

Mr. Payson Long Remedial Bureau E Section D Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway, 12th Floor Albany, New York 12233-7017

Subject:

Groundwater Monitoring Memorandum McKesson Envirosystems Site 800/801 Van Rensselaer Street¹ Syracuse, New York Site No. 7-34-020

Dear Mr. Long:

Arcadis of New York, Inc. (Arcadis) has prepared this groundwater monitoring memorandum for the McKesson Envirosystems Site located at 800/801 Van Rensselaer Street in Syracuse, New York (Site). Arcadis prepared this memorandum on behalf of McKesson Corporation (McKesson) to describe groundwater monitoring activities and present the results of the July 2016 monitoring event conducted at the Site in and around Areas 1, 2, and 3 (Figure 1). This monitoring event was conducted using the protocols provided under the post-shutdown process control monitoring program outlined in the Site Management Plan (SMP; Arcadis 2014c). This SMP was approved by the New York State Department of Environmental Conservation (NYSDEC) as amended by the revisions stated in its letter dated July 20, 2015 and conditioned upon its letter being appended to all copies of the SMP (NYSDEC 2015b).

BACKGROUND

The NYSDEC approved shutdown of the Operable Unit No. 2 (OU2) remedial system in a letter dated April 11, 2013 (NYSDEC 2013). The letter required that a

Arcadis of New York, Inc. 6723 Towpath Road P.O. Box 66 Syracuse New York 13214-0066 Tel 315 446 9120 Fax 315 449 0017 www.arcadis.com

ENVIRONMENT

Date: September 26, 2016

Contact: Dawn E. Penniman

Phone: 315.671.9229

Email: Dawn.Penniman@arcadis.com

Our ref: B0026003.FY17.00190

¹ Note that the address of the site in the NYSDEC's Environmental Site Remediation Database is 400 Bear Street West. The legal addresses for the two parcels that make up the site are 800 and 801 Van Rensselear Street.

post-shutdown process control monitoring program be implemented to determine the continued effectiveness of the OU2 remedial action on the remaining contamination and to evaluate the need to restart the remedial processes (NYSDEC 2013). The post-shutdown monitoring program was a continuation of the constituent of concern (COC) and hydraulic process control monitoring program that has been conducted at the Site since OU2 treatment activities commenced in 1998.

As identified in the SMP, the post-shutdown process control monitoring program was conducted for 2 years (2013 to 2015) and the results of the last monitoring event in April 2015 were reported in the Monitoring Memorandum dated June 11, 2015 (Arcadis 2015b). In this Memorandum, Arcadis stated that the conclusions from a review of the results of the monitoring program

... confirm that groundwater quality conditions have not substantially changed since the shutdown of the in-situ bioremediation treatment and closed loop hydraulic systems and fully demonstrate the continued effectiveness of the OU2 remedial action. Accordingly, there is no need to restart the remedial processes. As the groundwater monitoring identified in the SMP has been completed and the goals of the post-shutdown process control monitoring program have been met, no further groundwater monitoring is needed and the OU2 remedial activities for Areas 1, 2, and 3 are considered complete.

In its September 16, 2015 letter (NYSDEC 2015c), the NYSDEC commented on its review of the Arcadis June 11, 2015 Monitoring Memorandum and concluded:

The Department agrees that, based upon the results of the required two (2) years of groundwater data that was obtained for the purpose of documenting that the site has met the remedial system shutdown requirements, the in-situ bioremediation treatment and closed loop hydraulic systems may remain shut down and be decommissioned.

However, NYSDEC also stated in its September 16, 2015 letter:

Groundwater monitoring must continue until such time as a discontinuation of the groundwater long-term monitoring program is granted by DEC, or the site is delisted. Absent a proposed alternate sampling schedule from McKesson, the Department expects that the next sampling event will occur in July 2016.

In view of the foregoing, the objective of this monitoring memorandum is to provide an update of groundwater conditions at the Site. This monitoring memorandum provides information about the following:

- July 2016 monitoring activities,
- July 2016 monitoring results,
- Conclusions, and
- Next steps.

JULY 2016 MONITORING ACTIVITIES

The monitoring event consisted of conducting COC monitoring from July 5 through 7, 2016 and hydraulic monitoring on July 8, 2016. Table 1 identifies each of the hydraulic and COC monitoring locations, which are shown on Figure 1. In addition, the presence or absence of non-aqueous phase liquid (NAPL) was

arcadis.com G:\Div11\McKesson\Bear Street\11 Draft Reports and Presentations\Monitoring Memo\July 2016\B0026003_2721611222 Monitoring Memo.docx assessed in the monitoring wells and piezometers included in the monitoring program. During this monitoring event, NAPL was not observed in the monitoring wells, piezometers, or collection sump.

Hydraulic Monitoring

During hydraulic monitoring, groundwater level measurements were obtained at monitoring wells and piezometers that are screened entirely within the sand layer of the shallow hydrogeologic unit and located in and around Areas 1, 2, and 3. Additionally, the Barge Canal surface-water elevation was obtained from measurements taken from a reference point on the Bear Street Bridge, which passes over the canal.

Constituent of Concern Monitoring

The groundwater COCs for the Site are acetone, benzene, toluene, ethylbenzene, xylenes (total), methanol, trichloroethene, aniline, N,N-dimethylaniline, and methylene chloride. TestAmerica Laboratories, Inc. (TestAmerica) in Edison, New Jersey, analyzed the groundwater samples for COCs using United States Environmental Protection Agency (USEPA) Methods 8260C (volatile organic compounds) and 8270D (semivolatile organic compounds), and TestAmerica in Amherst, New York, analyzed the groundwater samples for COCs via USEPA Method 8015D (methanol). TestAmerica is accredited pursuant to the New York State Department of Health Environmental Laboratory Accreditation Program for these analyses. Arcadis validated laboratory analytical results using the Tier III full validation process. Attachment A presents copies of the validated analytical laboratory reports associated with the July 2016 monitoring event.

JULY 2016 MONITORING RESULTS

Hydraulic Monitoring Results

Table 2 presents groundwater level measurements obtained during the July 8, 2016 hydraulic monitoring event, as well as historical measurements obtained since October 2006. Figure 2 depicts a potentiometric surface of the Site's shallow hydrogeologic unit sand layer using the July 8, 2016 dataset. A comparison of the potentiometric surface maps generated during the six post-shutdown process control monitoring events demonstrates that hydraulic conditions have remained consistent following the April 2013 shutdown of the closed loop hydraulic system in Area 3.

When comparing the recent potentiometric surface map (Figure 2) to maps generated (and presented in previous periodic review reports and monitoring memoranda) using groundwater elevation data obtained prior to system shutdown, the following conclusions, as presented in the first monitoring memorandum, dated October 18, 2013 (Arcadis 2013c), remain true:

- The closed depression around the groundwater withdrawal trench is not present.
- The potentiometric surface of the shallow hydrogeologic unit sand layer following the April 2013 system shutdown is generally consistent with the potentiometric surface prior to the 1998 implementation of the closed loop hydraulic system in Area 3.

Constituent of Concern Monitoring Results

Table 3 summarizes COC groundwater analytical results (April 2011 through July 2016), which are also shown on Figures 3 (Areas 1 and 2) and 4 (Area 3).² COC groundwater analytical results are compared to the NYSDEC Groundwater Quality Standards presented in the Technical and Operational Guidance Series 1.1.1 (NYSDEC 1998). The July 2016 COC results are consistent with those obtained following the April 2013 shutdown of the in situ bioremediation treatment system, and those obtained prior to shutdown. Concentrations for most of the COCs either were not detected or were below their respective NYSDEC Class GA Groundwater Quality Standards in each area.

Analytical results for the July 2016 COC groundwater monitoring event are summarized below for each area (Areas 1, 2, and 3), as well as for sentinel and downgradient perimeter monitoring locations.

Area 1

At three of the five monitoring locations in Area 1 (MW-9S, MW-31, and MW-33), four COCs were detected at concentrations 10 times or less above their respective standards (most were less than 3 times a standard).

- Benzene was detected in MW-9S and MW-31 at concentrations of 1.3 parts per billion (ppb) and 9.6 ppb, respectively. The standard for benzene is 1 ppb.
- Ethylbenzene was detected in MW-9S at a concentration of 13 ppb. The standard for ethylbenzene is 5 ppb.
- Xylenes were detected in MW-9S at a concentration of 50 ppb. The standard for xylenes is 5 ppb.
- N,N-dimethylaniline was detected in MW-9S, MW-31, and MW-33 at concentrations of 2.7, 1.3, and 1.1 ppb, respectively. The standard for N,N-dimethylaniline is 1 ppb.

The remaining COCs (acetone, methylene chloride, toluene, TCE, aniline, and methanol) in MW-9S, MW-31, and MW-33 were non-detect or present at a concentration below the respective standard.

At monitoring locations MW-32 and TW-01, all COCs were non-detect (Table 3 and Figure 3).

Area 2

At three of the four monitoring locations in Area 2 (MW-34, TW-02RRR, and MW-36R), three COCs were detected at concentrations 4 times or less above their respective standards.

- Benzene was detected in MW-34 at a concentration of 1.6 ppb. The standard for benzene is 1 ppb.
- Aniline was detected in MW-36R at an estimated concentration of 7.9 ppb. The standard for aniline is 5 ppb.
- N,N-dimethylaniline was detected in MW-34, TW-02RRR, and MW-36R at concentrations of 2.0, 1.4, and 3.4 ppb, respectively. The standard for N,N-dimethylaniline is 1 ppb.

The remaining COCs (acetone, ethylbenzene, methylene chloride, toluene, TCE, xylenes, and methanol) in MW-34, TW-02RRR, and MW-36R were non-detect or present at a concentration below the respective standard.

² Attachment B provides a summary of historical groundwater monitoring data from March 1988 through October 2010.

At monitoring location MW-35, all COCs were non-detect (Table 3 and Figure 3).

Area 3

At three of the five monitoring locations in Area 3 (MW-8SR, MW-27, and MW-28), a maximum of two COCs were detected at concentrations less than 2 times above_their respective standards (Table 3 and Figure 4).

- Benzene was detected in MW-8SR, MW-27, and MW-28 at concentrations of 1.7, 1.2, and 1.1 ppb, respectively. The standard for benzene is 1 ppb.
- N,N-dimethylaniline was detected in MW-8SR and MW-27 at concentrations of 1.1 and 1.2 ppb, respectively. The standard for N,N-dimethylaniline is 1 ppb.

The remaining COCs (acetone, ethylbenzene, methylene chloride, toluene, TCE, xylenes, aniline, and methanol) in MW-8SR, MW-27, and MW-28 were non-detect or present at a concentration below the respective standard.

At monitoring locations MW-29 and MW-30, all COCs were non-detect or below the NYSDEC groundwater quality standards (Table 3 and Figure 4).

Sentinel Wells

COCs were not detected at sentinel wells MW-3S or MW-4S, located downgradient from Area 1 (Table 3 and Figure 3).

Downgradient Perimeter Wells/Piezometers

COCs were not detected in the downgradient perimeter/monitoring locations (MW-17R, MW-18, MW-23I, MW-23S, PZ-4S, and PZ-4D; Table 3 and Figure 4).

Conclusions

The conclusions developed based on review of the July 2016 groundwater data are summarized below:

- COC concentrations detected in July 2016 did not rebound above pre-shutdown COC concentrations.
- COC concentrations were mostly not detected or were below their respective NYSDEC Class GA Groundwater Quality Standard in each area during the July 2016 monitoring event.
- COC concentrations have not migrated beyond the site boundary above NYSDEC Groundwater Quality Standards.

As stated in Section 6.4 (a) of Division of Environmental Remediation-10: Technical Guidance for Site Investigation and Remediation (DER-10) (NYSDEC 2010), "[a] remedial process is considered completed when effectiveness monitoring indicates that the remedy has achieved the remedial action objectives identified by the decision document." The data from the July 2016 groundwater monitoring event underscore that the OU2 remedial action is complete.

NEXT STEPS

As the OU2 remedial activities are complete, McKesson wishes to proceed with site closeout and delisting of the Site from the NYSDEC Registry of Inactive Hazardous Waste Disposal Sites in accordance with DER-10 Section 6.4(a) (NYSDEC 2010) and 6 New York Codes, Rules, and Regulations (NYCRR) Section

arcadis.com

375-2.7(e). The NYSDEC Record of Decision for OU2 stated that the Site will be considered for delisting from the Registry upon completion of the remediation, as demonstrated by the monitoring programs (NYSDEC 1997). Consequently, McKesson will be submitting a Petition to NYSDEC under 6 NYCRR Section 375-2.7(e) to delist the Site. Prior to submission of a Petition, we believe that it will be helpful to meet with you and other involved NYSDEC representatives to review the issues to be addressed in the Petition before McKesson goes forward.

I will call you in the next few weeks to follow up. As always, if you have any questions or require additional information, please do not hesitate to contact me at 315.671.9229.

Sincerely,

Arcadis of New York, Inc.

Munga

Dawn E. Penniman, P.E. Certified Project Manager I

Copies:

Ms. Susan Edwards, NYSDEC (w/out Attachment A) Mr. Harry Warner, NYSDEC (w/out Attachment A) Mr. Richard Jones, NYSDOH (w/out Attachment A) Ms. Charlotte Bethoney, NYSDOH (w/out Attachment A) Margaret A. Sheen, Esq., NYSDEC (w/out Attachment A) Mr. James Fleer, McKesson Corporation (w/out Attachment A) Mr. Douglas Morrison, Bristol-Myers Squibb Company (w/out Attachment A) Glen Stuart, Esq., Morgan, Lewis & Bockius LLP (w/out Attachment A) Christopher Young, P.G., de maximis, inc. (w/out Attachment A) Barry Kogut, Esq., Bond Schoeneck & King PLLC (w/out Attachment A)

Enclosures:

Tables

Table 1	Post-Shutdown Process Control Monitoring Wells and Piezometers
Table 2	Summary of Groundwater Level Measurements, October 2006 through July 2016
Table 3	Summary of Groundwater Monitoring Data, April 2011 through July 2016

Figures

Figure 1	Site Plan
Figure 2	Potentiometric Surface of the Shallow Hydrogeologic Unit Sand Layer – July 8, 2016
Figure 3	Groundwater Monitoring Data Summary for April 2011 – July 2016 Areas 1 & 2

Figure 4 Groundwater Monitoring Data Summary for April 2011 – July 2016 Area 3

Attachments

Attachment A	Validated Analytical Laboratory Reports
Attachment B	Summary of Historical Groundwater Monitoring Data – March 1988 through October 2010

References

- Arcadis. 2013a. January 2013 Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility. January 15.
- Arcadis. 2013b. October 2013 Periodic Review Report, McKesson Envirosystems, Former Bear Street Facility. October 1.
- Arcadis. 2013c. Monitoring Memorandum July 2013 Monitoring Event, McKesson Envirosystems, Former Bear Street Facility. October 18.
- Arcadis. 2014a. Monitoring Memorandum October 2013 Monitoring Event, McKesson Envirosystems, Former Bear Street Facility. January 3.
- Arcadis. 2014b. Monitoring Memorandum January 2014 Monitoring Event, McKesson Envirosystems Site. April 11.
- Arcadis. 2014c. Site Management Plan, NYSDEC Site Number: 7-34-020, McKesson Envirosystems Site. July 31.
- Arcadis. 2014d. Monitoring Memorandum April 2014 Monitoring Event, McKesson Envirosystems Site. September 11.
- Arcadis. 2015a. Monitoring Memorandum October 2014 Monitoring Event, McKesson Envirosystems Site. March 2.
- Arcadis. 2015b. Monitoring Memorandum April 2015 Monitoring Event, McKesson Envirosystems Site. June 11.
- NYSDEC. 1997. Record of Decision for McKesson Envirosystems Inactive Hazardous Waste Disposal Site, OU2. March 19.
- NYSDEC. 1998. Division of Water Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June. Available online at: <u>http://www.dec.ny.gov/docs/water_pdf/togs111.pdf</u>.
- NYSDEC. 2006. 6 NYCRR Part 375: Environmental Remediation Programs, Subparts 375-1 to 375-4 & 375-6. December 14. Available online at: <u>http://www.dec.ny.gov/docs/remediation_hudson_pdf/part375.pdf</u>.

- NYSDEC. 2010. Division of Environmental Remediation-10: Technical Guidance for Site Investigation and Remediation (DER-10). May 3. Available online at: <u>http://www.dec.ny.gov/docs/remediation_hudson_pdf/der10.pdf</u>.
- NYSDEC. 2013. Letter from Payson Long, NYSDEC, to Jean Mescher, McKesson Corporation. RE: Discontinuation of Remedial Processes. April 11.
- NYSDEC. 2015a. Letter from Payson Long, NYSDEC, to James Fleer, McKesson. RE: reclassification of the Site. June 12.
- NYSDEC. 2015b. Letter from Payson Long, NYSDEC, to James Fleer, McKesson. RE: Conditional approval of SMP. July 20.
- NYSDEC. 2015c. Letter from Payson Long, NYSDEC, to James Fleer, McKesson. RE: comments on April 2015 groundwater monitoring event summary. September 16.

TABLES

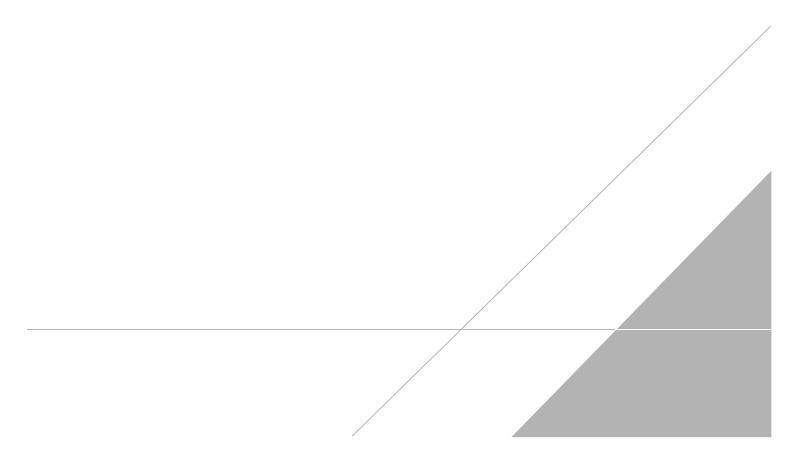


Table 1 Post-Shutdown Process Control Monitoring Wells and Piezometers Monitoring Memorandum McKesson Envirosystems Site Syracuse, New York

Monitoring Location	Purpose of Monitoring
Sentinel	
MW-3S*	С
MW-4S*	С
Area 1	
TW-01 MW-9S	C C
MW-95 MW-31	C C
MW-32	C
MW-32*	C
PZ-F	н
PZ-G	н
PZ-HR	н
PZ-P	Н
PZ-Q	Н
PZ-R	Н
PZ-S	Н
Area 2	
TW-02RRR	С
MW-34	С
MW-35	С
MW-36R*	С
PZ-I	Н
PZ-J	Н
PZ-T	Н
PZ-U	Н
PZ-V	Н
Area 3	
MW-8SR*	С
MW-11S	Н
MW-27*	С
MW-28	С
MW-29*	С
MW-30*	C
PZ-A	н
PZ-B	н
PZ-C	н
PZ-D	Н
PZ-E	н
PZ-K	Н
	n n

See notes on page 2.

Table 1 Post-Shutdown Process Control Monitoring Wells and Piezometers Monitoring Memorandum McKesson Envirosystems Site Syracuse, New York

Monitoring Location	Purpose of Monitoring
Area 3 (cont'd)	
PZ-L	Н
PZ-M	Н
PZ-N	Н
PZ-O	Н
Downgradient Perimeter	
MW-17R	С
MW-18	С
MW-23I	С
MW-23S	C, H
MW-24SR	Н
MW-25S	Н
PZ-4S*	С
PZ-4D*	C, H
PZ-5D	Н
Barge Canal	Н

Notes:

- 1. The table lists monitoring wells and piezometers that are part of the constituent of concern (COC) and/or hydraulic postshutdown process control monitoring program.
- 2. Hydraulic monitoring involves obtaining groundwater level measurements from monitoring wells/piezometers identified in the table and surface-water level measurements from the Barge Canal. The surface-water level of the Barge Canal is measured from a demarcated reference point on the Bear Street Bridge, which crosses over the canal. Groundwater elevation data are used to map potentiometric surface of the shallow hydrogeologic unit sand layer.
- 3. The COCs are acetone, benzene, toluene, ethylbenzene, xylenes (total), methanol, trichloroethene, aniline, N,N-dimethylaniline, and methylene chloride.
- 4. Monitoring well MW-4S and piezometer PZ-4S have been included in the COC monitoring program every third and second monitoring event, respectively; however, both were included in the April 2015 COC monitoring program (the last groundwater monitoring event identified in the July 31, 2014 Site Management Plan prepared by ARCADIS).
- C = COC monitoring.
- H = hydraulic monitoring.
- * = New York State Department of Environmental Conservationapproved the elimination of methanol analysis from the COC groundwater monitoring program (NYSDEC. 2010. Letter from Payson Long, NYSDEC, to David Ulm, ARCADIS. RE: Requested Changes in Remedial Monitoring Program. September 23.).

Table 2 Summary of Groundwater Level Measurements, October 2006 through July 2016 Monitoring Memorandum

McKesson Envirosystems Site Syracuse, New York

	Reference											
Location	Elevation (feet amsl)	10/30/06	6/6/07	11/12/07	3/24/08	8/25/08	3/23/09	9/14/09	4/26/10	10/11/10	4/4/11	10/24/11
Barge Canal ^A	393.39	364.29	362.99	362.06	364.34	363.21	363.54	362.89	362.97	363.49	362.07	363.71
Collection Sump ^B	372.81	363.18	362.26	361.86	363.81	362.14	362.20	362.18	362.18	360.72	359.90	361.33
MW-3S ^B	376.54	369.08		367.60	367.93	365.19	367.32	365.50	365.67	367.95	369.21	
MW-11S	373.50	366.11	364.27	363.88	365.69	363.86	364.88	363.89	364.42	364.30	365.00	364.18
MW-18 ^B	372.57	363.82	362.63	362.32	363.51	362.26	363.16	362.22	362.67	362.87	363.82	
MW-23I ^B	372.77	366.43	365.02	364.74	366.12	364.64	365.69	364.67	365.19	365.38	366.57	
MW-23S	372.61	365.28	362.98	362.56	364.81	362.62	363.50	362.63	362.99	362.71	364.57	362.66
MW-24SR	375.55	366.49	365.21	364.83	366.26	364.73	365.81	364.79	365.32	365.81	366.60	365.63
MW-25S	373.39	365.26	363.32	362.87	364.84	362.88	363.97	362.89	363.34	363.30	364.10	363.17
PZ-4D	376.11	366.64	365.29	364.98	366.39	364.90	365.96	364.94	365.49	366.02	366.74	365.78
PZ-5D	375.58	366.87	365.49	365.19	366.69	365.09	366.21	365.14	365.01	366.09	366.99	366.02
PZ-A	373.94	365.62	363.11	362.72	364.83	362.96	363.56	362.95	362.28	362.35	362.68	362.53
PZ-B	373.92	365.85	363.12	362.62	365.03	362.87	363.64	362.83	362.96	362.22	363.24	362.47
PZ-C	374.85	367.14	365.85	365.30	367.15	365.16	366.71	365.23	366.37	367.11	367.88	366.6
PZ-D	375.12	367.68	365.98	365.40	367.29	365.28	366.81	365.40	366.57	367.17	368.20	366.87
PZ-E	374.12	368.13	365.16	364.07	366.58	364.14	366.82	364.20	364.25	364.16	364.83	364.18
PZ-F	377.06	368.32	366.18	365.76	367.99	365.50	367.41	365.69	366.72	367.10	368.10 ^B	367.04
PZ-G	377.16	368.64	366.28	365.82	368.14	365.94	367.29	367.22	367.32	367.36	368.12	367.17
PZ-HR	376.99	368.31	366.23	365.74	368.00	365.48	367.41	365.63	366.65	367.15	368.00 ^B	367.04
PZ-I	375.15	369.00	366.49	365.92	368.55	365.50	367.97	365.71	367.04	367.49	368.60	367.47
PZ-J	374.89	367.96	366.16	365.82	367.69	365.55	367.20	365.70	366.55	367.05	367.81	366.94
PZ-K	373.19	365.58	363.36	362.91	364.96	363.08	363.80	363.04	363.33	363.34	361.94	362.97
PZ-L	374.62	365.23	362.94	362.63	364.64	362.79	363.39	362.80	363.80	362.36	362.52	362.54
PZ-M	374.35	365.60	363.54	363.11	365.13	363.30	364.00	363.31	363.62	363.04	363.47	363.22
PZ-N	376.94 ^C	367.51	365.76	365.26	367.05	365.09	366.63	365.17	366.22	367.01	367.79	366.62
PZ-O	375.36	365.42	363.22	362.82	365.01	362.91	363.94	362.93	363.35	362.90	363.57	362.94
PZ-P	376.89	368.30	366.31	365.83	368.06	365.58	367.51	365.75	366.76	367.26	368.08	367.15
PZ-Q	377.61	368.61	366.33	365.83	368.23	365.57	367.61	365.77	366.78	367.26	368.13	367.21
PZ-R	377.05	368.51	366.19	365.79	368.20	365.55	367.57	365.73	366.74	367.24	368.10	367.15
PZ-S	378.13	372.48	366.51	365.81	368.21	365.55	367.60	365.74	366.76	367.13	369.67 ^B	367.48
PZ-T	376.25	368.04	366.24	365.84	367.89	365.52	367.37	365.66	366.63	367.12	367.94	367.00
PZ-U	375.35	367.99	366.07	365.80	367.75	365.52	367.25	365.66	366.52	367.05	367.83	366.92
PZ-V	375.78	367.97	366.17	365.78	367.78	365.48	367.24	365.64	366.52	367.04	367.81	366.93

See notes on page 3.

Table 2Summary of Groundwater Level Measurements, October 2006 through July 2016Monitoring MemorandumMcKesson Envirosystems Site

	Reference											
Location	Elevation (feet amsl)	4/9/2012	10/1/2012	4/1/2013	7/18/2013 ^D	10/17/2013 ^D	1/17/2014 ^D	4/14/2014 ^D	10/20/2014 ^D	3/30/2015 ^D	5/14/2015 ^{D,F}	7/8/2016 ^D
Barge Canal ^A	393.39	358.39	360.59	360.74	360.69	360.69	361.38	362.29	360.87	361.21	361.27	360.84
Collection Sump ^B	372.81	360.95	361.70	361.24	364.71	364.84	366.14	366.92	364.73	368.31 ^B		364.29
MW-3S ^B	376.54	366.44	365.15	367.55	366.11	366.62	367.83	368.66	366.70	368.67		365.52
MW-11S	373.50	363.92	363.62	364.42	364.95	365.08	366.08	366.94	365.00	366.95	365.64	364.70
MW-18 ^B	372.57	362.57	362.32	362.85	362.74	363.54	363.57	364.50	365.00	363.84		362.89
MW-23I ^B	372.77	364.99	364.73	365.29	365.23	365.33	366.02	366.86	365.32	359.26		365.08
MW-23S	372.61	362.23	362.29	362.88	364.20	364.37	365.30	366.06	364.14	366.95	364.91	363.95
MW-24SR	375.55	365.09	364.84	365.48	365.39	365.46	366.25	367.09	365.40 ^E	366.48	366.07	365.29
MW-25S	373.39	362.81	362.61	363.48	364.08	364.23	365.14	365.89	364.22	366.09	364.42	363.78
PZ-4D	376.11	365.24	364.94	365.59	365.47	365.59	366.34	367.06	365.60	366.51	366.13	365.35
PZ-5D	375.58	365.48	365.16	365.84	365.67	365.81	366.57	367.42	365.78	366.78	366.33	365.56
PZ-A	373.94	363.24	362.54	362.68	364.78	364.92	366.08	366.87	364.84	367.79	365.39	364.45
PZ-B	373.92	362.14	362.35	362.64	364.77	364.88	366.08	366.86	364.79	368.01	365.32	364.35
PZ-C	374.85	366.10	365.41	366.76	365.75	365.84	366.65	367.50	365.78	367.16	366.26	365.44
PZ-D	375.12	366.39	365.65	367.07	365.87	365.97	366.82	367.66	365.90	367.31	366.39	365.58
PZ-E	374.12	363.67	363.35	364.38	365.12	365.22	366.44	367.22	365.21	368.66	365.64	364.70
PZ-F	377.06	366.46	365.44	366.91	366.52	366.57	367.61	368.66	366.51	368.33	366.96	365.96
PZ-G	377.16	366.53	365.48	367.04	366.67	366.70	367.74	368.74	366.54	368.39	366.99	365.99
PZ-HR	376.99	366.40	365.38	366.90	366.46	366.50	367.61	368.60	366.47	368.32	366.95	365.89
PZ-I	375.15	366.77	365.36	367.52	366.60	366.70	368.20	369.15	366.80	368.94	367.29	365.92
PZ-J	374.89	366.30	365.55	366.74	366.39	366.48	367.50	368.37	366.48	368.06	366.98	365.99
PZ-K	373.19	362.65	362.75	363.03	364.79	364.96	365.97	366.77	364.86	367.18	365.43	364.38
PZ-L	374.62	362.16	362.42	362.60	364.61	364.77	365.90	366.71	364.69	367.51	365.24	364.29
PZ-M	374.35	362.86	362.87	363.28	364.93	364.96	366.18	366.98	364.98	367.54	365.56	364.62
PZ-N	376.94 ^C	366.06	365.33	366.72	365.67	365.81	366.57	367.46	365.73	367.14	366.20	365.39
PZ-O	375.36	362.61	362.52	363.14	364.50	364.64	365.72	366.48	364.56	366.56	365.16	364.10
PZ-P	376.89	366.49	365.45	366.93 ^B	366.57	366.63	367.69	368.69	366.58	368.34	367.04	366.03
PZ-Q	377.61	366.52	365.44	367.04	366.59	366.65	367.76	368.80	366.56	368.46	367.04	366.03
PZ-R	377.05	366.48	365.45	367.03	366.54	366.59	367.74	368.75	366.55	368.43	367.02	365.98
PZ-S	378.13	366.51	365.45	367.34 ^B	366.58	366.61	368.27	369.73	366.76	369.01	367.14	366.03
PZ-T	376.25	366.32	365.41	366.86	366.42	366.49	367.64	368.55	366.50	368.20	366.97	365.94
PZ-U	375.35	366.29	365.44	366.77	366.38	366.47	367.55	368.42	366.45	368.13	366.96	365.95
PZ-V	375.78	366.28	365.40	366.77	366.37	366.46	367.53	368.44	366.43	368.18	366.93	365.92

See notes on page 3.

Table 2 Summary of Groundwater Level Measurements, October 2006 through July 2016 Monitoring Memorandum McKesson Envirosystems Site Syracuse, New York

Superscript Notes:

- ^A = Surface-water level measurements are obtained from the Barge Canal. The surface-water level is measured from a demarcated reference point on the Bear Street Bridge, which crosses over the canal.
- ^B = Data not used in potentiometric surface mapping of the shallow hydrogeologic unit sand layer.
- ^C = The reference elevation for PZ-N was 376.02 feet amsl prior to November 16. 2000. The new reference elevation is 376.94 feet amsl.
- ^D = Groundwater elevations reflect hvdrogeologic conditions after the April 2013 shutdown of the in-situ bioremediation treatment and closed loop hydraulic systems.
- ^E = Monitoring well MW-24SR was not accessible on October 20, 2014 and was monitored on October 21, 2014.
- F = A second round of hydraulic gauging was performed on May 14, 2015 due to groundwater mounding observed in Area 3 during the March 30, 2015 gauging event. The groundwater mounding was caused by saturated conditions at the Site from recent snow melt.

Abbreviations:

-- = not measured amsl = above mean sea level (National Geodetic Vertical Datum of 1929)

			Elevation																						
	Sampling		amsl)				Methylene					N,N-Dimethyl-													
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	Ethylbenzene	Chloride	Toluene	Trichloroethene	Xylene ^A	Aniline	aniline	Methanol												
NYSDEC Groundwater Qu	ality Standards	(TOGS 1.1.	1)	50	1	5	5	5	5	5	5	1	50 ^G												
MW-3S	4/11	365.1	350.1	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.3 J	<1.1 J	NA												
/W-3S /W-4S	10/11			<10	<1.0	<1.0	<1.0	0.35 J	<1.0	<3.0	<5.0	<1.0	NA												
	4/12			<2.7	<0.080	<0.10	<0.18	<0.15	<0.090	<0.36	<1.8	<0.21	NA												
	10/12			<10	0.27 J	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<0.61 J	NA												
	4/13			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.2	<1.0	NA												
	7/13			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	NA												
	10/13			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<1.0	NA												
	1/14			<10 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	NA												
	4/14			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	NA												
	10/14			<10 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	NA												
	4/15			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	NA												
	7/16			<5.0 J	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<10	<1.0	NA												
MW-4S	4/12	365.5	350.5	<2.7	<0.080	<0.10	<0.18	<0.15	<0.090	<0.36	<1.8	<0.21	NA												
WW-4S WW-8SR ^B	7/13			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	NA												
	4/14			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	NA												
	4/15			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	NA												
8	7/16			<5.0 J	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<10	<1.0	NA												
MW-8SR [▶]	4/11	362.7	352.7	5.9 J [4.3 J]	3.2 [3.2]	10 [8.8]	<1.0 [<1.0]	2.8 [2.6]	<1.0 [<1.0]	32 [31]	57 J [64]	1.5 [1.6]	NA												
	10/11			<10 [<10]	1.9 [2.0]	2.0 [2.1]	<1.0 [<1.0]	1.3 [1.3]	<1.0 [<1.0]	14 [15]	<5.0 [<5.0]	2.6 [<1.0]	NA												
	4/12			8.7 J [6.7 J]	1.2 [1.7]	2.3 [3.3]	<0.18 [<0.18]	0.76 J [1.2]	<0.090 [<0.090]	9.5 [15]	<1.9 [<1.9]	2.4 [2.6]	NA												
	10/12			<10 [<10]	0.69 J [0.70]	0.16 J [0.14 J]	<1.0 [<1.0]	0.36 J [0.39 J]	<1.0 [<1.0]	1.4 J [1.2 J]	<5.3 [<5.0]	2.3 [2.7]	NA												
	4/13			<10 [<10]	1.1 [1.1]	0.32 J [0.28 J]	<1.0 [<1.0]	0.67 J [0.68 J]	<1.0 [<1.0]	7.7 [8.0]	<5.1 [<5.1]	1.7 [1.4]	NA												
	7/13			5.1 J [8.7 J]	1.9 [1.8]	0.17 J [0.18 J]	<1.0 [<1.0]	1.0 [0.96J]	<1.0 [<1.0]	11 [9.4]	2.5 [2.5]	0.89 J [0.96 J]													
	10/13				<10	2.9	0.21 J	<1.0	1.3	<1.0	13	2.6 J	0.83 J	NA											
	1/14				<10 J [<10 J]	2.4 [2.6]	0.19 J [<1.0]	<1.0 [<1.0]	0.94 J [1.1]	<1.0 [<1.0]	11 [13]	5.1 J [<10]	2.0 [1.7]	NA											
	4/14				1								<10 [<10]	3.2 [3.3]	0.25 J [0.27 J]	<1.0 [<1.0]	1.2 [1.1]	<1.0 [<1.0]	13 [13]	3.9 J [5.6 J]	1.4 [1.9]	NA			
	10/14			18 J [38 J]	1.7 [1.9]	0.16 J [0.18 J]	0.27 J [<0.1]	1.2 [1.3]	<1.0 [<1.0]	5.9 [6.4]	3.1 J [2.3 J]	1.8 [1.3]	NA												
	4/15			15 [8.4 J]	3.5 [3.7]	<1.0 [0.36 J]	<1.0 [<1.0]	1.3 [1.2]	<1.0 [<1.0]	19 [18]	2.7 J [3.6 J]	2.6 [2.7]	NA												
	7/16	005.0	050	<5.0 J [12 J]	1.7 [1.6]	<1.0 [<1.0]	<1.0 [<1.0]	0.73 J [0.71 J]	<1.0 [<1.0]	4.6 [4.2]	2.0 J [1.4 J]	1.1 [1.0 J]	NA												
	4/11	365.6	356	<10	0.91 J	29	<1.0	2.6	<1.0	89	<5.3	5.4	<500												
(Replaced by MW-9S)	10/11			<10	1.2	4.2	<1.0	1.8	<1.0	41 J	<5.0	7.6	<500												
	4/12			7.5 J	1.1	18	<0.18	1.5	<0.090	67	<1.9	6.3	<500												
	10/12			<10 12 J	1.9 J	4.7	<1.0	3.2	<1.0 <1.0	84	<5.0	3.9	NA												
	4/13 7/13			12 J <10	0.95 J	19	<1.0 <1.0	1.6 2.0	<1.0	62 45	<5.1 <1.0	5.9	<1,000 <1.000												
	10/13			<10	1.9 2.9	12 10	<1.0	2.0	<1.0	45 60	<1.0	2.0 5.2	<1,000												
	1/13			<5.0 <10 J	2.9	10	<1.0	2.6	<1.0	54	<5.0	7.2	<500												
	4/14			<10 J	1.0	13	<1.0	2.2	<1.0	74	<10	5.7	<500												
	10/14			<10 J	1.5	8.8	<1.0	2.2	0.82 J	74	<10	5.9	<500												
	4/15			<10 J	1.5	22	<1.0	2.2	<1.0	72	<10	6.5	<500												
	7/16			<5.0 J	1.4	13	<1.0	1.9	<1.0	50	0.66 J	2.7	<1,000												
M/0/_17 ^D	4/11	365.7	356.1	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.3 J	<1.1 J	<500												
	10/11	305.7	300.1	<10	<1.0	<1.0	<1.0	0.19 J	<1.0	<3.0 J	<5.0	<1.0	<500												
(Replaced by MW-17R)	4/12			<10	0.22 J	<0.10	<0.18	<0.15	<0.090	<0.36	<1.8	<0.21	<500												
	10/12			<10	0.55 J	<1.0	<1.0	<1.0	<1.0	<3.0	<5.1	<1.0	<500 NA												
	4/13			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.1	<1.0	<1,000												
	7/13	1		<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<1.2	<1.2	<1,000												
	10/13	1		<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.4	<1.1	<500												
	1/14			<10 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	<500												
	4/14	1		<10 5	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	2,700												
	10/14			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	<500												
	10/14									F	F					-10									
	4/15			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	<500												

See Notes on Page 7

	Sampling	Screen E (feet)	Elevation				Methylene					N,N-Dimethyl-			
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	Ethylbenzene	Chloride	Toluene	Trichloroethene	Xylene ^A	Aniline	aniline	Methanol		
NYSDEC Groundwater Qu				50	1	5	5	5	5	5	5	1	50 ^G		
MW-18	4/11	325.15	316.15	<10 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.3	<1.1	<500		
10100-10	10/11	020.10	010.10	<10	<1.0	<1.0	<1.0	0.23 J	<1.0	<3.0 J	<5.0	<1.0	<500		
	4/12			<2.7	<0.080	<0.10	<0.18	0.27 J	<0.090	<0.36	<1.8	<0.21	<500		
	10/12			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.2	<1.0	NA		
	4/13			<10	<1.0	<1.0	<1.0	0.60 J	<1.0	<3.0	<4.8	<0.95	<1,000		
	7/13			<10	<1.0	<1.0	<1.0	0.25 J	<1.0	<3.0	<1.0	<1.0	<1,000		
	10/13			<10	<1.0	<1.0	<1.0	0.19 J	<1.0	<3.0	<5.4	<1.1	<500		
	1/14			<10 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	<500		
	4/14			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	<500		
	10/14			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	<500		
	4/15			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	<500		
	7/16			<5.0 J	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<10	<1.0	<1,000		
MW-23S	4/11	364.1	354.1	<10 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.3	<1.1	<500		
	10/11			<10	<1.0	<1.0	<1.0	0.31 J	<1.0	<3.0	<5.0	<1.0	<500		
	4/12			<2.7	<0.080	<0.10	<0.18	<0.15	<0.090	<0.36	<1.8	<0.21	<500		
	10/12			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.1	<1.0	NA		
	4/13			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.1	<1.0	<1,000		
	7/13			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<1,000		
	10/13			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.2	<1.0	<500		
	1/14				<10 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	<500	
	4/14						<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0
	10/14			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	<500 J		
	4/15				<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	<500	
	7/16			<5.0 J	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<10	<1.0	<1,000		
MW-23I	4/11	341.2	336.2	<10 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.3	<1.1	<500		
	10/11			<10	<1.0	<1.0	<1.0	0.29 J	<1.0	<3.0	<5.0	<1.0	<500		
	4/12			<2.7	<0.080	<0.10	<0.18	<0.15	<0.090	<0.36	<1.8	<0.21	<500		
	10/12			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.6	<1.1	NA		
	4/13			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<4.8	<9.5	<1,000		
	7/13	-		<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<1,000		
	10/13			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<1.0	<500		
	1/14	-		<10 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	<500		
	4/14			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	<500		
	10/14			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	<500		
	4/15			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	<500		
MW-27	7/16	362.5	354.5	<5.0 J 3.9 J	<1.0 3.1	<1.0	<1.0 <1.0	<1.0 5.7	<1.0 <1.0	<2.0	<10 1,000	<1.0 <11	<1,000 NA		
11110-21	10/11	302.3	304.0	<u>3.9 J</u> <10	2.1	5.1 2.2	<1.0	1.3	<1.0	9.1 3.1	36	2.7	NA		
	4/12	4		<10	1.5	1.4	<0.18	0.45 J	<0.090	3.1 2.2 J	<1.9	2.7	NA		
	10/12	4		<2.7	1.5	1.4 <1.0	<1.0	0.45 J 0.22 J	<0.090	<3.0	<1.9	2.7	NA		
	4/13	1		<10	1.1	0.88 J	<1.0	0.22 J 0.34 J	<1.0	1.4 J	11	2.2	NA		
	7/13	1		<10	2.0	<1.0	<1.0	0.60 J	<1.0	<3.0	1.5	1.1	<1,000		
	10/13	1		<10	2.6	<1.0	<1.0	0.00 J	<1.0	3.9	<5.0	0.73 J	NA		
	1/14	1		<10 J	0.89 J	<1.0	<1.0	0.33 J	<1.0	0.22 J	<12	0.75 J	NA		
	4/14	1		<10.0	1.0	<1.0	<1.0	0.33 J	<1.0	0.92 J	0.60 J	0.48 J	NA		
	10/14	1		<10	2.0	0.12 J	<1.0	1.2	<1.0	3.5	16	1.4	NA		
	4/15	1		<10	2.4	0.98 J	<1.0	1.9	<1.0	9.5	20	1.0 J	NA		
	7/16	1		7.5 J	1.2	<1.0	<1.0	0.43 J	<1.0	2.4	2.4 J	1.2	NA		

	Compling	Screen E (feet	Elevation				Mothylono					N,N-Dimethyl-	
Monitoring Well	Sampling Date	Top	Bottom	Acetone	Benzene	Ethylbenzene	Methylene Chloride	Toluene	Trichloroethene	Xylene ^A	Aniline	aniline	Methanol
								5			5		50 ^G
NYSDEC Groundwater Qua			/	50	1	5	5		5	5	-	1	
MW-28	4/11	363.6	355.6	4.3 J	2.3	<1.0	<1.0 B	0.11 J	<1.0	<3.0	3.9 J	0.75 J	<500
	10/11 4/12			<10 <2.7	1.8 1.4	<1.0 <0.10	<1.0 <0.18	0.38 J 0.22 J	<1.0 <0.090	<3.0 <0.36	<5.0 <1.8	<1.0 0.48 J	<500 <500
	10/12			<10	1.4	<1.0	<1.0	0.22 J 0.16 J	<1.0	<3.0	<5.0	0.48 J 0.62 J	<500 NA
	4/13			<10	1.9	<1.0	<1.0	<1.0	<1.0	<3.0	<5.2	0.32 J	410 J
	7/13			<10	1.7	<1.0	<1.0	0.22 J	<1.0	<3.0	<1.0	0.35 J	<1,000
	10/13			<10	1.7	<1.0	<1.0	0.49 J	<1.0	0.68 J	<5.0	0.33 J	<500
	1/14			<10 J	1.2	<1.0	<1.0	0.22 J	<1.0	<3.0	<10	0.75 J	<500
	4/14			13	1.7	<1.0	<1.0	0.29 J	<1.0	<3.0	<10	0.72 J	<500
	10/14			51	1.3	<1.0	0.41 J	1.1	<1.0	0.90 J	1.2 J	1.3	<500
	4/15			7.6 J	1.6	<1.0	<1.0	0.39 J	<1.0	0.75 J	1.2 J	1.3	<500
	7/16			<5.0 J	1.1	<1.0	<1.0	0.41 J	<1.0	0.50 J	0.94 J	<1.0	<1,000
MW-29	4/11	362.9	345.9	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.3 J	<1.1 J	NA
	10/11			<10	<1.0	<1.0	<1.0	0.22 J	<1.0	<3.0 J	<5.0	0.22 J	NA
	4/12			<2.7	<0.080	<0.10	<0.18	<0.15	<0.090	<0.36	<1.8	<0.21	NA
	10/12			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.1	<1.0	NA
	4/13			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.1	<1.0	NA
	7/13			<10	0.26 J	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	NA
	10/13			<10	0.32 J	<1.0	<1.0	<1.0	<1.0	<3.0	<5.2	<1.0	NA
	1/14			<10 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<11	<1.1	NA
	4/14			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	NA
	10/14 ^F			790,000 D	<500 D	<500 D	<500 D	<500 D	<500 D	<1,500 D	<10	<1.0	NA
	12/14 ^F			370 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	NA	NA	NA
	4/15 ^F				12	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<12	0.66 J
	7/16 ^F			30 J	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<11	<1.1	NA
MW-30	4/11	363.5	355.5	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.3 J	<1.1 J	NA
	10/11			<10	<1.0	<1.0	<1.0	0.18 J	<1.0	<3.0 J	<5.0	<1.0	NA
	4/12			<2.7	<0.080	<0.10	<0.18	<0.15	<0.090	<0.36	<1.8	<0.21	NA
	10/12			<10	0.099 J	<1.0	<1.0	<1.0	<1.0	<3.0	<5.3	<1.1	NA
	4/13			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.2	<1.0	NA
	7/13			<10	0.20 J	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0	0.30 J	NA
	10/13			<10	0.29 J	<1.0	<1.0	<1.0	<1.0	<3.0	<5.2	0.85 J	NA
	1/14			<10 J	0.19 J	<1.0	<1.0	<1.0	<1.0	0.14 J	<11	<1.1	NA
	4/14			<10	0.37 J	<1.0	<1.0	<1.0	<1.0	<3.0	<10	0.43 J	NA
	10/14			<10	0.18 J	<1.0	<1.0	<1.0	<1.0	0.15 J	<10	1.5	NA
	4/15			<10	0.24 J	<1.0	<1.0	<1.0	<1.0	<3.0	<11	2.0	NA
N/N/ 04	7/16	202 7	255.4	<5.0 J	0.78 J	<1.0	<1.0	<1.0	<1.0	<2.0	<10	<1.0	NA
MW-31	4/11	363.7	355.4	<10	8.3 5.7	<1.0	<1.0 <1.0	0.77 J 0.62 J	<1.0	2.5 J	<5.3	2.3 3.5	<500 <500
	10/11 4/12			<10 6.5 J	5.7 6.8	<1.0	<1.0 <0.18	0.62 J 0.65 J	<1.0 <0.090	1.5 J 2.7 J	<5.0 <1.9	3.5	<500 <500
	4/12			6.5 J <10	6.8 6.3 J	0.16 J	<0.18 <1.0	0.65 J 0.44 J	<0.090	2.7 J 2.3 J	<1.9	2.1 0.90 J	<500 NA
	4/13			<10	12	0.16 J	<1.0	1.3	<1.0	5.6	<5.0	1.1	<1.000
	7/13			<10	11	<1.0	<1.0	1.3	<1.0	5.1	0.72 J	1.1	<1,000
	10/13			<10	11	0.15 J	<1.0	1.4	<1.0	6.1	<5.2	2.2	<500
	1/14			<10 J	8.2	<1.0	<1.0	1.4	<1.0	6.3	<10	2.2	<500 NA
	4/14			<10 3	7.5	0.22 J	<1.0	0.93 J	<1.0	4.6	0.75 J	1.9	<500
	10/14			7.1 J	6.5	<1.0	<1.0	1.4	<1.0	4.5	1.1 J	2.2	<500
	3/15			<10 J	9.1	<1.0	<1.0	1.3	<1.0	8.9	0.52 J	1.6	<500
	7/16			13 J	9.6	<1.0	<1.0	1.1	<1.0	4.8	<10	1.3	<1,000

See Notes on Page 7

		Screen E	Elevation										
	Sampling	(feet a	amsl)				Methylene					N,N-Dimethyl-	
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	Ethylbenzene	Chloride	Toluene	Trichloroethene	Xylene ^A	Aniline	aniline	Methanol
NYSDEC Groundwater Qua	ality Standards	(TOGS 1.1.1	1)	50	1	5	5	5	5	5	5	1	50 ^G
MW-32	4/11	364	356	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.3	<1.1	<500
	10/11			<10	<1.0	<1.0	<1.0	0.19 J	<1.0	<3.0 J	<5.0	1.5	<500
	4/12			<2.7	<0.080	<0.10	<0.18	<0.15	<0.090	<0.36	<1.8	1.1	<500
	10/12			<10	<1.0 J	<1.0	<1.0	<1.0	<1.0	<3.0	<5.1	2.2	NA
	4/13			<10	0.098 J	<1.0	<1.0	<1.0	<1.0	<3.0	<5.1	0.91 J	<1,000
	7/13			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0	0.82 J	<1,000
	10/13			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	1.2	<500
	1/14	-		<10 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	0.85 J	<500
	4/14	-		<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	1.1	<500
	10/14			<10 J	0.10 J	<1.0	<1.0	0.20 J	<1.0	<3.0	<10	1.5	<500
	3/15			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<11	1.1	<500
MW-33	7/16 4/11	344.1	356.1	<5.0 <10	<1.0 0.79 J	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 J <1.0	<2.0 <3.0	<10 <5.3	<1.0 1.9	<1,000
11110-33	4/11 10/11	344.1	300.1	<10	0.79 J 0.58 J	<1.0	<1.0	<1.0 0.12 J	<1.0	<3.0	<5.3 <5.3	1.9	NA NA
	4/12	4		<10	0.58 J 0.11 J	<0.10	<0.18	<0.12 J	<0.090	< 3.0	<5.3	1.9	NA NA
	10/12			<10	0.33 J	<1.0	<1.0	<1.0	<1.0	<3.0	<5.1	2.1	NA
	4/13			<10	1.1	<1.0	<1.0	<1.0	<1.0	<3.0	<4.8 J	2.1 J	NA
	7/13			<10	0.46 J	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0	0.96 J	<1,000
	10/13			<10	1.1	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	0.69 J	NA
	1/14	<u> </u>		<10 J	0.69 J	<1.0	<1.0	<1.0	<1.0	<3.0	<10	1.7	NA
	4/14			<10	1.1	<1.0	<1.0	<1.0	<1.0	<3.0	0.32 J	2.3	NA
	10/14			<10 J	0.45 J	<1.0	<1.0	<1.0	<1.0	<3.0	<10	1.3	NA
	4/15			<10	0.57 J	<1.0	<1.0	<1.0	<1.0	<3.0	<11	2.2	NA
	7/16			<5.0 J	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<10	1.1	NA
MW-34	4/11	362.7	354.7	16	1.7	<1.0	<1.0	0.74 J	<1.0	2.0 J	10	2.7	<500
	10/11			350	1.2	<1.0	<1.0	0.71 J	<1.0	0.90 J	<5.6	2.5	<500
	4/12			37 J	1.3	<0.10	<0.18	0.59 J	<0.090	1.4 J	2.1 J	2.4	<500
	10/12			61	1.6	<1.0	<1.0	0.78 J	<1.0	2.2 J	<5.2	2.7	NA
	4/13			26 J	1.3	<1.0	<1.0	0.60 J	<1.0	2.3 J	<4.8	1.7	<1,000
	7/13			32	1.3	<1.0	<1.0	0.66 J	<1.0	2.0 J	0.56 J	0.92 J	NA
	10/13			15	1.2	<1	<1.0	0.69 J	0.13 J	2.2 J	<5.0	1.3	<500
	1/14			15 J	0.91 J	<1.0	<1.0	0.44 J	<1.0	1.3 J	<10	1.9	<500
	4/14			57	1.4	0.11 J	<1.0	0.62 J	<1.0	3.6	2.6 J	1.6	<500
	10/14	-		31 J	1.4	<1.0	<1.0	0.75 J	<1.0	1.9 J	0.77 J	1.9	<500
	3/15			32	1.5	<1.0	<1.0	0.94 J	<1.0	3.3	<10	2.7	<500
MM/ 25	7/16 4/11	363	355	22 <10	1.6 <1.0	<1.0 <1.0	<1.0 <1.0	0.75 J <1.0	<1.0 J <1.0	3.5 <3.0	0.95 J <5.6	2.0 <1.1	<1,000 <500
MW-35	4/11 10/11	303	300	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.6 <5.1	<1.1	<500
	4/12	4		14 J	<0.080	<0.10	<0.18	<0.15	<0.090	<0.36	<1.8	<0.21	<500
	10/12	{		<36 B	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<1.0	 NA
	4/13	1		<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<1.0	470 J
	7/13	1		4.2 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0 J	<1.0	<1,000
	10/13	1		<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.2 J	<1.0	<500
	1/14	1		<10 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	<500
	4/14	1		<10 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	1.6	<500
	10/14	1		<10 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	<500
	4/15	1		<10	<1.0	<1.0	<1.0	0.44 J	<1.0	<3.0	<10	<1.0	<500
1	7/16	1		<5.0	<1.0	<1.0	<1.0	<1.0	<1.0 J	<2.0	<10	<1.0	<1,000

See Notes on Page 7

	Sampling	Screen E (feet a					Methylene					N,N-Dimethyl-										
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	Ethylbenzene	Chloride	Toluene	Trichloroethene	Xylene ^A	Aniline	aniline	Methanol									
NYSDEC Groundwater Qua				50	1	5	5	5	5	5	5	1	50 ^G									
MW-36 ^E	,	363.6	355.6	<10	4.3	<1.0	<1.0	0.95 J	-	4.4	310	4.0										
(Replaced by MW-36R)	4/11 10/11	303.0	355.0	<10	4.3	<1.0	<1.0	0.95 J	<1.0 <1.0	4.4 1.4 J	92	4.0	NA NA									
(Replaced by WW-36R)	12/11			NA	NA	NA NA	NA	0.86 J NA	NA NA	NA	120	NA	NA									
	4/12			6.3 J	1.6	0.16 J	<0.18	0.45 J	<0.090	1.9 J	120	4.1	NA									
	10/12			<10	1.5 J	<1.0	<1.0	0.54 J	<1.0	2.2 J	10	3.1	NA									
	4/13			<10	1.8	0.14 J	<1.0	0.53 J	<1.0	2.9 J	150	4.0	NA									
	7/13			<10	1.4	0.11 J	<1.0	0.46 J	<1.0	1.7 J	97	2.0	<1,000									
	10/13			<10	1.3	<1.0	<1.0	0.45 J	<1.0	1.7 J	110	1.9	NA									
	1/14			<10 J	1.2	<1.0	<1.0	0.42 J	<1.0	1.4 J	180	4.1	NA									
	4/14			5.5 J	1.1	0.12 J	<1.0	0.42 J	<1.0	1.6 J	140	3.4	NA									
	10/14			<10 J	0.62 J	<1.0	<1.0	0.32 J	<1.0	0.60 J	74	3.3	NA									
	3/15			<10	0.85 J	<1.0	<1.0	0.42 J	<1.0	0.88 J	25	3.8	NA									
	7/16			17 J	0.48 J	<1.0	<1.0	0.41 J	<1.0	0.46 J	7.9 J	3.4	NA									
TW-01	4/11	365.1	355.4	<10	0.21 J	<1.0	<1.0	<1.0	<1.0	<3.0	<5.3	<1.1	<500									
	10/11			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0 J	<5.6	1.6	<500									
	4/12			<2.7	0.11 J	<0.10	<0.18	<0.15	<0.090	< 0.36	<1.8	1.7	<500									
	10/12			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.2	1.9	NA									
	4/13			<10	0.090 J	<1.0	<1.0	<1.0	<1.0	<3.0	<5.2	0.98 J	<1,000									
	7/13				<10	0.11 J	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0	1.0	<1,000								
	10/13	-				<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	1.1	<500							
	1/14 4/14						<10 J	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<3.0 <3.0	<10 <10	0.98 J	<500 <500						
	10/14														<10 <10 J	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<3.0 0.19 J	<10
	3/15															<10 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0
	7/16			<5.0	<1.0	<1.0	<1.0	<1.0	<1.0 J	<2.0	<10	<1.0	<1,000									
TW-02RR ^{B,E}	4/11	363.3	353.3	<10 [<10]	2.1 [2.0]	1.2 [1.3]	<1.0 [<1.0]	0.74 J [0.75 J]	<1.0 [<1.0]	5.2 [5.3]	1.9 J [2.1 J]	3.4 [3.3]	<500 [<500]									
(Replaced by TW-02RRR)	10/11	303.5	555.5	<10 [<10]	1.2 [1.1]	0.67 J [0.69 J]	<1.0 [<1.0]	0.53 J [0.48 J]	<1.0 [<1.0]	1.5 J [1.4 J]	1,300 D [1,500 D]	5.5 [6.2]	<500 [<500]									
	12/11			NA	NA	NA	NA	NA	NA	NA	1,400	NA	NA									
	4/12			15 J [13 J]	1.6 [1.5]	0.73 J [0.76 J]	<0.18 [<0.18]	0.51 J [0.48 J]	<0.090 [<0.090]	1.6 J [1.6 J]	1,400 J [1,600 J]	<2.2 J [<2.2 J]	<500 [<500]									
	10/12			<10 [<10]	1.1 J [0.98 J]	0.29 J [0.27 J]	<1.0 [<1.0]	0.26 J [0.27 J]	<1.0 [<1.0]	0.91 J [0.89 J]	<5.2 [3.2 J]	2.2 [1.9]	NA									
	4/13			<10 [<10]	1.4 [1.3]	0.60 J [0.64 J]	<1.0 [<1.0]	0.36 J [0.38 J]	<1.0 [<1.0]	1.5 J [1.5 J]	620 [700]	3.5 J [3.4 J]	<1,000 [<1,000]									
	7/13			<10 [<10]	0.91 J [0.91 J]	0.25 J [0.26 J]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 J [14 J]	0.72 J [0.70 J]	150 [170]	1.7 [1.8]	<1,000 [<1,000]									
	10/13			<10 [<10]	0.60 J [0.60 J]	<1.0 [0.15 J]	<1.0 [<1.0]	0.20 J [0.17 J]	0.15 J [0.11 J]	<3.0 [<3.0]	90 [72]	2.1 [1.4]	<500 [<500]									
	1/14			<10 J [<10 J]	1.1 [1.1]	0.27 J [0.33 J]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	0.69 J [0.77 J]	660 [750 D]	1.8 J [3.7]	<500 [<500]									
	4/14			8.0 J [10]	1.2 [1.2]	0.51 J [0.44 J]	<1.0 [<1.0]	0.18 J [0.17 J]	<1.0 [<1.0]	1.0 J [0.96 J]	1,300 J [1,700 J]	2.8 J [3.5 J]	<500 [<500]									
	10/14			<10 J [<10 J]	1.3 [0.88 J]	0.18 J [0.12 J]	<1.0 [<1.0]	0.42 J [0.26 J]	<1.0 [<1.0]	1.2 J [0.46 J]	3.8 J [3.1 J]	2.8 [2.4]	<500 [<500]									
	3/15			<10 [<10]	1.1 [0.99 J]	0.31 J [0.43 J]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	0.81 J [0.75 J]	170 [150]	2.2 [1.7]	<500 [<500]									
	7/16			<5.0 [<5.0]	0.68 J [0.70 J]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 J [<1.0 J]	0.43 J [0.49 J]	<10 [<10]	1.4 [<1.0]	<1,000 [<1,000]									
PZ-4D	4/11	350.8	345.9	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.3	<1.1	NA									
	4/12			<2.7	<0.080	<0.10	<0.18	0.23 J	<0.090	< 0.36	<1.8	<0.21	NA									
	4/13			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<4.8	<0.95	NA									
	7/13			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	NA									
	10/13			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.2	<1.0	NA									
	1/14			<10 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	NA									
	4/14 10/14			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	NA									
	10/14 4/15			<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0	<10 <10	<1.0 <1.0	NA NA									
-																						

			levation										
	Sampling		amsl)				Methylene					N,N-Dimethyl-	
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	Ethylbenzene	Chloride	Toluene	Trichloroethene	Xylene ^A	Aniline	aniline	Methanol
NYSDEC Groundwater Quality Standards (TOGS 1.1.1)			50	1	5	5	5	5	5	5	1	50 ^G	
PZ-4S	4/11	362.79	357.88	<10 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.3	<1.1	NA
	4/12			<2.7	<0.080	<0.10	<0.18	<0.15	<0.090	<0.36	<1.8	<0.21	NA
	4/13			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.2	<1.0	NA
	7/13			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	NA
	1/14			<10 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10	<1.0	NA
	10/14			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<11	<1.1	NA
	4/15			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<10 J	<1.0 J	NA
	7/16]		<5.0 J	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<10	<1.0	NA

See Notes on Page 7

Table 3

Summary of Groundwater Monitoring Data, April 2011 through July 2016 Monitoring Memorandum McKesson Envirosystems Site Syracuse, New York

General Notes:

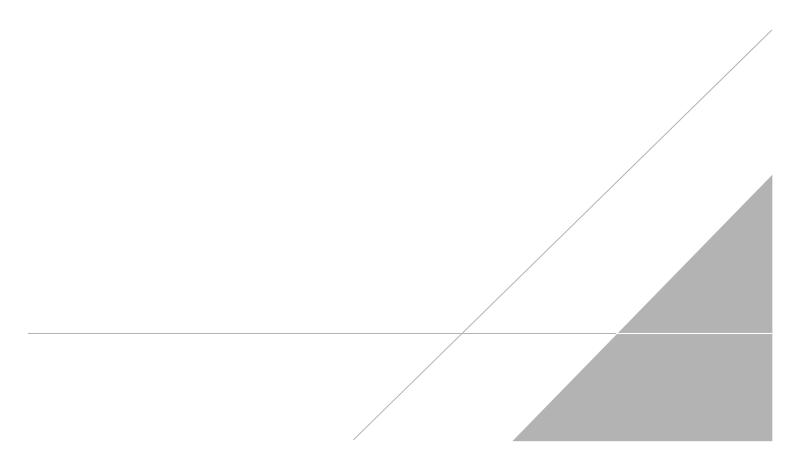
- 1. Concentrations are presented in micrograms per liter, which is equivalent to parts per billion (ppb).
- 2. Compounds detected are indicated by bold-faced type.
- 3. Detections exceeding NYSDEC Groundwater Standards (TOGS 1.1.1; NYSDEC 1998) are indicated by shading.
- 4. Duplicate sample results are presented in brackets (e.g., [14]).
- 5. The sampling event in June 2010 was an interim sampling event to check for the presence of methylene chloride.
- 6. Results following the April 2013 sampling event reflect groundwater quality conditions after the shutdown of the in-situ bioremediation treatment and closed hydraulic systems.

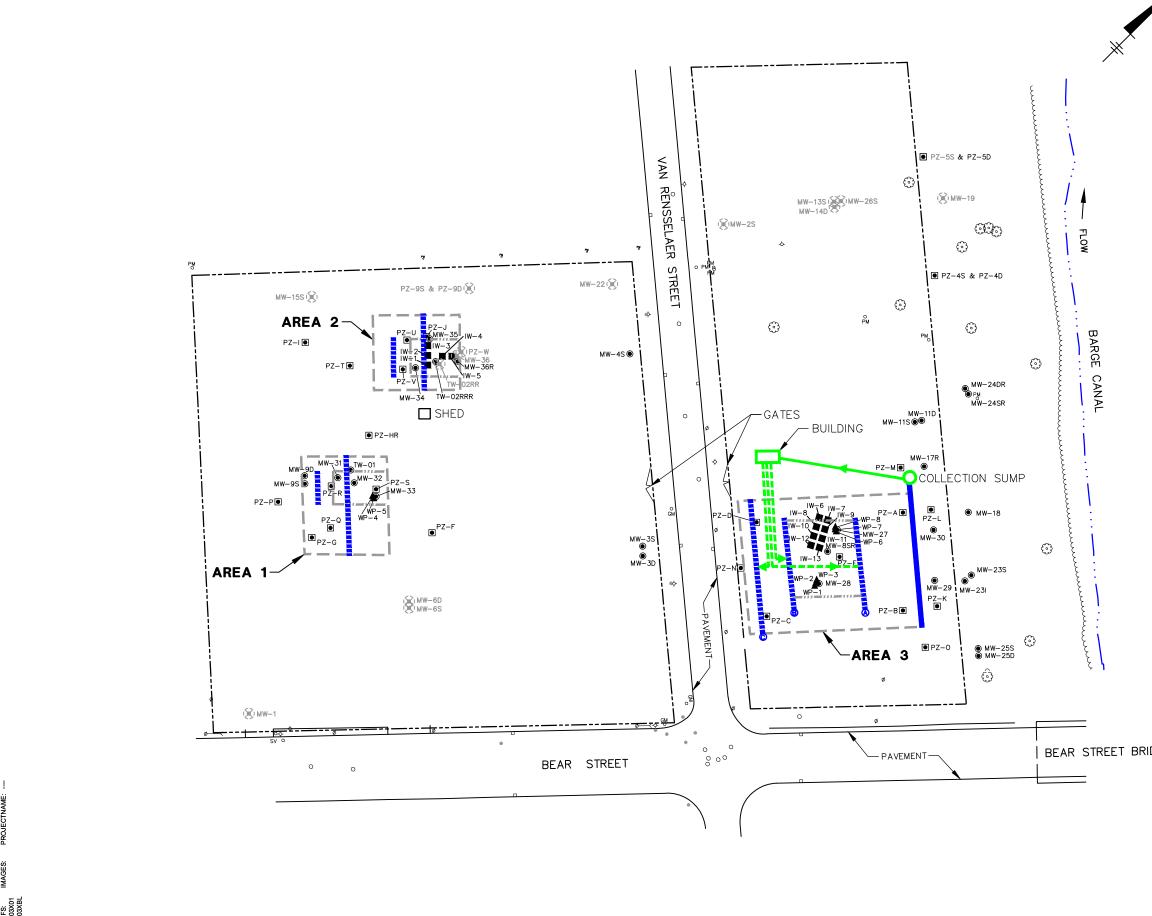
Superscript Notes:

- ^A = Data presented is total xylenes (m- and p-xylenes and o-xylenes).
- ^B = Wells MW-8S and TW-02R were abandoned in August 2004 and replacement wells MW-8SR and TW-02RR were installed in August 2004.
- ^c = Well MW-9 was abandoned during Operable Unit No. 1 soil remediation activities (1994).
- ^D = Well/piezometer MW-17 was abandoned from November 1997 through January 1998.
- ^E = Wells/piezometers MW-36, PZ-5S, PZ-W, and TW-02RR were abandoned in November 2010. Replacement wells TW-02RRR (replaced TW-02RR) and MW-36R (replaced MW-36 and PZ-W) were installed in November 2010.
- ^F = Detections of acetone at well MW-29 since the October 2014 sampling event are attributed to the repair of the PVC stick-up on June 26, 2014, and are not site-related.
- ^G = Methanol has a New York State Department of Health drinking water standard of 50 ppb. This standard (i.e., maximum contaminant level) is for an "unspecified organic contaminant" (NYCRR Title 10, Part 5, Subpart 5-1).

Abbreviations:

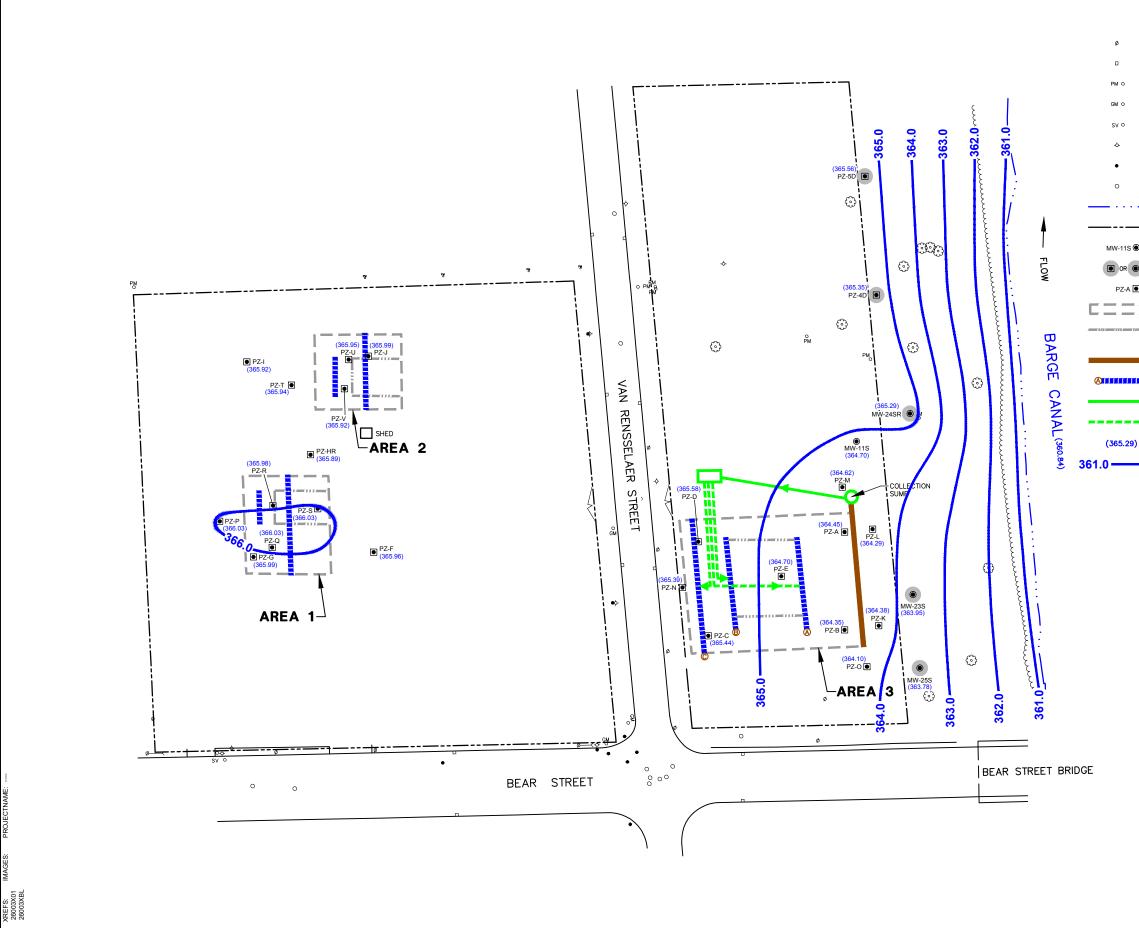
amsl = above mean sea level (National Geodetic Vertical Datum of 1929) NA = compound was not analyzed for in the sample NYCRR = New York State Codes, Rules, and Regulations NYSDEC = New York State Department of Environmental Conservation PVC = polyvinyl chloride TOGS = Technical and Operational Guidance Series


Analytical Qualifiers:

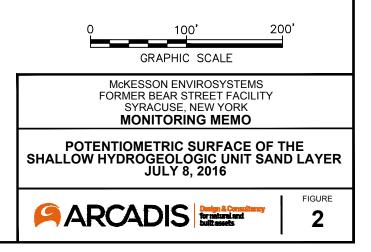

- B = The compound was found in associated method blank.
- D = Concentration is based on a diluted sample analysis.
- J = The compound was positively identified; however, the numerical value is an estimated concentration only.
- < = Compound was not detected at the listed quantitation limit.

Reference:

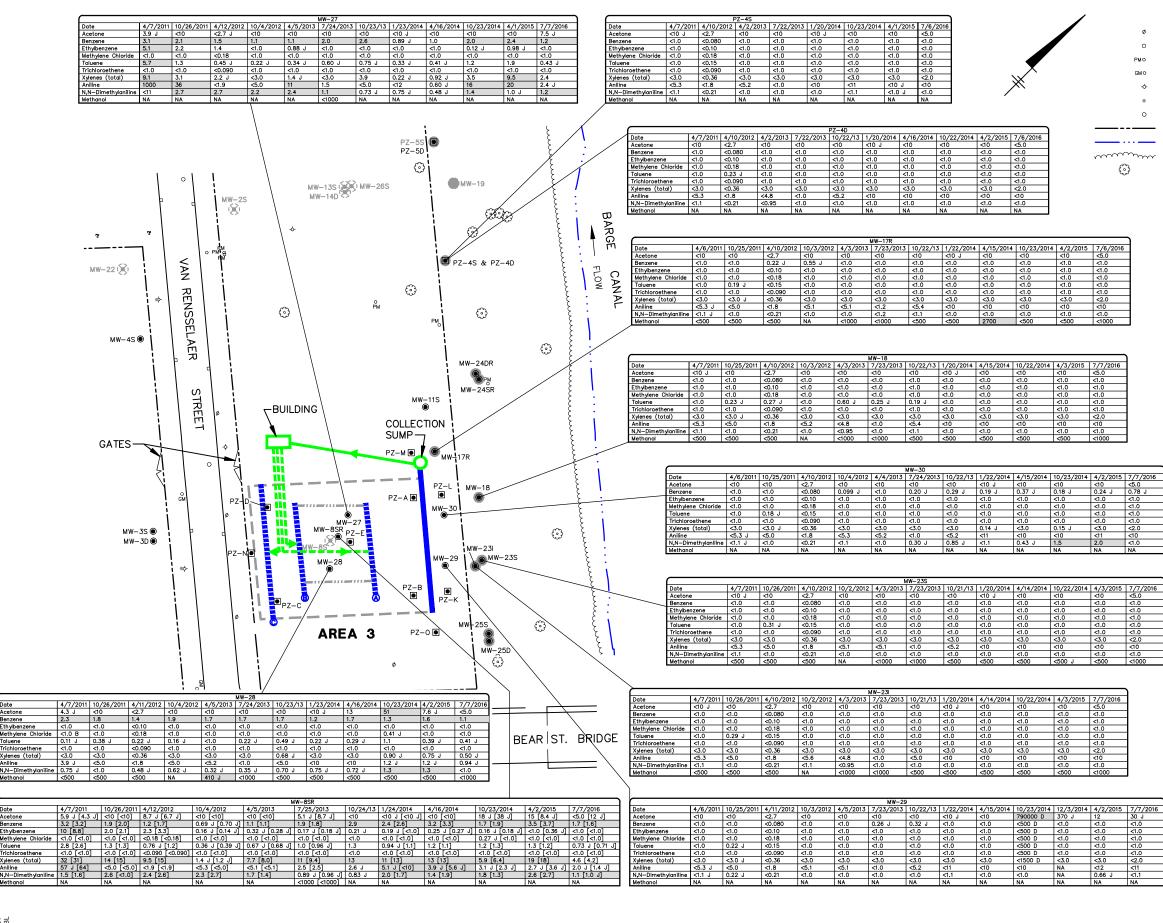
NYSDEC. 1998. Technical Operational Guidance Series 1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June. Available online at: http://www.dec.ny.gov/docs/water_pdf/togs111.pdf


FIGURES

	/			
		LEGEND:		
	Ø	UTILITY POLE		
		CATCH BASIN	1	
	PM O	PETROLEUM	PIPELINE MARKER	
	GM O	GAS LINE MA	RKER	
	SV o	SEWER VENT		
	÷	HYDRANT		
	0	WATER VALV	Ξ	
	0	MANHOLE		
		PROPERTY LI	NE	
	MW-19 🔘	GROUNDWATE	R MONITORING W	/ELL
	PZ-A 💽	PIEZOMETER		
	PZ-W 🛞	REMOVED/DE	COMMISSIONED W	ELL/PIEZOMETER
	WP-8 ▲	WELL POINT		
	IW−3 🔳	OXYGEN INFL	ISION WELL	
	===1	APPROXIMATE 2 TREATMEN	E BOUNDARY OF T AREA	OPERABLE UNIT
			TORICALLY RELA	TIVELY HIGHER FUENTS OF CONCERN
		GROUNDWATE	R WITHDRAWAL	TRENCH
	************	GROUNDWATE	R INFILTRATION	TRENCH
	8	AREA 3 GRO IDENTIFICATIO	UNDWATER INFILT	TRATION TRENCH
		PIPING TO B	JILDING	
		PIPING FROM	BUILDING	
		TREE LINE		
	<u> </u>	EDGE OF BAI	RGE CANAL	
	NOTEO			
	NOTES:	ACNUTODING N		
	MW-24DR).			FIED WITH AN "R" (e.g.,
	2. LOCATIONS	ARE APPROXI	MATE.	
	THE INFILTR LOCATED IN	ATION TRENC	HES. ADDITIONAL	ND 2, SCREENED WITHIN STANDPIPES ARE ILTRATION TRENCHES. DN THE FIGURE.
	SURFACE-W REFERENCE	ATER LEVELS		BARGE CANAL FROM A DEMARCATED E BEAR STREET BRIDGE
		Q	100'	200'
IDGE				
		(GRAPHIC SCAL	- C



DIV/GROUP: ENVIM-DV DB: N. SMITHGALL, R. BASSETT, R. ALLEN PMITM: D. PENNIMAN TR: C. SOBOL LYR: ON=':0FF="REF ACTIB0026003FY17001901DWGMONITOR-MEMO/26003W02.dwg LAYOUT: 2 SAVED: 8/29/20161:38 PM ACADVER: 19.13 (LMS' ISE, N.Y.


	LEGEND:
	UTILITY POLE
	CATCH BASIN
	PETROLEUM PIPE LINE MARKER
	GAS LINE MARKER
	SEWER VENT
	HYDRANT
	WATER VALVE
	MANHOLE
_	EDGE OF BARGE CANAL
	PROPERTY LINE
۲	GROUNDWATER MONITORING WELL
۲	DOWNGRADIENT PERIMETER GROUNDWATER MONITORING LOCATION
۲	PIEZOMETER
	APPROXIMATE BOUNDARY OF AREA
	AREA OF HISTORICALLY RELATIVELY HIGHER CONCENTRATIONS OF CONSTITUENTS OF CONCERN
	GROUNDWATER WITHDRAWAL TRENCH (INACTIVE)
	GROUNDWATER INFILTRATION TRENCH AND IDENTIFICATION (INACTIVE)
_	PIPING TO BUILDING
	PIPING FROM BUILDING
))	GROUNDWATER ELEVATION IN FEET ABOVE MEAN SEA LEVEL (AMSL)
	GROUNDWATER ELEVATION CONTOUR (FEET AMSL) DASHED WHERE INFERRED
	NOTES:
1.	ONLY THE HYDRAULIC MONITORING LOCATIONS USED TO DRAW THIS MAP ARE SHOWN.
2.	REPLACED MONITORING WELLS AND PIEZOMETERS ARE IDENTIFIED WITH AN "R" (e.g., MW-24DR).
3.	ELEVATIONS REFERENCED TO THE NATIONAL GEODETIC VERTICAL DATUM OF 1929.

- 4. THE BARGE CANAL ELEVATION WAS MEASURED FROM A MARKED POINT ON THE BEAR STREET BRIDGE.
- 5. CONTOUR INTERVAL = 1 FOOT.

Order O.74 J (0.75 J (0.75 <thj (0.75<="" th=""> <thj (0.75<="" th=""> <thj (0.<="" th=""><th>10/21/2014 4/1/2015 7/5/2016 <10 <10 <5.0 <1.0 <1.0 <1.0 <500 <500 <1000</th></thj></thj></thj>	10/21/2014 4/1/2015 7/5/2016 <10 <10 <5.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <500 <500 <1000
Linguistic Chice Chi	5.5 J <10 17 LLGEND. 1.1 0.62 J 0.85 J 0.48 J 0.12 J <1.0
NOTES: 1. REPLACED MONITORING WELLS ARE IDENTIFIED WITH AN "R" (E.G., MW-24DR). 2. TRENCH LOCATIONS ARE APPROXIMATE. 3. MONITORING LOCATIONS ARE APPROXIMATE. 4. FIGURE ONLY SHOWS CONSTITUENT OF CONCERN (COC) CONCENTRATIONS AT MONITORING LOCATIONS ARE APPROXIMATE. 5. ONLY COCS WITH CURRENT OR PAST DETECTIONS ARE PRESENTED ON THIS FIGURE.	HYDRANT WATER VALVE MANHOLE PROPERTY LINE TW-02RR® GROUNDWATER MONITORING WELL PZ-A PIEZOMETER TW-02R REMOVED/DECOMMISSIONED GROUNDWATER MONITORING
6. $< = COMPOUND WAS ANALYZED FOR BUT NOT DETECTED. THE ASSOCIATED VALUE IS THE COMPOUND QUANTITATION LIMIT. 7. NA = COMPOUND WAS NOT ANALYZED FOR IN THE SAMPLE. 8. J = THE COMPOUND WAS NOT ANALYZED FOR IN THE SAMPLE. 8. J = THE COMPOUND WAS POSITIVELY IDENTIFIED; HOWEVER, THE ASSOCIATED NUMERICAL VALUE IS AN ESTIMATED CONCENTRATION ONLY. 9. D = CONCENTRATION IS BASED ON A DILUTED SAMPLE ANALYSIS. 10. B = COMPOUND FOUND IN ASSOCIATED METHOD BLANK. 11. SAMPLE DATA ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) GROUNDWATER QUALITY STANDARDS (GQS) (TECHNICAL AND OPERATIONAL ON INSERVE). 11. SAMPLE DATA ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) GROUNDWATER QUALITY STANDARDS (GQS) (TECHNICAL AND OPERATIONAL OF ENVIRONMENTAL CONSERVATION (NYSDEC) GROUNDWATER QUALITY STANDARDS (GQS) (TECHNICAL AND OPERATIONAL OF ENVIRONMENTAL CONSERVATION (NYSDEC) GROUNDWATER QUALITY STANDARDS (GQS) (TECHNICAL AND OPERATIONAL OF ENVIRONMENTAL CONSERVATION (NYSDEC) GROUNDWATER QUALITY STANDARDS (GQS) (TECHNICAL AND OPERATIONAL OF ENVIRONMENTAL CONSERVATION (NYSDEC) GROUNDWATER QUALITY STANDARDS (GQS) (TECHNICAL AND OPERATIONAL OF ENVIRONMENTAL CONSERVATION (NYSDEC) GROUNDWATER QUALITY STANDARDS (GQS) (TECHNICAL AND OPERATIONAL OF ENVIRONMENTAL CONSERVATION (NYSDEC) GROUNDWATER QUALITY STANDARDS (GQS) (TECHNICAL AND OPERATIONAL OF ENVIRONMENTAL CONSERVATION (NYSDEC) GROUNDWATER QUALITY STANDARDS (GQS) (TECHNICAL AND OPERATIONAL OF ENVIRONMENTAL CONSERVATION (NYSDEC) GROUNDWATER QUALITY STANDARDS (GQS) (TECHNICAL AND OPERATIONAL OF ENVIRONMENTAL CONSERVATION (NYSDEC) GROUNDWATER QUALITY STANDARDS (GQS) (TECHNICAL AND OPERATIONAL OPERATION$	10/22/2014 3/31/2015 7/5/2016 Cl0 Cl0 Cl0 Cl0 Cl1 Cl0 Cl0 Cl0
b) Elemente outbance outbance outbance outbance outbance 12. NS = GQS NOT AVAILABLE. 12. NS = GQS NOT AVAILABLE. 13. RESULTS FOR DUPLICATE SAMPLES ARE SHOWN IN BRACKETS NEXT TO PARENT SAMPLE RESULTS. 14. PPB = PARTS PER BILLION. 15. RESULTS FOLLOWING THE APRIL 2013 SAMPLING EVENT REFLECT GROUNDWATER OUALITY CONDITIONS AFTER SHUTDOWN OF THE IN-SITU BIOREMEDIATION TREATMENT AND CLOSED LOOP HYDRAULIC SYSTEMS. 16. * = NEW YORK STATE DEPARTMENT OF HEALTH DRINKING WATER STANDARD (i.e., MAXIMUM CONTAMINANT LEVEL) FOR AN "UNSPECIFIED ORGANIC CONTAMINANT" (NYCRR TITLE 10, PART 5, SUBPART 5-1).	<10
Date 4/5/2011 10/26/2011 4/17/2013 1/0/23/14 4/17/2014 1/0/22/2014 4/17/2015 7/6/2016 Catore c10 c10 c20 c10 c10 </td <td>MW-## NYSEC GQS (ppb) Acetone NA 130 J 33 Benzene NA 3.6 4.6 Ethybenzene NA 3.6 4.6 Ethybenzene NA 4.0 0.80 J Tichloroethene NA 4.2 1.4 J Trichloroethene NA 1.2 J 1.4 J Trichloroethene NA 1.0 Z 1.0 Xytenes (total) Xytenes (total) NA 1.1 J 5 Aniline 3.5 4 200 1300 N.N-dimethylaniline N.N-Dimethylaniline 1.2 1.7 J <10</td> Methanol NA<<500<<500	MW-## NYSEC GQS (ppb) Acetone NA 130 J 33 Benzene NA 3.6 4.6 Ethybenzene NA 3.6 4.6 Ethybenzene NA 4.0 0.80 J Tichloroethene NA 4.2 1.4 J Trichloroethene NA 1.2 J 1.4 J Trichloroethene NA 1.0 Z 1.0 Xytenes (total) Xytenes (total) NA 1.1 J 5 Aniline 3.5 4 200 1300 N.N-dimethylaniline N.N-Dimethylaniline 1.2 1.7 J <10
Image: Normal and the product of the produc	CONCENTRATION (ppb)
Date 4/5/2011 1/2/2/2013 1/2/2/13 1/2/2/14 4/1/2/2014 1/2/2/014 3/31/2015 7/6/2016 Acetone <10	GROUNDWATER MONITORING DATA SUMMARY FOR APRIL 2011 - JULY 2016 AREAS 1 & 2 FIGURE Transformed and Sufficiences Transformed and Sufficiences Transformed and Sufficiences Sufficiences

CITY: SYRACUSE, N.Y. DIV/GROUP: ENV/IM-DV DB: N. SMITHCALL, R. BASSETT, R. ALLEN PM/TM: D. PENNIMAN TR: C. SOBOL LYR: ON=";OFF="REF G\:ENVCADISYRACUSEVACT\B0026003/FY1700190DWG/MONITOR-MEMO/26003C29.dwg LAYOUT: 3 SAVED: 8/29/2016 1:44 PM ACADVER: 19.1S (LMS)

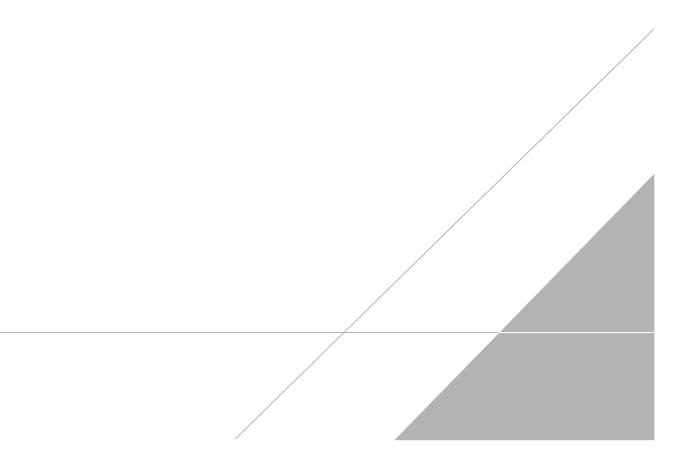
(FRZ) MS TI ;;OFF=REF TR: C. SOBOL LYR: ON=* (29/2016 1-46 PM ACADVF PM/TM: D. PENNIMAN ALLEN IHGALL, P. LISTER, R. IWS ż BO N.Y

	LEGEND:	MW-19 🔘	GROUNDWATER MONITORING WELL
ø	UTILITY POLE	PZ-A 💽	PIEZOMETER
	CATCH BASIN	• OR •	DOWNGRADIENT PERIMETER GROUNDWATER MONITORING LOCATION
РМО	PETROLEUM PIPELINE MARKER	MW-8S ()€)	REMOVED / DECOMMISSIONED
GMO	GAS LINE MARKER		GROUNDWATER MONITORING
÷	HYDRANT		WELL/PIEZOMETER
	WATER VALVE		APPROXIMATE BOUNDARY OF AREA
0	MANHOLE		GROUNDWATER WITHDRAWAL TRENCH
	PROPERTY	© ####################################	GROUNDWATER INFILTRATION TRENCH AND IDENTIFICATION
· —	LINE EDGE OF WATER		PIPING TO BUILDING
مىرىر	EDGE OF TREELINE		PIPING FROM BUILDING
	TREE	L	AREA OF HISTORICALLY RELATIVELY HIGHER CONCENTRATION OF COCS

NOTES:

- 1. REPLACED MONITORING WELLS ARE IDENTIFIED WITH AN "R" (e.g., MW-24DR).
- 2. TRENCH LOCATIONS ARE APPROXIMATE.
- 3. MONITORING LOCATIONS ARE APPROXIMATE.
- FIGURE ONLY SHOWS CONSTITUENT OF CONCERN (COC) CONCENTRATIONS AT MONITORING LOCATIONS WITHIN THE IMPACTED AREAS AND THE COC PROCESS CONTROL MONITORING LOCATIONS.
- 5. ONLY COCS WITH CURRENT OR PAST DETECTIONS ARE PRESENTED ON THIS FIGURE.
- 6. < = COMPOUND WAS ANALYZED FOR BUT NOT DETECTED. THE ASSOCIATED VALUE IS THE COMPOUND QUANTITATION LIMIT.
- 7. NA = COMPOUND WAS NOT ANALYZED FOR IN THE SAMPLE.
- 8. J = THE COMPOUND WAS POSITIVELY IDENTIFIED; HOWEVER, THE ASSOCIATED NUMERICAL VALUE IS AN ESTIMATED CONCENTRATION ONLY.
- 9. B = COMPOUND WAS FOUND IN ASSOCIATED METHOD BLANK.
- 10. D = CONCENTRATION IS BASED ON A DILUTED SAMPLE ANALYSIS.
- 11. THE 6/22/10 SAMPLING EVENT WAS AN INTERIM SAMPLING EVENT ANALYZING FOR VOLATILE ORGANIC COMPOUNDS ONLY.
- 12. SAMPLE DATA ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) GROUNDWATER QUALITY STANDARDS (GQS) (TECHNICAL AND OPERATIONAL GUIDANCE SERIES 1.1.1).
- 13. NS = GQS NOT AVAILABLE.
- 14. RESULTS FOR DUPLICATE SAMPLES ARE SHOWN IN BRACKETS NEXT TO PARENT SAMPLE RESULTS.
- 15. ppb = PARTS PER BILLION.
- 16. RESULTS FOLLOWING THE APRIL 2013 SAMPLING EVENT REFLECT GROUNDWATER QUALITY CONDITIONS AFTER SHUTDOWN OF THE IN-SITU BIOREMEDIATION TREATMENT AND CLOSED LOOP HYDRAULIC SYSTEMS.
- 17. THE DETECTIONS OF ACETONE AT WELL MW-29 SINCE THE OCTOBER 2014 SAMPLING EVENT ARE ATTRIBUTED TO THE REPAIR OF THE PVC STICK-UP ON JUNE 26, 2014, AND ARE NOT SITE RELATED.
- 18. * = NEW YORK STATE DEPARTMENT OF HEALTH DRINKING WATER STANDARD (i.e., MAXIMUM CONTAMINANT LEVEL) FOR AN "UNSPECIFIED ORGANIC CONTAMINANT" (NYCRR TITLE 10, PART 5, SUBPART 5-1).

SAMPLE IDENTIFICATION								DING NYSDEC D BY SHADING.	
			PZ-##						
Date	Jun-06		Mar-08	Mar-09	Apr-10	Jun-10	Apr-11	NYSDEC GQS (ppl	
Acetone	<5.0	<5.0	<5.0	<10	<10	<10	<10	Acetone	50
Benzene	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	<1.0	Benzene	1
Ethylbenzene	<4.0	<4.0	<4.0	<1.0	<1.0	<1.0	<1.0	Ethylbenzene	5
Methylene Chloride	<3.0	<3.0	<3.0	<1.0	5.3 J	<1.0	<1.0	Methylene Chloride	5
Toluene	0.50 J	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	Toluene	5
Trichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	Trichloroethene	5
Xvienes (total)	<5.0	<5.0	<5.0	<3.0	<3.0	<3.0	<3.0	Xylenes (total)	5
Aniline	<1.0	<5.5	<5.0	<5.0	<5.0	NA	<5.3	Aniline	5
N.N-Dimethylaniline	<1.0	<1.1	<0.50	<0.50	<1.0	NA	<1.1	N.N-dimethylaniline	1
Methanol	<1000	<500	NA NA	NA	<500	NA	NA	Methanol	50*
mechanio	1000	1 1000					104	metricitor	30.
GRAPHIC SCALE									
		RMEF SYF	SSON R BEA RACL NIT(NR ST	REE	T FA YOR	CILITY K		
GROUNDWATER MONITORING DATA SUMMARY FOR APRIL 2011 - JULY 2016 AREA 3									
ARCADIS Design & Consultancy for matural and functional functional and functional functional functio									


015	7/7/2016
	<5.0
	0.78 J
	<1.0
	<1.0
	<1.0
	<1.0
	<2.0
	<10
	<1.0
	NA

7/7/2016
<5.0
<1.0
<1.0
<1.0
<1.0
<1.0
<2.0
<10
<1.0
<1000

<2.0

ATTACHMENT A

Validated Analytical Laboratory Reports

McKesson Bear Street

Data Usability Summary Report (DUSR)

SYRACUSE, NEW YORK

Volatile, Semivolatile and Methanol Analyses

SDG #: 460-116504-1

Analyses Performed By: **TestAmerica Laboratories** Edison, New Jersey

Report #: 25990R Review Level: Tier III Project: B0026003.2014.00010

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 460-116504-1 for samples collected in association with the McKesson Bear Street site in Syracuse, New York. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample	Parent			Analys	is	
Sample ID	Lab ID	Matrix	Collectio n Date	Sample	voc	SVOC	РСВ	METH	MISC
DUP-20160705	460-116504-1	Water	7/5/2016	TW-02RRR	Х	Х		Х	
MW-34	460-116504-2	Water	7/5/2016		Х	Х		Х	
MW-35	460-116504-3	Water	7/5/2016		Х	Х		Х	
TW-02RRR	460-116504-4	Water	7/5/2016		Х	Х		Х	
MW-32	460-116504-5	Water	7/5/2016		Х	Х		Х	
TW-01	460-116504-6	Water	7/5/2016		Х	Х		Х	
TRIP BLANK	460-116504-7	Water	7/5/2016		Х				

Notes:

1. METH - Methanol.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Rep	orted		mance ptable	Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		Х		Х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of QA or sample problems provided		х		Х	
12.	Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 8260C, 8270D and 8015D as referenced in NYSDEC-ASP. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999 and USEPA Region II SOPs associated with USEPA SW-846 Validating Volatile Organic Compounds by GC/MS SW-846 Method 8260B (SOP HW-24 Revision 2, October 2006) and Validating Semivolatile Organic Compounds by GC/MS SW-846 Method 8270C (SOP HW-22 Revision 3, October 2006).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected as unusable. The compound may or may not be present in the sample.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation	
	Water	14 days from collection to analysis	Cool to <6 °C; preserved to a pH of less than 2 s.u.	
SW-846 8260C	Soil	48 hours from collection to extraction and 14 days from collection to analysis	Cool to <6°C	

s.u. Standard units

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks, trip blanks, and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure sample storage contamination. Rinse blanks also measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99, and a RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
All sample locations associated with this SDG	ICV %RSD	Trichloroethene	19.7%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification	
Initial and Continuing Calibration		Non-detect	R	
	RRF <0.05	Detect	J	
		Non-detect	R	
	RRF <0.01 ¹	Detect	J	
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action	
		Detect		
Initial Calibration	%RSD > 15% or a correlation coefficient <0.99	Non-detect	UJ	
		Detect	J	
	%RSD >90%	Non-detect	R	
		Detect	J	
Continuing Calibration	%D >20% (increase in sensitivity)	Non-detect	No Action	
		Detect	J	
	$\frac{9}{D} = \frac{209}{(decreases in constitution)}$	Non-detect	UJ	
	%D >20% (decrease in sensitivity)	Detect	J	

¹ RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC

analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratoryestablished acceptance limits.

All surrogate recoveries were within the control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC analysis exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The spiked compounds used in the MS/MSD analysis must exhibit recoveries within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS and MSD results must be within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSDs performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD spiking concentration by a factor of four or greater. Sample results associated with MS/MSD exceedances where the parent samples are not site-specific are not qualified.

A MS/MSD was not performed on a sample location associated with this SDG.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The spiked compounds used in the LCS analysis must exhibit recoveries within the laboratory-established acceptance limits.

All compounds associated with the LCS analyses exhibited recoveries within the control limits.

9. Field Duplicate Analysis

The field duplicate analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to five times the reporting limit (RL), a control limit for the difference between the results of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Benzene	0.68 J	0.70 J	AC
TW-02RRR/ DUP-20160705	Xylenes, total	0.43 J	0.49 J	AC

AC Acceptable U Not detected

U Not detected

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260C	Repo	orted		mance ptable	Not		
	No	Yes	No	Yes	Required		
GAS CHROMATOGRAPHY/MASS SPECTROMETR	Y (GC/MS)					
Tier II Validation							
Holding times		Х		Х			
Reporting limits (units)		Х		Х			
Blanks							
A. Method blanks		Х		Х			
B. Equipment/Field blanks					Х		
C. Trip blanks		Х		Х			
Laboratory Control Sample (LCS) Accuracy (%R)		Х		Х			
Laboratory Control Sample Duplicate (LCSD) %R		Х		Х			
LCS/LCSD Precision (RPD)		Х		Х			
Matrix Spike (MS) %R					Х		
Matrix Spike Duplicate (MSD) %R					Х		
MS/MSD Precision RPD					Х		
Field Duplicate RPD		Х		Х			
Surrogate Spike %R		Х		Х			
Dilution Factor		Х		Х			
Moisture Content					Х		
Tier III Validation							
System performance and column resolution		Х		Х			
Initial calibration %RSDs		Х	Х				
Continuing calibration RRFs		Х		Х			
Continuing calibration %Ds		Х		Х			
Instrument tune and performance check		Х		Х			
Ion abundance criteria for each instrument used		Х		Х			
Internal standard		Х		Х			
Compound identification and quantitation				•			
A. Reconstructed ion chromatograms		Х		Х			
B. Quantitation Reports		Х		Х			
C. RT of sample compounds within the established RT windows		Х		х			
D. Transcription/calculations acceptable		Х		Х			
E. Reporting limits adjusted for sample dilutions		Х		Х			

%RPercent recoveryRPDRelative percent difference%RSDRelative standard deviation

%D Percent difference

SEMIVOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8270D	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6°C
300-040 0270D	Soil	14 days from collection to extraction and 40 days from extraction to analysis	C00110 <8 C

All samples were extracted and analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Target compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution are acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits, and that all SVOC surrogate recoveries be greater than ten percent.

Sample Locations	Surrogate	Recovery				
	Phenol-d6	AC				
	2-Fluorophenol	AC				
TW-01	2,4,6-Tribromophenol	AC				
	Nitrobenzene-d5	AC				
	2-Fluorobiphenyl	<ll but=""> 10%</ll>				
	Terphenyl-d14	AC				

LL Lower control limit

AC Acceptable

The criteria used to evaluate the surrogate recoveries are presented in the following table. In the case of a surrogate deviation, the sample results associated with the deviant fraction are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	No Action
> UL	Detect	J
< LL but > 10%	Non-detect	UJ
< LL Dut > 10%	Detect	J
< 10%	Non-detect	R
< 10%	Detect	J

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC

analysis exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within the control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit recoveries within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS and MSD results must be within the laboratory-established or analytical method-referenced acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. Sample results associated with MS/MSD exceedances where the parent samples are not site-specific are not qualified.

A MS/MSD was not performed on a sample location associated with this SDG.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit recoveries within the laboratory-established acceptance limits.

All compounds associated with the LCS analyses exhibited recoveries within the control limits.

9. Field Duplicate Analysis

The field duplicate analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to five times the reporting limit (RL), a control limit for the difference between the results of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
TW-02RRR/ DUP-20160705	n,n'-Dimethylaniline	1.4	1.0 U	AC

AC Acceptable

U Not detected

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

SVOCs: SW-846 8270D	Repo	orted	Perfor Acce	Not		
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)					
Tier II Validation						
Holding Times		Х		Х		
Reporting Limits (units)		Х		Х		
Blanks						
A. Method Blanks		Х		Х		
B. Equipment/Field Blanks					Х	
Laboratory Control Sample (LCS) Accuracy (%R)		Х		Х		
Laboratory Control Sample Duplicate (LCSD) %R					Х	
LCS/LCSD Precision (RPD)					Х	
Matrix Spike (MS) %R					Х	
Matrix Spike Duplicate (MSD) %R					Х	
MS/MSD RPD					Х	
Field Duplicate RPD		Х		Х		
Surrogate Spike %R		Х	Х			
Dilution Factor		Х		Х		
Moisture Content					Х	
Tier III Validation						
System Performance and Column Resolution		Х		Х		
Initial Calibration %RSDs		Х		Х		
Continuing Calibration RRFs		Х		Х		
Continuing Calibration %Ds		Х		Х		
Instrument Tune and Performance Check		Х		Х		
Ion Abundance Criteria for Each Instrument Used		Х		Х		
Internal Standards		Х		Х		
Compound Identification and Quantitation						
A. Reconstructed Ion Chromatograms		Х		Х		
B. Quantitation Reports		Х		Х		
C. RT of Sample Compounds Within the Established RT Windows		х		х		
D. Transcription/calculations acceptable		Х		Х		
E. Reporting Limits Adjusted for Sample Dilutions		Х		Х		

DATA VALIDATION CHECKLIST FOR SVOCs

%R Percent Recovery

RPD Relative Percent Difference

%RSD Relative Standard Deviation

%D Percent Difference

METHANOL ANALYSIS

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation			
Methanol	Soil	14 days from collection to analysis	Cool to <6°C			
SW-846 8015D	Water	14 days from collection to analysis	C00110 <0 C			

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected analyte in an associated blank is calculated for QA blanks containing concentrations greater than the reporting limit (RL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Methanol was not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. System Performance

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

A maximum RSD of 20% or a correlation coefficient of greater than 0.99 is allowed.

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (15%).

All calibration criteria were within the control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. The analysis requires surrogate compounds exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The spiked analytes used in the MS/MSD analysis must exhibit recoveries within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS and MSD results must be within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSDs performed on sample locations where the analyte concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. Sample results associated with MS/MSD exceedances where the parent samples are not site-specific are not qualified.

The MS/MSD analysis performed on sample location DUP-20160705 exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

7. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The spiked compounds used in the LCS analysis must exhibit recoveries within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

8. Field Duplicate Analysis

The field duplicate analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to five times the reporting limit (RL), a control limit for the difference between the results of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
TW-02RRR/ DUP-20160705	Methanol	1.0 U	1.0 U	AC

AC Acceptable

U Not detected

The calculated RPDs between the parent sample and field duplicate were acceptable.

9. Compound Identification

The retention times of all quantitated peaks must fall within the calculated retention time windows.

All identified compounds met the specified criteria.

10. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR METHANOL

Methanol: SW-846 8015D	Rep	orted	Perfor Acce	Not Required	
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY (GC/FID)					
Tier II Validation					
Holding Times		Х		Х	
Reporting Limits (Units)		Х		Х	
Blanks					
A. Method Blanks		Х		Х	
B. Equipment Blanks					Х
C. Trip Blanks					Х
Laboratory Control Sample (LCS) Accuracy (%R)		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		Х		Х	
MS/MSD RPD		Х		Х	
Field Duplicate RPD		Х		Х	
Surrogate Spike %R		Х	Х		
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
Initial Calibration %RSDs		Х		Х	
Continuing Calibration %Ds		Х		Х	
System Performance and Column Resolution		Х		Х	
Compound Identification and Quantitation					
A. Quantitation Reports		Х		Х	
B. RT of Sample Compounds Within Established RT Windows		х		х	
C. Pattern Identification					Х
D. Transcription/calculations acceptable		Х		Х	
E. Reporting Limits adjusted for Sample Dilutions		Х		Х	

%RPercent RecoveryRPDRelative Percent Difference%RSDRelative Standard Deviation

%D Percent Difference

SAMPLE COMPLIANCE REPORT

Sample Delivery						Co	mplian						
Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	svoc	РСВ	метн	MISC	Noncompliance			
	7/5/2016		DUP-20160705	Water	No	Yes		Yes		ICV %RSD			
	7/5/2016		MW-34	Water	No	Yes		Yes		ICV %RSD			
100	7/5/2016				1		MW-35	Water	No	Yes		Yes	
460- 116504-1	7/5/2016	SW846	TW-02RRR	Water	No	Yes		Yes		ICV %RSD			
110304-1	7/5/2016		MW-32	Water	No	Yes		Yes		ICV %RSD			
	7/5/2016		TW-01	Water	No	Yes		Yes		ICV %RSD			
	7/5/2016		TRIP BLANK	Water	No	Yes		Yes		ICV %RSD			

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

Validation Performed By:	Jeffrey L. Davin
Signature:	Jeffrey d. Dai
Date:	July 29, 2016
Peer Review:	Dennis Capria
Date:	August 9, 2016

CHAIN OF CUSTODY/LABORAOTRY QUALIFIER DEFINITIONS/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

Custody Seals Intact: Custody Seal No.:	Relinquished by:	Relinguished by: R. C.	Relinquisited by: KATIE MOTT & MORD	Empty Kit Relinguished by:	<u>∽</u> ਊ	Skin Irritent					TRUP BLANK	10- VT	MW-32	The -07. R.K.	MW 735		DWP-20160705-	Sample Identification	Site Strickuse N.Y.	Project Name: McKesson Former Bear Street Facility	Email: dawn.penniman@arcadis.com	Phone: 315-671-9229(Tel)	State, Zip: NY, 13214	Cityr Syracuse	Address: 6723 Towpath Road	Company, ARCADIS U.S. Inc	Clent Contact Ms. Dawn Penniman	Client information	Edison, NJ 08817 Phone (732) 549-3900 Fax (732) 549-3679	TestAmerica Edison
	Date/Time:	DaterTime: 7-5-16, 1910	5141 1119/L : autoria	Date:		Poison B Unknown Radiological		74-74				1245 G	1500 6	1230 G	9 alti	1630 6	7/5/16 - 6	Sample Type Sample (C=comp, Sample Date Time G=grab)	SSOW#:	Project #: 46003506	WO #	PC # B0026003,2014	10 ~ day .	ିର	Due Date Requested: 757		Phone: 402-6864	Sampler.		
Cool		Company Read	HALADIS Rock	Time;			Water	Water	Water	Water	Water N -	Water N 2	water NX	water NX	Water N.L	Water NJ	Water N 2	Sample Matrix Type (www. G=grab) strong G=grab) strong Str	ASD ((95-9)	No)				2.55		E-Mall: grace.chang@testameri	Lab PM: Chang, Grace		
Cooler Temperature(s) °C and Other Remarks: #77 [HUX HOILING FOUND TOUS	7/ compare to a laboration of the Same	Method of Shipment	Special instructions/QC Requirements:	Sample Disposal (A fee may be assessed if samples are retained longer Return To Client Poisposal By Lab Archive For					3-	33	33		33	33	33					VOCs				Analysis Requested	stamericainc.com			
і С	Company	5 9:15 MM company TP	5/16)715 company			Archive For Months						6	<u>ک</u>		<u>کی</u> Pag	و 19]	Total Numbe Special Instructions/Note: 663	of co	E P EDA	J - DI Water	a	E - NaHSOA Q - Na2SO3	B - NaOH C - Zn Acetate	- 8		1 of 5	vo: 74078-45565.1	THE LEADER IN ENVIRONMENTAL TESTING 2016	TestAmerica

483325 • Syracuse SC

į

DATA REPORTING QUALIFIERS

Client: ARCADIS U.S. Inc

Lab Section	Qualifier	Description
GC/MS VOA		
	U	Indicates the analyte was analyzed for but not detected.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
GC/MS Semi VOA		
	U	Indicates the analyte was analyzed for but not detected.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
	Х	Surrogate is outside control limits
GC VOA		
	U	Indicates the analyte was analyzed for but not detected.

Client: ARCADIS U.S. Inc

1,2-Dichloroethane-d4 (Surr)

Dibromofluoromethane (Surr)

4-Bromofluorobenzene

Toluene-d8 (Surr)

Analytical Data

Job Number: 460-116504-1

70 - 137

70 - 131

72 - 136

74 - 120

Client Sample ID	DUP-20160705					
Lab Sample ID: Client Matrix:	460-116504-1 Water					mpled: 07/05/2016 0000 eceived: 07/06/2016 0915
	82	60C Volatile Organi	ic Compou	nds by C	GC/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 07/16/2016 1535 07/16/2016 1535	Analysis Batch: Prep Batch:	460-3794 N/A	16	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	
Analyte		Result (u	ıg/L)	Qualifi	er MDL	RL
Acetone Benzene Ethylbenzene Methylene Chlorid Toluene Trichloroethene Xylenes, Total	e	5.0 0.70 1.0 1.0 1.0 1.0 1.0 0.49		1 1 1 1 1 1 1 1 1 1 1 1	1.1 0.090 0.30 0.21 0.25 0.22 0.28	5.0 1.0 1.0 1.0 1.0 1.0 2.0
Surrogate		%Rec		Qualifi	er Accepta	nce Limits

104

106

103

95

Client Sample ID	: MW-34					
Lab Sample ID: Client Matrix:	460-116504-2 Water					npled: 07/05/2016 1630 eived: 07/06/2016 0915
		8260C Volatile Organi	c Compounds t	oy GC/MS	;	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 07/16/2016 1601 07/16/2016 1601	Analysis Batch: Prep Batch:	460-379416 N/A	Lab F Initia	ument ID: File ID: I Weight/Volume: Weight/Volume:	CVOAMS8 J43351.D 5 mL 5 mL
Analyte		Result (u	g/L) Qu	alifier	MDL	RL
Acetone		22			1.1	5.0
Benzene		1.6			0.090	1.0
Ethylbenzene		1.0	U		0.30	1.0
Methylene Chlorid	e	1.0	U		0.21	1.0
Toluene		0.75	J		0.25	1.0
Trichloroethene		1.0	U	J	0.22	1.0
Xylenes, Total		3.5			0.28	2.0
Surrogate		%Rec	Qu	alifier	Acceptan	ce Limits
1,2-Dichloroethan	e-d4 (Surr)	105			70 - 137	
4-Bromofluoroben	zene	109			70 - 131	
Dibromofluoromet	hane (Surr)	104			72 - 136	
Toluene-d8 (Surr)		96			74 - 120	

Job Number: 460-116504-1

Client Sample ID:	MW-35				
Lab Sample ID: Client Matrix:	460-116504-3 Water				mpled: 07/05/2016 1420 eceived: 07/06/2016 0915
	8	260C Volatile Organi	c Compounds by	GC/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 07/18/2016 2257 07/18/2016 2257	Analysis Batch: Prep Batch:	460-379663 N/A	Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume:	
Analyte		Result (u	g/L) Quali	fier MDL	RL
Acetone		5.0	U	1.1	5.0
Benzene		1.0	U	0.090	1.0
Ethylbenzene		1.0	U	0.30	1.0
Methylene Chlorid	e	1.0	U	0.21	1.0
Toluene		1.0	U	0.25	1.0
Trichloroethene		1.0	U J	0.22	1.0
Xylenes, Total		2.0	U	0.28	2.0
Surrogate		%Rec	Quali	fier Accepta	ince Limits
1,2-Dichloroethane	e-d4 (Surr)	84		70 - 137	,
4-Bromofluoroben	zene	99		70 - 131	
Dibromofluoromet	hane (Surr)	83		72 - 136	3
Toluene-d8 (Surr)		89		74 - 120)

Client: ARCADIS U.S. Inc

Client: ARCADIS U.S. Inc

Client Sample ID:	TW-02RRR				
Lab Sample ID: Client Matrix:	460-116504-4 Water				te Sampled: 07/05/2016 1230 te Received: 07/06/2016 0915
		8260C Volatile Organi	c Compounds b	y GC/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 07/16/2016 1653 07/16/2016 1653	Analysis Batch: Prep Batch:	460-379416 N/A	Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vol	
Analyte		Result (u	ıg/L) Qua	alifier MDL	RL
Acetone		5.0	U	1.1	5.0
Benzene		0.68	J	0.090	1.0
Ethylbenzene		1.0	U	0.30	1.0
Methylene Chloride	;	1.0	U	0.21	1.0
Toluene		1.0	U	0.25	1.0
Trichloroethene		1.0	U	J 0.22	1.0
Xylenes, Total		0.43	J	0.28	2.0
Surrogate		%Rec	Qua	alifier Ac	ceptance Limits
1,2-Dichloroethane	-d4 (Surr)	101		70	- 137
4-Bromofluorobenz	ene	106		70	- 131
Dibromofluorometh	ane (Surr)	102		72	- 136
Toluene-d8 (Surr)		94		74	- 120

Client Sample ID:	MW-32				
Lab Sample ID: Client Matrix:	460-116504-5 Water				ate Sampled: 07/05/2016 1500 ate Received: 07/06/2016 0915
	8	260C Volatile Organi	c Compounds b	y GC/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 07/18/2016 2323 07/18/2016 2323	Analysis Batch: Prep Batch:	460-379663 N/A	Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vo	
Analyte		Result (u	g/L) Qua	alifier MDL	RL
Acetone		5.0	U	1.1	5.0
Benzene		1.0	U	0.090	1.0
Ethylbenzene		1.0	U	0.30	1.0
Methylene Chlorid	e	1.0	U	0.21	1.0
Toluene		1.0	U	0.25	1.0
Trichloroethene		1.0	-	J 0.22	1.0
Xylenes, Total		2.0	U	0.28	2.0
Surrogate		%Rec	Qua	alifier A	cceptance Limits
1,2-Dichloroethane	e-d4 (Surr)	86		70) - 137
4-Bromofluoroben	zene	105		70	D - 131
Dibromofluoromet	hane (Surr)	90		72	2 - 136
Toluene-d8 (Surr)		94		74	4 - 120

Client: ARCADIS U.S. Inc

Lab Sample ID: Client Matrix:460-116504-6 WaterDate Sampled: Date Received: 07/06/2016 0915B260C Volatile Organic Compounds by GC/MSAnalysis Method: Prep Method: 5030C8260C Prep Batch:Instrument ID: N/ACVOAMS8 Lab File ID: Initial Weight/Volume: 5 mLAnalysis Date: Prep Date:07/16/2016 1744Prep Batch: N/AN/AInstrument ID: Lab File ID: Final Weight/Volume: 5 mLCVOAMS8 Final Weight/Volume: 5 mLAnalyteResult (ug/L)Qualifier UMDLRLAcetone5.0U1.15.0Benzene1.0U0.301.0Ethylbenzene1.0U0.301.0Coluene1.0U0.221.0Toluene1.0U0.221.0Surrogate%RecQualifier UAcceptance Limits1.2-Dichloroethane-d4 (Surr)10170 - 137 Toluen-d8 (Surr)Obsonofilorobenzene10870 - 131 Tol 12	Client Sample ID	TW-01				
Analysis Method:8260C 5030CAnalysis Batch:460-379416 Prep Batch:Instrument ID: Lab File ID:CVOAMS8 J43355.D Initial Weight/Volume:5 mLDilution:1.0 Analysis Date:07/16/2016 1744Initial Weight/Volume:5 mLPrep Date:07/16/2016 1744Final Weight/Volume:5 mLPrep Date:07/16/2016 1744Result (ug/L)QualifierMDLRLAcetone5.0U1.15.0Benzene1.0U0.0901.0Ethylbenzene1.0U0.301.0Methylene Chloride1.0U0.211.0Toluene1.0U0.251.0Trichloroethene2.0U0.282.0Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)10170 - 137Dibromofluorobenzene10870 - 131Dibromofluoromethane (Surr)10672 - 136						•
Prep Method:5030CPrep Batch:N/ALab File ID:J43355.DDilution:1.0Initial Weight/Volume:5 mLAnalysis Date:07/16/2016 1744Final Weight/Volume:5 mLPrep Date:07/16/2016 1744Result (ug/L)QualifierMDLRLAnalyteResult (ug/L)QualifierMDLRLAcetone5.0U1.15.0Benzene1.0U0.0901.0Ethylbenzene1.0U0.301.0Methylene Chloride1.0U0.251.0Trichloroethene1.0U0.221.0Xylenes, Total2.0U0.282.0Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)10170 - 1374-Bromofluorobenzene10870 - 131Dibromofluoromethane (Surr)10672 - 136		1	8260C Volatile Organi	c Compounds by	GC/MS	
Acetone 5.0 U 1.1 5.0 Benzene 1.0 U 0.090 1.0 Ethylbenzene 1.0 U 0.30 1.0 Methylene Chloride 1.0 U 0.21 1.0 Toluene 1.0 U 0.25 1.0 Trichloroethene 1.0 U 0.22 1.0 Xylenes, Total 2.0 U 0.28 2.0 Surrogate %Rec Qualifier Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 101 70 - 137 4-Bromofluorobenzene 108 70 - 131 Dibromofluoromethane (Surr) 106 72 - 136	Prep Method: Dilution: Analysis Date:	5030C 1.0 07/16/2016 1744	•		Lab File ID: Initial Weight/Volume:	J43355.D 5 mL
Benzene 1.0 U 0.090 1.0 Ethylbenzene 1.0 U 0.30 1.0 Methylene Chloride 1.0 U 0.21 1.0 Toluene 1.0 U 0.25 1.0 Trichloroethene 1.0 U 0.22 1.0 Xylenes, Total 2.0 U 0.28 2.0 Surrogate %Rec Qualifier Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 101 70 - 137 4-Bromofluorobenzene 108 70 - 131 Dibromofluoromethane (Surr) 106 72 - 136	Analyte		Result (u	g/L) Quali	fier MDL	RL
Ethylbenzene 1.0 U 0.30 1.0 Methylene Chloride 1.0 U 0.21 1.0 Toluene 1.0 U 0.25 1.0 Trichloroethene 1.0 U 0.22 1.0 Xylenes, Total 2.0 U 0.28 2.0 Surrogate 1,2-Dichloroethane-d4 (Surr) 101 70 - 137 4-Bromofluorobenzene 108 70 - 131 Dibromofluoromethane (Surr) 106 72 - 136	Acetone		5.0	U	1.1	5.0
Methylene Chloride 1.0 U 0.21 1.0 Toluene 1.0 U 0.25 1.0 Trichloroethene 1.0 U 0.22 1.0 Xylenes, Total 2.0 U 0.28 2.0 Surrogate 1,2-Dichloroethane-d4 (Surr) 101 70 - 137 4-Bromofluorobenzene 108 70 - 131 Dibromofluoromethane (Surr) 106 72 - 136	Benzene		1.0	U	0.090	1.0
Toluene 1.0 U 0.25 1.0 Trichloroethene 1.0 U 0.22 1.0 Xylenes, Total 2.0 U 0.28 2.0 Surrogate %Rec Qualifier Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 101 70 - 137 4-Bromofluorobenzene 108 70 - 131 Dibromofluoromethane (Surr) 106 72 - 136	Ethylbenzene		1.0	U	0.30	1.0
Trichloroethene Xylenes, Total 1.0 U 0.22 1.0 Surrogate %Rec Qualifier Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 101 70 - 137 4-Bromofluorobenzene 108 70 - 131 Dibromofluoromethane (Surr) 106 72 - 136	Methylene Chlorid	e	1.0	U	0.21	1.0
Xylenes, Total2.0U0.282.0Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)10170 - 1374-Bromofluorobenzene10870 - 131Dibromofluoromethane (Surr)10672 - 136	Toluene		1.0	U	0.25	1.0
Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)10170 - 1374-Bromofluorobenzene10870 - 131Dibromofluoromethane (Surr)10672 - 136	Trichloroethene		1.0	υJ	0.22	1.0
1,2-Dichloroethane-d4 (Surr) 101 70 - 137 4-Bromofluorobenzene 108 70 - 131 Dibromofluoromethane (Surr) 106 72 - 136	Xylenes, Total		2.0	U	0.28	2.0
4-Bromofluorobenzene 108 70 - 131 Dibromofluoromethane (Surr) 106 72 - 136	Surrogate		%Rec	Quali	fier Accepta	nce Limits
Dibromofluoromethane (Surr) 106 72 - 136	1,2-Dichloroethan	e-d4 (Surr)	101		70 - 137	
	4-Bromofluoroben	zene	108		70 - 131	
	Dibromofluoromet	hane (Surr)	106		72 - 136	
			95		74 - 120	

Client: ARCADIS U.S. Inc

Client Sample ID: TRIP BLANK

Analytical Data

Lab Sample ID: Client Matrix:	460-116504-7TB Water					npled: 07/05/2016 0000 ceived: 07/06/2016 0915
	8	3260C Volatile Organi	c Compound	ls by GO	C/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 07/16/2016 1025 07/16/2016 1025	Analysis Batch: Prep Batch:	460-379416 N/A		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	CVOAMS8 J43338.D 5 mL 5 mL
Analyte		Result (u	g/L)	Qualifie	r MDL	RL
Acetone		5.0		U	1.1	5.0
Benzene		1.0		U	0.090	1.0
Ethylbenzene		1.0		U	0.30	1.0
Methylene Chlorid	e	1.0		U	0.21	1.0
Toluene		1.0		U	0.25	1.0
Trichloroethene		1.0		UJ	0.22	1.0
Xylenes, Total		2.0		U	0.28	2.0
Surrogate		%Rec		Qualifie	r Acceptar	nce Limits
1,2-Dichloroethan	e-d4 (Surr)	99			70 - 137	
4-Bromofluoroben	zene	106			70 - 131	
Dibromofluoromet	hane (Surr)	100			72 - 136	
Toluene-d8 (Surr)		94			74 - 120	

Client: ARCADIS U.S. Inc

Analytical Data

Client Sample ID	DUP-20160705						
Lab Sample ID: Client Matrix:	460-116504-1 Water		Date Sar Date Rec				
		8270D Semivolatile Org	anic Compo	ounds (C	GC/MS)		
Analysis Method:	8270D	Analysis Batch:	460-37795	1	Instrument ID:	CBNAMS6	
Prep Method:	3510C	Prep Batch:	460-37784	2	Lab File ID:	M229837.D	
Dilution:	1.0				Initial Weight/Volume:	250 mL	
Analysis Date:	07/08/2016 0959				Final Weight/Volume:	2 mL	
Prep Date:	07/07/2016 1451				Injection Volume:	5 uL	
Analyte		Result (u	g/L)	Qualifie	er MDL	RL	
Aniline		10		U	0.65	10	

n,n'-Dimethylaniline	1.0	U	0.76	1.0	
Surrogate	%Rec	Qualifier	Accepta	ince Limits	
2,4,6-Tribromophenol (Surr)	87		43 - 126	6	
2-Fluorobiphenyl	65	63 - 113			
2-Fluorophenol (Surr)	42		13 - 77		
Nitrobenzene-d5 (Surr)	71		62 - 120)	
Phenol-d5 (Surr)	25		10 - 53		
Terphenyl-d14 (Surr)	78		57 - 125	5	

Client: ARCADIS U.S. Inc

Client Sample ID:	MW-34							
Lab Sample ID: Client Matrix:	460-116504-2 Water							npled: 07/05/2016 1630 evived: 07/06/2016 0915
		8270D	Semivolatile Org	anic Comp	ounds	(GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 07/08/2016 1204 07/07/2016 1451		Analysis Batch: Prep Batch:	460-3779 460-3778		Instrument Lab File ID Initial Weig Final Weigl Injection Vo	: ht/Volume: nt/Volume:	CBNAMS6 M229843.D 240 mL 2 mL 5 uL
Analyte			Result (u	g/L)	Qualif	ier M	DL	RL
Aniline			0.95		J	0.	68	10
n,n'-Dimethylanilin	e		2.0			0.	79	1.0
Surrogate			%Rec		Qualif	ier	Acceptan	ce Limits
2,4,6-Tribromophe	enol (Surr)		74				43 - 126	
2-Fluorobiphenyl			72			63 - 113		
2-Fluorophenol (S	,		43				13 - 77	
Nitrobenzene-d5 (Surr)		71				62 - 120	
Phenol-d5 (Surr)			28				10 - 53	
Terphenyl-d14 (Su	ırr)		85				57 - 125	

Client: ARCADIS U.S. Inc

Client Sample ID:	: MW-35							
Lab Sample ID: Client Matrix:	460-116504-3 Water							npled: 07/05/2016 1420 ceived: 07/06/2016 0915
		8270D	Semivolatile Org	anic Comp	ounds	(GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 07/14/2016 2317 07/11/2016 1240		Analysis Batch: Prep Batch:	460-37912 460-37839		-	: ht/Volume: ht/Volume:	CBNAMS6 M230072.D 250 mL 2 mL 5 uL
Analyte			Result (u	g/L)	Qualif	ier M	DL	RL
Aniline			10		U	0.	65	10
n,n'-Dimethylanilin	e		1.0		U	0.	76	1.0
Surrogate			%Rec		Qualif	ïer	•	nce Limits
2,4,6-Tribromophe	enol (Surr)		74				43 - 126	
2-Fluorobiphenyl			68			63 - 113		
2-Fluorophenol (S			33				13 - 77	
Nitrobenzene-d5 (Surr)		69				62 - 120	
Phenol-d5 (Surr)			21				10 - 53	
Terphenyl-d14 (Su	ırr)		77				57 - 125	

Client: ARCADIS U.S. Inc

Analytical Data

Client Sample ID:	TW-02RRR					
Lab Sample ID: Client Matrix:	460-116504-4 Water					mpled: 07/05/2016 1230 cceived: 07/06/2016 0915
					0.0/14.0)	
	82	70D Semivolatile Org	anic Com	pounas (GC/MS)	
Analysis Method:	8270D	Analysis Batch:	460-3779	951	Instrument ID:	CBNAMS6
Prep Method:	3510C	Prep Batch:	460-3778	342	Lab File ID:	M229845.D
Dilution:	1.0				Initial Weight/Volume:	250 mL
Analysis Date:	07/08/2016 1246				Final Weight/Volume:	2 mL
Prep Date:	07/07/2016 1451				Injection Volume:	5 uL
Analyte		Result (u	g/L)	Qualifi	er MDL	RL
Aniline		10		U	0.65	10
n,n'-Dimethylanilin	e	1.4			0.76	1.0
Surrogate		%Rec		Qualifi	er Accepta	nce Limits
2,4,6-Tribromophe	nol (Surr)	84			43 - 126	
2-Fluorobiphenyl		69			63 - 113	
2-Fluorophenol (S	urr)	42			13 - 77	
Nitrobenzene-d5 (Surr)	72			62 - 120	
Phenol-d5 (Surr)		28			10 - 53	
Terphenyl-d14 (Su	ırr)	81			57 - 125	

Client: ARCADIS U.S. Inc

Client Sample ID	MW-32							
Lab Sample ID: Client Matrix:	460-116504-5 Water							npled: 07/05/2016 1500 ceived: 07/06/2016 0915
		8270D	Semivolatile Org	anic Comp	ounds	(GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 07/14/2016 2338 07/11/2016 1240		Analysis Batch: Prep Batch:	460-37912 460-37839		Instrument Lab File ID: Initial Weigl Final Weigh Injection Vo	nt/Volume: nt/Volume:	CBNAMS6 M230073.D 245 mL 2 mL 5 uL
Analyte			Result (u	g/L)	Qualif	ier MI	DL	RL
Aniline			10		U	0.0	66	10
n,n'-Dimethylanilin	e		1.0		U	0.7	78	1.0
Surrogate			%Rec		Qualif	ier	Acceptan	ice Limits
2,4,6-Tribromophe	enol (Surr)		87				43 - 126	
2-Fluorobiphenyl			78				63 - 113	
2-Fluorophenol (S	,		38				13 - 77	
Nitrobenzene-d5 (Surr)		79				62 - 120	
Phenol-d5 (Surr)	、 、		24				10 - 53	
Terphenyl-d14 (Su	irr)		89				57 - 125	

Client: ARCADIS U.S. Inc

Client Sample ID	: TW-01								
Lab Sample ID: Client Matrix:	460-116504-6 Water							npled: 07/05/20 ceived: 07/06/20	
		8270D	Semivolatile Org	anic Comp	ounds	(GC/MS)			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 07/08/2016 1328 07/07/2016 1451		Analysis Batch: Prep Batch:	460-37795 460-37784		Instrument Lab File ID: Initial Weig Final Weigh Injection Vo	ht/Volume: ht/Volume:	CBNAMS6 M229847.D 250 mL 2 mL 5 uL	
Analyte			Result (u	g/L)	Qualif	ier M	DL	RL	
Aniline			10		U	0.0	65	10	
n,n'-Dimethylanilin	le		1.0		U	0.	76	1.0	
Surrogate			%Rec		Qualif	ïer	Acceptan	ice Limits	
2,4,6-Tribromophe	enol (Surr)		73				43 - 126		
2-Fluorobiphenyl			56		Х		63 - 113		
2-Fluorophenol (S	,		37				13 - 77		
Nitrobenzene-d5 (Surr)		63				62 - 120		
Phenol-d5 (Surr)	、 、		23				10 - 53		
Terphenyl-d14 (Su	urr)		78				57 - 125		

Client: ARCADIS U.S. Inc

Job Number: 460-116504-1

Client Sample ID: DUP-20160705

Lab Sample ID:	460-116504-1	Date Sampled: 07/05/2016 0000
Client Matrix:	Water	Date Received: 07/06/2016 0915

8015D Nonhalogenated Organic Compounds - Direct Injection (GC)

Analysis Method: Dilution: Analysis Date: Prep Date:	8015D N/A 1.0 07/08/2016 0942 N/A	Analysis Batch:	480-310218 N/A	Initia Final Injec	ument ID: I Weight/Volume: I Weight/Volume: tion Volume: ult Type:	HP5890-4 1 mL 1 mL PRIMARY
Analyte		Result (n	-3/	Qualifier	MDL	RL
Methanol Surrogate		1.0 %Rec	L C	Qualifier	0.41 Acceptar	1.0 nce Limits
2-Hexanone		105			62 - 129	

Client: ARCADIS U.S. Inc

Client Sample ID	MW-34					
Lab Sample ID:	460-116504-2				Date Sa	ampled: 07/05/2016 1630
Client Matrix:	Water				Date Re	eceived: 07/06/2016 0915
	8015D Nonh	alogenated Organic	Compound	s - Dire	ct Injection (GC)	
Analysis Method:	8015D	Analysis Batch:	480-31021	8	Instrument ID:	HP5890-4
	N/A		N/A		Initial Weight/Volume	: 1 mL
Dilution:	1.0				Final Weight/Volume:	
Analysis Date:	07/08/2016 1005				Injection Volume:	1 mL
Prep Date:	N/A				Result Type:	PRIMARY
Analyte		Result (n	ng/L)	Qualifi	er MDL	RL
Methanol		1.0		U	0.41	1.0
Surrogate		%Rec		Qualifi	er Accepta	ance Limits
2-Hexanone		107			62 - 129)

Client: ARCADIS U.S. Inc

Client Sample ID	: MW-35						
Lab Sample ID: Client Matrix:	460-116504-3 Water						npled: 07/05/2016 1420 eived: 07/06/2016 0915
	8015D Nonł	nalogenated Organic	Compound	ds - Direc	t Injection (G	C)	
Analysis Method:	8015D	Analysis Batch:	480-3102 ⁻	18	Instrument ID:		HP5890-4
	N/A		N/A		Initial Weight/	/olume:	1 mL
Dilution:	1.0				Final Weight/\	/olume:	
Analysis Date:	07/08/2016 1013				Injection Volur	ne:	1 mL
Prep Date:	N/A				Result Type:		PRIMARY
Analyte		Result (n	ng/L)	Qualifie	er MDL		RL
Methanol		1.0		U	0.41		1.0
Surrogate		%Rec		Qualifie	er /	Acceptan	ce Limits
2-Hexanone		92			6	62 - 129	

Client: ARCADIS U.S. Inc

Client Sample ID:	TW-02RRR	
Lab Sample ID:	460-116504-4	Date Sampled: 07/05/2016 1230
Client Matrix:	Water	Date Received: 07/06/2016 0915

Analysis Method: Dilution: Analysis Date: Prep Date:	8015D N/A 1.0 07/08/2016 1021 N/A	Analysis Batch:	480-310218 N/A	Initia Fina Injec	rument ID: al Weight/Volume: I Weight/Volume: ction Volume: ult Type:	HP5890-4 1 mL 1 mL PRIMARY
Analyte		Result (n	ng/L)	Qualifier	MDL	RL
Methanol		1.0	-	U	0.41	1.0
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
2-Hexanone		104			62 - 129	

Client: ARCADIS U.S. Inc

Client Sample ID	: MW-32						
Lab Sample ID:	460-116504-5				Γ	Date Sam	npled: 07/05/2016 1500
Client Matrix:	Water				Ε	Date Rec	eived: 07/06/2016 0915
	8015D Nonh	alogenated Organic	Compound	ls - Dire	ct Injection (G	C)	
Analysis Method:	8015D	Analysis Batch:	480-31021	8	Instrument ID:		HP5890-4
	N/A		N/A		Initial Weight/\	/olume:	1 mL
Dilution:	1.0				Final Weight/V	/olume:	
Analysis Date:	07/08/2016 1029				Injection Volun	ne:	1 mL
Prep Date:	N/A				Result Type:		PRIMARY
Analyte		Result (n	ng/L)	Qualifi	er MDL		RL
Methanol		1.0		U	0.41		1.0
Surrogate		%Rec		Qualifi	er A	Acceptan	ce Limits
2-Hexanone		102			6	62 - 129	

Client: ARCADIS U.S. Inc

Client Sample ID	: TW-01						
Lab Sample ID: Client Matrix:	460-116504-6 Water						npled: 07/05/2016 1245 ceived: 07/06/2016 0915
	8015D Nonh	alogenated Organic	Compound	ds - Dire	ct Injectio	n (GC)	
Analysis Method:	8015D	Analysis Batch:	480-3102	18	Instrumer	nt ID:	HP5890-4
	N/A		N/A		Initial We	ight/Volume:	1 mL
Dilution:	1.0				Final Wei	ght/Volume:	
Analysis Date:	07/08/2016 1037				Injection '	Volume:	1 mL
Prep Date:	N/A				Result Ty	pe:	PRIMARY
Analyte		Result (n	ng/L)	Qualif	ier I	MDL	RL
Methanol		1.0		U		0.41	1.0
Surrogate		%Rec		Qualif	ier	Acceptar	nce Limits
2-Hexanone		87				62 - 129	

McKesson Bear Street

Data Usability Summary Report (DUSR)

SYRACUSE, NEW YORK

Volatile, Semivolatile and Methanol Analyses

SDG #: 460-116580-1

Analyses Performed By: **TestAmerica Laboratories** Edison, New Jersey

Report #: 25991R Review Level: Tier III Project: B0026003.2014.00010

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 460-116580-1 for samples collected in association with the McKesson Bear Street site in Syracuse, New York. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

Sample ID	Lab ID	Matrix	Sample Collectio n Date	Parent Sample	Analysis				
					voc	SVOC	РСВ	METH	MISC
MW-4S	460-116580-1	Water	7/6/2016		Х	Х			
MW-36R	460-116580-2	Water	7/6/2016		Х	Х			
MW-33	460-116580-3	Water	7/6/2016		Х	Х			
MW-9S	460-116580-4	Water	7/6/2016		Х	Х		Х	
MW-31	460-116580-5	Water	7/6/2016		Х	Х		Х	
PZ-4D	460-116580-6	Water	7/6/2016		Х	Х			
PZ-4S	460-116580-7	Water	7/6/2016		Х	Х			
MW-17R	460-116580-8	Water	7/6/2016		Х	Х		Х	
TRIP BLANK	460-116580-9	Water	7/6/2016		Х				

Notes:

1. METH - Methanol.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Rep	orted	Performance Acceptable		Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		Х		Х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of QA or sample problems provided		х		х	
12.	Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 8260C, 8270D and 8015D as referenced in NYSDEC-ASP. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999 and USEPA Region II SOPs associated with USEPA SW-846 Validating Volatile Organic Compounds by GC/MS SW-846 Method 8260B (SOP HW-24 Revision 2, October 2006) and Validating Semivolatile Organic Compounds by GC/MS SW-846 Method 8270C (SOP HW-22 Revision 3, October 2006).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected as unusable. The compound may or may not be present in the sample.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260C	Water	14 days from collection to analysis	Cool to <6 °C; preserved to a pH of less than 2 s.u.
377-040 02000	Soil	48 hours from collection to extraction and 14 days from collection to analysis	Cool to <6°C

s.u. Standard units

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks, trip blanks, and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure sample storage contamination. Rinse blanks also measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99, and a RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
All sample locations associated with this SDG	ICV %RSD	Acetone	17.8%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification	
	RRF <0.05	Non-detect	R	
	KKF <0.05	Detect	J	
Initial and Continuing		Non-detect	R	
Calibration	RRF <0.01 ¹	Detect	J	
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action	
		Detect	No Action	
	%RSD > 15% or a correlation	Non-detect	UJ	
Initial Calibration	coefficient <0.99	Detect	J	
	%RSD >90%	Non-detect	R	
	%R3D >90%	Detect	J	
	$0/D \sim 200/$ (increase in consitivity)	Non-detect	No Action	
Continuing Colibration	%D >20% (increase in sensitivity)	Detect	J	
Continuing Calibration	% D > 20% (decrease in consitivity)	Non-detect	UJ	
	%D >20% (decrease in sensitivity)	Detect	J	

¹ RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC

analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratoryestablished acceptance limits.

All surrogate recoveries were within the control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC analysis exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The spiked compounds used in the MS/MSD analysis must exhibit recoveries within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS and MSD results must be within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSDs performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD spiking concentration by a factor of four or greater. Sample results associated with MS/MSD exceedances where the parent samples are not site-specific are not qualified.

The MS/MSD exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The spiked compounds used in the LCS analysis must exhibit recoveries within the laboratory-established acceptance limits.

All compounds associated with the LCS analyses exhibited recoveries within the control limits.

9. Field Duplicate Analysis

The field duplicate analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to five times the reporting limit (RL), a control limit for the difference between the results of two times the RL is applied for water matrices.

A field duplicate was not included in this SDG.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260C	Rep	orted	Perfor Acce	Not	
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETR	Y (GC/MS)			
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment/Field blanks					Х
C. Trip blanks		Х		Х	
Laboratory Control Sample (LCS) Accuracy (%R)		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		Х		Х	
MS/MSD Precision RPD		Х		Х	
Field Duplicate RPD		Х		Х	
Surrogate Spike %R		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х	Х		
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		х		х	
D. Transcription/calculations acceptable		Х		Х	
E. Reporting limits adjusted for sample dilutions		Х		Х	

%R

Percent recovery Relative percent difference RPD

%RSDRelative standard deviation%DPercent difference

SEMIVOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8270D	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6°C
3vv-040 8270D	Soil	14 days from collection to extraction and 40 days from extraction to analysis	CUUI 10 <0 C

All samples were extracted and analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Target compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution are acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits, and that all SVOC surrogate recoveries be greater than ten percent.

Sample Locations	Surrogate	Recovery
	Phenol-d6	AC
	2-Fluorophenol	AC
All complex consciented with this SDC	2,4,6-Tribromophenol	AC
All samples associated with this SDG	Nitrobenzene-d5	AC
	2-Fluorobiphenyl	<ll but=""> 10%</ll>
	Terphenyl-d14	AC

LL Lower control limit

AC Acceptable

The criteria used to evaluate the surrogate recoveries are presented in the following table. In the case of a surrogate deviation, the sample results associated with the deviant fraction are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	No Action
> UL	Detect	J
< LL but > 10%	Non-detect	UJ
< LL Dul > 10%	Detect	J
< 10%	Non-detect	R
< 10%	Detect	J

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC

analysis exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit recoveries within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS and MSD results must be within the laboratory-established or analytical method-referenced acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. Sample results associated with MS/MSD exceedances where the parent samples are not site-specific are not qualified.

The MS/MSD exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit recoveries within the laboratory-established acceptance limits.

All compounds associated with the LCS analyses exhibited recoveries within the control limits.

9. Field Duplicate Analysis

The field duplicate analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to five times the reporting limit (RL), a control limit for the difference between the results of two times the RL is applied for water matrices.

A field duplicate was not included in this SDG.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

SVOCs: SW-846 8270D	Reported		Performance Acceptable		Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY	(GC/MS)				
Tier II Validation					
Holding Times		Х		Х	
Reporting Limits (units)		Х		Х	
Blanks					
A. Method Blanks		Х		Х	
B. Equipment/Field Blanks					Х
Laboratory Control Sample (LCS) Accuracy (%R)		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		Х		Х	
MS/MSD RPD		Х		Х	
Field Duplicate RPD		Х		Х	
Surrogate Spike %R		Х	Х		
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
System Performance and Column Resolution		Х		Х	
Initial Calibration %RSDs		Х		Х	
Continuing Calibration RRFs		Х		Х	
Continuing Calibration %Ds		Х		Х	
Instrument Tune and Performance Check		Х		Х	
Ion Abundance Criteria for Each Instrument Used		Х		Х	
Internal Standards		Х		Х	
Compound Identification and Quantitation					
A. Reconstructed Ion Chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of Sample Compounds Within the Established RT Windows		х		х	
D. Transcription/calculations acceptable		Х		Х	
E. Reporting Limits Adjusted for Sample Dilutions		Х		Х	

DATA VALIDATION CHECKLIST FOR SVOCs

%R Percent Recovery

RPD Relative Percent Difference

%RSD Relative Standard Deviation

%D Percent Difference

METHANOL ANALYSIS

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Methanol	Methanol Soil		Cool to <6°C
SW-846 8015D	Water	14 days from collection to analysis	C001 10 < 6 C

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected analyte in an associated blank is calculated for QA blanks containing concentrations greater than the reporting limit (RL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Methanol was not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. System Performance

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

A maximum RSD of 20% or a correlation coefficient of greater than 0.99 is allowed.

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (15%).

All calibration criteria were within the control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. The analysis requires surrogate compounds exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The spiked analytes used in the MS/MSD analysis must exhibit recoveries within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS and MSD results must be within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSDs performed on sample locations where the analyte concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. Sample results associated with MS/MSD exceedances where the parent samples are not site-specific are not qualified.

The MS/MSD exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

7. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The spiked compounds used in the LCS analysis must exhibit recoveries within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

8. Field Duplicate Analysis

The field duplicate analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to five times the reporting limit (RL), a control limit for the difference between the results of two times the RL is applied for water matrices.

A field duplicate was not included in this SDG.

9. Compound Identification

The retention times of all quantitated peaks must fall within the calculated retention time windows.

All identified compounds met the specified criteria.

10. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in

this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR METHANOL

Methanol: SW-846 8015D	Rep	orted	Performance Acceptable		Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY (GC/FID)					
Tier II Validation					
Holding Times		Х		Х	
Reporting Limits (Units)		Х		Х	
Blanks					·
A. Method Blanks		Х		Х	
B. Equipment Blanks					Х
C. Trip Blanks					Х
Laboratory Control Sample (LCS) Accuracy (%R)		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		Х		Х	
MS/MSD RPD		Х		Х	
Field Duplicate RPD		Х		Х	
Surrogate Spike %R		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
Initial Calibration %RSDs		Х		Х	
Continuing Calibration %Ds		Х		Х	
System Performance and Column Resolution		Х		Х	
Compound Identification and Quantitation					
A. Quantitation Reports		Х		Х	
B. RT of Sample Compounds Within Established RT Windows		х		х	
C. Pattern Identification					Х
D. Transcription/calculations acceptable		Х		Х	
E. Reporting Limits adjusted for Sample Dilutions		Х		Х	

%RPercent RecoveryRPDRelative Percent Difference%RSDRelative Standard Deviation%DPercent Difference

SAMPLE COMPLIANCE REPORT

Sample Delivery										
Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	SVOC	РСВ	METH	MISC	Noncompliance
	7/6/2016		MW-4S	Water	No	Yes		Yes		ICV %RSD
	7/6/2016		MW-36R	Water	No	Yes		Yes		ICV %RSD
	7/6/2016		MW-33	Water	No	Yes		Yes		ICV %RSD
100	7/6/2016		MW-9S	Water	No	Yes		Yes		ICV %RSD
460- 116580-1	7/6/2016	SW846	MW-31	Water	No	Yes		Yes		ICV %RSD
110300-1	7/6/2016		PZ-4D	Water	No	Yes		Yes		ICV %RSD
	7/6/2016		PZ-4S	Water	No	Yes		Yes		ICV %RSD
	7/6/2016		MW-17R	Water	No	Yes		Yes		ICV %RSD
	7/6/2016		TRIP BLANK	Water	No	Yes		Yes		ICV %RSD

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

Validation Performed By:	Jeffrey L. Davin
Signature:	Jeffrey d. Dai
Date:	August 5, 2016
Peer Review:	Dennis Capria
Date:	August 9, 2016

CHAIN OF CUSTODY/LABORAOTRY QUALIFIER DEFINITIONS/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

Custody Seals Intact: Custody Seal No.: ∆ Yes ∆ No	Relinquished by:	$\sum_{i=1}^{n}$	an l. Smith	Empty Kit Relinquished by:	Deliverable Requested: I, II, III, V., Other (specify)	Possible Hazard Identification			TRU BLANK	MW-17R	PZ-4S	PZ-4D	MW-3)	MW-9.S	MW ~ 33	MW- 36R	MW-4S	2019년 · 1월 1919년 · 1919		Sample Identification	Site: Sykaluxe NY.	Project Name: McKesson Former Bear Street Facility		315-671-9229(Tel)	15: 3214	Syracuse	6723 Towpath Road	Company: ARCADIS U.S. Inc		9n	Edison, NJ 08817 Phone (732) 549-3900 Fax (732) 549-3679	
	Date/Time:	Date/Time:	Date/Time:			n B Unknown			۲							, , , ,	7/6/16		and ald the	Sample Date	SSOW#;	46003506		B0026003.2014	/ ~	<i>VI</i>	TAT Benjingtod (dave)		Phone: 3/5-	Sampler N. SALTH		~
		19:	17:00	Date:						100370	o 2 hl	0121	000	1130	1230	1340	1600	X							(pro				402-	K.		Chain of Custody Record
	0	(¹ , 1		7		Radiological				<i>Q</i>	G	G		₽ P	<i>с</i>	<i>Ф</i>	6	Preservation Code:	101/00/0										6899	MoH-		f Custo
	Company	mpany (HILL ANIS	171			Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	n Code:	ь	Matrix (W-water, S-solid, Coveration)	Samj)ie (Ŷi	es or	No)			279 (F		E-Mail: grace.c	161		dy Re
Cooler Temp	Received by:	Received by:	Received by:	Time:	special instructions/QC Requirements	Return To Client			N - 3	1699 19	123-	N 2 3	N 2 3 3	N 233	N 2 3 1	N R V V	ىھ	X N N	8	Parform MS/A 3270D - Target 3260C - Target	ASD (Comp Comp	res.o ound l ound l	r No) List fo List fo	r BNAs r VOCs	-OLMO-				E-Mail: grace.chang@testamericainc.com	Grace	1	cord
Cooler Temperature(s) ^o C and Other Remarks;		Caluno	115/11		tions/QC Kequ	sal (A tee ma						1			1				8	3016D_DA1 - (₩		OC 21 M						Analysis	icainc.com	460-116580 CF		
Other Remarks;		to Fisher	К			may be assessed in ADisposal B																						is Requested		Chain of Custody		
± 1	Date/Time:	Ľ	Date/Time:	Method of Shipment:		assessed it samples Disposal By Lab																						ä		dy		
4.16	Timo:	7-26	10-10,	ont				1. J.	1944 1944				1.					X		Total Numbe	rofc	<u>mtālņ</u>	ėrs,					-			 _	
222		9:47am	17:05			Archive For				MS/MSD								A State of State		Special	Oater:	L - 80A	J - DI Water K - EDTA	G - Amenior H - Ascorbic Acid	R - Natsod F - Machod F - Mach	C - Zn Acetate	A HOL		Page 2 of 5	COC No: 460-74078-45565.2	THE LEADER IN	
ŕ	Company	the v	Company Company			بة ٨.	ן הו	DH		~	7	6		-6	S	2				pecial Instructions/Note:		Z = other (specify)	V - MCAA W - ph 4-5	S - H2SO4 T - TSP Dodecał U - Acetone	R - Na2SO3 R - Na2SO3	O - AsNaO2	M - Hexane	6580		65.2	THE LEADER IN ENVIRONMENTAL TESTING	
						T)H	5 ما						Pag	e 4	97 1					\$		hydrate						8/05/		

483325 - Syracuse SC

1

DATA REPORTING QUALIFIERS

Client: ARCADIS U.S. Inc

Lab Section	Qualifier	Description
GC/MS VOA		
	U	Indicates the analyte was analyzed for but not detected.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
GC/MS Semi VOA		
	U	Indicates the analyte was analyzed for but not detected.
	*	LCS or LCSD is outside acceptance limits.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
	Х	Surrogate is outside control limits
GC VOA		
	U	Indicates the analyte was analyzed for but not detected.

Client: ARCADIS U.S. Inc

Job Number: 460-116580-1

Client Sample ID:	MW-4S				
Lab Sample ID: Client Matrix:	460-116580-1 Water				mpled: 07/06/2016 1600 eceived: 07/07/2016 0947
	8	260C Volatile Organi	c Compounds by	GC/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 07/17/2016 1008 07/17/2016 1008	Analysis Batch: Prep Batch:	460-379474 N/A	Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume:	
Analyte		Result (u	g/L) Qual	ifier MDL	RL
Acetone		5.0	U J	1.1	5.0
Benzene		1.0	U	0.090	1.0
Ethylbenzene		1.0	U	0.30	1.0
Methylene Chlorid	e	1.0	U	0.21	1.0
Toluene		1.0	U	0.25	1.0
Trichloroethene		1.0	U	0.22	1.0
Xylenes, Total		2.0	U	0.28	2.0
Surrogate		%Rec	Qual	ifier Accepta	ince Limits
1,2-Dichloroethan	e-d4 (Surr)	99		70 - 137	7
4-Bromofluoroben	zene	95		70 - 131	
Dibromofluoromet	hane (Surr)	102		72 - 136	3
Toluene-d8 (Surr)		98		74 - 120)

-

Job Number: 460-116580-1

Client Sample ID	: MW-36R				
Lab Sample ID: Client Matrix:	460-116580-2 Water				mpled: 07/06/2016 1340 eceived: 07/07/2016 0947
		8260C Volatile Organi	c Compounds b	y GC/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 07/17/2016 1035 07/17/2016 1035	Analysis Batch: Prep Batch:	460-379474 N/A	Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume:	
Analyte		Result (u	g/L) Qua	alifier MDL	RL
Acetone		17	č	J 1.1	5.0
Benzene		0.48	J	0.090	1.0
Ethylbenzene		1.0	U	0.30	1.0
Methylene Chlorid	e	1.0	U	0.21	1.0
Toluene		0.41	J	0.25	1.0
Trichloroethene		1.0	U	0.22	1.0
Xylenes, Total		0.46	J	0.28	2.0
Surrogate		%Rec	Qua	alifier Accepta	ince Limits
1,2-Dichloroethan	e-d4 (Surr)	99		70 - 137	7
4-Bromofluoroben		97		70 - 131	
Dibromofluoromet	hane (Surr)	103		72 - 136	3
Toluene-d8 (Surr)		98		74 - 120)

Client: ARCADIS U.S. Inc

Job Number: 460-116580-1

Client Sample ID:	MW-33				
Lab Sample ID: Client Matrix:	460-116580-3 Water				ampled: 07/06/2016 1230 eceived: 07/07/2016 0947
		8260C Volatile Organi	c Compounds by	GC/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 07/17/2016 1103 07/17/2016 1103	Analysis Batch: Prep Batch:	460-379474 N/A	Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume:	
Analyte		Result (u	g/L) Quali	fier MDL	RL
Acetone		5.0	U J	1.1	5.0
Benzene		1.0	U	0.090	1.0
Ethylbenzene		1.0	U	0.30	1.0
Methylene Chlorid	е	1.0	U	0.21	1.0
Toluene		1.0	U	0.25	1.0
Trichloroethene		1.0	U	0.22	1.0
Xylenes, Total		2.0	U	0.28	2.0
Surrogate		%Rec	Quali	fier Accepta	ance Limits
1,2-Dichloroethane	e-d4 (Surr)	100		70 - 137	7
4-Bromofluoroben:	zene	98		70 - 13 ⁻	l
Dibromofluoromet	nane (Surr)	104		72 - 136	3
Toluene-d8 (Surr)		99		74 - 120)

Client: ARCADIS U.S. Inc

Client: ARCADIS U.S. Inc

Job Number: 460-116580-1

Client Sample ID	MW-9S				
Lab Sample ID: Client Matrix:	460-116580-4 Water				mpled: 07/06/2016 1130 ceived: 07/07/2016 0947
		8260C Volatile Organi	c Compounds by	GC/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 07/17/2016 1131 07/17/2016 1131	Analysis Batch: Prep Batch:	460-379474 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	CVOAMS12 O12559.D 5 mL 5 mL
Analyte		Result (u	g/L) Qual	ifier MDL	RL
Acetone		5.0	U J	1.1	5.0
Benzene		1.3		0.090	1.0
Ethylbenzene		13		0.30	1.0
Methylene Chlorid	e	1.0	U	0.21	1.0
Toluene		1.9		0.25	1.0
Trichloroethene		1.0	U	0.22	1.0
Xylenes, Total		50		0.28	2.0
Surrogate		%Rec	Qual	ifier Acceptar	nce Limits
1,2-Dichloroethan	e-d4 (Surr)	99		70 - 137	
4-Bromofluoroben	zene	96		70 - 131	
Dibromofluoromet	hane (Surr)	102		72 - 136	
Toluene-d8 (Surr)		100		74 - 120	

-

Client: ARCADIS U.S. Inc

Client Sample ID:	: MW-31					
Lab Sample ID: Client Matrix:	460-116580-5 Water					npled: 07/06/2016 1000 ceived: 07/07/2016 0947
	8	260C Volatile Organi	c Compounds b	y GC/MS		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 07/17/2016 1159 07/17/2016 1159	Analysis Batch: Prep Batch:	460-379474 N/A	Instrument Lab File ID: Initial Weigl Final Weigh	nt/Volume:	CVOAMS12 O12560.D 5 mL 5 mL
Analyte		Result (u	g/L) Qua	alifier MI	DL	RL
Acetone		13	J	1.1	1	5.0
Benzene		9.6		0.0	090	1.0
Ethylbenzene		1.0	U	0.3	30	1.0
Methylene Chlorid	e	1.0	U	0.2	21	1.0
Toluene		1.1		0.2		1.0
Trichloroethene		1.0	U	0.2	22	1.0
Xylenes, Total		4.8		0.2	28	2.0
Surrogate		%Rec	Qua	alifier	Acceptar	ice Limits
1,2-Dichloroethane	e-d4 (Surr)	102			70 - 137	
4-Bromofluoroben	zene	98			70 - 131	
Dibromofluoromet	hane (Surr)	104			72 - 136	
Toluene-d8 (Surr)		100			74 - 120	

Client: ARCADIS U.S. Inc

Job Number: 460-116580-1

Lab Sample ID: 460-116580-6		aplad: 07/06/2016 1210
Client Matrix: Water	Date Rec	npled: 07/06/2016 1210 eived: 07/07/2016 0947
8260C Volatile Organic Compounds by GC/M	MS	
Prep Method:5030CPrep Batch:N/ALalDilution:1.0Init	strument ID: ab File ID: itial Weight/Volume: nal Weight/Volume:	CVOAMS12 O12561.D 5 mL 5 mL
Analyte Result (ug/L) Qualifier	MDL	RL
Acetone 5.0 U J	1.1	5.0
Benzene 1.0 U	0.090	1.0
Ethylbenzene 1.0 U	0.30	1.0
Methylene Chloride 1.0 U	0.21	1.0
Toluene 1.0 U	0.25	1.0
Trichloroethene 1.0 U	0.22	1.0
Xylenes, Total2.0U	0.28	2.0
Surrogate %Rec Qualifier	Acceptan	ce Limits
1,2-Dichloroethane-d4 (Surr) 104	70 - 137	
4-Bromofluorobenzene 102	70 - 131	
Dibromofluoromethane (Surr) 106	72 - 136	
Toluene-d8 (Surr) 104	74 - 120	

÷

Client: ARCADIS U.S. Inc

Job Number: 460-116580-1

Client Sample ID:	PZ-4S					
Lab Sample ID: Client Matrix:	460-116580-7 Water					npled: 07/06/2016 1430 eived: 07/07/2016 0947
	8	260C Volatile Organi	c Compounds I	oy GC/MS		
Prep Method: Dilution: Analysis Date:	8260C 5030C 1.0 07/17/2016 1254 07/17/2016 1254	Analysis Batch: Prep Batch:	460-379474 N/A			CVOAMS12 O12562.D 5 mL 5 mL
Analyte		Result (u	g/L) Qu	alifier	MDL	RL
Acetone		5.0	U	J	1.1	5.0
Benzene		1.0	U		0.090	1.0
Ethylbenzene		1.0	U		0.30	1.0
Methylene Chloride	;	1.0	U		0.21	1.0
Toluene		1.0	U		0.25	1.0
Trichloroethene		1.0	U		0.22	1.0
Xylenes, Total		2.0	U		0.28	2.0
Surrogate		%Rec	Qı	alifier	Acceptan	ce Limits
1,2-Dichloroethane	-d4 (Surr)	101			70 - 137	
4-Bromofluorobenz	ene	99			70 - 131	
Dibromofluorometh	ane (Surr)	103			72 - 136	
Toluene-d8 (Surr)		101			74 - 120	

-

Job Number: 460-116580-1

Client Sample ID:	MW-17R					
Lab Sample ID: Client Matrix:	460-116580-8 Water					npled: 07/06/2016 1030 ceived: 07/07/2016 0947
	;	8260C Volatile Organi	c Compounds I	oy GC/MS		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 07/17/2016 0940 07/17/2016 0940	Analysis Batch: Prep Batch:	460-379474 N/A	Lab Fi Initial	nent ID: le ID: Weight/Volume: Veight/Volume:	CVOAMS12 O12555.D 5 mL 5 mL
Analyte		Result (u	g/L) Qu	alifier	MDL	RL
Acetone		5.0	U	J	1.1	5.0
Benzene		1.0	U		0.090	1.0
Ethylbenzene		1.0	U		0.30	1.0
Methylene Chlorid	e	1.0	U		0.21	1.0
Toluene		1.0	U		0.25	1.0
Trichloroethene		1.0	U		0.22	1.0
Xylenes, Total		2.0	U		0.28	2.0
Surrogate		%Rec	Qı	alifier	Acceptan	ce Limits
1,2-Dichloroethan	e-d4 (Surr)	102			70 - 137	
4-Bromofluoroben	zene	98			70 - 131	
Dibromofluoromet	hane (Surr)	105			72 - 136	
Toluene-d8 (Surr)		99			74 - 120	

Client: ARCADIS U.S. Inc

~

Client: ARCADIS U.S. Inc

Client Sample ID: TRIP BLANK

Analytical Data

Lab Sample ID: Client Matrix:	460-116580-9TB Water					ampled: 07/06/2016 0000 eceived: 07/07/2016 0947					
8260C Volatile Organic Compounds by GC/MS											
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 07/17/2016 0912 07/17/2016 0912	Analysis Batch: Prep Batch:	460-379474 N/A	4	Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume						
Analyte		Result (u	ıg/L)	Qualifi	er MDL	RL					
Acetone		5.0		υJ	1.1	5.0					
Benzene		1.0		U	0.090	1.0					
Ethylbenzene		1.0		U	0.30	1.0					
Methylene Chlorid	e	1.0		U	0.21	1.0					
Toluene		1.0		U	0.25	1.0					
Trichloroethene		1.0		U	0.22	1.0					
Xylenes, Total		2.0		U	0.28	2.0					
Surrogate		%Rec		Qualifi	er Accept	ance Limits					
1,2-Dichloroethan	e-d4 (Surr)	99			70 - 13	7					
4-Bromofluoroben	zene	97			70 - 13	1					
Dibromofluoromet	hane (Surr)	104			72 - 13	6					
Toluene-d8 (Surr)		98			74 - 12	0					

Client: ARCADIS U.S. Inc

Client Sample ID	: MW-4S							
Lab Sample ID: Client Matrix:	460-116580-1 Water					ampled: 07/06/2016 1600 eceived: 07/07/2016 0947		
		8270D Semivolatil	e Organic Cor	npounds ((GC/MS)			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 07/14/2016 0650 07/08/2016 1422	Analysis Ba Prep Batch			Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume: Injection Volume:			
Analyte		Res	sult (ug/L)	Qualifie	er MDL	RL		
Aniline		10		U	0.65	10		
n,n'-Dimethylanilin	ie	1.0		U *	0.76	1.0		
Surrogate		%R	lec	Qualifie	er Accepta	ance Limits		
2,4,6-Tribromophe	enol (Surr)	76			43 - 126	3		
2-Fluorobiphenyl		54		Х	63 - 113	3		
2-Fluorophenol (Surr)		35			13 - 77			
Nitrobenzene-d5 (Surr)			71		62 - 120)		
Phenol-d5 (Surr)			27		10 - 53			
Terphenyl-d14 (Surr)		100	100		57 - 125			

Client: ARCADIS U.S. Inc

Client Sample ID	MW-36R				
Lab Sample ID: Client Matrix:	460-116580-2 Water				ampled: 07/06/2016 1340 Received: 07/07/2016 0947
	٤	3270D Semivolatile Org	anic Compounds	GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 07/14/2016 0715 07/08/2016 1422	Analysis Batch: Prep Batch:	460-378945 460-378047	Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume Injection Volume:	
Analyte		Result (u	ıg/L) Qual	lifier MDL	RL
Aniline		7.9	J	0.65	10
n,n'-Dimethylanilin	e	3.4	*	0.76	1.0
Surrogate		%Rec	Qual	1	ance Limits
2,4,6-Tribromophenol (Surr)		60		43 - 12	
2-Fluorobiphenyl	<u>`</u>	59	Х	63 - 11	
2-Fluorophenol (Surr)		32		13 - 77	
Nitrobenzene-d5 (Surr)		75		62 - 12	
Phenol-d5 (Surr)		24		10 - 53	
Terphenyl-d14 (Su	ırr)	96		57 - 12	25

Client: ARCADIS U.S. Inc

Client Sample ID:	: MW-33						
Lab Sample ID: Client Matrix:	460-116580-3 Water				mpled: 07/06/2016 1230 ceived: 07/07/2016 0947		
	٤	3270D Semivolatile Org	anic Compounds	(GC/MS)			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 07/14/2016 0741 07/08/2016 1422	Analysis Batch: Prep Batch:	460-378945 460-378047	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:			
Analyte		Result (u	g/L) Quali	fier MDL	RL		
Aniline		10	U	0.65	10		
n,n'-Dimethylanilin	e	1.1	*-	0.76	1.0		
Surrogate		%Rec	Quali	fier Accepta	nce Limits		
2,4,6-Tribromophe	enol (Surr)	75		43 - 126			
2-Fluorobiphenyl		54	Х	63 - 113			
2-Fluorophenol (Surr)		34		13 - 77			
Nitrobenzene-d5 (Surr)		70		62 - 120			
Phenol-d5 (Surr)		24		10 - 53			
Terphenyl-d14 (Surr)		93		57 - 125			

Client: ARCADIS U.S. Inc

Client Sample ID	: MW-9S				
Lab Sample ID: Client Matrix:	460-116580-4 Water				mpled: 07/06/2016 1130 ceived: 07/07/2016 0947
	827	0D Semivolatile Org	ganic Compounds	(GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 07/14/2016 0806 07/08/2016 1422	Analysis Batch: Prep Batch:	460-378945 460-378047	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	
Analyte		Result (u	ıg/L) Qual	ifier MDL	RL
Aniline		0.66	J	0.65	10
n,n'-Dimethylanilin	e	2.7	*-	0.76	1.0
Surrogate		%Rec	Qual	ifier Accepta	nce Limits
2,4,6-Tribromophe	enol (Surr)	74		43 - 126	
2-Fluorobiphenyl		57	Х	63 - 113	
2-Fluorophenol (S	,	34		13 - 77	
Nitrobenzene-d5 (Surr)	70		62 - 120	
Phenol-d5 (Surr)	,	25		10 - 53	
Terphenyl-d14 (Su	urr)	103		57 - 125	

Client: ARCADIS U.S. Inc

Client Sample ID	MW-31							
Lab Sample ID: Client Matrix:	460-116580-5 Water							npled: 07/06/2016 1000 ceived: 07/07/2016 0947
		8270D	Semivolatile Org	anic Comp	ounds ((GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 07/14/2016 0831 07/08/2016 1422		Analysis Batch: Prep Batch:	460-3789 460-3780		Instrument Lab File ID Initial Weig Final Weigl Injection Vo	: ht/Volume: nt/Volume:	CBNAMS13 C26773.D 250 mL 2 mL 5 uL
Analyte			Result (u	g/L)	Qualif	ier M	DL	RL
Aniline			10		U	0.	65	10
n,n'-Dimethylanilin	e		1.3		*	0.	76	1.0
Surrogate			%Rec		Qualif	ier	Acceptan	nce Limits
2,4,6-Tribromophe	enol (Surr)		70				43 - 126	
2-Fluorobiphenyl		60		Х		63 - 113		
2-Fluorophenol (Surr)		33		13 - 77		-		
Nitrobenzene-d5 (Surr)		70			62 - 120			
Phenol-d5 (Surr)	,		23			10 - 53		
Terphenyl-d14 (Su	irr)		95				57 - 125	

Client: ARCADIS U.S. Inc

Client Sample ID	: PZ-4D							
Lab Sample ID: Client Matrix:	460-116580-6 Water							npled: 07/06/2016 1210 ceived: 07/07/2016 0947
		8270D	Semivolatile Org	janic Comp	ounds	(GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 07/14/2016 1634 07/08/2016 1422		Analysis Batch: Prep Batch:	460-37894 460-37804		Instrument Lab File ID: Initial Weig Final Weigh Injection Vo	ht/Volume: ht/Volume:	CBNAMS13 C26792.D 250 mL 2 mL 5 uL
Analyte			Result (u	ıg/L)	Qualit	ier M	DL	RL
Aniline			10		U	0.0	65	10
n,n'-Dimethylanilin	ie		1.0		U *	0.1	76	1.0
Surrogate			%Rec		Qualif	ier	•	nce Limits
2,4,6-Tribromophe	enol (Surr)		70		х		43 - 126	
2-Fluorobiphenyl 2-Fluorophenol (Surr)		61 34		^	63 - 113 13 - 77			
Nitrobenzene-d5 (,		54 74				62 - 120	
Phenol-d5 (Surr)	ourry		22				10 - 53	
Terphenyl-d14 (Su	urr)		101				57 - 125	

Client: ARCADIS U.S. Inc

Client Sample ID:	PZ-4S							
Lab Sample ID: Client Matrix:	460-116580-7 Water							npled: 07/06/2016 1430 ceived: 07/07/2016 0947
		8270D	Semivolatile Org	anic Comp	ounds	(GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 07/14/2016 1659 07/08/2016 1422		Analysis Batch: Prep Batch:	460-37894 460-37804		Instrument Lab File ID Initial Weig Final Weigl Injection Vo	: ht/Volume: nt/Volume:	CBNAMS13 C26793.D 240 mL 2 mL 5 uL
Analyte			Result (u	g/L)	Qualif	ier M	DL	RL
Aniline			10		U	0.	68	10
n,n'-Dimethylanilin	e		1.0		U *	0.	79	1.0
Surrogate			%Rec		Qualif	ïer	Acceptar	ice Limits
2,4,6-Tribromophe	enol (Surr)		69				43 - 126	
2-Fluorobiphenyl		56		Х		63 - 113		
2-Fluorophenol (Surr)		33				13 - 77		
Nitrobenzene-d5 (Surr)		69				62 - 120	
Phenol-d5 (Surr)			21				10 - 53	
Terphenyl-d14 (Su	ırr)		99				57 - 125	

Client: ARCADIS U.S. Inc

Client Sample ID	: MW-17R					
Lab Sample ID: Client Matrix:	460-116580-8 Water					npled: 07/06/2016 1030 eived: 07/07/2016 0947
	827	0D Semivolatile Orç	janic Compour	nds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 07/11/2016 1454 07/08/2016 1422	Analysis Batch: Prep Batch:	460-378307 460-378047	Lab Fil Initial V Final V	nent ID: le ID: Veight/Volume: Veight/Volume: on Volume:	CBNAMS13 C26658.D 250 mL 2 mL 5 uL
Analyte		Result (u	ıg/L) Q	ualifier	MDL	RL
Aniline		10	U		0.65	10
n,n'-Dimethylanilin	e	1.0	U	*-	0.76	1.0
Surrogate		%Rec	Q	ualifier	Acceptan	ce Limits
2,4,6-Tribromophe	enol (Surr)	68			43 - 126	
2-Fluorobiphenyl		61	Х		63 - 113	
2-Fluorophenol (S	,	37			13 - 77	
Nitrobenzene-d5 (Surr)	70			62 - 120	
Phenol-d5 (Surr)		23			10 - 53	
Terphenyl-d14 (Su	urr)	90			57 - 125	

Client: ARCADIS U.S. Inc

Client Sample ID	MW-9S						
Lab Sample ID: Client Matrix:	460-116580-4 Water						npled: 07/06/2016 1130 eived: 07/07/2016 0947
	8015D Nonha	alogenated Organic	Compound	ls - Dire	ct Injection (G	SC)	
Analysis Method:	8015D	Analysis Batch:	480-31042	26	Instrument ID):	HP5890-4
	N/A		N/A		Initial Weight/	/Volume:	1 mL
Dilution:	1.0				Final Weight/	Volume:	
Analysis Date:	07/11/2016 0823				Injection Volu	ime:	1 mL
Prep Date:	N/A				Result Type:		PRIMARY
Analyte		Result (n	ng/L)	Qualifi	er MDL	-	RL
Methanol		1.0		U	0.41		1.0
Surrogate		%Rec		Qualifi	er	Acceptan	ce Limits
2-Hexanone		100				62 - 129	

Client: ARCADIS U.S. Inc

Client Sample ID	: MW-31							
Lab Sample ID: Client Matrix:	460-116580-5 Water					ampled: 07/06/2016 1000 eceived: 07/07/2016 0947		
8015D Nonhalogenated Organic Compounds - Direct Injection (GC)								
Analysis Method:	8015D	Analysis Batch:	480-31042	6	Instrument ID:	HP5890-4		
	N/A		N/A		Initial Weight/Volume	:: 1 mL		
Dilution:	1.0				Final Weight/Volume	:		
Analysis Date:	07/11/2016 0831				Injection Volume:	1 mL		
Prep Date:	N/A				Result Type:	PRIMARY		
Analyte		Result (n	ng/L)	Qualifie	r MDL	RL		
Methanol		1.0		U	0.41	1.0		
Surrogate		%Rec		Qualifie	r Accepta	ance Limits		
2-Hexanone		106			62 - 12	9		

Client: ARCADIS U.S. Inc

Job Number: 460-116580-1

Client Sample ID	: MW-17R				
Lab Sample ID: Client Matrix:	460-116580-8 Water				mpled: 07/06/2016 1030 ceived: 07/07/2016 0947
	8015D Noni	nalogenated Organic	Compounds - D	virect Injection (GC)	
Analysis Method:	8015D	Analysis Batch:	480-310426	Instrument ID:	HP5890-4
	N/A		N/A	Initial Weight/Volume:	1 mL
Dilution:	1.0			Final Weight/Volume:	
Analysis Date:	07/11/2016 0838			Injection Volume:	1 mL

Prep Date:	N/A		,	Result Type:		
Analyte		Result (mg/L)	Qualifier	MDL	RL	
Methanol		1.0	U	0.41	1.0	
Surrogate		%Rec	Qualifier	Accept	ance Limits	
2-Hexanone		101		62 - 12	9	

-

McKesson Bear Street

Data Usability Summary Report (DUSR)

SYRACUSE, NEW YORK

Volatile, Semivolatile and Methanol Analyses

SDG #: 460-116737-1

Analyses Performed By: **TestAmerica Laboratories** Edison, New Jersey

Report #: 25992R Review Level: Tier III Project: B0026003.FY17.00010

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 460-116737-1 for samples collected in association with the McKesson Bear Street site in Syracuse, New York. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample	Parent			Analysis		
Sample ID	Lab ID	Matrix	Collectio n Date	Sample	voc	SVOC	РСВ	METH	MISC
Dup-20160707	460-116737-1	Water	7/7/2016	MW-8SR	Х	Х			
MW-18	460-116737-2	Water	7/7/2016		Х	Х		Х	
MW-29	460-116737-3	Water	7/7/2016		Х	Х			
MW-30	460-116737-4	Water	7/7/2016		Х	Х			
MW-3S	460-116737-5	Water	7/7/2016		Х	Х			
MW-23S	460-116737-6	Water	7/7/2016		Х	Х		Х	
MW-23I	460-116737-7	Water	7/7/2016		Х	Х		Х	
MW-27	460-116737-8	Water	7/7/2016		Х	Х			
MW-8SR	460-116737-9	Water	7/7/2016		Х	Х			
MW-28	460-116737-10	Water	7/7/2016		Х	Х		Х	
TRIP BLANK	460-116737-11	Water	7/7/2016		Х				

Notes:

1. METH - Methanol.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Reported		Performance Acceptable		Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		Х		Х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of QA or sample problems provided		х		х	
12.	Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 8260C, 8270D and 8015D as referenced in NYSDEC-ASP. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999 and USEPA Region II SOPs associated with USEPA SW-846 Validating Volatile Organic Compounds by GC/MS SW-846 Method 8260B (SOP HW-24 Revision 2, October 2006) and Validating Semivolatile Organic Compounds by GC/MS SW-846 Method 8270C (SOP HW-22 Revision 3, October 2006).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected as unusable. The compound may or may not be present in the sample.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260C	Water	14 days from collection to analysis	Cool to <6 °C; preserved to a pH of less than 2 s.u.
377-040 02000	Soil	48 hours from collection to extraction and 14 days from collection to analysis	Cool to <6°C

s.u. Standard units

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks, trip blanks, and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure sample storage contamination. Rinse blanks also measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99, and a RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
All sample locations associated with this SDG	ICV %RSD	Acetone	17.8%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
Initial and Continuing Calibration	KKF <0.05	Detect	J
		Non-detect	R
	RRF <0.01 ¹	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect Detect	No Action
	%RSD > 15% or a correlation	Non-detect	UJ
Initial Calibration	coefficient <0.99	Detect	J
	%RSD >90%	Non-detect	R
	%RSD >90%	Detect	J
	9/D > 20% (increases in consitivity)	Non-detect	No Action
Continuing Colibration	%D >20% (increase in sensitivity)	Detect	J
Continuing Calibration	%D >20% (decrease in sensitivity)	Non-detect	UJ
		Detect	J

¹ RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC

analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratoryestablished acceptance limits.

All surrogate recoveries were within the control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC analysis exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

Sample locations associated with internal standards exhibiting responses outside of the control limits are presented in the following table.

Sample Locations	Internal Standard	Response
	tert-Butyl Alcohol-d9	>UL
	Fluorobenzene	
MW-18	1,4-Dioxane-d8	AC
	Chlorobenzene-d5	AC
	1,4-Dichlorobenzene-d4	

AC Acceptable

The criteria used to evaluate the internal standard responses are presented in the following table. In the case of an internal standard deviation, the compounds quantitated under the deviant internal standard are qualified as documented in the table below.

Control limit	Sample Result	Qualification
the upper control limit (III.)	Non-detect	No action
> the upper control limit (UL)	Detect	J
< the lower control limit (LL) but > 25%	Non-detect	UJ
	Detect	J
. 250/	Non-detect	R
< 25%	Detect	J

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The spiked compounds used in the MS/MSD analysis must exhibit recoveries within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS and MSD results must be within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSDs performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD spiking concentration by a factor of four or greater. Sample results associated with MS/MSD exceedances where the parent samples are not site-specific are not qualified.

The MS/MSD exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The spiked compounds used in the LCS analysis must exhibit recoveries within the laboratory-established acceptance limits.

All compounds associated with the LCS analyses exhibited recoveries within the control limits.

9. Field Duplicate Analysis

The field duplicate analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to five times the reporting limit (RL), a control limit for the difference between the results of two times the RL is applied for water matrices.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Acetone	5.0 U	12	NC
MW-8SR/ Dup-20160707	Benzene	1.7	1.6	6.1%
	Toluene	0.73 J	0.71 J	AC
	Xylenes, total	4.6	4.2	9.1%

Results for duplicate samples are summarized in the following table.

U Not detected

The compound acetone associated with sample locations MW-8SR and Dup-20160707 exhibited a field duplicate RPD greater than the control limit. The associated sample results for the listed analyte were qualified as estimated.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260C	Repo	orted		mance ptable	Not	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROMETR	Y (GC/MS)				
Tier II Validation						
Holding times		Х		Х		
Reporting limits (units)		Х		Х		
Blanks						
A. Method blanks		Х		Х		
B. Equipment/Field blanks					Х	
C. Trip blanks		Х		Х		
Laboratory Control Sample (LCS) Accuracy (%R)		Х		Х		
Laboratory Control Sample Duplicate (LCSD) %R					Х	
LCS/LCSD Precision (RPD)					Х	
Matrix Spike (MS) %R		Х		Х		
Matrix Spike Duplicate (MSD) %R		Х		Х		
MS/MSD Precision RPD		Х		Х		
Field Duplicate RPD		Х	Х			
Surrogate Spike %R		Х		Х		
Dilution Factor		Х		Х		
Moisture Content					Х	
Tier III Validation						
System performance and column resolution		Х		Х		
Initial calibration %RSDs		Х	Х			
Continuing calibration RRFs		Х		Х		
Continuing calibration %Ds		Х		Х		
Instrument tune and performance check		Х		Х		
Ion abundance criteria for each instrument used		Х		Х		
Internal standard		Х		Х		
Compound identification and quantitation		•				
A. Reconstructed ion chromatograms		Х		Х		
B. Quantitation Reports		Х		Х		
C. RT of sample compounds within the established RT windows		х		х		
D. Transcription/calculations acceptable		Х		Х		
E. Reporting limits adjusted for sample dilutions		Х		Х		

%RPercent recoveryRPDRelative percent difference%RSDRelative standard deviation

%D Percent difference

SEMIVOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation	
SW-846 8270D	Water	7 days from collection to extraction and 40 days from extraction to analysis	- Cool to <6°C	
3vv-040 8270D	Soil	14 days from collection to extraction and 40 days from extraction to analysis	CUUI 10 <0 C	

All samples were extracted and analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Target compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution are acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits, and that all SVOC surrogate recoveries be greater than ten percent.

Sample Locations	Surrogate	Recovery
	Phenol-d6	AC
	2-Fluorophenol	AC
MW-18	2,4,6-Tribromophenol	AC
10100-18	Nitrobenzene-d5	AC
	2-Fluorobiphenyl	<ll but=""> 10%</ll>
	Terphenyl-d14	AC

LL Lower control limit

AC Acceptable

The criteria used to evaluate the surrogate recoveries are presented in the following table. In the case of a surrogate deviation, the sample results associated with the deviant fraction are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	No Action
	Detect	J
< LL but > 10%	Non-detect	UJ
< LL Dut > 10%	Detect	J
- 109/	Non-detect	R
< 10%	Detect	J

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC

analysis exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit recoveries within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS and MSD results must be within the laboratory-established or analytical method-referenced acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. Sample results associated with MS/MSD exceedances where the parent samples are not site-specific are not qualified.

A MS/MSD was not performed on a sample location associated with this SDG.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit recoveries within the laboratory-established acceptance limits.

All compounds associated with the LCS analyses exhibited recoveries within the control limits.

9. Field Duplicate Analysis

The field duplicate analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to five times the reporting limit (RL), a control limit for the difference between the results of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	n,n'-Dimethylaniline	1.1 J	1.0 J	AC
MW-8SR/ Dup-20160707	Aniline	2.0 J	1.4 J	AC

AC Acceptable

U Not detected

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

SVOCs: SW-846 8270D	Repo	orted		mance ptable	Not	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROMETRY	(GC/MS)					
Tier II Validation						
Holding Times		Х		Х		
Reporting Limits (units)		Х		Х		
Blanks						
A. Method Blanks		Х		Х		
B. Equipment/Field Blanks					Х	
Laboratory Control Sample (LCS) Accuracy (%R)		Х		Х		
Laboratory Control Sample Duplicate (LCSD) %R					Х	
LCS/LCSD Precision (RPD)					Х	
Matrix Spike (MS) %R		Х		Х		
Matrix Spike Duplicate (MSD) %R		Х		Х		
MS/MSD RPD		Х		Х		
Field Duplicate RPD		Х		Х		
Surrogate Spike %R		Х	Х			
Dilution Factor		Х		Х		
Moisture Content					Х	
Tier III Validation						
System Performance and Column Resolution		Х		Х		
Initial Calibration %RSDs		Х		Х		
Continuing Calibration RRFs		Х		Х		
Continuing Calibration %Ds		Х		Х		
Instrument Tune and Performance Check		Х		Х		
Ion Abundance Criteria for Each Instrument Used		Х		Х		
Internal Standards		Х		Х		
Compound Identification and Quantitation			•	•	•	
A. Reconstructed Ion Chromatograms		Х		Х		
B. Quantitation Reports		Х		Х		
C. RT of Sample Compounds Within the Established RT Windows		х		х		
D. Transcription/calculations acceptable		Х		Х		
E. Reporting Limits Adjusted for Sample Dilutions		Х		Х		

DATA VALIDATION CHECKLIST FOR SVOCs

%R Percent Recovery

RPD Relative Percent Difference

%RSD Relative Standard Deviation

%D Percent Difference

METHANOL ANALYSIS

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Methanol	Soil	14 days from collection to analysis	Cool to <6°C
SW-846 8015D	Water	14 days from collection to analysis	C001 10 < 6 C

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected analyte in an associated blank is calculated for QA blanks containing concentrations greater than the reporting limit (RL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Methanol was not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. System Performance

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

A maximum RSD of 20% or a correlation coefficient of greater than 0.99 is allowed.

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (15%).

All calibration criteria were within the control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. The analysis requires surrogate compounds exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The spiked analytes used in the MS/MSD analysis must exhibit recoveries within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS and MSD results must be within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSDs performed on sample locations where the analyte concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. Sample results associated with MS/MSD exceedances where the parent samples are not site-specific are not qualified.

A MS/MSD analysis was not performed on a sample location within this SDG.

7. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The spiked compounds used in the LCS analysis must exhibit recoveries within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

8. Field Duplicate Analysis

The field duplicate analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to five times the reporting limit (RL), a control limit for the difference between the results of two times the RL is applied for water matrices.

A field duplicate was not included for this parameter.

9. Compound Identification

The retention times of all quantitated peaks must fall within the calculated retention time windows.

All identified compounds met the specified criteria.

10. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in

this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR METHANOL

Methanol: SW-846 8015D		orted		mance ptable	Not Required
-	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY (GC/FID)					
Tier II Validation					
Holding Times		Х		Х	
Reporting Limits (Units)		Х		Х	
Blanks					·
A. Method Blanks		Х		Х	
B. Equipment Blanks					Х
C. Trip Blanks					Х
Laboratory Control Sample (LCS) Accuracy (%R)		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R					Х
Matrix Spike Duplicate (MSD) %R					Х
MS/MSD RPD					Х
Field Duplicate RPD		Х		Х	
Surrogate Spike %R		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
Initial Calibration %RSDs		Х		Х	
Continuing Calibration %Ds		Х		Х	
System Performance and Column Resolution		Х		Х	
Compound Identification and Quantitation					
A. Quantitation Reports		Х		Х	
B. RT of Sample Compounds Within Established RT Windows		х		х	
C. Pattern Identification					Х
D. Transcription/calculations acceptable		Х		Х	
E. Reporting Limits adjusted for Sample Dilutions		Х		Х	

%RPercent RecoveryRPDRelative Percent Difference%RSDRelative Standard Deviation%DPercent Difference

SAMPLE COMPLIANCE REPORT

Sample Delivery					Compliancy ¹					
Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	SVOC	РСВ	METH	MISC	Noncompliance
	7/7/2016		Dup-20160707	Water	No	Yes		Yes		ICV %RSD, Field Dup RPD
	7/7/2016		MW-18	Water	No	Yes		Yes		ICV %RSD
	7/7/2016		MW-29	Water	No	Yes		Yes		ICV %RSD
	7/7/2016		MW-30	Water	No	Yes		Yes		ICV %RSD
100	7/7/2016		MW-3S	Water	No	Yes		Yes		ICV %RSD
460- 116737-1	7/7/2016	SW846	MW-23S	Water	No	Yes		Yes		ICV %RSD
110737-1	7/7/2016		MW-23I	Water	No	Yes		Yes		ICV %RSD
	7/7/2016		MW-27	Water	No	Yes		Yes		ICV %RSD
	7/7/2016		MW-8SR	Water	No	Yes		Yes		ICV %RSD, Field Dup RPD
	7/7/2016		MW-28	Water	No	Yes		Yes		ICV %RSD
	7/7/2016		TRIP BLANK	Water	No	Yes		Yes		ICV %RSD

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

Validation Performed By:	Jeffrey L. Davin
Signature:	Jeffrey d. Dai
Date:	August 5, 2016
Peer Review:	Dennis Capria
Date:	August 9, 2016

CHAIN OF CUSTODY/LABORAOTRY QUALIFIER DEFINITIONS/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

S.	74.35 3	r Remarks;	Cocier Temperature(s) °C and Other Remarks:	Temperatur	Cooler 1						-	Custody Seals Intact: Custody Seal No.: ∆ Yes ∆ No
Company				a py	Received by:		Company2			Date/Time:		Rolinquished by:
00 company	00:6 91-8-[6	Fidux	Iciento Erdux	April (Receive	2	Company	50	15	DaterTime:		1.
2.10 Company			19/112		Receive	\sim	Company Hell (HD) S	51V	21	Date/Time:		Rolinguishod by: Nic May Saw H
	Method of Shipment:	Method of				Time:			Date:			Empty Kit Relinquished by:
			s/QC Requiren	structions	ecial ins	<u>پ</u>						, m, iv, g
rMonths	Return To Client Solisposal By Lab Archive For Mon	Disposal By La	Return To Client Z Dist	um To C	Ret		2	Radiological		Poison B Unknown		Non-Hazard Flammable Skin Irritant
yer than 1 month)	amples are retained long	e assessed if si	(A fee may b	isposal	mple D	Sa					-	Identification
				5	1	Ν	Water	(1			TRIP SLAVIC
J J J				55	2	N	Water	1 (`	1535			mw - 23
, q				1	123		Water	ب	1353			NW - 35k
8-	1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 -			5	4	-~	Water	Ć	1230	 		TE- MA
				ين ري	2	-2-	Water	6	1245			MW-23T
۶				در) در	N	~~	Water	(j.	13:30			"MW-235
hs/msz -					60	~	Water	()	مؤذا		-	MAS-35 MM-3S
				1	2	<u>ح</u> "	Water	C,	1000			N-30
- v	New York			دی ۱	2	S.	Water	ۍ	1040			171.51 - 29
				55	2	2	Water	Ģ.	1120			Š
				دی ۱	2	Z	Water	6	1	91/2/18		Dup- Jana CZOZ
(a) Solution of the second s second second secon				N	NA	Ķ	Preservation, Code:	Preserv	X		a chi i chiana	and a standard of the standard A standard of the
Special Instructions/Note:	Total Numbe			8015D_DAI - (i	8270D - Targe 8260C - Targe	Field Fillered Perform MS/	Matrix (Winwater, Sneolid, Crivitatianot, DT-Teaue, AnAir)	Sample Type (C=comp, G=grab)	Sample Time	Sample Date		Sample Identification
						a contractor				SSOW#;		site: Suprave NY
A Z - other (specify)				·						Project #: 46003506		Project Name: McKesson Former Bear Street Facility
	-					Con and a				WO #		Email: dawn,penniman@arcadis.com
dik UUU IVII IVII IVI ody cahydrate	460-116737 Chain of Custody	460		VUC\$		4o)				PO# B0026003,2014		9Hone: 315-671-9229(Tel)
					OLM04				(140)	10		State, Zp: NY, 13214
					.2				ays):	ă		City: Syracuse
A - HCL M - Hexane	A - HO					3-7- 2-2-				Due Date Requested: TB j)		Adress: 6723 Towpath Road
Γ	- - - -	equested	Analysis Requested									Company: ARCADIS U.S. Inc
3 of 5	Page 3 of 5		10.00m	E-Mail: grace.chang@testamericainc.com	@testa	t: e.chanç		. 0849	- 402	Phone: 3/5		Client Contact Ms. Dawn Penniman
COC No: 460-74078-45565.3	041	Carrier Tracking No(s):			8	M: 19, Grace	Lab PM; Chang,		TRI	Sampler: 1V Start		Client Information
THE LEADER IN ENVIRONMENTAL TEXTING 2016					a	eco	Chain of Custody Record	of Cus	Chain			TestAmerica Edison 777 New Durham Road Edison, NJ 08817 Phone (732) 549-3900 Fax (732) 549-3679

483325 · Syracuse SC

λ

l

i ł

- -

DATA REPORTING QUALIFIERS

Client: ARCADIS U.S. Inc

Job Number: 460-116737-1

Lab Section	Qualifier	Description
GC/MS VOA		
	U	Indicates the analyte was analyzed for but not detected.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
GC/MS Semi VOA		
	U	Indicates the analyte was analyzed for but not detected.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
	Х	Surrogate is outside control limits
GC VOA		
	U	Indicates the analyte was analyzed for but not detected.

Client: ARCADIS U.S. Inc

Analytical Data

Job Number: 460-116737-1

Client Sample ID	-					
Lab Sample ID: Client Matrix:	460-116737-1 Water					mpled: 07/07/2016 0000 ceived: 07/08/2016 0900
		8260C Volatile Organ	ic Compoun	ds by G	C/MS	
Analysis Method:	8260C	Analysis Batch:	460-37965	8	Instrument ID:	CVOAMS12
Prep Method:	5030C	Prep Batch:	N/A		Lab File ID:	O12610.D
Dilution:	1.0				Initial Weight/Volume:	5 mL
Analysis Date:	07/18/2016 2038				Final Weight/Volume:	5 mL
Prep Date:	07/18/2016 2038					
Analvte		Result (u	ua/L)	Qualifie	r MDL	RL

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Acetone	12	J	1.1	5.0	
Benzene	1.6		0.090	1.0	
Ethylbenzene	1.0	U	0.30	1.0	
Methylene Chloride	1.0	U	0.21	1.0	
Toluene	0.71	J	0.25	1.0	
Trichloroethene	1.0	U	0.22	1.0	
Xylenes, Total	4.2		0.28	2.0	
Surrogate	%Rec	Qualifier	Accepta	ince Limits	
1,2-Dichloroethane-d4 (Surr)	99		70 - 137	,	
4-Bromofluorobenzene	99		70 - 131		
Dibromofluoromethane (Surr)	102		72 - 136	6	
Toluene-d8 (Surr)	98		74 - 120)	

Job Number: 460-116737-1

Client Sample ID:	MW-18				
Lab Sample ID: Client Matrix:	460-116737-2 Water				Sampled: 07/07/2016 1120 Received: 07/08/2016 0900
	82	260C Volatile Organi	c Compounds b	y GC/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 07/18/2016 2010 07/18/2016 2010	Analysis Batch: Prep Batch:	460-379658 N/A	Instrument ID: Lab File ID: Initial Weight/Volur Final Weight/Volun	
Analyte		Result (u	g/L) Qua	alifier MDL	RL
Acetone		5.0	U	J 1.1	5.0
Benzene		1.0	U	0.090	1.0
Ethylbenzene		1.0	U	0.30	1.0
Methylene Chlorid	e	1.0	U	0.21	1.0
Toluene		1.0	U	0.25	1.0
Trichloroethene		1.0	U	0.22	1.0
Xylenes, Total		2.0	U	0.28	2.0
Surrogate		%Rec	Qua	alifier Acce	ptance Limits
1,2-Dichloroethane	e-d4 (Surr)	99		70 - 1	37
4-Bromofluoroben		86		70 - 1	31
Dibromofluoromet	hane (Surr)	100		72 - 1	36
Toluene-d8 (Surr)		94		74 - 1	20

Job Number: 460-116737-1

Client Sample ID:	MW-29				
Lab Sample ID: Client Matrix:	460-116737-3 Water				npled: 07/07/2016 1040 ceived: 07/08/2016 0900
	ξ	3260C Volatile Organi	c Compounds by	GC/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 07/18/2016 1440 07/18/2016 1440	Analysis Batch: Prep Batch:	460-379528 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	CVOAMS12 O12597.D 5 mL 5 mL
Analyte		Result (u	g/L) Qual	ifier MDL	RL
Acetone		30	J	1.1	5.0
Benzene		1.0	U	0.090	1.0
Ethylbenzene		1.0	U	0.30	1.0
Methylene Chlorid	e	1.0	U	0.21	1.0
Toluene		1.0	U	0.25	1.0
Trichloroethene		1.0	U	0.22	1.0
Xylenes, Total		2.0	U	0.28	2.0
Surrogate		%Rec	Qual	ifier Acceptan	ice Limits
1,2-Dichloroethane	e-d4 (Surr)	101		70 - 137	
4-Bromofluoroben		98		70 - 131	
Dibromofluoromet	hane (Surr)	104		72 - 136	
Toluene-d8 (Surr)		99		74 - 120	

TestAmerica Edison

Job Number: 460-116737-1

Client Sample ID: Lab Sample ID: Client Matrix:	: MW-30 460-116737-4 Water				npled: 07/07/2016 1000 ceived: 07/08/2016 0900
	82	260C Volatile Organi	c Compounds by	y GC/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 07/18/2016 1507 07/18/2016 1507	Analysis Batch: Prep Batch:	460-379528 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	CVOAMS12 O12598.D 5 mL 5 mL
Analyte		Result (u	ıg/L) Qua	lifier MDL	RL
Acetone		5.0	U	J 1.1	5.0
Benzene		0.78	J	0.090	1.0
Ethylbenzene		1.0	U	0.30	1.0
Methylene Chlorid	e	1.0	U	0.21	1.0
Toluene		1.0	U	0.25	1.0
Trichloroethene		1.0	U	0.22	1.0
Xylenes, Total		2.0	U	0.28	2.0
Surrogate		%Rec	Qua	lifier Acceptar	nce Limits
1,2-Dichloroethan	e-d4 (Surr)	98		70 - 137	
4-Bromofluoroben		97		70 - 131	
Dibromofluoromet	hane (Surr)	102		72 - 136	
Toluene-d8 (Surr)		99		74 - 120	

Job Number: 460-116737-1

Client Sample ID:	MW-3S				
Lab Sample ID: Client Matrix:	460-116737-5 Water				mpled: 07/07/2016 1530 ceived: 07/08/2016 0900
	82	260C Volatile Organi	c Compounds b	y GC/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 07/18/2016 1030 07/18/2016 1030	Analysis Batch: Prep Batch:	460-379528 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	CVOAMS12 O12588.D 5 mL 5 mL
Analyte		Result (u	g/L) Qua	alifier MDL	RL
Acetone		5.0	U	J 1.1	5.0
Benzene		1.0	U	0.090	1.0
Ethylbenzene		1.0	U	0.30	1.0
Methylene Chlorid	e	1.0	U	0.21	1.0
Toluene		1.0	U	0.25	1.0
Trichloroethene		1.0	U	0.22	1.0
Xylenes, Total		2.0	U	0.28	2.0
Surrogate		%Rec	Qua	alifier Acceptar	nce Limits
1,2-Dichloroethane	e-d4 (Surr)	102		70 - 137	
4-Bromofluoroben	zene	97		70 - 131	
Dibromofluoromet	hane (Surr)	104		72 - 136	
Toluene-d8 (Surr)		98		74 - 120	

Job Number: 460-116737-1

Client Sample ID	: MW-23S				
Lab Sample ID: Client Matrix:	460-116737-6 Water				mpled: 07/07/2016 1330 ceived: 07/08/2016 0900
		8260C Volatile Organi	c Compounds by	/ GC/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 07/18/2016 1535 07/18/2016 1535	Analysis Batch: Prep Batch:	460-379528 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	CVOAMS12 O12599.D 5 mL 5 mL
Analyte		Result (u	g/L) Qua	lifier MDL	RL
Acetone		5.0	U	J 1.1	5.0
Benzene		1.0	U	0.090	1.0
Ethylbenzene		1.0	U	0.30	1.0
Methylene Chlorid	e	1.0	U	0.21	1.0
Toluene		1.0	U	0.25	1.0
Trichloroethene		1.0	U	0.22	1.0
Xylenes, Total		2.0	U	0.28	2.0
Surrogate		%Rec	Qua	lifier Acceptar	nce Limits
1,2-Dichloroethan	e-d4 (Surr)	103		70 - 137	
4-Bromofluoroben	zene	98		70 - 131	
Dibromofluoromet	hane (Surr)	107		72 - 136	
Toluene-d8 (Surr)		101		74 - 120	

Job Number: 460-116737-1

Client Sample ID:	MW-23I				
Lab Sample ID: Client Matrix:	460-116737-7 Water				mpled: 07/07/2016 1245 ceived: 07/08/2016 0900
		8260C Volatile Organi	c Compounds by	GC/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 07/18/2016 1603 07/18/2016 1603	Analysis Batch: Prep Batch:	460-379528 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	CVOAMS12 O12600.D 5 mL 5 mL
Analyte		Result (u	g/L) Qual	lifier MDL	RL
Acetone		5.0	U J	1.1	5.0
Benzene		1.0	U	0.090	1.0
Ethylbenzene		1.0	U	0.30	1.0
Methylene Chlorid	e	1.0	U	0.21	1.0
Toluene		1.0	U	0.25	1.0
Trichloroethene		1.0	U	0.22	1.0
Xylenes, Total		2.0	U	0.28	2.0
Surrogate		%Rec	Qual	lifier Acceptar	nce Limits
1,2-Dichloroethane	e-d4 (Surr)	105		70 - 137	
4-Bromofluoroben	zene	96		70 - 131	
Dibromofluoromet	hane (Surr)	106		72 - 136	
Toluene-d8 (Surr)		99		74 - 120	

Job Number: 460-116737-1

Client Sample ID:	MW-27				
Lab Sample ID: Client Matrix:	460-116737-8 Water				npled: 07/07/2016 1230 ceived: 07/08/2016 0900
		8260C Volatile Organi	c Compounds by	GC/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 07/18/2016 1630 07/18/2016 1630	Analysis Batch: Prep Batch:	460-379528 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	CVOAMS12 O12601.D 5 mL 5 mL
Analyte		Result (u	g/L) Qual	lifier MDL	RL
Acetone		7.5	J	1.1	5.0
Benzene		1.2		0.090	1.0
Ethylbenzene		1.0	U	0.30	1.0
Methylene Chlorid	e	1.0	U	0.21	1.0
Toluene		0.43	J	0.25	1.0
Trichloroethene		1.0	U	0.22	1.0
Xylenes, Total		2.4		0.28	2.0
Surrogate		%Rec	Qual	lifier Acceptar	nce Limits
1,2-Dichloroethane	e-d4 (Surr)	98		70 - 137	
4-Bromofluoroben	zene	95		70 - 131	
Dibromofluoromet	hane (Surr)	101		72 - 136	
Toluene-d8 (Surr)		96		74 - 120	

Job Number: 460-116737-1

Client Sample ID: MW-8SR Lab Sample ID: 460-116737-9 Date Sampled: 07/07/2016 1355 Client Matrix: Water Date Received: 07/08/2016 0900 8260C Volatile Organic Compounds by GC/MS Analysis Method: 8260C Analysis Batch: 460-379658 Instrument ID: CVOAMS12 Prep Method: 5030C Prep Batch: N/A Lab File ID: O12611.D Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 07/18/2016 2106 Final Weight/Volume: 5 mL Prep Date: 07/18/2016 2106 RL Analyte Result (ug/L) Qualifier MDL Acetone 5.0 υJ 5.0 1.1 Benzene 1.7 0.090 1.0 U Ethylbenzene 1.0 0.30 1.0 Methylene Chloride U 1.0 0.21 1.0 Toluene 0.73 J 0.25 1.0 Trichloroethene U 0.22 1.0 1.0 Xylenes, Total 4.6 0.28 2.0 %Rec Qualifier Acceptance Limits Surrogate 1,2-Dichloroethane-d4 (Surr) 70 - 137 100 4-Bromofluorobenzene 97 70 - 131 Dibromofluoromethane (Surr) 101 72 - 136 Toluene-d8 (Surr) 98 74 - 120

Job Number: 460-116737-1

Client Sample ID:	MW-28					
Lab Sample ID: Client Matrix:	460-116737-10 Water					npled: 07/07/2016 1535 ceived: 07/08/2016 0900
	820	60C Volatile Organi	c Compounds b	y GC/MS		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 07/18/2016 2133 07/18/2016 2133	Analysis Batch: Prep Batch:	460-379658 N/A			CVOAMS12 O12612.D 5 mL 5 mL
Analyte		Result (u	ıg/L) Qu	alifier I	MDL	RL
Acetone		5.0	U	J	1.1	5.0
Benzene		1.1		(0.090	1.0
Ethylbenzene		1.0	U	(0.30	1.0
Methylene Chlorid	e	1.0	U	().21	1.0
Toluene		0.41	J	().25	1.0
Trichloroethene		1.0	U	().22	1.0
Xylenes, Total		0.50	J	().28	2.0
Surrogate		%Rec	Qu	alifier	Acceptar	nce Limits
1,2-Dichloroethan	e-d4 (Surr)	98			70 - 137	
4-Bromofluoroben		95			70 - 131	
Dibromofluoromet	hane (Surr)	101			72 - 136	
Toluene-d8 (Surr)		97			74 - 120	

Client: ARCADIS U.S. Inc

Client Sample ID: TRIP BLANK

Analytical Data

Lab Sample ID: Client Matrix:	460-116737-11TB Water						npled: 07/07/2016 00 eived: 07/08/2016 09	
	820	60C Volatile Organi	ic Compour	nds by G	C/MS			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 07/18/2016 0812 07/18/2016 0812	Analysis Batch: Prep Batch:	460-37952 N/A	28	Instrument Lab File ID Initial Weig Final Weigl	ht/Volume:	CVOAMS12 O12583.D 5 mL 5 mL	
Analyte		Result (u	ıg/L)	Qualifi	er M	DL	RL	
Acetone		5.0		U J	1.	1	5.0	
Benzene		1.0		U	0.	090	1.0	
Ethylbenzene		1.0		U	0.	30	1.0	
Methylene Chlorid	e	1.0		U	0.	21	1.0	
Toluene		1.0		U	0.	25	1.0	
Trichloroethene		1.0		U	0.	22	1.0	
Xylenes, Total		2.0		U	0.	28	2.0	
Surrogate		%Rec		Qualifi	er	Acceptan	ce Limits	
1,2-Dichloroethan	e-d4 (Surr)	101				70 - 137		
4-Bromofluoroben	zene	98				70 - 131		
Dibromofluoromet	hane (Surr)	105				72 - 136		
Toluene-d8 (Surr)		98				74 - 120		

Client: ARCADIS U.S. Inc

Analytical Data

Job Number: 460-116737-1

Client Sample ID	Dup-20160707				
Lab Sample ID: Client Matrix:	460-116737-1 Water				npled: 07/07/2016 0000 ceived: 07/08/2016 0900
	82	70D Semivolatile Org	anic Compound	s (GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 07/15/2016 1112 07/09/2016 1522	Analysis Batch: Prep Batch:	460-379197 460-378221	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	CBNAMS6 M230102.D 230 mL 2 mL 5 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL
Aniline	1.4	J	0.71	11
n,n'-Dimethylaniline	1.0	J	0.83	1.1
Surrogate	%Rec	Qualifier	Accepta	ance Limits
2,4,6-Tribromophenol (Surr)	72		43 - 126	3
2-Fluorobiphenyl	64		63 - 113	3
2-Fluorophenol (Surr)	37		13 - 77	
Nitrobenzene-d5 (Surr)	72		62 - 120)
Phenol-d5 (Surr)	22		10 - 53	
Terphenyl-d14 (Surr)	81		57 - 125	5

Client: ARCADIS U.S. Inc

Client Sample ID:	: MW-18					
Lab Sample ID: Client Matrix:	460-116737-2 Water					npled: 07/07/2016 1120 eived: 07/08/2016 0900
	827	0D Semivolatile Org	janic Compoun	ds (GC/MS))	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 07/15/2016 1134 07/09/2016 1522	Analysis Batch: Prep Batch:	460-379197 460-378221	Lab Fil Initial \ Final V	nent ID: le ID: Weight/Volume: Veight/Volume: on Volume:	CBNAMS6 M230103.D 250 mL 2 mL 5 uL
Analyte		Result (u	ıg/L) Qı	ualifier	MDL	RL
Aniline		10	U		0.65	10
n,n'-Dimethylanilin	e	1.0	U		0.76	1.0
Surrogate		%Rec	Q	ualifier	Acceptan	ce Limits
2,4,6-Tribromophe	enol (Surr)	73	X		43 - 126	
2-Fluorobiphenyl 2-Fluorophenol (S	urr)	58 48	х		63 - 113 13 - 77	
Nitrobenzene-d5 (,	67			62 - 120	
Phenol-d5 (Surr)	ouny	38			10 - 53	
Terphenyl-d14 (Su	ırr)	83			57 - 125	

Client: ARCADIS U.S. Inc

Client Sample ID:	MW-29						
Lab Sample ID: Client Matrix:	460-116737-3 Water					npled: 07/07/2016 10 eived: 07/08/2016 09	
	827	D Semivolatile Org	anic Compoun	ds (GC/MS)			
Prep Method: Dilution: Analysis Date:	8270D 3510C 1.0 07/18/2016 1405 07/09/2016 1522	Analysis Batch: Prep Batch:	460-379520 460-378221	Instrument I Lab File ID: Initial Weigh Final Weigh Injection Vol	it/Volume: t/Volume:	CBNAMS6 M230182.D 230 mL 2 mL 5 uL	
Analyte		Result (u	ıg/L) Qı	ualifier MD	DL	RL	
Aniline		11	U	0.7	'1	11	
n,n'-Dimethylaniline	9	1.1	U	0.8	3	1.1	
Surrogate		%Rec	Qı	ıalifier	Acceptan	ce Limits	
2,4,6-Tribromopher	nol (Surr)	76			43 - 126		
2-Fluorobiphenyl)	63			63 - 113		
2-Fluorophenol (Su	,	40 74			13 - 77 62 - 120		
Nitrobenzene-d5 (S Phenol-d5 (Surr)	Sull)	26			62 - 120 10 - 53		
Terphenyl-d14 (Sulf)	rr)	83			10 - 33 57 - 125		

Client: ARCADIS U.S. Inc

Client Sample ID:	MW-30							
Lab Sample ID: Client Matrix:	460-116737-4 Water							npled: 07/07/2016 100 eived: 07/08/2016 090
		8270D Sem	ivolatile Org	anic Comp	ounds	(GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 07/15/2016 1218 07/09/2016 1522		alysis Batch: p Batch:	460-37919 460-37822		Instrument Lab File ID: Initial Weigl Final Weigh Injection Vo	ht/Volume: ht/Volume:	CBNAMS6 M230105.D 240 mL 2 mL 5 uL
Analyte			Result (u	g/L)	Qualif	ier MI	DL	RL
Aniline			10		U	0.0	68	10
n,n'-Dimethylanilin	e		1.0		U	0.1	79	1.0
Surrogate			%Rec		Qualif	ier	Acceptan	ce Limits
2,4,6-Tribromophe	enol (Surr)		82				43 - 126	
2-Fluorobiphenyl			69				63 - 113	
2-Fluorophenol (S			36				13 - 77	
Nitrobenzene-d5 (Surr)		72				62 - 120	
Phenol-d5 (Surr)			21				10 - 53	
Terphenyl-d14 (Su	ırr)		89				57 - 125	

Client: ARCADIS U.S. Inc

			Sampled: 07/07/2016 1530 Received: 07/08/2016 0900
Semivolatile Org	anic Compoun	ds (GC/MS)	
Analysis Batch: Prep Batch:	460-378749 460-378221	Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volum Injection Volume:	
Result (u	g/L) Qu	alifier MDL	RL
10	U	0.65	10
1.0	U	0.76	1.0
%Rec	Qı	alifier Accep	otance Limits
73		43 - 1	
• •			
	Analysis Batch: Prep Batch: Result (u 10 1.0 %Rec	Analysis Batch: 460-378749 Prep Batch: 460-378221	Date I Semivolatile Organic Compounds (GC/MS) Analysis Batch: 460-378749 Instrument ID: Prep Batch: 460-378221 Lab File ID: Initial Weight/Volum Initial Weight/Volum Final Weight/Volum Injection Volume: Result (ug/L) Qualifier MDL 10 U 0.65 1.0 U 0.76 %Rec Qualifier Acception 10 73 43 - 1 67 63 - 1 41 13 - 7 72 62 - 1 26 10 - 5

Client: ARCADIS U.S. Inc

Client Sample ID	: MW-23S				
Lab Sample ID: Client Matrix:	460-116737-6 Water				mpled: 07/07/2016 1330 ceived: 07/08/2016 0900
	8	270D Semivolatile Org	anic Compounds ((GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 07/15/2016 1241 07/09/2016 1522	Analysis Batch: Prep Batch:	460-379197 460-378221	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	
Analyte		Result (u	g/L) Qualif	ier MDL	RL
Aniline		10	U	0.65	10
n,n'-Dimethylanilin	ie	1.0	U	0.76	1.0
Surrogate		%Rec	Qualif	•	nce Limits
2,4,6-Tribromophe	enol (Surr)	85		43 - 126	
2-Fluorobiphenyl		69		63 - 113	
2-Fluorophenol (S	,	38 72		13 - 77 62 - 120	
Nitrobenzene-d5 (Phenol-d5 (Surr)	Sull)	22		10 - 53	
Terphenyl-d14 (Sull)	urr)	95		57 - 125	
	,	00		01 120	

Client: ARCADIS U.S. Inc

Client Sample ID	: MW-23I				
Lab Sample ID: Client Matrix:	460-116737-7 Water				mpled: 07/07/2016 1245 ceived: 07/08/2016 0900
	82	270D Semivolatile Org	anic Compounds	(GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 07/18/2016 1427 07/09/2016 1522	Analysis Batch: Prep Batch:	460-379520 460-378221	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	
Analyte		Result (u	g/L) Qualif	ier MDL	RL
Aniline		10	U	0.65	10
n,n'-Dimethylanilin	e	1.0	U	0.76	1.0
Surrogate		%Rec	Qualif		nce Limits
2,4,6-Tribromophe	enol (Surr)	85		43 - 126	
2-Fluorobiphenyl 2-Fluorophenol (S	urr)	73 45		63 - 113 13 - 77	
Nitrobenzene-d5 (,	71		62 - 120	
Phenol-d5 (Surr)	curry	31		10 - 53	
Terphenyl-d14 (Su	ırr)	93		57 - 125	

Client: ARCADIS U.S. Inc

Client Sample ID	: MW-27				
Lab Sample ID: Client Matrix:	460-116737-8 Water				mpled: 07/07/2016 1230 ceived: 07/08/2016 0900
	82	270D Semivolatile Org	anic Compounds	(GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 07/18/2016 1449 07/09/2016 1522	Analysis Batch: Prep Batch:	460-379520 460-378221	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	
Analyte		Result (u	ıg/L) Quali	fier MDL	RL
Aniline		2.4	J	0.68	10
n,n'-Dimethylanilin	e	1.2		0.79	1.0
Surrogate		%Rec	Quali	fier Accepta	nce Limits
2,4,6-Tribromophe	enol (Surr)	71		43 - 126	
2-Fluorobiphenyl		68		63 - 113	
2-Fluorophenol (S	,	41		13 - 77	
Nitrobenzene-d5 (Surr)	73		62 - 120	
Phenol-d5 (Surr)	urr)	27 87		10 - 53 57 - 125	
Terphenyl-d14 (Su	, iii <i>j</i>	07		57 - 125	

Client: ARCADIS U.S. Inc

Client Sample ID	: MW-8SR				
Lab Sample ID: Client Matrix:	460-116737-9 Water				mpled: 07/07/2016 1355 ceived: 07/08/2016 0900
	82	270D Semivolatile Org	anic Compounds	(GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 07/18/2016 1511 07/09/2016 1522	Analysis Batch: Prep Batch:	460-379520 460-378221	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	
Analyte		Result (u	g/L) Quali	fier MDL	RL
Aniline		2.0	J	0.68	10
n,n'-Dimethylanilir	e	1.1		0.79	1.0
Surrogate		%Rec	Quali	fier Accepta	nce Limits
2,4,6-Tribromophe	enol (Surr)	70		43 - 126	
2-Fluorobiphenyl	`	72		63 - 113	
2-Fluorophenol (S	,	38		13 - 77	
Nitrobenzene-d5 (Surr)	69 25		62 - 120	
Phenol-d5 (Surr)	100)	25		10 - 53 57 - 125	
Terphenyl-d14 (Su	, iii)	77		57 - 125	

Client: ARCADIS U.S. Inc

Client Sample ID:	MW-28							
Lab Sample ID: Client Matrix:	460-116737-10 Water							npled: 07/07/2016 1535 ceived: 07/08/2016 0900
		8270D	Semivolatile Org	anic Comp	ounds	(GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 07/18/2016 1533 07/09/2016 1522		Analysis Batch: Prep Batch:	460-3795 460-3782		Instrument Lab File ID Initial Weig Final Weig Injection Ve	: ht/Volume: ht/Volume:	CBNAMS6 M230186.D 240 mL 2 mL 5 uL
Analyte			Result (u	g/L)	Qualif	ier M	DL	RL
Aniline			0.94		J	0.	68	10
n,n'-Dimethylanilin	e		1.0		U	0.	79	1.0
Surrogate			%Rec		Qualif	ier	Acceptar	nce Limits
2,4,6-Tribromophe	enol (Surr)		84				43 - 126	
2-Fluorobiphenyl			69				63 - 113	
2-Fluorophenol (S	,		39				13 - 77	
Nitrobenzene-d5 (Surr)		77				62 - 120	
Phenol-d5 (Surr)			25				10 - 53	
Terphenyl-d14 (Su	irr)		84				57 - 125	

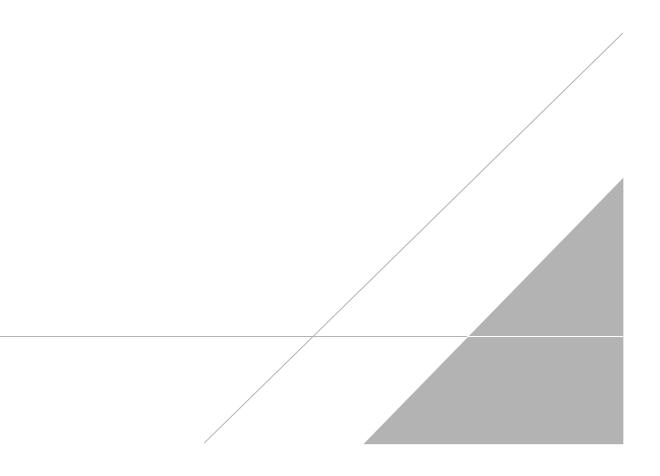
Client: ARCADIS U.S. Inc

Client Sample ID	: MW-18						
Lab Sample ID: Client Matrix:	460-116737-2 Water						npled: 07/07/2016 1120 ceived: 07/08/2016 0900
	8015D Nonh	alogenated Organic	Compound	ls - Dire	ct Injection (C	GC)	
Analysis Method:	8015D	Analysis Batch:	480-31137	'8	Instrument ID	D:	HP5890-4
	N/A		N/A		Initial Weight	/Volume:	1 mL
Dilution:	1.0				Final Weight/	/Volume:	
Analysis Date:	07/15/2016 1703				Injection Volu	ume:	1 mL
Prep Date:	N/A				Result Type:		PRIMARY
Analyte		Result (n	ng/L)	Qualifie	er MDI	L	RL
Methanol		1.0		U	0.41	1	1.0
Surrogate		%Rec		Qualifie	er	Acceptar	ice Limits
2-Hexanone		106				62 - 129	

Client: ARCADIS U.S. Inc

Client Sample ID	: MW-23S					
Lab Sample ID: Client Matrix:	460-116737-6 Water					mpled: 07/07/2016 1330 eceived: 07/08/2016 0900
	8015D Noni	nalogenated Organic	Compound	ds - Direct	Injection (GC)	
Analysis Method:	8015D	Analysis Batch:	480-3113	78 I	nstrument ID:	HP5890-4
	N/A		N/A	I	nitial Weight/Volume	: 1 mL
Dilution:	1.0			F	inal Weight/Volume:	
Analysis Date:	07/15/2016 1520			I	njection Volume:	1 mL
Prep Date:	N/A			F	Result Type:	PRIMARY
Analyte		Result (n	ng/L)	Qualifier	MDL	RL
Methanol		1.0		U	0.41	1.0
Surrogate		%Rec		Qualifier	Accepta	ince Limits
2-Hexanone		83			62 - 129)

Client: ARCADIS U.S. Inc


Client Sample ID	MW-23I					
Lab Sample ID:	460-116737-7					Sampled: 07/07/2016 1245
Client Matrix:	Water				Date	Received: 07/08/2016 0900
	8015D Nonh	alogenated Organic	Compound	s - Dire	ct Injection (GC)	
Analysis Method:	8015D	Analysis Batch:	480-31137	8	Instrument ID:	HP5890-4
	N/A		N/A		Initial Weight/Volun	ne: 1 mL
Dilution:	1.0				Final Weight/Volum	e:
Analysis Date:	07/15/2016 1528				Injection Volume:	1 mL
Prep Date:	N/A				Result Type:	PRIMARY
Analyte		Result (n	ng/L)	Qualifi	er MDL	RL
Methanol		1.0		U	0.41	1.0
Surrogate		%Rec		Qualifi	er Accep	otance Limits
2-Hexanone		94			62 - 1	29

Client: ARCADIS U.S. Inc

Client Sample ID	: MW-28						
Lab Sample ID: Client Matrix:	460-116737-10 Water						npled: 07/07/2016 1535 ceived: 07/08/2016 0900
	8015D Nonh	alogenated Organic	Compound	ls - Dire	ct Injection	(GC)	
Analysis Method:	8015D	Analysis Batch:	480-31137	'8	Instrument	ID:	HP5890-4
	N/A		N/A		Initial Weig	ht/Volume:	1 mL
Dilution:	1.0				Final Weig	ht/Volume:	
Analysis Date:	07/15/2016 1536				Injection V	olume:	1 mL
Prep Date:	N/A				Result Typ	e:	PRIMARY
Analyte		Result (n	ng/L)	Qualifi	er M	DL	RL
Methanol		1.0		U	0.	41	1.0
Surrogate		%Rec		Qualifi	er	Acceptar	nce Limits
2-Hexanone		111				62 - 129	

ATTACHMENT B

Summary of Historical Groundwater Monitoring Data – March 1988 through October 2010

Monitoring Memorandum

McKesson Envirosystems Site Syracuse, New York

			n Elev. MSL)										
N	Sampling	Top	Bottom			Ethyl-	Methylene	T	Trichloro-	Mada an A	A	N,N-Dimethyl-	88 - 61 1
Monitoring Well	Date (Date		Bottom	Acetone	Benzene	benzene	Chloride	Toluene	ethene	Xylene ^A	Aniline	aniline	Methanol
NYSDEC Groundwater Qua MW-1 ^K	,	,	055.0	50	1	5	5	5	5	5	5 <10	1	NS
10100-1	3/88	370.3	355.3	<100 <100	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<10	<10 <11	<1,000 <1,000
	1/89			<100	<1	<1	<1	<1	<1	<1	<10	<10	<1,000
	11/89			<100	<1	<1	<1	<1	<1	<3	<10	<10	<1,000
	11/90			<100	<1	<1	<1	<1	<1	<3	<10	<10	<1,000
	11/92	-		<100	<1	<1	<1	<1	<1	<3	<10	<10	<1,000
	8/95	-		<1,000	<5	<5	<10	<5	<5	<5	<5	<10	<1,000
	9/98	-		<10	<10	<10	<10	<10	<10	<10	<10	<10	<1,000
	7/99	-		0.7 JN	<10	<10	<10	<10	<10	<10	<10	<10	<1,000
	3/00			<10	<10	<10	<10	<10	<10	<10	<5	<10	<1,000 J
	9/00			8 J	<10 J	<10 J	<10 J	3 J	<10 J	5.0 J	<10 J	<10	<1,000 3
	3/00			<10	<10 0	<10 0	10 0	<10	<10 3	<10	<10 3	<10	<1,000
	9/01			<10	<10	<10	<10	<10	<10	<10	<10	<10	<1,000 J
	4/02			<12	<5.0	<5.0	<5	<5.0	<5	<10	<5	<5	990 J
	10/02			<25	<10	<10	<10	<10	<10	<20	<5	R	<1.000
	5/03			<12	<5	<5	<5	<5	<5	<10	<5	<5	<1.000
	10/03			<12	<5	<5	<5	<5	<5	<10	2 J	<5	<1,000
	6/04			<25	<10	<10	<10	<10	<10	<20	<5	<5	<1,000
	11/04							-			<5	<5	<1,000
	6/05			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	0.2 J	<1.0	<1,000
	11/05			<1.3 J	<0.3	<0.5	<0.5	<0.4	<0.4	<0.5	<1.0	<1.0 J	<1,000
	6/06			<5.0 J	<1.0 J	<4.0 J	<3.0 J	<5.0 J	<1.0 J	<5.0 J	<1.0 J	<1.0 J	<1,000 J
	11/06			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0	<500
	6/07			<5	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<1.0	<500
	11/07			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500 J
	3/08			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500
	8/08			7.4	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.6	<0.6	<500
MW-2S	3/88	368.1	353.1	<1,000	1,900	610	<10	110	<10	2,800	<10	<10	<1,000
	1/89			<1,000	2,000	330	<10	65	<10	1,200	<11	<11	<1,000
	11/89			<1,000	1,800	360	<100	<100	<100	810	<100	<100	38,000
MW-3S	3/88	365.1	350.1	<100	<1	<1	110	<1	50	<1	<10	<10	<1,000
	1/89			<10,000	<100	<100	4,700	120	1,100	<100	<11	5,570	<1,000
	11/89			<10,000	<100	<100	2,700	<100	100	<100	<52	440	<1,000
	11/91			2,900	10	4.0	<10	10	<10	31	790	170	<1,000
	8/95			<1,000	<5	<5	<10	<5	<5.0	<5	15	2.0 J	<1,000
	9/98			<10	<10	<10	<10	<10	<10	<10	<10	<10	<1,000
	7/99]		<10	1 J	<10	<10	0.7 J	<10	<10	9 J	<10	<1,000
	3/00]		<10 J	<10	<10	<10	<10	<10	<10	<10	<10	<1,000 J
	9/00			<10 J	1 J	<10 J	<10 J	2 J	<10 J	<10 J	2 J	1 J	<1,000
	3/01]		<10	<10	<10	<10	<10	<10	<10	<10	<10	<1,000
	9/01]		<10	3 J	1 J	<10	8 J	<10	2 J	690 D (69) ⁸	4 J	<1,000 J
	4/02]		<12	<5	<5	<5	<5	<5.0	<10	1.7 J	<5	370 J
	10/02]		<25	<10	<10	<10	<10	<10	<20	<5	R	<1,000
	5/03			<12	<5	<5	<5	<5	<5	<10	<5	<5	<1,000

Monitoring Memorandum

McKesson Envirosystems Site Syracuse, New York

	Sampling		n Elev. MSL)			Ethyl-	Methylene		Trichloro-			N,N-Dimethyl-	
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	benzene	Chloride	Toluene	ethene	Xylene ^A	Aniline	aniline	Methanol
NYSDEC Groundwater Quali	ty Standards (Pa	art 700)		50	1	5	5	5	5	5	5	1	NS
MW-3S	10/03			<12	<5	<5	<5	<5	<5	<10	4 J	<5	<1,000
(cont'd)	6/04			6.0 J	<10	<10	<10	<10	<10	<20	0.8 J	<6	<1,000
	11/04			<25	<10	<10	<10	<10	<10	<20	4 J	<5.0	150 J
	6/05			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	15	<1.0	<1,000
	11/05			<1.3 J	<0.3	<0.5	<0.5	<0.4	<0.4	<0.4	<1.0	<1.0 J	<1,000
	6/06			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0	<1,000
	11/06			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0	<500
	6/07			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<1.0	<500
	11/07			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500 J
	3/08			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500
	8/08			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.6	<0.6	<500
	3/09			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<0.5	<500
	9/09			<10	0.17 J	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<1.0	<500
	4/10			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<1.0	<500
	10/10			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.2	<1.0	NA
MW-3D	8/95	343.8	339	<1,000	<25 D	<25 D	200 D	<25 D	<25 D	<25 D	1 J	5 J	<1,000
MW-4S	3/88	365.5	350.5	<100	<1	<1	<1	<1	<1	<1	<10	<10	<1,000
	1/89			<100	<1	<1	280	<1	<1	<1	<11	19	<1,000
	11/89			<100	<1	<1	<1	<1	<1	<1	<10	<10	<1,000
	10/10			<10 [<10]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<3.0 [<3.0]	<5.0 [<5.0]	<1.0 [<1.0]	<500 J [<500 J]
MW-5 ^C	3/88	363.3	348.3	<100	<1	<1	<1	<1	<1	<1	230	130	<1,000
	1/89			<100	<1	<1	<1	<1	<1	<1	34	<11	<1,000
	11/89			<100	<1	<1	<1	<1	<1	<1	17	<10	<1,000
MW-6 ^D	1/89	365.5	355.9	<100	<1	<1	<1	<1	<1	<1	<11	<11	<1,000
(Replaced by MW-6S)	11/89			<10	<1	<1	<1	<1	<1	<1	<10	<10	<1,000
	8/95			<1,000	<5	<5	<10	<5	<5	<5	<5	<10	<1,000
MW-7 ^D	1/89	367	357.4	<100	<1	<1	100	<1	<1	2	<11	<11	<1,000
	11/89			<100	<1	<1	<1	<1	<1	<1	<10	<10	<1,000
MW-8 ^D	1/89	364.7	355.1	<1,000,000	<10,000	<10,000	3,200,000	<10,000	<10,000	<10,000	2,900	24,000	430,000
(Replaced by MW-8S) ^E	11/89			470,000	<10,000	<10,000	2,800,000	<10,000	<10,000	<10,000	8,500	52,000	300,000
	11/91			<1,000,000	<10,000	<10,000	1,600,000	<10,000	<10,000	<30,000	8,000	33,000	150,000
	8/95			<1,000	<250,000D	<250,000D	7,700,000 D	<250,000D	60,000 JD	<250,000D	<25,000D	380,000 D	22,000
	9/98			<10,000 J	<10,000	<10,000	140,000	<10,000	3,300 J	<10,000	1,200 J	26,000 D	7,900
	2/99			<20,000	<20,000	<20,000	650,000 DB	<20,000	11,000 J	<20,000	30,000 D	120,000 D	16,000JN
	7/99			10 J	22 J	58 J	450,000 D	240 J	11,000 J	220 J	24,000	77,000	17,000
	3/00			<100,000	<100,000	<100,000	1,300,000	<100,000	<100,000	<100,000	62,000	270,000 D	30,000 J
	9/00			<50,000 J	<50,000 J	<50,000 J	540,000 BJ	<50,000 J	9,200 J	<50,000 J	42,000 J	59,000	14,000 J
	3/01			<50,000	<50,000	<50,000	990,000	<50,000	11,000 J	<50,000	90,000 D	120,000 D	53,000
	9/01			<400	<400	170 J	440,000 BD	430	18,000 JD	680	21,000	29,000	8,900 J
	4/02			2,100	50 J	100 J	660,000 D	410	9,600 J	400	793,000 D	773,000 D	<1,000
	10/02			120 J	23	73	320,000	310	3,100	267	80,000	21,000 J	<1,000
	5/03			<12	20 J	81	910,000 D	600 D	6,700 D	300	79,000 D	29 J	<1,000
	10/03			21	25	93	400,000 D	330 D	3,100 D	360	67,000 D	24,000 D	1,200 J
	6/04			<25	40	110	1,200,000 D	330 EJ	5,900 D	400	56,000	51,000	<1,000

Monitoring Memorandum

McKesson Envirosystems Site Syracuse, New York

	Sampling		en Elev. AMSL)			Ethyl-	Methylene		Trichloro-			N,N-Dimethyl-	
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	benzene	Chloride	Toluene	ethene	Xylene ^A	Aniline	aniline	Methanol
NYSDEC Groundwater Qual	ity Standards (Pa	art 700)		50	1	5	5	5	5	5	5	1	NS
MW-8SR ^B	11/04	362.7	352.7	<1,200	<500	<500	10,000 D	100 DJ	<500	164 DJ	35,000 D	5,300 D	<1,000
	6/05			81 J	13	53	<3.0	100	<1.0	180	30,000	<200	<1,000
	11/05			15 J	13	66	<3.0	130	<1.0	260	32,000	<260 J	<1,000
	6/06			48	15	79	<3.0	120	<1.0	260	23,000	<200	<1,000
	9/06			NA	NA	NA	NA	NA	NA	NA	52,000 [51,000]	<520 [<520]	NA
	11/06			28	16	84	<3.0	100	<1.0	270	28,000	<200	<500
	6/07			58	14	83	<6.0	110	<2.0	250	2,700	<22	<500
	8/07			NA	NA	NA	NA	NA	NA	NA	17,000	<100	NA
	11/07			<5.0 J	12	73	<3.0	22	<1.0	210	22,000 J	<100 J	<500
	3/08			<10 [9.6 J]	5.5 [5.7]	70 [68]	<6.0 [<6.0]	22 [22]	<2.0 [<2.0]	160 [160]	5,800 [5,200]	<25 [<50]	<500 [<500]
	8/08			8.2 J [<10]	11 [11]	70 [70]	<6.0 [<6.0]	24 [22]	<2.0 [<2.0]	190 [190]	32,000 [25,000]	<250 [<250]	<500 [<500]
	3/09			6.5 J [5.8 J]	6.8 [6.8]	66 [63]	<1.0 [<1.0]	10 [10]	<1.0 [<1.0]	140 [140]	2,200 [1,800]	<12 [<12]	<500 [<500]
	6/09			NA	NA	NA	NA	NA	NA	NA	7,000	<50	NA
	9/09			<10 [8.3 J]	8.5 J [7.9]	44 J [38]	<1.0 [<1.0]	6.8 J [6.5]	<1.0 J [<1.0]	81 J [71]	4,000 [3,400]	<20 [<20]	<500 [<500]
	4/10			<10 [<10]	4.2 [3.5]	23 J [18]	<1.0 [<1.0]	4.6 [3.7]	<1.0 [<1.0]	41 [33]	370 J [720 J]	1.0 J [<5.0]	<500 [<500]
D	10/10			<10	2.7	16	<1.0	2.0	<1.0	31	220	1.6	NA
MW-9 ^D	1/89	365.6	356	1,600	NA	130	1,500	64	<10	270	660	1,200	<1,000
(Replaced by MW-9S)	11/89	_		<1,000	48	60	<10	25	<10	60	670	150	<1,000
	11/91	_		<100	<10	19	<1	9	<1.0	30	95	18	<1,000
	8/95	_		<1,000	11 JD	69 D	110 D	26 JD	<50	226 JD	50	28	<1,000
	7/99	_		<10	4 J	9 J	<10	2 J	<10	18	<10	5.0 J	<1,000
	3/00	_		<10	2 J	11	<10	2 J	<10	21	2.0 J	9.0 J	<1,000 J
	9/00	_		<10 J	11 J	6.0 J	<10 J	2 J	<10 J	18 J	1.0 J	6.0 J	<1,000
	3/01			<10	1 J	17	<10	3 J	<10	61	2.0 J	11	<1,000
	9/01			<10	10	7.0 J	<10	3 J	<10	35	<10	10	<1,000 J
	4/02			<23	10	6	<5	2 J	<5	17 J	9	43	370 J
	10/02	-		16 J	38	2 J	<10	40	<10	15 J	<5.0	2.0 J	<1,000
	5/03	-		<12	11	7	<5	<5	<5.0	18	0.9 J	3.0 J	<1,000
	10/03	-		<12	2 J	5	<5	<5	<5.0	19	1.0 J	<5.0	<1,000
	6/04	-		14 J	6 J	8 J	<10	2.0 J	<10	19 J	<5.0	<5.0	<1,000
	11/04	-		<25	4 J	9 J	<10	2 J	<10	30 J	<5.0	<5.0	<1,000
	6/05	-		44 J	1.9	24	<3.0	3.2 J	<1.0	64	2.6	1.9	<1,000
	11/05	-		<1.3 J	3.5	11	<0.5	3.8	<0.4	33	1.4	6.1 J	<1,000
	6/06	-		<5.0 J	1.1 J	25 J	<3.0 J	2.3 J	<1.0 J	60 J	<1.1 J	3.8 J	<1,000 J
	11/06	-		<5.0	1.4	23	<3.0	3.5 J	<1.0	63	0.5 J	3.3 J	<500
	6/07	-		<5.0	1.4	42	<3.0	3.3 J	<1.0	110	<5.0	4.1	<500
	11/07	-		<5.0	0.9 J	11	<3.0	2.0 J	<1.0	58	1.7 J	8.6	<500 J
	3/08	-		<5.0 J	1.1	37	<3.0	3.0 J	1.2	73	0.7 J	6.8	<500
	8/08	-		24	3.7	21	<3.0	3.3 J	<1.0	72	<5.5	5.1	<500
	3/09	-		<10	1.2	27	<1.0	2.5	<1.0	65	<5.0	4.2	<500
	9/09	-		<10	1.7	20	<1.0	2.2	<1.0	70	<5.0	4.1	730
	4/10	-		<10	0.86 J	26	<1.0	2.1	<1.0	69	<5.0	6.5	<500
	10/10		1	<10	1.3	11	<1.0	1.9	<1.0	45	<5.1	7.5	<500 J

Monitoring Memorandum

McKesson Envirosystems Site Syracuse, New York

	Sampling	(ft. A	n Elev. MSL)			Ethyl-	Methylene		Trichloro-			N,N-Dimethyl-	
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	benzene	Chloride	Toluene	ethene	Xylene ^A	Aniline	aniline	Methanol
NYSDEC Groundwater Quali	ty Standards (Pa	,		50	1	5	5	5	5	5	5	1	NS
MW-10 ^D	1/89	355.5	345.9	<1,000,000	<10,000	<10,000	520,000	<10,000	<10,000	<10,000	720	9,400	210,000
(Replaced by MW-9D)	11/89			<100,000	<1,000	<1,000	28,000	<1,000	<1,000	<1,000	900	2,400	<1,000
	11/91			<100	<1	2.0	41	3.0	<1	<3.0	230	<10	<1,000
	8/95			<1,000	<25 UD	<25 UD	350 D	<25 UD	<25 UD	<25 UD	<5.0	<10	<1,000
MW-11 ^D	1/89	355.1	345.5	<100	<1	<1	1	<1	<1	<1	<12	<12	8,400
(Replaced MW-6D)	11/89	_		<100	<1	<1	<1	<1	<1	<1	230	<52	<1,000
	8/95			<1,000	<5	<5	<10	<5	<5	<5	<5	<10	<1,000
MW-11S	12/94	359.9	354.9	<380	<10	<10	<10	<10	<10	<10	<5	<10	880
	8/95			<1,000	<5	<5	<26	<5	<5	<5	<5	<10	<1,000
	10/95			NA	<5	<5	<5	<5	<5	<5	NA	NA	NA
MW-11D	12/94	349.8	344.8	<310	<5	<5	<5	<5	<5	<5	<5	<10	2,100
	8/95	-		<1,000	<5	<5	<10	<5	<5	<5	<5	<10	<1,000
	10/95			NA	<5	<5	<5	<5	<5	<5	NA	NA	NA
MW-12D ^D	1/89	354.8	345.2	<100,000	<1,000	<1,000	120,000	<1,000	<1,000	<1,000	67	410	12,000
(Replaced MW-8D) ^E	11/89	-		69,000	<1,000	<1,000	360,000	<1,000	<1,000	<1,000	<1,000	4,900	39,000
	11/91	-		<1,000,000	<10,000	<10,000	220,000	<10,000	<10,000	<30,000	750	5,800	<10,000
	8/95	-		<1,000	450 JD	430 JD	<13,000 D	430 JD	<1,300 D	1,250 JD	30 D	230 D	<1,000
	8/96			13	<10	<10	40	<10	2.0 J	<10	<5	<10	<1,000
MW-13S	11/89	368.7	359.1	<100	3	<1	<1.0	<1	<1.0	<1	<52	<52	<1,000
	11/90	-		<100	<1	<1	<1.0	<1	<1.0	<3	<10	<10	<1,000
	11/91	-		<100	<1	<1	<1.0	<1	<1.0	<3	<10	<10	<1,000
	11/92			<100	<1	<1	<1.0	<1	<1.0	<3	<10	<10	<1,000
MW-14D ^C	1/89	359	349.4	<100	<1	<1	<1.0	<1	<1.0	<1	<11	<11	<1,000
	11/89			<100	<1	<1	<1.0	<1	<1.0	<1	<10	<10	<1,000
MW-15S	1/89	370	360.25	<100	<1	<1	<1.0	<1	<1.0	<1	<11	<11	<1,000
	11/89			<100	<1	<1	<1.0	<1	<1.0	<1	<52	<52	<1,000
MW-16D ^C	1/89	350.8	341.2	<100	<1	<1	<1.0	<1	<1.0	<1	<11	<11	<1,000
NAM 47C	11/89			<100	<1	<1	<1.0	<1	<1.0	<1	<10	<10	<1,000
MW-17 ^C	11/90	365.7	356.1	<100	<1	<1	<1.0	<1	<1.0	<3	<10	<10	<1,000
(Replaced by MW-17R)	11/91	-		<100	<1	<1	<1.0	<1	<1.0	<3	<10	<10	<1,000
	11/92	-		<100	<1	<1	<1.0	<1	<1.0	<3	<10	<10	<1,000
	8/95	-		<1,000	<5	<5 <5	<11 <5	<5	<5 2 J	<5 <5	<5 NA	<10 NA	<1,000 NA
	10/95	_		NA	<5	-	-	<5	-	-			
	8/96	4		11	<10	<10	<10	<10	<10	<10	<5	<10	<1,000
	8/97 2/99	-		<10 <10	<10 1 J	<10 <10	<10	<10	<10 <10	<10 <10	<5 <10	<10 <10	<1,000
	-	4			1 J 8 J	<10 <10	<10 J	<10		<10 <10	<10 <5.0	<10 <10	<1,000
	3/00	-		<10		-	<10	<10	<10	-		-	<1,000 J
	9/00 3/01	-		<10 J <10	15 J 8 J	<10 J <10	1 J <10	<10 J <10	<10 J <10	<10 J <10	24 J <10	4 J <10	<1,000 J <1,000
	3/01 9/01	-		<10	8 J 5 J	<10	<10	<10	<10	<10	<10	<10	
		-		-		<10 <5	<10 <5	<10 <5	<10 <5	-	<10 150 (<5) ^F	<10 110 (<5) ^F	<1,000
	4/02	-		<10	6					<10	<5 ^G	<5 ^G	620 J
	10/02 5/03	4		<25 J <12	14 8	<10 <5	<10 <5	<10 <5	<10 <5	<20 <5	<5	<5	<1,000
		-			-								<1,000
	11/03	1		<12	7	<5	<5	<5	<5	<10	<5	<5	<1,000

Monitoring Memorandum

McKesson Envirosystems Site Syracuse, New York

	Sampling		n Elev. MSL)			Ethyl-	Methylene		Trichloro-			N,N-Dimethyl-	
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	benzene	Chloride	Toluene	ethene	Xylene ^A	Aniline	aniline	Methanol
VYSDEC Groundwater Quality	Standards (Pa	art 700)		50	1	5	5	5	5	5	5	1	NS
/W-17 ^D	6/04			<25	5 J	<10	<10	<10	<10	<20	<5	<5	<1,000
cont'd)	11/04										<5	<5	200 J
	6/05			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0	<1,000
	11/05			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0 J	<1,000
	6/06			<5.0	0.8 J	<4.0	<3.0	<5.0	<1.0	<5.0	<1.1	<1.1	<1,000
	11/06			R	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0 J	<500
	6/07			<5.0	0.7 J	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<1.0	<500
	11/07			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500 J
	3/08			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500
	8/08			2.3 J	1.8	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500
	3/09			<10	2.3	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<0.5	<500
	9/09			<10 J	0.86 J	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<1.0	<500
	4/10			<10	0.22 J	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<1.0	<500
	10/10			<10	1.3	<1.0	<1.0	<1.0	<1.0	<3.0	<5.6	<1.1	<500 J
/W-18	11/89	325.15	316.15	<100	<1	<1	<1	<1	<1	<1	<10	<10	<1,000
	11/90			<100	<1	<1	<1	<1	<1	<3	<10	<10	<1,000
	11/91			<100	<1	<1	<1	<1	<1	<3	<10	<10	<1,000
	11/92			<100	<1	<1	<1	<1	<1	<3	<10	<10	<1,000
	12/94			<10	<5	<5	<5	<5	<5	<5	<5	<10	<200
	8/95			<1,000	<5	<5	<10	<5	<5	<5	<5	<10	<1,000
	2/96			<1,000	<10	<10	<10	<10	<10	<10	<5	<10	<1,000
	8/96			<10	<10	<10	<10	<10	<10	<10	<5	<10	<1,000
	2/97			<10	<10	<10	<10	<10	<10	<10	<5	<10	<1,000
	8/97			<10	<10	<10	<10	<10	<10	<10	<5	<10	<1,000
	9/98			<10	<10	<10	<10	<10	<10	<10	<5 ^H	<10	<1,000
	2/99			<10	<10	<10	<10	<10	<10	<10	<10	<10	<1,000
	7/99			<10 J	<10	<10	<10	<10	<10	<10	<10	<10	<1,000
	3/00			<10	<10	<10	<10	<10	<10	<10	<5	<10	<1,000 J
	9/00			<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10	<1,000 J
	3/01			<10	<10	<10	<10	<10	<10	<10	<10	<10	<1,000
	9/01			<10	<10	<10	<10	<10	<10	<10	<10	<10	<1,000
	4/02			<10	<10	<10	<10	<10	<10	<20	280 D (<5) ^F	200 D (<5) ^F	720 J
	10/02	1		6 J	<10	<10	<10	<10	<10	<20	<5 ^G	<5 ^G	<1,000
	5/03	1		<12	<5	<5	<5	<5	<5	<5	<5	<5	280 J
	10/03	1		<12	<5	<5	<5	<5	<5	<10	0.7 J	<5	<1,000
	6/04	1		<25	<10	<10	<10	<10	<10	<20	R	R	<1,000
	11/04										<5	<5	<1,000
	6/05	1		<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0	<1,000
	11/05			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.1	<1.1 J	<1,000
	6/06	1		<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0	<1,000
	11/06	1		R	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0 J	<500
	6/07	1		<5.0	<1.0	<4.0	<3	<5.0	<1.0	<5.0	<5.0	<1.0	<500
	11/07	1		<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500
	3/08	1		<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500

Monitoring Memorandum

McKesson Envirosystems Site Syracuse, New York

	Sampling		en Elev. MSL)			Ethyl-	Methylene		Trichloro-			N,N-Dimethyl-	
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	benzene	Chloride	Toluene	ethene	Xylene ^A	Aniline	aniline	Methanol
NYSDEC Groundwater Qu	ality Standards (Pa	irt 700)		50	1	5	5	5	5	5	5	1	NS
MW-18	8/08			5.5	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.6	<0.6	<500
(cont'd)	3/09			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<0.5	<500
. ,	9/09			<10 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<1.0	<500
	4/10	1		<10	<1.0	<1.0	33	<1.0	<1.0	<3.0	<5.0	<1.0	<500
	6/10	1		<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	NA	NA	NA
	10/10			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.1	<1.0	<500 J
MW-19 ^K	11/89	318.45	309.45	<100	<1	<1	<1	<1	<1	<1	<10	<10	<1,000
	12/94	1		<10	<5	<5	<5	<5	<5	<5	<5	<10	<200
	8/95			<1,000	<5	<5	<12	<5	<5	<5	<5	<10	<1,000
	10/95			NA	<5	<5	<5	<5	<5	<5	NA	NA	NA
	2/96	1		<1,000	<10	<10	<10	<10	<10	<10	<5	<10	<1,000
	8/96	1		<10	<10	<10	<10	<10	<10	<10	<5	<10	<1,000
	2/97	1		<10	<10	<10	<10	<10	<10	<10	<5	<10	<1,000
	8/97			<10	<10	<10	<10	<10	<10	<10	<5	<10	<1,000
	9/98	1		<10	<10	<10	<11	<10	<10	<10	<5 ^H	5 J	<1,000
	2/99			<10	<10	<10	<10	<10	<10	<10	<10	<10	<1,000
	7/99			<10 J	<10	<10	<1,000						
	3/00	1		<10	<10	<10	<10	<10	<10	<10	<5	<10	<1,000 J
	9/00	1		<10 J	<10 J	<10	<1,000 J						
	3/01	1		<10	<10	<10	<10	<10	<10	<10	<10	<10	<1,000
	9/01			<10	<10	<10	<10	<10	<10	<10	<10	<10	<1,000
	4/02	1		<10	<5	<5	<5	<5	<5	<10	<5	<5	<1,000
	10/02			<25 J	<10	<10	<10	<10	<10	<20 J	<5 ^G	<5 ^G	<1,000
	5/03			<12	<5	<5	<5	<5	<5	<5	<5	<5	<1,000
	10/03			<11	<5	<5	<5	<5	<5	<10	51 J	16 J	<1,000
	6/04	1		<25	<10	<10	<10	<10	<10	<20	<5	<5	<1,000
	11/04			<25	<10	<10	<10	<10	<10	<20	<5	<5	<1,000
	6/05			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.1	<1.1	<1,000
	11/05			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0 J	<1,000
	6/06			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0	<1,000
	11/06			R	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0 J	<500
	6/07			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.5	<1.1	<500
	11/07			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500
	3/08			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500
	8/08	-		<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.6	<0.6	<500
	3/09 9/09	4		<10	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0 <1.0	<3.0	<5.0 <5.0	< 0.5	<500 <500
	9/09 4/10	-		<10 J <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0	<5.0 <5.0	<1.0 <1.0	<500
MW-20 ^c	4/10	329.85	320.85	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0 <1	<5.0	<1.0	<1.000
	11/90	525.05	520.05	<100	<1	<1	<1	<1	<1	<3	<10	<10	<1,000
	11/91	1		<100	<1	<1	<1	<1	<1	<3	<10	<10	<1,000
	11/92	1		<100	<1	<1	<1	<1	<1	<3	<10	<10	<1,000
MW-21 ^c	11/89	323.65	314.65	<100	<5	<1	<1	<1	<1	<1	<10	<10	<1,000
MW-22 ^L	11/89	368.55	359.55	<100	<1	<1	<1	<1	<1	<1	<10	<10	<1,000
	10/10	1		<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<1.0	<500 J

Monitoring Memorandum

McKesson Envirosystems Site Syracuse, New York

	Sampling		n Elev. MSL)			Ethyl-	Methylene		Trichloro-			N,N-Dimethyl-	
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	benzene	Chloride	Toluene	ethene	Xylene ^A	Aniline	aniline	Methanol
NYSDEC Groundwater Qual	ity Standards (Pa	rt 700)		50	1	5	5	5	5	5	5	1	NS
MW-23S	12/94	364.1	354.1	<10	<5	<5	<5	<5	<5	<5	<5	<10	<200
	8/95			<1,000	<5	<5	<10	<5	<5	<5	<5	<10	<1,000
	2/96			<1,000	<10	<10	<10	<10	<10	<10	<5	<10	<1,000
	8/96			<10	<10	<10	<10	<10	<10	<10	7	<10	<1,000
	2/97			<10	<10	<10	<10	<10	<10	<10	11	<10	<1,000
	8/97			12	<10	<10	<10	<10	<10	<10	92	<10	<1,000
	9/98			<10	<10	<10	<10	<10	<10	<10	56 ^H	7 J	<1,000
	2/99			<10	<10	<10	<10 J	<10	<10	<10	<10	10	<1,000
	6/99			<10 J	<10	<10	<10 J	<10	<10	<10	<10 J	2 J	<1,000 J
	7/99			<10 J	<10	<10	<10	<10	<10	<10	<10	<10	<1,000
	3/00			<10	<10	<10	<10	<10	<10	<10	<5	2 J	<1,000 J
	9/00			<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	2 J	<1,000 J
	3/01	l		<10	<10	<10	<10	<10	<10	<10	<10	<10	<1,000
	9/01			<10	<10	<10	<10	<10	<10	<10	<10	<10	<1,000
	4/02			<10	<5	<5	<5	<5	<5	<10	<5	<5	<1,000
	10/02			<25 J	<10	<10	<10	<10	<10	<20 J	<5 ^G	<5 ^G	<1,000
	5/03			<62	<25	<25	<25	<25	<25	<50	<5	<5	380 J
	10/03			<12	<5	<5	<5	<5	<5	<10	60	<5	<1,000
	6/04			<25	<10	<10	<10	<10	<10	<20	<5	<5	<1,000
	11/04										<5	<5	<1,000
	6/05			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0	<1,000
	11/05			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0 J	<1,000
	6/06			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.2	<1.2	<1,000
	11/06			R	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0 J	<500
	6/07			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<1.0	<500
	11/07			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500
	3/08			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500
	8/08			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.6	<0.6	<500
	3/09			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<0.5	<500
	9/09			<10 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<1.0	<500
	4/10]		<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<1.0	<500
	10/10			3.7 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<1.0	<500 J
MW-23I	12/94	341.2	336.2	<10	<5.0	<5.0	<5	<5	<5.0	<5.0	<5.0	<10	<200
	8/95]		<1,000	<5	<5	<10	<5	<5	<5	<5	<10	<1,000
	2/96			<1,000	<10	<10	<10	<10	<10	<10	<5	<10	<1,000
	8/96			<10	<10	<10	<10	<10	<10	<10	<5	<10	<1,000
	2/97]		<10	<10	<10	<10	<10	<10	<10	<5	<10	<1,000
	8/97]		<10	<10	<10	<10	<10	<10	<10	<5	<11	<1,000
	9/98			<10	<10	<10	<10	<10	<10	<10	<5 ^H	<10	<1,000
	2/99			<10	<10	<10	<10 J	<10	<10	<10	<10	<10	<1,000
	7/99			<10 J	<10	<10	<10	<10	<10	<10	<10	<10	<1,000
	3/00			<10	<10	<10	<10	<10	<10	<10	<5	<10	<1,000 J
	9/00			<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10	<1,000 J
	3/01			<10	<10	<10	<10	<10	<10	<10	<10	<10	<1,000

Monitoring Memorandum

McKesson Envirosystems Site Syracuse, New York

	Sampling		en Elev. AMSL)			Ethyl-	Methylene		Trichloro-			N.N-Dimethyl-	
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	benzene	Chloride	Toluene	ethene	Xylene ^A	Aniline	aniline	Methanol
NYSDEC Groundwater Qualit	y Standards (Pa	rt 700)		50	1	5	5	5	5	5	5	1	NS
WW-23I	9/01			4 J	<10	<10	<10	<10	<10	2 J	<10	<10	<1,000
(cont'd)	4/02			<10	<5	<5	2 J	<5	<5	<10	<5	<5	<1,000
	10/02			<25 J	<10	<10	<10	<10	<10	<20 J	<5 ^G	<5 ^G	<1,000
	5/03			<12	<5	<5	<5	<5	<5	<5	<5	<5	<1,000
	10/03			<12	<5	<5	<5	<5	<5	<10	<5	<5	<1,000
	6/04			<25	<10	<10	<10	<10	<10	<20	1 J	<5	<1,000
	11/04										<5	<5	<1,000
	6/05			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0	<1,000
	11/05			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0 J	<1,000
	6/06			<5.0 J	<1.0	<4.0	<3.0	0.6 J	<1.0	<5.0	<1.0	<1.0	<1,000
	11/06			R	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0 J	<500
	6/07			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<1.0	<500
	11/07			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500
	3/08			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500
	8/08			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500
	3/09			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<0.5	<500
	9/09			<10 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<1.0	<500
	4/10			<10	<1.0	<1.0	8.4	<1.0	<1.0	<3.0	<5.0	<1.0	<500
	6/10			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	NA	NA	NA
	10/10			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<1.0	<500 J
/W-24S ^{CL}	12/94	358.4	352.4	<10	<5	<5	<5	<5	<5	<5	<5	<10	<1,000
Replaced by MW-24SR)	8/95			<1,000	<5	<5	<10	<5	<5	<5	<5	<10	<1,000
	2/96			<1,000	<10	<10	<10	<10	<10	<10	<5	<10	<1,000
	2/97			<1,000	<10	<10	<10	<10	<10	<10	<5	<10	<1,000
	9/98			<10	<10	<10	<10	<10	<10	<10	<5 ^H	<10	<1,000
	6/99			<10 J	<10	<10	<10 J	<10	<10	<10	<10 J	<10 J	<1,000 J
	7/99			<10 J	<10	<10	<10	<10	<10	<10	<10	<10	<1,000
	3/00			<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10	<1,000 J
	9/01			<10	<10	<10	<10	<10	<10	<10	<10	<10	<1,000
	6/02 ^F			NA	NA	NA	NA	NA	NA	NA	ND	ND	NA
	10/02			<25 J	<10	<10	<10	<10	<10	<20 J	<5 ^G	<5 ^G	<1,000
	10/03			<12	<5	<5	<5	<5	<5	<10	16	<6	<1,000
	6/04 ^J			<25	<10	<10	<10	<10	<10	<20	<5	<5	<1,000
	11/04										<5	<5	<1,000
	6/05			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0	<1,000
	11/05]		<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0 J	<1,000
	11/06	l		R	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0 J	<500
	11/07]		<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500
	8/08			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.7	<0.6	<500
	9/09			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<1.0	<500
IW-24D ^{CL}	12/94	334.4	341.2	<10	<5	<5	<5	<5	<5	<5	<5	<10	<1,000
Replaced by MW-24DR)	8/95			<1,000	<5	<5	<10	<5	<5	<5	<5	<10	<1,000
	2/96			<1,000	<10	<10	<10	<10	<10	<10	<5	<10	<1,000
	2/97			<1,000	<10	<10	<10	<10	<10	<10	<5	<10	<1,000

Monitoring Memorandum

McKesson Envirosystems Site Syracuse, New York

	Sampling		n Elev. MSL)			Ethyl-	Methylene		Trichloro-			N,N-Dimethyl-	
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	benzene	Chloride	Toluene	ethene	Xylene ^A	Aniline	aniline	Methanol
NYSDEC Groundwater Quality	Standards (Pa	rt 700)		50	1	5	5	5	5	5	5	1	NS
MW-24D ^{DL}	9/98			<10	<10	<10	<10	<10	<10	<10	<5 ^H	<10	<1,000
(cont'd)	7/99			<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10	<10	<1,000
	9/00			<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10	<1,000 J
	9/01			<10	<10	<10	<10	<10	<10	<10	<10	<10	<1,000
	6/02 ^F			NA	NA	NA	NA	NA	NA	NA	ND	ND	NA
	10/02			<25 J	<10	<10	<10	<10	<10	<20 J	<5 ^G	<5 ^G	<1,000
	10/03			<12	<5	<5	<5	<5	<5	<10	0.5 J	<5	<1,000
	11/04							-			<5	<5	<1,000
	6/05			<5 J	<1	<4	<3	<5	<1	<5	<1	<1	<1,000
	11/05			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.1	<1.1 J	<1,000
	11/06			R	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0 J	<500
	11/07			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500
	8/08			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.7	<0.6	<500
	9/09			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<1.0	<500
MW-25S ^L	8/95	361.2	356.2	<1,000	<5	<5	<10	<5	<5	<5	<5	0.7 J	<1,000
	10/95			NA	<5	<5	<5	<5	<5	<5	<5	<10	NA
	8/96			<10	<10	<10	<10	<10	<10	<10	<5	<10	<1,000
	8/97			<10	<10	<10	<10	<10	<10	<10	<5	<10	<1,000
	2/99			<10	<10	<10	<10 J	<10	<10	<10	130	<10	<1,000
	6/99			<10 J	<10	<10	<10 J	<10	<10	<10	110 J	21 J	<1,000 J
	7/99			<10 J	<10	<10	<10	<10	<10	<10	5 J	<10	<1,000
	3/00			<10	<10	<10	<10	<10	<10	<10	<5	<10	<1,000 J
	9/00			<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10	<1,000 J
	3/01			<10	<10	<10	<10	<10	<10	<10	<10	<10	<1,000
	9/01			<10	<10	<10	<10	<10	<10	<10	<10	<10	<1,000
	4/02			<10	<5	<5	<5	<5	<5	<10	<5	<5	<1,000
	10/02			<25	<10	<10	<10	<10	<10	<20	<5 ^G	<5 ^G	<1,000
	5/03			<12	<5	<5	<5	<5	<5	<5	<5	<5	<1,000
	11/03			<12	<5	<5	<5	<5	<5	<10	<5	<5	<1,000
	6/04			<25	<10	<10	<10	<10	<10	<20	<5	<5	<1,000
	11/04										<5	<5	<1,000
	6/05			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.1	<1.1	<1,000
	11/05			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0 J	<1,000
	6/06			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0	<1,000
	11/06			R	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0 J	<500
	6/07			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<1.0	<500
	11/07			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500
	3/08			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500
	8/08			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.2	<0.5	<500
	3/09	1		<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<0.5	<500
	9/09			<10 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<1.0	<500
	4/10	1		<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<1.0	<500

Monitoring Memorandum

McKesson Envirosystems Site Syracuse, New York

			n Elev. MSL)										
Monitoring Well	Sampling Date	Top	Bottom	Acetone	Benzene	Ethyl- benzene	Methylene Chloride	Toluene	Trichloro- ethene	Xylene ^A	Aniline	N,N-Dimethyl- aniline	Methanol
NYSDEC Groundwater Quality				50	1	5	5	5	5	5	5	1	NS
MW-25D ^L	8/95	349.55	344.55	<1.000	<5	<5	<5	<5	<5	<5	<5	1 J	<1.000
	10/95			NA	<5	<5	<5	<5	3 J	<5	<5	<10	NA
	8/96			15	<10	<10	<10	<10	<10	<10	<5	<10	<1,000
	8/97			<10	<10	<10	<10	<10	<10	<10	<5	<11	<1,000
	2/99			<10	<10	<10	<10 J	<10	<10	<10	<10	<10	<1.000
	3/00			<10	<10	<10	<10	<10	<10	<10	<5	<10	<1,000 J
	3/01			<10	<10	<10	<10	<10	<10	<10	5 J	<10	<1,000
	4/02			<10	<5	<5	<5	<5	<5	<10	<5	<5	<1,000
	5/03			<12	<5	<5	<5	<5	<5	<5	<5	<5	<1,000
	6/04			<25	<10	<10	<10	<10	<10	<20	<5	<5	<1,000
	6/05			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0	<1,000
	6/06			<5.0 J	<1.0	<4.0	<3.0	0.7 J	<1.0	<5.0	<1.0	<1.0	<1,000
	6/07			12 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<1.0	<500
	3/08			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500
	3/09			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<0.5	<500
	4/10			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<1.0	<500
MW-26	12/96	365	355.3	<10	<10	<10	<10	<10	<10	<10	<5	<10	<1,000
MW-27	9/98	362.5	354.5	23	3 J	<10	<10	4 J	<10	3 J	340 DJ	<10	<1,000
	7/99			<10 J	4 J	3 J	<10	2 J	<10	8 J	740 D	<10	<1,000
	3/00			<10	6 J	8 J	<10	<10	<10	2 J	110 D	1 J	<1,000 J
	9/00			<10 J	4 J	3 J	1 J	<10 J	<10 J	1 J	16 J	2 J	<1,000 J
	3/01			<10	5 J	5 J	<10	<10	<10	2 J	260 D	2 J	<1,000
	9/01			<10	5 J	2 J	<10	<10	<10	<10	26	<10	<1,000 J
	4/02			<18	7	12	<5	11	<5	26	176,000 DJ	19 J	<1,000
	10/02			9 J	3 J	<10	60 JN	<10	4 J	<20	2,700 D	100 J	<1,000
	5/03			<12	8	23	43	11	<5	51	15,000 DJ	11	<1,000
	10/03			170	5	<5	240 D	<5	<5	3 J	3,700 D	<5	<1,000
	6/04			23 J	5 J	2 J	<10	4 J	<10	6 J	3,700 D	20 J	<1,000
	11/04			<120 (28)	<50 (4 J)	<50 (<10)	310 (490 D)	<50 (2 J)	<50 (<10)	<100 (<20)	1,100 DJ	<5	<1,000
	6/05			31 J	6.1	5.8	<3.0	15	<1.0	15	5,200	<23	<1,000
	11/05			35 J (37 J)	11 (12)	26 (26)	<3.0 (<3.0)	77 (78)	<1.0 (<1.0)	86 (88)	37,000 (38,000)	<270 J (<260 J)	<1,000 (<1,000)
	6/06			5.3 J (5.8 J)	9.5 J (8.9 J)	25 J (25 J)	<3.0 J (<3.0 J)	50 J (48 J)	<1.0 J (<1.0 J)	66 J (63 J)	14,000 J (12,000 J)	<100 J (<100 J)	<1,000 J (<1,000 J)
	9/06			NA	NA	NA	NA	NA	NA	NA	1,700	<10	NA
	11/06			31 [24]	14 [14]	42 [45]	<3.0 [<3.0]	71 [71]	<1.0 [<1.0]	91 [110]	33,000 [33,000]	<210 [<200]	<500 [<500]
	6/07]		21	8.4	14	<3.0	9.5	<1.0	24	1,100	<10	<500
	8/07	1		NA	NA	NA	NA	NA	NA	NA	<10 J [4,300 J]	<1.0 [<20]	NA
	11/07	1		<5.0 J [<5.0]	6.6 [5.9]	8.6 [7.2]	<3.0 [<3.0]	4.7 J [4.1 J]	<1.0 [<1.0]	24 [21]	3,000 J [3,800 J]	<25 J [<25 J]	<500 [<500]
	3/08]		21	9.4	43	<6.0	23	<2.0	68	13,000	<100	<500
	8/08]		3.8 J	5	1.8 J	<3.0	2.2 J	<1.0	10	2,400	<25	<500
	3/09]		14 J	8.7	36	<1.0	9.4	<1.0	88	8,200 J	<50 J	<500
	6/09]		NA	NA	NA	NA	NA	NA	NA	7,400	<50	NA
	9/09	1		10	6.2	5.9	<1.0	6.9	<1.0	23	2,100	<10	<500
	4/10	1		<10	4.5	6.1	<1.0	2.4	<1.0	10	1,300	<10	<500
	10/10]		<10	2.7	1.4	<1.0	1.3	<1.0	3.4	220	2.5	NA

Monitoring Memorandum

McKesson Envirosystems Site Syracuse, New York

	Sampling		n Elev. MSL)			Ethyl-	Methylene		Trichloro-			N,N-Dimethyl-	
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	benzene	Chloride	Toluene	ethene	Xylene ^A	Aniline	aniline	Methanol
NYSDEC Groundwater Qualit	ty Standards (Pa	rt 700)		50	1	5	5	5	5	5	5	1	NS
MW-28	9/98	363.6	355.6	<5,000 J	<5,000	<5,000	64,000 J	<5,000	<5,000	<5,000	546 D [∺]	54	2,200
	7/99			<500 J	<500	<500	39,000 D	<500	<500	<500	1,100 D	40	<1,000
	3/00			<10,000	<10,000	<10,000	130,000 J	<10,000	<10,000	<10,000	1,300 D	30	<1,000 J
	9/00			<1,000 J	<1,000 J	<1,000 J	8,100 BJ	<1,000 J	<1,000 J	<1,000 J	540 DJ	<10	<1,000 J
	3/01			<400	<400	<400	5,900 B	<400	<400	<400	3,200 D	7 J	<1,000
	9/01			<400	<400	<400	4,700 B	<400	<400	<400	1,000 D	<10	<1,000 J
	4/02			<49	8	9	4,600 D	6	<5	10 J	33,400 D	57	<1,000
	10/02			14 J	8 J	11	<10	6 J	<10	12 J	2,700 D	R	<1,000
	5/03			13	4 J	2 J	52	2 J	<5	8 J	1,000 DJ	3 J	<1,000
	10/03			24	11	12	<5	6	<5	13 J	1,900 D	<5	<1,000
	6/04			20 J	4 J	5 J	<10	2 J	<10	4 J	910 D	<5	<1,000
	11/04			<120 (<25)	<50 (4 J)	<50 (5 J)	<50 (<10)	<50 (<10)	<50 (<10)	<100 (3 J)	640 DJ	<5	190 J
	6/05			5.2 J	4.5	4.6	<3.0	1.2 J	<1.0	3.9 J	630	<5.0	<1,000
	11/05			6.8 J (7.8 J)	6.1 (5.8)	4.7 (4.7)	<3.0 (<3.0)	<5.0 (<5.0)	<1.0 (<1.0)	<5.0 (<5.0)	380 J (350 J)	<2.2 (<2.1)	<1,000 (<1,000)
	6/06	1		<5.0 J (<5.0 J)	6.0 J (6.3 J)	5.3 J (5.4 J)	<3.0 J (<3.0 J)	1.2 J (1.3 J)	<1.0 J (<1.0 J)	4.2 J (4.3 J)	430 J (530 J)	<2.1 J (<5.0 J)	<500 J (<1,000 J)
	9/06			NA	NA	NA	NA	NA	NA	NA	280	<2.2	NA
	11/06	1		12	8.2	5.6	<3.0	1.4 J	<1.0	4.4 J	1,000	<5.2	<500
	6/07			13	4.6	0.8 J	<3.0	0.4 J	<1.0	0.6 J	60	<1.0	<500
	8/07	1		NA	NA	NA	NA	NA	NA	NA	40	<1.0	NA
	11/07			<5.0 J	4.5	1.4 J	<3.0	0.5 J	<1.0	0.8 J	29 J	<0.5 J	<500
	3/08			<5.0	4.0	1.6 J	<3.0	0.5 J	<1.0	1.3 J	81	0.9	<500
	8/08	1		<5.0	3.8	<4.0	<3.0	<5.0	<1.0	<5.0	0.7 J	<0.5	<500
	3/09			<10	3.5	0.8 J	<1.0	0.3 J	<1.0	1.1 J	18	<0.5	851
	9/09			<10	3.1	0.32 J	<1.0	0.25 J	<1.0	0.48 J	6.7	<1.0	<500
	4/10			<10	2.8	0.60 J	<1.0	0.23 J	<1.0	0.46 J	<5.0	0.49 J	<500
	10/10			<10	1.8	<1.0	<1.0	<1.0	<1.0	<3.0	2.4 J	0.60 J	<500 J
MW-29	9/98	362.9	345.9	<10	<10	<10	<10	<10	<10	2 J	<10	13	<1,000
	2/99	1		7 J	<10	<10	<10	<10	<10	1 J	5 J	4 J	<1,000
	7/99			<10	<10	<10	<10	<10	<10	<10	2 J	4 J	<1,000
	3/00			<10	<10	<10	<10	<10	<10	<10	450 D	6 J	<1,000 J
	9/00			<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	24 J	4 J	<1,000 J
	3/01	1		<10	<10	<10	<10	<10	<10	<10	30	4 J	<1,000
	9/01	1		<10	<10	<10	<10	<10	<10	<10	7 J	2 J	<1,000
	4/02	1		<10	<5	<5	<6	<5	<5	<10	3 J	9	<1,000
	10/02	1		<25 J	<10	<10	4 JN	<10	<10	<20	8	R	<1,000
	5/03	1		<12	<5	<5	<3	<5	<5	<10	19	1 J	<1,000
	10/03	1		<12	<5	<5	<5	<5	<5	<10	2 J	<5	<1,000
	6/04	1		<25	<10	<10	<10	<10	<10	<20	3 J	<5	<1,000
	11/04	1		<120	<50	<50	<50	<50	<50	<100	<5	<5	420 J
	6/05	1		<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0	<1,000
	11/05	1		<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0 J	<1.000
	6/06	1		<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0	<1,000
	11/06	1		5.4	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	0.4 J	<1.0	<500
	6/07	1		<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	0.5 J	<5.5	<1.1	<500

Monitoring Memorandum

McKesson Envirosystems Site Syracuse, New York

	Sampling		en Elev. AMSL)			Ethyl-	Methylene		Trichloro-			N,N-Dimethyl-	
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	benzene	Chloride	Toluene	ethene	Xylene ^A	Aniline	aniline	Methanol
NYSDEC Groundwater Qua	ality Standards (Pa	irt 700)		50	1	5	5	5	5	5	5	1	NS
MW-29	11/07			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0 J	<0.5 J	<500
(cont'd)	3/08			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500
	8/08			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500
	3/09			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<0.5	<500
	9/09			<10	<1.0	<1.0	<1.0	0.16 J	<1.0	<3.0	<5.0	0.29 J	<500
	4/10			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<1.0	<500
	10/10			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.2	<1.0	NA
MW-30	9/98	363.5	355.5	<10	<10	<10	<10	<10	<10	<10	<10	<10	<1,000
	2/99			7 J	<10	<10	<10	<10	<10	<10	<10	2 J	<1,000
	7/99			<10	0.7 J	<10	<10	<10	0.5 J	<10	<10	1 J	<1,000
	3/00			<10	<10	<10	4 J	<10	<10	<10	18	2 J	<1,000 J
	9/00			<10 J	<10 J	<10 J	2 J	<10 J	<10 J	<10 J	9 J	2 J	<1,000 J
	3/01			<10	<10	<10	<10	<10	<10	<10	8 J	2 J	<1,000
	9/01			4 J	2 J	<10	<10	<10	<10	<10	8 J	1 J	<1,000 J
	4/02			<10	<5	<5	<5	<5	<5	<10	250	210	<1,000
	10/02			<25 J	<10	<10	<10	<10	<10	<20 J	R	R	<1,000
	5/03			<62	<25	<25	8 J	<25	<25	<50	18	0.6 J	<1,000
	10/03			<12	<5	<5	<5	<5	<5	<10	4 J	<5	<1,000
	6/04			<25	<10	<10	<10	<10	<10	<20	<5	<5	<1,000
	11/04			<120	<50	<50	<50	<50	<50	<100	<5	<5	<1,000
	6/05			<5.0 J	0.3 J	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0	<1,000
	11/05			<5.0 J	0.7 J	<4.0	<3.0	0.6 J	<1.0	0.5 J	240	<1.0 J	<1,000
	6/06			<5.0	0.6 J	<4.0	<3.0	0.4 J	<1.0	<5.0	29	<1.0	<1,000
	11/06			11	1.0	<4.0	<3.0	<5.0	<1.0	<5.0	200	<1.0	<500
	6/07			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	30	<1.1	<500
	11/07			<5.0 J	0.8 J	<4.0	<3.0	<5.0	<1.0	<5.0	49	<0.5	<500
	3/08			<5.0	0.6 J	<4.0	<3.0	<5.0	<1.0	0.2 J	3.0 J	0.7	<500
	8/08			<5.0	0.7 J	<4.0	<3.0	<5.0	<1.0	<5.0	31	<0.5	<500
	3/09			<10	0.8 J	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<0.5	<500
	9/09			<10	0.78 J	<1.0	<1.0	0.17 J	<1.0	<3.0	21	<1.0	<500
	4/10			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<1.0	<500
	10/10			<10 J	0.14 J	<1.0	37	<1.0	<1.0	<3.0	<5.1	<1.0	NA
MW-31	9/98	363.7	355.4	<10	12	<10	<10	<10	<10	<10	34	4 J	<1,000
	7/99			<10	16	<10	<10	<10	<10	<10	230 D	3 J	<1,000
	3/00			<10	16	<10	<10	<10	<10	<10	3 J	4 J	<1,000 J
	9/00			<10 J	12 J	<10 J	<10 J	<10 J	<10 J	<10 J	10	6 J	<1,000
	3/01			21	11	<10	<10	<10	<10	<10	<10	5 J	<1,000
	9/01			<10	14	<10	<10	<10	<10	<10	91 D	3 J	<1,000 J
	4/02			<14	9	<5	<5	<5	<5	<10	804 D	21	<1,000
	10/02			<25	11	<10	<10	<10	<10	<20	560 D	1 J	<1,000
	5/03			<12	9	<5	<5	<5	<5	<10	0.9 J	3 J	<1,000
	10/03]		1,200 D	13	<5	<5	<5	<5	<5	88	<5	<1,000
	6/04]		15 J	12	<10	<10	<10	<10	<20	3 J	<5	<1,000
	11/04			<25	9 J	<10	<10	<10	<10	<20	<5	<5	<1,000

Monitoring Memorandum

McKesson Envirosystems Site Syracuse, New York

			n Elev. MSL)										
Monitoring Well	Sampling Date	Тор	Bottom	Acetone	Benzene	Ethyl- benzene	Methylene Chloride	Toluene	Trichloro- ethene	Xylene ^A	Aniline	N,N-Dimethyl- aniline	Methanol
NYSDEC Groundwater Qual	ity Standards (Pa	irt 700)		50	1	5	5	5	5	5	5	1	NS
MW-31	6/05			<5.0 J	11	<4.0	<3.0	<5.0	<1.0	1.3 J	3.2	2.7	<1,000
(cont'd)	11/05			<1.3 J	6.7	<0.5	<0.5	<0.4	<0.4	0.6	16	<1.0 J	<1,000
	6/06			<5.0 J	11 J	<4.0 J	<3.0 J	0.6 J	<1.0 J	1.7 J	<1.0 J	2.4 J	<1,000 J
	9/06			NA	NA	NA	NA	NA	NA	NA	1.6	3.4	NA
	11/06			R	6.9	<4.0	<3.0	<5.0	<1.0	<5.0	0.4 J	1.1 J	<500
	6/07			<5.0	14	<4.0	<3.0	0.7 J	<1.0	1.3 J	<5.0	2.0	<500
	8/07			NA	NA	NA	NA	NA	NA	NA	0.5 J	2.7	NA
	11/07			<5.0 [<5.0]	12 [10]	<4.0 [<4.0]	<3.0 [<3.0]	<5.0 [0.4 J]	<1.0 [<1.0]	1.1 J [1.4 J]	<5.0 [0.3 J]	2.3 [2.8]	<500 J [<500 J]
	3/08			<5.0 J	2.0	<4.0	<3.0	<5.0	<1.0	<5.0	0.2 J	1.6	<500
	8/08			22	13	<1.0	<3.0	0.4 J	<1.0	2.2 J	<5.6	2.4	<500
	3/09			9.4 J	8.3	< 1.0	<1.0	0.6 J	<1.0	0.8 J	<5.0	2.3	<500
	9/09			<10	10	<1.0	<1.0	0.49 J	<1.0	2.0 J	<5.0	2.5	730
	4/10			<10	4.8	<1.0	<1.0	0.40 J	<1.0	1.3 J	<5.0	2.3	<500
	10/10			<10	6.9	<1.0	<1.0	0.50 J	<1.0	1.5 J	<5.3	3.5	<500 J
MW-32	9/98	364	356	<10	16	5 J	<10	2 J	<10	3 J	6,300 D	4 J	<1,000
	7/99			3 J	14	4 J	<10	2 J	56	<10	<10	3 J	<1,000
	3/00			<10	5 J	<10	<10	<10	<10	<10	800 D	<10	<1,000 J
	9/00			<10 J	12 J	<10 J	<10 J	<10 J	<10 J	<10 J	4,500 D	<10	<1,000
	3/01			<10	5 J	<10	<10	<10	<10	<10	1,900 D	2 J	<1,000
	9/01			<10	10	<10	<10	<10	<10	<10	1,100 D	2 J	<1,000 J
	4/02			<15	4 J	<5	<5	<5	<5	<10	4,620 D	11	<1,000
	10/02			<25	4 J	<10	<10	<10	<10	<20	50	R	<1,000
	5/03			<12	<5	<5	<5	<5	<5	<10	0.6 J	0.7 J	<1,000
	10/03			20	2 J	<5	<5	<5	<5	<10	<5	<5	<1,000
	6/04			6 J	1 J	<10	<10	<10	<10	<20	1 J	<5	<1,000
	11/04			<25	<10	<10	<10	<10	<10	<20	<5	<5	<1,000
	6/05			<5.0 J	1.0	<4.0	<3.0	<5.0	<1.0	<5.0	0.4 J	<1.0	<1,000
	11/05			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0 J	<1,000
	6/06			<5.0 J	<1.0 J	<4.0 J	<3.0 J	<5.0 J	<1.0 J	<5.0 J	<1.0 J	<1.0 J	<1,000 J
	11/06]		R	<1.0	<4.0	<3.0	0.8 J	<1.0	<5.0	<1.0	<1.0 J	<500
	6/07			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<1.0	<500
	11/07			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	0.1 J	0.8	<500 J
	3/08			<5.0 J	0.8 J	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	0.8	<500
	8/08			5.8	0.3 J	<4.0	<3.0	<5.0	<1.0	<5.0	<5.7	<0.6	<500
	3/09			<10	0.5 J	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<0.5	<500
	9/09			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	1.1	1,200
	4/10			<10	0.23 J	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	0.89 J	<500
	10/10			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.2	0.87 J	<500 J
MW-33	9/98	344.1	356.1	<10	<10	<10	<10	<10	<10	<10	9 J	6 J	<1,000
	2/99]		<10	<10	<10	<10	<10	<10	<10	120	6 J	<1,000
	7/99]		5 J	2 J	<10	<23	0.7 J	<10	<10	150	8 J	<1,000
	3/00]		<10 J	<10	<10	11	<10	<10	<10	51	7 J	<1,000 J
	9/00]		45 J	4 J	<10 J	330 DJ	1 J	<10 J	<10 J	540 D	23	<1,000
	3/01			17 J	<20	<20	370 B	<20	<20	<20	1,300 D	16	<1,000

Monitoring Memorandum

McKesson Envirosystems Site Syracuse, New York

			en Elev.										
	Sampling	(ft. #	AMSL)			Ethyl-	Methylene		Trichloro-			N,N-Dimethyl-	
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	benzene	Chloride	Toluene	ethene	Xylene ^A	Aniline	aniline	Methanol
NYSDEC Groundwater Quality	Standards (Pa	irt 700)		50	1	5	5	5	5	5	5	1	NS
MW-33	9/01			21	5 J	<10	<18	<10	<10	<10	1,900 D	12	<1,000 J
(cont'd)	4/02			<18	3 J	<5	19	<5	<5	<10	2,780 D	21	<1,000
	10/02			11 J	4 J	<10	4 J	<10	<10	<20	290 D	3 J	<1,000
	5/03			88	13	<5	2,800 D	<5	<5	<10	2,000	35 J	<1,000
	10/03			22	2 J	<5	<5	<5	<5	<10	1,900 D	<6	<1,000
	6/04			9 J	12 J	<10 J	<10 J	<10 J	<10 J	<20 J	2,700 D	5 J	<1,000
	11/04										2,700 D	5 J	<1,000
	6/05			<5.0 J	11	<4.0	<3.0	1.0 J	<1.0	<5.0	1,800	<10	<1,000
	11/05			<5.0 J	16	<4.0	<3.0	1.8 J	<1.0	<5.0	3,500	<25 J	<1,000
	6/06			<5.0 J	6.7 J	<4.0 J	<3.0 J	0.7 J	<1.0 J	<5.0 J	370 J	3.5 J	<1,000 J
	9/06			NA	NA	NA	NA	NA	NA	NA	940	8.0	NA
	11/06			17 J	8.6	<4.0	<3.0	0.7 J	<1.0	<5.0	84	2.9 J	<500
	6/07			<5.0	5.7	<4.0	<3.0	0.4 J	<1.0	<5.0	46	2.6	<500
	8/07			NA	NA	NA	NA	NA	NA	NA	46	4.2	NA
	11/07			<5.0	4.0	<4.0	<3.0	<5.0	<1.0	<5.0	0.1 J	3.5	<500 J
	3/08			<5.0 J	4.1	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	4.1	<500
	8/08			<5.0	3.2	<4.0	<3.0	<5.0	<1.0	<5.0	<5.9	2.8	<500
	3/09			<10	3.2	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	2.4	<500
	9/09			<10	2.6	<1.0	<1.0	0.20 J	<1.0	<3.0	<5.0	<1.0	<500
	4/10			<10	1.6	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	2.0	<500
	10/10			<10	1.7	<1.0	<1.0	<1.0	<1.0	<3.0	<5.1	2.7	NA
MW-34	9/98	362.7	354.7	<10	<10	<10	<10	<10	<10	<10	83	<10	<1,000
	7/99			2 J	0.9 J	<10	<10	1 J	<10	<10	380 D	2 J	<1,000
	3/00			<10 J	1 J	<10	<10	2 J	<10	<10	200 D	3 J	<1,000 J
	9/00			<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	320 D	4 J	<1,000
	3/01			<10	<10	<10	<10	2 J	<10	2 J	700 D	5 J	<1,000
	9/01			7 J	2 J	<10	<10	2 J	<10	2 J	76	3 J	<1,000 J
	4/02			<32	<5	<5	<5	<5	<5	<10	640 D	15	<1,000
	10/02			37 J	<10	<10	<10	<10	<10	<20	380 DJ	2 J	<1,000
	5/03			16	<5	<5	<5	<5	<5	<10	140	3 J	<1,000
	10/03			9 J	<5	<5	<5	<5	<5	<10	18	<5	<1,000
	6/04			24 J	<10	<10	<10	<10	<10	<20	30	<5	<1,000
	11/04 6/05			<25	<10 0.7 J	<10 <4.0	<10	<10 0.9 J	<10 0.4 J	<20 1.2 J	14 16	<5 2.5	180 J
	6/05			5.6 J 20 J	0.7 J <0.3	<4.0	<3.0 <0.5	0.9 J	0.4 J <0.4	1.2 J 1.1	16	2.5 2 J	<1,000 <1,000
	6/06			6.4	<0.3 0.6 J	<0.5	<0.5	0.9 0.5 J	<0.4	<5.0	12	2.3	<1,000
	11/06	-		49 J	<1.0	<4.0	<3.0	0.5 J	<1.0	0.6 J	9.9	1.2 J	<500
	6/07	1		22	0.9 J	<4.0	<3.0	0.6 J	<1.0	0.6 J	<5.0	<1.0	<500
	11/07	1		<5.0	0.9 J	<4.0	<3.0	0.5 J	<1.0	1.1 J	0.3 J	1.5	<500 J
	3/08	1		16	1.0 J	<4.0	<3.0	0.5 J	<1.0	1.1 J	24	1.3	<500 5
	8/08	1		12	0.8 J	<4.0	<3.0	0.5 J	<1.0	1.1 J	0.6 J	1.6	<500
	3/09	1		14	1.4	<1.0	<1.0	0.7 J	<1.0	1.5 J	12	2.0	<500
	9/09	1		24	<1.0	<1.0	<1.0	0.64 J	<1.0	1.7 J	<5.0	2.5	1,000
	4/10	1		50 J	0.82 J	<1.0	<1.0	0.42 J	<1.0	1.4 J	<5.0	2.4	<500
	10/10	1		20	1.0	<1.0	<1.0	0.44 J	<1.0	1.3 J	1.8 J	2.9	<500 J

Monitoring Memorandum

McKesson Envirosystems Site Syracuse, New York

	Sampling		n Elev. MSL)			Fabral	Mathulana		Trichloro-			N,N-Dimethyl-	
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	Ethyl- benzene	Methylene Chloride	Toluene	ethene	Xylene ^A	Aniline	aniline	Methanol
NYSDEC Groundwater Quality		rt 700)		50	1	5	5	5	5	5	5	1	NS
MW-35	9/98	363	355	<10	<10	<10	<10	<10	<10	<10	6 J	5 J	<1,000
	7/99			<10	0.7 J	<10	<10	<10	<10	<10	3 J	4 J	<1.000
	3/00			<10 J	<10	<10	<10	<10	<10	<10	<10	2 J	<1,000 J
	9/00	1		<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10	3 J	<1,000
	3/01			<10	<10	<10	<10	<10	<10	<10	<10	<10	<1,000
	9/01			<10	<10	<10	<10	<10	<10	<10	<10	2 J	<1,000 J
	4/02			<13	<5	<5	<5	<5	<5	<10	3 J	4 J	<1,000
	10/02	1		<25	<10	<10	<10	<10	<10	<20	2 J	R	<1,000
	5/03	1		<12	<5	<5	<5	<5	<5	<10	1,000	<100	<1,000
	10/03	1		5 J	<5	<5	<5	<5	<5	<10	4 J	<5	<1,000
	6/04			<25	<10	<10	<10	<10	<10	<20	30	4 J	<1,000
	11/04]		<25	<10	<10	<10	<10	<10	<20	82	<5	240 J
	6/05]		<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0	<1,000
	11/05			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0 J	<1,000
	6/06			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	0.4 J	<1.0	<1,000
	11/06			R	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	1.1	<1.0 J	<500
	6/07			13	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<1.0	<500
	11/07			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500 J
	3/08			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500
	8/08			5.4	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	1.1 J	<0.5	<500
	3/09			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<0.5	<500
	9/09			6.5 J	<1.0	<1.0	<1.0	0.16 J	<1.0	<3.0	<5.0	<1.0	1,100
	4/10			<10 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<1.0	<500
May oot	10/10			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<1.0	<500 J
MW-36 ^E	9/98	363.6	355.6	<10	<10	<10	<10	<10	<10	<10	290 D	6 J	<1,000
	2/99			<10	<10	<10	<10	<10	<10	<10	860 D	4 J	<1,000
	7/99			8 J	0.8 J	<10	<10	<10	<10	<10	250	<10	<1,000
	3/00			<10 J	<10	<10	<10	<10	<10	<10	60	7 J	<1,000 J
	9/00			5 J	<10 J	<10 J	<5	<10 J	<10 J	<10 J	8 J	6 J	<1,000 J
	3/01			<10	<10	<10	<10	<10	<10	<10	<10	<10	<1,000
	9/01			54	<10	<10	<10	<10	<10	<10	350 D	5 J	<1,000 J
	4/02			<20	<5	<5	<5	<5	<5	<10	9	41	<1,000
	10/02	4		12 J	<10	<10	<10	<10	<10	<20	2 J	2 J	<1,000
	5/03			9 J	<5	<5	<5	<5	<5	<10	67	4 J	<1,000
	10/03	4		580 D	<5	<5	<5	<5	<5 <10 J	<10	100	<5	<1,000
	6/04 11/04	4		22 J 13 J	<10 J <10	<10 J <10	<10 J <10	<10 J <10	<10 J <10	<20 J <20	33 22	7 <5	<1,000 <1,000
	6/05	4		13 J 24 J	<10 2.1	<10	<10	<10	<10	<20 1.0 J	1,200	<5.4	<1,000
	11/05	1		24 J 77 J	3.6	<4.0 0.6 J	<3.0	<5.0 2.0 J	<1.0	1.0 J 2.8 J	1,600	<5.4 <10 J	<1,000
	6/06	1		25	3.6	<4.0	<3.0	2.0 J 0.7 J	<1.0	2.8 J 1.2 J	76	1.9	<1,000
	9/06	1		NA	NA	<4.0 NA	NA NA	NA	NA	NA	3.5	1.5	NA
	11/06	1		130 J	3.6	<4.0	<3.0	1.2 J	<1.0	1.1 J	420	1.2 1.7 J	<500
	6/07	1		33	4.6	0.8 J	<3.0	1.2 J 1.4 J	<1.0	5.0	1,300	<10	<500
	8/07	1		NA	NA	NA	NA NA	NA	NA	NA	740	<5.0	~500 NA
	11/07	1		10	4.5	0.9 J	<3.0	1.7 J	<1.0	5.3	480 J	3.4 J	<500 J
	3/08	1		8.0 J	4.2	0.5 J	<3.0	1.7 J	<1.0	5.5	130	3.0	<500 0

Monitoring Memorandum

McKesson Envirosystems Site Syracuse, New York

	Sampling		en Elev. AMSL)			Ethyl-	Methylene		Trichloro-			N,N-Dimethyl-	
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	benzene	Chloride	Toluene	ethene	Xylene ^A	Aniline	aniline	Methanol
NYSDEC Groundwater Qua	lity Standards (Pa	art 700)		50	1	5	5	5	5	5	5	1	NS
MW-36 [⊨]	8/08	Í		27	3.7	0.6 J	<3.0	1.4 J	<1.0	5.7	4.5 J	3.2	<500
(cont'd)	3/09			28	2.4	<1.0	<1.0	0.8 J	<1.0	2.8 J	150	2.8	<500
	6/09			NA	NA	NA	NA	NA	NA	NA	460	<5.0	NA
	9/09			21	3.1	<1.0	<1.0	0.96 J	<1.0	3.2	390	3.1	<500
	4/10			<10 J	3.3	0.26 J	<1.0	1.1	<1.0	5.4	77	2.6	<500
	10/10			12	3.9	0.28 J	<1.0	1.2	<1.0	4.8	620	<5.0	<500 J
TW-01	12/96	365.1	355.4	<10	82	6 J	4 J	4 J	<10	4 J	2,090 D	13	<1,000
	9/98			<10	15	4 J	<10	<10	<10	<10	4,400 DEJ	4 J	<1,000
	2/99			<10	24	2 J	<10	2 J	<10	2 J	9,000 D	5 J	<1,000
	7/99			<10	16	3 J	<10	1 J	<10	<10	4,400 D	4 J	<1,000
	3/00			<10	16	<10	<10	<10	<10	<10	280 D	4 J	<1,000 J
	9/00			<10 J	11 J	<10 J	<10 J	<10 J	<10 J	<10 J	15	2 J	<1,000
	3/01	1		<10	5 J	<10	<10	<10	<10	<10	<10	3 J	<1,000
	9/01	1		<10	10	<10	<10	<10	<10	<10	<10	2 J	<1,000 J
	4/02			<14	3 J	<5	<5	<5	<5	<10	8	13	<1,000
	10/02			<25	7 J	<10	<10	<10	<10	<20	<5	R	<1,000
	5/03			<12	7	<5	<5	<5	<5	<10	<5	1 J	<1,000
	10/03			<12	6	<5	<5	<5	<5	<10	0.6 J	<5	<1,000
	6/04			6 J	3 J	<10	<10	<10	<10	<20	<5	<5	<1,000
	11/04			<25	2 J	<10	<10	<10	<10	<20	<5	<5	<1,000
	6/05			<5.0 J	1.8	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0	<1,000
	11/05			<1.3 J	1.9	<0.5	<0.5	<0.4	<0.4	<0.4	<1.0	<1.0 J	<1,000
	6/06			<5.0 J	1 J	<4.0 J	<3.0 J	<5.0 J	<1.0 J	<5.0 J	<1.0 J	0.8 J	<1,000 J
	11/06			R	0.7 J	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0 J	<500
	6/07			7.8	0.5 J	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<1.0	<500
	11/07			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	0.2 J	1.1	<500 J
	3/08			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	1.0	<500
	8/08			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.6	<0.6	<500
	3/09			<10	1.9	<1.0	<1.0	<1.0	<1.0	0.6 J	<5.0	<0.5	22,300
	9/09			2.9 J	<1.0	<1.0	<1.0	0.11 J	<1.0	<3.0	<5.0	1.1	970
	4/10			<10	0.32 J	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	1.0	<500
	10/10			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.3	1.3	<500 J
TW-02 ^C	12/96	363.3	353.3	53	10	16	42,449 D	77	585 D	65	15,900 JD	3,920 D	<1,000
(Replaced by TW-02R) [⊨]	9/98			<500 J	<500 J	<500 J	86,000 D	<500 J	300 J	53,000	38,000 D	61,000 D	5,000
	2/99			<1,000	<1,000	<1,000	14,000 B	190 J	<1,000	150 J	83,000 D	7,900	14,000JN
	7/99			630	37	31	9,700 D	240 J	55	150	100,000 D	3,500 J	<1,000
	3/00			<1,000 J	<1,000	<1,000	13,000	160 J	<1,000	240 J	64,000 D	3,900	<1,000 J
	9/00			190 J	28 J	35 J	390 J	95 J	6 J	160 J	79,000	<10,000	<1,000
	3/01			81	19	28	400 D	68	<10	130	67,000 D	650 J	<1,000
	9/01			57	25	31	48 B	70	<20	140	63,000 D	32	<1,000 J
	4/02			240	19	23	14	65	<5	96	1,090,000 D	<5,300	<1,000
	10/02			110 J	15	23	<10	19	<10	65	80,000 D	10 J	<1,000
	5/03]		240	30	49	97	130	<5	226	160,000 D	230	<1,000
	10/03			68	28	<5	91	75 J	2 J	<10	92,000 D	<260	<1,000
	6/04	1		140 J	19 J	31 J	4 J	39 J	<10 J	111 J	82,000	<5,200	<1,000

Monitoring Memorandum

McKesson Envirosystems Site Syracuse, New York

			en Elev.										
Monitoring Well	Sampling Date	(ft. A Top	AMSL) Bottom	Acetone	Benzene	Ethyl- benzene	Methylene Chloride	Toluene	Trichloro- ethene	Xylene ^A	Aniline	N,N-Dimethyl- aniline	Methanol
NYSDEC Groundwater Qual		rt 700)		50	1	5	5	5	5	5	5	1	NS
TW-02RR ^{BE}	11/04	363.3	353.3	18 J	4 J	4 J	<10	8 J	<10	16 J	7,100 D	<5	<1,000
	6/05			7.2 J	3.6	3.6 J	<3.0	2.1 J	0.3 J	9.6	8,400	<50	<1,000
	11/05			26 J	6	3.6	<0.5	4.1	<0.4	11	14,000	<110 J	<1,000
	6/06			16	4.4	2.7 J	<3.0	1.3 J	<1.0	6.7	10,000	<100	<1,000
	9/06			NA	NA	NA	NA	NA	NA	NA	7,600	<52	NA
	11/06			78 J	4.9	2.2 J	<3.0	1.4 J	<1.0	6.2	2,100	<10 J	<500
	6/07			17	5.5	4.0	<3.0	1.3 J	<1.0	8.8	6,800	<100	<500
	8/07			NA	NA	NA	NA	NA	NA	NA	4,000 J	<20	NA
	11/07			5.5	5.8	3.0 J	<3.0	1.2 J	<1.0	7.6	3,700	<25	<500 J
	3/08			6.4 [5.2]	4.5 J [2.3 J]	3.8 J [1.9 J]	<3.0 [<3.0]	1.3 J [0.7 J]	<1.0 [<1.0]	10 [4.8 J]	7,500 [5,400]	<50 [<50]	<500 [<500]
	8/08			9.0 [9.6]	4.4 [4.6]	2.3 J [2.4 J]	<3.0 [<3.0]	1.0 J [1.1 J]	<1.0 [<1.0]	6.7 [7.0]	9,600 [7,000]	<71 [<56]	<500 [<500]
	3/09			<10 [<10]	5.0 [4.6]	1.5 [1.6]	<1.0 [<1.0]	1.0 [1.0 J]	<1.0 [<1.0]	4.2 [4.1]	2,000 [1,600]	<10 [<10]	<500 [<500]
	6/09			NA	NA	NA	NA	NA	NA	NA	2,800	<20	NA
	9/09			<10 [<10]	4.3 [4.2]	1.2 [1.3]	<1.0 [<1.0]	0.79 J [0.81 J]	<1.0 [<1.0]	3.5 [3.6]	1,600 [1,500]	<10 [<10]	1,000 [1,200]
	4/10			9.5 J [12 J]	4.1 [4.0]	1.2 [1.2]	<1.0 [<1.0]	0.78 J [0.75 J]	<1.0 [<1.0]	4.2 [4.0]	2,800 J [3,100 J]	<20 J [<20 J]	<500 [<500]
	10/10			<10 [<10]	3.3 [3.0]	1.0 [0.91 J]	<1.0 [<1.0]	0.82 J [0.76 J]	<1.0 [<1.0]	3.6 [3.6]	760 [810]	<5.0 [2.2 J]	<500 J [<500 J]
PZ-4D	11/89	350.8	345.9	<100	<1	<1	<1	<1	<1	<1	<10	<10	<1,000
	11/90			<100	<1	<1	<1	<1	<1	<3	<10	<10	<1,000
	11/91			<100	<1	<1	<1	<1	<1	<3	<10	<10	<1,000
	11/92			<100	<1	<1	<1	<1	<1	<3	<10	<10	<1,000
	8/95			<1,000	<5	<5	<5	<5	<5	<5	<5	0.8 J	<1,000
	10/95			NA	<5	<5	<5	<5	<5	<5	<5	<10	NA
	8/96			<10	<10	<10	<10	<10	<10	<10	<5	<10	<1,000
	8/97			<10	<10	<10	<10	<10	<10	<10	<6	<12	<1,000
	2/99			<10	<10	<10	<10 J	<10	<10	<10	<10	<10	<1,000
	3/00 3/01			<10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<5 <10	<10 <10	<1,000 J
		-		<10	-	<10	<10	-	<10	<10		-	<1,000
	4/02 5/03			<10 <12	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<10	<5 <5	<5 <5	<1,000
	6/04			<12	<10	<10	<10	<5 <10	<10	<20	<5	<5	<1,000 <1,000
	6/04			<25 <5.0 J	<10	<10	<10	<5.0	<10	<20	<5 <1.0	<5	<1,000
	6/06			<5.0 5	<1.0	<4.0	<3.0	<5.0 0.5 J	<1.0	<5.0	<1.0	<1.0	<1,000
	6/08	-		<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	< 1.0	<1.0	<500
	3/08	-		<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500
	3/08			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<0.5	<500
	4/10			<10	<1.0	<1.0	5.3 J	<1.0	<1.0	<3.0	<5.0	<1.0	<500
	6/10			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	NA	NA	NA
PZ-4S	11/89	362.79	357.88	<100	<1	<1	<1.0	<1	<1.0	<1	<10	<10	<1,000
	11/90	002.70	007.00	<100	<1	<1	<1	<1	<1	<1	<10	<10	<1,000
	11/91	1		<100	<1	<1	<1	<1	<1	<1	<10	<10	<1,000
	11/92	1		<100	<1	<1	<1	<1	<1	<1	<10	<10	<1,000
	8/95	1		<1,000	<5	<5	<18	<5	<5	<5	<5	<10	<1,000
	10/95	1		NA	<5	<5	<5	<5	<5	<5	NA	NA	NA
	8/96	1		<10	<10	<10	<10	<10	<10	<10	<5	<10	<1,000
	8/97	1		<10	<10	<10	<10	<10	<10	<10	<5	<10	<1,000
	2/99	1		<10	<10	<10	<10	<10	<10	<10	<10	<10	<1.000

Monitoring Memorandum

McKesson Envirosystems Site Syracuse, New York

Monitoring Well	Sampling Date	Screen Elev. (ft. AMSL)				Ethyl-	Methylene		Trichloro-			N,N-Dimethyl-	
		NYSDEC Groundwater Quality Standards (Part 700)			50	1	5	5	5	5	5	5	1
PZ-4S	6/99			<10 J	<10	<10	<10 J	<10	<10	<10	<10 J	<10 J	<1,000 J
(cont'd)	3/00			<10	<10	<10	<10	<10	<10	<10	<5	<10	<1,000 J
	3/01			<10	<10	<10	<10	<10	<10	<10	<10	3 J	<1,000
	4/02			<14	<5	<5	<5	<5	<5	<10	8 (<5) [⊦]	<5 (<5)	<1,000
	10/02			<25 J	<10	<10	<10	<10	<10	<20 J	<5 ^G	<5 ^G	<1,000
	5/03			<12	<5	<5	<5	<5	<5	<5	<5	<5	<1,000
	6/04			<25	<10	<10	<10	<10	<10	<20	<5	<5	<1,000
	6/05			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0	<1,000
	6/06			<5.0	<1.0	<4.0	<3.0	0.6 J	<1.0	<5.0	<1.0	<1.0	<1,000
	6/07			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.5	<1.1	<500
	3/08			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500
	3/09			<10	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<0.5	<500
	4/10	4		<10	<1.0	<1.0	17	<1.0	<1.0	<3.0	<5.0	<1.0	<500
	6/10	050.5		<10 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	NA	NA	NA
PZ-5D ^L	11/89	353.5	348.6	<100	<1	<1	<1	<1	<1	<1	<10	<10	<1,000
	12/94			<10	<5	<5	<5	<5	<5	<5	<5	<10	<200
	2/96			<1,000	<10	<10	<10	<10	<10	<10	<5	<10	<1,000
	2/97			<1,000	<10	<10	<10	<10	<10	<10	<5 <5 ["]	<10	<1,000
	9/98			<10	<10	<10	<12	<10	<10	<10		<10	<1,000
	7/99			<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10	<10	<1,000
	9/00 9/01	-		<10 J <10	<10 J <10	<10 J <10	<10 J <10	<10 J <10	<10 J <10	<10 J <10	<10 J <10	<10 <10	<1,000 J
	9/01	-		<10 <25 J	<10	<10	<10	<10	<10	<10 <20 J	<10 <5 ^G	<10 <5 ⁶	<1,000 <1.000
	10/02			<25 J <12	<10	<10	<10	<10	<10	<20 J <10			<1,000
	6/04 ^J			<12	<10	<10	<10	<10	<10	<10	46 <5	<5 <5	<1,000
	11/04			<25	<10		<10	<10	<10	<20	<5	<5	<1,000
	6/05	-		 <5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0	<1,000
	11/05			<5.0 J	<1.0	<4.0	<3.0	0.7 J	<1.0	<5.0	<1.0	<1.0 J	<1,000
	11/06			< <u>-</u> R	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0 J	<500
	11/07			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500
	8/08			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.1	<0.5	<500
	9/09			<10 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<1.0	<500
PZ-5S ^{™L}	11/89	361.42	356.52	<100	<1	<1	<1	<1	<1	<1	<11	<11	<1,000
	12/94	001112	000.02	<10	<5	<5	<5	<5	<5	<5	<5	<10	<200
	2/96			<1,000	<10	<10	<10	<10	<10	<10	<5	<10	<1,000
	2/97			5 J	<10	<10	<10	<10	<10	<10	<5	<10	<1,000
	9/98			<10	<10	<10	<12	<10	<10	<10	<5 ^H	<10	<1,000
	6/99	1		<10 J	<10	<10	<10 J	<10	<10	<10	<10 J	<10 J	<1,000
	7/99	1		<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10	<10	<1,000 J
	9/00	1		<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10 J	<10	<1,000 J
	9/01	1		7 J	<10	<10	<10	<10	<10	<10	<10	<10	<1,000
	10/02	1		<25 J	<10	<10	<10	<10	<10	<20 J	<5 ^G	<5 ⁶	<1,000
	10/03	1		<12	<5	<5	<5	<5	<5	<10	<5	<5	<1,000
	11/04	1									<5	<5	<1,000
	6/05	1		<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.1	<1.1	<1,000
	11/05	1		<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0 J	<1,000

Monitoring Memorandum

McKesson Envirosystems Site Syracuse, New York

	Sampling		en Elev. AMSL)			Ethyl-	Methylene		Trichloro-			N,N-Dimethyl-	
Monitoring Well	Date	Тор	Bottom	Acetone	Benzene	benzene	Chloride	Toluene	ethene	Xylene ^A	Aniline	aniline	Methanol
NYSDEC Groundwater Quality Standards (Part 700)			50	1	5	5	5	5	5	5	1	NS	
PZ-5S ^{KL}	11/06			R	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<1.0	<1.0 J	<500
(cont'd)	11/07			<5.0 J	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.0	<0.5	<500
	8/08			<5.0	<1.0	<4.0	<3.0	<5.0	<1.0	<5.0	<5.3	<0.5	<500
	9/09			<10 J	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0	<5.0	<1.0	<500
PZ-8S'	9/98	362.6	357.7	<10	<10	<10	<10	<10	<10	<10	<10	<10	<1,000
PZ-11D ^D	11/89	352.09	347.19	<100	<1	<1	<1	<1	<1	<1	<11	<11	<1,000
PZ-11S ^D	11/89	359.09	354.19	<100	<1	<1	<1	<1	<1	<1	<11	<11	<1,000
PZ-12D ⁰	11/89	350	345.1	<100	<1	<1	<1	<1	<1	<1	<53	<53	<1,000
	11/90			<100	<1	<1	<1	<1	<1	<1	<10	<10	<1,000
	11/91			<100	<1	<1	<1	<1	<1	<1	<10	<10	3
	11/92			<100	<1	<1	<1	<1	<1	<1	<10	<10	<1,000
PZ-12S ^D	11/89	360	355.1	<100	<1	<1	<1	<1	<1	<1	<10	<10	<1,000
	11/90			<100	<1	<1	<1	<1	<1	<3	<10	<10	<1,000
	11/91			<100	<1	<1	5	<1	<1	<3	<10	<10	6
	11/92			<100	<1	<1	<1	<1	<1	<3	<10	<10	<1,000
PZ-13D ^c	11/89	349.4	344.4	<100	<1	<1	<1	<1	<1	<1	<11	<11	<1,000
PZ-13S ^C	11/89	359.5	354.5	<100	<1	<1	<1	2	<1	2	<11	<11	<1,000

ARCADIS Design & Consultancy for natural and built assets

Monitoring Memorandum McKesson Envirosystems Site Syracuse, New York

General Notes:

- 1. Concentrations are presented in micrograms per liter, which is equivalent to parts per billion.
- 2. Compounds detected are indicated by bold-faced type.
- 3. Detections exceeding New York State Department of Environmental Conservation (NYSDEC) Groundwater Standards (Part 700) are indicated by shading.
- 4. Replacement wells for MW-6, MW-8, MW-9, MW-10, MW-11 and MW-12D were installed 8/95.
- 5. Replacement wells for MW-17, MW-24S, MW-24D and TW-02 were installed 11/97 12/97.
- 6. The laboratory analytical results for the duplicate sample collected from monitoring well MW-23S during the 7/99 sampling event indicated the presence of methanol at 5.1 milligrams per liter. Because methanol was not detected in the original sample, the duplicate results were determined, based on the results of the data validation process, to be unacceptable. Furthermore, methanol has not been previously detected in groundwater samples collected from this monitoring well. Accordingly, the detection of methanol appears to be the result of a laboratory error and not representative of actual groundwater quality in the vicinity of monitoring well MW-23S.
- N,N-dimethylaniline data for 10/02 sampling event for MW-1, MW-3S, MW-28, MW-29, MW-35 and TW-01 were rejected due to matrix spike and matrix spike duplicate recoveries below control limits. Aniline and N,N-dimethylaniline data for 10/02 sampling event for MW-30 were rejected due to matrix spike and matrix spike duplicate recoveries below control limits. These wells and piezometers are not perimeter monitoring locations and were not resampled.
- 8. Aniline and N,N-dimethylaniline results of nondetect for the 6/04 sampling event at MW-18 were rejected due to the deviation from a surrogate recovery that was below 10%. This well was not resampled.
- 9. Volatile organic compound (VOC) results for the 11/04 sampling event were inadvertently lost due to laboratory equipment failure for monitoring locations MW-1, MW-17R, MW-18, MW-23I, MW-24DR, MW-24DR, MW-24SR, MW-25, MW-33, PZ-5D and PZ-5S. In addition, the initial VOC results were also irretrievable due to laboratory equipment failure for monitoring locations MW-27, MW-28, MW-29 and MW-30; however, results for subsequent dilutions of these groundwater samples were valid, but the detection limits were high. The duplicate sample VOC results for MW-27 and MW-28 have lower detection limits and are presented in parentheses. These wells were not resampled.

Superscript Notes:

- A = Data presented is total xylenes (m- and p-xylenes and o-xylenes). For the 1995 data, the listed quantitation limit applies to the analyses conducted for m- and p-xylenes.
- ^B = Because aniline was detected at monitoring well MW-3S at a concentration of 690 ug/l during the September 2001 sampling event, this well was resampled for aniline on November 8, 2001. Aniline was detected in MW-3S during the November 8, 2001 resampling event at a concentration of 69 ug/l.
- ^c = Wells/piezometers MW-5, MW-14D, MW-16D, MW-17, MW-20, MW-21, MW-24S, MW-24D, TW-02, PZ-13S, and PZ-13D were abandoned 11/97 1/98.
- P = Wells/piezometers MW-6, MW-7, MW-8, MW-9, MW-10, MW-11, MW-12D, PZ-11D, PZ-11S, PZ-12D, and PZ-12S were abandoned during OU No.1 soil remediation activities (1994).
- ^E = Wells MW-8S, MW-8D, and TW-02R were abandoned in 8/04 and replacement wells MW-8SR and TW-02RR were installed in 8/04.
- F = MW-17R, MW-18, and PZ-4S wells/piezometers were resampled for aniline and N,N-dimethylaniline on June 18, 2002 because N,N-dimethylaniline and/or aniline was detected during the April 2002 sampling event. The results of this additional sampling event are shown in parenthesis. MW-24SR and MW-24SR were also sampled for aniline and N,N-dimethylaniline on June 18, 2002, because N,N-dimethylaniline and/or aniline was detected at nearby perimeter monitoring locations during the April 2002 sampling event.
- ^G = MW-17R, MW-18, MW-19, MW-23S, MW-23I, MW-24DR, MW-24SR, MW-25S, PZ-4S, PZ-5S and PZ-5D wells/peizometers were resampled for aniline and N,N-dimethylaniline during 1/03, because the 10/02 results were rejected due to matrix spike and matrix spike duplicate recoveries below control limits. These wells and piezometers are perimeter monitoring locations.
- H = MW-18, MW-19, MW-231, MW-23S, MW24DR, MW-24SR, MW-28, PZ-5S and PZ-5D wells/piezometers were resampled for aniline during 12/98, because the 9/98 results were rejected due to laboratory error.
- I = Piezometer PZ-8S was decommissioned 8/00.
- J = MW-24SR and PZ-5D well and piezometer were sampled during the June 2004 sampling event because N,N-dimethylaniline and/or aniline was detected at nearby perimeter monitoring locations during the October 2003 sampling event.
- κ = Wells/piezometers MW-1, MW-19, and PZ-5S were abandoned 11/10.
- ^L= Wells/piezometers, MW-22, MW-24S, MW-24D, MW-25S, MW-25D, PZ-5S and PZ-5D were eliminated from the groundwater monitoring program after the 10/10 sampling event; therefore all data for these locations are presented in this table.

Abbreviations:

- AMSL = Above mean sea level (NGVD of 1929).
- NA = Parameter not analyzed for.
- ND = Not detected.
- NS = Standard not available.

Analytical Qualifiers:

- D = Indicates the presence of a compound in a secondary dilution analysis.
- J = The compound was positively identified; however, the numerical value is an estimated concentration only.
- E = The compound was quantitated above the calibration range.
- JN = The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
- B = The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- < = Compound was not detected at the listed quantitation limit.
- U = Undetected.
- R = The sample results were rejected.
- -- = Sample results are not available. (See Note 9.)