

PROGRESS REPORT Quanta Resources, Lodi Street City of Syracuse, Onondaga County, New York DEC Site No. 7-34-013 / Index No. D7-00001-07-07 Plumley Project No. 2015127

January 2019

### **INTRODUCTION**

This report summarizes the remedial activities at the Quanta Resources – Syracuse Site since the last progress report (January 2017). Free product recovery efforts have been ongoing since March 2017, with the installation of absorbent socks in four monitoring wells with a history of free product accumulation. The Periodic Review Report (PRR) was submitted to the New York State Department of Environmental Conservation (DEC) in July 2018. The third post-remedial groundwater sampling event of selected wells was completed in December 2018.

### FREE PRODUCT RECOVERY

Absorbents have been maintained in the four wells with a history of free product accumulation (MW-1S, MW-2, MW-7 and MW-10) since March 2017. Quarterly inspections have been completed to assess the amount of oil absorbed in each well. During this period, a range of approximately 0.3 to 4.75 feet of free product accumulation was observed in well MW-1S and an estimated 0.98 gallons was recovered with the absorbents and bailers. Approximately <0.1 to 0.3 feet of free product accumulation well MW-7 and an estimated 0.21 gallons was recovered with the absorbents. No free product was observed or recovered from wells MW-2 and MW-10. Refer to the attached *Table 1A – Monitoring Well Groundwater Elevation* 

*Summary, Table 1B – Free Product Thickness* and *Table 1C – Monthly Free Product Recovery* for additional information.

#### **GROUNDWATER SAMPLING**

The depth to groundwater and free product thickness were measured in all of the wells and a groundwater sampling event was completed on December 5, 2018. Well MW-1S had a measurable accumulation of free product and was not sampled. Plumley personnel purged the wells and collected samples from wells MW-1D, MW-2, MW-5, MW-6, MW-7, MW-9, MW-10 and MW-12. Only wells MW-2 and MW-10 had odors after baling. No sheens or free product were observed in any of the wells sampled. Refer to the attached *Figure 1 – Site Plan* for sampling locations and *Groundwater Sampling Logs* for field observations.

Samples were submitted to SGS Accutest (SGS) for laboratory analysis of volatile organic compounds (VOCs) per United States Environmental Protection Agency (EPA) Method 8260 and polychlorinated biphenyls (PCBs) per EPA Method 8082. At the request of the New York State Department of Environmental Conservation (DEC), key monitoring well samples were also submitted to SGS for "emerging contaminants," including 1,4-Dioxane per EPA Method 8270SIM and Per- and Poly-Fluorinated Alkyl Substances (PFAS) Target Analyte List (TAL) per EPA Method 537M by ID. The results are discussed below.

#### **Groundwater Elevations**

The groundwater contours generated from elevation data collected on December 5, 2018 are shown on the attached *Figure 1 – Site Plan*. The elevation data indicate predominant groundwater flow directions generally to the west and southwest, similar to the last sampling

event in October 2017. Refer to the attached *Table 1A – Monitoring Well Groundwater Elevation Summary* for additional information.

#### **Analytical Results**

Analytical results showed total VOC concentrations ranging from 11 to 36 micrograms per liter ( $\mu$ g/L) in the wells tested. VOC concentrations were generally consistent with the results of the October 2017, December 2016 and September 2015 sampling events.

PCBs were detected in groundwater samples from well MW-2 and MW-10. Aroclors 1248, 1254 and 1260 were present at a total concentration of 3.05  $\mu$ g/L in MW-2. Aroclor 1254 was present at a concentration of 0.28  $\mu$ g/L in MW-10. These total concentrations were above the State groundwater standard<sup>1</sup> of 0.09  $\mu$ g/L. Well MW-2 had slight sheen during purging of the well and only an odor when sampled. MW-10 had an oil film present during purging of the well and an odor when sampled. These findings continue to be similar to the prior post-remedial sampling events.

PFAS were detected in groundwater samples from key monitoring wells MW-9 and MW-12. The PFAS reported in these two wells were at concentrations ranging from 1.31 to 23.6 nanograms per liter (ng/L). No PFAS were detected above the laboratory's method of detection limit in the sample collected from MW-10. No State standards or guidelines have been established for PFAS. The EPA has issued a health advisory of 70 ng/L, based on lifetime exposure to PFAS.

1,4-Dioxane was also tested in groundwater samples from key monitoring wells MW-9, MW-10 and MW-12. 1,4-Dioxane concentrations were reported at 2.34, 0.225 and 0.239  $\mu$ g/L,

<sup>&</sup>lt;sup>1</sup>DEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1, *Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations*, dated June 1998 and Addenda.

respectively. There are no State or Federal standards or guidelines for 1,4-Dioxane in groundwater. The EPA has set a screening level<sup>2</sup> of 0.46  $\mu$ g/L in tap water.

Refer to the attached Figure 2 – VOC & PCB Groundwater Data Plan, Table 2 – Summary of Groundwater Analytical Results – VOCs and PCBs, Table 3 – Summary of Historical Groundwater Analytical Results – VOCs [Detections Only], Table 4 – Summary of Historical Groundwater Analytical Results – Total PCBs, Table 5 – PFAS and 1,4-Dioxane in Groundwater, Well Inspection Logs, Groundwater Sampling Field Logs and Laboratory Report for additional information.

#### CONCLUSIONS

We offer the following conclusions based on the groundwater sampling results:

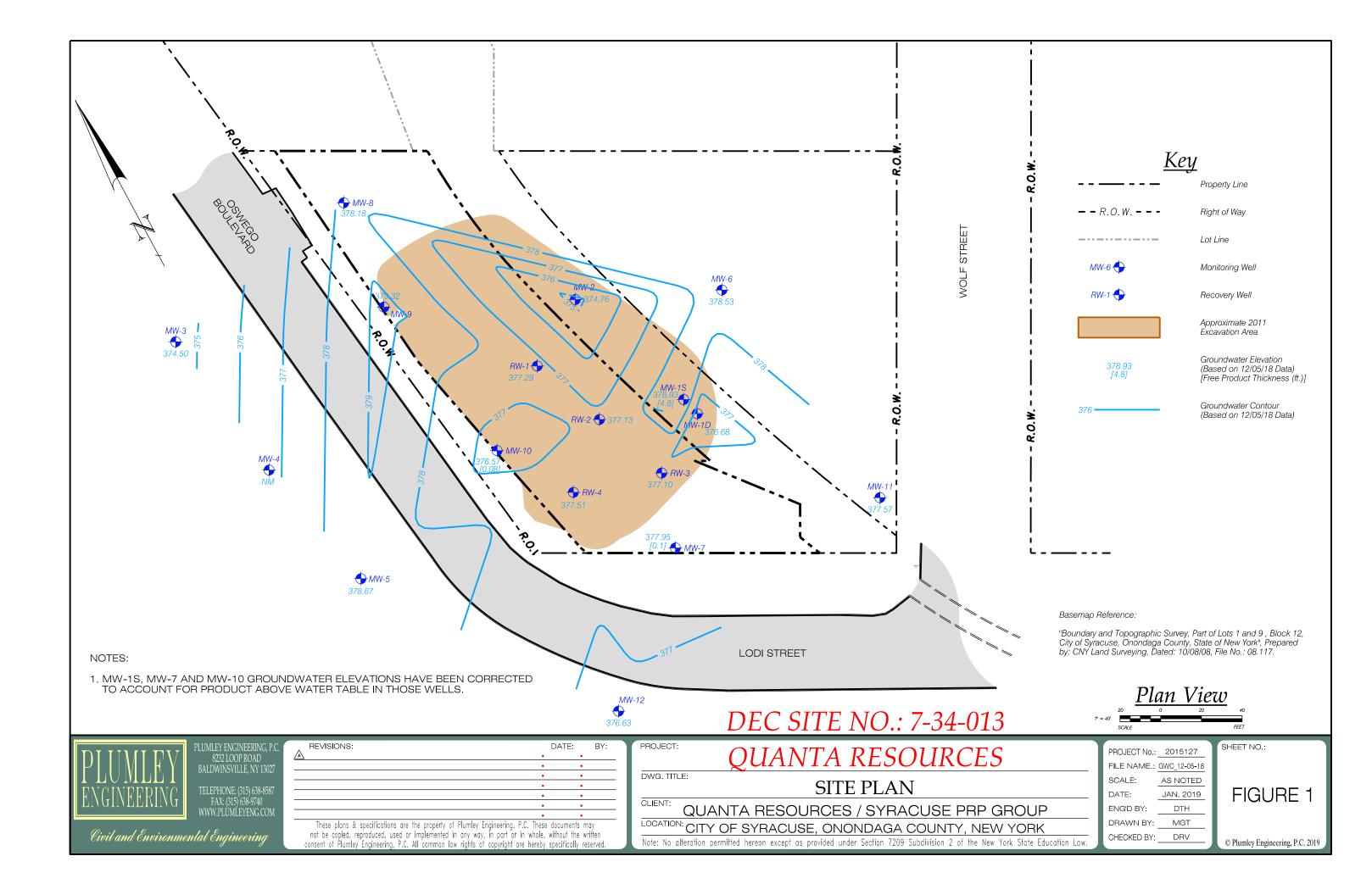
- The VOC impacts to groundwater have not changed significantly from the 2017, 2016 and 2015 post-remedial sampling events.
- PCBs were present in groundwater above standards in only two onsite wells (MW-2 and MW-10) with a history of free product accumulation, similar to prior results.
- No significant migration of VOCS or PCBs to offsite wells is indicated.
- Free product accumulation was present in well MW-1S is consistent with past findings. The increase in accumulation observed in December 2018 was likely a result of wet weather in the fall of 2018. An estimated 0.98 gallons of free product were recovered

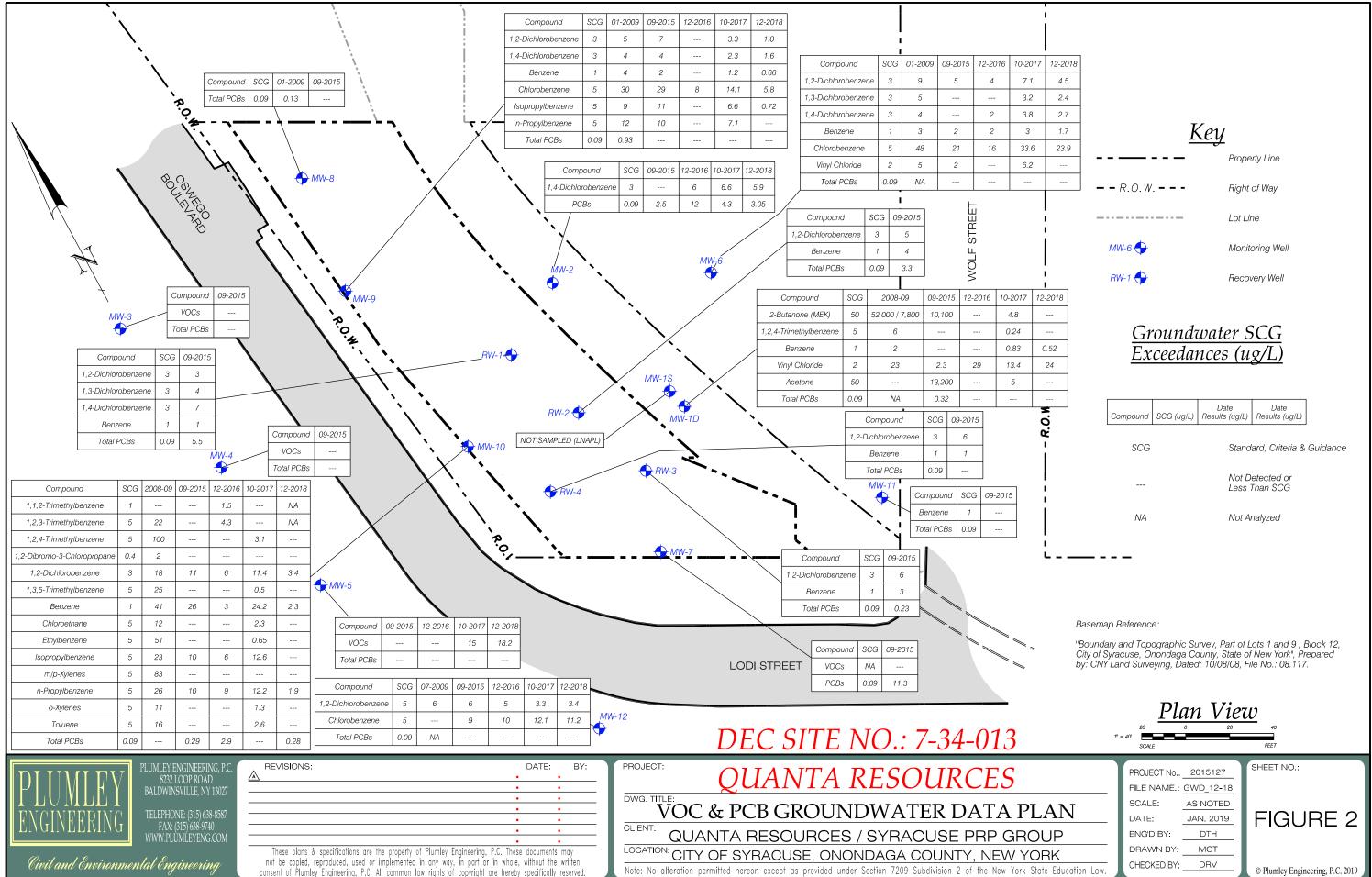
<sup>&</sup>lt;sup>2</sup>Technical Fact Sheet, 1,4-Dioxane; USEPA; November 2017.

from well MW-1S during the absorbent monitoring period, or approximately an average of 0.2 gallons per month. Absorbents in well MW-7 recovered 0.21 gallons during the period.

- Well RW-3 had trace amounts of free product in February, March and December of 2018. Measurements indicated a thickness of <0.1 feet. Well RW-3 has a history of sporadic free product impacts.</li>
- Although oil migration rates are low, continued accumulation of oil in some of the wells can be expected. Such findings are not necessarily indicative of a thick free product layer, but rather are more likely associated with the viscous oil gradually accumulating in the permeable well boring from an elevation above the water table.
- Three key wells were sampled for PFAS. Two of the three wells had detections of PFAS at concentrations ranging from 1.31 to 23.6 ng/L, which are well below the EPA health advisory concentration of 70 ng/L.
- All three key monitoring wells tested for 1,4-Dioxane had reportable concentrations of the compound. The reported concentrations were 2.34, 0.225 and 0.239 µg/L for wells MW-9, MW-10 and MW-12, respectively.

These results will be incorporated into the next PRR, which is due in July 2019.


#### RECOMMENDATIONS


We recommend maintaining absorbent socks in the four wells with a history of free product accumulation (MW-1S, MW-2, MW-7 and MW-10) and well RW-3. Monitoring of these wells

for free product thickness and replacement of spent absorbents should be conducted quarterly. Other wells should be checked annually for free product.

We recommend continuing the groundwater sampling program but extending the time between sampling events to two years, given the consistency of the post-remedial results. The next sampling event would be in the summer of 2020 and would include wells MW-1S, MW-2, MW-5, MW-6, MW-7, MW-9, MW-10 and MW-12. Groundwater samples collected from these wells will be submitted for laboratory analysis of VOCs per EPA Method 8260 Site Specific Target Compound List (TCL) and PCBs per EPA Method 8082. No additional sampling and analysis of emerging contaminants appears to be warranted.

# FIGURES





© Plumley Engineering, P.C. 2019

# **TABLES**

#### **TABLE 1A - MONITORING WELL GROUNDWATER ELEVATION SUMMARY**

| WELL ID                                           | MW-lD        | MW-IS                          | MW-2             | MW-3        | MW-4     | MW-5         | MW-6         | <b>MW-7</b>             | MW-8         | MW-9        | <b>MW-10</b>     | MW-11    | MW-12        | RW-1     | <b>RW-2</b> | RW-3                 | RW-4     |
|---------------------------------------------------|--------------|--------------------------------|------------------|-------------|----------|--------------|--------------|-------------------------|--------------|-------------|------------------|----------|--------------|----------|-------------|----------------------|----------|
| RISER ELEVATION                                   | 407.02       | 407.19                         | 406.92           | 399.9       | 399.9    | 399.45       | 408.5        | 404.94                  | 406.06       | 406.9       | 406.86           | 406.74   | 403.44       |          |             |                      |          |
| GROUND ELEVATION                                  | 405.04       | 404.64                         | 405.45           | 398.42      | 398.09   | 398.11       | 406.01       | 402.52                  | 403.61       | 404.38      | 404              | 404.22   | 401.01       |          |             |                      |          |
| <b>RISER ELEVATION post excavation</b> (1/1/2011) | 407.23       | 404.56                         | 405.36           | 399.9       | 399.9    | 401.12       | 408.5        | 402.08                  | 404.59       | 406.91      | 403.61           | 406.74   | 403.43       | 404.61   | 404.08      | 403.5                | 402.92   |
| GROUND ELEVATION post excavation (1/1/2011)       | 404.66       | 404.73                         | 405.56           | 398.42      | 398.09   | 396.96       | 406.01       | 402.52                  | 402.78       | 404.42      | 403.9            | 404.22   | 401.54       | 404.84   | 404.38      | 404.04               | 403.41   |
| ELEVATIONS OF (Top)                               | 365.04       | 370.64                         | 377.45           | 373.42      | 366.09   | 376.11       | 387.51       | 389.02                  | 386.11       | 386.88      | 384.5            | 384.72   | 381.51       | 381.88   | 381.54      | 384.04               | 383.41   |
| SCREEN INTERVAL (Bottom)                          | 360.04       | 365.64                         | 367.45           | 358.42      | 356.09   | 361.61       | 367.51       | 373.02                  | 372.11       | 370.88      | 369.5            | 369.72   | 366.51       | 361.88   | 361.54      | 364.04               | 363.41   |
| BOTTOM OF BORING ELEVATION                        | 357.04       | 365.64                         | 367.45           | 356.92      | 355.59   | 359.11       | 367.01       | 372.52                  | 371.61       | 370.38      | 369.00           | 369.22   | 366.01       | 361.88   | 361.54      | 364.04               | 363.41   |
| DATE INSTALLED                                    | 11/18/91     | 11/25/91                       | 11/21/91         | 11/26/91    | 11/25/91 | 11/27/91     | 12/18/08     | 12/11/08                | 12/09/08     | 12/10/08    | 12/16/08         | 06/25/09 | 07/09/09     | 12/16/08 | 06/25/09    | 01/02/10             | 07/12/10 |
| DIAMETER (Inches)                                 | 2            | 2                              | 2                | 2           | 2        | 2            | 2            | 2                       | 2            | 2           | 2                | 2        | 2            | 2        | 2           | 2                    | 2        |
| CASING MATERIAL                                   | PVC          | PVC                            | PVC              | PVC         | PVC      | PVC          | PVC          | PVC                     | PVC          | PVC         | PVC              | PVC      | PVC          | PVC      | PVC         | PVC                  | PVC      |
| SCREEN MATERIAL                                   | PVC          | PVC                            | PVC              | PVC         | PVC      | PVC          | PVC          | PVC                     | PVC          | PVC         | PVC              | PVC      | PVC          | PVC      | PVC         | PVC                  | PVC      |
| SLOT SIZE (Inches)                                | 0.010        | 0.010                          | 0.010            | 0.010       | 0.010    | 0.010        | 0.020        | 0.020                   | 0.020        | 0.020       | 0.020            | 0.020    | 0.020        | 0.020    | 0.020       | 0.020                | 0.020    |
| DATE*                                             | 01010        | 01010                          | 01010            | 0.010       | 0.010    | 0.010        | 0.020        | GROUNDV                 |              |             |                  | 0.020    | 0.020        |          |             |                      |          |
| 02/06/1992                                        | 374.45       | 376.81                         | 377.8            | 374.03      | 374.00   | 378.46       | NI           | NI                      | NI           | NI          | NI               | NI       | NI           | NI       | NI          | NI                   | NI       |
| 04/15/1992                                        | 375.37       | 377.77                         | 378.62           | 374.96      | 374.89   | 378.56       | NI           | NI                      | NI           | NI          | NI               | NI       | NI           | NI       | NI          | NI                   | NI       |
| 03/10/2008**                                      | 374.37       |                                | 376.58 (2.3')    | 373.51      | 373.29   | 377.33       | NI           | NI                      | NI           | NI          | NI               | NI       | NI           | NI       | NI          | NI                   | NI       |
| 03/12/2008*                                       | 374.5        | NM                             | NM               | 373.43      | 373.33   | 377.06       | NI           | NI                      | NI           | NI          | NI               | NI       | NI           | NI       | NI          | NI                   | NI       |
| 12/16/2008                                        | NM           | NM                             | NM               | NM          | NM       | NM           | NI           | 375.36                  | 377.56       | 377.59      | NI               | NI       | NI           | NI       | NI          | NI                   | NI       |
| 12/18/2008                                        | NM           | NM                             | NM               | NM          | NM       | NM           | NI           | 375.61 (.04')           | 378.05       | 377.55      | 377 0            | NI       | NI           | NI       | NI          | NI                   | NI       |
| 12/23/2008                                        | NM           | NM                             | NM               | NM          | NM       | NM           | 377.05       | 375.60 (.16')           | 377.73       | 377.53      | 376.8 0          | NI       | NI           | NI       | NI          | NI                   | NI       |
| 01/05/2009*                                       | 375.58       | NM                             | NM               | 374.6       | 374.55   | 376.53       | 377.41       | 376.41 (.26')           | 378.3        | 378.26      | 377.5 0          | NI       | NI           | NI       | NI          | NI                   | NI       |
| 01/23/2009**                                      | 374.41       |                                | 376.78 (2.07')   | 374.14      | 374.01   | 375.65       | 375.77       | 375.22 (.44')           | 377.5        | 376.99      | 376.5 0          | NI       | NI           | NI       | NI          | NI                   | NI       |
| 06/25/2009**                                      | 374.37       |                                | 375.94 (1.86')   | 373.79      | 373.69   | 375.7        | 375.41       | 375.06 (.38')           | 377.64       | 376.67      | 376.32 (.25')    | NI       | NI           | NI       | NI          | NI                   | NI       |
| 06/29/2009                                        | 374.36       |                                | 376.10 (1.51')   | 373.72      | 373.66   | 375.97       | 375.22       | 374.86 (.64')           | 377.37       | 376.61      | 376.15 (.29')    | NI       | NI           | NI       | NI          | NI                   | NI       |
| 07/14/2009**                                      | 374.16       | 374.87 (2.04')                 | 375.81           | 373.61      | 373.54   | 375.44       | 374.99       | 371.59                  | 376.97       | 376.25      | 375.6 (.85')     | NI       | 373.94       | NI       | NI          | NI                   | NI       |
| 09/22/2015**                                      | 378.83       | 379.91 (3.0')                  | 375.56           | 372.7       | 373.9    | 380.12       | 380.3        | 373.68                  | 378.39       | 381.51      | 375.81           | 377.34   | 377.83       | 376.11   | 381.38      | 374.9                | 379.12   |
| 12/08/2016**                                      | 375.48       | 377.36 (3.0')                  |                  | 374.51      | NM       | 377.86       | 377.07       | 377.00 (.38')           | 378.21       | 378.08      | 375.94 (.08')    | 376.22   | 375.67       | 378.03   | 377.81      | 377.14               | 377.65   |
| 12/16/2016*                                       | 375.25       | 377.17 (3.0')                  | 377.68           | NM          | 375.2    | 377.87       | 376.54       | 376.79                  | NM           | 377.59      | 375.03           | NM       | 375.20       | NM       | NM          | NM                   | NM       |
| 03/01/2017                                        | NM           | 378.06 (4.0')                  |                  | NM          | NM       | NM           | NM           | 378.11 (.27')           | NM           | NM          | 378.99 (.09')    | NM       | NM           | NM       | NM          | NM                   | NM       |
| 04/25/2017<br>05/26/2017                          | NM<br>NM     | 377.97 (2.5')                  | 378.26           | NM<br>NM    | NM       | NM           | NM           | 377.48 (1')             | NM           | NM<br>NM    | 378.41           | NM<br>NM | NM<br>NM     | NM<br>NM | NM<br>NM    | NM                   | NM<br>NM |
| 06/29/2017                                        | 375.47       | 376.64 (1.3')<br>375.95 (0.7') | 377.71<br>377.95 | 374.2       | NM<br>NM | NM<br>377.15 | NM<br>376.51 | 377.21 (.15')<br>376.49 | NM<br>378.02 | 377.8       | 377.82<br>375.81 | 375.93   | NM<br>375.52 | 377.92   | 377.04      | NM<br>376.91         | 377.21   |
| 07/29/2017                                        | 3/3.4/<br>NM | 376.05 (0.7)                   | 377.95           | 374.2<br>NM | NM       | NM           | 376.31<br>NM | 376.49                  | 378.02<br>NM | 377.8<br>NM | 375.81           | NM       | NM           | 378.44   | 377.96      | 376.91               | 377.21   |
| 09/08/2017                                        | NM           | 378.52 (0.8')                  | 378.43           | NM          | NM       | NM           | NM           | 377.92 (<0.1')          | NM           | NM          | 378.87           | NM       | NM           | 378.21   | 379.4       | 377.12               | 377.6    |
| 10/05/2017                                        | 374.19       | 376.64 (1.5')                  | 377.71           | 372.15      | NM       | 377.35       | 374.68       | 377.21 0.2              | 376.19       | 375.92      | 378.87           | 374.69   | 374.50       | 376.6    | 377.42      | 375.43 0.2           | 375.59   |
| 02/28/2018                                        | 574.19<br>NM | 375.95 (1.8')                  | 377.95           | NM          | NM       | 401.12       | 574.08<br>NM | 376.49 0.3              | NM           | NM          | 375.81           | NM       | NM           | 376.61   | 377.42      | 375.52 0             | 375.77   |
| 05/30/2018                                        | 375.28       | 376.05 (0.8')                  | 378.45           | 373.99      | NM       | 376.91       | 376.38       | 377.07 0.1              | 377.88       | 377.6       | 376.39           | 375.75   | 375.39       | 377.72   | 376.75      | 375.32 0<br>376.78 0 | 377.05   |
| 09/28/2018                                        | NM           | 378.52 (0.3')                  | 377.37           | NM          | NM       | 401.12       | NM           | 377.92 0                | 377.88       | NM          | 378.87           | NM       | NM           | 378.53   |             | 377.49 0             | 377.75   |
| 12/05/2018                                        | 376.68       | 378.93 (4.8')                  | 374.76           | 374.5       | NM       | 378.87       |              | 377.95 0.1              | 378.18       | 379.32      | 376.57           | 377.57   | 376.63       | 377.29   |             | 377.10 0             | 377.51   |
|                                                   | 570.00       | 570.75 (0.7)                   | 517.10           | 577.5       | LVIVI    | 570.07       | 570.55       | 511.75 0.1              | 570.10       | 517.54      | 570.57           | 511.51   | 570.05       | 511.47   | 511.15      | 577.10 0             | 511.51   |

Notes:

(1.1') indicates measured free product thickness in feet.

All wells were re-surveyed on 01/05/09 by Plumley Engineering and those elevations were used for all groundwater data from 03/10/08 to 2012. Wells re-surveyed after excavation, those elevations were used for all groundwater data from 2012 to present.

\*\*Wells contained free product layers on the water column. A Corrected Depth To Water (CDTW) calculation was used to estimate the groundwater level without the free product using this equation: CDTW = Static DTW - (PxG); where P = Measured Product thickness (which is notated in parenthesis) and G = Specific Gravity. Specific Gravity is currently estimated to be 0.85 based on field observations and published values.

\*Groundwater sampling date.

NI Not installed

NM Not measured

All elevations reported in feet above mean sea level.

#### TABLE 1B - FREE PRODUCT THICKNESS (FEET)

| Date     | MW-1S | MW-2  | MW-7  | MW-10 | RW-1 | RW-2   | RW-3           | RW-4            | MW-1D            | MW-3            | MW-4            | MW-5     | MW-6 | MW-8 | MW-9     | MW-11    | MW-12 |
|----------|-------|-------|-------|-------|------|--------|----------------|-----------------|------------------|-----------------|-----------------|----------|------|------|----------|----------|-------|
| 07/14/09 | 2.04  | 1.80  | 0.90  | 0.85  | NI   | NI     | NI             | NI              |                  |                 |                 |          |      |      |          |          |       |
| 2011     | 2.0.1 | 100   | 0.50  | 0.00  |      |        |                |                 | eted Remedial Ex |                 |                 |          |      |      |          |          |       |
| 09/20/12 | 3.23  | 1.07  | 4.03  | 2.09  |      | 0.05   | 0.76           |                 |                  |                 |                 |          |      |      |          |          |       |
| 09/20/12 |       |       |       | ,     |      |        |                |                 | System Startup   |                 | 1               | <b>I</b> |      | 1    | <b>I</b> |          |       |
| 09/27/12 | 3.20  | 1.51  | 3.21  | 1.68  |      | 0.14   | 0.19           |                 |                  |                 |                 |          |      |      |          |          |       |
| 10/04/12 | 4.26  | 1.39  | 4.85  | 2.05  |      | 0.09   | 0.27           |                 |                  |                 |                 |          |      |      |          |          |       |
| 10/12/12 | 4.25  | 2.21  | 4.49  | 1.69  |      | 0.66   | 0.95           |                 |                  |                 |                 |          |      |      |          |          |       |
| 11/15/12 | NA    | 0.77  | NA    | 1.5   |      | NA     | NA             |                 |                  |                 |                 |          |      |      |          |          | NM    |
| 12/28/12 | 6.21  | 1.01  | 2.92  | 1.32  |      | 0.31   | NA             |                 |                  |                 |                 |          |      |      |          |          |       |
| 01/30/13 | 6.4   | 0.29  | 0.33  | 0.87  |      | 0.32   | 0.13           |                 |                  |                 |                 |          |      |      |          |          |       |
| 02/22/13 | 4.76  | 0.13  | 2.01  | 1.37  |      | 0.18   | 0.19           |                 |                  |                 |                 |          |      |      |          |          |       |
| 03/28/13 | 3.41  | 0.13  | 2.31  | 1.37  |      | 0.68   | 0.3            |                 |                  |                 |                 |          |      |      |          |          |       |
| 04/30/13 | 1.14  | 0.06  | 1.40  | 0.96  |      |        |                |                 |                  |                 |                 |          |      |      |          |          |       |
| 05/30/13 | 1.62  | 0.77  | 1.36  | 0.95  |      | NA     | 0.21           |                 |                  |                 |                 |          |      |      |          |          |       |
| 06/21/13 | 2.29  | 0.13  | 0.82  | 0.91  |      | 0.55   | 0.43           |                 |                  |                 |                 |          |      |      |          |          |       |
| 07/17/13 | 1.70  | 0.09  | 1.56  | 0.53  |      | < 0.01 | 0.21           |                 |                  |                 |                 |          |      |      |          |          |       |
| 08/15/13 | 0.50  | 0.20  | 0.11  | 0.30  |      | 0.02   | 0.02           | 0.02            |                  |                 |                 |          |      |      |          |          |       |
| 09/25/13 | 3.00  | 0.05  | 0.50  | 0.75  |      | 0.01   | 0.01           |                 |                  |                 |                 |          |      |      |          |          |       |
| 10/30/13 | 3.00  | 0.01  | 0.50  | 0.75  |      | 0.05   | NA             |                 |                  |                 |                 |          |      |      |          |          |       |
| 11/21/13 | 3.00  | 0.08  | 1.00  | 0.33  |      |        | 0.01           |                 |                  |                 |                 |          |      |      |          |          |       |
| 12/31/13 | 0.60  | 0.10  | 0.10  | 0.20  |      |        | 0.01           | 0.01            |                  |                 |                 |          |      |      |          |          |       |
| 01/31/14 | 3.00  | NM    | NM    | NM    |      | NM     | NM             | 0.01            |                  |                 |                 |          |      |      |          |          |       |
| 01/31/14 |       |       |       |       |      |        | ommence Absorb | ent Oil Recover | y Program (Free  | Product Thickne | ss Not Measural | ole)     |      |      | <u>.</u> | <u>.</u> |       |
| 02/02/14 | 0.00  | 0.00  | 0.00  | 0.00  |      | 0.00   |                | 0.00            |                  |                 |                 |          |      |      |          |          |       |
| 02/03/14 | 0.00  | 0.00  | 0.00  | 0.00  |      | 0.00   | 0.00           | 0.00            |                  |                 |                 |          |      |      |          |          |       |
| 02/04/14 | 0.00  | 0.00  | 0.00  | 0.00  |      | 0.00   | 0.00           | 0.00            |                  |                 |                 |          |      |      |          |          |       |
| 02/05/14 | 0.00  | 0.00  | 0.00  | 0.00  |      | 0.00   | 0.00           | 0.00            |                  |                 |                 |          |      |      |          |          |       |
| 09/22/15 |       |       |       |       |      |        |                | А               | bsorbents Remov  | red             |                 |          |      |      | -        | -        |       |
| 09/22/15 | 3.00  |       |       |       |      |        |                |                 |                  |                 |                 |          |      |      |          |          |       |
| 12/08/16 | 2.70  | 0.08  | 0.38  | 0.08  |      |        |                |                 |                  |                 |                 |          |      |      |          |          |       |
| 02/16/16 | 3.50  | 0.25  |       |       |      |        |                |                 |                  |                 |                 |          |      |      |          |          |       |
| 04/02/16 | 3.75  | 0.20  |       |       |      |        |                |                 |                  |                 |                 |          |      |      |          |          |       |
| 07/12/16 | 4.33  | 0.25  |       |       |      |        |                |                 |                  |                 |                 |          |      |      |          |          |       |
| 10/14/16 | 4.75  | 0.50  | 0.10  | 0.10  |      |        |                |                 |                  |                 |                 |          |      |      |          |          |       |
| 12/08/16 | 3.66  | 0.10  | 0.40  | 0.10  |      |        |                |                 |                  |                 |                 |          |      |      |          |          |       |
| 12/14/16 | 2.70  | 0.08  | 0.38  | 0.08  |      |        |                |                 |                  |                 |                 |          |      |      |          |          |       |
| 03/01/17 |       |       |       |       |      |        |                |                 | Wells MW1S, M    | ,               |                 |          |      |      |          |          |       |
| 03/01/17 | 4.00  | 0.02  | 0.27  | 0.09  | NM   | NM     | NM             | NM              | NM               | NM              | NM              | NM       | NM   | NM   | NM       | NM       | NM    |
| 04/25/17 | 2.50  | < 0.1 | 1.00  | < 0.1 | NM   | NM     | NM             | NM              | NM               | NM              | NM              | NM       | NM   | NM   | NM       | NM       | NM    |
| 05/26/17 | 1.30  | < 0.1 | 0.15  | < 0.1 | NM   | NM     | NM             | NM              | NM               | NM              | NM              | NM       | NM   | NM   | NM       | NM       | NM    |
| 06/29/17 | 0.70  | < 0.1 | 0.20  | < 0.1 |      |        |                |                 |                  |                 | NM              |          |      |      |          |          |       |
| 07/29/17 | 0.30  | < 0.1 | < 0.1 | < 0.1 |      |        |                |                 | NM               | NM              | NM              | NM       | NM   | NM   | NM       | NM       | NM    |
| 09/08/17 | 0.80  | < 0.1 | 0.10  | < 0.1 |      |        |                |                 | NM               | NM              | NM              | NM       | NM   | NM   | NM       | NM       | NM    |
| 10/05/17 | 1.50  | < 0.1 | 0.20  | < 0.1 |      |        | 0.20           | NM              |                  |                 |                 |          |      |      |          |          |       |
| 02/28/18 | 1.75  | < 0.1 | 0.30  | <0.2  |      |        | < 0.1          | NM              | NM               | NM              | NM              | NM       | NM   | NM   | NM       | NM       | NM    |
| 05/30/19 | 0.80  | < 0.1 | < 0.1 | < 0.1 |      |        | < 0.1          | NM              |                  |                 |                 |          |      |      |          |          |       |
| 09/28/18 | 0.30  |       |       |       |      |        |                | NM              | NM               | NM              | NM              | NM       | NM   | NM   | NM       | NM       | NM    |
| 12/05/18 | 4.75  | < 0.1 | 0.10  | < 0.1 |      |        | <0.1           | NM              |                  |                 |                 |          |      |      |          |          |       |

Notes:

--- Not Present

NI Well not installed

NA Oil-water interface probe malfunction

NM Not measured

Free product measurements taken with an oil-water interface probe.

Plumley Engineering, P.C.

#### TABLE 1C - MONTHLY FREE PRODUCT RECOVERY\* (GALLONS)

| Date   | MW-1S | MW-2        | <b>MW-7</b>  | <b>MW-10</b> | RW-1        | RW-2        | RW-3     | RW-4 | Total | Cumulative Total |
|--------|-------|-------------|--------------|--------------|-------------|-------------|----------|------|-------|------------------|
| Sep-12 |       | Syst        | em Startup   | and Montl    | nly Manua   | l Bailing B | legun    |      |       |                  |
| Oct-12 | 1.32  | 0.26        | 0.92         | 0.40         |             |             |          |      | 2.9   | 2.9              |
| Nov-12 | 0.69  | 0.13        | 0.79         | 0.18         |             |             |          |      | 1.8   | 4.7              |
| Dec-12 | 0.99  | 0.08        | 0.79         | 0.20         |             |             |          |      | 2.1   | 6.8              |
| Jan-13 | 0.90  | 0.01        | 0.03         | 0.11         |             |             |          |      | 1.0   | 7.8              |
| Feb-13 | 1.82  | 0.01        | 0.42         | 0.13         |             |             |          |      | 2.4   | 10.2             |
| Mar-13 | 1.77  |             | 0.29         | 0.11         |             |             |          |      | 2.2   | 12.4             |
| Apr-13 | 1.43  |             | 0.17         | 0.11         |             |             |          |      | 1.7   | 14.1             |
| May-13 | 0.54  | 0.03        | 0.16         | 0.05         |             |             |          |      | 0.8   | 14.8             |
| Jun-13 | 0.29  |             | 0.16         | 0.05         |             |             |          |      | 0.5   | 15.4             |
| Jul-13 | 0.21  |             | 0.26         |              |             |             |          |      | 0.5   | 15.8             |
| Aug-13 | 0.20  | 0.01        | 0.11         | 0.01         |             |             |          |      | 0.3   | 16.2             |
| Sep-13 | 0.26  | 0.01        | 0.11         | 0.05         |             |             |          |      | 0.4   | 16.6             |
| Oct-13 | 0.20  | 0.01        | 0.03         | 0.05         |             |             |          |      | 0.3   | 16.9             |
| Nov-13 | 0.21  | 0.01        | 0.08         | 0.03         |             |             |          |      | 0.3   | 17.2             |
| Dec-13 | 0.16  | 0.01        | 0.01         | 0.03         |             |             |          |      | 0.2   | 17.4             |
| Jan-14 | 0.26  |             |              |              |             |             |          |      | 0.3   | 17.7             |
| Jan-14 |       |             | Placed       | d Absorben   | ts Into All | Wells       | -        |      |       |                  |
| Feb-14 | 1.01  | 0.13        | 0.26         | 0.26         | 0.08        | 0.30        | 0.12     | 0.08 | 2.24  | 19.9             |
| Mar-14 | 0.26  |             | 0.13         | 0.13         | 0.06        |             | 0.05     |      | 0.63  | 20.6             |
| Apr-14 |       |             | 0.07         | 0.10         | 0.01        | 0.08        | 0.02     |      | 0.28  | 20.8             |
| May-14 |       |             | 0.05         | 0.01         | 0.01        | 0.03        | 0.01     | 0.01 | 0.13  | 21.0             |
| Jun-14 | 0.02  | 0.03        | 0.02         | 0.07         | 0.000       | 0.03        | 0.08     | 0.01 | 0.25  | 21.2             |
| Jul-14 | 0.14  | 0.04        | 0.02         | 0.05         | 0.00        | 0.03        | 0.05     | 0.01 | 0.34  | 21.6             |
| Aug-14 | 0.20  | 0.08        | 0.01         | 0.13         | 0.00        | 0.04        | 0.05     | 0.00 | 0.51  | 22.1             |
| Sep-14 | 0.27  | 0.01        | 0.03         | 0.13         | 0.01        | 0.04        | 0.03     | 0.02 | 0.54  | 22.6             |
| Oct-14 | 0.27  | 0.03        | 0.00         | 0.13         | 0.00        | 0.09        | 0.02     |      | 0.54  | 23.1             |
| Nov-14 | 0.27  | 0.08        | 0.00         | 0.13         | 0.19        | 0.19        |          |      | 0.86  | 24.0             |
| Dec-14 | 0.27  | 0.03        | 0.05         | 0.09         | 0.08        | 0.02        |          |      | 0.54  | 24.5             |
| Jan-15 | 0.27  | 0.00        | 0.07         | 0.09         | 0.11        | 0.11        | 0.04     | 0.00 | 0.68  | 25.2             |
| Mar-15 | 0.27  | 0.00        | 0.01         | 0.01         | 0.08        | 0.08        | 0.11     | 0.02 | 0.57  | 25.8             |
| Apr-15 | 0.08  | 0.07        | 0.03         | 0.01         | 0.04        | 0.11        | 0.09     | 0.17 | 0.60  | 26.4             |
| May-15 | 0.07  | 0.03        | 0.05         | 0.04         | 0.02        | 0.11        | 0.04     | 0.00 | 0.36  | 26.7             |
| Jun-15 | 0.12  | 0.00        | 0.03         | 0.04         | 0.05        | 0.08        | 0.04     | 0.00 | 0.35  | 27.1             |
| Aug-15 | 0.02  | 0.03        | 0.02         | 0.02         | 0.02        | 0.11        | 0.11     | 0.00 | 0.34  | 27.4             |
| Mar-17 | А     | borbents re | einstalled i | n wells MV   | V-1S, MW    | '-2, MW-7   | and MW-1 | 0    |       |                  |
| Apr-17 | 0.27  |             |              |              |             |             |          |      | 0.27  | 27.7             |
| May-17 | 0.27  |             |              |              | · · · · · · |             |          |      | 0.27  | 28.0             |
| Jun-17 | 0.27  |             | 0.20         |              | · · · · · · |             |          |      | 0.47  | 28.4             |
| Jul-17 | 0.27  |             |              |              | · · · · · · |             |          |      | 0.27  | 28.7             |
| Sep-17 | 0.40  |             |              |              |             |             |          |      | 0.40  | 29.1             |
| Oct-17 | 0.40  |             | 0.20         |              |             |             |          |      | 0.60  | 29.7             |
| Feb-18 | 0.27  |             | 0.07         |              |             |             |          |      | 0.34  | 30.1             |
| May-18 | 0.03  |             | 0.01         |              |             |             |          |      | 0.04  | 30.1             |
| Sep-18 | 0.03  |             |              |              |             |             |          |      | 0.03  | 30.1             |
| Dec-18 | 0.65  |             | 0.13         |              |             |             |          |      | 0.78  | 30.9             |
| Total  | 17.0  | 1.1         | 5.7          | 3.0          | 0.8         | 1.4         | 0.9      | 0.3  | 30.1  | l                |

#### Notes:

\*Based on estimate in each bailer during bailing program and spent absorbent length during absorbent program. Blank indicates not present/removed. For wells not listed, free product is not present.

#### **TABLE 2 - SUMMARY OF GROUNDWATER ANALYTICAL RESULTS - VOCs and PCBs**

**Date Sampled:** December 5, 2018

| Lab Sample ID:         Nature 179316-9         JC79316-9         JC7916-9         JC7916-9         JC7916-9                                                                                                                                                                                    | Client Sample ID:      | Unit | State                        | MW-1-D                | MW-2                                  | MW-5                  | MW-6                  | MW-9                  | <b>MW-10</b>                          | MW-12                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------|------------------------------|-----------------------|---------------------------------------|-----------------------|-----------------------|-----------------------|---------------------------------------|-----------------------|
| Actions         ug/L         -1         ND (6.0)         ND (6.                                                                                                                                                                                                                | Lab Sample ID:         | Umt  | <b>Standard</b> <sup>1</sup> | JC79316-6             | JC79316-5                             | JC79316-4             | JC79316-3             | JC79316-1             | JC79316-8                             | JC79316-7             |
| Binance         ygL         1         0.23         1.4         ND (A3)         1.7         0.66         2.3         0.04           Bronnobencem         ygL         5         ND (0.53)         ND (0.53)         ND (0.53)         ND (0.55)         ND (0.57)         ND (0.57) <td></td> <td></td> <td></td> <td>MS Vola</td> <td>tiles (SW84</td> <td>6 8260C)</td> <td>-</td> <td>-</td> <td>-</td> <td></td>                                                                                   |                        |      |                              | MS Vola               | tiles (SW84                           | 6 8260C)              | -                     | -                     | -                                     |                       |
| Bronnehursence         ight         5         ND (0.55)         ND (0.55)         ND (0.55)         ND (0.45)         ND (0.5)         ND (0.5) <thnd (0.5)<="" th="">         ND (0.5)         <thn< td=""><td>Acetone</td><td>µg/L</td><td>-</td><td>ND (6.0)</td><td>ND (6.0)</td><td>ND (6.0)</td><td>ND (6.0)</td><td>ND (6.0)</td><td>ND (6.0)</td><td>ND (6.0)</td></thn<></thnd>         | Acetone                | µg/L | -                            | ND (6.0)              | ND (6.0)                              | ND (6.0)              | ND (6.0)              | ND (6.0)              | ND (6.0)                              | ND (6.0)              |
| Biomschlacementane         up1         S         ND (0.48)         ND (0.49)         ND (0.47)         ND (0.49)         ND (0.47)         ND                                                                                                                                                                                      | Benzene                | µg/L | 1                            | 0.52                  | 1.4                                   | ND (0.43)             | 1.7                   | 0.66                  | 2.3                                   | 0.46 J                |
| Bromoshame         μpT         -         ND 0.58         ND 0.58         ND 0.58         ND 0.58         ND 0.68         ND 0.65         ND 0                                                                                                                                                                                                                                            | Bromobenzene           | µg/L | 5                            | ND (0.55)             | ND (0.55)                             | ND (0.55)             | ND (0.55)             | ND (0.55)             | ND (0.55)                             | ND (0.55)             |
| Bromoscham         μgL         -         N D 0.63         N D 0.65         N D 0.63         N D                                                                                                                                                                                                                  | Bromochloromethane     | µg/L | 5                            | ND (0.48)             | ND (0.48)                             | ND (0.48)             | ND (0.48)             | ND (0.48)             | ND (0.48)                             | ND (0.48)             |
| Brommerhume         μpT         5         NT (1.67         NT (1.67         NT (1.67         NT (1.67         NT (1.67)         NT (1.67) <td>Bromodichloromethane</td> <td>µg/L</td> <td>-</td> <td>ND (0.58)</td> <td>ND (0.58)</td> <td>0.82 J</td> <td>ND (0.58)</td> <td>ND (0.58)</td> <td>ND (0.58)</td> <td>ND (0.58)</td> | Bromodichloromethane   | µg/L | -                            | ND (0.58)             | ND (0.58)                             | 0.82 J                | ND (0.58)             | ND (0.58)             | ND (0.58)                             | ND (0.58)             |
| 2-Buamons (MTK)         µgT         -         ND (6.9)         ND (6.6)         ND (6.6) <td< td=""><td>Bromoform</td><td>µg/L</td><td>-</td><td>ND (0.63)</td><td>ND (0.63)</td><td>ND (0.63)</td><td>ND (0.63)</td><td>ND (0.63)</td><td>ND (0.63)</td><td>ND (0.63)</td></td<>                                | Bromoform              | µg/L | -                            | ND (0.63)             | ND (0.63)                             | ND (0.63)             | ND (0.63)             | ND (0.63)             | ND (0.63)                             | ND (0.63)             |
| n-Baughtenzene         ngT.         5         ND (0.52)         ND (0.55)         ND (0.56)         ND (0.57)         ND (0                                                                                                                                                                                      | Bromomethane           | µg/L | 5                            | ND (1.6) <sup>a</sup> | ND (1.6) <sup>a</sup>                 | ND (1.6) <sup>a</sup> | ND (1.6) <sup>a</sup> | ND (1.6) <sup>a</sup> | ND (1.6) <sup>a</sup>                 | ND (1.6) <sup>a</sup> |
| ses-Enziphenzene         sgl.         S         ND (0.62)         ND (0.62)         ND (0.62)         ND (0.62)         ND (0.63)         ND (0.63)         ND (0.65)         ND (0.55)         ND (0.50)         ND (0.50)         ND (0.50)         ND (0.50)         ND (0.50)         ND (0.55)         ND                                                                                                                                                                                       | 2-Butanone (MEK)       | µg/L | -                            | ND (6.9)              | ND (6.9)                              | ND (6.9)              | ND (6.9)              | ND (6.9)              | ND (6.9)                              | ND (6.9)              |
| intre-Burghbanzenc         ingL         5         ND (0.69)         ND (0.69)         ND (0.69)         ND (0.69)         ND (0.95)         ND (0.75)         ND (0.76)         N                                                                                                                                                                                      | n-Butylbenzene         | µg/L | 5                            | ND (0.52)             | ND (0.52)                             | ND (0.52)             | ND (0.52)             | ND (0.52)             | 0.63 J                                | ND (0.52)             |
| Carbon disulfide $\mu_{g}I_{L}$ 60         ND (0.95)         ND (0.95)         ND (0.95)         ND (0.95)         ND (0.55)         ND (0.56)                                                                                                                                                                                                       | sec-Butylbenzene       | µg/L | 5                            | ND (0.62)             | ND (0.62)                             | ND (0.62)             | ND (0.62)             | ND (0.62)             | 1.3 J                                 | 1.4 J                 |
| Carbon tetrachloride         jpg1         5         ND (0.55)                                                                                                                                                                                              | tert-Butylbenzene      | µg/L | 5                            | ND (0.69)             | ND (0.69)                             | ND (0.69)             | ND (0.69)             | ND (0.69)             | ND (0.69)                             | 0.96 J                |
| Carbon tetrachloride         μg/L         5         ND (0.53)         ND (0.55)         ND (0.56)         ND (0.57)         ND (0.51)         ND (0.51)         ND (0.51)         ND (0.51)                                                                                                                                                                                              | Carbon disulfide       |      | 60                           | ND (0.95)             | ND (0.95)                             | ND (0.95)             | ND (0.95)             | ND (0.95)             | ND (0.95)                             | ND (0.95)             |
| Chlorobacaca         μg/L         5         0.07.1         0.07.3         ND (0.53)         ND (0.73)         ND (0.75)                                                                                                                                                                                          | Carbon tetrachloride   | 1    | 5                            | ND (0.55)             | ND (0.55)                             | ND (0.55)             | ND (0.55)             | ND (0.55)             | ND (0.55)                             | ND (0.55)             |
| Chloroschame         µgL         5         ND (0.73)         ND (0.74)         ND (0.74)                                                                                                                                                                                     | Chlorobenzene          | 1    | 5                            | 0.57 J                | 0.97 J                                | ND (0.56)             | 23.9                  | 5.8                   | ND (0.56)                             | 11.2                  |
| Chloroform         µg/L         7         ND (0.50)         ND (0.51)         ND (0.50)         ND (0.51)         ND (0.50)         ND (0.50)         ND (0.51)         ND (0.50)         ND (0.50)         ND (0.50)         ND (0.51)         ND (0.51)         ND (0.52)         ND (0.52)         ND (0.52)         ND (0.52)         ND (0.54)         ND (0.54)         ND (0.55)         ND (0.54)         ND (0.55)         ND (0.57)         ND (0.51)         ND (0.55)         ND (0.55)<                                                                                                                                                                                     | Chloroethane           |      | 5                            | ND (0.73)             |                                       |                       | ND (0.73)             | ND (0.73)             | · · · · ·                             | ND (0.73)             |
| Chloromethane         µg/L         5         ND (0.76)         ND (0.77)         ND (0.7                                                                                                                                                                                     | Chloroform             |      | 7                            |                       | ND (0.50)                             |                       | · /                   | × /                   | × /                                   | · · · · · ·           |
| o-Chlorotoluce $\mu g'L$ 5         ND (0.63)         ND (0.64)         ND (0.64)         ND (0.64)         ND (0.65)         ND (0.66)         ND (0.66)         ND (0.66)         ND (0.65)         ND (0.64)         ND (0.21)         ND (0.56)         ND (0.55)         ND (0.55)         ND (0.55)         ND (0.55)         ND (0.55)         ND (0.55)         ND (0.56)         ND (0.57)         ND (0.51)         Ad-5         I         Z.6         Ad-1           1.4 Dichlorobenzene $\mu g'L$ 5         ND (0.57)         S         ND (0.57)         ND (1.47)         ND (1.47)         ND (1.47)         ND (1.47)         ND (0.57)                                                                                                                                                                                                                                         | Chloromethane          |      | 5                            | · · · ·               | . ,                                   |                       | ``´´                  | × /                   | <b>`</b>                              | · · · · ·             |
| p-Chlorotoluce $\mu g'L$ 5         ND (0.60)         ND (0.61)         ND (0.71)         ND (0.71)         ND (0.72)         ND (0.72)         ND (0.72)         ND (0.73)         ND (0.73)         ND (0.73)         ND (0.74)         ND (0.75)         ND                                                                                                                                                                                                    |                        |      |                              |                       |                                       | · · · · · ·           | · · · · ·             | · · · · ·             | × /                                   |                       |
| 12-Dibrome-3-chloropropune         µg/L         0.04         ND (1.2)         ND (1.4)         ND (0.56)         ND (0.56)         ND (0.50)         ND (0.51)         ND (0.51)         ND (0.51)         ND (0.51)         ND (0.51)         ND (0.51)         ND (1.4)         ND                                                                                                                                                                                                       |                        | 1    |                              | <b>`</b>              | , , , , , , , , , , , , , , , , , , , |                       | <b>`</b>              | · · · · ·             | <b>`</b>                              | · · · · ·             |
| Dihromechloromethane         μg/L         -         ND (0.56)         ND (0.57)         ND (0.51)         ND (0.51)         ND (0.51)         S.5         ND (0.51)         S.5         ND (0.51)         S.5         ND (0.51)         S.5         ND (0.51)         ND (0.51)         S.5         ND (0.51)         ND (0.51)         ND (0.51)         ND (0.51)         ND (0.57)         ND (0.50)         ND (0.51)         ND                                                                                                                                                                                               | 1                      |      |                              | ( )                   | × /                                   |                       | × /                   | ~ /                   | · · · /                               | · · · · · ·           |
| 1.2-Dibromoethane         µg/L         0.0006         ND (0.48)         ND (0.41)         ND (0.51)         2.4         0.621         ND (0.48)         ND (0.48)         ND (0.47)         ND (1.47)         ND (0.50)         ND (0.51)         ND (0.51                                                                                                                                                                                     | * *                    |      |                              | × /                   |                                       | · /                   |                       |                       | × /                                   |                       |
| 1.2-Dichlorobenzene         μg/L         3         0.59         3.1         ND (0.53)         4.5         1         2.6         3.4           1.3-Dichlorobenzene         μg/L         3         ND (0.54)         2.5         ND (0.54)         2.4         0.621         ND (0.54)         ND (0.51)         5.9         ND (0.51)         5.9         ND (0.51)         5.9         ND (0.51)         5.9         ND (0.51)         ND (0.51)         ND (0.51)         ND (0.57)         ND (0.57)         ND (0.57)         ND (0.57)         ND (0.57)         ND (0.59)         ND (0.59)         ND (0.59)         ND (0.59)         ND (0.51)         ND (0.52)         ND (0.51)         ND (0.5                                                                                                                                                                                                                         |                        |      |                              | · /                   | . ,                                   | . ,                   |                       | × /                   | ```´                                  |                       |
| 1.3-Dichlorobenzene $\mu g/L$ 3         ND (0.54)         2.5         ND (0.51)         2.7         ND (0.51)         ND (0.51)         LA         0.61         1.1         1.8           Dichlorodihuromethane $\mu g/L$ 5         ND (0.51)         S.9         ND (0.57)         ND (0.59)         ND (0.51)         ND (0.52)                                                                                                                                                                                                                                            |                        | -    |                              | × /                   | , <i>,</i> ,                          | · · · ·               | . ,                   | 1                     | × /                                   |                       |
| 1.4-Dichlorobenzene         µg/L         3         ND (0.51)         5.9         ND (0.51)         2.7         1.6         1.1         1.8           Dichlorodffluoromethane         µg/L         5         ND (1.4)         ND (0.57)         ND (0.57)         ND (0.57)         ND (0.57)         ND (0.50)         ND (0.51)         ND (0.52)         ND (0.43)                                                                                                                                                                                                               |                        |      |                              |                       |                                       |                       |                       | 0.62 I                |                                       |                       |
| Dicklorodifluoromethane         µg/L         5         ND (1.4)'         ND (0.5)'         ND (0.50)         ND (0.50)         ND (0.50)         ND (0.50)         ND (0.50)         ND (0.50)         ND (0.51)         ND (0.52)         ND (0.51)         <                                                                                                                                                                                 | -                      |      |                              |                       |                                       |                       |                       |                       |                                       |                       |
| 1.1-Dichloroethane $\mu g'L$ 5         2.3         0.73 J         ND (0.57)         0.61 J         ND (0.57)         ND (0.59)         ND (0.59)         ND (0.59)         ND (0.59)         ND (0.59)         ND (0.51)         ND (0.52)         ND (0.51)         ND (0.51)<                                                                                                                                                                                                    |                        |      |                              |                       |                                       |                       |                       |                       |                                       |                       |
| 1.2-Dichloroethane $\mu g'L$ 0.6         ND (0.60)         ND (0.60)         ND (0.60)         ND (0.60)         ND (0.60)         ND (0.60)         ND (0.50)         ND (0.51)         ND (0.52)         ND (0.43)                                                                                                                                                                                                         |                        |      |                              | · /                   | · · · · ·                             |                       | , <i>, ,</i>          | × /                   |                                       | · /                   |
| 1.1-Dichloroethene         µg/L         5         ND (0.59)         ND (0.59)         ND (0.59)         ND (0.59)         ND (0.59)         ND (0.51)         ND (0.52)         ND                                                                                                                                                                                     |                        |      |                              |                       |                                       | · · · ·               |                       | · · · · ·             | ```´                                  | · · · ·               |
| 1,2-Dichloroethene (total)         µg/L         -         1.5         1         ND (0.51)         ND (0.52)         ND (0.51)         ND (0.47)         ND (0.43)         ND (0.43)         ND (0.43)         ND (0.43)         ND (0.47                                                                                                                                                                                     |                        | 1    |                              | · · · ·               | <b>``</b>                             | × /                   | · /                   | × /                   | . ,                                   | · · · ·               |
| 1,2-Dichloropropane         μg/L         1         ND (0.51)         ND (0.52)         ND (0.53)         ND (0.43)                                                                                                                                                                                               | ,                      |      |                              | × /                   | 1                                     | ( )                   | · · · · ·             | × /                   | × /                                   | . ,                   |
| 1.3-Dichloropropane $\mu g' L$ 5ND (0.43)ND (0.52)ND (0.43)ND (0.43) <td></td> <td></td> <td></td> <td></td> <td>ND(0.51)</td> <td>· /</td> <td>· /</td> <td>, , ,</td> <td></td> <td>· · · · ·</td>                                                                                                                                                                                                                                                                                                                                                                                           |                        |      |                              |                       | ND(0.51)                              | · /                   | · /                   | , , ,                 |                                       | · · · · ·             |
| 2.2-Dichloropropane $\mu g/L$ 5         ND (0.52)         ND (0.53)         ND (0.47)         ND (0.47)         ND (0.47)         ND (0.47)         ND (0.47)         ND (0.43)         ND (0.43)         ND (0.43)         ND (0.43)         ND (0.56)         <                                                                                                                                                                                                |                        | 1    |                              | <b>`</b>              | ```´                                  | . ,                   | . ,                   |                       | ``´´                                  | · /                   |
| 1.1-Dichloropropene $\mu g'L$ -         ND (0.82)         ND (0.47)         ND (0.47)         ND (0.47)         ND (0.47)         ND (0.47)         ND (0.47)         ND (0.43)         ND (0.50         ND (0.50         ND (0.56)         ND (0.51)         ND (0.51)         ND (0.51)         ND (0.51) <th< td=""><td></td><td></td><td></td><td>× /</td><td>``´´</td><td>· · · ·</td><td>· · · ·</td><td>× /</td><td>``´´</td><td>``´´</td></th<>                                                                |                        |      |                              | × /                   | ``´´                                  | · · · ·               | · · · ·               | × /                   | ``´´                                  | ``´´                  |
| cis-1,3-Dichloropropene         µg/L         -         ND (0.47)         ND (0.47)         ND (0.47)         ND (0.47)         ND (0.47)         ND (0.47)         ND (0.43)         ND (0.45)         ND (0.50)         ND (0.50)         ND (0.50)         ND (0.50)         ND (0.56)         ND (0.50)         ND (0.55)         ND (0.51)         ND (0.51)         ND (0.51)         ND (0.51)         ND (0.51)         ND (0.48)         ND (0.48)         <                                                                                                                                                                                 |                        |      |                              | · /                   | , , ,                                 | · · · · · ·           | · /                   | , <i>, ,</i>          | ``´´                                  |                       |
| trans-1,3-Dichloropropene         μg/L         -         ND (0.43)         ND (0.50)         ND (0.50)         ND (0.50)         ND (0.56)         ND (0.56)         ND (0.56)         ND (0.56)         ND (0.56)         ND (0.51)         ND (0.43)         ND (0.43)         ND (0.51)                                                                                                                                                                                         |                        | 1    |                              | <b>`</b>              | , , , , , , , , , , , , , , , , , , , | . ,                   | <b>`</b>              | · · · · ·             | ```´                                  | . ,                   |
| Ethylbenzene $\mu g/L$ 5ND (0.60)ND (0.50)ND (0.51)ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |      |                              | · /                   | ``´´                                  |                       | · /                   | ```´´                 | ``´´                                  | · /                   |
| Hexachlorobutadiene $\mu g/L$ 0.5ND (0.56)ND (0.57)ND (0.57)ND (0.57)ND (0.57)ND (0.57)ND (0.57) </td <td></td> <td></td> <td></td> <td>× /</td> <td>``´´</td> <td>· · · ·</td> <td>· · · ·</td> <td>× /</td> <td>```´</td> <td>. ,</td>                                                                                                                                                                                                                                                                                                                                                                                  |                        |      |                              | × /                   | ``´´                                  | · · · ·               | · · · ·               | × /                   | ```´                                  | . ,                   |
| Isopropylbenzeneµg/L5ND (0.65)ND (0.65)ND (0.65)ND (0.65)0.72 J2.33.9p-Isopropylolueneµg/L5ND (0.66)ND (0.66)ND (0.66)ND (0.66)ND (0.66)ND (0.66)ND (0.66)ND (0.66)ND (0.61)ND (0.51)ND (0.51) <td>·</td> <td></td> <td></td> <td>× /</td> <td>. ,</td> <td>· /</td> <td>· · · ·</td> <td>· · · · ·</td> <td><b>`</b></td> <td>· /</td>                                                                                                                                                                                                                                                                                                                                                                                                        | ·                      |      |                              | × /                   | . ,                                   | · /                   | · · · ·               | · · · · ·             | <b>`</b>                              | · /                   |
| p-Isopropyltolueneμg/L5ND (0.66)ND (0.51)ND (0.51) <th< td=""><td></td><td></td><td></td><td>× /</td><td>. ,</td><td>× /</td><td>· · · ·</td><td></td><td>× /</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                     |                        |      |                              | × /                   | . ,                                   | × /                   | · · · ·               |                       | × /                                   |                       |
| Methyl Tert Butyl Ether $\mu g/L$ 10ND (0.51)ND (0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 10                   |      |                              | <b>`</b>              | <b>`</b>                              | · · · ·               |                       |                       |                                       |                       |
| Methylene bromide         μg/L         5         ND (0.48)         ND (0.50)         ND (0.50)         ND (0.50         ND (0.50)         ND (0.50         ND (                                                                                                                                                                                      |                        |      |                              | · /                   | ` <i>´</i>                            | . /                   | · · · /               |                       |                                       | · /                   |
| Methylene chloride         μg/L         5         ND (1.0)         ND (0.8)         ND (0.80         ND (0.80         ND (0.80         ND (0.60                                                                                                                                                                                                                     |                        |      |                              | × /                   | . ,                                   |                       | · · · ·               | × /                   | ``´´                                  | . ,                   |
| Naphthalene         μg/L         -         ND (0.98)         ND (0.90)         ND (0.60)         ND (0.60)         ND (0.70)         ND (0.70)         ND (0.70)         ND (0.70)         ND (0.70)         ND (0.70)         ND (0.60)         ND (0.65                                                                                                                                                                                      | 5                      |      |                              | × /                   | × /                                   | · · · · · ·           | · /                   | ~ /                   | ``´´                                  | · /                   |
| n-Propylbenzeneμg/L5ND (0.60)ND (0.60)ND (0.60)ND (0.60)ND (0.60)ND (0.60)1.9 J1.3 JStyreneμg/L5ND (0.70)ND (0.70)ND (0.70)ND (0.70)ND (0.70)ND (0.70)ND (0.70)ND (0.70)1,1,2Tetrachloroethaneμg/L5ND (0.60)ND (0.60)ND (0.60)ND (0.60)ND (0.60)ND (0.60)ND (0.60)ND (0.60)1,2,2-Tetrachloroethaneμg/L5ND (0.65)'ND (0.65)'ND (0.65)'ND (0.65)'ND (0.65)'ND (0.65)'ND (0.65)'ND (0.65)'Tetrachloroethaneμg/L5ND (0.65)'ND (0.53)ND (0.53)ND (0.53)ND (0.53)ND (0.53)ND (0.53)ND (0.53)ND (0.53)Tolueneμg/L5ND (0.50)ND (0.50)ND (0.50)ND (0.50)ND (0.50)ND (0.50)ND (0.53)1,2,3-Trichlorobenzeneμg/L5ND (0.50)ND (0.50)ND (0.50)ND (0.50)ND (0.50)ND (0.50)1,1,1-Trichloroethaneμg/L5ND (0.53)ND (0.54)ND (0.54)ND (0.54)ND (0.53)ND (0.53)1,1,2-Trichloroethaneμg/L5ND (0.53)ND (0.53)ND (0.53)ND (0.53)ND (0.53)ND (0.53)ND (0.53)1,1,2-Trichloroethaneμg/L5ND (0.53)ND (0.53)ND (0.53)ND (0.53)ND (0.53)ND (0.53)ND (0.53)1,1,2-Trichloroethaneμg/L5ND (0.53)I.2ND (0.53)ND (0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |      |                              | × /                   |                                       | · · · ·               |                       |                       | × /                                   | · /                   |
| Styrene $\mu g/L$ 5ND (0.70)ND (0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · ·                    |      |                              |                       | ``´´                                  | · · · · · ·           | · /                   | ``´´                  | , ,                                   | · · · ·               |
| 1,1,2-Tetrachloroethane         µg/L         5         ND (0.60)         ND (0.65) <sup>c</sup> ND (0.50)         <                                                                                                |                        |      |                              | <b>`</b>              | ``´´                                  | · · · ·               | · · · ·               | · · · · ·             |                                       |                       |
| 1,1,2,2-Tetrachloroethane $\mu g/L$ 5ND (0.65)°ND (0.50)ND (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                      |      |                              | <b>`</b>              | , , , , , , , , , , , , , , , , , , , | . ,                   | · · · ·               |                       | , , , , , , , , , , , , , , , , , , , | · /                   |
| Tetrachloroetheneμg/L5ND (0.90)ND (0.90)ND (0.90)ND (0.90)ND (0.90)ND (0.90)ND (0.90)ND (0.90)Tolueneμg/L5ND (0.53)ND (0.53)ND (0.53)ND (0.53)0.66 JND (0.53)ND (0.53)1,2,3-Trichlorobenzeneμg/L5ND (0.50)ND (0.50)ND (0.50)ND (0.50)ND (0.50)ND (0.50)ND (0.50)1,2,4-Trichlorobenzeneμg/L5ND (0.50)ND (0.50)ND (0.50)ND (0.50)ND (0.50)ND (0.50)1,1,1-Trichloroethaneμg/L5ND (0.54)ND (0.54)ND (0.54)ND (0.54)ND (0.54)ND (0.53)1,1,2-Trichloroethaneμg/L1ND (0.53)ND (0.53)ND (0.53)ND (0.53)ND (0.53)ND (0.53)ND (0.53)Trichloroethaneμg/L5ND (0.53)1.2ND (0.53)ND (0.53)ND (0.53)ND (0.53)ND (0.53)Trichloroethaneμg/L5ND (0.53)1.2ND (0.53)ND (0.53)ND (0.53)ND (0.53)Trichloroethaneμg/L5ND (0.53)1.2ND (0.53)ND (0.53)ND (0.53)ND (0.53)Trichloroethaneμg/L5ND (0.84)ND (0.84)ND (0.84)ND (0.84)ND (0.84)ND (0.84)1,2,3-Trichloropropaneμg/L0.04ND (0.70)ND (0.70)ND (0.70)ND (0.70)ND (0.70)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |      |                              | × /                   |                                       |                       | . ,                   | × /                   | ``´´                                  | . ,                   |
| Tolueneμg/L5ND (0.53)ND (0.50)ND (0.53)ND (0.53)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |      |                              | × /                   | × /                                   | · /                   | ``´´                  | × /                   | · /                                   | . ,                   |
| 1,2,3-Trichlorobenzene $\mu g/L$ 5ND (0.50)ND (0.50)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |      |                              | · /                   | ` <i>´</i>                            | · · · · · ·           | · · · /               |                       | · · · · · · · · · · · · · · · · · · · |                       |
| 1,2,4-Trichlorobenzene $\mu g/L$ 5ND (0.50)ND (0.50)ND (0.50)ND (0.50)ND (0.50)ND (0.50)ND (0.50)ND (0.50)1,1,1-Trichloroethane $\mu g/L$ 5ND (0.54)ND (0.54)ND (0.54)ND (0.54)ND (0.54)ND (0.54)ND (0.54)1,1,2-Trichloroethane $\mu g/L$ 1ND (0.53)ND (0.53)ND (0.53)ND (0.53)ND (0.53)ND (0.53)ND (0.53)Trichloroethene $\mu g/L$ 5ND (0.53)1.2ND (0.53)ND (0.53)ND (0.53)ND (0.53)Trichlorofluoromethane $\mu g/L$ 5ND (0.84)ND (0.84)ND (0.84)ND (0.84)ND (0.84)ND (0.84)1,2,3-Trichloropropane $\mu g/L$ 0.04ND (0.70)ND (0.70)ND (0.70)ND (0.70)ND (0.70)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |      |                              | <b>`</b>              | ``´´                                  | · · · ·               | . ,                   |                       | ( )                                   | · · · · ·             |
| 1,1,1-Trichloroethane $\mu g/L$ 5ND (0.54)ND (0.54)ND (0.54)ND (0.54)ND (0.54)ND (0.54)ND (0.54)ND (0.54)1,1,2-Trichloroethane $\mu g/L$ 1ND (0.53)ND (0.53)ND (0.53)ND (0.53)ND (0.53)ND (0.53)ND (0.53)Trichloroethane $\mu g/L$ 5ND (0.53)1.2ND (0.53)ND (0.53)ND (0.53)ND (0.53)ND (0.53)Trichloroethane $\mu g/L$ 5ND (0.84)ND (0.84)ND (0.84)ND (0.84)ND (0.84)ND (0.84)Trichlorofluoromethane $\mu g/L$ 5ND (0.70)ND (0.70)ND (0.70)ND (0.70)ND (0.70)1,2,3-Trichloropropane $\mu g/L$ 0.04ND (0.70)ND (0.70)ND (0.70)ND (0.70)ND (0.70)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |      |                              |                       | × /                                   | × /                   | × /                   | × /                   | × /                                   | · /                   |
| 1,1,2-Trichloroethane $\mu g/L$ 1ND (0.53)ND (0.53)ND (0.53)ND (0.53)ND (0.53)ND (0.53)ND (0.53)ND (0.53)Trichloroethene $\mu g/L$ 5ND (0.53)1.2ND (0.53)ND (0.53)ND (0.53)ND (0.53)ND (0.53)Trichlorofluoromethane $\mu g/L$ 5ND (0.84)ND (0.84)ND (0.84)ND (0.84)ND (0.84)ND (0.84)ND (0.84)1,2,3-Trichloropropane $\mu g/L$ 0.04ND (0.70)ND (0.70)ND (0.70)ND (0.70)ND (0.70)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |      |                              | <b>`</b>              |                                       |                       | , ,                   |                       | . ,                                   |                       |
| Trichloroethene $\mu g/L$ 5         ND (0.53)         1.2         ND (0.53)         ND (0.54)         ND (0.54)         ND (0.54)         ND (0.70)         ND (0.7                                                                                                                                                                                                    | 1,1,1-Trichloroethane  |      | 5                            |                       |                                       |                       |                       |                       |                                       |                       |
| Trichlorofluoromethane         μg/L         5         ND (0.84)         ND (0.70)         <                                                                                                                                                                                  |                        |      | 1                            | <b>`</b>              | , <i>,</i> ,                          | . ,                   |                       |                       | ```´                                  |                       |
| 1,2,3-Trichloropropane µg/L 0.04 ND (0.70)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Trichloroethene        |      |                              | · /                   |                                       |                       |                       |                       | . ,                                   |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |      |                              | . ,                   |                                       |                       |                       |                       | · · · ·                               |                       |
| 1,2,4-Trimethylbenzene $\mu g/L$ 5         ND (1.0)         ND (1.0)         ND (1.0)         ND (1.0)         ND (1.0)         ND (1.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        | µg/L |                              |                       | . ,                                   | . ,                   | · /                   | · · · ·               | <b>`</b>                              | . ,                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,2,4-Trimethylbenzene | μg/L | 5                            | ND (1.0)              | ND (1.0)                              | ND (1.0)              | ND (1.0)              | ND (1.0)              | ND (1.0)                              | ND (1.0)              |

Plumley Engineering, P.C.

#### TABLE 2 - SUMMARY OF GROUNDWATER ANALYTICAL RESULTS - VOCs and PCBs

Date Sampled: December 5, 2018

| Client Sample ID:      | Unit | State                        | MW-1-D     | <b>MW-2</b>              | MW-5       | MW-6       | MW-9       | MW-10      | MW-12      |
|------------------------|------|------------------------------|------------|--------------------------|------------|------------|------------|------------|------------|
| Lab Sample ID:         | Unit | <b>Standard</b> <sup>1</sup> | JC79316-6  | JC79316-5                | JC79316-4  | JC79316-3  | JC79316-1  | JC79316-8  | JC79316-7  |
|                        |      |                              | MS Vola    | tiles (SW84              | 6 8260C)   |            |            |            |            |
| 1,3,5-Trimethylbenzene | μg/L | 5                            | ND (1.0)   | ND (1.0)                 | ND (1.0)   | ND (1.0)   | ND (1.0)   | ND (1.0)   | ND (1.0)   |
| Vinyl chloride         | μg/L |                              | 24         | ND (0.79)                | ND (0.79)  | ND (0.79)  | ND (0.79)  | ND (0.79)  | ND (0.79)  |
| m,p-Xylene             | μg/L | -                            | ND (0.78)  | ND (0.78)                | ND (0.78)  | ND (0.78)  | ND (0.78)  | ND (0.78)  | ND (0.78)  |
| o-Xylene               | μg/L | 5                            | ND (0.59)  | ND (0.59)                | ND (0.59)  | ND (0.59)  | ND (0.59)  | ND (0.59)  | ND (0.59)  |
| TOTAL VOCs             | μg/L |                              | 29.48      | 17.69                    | 18.22      | 35.81      | 11.06      | 13.06      | 24.42      |
|                        |      |                              | GC/LC Semi | -volatiles (S            | W846 8082A | .)         |            |            |            |
| Aroclor 1016           | μg/L | 0.09                         | ND (0.094) | ND (0.094)               | ND (0.094) | ND (0.094) | ND (0.094) | ND (0.094) | ND (0.098) |
| Aroclor 1221           | μg/L | 0.09                         | ND (0.20)  | ND (0.20)                | ND (0.20)  | ND (0.20)  | ND (0.20)  | ND (0.20)  | ND (0.21)  |
| Aroclor 1232           | μg/L | 0.09                         | ND (0.12)  | ND (0.12)                | ND (0.12)  | ND (0.12)  | ND (0.12)  | ND (0.12)  | ND (0.13)  |
| Aroclor 1242           | μg/L | 0.09                         | ND (0.11)  | ND (0.11)                | ND (0.11)  | ND (0.11)  | ND (0.11)  | ND (0.11)  | ND (0.11)  |
| Aroclor 1248           | μg/L | 0.09                         | ND (0.061) | <b>0.75</b> <sup>e</sup> | ND (0.061) | ND (0.061) | ND (0.061) | ND (0.061) | ND (0.063) |
| Aroclor 1254           | μg/L |                              | ND (0.20)  | 1.1                      | ND (0.20)  | ND (0.20)  | ND (0.20)  | 0.28       | ND (0.21)  |
| Aroclor 1260           | μg/L |                              | ND (0.073) | 1.2                      | ND (0.073) | ND (0.073) | ND (0.073) | ND (0.073) | ND (0.076) |
| TOTAL PCBs             | μg/L | 0.09                         | ND         | 3.05                     | ND         | ND         | ND         | 0.28       | ND         |

Notes:

Legend: Hit Exceed

<sup>1</sup>DEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1,

Ambient Water Quality Standards and Guidance Values, reissued June 1998.

\*State standard is 5  $\mu$ g/L for each xylene isomer.

<sup>a</sup>Associated CCV outside of control limits low.

<sup>b</sup>Associated CCV outside of control limits high, sample was ND.

°This compound in BS is outside in house QC limits bias high.

<sup>d</sup>Associated CCV outside of control limits high, sample was ND. This compound in BS is outside in house QC limits bias high.

<sup>e</sup>More than 40 % RPD for detected concentrations between the two GC columns.

 $\mu$ g/L micrograms per liter, equivalent to parts per billion (ppb)

ND Not Detected

--- No promulgated State Standard

J Indicates an estimated value

Plumley Engineering, P.C.

|                             | State                 |          |          |          |          |          |          |          |          |          | Mor      | nitoring V  | Well Loca | ation    |          |          |          |          |          |          |          |          |          |
|-----------------------------|-----------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Compound                    | Standard <sup>1</sup> | MW       | V-1S     |          |          | MW       | /-1D     |          |          |          |          | <b>MW-2</b> |           |          | M        | V-3      | M        | W-4      |          |          | MW-5     |          |          |
|                             | (µg/L)                | 03/12/08 | 09/23/15 | 03/12/08 | 01/05/09 | 09/23/15 | 12/16/16 | 10/05/17 | 12/05/18 | 03/12/08 | 09/23/15 | 12/16/16    | 10/05/17  | 12/05/18 | 03/12/08 | 09/23/15 | 03/12/08 | 09/23/15 | 03/12/08 | 09/23/15 | 12/16/16 | 10/05/17 | 12/05/18 |
| Acetone                     | 50                    | NS       | NS       |          | 20       | 13,200   |          |          |          | NS       |          | 7           |           |          |          |          |          |          |          |          |          |          |          |
| 1,1,2-Trichloroethane       | 1                     | NS       | NS       |          |          |          |          |          |          | NS       |          |             |           |          |          |          |          |          |          |          |          |          |          |
| 1,1-Dichloroethane          | 5                     | NS       | NS       |          | 2        |          | 2        | 2.9      | 2.3      | NS       |          | 3           |           | 0.73 J   |          |          |          |          |          |          |          |          |          |
| 1,2,3-Trimethylbenzene      | 5                     | NS       | NS       |          | 2        |          |          |          | NA       | NS       |          |             |           | NA       |          |          |          |          |          |          |          |          | NA       |
| 1,2,4-Trichlorobenzene      | 5                     | NS       | NS       |          |          |          |          |          |          | NS       |          | 1           |           |          |          |          |          |          |          |          |          |          |          |
| 1,2,4-Trimethylbenzene      | 5                     | NS       | NS       |          | 6.0      |          |          |          |          | NS       |          |             |           |          |          |          |          |          |          |          |          |          |          |
| 1,2-Dibromo-3-Chloropropane | 0.04                  | NS       | NS       |          |          |          |          |          |          | NS       |          |             |           |          |          |          |          |          |          |          |          |          |          |
| 1,2-Dichlorobenzene         | 3                     | NS       | NS       |          | 2.0      |          | 0.5      | 0.55 J   | 0.59 J   | NS       |          | 1.5         | 3.2       | 3.1      |          |          |          |          |          |          |          |          |          |
| 1,2-Dichloroethene (Total)  | 5                     | NS       | NS       |          | 2.0      |          | 1.6      |          | 1.5      | NS       |          | 1.4         | 2         | 1        |          |          |          |          |          |          |          |          |          |
| 1,2-Dichloropropane         | 1                     | NS       | NS       |          |          |          |          |          |          | NS       |          |             |           |          |          |          |          |          |          |          |          |          |          |
| 1,3,5-Trimethylbenzene      | 5                     | NS       | NS       |          | 2.0      |          |          |          |          | NS       |          |             |           |          |          |          |          |          |          |          |          |          |          |
| 1,3-Dichlorobenzene         | 3                     | NS       | NS       |          |          |          |          |          |          | NS       |          | 2.8         | 3.1       | 2.5      |          |          |          |          |          |          |          |          |          |
| 1,4-Dichlorobenzene         | 3                     | NS       | NS       |          |          |          |          |          |          | NS       |          | 5.9         | 6.6       | 5.9      |          |          |          |          |          |          |          |          |          |
| 2-Butanone (MEK)            | 50                    | NS       | NS       | 52,000   | 7,800    | 10,100   |          |          |          | NS       |          |             |           |          |          |          |          |          |          |          |          |          |          |
| Benzene                     | 1                     | NS       | NS       |          | 2.0      |          | 0.5      | 0.83     | 0.52     | NS       | 0.8      | 0.9         | 3         | 1.4      |          |          |          |          |          |          |          |          |          |
| Bromodichloromethane        | 50                    | NS       | NS       | NA       | NA       | NA       | NA       | NA       |          | NS       | NA       | NA          | NA        |          | NA       | 0.82 J   |
| Carbon Disulfide            | 60                    | NS       | NS       |          |          |          | 0.4      |          |          | NS       |          |             | 0.50 J    |          |          |          |          |          |          |          |          |          |          |
| Chlorobenzene               | 5                     | NS       | NS       |          | 2.0      |          | 0.5      | 0.49 J   | 0.57 J   | NS       | 1.9      | 1.2         | 5.5       | 0.97 J   |          |          |          |          |          |          |          |          |          |
| Chloroethane                | 5                     | NS       | NS       |          |          |          | 0.7      |          |          | NS       |          | 1.3         | 2.1       | 0.89 J   |          |          |          |          |          |          |          |          |          |
| Chloroform                  | 7                     | NS       | NS       |          |          |          |          |          |          | NS       |          |             |           |          |          |          |          |          |          |          | 3.2      | 15.4     | 17.4     |
| Ethylbenzene                | 5                     | NS       | NS       |          | 3.0      |          |          |          |          | NS       |          | 0.2         | 0.27 J    |          |          |          |          |          |          |          |          |          |          |
| Isopropylbenzene            | 5                     | NS       | NS       |          | 1.0      |          |          |          |          | NS       |          |             | 0.60 J    |          |          |          |          |          |          |          |          |          |          |
| m/p-Xylenes                 | 5                     | NS       | NS       |          | 5.0      |          |          |          |          | NS       |          |             |           |          |          |          |          |          |          |          |          |          |          |
| Methyl tert-butyl ether     | 10                    | NS       | NS       |          | 0.5      |          | 0.4      | 0.55 J   |          | NS       |          |             |           |          |          |          |          |          |          |          |          |          |          |
| Methylene Chloride          | 5                     | NS       | NS       |          |          |          |          |          |          | NS       |          |             |           |          |          |          |          |          |          |          |          |          |          |
| n-Butylbenzene              | 5                     | NS       | NS       |          |          |          |          |          |          | NS       |          | 0.9         |           |          |          |          |          |          |          |          |          |          |          |
| n-propylbenzene             | 5                     | NS       | NS       |          | 2.0      |          |          |          |          | NS       |          | 0.2         |           |          |          |          |          |          |          |          |          |          |          |
| o-Xylene                    | 5                     | NS       | NS       |          |          |          |          |          |          | NS       |          |             |           |          |          |          |          |          |          |          |          |          |          |
| p-Isopropyltoluene          | 5                     | NS       | NS       |          |          |          |          |          |          | NS       |          |             |           |          |          |          |          |          |          |          |          |          |          |
| sec-Butylbenzene            | 5                     | NS       | NS       |          | -        |          |          |          |          | NS       |          |             |           |          |          |          |          |          |          |          |          |          |          |
| tert-Butylbenzene           | 5                     | NS       | NS       |          |          |          |          |          |          | NS       |          |             |           |          |          |          |          |          |          |          |          |          |          |
| Toluene                     | 5                     | NS       | NS       |          | 0.9      |          |          |          |          | NS       |          | 0.3         | 0.30 J    |          |          |          |          |          |          |          |          |          |          |
| Tetrachloroethene           | 5                     | NS       | NS       |          |          |          |          |          |          | NS       | 1.8      |             |           |          |          |          |          |          |          |          |          |          |          |
| Trichloroethene             | 5                     | NS       | NS       |          |          |          |          |          |          | NS       | 2.5      | 5.0         | 1.5       | 1.2      |          |          |          |          |          |          |          |          |          |
| Vinyl Chloride              | 2                     | NS       | NS       |          | 23.0     | 2.3      | 28.5     | 13.4     | 24       | NS       |          | 0.9         |           |          |          |          |          |          |          |          |          |          |          |
| Total VOCs                  |                       | NS       | NS       | 52,000   | 7,875    | 23,302   | 36       | 17       | 28       | 0        | 7        | 33          | 27        | 15       | 0        | 0        | 0        | 0        | 0        | 0        | 3        | 15       | 18       |

### TABLE 3 - SUMMARY OF HISTORICAL GROUNDWATER ANALYTICAL RESULTS - VOCs [DETECTIONS ONLY] (µg/L)

Plumley Engineering, P.C.

Project No. 2015127

# TABLE 3 - SUMMARY OF HISTORICAL GROUNDWATER ANALYTICAL RESULTS - VOCs [DETECTIONS ONLY

|                             | State                 |          |          |          |          |          |          |             |          |          | Monitor  | ing Well | Location |          |          |          |          |          |          |          |          |          |
|-----------------------------|-----------------------|----------|----------|----------|----------|----------|----------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Compound                    | Standard <sup>1</sup> |          |          | MW-6     |          |          | MV       | <i>N</i> -7 | MV       | W-8      |          |          | MW-9     |          |          |          |          | MW-10    |          |          | MV       | V-11     |
|                             | (µg/L)                | 01/05/09 | 09/23/15 | 12/16/16 | 10/05/17 | 12/05/18 | 01/05/09 | 09/23/15    | 01/05/09 | 09/23/15 | 01/05/09 | 09/23/15 | 12/16/16 | 10/05/17 | 12/05/18 | 01/05/09 | 09/23/15 | 12/16/16 | 10/05/17 | 12/05/18 | 06/29/09 | 09/23/15 |
| Acetone                     | 50                    |          |          | 22       |          |          | NS       |             |          |          |          |          |          |          |          |          |          | 8        |          |          |          |          |
| 1,1,2-Trichloroethane       | 1                     |          |          |          |          |          |          |             |          |          |          |          |          |          |          |          |          | 2        |          |          |          |          |
| 1,1-Dichloroethane          | 5                     | 2        | 1        | 1        | 1.4      | 0.61 J   | NS       |             |          |          |          |          |          |          |          | 4        |          | 0.4      | 0.64 J   |          | 2        |          |
| 1,2,3-Trimethylbenzene      | 5                     |          |          |          |          | NA       | NS       |             |          |          | 2        |          |          |          | NA       | 22       |          |          |          | NA       |          |          |
| 1,2,4-Trichlorobenzene      | 5                     |          |          |          |          |          | NS       |             |          |          |          |          |          |          |          | 1        |          | 1        |          |          |          |          |
| 1,2,4-Trimethylbenzene      | 5                     |          |          |          |          |          | NS       |             |          |          |          |          |          | 3.1      |          | 100.0    |          | 4.3      | 3.1      |          | 2.0      |          |
| 1,2-Dibromo-3-Chloropropane | 0.04                  |          |          |          |          |          | NS       |             |          |          |          |          |          |          |          | 2.0      |          |          |          |          |          |          |
| 1,2-Dichlorobenzene         | 3                     | 9.0      | 4.8      | 3.7      | 7.1      | 4.5      | NS       | 1.8         | 2.0      |          | 5.0      | 6.7      | 1.9      | 3.3      | 1        | 18.0     | 10.7     | 6.3      | 11.4     | 2.6      | 3.0      | 2.8      |
| 1,2-Dichloroethene (Total)  | 5                     | 1.0      | 1.1      | 0.5      |          |          | NS       |             |          |          |          |          |          |          |          |          |          | 1.2      | 0.77     | 0.93 J   | 4.0      |          |
| 1,2-Dichloropropane         | 1                     |          |          |          |          |          | NS       |             |          |          | 1.0      |          |          |          |          |          |          |          |          |          |          |          |
| 1,3,5-Trimethylbenzene      | 5                     |          |          |          |          |          | NS       |             |          |          |          |          | 0.4      | 1.0 J    |          | 25.0     |          | 0.7      | 0.50 J   |          |          |          |
| 1,3-Dichlorobenzene         | 3                     | 5.0      | 2.7      | 1.6      | 3.2      | 2.4      | NS       |             |          |          | 2.0      | 1.9      | 0.9      | 0.99 J   | 0.62 J   |          |          | 0.5      | 0.68 J   |          |          |          |
| 1,4-Dichlorobenzene         | 3                     | 4.0      | 2.7      | 1.8      | 3.8      | 2.7      | NS       | 1.2         |          |          | 4.0      | 4.4      | 2.2      | 2.3      | 1.6      | 3.0      | 2.9      | 1.7      | 3.5      | 1.1      |          |          |
| 2-Butanone (MEK)            | 50                    |          |          |          |          |          | NS       |             |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Benzene                     | 1                     | 3.0      | 2.1      | 1.8      | 3        | 1.7      | NS       |             |          |          | 4.0      | 2.2      | 0.4      | 1.2      | 0.66     | 41.0     | 25.6     | 3.1      | 24.2     | 2.3      | 0.6      |          |
| Bromodichloromethane        | 50                    | NA       | NA       | NA       | NA       |          | NS       | NA          | NA       | NA       | NA       | NA       | NA       | NA       |          | NA       | NA       | NA       | NA       |          | NA       | NA       |
| Carbon Disulfide            | 60                    |          |          |          |          |          | NS       |             |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Chlorobenzene               | 5                     | 48.0     | 21.0     | 16.4     | 33.6     | 23.9     | NS       |             |          |          | 30.0     | 29.1     | 7.8      | 14.1     | 5.8      | 3.0      | 2.0      | 0.5      | 2.2      |          | 4.0      | 3.1      |
| Chloroethane                | 5                     |          |          |          |          |          | NS       |             |          |          |          |          |          |          |          | 12.0     | 4.1      |          | 2.3      |          |          |          |
| Chloroform                  | 7                     |          |          |          |          |          | NS       |             | 0.8      |          | 2.0      |          |          |          |          |          |          |          |          |          |          |          |
| Ethylbenzene                | 5                     |          |          |          |          |          | NS       |             |          |          |          |          |          | 1.8      |          | 51.0     |          | 0.4      | 0.65 J   |          |          |          |
| Isopropylbenzene            | 5                     | 5.0      |          | 0.3      | 0.27 J   |          | NS       |             | 3.0      |          | 9.0      | 11.1     | 1.9      | 6.6      | 0.72 J   | 23.0     | 9.7      | 6.1      | 12.6     | 2.3      |          |          |
| m/p-Xylenes                 | 5                     |          |          |          |          |          | NS       |             |          |          |          |          |          |          |          | 83.0     | 2.0      | 1.8      |          |          | 1.0      |          |
| Methyl tert-butyl ether     | 10                    |          |          |          |          |          | NS       |             |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Methylene Chloride          | 5                     |          |          |          |          |          | NS       |             |          |          | 5.0      |          |          |          |          |          |          |          |          |          |          |          |
| n-Butylbenzene              | 5                     | 1.0      |          |          |          |          | NS       |             | 2.0      |          | 5.0      |          | 0.4      | 3.3      |          | 5.0      |          | 2.4      | 2        | 0.63 J   |          |          |
| n-propylbenzene             | 5                     | 4.0      |          |          |          |          | NS       |             | 2.0      |          | 12.0     | 11.7     | 1.2      | 7.1      |          | 26.0     | 10.3     | 9.0      | 12.2     | 1.9 J    |          |          |
| o-Xylene                    | 5                     |          |          |          |          |          | NS       |             |          |          | 1.0      |          |          | 0.52 J   |          | 11.0     | 1.2      | 0.3      | 1.3      |          | 0.9      |          |
| p-Isopropyltoluene          | 5                     |          |          |          |          |          | NS       |             |          |          |          |          |          | 0.26     |          | 4.0      |          |          |          |          |          |          |
| sec-Butylbenzene            | 5                     | 2.0      |          |          | 0.39 J   |          | NS       |             | 3.0      |          | 4.0      |          | 1.1      | 3.3      |          | 5.0      |          | 2.5      | 3.3      | 1.3 J    |          |          |
| tert-Butylbenzene           | 5                     | 1.0      |          |          | 0.45 J   |          | NS       |             |          |          |          |          | 0.4      | 0.81 J   |          | 1.0      |          | 0.7      | 0.90 J   |          |          |          |
| Toluene                     | 5                     |          |          |          |          |          | NS       |             |          |          | 3.0      | 2.2      | 0.4      | 1        | 0.66 J   | 16.0     | 2.1      | 0.7      | 2.6      |          |          |          |
| Tetrachloroethene           | 5                     |          |          | 0.2      |          |          | NS       |             |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Trichloroethene             | 5                     |          |          | 0.3      |          |          | NS       | 1.1         |          |          |          |          |          |          |          | 2.0      |          | 1.6      | 0.50 J   |          |          | 1.4      |
| Vinyl Chloride              | 2                     | 5.0      | 2.2      | 0.8      | 0.62 J   |          | NS       |             |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Total VOCs                  |                       | 90       | 38       | 50       | 52       | 36       | NS       | 4           | 13       | 0        | 89       | 69       | 19       | 47       | 11       | 458      | 71       | 54       | 81       | 13       | 18       | 7        |

Plumley Engineering, P.C.

| <b>Y</b> ] | (µg/L) |
|------------|--------|
|------------|--------|

Project No. 2015127

#### **Monitoring Well Location** State **MW-12** Compound Standard<sup>1</sup> **RW-1 RW-2** RW-3 **RW-4** Notes: 07/14/09 $(\mu g/L)$ 12/05/18 09/23/15 09/23/15 12/16/16 10/05/17 09/23/15 09/23/15 09/23/15 7.0 50 Acetone --------------------------1,1,2-Trichloroethane 1 --------------------------5 VOCs 1,1-Dichloroethane 2.3 ------------------------1,2,3-Trimethylbenzene 5 PCBs ---NA ----------------------1,2,4-Trichlorobenzene 5 NA ----------------------------1,2,4-Trimethylbenzene 5 NS ---------------------------1,2-Dibromo-3-Chloropropane 0.04 μg/L ----------------------------1,2-Dichlorobenzene 3 6.0 6.4 4.8 3.3 3.4 3.4 4.6 5.6 5.6 ---1,2-Dichloroethene (Total) 5 -------------------------------1,2-Dichloropropane 1 ---------------------------1,3,5-Trimethylbenzene 5 ----------------------------1,3-Dichlorobenzene 3 0.3 3.7 ---------------------1,4-Dichlorobenzene 3 1.3 1.7 1.2 1.8 7.1 3.2 1.8 2.0 ---2-Butanone (MEK) 50 ------------------------------1.0 0.5 0.20 J 0.46 J 3.7 2.5 1.3 Benzene 1 ---1.1 Bromodichloromethane 50 NA NA NA NA NA NA NA NA ---Carbon Disulfide 60 -----------------------------Chlorobenzene 5 9.1 4.3 1.8 1.8 1.1 ---10.1 12.1 11.2 5 2.5 Chloroethane 2.0 ----------------------Chloroform 7 ------------------------------5 Ethylbenzene ----------------------------Isopropylbenzene 5 1.0 ---1.8 ---3.9 -----------m/p-Xylenes 5 ---------------------------Methyl tert-butyl ether 10 ---------------------------Methylene Chloride 5 --------------------------n-Butylbenzene 5 --------------------------n-propylbenzene 5 1.3 J 0.4 --------------------o-Xylene 5 ----------------------------p-Isopropyltoluene 5 --------------------------sec-Butylbenzene 5 ---0.51 J 1.4 J -----------------tert-Butylbenzene 5 0.88 J 0.96 J 0.9 ------------------Toluene 5 -----------------------------5 Tetrachloroethene ----------------------------Trichloroethene 5 1.7 1.7 ----------------------Vinyl Chloride 2 ---------------------------Total VOCs 17 17 21 17 24 26 15 12 ---10

#### TABLE 3 - SUMMARY OF HISTORICAL GROUNDWATER ANALYTICAL RESULTS - VOCs [DETECTIONS ONLY] (µg/L)

Volatile Organic Compounds Polychlorinated Biphenyls Not Analyzed

Not Sampled

micrograms per liter, equivalent to parts per billion (ppb) Indicates the specified compound was not detected at a concentration exceeding the method detection limit.

Plumley Engineering, P.C.

<sup>1</sup>DEC Division of Water's Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values, reissued June 1998.

#### TABLE 4 - SUMMARY OF HISTORICAL GROUNDWATER ANALYTICAL RESULTS - TOTAL PCBs (µg/L)

| Commoniad  | State Standard <sup>1</sup> | Sample     |       |       |             |             |      |             |             | Monitor     | ring Well l | Location |              |              |              |             |             |             |      |
|------------|-----------------------------|------------|-------|-------|-------------|-------------|------|-------------|-------------|-------------|-------------|----------|--------------|--------------|--------------|-------------|-------------|-------------|------|
| Compound   | (µg/L)                      | Date       | MW-1D | MW-1S | <b>MW-2</b> | <b>MW-3</b> | MW-4 | <b>MW-5</b> | <b>MW-6</b> | <b>MW-7</b> | <b>MW-8</b> | MW-9     | <b>MW-10</b> | <b>MW-11</b> | <b>MW-12</b> | <b>RW-1</b> | <b>RW-2</b> | <b>RW-3</b> | RW-4 |
| Total PCBs | 0.09                        | 03/12/2008 |       | FP    | FP          |             |      |             | NS          | NI          | NI          | NI       | NI           | NI           | NI           | NI          | NI          | NI          | NI   |
| Total PCBs | 0.09                        | 2009*      |       | FP    | FP          | NS          | NS   | NS          |             | FP          | 0.13        | 0.93     |              |              |              | NI          | NI          | NI          | NI   |
|            |                             | 12/08/2011 |       |       |             |             |      |             | R           | emedial E   | Excavation  | Complete | ed           |              |              |             |             |             |      |
| Total PCBs | 0.09                        | 09/23/2015 | 0.32  | FP    | 2.5         |             |      |             |             | 11.3        |             |          | 0.29         |              |              | 5.5         | 3.3         | 0.23        |      |
| Total PCBs | 0.09                        | 12/16/2016 |       | FP    | 12          | NS          | NS   |             |             | FP          | NS          |          | 2.9          | NS           |              | NS          | NS          | NS          | NS   |
| Total PCBs | 0.09                        | 10/05/2017 |       | FP    | 4.3         | NS          | NS   |             |             | FP          | NS          |          |              | NS           |              | NS          | NS          | NS          | NS   |
| Total PCBs | 0.09                        | 12/05/2018 |       | NS    | 3.05        | NS          | NS   |             |             | NS          | NS          |          | 0.28         | NS           |              | NS          | NS          | NS          | NS   |
|            |                             |            |       |       |             |             |      |             |             |             |             |          |              |              |              | T           | T*4         |             |      |
| Notes:     |                             |            |       |       |             |             |      |             |             |             |             |          |              |              | Legend:      | H           | lit         | Exc         | ee:  |

<sup>1</sup>DEC Division of Water's Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values, reissued June 1998. State standard for PCBs is 0.09  $\mu$ g/L for each Aroclor.

- PCBs Polychlorinated Bipenyls
- μg/L Micrograms per liter
- NI Not Installed
- NS Not Sampled
- Free Product Present Not Sampled FP

Indicates the specified compound was not detected at a concentration exceeding the method detection limit. ---

\*2009 samples collected on 1/5/2009, 6/29/2009 and 7/14/2009

Refer to laboratory reports for additional information.

#### TABLE 5 - PFAS AND 1,4-DIOXANE IN GROUNDWATER

Date Sampled: December 5, 2018

| Client Sample ID:             | Unit   | State                 | <b>MW-9</b> | EQUIPMENT<br>BLANK | MW-12     | MW-10                |
|-------------------------------|--------|-----------------------|-------------|--------------------|-----------|----------------------|
| Lab Sample ID:                | - •    | Standard <sup>1</sup> | JC79316-1   | JC79316-2          | JC79316-7 | JC79316-8            |
| I                             | MS Sei | mi-volatiles          | (EPA 537M   | BY ID)             |           |                      |
| Perfluorobutanoic acid        | ng/L   | -                     | 10.5 J      | ND (1.9)           | 4.87 J    | ND (38)              |
| Perfluoropentanoic acid       | ng/L   | -                     | ND (2.9)    | ND (1.4)           | ND (1.5)  | ND (29)              |
| Perfluorohexanoic acid        | ng/L   | -                     | 7.03 J      | ND (0.96)          | 1.31 J    | ND (19)              |
| Perfluoroheptanoic acid       | ng/L   | -                     | 2.09 J      | ND (0.96)          | ND (1.0)  | ND (19)              |
| Perfluorooctanoic acid        | ng/L   | -                     | 23.6ª       | ND (0.96)          | 3.41      | ND (19) <sup>b</sup> |
| Perfluorononanoic acid        | ng/L   | 70                    | ND (1.9)    | ND (0.96)          | ND (1.0)  | ND (19)              |
| Perfluorodecanoic acid        | ng/L   | -                     | ND (1.9)    | ND (0.96)          | ND (1.0)  | ND (19)              |
| Perfluoroundecanoic acid      | ng/L   | -                     | ND (1.9)    | ND (0.96)          | ND (1.0)  | ND (19)              |
| Perfluorododecanoic acid      | ng/L   | -                     | ND (2.9)    | ND (1.4)           | ND (1.5)  | ND (29)              |
| Perfluorotridecanoic acid     | ng/L   | -                     | ND (1.9)    | ND (0.96)          | ND (1.0)  | ND (19)              |
| Perfluorotetradecanoic acid   | ng/L   | -                     | ND (1.9)    | ND (0.96)          | ND (1.0)  | ND (19)              |
| Perfluorobutanesulfonic acid  | ng/L   | -                     | 1.93 J      | ND (0.96)          | ND (1.0)  | ND (19)              |
| Perfluorohexanesulfonic acid  | ng/L   | -                     | 2.87 J      | ND (0.96)          | ND (1.0)  | ND (19)              |
| Perfluoroheptanesulfonic acid | ng/L   | -                     | ND (1.9)    | ND (0.96)          | ND (1.0)  | ND (19)              |
| Perfluorooctanesulfonic acid  | ng/L   | -                     | 3.40 J      | ND (1.4)           | 6.12      | ND (29)              |
| Perfluorodecanesulfonic acid  | ng/L   | -                     | ND (1.9)    | ND (0.96)          | ND (1.0)  | ND (19)              |
| PFOSA                         | ng/L   | -                     | ND (1.9)    | ND (0.96)          | ND (1.0)  | ND (19)              |
| MeFOSAA                       | ng/L   | -                     | ND (7.7)    | ND (3.8)           | ND (4.0)  | ND (77)              |
| EtFOSAA                       | ng/L   | -                     | ND (7.7)    | ND (3.8)           | ND (4.0)  | ND (77)              |
| 6:2 Fluorotelomer sulfonate   | ng/L   | -                     | ND (3.8)    | ND (1.9)           | ND (2.0)  | ND (38)              |
| 8:2 Fluorotelomer sulfonate   | ng/L   | -                     | ND (3.8)    | ND (1.9)           | ND (2.0)  | ND (38)              |
| MS                            | 5 Semi | -volatiles (S         | W846 8270D  | BY SIM)            |           |                      |
| 1,4-Dioxane                   | μg/L   | -                     | 2.34        | -                  | 0.239     | 0.225                |

Notes:

Legend: Hit Exceed

<sup>1</sup>DEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1, *Ambient Water Quality Standards and Guidance Values*, reissued June 1998.

<sup>a</sup>Associated CCV outside of control limits high.

<sup>b</sup>Associated CCV outside of control limits high, sample was ND.

PFAS Per- and Poly-Fluorinated Alkyl Substances

- ng/L nanograms per liter, equivalent to parts per trillion (ppt)
- $\mu$ g/L micrograms per liter, equivalent to parts per billion (ppb)

ND Not Detected

J Indicates an estimated value

#### 2802-2810 LODI STREET

# DEC Site No. 7-34-013

City of Syracuse, Onondaga County, New York

Inspector:

Company:

un

| Recovery<br>Well | Well Head<br>Conditions:<br>OK / Not OK | Depth to<br>Water<br>(feet) | Free Product:<br>Present (Yes)<br>Absent (No) | Free Product<br>Thickness<br>(inches) | Free Product<br>Volume Removed<br>(gallons) | Comments |
|------------------|-----------------------------------------|-----------------------------|-----------------------------------------------|---------------------------------------|---------------------------------------------|----------|
| MW-1S            | OK                                      | 2.680                       | Y                                             | 1.75                                  | 2 Full                                      | Replan   |
| MW-2             | ( -                                     | 30.41                       | ~                                             |                                       |                                             |          |
| MW-7             |                                         | 23.95                       | Y                                             | 0.3                                   | 1/2                                         | Roolun   |
| MW-10            |                                         | 26.90                       | $\sim$                                        |                                       |                                             |          |
| RW-1             |                                         | 28.06                       | N                                             |                                       |                                             |          |
| RW-2             |                                         | 26.61                       | N                                             |                                       | 0                                           |          |
| RW-3             |                                         | 27,98                       | YN                                            | -                                     | 1/4                                         |          |
| RW-4             | V                                       | 27.15                       | N                                             |                                       |                                             |          |

| Monitoring<br>Well | Well Head<br>Conditions:<br>OK / Not OK | Depth to<br>Water<br>(feet) | Free Product:<br>Present (Yes)<br>Absent (No) | Comments |
|--------------------|-----------------------------------------|-----------------------------|-----------------------------------------------|----------|
| MW-1D              |                                         |                             | 11000110 (110)                                |          |
| MW-3               |                                         |                             |                                               |          |
| MW-4               |                                         |                             |                                               |          |
| MW-5               |                                         |                             |                                               |          |
| MW-6               |                                         |                             |                                               |          |
| MW-8               |                                         |                             |                                               |          |
| MW-9               |                                         |                             |                                               |          |
| MW-11              |                                         |                             |                                               |          |
| MW-12              |                                         |                             |                                               |          |

Plumley Engineering, P.C.

2/28/18

Date:

#### 2802-2810 LODI STREET

**DEC Site No. 7-34-013** 

City of Syracuse, Onondaga County, New York

| Inspector: | MTM |      |
|------------|-----|------|
| Company:   | glu | in h |

5/30/18 Date:

|                                                                                                 |                                         | <u>,,,,,</u>                          |                                               |                                       |                                             |               |  |  |
|-------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------------|---------------------------------------|---------------------------------------------|---------------|--|--|
| Recovery<br>Well                                                                                | Well Head<br>Conditions:<br>OK / Not OK | Depth to<br>Water<br>(feet)           | Free Product:<br>Present (Yes)<br>Absent (No) | Free Product<br>Thickness<br>(inches) | Free Product<br>Volume Removed<br>(gallons) | Comments      |  |  |
| MW-1S                                                                                           | on                                      | 29.11                                 | Ý                                             | 0.8'fr                                | ٢ '/4                                       | Replace Sochs |  |  |
| MW-2                                                                                            |                                         | 21.55                                 | N                                             |                                       |                                             | V J           |  |  |
| MW-7                                                                                            |                                         | 25.62                                 | Y                                             | 6.1                                   | f.Im                                        |               |  |  |
| MW-10                                                                                           |                                         | 27.99                                 | 4                                             | 6.1                                   | f.Ir                                        | ×             |  |  |
| RW-1                                                                                            |                                         | 26.89                                 | N                                             |                                       |                                             | Nort          |  |  |
| RW-2                                                                                            |                                         | 27.33                                 | 1                                             |                                       |                                             |               |  |  |
| RW-3                                                                                            |                                         | 26.72                                 |                                               |                                       |                                             |               |  |  |
| RW-4                                                                                            | 17                                      | 25.87                                 | P<br>P                                        |                                       |                                             | U             |  |  |
|                                                                                                 |                                         |                                       |                                               |                                       |                                             |               |  |  |
|                                                                                                 |                                         |                                       |                                               | тт                                    |                                             |               |  |  |
| Monitoring<br>Well                                                                              | Well Head<br>Conditions:<br>OK / Not OK | Depth to<br>Water<br>(feet)           | Free Product:<br>Present (Yes)<br>Absent (No) |                                       | Comm                                        | ents          |  |  |
| -                                                                                               | Well Head<br>Conditions:                | Water<br>(feet)                       | Present (Yes)                                 |                                       | Comm                                        | ents          |  |  |
| Well                                                                                            | Well Head<br>Conditions:                | Water<br>(feet)<br>31,95              | Present (Yes)<br>Absent (No)                  |                                       | Comm                                        | ents          |  |  |
| Well MW-1D                                                                                      | Well Head<br>Conditions:<br>OK / Not OK | Water<br>(feet)                       | Present (Yes)<br>Absent (No)                  |                                       | Comm                                        | ents          |  |  |
| Well<br>MW-1D<br>MW-3                                                                           | Well Head<br>Conditions:<br>OK / Not OK | Water<br>(feet)<br>31,95              | Present (Yes)<br>Absent (No)                  |                                       | Comm                                        | ents          |  |  |
| Well MW-1D MW-3 MW-4                                                                            | Well Head<br>Conditions:<br>OK / Not OK | Water<br>(feet)<br>31,95<br>25.91<br> | Present (Yes)<br>Absent (No)                  |                                       | Comm                                        | ents          |  |  |
| Well<br>MW-1D<br>MW-3<br>MW-4<br>MW-5                                                           | Well Head<br>Conditions:<br>OK / Not OK | Water<br>(feet)<br>31,95<br>25,91<br> | Present (Yes)<br>Absent (No)                  |                                       | Comm                                        | ents          |  |  |
| Well<br>MW-1D<br>MW-3<br>MW-4<br>MW-5<br>MW-6                                                   | Well Head<br>Conditions:<br>OK / Not OK | Water<br>(feet)<br>31,95<br>25.91<br> | Present (Yes)<br>Absent (No)                  |                                       | Comm                                        | ents          |  |  |
| Well           MW-1D           MW-3           MW-4           MW-5           MW-6           MW-8 | Well Head<br>Conditions:<br>OK / Not OK | Water<br>(feet)<br>31,95<br>25.91<br> | Present (Yes)<br>Absent (No)                  |                                       | Comm                                        | ents          |  |  |

Plumley Engineering, P.C.

Project No. 2010131

#### 2802-2810 LODI STREET

**DEC Site No. 7-34-013** 

City of Syracuse, Onondaga County, New York

| Inspector: |
|------------|
|------------|

Company:

TN

Plumber

| Recovery<br>Well | Well Head<br>Conditions:<br>OK / Not OK | Depth to<br>Water<br>(feet) | Free Product:<br>Present (Yes)<br>Absent (No) | Free Product<br>Thickness<br>(inches) | Free Product<br>Volume Removed<br>(gallons) | Comments    |
|------------------|-----------------------------------------|-----------------------------|-----------------------------------------------|---------------------------------------|---------------------------------------------|-------------|
| MW-1S            |                                         | 28.69                       | Y                                             | 0.3'54                                | < 1/4                                       | Repare Such |
| MW-2             |                                         | 26.89                       | N                                             | N                                     |                                             | 0           |
| MW-7             |                                         | 24.97                       |                                               |                                       |                                             |             |
| MW-10            |                                         | 27.19                       |                                               |                                       |                                             |             |
| RW-1             |                                         | 26.08                       |                                               |                                       |                                             |             |
| RW-2             |                                         | 26.07                       |                                               |                                       |                                             |             |
| RW-3             |                                         | 26.01                       |                                               |                                       |                                             |             |
| RW-4             |                                         | 25.17                       | 1                                             | P                                     |                                             |             |

| Monitoring | Well Head          | Depth to | Free Product:                         |          |
|------------|--------------------|----------|---------------------------------------|----------|
| Well       | <b>Conditions:</b> | Water    | Present (Yes)                         | Comments |
| wen        | OK / Not OK        | (feet)   | Absent (No)                           |          |
| MW-1D      |                    |          |                                       |          |
| MW-3       |                    |          |                                       |          |
| MW-4       |                    |          |                                       |          |
| MW-5       |                    |          |                                       |          |
| MW-6       |                    |          |                                       |          |
| MW-8       |                    |          |                                       |          |
| MW-9       |                    |          |                                       |          |
| MW-11      |                    |          | · · · · · · · · · · · · · · · · · · · |          |
| MW-12      |                    |          |                                       |          |

Plumley Engineering, P.C.

9/28/18

Date:

#### 2802-2810 LODI STREET

**DEC Site No. 7-34-013** 

City of Syracuse, Onondaga County, New York

| Inspector: | NTM    |  |
|------------|--------|--|
| Company:   | Plumby |  |

| Recovery<br>Well | Well Head<br>Conditions:<br>OK / Not OK | Depth to<br>Water<br>(feet) | Free Product:<br>Present (Yes)<br>Absent (No) | Free Product<br>Thickness<br>(inches) | Free Product<br>Volume Removed<br>(gallons) | Comments   |
|------------------|-----------------------------------------|-----------------------------|-----------------------------------------------|---------------------------------------|---------------------------------------------|------------|
| MW-1S            | OK                                      | 29.75                       | Ý                                             | 4.158                                 | 21/2 Cullu                                  | Replaced / |
| MW-2             | 1                                       | 27.72                       |                                               |                                       |                                             | Lemsrod    |
| MW-7             |                                         | 23.86                       | Ý                                             | 0.1                                   | 1 sock                                      | Replach    |
| MW-10            |                                         | 24,09                       | Y                                             | 6.10                                  |                                             | Remarch    |
| RW-1             |                                         | 27.32                       | ·                                             |                                       |                                             |            |
| RW-2             |                                         | 26.95                       |                                               |                                       |                                             |            |
| RW-3             |                                         | 26.40                       | Ý                                             | <.40                                  |                                             | Remarch    |
| RW-4             | $\checkmark$                            | 25.41                       |                                               |                                       |                                             |            |

| Monitoring<br>Well | Well Head<br>Conditions:<br>OK / Not OK | Depth to<br>Water<br>(feet) | Free Product:<br>Present (Yes)<br>Absent (No) | Comments |
|--------------------|-----------------------------------------|-----------------------------|-----------------------------------------------|----------|
| MW-1D              | OK                                      | 30.55                       | N                                             |          |
| MW-3               | (                                       | 25.40                       | 1                                             |          |
| MW-4               | Cao                                     | 26.24                       |                                               |          |
| MW-5               | Can                                     | 22.25                       |                                               |          |
| MW-6               | Cao                                     | 29.97                       | l l                                           |          |
| MW-8               | 1                                       | 26.41                       |                                               |          |
| MW-9               |                                         | 17,59                       |                                               |          |
| MW-11              | 4                                       | 29,17                       | 1<br>1                                        |          |
| MW-12              | (40                                     | 26.80                       | ↓/                                            |          |

Plumley Engineering, P.C.

12/5/18

Date:

# GROUNDWATER SAMPLING FIELD LOGS

| Client/Site:                | Quanta Resources           | l                   |                     | Project No.: | 2015007   |
|-----------------------------|----------------------------|---------------------|---------------------|--------------|-----------|
| <b>Monitoring Location:</b> |                            |                     |                     | _ Date:      | 12/5/2018 |
| Source Description:         | MW-1D                      |                     |                     | _ Sampler:   | MTM/DTH   |
| Well & Water Level D        | Data:                      | Tota                | l Depth of Well     | 50.19        | feet      |
|                             |                            | <b>Initial</b>      | Depth to Water      | 30,55        | feet      |
|                             | I                          | Length of Water     | Column (LWC)        |              | feet      |
| Purge Volume Calcula        | ation:                     |                     |                     |              |           |
| Well Diameter (in           | nches):                    | <b>Calculated W</b> | ell Volume To l     | Be Removed   |           |
| 1                           | ,                          | LWC * 0.041         |                     | Gallons      |           |
| 1.25                        |                            | LWC * 0.064         | * 3 =               | Gallons      |           |
| 1.5                         |                            | LWC * 0.092         |                     | Gallons      |           |
| 2                           |                            | LWC * 0.163         | * 3 = 10            | Gallons      |           |
| 3                           |                            | LWC * 0.367         |                     | Gallons      |           |
| 4                           |                            | LWC * 0.653         |                     | Gallons      |           |
| 6                           |                            | LWC * 1.469         |                     | Gallons      |           |
| Free Product Check:         | Free P                     | Product Present:    | Yes                 | No           |           |
|                             | Measured Thick             |                     | 105                 |              |           |
| Purge Data:                 | Purge Date:                | -                   |                     |              |           |
|                             |                            |                     |                     | _            |           |
|                             | <b>Purging Time:</b>       | From:               | 12:15               | - То:        | 12.30     |
| 1                           | Type of Purging E          | quipment Used:      | Whale F             | ump          |           |
|                             | Purged Wa                  | ater Comments:      |                     | br - noslea  | 4         |
| Sampling Data:              | Depth to Wat               | ter at Sampling:    | 30.2                |              | feet      |
|                             | •                          |                     |                     |              | ieet      |
|                             | Color of Sample:           | cleve               | Sample Date:        |              |           |
|                             | Turbidity:_                | -                   | Sample Time         | 14.00        |           |
| Ту                          | pe of Sampling E           | quipment Used:      | Bu                  | hr           |           |
| <b>Field Indicators P</b>   | resent During San          | nple Collection:    | Odor                |              |           |
|                             | 0                          | -                   | Sheen               |              |           |
|                             |                            |                     | <b>Free Product</b> | 1            |           |
|                             |                            |                     | None                | ×            |           |
| Notes:                      |                            |                     |                     | 2            |           |
|                             |                            |                     |                     |              |           |
| X                           |                            |                     |                     |              |           |
|                             |                            |                     | $\cap$              |              |           |
| Weather:                    | Temperature <sup>o</sup> F | 40                  | Sunny Cloudy        | Rain Snow    |           |
|                             |                            | 1                   |                     |              |           |

| Client/Site:                | Quanta Resources           |                  |          |          | <b>Project No.:</b> | 2015007   |
|-----------------------------|----------------------------|------------------|----------|----------|---------------------|-----------|
| <b>Monitoring Location:</b> | -                          |                  |          |          | Date:               | 12/5/2018 |
| Source Description:         | MW-1S                      |                  |          |          | Sampler:            | MTM/DTH   |
| Well & Water Level D        | Data:                      | Total            | Depth    | of Well: | 38.9                | feet      |
|                             |                            |                  |          |          | 500                 | feet      |
|                             | Le                         | ength of Water C |          |          |                     | feet      |
| Purge Volume Calcula        | ation.                     |                  |          |          |                     |           |
| Well Diameter (in           |                            | Calculated We    | all Volu | me To Re | Removed             |           |
| 1                           | nenes).                    | LWC * 0.041      |          |          |                     |           |
| 1.25                        |                            | LWC * 0.064      |          |          | - Gallons           |           |
| 1.23                        |                            | LWC * 0.092      |          |          | - Gallons           |           |
| 2                           |                            | LWC * 0.163      |          |          | -                   |           |
| 3                           |                            | LWC * 0.367      |          |          |                     |           |
| 4                           |                            | LWC * 0.653      |          | -        | - Gallons           |           |
| 6                           |                            | LWC * 1.469      |          |          | - Gallons           |           |
|                             |                            |                  | 1        |          |                     |           |
| Free Product Check:         |                            | oduct Present:   | Y        | es       | No                  |           |
|                             | Measured Thickn            | ess/Comment:     |          | 4,7      | 15                  |           |
| Purge Data:                 | Purge Date:                |                  |          |          |                     |           |
|                             | <b>Purging Time:</b>       |                  |          |          | То:                 |           |
| 1                           | Type of Purging Eq         | uipment Used:    |          |          |                     |           |
|                             | Purged Wat                 | ter Comments:    |          |          |                     |           |
| Sampling Data:              | Depth to Wate              | r at Sampling: _ |          |          |                     | feet      |
| (                           | Color of Sample:           |                  | Samn     | le Date: |                     |           |
|                             | Turbidity:                 |                  | -        | e Time:  |                     |           |
| т.                          | •                          | uinmont Used.    |          | -        |                     | ai        |
| 1 y                         | pe of Sampling Eq          | ulpment Used:    |          |          |                     |           |
| <b>Field Indicators P</b>   | resent During Sam          | ple Collection:  | Od       | or       |                     |           |
|                             |                            |                  | She      | en       |                     |           |
|                             |                            |                  | Free P   | roduct   |                     |           |
|                             |                            |                  | No       | ne       |                     |           |
| Notes:                      |                            |                  |          | 1        |                     |           |
| 19                          |                            | (No              | SU       | mple     | )                   |           |
| ·                           | 2 0.10 year 1              | remond           |          |          |                     |           |
|                             | 0                          |                  |          |          |                     |           |
| Weather:                    | Temperature <sup>o</sup> F |                  | lunnv    | Cloudy   | Rain Snow           |           |
|                             |                            | <b>`</b>         | J        | Juna     |                     |           |

| Client/Site:                | Quanta Resources           |                 |                | Project No.: |         |
|-----------------------------|----------------------------|-----------------|----------------|--------------|---------|
| <b>Monitoring Location:</b> | ·                          |                 |                | Date:        |         |
| Source Description:         | <u>MW-2</u>                |                 |                | Sampler:     | MTM/DTH |
| Well & Water Level I        | Data:                      | Tota            | al Depth of We | ell: 37.9    | feet    |
|                             |                            | Initial         | Depth to Wate  | er: 27.70    | feet    |
|                             | Le                         | ength of Water  | Column (LWC    | C):          | feet    |
| Purge Volume Calcula        | ation:                     |                 |                |              |         |
| Well Diameter (i            |                            | Calculated W    | Vell Volume To | Be Removed   |         |
| 1                           | ,                          | LWC * 0.041     |                | Gallons      |         |
| 1.25                        |                            | LWC * 0.064     | <b>1 * 3</b> = | Gallons      |         |
| 1.5                         |                            | LWC * 0.092     | 2 * 3 =        | Gallons      |         |
| 2                           |                            | LWC * 0.163     | 3 * 3 = 5      | Gallons      |         |
| 3                           |                            | LWC * 0.367     | 7 * 3 =        | Gallons      |         |
| 4                           |                            | LWC * 0.653     |                | Gallons      |         |
| 6                           |                            | LWC * 1.469     | 77             | Gallons      |         |
| Free Product Check:         | Free Pr                    | oduct Present:  | Yes            | No           |         |
|                             | Measured Thickn            |                 |                | 2            |         |
| Purge Data:                 | Purge Date:                | 12              | 5/18           |              |         |
|                             | <b>Purging Time:</b>       | From:           | 12:00          | То:          | 12:10   |
| ſ                           | <b>Fype of Purging Eq</b>  | uipment Used:   | Whi            | le Pura      |         |
|                             | Purged Wat                 | ter Comments:   | sligh          |              | <       |
| Sampling Data:              | Depth to Wate              | r at Sampling:  | 27.91          |              | feet    |
|                             | Color of Sample:           | chur            | Sample Dat     | e: 12/5/18   |         |
|                             | Turbidity:                 | sligint         | Sample Tim     |              | e<br>   |
| Ту                          | pe of Sampling Eq          |                 | B              | sa. li (     |         |
| <b>Field Indicators P</b>   | resent During Sam          | ple Collection: | Odor           | ×            |         |
|                             |                            | -               | Sheen          |              | 2       |
|                             |                            |                 | Free Produc    | t            | 5       |
|                             |                            |                 | None           |              | 3       |
| Notes:                      |                            |                 |                |              |         |
|                             |                            |                 |                |              |         |
|                             |                            |                 |                |              |         |
|                             |                            |                 | 0              |              |         |
| Weather:                    | Temperature <sup>o</sup> F | 10              | Sunny Cloud    | ly Rain Snow |         |
|                             |                            |                 |                |              |         |

| Client/Site:<br>Monitoring Location:         | Quanta Resources                          |                              |                                                  | Project No.:<br>Date:  | 2015007 |
|----------------------------------------------|-------------------------------------------|------------------------------|--------------------------------------------------|------------------------|---------|
| Source Description:                          | MW-5                                      |                              |                                                  | Sampler: MT            |         |
| Well & Water Level I<br>Purge Volume Calcula | Data:<br>Length<br>ation:                 | Initial De<br>of Water Co    | Depth of Well:<br>epth to Water:<br>olumn (LWC): | 42.01 fee<br>27.25 fee | t<br>t  |
| Well Diameter (i                             | · · · · · · · · · · · · · · · · · · ·     | lculated Wel<br>VC * 0.041 * | <u>ll Volume To Be</u><br>2 –                    |                        |         |
| 1<br>1.25                                    |                                           | VC * 0.041 *<br>VC * 0.064 * |                                                  | _ Gallons<br>Gallons   |         |
| 1.23                                         |                                           | VC * 0.092 *                 |                                                  | _ Gallons              |         |
| 2                                            |                                           | VC * 0.163 *                 |                                                  | _ Gallons              |         |
| 3                                            |                                           | VC * 0.367 *                 | 0                                                | Gallons                |         |
| 4                                            | LW                                        | VC * 0.653 *                 | 3 =                                              | Gallons                |         |
| 6                                            | LW                                        | VC * 1.469 *                 | 3 =                                              | Gallons                |         |
| Free Product Check:                          | Free Product<br>Measured Thickness/C      |                              | Yes                                              | No                     |         |
| Purge Data:                                  | Purge Date:                               | 12/5                         |                                                  |                        |         |
|                                              | <b>Purging Time:</b>                      | From:                        | 11:45                                            | То:                    | 1132    |
| ן                                            | Type of Purging Equipm<br>Purged Water Co | S                            | B Whale<br>oker                                  | Purp                   |         |
| Sampling Data:                               | Depth to Water at S                       | ampling:                     | 27.3(                                            | ) feet                 | :       |
|                                              | Color of Sample:<br>Turbidity:            | LOT                          | Sample Date: _<br>Sample Time: _                 | 12/14                  |         |
| Ту                                           | pe of Sampling Equipme                    | ent Used:                    | Bailes                                           |                        |         |
| Field Indicators P                           | resent During Sample C                    |                              | Odor<br>Sheen<br>Free Product                    |                        |         |
| Notes:                                       |                                           |                              | None                                             | X                      |         |
| Weather:                                     | Temperature <sup>0</sup> F                | 10 6                         | unny Cloudy                                      | Rain Snow              |         |

| Client/Site:                | Quanta Resources           |                  |                  | <b>Project No.:</b> | 2015007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------|----------------------------|------------------|------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Monitoring Location:</b> | oring Location:            |                  |                  |                     | 12/5/2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Source Description:         | MW-6                       |                  |                  | Sampler:            | MTM/DTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Well & Water Level I        | Data:                      |                  | l Depth of Well: | 41.49               | -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                             |                            |                  | Depth to Water:  | 29.91               | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                             | Le                         | ength of Water ( | Column (LWC):    | 11.5 4              | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Purge Volume Calcul         | ation:                     |                  |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Well Diameter (i            | nches):                    | Calculated W     | ell Volume To B  | e Removed           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                           |                            | LWC * 0.041      | * 3 =            | Gallons             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.25                        |                            | LWC * 0.064      | * 3 =            | Gallons             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.5                         |                            | LWC * 0.092      | * 3 =            | Gallons             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                           |                            | LWC * 0.163      | * 3 = 10         | Gallons             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                           |                            | LWC * 0.367      | *3 =             | Gallons             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                           |                            | LWC * 0.653      | * 3 =            | Gallons             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6                           |                            | LWC * 1.469      | * 3 =            | Gallons             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Free Product Check:         | Free Pr                    | oduct Present:   | Yes              | No                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The House check.            | Measured Thickn            |                  | 105              | Ce                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D D t                       |                            |                  | 1. 1             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Purge Data:                 | Purge Date:                | 120              | 10               | ė                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             | Purging Time:              | From:            | 11:30            | То:                 | 11:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| r                           | <b>Fype of Purging Eq</b>  | uipment Used:    | What             | Pump                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             | Purged Wat                 | ter Comments:    | Pink             | shale               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sampling Data:              | Depth to Wate              | r at Sampling:   | 30               | 03                  | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                             | Color of Sample:           | pinkish          | Sample Date:     | 115/11              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             | Turbidity:                 | Stun             | Sample Time:     | 13-01               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| T.                          |                            | uinment Used.    | Build            |                     | -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1 )                         | vpe of Sampling Eq         | urpment Useu:    | DUU              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Field Indicators <b>P</b>   | resent During Sam          | ple Collection:  | Odor             |                     | <b>4</b> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                             |                            |                  | Sheen            | ie                  | -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                             |                            |                  | Free Product     | 100.00              | • 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Notes:                      |                            |                  | None             | X                   | el construction de la constructi |
| Notes:                      |                            |                  |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             |                            |                  |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             |                            |                  | ~                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Weather:                    | Temperature <sup>0</sup> F | to               | Sunny Cloudy     | Rain Snow           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Revised 08/15/07            |                            |                  |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Client/Site:                                                        | Quanta Resources                                      |                                                                                                |                                                                | Project No.:<br>Date:                                                   | 2015007 |  |
|---------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------|---------|--|
| Monitoring Location<br>Source Description:                          |                                                       |                                                                                                |                                                                |                                                                         | MTM/DTH |  |
| Well & Water Level                                                  | Data:                                                 | Initial                                                                                        | l Depth of Well:<br>Depth to Water:<br>Column (LWC):           | 36.53 feet                                                              |         |  |
| Purge Volume Calcu<br>Well Diameter (<br>1<br>1.25<br>1.5<br>2<br>3 |                                                       | <u>Calculated W</u><br>LWC * 0.041<br>LWC * 0.064<br>LWC * 0.092<br>LWC * 0.163<br>LWC * 0.367 | $\begin{array}{c} *3 = \\ *3 = \\ *3 = \\ 43 = 44 \end{array}$ | <u>e Removed</u><br>Gallons<br>Gallons<br>Gallons<br>Gallons<br>Gallons |         |  |
| 4                                                                   |                                                       | LWC * 0.653                                                                                    | S.                                                             | Gallons                                                                 |         |  |
| 6<br>Free Product Check:<br>Purge Data:                             | Free P<br>Measured Thick<br>Purge Date:               | 8                                                                                              | Yes NA                                                         | Gallons                                                                 |         |  |
| Turge Data.                                                         | -                                                     |                                                                                                | 1.00 19 2                                                      | _                                                                       |         |  |
| а<br>ж                                                              | Purging Time:<br>Type of Purging Ec<br>Purged Wa      | From:<br>uipment Used:<br>ter Comments:                                                        | 1070<br>Bluds, Pun<br>cleor                                    | -                                                                       |         |  |
| Sampling Data:                                                      | Depth to Wate                                         | er at Sampling:                                                                                |                                                                |                                                                         | feet    |  |
|                                                                     | Color of Sample:<br>Turbidity:<br>Type of Sampling Eq | slight                                                                                         | Sample Date:<br>Sample Time:<br>Blader                         | 12.30                                                                   | , Aur   |  |
| Field Indicators                                                    | Present During San                                    | ple Collection:                                                                                | Odor<br>Sheen<br>Free Product<br>None                          | X                                                                       | ÷       |  |
| Notes:                                                              | MS MSD                                                | phlecker                                                                                       |                                                                |                                                                         |         |  |
| Weather:                                                            | Temperature <sup>o</sup> F_                           | 205                                                                                            | Sunny Cloudy                                                   | Rain Snow                                                               |         |  |
| Revised 08/15/07                                                    |                                                       |                                                                                                |                                                                |                                                                         |         |  |

| Client/Site:<br>Monitoring Location:          | Quanta Resources                         |                                                                                        |                                                      | Project No.:<br>Date:                                          | 2015007 |
|-----------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|---------|
| Source Description:                           | MW-10                                    |                                                                                        |                                                      | Sampler: MT                                                    |         |
| Well & Water Level I                          | Data:                                    |                                                                                        | l Depth of Well:<br>Depth to Water:<br>Column (LWC): | 34.60feet<br><u>24.69</u> feet<br>9.90 feet                    |         |
| Purge Volume Calcula<br>Well Diameter (i<br>1 |                                          | LWC * 0.041                                                                            | 2                                                    | Gallons                                                        |         |
| 1.25<br>1.5<br>2<br>3<br>4<br>6               |                                          | LWC * 0.064<br>LWC * 0.092<br>LWC * 0.163<br>LWC * 0.367<br>LWC * 0.653<br>LWC * 1.469 | *3 =<br>*3 =<br>*3 =<br>*3 =                         | Gallons<br>Gallons<br>Gallons<br>Gallons<br>Gallons<br>Gallons |         |
| Free Product Check:                           | Free Pı<br>Measured Thickı               | roduct Present:<br>ness/Comment: _                                                     | Yes                                                  | No<br>no bailer                                                |         |
| Purge Data:                                   | Purge Date: _                            | 12/5/18                                                                                |                                                      | e -                                                            |         |
|                                               | <b>Purging Time:</b>                     | From:                                                                                  | #1:5D                                                | То:                                                            | 2-40    |
| 7                                             | Гуре of Purging Eq<br>Purged Wa          | uipment Used: _<br>ter Comments: _                                                     | Bladder<br>Cleur -                                   | Pump<br>some oder - pai                                        | tu      |
| Sampling Data:                                | Depth to Wate                            | er at Sampling: _                                                                      | 24.50                                                | fee                                                            | t       |
|                                               | Color of Sample:<br>Turbidity:           | slight                                                                                 | Sample Date:<br>Sample Time:                         | 110:40                                                         | >       |
|                                               | ype of Sampling Eq<br>Present During Sam |                                                                                        | Bludeb r<br>Odor                                     | Рл <i>р</i>                                                    |         |
| Notes:                                        |                                          |                                                                                        | Sheen<br>Free Product<br>None                        | <u>×</u>                                                       |         |
| Weather:                                      | Temperature <sup>o</sup> F               | 10 (                                                                                   | Sunny Cloudy                                         | Rain Snow                                                      |         |

| Client/Site:                | Quanta Resources               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Project No.:</b> |           |
|-----------------------------|--------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|
| <b>Monitoring Location:</b> |                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date:               | 12/5/2018 |
| Source Description:         | MW-12                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sampler:            | MTM/DTH   |
| Well & Water Level Data:    |                                | Tota                | l Depth of Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37.42               | feet      |
|                             |                                | Initial             | Depth to Water:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.80               | feet      |
|                             | Le                             | ength of Water (    | Column (LWC):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | feet      |
| Purge Volume Calcula        | ation:                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |           |
| Well Diameter (in           |                                | Calculated W        | ell Volume To Be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e Removed           |           |
| 1                           | ,                              | LWC * 0.041         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gallons             |           |
| 1.25                        |                                |                     | * 3 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gallons             |           |
| 1.5                         |                                |                     | * 3 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gallons             |           |
| 2                           |                                | LWC * 0.163 * 3 =   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gallons             |           |
| 3                           |                                | LWC $* 0.367 * 3 =$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gallons             |           |
| 4                           |                                | LWC $* 0.653 * 3 =$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gallons             |           |
| 6                           |                                | LWC * 1.469         | * 3 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gallons             |           |
| Free Product Check:         | Free Pr                        | oduct Present:      | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No                  |           |
|                             | Measured Thick                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C                   |           |
| Purge Data:                 | Purge Date:                    | 12/5/18             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |           |
| C                           | Purging Time:                  | 1.4.35              | 12:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | То•                 | 1:20      |
|                             | • •                            | -                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 1. 20     |
| ĩ                           | ype of Purging Eq<br>Purged Wa | uipment Used:       | Blackder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Punp                |           |
|                             | Purged Wa                      | ter Comments:       | Cleare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                   |           |
| Sampling Data:              | Depth to Wate                  | er at Sampling:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | feet      |
| (                           | Color of Sample:               | cluc                | Sample Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/5/18             |           |
| ,                           |                                | slight              | Sample Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14:50               |           |
|                             |                                | Slight              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |           |
| Ту                          | pe of Sampling Eq              | uipment Used:       | Bluiller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pung                |           |
| <b>Field Indicators P</b>   | resent During Sam              | ple Collection:     | Odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |           |
|                             |                                |                     | Sheen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |           |
|                             |                                |                     | Free Product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |           |
|                             |                                |                     | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×                   |           |
| Notes:                      |                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |           |
|                             |                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |           |
|                             |                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |           |
| ÷                           |                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |           |
| Weather:                    | Temperature <sup>o</sup> F     | 70                  | Sunny Cloudy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rain Snow           |           |
|                             |                                | _                   | No. and the second seco |                     |           |

# LABORATORY REPORT



### Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 Automated Report

12/26/18

# **Technical Report for**

### **Plumley Environmental Engineers**

Quanta Resources, Lodi Street, Syracuse, NY

2015127.006

SGS Job Number: JC79316



Sampling Date: 12/05/18

Report to:

**Plumley Environmental Engineers** 

dhudson@plumleyeng.com

ATTN: Derk Hudson

### Total number of pages in report: 50



MATT

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Brian McGuire General Manager

Client Service contact: Thelma Flaherty 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 50

# **Table of Contents**

# N ယ 4 G

#### -1-

| Section 1: Sample Summary                     | 3  |
|-----------------------------------------------|----|
| Section 2: Case Narrative/Conformance Summary | 4  |
| Section 3: Summary of Hits                    |    |
| Section 4: Sample Results                     | 10 |
| <b>4.1:</b> JC79316-1: MW-9                   | 11 |
| <b>4.2:</b> JC79316-2: EQUIPMENT BLANK        | 17 |
| <b>4.3:</b> JC79316-3: MW-6                   | 19 |
| <b>4.4:</b> JC79316-4: MW-5                   | 22 |
| <b>4.5:</b> JC79316-5: MW-2                   | 25 |
| <b>4.6:</b> JC79316-6: MW-1-D                 | 29 |
| <b>4.7:</b> JC79316-7: MW-12                  | 32 |
| <b>4.8:</b> JC79316-8: MW-10                  | 38 |
| Section 5: Misc. Forms                        | 44 |
| 5.1: Chain of Custody                         | 45 |
| 5.2: Chain of Custody (SGS Orlando, FL)       | 48 |



# **Sample Summary**

Plumley Environmental Engineers

Job No: JC79316

Quanta Resources, Lodi Street, Syracuse, NY Project No: 2015127.006

| Sample<br>Number | Collected<br>Date | Time By  | Received | Matr<br>Code |                    | Client<br>Sample ID |
|------------------|-------------------|----------|----------|--------------|--------------------|---------------------|
| JC79316-1        | 12/05/18          | 12:30 MM | 12/07/18 | AQ           | Ground Water       | MW-9                |
| JC79316-1D       | 12/05/18          | 12:30 MM | 12/07/18 | AQ           | Water Dup/MSD      | MW-9 MSD            |
| JC79316-1S       | 12/05/18          | 12:30 MM | 12/07/18 | AQ           | Water Matrix Spike | MW-9 MS             |
| JC79316-2        | 12/05/18          | 12:50 MM | 12/07/18 | AQ           | Equipment Blank    | EQUIPMENT BLANK     |
| JC79316-3        | 12/05/18          | 13:01 MM | 12/07/18 | AQ           | Ground Water       | MW-6                |
| JC79316-4        | 12/05/18          | 13:25 MM | 12/07/18 | AQ           | Ground Water       | MW-5                |
| JC79316-5        | 12/05/18          | 13:47 MM | 12/07/18 | AQ           | Ground Water       | MW-2                |
| JC79316-6        | 12/05/18          | 14:00 MM | 12/07/18 | AQ           | Ground Water       | MW-1-D              |
| JC79316-7        | 12/05/18          | 14:50 MM | 12/07/18 | AQ           | Ground Water       | MW-12               |
| JC79316-8        | 12/05/18          | 16:40 MM | 12/07/18 | AQ           | Ground Water       | MW-10               |





## **CASE NARRATIVE / CONFORMANCE SUMMARY**

| Client: | Plumley Environmental Engineers             | Job No      | JC79316              |
|---------|---------------------------------------------|-------------|----------------------|
| Site:   | Quanta Resources, Lodi Street, Syracuse, NY | Report Date | 12/26/2018 2:40:17 P |

On 12/07/2018, 8 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS North America Inc. at a maximum corrected temperature of 1.8 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. Job Number of JC79316 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Compounds qualified as out of range in the continuing calibration summary report are acceptable as per method requirements when there is a high bias but the sample result is non-detect.

#### MS Volatiles By Method SW846 8260C

| Matrix: AQ | Batch ID: V2V2263 |   |
|------------|-------------------|---|
|            |                   | , |

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JC79316-1MS, JC79316-1MSD were used as the QC samples indicated.
- Blank Spike Recovery(s) for 1,1,2,2-Tetrachloroethane are outside control limits. High percent recoveries and no associated positive reported in the QC batch.
- RPD(s) for MSD for Bromomethane are outside control limits for sample JC79316-1MSD. Outside control limits due to matrix interference.
- JC79316-6 for Dichlorodifluoromethane: Associated CCV outside of control limits low.
- JC79316-4 for 1,1,2,2-Tetrachloroethane: This compound in BS is outside in house QC limits bias high.
- JC79316-1 for Bromomethane: Associated CCV outside of control limits low.
- JC79316-3 for Bromomethane: Associated CCV outside of control limits low.
- JC79316-3 for Dichlorodifluoromethane: Associated CCV outside of control limits low.
- JC79316-3 for 1,1,2,2-Tetrachloroethane: This compound in BS is outside in house QC limits bias high.
- JC79316-4 for Bromomethane: Associated CCV outside of control limits low.
- JC79316-6 for 1,1,2,2-Tetrachloroethane: This compound in BS is outside in house QC limits bias high.
- JC79316-6 for Bromomethane: Associated CCV outside of control limits low.
- JC79316-1 for 1,1,2,2-Tetrachloroethane: This compound in BS is outside in house QC limits bias high.
- JC79316-7 for Dichlorodifluoromethane: Associated CCV outside of control limits low.
- JC79316-7 for 1,1,2,2-Tetrachloroethane: This compound in BS is outside in house QC limits bias high.
- JC79316-4 for Dichlorodifluoromethane: Associated CCV outside of control limits low.
- JC79316-8 for Dichlorodifluoromethane: Associated CCV outside of control limits low.
- JC79316-8 for 1,1,2,2-Tetrachloroethane: This compound in BS is outside in house QC limits bias high.
- JC79316-7 for Bromomethane: Associated CCV outside of control limits low.
- JC79316-1 for Dichlorodifluoromethane: Associated CCV outside of control limits low.
- JC79316-8 for Bromomethane: Associated CCV outside of control limits low.

#### Matrix: AQ Batch ID: V2V2267

- All samples were analyzed within the recommended method holding time.
- Sample(s) JC79319-15MS, JC79319-15MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- Blank Spike Recovery(s) for 1,1,2,2-Tetrachloroethane are outside control limits. High percent recoveries and no associated positive reported in the QC batch.

#### Wednesday, December 26, 2018

#### MS Volatiles By Method SW846 8260C

| Matrix: AQ | Batch ID: V2V2267 |  |
|------------|-------------------|--|
|------------|-------------------|--|

- Matrix Spike Recovery(s) for 1,1-Dichloroethane are outside control limits. Outside control limits due to high level in sample relative to spike amount.
- RPD(s) for MSD for Bromomethane are outside control limits for sample JC79319-15MSD. Probable cause due to sample homogeneity.
- JC79316-5 for 1,1,2,2-Tetrachloroethane: Associated CCV outside of control limits high, sample was ND. This compound in BS is outside in house QC limits bias high.
- JC79319-15MSD for Bromomethane: Outside control limits due to matrix interference.
- JC79316-5 for Bromomethane: Associated CCV outside of control limits low.
- JC79316-5 for 1,2-Dichloroethane: Associated CCV outside of control limits high, sample was ND.
- V2V2267-BS for 1,1,2,2-Tetrachloroethane: High percent recoveries and no associated positive reported in the QC batch.

#### MS Semi-volatiles By Method EPA 537M BY ID

|      | Matrix: AQ              | Batch ID: F:OP73036 |  |
|------|-------------------------|---------------------|--|
| - 27 | THE LASS EDA 527M DV ID |                     |  |

- The data for EPA 537M BY ID meets quality control requirements.
- JC79316-1: Dilution required due to matrix interference. Analysis performed at SGS Orlando, FL.
- JC79316-2: Analysis performed at SGS Orlando, FL.
- JC79316-8: Dilution required due to matrix interference. Analysis performed at SGS Orlando, FL.
- JC79316-7: Analysis performed at SGS Orlando, FL.
- JC79316-1 for Perfluorooctanoic acid: Associated CCV outside of control limits high.
- JC79316-8 for Perfluorooctanoic acid: Associated CCV outside of control limits high, sample was ND.

#### MS Semi-volatiles By Method SW846 8270D BY SIM

|     | Matrix: AQ | Batch ID: OP17214A |  |
|-----|------------|--------------------|--|
| . 1 |            |                    |  |

All samples were extracted within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

#### GC/LC Semi-volatiles By Method SW846 8082A

|   | Matrix: AQ | Batch ID: | OP17274 |
|---|------------|-----------|---------|
| _ | A11 1 1    |           | 11 11   |

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JC79316-3 have surrogates outside control limits. Probable cause due to matrix interference.
- JC79316-5 for Aroclor 1248: More than 40 % RPD for detected concentrations between the two GC columns.
- JC79316-3 for Decachlorobiphenyl: Outside the QC limits. There is no sample left to re-extract.

SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by SGS North America Inc indicated via signature on the report cover

## SAMPLE DELIVERY GROUP CASE NARRATIVE

| Client: | SGS Dayton, NJ                                       | Job No      | JC79316            |
|---------|------------------------------------------------------|-------------|--------------------|
| Site:   | PLUMNYB: Quanta Resources, Lodi Street, Syracuse, NY | Report Date | 12/26/2018 1:51:04 |

4 Samples were collected on 12/05/2018 and were received at SGS North America Inc - Orlando on 12/07/2018 properly preserved, at 3.8 Deg. C and intact. These samples received an SGS Orlando job number of JC79316. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section. Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

#### MS Semi-Volatiles By Method EPA 537M BY ID

#### Matrix: AQ Batch ID: OP73036

All samples were extracted within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

Sample(s) JC79316-1MS, JC79316-1MSD were used as the QC samples indicated.

All method blanks for this batch meet method specific criteria.

JC79316-1 for Perfluorooctanoic acid: Associated CCV outside of control limits high.

JC79316-1: Dilution required due to matrix interference.

JC79316-8 for Perfluorooctanoic acid: Associated CCV outside of control limits high, sample was ND.

JC79316-8: Dilution required due to matrix interference.

SGS Orlando certifies that this report meets the project requirements for analytical data produced for the samples as received at SGS Orlando and as stated on the COC. SGS Orlando certifies that the data meets the Data Quality Objectives for precision, accuracy and completeness as specified in the SGS Orlando Quality Manual except as noted above. This report is to be used in its entirety. SGS Orlando is not responsible for any assumptions of data quality if partial data packages are used.

Narrative prepared by:

Ariel Hartney, Client Services (Signature on File)

# **Summary of Hits**

| Job Number: | JC79316                                     |
|-------------|---------------------------------------------|
| Account:    | Plumley Environmental Engineers             |
| Project:    | Quanta Resources, Lodi Street, Syracuse, NY |
| Collected:  | 12/05/18                                    |

| Lab Sample ID Client Sample ID<br>Analyte | Result/<br>Qual | RL    | MDL   | Units | Method             |
|-------------------------------------------|-----------------|-------|-------|-------|--------------------|
| JC79316-1 MW-9                            |                 |       |       |       |                    |
| Benzene                                   | 0.66            | 0.50  | 0.43  | ug/l  | SW846 8260C        |
| Chlorobenzene                             | 5.8             | 1.0   | 0.56  | ug/l  | SW846 8260C        |
| 1,2-Dichlorobenzene                       | 1.0             | 1.0   | 0.53  | ug/l  | SW846 8260C        |
| 1,3-Dichlorobenzene                       | 0.62 J          | 1.0   | 0.54  | ug/l  | SW846 8260C        |
| 1,4-Dichlorobenzene                       | 1.6             | 1.0   | 0.51  | ug/l  | SW846 8260C        |
| Isopropylbenzene                          | 0.72 J          | 1.0   | 0.65  | ug/l  | SW846 8260C        |
| Toluene                                   | 0.66 J          | 1.0   | 0.53  | ug/l  | SW846 8260C        |
| Perfluorobutanoic acid <sup>a</sup>       | 10.5 J          | 15    | 3.8   | ng/l  | EPA 537M BY ID     |
| Perfluorohexanoic acid <sup>a</sup>       | 7.03 J          | 7.7   | 1.9   | ng/l  | EPA 537M BY ID     |
| Perfluoroheptanoic acid <sup>a</sup>      | 2.09 J          | 3.8   | 1.9   | ng/l  | EPA 537M BY ID     |
| Perfluorooctanoic acid b                  | 23.6            | 3.8   | 1.9   | ng/l  | EPA 537M BY ID     |
| Perfluorobutanesulfonic acid <sup>a</sup> | 1.93 J          | 3.8   | 1.9   | ng/l  | EPA 537M BY ID     |
| Perfluorohexanesulfonic acid <sup>a</sup> | 2.87 J          | 3.8   | 1.9   | ng/l  | EPA 537M BY ID     |
| Perfluorooctanesulfonic acid <sup>a</sup> | 3.40 J          | 3.8   | 2.9   | ng/l  | EPA 537M BY ID     |
| 1,4-Dioxane                               | 2.34            | 0.095 | 0.046 | ug/l  | SW846 8270D BY SIM |

#### JC79316-2 EQUIPMENT BLANK

No hits reported in this sample.

#### JC79316-3 MW-6

| Benzene              | 1.7    | 0.50 | 0.43 | ug/l | SW846 8260C |
|----------------------|--------|------|------|------|-------------|
| Chlorobenzene        | 23.9   | 1.0  | 0.56 | ug/l | SW846 8260C |
| 1,2-Dichlorobenzene  | 4.5    | 1.0  | 0.53 | ug/l | SW846 8260C |
| 1,3-Dichlorobenzene  | 2.4    | 1.0  | 0.54 | ug/l | SW846 8260C |
| 1,4-Dichlorobenzene  | 2.7    | 1.0  | 0.51 | ug/l | SW846 8260C |
| 1,1-Dichloroethane   | 0.61 J | 1.0  | 0.57 | ug/l | SW846 8260C |
|                      |        |      |      |      |             |
| JC79316-4 MW-5       |        |      |      |      |             |
| Bromodichloromethane | 0.82 J | 1.0  | 0.58 | ug/l | SW846 8260C |
| Chloroform           | 17.4   | 1.0  | 0.50 | ug/l | SW846 8260C |
|                      |        |      |      | 0    |             |
| JC79316-5 MW-2       |        |      |      |      |             |
|                      |        |      |      |      |             |
| Benzene              | 1.4    | 0.50 | 0.43 | ug/l | SW846 8260C |
| Chlorobenzene        | 0.97 J | 1.0  | 0.56 | ug/l | SW846 8260C |
| Chloroethane         | 0.89 J | 1.0  | 0.73 | ug/l | SW846 8260C |
| 1,2-Dichlorobenzene  | 3.1    | 1.0  | 0.53 | ug/l | SW846 8260C |
| 1,3-Dichlorobenzene  | 2.5    | 1.0  | 0.54 | ug/l | SW846 8260C |
| 1,4-Dichlorobenzene  | 5.9    | 1.0  | 0.51 | ug/l | SW846 8260C |
| 1,1-Dichloroethane   | 0.73 J | 1.0  | 0.57 | ug/l | SW846 8260C |
|                      |        |      |      |      |             |



# **Summary of Hits**

| Job Number: | JC79316                                     |
|-------------|---------------------------------------------|
| Account:    | Plumley Environmental Engineers             |
| Project:    | Quanta Resources, Lodi Street, Syracuse, NY |
| Collected:  | 12/05/18                                    |

| Lab Sample ID Client Sample ID<br>Analyte | Result/<br>Qual | RL    | MDL   | Units | Method               |
|-------------------------------------------|-----------------|-------|-------|-------|----------------------|
| 1,2-Dichloroethene (total)                | 1.0             | 1.0   | 0.51  | ug/l  | SW846 8260C          |
| Trichloroethene                           | 1.2             | 1.0   | 0.53  | ug/l  | SW846 8260C          |
| Aroclor 1248 <sup>c</sup>                 | 0.75            | 0.24  | 0.061 | ug/l  | SW846 8082A          |
| Aroclor 1254                              | 1.1             | 0.24  | 0.20  | ug/l  | SW846 8082A          |
| Aroclor 1260                              | 1.2             | 0.24  | 0.073 | ug/l  | SW846 8082A          |
| JC79316-6 MW-1-D                          |                 |       |       |       |                      |
| Benzene                                   | 0.52            | 0.50  | 0.43  | ug/l  | SW846 8260C          |
| Chlorobenzene                             | 0.57 J          | 1.0   | 0.56  | ug/l  | SW846 8260C          |
| 1,2-Dichlorobenzene                       | 0.59 J          | 1.0   | 0.53  | ug/l  | SW846 8260C          |
| 1,1-Dichloroethane                        | 2.3             | 1.0   | 0.57  | ug/l  | SW846 8260C          |
| 1,2-Dichloroethene (total)                | 1.5             | 1.0   | 0.51  | ug/l  | SW846 8260C          |
| Vinyl chloride                            | 24.0            | 1.0   | 0.79  | ug/l  | SW846 8260C          |
| JC79316-7 MW-12                           |                 |       |       |       |                      |
| Benzene                                   | 0.46 J          | 0.50  | 0.43  | ug/l  | SW846 8260C          |
| sec-Butylbenzene                          | 1.4 J           | 2.0   | 0.62  | ug/l  | SW846 8260C          |
| tert-Butylbenzene                         | 0.96 J          | 2.0   | 0.69  | ug/l  | SW846 8260C          |
| Chlorobenzene                             | 11.2            | 1.0   | 0.56  | ug/l  | SW846 8260C          |
| 1,2-Dichlorobenzene                       | 3.4             | 1.0   | 0.53  | ug/l  | SW846 8260C          |
| 1,4-Dichlorobenzene                       | 1.8             | 1.0   | 0.51  | ug/l  | SW846 8260C          |
| Isopropylbenzene                          | 3.9             | 1.0   | 0.65  | ug/l  | SW846 8260C          |
| n-Propylbenzene                           | 1.3 J           | 2.0   | 0.60  | ug/l  | SW846 8260C          |
| Perfluorobutanoic acid d                  | 4.87 J          | 8.0   | 2.0   | ng/l  | EPA 537M BY ID       |
| Perfluorohexanoic acid <sup>d</sup>       | 1.31 J          | 4.0   | 1.0   | ng/l  | EPA 537M BY ID       |
| Perfluorooctanoic acid <sup>d</sup>       | 3.41            | 2.0   | 1.0   | ng/l  | EPA 537M BY ID       |
| Perfluorooctanesulfonic acid <sup>d</sup> | 6.12            | 2.0   | 1.5   | ng/l  | EPA 537M BY ID       |
| 1,4-Dioxane                               | 0.239           | 0.095 | 0.046 | ug/l  | SW846 8270D BY SIM   |
| JC79316-8 MW-10                           |                 |       |       |       |                      |
| Benzene                                   | 2.3             | 0.50  | 0.43  | ug/l  | SW846 8260C          |
| n-Butylbenzene                            | 0.63 J          | 2.0   | 0.52  | ug/l  | SW846 8260C          |
| sec-Butylbenzene                          | 1.3 J           | 2.0   | 0.62  | ug/l  | SW846 8260C          |
| 1,2-Dichlorobenzene                       | 2.6             | 1.0   | 0.53  | ug/l  | SW846 8260C          |
| 1,4-Dichlorobenzene                       | 1.1             | 1.0   | 0.51  | ug/l  | SW846 8260C          |
| 1,2-Dichloroethene (total)                | 0.93 J          | 1.0   | 0.51  | ug/l  | SW846 8260C          |
| Isopropylbenzene                          | 2.3             | 1.0   | 0.65  | ug/l  | SW846 8260C          |
| n-Propylbenzene                           | 1.9 J           | 2.0   | 0.60  | ug/l  | SW846 8260C          |
| 1,4-Dioxane                               | 0.225           | 0.10  | 0.00  | ug/l  | SW846 8270D BY SIM   |
| Aroclor 1254                              | 0.225           | 0.10  | 0.20  | ug/l  | SW846 8082A          |
|                                           | 0.20            | 0.21  | 0.20  | ~B' 1 | 5010 000 <b>2</b> 11 |

(a) Dilution required due to matrix interference. Analysis performed at SGS Orlando, FL.

# **Summary of Hits**

| Job Number: | JC79316                                     |
|-------------|---------------------------------------------|
| Account:    | Plumley Environmental Engineers             |
| Project:    | Quanta Resources, Lodi Street, Syracuse, NY |
| Collected:  | 12/05/18                                    |

| Lab Sample ID | <b>Client Sample ID</b> | Result/ |    |     |       |        |  |
|---------------|-------------------------|---------|----|-----|-------|--------|--|
| Analyte       |                         | Qual    | RL | MDL | Units | Method |  |

(b) Dilution required due to matrix interference. Analysis performed at SGS Orlando, FL. Associated CCV outside of control limits high.

(c) More than 40 % RPD for detected concentrations between the two GC columns.

(d) Analysis performed at SGS Orlando, FL.

ω



Dayton, NJ

Section 4

Sample Results

Report of Analysis



4



| Client Sa<br>Lab Sam<br>Matrix:<br>Method:<br>Project: | ple ID: JC<br>A<br>SV       | W-9<br>279316-1<br>Q - Ground W<br>W846 8260C<br>uanta Resource | ater<br>es, Lodi Street, Syrad    | cuse, N  |                         | Date Sampled:<br>Date Received:<br>Percent Solids: | / -/                          |
|--------------------------------------------------------|-----------------------------|-----------------------------------------------------------------|-----------------------------------|----------|-------------------------|----------------------------------------------------|-------------------------------|
| Run #1<br>Run #2                                       | <b>File ID</b><br>2V55851.1 | <b>DF</b><br>D 1                                                | <b>Analyzed</b><br>12/12/18 09:16 | By<br>JP | <b>Prep Date</b><br>n/a | <b>Prep Batc</b><br>n/a                            | h Analytical Batch<br>V2V2263 |
| Run #1<br>Run #2                                       | Purge Vol<br>5.0 ml         | ume                                                             |                                   |          |                         |                                                    |                               |

#### VOA Special List

| CAS No.  | Compound                             | Result | RL   | MDL  | Units | Q |
|----------|--------------------------------------|--------|------|------|-------|---|
| 67-64-1  | Acetone                              | ND     | 10   | 6.0  | ug/l  |   |
| 71-43-2  | Benzene                              | 0.66   | 0.50 | 0.43 | ug/l  |   |
| 108-86-1 | Bromobenzene                         | ND     | 1.0  | 0.55 | ug/l  |   |
| 74-97-5  | Bromochloromethane                   | ND     | 1.0  | 0.48 | ug/l  |   |
| 75-27-4  | Bromodichloromethane                 | ND     | 1.0  | 0.58 | ug/l  |   |
| 75-25-2  | Bromoform                            | ND     | 1.0  | 0.63 | ug/l  |   |
| 74-83-9  | Bromomethane <sup>a</sup>            | ND     | 2.0  | 1.6  | ug/l  |   |
| 78-93-3  | 2-Butanone (MEK)                     | ND     | 10   | 6.9  | ug/l  |   |
| 104-51-8 | n-Butylbenzene                       | ND     | 2.0  | 0.52 | ug/l  |   |
| 135-98-8 | sec-Butylbenzene                     | ND     | 2.0  | 0.62 | ug/l  |   |
| 98-06-6  | tert-Butylbenzene                    | ND     | 2.0  | 0.69 | ug/l  |   |
| 75-15-0  | Carbon disulfide                     | ND     | 2.0  | 0.95 | ug/l  |   |
| 56-23-5  | Carbon tetrachloride                 | ND     | 1.0  | 0.55 | ug/l  |   |
| 108-90-7 | Chlorobenzene                        | 5.8    | 1.0  | 0.56 | ug/l  |   |
| 75-00-3  | Chloroethane                         | ND     | 1.0  | 0.73 | ug/l  |   |
| 67-66-3  | Chloroform                           | ND     | 1.0  | 0.50 | ug/l  |   |
| 74-87-3  | Chloromethane                        | ND     | 1.0  | 0.76 | ug/l  |   |
| 95-49-8  | o-Chlorotoluene                      | ND     | 2.0  | 0.63 | ug/l  |   |
| 106-43-4 | p-Chlorotoluene                      | ND     | 2.0  | 0.60 | ug/l  |   |
| 96-12-8  | 1,2-Dibromo-3-chloropropane          | ND     | 2.0  | 1.2  | ug/l  |   |
| 124-48-1 | Dibromochloromethane                 | ND     | 1.0  | 0.56 | ug/l  |   |
| 106-93-4 | 1,2-Dibromoethane                    | ND     | 1.0  | 0.48 | ug/l  |   |
| 95-50-1  | 1,2-Dichlorobenzene                  | 1.0    | 1.0  | 0.53 | ug/l  |   |
| 541-73-1 | 1,3-Dichlorobenzene                  | 0.62   | 1.0  | 0.54 | ug/l  | J |
| 106-46-7 | 1,4-Dichlorobenzene                  | 1.6    | 1.0  | 0.51 | ug/l  |   |
| 75-71-8  | Dichlorodifluoromethane <sup>a</sup> | ND     | 2.0  | 1.4  | ug/l  |   |
| 75-34-3  | 1,1-Dichloroethane                   | ND     | 1.0  | 0.57 | ug/l  |   |
| 107-06-2 | 1,2-Dichloroethane                   | ND     | 1.0  | 0.60 | ug/l  |   |
| 75-35-4  | 1,1-Dichloroethene                   | ND     | 1.0  | 0.59 | ug/l  |   |
| 540-59-0 | 1,2-Dichloroethene (total)           | ND     | 1.0  | 0.51 | ug/l  |   |
| 78-87-5  | 1,2-Dichloropropane                  | ND     | 1.0  | 0.51 | ug/l  |   |
| 142-28-9 | 1,3-Dichloropropane                  | ND     | 1.0  | 0.43 | ug/l  |   |

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



Page 1 of 2

11 of 50

JC79316

E = Indicates value exceeds calibration range

| Client Sample ID: | MW-9                                        |                 |          |
|-------------------|---------------------------------------------|-----------------|----------|
| Lab Sample ID:    | JC79316-1                                   | Date Sampled:   | 12/05/18 |
| Matrix:           | AQ - Ground Water                           | Date Received:  | 12/07/18 |
| Method:           | SW846 8260C                                 | Percent Solids: | n/a      |
| Project:          | Quanta Resources, Lodi Street, Syracuse, NY |                 |          |
|                   |                                             |                 |          |

**VOA Special List** 

| CAS No.    | Compound                               | Result | RL     | MDL  | Units | Q |
|------------|----------------------------------------|--------|--------|------|-------|---|
| 594-20-7   | 2,2-Dichloropropane                    | ND     | 1.0    | 0.52 | ug/l  |   |
| 563-58-6   | 1,1-Dichloropropene                    | ND     | 1.0    | 0.82 | ug/l  |   |
| 10061-01-5 | cis-1,3-Dichloropropene                | ND     | 1.0    | 0.47 | ug/l  |   |
| 10061-02-6 | trans-1,3-Dichloropropene              | ND     | 1.0    | 0.43 | ug/l  |   |
| 100-41-4   | Ethylbenzene                           | ND     | 1.0    | 0.60 | ug/l  |   |
| 87-68-3    | Hexachlorobutadiene                    | ND     | 2.0    | 0.56 | ug/l  |   |
| 98-82-8    | Isopropylbenzene                       | 0.72   | 1.0    | 0.65 | ug/l  | J |
| 99-87-6    | p-Isopropyltoluene                     | ND     | 2.0    | 0.66 | ug/l  |   |
| 1634-04-4  | Methyl Tert Butyl Ether                | ND     | 1.0    | 0.51 | ug/l  |   |
| 74-95-3    | Methylene bromide                      | ND     | 1.0    | 0.48 | ug/l  |   |
| 75-09-2    | Methylene chloride                     | ND     | 2.0    | 1.0  | ug/l  |   |
| 91-20-3    | Naphthalene                            | ND     | 5.0    | 0.98 | ug/l  |   |
| 103-65-1   | n-Propylbenzene                        | ND     | 2.0    | 0.60 | ug/l  |   |
| 100-42-5   | Styrene                                | ND     | 1.0    | 0.70 | ug/l  |   |
| 630-20-6   | 1,1,1,2-Tetrachloroethane              | ND     | 1.0    | 0.60 | ug/l  |   |
| 79-34-5    | 1,1,2,2-Tetrachloroethane <sup>b</sup> | ND     | 1.0    | 0.65 | ug/l  |   |
| 127-18-4   | Tetrachloroethene                      | ND     | 1.0    | 0.90 | ug/l  |   |
| 108-88-3   | Toluene                                | 0.66   | 1.0    | 0.53 | ug/l  | J |
| 87-61-6    | 1,2,3-Trichlorobenzene                 | ND     | 1.0    | 0.50 | ug/l  |   |
| 120-82-1   | 1,2,4-Trichlorobenzene                 | ND     | 1.0    | 0.50 | ug/l  |   |
| 71-55-6    | 1,1,1-Trichloroethane                  | ND     | 1.0    | 0.54 | ug/l  |   |
| 79-00-5    | 1,1,2-Trichloroethane                  | ND     | 1.0    | 0.53 | ug/l  |   |
| 79-01-6    | Trichloroethene                        | ND     | 1.0    | 0.53 | ug/l  |   |
| 75-69-4    | Trichlorofluoromethane                 | ND     | 2.0    | 0.84 | ug/l  |   |
| 96-18-4    | 1,2,3-Trichloropropane                 | ND     | 2.0    | 0.70 | ug/l  |   |
| 95-63-6    | 1,2,4-Trimethylbenzene                 | ND     | 2.0    | 1.0  | ug/l  |   |
| 108-67-8   | 1,3,5-Trimethylbenzene                 | ND     | 2.0    | 1.0  | ug/l  |   |
| 75-01-4    | Vinyl chloride                         | ND     | 1.0    | 0.79 | ug/l  |   |
|            | m,p-Xylene                             | ND     | 1.0    | 0.78 | ug/l  |   |
| 95-47-6    | o-Xylene                               | ND     | 1.0    | 0.59 | ug/l  |   |
| CAS No.    | Surrogate Recoveries                   | Run# 1 | Run# 2 | Lim  | its   |   |
| 1868-53-7  | Dibromofluoromethane                   | 98%    |        | 80-1 | 20%   |   |
| 17060-07-0 | 1,2-Dichloroethane-D4                  | 109%   |        | 81-1 | 24%   |   |
| 2037-26-5  | Toluene-D8                             | 98%    |        | 80-1 | 20%   |   |
| 460-00-4   | 4-Bromofluorobenzene                   | 101%   |        | 80-1 | 20%   |   |

(a) Associated CCV outside of control limits low.

(b) This compound in BS is outside in house QC limits bias high.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ 

N = Indicates presumptive evidence of a compound

Page 2 of 2

E = Indicates value exceeds calibration range

|                                                           |                                              |                                   | Report                                 | of Ana   | alysis                   |       |                               | Page 1 of 1                        |
|-----------------------------------------------------------|----------------------------------------------|-----------------------------------|----------------------------------------|----------|--------------------------|-------|-------------------------------|------------------------------------|
| Client Sam<br>Lab Sampl<br>Matrix:<br>Method:<br>Project: | e ID: JC793<br>AQ -<br>SW84                  | 16-1<br>Ground Wate<br>6 8270D BY | r<br>SIM SW846 35<br>Lodi Street, Syra |          |                          | Date  | L .                           | 2/05/18<br>2/07/18<br>′a           |
| Run #1<br>Run #2                                          | <b>File ID</b><br>3P73448.D                  | <b>DF</b><br>1                    | <b>Analyzed</b><br>12/13/18 02:49      | By<br>SA | <b>Prep D</b><br>12/11/1 |       | <b>Prep Batch</b><br>OP17214A | <b>Analytical Batch</b><br>E3P3464 |
| Run #1<br>Run #2                                          | <b>Initial Volum</b><br>1050 ml              | e Final Vol<br>1.0 ml             | lume                                   |          |                          |       |                               |                                    |
| CAS No.                                                   | Compound                                     |                                   | Result                                 | RL       | MDL                      | Units | Q                             |                                    |
| 123-91-1                                                  | 1,4-Dioxane                                  |                                   | 2.34                                   | 0.095    | 0.046                    | ug/l  |                               |                                    |
| CAS No.                                                   | Surrogate Re                                 | ecoveries                         | Run# 1                                 | Run# 2   | Lim                      | its   |                               |                                    |
| 4165-60-0<br>321-60-8<br>1718-51-0                        | Nitrobenzene<br>2-Fluorobiph<br>Terphenyl-d1 | enyl                              | 56%<br>45%<br>46%                      |          | 29-1<br>23-1<br>22-1     | 22%   |                               |                                    |

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

|                               | nple ID: MW-9               | <i>c</i> 1     |                            |         |                                 |               | 2/05/10                             |
|-------------------------------|-----------------------------|----------------|----------------------------|---------|---------------------------------|---------------|-------------------------------------|
| Lab Samp                      | ole ID: JC7931              | 6-1            |                            |         | Date                            | Sampled: 1    | 2/05/18                             |
| Matrix:                       | AQ - G                      | round Wa       | iter                       |         | Date                            | Received: 1   | 2/07/18                             |
| Method:                       | EPA 53                      | 37M BY I       | D EPA 537 MOD              |         | Perc                            | ent Solids: n | n/a                                 |
| Project:                      | Quanta                      | Resource       | s, Lodi Street, Syrad      | cuse, N | Y                               |               |                                     |
|                               |                             |                |                            |         |                                 |               |                                     |
|                               | File ID                     | DF             | Analyzed                   | By      | Prep Date                       | Prep Batch    | Analytical Batch                    |
| Run #1 <sup>a</sup><br>Run #2 | <b>File ID</b><br>2Q25412.D | <b>DF</b><br>2 | Analyzed<br>12/21/18 20:05 | •       | <b>Prep Date</b> 12/14/18 08:45 | -             | <b>Analytical Batch</b><br>F:S2Q394 |

Initial Volume Final Vol Run #1 260 ml 1.0 ml Run #2

#### PFAS List

| CAS No.    | Compound                      | Result | RL     | MDL  | Units | Q |
|------------|-------------------------------|--------|--------|------|-------|---|
| 375-22-4   | Perfluorobutanoic acid        | 10.5   | 15     | 3.8  | ng/l  | J |
| 2706-90-3  | Perfluoropentanoic acid       | ND     | 7.7    | 2.9  | ng/l  |   |
| 307-24-4   | Perfluorohexanoic acid        | 7.03   | 7.7    | 1.9  | ng/l  | J |
| 375-85-9   | Perfluoroheptanoic acid       | 2.09   | 3.8    | 1.9  | ng/l  | J |
| 335-67-1   | Perfluorooctanoic acid b      | 23.6   | 3.8    | 1.9  | ng/l  |   |
| 375-95-1   | Perfluorononanoic acid        | ND     | 3.8    | 1.9  | ng/l  |   |
| 335-76-2   | Perfluorodecanoic acid        | ND     | 7.7    | 1.9  | ng/l  |   |
| 2058-94-8  | Perfluoroundecanoic acid      | ND     | 7.7    | 1.9  | ng/l  |   |
| 307-55-1   | Perfluorododecanoic acid      | ND     | 7.7    | 2.9  | ng/l  |   |
| 72629-94-8 | Perfluorotridecanoic acid     | ND     | 7.7    | 1.9  | ng/l  |   |
| 376-06-7   | Perfluorotetradecanoic acid   | ND     | 7.7    | 1.9  | ng/l  |   |
| 375-73-5   | Perfluorobutanesulfonic acid  | 1.93   | 3.8    | 1.9  | ng/l  | J |
| 355-46-4   | Perfluorohexanesulfonic acid  | 2.87   | 3.8    | 1.9  | ng/l  | J |
| 375-92-8   | Perfluoroheptanesulfonic acid | ND     | 7.7    | 1.9  | ng/l  |   |
| 1763-23-1  | Perfluorooctanesulfonic acid  | 3.40   | 3.8    | 2.9  | ng/l  | J |
| 335-77-3   | Perfluorodecanesulfonic acid  | ND     | 7.7    | 1.9  | ng/l  |   |
| 754-91-6   | PFOSA                         | ND     | 7.7    | 1.9  | ng/l  |   |
| 2355-31-9  | MeFOSAA                       | ND     | 38     | 7.7  | ng/l  |   |
| 2991-50-6  | EtFOSAA                       | ND     | 38     | 7.7  | ng/l  |   |
| 27619-97-2 | 6:2 Fluorotelomer sulfonate   | ND     | 15     | 3.8  | ng/l  |   |
| 39108-34-4 | 8:2 Fluorotelomer sulfonate   | ND     | 15     | 3.8  | ng/l  |   |
| CAS No.    | Surrogate Recoveries          | Run# 1 | Run# 2 | Lim  | its   |   |
|            | 13C4-PFBA                     | 79%    |        | 30-1 | 40%   |   |
|            | 13C5-PFPeA                    | 90%    |        | 40-1 | 40%   |   |
|            | 13C5-PFHxA                    | 94%    |        | 50-1 | 50%   |   |
|            | 13C4-PFHpA                    | 103%   |        | 50-1 | 50%   |   |
|            | 13C8-PFOA                     | 120%   |        | 50-1 | 50%   |   |
|            | 13C9-PFNA                     | 112%   |        | 50-1 | 50%   |   |
|            | 13C6-PFDA                     | 97%    |        | 50-1 | 50%   |   |
|            | 13C7-PFUnDA                   | 99%    |        | 50-1 | 50%   |   |

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ 

N = Indicates presumptive evidence of a compound

Page 1 of 2

| Client Sample ID: | MW 0                                        |                        |          |
|-------------------|---------------------------------------------|------------------------|----------|
| Chefft Sample ID. | IVI VV -9                                   |                        |          |
| Lab Sample ID:    | JC79316-1                                   | Date Sampled:          | 12/05/18 |
| Matrix:           | AQ - Ground Water                           | Date Received:         | 12/07/18 |
| Method:           | EPA 537M BY ID EPA 537 MOD                  | <b>Percent Solids:</b> | n/a      |
| Project:          | Quanta Resources, Lodi Street, Syracuse, NY |                        |          |

#### **PFAS List**

| CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limits  |
|---------|----------------------|--------|--------|---------|
|         | 13C2-PFDoDA          | 108%   |        | 50-150% |
|         | 13C2-PFTeDA          | 123%   |        | 40-150% |
|         | 13C3-PFBS            | 94%    |        | 50-150% |
|         | 13C3-PFHxS           | 99%    |        | 50-150% |
|         | 13C8-PFOS            | 101%   |        | 50-150% |
|         | 13C8-FOSA            | 50%    |        | 30-140% |
|         | d3-MeFOSAA           | 124%   |        | 50-150% |
|         | 13C2-6:2FTS          | 148%   |        | 50-150% |
|         | 13C2-8:2FTS          | 112%   |        | 50-150% |

(a) Dilution required due to matrix interference. Analysis performed at SGS Orlando, FL.

(b) Associated CCV outside of control limits high.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

Page 2 of 2



|                                                          |                                    |                             | Report                         | of An           | alysis                    |       |                       | Page 1 of 1                 |
|----------------------------------------------------------|------------------------------------|-----------------------------|--------------------------------|-----------------|---------------------------|-------|-----------------------|-----------------------------|
| Client Sam<br>Lab Samp<br>Matrix:<br>Method:<br>Project: | le ID: JC79310<br>AQ - Gi<br>SW846 | ound Water<br>8082A SW      |                                | cuse, NY        | 7                         | Date  | Received:             | 12/05/18<br>12/07/18<br>n/a |
| Run #1<br>Run #2                                         | <b>File ID</b><br>XX240797.D       | <b>DF</b><br>1              | <b>Analyzed</b> 12/13/18 23:09 | <b>By</b><br>CP | <b>Prep Date</b> 12/13/18 |       | Prep Batch<br>OP17274 | Analytical Batch<br>GXX6552 |
| Run #1<br>Run #2                                         | <b>Initial Volume</b><br>1040 ml   | <b>Final Volu</b><br>5.0 ml | ime                            |                 |                           |       |                       |                             |
| PCB List                                                 |                                    |                             |                                |                 |                           |       |                       |                             |
| CAS No.                                                  | Compound                           |                             | Result                         | RL              | MDL                       | Units | Q                     |                             |

| CAB III.   | Compound             | KtSuit | <b>KL</b> | MDL   | Omts | V |
|------------|----------------------|--------|-----------|-------|------|---|
| 12674-11-2 | Aroclor 1016         | ND     | 0.24      | 0.094 | ug/l |   |
| 11104-28-2 | Aroclor 1221         | ND     | 0.24      | 0.20  | ug/l |   |
| 11141-16-5 | Aroclor 1232         | ND     | 0.24      | 0.12  | ug/l |   |
| 53469-21-9 | Aroclor 1242         | ND     | 0.24      | 0.11  | ug/l |   |
| 12672-29-6 | Aroclor 1248         | ND     | 0.24      | 0.061 | ug/l |   |
| 11097-69-1 | Aroclor 1254         | ND     | 0.24      | 0.20  | ug/l |   |
| 11096-82-5 | Aroclor 1260         | ND     | 0.24      | 0.073 | ug/l |   |
|            |                      |        |           |       |      |   |
| CAS No.    | Surrogate Recoveries | Run# 1 | Run# 2    | Limit | ts   |   |
|            |                      |        |           |       |      |   |
| 877-09-8   | Tetrachloro-m-xylene | 40%    |           | 11-16 | 66%  |   |
| 877-09-8   | Tetrachloro-m-xylene | 35%    |           | 11-16 | 6%   |   |
| 2051-24-3  | Decachlorobiphenyl   | 17%    |           | 10-15 | 50%  |   |
| 2051-24-3  | Decachlorobiphenyl   | 19%    |           | 10-15 | 50%  |   |
|            | 1 2                  |        |           |       |      |   |

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound





| Project:                      | File ID | DF | Analyzed       | By  | Prep Date      | Prep Batch | Analytical Batch |
|-------------------------------|---------|----|----------------|-----|----------------|------------|------------------|
| Run #1 <sup>a</sup><br>Run #2 | 3Q558.D | 1  | 12/18/18 22:30 | AFL | 12/14/18 08:45 | F:OP73036  | F:S3Q9           |

Run #1 260 ml 1.

Run #2

1.0 ml

#### **PFAS List**

| CAS No.    | Compound                      | Result | RL     | MDL  | Units | Q |
|------------|-------------------------------|--------|--------|------|-------|---|
| 375-22-4   | Perfluorobutanoic acid        | ND     | 7.7    | 1.9  | ng/l  |   |
| 2706-90-3  | Perfluoropentanoic acid       | ND     | 3.8    | 1.4  | ng/l  |   |
| 307-24-4   | Perfluorohexanoic acid        | ND     | 3.8    | 0.96 | ng/l  |   |
| 375-85-9   | Perfluoroheptanoic acid       | ND     | 1.9    |      |       |   |
| 335-67-1   | Perfluorooctanoic acid        | ND     | 1.9    | 0.96 | ng/l  |   |
| 375-95-1   | Perfluorononanoic acid        | ND     | 1.9    | 0.96 | ng/l  |   |
| 335-76-2   | Perfluorodecanoic acid        | ND     | 3.8    | 0.96 | ng/l  |   |
| 2058-94-8  | Perfluoroundecanoic acid      | ND     | 3.8    | 0.96 | ng/l  |   |
| 307-55-1   | Perfluorododecanoic acid      | ND     | 3.8    | 1.4  | ng/l  |   |
| 72629-94-8 | Perfluorotridecanoic acid     | ND     | 3.8    | 0.96 | ng/l  |   |
| 376-06-7   | Perfluorotetradecanoic acid   | ND     | 3.8    | 0.96 | ng/l  |   |
| 375-73-5   | Perfluorobutanesulfonic acid  | ND     | 1.9    | 0.96 | ng/l  |   |
| 355-46-4   | Perfluorohexanesulfonic acid  | ND     | 1.9    | 0.96 | ng/l  |   |
| 375-92-8   | Perfluoroheptanesulfonic acid | ND     | 3.8    | 0.96 | ng/l  |   |
| 1763-23-1  | Perfluorooctanesulfonic acid  | ND     | 1.9    | 1.4  | ng/l  |   |
| 335-77-3   | Perfluorodecanesulfonic acid  | ND     | 3.8    | 0.96 | ng/l  |   |
| 754-91-6   | PFOSA                         | ND     | 3.8    | 0.96 | ng/l  |   |
| 2355-31-9  | MeFOSAA                       | ND     | 19     | 3.8  | ng/l  |   |
| 2991-50-6  | EtFOSAA                       | ND     | 19     | 3.8  | ng/l  |   |
| 27619-97-2 | 6:2 Fluorotelomer sulfonate   | ND     | 7.7    | 1.9  | ng/l  |   |
| 39108-34-4 | 8:2 Fluorotelomer sulfonate   | ND     | 7.7    | 1.9  | ng/l  |   |
| CAS No.    | Surrogate Recoveries          | Run# 1 | Run# 2 | Lim  | its   |   |
|            | 13C4-PFBA                     | 70%    |        | 30-1 | 40%   |   |
|            | 13C5-PFPeA                    | 72%    |        | 40-1 | 40%   |   |
|            | 13C5-PFHxA                    | 77%    |        | 50-1 | 50%   |   |
|            | 13C4-PFHpA                    | 80%    |        | 50-1 | 50%   |   |
|            | 13C8-PFOA                     | 84%    |        | 50-1 | 50%   |   |
|            | 13C9-PFNA                     | 86%    |        | 50-1 | 50%   |   |
|            | 13C6-PFDA                     | 103%   |        | 50-1 | 50%   |   |
|            | 13C7-PFUnDA                   | 89%    |        | 50-1 | 50%   |   |

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



Page 1 of 2



| Client Sample ID: | EQUIPMENT BLANK                             |                 |          |
|-------------------|---------------------------------------------|-----------------|----------|
| Lab Sample ID:    | JC79316-2                                   | Date Sampled:   | 12/05/18 |
| Matrix:           | AQ - Equipment Blank                        | Date Received:  | 12/07/18 |
| Method:           | EPA 537M BY ID EPA 537 MOD                  | Percent Solids: | n/a      |
| Project:          | Quanta Resources, Lodi Street, Syracuse, NY |                 |          |
|                   |                                             |                 |          |

#### **PFAS List**

Г

| CAS No. | Surrogate Recoveries | <b>Run#</b> 1 | Run# 2 | Limits  |
|---------|----------------------|---------------|--------|---------|
|         |                      |               |        |         |
|         | 13C2-PFDoDA          | 76%           |        | 50-150% |
|         | 13C2-PFTeDA          | 72%           |        | 40-150% |
|         | 13C3-PFBS            | 72%           |        | 50-150% |
|         | 13C3-PFHxS           | 76%           |        | 50-150% |
|         | 13C8-PFOS            | 77%           |        | 50-150% |
|         | 13C8-FOSA            | 92%           |        | 30-140% |
|         | d3-MeFOSAA           | 92%           |        | 50-150% |
|         | 13C2-6:2FTS          | 82%           |        | 50-150% |
|         | 13C2-8:2FTS          | 96%           |        | 50-150% |

(a) Analysis performed at SGS Orlando, FL.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

Page 2 of 2



| Client San<br>Lab Samj<br>Matrix:<br>Method:<br>Project: | ple ID: JC79<br>AQ -<br>SW8  | 316-3<br>Ground Wa<br>46 8260C | ater<br>es, Lodi Street, Syrad | cuse, N         | I<br>P                  | Date Sampled: 1<br>Date Received: 1<br>Percent Solids: n |                             |
|----------------------------------------------------------|------------------------------|--------------------------------|--------------------------------|-----------------|-------------------------|----------------------------------------------------------|-----------------------------|
| Run #1<br>Run #2                                         | <b>File ID</b><br>2V55852.D  | <b>DF</b><br>1                 | <b>Analyzed</b> 12/12/18 09:41 | <b>By</b><br>JP | <b>Prep Date</b><br>n/a | <b>Prep Batch</b><br>n/a                                 | Analytical Batch<br>V2V2263 |
| Run #1<br>Run #2                                         | <b>Purge Volum</b><br>5.0 ml | ie                             |                                |                 |                         |                                                          |                             |

#### **VOA Special List**

| CAS No.  | Compound                             | Result | RL   | MDL  | Units | Q |
|----------|--------------------------------------|--------|------|------|-------|---|
| 67-64-1  | Acetone                              | ND     | 10   | 6.0  | ug/l  |   |
| 71-43-2  | Benzene                              | 1.7    | 0.50 | 0.43 | ug/l  |   |
| 108-86-1 | Bromobenzene                         | ND     | 1.0  | 0.55 | ug/l  |   |
| 74-97-5  | Bromochloromethane                   | ND     | 1.0  | 0.48 | ug/l  |   |
| 75-27-4  | Bromodichloromethane                 | ND     | 1.0  | 0.58 | ug/l  |   |
| 75-25-2  | Bromoform                            | ND     | 1.0  | 0.63 | ug/l  |   |
| 74-83-9  | Bromomethane <sup>a</sup>            | ND     | 2.0  | 1.6  | ug/l  |   |
| 78-93-3  | 2-Butanone (MEK)                     | ND     | 10   | 6.9  | ug/l  |   |
| 104-51-8 | n-Butylbenzene                       | ND     | 2.0  | 0.52 | ug/l  |   |
| 135-98-8 | sec-Butylbenzene                     | ND     | 2.0  | 0.62 | ug/l  |   |
| 98-06-6  | tert-Butylbenzene                    | ND     | 2.0  | 0.69 | ug/l  |   |
| 75-15-0  | Carbon disulfide                     | ND     | 2.0  | 0.95 | ug/l  |   |
| 56-23-5  | Carbon tetrachloride                 | ND     | 1.0  | 0.55 | ug/l  |   |
| 108-90-7 | Chlorobenzene                        | 23.9   | 1.0  | 0.56 | ug/l  |   |
| 75-00-3  | Chloroethane                         | ND     | 1.0  | 0.73 | ug/l  |   |
| 67-66-3  | Chloroform                           | ND     | 1.0  | 0.50 | ug/l  |   |
| 74-87-3  | Chloromethane                        | ND     | 1.0  | 0.76 | ug/l  |   |
| 95-49-8  | o-Chlorotoluene                      | ND     | 2.0  | 0.63 | ug/l  |   |
| 106-43-4 | p-Chlorotoluene                      | ND     | 2.0  | 0.60 | ug/l  |   |
| 96-12-8  | 1,2-Dibromo-3-chloropropane          | ND     | 2.0  | 1.2  | ug/l  |   |
| 124-48-1 | Dibromochloromethane                 | ND     | 1.0  | 0.56 | ug/l  |   |
| 106-93-4 | 1,2-Dibromoethane                    | ND     | 1.0  | 0.48 | ug/l  |   |
| 95-50-1  | 1,2-Dichlorobenzene                  | 4.5    | 1.0  | 0.53 | ug/l  |   |
| 541-73-1 | 1,3-Dichlorobenzene                  | 2.4    | 1.0  | 0.54 | ug/l  |   |
| 106-46-7 | 1,4-Dichlorobenzene                  | 2.7    | 1.0  | 0.51 | ug/l  |   |
| 75-71-8  | Dichlorodifluoromethane <sup>a</sup> | ND     | 2.0  | 1.4  | ug/l  |   |
| 75-34-3  | 1,1-Dichloroethane                   | 0.61   | 1.0  | 0.57 | ug/l  | J |
| 107-06-2 | 1,2-Dichloroethane                   | ND     | 1.0  | 0.60 | ug/l  |   |
| 75-35-4  | 1,1-Dichloroethene                   | ND     | 1.0  | 0.59 | ug/l  |   |
| 540-59-0 | 1,2-Dichloroethene (total)           | ND     | 1.0  | 0.51 | ug/l  |   |
| 78-87-5  | 1,2-Dichloropropane                  | ND     | 1.0  | 0.51 | ug/l  |   |
| 142-28-9 | 1,3-Dichloropropane                  | ND     | 1.0  | 0.43 | ug/l  |   |

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ 

N = Indicates presumptive evidence of a compound

Page 1 of 2



E = Indicates value exceeds calibration range

J = Indicates an estimated value

| Client Sample ID: | MW-6                                        |                 |          |
|-------------------|---------------------------------------------|-----------------|----------|
| Lab Sample ID:    | JC79316-3                                   | Date Sampled:   | 12/05/18 |
| Matrix:           | AQ - Ground Water                           | Date Received:  | 12/07/18 |
| Method:           | SW846 8260C                                 | Percent Solids: | n/a      |
| Project:          | Quanta Resources, Lodi Street, Syracuse, NY |                 |          |
|                   |                                             |                 |          |

**VOA Special List** 

| CAS No.    | Compound                               | Result | RL     | MDL     | Units | Q |  |
|------------|----------------------------------------|--------|--------|---------|-------|---|--|
| 594-20-7   | 2,2-Dichloropropane                    | ND     | 1.0    | 0.52    | ug/l  |   |  |
| 563-58-6   | 1,1-Dichloropropene                    | ND     | 1.0    | 0.82    | ug/l  |   |  |
| 10061-01-5 | cis-1,3-Dichloropropene                | ND     | 1.0    | 0.47    | ug/l  |   |  |
| 10061-02-6 | trans-1,3-Dichloropropene              | ND     | 1.0    | 0.43    | ug/l  |   |  |
| 100-41-4   | Ethylbenzene                           | ND     | 1.0    | 0.60    | ug/l  |   |  |
| 87-68-3    | Hexachlorobutadiene                    | ND     | 2.0    | 0.56    | ug/l  |   |  |
| 98-82-8    | Isopropylbenzene                       | ND     | 1.0    | 0.65    | ug/l  |   |  |
| 99-87-6    | p-Isopropyltoluene                     | ND     | 2.0    | 0.66    | ug/l  |   |  |
| 1634-04-4  | Methyl Tert Butyl Ether                | ND     | 1.0    | 0.51    | ug/l  |   |  |
| 74-95-3    | Methylene bromide                      | ND     | 1.0    | 0.48    | ug/l  |   |  |
| 75-09-2    | Methylene chloride                     | ND     | 2.0    | 1.0     | ug/l  |   |  |
| 91-20-3    | Naphthalene                            | ND     | 5.0    | 0.98    | ug/l  |   |  |
| 103-65-1   | n-Propylbenzene                        | ND     | 2.0    | 0.60    | ug/l  |   |  |
| 100-42-5   | Styrene                                | ND     | 1.0    | 0.70    | ug/l  |   |  |
| 630-20-6   | 1,1,1,2-Tetrachloroethane              | ND     | 1.0    | 0.60    | ug/l  |   |  |
| 79-34-5    | 1,1,2,2-Tetrachloroethane <sup>b</sup> | ND     | 1.0    | 0.65    | ug/l  |   |  |
| 127-18-4   | Tetrachloroethene                      | ND     | 1.0    | 0.90    | ug/l  |   |  |
| 108-88-3   | Toluene                                | ND     | 1.0    | 0.53    | ug/l  |   |  |
| 87-61-6    | 1,2,3-Trichlorobenzene                 | ND     | 1.0    | 0.50    | ug/l  |   |  |
| 120-82-1   | 1,2,4-Trichlorobenzene                 | ND     | 1.0    | 0.50    | ug/l  |   |  |
| 71-55-6    | 1,1,1-Trichloroethane                  | ND     | 1.0    | 0.54    | ug/l  |   |  |
| 79-00-5    | 1,1,2-Trichloroethane                  | ND     | 1.0    | 0.53    | ug/l  |   |  |
| 79-01-6    | Trichloroethene                        | ND     | 1.0    | 0.53    | ug/l  |   |  |
| 75-69-4    | Trichlorofluoromethane                 | ND     | 2.0    | 0.84    | ug/l  |   |  |
| 96-18-4    | 1,2,3-Trichloropropane                 | ND     | 2.0    | 0.70    | ug/l  |   |  |
| 95-63-6    | 1,2,4-Trimethylbenzene                 | ND     | 2.0    | 1.0     | ug/l  |   |  |
| 108-67-8   | 1,3,5-Trimethylbenzene                 | ND     | 2.0    | 1.0     | ug/l  |   |  |
| 75-01-4    | Vinyl chloride                         | ND     | 1.0    | 0.79    | ug/l  |   |  |
|            | m,p-Xylene                             | ND     | 1.0    | 0.78    | ug/l  |   |  |
| 95-47-6    | o-Xylene                               | ND     | 1.0    | 0.59    | ug/l  |   |  |
| CAS No.    | Surrogate Recoveries                   | Run# 1 | Run# 2 | Lim     | its   |   |  |
| 1868-53-7  | Dibromofluoromethane                   | 98%    |        | 80-1    | 20%   |   |  |
| 17060-07-0 | 1,2-Dichloroethane-D4                  | 107%   |        | 81-1    | 24%   |   |  |
| 2037-26-5  | Toluene-D8                             | 98%    |        | 80-1    | 20%   |   |  |
| 460-00-4   |                                        |        |        | 80-120% |       |   |  |

(a) Associated CCV outside of control limits low.

(b) This compound in BS is outside in house QC limits bias high.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ 

N = Indicates presumptive evidence of a compound

Page 2 of 2



E = Indicates value exceeds calibration range

|                                                                                                |                                                                    |                                                |                            | Repor                                  | rt of Ana                                                    | alysis                                                  |                                              |                       | Page 1 of 1                        |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------|----------------------------|----------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------|-----------------------|------------------------------------|
| Client Sample ID:<br>Lab Sample ID:<br>Matrix:<br>Method:<br>Project:                          |                                                                    | SW846                                          | ound Wate<br>8082A SV      | r<br>V846 3510C<br>Lodi Street, Sy     | racuse, NY                                                   |                                                         | Date                                         | Received: 1           | 2/05/18<br>2/07/18<br>/a           |
| Run #1<br>Run #2                                                                               | File ID<br>XX2407                                                  | 798.D                                          | <b>DF</b><br>1             | <b>Analyzed</b> 12/13/18 23:           | <b>By</b><br>27 CP                                           | <b>Prep D</b> 12/13/1                                   | <b>ate</b><br>8 09:00                        | Prep Batch<br>OP17274 | <b>Analytical Batch</b><br>GXX6552 |
| Run #1<br>Run #2                                                                               | <b>Initial</b><br>1040 ml                                          |                                                | <b>Final Vol</b><br>5.0 ml | ume                                    |                                                              |                                                         |                                              |                       |                                    |
| PCB List                                                                                       |                                                                    |                                                |                            |                                        |                                                              |                                                         |                                              |                       |                                    |
| CAS No.                                                                                        | Comp                                                               | ound                                           |                            | Result                                 | RL                                                           | MDL                                                     | Units                                        | Q                     |                                    |
| 12674-11-2<br>11104-28-2<br>11141-16-5<br>53469-21-9<br>12672-29-6<br>11097-69-1<br>11096-82-5 | Aroclo<br>Aroclo<br>Aroclo<br>Aroclo<br>Aroclo<br>Aroclo<br>Aroclo | r 1221<br>r 1232<br>r 1242<br>r 1248<br>r 1254 |                            | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | 0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24 | 0.094<br>0.20<br>0.12<br>0.11<br>0.061<br>0.20<br>0.073 | ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l |                       |                                    |
| CAS No.<br>877-09-8                                                                            | Surrog                                                             | gate Rec                                       |                            | <b>Run# 1</b><br>19%                   | Run# 2                                                       | Lim                                                     | U U                                          |                       |                                    |
| 877-09-8<br>877-09-8                                                                           |                                                                    | nloro-m-<br>nloro-m-                           | •                          | 19%<br>17%                             |                                                              |                                                         | .66%                                         |                       |                                    |

(a) Outside the QC limits. There is no sample left to re-extract.

Decachlorobiphenyl

Decachlorobiphenyl

2051-24-3

2051-24-3

9% a

8% a

J = Indicates an estimated value

10-150%

10-150%

- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound



| Client San<br>Lab Samj<br>Matrix:<br>Method:<br>Project: | ple ID: JC7<br>AQ<br>SW     | 9316-4<br>- Ground Wa<br>846 8260C | ater<br>es, Lodi Street, Syrad | cuse, N         | ]                       | Date Sampled:<br>Date Received:<br>Percent Solids: |                               |
|----------------------------------------------------------|-----------------------------|------------------------------------|--------------------------------|-----------------|-------------------------|----------------------------------------------------|-------------------------------|
| Run #1<br>Run #2                                         | <b>File ID</b><br>2V55853.D | <b>DF</b><br>1                     | Analyzed<br>12/12/18 10:07     | <b>By</b><br>JP | <b>Prep Date</b><br>n/a | <b>Prep Batc</b><br>n/a                            | h Analytical Batch<br>V2V2263 |
| Run #1<br>Run #2                                         | <b>Purge Volu</b><br>5.0 ml | me                                 |                                |                 |                         |                                                    |                               |

#### **VOA Special List**

| CAS No.  | Compound                             | Result | RL   | MDL  | Units | Q |
|----------|--------------------------------------|--------|------|------|-------|---|
| 67-64-1  | Acetone                              | ND     | 10   | 6.0  | ug/l  |   |
| 71-43-2  | Benzene                              | ND     | 0.50 | 0.43 | ug/l  |   |
| 108-86-1 | Bromobenzene                         | ND     | 1.0  | 0.55 | ug/l  |   |
| 74-97-5  | Bromochloromethane                   | ND     | 1.0  | 0.48 | ug/l  |   |
| 75-27-4  | Bromodichloromethane                 | 0.82   | 1.0  | 0.58 | ug/l  | J |
| 75-25-2  | Bromoform                            | ND     | 1.0  | 0.63 | ug/l  |   |
| 74-83-9  | Bromomethane <sup>a</sup>            | ND     | 2.0  | 1.6  | ug/l  |   |
| 78-93-3  | 2-Butanone (MEK)                     | ND     | 10   | 6.9  | ug/l  |   |
| 104-51-8 | n-Butylbenzene                       | ND     | 2.0  | 0.52 | ug/l  |   |
| 135-98-8 | sec-Butylbenzene                     | ND     | 2.0  | 0.62 | ug/l  |   |
| 98-06-6  | tert-Butylbenzene                    | ND     | 2.0  | 0.69 | ug/l  |   |
| 75-15-0  | Carbon disulfide                     | ND     | 2.0  | 0.95 | ug/l  |   |
| 56-23-5  | Carbon tetrachloride                 | ND     | 1.0  | 0.55 | ug/l  |   |
| 108-90-7 | Chlorobenzene                        | ND     | 1.0  | 0.56 | ug/l  |   |
| 75-00-3  | Chloroethane                         | ND     | 1.0  | 0.73 | ug/l  |   |
| 67-66-3  | Chloroform                           | 17.4   | 1.0  | 0.50 | ug/l  |   |
| 74-87-3  | Chloromethane                        | ND     | 1.0  | 0.76 | ug/l  |   |
| 95-49-8  | o-Chlorotoluene                      | ND     | 2.0  | 0.63 | ug/l  |   |
| 106-43-4 | p-Chlorotoluene                      | ND     | 2.0  | 0.60 | ug/l  |   |
| 96-12-8  | 1,2-Dibromo-3-chloropropane          | ND     | 2.0  | 1.2  | ug/l  |   |
| 124-48-1 | Dibromochloromethane                 | ND     | 1.0  | 0.56 | ug/l  |   |
| 106-93-4 | 1,2-Dibromoethane                    | ND     | 1.0  | 0.48 | ug/l  |   |
| 95-50-1  | 1,2-Dichlorobenzene                  | ND     | 1.0  | 0.53 | ug/l  |   |
| 541-73-1 | 1,3-Dichlorobenzene                  | ND     | 1.0  | 0.54 | ug/l  |   |
| 106-46-7 | 1,4-Dichlorobenzene                  | ND     | 1.0  | 0.51 | ug/l  |   |
| 75-71-8  | Dichlorodifluoromethane <sup>a</sup> | ND     | 2.0  | 1.4  | ug/l  |   |
| 75-34-3  | 1,1-Dichloroethane                   | ND     | 1.0  | 0.57 | ug/l  |   |
| 107-06-2 | 1,2-Dichloroethane                   | ND     | 1.0  | 0.60 | ug/l  |   |
| 75-35-4  | 1,1-Dichloroethene                   | ND     | 1.0  | 0.59 | ug/l  |   |
| 540-59-0 | 1,2-Dichloroethene (total)           | ND     | 1.0  | 0.51 | ug/l  |   |
| 78-87-5  | 1,2-Dichloropropane                  | ND     | 1.0  | 0.51 | ug/l  |   |
| 142-28-9 | 1,3-Dichloropropane                  | ND     | 1.0  | 0.43 | ug/l  |   |

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ 

N = Indicates presumptive evidence of a compound

Page 1 of 2

22 of 50

JC79316

E = Indicates value exceeds calibration range

J = Indicates an estimated value

| Client Sample ID: | MW-5                                        |                 |          |
|-------------------|---------------------------------------------|-----------------|----------|
| Lab Sample ID:    | JC79316-4                                   | Date Sampled:   | 12/05/18 |
| Matrix:           | AQ - Ground Water                           | Date Received:  | 12/07/18 |
| Method:           | SW846 8260C                                 | Percent Solids: | n/a      |
| Project:          | Quanta Resources, Lodi Street, Syracuse, NY |                 |          |

**VOA Special List** 

| CAS No.    | Compound                               | Result | RL                 | MDL  | Units | Q |
|------------|----------------------------------------|--------|--------------------|------|-------|---|
| 594-20-7   | 2,2-Dichloropropane                    | ND     | 1.0                | 0.52 | ug/l  |   |
| 563-58-6   | 1,1-Dichloropropene                    | ND     | 1.0                | 0.82 | ug/l  |   |
| 10061-01-5 | cis-1,3-Dichloropropene                | ND     | 1.0                | 0.47 | ug/l  |   |
| 10061-02-6 | trans-1,3-Dichloropropene              | ND     | 1.0                | 0.43 | ug/l  |   |
| 100-41-4   | Ethylbenzene                           | ND     | 1.0                | 0.60 | ug/l  |   |
| 87-68-3    | Hexachlorobutadiene                    | ND     | 2.0                | 0.56 | ug/l  |   |
| 98-82-8    | Isopropylbenzene                       | ND     | 1.0                | 0.65 | ug/l  |   |
| 99-87-6    | p-Isopropyltoluene                     | ND     | 2.0                | 0.66 | ug/l  |   |
| 1634-04-4  | Methyl Tert Butyl Ether                | ND     | 1.0                | 0.51 | ug/l  |   |
| 74-95-3    | Methylene bromide                      | ND     | 1.0                | 0.48 | ug/l  |   |
| 75-09-2    | Methylene chloride                     | ND     | 2.0                | 1.0  | ug/l  |   |
| 91-20-3    | Naphthalene                            | ND     | 5.0                | 0.98 | ug/l  |   |
| 103-65-1   | n-Propylbenzene                        | ND     | 2.0                | 0.60 | ug/l  |   |
| 100-42-5   | Styrene                                | ND     | 1.0                | 0.70 | ug/l  |   |
| 630-20-6   | 1,1,1,2-Tetrachloroethane              | ND     | 1.0                | 0.60 | ug/l  |   |
| 79-34-5    | 1,1,2,2-Tetrachloroethane <sup>b</sup> | ND     | 1.0                | 0.65 | ug/l  |   |
| 127-18-4   | Tetrachloroethene                      | ND     | 1.0                | 0.90 | ug/l  |   |
| 108-88-3   | Toluene                                | ND     | 1.0                | 0.53 | ug/l  |   |
| 87-61-6    | 1,2,3-Trichlorobenzene                 | ND     | 1.0                | 0.50 | ug/l  |   |
| 120-82-1   | 1,2,4-Trichlorobenzene                 | ND     | 1.0                | 0.50 | ug/l  |   |
| 71-55-6    | 1,1,1-Trichloroethane                  | ND     | 1.0                | 0.54 | ug/l  |   |
| 79-00-5    | 1,1,2-Trichloroethane                  | ND     | 1.0                | 0.53 | ug/l  |   |
| 79-01-6    | Trichloroethene                        | ND     | 1.0                | 0.53 | ug/l  |   |
| 75-69-4    | Trichlorofluoromethane                 | ND     | 2.0                | 0.84 | ug/l  |   |
| 96-18-4    | 1,2,3-Trichloropropane                 | ND     | 2.0                | 0.70 | ug/l  |   |
| 95-63-6    | 1,2,4-Trimethylbenzene                 | ND     | 2.0                | 1.0  | ug/l  |   |
| 108-67-8   | 1,3,5-Trimethylbenzene                 | ND     | 2.0                | 1.0  | ug/l  |   |
| 75-01-4    | Vinyl chloride                         | ND     | 1.0                | 0.79 | ug/l  |   |
|            | m,p-Xylene                             | ND     | 1.0                | 0.78 | ug/l  |   |
| 95-47-6    | o-Xylene                               | ND     | 1.0                | 0.59 | ug/l  |   |
| CAS No.    | Surrogate Recoveries                   | Run# 1 | ın#1 Run#2 Liı     |      | its   |   |
| 1868-53-7  | Dibromofluoromethane                   | 98%    |                    | 80-1 | 20%   |   |
| 17060-07-0 | 1,2-Dichloroethane-D4                  | 106%   |                    | 81-1 | 24%   |   |
| 2037-26-5  | Toluene-D8                             | 99%    |                    | 80-1 | 20%   |   |
| 460-00-4   | 4-Bromofluorobenzene                   | 99%    | 80-120%<br>80-120% |      |       |   |

(a) Associated CCV outside of control limits low.

(b) This compound in BS is outside in house QC limits bias high.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

23 of 50

JC79316

E = Indicates value exceeds calibration range

|                                                          | <b>Report of Analysis</b>        |                    |                                |                 |                                 |                                                                          |                                    |  |  |
|----------------------------------------------------------|----------------------------------|--------------------|--------------------------------|-----------------|---------------------------------|--------------------------------------------------------------------------|------------------------------------|--|--|
| Client San<br>Lab Samp<br>Matrix:<br>Method:<br>Project: | le ID: JC7931<br>AQ - G<br>SW846 |                    |                                |                 |                                 | Date Sampled: 12/05/18<br>Date Received: 12/07/18<br>Percent Solids: n/a |                                    |  |  |
| Run #1<br>Run #2                                         | <b>File ID</b><br>XX240799.D     | <b>DF</b><br>1     | <b>Analyzed</b> 12/13/18 23:45 | <b>By</b><br>CP | <b>Prep Date</b> 12/13/18 09:00 | Prep Batch<br>OP17274                                                    | <b>Analytical Batch</b><br>GXX6552 |  |  |
| Run #1<br>Run #2<br>PCB List                             | <b>Initial Volume</b><br>1040 ml | Final Vo<br>5.0 ml | lume                           |                 |                                 |                                                                          |                                    |  |  |

| CAS No.                                              | Compound                                                                                 | Result                     | RL                           | MDL                           | Units                        | Q |
|------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------|------------------------------|-------------------------------|------------------------------|---|
| 12674-11-2<br>11104-28-2<br>11141-16-5<br>53469-21-9 | Aroclor 1016<br>Aroclor 1221<br>Aroclor 1232<br>Aroclor 1242                             | ND<br>ND<br>ND<br>ND       | 0.24<br>0.24<br>0.24<br>0.24 | 0.094<br>0.20<br>0.12<br>0.11 | ug/l<br>ug/l<br>ug/l<br>ug/l |   |
| 12672-29-6<br>11097-69-1<br>11096-82-5               | Aroclor 1248<br>Aroclor 1254<br>Aroclor 1260                                             | ND<br>ND<br>ND             | 0.24<br>0.24<br>0.24         | 0.061<br>0.20<br>0.073        | ug/l<br>ug/l<br>ug/l         |   |
| CAS No.                                              | Surrogate Recoveries                                                                     | Run# 1                     | Run# 2                       | Lim                           | its                          |   |
| 877-09-8<br>877-09-8<br>2051-24-3<br>2051-24-3       | Tetrachloro-m-xylene<br>Tetrachloro-m-xylene<br>Decachlorobiphenyl<br>Decachlorobiphenyl | 133%<br>121%<br>63%<br>61% |                              | 11-1<br>11-1<br>10-1<br>10-1  | 50%                          |   |

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound







| Client San<br>Lab Samj<br>Matrix:<br>Method:<br>Project: | ple ID: JC<br>A(<br>SV      | W-2<br>79316-5<br>Q - Ground Wa<br>V846 8260C<br>uanta Resource | ater<br>28, Lodi Street, Syrad | cuse, N          |                      | Date Sampled:<br>Date Received:<br>Percent Solids: |                               |
|----------------------------------------------------------|-----------------------------|-----------------------------------------------------------------|--------------------------------|------------------|----------------------|----------------------------------------------------|-------------------------------|
| Run #1<br>Run #2                                         | <b>File ID</b><br>2V55958.I | <b>DF</b><br>0 1                                                | <b>Analyzed</b> 12/14/18 11:14 | <b>By</b><br>JTP | <b>Prep Date</b> n/a | <b>Prep Bate</b><br>n/a                            | h Analytical Batch<br>V2V2267 |
| Run #1<br>Run #2                                         | <b>Purge Vol</b><br>5.0 ml  | ume                                                             |                                |                  |                      |                                                    |                               |

#### **VOA Special List**

| CAS No.  | Compound                        | Result | RL   | MDL  | Units | Q |
|----------|---------------------------------|--------|------|------|-------|---|
| 67-64-1  | Acetone                         | ND     | 10   | 6.0  | ug/l  |   |
| 71-43-2  | Benzene                         | 1.4    | 0.50 | 0.43 | ug/l  |   |
| 108-86-1 | Bromobenzene                    | ND     | 1.0  | 0.55 | ug/l  |   |
| 74-97-5  | Bromochloromethane              | ND     | 1.0  | 0.48 | ug/l  |   |
| 75-27-4  | Bromodichloromethane            | ND     | 1.0  | 0.58 | ug/l  |   |
| 75-25-2  | Bromoform                       | ND     | 1.0  | 0.63 | ug/l  |   |
| 74-83-9  | Bromomethane <sup>a</sup>       | ND     | 2.0  | 1.6  | ug/l  |   |
| 78-93-3  | 2-Butanone (MEK)                | ND     | 10   | 6.9  | ug/l  |   |
| 104-51-8 | n-Butylbenzene                  | ND     | 2.0  | 0.52 | ug/l  |   |
| 135-98-8 | sec-Butylbenzene                | ND     | 2.0  | 0.62 | ug/l  |   |
| 98-06-6  | tert-Butylbenzene               | ND     | 2.0  | 0.69 | ug/l  |   |
| 75-15-0  | Carbon disulfide                | ND     | 2.0  | 0.95 | ug/l  |   |
| 56-23-5  | Carbon tetrachloride            | ND     | 1.0  | 0.55 | ug/l  |   |
| 108-90-7 | Chlorobenzene                   | 0.97   | 1.0  | 0.56 | ug/l  | J |
| 75-00-3  | Chloroethane                    | 0.89   | 1.0  | 0.73 | ug/l  | J |
| 67-66-3  | Chloroform                      | ND     | 1.0  | 0.50 | ug/l  |   |
| 74-87-3  | Chloromethane                   | ND     | 1.0  | 0.76 | ug/l  |   |
| 95-49-8  | o-Chlorotoluene                 | ND     | 2.0  | 0.63 | ug/l  |   |
| 106-43-4 | p-Chlorotoluene                 | ND     | 2.0  | 0.60 | ug/l  |   |
| 96-12-8  | 1,2-Dibromo-3-chloropropane     | ND     | 2.0  | 1.2  | ug/l  |   |
| 124-48-1 | Dibromochloromethane            | ND     | 1.0  | 0.56 | ug/l  |   |
| 106-93-4 | 1,2-Dibromoethane               | ND     | 1.0  | 0.48 | ug/l  |   |
| 95-50-1  | 1,2-Dichlorobenzene             | 3.1    | 1.0  | 0.53 | ug/l  |   |
| 541-73-1 | 1,3-Dichlorobenzene             | 2.5    | 1.0  | 0.54 | ug/l  |   |
| 106-46-7 | 1,4-Dichlorobenzene             | 5.9    | 1.0  | 0.51 | ug/l  |   |
| 75-71-8  | Dichlorodifluoromethane         | ND     | 2.0  | 1.4  | ug/l  |   |
| 75-34-3  | 1,1-Dichloroethane              | 0.73   | 1.0  | 0.57 | ug/l  | J |
| 107-06-2 | 1,2-Dichloroethane <sup>b</sup> | ND     | 1.0  | 0.60 | ug/l  |   |
| 75-35-4  | 1,1-Dichloroethene              | ND     | 1.0  | 0.59 | ug/l  |   |
| 540-59-0 | 1,2-Dichloroethene (total)      | 1.0    | 1.0  | 0.51 | ug/l  |   |
| 78-87-5  | 1,2-Dichloropropane             | ND     | 1.0  | 0.51 | ug/l  |   |
| 142-28-9 | 1,3-Dichloropropane             | ND     | 1.0  | 0.43 | ug/l  |   |

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

25 of 50

JC79316

E = Indicates value exceeds calibration range

J = Indicates an estimated value

| Client Sample ID: | MW-2                                        |                        |          |
|-------------------|---------------------------------------------|------------------------|----------|
| Lab Sample ID:    | JC79316-5                                   | Date Sampled:          | 12/05/18 |
| Matrix:           | AQ - Ground Water                           | Date Received:         | 12/07/18 |
| Method:           | SW846 8260C                                 | <b>Percent Solids:</b> | n/a      |
| Project:          | Quanta Resources, Lodi Street, Syracuse, NY |                        |          |

**VOA Special List** 

| CAS No.    | Compound                               | Compound Result |     | MDL  | Units | Q |
|------------|----------------------------------------|-----------------|-----|------|-------|---|
| 594-20-7   | 2,2-Dichloropropane                    | ND              | 1.0 | 0.52 | ug/l  |   |
| 563-58-6   | 1,1-Dichloropropene                    | ND              | 1.0 | 0.82 | ug/l  |   |
| 10061-01-5 | cis-1,3-Dichloropropene                | ND              | 1.0 | 0.47 | ug/l  |   |
| 10061-02-6 | trans-1,3-Dichloropropene              | ND              | 1.0 | 0.43 | ug/l  |   |
| 100-41-4   | Ethylbenzene                           | ND              | 1.0 | 0.60 | ug/l  |   |
| 87-68-3    | Hexachlorobutadiene                    | ND              | 2.0 | 0.56 | ug/l  |   |
| 98-82-8    | Isopropylbenzene                       | ND              | 1.0 | 0.65 | ug/l  |   |
| 99-87-6    | p-Isopropyltoluene                     | ND              | 2.0 | 0.66 | ug/l  |   |
| 1634-04-4  | Methyl Tert Butyl Ether                | ND              | 1.0 | 0.51 | ug/l  |   |
| 74-95-3    | Methylene bromide                      | ND              | 1.0 | 0.48 | ug/l  |   |
| 75-09-2    | Methylene chloride                     | ND              | 2.0 | 1.0  | ug/l  |   |
| 91-20-3    | Naphthalene                            | ND              | 5.0 | 0.98 | ug/l  |   |
| 103-65-1   | n-Propylbenzene                        | ND              | 2.0 | 0.60 | ug/l  |   |
| 100-42-5   | Styrene                                | ND              | 1.0 | 0.70 | ug/l  |   |
| 630-20-6   | 1,1,1,2-Tetrachloroethane              | ND              | 1.0 | 0.60 | ug/l  |   |
| 79-34-5    | 1,1,2,2-Tetrachloroethane <sup>c</sup> | ND              | 1.0 | 0.65 | ug/l  |   |
| 127-18-4   | Tetrachloroethene                      | ND              | 1.0 | 0.90 | ug/l  |   |
| 108-88-3   | Toluene                                | ND              | 1.0 | 0.53 | ug/l  |   |
| 87-61-6    | 1,2,3-Trichlorobenzene                 | ND              | 1.0 | 0.50 | ug/l  |   |
| 120-82-1   | 1,2,4-Trichlorobenzene                 | ND              | 1.0 | 0.50 | ug/l  |   |
| 71-55-6    | 1,1,1-Trichloroethane                  | ND              | 1.0 | 0.54 | ug/l  |   |
| 79-00-5    | 1,1,2-Trichloroethane                  | ND              | 1.0 | 0.53 | ug/l  |   |
| 79-01-6    | Trichloroethene                        | 1.2             | 1.0 | 0.53 | ug/l  |   |
| 75-69-4    | Trichlorofluoromethane                 | ND              | 2.0 | 0.84 | ug/l  |   |
| 96-18-4    | 1,2,3-Trichloropropane                 | ND              | 2.0 | 0.70 | ug/l  |   |
| 95-63-6    | 1,2,4-Trimethylbenzene                 | ND              | 2.0 | 1.0  | ug/l  |   |
| 108-67-8   | 1,3,5-Trimethylbenzene                 | ND              | 2.0 | 1.0  | ug/l  |   |
| 75-01-4    | Vinyl chloride                         | ND              | 1.0 | 0.79 | ug/l  |   |
|            | m,p-Xylene                             | ND              | 1.0 | 0.78 | ug/l  |   |
| 95-47-6    | o-Xylene                               | ND              | 1.0 | 0.59 | ug/l  |   |
| CAS No.    | Surrogate Recoveries                   | Run# 1 Run# 2   |     | Lim  | its   |   |
| 1868-53-7  | Dibromofluoromethane                   | 99%             |     | 80-1 | 20%   |   |
| 17060-07-0 | 1,2-Dichloroethane-D4                  | 109%            |     | 81-1 | 24%   |   |
| 2037-26-5  | Toluene-D8                             | 98%             |     | 80-1 | 20%   |   |
| 460-00-4   | 4-Bromofluorobenzene                   | 100%            |     | 80-1 | 20%   |   |

(a) Associated CCV outside of control limits low.

(b) Associated CCV outside of control limits high, sample was ND.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3



E = Indicates value exceeds calibration range

SGS LabLink@14:59 26-Dec-2018

|                                                                       |                                                                               | Repor          | rt of A1   | nalysis |                                                    | Page 3 of 3 |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------|------------|---------|----------------------------------------------------|-------------|
| Client Sample ID:<br>Lab Sample ID:<br>Matrix:<br>Method:<br>Project: | MW-2<br>JC79316-5<br>AQ - Ground Water<br>SW846 8260C<br>Quanta Resources, Lo | odi Street, Sy | yracuse, N | Y       | Date Sampled:<br>Date Received:<br>Percent Solids: |             |
| VOA Special List<br>CAS No. Comr                                      | oound                                                                         | Result         | RL         | MDL     | Units O                                            |             |

(c) Associated CCV outside of control limits high, sample was ND. This compound in BS is outside in house QC limits bias high.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



JC79316



2051-24-3

2051-24-3

|                                                                                                |                                                |                                                                                                                  |                         | Repor                                | t of An                                                                                     | alysis                                                                             |                                              |                                        | Page 1 of 1                          |
|------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------|--------------------------------------|
| Client Sam<br>Lab Sample<br>Matrix:<br>Method:<br>Project:                                     | -                                              | MW-2<br>JC79316-5<br>AQ - Ground Water<br>SW846 8082A SW846 3510C<br>Quanta Resources, Lodi Street, Syracuse, NY |                         |                                      |                                                                                             |                                                                                    | Date                                         | e Sampled:<br>Received:<br>ent Solids: | 12/05/18<br>12/07/18<br>n/a          |
| Run #1<br>Run #2                                                                               | File ID<br>XX240                               |                                                                                                                  | <b>DF</b><br>1          | <b>Analyzed</b> 12/14/18 01::        | <b>By</b><br>32 CP                                                                          | <b>Prep D</b> 12/13/1                                                              | <b>ate</b><br>8 09:00                        | Prep Batch<br>OP17274                  | n <b>Analytical Batch</b><br>GXX6552 |
| Run #1<br>Run #2                                                                               | <b>Initial</b><br>1040 m                       | <b>Volume</b><br>1                                                                                               | <b>Final Vol</b> 5.0 ml | ume                                  |                                                                                             |                                                                                    |                                              |                                        |                                      |
| PCB List                                                                                       |                                                |                                                                                                                  |                         |                                      |                                                                                             |                                                                                    |                                              |                                        |                                      |
| CAS No.                                                                                        | Comp                                           | ound                                                                                                             |                         | Result                               | RL                                                                                          | MDL                                                                                | Units                                        | Q                                      |                                      |
| 12674-11-2<br>11104-28-2<br>11141-16-5<br>53469-21-9<br>12672-29-6<br>11097-69-1<br>11096-82-5 | Aroclo<br>Aroclo<br>Aroclo<br>Aroclo<br>Aroclo | or 1016<br>or 1221<br>or 1232<br>or 1242<br>or 1248 a<br>or 1254<br>or 1260                                      |                         | ND<br>ND<br>ND<br>0.75<br>1.1<br>1.2 | $\begin{array}{c} 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \end{array}$ | $\begin{array}{c} 0.094\\ 0.20\\ 0.12\\ 0.11\\ 0.061\\ 0.20\\ 0.073\\ \end{array}$ | ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l |                                        |                                      |
| CAS No.                                                                                        | Surro                                          | gate Reco                                                                                                        | overies                 | Run# 1                               | Run# 2                                                                                      | Lim                                                                                | its                                          |                                        |                                      |
| 877-09-8<br>877-09-8                                                                           |                                                | hloro-m-2<br>hloro-m-2                                                                                           | •                       | 141%<br>113%                         | 11-166%<br>11-166%                                                                          |                                                                                    |                                              |                                        |                                      |

(a) More than 40 % RPD for detected concentrations between the two GC columns.

41%

46%

Decachlorobiphenyl

Decachlorobiphenyl

J = Indicates an estimated value

10-150%

10-150%

- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound





| Client San<br>Lab Samj<br>Matrix:<br>Method:<br>Project: | ple ID: JC7<br>AQ<br>SW8     | : MW-1-D<br>JC79316-6<br>AQ - Ground Water<br>SW846 8260C<br>Quanta Resources, Lodi Street, Syracuse, NY |                                |                 |                         | Date Sampled: 12/05/18<br>Date Received: 12/07/18<br>Percent Solids: n/a |                             |  |  |
|----------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------|-----------------|-------------------------|--------------------------------------------------------------------------|-----------------------------|--|--|
| Run #1<br>Run #2                                         | <b>File ID</b><br>2V55873.D  | <b>DF</b><br>1                                                                                           | <b>Analyzed</b> 12/12/18 17:57 | <b>By</b><br>JP | <b>Prep Date</b><br>n/a | <b>Prep Batch</b> n/a                                                    | Analytical Batch<br>V2V2263 |  |  |
| Run #1<br>Run #2                                         | <b>Purge Volun</b><br>5.0 ml | ne                                                                                                       |                                |                 |                         |                                                                          |                             |  |  |

#### **VOA Special List**

| CAS No.  | Compound                             | Result | RL   | MDL  | Units | Q |
|----------|--------------------------------------|--------|------|------|-------|---|
| 67-64-1  | Acetone                              | ND     | 10   | 6.0  | ug/l  |   |
| 71-43-2  | Benzene                              | 0.52   | 0.50 | 0.43 | ug/l  |   |
| 108-86-1 | Bromobenzene                         | ND     | 1.0  | 0.55 | ug/l  |   |
| 74-97-5  | Bromochloromethane                   | ND     | 1.0  | 0.48 | ug/l  |   |
| 75-27-4  | Bromodichloromethane                 | ND     | 1.0  | 0.58 | ug/l  |   |
| 75-25-2  | Bromoform                            | ND     | 1.0  | 0.63 | ug/l  |   |
| 74-83-9  | Bromomethane <sup>a</sup>            | ND     | 2.0  | 1.6  | ug/l  |   |
| 78-93-3  | 2-Butanone (MEK)                     | ND     | 10   | 6.9  | ug/l  |   |
| 104-51-8 | n-Butylbenzene                       | ND     | 2.0  | 0.52 | ug/l  |   |
| 135-98-8 | sec-Butylbenzene                     | ND     | 2.0  | 0.62 | ug/l  |   |
| 98-06-6  | tert-Butylbenzene                    | ND     | 2.0  | 0.69 | ug/l  |   |
| 75-15-0  | Carbon disulfide                     | ND     | 2.0  | 0.95 | ug/l  |   |
| 56-23-5  | Carbon tetrachloride                 | ND     | 1.0  | 0.55 | ug/l  |   |
| 108-90-7 | Chlorobenzene                        | 0.57   | 1.0  | 0.56 | ug/l  | J |
| 75-00-3  | Chloroethane                         | ND     | 1.0  | 0.73 | ug/l  |   |
| 67-66-3  | Chloroform                           | ND     | 1.0  | 0.50 | ug/l  |   |
| 74-87-3  | Chloromethane                        | ND     | 1.0  | 0.76 | ug/l  |   |
| 95-49-8  | o-Chlorotoluene                      | ND     | 2.0  | 0.63 | ug/l  |   |
| 106-43-4 | p-Chlorotoluene                      | ND     | 2.0  | 0.60 | ug/l  |   |
| 96-12-8  | 1,2-Dibromo-3-chloropropane          | ND     | 2.0  | 1.2  | ug/l  |   |
| 124-48-1 | Dibromochloromethane                 | ND     | 1.0  | 0.56 | ug/l  |   |
| 106-93-4 | 1,2-Dibromoethane                    | ND     | 1.0  | 0.48 | ug/l  |   |
| 95-50-1  | 1,2-Dichlorobenzene                  | 0.59   | 1.0  | 0.53 | ug/l  | J |
| 541-73-1 | 1,3-Dichlorobenzene                  | ND     | 1.0  | 0.54 | ug/l  |   |
| 106-46-7 | 1,4-Dichlorobenzene                  | ND     | 1.0  | 0.51 | ug/l  |   |
| 75-71-8  | Dichlorodifluoromethane <sup>a</sup> | ND     | 2.0  | 1.4  | ug/l  |   |
| 75-34-3  | 1,1-Dichloroethane                   | 2.3    | 1.0  | 0.57 | ug/l  |   |
| 107-06-2 | 1,2-Dichloroethane                   | ND     | 1.0  | 0.60 | ug/l  |   |
| 75-35-4  | 1,1-Dichloroethene                   | ND     | 1.0  | 0.59 | ug/l  |   |
| 540-59-0 | 1,2-Dichloroethene (total)           | 1.5    | 1.0  | 0.51 | ug/l  |   |
| 78-87-5  | 1,2-Dichloropropane                  | ND     | 1.0  | 0.51 | ug/l  |   |
| 142-28-9 | 1,3-Dichloropropane                  | ND     | 1.0  | 0.43 | ug/l  |   |

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ 

N = Indicates presumptive evidence of a compound



Page 1 of 2

E = Indicates value exceeds calibration range

| Client Sample ID: | MW-1-D                                      |                 |          |
|-------------------|---------------------------------------------|-----------------|----------|
| Lab Sample ID:    | JC79316-6                                   | Date Sampled:   | 12/05/18 |
| Matrix:           | AQ - Ground Water                           | Date Received:  | 12/07/18 |
| Method:           | SW846 8260C                                 | Percent Solids: | n/a      |
| Project:          | Quanta Resources, Lodi Street, Syracuse, NY |                 |          |

**VOA Special List** 

| CAS No.    | Compound                               | Result | RL      | MDL  | Units | Q |
|------------|----------------------------------------|--------|---------|------|-------|---|
| 594-20-7   | 2,2-Dichloropropane                    | ND     | 1.0     | 0.52 | ug/l  |   |
| 563-58-6   | 1,1-Dichloropropene                    | ND     | 1.0     | 0.82 | ug/l  |   |
| 10061-01-5 | cis-1,3-Dichloropropene                | ND     | 1.0     | 0.47 | ug/l  |   |
| 10061-02-6 | trans-1,3-Dichloropropene              | ND     | 1.0     | 0.43 | ug/l  |   |
| 100-41-4   | Ethylbenzene                           | ND     | 1.0     | 0.60 | ug/l  |   |
| 87-68-3    | Hexachlorobutadiene                    | ND     | 2.0     | 0.56 | ug/l  |   |
| 98-82-8    | Isopropylbenzene                       | ND     | 1.0     | 0.65 | ug/l  |   |
| 99-87-6    | p-Isopropyltoluene                     | ND     | 2.0     | 0.66 | ug/l  |   |
| 1634-04-4  | Methyl Tert Butyl Ether                | ND     | 1.0     | 0.51 | ug/l  |   |
| 74-95-3    | Methylene bromide                      | ND     | 1.0     | 0.48 | ug/l  |   |
| 75-09-2    | Methylene chloride                     | ND     | 2.0     | 1.0  | ug/l  |   |
| 91-20-3    | Naphthalene                            | ND     | 5.0     | 0.98 | ug/l  |   |
| 103-65-1   | n-Propylbenzene                        | ND     | 2.0     | 0.60 | ug/l  |   |
| 100-42-5   | Styrene                                | ND     | 1.0     | 0.70 | ug/l  |   |
| 630-20-6   | 1,1,1,2-Tetrachloroethane              | ND     | 1.0     | 0.60 | ug/l  |   |
| 79-34-5    | 1,1,2,2-Tetrachloroethane <sup>b</sup> | ND     | 1.0     | 0.65 | ug/l  |   |
| 127-18-4   | Tetrachloroethene                      | ND     | 1.0     | 0.90 | ug/l  |   |
| 108-88-3   | Toluene                                | ND     | 1.0     | 0.53 | ug/l  |   |
| 87-61-6    | 1,2,3-Trichlorobenzene                 | ND     | 1.0     | 0.50 | ug/l  |   |
| 120-82-1   | 1,2,4-Trichlorobenzene                 | ND     | 1.0     | 0.50 | ug/l  |   |
| 71-55-6    | 1,1,1-Trichloroethane                  | ND     | 1.0     | 0.54 | ug/l  |   |
| 79-00-5    | 1,1,2-Trichloroethane                  | ND     | 1.0     | 0.53 | ug/l  |   |
| 79-01-6    | Trichloroethene                        | ND     | 1.0     | 0.53 | ug/l  |   |
| 75-69-4    | Trichlorofluoromethane                 | ND     | 2.0     | 0.84 | ug/l  |   |
| 96-18-4    | 1,2,3-Trichloropropane                 | ND     | 2.0     | 0.70 | ug/l  |   |
| 95-63-6    | 1,2,4-Trimethylbenzene                 | ND     | 2.0     | 1.0  | ug/l  |   |
| 108-67-8   | 1,3,5-Trimethylbenzene                 | ND     | 2.0     | 1.0  | ug/l  |   |
| 75-01-4    | Vinyl chloride                         | 24.0   | 1.0     | 0.79 | ug/l  |   |
|            | m,p-Xylene                             | ND     | 1.0     | 0.78 | ug/l  |   |
| 95-47-6    | o-Xylene                               | ND     | 1.0     | 0.59 | ug/l  |   |
| CAS No.    | Surrogate Recoveries                   | Run# 1 | Run# 2  | Lim  | its   |   |
| 1868-53-7  | Dibromofluoromethane                   | 95%    |         | 80-1 | 20%   |   |
| 17060-07-0 | 1,2-Dichloroethane-D4                  | 104%   | 81-124% |      |       |   |
| 2037-26-5  | Toluene-D8                             | 99%    | 80-120% |      |       |   |
| 460-00-4   | 4-Bromofluorobenzene                   | 100%   |         | 80-1 | 20%   |   |

(a) Associated CCV outside of control limits low.

(b) This compound in BS is outside in house QC limits bias high.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound





E = Indicates value exceeds calibration range

53469-21-9 Aroclor 1242

12672-29-6 Aroclor 1248

11097-69-1 Aroclor 1254

11096-82-5 Aroclor 1260

**Surrogate Recoveries** 

Tetrachloro-m-xylene

Tetrachloro-m-xylene

Decachlorobiphenyl

Decachlorobiphenyl

CAS No.

877-09-8

877-09-8

2051-24-3

2051-24-3

|                                                                                                                                                        |                                  |                    | Report                         | nalysis              |                                                                               |                      | Page 1 of 1           |                             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------|--------------------------------|----------------------|-------------------------------------------------------------------------------|----------------------|-----------------------|-----------------------------|--|
| Client Sample ID:MW-1-DLab Sample ID:JC79316-6Matrix:AQ - Ground WaterMethod:SW846 8082ASW846 3510CProject:Quanta Resources, Lodi Street, Syracuse, NY |                                  |                    |                                |                      | Date Sampled: 12/05/18<br>Date Received: 12/07/18<br>Percent Solids: n/a<br>Y |                      |                       |                             |  |
| Run #1<br>Run #2                                                                                                                                       | <b>File ID</b><br>XX240805.D     | <b>DF</b><br>1     | <b>Analyzed</b> 12/14/18 01:50 | <b>By</b><br>CP      | <b>Prep D</b> a 12/13/1                                                       | ate<br>8 09:00       | Prep Batch<br>OP17274 | Analytical Batch<br>GXX6552 |  |
| Run #1<br>Run #2                                                                                                                                       | <b>Initial Volume</b><br>1040 ml | Final Vo<br>5.0 ml | lume                           |                      |                                                                               |                      |                       |                             |  |
| PCB List                                                                                                                                               |                                  |                    |                                |                      |                                                                               |                      |                       |                             |  |
| CAS No.                                                                                                                                                | Compound                         |                    | Result                         | RL                   | MDL                                                                           | Units                | Q                     |                             |  |
| 12674-11-2<br>11104-28-2<br>11141-16-5                                                                                                                 | Aroclor 1221                     |                    | ND                             | 0.24<br>0.24<br>0.24 | 0.094<br>0.20<br>0.12                                                         | ug/l<br>ug/l<br>ug/l |                       |                             |  |

0.24

0.24

0.24

0.24

**Run# 2** 

0.11

0.061

0.20

0.073

Limits

11-166%

11-166%

10-150%

10-150%

ug/l

ug/l

ug/l

ug/l

ND

ND

ND

ND

42%

36%

19%

20%

Run#1

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound



# 4.6

| Client Sar<br>Lab Samj<br>Matrix:<br>Method:<br>Project: | ple ID: J(<br>A<br>S      | MW-12<br>JC79316-7<br>AQ - Ground Water<br>SW846 8260C<br>Quanta Resources, Lodi Street, Syracuse, NY |                                |                 |                         | Date Sampled: 12/05/18<br>Date Received: 12/07/18<br>Percent Solids: n/a |                               |  |
|----------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------|-----------------|-------------------------|--------------------------------------------------------------------------|-------------------------------|--|
| Run #1<br>Run #2                                         | <b>File ID</b> 2V55872.   | <b>DF</b><br>D 1                                                                                      | <b>Analyzed</b> 12/12/18 17:31 | <b>By</b><br>JP | <b>Prep Date</b><br>n/a | <b>Prep Batc</b><br>n/a                                                  | h Analytical Batch<br>V2V2263 |  |
| Run #1<br>Run #2                                         | <b>Purge Vo</b><br>5.0 ml | lume                                                                                                  |                                |                 |                         |                                                                          |                               |  |

#### **VOA Special List**

| CAS No.  | Compound                             | Result | RL   | MDL  | Units | Q |
|----------|--------------------------------------|--------|------|------|-------|---|
| 67-64-1  | Acetone                              | ND     | 10   | 6.0  | ug/l  |   |
| 71-43-2  | Benzene                              | 0.46   | 0.50 | 0.43 | ug/l  | J |
| 108-86-1 | Bromobenzene                         | ND     | 1.0  | 0.55 | ug/l  |   |
| 74-97-5  | Bromochloromethane                   | ND     | 1.0  | 0.48 | ug/l  |   |
| 75-27-4  | Bromodichloromethane                 | ND     | 1.0  | 0.58 | ug/l  |   |
| 75-25-2  | Bromoform                            | ND     | 1.0  | 0.63 | ug/l  |   |
| 74-83-9  | Bromomethane <sup>a</sup>            | ND     | 2.0  | 1.6  | ug/l  |   |
| 78-93-3  | 2-Butanone (MEK)                     | ND     | 10   | 6.9  | ug/l  |   |
| 104-51-8 | n-Butylbenzene                       | ND     | 2.0  | 0.52 | ug/l  |   |
| 135-98-8 | sec-Butylbenzene                     | 1.4    | 2.0  | 0.62 | ug/l  | J |
| 98-06-6  | tert-Butylbenzene                    | 0.96   | 2.0  | 0.69 | ug/l  | J |
| 75-15-0  | Carbon disulfide                     | ND     | 2.0  | 0.95 | ug/l  |   |
| 56-23-5  | Carbon tetrachloride                 | ND     | 1.0  | 0.55 | ug/l  |   |
| 108-90-7 | Chlorobenzene                        | 11.2   | 1.0  | 0.56 | ug/l  |   |
| 75-00-3  | Chloroethane                         | ND     | 1.0  | 0.73 | ug/l  |   |
| 67-66-3  | Chloroform                           | ND     | 1.0  | 0.50 | ug/l  |   |
| 74-87-3  | Chloromethane                        | ND     | 1.0  | 0.76 | ug/l  |   |
| 95-49-8  | o-Chlorotoluene                      | ND     | 2.0  | 0.63 | ug/l  |   |
| 106-43-4 | p-Chlorotoluene                      | ND     | 2.0  | 0.60 | ug/l  |   |
| 96-12-8  | 1,2-Dibromo-3-chloropropane          | ND     | 2.0  | 1.2  | ug/l  |   |
| 124-48-1 | Dibromochloromethane                 | ND     | 1.0  | 0.56 | ug/l  |   |
| 106-93-4 | 1,2-Dibromoethane                    | ND     | 1.0  | 0.48 | ug/l  |   |
| 95-50-1  | 1,2-Dichlorobenzene                  | 3.4    | 1.0  | 0.53 | ug/l  |   |
| 541-73-1 | 1,3-Dichlorobenzene                  | ND     | 1.0  | 0.54 | ug/l  |   |
| 106-46-7 | 1,4-Dichlorobenzene                  | 1.8    | 1.0  | 0.51 | ug/l  |   |
| 75-71-8  | Dichlorodifluoromethane <sup>a</sup> | ND     | 2.0  | 1.4  | ug/l  |   |
| 75-34-3  | 1,1-Dichloroethane                   | ND     | 1.0  | 0.57 | ug/l  |   |
| 107-06-2 | 1,2-Dichloroethane                   | ND     | 1.0  | 0.60 | ug/l  |   |
| 75-35-4  | 1,1-Dichloroethene                   | ND     | 1.0  | 0.59 | ug/l  |   |
| 540-59-0 | 1,2-Dichloroethene (total)           | ND     | 1.0  | 0.51 | ug/l  |   |
| 78-87-5  | 1,2-Dichloropropane                  | ND     | 1.0  | 0.51 | ug/l  |   |
| 142-28-9 | 1,3-Dichloropropane                  | ND     | 1.0  | 0.43 | ug/l  |   |

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ 

N = Indicates presumptive evidence of a compound

Page 1 of 2

32 of 50

JC79316

E = Indicates value exceeds calibration range

J = Indicates an estimated value

| Client Sample ID: | MW-12                                       |                 |          |
|-------------------|---------------------------------------------|-----------------|----------|
| Lab Sample ID:    | JC79316-7                                   | Date Sampled:   | 12/05/18 |
| Matrix:           | AQ - Ground Water                           | Date Received:  | 12/07/18 |
| Method:           | SW846 8260C                                 | Percent Solids: | n/a      |
| Project:          | Quanta Resources, Lodi Street, Syracuse, NY |                 |          |

**VOA Special List** 

| CAS No.    | Compound                               | Result | RL            | MDL  | Units | Q |
|------------|----------------------------------------|--------|---------------|------|-------|---|
| 594-20-7   | 2,2-Dichloropropane                    | ND     | 1.0           | 0.52 | ug/l  |   |
| 563-58-6   | 1,1-Dichloropropene                    | ND     | 1.0           | 0.82 | ug/l  |   |
| 10061-01-5 | cis-1,3-Dichloropropene                | ND     | 1.0           | 0.47 | ug/l  |   |
| 10061-02-6 | trans-1,3-Dichloropropene              | ND     | 1.0           | 0.43 | ug/l  |   |
| 100-41-4   | Ethylbenzene                           | ND     | 1.0           | 0.60 | ug/l  |   |
| 87-68-3    | Hexachlorobutadiene                    | ND     | 2.0           | 0.56 | ug/l  |   |
| 98-82-8    | Isopropylbenzene                       | 3.9    | 1.0           | 0.65 | ug/l  |   |
| 99-87-6    | p-Isopropyltoluene                     | ND     | 2.0           | 0.66 | ug/l  |   |
| 1634-04-4  | Methyl Tert Butyl Ether                | ND     | 1.0           | 0.51 | ug/l  |   |
| 74-95-3    | Methylene bromide                      | ND     | 1.0           | 0.48 | ug/l  |   |
| 75-09-2    | Methylene chloride                     | ND     | 2.0           | 1.0  | ug/l  |   |
| 91-20-3    | Naphthalene                            | ND     | 5.0           | 0.98 | ug/l  |   |
| 103-65-1   | n-Propylbenzene                        | 1.3    | 2.0           | 0.60 | ug/l  | J |
| 100-42-5   | Styrene                                | ND     | 1.0           | 0.70 | ug/l  |   |
| 630-20-6   | 1,1,1,2-Tetrachloroethane              | ND     | 1.0           | 0.60 | ug/l  |   |
| 79-34-5    | 1,1,2,2-Tetrachloroethane <sup>b</sup> | ND     | 1.0           | 0.65 | ug/l  |   |
| 127-18-4   | Tetrachloroethene                      | ND     | 1.0           | 0.90 | ug/l  |   |
| 108-88-3   | Toluene                                | ND     | 1.0           | 0.53 | ug/l  |   |
| 87-61-6    | 1,2,3-Trichlorobenzene                 | ND     | 1.0           | 0.50 | ug/l  |   |
| 120-82-1   | 1,2,4-Trichlorobenzene                 | ND     | 1.0           | 0.50 | ug/l  |   |
| 71-55-6    | 1,1,1-Trichloroethane                  | ND     | 1.0           | 0.54 | ug/l  |   |
| 79-00-5    | 1,1,2-Trichloroethane                  | ND     | 1.0           | 0.53 | ug/l  |   |
| 79-01-6    | Trichloroethene                        | ND     | 1.0           | 0.53 | ug/l  |   |
| 75-69-4    | Trichlorofluoromethane                 | ND     | 2.0           | 0.84 | ug/l  |   |
| 96-18-4    | 1,2,3-Trichloropropane                 | ND     | 2.0           | 0.70 | ug/l  |   |
| 95-63-6    | 1,2,4-Trimethylbenzene                 | ND     | 2.0           | 1.0  | ug/l  |   |
| 108-67-8   | 1,3,5-Trimethylbenzene                 | ND     | 2.0           | 1.0  | ug/l  |   |
| 75-01-4    | Vinyl chloride                         | ND     | 1.0           | 0.79 | ug/l  |   |
|            | m,p-Xylene                             | ND     | 1.0           | 0.78 | ug/l  |   |
| 95-47-6    | o-Xylene                               | ND     | 1.0           | 0.59 | ug/l  |   |
| CAS No.    | Surrogate Recoveries                   | Run# 1 | Run# 2 Limits |      | its   |   |
| 1868-53-7  | Dibromofluoromethane                   | 96%    |               | 80-1 | 20%   |   |
| 17060-07-0 | 1,2-Dichloroethane-D4                  | 104%   |               | 81-1 | 24%   |   |
| 2037-26-5  | Toluene-D8                             | 98%    | 80-120%       |      |       |   |
| 460-00-4   | 4-Bromofluorobenzene                   | 100%   |               | 80-1 | 20%   |   |

(a) Associated CCV outside of control limits low.

(b) This compound in BS is outside in house QC limits bias high.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ 

N = Indicates presumptive evidence of a compound



Page 2 of 2

E = Indicates value exceeds calibration range

|                                                           |                                           | Page 1 of 1                                                                                                             |                                   |          |                          |                                                                          |                               |                                    |  |
|-----------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------|--------------------------|--------------------------------------------------------------------------|-------------------------------|------------------------------------|--|
| Client Sam<br>Lab Sampl<br>Matrix:<br>Method:<br>Project: | e ID: JC79<br>AQ<br>SW8                   | MW-12<br>JC79316-7<br>AQ - Ground Water<br>SW846 8270D BY SIM SW846 3510C<br>Quanta Resources, Lodi Street, Syracuse, N |                                   |          |                          | Date Sampled: 12/05/18<br>Date Received: 12/07/18<br>Percent Solids: n/a |                               |                                    |  |
| Run #1<br>Run #2                                          | <b>File ID</b><br>3P73450.D               | <b>DF</b><br>1                                                                                                          | <b>Analyzed</b><br>12/13/18 03:09 | By<br>SA | <b>Prep D</b><br>12/11/1 |                                                                          | <b>Prep Batch</b><br>OP17214A | <b>Analytical Batch</b><br>E3P3464 |  |
| Run #1<br>Run #2                                          | <b>Initial Volun</b><br>1050 ml           | ne Final Vo<br>1.0 ml                                                                                                   | olume                             |          |                          |                                                                          |                               |                                    |  |
| CAS No.                                                   | Compound                                  |                                                                                                                         | Result                            | RL       | MDL                      | Units                                                                    | Q                             |                                    |  |
| 123-91-1                                                  | 1,4-Dioxane                               | 2                                                                                                                       | 0.239                             | 0.095    | 0.046                    | ug/l                                                                     |                               |                                    |  |
| CAS No.                                                   | Surrogate I                               | Recoveries                                                                                                              | <b>Run#</b> 1                     | Run# 2   | Lim                      | its                                                                      |                               |                                    |  |
| 4165-60-0<br>321-60-8<br>1718-51-0                        | Nitrobenzen<br>2-Fluorobip<br>Terphenyl-d | henyl                                                                                                                   | 73%<br>62%<br>45%                 |          | 29-1<br>23-1<br>22-1     | 22%                                                                      |                               |                                    |  |

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



| Client Sar<br>Lab Samp<br>Matrix:<br>Method:<br>Project: | AQ<br>EPA                 | 9316-7<br>- Ground Wa<br>. 537M BY II | ter<br>D EPA 537 MOD<br>s, Lodi Street, Syrac | cuse, N          | Date Sampled:12/05/18Date Received:12/07/18Percent Solids:n/aY |                                |                                   |  |
|----------------------------------------------------------|---------------------------|---------------------------------------|-----------------------------------------------|------------------|----------------------------------------------------------------|--------------------------------|-----------------------------------|--|
| Run #1 <sup>a</sup><br>Run #2                            | <b>File ID</b><br>3Q559.D | <b>DF</b><br>1                        | <b>Analyzed</b> 12/18/18 22:49                | <b>By</b><br>AFL | <b>Prep Date</b> 12/14/18 08:45                                | <b>Prep Batch</b><br>F:OP73036 | <b>Analytical Batch</b><br>F:S3Q9 |  |
|                                                          | Initial Volur             | ne Final V                            | olume                                         |                  |                                                                |                                |                                   |  |

Run #1 250 ml

Run #2

1.0 ml

#### **PFAS List**

| CAS No.    | Compound                      | Result | RL     | MDL  | Units | Q |
|------------|-------------------------------|--------|--------|------|-------|---|
| 375-22-4   | Perfluorobutanoic acid        | 4.87   | 8.0    | 2.0  | ng/l  | J |
| 2706-90-3  | Perfluoropentanoic acid       | ND     | 4.0    | 1.5  | ng/l  |   |
| 307-24-4   | Perfluorohexanoic acid        | 1.31   | 4.0    | 1.0  | ng/l  | J |
| 375-85-9   | Perfluoroheptanoic acid       | ND     | 2.0    | 1.0  | ng/l  |   |
| 335-67-1   | Perfluorooctanoic acid        | 3.41   | 2.0    | 1.0  | ng/l  |   |
| 375-95-1   | Perfluorononanoic acid        | ND     | 2.0    | 1.0  | ng/l  |   |
| 335-76-2   | Perfluorodecanoic acid        | ND     | 4.0    | 1.0  | ng/l  |   |
| 2058-94-8  | Perfluoroundecanoic acid      | ND     | 4.0    | 1.0  | ng/l  |   |
| 307-55-1   | Perfluorododecanoic acid      | ND     | 4.0    | 1.5  | ng/l  |   |
| 72629-94-8 | Perfluorotridecanoic acid     | ND     | 4.0    | 1.0  | ng/l  |   |
| 376-06-7   | Perfluorotetradecanoic acid   | ND     | 4.0    | 1.0  | ng/l  |   |
| 375-73-5   | Perfluorobutanesulfonic acid  | ND     | 2.0    | 1.0  | ng/l  |   |
| 355-46-4   | Perfluorohexanesulfonic acid  | ND     | 2.0    | 1.0  | ng/l  |   |
| 375-92-8   | Perfluoroheptanesulfonic acid | ND     | 4.0    | 1.0  | ng/l  |   |
| 1763-23-1  | Perfluorooctanesulfonic acid  | 6.12   | 2.0    | 1.5  | ng/l  |   |
| 335-77-3   | Perfluorodecanesulfonic acid  | ND     |        |      | ng/l  |   |
| 754-91-6   | PFOSA                         | ND     | 4.0    | 1.0  | ng/l  |   |
| 2355-31-9  | MeFOSAA                       | ND     | 20     | 4.0  | ng/l  |   |
| 2991-50-6  | EtFOSAA                       | ND     | 20     | 4.0  | ng/l  |   |
| 27619-97-2 | 6:2 Fluorotelomer sulfonate   | ND     | 8.0    | 2.0  | ng/l  |   |
| 39108-34-4 | 8:2 Fluorotelomer sulfonate   | ND     | 8.0    | 2.0  | ng/l  |   |
| CAS No.    | Surrogate Recoveries          | Run# 1 | Run# 2 | Lim  | its   |   |
|            | 13C4-PFBA                     | 54%    |        | 30-1 | 40%   |   |
|            | 13C5-PFPeA                    | 59%    |        | 40-1 | 40%   |   |
|            | 13C5-PFHxA                    | 63%    |        | 50-1 | 50%   |   |
|            | 13C4-PFHpA                    | 66%    |        | 50-1 | 50%   |   |
|            | 13C8-PFOA                     | 74%    |        | 50-1 | 50%   |   |
|            | 13C9-PFNA                     | 73%    |        | 50-1 | 50%   |   |
|            | 13C6-PFDA                     | 64%    |        | 50-1 | 50%   |   |
|            | 13C7-PFUnDA                   | 89%    |        | 50-1 | 50%   |   |

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



Page 1 of 2

| Client Sample ID: | MW-12                                       |                 |          |
|-------------------|---------------------------------------------|-----------------|----------|
| Lab Sample ID:    | JC79316-7                                   | Date Sampled:   | 12/05/18 |
| Matrix:           | AQ - Ground Water                           | Date Received:  | 12/07/18 |
| Method:           | EPA 537M BY ID EPA 537 MOD                  | Percent Solids: | n/a      |
| Project:          | Quanta Resources, Lodi Street, Syracuse, NY |                 |          |
| -                 | - ·                                         |                 |          |

#### **PFAS List**

| CAS No. | Surrogate Recoveries       | Run# 1     | Run# 2 | Limits                        |
|---------|----------------------------|------------|--------|-------------------------------|
|         | 13C2-PFDoDA<br>13C2-PFTeDA | 78%<br>75% |        | 50-150%<br>40-150%            |
|         | 13C3-PFBS<br>13C3-PFHxS    | 58%<br>59% |        | 50-150%<br>50-150%            |
|         | 13C8-PFOS<br>13C8-FOSA     | 63%<br>65% |        | 50-150%<br>50-150%<br>30-140% |
|         | d3-MeFOSAA                 | 84%        |        | 50-150%                       |
|         | 13C2-6:2FTS<br>13C2-8:2FTS | 91%<br>78% |        | 50-150%<br>50-150%            |

(a) Analysis performed at SGS Orlando, FL.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

Page 2 of 2



12672-29-6 Aroclor 1248

11097-69-1 Aroclor 1254

11096-82-5 Aroclor 1260

**Surrogate Recoveries** 

Tetrachloro-m-xylene

Tetrachloro-m-xylene

Decachlorobiphenyl

Decachlorobiphenyl

CAS No.

877-09-8

877-09-8

2051-24-3

2051-24-3

|                                                           |                                  |                               | Report                                 | of Ai                        | nalysis                       |                              |                       | Page 1 of 1                        |
|-----------------------------------------------------------|----------------------------------|-------------------------------|----------------------------------------|------------------------------|-------------------------------|------------------------------|-----------------------|------------------------------------|
| Client Sam<br>Lab Sampl<br>Matrix:<br>Method:<br>Project: | e ID: JC7931<br>AQ - G<br>SW846  | 6-7<br>round Wate<br>8082A SV | er<br>W846 3510C<br>Lodi Street, Syrad | cuse, N                      | īΥ                            | Date                         | Received:             | 12/05/18<br>12/07/18<br>n/a        |
| Run #1<br>Run #2                                          | <b>File ID</b><br>XX240806.D     | <b>DF</b><br>1                | <b>Analyzed</b> 12/14/18 02:08         | <b>By</b><br>CP              | <b>Prep D</b> a 12/13/1       | ate<br>8 09:00               | Prep Batch<br>OP17274 | <b>Analytical Batch</b><br>GXX6552 |
| Run #1<br>Run #2                                          | <b>Initial Volume</b><br>1000 ml | <b>Final Vo</b><br>5.0 ml     | lume                                   |                              |                               |                              |                       |                                    |
| PCB List                                                  |                                  |                               |                                        |                              |                               |                              |                       |                                    |
| CAS No.                                                   | Compound                         |                               | Result                                 | RL                           | MDL                           | Units                        | Q                     |                                    |
| 12674-11-2<br>11104-28-2<br>11141-16-5<br>53469-21-9      | Aroclor 1221<br>Aroclor 1232     |                               | ND<br>ND                               | 0.25<br>0.25<br>0.25<br>0.25 | 0.098<br>0.21<br>0.13<br>0.11 | ug/l<br>ug/l<br>ug/l<br>ug/l |                       |                                    |

0.25

0.25

0.25

**Run# 2** 

0.063

0.076

Limits

11-166%

11-166%

10-150%

10-150%

0.21

ug/l

ug/l

ug/l

ND

ND

ND

Run#1

119%

98%

50%

54%

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound





| Client San<br>Lab Samj<br>Matrix:<br>Method:<br>Project: | ple ID: JC7<br>AQ<br>SW8     | 9316-8<br>- Ground Wa<br>346 8260C | ater<br>28, Lodi Street, Syrad | cuse, N         | F                       | 2/05/18<br>2/07/18<br>⁄a |                                    |  |  |
|----------------------------------------------------------|------------------------------|------------------------------------|--------------------------------|-----------------|-------------------------|--------------------------|------------------------------------|--|--|
| Run #1<br>Run #2                                         | <b>File ID</b><br>2V55871.D  | <b>DF</b><br>1                     | <b>Analyzed</b> 12/12/18 17:06 | <b>By</b><br>JP | <b>Prep Date</b><br>n/a | <b>Prep Batch</b> n/a    | <b>Analytical Batch</b><br>V2V2263 |  |  |
| Run #1<br>Run #2                                         | <b>Purge Volur</b><br>5.0 ml | ne                                 |                                |                 |                         |                          |                                    |  |  |

**Report of Analysis** 

#### Cull #2

### **VOA Special List**

| CAS No.  | Compound                             | Result | RL   | MDL  | Units | Q |
|----------|--------------------------------------|--------|------|------|-------|---|
| 67-64-1  | Acetone                              | ND     | 10   | 6.0  | ug/l  |   |
| 71-43-2  | Benzene                              | 2.3    | 0.50 | 0.43 | ug/l  |   |
| 108-86-1 | Bromobenzene                         | ND     | 1.0  | 0.55 | ug/l  |   |
| 74-97-5  | Bromochloromethane                   | ND     | 1.0  | 0.48 | ug/l  |   |
| 75-27-4  | Bromodichloromethane                 | ND     | 1.0  | 0.58 | ug/l  |   |
| 75-25-2  | Bromoform                            | ND     | 1.0  | 0.63 | ug/l  |   |
| 74-83-9  | Bromomethane <sup>a</sup>            | ND     | 2.0  | 1.6  | ug/l  |   |
| 78-93-3  | 2-Butanone (MEK)                     | ND     | 10   | 6.9  | ug/l  |   |
| 104-51-8 | n-Butylbenzene                       | 0.63   | 2.0  | 0.52 | ug/l  | J |
| 135-98-8 | sec-Butylbenzene                     | 1.3    | 2.0  | 0.62 | ug/l  | J |
| 98-06-6  | tert-Butylbenzene                    | ND     | 2.0  | 0.69 | ug/l  |   |
| 75-15-0  | Carbon disulfide                     | ND     | 2.0  | 0.95 | ug/l  |   |
| 56-23-5  | Carbon tetrachloride                 | ND     | 1.0  | 0.55 | ug/l  |   |
| 108-90-7 | Chlorobenzene                        | ND     | 1.0  | 0.56 | ug/l  |   |
| 75-00-3  | Chloroethane                         | ND     | 1.0  | 0.73 | ug/l  |   |
| 67-66-3  | Chloroform                           | ND     | 1.0  | 0.50 | ug/l  |   |
| 74-87-3  | Chloromethane                        | ND     | 1.0  | 0.76 | ug/l  |   |
| 95-49-8  | o-Chlorotoluene                      | ND     | 2.0  | 0.63 | ug/l  |   |
| 106-43-4 | p-Chlorotoluene                      | ND     | 2.0  | 0.60 | ug/l  |   |
| 96-12-8  | 1,2-Dibromo-3-chloropropane          | ND     | 2.0  | 1.2  | ug/l  |   |
| 124-48-1 | Dibromochloromethane                 | ND     | 1.0  | 0.56 | ug/l  |   |
| 106-93-4 | 1,2-Dibromoethane                    | ND     | 1.0  | 0.48 | ug/l  |   |
| 95-50-1  | 1,2-Dichlorobenzene                  | 2.6    | 1.0  | 0.53 | ug/l  |   |
| 541-73-1 | 1,3-Dichlorobenzene                  | ND     | 1.0  | 0.54 | ug/l  |   |
| 106-46-7 | 1,4-Dichlorobenzene                  | 1.1    | 1.0  | 0.51 | ug/l  |   |
| 75-71-8  | Dichlorodifluoromethane <sup>a</sup> | ND     | 2.0  | 1.4  | ug/l  |   |
| 75-34-3  | 1,1-Dichloroethane                   | ND     | 1.0  | 0.57 | ug/l  |   |
| 107-06-2 | 1,2-Dichloroethane                   | ND     | 1.0  | 0.60 | ug/l  |   |
| 75-35-4  | 1,1-Dichloroethene                   | ND     | 1.0  | 0.59 | ug/l  |   |
| 540-59-0 | 1,2-Dichloroethene (total)           | 0.93   | 1.0  | 0.51 | ug/l  | J |
| 78-87-5  | 1,2-Dichloropropane                  | ND     | 1.0  | 0.51 | ug/l  |   |
| 142-28-9 | 1,3-Dichloropropane                  | ND     | 1.0  | 0.43 | ug/l  |   |

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ 

N = Indicates presumptive evidence of a compound



Page 1 of 2

SGS

E = Indicates value exceeds calibration range

# **Report of Analysis**

| Client Sample ID: | MW-10                                       |                        |          |
|-------------------|---------------------------------------------|------------------------|----------|
| Lab Sample ID:    | JC79316-8                                   | Date Sampled:          | 12/05/18 |
| Matrix:           | AQ - Ground Water                           | Date Received:         | 12/07/18 |
| Method:           | SW846 8260C                                 | <b>Percent Solids:</b> | n/a      |
| Project:          | Quanta Resources, Lodi Street, Syracuse, NY |                        |          |
|                   |                                             |                        |          |

**VOA Special List** 

| CAS No.    | Compound                               | Result | RL     | MDL  | Units | Q |
|------------|----------------------------------------|--------|--------|------|-------|---|
| 594-20-7   | 2,2-Dichloropropane                    | ND     | 1.0    | 0.52 | ug/l  |   |
| 563-58-6   | 1,1-Dichloropropene                    | ND     | 1.0    | 0.82 | ug/l  |   |
| 10061-01-5 | cis-1,3-Dichloropropene                | ND     | 1.0    | 0.47 | ug/l  |   |
| 10061-02-6 | trans-1,3-Dichloropropene              | ND     | 1.0    | 0.43 | ug/l  |   |
| 100-41-4   | Ethylbenzene                           | ND     | 1.0    | 0.60 | ug/l  |   |
| 87-68-3    | Hexachlorobutadiene                    | ND     | 2.0    | 0.56 | ug/l  |   |
| 98-82-8    | Isopropylbenzene                       | 2.3    | 1.0    | 0.65 | ug/l  |   |
| 99-87-6    | p-Isopropyltoluene                     | ND     | 2.0    | 0.66 | ug/l  |   |
| 1634-04-4  | Methyl Tert Butyl Ether                | ND     | 1.0    | 0.51 | ug/l  |   |
| 74-95-3    | Methylene bromide                      | ND     | 1.0    | 0.48 | ug/l  |   |
| 75-09-2    | Methylene chloride                     | ND     | 2.0    | 1.0  | ug/l  |   |
| 91-20-3    | Naphthalene                            | ND     | 5.0    | 0.98 | ug/l  |   |
| 103-65-1   | n-Propylbenzene                        | 1.9    | 2.0    | 0.60 | ug/l  | J |
| 100-42-5   | Styrene                                | ND     | 1.0    | 0.70 | ug/l  |   |
| 630-20-6   | 1,1,1,2-Tetrachloroethane              | ND     | 1.0    | 0.60 | ug/l  |   |
| 79-34-5    | 1,1,2,2-Tetrachloroethane <sup>b</sup> | ND     | 1.0    | 0.65 | ug/l  |   |
| 127-18-4   | Tetrachloroethene                      | ND     | 1.0    | 0.90 | ug/l  |   |
| 108-88-3   | Toluene                                | ND     | 1.0    | 0.53 | ug/l  |   |
| 87-61-6    | 1,2,3-Trichlorobenzene                 | ND     | 1.0    | 0.50 | ug/l  |   |
| 120-82-1   | 1,2,4-Trichlorobenzene                 | ND     | 1.0    | 0.50 | ug/l  |   |
| 71-55-6    | 1,1,1-Trichloroethane                  | ND     | 1.0    | 0.54 | ug/l  |   |
| 79-00-5    | 1,1,2-Trichloroethane                  | ND     | 1.0    | 0.53 | ug/l  |   |
| 79-01-6    | Trichloroethene                        | ND     | 1.0    | 0.53 | ug/l  |   |
| 75-69-4    | Trichlorofluoromethane                 | ND     | 2.0    | 0.84 | ug/l  |   |
| 96-18-4    | 1,2,3-Trichloropropane                 | ND     | 2.0    | 0.70 | ug/l  |   |
| 95-63-6    | 1,2,4-Trimethylbenzene                 | ND     | 2.0    | 1.0  | ug/l  |   |
| 108-67-8   | 1,3,5-Trimethylbenzene                 | ND     | 2.0    | 1.0  | ug/l  |   |
| 75-01-4    | Vinyl chloride                         | ND     | 1.0    | 0.79 | ug/l  |   |
|            | m,p-Xylene                             | ND     | 1.0    | 0.78 | ug/l  |   |
| 95-47-6    | o-Xylene                               | ND     | 1.0    | 0.59 | ug/l  |   |
| CAS No.    | Surrogate Recoveries                   | Run# 1 | Run# 2 | Lim  | its   |   |
| 1868-53-7  | Dibromofluoromethane                   | 99%    |        | 80-1 | 20%   |   |
| 17060-07-0 | 1,2-Dichloroethane-D4                  | 107%   |        | 81-1 |       |   |
| 2037-26-5  | Toluene-D8                             | 99%    |        | 80-1 |       |   |
| 460-00-4   | 4-Bromofluorobenzene                   | 100%   |        | 80-1 |       |   |

(a) Associated CCV outside of control limits low.

(b) This compound in BS is outside in house QC limits bias high.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

39 of 50

JC79316

E = Indicates value exceeds calibration range

|                                                           |                                           |                                                                  | Report                         | of An                    | alysis                   |       |                               | Page 1 of 1                        |
|-----------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------|--------------------------------|--------------------------|--------------------------|-------|-------------------------------|------------------------------------|
| Client Sam<br>Lab Sampl<br>Matrix:<br>Method:<br>Project: | e ID: JC7<br>AQ<br>SW3                    | 7-10<br>9316-8<br>- Ground Wat<br>846 8270D BY<br>nta Resources, | L                              | 2/05/18<br>2/07/18<br>′a |                          |       |                               |                                    |
| Run #1<br>Run #2                                          | <b>File ID</b><br>3P73451.D               | <b>DF</b><br>1                                                   | <b>Analyzed</b> 12/13/18 03:28 | By<br>SA                 | <b>Prep D</b><br>12/11/1 |       | <b>Prep Batch</b><br>OP17214A | <b>Analytical Batch</b><br>E3P3464 |
| Run #1<br>Run #2                                          | <b>Initial Volu</b><br>1000 ml            | ne Final Vo<br>1.0 ml                                            | lume                           |                          |                          |       |                               |                                    |
| CAS No.                                                   | Compound                                  |                                                                  | Result                         | RL                       | MDL                      | Units | Q                             |                                    |
| 123-91-1                                                  | 1,4-Dioxan                                | e                                                                | 0.225                          | 0.10                     | 0.049                    | ug/l  |                               |                                    |
| CAS No.                                                   | Surrogate                                 | Recoveries                                                       | Run# 1                         | Run# 2                   | Lim                      | its   |                               |                                    |
| 4165-60-0<br>321-60-8<br>1718-51-0                        | Nitrobenzer<br>2-Fluorobig<br>Terphenyl-o | henyl                                                            | 62%<br>51%<br>36%              |                          | 29-1<br>23-1<br>22-1     | 22%   |                               |                                    |

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



| Run #1 <sup>a</sup>            | 2Q25416.D                      | 20              | 12/21/10 21.0/                                 | ALL       | 12/14/10 00.43              | F.UP/3030                | F:S2Q394 |  |  |
|--------------------------------|--------------------------------|-----------------|------------------------------------------------|-----------|-----------------------------|--------------------------|----------|--|--|
|                                | File ID                        | <b>DF</b><br>20 | Analyzed<br>12/21/18 21:07                     | By<br>AFI | Prep Date<br>12/14/18 08:45 | Prep Batch<br>F:OP73036  | e e      |  |  |
| Matrix:<br>Method:<br>Project: | EPA :<br>Quant                 |                 | ater<br>D EPA 537 MOD<br>s, Lodi Street, Syrac | cuse, N   | Perc                        | Received:<br>ent Solids: |          |  |  |
| Lab Samp                       | nple ID: MW-1<br>ble ID: JC793 |                 |                                                |           | Date                        | Sampled:                 | 12/05/18 |  |  |

**Report of Analysis** 

Run #1 260 ml 1.0 ml Run #2

#### **PFAS List**

| CAS No.    | Compound                      | Result | RL     | M  | DL Units | Q |
|------------|-------------------------------|--------|--------|----|----------|---|
| 375-22-4   | Perfluorobutanoic acid        | ND     | 150    | 38 | ng/l     |   |
| 2706-90-3  | Perfluoropentanoic acid       | ND     | 77     | 29 | ng/l     |   |
| 307-24-4   | Perfluorohexanoic acid        | ND     | 77     | 19 | ng/l     |   |
| 375-85-9   | Perfluoroheptanoic acid       | ND     | 38     | 19 | ng/l     |   |
| 335-67-1   | Perfluorooctanoic acid b      | ND     | 38     | 19 | ng/l     |   |
| 375-95-1   | Perfluorononanoic acid        | ND     | 38     | 19 | ng/l     |   |
| 335-76-2   | Perfluorodecanoic acid        | ND     | 77     | 19 | ng/l     |   |
| 2058-94-8  | Perfluoroundecanoic acid      | ND     | 77     | 19 | ng/l     |   |
| 307-55-1   | Perfluorododecanoic acid      | ND     | 77     | 29 | ng/l     |   |
| 72629-94-8 | Perfluorotridecanoic acid     | ND     | 77     | 19 | ng/l     |   |
| 376-06-7   | Perfluorotetradecanoic acid   | ND     | 77     | 19 | ng/l     |   |
| 375-73-5   | Perfluorobutanesulfonic acid  | ND     | 38     | 19 | ng/l     |   |
| 355-46-4   | Perfluorohexanesulfonic acid  | ND     | 38     | 19 | ng/l     |   |
| 375-92-8   | Perfluoroheptanesulfonic acid | ND     | 77     | 19 | ng/l     |   |
| 1763-23-1  | Perfluorooctanesulfonic acid  | ND     | 38     | 29 | ng/l     |   |
| 335-77-3   | Perfluorodecanesulfonic acid  | ND     | 77     | 19 | ng/l     |   |
| 754-91-6   | PFOSA                         | ND     | 77     | 19 | ng/l     |   |
| 2355-31-9  | MeFOSAA                       | ND     | 380    | 77 | ng/l     |   |
| 2991-50-6  | EtFOSAA                       | ND     | 380    | 77 | ng/l     |   |
| 27619-97-2 | 6:2 Fluorotelomer sulfonate   | ND     | 150    | 38 | ng/l     |   |
| 39108-34-4 | 8:2 Fluorotelomer sulfonate   | ND     | 150    | 38 | ng/l     |   |
| CAS No.    | Surrogate Recoveries          | Run# 1 | Run# 2 |    | Limits   |   |
|            | 13C4-PFBA                     | 99%    |        |    | 30-140%  |   |
|            | 13C5-PFPeA                    | 101%   |        |    | 40-140%  |   |
|            | 13C5-PFHxA                    | 103%   |        |    | 50-150%  |   |
|            | 13C4-PFHpA                    | 104%   |        |    | 50-150%  |   |
|            | 13C8-PFOA                     | 110%   |        |    | 50-150%  |   |
|            | 13C9-PFNA                     | 110%   |        |    | 50-150%  |   |
|            | 13C6-PFDA                     | 115%   |        |    | 50-150%  |   |
|            | 13C7-PFUnDA                   | 111%   |        |    | 50-150%  |   |

ND = Not detected MDL = Method Detection LimitRL = Reporting LimitE = Indicates value exceeds calibration range  $J = \ Indicates \ an \ estimated \ value$ 

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ 

N = Indicates presumptive evidence of a compound



| Client Sample ID: | MW-10                                       |                 |          |
|-------------------|---------------------------------------------|-----------------|----------|
| Lab Sample ID:    | JC79316-8                                   | Date Sampled:   | 12/05/18 |
| Matrix:           | AQ - Ground Water                           | Date Received:  | 12/07/18 |
| Method:           | EPA 537M BY ID EPA 537 MOD                  | Percent Solids: | n/a      |
| Project:          | Quanta Resources, Lodi Street, Syracuse, NY |                 |          |

## **PFAS List**

| CAS No. | Surrogate Recoveries | Run# 1 | Run# 2 | Limits  |
|---------|----------------------|--------|--------|---------|
|         | 13C2-PFDoDA          | 117%   |        | 50-150% |
|         | 13C2-PFTeDA          | 124%   |        | 40-150% |
|         | 13C3-PFBS            | 97%    |        | 50-150% |
|         | 13C3-PFHxS           | 97%    |        | 50-150% |
|         | 13C8-PFOS            | 103%   |        | 50-150% |
|         | 13C8-FOSA            | 114%   |        | 30-140% |
|         | d3-MeFOSAA           | 107%   |        | 50-150% |
|         | 13C2-6:2FTS          | 111%   |        | 50-150% |
|         | 13C2-8:2FTS          | 114%   |        | 50-150% |

(a) Dilution required due to matrix interference. Analysis performed at SGS Orlando, FL.

(b) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

4.8

Page 2 of 2



|                                                          |                                  |                             | Report                                      | of A     | nalysis                         |                       | Page 1 of 1                 |
|----------------------------------------------------------|----------------------------------|-----------------------------|---------------------------------------------|----------|---------------------------------|-----------------------|-----------------------------|
| Client San<br>Lab Samp<br>Matrix:<br>Method:<br>Project: | le ID: JC7931<br>AQ - G<br>SW846 | 6-8<br>round Wat<br>8082A S | ter<br>SW846 3510C<br>s, Lodi Street, Syrac | cuse, N  | Date<br>Perc                    | L .                   | 12/05/18<br>12/07/18<br>n/a |
| Run #1<br>Run #2                                         | <b>File ID</b><br>XX240807.D     | <b>DF</b><br>1              | <b>Analyzed</b><br>12/14/18 02:26           | By<br>CP | <b>Prep Date</b> 12/13/18 09:00 | Prep Batch<br>OP17274 | Analytical Batch<br>GXX6552 |
| Run #1<br>Run #2                                         | <b>Initial Volume</b><br>1040 ml | Final V<br>5.0 ml           | olume                                       |          |                                 |                       |                             |
| PCB List                                                 |                                  |                             |                                             |          |                                 |                       |                             |

| CAS No.                                                                                        | Compound                                                                                                     | Result                             | RL                                                           | MDL                                                     | Units                                                | Q |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|---|
| 12674-11-2<br>11104-28-2<br>11141-16-5<br>53469-21-9<br>12672-29-6<br>11097-69-1<br>11096-82-5 | Aroclor 1016<br>Aroclor 1221<br>Aroclor 1232<br>Aroclor 1242<br>Aroclor 1248<br>Aroclor 1254<br>Aroclor 1260 | ND<br>ND<br>ND<br>ND<br>0.28<br>ND | 0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24 | 0.094<br>0.20<br>0.12<br>0.11<br>0.061<br>0.20<br>0.073 | ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l |   |
| <b>CAS No.</b><br>877-09-8                                                                     | Surrogate Recoveries<br>Tetrachloro-m-xylene                                                                 | <b>Run# 1</b><br>95%               | Run# 2                                                       |                                                         | its<br>66%                                           |   |
| 877-09-8<br>2051-24-3<br>2051-24-3                                                             | Tetrachloro-m-xylene<br>Decachlorobiphenyl<br>Decachlorobiphenyl                                             | 85%<br>55%<br>59%                  |                                                              | 10-1                                                    | 66%<br>50%<br>50%                                    |   |

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound









Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody
- Chain of Custody (SGS Orlando, FL)

| SGS ACCUTE                                                         | 6               | $,\omega$            | CHAI         |                                              | <b>)F</b> C          |                                            | OI            | ΟY           |                         |                  |                        |             |                    |              |              |           |            |           |          | OF _ ]                                                                                                          |
|--------------------------------------------------------------------|-----------------|----------------------|--------------|----------------------------------------------|----------------------|--------------------------------------------|---------------|--------------|-------------------------|------------------|------------------------|-------------|--------------------|--------------|--------------|-----------|------------|-----------|----------|-----------------------------------------------------------------------------------------------------------------|
| ACCUTE                                                             | ST              |                      | 2235 F       | toute 130                                    | ), Daytor            | n, NJ 088                                  |               |              |                         |                  | FED-                   | EX Trackir  | g#                 |              |              | Bott      | e Order Co | 2912      | 3-15     | 4316                                                                                                            |
| '                                                                  |                 |                      | TEL. 732-32  |                                              | FAX: 7<br>accutest.c |                                            | 99/348        | 50           |                         |                  | SGS                    | Accutest C  | iuoto * P <i>l</i> | <u>75_</u> 2 | 018_4        | rq ses    | Accutest J | ∞# J      | TC 7     | 4316                                                                                                            |
| Client / Reporting Information                                     | Project Name:   |                      | Project      | Informa                                      | ation                |                                            |               |              |                         |                  |                        | Red         | ueste              | d Analy      | rsis ( se    | TEST      | CODE       | sheet)    | 1 1      | Matrix Codes                                                                                                    |
| Company Name<br>Plum ley Engineering<br>Street Address             | (               | Juan tu              | Res          | الات ال                                      | <u>じ</u>             |                                            |               |              |                         |                  |                        |             | 37 Accl)           | (00278)      |              |           |            |           |          | DW - Drinking Water<br>GW - Ground Water<br>WW - Water                                                          |
| 8232 Loop Rel                                                      |                 | . St                 |              |                                              |                      | on ( if diffe                              | rent fro      | m Rep        | ort to)                 |                  | _5                     |             | 37                 | 3            |              |           |            |           |          | SW - Surface Water<br>SO - Soil                                                                                 |
| City State Zip<br>Baldwinsville NY 13027<br>Project Contact E-mail | City S J ra     | inse                 | State        | Compar<br>Street A                           |                      |                                            |               |              |                         |                  |                        | - are       | EPA S              |              |              |           |            |           |          | SL- Sludge<br>SED-Sediment<br>OI - Oil<br>LIQ - Other Liquid                                                    |
| Matt Martin                                                        | 2015            | 5127                 |              |                                              |                      |                                            |               |              |                         |                  | ŝ,                     |             | Ū,                 | Š            |              |           |            |           |          | AIR - Air<br>SOL - Other Solid                                                                                  |
| Phone # Fax #                                                      | Client Purchase | Order#<br>5127       |              | City                                         |                      |                                            | Sta           | əte          |                         | Zip              | ٦d                     | 5 3         |                    | 2 2 0        |              |           |            |           |          | WP - Wipe<br>FB-Field Blank                                                                                     |
| Sampler(s) Name(s) Phone #                                         | Project Manager |                      |              | Attention                                    | ו:                   |                                            |               |              | _                       |                  | ┦ ╹                    | 12          | 1                  | 6            |              |           |            |           | 1        | EB-Equipment Blank<br>RB- Rinse Blank                                                                           |
| Mutt Murtin Derke Hudson                                           | Dule 1          | Wilner               | Collection   |                                              |                      |                                            |               |              |                         | d Bottles        |                        | <u>~</u> اد | 1                  | · .          |              |           |            |           |          | TB-Trip Blank                                                                                                   |
| SGS<br>Access<br>Service # Field ID / Point of Collection          | MEOH/DI Vial #  | Date                 | Time         | Sampled<br>by                                | Matrix               | # of bottles                               | Ŧ             | T.           | TI                      | MEOH             |                        | PCR         | đ                  | ر<br>۲       |              |           |            |           |          | LAB USE ONLY                                                                                                    |
| MW-9                                                               |                 | 12/5/18              | 1230         | My                                           | GW                   |                                            |               |              |                         |                  | X                      | ×           | ×                  | X            |              |           |            |           |          |                                                                                                                 |
| 1 MW-9 MS                                                          |                 |                      | 1230         | 1                                            | 1                    |                                            |               |              |                         |                  | ×                      | (           | X                  |              |              |           |            |           |          |                                                                                                                 |
| mw-9 msi)                                                          |                 |                      | 1230         |                                              |                      |                                            |               |              |                         |                  | X                      |             | ×                  |              |              |           |            |           |          | E106                                                                                                            |
| 2 Equipment Blunk                                                  |                 |                      | 1250         |                                              |                      |                                            |               |              | $\square$               |                  | $\square$              |             | X                  |              |              |           |            |           |          | 503                                                                                                             |
| 3 MW-6                                                             |                 |                      | 13:01        |                                              |                      |                                            |               | $\square$    | $\downarrow$            | $\square$        | ×                      | ×           |                    |              |              |           | _          |           |          | VII32                                                                                                           |
| 4 mw-5                                                             |                 |                      | 13:25        | 11_                                          |                      |                                            |               | Ш            | $\square$               | ++               | <u> </u>               | ×           | _                  |              |              | _         | _          | <u> </u>  |          |                                                                                                                 |
| 5 mw-2                                                             |                 |                      | 13:47        | <u>                                     </u> |                      |                                            |               | $\square$    | $\square$               |                  | ×                      | : x         |                    |              |              | _         | _          |           |          | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |
| 6 mw-1-D                                                           |                 |                      | 1400         |                                              | 11                   |                                            |               | $\square$    | $\downarrow\downarrow$  | ++               | <u>   ×</u>            | ( X         |                    |              | _            | _         |            |           |          |                                                                                                                 |
| 7 MW-12                                                            |                 | -                    | 14:50        | 11                                           | +                    |                                            |               | ⊥            | $\downarrow \downarrow$ | ++               | <u>  ×</u>             | ×           | X                  | X            |              |           |            |           |          |                                                                                                                 |
| \$ mw-10                                                           |                 | ×                    | 16:40        | V                                            | *                    |                                            |               | _            | $\downarrow$            | ++               | $\left  \right\rangle$ | 식츠          | ×                  | ×            |              | -         |            |           | $\vdash$ |                                                                                                                 |
|                                                                    |                 |                      |              |                                              |                      |                                            |               | $\downarrow$ | 11-                     | ++               | $\left  \right $       | _           |                    |              | _            |           |            |           |          |                                                                                                                 |
| Turnaround Time ( Business days)                                   |                 |                      |              |                                              | 040                  | Data                                       | Deliver       | rable In     | formati                 | on               |                        |             | 140.00             |              | C            | ommen     | ts / Spec  | al Instru | ictions  |                                                                                                                 |
| Std. Jø Business Days<br>□ 5 Day RUSH                              |                 | Accutest PM): / Date |              |                                              | Commer               | :ial "A" (L<br>:ial "B" ( L<br>( Level 3+4 | evel 2)       |              | X                       | NYASP (          | ategory A<br>ategory B |             |                    |              |              |           |            |           |          | needed                                                                                                          |
| 3 Day RUSH                                                         | INTER           | ASESSME              | <u>4400</u>  | 20                                           | NJ Reduc             | ed                                         | ,             |              |                         | EDD For<br>Other | mat N/S                | SAIL        | í                  | 1,4          | 1) . 11      | are       | (          | 2,28      | 'ny/L    | - reeded                                                                                                        |
| 2 Day RUSH     1 Day RUSH                                          | LABEL           | VERIFICATI           | ON           | 口                                            |                      | of Known                                   | -             |              | col Rep                 | orting           |                        |             |                    | PFA          | 3            |           |            | 2 ng      | 12       | nexclud                                                                                                         |
| other  Emergency & Rush T/A data available VIA Lablink             |                 |                      |              |                                              |                      | Results On<br>sults + QC                   |               |              |                         |                  | C Summa                | ry          | Sam                | ale inv      | antory i     | verifi    |            | 5         |          | Laboratory                                                                                                      |
| Consigning of Suar (A Suar (A Suar )                               | Sa              | mple Custody n       | ust be docum | iented                                       | elow eac             | belime sa                                  | mples         | chang        | e poss                  | estion,          | Riciuging              | courie      | delive             | y.           | +++          |           |            |           |          |                                                                                                                 |
| 1 12/6/1                                                           | \$ 14:40        | Received By:         | l            | Ľ                                            | 1                    |                                            | Relinqui<br>2 | ished B      | $\mathbb{Z}$            | L                | 11                     | 7:00        |                    | Date Tim     | <b>6/1</b> 8 | 2         | aived By:  | F         | 8        |                                                                                                                 |
| 3 Date Time)<br>3 JZ/7/14                                          | 00:00           | Beenived By:<br>3    | $\sim$       | _                                            |                      |                                            | Reling        | stied By     | . <i>C</i>              |                  |                        |             |                    | Date Tim     | e:           | Rece<br>4 | eived By:  |           |          |                                                                                                                 |
| Relinquished by: Date Time: 5                                      |                 | Received By:         |              |                                              |                      |                                            | Custody       | y Seal ≇     |                         |                  | Intact                 |             | Preserv            | ed where     | applicable   |           |            | On lee    | - 0      | cooler Temp.                                                                                                    |
| Form:SM088-01CRev.Date:9/13/16                                     |                 |                      |              |                                              |                      |                                            |               |              | 4                       |                  |                        |             |                    |              |              |           |            |           |          | 1160-1                                                                                                          |

Form:SM088-01CRev.Date:9/13/16

JC79316: Chain of Custody Page 1 of 3



5.1

сл

# SGS Sample Receipt Summary

| Job Number:                                                                                                               | JC79316          | Client:                                       |               | Project:                                                                                                                                          |             |             |            |
|---------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|------------|
| Date / Time Received:                                                                                                     | 12/7/2018 10:00  | 00 AM Deliver                                 | y Method:     | Airbill #'s:                                                                                                                                      |             |             |            |
| Cooler Temps (Raw Me<br>Cooler Temps (Co                                                                                  | rrected) °C: Coo |                                               | 2: (1.8);     |                                                                                                                                                   |             |             |            |
| Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature                                     |                  | 3. COC Present:<br>4. Smpl Dates/Time C<br>N_ | ики П 1.<br>2 | ample Integrity - Documentation<br>. Sample labels present on bottles:<br>. Container labeling complete:<br>. Sample container label / COC agree: | Y<br>V<br>V | or <u>N</u> |            |
| <ol> <li>Temp criteria achieved</li> <li>Cooler temp verification</li> <li>Cooler media:</li> <li>No. Coolers:</li> </ol> |                  |                                               | 1.2           | ample Integrity - Condition<br>. Sample recvd within HT:<br>. All containers accounted for:<br>. Condition of sample:                             | V           | or N        |            |
| Quality Control Preser                                                                                                    |                  | <u>N N/A</u><br>☑ □                           | <u>s</u>      | ample Integrity - Instructions 1. Analysis requested is clear:                                                                                    |             | or N        | <u>N/A</u> |
| <ol> <li>2. Trip Blank listed on CO</li> <li>3. Samples preserved pro</li> <li>4. VOCs beadspace free:</li> </ol>         | oC:              |                                               | 3             | 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear:                             |             |             |            |
| •                                                                                                                         | oc:              |                                               |               |                                                                                                                                                   |             |             | V          |
| 3. Samples preserved pro                                                                                                  | oc:              |                                               | 3<br>4<br>5   | <ol> <li>Sufficient volume recvd for analysis:</li> <li>Compositing instructions clear:</li> </ol>                                                |             |             |            |

SM089-03 Rev. Date 12/7/17

> JC79316: Chain of Custody Page 2 of 3



5.<u>1</u>

G

|                       |          |                                                                  | Job Change Order:                          | rder:            | JC79316    |
|-----------------------|----------|------------------------------------------------------------------|--------------------------------------------|------------------|------------|
| Requested Date:       | .:<br>e: | 12/11/2018                                                       |                                            | Received Date:   | 12/7/2018  |
| Account Name:         |          | Plumley Environmental Engineers                                  | ngineers                                   | Due Date:        | 12/14/2018 |
| Project Descri        | otion:   | Project Description: Quanta Resources, Lodi Street, Syracuse, NY | Street, Syracuse, NY                       | Deliverable:     | NYASPB     |
| C/O Initiated By: TF  | ed By:   | TF PM: TF                                                        |                                            | TAT (Days):      | 14         |
|                       |          |                                                                  |                                            |                  |            |
| Sample #: JC79316-ALL | IC7931(  |                                                                  | Change:                                    |                  |            |
| Dept:                 |          | H                                                                | Please change to 14 Day TAT. Due 12/21/18. | F. Due 12/21/18. |            |
| TAT:                  | 14       |                                                                  |                                            |                  |            |

Date/Time: 12/11/2018 11:43:47 AM To Client: This Change Order is confirmation of the revisions, previously discussed with the Client Service Representative. Above Changes Per: Matthew Martin

JC79316: Chain of Custody Page 3 of 3



5.1

G



|                 |                                                  |                    |                            | SGS Nor                 |                     |          |                             |            |                  |       |                 |             |           | CED E               | Fracking #    |         |              |               |         | <b>1</b>      | der Cort | •        | 1 of             | -        |                                             |    |
|-----------------|--------------------------------------------------|--------------------|----------------------------|-------------------------|---------------------|----------|-----------------------------|------------|------------------|-------|-----------------|-------------|-----------|---------------------|---------------|---------|--------------|---------------|---------|---------------|----------|----------|------------------|----------|---------------------------------------------|----|
|                 | JUU                                              |                    |                            | 2235 Ro<br>TEL. 732-329 |                     |          |                             |            |                  |       |                 |             |           |                     |               |         |              |               |         |               |          | rol N    |                  |          |                                             |    |
|                 | •                                                |                    |                            |                         |                     | LCom/el  |                             | 3499       | 3480             |       |                 |             |           | SGS Que             | te#           |         |              |               |         | SG8 Jo        |          | J        | C7931            | 16       |                                             |    |
|                 | Client / Reporting Information                   |                    |                            | Project                 | Inform              | ation    |                             |            |                  |       |                 |             |           |                     |               |         |              | Roques        | ted Ar  | alysis        |          |          |                  |          | Matrix Codes                                |    |
| Compar          | iy Name:                                         | Project Name:      |                            |                         |                     |          |                             |            |                  |       |                 |             |           |                     |               |         |              |               |         |               |          |          |                  |          | DW - Drinking Water                         |    |
|                 |                                                  |                    | urces, Lodi Str            | et, Syracusa,           | NY                  |          |                             |            |                  |       |                 |             |           |                     |               |         | •            |               |         |               |          |          |                  |          | GW - Ground Water                           |    |
| reet A          | odross                                           | Street             |                            |                         |                     |          |                             |            |                  |       |                 |             |           |                     |               |         |              |               |         |               |          |          |                  |          | WW - Water<br>SW - Surface Water            |    |
| ity             | State Zip                                        | CRy                |                            | State                   | Billing I<br>Compan |          | on (If diffe                | rent fi    | om Re            | port  | 10)             |             |           |                     |               |         |              |               |         |               |          |          |                  |          | SO - Soil<br>SI,- Skudge<br>SED-Sediment    |    |
|                 | Contact E-mail<br>nl.Williams@sgs.com            | Project#           |                            |                         | Street A            | ddress   |                             |            |                  |       |                 |             |           |                     |               |         |              |               |         |               |          |          |                  |          | OI - Oit<br>LIQ - Other Liquid<br>AIR - Air |    |
| hone #          |                                                  | Client Purchase    | Order#                     |                         | City                |          |                             |            | State            |       | 3               | İρ          |           |                     |               | - 1     | - 1          |               |         |               |          |          |                  |          | SOL - Other Solid<br>WP - Wipe              |    |
|                 |                                                  |                    |                            |                         |                     |          |                             |            |                  |       |                 |             |           |                     |               |         |              |               |         |               |          |          |                  |          | FB - Field Blank<br>EB-Equipment Blank      |    |
| ampler<br>MM    | (s) Nemo(s) Pho                                  | ne Project Manager |                            | Collection              | Attention           | с<br>1   |                             |            | Manha            |       | reserved E      |             |           | VY21.               |               |         |              |               |         |               |          |          |                  |          | RB - Rinse Blank<br>TB - Trip Blank         |    |
| SGS<br>Winple # | Field ID / Point of Collection                   | MEOH/DI VIII #     | Dite                       | Time                    | Sampled<br>by       | Matrix   | # of bottles                | ş          | HO.              | 2     | 40NE<br>Militer | NCOR        |           | LCID537NY21         |               |         |              |               |         |               |          |          |                  |          | LAB USE ONLY                                |    |
| 1               | MW-9                                             | +                  | 12/5/18                    | 12:30:00 PN             |                     | AQ       |                             | ŕ          |                  | ÷+    |                 | -1-         | H         | -<br>X              |               | -       | -            |               |         | -             | -        | -        |                  | $\vdash$ |                                             |    |
| 1D              | MW-9 MSD                                         |                    | 12/5/18                    | 12:30:00 PN             |                     | AQ       |                             | +          | +                | +     |                 | ╋           | +         | x                   |               |         |              |               |         |               |          |          | $\left  \right $ |          |                                             |    |
| 15              | MW-9 MS                                          |                    | 12/5/18                    | 12:30:00 PN             |                     | AQ       |                             |            |                  | +     | ++              | +           | ╉╍┦       | Ŷ                   |               |         |              | $\rightarrow$ |         |               |          | -        |                  | -        |                                             |    |
| 2               | EQUIPMENT BLANK                                  | -                  |                            |                         |                     |          |                             |            |                  |       | ++              | +           | ++        |                     |               | -       | _            |               |         |               |          |          |                  |          |                                             |    |
| -               |                                                  |                    | 12/5/18                    | 12:50:00 PM             |                     | AQ       |                             | ++         | -                | -     | ++              | +-          | +-+       | Х                   |               | _       |              | _             |         |               |          |          |                  |          |                                             |    |
| 7               | MW-12                                            |                    | 12/5/18                    | 2:50:00 PM              | 1                   | AQ       |                             | $\square$  |                  |       |                 | -           | $\square$ | Х                   | $\rightarrow$ | _       |              | _             |         |               | <u> </u> |          |                  |          |                                             |    |
| 8               | MW-10                                            |                    | 12/5/18                    | 4:40:00 PM              | MM                  | AQ       |                             | $\square$  |                  |       | ++              |             | 1.1       | х                   |               |         |              |               |         |               |          |          |                  |          |                                             |    |
|                 |                                                  |                    |                            |                         |                     |          |                             |            |                  |       | _               |             | 1         |                     |               |         |              |               |         |               |          |          |                  | í I      |                                             |    |
|                 |                                                  |                    |                            | ,                       |                     |          |                             |            |                  |       |                 |             |           |                     |               |         |              |               |         |               |          |          |                  |          |                                             |    |
|                 |                                                  |                    |                            |                         |                     |          |                             |            |                  |       |                 |             |           | 1                   |               | 1       |              |               |         |               |          |          |                  |          |                                             |    |
|                 |                                                  |                    |                            |                         |                     |          |                             |            |                  |       |                 |             | П         |                     |               | ĺ       |              |               |         |               |          |          |                  |          |                                             |    |
|                 |                                                  |                    |                            |                         |                     |          |                             | П          |                  |       | T               |             | П         |                     |               |         |              |               |         |               |          |          |                  |          |                                             |    |
|                 |                                                  |                    |                            |                         |                     |          |                             |            |                  |       |                 |             | П         |                     |               |         |              |               |         |               |          |          |                  |          |                                             |    |
|                 | Turnaround Time ( Business days)                 |                    |                            |                         |                     |          |                             |            | erable           |       |                 | -           | J         |                     |               |         |              |               | Com     | nents /       | Specia   | Instruc  | tions            |          |                                             |    |
|                 | Standard 10 Business Days                        | Approved By (SGS   | PM):/Date:                 |                         |                     |          | siai "A" (L<br>siai "8" ( L |            |                  |       |                 |             |           |                     |               |         |              |               |         |               |          |          |                  |          | -                                           |    |
|                 | 5 Business Days RUSH                             |                    |                            |                         |                     |          | (Level 3+4                  |            | 9                |       | <br>            |             |           | ry e                | 1             |         |              |               |         |               |          |          |                  |          |                                             |    |
|                 | 3 Business Days RUSH                             |                    |                            |                         |                     | NJ Reduc | ed                          |            |                  | Ē     | _ EDC           | For         | mat .     |                     |               |         |              |               |         |               |          |          |                  |          |                                             |    |
|                 | 2 Business Days RUSH                             |                    |                            |                         |                     | Commerc  |                             |            |                  |       | X Oth           | er <u>N</u> | YASF      | PΒ                  | _             |         |              |               |         |               |          |          |                  |          |                                             |    |
|                 | 1 Business Day EMERGENCY<br>X Other 7            |                    |                            |                         |                     |          | Commerc                     |            |                  |       |                 | mar         |           |                     |               |         |              |               |         |               |          |          |                  | ,        |                                             |    |
| Eme             | rgency & Rush T/A data svallable via Aplink Appn | wal needed for RUS | WEmergency TAT             |                         |                     |          | Commerc                     | ial °C'    | = Res            | its + | QC Sum          | mary        | + Part    | iaí Raw e           | inte          |         |              |               |         | htt           | p://ww   | w.sgs.   | com/er           | derms    | -and-conditions                             |    |
| Rella           |                                                  | (Time: 😙           | Sample Cus<br>Received By: | ody must be d           |                     |          | v each tin                  |            | mples<br>quished |       |                 |             |           |                     |               |         | y.<br>Me/Tim |               | _       | Receive       | 1        | <u> </u> | -7               | Ļ        |                                             | -  |
|                 |                                                  | in giti            |                            | Fec                     | ( E                 | <u></u>  |                             | 2          | qual NC          |       | 1               | Fe          | e d       |                     | Eχ            | ľ       | eve / 110    | e,            |         | 2 4           | C/       | -        | $/ \zeta$        | -        | 12/12/1                                     | 3' |
| Reline          | pulshed by: Date                                 | /Time:             | Received By:<br>3          |                         |                     |          |                             | Relin<br>4 | quished          | By:   |                 |             |           |                     |               | D       | te / Tin     | e:            | 1       | neocives<br>4 | i By:    | 1        | /                |          |                                             |    |
| Reline          | ulshed by:                                       |                    | Received By:<br>5          |                         |                     |          |                             | Custo      | ody Seal         | #     |                 |             |           | ntect<br>kot intect | Pr<br>At      | eserved | Aftere a     | plicable      | herm (D |               |          | on too   | ,                | Cooler 1 | femp. 'C                                    |    |

JC79316.xis Rev. Dste: 4/10/18

> JC79316: Chain of Custody Page 1 of 3 SGS Orlando, FL



SGS

5.2

G

# SGS Sample Receipt Summary

| Job Number: JC7931              | 6             | Client:    | ALNJ             |                            | Project:      | QUANTA RE          | SOU          | RCES      |              |              |
|---------------------------------|---------------|------------|------------------|----------------------------|---------------|--------------------|--------------|-----------|--------------|--------------|
| Date / Time Received: 12/12/20  | 018 9:30:00 A | M          | Delivery Method: | FED EX                     | Airbill #'s   | : <u>100189177</u> | 71660        | 00328     | 311004       | 461413714308 |
| Therm ID: IR 1;                 |               |            | Therm CF: -0.2;  |                            |               | # of Coolers       | <b>s:</b> 1  |           |              |              |
| Cooler Temps (Raw Measure       | d) °C: Coole  | er 1: (4.0 | D);              |                            |               |                    |              |           |              |              |
| Cooler Temps (Correcte          | d) °C: Coole  | er 1: (3.8 | 3);              |                            |               |                    |              |           |              |              |
| Cooler Information              | Y or          | N          |                  | Sample Information         |               |                    | Y            | or        | N            | N/A          |
| 1. Custody Seals Present        | $\checkmark$  |            |                  | 1. Sample labels present   | on bottles    |                    | $\checkmark$ |           |              |              |
| 2. Custody Seals Intact         | $\checkmark$  |            |                  | 2. Samples preserved pro   | operly        |                    | $\checkmark$ |           |              |              |
| 3. Temp criteria achieved       | $\checkmark$  |            |                  | 3. Sufficient volume/conta | ainers recvd  | for analysis:      | $\checkmark$ |           |              |              |
| 4. Cooler temp verification     | IR Gun        |            |                  | 4. Condition of sample     |               |                    | Intac        | <u>zt</u> |              |              |
| 5. Cooler media                 | Ice (Bag)     |            |                  | 5. Sample recvd within H   | т             |                    | $\checkmark$ |           |              |              |
|                                 |               |            |                  | 6. Dates/Times/IDs on C    | OC match Sa   | imple Label        | $\checkmark$ |           |              |              |
| Trip Blank Information          | Y or          | <u>N</u>   | N/A              | 7. VOCs have headspace     | e             |                    |              |           |              |              |
| 1. Trip Blank present / cooler  |               |            |                  | 8. Bottles received for un | specified tes | ts                 |              |           | $\checkmark$ |              |
| 2. Trip Blank listed on COC     |               |            |                  | 9. Compositing instruction | ns clear      |                    |              |           |              | $\checkmark$ |
|                                 | W or          | e          | N/A              | 10. Voa Soil Kits/Jars rec | eived past 4  | Bhrs?              |              |           |              | $\checkmark$ |
|                                 |               |            |                  | 11. % Solids Jar received  | 1?            |                    |              |           |              | $\checkmark$ |
| 3. Type Of TB Received          |               |            |                  | 12. Residual Chlorine Pre  | esent?        |                    |              |           |              | $\checkmark$ |
| Misc. Information               |               |            |                  |                            |               |                    |              |           |              |              |
| Number of Encores: 25-Gran      | n             | 5-Gram     | Num              | ber of 5035 Field Kits:    |               | Number of La       | b Filte      | red Me    | etals:       |              |
| Test Strip Lot #s:              | pH 0-3        | 23031      | 5pH              | H 10-12 219813A            | _             | Other: (Speci      | ify)         |           |              |              |
| Residual Chlorine Test Strip Lo | t #:          |            |                  |                            |               |                    |              |           |              |              |
| Comments                        |               |            |                  |                            |               |                    |              |           |              |              |
| Comments                        |               |            |                  |                            |               |                    |              |           |              |              |
|                                 |               |            |                  |                            |               |                    |              |           |              |              |
|                                 |               |            |                  |                            |               |                    |              |           |              |              |
|                                 |               |            |                  |                            |               |                    |              |           |              |              |
|                                 |               |            |                  |                            |               |                    |              |           |              |              |
|                                 |               |            |                  |                            |               |                    |              |           |              |              |

SM001 Rev. Date 05/24/17

Technician: SHAYLAP Date: 12/12/2018 9:30:00 A

 Reviewer:
 SP
 Date:
 12/12/2018

JC79316: Chain of Custody Page 2 of 3



5.2

S

|                                   |               | Job Change                         | e Order:           | JC79316    |
|-----------------------------------|---------------|------------------------------------|--------------------|------------|
| Requested Date:                   | 12/11/2018    |                                    | Received Date:     | 12/7/2018  |
| Account Name:                     | Plumley Env   | vironmental Engineers              | Due Date:          | 12/14/2018 |
| Project Description               | n: Quanta Res | ources, Lodi Street, Syracuse, NY  | Deliverable:       | NYASPB     |
| C/O Initiated                     | By: TF        | PM: TF                             | TAT (Days):        | 14         |
| Sample #: JC7<br>Dept:<br>TAT: 14 | 9316-ALL      | Change:<br>Please change to 14 Day | TAT. Due 12/21/18. |            |

\_\_\_\_\_

JC79316: Chain of Custody

Above Changes Per: Matthew Martin

Date/Time: 12/11/2018 11:45:51 AM

Page 3 of 3

To Client: This Change Order is confirmation of the revisions, previously discussed with the Client Service Representative.

Page 1 of 1



