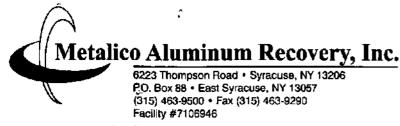
GROUNDWATER PERFORMANCE MONITORING REPORT

December 2009 Sampling


ROTH BROS. SMELTING CORP. CORRECTIVE ACTION MANAGEMENT UNIT (CAMU) .

Prepared For: Metalico Aluminum Recovery, Inc. 6223 Thompson Road East Syracuse, New York

> Prepared By: Barton & Loguidice, P.C. 290 Elwood Davis Drive Box 3107 Syracuse, New York 13220

Engineers - Environmental Scientists - Planners - Landscape Architects

٥

March 10, 2010

Stephen C. Condon, Senior Engineering Geologist New York State Department of Environmental Conservation Bureau of Hazardous Waste & Radiation Management, 9th Floor Division of Solid & Hazardous Materials 625 Broadway Albany, New York 12233-7258

Re: Former Roth Bros. Smelting Corp. Site 6223 Thompson Road, DeWitt, New York Consent Order C7-0001-94-10

Dear Mr. Condon:

Enclosed please find a copy of the CAMU Groundwater Performance Monitoring Report for the December 2009 semi-annual monitoring event. Barton & Loguidice (B&L) prepared the report. The B&L technical contact is John Benson and you may contact Mr. Benson directly if you have any questions regarding the report or any of the attached data.

Sincerely yours,

Dennis Flanagan Director of Operations Metalico Aluminum Recovery, Inc.

MAR 25 2010

Bureau of Hazardous Waste & Radiation Management Division of Solid & Hazardous Materials

Enclosure

Mary Jane Peachey, NYSDEC Region 7 (w/enclosure)
 Margaret Sheen, Esq. (w/enclosure)
 Wabash Alloys, L.L.C. (c/o Doreen Simmons, Esq.) (w/enclosure)
 Thompson Corners, LLC (c/o Philip Gitlen, Esq.) (w/enclosure)
 John Benson, Barton & Loguidice (w/o enclosure)

Table of Contents

	•	Page
1.0	INTRODUCTION	- 1
2.0	CAMU GROUNDWATER PERFORMANCE MONITORING	2
2.1	Monitoring Well Inspection	2
2.2	Groundwater Monitoring Work	3
	(a) Groundwater Contour Map	3
	(b) Groundwater Sampling & Analysis	3
	(c) Groundwater Monitoring Results	3
List of Figu	ures	
Figure 1	Groundwater Contour Map	
List of Tab	bles	
Table 1	Groundwater Monitoring Schedule	
Table 2	Groundwater Level Data	
Table 3	Groundwater Performance Monitoring Data	
Table 4	Groundwater Performance Monitoring Data (Arsenic & Barium)	
List of App	pendices	

Appendix A		Field Sampling Data Sheets/Chain of Custody Record
Appendix B		Analytical Laboratory Report (Upstate Laboratories, Inc.)
Appendix C	,	Data Validation Report

ł

ĺ

1

1

1.0 INTRODUCTION

This report presents the results of the December 2009 groundwater monitoring performed at the Corrective Action Management Unit (CAMU) located at the former Wabash Aluminum Alloys, LLC (Wabash) facility located at 6223 Thompson Road, East Syracuse, Onondaga County, New York (Site). The Plant #2 portion of the site is now owned by Metalico Syracuse Realty, Inc. (MSR), and Thompson Corners, LLC owns the Plant #1 portion of the Site,

Metalico Aluminum Recovery, Inc. (MARI) currently operates a scrap metal recycling facility and a secondary aluminum smelting operation at the MSR portion of the site. By agreement with Wabash, MARI assumed "Wabash's obligations to conduct ongoing environmental monitoring and testing at the Site" under a Consent Order with the New York State Department of Environmental Conservation (NYSDEC) that was entered into by Roth Bros. Smelting Corp. (Index # C7-0001-94-10), the owner of the Site at the time the CAMU was constructed. To satisfy this contractual obligation, MARI retained Barton & Loguidice, a local engineering firm, to prepare this report.

This report has been prepared in accordance with the site Operations and Maintenance Plan (Malcolm Pirnie, 1997) and the subsequent Sampling & Analysis Plan revisions [Appendix D to the Operations and Maintenance Plan] as a result of letter correspondence with NYSDEC in 2002.

Samples were collected from eight monitoring wells on December 16, 2009 by personnel from Barton & Loguidice, P.C. All samples collected were submitted to and analyzed by Upstate Laboratories Inc. (ULI), in East Syracuse, New York.

Figure 1 shows the location of the Plant #1 and Plant #2 properties. The asphalt-paved CAMU area is located north of Plant #2. The locations of the wells associated with the CAMU groundwater performance monitoring, are included on Figure 1.

Groundwater sampling was performed on a quarterly basis prior to June 2005 after which semiannual monitoring commenced. This report addresses the data generated from the December 2009 groundwater monitoring.

2.0 CAMU GROUNDWATER PERFORMANCE MONITORING

2.1 Monitoring Well Inspection

The following monitoring wells are sampled as part of the CAMU Groundwater Monitoring Performance Program (see Figure 1):

B291	B281	B290	B107	B108
B401	B402R	B403	B404	MW-8R

Over the course of time, several CAMU monitoring wells have been inadvertently damaged, destroyed, or needed maintenance, including:

- Monitoring well B280, formerly located north of the CAMU, was destroyed in September 2000. Based on its adjacent location, monitoring well B291 replaced monitoring well B280.
- Between the June 2004 and September 2004 sampling events, monitoring well
 B402 was destroyed. Monitoring well B402R was installed in November 2005
 and began to be sampled for the December 2005 sampling event. The destroyed
 well (B402) was properly decommissioned using a rotary drilling rig on April 24, 2007.
- Monitoring well MW-8, installed as part of the 2001 Groundwater Investigation, was destroyed during construction of scrap yard improvements. Subsequently, monitoring well MW-8R was installed adjacent to the MW-8 location for inclusion in the CAMU Groundwater Performance Monitoring Program. The wellhead for monitoring well MW-8R was replaced on April 24, 2007 due to deterioration.
- On April 24, 2007, the area surrounding well B291 was cleared of vegetation, and the existing damaged flush-mounted well cover was removed and replaced with a stick-up-type protective casing installed in a concrete base. The wellhead was vertically surveyed relative to well B402R, with the new reference elevation being calculated at 410.86. A new, lockable well plug was installed in the well opening.
- In an effort to avoid further well damage or loss prior to the December 2008 sampling event, all of the facility monitoring wells were painted, labeled and affixed with pole extensions and flagging. The wells were also fitted with new keyed alike locks. It was also noted that all the wells had old deteriorating polyethylene tubing dedicated to each well which is not a standard field sampling practice. All of the old tubing was removed from the wells and disposed of. New tubing for each well is now utilized during each round of sampling and then removed and disposed of properly when sampling is completed.

All of the required CAMU wells were sampled in December 2009. Monitoring locations B107 and B108 were sampled during the June 2009 monitoring event.

2.2 Groundwater Monitoring Work

This section sets forth the field and laboratory procedures that were followed during this groundwater sampling event. Table 1 provides a summary of the sampling frequency and the analytical parameters for each monitoring well for the CAMU groundwater monitoring program that began in 1998.

(a) Groundwater Contour Map

Prior to the sampling of the groundwater monitoring wells, the static water level of each monitoring well was measured. This work was performed using an electronic water level sensor capable of measuring to an accuracy of +/- 0.01 foot. The water level probe was decontaminated between wells by washing in an Alconox/water solution and rinsing with distilled water.

Figure 1 presents a groundwater contour map that reflects the water level data, which is set forth in Table 2. Table 2 also includes water level data for the six (6) prior groundwater sampling events.

The map indicates that the general groundwater flow direction at the Site is to the northeast toward the South Branch of Ley Creek. This finding is consistent with historical contour data.

(b) Groundwater Sampling & Analysis

Each of the monitoring wells was purged prior to sampling. Water surface elevations and field parameters (pH and Specific Conductance) were measured after purging and immediately prior to sample collection. The specific conductivity meter was not functioning when MW-8R was sampled. Specific conductivity for this location was performed at the laboratory by ULI.

Purging of the monitoring wells was conducted using a low-flow peristaltic pump with new nondedicated tubing at each location. Purging was performed until a minimum of three (3) well volumes were removed or until the well went dry. Groundwater samples were collected after purging and recharge, also utilizing the low-flow peristaltic pump. Collected samples were then placed into clean coolers and kept on ice at 4°C until delivered to the lab.

Appendix A includes the field sampling data sheets and chain of custody record associated with this round of groundwater sampling.

(c) Groundwater Monitoring Results

Table 3 provides an historical summary of the analytical data for this project, including the results of the December 2009 groundwater monitoring. Appendix B contains the analytical laboratory reports prepared by Upstate Laboratories, Inc. (NYSDOH Laboratory I.D. # 10170). Data are highlighted, as appropriate, to indicate detected concentrations that exceed the following NYSDEC Class GA Groundwater Standards:

3

•	
Parameter Parameter	Class GA Standard
pН	6.5 – 8.5 Std. Units
Lead	0.025 mg/l
Arsenic	0.025 mg/l
Barium	1.00 mg/l
Aroclor 1016	0.09 ug/l*
Aroclor 1221	0.09 ug/1*
Aroclor 1232	0.09 ug/l*
Aroclor 1242	0.09 ug/1*
Aroclor 1248	0.09 ug/1*
Aroclor 1254	0.09 ug/l*
Aroclor 1260	0.09 ug/l*
Aroclor 1262	0.09 ug/l*
Aroclor 1268	0.09 ug/l*
	-

Notes: * = Limit applies to sum of all Aroclors

The results of the December 2009 sampling event indicate that the groundwater quality conditions at the CAMU have remained consistent since the last monitoring event and appear to directly correspond with historical groundwater quality data. The following sections summarize the analytical data collected during this sampling event:

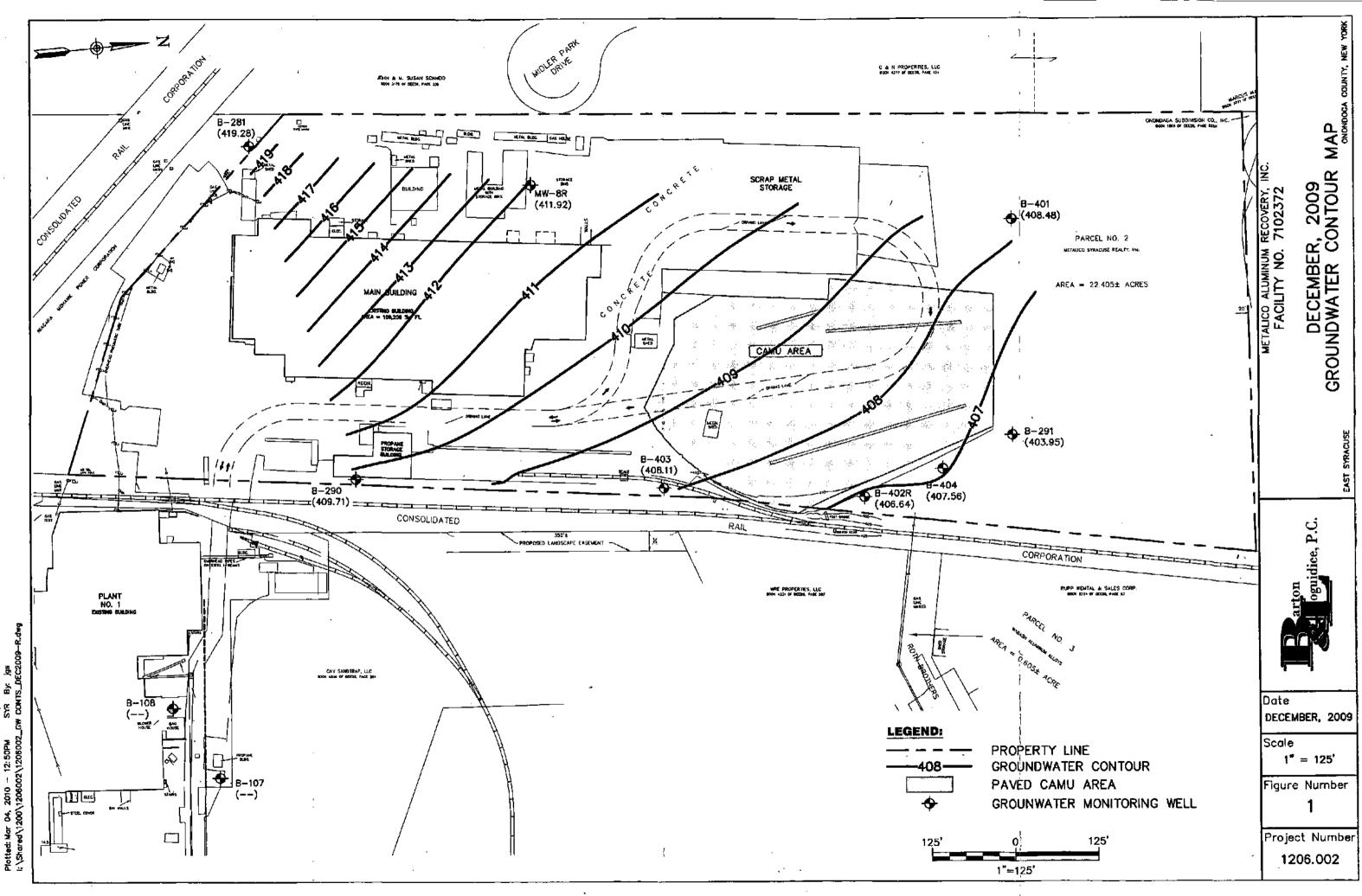
pH – There were no pH exceedances noted for the December 2009 monitoring event.

PCBs – PCB Aroclor 1254 was detected at monitoring location MW-8R. This exceedance is consistent with historical data range values. There were no other PCB detections reported.

During the June 2009 monitoring event, duplicate analysis was performed at MW-8R and the location exhibited a relative percent difference (RPD) of 146% for Aroclor 1254. This sample comparison was substantially outside RPD standard limits. The difference was suspected to be a result of surface contamination that entered the well or laboratory error.

In response to the June RPD standard limit exceedance during the December 2009 sampling event, a clear plastic bailer was utilized to visually inspect the groundwater for any surface contaminants that may have entered the well; none were identified. The well was then purged dry and sampled according to standard sampling procedures. Duplicate analysis was again performed at MW-8R during the December 2009 monitoring event and the location did not exhibit any RPD values above the established 20% RPD criteria. It should be noted that this well is located upgradient of the CAMU.

Total & Dissolved Lead – Monitoring well B-402R exhibited a total lead concentration of 0.030 mg/l for the December 2009 monitoring event. This value exceeded the GA standard of 0.025 mg/l. Dissolved lead for this well was not detected (<0.003 mg/l). The total lead exceedance is consistent with historical values at this location. No other lead concentrations were recorded above the GA standard.


4

Total & Dissolved Barium - Sampling was not required.

Total & Dissolved Arsenic – Sampling was not required.

.

FIGURES

풯 S^R

ł.

TABLES

٠

Sampling Frequency	Parameter	Analytical Method	MDL	Well Location
Annually	Arsenic	EPA Method 6010	4 ug/L	B281
(June)	(Total and Dissolved)			B291
	Barium	EPA Method 6010	2 ug/L	B107
	(Total and Dissofved)			B108
		· · · · · ·		B281
Semi-Annual	Lead	EPA Method 6010	3 ug/L	B281
(June and December)	(Total and Dissolved)			B290
				B291
				B401
				B402R
				B403
				B404
		·		MW-8R
	PCB's	EPA Method 8082	0.050 ug/L	B281
				B290
				B291
				_ B4 01
		,		B402R
				B 403
				B404
L				MW-8R

Table 1 Ground Water Monitoring Schedule

.

Table 2
ROTH BROS. SMELTING CORP.
Corrective Action Management Unit (CAMU)
Groundwater Performance Monitoring
Groundwater Elevation Summary Table
Page 1 of 2

Monitoring Well	B107 410.61		9.85 411.80		B281 13.03 423.39		B290		8291	
WELL DEPTH (FT): REFERNCE ELEVATION:							10.26 414.61		12.54 410.86	
DATE	ELEVATION	SWL	ELEVATION	SWL	ELEVATION	SWL	ELEVATION	SWL	ELEVATION	SWL
16-Dec-09	NS	NS	NS	NS	419.28	4.11	409.71	4.90	403.95	6.91
29-Jun-09	409.00	1.61	409.95	1.85	413.75	9.64	409.50	5.11	403.53	7.33
18-Dec-08	NS	NS	NS	NS	419.31	4.08	409.63	4.98	404.43	6.43
05-Jun-08	408.93	1.68	409.01	2.79	417.18	6.21	404.35	10.26	403.72	7.14
31-Dec-07	NS	NS	408.95	2.85	416.66	6.73	409.77	4.84	404.73	6.13
29-Jun-07	408.95	1.66	408.95	2.85	416.44	6.95	410.38	4.23	401.96	8.90
19-Dec-06	NS	NS	NS .	NS	420.25	3.14	409.57	5.04	404.43	6.43
			<u> </u>		· · ·					
					•			-		

.

÷

Table 2
ROTH BROS. SMELTING CORP.
Corrective Action Management Unit (CAMU)
Groundwater Performance Monitoring
Groundwater Elevation Summary Table
Page 2 of 2
-

Monitoring Well	B401 13.03 413.54		12.24 409.44		8403 11.26 411.05		B404	·	8R	
WELL DEPTH (FT): REFERNCE ELEVATION:							16.14 410.77		10.00 415.30	
DATE	ELEVATION	SWL	ELEVATION	SWL	ELEVATION	SWL	ELEVATION	SWL	ELEVATION	SWL.
16-Dec-09	408.48	5.06	406.64	2.80	408.11	2.94	407.56	3.21	411.92	3.38
29-Jun-09	406.84	6.70	406.46	2.98	408.05	3.00	406.66	4.11	412.72	2.58
18-Dec-08	408.39	5.15	406.81	2.63	407.91	3.14	406.92	3.85	412.59	2.71
05-Jun-08	404.62	8.92	405.56	3.88	407.42	3.63	405.42	5.35	411.88	3.42
31-Dec-07	408.33	5.21	406.97	2.47	408.08	2.97	407.27	3.50	412.45	2.85
29-Jun-07	404.83	8.71	405.32	4,12	407.20	3.85	404.27	6.50	411.93	3.37
19-Dec-06	407.30	6.24	405.47	3.97	408.01	3.04	406.76	4.01	412.00	3.30

ROTH BROS. SMELTING CORP. Groundwater Performance Monitoring Historical Laboratory Analytical Summary Table (Arsenic & Barium)

Tai 🕅

		Arsenic (Total)	Arsenic (Dissolved)	Barium (Total)	Barium (Dissolved)
Units		mg/l	mg/l	mg/l	mg/l
Class GA Standard		0.025	0.025	1.0	1.0
B107	Jun-00		-	<0.30	<0.30
	Sep-02		÷	0.31	0.34
· · · · · · · · · · · · · · · · · · ·	Dec-03	-	-	0.40	0.40
	Mar-04	-	-	0.50	0.30
· · · · · · · · · · · · · · · · · · ·	Jun-05	-		0.34	0.34
	Jun-07	-	-	0.71	0.65
	Dec-07	-	-	NS	NS
	Jun-08	-	-	0.80	0.81
	Jun-09		-	1.07	0.97
B108	Sep-02	-	-	0.73	0.78
_ ·	Dec-03		-	0.40	1.0
	Mar-04	-	-	0.50	0.40
	Jun-05	-	-	0.73	0.70
	Jun-07	-	-	1.30	0.49
	Dec-07	-	-	1.34	0.30
	Jun-08		-	2.80	0.56
	Jun-09	-	-	0.29	0.30
B291	Jun-02	0.012	<0.010		-
	Sep-02	<0.010	< 0.010		-
	Dec-03	0.012	< 0.010	-	-
	Mar-04	0.020	0.016	-	-
	Jun-05	<0.010	< 0.010		-
	Jun-07	<0.010	< 0.010	-	-
	Dec-07	<0.010	<0.010		-
	Jun-08	< 0.010	< 0.010	-	•
	Jun-09	< 0.010	< 0.010	-	-
B281	Jun-02	0.037	0.017	-	-
	Sep-02	0.023	<0.010	<0.03	<0.03
<u></u>	Dec-03	0.017	< 0.001	< 0.30	<0.30
······································	Mar-04	0.031	0.017	<0.30	<0.30
	Jun-05	0.016	0.011	<0.30	<0.30
- · · ·	Jun-07	0.028	<0.010	< 0.30	<0.30
<u> </u>	Dec-07	0.064	<0.010	<0.50	<0.50
	Jun-08	0.050	<0.010	<0.50	<0.50
	Jun-09	0.035	<0.010	<0.50	<0.50

Table 3	
ROTH BROS. SMELTING CORP.	
Corrective Action Management Unit (CAMU)	
Groundwater Performance Monitoring	
Historical Laboratory Analytical Summary Table (Monitoring Well 8R)	

.

			Dissolved		Specific					Aroclors				
		Total Lead	Lead	pН	Conductivity	1016	1221	1232	1242	1248	1254	1260	1262	1268
U	nits	mg/L	mg/L	s.u.	us/cm	µg/L	μg/Ł	µg/L	µg/L	μg/L	µg/L	μg/L	µg/L	µg/L
Class GA	Standard	0.025	0.025	6.5-8.5	NA	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
	Sep-02	0.004	0.001	9.21	933	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Dec-02	0.002	_	9.62	567	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	2.60	< 0.05	-	-
	Mar-03	0.001	0.002	× 8.82	551	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.30	< 0.05	-	-
	Jun-03	0.002	0.002	8.59	726	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.25	< 0.05	-	-
	Sep-03	0.002	< <u>0.001</u>	8.05	441	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<u>5.90</u>	< 0.05		-
	Dec-03	0.004	0.002	8.37	576	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	3.60	< 0.05	-	-
	<u>Mar-04</u>		< 0.001	7.91	531	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	2.60	< 0.05	-	-
	Jun-04	0.002	< 0.001	8.06	332	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.32	< 0.05	-	-
	Sep-04	< 0.001	0.002	7.14	81 1	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	-	-
	Dec-04		< 0.001	7.36	996	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.98	< 0.05		
8R	Mar-05	< 0.001	< 0.001	7.76	1158	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	1.20	< 0.05	-	-
	Jun-05	0.002	0.001	8.00	402	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	3.30	< 0.05	-	-
		0.001	0.001	7.67	893	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.63	< 0.05	-	•
	Jun-06		< 0.003	8.39	239	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.92	< 0.05	-	-
	Dec-06		< 0.003	7.46	549	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	9.30	< 0.05	-	<u>-</u>
	Jun-07	0.006	< 0.003	8.48	449	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	3:90	< 0.05	-	-
	Dec-07		< 0.003	8.47	1113	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	0.70	< 1.00	-	-
	Jun-08		< 0.003	7.81	1459	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	<u> </u>	•
	Dec-08		< 0.003	7.68	2668	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	-	<u> </u>
	Jun-09	< 0.003	< 0.003	7.30	780	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	16.00	< 1.00	< 1.00	< 1.00
	Dec-09	< 0.003	< 0.003	7.10	1010	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10	6.90	< 1.10	< 1.10	< 1.10

.

Table 3ROTH BROS. SMELTING CORP.Corrective Action Management Unit (CAMU)Groundwater Performance MonitoringHistorical Laboratory Analytical Summary Table - (Monitoring Well B107)

			Dissolved		Specific				•	Aroclors				
		Total Lead	Lead	рН	Conductivity	1016	1221	1232	1242	1248	1254	1260	1262	1268
U	Inits	mg/l	mg/l	s.u.	us/cm	μg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	μ g /L
Class G/	A Standard	0.025	0.025	6.5-8.5	NA	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
	Jun-00	-	-	7.46	1046	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.10	_	
	Jul-00	-	-	7.57	916	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Aug-00	-	•	7.81	920	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Sep-00	-		7.34	980	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Oct-00		-	7.68	834	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Nov-00	-	-	7.87	640	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	_	
	Feb-01	-	-	7.71	608	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	_	-
	Apr-01	-		7.82	960	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	May-01	-		7.63	1107	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
B107	Sep-02	-	-	7.44	947		<u> </u>	· ·	-	-	- <u>-</u>	-	-	-
	Dec-03	-	-	8.62	644	•		•	-	<u> </u>	•	-	-	-
	Mar-04	-	-	7.81	543	-	-	-	-	-	<u> </u>	-	-	
	Jun-05	-	-	7.65	623	-	-	-		-	- <u> </u>	-	-	
	Jun-07	-	-	7.68	482		-	-		-	-	-		-
	Dec-07	Not Samp	ied - Could			-	-	-	-	· ·	-		-	
	Jun-08	-	-	8.35	674			-	-	· .	<u> </u>	-	-	-
	Dec-08	Sampling	Not Require		-	-		-	-	-	-	-	-	
	Jun-09		-	7.2	9800	-	+	-	-	<u> </u>			-	-
	Dec-09	Sampling	<u>Not Require</u>	ed	-		<u> </u>	-		<u> </u>			<u> </u>	-

Table 3
ROTH BROS. SMELTING CORP.
Corrective Action Management Unit (CAMU)
Groundwater Performance Monitoring
Historical Laboratory Analytical Summary Table (Monitoring Well B108)

-

			Dissolved		Specific		· · · · · ·			Araclors				
		Total Lead	Lead	рН	Conductivity	1016	1221	1232	1242	1248	1254	1260	1262	1268
U	nits	mg/l	mg/l	s.u.	us/cm	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	j μg/l
Class G	A Standard	0.025	0.025	6.5-8.5	NA	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
						_		_						
	_Jul-00	-	-	7.21	2620	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Aug-00	-	•	7.33	2750	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		-
	Sep-00	0.002	0.001	7.27	2510	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Oct-00	-	-	7.26	2520	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	•
	Nov-00	-	-	_7.00	2210	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	•
	Dec-00	0.004	< 0.001	7.22	2180	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Jan-01	-	-	_7.19	2176	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Feb-01		-	7.74	2110	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Mar-01	< 0.001	< 0.001	7.01		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Apr-01	-	•	6.98	2350	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	•
B108	May-01	-		7.01		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Sep-02	-	-	7.08	254	-	-	-	-	-	-	•	-	-
	Dec-03	-	-	8.52	1663	•	-	-	-	-	-	-	-	-
	Mar-04	-	•	7.55	1546	•	-	-	-	-	-	-	-	-
	Jun-05	-	-	7.44	1919	-	-		-	-			-	-
	Jun-07		-	7.22	1012	-	-	-	-	-	-	-	-	-
	Dec-07	-	-	8.21	394	-	-	-	-	-	-	-	-	-
	Jun-08	· · · ·	-	7.82	224		-	· ·	-	-	-	-	-	-
	Dec-08	Sampling I	Not Require		-	-	-	-	-	-	-		-	-
	Jun <u>-09</u>	-	-	7.10	1200	-	-	·	-	-	<u> </u>	· · · · · · · · · · · · · · · · · · ·		-
	Dec-09	Sampling I	Not Require	d	-	-	-	-	-	-		-	-	-

_

- - 1

Metalico Aluminum Recovery, Inc.; Syracuse Facility Table 3 ROTH BROS. SMELTING CORP. Groundwater Performance Monitoring Historical Laboratory Analytical Summary Table (Monitoring Well B281)

		Total and Dissolved Dissol												
		Total Lead	Lead	pН	Conductivity	1016	1221	1232	1242	1248	1254	1260	1262	1268
U	nits	mg/L	mg/L	s.u.	us/cm	µg/L	µg/L	µg/L	µg/L	μ g/L	hð\r	μg/L	μg/L	μ g /L
Class GA	Standard	0.025	0.025	6.5-8.5	NA	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
	Jun-98		< 0.002	6.53	2690	-		-		-	-	-	-	-
	1999	<_0.010	< 0.010	7.47	3120	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<_0.01	-	-
}	Jun-00	<_0.001	< 0.001	6.72	2630	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<u> <_0.05</u>	-	-
	Sep-00		< 0.001	7.02	2560	< 0.05	<_0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Dec-00		< 0.001	7.28	1956	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
ļ	Mar-01		< 0.001	7.24	2020	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	
			< 0.001	-	•	-	-	-		<u> </u>	-	-	-	-
			< 0.001	6.86	3000	·	-	<u> · </u>	<u> </u>	<u> </u>				
		< 0.001	-	7.03	2060	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	•
ł			< 0.001	7.27	1063	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<u> </u>	
	Jun-03		< 0.001	7.32	3010	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<u> </u>	<u> </u>
		< 0.010	< 0.001	7.29	3170	< 0.05	<_0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		
	Dec-03	0.002	0.001	7.27	2170	< 0.05	<. 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	
B281	Mar-04		< 0.001	7.18	2230	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		
	Jun-04	< 0.001	0.001	7.47	2940	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		
	Sep-04		< 0.001	7.03	2990	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<u> </u>	
	Dec-04		< 0.001	7.39	1969	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<u> </u>	- <u> </u>
	Mar-05		< 0.001	7.48	3000	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<u> </u>	<u>-</u>
	Jun-05		< 0.001	7.33	2170	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<u></u>	
	Dec-05		< 0.001	7.19	2430	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<u> </u>	<u>↓ -</u>
	Jun-06		< 0.003	7.46	2780	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<u> </u>	<u> </u>
	Dec-06	0.009	0.024	7.17	2430	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		<u> </u>
	Jun-07		< 0.003	7.32	778	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<_0.05	<u> </u>	·
	Dec-07		< 0.003	.8.71	321	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00		-{ - -
	Jun-08		< 0.003	8.04	249	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		
	Dec-08		< 0.003	7.10	2215	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	-	-
	Jun-09		< 0.003	7.10		< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
	Dec-09	< 0.003	< 0.003	7.00	3900	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10	< <u>1.</u> 10	< 1.10	< 1.10	< 1.10

Table 3
ROTH BROS. SMELTING CORP.
Corrective Action Management Unit (CAMU)
Groundwater Performance Monitoring
Historical Laboratory Analytical Summary Table (Monitoring Well B290)

		<u>}</u>	Dissolved		Specific					Aroclors			•	
		Total Lead	Lead	рН	Conductivity	1016	1221	1232	1242	1248	1254	1260	1262	1268
	nits	mg/L	mg/L	ş.u.	us/cm	µg/L	μg/L	µg/L	μg/L	µg/L	μg/L	µg/L	µg/L	µg/L
Class G/	A Standard	0.025	0.025	6.5-8.5	NA	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
													1	
	<u>Jun-98</u>	41.900	< 0.020	6,94	2180	-	-		-	-	-	-	-	
	<u>1999</u>	< 0.010	0.720	7.24	2370	-	-	-	-	-	-	-	-	-
	Jun-00	0.045	< 0.001	6.87	2410	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Sep-00	0.050	< 0.001	7.42	2120	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Dec-00	0.092	< 0.001	7.01	1784	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Mar-01	0.007	< 0.001	7.01	1693	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Jun-02	0.048	< 0.001	-	•	•	- <u>-</u>	-	-	-	-	-	-	-
	Sep-02	0.008	< 0.001	6.93	2130	•	-	-	-	-	-	-	-	-
	Dec-02	0.042	-	7.13	1707	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Mar-03	0.002	< 0.001	7.38	1451	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Jun-03	0.059	< 0.001	7.37	2420	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Sep-03	0.021	< 0.001	7.17	2240	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Dec-03	0.008	0.002	8.08	1322	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<u>< 0.05</u>	< 0.05] -	-
B290	Mar-04	< 0.001	< 0.001	7.49	1590	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	<u> </u>
D290	Jun-04	0.001	< 0.001	7.45	1711	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Sep-04	0.008	< 0.001	7.24	2410	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Dec-04	< 0.001	0.003	7.41	1822	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Mar-05	0.013	< 0.001	7.52	2450	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Jun-05	0.012	< 0.001	7.68	1663	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	
	Dec-05	0.002	< 0.001	7.17	2600	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	
	Jun-06	0.023	< 0.003	7.67	1676	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Dec-06	0.006	< 0.003	7.26	2430	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Jun-07	0.016	0.004	8.10	701_	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	_
	Dec-07	0.019	< 0.003	8.47	1431	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	-	-
	Jun-08	0.020	< 0.003	8.27	234	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Dec-08	0.015	< 0.003	7.74	1786	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	-	-
	Jun-09	< 0.003	< 0.003	7.20	5400	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
	Dec-09	< 0.003	< 0.003	7.50	3600	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10

hla 3

.

Table 3ROTH BROS. SMELTING CORP.Corrective Action Management Unit (CAMU)Groundwater Performance MonitoringHistorical Laboratory Analytical Summary Table (Monitoring Well B291)

			Dissolved		Specific					Aroclo	rs			
		Total Lead	Lead	pН	Conductivity	1016	1221	1232	1242	1248	1254	1260	1262	1268
U	nits	mg/L	mg/L	s.u.	us/cm	µg/L	µg/L	µg/L	μ g /L	µg/L	µg/L	μg/L	μ g/ L	µg/L
Class G/	A Standard	0.025	0.025	6.5-8.5	NA	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
	Sep-00	0.007	0.001	7.31	877	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Dec-00	0.001	0.001	7.24	848	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Mar-01	0.003	< 0.001	7.01	752	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		-
	Jun-02		< 0.001	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Sep-02	0.002	< 0.001	7.4	1134	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	
	Mar-03	0.002	< 0.001	7.37	800	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Jun-03	0.003	0.001	7.38	1213	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Sep-03	< 0.001	< 0.001	7.21	898	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Dec-03	0.008	0.002	8.81	804	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	· ·	-
	Mar-04	0,002	< 0.001	7.31	860	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Jun-04	0.001	< 0.001	7.53	1167	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		-
8291	Sep-04		< 0.001	7.21	746	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
0231	Dec-04	0.001	0.001	7.10	958	<u><</u> 0.05	< 0.05	< 0.05	<_ 0.05	< 0.05	< 0.05	< 0.05	· .	
	Mar-05	< 0.001	< 0.001	7.18	996	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<u> </u>	-
	Jun-05	0.002	0.001	7.36	813	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Dec-05		< 0.001	7.23	971	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Jun-06		< 0.003	7.09	856	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	·	<u> </u>
	Dec-06		< 0.003	6.87	968	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<u> </u>	•
	Jun-07	0.010	0.005	7.58	<u>478</u>	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<u> </u>	<u> </u>
			< 0.003	8.62	650	<u><</u> 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	· · · · · · · · · · · · · · · · · · ·	· ·
			< <u>0.00</u> 3	8.21	876	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<u> </u>	-
	Dec-08		< 0.003	8.09	592	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	-	<u> </u>
			< 0.003	6.90	950	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
	Dec-09	< <u>0.003</u>	< 0.003	7.30	1130	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10

ų,

lable 3	
ROTH BROS. SMELTING CORP.	
Corrective Action Management Unit (CAMU)	
Groundwater Performance Monitoring	
Historical Laboratory Analytical Summary Table (Monitoring Well B40	1)

			Dissolved		Specific					Aroclors				
		Total Lead	Lead	pН	Conductivity	1016	1221	1232	1242	1248	1254	1260	1262	1268
U	nits		m g /L	S.U.	us/cm	µg/L	µg/L	μg/L	µg/L	µg/L	μg/L	μg/L	µg/L	µg/L
Class G	A Standard	0.025	0.025	6.5-8.5	NA	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
	Jun-98	0.012	< 0.002		-		-		· ·	-	<u> </u>	-	-	-
	1999	0.061	< 0.010	6.69	1510	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	
	Jun-00	0.044	0.003	6.78	1275	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<u> </u>	-
	Sep-00	0.350	0.002	7.29	1159	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Dec-00	0.059	0.007	7.44	1180	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Mar-01	0.033	< 0.001	7.26	810	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	· -	-
	Jun <u>-02</u>	0.210	< 0.001	-	-	-	-		-	-	-	-	-	-
	Sep-02	0.060	0.002	7.48	644	-	-	-	-	-		-		-
	Dec-02	0.013	-	7.27	92 5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Mar-03	0.024	< 0.001	7.32	781	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	
	Jun-03	<u>0.0</u> 10	0.003	7.66	1109	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	
	Sep-03	0.010	0.001	7.15	1126	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Dec-03	0.021	0.002	8.37	791	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	•
B401	Mar-04	0.004	< 0.001	7.48	785	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
10401	Jun-04	0.031	< 0.001	7.49	1053	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	+	-
	Sep-04	0.005	< 0.001	7.11	1030	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Dec-04		< 0.001	7.21	937	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	· ·	-
	Mar-05		< 0.001	7.36	1038	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	•	-
	Jun-05	0.003	0.001	7.83	814	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<u> </u>	-
	Dec-05		< 0.001	7.18	1066	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Jun-06		< 0.003	7.46	986	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	•	· ·
	Dec-06		< 0.003	6.39	502	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	· ·	-
	Jun-07	0.008	0.003	7.46	441	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	•	
	Dec-07	< 0.003	< 0.003	8.32	691	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	· ·	-
	Jun-08		< 0.003	8.08	930	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	•	-
	Dec-08		< 0.003	7.90	693	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	<u> </u>	
	Jun-09		< 0.003	6.90	1110	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
	Dec-09	< 0.003	< 0.003	7.30	1520	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10

2.4

Table 3ROTH BROS. SMELTING CORP.Corrective Action Management Unit (CAMU)Groundwater Performance MonitoringHistorical Laboratory Analytical Summary Table (Monitoring Well B402R)

			Dissolved		Specific		·····			Arociors				
		Total Lead	Lead	pН	Conductivity	1016	1221	1232	1242	1248	1254	1260	1262	1268
Ų	nits	mg/L	mg/L	s.u.	us/cm	µg/L	μg/L	μg/L	μg/L	μ g/ L	µg/Ł	μg/L	µg/L	µg/L_
Class GA	A Standard	0.025	0.025	6.5-8.5	NA	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
														-
	Dec-05	0.260	0.001	7.73	3060	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	1.20	< 0.05	-	-
	Jun-06	0.003	< 0.003	8.37	2960	< 0.05	< 0.05	< 0.05	<_0.05	< 0.05	< 0.05	< 0.05	-	-
	Dec-06	0.048	< 0.003	8.61	2680	0.10	< 0.05	< 0.05	<_0.05	< 0.05	< 0.05	< 0.05		[-]
	Jun-07	0.150	0.010	8.11	1658	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	
B402 R	Dec-07	0.042	< 0.003	8.13	1470	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00		- 1
	Jun-08	0.033	< 0.003	7.33	273	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	
	Dec-08	0.149	< 0.003	8.27	1893	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00		-
	Jun-09	< 0.003	< 0.003	7.90	3000	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
	Dec-09	0.030	< 0.003	8.20	2280	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10

Table 3
ROTH BROS. SMELTING CORP.
Corrective Action Management Unit (CAMU)
Groundwater Performance Monitoring
Historical Laboratory Analytical Summary Table (Monitoring Well B403)

		Tetal and Dissolved By Specific Aroclors								·				
		Total Lead	Lead	рН	Conductivity	1016	1221	1232	1242	1248	1254	1260	1262	1268
	nits	mg/L	mg/L	S.U.	us/cm	µg/L	μg/L	µg/L						
Class G/	A Standard	0.025	0.025	6.5-8.5	NA	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
					_									
	Jun-98	0.284	< 0.002	7.21	1280	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	1999	0.240	0.010	7.36	710	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.17	< 0.01	-	-
	Jun-00	0.010	0.004	7.35	402	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Sep-00	0.007	0.003	8.41	520	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	•	-
	Dec-00	0.002	0.002	8.12	970	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Mar-01	0.004	0.003	7.54	415	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Jun-02	< 0.001	< 0.001	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		
	Sep-02	0.005	< 0.001	7.11	456	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		<u> </u>
	Dec-02	0.003		7.52	201	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	
	Mar-03	0.002	< 0.001	7.97	200	< 0.05	<_0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Jun-03	0.002	< 0.001	8.03	536	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Sep-03	0.002	< 0.001	7.61	351	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		
	Sep-03	0.004	0.001	8.41	235	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<u> </u>	-
B403	Mar-04	0.003	0.002	7.44	296	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	
0400	Jun-04	0.001	0.002	7.65	681	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	<u> </u>
	Sep-04	0.001	< 0.001	7.23	662	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<u> </u>	
	Dec-04	< 0.001	< 0.001	7.52	613	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	
	Mar-05	< 0.001	< 0.001	7.82	1156	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		-
	Jun-05	0.003	0.002	7.64	1135	< 0:05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	·	-
	Dec-05	0.002	0.001	7.18	1372	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<u> </u>	
	Jun-06	< 0.003	< 0.003	7.36	1479	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	· -	-
	Dec-06	< 0.003	< 0.003	7.85	1719	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		-
	Jun-07	< 0.003	0.005	8.41	822	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	·	
	Dec-07	< 0.003	< 0.003	8.61	913	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	· ·	<u> </u>
	Jun-08	< 0.003	< 0.003	8.25	1121	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Dec-08	< 0.003	< 0.003	7.81	771	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	· ·	↓・
	Jun-09		< 0.003	7.40	1160	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
	Dec-09	< 0.003	< 0.003	7.20	1280	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10

•

Table 3 ROTH BROS. SMELTING CORP. Corrective Action Management Unit (CAMU) Groundwater Performance Monitoring Historical Laboratory Analytical Summary Table (Monitoring Well B404)

	<u></u>		Dissolved	-	Specific					Aroclo	rs			
		Total Lead	Lead	рH	Conductivity	1016	1221	1232	1242	1248	1254	1260	1262	1268
Un	its	mg/L	mg/L	s.u.	us/cm	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
Class GA	Standard	0.025	0.025	6.5-8.5	NA	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
		•												•
	Jun-98	0.007	0.003	10.55	2380	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	1999	< 0.010	< 0.010	6.72	1740	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.17	< 0.01	- 1	-
	Jun-00	0.004	0.002	6.97	1573	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 -		└
	Sep-00	0.002	0.002	7.32	1114	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Dec-00	0.003	< 0.001	7.47	589	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Mar-01	0.003	0.003	7.54	610	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	•	
	Jun-02	< 0.001	< 0.001	•	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	•	-
	Sep-02	0.003	< 0.001	7.09	731	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	•
	Dec-02	0.003	-	7.33	374	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Mar-03	< 0.001	< 0.001	7.61	<u>272</u>	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	· ·
	Jun-03	0.002	< 0.001	7.63	544	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		· ·
	Sep-03	0.001	< 0.001	7.26	526	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Dec-03	0.004	0.002	9.83	297	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		<u> </u>
B404	Mar-04	0.001	0.002	8.14	286	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	
D404	Jun-04	0.001	< 0.001	8.55	516	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	
	Sep-04	0.002	0.001	7.43	559	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Dec-04	< 0.001	< 0.001	7.66	348	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	•	
	Mar-05	< 0.001	< 0.001	7.28		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<u> </u>	-
	Jun-05	0.003	< 0.001	7.56	367	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		
	Dec-05	< 0.001	< 0.001	7.14	512	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	<u> </u>
	J <u>un-06</u>	< 0.003	< 0.003	7.46	523	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		-
	Dec-06	< 0.003	< 0.003	6.89	474	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<u> </u>	-
	Jun-07	0.006	0.004	7.24	365	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		-
	Dec-07	< 0.003	< 0.003	7.24	365	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00		
	Jun-08		< 0.003	8.07		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<u> </u>	-
	Dec-08		< 0.003	7.08		< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00		-
	Jun-09		< 0.003	6.90		< 3.00	< 3.00	< 3.00	< 3.00	< 3.00	< 3.00	< 3.00	< 3.00	< 3.00
	Dec-09	< 0.003	< 0.003	7.30	610	< 1.10	< 1.10	< 1.10	< <u>1.10</u>	< 1.10	< 1.10	< 1.10	< 1.10	< 1.10

٠ -. .

.

TRarton	<u>,</u>		FIELD SAMPLING DATA SHEET											
	idice, P.C.													
Engineers • Environmental Scien	🖬	itaste												
SITE:	Metallco - Thomps		SAMPLE LOCATION:		B-281									
CLIENT:	Metalico Aluminum R		JOB #:											
Weather Conditions:	Overcast, snow	, wind	Temperature:		25 F	1								
SAMPLE TYPE:	Groundwater	X	Surface Water		Other (specify):									
	Sediment		Leachate											
WATER LEVEL DATA														
Static Water Level (feet)*:			4.11		Measuring Point: Riser									
Measured Well Depth (fee			13.03		Measured by: DMJ/M Date: 12/16/0									
Well Casing Diameter (inc Calculated Volume in Wel	nes): I Casing (gallons):		1.43		Time: 13:50									
	measuring point		1.10											
PURGING METHOD	••													
Equipment:	Bailer	["]	Submersible Pump		Air Lift System									
	Non-dedicated		Foot Valve		Peristaltic Pump	x								
	Dedicated		Bladder Pump											
Calculated Volume Ol	f Water To Be Purged (gali	ons): 4.29				1								
Actual Vol	ume of Water Purged (gali	lons): 4.30	—											
	Did well purge dry?		X Yes			ĺ								
	Did well recover?	No [Yes	$\mathbf{\Sigma}$	Recovery Time: NA									
SAMPLING METHOD	. .													
Equipment:	Bailer		Submersible Pump		Air Lift System									
	Non-dedicated	X	Foot Valve	П	Peristaltic Pump									
	Dedicated		Bladder Pump	Ы	•									
Sampled by: DMJ/MPS		Time: 14:10	Date: 12/16/	09										
SAMPLING DATA														
Sample Appearance														
Color: Cloudy	····		Sediment: None			1								
Odor: <u>Septic</u>			_											
Field Measured Paramete	ərs				· · · · · · · · · · · · · · · · · · ·									
pH (Standard Units)	7.0		Sp. Conductivity (umho		3900	i								
Temperature (F) Turbidity (NTUs)	41.4		Eh-Redox Potential (m) Dissolved Oxygen (mg/		19									
	43.70	, <u> </u>	Dissolved Oxygen (mg/	L,										
Samples Collected (Numl Three bottles - total and d														
	13301100 1820, 1 005		· · · ·											
Samples Delivered to:	UL: +		Time: 14: <u>28</u>	Date:	12/16/09									
COMMENTS:						·								
			·											
Rev. 4/09 (MPS)	·····													

FIELD SAMPLING DATA SHEET	
oguidice, P.C.	
Engineers • Environmental Scientists • Planners • Landscape Architects	
SITE: Metalico - Thompson Road SAMPLE LOCATION: B-290	
CLIENT: Metalico Aluminum Recovery, Inc. JOB #: 1206.001 Weather Conditions: Overcast, snow, wind Temperature: 25 F	······································
SAMPLE TYPE: Groundwater X Surface Water Other (specify):	
Sediment Leachate	
WATER LEVEL DATA	
Static Water Level (feet)*: 4.9 Measuring Point: Rise	
Measured Well Depth (feet)*: 10.26 Measured by: DM Well Casing Diameter (inches): 2 Date: 12/	
Calculated Volume in Well Casing (gallons): 0.86 Time: 13:	
depth from measuring point	
PURGING METHOD Equipment: Bailer Submersible Pump Air Lift System	
Non-dedicated X Foot Valve Peristaltic Pump	
Dedicated Bladder Pump	
Calculated Volume Of Water To Be Purged (gallons): 2.58	
Actual Volume of Water Purged (galions): 1.25	
Did well purge dry? No Yes X	
Did well recover? No Yes X Recovery Time: 10	nins
SAMPLING METHOD	·
Equipment: Bailer Submersible Pump Air Lift System	
Non-dedicated X Foot Valve Peristaltic Pump	X
Dedicated Bladder Pump	
Sampled by: DMJ/MPS Time: 13:36 Date: 12/16/09	
SAMPLING DATA Sample Appearance	
Color: Light orange Sediment: None	
Odor: None	
Field Measured Parameters pH (Standard Units) 7.5 Sp. Conductivity (umhos/cm) 3600	
Temperature (F) 42.6 Eh-Redox Potential (mV) 41	
Turbidity (NTUs) 135.1 Dissolved Oxygen (mg/L)	
Samples Collected (Number/Type): Three bottles - Total and dissolved lead, PCBs	
Samples Delivered to: ULI Time: 14:28 Date: 12/16/09	
COMMENTS:	· · ·
Heavy orange color at beginning of purge.	
Rev. 4/09 (MPS)	

······································						• •			
arton			FIELD SA	AMPLIN	G DATA SHEET				
E ogu	udice, P.C.								
Engineers • Environmental Scien									
SITE:	Metalico - Thompson Ro		SAMPLE LOCATION:	:	B-291				
CLIENT: Weather Conditions:	Metalico Aluminum Recove Overcast, wind	ry, Inc.	JOB #: Temperature:		1206.001 25 F				
		<u></u>	·		Other (specify):				
SAMPLE TYPE:	Groundwater	x	Surface Water Leachate		Other (specify):				
WATER LEVEL DATA Static Water Level (feet)*:			.91		Measuring Point: Rise	ər 🕴			
Measured Well Depth (fee	et)*:	1:	2.54		Measured by: DM.	J/MPS			
Well Casing Diameter (inc Calculated Volume in Wel			2 0.9		Date: <u>12/1</u> Time: 10:1				
	measuring point		<i>J.</i> 9			<u> </u>			
PURGING METHOD									
Equipment:	Bailer		Submersible Pump		Air Lift System				
	Non-dedicated	x	Foot Valve		Peristaltic Pump	X			
	Dedicated		Bladder Pump			1			
Calculated Volume Oi	f Water To Be Purged (gallons):	2.70							
	ume of Water Purged (gallons):	2.70	-						
	• • •	No X	Yes						
	Did well recover?	No [] Yes	X	Recovery Time: <u>NA</u>				
SAMPLING METHOD			· · · · · · · · · · · · · · · · · · ·						
Equipment:	Bailer		Submersible Pump		Air Lift System				
	Non-dedicated	×	Foot Valve		Peristaltic Pump	X			
-	Dedicated		Bladder Pump						
Sampled by: DMJ/MPS	Time:	10:25	Date: 12/10	5/09					
SAMPLING DATA					·				
Sample Appearance			O						
Color: <u>Clear</u> Odor: None			_Sediment: <u>None</u>						
Field Measured Paramete			_						
pH (Standard Units)	7.3		Sp. Conductivity (umh	ios/cm)	1130				
Temperature (F)	39.1		Eh-Redox Potential (n		64				
Turbidity (NTUs)	24.58		Dissolved Oxygen (m	<u>y</u> ∟)	·				
Samples Collected (Numi	her/Tune):								
Three bottles - total and d									
Samples Delivered to:			Time: <u>14:28</u>	Date:	12/16/09				
COMMENTS:	······································								
		-							
	· · · · ·				· · · ·				
Rev. 4/09 (MPS)	••••••								

Rarton			FIELD SA	MPLIN	G DATA SHEET				
	idice, P.C.								
Engineers • Environmental Scien	— tists • Planners • Landscape Architects								
SITE: CLIENT: Weather Conditions:	Metalico - Thompson Metalico Aluminum Reco Overcast, snow, wir	Road very, Inc.	SAMPLE LOCATION: JOB #: Temperature:		B-401 1206.001 25 F	· · ·			
SAMPLE TYPE:	Groundwater	X	Surface Water		Other (specify):				
	Sediment		Leachate						
WATER LEVEL DATA					·•·····				
Static Water Level (feet)*: Measured Well Depth (feet)*: Well Casing Diameter (inches):			3.06 3.03 2	Measuring Point: Riser Measured by: DMJ/MPS Date: 12/16/09					
Calculated Volume in Well		1	.28		Time: 9:39				
*depth from	measuring point								
PURGING METHOD		_		_					
Equipment:	Bailer	Ц	Submersible Pump	Ц	Air Lift System				
	Non-dedicated	<u>N</u>	Foot Valve	Ц	Peristaltic Pump	x			
	Dedicated		Bladder Pump	Ц					
Calculated Volume Of	Water To Be Purged (gallons)	3.84	-						
Actual Volu	ume of Water Purged (galions)	: 1.50	=						
	Did well purge dry?	No _	Yes	\square					
	Did well recover?	No (Yes		Recovery Time: 10	mins			
SAMPLING METHOD			·						
Equipment:	Bailer		Submersible Pump		Air Lift System				
	Non-dedicated	X	Foot Valve	Ц	Peristaltic Pump	X			
	Dedicated		Bladder Pump						
Sampled by: DJM/MPS	Time	9:50	Date:12/16/	09					
SAMPLING DATA									
Sample Appearance Color: Clear			Sediment: None						
Odor: None	_								
Field Measured Paramete	 /S								
pH (Standard Units)	7.3		Sp. Conductivity (umho		1520				
Temperature (F) Turbidity (NTUs)	47.9 8.53		Eh-Redox Potential (m) Dissolved Oxygen (mg/						
	0.00		Diasolved Oxygen (ing	<u> </u>		·			
Samples Collected (Numb Three bottles - total and di				<u> </u>					
Samples Delivered to:	<u></u>	<u></u>	Time: <u>14:28</u>	Date:	12/16/09				
COMMENTS:				·					
l									
					· · · · · · · · · · · · · · · · · · ·				
Rev. 4/09 (MPS)									

	•	FIELD SAMPLING DATA SHEET									
artor					<u>'</u>						
&	uidice, P.C.										
Engineers · Environmental Scie	ntists • Planners • Landscape Architects										
SITE:	Metalico - Thompson Road	SAMPLE LOCATION:		B-402R							
CLIENT: Weather Conditions:	Metalico Aluminum Recovery, in Overcast, wind	ic. JOB #: Temperature:		1206.001 25 F							
SAMPLE TYPE:	Groundwater	Surface Water		——							
ORAN LE TITE.	Sediment	Leachate		Other (specify):							
WATER LEVEL DATA											
Static Water Level (feet)*	•	2.80		Measuring Point: R	iser						
Measured Well Depth (fe	et)*:	12.24		Measured by: D	MJ/MPS						
Well Casing Diameter (in	ches):	2		Date: <u>12</u>							
Calculated Volume in We	n measuring point	1.51		Time: 1	1:00						
	a measuring point										
Equipment;	Bailer	Submersible Pump		Air Lift System							
	Non-dedicated X	Foot Valve		Peristaltic Pump	X						
	Dedicated	Bladder Pump									
Calculated Volume C	of Water To Be Purged (gallons):4	.53									
Actual Vo	lume of Water Purged (gallons):2										
	Did well purge dry? No	Yes Yes	X								
	Did well recover? No	Yes Yes	X	Recovery Time:	1:10						
SAMPLING METHOD				<u></u>							
Equipment:	Bailer	Submersible Pump		Air Lift System							
	Non-dedicated X	Foot Valve		Peristaltic Pump	X						
	Dedicated	Bladder Pump									
Sampled by: DMJ/MPS	Time: 12:20) Date: <u>12/16</u>	/09								
SAMPLING DATA											
Sample Appearance Color: Slight haz	10	Sediment: Trace fir	nés								
Odor: Slightly s											
Field Measured Paramet											
pH (Standard Units)	8.2	Sp. Conductivity (umh		-							
Temperature (F)	45.6	Eh-Redox Potential (m		41							
Turbidity (NTUs)	51.47	Dissolved Oxygen (mg	μL)	<u></u>							
Samples Collected (Nun	nber/Tvpe):										
Three bottles - total and dissolved lead, PCBs											
Samples Delivered to:		Time:14:28	Date:	12/16/09							
COMMENTS:		<u></u>			······································						
Conductivity meter not	tunctioning.	······································		<u></u>							
	<u> </u>	······································		·····	······						
Rev. 4/09 (MPS)											

<u>art</u> on		FIELU SAN	IPLING DATA SHEET
S- Ogi	udice, P.C.		
	d í		
Engineers • Environmental Scier	ntists • Planners • Landscape Architects		
SITE:	Metalico - Thompson Road	SAMPLE LOCATION:	<u>B-403</u>
CLIENT:	Metalico Aluminum Recovery, Inc		1206.001
Weather Conditions:	Overcast, wind	Temperature:	25 F
SAMPLE TYPE:	Groundwater X	Surface Water	Other (specify):
	Sediment	Leachate	
WATER LEVEL DATA			
Static Water Level (feet)*:		2.94	Measuring Point: Riser
Measured Well Depth (fee		11.26	Measured by: DMJ/MPS
Well Casing Diameter (inc		2	Date: 12/16/09
Calculated Volume in We	i casing (galions):	1.33	Time: 11:25
	measuring point		
PURGING METHOD Equipment:	Bailer	Submersible Pump	Air Lift System
Egupmen.	Non-dedicated	Foot Valve	Peristaltic Pump X
	Dedicated	Bladder Pump	
	Water To Be Purged (gallons): 3.9		
Actual Vol	ume of Water Purged (gallons): <u>1.3</u>	33	
	Did well purge dry? No	Yes	X
	Did well recover? No	Yes	X Recovery Time: <u>15 mins</u>
SAMPLING METHOD			
Equipment:	Bailer	Submersible Pump	Air Lift System
	Non-dedicated X	Foot Valve	Peristaltic Pump X
	Dedicated	Bladder Pump	
Sampled by: DMJ/MPS	Time: <u>11:50</u>	Date: 12/16/0	9
SAMPLING DATA			
Sample Appearance			
Color: Clear		Sediment: None	<u></u>
Odor: <u>None</u>			
Field Measured Paramete			
pH (Standard Units)	7.2	Sp. Conductivity (umhos	
Temperature (F) Turbidity (NTUs)	42.3	Eh-Redox Potentiał (mV Dissolved Oxygen (mg/L	
	1.01		
Samples Collected (Norm	har/Time):		·
Samples Collected (Num) Three bottles - total and d			
		•	
Samples Delivered to:	<u></u>		Date: 12/16/09
COMMENTS:			
	·	<u> </u>	· · · · · · · · · · · · · · · · · · ·
· · · · · ·			<u></u>
Rev. 4/09 (MPS)			

Rarton		FIELD S		IG DATA SHEET								
E ogu	idice, P.C.											
Engineers • Environmental Scien	tists • Planners • Landscape Architect	15										
SITE:	Metalico - Thompson	Road	SAMPLE LOCATIO	N:	B-404							
CLIENT:	Metalico Aluminum Reco	overy, inc.	JOB #:		1206.001							
Weather Conditions:	Overcast, wind		Temperature:		25 F	- <u>-</u> ,						
SAMPLE TYPE:	Groundwater	<u> </u>	Surface Water		Other (specify):							
	Sediment		Leachate		, <u>, , , , , , , , , , , , , , , ,</u>							
WATER LEVEL DATA			······································									
Static Water Level (feet)*:			3.21 6.14		Measuring Point: Riser							
Well Casing Diameter (inc	Measured Well Depth (feet)*: Well Casing Diameter (inches):				Measured by: <u>DMJ/I</u> Date: 12/16							
Calculated Volume in Wel		_	2 2.07		Time: 10:35							
*depth from	measuring point					_						
PURGING METHOD		_	.	_								
Equipment:	Bailer		Submersible Pump	Ц	Air Lift System	느님ㅣ						
	Non-dedicated	X	Foot Valve	Ц	Peristattic Pump	N N						
	Dedicated		Bladder Pump									
Calculated Volume Of Water To Be Purged (gallons): 6.21												
Actual Vol	ume of Water Purged (gallons	s): <u>6.50</u>	<u> </u>									
	Did well purge dry?	No [X Yes									
	Did well recover?	No [Yes	\mathbf{X}	Recovery Time: <u>NA</u>							
SAMPLING METHOD			• • • • • • • • •									
Equipment:	Bailer		Submersible Pump		Air Lift System							
	Non-dedicated	X	Foot Valve		Peristaltic Pump	X						
	Dedicated		Bladder Pump									
Sampled by: DMJ/MPS	Tìm	ie: <u>10:50</u>	Date:/	16/09								
SAMPLING DATA												
Sample Appearance Color: Clear			Sediment: Fines	rust at initia	al nurae	1						
Odor: None												
Field Measured Paramete	WS		_									
pH (Standard Units)	7.3		Sp. Conductivity (un	nhos/cm)	610							
Temperature (F)	44.1		Eh-Redox Potential		101							
Turbidity (NTUs)	6.63		Dissolved Oxygen (.ng/t)		╺━┯┛│						
Samples Collected (Numt	oor/Tune):											
<u>Three bottles - total and d</u>												
Samples Delivered to:			Time: <u>14:28</u>	Date:	12/16/09							
COMMENTS:	· · · · · · · · · · · · · · · · · · ·											
				_		·						
	· · · · · · · · · · · · · · · · · · ·		······································		· · · ·							
Rev. 4/09 (MPS)												

arton			FIELD SA	MPLIN	G DATA SHEET	┛ │				
& ^{ogu}	udice, P.C.									
Engineers - Environmental Scien	ntists • Planners • Landscape Architects	5								
SITE:	Metalico - Thompson		SAMPLE LOCATION:		MW-8R / Dupe					
CLIENT; Weather Conditions:	Metalico Aluminum Reco Overcast, snow, wit		JOB #: Temperature:		1206.001 25 F					
······	<u>_</u>									
SAMPLE TYPE;	Groundwater Sediment		Surface Water Leachate		Other (specify):	—				
		<u> </u>								
WATER LEVEL DATA Static Water Level (feet)*:			3.38		Measuring Point: Riser					
Measured Well Depth (fee			0.00		Measured by: MPS					
Well Casing Diameter (inc Calculated Volume in Well		<u>+</u> .	2 1.06		Date: <u>12/16/0</u> Time: 12:45	9				
	measuring point									
PURGING METHOD		_		_						
Equipment:	Bailer	X	Submersible Pump		Air Lift System					
	Non-dedicated	X	Foot Valve		Peristaltic Pump					
	Dedicated		Bladder Pump							
	Water To Be Purged (gailons)									
Actual Vol	ume of Water Purged (gallons, Did well purge dry?): <u>3.25</u> No [Yes	X						
	Did well recover?	No [Yes	X	Recovery Time: 5 mins					
						······································				
SAMPLING METHOD Equipment:	Bailer		Submersible Pump		Air Lift System					
	Non-dedicated	X	Foot Valve		Peristaltic Pump	X				
	Dedicated		Bladder Pump							
Sampled by: DMJ/MPS	Time	e: <u>13:05</u>	Date: 12/16/	09						
SAMPLING DATA										
Sample Appearance Color: Grey			Sediment: Fines							
Odor: Chemical			_		···· ···					
Field Measured Paramete										
pH (Standard Units) Temperature (F)	7.1		Sp. Conductivity (umho Eh-Redox Potential (m)							
Turbidity (NTUs)	98.59		Dissolved Oxygen (mg		-63					
Samples Collected (Numb Three bottles - total and d										
Thee bolles - Iblat and d	1330/760 16a0, 1 003		<u> </u>							
Samples Delivered to:	<u></u>		Time: <u>14:28</u>	Date:	12/16/09					
COMMENTS:				•						
Well started to go dry when bailer was used. Purged first two gallons with bailer. No surface contamination or floaters were present.										
	The water was clear with no visible sheen. Completed purge with pump. Black fines were persent in bottom of well. Stones In bottom of well. Conductivity meter not functioning.									

i

		· · · · ·				
<u>art</u> on			FIELD SA	MPLIN	G DATA SHEET	
- R- ogu	udice, P.C.					
	ntists • Planners • Landscape Architects Metalico - Thompson	Road	SAMPLE LOCATION:		Instrument Blank	
CLIENT: Weather Conditions:	Metalico Aluminum Reco Overcast, snow, wi		JOB #: Temperature:		1206.001 25 F	[
SAMPLE TYPE:	Groundwater	X	Surface Water			
	Sediment		Leachate			<u> </u>
WATER LEVEL DATA						
Static Water Level (feet)*: Measured Well Decth (fee	rt)*:				Measuring Point: Measured by:	
Well Casing Diameter (inc Calculated Volume in Wel	hes):	• • • • • • • • • • • • • • • • • • • •			Date:	
	measuring point					
PURGING METHOD		>		_		
Equipment:	Bailer		Submersible Pump		Air Lift System	
	Non-dedicated Dedicated		Foot Valve Bladder Pump	H	Peristaltic Pump	
Calculated Volume Of	Water To Be Furged (gallons)	ني المن المن المن المن المن المن المن المن	Diaddor i ump	\sim		
	ume of Water Purged (gallons)		-			
	Did well purge dry?	No [] Yes			
	Did well recover?	No	Yes		Recovery Time:	
SAMPLING METHOD					····	
Equipment:	Bailer Non-dedicated		Submersible Pump Foot Valve		Air Lift System Peristaltic Pump	
	Dedicated	H	Bladder Pump	H	renstatuic rump	
Sampled by: DMJ/MPS		e: 10:00	Date: 12/16	/09		
SAMPLING DATA						ļ
Sample Appearance			Sediment: None			
Color: <u>Clear</u> Odor: <u>None</u>			_Sediment: <u>None</u>			
Field Measured Paramete	ns					
pH (Standard Units) Temperature (F)			Sp. Conductivity (umho Eh-Redox Potential (m		<u> </u>	
Turbidity (NTUs)			Dissolved Oxygen (mg		•	
Samples Collected (Numb Three bottles - total and d]
						··· [
Samples Delivered to:			Time: <u>14:28</u>	Date:	12/16/09	
COMMENTS:				· · · · ·		
					· · · · · · · · · · · · · · · · · · ·	
Rev. 4/09 (MPS)			······································	· ·		

Upstate Laboratories, Inc.

Chain of Custody Record

6034 Corporate Drive E. Syracuse New York 13057 Phone (315) 437 0255

Phone (315) 437 0255		Fax (315)	437 1209			. <u> </u>										_	·
	•					Ę			1								
METALICO Client Contact		SEMI-AN	INUAL M	ETALIC	O WELLS	Number		ł		`	-		ľ	ŀ		ļ	Remarks
Client Contact John Benson (BEL Sample ID	437-	Location (city/stat		•	,	<u> </u>	1						ļ				
John Denson CDie	5200	SYRACI			··	Containers	1	1	!				ļ			}	
Sample ID	Date	Time	Matrix	GRAB	ULI Internal Use Only	mera						_					
MW-8R	12/16/09	12:06	WATER	OR COMP		3	$\frac{1}{x}$			4	5	0		8	9	10	ASP CAT B
		14:10	WATER				Ŕ		Ŕ	X	_			-	\vdash	<u> </u>	
B281							-	<u>v</u>	+	-	_					Ļ.	MS/MSD
B290		13:30	WATER			 	X	X	<u>×</u>	X					ļ	<u> </u>	* Sacific Consullivity
B291		10:25	WATER	GRAB	4		X	\times	X	X							meter did not fundion
B401		09:50	WATER	GRAB			<u>×</u>	X	×	X							proverly in Filly-
B402R		12:20	WATER	GRAB			X	X	ĸ	\varkappa					l		100 reads to run.
B403		11:50	WATER	GRAB			X	X	X	X							His onely-ist
B404		10:50	WATER	GRAB			X	X	X	×							/
DUPE			WATER				X	×	Х	\star							· · ·
EQUIPMENT BLANK	$\overline{\mathbf{v}}$	10:00	WATER	GRAB		U.	X	X	X	\checkmark							
FILTER BLANK			WATER			,									:		
															-		
·····											-1						·····
	· ·												-				
											-+		-1				<u></u>
Parameter and Method	Samp	le bottle:	Туре	Size	Preservative HNO3 HNO3	Sam	plec	t by	(Pri	nt)	L 			$\overline{}$	L4		Name of Courier
1 T-PB*			PLASTIC	500 ML	HNO3	IJL	λk	12	<u>Son</u>	Aint	MO	72	Tar	*/ 	,		
2 D-PB*			PLASTIC	500°ML	HNO3	Com	pan	<u>17:15</u>	wh	14	Lay	Lin	hice,	Y.	<u>ل</u>		<u> </u>
3 PCB (EPA 8082)	<u>.</u>			1000 MIL	NONE	Relir	Iquis	shee	d by:	:(sigi	n)~		Date	e	Tim	e	Received by: (sign)
4 T-AC, BARPB* LAB - 2 Specific 1	Conductions	╘╱───┤	PLASTIC PLASTIC	500 ML	HNO3 HNO3							Í		Ì		1	
6 1-BA -			PLASTIC			Relir		chor	l bu	/cia	n\	_	Date	_	Tim		Received by: (sign)
7 8-8A			PLASTIC		HNO3	I./éili	iquia	SHEU	1 03.	(əigi	"'	·	Daid	-	1 44 1 1	-	Received by. (sigh)
8 PRO,PB			500 ML	HNO3				• ;			1			I			
9 D-+		PLASTIC			Relir	quis	shec	by:	(sigi	n)		Date	-	Tim	e	Recid for/Lab by:	
10 FIELD PH, COTD		N/A	N/A	N/A		-	~			-	li	Эhl	n.	all	R	Recid for Lab by:	
					<u></u>	_	(50				<u>"</u> "		(70	/~	1UMMP	
Svrecuse	Rochester		Buffalo		Albany		Bin	ighi	âmt	on		ļ	Fail	r La	awn	(N	<u>J)</u> _

APPENDIX B

.

,

- 1266 - 1666 - 1666 - 1666 - 1666 - 1666 - 1666 - 1666 - 1666 - 1666 - 1666 - 1666 - 1666 - 1666 - 1666 - 166

Shipping: 6034 Corporate Dr. * E. Syracuse, NY 13057-1017 * (315) 437-0255 * Fax (315) 437-1209 Mailing: Box 169 * Syracuse, NY 13206 Albany (518) 459-3134 * Binghamton (607) 724-0478 * Buffalo (716) 972-0371 Rochester (866) 437-0255 * New Jersey (908) 581-4285

Mr. Dennis R. Flanagan, General Manager Metalico Syracuse, Inc. PO Box 88 E. Syracuse, NY 13057

January 18, 2010

[1] S. C. Statistic and M. S. Statistics and Statistical Society of the statistical statistical statistics of the statistical statistic

RE: Analytical Report: Semi-Annual Metalico Wells

Order No.: U0912378

Dear Mr. Flanagan:

Upstate Laboratories, Inc. received 10 samples on 12/16/2009 for the analyses presented in the following report.

All analytical results relate to the samples as received by the laboratory.

All analytical data conforms to standard approved methodologies and quality control. Our quality control narrative will be included should any anomalies occur.

We have included the Chain of Custody Record as part of your report. You may need to reference this form for a more detailed explanation of your samples. Samples will be disposed of approximately one month from final report date.

Should you have any questions, please feel free to give us a call.

Thank you for your patronage.

Sincerely, UPSTATE LABORATORIES, INC.

nthony 3/ President/CEO

Enclosures: report, invoice

cc: J. Benson, Barton & Loguidice, PC: ASP-B Pkg.

Confidentiality Statement: This report is meant for the use of the intended recipient. It may contain confidential information, which is legally privileged or otherwise protected by law. If you have received this report in error, you are strictly prohibited from reviewing, using, disseminating, distributing or copying the information.

NY Lab ID 10170

NJ Lab ID NY750

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

Upstate Laboratories inc 6034 Corporate Drive

East Syracuse, New York 13057

Customer	Laboratory		Anal	ytical Requ	irements		
Sample	Sample	VOA	BNA	Pest	Herb	Metals	Wet
Code	Code	GC/MS	GÇMS	PCBs		and Cyanide	Chemistry
		Method	Method	Method	Method		(Other)
		#	#	· #	#		
MW-8R	U0912378-001	-	-	8082	-	T-Pb & D-Pb	SC
B281	U0912378-002	-	-	8082	-	T-Pb & D-Pb	SC
B281 MS	U0912378-002MS	-	-	8082	-	T-Pb & D-Pb	SC
B281 MSD	U0912378-002MSD	-	-	8082	-	-	-
B281 DUPE	U0912378-002DP	-	-	-	-	T-Pb & D-Pb	SC
B290	U0912378-003	•	-	8082		T-P6 & D-Pb	SC
B291	U0912378-004	-	•	8082		T-Pb & D-Pb	SC
B401	U0912378-005	-	-	8082	-	T-Pb & D-Pb	SC
8402R	U0912378-006	-	-	8082	•	T-Pb & D-Pb	SC
8403	U0912378-007	-	•	8082	-	T-Pb & D-Pb	SC
9404	U0912378-008	-	-	8082	-	T-Pb & D-Pb	SC
DUPE	U0912378-009	-	-	8082	-	Т-РЬ & D-РЬ	SC
EQUIPMENT BLANK	U0912378-010	-	•	8082	-	T-Pb & D-Pb	SC
						·•	
· · · · · · · · · · · · · · · · · · ·							
						-	
					_		
					_		
· · · · · · · · · · · · · · · · · · ·							
						•	

-2-

Narrative

1.0 Summary

This report presents the sample test results and quality control results for eight water sample locations collected from the Semi-Annual Metalico Wells Project. The samples were analyzed for parameters listed in Section 3.0, below.

This report is divided into two packages and four volumes. The Sample Data Summary Package (Volume 1) presents a summary of the test results and quality control data. This abbreviated format is useful to engineers and environmental scientists. The Sample Data Package (Volumes 2-4) is a comprehensive report containing instrument raw data. It is formatted for validation by an independent third party.

2.0 Chain of Custody

The samples were collected by Barton & Loguidice, PC personnel on December 16, 2009, and hand delivered to Upstate Laboratories, Inc., Syracuse, New York. The Chain of Custody documentation are copied in Volumes 1 and 2.

3.0 Methodology

The analyses were performed using test methods developed by the USEPA and reorganized by the NYSDEC in the Analytical Services Protocol (ASP). The specific method numbers are:

Parameter	Method	<u>Reference</u>
PCB (Aroclors)	8082	(1)
Lead	200.7	(1)
Specific Conductivity	120.1	(1)

(1) New York State Department of Environmental Conservation Analytical Services Protocol (NYSDEC ASP), 7/05 Revision

4.0 Quality Control

Quality control data includes method blanks, reference samples, matrix spikes, matrix spike duplicates, duplicates, and surrogate recoveries. The association of QC data with sample data is made through the use of the Test Code and the Analysis Date found on both the final report pages and the QC summary pages.

5.0 Internal Validation

PCB (Aroclors)

Holding Time	: Criteria were satisfied.
Calibration	: Criteria were satisfied.
Method Blanks	: Criteria were satisfied.
Reference Sample	: Criteria were satisfied.
MS/MSD	: Criteria were satisfied.
Surrogates	: Criteria were satisfied.

The total number of pages in this Data Package is: _

Metals Data	
Holding Time	: Criteria were satisfied.
Calibration	: Criteria were satisfied.
Method Blanks	: Criteria were satisfied,
Reference Sample	: Criteria were satisfied.
Matrix Spike	: Criteria were satisfied.
Duplicates	: Criteria were satisfied.

Wet Chemistry Data

Holding Time	: Criteria were satisfied.
Calibration	: Criteria were satisfied.
Method Blanks	: Criteria were satisfied.
Reference Sample	: Criteria were satisfied.
Matrix Spike	: Criteria were satisfied.
Duplicates	: Criteria were satisfied.

I certify that this data package is in compliance with the terms and conditions of the Contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and/or in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Approved Atthing Acalas

Anthony J. Scala, Director

QCMET004B

- -

Analytical Report			<u> </u>		-10 .			
CLIENT:	Metalico Syracuse, Inc			C	lient Sam	ple ID:	MW-8I	R
Lab Order:	U0912378			Collection Date:				009 1:05:00 PM
Project:	Semi-Annual Metalico	Wells						
Lab ID:	U0912378-001				N	fatrix:	WATE	R
Analyses		Result	Limit	Qual	Units		DF	Date Analyzed
POLYCHLORI	NATED BIPHENYLS IN W	ASTEWATER	-	8082	_ASPW	(SW	3510B)	Analyst: EA
Aroclor 1016		ND	1.1	-	_ µg/⊾	•	1	1/5/2010
Aroclor 1221		ND	1.1		µg/L		1	1/5/2010
Aroclor 1232		ND	1.1		µg/L		1	1/5/2010
Aroclor 1242		ND	1.1		µg/L		1	1/5/2010
Aroclor 1248		ND	1.1		րց/Լ		1	1/5/2010
Aroclor 1254		6.9	1.1		μ g/L		1	1/5/2010
Aroclor 1260		ND	1.1		µg/L		1	1/5/2010
ICP METALS, "	TOTAL ASP			200.7	WTASP	(E20	0.7)	Analyst: ALW
Lead		ND	3.00		µg/L	-	1	1/15/2010 5;24:58 PM
ICP METALS, I	DISSOLVED ASP			200.71	WDASP	(E20	0.7)	Analyst: ALW
Lead		ND	3.00		µ9/L		1	1/15/2010 2:56:43 PM
SPECIFIC CON	NDUCTANCE			. 12	20.1			Analyst: NJS
Specific Condu	ctance	-10100- 1010	2,00		µmhos/cm	25C	1	12/20/2009
		Corrected						

HAS

Approved By: AB

Qualifiers:

* Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 1-18-10

Page 1 of 10

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

-

Analytical Report				Date: 18-Jan-10					
CLIENT:	Metalico Syracuse, In	c.		c	lient Sampl				
Lab Order:	U0912378				Collection 1	Date:	12/16/2	2009 2:10:00 PM	
Project:	Semi-Annual Metalico	o Wells							
Lab ID;	U0912378-002				Ma	trix:	WATE	R	
Analyses		Result	Limit	Qual	Units		DF	Date Analyzed	
POLYCHLORIN	ATED BIPHENYLS IN W	ASTEWATER		8082_	ASPW	(SW	3510B)	Analyst: EA	
Aroclor 1016		ND	1 .1		µ g/L		1	1/5/2010	
Aroclor 1221		ND	1.1		µg/L		1	1/5/2010	
Aroclor 1232		ND	1.1		µg/L		1	1/5/2010	
Aroclor 1242		ND	1.1		µg/L		1	1/5/2010	
Aroclor 1248		ND	1.1		µg/L		1	1/5/2010	
Aroclor 1254		. ND	1.1		µg/L		1	1/5/2010	
Aroclor 1260		ND	1.1		µg/L		1	1/5/2010	
ICP METALS, T	OTAL ASP			200.7	NTASP	(E20	0.7)	Analyst: ALW	
Lead		ND	3.00		µg/L		1	1/15/2010 5:34:41 PM	
ICP METALS, D	ISSOLVED ASP			200.7	NDASP	(E20	0.7)	Analyst: ALW	
Lead		ND	3.00		µg/L		1	1/15/2010 3:06:23 PM	
SPECIFIC CON	DUCTANCE			13	0.1			Analyst: NJS	
Specific Conduc	tance	1380	2.00		µmhos/cm25	iC	1	12/20/2009	

Approved By: AB

Qualifiers:

Low Level

 ${\bf B}$ — Analyte detected in the associated Method Blank

 ${\rm H}_{\rm c}$ – Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 1-18-10

Page 2 of 10

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

1

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

2.

Analytical Report					_	Date:	18-Jan-10		
CLIENT: Metalico Syracuse, Inc.		·	Client Sample ID:			B290			
Lab Order:	U0912378				Collectio	on Date:	12/16/2	009 1:30:00 PM	
Project:	Semi-Annual Metalic	o Wells							
Lab ID:	U0912378-003					Matrix:	WATE	R	
Analyses		Result	Limit	Qual	Units	· · · ·	DF	Date Analyzed	
POLYCHLORIN	NATED BIPHENYLS IN '	WASTEWATER		8082_	_ASPW	(SW)	35108)	Analyst: EA	
Aroclor 1016		ND	1. 1		µg/L		1	1/5/2010	
Aroclor 1221		ND	1.1		µg/L		1	1/5/2010	
Aroclor 1232		ND	1.1		μg/L		1	1/5/2010	
Aroclor 1242		ND	1.1		μg/L		1	1/5/2010	
Aroclor 1248		ND	1.1		µg/L		1	1/5/2010	
Aroclor 1254		ND	1.1		µg/L		1	1/5/2010	
Araclar 1260		ND	1.1		µg/L		1	1/5/2010	
ICP METALS, 1	TOTAL ASP			200.7	WTASP	(E20	0.7)	Analyst: ALW	
Lead		ND	3.00		µg/L		1	1/15/2010 6:22:43 PM	
ICP METALS, I	DISSOLVED ASP			200.7	NDASP	(E20	0.7)	Analyst: ALW	
Lead		ND	3.00		µg/L		1	1/15/2010 3:34:30 PM	
				12	20.1			Analyst: NJS	

2.00

2860

Upstate Laboratories, Inc.

Approved By: AB

Specific Conductance

Qualifiers:

- ۰. Low Level
 - В Analyte detected in the associated Method Blank
 - Holding times for preparation or analysis exceeded Ħ
 - ND Not Detected at the Reporting Limit

Date: 1-18-10

µmhos/cm25C

1

12/20/2009

Page 3 of 10

- ** Value exceeds Maximum Contaminant Value
- Ε Value above quantitation range
- Analyte detected below quantitation limits J
- S Spike Recovery outside accepted recovery limits

Analytical Report				<u></u>	Date:	te: 18-Jan-10		
CLIENT:	Metalico Syracuse, In	IC,		Client Sam	ple ID:	B291		
Lab Order:	U0912378			Collection	Date:	12/16/2	009 10:25:00 AM	
Project:	Semi-Annual Metalic	o Wells						
Lab ID:	U 0912378- 004			N	Aatrix:	WATE	R	
Analyses		Result	Limit	Qual Units		DF	Date Analyzed	
POLYCHLORI	NATED BIPHENYLS IN V	VASTEWATER		8082_ASPW	(SW3	510B)	Analyst: EA	
Aroclor 1016		ND	1.1	µg/L		1	1/5/2010	
Aroclor 1221		ND	1.1	µg/L		1	1/5/2010	
Arocior 1232		ND	1.1	µg/L		1	1/5/2010	
Aroclor 1242		ND	1.1	hð\r		1	1/5/2010	
Aroclor 1248		ND	1.1	µg/L _		1	1/5/2010	
Aroclor 1254		ND	1.1	μ g/L		1	1/5/2010	
Aroclor 1260		ND	1. 1	µ9/L		1	1/5/2010	
ICP METALS,	TOTAL ASP			200.7WTASP	(E20(0.7)	Analyst: ALW	
Lead		ND	3,00	µg/L		1	1/15/2010 6:32:13 PM	
ICP METALS, I	DISSOLVED ASP			200.7WDASP	(E200).7 }	Analyst: ALW	
Lead		ND	3.00	μg /L		1	1/15/2010 3:44:00 PM	
SPECIFIC CON	NDUCTANCE			120.1			Analyst: NJS	
Specific Condu	ictance	894	2,00	µmhos/cm	25C	1	12/20/2009	

Approved By: AB

Qualifiers:

Date: <u>1-18-10</u>

Page 4 of 10

- ** Value exceeds Maximum Contaminant Value
- Ē Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Low Level

Analyte detected in the associated Method Blank B

Holding times for preparation or analysis exceeded н

Not Detected at the Reporting Limit ND

Analytical Report				Date:		18-Jan-10		
•	nc.			•				
00912378				Collection 1	Date:	12/16/2	009 9:50:00 AM	
Semi-Annual Metalic	o Wells					:		
U0912378-005				Ma	ıtrix:	WATE	R	
	Result	Limit	Qual	Units		DF	Date Analyzed	
ATED BIPHENYLS IN	WASTEWATER		8082_	ASPW	(SW)	3510B)	Analyst: EA	
	ND	1.1		µg/L		1	1/5/2010	
	ND	1.1		µg/L		1	1/5/2010	
	ND	1.1		µg/L		1	1/5/2010	
	ND	1.1		µg/L		1	1/5/2010	
	ND	1.1		µg/L		1	1/5/2010	
	ND	1.1		µg/L		1	1/5/2010	
	ND	1.1		µg/L		1	1/5/2010	
OTAL ASP			200.71	NTASP	(E20	0.7}	Analyst: ALW	
	ND	3.00		µg/L		1	1/15/2010 6:41:47 PM	
ISSOLVED ASP			200.7V	NDASP	(E20	0.7)	Analyst: ALW	
	ND	3.00		µg/L		1	1/15/2010 3:53:35 PM	
	- 4070	2.00	12			4	Analyst: NJS 12/20/2009	
	Metalico Syracuse, Ja U0912378 Semi-Annual Metalic U0912378-005	Metalico Syracuse, Inc. U0912378 Semi-Annual Metalico Wells U0912378-005 Result ATED BIPHENYLS IN WASTEWATER ND ND ND ND ND ND ND ND ND ND	Metalico Syracuse, Inc. U0912378 Semi-Annual Metalico Wells U0912378-005 Result Limit ATED BIPHENYLS IN WASTEWATER ND 1.1 ND 3.00 ND 3.00 DUCTANCE ND 3.00	Metalico Syracuse, Inc. C U0912378 Semi-Annual Metalico Wells U0912378-005 Result Limit Qual ATED BIPHENYLS IN WASTEWATER 8082_ ND 1.1 ND 3.00 PISSOLVED ASP 200.7 ND 3.00 DUCTANCE 12	Metalico Syracuse, Inc. Client Sampl U0912378 Collection I Semi-Annual Metalico Wells U0912378-005 U0912378-005 Maximum Result Limit Qual Units ATED BIPHENYLS IN WASTEWATER 8082_ASPW ND 1.1 µg/L ND 1.1 µg/L ND 3.00 µg/L MISSOLVED ASP ND 3.00 µg/L 120.1 <td>Metalico Syracuse, Inc. Client Sample ID: U0912378 Collection Date: Semi-Annual Metalico Wells U0912378-005 Matrix: Result Limit Qual Units ATED BIPHENYLS IN WASTEWATER 8082_ASPW (SW: ND 1.1 µg/L ND 3.00 µg/L ND 3.00 µg/L ND 3.00 µg/L ND 3.00<td>Metalico Syracuse, Inc. Client Sample ID: B401 (J0912378 Collection Date: 12/16/2 Semi-Annual Metalico Wells . . U0912378-005 Matrix: WATE Result Limit Qual Units DF ATED BIPHENYLS IN WASTEWATER 8082_ASPW (SW3510B) ND 1.1 µg/L 1 ND 3.00 µg/L 1 ND 3.00 <t< td=""></t<></td></td>	Metalico Syracuse, Inc. Client Sample ID: U0912378 Collection Date: Semi-Annual Metalico Wells U0912378-005 Matrix: Result Limit Qual Units ATED BIPHENYLS IN WASTEWATER 8082_ASPW (SW: ND 1.1 µg/L ND 3.00 µg/L ND 3.00 µg/L ND 3.00 µg/L ND 3.00 <td>Metalico Syracuse, Inc. Client Sample ID: B401 (J0912378 Collection Date: 12/16/2 Semi-Annual Metalico Wells . . U0912378-005 Matrix: WATE Result Limit Qual Units DF ATED BIPHENYLS IN WASTEWATER 8082_ASPW (SW3510B) ND 1.1 µg/L 1 ND 3.00 µg/L 1 ND 3.00 <t< td=""></t<></td>	Metalico Syracuse, Inc. Client Sample ID: B401 (J0912378 Collection Date: 12/16/2 Semi-Annual Metalico Wells . . U0912378-005 Matrix: WATE Result Limit Qual Units DF ATED BIPHENYLS IN WASTEWATER 8082_ASPW (SW3510B) ND 1.1 µg/L 1 ND 3.00 µg/L 1 ND 3.00 <t< td=""></t<>	

متبوعه مرتجعة رجدان الالترز الا

Approved By: AB

Qualifiers: * Low

- * Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: <u>|-18-10</u>

Page 5 of 10

- ** Value exceeds Maximum Contaminant Value
- $\mathbf{E} = \mathbf{V} \mathbf{a} \mathbf{lu} \mathbf{e} \mathbf{a} \mathbf{b} \mathbf{o} \mathbf{v} \mathbf{e} \mathbf{q} \mathbf{u} \mathbf{a} \mathbf{n} \mathbf{t} \mathbf{i} \mathbf{t} \mathbf{a} \mathbf{n} \mathbf{g} \mathbf{e}$

· . .

- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Analytical Report				Date:	e: 18-Jan-10		
Metalico Syracuse, In U0912378	nc.			-			
Semi-Annual Metalic	o Wells						
U0912378-006				Matrix:	WATE	R	
	Result	Limit	Qual Units		DF	Date Analyzed	
ATED BIPHENYLS IN 1	NASTEWATER		8082_ASPW	(SW	3510B)	Analyst: EA	
	ND	1.1	μg/L		1	1/5/2010	
	ND	1.1	µg/L		1	1/5/2010	
	ND	1.1	µg/L		1	1/5/2010	
	ND	1.1	µg/L		1	1/5/2010	
	ND	1.1	µg/L		1	1/5/2010	
	NÐ	1.1	μg/ ೬		1	1/5/2010	
	NĎ	1.1	µg/L		1	1/5/2010	
OTAL ASP			200.7WTAS	P (E20	00.7)	Analyst: ALW	
	30.4	3.00	µg/L		1	1/15/2010 6:51:33 PM	
SSOLVED ASP			200.7WDAS	P (E20	90.7)	Analyst: ALW	
	ND	3.00	µg/L		1	1/15/2010 4:03:28 PM	
DUCTANCE			120.1			Analyst: NJS	
clance	2280	2.00	µmhos	/cm25C	1	12/20/2009	
	Metalico Syracuse, In U0912378 Semi-Annual Metalic U0912378-006 ATED BIPHENYLS IN M OTAL ASP DISSOLVED ASP	Metalico Syracuse, Inc. U0912378 Semi-Annual Metalico Wells U0912378-006 Result ATED BIPHENYLS IN WASTEWATER ND ND ND ND ND ND ND ND ND ND	Metalico Syracuse, Inc. U0912378 Semi-Annual Metalico Wells U0912378-006 Result Limit ATED BIPHENYLS IN WASTEWATER ND 1.1 ND 1.	Metalico Syracuse, Inc. Client S U0912378 Collect Semi-Annual Metalico Wells U0912378-006 Result Limit Qual Units IATED BIPHENYLS IN WASTEWATER 8082_ASPW ND 1.1 µg/L ND 1.1 µg/L ND 1.1 µg/L ND 30.4 3.00 µg/L 00.7WDASI ND 3.00 µg/L 120.1	Metalico Syracuse, Inc. Client Sample ID: U0912378 Collection Date: Semi-Annual Metalico Wells U0912378-006 Matrix: Result Limit Qual Units IATED BIPHENYLS IN WASTEWATER 8082_ASPW (SW ND 1.1 µg/L ND 3.00 µg/L ND 3.00	Metalico Syracuse, Inc. Client Sample ID: B402R U0912378 Collection Date: 12/16/2 Semi-Annual Metalico Wells Matrix: WATE U0912378-006 Matrix: WATE Result Limit Qual Units DF ATED BIPHENYLS IN WASTEWATER 8082_ASPW (SW3510B) ND 1.1 µg/L 1 ND 30.4 3.00 µg/L 1 DISSOLVED	

Approved By: AB

Qualifiers:

Date: <u>1-18-10</u>

Page 6 of 10

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

- * Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

n

Analytical Report					Date: 18-Jan-10			
CLIENT: Lab Order:	Metalico Syracuse, In U0912378	C,		Client Sar Collection	•		2009 11:50:00 AM	
Project:	Semi-Annual Metalic	o Wells						
Lab ID:	U0912378-007				Matrix:	WATE	R	
Analyses		Result	Limit	Qual Units		DF	Date Analyzed	
POLYCHLORI	NATED BIPHENYLS IN V	ASTEWATER		8082_ASPW	(SW:	3510B)	Analyst: EA	
Aroclor 1016		ND	1.1	-ug/L		1	1/5/2010	
Aroclor 1221		ND	1.1	µg∕L		1	1/5/2010	
Arocior 1232	•	ND	1.1	µg/L		1	1/5/2010	
Aroclor 1242		ND	1.1	µg/L		1	1/5/2010	
Aroclor 1248		ND	1.1	µg/L		1	1/5/2010	
Aroclor 1254		ND	1,1	µg/L		1	1/5/2010	
Aroclor 1260		ND	1.1	µg/L		1	1/5/2010	
ICP METALS,	TOTAL ASP			200.7WTASP	(E20	0.7)	Analyst: ALW	
Lead		ND	3.00	µg/L		1	1/15/2010 7:01:12 PM	
ICP METALS, I	DISSOLVED ASP			200.7WDASP	(E20	0.7}	Analyst: ALW	
Lead		ND	3.00	pg/L		1	1/15/2010 4:07:57 PM	
SPECIFIC CON	DUCTANCE			1 20.1			Analyst: NJS	
Specific Condu	ictance	1030	2.00	µmhos/c	m25C	1	12/20/2009	

Approved By: AB

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 1-18-10

Page 7 of 10

** Value exceeds Maximum Contaminant Value

5 Value above quantitation range

÷

, J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Analytical Report			Date: 18-Jan-10				
CLIENT:	Metalico Syracuse, Ind			Client S	Sample ID:	B404	
Lab Order:	U0912378			Colle	ction Date:	12/16/2	2009 10:50:00 AM
Project:	Semi-Annual Metalico) Wells					
Lab ID:	U0912378-008				Matrix:	WATE	R
Analyses		Result	Limit	Qual Units	; ;	DF	Date Analyzed
POLYCHLORI	NATED BIPHENYLS IN W	ASTEWATER		8082_ASPV	v (sw	3510B)	Analyst: EA
Atoclor 1016		ND	1.1	μ g/ ∟		1	1/5/2010
Arodor 1221		ND	1.1	µg/L		1	1/5/2010
Aroclor 1232		Ν Ο	1.1	µg/L		1	1/5/2010
Aroclor 1242		ND	1.1	µg/L		1	1/5/2010
Aroclor 1248		ND	1.1	μ g/L		1	1/5/2010
Aroclor 1254		ND	1,1	μ g/L		1	1/5/2010
Arocler 1260		ND	1.1	µg/L		1	1/5/2010
ICP METALS,	TOTAL ASP			200.7WTAS	P (E2)	00.7)	Analyst: ALW
Lead		ND	3.00	μg/L		1	1/15/2010 7:10:48 PM
ICP METALS, I	DISSOLVED ASP			200.7WDAS	P (E20	00.7)	Analyst: ALW
Lead		ND	3.00	µg/L		1	1/15/2010 4:12:33 PM
SPECIFIC CON	NDUCTANCE			120.1			Analyst: NJS
Specific Condu	ectance	459	2.00	µmho	s/cm25C	1	12/20/2009

Approved By: AB

Date: 1-18-10

Page 8 of 10

- Qualifiers:
- Low Level

 ${\bf B} = {\bf A} {\bf n} {\bf a} {\bf i} {\bf y} {\bf t} {\bf e}$ detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Analytical F	Report				I	Date:	18-Jan	10
CLIENT:	Metalico Syracuse, I	nc.		С	lient Sample	e ID:	Dupe	
Lab Order:	U0912378				Collection I	Date:	12/16/2	009
Project:	Semi-Annual Metali	co Wells						
Lab ID:	U0912378-009				Ma	trix:	WATE	R
Analyses	· · · ·	Result	Limit	Qual	Units		DF	Date Analyzed
POLYCHLORI	NATED BIPHENYLS IN	WASTEWATER		8082	ASPW	(SW3	510B)	Analyst: EA
Aroclor 1016		ND	1,1	_	- μg/L	•	1	1/5/2010
Aroclor 1221		ND	1,1		µg/L		1	1/5/2010
Aroclor 1232		ND	1,1		µg/L		1	1/5/2010
Arocior 1242		ND	1,1		µg/L		1	1/5/2010
Aroclor 1248		ND	1.1		µg/L		1	1/5/2010
Aroclor 1254		8.0	1.1		µg/Ļ		1	1/5/2010
Aroclor 1260		ND	1.1		µg/L		1	1/5/2010
ICP METALS,	TOTAL ASP			200.71	NTASP	(E20	3.7)	Analyst: ALW
Lead		ND	3.00		µg/L		1	1/15/2010 7;20;31 PM
ICP METALS, I	DISSOLVED ASP			200.7\	NDASP	(E20	0.7)	Analyst: ALW
Lead		ND	3.00		hð\r		1	1/15/2010 4:36:40 PM
SPECIFIC CON	NDUCTANCE			12	20.1			Analyst: NJS
Specific Condu	ctance	9700	2.00		µmhos/cm25	С	1	12/20/2009

 $(2^{n_1}, 2^{n_2}, 2^{n_2},$

Approved By: AB

Qualifiers: ٠

- Low Level
 - Analyte detected in the associated Method Blank B
 - Holding times for preparation or analysis exceeded H
 - ND Not Detected at the Reporting Limit

Date: <u>1-18-10</u>

Page 9 of 10

** Value exceeds Maximum Contaminant Value

. $\gamma_{\rm el}$

Ε Value above quantitation range

ę.t

- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

1

Analytical Report			Date: 18-Jan-10					
CLIENT:	Metalico Syracuse, I	nc.			ple ID: Equip			
Lab Order:	U0912378			Collection	Date: 12/16/	2009 10:00:00 AM		
Project:	Semi-Annual Metalic	to Wells						
Lab ID:	U0912378-010			N	fatrix: WATE	ER		
Analyses		Result	Limit	Qual Units	DF	Date Analyzed		
POLYCHLORIN	ATED BIPHENYLS IN	WASTEWATER		8082_ASPW	(SW3510B)	Analyst: EA		
Aroclor 1016		ND	1.1	μg/L	1	1/5/2010		
Aroclor 1221		ND	1.1	μg/L	1	1/5/2010		
Arector 1232		ND	1.1	μg/L	1	1/5/2010		
Arector 1242		ND	1.1	μg/L	1	1/5/2010		
Aroclor 1248		ND	1.1	μg/L	1	1/5/2010		
Aroclor 1254		ND	1.1	μg/L	1	1/5/2010		
Araclor 1260		ND	1.1	µg/L	1	1/5/2010		
ICP METALS, T	OTAL ASP			200.7WTASP	(E200.7)	Analyst; ALW		
Lead		ND	3.00	µg/l_	1 21	1/15/2010 7:34:57 PM		
ICP METALS, E	ISSOLVED ASP			200.7WDASP	(E200.7)	Analyst: ALW		
Lead		ND	3.00	μg/L	1	1/15/2010 4:56:04 PM		
SPECIFIC CON Specific Conduc		3740	2.00	120.1 µmhos/cm:	25C 1	Analyst: NJS 12/20/2009		

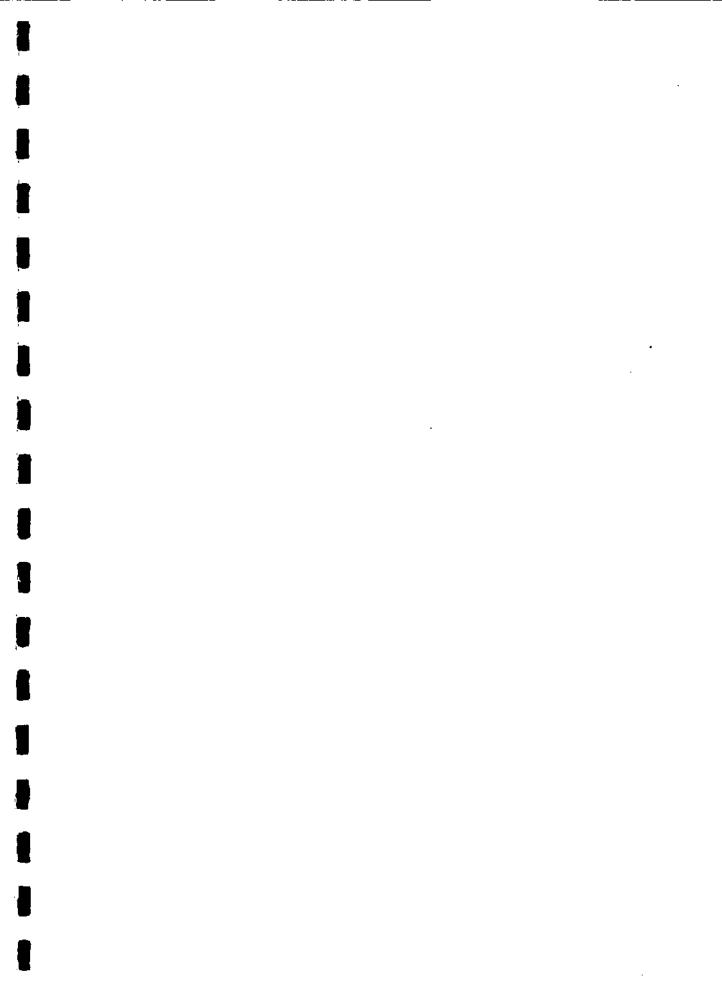
Approved By: AR

Date: 1-18-10

Page 10 of 10

** Value exceeds Maximum Contaminant Value

E Value above quantitation range


- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Qualifiers: * Low Lovel

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

APPENDIX C

Data Validation Report

Metalico Aluminum Recovery, Inc.

East Syracuse, New York

SAMPLED DECEMBER 2009

Engineers • Environmental Scientists • Planners • Landscape Architects

290 Elwood Davis Road Box 3107 Syracuse, New York 13220

Data Validation Report

Metalico Aluminum Recovery, Inc.

East Syracuse, New York.

Prepared By:

Barton & Loguidice, P.C. Consulting Engineers 290 Elwood Davis Road, Box 3107 Syracuse, New York 13220

Sampled December 2009

.

.

Project No: 1206.002

EXECUTIVE SUMMARY

This report addresses data quality for groundwater collected on December 16, 2009 at the Metalico Aluminum Recovery, Inc. facility located in, East Syracuse, New York. The samples were analyzed for polychlorinated biphenyls (PCBs) and inorganics (Metals) following New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) methodologies. Sample collection was performed by Barton and Loguidice, P.C. of Syracuse, New York. Analytical services were provided by Upstate Laboratories, Inc. (ULI) located in East Syracuse, New York.

The inorganics analyses data have been determined to be usable for qualitative and quantitative purposes without qualification.

The PCB analyses data have been determined to be usable for qualitative and quantitative purposes without qualification.

Ø

TABLE of CONTENTS

SECTION 1 - INTRODUCTION	1
1.1 Introduction	1
1.2 Analytical Methods	1
1.3 Validation Protocols	1
1.3.1 Inorganic Parameters	2
1.3.2 Organic Parameters	2
1.4 Data Qualifiers	3
SECTION 2 - DATA VALIDATION SUMMARY	4
2.1 Inorganics Analysis	4
2.2 PCB Analyses	4
SECTION 3 - DATA USABILITY and PARCC EVALUATION	5
3.1 Data Usability	5
3.2 PARCC Evaluation	
3.2.1 Precision	5
3.2.2 Accuracy	5
3.2.3 Representativeness	.5
3.2.4 Comparability	.5
3.2.5 Completeness	5

.

Appendices

.

Appendix A - Data Validation Checklists

 $f^{(s)}$

SECTION 1 - INTRODUCTION

1.1 Introduction

This report addresses data quality for groundwater collected on December 16, 2009 at the Metalico Aluminum Recovery, Inc. facility located in, East Syracuse, New York The samples were analyzed polychlorinated biphenyls (PCBs) and inorganics (Metals) following New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) methodologies. Sample collection was performed by Barton and Loguidice, P.C. of Syracuse, New York. Analytical services were provided by Upstate Laboratories, Inc. (ULI) located in East Syracuse, New York. The quantity and types of samples that were submitted for data validation are tabulated below.

	Date Sample Identification							
SDG#	Collected	Client ID	Laboratory ID					
U0912378	12/18/08	MW-8R	U0912378-001					
		B281	U0812421-002					
		B290	U0812421-003					
		B291	U0812421-004					
		B401	U0812421-005					
		B402R	U0812421-006					
		B403	U0812421-007					
		DUPE	U0812421-009					
		EQUIPMENT BLANK	U0812421-010					

1.2 Analytical Methods

Water samples were analyzed for polychlorinated biphenyls (PCBs) and inorganics (Metals) following New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) methodologies (2000 update). Laboratory analyses were provided by Upstate Laboratories, Inc. located in East Syracuse, New York.

1.3 Validation Protocols

Data validation is a process that involves the evaluation of analytical data against prescribed quality control criteria to determine the usefulness of the data. The analytical data addressed in this report were evaluated utilizing the quality control criteria presented in the following documents:

- Exhibit E of New York State Department of Environmental Conservation Analytical Services Protocol (NYSDEC ASP), NYSDEC September 1989, 12/91 Revisions.
- USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, USEPA-540/R-94/013, February 1994.
 - USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, USEPA-540/R-94/012, February 1994.

Evaluation of Metals Data for the Contract Laboratory Program (CLP), SOP NO. HW-2, Revision #11, USEPA Region II, January 1992.

CLP Organics Data Review and Preliminary Review, SOP No. HW-6 Revision #8, USEPA Region II, January 1992.

1.3.1 Inorganic Parameters

The validation of inorganics for this project followed the requirements presented in the analytical methodology and the data validation guidelines presented above. The following QA/QC parameters were evaluated:

- 1. Holding Times
- 2. Calibration
 - a. Initial Calibration Verification
 - b. Continuing Calibration Verification
- 3. Blank Analysis
- 4. ICP Interference Check Sample Analysis (ICP only)
- 5. Matrix Spike Analysis
- 6. Laboratory Duplicate Analysis
- 7. Laboratory Control Sample Analysis
- 8. ICP Serial Dilution Analysis (ICP only)
- 9. Furnace Atomic Absorption Analysis
- 10. Method of Standard Addition Results
- 11. Field Blanks
- 12. Element Quantification and Reported Detection Limits
- 13. Document Completeness
- 14. Overall Data Assessment

<u>1.3.2 Organic Parameters</u>

The validation of organic parameters for this project followed the requirements presented in the analytical methodology and the data validation guidelines presented above. The following QA/QC parameters were evaluated:

PCB Analyses

- 1. Holding Times
- 2. Instrument Performance
 - a. Standards Retention Time Windows
 - b. DCBP Retention Time Shift
 - c. Baseline Stability
 - d. Chromatographic Resolution
- 3. Calibration
 - a. Initial Calibration
 - b. Analytical Sequence Verification
 - c. Continuing Calibration Verification
- 4. Blank Analysis
- 5. Surrogate Recovery
- 6. Matrix Spike/Matrix Spike Duplicate Analysis
- 7. Reference Standard Analysis

- 8. Compound Identification and Quantification
- 9. Documentation Completeness
- 10. Overall Data Assessment

1.4 Data Qualifiers

The following qualifiers as specified in the guidance documents presented in Section 1.3 of this report have been used for this data validation.

- U Indicates that the compound was analyzed for, but was not detected. The sample quantification limit is presented and adjusted for dilution. This qualifier is also used to signify that the detection limit of an analyte was raised due to blank contamination.
- J Indicates that the result should be considered approximate. This qualifier is used when the data validation procedure identifies a deficiency in the data generation process.
- UJ Indicates that the detection limit for the analyte in this sample should be considered approximate. This qualifier is used when the data validation process identifies a deficiency in the data generation process.
- R Indicates that the previously reported detection limit or sample result has been rejected due to a major deficiency in the data generation procedure. The data are considered to be unusable for both qualitative or quantitative purposes.

The following sections of this document present a summary of the data validation process. Section 2 discusses data compliance with established QA/QC criteria and qualifications performed on the sample data. A discussion of the Precision, Accuracy, Representativeness, Comparability, and Completeness (PARCC) of the data and data usability are discussed in Section 3. The USEPA Region II Data Validation Checklists are presented in Appendix A.

SECTION 2 - DATA VALIDATION SUMMARY

This section presents a discussion of QA/QC parameter compliance with established criteria and . the qualification of data performed when QA/QC parameter deviations were identified. When several deviations from established QA/QC criteria were observed, the final qualifier assigned to the data was based on the cumulative effect of the deviations.

2.1 Inorganics Analysis

Data validation was performed for seven water samples, one duplicate, and one equipment blank sample for total and dissolved inorganic lead. The QA/QC parameters presented in Section 1.3.1 of this report were found to be within specified limits without qualification.

Overall Data Assessment

Overall, the laboratory performed inorganics analyses in accordance with the requirements specified in the methods listed in Section 1.2 of this report. These data were determined to be usable for qualitative and quantitative purposes without additional qualification.

2.2 PCB Analyses

Data validation was performed for seven water samples, one duplicate, and one equipment blank sample for total PCBs. The QA/QC parameters presented in Section 1.3.2 of this report were found to be within specified limits without qualification.

Overall Data Assessment

Overall, the laboratory performed PCB analyses in accordance with the requirements specified in the method listed in Section 1.2. These data were determined to be usable for qualitative and quantitative purposes without additional qualification.

SECTION 3 - DATA USABILITY and PARCC EVALUATION

3.1 Data Usability

This section presents a summary of the usability of the analytical data and an evaluation of the PARCC parameters. Data usability was calculated as the percentage of data that was not qualified as rejected based on a significant deviation from established QA/QC criteria. Data usability which was calculated separately for each type of analysis is tabulated below.

Table 16: Data Usability and PARCC Evaluation - Data Usability

Usability	Deviations
100 %	None resulting in the rejection of data.
100 %	None resulting in the rejection of data.
-	100 %

3.2 PARCC Evaluation

The following sections provide an evaluation of the analytical data with respect to the precision, accuracy, representativeness, comparability, and completeness (PARCC) parameters.

3.2.1 Precision

Precision is measured through field duplicate samples, split samples, and laboratory duplicate samples. For this sampling program, none of the data were qualified for precision criteria deviations.

3.2.2 Accuracy

Matrix spike sample, surrogate recoveries, laboratory control samples, and calibration criteria indicate the accuracy of the data. For this sampling program none of the analytical data were qualified for accuracy criteria deviations.

3.2.3 Representativeness

Holding times, sample preservation, and blank analysis are indicators of the representativeness of the analytical data. For this investigation, none of the data required qualification for representativeness criteria deviations.

3.2.4 Comparability

Comparability is not compromised provided that the analytical methods did not change over time. A major component of comparability is the use of standard reference materials for calibration and QC. These standards are compared to other unknowns to verify their concentrations. Since standard analytical methods and reporting procedures were consistently used by the laboratory, the comparability criteria for the analytical data were met.

3.2.5 Completeness

The overall percent usability or completeness of the data was 100 percent.

APPENDIX A

.

.

DATA VALIDATION CHECKLISTS

.

Table of Contents

D---

-

...

Ĵ

Î

Ĵ

ļ

I.	Part A: PCB Analysis	<u>rage</u> 1
II.	Part B: Metals Analyses	5

YES NO N/A 1.0 **Traffic Reports and Laboratory Narrative** LL х Are the traffic Report Forms present for all samples? х 1.2 Do the Traffic Reports or SDG Narrative indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data? 2.0 **Holding Times** 2.1 Have any PEST/PCB technical holding times, determined from date of collection to date of extraction, been exceeded? х 3.0 System Monitoring Compound (SMC) Recovery (Form II) 3.1 Are the PEST/PCB Surrogate Recovery Summaries (FORM II) present for each of the following matrices: a. Low Water х х b. Soil 3.2 Are all the PEST/PCB samples listed on the appropriate Surrogate Recovery Summary for each of the following matrices: х a. Low Water b. Soil х х 3.3 Were outliers marked correctly with an asterisk? 3.4 Were surrogate recoveries of TCX or DCB outside of the contract specification for any х sample or method blank? (60-150%) 3.5 Were surrogate retention times (RT) within the windows established during the initial 3-point analysis of Individual Standard Mixture A? х Х 3.6 Are there any transcription/calculation errors between raw data and Form II? 4.0 Matrix Spikes (Form III) Is the Matrix Spike/Matrix Spike Duplicate Recovery Form (Form III) present? х 4.1 4.2 х Were matrix spikes analyzed at the required frequency for each of the following matrices? Х a. Low Water х b. Soil How many PEST/PCB spike recoveries are outside QC limits? 4.3 0 out of 12 Soils NA Water out of 12 How many RPD's for matrix spike and matrix spike duplicate recoveries are outside 4.4 QC limits? Water 0 out of 6 Soils _ NA out of 6 5.0 Blanks (Form IV) 5.1 Is the Method Blank Summary (Form IV) present? х

Data Validation Checklist - Part A: PCB Analysis

Data Validation Checklist - Part A: PCB Analysis

1

Ì

Í

Ĵ

ency of Analysis: For the analysis of Pesticide/PCB TCL compounds, has a t/method blank been analyzed for each SDG or every 20 samples of similar or concentration or each extraction batch, whichever is more frequent? PEST/PCB instrument blank been analyzed at the beginning of every 12 hr. following the initial calibration sequence? chromatographic performance (baseline stability) for each instrument acceptable ST/PCBs? mitation y method/instrument/reagent blanks have positive results PEST/PCBs? y field/rinse blanks have positive PEST/PCB results? ere field/rinse/equipment blanks associated with every sample? ration and GC Performance e following Gas Chromatograms and Data Systems Printouts for both columns t for all samples, blanks, MS/MSD?	x x x x		
following the initial calibration sequence? chromatographic performance (baseline stability) for each instrument acceptable ST/PCBs? mination y method/instrument/reagent blanks have positive results PEST/PCBs? y field/rinse blanks have positive PEST/PCB results? ere field/rinse/equipment blanks associated with every sample? ration and GC Performance e following Gas Chromatograms and Data Systems Printouts for both columns	x		
ST/PCBs? mination y method/instrument/reagent blanks have positive results PEST/PCBs? y field/rinse blanks have positive PEST/PCB results? ere field/rinse/equipment blanks associated with every sample? ration and GC Performance e following Gas Chromatograms and Data Systems Printouts for both columns			
y method/instrument/reagent blanks have positive results PEST/PCBs? y field/rinse blanks have positive PEST/PCB results? ere field/rinse/equipment blanks associated with every sample? ration and GC Performance e following Gas Chromatograms and Data Systems Printouts for both columns	x		
y field/rinse blanks have positive PEST/PCB results? ere field/rinse/equipment blanks associated with every sample? ration and GC Performance e following Gas Chromatograms and Data Systems Printouts for both columns	x		
ere field/rinse/equipment blanks associated with every sample? ration and GC Performance e following Gas Chromatograms and Data Systems Printouts for both columns	x	X	
ration and GC Performance e following Gas Chromatograms and Data Systems Printouts for both columns	x		
e following Gas Chromatograms and Data Systems Printouts for both columns			
k resolution check	x		
formance evaluation mixtures	x		
clor 1016/1260	x		
pelors 1221, 1232, 1242, 1248, 1254	x		
caphene	x		
v points individual mixtures A & B	x		
d points individual mixtures A & B	x		
th points individual mixtures A & B	x		
rument blanks	x		
orms VI - PEST 1-4 present and complete for each column and each analytical nee?	x		
ere any transcription/calculation errors between raw data and Forms VI?		x	
standard retention times, including each pesticide in each level of Individual res A & B, fall within the windows established during the initial calibration ical sequence?	x		
e linearity criteria for the initial analyses of Individual Standards A & B within for both columns?	x		
resolution between any two adjacent peaks in the Resolution Check Mixture > for both columns?	x		
	x		
	standard retention times, including each pesticide in each level of Individual res A & B, fall within the windows established during the initial calibration ical sequence? e linearity criteria for the initial analyses of Individual Standards A & B within for both columns? resolution between any two adjacent peaks in the Resolution Check Mixture >	standard retention times, including each pesticide in each level of Individual X res A & B, fall within the windows established during the initial calibration X ical sequence? X e linearity criteria for the initial analyses of Individual Standards A & B within X for both columns? X resolution between any two adjacent peaks in the Resolution Check Mixture > X for both columns? X m VII - Pest-1 present and complete for each Performance Evaluation Mixture X	standard retention times, including each pesticide in each level of Individual res A & B, fall within the windows established during the initial calibration ical sequence? X e linearity criteria for the initial analyses of Individual Standards A & B within for both columns? X resolution between any two adjacent peaks in the Resolution Check Mixture > for both columns? X m VII - Pest-1 present and complete for each Performance Evaluation Mixture X

		YES	NO	N/A
7.8	Has the individual %breakdown exceeded 20.0% on either column.		x	
	- for 4,4' - DDT?			x
	- for endrin?			x
	Has the combined %breakdown for 4,4' - DDT/Endrin exceeded 30.0% on either column?			x
7.9	Are the relative percent difference (RPD) values for all PEM analytes <25.0%?	x		
7.10	Have all samples been injected within a 12 hr. Period beginning with the injection of an Instrument Blank?	x		
7.11	Is Form VII - Pest-2 present and complete for each INDA and INDB Verification Calibration analyzed?	x	•	
7.12	Are there any transcription/calculation errors between raw data and Form VII - Pest-2?		x	
7.13	Do all standard retention times for each INDA and INDB Verification Calibration fall within the windows established by the initial calibration sequence?	x		
7.14	Are the RPD values for all verification calibration standard compounds <25.0%?	x		
8.0	Analytical Sequence Check (Form VIII-PEST)			
8.1	Is Form VIII present and complete for each column and each period of analyses?	x		
8.2	Was the proper analytical sequence followed for each initial calibration and subsequent analyses?	x		
9.0	Cleanup Efficiency Verification (Form IX)			
9.1	Is Form IX - Pest-1 present and complete for each lot of Florisil Cartridges used?			x
9.2	Are all samples listed on the Pesticide Florisil Cartridge Check Form?			x
9.3	If GPC Cleanup was performed, is Form IX - Pest-2 present?		x	
9.4	Are percent recoveries (%R) of the pesticide and surrogate compounds used to check the efficiency of the cleanup procedures within QC limits:			x
	80-120% for florisil cartridge check?			x
	80-110% for GPC calibration?			x
10.0	Pesticide/PCB Identification			
10.1	Is Form X complete for every sample in which a pesticide or PCB was detected?			X
10.2	Are there any transcription/calculation errors between raw data and Forms 6E, 6G, 7E, 7D, 8D, 9A, 9B, 10A?		x	
10.3	Are retention times (RT) of the sample compounds within the established windows for both analyses?			x
10.4	Is the percent difference (%D) calculated for the positive sample results on the two GC columns < 25.0%?			x
10.5	Check chromatograms for false negatives, especially the multiple peak compounds			

Data Validation Checklist - Part A: PCB Analysis

. •

.

Í

Ĵ

Ų

Į

J

Ĵ

ľ

Î

3

۰.

.

		YES	NO	N/A
11.0	Compound Quantitation and Reported Detection Limits			
11.1	Are there any transcription/calculation errors in Form I results?		x	
11.2	Are the CRQLs adjusted to reflect sample dilutions and, for soils, %moisture?	x	_	
12.0	Chromatogram Quality			
12.1	Were baselines stable?	x		_
12.2	Were any electropositive displacement (negative peaks) or unusual peaks seen?		x	
13.0	Field Duplicates			
13.1	Were any field duplicates submitted for PEST/PCB analysis?	x		1

.

Ĵ

j

Í

ļ

Î

Data Validation Checklist - Part A: PCB Analysis

ż

Ģ

ļ

ľ

1

Ĵ

Į

ĺ

.

No:	Parameter	YES	NO	N/A
1.0	Form I to IX			
1.1	Are all the Form I through Form IX labeled with:			
	Laboratory Name?	x		
	Case/SAS No.?		x	
	EPA sample No.?		x	
	SDG No.?	x		
	Contract No.?	x		
	Correct units?	x		
	Matrix?	x		
1.2	Do any computer/transcription errors exceed 10% of reported values on Forms I-IX for:			
	A. All analytes analyzed by ICP?		x	
	B. All analytes analyzed by GFAA?			x
	C. All analytes analyzed by AA Flame?			x
	D. Mercury?			x
	E. Cyanide?			x
2.0	Raw Data			
2.1	Digestion Log for flame AA/ICP (Form XIII) present?	x		
2.2	Digestion Log for furnace AA (Form XIII) present?			x
2.3	Distillation Log for mercury (Form XIII) present?			x
2.4	Distillation Log for cyanides (Form XIII) present?		_	x
2.5	Are pH values (pH<2 for all metals, pH>12 for cyanide) present?	x		
2.6	Percent solids calculation dates present on sample preparation logs/bench sheets?			x
2.7	Are preparation dates present on sample preparation logs/bench sheets?	x		
2.8	Measurement read out record present?			
	A. ICP	x		
	B. Flame AA	;		x
	C. Furnace AA			x
	D. Mercury			x
••	E. Cyanides			x
2.9	Are all raw data to support all sample analyses and QC operations present?	x		
3.0	Holding Times			
3.1	A. Mercury analysis (28 days)exceeded?			x
	B. Cyanide distillation (14 days)exceeded?			x
	C. Other Metals analysis (6 months)exceeded?		x	<u>-</u>

5

No:	Parameter	YES	NO	N/A
3.2	Is pH of aqueous samples for:			
	A. Metals Analysis >2?		x	
	B. Cyanides Analysis <12?			x
4.0	Form I (Final Data)			
4.1	Are all Forms I's present and complete?	x		
4.2	Are correct units (ug/l for waters and mg/kg for soils) indicated on Form I's?	x		
4.3	Are soil sample results for each parameter corrected for percent solids?			x
4.4	Are all "less than IDL" values properly coded with "U"?	x		
4.5	Are the correct concentration qualifiers used with final data?	x		
4.6	Are EPA sample #s and corresponding laboratory sample ID #s the same as on the Cover Page, Form I's and in the raw data?	x		
4.7	Was a brief physical description of samples given on Form I's?	x		
4.8	Was the dilution of any sample diluted beyond the requirements of the contract noted on Form I or Form XIV?		x	
5.0	Calibration			
5.1	Is record of at least 2 point calibration present for ICP analysis?	x		
5.2	Is record of 5 point calibration present for Hg analysis?			X
5.3	Is record of 4 point calibration present for:			x
	Flame AA?			X
	Furnace AA?			x
	Cyanides?			x
5.4	Is one calibration standard at the CRDL level for all AA (except Hg) and cyanides analyses?	x		
5.5	Is correlation coefficient less than 0.995 for:			
	Mercury Analysis?			x
	Cyanide Analysis?			x
	Atomic Absorption Analysis?		i	x
5.6	In the instance where less than 4 standards are measured in absorbance (or peak area, peak height, etc.) Mode, are remaining standards analyzed in concentration mode immediately after calibration within +/- 10% of the true values?			x
6.0	Form II A (Initial and Continuing Calibration Verification)			
6.1	Present and complete for every metal and cyanide?	x		
6.2	Present and complete for AA ICP when both are used for the same analyte?			x
6.3	Are all calibration standards (initial and continuing) within control limits:			
	Metals - 90 - 110 %R	x		
	Hg - 80 - 120 %R	<u> </u>		x
	Cyanides - 85 - 115 %R	<u> </u>		x

ļ

" Data Validation Checklist - Part B: Metals Analyses

Ú

Ű

U

Ì

Ĵ,

Ĵ

/

No:	Parameter	YES	NO	N/A
6.4	Was continuing calibration performed every 10 samples or every 2 hours?	x		
6.5	Was ICV for cyanides distilled?			_ x
7.0	Form II B (CRDL Standards for AA and ICP)			
7.1	Was a CRDL standard (CRA) analyzed after initial calibration for all AA metals (except Hg)?	x		
7.2	Was a mid range calibration verification standard distilled and analyzed foe cyanide analysis?			X
7.3	Was a 2xCRDL (or 2xIDL when IDL>CRDL) analyzed (CRI) for each ICP run?	x		
7.4	Was CRI analyzed after ICV/ICB and before the final CCV/CCB, and twice every eight hours of ICP run?	x		
7.5	Are CRA and CRI standards within control limits: Metals 70 – 130 %R?	x		
7.6	Is mid-range standard within control limits: Cyanide 70 - 130 %R?			x
8.0	Form III (Initial and Continuing Calibration Blanks)			
8.1	Present and complete?	x		
8.2	For both AA and ICP when both are used for the same analyte?		_	x
8.3	Was an initial calibration blank analyzed?	x		
8.4	Was a continuing calibration blank analyzed after every 10 samples or every 2 hours (which ever is more frequent)?	x		
8.5	Are all calibration blanks (when IDL <crdl) contract<br="" equal="" less="" or="" than="" the="" to="">Required Detection Limits (CRDLs)?</crdl)>	x		
8.6	Are all calibration blanks less than two times Instrument Detection Limit (when IDL>CRDL)?			x
9.0	Form III (Preparation Blank)			
9.1	Was one preparation blank analyzed for:			
	each Sample Delivery Group?	x		
9.2	Is concentration of preparation blank value greater than the CRDL when IDL is less than or equal to CRDL?		x	
9.3	If yes, is the concentration of the sample with the least concentrated analyte less than 10 times the preparation blank?			x
9.4	Is concentration of preparation blank value (Form III) less than two times IDL, when IDL is greater than CRDL?			x
9.5	Is concentration of preparation blank below the negative CRDL?		x	
10.0	Form IV (Interference Check Sample)			
10.1	Present and Complete?	x		
10.2	Are all Interference Check Sample results inside the control limits (+/- 20%)?	x		
10.3	If no, is concentration of Al, Ca, Fe, or Mg lower than the respective concentration in ICS?			x

Data Validation Checklist - Part B: Metals Analyses

No:	Parameter	YES	NO	N/A
11.0	Form V A (Spiked Sample recovery - Pre-Digestion/Pre-Distillation			
11.1	Present and complete for:			
	each SDG?	x		
	each matrix type?	x		
	each concentration range (i.e., low, medium, high)?	x		
	For both AA and ICP when both are used for the same analyte?			x
11.2	Was field blank used for spiked sample?		x	
11.3	Are all recoveries within control limits?	x		
11,4	If no, is sample concentration greater than or equal to four times spike concentration?			x
12.0	Form VI (Lab Duplicates)			
12.1	Present and complete for :			
	each SDG?	x		
	each matrix type?	x		
	each concentration range (i.e., low, medium, high)?	x		
	both AA and ICP when both are used for the same analyte?			x
12.2	Was field blank used for duplicate analysis?		x	
12.3	Are all values within control limits (RPD 20% or difference = +/-CRDL)?</td <td>x</td> <td></td> <td></td>	x		
12.4	If no, are all results outside the control limits flagged with an * on Form I's and VI?			x
13.0	Field Duplicates			
13.1	Were field duplicates analyzed?	x		ŀ
13.2	Aqueous			
	Is any RPD greater than 50% where sample and duplicate are both greater than or equal to 5 times CRDL?		x	
	Is any difference between sample and duplicate greater than CRDL where sample and/or duplicate is less than 5 times CRDL?		x	
13.3	Soil/Sediment			
	Is any RPD (where sample and duplicate are both greater than 5 times CRDL); >100%?			x
-	Is any difference between sample and duplicate (where sample and/or duplicate is less than 5x CRDL): >2x CRDL?			x
14.0	Form VII (Laboratory Control Sample)			
14.1	Was one LCS prepared and analyzed for:			
	each SDG?	x		
	each batch samples digested/distilled?	x		
	both AA and ICP when both are used for the same analyte?			x

8

Ĵ

No:	Parameter	YES	NO	N/A
14.2	Aqueous LCS			1
	Is any LCS recovery:			
	less than 50%?		x	
	between 50% and 79%?		x	
	between 121% and 150%?		x	
	greater than 150%?		x	
14.3	Solid LCS			
_	Is LCS "Found" value higher than the control limits on Form VII?			x
	Is LCS "Found" value lower than the control limits on Form VII?	-		x
15.0	Form IX (ICP Serial Dilution)			
15.1	Was serial dilution analysis performed for:			
	each SDG?	x		
	each matrix type?	X		
	each concentration range (i.e., low, medium, high)?	X		
15.2	Was field blank(s) used for Serial Dilution Analysis?	-	x	
15.3	Are results outside control limit flagged with an "E" on Form I's and Form IX when initial concentration on Form IX is equal to 50 times IDL or greater?			x
15.4	Are any %difference values:			
	>10%		x	
	>/=100%		x	
16.0	Furnace Atomic Absorbtion (AA) QC Analysis			
16.1	Are duplicate injections present in furnace raw data for each sample analyzed by GFAA?			x
1 6.2	Do the duplicate injection readings agree within 20% Relative Standard Deviation (RSD) or Coefficient of Variation (CV) for concentration greater than CRDL?			x
16.3	Was a dilution analyzed for sample with analytical spike recovery less than 40%?			x
16.4	Is analytical spike recovery outside the control limits (85 - 115%) for any sample?			x
17.0	Form VIII (Method of Standard Addition Results)			
17.1	Present?			x
17.2	If no, is any Form I result coded with "S" or a "+"?			x
17.3	Is coefficient of correlation for MSA less than 0.990 for any sample?			x
17.4	Was MSA required for any sample but not performed?			x
17.5	Is coefficient of correlation for MSA less than 0.995?			x
17.6	Are MSA calculations outside the linear range of the calibration curve generated at the beginning of the analytical run?			x
17.7	Was proper Quantitation procedure followed correctly as outlined in the SOW on page E-23?			x

Data Validation Checklist - Part B: Metals Analyses

Û

ļ

Ì

Ĵ

Ì

Ì

Í

Ĩ

Î

ļ

No:	Parameter	YES	NO	N/A
18.0	Dissolved/Total or Inorganic/Total Analytes			
18.1	Were any analyses performed for dissolved as well as total analytes on the same sample(s)?	x		
18.2	Were any analyses performed for inorganic as well as total (organic and inorganic) analytes on the same sample(s)?	x		
18.3	Is the concentration of any dissolved (or inorganic) analyte greater than its total concentration by more than 10%?		X	
18.4	Is the concentration of any dissolved (or inorganic) analyte greater than its total concentration by more than 50%?		x	
19.0	Form I (Field Blank)			
19.1	Is field blank concentration less than CRDL (or 2 x IDL when IDL>CRDL) for all parameters of associated aqueous and soil samples?	x		
19.2	If no, was field blank value already rejected due to other QC criteria?			x
20.0	Form X, XI, XII (Verification of Instrumental Parameters)			
20.1	Is verification report present for:			
	Instrument Detection Limits (quarterly)?	x		
	ICP Interelement Correction Factors (annually)?	x		
	ICP Linear Ranges (quarterly)?	X		
21.0	Form X (Instrument Detection Limits)			
21.1	Are IDLs present for:			
	all the analytes?	X		
	all the instruments used?	x		
	For both AA and ICP when both are used for the same analyte?			x
21.2	Is IDL greater than CRDL for any analytes?		x	
21.3	If yes, is the concentration on Form I of the sample analyzed on the instrument whose IDL exceeds CRDL, greater than 5 x IDL?			x
22.0	Form XI (Linear Ranges)			
22.1	Was any sample result higher than the high linear range of ICP?		x	
22.2	Was any sample result higher than the highest calibration standard for non-ICP parameters?		x	
22.3	If yes for any of the above, was the sample diluted to obtain the result on Form I?			x
23.0	Percent Solids of Sediments			
23.1	Are percent solids in sediment(s):			
	<50%?		 	x
	<10%?			x

Î