Addendum **Remedial Investigation Report** Area Of Concern #5 LNAPL/DNAPL Investigation

Farrell Road Plant Geddes, New York NYSDEC Site No. 734055

Prepared For: Lockheed Martin Corporation

> January 1996 Revised August 1996

BLASLAND, BOUCK & LEE, INC. ENGINEERS & SCIENTISTS

6723 Towpath Road Syracuse, New York 13214 (315) 446-9120

Table of Contents

-

1.0	INTRODUCTION	
2.0		
2.0	FIELD ACTIVITIES AND RESULTS 2.1 Fluid Thickness Monitorian Advantage	
	Drining and Sampling of Soil Borings	
	2.3 NAPL Monitoring and Removal	
3.0	DISCUSSION	
4.0		
7.0	SUMMARY	
TAB	LES	
1	Fluid Thiskness Martin Land	
2	Fluid Thickness Monitoring Results	
3	NAPL Analytical Results (VOCs and Physical Parameters) Soil Boring Geologic and Drilling Data	
4	Summary of Soil Analytical Results (VOCs)	
5	NAPL Monitoring and Removal Results	
FIGU		
1	Site Map	
2	NAPL Thickness Summary	
3	Geologic Cross Section A-A'	
4	Observed DNAPL Thickness at VRW-203	
ATTA	CHMENTS	
2 (Information from Historical Investigations at AOC #5	
	Chemical Data Summary Report for NAPL (VOCs) Physical Data for NAPL Samples (Density VI)	
4 (Physical Data for NAPL Samples (Density, Viscosity, and Interfacial Tension) Chemical Data Summary Report for Soils (VOCs and TOC) Physical Data for Soils	
5 F	Physical Data for Soils	
) I	hreshold Concentration Calculations	
΄ Γ	NAPL Pool Height Calculation Summary	

1.0 INTRODUCTION

This Addendum to the Remedial Investigation (RI) Report presents the results of an investigation conducted to evaluate the presence, extent, and composition of light, non-aqueous phase liquids (LNAPLs) and to assess whether dense, non-aqueous phase liquids (DNAPLs) are present in the subsurface at Area of Concern #5 (AOC #5) at the Farrell Road Plant in Geddes, New York. The site map included as Figure 1 indicates key site features, including: approximate former underground solvent storage tank (UST) locations, the approximate location of a former dry well, soil boring locations within the area of investigation, and components of the soil vapor extraction (SVE) system (vapor extraction/air injection wells and equipment building). Attachment 1 includes selected text, figures, boring logs, and data tables from previous investigations at AOC #5.

The USTs were removed in 1986 and the dry well was removed in 1992. During subsurface investigations in the vicinity of the former solvent tanks and dry well beginning in 1992 (ERM, 1992), residual solvents were observed to be present in the soil based on field screening and laboratory analysis. LNAPL was observed at the approximate depth of the water table at borings and test pits installed near the location of the former solvent tanks. Soil sampling and analysis and a soil gas survey indicated elevated volatile organic compound (VOC) concentrations, including chlorinated and aromatic hydrocarbons, in the soil. A ground-penetrating radar survey indicated disturbed soil and buried pipes in the vicinity of the former tanks. Ground-water samples obtained upgradient (west) of the former tank locations contained only trace VOC concentrations. However, downgradient of the tanks, beneath the building, a suite of dissolved VOCs was detected similar to those in the vicinity of the former tanks. Geologic characterization based on soil borings indicated a till consisting of dense, red silt and clay located approximately 7 to 12 feet below grade. The till surface, which dips toward the south, was interpreted as a confining layer. Following the installation of SVE system wells in October 1994, free-phase LNAPL was observed at four of the wells. DNAPL was not monitored at the wells prior to the investigation activities in September to November 1995, which are

The scope of work for the investigation activities described in this RI Addendum was described in the letter to the New York State Department of Environmental Conservation (NYSDEC) dated July 14, 1995; approved by the NYSDEC in a letter dated September 11, 1995; and implemented by Blasland, Bouck & Lee, Inc. (BBL) between September 15 and November 2, 1995. Modifications to the scope of work, based on field conditions, were approved by the NYSDEC. These modifications included the installation of additional soil borings BBL-2 and BBL-5 (discussed in Section 2.2) and the implementation of a NAPL monitoring and removal program (discussed in Section 2.3). The preliminary results of the investigation were presented to the NYSDEC project manager and staff geologist in a conference call on November 10, 1995.

This RI Report Addendum is presented in the following sections:

- Section 1: Introduction, which provides the background and framework for this RI Report Addendum;
- Section 2: Field Activities and Results, which briefly describes the field sampling procedures and presents the field data;
- Section 3: Discussion, which presents the substantive findings based on the data generated during the investigation; and
- Section 4: Summary, which highlights the key results of the LNAPL/DNAPL investigation.

2.0 FIELD ACTIVITIES AND RESULTS

The following section describes the field investigation activities performed to evaluate the presence and distribution of LNAPL and DNAPL.

2.1 Fluid Thickness Monitoring and NAPL Sampling

BBL obtained two rounds of fluid thickness measurements at accessible monitoring locations near AOC #5 on September 15 and September 25, 1995, using an oil/water interface probe and a bottom-loading bailer. The fluid thickness monitoring data are presented in Table 1 and summarized on Figure 2. LNAPL was observed at wells AIW-201, AIW-204, AIW-206, and VRW-207. The maximum LNAPL thicknesses observed during these monitoring events ranged from 0.02 feet at AIW-201 to 1.32 feet at VRW-207. DNAPL was observed at two locations, with maximum observed thicknesses ranging from 0.2 feet at AIW-201 to 2.37 feet at VRW-203.

Three LNAPL samples from wells AIW-204, AIW-206, and VRW-207 and one DNAPL sample from well VRW-203 were collected on September 25, 1995 and submitted to Adirondack Environmental Services, Inc. (AES) for VOC analyses by USEPA Method 8260. These wells were selected for NAPL sampling because they were found to contain sufficient NAPL for laboratory analysis. A blind duplicate DNAPL sample from well VRW-203 was also submitted for analysis. In addition, an LNAPL sample from well VRW-207 and a DNAPL sample from well VRW-203 were submitted to Saybolt-Heinrici, Inc., for measurement of viscosity by ASTM D-445, density by ASTM D-4052, and interfacial tension by ASTM D-971. The LNAPL/DNAPL VOC analytical and physical parameter results are presented in Table 2 and the chemical and physical data are included as Attachments 2 and 3, respectively. The three LNAPL samples consisted primarily of xylenes, toluene, 1,1,1-trichloroethane (TCA), and ethylbenzene. The composition of the DNAPL sample was similar, consisting of the same compounds detected in the LNAPL plus trichloroethene (TCE). The average chemical mole fractions (i.e., the ratios of chemical constituents, based on the number of moles of the compounds per mass of NAPL) were calculated for the three LNAPL samples and for one DNAPL sample, as summarized below:

Compound	Specific Gravity (g/cm ³)	Average LNAPL Mole Fraction	Average DNAPL Mole Fraction
TCA	1.34	10 %	35 %
Toluene	0.87	36 %	53 %
Ethylbenzene	0.87	8.0 %	2.0 %
Xylenes	0.86 - 0.88	46 %	10 %
TCE	1.46	ND	0.4 %

Note:

ND = not detected.

Mole fraction percentages are rounded to two significant figures.

The measured densities of the LNAPL from VRW-207 and the DNAPL from VRW-203 were 0.89 and 1.03 grams per cubic centimeter (g/cm³), respectively, compared to a specific gravity of 1.0 g/cm³ for water. The chemical and physical NAPL results were used to assess the nature and extent of NAPLs in AOC #5, as described in Section 3.0 of this RI Report Addendum.

2.2 Drilling and Sampling of Soil Borings

Five soil borings (BBL-1 through BBL-5) were drilled by Parratt-Wolff, Inc. (PW) as directed by BBL, from September 25 to 27, 1995. Proposed drilling locations were adjusted in the field as necessary, based on utility locations and drill rig access. Borings BBL-1, BBL-3, and BBL-4 were drilled at approximately the proposed locations. BBL-2 was drilled at a location agreed upon with the NYSDEC to evaluate the extent of LNAPL. In accordance with a NYSDEC request, BBL-5 was added southwest of BBL-4 to evaluate the extent of DNAPL. Final drilling locations were agreed upon in the field by BBL and the on-site NYSDEC representative. The approximate drilling locations, based on BBL field tie-ins to select site features, are shown on Figure 1.

PW installed the borings with a CME-55 drill rig equipped with 4.25-inch inner-diameter (I.D.) hollow-stem augers. The subsurface soils were continuously sampled with 2-inch diameter split-spoons samplers. Drilling and sampling equipment were decontaminated by steam cleaning prior to drilling, between borings, and after the completion of site activities. Each boring was filled to grade with cement/bentonite grout upon completion. Investigation-derived soils and fluids were containerized and stored in the waste storage area on site.

Three of the borings (BBL-2, BBL-3, and BBL-4) were sampled until till was confirmed. Two deeper borings (BBL-1 and BBL-5) were sampled 17 feet and 7.5 feet into the till, respectively, to characterize the till. No evidence of NAPL or VOC contamination was observed at these locations. Therefore, as approved by the on-site NYSDEC representative, temporary casings were not installed prior to drilling into the till. An apparent slight sheen and solvent odor were observed in the soil sample obtained at BBL-4 between 12.5 and 13 feet below ground surface (bgs). This observation necessitated the addition of another boring (BBL-5) to the southwest of BBL-4, to delineate the extent of potential residual DNAPL. Prior to drilling at BBL-5, this additional boring location was agreed upon by BBL and the on-site NYSDEC representative.

Each soil sample was field screened with a photoionization detector (PID). Further, each soil sample was described, using the modified Burmister (1959) soil classification system, and placed in a sealable plastic bag for subsequent headspace analysis with a PID equipped with a 11.7 eV lamp. The soil boring geologic and drilling data are presented in Table 3. As shown in Table 3, the soils encountered above the till were generally described as medium-brown fine sand, with some to trace silt, and trace fine gravel. These soils were underlain by dense, hard till generally described as red-brown clayey silt and fine sand, with trace fine gravel. Figure 1 shows the location of a generalized geologic cross-section trending southwest-northeast through AOC #5. As shown on the geologic cross section (Figure 3), the till encountered at the site dips generally to the southwest in the vicinity of AOC #5.

8/19/96 05951126U

BLASLAND, BOUCK & LEE, INC. ENGINEERS & SCIENTISTS

4

To aid in detecting NAPL, soil samples were field screened with a long-wave/short-wave ultraviolet (UV) lamp and Sudan IV hydrophobic dye, as described by Cohen, et al. (1992). Each soil sample tested negative for the presence of NAPL, based on the UV and hydrophobic dye field screening. In addition, as discussed in Section 3.0, none of the soil samples submitted for laboratory analysis exhibited VOC concentrations indicative of NAPL in soil. These findings contrast with the PID screening results and observation of an apparent sheen in the soil sample obtained at BBL-4 from 12.5 to 13 feet bgs. Based on the negative results for the other indicators of NAPL, however, if NAPL was present in this sample, it was an extremely limited, residual quantity. No other soil sample showed any evidence of NAPL, based on field screening and observation.

To further evaluate the distribution of NAPL in the AOC #5 subsurface soils and confirm field observations, BBL selected soil samples for VOC analysis by USEPA Method 8260 with NYSDEC ASP 91-1 protocols and total organic carbon (TOC) by the Lloyd Kahn Method and submitted them to AES. Soil samples were collected near the water table (8 to 10 feet bgs) at borings BBL-1, BBL-2, and BBL-3 to evaluate the distribution of LNAPL. Additional soil samples were obtained near the top of the till unit at all five borings (BBL-1 through BBL-5) to evaluate the distribution of DNAPL along the top of this relatively impermeable unit. These samples were obtained at depths varying from 16 to 16.4 feet at boring BBL-1 to 24 to 26 feet at boring BBL-5. Soil samples were also collected to provide a vertical profile of TOC content at BBL-1 from 4 to 14 feet bgs, and from two samples within the till unit (16 to 18 and 20 to 22 feet bgs) to support partitioning calculations and evaluate the NAPL distribution. In addition, selected soils were submitted to PW for physical characterization, including grain size analyses, bulk density, percent moisture, and porosity. Physical parameters were analyzed to evaluate the potential for further downward migration of DNAPL into the subsurface soils. The soil samples selected for each analysis are indicated on Table 3. Laboratory VOC results are provided as Attachment 4 and summarized in Table 4. Physical parameter results are provided as Attachment 5.

As shown in Table 4, methylene chloride, acetone, 1,1-dichloroethene, 1,1-dichloroethane, TCA, and toluene were occasionally detected in the soil samples at low part per billion (ppb) levels at estimated concentrations (i.e., J-qualified by the analytical laboratory) below the detection limit. Acetone was also detected in an associated blank (i.e., B-qualified by the analytical laboratory). Besides these J- and B-qualified VOC detections, tetrachloroethene (PCE), ethylbenzene, and xylenes were detected and quantified in one soil sample, obtained at boring BBL-4 from 12 to 14 feet bgs. A blind duplicate sample from this interval was also submitted to AES for VOC analysis. Between the original sample and its duplicate, the maximum observed detections were xylenes at 950 micrograms per kilogram (ug/Kg), PCE at 130 ug/Kg, and ethylbenzene at 79 ug/Kg. Ethylbenzene was not detected in the duplicate analysis.

TOC concentrations in BBL-1 soil samples ranged from 463 milligrams per kilogram (mg/kg) from 4 to 6 feet bgs to 39,900 mg/kg from 20 to 20.8 feet bgs. In general, the TOC concentrations increased with depth to 10,590 mg/kg at a depth of 13 to 14 feet bgs, above the till. TOC concentrations in the till ranged from 2,130 mg/kg from 16 to 18 feet bgs to 39,900 mg/kg from 20 to 20.8 feet bgs.

8/19/96 05951126U

BLASLAND, BOUCK & LEE, INC. ENGINEERS & SCIENTISTS

5

2.3 NAPL Monitoring and Removal

To provide a semi-quantitative assessment of NAPL recharge rates at wells VRW-203 and VRW-207, BBL implemented a NAPL monitoring and removal program, as described in a letter dated October 6, 1995. These wells were selected for the NAPL monitoring and removal program because they contained a sufficient initial thicknesses of DNAPL or LNAPL, respectively, to allow a reliable assessment of NAPL recharge rates. The program was approved by the NYSDEC in a letter dated October 10, 1995. Wells VRW-203 and VRW-207 were monitored for the presence of NAPL over a four week period on the following schedule:

- Three times per week for the first two weeks; and
- Twice per week for the last two weeks.

A transparent, bottom-loading bailer was used to measure the NAPL thickness and to remove any NAPL present to the extent practicable. The data obtained from this NAPL monitoring and removal program are summarized in Table 5.

During the NAPL monitoring and removal program, approximately 6 gallons of DNAPL were removed from well VRW-203 and 1.7 gallons of LNAPL were removed from well VRW-207. The DNAPL thickness observed at well VRW-203 decreased from 2.3 feet on September 15, 1995, to 0.4 feet by October 30, 1995. As shown on Figure 4, the DNAPL thickness measured during each monitoring event (prior to DNAPL removal) generally decreased with time during the removal program. The NAPL removal effort also reduced the thickness of LNAPL at well VRW-207 from 1.5 feet on September 15, 1995, to a barely discernable film by October 11, 1995. To provide additional information, BBL also monitored the LNAPL thickness at wells AIW-201, AIW-204, and AIW-206, where LNAPL was observed on September 15 and 25, 1995. The highest LNAPL thickness observed at these wells were 0.02 feet at well AIW-201, 0.81 feet at well AIW-204, and 0.31 feet at well AIW-206. The LNAPL thickness at these locations was also reduced to little or no measurable LNAPL due to bailing during the course of this program.

3.0 DISCUSSION

During the investigation, LNAPL was observed in wells AIW-201, AIW-204, AIW-206, AIW-209, and VRW-207. DNAPL was observed at wells VRW-203 and AIW-201. A likely source of these NAPLs was the former underground solvent storage tanks, which were situated at the approximate location shown on Figures 1, 2, and 3. Another possible source of NAPL in the vicinity of AOC #5 includes a former dry well that was situated at the approximate location shown on Figures 1, 2, and 3. The USTs were removed in 1986 and the dry well was excavated during a source control action (ERM, Environmental Investigation Report, July 1992).

As shown on Figure 3, the former underground solvent storage tanks were located above a concrete slab, which would promote the mixing and co-solution of any solvent liquids released from the tanks. This inference is supported by the multicomponent LNAPLs and DNAPLs observed in the subsurface at AOC #5. For example, while the former underground solvent storage tanks containing toluene (Tank T-63) and TCA (Tank T-58) were approximately 15 feet apart, both of these compounds were detected at relatively high concentrations in both LNAPL and DNAPL samples obtained during the investigation.

LNAPL recovered from wells AIW-204, AIW-206, and VRW-207 consisted primarily of the following VOCs, in order of decreasing mole fraction: xylenes, toluene, TCA, and ethylbenzene. Similarly, the DNAPL recovered from VRW-203 consisted primarily of the following VOCs, also in order of decreasing mole fraction: toluene, TCA, xylenes, ethylbenzene, and TCE. Both the LNAPL and DNAPL are chemically similar, multicomponent NAPLs. The locations where the multicomponent DNAPL and LNAPL were observed are consistent with the analytical results from the NAPL samples obtained during the investigation. The LNAPLs have a higher proportion of light aromatic hydrocarbons, such as xylenes (specific gravity 0.86 to 0.88 g/cm³) and toluene (specific gravity 0.87 g/cm³). The DNAPL has a relatively high proportion of g/cm³).

The NAPL monitoring and removal program results illustrate that the DNAPL is recoverable. DNAPL continues to enter well VRW-203, although at an apparent reduced rate (Figure 4). The reduction in observed DNAPL thickness in well VRW-203 suggest that free-phase, mobile DNAPL in the surrounding soil has been reduced. LNAPL was reduced to barely discernable films during this program.

To delineate the extent of NAPL in soil, VOC detections in soil were compared to calculated threshold concentrations for NAPL constituents, above which NAPL would be inferred as present. Threshold concentrations were calculated based on partitioning principles presented by Feenstra, et al. (1991, Equation 14). To determine the threshold concentration, the effective solubility for each NAPL component was substituted for the chemical concentration of the contaminant in the pore water in Equation 14 (Feenstra, et al., 1991). Threshold value calculations are included in Attachment 6. The resulting threshold concentrations are presented below.

Chemical Constituent	LNAPL Threshold Concentrations (ug/Kg)	DNAPL Threshold Concentrations (ug/Kg)
TCA0	140,000	480,000
Toluene	480,000	710,000
Ethylbenzene	110,000	27,000
Xylenes	200,000	44,000
TCE	NA	5,400

Note:

NA = Not applicable.

These results indicate that the threshold concentrations that would indicate the presence of NAPL in soil are two to four orders of magnitude higher than the concentrations of NAPL components detected in soil (Table 4). Therefore, based on partitioning calculations, NAPL is interpreted as not present in the soil samples submitted to the laboratory for analysis.

The soil boring locations were selected in a configuration to delineate the extent of NAPL in AOC #5. Of the borings installed during this investigation, the locations of borings BBL-1, BBL-3, and BBL-4 were selected prior to field activities, based on a review of previous subsurface drilling logs and other available site information. Boring BBL-2 was installed at a location agreed upon in the field with NYSDEC. Due to the observation of a possible sheen and solvent odor at the 12.5- to 13- foot depth interval, BBL-4 did not extend into the till as originally proposed. Boring BBL-4 was terminated at the top of till, where the soil PID reading [4.2 parts per million (ppm)] was substantially less than at the 12.5- to 13- foot depth interval where a possible sheen was observed (770 ppm). Deep boring BBL-5 was performed southwest of BBL-4 to delineate the extent of VOCs in the subsurface and to characterize the till. A deep boring was also installed at BBL-1, as proposed, to evaluate the extent of VOCs hydraulically downgradient of AOC #5 and to characterize the till.

The field interpretation of an apparent sheen on a soil sample from boring BBL-4 (12.5- to 13-foot depth interval) suggests the potential presence of residual NAPL at that location. However, other NYSDEC-approved methods of detecting NAPL were negative with respect to the same soil sample. Ultra-violet luminescence and hydrophobic dye yielded negative screening results, and the laboratory analytical results from this soil sample indicated VOC concentrations that were two to four orders of magnitude below threshold concentrations indicative of NAPL in the soil. These results indicate that, if any NAPL was present in that soil sample, the NAPL quantity was extremely limited and "residual."

At borings BBL-1, BBL-2, BBL-3, and BBL-5, no indication of NAPL was observed, and detected VOC concentrations were orders of magnitude less than NAPL threshold concentrations. These four borings, in conjunction with the information obtained from the SVE system wells, are satisfactory to delineate the horizontal extent of LNAPL and DNAPL in the vicinity of AOC #5.

8/19/96 05951126U BLASLAND, BOUCK & LEE, INC. ENGINEERS & SCIENTISTS The physical characteristics of the till unit underlying AOC #5 indicate that this layer would impede the downward migration of DNAPL. In addition, the physical characteristics of the fine sand and silt layer above the till would prevent DNAPL from descending to the top of till. BBL used DNAPL mobility calculations to delineate the potential vertical extent of DNAPL at AOC #5. To evaluate downward DNAPL migration potential, BBL calculated the thickness of free-phase DNAPL ("pool height") required to initiate migration of DNAPL into either the till unit or the fine sand and silt layer observed above the till at BBL-4 and BBL-5. A summary table of these calculations is provided as Attachment 7. For this calculation, BBL used the till characteristics obtained during this investigation including porosity (0.2), estimated hydraulic conductivity based on grain-size data ($3.0x10^{-6}$ centimeters per second (cm/sec), per US Bureau of Reclamation estimation method (Vukovic and Soro, 1992), and DNAPL characteristics of density (1.03 g/ cm^3), and DNAPL interfacial tension (3 dynes/cm). Based on the maximum stable DNAPL pool height formula presented by Pankow and Cherry (1995), the pool height required to mobilize a hypothetical DNAPL pool into the till would be approximately 43 feet high. This calculation clearly demonstrates that the till would provide an effective capillary barrier that would prevent downward DNAPL migration. However, the DNAPL observed at well VRW-203 may not even descend to the top of till.

Stable pool height calculations were also performed to estimate the pool height required for DNAPL to migrate into the fine sand and silt layer above the till at AOC #5. These calculations assumed the same DNAPL characteristics, typical range of hydraulic conductivity values for fine sand and silt $[1x10^{-6} to 1x10^{-4} cm/sec$ (Fetter, 1988)], and a porosity value calculated based on the measured moisture content (0.4). The required pool height for DNAPL mobilization further into the fine sand and silt was calculated as 12 to 88 feet. The largest thickness of DNAPL observed at the site, approximately 2.3 feet, is substantially less than the calculated pool height required for DNAPL to penetrate the fine sand and silt layer above the top of till. These findings indicate that the DNAPL observed at AOC #5 has penetrated no further than the depth depicted in the geologic cross-section on Figure 3, and provide a technical basis from which the vertical distribution of DNAPL at AOC #5 can be considered delineated.

4.0 SUMMARY

The following is a summary of the results of this investigation:

- The horizontal and vertical extent of LNAPL and DNAPL in AOC #5 have been delineated to the extent practicable, based on NAPL thickness measurements, soil analytical data, and DNAPL mobility calculations using DNAPL and soil physical data.
- The DNAPL and LNAPL at AOC #5 are chemically similar, multi-component NAPLs; the proportion of each chemical constituent in the NAPL determines the physical characteristics of the NAPL.
- Comparison of soil concentrations to calculated NAPL threshold concentrations, and field screening for the presence of NAPL using ultra-violet luminescence and hydrophobic dye, suggest that residual NAPL was not present in the subsurface soil samples collected during this investigation. However, the observation of an apparent sheen on a soil sample from boring BBL-4 (12.5- to 13-foot depth interval) suggests the potential of residual NAPL at that location.
- The locations of the former underground solvent storage tanks above a concrete slab resulted in mixing of released solvent liquids into multicomponent LNAPL and DNAPL, and the distribution of LNAPL and DNAPL are consistent with the relative fractions of the dense (chlorinated) or light (non-chlorinated) solvent compounds in the multicomponent NAPL samples analyzed during this investigation.
- Pool height calculations indicate that a DNAPL pool height between 12 and 88 feet high would be required to initiate further DNAPL mobilization vertically downward into the fine sand and silt layer above the till. Thus, DNAPL likely has not reached, and will not reach the till.
- If the DNAPL were to reach the till, the DNAPL pool height required to exceed capillary forces and initiate mobilization of the DNAPL into the till is 43 feet. Thus, if DNAPL were to reach the till, it would not penetrate the till.
- Remediation of the LNAPL and DNAPL in AOC #5 will be further evaluated in the Feasibility Study.
- At this point it is believed that the LNAPL in AOC #5 will be addressed through the operation of the existing SVE system.
- At this point it is believed that the DNAPL in AOC #5 can be further evaluated through additional monitoring and removal by manual bailing using a bottom-loading bailer at well VRW-203.

Tables

- 1 Fluid Thickness Monitoring Results
- 2 NAPL Analytical Results (VOCs and Physical Parameters)
- 3 Soil Boring Geologic and Drilling Data
- 4 Summary of Soil Analytical Results (VOCs)
- 5 NAPL Monitoring and Removal Results

LOCKHEED MARTIN CORPORATION FARRELL ROAD PLANT, GEDDES, NEW YORK AREA OF CONCERN #5 LNAPL/DNAPL INVESTIGATION

FLUID THICKNESS MONITORING RESULTS

Number	Stickup	well *	Diameter of well (in.)	Depth to LNAPL * 9/15/95	Depth to Water * 9/15/95	Depth to DNAPL * 9/15/95	LNAPL Thickness (Probe/Bailer)	DNAPL Thickness (Probe/Bailer)	Depth to LNAPL * 9/25/95	Depth to Water * 9/25/95	Depth to DNAPL * 9/25/95	LNAPL Thickness (Probe/Bailer)	DNAPL Thickness (Probe/Bailer)	Commen
AIW-201	3.18	16.23	2	15.33	15.35	15.82	9/15/95	9/15/95			-,,	9/25/95	9/25/95	
AIW-202	-0.17	14.09	2		12.32	15.62	0.0/0.02	0.0/0.21	15.10	15.11		0.01/0.02	0/20/30	<u> </u>
AIW-203	3.24	15.69	2		15.10					12.42				
AIW-204	3.18	16.43	2	15.00	15.82		0.00/0.01			14.98		······································		·····
AIW-205	-0.23	13.09	2		12.14		0.82/0.81		15.07	15.28		0.21/0.18		с
AIW-206	3.20	17.09	2	14.73	15.32		0.59/0.31			12.24				
AIW-207	-0.26	12.43	2		12.11		0.59/0.31		14.80	15.00		0.07/0.20		c
AIW-208	3.21	6.34	2		No Water					12.15				<u>~</u>
AIW-209	3.34	16.91	2	15.53	15.79	·····	0.0/0.26			No Water				
AIW-210	-0.18	14.91	2		12.02		0.0/0.20			15.96				
VRW-201	-0.33	14.23	4		12.13					12.26				
/RW-202	3.94	14.18	4		No Water					12.13				
/RW-203	3.79	17.60	4		No Water	15.21	0.0/0.01	0.0010.00		No Water				
/RW-204	-0.28	13.31	4		12.30	10.21	0.0/0.01	2.38/2.32		No Water	15.23		2.37/1.93	P, C
/RW-205	-0.49	13.59	4		11.92					12.26				Y
/RW-206	-0.34	14.33	4		12.20					11.94				
RW-207	-0.47	14.40	4	11.72	13.32		1.60/1.49			12.08				
/RW-208	-0.36	14.63	4		11.91		1.00/1.49		11.80	13.12		1.32/0.73		P, C
/RW-209	-0.38	12.11	4		11.89					11.98				
/RW-210	3.76	17.60	4		15.24					11.98				
/RW-211	3.85	16.79	4		14.69					15.32				
'RW-212	4.41	19.11	4		15.30					14.7				• • • • • • • • •
otes: C										15.29			·····	

C - NAPL sampled on 9/25/95 and submitted for chemical characterization of VOCs by EPA Method 8260.

P - NAPL sampled on 9/25/95 and submitted for physical characterization (density, viscosity, and interfacial tension) by ASTM Methods. * - Referenced to top of inner casing, measured using oil/water interface probe.

All measurements in feet, except where otherwise noted.

Denth (ID)

Blank spaces indicate that LNAPL/DNAPL was not present.

1

F Wall

LOCKHEED MARTIN CORPORATION FARRELL ROAD PLANT, GEDDES, NEW YORK AREA OF CONCERN #5 LNAPL/DNAPL INVESTIGATION

NAPL ANALYTICAL RESULTS (VOCs AND PHYSICAL PARAMETERS)

	AIW-204	AIW-206	VRW-207	VRW-203	VRW-203(DUP)
VOCs (mg/L)			<u> </u>		
1,1,1-Trichloroethane	77000	98000	47000	400000	
Trichloroethene	5000 U	5000 U		460000	230000
Toluene	97000		12000 U	12000 U	7800 J
Ethylbenzene		250000 D	190000	490000	220000
Xylenes, Total	19000	64000	48000	18000	12000 J
PHYSICAL PARAMETERS	120000 B	390000	280000	98000 B	55000
Viscosity @5°C, cSt	NA	NA	0.05		
Density @10°C, g/cm3	NA		0.95	0.98	NA
nterfacial Tension @20°C. dynes/cm		NA	0.89	1.03	NA
	<u>NA</u>	NA	16	. 3	NA

NOTES:

All volatile organic compound (VOC) concentrations are reported in milligrams per liter (mg/L) equivalent to parts per million (ppm).

U = The compound was not detected.

B = The compound was also found in an associated blank.

D = The result was determined in a dilution run.

J = The concentration is estimated.

NA = Not analyzed.

cSt = centiStokes.

1

LOCKHEED MARTIN CORPORATION FARRELL ROAD PLANT, GEDDES, NEW YORK AREA OF CONCERN #5 LNAPL/DNAPL INVESTIGATION

SOIL BORING GEOLOGIC AND DRILLING DATA

Denting	Sample			Blow Counts	A 115
Boring	No.	Depth	Recovery	(per 6 inches)	Soil Description
BBL-1	S-1	0.0'-2.0'	1.9'	5-4-4-5	(modified Burmister, 1959)
	S-2	2.0' – 4.0'	1.6'	4-4-3-4	Topsoil – med. brown fine SAND, trace Silt, moist, loose.
	S-32	4.0' - 6.0'	1.7'	4-3-3-2	Med. brown fine SAND, trace Silt, moist, loose.
	S-4 ²	6.0'-8.0'	1.6'	5-3-3-4	Med. brown fine SAND, trace Silt, moist, loose.
	S-5 ^{1,2}	8.0'-10.0'	1.8'	3-2-5-4	S.A.A. w/ fine Sand/Silt layers, wet, loose.
	S-6 ²	10.0' - 12.0'	1.8'	5-7-8-6	Med. brown fine SAND, little Silt, wet, loose.
	S-7 ²	12.0' - 14.0'	1.6'	15-22-30-42	Med. brown fine SAND, little Silt, wet, med. dense.
	S-83,4,5	14.0' 16.0'	1.8'	20-20-21-19	Med. brown fine SAND, little Silt, wet, very dense.
	S-9 ^{1,2,3,6,7,8}	16.0'18.0'	2.0'	61-119-140-200/0.2	Red brown clayey SILT and fine SAND, trace fine Gravel, moist, hard. (TILL @ 13.0')
	S-10	18.0'-20.0'	1.9'		0.A.A.
	S-11 ²	20.0' - 22.0'	0.8	91-113-96-100/0.1'	
	S-121	22.0'-24.0'	1.9'	94-200/0.3'	S.A.A.
	S-13	24.0'-26.0'	0.3	46-97-119-134	S.A.A.
	S-14	26.0'-28.0'	-	59-100/0.2'	S.A.A.
	S-15 ³	28.0'-30.0'	1.7	26-46-67-84	S.A.A.
BBL-2	S-1	0.0'-2.0'	1.9	62-70-103-116	S.A.A.
	S-2	2.0'-4.0'	1.5'	14-9-13	Asphalt (0–0.2'), med. brown fine SAND, trace Silt, moist, med. dense.
	S-3	4.0'-6.0'	1.7'		med. brown the SAND, little Silt, moist thinly bedded med dones
	S-4	6.0'-8.0'	1.6'	6-5-4-6	Med. brown fine SAND, little Silt, moist, loose.
	S-51	8.0'-10.0'	1.6'	5-3-3-5	S.A.A.
	S-6		1.7'	4-5-4-3	Med. brown fine to medium SAND, little Silt, saturated, loose.
	S-7	10.0'-12.0'	1.6'		S.A.A.
	S-81	12.0'-14.0'	1.7'		S.A.A.
BBL-3	S-8 S-1	14.0'-16.0'	1.0'	14-12-13-23	Red-brown clayey SILT and fine SAND, little fine Gravel, moist, hard. (TILL @ 14.0')
0	S-2	0.0'-2.0'	0.8'		Asphalt (0 – 0.5'), med. brown fine to medium SAND, trace fine Gravel, moist, hard. (IILL @ 14.0') Med. brown fine SAND, trace Silt, moist.
	S-3	2.0'-4.0'	1.8'	8-9-11-13	Med. brown fine SAND, trace Silt, moist, med. dense.
1	S-3 S-4	4.0'-6.0'	1.6'	J-5-5-5	S.A.A.
	S-4 S-5 ¹	6.0'-8.0'	1.7'	4-3-2-2	S.A.A., saturated at 7.5'.
	-	8.0'-10.0'	1.6'		S.A.A.
	S-6	10.0'-12.0'	1.5'		S.A.A.
	S-7 ¹	12.0'14.0'	1.5'	_	S.A.A.
	S-8	14.0'-16.0'	1.8'		
	S-9	16.0' 18.0'	1.8'		Med. brown fine to medium SAND, trace Silt, moist, med. dense. S.A.A.
	S-10	18.0' - 20.0'	0.8		S.A.A. S.A.A.
	S-11	20.0' - 22.0'	0.4'		
	S-12 ¹	22.0'-24.0'	1.0		Red brown clayey SILT and fine SAND, little fine to medium Gravel, moist. (TILL @ 20.0 S.A.A.

4

.

1

LOCKHEED MARTIN CORPORATION FARRELL ROAD PLANT, GEDDES, NEW YORK AREA OF CONCERN #5 LNAPL/DNAPL INVESTIGATION

SOIL BORING GEOLOGIC AND DRILLING DATA

	Sample			Blow Counts	
Boring	No.	Depth	Recovery		Soil Description
BBL-4	S-1	0.0'-2.0'	1.7'	(per 6 inches)	(modified Burmister 1950)
	S-2	2.0'-4.0'	1.9	4-4-7-8	Topsoil (0-0.3'), med, brown fine to medium SAND trace City metal
	S-3	4.0'-6.0'	1.9	9-11-12-10	med. brown line to medium SAND, trace Silt moist mod dones
	S-4	6.0'-8.0'	1.0 1.7'	8-9-9-8	med, brown fine SAND, little Silt, moist, med, dense
	S-5	8.0'-10.0'		8-6-4-7	S.A.A., wet.
	S-6	10.0' - 12.0'	1.9'	2-2-5-5	S.A.A., saturated at 8.5'.
	S-7 ¹		1.8'	5-5-5-5	S.A.A.
	S-8	12.0'-14.0'	1.6'	2-3-6-5	S.A.A., sheen from 12.5' to 13.0', solvent odor.
	S-9 ^{3,4}	14.0' 16.0'	1.7'	7-10-12-9	Med. brown fine SAND and SILT, saturated, no odor, med. dense.
		16.0'-18.0'	1.6'	8-10-8-7	S.A.A.
	S-10	18.0'-20.0'	1.5'	WOH-10-10	S.A.A.
	S-11 ¹	20.0'-22.0'	1.8'	5-6-5-115	
	S-1	0.0'-2.0'	1.0'	35-43-36	S.A.A. to 21.5', @ 21.5', red brown clayey SILT and fine SAND, moist, hard. (TILL @ 21.5') Asphalt (0-0.2') FILL = coarse GRAVEL little second fine SAND, moist, hard. (TILL @ 21.5')
	S-2	2.0'-4.0'	1.8'	15-9-8-7	
ł	S-3	4.0'-6.0'	1.8'	6-7-5-10	Med. brown fine to medium SAND, trace Silt, trace fine Gravel, moist, medium dense.
i	S-4	6.0'-8.0'	1.6'	10-10-3-5	mouth mouth inte Clavev Sit molet modium dance
	S-5	8.0' - 10.0'	1.7'	9-3-2-3	Med. brown fine to medium SAND, little clayey Silt, moist, medium dense.
	S-6	10.0' – 12.0'	1.6'	3-2-3-4	mod. brown line SAND, little to some clavey Silt saturated tages
	S-71	12.0'-14.0'	1.5'	4-4-5-4	Med. brown fine to medium SAND, trace clayey Silt, saturated, loose.
1	S-8	14.0'-16.0'	0.4	3-2-3-2	Med. brown fine to medium SAND, trace Silt, saturated, loose.
	S-9	16.0' 18.0'	1.8'	5-5-4-5	Med. brown fine SAND, little Silt, saturated, loose. S.A.A.
	S-10	18.0'-20.0'	1.8'	3-4-4-10	
	S-11	20.0'-22.0'	1.8'	WOH-WOH-3-3	Med. brown fine to medium SAND, some clayey Silt, saturated, loose.
	S-12	22.0'-24.0'	1.7	5-5-4-5	0.0.0
	S−13 ¹	24.0'-26.0'	1.7'	6-8-9-8	Med. brown fine to medium SAND and SILT, saturated, loose.
:	S-14	26.0'-28.0'	1.1	10-25-30-39	5.A.A. 10 25.5 . (TILL @ 25.5')
:	S-15 ¹	28.0'-30.0'	0.8'		Red brown clayey SILT and fine SAND, trace fine to medium Gravel, moist, hard.
	S-16	30.0' - 32.0'	1.2'	29-38-65	The state of the s
		01.0		NA	Red brown clayey SILT, little fine to medium Gravel, moist, hard.

Notes:

S.A.A. = Same as above.

-

NA = Not available.

WOH = Weight of hammer.

¹ Soil sample submitted for laboratory analysis of volatile organic compounds (VOCs) by ASP 91-1 methods.

² Soil sample submitted for laboratory analysis of total organic carbon (TOC) by Lloyd Khan methods.

³ Soil sample submitted for laboratory analysis of Natural Moisture Content by ASTM D2216.

⁴ Soil sample submitted for laboratory Sieve Analysis by ASTM D422 & D1140.

⁵ Soil sample submitted for laboratory Hydrometer Analysis by ASTM D422.

⁶ Soil sample submitted for laboratory Specific Gravity Analysis by ASTM D854.

⁷ Soil sample submitted for laboratory Bulk (Natural) Soil Density Analysis by Corps of Engineers EM-1110-2-1906, Appendix II Displacement Method. ⁸ Soil sample submitted for laboratory Porosity Analysis by Corps of Engineers EM – 1110 – 2 – 1906, Appendix II.

Headspace screening measurements obtained using a Photoionization Detection unit (PID) with a 11.7 eV bulb. Additional screening using a long - wave/short - wave UV lamp and Sudan IV hydrophobic dye (Cohen & Mercer, 1993) indicated negative results on all samples screened

LOCKHEED MARTIN CORPORATION FARRELL ROAD PLANT, GEDDES, NEW YORK AREA OF CONCERN #5 LNAPL/DNAPL INVESTIGATION

SUMMARY OF SOIL ANALYTICAL RESULTS (VOCs)

VOCs	BBL-1 (8-10')	BBL-1 (16-16.4')	BBL-1 (22-24')	BBL-2 (8-10')	BBL - 2 (14-16')	BBL – 3 (8 – 10')	BBL-3 (12-14')
Methylene Chloride	12 U	44.11					<u>1.#17</u>
cetone	12 U	11 U 11 U	<u>11 U</u>	7 J	<u>8 J</u>	13 U	12 U
1 – Dichloroethene	12 U	11 U	<u> </u>	12 U	25 B	13 U	12 U
1 – Dichloroethane	12 U	11 U	<u>11 U</u>	12 U	11 U	13 U	12 U
1,1 - Trichloroethane	12 U	11 U	<u> </u>	12 U	11 U	13 U	12 U
bluene	12 U	1.1	<u> </u>	3 J	11 U	13 U	12 U
etrachloroethene	12 U	11 U	2 J	12 U	11 U	13 U	2 J
hylbenzene	12 U	11 U	<u> </u>	12 U	<u>11 U</u>	13 U	12 U
vlenes (Total)	12 U	11 U	<u> </u>	12 U	11 U	13 U	12 U
			<u>11 U</u>	12 U	<u>11 U</u>	13 U	12 U

VOCs	BBL-3 (22-24')	BBL-4 (12-14')	BBL-4 (12-14') (DUP)	BBL-4 (21-22)	BBL – 5 (12 – 14')	BBL – 5 (24 – 26')	BBL – 5 (28 – 30')
Methylene Chloride	11 U 11 U	30 U 24 J	30 U 30 U	12 U	12 U	11 U	12 U
,1 – Dichloroethene ,1 – Dichloroethane	11 U 11 U	30 U 30 U	30 U 30 U	12 U 9 J 12 U	9 J 12 U	11 U 11 U	12 U 12 U
, 1, 1 – Trichloroethane oluene etrachloroethene	11 U 6 J	30 U 30 U	30 U 30 U	8 J 4 J	12 U 12 U 12 U	3 J 10 J	12 U 12 U
thylbenzene ylenes (Total)	11 U 11 U	86 79	130 30 U	12 U 12 U	12 U 12 U 12 U	1 J 11 U	2 J 12 U
	<u> </u>	810	950	8 J	10J	<u> </u>	12 U 12 U

NOTES:

Volatile organic compound (VOC) results reported in micrograms per kilogram (ug/Kg) equivalent to parts per billion (ppb).

Table includes analytical results for detected VOC parameters only.

 $U\,=\,$ The compound was not detected; the detection limit is indicated. J = Estimated concentration.

B = The compound was also detected in an associated blank.

LOCKHEED MARTIN CORPORATION FARRELL ROAD PLANT, GEDDES, NEW YORK AREA OF CONCERN #5 LNAPL/DNAPL INVESTIGATION

NAPL MONITORING AND REMOVAL RESULTS

DNAPL Well VRW-203

Monitoring Date	DNAPL ' Thickness (ft.)	DNAPL ² Removed (gal)
9/15/95	2.32	
9/25/95	1.93	0.5
9/28/95	0.67	.20
9/29/95	0.5	1.5
10/9/95	1.7	0.12
10/11/95	0.9	0.82
10/13/95	1.2	0.54
10/16/95	1.4	0.46
10/18/95	0.55	0.37
10/20/95	0.55	0.22
10/24/95	0.71	0.22
10/27/95	0.27	0.41
10/30/95	0.44	0.12
1/2/95	0.44	0.24
		0.25

LNAPL Well VRW-207

Monitoring Date	LNAPL ' Thickness (ft.)	LNAPL ² Removed (gal)
9/15/95	1.49	0.20
9/25/95	0.73	0.20
9/29/95	0.93	1.30
10/9/95	0.01	0.00
10/11/95	Film	0.00
10/13/95	0.05	0.02
10/16/95	0.01	0.00
10/18/95	NA	NA
10/20/95	Film	0.00
10/24/95	0.02	0.00
10/27/95	Film	0.00
10/30/95	Film	0.00
11/2/95	0.02	0.00
Total Volume Removed		1.72

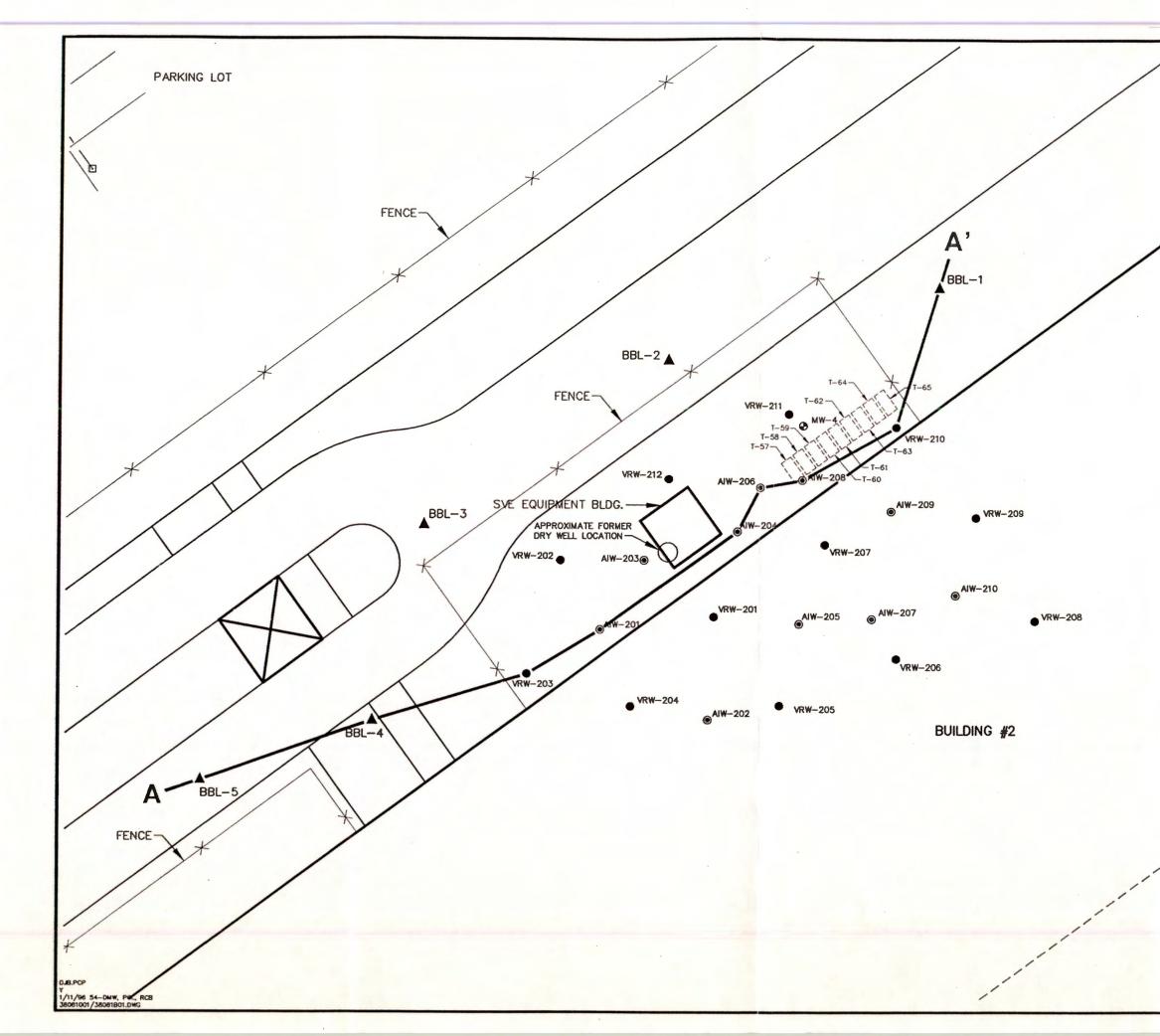
Notes:

NA = Not Accessible.

¹Maximum observed thickness during monitoring event, based on NAPL thicknesses observed in bailer.

² DNAPL and LNAPL removed to the extent practicable using bottom loading bailer, except on 9/15/95 and 9/25/95. NAPL monitoring performed on wells AIW-201, AIW-204, and AIW-206 indicated little or no measureable NAPL,

as discussed in the text.


TABLE5.WK3

Figures

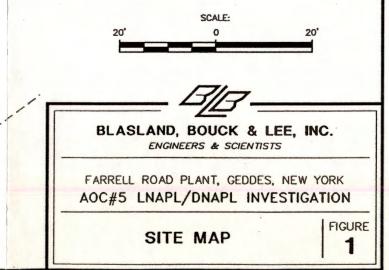
1 Site Map

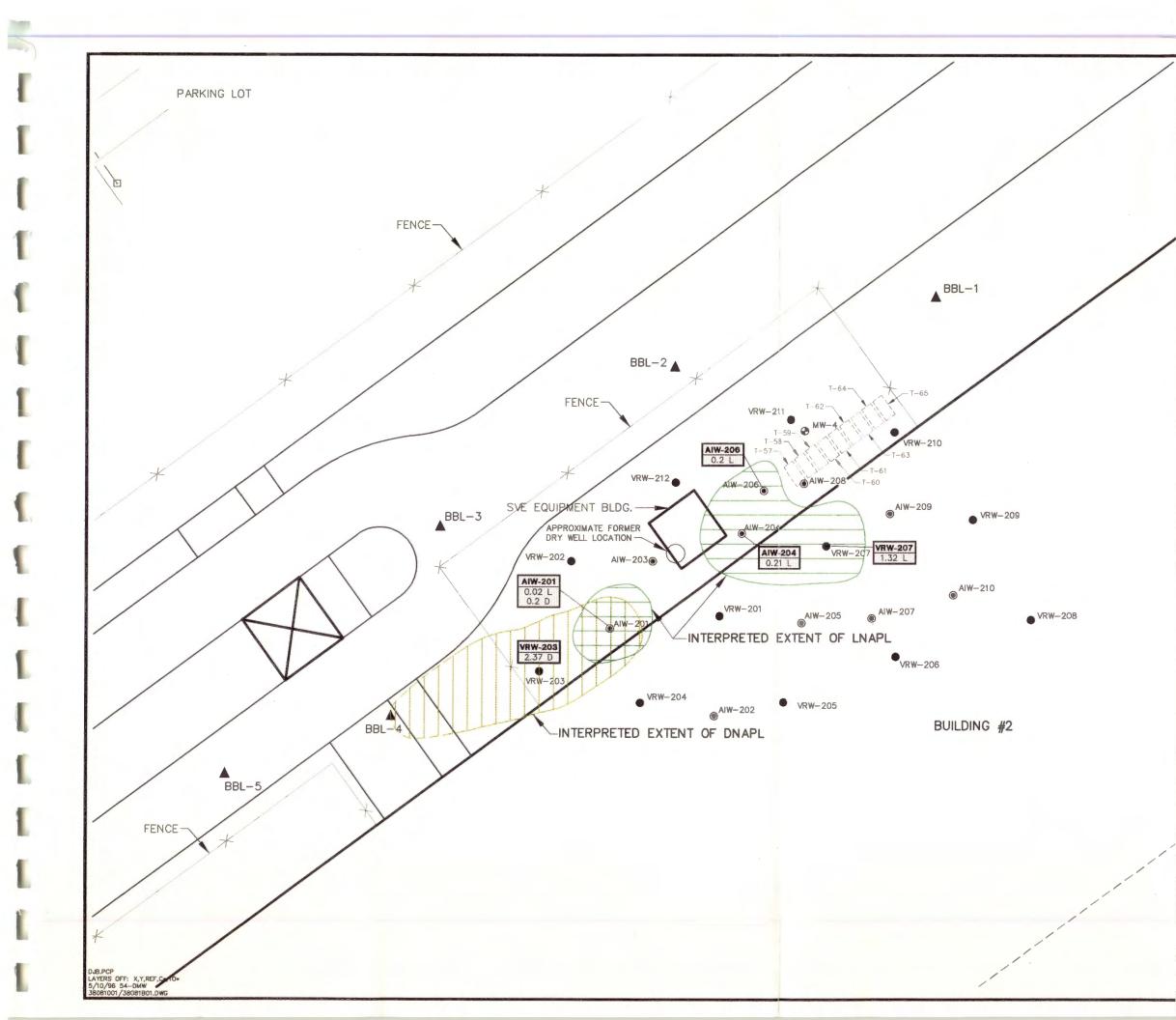
.

- 2 NAPL Thickness Summary
- 3 Geologic Cross Section A-A
- 4 Observed DNAPL Thickness at VRW-203

LEGEND

- MONITORING WELL (MW)
- AIR INJECTION WELL (AIW)
- VAPOR RECOVERY WELL (VRW)
- LNAPL/DNAPL INVESTIGATION SOIL BORING


A-A' CROSS SECTION LOCATION


NOTES:

1. BASE MAP PREPARED FROM D.W. HANNIG L. S., P.C. SURVEY DRAMING NUMBER J955493, DATED 5/10/95; PHOTOCOPY OF ERM DRAWING NUMBER P-2, DATED 9/93; PHOTOCOPY OF ERM DRAWING ENTITLED "LOCATIONS OF PNEUMATIC OBSERVATION WELLS AND VACUUM EXTRACTION WELL", DATED 10/93 AND MEASUREMENTS BY BBL FIELD PERSONNEL.

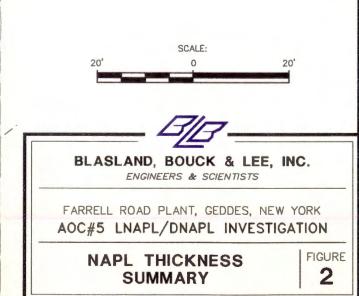
2. ALL LOCATIONS ARE APPROXIMATE.

3. TANK INFORMATION FROM HISTORIC GE PLANS (DRAWING PL-1602 DATED 9/28/91 AND PL-2085 DATED 7/17/85).

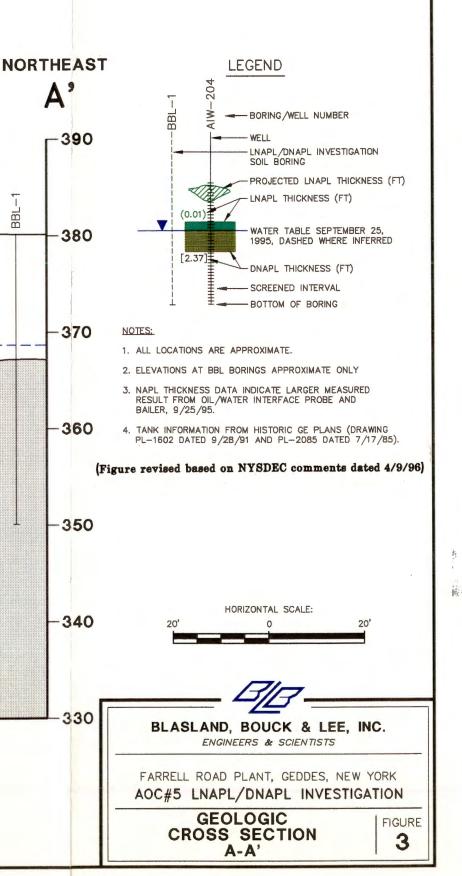
LEGEND

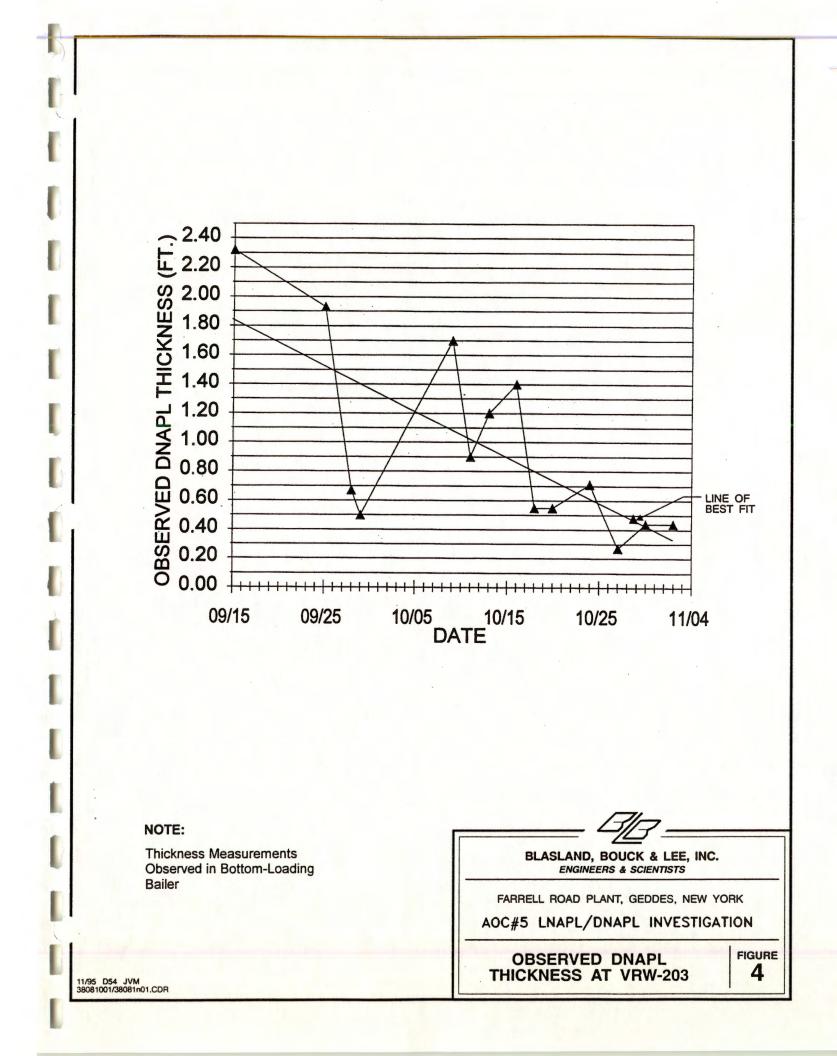
- MONITORING WELL (MW)
- AIR INJECTION WELL (AIW)
- VAPOR RECOVERY WELL (VRW)
- LNAPL/DNAPL INVESTIGATION SOIL BORING

NAPL THICKNESS (FT):



WELL NUMBER LNAPL THICKESS DNAPL THICKNESS


NOTES:


- 1. BASE MAP PREPARED FROM D.W. HANNIG L. S., P.C. SURVEY DRAWING NUMBER J955493, DATED 5/10/95; PHOTOCOPY OF ERM DRAWING NUMBER P-2, DATED 9/93; PHOTOCOPY OF ERM DRAWING ENTITLED "LOCATIONS OF PNEUMATIC OBSERVATION WELLS AND VACUUM EXTRACTION WELL", DATED 10/93 AND MEASUREMENTS BY BBL FIELD PERSONNEL.
- 2. ALL LOCATIONS ARE APPROXIMATE.
- TANK INFORMATION FROM HISTORIC GE PLANS (DRAWING PL-1602 DATED 9/28/91 AND PL-2085 DATED 7/17/85).
- NAPL THICKNESSES PLOTTED REFLECT MAXIMUM THICKNESS OBSERVED 9/25/95. THE OTHER AIW AND VRW WELLS WERE ALSO MONITORED, BUT CONTAINED NO MEASURABLE LNAPL OR DNAPL.

(Figure revised based on NYSDEC comments dated 4/9/96)

14') SOUTHWEST APPROXIMATE LOCATION OF REMOVED UNDERGROUND (PROJECTED SOLVENT TANKS (T-57 THRU T-65) A 390--203 VRW-210 201 AIW-206 20 VRW-207 SVE AIW-208 APPROXIMATE VRW. EQUIPMENT AIW-AIW FORMER DRY WELL BUILDING 5 ASPHALT LOCATION -- ASPHALT ASPHALT BBL BB BBL 380 COARSE GRAVEL AND SAND FINE TO MEDIUM SAND 58 59 60 61 62 63 64 FINE SAND, SOME SILT FINE SAND, SOME SILT 370 [2.37] ≣ (0.02) (0.21) (0.2) FINE TO MEDIUM THE P -FEE [0.2] ≣ L_(1.32) Ζ FINE SAND AND SILT LEVATION 360 TILL - RED/BROWN CLAYEY SILT AND FINE SAND, TRACE GRAVEL Ш 350 340-330 JB.PCP /10/96 54-DMW 8081001/38081CSA.DW0

Attachments

- 1 Information from Historical Investigations at AOC #5
- 2 Chemical Data Summary Report for NAPL (VOCs)
- 3 Physical Data for NAPL Samples (Density, Viscosity, and Interfacial Tension)
- 4 Chemical Data Summary Report for Soils (VOCs and TOC)
- 5 Physical Data for Soils
- 6 Threshold Concentration Calculations
- 7 DNAPL Pool Height Calculation Summary

Attachment 1

Information from Historical Investigations at AOC #5

-

-)

1992 ENVIRONMENTAL INVESTIGATION GE FARRELL ROAD PLANT TWO (FRP-2) SYRACUSE, NEW YORK

JULY 10, 1992

PREPARED FOR:

GE AEROSPACE ELECTRONICS PARK SYRACUSE, NEW YORK 13221

PREPARED BY:

ERM-NORTHEAST, INC. 6700 KIRKVILLE ROAD E. SYRACUSE, NY 13057

ERM-NORTHEAST PROJECT NO. 380.047.08

3. Removed Tanks on the East Side of FRP-2

It was reported by GE personnel that above ground tanks or storage trailers were used to store chemicals along the east side of FRP-2. The area was investigated with soil borings and no evidence of release was discovered. No further action is required at this area.

4. Removed Solvent Tanks and Drywell

Up to nine 275-gallon USTs, which had been used to store solvents, were located along the west wall of the building. The tanks were removed prior to ERM's involvement at the site. ERM advanced soil boring and excavated test trenches near the removed tanks. Field screening and laboratory analysis indicated that solvents were present in the soil and free-phase floating product was present on the ground water near the removed tanks.

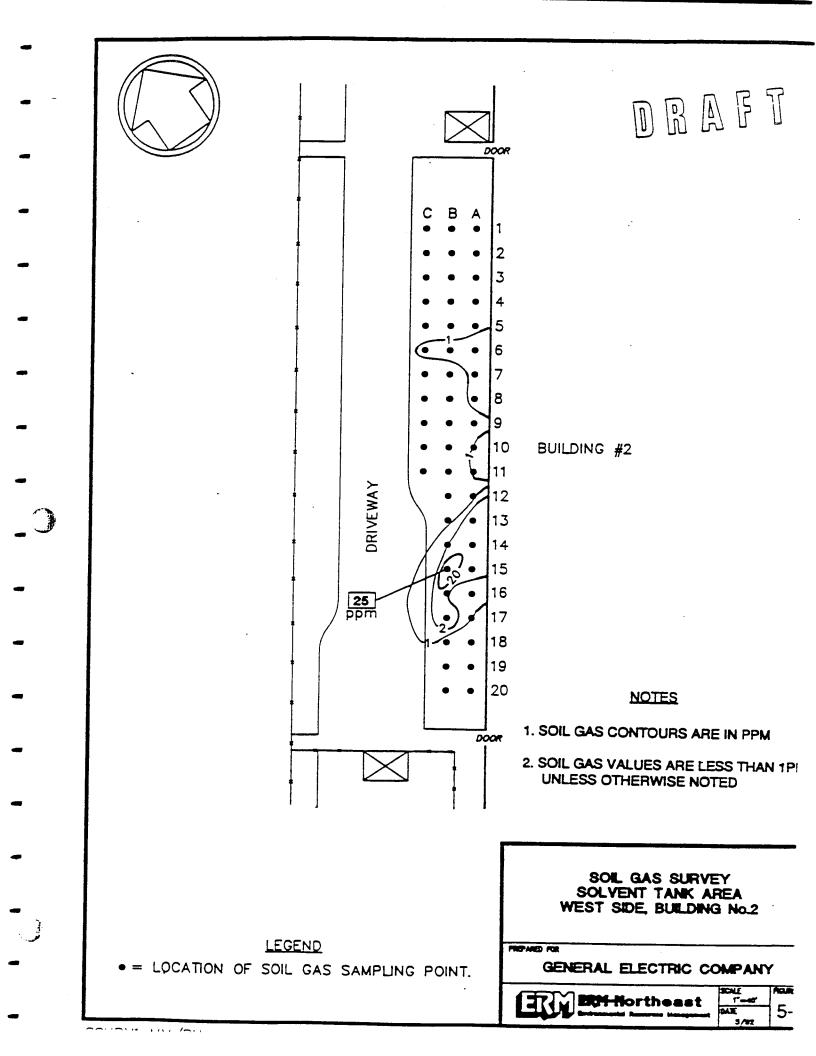
Further investigation revealed an unreported drywell near the removed solvent tanks. The drywell was part of the original building construction and was apparently used to hold "paint drippings" from the paint shop. Test trenches located the drywell and it was removed and disposed.

A release of solvents from the drywell and/or solvent tanks has impacted the soil and ground water adjacent to and beneath FRP-2 (detected VOC concentrations exceed NYSDEC ground water standards).

ERM recommends remediation of the soil in the vicinity of the drywell and removed USTs, and remediation of the ground water downgradient of the area. ERM recommends soil venting as the most appropriate method for soil remediation and source control. Soil venting in the source will need to be combined with hydraulic control of ground water to remediate downgradient excursions.

iv

-


5.4 Removed Solvent Tanks and Drywell

A review of building plans and plant personnel interviews indicated that up to nine solvent USTs and a drywell were located along the west wall of FRP-2 (Area 5, Plate 2). A soil gas survey of the area revealed elevated concentrations of VOCs in the soil (Figure 5-2). A GPR survey revealed buried pipes and a large area of disturbed soil, apparently at the location of the former tanks.

The initial soil boring program encountered residual solvents (Table 5-3) in the soil and ground water near the removed tanks (B13, B31 through B40 on Figure 5-3). The area of affected soil outside the building was readily and easily defined; however, the extent of solvent residuals beneath the building was not known at the end of the initial soil boring program.

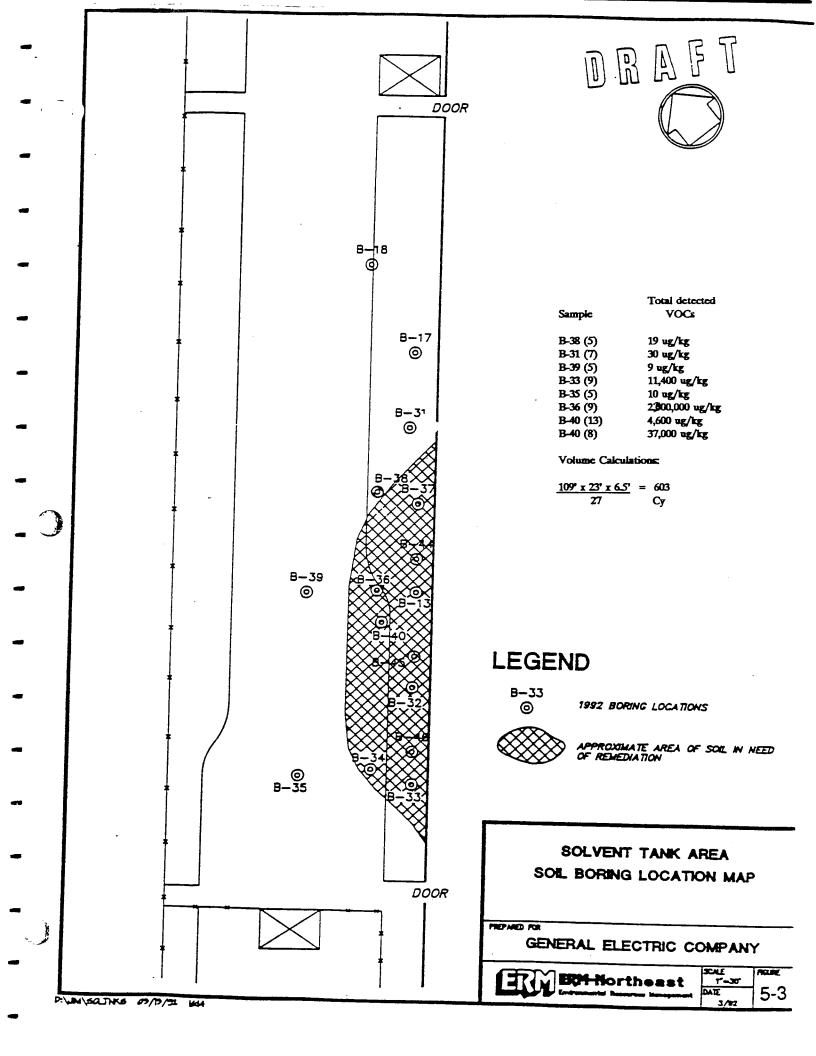
ERM conducted a soil boring program throughout the interior of FRP-2 to determine the extent of affected soil and ground water beneath the building. Soil borings were installed by first coring through the concrete floor of the building with a diamond tipped concrete corer. Hand augers were then used to drill the borings, which were generally less than 15 feet deep (see Plate 9 for the location of all soil borings around and beneath FRP-2). The area of affected soil, for the most part, is limited to the area around the solvent tanks and drywell, there is very little affected soil away from the source areas (Figure 5-3). Table 5-4 presents the analytical data from soil collected beneath the buildings. Boring B47, which is located adjacent to the solvent tanks and drywells contained the highest concentration of residual solvents. The suite of six compounds detected contained three chlorinated solvents (1,1-dichloroethene (1,1-DCE); 1,1-dichloroethane (1,1-DCA); and 1,1,1-trichloroethane (1,1,1-TCA) and three non-chlorinated solvents (toluene,

5-7

ANALYTE	B-12 (5)	B-13 (6)	B-17 (10)	B-18	B-31	B-32	B-33	8-34	B-35	B-38	8-37	8-38	B-39	B-40
1,1 DCE			(10)	(0-8)	t sign p	ala di Sila.								
								- 1		_	_	_		
1.2 DCE				-	-	-				·			1	
1,1 DCA										[
1,1,1-TCA	-	650,000		-	30	NS	17,000	NS	- <u>-</u>				<u> </u>	
TCE		-				├── ──			- <u>-</u>	140,000	NS	14	<u> </u>	34,000
Benzene						NS		NS			NS			1,600
				-			-		-			-	_	-
Toluene		2,100,000	-			NS	80,000	NS	10	740,000	NS	5	9	
Ethylbenzene		630,000		8	_	NS	2,400	NS		220,000	NS			220,000
МІВК		2,000,000			_									18,000
Xylenes	-	4,200,000				NS							-	
				_		CH	15,000	NS		1,200,000	NS			100,000
TOTAL	0	7,580,000	0		30		144,400		10	2,300,000		19	9	371,600

TABLE 5-3 VOC ANALYTICAL DATA SOIL NEAR REMOVED SOLVENT TANKS GE FARRELL ROAD PLANT

ł


NOTES:

All values are in ug/kg (ppb).

1.

No sample (field screeing only) for this boring. NS .

Compound not detected in this sample but present in another.
 All Samples analyzed for priority pollutant volatile organic compound; compounds not listed were not detected in any sample.

TABLE 5-4 VOC ANALYTICAL DATA SOIL BENEATH BUILDING 2 GE FARRELL ROAD PLANT

ŧ

ANALYTE	B44 (10)	B45 (8)	B47 (9)	B47A (9)	B52 (8)	B60 (7)	B 6 1 (8)	B82 (7)	B63 (8)	871 (15)	877 (8)
1,1-Dichloroethene			210	25	9	-	8		25		
1,1-Dichloroethane			140	28	42				10		
1,2-Dichloroethene	350		-								
1,1,1-Trichloroethane	1,300	80	12,000	40	6	-					
Toluene			5,600				_				
Ethylbenzene		-	3,800	160	1	-					
Xylenes			28,000	670	-						

NOTES:

N

NS No samples was collected from this location.

NA Sample not analyzed.

--- Analyte not present in this sample but found in another.

ł

* Only soil samples containing VOCs were reported. Soil samples with no detectable VOCs were not reported.

ethylbenzene, and xylenes). The majority of residual solvent in B47 was 1,1,1-TCA (12,000 μ g/kg) and xylenes (28,000 μ g/kg). Free phase solvent product was observed in the soil immediately above the water table. The soil in boring B47A contained relatively low concentrations of VOCs. The remainder of the borings also contained only minimal concentrations of VOCs in the soil. Figure 5-5 shows the areas of soil near the removed solvent tanks that contain high concentrations of residual solvent.

During the investigation, an abandoned "paint drippings" drywell was identified near the solvent tanks. The drywell was excavated under a source control action. The contents of the drywell were sampled and found to contain the same suite of VOCs as had been discovered in the soil in the solvent tank area (see drywell data in Appendix D.1).

Ground water samples were collected from upgradient (west of the building) and downgradient (beneath the building) directions. Upgradient samples contained only trace amounts of solvents. Downgradient samples contained a suite of compounds similar to the compounds detected in the solvent tanks and drywell area (analytical data are presented on Plate 10). The area of affected ground water extends eastward from the solvent tank area to approximately the center of the building (220 linear feet). From the center of the building it extends northward approximately two-thirds the length of the building (350 linear feet). The total area of affected ground water is approximately two-thirds the area of the building (200,000 square feet).

5.5 Printed Wire Board Assembly Area

GE operated a printed wire board (PWB) assembly area in the southwest corner of FRP-2 (Area 6, Plate 2). A plating facility, as well as etching and soldering baths, were active and used in the assembly process. Four USTs were also associated with the PWB: 1) T-53, an acid storage tank; 2) T-54, cupric chloride tank; 3) T-55, sewer settling tank, and 4) T-56, spill containment tank. To determine the environmental affect from these

5-12

Suite B-1, 6700 Kirkville Road, East Syracuse, New York, 13057

LOG OF BORING:

B - 13

Project name & location GE-FRP					Project number 380-047 Foremen J. Miranda Method		Date & time started: 1220pm				
Aquifer Drilling and Testing Drilling eukpment				Cate & time completed: Sempler(s) Sampler hi							
				E.H & W.M.			140 lb Completion des	5 fee			
Mobile	<u>B - 5</u>	3				4 1/2" HS/				-	
Bit(s)					2	Core berrekt		E. Hinchey			
DEPTH		S	SAMPL	ES		GRAPHIC					
	No.	Reco-		Hammer Bi		LOG		SOIL DESCRIPTION	N	REMARKS	
(ft below grade)		very (inches)	OVA (ppm)	(per 5 inch	#6) 						
o	1	12*	0	xxxxx				rown, SILTand GRAV	ÆL,		
- 1				23			roun	ded clasts, beach			
_				5							
2	2	4*		5			SAM	E AS ABOVE			
3				3							
	3	3"	3	32			DL P	rown, GRAVEL, SILT	and SAND		
_	5	-		1			wet,	IUWII, GINAVEL, SILI	and smith,		
5	4	19"	3 29	R 4			Botto	xm, Red-orange SAN	D and	Moved to 6' off	
6			17	4				n, fine SAND and SIL	Т	the bidg wall	
7	_	100	*	3						*100ppm	
(5	19"	95 *	4 2			SAM	E AS ABOVE, wet		High VOC's	
8			*	3						*200ppm	
9	6	16"	•	5			SAM	E AS ABOVE		*200ppm *200ppm	
			*	4			**	_		*300ppm	
10			65 70	7			-			**Evidence of free-phase	
11	7	20*	50 30	7			SAM	E AS ABOVE		product in	
12			30	3 3			Red.	CLAY layer		vocs	
13			2 1	4 3				·		decrease	
_				3							
14											
15											
16											
17											
18											
19											
20											

Suite B-1, 5700 Kirkville Road, East Syracuse, New York, 13057

LOG OF BORING:

B - 13

GE-FRI		stion			Project nue 380-047	ider	Date & time Date & time co		1220pm
Aquifer	YTH	ing and	Teet	ina	Forema J. Miran		Sampler(s) E.H & W.M.	Sempler ha	mmer Drop 5 fee
Orilling equip	ment			- 2	Method		Bevesion & deturn	Completion	and the second
Mobile Bit(s)	8-5	3			4 1/2" HS Core berry		inspector(s)		
	· · · ·				2º Split Sp		E. Hinchey		
DEPTH		5		ES	GRAPHIC				
(it below	No.	Reco- very		Hammer Blow (per 6 inches)			SOIL DESCRIPTIC	N	REMARKS
grade)		(Inches)	(ppm)						
0	1	12*	0	xxxx			rown, SILTand GRA	ÆL,	
1				23		roun	ded clasts, beach		
				5					
2	2	4*		5		SAM	E AS ABOVE		
3				3					
4	3	3"	3	3					
~	3	- -	3	2 1		Wet,	rown, GRAVEL, SILT	and SAND,	
5	4	19"	3	R		Botto	om, Red-orange SAN	D and	Moved to 6 off
6			29 17	4		GRA	VEL m, fine SAND and Sil	т	the bidg wall
	_		*	3					*100ppm
7	5	19"	95 +	4		SAM	E AS ABOVE, wet		High VOC:
8			-	3					*200ppm
9	6	16"	*	5		SVI	E AS ABOVE		*200ppm *200ppm
			•	4					*300ppm
10			65 70	7 6		**			**Evidence of
11	7	20"	50	7		SAM	E AS ABOVE		free-phase product in
12			30	3	·····				sample
			3 2	3 4		Hed,	CLAY layer		VOC's decrease
13			1	3					
14									
15									
Ì									
16									
17									
18									
19									
20			ł			1			

Suite B-1, 6700 Kirkville Road, East Syracuse, New York, 13057

LOG OF BORING:

B - 17

GE-FR					Project numb 380-047		Date & time co	mpleted: 1/22/92 mpleted: 1/22/92	210pm
Aquifer	Drill	ing and	Test	ing	Foreman J. Mirandi	8	E.H & W.M.	Sempler hanne 140 lb	r Drop 51a
Mobile	ment B - 5	3			Method 4 1/2" HS	۵.	Sevetion & datum	Completion dep	ih Rock d
Bit(s)					Core barrel(s 2" Spilt Spo	B)	E. Hinchey		
	[C. Milciney		
DEPTH	No.	Reco-	HNU	ES Hammer Blow	GRAPHIC LOG		SOIL DESCRIPTIO	N	REMARK
(it below grade)		very (inches)		(per 6 inches)		ł			
0	1	21*		xxxxx		Brow	n, siity SAND, massi	we dry	
				3		2" To			
1				5					
2	2	20*		7		Brow	n , silty SAND, mass	ive, drv	
				5			,,,,		
3				7 6					
4	3	18"		7		SAME	AS ABOVE		
		-		2					
5				2 2					
6		22*		5		SAME	AS ABOVE		
_				5					
7				6 7					
8	4	18"		7		SAME	AS ABOVE, wet		
				4					
9				5 6			•		
10	5	23"		5		SAME	AS ABOVE, wet		
11				4		** Deal 4	N AM		** Sampled for
··				8 8		clasts	CLAY, smail rounded wet	1	PAH, TPH and VOC's
12				8			,		
13									
14									
15			[
16									
17		l							
18									
19									
20									

Suite B-1, 6700 Kirkville Road, East Syracuse, New York, 13057

LOG OF BORING:

B - 18

Project name GE-FRI		noit			380	t number 047	Date & time co		
Aquiter	Drill	ing and	Test	ina		remen randa	Sampier(s) E.H & W.M.	Sempler hemmer 140 Ib	Drop 5 fee
Drilling equip	ment					ethod	Sevelon & detum	Completion dept	
Mobile Bit(s)	8-5	3			Core	HSA	Inspector(s)		
					2" Split	Spoon	E. Hinchey		
DEPTH		_	SAMPL			<u>SHIC</u>	SOIL DESCRIPTIC	NA I	REMARKS
(ft below	NO.	Reco- very		Hemmer Blov (per 6 inches		<u>x</u>	JUL DESCRIPTIO		nemenno
grade) -		(Inches)	(pom)						
0	1	21*	0				own, silty CLAY, massi Top soil	∨9,	
1				2					
2	2	18"	0	4 3		Br	wn, silty CLAY, massi	ve. damp	
_				3			,,		
3				4					
4	3	15"	0	4		SA 🖿	ME AS ABOVE		
5									
_				2					
6	4	24*	2			SA	ME AS ABOVE		
7			6						
8		18"		1		Bro	wn, silty CLAY, massi	ve, wet	
9				7 8					Water Table
_				10					
10				9		Bro	wn, medium coarse S	AND,	
11				4					
12				3		Real Real	1, CLAY, black angula FUSAL	r pieces	
13									
14									
15									
16									
17									
18									
19									
20									

Suite B-1, 6700 Kirkville Road, East Syracuse, New York, 13057

LOG OF BORING:

B - 31

Project nam GE-FR	P	ation				Project numb 380-047	¢	Date & time	ime started: completed:	2/3/92 2/3/92	1030em 1050em
Aquife	r Drill	ing and	Test	ing		Foremen J. Miranda	R	Sampler(s) E.H. & W.M.		Sampler hamme 140 Ib	r Drop 5 fee
Orting equit	B-5	3				Mathod 4 1/4" HS/		Bivition & datum	C	Completion dept	h Rock dept
Bit(s)	•				28	Core barrel(s 3" Split Sp) 10001	E. Hinchey			
	No.	Reco- very		ES Hammer (per 6 inc		<u>GRAPHIC</u> LOG		SOIL DESCRIPT	ION		REMARKS
grade)		(Inches)			- 1995)						
0	1	23	0	xxxxx 6				own, SILT and f/S topsoil	SAND, gra	lss	Frost on ground 3" split spoon
1				12 21			Brown	n, SILT and f/SAN	ID, some		
2	2	22	0	17			clay, c SAME	AS ABOVE			3" split spoon
3				11 7							
4	3	19	0	7 7			SAME	AS ABOVE	•		2" split spoon
5		-		3 4							
6	4	16	o	4 2			SAME	AS ABOVE			2" split spoon
7		_	0 ##	3			Wet				
8	5		0	9 13				layer , dry			## 8-20ppm
	5			4			_			1	2" split spoon
9				5 4			Brown wet	, silt and SAND, s	some clay	.	Water Table
10				6							
11											
12											
13											
14											
15											
16											
17											
18											
19											
20											

Suite B-1, 6700 Kirkville Road, East Syracuse, New York, 13057

LOG OF BORING:

B - 32

Project name		etion .				Project numb 380-047	er		Date & time started: ate & time completed;	7.7/.77	1100am 1140am
Drilling come Aquifer	Drill	ing and	Test	ing		Foreman J. Miranda	1	Sempler(s) E.H & W	/. M .	Sampler hamme 140 Bb	r Drop 5 feet
Drilling equip Mobile	ment					Method 4 1/4" HS/	1	Bevetton L		Completion dept	h Rock depth
Bit(s)						Core Derret(s)	E. Hinch			
DEPTH		į	SAMPL			GRAPHIÇ					
(ft below grade)	NG.	Reco- very (Inches)	OVA	Hammer Bi (per 6 inch					SCRIPTION		REMARKS
0	1	20	0	xxxxx					and CLAY, some		3" split spoon
1			1.5	11			Brow	n, SILT ar	al and roots nd f/ SAND, som	e	
2	2	17	25	13 14			clay l	ayers, dai	np		3" split spoon
<u>د</u>		• •		12							Headspace 6
3				11 11			SAME	E AS ABO	VE, wet with a		in hole 30ppm
4	3	24	20	6				OWT, CLA	Y layer 4" thick,		
5		-		4 6				wn, SILT	and f/SAND, dry	/	Free-phase product
5				7							product
6	4	22	70	4			SAME	E AS ABO	VE, bottom 2" we		PID > 300ppm VOC at 6
7				3				AS ABO	VE, wet with a		PID > 300ppm
8				4			liquid BOTT		ORING 80		VOC sample
											collected at 8'
9									were collected uids looked and		
10								ed differen			
11											
12											
13											
14											
15											
					ĺ						
16											
17											
18											
19											
										-	
20											

)

Suite B-1, 5700 Kirkville Road, East Syracuse, New York, 13057

LOG OF BORING:

B - 33

GE-FR	P				Project numb 380-047	er Date & time Date & time co		1253pm 120pm
Aquifer	Deny Defil	ing and	Test	ina	Foreman J. Miranda	Sampler(s) E.H.& W.M.	Sempler harmmer 140 lb	Drop 5 fee
Mobile	ment				Method 4 1/4" HSA	Breation & datum	Completion depth 10'0"	
Bit(s)					Core barrel(a 2"&3" Split Sp) Inspector(s)		
DEPTH			SAMPL		GRAPHIC			
(it below grade)	No.	Reco- very (Inches)	OVA	Hammer Blows (per 6 inches)	LOG	SOIL DESCRIPTION	N	REMARKS
0	1	20	0	xxxxx 28		Dk Brown, SILT and CLAY	, damp	3" split spoon
1			1	12 17		Brown, SILT AND f/SAND	, damp	
2	2	16	03	18		SAME AS ABOVE		Headspace 6"
3			35	11 12		SAME AS ABOVE, wet wit clear liquid		n hole 1ppm 3" split spoon
4	3	15	8 2	9 7		Brown SILT AND f/SAND,	damp	
5			5	1 2				
6	4	18	>20 6	4 5		SAME AS ABOVE		Headspace 6"
7			10 13	9			Ì	n hole 3ppm
8	5	19	25 450	5 4		SAME AS ABOVE, wet		
9			300 350	5 5 4				Sampled for (OC's
10				3		Bottom of boring 100*		> 200ppm at
11							t	ottom
12								
13								
14								
15								
16								
17								
18								
19								
20								

Suite B-1, 6700 Kirkville Road, East Syracuse, New York, 13057

LOG OF BORING:

GE-FR					Project num 380-047	xer	Date & time s Date & time com	cietad: 2/3/92	147pm
	Drill	ing and	Test	ina	Foruman J. Mirand		Senguer(s) E.H.& W.M.	Sampler hamme 140 lb	r Droj 51
Drilling equip Mobile	ment				Method 4 1/4" HS		Bevalion & datum	Completion dep 10'0"	
Bit(s)	0-0	<u> </u>			Core berrei(5)	inspector(s)	100	
					2°&3° Split Sp		E. Hinchey	· · · · · · · · · · · · · · · · · · ·	
DEPTH	No.	Reco-		ES Hammer Bio			SOIL DESCRIPTION	1	REMAR
(ft below grade)	1.000	very (Inches)	OVA	(per 6 inche					
0 0			(pom)			Тор 8	is Blacktop		Auger to 2'
1						Brow	n, SILT & SAND & CL	AY	
2									
3	1	20	1 3	5 5		SAME	AS ABOVE		
4	2	19	7	6 5		SAME	AS ABOVE		
5			8	4					
				3					Sampled for
6	3		3 2	4		SAME	AS ABOVE, wet		VOCs
7			3	7					
8	4		70	4 7		SAME	AS ABOVE		
9			55 90	3					
10			300	2 2		вотт	OM OF BORING 100	•	PID > 200ppm
11									
12									
13									
14									
15									
16									
17									
18									
19									
		1							

Suite B-1, 5700 Kirkville Road, East Syracuse, New York, 13057

LOG OF BORING:

B - 35

Project num GE-FR	P					Project numb 380-047		Date & time s Date & time com		214pm 230pm
Drilling com Aquifer	Dutt	ing and	Test	ing		Foremen J. Mirand		Sempler(s) E.H.& W.M.	Sempler hamme 140 lb	
Drilling equit	ment					Method 4 1/4" HS		Bevelon & datum	Completion dep 8'0"	th Pock day
Bit(s)					2*	Core perrei(s	•)	inepector(s) E. Hinchey		
DEPTH			SAMPL			GRAPHIC			· · · · · · · · · · · · · · · · · · ·	
(ft below grade)	No.	Reco- very (Inches)		Hammer (per 6 inc		LOG		SOIL DESCRIPTION		REMARKS
0							Top 8	is Blacktop		Auger to 2
1					د		Brown	n, SILT & SAND & CL	AY, soft	
2 3	1		0	7 11 12			SAME	AS ABOVE		Headspace 6" in hole 0ppm
4	2		0	11 12 11			SAME	AS ABOVE		
5			0.5	8 7						Sampled for VOC's
6	3		0.3	8 3			SAME	AS ABOVE, appears	wet	
7 8				4 3 3			BOTT	OM OF BORING 80"		
9										
10										
11										
12										
13										
14 15										
16										
17										
18										
19										
20										

.

Suite B-1, 6700 Kirkville Road, East Syracuse, New York, 13057

LOG OF BORING:

Project name GE-FRI	Ρ	ation				Project numb 380-047		Date & th Date & time	ne started: completed:	2/3/92 2/3/92	
Drilling comp Aquifer	Drill	ing and	Tes	ing		Foremen J. Miranda	2	Sempler(s) E.H.& W.M.		Sempler hermine 140 lb	r Drop 5 feet
Drilling equip Mobile	ment B-5	3				Method 4 1/4" HS/	4	Bevelon & detun	1	Completion dep	
Bit(s)					2*8	Core perrets	I)	E. Hinchey	<u></u>		
DEPTH (ft below grade)	No.	Reco- very (Inches)	OVA	ES Hammer (per 6 ini		GRAPHIC LOG		SOIL DESCRIPTI	ON		REMARKS
0 1 2 3 4 5	1	24 24 -	5 TR 0 3 TR 1 9	67656576			Browr	is blacktop n, SILT & SAND & AS ABOVE	CLAY, sa	त्री	Auger to 2'
6 7 8 9 10 11 12 13 14 15 16 17	3	22	30 2 4 6 350 300 410 460	4 3 2 6 4 4 5 8			SAME SAME damp	AS ABOVE AS ABOVE, appe with product			Sampled for VOC's
18 19 20					4						

Suite B-1, 6700 Kirkville Road, East Syracuse, New York, 13057

LOG OF BORING:

B - 37

Project num GE-FR	• & loca 3	dion .			Project numb 380-047	er	Date & time ste Date & time comple	-''	
Aquifer	Drilli	ing and	Test	ing	Foreman J. Miranda		Sampler(s) E.H.& W.M.	Sampler hamme 140 b	Drop 5 feet
Drilling equip Mobile	mert B - 5	3			Method 4 1/4" HS/	A	Bevellon & deturn	Completion dept	h Rock depth
Bit(s)					Core berrei(s 2"&3" Split Sp		E. Hinchey		
DEPTH		S	AMPL		GRAPHIC				
(ft below grade)	No.	Reco- very (Inches)		Hammer Blow (per 6 inches)			SOIL DESCRIPTION		REMARKS
ō	1	8	0	xxxxx			ick, coarse GRAVEL, s	ome	
์ 1			1 2 1	4 2 3			n, SILT & f/SAND		
້2	2	9	15	2 3		SAME	E AS ABOVE		
່ 3				3					
4	3		1	23		SAME	E AS ABOVE		
5		•••	1 TR	6 R		вотт	OM OF BORING 50"		Refusal on old solvent
6									tank pad
7						* TR ·	Trace		
8									
9									
10									
11									
12									
13									
14									
15						:			
16									
17									
18									
19									
20									

، بر .

Suite B-1, 6700 Kirkville Road, East Syracuse, New York, 13057

LOG OF BORING:

Project name GE-FRF	1 ± 100	etion .				Project numb 380-047	er	Date & time Date & time co	mointet: 2/3/92	330pm 355pm
Orning comp Aquifer	Drill	ing and	Test	ing		Foremen J. Minanda	•	Sampler(s) E.H.& W.M.	Sempler hemme 140 lb	r Drop 5 fee
Driling equip Mobile	ment					Method 4 1/4" HS/	1	Bevelon & datum	Completion dep 10'0"	th Rock dep
Bit(s)					28	Core berrei(s 23" Split Sp)	E. Hinchey		
DEPTH		5	SAMPL			GRAPHIC				
(ft below grade)	No.	Reco- very (Inches)	OVA	Hemmer B (per 6 inci				SOIL DESCRIPTIO	N	REMARKS
-o	1		0	xxxxx 6		20000000000000000000000000000000000000	Dk G	ray, SILT & CLAY &	f/SAND	3° split spoon
1			l	5 5			Brow	n, SILT and f/SAND		
2	2		0 77	7		-	SAME	E AS ABOVE		3" split spoon
3				8 9						
4	3			6 6			SAME	E AS ABOVE		
5		·	TR	3 2						
6	4		6	4 6			SAME	E AS ABOVE		
7				4 3						
8	5	-		2 5			SAME	E AS ABOVE		
9										
10							вотт	OM OF BORING 10	0	
11										
12							* TR -	Trace		
13										
14										
15										
16										
17										
18										
19										
									-	
20					-					

Suite B-1, 6700 Kirkville Road, East Syracuse, New York, 13057

LOG OF BORING:

Project num GE-FR	e 1 ioc P	ation				Project numb 380-047	er	Date & tim Date & time of	ne startet: completet:	2/3/92 2/3/92	417pm 440pm
Drilling com	ouny r Drill	ing and	Test	ina		Foremen J. Miranda		Sampler(s) E.H.& W.M.		Sampler hamme 140 lb	
Drilling equip Mobile	pment					Method 4 1/4" HS		Bevallon & datum		Completion depl	
Bit(s)	0-3	<u> </u>				Core barrel(s)	mapector(s)		10'0'	
					2	3 Split Sp	001	E. Hinchey	•		
DEPTH	No.	Reco-		Hammer		<u>GRAPHIC</u> LOG		SOIL DESCRIPTI	ON		REMARKS
(it below grade)		very (inches)		(per 6 inc	thes)						
Ō	Í .			-			Top 8	is Blacktop			Auger to 2'
- 1											
2	1	24	0	17			Brown	1, SILT & f/SAND		-	
		-		17			5.041				
3			TR	14 11							
4	2	24	o	12 9			SAME	AS ABOVE			
໌ 5				9							• · · · ·
6	3	2	TR 15	9 8			SAME	AS ABOVE			Sampled for VOC's
7				6 5							
8	4	11	0	6			~ ~ ~ ~ ~				
	4	11	-	8 5			SAME	AS ABOVE			
9			TR	9 13							
10				_			BOTT	OM OF BORING 1	00		
11				ļ							
12											
13											
14											
15											
16											
17											
18											
19											
20											
20											

Suite B-1, 6700 Kirkville Road, East Syracuse, New York, 13057

LOG OF BORING:

Project num GE-FRI Drilling com	P				Project numb 380-047 Foremen		Date & time Date & time co Sempler(s)		447pm 520pm
	Drill	ing and	i Test	ing	J. Mirandi		EHL& W.M.	140 lb	5 fee
Dritting equip Mobile	ment B - 5	3			Method 4 1/4" HSJ	A	Sevelon 1 deturn	Completion dept	n Rock dep
Bit(s)	<u> </u>	· · · · ·			Core berrei(s)	inspector(s)		
				Z	*&3* Split Sp		E. Hinchey		
DEPTH		Reco-	SAMPL	ES Hemmer Blows	GRAPHIC		SOIL DESCRIPTIO	N	REMARKS
(ft below grade)	No.	very (inches)	OVA	(per 5 inches)					
o						Top 8	3" is Blacktop/md	grand	Auger to 5' Headspace 6"
1		• •				Brow	n, SILT & f/SAND, si	oft.	in hole 5-7ppm
2					an and		ive, damp, strong oc		450ppm in cuttings
3									
4									
5	1		•	3					* >200ppm Sampled for
6				3					VOC's
7	2		•	5 66					* >200ppm
8				4					
9	3		150	6 7					
10				6 12					
11	4			12 11 9					
12				12 21		Grand	sh nad. SILT &/CLAY		
13	5		460 120	21 23		satura		•	Sampled for VOC's
14			12	35 R		Red, (CLAY, damp		Basal till
15						BOTT	OM OF BORING 15	0*	
16									
17									
18								-	
19								•	
20									

Suite B-1, 6700 Kirkville Road, East Syracuse, New York, 13057

LOG OF BORING: B-44 (P-1)

_	Pro	ject Nam	ما & ا	cation				Project Number	Data & time st	urted: 3/16/92 - 0830)	
-		GE-Fai	rreli i	Road Pl	ant			380-047		sieted: 3/16/92 - 104	-	
	Dnii	lling comp Aquiter 1	xerry Dritting	and Ter	sting			Foreman J. Miranda	Drilling Equipment Concrete Core		Sampler E. Hinchey	······
-		Ē				tum (Fee	t)		stion Depth (Feet)		Rock Depth (F	
				381.0	USGS			12'0"				-
				ition:				Surface Description:		Water Levels		
-				FRP -	2 Machi	ne Shop		Boring is through ta	ctory floor.	Dete	Three	Depth
		H I										
		<u>0</u>		Reco-	HNU							
-		<u>N</u>	No.	Very	OVA	Blow	GRAPHIC LOG	SOIL	DESCRIPTION		REMARKS	
	\vdash	1	 	(Inches)	(ppm)	Counts						
	1 0	381.0			0			6" of Concrete				
_	1	1	1		TR			Red-Brown GRAVE	_ demo			
-	I 1	380.0			2							
			1		2			Red-Brown, I/SAND	and sitt dame			
	1 2	379.0			0							
-					0					j		
	1 3	378.0			0	1						
					0		1					
	f 4	377.0			0			Red-Brown, #SAND	and silt, damo			
-	l] +	{		0							
	-	376.0			TR					1		
3	-				0		Contraction of the local division of the loc					
J	6	375.0			TR			Red-Brown, 1/SAND				
					TR				UR A	\ 14 57		
	7	374.0			TR							
_					TR							
	8 1	373.0			17			Greenish Brown, 1/S	AND and slit, wet			
					5							
	9	372.0			70							
					180							
	10	371.0			205		A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNE	Greenish Brown, 1/S	AND and silt wat	Seturated		
					110							
	11	370.0			75					Heaving sands		
					42							
	12	369.0			_	ł						
				[Bottom of Boring	unt 1210 ⁴			
• 1	13	368.0										
				ļ								
	- 14	367.0				1						
					1							
	15	366.0										
					1							
	16	365.0					1					
•					1							
	17	364.0										
, 1	- 18	363.0										
•		200										
1	· 19	362.0										
,	20	361.0										
	-											
1												

ERM-Northeast Suite B-1, 6700 Kirkville Road, East Syracuse, New York, 13057 LOG OF BORING

	DIRITY	d		•		Project numb 380.047 Foremen		Date & time Date & time ci Sampler(s)		155pm
Aquife	Drillin	g and 1	esting			J. Miranda		E. Hinchey		L
Drilling equip Mobile	R-53					Henod		Bevetion & deturn	Completion dept	h Roc
Bit(s)						Core berrei(b)	Inspector(s)		
	1				2	Split Spo	on	E. Hinchey		
DEPTH			SAMPLES							
					HNU/	WELL		SOIL DESCRIPTIC	N N	REMA
(ft below grade)	Sample Number	Blow	Recovery (Inches)	Time	OVA (pom)	DETAILS				
				•	1 (1-1-1)		-		101 a auth	
_								igh floor of FRP-2, -3 in Paint Shop	, 13° Sou tri	
— o	1			1355	. 0			of Concrete		
								ish Brown, SILT ar	nd f/SAND	
							and G	RAVEL		
- 1							Redd	sh Brown, SILT ar	nd f/SAND	
			6				no gri			
_ 2										
			•							
										· · · · · · · · · · · · · · · · · · ·
_ з										
										<u> </u>
_ 4										
- •										
-										
- 5							4" SIL	T layer, moist		
ļ								·····		
- 6					>2<7		VUC r	eeding is suspect, it shop opened a (person	
l l							thinne	r arry opened a (f		
[Ī			·····	
- 7 -										
				ł	Í					
ľ						ľ				·····
- 8 -										ampled for
										/OC'8
F						ŀ				
- 9							Damp			
Ĭ				T		ī				
┢	<u> </u>					Ļ	*************	· · · · · · · · · · · · · · · · · · ·		
									•	
<u> </u>		1		I						

Page____

Signature:

Date:

.*

1

Suite B-1, 6700 Kirkville Road, East Syracuse, New York 13057

LOG OF BORING

.

-	DEPTH (it below grade)	v Sample Number	Blow Count	SAMPLES Recovery (Inches)	Time	HNU/ OVA (pom)		SOIL DESCRIPTION	REMARKS
-	10					0		· · · · · · · · · · · · · · · · · · ·	
-	- 11				1533			Saturated	
-	- 12							End Augers	Cored though concrete, hand augered to 12
-	- 13								
-	- 14								
2	- 15								
-	- 16								
-	- 17							· · · · · · · · · · · · · · · · · · ·	
-	- 18								
-									
•	- 19								
-	- 20								
	21	<u> </u>			1				
	21	Page		of			Signature:	Date:	

.

-Suite B-1, 6700 Kirkville Road, East Syracuse, New York, 13057

LOG OF BORING: B-46

Project nam GE-FRI Drilling com	2				Project numb 380-047 Foremen	ar Date & time a Date & time com Sempler(s)		8:50 AM
Aquifer	Drill		Test	ing	J. Miranda	E.H.	140 Ib Completion dep	5 fe
Mobile Bit(s)	<u>B - 5</u>	3			4 1/4" HSA Core berrei(e 2" Split Spo) Inspector(s)		
DEPTH	No.	Reco-			GRAPHIC	SOIL DESCRIPTION	1	REMARKS
(ft below grade)		very (inches)	CVA (pom)	(per 6 inches				nemana.
- 0						Blacktop Reddieb brown Sti T and	-d •	Augered to 4'
1			0			Reddish brown, SILT, sar gravel	K 2, C 4	
2			0					
3			0					
4	1	20	0	13 7		Brown, fine SAND & silt, o	damp	
້5				4				
6	2	16	0	5		same as above		
7				7 11				
8	3	17	0	8				VOC Sample
9			3	7		Brown, SILT and fine sam	d, wet	VOC Sample
10	4	18.0	1 0.1	15 11				soil is now saturated
11			4	12 11		Black & orange stained G Red CLAY, with gravel, m		VOC sample
12	5	8.0	0	76 100		Dense, red CLAY, some g	ravel, damp	Ls. gravel clast up to 2 cm in
13			-				•	diameter, dry
14			0				1	PID in cuttings
15	6	16.0	0	43 25				
16				21 20		Red, med SAND & gravel, slay, wet	some	
17								Difficult drilling
18			1					Easier drilling
19	7	14.0	0	35 47		Red CLAY & gravel, some Red SAND, gravel, & clay	sand, damp	
20				62 51		ING SAIND, GERVEL, & CHEY		

Suite B-1, 6700 Kirkville Road, East Syracuse, New York, 13057

LOG OF BORING: B-46

_					• • • • • • • • • • • • • • • • • • •			
-	DEPTH			SAMPLE	Ş			
	1 1		Reco-	HNU		GRAPHIC LOG	SOIL DESCRIPTION	REMARKS
	(it below grade)	No.	very (Inches)	OVA (point)	Blow Counts			
•			(842-44)	(1		
	20-							
	- 21							
-	21							Easy drilling
	- 22							
								Difficult drilling Easy drilling
-	- 23							Difficult drilling
	- 24	8	7	0	54		Very dense, red, CLAY, & gravel, dry	
-	- 25				100			
	-							Bottom of boring at 25'
	- 26							
-								
	- 27							
	- 28							
	20			.				
	29	:						
-)								
•	- 30							
	- 31							
-	- 32							
	Ŭ E							
_	- 33							
-					1			
	- 34							
_	- 35							
-	~							
	- 36							
_								
	- 37							
1	- 20							
-	- 38							
	- 39				:			
	· [
-	- 40							

Suite B-1, 6700 Kirkville Road, East Syracuse, New York, 13057

LOG OF BORING: B - 47A (P-2)

-	Drilli	GE-Far	rell F eny		ent			Project Number 380-047 Foreman	Date & time con	mpieted; rtt	4/6/92 - 1006 4/6/92 - 1210 Method	Sampier	
-	┝─	Parratt - E	Wolff	Bevetice 380.5	n and De	um (Fee	L)	A. Chapman Completion 1210*	Concrete Core stion Depth (Feet)		Hand Auger	E, Hinching Rock Depth (F	
-			Loca	tion: FRP -	2 Machin ' North o 9' west	f F6		Surface Description: Boring is through fa	ctory floor.		Water Levels (<u>Date</u>	Feet): <u>Time</u>	<u>Depth</u>
-	<u> </u>		No.	Reco- very (inches)	HNU OVA (ppm)	Blow Counts	GRAPHIC LOG	SOIL	DESCRIPTION			REMARKS	
-	· 0	380.9 379.9					And a constant and a	6" of Concrete Coarse GRAVEL, sa	nd and allt		No PID		
	2	378.9						Red-Brown, SILT ar	nd cizy, damp				
-	- 3	377.9											
-	4	376.9						Red-Brown, SILT an	id clay, damp				
)	5 	375.9 374.9						Thin CLAY, reddish					
	• 7	373.9						Red-Brown, SILT an	d clay, damp	倒	FT		
-	8	372.9						Red-Brown, SILT an	d ciay, damp		Sampled for P	PVOC	
-	9	371.9						Gray, SILT and clay	, wet, soft				
	10	370.9 369.9						Gray, SILT and clay	, wet, soft				
	12	368.9						· · · · · · · · · · · · · · · · · · ·					
-	13	367.9						Bottom of Borin	g at 12'0"				
-	14	366.9											
	15	365.9 364.9											
-	17	363.9											
. [18	362.9											
- -	19	361.9											
	20	360.9											

Page 1 of 1

ERM-Northeast

Suite B-1, 5700 Kirkville Road, East Syracuse, New York, 13057

LOG OF BORING: B - 52 (P-3)

-	Ргој	ect Name	& Location	· · · ·			Project Number		± 4/6/82 - 1006	
		GE-Far	rell Road P	lant			380-047	Date & time complete		
	Drilli	ng comp Parratt -	any Wolff				Foreman A. Chapman	Drilling Equipment Concrete Core	Method Hand Auger	Sampler E. Hinchey
-		E L	Bevati 381.0	on and De	tum (Feet	t)		stion Depth (Fest)		Rock Depth (Feet)
	<u> </u>		Location:				Surface Description:		Water Levels ((Feet):
-				2 Machin 2' North of 9' west	f F6		Boring is through fa	.ctory floor.	<u>Dette</u>	<u>Time Depth</u>
	÷ F	<u> </u>								
-		0 1	Reco- No. very (Inches)	HNU OVA (pom)	Blow Counts	GRAPHIC LOG	SOIL	DESCRIPTION		REMARKS
-	- 0	381.0					6" of Concrete Coarse GRAVEL, sa		No PID	
	1	380.0					COETSE GALAVEL, SE			
-	2	379.0					Red-Brown, SILT ar	nd clay, damp		
	- 3	378.0								
-	- 4	377.0					Red-Brown, SILT an	id clay, damp		
	5	376.0					Thin CLAY, reddish	partings		
기	- 6	375.0					Red-Brown, SILT an			
	- 7	374.0								
	- 8	373.0					Red-Brown, SILT an	d clay, damp	Sampled for P	P VOC
-	9	372.0					Gray, SILT and clay			
	• 10	371.0								
-	• 11	370.0					Gray, SILT and clay	, wet, soft		
ļ	12	369.0							_	
-	13	368.0					Bottom of Borin	g at 12'0"		
_	14	367.0								
	15	366.0								
-	16	365.0								
ł	17	364.0								
- !	18	363.0								
ो	19	352.0							-	
-	20	361.0								
_ L	1			1.						

Suite B-1, 6700 Kirkville Road, East Syracuse, New York, 13057

LOG OF BORING: B-53

-	Ртој	ect Name	- & LO	oction		· •		Project Number	Onte & time starter	± 4/25/92 - 1130		•
				load Pl	ant			380-047	Date & time completes			
		ing comp Parratt W						Foreman A. Chapman	Drilling Equipment Concrete Core	Method Hand Auger	Sampler E. Hinchey	
-		Ē			n and De	tum (Fee	t)	Comple	tion Depth (Feet)		Rock Depth (Fe	ret)
			Loca	384.0 tion:		· · · · · · · · · · · · · · · · · · ·		11'8" Surface Description:	<u> </u>	Water Levels (
i		<u> </u>								Dete	<u>Time</u>	Depth
-	-	<u> </u>			'South o TWeat or			Boring is through ta	ctory floor.			
				مد		7 1-3						
	-	<u>0</u>		Reco-	HNU		1			1	· · · · · ·	
-		N	No.	very (Inches)	OVA	Siow Counts	GRAPHIC LOG	SOILI	DESCRIPTION		REMARKS	
			1		(pom)							
	r 0	384.0			0			7" of concrete		1		
-	- 1	383.0		:	0			GRAVEL		4		
					1			Red-Brown, I/SAND	and sir, damp			
_	2	382.0			1			DK Grav, SILT and C	LAY, some organics	4		
					2			"soil" damp		1		
	3	381.0			2			Red-Brown, 1/SAND	and allt, damp	7		
_	4	380.0			4		G			4		
					3 -3			Red-Brown, 1/SAND	and allt, damp			
<u> </u>	5	379.0			4							
Ĵ					4							
1	6	378.0			2			Red-Brown, 1/SAND	and allt, damp	Siight solvent	"odor"	
	7	377.0			3					moist		
-					2 3							
	8	376.0			4			Red-Brown, 1/SAND	and silt, damp	wet		
	- 9	375.0			6		· • • • • • • • • • • • • • • • • • • •	Greenish, 1/SAND an		1		
-	3	3/5.0	1		23					Saturated, stro	ng odor,	
	- 10	374.0			32					septic and solv	vent type odor	
Ĩ					28 95							
- 1	• 11	373.0			117		a Carron and a state	Greenish SILT and C	1.AY. some			
l					52			reddish streaks				
	12	372.0						· · · · · · · · · · · · · · · · · · ·				
-	13	371.0						Bottom of Boring	at 11'8"			
	14	370.0										
- [2000.0										
	15	369.0										
ŀ	16	368.0										
-												
ł	17	367.0										
_ [200 0										
- , t	18	366.0										
)		365.0										
- 1												
Ē	20	364.0										
L												

Suite 8-1, 5700 kirkville Road, East Synacuse, NY 13057, (315) 437-0577

MONITORING WELL CONSTRUCTION

MW - 4

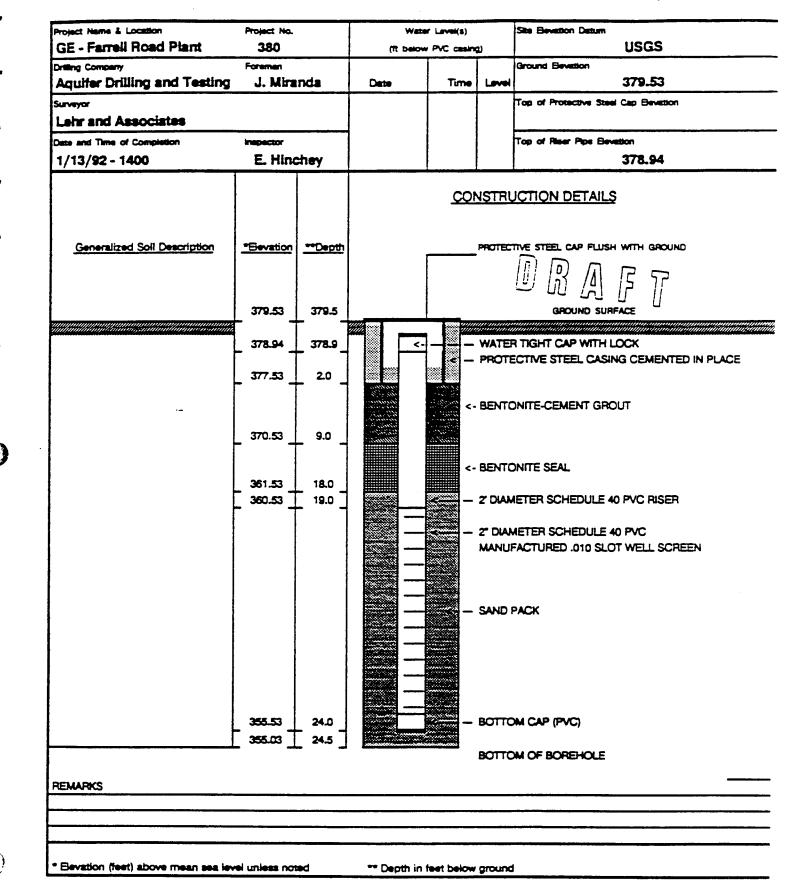
Project Name & Location GE FRP	Project No. 380-047			er Levei(s) v PVC cesin	c)	Site Bevetion Deturn USGS
Drilling Company	Foreman			1	Ī	Ground Bevetton
ADT	J. Miran	da	Dete	Time	Level	377.5
Surveyor						Top of Protective Steel Cap Bevetion
Lehr & Associates						
Date and Time of Completion	inspector					Top of Riser Pipe Bevetton
1/29/1992 1100am	E. Hinct	lay		<u> </u>		380.03
				<u>CO</u>	NSTRU	JCTION DETAILS
Generalized Soil Description	*Bevation	***Depth		[PROTE	ECTIVE STEEL CAP WITH LOCK
	_ 380.03 _	_ 25 _	▏╏┝━	</td <td>ECAN</td> <td>ISION CAP</td>	ECAN	ISION CAP
	377.50	0.0				GROUND SURFACE
				100 100 1444		
				< -	PROTE	ECTIVE STEEL CASING CEMENTED IN PLACE
Brown, Silty SAND	376.50	- 1.0 -				
		:			- BENTO	DNITE-CEMENT GROUT
	- 374.50	- 20 -				
				<	- BENTO	NITE SEAL
	373.50	4.0				
	372.50	5.0		-	2° DW	METER SCHEDULE 40 PVC RISER
					~ 044	METER SCHEDULE 40 PVC
				-		FACTURED .010 SLOT WELL SCREEN
				-	SAND	PACK
				6		
	367.50	10.0		-	BOTTO	om cap (pvc)
	84.39	10.5			BOTT	OM OF BOREHOLE
REMARKS						·
		<u></u>				

•

1

MW4CMP.XLS - 5/15/92

Suite B-1, 6700 Kirkville Road, East Syracuse, New York, 13057


LOG OF BORING: MW-4

-		ect Name						Project Number	Dete & time started		
		GE-Far		Road Pl	am			380-047 Foreman	Date & time completed Drilling Equipment	Method	Sempler
		Aquiter D	Prilling	and Tes	ting	E Cont		J. Miranda	Mobile B - 53 stion Depth (Fest)	HSA	E Hinchey Rock Depth (Feet)
-		토노		377.5	n and Use Uses	tum (Feel	()	12°	asou nebru (Leed)		NA
		<u>ב</u>	Loca	tion:				Surface Description:		Water Levels	
-										Dete	<u>Time Depth</u>
-											
		보 ! 으		Reco-	HNU		1		<u> </u>		<u> </u>
-		N	No.	very	OVA	Biow	GRAPHIC LOG	SOIL	DESCRIPTION		REMARKS
	0	377.5	+	(Inches)	(ppm)	Counts	100				
	ľ	011.2			0			2" Black Topsoil, Sl	LT and SAND,	Augered to	
-	1	376.5						Brown, slity SAND,	oft.drv	soll describe	d
	2	375.5							,	from cutting	8
		0,020					1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 1997 - 1977 - 1977 - 1977 - 1977 - 1977				
	3	374.5							_		
	4	373.5									
•			1		-			5			
•	۲	372.5	1	24"	0	3					
2	6	371.5	1			3	بې مېرى مەربى	L L			
J	0	3/1.3				4					
	7	370.5				4	1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 				
-	8	369.5									
	9	368.5	2	6"	0	12		Red, SILT and SAND	. verv dense.	Driller note:	
-	10	367.5			_	44				Change at 8.	5
			3	7	0	33/4*		Red, SILT, SAND, an	id CLAY,		
_	11	366.5				33 46		dense, dry			
	12	365.5				48					۰
-	13	364.5						Bottom of Borin	ig at 12 ⁻	,	
	14	363.5									
-											
	15	362.5									
	16	361.5									
-											
	17	360.5									
_	18	359.5									
	ļ	250 F									
	••	358.5									
-	20	357.5									

Suite B-1, 6700 Kirkville Road, East Synacuse, NY 13057 (315) 437-0677

MONITORING WELL CONSTRUCTION

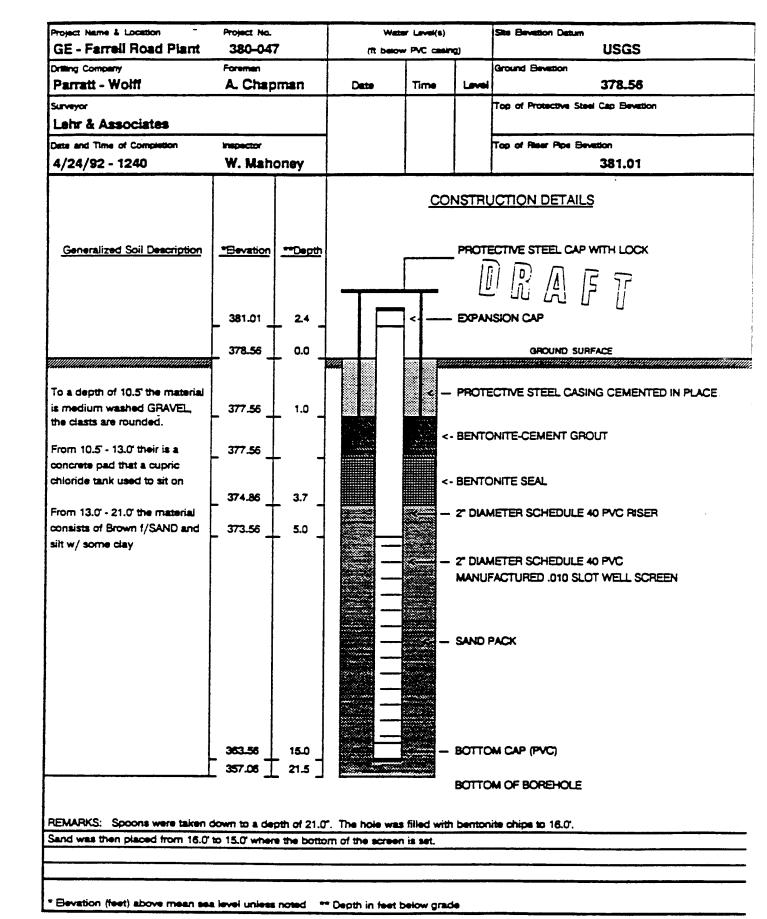
MW - 14 (B-45)

Suite B-1, 6700 Kirkville Road, East Syracuse, New York, 13057

LOG OF BORING: MW -14

2	oiect	Name	& Loca	don.				Project Number	Date & time started:		ίο Ο
1	G	E-Far		oad Plai				380-047 Foreman	Date & time completed: Drilling Equipment Mobile 8 - 52	Method HSA	Sampler E. Hinchey
F	Aq	utter D	illina :	and Test	ng and Detu	m (Feet)		J. Miranda Compi 24'5"	etion Depth (Feet)		Pock Depth (Feet) 24'8"
	•	Ŀ	Locati		USGS			Surface Description:		Water Levels	(Feet): Time Depth
	이 씨 이 너 지			West 3	ide FRP - eer guard			Blackt	op in parting lot.	Qarte	<u>1008</u> <u>2002</u>
	브	- 0 =	No.	Reco- very (Inches)	HNU OVA (pom)	Blow Counts	GRAPHIC	SOIL	DESCRIPTION		REMARKS
F	0	379.5			0			Blacktop		Auger to 4'	
\mathbf{F}	1	378.5						Red-Brown, silt , s	and and GRAVEL		
ł	2	377.5									
ł	3	376.5									
ł	4	375.5	1	20"	0	13 7		Brown, I/SAND and	i silt, damp		
•.	5	374.5				4					
t	6	373.5	2	16"	0	5 6		Brown, I/SAND and	i alt, damp		
I	7 8	372.5				7 11		Brown, I/SAND and			
	9	370.5	3	17"	0 1 3	8 8 7			0-1	Sampled to	r PP VOC
ŀ	10	369.5	4	18"	1	9 15		Brown, t/SAND and	d silt, saturated	Wet	
ł	11	368.5			TR 4	11 12			stained GRAVEL wet	Sampled fo	
ł	12	367.5	5	*	3	11 76/6** 100/2*		Red, CLAY, Wgrat Red, CLAY some	gravel, dense, dry		estone clasts up to
ł	13	366.5	5			100/2					
ł	14	365.5			0					PID readin	g in cuttings
t	15	364.1		16*	0	43 25					
	16 17	362				21 20		Red, 1'SAND and	gravel, some clay, wet	Drilling ha	h
	- 18	361.			0						
	• 19	360.	5 7	14**	0	35			ravel, some sand, damp	_ Dritting ea 	sy
	- 20	359.				47 62 51		Red, SAND and g	ravel and clay		

Suite B-1, 6700 Kirkville Road, East Syracuse, New York, 13057


LOG OF BORING: MW-14

-	DEPTH			SAMPLE	s		1	
			Reco-	HNU		GRAPHIC	SOIL DESCRIPTION	REMARKS
	(ft below grade)	Na.	very (Inches)	OVA (pom)	Blow Counts			
-								
	20						Red, SAND and gravel and day	
-	21							Drilling easy
	22						Dense Unit	Drilling hard, jumping rig Drilling easy
-	23							Drilling Hard
_	24	8			54 100/2		Red, CLAY and gravel, very dense, dry	Pieces of angular Rx
-	25						Bottom of Boring at 24'5"	in spoon, bedrock?
-	28							
	27							
-	28			-				
	29						- 7	
-	30						DRAFT	
-	31							
	32							
-	33							
	34							
- [35							
_	36							
- [37							
- [38							
	39							
- [40							

Suite B-1, 5700 kirkville Road, East Syracuse, NY 13057, (315) 437-0577

MONITORING WELL CONSTRUCTION

MW - 19

MW19CMP.XLS - 5/15/92

Suite B-1, 6700 Kirkville Road, East Syracuse, New York, 13057

LOG OF BORING: MW - 19

-	Ртој	ect Name GE-Far	a Lo rell F	ation load Pla	ant			Project Number 380-047	Date & time starts Date & time complete	± 4/24/12 - 11	45			
	Drill	ing comp Parratt -	eny Wolff					Foreman A. Chappel	Drilling Equipment CME - 55	Method HSA	Sampler W. Mahoney			
-		5		Bevetor 378.6	n and Det USGS	um (Fee	k)		nion Depth (Feet)		Rock Depth (F	eet)		
		<u>L</u> 2 <u>E</u>	LOCE		0303			Surface Description:		Water Level	Water Levels (Feet):			
-				· · ·						Dette	<u>Time</u>	Depth		
-		1 ! 0 1	NO.	Reco- very (inches)	HNU OVA (pom)	Blow Counts		SOIL	DESCRIPTION		REMARKS			
	0	378.6						Grass Material		From cuttin	32			
-	1	377.6						Black, Green and Re medium GRAVEL	id washed					
	2	376.5					and and a second an							
	3	375.6												
-	4	374.6												
	5	373.6					ia e en si	Black, Green and Re	d washed	Spooned fr	om			
٢	6	372.6					an anna an tha anna an tha Tha an tha anna an tha anna Tha anna an tha	medium GRAVEL		5' - 7'				
	7	371.6												
-	8	370.6					Anna anna an a							
	9	369.6					1. 1. 1. Mar. Alex.							
-	10	368.6					1000000 1000	Black, Green and Re medium GRAVEL	id washed					
_	11	367.6						Concrete pad						
	12	386.6												
-	13	365.6												
	14	364.6				24 10		Brown, #SAND and a	ilit, some clay					
-	15	363.6				10 10								
	16	362.6				5 6		Brown, #SAND and a	alt, some clay					
-	17	361.6				6 5			~					
	18	360.5				4 3		Brown, I/SAND and I	illt, some clay					
	.0	359.6				5								
Í	20	358.6				4		Brown, I'SAND and I	lit, some cizy					
	له	336.0				• • 7		Bottom of Borin	a at 21'0"					

к . ٥ . `

.

SOIL VAPOR EXTRACTION PILOT TEST RESULTS

2

MARTIN MARIETTA CORPORATION FARRELL ROAD PLANT SYRACUSE, NEW YORK

AUGUST 1993

Prepared By:

ERM-NORTHEAST, INC. 6700 Kirkville Road East Syracuse, New York 13057

-	1.0	INTRODUCTION	1-1
	20	DESCRIPTION OF TESTING PROGRAM	2-1
•	21 22 23 24 25	DETERMINATION OF PNEUMATIC RESPONSE CHARACTERIZATION OF EXTRACTED SOIL GAS EQUIPMENT USED TESTING PROCEDURES WELL LOCATION AND DESCRIPTION	2-2 2-2 2-3 2-7 2-9
	3.0	SOIL VAPOR EXTRACTION PILOT STUDY RESULTS	3-1
-	3.1 3.2	PNEUMATIC CONDITIONS SOIL VAPOR CHARACTERISTICS	3-1 3-8
-	4.0	CONCEPT DESIGN	4-1

LIST OF TABLES

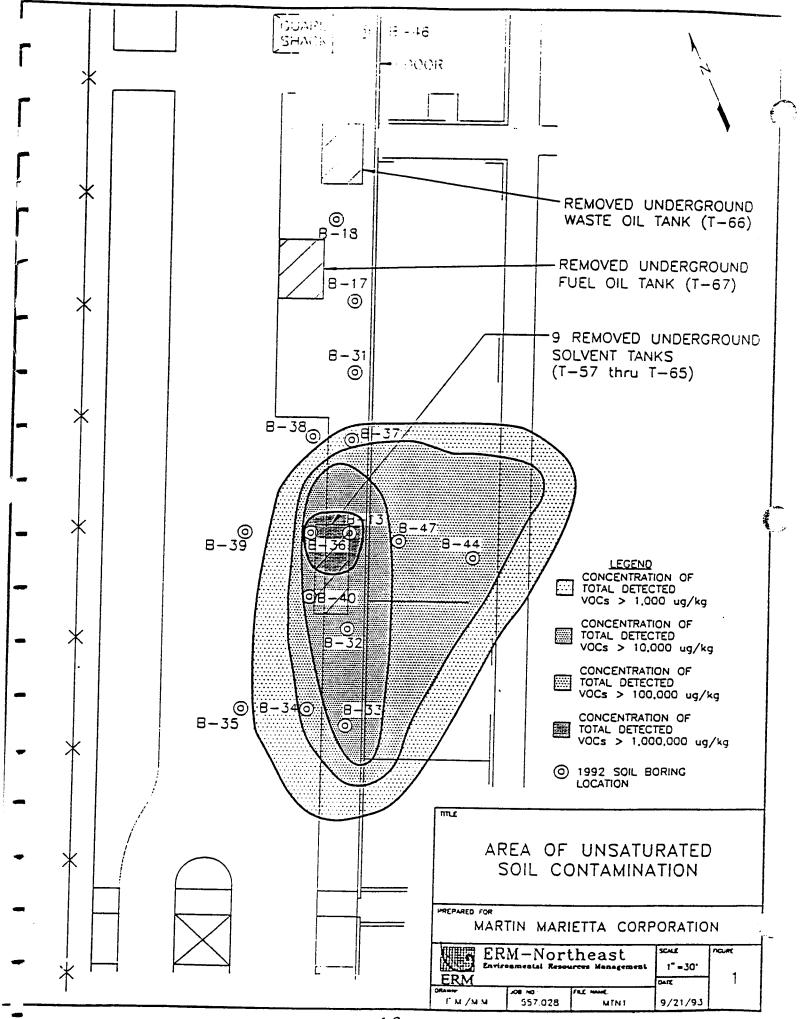
· 7	VOC Another D	
- 1	VOC Analytical Data	1-3
2	Location and Description of Pneumatic Observation Wells	2-10
3	Soil Vapor Extraction Pilot Test Data	2-10
4	Sou vapor Euracion Pilot Test Data	-3-2
- 4	Soil Vapor Extraction Analytical Results	3-9

€

- LIST OF FIGURES

.

1	Area of Unsaturated Soil Contamination	1-2
- 2	Vapor Extraction Pilot Unit Flow Diagram	2-5
3	Locations of Pneumatic Observation Wells and Vacuum Extraction Well	2-J
4	Applied Vacuum vs. Soil Gas Flow	
- 5	Pneumatic Response Data	3-3
6	Vacuum Response vs. Distance	3-4
7		3-5
8	Applied Vacuum vs. Effective Radius of Influence	3-7
0	Proposed Location of Soil Vapor Extraction Wells	4-2


INTRODUCTION

A soil vapor extraction pilot test was performed at Martin Marietta Corporation's FRP site in the area (Area 5) where volatile organic compound (VOC) contamination has been found. The pilot test was conducted to determine the technical feasibility of employing this technology in site remediation and to collect the necessary data to design a full-scale system. Specifically, the goals of the pilot study were to establish: 1) the effective "radius of influence" in order to determine appropriate well spacing and the number of wells needed for full-scale operation; 2) the soil vapor extraction rate; 3) the required vacuum to be applied to the extraction well; and 4) the air quality of the extracted soil vapor to determine the appropriate vapor treatment alternative.

The approximate extent of unsaturated soil contamination near the old solvent storage tank location has been delineated in a previous report entitled 1992 Environmental Investigation, GE Farrell Road Plant Two (FRP-2) dated July 10, 1992. The extent of contamination is indicated in Figure 1, which shows the locations of the soil borings used to delineate the area. Unsaturated soil contamination was found in six borings B-13, B-33, B-36, B-40, B-44 and B-47. The highest level of contamination was found in B-13, where the concentration of total VOCs was 7,580,000 ppb. The VOCs present at relatively high levels included 1,1,1-TCA, toluene, MIBK, ethyl benzene, and xylene. A summary of the VOC analytical data from soil borings obtained near the removed solvent tanks is presented in Table 1. Contamination was found in soil borings taken at depths of approximately 5.0 feet below grade down to the perched water table, which is approximately 9.0 feet below grade.

ERM-NORTHEAST, INC.

557.028\task1\mmcsvept.rpt

a . . **.** 1. ---

1

1

TABLE I MARTIN MARIETTA CORPORATION FARRELL ROAD PLANT

1

VOC ANALYTICAL DATA SOIL NEAR REMOVED SOLVENT TANKS

ANALYTE	B-12	B-13	B-17	B-18	8-31	B-32	8-33	8-34	B-35	B-38		1	<u> </u>	<u> </u>	.		.	<u>r</u>	·	-
	(5)	(6)	(10)	(6-8)				0.04	0.00	0~30	8-37	B-38	B-39	B-40	B-44 (6)	B-44 (10)	8-45	B-46	B-47	8-174
1,1 DCE		-	-	-	-	_			- I			<u> </u>	<u> </u>	1		(10)	(6)	(0)	(9)	(0)
1,2 DCE	-	_	-			<u> </u>		+	<u> </u>	 		<u> </u>							210	25
1,1 DCA	1	†	<u> </u>		<u> </u>	<u> </u>			<u>↓ </u>	<u> </u>		<u> </u>				<u> </u>	-	-	-	-
	<u> </u>	<u> </u>			<u> </u>				<u> -</u>			-	-	_	12	350	-	-	140	28
1,1,1-TCA	<u> -</u>	650,000	-	-	30	NS	17,000	NS	_	140,000	NS	14	_	34,000	23	1.300	80			<u> </u>
TCE	<u> </u>	_	-	-	-	NS		NS	_		NS	_	<u>├</u> ───	1		1.00		-	12,000	40
Benzene	-	_	_	-	_	_	_		1	†				1,600			<u> </u>	-	-	
Toluene	-	2,100,000								ļ	<u> </u>						<u> </u>	-	-	-
				-	-	NS	80,000	NS	10	740,000	NS	5	9	220,000	-	11,000	_	_	5,600	_
Ethylbenzene	-	630,000	-	6		NS	2,400	NS	_	220,000	NS	-	1	16,000	_	780	_			
мівк		2,000,000	-	-	_	-	-	-	_	_									3,800	160
Xylenes	1	4,200,000	_		_	NS						-				21,000		-	-	-
	-					CN.	15,0000	NS		1,200,000	NS		-	100,000	-	4,500	-		28.000	570
TOTAL	0	7,580,000	0		30		144.400		10	2,300,000		19	9	371,500	35	39,030	60	~	49,750	923

NOTES:

All values are in ug/kg (ppb).

NS = No sample (field screening only) for this boring. --- = Compound not detected in this sample but present in another. All Samples analyzed for priority pollutant volatile organic compound; compounds not listed were not detected in any sample.

957.020 Jank Tylebic Libi

ſ

·---

f.....

DESCRIPTION OF TESTING PROGRAM

20

The soil vapor extraction test involves pumping air out the soil vapor extraction well, which is screened both above and below the water table. The applied vacuum at the extraction well is varied while measuring the corresponding vapor extraction flow rate. The blower exhaust is monitored with an explosimeter and photoionization detector (PID). If necessary, dilution air is added to keep the gas concentrations below explosive levels to ensure safe operating conditions. The vapor extraction flow rate is then set while monitoring negative changes in pressure at the observation wells. The organic vapor concentration of the blower exhaust and carbon vessel (used for emission control) exhaust is monitored, along with the flow rates of soil vapor and dilution air. To characterize the soil vapor, samples of the blower exhaust are taken, using adsorptive sample tubes or summa canisters, which are analyzed in a laboratory for VOCs.

In some cases, a surface seal is required in order to prevent atmospheric air from being drawn down into extraction well and thus short-circuiting the contaminated soil. In addition, the surface seal prevents excess amounts of rain water from entering the test zone. The pilot testing in this area was conducted with a surface seal in place.

2.1 DETERMINATION OF PNEUMATIC RESPONSE

In order to determine the effective radius of influence at a particular operating condition, the steady state vacuum responses at various distances from the extraction well are monitored. When no passive venting or reinjection is applied, the vacuum response generally decreases exponentially with distance, the pressure gradient also decreases and therefore the soil gas flow rate through that point decreases. Typically, a point is considered effectively influenced if the vacuum response is at least 0.1 inches at that location. Observation wells are installed at various distances from the extraction well in an attempt to empirically determine the distance where the vacuum response falls within this range. Alternatively, by plotting the logarithm of vacuum versus distance, linear interpolation or extrapolation can be done to determine the effective radius of influence (EROI) at that particular extraction flow rate and vacuum.

Typically, steady state vacuum response is reached after 30 to 60 minutes. However, the vacuum may slowly continue to propagate out over a period of several days. As the formation dries out and the pore spaces are evacuated, the EROI would tend to expand slightly. Therefore, results taken after a one hour test would be somewhat conservative, although usually not too different from a longer term test.

CHARACTERIZATION OF EXTRACTED SOIL GAS

The soil gas is characterized by the frequent use of field monitoring equipment, supplemented by less frequent gas sampling and laboratory analysis to confirm the constituents of the soil vapor and establish the correlation between field monitor readings and actual analytical results.

ERM-NORTHEAST, INC.

22

557.028\task1\mmcsvept.rpt

The field devices used include a photoionization detector (PID) to determine VOC concentration readings and a combustible gas/oxygen meter to determine lower explosive limit (LEL) readings.

The soil vapor is frequently monitored to determine the effects that changes in operating conditions may have on the extracted soil vapor. For example, attempts to minimize short-circuiting may result in higher VOC concentrations. Also, increasing the soil vapor flow rate may result in diffusion or volatilization limiting conditions and/or increase the impacts of short-circuiting, thereby reducing the VOC concentration.

The characteristics of the soil vapor are critical to the selection of the emission control technology. High concentrations of VOCs prohibit the use of activated carbon, and in some cases would cause oxidation systems to operate with large amounts of dilution air in order to keep the oxidizer influent below 25% of the LEL. These could result in very large, oversized units as the concentrations drop off over time.

The laboratory data is necessary to determine the concentrations of the specific compounds present. Certain compounds, such as MIBK, play an important role in determining the control requirements needed to meet air emission regulations. Other less regulated compounds play an important role in adding to the British Thermal Unit (BTU) value of the soil vapor, increasing the explosivity and the loading on treatment equipment.

EQUIPMENT USED

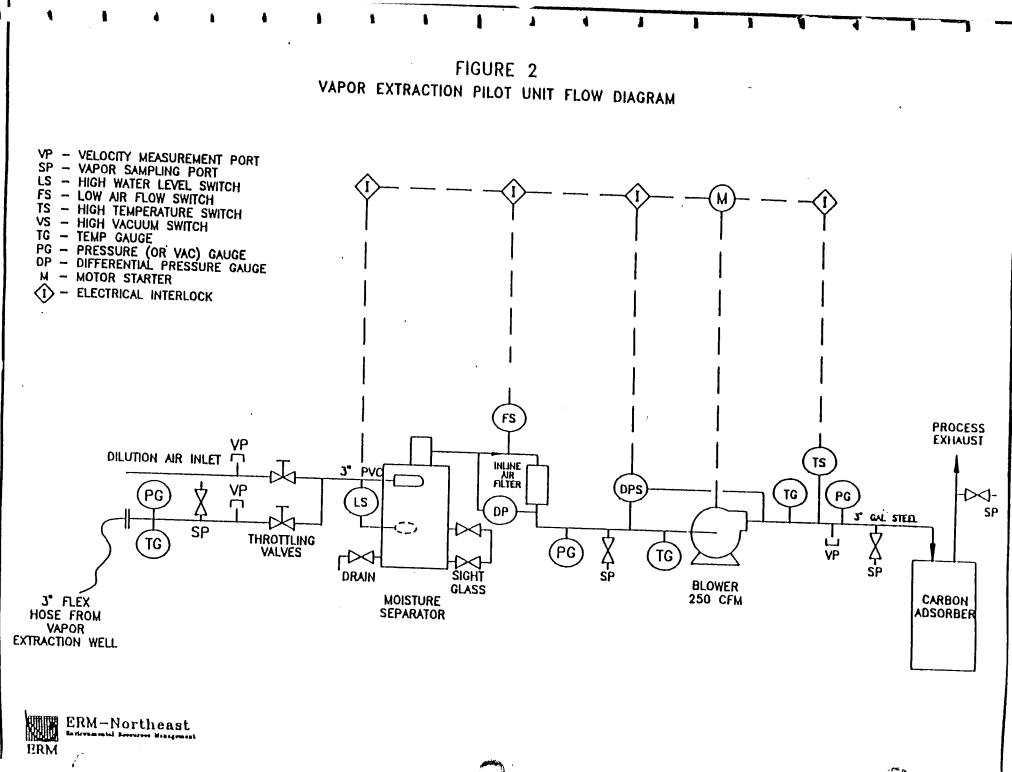
23

A portable soil vapor extraction unit was mobilized to the site. This unit can deliver up to 250 cfm at a vacuum of 40 inches water column but can also pump less by turning down a throttling valve on the blower inlet piping. A process schematic of the pilot unit is presented on Figure 2.

ERM-NORTHEAST, INC.

557.028\task1\mmcsvept.rpt

ž


The mobile unit is equipped with the following: a 10 HP blower, moisture separator, in-line filter, interconnecting piping for soil gas and dilution air, control panel and various instruments and controls.

The blower housing, impeller and cover are constructed of spark-proof diecast aluminum. The blower package includes inlet and outlet internal muffling, (keeping the noise level within OSHA standards), and a direct drive 10 HP explosion-proof motor.

The moisture separator is a high efficiency cyclonic type, designed to remove condensate from the soil gas. It is inherently safe, and includes a drain valve, sight glass, vacuum relief valve and an explosion proof level switch designed to cause a blower shutdown and an alarm to sound at high. liquid levels in the moisture separator. A small peristaltic pump can be used to remove liquid from the moisture separator without interrupting the vacuum extraction process.

The in-line filter removes particulates from the air stream to protect the blower. The filter element is easily replaced, if necessary. A differential pressure gauge is provided on the inlet and outlet of the filter to indicate if it needs to be replaced.

The control panel includes the following: motor starter, transformer, alarm shutdown relays, alarm (audio and indicator light), alarm silence and reset, main disconnect, start/stop push buttons, and remote start/stop push buttons on a 25-foot cord. The control panel can be configured to accept either a 240 volt or 480 volt, 3 phase, 60 Hz power supply. The panel housing is a NEMA 4 enclosure.

2-5

The interconnecting piping, instrumentation and controls are illustrated on Figure 2. The following alarm/shutdowns are included: high liquid level in moisture separator, low air flow (due to blower failure or a blockage), high differential pressure across blower, high discharge air temperature, and motor overload. The control switches are explosion proof and are configured to protect the blower from permanent damage. These controls prevent a minor, temporary malfunction from causing a major setback in performing the pilot tests.

Various instruments are provided to monitor operating conditions. These instruments include several vacuum, pressure and temperature gauges. A change in readings alerts the operator of a potential problem. Sample ports are provided to allow for easy gas sampling from either the inlet soil gas (before mixing with dilution air), or at the blower outlet. A gas sample pump with a flow meter is available to obtain gas samples.

Throttling values are provided on the soil gas inlet piping and the dilution value inlet piping. These allow control of the total air flow by increasing the back pressure on the blower, and/or by varying the ratio of soil gas to dilution (atmospheric) air. Flow measurement ports are provided in the piping on the soil gas inlet, dilution air inlet, and blower discharge. Flow rates were determined using an air velocity meter.

The soil gas inlet piping is connected to the extraction well, with flexible hose. The dilution air inlet draws in atmospheric air through slotted polyvinyl chloride (PVC) pipe.

The blower discharge is connected to a vapor phase carbon adsorption system, situated adjacent to the vapor extraction unit, to treat the extracted gases prior to release to the atmosphere. The carbon system consists of two drums, each containing 200 pounds of activated carbon with a flow capacity of 100 cfm connected in-series. The purpose of the second drum is to provide back-up emission control if there is contaminant breakthrough in the first drum.

The outlet of the carbon system is discharged to the atmosphere through a 10 foot high stack, and the discharge piping includes sample ports for discharge air monitoring, both after the first carbon drum and at the discharge.

TESTING PROCEDURES

24

The portable soil vapor extraction unit was used to withdraw subsurface vapor via the pilot extraction well. During system startup, the following were continuously monitored while adjusting the soil vapor and dilution air throttling valves:

- soil vapor flow rate,
- dilution air flow rate,
- applied vacuum, and
- explosive level at the blower discharge.

This information was immediately evaluated to select a range of soil vapor flow rates and vacuums to be applied. An applied vacuum was then set, and the system allowed to operate to reach a steady state condition. During the test run, the following were monitored:

- soil vapor flow rate,
- dilution air flow rate,
- applied vacuum at extraction well,
- vacuum response at each vapor observation well, and

ERM-NORTHEAST, INC.

ſ

vapor characteristics at the blower discharge and carbon discharge.

After a steady state condition had been established (or reasonably close to steady state), the next condition was applied. For several of the operating conditions, an air sample of the blower exhaust was collected for laboratory analysis.

Two different types of sampling and analysis protocols were used; EPA Method T0-14 and NIOSH 1003. For the NIOSH method, the sample gas (blower exhaust) is drawn through the tube at a constant rate, using a sample pump and a flow meter. The sample flow rate and sample time is used to calculate the sample volume drawn through the tube. The tube media is then analyzed in the laboratory to determine the mass of contaminants in the tube. Once the mass of contaminants and sample volume is known, the concentration can be calculated. For Method T0-14, a summa canister is used. The laboratory provided summa canister is an evacuated steel container, at a vacuum of about 23 inches mercury. The sample gas is drawn into the canister by simply opening a valve and allowing the sample to flow into the evacuated canister. The laboratory measures the vacuum within the canister before and after the sampling to determine the sample volume drawn into the canister and can then determine the VOC concentrations in the sample.

The sample gas is taken from the blower exhaust, which includes a combination of atmospheric air (dilution air) and soil vapor. The flow rate of both dilution air and soil vapor are measured and used to calculate the dilution factor, which is the ratio of blower exhaust air flow rate to soil vapor air flow rate. The VOC concentration in the blower exhaust is then multiplied by the dilution factor to determine the VOC concentration in the soil vapor.

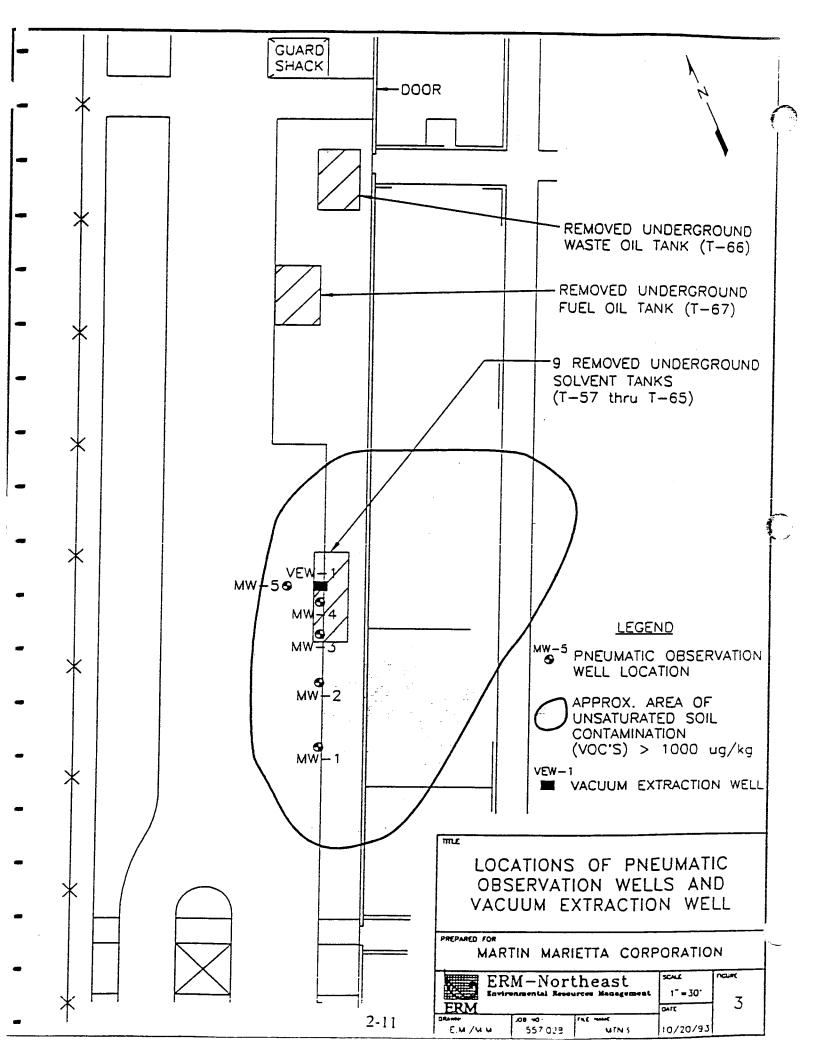
ERM-NORTHEAST, INC.

25

One vacuum extraction well and five pneumatic observation wells were installed for the vapor extraction pilot testing. The vacuum extraction well was installed at the location where the highest concentration of VOC's were detected.

The pilot test was conducted on a newly installed vacuum extraction well, designated as VEW-1. The well was installed by Empire Soils Investigations, Inc. The vacuum extraction well was constructed with fourinch diameter stainless steel, with 12 feet of 0.020 inch slotted screen and 3 feet of riser. The well is installed at a depth of 15 feet below the ground surface, approximately 5 feet into saturated material and has 2 feet of stick up above the ground surface. The annular space was filled with No. 3 sand pack to 2.5 feet below the ground surface. A bentonite pellet seal was placed above the gravel pack to the ground surface, and hydrated.

Five vapor observation wells were installed for the purpose of measuring the subsurface vacuum response to vapor extraction. The wells were installed with a hand driven sub-soil probe. The vapor observation wells were constructed of one inch diameter PVC with five feet of 0.010 inch slotted screen. A bentonite seal was also installed at the ground surface. The five wells were fitted with a cap and brass valve to allow vacuums to be measured with a hand held vacuum gauge. The radial distance and direction of each observation well from the vacuum extraction well (VEW-1), as well as the screen interval data, are presented in Table 2. The locations of the vapor observation wells and vacuum extraction well are illustrated on Figure 3.


ERM-NORTHEAST, INC.

2-9

TABLE 2 MARTIN MARIETTA CORPORATION FARRELL ROAD PLANT SOIL VENTING PILOT TEST LOCATION AND DESCRIPTION OF PNEUMATIC OBSERVATION WELLS

Well No.	Distance From VEW-1	Screen Interval (Feet)	Depth To Water (Feet)	Saturated Screen Length (Feet)	Unsaturated Screen Length (Feet)
MW-1	50 feet south	3.10 - 8.10	>8.10	0	5.00
MW-2	30 feet south	3.50 - 8.50	>8.50	0	5.00
MW-3	15 feet south	3.00 - 8.00	>8.00	0	5.00
MW-4	5 feet south	3.00 - 8.00	> 8.00	0	5.00
MW-5	10 feet west	3.00 - 8.00	>8.00	0	5.00

۶

3.0

SOIL VAPOR EXTRACTION PILOT STUDY RESULTS

3.1 PNEUMATIC CONDITIONS

Soil vapor extraction tests were conducted for two days on 27 July 1993 and 28 July 1993. The first day of testing was performed to provide a variety of data for several operating conditions. The second day of testing was utilized to obtain data for optimum conditions based on review of day one observations.

The soil vapor extraction field data for the pilot test is summarized in Table 3. As shown in Table 3, a total of four different testing conditions were evaluated. All of the four conditions were run with a surface seal consisting of 10 millimeter thickness plastic sheeting held in place by tenfoot lengths of 4" x 4" timbers and sandbags. The vacuum applied to the vacuum extraction well was varied between 36 and 58 inches water column. The resulting soil vapor flow rate varied from 3.68 to 7.37 cfm. Figure 4 shows a plot of applied vacuum versus resulting soil vapor flow. Figure 4 illustrates how the flow rate increases as the applied vacuum increases.

The vacuum response at the observation wells was affected by the distance of the observation well from extraction well, and by the vacuum applied to the extraction well. Figure 5 presents the site plan with the vacuum response data at the observation wells for each test condition. As expected, the vacuum response in each well increased with increases in the vacuum applied to the extraction well. Also as expected, the vacuum response is greatest in the wells closest to the extraction well and decreases as the distance from the extraction wells increases. Both of these trends are demonstrated in Figure 6 which shows a plot of vacuum response versus distance from the extraction well, for each of the four conditions.

ERM-NORTHEAST, INC.

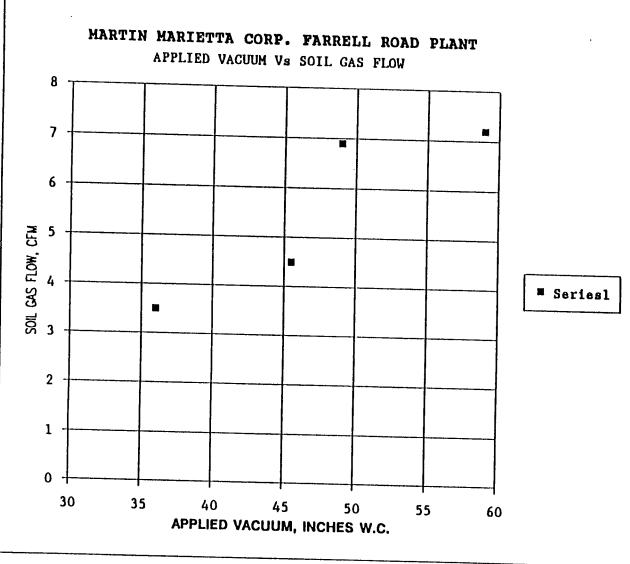
557.028\task1\mmcsvept.rpt

		<u> </u>	<u> </u>	1 1		
SOIL VAPOR EXTRACTION PILOT TEST DATA MARTIN MARIETTA CORPORATION - FARRELL ROAD PLANT						
Condition Number	I	2	3	4		
Start: Date Time Stop: Date Time	7/27/93 1:00 p.m. 7/27/93 2:00 p.m.	7/27/93 2:30 p.m. 7/27/93 3:45 p.m.	7/27/93 4:15 p.m. 7/27/93 5:15 p.m.	7/28/93 8:30 a.m. 7/28/93 10:30 a.m.		
Soil Gas Flow, CFM	4.91	7.36	3.68	7.37		
Blower Exhaust Temp., °F	160	170	150	150		
Dilution Air Flow, CFM	294.6	245.40	255.32	270.05		
Total Flow, CFM	299.51	252.76	259.0	277.42		
Dilution Factor	61	34	70	38		
Surface Seal Status	ON	ON	ON	ON		
Vacuum Response, IN. W.C. VEW-1 MW-1 MW-2 MW-3 MW-4 MW-5	46 0.02 0.04 0.18 1.9 0.20	58 0.02 0.06 0.22 2.8 0.30	36 0.02 0.05 0.15 2.0 0.19	47 0.01 0.08 0.22 3.0 0.30		
VOC Concentration, PPM Blower Outlet Soil Vapor	144 8784	209 7106	109 7630	236 8968		
Weather Conditions Temperature(^a F) Relative Humidity(%) Barometer Winds (mph)	71 93 29.791 south 10	71 93 29.791 south 10	71 93 29.791 south 10	80 57 29.84 I south 13		

- ******* - (

Note: Vacuum response values are based on conditions near the end of the test run.

1


ł

1

ł

í

٩.

ł

1

Ì

1

ł.

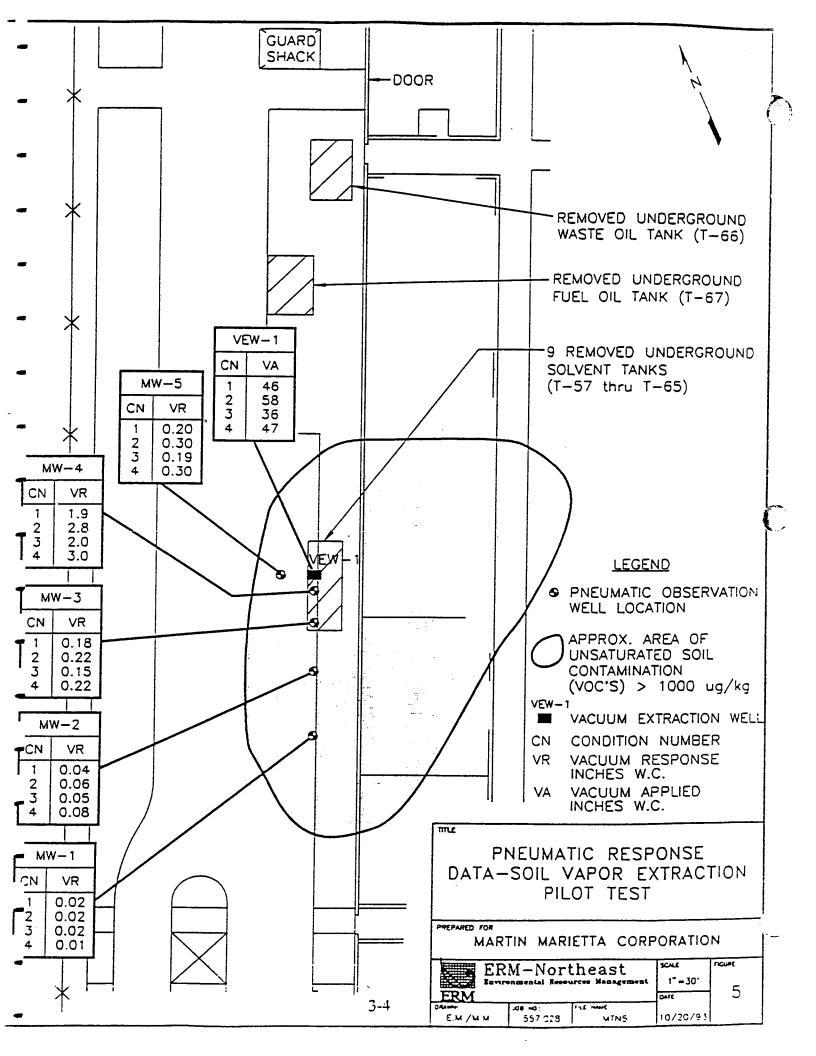
ł

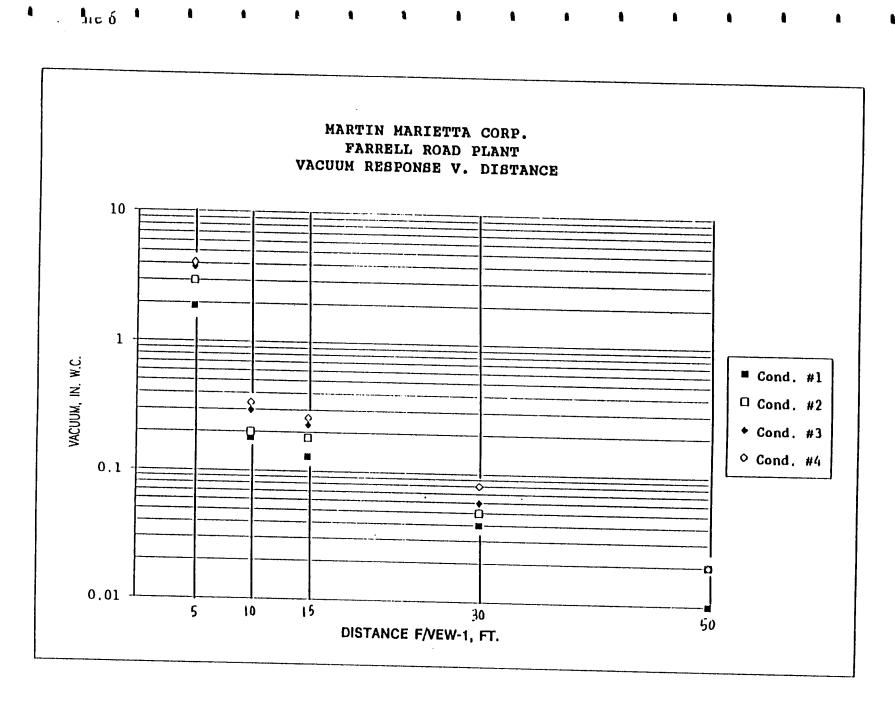
ł

1

ł

1


မ မ


lin ∎

ŧ.

а 1

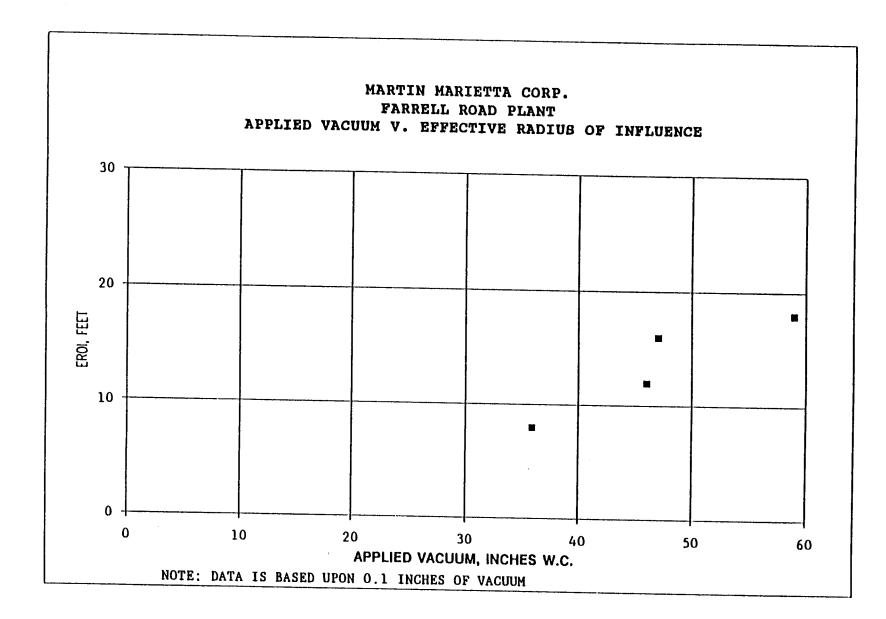
ł

.

ς-υ

ŧ

With the exception of observation well VW-4, the semi-log plot of vacuum (log scale) versus distance from the extraction well is linear. The vacuum response for VW-4 is greater then expected based on the data from the other wells. Using the data from observation wells MW-1, MW-2, MW-3 and MW-5 and linear regression analysis, the distance from the extraction well at which the vacuum response is equal to 0.1 inches water can be determined for each run. As discussed earlier, this distance represents the effective radius of influence (EROI). This has been done and the EROI has been determined for each run. A plot of EROI versus applied vacuum is presented in Figure 7. This plot shows how the EROI increases with increasing applied vacuum but then levels off at the higher vacuums. A curve has been drawn through the data points in Figure 7 which can be used to estimate the EROI for any applied vacuum. From the plot, it appears that the optimum applied vacuum is 50 inches water column, (W.C.) which would result in an EROI of 20 feet.


For establishing a design basis for the full-scale soil vapor extraction system, a margin of safety should be applied. It is therefore recommended that an applied vacuum of 50 inches W.C. be used as the design basis with an EROI of 20 feet. From Figure 4, at 50 inches W.C. the expected soil vapor flow rate is approximately 7.0 scfm, although for condition 3, the flow rate was measured at 7.37 cfm at 48 inches W.C. To be conservative, the design soil vapor flow rate (to be used for sizing the emission control system) is 10 scfm per well. The pneumatic design basis is summarized below:

Vacuum Applied to each Extraction Well50 inches W.C.Soil Vapor Flow Rate per Well10 scfmEffective Radius of Influence20 feet

ERM-NORTHEAST, INC.

557.028\task1\mmcsvept.rpt

(

3-7

i re 🕻

.

1

.

4

1

t.

Ĩ.

1

1

Ť.

SOIL VAPOR CHARACTERISTICS

The laboratory analytical results of the soil vapor samples are presented in Table 4. As previously discussed, two types of analytical methods were used, EPA Method TO-14 and NIOSH 1003. The following is a summary of information related to the air sampling.

Sample ID	Condition	Pump On (minutes)	Flowrate (t/min)	Volume (l)
MMCS1	Background	13	0.15	1.95
MMCS2	1	14	0.15	2.10
MMCS3	2	14	0.15	2.10
MMCS4A	3	15	0.15	2.25
SUMMA 0002	2			

As shown in Table 4, five soil vapor samples were analyzed, each at a different operating condition, including a background condition. The results of samples MMCS2, MMCS3 and MMCS4A were used to calculate the average contaminant concentration to be used for the design basis. As shown in Table 4, the average total VOC concentration is 5272 ppm, the majority of which consists of toluene (2247 ppm), xylenes (994 ppm) and 1,1,1-trichloroethane (1627 ppm).

ŧ

TABLE 4 MARTIN MARIETTA CORPORATION FARRELL ROAD PLANT SOIL VAPOR EXTRACTION ANALYTICAL RESULTS

			1	CONDITION								
		Background	1	1*	2	2*	3	3.	2	2.	⁴	
Code	Compound	MMCS1 (ppm)	MMCS2 (ppm)	(ppn)	MMC S3 (ppm)	(ppm)	MMC S4A (ppm)	(ppm)	SUMMA 0002 (ppm)	(ppm)	Average Design Condition (ppm)	lbs/hr
0856	n-oclane	7.2	ND<0.92	56	ND<0.92	31	ND<0.86	60	ND	0	49	0.08
0859	toluene	2100.	41.	2501	65.	2210	29.	2030	15.	510	2247	3.53
0860	ethylbenzene	140.	3.3	201	6.2	211	2.9	203	1.5	51	205	
0861	xylenes	730.	15.	915	32.	1088	14.	980	6.8	231	994	0.32
0869	methylethyl ketone	10.	ND<1.6	98	ND<1.6	54	ND<1.5	105	ND	0		1.56
0883	1.1-dichloroethane	19.	ND<1.2	73	ND<1.2	41	ND<1.1	77	ND		86	0.14
0885	1.1.1-trichloroethane	1700.	32.	1952	45.	1530	20.	1400	25.	0	64	0.10
	Total	76,976.20	91.3	5796	148.2	5165	65.9	4855	 48.3	850 1642	1627 5272	2.56 8.29

.

1

Notes: 1.

4.

* Data with dilution factors accounted for.

The average design condition is based on condition 1 (MMCS2), condition 2 (MMCS3) and condition 3 (MMCS4A) data. 2. 3.

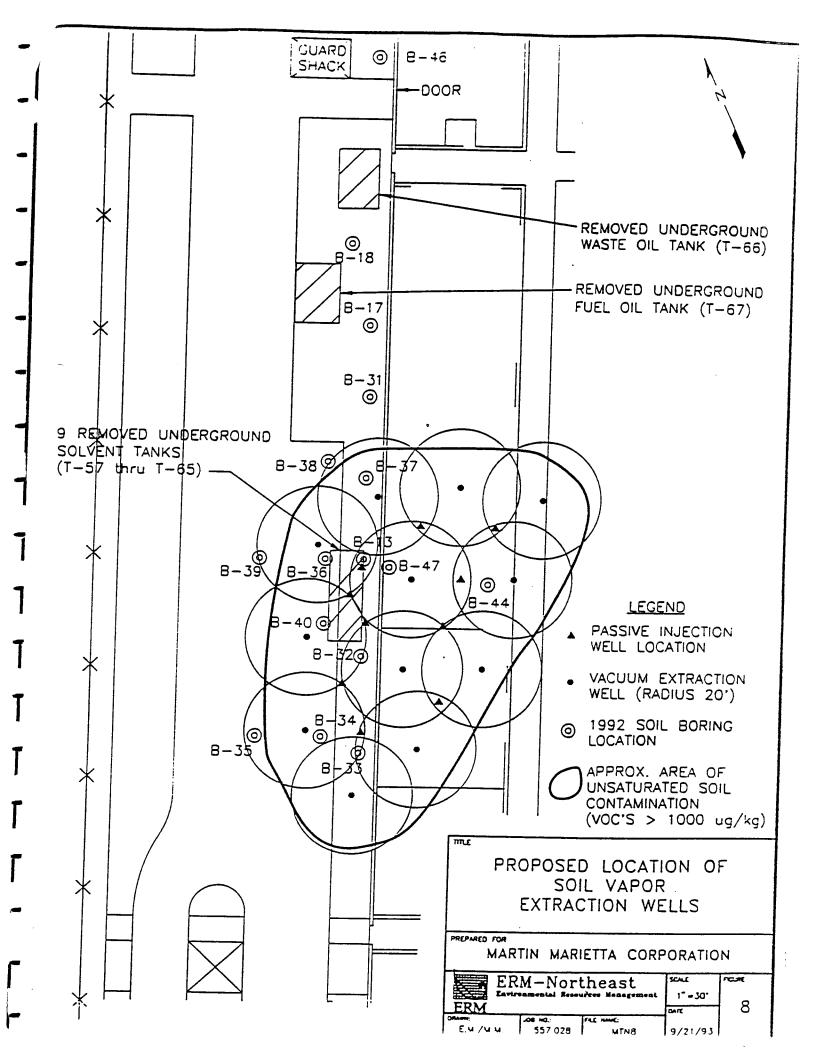
ND (Non-detectable) indicates that the contaminant was below the detection knill of the analytical method.

The numbers included in the total line indicate the total for contaminants that were detected.

CONDITION	DILUTION FACTOR
1	61
2	34
3	70
2	34

.

CONCEPT DESIGN


To effectively remediate the unsaturated contaminated soil near the old solvent storage tank, the extraction wells must be spaced such that the EROI of the extraction wells completely encompass the contaminated area. To do this, a total of twelve extraction wells are needed as shown on Figure 8, which shows the proposed locations of these extraction wells. A 20 foot EROI has been drawn around each extraction well and the EROI of the twelve wells completely encompass the contaminated soils. Seven passive injection wells are also proposed, as shown on Figure 8, to prevent a dead space in between the extraction wells. The results of the pilot study indicate a consistent pneumatic response with the surface seal in place. It is therefore recommended that a surface seal be used in the full scale design.

At a design flow of 10 cfm per well, the total soil vapor flow rate is 100 cfm. The required vacuum at the extraction wells is 50 inches W.C. To account for pressure drops across piping, valves, fittings, the moisture knockout drum and particulate filter, and necessity for dilution air, it is recommended that the vacuum blower be sized for a minimum of 200 cfm at 50 inches W.C. vacuum.

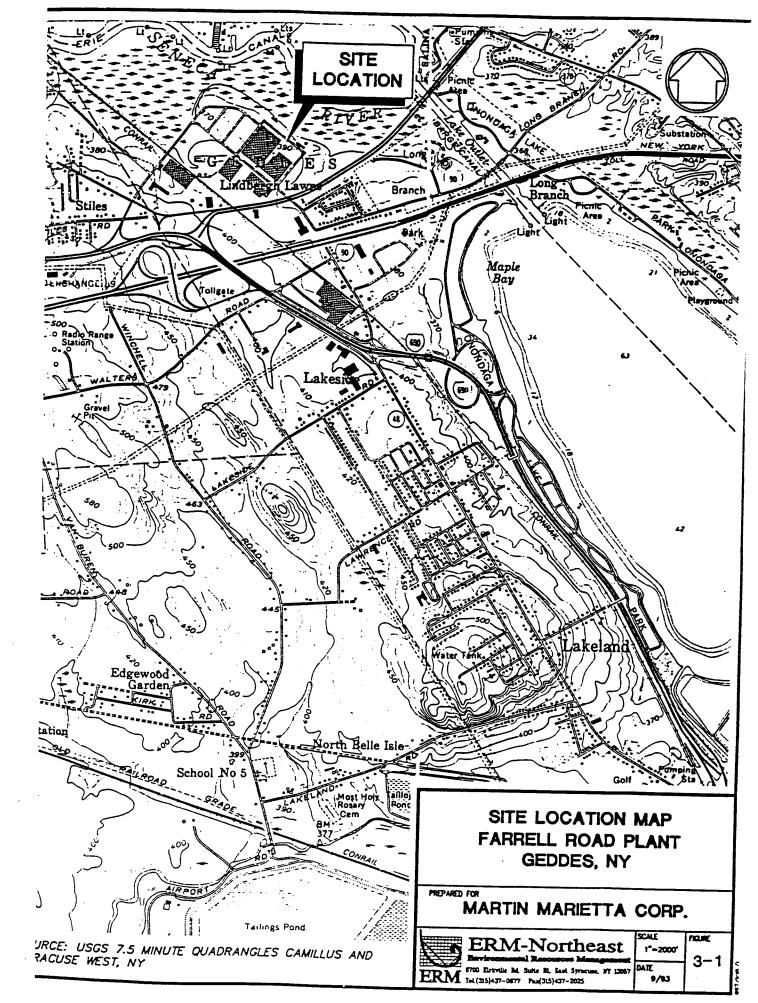
The design soil vapor characteristics are shown in Table 4. This table includes the pounds per hour of each contaminant in the extracted soil vapor at a flow rate of 100 cfm. The total VOC mass removal rate is 8.29 pounds per hour, for a monthly mass removal of 6000 lbs. The use of carbon for emission controls is not feasible due to a high carbon usage rate. For air emission controls, a thermal oxidizer is recommended.

£ 3

Í

-

-


MARTIN MARIETTA CORPORATION

REMEDIAL INVESTIGATION/FEASIBILITY STUDY WORK PLAN MARTIN MARIETTA CORPORATION FARRELL ROAD PLANT GEDDES, NEW YORK

January, 1994

ERM-NORTHEAST, INC. 5788 Widewaters Parkway Dewitt, New York 13214

3.0 BACKGROUND

3.1

SITE DESCRIPTION/HISTORY

FRP is located northeast of the intersections of Routes 690 and 90 and south of the Seneca River (Figure 3-1). The property was developed in the early 1960's by General Electric Aerospace (GE) as a manufacturing center, and has been used as a design, manufacturing and assembly center for radar and sonar equipment. By December 1992, GE had moved all operations from FRP to other locations. GE sold the western portion of FRP (FRP-2), which includes Building No. 2 and the maintenance garage, to MMC in April 1993. Ownership of FRP-2 was transferred to Syroco, Inc. in December of 1993. MMC leases the eastern portion of the site (FRP-1) which includes Building No. 1 and the Test Building.

The 156-acre site includes four buildings (see Work Plan Document 1, Plate 1): Building No. 1 was used as a design center; Building No. 2 was used as a manufacturing and assembly plant; the Test Building was used to test radar products; and the maintenance garage was used to service and house plant support vehicles.

Building No. 1 is approximately 175,000 square feet and Building No. 2 is approximately 300,000 square feet; the buildings are connected by a ground level walkway. The maintenance garage is approximately 6,500 square feet and is located at the northwest corner of the site. The Test Building is approximately 9,000 square feet and is located at the northeast corner of the site.

The four buildings are enclosed by a perimeter fence which is bordered by large paved parking areas on the east and west. The Site is bordered on the south by Farrell Road, on the north and west by the Seneca River and on the east by John Glenn Boulevard.

3-1

The site is located within the Ontario Lowland geological province of New York State. The lowlands are characterized by large areas of low relief interrupted by streamlined hills called drumlins. Surficial geology at the site is composed of modern and glacial-aged lake sediments (Muller and Cadwell, 1986) underlain by Silurian (>400 million years old) shales and evaporates (Rickard and Fisher, 1970).

A shallow unconfined aquifer was mapped in the area by Kantrowitz (1970) and Winkley (1989). The shallow aquifer is composed of glacial sand and gravels and has been reported to produce usable quantities of water. Shallow ground water is between two feet and seven feet beneath the ground surface, and flows to the north. Bedrock beneath the site is likely to produce low-yielding wells with salty water (Kantrowitz, 1970).

3.3 PREVIOUS INVESTIGATIONS

ERM conducted a preliminary hydrogeologic investigation in June 1991. The investigation was designed to determine site-wide ground water flow direction, to estimate the extent of petroleum residuals near an underground storage tank (UST) T-51 east of Building No. 2, and to determine the potential effects of a septic leach field near the maintenance garage. Results indicated that ground water generally flows in a north/northwest direction across the site; and ground water adjacent to UST T-51 has been affected by petroleum residuals and volatile organic compounds (VOCs).

As a follow-up investigation, ERM conducted a Phase II Hydrogeologic Investigation in November 1991. The purpose of the investigation was to estimate the extent of petroleum residuals and VOCs in the soil and ground water near the UST (T-51). The investigation determined that petroleum residuals were limited to the area proximal to the removed UST, and anomalous VOCs (predominantly freon) were present in ground

JLR:\557.008.01\RIFSINTR.RPT

water east of Building No. 2. ERM recommended further ground water investigation.

Concurrent with the ground water investigations at the site, ERM conducted a Phase I Environmental Site Assessment. The site assessment included a review of all available site records with environmental implications, examination of site manufacturing processes, storage and disposal procedures and interviews with current and past employees.

Based on the Phase I reports, ERM identified 16 areas of FRP that needed further investigations. The areas requiring investigation are listed on Table 3-1 and illustrated on Plate 1, Work Plan Document I.

Each of these areas of concern was investigated in 1992. Results of the 1992 investigations are presented in reports entitled:

- Phase I Environmental Assessment of GE Farrell Road Plant One (FRP-1), Town of Geddes, New York;
- 1992 Environmental Investigation, GE Farrell Road Plant One (FRP-1), Syracuse, New York;
- Phase I Environmental Assessment of GE Farrell Road Plant Two (FRP-2), Syracuse, New York;
- 1992 Environmental Investigation, GE Farrell Road Plant Two (FRP-2), Syracuse, New York;
- 5) A letter report dated 15 September 1992; Re: PCB Sampling at Farrell Road Plant Two;

TABLE 3-1 AREAS OF CONCERN IDENTIFIED IN PREVIOUS INVESTIGATIONS MARTIN MARIETTA CORPORATION FARRELL ROAD PLANT

- 1. Debris Pile North of FRP-2.
- 2. Septic Leach Field North of Test Building.
- 3. Former Above Ground Solvent Tanks in FRP-2.
- 4. Removed Above Ground Tanks East Side of FRP-2.
- 5. Removed USTs and Drywell West Side of FRP-2.
- 6. Printed Wire Board (PWB) Assembly.
- 7. Removed UST T-51.
- 8. Area of Freon Residuals.
- 9. Removed UST T-50.
- 10. Temporary Hazardous Material Storage Area.
- 11. Radar Test Area.
- 12. Paint Booth Area.
- 13. Chemical Laboratory and Associated Underground Septic Tank.
- 14. Septic and Storm Drainage Headwall West of the Garage.
- 15. USTs Near Old Metal Finishing Room.
- 16. Removed Gasoline UST Near the Garage.

- A letter report dated 15 September 1992, Re: Soil Remediation at Farrell Road Plant Two;
- Garage Area Investigation, GE Farrell Road Plant Two, Addendum to the 1992 Environmental Investigation;
- 8) Debris Pile Excavation, GE Farrell Road Plant Two; Addendum to the 1992 Environmental Investigation; and
- A letter report dated 23 October 1992; Re: Ground Water Sampling North of the Farrell Road Plant.

The 1992 environmental investigations assessed each area of concern and included IRMs at two locations (Area 1 and Area 5). IRMs have been conducted at Areas 1, 5 and 11; however, analytes of concern remain at these locations. The areas that will require additional investigation and are addressed in this Work Plan are:

- debris pile north of FRP (Area 1);
- septic leach field north of Test Building (Area 2);
- former above ground solvent tanks in FRP-2 (Area 3);
- removed above ground storage tanks, east side of FRP-2 (Area 4);
- removed USTs and drywell, west side of Building No. 2 (Area 5);
- removed UST T-51 (Area 7/Area 8 combined);
- removed UST T-50 (Area 9);
- temporary hazardous material storage area (Area 10);
- radar test area (Area 11);
- paint booth area (Area 12);
- septic and storm drainage headwall west of the garage (Area 14); and
- removed gasoline UST near the garage (Area 16).

In addition to these specific areas to be investigated, several other site-wide investigative and evaluative tasks will be performed:

- investigation of the site's storm sewer system;
- additional wetland hydrogeologic investigation;
- a bedrock aquifer investigation;
- a round of ground water sampling and analysis;
- performance of a qualitative Human Health Evaluation (HHE);
- performance of an Ecological Survey (ES); and
- performance of a Feasibility Study.

AREA 3 - FORMER ABOVE GROUND SOLVENT TANKS

Two above grade 275-gallon trichloroethene (TCE) tanks and one above grade 275-gallon waste oil tank previously existed beneath an elevated steel floor in FRP-2. A soil sample and a ground water sample were collected from beneath this area and analyzed for VOCs. The soil did not contain any VOCs while the ground water contained 99 $\mu g/\ell$ of TCE, probably derived from a source upgradient of this area based on the absence of this compound in the soil underlying the tanks.

4.4

4.3

AREA 4 - REMOVED ABOVE GROUND TANKS EAST SIDE OF FRP-2

Interviews with plant personnel revealed that tanks or trailers, possibly containing solvent, were previously located on the east side of FRP-2 (Area 4, Plate 1). Two borings advanced to ground water in this area did not encounter any evidence of the presence of VOCs and samples were not collected for analysis.

4.5

AREA 5 - REMOVED USTs AND DRYWELL WEST SIDE OF FRP-2

A review of building plans and plant personnel interviews indicated that up to nine solvent USTs and a drywell were located along the west wall of FRP-2 (Area 5, Plate 1). A soil gas survey of the area revealed elevated concentrations of VOCs in the soil and a GPR survey revealed buried pipes and a large area of disturbed soil, apparently at the location of the former tanks.

ERM conducted a soil boring program in the area in and around the removed tanks and throughout the interior of FRP-2 to determine the extent of affected soil and ground water beneath the building. The area of affected soil, for the most part, is limited to the area around the solvent tanks and drywell. There is very little affected soil away from this area. The suite of compounds detected included three chlorinated solvents (1,1-

JLR:\557.008.01\RIFSINTR_RPT

dichloroethene (1,1-DCE); 1,1-dichloroethane (1,1-DCA); and 1,1,1trichloroethane (1,1,1-TCA)) and three non-chlorinated solvents (toluene, ethylbenzene and xylenes).

During the investigation, an abandoned "paint drippings" drywell was identified near the solvent tanks. The drywell was excavated under a source control action. The contents of the drywell were sampled and found to contain the same suite of VOCs as had been discovered in the soil in the solvent tank area.

Ground water samples were collected from upgradient (west of the building) and downgradient (beneath the building) directions. Upgradient samples contained only trace amounts of solvents. Downgradient samples contained a suite of compounds similar to the compounds detected in the solvent tanks and drywell area. The area of affected ground water extends eastward from the solvent tank area to approximately the center of the building (220 linear feet). From the center of the building it extends northward approximately two-thirds the length of the building (350 linear feet).

Various remedial alternatives have been evaluated for this area and soil vapor extraction has been preliminarily identified as the most appropriate soil remediation. A soil vapor extraction pilot test was performed by ERM in August 1993.

4.6

AREA 6 - PRINTED WIRE BOARD (PWB) ASSEMBLY

GE operated a printed wire board (PWB) assembly area in the southwest corner of FRP-2 (Area 6, Plate 1). A plating facility, as well as etching and soldering baths, were active and used in the assembly process. Four USTs were also associated with the PWB: 1) T-53, an acid storage tank; 2) T-54, cupric chloride tank; 3) T-55, sewer settling tank, and 4) T-56, spill containment tank. To determine the environmental effect from these

4-3

**

,

• .

-

-

-

.

MARTIN MARIETTA CORPORATION

WORK PLAN DOCUMENT I

DESCRIPTION OF INTERIM REMEDIAL MEASURE FOR AREA OF CONCERN # 5

MARTIN MARIETTA CORPORATION FARRELL ROAD PLANT GEDDES, NEW YORK

April 18, 1994

4,

ERM-NORTHEAST, INC. 5788 Widewaters Parkway Dewitt, New York 13214 INTRODUCTION

Martin Marietta Corporation (MMC), is a corporation doing business in the State of New York which previously owned a property known as Farrell Road Plant 2 (FRP-2) and leased an adjacent property known as Farrell Road Plant 1 (FRP-1), on Farrell Road in the Town of Geddes, New York. Portions of these properties comprise the "GE Farrell Road Site" and are referred to as "FRP" or the "site". The site is located northeast of Routes 690 and 90, south of the Seneca River and approximately one mile to the west of Onondaga Lake. The site (FRP-1 and FRP-2) consists of approximately 130 acres of which approximately 81 acres have been classified as a Class One wetland by the New York State Department of Environmental Conservation (NYSDEC).

Previous environmental investigations conducted at the site have determined that soil and ground water have been affected by past activities at FRP. As a result, the FRP site was listed by NYSDEC on the Registry of Inactive Hazardous Waste Disposal Sites (Site No. 734055).

In April 1993, MMC purchased the FRP-2 portion of the site from General Electric Company (GE). In December 1993, MMC transferred title for that portion of the site to Syroco, Inc., an unrelated corporation. MMC has entered into an Order on Consent (the "Order") with NYSDEC (Index #A7-0308-93-10), dated 21 March 1994, to conduct Interim Remedial Measures (IRMs), on its own behalf as prior owner and as successor in interest to GE.

MMC has also entered into an Order on Consent with NYSDEC (Index #A7-0307-93-10), dated 15 December 1993, for the performance of a Remedial Investigation and Feasibility Study ("RI/FS") at the site.

ERM-NORTHEAST, INC.

1-1

557.045\IRMWP

The goal of the Order is to develop and implement three IRMs at FRP-2 in three Areas of Concern (AOCs). This IRM Work Plan will describe the remedial objectives of the IRM program for AOC #5 (as identified in Attachment C to the Order), and the methods and procedures to be implemented to achieve the remedial objectives.

1.1 PURPOSE AND ORGANIZATION OF THE IRM WORK PLAN

Martin Marietta's consultant, ERM-Northeast, Inc. (ERM), has prepared this IRM Work Plan (Work Plan) in accordance with the details outlined in Section II of the Order. This Work Plan focuses on the methods and procedures to be implemented in performing the IRM, including background information related to the AOC (Document I - Section 2.0), a description of IRM activities (Document I - Section 3.0), a detailed Engineering Contingency Plan (Document I - Section 4.0), a Sampling and Analysis Plan (Document II), and a Health and Safety Plan (Document III).

This Work Plan consists of three sections as follows:

- Description of Interim Remedial Measure This section is designated Work Plan Document I and introduces the Work Plan, summarizes all background information related to the AOC, provides a description of IRM activities, identifies the selected treatment technology, defines remediation goals, details an AOC specific sampling program, outlines the schedule of IRM activities, and provides a detailed engineering contingency plan.
- 2) Sampling and Analysis Plan (SAP) This section is designated Work Plan Document II and describes the sampling and analysis to be performed during the IRM including data quality objectives and

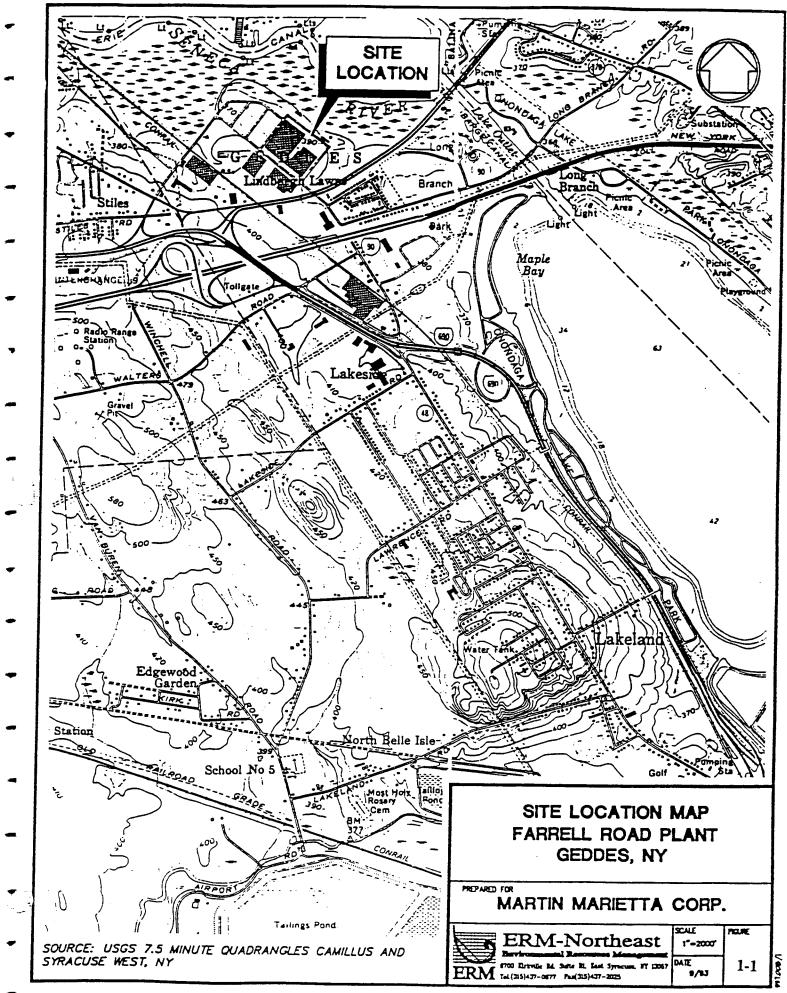
ERM-NORTHEAST, INC.

557.045\IRMWP

a Quality Assurance Project Plan (QAPP). The QAPP describes the procedures to be followed to provide quality assurance and maintain quality control while conducting activities described in the IRM field sampling plan.

3) Health and Safety Plan (HASP) - This section is designated Work Plan Document III and describes the health and safety procedures to which all persons involved in implementation of the IRM shall adhere.

1.2 SITE BACKGROUND


The site is located northeast of the intersections of Routes 690 and 90, south of the Seneca River and approximately one mile to the west of Onondaga Lake as indicated on Figure 1-1. The property was developed in the early 1960s by General Electric Aerospace (GEA) as a manufacturing center, and was used as a design, manufacturing and assembly center for radar and sonar equipment. By December 1992, GEA had moved all operations from FRP to other locations. GEA sold FRP-2 to MMC in April 1993. Ownership of FRP-2 was transferred by MMC to Syroco, Inc. in December 1993. In February 1994, MMC assigned its lease for the FRP-1 property to Syroco, Inc.

The 130-acre site includes four buildings: Building No. 1 was used as a design center; Building No. 2 was used as a manufacturing and assembly plant; the Test Building was used to test radar products; and the Maintenance Garage was used to service and house plant vehicles.

Building No. 1 contains approximately 175,000 square feet of floor space and Building No. 2 contains approximately 300,000 square feet of floor

ERM-NORTHEAST, INC.

557.045\IRMWP

space; the buildings are connected by a ground level walkway. The Maintenance Garage contains approximately 6,500 square feet of floor space and is located at the northwest corner of the site. The Test Building contains approximately 9,000 square feet of floor space and is located at the northeast corner of the site. The location of these buildings is depicted on the Site Map included as Plate 1.

The four buildings are enclosed by a perimeter fence which is bordered by large paved parking areas on the east and west. The site is bordered on the south by Farrell Road, on the north and west by the Seneca River and on the east by John Glenn Boulevard.

The site is located within the Ontario Lowland geological province of New York State. The lowlands are characterized by large areas of low relief interrupted by streamlined hills called drumlins. Surficial geology at the site is composed of modern and glacial-aged lake sediments (Muller and Cadwell, 1986) underlain by Silurian (greater than 400 million years old) shales and evaporates (Rickard and Fisher, 1970).

A shallow unconfined aquifer was mapped in the area by Kantrowitz (1970) and Winkley (1989). The shallow aquifer is composed of glacial sand and gravels and has been reported to produce usable quantities of water. Shallow ground water is between two feet and seven feet beneath the ground surface, and flows to the north. Bedrock beneath the site is likely to produce low-yielding wells with salty water (Kantrowitz, 1970).

1.3 PREVIOUS INVESTIGATIONS/REPORTS

ERM conducted a preliminary hydrogeologic investigation in June 1991. The investigation was designed to determine site-wide ground water flow direction, to estimate the extent of petroleum residuals near an

ERM-NORTHEAST, INC.

underground storage tank (UST) T-51 east of Building No. 2, and to determine the potential effects of a septic leach field near the maintenance garage. Results indicated that ground water generally flows in a north/northwest direction across the site; and ground water adjacent to UST T-51 has been affected by petroleum residuals and volatile organic compounds (VOCs).

As a follow-up investigation, ERM conducted a Phase II Hydrogeologic Investigation in November 1991. The purpose of the investigation was to estimate the extent of petroleum residuals and VOCs in the soil and ground water near UST T-51. The investigation determined that petroleum residuals were limited to the area proximal to UST T-51, and anomalous VOCs (predominantly freon) were present in ground water east of Building No. 2. ERM recommended further ground water investigation.

Concurrent with the ground water investigations at the site, ERM conducted a Phase I Environmental Site Assessment of FRP. The site assessment included a review of all available site records with environmental implications, examination of site manufacturing processes, storage and disposal procedures and interviews with current and past employees.

Based on the Phase I reports, ERM identified 16 areas of FRP that needed further investigations. Three of the areas requiring investigation are AOCs covered within the Order including:

- AOC #5 removed USTs and drywell on the west side of Building No. 2;
- AOC #7 removed UST T-51 on the east side of Building No. 2; and

ERM-NORTHEAST, INC.

AOC #16 - removed gasoline UST near the Maintenance Garage.

Results of previous investigations are presented in the following documents prepared by ERM unless otherwise noted:

- 1) Preliminary Hydrogeologic Investigation of the GE Aerospace Farrell Road Plant. 27 June 1991;
- 2) A Letter Report Regarding: Investigation of Trichloromethane Sources Farrell Road Plant. 23 September 1991;
- 3) Phase II Hydrogeologic Investigation of GE Aerospace, Farrell Road Plant. 15 November 1991;
- A Letter Report Regarding: Summary of Gasoline Underground Storage Tank and Soil Removal. 18 June 1992; prepared by Blasland & Bouck Engineers, P.C.;
- 5) Phase I Environmental Assessment of GE Farrell Road Plant Two (FRP-2), Syracuse, New York. 31 December 1992 (Amended 2 July 1992);
- 6) Phase I Environmental Assessment of GE Farrell Road Plant One (FRP-1), Town of Geddes, New York. 31 December 1991 (Amended 10 July 1992);
- 1992 Environmental Investigation, GE Farrell Road Plant Two (FRP-2), Syracuse, New York. 10 July 1992;
- 8) 1992 Environmental Investigation, GE Farrell Road Plant One (FRP-1), Syracuse, New York. 16 July 1992;

ERM-NORTHEAST, INC.

- 9) A Letter Report Regarding: PCB Sampling at Farrell Road Plant Two. 15 September 1992;
- 10) Debris Pile Excavation, GE Farrell Road Plant Two; Addendum to the 1992 Environmental Investigation. 29 July 1992;
- A Letter Report Regarding: Soil Remediation at Farrell Road Plant Two. 15 September 1992;
- Garage Area Investigation, GE Farrell Road Plant Two, Addendum to the 1992 Environmental Investigation. (issued in draft form 17 September 1992; reissued 14 October 1992);
- 13) A Letter Report Regarding: Ground Water Sampling North of the Farrell Road Plant. 23 October 1992;
- 14) A Letter Report Regarding: Farrell Road Plant; Storm and Sanitary Sewer Survey. 15 June 1993;
- 15) Soil Vapor Extraction Pilot Test Results. August 1993;
- 16) A Letter Report Regarding: MMC Farrell Road Site; 10 Soil Borings at Proposed Loading Dock. 2 September 1993;
- 17) Soil Remediation Design Report; Soil Vapor Extraction Pilot Study -Former Solvent Storage Tank Area (Area 5). October 1993.
- 18) Remedial Investigation/Feasibility Study Work Plan; Farrell Road Plant. January 1994;

ERM-NORTHEAST, INC.

19) Accelerated RI/FS Tasks; Farrell Road Plant Field Summary Data Report. March 1994.

1.4 IDENTIFY AOC

This IRM Work Plan will describe the IRM program for the soil remediation in the area of the removed USTs and drywell located on the west side of Building No. 2. This area has been designated as AOC #5 (former solvent storage tank area) and its location is indicated on the Site Plan and Areas of Concern included as Plate 2. 2.0 BACKGROUND OF AOC #5

This section of the Work Plan discusses the history, geology, previous remedial investigations, and contaminant characterization specific to AOC #5.

2.1 DESCRIPTION

AOC #5 is located on the west side of Building No. 2 within the FRP-2 portion of the site and consists of approximately 3,300 cubic yards (cy) of affected soil. Approximately 2,300 cy of soil are located beneath Building No. 2 and 1,000 cy are located beneath grass/asphalt areas west of FRP-2.

2.2 HISTORY

A review of buildings plans and plant personnel interviews indicate that up to nine solvent USTs and a drywell were located along the west wall of Building No. 2. A soil gas survey of the area revealed elevated concentrations of VOCs in the soil and a Ground Penetrating Radar (GPR) survey revealed buried pipes and an area of disturbed soil, indicating the location of the former tanks.

During the investigation, an abandoned "paint drippings" drywell was discovered near the solvent storage tanks. The drywell was excavated under a source control action. The drywell contents were sampled and shown to contain the same suite of VOCs discovered in the solvent tank area soils.

ERM conducted a soil boring program in the vicinity of the removed tanks and throughout the interior of Building No. 2 to determine the extent of affected soil and ground water beneath the building. The zone of affected

ERM-NORTHEAST, INC.

soil is limited mainly to the area around the former solvent storage tanks and former drywell. The suite of compounds detected included six chlorinated solvents and three non-chlorinated solvents.

Ground water samples were collected from ground water monitoring wells located both upgradient and downgradient of the affected zone. Upgradient samples contained only trace concentrations of VOCs. Downgradient samples contained a suite of compounds similar to those detected in the former solvent storage tank and former drywell area. The area of affected ground water extends eastward from the former solvent storage tank area to approximately the center of Building No. 2. From the center of Building No. 2 it extends northward approximately two-thirds of the building length. The area of affected ground water is indicated on Plate P-8 in the 1992 Environmental Investigation, GE Farrell Road Plant Two (FRP-2); July 1992 report.

GEOLOGY

23

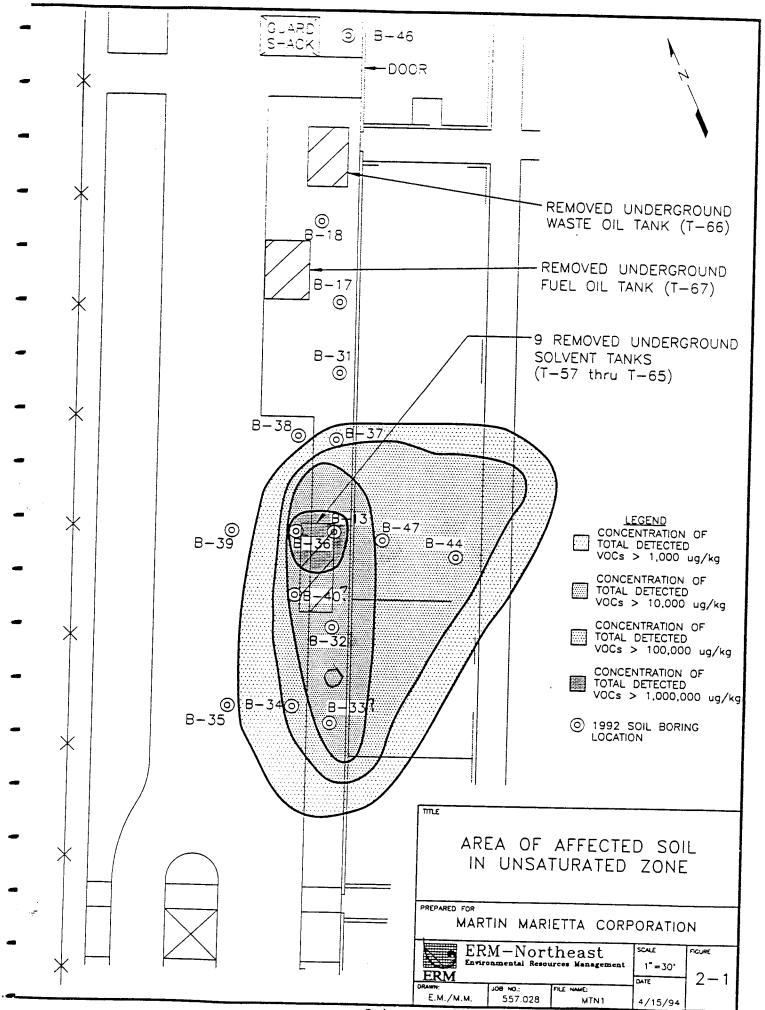
The soil at AOC #5 is composed of medium to fine sand with silt partings. Ground water is located between seven and nine feet below ground. A dense red silt and clay "till" is located between seven and twelve feet below grade. The clay till acts as a lower ground water flow boundary which perches from one to three feet of ground water.

Although general ground water flow is from south to the north/northwest across the site, buried ridges on the red clay till surface [see Figure P-6, 1992 Environmental Investigation, GE Farrell Road Plant Two (FRP-2)] create a localized perturbation of flow to the east. Flow continues through a buried topographic low on the clay surface where it rejoins the generalized flow to the north.

2-2

PREVIOUS REMEDIAL INVESTIGATIONS

24


The approximate extent of VOCs in unsaturated soil near the former solvent storage tank location has been delineated in a previous report entitled 1992 Environmental Investigation, GE Farrell Road Plant Two (FRP-2) dated 10 July 1992. The extent of affected soil in the unsaturated zone is indicated in Figure 2-1 which shows the locations of the soil borings used to delineate the area. VOCs in unsaturated soil were found in six borings B-13, B-33, B-36, B-40, B-44 and B-47. The highest concentration of VOCs was found in B-13, where the concentration of total VOCs was 7,580,000 ppb. Affected soil was found in soil borings taken at depths of approximately five feet below grade down to perched water which is approximately nine feet below grade.

In addition, a soil vapor extraction pilot test was performed, in July 1993, in the area where VOC-affected soil has been found. The pilot test was conducted to determine the technical feasibility of employing the soil venting technology and to collect the necessary data to design a full-scale system. Specifically, the goals of the pilot test were to establish: 1) the effective "radius of influence" in order to determine appropriate vapor extraction well spacing and the number of wells needed for full-scale operation; 2) the soil vapor extraction flow rate; 3) the required vacuum to be applied to the extraction wells; and 4) the air quality of the extracted soil vapor to determine the appropriate vapor treatment alternative.

2.5 CONTAMINANT CHARACTERIZATION

The compounds found in the soil at AOC #5 include: 1,1,1-trichloroethane (1,1,1-TCA), 1,1-dichloroethene (1,1-DCE), 1,1-dichloroethane (1,1-DCA), 1,2-dichloroethene (1,2-DCE), trichloroethene (TCE), 4 methyl 2-pentanone (MIBK), toluene, ethylbenzene and xylene.

ERM-NORTHEAST, INC.

A summary of the VOC analytical data from soil borings obtained near the removed solvent storage tanks is presented in Table 2-1.

The analytical data obtained during the soil venting pilot test is presented in Table 2-2. The table indicates actual soil vapor concentrations. This information was used to determine the applicability of the soil venting technology and the appropriate vapor treatment technology.

Although the 1992 Environmental Investigation and soil venting pilot test adequately characterized the concentrations of VOCs in and around AOC #5, the presence or absence of other constituents in the soils due to possible past releases from the drywell will be investigated in accordance with the Remedial Investigation/Feasibility Study (RI/FS) Work Plan dated January 1994. One soil boring will be drilled to the red clay layer and sampled at two depths as described in the RI/FS Work Plan. The soil boring (designated as B-120) will be completed in the approximate location as shown on Figure 2-2. The two samples collected for laboratory analysis will be analyzed for the full target analyte list (TAL) and target compound list (TCL) parameters. The boring will be backfilled with auger cuttings upon completion.

TABLE 2-1 MARTIN MARIETTA CORPORATION IRM WORK PLAN FOR AOC #5 FARRELL ROAD PLANT

VOC ANALYTICAL DATA FROM PREVIOUS INVESTIGATION SOIL NEAR REMOVED SOLVENT STORAGE TANKS

ANALYTE	1		1	T	T	T	T	1												
ANALTIE	B-12 (5)	B-13 (6)	B-17 (10)	B-18 (6-8)	B-31	B-32	B-33	B-34	B-35	B-36	B-37	B-38	8-39	B-40	B-44	B-44	B-45	B-46	B-47	B-474
1,1 DCE		- 1	_	_	_	_			1			<u> </u>		<u> </u>	(6)	(10)	(6)	(6)	(9)	(9)
1,2 DCE	-	·	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	┥╼	<u> </u>	<u> </u>	<u> </u>		<u> </u>	-		-	-	-	210	25
	┼───		- <u>-</u>			-			<u> </u>		-	-	-	-	-	350	_	_	1	<u> </u>
1,1 DCA	<u> </u>			_	-	-		-	_	_		_	1	<u> </u>	<u> </u>			- <u> </u>	<u> </u>	<u> </u>
1.1.1-TCA	-	650,000	_		30	NS	17,000	1 10	1		· · · · · · ·	<u> </u>	−	<u> </u>	12		<u> </u>	<u> </u>	140	28
TCE				 			17,000	NS	<u>↓</u>	140,000	NS	14	<u> </u>	34,000	23	1,300	80	_	12,000	40
· · · · · · · · · · · · · · · · · · ·				<u> </u>		NS	-	NS	-	-	NS	-	-	1,600	_	_	_	_		
Benzene				-	-	-	_	-	_		_									-
Toluene	-	2,100,000		-	-	NS	60,000	NS	10	<u> </u>			<u> -</u>		-					-
Ethylbenzene	_	830,000							- 10	740,000	NS	5	9	220,000		11,000		_	5,600	
				6		NS	2,400	NS		220,000	NS	-	_	18,000	_	760	_		3,800	160
МІВК		2,000,000		_	-	-	-	-	-	-	_	_								
Xylenes	-	4,200,000	_		_	NS	15,0000	NS								21,000		_		
							13,0000	NO	-	1,200,000	NS		-	100,000	-	4,600		-	28,000	570
TOTAL	0	7,580,000	0		30		144.400		10	2,300,000		19	9	371,600	35	20.020				
								L	L		L			0/1,000	33	39,030	80	0	49,750	923

1

NOTES:

All values are in ug/kg (ppb).

NS No sample (field screening only) for this boring. --- Compound not detected in this sample but present in another. All Samples analyzed for priority pollutant volatile organic compound; compounds not listed were not detected in any sample.

557.045\2-1irm.tbi

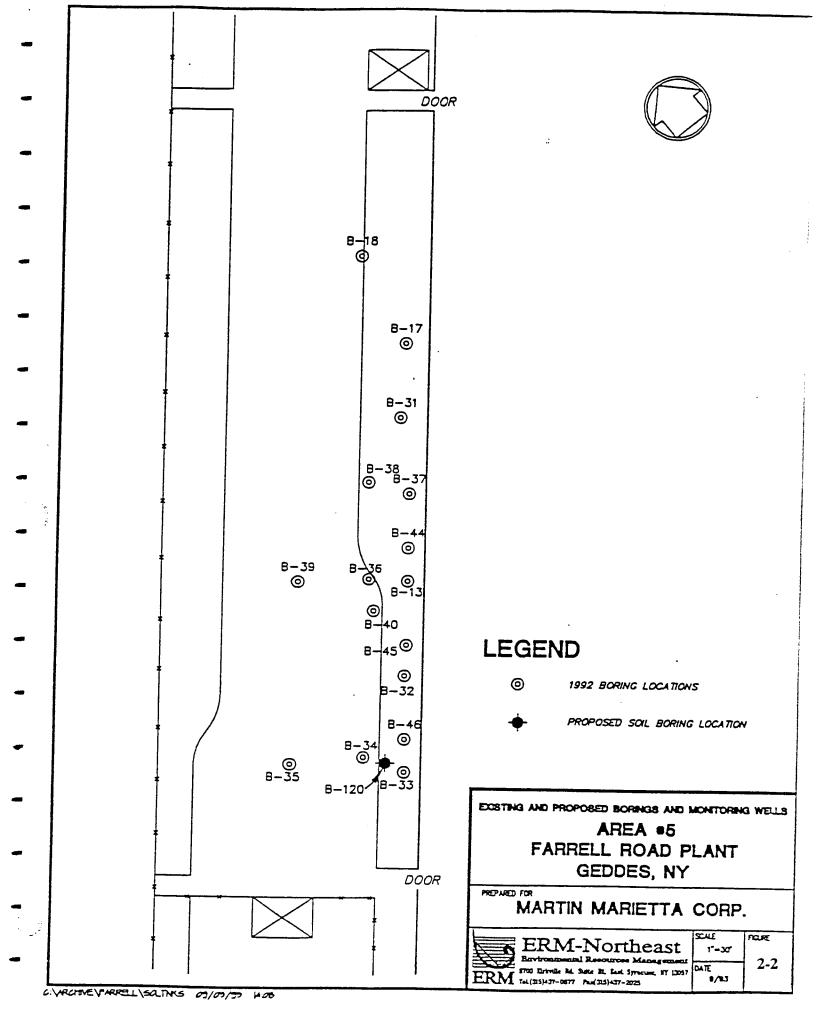
1

TABLE 2-2 MARTIN MARIETTA CORPORATION IRM WORK PLAN FOR AOC #5 FARRELL ROAD PLANT SOIL VAPOR EXTRACTION ANALYTICAL RESULTS

							-					
						COND	DITION					
		Background	1	1*	2	2*	3	3*	2	2*		
Code	Compound	MMC S1 (ppm)	MMC S2 (ppm)	(ppm)	MMC S3 (ppm)	(ppm)	MMC S4A (ppm)	(ppm)	SUMMA 0002 (ppm)	(ppm)	Average Design Condition (ppm)	lbs/hr
0856	n-octane	7.2	ND<0.92	56	ND<0.92	31	ND<0.86	60	ND	0	49	0.08
0859	toluene	2100.	41.	2501	65.	2210	29.	2030	15,	510		
0860	ethylbenz ene	140.	3.3	201	6,2	211	2.9	203			2247	3.53
0861	xylenes	730.	15.	915	32.	1088	14.		1.5	51	205	0.32
0869	methylethyl ketone	10.	ND<1.6	98				980	6.8	231	994	1.56
0883	1,1-dichloroethane	19,			ND<1.6	54	ND<1.5	105	ND	0	86	0.14
0885			ND<1.2	73	ND<1.2	41	ND<1.1	77	ND	0	64	0.10
0005	1,1,1-trichloroethane	1700.	32.	1952	45.	1530	20.	1400	25.	850	1627	2.56
	Total	76,976.20	91.3	5796	148.2	5165	65.9	4855	48.3	1642	5272	8.29

Notes:

١.,


1. * Data corrected with dilution factors. 2.

The average design condition is based on condition 1 (MMCS2), condition 2 (MMCS3) and condition 3 (MMCS4A) data. 3.

ND (Non-detectable) indicates that the contaminant was below the detection limit of the analytical method. 4.

The numbers included in the total line indicate the total for contaminants that were detected.

CONDITION	DILUTION FACTOR
1	61
2	34
3	70
2	34

TABLE 3-1 MARTIN MARIETTA CORPORATION FARRELL ROAD PLANT IRM WORK PLAN FOR AOC #5 PROPOSED SOIL CLEANUP GOALS

Î

۱

1

1

1

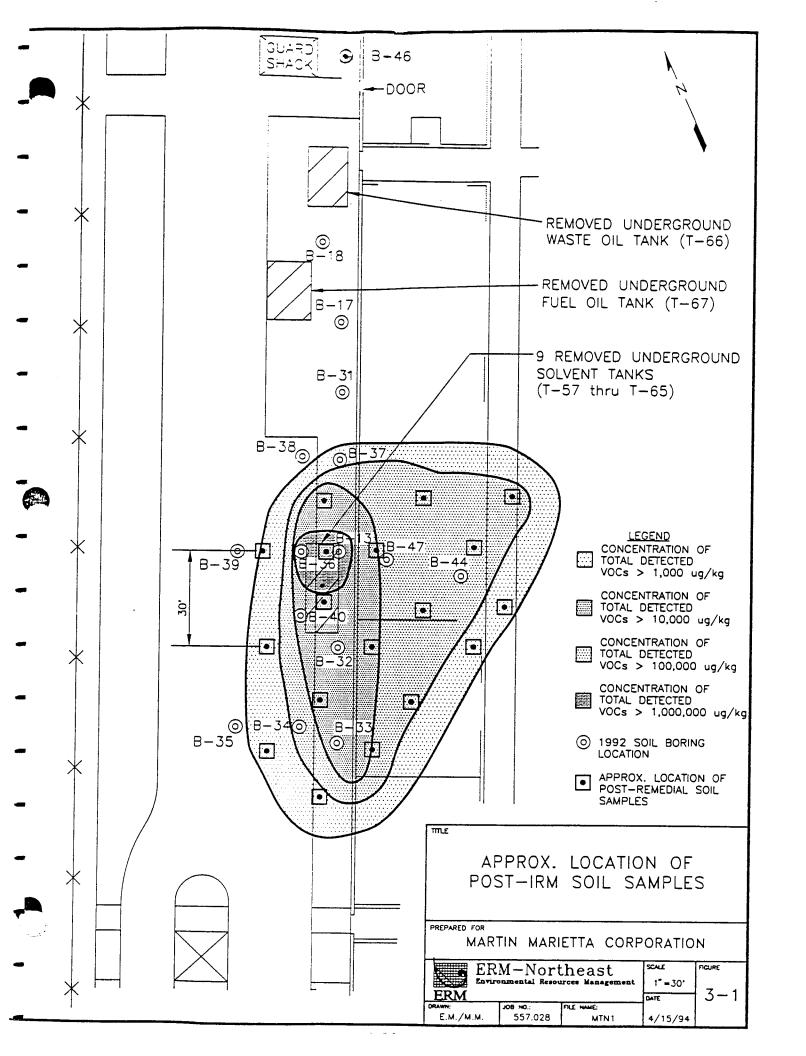
1

1

ł

Contaminant	Maximum Concentration Found in Soil (ppm)	Cleanup Goal Anticipated Soil Concentration at 90% Removal (ppm)	Maximum ConcentrationsFound in Soil Vapors (ppm)	Cleanup Goal Anticipated Soll Vapor Concentrations at 95% Removal (ppm)
1,1,1-TCA	650	65	1952	98
1,1-DCE	0.21	0.021	N/A	
1,1-DCA	0.14	0.014	77	N/A
1,2-DCE	0.35	0.035		4
Toluene	2,100	210	N/A	N/A
МІВК	2,000	200	2,501	125
Ethylbenzene	630		N/A	N/A
Xylene (Isomers)		63	211	11
·	4,200	420	1,088	54
TCE	1.6	0.16	N/A	N/A

NOTES:


ppm Parts per million. N/A Contaminant not analyzed.

Initial soil vapor concentrations will be based on average concentrations measured during the two week startup period. If these concentrations are deemed to be significantly different than the maximum concentrations identified on this table the anticipated concentrations for 95% reductions in soil vapor will be recalculated.

ł

A

557.045\3-1irm.tbl

.

-

AOC #5

Data Collected During

SVE System Installation

MARTIN MARIETTA CORPORATION
FARRELL ROAD FACILITY
VAPOR RECOVERY/AIR INJECTION WELL PRODUCT/WATER LEVEL DATA AOC #5

Date	Parameter					Vapo	r Recovery V						
		VRW-201	VRW-202	VRW-203	VRW-204	VRW-205	VRW-206	VRW-207	VRW-208	VRW-209	VRW-210	MONTRA	
12/22/94	Product Level	NP	NP	NP	NP	NP	NP	10.38				VRW-211	VRW-212
	Water Level	10.62	13.34	13.85	10.70	10.51	10.75		NP	NP	NP	NP	NP
12/23/94	Product Level	ND	ND	ND	ND	ND		11.62	10.81	10.81	13.90	13.28	13.71
	Water Level	ND	ND	NĐ	ND		ND		ND	ND	ND	ND	ND
12/27/94	Product Level	ND	ND	ND		ND	ND	**	ND	ND	ND	ND	ND
	Water Level	ND	ND		ND	ND	ND	10.57	ND	ND	ND	ND	ND
12/28/94	Product Level			ND	ND	ND	ND	10.86	ND	ND	ND	ND	ND
12/20134		ND	ND	ND	ND	ND	ND	10.60	ND	ND	ND	ND	ND
10100101	Water Level	ND	ND	ND	ND	ND	ND	10.93	ND	ND	ND	ND	ND
12/29/94	Product Level	NP	NP	NP	NP	NP	NP	10.68	NP	NP	NP		
	Water Level	10.89	13.66	14.23	11.02	10.75	10.92	11.04	10.91			NP	NP
1/6/95	Product Level	NP	NP	NP	NP	NP	NP			10.92	14.06	13.41	13.97
	Water Love!	11.00	13.85	14.44	11.16			10.76	NP	NP	NP	NP	NP
			10.00	1-11, 11-19	11.10	10.85	11.01	11.54	11.00	10.94 *	14.21	13.56	14.15

1

Parameter					Air	Injection We				· · · · · · · · · · · · · · · · · · ·	
	AIW-201	ANW-202	ATW-203	AJW-204				ABA(-208	A 84 200	AT41 240	
Product Level	NP	NP	NP	NP							
Water Level	13.49	10.7 9	13.37			-			1		
Product Level	ND	ND	ND						•		
Water Level	ND -	ND			1						
	ND		the second se				The second s			ND ·	-
									ND	ND	
							ND	ND	ND	ND	
			•			ND	ND	ND	ND	ND	
		The second se			ND	ND	ND	ND	ND	ND	
			NP	NP NP	NP	13.52	NP	13.48	14 46		
the second se		11.08	13.68	13.72	11.04	13.75	11.00	1			
Product Level	NP	NP	NP	NP	NP	13 70					
Water Level	14.01	11.20	13.86	13.91							
	Product Level Water Level Product Level Water Level Product Level Water Level Water Level Water Level Product Level Water Level Product Level	Product Level NP Water Level 13.49 Product Level ND Water Level ND Product Level ND Product Level ND Water Level ND Product Level NP Water Level NP Water Level NP	AIW-201AIW-202Product LevelNPNPWater Level13.4910.79Product LevelNDNDWater LevelNDNDWater LevelNDNDProduct LevelNDNDProduct LevelNDNDProduct LevelNDNDWater LevelNDNDProduct LevelNDNDProduct LevelNDNDProduct LevelNDNDProduct LevelNPNPWater LevelNPNPWater LevelNPNPProduct LevelNPNP	AIW-201AIW-202AIW-203Product LevelNPNPNPWater Level13.4910.7913.37Product LevelNDNDNDWater LevelNDNDNDProduct LevelNDNDNDProduct LevelNDNDNDProduct LevelNDNDNDProduct LevelNDNDNDProduct LevelNDNDNDProduct LevelNDNDNDProduct LevelNPNPNPWater LevelNPNPNPWater LevelNPNPNPWater LevelNPNPNPWater LevelNPNPNP	AIW-201AIW-202AIW-203AIW-204Product LevelNPNPNPNPWater Level13.4910.7913.3713.49Product LevelNDNDNDNDWater LevelNDNDNDNDProduct LevelNDNDNDNDProduct LevelNDNDNDNDProduct LevelNDNDNDNDProduct LevelNDNDNDNDProduct LevelNDNDNDNDProduct LevelNDNDNDNDProduct LevelNDNDNDNDProduct LevelNPNPNPVater Level13.8211.0813.6813.72Product LevelNPNPNPNPWater LevelNPNPNP	AIW-201AIW-202AIW-203AIW-204AIW-205Product LevelNPNPNPNPNPWater Level13.4910.7913.3713.4910.82Product LevelNDNDNDNDNDWater LevelNDNDNDNDNDWater LevelNDNDNDNDNDProduct LevelNDNDNDNDNDProduct LevelNDNDNDNDNDProduct LevelNDNDNDNDNDProduct LevelNDNDNDNDNDProduct LevelNDNDNDNDNDProduct LevelNDNDNDNDNDProduct LevelNPNPNPNPNPWater LevelNPNPNPNPNPWater LevelNPNPNPNPNPWater LevelNPNPNPNPNPWater LevelNPNPNPNPNPWater LevelNPNPNPNPNPWater LevelNPNPNPNPNPWater LevelNPNPNPNPNPWater LevelNPNPNPNPNP	AIW-201AIW-202AIW-203AIW-204AIW-205AIW-206Product LevelNPNPNPNPNPNP13.31Water Level13.4910.7613.3713.4910.8213.42Product LevelNDNDNDNDNDNDWater LevelNDNDNDNDNDNDProduct LevelNDNDNDNDNDNDProduct LevelNDNDNDNDNDNDProduct LevelNDNDNDNDNDNDProduct LevelNDNDNDNDNDNDProduct LevelNDNDNDNDNDNDProduct LevelNDNDNDNDNDNDProduct LevelNDNDNDNDNDNDProduct LevelNPNPNPNPNP13.52Water LevelNPNPNPNPNP13.75Product LevelNPNPNPNPNP13.70Water LevelNPNPNPNPNP13.70	AlW-201AlW-202AlW-203AlW-204AlW-205AlW-206AlW-207Product LevelNPNPNPNPNPNP13.31NPWater Level13.4910.7913.3713.4910.8213.4210.82Product LevelNDNDNDNDNDNDNDWater LevelNDNDNDNDNDNDProduct LevelNDNDNDNDNDNDProduct LevelNDNDNDNDNDNDProduct LevelNDNDNDNDNDNDProduct LevelNDNDNDNDNDNDProduct LevelNDNDNDNDNDNDProduct LevelNDNDNDNDNDNDProduct LevelNDNDNDNDNDNDProduct LevelNPNPNPNPNPProduct LevelNPNPNPNPNPProduct LevelNPNPNPNPNPWater LevelNPNPNPNPNPProduct LevelNPNPNPNPNPWater LevelNPNPNPNPNPWater LevelNPNPNPNPNPWater LevelNPNPNPNPNPWater LevelNPNPNPNPNPWater Level <td>AlW-201 AlW-202 AlW-203 AlW-204 AlW-205 AlW-206 AlW-207 AlW-208 Product Level NP NP NP NP NP 13.31 NP 13.28 Water Level 13.49 10.79 13.37 13.49 10.82 13.42 10.82 13.3 Product Level ND ND<td>Alw-201 Alw-202 Alw-203 Alw-204 Alw-205 Alw-206 Alw-207 Alw-208 Alw-209 Product Level NP NP NP NP NP NP 13.31 NP 13.28 NP Water Level 13.49 10.79 13.37 13.49 10.82 13.42 10.82 13.3 14.35 Product Level ND <t< td=""><td>AIW-201 AIW-202 AIW-203 AIW-204 AIW-205 AIW-206 AIW-207 AIW-208 AIW-209 AIW-210 Product Level NP NP NP NP NP 13.31 NP 13.28 NP NP Water Level 13.49 10.79 13.37 13.49 10.82 13.42 10.82 13.3 14.35 10.85 Water Level ND ND</td></t<></td></td>	AlW-201 AlW-202 AlW-203 AlW-204 AlW-205 AlW-206 AlW-207 AlW-208 Product Level NP NP NP NP NP 13.31 NP 13.28 Water Level 13.49 10.79 13.37 13.49 10.82 13.42 10.82 13.3 Product Level ND ND <td>Alw-201 Alw-202 Alw-203 Alw-204 Alw-205 Alw-206 Alw-207 Alw-208 Alw-209 Product Level NP NP NP NP NP NP 13.31 NP 13.28 NP Water Level 13.49 10.79 13.37 13.49 10.82 13.42 10.82 13.3 14.35 Product Level ND <t< td=""><td>AIW-201 AIW-202 AIW-203 AIW-204 AIW-205 AIW-206 AIW-207 AIW-208 AIW-209 AIW-210 Product Level NP NP NP NP NP 13.31 NP 13.28 NP NP Water Level 13.49 10.79 13.37 13.49 10.82 13.42 10.82 13.3 14.35 10.85 Water Level ND ND</td></t<></td>	Alw-201 Alw-202 Alw-203 Alw-204 Alw-205 Alw-206 Alw-207 Alw-208 Alw-209 Product Level NP NP NP NP NP NP 13.31 NP 13.28 NP Water Level 13.49 10.79 13.37 13.49 10.82 13.42 10.82 13.3 14.35 Product Level ND ND <t< td=""><td>AIW-201 AIW-202 AIW-203 AIW-204 AIW-205 AIW-206 AIW-207 AIW-208 AIW-209 AIW-210 Product Level NP NP NP NP NP 13.31 NP 13.28 NP NP Water Level 13.49 10.79 13.37 13.49 10.82 13.42 10.82 13.3 14.35 10.85 Water Level ND ND</td></t<>	AIW-201 AIW-202 AIW-203 AIW-204 AIW-205 AIW-206 AIW-207 AIW-208 AIW-209 AIW-210 Product Level NP NP NP NP NP 13.31 NP 13.28 NP NP Water Level 13.49 10.79 13.37 13.49 10.82 13.42 10.82 13.3 14.35 10.85 Water Level ND ND

ND = No data collected

NP = No product detected

Well casing cut down approximately 1.5 Inches prior to this measurement
 Approximately 3 liters of product removed (believed to be toluene/xylenes)

.

IRM Certification Report

April 1995

RUST Environment & Infrastructure

			BORING LOG			Boring	No. AI	W-201 Piezon	neter No.	
Client:		MARIET	TA CORPOR	ATION		Locati			ROAD	- SYRACUSE, NY
Project	No: 95424		Phase]	l'ask	Surfac	e Elev.	380.52 FT.		Page 1 of
Depth Feet				ourden/Litholo Description	ogic	FID (mai)	Graphic Log	Well Construction Graphics	Depth Feet	Well Construction Details
	C									T.O.C. Elev. 383.70
 _'	Ground Surface	FEET	Sandy Silt: Da	rk brown (7.5YF	R 4/4), trace		÷		<u></u>	8° Diameter Boring
			clay, fine grain (0-14.57).	ed sand, slightly	y moist	0				Concrete collar Bentonite seal from 1.5'-2.5'
						0			- - -	Schedule 80 PVC rise pipe from 0-3*
a ta ta t						50				Morie #2 sand pack fr 2.5'-15'
10						885			- 10	Schedule 80 PVC scre from 3'-15'
			Water at 13.5 f	t, no free phase ;	product	536				
15			encountered.	(10R 3/6), clayey	~	550			- - 15 -	Bottom cap
.					L.,				-	
20									20	
						-				
25									25	
ю_									30	
Driller	PARRATT-	WOLFF, INC	2	Blown/Bailed	rield N/A		L	Bentonite Scal	Peileu	·····
Logged	By <u>B.STAHL</u>			Well Casing		. <u>0'</u>	to <u>3'</u>			
		10/7/94		Casing Type	Schedule 80			_ Filter Pack Type		nic #2 sand pack
	g Completed	10/7/94		Well Screen	<u>2</u> Di	n. <u>3'</u>	to <u>15*</u>	Static Water Lev	rel	367.02 MSL
	uction Completed			Screen Type	Schedule 80	PVC			ate]	10/7/94
	pment Completed			Slot Size	0.020*			_ Notes:		
Water 1	Bearing Zones	<u>13.5'-15'</u>		Drilling Mud	N/A					

Þ

	SOIL BORING LOG	ATION	Boring Locatio	m AOC	#5 FARRELL	neter No. ROAD-	- SYRACUSE, NY
Project No: 95424	Overt	Task ourden/Lithologic Description		Elev. 3	Well Construction Graphics	Depth Feet	Page 1 of 1 Well Construction Details
0 Ground Surface	to medium gra erratics, slight Water at 12.5 encountered.	57	∫ 0 0 1 2 8 24 7 76 272 677 37 10 30 15				T.O.C. Elev. 380.82 8" Diameter Boring Concrete collar Bentonite seal from 1.5'-2.5' Schedule 80 PVC riser pipe from 0-3' Morie #2 sand pack fro 2.5'-15' Schedule 80 PVC scree from 3'-15' Bottom cap
Driller PARRATT-W Logged By B.STAHL Drilling Started 1 Drilling Completed Construction Completed Development Completed	0/11/94 _10/12/94 _10/12/94	Casing Type Schedule 8	Dia. <u>0°</u> 0 PVC Dia. <u>3°</u>	to <u>3'</u> to <u>15'</u>		el nte1	
Water Bearing Zones		Drilling Mud <u>N/A</u> Grout Type <u>N/A</u>			Notes: <u>Alw-</u>		useauco using hand

Ø

Client:	MARTIN M	SOIL BORING LOG	ATION		Boring No. AIW-203 Piezometer No. Location AOC #5 FARRELL ROAD- SYRACUSE, N					
Project	No: 95424	Phase	Tasi	x Surfac	e Elev.	380.39 FT.	T	Page 1 of		
0epth Feet		Overl	ourden/Lithologi Description	c DIF (PPM)	Græphic Log	Well Construction Graphics	Depth Feet	Well Constructio Details		
								T.O.C. Elev. 383.		
- 0	Ground Surface	to medium gra	rk brown (7.5YR 4/ ined sand, root fiber round pebbles, sligh	rs to 2				8" Diameter Borin Concrete collar Bentonite seal from 1.5'-2.5' Schedule 80 PVC pipe from 0-3'		
<u> </u>				0			<u> </u>			
				920 730 1657			- - - -	Morie #2 sand pac 2.5'-15'		
<u>-10</u>		Strong solveni		2165			<u>- 10</u>	Schedule 80 PVC from 3'-15'		
		Water at 12 ft. encountered.	, no free phase produ	^{uct} > 2500 1990						
15		No till was en $\sqrt{TD} = 15$ feet.	countered during dri	lling 1298			<u>- 15</u>	Bottom cap		
ידיי							- - -			
20							 - -			
. [
25						·	25			
30										
Driller		OLFF, INC.	Blown/Bailed Yie			Bentonite Seal	Pellet			
1	d By <u>B.STAHL</u> g Started <u>1</u>	0/10/94		2° Dia. <u>0°</u> Schedule 80 PVC	_ to <u>3</u> •	Filter Pack Qty Filter Pack Typ) libs wie #2 sand pack		
	g Completed _	10/10/94			_ to <u>15'</u>	Static Water Le		368_39		
	uction Completed	10/10/94	Screen Type	Schedule 80 PVC		I	Date	10/10/94		
	opment Completed			0.020*		Notes:				
Water	Bearing Zones	12'-15'	Drilling Mud	N/A						

đ

Projec	nt No: 95424		Phase	T	ask	Surfac	e Elev.	380.36 FT.			-SYRACUSE, N Page 1 of
Depth Feet				urden/Litholo Description	gic	FID (ppm)	Graphic Log	Well Construction Graphics	Depth	Feet	Well Constructio Details
											T.O.C. Elev. 383
0	Ground Surface	FEET							0		
			Sandy Silt: Dar clay, fine grain alightly moist (k brown (7.5YR ed sand, root fibe)-14').	4/4), trace ers to 1 ft,	13 17					8" Diameter Borin Concrete collar Bentonite seal from 1.5'-2.5' Schedule 80 PVC pipe from 0-3'
<u> </u>						15			<u>ר</u> ב -		
						18			-		Morie #2 sand pac 2.5'-15'
_10						220 132			10	L	Schedule 80 PVC from 3'-15'
			Water at 12 ft, encountered.	no free phase pro	oduct	215					
 			Till: Dark red (weathered, moi TD= 15 feet.	10R 3/6), ciayey st (14'-15').	', ſ	159	<u></u>		-13		Bottom cap
20 -									20	L	
25									- 25	·	
30									- - - 30		
Drill	ier <u>PARRATT-</u> V	VOLFF, IN	C.	Blown/Bailed	Yield N/A			Bentonite Scal	 	ellet	<u> </u>
	ged By <u>B.STAHL</u>	0/7/94		Well Casing Casing Type		a. <u>P</u>	_ to <u>3*</u>	Filter Pack Qty Filter Pack Typ		<u>350</u>) lbs rie #2 mnd pack
Drill	ling Completed	10/7/94		Weil Screen	<u>2</u> • Di	a. <u>3'</u>	to <u>15</u>	Static Water Le	vei		<u>368.36</u>
	struction Completed			Screen Type Slot Size	<u>Schedule 80</u> 0.020*	PVC		I Notes:	Date		10/7/94
Wate	er Bearing Zones	<u>12'-15'</u>		Drilling Mud Grout Type	<u>N/A</u>						

Project No: 95424	Phase	Task		0	381.05 FT.	1	Page 1
т+ •0 •	Over	burden/Lithologic Description	FID (ppm)	Graph! Log	Well Construction Graphics	Depth Feet	Constru
							T.O.C. Elev.
Ground Surface	FEET					0	
	Concrete(0-0					-	8" Diameter B
	Sandy Silt: D to medium gr	<u>ae(0.5'-0.75')</u> ark brown (7.5YR 4/4), fu ained sand, some small a, alightly moist (0.75'-15')				-	Concrete colla Bentonite seal 1.5'-2.5' Schedule 80 P
<u> </u>			0			- - -	pipe from 0-3
							Morie #2 sand 2.5'-15'
10			1 49			- 10 -	Schedule 80 P
			246				from 3'-15'
15	encountered.	ft, no free phase product countered during drilling.	∫ 345	·		- 15	Bottom cap
		<u>.</u>					
20							
25						25	
30						- - - 30	
Driller <u>PARRATT-W</u>	OLFF. INC.	Blown/Bailed Yield	I	11	Bentonite Seal	Pelle	ts
Logged By B.STAHL Drilling Started	0/11/94	Well Casing <u>2"</u> Casing Type <u>Sched</u>	Dia. <u>0'</u>	_ to <u>3'</u>	Filter Pack Qty. Filter Pack Typ		0 lbs oric #2 sand pac
	10/11/94	Well Screen 2"	Dia. <u>3*</u>	to <u>15*</u>	Static Water Le		367.55
Construction Completed	10/11/94		ule 80 PVC		-	Date _	10/11/94
Development Completed Water Bearing Zones	<u>N/A</u> 13.5'-15'	Slot Size 0.020 Drilling Mud N/A	•		Notes:		
1							

,

	SOIL BORING LOG		Locatio	Boring No. AIW-206 Piezometer No. Location AOC #5 FARRELL ROAD- SYRACUSE, NY Surface Elev. 380.31 FT. Page 1 of				
Project No: 95424	Overt	Task ourden/Lithologic Description		: Elev. 3	Well Construction Graphics	Depth Feet		
0 Ground Surface	Clay, fine grain alightly moist Water at 12.5 encountered. Till: Dark red	rk brown (7.5YR 4/4) ned sand, root fibers to (0-13.5'). ft, no free phase prod (10R 3/6), clayey, ist (13.5'-15').	b 1 ft, 235 14 48 131 1013			0 	T.O.C. Elev. 383. 8" Diameter Boring Concrete collar Bentonite seal from 1.5'-2.5' Schedule 80 PVC r pipe from 0-3' Morie #2 sand pact 2.5'-15' Schedule 80 PVC r from 3'-15' Bottom cap	
Logged By B.STAHL		Well Screen 2* Screen Type Screen Type	Dia. <u>0*</u> hedule 80 PVC Dia. <u>3*</u> hedule 80 PVC 020* /A	_ to <u>3'</u> to <u>15'</u>	Bentonite Seal Filter Pack Qty. Filter Pack Type Static Water Lev Notes:	e <u>Ma</u> vel _	us 0 lbs pric #2 sand pack 367.81 N 10/7/94	

Form #wi-sc-1 (02/90)

.

Ø

Client: MARTIN M Project No: 95424	SOIL BORING LOG ARIETTA CORPOR Phase	ATION Task	Boring Location Surface	on AOC		eter No. ROAD	- SYRACUSE, NY Page 1 of 1
0 = = = = = = = = = = = = = = = = = = =	Overt	burden/Lithologic Description	FID (ppm)	Graphic Log	Well Construction Graphics	Depth Feet	Well Construction Details
0 Ground Surface	Clay, fine grain alightly moist Water at 13.5 encountered.	e(0.75'-1') rk brown (7.5YR 4/4), trace ned sand, root fibers to 1 ft, (1'-14'). ft, no free phase product (10R 3/6), clayey,	12 19 21 17 112 186				 T.O.C. Elev. 380.85 8" Diameter Boring Concrete collar Bentonite seal from 1.5'-2.5' Schedule 80 PVC riser pipe from 0-3' Morie #2 sand pack from 2.5'-15' Schedule 80 PVC screet from 3'-15' Bottom cap
Driller PARRATT-W Logged By B.STAHL Drilling Started 1 Drilling Completed Construction Completed Development Completed Water Bearing Zones	OLFF, INC. 0/11/94 10/11/94 	Blown/Bailed Yield I Well Casing 2" Casing Type Schedule Well Screen 2" Screen Type Schedule Slot Size 0.020" Drilling Mud N/A	Dia. <u>3</u> *		Bentonite Scal Filter Pack Qty. Filter Pack Type Static Water Lev D Notes:	vel	

Ð

Clier			TTA CORPOR	ATION		Boring Locati	on AOC	#5 FARRELL	neter No. ROAD	- SYRACUSE, N
Ргоје	ct No: 954	24	Phase	Ta	sk	Surfac	e Elev. 🔮	383.47 FF. 35	1.54	Page 1 of
Feet				ourden/Litholog Description	gic	FID (PPm)	Graphic Log	Well Construction Graphics	Depth Feet	Well Construction Details
										T.O.C. Elev. 383.47
0	Ground Surf	ace FEI	Sandy Silt: Da	rk brown (7.5YR 4 ned sand, root fibe (0-14').	4/4), trace rs to 1 ft,	0				8" Diameter Boring Concrete collar Bentonite seal from 1.5'-2.5'
<u>-</u>						2			- <u>- </u> -	Schedule 80 PVC ris pipe from 0-3'
- - - - - 10						91				Morie #2 sand pack 2.5'-15'
			Water at 12.5 mencountered.	ft, no free phase pr		1169				Schedule 80 PVC sci from 3'-15'
15				(10R 3/6), clayey, ist (14'-15').		2466	······································		- - - -	Bottom cap
									- - - -	
20									20	
25										
30										
	ged By <u>B.ST</u>	TT-WOLFF,	INC.	Blown/Bailed Yi Well Casing		. <u>0*</u>	_ to <u>3'</u>	Bentonite Seal Filter Pack Qty	Peilet	
	ling Started ling Completed	<u> 10/7/94</u> <u> 10/7/9</u>	l	Casing Type Well Screen	<u>Schedule 80 1</u> 2° Dia		_ to <u>15'</u>	_ Filter Pack Typ _ Static Water Le		rie #2 mand pack 370.97 MS
	struction Comp elopment Comp		0/7/94 I/A		Screen Type <u>Schedule 80 PV</u>			_ I _ Notes:	Date	10/7/94
1	er Bearing Zon	es <u>12.5</u>	-15'	Drilling Mud	N/A					

SOIL BORING LOG					Boring No. AIW-209 Piezometer No.					
		RIETTA CORPOR	ATION	Locati			ROAD	- SYRACUSE, N		
Project No:	95424	Phase	Task	Surfac	e Elev.	381.06 FT.	1	Page 1 of		
000 100 100 100 100 100 100 100 100 100		Overt	ourden/Lithologic Description	FID (ppm)	Græphic Log	Well Construction Graphics	Depth	Well Construction Details		
								T.O.C. Elev. 384.50		
0 Grou	nd Surface	FEET								
	·····	Concrete(0-0.			1		-	8" Diameter Boring		
		Gravel Subbas Sandy Silt: Da	<u>e(0.5'-0.75')</u> rk brown (7.5YR 4/4),	0	· · · · · · · · · · · · · · · · · · ·		F	Concrete collar		
4		to medium gra (0.75'-14.5').	ined sand, slightly mois	# 0			F	Bentonite seal from		
4		(0.75 -14.5).		0	· · · · · · · ·			Schedule 80 PVC ris pipe from 0-2.5'		
<u> </u>				0			5			
]				37			F			
1				39			E	Morie #2 sand pack		
4				54			F	2'-15'		
10				587	,,		- 10			
-								Schedule 80 PVC sci		
				1196				from 2.5'-14.5'		
			t, no free phase produc	a i			E			
-		encountered.			· · · · · · · · · · · · · · · · · · ·		F			
17 <u>-</u> 51		No till was end TD= 14.5 feet	ountered during drilling	125			15			
]		· · · · · · · · · · · · · · · · · · ·]			F	Bottom cap		
							F			
-							-			
20							20			
4										
-							-			
-							-			
25]							25			
-							-			
-							-			
30							- 30			
Driller]	PARRATT-WO	LFF, INC.	Blown/Bailed Yield	N/A		Bentonite Scal	Pelle			
-	B.STAHL	•	Well Casing 2"	Dia. <u>0°</u>	to <u>2.5</u> *) Ibs		
Drilling Sta		12/94		dule 80 PVC		Filter Pack Type		nic #2 mod pack		
Drilling Co		0/12/94	Well Screen 2"		to <u>14.5</u> *					
	n Completed	10/12/94		dule 80 PVC				10/12/94		
1	nt Completed	_N/A	Slot Size 0.02			-		S INSTALLED USIN		
	-									
Water Beari	ing Zones	12.5'-14.5'	Drilling Mud N/A			HAND AUGE	RING M	ETHODS		

Þ

Project	No: 95424		Phase		Task	Locati Surfac		C #5 FARRELL 380.99 FT.		Page 1 o
Depth Faat				ourden/Litholo Description	ogic	FID (ppm)	Graphic Log	Well Construction Graphics	Depth Feet	Well Constructio Details
										T.O.C. Elev. 380
0	Ground Surface	FEET								
	· · · · · · · · · · · · · · · · · · ·		Concrete(0-0.5				1		-	8" Diameter Borin
			Gravel Subbaa]	0			È	Concrete collar
			grained sand, a	rk brown (7.5YI dightly moist (0.	R 4/4), fine .75'-14').				È	Bentonite seal from 1.5'-2.5'
			-			0			-	Schedule 80 PVC
_ <u>_</u> .						4	<u> </u>		Ł	pipe from 0-3'
									<u></u>	
						0			E	
-		Ì				Ĩ			F	Maria #2 ared -
_						0			F	Morie #2 sand pac 2.5'-15'
-						ľ			F	
10										
1	l					6			F	Schedule 80 PVC from 3'-15'
-									-	
-			Water at 12 A	no free phase pr	nduat	0			 -	
4			encountered.		,				F	
15			Till: Dark red	(10R 3/6), claye	у,				_15	
-			weathered, moint $TD = 15$ feet.	BK (14'-15') .		0				Bottom cap
1			·							
-									-	
1									F	
20									20	
1		l							-	
-									-	
-										
-			-						-	
25									25	
-										
1										
-									-	
-									-	
30										
									_30	
				<u></u>			·	······································		
Driller		OLFF, INC		Blown/Bailed	Yield <u>N/A</u>	<u></u>		Bentonite Seal	Pellet	8
Logge	d By <u>B.STAHL</u>	·····		Well Casing	<u>2</u> Di	a. <u>O'</u>	to <u>3'</u>	Filter Pack Qty.	300	lbs
Drillin	g Started _1	0/6/94		Casing Type	Schedule 80	PVC		Filter Pack Type	. <u>Mo</u>	rie #2 sand pack
Drillin	g Completed _	10/6/94		Well Screen	<u>2°</u> Di	1. <u>3'</u>	to <u>15'</u>	Static Water Lev	cl	367.99 N
Constr	uction Completed	10/6	/94	Screen Type	Schedule 80					
1	opment Completed		. <u></u>					-	au:	10/6/94
	-	<u>_N/A</u>	······································	Slot Size	0.020-			Notes:		
Water	Bearing Zones	13'-15'		Drilling Mud	<u>N/A</u>			_		
				Grout Type	<u>N/A</u>					

3/10/07	SOIL BORING LOG					Boring No. VRW-201 Piezometer No.					
				Locati			ROAD	-SYRACUSE, NY			
Project No: 9542	4	Phase	Task	Surfac		381.02 FT.		Page 1 of			
4 + + + + + + + + + + + + + + + + + + +			urden/Lithologic Description	FID (PPm)	Graphic Log	Well Construction Graphics	0=P + h F = + +	Well Construction Details			
	····						<u> </u>	T.O.C. Elev. 380.70			
0 Ground Surfa	e FEET										
		Concrete(0-0.5			<u> </u>		- <u>u</u> -	8" Diameter Boring			
		Gravel Subbase		9	fra		F	Concrete coilar			
-		to medium grai	k brown (7.5YR 4/4), fin ned sand, slightly moist	° 7			F	Bentonite seal from			
-		(0.9'-15').					F	Schedule 80 PVC ris			
5					·		Fs	pipe from 1-3'			
]				6			-				
-				11			E				
-				20	·		F	Morie #1 sand pack 2'-15'			
-							F	6 -1J			
10				136	······		[
4				279			F	Schedule 80 PVC action 3'-15'			
-							F				
				724	······································		-				
			t, no free phase product	989			F				
_15		ncountered.	ountered during drilling.	500			15	_			
-		TD = 15 feet.		1136			Þ	Bottom cap			
-							-				
				I			-				
-											
20							20				
1	1 1										
4							-				
							- - - - - -				
25											
25							- 25				
25							- 25				
25							- 25				
25							- - - - - - - - - - - - - - - - - - -				
30							- 30				
30 Driller <u>PARRA</u>	T-WOLFF, IN	C		N/A		Bentonite Seal					
30 Driller <u>PARRA</u> Logged By <u>B.ST</u>	VHL.	C	Well Casing 4"	Dia. <u>1'</u>	to <u>3'</u>	Filter Pack Qty.	- 30) be			
30 Driller <u>PARRA</u> Logged By <u>B.ST</u> Drilling Started	<u>10/11/94</u>	C	Well Casing <u>4</u> * Casing Type <u>Schedu</u>	Dia. <u>1*</u> le 80 PVC		Filter Pack Qty. Filter Pack Typ	- 30 - 30 - 33 - 35 - 35 - Mo) lbs ric #1 sand pack			
30 Driller <u>PARRAT</u> Logged By <u>B.ST</u> Drilling Started Drilling Completed	<u>10/11/94</u> 10/11/94		Well Casing 4" Casing Type Schedu Well Screen 4"	Dia. <u>1'</u> le 80 PVC Dia. <u>3'</u>		Filter Pack Qty. Filter Pack Typ Static Water Let) ibs ric #1 mand pack 			
30 Driller <u>PARRA</u> Logged By <u>B.ST</u> Drilling Started Drilling Completed Construction Comp	AHL 10/11/94 10/11/94 leted10/	11/94	Well Casing 4" Casing Type Schedu Well Screen 4" Screen Type Schedu	Dia. <u>1'</u> le 80 PVC Dia. <u>3'</u>		Filter Pack Qty. Filter Pack Typ Static Water Let I) lbs ric #1 sand pack			
30 Driller <u>PARRAT</u> Logged By <u>B.ST</u> Drilling Started Drilling Completed	<u>10/11/94</u> <u>10/11/94</u> leted <u>10/</u> leted <u>N//</u>	11/94	Well Casing 4" Casing Type Schedu Well Screen 4"	Dia. <u>1'</u> le 80 PVC Dia. <u>3'</u>		Filter Pack Qty. Filter Pack Typ Static Water Let) ibs ric #1 mand pack 			

ā

Project No	95424	Phase	Task	Surfac	1	379.59 FT.		Page 1 of
Depth Feet		Overt	burden/Lithologic Description	FID (PPm)	Graphic Log	Well Construction Graphics	0==++ +===	Well Constructio Details
								T.O.C. Elev. 383.
0 Gro	und Surface	FEET					0	
-		Asphalt(0-0.5			· · · · · · ·		-	8" Diameter Borin
-		Gravel Subbar	<u>ue(0.5'-0.75')</u> ark brown (7.5YR 4/4), fine	_/			F	Concrete collar
		to medium gra	ained sand, slightly moist	147			F	Bentonite seal from
		(0.75'-15').			······································		F	Schedule 80 PVC
				49	·			pipe from 0.5-3'
				29			<u>s</u>	4
-				45				
							F	Morie #1 sand pac
				49			F	2'-15'
4					<u> </u>		F	
10			ч.	339				Schedule 80 PVC
-					<u></u>		Ł	from 3'-15'
_							F	
-	•				· · · · · · · ·			
4		Water at 13.5 encountered,	ft, no free phase product	87	· · · · · · · · · · · · · · · · · · ·		E	
15			countered during drilling.	r i	· · · ·		_15	Bottom cap
_		TD = 15 feet.					F	
_							-	
-							F	
_							F	
_20								
]							F	
							F	
7							F	
-							F	
25							25	
]							F	
_							F	
				1			F	
-							F	1
30							30	
		<u>_</u>						ļ
Driller	PARRATT-WO	LFF, INC.	Blown/Bailed Yield	N/A		_ Bentonite Seal	Pelle	
Logged E	y <u>B.STAHL</u>		Well Casing <u>4</u> *	Dia. <u>0.5</u> *	_ to <u>3'</u>	Filter Pack Qty.	_300) Ibs
Drilling S	tarted <u>10/</u>	10/94	Casing Type Schedul	le 80 PVC		Filter Pack Type	: <u>M</u> a	ric #1 sand pack
Drilling C	Completed	0/10/94	Well Screen 4-	Dia. <u>3*</u>	_ to <u>15'</u>	Static Water Lev	vel	366.09 N
Construct	ion Completed	10/10/94		ie 80 PVC				10/10/94
	nent Completed	_N/A	Slot Size 0.020"			- Notes:		
WALCT BE	ring Zones _	13.5'-15'	Drilling Mud <u>N/A</u>	·		<u> </u>		
			Grout Type <u>N/A</u>					

Client	SOIL BORING LOG Client: MARTIN MARIETTA CORPORATION roject No: 95424 Phase Task					Boring Locatio	m AOC		eter No. ROAD	- SYRACUSE, NY Page 1 of 1
++			Overbi	urden/Litholo Description			Graphic Log	Well Construction Graphics	Depth Feet	
	Ground Surface	FEET	fibers to -2 fe pebbles, fine to alightly moist ((, no free phase p	pund i sand, product	459 45 58 35 68 85 22 11 466				T.O.C. Elev. 384.05 8° Diameter Boring Concrete collar Bentonite seal from 1'. Schedule 80 PVC riser pipe from 0.5-3' Morie #1 sand pack fr 2'-15' Schedule 80 PVC scree from 3'-15' Bottom cap
Drill Drill Con Dev	ged By B.STAHL ling Started <u>1</u>	0/10/94 10/10/94 10/10	0/94	Blown/Bailed Y Well Casing Casing Type Well Screen Screen Type Slot Size Drilling Mud Grout Type	<u>4"</u> Di <u>Schedule 80</u>	a. <u>3'</u>	_ to <u>3'</u> to <u>15'</u>	Bentonite Seal Filter Pack Qty Filter Pack Typ Static Water Le I Notes:	e <u>Ma</u>	ts D ibs pric #1_sund_pack

Ø

Client: MARTIN M. Project No: 95424	SOIL BORING LOG ARIETTA CORPOR Phase	Boring Locati Surfac	ona AOC		eter No. ROAD	-SYRACUSE, NY Page 1 of 1	
0 ее + + + +		urden/Lithologic Description	FID (ppm)	Graphic Log	Well Construction Graphics	Depth Feet	Well Construction Details
0 Ground Surface	to medium grai (0.75'-15'). Water at 12.5 f encountered.		57 12 6 238 114 158 225				 T.O.C. Elev. 380.80 8" Diameter Boring Concrete collar Bentonite seal from 1'-2' Schedule 80 PVC riser pipe from 1'-3' Morie #1 sand pack from 2'-15' Schedule 80 PVC screen from 3'-15' Bottom cap
	OLFF, INC V12/94 10/12/94 N/A 12.5'-15'	Well Screen 4	ie 80 PVC	to <u>3'</u>	_	e <u>Mo</u> vel ^{Date} 7-204 was	

Ø

Ground Surface FEBT 0 Ground Surface 0 Ground Surface 1 Concrete(0-0.5') Sandy Sill; Dark brown (7.5'R 4/4), fine 1 <th>ng No. VRW-205 Piezometer No. tion AOC #5 FARRELL ROAD-SYRACU: ice Elev. 380.99 FT. Page</th> <th colspan="3">ROAD-SYRACUSE, NY</th>	ng No. VRW-205 Piezometer No. tion AOC #5 FARRELL ROAD-SYRACU: ice Elev. 380.99 FT. Page	ROAD-SYRACUSE, NY		
Concrete(0-0.5') Cravel Subbase(0.5'-0.75') Sandy Silt: Dark brown (7.5YR 4/4), fine to medium grained sand, some small rounded pebbles, alightly moist (0.75'-15'). 2 Water at 13.5 ft, no free phase product encountered. No till was encountered during drilling. TD = 15 feet. 20 21 22 23	U C a a b C ConstructionU C a a C ConstructionU C a a a C D C DV C C D D	Vell ruction tails		
· · · · · · · · · · · · · · · · · · ·	T.O.C. Electronic set Concrete co Beatonic set Schedule 80 pipe from 1 	Boring Har al from 1'-2 PVC riser '-3' and pack from PVC screen		
Driller PARRATT-WOLFF, INC. Blown/Bailed Yield N/A Logged By B.STAHL Well Casing 4" Dia. 1' Drilling Started 10/11/94 Casing Type Schedule 80 PVC Drilling Completed 10/11/94 Well Screen 4" Dia. 3' Construction Completed 10/11/94 Screen Type Schedule 80 PVC Development Completed N/A Slot Size 0.020"	Filter Pack Type Morie #1 and p	<u>eck</u> MSL		

Ø

Client:	MARTIN MA : 95424		ORING LOG CORPORA Phase	TION	sk_	Boring Locatio Surface	m AOC		reter No.	-SYRACUSE, N Page 1 of
Depth Feet				urden/Litholog Description	gic	FID (PPM)	Graphic Log	Well Construction Graphics	Depth Feet	
0 Gr	ound Surface		Water at 13.5 ft encountered.	0.5'-0.75') c brown (7.5YR ed sand, some m s, slightly moist , slightly moist , no free phase p 10R 3/6), clayey,	roduct	6 8 8 6 81 122				 T.O.C. Elev. 380.6 8" Diameter Boring Concrete collar Bentonite seal from Schedule 80 PVC ripipe from 1'-3' Morie #1 sand pack 2'-15' Schedule 80 PVC so from 3'-15' Bottom cap
Drilling Drilling Construc Developr		OLFF, INC. V11/94 10/11/94 _10/11/ _N/A _13.5'-15'	94	Blown/Bailed Y Well Casing Casing Type Well Screen Screen Type Slot Size Drilling Mud	4" D Schedule 80	ia. <u>1'</u> PVC ia. <u>3'</u>		Bentonite Seal Filter Pack Qty Filter Pack Typ Static Water Le Notes:	e <u>Mo</u> vel	ls D lbs pric #1 sand pack 367.49 M: 10/11/94

Form #wi-sc-1 (02/90)

Ø

Client: MARTIN MA Project No: 95424	SOIL BORING LOG RIETTA CORPOR Phase	ATION Task	Boring Location Surface	m AOC		5 FARRELL ROAD-SYRACUSE, NY			
0	1	urden/Lithologic Description	FID (ppm)	Graphic Log	Well Construction Graphics	Depth Feet	Well Construction Details		
0 Ground Surface	to medium grai (1'-15').		fine 4 21 10 10 16 11 13 25 99 233 2073 > 2500				T.O.C. Elev. 380.63 8" Diameter Boring Concrete collar Bentonite seal from 1' Schedule 80 PVC riser pipe from 1'3' Morie #1 sand pack fro 2'-15' Schedule 80 PVC scree from 3'-15' Bottom cap		
Drilling Completed	/10/94 10/10/94	Well Screen <u>4</u> •		_ to <u>3'</u> to <u>15'</u>	Bentonite Seal Filter Pack Qty Filter Pack Typ Static Water Le	e <u>Ma</u> vel _	0 lbs orie #1 mad pack 369.03 MSL		
Construction Completed Development Completed Water Bearing Zones	<u>10/10/94</u> <u>N/A</u> 12'-15'	Screen Type Sch Slot Size 0.02 Drilling Mud N/A Grout Type N/A	\		Notes:	Date _	10/10/94		

Client: Project			BORING LOG A CORPOR Phase		'ask	Boring Location Surface	a AOC		ROAD	-SYRACUSE, NY Page 1 of
Peeth Feet		 	Overb	urden/Litholo Description		FID (mea)	Graphic Log	Well Construction Graphics	Depth Feet	
	Ground Surface	FEET	Water at 13.5 f	(0.5'-0.75') the brown (7.5YR ned sand, slightly ned sand, slightly the sand, slightly the sand, slightly the sand sand slightly the sand slightly th	y moist product	0 3 3 4 0				T.O.C. Elev. 380.67 8° Diameter Boring Concrete collar Bentonite seal from 1'- Schedule 80 PVC riser pipe from 1'-3' Morie #1 sand pack from 2'-15' Schedule 80 PVC scree from 3'-15' Bottom cap
	ed By <u>B.STAHL</u>	OLFF, IN(0/6/94	2	Blown/Bailed Y Well Casing Casing Type		ia. <u>1'</u>	_ to <u>3*</u>	_ Bentonite Seal _ Filter Pack Qty. _ Filter Pack Typ.		is) lbs wie #1 sand pack
Const Devel	ng Completed ruction Completed opment Completed Bearing Zones	10/6/94 _10/6 _N/A _13.5'-15		Well Screen Screen Type Slot Size Drilling Mud Grout Type	<u>4"</u> D <u>Schodnic 80</u> 0.020" <u>N/A</u> <u>N/A</u>	ia. <u>3'</u> PVC	_ to <u>15'</u>	Static Water Let I Notes:		<u>367.54</u> MSL 10/6/94

ġ

Client: MARTIN M Project No: 95424	SOIL BORING LOG ARIETTA CORPOR Phase	ATION Taak	Boring Locatio Surface	m AOC		eter No. ROAD	- SYRACUSE, N Page 1 of
0+ F+		urden/Lithologic Description	FID (mem)	Graphic Log	Well Construction Graphics	Depth Feet	Well Construction Details
0 Ground Surface	Water at 13.5 f encountered.	<u>k</u> brown (7.5YR 4/4), f lightly moist (0.75'-14.5 t, no free phase product 10R 3/6), clayey,	; ` ,. 3 3 3				 T.O.C. Elev. 380.65 8" Diameter Boring Concrete collar Bentonite seal from 1 Schedule 80 PVC ris pipe from 1'-3' Morie #1 sand pack 2'-15' Schedule 80 PVC sci from 3'-15' Bottom cap
	OLFF, INC. V6/94 10/6/94 	Well Screen 4-	<u>N/A</u> Dia. <u>1*</u> hule 80 PVC Dia. <u>3*</u> hule 80 PVC		1	* <u>Ma</u> vel	s be ric #1 sand pack 367.51 MS 10/6/94

8

Client: MARTIN M Project No: 95424	SOIL BORING LOG MARIETTA CORPOR Phase	ATION Tesk	Boring Location Surface	na AOC		eter No. ROAD	- SYRACUSE, NY Page 1 of 1
		ourden/Lithologic Description	FID (PPm)	Braphic Log	Well Construction Graphics	Depth Feet	Well Construction Details
0 Ground Surface	Ciay, root fiber round pebbles, moist (0-14.5') Water at 12.5 f encountered.	rk brown (7.5YR 4/4), tr rs to ~ 1 feet, some small , fine grained, slightly). ft, no free phase product (10R 3/6), clayey, ist (14.5'-15').					T.O.C. Elev. 384.10 8" Diameter Boring Concrete collar Bentonite seal from 1'- Schedule 80 PVC riser pipe from 0.5'-3' Morie #1 sand pack from 2'-15' Schedule 80 PVC screat from 3'-15' Bottom cap
Logged By <u>B.STAHL</u>	10/7/94 10/7/94	Well Screen <u>4</u> .	<u>N/A</u> Dia. <u>0.5'</u> ule 80 PVC Dia. <u>3'</u> ule 80 PVC	to <u>3'</u>	Bentonite Seal Filter Pack Qty. Filter Pack Typ Static Water Le I	e <u>Ma</u> vel _	ts D Bos pric #1 sund pack 367.81 MSL 10/7/94

æ

r.e. wright environmental, inc.

Client Projec	1: MARTIN M at No: 95424		BORING LOG A CORPOR Phase		ask	Boring Location Surface	m AOC		ROAD	- SYRACUSE, N Page 1 of
Depth Feet				urden/Litholo Description	gic	(Wedd) Cif	Graphic Log	Well Construction Graphics	Depth Feet	Well Construction Details
a 1 1 1 1 1 1 1 1 1 1	Ground Surface	FEET	Asphalt(0-0.5') Gravel Subbase Sandy Silt: Dar to medium grai (0.75'-15').		4/4), fine y moist	0 0			0	T.O.C. Elev. 383.4 8" Diameter Boring Concrete collar Bentonite seal from Schedule 80 PVC ri pipe from 0.5'-3' Morie #1 sand pack 2'-15'
-10			encountered.	no free phase pr	oduct	2396 846 1246				Schedule 80 PVC a from 3'-15'
			<u>TD= 15 feet.</u>		/	140			20	Bottom cap
25										
Drill Drill	ged By <u>B.STAHL</u>	OLFF, INC 0/10/94 10/10/94 10/10/94		Blown/Bailed Y Well Casing Casing Type Well Screen	<u>4</u> Di <u>Schedule 20</u> <u>4</u> Di	a. <u>0.5'</u> PVC a. <u>3'</u>	to <u>3'</u> to <u>15'</u>	Bentonite Seal Filter Pack Qty. Filter Pack Typ Static Water Le	e <u>Ma</u> vel) ibs rie #1 sand pack 368,55 M
Deve	elopment Completed er Bearing Zones			Screen Type Slot Size Drilling Mud Grout Type	<u>Schedule 80</u> 0.020* <u>N/A</u> N/A	<u>r v C</u>		Notes:)ate	10/10/94

æ

Client Projec	:: MARTIN M :t No: 95424		BORING LOG A CORPOR Phase		sk	Boring Locatio Surface	n AOC		neter No. ROAD	- SYRACUSE, NY Page 1 of 1
Depth Faat				urden/Litholog Description	zic	FID (PPm)	Graphic Log	Well Construction Graphics	Depth Feet	Well Construction Details
	Ground Surface	FEET	to medium grai (1'-14.5'). Water at 13.5 f encountered.	to free phase p (10R 3/6), clayey	roduct	0 0 17 16				 T.O.C. Elev. 383.93 8" Diameter Boring Concrete collar Bentonite seal from 1'-2 Schedule 80 PVC riser pipe from 0.5'-3' Morie #1 sand pack from 2'-15' Schedule 80 PVC screen from 3'-15' Bottom cap
Dril Dril Con Dev	ged By <u>B.STAHL</u> ling Started <u>1</u>	0/10/94 10/10/94 	0/94	Blown/Bailed Y Well Casing Casing Type Well Screen Screen Type Slot Size Drilling Mud	4" Di Schedule 80	PVC	- to <u>3</u> ° - to <u>15</u> °	Bentonite Seal Filter Pack Qty. Filter Pack Typ Static Water Le I Notes:	e <u>Ma</u> vel	5 lbs sric #1 sand pack 366.04 MSL 10/10/94

Ø

•

-

AOC #5

February 1995

Full-Scale Pilot Test Results

Martin Marietta Ocean, Radar & Sensor Systems Post Office Box 4840 Syracuse, NY 13221-4840

May 8, 1995

Mr. Robert W. Schick, PE Section Chief, Remedial Section Bureau of Western Remedial Action Division of Hazardous Waste Remediation New York State Department of Environmental Conservation 50 Wolf Road Albany, New York 12233-7010

RE: Farrell Road Plant Town of Geddes, Onondaga County, New York Site No. 7-34-055 Full Scale Pilot Test Results - AOC #5

Dear Mr. Schick:

Please find enclosed a report describing the full-scale pilot test conducted between February 6 - 11, 1995 in Area of Concern (AOC) #5 at the Farrell Road Plant.

LOCKHEED MART

The enclosed report contains discussion on project background, pilot test implementation, sampling and analysis, system inspection and testing, data analysis, and air emission assessment.

The results of the full-scale pilot test indicate that actual air emissions are lower than those initially modeled with theoretical data. During the pilot test, the Soil Vapor Extraction (SVE) system was operated at full capacity. The loading rate after 5 days of operation was in full compliance with Air Guide-1 Annual Guideline Concentrations (AGC's) and Short Term Guideline Concentrations (SGC's).

Based on this information, Martin Marietta requests approval for removal of the air emission controls (vapor phase carbon) from the SVE system. Martin Marietta is prepared to start the system upon receipt of the Department's approval to operate without air emission controls. Please find enclosed a completed application to Certificate to Operate the treatment system. This application includes all contaminants detected in the air stream during the full-scale pilot test.

We would be available to meet with you at your convenience to discuss the pilot test results in more detail. Martin Marietta looks forward to start-up of the IRM treatment system in AOC #5. Please contact either Pat Salvador (315) 456-3199 or me (315) 456-6976 with any questions or if additional information is required.

Sincerely,

Brian A. Kent, Manager Environment, Safety and Health

Attachment

c: Charles Branaugh, NYSDEC Director, Bureau of Environmental Exposure Investigations, NYSDEC Henriette Harnel - NYSDOH Michael Lesser - NYSDEC Ralph Manna - NYSDEC Virginia Robbins - Bond, Schoeneck & King

RUST Environment & Infrastructure Inc. 12 Metro Park Road Albany, NY 12205 Tel. (518) 458-1313 • FAX (518) 458-2472

May 4, 1995

Patrick Salvador, P.E. Martin Marietta Corporation - EHS Electronics Park Building EP-5 Room H6 Syracuse, New York 13221

RUST ENVIRONMENT & INFRASTRUCTURE

Re: Farrell Road Plant - AOC #5 Full-Scale Pilot Test Results Town of Geddes, Onondaga County, New York

Dear Mr. Salvador.

Rust Environment & Infrastructure, of New York (Rust) is pleased to provide this summary report on full scale pilot testing of the soil vapor extraction (SVE) system at the Former Solvent Storage \neg ank Area, which has been designated as Area of Concern (AOC) # 5 at the Farrell Road Plant Site. The purpose of this letter is to document the operation, monitoring, and analytical data collected during the five day pilot test which was conducted between February 6 - 11, 1995. The principal objective of this pilot test was to assess the operating air emission rates from the SVE system. The testing determined that, during the initial 5-days of operation, the total volatile organic compound (VOC) concentrations ranged from approximately 349 parts per million (ppm) to 1,386 ppm. Extraction rates from soil were typically 80 standard cubic feet per minute (SCFM) at a vacuum of 5 inches mercury (in-Hg). The SVE system operated under maximum conditions according to design specifications.

PROJECT BACKGROUND

The SVE system on which the pilot test was conducted was installed as an Interim Remedial Measure (IRM) for AOC #5 at the Farrell Road Plant in accordance with a New York State Department of Environmental Conservation (NYSDEC)-approved IRM Work Plan. The SVE system was constructed by R.E. Wright Associates (REW) between October and December, 1994. To obtain data useful for evaluating air emissions from full-scale operation of the system, Martin Marietta Corporation (MMC) proposed performance of a five day pilot test, during which time the system would be operated at its maximum capacity with temporary air emission controls. The pilot test was performed in accordance with a December 28, 1994 scope of work submitted to the NYSDEC by MMC and the subsequent approval letter dated January 9, 1995 from the NYSDEC (Appendix A).

G

Patrick Salvador, P.E. Page 2 May 4, 1995

The SVE system layout is shown on Figure 1, and consists of the following components:

- 12 vapor recovery wells (VRW) which are designated as VRW-1 through VRW-12;
- 10 passive air injection wells (AIW) which are designated as AIW-1 through AIW-10;
- piping manifold connecting the VRW wells to a SVE module located in a heated treatment building; and
- an SVE Module which consists of a Dilution Air Inlet valve, a Moisture Separator, an Air Filter, a positive displacement Blower, and an outlet silencer.

For the purpose of the pilot test, temporary emission controls were installed which consisted of two 1800-pound vapor phase granular activated carbon (GAC) adsorbers connected in series. The GAC adsorbers were placed outside the treatment building, and connected between the SVE discharge pipe and the existing 25-foot discharge stack.

PILOT TEST IMPLEMENTATION

Prior to initiation of the pilot test, the temporary air emission controls described above were installed and an on-site lab was set up to perform analysis of air samples. The temporary air emission control equipment is illustrated in Appendix B. The on-site lab equipment and procedures are described in Appendix C. The compounds of concern for the pilot test were identified as those found either in the previous pre-design pilot test conducted on one well or found in soil samples from AOC #5, and are summarized in Appendix D, Table D-1. These compounds are:

l,1-dichloroethene	1,1-dichloroethane	1,2-dichloroethene
ethylbenzene	methyl ethyl ketone (MEK)	methyl isobutyl ketone (MIBK)
n-octane trichloroethene	toluene xylenes (total)	

The AOC #5 pilot test was initiated on February 6, 1995. During all or part of the pilot test, personnel were present on-site from MMC, NYSDEC, Rust, REW, and Environmental Restoration Services (ERS). Start-up work began at 12:00 noon on February 6, 1995, 1995. Initially the SVE Blower was turned on with all VRW valves closed and the Dilution Air Intake open. Minor piping and equipment complications were resolved during this system check. At approximately 3:00 pm all VRW valves, with the exception of VRW-207, were opened and SVE operation began. VRW-207 contained a layer of light non-aqueous phase liquid (LNAPL) and, as approved of by NYSDEC, this

Patrick Salvador, P.E. Page 3 May 4, 1995

well was not placed on-line until later in the test. The SVE was operated and monitored through February 11, 1995, when the system was shut down and secured.

Air emission monitoring and data collection for the SVE ystem was performed continuously for the first 30 hours of operation and during daytime periods (typically 7:00 am to 7:00 pm) throughout the pilot test. Operating data was summarized on daily field log tables. The operating data routinely collected on the SVE system airstream included flow rate, vacuum, temperature, relative humidity and photoionization detector (PID) readings from each vapor extraction lateral as well as from the combined SVE airstream before the GAC units. PID data was collected from the combined SVE ("Pre-GAC"), from between the GAC adsorbers ("Intermediate-GAC") and after the secondary GAC adsorber ("Post-GAC"). Monitoring of the air at the GAC adsorbers was performed to evaluate GAC usage and to identify breakthrough. Typical operating ind monitoring data tables for the SVE are summarized in Appendix D, Tables D-2 through D-4.

SAMPLING AND ANALYSIS

Sampling and analysis was performed in accordance with the NYSDEC-approved pilot test plan. Samples were collected in accordance with the Standard Operating Procedures (SOP) for field sampling of SVE systems (Appendix C). The sampling and analysis was performed for three purposes.

- 1. Air Emissions Assessment Samples were submitted to a commercial laboratory for VOC analysis. This data was used for calculation of air emission rates and potential impacts.
- 2. Operations Monitoring and Assessment Samples were analyzed in an on-site lab to obtain operating and emissions data during the test period.
- 3. GAC Performance Monitoring Samples were collected and analyzed in the on-site lab to monitor for VOC breakthrough between and after the GAC adsorbers and to assess GAC usage rates.

Air Emissions Assessment

Samples were collected and submitted to Performance Analytical (referred to herein as the "commercial lab") for analysis by Modified USEPA Method TO-14. The modification of this method, which was detailed in the approved pilot test plan, consisted of collecting samples in Tedlar bags rather than Summa canisters. Air samples were collected for commercial lab analysis from the Pre-GAC sample port of the SVE airstream after 1, 8, and 24 hours of operation. Additionally, between February 7 through 11, 1995 one air sample was collected each day from the pre-GAC airstream for

Patrick Salvador, P.E. Page 4 May 4, 1995

VOC commercial laboratory analysis. Commercial laboratory analytical results for the pre-GAC airstream are summarized in Table 2.

Individual vapor extraction well air samples were collected throughout the pilot test and analyzed by the on-site lab and screened by PID. Results of monitoring of the individual laterals are summarized in Appendix D, Table D-5. A comparison of commercial lab, on-site lab, and PID data for Pre-GAC air samples from the SVE is presented in Appendix D, Table D-6.

Operations Monitoring and Assessment

Samples were analyzed in an on-site lab using a portable Photovac Model 10S-70 Gas Chromatograph which was calibrated to the pilot test chemicals of concern as listed in Appendix D, Table D-1. The instrument was operated in accordance with procedures described in the SOP (Appendix C). Data from the on-site lab was used during the pilot test to provide data on GAC performance and to aid in system adjustment to maximize VOC removal rates.

During pilot testing of the SVE system, air sampling for on-site lab analysis focused on the Pre-GAC air stream. During the first 24 hours of operation of the SVE system, Pre-GAC air samples were collected and analyzed in the on-site lab on an hourly basis. For the remainder of SVE operations, Pre-GAC samples were collected three to five times daily for analysis by the on-site lab. In order to assess variations in vapor concentrations between individual VE wells and to provide a basis for balancing and optimizing VOC removal by the SVE system, samples from the individual VE wells were collected for analysis by the on-site lab and screened with the PID on February 8 and 10, 1995.

On February 6 and 7, 1995, vapor extraction well VRW-7 remained entirely closed as approved by NYSDEC in order to prevent extraction from this well due the presence LNAPL. VRW-207 was gradually opened on February 8, 1995 and no significant increase in vapor concentrations was observed in the Pre-GAC airstream.

GAC Performance Monitoring

During the first 24 hours of operation of the SVE system, samples were collected periodically from the Intermediate-GAC and Post-GAC sample ports and analyzed in the on-site lab. For the remainder of the pilot test, samples were collected on at least a daily basis from the Intermediate-GAC and Post-GAC sample ports and analyzed in the on-site lab.

The sampling results for GAC indicated in excess of 99% VOC removal by the primary GAC adsorber. At the conclusion of the pilot test, removal rates by the primary GAC adsorber had begun to decline slightly, but remained in excess of 95%.

Patrick Salvador, P.E. Page 5 May 4, 1995

SYSTEM INSPECTION AND TESTING

In addition to the sampling and chemical analysis performed on the SVE airstream, components of the system were inspected and wellhead data was collected. The SVE system was found to be sealed with the exception of two vacuum leaks at wells, which were repaired on February 9, 1995. The individual extraction and air injection wells were also tested for vacuum. The vacuums observed at the VRW wellheads were equal to that indicated by gages on the manifold. The air injection wells all exhibited a vacuum, which indicates positive flow of air into the soil. Although a rigorous assessment of the connection of vacuum between the wells was beyond the scope of this project, the data strongly suggest that the extraction/injection well system maintained a vacuum throughout the entire area of soils being treated. Vacuum readings measured at individual wells on February 9, 1995 are shown on Figure 1.

The SVE system was balanced on February 9, 1995. Balancing was completed in accordance with the SOP for SVE balancing (Appendix C). The purpose of balancing the system is to maximize the VOC removal from the system. This is accomplished by reducing the extraction rate from wells which exhibit lower concentrations of VOCs and increasing extraction rates from those wells which exhibit higher VOC concentrations. The data calculated for the February 9, 1995 balancing of the SVE is summarized in Appendix D, Table D-7.

One additional subject which was investigated during the course of the field work was the performance of the blower in this application. From the start of the test, it was necessary to leave the air dilution valve open, such that dilution air was brought in at a nominal 2:1 ratio with soil vapor. Attempting to extract additional soil vapor beyond approximately 80 SCFM resulted in excess vacuum on the blower inlet, which in turn tripped the high vacuum switch and shut down the blower. Based on a review of the blower and motor specifications and on consultation with the blower supplier, it was determined that it would eventually be appropriate to adjust the blower drive to reduce its speed. The net result would be lower increase the soil vapor extraction rate, it would merely reduce the dilution air flow. The extraction rate is limited by the soil conditions, groundwater levels, and well construction and placement rather than any above-ground piping or mechanical components.

DATA ANALYSIS

The SVE system was operated 24 hours a day between February 6 and 11, 1995 and no mechanical or equipment malfunctions occurred. As indicated on the O&M data summary tables (Appendix D, Tables D-2, D-3, and D-4), the system effectively recovered soil vapor from each vapor extraction well. Condensate water was observed in several vapor extraction well laterals located within the

Patrick Salvador, P.E. Page 6 May 4, 1995

treatment building. While water was encountered in these laterals, no water was collected within the moisture separator tank throughout the pilot test.

Pre-GAC samples from the SVE system airstream were collected and analyzed by the on-site and the commercial lab and were screened by PID. The PID was observed to consistently underestimate the VOC level in the airstream. This discrepancy resulted from two factors. First, the VOCs in the airstream varied in their response factor from the isobutylene gas used to calibrate the PID. Second, the on-site and commercial lab analysis measured specific VOCs only, whereas the PID responded to all VOCs in the air which have an ionization potential below approximately 10.2 electron volts. Comparison of the data is presented in Appendix D, Tables D - 5, and is summarized as follows:

	<u>Average</u>	Range
PID	240 ppm	195 - 280 ppm
On-site lab	527 ppm	230 - 1,600 ppm
Commercial lab	762 ppm	349 - 1,386 ppm

Individual soil vapor extraction wells were simultaneously screened with the PID and sampled for analysis by the on-site lab. Results from the simultaneous sampling are shown in Appendix D, Table D-5. The discrepancy between VOC concentration indicated by PID and the on-site lab is due to the two factors discussed in the preceding paragraph.

The SVE system was balanced on February 9, 1995. Balancing was completed in accordance with the SOP for SVE balancing (Appendix C). The purpose of balancing the system was to maximize VOC removal from the system. Balancing was accomplished by reducing the extraction rate from wells which exhibited lower concentrations of VOCs and increasing extraction rates from those wells which exhibited higher VOC concentrations. The data calculated for the February 9, 1995 balancing of the SVE is summarized in Appendix D, Table D - 7. Preliminary on-site laboratory analytical results, average air flow rates, and system operation data collected on February 8, 1995 from individual wells were utilized to calculate the desired recovery rates from the individual soil vapor extraction wells. Air flow rates on individual wells were then throttled as indicated by the calculations to a balance which would maximize the VOC extraction rate. Due to the presence of water in several extraction wells, concentrations varied significantly before and after balancing. Additionally, air velocity readings varied and were sometimes difficult to obtain due to the presence of water in the laterals.

Pre-GAC samples were collected for commercial laboratory analysis by modified EPA Method TO-14 at 1, 8, and 24 hours after start-up and on each subsequent day of the pilot test. Commercial laboratory analysis of these samples (Table 2) indicated that the highest concentration was observed after 1 hour of continuous SVE operation. VOC concentrations decreased with continuing SVE Patrick Salvador, P.E. Page 7 May 4, 1995

operation. The on-site laboratory analytical results correlated well with the commercial laboratory samples collected simultaneously. The first and second samples collected for laboratory analysis (1 hour and 8 hour, respectively) were significantly higher than the corresponding on-site laboratory analytical samples. The presence of high concentrations of VOC compounds such as 1,1,1-TCA and toluene were typically above the linear range of the detector employed with the on-site laboratory and were therefore estimated. Similarly, very low concentrations of VOC compounds such as trichloroethene, 1,1-dichloroethene, and dichloroethane were typically below the linear range of the on-site laboratory is capable of lower detection limits and is more accurate at higher concentrations than the on-site lab since the GC used in a commercial laboratory contains a larger column than the GC used in the on-site lab. The commercial lab is also better able to positively identify some compounds since the commercial lab uses a GC coupled to a mass spectroscope (GC/MS).

AIR EMISSION ASSESSMENT

Analytical data on operating emission rates for the SVE were obtained throughout the course of the pilot test. The data allow assessment of operating emission rates once the system is placed on-line for long term operation. From the pilot test data, the combined SVE concentration of total VOCs and selected individual compounds were plotted versus operating time (Appendix E). Based on trends observed in Appendix E, Figure 2, air concentrations upon reactivation of the system were projected. These projected operating air concentrations are expected to occur shortly after the system equilibrates, and, therefore provide a worst-case basis for air emission assessment. Ground level air quality concentrations which would result from projected operating air emissions were estimated by O'Brien & Gere Engineers, Inc. using the Industrial Source Complex-Short Term, Version 2 (ISCST2) model for all compounds detected during this pilot test. Projected operating air emission rates for the compounds detected during this pilot study are summarized in Table 1 A description of the ISCST2 model including results are attached as Appendix F to this report.

As a conservative first approach, the projected operating emissions obtained from the pilot test were used as the ISCST2 model input in order to estimate 1-hour and annual average impact concentrations. In the event these projected emissions resulted in annual average impact concentrations of a chemical above its corresponding AGC, then the projected emission rate obtained from the pilot test was "annualized", to reflect the orderly decay of emissions that are expected from the SVE system over time. For example, using the experimental rate constant for emissions decay observed during the pilot test, the annual rate of decay of 1, 2-dichloroethene (1,2-DCE) was extrapolated, and the total quantity of 1,2-DCE expected to be removed in 1 year was estimated. This quantity of 1, 2-DCE was then "annualized", by dividing the quantity by 24 hours per day and 365 days per year. This "annualized" hourly emission rate was then re-entered into the model and revised annual impact concentrations estimated.

.

Patrick Salvador, P.E. Page 8 May 4, 1995

Based on the ISCST2 model analysis, the maximum short term and annual impact for each compound detected in the off-gas during this pilot test was less than its corresponding NYSDEC Short Term Guideline Concentration (SGC) and Annual Guideline Concentration (AGC) as listed in *Air Guide* 1 - Appendix C (1991). Air emission rates as well as corresponding SGC and AGC values are summarized on Table 1.

CONCLUSIONS

The SVE system effectively extracts soil vapors from the former Solvent Storage Tank Area in general accordance with the IRM objective. The soil vapor flow rate is limited by soil permeability to approximately 80 SCFM. Analytical samples collected from the pre-GAC airstream during the five day pilot test indicate that average total VOC concentrations were approximately 780 ppm. The highest compounds detected were toluene and 1,1,1-TCA at average concentrations of 330 and 360 ppm, respectively.

The maximum 1-hour and annual impact concentrations for the 9 chemicals observed to be present in the air discharge during the pilot test are summarized in Table 1. As shown in Table 1, the maximum 1-hour and annual off-site ambient air quality impacts for all 9 compounds are below their corresponding SGCs and AGCs, respectively. Since the SVE air emissions at AOC#5 demonstrate compliance with Air Guide-1 air quality criteria, air emission controls will not be necessary for the treatment of SVE off-gas.

Please call me at (518) 458-1313 if you have any questions.

Sincerely,

Alan W. Tavenner, P.E. Senior Environmental Engineer

Patrick Salvador, P.E. Page 9 May 4, 1995

ATTACHMENTS

FIGURES

- 1. Area 5 Pilot Test Soil Vapor Extraction System
- 2. VOC Removal Projections

TABLES

- 1. Emission Rate Calculations
- 2. Pre-GAC Laboratory Analytical Summary

APPENDIX

- A. Correspondence
- B. Temporary Air Emission Controls
- C. Standard Operating Procedures
 - on-site GC laboratory
 - field monitoring for Soil Vapor Extraction Systems
 - Soil Vapor Extraction System balancing
- D. Operating Data Tables
 - D-1 Compounds of Concern AOC #5.
 - D-2 Operating Data-February 8, 1995 (A.M.)
 - D-3 Operating Data-February 8, 1995 (P.M.)
 - D-4 Operating Data-February 10, 1995
 - D-5 Individual Vapor Extraction Well Air Analytical Summary
 - D-6 Pre-GAC Commercial vs On-Site Laboratory Analytical Summary
 - D-7 SVE Balancing February 9, 1995
- E. Compound Concentration vs. Time Plots
- F. ISCST2 Modeling Data
- G. Commercial Laboratory Data

Attachment 2

Chemical Data Summary Report for NAPL (VOCs)

1A VOLATILE CROANTES ANALYSIS DATA SHEET

EPA SAMPLE NO.

.

				1	
-	ab Nama: AFS		Coutract:	ء 	AIN204
_	Lab Code: AES	Case No.: BBL9506	SAS NO.:	SDG No.:	AIW204
	Matrix: (soil/water) WATER	Lab Sau	ple ID: AIW	1204
-	Sample wt/vol:	.005 (g/mL) uL	Lab Fil	.e ID: D2939)
	Level: (tow/mad)	L07	Date Re	caived: 9/	27/95
-	% Moisture: not dec	1. 100.	Date An	alyzed: 10/	7/95
	Column: (pack/cap)	CAP	Dilutic	n Factor:	1000.00
-		•	CONCENTRATION	UNITS:	
	CAS NO.	Compound	(ug/L or ug/X	g) MC/L	Q
- 	74-87-3	Chloromethane		10000.	U
	74-83-9	Bromomethane		10000.	U
-	75-01-4	Vinyl Chlorida		10000.	υ
		Chloroethane		10000.	U
	75-09-2	Methylens Chlo	ride	5000.	υ
_	75-69-4	Trichlorofluor	omethane	5000.	υ
-	75-35-4	1,1-Dichloroet	nene	5000.	- U
	75-34-3	1,1-Dichloroet	nane	5000.	υ
	156-60-5	1,2-Dichloroet	aene-trans	5000.	U
-	156-59-2	1,2-Dichloroet	nene-cis	5000.	υ
	74-97-5	Bromochloromet	lane	5000.	U U
	67-56-3	Chloroform		5000.	υ
-	107-05-2	1,2-Dichlorcet	nane	5000.	υ
	71-55-6	1, 1, 1-Trichlore	pethane	77000.	
	50-23-5	Carbon Tetrachi	loride	5000.	υ
-	7:-27-4	Bromodichlerome	sthane	5060.	ប
		1, 2-Dichloropro	ppane	5000.	υ.
-		cis-1,3-Dichlos	copropene!	5000.	U
		Dibromomethane		5000.	υ
	79-01-6	Dibromochlorom	3	5000.	υ
	79-00-5	l, 1, 2-Trichlord	sthane	5000.	ប ប
	71-43-2	Benzene		5000. 5000.	UUU
-		trans-1, 3-Dichl	oronronena	5000.	U U
	75-25-2	Bromoform	roroficherre	5000.	5
		Tetrachloroethe	2n2	5000.	υ
-		1,1,2,2-Tetracl		5000.	U
	103-88-3	Toluena		97000.	
		Chlorobanzena	,	5066.	υ
-	630-20-6	1, 1, 1, 2-tetracl	lorcethana	5000.	U
	100-41-4	Ethylbenzene		19000.	-
	100-42-5	Stviens	i	5000.	υ
	: 1330-20-7	Xvienes (total)		120000.	в
-	106-46-7	1.4-Dichlorobar	lzens	5000.	ਹ
	95-50-1	1, 2-Dichlorober	lizene	5000.	υ
	75-71-8	Dichlorodifluo:	crethane	10000.	υ
•	594-20-7	2,2-Dichloropro	orane	5000.	υ
	: 563-58-6	1,1-Dichlors-1-	·propene	5000.	υ

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

1A

AIW204 Jab Name: AES Contract: SDG No.: AIW204 Case No.: BBL9506 SAS No.: Lab Code: AES Lab Sample ID: AIW204 Matrix: (soil/water) WATER Lab File ID: D2939 (g/mL) uL Sample wt/vol: .005 Date Received: 9/27/95 (low/med) LOW Level: Date Analyzed: 10/ 7/95 * Moisture: not dec. 100. 1000.00 Dilution Factor: Column: (pack/cap) CAP CONCENTRATION UNITS: (ug/L or ug/Kg) MG/L Q CAS NO. COMPOUND 5000. U 96-18-4-----1,2,3-Trichloropropane 5000. σ 142-28-9----1, 3-Dichloropropane 106-93-4-----Ethylene Dibromide (EDB) 5000. σ υ 5000. 98-82-8-----Isopropylbenzene_ 5000. υ 103-65-1----n-Propylbenzene 5000. υ 108-86-1----Bromobenzene 5000. υ 108-67-8-----1,3,5-Trimethylbenzene_ U 5000. 95-49-8----2-Chlorotoluene σ 5000. 106-43-4----4-Chlorotoluene υ 5000. 98-06-6----tert-Butylbenzene υ 95-63-6-----1,2,4-Trimethylbenzene_ 5000. 5000. Π 135-98-8----sec-Butylbenzene 5000. σ 99-87-6----p-Cymene σ 5000. 541-73-1----1,3-Dichlorobenzene U 5000. 104-51-8----n-Butylbenzene

 120-82-1-----1,2,4-Trichlorobenzene_____
 20000.
 U

 91-20-3-----Naphthalene
 5000.
 U

 87-61-6-----1,2,3-Trichlorobenzene_____
 20000.
 U

 96-12-8-----1,2-dibromo-3-chloro-Propane
 50000.
 U

 87-68-3-----Hexachlorobutadiene
 20000.
 U

FORM I VOA

1/87 Rev.

EPA SAMPLE NO.

AIW204

SDG No.: AIW204

VCLATILE	ORGANIC	IS AMALYS	IS DA	TA SHEET
TENTATI	IVELY I	PENTIFIED	COME	coms

.

Contract:

1E

- Lab Name: AES

.

Lab Code: AES Case No.: 3819506 SAS No.:

Matrix: (soil/water) WATER

- Sample wt/vol: .005 (g/mL) JUL Level: (low/med) LCV
- S Moisture: not dec. 100.

Column: (pack/cap) CAP

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/Kg) MG/L

CAS NUMBER	COMPOUND NAME		EST. CONC.	
1				
2				
3				
4				
			•	
				
8		·		·
.0				
.2.				
.3				
.4				
.5				
.7				
.8				
·V •				
1				
3				
4			· · · · · · · · · · · · · · · · · · ·	
·				
· ·				
· · · · · · · · · · · · · · · · · · ·				
0				
	· · · ·			

Lab Sample ID: AIW204 Lab File ID: D2939 Date Received: 9/27/95 Date Analyzed: 10/ 7/95 Dilution Factor: 1000.00

 $\mathbf{U}\mathbf{U}\mathbf{U}\mathbf{U}\mathbf{U}\mathbf{U}$

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

Contract:

Lab Name: AES

- 100

Lab Code: AES Case No.: BEL9506 SAS No.:

Matrix: (soil/water) WATER

Sample wt/vol: .005 (g/mL) uL

Level: (low/mod) LOU

* Moisture: not dec. 100.

Column: (pack/cap) CAP

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) MG/L

74-87-3	Chloromethane	10000.	U
	Bromomethane	10000.	U
	Vinyl Chloride	10000.	U
	Chloroethane	10000.	Ū
	Methylene Chlorida	5000.	U
75-69-4	Trichlorofluoromethane	5000.	U
	1,1-Dichlorcethene	5000.	
	1,1-Dichloroethane	5000.	U
	1,2-Dichloroethene-trans	5000.	U
	1,2-Dichloroethene-cis	5000.	U
74-97-5	Bromochlcromethane	5000.	υ
	Chloroform	5000.	U
	1,2-Dichlorcethane	5000.	U
71-55-6	1,1,1-Trichloroethane	98000.	
56-23-5	Carbon Tetrachloride	5000.	υ
75-27-4	Bromodichloromethane	5000.	Ū
78-87-5	1,2-Dichloropropane	5000.	U
10061-01-5	cis-1,3-Dichloropropene	5000.	U
74-95-3	Dibromomethane	5000.	U
	Trichloroethene	5000.	υ
	Dibromochloromethane	5000.	U
79-00-5	1,1,2-Trichloroethane	5000.	U
71-43-2	Benzene	5000.	U
	trans-1, 2-Dichloropropens	5000.	Ū
	aromoform	5000.	U
	Tetrachloroethene	5000.	U
	1, 1, 2.2-Tetrachlorcethane	5000.	ŪŪ
	Toluene	230000.	E
	Chlorobenzene	5000.	υ -
	i,1,1,2-tetrachloroethane	5000.	Ū
100-41-4	Sthylbenzens	64000.	ľ
100-42-6		5000.	U
	Xylenes (total)	390000.	
105-46-7	1, 4-Dichlorobenzene	50000.	υ
	1,2-Dichlorobenzene	5000.	U
	Dichlorodifluoromethane		Ŭ
	2,2-Dichlorcpropane	5000.	υ
	1,1-Dichloro-1-propene	5000.	10 10
200-00-0	hrohend	j Suuu.	, u

AIW206

EPA SAMPLE NO.

Q

SDG No.: AIW204

Lab Sample ID: AIW206 Lab File ID: D2386 Date Received: 9/27/95

Date Analyzed: 10/11/95

Dilution Factor: 1000.00

1A

VOLATILE ORGANICS AMALYSIS DATA SHEET

Lab Name: AFS

AIW206

EPA SAMPLE NO.

Contract: Lab Code: AES Case No.: BEL9505 SAS No.: SDG No.: AIW204 Matrix: (soil/water) WATER Lab Sample ID: AIW206

Sample wt/vol: .005 (g/mL) uL Level: (low/med) LOW

* Moisture: not dec. 100.

Column: (pack/cap) CAP

CAS NO.

CCMPOIND

CONCENTRATION UNITS: (ug/L or ug/Kg) MG/L

Lab File ID: D2986

Date Received: 9/27/95

Date Analyzed: 10/11/95

Dilution Factor:

Q

1000.00

96-18-41,2,3-Trichloropropane	5000.	υ
142-28-91,3-Dichloropropane	5000.	υ
105-93-4Ethylene Dibromide (EDB)	5000.	U
98-82-8Iscpropylbenzene	5000.	υ
103-65-1n-Propylbenzene	5000.	8
108-85-1Bromobenzene		U U
103-57-81,3,5-Trimethylbenzene	5000.	
95-49-9	5000	υ
95-49-82-Chlorotoluene	5000.	ប
105-43-44-Chlorotoluene	5000.	បុ
93-06-6tert-Butylbenzene	5000.	υ
95-63-61,2,4-Trimethylbenzene	5000.	υ .
135-98-8sec-Butylbenzene	5000.	U
99-87-6p-Cymens	5000.	σ
541-73-11,3-Dichlorobenzene	5000.	U
104-51-8n-Butylbenzene	5000.	υ
120-82-11,2,4-Trichlorobenzene	20000.	U U
91-20-3Naphthalene	5000.	υ
87-61-61,2,3-Trichlorobenzene	20000.	υ
95-12-81, 2-dibromo-3-chloro-Propane	50000.	U U
37-58-3Hewachlorobutadiene	20000.	บ บ
	20000.	u I
		ا <u></u> ا

FORM I VOA

1/87 Rev.

EPA SAMPLE NO.

	VOLATILE ORGANICS AMALYSIS DATA TENTATIVELY IDENTIFIED COMPOU	NDS
-	Lab Name: AES Contract	AIW206
	Lab Code: AES Case No.: 3819505 SAS No.	: SDG No.: AIW204
-	Matrix: (soil/water) WATER	Lab Sample ID: AIW206
-	Sample wt/vol: .005 (g/mL) #L	Lab File ID: D2936
	Level: (low/mad) LOV	Date Received: 9/27/95
-	¥ Moisture: not dec. 100.	Date Analyzed: 10/11/95
	Column: (pack/cap) CAP	Dilution Factor: 1000.00
-	CONTE	

1E

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/Kg) MG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
-	***************************************			====
Į				
	· · · · · · · · · · · · · · · · · · ·			
4	·			
E			·	
	· · · · · · · · · · · · · · · · · · ·			
7	· · · · · · · · · · · · · · · · · · ·			l
a 1				
			· · · · · · · · · · · · · · · · · · ·	
10				
10	<u></u>			
11			[
12.				
13				
14				
15			· · · · · · · · · · · · · · · · · · ·	
16	· · · · · · · · · · · · · · · · · · ·			
17	· · · · ·			
18.				
18				
19				
20				
2				
	المائد ومحمد بني المراجعة مشروعي في في من مراجع الله في في مراجع من مراجع المراجع المراجع المراجع ال			
24				
25				
26				!
27.		·	1	
28			1	
29				
2 9.			· · · · · · · · · · · · · · · · · · ·	
30				

.

EPA SAMPLE NO.

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

ab Nama: 325

•

Contract:

SDG NO.: AIW204 Lab Code: ANS Case No.: 3319305 SNS No.:

Lab Sample ID: AIW206 DL

Date Received: 9/27/95

Date Analyzed: 10/ 7/95

Dilution Factor: 2500.00

Lab File ID: D2940

- Matrim: (soil/water) WATER
- Sample wt/vol: .002 (g/mL) uL
- Level: (low/med) LCV
- % Moisture: not dec. 100.

Column: (pack/cap) CAP

COMPOUND CAS NO.

CONCENTRATION UNITS: (ug/L or ug/Kg) MG/L

Q

· · · · · · · · · · · · · · · · · · ·			
74-87-3	Chloromethane	25000.	U
	Bromomethane	25000.	U
	Vinyl Chloride	25000.	U
	Chloroethane	25000.	U
	Methylene Chloride	12000.	U
	Trichlorofluoromethane	12000.	U
	1,1-Dichloroethene	12000.	U
	1,1-Dichloroethane	12000.	U
	1,2-Dichlorcethene-trans	12000.	U
	1,2-Dichloroetheme-cis	12000.	U
	Bromochloromethane	12000.	υ
	Chloroform	12000.	U
	1,2-Dichlorcethane	12000.	U
	1,1,1-Trichloroethane	98000.	
	Carbon Tetrachloride	12000,	U
	Bromodichloromethane	12005.	U
	1,2-Dichloropropane	12000.	U
	cis-1,3-Dichloropropene	12000.	U
	Dibromomethane	12000.	σ
	Trichloroetheng	12000.	U
	Dibromochloromethane	12000.	U
	1,1,2-Trichloroethane	12000.	U
		12000.	U
	trans-1, 3-Dichloropropene	12000.	U
	Bromoform	12000.	. U
	Tetrachloroethene	12000.	U
79-34-5-	:,1,2,2-Tetrachloroethane	12000.	U
	Toluene	250000.	ł
	Chlorobenzene	12000.	U
530-20-5-	1,1,1,2-tetrachlorosthane	12000.	U
101-41-4-	Echvlbenzene	70000.	ł
		12060.	្រប
	Xvlanos (total)	400000.	1
	!, 4-Dicklorobenzene	12000.	່ປ
	1,2-Dichlorobenzene	12000.	U
	Dichlorodifluoromethane	25000.	U
	2, 2-Dichloropropane	12000.	υ
	1, 1-Dichloro-1-propene	12000.	U

AIW206DL

しこうこう

1A EPA SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET AIW206DL Lab Name: AES Contract: Lab Code: AES Case No.: BBL9506 SAS No.: SDG No.: AIW204 Matrix: (soil/water) WATER Lab Sample ID: AIW206 DL Sample wt/vol: .002 (g/mL) uL Lab File ID: D2940 Level: (low/med) LOW Date Received: 9/27/95 * Moisture: not dec. 100. Date Analyzed: 10/ 7/95 Column: (pack/cap) CAP Dilution Factor: 2500.00 CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) MG/L Q 96-18-4-----1,2,3-Trichloropropane_ 12000. U 142-28-9-----1,3-Dichloropropane 12000. υ 106-93-4-----Ethylene Dibromide (EDB) 12000. U 98-82-8-----Isopropylbenzene_ 12000. U 103-65-1----n-Propylbenzene 12000. U 108-86-1----Bromobenzene 12000. π 108-67-8-----1,3,5-Trimethylbenzene 12000. υ 95-49-8-----2-Chlorotoluene 12000. υ 106-43-4-----4-Chlorotoluene 12000. U 98-06-6-----tert-Butylbenzene 12000. υ 95-63-6-----1,2,4-Trimethylbenzene__ 12000. U 135-98-8----sec-Butylbenzene 12000. U 99-87-6----p-Cymene 12000. υ 541-73-1-----1, 3-Dichlorobenzene 12000. U 104-51-8----n-Butylbenzene 12000. Π 120-82-1-----1,2,4-Trichlorcbenzene Ū 50000. 91-20-3-----Naphthalene 12000. Ū 87-61-6----1,2,3-Trichlorobenzene U 50000. 96-12-8-----1, 2-dibromo-3-chloro-Propane 100000. υ

FORM I VCA

87-68-3-----Hexachlorobutadiene

1/87 Rev.

50000.

Π

EPA SAMPLE NO.

-	1E VOLATILE ORGANICS ANALYSIS DATA	EPA SAMPLE NO.
	TENTATIVELY LEENTIFIED COMPCU	
-	Lab Name: AES Contract	
	Lab Code: AES Case No.: BBL9506 SAS No.	: SDG No.: AIW204
-	Matriz: (scil/water) WATER	Lab Sample ID: AIW206 DL
-	Sample wt/vol: .002 (g/mL) 4/L	Lab File ID: D2940
	Level: (low/mad) LOW	Date Received: 9/27/95
-	% Moisture: not dec. 100.	Date Analyzed: 10/ 7/95
-	Column: (pack/cap) CAP	Dilution Factor: 2500.00
- 2 2		ENTRATION UNITS: L or ug/Kg) MG/L

CAS NUMBER	COMPCUND NAME		EST. CONC.	Q ====
			· · ·	
1		•		
2				
3				
4				
5		. [
6				
7				
8				
9				
10				
1			1	
10 1				
13		- [
13			1	
14			1	
	« المحاولة - المحاولة عن المحاولة و عن المحاولة ، المحاولة المحاولة ، « المحاولة ، مع المحاولة ، مع المحاولة ،		!	
16				
17		- !		
18			·	
19				
20		_		!
2 <u>:</u> i				
22		;		
7 7				
24.			!	
25				
26				
26	والواقال والمراجعة والشار المالية المستانين والمتنابي والمراجع والمراجع والمراجع والمراجع والمراجع وا	-		
<u> </u>			, '	i ——
28		!	· ·	
29.	and the second			!
30			. :	;

-

VOLATILE ORGANICS ANALYSIS DATA SHEET

1 4

Lab Name: AES

Lab Code: AES Case No.: BEL9506 SAS No.:

COMPCUND

- Matrix: (soil/water) WATER
- Sample.wt/vol: .002 (g/mL) uL
- Level: (low/med) LCV
- % Moisture: not dec. 100.

Column: (pack/cap) CAP

CAS NO.

CONCENTRATION UNITS: (ug/L or ug/Kg) MG/L

Q

74-87-3Chloromethane	25000.	σ
74-83-9Bromomethane	25000.	σ
75-01-4Vinyl Chloride	25000.	U
75-00-3Chloroethane	25000.	σ
75-09-2Methylene Chloride	12000.	U
75-69-4Trichlorofluoromethane	12000.	U
75-35-41,1-Dichloroethene	12000.	U
75-34-31,1-Dichloroethane	12000.	U
156-60-51, 2-Dichloroethene-trans	12000.	σ
156-59-21,2-Dichloroethene-cis	12000.	U
74-97-5Bromochloromethane	12060.	σ
67-66-3Chloroform	12000.	U
107-06-21,2-Dichloroethane	12000.	U
71-55-61, 1, 1-Trichloroethane	460000.	
56-23-5Carbon Tetrachloride	12000.	U
75-27-4Bromodichloromethane	12000.	U
78-87-51,2-Dichloropropane	12000.	U
10061-01-5cis-1,3-Dichloropropene	12000.	U
74-95-3Dibromorethane	12000.	U
79-01-6Trichloroethene	12000.	U
124-43-1Dibromochloromethane	12000.	U
79-00-51,1,2-Trichloroethane	12000.	U
71-43-2Benzene	12000.	U
10061-02-6trans-1, 3-Dichloropropene	12000.	U
75-25-2Bromodorm	12000.	U
127-18-4Tetrachloroethene	12000.	U
79-34-51, 1, 2, 2-Tetrachloroethane	12000.	υ
108-88-3Toluene	490000.	
103-90-7Chlorobenzene	12000.	U
630-20-62,1,1,2-tetrachloroethane	12000.	ប
100-41-4	13000.	
100-12-5Styrete	1.20(0).	U _
13:0-20-7Xvlenss (total)	98000.	B
106-46-71,4-Dichlorchenzeze	12000.	υ
95-50-11,2-Dichlorobenzere	12000.	υ
75-71-8Dichlorediflucromethane	25000.	σ
594-20-72,2-Dichloropropane	12000.	υ
	12000.	U
563-58-61,1-Dichloro-1-propene	12000.	U

SDG NO.: AIW204 Lab Sample ID: VRW203 Lab File ID: D2941 Date Received: 9/27/95 Date Analyzed: 10/ 7/95 Dilution Factor: 2500.00

000014 EPA SAMPLE NO.

VRW203

Contract:

.

LA

EPA SAMPLE NO.

SHEET	
 V	RW203
SDG No.:	AIW204
Lab Sample ID: VRW	203
Lab File ID: D2941	
Date Pecelved: 9/	27/95
Date Analyzed: 10/	7/95
Dilution Factor:	2500.00
	Q
12000. 50060. 50000.	ממממממממממ <u>מ</u> מממ מ
	SDG NO.: SDG NO.: Lab Sample ID: VRW Lab File ID: D2941 Data Received: 9/ Date Analyzed: 10/ Dilution Factor: TRATION UNITS: or ug/Kg) MG/L 12000. 1200

FORM I VOA

1/87 Rev.

EPA SAMPLE NO.

VRW203

1.	Ξ	
VOLATILA ORGANICE TENTATUELY IDE		
	1	

Lab Name: AES

Lab Code: AES Case No.: BBL9506 SAS No.:

- Matrix: (soil/water) WATER
- Sample wt/vol: .062 (g/mL) Jak Level: (lor/mad) LOS
- % Moisture: not dec. 100.
 Column: (pack/cap) CAP

.

•

Number TICs found: 0

Contract:

SDG No.: AIW204

Lab Sample ID: VRW203

Lab File ID: D2941

Date Roceived: 9/27/95

Date Analyzed: 10/ 7/95

Dilution Factor: 2500.00

CONCENTRATION UNITS: (ug/L or ug/Kg) MJ/L

CAS NUMBER	COMPOUND NAME	1	EST. CONC.	Q ====
2				
·····				
			· · · · · · · · · · · · · · · · · · ·	
8		_		
9				
10				
12	فسيب بينا فيعاد ومعادي فتكرب ونافيه فالمعاوية فيتعارف والمتعاد والمتعاد			
12	وروان و والماري و و المراجع و و و و البران و و مراجع و و مراجع		•	
13	ومراجع والمراجع والم		· · ·	
14			· ;	
15				
16			•]	·
17				·
18				·
19				•
20			• : •	·
2	······································	;		.
22			- 1	•
23	ماله م المجهورة (معربيني) هر الأربان الي فالألك الوقاعية في المكرم من المراجع .			
24.				-
25	مورد با از این			1
26				•
27	والمالية والمستعمل والمتباد المستعد والمستعد والمستعد والمعاد والمحاد والمحاد والمحاد والمحاد والمحاد		-	
28			• • • • • • • • • • • • • • • • • • •	
<u></u>	والمرافع ومحاولاته ويتناه فتعريبهم بالمجاولين ويجودون والمتراف والمتراف والمتراف والمراقب والمتراف			
30	مرد المردية التركيمية المردولية المراكية والمركية المرد المراكرة المركية المركية المركية المركية المركية المركزة ا	į	· · ·	- [

000017 EPA SAMPLE NO.

1A VOLATILE CRGANICS ANALYSIS DATA SHEET

1-

Lab Name:	265	C	ontract:	4 	VR:	N207
		ase No.: BBL9506		SDG	No.: 1	AIW204
Matrix: (s	oil/water:	WATER	Lab Sa	mple ID:	VRW2(37
Sample wt/	vol:	.002 (g/mL) uL	Lab Fi	le ID: D	2989	
Level: (low/mad) LC	¥.	Date R	eceived:	9/2	7/95
% Moisture	e not dec.	100.	Date A	nalyzad:	: 10/1:	1/95
Column: (pack/cap) C	147 	Diluti	on Facto)r: :	2500.00
CAS	NO.	Compound	CONCENTRATIO (ug/L or ug/			Q
		Chloromethane		250	000.	U
		Bromomethane		250	000.	U
		Vinyl Chloride			000.	υ
		Chloroethane			000.	U
	/5-09-2	Methylene Chlor	ide		000.	U .
	15-69-4	Trichlorofluoro	methane		000.	U U
		1,1-Dichlorceth			000.	υ U
		1,1-Dichloroeth			000. 000.	U
		1,2-Dichloroeth			000.	U
		1,2-Dichloroeth			000.	U
		Bromochlorometh	lane		000.	U
		Chloroform			000.	Ū
		1,2-Dichloroeth 1,1,1-Trichloro			000.	
	/1-55-6	Carbon Tetrachl	orida	-	000.	υ
		Bromodichlorome		_	000.	U
		1,2-Dichloropro			000.	υ
		cis-1,3-Dichlor			000.	ਹ
	-	Dibromomethane		12	000.	U
		Trichloroethene	}	12	603.	U
		Bibromochlorome		12	000.	U
_	79-00-5	1,1,2-Trichlor	pethane	1	000.	ប
	71-43-2	Benzene		ł	000.	σ
		trans-1, 3-Dich	Loropropene		.000.	U
		Bromoform		1	000.	U
. 1	27-18-4	Tatrachloroethe	ene	4	000.	U
		1,1,2,2-Tetrac	aloroethane		000.	υ
	08-88-3			•	000.	π
		Chlorobenzene	lowesthere		000.	U
		1,1,1,2-tetrac	moroechane	1	1000.	
		Ethylbenzene		•	000.	U
	00-42-5	Xylanes (total	<u></u>		0000.	· ·
		1, 4-Dichlorobe		:	000.	U
		1,2-Dichlorobe			000.	υ
				. – –	000.	ਹ
:	76_71_0	<u>1111_10 (AMAMI 7 1110</u>				
		Dichlorodifluo 2,2-Dichloropr		. *	2000.	υ

CUUULO

EPA SAMPLE NO.

-	•	
1	r .	
_		

VOLATILE ORGANICS ANALYSIS DATA SHEET

VPW207 Lab Name: AES Contract: SDG NO.: AIW204 Lab Code: MES Case No.: BBL9506 SAS No.: Matrix: (scil/water) WATER Lab Sample ID: VRW207 Lab File ID: D2989 Sample wt/vol: .002 (g/mL) uL Date Received: 9/27/95 Level: (low/med) LCW Date Analyzed: 10/11/95 * Moisture: not dec. 100. 2500.00 Column: (nack/cap) CAP Dilution Factor: CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) MG/L Q 12000. υ 96-18-4-----1,2,3-Trichloropropane 12000. υ 142-28-9-----1,3-Dichloropropane υ 105-93-4-----Ethylene Dibromide (EDE) 12000. U 12000. 93-82-8-----Isopropylbenzene_ U 103-65-1----n-Propylbanzene 12000. 12000. IJ 103-36-1----Bromobenzene U 103-67-8-----1,3,5-Trimethylbenzene 12000. 95-49-8----2-Chlorotoluene 12000. U 12000. U 105-43-4-----4-Chlorotoluene 12000. υ 93-06-6----tert-Butylbenzene ΰ 12000. 95-63-6-----1,2,4-Trittethylbenzene__ 12000. υ 135-98-8----sec-Butylbenzene

99-87-6----p-Cymene

541-73-1-----1,3-Dichlorobenzene

120-82-1-----1,2,4-Trichlorobenzene__

87-51-6-----1,2,3-Trichlorobanzene

87-68-3-----Hexachlorobutadiene

96-12-8-----1,2-dibromo-3-chloro-Propane;

104-51-8-----n-Butylbenzene_

91-20-3-----Naphthalene

FORM I VCA

1/87 Rev.

U

U

σ

υ

U

IJ

Ū

U

12060.

12000.

12000.

50000.

12000.

50000.

50000.

EPA SAMPLE NO.

1	1
- 14	E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: LES

Contract:

Lab Code: AES Case No.: BBL9506 SAS No.: SDG No.: AIW204

- Matrix: (soil/water) WATER Sample wt/vol: .JCL (g/mL) µL Lab File ID: D2989 Level: (low/med) LOW
- % Moisture: not dec. 100. Column: (pack/cap) CAP

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/Kg) MG/L

COMPOUND NAME RT CAS NUMBER EST. CONC. 0 1. 2.____ 3._____ 4._____ 5.____ • 6.__ 7._____ 8.____ . 9._ 10._____ 11.____ 12.____ 13.___ 14.____ 15._____ -16.____ 17.____ 18.____ 19.____ 20.____ 21.____ 22._____ 23.____ . . 24.____ 25.____ 26.____ 27._____ 28._____ 29._____ 30.____ FORM I VOA-TIC 1/87 Rev.

VRW207

Date Analyzed: 10/11/95 Dilution Factor: 2500.00

<u>.</u> .

Lab Sample ID: VRW207

Date Received: 9/27/95

14

VOLATILE ORGANICS ANALYSIS DATA SHEET

Contract:

ab Name: AES

Lab Code: AES Case No.: EBL9506 SAS No.:

Matrix: (scil/water) WATER

Sample wt/vol: .002 (g/mL) uL Lab File ID: D2988 Level: (low/med) LOW

& Moisture: not dec. 100. Column: (pack/cap) CAP

CONCENTRATION UNITS:

CAS NC.	COMPOUND	(ug/L or ug/Kg) MG/L	
74-87-3	Chloromethane	· · · · · · · · · · · · · · · · · · ·	25000.	1
	Bromethane		25000.	ŀ
	Vinyl Chloride	······	25000.	
	Chloroethane	•	25000.	Ì
	Methylene Chlorid	le	12000.	
	Trichlorcfluorome		12000.	
	1,1-Dichloroethen		12000.	
	1,1-Dichloroethan		12000.	
	1,2-Dichloroether		12000.	
156-59-2	1,2-Dichloroether	e-cis	12000.	
	Bromochloromethan		12000.	
	Chloroform		12000.	
	1,2-Dichlorcethan		12000.	
	l, 1, 1-Trichloroet		230000.	
	Carbon Tetrachlor		12000.	
	Bromodichlorometh		12000.	
	1, 2-Dichloropropa		12000.	
	cis-1,3-Dichloro		12000.	
	Dibromomethane		12000.	
	Trichloroethene		7800.	i
	Dibromochlorometh	ane	12000.	
	1,1,2-Trichloroet		12000.	
	Benzene		12000.	l
10061-02-6	trans-1, 3-Dichlor	coropese	12060.	
75-25-2	Bronoform		12000.	Ì
	Tetrachlorosthene		12000.	
	1,1,2,2-Tetrachlo		12000.	
	"Coluene		220000.	
	Chlorobenzene		12000.	
	1,1,1,2-tetrachlo	prosthane	12000.	
	Sthylbenzene		12000.	ł
	Stymens		12000.	;
1350-20-7	Kylenes (total)		55 000.	
106-46-7	l, 4-Dicnlorobenza	пе	12000.	
	1,2-Dichlorobenze		12000.	
	Dichlordicluoro		25000.	
	2,2-Dichloropropa		12060.	ł
	1, 1-Dichloro-1-P		12000.	ļ

VRW1203

SEG No.: AIW204

Lab Sample ID: VRW1203

Date Received: 9/27/95

Date Analyzed: 10/11/95

Dilution Factor: 2500.00

EPA SAMPLE NO.

しじしいる

Lab Sample ID: VRW1203

Date Received: 9/27/95

Date Analyzed: 10/11/95

Dilution Factor: 2500.00

Lab File ID: D2988

EPA SAMPLE NO.

VRW1203

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Code: AES Case No.: BB19806 SAS No.:

ab Name: AES

Contract:

SDG ND.: AIW204

- Matrin: (soil/water) WATER
- _ Sample wt/vol: .002 (g/aL) ML
 - Level: (low/mod) LOW
- * * Moisture: not dec. 100.

Column: (pack/cap) CAP

CAS NO.

COMPOUND

1A . -

CONCENTRATION UNITS: (ug/L or ug/Kg) MG/L

Q

٦1

96-18-41,2,3-Trichloropropane	12000.	U
	12000.	U
	12000.	σ
	12000.	υ
	12000.	U
	12000.	U
	12000.	. U
	12000.	. U
		υ
		U
		U
	12000.	U
	50000.	σ
	-	U
		υ
	-	Ū
67-68-3Nexachlorobutadiene	50000.	Ū
	96-18-41,2,3-Trichloropropane 142-28-91,3-Dichloropropane 106-93-4Ethylene Dibromide (EDB) 95-82-8Isopropylbenzene 103-65-1Bromobenzene 103-65-1	142-28-91,3-Dichloropropane 12000. 106-93-4Ethylena Dibromide (EDB) 12000. 95-32-8Ethylena Dibromide (EDB) 12000. 103-65-1Ethylena Dibromide (EDB) 12000. 103-65-1

FORM I VCA

1/87 Rev.

-

EPA SAMPLE NO.

	VOLATILE ORGANICS ANAL TENTRIJVELA ODENTIFI		• • • • • • • • • • • • • • • • • • •
-	Lab Name: AZS		W1203
	Lab Code: AES Case No.: 32.950	SAS NO.: SDG NO.:	AIW204
-	Matrix: (soil/water) WATER	Lab Sample ID: VRW1	.203
	Sample wt/vol: .002 (g/mL) 41	Lab File ID: D2988	
× 400	Level: (low/med) LOW	Date Received: 9/2	7/95
-	% Moisture: nou dec. 100.	Date Analyzed: 10/1	.1/95
	Column: (pack/cap) CAP	Dilution Factor:	2500.00

1E

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/Kg) MG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
• 1				=====
1			- <u></u>	[
2				
J				
4			İ	
5				
5. <u></u>				
7		·		
8	·			
		·		
<u>ــــــــــــــــــــــــــــــــــــ</u>				
12		[·	<u> </u>
14			·	
15				
TD.				
± / •			·	
10.		·		
19	••• •••••••••••••••••••••••••••••••••			[
20	· · · · · · · · · · · · · · · · · · ·			
21		ļ		
22				
23				
24			· · · · · · · · · · · · · · · · · · ·	
25				
27			1	1
28				: :
21		;	•	;
30			:	!
·····			1	i

Attachment 3

Physical Dat	ta for NAPL Samples (Density,	Viscosity, and Interfacial Tension)
1		

SAYBOLT - HEINRI 3111 Red Bluff P.O. Box 1659 Pasadena, TX 77501- PHONE: 713-477-270 FAX: 713-477-4831	CI, INC. Job No 1659	Г OF ANALYSIS 5.: L9509.201В	S	AYBOLT
	TO WHOM	IT MAY CONCERN	<u>.</u>	
Various samples were t Bouck & Lee, Inc., Syr	endered to Saybolt-Heinrici, acuse, New York on Septen	Inc., Pasadena, Texas ber 27, 1995.	via representa	tive of Blasland,
ANALYSIS:				
1.) Sample Marked:	VRW-203 Lockheed Martin 9-25-95 @09:05			
2.) Sample Marked:	VRW-207 Lockheed Martin 9-25-95 @09:45		•	
		•		
RESULTS OF ANAL	YSIS:	1.	2.	<u>METHOD</u>
	-5+	0.08	0.05	Δ STM D-4

Viscosity @5°C	cSt	0.98	0.95	ASTM D-445
Density @10°C	g/cm3	1.0263	0.8959	ASTM D-4052
Interfacial Tension @20°C	dynes/cm	3	16	ASTM D-971

The above mentioned samples will be at your disposal for 90 days.

Original Signed By Victor Martinez October 02, 1995 SAYBOLT - HEINRICI, INC. Pasadena, Texas

Please Refer to Terms, Conditions and Limitations as per our Tariff

Attachment 4

Chemical Data Summary Report for Soils (VOCs and TOC)

CONVENTIONAL WET CHEMISTRY ANALYSES								
Client Sample ID	Lab Sample ID	Matrix	Lab Rcd. Date	Lab Anal. Date	Parameter	Result	Flag	Units
88L-1 (8-10)	950927 F01	so	09/25/95	10/04/95	CLP-TOC	7090		mg/kg
88L-1 (13-14)	950927 F02	so	09/27/95	10/04/95	CLP-TOC	20100		mg/kg
BBL-1 (4-6)	950927 F03	so	09/27/95	10/04/95	CLP-TOC	463		mg/kg
88L-1 (16-18)	950927 F06	so	09/27/95	10/04/95	CLP-TOC	2130		mg/kg
BBL-1 (20-20.8)	950927 F07	so	09/27/95	10/04/95	CLP-TOC	39900		mg/kg
BBL-1 (10-12)	950927 F09	so	09/27/95	10/04/95	CLP-TOC	10560		mg/kg
BBL Duplicate	950927 F10	so	09/27/95	10/04/95	CLP-TOC	10590		mg/kg
88L-FB	950929 508	WA	09/29/95	10/04/95	CLP-TOC	100	υ	ug/l

CONVENTIONAL WET CHEMISTRY ANALYSE

CONVENTIONAL WET CHEMISTRY ANALYSES								
Client Sample ID	Lab Sample (D	Matrix	Lab Rcd. Date	Lab Anal, Date	Parameter	Result	Flag	Units
BBL-1 (6-8)	950927 F04	SO	09/27/95	10/04/95	CLP-TOC	1420		mg/kg

LA						
VOLATILE	ORGANICS	ANALYSIS	DATA	SHEET		

BBL1 (8-10 Lab Name: AES, Inc. Contract: Lab Code: AES Case No.: BBL9501 SAS No.: SDG No.: BBL1(4 Matrix: (soil/water) SOIL Lab Sample ID: BBL1(8-10) Sample wt/vol: 5.000 (g/mL) G Lab File ID: D2861 Level: (low/med) LOW Date Received: 09/27/95 % Moisture: not dec. 18. Date Analyzed: 10/03/95 GC Column: RTX502.2 ID: .25 (mm) Dilution Factor: 1.0 Soil Extract Volume: _____ (uL) Soil Aliquot Volume: ____ (uL)

CAS NO. COMPOUND

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

Q

EPA SAMPLE NO.

74-87-3Chloromethane 74-83-9Bromomethane	12.	υ
	12.	υ
75-01-4Vinyl Chloride	12.	υ
75-00-3Chloroethane	12.	U
75-09-2Methylene Chloride	12.	U
67-64-1Acetone	12.	σ
75-15-0Carbon Disulfide	12.	U
75-35-41,1-Dichloroethene	12.	U
75-34-31,1-Dichloroethane	12.	Ū
156-60-51,2-Dichloroethene-trans	12.	U
67-66-3Chloroform	12.	U
107-06-21,2-Dichloroethane	12.	U
78-93-32-Butanone	12.	U
71-55-61,1,1-Trichloroethane	12.	U
56-23-5Carbon Tetrachloride	12.	U
75-27-4Bromodichloromethane	12.	U
78-87-51,2-Dichloropropane	12.	U
10061-01-5cis-1,3-Dichloropropene		
79-01-6Trichloroethene	12.	U U
124-48-1Dibromochloromethane	12.	_
	12.	U
79-00-51,1,2-Trichloroethane	12.	U
71-43-2Benzene	12.	υ
10061-02-6trans-1, 3-Dichloropropene	12.	U
75-25-2Bromoform	12.	U
108-10-14-Methyl-2-Pentanone	12.	υ
591-78-62-Hexanone	12.	υ
127-18-4Tetrachloroethene	12.	U
79-34-51,1,2,2-Tetrachloroethane	12.	U
108-88-3Toluene	12.	U
108-90-7Chlorobenzene	12.	υ
100-41-4Ethylbenzene	12.	U
100-42-5Styrene	12.	υ
1330-20-7Xylenes (total)	12.	U
156-59-21, 2-Dichloroethene-cis	12.	U
		–
		L

-	VOLA	1E ATILE ORGANICS ANAL ENTATIVELY IDENTIFI	YSIS DATA	SHEET	1	EPA SAMP	LE NO.
*	Lab Name: AES, Inc		Contract:			BBL1 (8	-10
-	Lab Code: AES	Case No.: BBL950	1 SAS NO.:		SDG	No.: BBL1	(4
	Matrix: (soil/wate	er) SOIL		Lab Sample	e ID:	BBL1 (8-1	0)
-	Sample wt/vol:	5.000 (g/mL) G		Lab File :	ID: D	2861	
	Level: (low/med)	LOW	3	Date Rece:	ived:	09/27/95	
-	% Moisture: not de	C. 18.	1	Date Analy	/zed:	10/03/95	
• :	GC Column: RTX502.	2 ID: .25 (mm)	1	Dilution I	Facto	r: 1.0	
	Soil Extract Volum	ne: (uL)	:	Soil Aliq	10t V	olume:	(uL)
-	Number TICs found	1: 0		TRATION UN Or ug/Kg)			
-4	CAS NUMBER	COMPOUND N	AME	RT		T. CONC.	Q
49	1						
	3						
48	· · · · · · · · · · · · · · · · · · ·						
	7						
4 1	9						
	12						
• • •	14						
-	16						
55	17						
₿ •	18		<u></u>				
	20						
	21					······································	
-	22					<u></u>	
	24.					······	
-	25						
	26 27						
	28						
-	29.						
	30						
							· · · · ·

1A

COMPOUND

VOLATILE ORGANICS ANALYSIS DATA SHEET

•		
	Lab Name: AES, Inc. Contract	:
•	Lab Code: AES Case No.: BBL9501 SAS No.	: SDG No.: BBL1(4
	Matrix: (soil/water) SOIL	Lab Sample ID: BBL1(16-16.4)
-	Sample wt/vol: 5.000 (g/mL) G	Lab File ID: D2846
	Level: (low/med) LOW	Date Received: 09/27/95
	% Moisture: not dec. 10.	Date Analyzed: 10/02/95
A	GC Column: RTX502.2 ID: .25 (mm)	Dilution Factor: 1.0
	Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL

CAS NO.

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

EPA SAMPLE NO.

74-87-3Chloromethane 11. U 74-83-9Bromomethane 11. U 75-01-4Vinyl Chloride 11. U 75-00-3Chloroethane 11. U 75-09-2Methylene Chloride 11. U 07-64-1Acetone 11. U 75-15-0Carbon Disulfide 11. U 07-35-41,1-Dichloroethane 11. U 156-60-51,2-Dichloroethane 11. U 167-66-3Chloroform 11. U 107-06-2
74-83-9Bromomethane 11. U 75-01-4Vinyl Chloride 11. U 75-00-3Chloroethane 11. U 75-09-2Methylene Chloride 11. U 067-64-1Acetone 11. U 75-35-4Carbon Disulfide 11. U 75-35-41,1-Dichloroethane 11. U 75-60-51,2-Dichloroethane 11. U 156-60-51,2-Dichloroethane 11. U 107-06-21,2-Dichloroethane 11. U 107-06-21,2-Dichloroethane 11. U 107-06-21,2-Dichloroethane 11. U 11. U 11. U 11.
75-01-4Vinyl Chloride 11. U 75-00-3Chloroethane 11. U 75-09-2Methylene Chloride 11. U 07-64-1Acetone 11. U 07-64-1Acetone 11. U 07-54-3Carbon Disulfide 11. U 07-64-1Acetone 11. U 07-64-1Acetone 11. U 07-64-1Acetone 11. U 07-64-1Acetone 11. U 07-64-1
75-00-3Chloroethane 11. U 75-09-2Methylene Chloride 11. U 67-64-1Acetone 11. U 75-15-0Carbon Disulfide 11. U 75-34-31,1-Dichloroethene 11. U 75-66-3Carbon Disulfide 11. U 15-66-51,1-Dichloroethane 11. U 067-66-3Chloroethane 11. U 107-06-21,2-Dichloroethane 11. U 107-06-21,2-Dichloroethane 11. U 75-35-6
75-09-2Methylene Chloride 11. U 67-64-1Acetone 11. U 75-15-0Carbon Disulfide 11. U 75-35-41,1-Dichloroethene 11. U 75-34-31,1-Dichloroethene 11. U 75-60-51,2-Dichloroethene-trans 11. U 156-60-51,2-Dichloroethene-trans 11. U 07-06-21,2-Dichloroethane 11. U 107-06-21,2-Dichloroethane 11. U 75-35-61,1.1-Trichloroethane 11. U 75-27-4Bromodichloromethane 11. U 75-27-4Bromodichloromethane 11. U 10061-01-51,2-Dichloropropane 11. U 10061-01-5
67-64-1Acetone 11. U 75-15-0Carbon Disulfide 11. U 75-35-41,1-Dichloroethene 11. U 75-34-31,1-Dichloroethene 11. U 156-60-51,2-Dichloroethene-trans 11. U 167-66-3Chloroform 11. U 107-06-21,2-Dichloroethane 11. U 107-56-3Chloroform 11. U 107-56-61,1,1-Trichloroethane 11. U 75-27-4Bromodichloromethane 11. U 75-27-4Bromodichloromethane 11. U 10061-01-5
75-15-0Carbon Disulfide 11. U 75-35-41,1-Dichloroethene 11. U 75-34-31,1-Dichloroethane 11. U 156-60-51,2-Dichloroethene-trans 11. U 107-06-21,2-Dichloroethane 11. U 107-06-21,2-Dichloroethane 11. U 107-06-21,2-Dichloroethane 11. U 107-06-21,1,1-Trichloroethane 11. U 75-23-5Carbon Tetrachloride 11. U 75-27-4Bromodichloromethane 11. U 78-87-51,2-Dichloropropane 11. U 79-01-6Trichloroethene 11. U 10061-01-5Cis-1,3-Dichloropropene 11. U 79-00-51,1,2-Trichloroethane 11. U 71-43-2Benzene 11. U 10061-02-6
75-35-41,1-Dichloroethene 11. U 75-34-31,1-Dichloroethane 11. U 156-60-51,2-Dichloroethene-trans 11. U 67-66-3Chloroform 11. U 107-06-21,2-Dichloroethane 11. U 78-93-32-Butanone 11. U 71-55-61,1,1-Trichloroethane 11. U 75-27-4Bromodichloromethane 11. U 78-87-5Carbon Tetrachloride 11. U 78-87-5Carbon Tetrachloropropane 11. U 10061-01-5Cis-1,3-Dichloropropane 11. U 10061-01-5Cis-1,1,2-Trichloroethane 11. U 79-00-51,1,2-Trichloroethane 11. U 71-43-2Benzene 11. U 10061-02-6
75-34-31, 1-Dichloroethane 11. U 156-60-51, 2-Dichloroethene-trans 11. U 67-66-3Chloroform 11. U 107-06-21, 2-Dichloroethane 11. U 78-93-32-Butanone 11. U 71-55-61, 1, 1-Trichloroethane 11. U 75-27-4Bromodichloromethane 11. U 78-87-51, 2-Dichloropropane 11. U 78-87-51, 2-Dichloropropane 11. U 10061-01-5Cis-1, 3-Dichloropropane 11. U 10061-01-5Trichloroethane 11. U 79-00-51, 1, 2-Trichloroethane 11. U 71-43-2Benzene 11. U 10061-02-6
156-60-51,2-Dichloroethene-trans 11. U 67-66-3Chloroform 11. U 107-06-21,2-Dichloroethane 11. U 78-93-32-Butanone 11. U 71-55-61,1,1-Trichloroethane 11. U 56-23-5Carbon Tetrachloride 11. U 75-27-4Bromodichloromethane 11. U 78-87-51,2-Dichloropropane 11. U 10061-01-5Cis-1,3-Dichloropropane 11. U 10061-01-5Trichloroethane 11. U 79-01-6Trichloroethane 11. U 124-48-1Dibromochloromethane 11. U 79-00-51,1,2-Trichloroethane 11. U 71-43-2Benzene 11. U 10061-02-6
67-66-3Chloroform 11. U 107-06-21,2-Dichloroethane 11. U 78-93-32-Butanone 11. U 71-55-61,1,1-Trichloroethane 11. U 56-23-5Carbon Tetrachloride 11. U 75-27-4Bromodichloromethane 11. U 78-87-51,2-Dichloropropane 11. U 10061-01-5cis-1,3-Dichloropropane 11. U 10061-01-5cis-1,3-Dichloropropane 11. U 124-48-1Dibromochloromethane 11. U 79-00-51,1,2-Trichloroethane 11. U 71-43-2Benzene 11. U 10061-02-6trans-1,3-Dichloropropene 11. U 108-10-14-Methyl-2-Pentanone 11. U
107-06-21,2-Dichloroethane 11. U 78-93-32-Butanone 11. U 71-55-61,1,1-Trichloroethane 11. U 56-23-5Carbon Tetrachloride 11. U 75-27-4Bromodichloromethane 11. U 78-87-51,2-Dichloropropane 11. U 10061-01-5cis-1,3-Dichloropropane 11. U 10061-01-5Trichloroethane 11. U 79-01-6Trichloroethane 11. U 124-48-1Dibromochloromethane 11. U 124-48-1Benzene 11. U 10061-02-6trans-1,3-Dichloropropene 11. U 10061-02-6trans-1,3-Dichloropropene 11. U 10061-02-6trans-1,3-Dichloropropene 11. U 108-10-14-Methyl-2-Pentanone 11. U
78-93-32-Butanone 11. U 71-55-61,1,1-Trichloroethane 11. U 56-23-5Carbon Tetrachloride 11. U 75-27-4Bromodichloromethane 11. U 78-87-51,2-Dichloropropane 11. U 10061-01-5cis-1,3-Dichloropropene 11. U 10061-01-5cis-1,3-Dichloropropene 11. U 124-48-1Dibromochloromethane 11. U 124-48-1Dibromochloromethane 11. U 79-00-51,1,2-Trichloroethane 11. U 71-43-2Benzene 11. U 10061-02-6trans-1,3-Dichloropropene 11. U 108-10-14-Methyl-2-Pentanone 11. U
71-55-61,1,1-Trichloroethane 11. U 56-23-5Carbon Tetrachloride 11. U 75-27-4Bromodichloromethane 11. U 78-87-51,2-Dichloropropane 11. U 10061-01-5cis-1,3-Dichloropropene 11. U 10061-01-5cis-1,3-Dichloropropene 11. U 124-48-1Dibromochloromethane 11. U 124-48-1Dibromochloromethane 11. U 79-00-51,1,2-Trichloroethane 11. U 71-43-2Benzene 11. U 10061-02-6trans-1,3-Dichloropropene 11. U 108-10-14-Methyl-2-Pentanone 11. U
56-23-5Carbon Tetrachloride 11. U 75-27-4Bromodichloromethane 11. U 78-87-51,2-Dichloropropane 11. U 10061-01-5cis-1,3-Dichloropropene 11. U 10061-01-5cis-1,3-Dichloropropene 11. U 124-48-1Dibromochloromethane 11. U 124-48-1Dibromochloromethane 11. U 79-00-51,1,2-Trichloroethane 11. U 71-43-2Benzene 11. U 10061-02-6trans-1,3-Dichloropropene 11. U 75-25-2Bromoform 11. U 108-10-14-Methyl-2-Pentanone 11. U
75-27-4Bromodichloromethane 11. U 78-87-51,2-Dichloropropane 11. U 10061-01-5cis-1,3-Dichloropropene 11. U 79-01-6Trichloroethene 11. U 124-48-1Dibromochloromethane 11. U 79-00-51,1,2-Trichloroethane 11. U 71-43-2Benzene 11. U 10061-02-6trans-1,3-Dichloropropene 11. U 75-25-2Bromoform 11. U 108-10-14-Methyl-2-Pentanone 11. U
78-87-51,2-Dichloropropane 11. U 10061-01-5cis-1,3-Dichloropropene 11. U 79-01-6Trichloroethene 11. U 124-48-1Dibromochloromethane 11. U 79-00-51,1,2-Trichloroethane 11. U 71-43-2Benzene 11. U 10061-02-6trans-1,3-Dichloropropene 11. U 75-25-2Bromoform 11. U 108-10-14-Methyl-2-Pentanone 11. U
10061-01-5cis-1,3-Dichloropropene 11. U 79-01-6Trichloroethene 11. U 124-48-1Dibromochloromethane 11. U 79-00-51,1,2-Trichloroethane 11. U 71-43-2Benzene 11. U 10061-02-6trans-1,3-Dichloropropene 11. U 75-25-2Bromoform 11. U 108-10-14-Methyl-2-Pentanone 11. U
79-01-6Trichloroethene 11. U 124-48-1Dibromochloromethane 11. U 79-00-51,1,2-Trichloroethane 11. U 71-43-2Benzene 11. U 10061-02-6trans-1,3-Dichloropropene 11. U 108-10-1Benzene 11. U 108-10-1Benzene 11. U 108-10-1Benzene 11. U
124-48-1Dibromochloromethane 11. U 79-00-51,1,2-Trichloroethane 11. U 71-43-2Benzene 11. U 10061-02-6trans-1,3-Dichloropropene 11. U 108-10-1Benzene 11. U 108-10-1Benzene 11. U 108-10-1Benzene 11. U
79-00-51,1,2-Trichloroethane 11. U 71-43-2Benzene 11. U 10061-02-6trans-1,3-Dichloropropene 11. U 75-25-2Bromoform 11. U 108-10-14-Methyl-2-Pentanone 11. U
71-43-2Benzene 11. U 10061-02-6trans-1,3-Dichloropropene 11. U 75-25-2Bromoform 11. U 108-10-14-Methyl-2-Pentanone 11. U
10061-02-6trans-1,3-Dichloropropene 11. U 75-25-2Bromoform 11. U 108-10-14-Methyl-2-Pentanone 11. U
75-25-2Bromoform 11. U 108-10-14-Methyl-2-Pentanone 11. U
108-10-14-Methyl-2-Pentanone 11. U
591-78-62-Hexanone11. U
127-18-4Tetrachloroethene 11. U
79-34-51,1,2,2-Tetrachloroethane 11. U
108-88-3Toluene 1. J
108-90-7Chlorobenzene 11. U
100-41-4Ethylbenzene11. U
100-42-5Styrene 11 II
1330-20-7Xylenes (total) 11. U
156-59-21,2-Dichloroethene-cis11. U

	VOLATILE ORGANICS ANALYSIS DATA SHEET	EPA SAMPLE NO.
-	TENTATIVELY IDENTIFIED COMPOUNDS	BBL1 (16-11.4
	Lab Code: AES Case No.: BBL9501 SAS No.: SDG	NO.: BBL1(4
	Matrix: (soil/water) SOIL Lab Sample ID	: BBL1(16-16.4)
	Sample wt/vol: 5.000 (g/mL) G Lab File ID: 1	02846
•	Level: (low/med) LOW Date Received	: 09/27/95
-	% Moisture: not dec. 10. Date Analyzed	: 10/02/95
-	GC Column: RTX502.2 ID: .25 (mm) Dilution Factor	or: 1.0
	Soil Extract Volume: (uL) Soil Aliquot V	Volume: (uL)
-	Number TICs found: 0 CONCENTRATION UNITS (ug/L or ug/Kg) UG/1	
		ST. CONC. Q
; ••••	14.	
	18.	
² ann	22.	
-	25.	
	29	

-	1A Volatile organics analysis da	TA SHEET	EPA SAMPLE NO.
	Lab Name: AES, Inc. Contra	Ct:	BBL1 (22-%4
-	Lab Code: AES Case No.: BBL9501 SAS No.	O.: SDG	NO.: BBL1(4
	Matrix: (soil/water) SOIL	Lab Sample ID:	BBL1(22-24)
-	Sample wt/vol: 5.000 (g/mL) G	Lab File ID: I	
-	Level: (low/med) LOW	Date Received:	
	<pre>% Moisture: not dec. 8.</pre>	Date Analyzed:	
	GC Column: RTX502.2 ID: .25 (mm)	Dilution Facto	
	Soil Extract Volume: (uL)		Olume: (uL)
-			
		CENTRATION UNITS: /L or ug/Kg) UG/K	
• • :	74-87-3Chloromethane		
	74-83-9Bromomethane		11. U 11. U
-	75-01-4Vinyl Chloride		11. U
	75-00-3Chloroethane 75-09-2Methylene Chloride		11. U
	67-64-1Acetone		11. U 11. U
-	75-15-0Carbon Disulfide		11. U 11. U
÷	75-35-41, 1-Dichloroethene		11. U
_	75-34-31,1-Dichloroethane		11. U
•	156-60-51,2-Dichloroethene-tr 67-66-3Chloroform		11. U
	107-06-21,2-Dichloroethane		
-	78-93-32-Butanone		11. U 11. U
	71-55-61,1,1-Trichloroethane		11. U
-9	56-23-5Carbon Tetrachloride		11. U
-	75-27-4Bromodichloromethane 78-87-51,2-Dichloropropane		11. U
	10061-01-5cis-1,3-Dichloroprope	70	11. U 11. U
÷	/ /9-01-6Trichloroethene		
•	124-48-1Dibromochloromethane		11. U
	79-00-51,1,2-Trichloroethane 71-43-2Benzene		11. U
•	10061-02-6trans-1,3-Dichloropro		L1. U
-	75-25-2Bromoform		L1. U
	108-10-14-Methvl-2-Pentanone	* 1	
_	591-78-62-Hexanone —		1. U
	127-18-4Tetrachloroethene		L1. U
	79-34-51,1,2,2-Tetrachloroet	nane 1	
-	108-90-7Chlorobenzene		2. J 1. U
	100-41-4Ethylbenzene		1. U
	100-42-5Styrene		1. U
	1330-20-7Xylenes (total)		.1. U
•	156-59-21,2-Dichloroethene-cis	5 1 1	.1. U

•		1E ATILE ORGANICS A			EPA SAMP	LE NO.	
•	The second se	ENTATIVELY IDENT C.	IFIED COMPOUN Contract:	DS	BBL1 (2:	2-24	
	Lab Code: AES	Case No.: BBL	9501 SAS No.:		SDG No.: BBL1	(4	
	Matrix: (soil/wate	er) SOIL	:	Lab Sample	ID: BBL1(22-	24)	
•	Sample wt/vol:	5.000 (g/mL)	G	Lab File I	D: D2847		
	Level: (low/med)) LOW	1	Date Recei	.ved: 09/27/95		
•	% Moisture: not de	ec. 8.	1	Date Analy	rzed: 10/02/95		
	GC Column: RTX502	.2 ID: .25 (m	m)	Dilution F	actor: 1.0		
•	Soil Extract Volum	ne: (uL)	:	Soil Aliqu	iot Volume:	(uL)	
•	Number TICs found	1: 1		TRATION UN or ug/Kg)			
-	CAS NUMBER	COMPOUN	D NAME	RT	EST. CONC.	Q	
-		UNKNOWN SILOXAN	======================================	21.68	10.	J	

			41.00	±v.	U U
	2.				
-		·			
	3.				
	· · · · · · · · · · · · · · · · · · ·				
	5.				
	6				
	7				
	/ ·				
	8.				
	9.				
ب ا					
	10				
	12.				
	13				
	14.				
	15.				
-	16.				
	17				
	10				
	18				
	19				
<₽					
	20				
	21				
	22.			•	
•	23				
	4J				
	24	•			
	25.				
		· · · · · · · · · · · · · · · · · · ·			
-	26				
1				- <u></u>	
	27				
	28				
_	29.				
	30.				
	JV				
	1				
	······				

	1A VOLATILE ORGANICS ANALY	SIS DATA SHEET	EPA SAMPLE NO.
~	Lab Name: AES, Inc.	Contract:	BBL2 (8-10
	Lab Code: AES Case No.: BBL9501		NO.: BBL1 (4
_	Matrix: (soil/water) SOIL	Lab Sample ID	
	Sample wt/vol: 5.000 (g/mL) G	Lab File ID: 1	02877
4 94	Level: (low/med) LOW	Date Received	: 09/27/95
	% Moisture: not dec. 19.	Date Analyzed	: 10/04/95
-	GC Column: RTX502.2 ID: .25 (mm)	Dilution Facto	or: 1.0
	Soil Extract Volume: (uL)	Soil Aliquot	Volume: (uL)
	CAS NO. COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg) UG/H	
45 	74-87-3Chloromethane 74-83-9Bromomethane 75-01-4Vinyl Chloride 75-00-3Chloroethane		12. U 12. U 12. U 12. U 12. U
•	75-09-2Methylene Chlo 67-64-1Acetone 75-15-0Carbon Disulfi 75-35-41,1-Dichloroet 75-34-31,1-Dichloroet	de	7. J 12. U 12. U 12. U 12. U
~¥	156-60-51,2-Dichloroet 67-66-3Chloroform 107-06-21,2-Dichloroet 78-93-32-Butanone	hene-trans	12. U 12. U 12. U 12. U 12. U 12. U
÷	71-55-61,1,1-Trichlor 56-23-5Carbon Tetrach 75-27-4Bromodichlorom	loride	3. J 12. U 12. H

	/8-93-32-Butanone	12. U	ł
	71-55-61,1,1-Trichloroethane	3. J	
	56-23-5Carbon Tetrachloride	12. U	
	75-27-4Bromodichloromethane	12. U	
	78-87-51,2-Dichloropropane	12. U	
	10061-01-5cis-1,3-Dichloropropene	12. U	
	79-01-6Trichloroethene	12. U	
	124-48-1Dibromochloromethane	12. U	
	79-00-51, 1, 2-Trichloroethane	12. U	
	71-43-2Benzene	12. U	
	10061-02-6trans-1, 3-Dichloropropene	12. U	
	75-25-2Bromoform	12. U	
	108-10-14-Methyl-2-Pentanone	12. U	
	591-78-62-Hexanone	12. U	
	127-18-4Tetrachloroethene	12. U	
	79-34-51,1,2,2-Tetrachloroethane	12. U	
	108-88-3Toluene	12. U	
	108-90-7Chlorobenzene	12. U	
	100-41-4Ethylbenzene	12. U	
1	100-42-5Styrene	12. U	
	1330-20-7Xylenes (total)	12. U	
	156-59-21,2-Dichloroethene-cis	12. U	

		18	5		
VOLATILE	ORGAN	IICS	ANALYSI	S DATA	SHEET
TENTATI	VELY	IDEN	TIFIED	COMPOU	NDS

Lab Name: AES, Inc. Contract:

Lab Code: AES Case No.: BBL9501 SAS No.: SDG No.: BBL1(4 Matrix: (soil/water) SOIL

Sample wt/vol: 5.000 (g/mL) G Level: (low/med) LOW

% Moisture: not dec. 19. GC Column: RTX502.2 ID: .25 (mm)

Soil Extract Volume: _____ (uL)

Date Analyzed: 10/04/95 Soil Aliquot Volume: ____ (uL)

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

RT CAS NUMBER COMPOUND NAME EST. CONC. Q 32333 1._ 2.____ 3.__ 4.____ 5.___ б.____ 7.____ 8.____ 9.____ 10.____ 11.____ 12.____ 13.____ 14.____ 15.____ 16.____ 17.____ 18.____ 19.____ 20.____ 21.____ 22.___ 23.___ 24.____ 25.____ 26. 27.____ 28.____ 29.____ 30.____

EPA SAMPLE NO.

BBL2(8-1

Lab Sample ID: BBL2(8-10)

Lab File ID: D2877

Date Received: 09/27/95

Dilution Factor: 1.0

	1A VOLATILE ORGANICS ANALYSIS DAT	TA SHEET	
M	Lab Name: AES, Inc. Contrac	BBL2(14-16	
ł	Lab Code: AES Case No.: BBL9501 SAS No	O.: SDG NO.: BBL1(4	
	Matrix: (soil/water) SOIL	Lab Sample ID: BBL2(14-16)	
	Sample wt/vol: 5.000 (g/mL) G	Lab File ID: D2878	
H	Level: (low/med) LOW	Date Received: 09/27/95	
	% Moisture: not dec. 12.	Date Analyzed: 10/04/95	
14	GC Column: RTX502.2 ID: .25 (mm)	Dilution Factor: 1.0	
	Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)	
	CAS NO. COMPOUND (ug/	CENTRATION UNITS: /L or ug/kg) UG/kg Q	
H.	74-87-3Chloromethane 74-83-9Bromomethane 75-01-4Vinyl Chloride 75-00-3Chloroethane 75-09-2Methylene Chloride	11 17	

/s-ou-sChioroethane	11.	lπ
75-09-2Methylene Chloride	8.	J
67-64-1Acetone	25.	в
75-15-0Carbon Disulfide	11.	Ū
75-35-41, 1-Dichloroethene	11.	U
75-34-31.1-Dichloroethane	11.	U
156-60-51.2-Dichloroethene-trans	11.	Ū
/ 6/-66-3Chloroform	11.	U
107-06-21,2-Dichloroethane	11.	U
/8-93-32-Butanone	11.	U
71-55-61, 1, 1-Trichloroethane	11.	U
56-23-5Carbon Tetrachloride	11.	UU
/5-2/-4Bromodichloromethane	11.	U
78-87-51 2-Dichloropropago	11.	Ū
10061-01-5Cis-1.3-Dichloropropere	11.	UU
/y-vi-bTrichloroethene	11.	UU
124-48-1Dibromochloromethane	11.	υ
79-00-51,1,2-Trichloroethane	11.	ŭ
/Benzene	11.	U
10061-02-6trans-1. 3-Dichloropropene	11.	U
/5-25-2Bromoform	11.	U
108-10-14-Methyl-2-Pentanone	11.	Ŭ
591-/8-62-Hexanone	11.	U
127-18-4Tetrachloroethere	11.	υ
79-34-51, 1, 2, 2-Tetrachloroethane	11.	υ
Lug-88-3Toluene	11.	
108-90-7Chlorobenzene		υ Π
100-41-4Ethylbenzene	11.	-
100-42-5Styrene	11.	U
1330-20-7Xylenes (total)	11.	U
156-59-21, 2-Dichloroethene-cis	11.	U
	11.	σ

-	VOI	1E LATILE ORGANICS ANALYSI TENTATIVELY IDENTIFIED		EPA SAMPLE NO.
	Lab Name: AES, Ir		entract:	BBL2(14-16
-		Case No.: BBL9501 S	AS NO.: SDG	NO.: BBL1(4
	Matrix: (soil/wat		Lab Sample ID	: BBL2(14-16)
		5.000 (g/mL) G	Lab File ID:	D2878
	Level: (low/med		Date Received	: 09/27/95
-	% Moisture: not d		Date Analyzed	: 10/04/95
		.2 ID: .25 (mm)	Dilution Facto	or: 1.0
	Soil Extract Volu	me: (uL)	Soil Aliquot	Volume: (uL)
-	Number TICs foun	d: 0	CONCENTRATION UNITS (ug/L or ug/Kg) UG/H	G
-	CAS NUMBER	COMPOUND NAME		T. CONC. Q
-4	2			
-	5			
	1.			
•	8 9 10			

14.____ 15.____ 16.____ 17.___

17. 18. 19. 20. 21. 22. 23. 24. 25.

25.

26. 27. 28.

29. 30.

۱.

-

•

3/90

EPA SAMPLE NO.

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

BBL3 (8-10 Lab Name: AES, Inc. Contract: Lab Code: AES Case No.: BBL9501 SAS No.: SDG NO.: BBL1(4 Matrix: (soil/water) SOIL Lab Sample ID: BBL3(8-10) Sample wt/vol: 5.000 (g/mL) G Lab File ID: D2848 Level: (low/med) LOW Date Received: 09/27/95 % Moisture: not dec. 23. Date Analyzed: 10/02/95 GC Column: RTX502.2 ID: .25 (mm) Dilution Factor: 1.0 Soil Extract Volume: _____ (uL) Soil Aliquot Volume: ____ (uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG 0

74-87-3-----Chloromethane _ _____ 13. U 74-83-9----Bromomethane 13. U 75-01-4-----Vinyl Chloride____ 13. U 75-00-3-----Chloroethane_ 13. Ū 75-09-2----Methylene Chloride_____ 13. U 67-64-1----Acetone 13. σ 75-15-0-----Carbon Disulfide 13. σ 75-35-4----1,1-Dichloroethene 13. U 75-34-3-----1,1-Dichloroethane_ 13. Ū 156-60-5-----1,2-Dichloroethene-trans____ 13. Ū 67-66-3----Chloroform 13. U 107-06-2----1,2-Dichloroethane____ 13. U 78-93-3----2-Butanone 13. U 71-55-6----1,1,1-Trichloroethane 13. Ū 56-23-5-----Carbon Tetrachloride_ 13. U 75-27-4----Bromodichloromethane 13. Ū 78-87-5----1,2-Dichloropropane 13. U 10061-01-5----cis-1,3-Dichloropropene 13. U 79-01-6----Trichloroethene 13. υ 124-48-1----Dibromochloromethane 13. U 79-00-5----1,1,2-Trichloroethane 13. U 71-43-2----Benzene 13. U 10061-02-6----trans-1, 3-Dichloropropene 13. U 75-25-2----Bromoform 13. U 108-10-1----4-Methyl-2-Pentanone_____ 13. U 591-78-6----2-Hexanone 13. U 127-18-4----Tetrachloroethene 13. U 79-34-5----1,1,2,2-Tetrachloroethane U 13. 108-88-3----Toluene 13. U 108-90-7----Chlorobenzene 13. U 100-41-4----Ethylbenzene____ 13. U 100-42-5----Styrene 13. U 1330-20-7-----Xylenes (total) 13. Ū 156-59-2----1,2-Dichloroethene-cis___ 13. Π

-	VOL	1E ATILE ORGANICS ANAI ENTATIVELY IDENTIFI	YSIS DATA SHEET	EPA SAMPLE NO.
		с.		BBL3 (8-10
-	Lab Code: AES	Case No.: BBL950	1 SAS No.:	SDG NO.: BBL1 (4
	Matrix: (soil/wat			ole ID: BBL3(8-10)
-	Sample wt/vol:	5.000 (g/mL) G	-	ID: D2848
	Level: (low/med) LOW		eived: 09/27/95
-	% Moisture: not d	ec. 23.		lyzed: 10/02/95
	GC Column: RTX502	.2 ID: .25 (mm)		Factor: 1.0
4	Soil Extract Volum	me: (uL)		quot Volume: (uL)
•		•	CONCENTRATION	
	Number TICs found		(ug/L or ug/Kg) UG/KG
-	CAS NUMBER	COMPOUND N		EST. CONC. Q
_	***************************************			***************************************
-	5			
	7			
•	9			
	11			
-	12			
	14			
	16 17			
4 2 4	18 19			
1	20			
-	22			•
	24			·
-	26 27			
-	28			
	30			
	I I _		I	

	VOLA	1A TILE ORGANICS ANALYS	IS DATA SHEET	EPA SAMPLE NO.
-	Lab Name: AES, Inc	. с	Ontract:	BBL3 (12-14
•	Lab Code: AES	Case No.: BBL9501	SAS NO.: S	DG NO.: BRI.1 (4
	Matrix: (soil/water	r) SOIL		ID: BBL3(12-14)
I	Sample wt/vol:	5.000 (g/mL) G	Lab File ID	
	Level: (low/med)		Date Receive	
	% Moisture: not dec	. 17.		
	GC Column: RTX502.2		Date Analyze	
		:: (uL)	Dilution Fac	
				Volume: (uL)
	CAS NO.	COMPOUND	CONCENTRATION UNIT (ug/L or ug/Kg) UG	CS: S/KG Q
	74-63-9 75-01-4 75-00-3 75-09-2 67-64-1 75-35-4 75-35-4 75-34-3 156-60-5 67-66-3 107-06-2 78-93-3 71-55-6 56-23-5	Chloromethane Bromomethane Vinyl Chloride Chloroethane Acetone Carbon Disulfide 1,1-Dichloroethe 1,1-Dichloroethe 1,2-Dichloroethe Chloroform 	de	12. U 12. U

	IOV T	1E LATILE ORGANICS ANALYSIS TENTATIVELY IDENTIFIED CO	DATA SHEET	EPA SAMPLE NO
-88	Lab Name: AES, In	c. Cont	ract:	BBL3 (12-12
-	Lab Code: AES	Case No.: BBL9501 SAS	NO.: SDG	NO.: BBL1(4
	Matrix: (soil/wat	er) SOIL	Lab Sample ID	
-	Sample wt/vol:	5.000 (g/mL) G	Lab File ID:	
	Level: (low/med) LOW	Date Received	
-	% Moisture: not d	ec. 17.	Date Analyzed	
_	GC Column: RTX502	.2 ID: .25 (mm)	Dilution Fact	
-	Soil Extract Volu			
-			ONCENTRATION UNITS	Volume: (u
	Number TICs found	d: 0 (1	ug/L or ug/Kg) UG/1	: KG
	CAS NUMBER .	COMPOUND NAME	RT ES	
	***************************************			ST. CONC. Q
•	2			
	4			
•	6			
,	8		·····	
	10			
	12			
	13			
	15 16			
	17			
	19 20			
	40.			
	21			
	21. 22. 23.			
	21. 22. 23. 24. 25.			
	21. 22. 23. 24. 25. 26. 27.			
	21. 22. 23. 24. 25. 26.			

-

-

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. . —

BBL3 (22-34

Lab Name: AES, Inc			Contract	::	BBL3 (22- <i>3</i>
Lab Code: AES	Case No	D.: BBL9	501 SAS NO.	: SDG	No.: BBL1(4
 Matrix: (soil/wate	r) SOIL			Lab Sample ID:	: BBL3(22-24)
Sample wt/vol:	5.000	(g/mL)	G	Lab File ID: 1	02850
Level: (low/med)	LOW			Date Beester 1	/

Date Received: 09/27/95

Date Analyzed: 10/02/95

Dilution Factor: 1.0

Soil Aliquot Volume: ____ (uL)

CAS NO.

* Moisture: not dec. 10.

GC Column: RTX502.2 ID: .25 (mm)

Soil Extract Volume: _____ (uL)

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

- 1			
	74-87-3Chloromethane		
1	74-83-9Bromomethano	11.	U
	/5-01-4Vinvl Chloride	11.	U
	/J-UU-JChloroethane	11.	U
	75-09-2Methylene Chloride	11.	υ
	5/-54-1Acetone	11.	σ
	75-15-0Carbon Disulfide	11.	σ
	75-35-41,1-Dichloroethene	11.	U
	75-34-31,1-Dichloroethane	11.	U
	156-60-51,2-Dichloroethene-trans	11.	U
	67-66-3Chloroform	11.	υ
	107-06-2 1 0 Di in	11.	U
	107-06-21,2-Dichloroethane	11.	U
	/0-93-32-Butanone	11.	U
	71-55-61,1,1-Trichloroethane	11.	υ
	JO-41-5Carbon Tetrachlonide	11.	U
	/J-4/-4Bromodichloromorhana	11.	U
		11.	U
	10001-01-5Cls-1, 3-Dichloropropono	11.	υ
		11.	υ
	124-48-1Dibromochloromethana	11.	U U
	/9-00-51, 1, 2-Trichloroethan		U U
	/ 4 ~ 3 J ~ 2	11.	
	10061-02-6trans-1 3-Dickloroproper	. 11.	σ
	/3=43=4======Bromoform	11.	U
	108-10-14-Methyl-2-Pentanone	11.	υ
1	591-78-62-Hexanone	11.	υ
	127-18-4Tetrachloroethene	11.	υ
		11.	υ
	79-34-51,1,2,2-Tetrachloroethane	11.	U
	108-90-7Chlorobenzene	6.	J
		11.	υ
	100-41-4Ethylbenzene	11.	υ
		11.	υ
	1330-20-7Xylenes (total)	11.	υ
	156-59-21,2-Dichloroethene-cis	11.	υ
-			Ŭ
			I I I

•	1E VOLATILE ORGANICS ANALYSIS DATA TENTATIVELY IDENTIFIED COMPOU	SHEET
'	Lab Name: AES, Inc. Contract	BBL3 (22-54
•	Lab Code: AES Case No.: BBL9501 SAS No.	: SDG No.: BBL1(4
	Matrix: (soil/water) SOIL	Lab Sample ID: BBL3(22-24)
1	Sample wt/vol: 5.000 (g/mL) G	Lab File ID: D2850
	Level: (low/med) LOW	Date Received: 09/27/95
	* Moisture: not dec. 10.	Date Analyzed: 10/02/95
	GC Column: RTX502.2 ID: .25 (mm)	Dilution Factor: 1.0
	Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
		NTRATION UNITS: or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	
1	UNKNOWN SILOXANE	21.68		
2		41.00	10.	J
د				
*				
5				
6				
7				
9				_
LV.				
±4.				
13.				
16				
= / ·				
18				
19 20				
44.				
44.		<u> </u>		
40.				
29			······	

-	1A VOLATILE ORGANICS ANALYSI	EPA SAMPLE NO.	
	Lab Name: AES, Inc. Co	Ontract: BBL4 (12-14)	
	Lab Code: AES Case No.: BBL9501 S	SAS NO.: SDG NO.: BBL1(4	
	Matrix: (soil/water) SOIL	Lab Sample ID: BBL4(12-14)	
	Sample wt/vol: 2.000 (g/mL) G	Lab File ID: D2912	
-	Level: (low/med) LOW	Date Received: 09/29/95	
	<pre>% Moisture: not dec. 17.</pre>	Date Analyzed: 10/05/95	
	GC Column: RTX502.2 ID: .25 (mm)	Dilution Factor: 1.0	
	Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)	
-	CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q	
•	74-87-3Chloresethere		

		· · · · · · · · · · · · · · · · · · ·
74-87-3Chloromethane	20	
74-83-9Bromomethane	30.	U
75-01-4Vinvl Chloride	30.	U
/5-00-3Chloroethane	30.	U
75-09-2Methylene Chloride	30.	υ
67-64-1Acetone	30.	υ
75-15-0Carbon Disulfido	24.	J
75-35-41 1-Dichlorootho	30.	υ
75-34-31,1-Dichloroethane	30.	υ
156-60-51,2-Dichloroethene-trans	30.	υ
67-66-3Chloroform	30.	υ
107-06-21,2-Dichloroethane	30.	υ
78-93-32-Butanone	30.	υ
	30.	U
71-55-61,1,1-Trichloroethane	30.	υ
56-23-5Carbon Tetrachloride	30.	υ
75-27-4Bromodichloromethane	30.	σ
78-87-51,2-Dichloropropane	30.	υ I
10061-01-5cis-1, 3-Dichloropropene	30.	υ
	30.	U I
124-48-1Dibromochloromethane	30.	Ū
/9-00-51,1,2-Trichloroethane	30.	Ū
/1-43-4Benzene	30.	Ŭ
10061-02-6trans-1, 3-Dichloropropene		υ
/3-45-4Bromoform		Ŭ
108-10-14-Methyl-2-Pentanone		U U
271-/8-62-Hexanone		υ υ
127-18-4Tetrachloroethero	86.	<u>ا</u> ۷
79-34-51, 1, 2, 2-Tetrachloroothana		
		U I
108-90-7Chlorobenzona	1	U I
100-41-4Ethylbenzene	1	υ
100-42-3SEVTANA	79.	
1330-20-7Xylenes (total)		u
156-59-21, 2-Dichloroethene-cis	810.	
	30.	u

		- 14				
VOLATILE	OPGANT	- CC	ANTAT VOT			
	OVCIMUT	3	WATIZT	.5	DATA	SHEET
TENTATI	VELY I	DEN	TTTTTTD.	~~	MOOTO	m a
		ب المانية السادة ا			ADD ANN	ids

Lab Code: AES Case No.: BBL9501 SAS No.:

Sample wt/vol: 2.000 (g/mL) G

GC Column: RTX502.2 ID: .25 (mm)

Contract:

EPA SAMPLE NO.

BBL4(12-

SDG NO.: BBL1(4

Lab Sample ID: BBL4(12-14)

Lab File ID: D2912

Date Received: 09/29/95

Date Analyzed: 10/05/95

Dilution Factor: 1.0

Soil Extract Volume: _____ (uL) Soil Aliquot Volume: _____ (uL)

Number TICs found: 10

Lab Name: AES, Inc.

Level: (low/med) LOW

Matrix: (soil/water) SOIL

* Moisture: not dec. 17.

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NU			COMPOUND NAME	RT	EST. CONC.	Q
1.	-		UNKNOWN ALKANE			
2.	-	-	UNKNOWN ALKANE	- 12.92	5000.	J
3.	-	-	UNKNOWN ALKANE	- 13.21		J
4.	-	-	UNKNOWN ISOMER DIMETHYLCYCLO	13.95	8000.	J
5.	-	-	UNKNOWN ISOMER DIMETHILCICLO	14.69	200.	J
6.	-	-	UNKNOWN ALKANE	14.92	60.	J
7.	-	-	UNKNOWN	14.96	200.	J
8.	-	-	UNKNOWN ALKANE	15.45	90.	J
9.	-	-	UNKNOWN ALKANE	16.07	200.	J
10.	-	-	UNKNOWN ALKANE	16.83	200.	J
11			UNKNOWN	19.45	70.	J
12.		_		·		
13.						
14.				·		
15.						
16.				·		
17.						
						-
19						
21						
22	·····					
23						
24		[
25.		[
25						
JV						

-17	VOLATILE ORGANICS ANALYSIS DATA SHEET	EPA SAMPLE NO.
-	Lab Name: AES, Inc. Contract:	BBL4 (21-32-
	Lab Code: AES Case No.: BBL9501 SAS No.:	SDG NO.: BBL1(4
-	Matrix: (soil/water) SOIL Lab Sa	mple ID: BBL4(21-22)
		le ID: D2854
-	Level: (low/med) LOW Date R	eceived: 09/29/95
	* Moisture, not dog	nalyzed: 10/02/95
		on Factor: 1.0
-	Soil Extract Volume	liquot Volume: (uL)
-	CAS NO. COMPOUND CONCENTRATION (ug/L or ug/)	N UNITS: Kg) UG/KG Q

1A

74-87-3Chloromethane 74-83-9Bromomethane 75-01-4Vinyl Chloride 75-00-3Chloroethane 75-09-2Methylene Chloride 67-64-1Acetone 75-15-0Carbon Disulfide 75-35-41,1-Dichloroethane 156-60-5Acetone 75-34-31,1-Dichloroethane 156-60-5	$ \begin{array}{c} 12.\\ 12.\\ 12.\\ 12.\\ 12.\\ 12.\\ 12.\\ 12.\\$	ק, מממ, ממממממממממם, ממממממם המממממם המממממם המממממם
--	---	---

	IOV T	1E LATILE ORGANICS ANALYSIS CENTATIVELY IDENTIFIED (s data sheet Compounds	EPA SAMPLE NO.
	Lab Name: AES, In			BBL4 (21-50-
-69	Lab Code: AES	Case No.: BBL9501 SA	AS NO.: SDO	NO.: BBL1(4
	Matrix: (soil/wat		Lab Sample II	
-	Sample wt/vol:	5.000 (g/mL) G		
ai	Level: (low/med		Date Received	l: 09/29/95
	<pre>% Moisture: not d</pre>		Date Analyzed	1: 10/02/95
-	GC Column: RTX502	.2 ID: .25 (mm)	Dilution Fact	or: 1.0
	Soil Extract Volu	me: (uL)	Soil Aliquot	Volume: (uL)
.	Number TICs found	đ: 4	CONCENTRATION UNITS (ug/L or ug/Kg) UG/	: KG
-	CAS NUMBER			
			RT E	ST. CONC. Q
-	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	UNKNOWN ALKANE UNKNOWN HYDROCARBON UNKNOWN HYDROCARBON UNKNOWN ALKANE	13.19 13.95 15.79 19.42	6. J 20. J 20. J 6. J
•	6 7			
•	8			
	10			
-	12			
	14			
· •	16			<u> </u>
2 	18			
٠	20			
-	21			
	23			
-	25 26			
_	27			
_	29 30			

•

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

10.

12.

U

U

U

σ

σ

σ

U

U

σ

Ū

U

σ

U

U

U

U

U

Ū

U

U

υ

U

U

σ

J

-	LA VOLATILE ORGANICS ANALYSIS DATA :	SHEET	EPA SAMPLE NO.	•
	Lab Name: AES, Inc. Contract:		BBL5 (12-14	
-	Lab Code: AES Case No.: BBL9501 SAS No.:	SDG	NO.: BBL1(4	• '
-	Matrix: (soil/water) SOIL	Lab Sample ID:	BBL5(12-14)	
	Sample wt/vol: 5.000 (g/mL) G I	Lab File ID: D	02856	
-	Level: (low/med) LOW I	Date Received:	09/29/95	
	% Moisture: not dec. 17. I	Date Analyzed:	10/02/95	
-	GC Column: RTX502.2 ID: .25 (mm) I	Dilution Facto	or: 1.0	
-	Soil Extract Volume: (uL)	Soil Aliquot V	'olume: (u	ıL)
-		TRATION UNITS: or ug/Kg) UG/K		
Ĩ	74-87-3Chloromethane 74-83-9Bromomethane 75-01-4Vinyl Chloride 75-00-3Chloroethane 75-09-2Methylene Chloride 67-64-1Acetone 75-15-0Carbon Disulfide 75-35-41,1-Dichloroethene 75-34-31,1-Dichloroethane		12. U 12. U	

156-60-5-----1,2-Dichloroethene-trans

71-55-6----1,1,1-Trichloroethane

56-23-5-----Carbon Tetrachloride

75-27-4----Bromodichloromethane

78-87-5-----1,2-Dichloropropane

124-48-1----Dibromochloromethane

108-10-1-----4-Methyl-2-Pentanone

156-59-2-----1, 2-Dichloroethene-cis

127-18-4----Tetrachloroethene

79-01-6----Trichloroethene

10061-01-5----cis-1,3-Dichloropropene

79-00-5----1,1,2-Trichloroethane

10061-02-6----trans-1, 3-Dichloropropene

79-34-5----1,1,2,2-Tetrachloroethane

67-66-3----Chloroform

78-93-3----2-Butanone

71-43-2----Benzéne

75-25-2----Bromoform

591-78-6----2-Hexanone

108-90-7----Chlorobenzene

1330-20-7----Xylenes (total)

100-41-4----Ethylbenzene

108-88-3----Toluene

100-42-5----Styrene

107-06-2----1, 2-Dichloroethane

000025	
--------	--

EPA SAMI	PLE N	JO .
----------	-------	-------------

VOL.	1E ATILE ORGANICS ANALYSIS DATA ENTATIVELY IDENTIFIED COMPOU	SHEET	EPA SAM	PLE NC.
	c. Contract		BBL5 (1	L2-14
Lab Code: AES	Case No.: BBL9501 SAS No.	: SDG	NO.: BBL1	L (4
Matrix: (soil/wat:	er) SOIL	Lab Sample ID:	: BBL5(12-	-14)
Sample wt/vol:		Lab File ID: 1		
Level: (low/med)) LOW	Date Received:	09/29/95	5
% Moisture: not de	ec. 17.	Date Analyzed:		
GC Column: RTX502		Dilution Facto		
Soil Extract Volum	me: (uL)	Soil Aliquot V		
Number TICs found	CONCE	NTRATION UNITS: Or ug/Kg) UG/K		(ui)
CAS NUMBER	COMPOUND NAME	RT ES	T. CONC.	Q
			20. 20.	J J J
30				

11.

11.

11.

11.

11.

11.

11.

11.

1.

υ

U

υ

U

U

υ

U

ΰ

J

-	1A VOLATILE ORGANICS ANALYSIS DA	TA SHEET	EP/	A SAMPLE	NO.
	Lab Name: AES, Inc. Contra	Ct:	E	BBL5(24-	с. ј.
	Lab Code: AES Case No.: BBL9501 SAS N	o.: SI	DG NO.:	BBL1 (4	
-	Matrix: (soil/water) SOIL	Lab Sample :	ID: BBI	5 (24 - 26)
	Sample wt/vol: 5.000 (g/mL) G	Lab File ID:			
-	Level: (low/med) LOW	Date Receive	ad: 09/	29/95	
	% Moisture: not dec. 11.	Date Analyze			
-	GC Column: RTX502.2 ID: .25 (mm)	Dilution Fac			
-	Soil Extract Volume: (uL)	Soil Aliquot			(117.)
	CONC	CENTRATION UNIT			
-	CAS NO. COMPOUND (ug/	L or ug/Kg) UG	/KG	Q	
*	74-87-3Chloromethane			υ	
-	74-83-9Bromomethane 75-01-4Vinyl Chloride		11.	υ	
	/5-00-3Chloroethane		11. 11.	U U	
-	75-09-2Methylene Chloride 67-64-1Acetone		11. 11.	U U	
	75-15-0Carbon Disulfide 75-35-41,1-Dichloroethene		11.	σ	
-	/2-34-31, 1-Dicbloroethano		11.	U _ U	
	156-60-51.2-Dichloroethene-tr	ans	3. 11.	J U	
			11.	υ	
•	107-06-21,2-Dichloroethane 78-93-32-Butanone		11.	υ	
	71-55-61 1 1-Trichloroophane		11.	U	
	56-23-5Carbon Tetrachlorido		10. 11.	J U	
-	/J-4/-4Bromodichloromethano		11.	0	
	$\sqrt{8-8/-51}$, 2-Dichloropropage		11.	U	
	10061-01-5cis-1,3-Dichloroproper 79-01-6Trichloroethene	ne	11.	υ	
-	124-48-1Dibromochloromethane		11.	U	•
	/9-00-51,1,2-Trichloroethane		11.	U	
_	/ / / - 43-2Benzene		11. 11.	U U	
-	10061-02-6trans-1.3-Dichloroprov	Dene	11.	U	
	/J=25-2Bromoform		11.	U	
_	108-10-14-Methyl-2-Pentanone		11.	Ū Ū	
-	591-78-62-Hexanone		11.		

127-18-4----Tetrachloroethene

108-90-7----Chlorobenzene

1330-20-7-----Xylenes (total)

100-41-4----Ethylbenzene

108-88-3----Toluene

100-42-5----Styrene

79-34-5----1,1,2,2-Tetrachloroethane

156-59-2----1,2-Dichloroethene-cis

000	00	27
-----	----	----

	JOV T	LATILE ORGANICS TENTATIVELY IDEN	ANALYSIS DAT	A SHEET JUNDS	EPA SAMPI	E NO.
-	Lab Name: AES, In		Contrac		BBL5(24	-0.5
-	Lab Code: AES	Case No.: BE	L9501 SAS No	.: Si	DG NO.: BBL1(!
	Matrix: (soil/wat	er) SOIL			ID: BBL5(24-2	
	Sample wt/vol:	5.000 (g/mL	.) G	Lab File ID	: D2858	
-	Level: (low/med	.) LOW		Date Receive	ed: 09/29/95	
	<pre>% Moisture: not d</pre>	ec. 11.		Date Analyze	ed: 10/02/95	
	GC Column: RTX502	.2 ID: .25 (mm)	Dilution Fac		
	Soil Extract Volu	me: (uL)		Soil Aliquot	Volume:	(uL)
4	Number TICs found	đ: 0 .	CONCI (ug/1	ENTRATION UNIT L or ug/Kg) UG	CS : 5/ KG	
	CAS NUMBER	COMPOU	ND NAME	1	EST. CONC.	Q

1._____

3.____ 4. 5. 6.____ 7.____ 8.____ 9.____ 10.____ 11.____ 12. •

13. 14. 15. 16._____ 18.____ 19. 20. 21. 22.____ 23.____

24._____ 25._____ 26._____

27.____ 28. 29.____ 30.____

48	IA VOLATILE ORGANICS ANALY	YSIS DATA SHEET	
	Lab Name: AES, Inc.	Contract: BBL5 (28-3/)	
42	Lab Code: AES Case No.: BBL9501	L SAS NO.: SDG NO.: BBL1(4	
-	Matrix: (soil/water) SOIL	Lab Sample ID: BBL5(28-30)	
	Sample wt/vol: 5.000 (g/mL) G	Lab File ID: D2907	
-	Level: (low/med) LOW	Date Received: 09/29/95	
	% Moisture: not dec. 17.	Date Analyzed: 10/05/95	
-	GC Column: RTX502.2 ID: .25 (mm)	Dilution Factor: 1.0	
-	Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL))
-	CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q	
	74-87-3Chloromethane 74-83-9Bromomethane 75-01-4Vinyl Chloride	12. U 12. U 12. U	

74-83-9Bromomethane	12.	U
75-01-4Vinyl Chloride	12.	U
75-00-3Chloroethane	12.	σ
75-09-2Methylene Chloride	12.	U
67-64-1Acetone	12.	σ
75-15-0Carbon Disulfide	12.	υ
75-35-4	12.	U
75-35-41,1-Dichloroethene	12.	U
75-34-31,1-Dichloroethane	12.	U
156-60-51,2-Dichloroethene-trans	12.	σ
	12.	U ·
107-06-21,2-Dichloroethane	12.	Ŭ
/0-33-32'-Butanone	12.	υ
71-55-61,1,1-Trichloroethane	12.	U
Jordjester-Carbon Tetrachloride	12.	υ
/J-4/-4Bromodichloromethane		-
	12.	U
1 10001-01-5Cis-1 3-Dichloroppen	12.	U
	12.	σ
	12.	υ
79-00-51,1,2-Trichloroethane	12.	U
	12.	U
10061-02-6trans-1, 3-Dichloropropene	12.	U
75-25-2Bromoform	12.	U
	12.	U
108-10-14-Methyl-2-Pentanone	12.	U
127-18-4 Tehenald	12.	υ
127-18-4Tetrachloroethene	12.	υ
79-34-51,1,2,2-Tetrachloroethane		Ū
	2.	J
108-90-7Chlorobenzene		ບັ
1 100-41-4Ethylbergene		Ŭ
100-44-3Sturana	1	U U
1330-20-7Xvlenes (total)		-
156-59-21, 2-Dichloroethene-cis		U
	12.	ប
		i

48	VOLATI	LE ORGANICS ANALY	VETE DATA	CIIIII	000	CCO EPA SAME	LE NC.
42	TENT Lab Name: AES, Inc.	ATIVELY IDENTIFIE	ED COMPOUN	DS		BBL5(2	8-30
49	Lab Code: AES		Contract:				
	Matrix: (soil/water)					BBL5 (28-	
	Sample wt/vol:	5.000 (g/mL) G		Lab File			30)
	Level: (low/med) L	OW				09/29/95	
a a	<pre>% Moisture: not dec.</pre>	17.				10/05/95	
a 1	GC Column: RTX502.2	ID: .25 (mm)				r: 1.0	
	Soil Extract Volume:	(uL)	\$	Soil Aliq	uot V	olume:	(uL)
	Number TICs found:	0	CONCEN	TRATION UN Dr ug/Kg)	NITS:		
67	***************************************	COMPOUND NA	ME =========	RT ========		T. CONC.	Q
jjat	1. 2. 						
	4						
-	6						
	8						
_	10						
	14.						

15.____ 16.___ 17. 18. 19.____ 20.___ 21. 22.

23.____ 24.___ 25.___

26.

27.____ 28.____ 29.____ 30.____

્ર 🖷

.

1_

30.

30.

30.

30.

30.

30.

30.

30.

130.

30.

30.

30.

30.

30.

30.

950.

U

υ

υ

U

U

U

U

U

U

U

U

U

Ū

U

Lab Name: AES, Inc. Contract: DUP Lab Code: AES Case No.: BBL9501 SAS No.: SDG No.: BBL1(4 Matrix: (soil/water) SOIL Lab Sample ID: DUP Sample wt/vol: 2.000 (g/mL) G Lab File ID: D2908 Level: (low/med) LOW Date Received: 09/29/95 * Moisture: not dec. 17. Date Analyzed: 10/05/95 GC Column: RTX502.2 ID: .25 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (u) 74-87-3Chloromethane 30. U 75-01-4Vinyl Chloride 30. U 75-00-3Chloromethane 30. U 75-01-4Vinyl Chloride 30. U 75-01-3Chloromethane 30. U 75-01-3Chloromethane 30. U 75-01-3Chloromethane 30. U 75-15-0Chloromethane 30. U 75-35-4		1A VOLATILE ORGANICS ANALYSIS DATA S	HEET	EPA SAMPLE N	¥O .
Lab Code: AES Case No.: BBL9501 SAS No.: SDG No.: BBL1(4 Matrix: (soil/water) SOIL Lab Sample ID: DUP Sample wt/vol: 2.000 (g/mL) G Lab File ID: D2908 Level: (low/med) LOW Date Received: 09/29/95 % Moisture: not dec. 17. Date Analyzed: 10/05/95 GC Column: RTX502.2 ID: .25 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (u) CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q 74-87-3Chloromethane 30. U 75-01-4Vinyl Chloride 30. U 75-02-3Chloromethane 30. U 75-03Chloromethane 30. U 75-14-1Chloromethane 30. U 75-34-3Chloroethane 30. U 75-34-3Chloroethane 30. U 75-34-3Chloroethane 30. U 75-34-3Carbon Disulfide 30. U 75-34-3		Lab Name: AES, Inc. Contract:		DUP	
Sample wt/vol: 2.000 (g/mL) G Lab File ID: D2908 Level: (low/med) LOW Date Received: 09/29/95 * Moisture: not dec. 17. Date Analyzed: 10/05/95 GC Column: RTX502.2 ID: .25 (mm) Dilution Factor: 1.0 Soil Extract Volume:	4 F	Lab Code: AES Case No.: BBL9501 SAS No.:	SDG	NO.: BBL1(4	
Level: (low/med) LOW Date Received: 09/29/95 % Moisture: not dec. 17. Date Analyzed: 10/05/95 GC Column: RTX502.2 ID: .25 (mm) Dilution Factor: 1.0 Soil Extract Volume:	-	Matrix: (soil/water) SOIL	ab Sample ID:	DUP	
<pre>% Moisture: not dec. 17. Date Analyzed: 10/05/95 GC Column: RTX502.2 ID: .25 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (u) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 74-87-3Chloromethane 30. U 75-01-4Vinyl Chloride 30. U 75-00-3Chloromethane 30. U 75-00-3Chloromethane 30. U 75-00-3Chloromethane 30. U 75-00-3Chloromethane 30. U 75-00-3Chloromethane 30. U 75-01-4Vinyl Chloride 30. U 75-00-3Chloromethane 30. U 75-15-0Carbon Disulfide 30. U 75-34-31, 1-Dichloroethene 30. U 75-34-31, 2-Dichloroethene 30. U 156-60-51, 2-Dichloroethene 30. U 107-06-21, 2-Dichloroethane 30. U</pre>		Sample wt/vol: 2.000 (g/mL) G L	ab File ID: D	2908	
GC Column: RTX502.2 ID: .25 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (u) CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG 74-87-3Chloromethane 30. U 74-87-3Chloromethane 30. U 75-01-4Vinyl Chloride 30. U 75-00-3Chloromethane 30. U 75-00-3Chloromethane 30. U 75-00-3Chloromethane 30. U 75-00-3Chloromethane 30. U 75-01-4Vinyl Chloride 30. U 30. U 30. U 75-03-3Chloromethane 30. U 75-03-3Chloroethane 30. U 75-15-0Carbon Disulfide 30. U 75-35-41, 1-Dichloroethane 30. U 75-34-31, 2-Dichloroethane 30. U 156-60-51, 2-Dichloroethane 30. U 107-06-2	-	Level: (low/med) LOW Da	ate Received:	09/29/95	
Soil Extract Volume: (uL) Soil Aliquot Volume: (u) CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q 74-87-3Chloromethane 30. U 74-87-3Chloromethane 30. U 74-87-3Chloromethane 30. U 74-87-3Chloromethane 30. U 75-01-4Vinyl Chloride 30. U 75-00-3Chloromethane 30. U 75-09-2Methylene Chloride 30. U 75-15-0Carbon Disulfide 30. U 75-35-41,1-Dichloroethene 30. U 75-34-31,2-Dichloroethene 30. U 156-60-51,2-Dichloroethene-trans 30. U 107-06-21,2-Dichloroethane 30. U		% Moisture: not dec. 17. Da	ate Analyzed:	10/05/95	
CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q 74-87-3Chloromethane 30. U 74-83-9Bromomethane 30. U 75-01-4Vinyl Chloride 30. U 75-00-3Chloroethane 30. U 75-09-2Methylene Chloride 30. U 75-15-0Carbon Disulfide 30. U 75-35-41, 1-Dichloroethane 30. U 75-34-31, 2-Dichloroethane 30. U 156-60-5Chloroform 30. U 107-06-21, 2-Dichloroethane 30. U	` *###	GC Column: RTX502.2 ID: .25 (mm) D:	ilution Facto	or: 1.0	
CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 74-87-3Chloromethane 30. U 74-83-9Bromomethane 30. U 75-01-4Vinyl Chloride 30. U 75-00-3Chloroethane 30. U 75-09-2Methylene Chloride 30. U 67-64-1Acetone 30. U 75-35-41, 1-Dichloroethane 30. U 75-34-31, 1-Dichloroethane 30. U 156-60-51, 2-Dichloroethane 30. U 107-06-21, 2-Dichloroethane 30. U		Soil Extract Volume: (uL) So	oil Aliquot V	'olume:	(uL)
75-01-4Vinyl Chloride 30. U 75-00-3Chloroethane 30. U 75-09-2Methylene Chloride 30. U 67-64-1Acetone 30. U 75-15-0Carbon Disulfide 30. U 75-35-41,1-Dichloroethene 30. U 75-34-31,2-Dichloroethene 30. U 156-60-51,2-Dichloroethene-trans 30. U 107-06-21,2-Dichloroethene 30. U	*				
67-64-1Acetone 30. U 75-15-0Carbon Disulfide 30. U 75-35-41,1-Dichloroethene 30. U 75-34-31,1-Dichloroethene 30. U 156-60-51,2-Dichloroethene-trans 30. U 67-66-3Chloroform 30. U 107-06-21,2-Dichloroethene 30. U	4	75-01-4Vinyl Chloride 75-00-3Chloroethane 75-09-2Methylene Chloride		30. U 30. U 30. U	
67-66-3Chloroform	4	67-64-1Acetone 75-15-0Carbon Disulfide 75-35-41,1-Dichloroethene 75-34-31,1-Dichloroethane		30. U 30. U 30. U	
10/-06-21,2-Dichloroethane 30. U	•	67-66-3Chloroform	······································		
78-93-32-Butanone	. 	78-93-32-Butanone 71-55-61,1,1-Trichloroethane 56-23-5Carbon Tetrachloride 75-27-4Bromodichloromethane 78-87-51,2-Dichloropropane		30. U 30. U 30. U 30. U 30. U 30. U 30. U	

79-01-6----Trichloroethene

71-43-2----Benzene

75-25-2----Bromoform

591-78-6----2-Hexanone

108-90-7----Chlorobenzene

100-41-4----Ethylbenzene_

1330-20-7-----Xylenes (total)

108-88-3----Toluene

100-42-5----Styrene

124-48-1-----Dibromochloromethane

108-10-1----4-Methyl-2-Pentanone

156-59-2----1,2-Dichloroethene-cis

127-18-4----Tetrachloroethene

79-00-5-----1,1,2-Trichloroethane

10061-02-6----trans-1, 3-Dichloropropene

79-34-5----1,1,2,2-Tetrachloroethane

Lab Sample ID: DUP

Lab File ID: D2908

Date Received: 09/29/95

Date Analyzed: 10/05/95

Dilution Factor: 1.0

Soil Aliquot Volume: _____ (uL)

EPA SAMPLE NC.

VOLATILE	ORGAN	IICS	ANALYSI	s	DATA	SHEET
TENTATI	IVELY	IDEN	TIFIED	CC	MPOUN	IDS .

Contract:

1E

DUP

SDG NO.: BBL1(4

Matrix: (soil/water) SOIL

Lab Name: AES, Inc.

Sample wt/vol: 2.000 (g/mL) G Level: (low/med) LOW

Lab Code: AES Case No.: BBL9501 SAS No.:

- % Moisture: not dec. 17.
- GC Column: RTX502.2 ID: .25 (mm)

Soil Extract Volume: _____ (uL)

-

Number TICs found: 10

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

	NUMBER		COMPOUND NAME	RT	EST. CONC.	Q
1.	12222222	333		1		4
2.	-	-	UNKNOWN ALKANE	12.91		J
∡. 3.	-	-	UNKNOWN ALKANE	13.23		. J
	-	-	UNKNOWN ALKANE	13.97	8000.	J
4.	-	-	UNKNOWN ISOMER DIMETHYL CYCI		300.	J
5.	-	-	UNKNOWN ISOMER DIMETHYLCYCLO	14.91	400.	J
6.	-	-	UNKNOWN	15.46	100.	J
7.	-	-	UNKNOWN ALKANE	16.08	200.	J
8.	-	-	IUNKNOWN ALKANE	1 16 82	200.	J
9.	-	-	UNKNOWN AROMATIC	20.02	100.	J
10.	-	-	UNKNOWN AROMATIC	20.96	100.	J
11				-		
12						
±3				•		
<u></u>						
15.				•		
16.				-		
17.						
18.	····			•		
19.	· · · · · · · · · · · · · · · · · · ·			•		
20.						
21				•	·	
22				•		
23	· · · · · · · · · · · · · · · · · · ·			·	<u> </u>	
24				·		
25						
26.						
20. 27 —				·		
<u>^</u>						
<u>40</u>						
4J.						
30						

FORM I VOA-TIC

	1A VOLATILE ORGANICS ANALYSIS DATA SHEP	E	EPA SAMPLE NO	•
-			BBLFB	
	Lab Name: AES, Inc. Contract:			
	Lab Code: AES Case No.: BBL9501 SAS No.:	SDG No).: BBL1(4	
-	Matrix: (soil/water) WATER Lab	Sample ID: B	BLFB	
	Sample wt/vol: 5.000 (g/mL) ML Lab	File ID: D28	185	
48	Level: (low/med) LOW Date	Received: 0	19/29/95	
	* Moisture: not dec Date	Analyzed: 1	.0/04/95	
	GC Column: RTX502.2 ID: .25 (mm) Dilu	tion Factor:	1.0	
-	Soil Extract Volume: (uL) Soil	. Aliquot Vol	.ume: (1	uL)
		ION UNITS:		
-	CAS NO. COMPOUND (ug/L or u	ug/Kg) UG/L	Q	
	74-87-3Chloromethane	10). U	
-	74-83-9Bromomethane 75-01-4Vinyl Chloride	_ 10). U	
	75-00-3Chloroethane). U	
	75-09-2Methylene Chloride			
-	67-64-1Acetone	- 10		
	75-15-0Carbon Disulfide	10		
	75-35-41,1-Dichloroethene	10	I I	
4 1	75-34-31,1-Dichloroethane	10	1 1	
	156-60-51,2-Dichloroethene-trans 67-66-3Chloroform		, , ,	
	67-66-3Chloroform 107-06-21,2-Dichloroethane	- 10	1	
-	78-93-32-Butanone	- 10	1 I I	
	71-55-61,1,1-Trichloroethane	- 10	1 1	
•	56-23-5Carbon Tetrachloride	10		
	75-27-4Bromodichloromethane	10		
	78-87-51,2-Dichloropropane	10	i 1	
44	10061-01-5cis-1,3-Dichloropropene 79-01-6Trichloroethene	- 10	1 1	
-	124-48-1Dibromochloromethane	- 10	1 1	
	79-00-51,1,2-Trichloroethane			
	71-43-2Benzene	_ 10		
	10061-02-6trans-1,3-Dichloropropene			
	75-25-2Bromoform	10	1 1	
	108-10-14-Methyl-2-Pentanone 591-78-62-Hexanone	- 10	1 1	
-	127-18-4Tetrachloroethene	- 10		
	79-34-51,1,2,2-Tetrachloroethane	- 10		
	108-88-3Toluene	10		
-	108-90-7Chlorobenzene	10		
	100-41-4Ethylbenzene	10	E i	
	100-42-5Styrene	10		
с. Ф	1330-20-7Xylenes (total) 156-59-21,2-Dichloroethene-cis	- 10		
•				

-

-	. •		00000	3
		1E	EPA S	SAMPLE NO.
		TILE ORGANICS ANALYSIS DATA		
47	1.1	ENTATIVELY IDENTIFIED COMPOU		
	Lab Name: AES, Inc	Contract	: BBI	LFB
d y	Lab Code: AES	Case No.: BBL9501 SAS NO.	: SDG No.: E	BBL1 (4
	Matrix: (soil/wate	er) WATER	Lab Sample ID: BBLFE	3
48	Sample wt/vol:	5.000 (g/mL) ML	Lab File ID: D2885	
48	Level: (low/med)	LOW	Date Received: 09/29	9/95
	<pre>% Moisture: not de</pre>		Date Analyzed: 10/04	4/95
48	GC Column: RTX502.		Dilution Factor:	1.0
	Soil Extract Volum	ne: (uL)	Soil Aliquot Volume:	(uL)
می	Number TICs found		NTRATION UNITS:	
			or ug/Kg) UG/L	
- 10	CAS NUMBER	COMPOUND NAME	RT EST. CON	
	1			
4	2			
_`	4			
	6			
-	8			
•	9 10			
	11			
	12			
	14. ·····			
	±3			
٠	16		_	
÷	17			
1				

 17.

 18.

 19.

 20.

 21.

 22.

 23.

 24.

 25.

 26.

 27.

 28.

 29.

 30.

÷

42	1A VOLATILE ORGANICS ANALYSIS DATA SHEET	EPA SAMPLE NO.
	Lab Name: AES, Inc. Contract:	TBI
4 .P	Lab Code: AES Case No.: BBL9501 SAS No.: SDG	NO.: BBL1(4
44	Matrix: (soil/water) WATER Lab Sample ID:	
	Sample wt/vol: 5.000 (g/mL) ML Lab File ID: D	2879
48	Level: (low/med) LOW Date Received:	09/27/95
	<pre>% Moisture: not dec Date Analyzed:</pre>	10/04/95
4	GC Column: RTX502.2 ID: .25 (mm) Dilution Factor	r: 1.0
<₽	Soil Extract Volume: (uL) Soil Aliquot Vo	olume: (uL
	CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
		10. U
4	75-01-4Vinyl Chloride	10. U 10. U
	75-09-2Methylene Chloride	10. U 10. U
•	67-64-1Acetone	10. U
	75-35-41,1-Dichloroethene	10. U 10. U
4	75-34-31,1-Dichloroethane	LO. U
		LO. U
		LO. U LO. U
-		LO. U
	71-55-61,1,1-Trichloroethane	LO. U
	56-23-5Carbon Tetrachloride	LO. U
-	75-27-4Bromodichloromethane	LO. U
	78-87-51,2-Dichloropropane	LO. U
		U. U
-		LO. U
		LO. U
		0. U
-	10061-02-6trans-1, 3-Dichloropropene	0. U
	75-25-2Bromoform 1	0. U
	108-10-14-Methyl-2-Pentanone	.0. U
-		.0. U
		.0. U
		.0. U
æ	108-90-7Chloropenzene	.0. U .0. U
	100-41-4Ethylbenzene	.0. U
	1 100-42-5Styrene	0. U
-	1330-20-7Xylenes (total)	0. U
		0 177

	VOLA	1E ATILE ORGANICS		SUPPT	EPA SAME	PLE NO.
-	TE	ENTATIVELY IDEN	TIFIED COMPOUN	NDS		
	Lab Name: AES, Inc	2.	Contract:	:	TB1	
48	Lab Code: AES	Case No.: BE	L9501 SAS NO.:	:	SDG NO,: BBL1	. (4
	Matrix: (soil/wate	er) WATER		Lab Sample	E ID: TB1	
48	Sample wt/vol:	5.000 (g/mL		Lab File :		
47	Level: (low/med)	LOW		Date Recei	ived: 09/27/95	5
•	* Moisture: not de	۲		Date Analy	zed: 10/04/95	5
	GC Column: RTX502.	2 ID: .25 (mm)	Dilution H	Factor: 1.0)
	Soil Extract Volum	ue: (uL)		Soil Aliq	lot Volume:	(uL)
4	Number TICs found	l: 0	CONCEN (ug/L			
4	CAS NUMBER	COMPOU		RT	EST. CONC.	Q
-	1			=======================================		32222
	3					
4				•		
	6					
-	8					·
	9 10					· · · · · · · · · · · · · · · · · · ·
_	***					
	12					· []
21 1	14					
-	16			·		·
	17					
	19				•	·
	20					
	21					
	23		······			
	24					
	26					
	27					
•	29					
÷	30		·····			

FORM I VOA-TIC

-							
	VOLATI	lA LE ORGANICS ANALY	SIS DATA SHEET	Γ.	EPA	SAMPLE	NO.
Lab 1	Name: AES, Inc.		Contract:		TB	2	
Lab (Code: AES	Case No.: BBL9501	SAS No.:	SDG	No.:	BBL1 (4	I
	ix: (soil/water)			Sample ID:			
Samp:	le wt/vol:	5.000 (g/mL) ML	Lab F	File ID: D	2884		
Leve:	l: (low/med) L	OW	Date	Received:	09/2	9/95	
क Moi	isture: not dec.		Date	Analyzed:	10/0	4/95	
= GC CC	olumn: RTX502.2	ID: .25 (mm)	Dilut	ion Facto	r:	1.0	
Soil	Extract Volume:	(uL)	Soil	Aliquot V	olume	:	(uL)
P	CAS NO.	Compound	CONCENTRATI	ON UNITS:		Q	
-						<u>ح</u>	
-	74-83-9 75-01-4 75-00-3	Chloromethane Bromomethane Vinyl Chloride Chloroethane			10. 10. 10. 10.	ש ט ט ט ט	
-	67-64-1 75-15-0 75-35-4	Methylene Chlo: Acetone Carbon Disulfic 1,1-Dichloroet	de		12. 10. 10. 10.	B U U U U	
-	156-60-5	1,1-Dichloroet 1,2-Dichloroet Chloroform 1,2-Dichloroet	hene-trans		10. 10. 10. 10.	ם ע ע ע	
-	78-93-3	2-Butanone 1,1,1-Trichloro Carbon Tetrach Bromodichlorome	Dethane		LO. LO. LO. LO.	ם ע ע ע	
-	78-87-5	1,2-Dichloropro Cis-1,3-Dichlon Trichloroethene	opane		LO. LO. LO.	а а а а	
-	79-00-5	Dibromochlorome 1,1,2-Trichloro Benzene trans-1,3-Dichl	pethane	1	LO. LO. LO.	ם ע ע ע	
	75-25-2 108-10-1 591-78-6	Bromoform 4-Methyl-2-Pent 2-Hexanone	anone	נ	LO. LO.		
-	127-18-4 79-34-5 108-88-3	Tetrachloroethe 1,1,2,2-Tetrach Toluene	ene lloroethane	נ נ	.0.	0 0 0	
-	100-41-4	Chlorobenzene Ethylbenzene Styrene		1	.0.	0 0	
-	156-59-2	Xylenes (total) 1,2-Dichloroeth	lene-cis			υ υ	

.•

:

-

	VOL	ATILE ORGANICS ANALYSIS D ENTATIVELY IDENTIFIED COM	DATA SHEET	EPA SAMPLE NO.
4		C. Contr		TB2
		Case No.: BBL9501 SAS		
	Matrix: (soil/wate	·		
-			Lab Sample ID	
		5.000 (g/mL) ML		
	Level: (low/med)		Date Received	: 09/29/95
	% Moisture: not de		Date Analyzed	: 10/04/95
	GC Column: RTX502.	2 ID: .25 (mm)	Dilution Facto	or: 1.0
	Soil Extract Volum	ue: (uL)	Soil Aliquot	Volume: (ul
-	Number TICs found		NCENTRATION UNITS g/L or ug/Kg) UG/I	
1	CAS NUMBER	COMPOUND NAME	RT ES	ST. CONC. 0
	***************************************	*************************		ST. CONC. Q
-				
; -	6			
	8			
•	9 10			
_	11			
	13			
	15			
	16 17			
	18 19			
•	20	·····		
1	22			
	23			
-	25			
	27			
•	29			
	-			

Attachment 5

Physical Data for Soils

Mr. Mike Gefell Blasland, Bouck & Lee, Inc. 6723 Towpath Road Box 66 Syracuse, New York 13214-0066

Re: L-95110 Laboratory Testing Lockheed-Martin Farrell Road Project No. 380.81.01

Dear Mr. Gefell:

Enclosed are the results of laboratory testing performed at your request on one bulk and ten jar soil samples delivered to our laboratory on September 25 and 29, 1995 for the above referenced project. Results include:

1.	Natural Moisture Content ASTM D2216	5 each
2.	Sieve Analysis ASTM D422 & D1140	2 each
3.	Hydrometer Analysis ASTM D422	1 each
4.	Specific Grvity ASTM D854	1 each
5.	Bulk (Natural) Soil Density Corps of Engineers EM-1110-2-1906	1 each
6.	Porosity Corps of Engineers EM-1110-2-1906 Appendix II	1 each

All requested tests have been completed on the previously received sample(s) for the above project. All sample remains are scheduled to be disposed of on November 9, 1995. Please notify Parratt-Wolff, Inc. by letter or telephone prior to November 9, 1995 if you would prefer to pick up the sample(s) or that the sample(s) be retained by Parratt-Wolff, Inc. for an additional period of time.

Fisher Road, East Syracuse NY 13057-0056 Telephone 315-437-1429 or 800-782-7260 FAX 315-437-1770
 One Copley Parkway, Suite 309, Raleigh, North Carolina 27623 Telephone 919-469-2953 FAX 919-469-8280

(6.7)

wolffing

L

October 9, 1995 Blasland, Bouck & Lee, Inc. Page Two

Re: L-95110 Laboratory Testing Lockheed-Martin Farrell Road Project No. 380.81.01

Thank you for this opportunity to work with you.

Very truly yours,

PARRATT - WOLFF, INC.

and L Claster

David L. Elliott, ET Manager - Field Inspection Services DLE/lms encs:

L-95110 Laboratory Testing Lockheed-Martin Farrell Road Project No. 380.81.01

NATURAL MOISTURE CONTENT ASTM D2216

Lab ID#	Sample #	Depth (feet)	Moisture Content as a Percent of Dry Weight
7822	BBL-1	13.0'-16.0'	9.1
7823	BBL-1	17.0'-17.3' Composite 17.3'-17.6' 17.6'-18.0'	5.6 5.9
7825	BBL-1	29.2'-29.8'	13.5
7866	BBL-4	16.0'-18.0' 🗸	20.1

(1)Natural Moisture Content obtained from Bulk (Natural) Density sample.

3

SIEVE AT .YSIS OF SOIL/AGGREGATE

ì

ł

PROJECT TITLE Laboratory Testing, Lockheed-Martin, Farrell Road, Project No. 380.81.01

i

PROJECT #_L-95110 TEST METHOD_ASTM D422 & D1140

í

Í

14 1.

i

i

î

i.

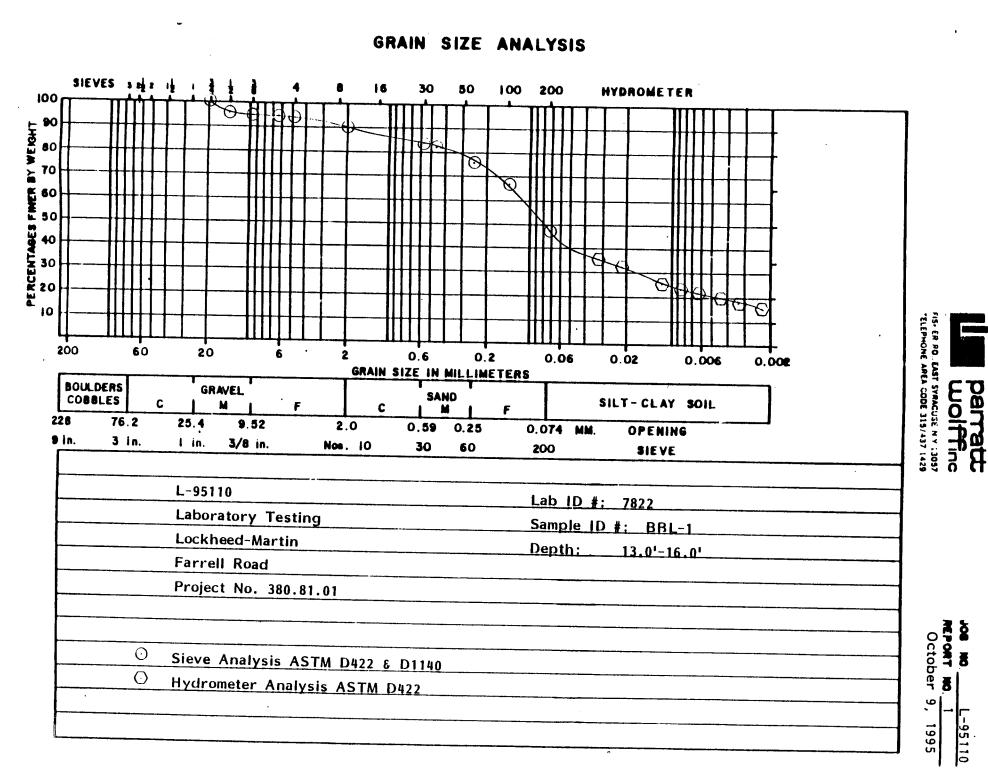
1

REPORT # _1

4

Ì

REPORT DATE October 9, 1995


									Sieve	e Size -	Percen	nt Passi	ing Sie	eve				
Lab ID#	Sample ID #	Depth (feet)		3/4"	1/2"	3/8"	1/4"	#4	#10	#30	#40	#60	#100	#200				
7822	BBL-1	13.0- 1 16.0		100	96.5	96.5	94.9	93.4	90.3	84.4	82.4	77.4	67.9	47.8				
7866	BBL-4	16.0- 18.0										100	98.8	55.1				
		<u> </u>																
														•				
	•																	
																[
														-	[
Sample mass, as received, meets minimum requirements of test method: YesNo Prewashed: YesNo Remarks:																		

L-95110 Laboratory Testing Lockheed-Martin Farrell Road Project No. 380.81.01

BULK (NATURAL) SOIL DENSITY CORP OF ENGINEERS EM-1110-2-1906 APPENDIX, II, DISPLACEMENT METHOD

45		•		Bulk (Natural) Soi	1 Density (PCF)
	<u>Lab ID#</u>	<u>Sample #</u>	Depth	Dry Density	Moist Density
48	7823	BBL-1	17.6'-18.0'	136.7	144.8

ł

4

ì

3

1

1

1

ì

A

ŧ

٩.

1

1

1

ì

•

L-95110 Laboratory Testing Lockheed-Martin Farrell Road Project No. 380.81.01

UPECIFIC GRAVITY OF SOILS ASTM D854

Lab ID#	Sample	Depth	Specific Gravity <u>of Solids(G)</u>
7823	BBL-1	17.0'-18.0'	2.73

	Corps	Porosity of Engineers EM-1110- Appendix II	2-1906
Lab <u>ID#</u>	Sample	<u>Depth</u>	Porosity (%)
7823	BBL-1	17.0'-18.0'	19.8

Attachment 6

		OLD CONCENT			
CALCULATE EFFEC	TIVE SOLUBILITY, B	ASED ON MOLI	E FRACTIO	N	
	LNAPL Mole Fraction Xi	Pure Ph ase Solubility	LNAPL Effective Solubility	DNAPL Mole Fraction	DNAPL Effective Solubility
TCA	0.1	mg/L 1360	mg/L 136	0.35	mg/L 476
Toluene Ethylbenzene	0.36 0.08	515 152	185.4	• 0.53	272.95
Total Xylenes TCE	0.46	170	78.2.	0.02	3.04 17
PCE	0	1100	0 0	0.004	4,4 0

CALCULATE Kd, BASED ON TOC RESULTS

Kd=Koc*foc, using average foc for overburden silty sand

-	ТСА	Kd 0.79326	Koc mi/g	BBL-1	toc mg/kg	foc= oc/1000000 mg/mg
	Toluene.	Children Wilk, Children H.	100	4-6	463	0.000463
	Ethylbenzene	2:37978.	300	6-8	1420	0.00142
	Total Xylenes	8.72586.	1100	8-10	7090	0.00709
	TCE	2.37978	300	10-12	10590	0.01059
1	PCE	0.9995076	126	13-14	20100	0.0201
	FUE	2.3956452	302	average		
		a contraction of the second second		16-18	2130	0.00213
				20-20.8	39900	0.0399

Koc from Korfiatis, George, P. and Talimcioglu, Nazmi M.; A Model for Calculation of Soil Cleanup Levels; Remediation, Spring 1994

CALCULATE THRESHOLD

-	DNAPL	DNAPL	LNAPL	LNAPL	
Threshold Concentrations	mg/Kg	ug/Kg	mg/Kg	ug/Kg	
TCA	483.37	483,369.54	138.11	138,105.58	
Toluene Ethylbenzene	710.22	710,216.51	482.41	482,411.21	
Total Xylenes	27:20 44.23	27,202.17	108.81	108,808.68	
TCE	5.38	44,234.04 5,375.6†	203.48	203,476.57	
PCE	0.00	0.00	0.00	0.00	

Notes:

Threshold Conc. Formula

- $Ct = (((Kd^p)+n)^Si)/p$
- Ct = Threshold Concentration
- Kd = Partition coefficient between pore water and soil
- n = water-filled porosity
- p = dry bulk density of the soil
- Si = Effective solubility

Attachment 7

DNAPL Pool Height Calculation Summary

POOL HEIGHT CALCULATION

1

1

ļ

4

ł

I

1

â

`**!**

L

1

POOLHITE.WK3 By M.J. Gefell, November 28, 1995

1

1

ł

1

Based on Pankow and Cherry, 1995, Dense Chlorinated Solvents and other DNAPLs in Groundwater, Waterloo Press, Portland, Oregon.

	CALCULATION OF MAXIMUM STABLE DNAPL POOL HEIGHT						
		K-Estimate 1 K-Estimate 2		K-Estimate 3			
	BBL-1	BBL-4 (16-18') BBL-4 (16-18') BBL-4 (16-18'					
	<u>(17–18') Till</u>	Silt & f Sand	Silt & f Sand	Silt & FSand			
K (cm/sec)	3.0E-06	1.0E-06	1.0E-05	1.0E-04			
n (vol/vol)	0.2	0.4	0.4	0.3			
P, dnapl (g/cc)	1.03	1.03	· 1.03	1.03			
IT, dnapl (dynes/cm)	3	3	3	3			
Maximum Pool Height (cm)	1298	2673	1057	372			
Maximum Pool Height (ft)	42.6	87.7	34.7	12.2			

CALCULATIONOF MAXIMUM STABLE DNAPL POOL HEIGHT

K = hydraulic conductivity of stratum beneath pool

n = porosity of stratum beneath pool

P, dnapl = DNAPL density

IT, DNAPL = DNAPL-water interfacial tension