Volatile Organic Compounds in the Soil Vapors and Groundwater at the Pollution Abatement Services Site, Oswego, New York

Final Report

TOTIVED

MAR 2 - 1939

COT 1 THE REPORT REPORTAN ACTION FOR THE REPORT REPORTS WAS TO RESERVED

د مړ ر

February 22, 1989

Prepared for U.S. Environmental Protection Agency Region II, Edison, New Jersey

Prepared by Alan Humphrey U.S. Environmental Protection Agency Environmental Response Branch Edison, New Jersey

- -

In Conjunction with Ken Tyson Roy F. Weston/Reac ERT Support Contractor

EXECUTIVE SUMMARY

Soil vapor and groundwater samples were taken at the Pollution Abatement Services site between October 18 and October 20, 1988, in order to characterize the contamination outside the existing slurry wall. Chemical analyses of the groundwater indicate that the two most highly contaminated wells are SWW4 (total organics = 649.9 ppb) and SWW6 (total organics = 7549.8 ppb). No volatile organic compounds were found in the three wells located upgradient from the site (SWW1, MW11A, and MW11B). Soil vapor transects were set up along the outside perimeter of the slurry wall. The values for total organics were uniformly low along the eastern, southern, and western perimeters. The values were higher and more variable along the northern perimeter. Three conceptual models were developed to explain the observed contaminant distribution. Model A describes the contaminant distribution pattern that would form if the slurry wall did not fully encompass the contaminated source area when it was installed. Model B describes the contaminant distribution pattern that would form if the wall did originally encompass the contaminated source area, but was breached sometime later either by contaminants flowing under the slurry wall or through ruptures in the wall. Model C describes the contaminant distribution pattern for a combination of Models A and B. This model provides the best fit for the observed soil vapor and groundwater geochemistry. Therefore, the most likely explanation for the observed distribution pattern is that the wall did not fully encompass the contaminated source area when it was installed and that the wall was later breached along the northern perimeter.

i

eh:rd/TYSON/PR-1202

i i i i i i

TABLE OF CONTENTS

	•		•			PAGE
LIST	OF T	SUMMARY ABLES IGURES				i iii iv
1.0	INTR	ODUCTION				1
	1.1 1.2	Site Backgr Objectives	ound of this Study	``````````````````````````````````````		1 5
2.0	METH	ODOLOGY				5
	2.1 2.2 2.3	2.1.1 Well 2.1.2 VOC 2.1.3 Anal Soil Vapor 2.2.1 Samp 2.2.2 Anal	Groundwater S ysis Sampling and ling	ampling Analysis		5 5 6 6 6 7 8
3.0	RESU	LTS				9
	3.1 3.2	3.1.1 QA/Q 3.1.2 Cont 3.1.3 Cont Soil Vapor 3.1.1 QA/Q 3.2.2 Cont	aminant Distr aminant Chara Geochemistry	ibution cterization ibution		9 9 9 12 12 12 12 13
4.0	DISC	USSION OF RE	SULTS			13
5.0	CONC	LUSIONS			· • •.	. 18
6.0	RECO	MMENDATIONS	· · ·			18
APPEN APPEN APPEN	NDIX NDIX NDIX	B - Trip Rep C - Well Sam	pling Data Fo ary Soil Gas	rms		

REFERENCES

Ŷ

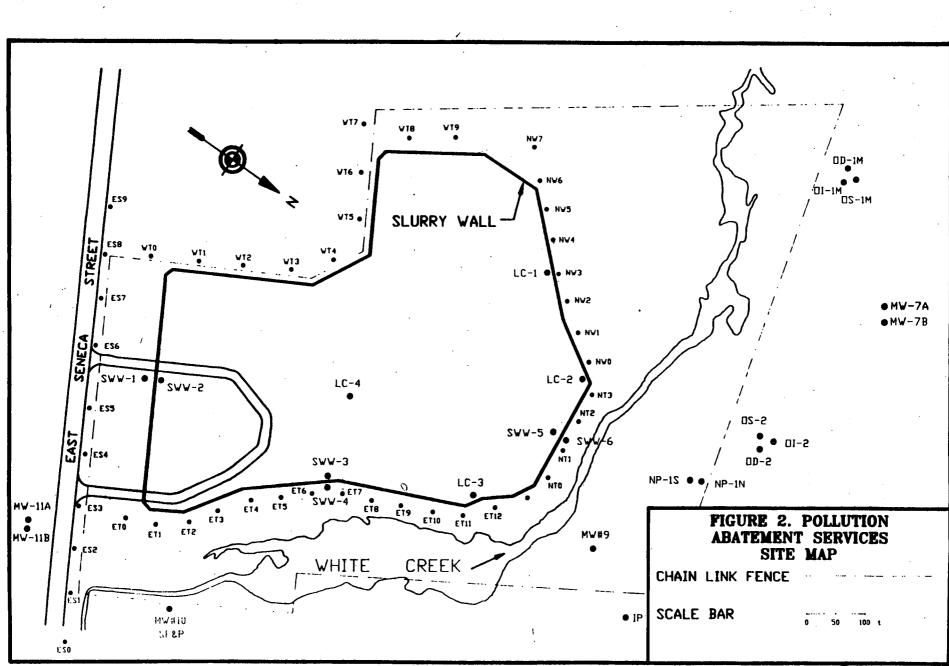
-

eh:rd/TYSON/PR-1202

ii

LIST OF TABLES

	PAGE
Summary of Well Conditions	4
Concentrations of Selected Volatile Organic Compounds in the Groundwater	10
Relative Percentage of Volatile Organic Compounds in Wells SWW4 and SWW6	11
Total Organic Compound Soil Vapor Data	14
Relative Percentages of Volatile Organic Compounds in Soil Vapors	15
	Concentrations of Selected Volatile Organic Compounds in the Groundwater Relative Percentage of Volatile Organic Compounds in Wells SWW4 and SWW6 Total Organic Compound Soil Vapor Data Relative Percentages of Volatile Organic


eh:rd/TYSON/PR-1202

LIST OF FIGURES

	PAGE
Figure 1. General Location Map	2
Figure 2. Site Map	3
Figure 3. Soil Vapor Total Organics	16
Figure 4. Model A	17
Figure 5. Model B	19
Figure 6. Model C	20

eh:rd/TYSON/PR-1202

Į

.

1.0 INTRODUCTION

1.1 Site Background

The Pollution Abatement Services (PAS) NPL site is located in Oswego County, New York, just east of the town of Oswego (see Figure 1). The most dominant hydrogeologic feature in the area is Lake Ontario, which lies due north of the site. PAS was operated as a disposal and treatment facility from 1970 to 1977. Leakage from drums and storage tanks resulted in the initiation of several removal and remedial activities. The drums and tanks were removed and a perimeter slurry wall was constructed to contain the groundwater contamination (U.S. EPA/OWPE, 1987). A clay cap was laid down over the area within the slurry wall and a groundwater recovery and leachate collection system was installed. Several suites of monitoring wells were completed around the site to test the integrity of the slurry wall and to monitor any off-site contaminant migration.

Prior to the involvement of the Environmental Response Team (ERT), a preliminary investigation was conducted by Versar, Inc. (U.S. EPA/OWPE, 1987). That report contains a description of the monitoring well nomenclature, monitoring well locations, and the surface casing conditions. There are some discrepancies between the monitoring well nomenclature used by U.S. EPA/OWPE (1987) and the nomenclature of the site map provided to the ERT by New York Department of Environmental Conservation (N.Y. DEC). For this report, the nomenclature of the N.Y. DEC map will be used. Figure 2 is a detailed site map, based on the N.Y. DEC map showing the location of the various monitoring wells, the soil vapor sample stations for the current study, and the configuration of the slurry wall. U.S. EPA/OWPE (1987) found significant concentrations of volatile organic compounds (VOCs) and semivolatile compounds in wells SWW4 and SWW6. High concentrations of iron, magnesium, and manganese were found in all the wells. Levels of chromium in excess of the U.S. EPA guidelines were found in wells MW3 (northwest corner of site, not shown on Figure 2), MW9, SWW4, SWW6, and Ol-1M. Arsenic was found in MW3, SWW4, and SWW6 and cyanide was found in well IP. Thus, there was apparently some spread of contamination north of the contained area in the vicinity of wells SWW4 and SWW6. However, no information concerning the subsurface condition of the wells and their suitability for sampling was available for that study.

In January of 1988, the Response Engineering and Analytical Contract (REAC) Geotechnical Group, under the authority of the ERT, conducted a detailed subsurface investigation of the site using a borehole camera apparatus (U.S. EPA/REAC, 1988). The investigation yielded the observations shown in Table 1. As shown in the table, the slurry wall monitoring wells (SWW1, 3, 4 and 6) are all in relatively good condition, with the exception of SWW3 which is in need of some flushing. All of these wells are in acceptable condition for sampling. Wells MW11A and MW11B, on the other hand, are both in very poor condition and of dubious reliability as monitoring wells.

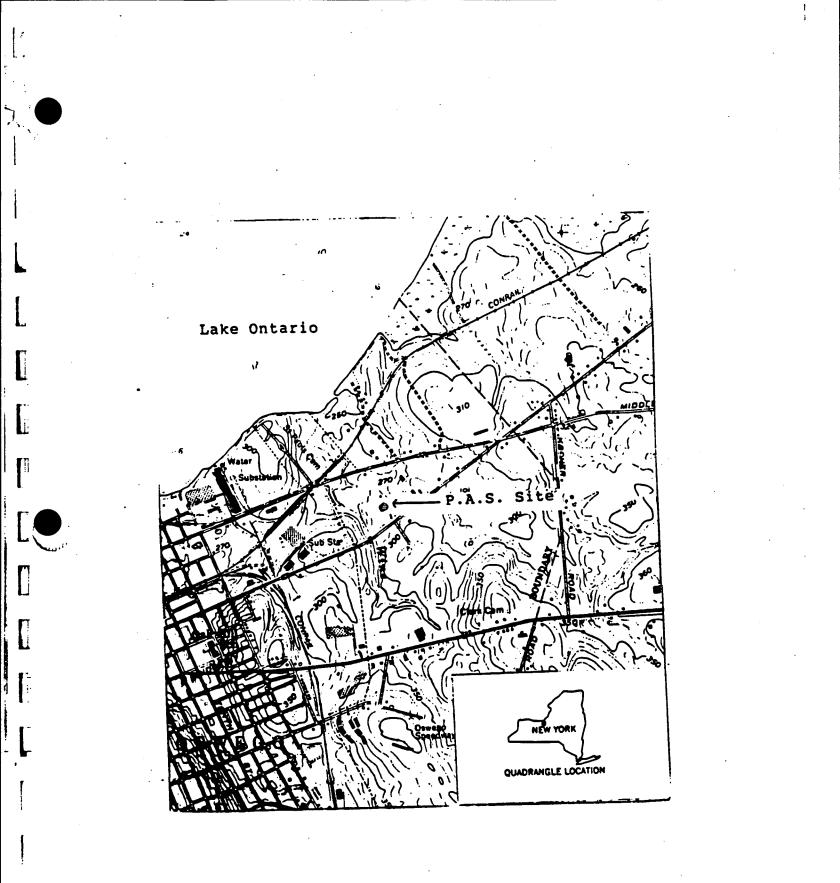


Figure 1. General Location Map Pollution Abatement Services

TABLE 1. SUMMARY OF WELL CONDITIONS

Well #	Condition	Diameter (in)	Depth (ft)	Screen (ft)	Chemistry VOC (ug/l)	Totals BNA (ug/l)	Water Leve Elevations (ft)	l Flow Velocity (ft/day)
ŚWW1	Clean Well	3	19.7	9 .2-19.7			278.1	0.381
SWW3	Needs Flushing	3	19.6	10.6-19.6			266.5	
SWW4	Clean Screen Good Condition	3	25.4	15.4-25.4	391.7	23.8	266.4	*
SWW6	Clean Screen Good Condition	3	17.0	7.3-17.0	2973.9	1310.0	264.0	0.013
MW11A	Corroded - Needs Flushing	5 3	10.8	6.8-10.8	172.4	0.0	282.3	***
MW11B	Kinked, Rusty Cracked, Scale	3	41.3	Open Hole 31.4-41.3	386.3	0.0	272.5	*

No Data Collected

Î

f

f

Data impaired due to cold weather

** No close topographic control

*** Bad results due to poor well conditions

The objective of the sampling for U.S. EPA/REAC (1988) was to qualitatively characterize the water in the borehole (not the aquifer) in order to assess the risk of possible damage to the borehole camera and determine levels of protection for the field personnel. Purging the wells prior to sampling was therefore unnecessary. The chemical results listed in Table 1 should only be considered representative of the water within the boundaries of the well, they are not representative of the groundwater in the overburden aquifer. U.S. EPA/REAC (1988) found that the most highly contaminated well was SWW6 (2973.9 ppb total VOCs), followed by SWW4, MW11B, and MW11A. Only the wells located outside the slurry wall were of interest, so no analyses were obtained for wells SWW1 and SWW3.

1.2 Objectives of this Study

There are three main objectives in the current study; (1) characterize the contamination in the overburden aquifer in the area immediately outside the slurry wall, (2) characterize the integrity of the slurry wall, and (3) determine the location of any breaches¹ in the slurry wall. In order to accomplish these objectives, a soil vapor and groundwater sampling plan was devised (see Appendix A). Under these plans, selected wells located immediately outside the slurry wall, and one well located inside the slurry wall, would be sampled. Soil vapor sampling transects would be set up parallel to, and just outside, the wall (see Figure 2). The analyses of the groundwater samples would be used to generally characterize the chemistry of the groundwater outside the slurry wall and the analyses of the soil vapor samples would be used to locate any breaches of the wall.

2.0 METHODOLOGY

1

2.1 Groundwater Sampling and Analysis

2.1.1 Well Purging

All of the wells were purged according to ERT/REAC SOP 2152 - Monitor Well Sampling. One-inch diameter Teflon bailers were used to purge wells SWW3, SWW4, and MW11A. Three-inch diameter Trico submersible pumps were used to purge wells SWW1, SWW6, and MW11B. All of the effluent

It should be noted that the exact route of contaminant escape is unknown. Two primary routes are suspected; between the bottom of the wall and the top of the bedrock, and through ruptures in the wall itself. Throughout this report any reference to the term "breach" should be considered to represent either one or both of these routes. was discharged into 55-gallon steel drums and later placed into the onsite leachate collection pit. Three complete well volumes were purged from each well. All purge data is shown in Appendix C. To avoid cross contamination between wells, all purge equipment was dedicated to each well. The equipment was decontaminated at the end of field activities using a sequence of detergent scrub, distilled water rinse, methanol rinse, and air dry. All of the bailers were wrapped in aluminum foil prior to leaving the site.

2.1.2 VOC Groundwater Sampling

All of the wells were sampled according to ERT/REAC SOP 2155 - Sampling for Volatile Organics in Groundwater. One-inch diameter bailers with stop-cocks were used. The bailers were fully cleaned and properly wrapped in aluminum foil prior to shipment to the site. The sample bailers were dedicated to each well to avoid cross contamination. Four 40 ml vials were filled from each well. For QA/QC purposes, one set of duplicate and one set of matrix spike samples was taken. All of the samples were immediately preserved on ice. The VOC samples and the associated trip blanks were shipped back to the REAC laboratory on October 20, 1988.

2.1.3 Analysis

A modified 524.2 method for the analysis of VOC's in water and soil with a gas chromatograph/mass spectrometer (GC/MS) system was used. Details of the analytical procedures and conditions can be found in Appendix E.

2.2 Soil Vapor Sampling and Analysis

2.2.1 Sampling

I

Soil vapor samples were taken according to ERT/REAC SOP #2149, Soil Gas Survey Procedures. A complete description of the soil vapor sampling activities and results are contained in U.S. EPA/TAT (1988) (see Appendix D). The following is a synopsis of the soil vapor sampling methodology taken directly from that memorandum.

A weight-driven 3/8" steel bar was driven into the ground to a depth of four to five feet to create the soil gas "well." A 5-foot length of 1/4" stainless steel tubing was then inserted into the hole.

Modeling clay was packed around the surface of the hole to prevent intrusion of ambient air and a piece of stiff wire was used to clear the sampling probe of lodged soil particles.

A Gilian pump calibrated to approximately 3 liters/minute was attached to the probe with Tygon tubing and the hole was evacuated for about 15 seconds.

2.2.2 Analysis

i ji

The HNU photoionizer was used to measure organic soil vapors at a depth of four to five feet below the surface. The detection of organic vapors utilizing this method does not yield an actual concentration, but does provide a relative measurement of volatile organic compounds when compared to background readings or measurements taken at other sampling locations.

The HNU photoionizer was calibrated using isobutylene as a benzene equivalent, and consequently all readings should be considered total organics as isobutylene.

The HNU detection method is utilized as a quick screening tool. 1-liter Tedlar sampling bags are used to collect actual soil vapor samples, which undergo field gas chromatograph (GC) analysis.

Sampling soil vapor using the Tedlar bags is accomplished in the following manner. The Tedlar bag is placed inside a vacuum dessicator and connected to the sampling probe via a Teflon tubing sampling train. A Gilian pump is used to evacuate the dessicator, thus filling the Tedlar sampling bag with soil vapors drawn from the four to five-foot depth.

The samples contained within the Tedlar bags were analyzed as soon as possible (within 24-48 hours) using Photovac and Sentex field GCs.

The Photovac GC was equipped with a photoionization detector using a 10.6 eV lamp. Standards consisting of common aromatic and chlorinated volatile organic compounds were utilized. The standards used included benzene, toluene, xylenes, TCE, and PCE. Compounds with retention times that matched components of the standard were tentatively identified and quantified against the response area for these components. Unknown compounds were quantified by using the area response of toluene. The method detection limit for the standard compounds is 20 parts per billion. The Sentex Scentograph GC unit was used to detect two additional compounds of interest in this soil gas survey: 1,1-dichloroethane and bromodichloromethane. The method detection limit for these compounds was 10 ppb.

To further define a broader range of compounds and to confirm those compounds already identified by the field GCs, selected Tedlar bag samples were drawn onto Tenax sorbent tubes to be analyzed by GC/MS. These tubes were desorbed and analyzed for specific ions using the GC/MS at the REAC lab facilities in Edison, New Jersey.

NOTE: Due to an electrical interference originating in the on-site trailer where the field GC analyses were to have been performed by both Photovac and Sentex GCs, the sample bags were transported to the REAC facilities in Edison, NJ, where the GC analysis consequently occurred. As a result of this problem, many of the soil gas samples were analyzed more than 48 hours after sampling took place. The net effect that this is expected to have on the data is a potential lowering of the total organic compound (TOC) concentrations.

2.3 Soil Gas Survey Description

Each sampling transect was named for its location around the periphery: ES, transect parallel to East Seneca Street running NE to SW; WT, west transect along the western periphery; NW, transect running along the north west boundary; NT, north transect outside the portion of the slurry wall due north of the site; and ET, east transect along the eastern boundary of the site. All transects had sample locations spaced at 50-foot intervals, except the ES and WT transects, where sample stations were 75 feet apart.

All samples were obtained at a depth of 4 to 5 feet, except NW1, NW5, NW6, which were sampled at 2 to 2.5 feet due to the shallow water table conditions at these locations, and ET1 DEEP, which was sampled at a depth of approximately seven feet.

Two ambient air samples, ETO AMB and TOC AMB were collected and analyzed, as were three field blanks (Tedlar bags filled with ultra-zero air and carried in the field throughout each sampling day), and two bag check QA/QC samples (Tedlar bags filled with ultra-zero air and analyzed to determine cleanliness of the sample bag lot before sampling occurs).

3.1 Groundwater Geochemistry

3.1.1 Analytical Results

The results of the VOC analyses are contained in Appendix E. Table 2 is a summary of those results. Duplicate samples were taken on well MW11A. The results were identical in both the sample and the duplicate. A trip blank was also shipped with the samples on the return trip. Minor amounts of toluene, P&M xylene, and O-xylene were found in the blank (see Table 2). The amounts detected in the trip blanks do not seriously affect the validity of any conclusions based on the sample analytical results.

Matrix spike and matrix spike duplicate samples were taken at MW11A. As shown in Appendix E, all spike recoveries and relative percent difference values were within QC limits.

3.1.2 Contaminant Distribution

Wells SWW4 and SWW6 are the most highly contaminated wells at the site (TOC for SWW4 = 649.9 ppb and TOC for SWW6 = 7549.8 ppb). This coincides with the results of U.S. EPA/REAC (1988) and U.S. EPA/OWPE (1987). For comparison, one well located inside the wall, SWW3 (see Figure 2), was sampled. When the results from well SWW3 are compared to those of SWW4, it can be shown that the value for TOC is greater outside the slurry wall. By far the most significant contributor to this difference in concentrations is toluene. The concentration of toluene in SWW3 is 3.2 ppb and that for SWW4 is 91 ppb.

3.1.3 Contaminant Characterization

Table 3 is a listing of the relative percentage of each VOC found in wells SWW4 and SWW6. The most prominent compounds in SWW4 are ethylbenzene (27.7%), P&M xylene (18.3%), and benzene (18.2%). The most prominent compounds found in SWW6 are toluene (42.3%), P&M xylene (22.1%), ethylbenzene (9.1%), and benzene (9.0%).

TABLE 2. CONCENTRATIONS FOR SELECTED VOLATILE ORGANIC COMPOUNDS LISTED IN MICROGRAMS PER LITER (UG/L)

Compound	SWV1	SWA3	SUA4	SUNG	MW11A	NU11A DUPE	MJ11B .	Trip Blank
Chloroethane	ND	ND	36.0	231.0	ND	ND	ND	ND
Methylene Chloride	ND	1.6	1.8	8.8	ND	ND	ND	ND
Trans-1,2-Dichloroethane	ND	1.2	1.8	44.0	ND	· ND	ND	ND
1,1 Dichloroethane	ND	3.1	2.2	98.0	ND '	ND	ND	ND
cis 1,2-Dichloroethene	ND	3.7	ND	ND	ND	ND	ND	ND
Chloroform	ND	. ND	ND	ND	ND	ND	ND	ND
1,1,1 Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ND	61.0	118.0	682.0	ND	ND	ND	ND
1,2-Dichloroethane	ND	1.7	2.5	10.0	ND	ND	ND	ND
Trichloroethene	ND	2.2	ND	3.7	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ND	3.2	91.0	3192.0	ND	ND	0.4(J)	2.3
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	ND	ND	ND	1.0	ND	ND	ND	ND
Chlorobenzene	ND	75.0	22.0	6.7	ND	ND	ND	ND
Ethylbenzene	ND	245.0	180.0	684.0	ND	ND	0.3(J)	0.8(J)
P&M Xylene	ND	87.0	119.0	1666.0	ND	ND	1.0	2.7
0-Xylene	ND	23.0	45.0	648.0	ND	ND	ND	1.1
Isopropylbenzene	ND	3.9	9.5	9.3	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	0.5(J)	0.9(J)	1.7	ND	ND	ND	ND
1,2,3-Trichloropropane	ND	ND	1.0(J)	2.7	ND	ND	ND	ND
n-Propylbenzene	ND	2.0	1.0	7.8	ND	ND	ND	ND
1,3,5 Trimethylbenzene	ND'	6.1	4.3	92.0	ND	ND	ND	ND
1,2,4 Trimethylbenzene	ND	17.0	7.8	104.0	ND	ND	0.2(J)	ND
p-Isopropyltoluene	ND	1.6	2.5	3.5	ND	ND	ND	ND
1,4 Dichlorobenzene	ND	6.6	0.3(J)	2.5	ND	ND	ND	ND
1,2 Dichlorobenzene	ND	ND	1.5	72.0	ND	ND	ND	ND
1,2 Trichlorobenzene	ND	0.5(J)	0.7(J)	1.4	ND	ND	ND	ND
Nexachlorobutadiene	ND	1.2	1.4	3.1	ND	ND	-ND	ND
Naphthalene	ND	3.1	1.6	22.0	ND	ND	ND	ND
1,2,3 Trichlorobenzene	NÐ	0.8	1.0	2.2	ND	ND	ND	ND
TOTAL ORGANIC COMPOUNDS	ND	550.0	650.8	7549.8	ND	ND	ND	6.1

Qualifiers

19

[]

Ĩ

Ĩ

u - The compound was analyzed for but not detected at the given concentration.

[] - An approximate value between the detection limit and the quantification limit.

ND - Non-detect

NA - Not analyzed

(J) - Below the method detection limit

TABLE 3. RELATIVE PERCENTAGES OF VOLATILE ORGANIC COMPOUNDS IN WELLS SWW4 AND SWW6

Compounds	SWW4	SWW6
Chloroethane	5.5	3.1
Methylene Chloride	0.3	0.1
Trans 1,2-Dichloroethene	0.3	0.6
1,1 Dichloroethane	0.3	1.2
cis 1,2-Dichloroethene	ND	ND
Chloroform	ND	ND
1,1,1 Trichloroethane	, ND	ND
Benzene	18.2	9.0
1,2 Dichloroethane	0.4	0.1
Trichloroethene	ND	0.0
Bromodichloromethane	ND	ND
Toluene	14.0	42.3
1,1,2-Trichloroethane	ND	ND
Dibromochloromethane	ND	0.0
Chlorobenzene	3.4	0.1
Ethylbenzene	27.7	9.1
P&M Xylene	18.3	22.1
O-Xylene	6.9	8.6
Isopropylbenzene	1.5	0.1
1,1,2,2-Tetrachloroethane	0.1	0.0
1,2,3-Trichloropropane	0.2	0.0
n-Propylbenzene	0.2	0.1
1,3,5 Trimethylbenzene	0.7	1.2
1,2,4 Trimethylbenzene	1.2	1.4
p-Isopropyltoluene	0.4	0.1
1,4 Dichlorobenzene	0.0	0.0
1,2 Dichlorobenzene	0.2	1.0
1,2 Trichlorobenzene	0.1	0.0
Hexachlorobutadiene	0.2	0.0
Naphthalene	0.2	0.5
1,2,3 Trichlorobenzene	0.2	<u> 0.0</u>
	100.5	100.5

ļ

A value of 0.0 indicates that the relative percentage is less than 0.05.

3.2 Soil Vapor Geochemistry

3.2.1 Analytical Results

The results of analyses done on the bag check samples are shown in Appendix D, Table 1. None of the target compounds were detected in these samples. TOC values for the non-target compounds found in BC-1 and BC-2 are 67 and 207 parts per billion (ppb), respectively.

U.S. EPA/TAT (1988) notes that soil gas results can be affected by the site-specific properties of the unsaturated zone. The variability of these site-specific parameters must be recognized in order to correctly interpret soil vapor survey results. Specifically, the soil properties that affect soil gas surveys are soil porosity, texture, water content, organic matter content, shape and size of soil pores, and depth of the unsaturated zone.

Particularly relevant to the PAS site soil gas survey are soil moisture content, soil texture, and proximity of the water table. The surficial material at PAS is comprised of a mixture of clay, silt, sand, and boulders, which is relatively compact and impermeable. Soils such as these, which are found to have a high clay and moisture content, cause decreased rate of diffusion of soil vapors and can hinder the ability to effectively track a plume of organic contaminants.

Soil gas sampling in close proximity to the water table presents another problem. Along the northern site-boundary, NW and NT transects, the water table was reached at depths of less than three feet at certain locations. Shallow groundwater conditions present a difficulty in soil gas sampling because the chemical concentration gradient in soil gas can be very steep, highly variable, and easily disturbed under these conditions (Marrin, 1988).

3.2.2 Contaminant Distribution

A complete correlation between soil vapor and groundwater geochemistry could not be expected due to site specific variables affecting the soil vapor results, particularly the high water table conditions along the northern perimeter and the variations in porosity and permeability associated with the till. The general trends, however, are comparable. Both the TOC values from the groundwater data and the soil vapor data tend to increase to the north, downgradient from the site. The soil vapor TOC values are generally higher and feature greater variability along the northern perimeter (see Figure 3). The TOC mean and standard deviation values for each transect are listed in Table 4. The standard deviation for the NT and NW transects are 352 and 1011 ppb, respectively, compared to an average standard deviation of 154 ppb for the other three transects combined. Similarly, the TOC mean values for the NT and NW transects are 429 and 1028 ppb, respectively. The average of the TOC mean values for the three other transects combined is 201 ppb.

3.2.3 Contaminant Characterization

Table 5 shows the relative percentage of the main VOC's in each soil vapor transect. O-xylene/styrene and toluene are ubiquitous in the soil vapors throughout the site (the mean relative percentages are 28 and 27%, respectively). Other significant compounds are benzene (22%), TCE (13%), PCE (9%), and m-xylene (2%).

4.0 DISCUSSION OF RESULTS

11

Both the groundwater data and the soil vapor data indicate that there is significant contamination outside the slurry wall. Both data sets show that the contaminant concentrations are higher along the northern perimeter. This indicates that the contaminants are following the regional groundwater flow vector which is oriented south to north (U.S. EPA/REAC, 1988).

In order to explain the distribution of contaminants discussed in Section 3.0, hypothetical models A, B, and C shown in Figures 4, 5, and 6, respectively, should be considered.

Model A is based on three main assumptions; that the distribution of contaminants within the original plume area was homogeneous, that the slurry wall as originally installed did not fully encompass the plume, and that the slurry wall has remained intact since installation. This would result in a generally uniform distribution of contaminants outside the slurry wall, with a slightly higher concentration developing along the northern perimeter as the regional groundwater flow carried the contaminants downgradient. This model seems to fit the soil vapor and groundwater analytical data at least along the ET, ES, and WT transects. TABLE 4. TOTAL ORGANIC COMPOUND (TOC) SOIL VAPOR DATA (IN ppb)

Sample No.	Total Organics								
ES-00	359	ET-00	19	NT-00	388	NW-00	163	WT-99	48 4
ES-01	231	ET-01	394	NT-01	694	NW-01	551	WT-01	273
ES-0Ż	97	ET-02	214	NT-02	187	NW-02	2733	WT-06	200
ES-03	391	ET-03	318	NT-03	9 93	NW-03	1071	WT-07	61 0
ES-04	146	ET-04	495			NW-04	381	WT-08	408
ES-05	414	ET-05	374			NW-05	2363	WT-09	174
ES-06	504	ET-06	239	•		NW-06			
ES-08	174	ET-07	611						
ES-09	77	ET-08	447						
		ET-09	267		•				
		ET-10	. 258						
		ET-11	297						
		ET-12	164						
		ET-13	53						
TOC Mean	266		296		566		1165	•	358
TOC									
Standard		•							
Deviation	147		143		352		1011		172

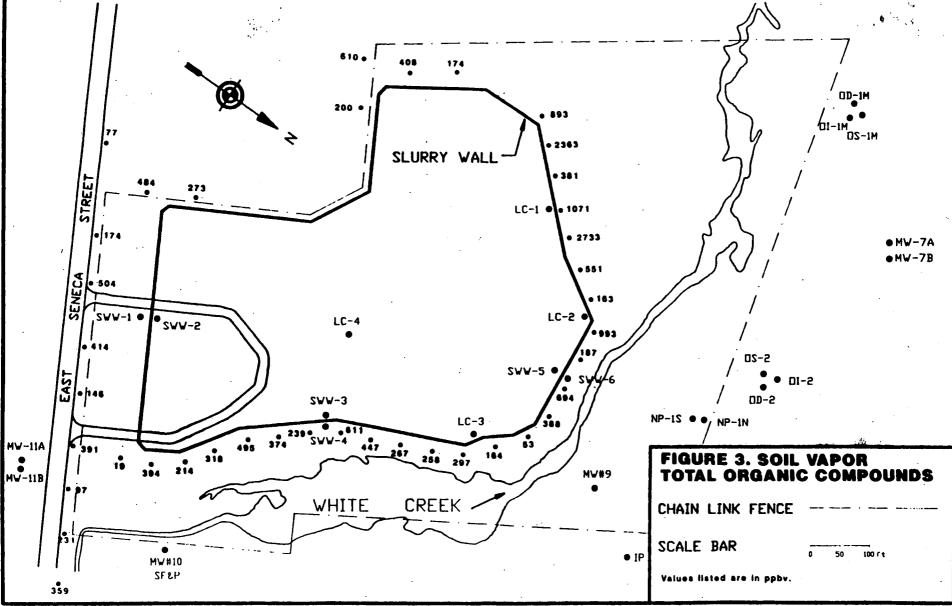
I

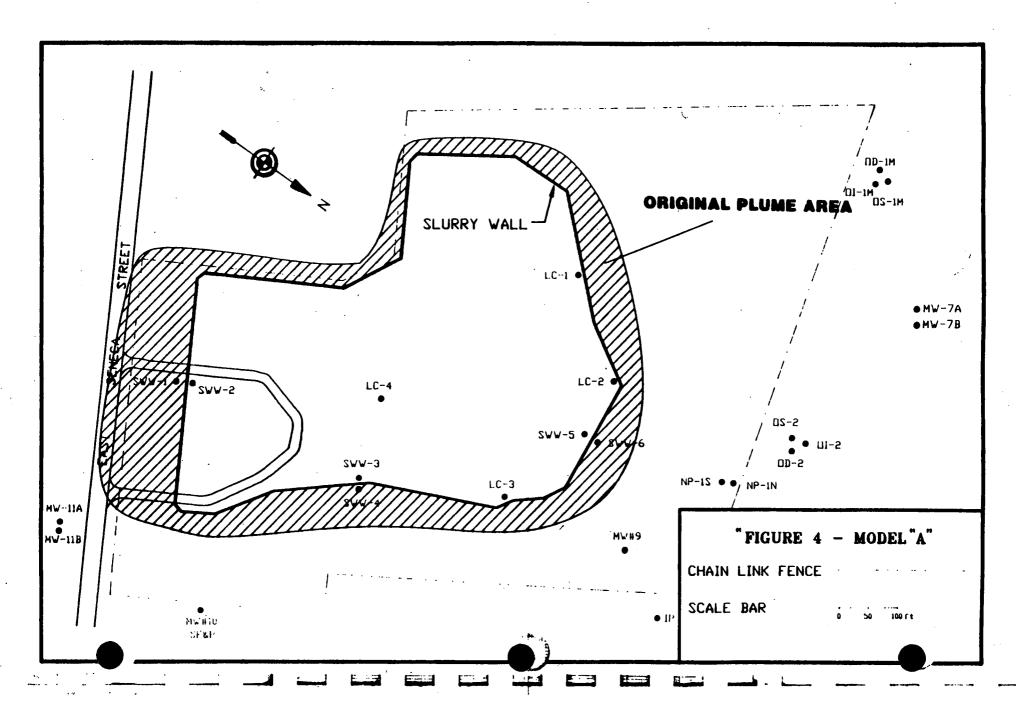
F

f

i

i....jř


TABLE 5. RELATIVE PERCENTAGE OF VOLATILE ORGANIC COMPOUNDS IN EACH SOIL VAPOR TRANSECT

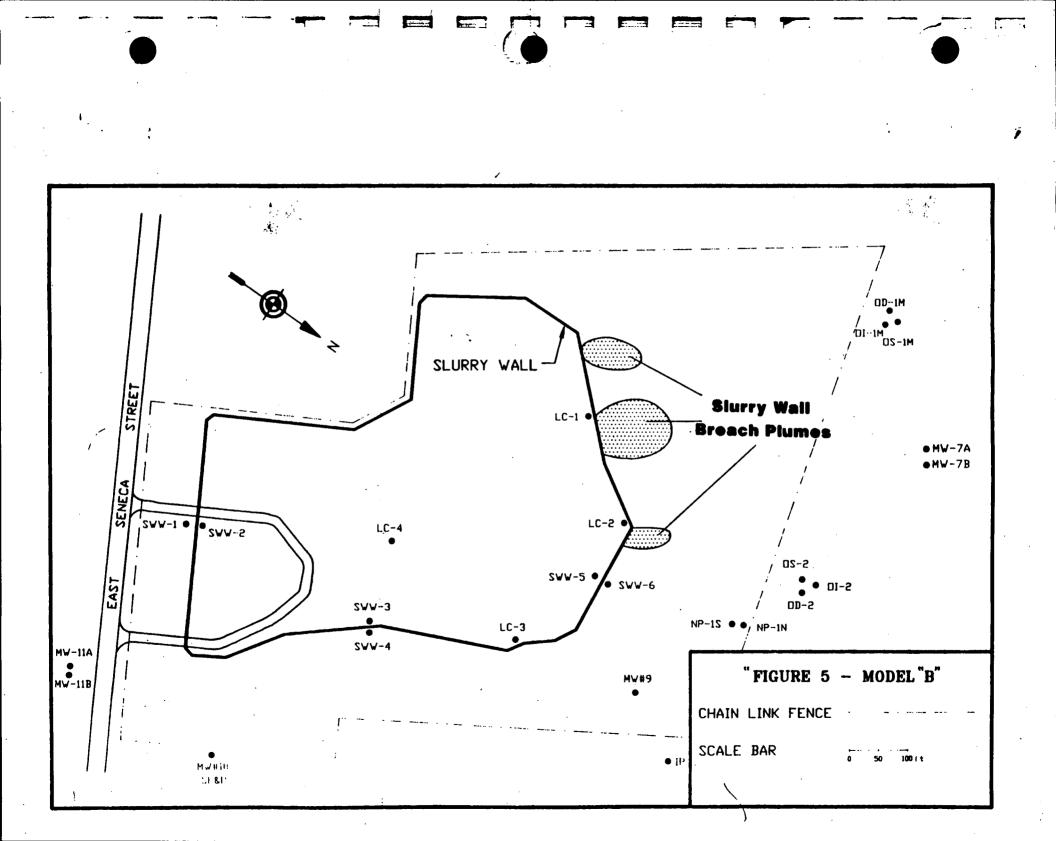

Transect	Benzene	TCE	Toluene	PCE	Ethylbenzene	M-xylene	0-xylene/Styrene	M-Ethyltoluene	Total
ES	15	4	17	ND	ND .	ND	64	ND	100
ET	15	27	24	3	ND	ND	30	ND	9 9
NT	13	14	31	32	ND	ND	11	ND	101
NW	44	8	35	1	ND	7	5	ND	100
Mean relative percentage									
at site	22	13	27	9	ND	2	28	ND	

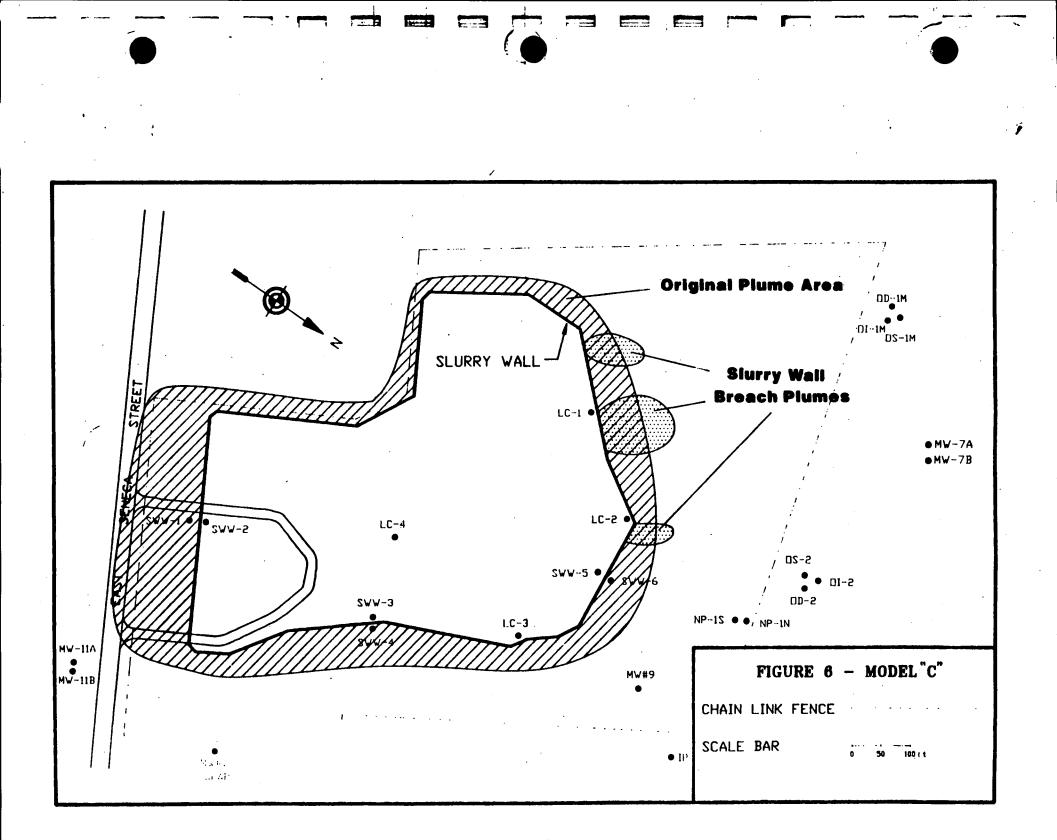
Ţ,

---- E3

Model B is based on the following assumptions: (1) the original distribution of contaminants within the plume area was homogeneous; (2) as originally installed, the slurry wall did fully enclose the plume; and (3) any contamination observed outside the slurry wall is the result of a breach. The contaminant distribution pattern outside the wall that would result from this situation would feature background level contaminant concentrations punctuated by anomalously high concentrations around the breach. This model seems to fit the distribution pattern observed along the northern perimeter of the site in that the concentrations vary over a wide range in this area. There are anomalously high soil vapor TOC values at sample stations NW-02 and NW-05.

Model C is a combination of Models A and B. The model is based on the following assumptions: (1) the distribution of contaminants within the original plume was homogeneous, (2) the slurry wall as initially installed did not fully encompass the plume, and (3) the slurry wall has subsequently been breached. The resulting distribution pattern would feature relatively uniform TOC values around most of the site with slightly higher values to the north, downgradient from the source area. Superimposed on this distribution pattern would be high TOC anomalies around the breach in the slurry wall. A comparison of the distribution pattern for Model C shown in Figure 6 with the observed pattern shown in Figure 3 shows that it is this model which appears to most completely describe the observed contaminant distribution pattern.


5.0 CONCLUSION


It is apparent that there is significant VOC contamination in the overburden aquifer outside the slurry wall. Of the models considered in this study, Model C, which is based on the assumption that the slurry wall did not encompass the contaminant source area when it was installed and that subsequent to its installation, the wall was breached somewhere in the area of NW2 and NW5, shows the best fit to the data.

6.0 RECOMMENDATIONS

Three main recommendations should be immediately considered. First, in order to fully characterize the contamination at the site, all of the monitoring wells and leachate collection wells should be sampled for full priority pollutants. Second, Model C should be tested by conducting a soil vapor survey along the northern perimeter under low water table conditions. Third, the pump tests recommended in U.S. EPA/REAC (1988) on both the bedrock wells and the overburden wells should be completed.

It has not yet been determined whether the slurry wall breach discussed above is the result of contaminants migrating under the slurry wall or flowing through ruptures in the wall. A seismic refraction survey would yield a detailed bedrock surface topographic map. Channels in the bedrock topography would be delineated using this technique, and the depth to bedrock under the leak area could be determined. This information, when combined with the groundwater and soil vapor geochemical data, could be used to determine the path of contaminant migration along the northern perimeter of the site.

APPENDIX A

QUALITY ASSURANCE WORK PLAN

Soil Vapor and Groundwater Sampling at Pollution Abatement Services, Oswego, NY

rd/TYSON/PR-1202

Γ

Ĩ

T

QUALITY ASSURANCE

Work Plan

SOIL VAPOR AND GROUNDWATER SAMPLING AT POLLUTION ABATEMENT SERVICES, OSWEGO, NY

Prepared by Roy F. Weston, Inc.

October 18, 1988

EPA Work Assignment No. 0-202 Weston Work Order No. 3347-01-01-1202 EPA Contract No.: 68-03-3482

APPROVALS

Roy F. Weston, Inc.

EPA

en Tyson Task Leader

E

i

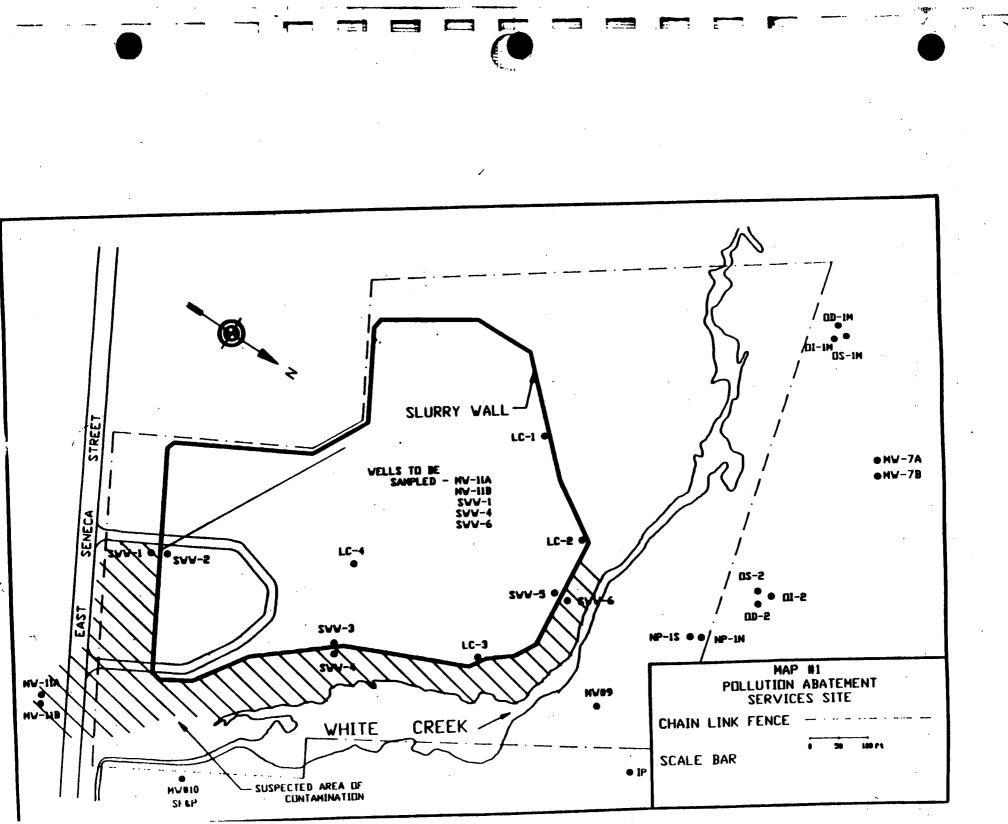
W. Scott fie

Project Manager

Alan Work	Humphrey Assignment Manager	(Date)
Baba	rt Cibulskis	(Date)

(Date) Walter R. Stutts Contracting Officer

eh/WP-190


1.0 OBJECTIVE

Г

	1.1	Groundwater sampling for volatile organic compounds
		The objective of this sampling event is to determine: - the extent of contamination, and - the magnitude of contamination
		In the following media: - groundwater
		For the purpose of: - site characterization and determining the extent of the contamination outside an existing slurry wall
		The data will be evaluated against: - an existing data base
	1.2	The objective of the soil vapor sampling portion of this project is to determine: - the extent of contamination, and - the magnitude of contamination
		In the following media: - soil/sediment
		The data will be evaluated against: - an existing data base, and - the data will be compared to that of the water samples
2.0	PROJ	IECT SCOPE
	The	following information is known about the site:
		It is a hazardous waste facility on 4 acres which had been operating for 7 years up until 1977. The types of material(s) handled by this facility were: - organic solvents, and - volatile organics
	2.1	Groundwater Sampling
		The area of suspected contamination is shown on Map 1.
		The target contaminants of concern are toluene, benzene, bromodichloromethane, 1,1-dichloroethane, trans-1,2-dichloroethane,

and ethyl benzene. The expected concentration range for these contaminants is 236 to 1200 ppb, however, it is also our intent to identify any other target volatile organic compounds found at concentrations exceeding 10 ppb.

eh/WP-190

The groundwater sampling portion of this project will involve the collection of samples to be analyzed for volatile organic compounds from the five monitoring wells identified on Map 1. REAC will collect the samples and undertake the analysis. REAC will also

- protective gear
- sampling equipment
- sample containers
- sampling personnel
- field analysis
- analysis

2.2 Soil Vapor Sampling

The target contaminants for the soil vapor sampling are identical to those of the groundwater sampling. Since there has been no soil vapor sampling done at this site, the expected concentration range is unknown.

The area of suspected contamination shown in Map 1 is to be sampled for soil vapors. The exact locations of the sample sites will be determined in the field by the ERT Work Assignment Manager.

3.0 TECHNICAL APPROACH

In order to execute the objectives outlined in Section 1.0, this project will involve the collection of 5 groundwater samples and from 30 to 50 soil vapor samples using the procedures outlined in the following REAC SOPs: 2155, Sampling for Volatile Organics in Groundwater; 2149, Soil Gas Survey Procedures; 2007, Groundwater Well Sampling; and 2152, Monitor Well Sampling.

4.0 PROJECT MANAGEMENT AND REPORTING

The Weston/REAC Task Leader, Ken Tyson, will maintain contact with the EPA Work Assignment Manager to keep him informed about the technical and financial progress of this project. This communication will commence with the issuance of the work assignment and project scoping meeting. Activities under this project will be reported in status or trip reports and other deliverables (e.g., analytical reports, final reports) identified in Section 8.0. Activities will also be summarized in appropriate format for inclusion in REAC Monthly and Annual Reports.

5.0 PROJECT SCHEDULE

The work assignment for this project was issued on 10/13/88. The QAWP was initiated at that time. The equipment required to conduct the site activities was assembled and shipped on 10/17/88. Field activities were carried out between 10/18/88 and 10/20/88 and the samples were transferred to the lab on 10/20/88. Preliminary results are expected on 11/14/88. The overall project is expected to close-out with the issuance of a final report on 12/23/88. Refer to the attached project schedule chart and Section 8.0 for an illustration of milestones and deliverable due dates.

eh/WP-190

6.0 PROJECT ORGANIZATION AND RESPONSIBILITIES

The EPA Work Assignment Manager, Alan Humphrey, will provide overall direction to REAC staff concerning project sampling needs, objectives, and schedule.

The REAC Task Leader, Ken Tyson, is the primary REAC point of contact with the EPA Work Assignment Manager. The Task Leader is responsible for the development and completion of the QAWP, project team organization, and supervision of all project tasks, including reporting and deliverables.

The REAC Site QC Coordinator, Ken Tyson, is responsible for ensuring field adherence to the QAWP and recording any deviations from the QAWP. The Site QC Coordinator is also the primary project team contact with the REAC lab. The following REAC field sampling personnel will work on this

<u>Personnel</u>

Dave Miller

<u>Dan deBruiin</u>

<u>Renata Wynnyk</u>

Responsibility

Soil Vapor Sampling

Groundwater Sampling

G.C. Soil Vapor Analysis

The REAC QA Officer (John Mateo) is responsible for auditing and guiding the project team, reviewing the final deliverables and proposing corrective action, if necessary, for nonconformity to the QAWP.

7.0 MANPOWER AND COST PROJECTIONS

The estimated costs (including labor, travel, materials and equipment, subcontractor, and analytical) to complete this project are depicted in the attached cost summary sheet.

8.0 DELIVERABLES

The following deliverables will be provided under this project:

		DATE
0	GAMP Field Activities	11/10/88 10/21/88
0	Trip Report Anslytical Report	11/21/88 11/21/88
0.	Draft Final Report	12/23/88

9.0 QUALITY ASSURANCE

TTEM

As identified in Section 1.0, the objective of the groundwater sampling event does require analyte specificity at or near the level of sensitivity for all samples. The results of these samples (organics) will have confirmed identification and associated confidence limits. Results will

۰,

eh/WP-190

be representative, comparable, and complete. The QA level of control defined by this criteria is QA-3 and for this project it applies to all groundwater samples. The following QA/QC protocols will be addressed: chain of custody documentation, sample holding time documentation, initial and continuing instrument calibration, QC chromatograms and/or mass spectra, matrix spike duplicate and standard calibration curves method blanks, replicates, rinsate blanks, performance evaluation samples, and sample spikes. Table 9.1 and 9.2 are completed to reflect some of the appropriate QA/QC protocols identified above.

As identified in Section 1.0, the objective of the soil vapor sampling event does require analyte specificity for the soil gas samples. On at least 10% of the total screened samples, the organics results will have confirmed identification and associated confidence limits. Results will be representative, comparable, and complete. The QA level of control defined by this criteria is QA-2. The following QA/QC protocols will be addressed: chain of custody documentation, sample holding time documentation, collection and evaluation of blanks and sample replicates, instrument calibration documentation, and sample spike and evaluation (matrix spike and PE samples). Tables 9.1 and 9.2 are completed to reflect some of the appropriate QA/QC protocols identified above.

Specific data review activities for QA-3 and QA-2 should be performed by the following tiered approach:

- 1. a. For any one data package, review all data elements for 10% of samples.
 - b. For the remaining 90% of the samples within the same data package, review holding times, blank contamination, spike (surrogate/matrix) recovery, detection capability, and confirmed identification thoroughly.
- 2. For every tenth data package, review all data quality elements for all samples.

Numbers of samples to be collected for this project/event are entered onto Tables 9.1 Field Sampling Summary and Table 9.2 QA/QC Analysis and Objectives Summary to facilitate ready identification of analytical parameters desired, type, volume and number of containers needed, preservation requirements, number of samples required and associated number, and type of QA/QC control samples required based on QA level desired.

All project deliverables will receive internal REAC peer QC review prior to release to EPA.

1

eh/WP-190

9.1 Field Sampling Summery

					QC Extra's					
Analytical Parameter	Matrix*	Container Type and Volume (# containers rq'd)	Preserv- ative	Subtotal Samples	Dupes ¹	Rinsate Slanks ²	Trip Blanks ³ (VQA's)	QC Positives ⁴	Natrix Spikes ⁵	Total Field Sample:
	5	40ml vial (1)	4°c					<u></u>	. <u> </u>	
	<u> </u>	40ml viel		<u> </u>						· · · ·
AOV	v	(3)	4°C**	5	1	0	3	0	1	10
		8oz giess		···		<u> </u>	•	<u> </u>		<u> </u>
BHA	\$	(1)	4°C					,		
	v	32oz amber glass (2)	4°c							
PEST/PCB	\$	Boz glass (1)	4°C							
PEST/PCB	U .	32oz amber glass (2)	4 ⁰ C++	<u></u>		, , , ¹¹ , , , , 8, <u>, , , , , , , , , , , , , , </u>			<u> </u>	
P_P.	8	Box glass (1)	4°C							
·		1 liter glass or	HIC3 PH<	2						
P.P METALS	u	polyethylene (1)	4°c							
CYANIDE	\$	Boz glass (1)	4°c							
		1 liter polyethylene	HeON to pit >12							
CYANIDE	v	(1)	4°C							
PHENOL	\$	Box glass (1)	4°C							
		1 liter enter glass	H_804 to	· · · · · · · · · · · · · · · · · · ·						
			p# < 2							
PHENOL		(1)	4°c							

"Natrix: S-Soil, W-Water, O-Oil, DS-Drum Solid, DL-Drum Liquid, TS-Tank Solid, TL-Tank Liquid, X-Other, A-Air

•• If residual chlorine present, preserve with 0.008% Mag \$2 02.

- . One duplicate sample required for each lot of 20 samples obtained.
- 2. Only required if dedicated sampling tools are not used. One field blank required per parameter per 10 samples.

3. One trip blank required per cooler used to ship VOA samples. Each trip blank consists of 2 40ml visls filled with distilled/ dejonized water.

ŧ

4. Performance check samples for special projects only. Not for every project.

5. One extra samples for each parameter. Applies to Water Samples only.

-E

	Analytical		Analytical	5	ikee .	Level of Lab		GA/GE_Objectives			
	Parameter	Natrix*	Nethod Ref.	Matrix ¹	Surrogate ²	Sensitivity	Lab Dupes ⁴	Limits	Prec	Acc	Comp
	NOA	8	624/CLP								
	VOA	V	624/CLP	1	0	10 ppb	1	10 ррв			
	SNA	\$	625/CLP					· · · · · · · · · · · · · · · · · · ·			
	8HA	V	625/CLP			· · · · · · · · · · · · · · · · · · ·					
	PEST/PCB	\$	608		· · · · · · · · · · · · · · · · · · ·						
	PEST/PCB	v	608								•.
	7 P.P. METALS	s 、	SV-846								
	P.P. METALS	v	SU-846								
	CYANIDE	8	SV-8 46					e.			
	CYANIDE	v	51-846								
	PHENOL	\$	425								
	PHENOL	u	625					•			

"Matrix: S-Soil, W-Water, O-Oil, DS-Drum Solid, DL-Drum Liquid, TS-Tank Solid, TL-Tank Liquid, X-Other, A-Air.

٦

1. One matrix spike analysis per "x" % of samples depending on QA level samples. Clean samples will include

metrix spike and matrix spike duplicate.

Surrogate spikes analysis to be run for each sample.

.. A specific concentration that meets the objective.

4. One per lot of 10 samples.

eh/WP-190

l

IJ

APPENDIX B

TRIP REPORT

Pollution Abatement Services Site Groundwater Sampling and Soil Gas Survey

L

Γ

t

DATE: November 18, 1988

TO: Alan Humphrey, Work Assignment Manager

FROM: Ken Tyson, Task Leader

THROUGH: Pat Donegan, O&A Section Chief

SUBJECT: TRIP REPORT, POLLUTION ABATEMENT SERVICES SITE GROUNDWATER SAMPLING AND SOIL GAS SURVEY WORK ASSIGNMENT NO.: 1202

BACKGROUND

ľ

As part of an earlier study (Tyson, 1988), REAC recommended additional work including a soil gas survey and additional groundwater sampling for the Pollution Abatement Services (PAS) site. A pre-site meeting was held on 10/13/88 with the REAC O&A Section Chief, Pat Donegan, the REAC Task Leader, Ken Tyson; two members of ERT/TAT, Bob Issacks and Linda Delia; and the ERT Work Assignment Manager, Alan Humphrey in attendance. During that meeting, all major aspects of the planned activities were discussed. A REAC work assignment was issued on 10/17/88 and a workplan was submitted on 11/10/88. The work assignment called for the completion of a soil gas survey to be conducted outside the slurry wall (exact sample locations to be determined in the field) and for groundwater sampling in the following wells; MW11A, MW11B, SWW1, SWW2, SWW4, and SWW6 (see map attached). These wells were all to be sampled for volatile organic analyses. The equipment was transported to the site on 10/17/88.

OBSERVATIONS AND ACTIVITIES

The REAC/ERT/TAT field team arrived at the site at 1000 hrs on 10/18/88. At that point, it was discovered that the key for the lock to the main site entrance was not at the hiding place described by the Region II OSC. After a brief discussion, Alan Humphrey granted permission to have the lock cut by a local welder.

Conditions at the site were found to be very good. There was a group of trailers, a storage shed, and a mobile field office on-site. The weather was cool, with a brisk wind out of the north. A more detailed site description can be found in Tyson, 1980.

eh/TYSON/M-32

The field personnel for this project were divided into three teams; the soil gas sampling team (Alan Humphrey, Dan deBruijn, and Linda Delia), the soil gas analysis team (Bob Issacks and Renata Wynnyk), and the groundwater sampling team (Ken Tyson and Dave Miller).

The soil gas team collected samples according to REAC SOP# 2149 around the exterior of the slurry wall on 10/18/88 and 10/19/88. Due to stabilization difficulties encountered with the G.C.M.S., these samples could not be analyzed in the field. On 10/20/88, the soil gas samples were shipped back to the REAC laboratories in Edison, NJ via the project sample truck for analysis.

The groundwater sampling team successfully purged all of the selected wells using bailers and submersible pumps during the afternoon of 10/18/88 and the morning of 10/19/88. The wells were sampled during the afternoon of 10/19/88 and the samples were shipped back to the REAC laboratories on 10/20/88 via the project sample truck. A copy of the chain of custody for these samples is attached. Severe contamination was observed visually in wells MW11A, MW11B, SWW4, and SWW6. Due to brisk winds during the sampling operations, no vapors were detected by the field photoionization detector in the breathing zone. Modified level C protective gear was used for splash protection while purging and sampling these wells.

All members of the field team returned to Edison on the afternoon of 10/20/88.

FUTURE DELIVERABLES, ACTIVITIES, AND RECOMMENDATIONS

Soil gas and volatile organic water analyses are deliverable to the ERT Work Assignment Manager on 11/21/88. These results will be included in a detailed project report which is deliverable on 12/23/88.

Twenty three monitoring wells are currently being installed at the site by the New York Department of Environmental Conservation (NYDEC). Detailed well location maps and well logs will be forwarded to ERT/REAC as soon as they are complete. To date, the packer pump and time-series sampling tests recommended in the previous REAC report (cited above) have not been completed, nor are there any immediate plans to do so. It is strongly recommended that this work be carried out as the next step in the characterization of the site.

REFERENCES

Tyson, K.C., 1988. Subsurface Investigation of the Pollution Abatement Services Site, Oswego, N.Y. Report submitted to the U.S. EPA/ERT under work assignment no. 0-60.

•

eh/TYSON/M-32

APPENDIX C

Well Sampling Data Forms

rd/TYSON/PR-1202

. .

.

ľ

Å.,

M

ľ

Well #: <u>54</u>)	<u>Date: 10/</u>	/ 9/97 Time		
Annular Spac	ter: <u>.5</u> ft te Length: <u>10-ft</u>	Well Casing D: Stickup	iameter: <u>.33</u> : <u>2,9/44</u>	<u>At</u>
WATER LEVEL				
Held: Cut: DTW:	29 ft from Top of (Casing		
COLUMN OF WA	TER IN WELL			
DTW To	sing Length: 225 p of Casing: 920 ter in Well: 73.3	g ft		
Column of Volume of Gallons pe Column of Volume of Total Volu Number of Total Volu		A.S. (whicheve Volume of Can lated	er is less) X = X sing) = X =	0,32 13,21 4.22 -3672 -3,21 -4.85 -907 -3 -2721
FIELD ANALYS		Mid	End	
pH	· · · · · · · · · · · · · · · · · · ·			
Conductivi	-			
Temperatur			·	
	Purged: <u>30</u>			
Sample Time: Fractions:	<u>/2.30</u> Samp	ble # : <u>3/80</u>		
Signed/ Samp	ler: Kennet (how	_ Date: _10 / 1 *	9/88
Signed/ Revi	ewer:		Date:	

. •:

1

L

ľ

E

E

F

1

Well #: <u>50003</u> Date: <u>10/19/58</u> Time: <u>1307</u> Boring Diameter: <u>0.50 ft</u> Well Casing Diameter: <u>0.25 ft</u> Annular Space Length: <u>9.0 ft</u> Stickup: <u>0.66 ft</u> WATER LEVEL	
Held:	
DTW: 15 88 Top of Casing	
COLUMN OF WATER IN WELL	
Casing Length: <u>19.6 ft</u> DTW Top of Casing: <u>15.88 ft</u> Column of Water in Well: <u>372 ft</u>	
VOLUME TO BE REMOVED	
Gallons per foot of casing Column of Water Volume of Casing Total Volume (Volume of A.S.+ Volume of Casing) Number of Volumes to be Evacuated Total Volume to be Fracuated	0.32 3.72 1.17 0.367: 3.72 1.36 2.53 3 7.60
FIELD ANALYSIS Start Mid End	
pH	
Conductivity	
Conductivity	
Temperature gallons Total Volume Purged: gallons Sample Time: /325 Sample # : Fractions:	
Temperature gallons gallons	· · · · · · · · · · · · · · · · · · ·

Ŋ

Ĭ

f

I

Well #: <u>Swwy</u> Boring Diameter:	Date://	9/88 Time:	1244	
Annular Space Len	igth: $100fE$	Stickup:	0.58	
WATER LEVEL				
Held:				
Cut:				
DTW: 14.21	At Top of Ca	sing		
COLUMN OF WATER I	N WELL			
Casing DTW Top of Column of Water i	Length: <u>254</u> Casing: <u>142</u> n Well: <u>149</u>		•	
VOLUME TO BE REMO	VED			
Gallons per foo Column of Water Volume of Annul Gallons per foo Column of Water Volume of Casing Total Volume (Vo Number of Volume Total Volume to Method of Purging FIELD ANALYSIS Time	or Length of A ar Space t of casing g olume of A.S.+ es to be Evacua be Evacuated	.S. (whichever Volume of Casin ted	X <u>11.17</u>	2
pH				
y			• · <u></u>	•
Conductivity	·	·		
Temperature			•	
Total Volume Purge	id:_25	gallons		
Sample Time: <u>/29</u> Fractions:	Sample	• # : <u>3781</u>		
Signed/ Sampler:	Comet C.	De De	ate: 10/19/99	
Signed/ Reviewer:_		Da	lte:	

Well #: <u>SWWG</u> Date: <u>10/19/96</u> Time: <u>155/</u> Boring Diameter: <u>0,5 f6</u> Well Casing Diameter: <u>0,25 ft</u> Annular Space Length: <u>9,7 fc</u> Stickup: <u>1,71</u> WATER LEVEL Held: Cut: 7.71 ft Top of Casing DTW: COLUMN OF WATER IN WELL Casing Length: _____/ 7. 7/ DTW Top of Casing: 7.7/ Column of Water in Well: ____ 11.0 VOLUME TO BE REMOVED Gallons per foot of A.S. (from Page 2) Column of Water or Length of A.S. (whichever is less) 7 X F 3.06 Volume of Annular Space <u>n 3672</u> Gallons per foot of casing X 11.0 Column of Water 4 04 Volume of Casing Total Volume (Volume of A.S.+ Volume of Casing) 7.09 X Number of Volumes to be Evacuated 21.30 . Total Volume to be Evacuated Method of Purging (pump, bailer, etc.): Sum FasiBLE TAILO mange -Mid End Start FIELD ANALYSIS Time DH Conductivity Temperature Total Volume Purged: 30 gallons Sample Time: <u>1350</u> Sample # : <u>3783</u> Fractions: Signed/ Sampler: Kenneth C. Type Date: 10/19/88 Date:_ Signed/ Reviewer:____

1

Π

ſ

III

	(raye 1			
Well #: <u>MWHA</u> Boring Diameter: Annular Space Lei	Date: <u>10/19</u> 0.50 ft ngth: <u>4.0 ft</u>	Well Casing Diameter:	0,25 ft	ft
WATER LEVEL				
Held: Cut: DTW: <u>555</u> COLUMN OF WATER 1	At Top of C	asing .		
Casing DTW Top of Column of Water j	Length: Casing: in Well:/	85 fr		
VOLUME TO BE REMO		••		
Volume of Annul Gallons per foc Column of Water Volume of Casin Total Volume (V Number of Volum Total Volume to	or Length of ar Space of of casing of colume of A.S.+ es to be Evacuated be Evacuated	A.S. (whichever is les Volume of Casing)	s) X = =	$\begin{array}{c} 0.3 \\ \hline 4.0 \\ \hline 1.26 \\ 0 \\ \hline 3.67 \\ \hline 2.61 \\ \hline 3.87 \\ \hline 3 \\ \hline 11.6 \\ \hline \end{array}$
FIELD ANALYSIS Time	Start		End	
рн –			_	
Conductivity _				
Temperature _				
Total Volume Purg	ed:/&	gallons	•	
Sample Time: <u>/23</u> Fractions:	0 Samp]	le # : <u>3777</u>		

Signed/ Sampler: <u>Kenneth C. Typen</u> Date: <u>Id/19/98</u> Signed/ Reviewer: _____ Date: _____

Ś

Ľ

II,

ļ

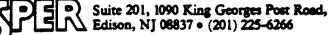
Į

Well #: <u>Mull E</u> Date: <u>10/14/</u> Boring Diameter: <u>0.25</u> We Annular Space Length: <u>NA</u>		
WATER LEVEL		
Held: Cut: DTW:	ing	
COLUMN OF WATER IN WELL		
Casing Length: <u>43.07</u> DTW Top of Casing: <u>73.25</u> Column of Water in Well: <u>29.82</u>		
VOLUME TO BE REMOVED Gallons per foot of A.S. (from Column of Water or Length of A Volume of Annular Space Gallons per foot of casing Column of Water Volume of Casing Total Volume (Volume of A.S.+ Number of Volumes to be Evacua Total Volume to be Evacuated	Volume of Casing	$= \frac{0.3672}{2982}$ $= \frac{2982}{10.94}$ $= \frac{10.94}{2}$ $= \frac{32.85}{2}$
Method of Purging (pump, bailer,	etc.): <u>SUBMEASU</u>	
FIELD ANALYSIS Start Time	Mid	End

-

_

		•	
pH			
Conductivity			
Temperature		i	•
Total Volume Pu	rged: <u>40</u>		
Sample Time: _/ Fractions:	<u>130</u> Sampl	• # :	
Signed/ Sample:	: Germate C.	Types De	ace: 10/19/ 82
Signed/ Review			ate:


APPENDIX D

Pollution Abatement Services, Oswego, NY Preliminary Soil Gas Report

rd/TYSON/PR-1202

F

F

TECHNICAL ASSISTANCE TEAM FOR EMERGENCY RESPONSE REMOVAL AND PREVENTION EPA CONTRACT 68-01-7367

MEMORANDUM

TO: Alan Humphrey, EPA/ERT

FROM: Linda D'Elia, ERT/TAT

THRU: Joseph R. Tomaszewicz, ERT/TATL

DATE: December 21, 1988

SUBJECT: POLLUTION ABATEMENT SERVICES, OSWEGO, NY: PRELIMINARY SOIL GAS REPORT.

> DCN: TAT-11-G-173 TDD: 11-8810-18 PCS: 2018

Attached is the Pollution Abatement Services soil gas survey preliminary report. This version incorporates all additions/changes as per our discussion on December 20. A final version of this report will follow.

Roy F. Weston, Inc. SPILL PREVENTION & EMERGENCY RESPONSE DIVISION In Association with ICF Technology, Inc., C.C. Johnson & Malbotra, P.C., Resource Applications, Inc., Geo/Persures Consultants Inc. and Environmental Toricology International. Inc.

CONTENTS

1.0 INTRODUCTION

1.1 Background

1.2 Objective

2.0 METHODOLOGY

2.1 Soil Gas Sampling

2.2 Detection

2.3 Soil Gas Survey Description

3.0 RESULTS

I

ĺ

Hi

3.1 Photovac GC Analysis Results

3.2 Seniex GC Results

3.3 GC/MS Analysis Results

4.0 DISCUSSION

5.0 CONCLUSIONS AND RECOMMENDATIONS

TABLES AND FIGURES

Table 1: Photovac GC Data

Table 2: Seniex GC Data

Table 3: GC/MS Target CompoundsGC/MS Non-target CompoundsTable 4: Monitoring Well Data--VOCs

£

Figure 1: Soil Vapor Sample Site Map

REFERENCES

1.0 INTRODUCTION

1.1 Background

The Pollution Abatement Services (PAS) contamination site is located in Oswego County, New York, east of the town of Oswego. Lake Ontario lies due north of the site.

PAS was in operation as a disposal and treatment facility from 1970 until 1977. Documentation of groundwater contamination indicates the presence of significant concentrations of volatile and semi-volatile organic compounds within on-site monitoring wells.

Remedial activities to date include removal of drums and storage tanks, installation of a slurry wall and a groundwater recovery and leachate collection system, and clay capping of the area contained within the slurry wall. Monitoring wells have been installed on-site, inside and outside of the slurry wall, as well as off-site to monitor possible migration of contaminants.

Sampling efforts have shown a spread of contamination north of the site, and thus a breach in the slurry wall is suspected in that region of the site.

1.2 Objective

The Environmental Response Branch of the United States Environmental Protection Agency (EPA/ERT) was to undertake a soil gas survey of locations outside the slurry wall to determine outward migration of contaminants from within the containment system.

The purpose of this survey was to identify those locations where a breach in the slurry wall might exist, and to determine the direction of contaminant plume migration.

2.0 METHODOLOGY

2.1 Soil Gas Sampling

The equipment and technique used in the soil gas survey were consistent with EPA/ERT standard methods for soil gas sampling (EPA/ERT, 1988).

A weight-driven $3/8^{\circ}$ steel bar is driven into the ground to a depth of four to five feet to create the soil gas "well." A 5-foot length of $1/4^{\circ}$ stainless steel tubing is then inserted into the hole.

Modeling clay is packed around the surface of the hole to prevent intrusion of ambient air and a piece of stiff wire or wire cable is used to clear the sampling probe of lodged soil particles.

A Gilian pump calibrated to approximately 3 liters/minute is attached to the probe with Tygon tubing and the hole is evacuated for about 15 seconds.

An HNu Photoionizer with 10.2 eV probe is attached to the sampling probe using Te flon tubing and the reading was recorded at its peak.

2.2 Detection

Γ

1

The HNu Photoionizer was used to measure organic soil vapors at a depth of four to five feet below the surface. The detection of organic vapors utilizing this method does not yield an actual concentration, but does provide a relative measurement of volatile organic compounds when compared to background readings or measurements taken at other sampling locations.

The HNu Photoionizer was calibrated using isobutylene as a benzene equivalent, and consequently all readings should be considered total organics as benzene.

The HNu detection method is generally utilized as a quick and inexpensive screening tool. 1-liter Tedlar sampling bags are used to collect actual soil vapor samples, which undergo field GC analysis.

Sampling soil vapor using the *Tedlar* bags is accomplished in the following manner. The *Tedlar* bag is placed inside a vacuum dessicator and connected to the sampling probe via a *Teflon* tubing sampling train. A *Gilian* pump is used to evacuated the dessicator, thus filling the *Tedlar* sampling bag with soil vapors drawn from the four to five-foot depth.

The samples contained within the Tedlar bags were analyzed as soon as possible (within 24 - 48 hours) using *Photovac* and *Sentex* field GCs.

The Photovac GC was equipped with a photoionization detector using a 10.6 eV lamp and standards consisting of common aromatic and chlorinated volatile organic compounds were utilized. Standards used include benzene, toluene, xylenes, TCE, and PCE. Compounds with retention times that match components of the standard were tenatively identified and quantitated against the response area for these components. Unknown compounds were quantitated by using the area response of toluene. The method detection limit for the standard compounds is 20 parts per billion. The Sentex Sentograph GC unit was used to detect two additional compounds of interest in this soil gas survey: 1,1-dichloroethane and bromodichloromethane. Method detection limit for these compounds was 10 ppb.

To further define a broader range of compounds and to confirm those compounds already identified by the field GCs, selected *Tedlar* bagged samples were drawn onto *Tenax* sorbent tubes to be analyzed by GC/MS. These tubes were desorbed and analyzed for specific ions using the GC/MS at the REAC lab facilities in Edison, New Jersey.

NOTE: Due to an electrical interference originating in the on-site trailer where field GC analyses were to have been performed by both *Photovac* and *Sentex* GCs, the sample bags were transported to the REAC facilities in Edison, NJ where the GC analysis consequently occurred. As a result of this problem, many of the soil gas samples were analyzed more than 24-48 hours after sampling took place.

2.3 Soil Gas Survey Description

ľ

The objective of the EPA/ERT soil gas survey at the PAS site was to determine the migration of contamination through the slurry wall containment system. In order to achieve this, the soil gas sampling locations were chosen surrounding the outside perimeter of the slurry wall (See Figure 1: Soil Vapor Sample Site Map). Each sampling transsect was named for its location around the periphery: ES, transsect parallel to East Seneca Street running NE to SW; WT, west transsect along the western periphery; NW, transsect running along the north western boundary; NT, north transsect outside the portion of the slurry wall due north of the site; and ET, east transsect along the eastern boundary of the site. All transsects had sample locations spaced at 50-foot intervals, except the ES and WT transsects where sample stations were 75-feet apart.

All samples were obtained at a depth of 4 to 5 feet, except NW1, NW5, NW6, which were sampled at 2 to 2.5 feet due to the shallow water table at these locations, and ET1 DEEP, which was sampled at a depth of approximately seven feet.

Two ambient air samples, ETO AMB and TOC AMB, were taken and analyzed, as were three field blanks (*Tedlar* bags filled with ultra-zero air and carried in the field throughout each sampling day), and two bag check QA/QC samples (*Tedlar* bags filled with ultra-zero air and analyzed to determine cleanliness of the sample bag lot before sampling occurs).

3.0 RESULTS

3.1 Photovac GC Analysis Results

The Photovac GC analysis results for the PAS site are presented in Table 3. The highest concentrations of total organic compounds found in the soil vapor were detected in samples NW2, NW3, NW5, TOC, and NT3. The NW and NT samples were collected from the northern, downgradient portion of the site (approximately 20-25 feet outside the slurry wall). The TOC sample was collected on the landfill, inside the slurry wall.

Relatively high concentrations of BTXs (77-330 ppb) were detected in samples located generally downgradient, in the north-western portion of the site.

Significant amounts of PCE were found in samples NT3 (124 ppb), and NT1 (50 ppb). TCE was detected in about 20 samples, however many of these contained only trace amounts of that compound.

3.2 Sentex GC Results

The Sentex GC analysis results (see Table 2) indicated the presence of 1,1dichloroethane in only one sample, NW2, however the concentration was below instrument detection limit for this compound (10 ppb). No bromodichloromethane was detected.

3.3 GC/MS Analysis Results

Confirmation of GC analyses was performed using *Tenax* sorbent tubes and GC/MS. Nine *Tedlar* bag soil vapor samples were drawn onto *Tenax* tubes to undergo GC/MS analysis along with one field blank (Field Blank #3) and one travel blank. (Refer to Table 3 for GC/MS analysis results).

One hundred mL aliquots of each sample were adsorbed onto *Tenax/CMS* (carbon molecular sieve) tubes for all samples except NW2, where only 20 mL was adsorbed due to the high concentrations of total organics detected in this sample by the *Photovac* GC. Samples were transferred from the *Tedlar* bags to the *Tenax* tubes by attaching the bags directly to the tubes and pulling the sample through the tube using a glass syringe. (Refer to EPA/ERT Soil Gas SOP for outline of standard procedure). Direction of the flow was such that the sample passed through the *Tenax* phase first. The sample tubes were then analyzed by thermal desorption onto a cryogenic trap, followed by GC/MS analysis.

In general, the GC/MS data is in agreement with the *Photovac* GC results. However a substantial amount (282 ppb) of 1,1-dichloroethane was detected by GC/MS in NW2, whereas the *Sentex* showed an amount that was below detection limit in the same sample.

GC/MS also showed the presence of a significant concentration of vinyl chloride in sample NW2 (6420 ppb), thus accounting for the high level of total organics that was detected by *Photovac* GC in that sample. Vinyl chloride was also detected at 294 ppb in NW4.

Non-target compound analysis by GC/MS indicates unusually high concentrations of alkanes in NW2 and NW4.

4.0 DISCUSSION

İ

Soil gas results can be affected by the site-specific properties of the unsaturated zone. The variability of these site-specific parameters must be recognized in order correctly interpret soil vapor studies' results. Specifically the soil properties that affect soil gas surveys are soil porosity, texture, water content, organic matter content, shape and size of soil pores, and depth of the unsaturated zone.

Particularly relevant to the PAS site soil gas survey are soil moisture content, soil texture, and proximity of the water table. At the PAS site, the surficial material is comprised of a mixture of clay, silt, sand, and boulders, which is relatively compact and impermeable. Soils such as these, which are found to have a high clay and moisture content, cause decreased rate of diffusion of soil vapors and can hinder the ability to effectively track a plume of organic contaminants.

Soil gas sampling in close proximity to the water table presents another problem encountered at the PAS site. (Along the northern site-boundary, NW and NT transsects, the water table was reached at depths of of less than three feet at certain locations). Shallow groundwater conditions present a difficulty in soil gas sampling because the chemical concentration gradient in soil gas can be very steep, highly variable, and easily disturbed under these conditions (Marrin, 1988).

5.0 CONCLUSIONS AND RECOMMENDATIONS

H

Even though factors that inhibit the effectiveness of a soil vapor survey are present at this site, evidence of a plume of contamination at the north-western portion of the slurry wall boundary was discovered and has been substantiated by the analyses of the soil gas samples. Existence of a plume of this nature is consistent with the site hydrogeology (groundwater flow is in the direction of Lake Ontario, or to the north) and the theory that migration of contamination beyond the slurry wall has occurred.

A review of the monitoring well sampling data shows evidence of groundwater contamination in at least two locations outside the slurry wall (See Table 4: VOC Analysis). High concentrations of BTXs in monitoring wells located outside the slurry wall, SWW6 and SWW4, are indicative of the outward migration of contaminants from within the containment/treatment system. This data is somewhat in agreement with the soil gas data that was collected, especially where the contamination was detected at the north and north-western regions outside of the slurry wall, near SWW6. A complete correlation of groundwater and soil gas data could not be expected at PAS due to the site-specific variables affecting soil gas results mentioned earlier.

In order to further delineate the extent and migration of the plume of contamination, it is recommended that a more detailed and extensive soil gas survey should be planned in the future. This soil gas investigation should be carried out during a relatively dry season. Further sampling of both wells and soil gas should be concentrated in the north, north-west, and north-east regions of the site to remain consistent with the northward flow of the groundwater and migration pathway of the contamination plume. Pending results of the second soil gas survey, recommendations may be made for additional groundwater monitoring well installation and sampling.

TABLE 1

T,

•

÷

PAS, Genege, MT -- SDIL GAS AMALYSIS Photowes GE Analytical Results ... GET 21-22, 1988

CONCENTRATION (PPEV)

. No.	CRGANICS	BENZENE						STYRENE	1 4-
\$ 2-1	67	- HO		1 10	NO NO	10	ND	10	1
3 2-2	207	I NO	NO.	1 40	1 HD	NO NO	ND ND	ND ND	i
ES30	359	22	NO	13	NO	ND	1 10	102	i
23-01	21	1 5	NO	19	МО	HO	МО	27	I
ES)2	77	NO 100	NO 1	19	NO	NO	NO	32	1
ES13	391	<u>ن</u> شن ^{ا ر} ا	ې 🖤 ا	1 19 121	XO	1 10	NO NO	44169	1
ES-04	146	(«10	1 NO	1 <10	NO	NO	NO	1 <10	Î
£5-05	414	3	25	17	10	NO	NO	67	1
50-23	504	11	1 11	19	80	ND	l NO	97	ŀ
ES-97	174	NO	NO	1 15	1 10	ND	NO	47	1
ES39	77	<10	C1>	NO	NO	NO NO	1 40	NO NO	1
5730	19	1 10	40	NO	NO NO	NO NO	NO	1 10	1
97-30_ 10	203	† 29	. 36	L. 165 _	L×0	L ND .	. <u>xo</u>	L 6	
57-01	394	3		19	NO	HC HC	NO	20	1
	- 2:3			1NO	L NO	NO	NO	NO NO	I
ET-32	313	1 21	13	1 :2	N0	NO	NO	ND	1
57-03		3	NO	20	N0	NO	NO	NO	ł
ET-04	475	1 27	: 30	31	NO	1 10	NO	NO	:
£7+05	374	[:6	. ND	1 NO	N0	NO	NO.	45	i
17-06 3ª	1 4 237	5.	1 10	NO	но	1 XO	NO	12-5-40	1
£7-97	511	וילש	21725	192:0	75 10	NO NO	NO	1 1:3	1
ET38	× 447	21	1 73	53	7 NO	I ND	NO	52	:
27-39	257	1 NO	NO	1 11	10	NO		1 40	
ET-10	253	1 10	- 	NO	7	NO .	NO	1 10	•
ET - 11	297	NC	- 14	NO	18	NO	VO	1 10	1
ET-12	164	. <10	VC	<10	NO	NO	NO	NO	:
27.13	53	NO	NO	<10		NO	v0	NO	:
F 3+31	135	NO	40	5	1 .NO	NO	NO	NO NO	.
F 3-03	104	NO	v0	ND	I NO	· NO	NO	NO	;
F 3]4	98	22	23	17	l HO	NO	NO		i
NT-30	388	NO	VÔ.	<10	NO	NO I	X40	NO NO	T
NT-31	594	6942	29	76	50	NO	NO	58 40	I
NT-JZ	:87	6 T NO -	76 10	K66 16	1,74 10) XD	NO	אס ל	;
NT+13	9 93	27	47	76	124	NO	NC	53	:
NH-30	163	N0	v0	NO	1 .00	NO	NO	10	
NH-31	55 T	¹ 22	_ NO	29	NO	NO	· VO	: +D	•
⊎⊌+: 2	2723		اذ الم	ç q	1 15	. •0	0r	t <10	
vii-03	.67.		84 0	12/20:3	NO	l NÖ	77 40	46.0	•
46-14	231	464 3	<:0	70 17	15 <:0	NO	10	<10	
NH-05	23-33	73	23	24	NO	NO	NO	NO	i
18-26	293	25	N0	199	NO	NO (77		:
-30	:253	7		50	NO		WO	1	•
100 400	226	<10	<:5	1 10	NO	x0	NO	! ***	
uT+30	-34	ود	2	1 16	NO NO	j x0	NO	· vo	
ur-ar -	273	:5		52	- - ND -	1 NO 1	· VO	- NO	:-
41-06	200	27	NO	1 10	ND	i , xo	NO	1 10	;
47-37	á10	NO	NO	NO	NO	HO	NO	<u>N</u> O	!
47-38	408	39	Ş	<10 ·	NO .	HO	NO	1 31	:
41-39	174	NO	<10	NO	NO	. NO	NO	NO	1
				ا <u></u> ا	Sag Check	! *		ferrocav	· _
- :	Field Sla		•••	TCE :	-	e chene	vo :	Not Jeta	

JABLE 2

, **I**

RESULTS TABLE FOR TEDLAR BAG ANALYSIS

SAMPLE	S DATE	DATE		
÷	SAMPLED	ANALYZED	1,1-DICHLOROETHANE	BRONODOCHLOROMETHANE
WT 1	10/18/88	10/19/88	·	
ES 6	10/18/88	10/21/88	ND	ND
ES 9	10/18/88	10/19/88	ND	ND
ES 4	10/18/88	10/19/88	ND	. NO
ES J	10/18/88	10/21/88	ND	ND
ES 1	10/18/88	10/21/88	ND	NO
ES 2	10/18/88	10/19/88	ND	ND
ES O	10/18/88	10/21/88	ND	ND
ES 7	10/18/88	10/19/88	ND	ND
F.BLK.1	10/18/88	10/19/88	ND	ND
WT O	10/18/88	10/19/88	. ND	ND
ES 5	10/18/88	10/19/88	ND	NO
ET 6	10/19/88	10/21/88	ND	ND
F.BLK.2	10/19/88	10/22/88	ND	ND
ET 6	10/19/88	10/21/88	ND	ND
ET 8	10/19/88	10/21/88	ND	ND
ET O	10/19/88	10/21/88	ND	ND
ET 5	10/19/88	10/22/88	ND .	NO
ANB. BETO	10/19/88	10/22/88	ND ND	ND
ET 7	10/19/88	10/21/88	ND	ND
ET 9	10/19/88	10/22/88	ND	ND
ET 2	10/19/38	10/21/88	ND	ND
ET 3	10/19/88	10/21/88	ND	ND
HT 7 *	10/19/88	10/21/88	ND	ND
	210/19/88	10/22/88	ND	ND
HT S T	10/19/88	10/21/88	NO	ND
WT 6 =	10/19/88	10/21/88	ND ND	ND
ET 1	10/19/38	10/21/88	ND	ND
F.BLK.4	10/19/88	10/22/88	ND	ND
HT 9	10/19/88	10/21/88	ND .	ND
ANS. 2TOC	10/19/88	10/22/88	ND	ND
NW 1	10/19/88	10/22/88	ND	ND
NW 3	10/19/88	10/21/88	ND	ND
NW O	10/19/88	10/21/88	ND	NO
NT 2	10/19/88	10/22/88	ND	ND ND
ET 11	10/19/88	10/21/88	ND	ND
NU 4	10/19/88	10/22/88	ND	ND
	10/19/88	10/21/88	ND	
	10/19/88	10/21/88	ND	ND T
	10/19/88	10/21/88	ND	ND
	10/19/88	10/21/83	ND	NO RT
	10/19/88	10/22/88	+	ND ND ND ND ND
	10/19/58	10/21/88	ND	ND
	10/19/88	10/21/88	ND	ND
	10/19/88	10/21/88	NO	ND
	10/19/88	10/21/88	ND	ND
	10/19/88	10/21/88	ND	NO
TOC	10/19/88	10/22/88	ND	ND

* denotes that chromatogram showed several unidentified peaks, possibly electronic in origin, outside of the compound retention times.

+ denotes tentatively identified compound; concentration is below instrument

SOIL GAS ANALYSIS BY GC/MS

SITE NAME

: POLLUTION ABATEMENT SERVICES (PAS) - OSHEGO, NY

SAMPLE MANE/MANBER :	FIELD BL.#S	TRAVEL BLANK	NI · O	W-6	EI-1 DEEP	WI - 8	WI-6	WI-6 (DUP)	NV-4	NT-3	W-2
DATE ANALYZED :	11/2/88	11/2/88	11/2/88	11/2/68	11/2/88	11/2/88	11/2/88	11/2/88	11/2/68	11/2/88	11/2/88
DATE SAMPLED :	10/21/86	10/21/88	10/21/88	10/21/88	10/21/88	10/21/88	10/21/88	10/21/88	10/21/88	10/21/88	19/21/88
FBN :	80854	90855	80856	80857	80858	80859	80860	80661	59808	80863	2006A
parameter	ari	Lhp	 jyb	î di di di		låy.	dıjı	di ji	difi	hip	ppb
vinyl chloride	III))ID	ND -	ND	MD	NR)	MD		294.0	ND	6420.0
trichtorofluoromethane	ND		, ND	MD	ND	ND	ND	ND	ND	ND	HD
1, 1-dichloreethene	ND	ND ND	ND	, MD	MD	ND	ND	dib.	ND	HD	NO
methylene chloride	81.00		81.09	MD	81.09	DU 18	ND	8819	ND	ND	39.6
trans-1,2-dichtoroethene) KD	10	ND	ND	ND	ND	HD.	ND	ND	ND	MD
1, 1-dichloroethane	ND	MD	ND	ND	ND	ND	ND		12.6	80	282.0
1,1,1-trichloroethene		BLOQ	310.0	13.9	36.0	108.0	HD	ALOQ	32.5	11.1	150.0
carbon tetrachioride	MD	ID	ND	ND	ND.	ND	ND	(IID	ND	ND	· •
benzene-	12.7	11.5	18.7	15.5	14.9	28.2	20.1	19.9	22.2	13.3	142.0
1,2-dickloreethane	ND	ID	MD	ND	ND	80	ND	ND	· ND	ND	. ND
trichloroethylene	ND	ND ND	ND	ND	ND	80 D	HD.	ND	ND	ND	. ID
toluene	81.09	81.0 9	26.3	178.0	14.6	13.0	15.2	15.8	17.2	8L 09	. 62.7
tetrachloroethylene	10). MD	ND	ND	ND	ND	ND	ND	BLOQ	90.8	HD
ethyl benzene	el og	8109	8L 09	26.0	8L09	81.09	81.09	81.0Q	8L09	BLOQ	12.7
m-xylene	81.09	81.09	14.6	74.0	8L09	81 0 9	8L09	0100	12.3	61.09	26.6
e-xylene			81.00	12.8	ND	ND	HD	ND	81.09	ND	10
styrene	BLOQ) 8109	81.09	8L09	ND	8L0Q	8L 09	BLOQ	BLOQ	MD	29.6
asts-ethyi toluone	NC		BL09	ND	HD	MD	ND	ND	ND	MD	10
bromschieremethene (X)	117.53	121.05	137.95	116.78	94.00	115.69	145.92	96.95	103.13	99.02	113.59
p-bromofluorebenzene (X)	88.19	97.37	108.31	92.21	75.47	84.92	111.77	73.30	78.88	75.67	87.00
Sample volume (mL):	100 •	100 •	100	100	100	100	100	100	100	100	20
Limit of Quantitation(p	ab): 10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	50.0

ND. Not Detected.

BLUQ. Below Limit of Quantitation.

* - Assumed value for blanks.

HON-TARGET COMPOLINDS

SOIL GAS ANALYSIS SY GE/HS

:

SITE MARE POLLUTION ABATEMENT SERVICES, OSHEGO, NY : SAPLE HAVE/HANGER ` **:** FIELD BLANK HO. 3 SAMPLE VOLUNE (CC) 100 : FRN · : 80854 GUANTITATION CONCENTRATION (PPS): 5125 DATE SAMPLED : 10/21/88 QUANTITATION VOLUME (CC) : 2.00 DATE AMALYZED: 11/2/88 GUANTITATION SCAN, AREA : 1137 43024 ************************ ***** chemical name scan area · RT RRT 900 ---------acetaldehyde 61 14843 3.43 0.13 35 propane + methanethiol 82 13690 3.72 0.15 33 acetone 231 51320 5.78 0.27 120 2-propendi 260 18851 6.18 0.29 45 silaxane 836 44645 14.15 0.76 110 hexanal 888 21568 14.87 0.80 51 Có alkene/cycloalkane 1129 10655 18.20 0.99 25 silaxane 1153 79192 18.54 1.01 190 octanal 1279 13355 20.28 1.11 32 siloxane 22.23 1420 61072 1.23 150 nonanal 1450 36-21 22.55 1.25 57

I

[

SDIL GAS AMALYSIS BY GC/HS

acetaldehyde 61 26706 3.43 0.13 acetone 232 12215 5.79 0.27 2-probenol 263 13997 6.22 0.29 3-methyl-2-butanone 439 12759 8.66 0.44 siloxane 834 372202 14.12 0.76 8	SITE NAME	:	POLLUT	ION ABAT	BIENT SER	VICES,	OSLEGO, NY
SAMPLE VOLUME (CC) : 100 FRM : 80855 GUANTITATION CONCENTRATION (PPB): 5125 DATE SAMPLED : 10/21/88 GUANTITATION VOLUME (CC) : 2.00 DATE AMALYZED: 11/2/88 GUANTITATION SCAN, AREA : 1135 43024 chemical name scan eres RT RRT pob acetaldehyde 61 26706 3.43 0.13 acetaldehyde 232 12215 5.79 0.27 2-probenol 263 13997 6.22 0.29 3-methyl-2-butanone 439 12759 8.66 0.44	SAMPLE HAME/HUMBER	:	TRAVEL	BLANK		•	-
SAMPLE VOLUME (CC) : 100 FRM : 80855 GUANTITATION CONCENTRATION (PPB): 5125 DATE SAMPLED : 10/21/88 GUANTITATION VOLUME (CC) : 2.00 DATE AMALYZED: 11/2/88 GUANTITATION SCAN, AREA : 1135 43024 chemical name scan eres RT RRT pob acetaldehyde 61 26706 3.43 0.13 acetaldehyde 232 12215 5.79 0.27 2-probenol 263 13997 6.22 0.29 3-methyl-2-butanone 439 12759 8.66 0.44			SUPELC	LOT NO	. 669-37		
GLANTITATION VOLUME (CC) : 2.00 DATE ANALYZED: 11/2/38 GLANTITATION SCAN, AREA : 1135 43024 chemical name scan eree RT RRT pob acetaldehyde 61 26706 3.43 0.13 acetaldehyde 232 12215 5.79 0.27 2-probenol 263 13997 6.22 0.29 3-methyl-2-butanone 439 12759 8.66 0.44	SAMPLE VOLUME (CC)	:				:	80855
GLANTITATION SCAN, AREA : 1135 43024 chemical name scan eree RT RRT pob acetaldehyde 61 26706 3.43 0.13 acetaldehyde 232 12215 5.79 0.27 2-probenol 263 13997 6.22 0.29 3-methyl-2-butanone 439 12759 8.66 0.44 siloxare 834 37202 14.12 0.76 8	GUANTITATION CONCENTRATION (PF	8):	5125		DATE SAM	PLED :	10/21/88
chemical name scan area RT RRT pob acetaldehyde 61 26706 3.43 0.13 acetaldehyde 3.43 0.27 3.43 3.43 3.43 3.43 3.43 3.43 3.43 3.43 3.43 3.43 3.43 3.43 3.43 3.43 3.43 3.43 3.44 3.43 3.43 3.43 3.43 3.44 3.43 3.43 3.43 3.43	QUANTITATION VOLUME (CC)	:	2.00		DATE ANA	LYZED:	11/2/88
acetaldehyde 61 26706 3.43 0.13 acetone 232 12215 5.79 0.27 2-probenol 263 13997 6.22 0.29 3-methyl-2-butanone 439 12759 8.66 0.44 siloxane 834 372202 14.12 0.76 8	GUANTITATION SCAN, AREA	:	1135	43024			
acetone 232 12215 5.79 0.27 2-probenol 263 13997 6.22 0.29 3-methyl-2-butanone 439 12759 8.66 0.44 siloxame 834 37202 14.12 0.76 8	chemical name	******	scan	eree	RT	RRT	
acetone 232 12215 5.79 0.27 2-probenol 263 13997 6.22 0.29 3-methyl-2-butanone 439 12759 8.66 0.44 siloxame 834 37202 14.12 0.76 8		•••••					
Z-procenci 263 13997 6.22 0.29 3-methyl-2-butanone 439 12759 8.66 0.44 siloxane 834 37202 14.12 0.76 8	acetaldehyde		61	26706	3.43	0.13	64
3-methyl-2-butanone 439 12759 8.66 0.44 siloxane 834 37202 14.12 0.76 8	acetone		232	12215	5.79	0.27	29
siloxane 834 372202 14.12 0.76 8	2-propenal		263	13997	6.22	0.29	
	3-methyl-2-butanone		439	12759	8.66	0.44	30
	silaxane		834	372202	14.12	0.76	. 890
nexanel 886 15376 14.84 0.80	hexanal		886	15376	14.84	0.80	37
heptanel 1090 11600 17.66 0.96	heptanel		1090	11600	17.66	0.96	28
Có alkene/cycloaikane 1127 23209 18.17 0.99	Có alkene/cyclosikane		1127	23209	18.17	0.99	55
siloxane . 1150 112176 18.49 1.01 2	siloxane		1150	112176	18.49	1.01	270
ailoxane 1194 16396 19.10 1.05	efloxane		1194	16396	19.10	1.05	39
octanal 1276 14940 20.23 1.11	octanal		1276	14940	20.23	1.11	36
silaxane 1402 10735 21.98 1.22	silaxane		1402	10735	21.98	1.22	. 26
nonanal 1447 31372 22.50 1.25	nonanal		1447	31372	22.50	.1.25	75
siloxane 1559 32768 24.15 1.34	siloxane		1559	32768	24.15	1.34	· 78

i

ľ

i

NON-TARGET COMPOLIEDS

SOIL GAS ANALYSIS BY GC/HS

SITE NAME POLLUTION ABATEMENT SERVICES, OBLEGO, NY : SAMPLE HAME/HUNGER NT-0 : LOCATION : SAMPLE VOLUME (CC) : 80854 100 FRM • QUANTITATION CONCENTRATION (PPS): 5125 DATE SAMPLED : 10/21/88 GUANTITATION VOLUME (CC) DATE ANALYZED: 11/2/88 Z.00 : CLIANTITATION SCAN, AREA : 1132 43024 chemical name scan RT. RRT pob ------C4 alkene/cyclosikane 11010 41 3.15 0.11 26 acetaldehyde 34591 3.44 62 0.13 82 2-propenol 230 20286 5.77 0.27 48 258 12686 acatone 6.16 0.29 30 3-methyl-2-butanone 432 11863 8.56 0.43 28 832 849288 siloxane 14.09 0.76 2000 hexanel 884 18726 14.81 0.80 45 1087 heptanal 11264 17.62 0.96 27 siloxane 1148 882497 18.47 1.01 2100 26252 1.05 1190 19.05 siloxane 63 C12 alkene/cyclosikane 1221 20739 19.48 1.07 49 22561 1249 19.86 1.09 benaldenyde 54 14760 octanal 1273 20.20 1.11 35 siloxane 1350 20126 21.26 1.18 48 56977 siloxane 1398 21.93 1.22 140 1414 248325 22.15 1.23 590 siloxane 17829 1443 22.55 1.25 42 Isnenon

siloxane

siloxane

99123

17845

1556 1673 24.11

25.73

1.34

1.44

240

SOIL GAS AMALTEIS ST GC/MS

SITE NAME SAMPLE NAME/NUMBER LOCATION	: :	POLLUTICE NW-6	I ABATEMENT	SERVICES,	OSHEGO, NY
SAMPLE VOLUME (CC)	:	100	FRN	•	80857
QUANTITATION CONCENTRATION	(PPS):	5125	DATE	SAMPLED :	
GUANTITATION VOLUME (CC)	:	Z.00		ANALYZED:	
QUANTITATION SCAN, AREA	:	1131	43024		

chemical name					
**********************	scan	8798	RT	RRT	000
acetaldenyce	60	30178	3.42	0.13	
acetone	227	17081	5.73	0.13	72
2-procenci	255	13757	6.11	0.29	41
3-methyl-2-butanone	430	16106	8.53		33
trimethylsilanol	440	10175	8.67	0.43	. 38
siloxane	829	428480	14.05	0.75	24
hexanal	881	15599	14.77	0.80	1000
heptanal	1086	10672	17.61	0.96	37
terpene	1105	16325	17.87	0.98	25
alkene/cycloalkane	1123	16141	18.12	0.99	39
siloxane	1148	157553	18.47	1.01	38
C10 terbene	1188	22431	19.02	1.05	380
C10 terpene	1200	164-7	19.19	1.05	53
benzaidehyde	1249	34499	19.87	1.10	39
octanal	1274	19663	20.21		82
alkene/cycloalkane	1326	12868	20.93	1.12	47
siloxane	1400	31092	21.96	1.16	31
siloxane	1415	99511		1.22	74
acetonenone	1442	15949	22.16	1.23	260
nonenel	1445		22.54	1.25	38
siloxane	-	16126	22.58	1.25	38
silaxane	1558	:5630	24.14	1.35	37
	1675	209-7	25.76	1.44	50

ſ

r,

SOIL GAS ANALYSIS BY GC/NS -----

690

31

280

53

28

29

38

210

58

66

1

POLLUTION ABATEMENT SERVICES, OSHEGO, NY : SAPLE HAVE/HUNGER : ET-1 (DEEP) SAMPLE VOLUME (CC) 100 : FRI : \$0858 QUANTITATION, CONCENTRATION (PPB): 5125 DATE SAMPLED : 10/21/88 QUANTITATION VOLUME (CC) : 2.00 DATE ANALYZED: 11/2/88 QUANTITATION SCAN, AREA 1133 : 43024 *************** chemical name scan ares - RT ----87 99 -30

***********************************				RRI	P
acetal dahyda	60	36412	3.40	0.13	
acetone	229	41675	5.75	0.27	
3-methyl-2-butanone	431	12767	8.55	0.43	
siloxane	831	289328	14.08	0.76	
hexanal	883	13061	14.80	0.80	
sfloxane	1149	116994	18.48	1.01	
benzaldehyde	1251	22417	19.89	1.10	
octanal	1274	11927	20.21	1.11	
alkene/cycloalkane	1327	12301	20.94	1.16	
siloxane	1400	16089	21.95	1.22	
siloxane	1416	89169	22.17	1.23	
nonanal	1446	24244	22.59	1.25	
Siloxane	1677	27803	25.78	1.44	

)

SITE NAME

SOIL GAS AMALYSIS SY GC/HS

٦

SITE NUE SAIPLE NAME/NUMBER	:	POLLUI VT-8	ICN ABAT	enent se	RVICES,	OSLEGO, NY
SAMPLE VOLUME (CC)	:	100	1	FRM	:	80859
QUANTITATION CONCENTRATION (PPE)	:	5125		DATE SA	-	10/21/88
QUANTITATION VOLUME (CC)	:	2.00		DATE AN		
QUANTITATION SCAN, AREA	:	1134	43024			11/2/88
chemical name		scan	area	· rt	RRT	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
C4 alkene		42	13922	******		
acetaldehyde		63	29554	3.17	0.12	33
acetone		231	15411	3.46	0.13	70
2-propenol		258		5.78		37
1-butanol		620	20038			- 48
siloxane		831			0.58	59
hexanal		883	86816	14.08	••••	210
Có alkene/cycloalkane		1126	13196		••••	31
siloxane		1150	40255 177306	18.16	••••	96
alkene/cycloalkane		1226	12350	18.49	1.01	420
benza i dehyae		1252		19.55	1.07	29
octanal		1277	32263 12785	19.91	1.10	77
C10 terpene		1286	11201	20.25	1.12	30
eikene/cyclosikane		1329		20.38	1.12	27
siloxane		1418	21690	20.97	1.16	52
acetophenone		1444	149050	22.20	1.23	360
nonanal		1448	14174	22.56	1.25	34
siloxane		-	19966	22.52	1.25	48
		1675	22130	25.76	1.44	53

.

£

ſ

SOIL GAS AMALYSIS BY GE/HS

£

1

SITE NAME SAMPLE NAME/ILINGER LOCATION	: : :	POLLUTION ABATEMENT SERVICES, OBLEGO, NY ST-6
SAMPLE VOLUME (CC) GUANTITATION CONCENTRATION (PP GUANTITATION VOLUME (CC) GUANTITATION SCAN, AREA	: (8): :	20 FRN : 80860 \$125 DATE SAMPLED : 10/21/88 2.00 DATE ANALYZED : 11/2/88 1136 43024

chemical name					
	scan	8768	27	RRT	200
C4 alkene	40			********	*******
acetal genyde			3.14	0.11	130
acetone	62		3.44	0.13	300
2-propanol	232		5.30	0.27	190
siloxane	261	14063	6.20	0.29	170
C3 alkene/cycloalkane	831	76945	14.05	0.75	920
hexanal	875	20453	14.69	0.79	240
C7 terbene	884	11415	14.81	0.80	140
	985	19366	16.21	0.88	230
CiO terpene	1091	101772	17.68	0.96	1200
CiO terzene	1110	505333	17.94	0.98	6000
Cyclonexanone	1129	38873	18.20	0.99	460
CTO terbene - siloxane	1151	456152	18.51	1.01	5400
C10 terpene	1196	70095	19.10	1.05	830
C10 terpene	1206	274072	19.27	1.06	3300
C10 terpene	1254	265514	19.93	1.10	
limonene	1289	154891	20.42	1.12	3200
C10 terpene	1303	23011	20.61	1.14	1800
C10 terpene s	1336	10152	21.07	-	270
siloxane	1421	100541		1.16	120
acetophenone	1447	13628	22.25	1.23	1200
nonanai	1450		22.61	1.25	160
siloxane		18625	22.55	1.25	220
	1678	18374	25.80	1.44	220

F

ĩ

ti

SOIL GAS AMALYSIS BY GC/HS

٦

SITE NAME SAMPLE NAME/NUMBER LOCATION	: POL : VT- :	-6 (ICN ABAT DUP)	DIENT S	ERVICES,	COLEGO, NY
SAMPLE VOLUME (CC)	:	100		FRN	:	80861
GUANTITATION CONCENTRATION (PPB)	: 5	125		DATE S	ANPLED :	10/21/88
GUANTITATION VOLUME (CC)	: 2	.00			MALYZED:	11/2/88
QUANTITATION SCAN, AREA	: 1	135	43024			1 1/ 6/ 00
chamical name		can	araa	RT	RRT	
C4 alkene		40	10004			
aceteldehyde		61	10806	3.14	••••	26
acetone		228	16499			39
siloxane		132	41783			100
C8 alkyne/diene/cycloalkene		375	66738 20932			160
hexanel		184	10565			50
C9 terpene		84	19186	14.81		. 25
C8 terpene		02	11406	16.20	••••	46
C10 terpene	-	89	104999			27
C10 terpene	•	09	545558			250
cyclonexanone		27	34049	17.93		1300
C10 terpene + siloxane	11	-	435749	18.18 18.50	••••	81
C10 terpene	11		81710	19.08		1000
C10 terpene	12	-	294034	19.24		190
C10 terpene	12	-	276075	19.92		700
octanal + C10 terpene	123		16280	20.27	-	660
limonene	12	_	168095	20.39		39
C10 terpene	130		24308	20.60	-	400
carene	133	-	10895	21.06		58
siloxane .	141	-	123987	22.22	1.16	25
nonanal	144		32571			300
silaxane	167	-	20825	22.64 75.70		78
		•	EVOLT	25.79	1.44	50

1

I.

H

NON-TARGET COMPOLADS

SOIL GAS AMALYSIS BY GC/NS

SITE NAME : SAMPLE HAME/HLMBER :	POLLU NU-4	TION ABA1	ienent si	ERVICES,	OSLIEGO, NY
SAMPLE VOLUME (CC)					
GLANTITATION CONCENTRATION (PPS):	100	-	FRN	:	80862
GUANTITATION WOLLDON (DOL	5125		DATE SA	HPLED :	10/21/88
GUANTITATION POAN AND	2.00	_	DATE AN	ALYZED:	11/2/88
	1127				
chemical name	Scan	area	RT	RRT	ρ ο δ
2-methylpropene	18	15488			
acatal dehyde	59		2.87	••••	37
2-methylbutane	117		3.44 4.24	••••	62
ethanol +	191	13282	5.24		59
1,2-dichloro-1,1,2-trifluoroeth			3.20	0.24	32
acetone	228	22125	5.77		
2-propanol	215	14569	6.15	0.27 0.29	53
2-methylpentane	282	39228	6.52	0.27	39
3-methylpentane	314	32008	6.96	0.34	93
n-nexane	349	10174	7.45	0.37	76
methylcyclopentane	425	19812	8.50	0.43	24
alkane	619	15613	11.18	0.59	47
silozane	829	128562	14.09	0.76	37 310
hexanal	881	13911	14.81	0.30	310
alkane	1066	13381	17.37	0.95	32
C11 alkane	1127	221569	18.21	1.00	530
Silozane	1147	136763	18.49	1.02	330
elkane	1154	36872	18.59	1.02	68
alkane - siloxane	1191	58712	19.10	1.05	. 140
alkane - alkene/cycloalkane	1221	13098	19.51	1.08	31
alkane	:235	142663	19.71	1.09	340
benzsidenyde	1249	26539	19.90	1.10	63
alkane	1253	57949	19.96	1.10	140
elkane	1272	181034	20.22	1.12	430
aikane	1294	15918	20.52	1.14	38
alkane	1308	247253	20.72	1.15	590
alkane - alkane/cyclosikane	1325	10933	20.95	1.16	26
alkane	1338	54128	21.13	1.17	130
aikane + aikane/cycioaikane aikane	1361	15104	21.45	1.19	36
Silozane	1372			1.20	28
acatophenone			22.19	1.23	330
siloxane			22.55	1.25	49
Silozane	1558		24.18	1.35	29
	1674	474	25.70	1.45	110

17

ľ

Π

Т ; Ш

Ī

NON-TARGET COMPOUNDS -----

SUIL GAS AMALYSIS BY GC/NB -----

SITE MUE SAUPLE HAVE/HANGER

POLLUTION ABATEMENT SERVICES, OBLEGO, NY

chamical name		1133	43024		
QUANTITATION VOLUME (CC) QUANTITATION SCAN, AREA	:	5125		DATE SAMPLED DATE ANALYZED	: 10/21/88 : 11/2/88
SAMPLE VOLUME (CC) GLANTITATION CONCENTRATION	: (PPE):	100		FRN	: 80863

:

:

	scan	9.44	RT	RRT	
acetaldenyde		*******	*******		900
Methanethicl	60	21248	3.41	0.13	
acetone	80	15083	3.69	0.15	51
2-propensi	227	29163	5.72	-	36
siloxane	254	11729	6.10	0.27	69
hexanal	832	127667	14.09	0.29	28
silozane	884	11993	14.81	0.76	300
alkane + sfloxane	1150	121484	18.49	0.80	29
benzal denyde	1196	13930		1.01	290
octanal	1252	23082	19.10	1.05	33
Silozane	1276	12721	19.90	1.10	55
	1417	79505	20.23	1.12	30
ionana (1443	10683	22.19	1.23	190
lilozane	1447		22.55	1.25	25
	1560		22.60	1.25	37
floxane		12277	24.16	1.35	29
	1675	15048	2 .73	1.44	36

Ľ

ľ

NON-TARGET COMPOLADS

i

SOIL GAS AMALYSIS BY GC/NS

HT.

SITE MARE	•				
SAMPLE NAME/ILINEER	•	POLLUTION /		SERVICES,	OSHEGO, M
LOCATION		MR- 2			
SAMPLE VOLUME (CC)	•	•-			
QUANTITATION CONCENTRATION		20	FRM	:	80864
GLANTITATION VOLUME (CC)	(PPS):	5125	DATE	SAMPLED :	10/21/88
GUANTITATION SCAN, AREA	:	2.00	DATE	ANALYZED:	11/2/88
AREA	:	1133 43	024		

1

chamical name	808	n area	RT	RRT	pob
2-methylpropane	1	• •	2.82	0.09	
acetal dehyde	5			0.13	200
2-methylbutane	114			0.13	190
1,2-dichloro-1,1,2-trifluoroethane	190		~	0.24	1100
1,1,2-trichloro-1,2,2-trifluoroethane	21			0.26	430
acetone	226		5.74	0.26	- 800 470
2-propensi	254	10834	6.13	0.29	130
2-methylpentane	282		6.52	0.31	
3-methylpentane	314	35473	6.96	0.34	850
Có alkene/cycloalkane	427		8.52	0.43	420 410
1,2-dichloroethene + trimetnyisilanol	443	12359	8.74	0.44	-
Có alkene/cycloalkane	509	72371	9.56	0.49	150
3-methylhexane	526	15162	9.89	0.51	860 180
alkane	557	23726	10.32	0.53	280
C7 alkene/cycloalkane	568	10290	10.47	0.54	120
CS alkene/cycloalkane	621	13618	11.21	0.58	160
methylcyclonexane	651	29583	11.62	0.61	350
alkane	718	11513	12.55	0.56	140
siloxane	835	271366	14.17	0.76	3200
hexanal	887	14655	14.89	0.80	170
alkane	1073	24160	17.46	0.95	290
C11 alkane	1133	350312	18.29	1.00	4200
silazane	1154	339444	18.58	1.02	-4000
alkane	1161	76874		1.02	920
elkane	1197	90043	19.18	1.05	1100
eitane	1233	55784	19.68	1.08	660
C11 elkane	1241	280436	19.79	1.09	3300
ettane	1259	115633	20.04	1.10	1400
alkana	1277	333304	20.29	1.12	4000
aikana	1300	29411	20.61	1.14	350
alkana	1313	437494	20.79	1.15	5200
alkane	1343	76363	21.20	1.17	910
alkane	1366	19291	21.52	1.19	230
alkane	1377	17263	21.67	1.20	210
silozane	1419	63137	22.25	1.23	750
nonensi	1448		22.66	1.26	190
				• • •	190

TABLE 4

UDLATILE ORGANIC COMPOLADS ANALYSIS

	PROJECT # : SAMPLE # : LOCATION : FILE # : OIL. FACT.:		1202 - PAS, Oswego 784 3799 Id Bink MM118 ^A0752 ^A0753		53	3782 SIM3 ~A0750		3783 Sialai ^A0751 1		8	
L	CITFOLIO	CONC.	HOL.	CONC:	MOL.	CXC.	HOL	CONC.	riil.	œc.	HOL.
	Dichlorodifluoromethane	NÖ	1.0	 NO	1.8	NO	1.0	NO	1.0		
8 -		NO	1.0	NO	1.0	NO	1.0	NO	1.0		
-	Chlorensthane Hisulahlanida	NO	1.0	NO	1.0	NO	1.0	NÖ	1.0		
	Vinylchloride	NO	1.0	NO	1.0	ND	1.0	NO	1.8		
1	Broacesthane .	NO	1.0	NO	1.0	NO	1.0	231	1.0		
	Chlorosthere Truchlosoflucenethere	NO	1.0	NO	1.0	ND	1.8	NO	1.0		
F T	Trichlorefluoromethano	10	1.0	NO	1.0	NO	1.8	NO	1.0		
	1,1-Dichloroethene	NO	1.1	NO	1.0	1.6	1.0	8.8	1.8		
.	Methylene Chlorido	NO	1.0	NO	1.0	1.2	1.0	4.4	1.0		
1 .4.	trans-1,2-Dichloroethene	NO	1.0	NO	1.0	3.1	1.0	88	1.5		
.	1,1-Dichleropthame 2,2-Dichleropropane	80	1.0	NO	1.9	NO	1.0	ю	1.0		
1 ² ·		NO	1.0	NO	1.9	3.7	1.9	NO	1.0		
-	cis-1,2-Dichlergetheng	ND	1.0	NO	1.0	NO	1.0	ND T	1.0		
I and	Chlorofore Bromochloromethene	NO	1.0	NO	1.0	ND	1.0	NÖ .	1.1		
		NO	1.0	NO	1.0	ND	1.9	ND	1.8	•	
	1,1,1-Trichlorosthans Carbon Totrachloride	NO	1.0	NO	1.0	NO	1.0	ND .	1.0		
		NO	1.0	NO	1.9	NO	1.0	1.1	1.0		
	chlropropene	NO	1.0	NO	1.0	61	1.0	682	1.0		
		NO	1.9	NÖ	1.9	1.7	1.0	19	1.9		
	1,2-Dichloroethene	NO	1.9	NÖ	1.9	2.2	1.9	3.7	1.9		
	Trichloroethene	NO	1.0	ND	1.0	NO	1.9	NO	1.9		
L	1,2-Dichleropropane	NO	1.0	ND	1.0	NO	1.0	1.9	1.0		
	Dibromomethane Bromodichloromethane	NO	1.0	NO	1.0	NO.	1.0	NO	1.0		
Γ		NO	1.0	NÖ	1.0	NO	1.3	NO	1.0		
	trans-1,3-Dichleropropene	NO	1.0	NÖ	1.0	ND	1.0	NO 12	1.0		
	cis-1,3-Dichloropropens	2.3	1.4	8.4(3)	1.0	3.2	1.3	3192	1.0		
•-	Teluene	NO	1.0	NO	1.0	NO	1.0	NO	1.0		
l ·	1,1,2-Trichloroethane	NO	1.9	NO	1.0	NO	1.0	NO	1.9		
Ŀ	Tetrachlorostheme	NO	1.9	NO	1.0	ND	1.9	1.1	1.0		
•	1,3-Dichloropropane	NO	1.0	ND	1.0	NÖ	1.0	NO	1.0		
7	Dibromochleromethane	NO	1.0	NO	1.0	NO	1.0	1.4	1.0		
	1,2-Dibromsethane	NO	1.3	NO	1.0	75	1.3	6.7	1.0		
•	Chierobenzene 1,1,1,2-Tetrachieroethane	NO	1.3	NO	1.0	NO	1.0		1.0		
, .		8.8(J)		0.3(3)		245	1.0	684	1.3		
	Ethylbenzene	2.7	1.0	1.0	1.0	87	1.0	1666	1.9		
ł	p & a-Xylene	1.1	1.3	NO	1.0	23	1.9	648	1.0		
	o-Xylene	ND	1.0	NO	1.0	NO	1.0	ND	1.9		
1	Styrene	NO	1.0	NO	1.0	NŪ	1.0	1.2	1.9		
	Bromoform		***	. 🛥		-					·

Concentrations in Microgram per Liter Results are Blank Subtracted (J) Below Method Detection limit ND Indicates compound Nat Detected.

VELATILE ORGANIC COMPOUNDS ANALYSIS

	JELT \$:	\$1282 -	PRS, 0			1704		3783		· .		
LOC	PLE \$:	3784 Fld Bln		3799 MN118 ^A075	1	3782 SIM3 		SIN6 *987	51			
FIL DIL	<u>e</u> : , Fact.:	1 1	74	. 1		1	•	1		8		
CCHPOUNO		CONC.	HDL.	CNC.	HOL	CONC.	HOL	∞.	HOL.	CONC.	NOL	
·····			1.0	NO	1.0	3.9	1.0	9.3	1.0	·		
Isopropylbenzene		NO	1.0	NO	1.0	NÖ	1.0	NO	1.9			
Bromobenzene		NO	1.0	ŇŌ	1.0	0.5(3)	1.0	1.7	1.0			
1,1,2,2-Tetrachiorosth		NO	1.1	NO	1.0	NÖ	1.0	2.7	1.9			
1,2,3-Trichloropropent	J	NO	1.0	. –	1.8	2.9	1.0	7.8	1.8			
n-Propylbenzene		NO	1.3	NO	1.0	ND	1.8	NO	1.0			
2-Chiorotoluene	_	NO	1.0	NO	1.0	6.1	1.8	92	1.8			
1,3,5-Trimethylbenzen		Ň	1.0	NO	1.0	NO	1.0	ND	1.8			
4-Chlorotoluene		Ň	1.0	NO	1.0	ND	1.0	NO	1.0			
tert-Butylbenzene			1.3	8.2(3)	1.0	v	1.0	104	1.9			
1,2,4-Trimethylbenzen	8	NÖ		NO	1.0	NO 1	1.0	NO	1.0			
sec-Butylbenzene		NO	1.0	NO	1.3	1.6	1.9	3.5	1.0			
p-isopropyltoluene		NO	1.3	NO	1.0	NO	1.0	NO	1.0			
1,3-Dichlorobenzene		NO	1.9	NO NO	1.0	NO	1.0	2.5	1.9			
1,4-Dichlerobenzene		NO	1.1		1.0	6.6	1.0	72	1.9			
1,2-Dichlerobenzene		NO -	1.9	NO		NO	1.0	NO	1.0			
n-autylbenzene		NO	1.1	NO	1.0	Ň	1.0	NO	1.0			
1 2-Dibross-J-Chibrop	ropane	NO	1.9	NO	1.0		1.0	1.4	1.0	•		
Trichlorobenzen		NO	1.9	NO	1.0	0.5(3)		3.1	1.0			
heslorobut adiene		ND	1.3	NO	1.0	1.2	1.0		1.0			
Negithalene		ND	1.3	ND	1.9	3.1	1.0	22				
1,2,3-Trichlarabenzer	•	NO	1.3	NO	1.0	0.8(J)	1.0	2.2	1.0			

Concentrations in Microgram per Liter Results are Slank Subtracted (J) Below Method Detection ND Indicates compound Not Detected

UDLATILE ORGANIC COMPOUNDS ANALYSIS

	PROJECT # :	\$1202 - PAS Oswega										
	SNPLE # :	3788		3781		3777		3778		3779		
	LOCATION :	- SHI		SH4		HNIIA		HU11Adu		MULLAdu		
FILE \$: DIL. FACT.:		~A0762		~A0749		^A8745		~R8746		~A0747		
		1		1		1		1		1		
COMPOLNO		CONC.	10.	CXC.	MOL,	CONC.	riði,	CONC.	10L	CONC.	10.	
Dichlorodifluorom	thane	NO	1.0	ND	1.0	NO	1.0	NO	1.8	NO	1.0	
Chlorosethane		ND	1.0	NO	1.0	NO	1.0	NO	1.0	NO	1.0	
Vinylchloride		ND	1.0	NQ	1.0	NO	1.0	NO	1.0	ND	1.0	
Srosose thank	·	ND	1.0	NO	1.0	ND	1.0	NO	1.8	NO	1.8	
Chloroethane		NO	1.0	36	1.0	NO	1.0	NO-	1.0	ND	1.0	
Trichlorofluoromethane		NO	1.3	NO	1.0	NÖ	1.6	ND	1.1	NO	1.0	
1,1-Dichloroethene		NO	1.0	NO	1.0 -	NO	1.8	NO	1.0	NO	1.0	
Nethylene Chloride		ND	1.9	1.8	1.9	NO	1.0	ND	1.0	NO	1.0	
trans-1,2-Dichlorosthene		NO	1.0	1.8	1.0	NO .	1.0	NO	1.0	NO	1.0	
1,1-Oichlorosthane		NO	1.3	2.2	1.3	NO	1.0	NO	1.1	NO	1.0	
2,2-Dichleropropa		NO	1.3	NO	1.9	NO	1.0	NO	1.0	NO	1.0	
cis-1,2-Dichloros		NO	1.3	NO	1.0	NÖ	1.9	ND	1.8	NO	1.0	
Chierofors		NO	1.9	ND	1.0	NO	1.0	ND	1.8	10	1.0	
Bromochloromethen	•	NO	1.9	NO	1.0	NO	1.0	NO	1.5	NO	1.0	
1,1,1-Trichlorost		NO	1.0	NO	1.0	ND	1.0	HO	1.8	NO	1.0	
Carbon Tetrachlor		ND	1.3	NO	1.0	ND	1.0	ND	1.4	ND	1.0	
::hiropropen		NO	1.3	NO	1.0	ND	1.0	NO	1.9	NO	. 1.0	
6	-	NO	1.3	119	1.0	NO	1.0	ND	1.0	NO	1.0	
1,2-Dichloroethan	•	· NO	1.0	2.5	1.8	NO	1.0	NO	1.9	NO	1.0	
Trichlorosthene	•	NO	1.0	NO	1.0	NÖ	1.9	ND	1.9	ND	1.3	
1,2-Dichloropropa	he	NO	1.9	NO	1.0	NO	1.0	ND	1.0	NO	1.0	
Dibromomethane		NO	1.3	NO	1.3	NO	1.0	NO	1.0	NO	1.0	
Browdichlorometh	-	NÖ	1.9	ND	1.0	NO .	1.0	NO	1.9	ND	1.0	
trans-1,3-Dichlor		ND	1.5	ND	1.0	NÖ	1.8	NO	1.0	NO	1.0	
cis-1,3-Dichlorop		NÖ	1.0	NO	1.0	NO	1.8	ND	1.0	NO	1.0	
Toluene		NÖ	1.0	91	1.0	ND	1.1	HD	1.1	NO	1.0	
1,1,2-Trichloroet	hana	NO	1.3	NO	1.0	ND	1.1	NO	1.0	NO	1.0	
Tetrachloroethene		NÖ	1.3	NO	1.0	ND	1.8	NO	1.8	ND	1.0	
1.3-Dichloropropa		ND	1.9	0.5(J)	1.0	ND	1.8	NO	1.9	NO	1.0	
Dibromentiorometh		ND	1.9	NO	1.9	NO	1.8	NO	1.0	ND	1.0	
1,2-Dibrompethane		ND	1.3	0.6(J)	1.0	NO	1.8	NO	1.0	NO	1.0	
Chlorobenzena		NO	1.1	22	1.0	° NO	1.0	NO	1.0	ND	1.9	
1,1,1,2-Tetrachlo	roethane	NO	1.9	NO	1.0	ND	1.0	NO	1.0	ND	1.0	
Ethylbenzene		NO	1.0	188	1.0	NO	1.0	NO	1.1	ND	1.0	
p & a-Xylene		- NO	1.3	119	1.0	ND	1.0	NO	1.9	ND	1.0	
		NO	1.0	45	1.0	NO	1.6	NÖ	1.1	NO	1.0	
a-Xylene		NO	1.3	NO	1.0	ND	1.0	NO	1.4	10	1.0	
Styrene		NO	1.3	8.5(J)	1.9	ND	1.9	NO	1.0	ND	1.9	
Bromsform			4 · V		3	-	_					

١.

Concentrations in Microgram per Liter Results are Blank Subtracted (J) Below Method Detection limit

ND Indicates compound Not Cetected.

7

橸

UDLATILE ORGANIC COMPOUNDS ANALYSIS

PROJECT \$:	\$1282 -										
SAMPLE # : LOCATION :	3788 Simi		3781 SIA14		3777 HW11A		3778 MillAdupe		3779 Hill1Adupe		
FILE :		^A8762 1		^98749 1		~A0745 1		^A8746 1		~A8747 1	
DIL. FACT.:	1										
COPUNO	CNC.	r OL	CONC.	MOL.	CONC.	HOL	CDC .	NOL	COC.	HOL	
Isopropyibenzene	NO	1.0	9.5	1.3	NO	1.8	NO	1.8	NÖ	1.0	
Bransbenzene	. NO	1.0	ND	1.0	ND	1.0	NÖ	1.0	NO	1.8	
1,1,2,2-Tetrachloroethane	NO	1.0	0.9(J)	1.0	ND	1.0	0.6(J)	1.0	NO	1.9	
1,2,3-Trichlaropropane	NO	1.0	1.0(3)	1.0	NO	1.0	NO	1.8	NO	1.0	
n-Propylbenzene	NO	1.8	1.8	1.0	ND	1.0	NO	1.0	NO	1.0	
2-Chiorotoluene	NO	1.0	ND	1.0	ND	1.8	NÖ	1.6	NÖ	1.0	
1,3,5-Trimethylbenzene	NO	1.0	4.3	1.0	NO	1.8	HO	1.8	ND	1.1	
4-Chlorotoluone	NO	1.0	· NO	1.0	NO	1.1	NÖ	1.8	ND	1.8	
tert-Butylbenzene	NO	1.0	NO	1.0	NO	1.0	NÖ	1.0	NÖ	1.8	
1,2,4-Trimethylbenzene	NO	1.0	7.8	1.0	ND	1.0	ND	1.0	NO	1.0	
sec-Butylbenzene	NO	1.0	NO	1.0	ND	1.0	NÖ	1.8	NO	1.0	
p-Isopropyltoluene	NO	1.3	2.5	1.0	NO	1.8	NO .	1.0	NO	1.8	
1,J-Dichlorobenzene	NO	1.9	NO	1.0	ND	1.0	NO	1.1	NÖ	1.0	
1,4-Dichlarobenzene	NO	1.0	0.3(J)	1.0	ND	1.9	NÖ	1.0	NO	1.0	
1,2-Dichlorobenzene	NO	1.0	1.5	1.9	ND	1.1	NO	1.0	NO	1.8	
In-Butylbenzene	NO	1.9	0.5())	1.0	NO	1.0	NO	1.1	NÖ	1.0	
1.2-Dibrom-J-Chieropropane	NO	1.0	ю	1.0	ND	1.8	NO	1.8	ND	- 1.0	
Trichlorobenzene	NO	1.0	0.7(])	1.0	NÖ	1.0	ND	1.0	NO	1.0	
manularobutadiene	NO	1.0	1.4	1.3	ND	1.0	ND	1.8	ND	1.0	
Naghthalene	N	1.0	1.6	1.0	NO	1.0	0.7(])	1.0	ND	1.0	
1,2,3-Trichlerobenzene	NO	1.0	1.0	1.0	NO	1.9	0.4(J)	1.0	ND	1.0	

١

Concentrations in Microgram per Liter Results are Blank Subtracted (J) Below Method Detection Indicates compound Not Detected NO

Ľ

il.

REFERENCES

[]

Γ

Environmental Protection Agency, Environmental Response Team. "Soil Gas Standard Operating Procedure for EPA Environmental Response Team." 1988.

Marrin, Donn L. "Soil-Gas Sampling and Misinterpretation." Ground Water Monitoring Review. Spring 1988.

APPENDIX E

Analytical Report VOC Groundwater Samples

rd/TYSON/PR-1202

H

· T

ANALYTICAL REPORT

PAS OSWEGO OSWEGO, N.Y.

November 21, 1988

EPA Work Assignment No.: 1-202 Weston Work Order No.: 3347-01-01-1202 EPA Contract No.: 68-03-3482

> Submitted to: A. Humphrey EPA/ERT

Prepared by: Roy F. Weston, Inc.

11/22/ 8 Dave Ken Tyson

Task Leader

h:

Π

Π

Date

Antonio LoSurdo S&A Section Chief

W. Scott Butterfield Project Manager

Prepared by: K. Cho

Reviewed by: Y. Lin

Prepared for:

U.S. EPA/ERT

Analysis by: REAC

eh/ANA-1202

TABLE OF CONTENTS

SECTION I

Introduction Analytical Procedures Analytical Results Calibrations

SECTION II

QA/QC Procedures QA/QC Result

SECTION III

f

Chain of Custody Records

APPENDIX A

Data Package for VOA

APPENDICES FURNISHED UPON REQUEST

INTRODUCTION

On October 20, 1988, nine water samples were received from the Pas Oswego site in Oswego, N.Y. The samples were to be analyzed for volatile organic compounds.

eh/ANA-1202

.

Ī

ANALYTICAL PROCEDURES

A modified 524.2 method for the analysis of Volatile Organic Compounds in water and soil was used. Samples were purged, trapped, and desorbed to a GC/MS system. The following conditions and parameters were practiced:

1) Purge and Trap Unit: A Tekmar concentrator (LSC 2000) equipped with an autosampler (ALS2016) was utilized.

Purge and trap parameters:

Purge - 11 min. at 25°C Desorb - 4 min. at 220°C Purge flow rate - 40 ml/min.

Dry Purge - 9 min. at 25° C Bake - 6 min. at 240° C

Trap - A 2 part trap containing Supelco Carbopack B (200 mg) and Carbosieve S-III (50 mg) was used.

2) GC/MS System: A Hewlett Packard 5995C GC/MS equipped with RTE/6VM data system was used.

GC/MS Parameters:

GC Column - 30 meter long x 0.53 mm ID, DB-624 Megabore (J&W Scientific, Inc.) column with 3 um film thickness.

GC Temperature - 5 min. at 10° C ramped to 160° C at 6° /min., and kept for 4 min.

GC Flow Rate - Helium at about 10 ml/min.

GC/MS Interface - Glass lined jet separator with about 15 ml of make up gas at 250° C.

Mass Spectrometer - Electron Impact Ionization at a nominal electron energy of 70 eV, scanning from 35-300 amu at about one scan per second.

Computer - Preprogrammed to plot Extracted Ion Current Profile (EICP). Also capable of integrating ions and plotting abundances versus time or scan number. A forward library (NBS-Wiley) search for tentatively identified compounds was performed on samples.

Depending on levels of detection limits, aliquots of 5 or 25 ml of sample were used. To examine the mass spectral data, 50 ng of p-Bromofluorobenzene was injected to ensure sufficient precision of mass spectra.

eh:rd/ANA-1804

TABLE 1 VOLATILE ORGANIC COMPOUNDS ANAL/SIS

1	PROJECT # :	\$1202 -	PAS, C	lswego							
	SAMPLE # :	3784		3799		3792		3783			
	LOCATION :	Fld Blnk		MW118		Shill3		Shillia			
	FILE # :	^AU75	2	^A07	53	^A07	50	^A07	51		
	DIL. FACT.:	1		1		1		1		0	
	COMPOUND	CONC.	MDL	CONC.	HDL	CONC.	HOL	CONC.	HDL	CONC.	MOL
	Dichlorodifluoromethane	NÖ	1.0	NO	1.0	ND	1.0	NO	1.0		
La.	Chloromethane	ND	1.0	ND	1.0	NÖ	1.0	NO	1.0		
_	Vinylchloride	ND	1.0	NO	1.0	ND	1.0	ND	1.9		
	Gromomethane	ND	1.9	ND	1.0	ND	1.0	ND -	1.0		
	Chloroethane	ND	1.0	ND	1.0	ND	1.0	231	1.0 (マ	
-	Trichlorofluoromethane	NO	1.0	NO	1.0	ND	1.0	ND	1.0		
	¥1,1-Dichloroethene	ND	1.9	ND	1.0	ND	1.0	ND	1.0	<u>د</u>	•
	Nethylene Chloride	ND	1.9	NO	1.0	1.6	1.0	8.8		2	
	Strans-1,2-Dichloroethene	ND	1.0	ND	1.0	1.2	1.0	4.4		6	
#T	1,1-Dichloroethane	NO	1.0	NÔ	1.0	3.1	1.0	38		4	
T	2,2-Dichloropropane	ND	1.0	ND	1.0	ND	1.0	ND	1.0	-	
Ι.	cis-1,2-Dichloroethene	ND.	1.0	ND	1.0	3.7	1.0	ND		P 5	
_	_Chloroform	ND	1.0	ND	1.0	ND	1.0	ND	1.0-		
F	wochloromethane	ND	1.0	ND	1.0	NÛ	1.0	. NO	1.0		
	1-Trichloroethane	ND	1.0	ND	1.0	ND	1.0	ND	1.0-		
. `	arbon Tetrachloride	ND	1.0	NŬ	1.0	ND	1.0	ND	1.0		
f	1, chiropropene	ND	1.0	ND	1.0	ND	1.0	1.1	1.0	_	
		ND	1.0	ND	1.0	61	1.0	682		0	
	1,2-Dichloroethane	ND	1.0	Í NO	1.0	1.7	1.0	10	1.0	[-	
	Trichloroethene	ND	1.0	ND	1.0	2.2	1.0	3.7	1.0	-	
	1,2-Dichloropropane	' ND	1.0	ND	1.0	ND	1.0	ND	1.0		
	Dibromomethane	ND	1.0	ND	1.0	ND	1.0	1.9	1.0		
	Bromodichloromethane	ND	1.0	ND	1.0	ND.	1.0	ND	1.0		
	trans-1,3-Dichloropropene	ND	1.0	NÔ	1.0	ND	1.0	ND	1.0'		
ţ.	cis-1,3-Dichloropropene	ND	1.0	ND	1.0	ND .	1.0	ND	1.0		
•	- Taluene	2.3	1.0	0.4(J)	1.0	3.2	1.0	3192		F I-	
1-	1,1,2-Trichloroethane	ND	1.0	ND	1.0	ND	1.0	ND	1.0	-	
1	Tetrachloroethene	ND	1.0	ND	1.0	ND	1.0	ND	1.0		
-	1,3-Dichloropropane	ND	1.0	ND	1.0	ND	1.0	1.1	1.0		
•	Dibromochloromethane	ND	1.0	ND	1.0	ND	1.0	ND	1.0 -		
Γ	1,2-Dibromoethane	ND	1.0	ND	1.0	ND	1.9	1.4	1.0	~ ~	
i	Chlerobenzene	ND	1.0	ND	1.0	75	1.0	6.7	1.0	10 -	
	1,1,1,2-Tetrachioroethane	ND	1.0	ND	1.0	NC	1.9.	ND	1.0		
1 4	Ethylbenzene	0.8(J)	1.0	0.3(J)	1.0	245	1.0	684			
1	n <u>n</u> Kulene	2.7	1.0	1.0	1.0	87	1.0	1666	1.0 (
•	o-Xylers	1.1	1.0	ND	1.0	23	1.0	648	1.01	3 -	
	T STATE	NO	1.9	ND	1.0	NÔ	1.0	ND	1.0		
	- 1001074	s HD	i)	×.	• •	• :		•••	.		

Concentrations in Microgram per Liter Results are Blank Subtracted (J) Below Method Detection limit

ND - Indicates compound Not Detected.

PROJECT # : SAMPLE # : LOCATION : FILE : DIL. FACT. :	\$1202 3784 Fid 91 ^A0		0swego 3799 1118 ^A07 1	5 3	3782 Siiii3 ^A03	750 L	3783 SMM6 *A07	751	0	
	CONC.	10	CONC.	nDL	CONC.	TOL.	CONC.	(IDL	CONC.	MDL
Sapropylbenzene	NO	1.0	NO	1.0	3.9	1.0	9.3	1.0 14		•••••
Bromobenzene	ND	1.0	ND	1.0	NO	1.0	NO	1.0		
1,1,2,2-Tetrachloroethane	ND	1.9	NO	1.0	0.5(3)	1.0	1.7	1.0 \		
-1,2,3-Trichloropropane	ND	1.0	ND	1.0	NO	1.9	2.7	1.0 16	-	
- n-Propylbenzene	ND	1.0	NO	1.0	2.0	1.0	7.8	1.0 17	-	
2-Chlorotoluene	ND	1.0	ND	1.0	NO	1.0	ND	1.0		
1,3,5-Trimethylbenzene	ND	1.0	ND	1.9	6.1	1.0	92	1.018 -	-	
4-Chlorotoluene	ND	1.0	ND	1.0	ND	1.0	ND	1.0		
tert-Butyibenzene	ND	1.0	ND	1.0	ND I	1.0	NO	1.0		
- 1,2,4-Trimethylbenzene	ND	1.0	0.2(J)	1.0	17	1.0	104	1.0 19	-	
sec-Butylbenzene	ND	1.0	ND	1.0	NO	1.0	ND	1.0		
- p-isopropyltoluene	NÛ	1.9	NO	1.0	1.6	1.0	3.5	1.0 .0	_	
1,3-Dichlorobenzene	ND	1.0	ND	1.0	ND	1.0	0.9 ND	1.0		
- 1,4-Dichlorobenzene	ND	1.0	ND	1.0	ND	1.0	2.5	1.0 21	-	
1,2-Dichlorobenzene	NO	1.0	ND	1.0	6.6	1.0	72	- · •	-	
n-Butylbenzene	NO	1.0	NO	1.0	NO	1.0	ND			
2-Dibromo-3-Chloropropane	NO 1	1.0	ND	1.0	ND	1.0	ND	1.0		
Trichlorobenzene	10	1.0	NO	1.0	0.5(3)		-	1.0	-	
Lingue lorobutadiene	NO	1.0	NŬ	1.0		1.0	1.4	1.0 25	-	
Naphthalene		1.0	NO NO	1.0	1.2	1.0	3.1	1.0 24	-	
1,2,3-Trichlorobenzene		1.0	ND	1.0	3.1 0.8(J)	1.0 1.0	22 2.2	المن 1.0 مر 1.0 د	-	

TABLE 1 VOLATILE ORGANIC COMPOUNDS ANALYSIS

Concentrations in Microgram per Liter Results are Blank Subtracted (J) Below Method Detection ND Indicates compound Not Detected

	TABL		
VOLATILE	CRGANIC	COMPOUNDS	ANALYSIS

SAMPLE # LOCATION FILE #	: 3780 : SWU1 : ^A()762	3781 Sulu4 ^A()749	3777 M⊎11A ?A0	745	3778 ₩119d ^A0		- 3779 - #W11Ad ^08	upe 747
DIL. FACT	.:	1		1		1		1	ΠV.	1
COMPOLINO	CONC.	MDL	. CONC.	HDL	CONC.	HDL	CONC.	:10L	CONC.	.10
Dichlorodifluoromethane	NO	1.0	NO	1.0	 ND					••••••
Chloromethane	ND	1.0	ND	1.0	NO	1.0	NO NO	• 1.0	ND	1.0
Vinylchloride	ND	1.0	ND	1.0	NO	1.0	ND ND	1.0	ND	1.0
Bromomethane	ND	1.0	NÖ	1.0	ND	1.0	NO	1.0	ND	1.0
Chloroethane	ND	1.0	36	1.0	ND	1.0		1.0	NO	1.0
Trichlorofluoromethane	NÖ	1.0	ND	1.0	NO		ND IS	1.0	ND	1.0
1,1-Dichloroethene	ND	1.0	NO	1.0	ND	1.0	ND	1.0	ND	1.0
fethylene Chloride	ND	1.0	1.8	1.0	NO	1.0	ND	1.0	ND	1.0
rans-1,2-Dichloroethene	N0	1.0	1.8	1.0	nD	1.0	ND	1.0	ND	1.0
,1-Dichloroethane	ND	1.0	2.2	1.0	NO	1.0	ND	1.0	ND	1.0
,2-Dichloropropane	NO	1.0	ND	1.0		1.0	NO	1.0	NO	1.0
13-1,2-Dichloroethene	NO	1.0	NO		ND ND	1.0	ND	1.0	ND	1.0
hloroform	ND	1.0	ND ND	1.0	NO	1.0	ND	1.0	ND	1.0
romochloromethane	NÔ	1.0	ND ND	1.0	ND	1.0	ND	1.8	ND	1.0
1.1-Trichloroethane	ND	1.0		1.0	ND	1.0	ND	1.0	ND	1.0
on Tetrachloride	NO	1.0	ND	1.0	ND	1.0	ND	1.0	ND	1.0
shiropropene	NO		ND ND	1.0	ND	1.0	ND	1.0	ND	1.0
	ND	1.0	ND	1.0	ND	1.0	ND	1.0	ND	1.0
,2-Bichloroethane	ND	1.0	118	1.0	ND	1.0	ND	1.0	:0	1.0
richloroethene		1.0	2.5	1.0	ND	1.0	ND	1.0	ND	1.0
,2-Dichloropropane	ND -		- ND	1.0	ŇD	1.0	ND	1.0	ND	1.9
itromomethane	ND	1.0	ND	1.0	NÜ	-1.0	ND	1.0	ND	1.0
comodichloromethane	ND	1.0	ND	1.0	ND	1.0	ND	1.0	ND	1.9
	ND	1.0	ND	1.0	ND	1.0	ND	1.0	ND	1.8
ans-1,3-Dichloropropene	ND	1.0	ND,	1.0	ND	1.0	ND	1.0	ND	1.0
s-1,3-Dichloropropene	ND	1.0	ND	1.0	ND	1.0	ND	1.0	ND	1.0
luene	ND	1.0	91	1.0	ND	1.0	ND	1.0	NO	1.0
1,2-Trichloroethane	ND	1.0	ND	1.0	ND.	1.0	ND	1.0	ND	1.0
trachlorgethene	ND	1.0	ND	1.0	ND	1.0	ND	1.0	ND	1.0
3-Dichloropropane	ND	1.0	8.5(J)	1.0	ND	1.0	ND	1.0	NO	1.0
bromochlorsmethane	ND	1.0	ND	1.0	ND	1.0	ND	1.0	NO	1.0
2-Dibromoethane	ND	1.0	8.6(3)	1.0	ND	1.0	ND	1.0	ND	1.0
lorobenzene	ND	1.0	22	1.0	ND	1.0	NO	1.0		1.0
1,1,2-Tetrachloroethane	ND	1.0	ND	1.0	ND	1.0	NO	1.0	ND	1.0
hylbenzene	ND	1.0	180	1.0	ND	1.3	NO	1.0	NO	1.0
š m-Xylene	ND		119	1.0	ND	1.0	ND	1.0	NO	
Xylene	ND	1.0	45	1.0	NO	1.0	ND	1.0	10 10	1.0
yrene	ND	1.0	NO	1.0	NO	1.0	NÖ			1.0
proform	NO		0.5(J)	1.0	ND		ND		ND ND	1.0
	-							1.V	NÐ	1.0
А. С.		• •	7.5	1.1	1.0	1.2	NÖ .	1.0	HC	1.0

ť

Concentrations in Microgram per Liter

Results are Blank Subtracted

(J) Below Method Detection limit

ND - Indicates compound Not Detected.

1

TABLE 1 VOLATILE ORGANIC COMPOUNDS ANALYSIS

PROJECT # : SAMPLE # : LOCATION : FILE : DIL. FACT.:	\$1202 3780 Suiu1 ^A0		Oswego 3701 SWM4 ^AO	749 1	3777 11911A 190	745 1	3778 ₩11Ad ^A0		3779 Milliad ^A0	lupe 747 1
COMPOLINO	CONC.	HOL	CONC.	HOL	CONC.	MDL	CONC.	HOL	CONC.	- MOL
isopropylbenzene Bromotenzene	NÛ	1.0	9 F.	1 8	 NŰ				 	
1,1,2,2-Tetrachloroethane	ND ND	1.0	NÚ	1.3	ND	1.0	ND	1.0	NO	1.0
1,2,3-Trichloropropane	ND	1.0	0.9(J)	1.0	ND	1.0	0.6(J)	1.0	ND	
n-Propylbenzene	ND	1.0 1.0	1.0(J) 1.0	1.0	ND	1.0	ND	1.0	ND	1.2
2-Chlorotoluene	ND	1.0	ND	1.0 1.0	ND IS	1.0	ND	1.0	ND	1.0
1,3,5-Trimethylbenzene	ND	1.0	4.3	1.0	ND ND	1.0	ND	1.0	ND	1.9
4-Chlorotoluene	ND	1.0	NO	1.0	ND	1.0	ND	1.0	ND	1.0
tert-Butylbenzene	ND	1.0	ND	1.0	ND ND	1.0 1.0	ND	1.0	NO	1.0
1,2,4-Trimethylbenzene	ND	1.0	7.8	1.0	ND	1.0	ND ND	1.0	NO	1.9
sec-Butylbenzene	ND	1.0	ND	1.0	ND	1.0	ND ND	1.0	ND	1.1
p-Isopropyltaluene	ND	1.0	2.5	1.0	ND	1.0	NO	1.0 1.0	ND ND	1.0
1,3-Dichlorabenzene 1,4-Dichlorabenzene	ND	1.0	ND	1.0	ND	1.0	ND	1.0	ND ND	2. ³
1,2-Dichlorobenzene	ND	1.0	0.3(J)	1.0	ND	1.0	NO	1.0	ND	1.1 1.1
n-Butylbenzene	ND	1.0	1.5	1.0	ND	1.0	ND	1.0	NO	1.5
1 Dibromo-3-Chloropropane	ND	1.0	0.5(J)	1.0	ND	1.0	ND	1.0	ND	1
Trichlorobenzene	ND ND	1.0	ND	1.0	ND	1.0	ND	1.0	ND	1
Line lorobut ad iene	NU NO	1.0	9.7(J)	1.0	ND	1.0	ND	1.0	ND	
Naphthalene	NÜ	1.0	1.4	1.0	ND	1.0	ND	1.0	ND	
1,2,3-Trichlorobenzene			1.6	1.0	ND	1.0	9.7(])	1.0	ND	
-	• 🛩		1.0	1.0	ND	1.0	0.4(J)	1.0	ND	• .:

٦

Concentrations in Microgram per Liter Results are Blank Subtracted (J) Below Method Detection ND Indicates compound Not Detected

ľ

H

12 VOLATILE ORGANICS AMALYSIS DATA SHEET EPA SAMPLE NO. TENTATIVELY IDENTIFIED COMPOUNDS LAD NAME: WESTEN-REAC CONTRACT: 68-03-3482 3750 Lab Code: _____ Case No.: 1202 SAS No.: ____ SDG No.: ____ Matrix: (soil/water) Water Lab Sample ID: 3780 Sample vt/vol: 5(g/aL) - lLab File ID: _AC762 Level: (low/med) low Date Received: 10,20,18 * Moisture: not dec. Dete Analyzed: _(C/2C/88 (pack/cap) Column: Dilution Pactor: 1.0

Number TICs found:

ľ

CONCENTRATION UNITS:

١

	CONDOUND NAME	25	EST. CONC.
110827	Cyclohe same	8.92	<u>36C</u>
		-!!	
		_!!	
		_!i	

FORM I VOA-TIC

1**E** EPA SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS 3781 Lab Nese: Weston Reac Contract: 3347-01-01 Lab Code: NA Case No .: 1201 SAS No .: NA SDG No .: NA Matrix: (soil/water) Whiter Lab Sample ID: 378 Lab File ID: >A 0749 Sample vt/vol: Date Received: 10,20188 Level: (low/med) 100 t Moisture: not dec.____ Date Analyzed: 10,20/8 Column: (pack/cap) _____ Dilution Factor: 1.0

Number TICs found:

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>mail</u>

CAS NUMBER	COMPOUND NAME	7.5	EST. CONC.	Q
1. 60297	Ethel ather	360	6.0	
2. 109875	Marine directory	1 4.05	42	
3	Proposed in atta	1 5.87		
4. 10000	Teta hanhan	ا <u>لەبەرا</u>		
5. 10827	Cucleanna	1 4.89	180	
6. 123911	- Lia Diazona	_ <u></u>	26	
7!_	CarloalKane		7.0	
· · · _ · _ · _ · _ · _ · _ · _ · _ · _	Terplan	_ <u></u>		
9!_	·	-!		
10		_ { }		
11		-!		
12	······································			
13				
14				
15		┉╏╺╼╍╍╼╼╴		·
16				
17			·	i
19				1
21				I
22				
23i_				1
24				ا
25			·	ــــــــــــــــــــــــــــــــــــــ
26			I	۱
27	· · · · · · · · · · · · · · · · · · ·		l	!
28			I	!
29			l	!
30i_			i	!
i			1	ــــــــــــــــــــــــــــــــــــــ

FORM I VOA-TIC

EPA SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS Lab Name: Western REAC Contract: 3347 -01-01 3777 Lab Code: NA Case No.: 1202 SAS No.: NA SDG NO.: NA Matrix: (soil/vater) Water Lab Sample ID: 3777 <u>5</u> (g/aL) ___l Sample wt/vol: >A0745 Lab File ID: Level: (low/med) low Date Received: 0120188 * Moisture: not dec. NA Date Analyzed: _10,20,88 Column: (pack/cap) C-p Dilution Factor: 1.0

Number TICs found: 4

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>Ms/L</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1	unknown	7.14	2	
2. 110827	Cucloberane	1 8.17	770	
3[13-Diexdame meth	9.97	30	
4	Heranedia	1 1.06	6	
5!				
6				<u> </u>
7	•		1	
ö!		!	1	
		. ! !		
10		. !	1	
11		.!!		
· · · · · · · · · · · · · · · · · · ·		!!	1	
		.!!		
14		.!!		
15				
16i		.!!	!.	
· · · · · · · · · · · · · · · · · · ·			!	
		!!		
19i 20i		!!	!-	
21.		!!	!.	
22.		!!		
		·!!		
23		·!!	!·	
24		·!!	· · · · · · · · · · · · · · · · ·	
25		·		
26		·!!	ł·	
		·!!	·	··
29		·!!		
· · · · · · · · · · · · · · · · · · ·		!!	······································	

LE Volatile organics analysi Tentatively identified	
Lab Name: Weston REAL CO	ontract: <u>3347-01-01</u> 3778
Lab Code: NA Case No.: 1202 s	BAS NO.: NA SDG NO.: NA
Matrix: (soil/vater) Water	Lab Sample ID: 3778
Sample vt/vol: (g/ml)	Lab File ID: 2A0746
Level: (low/med) <u>low</u>	Date Received: 10,20,88
* Moisture: not dec. <u>ha</u>	Date Analyzed: 10/20 188
Column: (pack/cap) Cap	Dilution Factor: 1.0

Number TICs found: 5

D

ł

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>hg/L</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	
1. 109999	Tetra by don huran	8.37	1099 5.0	
2. 1082) I	Cecloberane	2.87	330	
3	LLAK SELDA	9.74	6.0	¦
4.	lis-diatalang metho	9.92	47	
5.	Possible Error tetral for ithely	11.02	8.0	·
6				
7]
8			!	
9				
10				
11				
13				
14				
15			·	
16				
17				
18				
19			· · · · · · · · · · · · · · · · · · ·	
20			· · · · · · · · · · · · · · · · · · ·	
41 .			· · · · · · · · · · · · · · · · · · ·	·
221			· · · · · · · · · · · · · · · · · · ·	
• • • •				
49				
43			1	
2V.				
27				
20			Î	
291			1	
301				
·	· · · · · · · · · · · · · · · · · · ·			

,

12 EPA SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS 3779 Weston Reac Lab Name: ____ Contract: 3347_01_0 Lab Code: NA Case No.: 1202 SAS No.: NA SDG No.: NA Matrix: (soil/vater) water Lab Sample ID: 3779 <u>5 (g/al)</u> Sample wt/vol: Lab File ID: _>A074 7 Level: (100/200) 10W Date Received: 10/20/88 t Moisture: not dec.____ Date Analyzed: 10,20,81 Dilution Pactor: 1.0

Number TICs found: 5

CONCENTRATION UNITS:

(ug/L or ug/Kg) ____/

\$

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1i	unknown	7.1	14	
2. 100999	Formatetra ham	1 8.39	5.0	
3. 110827	Cyclohemana		210	
4	lo Edioxolane, netto	9.94	_47	
5	unknun	<u> </u>	7.0	
6 7		-!!		
8				
		╺╎╺╼───╎		
10		_ii		
<u> </u>				
12		_!!		
13		_!!		
14		_!!		
15		-!!		
16		-!!		
18				
19			·····	
20		-ii		
<u>دا،</u>				
44 •		_	•	
63		_!!		
49. <u> </u>		_!!		
25		-!!		
26		-		
27		- <u> </u>		
28		╺╎╍╤────╎		
30		-¦		
i	······································	╺╎╧╾╾╸╎		

11 EPA SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS LAD HADO: WESTON-REAC CONTRACT: 68-03-3482 3784 Lab Code: _____ Case No.: _202 SAS No.: ____ SDG No.: ____ Matrix: (soil/vater) Water Leb Sample ID: _____3784 Sample vt/vol: <u>5 (g/aL)</u> Lab File ID: >AC752 Level: (low/bed) _/AL Date Received: ________ Noisture: not dec. --Date Analysed: _1920/88 Column: (pack/cap) ('ap Dilution Pactor: _/.@

Number TICs found: ____

CONCENTRATION UNITS: . (Ug/L or ug/Eg)

CAS MUNCHER CONFOCIND NAME 22 EST. CONC. Q 1.10827 Cuclohaxane 8.43 50 62 533 Aniline 21.67 10 11 12 13. 14 15 . 17. 19. 20. 21. 22. 23. 25 26 27. 28. 29. 30.

PORM I VOA-TIC

LE Volatile organics ana Tentatively identify	LYSIS DATA SHEET
LAD NADO: WESTON-REAC	Contract: 68-03-3482 3799
Lab Code: Case No.:	SAS No.: SDG No.:
Matrix: (soil/vater) Water	Lab Sample ID: 3799
Sample vt/vol: <u>5 (g/aL)</u>	Lab File ID:
Level: (low/sed) low	Dete Received:
<pre>Noisture: not dec</pre>	Date Analyzed: _/0/20/56
Column: (pack/cap)	Dilution Pactor: _/ C

Number TICs found: ____

[

ľ

CONCENTRATION UNITS: (ug/L or ug/Rg)_____

CAS MUNCHER CONFOUND HANGE EST. CONC. 22 Q Cycloherane 110827 887 1 100 2. 3. 10 11. 12. 13. 14. 15. 16. • 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.

PORM I VOA-TIC

EPA SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS Lab Name: Neston Reac Contract: 3347-01-01 3782 Lab Code: NA Case No.: 1201 SAS No.: NA SDG No.: NA Matrix: (soil/water) Voter Leb Sample ID: 3782 Sample wt/vol: _<u>5_(g/al)</u>___ Lab File ID: 2A 0750 Level: (low/med) Law Date Received: 10 north % Moisture: not dec.____ Date Analyzed: 1020/88 Column: (pack/cap) Capit Dilution Factor: _____

12

Number TICs found:

CONCENTRATION UNITS: (ug/L or ug/Kg)

CAS NUMBER	CONPOUND NAME	RT	EST. CONC.	Q
1. 109875	Methana, dimethary	4.00		-
3. 40827	Teta Inde Prom	5.30	<u> </u>	
4. 123911	Cuclo Buran a	8.84		
5.	Ind Divers	11.61		
6. 121697	Cyclelesoner alky	122.95	7.0	
7	Tetra all barance	123.91		-
8	Tetre all basene O	I-rus-	5.0	
9	Indene, I dil da noth 1	125.14	6.0	
10		!!		_
11.		·{		
12.		!!.		
13		·!!-	1	
14		· / / .	l	
15			1	
16		!!-	I	
17		!!-	!	
18			I	
19		¦!-		
20		¦!-	I _	
21		¦!-	I	
22			I_	
23			l_	
· ·		!-	I_	
5		!-	I_	
6		!-	I_	
7			!_	
8		!-	l_	
9		!_	1_	
0		!-	I_	
			1	

12 EPA SAMPLE NO. VOLATILE ORGANICE ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED CONFOUNDS LAD NADO: WESTEN-REAC 3783 Contract: 68-03-3482 Case No .: 1202 SAS No .: ____ SDG No .: ___ Lab Code: ____ Hatrix: (soil/vater) Water Lab Sample ID: 5783 _5_(g/al)__l Sample vt/vol: Lab File ID: >A0751 Level: (low/med) 100 Date Received: _10/2/1/88 * Moisture: not dec._ Date Analyzed: 10120188 (pack/cap) ____ Column: Dilution Pactor: 1.0

Number TICs found: 7

CONCENTRATION UNITS: (ug/L or ug/Kg) ______

CAS NUMBER		7 7	EST. CONC.	Q
1. 66297	Ethlether	3.49	56	
2. 67641	2 Property and	3.99	27	
3. 109999	total da sucan	8.42	-65	
4. 110827	Cuchlerone C5	188	200	-
5	_ partible Katore C5	10.47	······································	
••••••••••••••••••••••••••••••••••••••	indenen	14.49	49	
7	NIBK	17.17	<u> </u>	
· · · · · · · · · · · · · · · · · · ·	Alter beremen, Cattion	10 07 1	16	<u> </u>
9. 62 533	Benzariae trimated (1.3)	21.71	270	
10	Benzaniae trimater (1.3.)	22.99	44	
11. 116029	Ciclebergrad trial LL	11.22		
12	Hursenine method	23.81		
13	ladare dibdren all	25.14	;	
14. 1	Olymph. Chil	15.46		
15.	Pland tox attal	27.6		
4V•	Obrache tetra silate 1	29.62		
4/.	Presents betra marked 1	30.40	!	
40		and the states in		
17				_
20				
21.				
22				
23		!·		
24				
25				
26		!		
27		!		
28		!-		<u></u>
29i				
10			!	_
30			[

FORM I VOA-TIC

QA/QC PROCEDURES

Table **2A lists** the results of the surrogate standard recoveries. All surrogate recoveries were within QC limits.

Ľ

14 14

eh/ANA-1202

Table 3A lists the matrix spike and matrix spike duplicate recoveries, as well as the RPD values. All spike recoveries and RPD values were within QC limits.

2A WATER VOLATILE SURROGATE RECOVERY

E

ii.

L Name:WESTON REAC Contract:68-03-3482 Lab Code: NA Case No.: 1202 SAS No.: NA SDG No.: NA

I EPA I S1 I S2 I S3 IOTHER ITOTI I SAMPLE NO. IDCE-d4 IOL-d8 IDCB-d4 IOUT IOUT 01 3780 I 98 I 92 I I IOUT 021 3783 I 78 I 52 IOI I I 031 3781 I 92 I I I I I 041 3777 I 98 I 101 I 95 I I I 051 3778 I 95 I 102 96 I I I 061 3779 I 95 I 92 I<								
021 3783 1 78 1 52 1 101 1 1 1 031 3781 1 92 1 99 1 92 1 1 1 041 3777 1 98 1 101 1 95 1 1 1 051 3778 1 95 1 102 1 96 1 1 1 061 3779 1 95 1 99 1 92 1 1 1 061 3779 1 95 1 99 1 92 1 1 1 061 3779 1 95 1 99 1 92 1 1 1 071 3784 1 99 1 99 1 92 1 1 1 081 3799 1 100 1 101 1 92 1 1 1 081 3799 1 100 1 101 1 92 1 1 1 101 3779MS 1 99 1 99 1 94 1 1 1 111 3779MSD 1 99 1 99 1 99 1 1 1 121 MBLANK1 1 96 1 100 1 94 1 1 1 131 MBLANK2 1 99 1 100 1 93 1 1 1 141 1 1 1 1 1 1 1 151 1 1 1 1 1 1 1 161 1 1 1 1 1 1 1 171 1 1 1 1 1 1 1 181 1 1 1 1 1 1 1 191 1 1 1 1 1 1 1 201 1 1 1 1 1 1 1								
291 1 1 1 1 1 301 1 1 1 1 1								
QC LIMITS DCE-d4 = 1,2-Dichloroethane-d4 TOL-d8 = Toluene-d8 DCB-d4 = Dichlorobenzene-d4								
# Column to be used to flag recovery values								
# Column to be used to flag recovery values # Values outside of contract required QC limits								

ï

3A

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

La Name:WESTON R	AC .	Contract:68-03-3482			
Leb Code: NA	Case No.: 1202	SAS No.: NA	SDG No.: NA		
Matrix Spike - EPA	Sample No.: 3779				

	1	(ug/L)	l (ug/L)		REC	I QC I ILIMITSI \$1 REC. I
1,1-Dichloroethene Trichloroethene Benzene Toluene		50.00 50.00 50.00 50.00	1 0.00 1 0.00 1 0.00	i 52.00 i 54.00 i 56.00	103 108 111	161-1451
I Chlorobenzene		50.00		1 51.00 1	102	75-1301 !!

MSD I MSD I SPIKE 1 1 Ł OC LIMITS 1 ICONCENTRATIONI % **X**. I ADDED (ug/L) I REC \$1 RPD \$1 RPD | REC. (ug/L) 1 COMPOUND 1 52.001 103 ۵ L 14 161-1451 1 50.001 1 1,1-Dichloroethene_ 2 14 171-1201 56.001 111 ł ۱ 50.001 | Trichloroethene_ 11 58.001 115 3 176-1271 ł 50.001 1 I Benzene_ 57.001 114 3 13 176-1251 Ł 50.001 L I Toluene 3 13 175-1301 53.001 106 Ł Ł 50.001 I Chlorobenzene

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of qc limits

RPD: 0 out of 5 outside limits Spike Recovery: 0 out of 10 outside limits

MMENTS:

١.

CHAIN OF CUSTODY REC .D/LAB WORK REQUEST Project Name: RA. 5

-X I:

Phone: 632 9790 Due Date: 124

-

No: 000938

SHEET NO. OF

45

Project Number: 1202_ RFW Contect: TYSON SAMPLE IDENTFICATION

on, inc.

ANALYSES REQUESTED

	Bampling Location	i i i i i i i i i i i i i i i i i i i	Date Collected	Container/Preservative	114	- 11E	T		
3783A	Shkell	40	volue/m	40 m / Suc		TIME	+		
0		a sha		40 m / sec	~	1935			1
6			!			I			
									1
<u>P</u>								1	t
	FIELD BLANK			ucalla		1342	1		
<u> </u>						1	1	+	<u> </u>
C						<u> </u>	ł	<u> </u>	
P	\mathbf{V}			······			<u> </u>		
							l	<u> </u>	
								L	
					······································				
			<u>l</u>						
· · · · · · · · · · · · · · · · · · ·									
					<u> </u>				
				·					
	•								

Roy F.

REAC, Edison, N.J.

EPA Contract 68-03-3482

- DE- Drate 8
- **DL- Drum Limite** 0-01
- X- Other Г

Home/Reason	Relinquished By	Received By	Date	Time	Nome/Respon	Relinguished By	Received By	Date	T
VOA	Tantan	5me51.00	1000	agu				+	
		8	75		· · · · ·			+	
				 	· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·			<u> </u>				•	
·						· ·			
				L					<u>├</u> ────┤
1	1							- I	

D/LAB WORK REQUEST

#1.....

^{No:} 000937

SHEET NO. ____ OF ____

Roy F. Jn, Inc. REAC, Edison, N.J. EPA Contract 68-03-3482

Project	Name:	Pas	
-		120	-

RFW Contact: TFS 014 Phone: 622- 9780 Due Date:

SAMPLE IDENTFICATION

ANALYSES REQUESTED

				· · · · · · · · · · · · · · · · · · ·		ANALISES	LECICES I ED	
Sample He.	Bempling Location			Container/Preservativ	· 199	TIME		
3780 1	SWWI	Ke	19/1988	4000 hre		12:9		
<u> </u>		1						F. COPERSION
<u> </u>	R.							The second second
D	<u></u>	Y						
3781A	Salu y					1244		
B								
. C			1				· · · · · · · · · · · · · · · · · · ·	
<i>D</i>	V		1 ·					
5782 A	SWW3				+	1307		
3)			· · · · · · · · · · · · · · · · · · ·			······ -····	
· C								
D		1						
,								<u> </u>
		+						
	· · · · · · · · · · · · · · · · · · ·		·····					
	· · · ·	+						
<u> </u>								
				·				
	Openial in Drum Selide	structions:	,					
	Drum Liquida Other							
Nome/Reason	Retrogenter by	Ree	aread By	Date Time In	me/Resson	Relinquished By	Received By	Date
VYK	Here Renora	SALS	du Br	pager 9km				+
		7						┦───┼───
					1			┫
						f		

CHAIN OF	CUSTODY	REC	1D/LAB	WORK	REQUEST
And the second s					

No: 000935

SHEET NO	└ OF∕	
----------	-------	--

Roy F. 'ssion, Inc. REAC, Edison, N.J. EPA Contract 68-03-3482

Project Neme:	PAS	
Designed Mumber		22-

RFW Contact: 7450A Phone: Due Date:

· · · · · ·

SAMPLE IDENTFICATION

ANALYSES REQUESTED

Sample He.	Sampling La		Date Callested	Centainer/	Velorvalive	VOA	TIME			
03799A.			10/14/	yene	116	4	11:30			and and
· / · · · · · · · · · · · · · · · · · ·	1.			<u> </u>	4		1.			
6	••	and the	• •	<u>.</u>		• •				
P	1.	1,	1.	<u> </u>	• •	11	۰.			
003777A	MWIIA	11	1		<u> </u>		11:48			
ß	• •		1	<u>}·</u>	<u> </u>	, .	,,			
L		• •))	<u> /· /</u>		,.				
·			•,	11.		, ,	1		· · · · · · · · · · · · · · · · · · ·	
00 3778A	MULLAM	MINISP. 1	//	11.	<u>,</u>		1157	MATRYX	SPIK.	<u>k</u>
6	••	•,	11	1,	ľ.		1,		-	
С	/1	11	11	1.			11			
P	· · ·		1-	V	<u> </u>	<u>Y</u>	1/			
3779 1	MWIIA 0	MARASE]				105	1205	RIPL 1	LATE	
ß	11	,.								
C	11	••								
Þ	'1	/.		<u></u>				\checkmark		·
										·
				•						
the second s										

iletrix:

Special Instru

8- Boll DB- Drum Bolids

W- Water DL- Drum Liquids

O- Oli X- Other

Nome/Reason	Rollinguished By	Received By	Data	Time	Nome/Reason	Rollinguished By	Received By	Dete	
VOA	Non Turken	Shally	10bda	PAM					
			//						
					· · · · · · · · · · · · · · · · · · ·			•	

REFERENCES

Marrin, Donn L. "Soil-Gas Sampling and Misinterpretation," Groundwater Monitoring Review. Spring 1988.

U.S. EPA/OWPE, 1987. <u>Draft Letter Report Sampling and Analysis. Pollution</u> <u>Abatement Services Site</u>. Report prepared for the U.S. EPA Office of Waste Programs Enforcement. Work Assignment No. 212.

U.S. EPA/REAC, 1988. <u>Subsurface Investigations of the Pollution Abatement</u> <u>Services Site. Oswego, NY</u>. Report submitted to the U.S. EPA/ERT under REAC Work Assignment No. 3347-01-01-1060.

U.S. EPA/Region II, 1988. <u>Project Status Presentation to Region II for</u> <u>the Pollution Abatement Services Site. Oswego. NY</u>. Internal report to U.S. EPA Region II.

U.S. EPA/TAT, 1988. <u>Pollution Abatement Services. Oswego. NY:</u> <u>Preliminary Soil Gas Report</u>. Memorandum submitted to the U.S. EPA/ERT under TAT DCN: TAT-11-6-123.

27

eh:rd/TYSON/PR-1202

•

71

-

• .

•