PLUMLEY

== ENGINEERING == Civil and Environmental Engineering

PROGRESS REPORT

Quanta Resources, Lodi Street City of Syracuse, Onondaga County, New York DEC Site No. 7-34-013 / Index No. D7-00001-07-07 Project No. 2015127

March 2021

INTRODUCTION

This report summarizes the remedial activities at the Quanta Resources – Syracuse Site since our January 2020 Progress Report. The 0.75-acre Site is a former waste oil recycling facility located in a mixed commercial and industrial area. Groundwater is impacted with light non-aqueous phase liquid (LNAPL) with a viscosity similar to motor oil which historically has been present in monitoring wells MW-1S, MW-2, MW-7 and MW-10. The LNAPL contains polychlorinated biphenyls (PCBs) in concentrations above 50 parts per million (ppm). The liquid surface in wells with LNAPL is typically 31 and 34 feet below the ground surface.

A remedial excavation was completed in 2011 to a maximum depth of 16 feet. Free product recovery efforts have been ongoing since September 2012. Installation of a vacuum-enhanced LNAPL recovery system to enhance oil recovery from the bedrock water table was completed in 2012 and operated until 2015. Free product recovery is currently being accomplished with absorbent socks that are inspected and changed quarterly in the four monitoring wells with a history of free product accumulation. The Periodic Review Report (PRR) was submitted to the New York State Department of Environmental Conservation (DEC) in July 2020. The most recent post-remedial groundwater sampling event of selected wells was completed in October 2020.

FREE PRODUCT RECOVERY

Absorbents have been maintained in the four monitoring wells with a history of free product accumulation (MW-1S, MW-2, MW-7 and MW-10) since March 2017. Quarterly inspections were completed in December 2019 and March, July and October 2020 to assess free product thickness and the amount of oil absorbed and recovered in each well. Well MW-1S had free product layers ranging in thickness from a thin layer less than 0.1 to 3.0 feet during the monitoring period. The remaining wells had either no free product layer or a thin layer of 0.1 foot or less. A total of 0.8 gallons of free product was recovered over the last 11-month period, all from MW-1S. A total of 33.2 gallons of free product has been recovered since initiating recovery efforts in 2012. Refer to the attached *Table 1A – Free Product Thickness* and *Table 1B – Monthly Free Product Recovery* for additional information.

GROUNDWATER SAMPLING

A groundwater sampling event was completed on October 8, 2020. Plumley personnel measured static water levels, purged the wells and collected samples from monitoring wells MW-1D, MW-2, MW-5, MW-6, MW-9, MW-10 and MW-12. A free product film was observed in monitoring well MW-10. No free product was observed in any of the other wells sampled. Refer to the attached *Figure 1 – Site Plan* for sampling locations and the *Groundwater Sampling Field Logs* for field observations.

Samples were submitted to SGS Accutest (SGS) for laboratory analysis of volatile organic compounds (VOCs) using United States Environmental Protection Agency (EPA) Method 8260 and PCBs using EPA Method 8082. At the request of the DEC, key monitoring wells MW-9, MW-10, MW-12 were also sampled for analysis of "emerging contaminants," including

1,4-Dioxane using EPA Method 8270SIM and Per- and Poly-Fluorinated Alkyl Substances (PFAS) Target Analyte List (TAL) using EPA Method 537M by ID. Well MW-9 exhibited insufficient groundwater recovery over an approximate 24-hour period to allow collection of

adequate groundwater volume for the PCB and emerging contaminant analyses. Therefore, the

sample from well MW-9 was only analyzed for VOCs. The results are discussed below.

Groundwater Elevations

The groundwater contours calculated using elevation data measured on October 8, 2020 are shown on the attached $Figure\ 1$ – $Site\ Plan$. The contours are similar to prior maps, with a westerly flow direction on the west side of the site and more variable flow directions in the center area. Refer to the attached $Table\ 1C$ – $Monitoring\ Well\ Groundwater\ Elevation\ Summary$ for additional information.

Analytical Results

Analytical results reported total VOC concentrations ranging from 15 to 92 micrograms per liter (μ g/L) in the wells tested. VOCs exceeding groundwater standards in the latest sampling event (also detected in prior sampling events) included chlorinated organics 1,2-Dichlorobenzene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, chlorobenzene and vinyl chloride, as well as non-chlorinated organics benzene, isopropylbenzene and n-Propylbenzene. The reported concentrations for the majority of the VOCs exceeding standards were by factors of less than 2 to 3. VOC concentrations have varied relatively little over the past six annual monitoring events. Refer to *Table 2 – Summary of Historical Groundwater Analytical Results – VOCs*.

PCBs were not detected above the laboratory's method detection limits in four of the six wells sampled for PCBs. Wells MW-2 and MW-10 had reported total PCB concentrations of 0.51 and

0.35 µg/L respectively, both of which were comprised of Arochlors 1254 and 1260. These concentrations exceed the groundwater standard for PCBs of 0.09 µg/L. Refer to *Table 3 – Summary of Historical Groundwater Analytical Results – PCBs*.

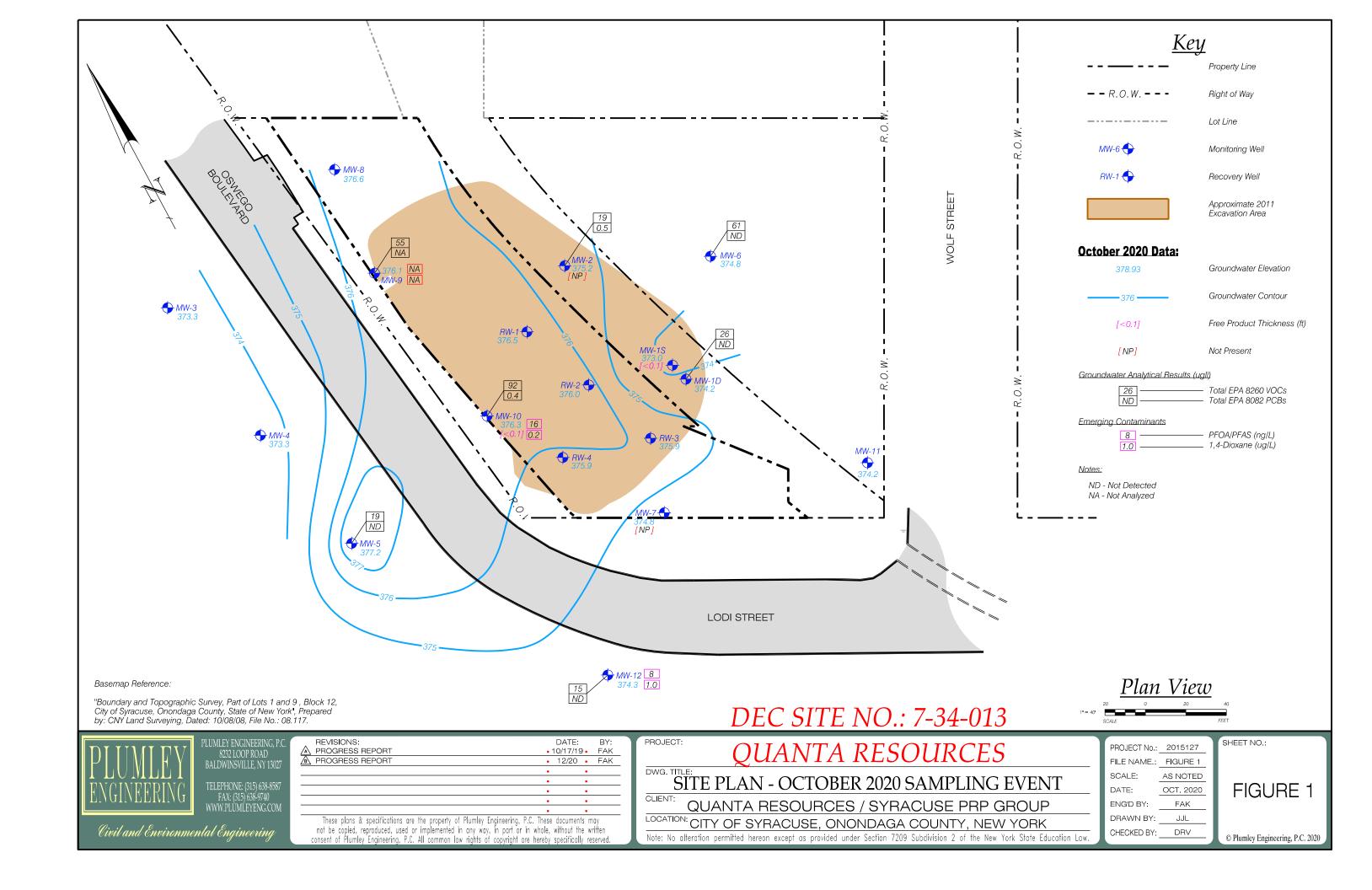
Groundwater samples were collected from two of the three monitoring wells being monitored for emerging contaminants (MW-10 and MW-12) and analyzed for PFAS compounds and 1,4-Dioxane. This is the third sampling event for emerging contaminants analysis of these wells. Total PFAS compound concentrations of 40 and 11 nanograms per liter (ng/L) were reported in monitoring wells MW-10 and MW-12, respectively, with 1,4-Dioxane concentrations of 0.19 and 1.03 µg/L, respectively. New York State recently adopted Maximum Contaminant Levels (MCLs) for drinking water (applicable as groundwater standards) of 10 ng/L for Perfluorooctanesulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA), and 1.0 µg/L for 1,4-Dioxane. Only one well, MW-10, had a PFOS/PFOA exceedance with a PFOA concentration of 12.7 ng/L. The highest 1,4-Dioxane concentration was for well MW-12 at 1.03 µg/L, essentially equal to the groundwater standard. Refer to *Table 4A – PFAS and 1,4-Dioxane in Groundwater – New Proposed MCLs and Table 4B – Historical Summary of Emerging Contaminant Analyses* for details.

DISCUSSION OF FINDINGS

The findings from the October 2020 groundwater sampling event and the free product inspections completed throughout the year are in overall agreement and consistent with those discussed in the January 2020 Progress Report. We offer the following comments:

• Free product recovery continues to be limited to relatively small volumes from MW-1S. The majority of the wells have not contained free product (Table 1A).

- VOC historical concentrations continue to indicate a stable, relatively low-level, dissolved phase groundwater plume condition (Table 2).
- PCB detections in groundwater have been sporadic and at relatively low concentrations (Table 3).
- The analytical results for three sampling events completed for emerging contaminants have yielded generally similar results (Table 4B).


RECOMMENDATIONS

We recommend maintaining the quarterly absorbent sock and free product recovery program in MW-1S only. No measurable free product was recovered from the other three wells and layers have been absent or thin over the recently completed one-year quarterly program.

Given the consistency of the post-remedial results indicative of a stable plume condition, we recommend extending the time between sampling events to two years. The next sampling event would be in the late summer to early fall of 2022 and would include wells MW-1D, MW-2, MW-5, MW-6, MW-9, MW-10 and MW-12. Groundwater samples collected from these wells would be submitted for laboratory analysis of VOCs using EPA Method 8260 Site Specific Target Compound List (TCL) and PCBs using EPA Method 8082.

The completion of the three sampling and analysis events for emerging contaminants provided generally consistent results. Therefore, no additional sampling and analysis is recommended.

FIGURE

TABLES

QUANTA RESOURCES SITE 2802-2810 Lodi Street

City of Syracuse, Onondaga County, New York DEC Site No. 7-34-013

TABLE 1A - FREE PRODUCT THICKNESS (FEET)

Date	MW-1S	MW-2	MW-7	MW-10	RW-1	RW-2	RW-3	RW-4	MW-1D	MW-3	MW-4	MW-5	MW-6	MW-8	MW-9	MW-11	MW-12
07/14/09	2.04	1.80	0.90	0.85	NI	NI	NI	NI									
2011	2.22	1.07	4.02	2.00		0.05	0.76		oleted Remedial Exca		T				T		
09/20/12	3.23	1.07	4.03	2.09		0.05	0.76										
09/20/12 09/27/12	3.20	1.51	3.21	1.68		0.14	0.19	I	System Startup	<u> </u>	Ι				Ι		
10/04/12	4.26	1.39	4.85	2.05		0.14	0.19										
10/12/12	4.25	2.21	4.49	1.69		0.66	0.95										
11/15/12	NA	0.77	NA	1.5		NA	NA										NM
12/28/12	6.21	1.01	2.92	1.32		0.31	NA NA										
01/30/13	6.4	0.29	0.33	0.87		0.32	0.13										
02/22/13	4.76	0.13	2.01	1.37		0.18	0.19										
03/28/13	3.41	0.13	2.31	1.37		0.68	0.3										
04/30/13	1.14	0.06	1.40	0.96													
05/30/13	1.62	0.77	1.36	0.95		NA	0.21										
06/21/13	2.29	0.13	0.82	0.91		0.55	0.43										
07/17/13	1.70	0.09	1.56	0.53		< 0.01	0.21										
08/15/13	0.50	0.20	0.11	0.30		0.02	0.02	0.02									
09/25/13	3.00	0.05	0.50	0.75		0.01	0.01										
10/30/13	3.00	0.01	0.50	0.75		0.05	NA										
11/21/13	3.00	0.08	1.00	0.33			0.01										
12/31/13	0.60	0.10	0.10	0.20			0.01	0.01									
01/31/14	3.00	NM	NM	NM		NM	NM	0.01									
01/31/14	0.00	0.00	0.00	0.00		0.00			very Program (Free P	roduct Thickness No							
02/02/14	0.00	0.00	0.00	0.00		0.00		0.00									
02/03/14	0.00		0.00	0.00		0.00	0.00	0.00									
02/04/14	0.00	0.00	0.00	0.00		0.00	0.00	0.00									
02/05/14 09/22/15	0.00	0.00	0.00	0.00		0.00	0.00	0.00	Absorbents Remove	 A							
09/22/15	3.00			I													
12/08/16	2.70	0.08	0.38	0.08													
02/16/16	3.50	0.25															
04/02/16	3.75	0.20															
07/12/16	4.33	0.25															
10/14/16	4.75	0.50	0.10	0.10													
12/08/16	3.66	0.10	0.40	0.10													
12/14/16	2.70	0.08	0.38	0.08													
03/01/17							Al	bsorbents Installed i	n Wells MW1S, MW	7-2, MW-7 and MW	-10						
03/01/17	4.00	0.02	0.27	0.09	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
04/25/17	2.50	< 0.1	1.00	<0.1	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
05/26/17	1.30	< 0.1	0.15	<0.1	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
06/29/17	0.70	<0.1	0.20	<0.1							NM						
07/29/17	0.30	<0.1	<0.1	<0.1					NM	NM	NM	NM	NM	NM	NM	NM	NM
09/08/17	0.80	<0.1	0.10	<0.1					NM	NM	NM	NM	NM	NM	NM	NM	NM
10/05/17	1.50 1.75	<0.1 <0.1	0.20	<0.1			0.20	NM NM	NIM	NIM	NIM		NM	NIM	NIM	NM	NM
02/28/18				<0.2			<0.1	NM NM	NM	NM	NM	NM	NM	NM	NM	NM	
05/30/19 09/28/18	0.80	<0.1	<0.1	<0.1			<0.1	NM NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
12/05/18	4.75	<0.1	0.10	<0.1			<0.1	NM NM	INIVI	INIMI 	NM		INIVI	NIVI	INMI 	INIVI	INIMI
03/20/19	1.00	<0.1	0.10	0.10			<0.1	1NIVI									
06/02/19	1.00	0.10	0.10	0.10			~0.1 		NM	NM	NM	NM	NM	NM	NM	NM	NM
09/30/19	3.75	<0.0	0.10	<0.0			<0.1										
12/05/18	3.00	<0.1	0.00	<0.1			<0.1	NM									
03/20/19	1.00	<0.1	0.00	0.00			0.00										
06/02/19	1.00	0.10	0.10	<0.1					NM	NM	NM	NM	NM	NM	NM	NM	NM
09/30/19	3.75		0.10	<0.1													
12/05/19	3.00		0.10	< 0.1													
03/27/20	1.00		0.10	< 0.1													
07/20/20	< 0.1			< 0.1													
10/20/20	< 0.1			< 0.1													

Notes:

--- Not Present NI Well not installed

NA Oil-water interface probe malfunction

NM Not measured

Free product measurements taken with an oil-water interface probe.

QUANTA RESOURCES 2802-2810 Lodi Street

City of Syracuse, Onondaga County, New York DEC Site No. 7-34-013

TABLE 1B - MONTHLY FREE PRODUCT RECOVERY* (GALLONS)

Date	MW-1S	MW-2	MW-7	MW-10	RW-1	RW-2	RW-3	RW-4	Total	Cumulative Total
Sep-12			System Star	tup and Mont	hly Manual E	Bailing Begun				
Oct-12	1.32	0.26	0.92	0.40					2.9	2.9
Nov-12	0.69	0.13	0.79	0.18					1.8	4.7
Dec-12	0.99	0.08	0.79	0.20					2.1	6.8
Jan-13	0.90	0.01	0.03	0.11					1.0	7.8
Feb-13	1.82	0.01	0.42	0.13					2.4	10.2
Mar-13	1.77		0.29	0.11					2.2	12.4
Apr-13	1.43		0.17	0.11					1.7	14.1
May-13	0.54	0.03	0.16	0.05					0.8	14.8
Jun-13	0.29		0.16	0.05					0.5	15.4
Jul-13	0.21		0.26						0.5	15.8
Aug-13	0.20	0.01	0.11	0.01					0.3	16.2
Sep-13	0.26	0.01	0.11	0.05					0.4	16.6
Oct-13	0.20	0.01	0.03	0.05					0.3	16.9
Nov-13	0.21	0.01	0.08	0.03					0.3	17.2
Dec-13	0.16	0.01	0.01	0.03					0.2	17.4
Jan-14	0.26			1					0.3	17.7
Jan-14				iced Absorber						T
Feb-14	1.01	0.13	0.26	0.26	0.08	0.30	0.12	0.08	2.24	19.9
Mar-14	0.26		0.13	0.13	0.06		0.05		0.63	20.6
Apr-14			0.07	0.10	0.01	0.08	0.02	0.01	0.28	20.8
May-14	0.02	0.02	0.05	0.01	0.01	0.03	0.01	0.01	0.13	21.0
Jun-14	0.02	0.03	0.02	0.07	0.000	0.03	0.08	0.01	0.25	21.2
Jul-14	0.14	0.04	0.02	0.05	0.00	0.03	0.05	0.01	0.34	21.6
Aug-14	0.20	0.08	0.01	0.13	0.00	0.04	0.05	0.00	0.51	22.1
Sep-14	0.27	0.01	0.03	0.13	0.01	0.04	0.03	0.02	0.54	22.6
Oct-14	0.27	0.03	0.00	0.13	0.00	0.09	0.02		0.54	23.1
Nov-14	0.27	0.08	0.00	0.13	0.19	0.19			0.86	24.0
Dec-14	0.27	0.03	0.05	0.09	0.08	0.02	0.04	0.00	0.54	24.5
Jan-15 Mar-15	0.27	0.00	0.07	0.09 0.01	0.11	0.11	0.04	0.00	0.68	25.2 25.8
Apr-15	0.27 0.08	0.00	0.01	0.01	0.08	0.08 0.11	0.11	0.02 0.17	0.57 0.60	26.4
May-15	0.08	0.07	0.05	0.01	0.04	0.11	0.09	0.17	0.80	26.7
Jun-15	0.07	0.00	0.03	0.04	0.02	0.11	0.04	0.00	0.35	27.1
Aug-15	0.12	0.00	0.03	0.04	0.03	0.08	0.04	0.00	0.34	27.4
Mar-17	0.02					, MW-7 and N		0.00	0.54	27.4
Apr-17	0.27	710010	l l	l wens wi		, www / and w	144-10	1	0.27	27.7
May-17	0.27					 			0.27	28.0
Jun-17	0.27		0.20						0.47	28.4
Jul-17	0.27		0.20						0.27	28.7
Sep-17	0.40			<u> </u>					0.40	29.1
Oct-17	0.40		0.20			†			0.60	29.7
Feb-18	0.27		0.07			†			0.34	30.1
May-18	0.03		0.01						0.04	30.1
Sep-18	0.03								0.03	30.1
Dec-18	0.65		0.13						0.78	30.9
Mar-19	0.27		0.13	İ					0.40	31.3
Jun-19	0.27								0.27	31.6
Sep-19	0.50		0.13	0.13					0.76	32.3
Dec-19	0.50								0.50	32.8
Mar-20	0.27								0.27	33.1
Jul-20	0.03								0.03	33.1
Oct-20	0.03								0.03	33.2
Total	19.5	1.1	6.1	3.1	0.8	1.4	0.9	0.3	33.2	

Notes:

^{*}Based on estimate in each bailer during bailing program and spent absorbent length during absorbent program.

Blank indicates not present/removed.

For wells not listed, free product is not present.

QUANTA RESOURCES SITE 2802-2810 Lodi Street

City of Syracuse, Onondaga County, New York DEC Site No. 7-34-013

TABLE 1C - MONITORING WELL GROUNDWATER ELEVATION SUMMARY

WELL ID	MW-ID	MW-IS	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12	RW-1	RW-2	RW-3	RW-4
RISER ELEVATION	407.02	407.19	406.92	399.9	399.9	399.45	408.5	404.94	406.06	406.9	406.86	406.74	403.44				
GROUND ELEVATION	405.04	404.64	405.45	398.42	398.09	398.11	406.01	402.52	403.61	404.38	404	404.22	401.01				
		404.56	405.36								403.61			404.61	404.08	403.5	402.92
RISER ELEVATION post excavation (1/1/2011)	407.23			399.9	399.9	401.12	408.5	402.08	404.59	406.91		406.74	403.43				
GROUND ELEVATION post excavation (1/1/2011)	404.66	404.73	405.56	398.42	398.09	396.96	406.01	402.52	402.78	404.42	403.9	404.22	401.54	404.84	404.38	404.04	403.41
ELEVATIONS OF (Top)	365.04	370.64	377.45	373.42	366.09	376.11	387.51	389.02	386.11	386.88	384.5	384.72	381.51	381.88	381.54	384.04	383.41
SCREEN INTERVAL (Bottom)	360.04	365.64	367.45	358.42	356.09	361.61	367.51	373.02	372.11	370.88	369.5	369.72	366.51	361.88	361.54	364.04	363.41
BOTTOM OF BORING ELEVATION B.O.B.	357.04	365.64	367.45	356.92	355.59	359.11	367.01	372.52	371.61	370.38	369.00	369.22	366.01	361.88	361.54	364.04	363.41
DEPTH FROM GROUND SURFACE B.O.B.	47.6	39.1	38.1	41.5	42.5	37.9	39.0	30.0	31.2	34.0	34.9	35.0	35.5	43.0	42.8	40.0	40.0
DATE INSTALLED	11/18/91	11/25/91	11/21/91	11/26/91	11/25/91	11/27/91	12/18/08	12/11/08	12/09/08	12/10/08	12/16/08	06/25/09	07/09/09	12/16/08	06/25/09	01/02/10	07/12/10
DIAMETER (Inches)	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
CASING MATERIAL	PVC	PVC	PVC	PVC	PVC	PVC	PVC	PVC	PVC	PVC	PVC	PVC	PVC	PVC	PVC	PVC	PVC
SCREEN MATERIAL	PVC	PVC	PVC	PVC	PVC	PVC	PVC	PVC	PVC	PVC	PVC	PVC	PVC	PVC	PVC	PVC	PVC
SLOT SIZE (Inches)	0.010	0.010	0.010	0.010	0.010	0.010	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
DATE*		-	•				•	GROUN	DWATER EI	LEVATION	•		•		•		
02/06/1992	374.45	376.81	377.8	374.03	374.00	378.46	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
04/15/1992	375.37	377.77	378.62	374.96	374.89	378.56	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
03/10/2008**	374.37	378.52 (4.5')	376.58 (2.3')	373.51	373.29	377.33	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
03/12/2008*	374.5	NM	NM	373.43	373.33	377.06	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
12/16/2008	NM	NM	NM	NM	NM	NM	NI	375.36	377.56	377.59	NI	NI	NI	NI	NI	NI	NI
12/18/2008	NM	NM	NM	NM	NM	NM	NI	375.61 (.04')	378.05	377.55	377 0	NI	NI	NI	NI	NI	NI
12/23/2008	NM	NM	NM	NM	NM	NM	377.05	375.60 (.16')	377.73	377.53	376.8 0	NI	NI	NI	NI	NI	NI
01/05/2009*	375.58	NM	NM	374.6	374.55	376.53	377.41	376.41 (.26')	378.3	378.26	377.5 0	NI	NI	NI	NI	NI	NI
01/23/2009**	374.41			374.14	374.01	375.65	375.77	375.22 (.44')	377.5	376.99	376.5 0	NI	NI	NI	NI	NI	NI
06/25/2009** 06/29/2009	374.37 374.36	375.34 (2.35')		373.79 373.72	373.69 373.66	375.7 375.97	375.41 375.22	375.06 (.38') 374.86 (.64')	377.64 377.37	376.67 376.61	376.32 (.25') 376.15 (.29')	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI
06/29/2009 07/14/2009**	374.36	374.87 (2.23)	376.10 (1.51') 375.81	373.61	373.54	375.44	374.99	371.59	376.97	376.01	375.6 (.85')	NI	373.94	NI NI	NI	NI NI	NI
09/22/2015**	378.83	379.91 (3.0')	375.56	372.7	373.9	380.12	380.3	373.68	378.39	381.51	375.81	377.34	377.83	376.11	381.38	374.9	379.12
12/08/2016**	375.48	377.36 (3.0')		374.51	NM	377.86	377.07	377.00 (.38')	378.21	378.08	375.94 (.08')	376.22	375.67	378.03	377.81	377.14	377.65
12/16/2016*	375.25	377.17 (3.0')	377.68	NM	375.2	377.87	376.54	376.79	NM	377.59	375.03	NM	375.20	NM	NM	NM	NM
03/01/2017	NM	378.06 (4.0')	378.96 (0.02')	NM	NM	NM	NM	378.11 (.27')	NM	NM	378.99 (.09')	NM	NM	NM	NM	NM	NM
04/25/2017	NM	377.97 (2.5')	378.26	NM	NM	NM	NM	377.48 (1')	NM	NM	378.41	NM	NM	NM	NM	NM	NM
05/26/2017	NM	376.64 (1.3')	377.71	NM	NM	NM	NM	377.21 (.15')	NM	NM	377.82	NM	NM	NM	NM	NM	NM
06/29/2017	375.47	375.95 (0.7')	377.95	374.2	NM	377.15	376.51	376.49	378.02	377.8	375.81	375.93	375.52	377.92	377.04	376.91	377.21
07/29/2017	NM	376.05 (0.3')	378.45	NM	NM	NM	NM	377.07	NM	NM	376.39	NM	NM	378.44	377.96	377.35	377.7
09/08/2017	NM	378.52 (0.8')	377.37	NM 272.15	NM	NM	NM	377.92 (<0.1')	NM	NM	378.87	NM	NM	378.21	379.4	377.12	377.6
10/05/2017	374.19	378.93 (1.5')	374.76	372.15	NM	377.35	374.68	377.95 0.2	376.19	375.92	376.57	374.69	374.50	376.6	377.42	375.43 0.2	375.59
02/28/2018 05/30/2018	NM 375.28	377.76 (1.8')	374.95 377.81	NM 373.99	NM NM	401.12 376.91	NM 376.38	378.13 0.3 376.46 0.1	NM 377.88	NM 377.6	376.71 375.62	NM 375.75	NM 375.39	376.61 377.72	377.47 376.75	375.52 0 376.78 0	375.77 377.05
09/28/2018	3/5.28 NM	375.45 (0.8') 375.87 (0.3')	378.47	3/3.99 NM	NM NM	401.12	3/6.38 NM	376.46 0.1 377.11 0	377.4	3//.6 NM	403.61	3/5./5 NM	3/5.39 NM	377.72	378.01	376.78 0 377.49 0	377.75
12/05/2018	376.68	374.81 (4.8')	377.64	374.50	NM NM	378.87	378.53	378.22 0.1	378.18	379.32	379.52	377.57	376.63	377.29	377.13	377.10 0	377.51
03/20/2019		376.87 (1.0')		374.49	NM	377.21		377.57 0.1	378.5	379.32	378.59	386.33	375.74	378.72		377.60 0	378.45
06/02/2019		377.74 (1.0')		NM	NM	NM	NM	377.71 0.1	NM	NM	377.10	NM	NM	379.81	379.17	376.79 0	377.29
09/05/2019	375.09	(1.0)	377.56	374.21	NM	377.06	376.17	376.93 0.1	375	377.16	377.15	377.57	NM	NM	NM	NM	NM
09/30/2019	375.24	376.64 (3.5')	377.56	374.03	NM	377.11	376.2	376.97 0.1	377.38	377.21	377.15	375.49	374.85	377.34	377.27	376.53 0	377.11
12/05/2019	376.78	374.79 (3.0')	377.75	374.61	NM	379.02	378.65	378.37 0.1	378.3	379.53	379.66	375.73	376.84	377.44	377.27	377.20 0	377.64
03/27/2020	376.9	378.07 (1.0')	379.03	375.61	NM	378.37	377.99	378.20 0	378.6	379.31	379.46	377.72	375.88	378.84	379.06	378.48 0	378.91
07/07/2020	374.03	373.09 0	374.97	373.09	373.02	377.07	374.6	374.64 0	376.42	376.01	376.10	386.63	374.14	376.62	376.33	376.17 0	377.02
10/08/2020	374.24	373.00 0	375.18	373.30	373.29	377.22	374.76	374.80 0	376.59	376.14	376.31	374.23	374.29	376.5	376.01	375.91 0	375.91
	571.21	2,3.00	373.10	373.30	313.27	511.22	371.70	5,1100	310.37	370.11	570.51	3 / 1.23	3 / 1.27	-,	-,	5,5.71	313.71

Notes:

NI Not installed NM Not measured

All elevations reported in feet above mean sea level.

^{(1.1&#}x27;) indicates measured free product thickness in feet.

*Groundwater sampling date.

All wells were re-surveyed on 01/05/09 by Plumley Engineering and those elevations were used for all groundwater data from 03/10/08 to 2012.

Wells re-surveyed after excavation, those elevations were used for all groundwater data from 2012 to present.

^{**}Wells contained free product layers on the water column. A Corrected Depth To Water (CDTW) calculation was used to estimate the groundwater level without the free product using this equation: CDTW = Static DTW - (PxG); where P = Measured Product thickness (which is notated in parenthesis) and G = Specific Gravity. Specific Gravity is currently estimated to be 0.85 based on field observations and published values.

2802-2810 Lodi Street

City of Syracuse, Onondaga County, New York DEC Site No. 7-34-013

TABLE 2 - SUMMARY OF HISTORICAL GROUNDWATER ANALYTICAL RESULTS - KEY MONITORING WELLS - VOCs [DETECTIONS ONLY] (µg/L)

	State																						
Compound	Standard ¹				MW	/-1 D							MW-2							MW-5			
	(µg/L)	03/12/08	01/05/09	09/23/15	12/16/16	10/05/17	12/05/18	09/05/19	10/08/20	03/12/08	09/23/15	12/16/16	10/05/17	12/05/18	09/05/19	10/08/20	03/12/08	09/23/15	12/16/16	10/05/17	12/05/18	09/05/19	10/08/20
Acetone	50		20	13,200						NS		7										6.5 J	19
1,1,2-Trichloroethane	1									NS													
1,1-Dichloroethane	5		2		2	2.9	2.3	2	2.4	NS		3		0.73 J									
1,2,3-Trimethylbenzene	5		2				NA			NS				NA							NA		
1,2,4-Trichlorobenzene	5									NS		1											
1,2,4-Trimethylbenzene	5		6.0							NS													
1,2-Dibromo-3-Chloropropane	0.04									NS													
1,2-Dichlorobenzene	3		2.0		0.5	0.55 J	0.59 J	1.6	1.7	NS		1.5	3.2	3.1	3.2	4							
1,2-Dichloroethene (Total)	5		2.0		1.6		1.5	1.1	1.1	NS		1.4	2	1									
1,2-Dichloropropane	1									NS													
1,3,5-Trimethylbenzene	5		2.0							NS													
1,3-Dichlorobenzene	3									NS		2.8	3.1	2.5	2.3	2.6							
1,4-Dichlorobenzene	3							0.52 J		NS		5.9	6.6	5.9	5.3	6.1							
2-Butanone (MEK)	50	52,000	7,800	10,100						NS													
Benzene	1		2.0		0.5	0.83	0.52	0.55	0.53	NS	0.8	0.9	3	1.4	1.8	2.4							
Bromodichloromethane	50	NA	NA	NA	NA	NA				NS	NA	NA	NA				NA	NA	NA	NA	0.82 J		
Carbon Disulfide	60				0.4					NS			0.50 J										
Chlorobenzene	5		2.0		0.5	0.49 J	0.57 J	1.6	1.7	NS	1.9	1.2	5.5	0.97 J	2	3							
Chloroethane	5				0.7					NS		1.3	2.1	0.89 J		1.2							
Chloroform	7									NS									3.2	15.4	17.4		
Ethylbenzene	5		3.0							NS		0.2	0.27 J										
Isopropylbenzene	5		1.0							NS			0.60 J										
m/p-Xylenes	5		5.0							NS													
Methyl tert-butyl ether	10		0.5		0.4	0.55 J				NS													
Methylene Chloride	5									NS													
Naphthalene	10									NS													
n-Butylbenzene	5									NS		0.9				0.63 J							
n-propylbenzene	5		2.0							NS		0.2											
o-Cholorotoluene	5																						
o-Xylene	5									NS													
p-Isopropyltoluene	5									NS													
sec-Butylbenzene	5									NS													
tert-Butylbenzene	5									NS													
Toluene	5		0.9							NS		0.3	0.30 J										
Tetrachloroethene	5									NS	1.8												
Trichloroethene	5									NS	2.5	5.0	1.5	1.2	0.67 J								
Vinyl Chloride	2		23.0	2.3	28.5	13.4	24	15.8	18.9	NS		0.9											
Total VOCs		52,000	7,875	23,302	36	17	28	23	26	NS	7	33	27	15	15	19	ND	ND	3	15	18	7	19

2802-2810 Lodi Street

City of Syracuse, Onondaga County, New York DEC Site No. 7-34-013

TABLE 2 - SUMMARY OF HISTORICAL GROUNDWATER ANALYTICAL RESULTS - KEY MONITORING WELLS - VOCs [DETECTIONS ONLY] (µg/L)

	State										Monitor	ing Well	Location									
Compound	Standard ¹				MW-6							MW-9							MW-10			
-	(µg/L)	01/05/09	09/23/15	12/16/16	10/05/17	12/05/18	09/05/19	10/08/20	01/05/09	09/23/15	12/16/16	10/05/17	12/05/18	09/05/19	10/08/20	01/05/09	09/23/15	12/16/16	10/05/17	12/05/18	09/05/19	10/08/20
Acetone	50			22											11.1			8				12.6
1,1,2-Trichloroethane	1																	2				
1,1-Dichloroethane	5	2	1	1	1.4	0.61 J	0.75 J	0.61 J								4		0.4	0.64 J			
1,2,3-Trimethylbenzene	5					NA			2				NA			22				NA		
1,2,4-Trichlorobenzene	5															1		1				
1,2,4-Trimethylbenzene	5											3.1				100.0		4.3	3.1			
1,2-Dibromo-3-Chloropropane	0.04															2.0						
1,2-Dichlorobenzene	3	9.0	4.8	3.7	7.1	4.5	7.3	7.9	5.0	6.7	1.9	3.3	1	2.1	3.9	18.0	10.7	6.3	11.4	2.6	6.8	9.3
1,2-Dichloroethene (Total)	5	1.0	1.1	0.5														1.2	0.77	0.93 J	0.77 J	
1,2-Dichloropropane	1								1.0													
1,3,5-Trimethylbenzene	5										0.4	1.0 J				25.0		0.7	0.50 J			
1,3-Dichlorobenzene	3	5.0	2.7	1.6	3.2	2.4	3.6	3.9	2.0	1.9	0.9	0.99 J	0.62 J	0.94 J	1.2			0.5	0.68 J			0.67 J
1,4-Dichlorobenzene	3	4.0	2.7	1.8	3.8	2.7	4.4	4.7	4.0	4.4	2.2	2.3	1.6	2.4	3	3.0	2.9	1.7	3.5	1.1	3.2	4.3
2-Butanone (MEK)	50																					
Benzene	1	3.0	2.1	1.8	3	1.7	2.4	2.3	4.0	2.2	0.4	1.2	0.66	0.46 J	0.59	41.0	25.6	3.1	24.2	2.3	10.4	22.8
Bromodichloromethane	50	NA	NA	NA	NA				NA	NA	NA	NA				NA	NA	NA	NA			
Carbon Disulfide	60																					
Chlorobenzene	5	48.0	21.0	16.4	33.6	23.9	36.9	41.8	30.0	29.1	7.8	14.1	5.8	8.2	11.8	3.0	2.0	0.5	2.2		1.4	1.8
Chloroethane	5															12.0	4.1		2.3		1	1.4
Chloroform	7								2.0													
Ethylbenzene	5											1.8				51.0		0.4	0.65 J			
Isopropylbenzene	5	5.0		0.3	0.27 J				9.0	11.1	1.9	6.6	0.72 J	1.8	7.3	23.0	9.7	6.1	12.6	2.3	6.1	11.8
m/p-Xylenes	5															83.0	2.0	1.8			0.88 J	0.93 J
Methyl tert-butyl ether	10																					
Methylene Chloride	5								5.0													
Naphthalene	10													1.2 JB ^a								
n-Butylbenzene	5	1.0							5.0		0.4	3.3			3.8	5.0		2.4	2	0.63 J	0.64 J	3.3
n-propylbenzene	5	4.0							12.0	11.7	1.2	7.1		1.6 J	8.4	26.0	10.3	9.0	12.2	1.9 J	3.7	15.9
o-Chlorotoluene	5													0.65 J	0.78 J							0.87 J
o-Xylene	5								1.0			0.52 J				11.0	1.2	0.3	1.3			1.2
p-Isopropyltoluene	5											0.26				4.0						
sec-Butylbenzene	5	2.0			0.39 J				4.0		1.1	3.3		1.0 J	4.1	5.0		2.5	3.3	1.3 J	1.9 J	4.3
tert-Butylbenzene	5	1.0			0.45 J			0.73 J			0.4	0.81 J			1.0 J	1.0		0.7	0.90 J			0.96 J
Toluene	5								3.0	2.2	0.4	1	0.66 J	0.60 J	0.61 J	16.0	2.1	0.7	2.6		0.96 J	2.9
Tetrachloroethene	5			0.2																		
Trichloroethene	5			0.3												2.0		1.6	0.50 J			
Vinyl Chloride	2	5.0	2.2	0.8	0.62 J																	
Total VOCs		90	38	50	52	36	55	61	89	69	19	47	11	21	55	458	71	54	81	13	38	92

2802-2810 Lodi Street

City of Syracuse, Onondaga County, New York DEC Site No. 7-34-013

TABLE 2 - SUMMARY OF HISTORICAL GROUNDWATER ANALYTICAL RESULTS - KEY MONITORING WELLS - VOCs [DETECTIONS ONLY] (µg/L)

	State			Monito	ring Well I	ocation		
Compound	Standard ¹				MW-12			
l compression	(µg/L)	07/14/09	09/23/15	12/16/16	10/05/17	12/05/18	09/05/19	10/08/20
Acetone	50	7.0						
1,1,2-Trichloroethane	1							
1,1-Dichloroethane	5							
1,2,3-Trimethylbenzene	5					NA		
1,2,4-Trichlorobenzene	5							
1,2,4-Trimethylbenzene	5							
1,2-Dibromo-3-Chloropropane	0.04							
1,2-Dichlorobenzene	3	6.0	6.4	4.8	3.3	3.4	2.6	2.2
1,2-Dichloroethene (Total)	5							
1,2-Dichloropropane	1							
1,3,5-Trimethylbenzene	5							
1,3-Dichlorobenzene	3			0.3				
1,4-Dichlorobenzene	3		1.3	1.7	1.2	1.8	1.8	1.3
2-Butanone (MEK)	50							
Benzene	1	1.0		0.5	0.20 J	0.46 J		
Bromodichloromethane	50	NA	NA	NA	NA			
Carbon Disulfide	60							
Chlorobenzene	5		9.1	10.1	12.1	11.2	14.5	11.4
Chloroethane	5	2.0						
Chloroform	7							
Ethylbenzene	5							
Isopropylbenzene	5	1.0		1.8		3.9	2	
m/p-Xylenes	5							
Methyl tert-butyl ether	10							
Methylene Chloride	5							
Naphthalene	10							
n-Butylbenzene	5				-			-
n-propylbenzene	5			0.4		1.3 J	0.63 J	
o-Chlorotoluene	5							
o-Xylene	5							
p-Isopropyltoluene	5							
sec-Butylbenzene	5				0.51 J	1.4 J	0.92 J	
tert-Butylbenzene	5			0.9	0.88 J	0.96 J	0.90 J	0.94 J
Toluene	5							
Tetrachloroethene	5							
Trichloroethene	5							
Vinyl Chloride	2							
Total VOCs		17	17	21	17	24	23	15

Notes:

¹DEC Division of Water's Technical and Operational Guidance Series (TOGS) 1.1.1, *Ambient Water Quality Standards and Guidance Values*, reissued June 1998.

^aNo full vial available for reanalysis. VOCs Volatile Organic Compour

VOCs Volatile Organic Compounds PCBs Polychlorinated Biphenyls

NA Not Analyzed NS Not Sampled

μg/L micrograms per liter, equivalent to parts per billion (ppb)

Indicates the specified compound was not detected at a concentration

exceeding the method detection limit.

B Indicates analyte found in associated method blank

J Indicates an estimated value

2802-2810 Lodi Street

City of Syracuse, Onondaga County, New York

DEC Site No. 7-34-013

TABLE 3 - SUMMARY OF HISTORICAL GROUNDWATER ANALYTICAL RESULTS - TOTAL PCBs (µg/L)

Commound	State Standard ¹	Sample								Monitor	ing Well l	Location							
Compound	(µg/L)	Date	MW-1D	MW-1S	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12	RW-1	RW-2	RW-3	RW-4
Total PCBs	0.09	03/12/2008		FP	FP				NS	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Total PCBs	0.09	2009*		FP	FP	NS	NS	NS		FP	0.13	0.93				NI	NI	NI	NI
		12/08/2011		Remedial Excavation Completed															
Total PCBs	0.09	09/23/2015	0.32	FP	2.5					11.3			0.29			5.5	3.3	0.23	
Total PCBs	0.09	12/16/2016		FP	12	NS	NS			FP	NS		2.9	NS		NS	NS	NS	NS
Total PCBs	0.09	10/05/2017		FP	4.3	NS	NS			FP	NS			NS		NS	NS	NS	NS
Total PCBs	0.09	12/05/2018		NS	3.05	NS	NS			NS	NS		0.28	NS		NS	NS	NS	NS
Total PCBs	0.09	09/05/2019		FP		NS	NS			NS	NS			NS		NS	NS	NS	NS
Total PCBs	0.09	10/08/2020		NS	0.51	NS	NS			NS	NS	NS	0.35	NS		NS	NS	NS	NS

Notes:

Legend: **Exceed** ¹DEC Division of Water's Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values, reissued June 1998.

State standard for PCBs is 0.09 µg/L for each Aroclor.

Polychlorinated Bipenyls **PCBs** $\mu g \! / \! L$ Micrograms per liter Not Installed NI

Not Sampled NS

FP Free Product Present - Not Sampled

Indicates the specified compound was not detected at a concentration exceeding the method detection limit.

*2009 samples collected on 1/5/2009, 6/29/2009 and 7/14/2009

Refer to laboratory reports for additional information.

2802-2810 Lodi Street

City of Syracuse, Onondaga County, New York DEC Site No. 7-34-013

TABLE 4A - PFAS AND 1,4-DIOXANE IN GROUNDWATER

Date Sampled: October 8, 2020

Client Sample ID:		Unit	State	MW-9	MW-10	MW-12
Lab Sample ID:			Standard ¹	JC79316-1	JC79316-8	JC79316-7
	MS	Semi-v	olatiles (EPA	537M BY ID)		
Perfluorobutanoic acic		ng/L		NS	ND (2.3)	ND (1.7)
Perfluoropentanoic acic		ng/L		NS	23.9	1.6 J
Perfluorohexanoic acic		ng/L		NS	ND (1.1)	0.99 J
Perfluoroheptanoic acic		ng/L		NS	ND (5.7)	ND (0.86)
Perfluorooctanoic acid	PFOA	ng/L	10	NS	3.6	1.4 J
Perfluorononanoic acic		ng/L		NS	ND (1.1)	ND (0.86)
Perfluorodecanoic acid		ng/L		NS	ND (1.1)	ND (0.86)
Perfluoroundecanoic acio		ng/L		NS	ND (1.1)	ND (0.86)
Perfluorododecanoic acio		ng/L		NS	ND (1.1)	ND (0.86)
Perfluorotridecanoic acid		ng/L		NS	ND (1.1)	ND (0.86)
Perfluorotetradecanoic aci		ng/L		NS	ND (1.1)	ND (0.86)
Perfluorobutanesulfonic acio		ng/L		NS	ND (1.1)	ND (0.86)
Perfluorohexanesulfonic aci		ng/L		NS	ND (1.1)	ND (0.86)
Perfluoroheptanesulfonic acid		ng/L		NS	ND (1.1)	ND (0.86)
Perfluorooctanesulfonic acio	PFOS	ng/L	10	NS	12.7	7
Perfluorodecanesulfonic aci		ng/L		NS	ND (1.1)	ND (0.86)
PFOSA		ng/L		NS	ND (11)	ND (1.7)
MeFOSAA		ng/L		NS	ND (2.3)	ND (1.7)
EtFOSAA		ng/L		NS	ND (2.3)	ND (1.7)
6:2 Fluorotelomer sulfonate		ng/L		NS	ND (2.3)	ND (1.7)
8:2 Fluorotelomer sulfonate		ng/L		NS	ND (2.3)	ND (1.7)
	MS Sei	mi-vola	tiles (SW846	8270D BY SIM	1)	
1.4-Dioxane		ug/L	1	NS	1.03	0.194

Notes: Legend: Hit Exceed

PFAS Per- and Poly-Fluorinated Alkyl Substances

ng/L nanograms per liter, equivalent to parts per trillion (ppt) μg/L micrograms per liter, equivalent to parts per billion (ppb)

ND Not Detected

J Indicates an estimated value

NS Not Sampled due to not enough recovery volume in the well

¹ Maximum contaminant levels (MCL), adopted August 2020.

2802-2810 Lodi Street

City of Syracuse, Onondaga County, New York DEC Site No. 7-34-013

TABLE 4B - HISTORICAL SUMMARY OF EMERGING CONTAMINANT ANALYSES

Date	MW-9	MW-10	MW-12									
	Total PFOA a	and PFOS (ng/L)										
12/5/2018	27.0	ND	9.5									
9/5/2019	28.5	2.9	5.0									
10/8/2020	NS	16.3	8.4									
Total PFAS Compounds (ng/L)												
12/5/2018	51.4	ND	15.7									
9/5/2019	53.3	22.0	5.0									
10/8/2020	NS	40.2	11.0									
	1,4 - Dio	xane (ug/L)										
12/5/2018	2.34	0.23	0.24									
9/5/2019	4.47	0.33	0.16									
10/8/2020	NS	1.03	0.19									

Notes:

PFAS Per- and Poly-Fluorinated Alkyl Substances

PFOS Perfluorooctanesulfonic acid

PFOA Perfluorooctanoic acid

ng/L nanograms per liter, equivalent to parts per trillion (ppt) $\mu g/L$ micrograms per liter, equivalent to parts per billion (ppb)

ND Not Detected

NS Not Sampled due to not enough recovery volume in the well

GROUNDWATER SAMPLING FIELD LOGS

Client/Site:	Quanta			Project No.:	2015127
Monitoring Location	l :			Date:	10/8/2020
Source Description:	M	W-11)		Sampler:	MTM
Well & Water Level	Data:	Total	Depth of Wells	50.44	feet
		Initial E	epth to Water:	32.99	feet
	Le	ngth of Water C	column (LWC):		_ _feet
Purge Volume Calcu	lation:				
Well Diameter		Calculated Wo	ell Volume To I	Be Removed	
1	()	LWC * 0.041		Gallons	
1.25		LWC * 0.064			
1.5		LWC * 0.092		— Gallons	
2		LWC * 0.163		Gallons	
3		LWC * 0.367		Gallons	
4		LWC * 0.653	0)	Gallons	
6		LWC * 1.469		Gallons	
Free Product Check:	Frag Dr	oduct Present:	Yes	Vo	
rice i founct Check.	Measured Thickn		165		
	Wicasured Thiern	icss/Comment.			
Purge Data:	Purge Date:	10/8/20		_	
	Purging Time:	From:	13:10	_ To:	13:29
	Type of Purging Equ	uipment Used:	While	Pump	
		er Comments:	Son	SH > dent	
	8	-		571)	
Sampling Data:	Depth to Wate	r at Sampling: _	33.0	7	feet
	Color of Sample:	-(0.00	Sample Date:	10/8/20	
	Turbidity:	cler	Sample Date:		-
	I di bidity		Sample Time	. 2612	-
7	Type of Sampling Eq	uipment Used: _	B	eler	
Field Indicators	Present During Sam	ple Collection:	Odor		
			Sheen	dj 	
			Free Product	d.	
			None		51 <u>S</u>
Notes:				·	D.
Wast	Tompows40F	(.5	Summer Classific	Dain C	
Weather:	Temperature ⁰ F	40	Sunny Cloudy	Kain Snow	

Client/Site:	Quanta				Project No.:	2015127
Monitoring Location:					Date:	10/8/2020
Source Description:	7	MW-Z			Sampler:	MTM
Well & Water Level I	Data:	Total	Depth	of Well:	39:77	feet
		Initial I	epth t	o Water:	330,18	feet
	Le	ength of Water C	Column	ı (LWC):	959	feet
Purge Volume Calcul	ation:					
Well Diameter (i		Calculated We	ell Vol	ume To B	e Removed	
1	,	LWC * 0.041			Gallons	
1.25		LWC * 0.064	* 3 =	2	— Gallons	
1.5		LWC * 0.092	* 3 =		— Gallons	
2		LWC * 0.163			— Gallons	
3		LWC * 0.367		N	— Gallons	
4		LWC * 0.653		8	Gallons	
6		LWC * 1.469			Gallons	
Free Product Check:	Ewas Dw	oduct Present:	•	Yes	No	
Free Froduct Check:	Measured Thickn]	i es	40	
	Wicasured Timeri					
Purge Data:	Purge Date: _	CO / 8/4	le)			
	Purging Time:	From:	12	:42	То:	13:65
r	Type of Purging Eq	uipment Used:		Whale	Pulp	
	Purged Wat	ter Comments:		oder	-	reen
		. C			7	0
Sampling Data:	Depth to Wate	er at Sampling: _		30.0	(feet
	Color of Sample: _	clair	Sam	ple Date:	10/8/20	•
	Turbidity:		Samp	ole Time:	3:25	
T	ype of Sampling Eq	uipment Used:_			Bules	
Field Indicators F	Present During Sam	ple Collection:	o	dor		•
			Sł	ieen		•
			Free l	Product		•:
			N	one		~ %
Notes:						
			_			
Weather:	Temperature ⁰ F	(a)	Sunny	Cloudy	Rain Snow	

Client/Site:	Quanta			Project No.:	2015127
Monitoring Locations				Date:	10/8/2020
Source Description:	Mu	v-5		Sampler:	MTM
Well & Water Level 1			Depth of Well: Depth to Water: Column (LWC):	3834 23.90 1444	feet feet feet
Purge Volume Calcul	ation:				
Well Diameter (Calculated Wo	ell Volume To B	e Removed	
1	•	LWC * 0.041	* 3 =	Gallons	
1.25		LWC * 0.064	* 3 =	Gallons	
1.5		LWC * 0.092	* 3 = 7.5	Gallons	
2		LWC * 0.163	* 3 =	Gallons	
3		LWC * 0.367	* 3 =	Gallons	
4		LWC * 0.653	* 3 =	Gallons	
6		LWC * 1.469	* 3 =	Gallons	
Free Product Check:	Free Pr Measured Thickn	oduct Present: less/Comment: _	Yes	No	
Purge Data:	Purge Date:	16/	1/20		
	Purging Time:	From:	11:15	To:	
	Type of Purging Eq Purged Wat	uipment Used: _ ter Comments: _			
Sampling Data:	Depth to Wate	r at Sampling: _	23.9	19	feet
	Color of Sample:	cleir	Sample Date: Sample Time:	10/8/20	- -
Т	ype of Sampling Eq	uipment Used: _	Beiler		
Field Indicators	Present During Sam	ple Collection:	Odor Sheen Free Product None		-
Notes:	eap mission	3	,		
Weather:	Temperature ⁰ F		Sunny Cloudy	Rain Snow	

Client/Site:	Quanta				Project No.:	2015127
Monitoring Location	: 				Date:	10/8/2020
Source Description:	mi	mw-6			Sampler:	MTM
Well & Water Level	Data:	Tota!	Depth o	f Well:	42.47	feet
	Initial I	Depth to	Water:	33,14	feet	
	Le	ngth of Water C	Column (LWC): _	8 13	feet
Purge Volume Calcul	lation:					
Well Diameter (Calculated Wo	ell Volun	ne To Be	Removed	
1	,	LWC * 0.041			Gallons	
1.25		LWC * 0.064	* 3 = _		_ Gallons	
1.5		LWC * 0.092	* 3 = _		_ Gallons	
2		LWC * 0.163	* 3 = _	5	Gallons	
3		LWC * 0.367	* 3 =		Gallons	
4		LWC * 0.653	* 3 = _		Gallons	
6		LWC * 1.469	* 3 = _		_ Gallons	
Free Product Check:	Free Pr	oduct Present:	Ye	c	No	
1100 1100det Cheek.	Measured Thickn		10	S		
Purge Data:	Purge Date:	10/8/20	ř			
I uige Data.	Turge Date	wight	*(1	9		
	Purging Time:	From:_	12:0	0	To:	12:27
	Type of Purging Equ	uipment Used:		Whale	Pump	
		er Comments:			- 0-	
	T			72.0		
Sampling Data:	Depth to Water	r at Sampling:_		33.91		feet
	Color of Sample:	cleur	Sampl	e Date:	10/8/20	
	Turbidity:		Sample	Time: _	3:00	•
Т	ype of Sampling Equ	uipment Used:		Bulev	-	
		•	0.1	1.0000		
rieid indicators	Present During Sam	pie Conection:	Odd Shed	_		·
			Free Pr	-		a)
			Nor	-		* ?
Notes:			. 101	_		65
\$ 						
XX/ 45	- θε-		α 4		D • G	
Weather:	Temperature °F	40)	Sunny (Ciouay	Rain Snow	

Client/Site:	Quanta			Project No.:	2015127
Monitoring Location:				Date:	10/8/2020
Source Description:	MW-	MW-9			MTM
Well & Water Level l	Data:		Depth of Well: _ Depth to Water:	37.34 30.77	feet feet
	Le	ngth of Water C	_	6,57	feet
Purge Volume Calcul	ation:				
Well Diameter (i		Calculated We	ell Volume To Be	Removed	
1	,	LWC * 0.041	* 3 =	Gallons	
1.25		LWC * 0.064	* 3 =	_ Gallons	
1.5		LWC * 0.092	* 3 =	_ Gallons	,
$\frac{2}{3}$		LWC * 0.163	*3 = 3.5	_ Gallons	≈ 1.2 dry
3		LWC * 0.367	* 3 =	_ Gallons	/
4		LWC * 0.653	* 3 =	_ Gallons	
6		LWC * 1.469	* 3 =	_ Gallons	
Free Product Check:	Free Pr	oduct Present:	Yes	No	
	Measured Thickn	ess/Comment:			
Purge Data:	Purge Date:	10/8	120		
	Purging Time:	From:_	9:32	To:	9:57
	Type of Purging Eq Purged Wat	uipment Used: _ er Comments: _	Darasto	the Blad	dr Punp
Sampling Data:	Depth to Wate	r at Sampling: _	36.72	<u> </u>	feet
	Color of Sample:		Sample Date:	10/8/20	
	Turbidity:	\sim	Sample Time:	2:00 pm	-
Т	ype of Sampling Eq	uipment Used: _	13	a Cer	
Field Indicators	Present During Sam	ple Collection:	Odor Sheen		-
			Free Product		- 81
			None _	_/	•
Notes:	dul not re	ioner af	Le purue		- :
only	enough samy	ole for V	OC B		
Weather:	Temperature °F	60	Sunny Cloudy	Rain Snow	

Client/Site:	Quanta			Project No.:	2	2015127
Monitoring Location	:				10	0/8/2020
Source Description:	MI	MW-10				
Well & Water Level	Data:	Tota	l Depth of Well:	NM	feet -	Film
			Depth to Water:	27.30	feet	
	Le	ength of Water	Column (LWC):		feet	
Purge Volume Calcu	lation:					
Well Diameter (Calculated W	ell Volume To Be	Removed		
1	,		* 3 =			
1.25		LWC * 0.064	* 3 =	 Gallons		
1.5		LWC * 0.092	* 3 =	Gallons		
2		LWC * 0.163	*3 = 5	Gallons		
3		LWC * 0.367	* 3 =	Gallons		
4		LWC * 0.653	* 3 =	_ Gallons		
6		LWC * 1.469	* 3 =	_ Gallons		
Free Product Check:	Free Pr	oduct Present:	Yes	No		
Troc Trouder Checks	Measured Thickn			9		
Purge Data:	Purge Date:	WIBK	0			
	Purging Time:	From:	10:07	To:	_/0:.	37
	Type of Purging Eq	uipment Used:	Blad	der Punp		
	Purged Wat	ter Comments:			n on 6	Ballet de
						chec
Sampling Data:	Depth to Wate	r at Sampling:	27.41		feet	
	Color of Sample:	clear	Sample Date:	10/8/20		
	Turbidity:		Sample Time:	2112	2	
Т	— Type of Sampling Eq	uipment Used:	·	Buder	2	
				/		
Field Indicators Present During Sample Collection: Odor				ē		
			Sheen		ē	
			Free Product			
Notos			None		ė	
Notes:	Film on Ba	100 - 00	الم معروب	P-1.+		
-	im on Da	uc/ = /(0	TECONONDA	V FORKET		
:						
2						
Weather:	Temperature ⁰ F	(eU (Sunny Cloudy	Rain Snow		

Client/Site:	Quanta			Project No.:	2015127
Monitoring Location:	Monitoring Location:			Date:	10/8/2020
Source Description:				Sampler:	MTM
Well & Water Level D		ta: Total Depth of Well: Initial Depth to Water: Length of Water Column (LWC):		38.12 29.14 8-96	feet feet feet
			(=)	0 -/ V	- .:
Purge Volume Calcula			11 X 1 / T D	D 1	
Well Diameter (in	ncnes):		ell Volume To Be		
1		LWC * 0.041		_ Gallons	
1.25		LWC * 0.064 : LWC * 0.092 :		_ Gallons Gallons	
1.5		LWC * 0.163		Gallons Gallons	
2 3		LWC * 0.163		Gallons Gallons	
3 4		LWC * 0.653		_ Gallons Gallons	
6		LWC * 1.469	3.	_ Gallons Gallons	
U		LWC 1.407	3 –	_ Ganons	
Free Product Check:	Free Pi	roduct Present:	Yes	No	
	Measured Thicks	ness/Comment:_			
Purge Data:	Purge Date: _	N/s/w			
	Purging Time:	From:	10:42	To:	10:11:07
7	Type of Purging Eq Purged Wa	uipment Used: _ ter Comments: _	Bladel	Pamp	<u>-10:11:07</u> Bailer
Sampling Data:	Depth to Wate	er at Sampling: _	29.24		feet
	Color of Sample:	clear	Sample Date:		
·	Turbidity:	_	Sample Time:	2135	- ;
Ту	pe of Sampling Eq	uipment Used: _	1	a.ler	=\
Field Indicators P	resent During Sam	ple Collection:	Odor		- :
			Sheen		* 6
			Free Product		■ 1.
Notes:			None		•
Ma	n Hole cove	(missing	In Par	mity to	well
cup	musing on	=4 ¥ √			
Weather:	Temperature °F	(00)	Sunny Cloudy	Rain Snow	