	560	600
trans-1,2-Dichloroethene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	15	50	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)					
1,2-Dichloropropane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)					
Cis-1,3-Dichloropropene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)					
trans-1,3-Dichloropropene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)					
Ethylbenzene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)					
2-Hexanone	ND (50)	ND (100)	ND (50)	ND (50)	ND (100)	ND (100)	ND (20)	ND (25)	ND (100)	ND (100)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	NA	ND (50)					
Methylene Chloride	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)					
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (50)	ND (100)	ND (50)	ND (50)	ND (100)	ND (100)	ND (20)	ND (25)	ND (100)	ND (100)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	NA	ND (50)					
Styrene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25) J	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)					
1,1,2,2-Tetrachloroethane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)					
Tetrachloroethene	52	53	26	31	ND (100)	ND (50)	14	ND (13)	ND (54)	65	ND (25)	41	ND (25)	ND (25)	ND (25)	NA	ND (25)	25				
Toluene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)					
1,1,1-Trichloroethane	ND (25)	62	33	67	76	88	40	27	84	110	27	70	32	34	26	28	28	38	39 J-	37	29	33
1,1,2-Trichloroethane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)					
Trichloroethene	93	97	58	82	98	92	47	47	120	130	53	97	68	69	68	67	29	91	72 J-	81	74	80
Vinyl Chloride	160	160	74	180	270	300	100	110	310	340	91	180	140	150	99	76	160	210	190 J-	220	190	170
o-Xylene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)					
m,p-Xylenes	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)					

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected J: Estimated

J-: Estimated and biased low

 For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not collected

during that sampling period. 3. Sample results from June 2006 through the most recent event

 Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

Sample	e ID										MM	/-135										
Analyte or Method	6/16/2006	11/29/2006	6/13/2007	12/20/2007	6/11/2008	12/17/2008	6/24/2009	6/22/2010	10/11/2011	8/22/2012	9/5/2013	7/29/2014	8/26/2015	8/31/2016	9/26/2017	8/28/2018	8/26/2019	9/28/2020	9/28/2020 DUPLICATE	8/31/2021	8/31/2021 DUPLICATE	8/29/2022
VOCs 8260B (ug/L)																						
Acetone	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (10)	ND (10)	ND (10) J	ND (10) J	ND (10)	ND (10)	ND (15)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Benzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromodichloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromoform	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromomethane (Methyl Bromide)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Butanone (Methyl Ethyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Disulfide	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Tetrachloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chlorobenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroform (Trichloromethane)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloromethane (Methyl Chloride)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Dibromochloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
cis-1,2-Dichloroethene	97	56	34	34	26	18	21	11	9.4	13	16	14	22	5	7	5	ND (5)	6.4	5.9	5.3	5.2	5.1
trans-1,2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloropropane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Cis-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Ethylbenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Hexanone	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (3)	ND (10)	ND (10)	ND (10)	ND (10)	ND (3)	ND (10)	ND (3)	ND (10)	ND (10)	ND (3)	ND (3)	ND (10)	ND (10)	ND (3)	ND (10)
Methylene Chloride	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10) ND (5)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (3)	ND (10)	ND (3)	ND (10)	ND (3)	ND (10)	ND (10)	ND (3)	ND (10)	ND (3)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (3)	ND (3)	ND (10)
Styrene	ND (10)	ND (10) ND (5)	ND (10)	ND (10)	ND (10)	ND (10) ND (5)	ND (10) ND (5)	ND (10)	ND (10)	ND (10)	ND (10) ND (5) J	ND (10) ND (5)	ND (10)	ND (10) ND (5)	ND (10) ND (5)	ND (10)	ND (10) ND (5)	ND (10) ND (5)	ND (10)	ND (10) ND (5)	ND (10) ND (5)	ND (10) ND (5)
1,1,2,2-Tetrachloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5.0) J ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
	56	42	23	26	23	18	29	28	23	20	20	20	17	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Tetrachloroethene	ND (5)	42 ND (5)	25 ND (5)	20 ND (5)	25 ND (5)	ND (5)	29 ND (5)	20 ND (5)	23 ND (5)	20 ND (5)	20 ND (5)	20 ND (5)	ND (5)	. ,	. ,	ND (5)	ND (5)	ND (5)	. ,	. ,	.,	ND (5)
Toluene	. ,		. ,	. ,	. ,		IND (5)	.,	ND (5)	. ,	(5) 7	. ,	(5)	ND (5)	ND (5)	• •	. ,	. ,	ND (5)	ND (5)	ND (5)	
1,1,1-Trichloroethane	34	19	10	10	9.2	6.6	9	6.7	5	7.4	/	6	/	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,2-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Trichloroethene	94	66	42	47	40	31	36	30	31	31	31	28	31	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Vinyl Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
o-Xylene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
m,p-Xylenes	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected J: Estimated

J-: Estimated and biased low

1. For the December 2008 sampling event, mineral spirits were

inadvertently sampled in VE-6 rather than RW-1. 2. Some dates are not shown because samples were not collected

during that sampling period. 3. Sample results from June 2006 through the most recent event

 Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

Sample IE											MW-16										·
Analyte or Method	6/16/2006	11/29/2006	6/13/2007	12/20/2007	6/11/2008	12/17/2008	6/24/2009	7/1/2010	10/11/2011	8/22/2012	9/5/2013	7/30/2014	8/26/2015	8/31/2016	8/31/2016 DUPLICATE	9/26/2017	8/28/2018	8/26/2019	9/28/2020	8/31/2021	8/29/2022
VOCs 8260B (ug/L)																					
Acetone	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (10)	ND (10)	ND (10) J	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Benzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromodichloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromoform	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromomethane (Methyl Bromide)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Butanone (Methyl Ethyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Disulfide	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Tetrachloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chlorobenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroform (Trichloromethane)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloromethane (Methyl Chloride)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Dibromochloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
cis-1,2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloropropane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Cis-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Ethylbenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Hexanone	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Methylene Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Styrene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5) J	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,2,2-Tetrachloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Tetrachloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Toluene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,1-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,2-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Trichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Vinyl Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
o-Xylene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
m,p-Xylenes	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected J: Estimated

J-: Estimated and biased low

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not collected

during that sampling period. 3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for

Sample ID										MW-18S								
Analyte or Method	11/29/2006	6/13/2007	12/20/2007	6/11/2008	12/17/2008	6/24/2009	6/22/2010	10/11/2011	8/22/2012	9/5/2013	7/30/2014	8/26/2015	8/31/2016	9/26/2017	8/28/2018	8/26/2019	9/28/2020	8/31
VOCs 8260B (ug/L)																		
Acetone	ND (20)	ND (10)	ND (10)	ND (10) J	ND (10)	ND (10)	ND (10)	16	ND (5)	ND (5)	NE							
Benzene	ND (5)	ND																
Bromodichloromethane	ND (5)	N																
Bromoform	ND (5)	N																
Bromomethane (Methyl Bromide)	ND (5)	N																
2-Butanone (Methyl Ethyl Ketone)	ND (10)	ND																
Carbon Disulfide	ND (10)	ND																
Carbon Tetrachloride	ND (5)	N																
Chlorobenzene	ND (5)	N																
Chloroethane	ND (5)	N																
Chloroform (Trichloromethane)	ND (5)	N																
Chloromethane (Methyl Chloride)	ND (5)	NE																
Dibromochloromethane	ND (5)	N																
1,1-Dichloroethane	ND (5)	ND (5) J	ND (5)	N														
1.2-Dichloroethane	ND (5)	N																
1.1-Dichloroethene	ND (5)	N																
cis-1,2-Dichloroethene	ND (5)	N																
trans-1,2-Dichloroethene	ND (5)	N																
1,2-Dichloropropane	ND (5)	N																
Cis-1,3-Dichloropropene	ND (5)	N																
trans-1,3-Dichloropropene	ND (5)	N																
Ethylbenzene	ND (5)	N																
2-Hexanone	ND (10)	ND																
Methylene Chloride	ND (5)	N																
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (10)	ND																
Styrene	ND (5)	ND (5) J	ND (5) J	ND (5)	N													
1,1,2,2-Tetrachloroethane	ND (5)	N																
Tetrachloroethene	ND (5)	N																
Toluene	ND (5)	N																
1,1,1-Trichloroethane	ND (5)	N																
1,1,2-Trichloroethane	ND (5)	N																
Trichloroethene	ND (5)	N																
Vinyl Chloride	ND (5)	N																
o-Xylene	ND (5) ND (5)	N																
m,p-Xylenes	ND (5)	ND (5) ND (5)	ND (5) ND (5)	ND (5) ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	N					
п,р-луненез	ND (5)	(5) UN	ND (5)	ND (5)	ND (5)	110 (5)	ND (5)	(5) עא	NU (5)	ND (5)	ND (5)	(c) UN	ND (5)	ND (3)	(כ) טא	(5) UN	ND (5)	INL

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected J: Estimated

J-: Estimated and biased low

 For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not collected

during that sampling period. 3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for

8/31/2021	8/29/2022
ND (5)	ND (5)
ND (10)	ND (10)
ND (10)	ND (10)
ND (5)	ND (5)
ND (10)	ND (10)
ND (5)	ND (5)
ND (10)	ND (10)
ND (5)	ND (5)

Analyte or Method																					
	6/16/2006	11/29/2006	6/13/2007	12/20/2007	6/11/2008	12/17/2008	6/24/2009	6/22/2010	10/12/2011	8/22/2012	9/5/2013	7/30/2014	8/26/2015	8/31/2016	3/29/2017 RESAMPLE	9/26/2017	8/28/2018	8/26/2019	9/28/2020	8/31/2021	8/29/2022
VOCs 8260B (ug/L)																					
Acetone	ND (100)	ND (200)	ND (200)	ND (20)	ND (40)	ND (20)	ND (20)	ND (40)	ND (40)	ND (20)	ND (50) J	ND (50)	ND (10)	ND (25)	NA	ND (20)	ND (50)				
Benzene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)				
Bromodichloromethane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)				
Bromoform	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)				
Bromomethane (Methyl Bromide)	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)				
2-Butanone (Methyl Ethyl Ketone)	ND (50)	ND (100)	ND (100)	ND (10)	ND (20)	ND (10)	ND (10)	ND (20)	ND (20)	ND (20)	ND (50) J	ND (50)	ND (10)	ND (25)	NA	ND (20)	ND (50)				
Carbon Disulfide	ND (50)	ND (100)	ND (100)	ND (10)	ND (20)	ND (10)	ND (10)	ND (20)	ND (20)	ND (20)	ND (50)	ND (50)	ND (10)	ND (25)	NA	ND (20)	ND (50)				
Carbon Tetrachloride	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)				
Chlorobenzene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)				
Chloroethane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)				
Chloroform (Trichloromethane)	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)				
Chloromethane (Methyl Chloride)	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)				
Dibromochloromethane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)				
1,1-Dichloroethane	210	240	280	14	92	9.5	63	150	43	150	120	38	73	320	88	42	100	65	65	85	120
1,2-Dichloroethane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)				
1.1-Dichloroethene	80	100	95	5.6	26	ND (5)	22	69	17	63	41	10	14	120	27	11	40	21	20	25	39
cis-1.2-Dichloroethene	1,000 D	1,400	1,600	36	240	24	330 D	910 D	260 D	580	620	170	340	3,700	550	220	590	370	410	580	1,500
trans-1,2-Dichloroethene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	18	10	ND (10)	ND (25)	ND (25)	12	63	NA	ND (10)	ND (25)				
1,2-Dichloropropane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)				
Cis-1,3-Dichloropropene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)				
trans-1,3-Dichloropropene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)				
Ethylbenzene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)				
2-Hexanone	ND (50)	ND (100)	ND (100)	ND (10)	ND (20)	ND (10)	ND (10)	ND (20)	ND (20)	ND (20)	ND (50) J	ND (50)	ND (10)	ND (25)	NA	ND (20)	ND (50)				
Methylene Chloride	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)				
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (50)	ND (100)	ND (100)	ND (10)	ND (20)	ND (10)	ND (10)	ND (20)	ND (20)	ND (20)	ND (50)	ND (50)	ND (10)	ND (25)	NA	ND (25)					
Styrene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25) J	ND (25) J	ND (5.0)	ND (13)	NA	ND (10)	ND (25)				
1,1,2,2-Tetrachloroethane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)				
Tetrachloroethene	38	ND (50)	ND (50)	15	22	7.4	16	ND (10)	ND (10)	13	ND (25)	ND (25)	ND (5.0)	120	NA	ND (10)	ND (25)				
Toluene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)				
1.1.1-Trichloroethane	120	140	140	22	71	13	54	100	38	87	67	24	36	340	26	11	49	22	19	45	58
1.1.2-Trichloroethane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)				
Trichloroethene	330	340	100	90	310	54	240 D	140	160	420	110	52	99	3,100	250	94	450	220	220	170	620
Vinyl Chloride	ND (25)	ND (50)	66	ND (5)	ND (10)	ND (5)	ND (5)	23	ND (10)	58	39	9	32	190	32	15	40	30	27	25	43
o-Xylene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)				
m.p-Xvlenes	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)				

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected J: Estimated

J-: Estimated and biased low

 For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not collected

during that sampling period. 3. Sample results from June 2006 through the most recent event

 Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

Sample	D									MW	-245									
Analyte or Method	6/16/2006	11/29/2006	6/13/2007	12/20/2007	6/11/2008	12/17/2008	6/24/2009	6/28/2010	10/11/2011	8/22/2012	9/5/2013	7/30/2014	8/26/2015	8/31/2016	9/27/2017	8/28/2018	8/26/2019	9/28/2020	8/31/2021	8/29/2022
VOCs 8260B (ug/L)																				
Acetone	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (10)	ND (10)	ND (10) J	ND (10)							
Benzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromodichloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromoform	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromomethane (Methyl Bromide)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Butanone (Methyl Ethyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Disulfide	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Tetrachloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chlorobenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroform (Trichloromethane)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloromethane (Methyl Chloride)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Dibromochloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5)							
1.1-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
cis-1,2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloropropane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Cis-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Ethylbenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Hexanone	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Methylene Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Styrene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5) J	ND (5)							
1.1.2.2-Tetrachloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Tetrachloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Toluene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1.1.1-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,2-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Trichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Vinyl Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
o-Xylene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
m.p-Xylenes	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
ווו,ף-געובוובא	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	(כ) טא	ND (5)	ND (5)	ND (5)	ND (5)	(כ) טא	10 (5)	10 (5)	10 (5)	ND (5)	נכן טא

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected J: Estimated

J-: Estimated and biased low

 For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not collected

during that sampling period. 3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for

Sample ID					SW-29				
Analyte or Method	11/29/2006	12/20/2007	6/24/2009	6/23/2010	10/11/2011	8/22/2012	7/29/2014	8/31/2021	8/29/2022
VOCs 8260B (ug/L)									
Acetone	ND (20)	ND (50)	ND (40)	ND (20)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)
Benzene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromodichloromethane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromoform	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromomethane (Methyl Bromide)	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Butanone (Methyl Ethyl Ketone)	ND (10)	ND (25)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Disulfide	ND (10)	ND (25)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Tetrachloride	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chlorobenzene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroethane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroform (Trichloromethane)	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloromethane (Methyl Chloride)	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Dibromochloromethane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloroethane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
cis-1,2-Dichloroethene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J
trans-1,2-Dichloroethene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloropropane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Cis-1,3-Dichloropropene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,3-Dichloropropene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Ethylbenzene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Hexanone	ND (10)	ND (25)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Methylene Chloride	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (10)	ND (25)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Styrene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,2,2-Tetrachloroethane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Tetrachloroethene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Foluene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,1-Trichloroethane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,2-Trichloroethane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Trichloroethene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
/inyl Chloride	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J
o-Xylene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
m,p-Xylenes	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected J: Estimated

J-: Estimated and biased low

 For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not collected

 Sample study and the stream because samples were not concrete during that sampling period.
 Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for

Sample ID										SW-34								
Analyte or Method	6/16/2006	11/29/2006	6/13/2007	12/20/2007	6/12/2008	12/18/2008	6/24/2009	6/23/2010	10/11/2011	8/23/2012	9/5/2013	7/29/2014	8/26/2015	8/31/2016	9/26/2017	8/28/2018	9/28/2020	8/31,
VOCs 8260B (ug/L)																		
Acetone	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND
Benzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
Bromodichloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
Bromoform	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
Bromomethane (Methyl Bromide)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
2-Butanone (Methyl Ethyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND
Carbon Disulfide	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND
Carbon Tetrachloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
Chlorobenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
Chloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
Chloroform (Trichloromethane)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
Chloromethane (Methyl Chloride)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
Dibromochloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
1,1-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
1,2-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
1,1-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
cis-1,2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
trans-1,2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
1,2-Dichloropropane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
Cis-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
trans-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
Ethylbenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
2-Hexanone	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND
Methylene Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND
Styrene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5)	ND					
1,1,2,2-Tetrachloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
Tetrachloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
Toluene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
1,1,1-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
1,1,2-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
Trichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
Vinyl Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
o-Xylene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND
m,p-Xylenes	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected J: Estimated

J-: Estimated and biased low

 For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not collected

during that sampling period. 3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for

Page 14 of 15	Page	14	of	15
---------------	------	----	----	----

8/31/2021	8/29/2022
-,,	-,,
ND (10)	ND (10)
ND (10)	ND (10)
ND (5)	ND (5)
ND (10)	ND (10)
ND (10)	ND (10)
ND (5)	ND (5)
ND (5)	ND (5)
ND (5)	ND (5)
ND (5)	11
ND (5)	ND (5)
ND (10)	ND (10)
ND (5)	ND (5)
ND (10)	ND (10)
ND (5)	ND (5)

Sample IE	0										SW-35										
Analyte or Method	6/16/2006	11/29/2006	12/20/2007	6/12/2008	12/18/2008	6/24/2009	6/23/2010	10/11/2011	8/23/2012	9/5/2013	7/29/2014	8/26/2015	8/31/2016	9/26/2017	8/28/2018	8/28/2018 DUPLICATE	8/26/2019	8/26/2019 DUPLICATE	9/28/2020	8/31/2021	8/29/2022
VOCs 8260B (ug/L)																					
Acetone	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (40)	ND (20)	ND (20)	ND (10)	ND (10)	ND (10) J	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)				
Benzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromodichloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromoform	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromomethane (Methyl Bromide)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Butanone (Methyl Ethyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Disulfide	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Tetrachloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chlorobenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroform (Trichloromethane)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloromethane (Methyl Chloride)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Dibromochloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethane	ND (5)	6.3	8.6	ND (5)	15	19	ND (5)	16	ND (5)	ND (5)	14	6	ND (5)	ND (5)	6	6	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1.2-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)				
1.1-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
cis-1.2-Dichloroethene	20	15	86	ND (5)	140	110	ND (5)	73	11	ND (5)	76	20	ND (5)	7	19	19	ND (5)	ND (5)	ND (5)	ND (5)	5.8
trans-1.2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloropropane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Cis-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Ethylbenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Hexanone	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Methylene Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Styrene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5) J	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)				
1,1,2,2-Tetrachloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Tetrachloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Toluene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,1-Trichloroethane	ND (5)	ND (5)	10	ND (5)	21	21	ND (5)	8.8	ND (5)	ND (5)	12	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)				
1,1,2-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Trichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	5.1	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Vinyl Chloride	ND (5)	12	15	ND (5)	27	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
o-Xylene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
m,p-Xylenes	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected J: Estimated

J-: Estimated and biased low

1. For the December 2008 sampling event, mineral spirits were

inadvertently sampled in VE-6 rather than RW-1. 2. Some dates are not shown because samples were not collected

during that sampling period. 3. Sample results from June 2006 through the most recent event

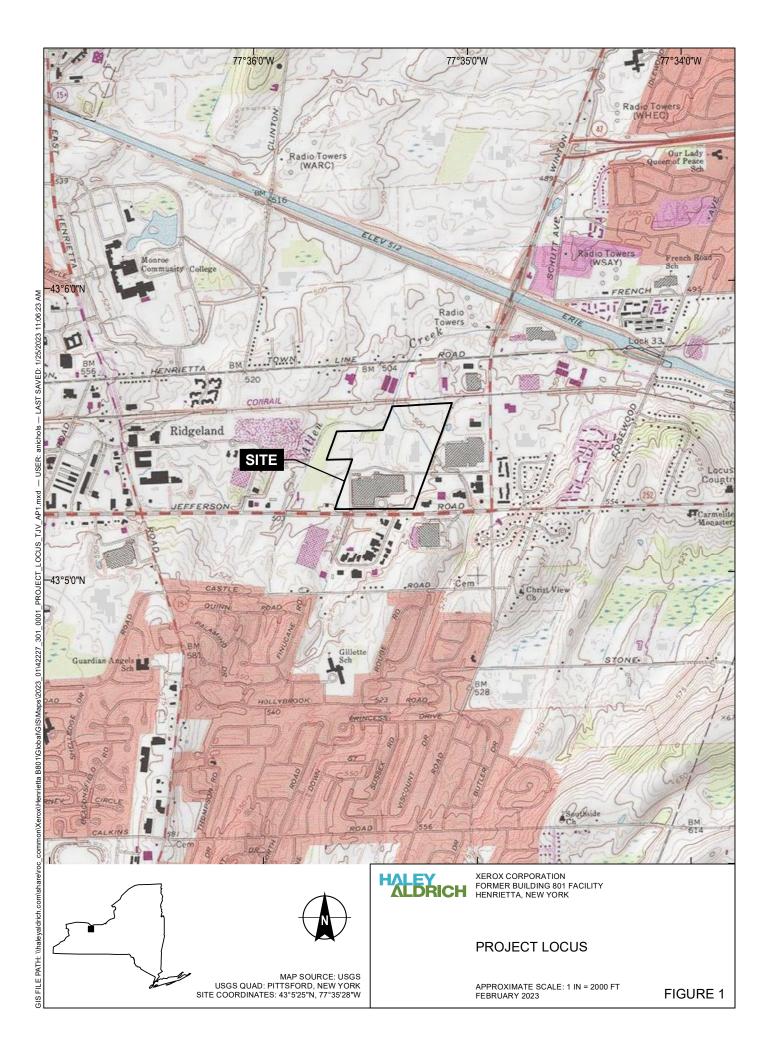
 Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

TABLE IV SSD SYSTEM FLOOR POINT VACUUM READINGS FORMER XEROX B801 FACILITY HENRIETTA, NEW YORK

	9/27/2013	10/21/2014	9/3/2015	9/8/2016	9/27/2017	10/10/2018	11/19/2018	9/27/2019	10/19/20 - 11/2/20	9/28/2021 - 12/10/2021	11/2/2022
	Vacuum	Vacuum	Vacuum								
Location ID	Measurement	Measurement	Measurement								
	(in. w.c.)	(in. w.c.)	(in. w.c.)								
T-1	0.021	0.022	0.330	0.029	0.050	0.053		0.052	0.044	0.083	0.103
T-3	0.223	0.215	0.247	0.241	0.304	0.3		0.256	0.196	0.306	0.342
T-4	0.031	0.029	0.043	0.04	0.045	0.045		0.051	0.045	0.06	0.063
T-7	0.066	0.055	0.064	0.06	0.057	0.061		0.064	0.041	0.074	0.065
T-11	0.046	0.008	0.014	0.014	0.016	0.028		0.05	0.018	0.354	0.381
T-14	0.016	0.016	0.014	0.014	0.015	0.014	0.022	0.02	0.021	0.018	0.037
T-17	0.009	0.011	0.01	0.008	0.008	0.010	0.010	0.007	0.007	0.008	0.019
T-18	0.003	0.003	0.003	0.004	0.005	0	0.003	0.003	0.005	0.002	0.003
T-20	0.004	0.004	0.004	0.005	0.004	0.003	0.005	0.004	0.004	0.004	0.005
T-21	0.002	0.001	0.002	0.003	0.003	0.003		0.006	0.006	0.003	0.003
T-22	0.123	0.081	0.008	0.099	0.136	0.153		0.04	0.068	0.083	0.102
T-25	0.031	0.026	0.036	0.029	0.051	0.07		0.037	0.031	0.052	0.058
T-26	0.01	0.007	0.006	0.006	0.018	0.023		0.010	0.010	0.025	0.028
T-28	0.01	0.004	0.005	0.003	0.010	0.013		0.007	0.004	0.005	0.015
T-29	0.01	0.009	0.010	0.004	0.006	0.009		0.005	0.009	0.009	0.012
T-30	0.017	0.01	0.019	0.036	0.033	0.036		0.025	0.036	0.032	0.039
T-31	0.009	0.007	0.009	0.014	0.015	0.012		0.005	0.008	0.009	0.012
T-32	0.077	0.054	0.07	0.074	0.081	0.083		0.04	0.042	0.05	0.055
T-33	0.013	0.007	0.012	0.005	0.029	0.039		0.016	0.028	0.055	0.093
T-34	0.007	0.009	0.008	0.008	0.013	0.016		0.013	0.003	0.004	0.003

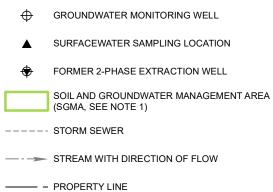
Notes:

1. NR = Not able to get a reading


2. Values in bold represent readings below the 0.002 inches of water column design criteria.

3. T-2, T-8, T-9, T-10, T-12, T-13, T-15, T-16, T-19, T-23, T-24, and T-27 were decommissioned in 2014 and 2015.

TABLE VSSD SYSTEM FAN VACUUM READINGSFORMER XEROX B801 FACILITYHENRIETTA, NEW YORK


		9/27/2017	10/10/2018	11/19/2018	9/27/2019	10/19/2020	9/28/2021	11/2/2022	
		Vacuum							
Suction Point		Measurement							
Location ID	Fan System	(in. w.c.)							
S-1		25.0	24.0		25.0	25.0	25.0	24.0	
S-2	F-1	25.0	24.0		25.0	25.0	24.0	24.0	
S-3		25.0	24.0		24.0	24.0	24.0	24.0	
S-4	- F-2	40.0	40.0		40.0	40.0	40.0	40.0	
S-5	F-2	36.0	36.0		36.0	38.0	36.0	38.0	
S-6		>2.0	>2.0	>2.0	1.1	1.1	1.3	4.5	
S-7	F-3	1.00	1.00	0.95	0.24	1.84	2.00	3.50	
S-8		2.00	2.00	1.60	1.99	1.80	2.00	2.00	
S-9	– F-4	0.54	0.64		0.84	0.91	0.90	1.00	
S-10	Г-4	0.65	0.80		1.00	1.00	1.00	1.00	
S-11	- F-5	0.18	0.19		0.20	0.20	0.20	0.20	
S-12	- r-J	0.25	0.25		0.25	0.25	0.25	0.25	
S-13	- F-6	10.0	11.0		9.0	9.0	10.0	10.0	
S-14	F-0	10.0	10.0		8.0	8.0	10.0	10.0	
S-15		10.0	12.0		10.0	11.0	12.0	12.0	
S-16	F-7	10.0	10.5		9.0	11.0	11.0	12.0	
S-17		10.0	10.0		8.5	10.0	10.0	10.5	

FIGURES

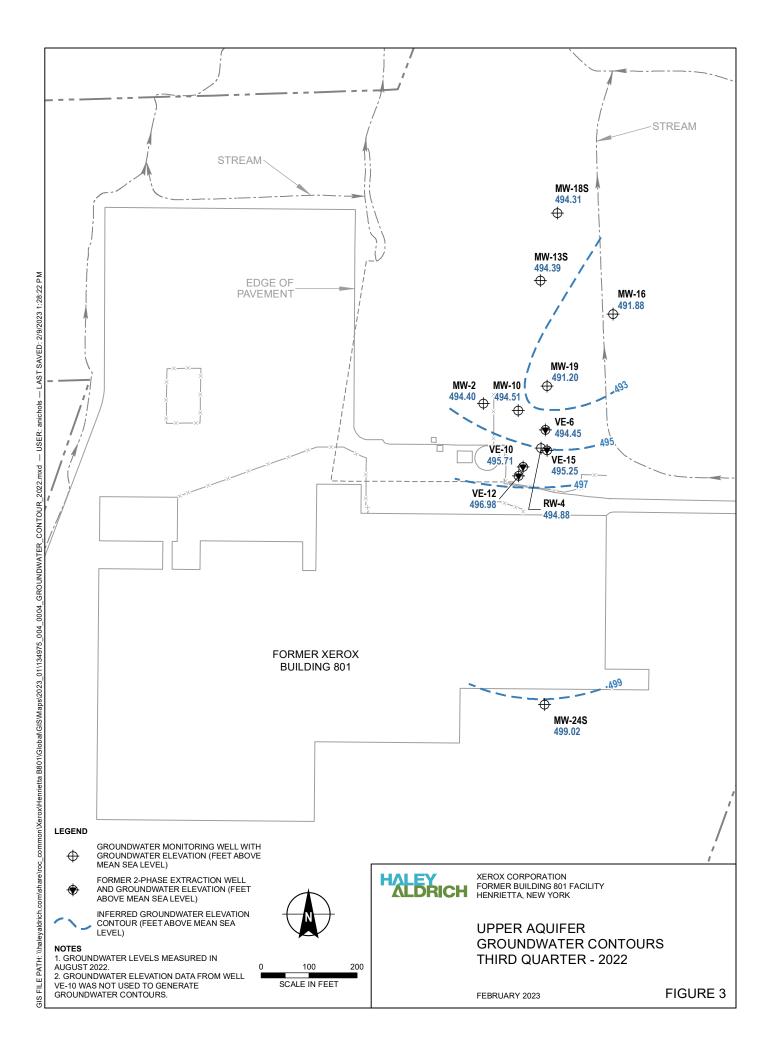
LEGEND

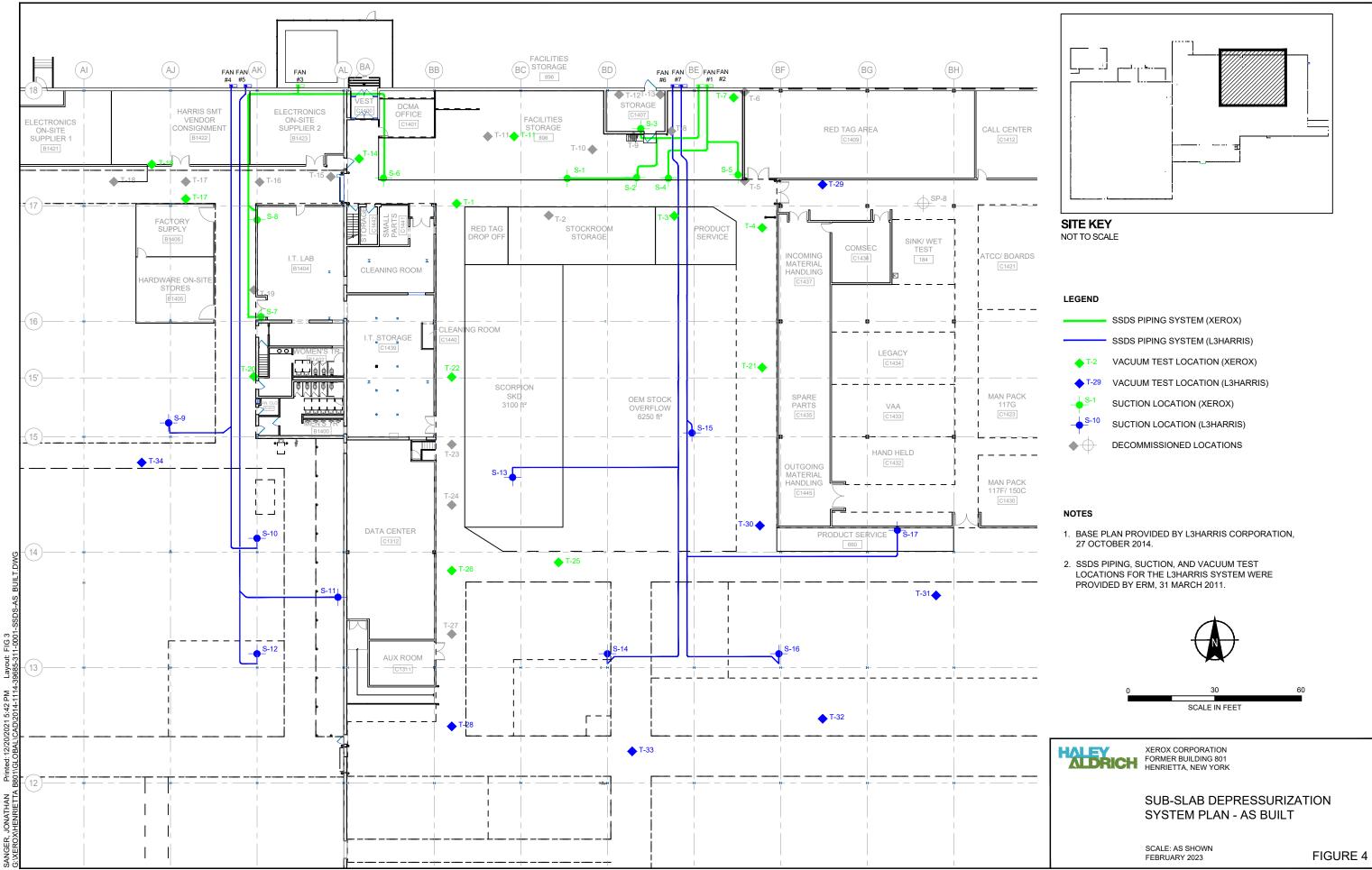
NOTES

1. THE LIMITS OF THE SGMA ARE CONTINGENT ON NO LONG TERM GROUNDWATER EXTRACTION FOR ANY PURPOSE OUTSIDE OF THE SGMA. SEE THE SITE MANAGEMENT PLAN REVISED 30 JULY 2015 FOR DETAILS.

2. BASE MAP DATA FILE PREPARED BY BERGMANN ASSOCIATES, ROCHESTER, NEW YORK UNDER DIRECT CONTRACT WITH XEROX CORPORATION.

3. STREAM LOCATIONS ARE APPROXIMATE.


400 200 SCALE IN FEET


XEROX CORPORATION FORMER BUILDING 801 FACILITY HENRIETTA, NEW YORK

SITE PLAN

FEBRUARY 2023

FIGURE 2

	SSDS PIPING SYSTEM (XEROX)
	SSDS PIPING SYSTEM (L3HARRIS)
T-2	VACUUM TEST LOCATION (XEROX)
T-29	VACUUM TEST LOCATION (L3HARRIS)
S-1	SUCTION LOCATION (XEROX)
S-10	SUCTION LOCATION (L3HARRIS)
·	DECOMMISSIONED LOCATIONS

APPENDIX A Annual Engineering and Institutional Controls Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	Site Details e No. 828069	Box 1	
Sit	e Name Xerox - Henrietta Facility		
Cit Co	e Address: 1350 Jefferson Road Zip Code: 14623 //Town: Henrietta unty: Monroe e Acreage: -2.000 - 85.98		
Re	porting Period: January 15, 2022 to January 15, 2023		
	January 1, 2022 to December 31 2022		
		YES	NO
1.	Is the information above correct?		×
_	If NO, include handwritten above or on a separate sheet. Site acreage and PRF been corrected above		d has
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		X
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		X
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		X
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.		
5.	Is the site currently undergoing development?		X
		Box 2	
		YES	NO
6.	Is the current site use consistent with the use(s) listed below? Commercial and Industrial	X	
7.	Are all ICs in place and functioning as designed?		
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below a DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
AC	corrective Measures Work Plan must be submitted along with this form to address th	iese issi	ues.
Sig	nature of Owner, Remedial Party or Designated Representative Date		

SITE NO. 828069		Box 3
Description of Institu	utional Controls	
Parcel	Owner	Institutional Control
162-08.1-2	Harris Corporation Xerox Corporation - Remedial Party	Ground Water Use Restriction Landuse Restriction Monitoring Plan Site Management Plan
Continued groundwater mo	nitoring;	
Establishment of a soil and	l groundwater management area;	
A deed restriction which re	stricts site use;	
continued management of r	anagement plan dated 6/16/10 and revised on residual contamination in the soil and groundwa eering controls, and provide for periodic certific Harris Corporation	ter management area, to address
	Xerox Corporation - Remedial Party	Ground Water Use Restriction Landuse Restriction Monitoring Plan Site Management Plan
Continued groundwater mo	nitoring;	
Continued operation and m	nonitoring of the sub-slab depressurization system	em;
Establishment of a soil and	l groundwater management area;	
A deed restriction which re	stricts site use;	
continued management of r	anagement plan dated 6/16/10 and revised on residual contamination in the soil and groundwa eering controls, and provide for periodic certific Harris Corporation	ter management area, to address
	Xerox Corporation - Remedial Party	Ground Water Use Restriction Landuse Restriction Monitoring Plan Site Management Plan
Continued groundwater mo	nitoring;	one management r lan
Establishment of a soil and	l groundwater management area;	
A deed restriction which re	stricts site use;	
continued management of r	anagement plan dated 6/16/10 and revised on residual contamination in the soil and groundwa eering controls, and provide for periodic certific Harris Corporation	ter management area, to address
102.00-1-30	Xerox Corporation - Remedial Party	Ground Water Use Restriction Landuse Restriction Monitoring Plan Site Management Plan
Continued groundwater mo	nitoring;	
Continued operation and m	nonitoring of the sub-slab depressurization systemeters	em;
A deed restriction which re	stricts site use;	
Compliance with the site m	anagement plan dated 6/16/10 and revised on	7/30/15 which addresses

	idual contamination in the soil and groundwa ring controls, and provide for periodic certifica				
•	•				
	Harris Corporation				
	Xerox Corporation - Remedial Party	Landuse Restriction Ground Water Use Restriction Monitoring Plan Site Management Plan			
Continued groundwater monito	oring;				
A deed restriction which restri	cts site use;				
Compliance with the site management plan dated 6/16/10 and revised on 7/30/15 which addresses continued management of residual contamination in the soil and groundwater management area, to address continued O&M of all engineering controls, and provide for periodic certification.					
continued O&M of all engineer	ring controls, and provide for periodic certification	•			
continued O&M of all engineer	ring controls, and provide for periodic certifica	•			
Description of Engineer		ation.			
		ation.			
Description of Engineer	ring Controls Engineering Control	ation.			
Description of Engineer	ring Controls	ation.			

	Periodic Review Report (PRR) Certification Statements
	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certificatio are in accordance with the requirements of the site remedial program, and generally accepted and program protices; and the information procented is accurate and compate.
	engineering practices; and the information presented is accurate and compete. YES NO
	X 🗆
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	X 🗆
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
1	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
-	Signature of Owner, Remedial Party or Designated Representative Date Date

L

IC CERTIFICATIONS SITE NO. 828069

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I Marcus Lathr	op _{at} 800 Phillips Road, Web	oster, NY 14580
print	name print business a	ddress
am certifying as	Manager; Assessment of Environmental Opera	ations (Owner or Remedial Party)
	ed in the Site Details Section of this form.	2/10/2023
Signature of Own	ner, Remedial Party, or Designated Representative ication	Date

	EC CERTIFICA	TIONS	
P	rofessional Engi	neer Signature	Box 7
I certify that all information in Boxes punishable as a Class "A" misdemea			
Janice Szucs	at Haley & Aldric	ch of New York, 200 Town Centr	re Dr, Ste 2, Rochester, NY 14623
print name		int business address	,
am certifying as a Professional Engir	neer for the	Remedial Party	
		(Owner or Rem	nedial Party)
Signature of Profession/all/Engineer, Remedial Party, Rendering Certificar		Stamp (Required for PE)	<u>2/10/23</u> Date

APPENDIX B Laboratory Analytical Data Report

Service Request No:R2208059

Julia Ispentchain Xerox Corporation USA 800 Phillips Road Bldg #0207-01Z Webster, NY 14580

Laboratory Results for: Bldg 801 Annual Wells

Dear Julia,

Enclosed are the results of the sample(s) submitted to our laboratory August 29, 2022 For your reference, these analyses have been assigned our service request number **R2208059**.

All testing was performed according to our laboratory's quality assurance program and met the requirements of the TNI standards except as noted in the case narrative report. Any testing not included in the lab's accreditation is identified on a Non-Certified Analytes report. All results are intended to be considered in their entirety. ALS Environmental is not responsible for use of less than the complete report. Results apply only to the individual samples submitted to the lab for analysis, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s), and represented by Laboratory Control Sample control limits. Any events, such as QC failures or Holding Time exceedances, which may add to the uncertainty are explained in the report narrative or are flagged with qualifiers. The flags are explained in the Report Qualifiers and Definitions page of this report.

Please contact me if you have any questions. My extension is 7475. You may also contact me via email at Meghan.Pedro@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Mighue tedio

Meghan Pedro Project Manager

CC: Janice Szucs

ADDRESS 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 PHONE +1 585 288 5380 | FAX +1 585 288 8475 ALS Group USA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Client: Xerox Corporation USA Project: Bldg 801 Annual Wells Service Request: R2208059 Date Received: 08/29/2022

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Seventeen water samples were received for analysis at ALS Environmental on 08/29/2022. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Volatiles by GC/MS:

No significant anomalies were noted with this analysis.

Mighan Hedro

Approved by

Date 09/12/2022

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

LIENT ID: VE-12	Lab ID: R2208059-003					
Analyte	Results	Flag	MDL	MRL	Units	Method
1,1,1-Trichloroethane	770			250	ug/L	8260C
1,1-Dichloroethane	1500			250	ug/L	8260C
1,1-Dichloroethene	270			250	ug/L	8260C
Chloroethane	4300			250	ug/L	8260C
cis-1,2-Dichloroethene	5000			250	ug/L	8260C
Toluene	350			250	ug/L	8260C
Vinyl Chloride	5100			250	ug/L	8260C

CLIENT ID: MW-10	Lab ID: R2208059-007					
Analyte	Results	Flag	MDL	MRL	Units	Method
1,1,1-Trichloroethane	33			25	ug/L	8260C
1,1-Dichloroethane	110			25	ug/L	8260C
cis-1,2-Dichloroethene	600			25	ug/L	8260C
Tetrachloroethene	25			25	ug/L	8260C
Trichloroethene	80			25	ug/L	8260C
Vinyl Chloride	170			25	ug/L	8260C

CLIENT ID: MW-19		Lab ID: R2208059-011				
Analyte	Results	Flag	MDL	MRL	Units	Method
1,1,1-Trichloroethane	58			25	ug/L	8260C
1,1,1-Trichloroethane	57	D		50	ug/L	8260C
1,1-Dichloroethane	120			25	ug/L	8260C
1,1-Dichloroethane	110	D		50	ug/L	8260C
1,1-Dichloroethene	39			25	ug/L	8260C
cis-1,2-Dichloroethene	1500	Е		25	ug/L	8260C
cis-1,2-Dichloroethene	1500	D		50	ug/L	8260C
Trichloroethene	620			25	ug/L	8260C
Trichloroethene	600	D		50	ug/L	8260C
Vinyl Chloride	43			25	ug/L	8260C

CLIENT ID: VE-10		Lab ID: R2208059-002				
Analyte	Results	Flag	MDL	MRL	Units	Method
1,1-Dichloroethane	760			500	ug/L	8260C
Chloroethane	1200			500	ug/L	8260C
Vinyl Chloride	10000			500	ug/L	8260C

CLIENT ID: VE-15		Lab ID: R2208059-004				
Analyte	Results	Flag	MDL	MRL	Units	Method
1,1-Dichloroethane	87			13	ug/L	8260C
Chloroethane	190			13	ug/L	8260C

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: RW-4		Lab	ID: R2208	8059-005		
Analyte	Results	Flag	MDL	MRL	Units	Method
1,1-Dichloroethane	13			5.0	ug/L	8260C
cis-1,2-Dichloroethene	9.6			5.0	ug/L	8260C
Trichloroethene	8.1			5.0	ug/L	8260C
Vinyl Chloride	5.7			5.0	ug/L	8260C
CLIENT ID: RW-4 Dup		Lab	D: R2208	8059-016		
Analyte	Results	Flag	MDL	MRL	Units	Method
1,1-Dichloroethane	12			5.0	ug/L	8260C
cis-1,2-Dichloroethene	9.2			5.0	ug/L	8260C
Trichloroethene	7.7			5.0	ug/L	8260C
Vinyl Chloride	5.4			5.0	ug/L	8260C
CLIENT ID: SW-34		Lab	D: R2208	8059-014		
Analyte	Results	Flag	MDL	MRL	Units	Method
Chloroform	11			5.0	ug/L	8260C
CLIENT ID: VE-6		Lab	D: R2208	8059-001		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	12000			500	ug/L	8260C
Vinyl Chloride	1800			500	ug/L	8260C
CLIENT ID: MW-13S		Lab	D: R2208	8059-008		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	5.1			5.0	ug/L	8260C
CLIENT ID: SW-35		Lab	D: R2208	8059-015		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	5.8			5.0	ug/L	8260C

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Client: Project:

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	TIME
R2208059-001	VE-6	8/29/2022	1220
R2208059-002	VE-10	8/29/2022	1305
R2208059-003	VE-12	8/29/2022	1320
R2208059-004	VE-15	8/29/2022	1250
R2208059-005	RW-4	8/29/2022	1240
R2208059-006	MW-2	8/29/2022	1345
R2208059-007	MW-10	8/29/2022	1200
R2208059-008	MW-13S	8/29/2022	1055
R2208059-009	MW-16	8/29/2022	1125
R2208059-010	MW-18S	8/29/2022	1040
R2208059-011	MW-19	8/29/2022	1115
R2208059-012	MW-24S	8/29/2022	1425
R2208059-013	SW-29	8/29/2022	1000
R2208059-014	SW-34	8/29/2022	0945
R2208059-015	SW-35	8/29/2022	1410
R2208059-016	RW-4 Dup	8/29/2022	1240
R2208059-018	Trip Blank	8/29/2022	0945

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE _____OF ____

BOI Area Wells	Project Nur	nber					-	AN	ALYSI	S REC	DUEST	ED (/	nclud	e Meth	od Nu	mber	and C	ontain	er Pre	servativ	e)		
Project Manager Julia Ispentchia	Report CC				PRES	SERVA	TIVE																
Company/Address XeroX					VERS		7	7	7	7	7	7		7	7	7	7	/				reservati NONE HCL HNO3	-
800 Phillips Rd	, webster	NY			NUMBER OF CONTAINERS			/		/	/	/ 3		•/	/	/	/	/	/	/ /		HNO3 H2SO2 NaOH	i ototo
					Q Q		2/3	/	\$. /		3 3 5 5		/ /	' /	' /	' /	/ /	/ /	' /	6	Zn. Ac MeOH NaHS	
Phone 1 585 - 422 - 3077 Sapentrie Signature	Emañ				MBER		600% 510%			\$? ?	8/5	8 3	8							/	8	Other	
Sameterte Skonature	Sampler's Qu	Mtan Koil	cill		R	/§§	/8	<i>่</i> ยรี่		ૺૢ૿ૺૢ૿ૼ૽૿ૢ	13	Les I	[\square	\square			\square		/ AL		MARKS/	PTION
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID	SAMP DATE	LING TIME	MATRIX																			
Trip Black	18	8/29/2022	0945	ω	3	X														T	<u>4 \ 1</u>	Bic	ηK
5w-37	14		0945	W	3	X								ļ	ļ								
5-29	13		1000	W	3	X								ļ									
MW - 183	10		1040	ω	3	X								<u> </u>	ļ								
MW-135	8		1055	ω	3	X								<u> </u>	[<u> </u>					
MW - 19	11		1)15	W	3	X							ļ. <u>.</u>	<u> </u>			<u> </u>	<u> </u>				-	
MW-16	9		1125	ω	3	X								ļ	 		ļ	 					
MW-10	7		1200	$ \omega $	3_	X								ļ	ļ	ļ	Ļ	ļ	 				
MW-10 VE-+06	<u> </u>		1220	$ \omega $	3	X								ļ			<u> </u>	<u> </u>					
_RW-Y	5		1240	w	3	X							Ļ	 		ļ	ļ						
RW-4 DUP	16	₩	1240	ω	2	X							<u> </u>			L			<u> </u>	<u> </u>	<u>)nP</u>		.
SPECIAL INSTRUCTIONS/COMMENTS Metals							TUR				IREME S APPL				ORT R	EQUIR	EMEN	TS		INV	DICE INI	FORMAT	ION
									1,001.0			,				7)C Sumn	nadaa		PO		<u></u>		
											3 day	1	-			S/MSD a		reď)			_		
								-	55 tard (10 i	-	daya-No	Surcherry	~ _	lii, Re	sults + 0	DC and (Calibrati	on	BILL	. TO:			
							REQUI	ested	REPO	RT DA	TE				naries	ation Rep	nort with		**			-	
See OAPP													-	_ 19. 05	aug ¥2000		, 1 11, 111, 111, 111, 111, 111, 111, 1	inan U					
STATE WHERE SAMPLES WERE COL	FCTED	······											-	Eđ	ata	Yes		_No		_			
RELINQUISHED BY	RECEIVI	ED BY	RE	UNQUISHED	BY		<u> </u>		RECE	VED B	Y		+		RELINC	VISHE	D BY		╧	·,	RECEN	ÆD BY	
					_	-	<u></u>		~_		-7 -2								Sin	aluar			
Chile	Signature	u	. Signature	La	<u> </u>		Signatus	4	H	L	L	\sim		aturo			~~	~~			ł	5	
Crimbon Kolbeck	Kyle Lee		Printed Nario	relea			Printed I		ul.	4	L	<u> </u>	_	ted Nam					305	3	•		}
FirmALS	Firm ALS		Firm	ALS				46			7		Fim			i	Bidg 80						
Date/Time 8/29/2022 1445	Date/Time8/29/2	a 1445	Date/Time	[<u>2</u> 9/ <i>2</i> 3	- 1	450	Date/Tin	<u>** 2</u>	5/2	<u>a/2</u>	2_/	115	Z Date	⊴/Time									<u></u>

© 2012 by ALS Group

064104

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 0 6 4 1 0 5 1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE 2______OF 2______OF

Project Name 801 Areg Wells	Project Nur	nber						A	NALYS	IS RE	QUEST	TED (Includ	e Meth	od Nu	mber	and C	ontair	er Pre	servati	vo)		
Project Manager Julia Ispentchia	An Report CC				PRE	SERVA	IIVE																
Company/Address XtroX	64. İ. I.				ERS		7	7	\neg	\neg	\neg		/			7	7	/	/	7		reservat NONE	
800 phillips Rd,	Webster	- NY			NTAIN		/	/	/	/	/	/,		F/	/	/	/	/				HNO3 H2SO NaOH	4
					2 2 2		3	/ 9 /	 &	/ /	/ <i> </i> .	8 7		/ /	/ /	/ /	/ /	/ /	/ /	/ /	5	. Zn. Ac . MeOF . NaHS	cetate I
Phone # 585-422-3077 Semilitry-Brighature	Ema#				NUMBER OF CONTAINERS		Constant of the		8 2	8	8/2							/				. Other	
Santpitriz Bignature		Printed Name Nten Kolb	<i>ick</i>		2	/ <i>§</i>	?/§	ૺઙૢૻઙ૾	¥/5 \$	<u>}</u>					/		/	/	/	/ AI	RE LTERNAT	MARKS/ E DESCR	IPTION
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID	SAMF DATE		MATRIX	1																		
VE-15	4	8/29/2022	1250	ω	3	Х																	
VE-10 QC	٦		1305	W	6	X							<u> </u>				ļ			<u> </u>	2C		
VE-12	3		1320	ω	3	X							ļ	<u> </u>				 					
MW-2	6		1345	ω	3	X													<u> </u>				
<u>5W - 35</u>			1410	w	3	Ι <u>Χ</u>											 	ļ					
MW-243	12	¥	1425	ω	3	X								<u> </u>					ļ				
				<u> </u>						 								<u> </u>	<u> </u>				
									 														
	-					<u> </u>			 				<u> </u>			 							
									<u> </u>			<u> </u>				<u> </u>		<u> </u>					
SPECIAL INSTRUCTIONS/COMMENTS				4			τυ	RNAR		REQU		L	1	REP	ORT R	EQUIR	EMEN	<u>,</u> тs	ч		OICE IN	FORMAT	10N
Metals										CHARGE				_ I. Res	ults Only	,							
1								1 44			5 des			li. Re:	uits + O	C Summ	naries		PO	,			
									y	2 day <u>—</u> 5 day	0 uay	,		(LCS,	oup, M	S/MSD #	is requir	eď)	80.1	TO:			
								Stan	idard (10	buainesa	day s- No	Surcharg	~	III. Re Sumn		C and C	Calibratio	00					
							REOL	JESTE	D REPC	ORT DA	TE					tion Rec		0 D					
See OAPP														14, Da	193 AURUC	uon nej							
STATE WHERE SAMPLES WERE COL	LECTED						╉┅╾──						-	Eda	ta	Yes	<u> </u>	_No					
RELINQUISHED BY		O BY	RE	LINQUISHED	BY		<u> </u>		RECE	IVED B	Y		+	F		UISHE		_			RECE	VED BY	
		. /			/	•	l I			_													
Signation S	Signature	e la	Signature	hlu			Signatu		ter	HZ	Ľ	/	Sign	ature					1.Sim			E	۲ <u>۲</u>
		e	Printed Nate	1 1			<u> </u>	i Name	Her	j J	lade	4		ed Name			YATOY I	Comor	805	A		5	
TLS	M ALS		Firm	ALS			Firm /		<u>s</u>			<i>·</i>	Firm				Bidg 60	11 edd	ist Wéllt			() () () () () ()	n
Date/Time 8/29/2022 1445	Date/Time82292	oð 1445	Date/Time 8	<u> 29 28</u>		<u>450</u>	Date/Ti	^{îme} 8	129	102	14	1:SC	Date	/Time		<u> </u>							

© 2012 by ALS Group

Cooler Receipt and Preservation Check Form

Project/Client			Fc	older Nun	ıber			·			
Cooler received on $\frac{8}{29}$	hr	by: 📙	<u>m</u>	COU	RIER: (ALS	JUPS FEI	DEX VEL	OCITY CLI	ENT	_
1 Were Custody seals	on outside of coole	r?	Y	5a	Perch	lorate s	amples have	required he	adspace?	Y N	(NA)
2 Custody papers prop	erly completed (in	k, signe	d)? (Y) ?	V 5b	Did V(OA via	s, Alk,or Sul	fide have sig	s* bubbles?	YN	3 NA
3 Did all bottles arrive i	n good condition	(unbrok	en)2 Y))	N 6	Where	did the	bottles origi	nate?	ALS/ROC	CLIEI	TV
4 Circle: Wet Ice D	ry Ice Gel packs	pres	ent? Y	v 7	Soil V	OA rec	eived as:	Bulk Er	core 503:	5set N	A
8. Temperature Readings	Date: 8 29	1,	Time: 15	 17		IR#7 (IR#11	From	Temp Blank	Same	le Bottle
-		1~	1 line. <u>10</u> -								=
Observed Temp (°C)	22		37 37						V NI		
Within 0-6°C?	Y N	∠⊥_	Y N		N	<u>Y</u>	N Y		Y N	<u>Y</u>	N
If <0°C, were samples fr	ozen? Y N		Y N	Y	N	Y	N Y		YN	Y	N
If out of Temperatur	e, note packing/ic	e condi	ition:	I	ce melte	ed P	oorly Packed	l (described	below) (Same D	ay Rule
&Client Approval to	Run Samples:		_ Standing	Approval	Client	aware	at drop-off	Client notif	ied by:		
All samples held in stor		RIA	52 by	III on	alza	hat]	5:23				
5035 samples placed in		1-les	by <u>N</u>	<u>~~(</u> or	- 	uc 1 at		n 48 hours a	f sampling?	Y	N
5055 sumples placed in	storage rooution.				·		within		a sampring:		
			a las	/		17,	2				
Cooler Breakdown/Pre					Time:	16:	<u>3</u> 7 YES	by: M	<u>(</u>		-
	le labels complete labels and tags agr				.) <i>?</i>		YES		•		
	containers used for						YES	NO			
	als acceptable (no									\sim	
13. Air Samples:							YES	NO	(
	Cassenes / Tubes	Intact Y			Canist	ers Pre	YES ssurized	Tedlar® B	ags Inflated		
pH Lot of test		Intact Y Preser	/N with !		Canist	ers Pre Exp	ssurized Sample ID	Tedlar® B	ags Inflated		Final
pH Lot of test paper			/N with !	MSY/N	Canist		ssurized	Tedlar® B			Final pH
paper ≥12	Reagent NaOH	Preser	Ved? Lot	MSY/N	Canist		ssurized Sample ID	Tedlar® B			
paper ≥12 ≤2	Reagent NaOH HNO3	Preser	Ved? Lot	MSY/N			ssurized Sample ID	Tedlar® B			
paper ≥12 ≤2 ≤2 ≤2	Reagent NaOH HNO ₃ H ₂ SO ₄	Preser	Ved? Lot	MSY/N			ssurized Sample ID	Tedlar® B			
paper ≥12 ≤2 ≤2 ≤2 <2	Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄	Preser	Ved? Lot	MSY/N Received			ssurized Sample ID	Tedlar® B			
paper ≥12 ≤2 ≤2 <2	Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest	Preser	/ N with N ved? Lot No No No=	MS Y / N Received	iday		ssurized Sample ID	Tedlar® B			
paper ≥12 ≤2 ≤2 <4	Reagent NaOH HNO3 H2SO4 NaHSO4 For 608pest For CN,	Preser	/ N with I ved? Lot No 	MS Y / N Received Notify for 3 contact PM	iday to add		ssurized Sample ID	Tedlar® B			
paper ≥12 ≤2 ≤2 <4	ReagentNaOHHNO3H2SO4NaHSO4For 608pestFor CN,Phenol, 625,	Preser	/ N with I ved? Lot No No No= If +, Na25	MS Y / N Received Notify for 3 contact PM S ₂ O ₃ (625, 60	day to add)8,		ssurized Sample ID	Tedlar® B			
paper ≥12 ≤2 ≤2 <4	ReagentNaOHHNO3H2SO4NaHSO4For 608pestFor CN,Phenol, 625,608pest, 522	Preser	/ N with I ved? Lot No No No= If +, Na25	MS Y / N Received Notify for 3 contact PM	day to add)8,		ssurized Sample ID	Tedlar® B			
paper ≥12 ≤2 ≤2 <4	ReagentNaOHHNO3H2SO4NaHSO4For 608pestFor CN,Phenol, 625,608pest, 522Na2S2O3	Preser	/ N with I ved? Lot No No No= If +, Na25	MS Y / N Received Notify for 3 contact PM S ₂ O ₃ (625, 60	day to add)8,		ssurized Sample ID Adjusted	Tedlar® B Vol. Added		ed	
paper ≥12 ≤2 ≤2 <4	ReagentNaOHHNO3H2SO4NaHSO4For 608pestFor CN,Phenol, 625,608pest, 522	Preser	/ N with I ved? Lot No No No= If +, Na2 CN)	MS Y / N Received Notify for 3 contact PM S ₂ O ₃ (625, 60	day to add)8,		ssurized Sample ID Adjusted	Tedlar® B Vol. Added		ed nalysis.	pH

Bottle lot numbers: \bigcirc 7 11 2 2 - 3A × H Explain all Discrepancies/ Other Comments:

HPROD	BULK
HTR	FLDT
SUB	HGFB
ALS	LL3541

Labels secondary reviewed by: <u>UM</u> PC Secondary Review:

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

P:\INTRANET\QAQC\Forms Controlled\Cooler Receipt r19.doc

03/02/2021

"ION .) /ft.) MATION		\backslash	d gal	Purge Method Stop Time
.) /ft.) / MATION		Start Time	d gal	Stop Time
.) /ft.) / MATION		Start Time	d gal	Stop Time
.) /ft.) MATION		Volume Purge	d gal	# casings
/ft.) MATION				
MATION		Observations_		
MATION				
-		\ \		
<u>^</u>		\backslash	<	
<u> </u>				
		0 <i>00</i> sw	L	
			··· ·	
			D- (4)	
ns <u>Fart</u>	IY SUNAY	<u>/S</u> 48	hr. <u></u>	y cloudy os
n (Print)Qu	when Koll	eck/ KL/HF S	ignature	Q
ter	Parameter	Unit	Replicate 1	Replicate 2
	рН	unit	7.86	7.86
· ·			649	6.4.9
on 6p	Temperature	Degrees Celsius	21,0	21.0
_	20 2	4 0		
me <u>& /</u>	29 2022	pH =	· ·	Conductivity =
		Turb		
	ns <u>Part</u> an (Print) <u>Q</u> eter on 6p on 6p	Recharge	Recharge Rate <u>Jan Th+</u> ns <u>Partly Stany 75°</u> 48 an (Print) <u>Quinter Kolbeck/ KL/KF</u> 5 eter Parameter Unit on 6p pH unit on 6p Conductivity µmhos/cm on 6p Temperature Degrees Celsius	Tan Tht ns Partly Sunny 75° 48 hr. Partly an (Print) Quinten Kolbeck/KLIKE Signature Constant atter Parameter Unit Replicate 1 an 6p pH unit 7.86 an 6p Conductivity µmhos/cm 649 an 6p Temperature Degrees Celsius 21,0

7

FIELD MONITORING REPORT

PROJEC	T <u>Xerox</u>	801 Ar	er wells			
SAMPLI	POINT ID	<u>sw- 34</u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·	······································	
PURGE	INFORMATION					
Well De	pth (ft.)		Purge Date		Purge Method	
SWL (ft.)		Start Time		Stop Time	
Standin	g Water (ft.)		Volume Purge	ed gal	# casings	
Well Co	nstant (gal/ft.)	/	Observations			
Well Vo	olume (gal.)				·	
	NG INFORMATION					
Sample	Method <u> </u>		→ 9 45 sw	/L	_	
	e Time		Rate			
	Ince				Ľ	
Weathe	er Conditions	Partly Sunny		/		
Samplin	g Technician (Print) <u>(</u>	Junton Kolbeck	IKL/KF S	ignature 🤇	2	
	Meter	Parameter	Unit	Replicate 1	Replicate 2]
	Myron 6p	рН	unit	7.99	7.99	
	Myron 6p	Conductivity	µmhos/cm	437	437	
	Myron 6p	Temperature	Degrees Celsius	21.6	21.6]
Calibrati OBSERV	ion Date/Time <u>8</u> ATIONS	1 29 1 2022	09/5 pH	= 7.00/4.00/10.00 bidity = <i>N</i> /A	Conductivity	= 1413 set 1413
•						

PROJECT Xerox	801 Area	wells		LAB ID
	<u>5w-35</u>	·	· · · · · · · · · · · · · · · · · · ·	
PURGE INFORMATION		· .		
Well Depth (ft.)		Purge Date		Purge Method
SWL (ft.)		Start Time		Stop Time
Standing Water (ft.)			-	# casings
Well Constant (gal/ft.)		X		
Well Volume (gal.)				·····
SAMPLING INFORMATION				
Sample Method	Grab			
Date <u>8/29/2022</u>	Time!	<u>410</u> sw	L	_
Recharge Time	Recharge	Rate		
Appearance				
Weather Conditions				
ampling Technician (Print)_	Quinton Kalle	WK/KL/KF S	ignature 🤇 🤇	In the
Meter	Parameter ·	Unit	Replicate 1	Replicate 2
Myron 6p	рН	unit	7,48	7.48
Myron 6p	Conductivity	µmhos/cm	1917	1917
Myron 6p	Temperature	Degrees Celsius	27.4	27.4
Calibration Date/Time	1 29 1 2022	<u>०१।ऽ</u> pH=		Conductivity =
OBSERVATIONS		Turt	pidity =	

PROJE	τ <u>Χειοχ</u>	801 Arequell	5		LAB ID	
SAMPL	E POINT ID	MW-18	5			
PURGE	INFORMATION	$\overline{\}$				
Well D	epth (ft.)		Purge Date		Purge Method	· · · · ·
SWL (ft	.)		Start Time		Stop Time	
itandir	g Water (ft.)		Volume Rurged	d gal	# casings	
Vell Co	nstant (gal/ft.)		Observations	\		
Well V	olume (gal.)					
AMPL	ING INFORMATION					
ample	Method <u>PD</u>	B				
		Time0	940 SWI	4:50		
					•	
	ge Time		Rate			
		Recharge f				
ppear	ance	Clea	5	hr. <u>Pertiy</u>	Cloudy	85°
ppear Veath	ance	Clea Mostly Sunny	60° 48		Cloudy	850
ppear Veath	ance	Clea	60° 48	gnature	2	850
ppear Veath	ance er Conditions ng Technician (Print)	Clea Mostly Sunny Quinton Kelbech			Cloudy Replicate 2	850
ppear Veath	ance er Conditions ng Technician (Print) Meter	Clea Mostly Sunny Quinten Kolbech Parameter	<u>80°</u> 48 <u>C/KL/KF</u> Sij Unit	gnature	2	850
ppear Veath	ance er Conditions g Technician (Print)_ Meter Myron 6p	Clea Mostly Sunny Quinton Kolbeck Parameter pH	<u>80°</u> 48 <u>C/KL/KF</u> Si Unit unit	gnature	2	850
Appear Weath	ance er Conditions g Technician (Print)_ Meter Myron 6p Myron 6p	Clea Mostly Sunny Quinten Kolbech Parameter pH Conductivity	<u>80°</u> 48 <u>C/KL/KF</u> Sig <u>Unit</u> unit μmhos/cm	gnature	2	850
Appear Weath Gamplin	ance er Conditions g Technician (Print)_ Meter Myron 6p Myron 6p	Clea Mostly Sunny Quinten Kolbech Parameter pH Conductivity Temperature	<u>80°</u> 48 <u>C/KL/KF</u> Sig <u>Unit</u> unit μmhos/cm	gnature	2	
Appear Weath Gamplir	ance er Conditions g Technician (Print)_ Meter Myron 6p Myron 6p Myron 6p	Clea Mostly Sunny Quinten Kolbech Parameter pH Conductivity Temperature	<u> </u>	gnature	Replicate 2	
Appear Weath Gamplir	ance er Conditions/ ng Technician (Print) Meter Myron 6p Myron 6p Myron 6p	Clea Mostly Sunny Quinten Kolbech Parameter pH Conductivity Temperature	<u> </u>	gnature	Replicate 2	
Appear Weath Samplir Calibrat	ance er Conditions g Technician (Print)_ Meter Myron 6p Myron 6p Myron 6p	Clea Mostly Sunny Quinten Kolbech Parameter pH Conductivity Temperature	<u> </u>	gnature	Replicate 2	

PROJECT	Xerox	80/Arguell	5		LAB ID	·
SAMPLE		MW-135	· · · · · · · · · · · · · · · · · · ·			
PURGE I	NFORMATION	_				
Well Dep	th (ft.)		Purge Date		Purge Method	
SWL (ft.)			Start Time		Stop Time	
Standing	Water (ft.)		Volume Purge	d gal	# casings	
Well Con	stant (gal/ft.)		Observations		<u> </u>	
Well Vol	ume (gal.)					
SAMPLIN	IG INFORMATION					
Sample N	Nethod PD	B				
Date <u>8</u>	129/2022	Time	<u>1055</u> sw	3,96	.	
Recharge	Time	Recharge	Rate			
Appearar	nce	CI	ear			
Weather	Conditions	Mostly Sunn	<u>y 85°</u> 48	hr. Party	/ Cloudy	85°
		Quintas Kolle			2	2
	Meter	Parameter	Unit	Replicate 1	Replicate 2]
-	Myron 6p	RН	unit			
	Myron 6p	Conductivity	µmhos/cm	/		
E	Myron 6p	Temperature	Degrees Celsius			
Calibratio	n Date/Time	//	рн =	:	Conductivity	=
OBSERVA	TIONS		Turb	oidity =		
			`			

PROJECTX	erox	801 Area	n wells			
SAMPLE POINT ID		MW- 19				
PURGE INFORMAT	ION		<i>.</i>			• .
Well Depth (ft.)		<u> </u>	Purge Date		Purge Method	
SWL (ft.)			Start Time _	······	Stop Time	
Standing Water (ft.)		Volume Purge	ed gal	# casings	
Well Constant (gal/	′ft.)		Observations	<u> </u>		
Well Volume (gal.)						-
SAMPLING INFORM	ATION					
Sample Method	P	DB				
Date <u>8/29/20</u> 2	2	Time(<u>115</u> sw	л <u>7.32</u>	-	
Recharge Time	•••••••••	Recharge	Rate			
		<u>C</u> (e	lar			
Weather Condition		MOCHN CHMY	85°	he Mach	1 Cloudy 85	- 0
ampling Technicia	n (Print) <u>(</u>	Runton Kolbeck	IKLIKE S	Signature	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Met	ter	Parameter	Unit	Replicate 1	Replicate 2	
Myro	n 6p	рН	unit			
Myro	n 6p	Conductivity	µmhos/cm			
Myro	n 6p	Temperature	Degrees Celsius			
Calibration Date/Ti	me	//	рН	=	Conductivity =	
OBSERVATIONS			Turi	bidity =		
		/		<u> </u>		
		/				

Sampling procedures were performed in accordance with all applicable protocols.

.

	α Χετο	× gol Are	a wells		LAB ID	
SAMPI	LE POINT ID	mw-16				
PURGE	E INFORMATION					
Well D	Depth (ft.)		Purge Date	\square	Purge Method	
SWL (f	ft.)		- Start Time	· · · · · · · · · · · · · · · · · · ·	Stop Time	
Standi	ng Water (ft.)		Volume Purged ga	I	# casings	
Well C	Constant (gal/ft.)	/	Observations			1 a -
Well V	Volume (gal.)		\backslash			
		N.P.		\smile		
	e MethodP					
Date	8/29/2022	Time	<u>25</u> swl _	6.95		
Rechar	rge Time	Recharge R	late			
Арреа	rance	cle	<u>مر</u>			
Weath	her Conditions	MOSTIN SHONY	85 48 hr.	Mosti	Y Cloudy E	35°
Sampli	ing Technician (Print)	Director Kellerk	/KL/KF Signat		Som for	
Jumpin	r					
	Meter	Parameter	····	eplicate 1	Replicate 2	
	Myron 6p	Ян	unit			
	Myron 6p	Conductivity	µmhos/cm			
	Myron 6p	Conductivity	µmhos/cm			
Calibra	Myron 6p	Conductivity Temperature	µmhos/cm		Conductivity	- -
	Myron 6p Myron 6p	Conductivity Temperature	µmhos/cm Degrees Celsius	=	Conductivity	=
	Myron 6p Myron 6p	Conductivity Temperature	μmhos/cm Degrees Celsius pH =	=	Conductivity	=
	Myron 6p Myron 6p	Conductivity Temperature	μmhos/cm Degrees Celsius pH =	=	Conductivity	=

	T Xerox	801 Area	wells		LAB ID
SAMPL	E POINT ID	MW-10			
PURGE	INFORMATION				
Well De	epth (ft.)		Purge Date		Purge Method
SWL (ft	.)`		Start Time 🥜		Stop Time
Standin	ng Water (ft.)		Volume Purge	ed gal	# casings
Nell Co	onstant (gal/ft.)	/			•
	olume (gal.)				<u> </u>
					· · · · · · · · · · · · · · · · · · ·
		DB			
		2 Time			
		-		L/	
	ge Time		Rate		
۹ppear	ance	CIX	205		
Weath	er Conditions	Sunny 85°	48	hr. <u>Mos</u>	HY Cloudy 850
	Meter		Unit	Replicate 1	
	Meter Myron 6p	Parameter	Unit	Replicate 1	Replicate 2
	Meter Myron 6p Myron 6p		unit	Replicate 1	
	Myron 6p	Parameter PH	· · · · · · · · · · · · · · · · · · ·	Replicate 1	
	Myron 6p Myron 6p	Parameter PH Conductivity	unit µmhos/cm	Replicate 1	
alibrat	Myron 6p Myron 6p Myron 6p	Parameter PH Conductivity	unit µmhos/cm Degrees Celsios		Replicate 2
	Myron 6p Myron 6p Myron 6p ion Date/Time	Parameter PH Conductivity	unit µmhos/cm Degrees Celsios pH =		
	Myron 6p Myron 6p Myron 6p	Parameter PH Conductivity	unit µmhos/cm Degrees Celsios pH =		Replicate 2
	Myron 6p Myron 6p Myron 6p ion Date/Time	Parameter PH Conductivity	unit µmhos/cm Degrees Celsios pH =		Replicate 2
	Myron 6p Myron 6p Myron 6p ion Date/Time	Parameter PH Conductivity	unit µmhos/cm Degrees Celsios pH =		Replicate 2
	Myron 6p Myron 6p Myron 6p ion Date/Time	Parameter PH Conductivity	unit µmhos/cm Degrees Celsios pH =		Replicate 2

PROJEC	т <u>X с го¥</u> е роінт id	801 Are	~ weils		
SAMPLI		Arto-	VE- +06		
	INFORMATION				
Well De	pth (ft.)		Purge Date		Purge Method
SWL (ft.)		Start Time _		Stop Time
Standin	g Water (ft.)		Х		# casings
Well Co	nstant (gal/ft.)	/	Observations		
Well Vo	olume (gal.)		,,,_,,		
SAMPLI	NG INFORMATION			· .	
Sample	MethodP	DB			
Date	8/29/2022	Time!	220 sv	QK2022 VL ССАТ У	33
Recharg	e Time	Recharge	Rate		
Appeara	ince	C	lear		
Weathe	er Conditions	SUMY 85	o 4	8 hr. <u>Mostl</u>	y Lloudy 85°
	g Technician (Print)_	•			_ /
	Meter	Parameter	Unit	Replicate 1	
	Myron 6p	рН	unit		
	Myron 6p	Conductivity	µmhos/cm		
	Myron 6p	Temperature	Degrees Celsius		
					<u> </u>
Calibrati	ion Date/Time	.//\	рн	=	Conductivity =
00000			\		·
OBSERV	A HUIS			bidity =	
		/	- \		
	· · · · · · · · · · · · · · · · · · ·				

PROJECT	r <u>Xerox</u>	801 Aren	Weils	I	.AB ID
SAMPLE		<u>Rw-4</u>	Dup		
PURGE I	NFORMATION				
Well Dep	oth (ft.)	<u> </u>	Purge Date		Purge Method
SWL (ft.)	···· ·		Start Time		Stop Time
Standing	; Water (ft.)		Volume Purge	d gal i	# casings
Well Cor	nstant (gal/ft.)	/	Observations_		· · · · · · · · · · · · · · · · · · ·
Well Vol	lume (gal.)				
SAMPLIN	IG INFORMATION		<u>`</u>		
Sampļe N	Viethod <u>PD</u>) В			
Date	8/29/2022	Time	<u>240</u> sw	L <u>3.96</u>	
Recharge	e Time	Recharge	Rate		
Appeara	nce	CI	ear		·
				hr. <u>Mos≁l</u>	y cloudy 850
				gnature	
Sampling	g Technician (Print) (
Sampling		r ·	T		
	Meter	Parameter	Unit	Replicate 1	Replicate 2
	Meter Myron 6p	Parameter pH	Unit unit		
	Meter Myron 6p Myron 6p	Parameter pH Conductivity	Unit unit µmhos/cm		
Sampling 	Meter Myron 6p	Parameter pH	Unit unit		
	Meter Myron 6p Myron 6p	Parameter pH Conductivity	Unit unit µmhos/cm		
	Meter Myron 6p Myron 6p	Parameter pH Conductivity	Unit unit µmhos/cm	Replicate 1	
Calibratio	Meter Myron 6p Myron 6p Myron 6p	Parameter pH Conductivity	Unit unit µmhos/cm Degrees Celsius pH =	Replicate 1	Replicate 2
Calibratio	Meter Myron 6p Myron 6p Myron 6p	Parameter pH Conductivity	Unit unit µmhos/cm Degrees Celsius pH =	Replicate 1	Replicate 2
Calibratio	Meter Myron 6p Myron 6p Myron 6p	Parameter pH Conductivity	Unit unit µmhos/cm Degrees Celsius pH =	Replicate 1	Replicate 2
	Meter Myron 6p Myron 6p Myron 6p	Parameter pH Conductivity	Unit unit µmhos/cm Degrees Celsius pH =	Replicate 1	Replicate 2

PROJECT	r <u>Xere</u>	X BOLA	rea well	S	LAB ID
SAMPLE		VE-15			· · · · · · · · · · · · · · · · · · ·
PURGE I	NFORMATION				
Well Dep	oth (ft.)	<u> </u>	Purge Date		Purge Method
SWL (ft.)	i		Start Time		Stop Time
Standing	; Water (ft.)		Volume Purge	ed gal	# casings
Well Con	nstant (gal/ft.)	<u> </u>	Observations	<u>. </u>	·
Well Vol	lume (gal.)				
SAMPLIN	NG INFORMATION				
Sample N	Method P	DB			
Date	8/29/2022	Time2	. <u>50</u> sv	VL 4.48	_
	e Time	-	Rate		
Appeara	nce	Clo	24r		
				8 hr. <u>Mos</u> t	4Y Cloudy 850
Sampling	g Technician (Print)_	Quinter Kolber	u/ULIUF	Signature	
Г	Meter	Parameter	Unit	Replicate 1	Replicate 2
	Myron 6p	рн	unit	/	
F	Myron 6p	Conductivity	µmhos/cm		
	Myron 6p	Temperature	Degrees Celsius		
Calibratio	on Date/Time	_//	рн	=	Conductivity =
OBSERV/	ATIONS		, Fur	bidity =	
				· · ·	
		/			

PROJEC	тХегох	801 Area	weils		LAB ID
SAMPL	E POINT ID	VE-10 QC		<u></u>	
PURGE	INFORMATION				
Well De	epth (ft.)		Purge Date		Purge Method
- SWL (ft			Start Time		Stop Time
Standin	g Water (ft.)		Volume Purge	ed gal	# casings
Well Co	nstant (gal/ft.)		Observations		
Well Ve	olume (gal.)			. <u>.</u>	
	NG INFORMATION			<	
Sample	Method PD	B			
	_	Time		QU2022	(4.33
	ge Time		Rate		2
		C/	200		
					V Cloudy 850
					-la-
+	Meter	Pàrameter	Unit	Replicate 1	Replicate 2
	Myron 6p	ρ₩	unit		
	Myron 6p	Conductivity	μmhos/cm		<u></u>
	Myron 6p	Temperature	Degrees Celsius		
					l
Calibrat	ion Date/Time	J/	pH :	=	Conductivity =
OBSERV	ATIONS		Turl	bidity =	
				~	
		······································			

SAMPLE PO		1/E - 17				
PURGE INFO	DRMATION	Υ.				
Well Depth	(ft.)		Purge Date		Purge Method	
SWL (ft.)	• .	·····	Start Time		Stop Time	
			Votume Purge	ed gal	# casings	
Well Consta	nt (gal/ft.)		Observations	<u>\</u>		
	e (gal.)		-			
						-
	hod P	DR				
		Time	1320 su	NL 4.11	_	
	me		Rate			
		C(E				
					clauded 89	70
		MOSHY SUMM				
Sampling Te	chnician (Print)	Quinton Kalbec	KL/KF S	Signature		
	Meter	Parameter	Unit	Replicate 1	Replicate 2]
	Myron 6p	pH	unit			
	Myron 6p	Conductivity	umhos/cm].
	Myron 6p	Temperature	Degrees Celsius			
			X			
Calibration [Date/Time	مل_	рн	=	Conductivity	' =
OBSERVATIO	ONS		Тит	bidity =		
				\backslash		
		/				

PURGE INF Well Depth SWL (ft.)	ORMATION	<u>MW - 2</u>	, 			
Well Depth SWL (ft.)	: (ft.)					
SWL (ft.)	·			•		
			Purge Date		Purge Method	
			Start Time		Stop Time	
	/ater (ft.)		Volume Purge	d gal	# casings	
Well Consta	ant (ga <u>l</u> /ft.)		Observations.		· · · · · · · · · · · · · · · · · · ·	
Well Volun	ne (gal.)		·		· · · ·	
SAMPLING	INFORMATION					
Sample Me	thod P	DB			~	
		Time]	345- sw	1 4.09	_	
	ime		Rate			
		<u> </u>				
					V Cloudy	85-0
		Patly Cloud	1			03
Sampling Te	echnician (Print)_	Quinta, Koibec.	K/KL/KF S	ignature <u>(</u>	and 2	
	Meter	Parameter	Unit	Replicate 1	Replicate 2]
	Myron 6p	рН	unit			1
	Myron 6p	Conductivity	µmhos/cm			-
	Myron 6p	Temperature	Degrees Celsius			-
Calibration	Date/Time	/ /	рН =		Conductivit	v =
						•
OBSERVATI	IONS		Turt	pidity =		
			<u> </u>			
				<u> </u>	<u></u>	. <u> </u>
						<u>.</u>

SAMPLE POINT ID					LAB ID	
Well Depth (ft.) Purge Date Purge Method SWL (ft.) Start Time Stop Time Standing Water (ft.) Volume Purged gal. # casings Well Constant (gal/ft.) Observations Observations Well Volume (gal.) Observations Observations SAMPLING INFORMATION Sample Method PDB Date @129/2022 Time 142.5 Swit Y. 472 Recharge Time Recharge Rate		MW-245				
SWL (ft.)	PURGE INFORMATION	u	\backslash			
Standing Water (ft.) Volume Purged gal. # casings Well Constant (gal/ft.) Observations Well Volume (gal.) Observations SAMPLING INFORMATION Sample Method PDB Date 8/29/2022 Time 1425 Swit 4.42 Recharge Time Recharge Time Recharge Rate Appearance Clear Weather Conditions Padity Cloardy 90° 48 hr. Mostly Cloardy 85 Sampling Technician (Print) Quester Unit Meter Palameter Unit Replicate 1 Myron 6p Ph Calibration Date/Time PH = Conductivity =	Well Depth (ft.)		Purge Date		Purge Method	. <u></u>
Standing Water (ft.) Volume Purged gal. # casings Well Constant (gal/ft.) Observations Well Volume (gal.) Observations SAMPLING INFORMATION Sample Method PDB Date 8/29/2022 Time 1425 Swt 4.42 Recharge Time Recharge Time Recharge Rate Appearance Cless Weather Conditions Partly Clossely Youndow 90° 48 hr. MostHy Clossely 90° Asymptotic product with product with product with product with product product with product product with product product with product product product product with product product product product with product product product with promession Calibration Date/Time	SWL (ft.)	<u> </u>	Start Thme	··· · ····· _	Stop Time	
Well Volume (gal.) SAMPLING INFORMATION Sample Method PDB Date & 129/2022 Time I Recharge Time Nation Temperature Replicate 1 Replicate 2 Myron 6p Temperature Date/Time PH = Conductivity =			Volume Purge	d gal	# casings	
Well Volume (gal.) SAMPLING INFORMATION Sample Method PDB Date 8 /29/2022 Time 1 /25 Swit 4.42 Recharge Time Recharge Time Recharge Time Recharge Time Recharge Rate Appearance (1 /2 /	Well Constant (gal/ft.)		Observations	<u>\</u>		
Sample Method PDB Date 8/29/2022 Time 14/25 Recharge Time Recharge Rate Appearance (164) Weather Conditions Patty Cloudy 90° 48 hr. Mostly Cloudy 85° Sampling Technician (Print) Queden Kelbeck Meter Pahameter Unit Replicate 1 Replicate 2 Myron 6p Temperature Degrees Celsius Calibration Date/Time PH = Conductivity =			<u></u>		<u> </u>	-
Date 8/29/2022 Time 1425 SWL 4.42 Recharge Time Recharge Rate Appearance (164) Weather Conditions Patty Cloudy 90° 48 hr. Mosty Cloudy 85° Sampling Technician (Print) Quedos Kocheck /KL/KKF Signature						
Date 8/29/2022 Time 1425 SWL 4.42 Recharge Time Recharge Rate Appearance (164) Weather Conditions Patty Cloudy 90° 48 hr. Mosty Cloudy 85° Sampling Technician (Print) Quedos Kocheck /KL/KKF Signature	Sample Method	PDB				
Recharge Time Recharge Rate Appearance	•		1425 sw	1 <u>4,42</u>		
Appearance (164 Weather Conditions Party Cloudy 90° 48 hr. Mostly Cloudy 85° Sampling Technician (Print) Questor Kelbeck /KL/KE Signature Image: Cloudy 85° Meter Parameter Unit Replicate 1 Replicate 2 Myron 6p ph unit Image: Conductivity Image: Conductivity Myron 6p Temperature Degrees Celsius Image: Conductivity = Calibration Date/Time Image: Conductivity = PH = Conductivity =					-	
Weather Conditions Partly Cloudy 90° 48 hr. Mostly Cloudy 85° Sampling Technician (Print) Querton Kalbeck /KL/KE Signature Image: Cloudy 85° Meter Parameter Unit Replicate 1 Replicate 2 Myron 6p ph unit Image: Conductivity Image: Conductivity Image: Conductivity Calibration Date/Time pH = Conductivity =						
Sampling Technician (Print) Queder Kalbeck /KL/KF Signature Meter Parameter Unit Replicate 1 Replicate 2 Myron 6p pH unit unit unit unit Myron 6p Conductivity µmhos/cm unit unit unit Myron 6p Conductivity µmhos/cm unit unit unit unit Myron 6p Temperature Degrees Celsius unit unit <td< td=""><td></td><td></td><td></td><td></td><td>Claudy</td><td>850</td></td<>					Claudy	850
Meter Parameter Unit Replicate 1 Replicate 2 Myron 6p pH unit	Sampling Technician //		· //			
Myron 6p pH unit Myron 6p Conductivity µmhos/cm Myron 6p Temperature Degrees Celsius Calibration Date/Time	Sampling Technician (F		ck/KL/KF 3			
Myron 6p Conductivity µmhos/cm Myron 6p Temperature Degrees Celsius Calibration Date/Time pH = Conductivity =	Meter	Parameter	Unit	Replicate 1	Replicate 2	
Myron 6p Temperature Degrees Celsius Calibration Date/Time	Myron 6	hd d	unit			
Calibration Date/Time pH = Conductivity =	Myron 6	p Conductivity	µmhos/cm			
	Myron 6	p Temperature	Degrees Celsius]
		Ň	\times			
OBSERVATIONS Turbidity =	Calibration Date/Time		pH =		Conductivity	/ =
	OBSERVATIONS		Turt	pidity =		

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

S Environmental

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the "Notes" column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an "immediate" hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ) The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

NELAP StatesFlorida ID # E87674New Hampshire ID # 2941New York ID # 10145Pennsylvania ID# 68-786Virginia #460167

Non-NELAP StatesConnecticut ID #PH0556Delaware ApprovedMaine ID #NY01587North Carolina #36701North Carolina #676Rhode Island LAO00333

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to https://www.alsglobal.com/locations/americas/north-america/usa/new-york/rochester-environmental

Rochester Lab ID # for State Accreditations¹

ALS Laboratory Group

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
Μ	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but
	greater than or equal to the MDL.

Analyst Summary report

Client: Project:	Xerox Corporation USA Bldg 801 Annual Wells/		Service Request: R2208059
Sample Name: Lab Code: Sample Matrix:	VE-6 R2208059-001 Water		Date Collected: 08/29/22 Date Received: 08/29/22
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	VE-10 R2208059-002 Water		Date Collected: 08/29/22 Date Received: 08/29/22
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	VE-12 R2208059-003 Water		Date Collected: 08/29/22 Date Received: 08/29/22
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	VE-15 R2208059-004 Water		Date Collected: 08/29/22 Date Received: 08/29/22
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	RW-4 R2208059-005 Water		Date Collected: 08/29/22 Date Received: 08/29/22

Analyzed By KRUEST

Analysis Method

8260C

Extracted/Digested By

Analyst Summary report

Client: Project:	Xerox Corporation USA Bldg 801 Annual Wells/		Service Request: R2208059
Sample Name: Lab Code: Sample Matrix:	MW-2 R2208059-006 Water		Date Collected: 08/29/22 Date Received: 08/29/22
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-10 R2208059-007 Water		Date Collected: 08/29/22 Date Received: 08/29/22
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-13S R2208059-008 Water		Date Collected: 08/29/22 Date Received: 08/29/22
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-16 R2208059-009 Water		Date Collected: 08/29/22 Date Received: 08/29/22
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-18S R2208059-010 Water		Date Collected: 08/29/22 Date Received: 08/29/22

Analysis Method 8260C

Printed 9/13/2022 9:34:03 AM

Extracted/Digested By

Analyst Summary report

Chent: Project:	Bldg 801 Annual Wells/		Service Kequest: R2208059
Sample Name: Lab Code: Sample Matrix:	MW-19 R2208059-011 Water		Date Collected: 08/29/22 Date Received: 08/29/22
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-19 R2208059-011.R01 Water		Date Collected: 08/29/22 Date Received: 08/29/22
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-24S R2208059-012 Water		Date Collected: 08/29/22 Date Received: 08/29/22
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	SW-29 R2208059-013 Water		Date Collected: 08/29/22 Date Received: 08/29/22
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	SW-34 R2208059-014 Water		Date Collected: 08/29/22 Date Received: 08/29/22

Analyzed By KRUEST

Service Request: R2208059

Analysis Method

8260C

Client:

Xerox Corporation USA

Extracted/Digested By

Analyst Summary report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells/	

Sample Name:	SW-35	Date Collected:	08/29/22
Lab Code:	R2208059-015	Date Received:	08/29/22
Sample Matrix:	Water		

Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	RW-4 Dup R2208059-016 Water		Date Collected: 08/29/22 Date Received: 08/29/22
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	Trip Blank R2208059-018 Water		Date Collected: 08/29/22 Date Received: 08/29/22
Analysis Method		Extracted/Digested By	Analyzed By

8260C

Analyzed B KRUEST

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9034 Sulfide Acid Soluble	9030B
SM 4500-CN-E Residual	SM 4500-CN-G
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Analytical Method	Preparation Method		
6010C	3050B		
6020A	3050B		
6010C TCLP (1311)	3005A/3010A		
extract			
6010 SPLP (1312) extract	3005A/3010A		
7199	3060A		
300.0 Anions/ 350.1/	DI extraction		
353.2/ SM 2320B/ SM			
5210B/ 9056A Anions			
For analytical methods not listed, the preparation			
method is the same as the analytical method			
reference.			

RIGHT SOLUTIONS | RIGHT PARTNER

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: 08/29/22 12:20
Sample Matrix:	Water	Date Received: 08/29/22 14:50
Sample Name:	VE-6	Units: ug/L
Lab Code:	R2208059-001	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	1000 U	1000	100	09/08/22 13:48	
Benzene	500 U	500	100	09/08/22 13:48	
Bromodichloromethane	500 U	500	100	09/08/22 13:48	
Bromoform	500 U	500	100	09/08/22 13:48	
Bromomethane	500 U	500	100	09/08/22 13:48	
2-Butanone (MEK)	1000 U	1000	100	09/08/22 13:48	
Carbon Disulfide	1000 U	1000	100	09/08/22 13:48	
Carbon Tetrachloride	500 U	500	100	09/08/22 13:48	
Chlorobenzene	500 U	500	100	09/08/22 13:48	
Chloroethane	500 U	500	100	09/08/22 13:48	
Chloroform	500 U	500	100	09/08/22 13:48	
Chloromethane	500 U	500	100	09/08/22 13:48	
Dibromochloromethane	500 U	500	100	09/08/22 13:48	
1,1-Dichloroethane	500 U	500	100	09/08/22 13:48	
1,2-Dichloroethane	500 U	500	100	09/08/22 13:48	
1,1-Dichloroethene	500 U	500	100	09/08/22 13:48	
cis-1,2-Dichloroethene	12000	500	100	09/08/22 13:48	
trans-1,2-Dichloroethene	500 U	500	100	09/08/22 13:48	
1,2-Dichloropropane	500 U	500	100	09/08/22 13:48	
cis-1,3-Dichloropropene	500 U	500	100	09/08/22 13:48	
trans-1,3-Dichloropropene	500 U	500	100	09/08/22 13:48	
Ethylbenzene	500 U	500	100	09/08/22 13:48	
2-Hexanone	1000 U	1000	100	09/08/22 13:48	
Methylene Chloride	500 U	500	100	09/08/22 13:48	
4-Methyl-2-pentanone (MIBK)	1000 U	1000	100	09/08/22 13:48	
Styrene	500 U	500	100	09/08/22 13:48	
1,1,2,2-Tetrachloroethane	500 U	500	100	09/08/22 13:48	
Tetrachloroethene	500 U	500	100	09/08/22 13:48	
Toluene	500 U	500	100	09/08/22 13:48	
1,1,1-Trichloroethane	500 U	500	100	09/08/22 13:48	
1,1,2-Trichloroethane	500 U	500	100	09/08/22 13:48	
Trichloroethene	500 U	500	100	09/08/22 13:48	
Vinyl Chloride	1800	500	100	09/08/22 13:48	
o-Xylene	500 U	500	100	09/08/22 13:48	
m,p-Xylenes	500 U	500	100	09/08/22 13:48	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: 08/29/22 12:20
Sample Matrix:	Water	Date Received: 08/29/22 14:50
Sample Name:	VE-6	Unite: ug/I
»	VE 0	Units: ug/L
Lab Code:	R2208059-001	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	09/08/22 13:48	
Toluene-d8	102	87 - 121	09/08/22 13:48	
Dibromofluoromethane	104	80 - 116	09/08/22 13:48	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: 08/29/22 13:05
Sample Matrix:	Water	Date Received: 08/29/22 14:50
Sample Name:	VE-10	Units: ug/L
Lab Code:	R2208059-002	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	1000 U	1000	100	09/07/22 07:45	
Benzene	500 U	500	100	09/07/22 07:45	
Bromodichloromethane	500 U	500	100	09/07/22 07:45	
Bromoform	500 U	500	100	09/07/22 07:45	
Bromomethane	500 U	500	100	09/07/22 07:45	
2-Butanone (MEK)	1000 U	1000	100	09/07/22 07:45	
Carbon Disulfide	1000 U	1000	100	09/07/22 07:45	
Carbon Tetrachloride	500 U	500	100	09/07/22 07:45	
Chlorobenzene	500 U	500	100	09/07/22 07:45	
Chloroethane	1200	500	100	09/07/22 07:45	
Chloroform	500 U	500	100	09/07/22 07:45	
Chloromethane	500 U	500	100	09/07/22 07:45	
Dibromochloromethane	500 U	500	100	09/07/22 07:45	
1,1-Dichloroethane	760	500	100	09/07/22 07:45	
1,2-Dichloroethane	500 U	500	100	09/07/22 07:45	
1,1-Dichloroethene	500 U	500	100	09/07/22 07:45	
cis-1,2-Dichloroethene	500 U	500	100	09/07/22 07:45	
trans-1,2-Dichloroethene	500 U	500	100	09/07/22 07:45	
1,2-Dichloropropane	500 U	500	100	09/07/22 07:45	
cis-1,3-Dichloropropene	500 U	500	100	09/07/22 07:45	
trans-1,3-Dichloropropene	500 U	500	100	09/07/22 07:45	
Ethylbenzene	500 U	500	100	09/07/22 07:45	
2-Hexanone	1000 U	1000	100	09/07/22 07:45	
Methylene Chloride	500 U	500	100	09/07/22 07:45	
4-Methyl-2-pentanone (MIBK)	1000 U	1000	100	09/07/22 07:45	
Styrene	500 U	500	100	09/07/22 07:45	
1,1,2,2-Tetrachloroethane	500 U	500	100	09/07/22 07:45	
Tetrachloroethene	500 U	500	100	09/07/22 07:45	
Toluene	500 U	500	100	09/07/22 07:45	
1,1,1-Trichloroethane	500 U	500	100	09/07/22 07:45	
1,1,2-Trichloroethane	500 U	500	100	09/07/22 07:45	
Trichloroethene	500 U	500	100	09/07/22 07:45	
Vinyl Chloride	10000	500	100	09/07/22 07:45	
o-Xylene	500 U	500	100	09/07/22 07:45	
m,p-Xylenes	500 U	500	100	09/07/22 07:45	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: 08/29/22 13:05
Sample Matrix:	Water	Date Received: 08/29/22 14:50
Sample Name:	VE-10	Units: ug/L
Sample Name: Lab Code:	VE-10 R2208059-002	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	99	85 - 122	09/07/22 07:45	
Toluene-d8	100	87 - 121	09/07/22 07:45	
Dibromofluoromethane	99	80 - 116	09/07/22 07:45	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: 08/29/22 13:20
Sample Matrix:	Water	Date Received: 08/29/22 14:50
~		
Sample Name:	VE-12	Units: ug/L
Sample Name: Lab Code:	VE-12 R2208059-003	Units: ug/L Basis: NA
-		C

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	500 U	500	50	09/07/22 23:10	
Benzene	250 U	250	50	09/07/22 23:10	
Bromodichloromethane	250 U	250	50	09/07/22 23:10	
Bromoform	250 U	250	50	09/07/22 23:10	
Bromomethane	250 U	250	50	09/07/22 23:10	
2-Butanone (MEK)	500 U	500	50	09/07/22 23:10	
Carbon Disulfide	500 U	500	50	09/07/22 23:10	
Carbon Tetrachloride	250 U	250	50	09/07/22 23:10	
Chlorobenzene	250 U	250	50	09/07/22 23:10	
Chloroethane	4300	250	50	09/07/22 23:10	
Chloroform	250 U	250	50	09/07/22 23:10	
Chloromethane	250 U	250	50	09/07/22 23:10	
Dibromochloromethane	250 U	250	50	09/07/22 23:10	
1,1-Dichloroethane	1500	250	50	09/07/22 23:10	
1,2-Dichloroethane	250 U	250	50	09/07/22 23:10	
1,1-Dichloroethene	270	250	50	09/07/22 23:10	
cis-1,2-Dichloroethene	5000	250	50	09/07/22 23:10	
trans-1,2-Dichloroethene	250 U	250	50	09/07/22 23:10	
1,2-Dichloropropane	250 U	250	50	09/07/22 23:10	
cis-1,3-Dichloropropene	250 U	250	50	09/07/22 23:10	
trans-1,3-Dichloropropene	250 U	250	50	09/07/22 23:10	
Ethylbenzene	250 U	250	50	09/07/22 23:10	
2-Hexanone	500 U	500	50	09/07/22 23:10	
Methylene Chloride	250 U	250	50	09/07/22 23:10	
4-Methyl-2-pentanone (MIBK)	500 U	500	50	09/07/22 23:10	
Styrene	250 U	250	50	09/07/22 23:10	
1,1,2,2-Tetrachloroethane	250 U	250	50	09/07/22 23:10	
Tetrachloroethene	250 U	250	50	09/07/22 23:10	
Toluene	350	250	50	09/07/22 23:10	
1,1,1-Trichloroethane	770	250	50	09/07/22 23:10	
1,1,2-Trichloroethane	250 U	250	50	09/07/22 23:10	
Trichloroethene	250 U	250	50	09/07/22 23:10	
Vinyl Chloride	5100	250	50	09/07/22 23:10	
o-Xylene	250 U	250	50	09/07/22 23:10	
m,p-Xylenes	250 U	250	50	09/07/22 23:10	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: 08/29/22 13:20
Sample Matrix:	Water	Date Received: 08/29/22 14:50
Sample Name:	VE-12	Units: ug/L
Sample Name: Lab Code:	VE-12 R2208059-003	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	09/07/22 23:10	
Toluene-d8	102	87 - 121	09/07/22 23:10	
Dibromofluoromethane	104	80 - 116	09/07/22 23:10	

Analytical Report

Xerox Corporation USA	Service Request: R2208059
Bldg 801 Annual Wells	Date Collected: 08/29/22 12:50
Water	Date Received: 08/29/22 14:50
VE-15	Units: ug/L
R2208059-004	Basis: NA
	Bldg 801 Annual Wells Water VE-15

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	25 U	25	2.5	09/07/22 22:49	
Benzene	13 U	13	2.5	09/07/22 22:49	
Bromodichloromethane	13 U	13	2.5	09/07/22 22:49	
Bromoform	13 U	13	2.5	09/07/22 22:49	
Bromomethane	13 U	13	2.5	09/07/22 22:49	
2-Butanone (MEK)	25 U	25	2.5	09/07/22 22:49	
Carbon Disulfide	25 U	25	2.5	09/07/22 22:49	
Carbon Tetrachloride	13 U	13	2.5	09/07/22 22:49	
Chlorobenzene	13 U	13	2.5	09/07/22 22:49	
Chloroethane	190	13	2.5	09/07/22 22:49	
Chloroform	13 U	13	2.5	09/07/22 22:49	
Chloromethane	13 U	13	2.5	09/07/22 22:49	
Dibromochloromethane	13 U	13	2.5	09/07/22 22:49	
1,1-Dichloroethane	87	13	2.5	09/07/22 22:49	
1,2-Dichloroethane	13 U	13	2.5	09/07/22 22:49	
1,1-Dichloroethene	13 U	13	2.5	09/07/22 22:49	
cis-1,2-Dichloroethene	13 U	13	2.5	09/07/22 22:49	
trans-1,2-Dichloroethene	13 U	13	2.5	09/07/22 22:49	
1,2-Dichloropropane	13 U	13	2.5	09/07/22 22:49	
cis-1,3-Dichloropropene	13 U	13	2.5	09/07/22 22:49	
trans-1,3-Dichloropropene	13 U	13	2.5	09/07/22 22:49	
Ethylbenzene	13 U	13	2.5	09/07/22 22:49	
2-Hexanone	25 U	25	2.5	09/07/22 22:49	
Methylene Chloride	13 U	13	2.5	09/07/22 22:49	
4-Methyl-2-pentanone (MIBK)	25 U	25	2.5	09/07/22 22:49	
Styrene	13 U	13	2.5	09/07/22 22:49	
1,1,2,2-Tetrachloroethane	13 U	13	2.5	09/07/22 22:49	
Tetrachloroethene	13 U	13	2.5	09/07/22 22:49	
Toluene	13 U	13	2.5	09/07/22 22:49	
1,1,1-Trichloroethane	13 U	13	2.5	09/07/22 22:49	
1,1,2-Trichloroethane	13 U	13	2.5	09/07/22 22:49	
Trichloroethene	13 U	13	2.5	09/07/22 22:49	
Vinyl Chloride	13 U	13	2.5	09/07/22 22:49	
o-Xylene	13 U	13	2.5	09/07/22 22:49	
m,p-Xylenes	13 U	13	2.5	09/07/22 22:49	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: 08/29/22 12:50
Sample Matrix:	Water	Date Received: 08/29/22 14:50
Sample Name:	VE-15	Units: ug/L
Sample Name: Lab Code:	VE-15 R2208059-004	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	09/07/22 22:49	
Toluene-d8	102	87 - 121	09/07/22 22:49	
Dibromofluoromethane	104	80 - 116	09/07/22 22:49	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: 08/29/22 12:40
Sample Matrix:	Water	Date Received: 08/29/22 14:50
Sample Name:	RW-4	Units: ug/L
Lab Code:	R2208059-005	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/07/22 03:45	
Benzene	5.0 U	5.0	1	09/07/22 03:45	
Bromodichloromethane	5.0 U	5.0	1	09/07/22 03:45	
Bromoform	5.0 U	5.0	1	09/07/22 03:45	
Bromomethane	5.0 U	5.0	1	09/07/22 03:45	
2-Butanone (MEK)	10 U	10	1	09/07/22 03:45	
Carbon Disulfide	10 U	10	1	09/07/22 03:45	
Carbon Tetrachloride	5.0 U	5.0	1	09/07/22 03:45	
Chlorobenzene	5.0 U	5.0	1	09/07/22 03:45	
Chloroethane	5.0 U	5.0	1	09/07/22 03:45	
Chloroform	5.0 U	5.0	1	09/07/22 03:45	
Chloromethane	5.0 U	5.0	1	09/07/22 03:45	
Dibromochloromethane	5.0 U	5.0	1	09/07/22 03:45	
1,1-Dichloroethane	13	5.0	1	09/07/22 03:45	
1,2-Dichloroethane	5.0 U	5.0	1	09/07/22 03:45	
1,1-Dichloroethene	5.0 U	5.0	1	09/07/22 03:45	
cis-1,2-Dichloroethene	9.6	5.0	1	09/07/22 03:45	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/07/22 03:45	
1,2-Dichloropropane	5.0 U	5.0	1	09/07/22 03:45	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/07/22 03:45	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/07/22 03:45	
Ethylbenzene	5.0 U	5.0	1	09/07/22 03:45	
2-Hexanone	10 U	10	1	09/07/22 03:45	
Methylene Chloride	5.0 U	5.0	1	09/07/22 03:45	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/07/22 03:45	
Styrene	5.0 U	5.0	1	09/07/22 03:45	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/07/22 03:45	
Tetrachloroethene	5.0 U	5.0	1	09/07/22 03:45	
Toluene	5.0 U	5.0	1	09/07/22 03:45	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/07/22 03:45	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/07/22 03:45	
Trichloroethene	8.1	5.0	1	09/07/22 03:45	
Vinyl Chloride	5.7	5.0	1	09/07/22 03:45	
o-Xylene	5.0 U	5.0	1	09/07/22 03:45	
m,p-Xylenes	5.0 U	5.0	1	09/07/22 03:45	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: 08/29/22 12:40
Sample Matrix:	Water	Date Received: 08/29/22 14:50
Sample Name:	RW-4	Units: ug/L
Lab Code:	R2208059-005	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	106	85 - 122	09/07/22 03:45	
Toluene-d8	102	87 - 121	09/07/22 03:45	
Dibromofluoromethane	104	80 - 116	09/07/22 03:45	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: 08/29/22 13:45
Sample Matrix:	Water	Date Received: 08/29/22 14:50
a		
Sample Name:	MW-2	Units: ug/L
Sample Name: Lab Code:	MW-2 R2208059-006	Units: ug/L Basis: NA
ľ		

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/07/22 04:06	
Benzene	5.0 U	5.0	1	09/07/22 04:06	
Bromodichloromethane	5.0 U	5.0	1	09/07/22 04:06	
Bromoform	5.0 U	5.0	1	09/07/22 04:06	
Bromomethane	5.0 U	5.0	1	09/07/22 04:06	
2-Butanone (MEK)	10 U	10	1	09/07/22 04:06	
Carbon Disulfide	10 U	10	1	09/07/22 04:06	
Carbon Tetrachloride	5.0 U	5.0	1	09/07/22 04:06	
Chlorobenzene	5.0 U	5.0	1	09/07/22 04:06	
Chloroethane	5.0 U	5.0	1	09/07/22 04:06	
Chloroform	5.0 U	5.0	1	09/07/22 04:06	
Chloromethane	5.0 U	5.0	1	09/07/22 04:06	
Dibromochloromethane	5.0 U	5.0	1	09/07/22 04:06	
1,1-Dichloroethane	5.0 U	5.0	1	09/07/22 04:06	
1,2-Dichloroethane	5.0 U	5.0	1	09/07/22 04:06	
1,1-Dichloroethene	5.0 U	5.0	1	09/07/22 04:06	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/07/22 04:06	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/07/22 04:06	
1,2-Dichloropropane	5.0 U	5.0	1	09/07/22 04:06	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/07/22 04:06	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/07/22 04:06	
Ethylbenzene	5.0 U	5.0	1	09/07/22 04:06	
2-Hexanone	10 U	10	1	09/07/22 04:06	
Methylene Chloride	5.0 U	5.0	1	09/07/22 04:06	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/07/22 04:06	
Styrene	5.0 U	5.0	1	09/07/22 04:06	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/07/22 04:06	
Tetrachloroethene	5.0 U	5.0	1	09/07/22 04:06	
Toluene	5.0 U	5.0	1	09/07/22 04:06	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/07/22 04:06	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/07/22 04:06	
Trichloroethene	5.0 U	5.0	1	09/07/22 04:06	
Vinyl Chloride	5.0 U	5.0	1	09/07/22 04:06	
o-Xylene	5.0 U	5.0	1	09/07/22 04:06	
m,p-Xylenes	5.0 U	5.0	1	09/07/22 04:06	

Analytical Report

5
0

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	99	85 - 122	09/07/22 04:06	
Toluene-d8	100	87 - 121	09/07/22 04:06	
Dibromofluoromethane	101	80 - 116	09/07/22 04:06	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: 08/29/22 12:00
Sample Matrix:	Water	Date Received: 08/29/22 14:50
Sampla Nama	MW 10	Uniter ug/I
Sample Name:	MW-10	Units: ug/L
Sample Name: Lab Code:	MW-10 R2208059-007	Units: ug/L Basis: NA
I I		C

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	50 U	50	5	09/08/22 13:04	
Benzene	25 U	25	5	09/08/22 13:04	
Bromodichloromethane	25 U	25	5	09/08/22 13:04	
Bromoform	25 U	25	5	09/08/22 13:04	
Bromomethane	25 U	25	5	09/08/22 13:04	
2-Butanone (MEK)	50 U	50	5	09/08/22 13:04	
Carbon Disulfide	50 U	50	5	09/08/22 13:04	
Carbon Tetrachloride	25 U	25	5	09/08/22 13:04	
Chlorobenzene	25 U	25	5	09/08/22 13:04	
Chloroethane	25 U	25	5	09/08/22 13:04	
Chloroform	25 U	25	5	09/08/22 13:04	
Chloromethane	25 U	25	5	09/08/22 13:04	
Dibromochloromethane	25 U	25	5	09/08/22 13:04	
1,1-Dichloroethane	110	25	5	09/08/22 13:04	
1,2-Dichloroethane	25 U	25	5	09/08/22 13:04	
1,1-Dichloroethene	25 U	25	5	09/08/22 13:04	
cis-1,2-Dichloroethene	600	25	5	09/08/22 13:04	
trans-1,2-Dichloroethene	25 U	25	5	09/08/22 13:04	
1,2-Dichloropropane	25 U	25	5	09/08/22 13:04	
cis-1,3-Dichloropropene	25 U	25	5	09/08/22 13:04	
trans-1,3-Dichloropropene	25 U	25	5	09/08/22 13:04	
Ethylbenzene	25 U	25	5	09/08/22 13:04	
2-Hexanone	50 U	50	5	09/08/22 13:04	
Methylene Chloride	25 U	25	5	09/08/22 13:04	
4-Methyl-2-pentanone (MIBK)	50 U	50	5	09/08/22 13:04	
Styrene	25 U	25	5	09/08/22 13:04	
1,1,2,2-Tetrachloroethane	25 U	25	5	09/08/22 13:04	
Tetrachloroethene	25	25	5	09/08/22 13:04	
Toluene	25 U	25	5	09/08/22 13:04	
1,1,1-Trichloroethane	33	25	5	09/08/22 13:04	
1,1,2-Trichloroethane	25 U	25	5	09/08/22 13:04	
Trichloroethene	80	25	5	09/08/22 13:04	
Vinyl Chloride	170	25	5	09/08/22 13:04	
o-Xylene	25 U	25	5	09/08/22 13:04	
m,p-Xylenes	25 U	25	5	09/08/22 13:04	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: 08/29/22 12:00
Sample Matrix:	Water	Date Received: 08/29/22 14:50
Sample Name:	MW-10	Units: ug/L
Sample Name: Lab Code:	MW-10 R2208059-007	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	09/08/22 13:04	
Toluene-d8	103	87 - 121	09/08/22 13:04	
Dibromofluoromethane	108	80 - 116	09/08/22 13:04	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: 08/29/22 10:55
Sample Matrix:	Water	Date Received: 08/29/22 14:50
~		
Sample Name:	MW-13S	Units: ug/L
Sample Name: Lab Code:	MW-13S R2208059-008	Units: ug/L Basis: NA
-		C

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/07/22 04:28	
Benzene	5.0 U	5.0	1	09/07/22 04:28	
Bromodichloromethane	5.0 U	5.0	1	09/07/22 04:28	
Bromoform	5.0 U	5.0	1	09/07/22 04:28	
Bromomethane	5.0 U	5.0	1	09/07/22 04:28	
2-Butanone (MEK)	10 U	10	1	09/07/22 04:28	
Carbon Disulfide	10 U	10	1	09/07/22 04:28	
Carbon Tetrachloride	5.0 U	5.0	1	09/07/22 04:28	
Chlorobenzene	5.0 U	5.0	1	09/07/22 04:28	
Chloroethane	5.0 U	5.0	1	09/07/22 04:28	
Chloroform	5.0 U	5.0	1	09/07/22 04:28	
Chloromethane	5.0 U	5.0	1	09/07/22 04:28	
Dibromochloromethane	5.0 U	5.0	1	09/07/22 04:28	
1,1-Dichloroethane	5.0 U	5.0	1	09/07/22 04:28	
1,2-Dichloroethane	5.0 U	5.0	1	09/07/22 04:28	
1,1-Dichloroethene	5.0 U	5.0	1	09/07/22 04:28	
cis-1,2-Dichloroethene	5.1	5.0	1	09/07/22 04:28	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/07/22 04:28	
1,2-Dichloropropane	5.0 U	5.0	1	09/07/22 04:28	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/07/22 04:28	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/07/22 04:28	
Ethylbenzene	5.0 U	5.0	1	09/07/22 04:28	
2-Hexanone	10 U	10	1	09/07/22 04:28	
Methylene Chloride	5.0 U	5.0	1	09/07/22 04:28	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/07/22 04:28	
Styrene	5.0 U	5.0	1	09/07/22 04:28	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/07/22 04:28	
Tetrachloroethene	5.0 U	5.0	1	09/07/22 04:28	
Toluene	5.0 U	5.0	1	09/07/22 04:28	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/07/22 04:28	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/07/22 04:28	
Trichloroethene	5.0 U	5.0	1	09/07/22 04:28	
Vinyl Chloride	5.0 U	5.0	1	09/07/22 04:28	
o-Xylene	5.0 U	5.0	1	09/07/22 04:28	
m,p-Xylenes	5.0 U	5.0	1	09/07/22 04:28	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: 08/29/22 10:55
Sample Matrix:	Water	Date Received: 08/29/22 14:50
Sample Name:	MW-13S	Units: ug/L
Sample Name: Lab Code:	MW-13S R2208059-008	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	09/07/22 04:28	
Toluene-d8	102	87 - 121	09/07/22 04:28	
Dibromofluoromethane	106	80 - 116	09/07/22 04:28	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: 08/29/22 11:25
Sample Matrix:	Water	Date Received: 08/29/22 14:50
~		
Sample Name:	MW-16	Units: ug/L
Sample Name: Lab Code:	MW-16 R2208059-009	Units: ug/L Basis: NA
I I		C C

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/07/22 04:50	
Benzene	5.0 U	5.0	1	09/07/22 04:50	
Bromodichloromethane	5.0 U	5.0	1	09/07/22 04:50	
Bromoform	5.0 U	5.0	1	09/07/22 04:50	
Bromomethane	5.0 U	5.0	1	09/07/22 04:50	
2-Butanone (MEK)	10 U	10	1	09/07/22 04:50	
Carbon Disulfide	10 U	10	1	09/07/22 04:50	
Carbon Tetrachloride	5.0 U	5.0	1	09/07/22 04:50	
Chlorobenzene	5.0 U	5.0	1	09/07/22 04:50	
Chloroethane	5.0 U	5.0	1	09/07/22 04:50	
Chloroform	5.0 U	5.0	1	09/07/22 04:50	
Chloromethane	5.0 U	5.0	1	09/07/22 04:50	
Dibromochloromethane	5.0 U	5.0	1	09/07/22 04:50	
1,1-Dichloroethane	5.0 U	5.0	1	09/07/22 04:50	
1,2-Dichloroethane	5.0 U	5.0	1	09/07/22 04:50	
1,1-Dichloroethene	5.0 U	5.0	1	09/07/22 04:50	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/07/22 04:50	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/07/22 04:50	
1,2-Dichloropropane	5.0 U	5.0	1	09/07/22 04:50	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/07/22 04:50	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/07/22 04:50	
Ethylbenzene	5.0 U	5.0	1	09/07/22 04:50	
2-Hexanone	10 U	10	1	09/07/22 04:50	
Methylene Chloride	5.0 U	5.0	1	09/07/22 04:50	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/07/22 04:50	
Styrene	5.0 U	5.0	1	09/07/22 04:50	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/07/22 04:50	
Tetrachloroethene	5.0 U	5.0	1	09/07/22 04:50	
Toluene	5.0 U	5.0	1	09/07/22 04:50	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/07/22 04:50	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/07/22 04:50	
Trichloroethene	5.0 U	5.0	1	09/07/22 04:50	
Vinyl Chloride	5.0 U	5.0	1	09/07/22 04:50	
o-Xylene	5.0 U	5.0	1	09/07/22 04:50	
m,p-Xylenes	5.0 U	5.0	1	09/07/22 04:50	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: 08/29/22 11:25
Sample Matrix:	Water	Date Received: 08/29/22 14:50
~		
Sample Name:	MW-16	Units: ug/L
Lab Code:	R2208059-009	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed Q
4-Bromofluorobenzene	102	85 - 122	09/07/22 04:50
Toluene-d8	101	87 - 121	09/07/22 04:50
Dibromofluoromethane	102	80 - 116	09/07/22 04:50

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: 08/29/22 10:40
Sample Matrix:	Water	Date Received: 08/29/22 14:50
~		
Sample Name:	MW-18S	
Sample Manie.	IVI VV -105	Units: ug/L
Lab Code:	R2208059-010	Basis: NA
L L		C

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/07/22 05:12	
Benzene	5.0 U	5.0	1	09/07/22 05:12	
Bromodichloromethane	5.0 U	5.0	1	09/07/22 05:12	
Bromoform	5.0 U	5.0	1	09/07/22 05:12	
Bromomethane	5.0 U	5.0	1	09/07/22 05:12	
2-Butanone (MEK)	10 U	10	1	09/07/22 05:12	
Carbon Disulfide	10 U	10	1	09/07/22 05:12	
Carbon Tetrachloride	5.0 U	5.0	1	09/07/22 05:12	
Chlorobenzene	5.0 U	5.0	1	09/07/22 05:12	
Chloroethane	5.0 U	5.0	1	09/07/22 05:12	
Chloroform	5.0 U	5.0	1	09/07/22 05:12	
Chloromethane	5.0 U	5.0	1	09/07/22 05:12	
Dibromochloromethane	5.0 U	5.0	1	09/07/22 05:12	
1,1-Dichloroethane	5.0 U	5.0	1	09/07/22 05:12	
1,2-Dichloroethane	5.0 U	5.0	1	09/07/22 05:12	
1,1-Dichloroethene	5.0 U	5.0	1	09/07/22 05:12	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/07/22 05:12	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/07/22 05:12	
1,2-Dichloropropane	5.0 U	5.0	1	09/07/22 05:12	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/07/22 05:12	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/07/22 05:12	
Ethylbenzene	5.0 U	5.0	1	09/07/22 05:12	
2-Hexanone	10 U	10	1	09/07/22 05:12	
Methylene Chloride	5.0 U	5.0	1	09/07/22 05:12	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/07/22 05:12	
Styrene	5.0 U	5.0	1	09/07/22 05:12	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/07/22 05:12	
Tetrachloroethene	5.0 U	5.0	1	09/07/22 05:12	
Toluene	5.0 U	5.0	1	09/07/22 05:12	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/07/22 05:12	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/07/22 05:12	
Trichloroethene	5.0 U	5.0	1	09/07/22 05:12	
Vinyl Chloride	5.0 U	5.0	1	09/07/22 05:12	
o-Xylene	5.0 U	5.0	1	09/07/22 05:12	
m,p-Xylenes	5.0 U	5.0	1	09/07/22 05:12	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: 08/29/22 10:40
Sample Matrix:	Water	Date Received: 08/29/22 14:50
Sample Name:	MW-18S	Units: ug/L
Sample Name: Lab Code:	MW-18S R2208059-010	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	100	85 - 122	09/07/22 05:12	
Toluene-d8	100	87 - 121	09/07/22 05:12	
Dibromofluoromethane	101	80 - 116	09/07/22 05:12	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: 08/29/22 11:15
Sample Matrix:	Water	Date Received: 08/29/22 14:50
a		TT 1
Sample Name:	MW-19	Units: ug/L
Sample Name: Lab Code:	MW-19 R2208059-011	Units: ug/L Basis: NA
-		Ç

Volatile Organic Compounds by GC/MS

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	100 U	100	10	09/08/22 15:37	
Benzene	50 U	50	10	09/08/22 15:37	
Bromodichloromethane	50 U	50	10	09/08/22 15:37	
Bromoform	50 U	50	10	09/08/22 15:37	
Bromomethane	50 U	50	10	09/08/22 15:37	
2-Butanone (MEK)	100 U	100	10	09/08/22 15:37	
Carbon Disulfide	100 U	100	10	09/08/22 15:37	
Carbon Tetrachloride	50 U	50	10	09/08/22 15:37	
Chlorobenzene	50 U	50	10	09/08/22 15:37	
Chloroethane	50 U	50	10	09/08/22 15:37	
Chloroform	50 U	50	10	09/08/22 15:37	
Chloromethane	50 U	50	10	09/08/22 15:37	
Dibromochloromethane	50 U	50	10	09/08/22 15:37	
1,1-Dichloroethane	110 D	50	10	09/08/22 15:37	
1,2-Dichloroethane	50 U	50	10	09/08/22 15:37	
1,1-Dichloroethene	50 U	50	10	09/08/22 15:37	
cis-1,2-Dichloroethene	1500 D	50	10	09/08/22 15:37	
trans-1,2-Dichloroethene	50 U	50	10	09/08/22 15:37	
1,2-Dichloropropane	50 U	50	10	09/08/22 15:37	
cis-1,3-Dichloropropene	50 U	50	10	09/08/22 15:37	
trans-1,3-Dichloropropene	50 U	50	10	09/08/22 15:37	
Ethylbenzene	50 U	50	10	09/08/22 15:37	
2-Hexanone	100 U	100	10	09/08/22 15:37	
Methylene Chloride	50 U	50	10	09/08/22 15:37	
4-Methyl-2-pentanone (MIBK)	100 U	100	10	09/08/22 15:37	
Styrene	50 U	50	10	09/08/22 15:37	
1,1,2,2-Tetrachloroethane	50 U	50	10	09/08/22 15:37	
Tetrachloroethene	50 U	50	10	09/08/22 15:37	
Toluene	50 U	50	10	09/08/22 15:37	
1,1,1-Trichloroethane	57 D	50	10	09/08/22 15:37	
1,1,2-Trichloroethane	50 U	50	10	09/08/22 15:37	
Trichloroethene	600 D	50	10	09/08/22 15:37	
Vinyl Chloride	50 U	50	10	09/08/22 15:37	
o-Xylene	50 U	50	10	09/08/22 15:37	
m,p-Xylenes	50 U	50	10	09/08/22 15:37	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	09/08/22 15:37	
Toluene-d8	102	87 - 121	09/08/22 15:37	
Dibromofluoromethane	104	80 - 116	09/08/22 15:37	

Superset Reference:22-0000639109 rev 00

Analytical Report

Xerox Corporation USA	Service Request: R2208059
Bldg 801 Annual Wells	Date Collected: 08/29/22 11:15
Water	Date Received: 08/29/22 14:50
MW 10	Units: ug/L
	6
R2208059-011	Basis: NA
	Bldg 801 Annual Wells

Volatile Organic Compounds by GC/MS

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	50 U	50	5	09/08/22 13:26	
Benzene	25 U	25	5	09/08/22 13:26	
Bromodichloromethane	25 U	25	5	09/08/22 13:26	
Bromoform	25 U	25	5	09/08/22 13:26	
Bromomethane	25 U	25	5	09/08/22 13:26	
2-Butanone (MEK)	50 U	50	5	09/08/22 13:26	
Carbon Disulfide	50 U	50	5	09/08/22 13:26	
Carbon Tetrachloride	25 U	25	5	09/08/22 13:26	
Chlorobenzene	25 U	25	5	09/08/22 13:26	
Chloroethane	25 U	25	5	09/08/22 13:26	
Chloroform	25 U	25	5	09/08/22 13:26	
Chloromethane	25 U	25	5	09/08/22 13:26	
Dibromochloromethane	25 U	25	5	09/08/22 13:26	
1,1-Dichloroethane	120	25	5	09/08/22 13:26	
1,2-Dichloroethane	25 U	25	5	09/08/22 13:26	
1,1-Dichloroethene	39	25	5	09/08/22 13:26	
cis-1,2-Dichloroethene	1500 E	25	5	09/08/22 13:26	
trans-1,2-Dichloroethene	25 U	25	5	09/08/22 13:26	
1,2-Dichloropropane	25 U	25	5	09/08/22 13:26	
cis-1,3-Dichloropropene	25 U	25	5	09/08/22 13:26	
trans-1,3-Dichloropropene	25 U	25	5	09/08/22 13:26	
Ethylbenzene	25 U	25	5	09/08/22 13:26	
2-Hexanone	50 U	50	5	09/08/22 13:26	
Methylene Chloride	25 U	25	5	09/08/22 13:26	
4-Methyl-2-pentanone (MIBK)	50 U	50	5	09/08/22 13:26	
Styrene	25 U	25	5	09/08/22 13:26	
1,1,2,2-Tetrachloroethane	25 U	25	5	09/08/22 13:26	
Tetrachloroethene	25 U	25	5	09/08/22 13:26	
Toluene	25 U	25	5	09/08/22 13:26	
1,1,1-Trichloroethane	58	25	5	09/08/22 13:26	
1,1,2-Trichloroethane	25 U	25	5	09/08/22 13:26	
Trichloroethene	620	25	5	09/08/22 13:26	
Vinyl Chloride	43	25	5	09/08/22 13:26	
o-Xylene	25 U	25	5	09/08/22 13:26	
m,p-Xylenes	25 U	25	5	09/08/22 13:26	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	09/08/22 13:26	
Toluene-d8	105	87 - 121	09/08/22 13:26	
Dibromofluoromethane	106	80 - 116	09/08/22 13:26	

Superset Reference:22-0000639109 rev 00

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: 08/29/22 14:25
Sample Matrix:	Water	Date Received: 08/29/22 14:50
C IN		T T •4 /T
Sample Name:	MW-24S	Units: ug/L
Sample Name: Lab Code:	MW-24S R2208059-012	Units: ug/L Basis: NA
L L		Ç

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/07/22 05:34	
Benzene	5.0 U	5.0	1	09/07/22 05:34	
Bromodichloromethane	5.0 U	5.0	1	09/07/22 05:34	
Bromoform	5.0 U	5.0	1	09/07/22 05:34	
Bromomethane	5.0 U	5.0	1	09/07/22 05:34	
2-Butanone (MEK)	10 U	10	1	09/07/22 05:34	
Carbon Disulfide	10 U	10	1	09/07/22 05:34	
Carbon Tetrachloride	5.0 U	5.0	1	09/07/22 05:34	
Chlorobenzene	5.0 U	5.0	1	09/07/22 05:34	
Chloroethane	5.0 U	5.0	1	09/07/22 05:34	
Chloroform	5.0 U	5.0	1	09/07/22 05:34	
Chloromethane	5.0 U	5.0	1	09/07/22 05:34	
Dibromochloromethane	5.0 U	5.0	1	09/07/22 05:34	
1,1-Dichloroethane	5.0 U	5.0	1	09/07/22 05:34	
1,2-Dichloroethane	5.0 U	5.0	1	09/07/22 05:34	
1,1-Dichloroethene	5.0 U	5.0	1	09/07/22 05:34	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/07/22 05:34	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/07/22 05:34	
1,2-Dichloropropane	5.0 U	5.0	1	09/07/22 05:34	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/07/22 05:34	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/07/22 05:34	
Ethylbenzene	5.0 U	5.0	1	09/07/22 05:34	
2-Hexanone	10 U	10	1	09/07/22 05:34	
Methylene Chloride	5.0 U	5.0	1	09/07/22 05:34	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/07/22 05:34	
Styrene	5.0 U	5.0	1	09/07/22 05:34	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/07/22 05:34	
Tetrachloroethene	5.0 U	5.0	1	09/07/22 05:34	
Toluene	5.0 U	5.0	1	09/07/22 05:34	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/07/22 05:34	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/07/22 05:34	
Trichloroethene	5.0 U	5.0	1	09/07/22 05:34	
Vinyl Chloride	5.0 U	5.0	1	09/07/22 05:34	
o-Xylene	5.0 U	5.0	1	09/07/22 05:34	
m,p-Xylenes	5.0 U	5.0	1	09/07/22 05:34	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: 08/29/22 14:25
Sample Matrix:	Water	Date Received: 08/29/22 14:50
Sample Name:	MW-24S	Units: ug/L
Lab Code:	R2208059-012	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	98	85 - 122	09/07/22 05:34	
Toluene-d8	102	87 - 121	09/07/22 05:34	
Dibromofluoromethane	100	80 - 116	09/07/22 05:34	

Analytical Report

R2208059
08/29/22 10:00
08/29/22 14:50
ug/L
NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/07/22 05:55	
Benzene	5.0 U	5.0	1	09/07/22 05:55	
Bromodichloromethane	5.0 U	5.0	1	09/07/22 05:55	
Bromoform	5.0 U	5.0	1	09/07/22 05:55	
Bromomethane	5.0 U	5.0	1	09/07/22 05:55	
2-Butanone (MEK)	10 U	10	1	09/07/22 05:55	
Carbon Disulfide	10 U	10	1	09/07/22 05:55	
Carbon Tetrachloride	5.0 U	5.0	1	09/07/22 05:55	
Chlorobenzene	5.0 U	5.0	1	09/07/22 05:55	
Chloroethane	5.0 U	5.0	1	09/07/22 05:55	
Chloroform	5.0 U	5.0	1	09/07/22 05:55	
Chloromethane	5.0 U	5.0	1	09/07/22 05:55	
Dibromochloromethane	5.0 U	5.0	1	09/07/22 05:55	
1,1-Dichloroethane	5.0 U	5.0	1	09/07/22 05:55	
1,2-Dichloroethane	5.0 U	5.0	1	09/07/22 05:55	
1,1-Dichloroethene	5.0 U	5.0	1	09/07/22 05:55	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/07/22 05:55	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/07/22 05:55	
1,2-Dichloropropane	5.0 U	5.0	1	09/07/22 05:55	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/07/22 05:55	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/07/22 05:55	
Ethylbenzene	5.0 U	5.0	1	09/07/22 05:55	
2-Hexanone	10 U	10	1	09/07/22 05:55	
Methylene Chloride	5.0 U	5.0	1	09/07/22 05:55	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/07/22 05:55	
Styrene	5.0 U	5.0	1	09/07/22 05:55	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/07/22 05:55	
Tetrachloroethene	5.0 U	5.0	1	09/07/22 05:55	
Toluene	5.0 U	5.0	1	09/07/22 05:55	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/07/22 05:55	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/07/22 05:55	
Trichloroethene	5.0 U	5.0	1	09/07/22 05:55	
Vinyl Chloride	5.0 U	5.0	1	09/07/22 05:55	
o-Xylene	5.0 U	5.0	1	09/07/22 05:55	
m,p-Xylenes	5.0 U	5.0	1	09/07/22 05:55	

Analytical Report Xerox Corporation USA S Bldg 801 Annual Wells

 Service Request:
 R2208059

 Date Collected:
 08/29/22 10:00

 Date Received:
 08/29/22 14:50

Units: ug/L Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Water

SW-29

R2208059-013

Client:

Project:

Sample Matrix:

Sample Name:

Lab Code:

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	09/07/22 05:55	
Toluene-d8	104	87 - 121	09/07/22 05:55	
Dibromofluoromethane	101	80 - 116	09/07/22 05:55	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: 08/29/22 09:45
Sample Matrix:	Water	Date Received: 08/29/22 14:50
Somula Nome	CWI 24	Linitae wa/I
Sample Name:	SW-34	Units: ug/L
Sample Name: Lab Code:	SW-34 R2208059-014	Units: ug/L Basis: NA
L L		C

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/07/22 06:17	
Benzene	5.0 U	5.0	1	09/07/22 06:17	
Bromodichloromethane	5.0 U	5.0	1	09/07/22 06:17	
Bromoform	5.0 U	5.0	1	09/07/22 06:17	
Bromomethane	5.0 U	5.0	1	09/07/22 06:17	
2-Butanone (MEK)	10 U	10	1	09/07/22 06:17	
Carbon Disulfide	10 U	10	1	09/07/22 06:17	
Carbon Tetrachloride	5.0 U	5.0	1	09/07/22 06:17	
Chlorobenzene	5.0 U	5.0	1	09/07/22 06:17	
Chloroethane	5.0 U	5.0	1	09/07/22 06:17	
Chloroform	11	5.0	1	09/07/22 06:17	
Chloromethane	5.0 U	5.0	1	09/07/22 06:17	
Dibromochloromethane	5.0 U	5.0	1	09/07/22 06:17	
1,1-Dichloroethane	5.0 U	5.0	1	09/07/22 06:17	
1,2-Dichloroethane	5.0 U	5.0	1	09/07/22 06:17	
1,1-Dichloroethene	5.0 U	5.0	1	09/07/22 06:17	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/07/22 06:17	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/07/22 06:17	
1,2-Dichloropropane	5.0 U	5.0	1	09/07/22 06:17	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/07/22 06:17	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/07/22 06:17	
Ethylbenzene	5.0 U	5.0	1	09/07/22 06:17	
2-Hexanone	10 U	10	1	09/07/22 06:17	
Methylene Chloride	5.0 U	5.0	1	09/07/22 06:17	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/07/22 06:17	
Styrene	5.0 U	5.0	1	09/07/22 06:17	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/07/22 06:17	
Tetrachloroethene	5.0 U	5.0	1	09/07/22 06:17	
Toluene	5.0 U	5.0	1	09/07/22 06:17	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/07/22 06:17	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/07/22 06:17	
Trichloroethene	5.0 U	5.0	1	09/07/22 06:17	
Vinyl Chloride	5.0 U	5.0	1	09/07/22 06:17	
o-Xylene	5.0 U	5.0	1	09/07/22 06:17	
m,p-Xylenes	5.0 U	5.0	1	09/07/22 06:17	

Analytical Report **Client:** Xerox Corporation USA Service Request: R2208059 **Date Collected:** 08/29/22 09:45 **Project:** Bldg 801 Annual Wells Sample Matrix: Water Date Received: 08/29/22 14:50 SW-34 Sample Name: Units: ug/L Lab Code: R2208059-014 Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed Q	
4-Bromofluorobenzene	99	85 - 122	09/07/22 06:17	_
Toluene-d8	101	87 - 121	09/07/22 06:17	
Dibromofluoromethane	101	80 - 116	09/07/22 06:17	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: 08/29/22 14:10
Sample Matrix:	Water	Date Received: 08/29/22 14:50
Sample Name:	SW-35	Units: ug/L
Sample Name: Lab Code:	SW-35 R2208059-015	Units: ug/L Basis: NA
L L		C

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/07/22 06:39	
Benzene	5.0 U	5.0	1	09/07/22 06:39	
Bromodichloromethane	5.0 U	5.0	1	09/07/22 06:39	
Bromoform	5.0 U	5.0	1	09/07/22 06:39	
Bromomethane	5.0 U	5.0	1	09/07/22 06:39	
2-Butanone (MEK)	10 U	10	1	09/07/22 06:39	
Carbon Disulfide	10 U	10	1	09/07/22 06:39	
Carbon Tetrachloride	5.0 U	5.0	1	09/07/22 06:39	
Chlorobenzene	5.0 U	5.0	1	09/07/22 06:39	
Chloroethane	5.0 U	5.0	1	09/07/22 06:39	
Chloroform	5.0 U	5.0	1	09/07/22 06:39	
Chloromethane	5.0 U	5.0	1	09/07/22 06:39	
Dibromochloromethane	5.0 U	5.0	1	09/07/22 06:39	
1,1-Dichloroethane	5.0 U	5.0	1	09/07/22 06:39	
1,2-Dichloroethane	5.0 U	5.0	1	09/07/22 06:39	
1,1-Dichloroethene	5.0 U	5.0	1	09/07/22 06:39	
cis-1,2-Dichloroethene	5.8	5.0	1	09/07/22 06:39	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/07/22 06:39	
1,2-Dichloropropane	5.0 U	5.0	1	09/07/22 06:39	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/07/22 06:39	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/07/22 06:39	
Ethylbenzene	5.0 U	5.0	1	09/07/22 06:39	
2-Hexanone	10 U	10	1	09/07/22 06:39	
Methylene Chloride	5.0 U	5.0	1	09/07/22 06:39	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/07/22 06:39	
Styrene	5.0 U	5.0	1	09/07/22 06:39	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/07/22 06:39	
Tetrachloroethene	5.0 U	5.0	1	09/07/22 06:39	
Toluene	5.0 U	5.0	1	09/07/22 06:39	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/07/22 06:39	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/07/22 06:39	
Trichloroethene	5.0 U	5.0	1	09/07/22 06:39	
Vinyl Chloride	5.0 U	5.0	1	09/07/22 06:39	
o-Xylene	5.0 U	5.0	1	09/07/22 06:39	
m,p-Xylenes	5.0 U	5.0	1	09/07/22 06:39	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: 08/29/22 14:10
Sample Matrix:	Water	Date Received: 08/29/22 14:50
Sample Name:	SW-35	Units: ug/L
Lab Code:	R2208059-015	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	100	85 - 122	09/07/22 06:39	
Toluene-d8	101	87 - 121	09/07/22 06:39	
Dibromofluoromethane	102	80 - 116	09/07/22 06:39	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: 08/29/22 12:40
Sample Matrix:	Water	Date Received: 08/29/22 14:50
Sample Name:	RW-4 Dup	Units: ug/L
Sample Name: Lab Code:	RW-4 Dup R2208059-016	Units: ug/L Basis: NA
ľ	1	C

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/08/22 12:42	
Benzene	5.0 U	5.0	1	09/08/22 12:42	
Bromodichloromethane	5.0 U	5.0	1	09/08/22 12:42	
Bromoform	5.0 U	5.0	1	09/08/22 12:42	
Bromomethane	5.0 U	5.0	1	09/08/22 12:42	
2-Butanone (MEK)	10 U	10	1	09/08/22 12:42	
Carbon Disulfide	10 U	10	1	09/08/22 12:42	
Carbon Tetrachloride	5.0 U	5.0	1	09/08/22 12:42	
Chlorobenzene	5.0 U	5.0	1	09/08/22 12:42	
Chloroethane	5.0 U	5.0	1	09/08/22 12:42	
Chloroform	5.0 U	5.0	1	09/08/22 12:42	
Chloromethane	5.0 U	5.0	1	09/08/22 12:42	
Dibromochloromethane	5.0 U	5.0	1	09/08/22 12:42	
1,1-Dichloroethane	12	5.0	1	09/08/22 12:42	
1,2-Dichloroethane	5.0 U	5.0	1	09/08/22 12:42	
1,1-Dichloroethene	5.0 U	5.0	1	09/08/22 12:42	
cis-1,2-Dichloroethene	9.2	5.0	1	09/08/22 12:42	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/08/22 12:42	
1,2-Dichloropropane	5.0 U	5.0	1	09/08/22 12:42	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/08/22 12:42	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/08/22 12:42	
Ethylbenzene	5.0 U	5.0	1	09/08/22 12:42	
2-Hexanone	10 U	10	1	09/08/22 12:42	
Methylene Chloride	5.0 U	5.0	1	09/08/22 12:42	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/08/22 12:42	
Styrene	5.0 U	5.0	1	09/08/22 12:42	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/08/22 12:42	
Tetrachloroethene	5.0 U	5.0	1	09/08/22 12:42	
Toluene	5.0 U	5.0	1	09/08/22 12:42	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/08/22 12:42	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/08/22 12:42	
Trichloroethene	7.7	5.0	1	09/08/22 12:42	
Vinyl Chloride	5.4	5.0	1	09/08/22 12:42	
o-Xylene	5.0 U	5.0	1	09/08/22 12:42	
m,p-Xylenes	5.0 U	5.0	1	09/08/22 12:42	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: 08/29/22 12:40
Sample Matrix:	Water	Date Received: 08/29/22 14:50
Sample Name:	RW-4 Dup	Units: ug/L
Sample Name: Lab Code:	RW-4 Dup R2208059-016	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	106	85 - 122	09/08/22 12:42	
Toluene-d8	103	87 - 121	09/08/22 12:42	
Dibromofluoromethane	103	80 - 116	09/08/22 12:42	

Analytical Report

Xerox Corporation USA	Service Request: R2208059
Bldg 801 Annual Wells	Date Collected: 08/29/22 09:45
Water	Date Received: 08/29/22 14:50
Trip Blank	Units: ug/L
R2208059-018	Basis: NA
	Bldg 801 Annual Wells Water Trip Blank

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/08/22 14:10	
Benzene	5.0 U	5.0	1	09/08/22 14:10	
Bromodichloromethane	5.0 U	5.0	1	09/08/22 14:10	
Bromoform	5.0 U	5.0	1	09/08/22 14:10	
Bromomethane	5.0 U	5.0	1	09/08/22 14:10	
2-Butanone (MEK)	10 U	10	1	09/08/22 14:10	
Carbon Disulfide	10 U	10	1	09/08/22 14:10	
Carbon Tetrachloride	5.0 U	5.0	1	09/08/22 14:10	
Chlorobenzene	5.0 U	5.0	1	09/08/22 14:10	
Chloroethane	5.0 U	5.0	1	09/08/22 14:10	
Chloroform	5.0 U	5.0	1	09/08/22 14:10	
Chloromethane	5.0 U	5.0	1	09/08/22 14:10	
Dibromochloromethane	5.0 U	5.0	1	09/08/22 14:10	
1,1-Dichloroethane	5.0 U	5.0	1	09/08/22 14:10	
1,2-Dichloroethane	5.0 U	5.0	1	09/08/22 14:10	
1,1-Dichloroethene	5.0 U	5.0	1	09/08/22 14:10	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/08/22 14:10	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/08/22 14:10	
1,2-Dichloropropane	5.0 U	5.0	1	09/08/22 14:10	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/08/22 14:10	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/08/22 14:10	
Ethylbenzene	5.0 U	5.0	1	09/08/22 14:10	
2-Hexanone	10 U	10	1	09/08/22 14:10	
Methylene Chloride	5.0 U	5.0	1	09/08/22 14:10	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/08/22 14:10	
Styrene	5.0 U	5.0	1	09/08/22 14:10	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/08/22 14:10	
Tetrachloroethene	5.0 U	5.0	1	09/08/22 14:10	
Toluene	5.0 U	5.0	1	09/08/22 14:10	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/08/22 14:10	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/08/22 14:10	
Trichloroethene	5.0 U	5.0	1	09/08/22 14:10	
Vinyl Chloride	5.0 U	5.0	1	09/08/22 14:10	
o-Xylene	5.0 U	5.0	1	09/08/22 14:10	
m,p-Xylenes	5.0 U	5.0	1	09/08/22 14:10	

Analytical Report **Client:** Xerox Corporation USA Service Request: R2208059 **Date Collected:** 08/29/22 09:45 **Project:** Bldg 801 Annual Wells Sample Matrix: Water Date Received: 08/29/22 14:50 Sample Name: Trip Blank Units: ug/L R2208059-018 Lab Code: Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	09/08/22 14:10	
Toluene-d8	103	87 - 121	09/08/22 14:10	
Dibromofluoromethane	103	80 - 116	09/08/22 14:10	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

QA/QC Report

Client:Xerox Corporation USAProject:Bldg 801 Annual WellsSample Matrix:Water

Service Request: R2208059

SURROGATE RECOVERY SUMMARY

Analysis Method:	8260C
Extraction Method:	EPA 5030C

		4-Bromofluorobenzene	Toluene-d8	Dibromofluoromethane
Sample Name	Sample NameLab Code85-122		87-121	80-116
VE-6	R2208059-001	101	102	104
VE-10	R2208059-002	99	100	99
VE-12	R2208059-003	101	102	104
VE-15	R2208059-004	102	102	104
RW-4	R2208059-005	106	102	104
MW-2	R2208059-006	99	100	101
MW-10	R2208059-007	104	103	108
MW-13S	R2208059-008	102	102	106
MW-16	R2208059-009	102	101	102
MW-18S	R2208059-010	100	100	101
MW-19	R2208059-011	103	105	106
MW-19 DL	R2208059-011	101	102	104
MW-24S	R2208059-012	98	102	100
SW-29	R2208059-013	101	104	101
SW-34	R2208059-014	99	101	101
SW-35	R2208059-015	100	101	102
RW-4 Dup	R2208059-016	106	103	103
Trip Blank	R2208059-018	104	103	103
Method Blank	RQ2210672-04	100	102	102
Method Blank	RQ2210731-06	100	102	102
Method Blank	RQ2210774-04	103	103	104
Lab Control Sample	RQ2210672-03	104	101	106
Lab Control Sample	RQ2210731-03	102	103	104
Lab Control Sample	RQ2210774-03	104	102	105
VE-10 MS	RQ2210672-05	104	102	104
VE-10 DMS	RQ2210672-06	104	103	105

QA/QC Report

Client: Project: Sample Matrix:	-	poration USA Annual Wells	Dupl	icate Matrix	x Spike St	ımmary	Service 1 Date Co Date Re Date An Date Ex	ceived: alyzed:	R220 08/29 08/29 09/7/2 NA	/22 /22	
			Volatile	Organic Co	mpounds	by GC/M	IS				
Sample Name:	VE-10							Units:	ug/L		
Lab Code:	R2208059-	002						Basis:	NA		
		-002						Da515.	INA		
Analysis Method:	8260C	~									
Prep Method:	EPA 50300	С									
			M	atrix Spike		Dupl	licate Matrix	x Spike			
				2210672-05		-	RQ2210672-	-			
		Sample		Spike			Spike		% Rec		RPD
Analyte Name		Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Acetone		1000 U	6060	5000	121	5650	5000	113	35-183	7	30
Benzene		500 U	5250	5000	105	5340	5000	107	76-129	2	30
Bromodichlorometha	ne	500 U	5200	5000	104	5550	5000	111	78-133	7	30
Bromoform		500 U	4750	5000	95	5180	5000	104	58-133	9	30
Bromomethane		500 U	4780	5000	96	5040	5000	101	10-184	5	30
2-Butanone (MEK)		1000 U	4450	5000	89	4280	5000	86	61-137	4	30
Carbon Disulfide		1000 U	4680	5000	94	4440	5000	89	59-140	5	30
Carbon Tetrachloride		500 U	4820	5000	96	5240	5000	105	65-135	8	30
Chlorobenzene		500 U	4600	5000	92	4820	5000	96	76-125	5	30
Chloroethane		1200	5850	5000	94	5900	5000	95	48-146	<1	30
Chloroform		500 U	5510	5000	110	5650	5000	113	75-130	3	30
Chloromethane		500 U	4690	5000	94	4870	5000	97	55-160	4	30
Dibromochlorometha	ne	500 U	4860	5000	97	5160	5000	103	72-128	6	30
1,1-Dichloroethane		760	6050	5000	106	6360	5000	112	74-132	5	30
1,2-Dichloroethane		500 U	5300	5000	106	5400	5000	108	68-130	2	30
1,1-Dichloroethene		500 U	5690	5000	114	5850	5000	117	71-118	3	30
cis-1,2-Dichloroethen		500 U	5600	5000	112	5790	5000	116	77-127	3	30
trans-1,2-Dichloroeth	ene	500 U	5290	5000	106 102	5510	5000 5000	110	73-118	4 2	30 30
1,2-Dichloropropane	n 0	500 U	5080 4040	5000 5000		5190 5240		104 105	79-124 52-134	2 6	30 30
cis-1,3-Dichloroprope trans-1,3-Dichloropro		500 U 500 U	<u>4940</u> 4690	5000	<u> </u>	5240 5100	5000	103	52-134 71-133	8	30
Ethylbenzene	pene	500 U	4850	5000	97	4900	5000	98	72-134	<1	30
2-Hexanone		1000 U	4460	5000	89	4210	5000	84	56-132	6	30
Methylene Chloride		500 U	4990	5000	100	5160	5000	103	73-122	3	30
4-Methyl-2-pentanon	e (MIBK)	1000 U	4720	5000	94	4370	5000	87	60-141	8	30
Styrene		500 U	5160	5000	103	5320	5000	106	74-136	3	30
1,1,2,2-Tetrachloroeth	nane	500 U	4510	5000	90	4760	5000	95	72-122	6	30
Tetrachloroethene		500 U	4760	5000	95	4860	5000	97	72-125	2	30
Toluene		500 U	5150	5000	103	5320	5000	106	79-119	3	30
1,1,1-Trichloroethane		500 U	5320	5000	106	5610	5000	112	74-127	5	30
1,1,2-Trichloroethane		500 U	4930	5000	99	5130	5000	103	82-121	4	30
Trichloroethene		500 U	5220	5000	104	5320	5000	106	74-122	2	30
Vinyl Chloride		10000	14500	5000	86	14400	5000	84	74-159	<1	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

QA/QC Report

Client: Project: Sample Matrix:	Xerox Corporation USA Bldg 801 Annual Wells Water					Service Date Co Date Re Date An Date Ex	ceived: alyzed:	R2203 08/29 08/29 08/29 09/7/2 NA	/22 /22	
		D	liaata Matri	r Cuilto S		Date Ex		NA		
		-	licate Matri Organic Co	-	•	S				
Sample Name:	VE-10			F			Units:	ug/L		
Lab Code:	R2208059-002						Basis:	NA		
Analysis Method:	8260C									
Prep Method:	EPA 5030C									
			atrix Spike 2210672-05		-	icate Matri x RQ2210672-	-			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
o-Xylene	500 U	4980	5000	100	5080	5000	102	79-123	2	30
m,p-Xylenes	500 U	9790	10000	98	10100	10000	101	80-126	3	30

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name:	Method Blank	Units: ug/L
Lab Code:	RQ2210672-04	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/07/22 00:06	
Benzene	5.0 U	5.0	1	09/07/22 00:06	
Bromodichloromethane	5.0 U	5.0	1	09/07/22 00:06	
Bromoform	5.0 U	5.0	1	09/07/22 00:06	
Bromomethane	5.0 U	5.0	1	09/07/22 00:06	
2-Butanone (MEK)	10 U	10	1	09/07/22 00:06	
Carbon Disulfide	10 U	10	1	09/07/22 00:06	
Carbon Tetrachloride	5.0 U	5.0	1	09/07/22 00:06	
Chlorobenzene	5.0 U	5.0	1	09/07/22 00:06	
Chloroethane	5.0 U	5.0	1	09/07/22 00:06	
Chloroform	5.0 U	5.0	1	09/07/22 00:06	
Chloromethane	5.0 U	5.0	1	09/07/22 00:06	
Dibromochloromethane	5.0 U	5.0	1	09/07/22 00:06	
1,1-Dichloroethane	5.0 U	5.0	1	09/07/22 00:06	
1,2-Dichloroethane	5.0 U	5.0	1	09/07/22 00:06	
1,1-Dichloroethene	5.0 U	5.0	1	09/07/22 00:06	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/07/22 00:06	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/07/22 00:06	
1,2-Dichloropropane	5.0 U	5.0	1	09/07/22 00:06	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/07/22 00:06	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/07/22 00:06	
Ethylbenzene	5.0 U	5.0	1	09/07/22 00:06	
2-Hexanone	10 U	10	1	09/07/22 00:06	
Methylene Chloride	5.0 U	5.0	1	09/07/22 00:06	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/07/22 00:06	
Styrene	5.0 U	5.0	1	09/07/22 00:06	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/07/22 00:06	
Tetrachloroethene	5.0 U	5.0	1	09/07/22 00:06	
Toluene	5.0 U	5.0	1	09/07/22 00:06	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/07/22 00:06	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/07/22 00:06	
Trichloroethene	5.0 U	5.0	1	09/07/22 00:06	
Vinyl Chloride	5.0 U	5.0	1	09/07/22 00:06	
o-Xylene	5.0 U	5.0	1	09/07/22 00:06	
m,p-Xylenes	5.0 U	5.0	1	09/07/22 00:06	

Analytical Report **Client:** Xerox Corporation USA Service Request: R2208059 **Project:** Bldg 801 Annual Wells Date Collected: NA Sample Matrix: Water Date Received: NA Sample Name: Method Blank Units: ug/L Lab Code: RQ2210672-04 Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	100	85 - 122	09/07/22 00:06	
Toluene-d8	102	87 - 121	09/07/22 00:06	
Dibromofluoromethane	102	80 - 116	09/07/22 00:06	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name: Lab Code:	Method Blank RQ2210731-06	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/07/22 16:13	
Benzene	5.0 U	5.0	1	09/07/22 16:13	
Bromodichloromethane	5.0 U	5.0	1	09/07/22 16:13	
Bromoform	5.0 U	5.0	1	09/07/22 16:13	
Bromomethane	5.0 U	5.0	1	09/07/22 16:13	
2-Butanone (MEK)	10 U	10	1	09/07/22 16:13	
Carbon Disulfide	10 U	10	1	09/07/22 16:13	
Carbon Tetrachloride	5.0 U	5.0	1	09/07/22 16:13	
Chlorobenzene	5.0 U	5.0	1	09/07/22 16:13	
Chloroethane	5.0 U	5.0	1	09/07/22 16:13	
Chloroform	5.0 U	5.0	1	09/07/22 16:13	
Chloromethane	5.0 U	5.0	1	09/07/22 16:13	
Dibromochloromethane	5.0 U	5.0	1	09/07/22 16:13	
1,1-Dichloroethane	5.0 U	5.0	1	09/07/22 16:13	
1,2-Dichloroethane	5.0 U	5.0	1	09/07/22 16:13	
1,1-Dichloroethene	5.0 U	5.0	1	09/07/22 16:13	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/07/22 16:13	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/07/22 16:13	
1,2-Dichloropropane	5.0 U	5.0	1	09/07/22 16:13	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/07/22 16:13	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/07/22 16:13	
Ethylbenzene	5.0 U	5.0	1	09/07/22 16:13	
2-Hexanone	10 U	10	1	09/07/22 16:13	
Methylene Chloride	5.0 U	5.0	1	09/07/22 16:13	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/07/22 16:13	
Styrene	5.0 U	5.0	1	09/07/22 16:13	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/07/22 16:13	
Tetrachloroethene	5.0 U	5.0	1	09/07/22 16:13	
Toluene	5.0 U	5.0	1	09/07/22 16:13	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/07/22 16:13	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/07/22 16:13	
Trichloroethene	5.0 U	5.0	1	09/07/22 16:13	
Vinyl Chloride	5.0 U	5.0	1	09/07/22 16:13	
o-Xylene	5.0 U	5.0	1	09/07/22 16:13	
m,p-Xylenes	5.0 U	5.0	1	09/07/22 16:13	

Analytical Report **Client:** Xerox Corporation USA Service Request: R2208059 **Project:** Bldg 801 Annual Wells Date Collected: NA Sample Matrix: Water Date Received: NA Sample Name: Method Blank Units: ug/L Lab Code: RQ2210731-06 Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	100	85 - 122	09/07/22 16:13	
Toluene-d8	102	87 - 121	09/07/22 16:13	
Dibromofluoromethane	102	80 - 116	09/07/22 16:13	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R2208059
Project:	Bldg 801 Annual Wells	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name: Lab Code:	Method Blank RQ2210774-04	Units: ug/L Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/08/22 12:20	
Benzene	5.0 U	5.0	1	09/08/22 12:20	
Bromodichloromethane	5.0 U	5.0	1	09/08/22 12:20	
Bromoform	5.0 U	5.0	1	09/08/22 12:20	
Bromomethane	5.0 U	5.0	1	09/08/22 12:20	
2-Butanone (MEK)	10 U	10	1	09/08/22 12:20	
Carbon Disulfide	10 U	10	1	09/08/22 12:20	
Carbon Tetrachloride	5.0 U	5.0	1	09/08/22 12:20	
Chlorobenzene	5.0 U	5.0	1	09/08/22 12:20	
Chloroethane	5.0 U	5.0	1	09/08/22 12:20	
Chloroform	5.0 U	5.0	1	09/08/22 12:20	
Chloromethane	5.0 U	5.0	1	09/08/22 12:20	
Dibromochloromethane	5.0 U	5.0	1	09/08/22 12:20	
1,1-Dichloroethane	5.0 U	5.0	1	09/08/22 12:20	
1,2-Dichloroethane	5.0 U	5.0	1	09/08/22 12:20	
1,1-Dichloroethene	5.0 U	5.0	1	09/08/22 12:20	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/08/22 12:20	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/08/22 12:20	
1,2-Dichloropropane	5.0 U	5.0	1	09/08/22 12:20	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/08/22 12:20	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/08/22 12:20	
Ethylbenzene	5.0 U	5.0	1	09/08/22 12:20	
2-Hexanone	10 U	10	1	09/08/22 12:20	
Methylene Chloride	5.0 U	5.0	1	09/08/22 12:20	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/08/22 12:20	
Styrene	5.0 U	5.0	1	09/08/22 12:20	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/08/22 12:20	
Tetrachloroethene	5.0 U	5.0	1	09/08/22 12:20	
Toluene	5.0 U	5.0	1	09/08/22 12:20	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/08/22 12:20	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/08/22 12:20	
Trichloroethene	5.0 U	5.0	1	09/08/22 12:20	
Vinyl Chloride	5.0 U	5.0	1	09/08/22 12:20	
o-Xylene	5.0 U	5.0	1	09/08/22 12:20	
m,p-Xylenes	5.0 U	5.0	1	09/08/22 12:20	

Analytical Report **Client:** Xerox Corporation USA Service Request: R2208059 **Project:** Bldg 801 Annual Wells Date Collected: NA Sample Matrix: Water Date Received: NA Units: ug/L Sample Name: Method Blank RQ2210774-04 Lab Code: Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	09/08/22 12:20	
Toluene-d8	103	87 - 121	09/08/22 12:20	
Dibromofluoromethane	104	80 - 116	09/08/22 12:20	

QA/QC Report

Client:Xerox Corporation USAProject:Bldg 801 Annual WellsSample Matrix:Water

Service Request: R2208059 **Date Analyzed:** 09/06/22

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ2210672-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Acetone	8260C	22.9	20.0	114	40-161
Benzene	8260C	20.9	20.0	105	79-119
Bromodichloromethane	8260C	21.7	20.0	108	81-123
Bromoform	8260C	20.8	20.0	104	65-146
Bromomethane	8260C	20.2	20.0	101	42-166
2-Butanone (MEK)	8260C	18.7	20.0	94	61-137
Carbon Disulfide	8260C	18.3	20.0	91	66-128
Carbon Tetrachloride	8260C	20.4	20.0	102	70-127
Chlorobenzene	8260C	19.5	20.0	97	80-121
Chloroethane	8260C	18.9	20.0	95	62-131
Chloroform	8260C	22.2	20.0	111	79-120
Chloromethane	8260C	19.5	20.0	97	65-135
Dibromochloromethane	8260C	19.5	20.0	98	72-128
,1-Dichloroethane	8260C	21.6	20.0	108	80-124
,2-Dichloroethane	8260C	21.3	20.0	107	71-127
,1-Dichloroethene	8260C	22.2	20.0	111	71-118
vis-1,2-Dichloroethene	8260C	20.6	20.0	103	80-121
rans-1,2-Dichloroethene	8260C	21.1	20.0	105	73-118
,2-Dichloropropane	8260C	20.7	20.0	104	80-119
cis-1,3-Dichloropropene	8260C	20.9	20.0	105	77-122
rans-1,3-Dichloropropene	8260C	20.4	20.0	102	71-133
Ethylbenzene	8260C	19.8	20.0	99	76-120
-Hexanone	8260C	17.9	20.0	90	63-124
Methylene Chloride	8260C	20.6	20.0	103	73-122
-Methyl-2-pentanone (MIBK)	8260C	18.8	20.0	94	66-124
Styrene	8260C	21.2	20.0	106	80-124
,1,2,2-Tetrachloroethane	8260C	19.6	20.0	98	78-126
Fetrachloroethene	8260C	20.2	20.0	101	72-125
Toluene	8260C	21.0	20.0	105	79-119
,1,1-Trichloroethane	8260C	21.7	20.0	108	75-125
,1,2-Trichloroethane	8260C	20.6	20.0	103	82-121
Frichloroethene	8260C	21.2	20.0	106	74-122
Vinyl Chloride	8260C	18.1	20.0	90	74-159

QA/QC Report

Client:Xerox Corporation USAProject:Bldg 801 Annual WellsSample Matrix:Water

Service Request: R2208059 **Date Analyzed:** 09/06/22

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ2210672-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
o-Xylene	8260C	20.4	20.0	102	79-123
m,p-Xylenes	8260C	40.9	40.0	102	80-126

QA/QC Report

Client:Xerox Corporation USAProject:Bldg 801 Annual WellsSample Matrix:Water

Service Request: R2208059 **Date Analyzed:** 09/07/22

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ2210731-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Acetone	8260C	21.1	20.0	105	40-161
Benzene	8260C	20.4	20.0	102	79-119
Bromodichloromethane	8260C	21.0	20.0	105	81-123
Bromoform	8260C	19.0	20.0	95	65-146
Bromomethane	8260C	19.2	20.0	96	42-166
2-Butanone (MEK)	8260C	16.6	20.0	83	61-137
Carbon Disulfide	8260C	19.5	20.0	98	66-128
Carbon Tetrachloride	8260C	19.7	20.0	99	70-127
Chlorobenzene	8260C	18.7	20.0	93	80-121
Chloroethane	8260C	18.5	20.0	92	62-131
Chloroform	8260C	21.5	20.0	107	79-120
Chloromethane	8260C	18.3	20.0	92	65-135
Dibromochloromethane	8260C	19.1	20.0	95	72-128
1,1-Dichloroethane	8260C	20.9	20.0	105	80-124
1,2-Dichloroethane	8260C	20.8	20.0	104	71-127
1,1-Dichloroethene	8260C	21.6	20.0	108	71-118
cis-1,2-Dichloroethene	8260C	20.5	20.0	103	80-121
trans-1,2-Dichloroethene	8260C	20.8	20.0	104	73-118
1,2-Dichloropropane	8260C	19.8	20.0	99	80-119
cis-1,3-Dichloropropene	8260C	20.8	20.0	104	77-122
trans-1,3-Dichloropropene	8260C	20.6	20.0	103	71-133
Ethylbenzene	8260C	18.7	20.0	94	76-120
2-Hexanone	8260C	16.3	20.0	82	63-124
Methylene Chloride	8260C	19.8	20.0	99	73-122
4-Methyl-2-pentanone (MIBK)	8260C	17.4	20.0	87	66-124
Styrene	8260C	20.4	20.0	102	80-124
1,1,2,2-Tetrachloroethane	8260C	17.8	20.0	89	78-126
Tetrachloroethene	8260C	19.4	20.0	97	72-125
Toluene	8260C	19.8	20.0	99	79-119
1,1,1-Trichloroethane	8260C	21.1	20.0	105	75-125
1,1,2-Trichloroethane	8260C	20.0	20.0	100	82-121
Trichloroethene	8260C	20.3	20.0	101	74-122
Vinyl Chloride	8260C	17.3	20.0	86	74-159
Printed 9/13/2022 9:34:08 AM			Superso	et Reference:22-000	0639109 rev 00

QA/QC Report

Client:Xerox Corporation USAProject:Bldg 801 Annual WellsSample Matrix:Water

Service Request: R2208059 **Date Analyzed:** 09/07/22

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ2210731-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
o-Xylene	8260C	19.7	20.0	99	79-123
m,p-Xylenes	8260C	38.5	40.0	96	80-126

QA/QC Report

Client:Xerox Corporation USAProject:Bldg 801 Annual WellsSample Matrix:Water

Service Request: R2208059 **Date Analyzed:** 09/08/22

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

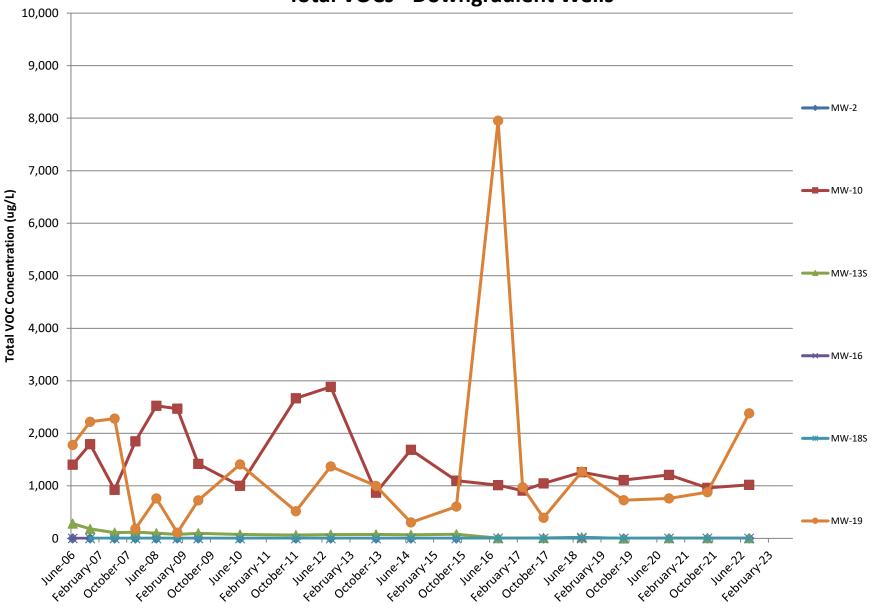
Lab Control Sample RQ2210774-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Acetone	8260C	21.4	20.0	107	40-161
Benzene	8260C	20.7	20.0	103	79-119
Bromodichloromethane	8260C	22.0	20.0	110	81-123
Bromoform	8260C	20.0	20.0	100	65-146
Bromomethane	8260C	21.1	20.0	106	42-166
2-Butanone (MEK)	8260C	18.3	20.0	92	61-137
Carbon Disulfide	8260C	18.6	20.0	93	66-128
Carbon Tetrachloride	8260C	21.4	20.0	107	70-127
Chlorobenzene	8260C	20.0	20.0	100	80-121
Chloroethane	8260C	18.9	20.0	95	62-131
Chloroform	8260C	22.3	20.0	112	79-120
Chloromethane	8260C	19.8	20.0	99	65-135
Dibromochloromethane	8260C	20.1	20.0	100	72-128
,1-Dichloroethane	8260C	22.3	20.0	111	80-124
,2-Dichloroethane	8260C	21.2	20.0	106	71-127
,1-Dichloroethene	8260C	22.9	20.0	115	71-118
is-1,2-Dichloroethene	8260C	21.8	20.0	109	80-121
ans-1,2-Dichloroethene	8260C	21.6	20.0	108	73-118
,2-Dichloropropane	8260C	21.1	20.0	105	80-119
is-1,3-Dichloropropene	8260C	22.4	20.0	112	77-122
rans-1,3-Dichloropropene	8260C	21.2	20.0	106	71-133
thylbenzene	8260C	20.3	20.0	101	76-120
-Hexanone	8260C	17.9	20.0	89	63-124
Iethylene Chloride	8260C	21.2	20.0	106	73-122
-Methyl-2-pentanone (MIBK)	8260C	17.9	20.0	89	66-124
tyrene	8260C	21.5	20.0	107	80-124
,1,2,2-Tetrachloroethane	8260C	19.3	20.0	97	78-126
etrachloroethene	8260C	20.8	20.0	104	72-125
oluene	8260C	20.8	20.0	104	79-119
,1,1-Trichloroethane	8260C	23.3	20.0	116	75-125
,1,2-Trichloroethane	8260C	20.5	20.0	102	82-121
richloroethene	8260C	21.8	20.0	109	74-122
Vinyl Chloride	8260C	18.8	20.0	94	74-159

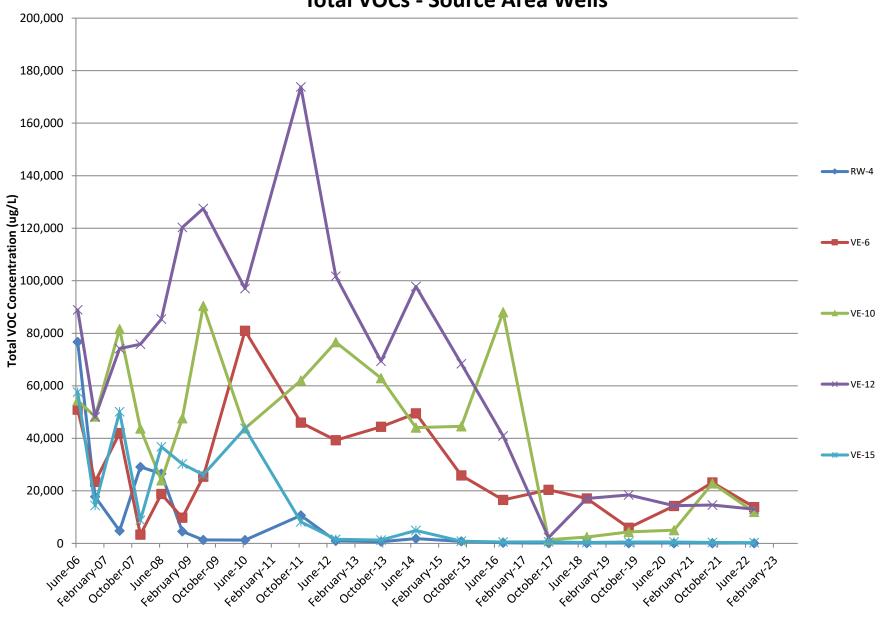
QA/QC Report

Client:Xerox Corporation USAProject:Bldg 801 Annual WellsSample Matrix:Water

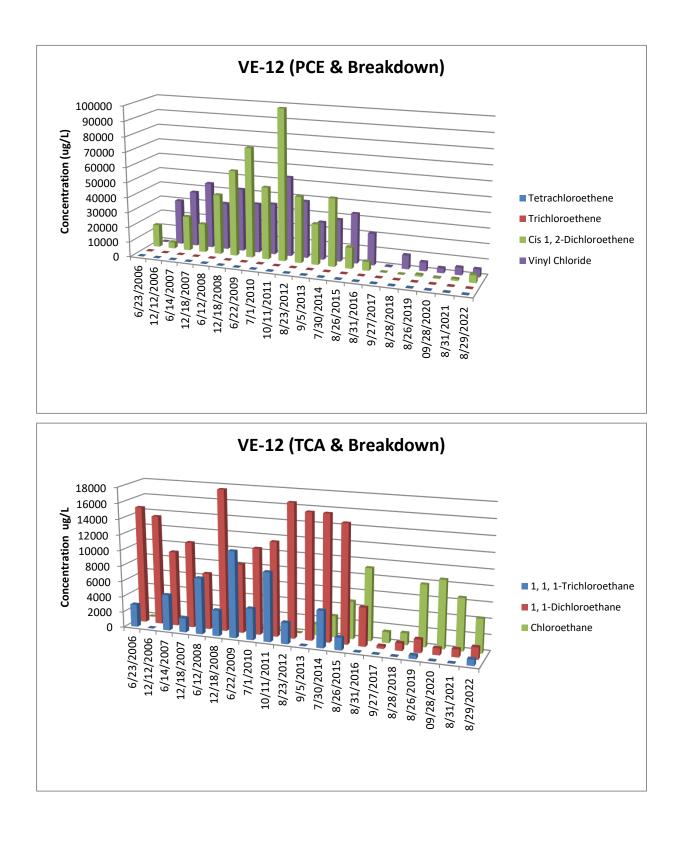
Service Request: R2208059 **Date Analyzed:** 09/08/22

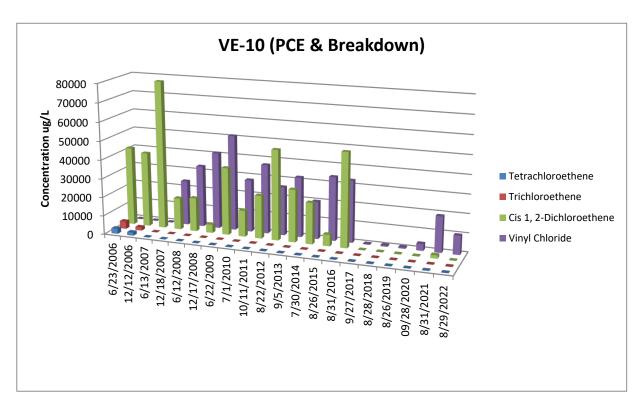

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

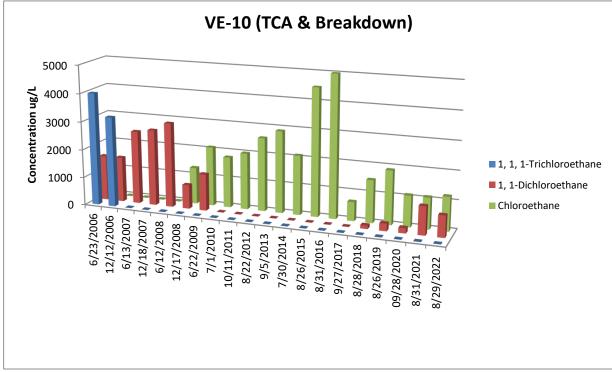
Units:ug/L Basis:NA

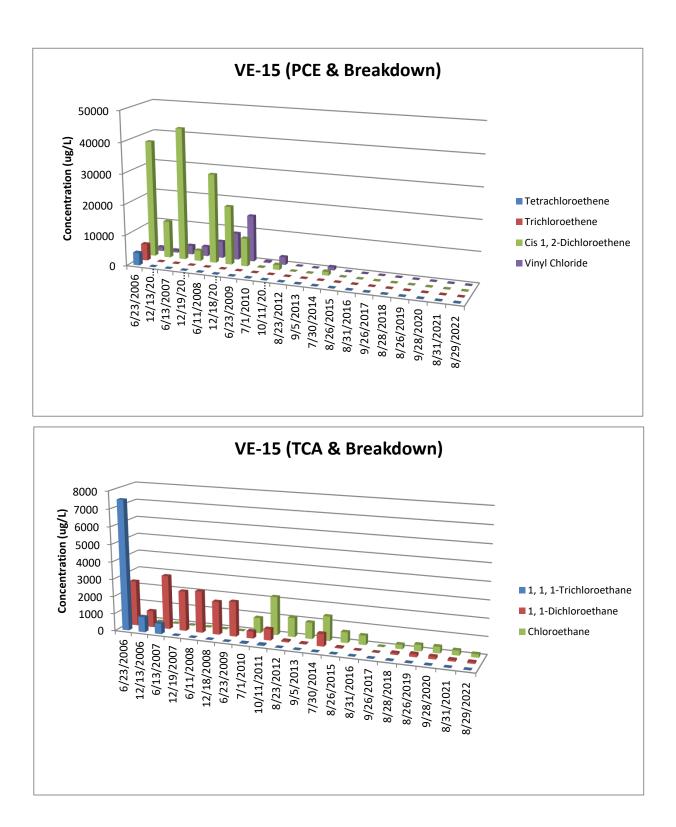

Lab Control Sample RQ2210774-03

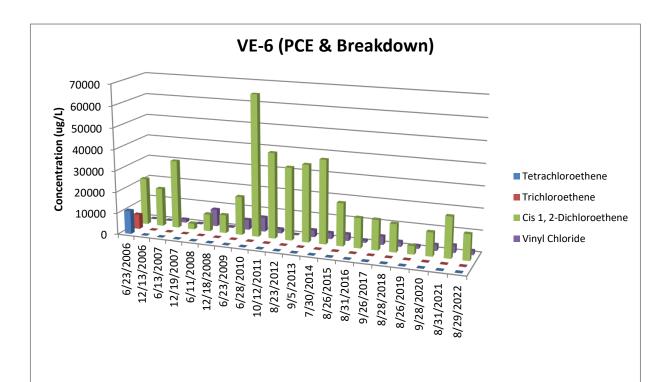
Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
o-Xylene	8260C	20.8	20.0	104	79-123
m,p-Xylenes	8260C	40.9	40.0	102	80-126

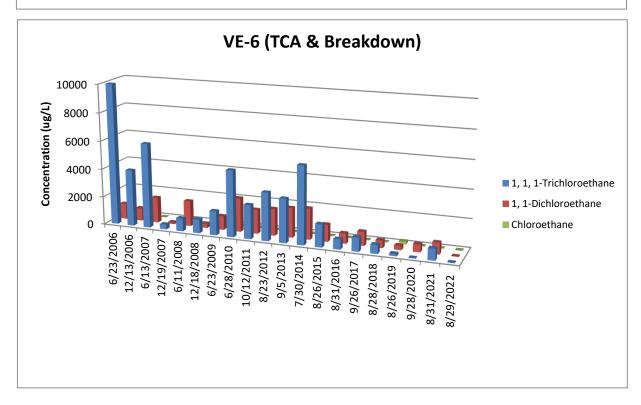

APPENDIX C Time vs. Concentration Graphs

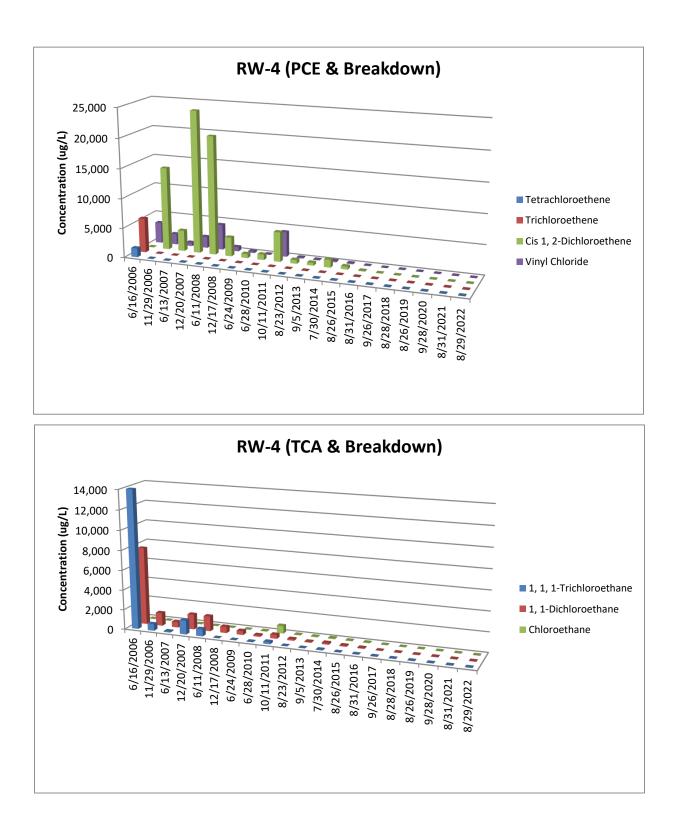


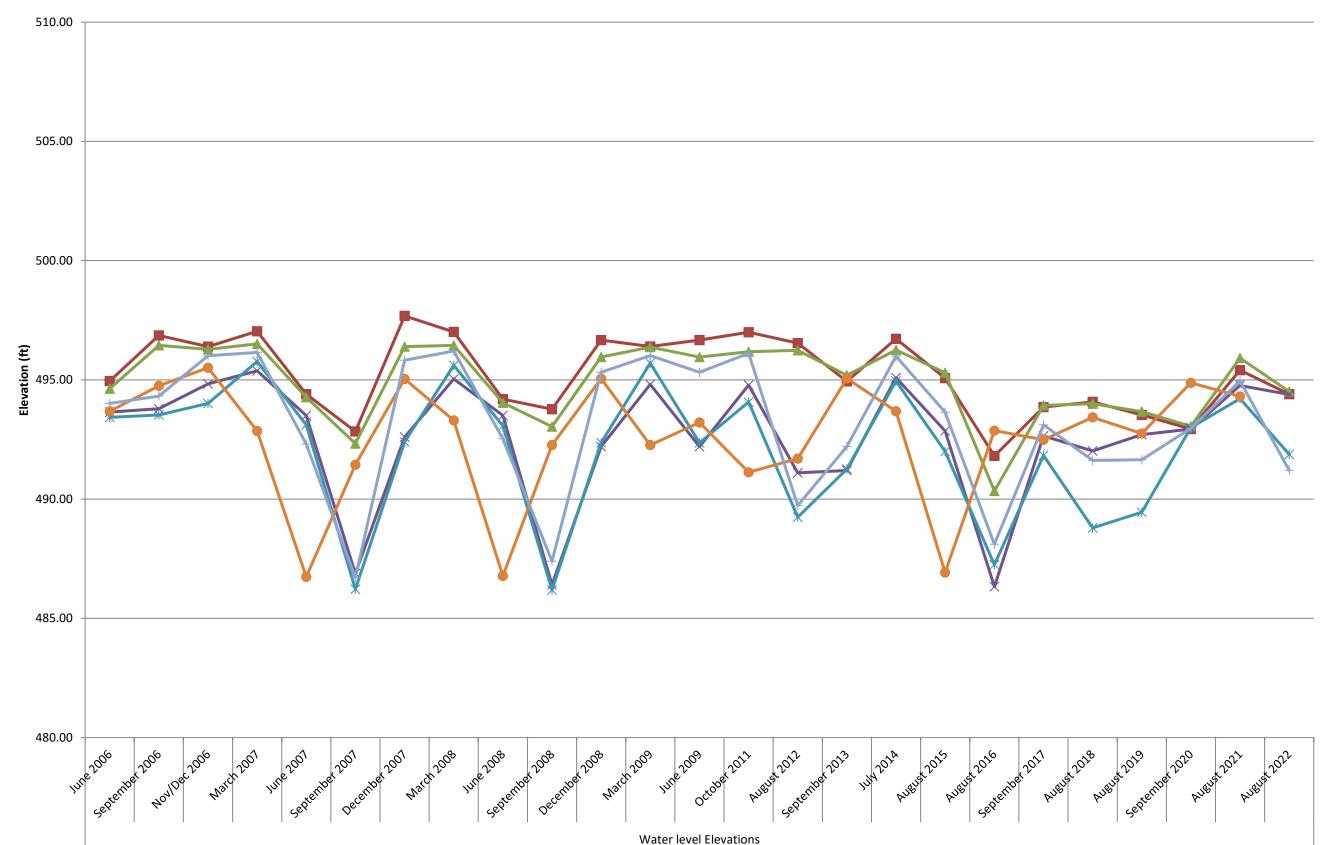

Total VOCs - Downgradient Wells



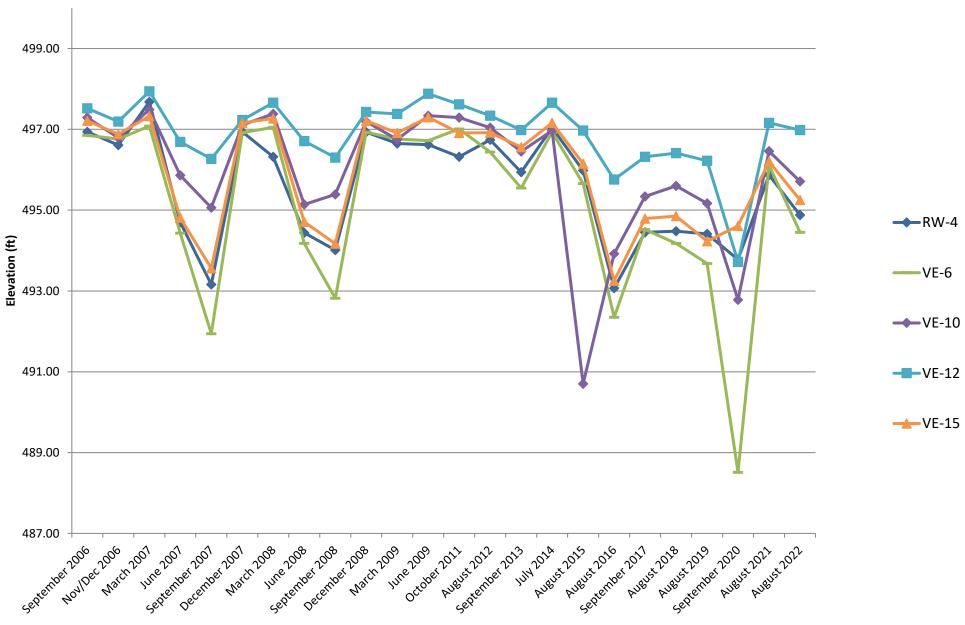

Total VOCs - Source Area Wells







APPENDIX D Groundwater Elevation Trend Graphs



—MW-10

→ MW-13S

——MW-16

GW Elevation- Source Wells