Pre-Design Investigation Report Dearcop Farm Rochester, New York

Site Number 828016

May 10, 2022

Prepared for:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Remedial Bureau E

625 Broadway Albany, New York 12233-7017

Prepared by:

ECOLOGY AND ENVIRONMENT ENGINEERING AND GEOLOGY, P.C.

50 Lakefront Blvd. Buffalo, New York 14202

©2022 Ecology and Environment Engineering and Geology, P.C.

able of Contents

Section		Page
1	Introduction	1-1
	1.1 Site Geology and Hydrogeology	1-2
2	Investigation Summary	2-1
	2.1 Pre-Field Investigation Activities	2-1
	2.2 Borehole Drilling and Monitoring Well Installation	2-1
	2.3 New Monitoring Well Development	
	2.4 Monitoring Well Sampling	2-3
	2.5 Site Survey	2-3
	2.6 Investigation-Derived Waste Management	2-3
	2.7 Sample Handling and Analysis	2-3
	2.8 Quality Assurance/Quality Control	2-4
	2.9 Data Review	2-4
3	Results	3-1
	3.1 Site Geology	
	3.2 Groundwater Flow Direction	
	3.3 Volatile Organic Compounds Groundwater Sampling Result	
4	Conclusions and Recommendations	4-1
	4.1 Conclusions	
	4.2 Recommendations	
5	References	5-1
Appendi	lix	
Α	Boring Log Diagrams	A-1
В	Well Development Logs	B-1
С	Groundwater Sampling Purge Logs	C-1
D	Data Usability Summary Report	D-1

ist of Tables

Table

1	Monitoring Well Construction Summary
2	Summary of Positive Analytical Results for Groundwater Samples
3	Groundwater Elevations
4	DR-2 Historical Sample Results
5	DR-3 Historical Sample Results

ist of Figures

Figure

- Site Plan 1
- 2 Shallow Bedrock Groundwater Contours
- 3 **PDI Sampling Results**

ist of Abbreviations and Acronyms

above mean sea level **AMSL**

bgs below ground surface

CAMP community air monitoring program

DCA Dichloroethane Dichlorethene DCE

DER Division of Environmental Remediation

E & E Ecology and Environment Engineering and Geology, P.C.

LaBella LaBella Associates, LLC

NTU nephelometric turbidity unit

NYSDEC New York State Department of Environmental Conservation

OU operational unit

PDI Pre-Design Investigation

parts per million ppm

QAPP Quality Assurance Project Plan SOP standard operating procedure

Trichloroethane TCA

TCE Trichloroethylene

VOC Volatile organic compound

Introduction

Pursuant to Work Assignment Number D009807-20, Ecology and Environment Engineering and Geology, P.C. (E & E) prepared this pre-design investigation (PDI) report for the Dearcop Farm (Dearcop) site in Gates, Monroe County, New York. As of September 2, 2020, WSP USA, Inc. ("WSP") filed a certificate of merger with New York State integrating E & E into WSP and WSP now stands as an associated entity to E & E. This report was prepared for the New York State Department of Environmental Conservation (NYSDEC), Division of Environmental Remediation (DER) to support the development of a Remedial Action Work Plan for the Dearcop Site (Site No. 828016).

The 16-acre site is situated in an urban area west of the New York State Barge Canal and the City of Rochester and consists of two operable units (OUs) (Figure 1). OU-1 comprises the southern 6 acres of the site, which is an undeveloped parcel adjacent to a residential area. The bordering residential area to the south consists of 80 homes along Dearcop Drive and Varian Lane. OU-2 is comprised of the northern 10 acres of the site, which are overlain by the interchanges of Interstate Routes 390 and 490.

The site was used as a disposal landfill from 1919 to 1970, receiving wastes from General Railway Signal Company, E.I. DuPont DeNemours and Company, Inc., American Brakeshoe Company, and Pfaudler Company. The wastes included rubbish, office paper, wood, debris, scrap iron, foundry dirt, sand blasting debris, sand castings, acids, heavy metals, waste oil and sludges, and volatile organic compounds (VOCs).

The purpose of this investigation was to characterize the extent of VOC-affected groundwater plume surrounding two shallow bedrock groundwater monitoring wells, designated DR-2 and DR-3, where concentrations of VOCs exceed the New York State standards and guidance values for class GA groundwater (Figure 2).

The scope of work for this PDI included the following:

- Install four new monitoring wells to delineate the extent of VOCs around two existing shallow bedrock monitoring wells, DR-2 and DR-3, with DR-2 located on undeveloped woodland near the north end of Dearcop Drive and DR-3 in the median of Interstate 490.
- Develop the four new monitoring wells.
- Collect groundwater samples from six monitoring wells, the four newly installed monitoring wells and the two existing wells, DR-2 and DR-3.

1.1 Site Geology and Hydrogeology

Overburden at the Dearcop site consists of glacial till and urban fill underlain by the Penfield Dolomite Member of the Lockport Formation. Historical work at the site indicates that the depth to bedrock across the site is approximately 10 to 30 feet below ground surface (bgs).

Historically, the groundwater in the overburden is approximately 10 feet bgs and flows east-northeast towards the canal. The depth to groundwater in the bedrock aquifer is approximately 10 to 30 to feet bgs across the site and flows in a north-northeast direction.

Groundwater elevations in the area fluctuate seasonally based on the raising and lowering of water levels in the Barge Canal. In the overburden, groundwater elevation has historically fluctuated approximately 7 feet throughout the year, whereas groundwater elevation in the bedrock aquifer typically fluctuated approximately 10 feet per year.

Investigation Summary

Field activities were performed by an E & E field team consisting of two geologists. The work included the installation, development, and sampling of four new bedrock groundwater wells (see Figure 2). Wells DR-2-U and DR-2-D are located 25 feet upgradient (west) and 29 feet downgradient (east) of DR-2, respectively. Wells DR-3-U and DR-3-D are similarly located upgradient (southwest) and downgradient (northeast) of DR-3 at distances of 29 feet and 40 feet, respectively. The wells were installed between November 23 and December 3, 2021. The drilling was conducted by LaBella Associates, LLC (Labella).

DR-2-U and DR-2-D were developed on November 30 and December 1, 2021, and DR-3-U and DR-3-D were developed on December 6, 2021. Groundwater sampling of the four new and two existing shallow bedrock monitoring wells took place on December 7 and 8, 2021.

A summary of the field procedures is provided in the following subsections.

2.1 **Pre-Field Investigation Activities**

On April 8, 2021, the NYSDEC project manager, E & E project team, and La-Bella (NYSDEC call-out contractor) conducted a site walkover and scoping discussion. The main purpose was to assess current site conditions and accessibility and to determine the appropriate locations for new monitoring well installations. After the site walkover, E & E prepared and submitted a Sampling and Analysis Plan to the NYSDEC on May 3, 2021. A site-specific health and safety plan was prepared for this fieldwork and was included in the Sampling and Analysis Plan.

NYSDEC call-out contractor LaBella contacted Dig Safely New York to request mark-outs of underground utilities the week before beginning intrusive activities.

Borehole Drilling and Monitoring Well Installation 2.2

Four monitoring wells were installed at the site. All drilling and monitoring well installations were completed by LaBella. Drilling and well installation were conducted between November 22 and December 3, 2021.

A Q-Rae 4-gas meter was affixed to the drill rig as a precautionary measure in the event that natural gas was encountered during drilling. No alarms were raised throughout the borehole drilling process. A community air monitoring program (CAMP) was in place with stations upwind and downwind during the overburden

drilling activities, each containing a Mini-Rae 3000 photoionization detector and a Dusttrak DRX aerosol monitor 8533 to monitor VOCs and particulate matter in the air, respectively. No alarms or exceedances were encountered by the CAMP monitors throughout the overburden drilling process.

Overburden drilling was conducted using 6.25-inch inside-diameter hollow stem augers from ground surface to the top of competent rock before switching to airrotary drilling methods. Soil samples for lithologic description were collected using standard (i.e., 5-foot center) split-spoons at DR-2-D and DR-2-U, and continuous split-spoons at DR-3-D and DR-3U. All split-spoon samples were logged for soil color, grain-size, density, and scanned with a photoionization detector to detect the presence of VOCs in the soil. Field observations were recorded in the logbook and were used to construct boring log diagrams (Appendix A).

A 6-inch nominal diameter roller bit was then advanced 1 to 2 feet into competent rock through the augers before setting a 4-inch diameter steel casing in the bedrock. The annulus was backfilled with a 95/5 percent mixture of portland cement/bentonite grout to ground surface. The grout was allowed to cure overnight before advancing the coring device.

After the casing was set and the grout cured, a 4-inch nominal diameter borehole was advanced from the bottom of the casing into bedrock using an NX coring device. Rock core was recovered, transferred to core boxes, and logged for lithology and fractures. Boring log diagrams are provided in Appendix A.

Upon reaching the target depth, each borehole was completed as an open bedrock monitoring well with a stickup casing. Three 2-inch diameter steel bollards were placed around each well in the DR-3 cluster in the median of the Interstate 490 and 390 interchange to protect against damage from New York State Department of Transportation grass cutting activities. Bollards were determined to not be necessary in the DR-2 cluster as they are located on undeveloped woodland. Lids and locks were placed at the top of casings for security once work was finished. Investigation-derived waste generated includes soil cuttings, drilling fluids, groundwater purge water, and decontamination waste such as rinsate and poly liner.

2.3 New Monitoring Well Development

The new monitoring wells were developed by an E & E and LaBella field team using a submersible typhoon pump a minimum of 24 hours after well installation activities were completed. The wells were surged by agitating the water column using the submersible pump to remove fine sediments from the open bedrock borehole. Groundwater was purged from the wells, and development was considered complete when pH, temperature, and conductivity stabilized within \pm 10 percent over the final three readings and turbidity was less than 50 nephelometric turbidity units (NTUs) (see Appendix B for development logs). Each well was purged in excess of three well volumes, and a total of approximately 250 gallons of groundwater were purged from the four new wells. Purge water was containerized in 55-gallon drums.

2.4 Monitoring Well Sampling

On December 7 and 8, 2021, wells DR-2-U, DR-2, DR-2-D, DR-3-U, DR-3, and DR-3-D were sampled using U.S. Environmental Protection Agency low-flow purging and sampling techniques with a peristaltic pump and dedicated polyethylene tubing. During purging, temperature, pH, specific conductance, dissolved oxygen, and oxidation-reduction potential were monitored using a multi-parameter water-quality meter equipped with a flow-through cell, and drawdown was monitored using an electronic water-level meter. Upon stabilization of parameters, the flow-through cell was removed from the system and groundwater samples were collected using the peristaltic pump. Stabilization was defined as three consecutive readings with: pH within \pm 0.1 standard units; temperature within \pm 3 percent; oxidation-reduction potential within \pm 10 millivolts; conductivity within \pm 3 percent; dissolved oxygen within 10 percent, except when below 0.5 milligrams per liter; and turbidity less than 50 NTU. The purge logs that include the final groundwater quality parameters measured at the time of sampling are provided in Appendix C.

2.5 Site Survey

Geographic coordinates and elevations were surveyed by WSP's New York state licensed land surveyors on behalf of E & E on December 7, 2021. Survey control points were established referencing the New York State Continuously Operating Reference Station Network. The survey is referenced horizontally to the North American Datum of 1983 and vertically to the North American Vertical Datum of 1988. The horizontal coordinates of all the new monitoring wells along with DR-2 and DR-3 were calculated to the nearest 0.1 foot, and the vertical coordinates of the ground surface and top of casing elevations also were calculated to the nearest 0.01 foot. Table 1 includes the coordinates of each monitoring well.

2.6 Investigation-Derived Waste Management

Investigation-derived wastes (IDW) were containerized in 55-gallon steel drums, except rock cores, which are stored in wooden core-log boxes. The wastes are stored on-site and secured within a locking gate at the north end of Dearcop Drive for later sampling and disposal coordinated by LaBella. A total of 20 IDW drums were generated during this investigation: nine (9) drums of waste water from well development, sampling purge water, and decontamination rinsate; 10 drums of soil and rock core cuttings; and one (1) drum of decontamination pad materials. Four additional drums are present inside the fenced area, two are labeled as drums of purge water from previous sampling event, and two are unlabeled drums with unknown contents. The four rock core boxes generated during this investigation (one from each new well) are also staged in the drum area.

2.7 Sample Handling and Analysis

Groundwater samples were collected in laboratory-supplied bottleware. Upon collection, the sample containers were labeled and immediately placed in a cooler maintained with ice. Strict chain-of-custody procedures were followed, and the

samples were shipped via overnight courier to Pace Analytical Laboratories in Melville, New York (under subcontract with NYSDEC). Groundwater samples were analyzed for VOCs using the U.S. Environmental Protection Agency SW-846 Method 8260D, *Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry*.

The analytical laboratory report was consistent with NYSDEC Analytical Services Protocol Category A deliverable requirements, and data were provided in NYSDEC Environmental Quality Information Systems electronic data deliverables for review by E & E. The laboratory report is provided in Appendix D.

2.8 Quality Assurance/Quality Control

Quality assurance/quality control samples were collected in accordance with the specifications of E & E's Quality Assurance Project Plan for NYSDEC projects (E & E 2020) and included a field duplicate, a trip blank, and a matrix spike/matrix spike duplicate pair. The duplicate sample was collected at DR-2-U, and the matrix spike/matrix spike duplicate was collected at DR-2-D.

2.9 Data Review

All laboratory deliverables were reviewed in accordance with the Quality Assurance Project Plan. A data usability summary report was prepared in accordance with NYSDEC's *DER-10 Technical Guidance for Site Investigation and Remediation* (NYSDEC 2010). The data review included an evaluation of the following:

- Reporting limits/dilutions
- Matrix spike/matrix spike duplicate samples
- Laboratory control samples
- Field duplicates

Any deviations from acceptable quality control specifications are discussed in the data usability summary report. Qualifiers were added to the data, if appropriate, to indicate potential concerns with data usability, and these qualifiers were transferred to the data summary presented in Table 2. There were no significant impacts on data usability.

Results

3.1 Site Geology

Site overburden consists of a generally fining upward sequence of gravelly sand, silty sand with gravel, and silt. The shallowest soils at the site are topsoil comprised of silt and organics ranging on the order of less than a foot to 2 feet thick. Underlying the site topsoil is a layer of urban fill comprised of silt, sand, gravel, and occasional slag. This unit is underlain by 5 to 15 feet of yellowish-brown to gray silt with varying fractions of sand and gravel. Cobbles are common in this layer. The deepest unit in the overburden is a possible till characterized by dense to very dense brownish-gray to gray poorly graded sand with gravel, approximately 2 to 6 feet thick. The soil column was generally dry. Moist, but unsaturated, soil was observed above the bedrock interface. In general, overburden thickness was greater in the DR-3 cluster than in the DR-2 cluster. Overburden thickness ranged from 15.2 feet at DR-2-U to 23.3 feet at DR-3-U. See Appendix A for boring log diagrams.

The underlying bedrock consists of moderately fractured dolomite, containing dissolution features such as vugs and stylolites. Vugs are typically mineralized with calcium carbonate, and fractures are typically horizontal, narrow and clean, with occasional mineralization on the fracture surfaces. Water was used during the drilling process and the saturation of the bedrock fractures could not be determined from the recovered core.

3.2 **Groundwater Flow Direction**

Seven monitoring wells (i.e., DR-1, DR-2, DR-2-D, DR-2-U, DR-3, DR-3-D, and DR-3-U) were gauged for depth to water measurements using an electronic water level meter (Figure 1). The depth to groundwater ranged from approximately 17.5 feet bgs at DR-2, located upgradient at the site, to approximately 28 feet bgs at DR-3-U (Table 3).

Groundwater elevations measured at the site ranged from 510.33 feet above mean sea level (AMSL) at DR-3 to 519.53 feet AMSL at DR-2 (Table 3). The groundwater elevation contours indicate a flow direction to the east-northeast towards the barge canal, consistent with historical results (Figure 3). However, a perturbation in the flow field at DR-3D is present where the groundwater elevation of 516.46 feet AMSL is approximately 6 feet greater than nearby wells DR-3 and DR-3-U (510.33 and 510.77 feet AMSL, respectively). DR-3-D is located adjacent to a drainage ditch and was gauged during a rainfall event, which may have

influenced water levels in this location. However, the VOC concentrations in the sample collected from this well do not indicate dilution. Alternatively, DR-3-D may intercept a fracture with greater hydraulic head than those intercepted by wells DR-3 and DR-3-U.

3.3 Volatile Organic Compounds Groundwater Sampling Results

Seventeen total VOCs were detected in one or more of the six wells sampled at the site (Table 2). Of these, 11 compounds exceeded the evaluation criteria in one or more samples. 1 The exceedances are predominantly chlorinated VOCs and include:

- 1,1,1-trichloroethane (1,1,1-TCA; 5.78 to 81.9 micrograms per liter [µg/l])
- 1,1,2-TCA (1.9 μ g/l)
- 1,1-dichloroethane (1,1-DCA; 5.49 to 909 μg/l)
- 1,1-dichlorethene (1,1-DCE; 10.1 to 55.2 µg/l)
- 1,2-DCA (3.65 to 14.1 μ g/l)
- benzene (1.01 to 54.2 μ g/l)
- chloroethane (17.6 to 249 μ g/l)
- cis-1,2-DCE (93.5 to 1,760 μ g/l)
- ethylbenzene (10.3 to 11.4 μ g/l)
- trans-1,2-DCE (10.9 to $28.6 \mu g/l$)
- Trichloroethylene (TCE; 17.2 to 124 µg/l)
- vinyl chloride (110 to 678 μg/l)

The highest concentrations of total VOCs were detected in the sample collected from monitoring well DR-3-D (2,305 µg/l). However, concentrations at the remainder of the wells, except DR-3, were within the same order of magnitude (i.e., approximately 1 to 2 parts per million [ppm]).

The groundwater sample results in DR-2 (1,235 µg/l of total VOCs) are consistent with historical sampling results which range from 747 μg/l to 1,871 μg/l of total VOCs between 2013 and August 2021. The total VOC concentrations in DR-2-D and DR-2-U (1,894 µg/l and 1,378 µg/l, respectively) are also consistent with historical concentrations in this area of the site. Historical groundwater sample results in DR-2 are presented in Table 4.

The December 2021 sampling results for DR-3 showed significantly reduced contaminant concentrations when compared with historical results. Between 2013 and

Evaluation Criteria are the New York State Ambient Water Quality Standards and Guidance Values for Class GA groundwater as provided in the NYSDEC Division of Water, Technical and Operation Guidance Series (1.1.1), dated June 1998, and in the April 2000 Addendum.

2021, the total VOC concentrations in groundwater collected from this well have ranged from 444 $\mu g/l$ to 2,910 $\mu g/l$, but concentrations have been slowly decreasing over time. For the December 2021 sample event, the total VOCs in DR-3 were 8.1 $\mu g/l$ (approximately two orders of magnitude lower recent sampling events) and only 2 VOCs (1,1-DCA and 1,2-DCA) were detected at levels slightly exceeding the groundwater standards of 5 $\mu g/l$ and 1 $\mu g/l$, respectively. Concentrations of total VOCs in DR-3-D (2,305 $\mu g/l$) and DR-3-U (1,794 $\mu g/l$) were more consistent with the historical VOC concentrations observed in this area of the site. Historical groundwater sample results in DR-3 are presented in Table 5.

Conclusions and Recommendations

Conclusions 4.1

Chlorinated VOC contamination has been present in the shallow bedrock aquifer wells DR-2 and DR-3 above groundwater standards over the past 30 years. Four additional shallow bedrock wells were installed around these wells (one upgradient and one downgradient of each well) to help determine if the VOC groundwater contamination is localized to the existing wells or present in the surrounding area of the wells.

Based on the results for DR-2 and the four new shallow bedrock wells, there appears to be chlorinated VOC contamination of 1 to 2 ppm in the shallow bedrock at the site. The one exception to this conclusion is that the sample results from DR-3 are significantly lower than previous sampling events. Although total VOC contamination has been generally decreasing in this well over time, such a significant decrease in VOC contamination is unexpected and could be the result of drilling and installing wells DR-3-U and DR-3-D. Bedrock coring of these wells may have impacted the groundwater in and immediately surrounding DR-3. Since the well was sampled by low flow methods, it is possible that the December sample may have been taken from the drill-impacted water in the well and not actual aquifer contaminated groundwater.

4.2 Recommendations

Based on the unexpected sample results from DR-3, E & E recommends collecting another round of groundwater samples from the DR-3 well cluster in spring or summer 2022 to assist in determining if the contamination reduction in DR-3 is real. Before the wells are sampled, E & E recommends at least two well volumes of groundwater be removed from DR-3 to ensure that aquifer groundwater is being sampled.

Based on the December 2021 sampling event, during which five of the six shallow bedrock wells were determined to have total VOC concentrations above 1 ppm, it appears that chlorinated VOC contamination in the shallow bedrock is present throughout the areas surrounding DR-2 and DR-3. Therefore, E & E has identified three potential options to address the shallow bedrock groundwater contamination at the site:

4 Conclusions and Recommendations

- Installation of additional shallow bedrock wells throughout and upgradient of the site to investigate the extent of chlorinated VOCs.
- As groundwater at the site is not utilized for drinking water and chlorinated VOC concentrations in DR-2 and DR-3 have been decreasing slowly over time, proceed with monitored natural attenuation at the site.
- If it is determined that monitored natural attenuation is not the path forward for the shallow bedrock contamination at the site, perform a chemical injection pilot study to identify an in-situ chemical injection that can accelerate contaminant degradation in the shallow bedrock at the site.

References

Ecology and Environment Engineering, P.C. (E & E). 2020. Master Quality Assurance Project Plan (QAPP) for New York State Department of Environmental Conservation Projects. Prepared for New York State Department of Environmental Conservation, Albany, New York, April 2020.

New York State Department of Environmental Conservation (NYDEC). 2010. DER-10, Technical Guidance for Site Investigation and Remediation, Division of Environmental Remediation, Albany, New York, May 2010.

Figures

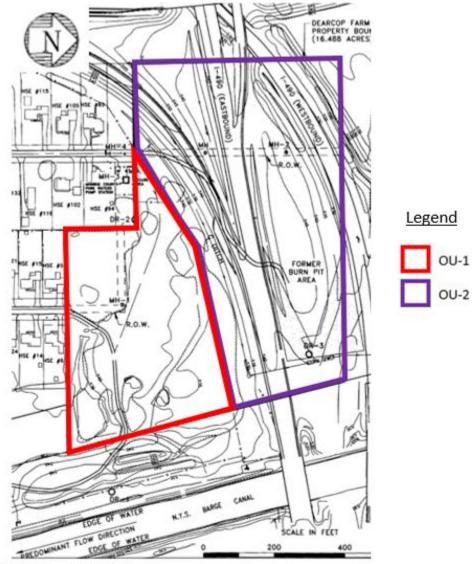


Figure 1 – Site Plan

Dearcop Farm

Monroe County

Town of Gates, New York

DR-3-U DR-3 DR-3-D **Analyte** 12/08/21 12/08/21 12/07/21 (µg/L) LEGEND 1,1,1-Trichloroethane (TCA) 0.149 U 81.9 18.1 MONITORING ,1,2-Trichloroethane 0.158 U 1.90 0.158 U DR-3-D WELL 1,1-Dichloroethane 5.49 174 449 DR-3-D LOCATION 1,1-Dichloroethene 0.188 U 28.5 10.1 **9** DR-3 0.0819 U 0.0819 U 1,2-Dichloroethane 3.65 ₽DR-3-U Benzene 1.07 1.53 54.2 Chlorobenzene 0.116 U 0.116 U 8.22 Chloroethane 0.192 U 17.6 3.84 U Cis-1,2-Dichloroethylene 0.126 U 1760 508 Cyclohexane 0.188 U 2.32 2.09 0.137 U Ethylbenzene 11.4 10.3 Methylcyclohexane 0.660 U 0.660 U 5.25 0.278 U 0.278 U **Foluene** 1.27 Γrans-1,2-Dichloroethene 1.54 4.42 28.6 Trichloroethylene (TCE) 0.190 U 55.4 17.2 Vinyl Chloride 0.234 U 161 678 0.174 U Xylenes 0.174 U 5.01 TOTAL VOCS 8.1 2305.22 1793.74 DR-1 DR-2 DR-2-D DR-2-U **Analyte** 12/07/21 12/07/21 12/07/21 $(\mu g/L)$ 1,1,1-Trichloroethane (TCA) 0.149 U 35.3 5.78 1,1-Dichloroethane 744 793 909 1,1-Dichloroethene 121 132 55.2 1,2-Dichloroethane 9.22 5.26 14.1 Benzene 2.73 4.89 1.03 Chloroethane 4.80 U 249 86.7 Cis-1,2-Dichloroethylene 184 433 99.4 Trans-1,2-Dichloroethene 3.39 10.9 0.149 U Trichloroethylene (TCE) 58.9 124 46.8 Vinyl Chloride 118 198 113 TOTAL VOCS 1234.92 1893.79 1417.39 NOTES SCALE IN FEET 200 300 1. AERIAL IMAGERY SHOWN IS FROM TOWN OF GATES, 2020. 100

FIGURE 3 - PDI SAMPLING RESULTS
DEARCOP FARM
MONROE COUNTY
TOWN OF GATES, NEW YORK

Tables

Table 1 Monitoring Well Construction Summary Dearcop Farm, Gates, NY

	Installation			Well Diameter	Ground Surface Elevation	Top of Casing Elevation	Depth to Bedrock	Depth of Steel Casing	Total Well Depth
Well ID	Date	Northing	Easting	(inches)	(ft AMSL)	(ft AMSL)	(ft bgs)	(ft bgs)	(ft bgs)
DR-1	UK	1151118.2	1390999.3	3.0	534.8	536.21	8	15	33
DR-2	UK	1151200.5	1390234.4	3.0	537.2	538.92	15	19	30
DR-2D	11/29/2021	1151204.5	1390263.2	4.0	537.8	539.62	15.8	19	34
DR-2U	11/24/2021	1151187.2	1390213.2	4.0	536.6	538.01	15.2	17.5	31.5
DR-3	UK	1151691.1	1390612.7	3.0	539.4	539.52	16	20.5	37
DR-3D	12/02/2021	1151719.5	1390640.8	4.0	536.1	538.22	20.5	22.5	37.5
DR-3U	12/03/2021	1151669.2	1390592.7	4.0	538.8	541.31	23.3	25	39

Key:

ft bgs = feet below ground surface ft AMSL = feet above Mean Sea Level

UK = unknown

Table 2 Summary of Positive Analytical Results for Groundwater Samples Dearcop Farm, Gates, NY

Analyte	Samp Screening	ation ID: le Name: Date: Notes	DR-2 DR-2-120721 12/07/21	DR-2-D DR-2-D-120721 12/07/21	DR-2-U DR-2-U-120721 12/07/21	DR-2-U DR-2-U-120721Q 12/07/21	DR-3 DR-3-120821 12/08/21	DR-3-D DR-3-D-120821 12/08/21	DR-3-U DR-3-U-120721 12/07/21
Volatile Organic Compounds by Method 8260D (µg/L)									
1,1,1-Trichloroethane (TCA)	5		5.78	0.149 U	35.2	35.3	0.149 U	81.9	18.1
1,1,2-Trichloroethane	1		0.158 U	0.158 U	0.158 U	0.158 U	0.158 U	1.90	0.158 U
1,1-Dichloroethane	5		744	793	858	909	5.49	174	449
1,1-Dichloroethene	5		121	132	55.2	53.0	0.188 U	28.5	10.1
1,2-Dichloroethane	0.6		9.22	14.1	5.26	5.26	0.0819 U	0.0819 U	3.65
Benzene	1		2.73	4.89	1.01	1.03	1.07	1.53	54.2
Chlorobenzene	5		0.116 U	0.116 U	0.116 U	0.116 U	0.116 U	0.116 U	8.22
Chloroethane	5		4.80 U	249	86.7	86.3	0.192 U	17.6	3.84 U
Cis-1,2-Dichloroethylene	5		184	433	99.4	93.5	0.126 U	1760 J	508
Cyclohexane			0.188 U	0.188 U	0.188 U	0.188 U	0.188 U	2.32	2.09
Ethylbenzene	5		0.137 U	0.137 U	0.137 U	0.137 U	0.137 U	11.4	10.3
Methylcyclohexane			0.660 U	0.660 U	0.660 U	0.660 U	0.660 U	5.25	0.660 U
Toluene	5		0.278 U	0.278 U	0.278 U	0.278 U	0.278 U	0.278 U	1.27
Trans-1,2-Dichloroethene	5		3.39	10.9	0.149 U	0.149 U	1.54	4.42	28.6
Trichloroethylene (TCE)	5		46.8	58.9	124	124	0.190 U	55.4	17.2
Vinyl Chloride	2		118	198	113	110	0.234 U	161	678
Xylenes	5		0.174 U	0.174 U	0.174 U	0.174 U	0.174 U	0.174 U	5.01
TOTAL VOCS			1234.92	1893.79	1377.77	1417.39	8.1	2305.22	1793.74

Key:

Qualifiers

U = Not detected (method detection limit shown)

Notes

G = Guidance value (no standard available)

Other

 $\mu g/L = Micrograms per liter$

"-Q" denotes field duplicate sample

Bold values denote positive hits.

Exceeds groundwater standard.

Exceeds groundwater guidance value.

1. New York State Department of Environmental Conservation, Technical and Operational Guidance Series Memorandum #1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, 1998 (with updates), Class GA Groundwater Standards and Guidance Values.

Table 3 Groundwater Elevations
Dearcop Farm, Gates, NY

Well ID	Top of Casing Elevation (ft AMSL)	Depth to Water (ft btoc)	Groundwater Elevation (ft AMSL)
DR-1	536.21	24.88	511.33
DR-2	538.92	19.39	519.53
DR-2D	539.62	20.33	519.29
DR-2U	538.01	19.74	518.27
DR-3	539.52	29.19	510.33
DR-3D	538.22	21.76	516.46
DR-3U	541.31	30.54	510.77

Key:

ft btoc = feet below top of casing

ft bgs = feet below ground surface

ft AMSL = feet above Mean Sea Level

UK = unknown

Table 4 DR-2 Historical Results

			DR-2		
Analyte (µg/L)	11/20/1992	8/25/1993	10/30/2013	3/18/2020	12/7/2021
1,1,1-TRICHLOROETHANE	93	490	6.3	< 0.82	5.78
1,1-DICHLOROETHANE	1900	2400	1200	490	744
1,1-DICHLOROETHENE	120	190	83	120	121
1,2-DICHLOROETHANE	U	73	13	6.0	9.22
TOTAL-1,2-DICHLOROETHENE	250	250	260	110	187
TRICHLOROETHENE	200	340	79	6.1	46.8
VINYL CHLORIDE	U	190	190	13	118

Table 5 DR-3 Historical Results

			DR-3		
Analyte (μg/L)	11/20/1992	3/26/1993	10/29/2013	3/18/2020	12/8/2021
1,1,1-TRICHLOROETHANE	30	64	25	<8.2	U
1,1-DICHLOROETHANE	250	380	560	320	5.49
1,1-DICHLOROETHENE	26	52	U	< 2.9	U
TOTAL-1,2-DICHLOROETHENE	1700	2300	1335	200	1.54
TRICHLOROETHENE	76	150	8.9	4.6	U
VINYL CHLORIDE	340	660	690	150	U

A Boring Log Diagrams

		ne: Dea						Client:		Location: Gates, New York	Boring Log: MW-DR	
		LaBella						Drill Start Dat		Drill End Date:	Drill Method: HSA	
		Erik S.						Total Depth (f	<u>- </u>	Bore Diameter (in): 8.25/4	Ground Surface (ft	
Coord	dinate	s (X/Y):	13902	63.22/1				Well Permit N	umber:	Г	Top-of-Casing (ft-r	nsl): 539.62
					We	ll Cons	structio				Annulus	
			Mate	rial				Diameter (in)	Depth (ft)	Material		Depth (ft)
Scree Riser:								2 2		Filter Pack: Seal:		to
Other								2		Other:		
Depth (ft)	Elevation (ft-msl)	Type	Lab Sample Interval	Blows	Recovery (%)	RQD	Graphic Log	the boring.	Phy	d on visual descriptions made durin	g the installation of	Well
		1		1			шш	1 \				
-	- -	X		6 8 3	50	0.0		POORLY	wn silt, trace rootlets; V-GRADED SAND (s	sp)	/	
2 -	- 536 - -			9 5 5	100	0.0		Dark brownslag between	een 0.7 and 1 foot.	and; loose; dry; tree root betwee	en 0.5 and 0.7 foot;	
4 -	- - 534			4					n-brown silt, loose; dr	y.		<u> </u>
_ _ _	- -	X		5 9	100	0.0		Yellowish	AND (sm) n-brown fine-grained TH SAND (ml)	sand, little silt, trace gravel; loo	se; dry.	
6 - - - - 8 -	- 532 - - - - 530			11 17 31 25 20	100	0.0		Reddish-l dry. SILTY SA Yellowish	orown silt, few sand a	nd fine-grained sub-rounded gr	d gravel to 0.5-inch	3.25 U
-	-			17 14 13 16	75	0.0		POORLY Yellowish	Y-GRADED SAND ((p) sand, trace sub-rounded gravel,		
- - -	- 528 - -			10 13 14 17	75	0.3		Yellowish	V-GRADED SAND Wan-brown fine-grained edium dense to dense	sand, few silt, trace clay nodule	s, trace sub-rounded	
- - -	- 526 - -			20 25 24 40	100	0.2		Brown fir	Y-GRADED SAND Wene-grained sand, little plus in diameter; very	coarse-grained sand and sub-ro	unded gravel up to	
14 - - -	- 524 - -	F		50/0				POORLY Split-spoo	V-GRADED SAND Won refusal at 14 feet o	VITH GRAVEL (sp) n boulder. Cuttings below.		
16 -	- 522 -	1						Dolomite Cuttings	,			
18 -	- 520 -											
20 -	- - 518											-

Notes: All soil classifications based on visual descriptions made during the installation of the boring Physical Description Physical Description Physical Description Physical Description Physical Description Dolomite Gray dolomite; strong to very strong; matrix is fresh; aphanific to fine-grainect; massive; fresh to slightly decomposed; slightly distingented along stylolite bands every 3 inches to 1 for; indevletely finatured. The control of th	ect Nai	ame: Do	earco	p Fai	rm				Client: Location: Gates, N	New York	Boring Log: MW-DR	R-2D				
Dolomite Grup dedomite; strong to very strong; matrix is fresh; sphanitic to fine-grained; massive; fresh to slightly decomposed; slightly disintegrated along stylolite bands every 3 inches to 1 foot; moderately fractured. Practures: 20 feet - Bedding plane joint; horizontal; moderately narrow; not healed; rough; cohesive sediment infilling. 21 to 24, 5 feet - Verticul fracture; extremely narrow; partly healed; clean; smooth. 22 feet - Horizontal fracture; gight totally healed; clean; smooth. 23 feet - Horizontal fracture zone; narrow; not healed; clean; smooth. 24 feet - Horizontal fracture zone; stight; totally healed; mineralized with calcie; rough. 25 feet - Horizontal fracture zone; smooth; not healed; mineralized with calcie; rough. 28 feet - Horizontal fracture zone; smooth; not healed; mineralized with calcie; rough. 29 feet - Horizontal fracture zone; smooth; not healed; mineralized with calcie; rough. 20 feet - Bedding plane joint; horizontal vag; wide; partly healed; clean; smooth. 21 feet - Horizontal fracture zone; wide; not healed; mineralized with calcie; rough. 21 feet - Horizontal fracture zone; smooth; not healed; mineralized with calcie; rough. 22 feet - Horizontal fracture zone; smooth; not healed; mineralized with calcie; rough. 23 feet - Horizontal fracture zone; smooth; not healed; mineralized with calcie; rough. 24 feet - Near-horizontal vag; wide; partly healed; mineralized with calcie; rough. 25 feet - Near-horizontal vag; wide; partly healed; mineralized with calcie; rough. 26 feet - Near-horizontal fracture zone; smooth; not healed; narrow; clean. 27 feet - Horizontal fracture zone; smooth; not healed; narrow; clean. 28 feet - Near-horizontal fracture zone; smooth; not healed; narrow; clean. 29 feet - Near-horizontal fracture zone; smooth; not healed; narrow; not heal	evation (ft-msl)	pe		b Sample Interval	0ws	жоvery (%)	(i)	raphic Log	the boring.							
Dolomic Gray dolomic, strong to very strong; matrix is fresh; aphanitic to fine-grained; massive; firsh to slightly decomposed; slightly disintegrated along stylolite bands every 3 inches to 1 foot; moderately firactured. Fractures: 20 feet - Bedding plane joint; horizontal; moderately narrow; not healed; rough; closelve sodiment infilling. 21 52 feet - Herizontal fracture; tight; totally healed; clean; smooth. 22 52 feet - Herizontal fracture zone; narrow; not healed; clean; smooth. 23 7.5 feet - Horizontal fracture zone; inarrow; not healed; clean; smooth. 24 514 25.5 feet - Horizontal fracture zone; under the plane of the clear, smooth; and the clear strong of the clea	Ē	Ţ	,	E _a	B	R	ä	5	Physical Description							
36 — 502 38 — 500 40 — 498 42 — 496 — — — — — — — — — — — — — — — — — — —	514	2 08							Gray dolomite; strong to very strong; matrix is fre massive; fresh to slightly decomposed; slightly dis every 3 inches to 1 foot; moderately fractured. Fractures: 20 feet - Bedding plane joint; horizontal; moderate cohesive sediment infilling. 22 to 24.5 feet - Vertical fracture; extremely narror 25.2 feet - Horizontal fracture; tight; totally healed 26.0 feet - Joint; 35 degree dip; extremely narrow; 27 to 27.5 feet - vugs 27.5 feet - Horizontal fracture zone; narrow; not he 29.5 to 29.6 feet - Horizontal fracture zone; tight; calcite; rough. 31 feet - Horizontal fracture zone; wide; not healed drillers. 32.4 to 32.5 feet - Near-horizontal vug; wide; part calcite; rough. 33.2 to 33.3 - Horizontal fracture zone; smooth; r	ely narrow; not how; partly healed d; clean; smooth.; not healed; clean; ste totally healed; ned; disintegrated; tly healed; miner	stylolite bands nealed; rough; ; clean; smooth. nn; smooth. pped. nineralized with rough; noted by alized with	<u>-</u> + + + + + + + + + + + + + + + + + + +				
8 - 500 - 498 	_								Bottom of boring at 34 feet. Bottom of Hole							
2 + 496	<u>-</u> -															
	498	8														
. T	496	6														
4 <u>+</u> 494 <u>+</u> +	494	4														

Duoio	at Nan	no. Door	roon Ec					Clion	4.		Location: Gates, New York	Poring Logy M/W	DB 3H
Project Name: Dearcop Farm Drilled By: LaBella/Chris Steele								Client:			Drill End Date:	Boring Log: MW-DR-2U Drill Method: HSA/Air Rotary	
•								Drill Start Date: 11/22/2021 Total Depth (ft): 31.5				+	
Logged By: Erik S. Reinert Coordinates (X/Y): 1390213.212/1151187.179											Bore Diameter (in): 8.25/4	Ground Surface	` ′
Coord	dinates	(X/Y):	13902	13.212/					Permit N	umber:		Top-of-Casing (f	t-msl): 538.01
					We	ell Cons	structio			T = 1.00		Annulus	1
Material									eter (in)	Depth (ft)	Materi	al	Depth (ft
	Screen:								2		Filter Pack: Seal:		to
	Riser: Other:								2		Other:		
Depth (ft)	Elevation (ft-msl)	Type	Lab Sample Interval	Blows	Recovery (%)	RQD	PID (ppm)	Graphic Log		tallation of the boring.	ns based on visual descriptions m	ade during the	Well
_		`		-					Gı	ound Surface	, -		
- - 2 -	- 535	X		W W 5 5	25		0.0		OF	RGANIC SOIL (ol/ol	soil, trace rootlets; soft; dry.		
- -	_			5 5 8 47	50		0.0		Ye	LT (ml) llowish-brown silt, so	ft; dry; little clay.		2.5
-	- 533 -			4 15 9	100		0.0	, 000	Gra	ELL-GRADED GRA ay siltstone fragments OORLY-GRADED SA	(ND WITH SILT (sp-sm)		
-	531			13 12 12 10 10	100		0.0		WI Lig	ELL-GRADED SAN	ine-grained sand, trace gravel; D WITH SILT AND GRAVE ine- to coarse-grained sand; m	EL (sw-sm)	
- - -	529			9 15 12 15	100		0.0		Ye		IND WITH GRAVEL (sp) rained sand, little coarse sand a	and gravel; medium	
- - - 12 -	<u>-</u>			9 12 15 23	100		0.4						
-	523			25 31 38 65	100		0.2		Bro	OORLY-GRADED SA ownish-gray to gray v diameter; dense; dry.	IND WITH GRAVEL (sp) ery fine to fine-grained sand, l	ittle gravel to 2-inches	
_				18 19 22	100		0.2						
16 -	521			50/2						DLOMITE ttings			
18 - - - - 20 -	519				100	67							† † † † † †

Proje	ct Nam	e: Dea	rcop Fa	ırm				Clien	t: Location: Gates, New York Boring Log: MW-DR-20	J	
	Elevation (ft-msl)		Lab Sample Interval	Blows	Recovery (%)	RQD	PID (ppm)	Graphic Log	Notes: All soil classifications based on visual descriptions made during the installation of the boring.	Well	l
24 24 26 28 30 32	Elevation (ft. Elev	Type	Lab Sample	Blows	Recovery (%	RQD RQD	PID (ppm)	Graphic Log	DOLOMITE Gray dolomite; hard; fresh; thickly bedded; broken between 17.5 and 18.3 feet; massive between 18.3 and 21.5 feet; horizontal fractures/mechanical breaks at 17.7, 17.74, 17.85, 17.9, 18.1 to 18.3, 19, 19.3, 19.6, 19.7, 21.1, and 21.4 feet, 1-inch diameter vug at 19.3 feet, fracture surfaces are fresh, unweathered with no infilling, rough and stepped. (continued) DOLOMITE Gray dolomite; core and fracture depths cannot be determined due to dropped core; vuggy, phaneritic (recrystallized), high-angle (10->45 degree) dissolution planes every 2 feet, approximately; broken between 29.6 and 31.5 feet, where core was recovered in-situ.		
38 - - - - 40 - - - 42 - -	- 499 - 497 - 495 - 493										

Drilled By: LaBella/Chris Steele Drill Start Date: Drill End Date: Drill End Date: Drill Method: HSA/Air Rotary Drill Method: HSA/Air Rotary Drill Start Date: Drill End Date: Drill End Date: Drill End Date: Drill Method: HSA/Air Rotary Ground Surface (ft-msl): 536.1 Top-of-Casing (ft-msl): 538.22 Well Construction Annulus Material Diameter (in) Depth (ft) Screen: 2 Filter Pack: Filter Pack: Seal:	D	-4 N	D	Г.					Clim	4.		Leading Cotes New Year	Daving Law M	V DD 2D
Logged By: Erk S. Reinest Coordinates (NY): 1396649.828/115719.507 Well Permit Number: Top-of-Casing (R-and): 536.1 Top-of-	Project Name: Dearcop Farm											Location: Gates, New York	Boring Log: MW-DR-3D	
Coordinates (XV): 1390640 828/1151719-507 Well Permit Number: Top-of-Casing (ft-msl): 538 22	·												<u> </u>	
Well Construction Diameter (in) Depth (ft) Material Depth (ft) Filter Pack: Seal: Other: 2 Diameter (in) Depth (ft) Filter Pack: Seal: Other: Other:									 			Bore Diameter (in): 8.25/4	_	
Screen: Kiker: Other: Diameter (in) Depth (ft) Filter Pack: Scal: Other:	Coor	dinates	(X/Y):	13906	40.828/					Permit N	umber:			(ft-msl): 538.22
Screen: Comparison Compari						We	ll Cons	structio			T		Annulus	
Solite: Soliter:	~			Mate	rial				Diam		Depth (ft)			1
Other: Other Other														to
Ground Surface SILT (mt) Yellowish-brown and gray silt, trace organics and wood fragments. SILT WITH GRAVEL (mt) Yellowish-brown and gray silt, trace organics and wood fragments. SILT WITH GRAVEL (mt) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. Silt WITH GRAVEL (mt) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. Silt WITH GRAVEL (mt) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. POORLY-GRADED GRAVEL (mt) Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; dry; dry; dry; dry; dry; dry; dry	Other:									2				
Ground Surface SILT (mt) Yellowish-brown and gray silt, trace organics and wood fragments. SILT WITH GRAVEL (mt) Yellowish-brown and gray silt, trace organics and wood fragments. SILT WITH GRAVEL (mt) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. Silt WITH GRAVEL (mt) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. Silt WITH GRAVEL (mt) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. POORLY-GRADED GRAVEL (mt) Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; dry; dry; dry; dry; dry; dry; dry														
Ground Surface SILT (mt) Yellowish-brown and gray silt, trace organics and wood fragments. SILT WITH GRAVEL (mt) Yellowish-brown and gray silt, trace organics and wood fragments. SILT WITH GRAVEL (mt) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. Silt WITH GRAVEL (mt) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. Silt WITH GRAVEL (mt) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. POORLY-GRADED GRAVEL (mt) Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; dry; dry; dry; dry; dry; dry; dry				.val								ns based on visual descriptions made	during the	Well
Ground Surface SILT (mt) Yellowish-brown and gray silt, trace organics and wood fragments. SILT WITH GRAVEL (mt) Yellowish-brown and gray silt, trace organics and wood fragments. SILT WITH GRAVEL (mt) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. Silt WITH GRAVEL (mt) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. Silt WITH GRAVEL (mt) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. POORLY-GRADED GRAVEL (mt) Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; dry; dry; dry; dry; dry; dry; dry		-msl)		Inter						inst	tallation of the boring.			
Ground Surface SILT (mt) Yellowish-brown and gray silt, trace organics and wood fragments. SILT WITH GRAVEL (mt) Yellowish-brown and gray silt, trace organics and wood fragments. SILT WITH GRAVEL (mt) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. Silt WITH GRAVEL (mt) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. Silt WITH GRAVEL (mt) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. POORLY-GRADED GRAVEL (mt) Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; dry; dry; dry; dry; dry; dry; dry		ı (ft.		ple		%)		<u> </u>	Log					
Ground Surface SILT (mt) Yellowish-brown and gray silt, trace organics and wood fragments. SILT WITH GRAVEL (mt) Yellowish-brown and gray silt, trace organics and wood fragments. SILT WITH GRAVEL (mt) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. Silt WITH GRAVEL (mt) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. Silt WITH GRAVEL (mt) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. POORLY-GRADED GRAVEL (mt) Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; dry; dry; dry; dry; dry; dry; dry	f) H	atio	, a	Sam	s	ver	۵	ldd)	phic					
Ground Surface SILT (mt) Yellowish-brown and gray silt, trace organics and wood fragments. SILT WITH GRAVEL (mt) Yellowish-brown and gray silt, trace organics and wood fragments. SILT WITH GRAVEL (mt) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. Silt WITH GRAVEL (mt) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. Silt WITH GRAVEL (mt) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. POORLY-GRADED GRAVEL (mt) Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. It is sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, trace organics and wood fragments. It is sense; dry; dry; dry; dry; dry; dry; dry; dry	Dept	Elev	Тур	Lab	Blow	Reco	RQ	PED	Gra]		I	Physical Description		
SILT (ml) Yellowish-brown and gray silt, trace organics and wood fragments. SILT WITH GRAVEL (ml) Yellowish-brown and gray silt, trace organics and wood fragments. SILT WITH GRAVEL (ml) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. SILT WITH GRAVEL (ml) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. POORLY-GRADED GRAVEL (gp) Important Gravel (ml) Importan			<u> </u>					1		G ₁		,		
Yellowish-brown and gray silt, trace organics and wood fragments. 2	_													
2 100 0.0 2 2 100 0.0 2 2 100 0.0 3 2 2 100 0.0 3 2 2 100 0.0 3 2 3 3 3 3 4 5 0 0.1 2 3 3 3 3 4 5 0 0.1 2 3 3 3 3 4 5 0 0.1 2 3 3 3 3 4 5 0 0.1 2 3 3 3 3 4 5 0 0.1 2 3 3 3 3 4 5 0 0.1 2 3 3 3 3 4 5 0 0.1 2 3 3 3 3 4 5 0 0.1 2 3 3 3 3 3 4 5 0 0.1 2 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 5 0 0.1 3 3 3 3 5 0 0.1 3 3 3 3 3 5 0 0.1 3 3 3 3 3 5 0 0.1 3 3 3 3 3 5 0 0.1 3	-	+							ШШ	Ye	llowish-brown and gr	ay silt, trace organics and wood fr	agments.	
2 100 0.0 2 2 100 0.0 2 2 100 0.0 3 2 2 100 0.0 3 2 2 100 0.0 3 2 3 3 3 3 4 5 0 0.1 2 3 3 3 3 4 5 0 0.1 2 3 3 3 3 4 5 0 0.1 2 3 3 3 3 4 5 0 0.1 2 3 3 3 3 4 5 0 0.1 2 3 3 3 3 4 5 0 0.1 2 3 3 3 3 4 5 0 0.1 2 3 3 3 3 4 5 0 0.1 2 3 3 3 3 3 4 5 0 0.1 2 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 4 5 0 0.1 3 3 3 3 3 5 0 0.1 3 3 3 3 5 0 0.1 3 3 3 3 3 5 0 0.1 3 3 3 3 3 5 0 0.1 3 3 3 3 3 5 0 0.1 3	-	+							ШШ					
2	2 -	534							ШШ					
2	_	_							ШШ					
2	-	+							ШШ					
8 - 530	4 -	- 532							ШШ					
8 - 530	_	I]					
8 - 528 8 - 528 10 - 526	-	+	\setminus /						ШШ					
SILT WITH GRAVEL (ml) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. 10	6 -	530	$\mid X \mid$			100		0.0	ШШ					
SILT WITH GRAVEL (ml) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. 10	_	İ												
SILT WITH GRAVEL (ml) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. 10	_	1							ШШ					
SILT WITH GRAVEL (ml) Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. 10	8 -	528							ШШ					الم
Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. Yellowish-brown and gray silt, few gravel (0.1 to 0.25-inch in diameter); sense; dry; cobble in tip of sampler. PORLY-GRADED GRAVEL (gp) Limestone cobble. PORLY-GRADED SAND WITH GRAVEL (sp) Gray fine-grained sand, little sub-rounded gravel and coarse-grained sand; medium dense; moist.	-	†							HIIII			·		- — ^{[8.3}
sense; dry; cobble in tip of sampler. 12 524 14 522 16 520 18 518 Sense; dry; cobble in tip of sampler. POORLY-GRADED GRAVEL (gp) Limestone cobble. POORLY-GRADED SAND WITH GRAVEL (sp) Gray fine-grained sand, little sub-rounded gravel and coarse-grained sand; medium dense; moist.		Ī							ШШ	Ye	<i>LT WITH GRAVEL</i> llowish-brown and gr	(ml) ay silt, few gravel (0.1 to 0.25-inc	h in diameter);	
12 524 14 522 16 520 23 33 50 0.1 POORLY-GRADED GRAVEL (gp) Limestone cobble. POORLY-GRADED SAND WITH GRAVEL (sp) Gray fine-grained sand, little sub-rounded gravel and coarse-grained sand; medium dense; moist.	10 -	526			4				$\{ $	ser	se; dry; cobble in tip	of sampler.	,,	
11 19 2 23 33 35 24 50 0.1 POORLY-GRADED GRAVEL (gp) Limestone cobble. POORLY-GRADED SAND WITH GRAVEL (sp) Gray fine-grained sand, little sub-rounded gravel and coarse-grained sand; medium dense; moist.	_	 	$ \setminus/ $						ШШ					
14 — 522 16 — 520 18 — 518 23 33 24 24 POORLY-GRADED GRAVEL (gp) Limestone cobble. POORLY-GRADED SAND WITH GRAVEL (sp) Gray fine-grained sand, little sub-rounded gravel and coarse-grained sand; medium dense; moist.	-	Ť	X			100		0.0	ШШ					
14 — 522 16 — 520 23 33 24 POORLY-GRADED GRAVEL (gp) Limestone cobble. POORLY-GRADED SAND WITH GRAVEL (sp) Gray fine-grained sand, little sub-rounded gravel and coarse-grained sand; medium dense; moist.	12 -	524	\bigsqcup		19									
23 33 24 50 POORLY-GRADED GRAVEL (gp) Limestone cobble. POORLY-GRADED SAND WITH GRAVEL (sp) Gray fine-grained sand, little sub-rounded gravel and coarse-grained sand; medium dense; moist.	-	+												
23 33 24 50 POORLY-GRADED GRAVEL (gp) Limestone cobble. POORLY-GRADED SAND WITH GRAVEL (sp) Gray fine-grained sand, little sub-rounded gravel and coarse-grained sand; medium dense; moist.	-	†												
23 33 24 50 POORLY-GRADED GRAVEL (gp) Limestone cobble. POORLY-GRADED SAND WITH GRAVEL (sp) Gray fine-grained sand, little sub-rounded gravel and coarse-grained sand; medium dense; moist.	14 -	522												
16 - 520 33 24 50 POORLY-GRADED GRAVEL (gp) Limestone cobble. POORLY-GRADED SAND WITH GRAVEL (sp) Gray fine-grained sand, little sub-rounded gravel and coarse-grained sand; medium dense; moist.	1-7													
16 - 520 33 24 50 POORLY-GRADED GRAVEL (gp) Limestone cobble. POORLY-GRADED SAND WITH GRAVEL (sp) Gray fine-grained sand, little sub-rounded gravel and coarse-grained sand; medium dense; moist.	-	+			23		-		$\ \ \ $					
POORLY-GRADED GRAVEL (gp) Limestone cobble. POORLY-GRADED SAND WITH GRAVEL (sp) Gray fine-grained sand, little sub-rounded gravel and coarse-grained sand; medium dense; moist.	16	F20	$ \setminus / $			50								16
Limestone cobble. POORLY-GRADED SAND WITH GRAVEL (sp) Gray fine-grained sand, little sub-rounded gravel and coarse-grained sand; medium dense; moist.	16 -	520	$ \wedge $			50		0.1	• <u>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</u>	PC	OORLY-GRADED G	RAVEL (on)		16.3
Gray fine-grained sand, little sub-rounded gravel and coarse-grained sand; medium dense; moist.	-	+	\longleftarrow		24		-			Lir	nestone cobble.	(SP)		_/
Gray fine-grained sand, little sub-rounded gravel and coarse-grained sand; medium dense; moist.	-	+								PC	OORLY-GRADED SA	AND WITH GRAVEL (sp)		
	18 -	518								Gra	ay fine-grained sand,	little sub-rounded gravel and coars	se-grained sand;	
20 + 516	_	Ī								me	aium aense; moist.			
20 + 516	-	+								:				
	20 -	516							نينا	-				

Proje	ct Naı	ne: Dea	rcop Fa	arm				Clien	t: Location: Gates, New York Boring Log: MW-DR-3D	
Depth (ft)	Elevation (ft-msl)	Type	Lab Sample Interval	Blows	Recovery (%)	RQD	PID (ppm)	Graphic Log	Notes: All soil classifications based on visual descriptions made during the installation of the boring. Physical Description	Well
-	-			29	71				POORLY-GRADED GRAVEL (gp)	
22 -	514								Dolomite/limestone fragments Dolomite Cuttings	
24 26 28 30 31 34 34	514 512 512 510 508 508 504 504 504 504 498 498 494 494				87	69			Cuttings DOLOMITE Gray dolomite/limestone; aphanitic to fine-grained; massive; fresh; moderately disintegrated (vuggy); slightly to moderately fractured. Fractures: 22.75 feet - 15 degree dipping joint; very narrow; not healed; clean; rough. 23.2 to 23.4 feet - Fracture zone; narrow; not healed; clean; rough. 23.8 feet - Stylolite 24.3 feet - Mechanical break; extremely narrow; clean; smooth; horizontal 24.5 feet - Horizontal mechanical break 25.1 to 25.3 feet - Vuggy, partly healed with calcite mineralization. 25.3 to 25.4 feet - Fracture zone; narrow; not healed; clean; smooth. 25.8 feet - Mechanical break; clean; smooth; horizontal. 26 to 26.6 feet - Vuggy; partly healed with calcite mineralization 27.1 to 27.4 feet - Large open vugs with calcite mineralization 27.6 and 27.7 feet - Mechanical breaks; rough, not healed. 28.4 feet - Fracture/joint; 15 degree dip; extremely narrow; not healed; clean; smooth. 28.8 to 28.9 feet - Joint along stylolite; 15 degree dip; very narrow; partially healed with calcite mineralization; rough. 29 - Vugs 29 6 - Mechanical break; smooth; clean	

Proje	ct Naı	ne: Dea	rcop Fa	arm				Clien	t: Location: Gates, New York Boring Log: MW-DR-3D	
Depth (ft)	Elevation (ft-msl)	Type	Lab Sample Interval	Blows	Recovery (%)	RQD	PID (ppm)	Graphic Log	Notes: All soil classifications based on visual descriptions made during the installation of the boring. Physical Description	Well
-	-			29	71				POORLY-GRADED GRAVEL (gp)	
22 -	514								Dolomite/limestone fragments Dolomite Cuttings	
24 26 28 30 31 34 34	514 512 512 510 508 508 504 504 504 504 498 498 494 494				87	69			Cuttings DOLOMITE Gray dolomite/limestone; aphanitic to fine-grained; massive; fresh; moderately disintegrated (vuggy); slightly to moderately fractured. Fractures: 22.75 feet - 15 degree dipping joint; very narrow; not healed; clean; rough. 23.2 to 23.4 feet - Fracture zone; narrow; not healed; clean; rough. 23.8 feet - Stylolite 24.3 feet - Mechanical break; extremely narrow; clean; smooth; horizontal 24.5 feet - Horizontal mechanical break 25.1 to 25.3 feet - Vuggy, partly healed with calcite mineralization. 25.3 to 25.4 feet - Fracture zone; narrow; not healed; clean; smooth. 25.8 feet - Mechanical break; clean; smooth; horizontal. 26 to 26.6 feet - Vuggy; partly healed with calcite mineralization 27.1 to 27.4 feet - Large open vugs with calcite mineralization 27.6 and 27.7 feet - Mechanical breaks; rough, not healed. 28.4 feet - Fracture/joint; 15 degree dip; extremely narrow; not healed; clean; smooth. 28.8 to 28.9 feet - Joint along stylolite; 15 degree dip; very narrow; partially healed with calcite mineralization; rough. 29 - Vugs 29 6 - Mechanical break; smooth; clean	

Proje	ct Naı	ne: Dea	rcop Fa	arm				Clien	t: Location: Gates, New York Boring Log: MW-DR-3D	
Depth (ft)	Elevation (ft-msl)	Type	Lab Sample Interval	Blows	Recovery (%)	RQD	PID (ppm)	Graphic Log	Notes: All soil classifications based on visual descriptions made during the installation of the boring. Physical Description	Well
-	-			29	71				POORLY-GRADED GRAVEL (gp)	
22 -	514								Dolomite/limestone fragments Dolomite Cuttings	
24 26 28 30 31 34 34	514 512 512 510 508 508 504 504 504 504 498 498 494 494				87	69			Cuttings DOLOMITE Gray dolomite/limestone; aphanitic to fine-grained; massive; fresh; moderately disintegrated (vuggy); slightly to moderately fractured. Fractures: 22.75 feet - 15 degree dipping joint; very narrow; not healed; clean; rough. 23.2 to 23.4 feet - Fracture zone; narrow; not healed; clean; rough. 23.8 feet - Stylolite 24.3 feet - Mechanical break; extremely narrow; clean; smooth; horizontal 24.5 feet - Horizontal mechanical break 25.1 to 25.3 feet - Vuggy, partly healed with calcite mineralization. 25.3 to 25.4 feet - Fracture zone; narrow; not healed; clean; smooth. 25.8 feet - Mechanical break; clean; smooth; horizontal. 26 to 26.6 feet - Vuggy; partly healed with calcite mineralization 27.1 to 27.4 feet - Large open vugs with calcite mineralization 27.6 and 27.7 feet - Mechanical breaks; rough, not healed. 28.4 feet - Fracture/joint; 15 degree dip; extremely narrow; not healed; clean; smooth. 28.8 to 28.9 feet - Joint along stylolite; 15 degree dip; very narrow; partially healed with calcite mineralization; rough. 29 - Vugs 29 6 - Mechanical break; smooth; clean	

B Well Development Logs

WELL DEVELOPMENT RECORD

Site Name: Des-cop	Farm	Well ID: DR. Z-	U
Project Number: <u>EE 1705</u> 0	07.0020,2	Date: 12/1/z	-1
Location: Gates,	NY	Diameter (inches):	4
Initial Depth to Water (ft below TOIC):	22.50	Final Water Level (ft below TOIC):	34.50
Initial Well Depth (ft below TOIC):	34.88	Final Well Depth (ft below TOIC):	34.86
Initial Casing Volume (gallons):	8.08	3x Static Casing Volume (gallons):	24.74
Description of development equipment	and technique:	bunersible pump /su	rae

	Total V	/olume					Depth to	0.4
Time	Rem		рН	Temp.	Conductivity	Turbidity (NTU)	Water (ft TOIC)	Comments
1250	2	-	7.09	11.7	1.509	73.6	26.69	1247 Segin
1258	8	_	7.10	11.5	1,521	200	30.50	* Purged
1306	12	_	-		DR	4-	33.81	215-20 gal
	-A11	ow	Rea	hara	e ; 133	7 res	tart	11/30
1338	13	-	6.96	11.9	1,717	99.9	76.55	
1343	2/6	*Alexander	6.98	11.9	1.712	54.9	29.60	Land of the second of the seco
1348	~20		7.05	11.8	1.692	46.5	32.10	
1320	~72		7.04	11.8	1.714	27.1	33.50	
1352	- 25	_	1	DF	24-		34.55	- Allow rechard
1405		-	7.07	11.8	1.767	64.1	30.00	1405 restart
1410	31		7.00	11.6	1.764	17.02	32.35	
1414	33	-	7.08	11.6	1.773	9.50	34.30	
14.5	34	D	R	4			34.50	
		William Control						
				1				
			4	3			1	
Personne	el:(C. Po	rrec	a.	Signatu	re:	()	1/4

SOP: GEO 4.11 REVISION DATE: 4/5/2013

WELL DEVELOPMENT RECORD

Site Name:	Dearco	p Farm	Well ID:	R-2-	0
Project Number:	EE170 50	07,0020,	2 Date: 12	-1-20	150
Location:	Gates	NY	Diameter (inches)		4
Initial Depth to Water	r (ft below TOIC):	20.21	Final Water Level (ft below	TOIC):	35.75
Initial Well Depth (ft I	pelow TOIC):	36.75	Final Well Depth (ft below	TOIC):	36.62
Initial Casing Volume	e (gallons):	10.8	3x Static Casing Volume (g	allons):	32.4
Description of develo	ppment equipment a	nd technique:	Surging / Pumping	w/typh	won puras

	Total V Rem			Temp.	Conductivity	Turbidity	Depth to Water	1
Time	Gallons	Number	рН	(°F/(C))	(# 6/cm)	(NTU)	(ft TOIC)	Comments
1003	-		6.94	11.7	0,616	20.2	21.80	* 3x Well val. 2/5-20 gal. removed 11/30
1006	5	-	7.06	11.1	1.308	77.3	23,22	w/
1010	7		7.00	11.1	1.322	57.8	25.32	
1015	9	-	7.09	11.0	0.016	169	24.91	
1023	12	-	7.05	11.1	1.341	355.	31.04	- Pull pump +
1035	17		7.14	11.3	1.376	900	31.50	fix tubing
1041	20	4	7.13	11.4	1.380	785	34.00	Connection
1047	24	_	7.14	11.3	1.417	712	35.8	1031 Restart
1053	26	- Distance	One control of	-	-	24.00	36.75	Dry
1210	29	-	716	1018	0.027	112	24.67	-Allow Recharge
1215	33		7.00	11.3	1.372	86.7	27, LR9	1200 resume
1220	36		7.01	11.2	1.380	86.2	30.30	0
1222	39	· Channel	7.04	11.1	0.672	50.1	32.80	
1230	42	-	7.06	11.4	1,414	25.2	34.85	
1234	44	-	- Marine	gentari.	-	-	35.75	Dry
-9-								U
		· Jun					^	0
Personne		Porc	Pla		Signatu	ro.	0	21/

Personnel: C. Porreia Signature: Signature: Date: 12-1-2021

ecology and environment s engineering and geology, p.c.

Environmental Specialists Development WELL PURGE & SAMPLE RECORD Well ID: DR-3-D tarm Deascop Site Name/Location: EEEPC Project No.: Initial Depth to Water: 20.42 feet TOIC Final DTW: 35.05 Start Time: Total Well Depth: 238.90 feet TOIC Final Well Depth: 38.98 255 End Time: ⊠ Pump Depth to Pump: feet TOIC ☐ Bailer Surge/purge Pump Type: Typhoon __Lpm / gpm Initial Pump Rate: adjusted to: Well Diameter: minutes inches minutes at 1x Well Volume: adjusted to: gallons Purge Volume (A) Tiemp. ORP Concluedation 100 Terbelly Water vicalions litera) (CO)(A) (G:09) (MM) (riskin) (riskin) (melly) (Level/feet) 45 6,77 24.68 3.04= 6 12,4 1150 la 2,906 May 1155 2.918 12.4 be 700 2.881 4 93. ھ inaccur 26,69 12,3 30 6.94 2.883 09 12.4 Finicley 6.81 12.4 2.890 6.79 215 12.5 83.6 47 888 33,62 720 6.82 2.3 2,885 12,4 2.887 25 4,77 2.894 30 6,84 Z. 89 35 6.82 25,22 2/0 2.885 40.2 40 6.80 12. 2.888 45 6:77 35, 69 2.880 50 6.79 12. 35,05 755 Final Sample Data: Duplicate? Dupe Samp ID: Sample ID: MS/MSD? □ Sample Time: Comments: Methods: Analyses: □ VOCs CLP ☐ SW846 ☐ SVOCs ☐ Drink. Wtr. ☐ PCB6

Sampler(s): C. Porreca,

J. Folges (LaBe)

☐ Metals

WELL DEVELOPMENT RECORD

Site Name: Dearcop F	acm	Well	IID:	DR-3.	· U
Project Number: EE/70500	7.0020	Date	e:	12-6-	1505
Location: Gates, N	<u>У</u>	Diar	neter (inch	nes):	_4
Initial Depth to Water (ft below TOIC):	30.45	Final Water	Level (ft be	elow TOIC):	31.03
Initial Well Depth (ft below TOIC):	39.45	Final Well D	epth (ft bel	ow TOIC):	~40.10
	5. 87 121.	3x Static Ca	asing Volum	ne (gallons):	17.61
Description of development equipment and	I technique:	Typhos	rn 5	vrae/f	rege

		/olume		T	0 1 1 - 1 - 1	Turbidity	Depth to Water	
Time	Gallons	oved Number	рН	(°F L°C)	Conductivity	(NTU)	(ft TOIC)	Comments
905	Guilone	_	_		- 251	71,000	_	Begin Purge
903	1.5	_		_	Pump is a	logged -	well fu	11 of silt/sed.
1020	į	-	-	Res	tart	purg	e	
1030	15	-	6.80	13.1	2,996	500	30.93	
1035	21	1	6.86	12.7	3.127	230	30.85	
1040	27	_	6.86	12.5	3.172	340	30,89	
1045	33	_	6.87	12.5	3.191	665	30.99	
1050	39	_	6.85	12.5	3,205	100	31.05	
1055	45		6.85	12,4	3.272	26.8	31.06	
1100	51	_	6.85	12,4	3,229	66.7	31.08	
1105	54		6.86	12.5	3,249	84.6	31.06	
1/10	63	_	6.89	12.4	3.262	32,49	31.03	
1115	69		6.85	12.4	3,277	29.2	31.03	
11/20	75		6.85	12.5	3,283	32.9	31.03	
								0.0
							//	11///

Personnel: C. Porreca Signature:

T. Folger (Labella) Date: 12-6-71

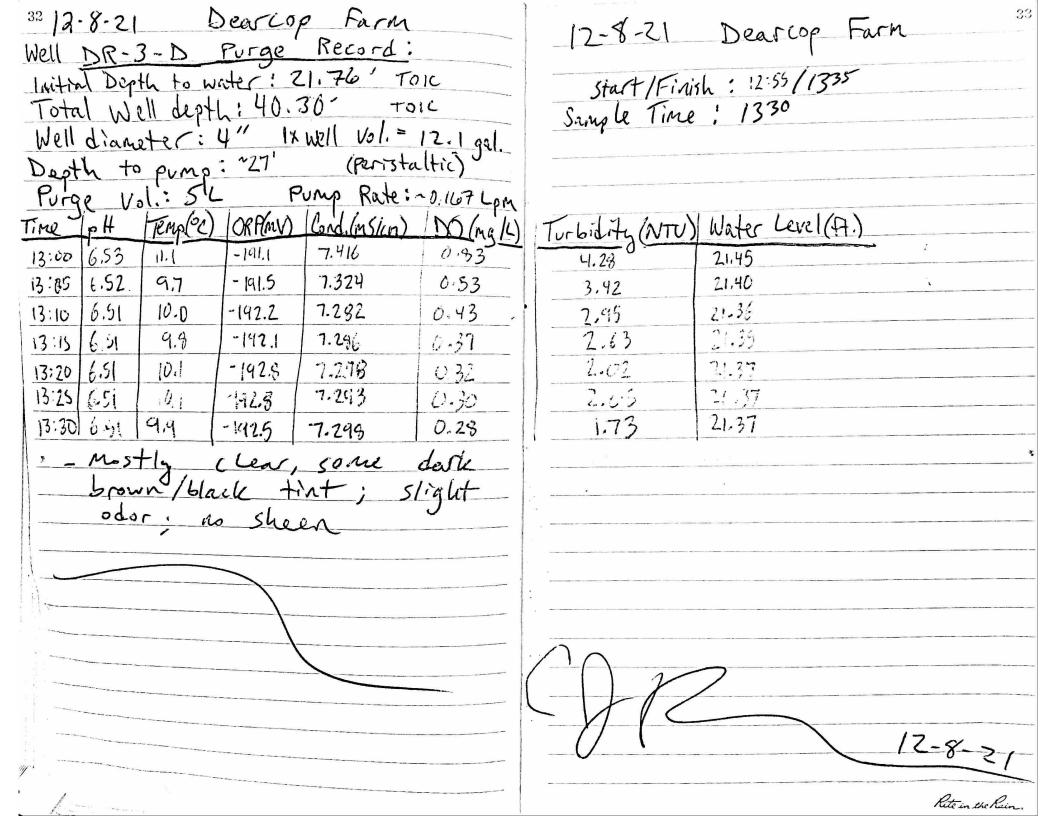
Groundwater Sampling Purge Logs

WELL PURGE & SAMPLE RECORD

	900		LL PURGE (& SAIVIPLE	RECORD		NO 0		
Site Name/Loc	cation: Dear C	op to	m				DR-2		
EEEPC Project	ct No.: EE 17	0500	7.0020	<u> </u>			12-7		
Initial Depth to	Water: <u>19.39</u>	feet TOIC			,	Start Time:	945		
	Depth: 30.70					End Time:	103	25	
	Pump: ~ 2.5					Bailer		Pump	
	Rate: 10.036	_			Р	Pump Type: Peri3taltic			
	ted to:			_minutes	Well	Diameter:	1-3	inches	
adjus	ted to:	at		_minutes	1x We	ell Volume:	38	gallons _x 3 -	
	Ruige Volume	(93)	Temp.	ORP	Conductivity	Proceedings of the control of the co			
Time	(gallons/liters)	(6m)	(FO)(3)	(mV))	(pS/cm/mS/cm)) (mg/L))		Level (feet):	
4:50		6.67	8.1	-67.1	76.854	1.29	18.03	19.78	
4:55		6.68	7,5	-47.0	76.716	0.30	14.98	19.85	
10.00		6.68	7.4	-42.3	76.650	0.59	13.56	19.97	
10:05		6.68	7.6	- 42.1	76.884	0.46	11.49	20.12	
10:10		6.67	7.4	-42.5	76.779	0.41	10.52	20.23	
10.15	,	6.08	7.8	-43-1	76.882	0.39	11.34	20.30	
10:20	3.0	6.68	7.3	-42.6	76.404	0.38	11.09	20.34	
	. *								
		, ,			1-200				
			COCCO						
-									
		1 1 0	77	-42 (7/ 1/14	0.28	11.09	20,34	
Final Sa	ample Data:	6.68	7.3	-4216	76,404	0,38	77704	20174	
Sample ID:	HAZO DR-	2-1207	21	Duplicate?	☐ Dupe	Samp ID:			
Sample Time:	1020			MS/MSD?					
,		Comments:	Clear	! No S	trong ed	or ; No	sheen	;	
Analyses:	Methods: □ CLP	High		ithity		1 sensor		/	
☑ SVOCs	☐ SW846			/ \	1/		- 		
□ PCBs	☐ Drink. Wtr.	1	し		XIC				
☐ Metals					J .				
П		Sampler(s):	CP	JF	(LaBella)				

WELL	PUR	GE &	SAMP	_E	REC	CORE
------	-----	------	------	----	-----	------

Site Name/Loc	cation: Dec	<u> </u>	2-0					
EEEPC Projec	cation: <u>Dec</u>	E 170-	5007.	0020)	Date:	12-	7-71
	Water: 20.33				5	Start Time:		
Total Well I	Depth: <u>34.88</u>	feet TOIC					1140	
Depth to I	Pump: <u>~25</u>	feet TOIC					区	The second secon
Initial Pump	Rate: ~ 0 . 13	(pm) gpm						staltic
adjust	ted to:	_ at _		_minutes			4	7
adjust	ted to:	at _		minutes	1x We	ell Volume:	_9,5 gallons x3=	
	Puige Volume	(33)	Temp	ORP	Concludivity	DO	Turbelly	Water
Time	(gallons/liters)		(FO)FF)	(mX))	(µS/cm (nS/cm)		(NTU)	
11:05		6.75	9,4	-50.6	71.439	2.00	43.82	20.52
11:10		6.71	8.5	- 42.1	71.781	1.00		20.58
11:15		6.70	3.0	-42.2	71,790	0.69	25,33	20.63
11:20		6.70	8.5	-43.5	71.757	0.56	22.68	20.69
11:25		6-69	3.6	-44.4	72.247	6.54	16.44	20.62
11:30		6:69	3.3	-44.5	71.583	0.50	16.75	20.72
11:35	4.0	6.69	व,प	- 4:.5	12.036	0.52	20.43	20.75
7								
			77	\wedge				
-					1/	7		
					1//			
				人	1//			
				1				
-				()				
	<u> </u>	1.69	4.9	-465	72.036	0:52	20.43	20.75
Final Sa	ample Data:	6.69	1.1	16,5	12.00		20.13	
Sample ID:	DR-2-D	-1207	21	Duplicate?	2	Samp ID:		
Sample Time:	1135			MS/MSD?				
Analyses:	Methods:	Comments:	(lea	r; No	strong	odor		
X VOCs	⊓ CLP	n			nigh ton	ductil	ity -	
□ SVOCs	☐ SW846	seasor c	alibrati	DA TSSI	1e ?		U	
□ PCBs	☐ Drink. Wtr.	$\overline{}$		(1/_			
Metals D Sampler(s): (P. JF (LaBella)								


WELL PURGE & SAMPLE RECORD

		AAEL	L PURGE 8	SAMPLE	RECORD				
Site Name/Loc	ation: <u>Deo</u>	scop	Farr	1		Well ID:	DR- 3	7-U	
EEEPC Projec	t No.: EE	17050	07.0	0020	<u> </u>	Date:	12-	7-21	
Initial Depth to V	Vater: <u>19.74</u>	feet TOIC			c	Start Time:	840)	
	Depth: 36.45					End Time:	433	5	.
	Pump: <u>~ 22</u>								-
	Rate: 0,12						Perist		
	ted to:			minutes			4		=
	ed to:			minutes minutes				gallons χ 3=	27 Z2
aujuo					AND THE PERSON NAMED IN THE PERSON NAMED IN	processing the same			1017)
Viiii	(callons/liters)		Temp (FOPA)		Conductivity (pS/cm/mS/cm):		Terracity	Water Level (feet)	
3.45	a ganonamicia a	672	7.7	-g.0	64.076	2.59	75.61	19.53	i
2:50		7.07	7.4	-112.5	63.945	1.25	6615	19.94	
2:55	_	7.05	7.5	-111.3	63.453	1.10	61.24	14.96	
9:00		7.03	7.4	- 111.5	63.914	0.94	5781	19.99	-
4:05		7.07	8.2	-101.5	64.157	0.84	54.72	20.05	
4:10		7.05	8.1	-101-8	64.364	0,01	47.89	20.08	1
4:15		7.02	7.9	-100.7	64,505	0.76	44.58	20.12	
4:20		7.00	8.3	-47.1	64.455	0.70	43.65	20.16	1
9:25		6.96	8,3	-91.4	64.998	0.67	33.35	20.15	1
1'30	(0	6.43	\$7.8	-86-6	65,380	0.64	32.00	20.19	1
	U U	7	8110	00.0	031300	0,01	72.00	20.11	1
\			7						1
									1
			-/ }	1	N				1
									1
			\leftarrow	- X	11				
				$\vdash \smile$	+1				1
			:; _; ;						
		6.93	7.8	-86.6	65,380	0.64	37.00	20.19	1
Final S	ample Data:		- 4.i	1 00.0		1			
Sample ID:	DR-2-U-1	2072		Duplicate?		e Samp ID:	DK-3	-0-1207	210
Sample Time:	930			MS/MSD?					
Analyses:	Methods:	Comments:	Most	ly clear	, some s	ed. ne	nt;	16	
⊠VOCs	□ CLP		5+		odor, in	5 She		cont.	•
☐ SVOCs	□ SW846	seems with re-calibrate							
☐ PCBs	☐ Drink. Wtr.								
☐ Metals)	- /1 13.7/	7-		>	4
		Sampler(s):		, J+	(La)ella	î)			-

	٨	WEL	L PURGE &	SAMPLE	RECORD				
Site Name/Loc	cation: Dear	700	Farm			Well ID:	DR-3	3	
EEEPC Project	eation: <u>Leav</u>	17050	07,00	20			12-8		
	202 10				ام م5 ام	Start Time:	1150		
nitial Depth to \	Water: $\frac{29.19}{28.19}$ Depth: $\frac{38.12}{28.12}$	feet TOIC ~	protecti	hue cas	ina	Start Time:	123	5	
Total Well I	Depth: <u>38,72</u>	feet TOIC	(~1.331	above T	(210)	Bailer		Pump	•
	Pump: ~35		*			Pump Type:			
	Rate: <u>~ 0.16.7</u>				,	Well Diameter:	77 7700		-
	ted to:					x Well Volume:	7 28	inches	00
adjus	ted to:			minutes				_	9,8.
ülme	Purge Volume (gallons/liters)	(B:09)		ORP (CTV)		/(mg/L)		Water Level(feet)	
	(gallons/liters)	6.60	10.2	- (15.6	14.650		8.75	29.69	
12:00		6.64	10.5	- 171.3			13,29	29.92	1
12:05		6.65	10.5	-199.9	14.811	0.38	15,73	30-12	
12:10		6.67	10.7	-219.4	14, 836	0.33	12-81	30-17	
i2:15		6.69	10.8	- 234.1	14.875	0,28	9.54	30.19	
12:20		5.70	9.7	25/1	14,401	0.29	8.01	30,07	
12:25	5.0	6.70	9.2	- 255,6	14.895	0-28	4.33	29,98	4
12.63	8.0	0110		- 35,0	7.013	0.20	7.57	21/19	1
-									1
	 								1
	 								
)						
	 	1							
					1				1
					-				-
	 								
									1
		101	0.0	75-1	111 00	E 0.70	11 000	20 00	1
Final S	ample Data:	6.70	9.2	- 533.6	14,61	5 0,28	4.33	29.98	77
Sample ID:	DR-3-12	1580		Duplicate?		Dupe Samp ID:	_		_
Sample Time	12302	5 (CP)	-a	MS/MSD?					
Analyses:	Methods:	Comments:	51	1000	odor	· most/	y cle	w:	
<u>⊳⊪ruryocs.</u> E×VOCs	□ CLP		THE SALE OF THE SA	een		,	U		_
□ SVOCs	☐ SW846				1	//			_
□ PCBs	☐ Drink. Wtr.				+1				_
☐ Metals					- (1.0	1/ "			_
		Sampler(s):	CP	JF	= (Labo	2110)			*****

VA/ET I	PURGE	2 5/	MPL	F	RE	COR	E

	Na		L PURGE &			Moll ID:	DR-3	3-U	
Site Name/Loc	ation: <u>Dec</u>	700	207	<u> </u>				-21	-
EEEPC Projec	t No.: <u>EE1</u>	7030	JU 7.	00 EC					-
Initial Depth to V	Water: <u>30.54</u>	feet TOIC					13:20		_
	Depth: 48					End Time:	1510	<u> </u>	_
	Pump: ~35		"Ay			Bailer		Pump	
	Rate: 0.15				Pi	ump Type:	Perist	faltic	_
	ted to:	at		minutes	Well	Diameter:	4	inches	
	ted to:	at		minutes	1x We	ell Volume:	7.14	gallons x 3=	21,42
Section in the Section 2	Purge Volume	(DE)	Temp	ORP	Conductivity	D	Terbicky	Water	I
Vilme	(gallors/liters))	(SO))	(F G /FF)	(mV)	(nS/am/mS/am)			(Level (feet)	
13:25		272	10:5	-16.9	167.119	1.69	31.72	30.55	
13:30		6 15	11.6	-16.5	173.977	1.15	54.97	30.58	
13:35		é 76	11.7	-16.7	174.463	1.10	57.05	30.58	
13:40		6.17	11.4	- 19.0	175.101	1.07	52.92	30.58	
13:45		6.19	10.4	- 20.1	175.107	1.05	54,74	30.58	
13 50		6.74	11-1	-21.4	175.343	1.08	58-11	30,58]
13:55		1.78	11.1	- 22.5	175.483	1.09	54,62	30.56	1
14:00		6.79	11.0	-23.3	175644	1.11	64.78	30.56	
14:05		6.19	10-8	-23-6	175,959	1.09	64.23		
14:10			1						
14:15		Changed	tubing d	of 10 515	infrant built	प्रनां म			
1-1:20		(.50	5.4	- 40-1	171.505	1.41	534	30.54	
14:25		6.82	10.2	-24.5	175.243	1.33	455	30.50	
14:30		6.32	10.4	-32.1	174.109	1.21	198	30.49	
14:35		6.52	4.9	-33.5	173.513	1.23	155	30.50	
14 40		6.87	9.5	-34.1	173.144	1.22	154	36.50	
14:45		6.53	9.3	- 34.7	173.141	1.37	187	30.49	
14:50		0.53	9,0	- 34,5	172,960	1-34	201	30.50 -	- 640</td
15 05 Final S	ample Data:	6.15	5-2	- 30.4	176. 616	1.38	151	30.50	SIA SIA
		12 270	· ·	D Vanta O				th	Toris -
Sample ID: Sample Time:	DR-3-U-	120+2	-1	Duplicate? MS/MSD?		Samp ID:			6/1
		Comments:	clear	11+. 4	rown w/s	ome	ced'in	at -	,
<u>Analyses:</u>	Methods: ☐ CLP		turb		@ First	- Hinn	Lora	m P	•
□ SVOCs	□ SW846			- 1	ng odor	· No	ShopA	· hich is	alvotilit :
□ PCBs	☐ Drink. Wtr.			0	1	1	- 10-01	7	. J
☐ Metals	D			()) (,				
D	;	Sampler(s):	Cif	, JF	= (LaB	ella)			-

Data Usability Summary Report

Data Usability Summary Report	Project: Dearcop Farm RA
Date Completed: March 17, 2022	Completed by: Eridania Marte

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness based on applicable sections of the following guidelines.

• EPA Region 2 Data Validation SOP No. HW-34A, Revision 1

Specific criteria for QC limits were obtained from the master QAPP. Compliance with the project QA program is indicated in the checklist and tables below. Any major or minor concerns affecting data usability are listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

Project ID	Lab Work Order	Laboratory Report
EE1705007.0020.01	70197617	Pace Analytical

Table 1 Sample Listing Summary

		ting Janinary				
Work						ID Correc
Order	Matrix	Sample ID	Lab ID	Sample Date	Field QC	-tions
70197617	WG	DR-2-120721	70197617001	2021/12/07 10:20:00		
70197617	WG	DR-2-D-120721	70197617002	2021/12/07 11:35:00	MS/MSD	
70197617	WG	DR-2-U-120721	70197617003	2021/12/07 09:30:00		
70197617	WG	DR-2-U-120721Q	70197617004	2021/12/07 09:30:00		
70197617	WG	DR-3-120821	70197617005	2021/12/08 12:25:00		
70197617	WG	DR-3-D-120821	70197617006	2021/12/08 13:30:00		
70197617	WG	DR-3-U-120721	70197617007	2021/12/07 15:05:00		
70197617	WQ	TB-120721	70197617008	2021/12/07 00:00:00		

Table 1A Sample Test Summary

Work Orders	Matri x	Test Method	Method Name	Number of Samples	Sample Type
70197617	WG	SW8260D	Volatile Organic Compounds by GC/MS	6	N
70197617	WG	SW8260D	Volatile Organic Compounds by GC/MS	1	FD
70197617	WQ	SW8260D	Volatile Organic Compounds by GC/MS	1	TB
70197617	WQ	SW8260D	Volatile Organic Compounds by GC/MS	1	MS/MSD

Data Usability Summary Report	Project: Dearcop Farm RA
Date Completed: March 17, 2022	Completed by: Eridania Marte

General Sample Information	
Do Samples and Analyses on COC check against Lab Sample Tracking Form?	Yes.
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	Yes.
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples Trip Blank - Every cooler with VOCs Equipment Blank - 1/20 samples	Yes. 1 FD per 6 samples. 1 MS/MSD per 6 samples. 1 trip blank: 1 per VOC cooler. Rinsate blank not required, dedicated equipment used.
Case narrative present and complete?	Yes.
Any holding time violations?	No.

The following tables are presented at the end of this DUSR and provide summaries of results outside QC criteria:

- Method Blanks Results (Table 2)
- Surrogates Outside Limits (Table 3)
- MS/MSD Outside Limits (Table 4)
- LCS Outside Limits (Table 5)
- Reanalysis Results (Table 6)
- Field Duplicate Results (Table 7)

Go to Tables List

Data Usability Summary Report	Project: Dearcop Farm RA
Date Completed: March 17, 2022	Completed by: Eridania Marte

Volatile Organic Compounds by GC/MS - Met	had 8260C
Description	Notes and Qualifiers
Any compounds present in method, trip, or, field blanks (see Table 2)?	No.
For samples, if results are < 5 times the blank or < 10 times the blank for common laboratory contaminants, then "U" flag data. Qualification also applies to TICs.	Not applicable.
Are surrogates for method blanks and LCS within limits?	Yes.
Are surrogates for samples and MS/MSD within limits? (See Table 3). If not, were all samples reanalyzed for VOCs? Matrix effects should be established.	Yes.
Is Laboratory QC frequency at least one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Category A report provided. Unable to determine.
Is MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then "J" flag positive data in original sample due to matrix.	1,1-Dichloroethane, 1,1-dichloroethene, chloroethane, and cis-1,2-dichloroethylene were recovered outside of the acceptance criteria in the MS and/or MSD for sample DR-2-D-120721. The associated sample results were greater than 4X the spike amount. No qualification was made.
	1,2-Dibromo-3-chloropropane was recovered below the acceptance criteria in the MSD for sample DR-2- D-120721. The RPD was also outside of the acceptance criteria. The associated sample result was UJ qualified as estimated non-detect.
	Bromomethane RPD was recovered outside control limits for sample DR-2-D-120721. The sample result was non-detect; therefore, no qualification was made.
Is LCS within QC criteria (see Table 5)? If out, and the recovery is high with no positive values, then no data qualification is required.	Cis-1,2-dichloroethylene was recovered above the acceptance criteria in LCSD R3741698-2. The associated sample result for DR-3-D-120821 was J qualified as estimated. The associated sample result for DR-3-120821 was non-detect; therefore, no qualification was made.
Do internal standards areas and retention time meet criteria? If not was sample re-analyzed to establish matrix (see Table 6)?	Category A report provided. Unable to determine.
Is initial calibration for target compounds <20 %RSD or curve fit?	Category A report provided. Unable to determine.
Is %D in the continuing calibration for target compounds less than method specifications?	All samples were qualified in the report for analytes bromoform, bromomethane, chloromethane due to continuing calibration standard low response. Method sensitivity check was acceptable. The sample results were UJ qualified as estimated non-detect.
Were any samples reanalyzed or diluted (see Table 6)? For any sample reanalysis or dilutions, is only one reportable result flagged?	Samples DR-2-U-120721, DR-2-U-120721Q, DR-2-120721, DR-2-D-120721, DR-3-U-120721, and DR-3-D-120821 were diluted due to analyte concentrations exceeding the calibration range.

Data Usability Summary Report	Project: Dearcop Farm RA
Date Completed: March 17, 2022	Completed by: Eridania Marte

Volatile Organic Compounds by GC/MS – Method 8260C							
Description	Notes and Qualifiers						
For TICs are there any system related compounds that should not be reported?	Not applicable.						
Do field duplicate results show good precision for all compounds (see Table 7)?	Yes.						

Summary of Findings

VOCs by 8260D

- Sample result for DR-3-D-120821 was J qualified as estimated for cis-1,2-dichloroethylene due to LCSD poor recovery.
- Sample result for DR-2-D-120721 was UJ qualified as estimated non-detect for 1,2-Dibromo-3-chloropropane due to MSD and RPD between the MS and MSD poor recovery.
- All samples were UJ qualified as estimated non-detect for analytes bromoform, bromomethane, chloromethane due to continuing calibration standard low response.

Data Usability Summary Report	Project: Dearcop Farm RA
Date Completed: March 17, 2022	Completed by: Eridania Marte

Table 2 - List of Positive Results for Blank Samples

None.

Table 2A - List of Samples Qualified for Method Blank Contamination None.

Table 2B - List of Samples Qualified for Field Blank Contamination None.

Table 3 - List of Samples with Surrogates outside Control LimitsNone.

Table 4A – List of MS/MSD Recoveries outside Control Limits

			Orig.	Spike	Dil		Low	High			
Method	Parent Sample	Analyte	Result	Amount	Fac	Unit	Limit	Limit	MS	SD	Qualifier
8260D	DR-2-D-120721	1,1-Dichloroethane	846	5.00	1	μg/L	25	158	40	360	None – 4X
8260D	DR-2-D-120721	1,1-Dichloroethene	132	5.00	1	μg/L	11	160	0	140	None – 4X
8260D	DR-2-D-120721	Chloroethane	546	5.00	1	μg/L	10	160	0	0	None – 4X
8260D	DR-2-D-120721	1,2-Dibromo-3- Chloropropane	ND	5.00	1	μg/L	22	151	83.4	6.04	UJ Flag
8260D	DR-2-D-120721	Cis-1,2-Dichloroethylene	489	5.00	1	μg/L	10	160	80	360	None – 4X

Table 4B - List of MS/MSD RPDs outside Control Limits

Method	Sample ID	Analyte	RPD	RPD Limit	Sample Flag
8260D	DR-2-D-120721	Bromomethane	48.3	38	None
8260D	DR-2-D-120721	1,2-Dibromo-3-Chloropropane	173	34	UJ Flag

Table 5A - List of LCS Recoveries outside Control Limits

	Sample ID	Analyte	Rec.	Low Limit	High Limit	Sample Qualifier
F	R3741698-2LCSD	Cis-1,2-Dichloroethylene	125	73	120	J Flag

Table 5B – List of LCS RPDs outside Control Limits

Method	Sample ID	Analyte	RPD	RPD Limit	Sample Flag
8260D	R3740297-1/2	1,2-Dibromo-3-chloropropane	26.9	20	None

Data Usability Summary Report	Project: Dearcop Farm RA
Date Completed: March 17, 2022	Completed by: Eridania Marte

Table 6 – Samples that were Re-analyzed

O-maria ID	Lab ID	Mathad	Sample	Audion
Sample ID	Lab ID	Method	Type	Action
DR-2-U-120721	70197617001	8260D	N	25X: Diluted for 1,1-Dichloroethane due to exceeding calibration range.
DR-2-U-120721Q	70197617002	8260D	FD	25X: Diluted for 1,1-Dichloroethane due to exceeding calibration range.
DR-2-120721	70197617003	8260D	Ν	25X: Diluted for 1,1-Dichloroethane, Chloroethane, and Cis-1,2-Dichloroethylene due
DIX 2 120721	70137017003	02000	14	to exceeding calibration range.
DR-2-D-120721	70197617004	8260D	N	25X: Diluted for 1,1-Dichloroethane, Chloroethane, Vinyl Chloride and Cis-1,2-
DK-2-D-120721	70197017004	0200D	IN	Dichloroethylene due to exceeding calibration range.
DR-3-U-120721	70197617006	8260D	Ν	20X: Diluted for 1,1-Dichloroethane, Chloroethane, Vinyl Chloride and Cis-1,2-
DK-3-0-120721	70197017000	0200D	IN	Dichloroethylene due to exceeding calibration range.
DR-3-D-120821	70197617008	9260D	Ν	20X: Diluted for Vinyl Chloride and Cis-1,2-Dichloroethylene due to exceeding
DK-3-D-120021	70197017000	8260D	IN	calibration range.

Table 7A - Summary of Field Duplicate Results

Method	Analyte	Unit	Matrix	PQL	Anal Type	DR-2-U- 120721	DR-2-U- 120721Q	RPD	RPD Rating	Sample Qual
8260D	1,1,1-Trichloroethane (TCA)	ug/l	WG	1.00	Α	35.2	35.3	0.3%	Good	None
8260D	1,1-Dichloroethane	ug/l	WG	25.0	Α	858	909	5.8%	Good	None
8260D	1,1-Dichloroethene	ug/l	WG	1.00	Α	55.2	53.0	4.1%	Good	None
8260D	1,2-Dichloroethane	ug/l	WG	1.00	Α	5.26	5.26	0.0%	Good	None
8260D	Benzene	ug/l	WG	1.00	Α	1.01	1.03	2.0%	Good	None
8260D	Chloroethane	ug/l	WG	5.00	Α	86.7	86.3	0.5%	Good	None
8260D	Cis-1,2-Dichloroethylene	ug/l	WG	1.00	Α	99.4	93.5	6.1%	Good	None
8260D	Trichloroethylene (TCE)	ug/l	WG	1.00	Α	124	124	0.0%	Good	None
8260D	Vinyl Chloride	ug/l	WG	1.00	Α	113	110	2.7%	Good	None

Data Usability Summary Report	Project: Dearcop Farm RA
Date Completed: March 17, 2022	Completed by: Eridania Marte

Acronym List and Table Key:

CCB = continuing calibration blankCCV = continuing calibration verification

COC = chain of custody

DUSR = data usability summary report

FD = field duplicate

GC/MS = gas chromatography / mass spectrometry

ICS = interference check standard ICV = initial calibration verification LCS = laboratory control sample

MB = method blank

 $\begin{array}{lll} \text{MDL} &=& \text{method detection limit} \\ \mu\text{g/L} &=& \text{micrograms per liter} \end{array}$

MS = matrix spike

MSD = matrix spike duplicate N = normal (field) sample

NC = not calculated ND = not detected

NYSDEC = New York State Department of Environmental Conservation

PQL = practical quantitation limit

QA = quality assurance

QAPP = quality assurance project plan

QC = quality control

RB = equipment rinse blank
RPD = relative percent difference
SDG = sample delivery group

TB = trip blank

TRG = target compound %D = percent difference

%RSD = percent relative standard deviation