REMEDIAL ACTION WORK PLAN

for the

QUANTA RESOURCES SITE
2802-2810 Lodi Street
City of Syracuse, Onondaga County, New York Index No. D7-00001-07-07

DEC Site No. 7-34-013

Prepared for:
QUANTA RESOURCES / SYRACUSE PRP GROUP

Prepared by

PLUMLEY ENGINEERING

8232 Loop Road
Baldwinsville, New York 13027
(315) 638-8587

Project No. 2010131

July 2011

TABLE OF CONTENTS

PAGE
1.0 INTRODUCTION 1
1.1 Organization 2
1.2 Site Description 3
1.3 Site History 4
1.4 Remedial Investigation Summary 5
1.4.1 Soils 5
1.4.2 Groundwater 6
2.0 REMEDIAL ACTIONS AND TECHNOLOGIES 7
2.1 Tank Removal 7
2.2 Remedial Excavation 8
2.3 Surface Soil Cap 12
2.4 Vacuum Enhanced Oil Recovery 13
3.0 CONSTRUCTION FACILITIES 14
3.1 Temporary Facilities 14
3.2 Standards, Criteria and Guidance (SCGs) 15
3.2.1 Imported Fill Materials 15
3.2.2 Soil Confirmation Samples 16
3.2.3 Landfill Disposal 16
3.2.4 Inspection 16
4.0 SITE CONTROLS 16
4.1 Erosion, Sediment and Stormwater Control Plan 16
4.2 Dust, Odor and Vapor Control 17
5.0 HEALTH AND SAFETY PLAN 18
5.1 Site Health and Safety 18
5.2 Community Air Monitoring Plan. 18
5.2.1 VOC Monitoring, Response Levels and Actions 19
5.2.2 Particulate Monitoring, Response Levels and Actions 20
6.0 CONFIRMATION SAMPLING 21

TABLE OF CONTENTS
(Continued)
PAGE
7.0 SITE RESTORATION. 21
8.0 SCHEDULE. 22
9.0 CONSTRUCTION COMPLETION 22
9.1 Final Engineering Report 22
9.2 Environmental Easement and Site Management Plan 24

FIGURES

FIGURE 1 - SITE LOCATION MAP
FIGURE 2 - EXISTING SITE CONDITIONS PLAN
FIGURE 3 - FORMER FACILITIES PLAN
FIGURE 4 - CURRENT AND HISTORICAL INVESTIGATION LOCATIONS
FIGURE 5 - CROSS SECTIONS
FIGURE 5A - CROSS SECTIONS
FIGURE 6 - SOIL DATA SUMMARY
FIGURE 7 - GROUNDWATER DATA
FIGURE 8 - SAMPLING GRID FOR LANDFILL PROFILING

APPENDICES

APPENDIX A - TEST TRENCH AND TEST PIT LOGS
APPENDIX B - MONITORING WELL INSTALLATION AND SOIL BORING LOGS
APPENDIX C - SITE HEALTH AND SAFETY PLAN
APPENDIX D - IMPORTED SOIL TESTING REQUIREMENTS

TABLE OF CONTENTS

(Continued)

CONTRACT DRAWINGS [Bound Separately]

SHEET 1	EXISTING CONDITIONS AND GENERAL REQUIREMENTS PLAN
SHEET 2	REMEDIAL EXCAVATION PLAN
SHEET 3	EROSION, SEDIMENT AND STORMWATER CONTROL PLAN
SHEET 4A	RECOVERY WELL CONSTRUCTION
SHEET 4B	OIL RECOVERY PLAN
SHEET 5	SITE RESTORATION PLAN AND MISCELLANEOUS DETAILS

TECHNICAL SPECIFICATIONS [Bound Separately]

1.0 INTRODUCTION

This Work Plan presents the design of the remedial program at the former Quanta Resources site (Site), located at 2802-2810 Lodi Street in Syracuse, Onondaga County, New York. The remedial program was selected after completing a Remedial Investigation ${ }^{1}$ in 2009 and a Feasibility Study ${ }^{2}$ in 2010. The New York State Department of Environmental Conservation (DEC) issued a Record of Decision (ROD) outlining the approved remedial program in March 2011. The cleanup is being performed by the Quanta Resources/Syracuse PRP Group under the terms of a Consent Order with the DEC.

The remediation project includes the following main elements:

- Removal of Underground Steel Tank: Empty, excavate and remove an approximately 12,000-gallon underground oil/water separator tank.
- Soil Excavation and Disposal: Excavate subsurface soils impacted with free-phase oil at a depth of 2.5 to 12 feet.
- Capping of Surface Soils with a Clean Soil Layer: Remove the top 1 foot of surface soil from all area of the western parcel outside the free-phase oil impact area being excavated. Place the soil in the free-phase oil impacted soil excavation area and replace with a clean 1-foot soil cap. The soil cap will also extend across the entire area of final excavation for free-phase oil impacted soil.
- Vacuum Enhanced Manual Oil Recovery from the Groundwater: Install a vacuum system on eight recovery wells (four new, four existing) and manually bail oil for an estimated period of 3 to 7 years.

[^0]- Environmental Easement: Implement easements to include prohibitions on groundwater use, restrictions of use to industrial purposes and implementation of the Site Management Plan.
- Site Management Plan: Develop a Site Management Plan to govern future site reuse, inspection and repair of the soil cap, and soil vapor evaluation prior to construction of a site building intended for human occupation. This Plan will also include an annual effectiveness review of the implemented light non-aqueous phase liquid (LNAPL) recovery operations and a Monitoring Plan.

1.1 Organization

This Remedial Action Work Plan has been prepared in accordance with Section 5.3 of the DEC DER-10 - Technical Guidance for Site Investigation and Remediation, dated May 2010 and includes the following elements:

- Section 2: Detailed descriptions of the remedial measures, including Technical Specifications (bound separately), as needed for a contractor to excavate and dispose of soil in the areas targeted for removal, site restoration and construction of the oil recovery facilities.
- \quad Section 3: Temporary construction facilities including security fencing, decontamination facilities and water handling procedures required to implement the remedial action. Also included is a list of applicable soil cleanup guidelines relating to the remediation, directives for inspection and Professional Engineer certification.
- Section 4: Descriptions of soil and sediment erosion control, stormwater management and monitoring, and dust and organic vapor monitoring procedures to be implemented during remedial activities.
- Section 5: Descriptions of the Health and Safety Plan (HASP) and Community Air Monitoring Program (CAMP) to be implemented during the remedial activities.
- Section 6: Outline of the soil confirmation sampling program to be implemented by the Engineer during the cleanup.
- Section 7: Description of the surface restoration plan.
- \quad Section 8: The schedule for the project.
- Section 9: Outline of the institutional and engineering controls to be implemented following the remedial excavation.
- Section 10: Description of the contents of the Final Engineering Report that will be provided following completion of the remedial excavation work.

1.2 Site Description

The Site (identified as the "west lot" on the drawings), located at 2802-2810 Lodi Street in the City of Syracuse, Onondaga County, New York, is on the DEC Inactive Hazardous Waste Site list as Site No. 7-34-013. The 0.75 -acre Site is a former waste oil recycling facility, located in a mixed commercial and industrial area. The Site is owned by Quanta Resources, Inc.

The Site is currently a vacant lot surrounded by a chain link fence. The Site is in an urban area, with current and historic commercial and industrial land use in the Site vicinity. The property is zoned Industrial District Class A. Raynor's Auto Body Shop lot borders the Site to the north. Further to the north in the same block is Raynor’s Auto Used Car Sales lot and garage that was a former gasoline station (former Tassone’s CITGO). Immediately east of the Site is an abandoned railroad spur on a parcel owned by Raynor and a vacant, triangular lot ("east lot") that is also owned by Quanta Resources. To the northeast is a vacant lot that was a former candle manufacturing facility (Mack-Miller Candle). An abandoned former gasoline station and auto repair shop (Victory Auto) is located east of the Site across Wolf Street. Vacant land that is part of the New York State Department of Transportation (DOT) right-of-way for Interstate Route 81 is south and west of the Site, across Lodi Street and Oswego Boulevard.

The Site is relatively flat, with a slight slope from east to west. Further to the southwest, across Oswego Boulevard, the land slopes steeply down to Interstate Route 81.

The Site and vicinity are served by public utilities, including City of Syracuse water and sewer and National Grid natural gas and electric. There are no live sewer or water services to the site. No public/private drinking water supply wells are known to exist within at least $1 / 2$ mile of the Site.

Refer to Figure 1 - Site Location Map and Figure 2 - Existing Site Conditions Plan for additional information.

1.3 Site History

Sanborn Insurance Maps show that in 1892 and 1911, the Site was occupied by a single dwelling and outbuilding, and the Oswego Canal ran along the west side of the Site where Oswego Boulevard is currently located. The canal was closed in the early 1900's, after the Barge Canal was completed in 1915, and filled sometime thereafter. The 1950 and later maps show the Seitz Lubricating Oil facilities, including the aboveground tanks known to be in place while the facility was operating as Quanta Resources. The tanks and structures appear unchanged from 1950 to 1990 on the maps.

Oil-processing was conducted onsite from the 1920's until 1981. Production of lubricating oils ceased in the mid-1960's, although waste oils continued to be processed for use as heating oil. All facility operations ceased in 1981. Refer to Figure 3 - Former Facilities Plan for the former facility layout.

In May 1990, the United States Environmental Protection Agency (EPA) Region II Removal Action Branch began an emergency removal action at the Site. The removal action, which involved testing and removing stored wastes, aboveground tanks, sumps and drums, was performed in two phases. Phase I of the removal action involved inventorying and sampling of
all drums and containers of unknown waste material at the Site. The contents of the storage containers were determined to include waste oils, oil/water mixtures, caustics and acids.

Phase II of the removal action provided for removal and disposal of hazardous materials stored in drums, sumps and tanks; dismantling, decontamination and removal of tanks and buildings; removal and disposal of asbestos insulation found at the Site; and disposal of affected soils. Fifty-two aboveground storage tanks (ASTs) and one UST were emptied and removed or disabled. Three USTs (Tanks 57, 58 and 59) were left onsite. The wastes were separated into twenty-three different waste streams and disposed of by various hazardous waste disposal firms.

In 1999, Earth Tech, Inc. removed three 20,000-gallon USTs (Tanks 57, 58 and 59). The liquid content and sludge from the three USTs, containing petroleum and solvents, were removed and disposed of. Soil surrounding Tanks 58 and 59 was removed and confirmation soil samples collected from this excavation.

1.4 Remedial Investigation Summary

The Remedial Investigation (RI) was performed in 2008 and 2009, including excavation of shallow test trenches and test pits, performing a shallow well boring program and a deep well drilling program, and collecting surface and subsurface soil samples. Groundwater sampling and analysis and free product thickness monitoring in groundwater wells where oil was present was performed to assess the groundwater conditions. Refer to Figure 4 - Current and Historical Investigation Locations and the RI Report for details of the investigation and findings. A brief summary of the findings is as follows:

1.4.1 Soils

The Site stratigraphy consists of a surficial layer of non-native fill materials consisting of sand and gravel with bricks, concrete chunks, glass and wood debris. This unit is typically 3 to 4 feet thick. Underlying the fill unit is a dense gray-green silt unit that is widely perforated by plant roots. This gray-green silt unit varies in thickness from 0 to

11 feet. The underlying bedrock is Vernon shale, which varies in color from green to gray to red. Drilling logs for the Site wells show the top surface of the Vernon shale is heavily weathered, indicating the rock is fragmented. Note that weathered Vernon shale was exposed at 2 to 3 feet below grade in the north end of test trench TT-3. Refer to Figures 5 and 5A-Cross Sections for additional information.

The RI identified an area where free-phase oil is present in the soil. Within this area, the surficial fill unit, and in some locations the underlying silt unit, has free-phase oil in the soils. In general, the fill unit is 2 to 4 feet thick on the eastern side of the impacted zone, but the fill reaches up to 11 feet on the western side. The approximate areal extent of oilimpacted soils is shown on Figure 6 - Soil Data Summary.

The northwestern portion of the Site that lies outside the free-phase oil affected soils contains stained soils, generally within 2 to 5 feet of the ground surface. These soils contain a few constituents at concentrations that exceed the DEC Soil Cleanup Objective (SCO) ${ }^{3}$ thresholds, but not by large margins.

Of the eighteen soil samples analyzed for polychlorinated biphenyls (PCBs) at the site, fourteen had PCB concentrations of less than 1 part per million (ppm). The highest PCB concentration in any soil samples was 7 ppm .

Refer to Appendix A - Test Trench and Test Pit Logs and Appendix B - Monitoring Well Installation and Soil Boring Logs for additional information.

1.4.2 Groundwater

Groundwater is impacted with LNAPL, which is present in MW-1S, MW-2, MW-7 and MW-10. The LNAPL contains PCBs in concentrations of 66 ppm in MW-1S and 173 ppm in MW-2. In July 2009, the liquid surface in wells with LNAPL was between 31 and 34 feet below the ground surface.

[^1]Dissolved impacts to groundwater onsite are most pronounced in MW-10 on the west side of the Site, with a total VOC content of less than 500 micrograms per liter ($\mu \mathrm{g} / \mathrm{L}$). This well subsequently developed an LNAPL layer. Well MW-1D is impacted by a single constituent, 2-butanone, at $7,800 \mu \mathrm{~g} / \mathrm{L}$.

Groundwater at the Site and surrounding wells is 22 to 34 feet below ground surface (bgs), which places the groundwater table below the bedrock surface in all wells.

Refer to Figure 7 - Groundwater Data for additional information.

2.0 REMEDIAL ACTIONS AND TECHNOLOGIES

The remedial actions at the site include the removal a $\pm 12,000$-gallon tank believed to be an oil/water separator, excavation and disposal of subsurface soils impacted with free-phase oil at anticipated depths of 2.5 to 12 feet, capping of the Site with a clean soil layer and vacuum enhanced manual oil recovery from the groundwater. Each of these is described further below.

2.1 Tank Removal

The tank has dimensions of 10 feet in diameter by 20.5 feet in length (12,000-gallon capacity) and appears to be full of liquid. The tank has three 2 -inch diameter ports and one 18 -inch diameter man-way. The tank appears to contain mostly water, with a thin oil film floating on the surface. Photoionization detection (PID) meter readings above the man-way opening and the north and midpoint 2-inch diameter ports were in the range of 30 to 80 ppm . The tank's southern port contained a floating oil layer approximately 1 foot thick in a drop tube, with a distinctly higher PID meter reading ($1,400 \mathrm{ppm}$) than the other access points to this tank. The tank may contain sludge. A sample of the water in the tank was analyzed for PCBs and found to contain a total PCB concentration of 0.049 ppm .

The contractor will be required to do the following work to remove the tank:

- Obtain a permit from the City of Syracuse Codes Enforcement Office. Note that to obtain a permit, the contractor must have a Mechanical Contractor license from the City.
- Uncover and open the tank top.
- Collect samples of the tank contents from two compartments for disposal characterization.
- Submit documentation demonstrating the receiving facility(s) has approved the waste for acceptance and copy of any permits required to the Engineer.
- Upon approval of the Engineer, empty the tank.
- Disconnect piping, if any, excavate and remove the tank
- Clean the tank interior and exterior suitable for metal recycling.
- Dispose of the tank.

Refer to the Technical Specifications Section 13100 - Tank Removal and Disposal for additional information and requirements.

The tank is located within the planned remedial excavation, so the planned soil confirmation samples (Section 6) will serve as the confirmation samples for the tank area.

2.2 Remedial Excavation

It is anticipated the remedial excavation will encompass the area of oil-impacted soils at this site identified in the RI and shown on Figure 6. A 10 -foot average excavation depth over the oilimpacted area equates to 5,800 cubic yards (11,000 tons) of affected soil. This average depth of excavation represents the estimated volume. Field inspection by the Engineer and prior sampling results will be used to determine the actual excavation depths and will be directed in the field by
the Engineer. The lateral extent of the excavation may be restricted by subsurface utilities and highway boundaries. Clean fill will be placed and compacted into the excavation after completing the removal of impacted soil to the extent practical.

Field sampling conducted to date indicates impacted soil is non-hazardous but may contain low levels of PCBs. Non-hazardous soils excavated from the Site will be taken to the Seneca Meadows landfill in Seneca Falls, New York for disposal. Seneca Meadows classifies soils with less than 24 ppm of PCBs as cover material and has a lower disposal rate. Soils with 25 to 49 ppm PCBs is classified by Seneca Meadows as waste and have a higher tipping fee. Soils greater than 50 ppm are classified by the DEC as hazardous waste. If such soils are encountered, though not expected, they would be transported to the Waste Management, Inc. Model City facility in Youngstown, New York.

A pre-excavation soil profiling program is to be completed by the contractor prior to excavating any soil from the site. This program will consist of soil borings and composite sampling at ten locations in the grid pattern shown on Figure 8 - Sampling Grid for Landfill Profiling. The results of this sampling will be used to verify all soil can be profiled as cover material. If results are mixed, the data will be evaluated and submitted to the landfill to confirm the profiling determination. Seneca Meadows has informally agreed to accept each grid result and handle soil from each grid differently, if necessary.

The area to be excavated includes a portion of the strip of property east of the Site that is owned by Fred Raynor, the adjacent auto dealership property owner. We have obtained permission from Mr. Raynor to complete this work on this property. Quanta Resources, Inc., the Site owner, also owns the east lot. Access to both the Site and the east lot has been obtained from Quanta Resources, Inc. for this project. The east lot will be used for clean equipment and material staging, and temporary truck routing. No stockpiling of impacted soil nor other activities that could transfer contaminants to the east lot or Raynor parcel are planned.

The contractor will be required to do the following work for the remedial excavation:

- Obtain ten representative subsurface soil samples in the grid pattern shown on Figure 8 and have them analyzed for both Seneca Meadows and Model City disposal parameters. The Engineer will oversee the sampling.
- \quad Submit appropriate applications to landfill(s) and obtain approvals.
- Clear and grub the site, chipping all vegetative material and stockpiling it onsite in order to utilize it as mulch in the final restoration.
- Implement the soil and erosion control measures specified in the Technical Specifications and Contract Drawings (Sheet 3 - Erosion, Sediment and Stormwater Control Plan). This will generally involve the following steps:
- Excavate temporary swales along the western boundary of the Site to prevent any surface runoff from leaving the Site.
- Prepare a construction entrance/exit.
- Install silt fencing along the western boundary.
- Dismantle the eastern boundary fence and save for reinstallation. Install 6-foot high temporary chain link fence to enclose the work site along Lodi Street to the corner of Wolf Street, along Wolf Street and along the northern boundary of the triangular parcel back to the northeast corner of the Site (Sheet 1 - Existing Conditions and General Requirements Plan).
- Implement their Health and Safety Plan, including delineation of the exclusion zone and decontamination zone.
- Implement the Community Air Monitoring Program during all soil excavation and construction activities (Section 5.2).
- Proceed with excavation generally from west to east, starting at the tank removal excavation. Soil will be loaded directly into haul trucks. Trucks will enter from the south side along Raynor's strip of property, be loaded and exit the main gate onto Lodi Street. The extent of the excavation will generally be as shown on the Sheet 2 Remedial Excavation Plan. The Engineer may modify the extent of the excavation based on field observations of the presence or absence of free-phase oil-impacted soil. The contractor will assist the Engineer in collecting soil samples for field screening and confirmation samples for laboratory analysis.
- Backfilling may proceed in stages or at the completion of the excavation work. It is anticipated that at least partial backfilling will be completed progressively with the excavation work to maintain sidewall slope stability of the deeper areas of the dig. Prior to completing the backfill work, the top 1 foot of soil from the remaining undisturbed areas of the Site will be excavated and placed in the free-phase oil impacted soil excavation. Refer to Section 2.3 for additional information. The excavation will be backfilled to 1 foot below finished grade with bank run sand and gravel per the Technical Specifications.
- Bank run sand and gravel backfill imported to the Site will be virgin rock or stone material from a DEC-permitted mine or quarry with less than 10% passing the No. 80 sieve. These materials are exempt from chemical testing prior to importation to the Site per DER-10 5.4(e)5.i.
- The contractor will make reasonable efforts to protect and preserve existing monitoring wells. Protective well heads, if disturbed, will be replaced at the completion of the work. If any wells are destroyed, the contractor will be responsible for replacing them as directed by the Engineer.

The Engineer will collect soil confirmation samples from the bottom and sidewalls of the excavation. The samples will be submitted for laboratory analysis for Full List Volatile Organic Compounds (VOCs) and Semi-Volatile Organic Compounds (SVOCs), Target Analyte List
(TAL) Metals and PCBs. This is further described in Section 6.0. It is recognized that some confirmation samples may exhibit concentrations exceeding SCOs, since the target of the remediation is free-phase oil impacted soils and in some areas where excavation may be limited by highway boundaries, utilities, etc.

2.3 Surface Soil Cap

The completion of the project will involve the construction of a clean soil cap over the Site. This work will be completed after the excavation and coordinated with construction of the oil recovery system described below. The contractor will be required to do the following work for the construction of the surface soil cap:

- Excavate an approximate 1-foot soil layer from the Site area, as shown on Sheet 2 (all remaining areas of the Site beyond the limits of the remedial soil excavation area).
- Place excavated surface soil in the free-phase oil impacted soil excavation at an elevation below the 12-inch cap and compact in accordance with the Technical Specifications.
- Place a filter fabric demarcation barrier (soil separation geotextile fabric) over the excavated areas.
- Replace the excavated 12 -inch cut of surface soil with 9 inches of bank run sand and gravel as previously specified and a 3-inch lift of topsoil. Compact in accordance with the Technical Specifications.
- Cap sequence shall extend across the entire Site to the property line. The cap shall also cover the Raynor property, where excavated.
- \quad Seed and mulch the topsoil in accordance with Sheet 5 - Site Restoration Plan and Miscellaneous Details.
- Topsoil shall be clean soil imported from DEC-permitted mine facilities. Source documentation, including representative sieve analysis, will be provided. Refer to the Technical Specifications for additional details. The imported topsoil must be evaluated and tested in accordance with Table 5.4(e)10 in DER-10, as further described in Section 3.2.

Refer to Sheets 2 and 5 and the Technical Specifications for additional details.

2.4 Vacuum Enhanced Oil Recovery

- Contractor shall provide a New York State certified well driller to install four new 4-inch diameter recovery wells. Wells will be constructed using 20 feet of screen set 8 feet below the average water table elevation, with a screen placement depth interval of 20 to 40 feet. Borehole annulus above the screen will be sealed to near surface grade. The Engineer will oversee the well installation.
- Contractor will install a buried piping system comprised of an air extraction pipe from each well to a central location where a proposed equipment shed will be installed. Four of the 2-inch diameter existing site wells that consistently have contained free product layers will also be plumbed into the system. Refer to Sheet 4A - Recovery Well Construction and Sheet $4 B$ - Oil Recovery Plan for details.
- A vacuum pump system will be installed in a shed to extract air from the wells, inducing a low (± 15-inch water column) vacuum in the wells. An activated carbon air filter drum unit will be installed for the air discharge until field monitoring and sampling indicates treatment is not needed. Pump equipment selected is currently based on an estimated 10 cubic feet per minute (cfm) air flow per well to induce the low vacuum target level. The Engineer will conduct short-term (± 30-minute) air flow tests using a portable vacuum pump to confirm prior to construction.
- Manhole curb boxes will be installed at the well heads to allow room for valves to shut off the individual air extraction line from each well at the well head, measuring well head vacuum and permit manual bailing of product from the wells.
- Recovered product will be stored in a drum(s) in the shed and disposed of as needed, in accordance with RCRA and DEC requirements. Product recovery and system operation and maintenance will be the owner's responsibility following construction.

Refer to Sheets 4A and 4B and the Technical Specifications for locations and construction details.

3.0 CONSTRUCTION FACILITIES

3.1 Temporary Facilities

Temporary facilities that will be provided during the excavation and soil cap construction will be as follows:

- A 6-foot high chain link security fence surrounding the project Site, as shown on Sheet 1.
- Stormwater management and erosion control facilities, as shown on Sheet 3.
- An exclusion zone, decontamination zone and hot zone in accordance with the HASP.
- A decontamination area, as shown on Sheet 3. The pad will constructed so any water generated will drain back into the excavation.
- Upwind and downwind dust and vapor monitoring per the CAMP.
- No dewatering of groundwater is anticipated during the excavation, since groundwater is well below the bottom of the planned excavation. However, should localized perched groundwater conditions or other water conditions be encountered, the contractor will utilize a 20,000-gallon frac tank for storage. Depending on the character and quantity of water generated, groundwater would either be transported to an off-site disposal facility or an appropriate treatment system would be established onsite, with discharge to the sanitary sewer in accordance with a permit issued by the Onondaga County Department of Water Environment Protection (OCDWEP). The contractor will provide smaller portable water holding tank(s) to collect miscellaneous wastewater, if needed (e.g. well development).

Refer to the Technical Specifications for additional information and requirements.

3.2 Standards, Guidance and Criteria (SCGs)

3.2.1 Imported Fill Materials

Soils imported to the Site must meet soil cleanup objectives for commercial restricted use.

The estimated 5,800 cubic yards of backfill materials for the remedial soil excavation and 500 cubic yards for backfill in the soil cap layer imported to the Site will be bank run sand and gravel from a DEC-permitted mine. These materials are expected to be exempt from chemical testing prior to importation to the Site per DER-10 5.4(e)5.i. ($<10 \%$ passing a size 80 sieve). The contractor shall submit representative sieve test report to the Engineer.

An estimated quantity of 200 cubic yards of topsoil requiring testing will be imported. Therefore, in accordance with Table 5.4(e)10 in DER-10, a total of three discrete samples will be tested for VOCs and one composite sample will be tested for SVOCs, inorganics and PCBs/pesticides. Testing will be for all compounds listed in DER-10 - Appendix 5 Allowable Constituent Levels for Imported Fill or Soil.

Refer to Appendix D - Imported Soil Testing Requirements for additional information.

3.2.2 Soil Confirmation Samples

Soil confirmation samples will be collected as described in Section 6. Results will be compared to DEC Restricted Use Industrial SCOs in CP-51, as applicable.

3.2.3 Landfill Disposal

As described in Section 2.2, a soil boring program to collect soil samples for landfill disposal profiling prior to the excavation work will be implemented. The soil samples will be analyzed for hazardous waste characteristics and any other analyses required by the project landfills (Seneca Meadows and Waste Management, Inc. Model City).

3.2.4 Inspection

The Engineer will have a representative onsite during site preparation work, tank removal, soil excavation work, underground piping installation, soil cap construction and site restoration work to assure the work is performed in accordance with the Work Plan, the project plans and Technical Specifications. The Engineer will also be collecting soil confirmation samples as described in Section 6.

4.0 SITE CONTROLS

4.1 Erosion, Sediment and Stormwater Control Plan

Prior to any excavation activities, the measures specified on Sheet 3 will be implemented. The main measures include installing silt fence along the western down-slope boundary and constructing a swale to intercept runoff as shown on the plan. The construction entrance and exit shall be constructed according to the plans to minimize roadway impact. The exit will be graded
so that runoff from the main area of the stone pad will drain to the swale and toward the excavation. A general purpose decontamination area will be similarly constructed and drain to the remedial excavation. Refer to the Contract Drawings for additional information.

4.2 Dust, Odor and Vapor Control

Based on the RI, excavation activities are not expected to generate a significant nuisance odor or vapor release to the community. The contractor will be responsible for controlling and minimizing dust generation on the work site. CAMP dust and vapor monitoring will be deployed by Plumley Engineering to monitor and confirm this.

The contractor will be required to undertake some or all of the following provisions, as needed, to minimize dust and vapor migration if dictated to be necessary by CAMP monitoring:

- No aboveground staging of impacted soil will be undertaken. Impacted soil will be loaded directly onto the haul trucks. Haul trucks will have covers.
- Imported soils hauled to the site will be directly placed and subsequently stabilized in accordance with the project Erosion and Control Plan in a timely fashion. Temporary covers or stabilizers will be deployed if needed to control dust.
- Contractor shall provide a water truck and sprayer to wet drive surfaces and any exposed soil cuts, as needed, to minimize dust and odor releases.
- Certain work activities exceeding CAMP criteria may need to be delayed or scheduled during more favorable weather conditions.
- Excavation faces that may be a source of release can be partially backfilled, covered with the imported bank run gravel or temporarily covered with plastic sheeting.
- Truck haul ways shall be surfaced with stone to minimize dust generation during dry weather. Speeds will be slow.

5.0 HEALTH AND SAFETY PLAN

5.1 Site Health and Safety Plan

A written health and safety plan (HASP) will be developed for the remediation project that will describe the anticipated hazards and control measures to be applied to activities related to the remediation. The contractor shall develop a site-specific HASP in accordance with the Technical Specifications. Copies of the HASP for the Remedial Investigation and the Remedial Investigation Report are included in Appendix C - Site Health and Safety Plan and will be supplied to the contactors for reference.

5.2 Community Air Monitoring Program

The Community Air Monitoring Program (CAMP) requires real-time monitoring for VOCs and particulates (i.e., dust) at the downwind perimeter of each designated work area when certain activities are in progress at the Site. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors, including residences and businesses, and onsite workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The action levels specified herein require increased monitoring, corrective actions to abate emissions and/or work shutdown.

Continuous monitoring will be conducted by Plumley Engineering for all ground intrusive activities, including excavation, loading soil, test pits, trenching, drilling soil borings and installing monitoring wells.

Periodic monitoring for VOCs and particulates (i.e., dust) will be conducted by Plumley Engineering during non-intrusive activities, such as the collection of soil and sediment samples or the collection of groundwater samples from existing monitoring wells. "Periodic" monitoring during sample collection will consist of taking a reading upon arrival at a sample location,
monitoring while opening a well cap or overturning soil, monitoring during well bailing/purging, and taking a reading prior to leaving a sample location.

5.2.1 VOC Monitoring, Response Levels and Actions

VOCs will be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone). Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions. The monitoring work should be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment should be calibrated at least daily for the chemicals of concern or for an appropriate surrogate. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

- If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 ppm above background for the 15minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.
- If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities will be halted, the source of vapors identified, corrective actions taken to abate emissions and monitoring continued. After these steps, work activities can resume, provided the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less (but in no case less than 20 feet), is below 5 ppm over background for the 15-minute average.
- If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shut down, the source of vapors identified, corrective actions taken to abate emissions and monitoring continued.

5.2.2 Particulate Monitoring, Response Levels and Actions

Particulate concentrations should be monitored continuously at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring should be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment must be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during all work activities.

- If the downwind PM-10 particulate level is 100 micrograms per cubic meter ($\mathrm{mcg} / \mathrm{m}^{3}$) greater than background (upwind perimeter) for the 15 -minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques, provided that downwind PM-10 particulate levels do not exceed 150 $\mathrm{mcg} / \mathrm{m}^{3}$ above the upwind level and no visible dust is migrating from the work area.
- If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than $150 \mathrm{mcg} / \mathrm{m}^{3}$ above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within $150 \mathrm{mcg} / \mathrm{m}^{3}$ of the upwind level and in preventing visible dust migration.

All 15-minute readings must be recorded and be available for DEC and New York State Department of Health (DOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

Additional requirements for the CAMP are included in the Technical Specifications.

6.0 CONFIRMATION SAMPLING

The Engineer will collect soil confirmation samples from the bottom and sidewalls of the excavation utilizing the contactor's excavator to assist with the collection of the samples. Sidewall samples will be collected at approximately 40 feet intervals, bottom samples at approximately every 900 square feet. Bottom samples will not be collected where bedrock is encountered. All samples will be grab samples. The samples will be submitted to an Environmental Laboratory Accreditation Program (ELAP) certified laboratory for analysis for the Full List VOCs and SVOCs, TAL Metals and PCBs. Data deliverables will be Category A with approximately 10% of the samples with Category B deliverables. It is recognized that some confirmation samples may exhibit concentrations exceeding SCGs, since the target of the remediation is oil-impacted soils and in some areas excavation will be limited by highway boundaries.

7.0 SITE RESTORATION

The Site will be restored to a grassy field with the only remaining facilities to be a shed for the oil recovery system and several well heads for recovery and monitoring wells. Upon completion of the oil recovery program in the future, all wells will be properly abandoned and sealed per DEC requirements. Details of the restoration are shown on Sheet 5.

8.0 SCHEDULE

The following schedule is anticipated:

- Distribution of Bid Package. .July 22, 2011
- DEC Final Approval of RAWP and Construction Plans \qquad August 22, 2011
- Bid Package Addendum (if necessary, dependent upon DEC comments)
- Public Notice Fact Sheet Distribution. \qquad .October 11, 2011
- Implementation of Remedy (to include excavation and cap, installation of oil recovery wells and system). October 12 to

December 31, 2011

9.0 CONSTRUCTION COMPLETION

9.1 Final Engineering Report

Upon completion of the remedial excavation, construction of the soil cap and oil recovery facilities, a Final Engineering Report (FER) will be prepared in accordance with DER-10 Section 5.8. The FER will include:

- A description of the remedy, as constructed, according to this Work Plan.
- A summary of all remedial actions completed, including:
- Description of any problems encountered or changes to the approved remedy.
- Listing of the waste streams, quantity of materials disposed and facility where such materials were disposed.
- Boundaries of the real property subject to the environmental easement, deed restriction or other institutional controls.
- Site restoration work.
- Tables and figures containing all pre- and post-remedial data.
- Figures showing contamination remaining at the site to be managed by the Site Management Plan (SMP).
- "As-built" drawings, including:
- The oil recovery system.
- The surveyed remedial excavation area (plan view map), quantity and source documentation of imported backfills, backfill profile, survey restoration grade profile and location of all final documentation samples.
- A site plan showing the location, including GPS level of accuracy for latitude and longitude, of the tank removed.
- Permanent survey markers for horizontal and vertical control for site management.
- Identification of the applicable institutional controls employed, along with a copy of the environmental easement or other institutional controls that apply.
- Figures showing groundwater conditions.
- Disposal documentation.
- The SMP for the project, including descriptions of all institutional and engineering controls.
- Results of all analyses, including laboratory data sheets and the required laboratory data deliverables.

The FER will include the following certification:

I \qquad certify that I am currently a NYS registered Professional Engineer, I had primary direct responsibility for the implementation of the subject construction program, and I certify that the Remedial Work Plan was implemented and all construction activities were completed in substantial conformance with the DER-approved Remedial Work Plan.

9.2 Environmental Easement and Site Management Plan

The Site will have an environmental easement that will include prohibitions on groundwater use, restrictions of use to industrial purposes and implementation of the Site Management Plan.

A Site Management Plan will be developed, consistent with DER-10, Section 6.1, to govern future site reuse. This document will address site security, inspection and repair of the soil cap and vegetative cover, and contain a requirement for soil vapor evaluation prior to construction of a Site building intended for human occupation. This Plan will also include an annual effectiveness review of the implemented oil recovery operations.

FIGURES

CEN CROSS SECTIONS

clent: QUANTA RESOURCES/ SYRACUSE PRP GROUP
Location: CITY OF SYRACUSE, ONONDAGA COUNTY, NEW YORK
lote: No alteration permitted hereon except as provided under Section 7209 Subdivision 2 of the New York State Educction Low.

PROJECT No:: 2008008 FLLE NAME:: Figure5A scale: AS NOTED DATE: OCT. 2009 ENGIDY: DRV DRAWN BY: JMD

SHEET NO.: FIGURE 5A

APPENDICES

APPENDIX A

TEST TRENCH AND TEST PIT LOGS

PROJECT:	Quanta Resources	DATE:	May 5, 2009
LOCATION:	2810 Lodi Street, Syracuse, NY	WEATHER:	Overcast, 5-10 mph East wind
JOB NO.:	$\underline{2008008}$		INSPECTOR:

TEST PIT NO. TP-5 ADDITIONAL: \qquad

DEPTH	$\begin{array}{c}\text { Sample } \\ \text { Depth }\end{array}$	$\begin{array}{c}\text { PID } \\ \text { (PPM) }\end{array}$	$\begin{array}{c}\text { DESCRIPTION OF MATERIAL }\end{array}$	$\begin{array}{c}\text { STRATA } \\ \text { CHANGE } \\ \text { DEPTH }\end{array}$
	$0-3^{\prime}$	0	Brown sand, bricks, gravel, roots	

TEST PIT NO. TP-6 ADDITIONAL: \qquad

standards/TPs/general/0108

PROJECT:	Quanta Resource Site	DATE:	11/4/2008
LOCATION	2802-2810 Lodi Street, Syracuse	WEATHER:	mid $60^{\circ} \mathrm{F}$'s
JOB NO.:	2008008	OBSERVER:	DTH

TEST PIT NO. TT-1 at 0'

DEPTH	SAMPLE DEPTH (ft)	PID (ppm)	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
5	0.6	3.8	Top Soil - odor at ground break	± 0.6
			Black staining at 0.6 grey/green moist silt, trace fine - medium gravel, parts of building foundation, petroleum odor	± 4
	4-5	20	Grey/green Silt unit	± 6.8
10				
	7	35	Brown/grey Silt, little-trace fine sand, trace fine gravel	
			Bottom of Test Pit	± 7

Comments:

PROJECT:	Quanta Resource Site	DATE:	11/4/2008
LOCATION: 2802-2810 Lodi Street, Syracuse JOB NO.: 2008008		WEATHER:	mid $60^{\circ} \mathrm{F}$'s
		OBSERVER:	DTH

TEST PIT NO.
TT-1 at 30'

DEPTH	SAMPLE DEPTH (ft)	PID (ppm)	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
5			Top Soil	± 0.5
	2	98	Black stained Sand and Gravel fill with petroleum odor and staining	± 2
			Grey/green Silt unit	
	3.5	180		
	7	146		
			Lab Sample	± 7
10				
			Collected at 11:05 AM, 7' bgs	

Comments:

Located just inside of the building former building corner

PROJECT:	Quanta Resource Site	DATE:	11/4/2008
LOCATION	2802-2810 Lodi Street, Syracuse	WEATHER:	mid $60^{\circ} \mathrm{F}$'s
JOB NO.:	2008008	OBSERVER:	DTH

TEST PIT NO.
TT-1 at 35'

DEPTH	SAMPLE DEPTH (ft)	PID (ppm)	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
			Top Soil (brown)	± 0.5
	2	45	Dry moist fine to coarse Sand and fine to medium Gravel with black staining	± 2
			Grey/green Silt unit	
	4	87		
5			Bottom of Test Pit	± 4
10				

Comments:

PROJECT:	Quanta Resource Site	DATE:	11/4/2008
LOCATION: 2802-2810 Lodi Street, Syracuse JOB NO.: 2008008		WEATHER:	mid $60^{\circ} \mathrm{F}$'s
		OBSERVER:	DTH

TEST PIT NO.
TT-1 at 50'

DEPTH	SAMPLE DEPTH (ft)	PID (ppm)	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
			Top Soil (brown)	± 0.5
	2	60	Black moist fine to coarse Sand and fine to medium Gravel with black staining	± 2
			Grey/green Silt unit	
	3-4	115		
5	5	74		
			Bottom of Test Pit	± 5
			Lab Sample	
10			Collected at 10:55 AM, 3' bgs	
			Collected at 11:15 AM, 5^{\prime} ' bgs	

Comments:

PROJECT:	Quanta Resource Site	DATE:	11/4/2008
LOCATION	2802-2810 Lodi Street, Syracuse	WEATHER:	mid $60^{\circ} \mathrm{F}$'s
JOB NO.:	2008008	OBSERVER:	DTH

TEST PIT NO.
TT-1 at 75'

DEPTH	SAMPLE DEPTH (ft)	PID (ppm)	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
			Top Soil (brown)	± 0.6
	2	24	Black moist fine to coarse Sand and fine to medium Gravel with black staining	+2.5
			Grey/green Silt unit	
5	5	77		
10				
	8	556		
			Bottom of Test Pit	± 8
			Lab Sample	
			Collected at 10:05 AM, 8' bgs	

Comments:

PROJECT:	Quanta Resource Site	DATE:	11/4/2008
LOCATION	2802-2810 Lodi Street, Syracuse	WEATHER:	mid $60^{\circ} \mathrm{F}$'s
JOB NO.:	2008008	OBSERVER:	DTH

TEST PIT NO.
TT-1 at 100'

DEPTH	SAMPLE DEPTH (ft)	PID (ppm)	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
			Top Soil (brown)	± 0.5
	2	23	Black moist fine to coarse Sand and fine to medium Gravel with black staining	
				+3.5
			Grey/green with brown Silt unit	
5	4-5	140		
10				
	6-8	136	Grey/green silt	
			Bottom of Test Pit	± 8

Comments:

PLUMLEY ENGINEERING, P.C.

TEST PIT LOG

PROJECT:	Quanta R	DATE:	11/4/2008
LOCATION:	2802-2810	WEATHER:	$\mathrm{mid} 60^{\circ} \mathrm{F}$'s
JOB NO.:	2008008	OBSERVER:	DTH

TEST TRENCH SUMMARY: TT-1

```
Station
0'+00' 3.5 ppm with black staining from 0.5'-4' bgs,35 ppm at 7' bgs
0'+5' Building foundation, black staining with petroleum odor
0' +10'
0'+15
0' + 20'
0' + 25'
0'+30' }98\textrm{ppm}\mathrm{ with black staining from 0.5' to 2' bgs, 180 ppm at 3.5' bgs, strong waste oil/possible solvent odor, building foundation, LAB SAMPLE
0' + 35' - 45 ppm with black stained sandy soils at 2' bgs, 87 ppm at 4' bgs
0'+40'
0'+45'
0' + 50'
0' + 55'
0' + 60'
0' + 65
0'+70'
0'+75'
0' + 80'
0' + 85
0' + 90'
0' + 95'
0' + 100
23 ppm with black staining at 2' bgs, 136-140 ppm at 4'-8' bgs
```

PROJECT:	Quanta Resource Site	DATE:	11/4/2008
LOCATION	2802-2810 Lodi Street, Syracuse	WEATHER:	mid $60^{\circ} \mathrm{F}$'s
JOB NO.:	2008008	OBSERVER:	DTH

TEST PIT NO. TT-2 at $0+00$

DEPTH	$\left\lvert\, \begin{gathered} \text { SAMPLE } \\ \text { DEPTH (ft) } \end{gathered}\right.$	PID (ppm)	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
5	8"	0	Top Soil - odor at ground break	± 0.5
			Brown dry fine to coarse Sand. Little fine to coarse gravel (fill), stopped by concrete slab	
			Bottom of Test Pit	± 1.4
10				

Comments:

PROJECT:	Quanta Resource Site	DATE:	11/4/2008
LOCATION	2802-2810 Lodi Street, Syracuse	WEATHER:	mid $60^{\circ} \mathrm{F}$'s
JOB NO.:	2008008	OBSERVER:	DTH

TEST PIT NO. TT-2 at $0+15^{\prime}$

Comments:

PROJECT:	Quanta Resource Site	DATE:	11/4/2008
LOCATION	2802-2810 Lodi Street, Syracuse	WEATHER:	mid $60^{\circ} \mathrm{F}$'s
JOB NO.:	2008008	OBSERVER:	DTH

TEST PIT NO. TT-2 at $0+25^{\prime}$

DEPTH	$\left\lvert\, \begin{gathered} \text { SAMPLE } \\ \text { DEPTH (ft) } \end{gathered}\right.$	PID (ppm)	DESCRIPTION OF MATERIAL	STRATA ChANGE DEPTH
			Top Soil (brown)	± 0.5
	1.5	2.4	Black stained dry to moist fine to coarse Sand and fine to medium Gravel	+2
			Grey/green moist Silt unit, pockets of coarse gravel	
	3.5	23		
5	5	32		
			Bottom of Test Pit	± 5
			Lab Sample	
			Collected at 2:35 PM, 5^{\prime} bgs	
10				

Comments:

PROJECT:	Quanta Resource Site	DATE:	11/4/2008
LOCATION	2802-2810 Lodi Street, Syracuse	WEATHER:	mid $60^{\circ} \mathrm{F}$'s
JOB NO.:	2008008	OBSERVER:	DTH

TEST PIT NO. TT-2 at $0+35^{\prime}$

DEPTH	SAMPLE DEPTH (ft)	PID (ppm)	DESCRIPTION OF MATERIAL	STRATA Change DEPTH
			Top Soil (brown)	± 0.6
	2.2	97	Black moist fine to coarse Sand and fine to medium Gravel with black staining, some cinders, trace clinkers	± 2
			Grey/green moist Silt unit	
	4	62		
5			Bottom of Test Pit	± 4
			Lab Sample	
			Collected at 2:45 PM, 2.2' bgs	
10				

Comments:

PROJECT:	Quanta Resource Site	DATE:	11/4/2008
LOCATION	2802-2810 Lodi Street, Syracuse	WEATHER:	mid $60^{\circ} \mathrm{F}$'s
JOB NO.:	2008008	OBSERVER:	DTH

TEST PIT NO. TT-2 at $0+50^{\prime}$

Comments:

PROJECT:	Quanta Resource Site	DATE:	11/4/2008
LOCATION	2802-2810 Lodi Street, Syracuse	WEATHER:	mid $60^{\circ} \mathrm{F}$'s
JOB NO.:	2008008	OBSERVER:	DTH

TEST PIT NO. TT-2 at $0+60^{\prime}$

DEPTH	SAMPLE DEPTH (ft)	PID (ppm)	DESCRIPTION OF MATERIAL	STRATA Change DEPTH
5			Top Soil (brown)	± 0.6
			Black stained moist fine to coarse Sand and fine to medium Gravel	± 2.5
			Grey/green dry to moist Silt unit (encountered an underground storage tank at 3^{\prime} bgs, bottom greater than 7 deep.)	
10	7	80		
			Bottom of Test Pit	± 7

Comments:

PLUMLEY ENGINEERING, P.C.

TEST PIT LOG

PROJECT:	Quanta Resource Site
LOCATION:	$2802-2810$ Lodi Street, Syracuse
JOB NO.:	$\underline{2008008}$

DATE:	$11 / 4 / 2008$
WEATHER:	mid $60^{\circ} \mathrm{F}$'s
OBSERVER:	DTH

TEST TRENCH SUMMARY: TT-2

Station Comment	
$0^{\prime}+00^{\prime}$	Encountered concrete slab and old building foundation
$0^{\prime}+5^{\prime}$	
$0^{\prime}+10$	
$0^{\prime}+15^{\prime}$	24-432 ppm with black stained soils at $2.5{ }^{\prime}-5{ }^{\prime}$ bgs, LAB SAMPLE
$0^{\prime}+20^{\prime}$	
$0^{\prime}+25^{\prime}$	2.4 ppm at $2.4{ }^{\prime} \mathrm{bgs}, 32 \mathrm{ppm}$ at 5^{\prime} bgs, LAB SAMPLE
$0^{\prime}+30^{\prime}$	
$0^{\prime}+35^{\prime}$	Bank of product piping encountered (+8 pipes), 97 ppm at $2.2{ }^{\prime} \mathrm{bgs}, 62 \mathrm{ppm}$ at 4 ' bgs, LAB SAMPLE
$0^{\prime}+40^{\prime}$	Wood pile pole barn like construction foundation encountered
$0^{\prime}+45^{\prime}$	
$0^{\prime}+50^{\prime}$	28 ppm at $2.5{ }^{\prime}$ bgs with black stained soil, pipe nest with oil in pipe and surrounding soil, 7.5 ppm at $7.5^{\prime} \mathrm{bgs}$
$0^{\prime}+55^{\prime}$	Encountered 6" diameter asbestos sewer pipe encased in concrete filled with water
$0^{\prime}+60^{\prime}$	80 ppm at 7'bgs, Encountered an underground storage tank, the tank appears to be greater then 7' deep

PROJECT:	Quanta Resource Site	DATE:	11/4/2008
LOCATION	2802-2810 Lodi Street, Syracuse	WEATHER:	mid $60^{\circ} \mathrm{F}$'s
JOB NO.:	2008008	OBSERVER:	DTH

TEST PIT NO. TT-3 at $0+00$

DEPTH	$\left\|\begin{array}{c} \text { SAMPLE } \\ \text { DEPTH (ft) } \end{array}\right\|$	PID (ppm)	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
5			Black stained Sand and Gravel (fill) (brown silt, little clay lens from 2.5' to 2.8 ' bgs)	+2.8
	2	2.3		
	3	7.7		
	4.5	4.5	Grey/green Silt unit	
10			Bottom of Test Pit	± 4.5

Comments:

PROJECT:	Quanta Resource Site	DATE:	11/4/2008
LOCATION	2802-2810 Lodi Street, Syracuse	WEATHER:	mid $60^{\circ} \mathrm{F}$'s
JOB NO.:	2008008	OBSERVER:	DTH

TEST PIT NO. TT-3 at $0+15{ }^{\prime}$

DEPTH	SAMPLE DEPTH (ft)	PID (ppm)	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
			Top Soil	± 0.4
	2.8	2.5	Brown Sand and Gravel fill with petroleum odor and slight staining	+2.8
	3	0	Brown Silt and Clay zone 2" thick	± 3.1
			Grey/green Silt unit	
5	4.5	1.2		
10			Bottom of Test PitLab SampleCollected at 3:05 PM, 2.8' bgsCollected at 3:10 PM, 4.5' bgs	± 4.5

Comments:

PROJECT:	Quanta Resource Site	DATE:	11/4/2008
LOCATION	2802-2810 Lodi Street, Syracuse	WEATHER:	mid $60^{\circ} \mathrm{F}$'s
JOB NO.:	2008008	OBSERVER:	DTH

TEST PIT NO. TT-3 at $0+25^{\prime}$

DEPTH	SAMPLE DEPTH (ft)	PID (ppm)	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
5	1	0.5	Top Soil	± 0.5
			Brown dry moist fine to coarse Sand and fine to medium Gravel	1.5
	3.5	6.2	Grey/green Silt unit, encountered a section of the fractured Vernon shale unit	
	7.5	1.2		
			Lab SampleLattom of Test PitCollected at 3:00 PM, 7.5' bgs	± 7.5
10				
			Collected at 3:00 PM, 7.5' bgs	

Comments:

PROJECT:	Quanta Resource Site	DATE:	11/4/2008
LOCATION	2802-2810 Lodi Street, Syracuse	WEATHER:	mid $60^{\circ} \mathrm{F}$'s
JOB NO.:	2008008	OBSERVER:	DTH

TEST PIT NO. TT-3 at $0+40^{\prime}$

DEPTH	SAMPLE DEPTH (ft)	PID (ppm)	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
			Black moist fine to coarse Sand and fine to medium Gravel with black staining, some cinders, trace clinkers. North trench end, observed sheen and some oil at interface with silt.	+2.6
	2	0		
	3.5	2.2	Grey/green Silt unit with massive blocky Vernon shale	
5			Bottom of Test Pit	± 3.5
10				

Comments:

PLUMLEY ENGINEERING, P.C.

TEST PIT LOG

PROJECT:	Quanta Resource Site	DATE:	11/4/2008
LOCATION:	2802-2810 Lodi Street, Syracuse	WEATHER:	mid $60^{\circ} \mathrm{F}$'s
JOB NO.:	2008008	OBSERVER:	DTH

TEST TRENCH SUMMARY: TT-3

```
Station Comment
0'+00' }2.3\textrm{ppm}\mathrm{ at 2' bgs black stained soil, 4.4 ppm at 4.5 ppm
0' + 5'
0' +10'
0' + 15' 2.8 ppm at 2.5' bgs, 1.2 ppm at 4.5' bgs, SAMPLES at 2.8' and 4.5'
0' + 20'
0' + 25'
0' + 30'
0' + 35'
0' + 40'
0 ppm at 2 ppm, 2.2 ppm at 3.5 ppm, encountered Vernon shale at 3.5' bgs, north trench end oil seep\epsilon
```


APPENDIX B

MONITORING WELL INSTALLATION AND SOIL BORING LOGS

Plumley Engineering, P.C.
 TEST BORING LOG

SITE: QUANTA RESOURCES SITE
LOCATION 2802-2810 Lodi Street, City of Syracuse
DATE STARTED: 11/7/08
DATE COMPLETED: 11/7/08
INSPECTOR: DTH
DRILLER: Paragon Environmental Construction, Inc.
DRILLING METHOD: Truck rig with percussion Geoprobe drill

SAMPLER TYPE:
2"x48" sleeved Macro-core samplers used

Plumley Engineering, P.C.
 TEST BORING LOG

SITE: QUANTA RESOURCES SITE
LOCATION 2802-2810 Lodi Street, City of Syracuse
DATE STARTED: 11/7/08
DATE COMPLETED: 11/7/08
INSPECTOR: DTH
DRILLER: Paragon Environmental Construction, Inc.
DRILLING METHOD: Truck rig with percussion Geoprobe drill

SAMPLER TYPE:
SHEET 1 OF
1

Plumley Engineering, P.C.
 TEST BORING LOG

SITE: QUANTA RESOURCES SITE
LOCATION 2802-2810 Lodi Street, City of Syracuse
DATE STARTED: 11/7/08
DATE COMPLETED: 11/7/08
HOLE NO. SB-3
SURF. EL. 405
JOB NO. 2008008.007
GROUNDWATER DEPTH
WHILE DRILLING $\pm 7.5^{\prime}-8.5^{\prime}$
INSPECTOR: DTH
DRILLER: Paragon Environmental Construction, Inc.
DRILLING METHOD: Truck rig with percussion Geoprobe drill

SAMPLER TYPE:
SHEET 1 OF
1

Plumley Engineering, P.C.
 TEST BORING LOG

SITE: QUANTA RESOURCES SITE
LOCATION 2802-2810 Lodi Street, City of Syracuse
DATE STARTED: 11/7/08
DATE COMPLETED: 11/7/08
HOLE NO. SB-4
SURF. EL. 440
JOB NO. 2008008.007
GROUNDWATER DEPTH
WHILE DRILLING noist at +5.5
INSPECTOR: DTH
DRILLER: Paragon Environmental Construction, Inc.
DRILLING METHOD: Truck rig with percussion Geoprobe drill

Logged by: DTH

TEST BORING LOG
SITE: QUANTA RESOURCES SITE
LOCATION 2802-2810 Lodi Street, City of Syracuse
DATE STARTED: 11/7/08 DATE COMPLETED: 11/7/08
HOLE NO. SB-5
SURF. EL. 404
JOB NO. 2008008.007
GROUNDWATER DEPTH
WHILE DRILLING
moist at ± 3
INSPECTOR: DTH
DRILLER: Paragon Environmental Construction, Inc.
DRILLING METHOD: Truck rig with percussion Geoprobe drill

SAMPLER TYPE:

SHEET 1 OF 1

Plumley Engineering, P.C.
 TEST BORING LOG

SITE: QUANTA RESOURCES SITE
LOCATION 2802-2810 Lodi Street, City of Syracuse
DATE STARTED: 11/7/08
DATE COMPLETED: 11/7/08
HOLE NO. SB-6
SURF. EL. 405
JOB NO. 2008008.007
GROUNDWATER DEPTH
WHILE DRILLING moist at ± 3
INSPECTOR: DTH
DRILLER: Paragon Environmental Construction, Inc.
DRILLING METHOD: Truck rig with percussion Geoprobe drill

SAMPLER TYPE:

SHEET 1 OF 1

Plumley Engineering, P.C.
 TEST BORING LOG

SITE: QUANTA RESOURCES SITE
LOCATION 2802-2810 Lodi Street, City of Syracuse
DATE STARTED: 11/7/08
DATE COMPLETED: 11/7/08

HOLE NO. SB-7
SURF. EL. 405
JOB NO. 2008008.007
GROUNDWATER DEPTH WHILE DRILLING ± 8

TIME	ING/HOLE CONDI	DEPTH
	NA	

SHEET 1 OF 1
Logged by: DTH

URS CONSULANTS, INC. Definition of Terms Used to Describe Subsurface Materials

C. Consistency

Granular Soil

Cohesive Soils

Term	Blows per Pool. N	Term	Blows per Fool.	Field Identification
- Very Loose	0-4	- Very Sofl (<0.25 TSF)	<2	penetrated several inches by fist
- Loose	S-10	- Soft (<0.5 TSF)	3-5	penetrated several inches by thumb
- Medium Dense	11-30	- Medium Stiff (<1.0 TSF)	6-15	penetrated several inches with moderate effort
- Dense	31-50	- Stiff (<2 TSF)	16-25	indented by thumb with great effort
- Very Dense	Over 50	- Very Stiff (<4 TSF)	25-50	indented by thumbnail
		o Hard (>4 TSF)	>50	indented with difficulty by thumbnail

NOTE: Large particles in the soils will often significantly influence the blows per foot recorded during the Penetration Test.

D. Textural Class Description

Textural elassification of a soil is determined based on the distribution of grain size fractions. The portions by weight of each soil fraction is commonly used as the basis for determining textural class as follows:
o Primary component: $>35 \%$ grain size fraction
o Secondary component: $15-35 \%$ grain size fraction
Example: Sample with 60% fine sand and 25% silt, described as Silty Pine Sand

Modifying Terma:

AND
Indicates approximately equal amounts of materials, such as a sand and gravel mixture.
If the materials occur in thin separate seams, it is noted in the detailed work classification. The thickness is given where possible.

Example: Medium dense sand and gravel. or dense interbedded coarse sand and

$$
\text { gravel (} 1 / 4^{\circ}-3 / 4^{n} \text { thick) }
$$

SOME Lndicates significant amount (10-25\%) of the accessory material.
Example: Medium dense silly sand - some gravel
TRACE Indicates minor amount ($<10 \%$) of the accessory material.
Example: Loose ailty sand - tracel of gravel
INTERBEDDED Used to describe thin altemating scams. Thickness is given where possible.
Example: Stiff interbedded silt and clay (approx. $1 / 16^{\circ}$ thick)
POORLYGRADED Indicates coarse grain soil that has a predominant grain size.

Example: Poorly graded fine sand, trace sill
Indicates coarse grain soil that has a wide range of grain sizes.
Example: Well graded silly sand, some fine gravel (15-20\%)

B. Modifying Terms

SEAM/LENS Areally continuous/discontinuous bed
Example: Coal seam/sandstone iens
SOME Indicatea significant (15 to 40 percent) amounts of the acceasory material.
Example: Rock composed of sandstone (70%) and seams of shale (30%) would be:
tandstonc, some shale scams
FEW Indicates minor ($0-15$ percent) amounts of the accessory material.
Example: Rock composed of sandstone (90%) and seams of shale (10%) would be:
sandstone, few shale seams
INTERBEDDE Used to indicate thin or very thin alternating seams of material occurring in approximately equal amounts.
Example: Rock composed of sandstone (50%) and shale (50%) seams would be:
interbedded sandstone and shale
C. Hardnesa D. Brokenness E. Bedding

Term	Definition	Terms	Spacing	Term		Dimensions
Soft	Scratched by fingernail	Very Broken (V.BR.)	<2 inches	Very Thin	Natural breaks	$<1 *$
Medium Hard	Scratched easily by knife	Broken (BR.)	$2 \mathrm{in} .-1 \mathrm{ft}$.	Thin Bedded	in Rock Layers	1*-4*
Hard	Scratched with difficulty	Blocky (BL.)	1 ft . 3 ft .	Bedded		$4^{*}-12^{\prime \prime}$
	by penknife	Massive (M.)	3 ft . 10 ft .	Thick Bedded		12" - 36"
Very Hard	Cannot be scratched by penknife			Massive		>36"

RQD - Rock Quality Designation is cumulative length of picea of core equal to or greater than four inches in length divided by the total length of core run, expressed as a percentage.

LEGEND

Residual Soil

| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | Gravel

Rencrex	Claystone	4.6	Length of Core Recovered
CTC	Limestone	A	Length of Drill Run
$\operatorname{cef}^{4}{ }^{2}$	Siltatone		
	Sandstone	$\stackrel{3-10-90}{\angle C L}$	Groundwater Level and
-- - -	Shale	,	Date of Observation
	Concrele		
	Coal		Indicates 60 Blows Required
	Void	60/0.3	for Split Barrel to Penetrate
			0.3 Feet
	B		Approximate Top of Rexk

TEST BORING LOG BORING NO.

EB-1

PROJECT: Q, UANTA RESOLLRCES
CLIENT: NEW YOZK STATE DEPT. OF ENVIROMMENTAL CONSERNATIOAI BORING CONTRACTOR: AMEEICAN AHGER G DITCHWG CO. BORING CONTRAC

COMMENTS PRILC RIG: TRUCK-Monalied MOBLLE B-57

B-3

COMMENTS DRILL RIG: TRUCK MOUNTED MOBILE B-S7

* ENVIRONMENTAL SAL SAMFLE COLLETKD FOX FULLTCL AND CYANIDE ANALYSLS

[^2]* Environmental SoIl sample collected fore til analyses and cyanide
PROJECT: Q MANTA RESOURCES SHEET NO. 1 OF CLIENT: NEW YORK STATE DEPT. OF ENVIROMIENTAL CONSERNATIOAI JOB NO.: 35235.10 BORING CONTRACTOR: AMECICAN AHGER \& DITCH WG co. BORING LOCATION:

COMMENTS DRILL RIG: TRUCK MOUNTED MOBILE B-57

* Envirenmenilat Soil SAMPLE COLLECTED FOR FuM TCL AND CYANIDE ANALYSES

COMMENTS DRILC RIG: TRuck-MOUNTEi) MUBILE 8-57

COMMENTS DRILL RIG: TRNCK-MOUNTEO MOBILE B-5T

* environmental soll sample collecten AT 1-3' for fule tle and cyanide analyses + CEDTECNHILAL SAmPR COLLECTRD for arAin wとK ANALYsis PROJECT NO. BORING NO.
35235.10

COMMENTS DRILL RIK: TRUCK-MOUNTED MORUE B-57

PROJECT: QUANTA RESOURCES CLIENT: NYSDEC
TEST BORING LOG BORING NO.
MW-3
SHEET NO. 2 OF 2
JOB NO. : 35235.10

COMMENTS + GEOTECHNCAL SAMPLE COLLECTEO FOR GRAN SILE ANALYKSIS
A- 3205
PROJECT: Q UANTA RESNURCES
TEST BORING LOG BORING NO.
MW-4

COMMENTS DRILL RIG: TRUCK MOUNTED MOGILE B-57
TEST BORING LOG BORING NO.
MW-4
PROJECT: QUANTA RESOURCES
SHEET NO. 2 OF 2
CLIENT: NYSDEC
JOB NO.: 35235.10

COMmENTS * Environmental soil sample coccid for full tel and cyariox analyses t Ggotechaican stAmen collected for Grain size and lysis
PROJECT NO.
boring no.
35235.10
$M w-4$
A-320s

PROJECT: Q UANTA RESOURCES								
CLIENT: NEW Yoik STate dept. of envirownental Covseenatioal								
BORING CONTRACTOR: AMERICAN AHGER \& DITCHWG CO.								
GROUND WATER:					Cas.	SAMP	CORE	tube
DATE	time	LEV	TYPE	TYPE		Smut	S)	
11-26	4:30pm	34	BGS (${ }^{\text {S }}$ A)	DIA.		2"		
$11-27$	8:3um	22.5	B6S (HSA)	WT.		14016		
				FALL		$30^{\prime \prime}$		

* pocket penetrometer reading REVIEWED BY: Duñe LEnharst

COMMENTS DRIL RIG: TRUCK-MOYNTED MOBLLE B-57

* ENVIROUMENIL SOIL SAMPLE COLLECTRD FOR FULL TCL AND CYANIDC ANALYSIS
+ Geotechnical sample collected fore girain sizc analybis project no. $\frac{35235.10}{M W-5}$
URS CONSULTANTS, Inc.
TEST BORING LOG
BORING NO.
MW-S
PROJECT: QUANTA RESOURCES
SHEET NO. $2 O F 2$ CLIENT: NYSDEC

COMMENTS

PROJECT NO.	35235.10
BORING NO.	$M W-5$

Paragon Environmental Construction, Inc. 8141 Brewerton Road
Cicero, NY 13039
Phone: 315-699-0840
Fax: 315-699-0845

Field Drilling
Log

Boring No: MW-7
Project No: 2008008
Date Started:12-11-08
Date Completed: 12-11-08
Sheet: 1 of 1

Project: Environmental Borings and Monitoring
Wells
Location: Lodi and Wolf Streets, Syracuse, NY

Cave Depth: N/A
Depth of Water: 30 feet

Paragon Environmental Construction, Inc. 8141 Brewerton Road Cicero, NY 13039 Phone: 315-699-0840 Fax: $315-699-0845$
Project: Environmental Borings and Monitoring Wells Location: Lodi and Wolf Streets, Syracuse, NY

Paragon Environmental Construction, Inc. 8141 Brewerton Road
Cicero, NY 13039
Phone: 315-699-0840
Fax: 315-699-0845

Field Drilling
Log

Boring No: MW-10 Project No: 2008008 Date Started:12-16-08 Date Completed: 12-16-08
Sheet: 1 of 1

Project: Environmental Borings and Monitoring Wells
Location: Lodi and Wolf Streets, Syracuse, NY

Cave Depth: N/A
Depth of Water: 28 feet

PROJECT Quanta Site - Lodi Street

DRILLERS FIELD LOG

PROJECT Quanta Site - Lodi Street
LOCATION Syracuse, New York
GROUNDWATER DEPTH
WHILE DRILLING

```
BEFORE CASING
REMOVED
```

AFTER CASING	Installed
REMOVED	Well

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140\# HAMMER FALLING 30" - ASTM D-1586 STANDARD PENETRATION TEST
C - NO. OF BLOWS TO DRIVE CASING 12" W/ \# HAMMER
FALLING "/ OR PERCENT CORE RECOVERY

HOLLOW STEM AUGER
SHEET 1 OF 1
DRILLERS FIELD LOG

APPENDIX C

SITE HEALTH AND SAFETY PLAN

HEALTH AND SAFETY PLAN
 for
 REMEDIAL INVESTIGATION ACTIVITIES

at the

QUANTA RESOURCES SITE 2802-2810 Lodi Street
City of Syracuse, Onondaga County, New York NYSDEC Site No. 7-34-013

Prepared for:
Quanta Resources - Syracuse Site
PRP Group
Prepared by:

8232 Loop Road
Baldwinsville, New York 13027
(315) 638-8587

Project No. 2008008

January 2008
Revised February 28, 2008

TABLE OF CONTENTS

PAGE
1.0 PURPOSE AND APPLICABILITY 1
2.0 SITE DESCRIPTION 1
3.0 SCOPE OF WORK 2
4.0 HEALTH AND SAFETY PERSONNEL 3
5.0 GENERAL INFORMATION 4
6.0 SITE CONTAMINANT CHARACTERISTICS 5
7.0 HAZARD EVALUATION AND REDUCTION 7
8.0 SITE SAFETY WORK PLAN 11
9.0 ENVIRONMENTAL MONITORING PLAN 17
10.0 EMERGENCY RESPONSE PLAN 20

FIGURES

FIGURE 1 - SITE LOCATION MAP
FIGURE 2 - SITE PLAN
FIGURE $3-\quad$ HOSPITAL LOCATION MAP

TABLES
TABLE 1 - HEALTH AND SAFETY DATA FOR SELECTED CHEMICALS OF CONCERN

ATTACHMENTS

ATTACHMENT A - AUTHORIZED PERSONNEL
ATTACHMENT B - HAZARDOUS SUBSTANCE FACT SHEETS
ATTACHMENT C - DAILY WORK ZONE AND PERIMETER AIR MONITORING LOG SHEET

1.0 PURPOSE AND APPLICABILITY

This Health and Safety Plan (HASP) outlines precautions and protective measures that employees and subcontractors ("Workers") of Plumley Engineering must take to minimize the risk to health and safety while performing field tasks for remedial investigation activities to be conducted at the Quanta Resources site located at 2802-2810 Lodi Street in the City of Syracuse, Onondaga County, New York. The site is a listed on the New York Department of Environmental Conservation (DEC) list of inactive hazardous waste sites and requires the completion of a Remedial Investigation/Feasibility Study (RI/FS). Each worker shall review the HASP prior to working on the site and sign an acknowledgement indicating the worker agrees to comply with the HASP requirements. Some activities may require parties other than the engineer or its subcontractors to be at the site. These parties are solely responsible for maintaining compliance with all applicable regulations and for their own health and safety procedures. All on-site workers must have received the appropriate level of training for their specific duties in accordance with Occupational Safety and Health Administration (OSHA) 29 CFR 1910.120 (e).

2.0 SITE DESCRIPTION

The site investigation area (Site) is located in a commercial-industrial area at 2802-2810 Lodi Street in Syracuse New York (Figure 1 - Site Location Map) and is an abandoned waste-oil recycling facility ${ }^{1}$ with an operational period beginning in the 1920's through 1981. Through the 1990's, site investigation and remedial activities administered by the United States Environmental Protection Agency (EPA) led to the abandonment and removal of the former buildings, above and below ground tanks, highly contaminated soils adjacent to the below ground

[^3]tanks, and the processing infrastructure associated with the waste-oil plant. The site is 0.75 acres in size and is now vacant of any buildings or other aboveground structures associated with the former waste-oil plant. The site is currently completely fenced in, with a locked gate. The grounds have not been maintained and are currently overgrown with grass and brush vegetation

Refer to the Figure 2 - Site Plan for additional information.

3.0 SCOPE OF WORK

The RI will be completed in steps, first involving the completion of a groundwater sampling event using existing monitoring wells remaining at the site, which in conjunction with a review of available site-report information, will provide the basis to develop a RI/FS Work Plan for review and approval, followed by the implementation of the investigation activities.

RI activities conducted at the site will include an array of field tasks and inspection services commonly used to investigate the surface and subsurface extent of site contaminants of concern in soil and groundwater media. Specific field tasks that are planned or may be required at the site are listed below:

- Collection of groundwater samples from monitoring wells for laboratory analysis.
- The on-site collection of surface and subsurface soil samples for laboratory analysis.
- The completion of soil borings and installation of groundwater monitoring wells using standard environmental drilling equipment.
- Digging test pits using a backhoe.
- Inspection of backhoe test pits and environmental drilling activities.
- Surveying to determine elevations, test locations and geographic features for site plan updating and data evaluations.

These field activities are anticipated to take place at various times throughout the 2008 calendar year.

4.0 HEALTH AND SAFETY PERSONNEL

The following personnel are responsible for the development, implementation and maintenance of this HASP:

Project Manager .Dale R. Vollmer, P.E.

Site Safety Officers \qquad .Derk T. Hudson, Geologist Matthew Martin, Technician

Although responsibility for implementing this HASP is with the Site Safety Officer, the primary responsibility for health and safety lies with the individual workers. Each worker must be familiar with and conform to the safety procedures outlined in this HASP. The Site Safety Officer is responsible for all decisions regarding health and safety policies, procedures and protective measures. It is the responsibility of the Site Safety Officer to provide the resources required to allow the work to be conducted in conformance with this HASP.

The Site Safety Officer will also be responsible for:

- Maintaining a complete copy of the HASP at the site during all field activities.
- Assuring that all workers at the site are familiar with the procedures outlined in the HASP.
- Assuring that all workers have undergone the required OSHA training program.
- Assuring that workers have, and properly use and maintain, all specified personal protective and other health and safety equipment.
- Assuring that proper decontamination procedures are followed.
- Initiating immediate response actions, if necessary, and coordinating these actions with all workers at the site, any other individuals at the site, any involved agencies or medical facilities.
- Recommending improvements to this HASP, if needed.

The Site Safety Officer has the authority to:

- Direct any worker to alter or suspend any work practice they deem is not sufficient to protect human health.
- Deny access to the site to any individual or organization that does not have a complete copy of the HASP, and the appropriate training and personal protective equipment (PPE) for the potential health and safety hazards at the site.

The presence or absence of the Site Safety Officer shall in no way relieve any person or organization of its obligation to comply with the HASP or any applicable Federal, State and local laws and regulations.

5.0 GENERAL INFORMATION

Plan Prepared By/Date:

Plumley Engineering / January 2008

Plan Approved By/Date:

Dale R. Vollmer, P.E. / January 2008

Proposed Date(s) of Work:

Initial activities will be in January 2008. Follow-up activities are expected at various times throughout 2008.

Background Review:

Preliminary X
Complete \qquad

A preliminary review of site investigation and remedial reports has been completed sufficiently to support the preparation of the site HASP. As more detailed information is obtained or if new information is obtained that requires a modification to the HASP, an addendum will be issued.

6.0 SITE CONTAMINANT CHARACTERISTICS

Definition of Site Contaminants of Concern (COCs):

The site was a former waste-oil recovery recycling facility reported to have handled a variety of waste oils. As such, a variety of different chemicals are anticipated. Based on our review of site report information, ${ }^{1}$ the following types of chemical compounds are identified as site contaminants:

Main Constituents (believed to be more prevalent at the site):

- Halogenated and non-halogenated volatile organic compounds (VOCs)
- Semi-volatile organic compounds (SVOCs)

Lesser Constituents (believed to be less prevalent at the site):

- \quad Pesticides
- Polychlorinated biphenyls (PCBs)
- Metals (RCRA list)

There are no uncontrolled surface exposures of these materials, such as heavily stained areas, open lagoons, etc. at the site.

Potential Hazardous Material(s):

The more prevalent halogenated VOCs at the site include 1,1,1-trichloroethane, tetrachloroethene, trichloroethene, 1,1-dichloroethane, 1,2-dichloroethene chlorobenzene and vinyl chloride.

The more prevalent non-halogenated VOCS present at the site include benzene, xylene and toluene.

SVOCs compounds found prevalently at the site include a large number of polycyclic aromatic hydrocarbons (PAHs), including acenaphthene, fluorene, phenanthrene, anthracene, chrysene, benzo(a)pyrene, naphthalene, 2-methylnaphthalene, among others.

Hazardous Substance Fact Sheets for selected COCs are included in Attachment B.

Media and Contaminant Types (X):

X Liquid	\square Solid	\square Sediment	$\boxed{\mathrm{X}}$ Soil Gas	$\boxed{\mathrm{X}}$ Soil
X	Toxic	\square Reactive	\square Radioactive	\square Unknown

COCs are known to occur at the site in the soil and groundwater. It is to be assumed that COCs may be present in site surface soils at relatively low concentrations.

7.0 HAZARD EVALUATION AND REDUCTION

Health and safety information relevant to the most prevalent COCs is included in Table 1. The VOCs are volatile and can present an inhalation hazard from breathing air contaminated with these materials resulting from direct contact with contaminated equipment, site soils or groundwater disturbed by investigation activities. The SVOCs are also volatile, but less so than the VOCs, and may be also be present in the breathing zone. Metals, pesticides and PCBs are not significantly volatile compounds.

All chemicals are anticipated to occur in soil and groundwater at the site, and thus pose a dermal exposure risk that can result from handling site soil and groundwater or equipment that has come into contact with impacted soil or groundwater.

According to the Hazardous Substance Fact Sheets, the COCs are recognized to pose a variety of hazards, including irritation of the eyes, respiratory tract and skin, and potentially increased risk of cancer and reproductive damage. The current OSHA permissible exposure limits (PEL) standards are provided in Table 1. Workers are not expected to be exposed to conditions exceeding the PEL.

Based on the nature of the contaminant and the type of work being performed, the most significant hazards at this site are:

- Direct contact with COC-bearing materials or equipment during intrusive subsurface investigation activities and soil and groundwater sampling activities. The PPE requirements for the project are designed to eliminate this risk to the extent practical.
- Physical hazards related to operating and working with drilling machinery and heavy drilling tools used for performing soil borings and installing monitoring wells, and heavy construction equipment used for the excavation of backhoe test pits. All equipment operators and inspectors shall be familiar with the associated physical hazards and shall have had at least five years of related experience. The project driller and environmental contractors shall provide copies of their current HASP to the project engineer for review. The PPE requirements for the project are designed to eliminate this risk to the extent practical.

There are three primary pathways by which site workers can be exposed to chemical hazards: inhalation, ingestion and dermal contact. The chemical exposures across these pathways can cause two types of effects: acute and chronic. Acute effects happen during or shortly after exposure to a sufficiently high concentration of a chemical. Chronic effects occur after repeated or constant exposures for a long period of time. Regulatory exposure limits, such as PELs, are related to both acute effects, such as respiratory irritation, and chronic effects, such as cancer. Symptoms of chemical exposure may include behavioral changes, breathing difficulties, skin color changes, coordination difficulties, coughing, dizziness, weakness, irritability, skin irritation, eye irritation, respiratory tract irritation, headache, nausea, lightheadedness, sneezing, etc.

The primary pathway exposures associated with site VOCs is inhalation and dermal contact with affected media or tools that have come into contact with the affected media. SVOCs may also be present in the breathing air, although typically at concentrations less than VOCs. Real-time ambient air monitoring, appropriate engineering controls, PPE and good hygiene practices will be employed to minimize exposure to VOCs. Exposures to SVOCs, metals, pesticides and PCBs is primarily by dermal contact with affected media or tools that have come into contact with the affected media.

Another potential pathway for exposure to COCs is through inhalation and dermal contact with airborne dust derived from contaminated soil. However, there are no site activities proposed at this time that will expose large areas of unstabilized soil, and vegetation is well developed at the site. Backhoe test pits, if dug, will be backfilled upon completion of logging and sampling activities, and are not expected to be a source of dust.

The following precautions will be taken to reduce the potential exposure to site COCs during site investigation and remediation activities:

- During the drilling or backhoe test pit and related logging and sampling activities, field personnel will conduct air monitoring with a photoionization detection (PID) meter to measure total concentrations of VOCs in the work zone breathing space.
- During groundwater sampling work, the field samplers will conduct air monitoring with a PID meter to measure total concentrations of VOCs in the work zone breathing space.
- If visible dust does become present in the breathing space, engineering controls and/or appropriate respiratory protection will be used.
- The work procedures shall be modified and/or a portable fan will be used as an engineering control if VOCs in the breathing space rise above action levels.
- Site investigation activities will be conducted in Level D PPE to minimize dermal exposure to potentially affected media (i.e., specifying the use of disposable protective gloves when handling site materials during field sampling activities) and reduce the risk of physical hazards (by requiring hard hats and safety glasses when inspecting drilling or test pits) as detailed in Section 8. The PPE will be upgraded, as necessary, for organic vapor, dermal and dust inhalation hazards.
- Any non-disposable PPE that comes in contact with potentially affected facility media will be decontaminated prior to leaving the work area.
- Soap, clean water and paper towels for washing hands will be provided at the site during all field activities. Hands will be washed thoroughly prior to eating, drinking and leaving the site.

The Site Safety Officer will have the NIOSH Pocket Guide to Chemical Hazards available for reference at the site. This reference identifies exposure routes, exposure symptoms, physical properties, chemical incompatibilities, first aid treatment and other information for many chemical compounds.

Physical hazards expected during the investigation and remediation activities are related to working with hydraulic and rotary drilling equipment, heavy construction equipment (backhoe), potential utility conflicts for drilling and test pit work, and slip, trip and fall hazards. Additional physical hazards may include heat or cold stress. These hazards will be evaluated by the Site Safety Officer prior to beginning work in a new area and as conditions change in the work area. The following precautions will be taken to reduce the physical hazard:

- A utility clearance program shall be completed prior to initiating the project, to include contacting Dig Safely New York and researching private utilities. The Site Plan for the project will show all identified utilities. No subsurface borings or test pits will be started at any location prior to utility clearances.
- "Tailgate" safety briefings will be conducted by the Site Safety Officer to identify additional safety protocols, as needed.
- The specified PPE shall be worn by all workers in the project exclusion zone.
- No confined space entries will take place under this HASP. If a confined space entry becomes necessary, appropriate confined space entry procedures will be detailed in an addendum to this plan.
- A warming space will be provided during cold weather, if needed.
- Good housekeeping in the work area will be maintained.

If necessary, a portable fan will be used during drilling and sampling activities to reduce the potential inhalation hazards. If VOCs in the breathing space are detected above action levels (or as determined by the monitoring plan), the fan will be used to blow fresh air through the work area, thereby increasing vapor diffusion. The fresh air source must be free of exhaust from generators or vehicles. All personnel will work on the upwind side of the vapor source, and air monitoring will continue as determined by the Site Safety Officer.

If necessary, engineering controls will be developed to minimize dust generation at the sampling location. For example, water may be sprayed on the surface soils to reduce breathing space dust concentrations.

Encountering unknown or unexpected substances or containers of a hazardous nature is possible, though not expected based on the degree of prior investigation and remedial activities undertaken at the site. Work will be discontinued if field measurements or observations indicate there is potential exposure to a hazard that was not anticipated, is not adequately characterized and controlled, or may exceed the protection provided by the PPE specified for the task.

8.0 SITE SAFETY WORK PLAN

Site Map:

- \quad Refer to the attached Site Plan (Figure 2).
- The Site Plan shows the main features on and adjacent to the site, and the locations of proposed sampling points.

Site Security:

A security fence with a locked gate encloses the site. The gate is kept locked at all times except during times when investigation activities are underway. The gate will be closed when personnel are on-site working to limit incoming traffic to authorized personnel only.

Training:

All authorized workers will receive a HASP briefing and will be required to read and sign the HASP at the beginning of the field project. The following main items shall be covered:

- The tasks the workers will be required to perform, as detailed in the Work Plan.
- Site ingress, egress and decontamination procedures.
- Site hazards, accident prevention and overexposure symptoms.
- The required PPE plan and exclusion zone requirements.
- Emergency response procedures.

Attachment A is a record of all authorized workers who have either attended the startup training session or received a similar briefing from the Site Safety Officer, to include any visitors. This shall be kept up-to-date throughout the project.

Should unexpected site conditions be encountered requiring utilization of Level C or higher protection and/or other specialized operations (e.g., a confined space entry), the work shall not be carried out until a Response Team is formed to carry out such work, comprised of personnel with proper training in accordance 29 CFR Part 1910.120 (e) (f) (g), as appropriate.

When any new personnel are assigned to this project, they shall receive the HASP briefing and shall be required to read and sign the HASP before being allowed to perform work. The briefing will be given by the Site Safety Officer or a delegated safety representative who has previously completed this training.

The Site Safety Officer will be responsible for insuring that visitors receive the necessary sitespecific visitor training applicable to the visitors' anticipated activities. Site visitors shall not be allowed access to the project exclusion zone unless they receive a site-specific training brief, can demonstrate they have received the appropriate training per 29 CFR Part 1910.120 (e) and have received the required project PPE equipment.

Zone(s) of Contamination Identified:

The site is relatively small and was formerly occupied by a large number of oil storage tanks and various processing facilities. However, no one area is currently identified as having the greatest potential for contamination. Workers are to assume that COCs may occur anywhere on the site in the surface soils, subsurface soil and groundwater. Currently reviewed information has not indicated the presence of a contamination "hot spot".

Medical Surveillance:

The project driller shall be current with medical surveillance requirements in accordance with 29 CFR Part 1910.120 (f).

Attachment B details the symptoms of overexposure to the COCs. All site workers shall be familiar with these.

Exclusion Zone:

Temporary exclusion zones will be established around all subsurface drilling and sampling locations while such operations are being conducted. No unauthorized personnel will be allowed to approach the location, as monitored by the Site Safety Officer. Traffic cones will be used to designate the area, set at a safe distance from the associated hazard, as determined by the Site Safety Officer. Alternatively, the security fence may be used to designate the exclusion zone. Any worker in the exclusion zone shall comply with all aspects of the HASP.

Decontamination Area:

A central decontamination area, where decontamination materials shall be placed and stored, and procedures conducted, will be designated at the outset of the project. Portable decontamination equipment will also be used to expedite the work.

Personal Protection Equipment (PPE):

- Level of protection in the exclusion zone shall be Level D - Modified.
- Level D PPE in the exclusion zone shall consist of the use of hard hats, rubber (nitrile) gloves, steel-toed boots if inspecting drilling or test pits operations, ear plugs and safety glasses. Latex gloves will be used by inspectors for handling soil samples.
- Disposable Tyvek coveralls shall be worn by drillers and any other site worker who is in close contact with soils during ground intrusive activities.
- A cellular telephone in proper working order shall be available at the work site at all times.
- Eating, drinking, smoking and carrying food or tobacco products are prohibited in the exclusion zone.

Decontamination Procedures:

- Personnel: Workers shall remove coveralls and wash face and hands with soap and water prior to eating, drinking, using restroom facilities or leaving the site.
- Protective Equipment: A detergent wash and clean water rinse will be used for rubber boots, hard hats, safety glasses and hand sampling tools.
- Drilling and Sampling Equipment: Hot water pressure wash and rinse for drilling tools shall be used before exiting the work site. Decontamination of drilling tools shall be performed at the designated decontamination pad facility. Dry brush sampling tools, as appropriate.
- Disposal: Gloves, coveralls, etc., used at the site will be collected at a central location for disposal in accordance with all applicable laws of the State of New York or, where applicable, properly cleaned and disinfected for reuse. All water generated from decontamination shall be collected and containerized for proper testing and disposal in accordance with all applicable laws of the State of New York.

Equipment Checklist:

Level D Modified

Hard hat

Steel toed work boots and rubber overshoes, or steel toed rubber boots

Safety glasses
Safety goggles or shield
Tyvek coveralls

Rubber and latex gloves

Hearing Protection

Ear Plugs

Decontamination Materials

Alconox

Brushes

Buckets
Potable water source and portable containers

Low pressure sprayer
Decontamination pad materials, including water containment

Plastic drop cloth material
Garbage can and plastic liners

Field Instruments

PID / Calibrated HNU, 11.7 eV

Other

Eye wash bottles
Portable body washing equipment; water, soap and paper towels
Small portable generator and fan for ventilation for optimal use
First aid kit

Disposal dust masks
Glove and helmet liners for cold weather

9.0 ENVIRONMENTAL MONITORING PLAN

Work Zone Monitoring:

Air monitoring in the exclusion zone near the point of operation will be periodically tested by the Site Safety Officer using a PID meter as a general precaution at a frequency of once every 60 minutes, or whenever a fugitive odor suggestive of possible VOCs is encountered. Should readings exceeding 5 parts per million (ppm) be recorded, additional readings in the operator breathing zone will be obtained. Should these levels continue to exceed 5 ppm over a sustained period of one minute, work will be discontinued until appropriate engineering controls (e.g. fan ventilating, vapor suppression) are employed. The Site Safety Officer will continue to evaluate the situation and, if necessary, upgrade the PPE requirements to include air-purifying respirators. Should Level C respirator PPE be required, all workers shall have had the proper training for their use and have had a fitness test performed current within the previous one year period in accordance with 29 CFR 1910.120.134, Appendix A. Readings will be documented on the form provided in Attachment C.

Community Air Monitoring Program:

The Community Air Monitoring Plan (CAMP) requires real-time monitoring for VOCs and particulates (i.e., dust) at the downwind perimeter of each designated work area when certain activities are in progress at the site. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors, including residences and businesses, and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The action levels specified herein require increased monitoring, corrective actions to abate emissions and/or work shutdown.

Continuous monitoring will be required for all ground intrusive activities, including digging test pits, trenching, drilling soil borings and installing monitoring wells.

Periodic monitoring for VOCs and particulates (i.e., dust) will be required during non-intrusive activities, such as the collection of soil and sediment samples or the collection of groundwater samples from existing monitoring wells. "Periodic" monitoring during sample collection will consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or overturning soil, monitoring during well bailing/purging, and taking a reading prior to leaving a sample location.

VOC Monitoring, Response Levels, and Actions

VOCs must be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone). Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions. The monitoring work should be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment should be calibrated at least daily for the COCs or for an appropriate surrogate. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

- If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 ppm above background for the 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.
- If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm , work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions and monitoring continued. After these steps, work activities can resume, provided the total organic vapor level 200 feet downwind of the exclusion zone or half
the distance to the nearest potential receptor or residential/commercial structure, whichever is less (but in no case less than 20 feet), is below 5 ppm over background for the 15 -minute average.
- If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shut down.

Particulate Monitoring, Response Levels, and Actions

Particulate concentrations should be monitored continuously at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring should be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment must be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during all work activities.

- If the downwind PM-10 particulate level is 100 micrograms per cubic meter ($\mathrm{mcg} / \mathrm{m}^{3}$) greater than background (upwind perimeter) for the 15 -minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed $150 \mathrm{mcg} / \mathrm{m}^{3}$ above the upwind level and provided that no visible dust is migrating from the work area.
- If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than $150 \mathrm{mcg} / \mathrm{m}^{3}$ above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind $\mathrm{PM}-10$ particulate concentration to within $150 \mathrm{mcg} / \mathrm{m}^{3}$ of the upwind level and in preventing visible dust migration.

All 15-minute readings must be recorded and be available for State (DEC and DOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

10.0 EMERGENCY RESPONSE PLAN

A copy of the HASP and a NIOSH Pocket Guide of Chemical Hazards shall be available at the site at all times.

The Site Safety Officer is to be immediately notified of any on-site emergency.

USE THE 911 SYSTEM FOR ANY THREATENING EMERGENCY.

Upon the occurrence of an emergency involving a potentially ongoing dangerous condition, for example a fire, explosion or electrical condition within or adjacent to the site, all workers will be alerted and the affected area evacuated immediately.

Emergency situations will be evaluated by the Site Safety Officer and initial emergency response measures will be undertaken, if appropriate.

Contact the Project Manager as soon as possible. Emergency telephone numbers are provided.

The following general sequential guidelines are provided for emergency situations:

1. If possible, remove the exposed or injured person(s) from the immediate danger. Other personnel on the property shall be evacuated to a safe distance until the Site Safety Officer determines it is safe to return to work.
2. Obtain paramedic and ambulance service (or fire department response, if needed) immediately by calling 911. Render first aid, as applicable to the rescuers' training.
3. If there is any doubt regarding the condition of the area, work shall not commence until all safety issues are resolved.
4. At the earliest time practical, the Site Safety Officer shall contact the Project Manager, giving details of the incident.
5. A written report of the incident shall be forwarded to the Project Manager within 24 hours following the incident.

EMERGENCY TELEPHONE NUMBERS

Plumley Engineering (315) 638-8587
FOR ALL EMERGENCIES 911(Fire Department, Police Department, Ambulance)
Other Agencies:
Syracuse Fire Department - Prevention Section (315) 473-5525
Onondaga County Department of Water Environment Protection (315) 435-2260
National Grid (Gas or Electrical Emergency) (800) 892-2345
Syracuse Water Department - Emergencies (315) 473-2860
St. Joseph’s Hospital Emergency Room (315) 448-5101
DEC Region 7, Syracuse Office Spill Section. (315) 426-7519
DEC Spill Hotline. (800) 457-7362

Nearest Hospital (Hospital Location Map, Figure 3):

Name: St. Joseph’s Hospital Health Center

Location 301 Prospect Avenue Syracuse, New York 13203
(approximately 1.5 miles from site)
Telephone: (315) 448-5101 (Emergency Room)

Written directions to Hospital from the site:

- Head southeast on Lodi Street
- Turn right on North Salina Street
- Bear left onto Prospect Avenue to Emergency Department

FIGURES

REF.: USGS - SYRACUSE WEST (NY) QUAD., 1978, 7.5 MIN. SCALE: 1 " $=200{ }^{\prime}$

PLUVILTY RGensing

PLUMLEY ENGINEERNG, P.C
8232 LOOPROAD BALDWNSVILLE, NY 13027 TELEPRHONE: (315) 638-8587
FAX 315 ($638-9740$ WWWPLUMLEYENGCCOM

SITE LOCATION MAP
QUANTA RESOURCES - SYRACUSE QUANTA RESOURCES PRP GROUP
CITY OF SYRACUSE, ONONDAGA COUNTY, NEW YORK

PROJECT No: 2008008 FLE NAME: FIGURE 1
SCALE: $\quad 1^{\prime \prime}=2000^{\prime}$ DATE: JAN. 2008 ENGDBY: DRV
DRAWN BY: JMD
CHECKED BY: DRV

TABLES

QUANTA RESOURCES SITE
 2802-2810 Lodi Street
 City of Syracuse, Onondaga County, New York
 NYSDEC Site No. 7-34-013

TABLE 1 - HEALTH AND SAFETY DATA FOR SELECTED CHEMICALS OF CONCERN

Contaminant	Synonyms	CAS Number	Ionization Potential (eV)$\|$	Odor Threshold (ppm)	PEL 8 hour (ppm)$\|$	PEL 15 minute (ppm)	$\left\|\begin{array}{l\|} \mathbf{T L V} / \\ \text { TWA } \\ \text { (ppm) } \end{array}\right\|$	$\left.\left\lvert\, \begin{array}{l} \text { STEL } \\ (\mathbf{p p m}) \end{array}\right.\right)$	Flammable	Explosive Limits	
										LEL	UEL
1,1,1-Trichloroethane	Methyl chloroform	71-55-6.	11.00	390	350	NL	350	450	No	NA	NA
1,1-Dichloroethane	Ethylidene chloride	75-34-3.	NA	NA	100	NL	100	NL	Yes	NL.	NL
Benzene	Benzol	71-43-2.	9.24	NA	1	5	0.1	1	Yes	1.2\%	7.8\%
Chlorobenzene	Benzene chloride	106-90-7	9.07	NA	75	NA	NA	NA	Yes	1.3\%	9.6\%
cis-1,2-Dichloroethene	1,2-Dichloroethylene	156-59-2	NA								
Ethylbenzene	Ethylbenzol	100-41-4	8.76	NA	100	NA	100	125	Yes	0.8\%	6.7\%
m-Xylene	Xylol	108-38-3	8.56	NA	100	NA	100	150	Yes	1.1\%	7.0\%
o-Xylene	Xylol	95-47-6.	8.56	NA	100	NA	100	150	Yes	0.9\%	6.7\%
p-Xylene	Xylol	106-42-3	8.44	NA	100	NA	100	150	Yes	1.1\%	7.0\%
Tetrachloroethene	Perchloroethylene	127-18-4	9.32	47	100	200	25	100	No	NA	NA
Toluene	Methyl benzene	108-88-3	NA	2.9	200	300	50	150	Yes	1.3\%	7.0\%
trans-1,2-Dichloroethene	NA	156-60-5	NA								
Trichloroethene	Trichloroethylene	79-01-6	9.45	82-110	100	200	50	100	No.	NA	NA.
Vinyl Chloride	Chloroethene, Chloroethylene	75-01-4	9.995	NA	.	5	5	NA	Yes	4.0\%	22.0\%

ATTACHMENTS

ATTACHMENT A
 NYSDEC Site No. 7-34-013
 AUTHORIZED PERSONNEL

I have read, understand and by signing, agree to comply with the provisions contained in the health and safety plan for this site.

	Name	Representing	Signature	Date
1.				
2.				
3.				
4.				
5.				
6.				
7.				
8.				
9.				
10.				
11.				
12.				
13.				
14.				
15.				
16.				
17.				
18.				
19.				
20.				
21.				
22.				
23.				
24.				
25.				

ATTACHMENT B

 HAZARDOUS SUBSTANCE FACT SHEETS| Aldrin | Formula: $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Cl}_{6}$ | CAS\#:$309-00-2$ | | $\begin{aligned} & \text { RTECS\#: } \\ & \text { IO2100000 } \end{aligned}$ | IDLH: $\mathrm{Ca}\left[25 \mathrm{mg} / \mathrm{m}^{3}\right]$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Conversion: | DOT: 2761151 | | | | |
| Synonyms/Trade Names: HHDN, Octalene, $1,2,3,4,10,10$-Hexachloro-1,4,4a,5,8,8a-hexahydro-endo-1,4-exo-5,8-dimethanonaphthalene | | | | | |
| Exposure Limits:NIOSH REL:TWA $0.25 \mathrm{mg} / \mathrm{m}^{3}$ [skin]TWee Appendix AOSHA PEL: TWA $0.25 \mathrm{mg} / \mathrm{m}^{3}$ [skin] | | | | Measurement Methods (see Table 1): NIOSH 5502 | |
| Physical Description: Colorless to dark-brown crystalline solid with a mild chemical odor. [Note: Formerly used as an insecticide.] | | | | | |
| Chemical \& Physical Properties:
 MW: 364.9
 BP: Decomposes
 Sol: 0.003\%
 FI.P: NA
 IP: ?
 Sp.Gr: 1.60
 VP: 0.00008 mmHg
 MLT: $219^{\circ} \mathrm{F}$
 UEL: NA
 LEL: NA
 Noncombustible Solid, but may be dissolved in flammable liquids. | Personal Protection/Sanitation (see Table 2):
 Skin: Prevent skin contact
 Eyes: Prevent eye contact
 Wash skin: When contam/Daily
 Remove: When wet or contam
 Change: Daily
 Provide: Eyewash Quick drench | | Respirator Recommendations(see Tables 3 and 4):NIOSH$¥:$ ScbaF:Pd,Pp/SaF:Pd,Pp:AScbaEscape: GmFOv100/ScbaE | | |
| Exposure Routes, Symptoms, Target Organs (see Table 5):
 ER: Inh, Abs, Ing, Con
 SY: Head, dizz; nau, vomit, mal; myoclonic jerks of limbs; clonic, tonic convuls; coma; hema, azotemia; [carc]
 TO: CNS, liver, kidneys, skin [in animals: tumors of the lungs, liver, thyroid \& adrenal glands] | | | First Aid (see Table 6):
 Eye: Irr immed
 Skin: Soap wash immed
 Breath: Resp support
 Swallow: Medical attention immed | | |

Antimony	Formula: Sb	CAS\#: 7440-36-0	RTECS\#:	$\begin{aligned} & \text { IDLH: } \\ & 50 \mathrm{mg} / \mathrm{r} \end{aligned}$
Convers	DOT: 1549157 (inorganic compounds, n.o.s.); 2871170 (powder); 3141157 (inorganic liquid compounds, n.o.s.)			
Synonyms/Trade Names: Antimony metal, Antimony powder, Stibium				
Exposure Limits: NIOSH REL*: TWA $0.5 \mathrm{mg} / \mathrm{m}^{3}$ OSHA PEL*: TWA $0.5 \mathrm{mg} / \mathrm{m}^{3}$ [${ }^{*}$ Note: The REL and PEL also apply to other antimony compounds (as Sb)]			```Measurement Methods (see Table 1): NIOSH 7301, 7303, P&CAM 261 (II-4) OSHA ID121, ID125G, ID206```	
Physical Description: Silver-white, lustrous, hard, brittle solid; scale-like crystals; or a dark-gray, lustrous powder.				
Chemical \& Physical Properties: MW: 121.8 BP: $2975^{\circ} \mathrm{F}$ Sol: Insoluble FI.P: NA IP: NA Sp.Gr: 6.69 VP: 0 mmHg (approx) MLT: $1166^{\circ} \mathrm{F}$ UEL: NA LEL: NA	Personal Protection/Sanitation Respirator Recommendations (see Table 2): (see Tables 3 and 4): Skin: Prevent skin contact NIOSH/OSHA Eyes: Prevent eye contact $5 \mathrm{mg} / \mathrm{m}^{3}: 95 \mathrm{XQ} / \mathrm{Sa}$ Wash skin: When contam $12.5 \mathrm{mg} / \mathrm{m}^{3}: \mathrm{Sa}: \mathrm{Cf} / \mathrm{PaprHie}$ Remove: When wet or contam $25 \mathrm{mg} / \mathrm{m}^{3}: 100 \mathrm{~F} / \mathrm{SaT}: \mathrm{Cf} / \mathrm{Papr}$ THie/ScbaF/SaF Change: Daily $50 \mathrm{mg} / \mathrm{m}^{3}: \mathrm{Sa}: \mathrm{Pd}, \mathrm{Pp}$ S: ScbaF:Pd,Pp/SaF:Pd,Pp:AScba Escape: $100 \mathrm{~F} / \mathrm{ScbaE}$			
Noncombustible Solid in bulk form, but a moderate explosion hazard in the form of dust when exposed to flame.				
Incompatibilities and Reactivities: Strong oxidizers, acids, halogenated acids [Note: Stibine is formed when antimony is exposed to nascent (freshly formed) hydrogen.]				
Exposure Routes, Symptoms, Target Organs (see Table 5): ER: Inh, Ing, Con SY: Irrit eyes, skin, nose, throat, mouth; cough; dizz; head; nau, vomit, diarr; stomach cramps; insom; anor; unable to smell properly TO: Eyes, skin, resp sys, CVS			First Aid (see Table 6): Eye: Irr immed Skin: Soap wash immed Breath: Resp support Swallow: Medical attention immed	

Arsenic (inorganic compounds, as As)	Formula: As (metal)	CAS\#: 7440-38-2 (metal)	RTECS\#: CG0525000 (metal)	IDLH: Ca [5 mg/m ${ }^{3}$ (as As)]
Conversion:	DOT: 1558152 (metal); 1562152 (dust)			
Synonyms/Trade Names: Arsenic metal: Arsenia Other synonyms vary depending upon the specific As compound. [Note: OSHA considers "Inorganic Arsenic" to mean copper acetoarsenite \& all inorganic compounds containing arsenic except ARSINE.]				
Exposure Limits: NIOSH REL: Ca C $0.002 \mathrm{mg} / \mathrm{m}^{3}[15-\mathrm{m}$ See Appendix A OSHA PEL: $[1910.1018]$ TWA 0.0				Measurement Methods(see Table 1):NIOSH 7300, 7301,7303,9102, 7900OSHA ID105
Physical Description: Metal: Silver-gray or tin-white, brittle, odorless solid.				
Chemical \& Physical Properties: MW: 74.9 BP: Sublimes Sol: Insoluble FI.P: NA IP: NA Sp.Gr: 5.73 (metal) VP: 0 mmHg (approx) MLT: $1135^{\circ} \mathrm{F}$ (Sublimes) UEL: NA LEL: NA	Personal Protection/Sanitation (see Table 2): Skin: Prevent skin contact Eyes: Prevent eye contact Wash skin: When contam/Daily Remove: When wet or contam Change: Daily Provide: Eyewash Quick drench		Respirator Recommendations (see Tables 3 and 4): NIOSH ¥: ScbaF:Pd,Pp/SaF:Pd,Pp:AScba Escape: GmFAg100/ScbaE See Appendix E (page 351)	
Metal: Noncombustible Solid in bulk form, but a slight explosion hazard in the form of dust when exposed to flame.				
Incompatibilities and Reactivities: Strong oxidizers, bromine azide [Note: Hydrogen gas can react with inorganic arsenic to form the highly toxic gas arsine.]				
Exposure Routes, Symptoms, Target Organs (see Table 5): ER: Inh, Abs, Con, Ing SY: Ulceration of nasal septum, derm, Gl disturbances, peri neur, resp irrit, hyperpig of skin, [carc] TO: Liver, kidneys, skin, lungs, Iymphatic sys [lung \& lymphatic cancer]			First Aid (see Table 6): Eye: Irr immed Skin: Soap wash immed Breath: Resp support Swallow: Medical attention immed	

Benzene	Formula: $\mathrm{C}_{6} \mathrm{H}_{6}$	$\begin{aligned} & \text { CAS\#: } \\ & 71-43-2 \end{aligned}$	RTECS\#: CY1400000	IDLH: $\mathrm{Ca}[500 \mathrm{ppm}]$
Conversion: $1 \mathrm{ppm}=3.19 \mathrm{mg} / \mathrm{m}^{3}$	DOT: 1114130			
Synonyms/Trade Names: Benzol, Phenyl hydride				
Exposure Limits: NIOSH REL: Ca TWA 0.1 ppm ST 1 ppm See Appendix A	TWA 1 ppm ST 5 ppm See Appendix F		Measurement Methods (see Table 1): NIOSH 1500, 1501, 3700, 3800 OSHA 12, 1005	
Physical Description: Colorless to light-yellow liquid with an aromatic odor. [Note: A solid below 42 ${ }^{\circ} \mathrm{F}$.]				
Chemical \& Physical Properties: MW: 78.1 BP: $176^{\circ} \mathrm{F}$ Sol: 0.07\% FI.P: $12^{\circ} \mathrm{F}$ IP: 9.24 eV Sp.Gr: 0.88 VP: 75 mmHg FRZ: $42^{\circ} \mathrm{F}$ UEL: 7.8\% LEL: 1.2\% Class IB Flammable Liquid	Personal Protection/Sanitation (see Table 2): Skin: Prevent skin contact Eyes: Prevent eye contact Wash skin: When contam Remove: When wet (flamm) Change: N.R. Provide: Eyewash Quick drench		Respirator Recommendations (see Tables 3 and 4): NIOSH ¥: ScbaF:Pd,Pp/SaF:Pd,Pp:AScba Escape: GmFOv/ScbaE See Appendix E (page 351)	
Incompatibilities and Reactivities: Strong oxidizers, many fluorides \& perchlorates, nitric acid				
Exposure Routes, Symptoms, Target Organs (see Table 5): ER: Inh, Abs, Ing, Con SY: Jrit eyes, skin, nose, resp sys; dizz; head, nau, staggered gait; anor, lass; derm; bone marrow depres; [carc] TO: Eyes, skin, resp sys, blood, CNS, bone marrow [leukemia]		First Aid (see Table 6): Eye: Irr immed Skin: Soap wash immed Breath: Resp support Swallow: Medical attention immed		

Coal tar pitch volatiles	Formula: \quadCA 65	$\begin{aligned} & \text { CAS\#: } \\ & \text { 65996-93-2 } \end{aligned}$	RTECS\#: GF8655000	IDLH: $\mathrm{Ca}\left[80 \mathrm{mg} / \mathrm{m}^{3}\right]$
Conversion:	DOT: 2713153 (acridine)			
Synonyms/Trade Names: Synonyms vary depending upon the specific compound (e.g., pyrene, phenanthrene, acridine, chrysene, anthracene \& benzo(a)pyrene). [Note: NIOSH considers coal tar, coal tar pitch, and creosote to be coal tar products.]				
Exposure Limits: NIOSH REL: Ca TWA $0.1 \mathrm{mg} / \mathrm{m}^{3}$ (cyclohexane-extractable fraction) See Appendix A See Appendix C OSHA PEL: TWA $0.2 \mathrm{mg} / \mathrm{m}^{3}$ (benzene-soluble fraction) [1910.1002] See Appendix C			Measurement Methods (see Table 1): OSHA 58	
Physical Description: Black or dark-brown amorphous residue.				
Chemical \& Physical Properties: Properties vary depending upon the specific compound. Combustible Solids	Personal Protection/Sanitation (see Table 2): Skin: Prevent skin contact Eyes: Prevent eye contact Wash skin: Daily Remove: N.R. Change: Daily		tor Recomm bles 3 and 4) F:Pd,Pp/SaF: GmFOv100/	dations ,Pp:AScba baE
Incompatibilities and Reactivitles: Strong oxidizers				
Exposure Routes, Symptoms, Target Organs (see Table 5): ER: Inh, Con SY: Derm, bron, [carc] TO: Resp sys, skin, bladder, kidneys [lung, kidney \& skin cancer]		First Aid (see Table 6): Eye: Irr immed Skin: Soap wash immed Breath: Resp support Swallow: Medical attention immed		

1,1-Dichloroethane	Formula: $\mathrm{CHCl}_{2} \mathrm{CH}_{3}$	$\begin{aligned} & \text { CAS\#: } \\ & 75-34-3 \end{aligned}$	RTECS\#: KI0175000	$\begin{aligned} & \text { IDLH: } \\ & 3000 \mathrm{ppm} \end{aligned}$		
Conversion: $1 \mathrm{ppm}=4.05 \mathrm{mg} / \mathrm{m}^{3}$	DOT: 2362130					
Synonyms/Trade Names: Asymmetrical dichloroethane; Ethylidene chloride; 1,1-Ethylidene dichloride						
Exposure Limits: NIOSH REL: TWA $100 \mathrm{ppm}\left(400 \mathrm{mg} / \mathrm{m}^{3}\right)$ See Appendix C (Chloroethanes) OSHA PEL: TWA $100 \mathrm{ppm}\left(400 \mathrm{mg} / \mathrm{m}^{3}\right)$			Measurement Methods (see Table 1): NIOSH 1003 OSHA 7			
Physical Description: Colorless, oily liquid with a chloroform-like odor.						
Chemical \& Physical Properties: MW: 99.0 BP: $135^{\circ} \mathrm{F}$ Sol: 0.6\% FI.P: $2^{\circ} \mathrm{F}$ IP: 11.06 eV Sp.Gr: 1.18 VP: 182 mmHg FRZ: $-143^{\circ} \mathrm{F}$ UEL: 11.4\% LEL: 5.4\% Class IB Flammable Liquid	Personal Protection/Sanitation (see Table 2): Skin: Prevent skin contact Eyes: Prevent eye contact Wash skin: When contam Remove: When wet (flamm) Change: N.R.				```Respirator Recommendations (see Tables 3 and 4): NIOSH/OSHA 1000 ppm: Sa 2500 ppm: Sa:Cf 3000 ppm: ScbaF/SaF §: ScbaF:Pd,Pp/SaF:Pd,Pp:AScba Escape: GmFOv/ScbaE```	
Incompatibilities and Reactivities: Strong oxidizers, strong caustics						
Exposure Routes, Symptoms, Target Organs (see Table 5): ER: Inh, Ing, Con SY: Irrit skin; CNS depres; liver, kidney, lung damage TO: Skin, liver, kidneys, lungs, CNS		First Aid (see Table 6): Eye: Irr immed Skin: Soap flush prompt Breath: Resp support Swallow: Medical attention immed				

Ethyl benzene	Formula: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	CAS\#: $100-41-4$	RTECS\#: DA0700000	$\begin{aligned} & \text { IDLH: } \\ & 800 \mathrm{ppm} \text { [10\%LEL] } \end{aligned}$
Conversion: $1 \mathrm{ppm}=4.34 \mathrm{mg} / \mathrm{m}^{3}$	DOT: 1175130			
Synonyms/Trade Names: Ethylbenzol, Phenylethane				
Exposure Limits: NIOSH REL: TWA $100 \mathrm{ppm}\left(435 \mathrm{mg} / \mathrm{m}^{3}\right.$) ST $125 \mathrm{ppm}\left(545 \mathrm{mg} / \mathrm{m}^{3}\right)$ OSHA PEL†: TWA $100 \mathrm{ppm}\left(435 \mathrm{mg} / \mathrm{m}^{3}\right)$				Measurement Methods (see Table 1): NIOSH 1501 OSHA 7, 1002
Physical Description: Coloriess liquid with an aromatic odor.				
Chemical \& Physical Properties: NW: 106.2 BP: $277^{\circ} \mathrm{F}$ Sol: 0.01\% FI.P: $55^{\circ} \mathrm{F}$ IP: 8.76 eV Sp.Gr: 0.87 VP: 7 mmHg FRZ: $-139^{\circ} \mathrm{F}$ UEL: 6.7\% LEL: 0.8\% Class IB Flammable Liquid	Personal Protection/Sanitation (see Table 2): Skin: Prevent skin contact Eyes: Prevent eye contact Wash skin: When contam Remove: When wet (flamm) Change: N.R.		Respirator Recommendations (see Tables 3 and 4): NIOSH/OSHA 800 ppm: $\mathrm{CcrOv}^{*} / \mathrm{GmFOv} / \mathrm{PaprO}^{*} /$ Sa*/ScbaF §: ScbaF:Pd,Pp/SaF:Pd,Pp:AScba Escape: GmFOv/ScbaE	
Incompatibilitios and Reactivities: Strong oxidizers				
Exposure Routes, Symptoms, Target Organs (see Table 5): ER: Inh, Ing, Con SY: Irrit eyes, skin, muc memb; head; derm; narco, coma TO: Eyes, skin, resp sys, CNS		First Aid (see Table 6): Eye: Irr immed Skin: Water flush prompt Breath: Resp support Swallow: Medical attention immed		

Lead		Formula: Pb	$\begin{aligned} & \text { CAS\#: } \\ & 7439-92-1 \end{aligned}$	RTECS\#: OF7525000	$\begin{aligned} & \text { IDLH: } \\ & 100 \mathrm{mg} / \mathrm{m}^{3} \text { (as } \mathrm{Pb} \text {) } \end{aligned}$
Conversion:		DOT:			
Synonyms/Trade Names: Lead metal, Plumbum					
```Exposure Limits: NIOSH REL*: TWA \(0.050 \mathrm{mg} / \mathrm{m}^{3}\) See Appendix C OSHA PEL*: [1910.1025] TWA \(0.050 \mathrm{mg} / \mathrm{m}^{3}\) See Appendix C [ \({ }\) Note: The REL and PEL also apply to other lead compounds (as Pb) -- see Appendix C.]```				Measurement Methods(see Table 1):NIOSH 7082, 7105, 7300, 7301, 7303 ,7700, 7701, 7702, 9102, 9105OSHA ID121, ID125G, ID206	
Physical Description: A heavy, ductile, soft, gray solid.					
Chemical \& Physical Properties:   MW: 207.2   BP: $3164^{\circ} \mathrm{F}$   Sol: Insoluble   FI.P: NA   IP: NA   Sp.Gr: 11.34   VP: 0 mmHg (approx)   MLT: $621^{\circ} \mathrm{F}$   UEL: NA   LEL: NA   Noncombustible Solid in bulk form.	Personal Protection/Sanitation (see Table 2):   Skin: Prevent skin contact   Eyes: Prevent eye contact Wash skin: Daily   Remove: When wet or contam Change: Daily			Respirator Recommendations (see Tables 3 and 4):   NIOSH/OSHA   $0.5 \mathrm{mg}^{\mathbf{m}}{ }^{3}$ : $100 \mathrm{XQ} / \mathrm{Sa}$   $1.25 \mathrm{mg} / \mathrm{m}^{3}$ : Sa:Cf/PaprHie   $2.5 \mathrm{mg} / \mathrm{m}^{3}$ : 100F/SaT:Cf/PaprTHie/ ScbaF/SaF   $50 \mathrm{mg} / \mathrm{m}^{\mathbf{3}}$ : $\mathrm{Sa}: \mathrm{Pd}, \mathrm{Pp}$   $100 \mathrm{mg} / \mathrm{m}^{3}$ : SaF:Pd,Pp   §: ScbaF:Pd,Pp/SaF:Pd,Pp:AScba   Escape: 100F/ScbaE   See Appendix E (page 351)	
Incompatibilities and Reactivities: Strong oxidizers, hydrogen peroxide, acids					
Exposure Routes, Symptoms, Target Organs (see Table 5): ER: Inh, Ing, Con   SY: Lass, insom; facial pallor, anor, low-wgt, malnut; constip, abdom pain, colic; anemia; gingival lead line; tremor; para wrist, ankles; encephalopathy; kidney disease; irrit eyes; hypotension TO: Eyes, GI tract, CNS, kidneys, blood, gingival tissue				First Aid (see Table 6):   Eye: Irt immed   Skin: Soap flush prompt   Breath: Resp support   Swallow: Medical attention immed	



## ATTACHMENT C <br> NYSDEC Site No. 7-34-013 <br> DAILY WORK ZONE AND PERIMETER AIR MONITORING LOG SHEET

Job: $\qquad$ Date: $\qquad$ Start Time: $\qquad$
Monitoring
Personnel: $\qquad$
Instruments (circle): PID: $\qquad$ HNU LEL Draeger Tubes Other $\qquad$
Weather Conditions

Temperature:	Sky (circle)	Clear	P. Cloudy	Cloudy	Overcast
Wind Speed (approx.):		Direction:		Precipita	


TIME	PID/LEL   READINGS	WORK ZONE   OR   PERIMETER	(activities, changes in wind direction,   temperature, etc.)

## Monitoring

By: $\qquad$
Were Respirators Worn: Yes No
How Long? Who? $\qquad$
Why?

## APPENDIX D

## IMPORTED SOIL TESTING REQUIREMENTS

Table 5.4(e) 10 Recommended Number of Soil Samples for Soil Imported To or Exported From a Site			
Contaminant	VOCs	SVOCs, Inorga	\& PCBs/Pesticides
Soil Quantity (cubic yards)	Discrete Samples	Composite	Discrete Samples/Composite
0-50	1	1	3-5 discrete samples from different locations in the fill being provided will comprise a composite sample for analysis
50-100	2	1	
100-200	3	1	
200-300	4	1	
300-400	4	2	
400-500	5	2	
500-800	6	2	
800-1000	7	2	
$>1000$	Add an additional 2 VOC and 1 composite for each additional 1000 Cubic yards or consult with DER		

## Appendix 5

## Allowable Constituent Levels for Imported Fill or Soil Subdivision 5.4(e)

Source: This table is derived from soil cleanup objective (SCO) tables in 6 NYCRR 375. Table 375-6.8(a) is the source for unrestricted use and Table 375-6.8(b) is the source for restricted use.

Note: For constituents not included in this table, refer to the contaminant for supplemental soil cleanup objectives (SSCOs) in the Commissioner Policy on Soil Cleanup Guidance. If an SSCO is not provided for a constituent, contact the DER PM to determine a site-specific level.

Constituent	Unrestricted Use	Residential Use	Restricted   Residential Use	Commercial or   Industrial Use	If Ecological Resources are Present
Metals					
Arsenic	13	16	16	16	13
Barium	350	350	400	400	433
Beryllium	7.2	14	47	47	10
Cadmium	2.5	2.5	4.3	7.5	4
Chromium, Hexavalent ${ }^{1}$	$1^{3}$	19	19	19	$1^{3}$
Chromium, Trivalent ${ }^{1}$	30	36	180	1500	41
Copper	50	270	270	270	50
Cyanide	27	27	27	27	NS
Lead	63	400	400	450	63
Manganese	1600	2000	2000	2000	1600
Mercury (total)	0.18	0.73	0.73	0.73	0.18
Nickel	30	130	130	130	30
Selenium	3.9	4	4	4	3.9
Silver	2	8.3	8.3	8.3	2
Zinc	109	2200	2480	2480	109
PCBs/Pesticides					
2,4,5-TP Acid (Silvex)	3.8	3.8	3.8	3.8	NS
4,4'-DDE	$0.0033^{3}$	1.8	8.9	17	$0.0033^{3}$
4,4'-DDT	$0.0033^{3}$	1.7	7.9	47	$0.0033^{3}$
4,4'-DDD	$0.0033^{3}$	2.6	13	14	$0.0033^{3}$
Aldrin	0.005	0.019	0.097	0.19	0.14
Alpha-BHC	0.02	0.02	0.02	0.02	$0.04{ }^{4}$
Beta-BHC	0.036	0.072	0.09	0.09	0.6
Chlordane (alpha)	0.094	0.91	2.9	2.9	1.3
Delta-BHC	0.04	0.25	0.25	0.25	$0.04{ }^{4}$
Dibenzofuran	7	14	59	210	NS
Dieldrin	0.005	0.039	0.1	0.1	0.006
Endosulfan I	$2.4{ }^{2}$	4.8	24	102	NS
Endosulfan II	$2.4{ }^{2}$	4.8	24	102	NS
Endosulfan sulfate	$2.4{ }^{2}$	4.8	24	200	NS
Endrin	0.014	0.06	0.06	0.06	0.014
Heptachlor	0.042	0.38	0.38	0.38	0.14
Lindane	0.1	0.1	0.1	0.1	6
Polychlorinated biphenyls	0.1	1	1	1	1


Constituent	Unrestricted Use	Residential Use	Restricted Residential Use	Commercial or Industrial Use	If Ecological Resources are Present
Semi-volatile Organic Compounds					
Acenaphthene	20	98	98	98	20
Acenaphthylene	100	100	100	107	NS
Anthracene	100	100	100	500	NS
Benzo(a)anthracene	1	1	1	1	NS
Benzo(a)pyrene	1	1	1	1	2.6
Benzo(b)fluoranthene	1	1	1	1.7	NS
Benzo(g,h,i)perylene	100	100	100	500	NS
Benzo(k)fluoranthene	0.8	1	1.7	1.7	NS
Chrysene	1	1	1	1	NS
Dibenz(a,h)anthracene	$0.33^{3}$	$0.33{ }^{3}$	$0.33{ }^{3}$	0.56	NS
Fluoranthene	100	100	100	500	NS
Fluorene	30	100	100	386	30
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.5	5.6	NS
m-Cresol(s)	$0.33{ }^{3}$	$0.33^{3}$	$0.33{ }^{3}$	$0.33{ }^{3}$	NS
Naphthalene	12	12	12	12	NS
o-Cresol(s)	$0.33^{3}$	$0.33{ }^{3}$	$0.33^{3}$	$0.33{ }^{3}$	NS
p-Cresol(s)	0.33	0.33	0.33	0.33	NS
Pentachlorophenol	$0.8{ }^{3}$	$0.8{ }^{3}$	$0.8{ }^{3}$	$0.8{ }^{3}$	$0.8{ }^{3}$
Phenanthrene	100	100	100	500	NS
Phenol	$0.33^{3}$	$0.33^{3}$	$0.33^{3}$	$0.33{ }^{3}$	30
Pyrene	100	100	100	500	NS
Volatile Organic Compounds					
1,1,1-Trichloroethane	0.68	0.68	0.68	0.68	NS
1,1-Dichloroethane	0.27	0.27	0.27	0.27	NS
1,1-Dichloroethene	0.33	0.33	0.33	0.33	NS
1,2-Dichlorobenzene	1.1	1.1	1.1	1.1	NS
1,2-Dichloroethane	0.02	0.02	0.02	0.02	10
1,2-Dichloroethene(cis)	0.25	0.25	0.25	0.25	NS
1,2-Dichloroethene(trans)	0.19	0.19	0.19	0.19	NS
1,3-Dichlorobenzene	2.4	2.4	2.4	2.4	NS
1,4-Dichlorobenzene	1.8	1.8	1.8	1.8	20
1,4-Dioxane	$0.1{ }^{3}$	$0.1{ }^{3}$	$0.1^{3}$	$0.1^{3}$	0.1
Acetone	0.05	0.05	0.05	0.05	2.2
Benzene	0.06	0.06	0.06	0.06	70
Butylbenzene	12	12	12	12	NS
Carbon tetrachloride	0.76	0.76	0.76	0.76	NS
Chlorobenzene	1.1	1.1	1.1	1.1	40
Chloroform	0.37	0.37	0.37	0.37	12
Ethylbenzene	1	1	1	1	NS
Hexachlorobenzene	$0.33^{3}$	$0.33^{3}$	1.2	3.2	NS
Methyl ethyl ketone	0.12	0.12	0.12	0.12	100
Methyl tert-butyl ether	0.93	0.93	0.93	0.93	NS
Methylene chloride	0.05	0.05	0.05	0.05	12


Volatile Organic Compounds (continued)					
Propylbenzene-n	3.9	3.9	3.9	3.9	NS
Sec-Butylbenzene	11	11	11	11	NS
Tert-Butylbenzene	5.9	5.9	5.9	5.9	NS
Tetrachloroethene	1.3	1.3	1.3	1.3	2
Toluene	0.7	0.7	0.7	0.7	36
Trichloroethene	0.47	0.47	0.47	0.47	2
Trimethylbenzene-1,2,4	3.6	3.6	3.6	3.6	NS
Trimethylbenzene-1,3,5	8.4	8.4	8.4	8.4	NS
Vinyl chloride	0.02	0.02	0.02	0.02	NS
Xylene (mixed)	0.26	1.6	1.6	1.6	0.26

All concentrations are in parts per million (ppm)
NS $=$ Not Specified

Footnotes:
${ }^{1}$ The SCO for Hexavalent or Trivalent Chromium is considered to be met if the analysis for the total species of this contaminant is below the specific SCO for Hexavalent Chromium.
${ }^{2}$ The SCO is the sum of endosulfan I, endosulfan II and endosulfan sulfate.
${ }^{3}$ For constituents where the calculated SCO was lower than the contract required quantitation limit (CRQL), the CRQL is used as the Track 1 SCO value.
${ }^{4}$ This SCO is derived from data on mixed isomers of BHC.


[^0]:    ${ }^{1}$ Remedial Investigation Report, prepared by Plumley Engineering, P.C., dated August 2009, revised December 2009 and approved by the DEC by letter dated December 29, 2009.
    ${ }^{2}$ Feasibility Study Report, prepared by Plumley Engineering, P.C., dated March 2010 and approved by the DEC by letter dated March 9, 2010.

[^1]:    ${ }^{3}$ DEC Final Commissioner Policy, CP-51 / Soil Cleanup Guidance, issued October 21, 2010.

[^2]:    COMMENTS DRILL RIG: TRUCK MOUNTED MOBILE B-57

[^3]:    ${ }^{1}$ Historical information cited in this HASP regarding the Site has been obtained from:

    - Site Summary Report, Quanta Resources Syracuse Site PRP Group, ARCADIS Geraghty \& Miller; March 26, 1998; revised September 23, 1999.
    - Phase II Investigation by URS; December 1992
    - UST Closure Report, Earth Tech; 1999

