

Transmitted Via Overnight Delivery

November 14, 2005

Mr. Mark Mateunas Bureau of Hazardous Site Control New York State Department of Environmental Conservation 625 Broadway, 12th Floor Albany, NY 12233-7012

Re: McKesson Envirosystems Bear Street Site Syracuse, New York Site No. 07-34-020 BBL Project #: 0260.26003 #10

Dear Mr. Mateunas:

This Biannual Process Control Monitoring Report (Biannual Report) for the McKesson Envirosystems, Bear Street Site (the site), located at 400 Bear Street in Syracuse, New York has been prepared by Blasland, Bouck & Lee, Inc. (BBL), on behalf of McKesson Corporation (McKesson), to present a description of the operation and maintenance (O&M) activities conducted and the monitoring results obtained during the period from January 2005 through June 2005. This report has been prepared in accordance with the requirements of the New York State Department of Environmental Conservation-(NYSDEC-) approved Site Operation and Maintenance Plan (BBL, Revised August 1999) and a December 29, 1999 letter from David J. Ulm of BBL to Michael J. Ryan, P.E. of the NYSDEC, presenting the long-term process control monitoring program as an addendum to the Site O&M Plan. The Site O&M Plan and the addendum are collectively referred to herein as the O&M Plan.

The site is divided into two operable units: Operable Unit No. 1 (OU No. 1) - Unsaturated Soil and Operable Unit No. 2 (OU No. 2) - Saturated Soils and Groundwater. As a part of the NYSDEC-selected remedy for both of these operable units, there has been and continues to be ongoing O&M activities. Since completing the OU No. 1 remedial activities in 1994/1995 and commencing the OU No. 2 in-situ anaerobic bioremediation treatment activities in July 1998, the details regarding the O&M activities and the results of the process control monitoring program have been provided to the NYSDEC in biannual reports. A site description and history, along with a description of the remedial actions completed and the ongoing O&M activities being conducted were detailed in the previous biannual reports, including BBL's August 2001 Biannual Report covering the period from July 2000 through December 2000. That information has not changed and is not repeated herein.

P:VLC/2005/43050146.doc

During this reporting period (January 2005 through June 2005), no substantial system repairs were required and no unusual observations were made regarding system operations. The Area 3 in-situ anaerobic bioremediation treatment system has operated satisfactorily during this reporting period without interruption and approximately 910,000 gallons of water were pumped from the withdrawal trench and introduced into the Area 3 infiltration trenches as detailed herein.

The NYSDEC was notified of the June 2005 process control monitoring event (including hydraulic, biological, and chemicals of concern [COC] monitoring) prior to the commencement of the monitoring activities. Based on your June 2, 2005 telephone conversation with BBL (Cathy Geraci), NYSDEC approved the elimination of the biological monitoring activities from the Process Control Monitoring Program. NYSDEC, however, did not approve the changes to the COC monitoring activities proposed in the November 2004 *Biannual Process Control Monitoring Report*. This decision was documented in BBL's June 2005 Biannual Report to NYSDEC. The June 2005 monitoring event was the first round of the revised Process Control Monitoring Program and that program is detailed in Table 1.

The information provided in this letter has been organized into the following sections:

- <u>I. RAMM and Suga-Lik[®] Introduction Activities</u> A description of the Revised Anaerobic Mineral Media (RAMM) and Suga-Lik[®] (Blackstrap Molasses) introduction activities conducted between January 2005 and June 2005.
- <u>II. Hydraulic Process Control Monitoring</u> A description of the results of the hydraulic control monitoring activities conducted between January 2005 and June 2005.
- <u>III. COC Process Control and Biannual Groundwater Monitoring Program</u> A description of the June 2005 results of the COC process control and biannual groundwater monitoring program, and a summary of the COC data obtained at the site from 1989 through June 2005.
- **IV. Conclusions** Conclusions based on the results of the process control monitoring activities.
- <u>V. Recommendations</u> Recommendations for the in-situ anaerobic bioremediation treatment program and monitoring activities.

I. RAMM and Suga-Lik[®] Introduction Activities

Based on the results of the process control monitoring activities, the continued addition of RAMM into each of the three areas and the continued addition of Suga-Lik[®] (with the RAMM) in Areas 1 and 3, and downgradient of Area 2 were recommended in the June 2005 *Biannual Process Control Monitoring Report* to further stimulate the anaerobic biodegradation of the COCs. Specifically, the RAMM and Suga-Lik[®] introduction activities listed below have been conducted. See Figure 1 for referenced locations.

- Continuing to introduce approximately 100 gallons of RAMM-amended groundwater into each of the three areas on a monthly basis.
- Continuing to add Suga-Lik[®] with RAMM into the two Area 1 infiltration trenches on a monthly basis by manually filling each of the standpipes located in these trenches. Suga-Lik[®] has been added during these monthly RAMM introduction activities to provide an easily metabolized carbon source to further stimulate the growth of the indigenous bacteria. Suga-Lik[®] provides electron donors, while RAMM provides nutrients and electron acceptors.

- Continuing to introduce RAMM and Suga-Lik[®] on a monthly basis into four piezometers (PZ-G, PZ-Q, and PZ-R) located within the shallow hydrogeologic unit of Area 1 to better distribute a readily degradable carbon source that otherwise may not reach these areas if distributed through the infiltration trenches only.
- Continuing to introduce RAMM on a monthly basis into PZ-S, WP-4, and WP-5 located downgradient of Area 1, near monitoring well MW-33. As identified in the previous Biannual Report, Suga-Lik[®] additions at these locations were discontinued in April 2005 to further stimulate the biodegradation rate of aniline in the vicinity of MW-33.
- Continuing to introduce RAMM and Suga-Lik[®] on a monthly basis into piezometer PZ-W located downgradient of Area 2, near monitoring well MW-36.
- Continuing to introduce RAMM and Suga-Lik[®] on a monthly basis into six well points (WP-1, WP-2, WP-3, WP-6, WP-7, and WP-8) within Area 3, near monitoring wells MW-27 and MW-28. These well points were installed during the August 2004 supplemental remedial activities.

Approximately 10 gallons of the RAMM/Suga-Lik[®] solution has been introduced into each of the aforementioned piezometers and well points, and approximately 100 gallons of RAMM and/or Suga-Lik[®] solution has been introduced into Areas 1, 2, and 3 on a monthly basis. The amount of Suga-Lik[®] added to the RAMM has been proportional to the levels of COCs detected, at the dilution ratio of approximately 1,000:1.

II. Hydraulic Process Control Monitoring

As part of the hydraulic process control monitoring activities, groundwater-level measurements were obtained at existing monitoring wells and piezometers that are screened entirely within the sand layer of the shallow hydrogeologic unit and located in and around each of the three areas. Additionally, a groundwater-level measurement was obtained from a staff gauge located in the Barge Canal adjacent to the site. The hydraulic process control monitoring activities were conducted on June 6, 2005. The monitoring locations are shown on Figure 1.

Table 2 summarizes the groundwater level measurements obtained during the June 2005 hydraulic monitoring event, as well as those obtained since June 1998 (immediately prior to commencing the in-situ anaerobic bioremediation treatment activities). Figure 2 depicts the potentiometric surface of the site's shallow hydrogeologic unit using the June 6, 2005 data set, which is consistent with previous hydraulic monitoring events. The results and corresponding conclusions of the hydraulic process control monitoring are also summarized below.

- A closed-loop hydraulic cell continues to be maintained in Area 3, as shown on Figure 2.
- The groundwater withdrawal rate in Area 3 ranged from approximately 1.0 gallon per minute (gpm) to 6.81 gpm. These rates continue to induce a higher hydraulic gradient across the area of relatively higher concentrations of COCs within Area 3 (relative to baseline conditions), while maintaining hydraulic containment in Area 3.
- In Area 3, approximately 75% of the recovered groundwater continues to be introduced to the secondary infiltration trench "B" and the remaining 25% continues to be introduced to the secondary infiltration trench "A." This introduction of recovered groundwater into the secondary infiltration trenches increases the rate at which RAMM-amended groundwater moves through the area of BLASLAND, BOUCK & LEE, INC.

relatively higher concentrations of COCs (between the secondary infiltration and recovery trenches). The withdrawal of groundwater continues to induce a hydraulic gradient in Area 3 from perimeter monitoring wells MW-23S, MW-25S, and MW-17R toward the withdrawal trench.

- No discernable, long-term hydraulic effects were identified at or near Areas 1 and 2 as a result of introducing RAMM or RAMM/Suga-Lik[™] into these areas on a monthly basis.
- The hydraulic data obtained over the 6½-year operating history of the treatment system in Area 3 has consistently indicated no discernable effect on the hydraulic gradient of the deep hydrogeologic unit.
- The weekly conductivity measurements of groundwater pumped from the withdrawal trench in Area 3 ranged from 1.36 millisiemens per centimeter (mS/cm) to 2.10 mS/cm, which is within the range of the conductivity levels measured prior to system operation (1 mS/cm to 4 mS/cm). These measurements are well below the measured conductivity of the deep unit, which is greater than the calibration range of the field instrument (10 mS/cm). These data indicate that the operation of the Area 3 treatment system has not caused the freshwater/saltwater interface to upcone to the base of the withdrawal trench.

III. COC Process Control and Biannual Groundwater Monitoring Program

The COC process control and biannual groundwater monitoring activities were conducted on June 6, 2005 through June 10, 2005, in accordance with the long-term COC process control monitoring program presented in the O&M Plan. In addition, the following groundwater quality parameters were also measured in the field during the June 2005 COC sampling event: temperature, conductivity, dissolved oxygen (DO), and oxidation/reduction potential (ORP). The existing monitoring wells and piezometers that were used to conduct the long-term process control monitoring program and a schedule for implementing this program were provided in the previous biannual progress report. The monitoring locations are shown on Figure 1.

In addition to the monitoring locations that were scheduled to be sampled during the first sampling event in 2005 (Table 1), groundwater samples from monitoring locations MW-24DR, MW-24SR, PZ-5D, and PZ-5S were also collected and analyzed for COCs. As identified in the previous biannual report, these locations were sampled in June 2005 because the VOC data was inadvertently lost due to laboratory equipment failure during the November 2004 sampling event. As identified in Table 1, these locations were not scheduled to be sampled again until the second sampling event of 2005.

In accordance with the requirements of the NYSDEC-approved monitoring program, laboratory analytical results for the June 2005 samples were validated. A summary of the validated COC groundwater analytical results is presented in Table 3 and shown on Figures 3 and 4. These figures also present the COC groundwater analytical results obtained during the biannual monitoring events conducted since October 2003, collectively presenting the results obtained after the first five years of implementing the insitu anaerobic bioremediation treatment program. The COC groundwater analytical results obtained prior to October 2003 are presented in Attachment A. Copies of the validated analytical laboratory reports associated with the June 2005 sampling event are provided under separate cover. A summary of the COC analytical results is provided below for each of the three areas, and the downgradient perimeter monitoring locations. The presence or absence of non-aqueous phase liquid (NAPL) was also assessed in existing monitoring wells and piezometers during the process control monitoring event. NAPL was not identified in any of the monitoring wells or piezometers used during the process control monitoring program.

<u>Area 1</u>

- As shown on Figure 3 and in Attachment A, the COC concentrations detected in groundwater samples collected from monitoring wells within Area 1 were generally low, ranging from not detected to concentrations just slightly greater than their respective NYSDEC Groundwater Quality Standard. These data demonstrate a significant decrease in COC concentrations in Area 1 since commencement of the in-situ anaerobic bioremediation treatment program. For example, the aniline concentration detected at MW-32 was 6,300 ppb in September 1998, but aniline has not been detected above the NYSDEC Groundwater Quality Standard at this location since May 2003. Similarly, the aniline concentration detected at TW-01 in February 1999 was 9,000 ppb, but aniline has not been detected above the NYSDEC Groundwater Quality Standard of 5 ppb since October 2002.
- The aniline concentration (1,800 ppb) detected in the groundwater sample collected from the monitoring well located immediately downgradient of Area 1 (MW-33) was approximately 33% lower in June 2005 compared to the aniline concentrations detected in 2004 (2,700 ppb). As previously noted, Suga-Lik[®] additions at locations near MW-33 were discontinued in April 2005 to further stimulate the biodegradation rate of aniline in the vicinity of this monitoring well. Aniline was detected at 15 ppb in the groundwater sample collected from the monitoring well located downgradient of MW-33 (MW-3S).

<u>Area 2</u>

- As shown on Figure 3 and in Attachment A, the COC concentrations detected in groundwater samples collected from monitoring wells within Area 2 were generally low, with the exception of the aniline concentration detected in the groundwater sample collected from TW-02RR. Since commencement of the bioremediation treatment activities, the COC concentrations at this location have significantly decreased: N,N-dimethylaniline and methylene chloride were not detected in June 2005 compared to detected at TW-02RR in June 2005 is approximately 90% lower than the concentrations previously detected prior to the completion of the August 2004 supplemental remedial activities conducted in Area 2: aniline was detected in June 2004 at a concentration of 82,000 ppb, compared to 8,400 ppb in June 2005.
- In the June 2005 groundwater sample collected from monitoring well MW-36 (located downgradient of Area 2), the aniline concentration (1,200 ppb) was anomalously high. No other COCs were detected in this sample at concentrations greater than their respective NYSDEC Groundwater Quality Standard, except for benzene which was detected at 2.1 ppb.

<u>Area 3</u>

• As presented on Figure 4 and in Attachment A, the concentrations of most COCs that were previously detected at Area 3 monitoring locations above their respective NYSDEC Groundwater Quality Standards have decreased or remained relatively the same during implementation of the in-situ anaerobic bioremediation treatment program.

- Monitoring well MW-8SR is located in the center of Area 3 and wildlich the area that has been identified as containing relatively higher concentrations of COCs (see Figure 4). The June 2000 groundwater sample collected at MW-8SR had significantly lower COC concentrations compared to those detected prior to the completion of the August 2004 supplemental remedial activities conducted in Area 3: the total COC concentration was reduced approximately 95% from 1,313,730 ppb in June 2004 to 30,427 ppb in June 2005. Additionally, the total concentration of COCs detected in June 2005 was approximately 40% lower than the concentration detected during the previous sampling event (November 2004): N,N-dimethylaniline, and methylene chloride were not detected in June 2005, and were previously detected at 5,300 ppb and 10,000 ppb, respectively.
- The aniline concentration detected in the groundwater sample collected during June 2005 from monitoring well MW-27 (5,200 ppb) was higher than the previous detection of 1,100 ppb (November 2004). The other COCs detected in the groundwater sample collected from MW-27 in June 2005 were relatively low, consistent with previously detected concentrations.
- Monitoring well MW-28 is also located within Area 3 and historically had exhibited relatively higher concentrations of methylene chloride and aniline. The methylene chloride concentrations at this location have decreased from 64,000 ppb (September 1998) to generally non-detect. The aniline concentrations detected since the August 2004 supplemental remedial activities (640 ppb and 630 ppb, November 2004 and June 2005, respectively) are the lowest concentrations detected at this location since September 2000. The other COCs have generally been not detected in the groundwater samples collected from MW-28 or detected at concentrations just slightly greater than their respective NYSDEC Groundwater Quality Standard.

Downgradient Perimeter Monitoring Locations

As previously discussed above, the November 2004 VOC results were inadvertently lost for all but one (MW-19) of the downgradient perimeter monitoring locations due to laboratory equipment failure. Each of these locations was, however, sampled and analyzed for COCs during the June 2005 sampling event, including perimeter monitoring locations MW-24DR, MW-24SR, PZ-5D, and PZ-5S that were not scheduled to be sampled until the second sampling event of 2005 (Table 1). As presented on Figure 4, COCs were not detected above their respective NYSDEC Groundwater Quality Standards at any of the downgradient perimeter monitoring locations during June 2005.

IV. Conclusions

The process control monitoring data presented in this Biannual Report will continue to be used to monitor the effectiveness of the in-situ anaerobic bioremediation treatment program. The conclusions presented below are based on the process control monitoring data obtained to date.

- A closed loop hydraulic cell continues to be maintained in Area 3.
- Operation of the Area 3 treatment system has not caused the freshwater/saltwater interface to upcone to the base of the withdrawal trench.
- COCs were not detected above the NYSDEC Groundwater Quality Standards at the perimeter sampling locations in June 2005, which is consistent with prior perimeter groundwater data, obtained in some cases since 1989.

- The COC concentrations detected in the groundwater samples collected from Area 1 since the in-situ annerobic treatment program began is 1993 (Leonated and Specificated energies) is COC concent. This since commencement of the inself care of the Viet of Viet and treatment program. The COC concentrations detected in this area were either not detected or detected at concentrations only slightly greater than their respective NYSDEC Group by the Quelity Standard.
- In the area immediately downgradient of Area 1, Suga-Lik[®] additions were discontinued to further stimulate the biodegradation rate of aniline in this area. The June 2005 aniline concentration (1,800 ppb) was approximately 33% lower than the previously detected concentration (2,700 ppb, November 2004).
- The COC groundwater concentrations within Area 2 have been and continue to be relatively low, with the exception of aniline detected at monitoring location TW-02RR. After completing the August 2004 supplemental remedial activities, however, the aniline concentration detected at TW-02RR showed an approximate 90% decrease: 82,000 ppb in June 2004 compared to 8,400 ppb in June 2005.
- In the June 2005 groundwater sample collected downgradient of Area 2 (MW-36), the aniline concentration (1,200 ppb) was anomalously high. No other COCs were detected in the June 2005 groundwater sample collected from MW-36 at concentrations greater than their respective NYSDEC Groundwater Quality Standard, except for benzene which was detected at 2.1 ppb. This well was sampled during the October 2005 process control monitoring event and an evaluation of the results will be presented in the next biannual report.
- The concentrations of most COCs detected at Area 3 monitoring locations above their respective NYSDEC Groundwater Quality Standard have decreased or remained relatively the same since commencement of the in-situ anaerobic bioremediation treatment program in 1998. After completion of the August 2004 supplemental remedial activities conducted to further address COCs at MW-8S, the total COC concentration measured at MW-8SR is approximately 95% lower.

V. Recommendations

Based on the process control monitoring data obtained to date and the conclusions summarized above, the addition of RAMM and/or Suga-Lik[®] in each of the three areas and the hydraulic control activities in Area 3 will continue to be implemented consistent with the operation procedures described in Section I.

As discussed in this report and summarized in Table 1, the monitoring activities conducted at the site are included in the Biannual Groundwater Monitoring Program and the revised Process Control Monitoring Program. The activities included in the Biannual Groundwater Monitoring Program will continue, and include the biannual collection of chemical and hydraulic data from downgradient perimeter wells/piezometers to determine whether or not groundwater that contains concentrations of COCs in excess of their respective NYSDEC Groundwater Quality Standard is migrating beyond the site boundary.

The second sampling event of 2005 was conducted during the week of October 31, 2005. A summary of the O&M activities and the results of the process control monitoring activities will continue to be presented to the NYSDEC on a biannual basis.

Mr. Mark Mateunas November 14, 2005 Page 8 of 8

If you have any questions or require additional information, please do not hesitate to contact me at (315) 416,0120.

Sincerely,

BLASLAND, BOUCK & LEE, INC.

David J. Ulm Senior Vice President

CWS/jlc Attachments

 Mr. Jim Burke, P.E., New York State Department of Environmental Conservation Mr. Gerald J. Rider, Jr., New York State Department of Environmental Conservation Mr. Chris Mannes, New York State Department of Environmental Conservation Ms. Henriette Hamel, R.S., New York State Department of Health Ms. Jean A. Mescher, McKesson Corporation Mr. Christopher R. Young, P.G., de maximis, inc.

BLASLAND, BOUCK & LEE, INC.

Tables

REVISED LONG-TERM HYDRAULIC AND COC PROCESS CONTROL MONITORING SCHEDULE

BIANNUAL PROCESS CONTROL MONITORING REPORT McKESSON ENVIROSYSTEMS - FORMER BEAR STREET FACILITY, SYRACUSE, NEW YORK

Monitoring Locatio	n: First Sampling _venting	
Upgradient		
MW-1	С	С
MW-35	С	C
MW-3D	<u> </u>	<u> </u>
Area 1		
TW-01	С	С
MW-6D	Н	H
MW-9S	С	C
MW-9D	Н	H
MW-31	С	С
MW-32	С	C
MW-33	С	C
PZ-F	н	<u> </u>
PZ-G	н	Н
PZ-HR	н	
<u>PZ-P</u>	<u> </u>	<u>H</u>
PZ-Q	н	Н
PZ-R	н	Н
PZ-S	н	Н
AVQ22		
TW-02RR	C	C
PZ-9D	H	Н
MW-34	С	C
MW-35	C	_ C
MW-36	С	С
PZ-I	н	H
PZ-J	н	Н
PZ-T	н	нн
<u>PZ-U</u>	<u>н</u>	н
PZ-V	н	<u> </u>
PZ-W	H	H.
Arm 125 Area		
MW-8SR	С	<u> </u>
<u>MW-27</u>	C	C
MW-28	С	<u>C</u>
MW-29	C	<u> </u>
<u>MW-30</u>	C	С
PZ-A	н	<u> </u>

SEE NOTES ON PAGE 3.

11/11/05 P:\JLC\2005\43150146.doc

REVISED LONG-TERM HYDRAULIC AND COC PROCESS CONTROL MONITORING SCHEDULE

BIANNUAL PROCESS CONTROL MONITORING REPORT McKESSON ENVIROSYSTEMS - FORMER BEAR STREET FACILITY, SYRACUSE, NEW YORK

Concert Ballier (Concerts)		
Montoring as allo		<i>,</i>
	and a second	
PZ-B	11	H
PZ-C	<u> </u>	Н
PZ-D	<u> </u>	<u> </u>
PZ-E	<u> </u>	<u> </u>
PZ-K	<u>H</u>	H
PZ-L	<u> </u>	<u> </u>
PZ-M	<u> </u>	H H
PZ-N	<u> </u>	<u> </u>
PZ-0	<u>н</u>	НН
_ <u>MW-11S</u>	<u> </u>	<u> </u>
MW-11D	H	H
Downgradient Perin	elen Montoring Excations	
<u>MW-17R</u>	C	C
MW-18	С, Н	С, Н
MW-19	С, Н	С, Н
MW-231	С, Н	С, Н
MW-23S	С, Н	С, Н
MW-24SR	<u> </u>	С, Н
MW-24DR	н	С, Н
MW-25S	С, Н	С, Н
MW-25D	С, Н	н
PZ-4S	C	
PZ-4D	С, Н	Н
PZ-5S		С
PZ-5D	<u> </u>	С, Н

REVISED LONG-TERM HYDRAULIC AND COC PROCESS CONTROL MONITORING SCHEDULE

BIANNUAL PROCESS CONTROL MONITORING REPORT McKESSON ENVIROSYSTEMS - FORMER BEAR STREET FACILITY, SYRACUSE, NEW YORK

Notes:

- H = Fodmule is mitode prime and the first
- 2. C = Monitoring for the Chemicals of Concern (COCs).
- 3. The hydraulic monitoring identified in this table will be conducted on a semi-annual basis. The hydraulic monitoring also includes measuring the conductivity of groundwater recovered from Area 3 from a sampling port located before the equalization tank.
- 4. Field groundwater parameters including pH, temperature, conductivity, dissolved oxygen (DO), and oxidation/reduction potential (ORP) are measured during each COC sampling event.
- 5. Each of the monitoring wells and piezometers used for hydraulic and COC monitoring during the semi-annual monitoring event are checked for the presence (if any) of non-aqueous phase liquid (NAPL).
- 6. Based on the results obtained, the scope and/or the frequency for the hydraulic and/or COC components of the long-term process control monitoring program, as detailed herein, may be modified. Any modifications would be made in consultation with the New York State Department of Environmental Conservation (NYSDEC).
- 7. This table is based on the NYSDEC-approved Operation and Maintenance (O&M) Plan (BBL, Revised August 1999), including the NYSDEC-approved December 29, 1999 Addendum with the modifications detailed in the October 2004 Biannual Process Control Monitoring Report.
- 8. Monitoring locations MW-24DR, MW-24SR, PZ-5D, and PZ-5S will be additionally sampled for COCs during the first biannual sampling event in 2005, because the November 2004 VOC data for these locations were inadvertently lost due to laboratory equipment failure.

TABLE 2 SUMMARY OF SELECT GROUNDWATER LEVEL MEASUREMENTS

OCTOBER 2005 BIANNUAL PROCESS CONTROL MONITORING REPORT McKESSON ENVIROSYSTEMS - FORMER BEAR STREET FACILITY, SYRACUSE, NEW YORK

	and the second	AL.	7 <u>.12</u> 11	7/6/98)	electro.	Steel D			17. <i>5</i> 14*	L. L. L.C.	CLAND S	ro <u>(Por</u> s	2.8/12/98/2	10/16/98	11/17/98	- 12/16/ 98	12/2 2/98	7,16	/13/993
a strange at	Lama -				Store Let	12.16-2				SWEEK CA				Week 13	Week 18	Week 22	Week 23	Weg.	
Canal	393.39°	362.91	363.37	363.72	363.08	363.08	362 94		362.78	362.94			362.84	363.27		363.14	362.21	363 1	
Collection Sump	372.81	364.33	363.08	363.68	362.50	361.31	361.83	361.89	362.14	361.00	361.71	361.95	362.31	362.01	361.48	361.75	363.09	3G1	361. 73
MW-3S	376.54	365.93	366,26	367.82	366.20			365.29							365.25	365.67	366.81	365	365.25
MW-3D	375.56	365.63	365.87	366.16			364.97	364.85						365.08	365.00	365.04		345.14	364.91
MW-6D	377.07	365.75	366.01	366.29										365.25	365.15	365.23	365.36	OUE TH	165. 06
MW-8D	374.68	365.51	365.74	366.05			364,80		364.67	364.79	364.88	364.87	364.87	364.93	364.83	364.86		364	364,74
MW-9D	376.76***	365.78					365.14	365.10						365.25	365.16	365.22	365.36	2-15 1	365, 08
MW-11D	373.68	365.46	365.67	365.29			364.62	364.49	364.50	364.62		364.69	364.67	364.77	364.68	364,73		364 . 1	364. 57
MW-11S	373.50	364.88	364.62	365.11	364,12	363.70	363.58	363.52	383.58	363.73		363.69	363.74	363.74	363.69	363.69	364.27	36.3	36 3.61
MW-18	372.57	362.64													361.90	361.93	362.05	362-5	361.84
MW-19	376.00	362.42													361.78	361.84	361.98	361-7	361 .89
MW-231	372.77	365.04	365.34	365.72			364.34		364.45	364.16			364.43	364.43	364.34	364.36		364 . ?	364. 26
MW-23S	372.61	363.99	363.43	364.04	362.92	362.50	362.41		362.40	362.66		362.54	362.67	362.68	362.56	362.52	363.35	3/12	362.46
MW-24DR	375.14	365.41													364.63	354.67	364.81	<u>1_</u> 2: _	364.54
MW-24SR	375.55	365.15	365.32	365.66	364,91	364.45	364.27		364.20				364.36	364.47	364 37	364.44	364,66	1. je - D_	64.33
MW-25D	373.67	365.43													364.74	364,76		<u></u>	.64 .64
MW-255	373.39	363.91	363.64	364,14	363.21	362.95	362.75		362.75			362.89	362.96	363.01	362.89	362.87	363,48	<u></u>	. 62. 79
PZ-4D	376.11	365.46	365.73	366.01	365.21	364.83	364.63		364.54	364.67	364.75	364.74	364.70	364.80	364,69	364.73	364.87	<u></u>	64.5 5
PZ-5D	375.58	365.66	365.91	366.18	365.36	365.07	364.84		364,76	364.88	364.94	364,93	364.91	364.99	364.89	364,91	365.05	<u>i i i</u>	-64. 78
PZ-8D	375.83	365.90	366.11	366.35			365.25	365.13	365.83					365.35	365.27	365.33	365.48	5	-:5.19
PZ-9D	377.29	365.73					365.47	365.28						365.12	365 03	365.6 :	365.24	· · · ·	<u>64.94</u>
PZ-A	373.94	364.49	363.69	364.28	363.13	362.58	362.56	362.62	362,76	363.39	362.82	362.64	363.02	362.75	362.56	362,60	364,04	: 	00 56
PZ-B	373.92	364.49	363,60	364.21	363.02	362.62	362.50	363.26	362.71	363.00	362.97	362.59	363.01	362.67	362 54	362.5	364.27	<u>: : .</u>	0.3,45
PZ-C	374.85	365.69	366.29	367.02	365.93	365.97	365.47	365.38	365.30	365.54	365.99	365.53	365.54	365.56	365.52	365.52	365.97		24.5. 02
PZ-D	375.12	365.78	366.25	366.99	365.99	365.91	365.53	365.37	365.30	365.53	366.06	365.58	365.67	365.59	365.55	365.03	306.00	<u> </u>	.1.5.12
PZ-E	374.12	364.75	364.25	364.86	363.73	364.00	363.41	363.61	363.54	364.22	364.67	364.67	364.08	363.57	363.67	363.57	366 41		
PZ-F	377.06	366.17	<u> </u>				365.56	365.50						365.37	365.27	365.52	365,73	<u></u>	U5. 27
PZ-G	377.16	366.21	ļ	<u> </u>			365,66	365.60						365.46	365.36	365.60	365.76	3	65.44
PZ-HR	376.99	366.16		ļ			365.54			<u> </u>		<u> </u>	<u> </u>	365.44	365,34	365,54	365,84	_3	65. 39
PZ-I	375.15	366.56					365.86	365.64						365.88	365 57	365.90	000.00		-65.7 6
PZ-J	374.89	366.15	<u> </u>				365.53	365.40		<u> </u>				365.53	365.39	365.56	365.93		35.47
PZ-K	373.19	364.53	363.78	364.35	363.27	362.69	362.69	362.71	362.75	362.92	362.80	362.78	362.98	362.82	362.66	3:12,60	363,70	: <u> </u>	·52.58
PZ-L	374.62	364.25	363.59	364.18	363.04	362.42	362.48	362.44		362.88	362.63	362.57	362.84	362.65	362.40	362.51	003,50	· ·	2.45
PZ-M	374.35	364.70	364.09	364.64	363.52	362.96	362.96	362.96	363.09	363.29	363.15	363.05	363.30	363.12	362.93	353.01	064.07	· <u> </u>	02.94
PZ-N	376.94**	365.79	366.37	367.06	365.99	365.91	365.53	365.39	365.33	365.55	365.97	365.58	365.59	365.59	365,55	3 5.50	366.09		<u>~5,12</u>
PZ-O	375.36	364.29	363.68	364.29	363.21	362.84	362.72	362.87	362.78	363.05	362.97	362.80	363.03	362.81	362.74	342,74	063.74		2.68
PZ-P	376.89	366.25		<u> </u>			365.65	365.60						365.52	365.29	3.15.6 1	365.78		<u>15 44</u>
PZ-Q	377.61	366.23	<u> </u>				365.64	365.57		<u> </u>				365.45	365,35	316.65	365,70		. 5.42
PZ-R	377.05	366.23	┣──	366.94			365.65	365.57	<u> </u>	<u> </u>	<u> </u>			365.50	365 38	315.60	365,81	<u></u>	5.47
PZ-S	378.13	366.19					365.57	365.52						365.43	365,35	305.51	065.94	<i>3</i>	5,40
PZ-T	376.25	366.14	<u> </u>				365.54	365.43						365.52	365.33	3457.1	005,90	<u> </u>	5.47
PZ-U	375.35	365.99		366.81			365.50	365.33						365.37	365.30	365.4.2	305.91		5.40
PZ-V	375.78	366.07		┨────			365.48	365.35		<u> </u>	<u> </u>			365.43	365.2'9	365.4.1	365.90		.5.3 7
PŻ-W	375.78	366.07					365.46	365.31			L			365.41	365 26	365.44	365 78	:	ə5 33

TABLE 2 SUMMARY OF SELECT GROUNDWATER LEVEL MEASUREMENTS

OCTOBER 2005 BIANNUAL PROCESS CONTROL MONITORING REPORT MCKESSON ENVIROSYSTEMS - FORMER BEAR STREET FACILITY, SYRACUSE, NEW YORK

		[]. 			sterfa of	a Theory	e 1417. V	et (Alea)	(~/41.40F		S'il (02	105/02	-11.92	10/7/02	1/20/03	16/5/03	10/27/03.	8/14/04		್ರಧ್ವಾದ
	الياني كمانية ترا د المشتقي المانية الم	التشميد ا	<u>. (* 201</u>	SHORE 52	and the second			1. 77.4			6		the same line		である			and service and	2	
Canal	393,39*	_	363.22	362.78	363.73	363.75	362.75^	363.24	363.01	362.96	364.59	363.64	364.17	362.19	^^	363.34	363.34	363.39	36 3.39	361.39
Collection Sump	372.81	363 ,17	362.45	361.87	362.99	361.48	361.69	361.66	361.59	362.04	362.27	361.50	361.42	362.05	361.90	361.91	361,65	362.11	362.00	361.46
MW-35	376.54		365.26		357,10						367.70	366.26	367.50	364.26	366.27	366.38	366,98	366.65	365.54	365.82
MW-3D	375.56	36 5.41	364.92	364,57	355.64	365.57	364,81	355,16	365.40	364.54	364.16	364.55	365.10	363.92	365.10	365.53	365.05	365.59	365.27	365.36
MW-6D	377.07	365.62	365.12	364,79	365.85	365.77	364.97	365.34	365.64	364.75	364.22	364.62	365.21	364.07	365.31	365.75	365.24	365 80	36 5.46	365.59
MW-8D	374.68	365.22	364.77	364.35	365.42	365.36	364.62	364.94	365.18	364,34	364.13	364.51	365.01	363.82	~	365.30	364,83	365.39		
MW-9D	376.76***	365.65	365.17	364.83	365.88	365.80	365.01	365.36	365.68	364.76	364.05	364.47	365.10	364.00	365.31	365.79	365.26	365 85	365.51	365.64
MW-11D	373.68	365.02	364.60	364,18	365.24	365.18	364.46	364.81	364.96	364.18	364.07	364,44	364.92	363.73	364,81	365.17	364.75	365.26	36 4.93	364.00
MW-115	373.50	364.50	363,88	363.39	364.72	364.35	363.55	363.86	364.48	363.33	363.57	363.89	364,33	363.09	364.15	364.38	363 89	364.34	3 63.98	364.12
MW-18	372.57	362.18	361.79	361.38	362.43	361.77	361.71	362.08	362.17	361,50	361.65	362.09	362.50	361.37	362.26	362.69	362 25	362.62	36 2.29	362.37
MW-19	376.00	362.15	361.80	361.46	362.58	361.88	361.90	362.25	362.44	361.82	361.83	362.11	362.57	361,51	362.52	361.91	362.46	362.89	36 2.59	362.69
MW-231	37 <u>2.</u> 77	364.69	364.28	363.83	364.99	364.93	364.25	364.58	364.73	363.99	363.99	364.34	364.80	363.62	364.60	365 01	364,56	364,99	⇒64.67	364.77
MW-235	372.61	363.64	362 94	362.42	363.85	363.17	362.64	362.87	363.59	362.36	363.97	363.38	363.68	362.50	362.26	363 31	362.c1	363.04	.962.77	362.80
MW-24DR	375.14	364.96	364.49	364.09	365.19	364.60	364.39	364.77	364.91	364.16	364.06	364.43	364.90	363,71	364,75	3=113	5.4	345 10	64.86	364.94
MW-24SR	375.55	364.87	364.41	363.95	365.12	365.55	364.30	364.60	364.86	364.05	364.00	364.40	364.86	363.64	364.69	31,103	314 .	925.20	64.78	364.88
MW-25D	373.67	365.07	364.64	364.20	365.28	365.20	364.51	364.84	364.97	364.22	364.19	364.57	365.02	363.82	364.82	31 24	3 123	1 365 20	.64.93	365.00
MW-255	373.39	363.89	363.20	364.75	364.12	363.69	362.94	363.23	364.14	362.61	364.39	363.83	364.21	362.74	363.61	363.67	aca 15	ə63 4e	63.08	363.14
PZ-4D	376.11	365.02	364.60	364.22	365.28	365.21	364.49	364.82	365.03	364.22	364.06	364.43	364.94	363.73	364.81	30123	3.4 .	2 865 2r	-64.96	365.07
PZ-5D	375.58	365.28	364.86	364,47	365.57	365.48	364.71	365.10	365.36	364.46	364.12	364.47	365.03	363,81	365.05	365.49	355.1	305.50	365.20	365.29
PZ-8D	375.83	365,78	365.08	365.00									— —							
PZ-9D	377.29	365.50	365.04	364.68	365.70	365.72	364 87	365.16	365.55	364.60	363.75	364.14	364.79	363.71	365 08	365.54	365.0	305.62	∋6 5.35	365.48
PZ-A	373.94	363.81	363.12	362.61	363,95	363.15	362.75	362.91	363.56	362.56	363.92	363.05	363.22	362.59	~	36 - 40	363.57	5/3.18	362.89	362.96
PZ-B	373.92	363.91	363,19	362.67	364.08	363.32	362,79	362.94	363.94	362.55	364.44	363.24	363.40	362.65	363.39	300.47	363.5	1.563.21		362.92
PZ-C	374.85	365.79	365.10	364.75	366.04	366.04	365.03	365.35	366.39	364.54	365.68	365.38	366.26	364.19	365 65	365.76	365.4-	- 266 67	65.50	365.65
PZ-D	375.12	365.79	365.18	364.89	366.09	366,10	365.10	365.46	366.36	364.65	365.58	365.41	366.21	364.21	365.65	365.84	3-5.51	266 11	65.62	365.75
PZ-E	374.12	364.93	364.20	363.81	365.16	365.03	363.92	364.40	365.90	363.49	366.51	364.63	364.77	363.47	364.94	365.00	356.51	364,58	364.07	364.47
PZ-F	377.06	366.36	365.53	365.11	366.89	366.72	365.27	365.70	367.08	364.93	365.50	365.51	366.29	364.29	366.25	366,41	185.49	306 65	65.75	366.13
PZ-G	377.16	366.44	365.61	365,17	366.89	366.80	365.36	365.75	367.11	364.93	365.39	365.53	366.22	364,36	366.35	366.46	565,41	310.68	65.81	366,14
PZ-HR	376.99	366.34	365.55	365.11	366.80	366.68	365,33	365.66	367.02	364.91	365.39	365.46	366,19	364.24	366 22	31 - 41	54 F	CLOSE.	65,81	366.12
PZ-I	375,15	366.93	365.79	365.23	367.30	367.23	365,55	366.08	367.81	364.91	366.29	366.16	367.05	364.22	366 58	311.00	<u>.</u>	5.7.01	65.26	366,41
PZ-J	374.89	366.21	365.53	365,14	366.55	366.50	365.32	365.64	366.69	364.96	365.10	365,18	365.89	364.21	355.95	3 7.2		12.64	∂ 5.86	366,07
PZ-K	373,19	363.87	363.13	362.59	363.97	363.19	362.69	362.86	363.53	362.49	363.82	363,19	363.48	362.56	363.25	343-31.	0.000	305-13	62.84	362.97
PZ-L	374.62	363.69	363.00	362.47	363.84	363.03	362.61	362.68	363.42	362.47	363.44	362,96	363.26	362.53	363.42	34 1 25	1	1 085 041	62.79	362.91
PZ-M	374.35	364.06	363,40	362.90	364.22	363.54	363.05	363.24	363.86	362,90	363.93	363,37	363.62	362.82	363 60	34 / 77	5.35	1	63.31	363,45
PZ-N	376.94**	365.87	365,19	364.87	366.17	366.12	NM	365.35	366.43	364.47	366.60	365.29	366,13	364.09	365.54	<u> </u>	204.4	1.345.66	65.47	365.53
PZ-O	375.36	364.01	363.25	362.73	364.22	363.57	362,86	363.06	364.22	362.64	364.47	363.63	363.98	362.75	363.61	302.53	307.2	1 302 43	6 3.04	363.13
PZ-P	376.89	366.43	365.59	365,18	366.85	366.73	365.34	365.77	367.02	364.93	365.31	365.48	366,19	364.25	366.25	386.45	375 1	Not 6:	:65,87	366,20
PZ-Q	377.61	366,44	365.60	365,16	366.93	366.78	365.26	365.76	367.21	364.89	366.11	365.70	366.41	364.41	366 40	201.55		- 3.6 77	65.85	366,21
PZ-R	377.05	366.46	365.61	365.20	366,89	366.81	365.37	365.72	367.21	364.93	365.40	365,58	366.31	364.31	365.34	268.46	2:02:	3007.1	65.85	366,17
PZ-S	378.13	366.39	365.56	365.15	366,84	366.73	365.32	365.71	367.12	364.90	365.27	365.53	366.29	364.31	366.29	318.42			67.10	366.31
PZ-T	376.25	366.34	365.53	365.10	366.71	366.65	365.29	375.70	366.90	364,90	365.34	365.37	365.10	364.20	366.16	3 7.34		1 <u>111</u> . 1651	55,85	366,13
PZ-U	375.35	366.17	365.46	365.08	366.55	366.49	365.22	365.60	366.75	364.85	365.18	365.23	365.96	364,18	366.00	3 83		<u></u>	65.82	366.05
PZ-V	375.78	366.20	365.44	365.06	366.54	366.50	365.25	365.58	366.78	364.83	365.30	365.24	365.97	364.15	365.98	21 71		1976 - 11	65.76	365.99
PZ-W	375.78	366.15	365.41	365.02	366.49	366.41	365,20	365.59	366.63	364.85	365.05	365.12	365.66	364.09		3. 10	i			
	515.10	300,10		1 303.02	000.43	1 300.41	305,20	303.39	300.03	304.05	305.05	1 305.12	303.00	1 304.09	365,88	1-22 -22	<u>1 -</u> 1 - 1 - 1	100005	6 5.72	365.98

SUMMARY OF SELECT GROUNDWATER LEVEL MEASUREMENTS

OCTOBER 2005 BIANNUAL PROCESS CONTROL MONITORING REPORT McKESSON ENVIROSYSTEMS - FORMER BEAR STREET FACILITY, SYRACUSE, NEW YORK

Notes;

1. Weeks 1, 2, 3, 4, 13, 16, 22, 23, 25, 26, 39, 46, and 52 are weeks after the initial introduction of Revised Anaerobic Mineral Media (RAMM) into the three impacted areas.

2. 6/10, 6/11, and 6/12/98 water level measurements were taken during the initial discrete RAMM injection event.

3. AMSL = Above Mean Sea Level (NGVD of 1929)

4. The ground-water level in PZ-8D was not measured on 3/27/00 and 6/1/00 because this piezometer was damaged. This piezometer was decommissioned on August 30, 2000.

5. * = The canal water-level measurement for the third guarter of the first year of the long-term process control monitoring program was obtained on September 29, 2000.

5. * = The reference elevation for canal gauging point was 353.06 feet AMSL prior to 11/16/00. The canal gauging point was re-marked and re-surveyed 11/16/00. The new reference elevation is 393.39 feet AMSL

7. NM = The groundwater level in PZ-N was not measured on 9/18/00 because this piezometer was damaged. This piezometer was repeired and subsequently resurveyed on 11/15/00. The new reference elevation for PZ-1 is 376.94 feet AMSL.

8, ** = The reference elevation for PZ-N was 376.02 feet AMSL prior to 11/16/00 and, as noted above, the new reference elevation is 376.94 feet AMSL.

9. *** = Monitoring well MW-9D inner PVC pipe was reduced (cut) by 1½ inches on 9/19/01. The reference elevation pror to 9/19/01 was 376.86 feet AMSL. The new reference elevation for MW-9D is 376.76 feet AMSL.

10. ** = Due to frigid weather conditions, the groundwater level in PZ-A and MW-8D could not be measured on 1/20/03, because the locks were frozen. The canal water-level for the 1/03 resampling event could not be

measured due to strong winds and ice on the water surface.

11. Monitoring location MW-8D was decommissioned on August 3, 2004.

OCTOBER 2005 BIANNUAL PROCESS CONTROL MONITORING REPORT McKESSON ENVIROSYSTEMS - FORMER BEAR STREET FACILITY, SYRACUSE, NEW YORK

			W. (ICAMSL)		SC 12 - SC 4		• Ethyl-			Trichloro-		-N.N.Dimethyl=	Methylepe
							benzene	Xylene	Methanol	ethene		aniline	
MW-1	3/88	370.3	355.3	<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	1/89	4		<100	<1	<1		<1	<1,000	<1	<11	<11	<1
	11/89	4		<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	11/90	-		<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
	11/91	-		<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
	11/92 8/95	-		<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
	9/98	4		<1,000 <10	<5 <10	<5 <10	<5 <10	<5 <10	<1,000 <1,000	<5 <10	<5 <10	<10 <10	<10 <10
	7/99	4		<u><10</u> 0.7 JN	<10	<10	<10	<10	<1,000	<10		<10	<10
	3/00	4]	<u> </u>	<10		<10 <10				<10	<10	
	9/00	-		<u>8J</u>	<10 J	<10 3 J	<10 J	<10 5 J	<1,000 J <1.000	<10 <10 J	<5 <10 J	<10	<10 <10 J
	3/01	-		<10	<10.5	<10	<10 3	<10	<1,000	<10 5	<10.3	<10	10 3
	9/01			<10	<10	<10	<10	<10	<1,000 J	< 10 < 11)	<1.)	<10	<10
	4/02	1		<12	<5	<5	<5	<10	990 J	<5	<5	<5	<5
	10/02			<25	<10	<10	<10	<20	<1.000	<10		R	<10
	5/03	-	1	<12	<5	<5	<5	<10	<1,000	<5	<0	<5	<5
	10/03		i i	<12	<5	<5	<5	<10	<1,000	<5	2.3	<5	<5
	6/04	1		<25	<10	<10	<10	<20	<1,000	<10	12	<5	<10
	11/04	-					-	-	<1,000			<5	
	6/05	7		<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<10	0.2 J	<1.0	<3.0
MW-2S	3/88	368.1	353.1	<1,000	1,900	110	610	2,800	<1,000	<10	<10	<10	<10
	1/89			<1,000	2,000	65	330	1,200	<1,000	<10	<11	<11	<10
	11/89			<1,000	1,800	<100	360	810	38,000	<100	<100	<100	<100
MW-3S	3/88	365.1	350.1	<100	<1	<1	<1	<1	<1,000	50	<10	<10	110
	1/89			<10,000	<100	120	<100	<100	<1,000	1,100	<11	5,570	4,700
	11/89			<10,000	<100	<100	<100	<100	<1,000	100	<5?	440	2,700
	<u>11/91</u>			2,900	10	10	4	31	<1,000	<10	7. nr.	170	<10
	8/95			<1,000	<5	<5	<5	<5	<1,000	e E	1 38	S	<10
	9/98			<10	<10	<10	<10	<10	<1,000	<10	<	<10	<10
	7/99	4		<10	1 J	0.7 J	<10	<10	<1,000	<10	5 5 44	<10	<10
	3/00	4		<10 J	<10	<10	<10	<10	<1,000 J	<:0	· · · · · ·	<10	<10
	9/00	4		<10 J	<u>1J</u>	2 J	<10 J	<10 J	<1,000	<10 J	2.3	1 J	<10 J
	3/01	1		<10	<10	<10	<u><10</u>	<10	<1,000	<10	< : :	<10	<10
	9/01	-		<10	:# 3 .J	- 8 J	<u>1J</u>	2 J	<1,000 J	<10	393 L .5 9)		
	4/02	-		<12	<5	<5	<5	<10	370 J	<5	i 1.7 J	<5	<5
	10/02			<25	<10	<10	<10	<20	<1,000	<10		R	<10

OCTOBER 2005 BIANNUAL PROCESS CONTROL MONITORING REPORT MCKESSON ENVIROSYSTEMS - FORMER BEAR STREET FACILITY, SYRACUSE, NEW YOUR

And Andrews and Andrews	Sampling	Scheen Ele	v (ft_AMSL)	Acetone	Benzerie	Toluene	Ethyl- benzene	Xylene ^A	Methanol	Trich oro-	Aniline	N.N-Dimethyl-	Methylene
MW-3S	5/03		The second secon	<12	<5	<5	<5	<10	<1,000	<5	<5	<5	<5
(Conťd.)	10/03			<12	<5	<5	<5	<10	<1,000	<5	4 J	<5	<5
	6/04			6J	<10	<10	<10	<20	<1,000	<10	0.8 J	<6	<10
	11/04			<25	<10	<10	<10	<20	150 J	<10	4 J	<5	<10
	6/05	1		<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<1.0	15	<1.0	<3.0
MW-3D	8/95	343.8	339	<1,000	<25 D	<25 D	<25 D	<25 D	<1,000	<25 D	j 1 J	∞5J	200 D
MW-4S	3/88	365.5	350.5	< 100	<1	<1	<1	<1	<1,000	<1	< 10	<10	<1
	1/89			<100	<1	<1	<1	<1	<1,000	< 1	<11	.19	280
	11/89			<100	<1	<1	<1	<1	<1,000	<'	<10	<10	<1
MW-5 [►]	3/88	363.3	348.3	<100	<1	<1	<1	<1	<1,000	<1	230	130	<1
	1/89			<100	<1	<1	<1	<1	<1,000	<1	34	<11	<1
	11/89			<100	<1	<1	<1	<1	<1,000	< ,	17	<10	<1
MW-6 ^c	1/89	365.5	355.9	<100	<1	<1	<1	<1	<1,000	<1 C	!</td <td><11</td> <td><1</td>	<11	<1
(Replaced by MW-6S)	11/89			<10	<1	<1	<1	<1	<1,000	<.	<10	<10	<1
	8/95			<1,000	<5	<5	<5	<5	<1,000	<	· · · ·	<10	<10
MW-7 ^c	1/89	367	357.4	<100	<1	<1	<1	2	<1,000	< .	<11	<11	100
	11/89			<100	<1	<1	<1	<1	<1,000	<:	×1.5	<10	<1
MW-8 ^c	1/89	364.7	355.1	<1,000,000	<10,000	<10,000	<10,000	<10,000	430,000	<10.10	£,	24,000	3,200,000
(Replaced by MW-8S) ^N	11/89			470,000	<10,000	<10,000	<10,000	<10,000	300,000	<100	3.C).	52,000	2,800,000
	11/91			<1,000,000	<10,000	<10,000	<10,000	<30,000	150,000	<10.	8,220	33,000	1,600,000
	8/95			<1,000	<250,000D	<250,000D	<250,000D	<250,000D	22,000	60,00 30	<25.000 D	380,000 D	7,700,000 D
	9/98			<10,000 J	<10,000	<10,000	<10,000	<10,000	7,900	3,3.00 J	1,200 J	26,000 D	140,000
	2/99			<20,000	<20,000	<20,000	<20,000	<20,000	16, 0 00JN	11,0 .)	30,000 D	120,000 D	650,000 DB
	7/99			10 J	22 J	240 J	58 J	220 J	17,000	11,000 J	24,600	77,000	450,000 D
	3/00			<100,000	<100,000	<100,000	<100,000	<100,000	30,000 J	<100	C1,0.0 4	270,000 D	1,300,000
	9/00			<50,000 J	<50,000 J	<50,000 J	<50,000 J	<50,000 J	14,0 00 J	9,200 J	42,010 J)	59,000	540,000 BJ
	3/01			<50,000	<50,000	<50,000	<50,000	<50,000	53,0 00	11,0CD J	90,0 O D -	120,000 D	990,000
	9/01			<400	<400	430	170 J	680	8,900 J	18,00 ° JD	1 :0 0	29,000	440,000 BD
	4/02			2,100	50 J	410	100 J	400	<1,000	9,600J	01.1 D.	773,000 D	660,000 D
	10/02			120 J	23	310	73	267	<1,000	3,1 0	3C, .0 t.	21,000 J	320,000
	5/03	1		<12	20 J	600 D	81	300	<1,000	6,7C D	79.: D	29 J	910,000 D
	1 0 /03	4		21	25	330 D	93	360	1,200 J	3,10 D	67, D .	24,000 D	400,000 D
	6/04	L		<25	40	330 EJ	110	400	<1,000	5,90 D	ξ·)	51,000	1,200,000 D
MW-8SR	11/04	362.7	352.7	<1,200	<500	100 DJ.	<500	164 DJ	<1,000	</td <td>3. D^{7.}</td> <td>5,300 D</td> <td>10,000 D</td>	3. D ^{7.}	5,300 D	10,000 D
L	6/05			. 81 J	13	100	53	180	<1 ,000	< ,	<u> </u>	<200	<3.0

OCTOBER 2005 BIANNUAL PROCESS CONTROL MONITORING REPORT McKESSON ENVIROSYSTEMS - FORMER BEAR STREET FACILITY, SYRACUSE, NEW YORK

	Sampling	Screen Ele	V. (IL AMSL)	t in the second			Ethyl-			Trich oro-		NIN-Dimetry	- Mennylene -
A CMONTORING Wells	Date	🛊 Торяе 🦗	Bottom		Benzene	Toluene	benzene	Xylene ^A	Methanol	ethe	nilin e	aniline	Chloride
MW-9 ^c	1/89	365.6	356	1,600	NA	64	130	270	<1,000	<"	660	1,200	1,500
(Replaced by MW-9S)	11/89			<1,000		25	60	60	<1,000	<'	670	150	<10
	11/91			<100	<10	92.0	19	30	<1,000	<`	95	18	<1
	8/95			<1,000	11 JD	26 JD	69 D	226 JD	<1,000	<5.	50	28	110 D
	7/99			<10	: 4 :J	2 J	9 J	18	<1,000	<1,	<10	5 J	<10
	3/00			<10	2 J	2 J	. 11	21	<1,000 J	<10	2 J	💌 😒 9 J 🕺	<10
	9/00			<10 J	11 J	2 J	6 J	18 J	<1,000	<10 J	1 J	2	<10 J
	3/01			<10	1 J	3 J	17		<1,000	<;)	2 J	11	<10
	9/01			<10	10	3 J	7 J	_35	<1,000 J	<1.5	<10		<10
	4/02			<23	લ્⊴ ≫ે 10 ક	2 J	6	17 J	370 J	<5	9 -	43	<5
	10/02			16 J	. 38	40	2 J	15 J	<1,000	<	<5	2 J	<10
	5/03			<12	Sa 5 11	<5	7	18	<1,000	<5	0.9 J	in 22 3 J ≊	<5
	10/03			<12	a.s. 2.J ⇒	<5	5	19-	<1, 0 00	< 1	1.	<5	<5
	6/04			14 J	6 J	2 J	- 8 J	19 J 🖉	<1,000	< :		<5	<10
	11/04			<25	4 J	2 J	9.J	30 J 🖓	<1,000			<5	<10
	6/05			44 J	1.9	3.2 J	24	64.5	<1,000	< 1		1.9	<3.0
MW-10 ^C	1/89	355.5	345.9	<1,000,000	<10,000	<10,000	<10,000	<10,000	210,000	<10		9,400	520,000
(Replaced by MW-9D)	11/89			<100,000	<1,000	<1,000	<1,000	<1,000	<u><1,000</u>	<1,		2,400	28,000
	11/91			<100	<1	3	2	<3	<1,000	•		<10	41
	8/95			<1,000	<25 UD	<25 UD	<25 UD	<25 UD	<1,000	<25 . 1	< <u>5</u>	<10	350 D
MW-11 ^C	1/89	355.1	345.5	<100	<1	<1	<1	<1	8,400	<1	516	<12	1
(Replaced MW-6D)	11/89			< 1 00	<1	<1	<1	<1	<1,000	<1	2331 (*	<52	<1
	8/95			<1,000	<5	<5	<5	<5	<1,000	<:	< 5	<10	<10
MW-11S	12/94	359.9	354.9	<380	<10	<10	<10	<10	880	ر 1>	<5	<10	<10
	8/95			<1,000	<5	<5	<5	<5	<1,000	< '	• :	<10	<26
	10/95			NA	<5	<5	<5	<5	NA	<:	NAS	NA	<5
MW-11D	12/94	349.8	344.B	<310	<5	<5	<5	<5	2,100		•	<10	<5
	8/95			<1,000	<5	<5	<5	<5	<1,000	<u> </u>		<10	<10
	10/95			NA	<5	<5	<5	<5	NA	·.		NA	<5
MW-12D ^C	1/89	354.8	345.2	<100,000	<1,000	<1,000	<1,000	<1 <u>,0</u> 00	1 2,0 00	<		410	120,000
(Replaced MW-8D) ^N	11/89	1		69,000	<1,000	<1,000	<1,000	<1,000	39,0 00	<*.)	4,900	360,000
	11/91]		<1,000,000	<10,000	<10,000	<10,000	<30,000	<10,000	<1. C		5,800	220,000
	8/95]		<1,000	450 JD	430 JD	430 JD	1,250 JD	<1,000	<u><1,3</u> <u></u>		230 D	<13,000 D
	8/96			13	<10	<10	<10	<10	<1,000	2		<10	- 40
MW-13S	11/89	368.7	359.1	<100	3	<1	<1	<1	<1,000			<52	<1
	11/90	ļ		<100	<1	<1	<1	<3	<1,000	<u></u>		<10	<1
	11/91	4		<100	<1	<1	<1	<3	<1,0 00	<		<10	<1
	11/92	<u> </u>	L	<100	<1	<1	<1	<3	<1, <u>0</u> 00	<u>s</u> *	417	<10	<1

OCTOBER 2005 BIANNUAL PROCESS CONTROL MONITORING REPORT McKESSON ENVIROSYSTEMS - FORMER BEAR STREET FACILITY, SYRACUSE, NEW YOAR

Maniform Well	Sampling Date	Screen Ele	v.(ft. AMSL)	Acetone	Benzene	Toluene	Ethyl- <u>benzén</u> e	Xylene ^A	Methanol	Tricles of the second s	Aniline	N,N-Dimethyl-	Methylene).
MW-14D ^F	1/89	359	349.4	<100	<1	<1	<1	<1	<1,000		<11	<11	<1
	11/89			<100	<1	<1	<1	<1	<1,000	• :	: <1 0	<10	<1
MW-15S	1/89	370	360.25	<100	<1	<1	<1	<1	<1,000	2 × 1	<11	<11	<1
	11/89			<100	<1	<1	<1	<1	<1,000	×.	<52	<52	<1
MW-16D	1/89	350.8	341.2	<100	<1	<1	<1	<1	<1,000		<11	<11	<1
	11/89			<100	<1	<1	<1	<1	<1,000	< '	<10	<10	<1
MW-17 ^F	11/90	365.7	356.1	<100	<1	<1	<1	<3	<1.0 00	<1	<10	<10	<1
(Replaced by MW-17R)	11/91			<100	<1	<1	<1	<3	<1,000	<	<10	<10	<1
	11/92			<100	<1	<1	<1	<3	<1,000	<.;	<10	<10	<1
	8/95			<1,000	<5	<5	<5	<5	<1,000		<5	<10	<11
	10/95			NA	<5	<5	<5	<5	NA	2	NA	NA	<5
	8/96			11	<10	<10	<10	<10	<1,000	<`	<5	<10	<10
	8/97			<10	<10	<10	<10	<10	<1,000		<5	<10	<10
	2/99			<10	1 J	<10	<10	<10	<1,000		<10	<10	<10 J
	3/00			<10	L8	<10	<10	<10	<1,000 J			<10	<10
	9/00			<10 J	15 J	<10 J	<10 J	<10 J	<1,000 J	<	24 J	4 J	1 J
	3/01			<10	8 J	<10	<10	<10	<1,000		<10	<10	<10
	9/01			<10	<u>5</u> J	< 10	<10	<10	<1,000		<10	<10	<10
	4/02			<10	6	<5	<5	<10	620 J		1.0 (≤5)^K	110 (<5) ^K	<5
	10/02			<25 J	14	<10	<10	<20	<1,000	•: '	<55	<5 ^L	<10
	5/03			<12	8	<5	<5	<5	<1,000	· . ·	<5	<5	<5
	11/03			<12	7	<5	<5	<10	<1,000	<	<5	<5	<5
	6/04			<25	<u>5</u> J	<10	<10	<20	<1,000	<.'.	<5	<5	<10
	11/04								200 J		<5	<5	
	6/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000		<1.0	<1.0	<3.0
MW-18	11/89	325.15	316.15	<100	<1	<1	<1	<1	<1,000	٢.	<10	<10	<1
	11/90			<100	<1	<1	<1	<3	<1,000	< :	< 10	<10	<1
	11/91			<100	<1	<1	<1	<3	<1,000		< 10	<10	<1
	11/92			<100	<1	<1	<1	<3	<1,000		·: 10	<10	<1
	12/94			<10	<5	<5	<5	<5	<200		<5	<10	<5
	8/95			<1,000	<5	<5	<5	<5	<1,000	I .	<5	<10	<10
	2/96		-	<1,000	<10	<10	<10	<10	<1,000	· ·	<5	<10	<10

OCTOBER 2005 BIANNUAL PROCESS CONTROL MONITORING REPORT McKESSON ENVIROSYSTEMS - FORMER BEAR STREET FACILITY, SYRACUSE, NEW YC

	Sampling	Screen Ele	V (IL AMSU)			5-29 -6-68	Ethyl-		A Contraction	Tric			Mallinner
Monitoring Welles	Date	и Тор	Bottom	Acetone	Benzene	Toluene	benzene	Xylene ^A	Methanol	et'	Aniline	aniline	Chloride
MW-18	8/96			<10	<10	<10	<10	<10	<1,000	<* 1	<5	<10	<10
(Cont'd.)	2/97			<10	<10	<10	<10	<10	<1,000	•. :	<5	<10	<10
	8/97			<10	<10	<10	<10	<10	<1,000	515	<5	<10	<10
	9/98			<10	<10	<10	<10	<10	<1,000	<10	<5 ^H	<10	<10
	2/99			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	7 <i>1</i> 99			<10 J	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	3/00			<10	<10	<10	<10	<10	<u><</u> 1,000 J	<1ປ	<5	<10	<10
	9/00			<10 J	<10 J	<10 J	<10 J	<10 J	<1,000 J	<10 J	<10 J	<10	<10 J
	3/01			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	9/01			<10	<10	<10	<10	<10	<1,000	<10	<10	<10	<10
	4/02			<10	<10	<10	<10	<20	720 J	<	ፈ80 D (<5)^{K.}	200 D (<5) ^K	<10
	10/02			6 J	<10	<10	<10	<20	<1,000	<	-5 ^L	<5 ^L	<10
	5/03			<12	<5	<5	<5	<5	280 J		• 5	<5	<5
	10/03			<12	<5	<5	<5	<10	<1,000		0.7 J	<5	<5
	6/04			<25	<10	<10	<10	<20	<1,000			R	<10
	11/04								<1,000		< 5	<5	
	6/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	<	<10 	<1.0	<3.0
MW-19	11/89	318.45	309.45	<100	<1	<1	<1	<1	<1,000		· 10	<10	<1
	12/94			<10	<5	<5	<5	<5	<200		< <u>5</u>	<10	<5
	8/95			<1,000	<5	<5	<5	<5	<1,000	<u> </u>	<5	<10	<12
	10/95			NA	<5	<5	<5	<5	NA	<	- 665	NA	<5
	2/96			<1,000	<10	<10	<10	<10	<1,000	<1	~ 5	<10	<10
	8/96			<10	<10	<10	<10	<10	<1,000	< ;	<5	<10	<10
	2/97			<10	<10	<10	<10	<10	<1,000	<	< 5	<10	<10
	8/97			<10	<10	<10	<10	<10	<1,0 00	<	45 <u>-</u>	<10	<10
	9/98			<10	<10	<10	<10	<10	<1,0 00	<	- 5"	<u>5 J</u>	<11
	2/99			<10	<10	<10	<10	<10	<1,000		0	<10	<10
	7/99			<10 J	<10 J	_ <10 J	<10 J	<10 J	<1,000	<	4.1.9	<10	<10 J
	3/00			<10	<10	<10	<10	<10	<1,0 00 J	<u>د</u>		<10	<10
	9/00			<10 J	<10 J	<10 J	<10 J	<10 J	<1,000 J	· < '	· · · J	<10	<10 J
	3/01	1		<10	<10	<10	<10	<10	<1,000	<u> </u>		<10	<10
	9/01	4		<10	<10	<10	<10	<10	<1,000	·	<:0	<10	<10
	4/02			<10	<5	<5	<5	<10	<1,000	· ·		<5	<5
	10/02				<10	<10	<10	<20 J	<1,000	< 1	<, 7	<5 ^L	<10
	5/03			<12	<5	<5	<5	<5	<1,00 0	· · · · ·	<.f	<5	<5
	10/03			<11	<5	<5	<5	<10	<1,000		5 J. ?	16 J	<5

OCTOBER 2005 BIANNUAL PROCESS CONTROL MONITORING REPORT
MCKESSON ENVIROSYSTEMS - FORMER BEAR STREET FACILITY, SYRACUSE, NEW 76

	Somolice	Service Screen Ele	V. (IC AMSL)	an a			Ethyl-			Tr		N,N-Dimethyl-	Methylene
Monitorary.Wollars	A Date	Тор	Bottom	Acetone	Benzene	Toluene	benzene	Xylene ^A	Methanol	1	· ine 👯		Se Chieride
MW-19	6/04			<25	<10	<10	<10	<20	<1,000	• 10	-5	<5	<10
(Cont'd.)	11/04			<25	<10	<10	<10	<20	<1,000	• 10	<5	<5	<10
	6/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	< 1.0	1	<1.1	<3.0
MW-20 ^F	11/89	329.85	320.85	<100	<1	<1	<1	<1	<1,000	<1	<10	<10	<1
	11/90	1		<100	<1	<1	<1	<3	<1,000	< 1	< 0	<10	<1
	11/91			<100	<1	<1	<1	<3	<1,000	<1	• 10	<10	<1
	11/92			<100	<1	<1	<1	<3	<1,000	<1	<10	<10	<1
MW-21 ^F	11/89	323.65	314.65	<100	<5	<1	<1	<1	<1,000	<1	<10	<10	<1
MW-22	11/89	368.55	359.55	<100	<1	<1	<1	<1	<1,000	e.'	<:0	<10	<1
MW-23S	12/94	364.1	354.1	<10	<5	<5	<5	<5	<200		< 5	<10	<5
	8/95			<1,000	<5	<5	<5	<5	<1,000	· .	• 5	<10	<10
	2/96			<1,000	<10	<10	<10	<10	<1,000		•.5	<10	<10
	8/96	1		<10	<10	<10	<10	<10	<1,000			<10	<10
	2/97			<10	<10	<10	<10	<10	<1,000	1		<10	<10
	8/97			12	<10	<10	<10	<10	<1,000	1		<10	<10
	9/98			<10	<10	<10	<10	<10	<1,000			1 7. J	<10
	2/99			<10	<10	<10	<10	<10	<1,000		3	10	<10 J
	6/99			<10 J	<10	<10	<10	<10	<1,0 00 J		· · j	2 J	<10 J
	7/99]		<10 J	<10	<10	<10	<10	<1,000			<10	<10
	3/00]		<10	<10	<10	<10	<10	<1,0 00 J			2 J -	<10
	9/00			<10 J	<10 J	<10 J	<10 J	<10 J	<1,000 J	e 11	ل ز ،	2 J	<10 J
	3/01			<10	<10	<10	<10	<10	<1,000		. 10	<10	<10
	9/01			<10	<10	<10	<10	<10	<1,000		<)	<10	<10
	4/02			<10	<5	<5	<5	<10	<1,000		- 5	<5	<5
	10/02			<25 J	<10	<10	<10	<20 J	<1,000	ł	ц. , ц.	<5 ^L	<10
	5/03			<62	<25	<25	<25	<50	380 J	1		<5	<25
	10/03			<12	<5	<5	<5	<10	<1,000			<5	<5
	6/04			<25	<10	<10	<10	<20	<1,000	1		<5	<10
	11/04							_	<1,000	1		<5	
	6/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	· .		<1.0	<3.0
MW-231	12/94	341.2	336.2	<10	<5	<5	<5	<5	< 2 00	1		<10	<5
	8/95	Į		<1,000	<5	<5	<5	<5	<1,000	<u>.</u>		<10	<10
	2/96		1	<1,000	<10	<10	<10	<10	<1,000			<10	<10
	8/96]	<10	<10	<10	<10	<10	<1,000			<10	<10
	2/97	4		<10	<10	<10	<10	<10	<1,000	•		<10	<10
L	8/97		1	<10	<10	<10	<10	<10	<1,000	<u> </u>	· • ·	<11	<10

OCTOBER 2005 BIANNUAL PROCESS CONTROL MONITORING REPORT
MCKESSON ENVIROSYSTEMS - FORMER BEAR STREET FACILITY, SYRACUSE, NEV

and the second second	Samolino	Screen Ele	VAIL AMSE)	Manual Anna	10.000	11. 19	Éthyl ²			Tr
With Monitoring Well	Date 🕅	Торт	Bottom	Acetone	Benzene	Toluene	benzene	Xylene ^A	Methanol	е
MW-231	9/98			<10	<10	<10	<10	<10	<1,000	< 1
(Cont'd.)	2/99			<10	<10	<10	<10	<10	<1,000	
	7/99			<10 J	<10	<10	<10	<10	<1,000	
	3/00			<10	<10	<10	<10	<10	<1 ,000 J	
	9/00			<10 J	<10 J	<10 J	<10 J	<10 J	<1 ,000 J	
	3/01			<10	<10	<10	<10	<10	<1,000	
	9/01			4 J	<10	<10	<10	2 J	<1,000	-:;
	4/02			<10	<5	<5	<5	<10	<1,000	-12
	10/02			<25 J	<10	<10	<10	<20 J	<1,000	41
	5/03			<12	<5	<5	<5	<5	<1,000	
	10/03			<12	<5	<5	<5	<10	<1,000	
	6/04			<25	<10	<10	<10	<20	<1, 000	L
	11/04			~	-				<1,000	<u> </u>
	6/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	
MW-24S	12/94	358.4	352.4	<10	<5	<5	<5	<5	<1 ,000	
(Replaced by MW-24SR)	8/95			<1,000	<5	<5	<5	<5	<1,000	
	2/96			<1,000	<10	<10	<10	<10	<1 ,000	
	2/97		1	<1,000	<10	<10	<10	<10	<1,000	1
	9/98			<10	<10	<10	<10	<10	<1,000	
	6/99			<10 J	<10	<10	<10	<10	<1,000 J	
	7/99			<10 J	<10	<10	<10	<10	<1,000	
	3/00	1		<10 J	<10 J	<10 J	<10 J	<10 J	<1,000 J	· · ·
	9/01			<10	<10	<10	<10	<10	<1,000	1 .
	6/02 ^K	1		NS	NS	NS	NS	NS	NS	
	10/02	1		<25 J	<10	<10	<10	<20 J	<1,000	
	10/03	1		<12	<5	<5	<5	<10	<1,0:.0	1
	6/04	1		<25	<10	<10	<10	<20	<1,000	
	11/04	1						-	<1,000	i ·
	6/05	1		<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000	· · · ·
	12/94	334.4	341.2	<10	<5	<5	<5	<5	<1,000	·
(Replaced by MW-24DR)	8/95			<1,000	<5	<5	<5	<5	<1,000	•
	2/96	1		<1,000	<10	<10	<10	<10	<1,000	
	2/97	1		<1,000	<10	<10	<10	<10	<1.000	
	9/98	1		<10	<10	<10	<10	<10	<1,000	·
	7/99	1		<10 J	<10 J	<10 J	<10 J	<10 J	<1,000	;
	9/00	1		<10 J	<10 J	<10 J	<10 J	<10 J	<1,000 J	· · · ·

11. e	N.N-Dimethyl- anlline	
- 199	<10	<10
	<10	<10 J
• 10	<10	<10
່ ນ	<10	<10
< 11	<10	<10 J
0	<10	<10
0	<10	<10
< 5	<5	2 J
· 5	<5	<10
- 5 - 5	<5	<5
• 5	<5	<5
: J 	<5	<10
	<5	
	<1.0	<3.0
	<10	<5
· ·	<10	<10
	<10	<10
	<10	<10
. '	<10	<10
- J	<10 J	<10 J
)	<10	<10
J	<10	<10 J
·	<10	<10
·	ND	NS
	<5 ^L	<10
7	<6	<5
	<5	<10
	<5	
	<1.0	<3.0
· · ·	<10	<5
	<10	<10
	<10	<10
	<10	<10
	<10	<10
· · · · · · · · · · · · · · · · · · ·	<10	<10 J
J	<10	<10 J
	·•	

· · _

OCTOBER 2005 BIANNUAL PROCESS CONTROL MONITORING REPORT McKESSON ENVIROSYSTEMS - FORMER BEAR STREET FACILITY, SYRACUSE, NE

11

Monito in carrille a		Top		Acetone	Benzene	Toluene	Ethyl- benzene	Xylene ^A	Methanol		ine	NN-Dimethyl-	
MW-24D	9/01	C 23 A S OP SA SA		<10	<10	<10 <10	<10	<10	<1,000		- 10	<10	<10
(Cont'd.)	6/02 ^K			NS	NS	NS	NS	NS	NS			ND	NS
· · /	10/02	1		<25 J	<10	<10	<10	<20 J	<1,000			<5 ^L	<10
	10/03	1		<12	<5	<5	<5	<10	<1,000		C.5 J	<5	<5
	11/04								<1,000		- 5	<5	-
	6/05			<5 J	<1	<5	<4	<5	<1,000		+.1	<1	<3
MW-25S	8/95	361.2	356.2	<1,000	<5	<5	<5	<5	<1,000		~ 5	0.7 J	<10
	10 / 95			NA	<5	<5	<5	<5	NA		5	<10	<5
	8/96			<10	<10	<10	<10	<10	<1,000		- 5	<10	<10
	8/97			<10	<10	<10	<10	<10	<1,000		۰5	<10	<10
	2/99			<10	<10	<10	<10	<10	<1,000		0	<10	<10 J
	6/99			<10 J	<10	<10	<10	<10	<1,000 J		1 J e 54	21 J	<10 J
	7/99			<10 J	<10	<10	<10	<10	<1,000			<10	<10
	3/00			<10	<10	<10	<10	<10	<1,000 J		5	<10	<10
	9/00			<10 J	<10 J	<10 J	<10 J	<10 J	<1,000 J			<10	<u><10 J</u>
	3/01			<10	<10	<10	<10	<10	<1,000			<10	<10
	9/01			<10	<10	<10	<10	<10	<1,000			<10	<10
	4/02			<10	<5	<5	<5	<10	<1,0 00			<5	<5
	10/02			<25	<10	<10	<10	<20	<1,0 00			<5 ^L	<10
	5/03			<12	<5	<5	<5	<5	<1,000			<5	<5
	11/03			<12	<5	<5	<5	<10	<1 ,000			<5	<5
	6/04			<25	<10	<10	<10	<20	<1.000		<u>5</u>	<5	<10
	11/04								<u><1,</u> 0ປ0		;;	<5	
	6/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000		1	<1.1	<3.0
MW-25D	8/95	349.55	344.55	<1,000	<5	<5	<5	<5	<1.0.			1 J	<5
	10/95			NA	<5	<5	<5	<5	NA			<10	<5
	8/96			15	<10	<10	<10	<10	<1,000			<10	<10
	8/97			<10	<10	<10	<10	<10	<1.0 C		·	<11	<10
	2/99			<10	<10	<10	<10	<10	<1,0%)	·		<10	<10 J
	3/00	4		<10	<10	<10	<10	<10	<1,060 J			<10	<10
	3/01	{		<10	<10	<10	<10	<10	<1,000			<10	<10
	4/02			<10	<5	<5	<5	<10	<1,0 0			<5	<5
	5/03			<12	<5	<5	<5	<5	<1,000		· · ·	<5	<5
	6/04			<25	<10	<10	<10	<20	<u><1,୦୦୦</u> .			<5	<10
	6/05	205	255.0	<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,0:0		' <u>)</u>	<1.0	<3.0
MVV-26	12/96	365	355.3	<10	<10	<10	<10	<10	<1,000			<10	<10

	Sampling	Screen Ele	v. (ft. AMISE)		n an in strationer		Ethýl-	决。 教教教室	
Mönitöring Well	Date	Тор	Bottom	Acetone	Benzene	Toluene	benzene	Xylene ^A	Methanoi
MW-27	9/98	362.5	354.5	23	. 3J	4 J	<10	3 J	<1,000
	7/99			<10 J	- 4J	2 J	3 J	8 J	<1,00
	3/00			<10	6 J	<10	8 J	2 J	<1.000 J
	9/00			<10 J	4 J	<10 J	3 J	1 J	<1,000 J
	3/01			<10	5 J 5	<10	5 J	2 J	<1,000
	9/01			<10	5 J	<10	2 J	<10	<1,000 J
	4/02			<18	7	11	12	26	<1,0 ⊖0
	10/02			9 J	3 J	<10	<10	<20	<1,0 <u>0</u> 0
	5/03			<12	8	.11	23	51	<1,000
	10/03			170	×5	<5	<5	3 J	<1,000
	6/04			23 J	5 J	4 J	2 J	6 J	<1,0.00
	11/04			<120 (28)	.≪50 (4 J)	<50 (2 J)	<50 (<10)	<100 (<20)	<1,000
	6/05			31 J	6.1	15	5.8	15	<1,000
MW-28	9/98	363.6	355.6	<5,000 J	<5,000	<5,000	<5,000	<5,000	2,200
	7/99			<500 J	<500	<500	<500	<500	<1,0.0
	3/00			<10,000	<10,000	<10,000	<10,000	<10,000	<1,000 J
	9/00			<1,000 J	<1,000 J	<1,000 J	<1,000 J	<1,000 J	<1,000 J
	3/01			<400	<400	<400	<400	<400	<1,010
	9/01			<400	<400	<400	<400	<400	<1,000 J
	4/02			<49	8	6	9	10 J	<1,0:0
	10/02			14 J	8 J	6 J	1 A. 11 A.	12 J	<1,0-0
	5/03			13	4 J 🔅	2 J	2 J	• 8 J • •	<1,010
	10/03			24	. 11	6	12	13 J	<1,000
	6/04			20 J	4 J	2 J	5 J	4 J	<1 ,000
	11/04			<120 (<25)	<50 (4 J)	<50 (<10)	<50 (5 J)	<100 (3 J)	190.3
	6/05			5.2 J	4.5	1. 2 J	4.6	3.9 J	<1,000
MW-29	9/98	362.9	345.9	<10	<10	<10	<10	2 J	<1,000
	2/99			7 J	<10	<10	<10	1 J	<1,010
	7/99			<10	<10	<10	<10	<10	<1.010
	3/00			<10	<10	<10	<10	<10	<1,000 J
	9/00			<10 J	<10 J	<10 J	<10 J	<10 J	<1,0) J
	3/01			<10	<10	<10	<10	<10	<1.0.0
	9/01		1	<10	<10	<10	<10	<10	<1,()
	4/02		1	<10	<5	<5	<5	<10	<1,(
	10/02		1	<25 J	<10	<10	<10	<20	<1,0 0

OCTOBER 2005 BIANNUAL PROCESS CONTROL MONITORING REPORT McKESSON ENVIROSYSTEMS - FORMER BEAR STREET FACILITY, SYRACUSE, NE

	18	anlline 👘	Chloride
2.	J ~	<10	<10
). "	<10	<10
•	0	1 J	<10
1.	J	2 J	1 J
2	0	2 J	<10
	d date	<10	<10
175,	0. DJ .	19 J	<5
2.7	3 D . Sh		60 JN
1.5	DJ	11	43
	D	<5	240 D
	D ~	20 J 14	<10
· .	: DJ)	<5	310 (490 D)
,	N.I.	<23	<3.0
۱	, ef	54	64,000 J
	ີ	40	39,000 D
**	5 .2	30	130,000 J
	J	<10	
-	⊃ :÷	7.J	5,900,B
•	5	<10	4,700.B
- 3	D	57	4,600 D
•	ר כ	R	<10
) J	3 J	52
	D	<5	<5
	-1	<5	<10
	J <*	<5	<50 (<10)
	. 1	<5.0	<3.0
		13	<10
		- 4 J	<10
1		145 434 Ja 24 -	<10
		6 J	<10
		Sec. 4 States	<10 J
		新新 科 和中心	<10
	11.	2J	<10
		9	<6
		R	4 JN

-NN-Dimethyl- Mathylene

OCTOBER 2005 BIANNUAL PROCESS CONTROL MONITORING REPORT McKESSON ENVIROSYSTEMS - FORMER BEAR STREET FACILITY, SYRACUSE, No

	Sampling	Screen Ele	V (IL-AMSL)				PEthyl- benzene	Xylene ^A	Methanol
MW-29	5/03	a sa sang mananggan Tang sang sang sang sang sang sang sang s	Street Street	<12	Serizerie <5	୍ଦ ୀ ତାଘିଶୀକ ୍ତ <5	<5	<10	<1,000
(Cont'd.)	10/03			<12	<5	<5	<5	<10	<1.000
(Obinta.)	6/04			<25	<10	<10	<10	<20	<1,000
	11/04			<120	<50	<50	<50	<100	420 J
	6/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1,000
MW-30	9/98	363.5	355.5	<10	<10	<10	<10	<10	<1,000
	2/99			7 J	<10	<10	<10	<10	<1,000
	7/99			<10	0.7 J	<10	<10	<10	<1.000
	3/00			<10	<10	<10	<10	<10	<1,000 J
	9/00			<10 J	<10 J	<10 J	<10 J	<10 J	<1,000 J
	3/01			<10	<10	<10	<10	<10	<1,000
	9/01			4 J	2 J	<10	<10	<10	<1,000 J
	4/02			<10	<5	<5	<5	<10	<1,000
	10/02]		<25 J	<10	<10	<10	<20 J	<1,000
	5/03			<62	<25	<25	<25	<50	<1,000
	10/03			<12	<5	<5	<5	<10	<1,000
	6/04			<25	<10	<10	<10	<20	<1,000
	11/04			<120	<50	<50	<50	<100	<1,000
	6/05			<5.0 J	0.3 J	<5.0	<4.0	<5.0	<1,000
MW-31	9/98	363.7	355.4	<10	12	<10	<10	<10	<1,000
	7/99			<10	16	<10	<10	<10	<1,000
	3/00			<10	16	<10	<10	<10	<1,000 J
	9/00			<10 J	or 12 J 🗇	<10 J	<10 J	<10 J	<1,000
	3/01			21	्रः 11 👒	<10	<10	<10	<1,000
	9/01			<10	or 14 📑	<10	<10	<10	<1,000 J
	4/02			<14	9 9	<5	<5	<10	<1,000
	10/02			<25	11 ~ 3	<10	<10	<20	<1,000
	5/03			<12	9	<5	<5	<10	<1,000
	10/03			1,200 D	13 🦣 🖓	<5	<5	<5	<1.000
	6/04			15 J	12 ^{mr/1}	<10	<10	<20	<1.000
	11/04			<25	9 J.	<10	<10	<20	<1,C
	6/05			<5.0 J	. U.	<5.0	<4.0	1.3 J	<1.CC
MW-32	9/98	364	356	<10	16	2 J	5 J	3 J	<1,000
	7/99			3 J	<≫-14	2 J	4 J	<10	<1,C:s.
	3/00			<10	5 J	<10	<10	<10	<1,000 J
	9/00			<10 J	😳 12 J 🕤	<10 J	<10 J	<10 J	<1,000
	3/01			<10	.⊴5 J –	<10	<10	<10	<1,000

	N,N-Oimethyl- anlline	ີ່ ເພີ່ມທີ່ເຫຼົາ
2	1 J	<3
	<5	<5
	<5	<10
	<5	<50
	<1.0	<3.0
	<1.0	<10
	2 J	<10
	1J	<10
	1 J	4J
<u>- 12</u>	2 J	4 J 2 J
		<10
		<10
	1 J	
	210	<5
	R	<10
	0.6 J	~8J
_	<5	<5
	<5	<10
	<5	<50
	<1.0	<3.0
,	envir 4 Jaar – E	<10
<u></u>	ನಿ <i>ತ್</i> ೇತ್ರೆ. ಇನ್ಸ್	<10
	1917년 4 J 지도 - 전	<10
	6 J	<10 J
	5.5 J.	<10
	- 3 J.	<10
	21	<5
	1 J	<10
	3 J	<5
	<5	<5
	<5	<10
	<5	<10
		<3.0
<u>)</u> ·	° ≪ 4 0 –	<10
		<10
	<10	<10
;	<10	<10 J
) .	2 J	<10

-

- . .

. ...

OCTOBER 2005 BIANNUAL PROCESS CONTROL MONITORING REPORT MCKESSON ENVIROSYSTEMS - FORMER BEAR STREET FACILITY, SYRACUS

.

a second	Sampling	Servinel	V (IC AMSL)	r des services au	are of here		Ethyl-		
Monitoringavel	Date	ing top	Bottom	Acetone	Benzene	Toluene	benzene	× Xylene ^A	Methano
MW-32	9/01			<10	10.	<10	<10	<10	<1,000 J
(Cont'd.)	4/02			<15	4 J	<5	<5	<10	<1.000
	10/02			<25	4 J	<10	<10	<20	<1,000
	5/03			<12	<5	<5	<5	<10	<1,000
	10/03			20	2 J	<5	<5	<10	<1,000
	6/04			6 J	1 J	<10	<10	<20	<1,000
	11/04			<25	<10	<10	<10	<20	<1,000
	6/05			<5.0 J	1.0	<5.0	<4.0	<5.0	<1,000
MW-33	9/98	344.1	356 1	<10	<10	<10	<10	<10	<1,000
	2/99			<10	<10	<10	<10	<10	<1,000
	7/99			5 J	2 J	0.7 J	<10	<10	<1,000
	3/00			<10 J	<10	<10	<10	<10	<1,0 00 J
	9/00			45 J	····4.J	1 J	<10 J	<10 J	<1,000
	3/01			17 J	<20	<20	<20	<20	<1,000
	9/01			21	5 J	<10	<10	<10	<1,000
	4/02			<18	3 J	<5	<5	<10	<1,000
	10/02			11 J	.4.J	<10	<10	<20	<1 000
	5/03			88	13	<5	<5	<10	<1,600
	10/03			22	2 J	<5	<5	<10	<1.000
	6/04			9 J	12 J	<10 J	<10 J	<20 J	<1,000
	11/04								<1,000
	6/05			<5.0 J	1 - 11	1.0 J	<4.0	<5.0	<1,000
MW-34	9/98	362.7	354.7	<10	<10	<10	<10	<10	<1,000
	7/99			2 J	0.9 J	1 J	<10	<10	<1,000
	3/00			<10 J	1 J	2 J	<10	<10	<1,000
	9/00			<10 J	<10 J	<10 J	<10 J	<10 J	<1,000
	3/01			<10	<10	2 J	<10	2 J	<1,000
	9 /01			7 J	2 J	2 J	<10	2 J	<1,000
	4/02			<32	<5	<5	<5	<10	<1,00
	10/02			37 J	<10	<10	<10	<20	<1,0
	5/03			16	<5	<5	<5	<10	<1,0
	10/03			9 J	<5	<5	<5	<10	<1,
	6/04			24 J	<10	<10	<10	<20	<1
	11/04			<25	<10	<10	<10	<20	1 80 J
	6/05			5.6 J	0.7 J	0.9 J	<4.0	1.2 J	<1,00

	NN-Dimethyl- aniline	Chloride.
\mathbf{D}_{ij}	signed 2 J	<10
	11 S	<5
	R	<10
	0.7 J	<5
	<5	<5
	<5	<10
	<5	<10
	<1.0	<3.0
74	₩4, 6'J ``	<10
5.22	6 .J	<10
9	* 83	<23
	7.J. K	A
·	- 23	330 DJ
	16	370 B
		<18
	215 T	19
	(\$ 3 3 3 €	4 J
· · ·	35 J	2,800 D
	<6	<5
<u></u>		<10 J
	53	
<u></u>	<10	<3.0
	<10	<10
4.	ີ	<10
	3J	<10
		<10 J
-	5 J	<10
<u> </u>	3 J	<10
	****15	<5
-	2.J.	<10
	3J	<5
	<5	<5
	<5	<10
	<5	<10
	2.5	<3.0

_

-

OCTOBER 2005 BIANNUAL PROCESS CONTROL MONITORING REPORTS MCKESSON ENVIROSYSTEMS - FORMER BEAR STREET FACILITY, SYRACU

	Simolina	ScreentEle	C (IC AMSL)	© for a conce		× * #0+	Ethyl-	Sector Sector	
Monitoring Well	- Date	Top ****		Acetone			benzene	Xylene*	Met
MW-35	9/98	363	355	<10	<10	<10	<10	<10	<1,005
	7/99			<10	0.7 J	<10	<10	<10	<1 dC
	3/00	1		<10 J	<10	<10	<10	<10	<1,001
	9/00	1		<10 J	<10 J	<10 J	<10 J	<10 J	<1,00.
	3/01			<10	<10	<10	<10	<10	<1,000
	9/01			<10	<10	<10	<10	<10	<1,000 .
	4/02			<13	<5	<5	<5	<10	<1,00%
	10/02			<25	<10	<10	<10	<20	<1 D
	5/03			<12	<5	<5	<5	<10	<1,0:
	10/03			5 J	<5	<5	<5	<10	<1
	6/04			<25	<10	<10	<10	<20	< 1, 1, 1,
	11/04			<25	<10	<10	<10	<20	240
	6/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1
MW-36	9/98	363 .6	355.6	<10	<10	<10	<10	<10	< 1
	2/99			<10	<10	<10	<10	<10	
	7 <i>1</i> 99			8J	0.8 J	<10	<10	<10	
	3/00			<10 J	<10	<10	<10	<10	<1,00
	9/00			5 J	<10 J	<10 J	<10 J	<10 J	<1.01
	3/01			<10	<10	<10	<10	<10	<1
	9/01			54	<10	<10	<10	<10	<1,0
	4/02			<20	<5	<5	<5	<10	<1,000
	10/02			12 J	<10	<10	<10	<20	<1
	5/03			9 J	<5	<5	<5	<10	<1/2
	10/03			580 D	<5	<5	<5	<10	<1,2 .
	6/04			22 J	<10 J	<10 J	<10 J	<20 J	< 1
	11/04			13 J	<10	<10	<10	<20	< 1
	6/05			24 J	2.1	<5.0	<4.0	1.0 J	<1
TW-01	12/96	365.1	355.4	<10	···· 82	4 J	6 J	4 J	<1
	9/98			<10	15 15	<10	4 J	<10	< `
	2/99			<10	24	2 J	2 J	2 J	< '
	7/99			<10	2 ~16 C	1 J	3 J	<10	< ;
	3/00	1		<10	16	<10	<10	<10	<
	9/00			<10 J	1 ,1 J	<10 J	<10 J	<10 J	< '
	3/ 01			<10	5 J	<10	<10	<10	< ;
	9/01			<10		<10	<10	<10	< 1
	4/02			<14	3,J	<5	<5	<10	< 1

900 -	NN-Dimethyl- aniline	Methylenie Chloride
	-5 J	<10
	4J	<10
	2 J	<10
	3J	<10 J
	<10	<10
	2 J	<10
	4. <u>*</u> * ¥ J	<5
	R	<10
	<100	<5
	<5	<5
÷.		<10
	<5	<10
	<1.0	<3.0
-	6 J	<10
		<10
	<10	<10
	* 7 J	<10
	6 J	<5
	<10	<10
		<10
	41-41	<5
	745 2J	<10
	2017 :4 0	<5
	<5	<5
		<10 J
-	<5	<10
	<5.4	<3.0
	13	4 J
	4 1%	<10
	5 J	<10
	and a start	<10
_	4J.	<10
	2 ¥ 2 J	<10 J
	3J	<10
	21	<10
		<5

OCTOBER 2005 BIANNUAL PROCESS CONTROL MONITORING RE McKESSON ENVIROSYSTEMS - FORMER BEAR STREET FACILITY, SYRACU

	usumpline:	Contraction Ele	V. (fe AMSL)			Sec. Sec.	Ethyl-		
Monitoring Well		्र ग्रेनिक:		Acetone	Benzene	Toluene	benzene	Xylene ^A	Meth
TW-01	10/02			<25	j, 7∶J –	<10	<10	<20	<1,0.
(Cont'd.)	5/03			<12	SEX.7	<5	<5	<10	<1,(+,-
	10/03			<12	3 > 6	<5	<5	<10	<1.0.
	6/04			6 J	3 J.~	<10	<10	<20	<1.0
	11/04			<25	2 J 🖓	<10	<10	<20	< 1,0
	6/05			<5.0 J	1.8	<5.0	<4.0	<5.0	<1.0
TW-02 ^F	12/96	363.3	353.3	53	10	. 77	ia⊶ 16×	65	<1 C
(Replaced by TW-02R) ^N	9/98			<500 J	<500 J	<500 J	<500 J	53,000	5 ,0.
	2/99			<1,000	<1,000	190 J	<1,000	150 J	14, 000
	7/99			630	37 A	⇒240 J	31	150	< ` . `
	3/00			<1,000 J	<1,000	- 160 J	<1,000	240 J	<1
	9/00			190 Jees	28 J	:: : 95 J	35 J	160 J	< '
	3/01			* 81	.	68	28	130	<
	9/01				25	70	A. 31	140	<1.01
	4/02			240	19 A.S.	65	23	96	< i .
	10/02			<u>, s</u> f10 J 🔅	÷ 15	19	23	65	<1,1
	5/03			240	30	130	49	226	<1
	10/03			68	28	75 J ≥	<5	<10	<1 ::
	6/04			140 J	: - 19 J 🔅	39 J	31 J	111 J	<1
TW-02RR	11/04	363.3	353.3	18 J	- 4 J	5 8 J	4 J	16 J	<1.
	6/05			7.2 J	3.6	2.1 J	3.6 J	9.6	<1.c.
PZ-4D	11/89	350.8	345.9	<100	<1	<1	<1	<1	<1
	11/90			<100	<1	<1	<1	<3	<1,.
	11/91			<100	<1	<1	<1	<3	<1
	11/92			<100	<1	<1	<1	<3	<1
	8/95			<1,000	<5	<5	<5	<5	<1
	10/95			NA	<5	<5	<5	<5	· ·
	8/96			<10	<10	<10	<10	<10	<1.
	8/97			<10	<10	<10	<10	<10	< :
	2/99			<10	<10	<10	<10	<10	<u> </u>
	3/00			<10	<10	<10	<10	<10	<1.
	3/01			<10	<10	<10	<10	<u><</u> 10	< ; ;
	4/02			<10	<5	<5	<5	<10	<
	5/03			<12	<5	<5	<5	<5	< :
	6/04			<25	<10	<10	<10	<20	<'
	6/05			<5.0 J	<1.0	<5.0	<4.0	<5 0	< , , ,

N,N-Dimethyl- aniline	ee Meunylau - Chlonice
R	<10
1 J	<5
<5	<5
<5	<10
<5	<10
<1.0	<3.0
3,920 D	42,449 D
- 61,000 D	86,000 D
7,900	14,000 B
) 🔥 3,500 J	9,700 D
. 3,900	13,000
<10,000	390 J
650 J	400 D
- 32	48 B
<5,300	14*
- 10 J	<10
230	97
<260	91
<5,200	4 J
<5	<10
<50	<3.0
<10	<1
<10	<1
<10	<1
<10	<1
0.8 J	<5
<10	<5
<10	<10
<12	<10
<10	<10 J
<10	<10
<10	<10
<5	<5
<5	<5
<5	<10
<1.0	<3.0

OCTOBER 2005 BIANNUAL PROCESS CONTROL MONITORING & McKESSON ENVIROSYSTEMS - FORMER BEAR STREET FACILITY, SYRAC

	Samplinos	A Deservined	v?(ic.AMSC)				Ethyl-		200
	Date	Top: 4	Bottom 🔬	Acetone	Benzene	Toluene		Xylene ^A	→ Me:
PZ-4S	11/89	362.79	357.88	<100	<1	<1	<1	<1	<1,0
	11/90			<100	<1	<1	<1	<1	<1 3
	11/91			<100	<1	<1	<1	<1	<1.0
	11/92			<100	<1	<1	<1	<1	<1,:
	8/95			<1,000	<5	<5	<5	<5	<1 (
	10/95			NA	<5	<5	<5	<5	N
	8/96			<10	<10	<10	<10	<10	<1 1
	8/97			<10	<10	<10	<10	<10	<1.1
	2/99			<10	<10	<10	<10	<10	<1,
	6/99			<10 J	<10	<10	<10	<10	< ;
	3/00			<10	<10	<10	<10	<10	< .
	3/01			<10	<10	<10	<10	<10	< ``
	4/02			<14	<5	<5	<5	<10	<:
	10/02			<25 J	<10	<10	<10	<20 J	<1
	5/03			<12	<5	<5	<5	<5	< ∶
	6/04			<25	<10	<10	<10	<20	< ;
	6/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	< 1
PZ-5D	11/89	353.5	348.6	<100	<1	<1	<1	<1	< '
	12/94			<10	<5	<5	<5	<5	
	2/96			<1,000	<10	<10	<10	<10	< ;
	2/97			<1,000	<10	<10	<10	<10	< 1
	9/98			<10	<10	<10	<10	<10	< .
	7/99			<10 J	<10 J	<10 J	<10 J	<10 J	<^_
	9/00			<10 J	<10 J	<10 J	<10 J	<10 J	< 1
	9/01			<10	<10	<10	<10	<10	<
	10/02			<25 J	<10	<10	<10	<20 J	< ;
	10/03			<12	<5	<5	<5	<10	<
	6/04			<25	<10	<10	<10	<20	< 1
	11/04			-				-	<
	6/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	<1
PZ-5S	11/89	361.42	356.52	<100	<1	<1	<1	<1	< 1
	12/94		1	<10	<5	<5	<5	<5	
	2/96		1	<1,000	<10	<10	<10	<10	<
	2/97			5 J	<10	<10	<10	<10	<
	9/98			<10	<10	<10	<10	<10	<:
	6/99			<10 J	<10	<10	<10	<10	< .

÷ т	aniline	-Chloride
··· -	<10	<1
Ē.	<10	<1
	<10	<1
	<10	<1
	<10	<18
	NA	<5
1	<10	<10
	<10	<10
	<10	<10
	<10 J	<10 J
-:-	<10	<10
	3 J	<10
_/ .	<5 (<5) ^ĸ	<5
	<5 ^L	<10
	<5	<5
	<5	<10
	<1.0	<3.0
	<10	<1
	<10	<5
	<10	<10
	<10	<10
_	<10	<12
	<10	<10 J
	<10	<10 J
	<10	<10
	<5 ^L	<10
	<5	<5
	<5	<10
	<5	
-	<1.0	<3.0
	<11	<1
	<10	<5
	<10	<10
	<10	<10
	<10	<12
	<10 J	< 10 J

ŝ

N.N-Dimethyl-

OCTOBER 2005 BIANNUAL PROCESS CONTROL MONITORING and McKESSON ENVIROSYSTEMS - FORMER BEAR STREET FACILITY, SYRA

Monitoring Well	Sampling		v (he amse)	1 215730	**************************************		2 Ethyl-		
A Monitoring Well	Date		Bottom		Benzene	Toluene	benzene	Xylene	M .
PZ-5S	7/99			<10 J	<10 J	<10 J	<10 J	<10 J	<
(Cont'd.)	9/00			<10 J	<10 J	<10 J	<10 J	<10 J	<
	9/01			7 J	<10	<10	<10	<10	<
	10/02			<25 J	<10	<10	<10	<20 J	<
	10//03			<12	<5	<5	<5	<10	<
	11/04			-				-	<
	6/05			<5.0 J	<1.0	<5.0	<4.0	<5.0	
PZ-8S ^G	9/98	362.6	357.7	< 10	<10	<10	<10	<10	<
PZ-11D ^C	11/89	352.09	347.19	<100	<1	<1	<1	<1	<
PZ-11S ^C	11/89	359.09	354,19	<100	<1	<1	<1	<1	٠.
PZ-12D ^C	11/89	350	345.1	<100	<1	<1	<1	<1	۰.
	11/90			<100	<1	<1	<1	<1	<
	11/91			<100	<1	<1	<1	<1	
	11/92			<100	<1	<1	<1	<1	<
PZ-12S ^C	11/89	360	355.1	< 100	<1	<1	<1	<1	<u> </u>
	11/90			<100	<1	<1	<1	<3	<
	11/91			<100	<1	<1	<1	<3	
	11/92			<100	<1	<1	<1	<3	<
PZ-13D ^F	11/89	349.4	344.4	<100	<1	<1	<1	<1	<
PZ-13SF	11/89	359.5	354.5	< 100	<1	2	<1	2	<
SDEC Groundwater Stand	ards (Part 700))		50	1	5	5	5	

N,N-Dimetnyli. anlline	Chloride ***					
<10	<10 J					
<10	<10 J					
<10	<10					
<5 ^L	<10					
<5	<5					
<5						
<1.1	<3.0					
<10	<10					
<11	<1					
<11	<1					
<53	<1					
<10	<1					
<10	<1					
<10	<1					
<10	<1					
<10	<1					
<10	5					
<10	<1					
<11	<1					
<11	<1					
1	5					

1

 $\hat{}$

OCTOBER 2005 BIANNUAL PROCESS CONTROL MONITORING REF つか McKESSON ENVIROSYSTEMS - FORMER BEAR STREET FACILITY, SYRACU: E,

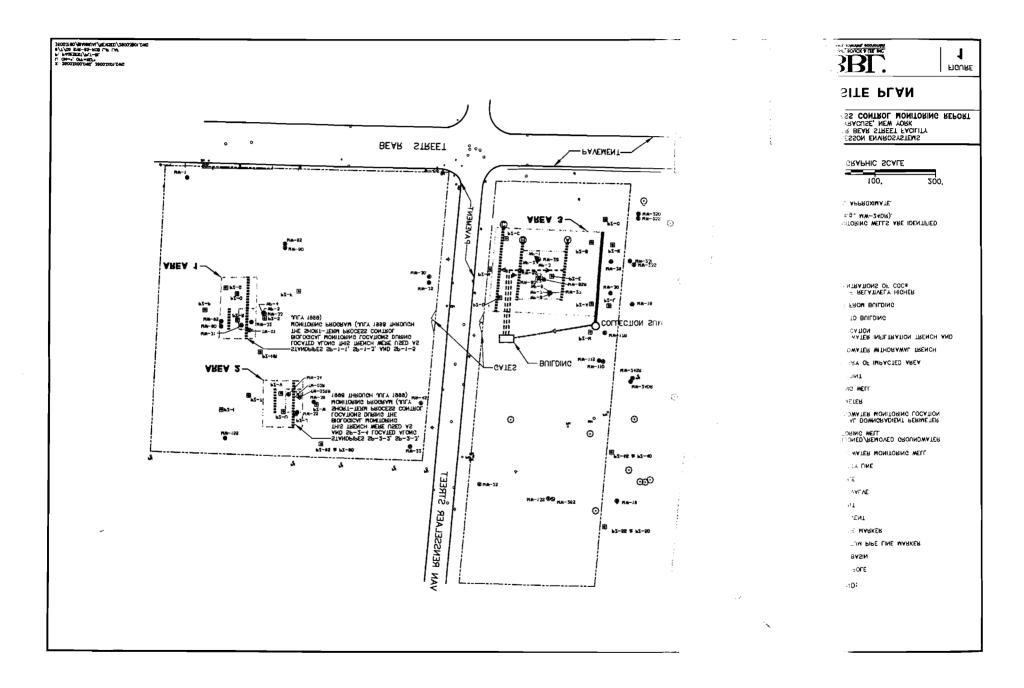
General Notes:

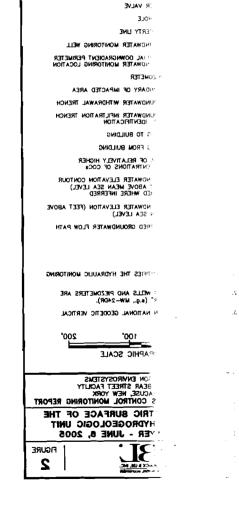
- 1. Concentrations are presented in micrograms per liter (ug/L), which is equivalent to parts per billion (ppb).
- 2. Compounds detected are indicated by bold-faced type.
- 3. Detections exceeding New York State Department of Environmental Conservation (NYSDEC) Groundwater Standards (Part 700) are indicated by shading.
- 4. Replacement wells for MW-6, MW-8, MW-9, MW-10, MW-11, and MW-12D were installed 8/95.
- 5. Replacement wells for MW-17, MW-24S, MW-24D, and TW-02 were installed 11/97 12/97.

6.	The laboratory analytical results for the duplicate sample collected from monitoring well MW-23S during the 7/99 sampling event, indicated the presence of metric and a second statement of the transmission of transmission of the transmission of the transmission of the transmission of transmission o		•		 Dected in the original sample, the
	duplicate results were determined, based on the results of the data validation process, to be unacceptable. Furthermore, methanol has not been previously determed is			c	 . onitoring well. Accordingly, the
	detection of methanol appears to be the result of a laboratory error and not representative of actual groundwater quality in the vicinity of monitoring well MW-23S.				
7.	N.N-dimethylaniline data for 10/02 sampling event for MW-1, MW-3S, MW-28, MW-29, MW-32, MW-35, and TW-01 were rejected due to matrix spike and matrix s	,			and N,N-dimethylaniline data
	for 10/02 sampling event for MW-30 were rejected due to matrix spike and matrix spike duplicate recoveries below control limits. These wells and plezometers are		1		.am pled ,
8.	Aniline and N,N-dimethylariline results of nondetect for the 6/04 sampling event at MW-18 were rejected due to the deviation from a surrogate recovery that was to the second state of the deviation from a surrogate recovery that was to the second state of the deviation from a surrogate recovery that was to the deviation from a surrogate recovery that was to the deviation from a surrogate recovery that was to the deviation from a surrogate recovery that was to the deviation from a surrogate recovery that was to the deviation from a surrogate recovery that was to the deviation from a surrogate recovery that was to the deviation from a surrogate recovery that was to the deviation from a surrogate recovery that was to the deviation from the deviation from a surrogate recovery that was to the deviation from the deviation from a surrogate recovery that was to the deviation from the deviation from a surrogate recovery that was to the deviation from the deviating from the devi				
9.	Volatile organic compound (VOC) results for the 11/04 sampling event were inadvertently lost due to laboratory equipment failure for monitoring locations MW-1, 50-5		12		-V-24SR, MW-25, MW-33, PZ-
	5D, and PZ-SS. In addition, the initial VOC results were also interievable due to laboratory equipment failure for monitoring locations MW-27, MW-28, MW-29, and and an additional sectors MW-27, MW-28, MW-29, and additional sectors additional sectors and additional sectors and additional sectors additionadditional sectors additingentes additional sectors additionad				of these groundwater samples
	were valid, but the detection limits were high. The duplicate sample VOC results for MW-27 and MW-28 have lower detection limits and are presented in parenthe as a		1.1	4.5	
S	uperscript Notes;				
	Data presented is total xytenes (m- and p-xytenes and o-xytenes). For the 1995 data, the listed quantitation limit applies to the analyses conducted for m- and p-xytenes .				
C,	Welts/piezometers MW-6, MW-7, MW-8, MW-9, MW-10, MW-11, MW-12D, PZ-11D, PZ-11D, PZ-12D, and PZ-12S were abandoned during OU No.1 soil remediation acc				
	= Wels/piezomelens MW-5, MW-14D, MW-16D, MW-17, MW-20, MW-21, MW-24S, MW-24D, TW-02, PZ-13S, and PZ-13D were abandoned 11/97 - 1/98.				
	 Piezometer PZ-8S was decommissioned 8/2000. 				
	MW-18, MW-19, MW-231, MW-233, MW-240R, MW-24SR, MW-28, PZ-5S, and PZ-5D wells/piezometers were resampled for antiline during 12/98, because the 9//				
	Because aniline was detected at monitoring well MW-35 at a concentration of 690 ug/l during the September 2001 sampling event, this well was resampled for anil or a		- -		MW-3S during the November 8.
-	2001 resampling event at a concentration of 69 up.		-		a start-bo during the revenuer of
к,	MW-17R, MW-18, and PZ-4S wells/piezometers were resampled for aniline and N,N-dimethylaniline on June 18, 2002 because N,N-dimethylaniline and/or aniline				t. The results of this additional
	sampling event are shown in parenthesis. MW-24SR and MW-24DR were also sampled for aniline and N.Ndmethylaniline on June 18, 2002, because N.N-d.				perimeter monitoring locations
	during the April 2002 sampling event.				·,
٤,	MW-17R, MW-18, MW-19, MW-23S, MW-23I, MW-24DR, MW-24SR, MW-25S, PZ-4S, PZ-5S, and PZ-5D wells/peizometers were resampled for aniline and N.t.			s.	its were rejected due to matrix
	spike and matrix spike duplicate recoveries below control limits. These wells and plezometers are perimeter monitoring locations.				
M	= MW-24SR and PZ-5D well and plezometer were sampled during the June 2004 sampling event because N.N-dimethylaniline and/or antiline was detected at nearby				
	Wells MW-8D, and TW-02R were abandoned in 8/04 and replacement wells MW-8SR and TW-02RR were installed in 8/04.				

Abbreviations:

AMSL = Above Mean Sea Level (NGVD of 1929)

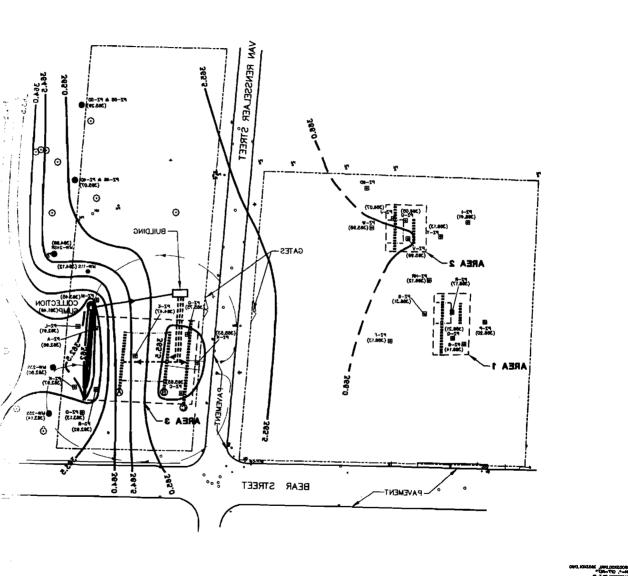

- NA Not available.
- ND Not detected.
- NS Not sampled.


Analytical Qualifiers:

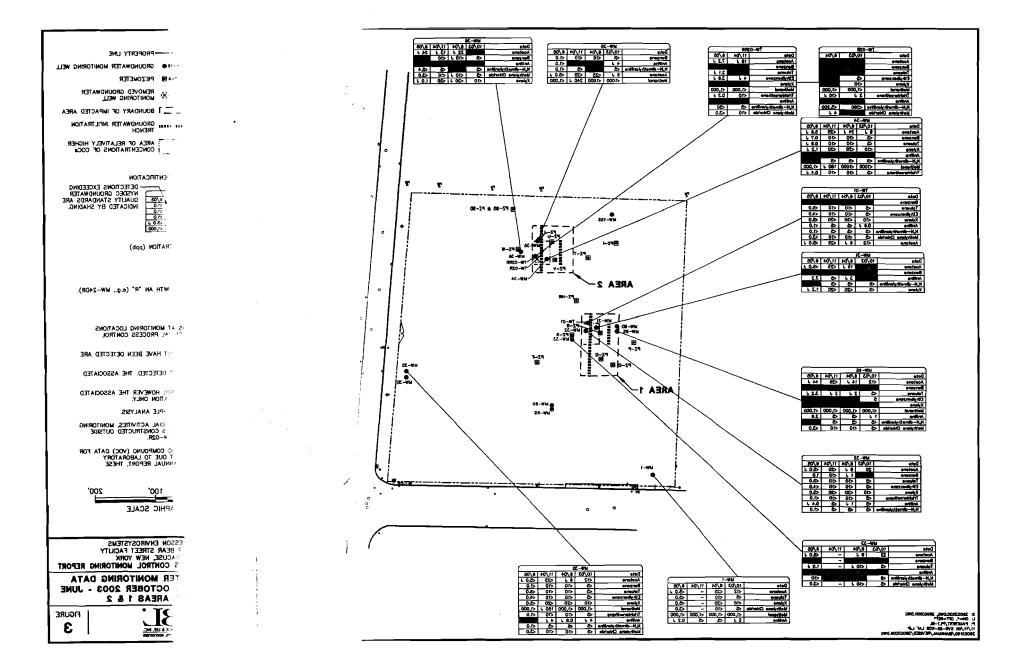
- D = Indicates the presence of a compound in a secondary dilution analysis.
- J = The compound was positively identified; however, the numerical value is an estimated concentration only.
- E = The compound was quantitated above the calibration range,
- JN = The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is as a sub-
- B = The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- < = Compound was not detected at the listed quantitation limit.
- R = The sample results were rejected.
- --= Samples results are not available (See Note 9.)

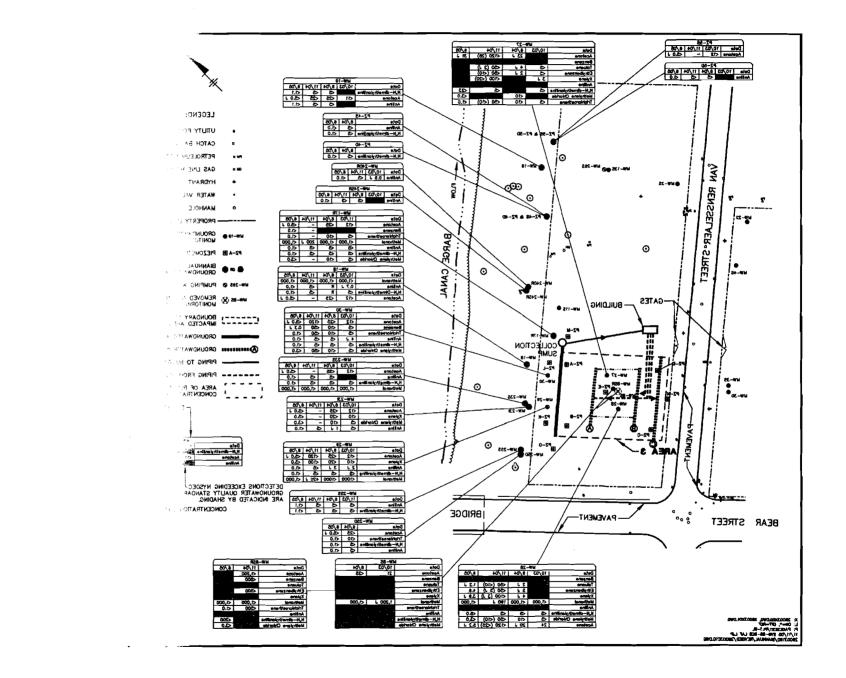
Figures

1.


:ON3C JUO9 YT

THAS


H BASIN


UNE MARKER THEN R.

OLEUM PIPE LINE MARKER

33000.0400, 2803300.0700 4, OFF #807 22237/17-56 99 \$76-80-40 103 LJ 99 \$76-80-80 103 LJ 90 \$76-80-80

S ARE IDENTIFIED .(9

-ROXIMATE.

APPROXIMATE.

NCENTRATIONS AT MONITORING CIED AREAS AND THE CHEMICAL ING LOCATIONS.

DETECTED OR HAVE BEEN DETECTED 380

LEO FOR BUT NOT DETECTED. THE

SATIVELY IDENTIFIED; HOWEVER THE

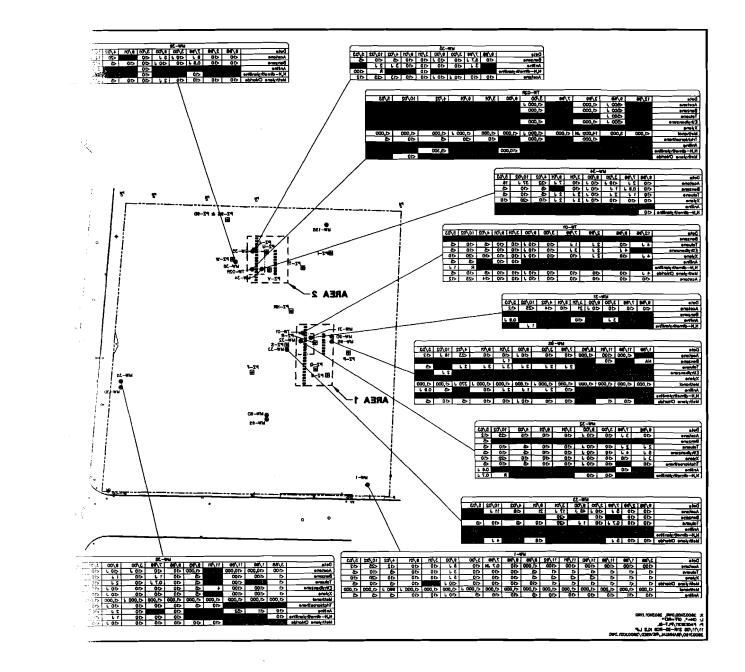
SED ON DILUTED SAMPLE ANALYSIS. *AS REJECTED.

ANILINE AND N,N-DIMETHYLANILINE ECTED DUE TO THE DEVATION FROM LOW 10 PERCENT. THIS MONITORING

SUPPLEMENTAL REMEDIAL ACTIVITIES, MAS REMOVED AND MW-BSR WAS T OF THE SOIL REMOVAL AREA IN

VOLATLE ORGANIC COMPOUND (VOC) MW-231, MW-235, MW-240R, AND 92-52 WERE INADVERTENTLY 50 INPERT FALLURE, AS DETAILED IN 50 MONITORING WELLS WERE NOT

VOC INITIAL DATA FOR WW-27, WERE INADVERTENTY (LOST DUE TO URE, HOMEVERT, VALID DATA WAS DILLITIONS OF THESE SAMPLES, ION LIMITS, THE VOC RESULTS TE SAMPLES COLLECTED AT WW-27, VESS E3E3.


> 2001 1001 IC SCALE

SON ENVIROSYSTEMS EAR STREET FACILITY CUSE, NEW YORK CONTROL MONITORING REPORT R MONITORING DATA R OCTOBER 2003 -2005 AREA 3 JAN BUAY FIGURE 4

Attachment A

Groundwater Monitoring Data Summary Figures for 1988 – May 2003

-SAMPLE IDENTIFICATION

------PROPERTY LINE

• B PIEZOMETER

TT T BOUNDARY OF IMPACTED AREA

GROUNDWATER INFILTRATION

AREA OF RELATIVELY HIGHER

I CONCENTRATIONS OF COC.

0 3/01 8/01 4/02 16/02 5/03 1 00 00 6 00 6 0015 10 00 03 03 03 03

UNCENTRATION (ppb) "H AN "R" (e.g., MW-240R).

AT MONITORING LOCATIONS

HIS FIGURE.

T DETECTED. THE ASSOCIATED

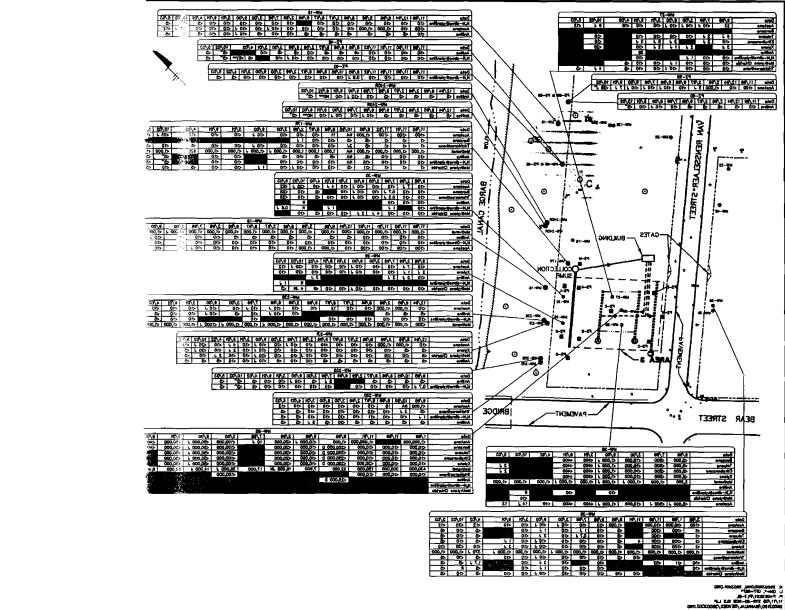
ED; HOWEVER THE ASSOCIATED TOW ONLY.

PPLE ANALYSIS.

A DONS EXCEED THE

SAMPLE AS WELL AS IN ITS

A COMPOUND FOR WHICH


SUALITY STANDARDS ARE

1 TO ANILINE DETECTION ENTRATION OF 690 PPB. MCENTRATION OF 69 PPB.

NILINE DATA FOR WW-1, Rejected oue to watrix spike Flow control limits. These

100 200' SRAPHIC SCALE SON ENVIROSYSTEMS ACUSE, NEW YORK SCONTROL MONITORING REPORT ER MONITORING DATA **DR 1988 - MAY 2003** EAS 1 & 2 ٦£ FIGURE

T CX & UR, NC.

LOW DUPNE

OHELING OF SHEET ----

SHOLLING MORE SHORE - -

TANK

JANKO9114

UNITED BLAR ZAW

120'

APHIC SCALE

ENVROSYSTEMS

VR STREET FACILITY SEL NEW YORK

REA 3

R

A LEE INC.

C PRESENTED ON THIS FIGURE.

.....

· FOCA OF RELATIVELY HIGHER

10/95

AH 000,0

SAMA WE HAWARD WITH WITH A WORK AND

ADMENT MORE THE STRANDWY CO.

NOTATIVITIES 3 PART-

- NO YRADH IN

- TO FOR BUT NOT DETICATED, THE COMPOUND CLAMITERD, THE *5 FOSTIVELY IDENTRIEDE HONEVER THE VALUE IS AN ESTIMATED CONCENTRATION ONLY.

* ENTRATIONS AT MONITURING LOCATIONS */0 THE CHEMICAL PROCESS CONTROL

22Y MANA LIPINAE DETUND NO 03

S BEEN FOUND IN THE SAMPLE AS WELL AS IN

S THE PRESENCE OF A COMPOLING FOR

- DEC GROUNDWATER QUALITY STANDARDS ARE

where on 11/8/01 due to angule detection $\mathcal{A} \in \mathcal{E}(\mathcal{A})$ is a scalar to a concentration of the press $\mathcal{H}(\mathcal{A})$ is the concentration of the press $\mathcal{H}(\mathcal{A})$ is a scalar transition of the press $\mathcal{H}(\mathcal{A})$

EVT N.A-DENCTHYLANDLINE DATA FOR HIT-33, The To/O2 Slameling Creat and hit -34 - A for him-30 here related out to hather i duplotate recompary below the related s word hot resampled.

CONTROL MONITORING REPORT T MONITORING DATA 7 1988 - MAY 2003

240'

FIGURE

2

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATION Inactive Hazardous Waste Disposal Report

anty was used since the 1950s as a secure distribution terminal for jaca ے، مصفر راغیار رومور**لر رو**مشق کر ا etc. In 1973, the facility was converted to a chemical distribution terminal. The storage tanan were used for temporary staging of spent solvents that were acquired for recycling, for accycled solvents that were returned by customers, and also for storing mixtures and by-products. The staging was associated with solvent recycling operations through-out the northeast. During the time the facility was in operation, liquids were spilled on the ground and the tanks leaked. Evidence of contaminated soil from spilled liquids was noted by DEC personnel during site inspections. Soil samples taken in September 1984 revealed the presence of hazardous waste contaminants. Additional soil sampling done by the Company also revealed contamination. Groundwater contamination has also been documented, and contaminant levels are in excess of Part 703 standards. A Consent Order (CO) was negotiated with the Company by the DEC for the soil and groundwater remediation. The old storage tanks on the property have been cleaned and removed. The distribution lines were removed in 1988. A PRP Remedial Investigation/Feasibility Study (RI/FS) was completed in 1993. A successful field trial of bioremediation was conducted in 1993. A Record of Decision (ROD) was issued on March 18, 1994. and called for bioremediation of the unsaturated soils in the area referred to as Operable Unit-1 (OU-1). The bioremediation successfully treated an estimated 20,000 cubic yards of contaminated soil. The saturated soils and groundwater at the site have been designated as OU-2. A PRP funded Feasibility Study was completed in 1996. A Record of Decision (ROD) was signed on March 15, 1997. Design and construction of an anaerobic bioremediation system was completed in early 1998 and is in operation. Long-term site management is in place. Supplemental remedial activities have been submitted to the Department to address various locations of higher concentrations of COCs and are currently under review.

Materials Disposed at Site

SPENT SOLVENTS (INCLUDING BTX COMPOUNDS) BASE/NEUTRALS

20,000 CUBIC YARDS OF CONTAMINATED SOIL

Analytical Data Available for : Groundwater, Soil

Applicable Standards Exceeded for: Groundwater

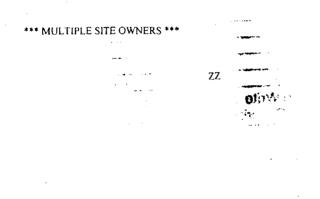
Assessment of Environmental Problems

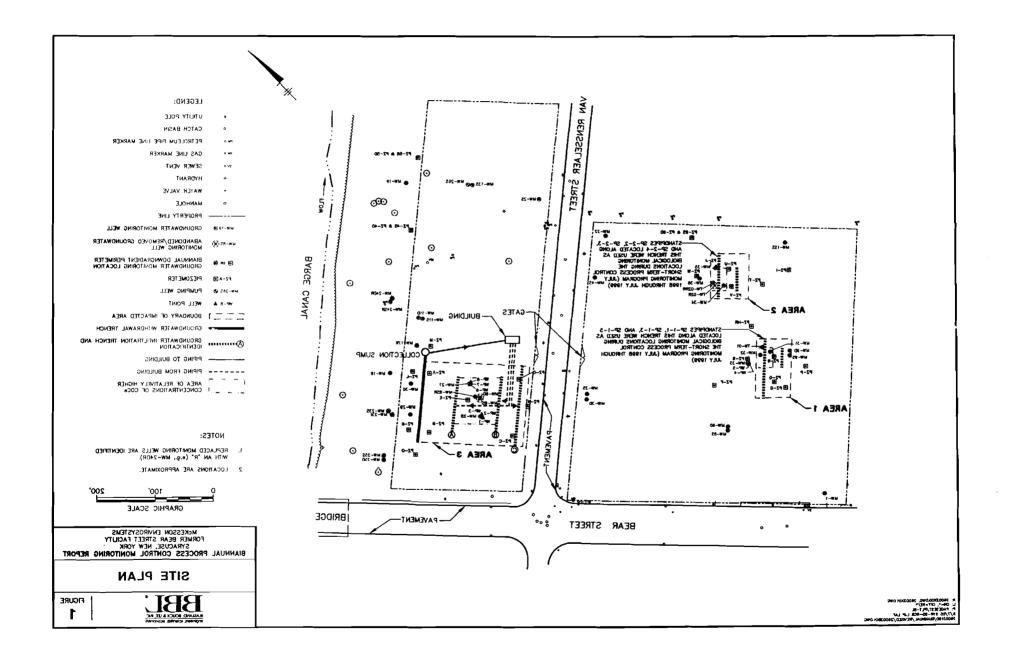
Groundwater contamination and soil contamination have been confirmed. Since commencement of the in-situ anaerobic bioremediation treatment system in 1998, the biological data demonstrates that the saturated soil/groundwater conditions within the shallow hydrogeologic unit at Areas 1, 2 and 3 have been and continue to be conducive to degradation of the COCs by anaerobic microbial populations.

Assessment of Health Problems

The site is located in an industrial area. The area is served by public water. Surface soils were bioremediated in 1994 and covered with a minimum layer of one foot of clean soil reducing/eliminating the potential for direct contact exposure.

Owners

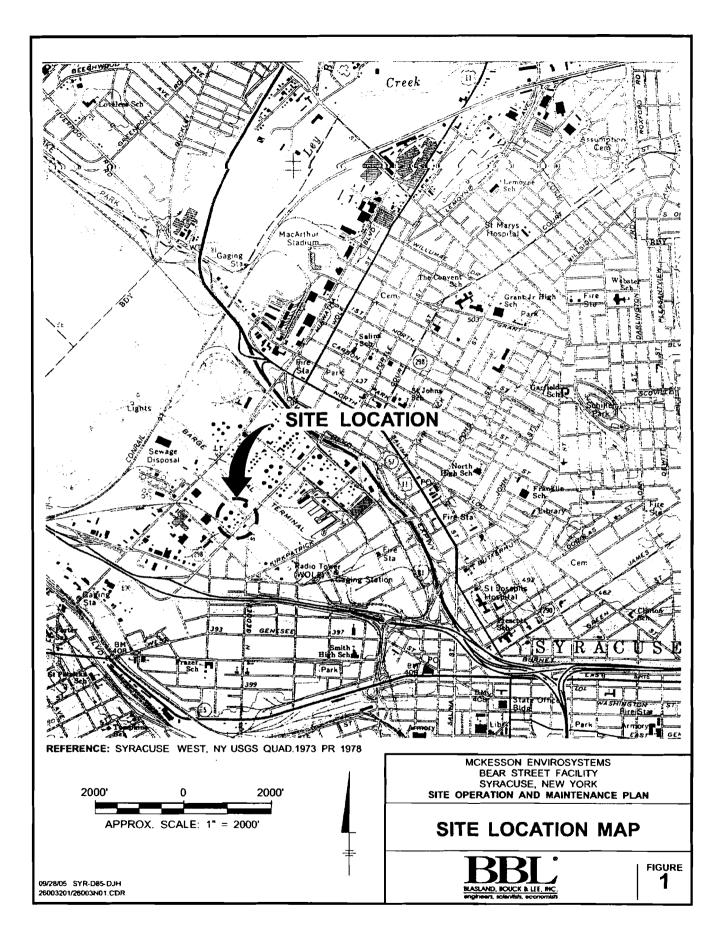

Operators


Current Owner(s)

*** MULTIPLE SITE OWNERS ***

Current Operator(s)

A state of the sta



Attachment 1

BLASLAND, BOUCK & LEE, INC. engineers, scientists, economists

.

Attachment 2

engineers, scientists, economists

.