

Stauffer Management Company Skaneateles Falls Remedial Investigation/Feasibility Study Interim Data and Data Validation Report

Prepared for

Stauffer Management Company Wilmington, Delaware 19897

Prepared by

EA Engineering, P.C. The Maple Building 3 Washington Center Newburgh, New York 12550

And Its Affiliate EA Engineering, Science, and Technology

EA Project No. 11932.01 September 1993

PREFACE

EA Engineering, P.C., is performing a Remedial Investigation/Feasibility Study (RI/FS) of the Stauffer Management Company site located in Skaneateles Falls, New York. This data submission updates the prior Interim Data Report submitted in July 1992. It contains the validated analytical results for:

- 1. The following samples obtained from October 1991 through March 1992:
 - Round 1 monitoring well samples
 - Round 1 surface water and stream sediment samples
 - Round 1 creek seep/sediment samples
 - Perimeter and interior landfill soil borings.
- 2. The validated analytical results for the following samples obtained over the period March 1992 through July 1993, following the submission of the Interim Data Report:
 - Ambient air samples (baseline and during drilling)
 - Former organics plant area soil borings (this area was initially identified as "Area MW5").

Copies of the data validation reports for all analytical results in this data submission are provided in Appendix A.

LIST OF TABLES

Number	Title
1	Volatile organic analytes measured in landfill perimeter soil borings.
2	Extractable organic analytes measured in landfill perimeter soil borings.
3	Inorganic analytes measured in landfill perimeter soil borings.
4	Total organic carbon in landfill perimeter soil borings.
5	Volatile organic analytes measured in landfill soil borings.
6A	Extractable organic compounds measured in landfill soil borings.
6B	Semi-volatile tentatively identified compounds measured in landfill soil borings.
7	Inorganic analytes measured in landfill soil borings.
8	Volatile organic analytes measured in soil boring samples from former organics plant area.
9A	Semi-volatile organic analytes measured in soil boring samples from former organics plant area.
9B	Semi-volatile tentatively identified compounds measured in soil boring samples from former organics plant area.
10	Inorganic analytes and total organic carbon measured in soil boring samples from former organics plant area.
11	Organic analytes measured in stream bank seeps and seep sediment.
12	Inorganic analytes measured in stream bank seeps and seep sediment.
13	Organic analytes measured in stream surface water.
14	Inorganic analytes measured in surface water samples.
15	Water quality parameters measured in surface water.
16	Organic analytes measured in stream sediments.
17	Inorganic analytes measured in stream sediments.
18	Organic analytes measured in basement seep.
19	Inorganic analytes measured in basement seep.
20	Water quality parameters measured in basement seep.
21	Organic analytes measured in piezometer wipe sample.
22	Organic analytes measured in overburden groundwater.

LIST OF TABLES (Continued)

<u>Number</u>	Title
23	Inorganic analytes measured in overburden monitoring wells.
24	Water quality parameters measured in overburden groundwater.
25	Organic analytes measured in intermediate bedrock groundwater.
26	Inorganic analytes measured in intermediate bedrock groundwater.
27	Water quality parameters measured in intermediate bedrock groundwater.
28	Organic analytes measured in deep bedrock groundwater.
29	Inorganic analytes measured in deep bedrock groundwater.
30	Water quality parameters measured in deep bedrock groundwater.

TABLE 1 VOLATILE ORG	ANIC ANALY	TES MEASUR	ED IN LANDFI		TER SOIL BOR	INGS	p 1 of 3
Analytes Depth Units	SB02 3.5-5.5 ft (ug/kg)	SB03 3.5-5.0 ft (ug/kg)	SB04 4.5-6.0 ft (ug/kg)	SB05 0-1.5 ft (ug/kg)	SB05DUP 0-1.5 ft (ug/kg)	SB06 1-3 ft (ug/kg)	SB07 0.5-1.5 ft (ug/kg)
VOLATILES							
Methylene Chloride Acetone 2-Butanone Tetrachloroethene Toluene Ethylbenzene Xylenes (Total)	(<6U) 5 J 12 U 2 J (<6U) (<6U) (<6U)	(<6U) 9 J 12 U (<6U) (<6U) (<6U) (<6U)	(<6U) 26 12 U (<6U) 4 J (<6U) 66	(<5U) 6 J 10 U (<5U) (<5U) (<5U) 11	(<6U) 6 J 6 J (<6U) (<6U) 2 J 6 J	(<6U) (<11U) (<11U) (<6U) (<6U) (<6U) 2 J	(<8U) 5 J (<16U) (<8U) (<8U) (<8U) (<8U)
TICs-Known							
Undecane							
TICs-Unknown					 -		
Level (low or medium) Dilution factor	L 1	L 1	L 1	L 1	L 1	। 	L 1

Notes:

 \overline{U} = Not detected. Sample quantitation limits are shown as (<_U).

J = Reported value is an estimate

--- = No detectable TICs

Data vaidation results presented in data report 911652

TABLE 1 (Cont)

	SB08	SB09	SB10	SB11	SB12	SB13	SB14
	1-3 ft	2-4 ft	3.5-5.5 ft	5-7 ft	4-6 ft	1.3-3.5 ft	4-6 ft
Units	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
VOLATILES							
Methylene Chloride	(<6U)	(<6U)	- 3 J	3 J	(<6U)	(<6U)	(<7U)
Acetone	58	(<13U)	21	6 J	26	(<12U)	39
2-Butanone	16 U	(<13U)	7 J	(<11U)	12 J	6 J	- 25
Tetrachloroethene	(<6U)	(<6U)	(<6U)	(<6U)	(<6U)	(<6U)	(<7U)
Toluene	(<6U)	(<6U)	(<6U)	(<6U)	(<6U)	(<6U)	3 J
Ethylbenzene	(<6U)	(<6U)	_ (<6U)	(<6U)	(<6U)	(<6U)	(<7U)
Xylenes (Total)	7 J	(<6U)	(<6U)	1 J	(<6U)	(<6U)	670
TICs-Known							
Undecane	22 JN						
TICs-Unknown							
Level (low or medium) Dilution factor	L 1	L . 1	L 1	L 1	L 1	L 1 –	L • 1

table-1.wk1

p 2 of 3

TABLE 1 (Cont)		· · · · · · · · · · · · · · · · · · ·		p 3 of 3
	SB15	FB01	FB02	FB03
	6-8 ft	-01A	-01A	-01A
Units	(ug/kg)	(ug/l)	(ug/l)	(ug/l)
VOLATILES				
vlethylene Chloride	(<6U)	(<5U)	(<5U)	(<5U)
Acetone	(<12U)	(<10U)	4 J	(<10U)
2-Butanone	(<12U)	(<10U)	4 J	(<10U)
Tetrachloroethene	(<6U)	(<5U)	(<5U)	(<5U)
Toluene	(<6U)	(<5U)	(<5U)	(<5U)
Ethylbenzene	(<6U)	(<5U)	(<5U)	(<5U)
Xylenes (Total)	(<6U)	(<5U)	(<5U)	(<5U)
TICs-Known				
Undecane				
TICs-Unknown				
Level (low or medium)	L	L	L	L
Dilution factor	1	1	1	1

.

•

Units SEMI-VOLATILES Methylphenol Methylphenol laphthalene -Methylnaphthalene imethyl Phthalate cenaphthene ibenzofuran biethylphthalate luorene -Nitrosodiphenylamine henanthrene nthracene bi-n-Butylphthalate luorante henzo(a)Anthracene is(2-ethylhexyi)Phthalate brysene lenzo(a)Anthracene is(2-ethylhexyi)Phthalate brysene lenzo(b)Fluoranthene lenzo(k)Fluoranthene lenzo(k)Fluoranthene lenzo(a)Pyrene -Toluic Acid -Toluic Acid TICs-Known	: (ug/kg) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(ug/kg) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<200U) (<2000U) (<2000U)	(ug/kg) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U)	(ug/kg) 20 J (<340U) 67 J 55 J (<340U) 62 J 20 J 33 J (<340U) 49 J (<340U) 460 87 J (<340U) 730 680 460 (<340U) 530 600 270 J 360 60 J (<1800U)	(ug/kg) 40 J 29 J 180 J 140 J (<370U) 200 J 92 J 120 J (<370U) 250 J (<370U) 1,800 390 (<370U) 2,300 2,200 1,500 (<370U) 1,600 2,000 1,600 1,000 1,300 49 J (<1900U)	(ug/kg) (<370U (<370U 41 , 31 , 19 , 24 , 29 , 29 , 29 , 29 , 29 , 29 , 29 , 29
Methylphenol -Methylphenol aphthalene -Methylnaphthalene imethyl Phthalate cenaphthene benzofuran bethylphthalate luorene -Nitrosodiphenylamine henanthrene nthracene bi-n-Butylphthalate luoranthene benzo(a)Anthracene is(2-ethylhexyi)Phthalate chrysene lenzo(b)Fluoranth	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<2000U)	(<340U) 67 J 55 J (<340U) 62 J 20 J 33 J (<340U) 49 J (<340U) 460 87 J (<340U) 730 680 (<340U) 530 680 (<340U) 530 600 270 J 360 60 J (<1800U)	29 J 180 J 140 J (<370U) 200 J 92 J 120 J (<370U) 250 J (<370U) 1,800 390 (<370U) 2,300 2,200 1,500 (<370U) 1,600 2,000 1,600 2,000 1,300 49 J (<1900U)	(<370U 41 - 31 - 19 - 24 - 29 - 29 - 29 - 29 - 29 - 29 - 29 - 29
Methylphenol aphthalene Methylnaphthalene imethyl Phthalate cenaphthylene cenaphthene ibenzofuran iethylphthalate luorene -Nitrosodiphenylamine henanthrene nthracene i-n-Butylphthalate luoranthene yrene enzo(a)Anthracene enzo(a)Anthracene enzo(a)Anthracene enzo(b)Fluoranthene enzo(k)Fl	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<2000U)	(<340U) 67 J 55 J (<340U) 62 J 20 J 33 J (<340U) 49 J (<340U) 460 87 J (<340U) 730 680 (<340U) 530 680 (<340U) 530 600 270 J 360 60 J (<1800U)	29 J 180 J 140 J (<370U) 200 J 92 J 120 J (<370U) 250 J (<370U) 1,800 390 (<370U) 2,300 2,200 1,500 (<370U) 1,600 2,000 1,600 2,000 1,300 49 J (<1900U)	(<370U 41 - 31 - 19 - 24 - 29 - 29 - 29 - 29 - 29 - 29 - 29 - 29
-Methylphenol laphthalene -Methylnaphthalene imethyl Phthalate cenaphthylene cenaphthene libenzofuran iethylphthalate luorene -Nitrosodiphenylamine henanthrene henanthrene hin-Butylphthalate luoranthene yrene ienzo(a)Anthracene is(2-ethylhexyi)Phthalate chrysene lenzo(b)Fluoranthene lenzo(c)Fluoranthene lenzo(c)Fluoranthene lenzo(c)Fluoranthene lenzo(c)Fluoranthene lenzo(c)Pyrene -Toluic Acid -Toluic Acid -Toluic Acid -Toluic Acid	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<290U)	67 J 55 J (<340U) 62 J 20 J 33 J (<340U) 49 J (<340U) 460 87 J (<340U) 730 680 460 (<340U) 530 680 270 J 360 60 J (<1800U)	180 J 140 J (<370U) 200 J 92 J 120 J (<370U) 250 J (<370U) 1,800 390 (<370U) 2,300 2,200 1,500 (<370U) 1,600 2,000 1,600 2,000 1,000 1,300 49 J (<1900U)	41 31 19 24 29 29 17 25 23 45 (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U (<370U
laphthalene -Methylnaphthalene imethyl Phthalate cenaphthylene cenaphthene ibenzofuran iethylphthalate luorene -Nitrosodiphenylamine henanthrene nthracene bin-Butylphthalate luoranthene syrene ienzo(a)Anthracene is(2-ethylhexyl)Phthalate Chrysene ienzo(a)Anthracene is(2-ethylhexyl)Phthalate Chrysene ienzo(k)Fluoranthene ienzo(k)F	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<290U)	55 J (<340U) 62 J 20 J 33 J (<340U) 49 J (<340U) 460 87 J (<340U) 730 680 460 (<340U) 530 600 270 J 360 60 J (<1800U)	140 J (<370U) 200 J 92 J 120 J (<370U) 250 J (<370U) 1,800 390 (<370U) 2,300 2,200 1,500 (<370U) 1,600 2,000 1,000 1,300 49 J (<1900U)	31 - 19 - 24 - 29 - 29 - 29 - 17 - 25 - 23 - 45 - 15 - (<370U (<370U (<370U (<370U (<370U (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (<370U) (370U)<br (37</td
-Methylnaphthalene imethyl Phthalate cenaphthylene cenaphthylene ibenzofuran iethylphthalate luorene -Nitrosodiphenylamine henanthrene nthracene bi-n-Butylphthalate luoranthene yrene ienzo(a)Anthracene is(2-ethylhexyl)Phthalate Chrysene ienzo(a)Anthracene is(2-ethylhexyl)Phthalate Chrysene ienzo(k)Fluoranthene	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<290U) (<2000U)	(<340U) 62 J 20 J 33 J (<340U) 49 J (<340U) 460 87 J (<340U) 730 680 460 (<340U) 530 600 270 J 360 60 J (<1800U)	(<370U) 200 J 92 J 120 J (<370U) 250 J (<370U) 1,800 390 (<370U) 2,300 2,200 1,500 (<370U) 1,600 2,000 1,000 1,000 1,300 49 J (<1900U)	19 24 29 29 17 25 23 45 15 (<370L (<370L (<370L (<370L (<370L (<370L (<370L (<370L (<370L (<370L
imethyl Phthalate cenaphthylene cenaphthene ibenzofuran iethylphthalate luorene -Nitrosodiphenylamine henanthrene nthracene i-n-Butylphthalate luoranthene yrene enzo(a)Anthracene is(2-ethylhexyl)Phthalate hrysene enzo(a)Anthracene enzo(b)Fluoranthene enzo(k)Fluoranthene enzo(k)Fluoranthene enzo(k)Fluoranthene enzo(a)Pyrene -Toluic Acid -Toluic Acid	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<290U) (<2000U)	62 J 20 J 33 J (<340U) 49 J (<340U) 460 87 J (<340U) 730 680 460 (<340U) 530 600 270 J 360 60 J (<1800U)	200 J 92 J 120 J (<370U) 250 J (<370U) 1,800 390 (<370U) 2,300 2,200 1,500 (<370U) 1,600 2,000 1,000 1,000 1,300 49 J (<1900U)	24 29 29 17 25 23 45 15 (<370L (<370L (<370L (<370L (<370L (<370L (<370L (<370L (<370L (<370L) (<2000L
cenaphthene ibenzofuran iethylphthalate luorene -Nitrosodiphenylamine henanthrene nthracene i-n-Butylphthalate luoranthene yrene enzo(a)Anthracene is(2-ethylhexyl)Phthalate hrysene enzo(a)Anthracene is(2-ethylhexyl)Phthalate hrysene enzo(b)Fluoranthene enzo(b)Fluoranthene enzo(a)Pyrene -Toluic Acid -Toluic Acid	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<290U)	20 J 33 J (<340U) 49 J (<340U) 460 87 J (<340U) 730 680 460 (<340U) 530 600 270 J 360 60 J (<1800U)	92 J 120 J (<370U) 250 J (<370U) 1,800 390 (<370U) 2,300 2,200 1,500 (<370U) 1,600 2,000 1,000 1,300 49 J (<1900U)	29 29 17 25 23 45 15 (<370l (<370l (<370l (<370l (<370l (<370l (<370l (<370l (<370l (<370l (<370l) (<370l (<370l) (<370l)
ibenzofuran iethylphthalate uorene -Nitrosodiphenylamine henanthrene nthracene i-n-Butylphthalate uoranthene yrene enzo(a)Anthracene s(2-ethylhexyl)Phthalate hrysene enzo(a)Anthracene s(2-ethylhexyl)Phthalate hrysene enzo(b)Fluoranthene enzo(k)Fluoranthene enzo(a)Pyrene -Toluic Acid -Toluic Acid	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<200U) (<2000U)	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<290U) (<2000U)	33 J (<340U) 49 J (<340U) 460 87 J (<340U) 730 680 460 (<340U) 530 600 270 J 360 60 J (<1800U)	120 J (<370U) 250 J (<370U) 1,800 390 (<370U) 2,300 2,200 1,500 (<370U) 1,600 2,000 1,000 1,300 49 J (<1900U)	29 17 25 23 45 15 (<3700 (<3700 (<3700 (<3700 (<3700 (<3700 (<3700 (<3700) (<3700 (<3700) (<20000)
iethylphthalate uorene -Nitrosodiphenylamine henanthrene nthracene i-n-Butylphthalate uoranthene yrene enzo(a)Anthracene s(2-ethylhexyi)Phthalate hrysene enzo(a)Anthracene s(2-ethylhexyi)Phthalate hrysene enzo(a)Pyrene -Toluic Acid -Toluic Acid	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<290U) (<2000U)	(<340U) 49 J (<340U) 460 87 J (<340U) 730 680 (<340U) 530 600 270 J 360 60 J (<1800U)	(<370U) 250 J (<370U) 1,800 390 (<370U) 2,300 2,200 1,500 (<370U) 1,600 2,000 1,000 1,300 49 J (<1900U)	17 25 23 45 (<3701 (<3701 (<3701 (<3701 (<3701 (<3701 (<3701 (<3701 (<3701 (<20001
uorene Nitrosodiphenylamine henanthrene htracene i-n-Butylphthalate uoranthene yrene enzo(a)Anthracene s(2-ethylhexyi)Phthalate hrysene enzo(b)Fluoranthene enzo(k)Fluoranthene enzo(k)Fluoranthene enzo(k)Fluoranthene enzo(a)Pyrene Toluic Acid Toluic Acid Toluic Acid TICs-Known Hexanone,5-methyl aphthalene,2-phenyl henanthrene,2,5-dimethyl enzaldehyde,4-methyl	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<290U) (<2000U) (<2000U)	<pre>49 J (<340U) 460 87 J (<340U) 730 680 680 (<340U) 530 600 270 J 360 60 J (<1800U)</pre>	250 J (<370U) 1,800 390 (<370U) 2,300 2,200 1,500 (<370U) 1,600 2,000 1,000 1,300 49 J (<1900U)	25 23 45 (<3700 (<3700 (<3700 (<3700 (<3700 (<3700 (<3700 (<3700 (<3700) (<20000
Nitrosodiphenylamine henanthrene htracene i-n-Butylphthalate uoranthene enzo(a)Anthracene s(2-ethylhexyl)Phthalate hrysene enzo(b)Fluoranthene enzo(b)Fluoranthene enzo(k)Fluoranthene enzo(a)Pyrene Toluic Acid -Toluic Acid TlCs-Known Hexanone,5-methyl aphthalene,2-phenyl henanthrene,2,5-dimethyl enzaldehyde,4-methyl	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<290U) (<2000U) (<2000U)	(<340U) 460 87 J (<340U) 730 680 460 (<340U) 530 600 270 J 360 60 J (<1800U)	(<370U) 1,800 390 (<370U) 2,300 2,200 1,500 (<370U) 1,600 2,000 1,000 1,300 49 J (<1900U)	23 45 15 (<3701 55 70 (<3701 (<3701 (<3701 (<3701 (<3701 (<20001
henanthrene nthracene i-n-Butylphthalate luoranthene yrene enzo(a)Anthracene s(2-ethylhexyi)Phthalate hrysene enzo(b)Fluoranthene enzo(k)Fluoranthene enzo(a)Pyrene Toluic Acid Toluic Acid Toluic Acid TICs-Known -Hexanone,5-methyl aphthalene,2-phenyl henanthrene,2,5-dimethyl enzaldehyde,4-methyl	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<290U) (<2000U) (<2000U)	460 87 J (<340U) 730 680 460 (<340U) 530 600 270 J 360 60 J (<1800U)	1,800 390 (<370U) 2,300 2,200 1,500 (<370U) 1,600 2,000 1,000 1,300 49 J (<1900U)	45 15 (<370l 55 700 (<370l (<370l (<370l (<370l (<370l (<2000l
nthracene -n-Butylphthalate uoranthene yrene enzo(a)Anthracene s(2-ethylhexyl)Phthalate hrysene enzo(b)Fluoranthene enzo(a)Pyrene Toluic Acid -Toluic Acid Toluic Acid Toluic Acid TilCs-Known Hexanone,5-methyl aphthalene,2-phenyl henanthrene,2,5-dimethyl enzaldehyde,4-methyl	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<200U) (<2000U) (<2000U)	(<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<290U) (<2000U) (<2000U)	87 J (<340U) 730 680 460 (<340U) 530 600 270 J 360 60 J (<1800U)	390 (<370U) 2,300 2,200 1,500 (<370U) 1,600 2,000 1,000 1,300 49 J (<1900U)	15 (<370) 55 70 (<370) (<370) (<370) (<370) (<370) (<2000)
i-n-Butylphthalate uoranthene syrene enzo(a)Anthracene s(2-ethylhexyl)Phthalate hrysene enzo(b)Fluoranthene enzo(k)Fluoranthene enzo(a)Pyrene Toluic Acid -Toluic Acid	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<290U) (<2000U) (<2000U)	(<340U) 730 680 460 (<340U) 530 600 270 J 360 60 J (<1800U)	(<370U) 2,300 2,200 1,500 (<370U) 1,600 2,000 1,000 1,300 49 J (<1900U)	(<3701 55 70 (<3701 (<3701 (<3701 (<3701 (<3701 (<3701 (<20001
luoranthene yrene enzo(a)Anthracene s(2-ethylhexyl)Phthalate hrysene enzo(b)Fluoranthene enzo(k)Fluoranthene enzo(a)Pyrene Toluic Acid Toluic Acid Toluic Acid TICs-Known -Hexanone,5-methyl aphthalene,2-phenyl henanthrene,2,5-dimethyl enzaldehyde,4-methyl	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<200U) (<2000U) (<2000U)	(<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<290U) (<2000U) (<2000U)	730 680 460 (<340U) 530 600 270 J 360 60 J (<1800U)	2,300 2,200 1,500 (<370U) 1,600 2,000 1,000 1,300 49 J (<1900U)	55 70 (<3701 (<3701 (<3701 (<3701 (<3701 (<20001
vrene enzo(a) Anthracene s(2-ethylhexyl)Phthalate hrysene enzo(b) Fluoranthene enzo(k)Fluoranthene enzo(a)Pyrene Toluic Acid -Toluic Acid Toluic Acid Toluic Acid TICs-Known Hexanone,5-methyl aphthalene,2-phenyl henanthrene,2,5-dimethyl enzaldehyde,4-methyl	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<200U) (<2000U) (<2000U)	(<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<290U) (<2000U) (<2000U)	680 460 (<340U) 530 600 270 J 360 60 J (<1800U)	2,200 1,500 (<370U) 1,600 2,000 1,000 1,300 49 J (<1900U)	70 (<370) (<370) (<370) 40 (<370) (<370) (<2000)
enzo(a)Anthracene s(2-ethylhexyl)Phthalate hrysene enzo(b)Fluoranthene enzo(k)Fluoranthene enzo(a)Pyrene Toluic Acid -Toluic Acid Toluic Acid TICs-Known Hexanone,5-methyl aphthalene,2-phenyl henanthrene,2,5-dimethyl enzaldehyde,4-methyl	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<400U) (<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<390U) (<390U) (<390U) (<390U) (<390U) (<390U) (<2000U) (<2000U)	460 (<340U) 530 600 270 J 360 60 J (<1800U)	1,500 (<370U) 1,600 2,000 1,000 1,300 49 J (<1900U)	(<370) (<370) (<370) (<370) (<370) (<2000)
s(2-ethylhexyl)Phthalate hrysene enzo(b)Fluoranthene enzo(k)Fluoranthene enzo(a)Pyrene Toluic Acid Toluic Acid Toluic Acid TICs-Known Hexanone,5-methyl aphthalene,2-phenyl henanthrene,2,5-dimethyl enzaldehyde,4-methyl	(<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<400U) (<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<390U) (<390U) (<390U) (<390U) (<390U) (<2000U) (<2000U)	(<340U) 530 600 270 J 360 60 J (<1800U)	(<370U) 1,600 2,000 1,000 1,300 49 J (<1900U)	(<370) (<370) 40 (<370) (<370) (<2000)
hrysene enzo(b)Fluoranthene enzo(k)Fluoranthene enzo(a)Pyrene Toluic Acid -Toluic Acid Toluic Acid Toluic Acid TiCs-Known Hexanone,5-methyl aphthalene,2-phenyl henanthrene,2,5-dimethyl enzaldehyde,4-methyl	(<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U) (<2000U)	(<400U) (<400U) (<400U) (<400U) (<2000U) (<2000U)	(<390U) (<390U) (<390U) (<390U) (<390U) (<2000U) (<2000U)	530 600 270 J 360 60 J (<1800U)	1,600 2,000 1,000 1,300 49 J (<1900U)	(<370) 40 (<370) (<370) (<2000)
enzo(b)Fluoranthene enzo(k)Fluoranthene enzo(a)Pyrene Toluic Acid -Toluic Acid Toluic Acid Toluic Acid TICs-Known Hexanone,5-methyl aphthalene,2-phenyl nenanthrene,2,5-dimethyl enzaldehyde,4-methyl	(<400U) (<400U) (<400U) (<2000U) (<2000U) (<2000U)	(<400U) (<400U) (<400U) (<2000U) (<2000U)	(<390U) (<390U) (<390U) (<2000U) (<2000U)	600 270 J 360 60 J (<1800U)	2,000 1,000 1,300 49 J (<1900U)	40 (<370 (<370 (<2000
enzo(k)Fluoranthene enzo(a)Pyrene Toluic Acid -Toluic Acid Toluic Acid Toluic Acid TICs-Known Hexanone,5-methyl aphthalene,2-phenyl nenanthrene,2,5-dimethyl enzaldehyde,4-methyl	(<400U) (<400U) (<2000U) (<2000U)	(<400U) (<400U) (<2000U) (<2000U)	(<390U) (<390U) (<2000U) (<2000U)	270 J 360 60 J (<1800U)	1,000 1,300 49 J (<1900U)	(<370) (<370) (<2000)
enzo(a) Pyrene Toluic Acid -Toluic Acid Toluic Acid TICs-Known Hexanone,5-methyl aphthalene,2-phenyl renanthrene,2,5-dimethyl anzaldehyde,4-methyl	(<400U) (<2000U) (<2000U)	(<400U) (<2000U) (<2000U)	(<390U) (<2000U) (<2000U)	360 60 J (<1800U)	1,300 49 J (<1900U)	(<370) (<2000)
Toluic Acid -Toluic Acid Toluic Acid TICs-Known Hexanone,5-methyl aphthalene,2-phenyl renanthrene,2,5-dimethyl anzaldehyde,4-methyl	(<2000U) (<2000U)	(~2000U) (~2000U)	(~2000U) (~2000U)	60 J (<1800U)	49 J (<1900U)	(<2000
-Toluic Acid Toluic Acid TICs-Known Hexanone,5-methyl aphthalene,2-phenyl nenanthrene,2,5-dimethyl anzaldehyde,4-methyl	(<2000U)	(<2000U)	(<2000U)	(<1800U)	(<1900U)	
Toluic Acid TICs-Known Hexanone,5-methyl aphthalene,2-phenyl henanthrene,2,5-dimethyl enzaldehyde,4-methyl		$\mathbf{I} = \mathbf{I} \mathbf{I}$				(<2000)
TICs-Known Hexanone,5-methyl aphthalene,2-phenyl henanthrene,2,5-dimethyl enzaldehyde,4-methyl	(<200011)	(~200011)			(<1900U)	(<2000)
Hexanone,5-methyl aphthalene,2-phenyl nenanthrene,2,5-dimethyl enzaldehyde,4-methyl	(~~0000)	(2000)	(<2000U)	(<1800U)	(219000)	(2000)
aphthalene,2-phenyl henanthrene,2,5-dimethyl enzaldehyde,4-methyl				·		
aphthalene,2-phenyl henanthrene,2,5-dimethyl enzaldehyde,4-methyl						
henanthrene,2,5-dimethyl enzaldehyde,4-methyl					360 JN	
enzaldehyde,4-methyl					570 JN	
						830 .
exadecanoic acid,dioctyl	•					
hanol,2,2'-{oxybis(2,1-ethyl						
henol,4-(2,2,3,3-tetramethyl						
henol,4-nonyl						
stradecanoic acid						
henol,nonyl-						
enzaldehyde,3-methyl-oxime			·			
ctadecanoic acid						
TICs-Unknown;n	430 J;1	860 J;2	350 J;1	3,570 J;11	11,840 J;17	14,220 J;
PESTICIDES/PCBs						
4'-DDE	(<10U)	(<10U)	(<10U)	6 J (<8.3U)	7 J (<8.9U)	:

¥.

Notes: U = Not detected. Sample quantitation limits are shown as $(<_U)$.

J = Reported concentration is an estimated value.

B = Compound detected in corresponding method blank.

JN = Presumptive identification and an estimated concentration.--- = No detectable TICs

Unknown TICs reported as total concentrations and total number of unknowns. Data validation results provided in data report 911652

	SB07 opth: 0.5-1.5 ft nits: (ug/kg)	SB08 1-3 ft (ug/kg)	SB09 2-4 ft (ug/kg)	SB10 3.5-5.5 ft (ug/kg)	SB11 5-7 ft (ug/kg)	SB12 4-6 ft (ug/kg)
SEMI-VOLATILES	110 (09.09/			¥¥		
2-Methylphenol	(<530U)	(<390U)	(<410U)	(<400U)	(<380U)	(<42
4-Methylphenol	(<530U)	(<390U)	(<410U)	(<400U)	(<380U)	(<42
Naphthalene	` 48 Ĵ	(<390U)	(<410U)	(<400U)	(<380U)	(<42
2-Methylnaphthalene	(<530U)	(<390U)	(<410U)	(<400U)	(<380U)	(<42
Dimethyl Phthalate	(<530U)	(<390U)	(<410U)	(<400U)	(<380U)	(<42
Acenaphthylene	(<530U)	(<390U)	(<410U)	(<400U)	(<380U)	(<42
	(<530U)	(<390U)	(<410U)	(<400U)	(<380U)	(<42
Acenaphthene	(<530U) (<530U)	(<390U)	(<410U)	(<400U)	(<380U)	(< 4
Dibenzofuran		•	· · ·	(<400U)	(<380U)	(<4
Diethylphthalate	(<530U)	(<390U)	(<410U)		(<380U)	(<4
Fluorene	(<530U)	(<390U)	(<410U)	(<400U)		(<4
N-Nitrosodiphenylamine	(<530U)	(<390U)	(<410U)	(<400U)	(<380U)	
Phenanthrene	170 J	(<390U)	(<410U)	(<400U)	22 J	(<4
Anthracene	13 J	(<390U)	(<410U)	(<400U)	(<380U)	(<4
Di-n-Butylphthalate	(<530U)	(<390U)	(<410U)	(<400U)	(<380U)	(<4
Fluoranthene	210 J	(<390U)	(<410U)	(<400U)	21 J	(<4
Pyrene	150 J	(<390U)	(<410U)	(<400U)	23 J	(<4
	(<530U)	(<390U)	(<410U)	(<400U)	(<380U)	(<4
Benzo(a)Anthracene	(<530U)	(<390U)	(<410U)	(<400U)	(<380U)	(<4
bis(2-ethylhexyl)Phthalate		(<390U) (<390U)	(<410U)	(<400U)	(<380U)	(<4
Chrysene	74 J		· · ·	(<400U)	(<380U)	(<4
Benzo(b)Fluoranthene	83 J	(<390U)	(<410U)	· · ·	(<380U)	(<4
Benzo(k)Fluoranthene	47 J	(<390U)	(<410U)	(<400U)		(<4
Benzo(a)Pyrene	50 J	(<390U)	(<410U)	(<400U)	(<380U)	
o-Toluic Acid	(<2700U)	(<2000U)	(<2100U)	(<2100U)	(<2000U)	(<22
m-Toluic Acid	(<2700U)	(<2000U)	(<2100U)	(<2100U)	(<2000U)	(<22
<i>p</i> -Toluic Acid	(<2700U)	(<2000U)	(<2100U)	(<2100U)	(للا2000>)	(<22
TICs-Known						
2-Hexanone,5-methyl						
Naphthalene,2-phenyl						
Phenanthrene,2,5-dimethyl						
Benzaidehyde,4-methyl						
Octane,2,4,6-trimethyl	430 JN	, 				
Hexadecanoic acid, dioctyl					*	
Ethanol,2,2'-{oxybis(2,1-eth	vi				,	
Phenoi,4-(2,2,3,3-tetrameth						
Phenol,4-nonyi	··					
Tetradecanoic acid						
Phenol, nonyl-						
Benzaldehyde,3-methyl-oxi						
Octadecanoic acid						0.4
TICs-Unknown;n	5,240 J;8	1,310 J;2	1,260 J;2	2,370 J;4	7,410 J;6	3,4
PESTICIDES/PCBs						
					(<9.2U)	(•

r

.

• • •

TABLE 2 (Cont)							p 3 of 3
Analytes	Depth	SB13 1.5-3.5 ft	SB14 4-6 ft	SB15 6-8 ft	FB01	FB02	FB03
	Units	(ug/kg)	(ug/kg)	(ug/kg)	(ug/i)	(ug/l)	(ug/l)
SEMI-VOLATILE		(09/19)	(09/19/	(09/19)		(-3-)	(-3.)
2-Methylphenol		(<400U)	(<440U)	(<410U)	(<5U)	(<5U)	(<10U)
4-Methylphenol		(<400U)	(<440U)	(<410U)	(<5U)	(<5U)	(<10U)
Naphthalene		(<400U)	(<440U)	(<410U)	(<5U)	(<5U)	(<10U)
2-Methylnaphthalene		(<400U)	(<440U)	(<410U)	(<5U)	(<5U)	(<10U)
Dimethyl Phthalate		(<400U)	(<440U)	(<410U)	(<5U)	(<5U)	(<10U)
Acenaphthylene		(<400U)	(<440U)	(<410U)	(<5U)	(<5U)	(<10U)
Acenaphthene		(<400U)	(<440U)	(<410U)	(<5U)	(<5U)	(<10U)
Dibenzofuran		(<400U)	(<440U)	(<410U)	(<5U)	(<5U)	(<10U)
Diethylphthalate		(<400U)	(<440U)	(<410U)	(<5U)	(<5U)	(<10U)
Fluorene		(<400U)	(<440U)	(<410U)	(<5U)	(<5U)	(<10U)
N-Nitrosodiphenylamine	•	(<400U)	(<440U)	(<410U)	(<5U)	(<5U) (<5U)	(<10U) (<10U)
Phenanthrene		(<400U)	(<440U)	(<410U)	(<5U) (<5U)	(<5U) (<5U)	(<100) (<10U)
Anthracene		(<400U)	(<440U)	(<410U) 170 J	(<5U) (<5U)	(<5U) (<5U)	(<100) (<10U)
Di-n-Butylphthalate		150 J	220 J		(<5U) (<5U)	(<5U) (<5U)	(<10U) (<10U)
Fluoranthene		(<400U)	(<440U) (<440U)	(<410U) (<410U)	(<5U) (<5U)	(<5U) (<5U)	(<10U) (<10U)
		(<400U) (<400U)	(<440U) (<440U)	(<410U)	(<5U) (<5U)	(<5U) (<5U)	(<10U)
Benzo(a)Anthracene	**	(<4000) 110 J	(<440U) (<440U)	(<410U)	2 BJ	0.6 BJ	(<10U)
bis(2-ethylhexyl)Phthala	lle	(<400U)	(<440U)	(<410U) (<410U)	(<5U)	(<5U)	(<10U)
Chrysene Benzo(b)Fluoranthene		(<400U)	(<440U)	(<410U)	(<5U) (<5U)	(<5U)	(<10U)
Benzo(k)Fluoranthene		(<400U)	(<440U)	(<410U)	(<5U)	(<5U)	(<10U)
Benzo(a)Pyrene		(<400U)	(<440U)	(<410U)	(<5U)	(<5U)	(<10U)
o-Toluic Acid		(<2000U)	170 J	(<2100U)	(<5U)	(<5U)	(<10U)
<i>m</i> -Toluic Acid		46 J	120 J	(<2100U)	(<5U)	(<5U)	2.4015
p-Toluic Acid		(<2000U)	48 J	(<2100U)	(<5U)	(<5U)	(<100) (<10U)
		· · · · · · · · · · · · · · · · · · ·		(),		-	.ur
TICs-Known							
2-Hexanone,5-methyl					38 BJN	22 BJN	37 BJN
Naphthalene,2-phenyl			·				
Phenanthrene,2,5-dime	thvi						
Benzaldehvde,4-methyl							
Octane,2,4,6-trimethyl							
Hexadecanoic acid, dioc	tvi	460 JN					
Ethanol,2,2'-[oxybis(2,1			290 JN				
Phenol, 4-(2, 2, 3, 3-tetran			450 JN				
Phenoi,4-nonyl			600 JN				
Tetradecanoic acid			1,500 JN				
Phenol, nonyl-			470 JN				
Benzaidehyde,3-methyl	-oxime		200 JN	·			
Octadecanoic acid			2,700 JN				
TICs-Unknown;	;n	1,810 J;2	9,800 J;10	2,680 J;4			·
PESTICIDES/PC	Bs						
4.4'-DDE		(<9.6U)	(<11U)	(<9.9U)	(<0.10U)	(<0.10U)	(<0.10U)
4,4'-DDD		(<9.6U)	(<11U)	(<9.9U)	(<0.10U)	(<0.10U)	(<0.10U)
-,		(10.00)	()	(/	· · · · · /	. ,	. ,

.

TABLE 3 INOR	GANIC ANALY	TES MEASURE	ED IN LANDFIL	L PERIMETER	SOIL BORINGS	3	p 1 of 3
Analytes Depths Units	SB02 3.5-5.5 ft (mg/kg)	SB03 3.5-5.0 ft (mg/kg)	SB04 4.5-6.0 ft (mg/kg)	SB05 0-1.5 ft (mg/kg)	SB05DUP 0-1.5 ft (mg/kg)	SB06 1-3 ft (mg/kg)	SB07 0.5-1.5 ft (mg/kg)
Aluminum	16,200	19,700	13,800	10,700	8,800	4,180	12,100
Antimony	(<3.8U) J	(<3.2U) J	6.1 J	(<3.1U) J	2.8 BJ	(<3.3U) J	6. 6 J
Arsenic	5.1 J	5.0 J	7.8 J	3.1 J	3.6 J	4.2 J	4.8 J
Barium	103	124	92.1	78.7	58.5	35.2	50.0
Beryllium	0.64	0:72	0.84	0.52	0.45	0.31 B	0. 46 B
Cadmium	4.5 J	4.6 J	6.5 J	4.5 J	3.2 J	1.6 J	4.9 J
Calcium	87,300	53,100	2,510	93,900	148,000	177,000	53,600 B
Chromium	17.3 J	18.9 J	21.8 J	16.7 J	14.0 J	13.1 J	14.6 J
Cobalt	9.6	12.3	14.4	57.7	20.4	11.4	9.6
Copper	25.1	26.3	46.2	26.0	20.5	33.6	41.0
Iron	25,700	27,900	36,600	25,000	20,300	13,200	30,100
Lead	11.0	8.0 R	15.3	15.5	20.7	11.1	11.4 R
Magnesium	.30,600 B	21,100 B	5,240	6,680	12,200 B	20,600 B	29,100 B
Maganese	469	838	827	632	543	372	406
Mercury	(<0.11U)	(<0.11U)	(<0.11U)	(<0.10U)	(<0.09U)	(<0.32U)	0.26
Nickel	26.0	27.4	48.4	29.0	24.8	16.9	25.1
Potassium	2,570	2,550	1,080	1,240	1,250	1,060	1,070
Selenium	(<0.08U)J	(<0.10U)J	0.18 BJ	(<0.10U)J	(<0.09U)J	(<0.09U)J	(<0.11U)J
Silver	2.7 J	1.9 J	1.2 J	2.7 J	4.1 J	4.9 J	2.5 .
Sodium	302 B	756	204 B	1,720	1,410	869	301 E
Thallium	(<0.17U)	(<0.20U)	0.31 B	(<0.20U)	(<0.19U)	(<0.18U)	(<0.21U
Vanadium	17.4	18.4	21.9	11.5	10.8	8.4	16.2
Zinc	45.6 R	46.2 R	54.2 R	107 R	83.7 R	54.0 R	52.3 F
Cyanide	1.0 J	0.64	(<0.49U)	(<0.46U)	(<0.39U)	(<0.38U)	(<0.70U)

.

Notes:

 \overline{U} = Not detected. Sample quantitation limits are shown as (<_U).

B = Reported value is below CRQL.

J = Reported concentration is an estimated value.

R = Data is unusable.

Data validation results provided in data report 911652

TAB	LE 3	(Cont)

p 2 of 3

Analytes Depth Units	SB08 1-3 ft (mg/kg)	SB09 2-4 ft (mg/kg)	SB10 3.5-5.5 ft (mg/kg)	SB11 5-7 ft (mg/kg)	SB12 4-6 ft (mg/kg)	SB13 1.5-3.5 ft (mg/kg)	SB14 4-6 ft (mg/kg)
Aluminum	18.300	17,400	15,500	13,200	19,600	11,700	13,000
Antimony	(<3.3U) J	5.3 BJ	4.0 BJ	4.5 J	5.0 BJ	(<2.9U) J	(<4.4U) J
Arsenic	4.5 J	4.8 J	5.2 J	5.4 J	2.7 J	2.2 J	5.0 J
Barium	86.1	78.3	74.4	64.9	52.7	53.8	115
Beryllium	0.68	0. 69	0.62	0.64	0.76	0.41 B	0.89
Cadmium	5.0 J	4.8 J	4.0 J	4.6 J	4.9 J	3.2 J	5.5 J
Calcium	74,700	52,500 B	55,200	12,100 B	34,400 B	5,610	4,090
Chromium	18.4 J	20.8 J	16.5 J	22.8 J	25.2 J	13.2 J	20.8 J
Cobalt	9.6	10.9	9.3	9.2	11.2	5.7	9.9
Copper	24.7	26.0	22.8	23.1	26.4	11.8	21.5
lron	26,500	21,300	25,700	26,300	27,000	17,100	32,100
Lead	9.2	10.7	12.6	14.4	15.2	7.4 R	16.4
Magnesium	27,900 B	16,900 B	23,200	6,050	18,200 B	3,400	3,690
Manganese	560	681	552	511	741	289	1850
Mercury	(<0.10U)	0.10	(<0.10U)	(<0.10U)	(<0.11U)	(<0.10U)	0.19
Nickel	24.5	27.6	24.7	27.5	27.1	14	32.8
Potassium	3,460	2,940	2,070	1,660	2,200	56 6	1,240
Selenium	(<0.09U)J	0.40 BNS	(<0.11U)J	(<0.10U)J	(<0.11U)J	(<0.09Ú)J	(<0.12U).
Silver	2.4 J	2.1 J	2.5 J	0.95 J	1.6 J	0.75 J	1.4 .
Sodium	177 B	91.7 B	90.2 B	857	852	76.4 B	5,190
Thallium	(<0.18U)	(<0.23U)	(<0.22U)	(<0.20U)	(<0.21U)	(<0.19U)	0.24 E
Vanadium	19.8	19.9	17.1	15.3	22.4	17.7	24.3
Zinc	42.6 R	44.5 R	44.8 J	61.3 R	44.1 R	29.3 R	58.5 F
Cyanide	(<0.49U)	(<0.62U)	(<0.45U)	(<0.39U)	(<0.52U)	(<0.62U)	(<0.52U)

TABL	E 3 (Cont)

p 3 of 3

Analytes Depth	SB15 6-8 ft	FB01	FB02	FB03
Units	(mg/kg)	(ug/l)	(ug/l)	(ug/l)
•		(ug/l) 25.8 B (<34U) (<2U) (<5U) (<1U) (<5U) 146 B (<4U) (<9U) 6.3 B 49.5 B (<1U) 34.1 B 4.1 B (<0.2U) (<9U) (<9U) (<1U)	(ug/l) 24.0 B (<34U) (<2U) (<5U) (<1U) (<5U) 151 B (<4U) (<9U) 3 B 66.2 B 1.1 B (<30U) 1.5 B (<0.2U) (<9U) 151 B (<1U)	(ug/l) 71.5 B (<34U) (<2U) (<5U) (<5U) 158 B (<4U) (<9U) 5.9 B 124 (<1U) 72.8 B 2.9 B (<0.2U) (<9U) (<69U) (<69U) (<1U)
Silver	1.0 J	. (<2U)Ĵ (<136U)	(<2U)J (<136U)	(<2U)J (<136U)
Sodium Thallium	809 (<0.20U)	(<1360) (<2U)R	(<1360) (<2U)R	9.8 BR
Vanadium	20.9	(<20)(1 (<3U)	(<3U)	(<3U)
Zinc	70.7 R	64.2	13.7 B	8.7 B
Cyanide	(<0.57U)	(<10U)J	(<10U)J	(<10U)J

يەر بې

Sample Designation	Depth (ft)	Organic Carbon Total (mg/kg)	Organic Carbon Total (%)
SB02-01A	3.5 - 5.5	2,280	0.23
SB03-01A	3.5 - 5.0	2,100	0.21
SB04-01A	4.5 - 6.5	3,870	0.39
SB05-01A	0 - 1.5	12,100	1.21
SB05DUP-01A	1 - 3	8,840	0.88
SB06-01A	0. 5 - 1 .5	4,340	0.43
SB07-01A	1 - 3	13,300	1.33
SB08-01A	2 - 4	6,300	0.63
SB09-01A	3.5 - 5.5	7,200	0.72
SB10-01A	5 - 7	11,800	1.18
SB11-01A	4 - 6	7,230	0.72
SB12-01A	1.5 - 3.5	29,500	2.95
SB13-01A	4 - 6	18,000	1.80
SB14-01A	4 - 6	9,940	0.99
SB15-01A	6 - 8	6,340	0.63
SB16-01A	3 - 4	11,000	1.10

يم. مي

TABLE 4 TOTAL ORGANIC CARBON IN LANDFILL PERIMETER SOIL BORINGS

TABLE 5 VOLATILE ORGANI	C ANALYTE	S MEASURE	ED IN LANDFI	ILL SOIL BOI	RINGS	p 1 of 4
Analytes	SB16 -01A	SB16 -02A 5.5-7 ft	SB17 -01A 4-6 ft	SB18 -01A 0-2 ft	SB18 -02A 5-7 ft	SB18 -03A 10-12 ft
Depth Units	3-4 ft (ug/kg)	5.5-7 It (ug/kg)	4-6 ft (ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
· · ·			,	-		
Methylene Chloride	(<6U)	(<6U)	(<6U)	(<6U)	(<6U)	1,300 J
Acetone	26	25 J	(<13U)	(<12U)	(<12U)	(<1,500U)J
2-Butanone	12 J	(<12U)	(<13U)	(<12U)	(<12U)	(<1,500U)J
Benzene .	(<6U)	(<6U)	(<6U)		(<6U)	1,700 J
Chloroform	(<6U)	(<6U)	1 J	0.7 J	0.8 J	[7,300U]J
Chlorobenzene	(<6U)	(<6U)	(<6U)	(<6U)	(<6U)	(<7,300U)J
1,2-Dichloroethene (total)	(<6U)	17	(<6U)	(<6U)	(<6U)	(<7,300U)J
Trichloroethane	(<6U)	2 J	(<6U)	(<6U)	(<6U)	(<7,300U)J
Tetrachloroethene	(<6U)	2 J	(<6U)	(<6U)	4 J	(<7,300U)J
Toluene	(<6U)	3 J	(<6U)	(<6U)	(<6U)	1,100 J
Ethylbenzene	(<6U)	(<6U)	(<6U)	(<6U)	(<6U)	(<7,300U)J
Xylenes (Total)	(<6U)	280	(<6U)	(<6U)	(<6U)	170,000J
TICs - Known						
TICs - Unknown;n		3 J;1				.
Level (low or medium) Dilution facter	L 1	L 1	L 1	L 1	L 1	M 1

Notes:

U = Not detected. Sample quantitation limits are shown as (<_U).

[-U] = Not detected following data validation review.

J = Reported concentration is an estimated value.

--- = No detectable TICs.

Unknown TICs reported as total concentration and total number of unknowns

Samples SB-27-01A and SB27-02A were samples of the white and balck material present at the referenced depths.

Data validation results provided in data reports 911652 (SB16- 01A only), 911664

(SB16-02A to SB21-01A), and 911691 (SB22-01A to SB27-01A).

TABLE 5 (Cont)

,

•

p 2 o	4

Analytes	SB19 -01 A	SB20 -01A	SB21 -01 A	SB22 -01A	SB23	SB23 -02A
Depth	5-7 ft	3-5 ft	12.5-14.5 ft	10-12 ft	10-12 ft	
Units	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Methylene Chloride	(<220,000U)J	(<77,000U)J	[6U]	(<760U)	2 J	(<6U)
Acetone	(<450,000U)J	(<150,000U)J	43 J	(<1500U)J	14 J	17 J
2-Butanone	(<450,000U)J	(<150,000U)J	35	6400 J	(<11U)	(<11U)
Benzene	19,000 J	6,300 J	- 1J	(<760U)	(<6U)	(<6U)
Chloroform	[220,000U]J	[<77,000]J	0.8 J	(<1500U)	1 J	(<6U)
Chlorobenzene	(<220,000U)J	(<77,000U)J	(<6U)	(<760U)	(<6U)	(<6U)
1,2-Dichloroethene (total)	(<220,000U)J	(<77,000U)J	(<6U)	(<760U)	(<6U)	(<6U)
Trichloroethane	(<220,000U)J	(<77,000U)J	(<6U)	(<760U)	(<6U)	(<6U)
Tetrachloroethene	(<220,000U)J	(<77,000U)J	0.9 J	(<760U)	(<6U)	(<6U)
Toluene	1,000,000J	11,000 J	16	660 J	2J	(<6U)
Ethylbenzene	92,000 J	(<77,000U)J	(<6U)	(<760U)	(<6U)	(<6U)
Xylenes (Total)	25,000,000J	2,000,000J	700	35,000	44	10
TICs - Known		·				
TICs - Unknown;n					 · 、	
Level (low or medium)	М	М	· L	М	· L	L
Dilution facter	1	1	1 .	1	1	1

Analytes	SB24	SB24 DUP	SB25	SB26	SB27
-	-01A	-01A	-0 1A	-01A	-01A
Depth	7-9 ft	7-9 ft	8-10 ft	4-6 ft	5 ft
Units	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Methylene Chloride	(<17U)	370 J	450 J	(<220,000U)J	(<170,000
Acetone	55 J	(<2,000U)	(<1,900U)	(<450,000U)J	(<340,000
2-Butanone	[49 U]	7,000 Ĵ	7,100 J	(<450,000U)J	(<340,000
Benzene	3 J	(<990U)	290 J	(<220,000U)J	(<170,000
Chloroform	(<17U)	(<990U)	(<930U)	(<220,000U)J	(<170,000
Chlorobenzene	14J	210 J	89J	[220,000U]J	[170,000
1,2-Dichloroethene (total)	(<17U)	(<990U)	(<1,900U)	(<220,000U)J	(<170,000
Trichloroethane	(<17U)	(<990U)	110J	(<220,000U)J	(<170,000
Tetrachloroethene	(<17U)	(<990U)	(<930U)	(<220,000U)J	(<170,000
Toluene	41	500 J	19,000	27,000 J	330,00
Ethylbenzene	4 J	(<990U)	790 J	(<220,000U)J	(<170,000
Xylenes (Total)	2,000 J	45,000	94,000 J	4,700,000 J	21,000,00
TICs - Known					
TICs - Unknown;n					
Level (low or medium)	L	L	L	М	М
Dilution facter	1	1	1	1	1

.

TABLE 5 (Cont)	ont)	(Con	5	LE	AB	T.
----------------	------	------	---	----	----	----

p 4 of 4

Analytes	SB27 -02 A	FB03	FB04	FB05
Depth	6 ft			
Units	(ug/kg)	(ug/l)	(ug/i)	(ug/l)
				<i></i>
Methylene Chloride	3,600 J	(<5U)	2 J	(<5U)
Acetone	(<26,000U)	(<10U)	(<10U)	(<10U)
2-Butanone	(<26,000U)	(<10U)	(<10U)	(<10U) J
Benzene	(<13,000U)	(<5U)	(<5U)	(<5U)
Chloroform	(<13,000U)	(<5U)	(<5U)	(<5U)
Chlorobenzene	(<13,000U)	(<5U)	(<5U)	(<5U)
1,2-Dichloroethene (total)	(<13,000U)	(<5U)	(<5U)	(<5U)
Trichloroethane	(<13,000U)	(<5U)	(<5U)	(<5U)
Tetrachloroethene	2,700 J	(<5U)	(<5U)	(<5U)
Toluene	51,000	(<5U)	(<5U)	(<5U)
Ethylbenzene	(<13,000U)	(<5U)	(<5U)	(<5U)
Xylenes (Total)	1,200,000 J	(<5U)	(<5U)	(<5U)
TICs - Known				
TICs - Unknown;n		, ~		
Level (low or medium)	M	L	L	L
Dilution facter	1	1	1	1

ſ

.

.

Analytes	SB16	SB16	SB17	SB18	SB18	SB
	-01A	-02 A	-01A	-01A	-02A	-00
Depth	3-4 ft	5.5-7 ft	4-6 ft	0-2 ft	5-7 ft	10-12
Units	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/k
SEMI-VOLATILES						
henol	(<380U)	(<390U)	(<420U)	(<380U)	(<390U)	(<380
enzyl alcohol	(<380U)	(<390U)	(<420U)	(<380U)	(<390U)	51
-methyl phenol	(<380U)	(<390U)	64 J	(<380U)	(<390U)	54
-methyl phenol	(<380U)	200 J	(<420U)	(<380U)	(<390U)	(<380
enzoic acid	(<1,900U)	(<390U)	110 J	(<1,900U)	(<2,000U)	(<1,900
4-dimethyl phenol	(<380U)	(<390U)	(<420U)	(<380U)	(<390U)	(<380
aphthalene	(<380U)	160 J	400 J	(<380U)	180 J	25
-Chloroaniline	(<380U)	(<390U)	(<420U) ⁻	(<380U)	(<390U)	(<380
methyl naphthalene	(<380U)	330 J	140 J	(<380U)	150 Ĵ	20
cenaphthylene	(<380U)	(<390U)	(<420U)	(<380U)	67 J	13
cenaphthene	(<380U)	(<390U)	48 J	(<380U)	(<390U)	7
ibenzofuran	(<380U)	(<390U)	(<420U)	(<380U)	(<390U)	14
	(<380U)	(<390U)	(<420U)	(<380U)	180 J	28
uorene	(<380U) (<380U)	490	(<420U)	(<380U)	(<390U)	(<38)
-nitrosodiphenylamine	(<3800) (<380U)	540	160 J	(<380U)	610	26
henanthrene		63 J	(<420U)	(<380U)	110 J	25
hthracene	(<380U)	[390U]	(390U]	(<3800) [410U]	[390U]	(<380
i-n-butyl phthalate	170 J			• •	(<390U)	23
ibenzo(a,h)anthracene	(<380U)	(<390U)	(<420U)	(<380U)	· · · ·	150
uoranthene	(<380U)	220 J	140 J	(<380U)	910	230
yrene	(<380U)	650 J	170 J	(<380U)	1100	(<380
utylbenzylphthalate	(<380U)	(<390U)J	(<420U)J	(<380U)	(<390U)	•
enzo(a)Anthracene	(<380U)	170 J	97 J	(<380U)	770	99
is(2-ethyl hexyl)phthalate	58 J	280 J	190 J	480	210 J	14
hrysene	(<380U)	250 J	97 J	(<380U)	850	110
enzo(b)Fluoranthene	(<380U)	140 J	55 J	(<380U)	910	79
enzo(k)Fluoranthene	(<380U)	*	80 J	(<380U)	550	81
enzo(a)Pyrene	(<380U)	76 J	77 J	(<380U)	780	93
deno(1,2,3-cd)Pyrene	(<380U)	(<390U)J	(<420U)J	(<380U)	580	56
enzo(g,h,i)Perylene	(<380U)	(<390U)J	(<420U)J	(<380U)	620	60
Toluic acid	(<2000U)	(<2000U)	4000	(<2000U)	140 J	2
-Toluic acid	(<2000U)	(<2000U)	3000	(<2000U)	290 J	2
Toluic acid	(<2000U)	(<2000U)	240 J	(<2000U)	(<2000U)	19
evel (low or medium)	L	L	L	L	L	L
ilution factor	1	1	1	1	1	1
PESTICIDES/PCBs						
,4'-DDE	(<9.2 U)	(<9.4 U)	(<200 U)	(<9.3 U)	(<190 U)	(<9.3
4'-DDD	(<9.2 U)	(<9.4 U)	(<200 U)	(<9.3 U)	(<190 U)	(<9.3
4'-DDT	(<9.2 U)	(<9.4 U)	(<200 U)	(<9.3 U)	(<190 U)	(<9.3
racior 1248	(<46 U)	(<47 U)	(<1,000 U)	(<47 U)	(<940 U)	(<4
			L	L	L	L
evel (low or medium)	L 1	L 1	20	1	20	1
Dilution factor	1	1	20		L.4	•

Notes:

U = Not detected. Sample quantitation limits are shown as (<__U).

[-U] = Reported result was false positive following data validation review.

J = Reported value is an estimated concentration following data validation review.

B = Compound detected in corresponding method blank.

D = Reported result from diluted analysis.

Unknown TICs reported as total concentration and total number of unknowns.

--- = No detectable TICs.

* = Benzo(k)fluoranthene coeluted with benzo(b)fluoranthene.

Data validation results provided in data reports 911652 (SB16-01A), 911664 (SB16-02A through SB21-01A), and 911691 (SB22-01A through SB27-01A)

Analytes		SB19	SB20	SB21	SB22	SB23
/		-01A	-01A	-01 A	-01 A	-01A
	Depth	5-7 ft	3-5 ft	12.5-14.5 ft	10-12 ft	10-12 ft
	Units	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
SEMI-VOLATILES						
nenoi		(<1,200U) J	(<410U)R	(<400U)	300 J	(<380U)
enzył alcohol		(<1,200U) J	(<410U)R	(<400U)	160 J	(<380U)
methyl phenol		(<1,200U) J	(<410U)R	(<400U)	43 J	(<380U)
methyl phenol		(<1,200U) J	(<410U)R	110 J	110 J	(<380U)
enzoic acid		3000J	(<2000U)R	(<400U)	(<2,000U)	(<1800U)
4-dimethyl phenol		12,000 J	(<410U)	(<400U)	(<410U)	(<380U)
aphthalene		330J	10,000 D	(<400U)	(<410U)	(<380U)
-chloroaniline		(<1,200U) J	(<410U)	(<400U)	(<410U)	(<380U)
-methyl naphthalene		(<1,200U) J	2,400	(<400U)	57 J	(<380U)
cenaphthylene		(<1,200U) J	(<410U)	(<400U)	(<410U)	(<380U)
cenaphthene		(<1,200U) J	(<410U)	(<400U)	(<410U)	(<380U)
libenzofuran		(<1,200U) J	(<410U)	(<400U)	(<410U)	(<380U)
luorene		(<1,200U) J	3600	(<400U)	(<410U)	(<380U)
I-nitrosodiphenylamine		(<1,200U) J	(<410U)J	(<400U)	(<410U)	(<380Ų)
henanthrene		(<1,200U) J	140 J	(<400U)	(<410U)	(<380U)
nthracene		(<1,200U) J	(<410U)J	(<400U)	(<410U)	(<380U)
i-n-butyl phthalate		(<1,200U) J	(<410U)J	[400U]	[<410U]	[920U]
)ibenzo(a,h)anthracene		(<1,200U) J	(<410U)J	(<400U)	(<410U)	(<380U)
luoranthene		(<1,200U) J	45 J	(<400U)	(<410U)	(<380U)
vrene		(<1,200U) J	(<410U)J	(<400U)	(<410U)	(<380U)
yrene Butyibenzyiphthalate		(<1,2000) J	830 J	(<400U)	(<410U)	(<380U)
		(<1,2000) J	(<410U)J	(<400U)	(<410U)	(<380U)
Benzo(a)Anthracene		(<1,2000) J (<1,200U) J	270 J	(<4000) 57 J	420.B	[380U]
Bis(2-ethyl hexyl)phthalate		(<1,2000) J (<1,200U) J	(<410U)J	(<400U)	(<410U)	(<380U)
Chrysene Conzo(h)Eluoranthene		(<1,200U) J	(<4100)J (<410U)J	(<400U)	(<410U)	(<380U)
Benzo(b)Fluoranthene		(<1,200U) J	(<410U)J (<410U)J	(<400U)	(<410U)	(<380U)
Benzo(k)Fluoranthene		(<1,2000) J (<1,200U) J	(<410U)J	(<400U)	(<410U)	(<380U)
Benzo(a)Pyrene		(<1,2000) J (<1,200U) J	(<4100)J (<410U)J	(<400U) (<400U)	(<410U)	(<380U)
ndeno(1,2,3-cd)Pyrene		(<1,2000) J (<1,2000) J	(<4100)J (<410U)J	(<400U)	(<410U)	(<380U)
Benzo(g,h,i)Perylene		(<1,2000) J 81,000 J	(<2100)5 (<2100U)R	(<4000) · (<400U)	(<410U)	62 J
-Toluic acid			(<21000)R (<2100U)R	(<400U)	250 J	1,300
n Toluic acid		(<120,000U)	(<21000)R (<21000)R	(<4000) (<400U)	98 J	750
o-Toluic acid		1,600,000	(<21000)n	(<4000)	ć	
evel (low or medium)		Μ	L	L	L .	L 1
Dilution factor		1	1	1	1	I
PESTICIDES/PCB	S					
1,4'-DDE		(<570 U)	(<10 U)	(<10 U)	(<10 U)	(<9.2 U)
4.4'-DDD		(<570 U)	16	(<10 U)	(<10 U)	(<9.2 U
4,4'-DDT		(<570 U)	(<10 U)	(<10 U)	(<10 U)	(<9.2 U
Aroclor 1248		(<2,900 U)	(<49 U)	(<49 U)	230	(<46 U
_evel (low or medium)		М	L	L	L	L
Dilution factor		1	1	1	1	1

TABLE 6A (Cont)					·	p 3 of 4
					SB25	SB26
		SB23	SB24	SB24 DUP -01A	-01A	-01A
Analyte		-02 A	-01A	-01A 7-9 ft	8-10 ft	4-6 ft
	Depth	10-12 ft	7-9 ft		(ug/kg)	(ug/kg)_
	Units	(ug/kg)	(ug/kg)	(ug/kg)	(<u>ug</u> /kg)	(09/19)_
SEMI-VOLATILES						
Phenoi		(<380U)	(<2,800U)	(<2,600U)	(<2,500U)J	(<29,000U)
Benzyl alcohol		(<380U)	(<2,800U)	(<2,600U)	2,200 J	(<29,000U)
2-methyl phenol		67 J	(<2,800U)	(<2,600U)	250 J	15,000 J
4-methyl phenol		1 ee	(<2,800U)	(<2,600U)	470 J	10,000 J
Benzoic acid		(<1,900U)	(<13,000U)	(<2.600U)	(<12,000)R	(<140,000U)
2,4-dimethyl phenol		(<380U)	(<2,800U)	(<2,600U)	(<2,500U)R	(<29,000U)
Naphthalene		(<380U)	(<2,800U)	(<2,600U)	1,000 J	(<29,000U)
4-chloroaniline		(<380U)	19,000	25,000	(<2,500U)J	(<29,000U)
2-methyl naphthalene		(<380U)	. 290 J	250 J	800 J	(<29,000U)
Acenaphthylene		(<380U)	(<2,800U)	(<2,600U)	(<2,500U)J	(<29,000U)
Acenaphthene		(<380U)	130 J	(<2,600U)	(<2,500U)J	(<29,000U)
Dibenzofuran		(<380U)	(<2,800U)	(<2,600U)	(<2,500U)J	(<29,000U)
Fluorene		(<380U)	(<2,800U)	(<2,600U)	(<2,500U)J	(<29,000U)
N-nitrosodiphenylamine		(<380U)	(<2,800U)	(<2,600U)	(<2,500U)J	(<29,000U)
Phenanthrene		(<380U)	570 J	370 J	(<2,500U)J	(<29,000U)
Anthracene		(<380U)	150 J	95 J	(<2,500U)J	(<29,000U)
Di-n-butyl phthalate		[990U]	[2,800U]	[2,600U]	[2,500U]J	(<29,000U)
Dibenzo(a,h)anthracene		(<380U)	(<2,800U)	(<2,600U)	(<2,500U)J	(<29,000U)
Fluoranthene		(<380U)	560 J	2 90 J	(<2,500U)J	(<29,000U)
Pyrene		(<380U)	460 J	230 J	(<2,500U)J	(<29,000U)J
Butylbenzylphthalate		(<380U)	(<2,800U)	(<2,600U)	(<2,500U)J	(<29,000U)J
Benzo(a)Anthracene		(<380U)	240 J	(<2,600U)	(<2,500U)J	(<29,000U)J
Bis(2-ethyl hexyl)phthalate		[380U]	[2,800U]	[2,600U]	(<2,500UJJ	(<29,000U)J
Chrysene		(<380U)	(<2,800U)	(<2,600U)	(<2,500Ú)J	(<29,000U)J
Benzo(b)Fluoranthene		(<380U)	(<2,800U)	(<2,600U)	(<2,500U)J	(<29,000U)J
Benzo(k)Fluoranthene		(<380U)	(<2,800U)	(<2,600U)	(<2,500U)J	(<29,000U)J
Benzo(a)Pyrene		(<380U)	(<2,800U)	(<2,600U)	(<2,500U)J	(<29,000U)J
Indeno(1,2,3-cd)Pyrene		(<380U)	(<2,800U)	(<2,600U)	(<2,500U)J	(<29,000U)J
Benzo(g,h,i)Perylene		(<380U)	(<2,800U)	(<2,600U)	(<2,500U)J	(<29,000U)J
o-Toluic acid		(<380U)	(<2,800U)	210 J	1,800 R	67,000
<i>m</i> -Toluic acid		350 J	670 J	2,100 J	2,400 R	120,000
p-Toluic acid		100 J	560 J	2.400 J	(<13,000U)R	5,800 J
Level (low or medium)		1	L	Ĺ	L	L
Dilution factor		1	1	1	1	100
						:
		(<9.2 U)	19	22	22	(<2,800 U)J
4,4'-DDE		(<9.2 U) (<9.2 U)	(<13 U)	(<13 U)	12	(<2,800 U)J
4,4'-DDD		(<9.2 U) (<9.2 U)	(<13-6) 6.1 J	(<13 U)	(<12 U)	(<2,800 U)J
4,4'-DDT		(<9.2 U) (<46 U)	(<66 U)	(<63 U)	(<60 U)	(<14,000 U)J
Aroclor 1248		(<40 0)		(100 0)		1
Level (low or medium) Dilution factor		. L. 1	L 1	L 1	L 1	L 200

.

-

		SB27	SB27	FB03	FB04	FBO
Analyte		-03 A	-04A			
, ,	Depth	4-6 ft	4-4.5 ft			
	Units	(ug/kg)	(ug/kg)	(ug/l)	(ug/l)	(ug/
SEMI-VOLATILES						
Phenol		(<42,000U)	(<220,000U)J	(<10U)	(<10U)	(<101
Benzyl alcohol		(<42,000U)	(<220,000U)J	(<10U)	(<10U)	(<100
2-methyl phenol		(<42,000U)	(<220,000U)J	(<10U)	(<10U)	(<10l
4-methyl phenol		(<42,000U)	(<220,000U)J	(<10U)	(<10U)	(<10)
Benzoic acid		(<210,000U)	(<220,000U)J	(<50U)	(<50U)	(<50
2,4-dimethyl phenol		110,000	63,000 J	(<10U)	(<10U)	(<10
Naphthalene		(<42,000U)	(<220,000U)J	(<10U)	(<10U)	(<10
4-chloroaniline		(<42,000U)	(<220,000U)J	(<10U)	(<10U)	(<10)
2-methyl naphthalene		(<42,000U)	(<220,000U)J	(<10U)	(<10U)	(<10
		(<42,000U)	(<220,000U)J	(<10U)	(<10U)	(<10
Acenaphthylene		(<42,000U) (<42,000U)	(<220,000U)J	(<10U)	(<10U)	(<10)
Acenaphthene		(<42,000U) (<42,000U)	(<220,000U)J	(<10U)	(<10U)	(<10
Dibenzofuran			· · · ·	(<10U)	(<10U)	(<10
Fluorene		(<42,000U)	(<220,000U)J	(<10U)	(<10U)	(<10
N-nitrosodiphenylamine		(<42,000U)	(<220,000U)J	(<100) (<10U)	(<100) (<10U)	(<10
Phenanthrene		(<42,000U)	(<220,000U)J	· · ·	(<100) (<10U)	(<10
Anthracene		(<42,000U)	(<220,000U)J	(<10U)	(<100) (<10U)	(<10
Di-n-butyl phthalate		(<42,000U)	(<220,000U)J	(<10U)	· · ·	(<10
Dibenzo(a,h)anthracene		(<42,000U)	(<220,000U)J	(<10U)	(<10U)	(<10
Fluoranthene		(<42,000U)	(<220,000U)J	(<10U)	(<10U)	
Pyrene		(<42,000U)	(<220,000U)J	(<10U)	(<10U)	(<10
Butylbenzylphthalate		(<42,000U)	(<220,000U)J	(<10U)	(<10U)	(<10
Benzo(a)Anthracene		(<42,000U)	(<220,000U)J	(<10U)	(<10U)	(<10
Bis(2-ethyl hexyl)phthalate		(<42,000U)	(<220,000U)J	(<10U)	(<10Ŭ)	2 .
Chrysene		(<42,000U)	(<220,000U)J	(<10U)	(<10U)	(<10
Benzo(b)Fluoranthene		(<42,000U)	(<220,000U)J	(<10U)	(<10U)	(<10
Benzo(k)Fluoranthene		(<42,000U)	(<220,000U)J	(<10U)	(<10U)	(<10
Benzo(a)Pyrene		(<42,000U)	(<220,000U)J	(<10U)	(<10U)	(<10
Indeno(1,2,3-cd)Pyrene		(<42,000U)	(<220,000U)J	(<10U)	(<10U)	(<10
Benzo(g,h,i)Perylene		(<42,000U)	(<220,000U)J	(<10U)	(<10U)	(<10
o-Toluic acid		(<220,000U)	(<2,200,000U)J	(<50U)	(<50U)	(<10
<i>m</i> -Toluic acid		500,000	8,500,000 UJ	(<50U)	(<50U)	(<10
ρ -Toluic acid		(<220,000U)	(<2,200,000U)J	(<50U)	(<50U)	(<10
Level (low or medium)		Ł	L	L	L	L
Dilution factor		50	100	1	1	1
						(<0.10
4,4'-DDE		(<1,000 U)J	(<1,000 U)	(<0.10 U)	(<0.10 U)	(<0.10
4,4'-DDD		(<1,000 U)J	(<1,000 U)	(<0.10 U)	(<0.10 U)	(<0.10
4,4'-DDT		(<1,000 U)J	(<1,000 U)	(<0.10 U)	(<0.10 U)	•
Aroclor 1248		(<5,100 U)J	(<5,200 U)	(<0.5 U)	(<0.5 U)	(<0.5
Level (low or medium)		L	L	L	L	L 1
Dilution factor		100	100	1	1	1
			•			

١

Analytes	SB16	SB16	SB17	SB18	SB18	SB18
,	-01A	-02 A	-01 A	-01A	-02A	-03A
Depth	3-4 ft	5.5 -7 ft	4-6 ft	0-2 ft	5-7 ft	10-12 ft
Units	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
SEMI-VOLATILES						
TICs-known						
Senzamine, N, N-diethyl-3-methyl		1,000 JN	••••		930 JN	1,500 JN
Senzene,1,1'-(1,2-ethanediyi		12,000 JN	4,000 JN		1,100 JN	
lexadecanoic acid		13,000 JN		•••		
Octadecanoic acid		13,000 JN				
(3H)-Isobenzofuranone			860 JN			
Senzene,1,1'-oxybis			740 JN			
Benzene, 1, 2-dimethyl-4-(phenyl			790 JN 🗉		200 JN	
leptadecane	·		650 JN			
-Hexadecanoic acid				160 JN		
lexadecanoic acid				300 JN		
Phosphoric acid,tris(2-ethyl					1,300 JN	
Benzaldehyde,4-methyl				·	750 JN	
Ethanol,2-(hexyloxy)						240 JN
Benzenemethanol,2-methyl						'1,300 JN
Phenol,2,6-bis(1,1-dimethylene						400 JN
Dodecanamide, N, N-bis(2-hydro						330 JN
5-Tetracosenoic acid,methyl						15,000 JN
Octadecanoic acid						13,000 JN
Benzene, 1, 2, 4, 5-tetramethyl						
,2-Propanediol						
etradecanoic acid						
Pentadecanoic acid						
Detadecanoic acid						
Benzene, 1, 4-dichloro-isocyanato						
Pentamine				·		
Benzenemethanimine						
2-Propen-1-one,2-(4-methyl						
			•			
2-Propen-1-one,3-(4-methyl						
I,4-Benzenedicarboxaldehyde		·				
Benzenemethanol,4-methyl-(9c						
Foluic acid methyl ester Isomer						
BNA TICs-unknown(n)	1,290 J;3	26,390 J;16	14,290 J;14	450 J;2	7,090 J;14	36,970 ;1
_evel (low or medium)	L	L	L	L	L	L
Dilution factor	1	1	1	1	1	1

Notes:

J = Reported value is an estimate

JN = Presumptive identification and an estimated concentration.

R = Data is unusable.

Unknown TICs reported as total concentration and total number of unknowns.

Data validation results provided in data reports 911652 (SB16 - 01A), 911664 (SB16 - 02A through SB21 - 01A) and 911691 (SB22 - 01A through SB27 - 01A)

Analytes Depth Units SEMI-VOLATILES TICs-known Benzamine,N,N-diethyl-3-methyl Benzene,1,1'-(1,2-ethanediyl Hexadecanoic acid Octadecanoic acid 1(3H)-Isobenzofuranone Benzene,1,2-dimethyl-4-(phenyl Heptadecane 9-Hexadecanoic acid Hexadecanoic acid Phosphoric acid,tris(2-ethyl Benzeldehyde,4-methyl Ethanol,2-(hexyloxy) Benzenemethanol,2-methyl Phenol,2,6-bis(1,1-dimethylene Dodecanamide,N,N-bis(2-hydro 15-Tetracosenoic acid Benzene,1,2,4,5-tetramethyl 1,2-Propanediol Tetradecanoic acid Pentadecanoic acid Pentadecanoic acid Octadecanoic acid Pentadecanoic acid	SB19 -01A 5-7 ft (ug/kg) 	SB20 -01A 3-5 ft (ug/kg) 2,000 JN 2,500 JN 12,000 JN -	SB21 -01A 12.5-14.5 ft (ug/kg) -	SB22 -01A 10-12 ft (ug/kg) 770 JN 640 JN 4.900 JN 540 JN	SB23 -01A 10-12 ft (ug/kg)
Units SEMI-VOLATILES TICs-known Benzamine,N,N-diethyl-3-methyl Benzene,1,1'-(1,2-ethanediyl Hexadecanoic acid Octadecanoic acid 1(3H)-Isobenzofuranone Benzene,1,2-dimethyl-4-(phenyl Heptadecane 9-Hexadecanoic acid Hexadecanoic acid Phosphoric acid,tris(2-ethyl Benzaldehyde,4-methyl Ethanol,2-(hexyloxy) Benzenemethanol,2-methyl Phenol,2,6-bis(1,1-dimethylene Dodecanamide,N,N-bis(2-hydro 15-Tetracosenoic acid Benzene,1,2,4,5-tetramethyl 1,2-Propanediol Tetradecanoic acid Pentadecanoic acid Pentadecanoic acid	5-7 ft (ug/kg)	3-5 ft (ug/kg) 2,000 JN 2,500 JN 12,000 JN 	12.5-14.5 ft (ug/kg)	10-12 ft (ug/kg) 770 JN 640 JN 4.900 JN 540 JN	10-12 ft (ug/kg) 1500 F
Units SEMI-VOLATILES TICs-known Benzamine,N,N-diethyl-3-methyl Benzene,1,1'-{1,2-ethanediyl Hexadecanoic acid Octadecanoic acid 1(3H)-Isobenzofuranone Benzene,1,2-dimethyl-4-(phenyl Heptadecane 9-Hexadecanoic acid Hexadecanoic acid Phosphoric acid,tris(2-ethyl Benzaldehyde,4-methyl Ethanol,2-(hexyloxy) Benzenemethanol,2-methyl Phenol,2,6-bis(1,1-dimethylene Dodecanamide,N,N-bis(2-hydro 15-Tetracosenoic acid,methyl Octadecanoic acid Benzene,1,2,4,5-tetramethyl 1,2-Propanediol Tetradecanoic acid Pentadecanoic acid	(ug/kg) 	(ug/kg) 2,000 JN 2,500 JN 12,000 JN 	(ug/kg)	(ug/kg) 770 JN 640 JN 4.900 JN 540 JN	(ug/kg)
SEMI-VOLATILES TICs-known Benzamine,N,N-diethyl-3-methyl Benzene,1,1'-(1,2-ethanediyl Hexadecanoic acid Dctadecanoic acid 1(3H)-Isobenzofuranone Benzene,1,2-dimethyl-4-(phenyl Heptadecane D-Hexadecanoic acid Hexadecanoic acid Phosphoric acid,tris(2-ethyl Benzaldehyde,4-methyl Ethanol,2-(hexyloxy) Benzenemethanol,2-methyl Phenol,2,6-bis(1,1-dimethylene Dodecanamide,N,N-bis(2-hydro 15-Tetracosenoic acid,methyl Octadecanoic acid Benzene,1,2,4,5-tetramethyl 1,2-Propanediol Tetradecanoic acid		2,000 JN 2,500 JN 12,000 JN 	 650 JN	770 JN 640 JN 4.900 JN 540 JN	1500 F
TICs-known Benzamine,N,N-diethyl-3-methyl Benzene,1,1'-(1,2-ethanediyl Hexadecanoic acid Dotadecanoic acid 1(3H)-Isobenzofuranone Benzene,1,1'-oxybis Benzene,1,2-dimethyl-4-(phenyl Heptadecane 9-Hexadecanoic acid Hexadecanoic acid Phosphoric acid,tris(2-ethyl Benzaldehyde,4-methyl Ethanol,2-(hexyloxy) Benzenemethanol,2-methyl Phenol,2,6-bis(1,1-dimethylene Dodecanamide,N,N-bis(2-hydro 15-Tetracosenoic acid,methyl Octadecanoic acid Benzene,1,2,4,5-tetramethyl 1,2-Propanediol Tetradecanoic acid Pentadecanoic acid		 2,500 JN 12,000 JN 	 650 JN	 640 JN 4,900 JN 540 JN	1500 F
Benzamine,N,N-diethyl-3-methyl Benzene,1,1'-(1,2-ethanediyl Hexadecanoic acid Octadecanoic acid (3H)-Isobenzofuranone Benzene,1,2-dimethyl-4-(phenyl Heptadecane D-Hexadecanoic acid Hexadecanoic acid Phosphoric acid,tris(2-ethyl Benzaldehyde,4-methyl Ethanol,2-(hexyloxy) Benzenemethanol,2-methyl Phenol,2,6-bis(1,1-dimethylene Dodecanamide,N,N-bis(2-hydro 15-Tetracosenoic acid,methyl Dctadecanoic acid Benzene,1,2,4,5-tetramethyl 1,2-Propanediol Tetradecanoic acid Pentadecanoic acid		 2,500 JN 12,000 JN 	 650 JN	 640 JN 4,900 JN 540 JN	1500 F
Aenzene, 1, 1'-(1, 2-ethanediyl Aexadecanoic acid Octadecanoic acid (3H)-Isobenzofuranone Benzene, 1, 2-dimethyl-4-(phenyl Aeptadecane A-Hexadecanoic acid Aexadecanoic acid, methyl Dodecanamide, N, N-bis (2-hydro S-Tetracosenoic acid, methyl Doctadecanoic acid Benzene, 1, 2, 4,5-tetramethyl 1, 2-Propanediol Fetradecanoic acid Pentadecanoic acid		 2,500 JN 12,000 JN 	 650 JN	 640 JN 4,900 JN 540 JN	 1500 F
Benzene, 1, 1'-(1, 2-ethanediyl lexadecanoic acid Octadecanoic acid (3H)-Isobenzofuranone Benzene, 1, 2-dimethyl-4-(phenyl leptadecane D-Hexadecanoic acid lexadecanoic acid Phosphoric acid,tris(2-ethyl Benzaldehyde, 4-methyl Ethanol, 2-(hexyloxy) Benzenemethanol, 2-methyl Phenol, 2, 6-bis(1, 1-dimethylene Dodecanamide, N, N-bis(2-hydro 15-Tetracosenoic acid,methyl Dctadecanoic acid Benzene, 1, 2, 4,5-tetramethyl 1, 2-Propanediol Tetradecanoic acid Pentadecanoic acid Pentadecanoic acid		2,500 JN 12,000 JN 12,000 JN 	 650 JN	640 JN 4.900 JN 540 JN	 1500 F
Aexadecanoic acid Detadecanoic acid (3H)-Isobenzofuranone Benzene, 1, 2-dimethyl-4-(phenyl Heptadecane Hexadecanoic acid Hexadecanoic acid Phosphoric acid,tris(2-ethyl Benzaldehyde,4-methyl Ethanol,2-(hexyloxy) Benzenemethanol,2-methyl Phenol,2,6-bis(1,1-dimethylene Dodecanamide,N,N-bis(2-hydro 5-Tetracosenoic acid,methyl Detadecanoic acid Benzene, 1,2,4,5-tetramethyl 1,2-Propanediol Fetradecanoic acid Pentadecanoic acid	 	2,500 JN 12,000 JN 	 650 JN	640 JN 4.900 JN 540 JN	 1500 F
Detadecanoic acid (3H)-Isobenzofuranone Benzene, 1, 2-dimethyl-4-(phenyl Heptadecane D-Hexadecanoic acid Hexadecanoic acid Phosphoric acid,tris(2-ethyl Benzaldehyde,4-methyl Ethanol,2-(hexyloxy) Benzenemethanol,2-methyl Phenol,2,6-bis(1,1-dimethylene Dodecanamide,N,N-bis(2-hydro 15-Tetracosenoic acid,methyl Detadecanoic acid Benzene, 1,2,4,5-tetramethyl 1,2-Propanediol Tetradecanoic acid Pentadecanoic acid	 	2,500 JN 12,000 JN 	 650 JN	640 JN 4.900 JN 540 JN	 1500 F
(3H)-Isobenzofuranone Benzene, 1, 1'-oxybis Benzene, 1, 2-dimethyl-4-(phenyl Heptadecane D-Hexadecanoic acid Hexadecanoic acid Phosphoric acid,tris(2-ethyl Benzaldehyde, 4-methyl Ethanol, 2-(hexyloxy) Benzenemethanol, 2-methyl Phenol, 2, 6-bis(1, 1-dimethylene Dodecanamide, N, N-bis(2-hydro 15-Tetracosenoic acid,methyl Dctadecanoic acid Benzene, 1, 2, 4, 5-tetramethyl 1, 2-Propanediol Fetradecanoic acid Pentadecanoic acid	 	2,500 JN 12.000 JN 	 650 JN	640 JN 4.900 JN 540 JN	 1500 F
Senzene, 1, 1'-oxybis Benzene, 1, 2-dimethyl-4-(phenyl Heptadecane D-Hexadecanoic acid Aexadecanoic acid Phosphoric acid,tris(2-ethyl Benzaldehyde, 4-methyl Ethanol, 2-(hexyloxy) Benzenemethanol, 2-methyl Phenol, 2, 6-bis(1, 1-dimethylene Dodecanamide, N, N-bis(2-hydro 15-Tetracosenoic acid,methyl Dotadecanoic acid Benzene, 1, 2, 4, 5-tetramethyl 1, 2-Propanediol Fetradecanoic acid Pentadecanoic acid	 -	2,500 JN 12,000 JN 	 650 JN 	640 JN 4.900 JN 540 JN	 1500 F
Benzene, 1, 2-dimethyl-4-(phenyl Heptadecane D-Hexadecanoic acid Hexadecanoic acid Phosphoric acid,tris(2-ethyl Benzaldehyde, 4-methyl Ethanol, 2-(hexyloxy) Benzenemethanol, 2-methyl Phenol, 2, 6-bis(1, 1-dimethylene Dodecanamide, N, N-bis(2-hydro 15-Tetracosenoic acid, methyl Dotadecanoic acid Benzene, 1, 2, 4, 5-tetramethyl 1, 2-Propanediol Tetradecanoic acid Pentadecanoic acid	 	12.000 JN	 650 JN 	640 JN 4.900 JN 540 JN	 1500 F
Heptadecane Heptadecanoic acid Hexadecanoic acid Phosphoric acid,tris(2-ethyl Benzaldehyde,4-methyl Ethanol,2-(hexyloxy) Benzenemethanol,2-methyl Phenol,2,6-bis(1,1-dimethylene Dodecanamide,N,N-bis(2-hydro 15-Tetracosenoic acid,methyl Doctadecanoic acid Benzene,1,2,4,5-tetramethyl 1,2-Propanediol Tetradecanoic acid Pentadecanoic acid	 	12,000 JN 	 650 JN 	640 JN 4.900 JN 540 JN	1500 F
0-Hexadecanoic acid Hexadecanoic acid Phosphoric acid,tris(2-ethyl Benzaldehyde,4-methyl Ethanol,2-(hexyloxy) Benzenemethanol,2-methyl Phenol,2,6-bis(1,1-dimethylene Dodecanamide,N,N-bis(2-hydro 15-Tetracosenoic acid,methyl Dctadecanoic acid Benzene,1,2,4,5-tetramethyl 1,2-Propanediol Tetradecanoic acid Pentadecanoic acid	 	12,000 JN 	 650 JN 	4,900 JN 540 JN 	1500 F
Hexadecanoic acid Phosphoric acid,tris(2-ethyl Benzaldehyde,4-methyl Ethanol,2-(hexyloxy) Benzenemethanol,2-methyl Phenol,2,6-bis(1,1-dimethylene Dodecanamide,N,N-bis(2-hydro 15-Tetracosenoic acid,methyl Dotadecanoic acid Benzene,1,2,4,5-tetramethyl 1,2-Propanediol Tetradecanoic acid Pentadecanoic acid			 650 JN 	 540 JN 	
Phosphoric acid tris(2-ethyl Benzaldehyde,4-methyl Ethanol,2-(hexyloxy) Benzenemethanol,2-methyl Phenol,2,6-bis(1,1-dimethylene Dodecanamide,N,N-bis(2-hydro 15-Tetracosenoic acid,methyl Dotadecanoic acid Benzene,1,2,4,5-tetramethyl 1,2-Propanediol Tetradecanoic acid Pentadecanoic acid	· · ·	 	 650 JN 	540 JN	
Benzaldehyde,4-methyl Ethanol,2-(hexyloxy) Benzenemethanol,2-methyl Phenol,2,6-bis(1,1-dimethylene Dodecanamide,N,N-bis(2-hydro 15-Tetracosenoic acid,methyl Dotadecanoic acid Benzene,1,2,4,5-tetramethyl 1,2-Propanediol Tetradecanoic acid Pentadecanoic acid			650 JN	540 JN	
Ethanol,2-(hexyloxy) Benzenemethanol,2-methyl Phenol,2,6-bis(1,1-dimethylene Dodecanamide,N,N-bis(2-hydro 5-Tetracosenoic acid,methyl Dotadecanoic acid Benzene,1,2,4,5-tetramethyl I,2-Propanediol Fetradecanoic acid Pentadecanoic acid	· · · · · · · · · · · · · · · · · · ·		650 JN	540 JN	
Benzenemethanol,2-methyl Phenol,2,6-bis(1,1-dimethylene Dodecanamide,N,N-bis(2-hydro 5-Tetracosenoic acid,methyl Dctadecanoic acid Benzene,1,2,4,5-tetramethyl I,2-Propanediol Fetradecanoic acid Pentadecanoic acid	• ••••				
Phenol,2,6-bis(1,1-dimethylene Dodecanamide,N,N-bis(2-hydro 5-Tetracosenoic acid,methyl Dctadecanoic acid Benzene,1,2,4,5-tetramethyl I,2-Propanediol Fetradecanoic acid Pentadecanoic acid					
Dodecanamide,N,N-bis(2-hydro 5-Tetracosenoic acid,methyl Dctadecanoic acid Benzene,1,2,4,5-tetramethyl I,2-Propanediol Fetradecanoic acid Pentadecanoic acid					
15-Tétracosenoic acid,methyl Dctadecanoic acid Benzene.1,2,4,5-tetramethyl 1,2-Propanediol Tetradecanoic acid Pentadecanoic acid					
Dctadecanoic acid Benzene,1,2,4,5-tetramethyl I,2-Propanediol Fetradecanoic acid Pentadecanoic acid					
Benzene,1,2,4,5-tetramethyl 1,2-Propanediol Tetradecanoic acid Pentadecanoic acid					
1,2-Propanediol Tetradecanoic acid ^D entadecanoic acid		4,900 JN			
Tetradecanoic acid Pentadecanoic acid				2,600 JN	
Pentadecanoic acid				960 JN	
			·	·	
Jotadecanoic acid				2,700 JN	
S d d d'able a la summere			·		-
Benzene,1,4-dichloro-isocyanato					-
3-Pentamine					
Benzenemethanimine					-
2-Propen-1-one,2-(4-methyl					
2-Propen-1-one,3-(4-methyl	4,600 JN				
1,4-Benzenedicarboxaldehyde					-
Benzenemethanol,4-methyl-(9c	89,000 JN				
Toluic acid methyl ester Iso	3,200 JN			,	-
TICs-unknown(n) 3 [°]	76,200 J;13	115,800 J:15	1,650 J:5	32,400 J;10	13,150 J:
	1.184	L	L	L	L
Level (low or medium) Dilution factor	L\M 1	L 1	1	1	- 1

TABLE 6B (Cont)					p 3 of 4
	SB23	SB24	SB24 DUP	SB25	SB26
Analyta	-02A	-01A	-01A	-01A	-01 A
Analyte Depth	10-12 ft	7-9 ft	7-9 ft	8-10 ft	4-6 ft
Units	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
SEMI-VOLATILES					
TICs-known					
Benzamine,N,N-diethyl-3-methyl					
Benzene, 1, 1'-(1, 2-ethanediyl		•••			
Hexadecanoic acid					
Octadecanoic acid					
1(3H)-Isobenzofuranone					510,000 JN
Benzene, 1, 1'-oxybis					
Benzene, 1,2-dimethyl-4-(phenyl					
Heptadecane					
9-Hexadecanoic acid	1,300 R		10,000 R		
Hexadecanoic acid	2,000 R	7,500 R	10,000 R	19,000 R	
Phosphoric acid,tris(2-ethyl					
Benzaldehyde,4-methyl					
Ethanol,2-(hexyloxy)					
Benzenemethanol,2-methyl	670 JN		4,700 JN	24,000 JN	88, 00 0 JN
Phenol, 2,6-bis(1,1-dimethylene					
Dodecanamide,N,N-bis(2-hydro					
15-Tetracosenoic acid, methyl					
Octadecanoic acid					
Benzene, 1, 2, 4, 5-tetramethyl					
1.2-Propanediol					
Tetradecanoic acid		17,000 JN	16,000 JN	3,100 JN	
Pentadecanoic acid		2,300 JN			
Octadecanoic acid		48,000 JN		9,000 JN	
Benzene, 1, 4-dichloro-isocyanato		3,800 JN	5,500 JN		
3-Pentamine			2,200 JN		
Benzenemethanimine					46,000 JN
2-Propen-1-one,2-(4-methyl					
2-Propen-1-one,3-(4-methyl	•••			••••	65,000 JN
1,4-Benzenedicarboxaldehyde	•••				
Benzenemethanol,4-methyl-(9c					
Toluic acid methyl ester Iso				,	
			001 100 1114	263.900 J:16	4,927,000 J:17
TICs-unknown(n)	2230 J;8	330,800 J;15	291,100 J:14	203,900 0,10	-,027,000 0.17

TICs-unknown(n)	2230 J(8	330,800 0,15	291,100 0.14	200,000 0,10	
Level (low or medium)	L	L	L	L	L
Dilution factor	1	1	1	1	100

•

.

ABLE 65 (Cont)					p 4 of 4
	SB27	SB27	FB03	FB04	FB05
Analyte	-03A	-04A			
Depth	4-6 ft	4-4,5 ft			
Units	(ug/kg)	(ug/kg)	(ug/l)	(ug/l)	(ug/l)
SEMI-VOLATILES					
TICs-known					
Benzamine.N,N-diethyl-3-methyl			•		
Benzene.1,1'-(1,2-ethanediyl					
Hexadecanoic acid					
Dctadecanoic acid					
I (3H)-Isobenzofuranone					
Benzene.1.1'-oxybis					
Benzene.1,2-dimethyl-4-(phenyl					
Heptadecane		•	•••		
-Hexadecanoic acid					
Hexadecanoic acid					
Phosphoric acid,tris(2-ethyl					
Benzaldehyde,4-methyl					
Ethanol.2-(hexyloxy)		•••	• •••		
Benzenemethanol,2-methyl					
Phenol,2,6-bis(1,1-dimethylene				•••	
Dodecanamide.N,N-bis(2-hydro					
15-Tetracosenoic acid methyl					
Octadècanoic acid					
Benzene. 1.2,4,5-tetramethyl					
1,2-Propanediol					
Tetradecanoic acid					
Pentadecanoic acid			•••• ,	- 14	
Octadecanoic acid					
Benzene, 1, 4-dichloro-isocyanato					
3-Pentamine					
Benzenemethanimine					
2-Propen-1-one,2-(4-methyl					
2-Propen-1-one,3-(4-methyl					65,000 JN
1,4-Benzenedicarboxaldehyde	32,000 JN	***	•		
Benzenemethanol,4-methyl-(9c					
Toluic acid methyl ester Iso		·		•••• e	
TiCs-unknown(n)	5.181,000 J;15	13,000,000 J;7			25 J;;
Level (low or medium)	L	L	L	L.	L,
Dilution factor	50	100	1	1	1

TABLE 7 INORG	BANIC ANALY	TES MEASURE	D IN LANDFILL	SOIL BORINGS		p 1 of 4
Analytes	SB16	SB16	SB17	SB18	SB18	SB18
-	-01 A	-02A	-01A	-01A	-02A	-03A
Units	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg
Aluminum	13,900	5,690	9,710	6,330	4,140	6,620
Antimony	3.1 BJ	(<3.5U) J	6.9 J	3.7 J	3.0 J	2.7 B
Arsenic	5.7 J	10.0 J	8.8 J	8.6 J	10.4 J	5.2
Barium	64.3	78.4	60.5	105	45.8	58.
Beryllium	0.57	0.60	0.46 B	0.69	0.49	0.36 [
Cadmium	4.1 J	3.3 J	8.4 J	3.5 J -	2.5 J	3.7
Calcium	67,400	11,000	17,200	8,790	42,900	50,50
Chromium	18.0 J	20.3	23.4	16.9	18.6	27.
Cobalt	8.2	31.5 J	53.5 J	10.1 J	16.4 NJ	12.5
Copper	20.8	36.9 J	38.5 J	23.8 J	22.8 *J	32.5
lron	26,200	9,300	24,700	10,100	7,340	11,10
Lead	15.1	44.4	40.1	12.1	17.7	58.
Magnesium	35,300 B	5,450 B	5,780 J	7,390	5430 B	7,560
Manganese	599	636 J	638 J	635 J	431 J	465
Mercury	(<0.09U)	0.15	0.30	0.11	0.21	0.1
Nickel	24.7	22.2 J	44.5 J	23.9 J	16.6 J	23.
Potassium	2,460	2.330	1,420	1,850	2,390	1,78
Selenium	(<0.12U)J	(<0.08U)J	(<0.11U)J	(<0.11U)J	(<0.10U)J	(<0.09U)
Silver	2.8 J	1.6 J	2.1 J	0.46 BJ	· 3.2 J	3.8
Sodium	3,280	3,970	451 B	156 B	875	357
Thallium	(<0.21 U)	(<0.16 U)R	(<0.21 U)	(<0.23 U)R	(<0.19 U)R	(<0.19 U)
Vanadium	16.2	18.0	11.6	17.8	12.0	10.
Zinc	37.4 R	91.5 J	301 J	45.2 J	101 J	190
Cyanide	(<0.57 U)	(<0.53 U)J	(<0.51 U)J	(<0.50 U)J	(<0.44 U)J	(<0.52 U)

Notes:

U = Not detected. Sample quantitation limits are shown as (<_U).

B = Reported value is below CRQL.

J = Reported value is an estimate

R = Unusable

Data validation results provided in data reports 911652 (SB16-01A), 911664 (SB16-02A through (SB21-01A), and 911691 (SB22-01A through SB2701A) TABLE 7 (Cont)

•

,

	0.040	0000	SB21	SB22	SB23	SB23
Analytes	SB19	SB20				
	-01A	-01A	-01A	-01A	-01A	-02A
Units	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
			7 470	10 100	40.000	0.010
Aluminum	9,780 J	7,300	7,170	13,400	12,600	8,310
Antimony	(<9.1U)R	· (<3.6)J	(<2.8U)J	(<3.1U)R	(<3.4U)J	(3.7U)J
Arsenic	5.2 J	2.0 J	4.4 J	3.6	9.1 J	6.3 J
Barium	92.5 J	46.5	62.9	53.0	76.4	59.1
Beryllium	0.52 J	0.32 B	0.58	0.63	0.54	0.37 B
Cadmium	9.5 J	_ 1.8 J	3.3 J	4.6 J	3.8	3.1
Calcium	37,100 J	40,300	14,100	3,960	23,400 B	83,000
Chromium	33.0 J	21.2	18.7	52.5 J	15.2	13.6
Cobalt	1,260 J	122 J	9.7 J	14.7	8.0	5.9
Copper	44.7 J	38.4 J	25.3 J	35.2 J	20.2	19.1
Iron	57,000 J	5,020	10,400	29,400	24,300	20,100
Lead	, 20 J	106	13.2	35.9	11.0J	8.8 J
Magnesium	11,400 J	6,180 B	8,640	5,450	14,000 B	38,600 B
Manganese	, 582 J	299 J	674 J	551	628	400
Mercury	0.50 J	17.2	(<0.10U)	0.13	(<0.11U)	(<0.09U)
Nickel	32 J	15.4 J	22.1 J	28	20.5	18.1
Potassium	2,200 J	2,370	1,810	3,840	1,390	1,540
Selenium	(<3.2U)J	(<0.12U)J	(<0.11U)J	(<0.09U)J	0.13 BJ	(<0.10U)J
Silver	2.0 J	3.3 J	1.5 J	0.45 J	1.4 J	2.9 J
Sodium	15,300 J	5,860	7,010	41,000 B	388 B	6,310
Thallium	(<0.64U)J	0.32 B	(<0.22 U)	<0.18U)J	(<0.21U)J	(<0.20U)J
Vanadium	13.9 J	7.8	17.4	13.0	16.1	12.0
Zinc	107 J	589 ENJ	41.9 J	138 J	38.5	37.7
	1.7 J	(<0.51 U)J	(<0.60 U)J	(<0.48U)	(<0.56U)	(<0.48U)
Cyanide	1.7 J	(20.01 0)0	(<0.00 0)0	((0.400)	((0.000))	()

TABLE 7 (Cont)

.

p 3 of 4

, L

Analytes	SB24	SB24 DUP	SB25	SB26	SB27
	-01A	-01A	-01A	-01A	-03A
Units	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aluminum	19,900	43,900	8,120	19,100 J	1,160 J
Antimony	8.7 J	10.3 J	3.9 BJ	13.5 J	(<8.4U)J
Arsenic	7.7 J	8.1 BJ	18.5 J	11.7 J	0.78 BJ
Barium	157	135	89.5	175 J	51.1 J
Beryllium	0.68	0.82	0.41 B	1.1 J	(<0.25U)J
Cadmium	5.2	4.6	5.2	8.9 J	20.5 J
Calcium	18,000 B	11,400	26,300 B	83,300 BJ	6,0 6 0 J
Chromium	153	164	41.7	11 J	13.7 J
Cobalt	44.2	39.3	108	710 J	1,020 J
Copper	458	294	234	82.5 J	26.0 J
Iron	25,400	21,600	25,800	59,300 J	124,000 J
Lead	141	11.5	124	160 J	2.4 J
Magnesium	5,010	10,500	6,790	14,900 J	1 <i>,</i> 520 J
Manganese	826	519	347	1,360 J	411 J
Mercury	0.43	0.33	0.36	0. 82 J	0.24 J
Nickel	28.4	35.4	19.0	9 9 .2 J	19.7 J
Potassium	10,100	11,600	3,140	8,560 J	342 BJ
Selenium	(<0.11U)J	0.13 BJ	(<0.11U)J	(<2.2U)J	(<0.5U)J
Silver	1.7 J	2.0 J	1.3 J	3.6 J	L 89.0
Sodium	24,000	67,900 B	51,600 B	6,010 J	1,160 BJ
Thallium	(<0.23U)J	(<0.21U)J	(<0.20U)J	(<0.45U)J	(<0.50U)J
Vanadium	13.4	18.7	10.8	25.0 J	(<0.74U)J
Zinc	438	363	1,170	725 J	73.2 J
Cyanide	(<0.65U)	(<0.63U)	3.6	·(<1.6U)J	1.4 J

TABLE 7 (Cont)

p 4 of 4

TADLE . (CONI)				
Anaiytes	SB27	FB03	FB04	FB05
	-04A	<i>i</i>	(II)	1
Units	(mg/kg)	(ug/l)	(ug/l)	(ug/l)
Aluminum	552	71.5 B	(<12U)	25.0 B
Antimony	(<3.6U)J	(<34U)	(<34U)	(<34U)
Arsenic	1.0 BJ	(<2U)	(<2U)	(<2U)
Barium	6.6 B	(<5U)	(<5U)	15.0 B
Beryllium	(<0.11U)	(<1U)	(<1U)	(<1U)
Cadmium	1.6	(<5U)	(<5U)	(<5U)
Calcium	1.570	158 B	99.9 B	1,380 B
Chromium	4.2	(<4U)	(<4U)	(<4U)
Cobait	4,230	(<9U)	(<9U)	(<9U)
Copper	6.4	5.9 B	(<2U)	9.7 B
lron	8,530	124	15.4 B	125
Lead	1.9	(<1U)	(<2U)	(<2U)
Magnesium	725	72.8 B	(<30U)	303 B
Manganese	45,9	2.9 B	1.0 B	5.0 B
Mercury	(<0.12U)	(<0.2U)	(<0.2U)	(<0.2U)
Nickel	20.6	(<9U)	(<9U)	(<9U)
Potassium	146 B	(<69U)	(<69U)	1,330 R
Selenium	(<0.11U)J	(<1U)	(<1U)	(<1U)N
Silver	(<0.21U)J	(<2U)N	(<2U)N	6.5 J
Sodium	90.1 B	(<136U)	314 B	. 2 ,31 0 J
Thallium	(<0.23U)J	9.8 B	(<2U)	(<2U)
Vanadium	0.61 B	(<3U)	(<3U)	(<3U)
Zinc	26.4	8.7 B	11.5 B	65.7J
Cyanide	(<0.58U)	(<10U)N	(<10U)	(<10U)

<u>ب</u> ب

TABLE 8. VOLATILE ORGA	NIC ANAL	LYTES MEASUR	ED IN SOIL BO	DRING SAMPI	ES FROM FO	RMER ORGA	NIC PLANT AF	REA		F	1 of 2
Analytes	Depth Zone Units	MW5- MWB-1 3-5 ft VZ (ug/kg)	MW5- SB-01 4.5-6.5 ft SZ (ug/kg)	MW5- SB-02 2-4 ft VZ (ug/kg)	MW5- SB-03 0.5-2.5 ft VZ (ug/kg)	MW5- SB-04 4-6 ft SZ (ug/kg)	MW5- SB-05 4.5-6.5 ft SZ (ug/kg)	MW5- SB-06 10-12 ft SZ (ug/kg)	MW5- SB-07 0.5-2.5 ft VZ (ug/kg)	MW5- SB-08 10-12 ft SZ (ug/kg)	MW5- SB-09 4.5-6.5 ft SZ (ug/kg)
TCL Analytes											
Acetone		(<15,000U)J	37 J	(<12U)J	(<12U)J	(<12U)J	22 J	18	(<12U)J	13 J	26
1,1-Dichloroethane		(<7,700U)J	(<18 U)	(<12Ú)	(<12Ú)	(<12U)	(<18U)	(<14U)	(<12U)	(<14U)	4、
1,2-Dichloroethene (total)		(<7,700U)J	(<18 U)	2 Ĵ	(<12U)	(<12U)	(<18U)	(<14U)	(<12U)	(<14U)	(<15U).
2-Butanone		(<150,000U)J	21	(<12U)	(<12U)	(<12U)	15 J	(<14U)	(<12U)	(<14U)	(<15U
Benzene		(<7,700U)J	(<18 U)	(<12U)	(<12U)	(<12U)	(<18U)	(<14U)	(<12U)	(<14U)	(<15U
Tetrachloroethene		(<7,700U)J	(<18 U)	1 J	(<12U)	(<12U)	(<18U)	(<14U)	(<12U)	(<14U)	(<15U
Toluene		(<7,700U)J	37	(<12U)	(<12U)	(<12U)	(<18U)	(<14U)	(<12U)	(<14U)	(<15U
Xylenes (total)		2,200,000 J	320,000 D	68	(<12U)	52,000 D	120,000 D	22	(<12U)	580	21(
TICs											
Unknown (RT 10.69 min)			64 R	42 R	34 R	41 JN	54 R	49 R	46 R	45 BJ	22 F
Unknown (RT 12.54 min)										7 J	
Unknown (RT 26.13 min)			11 JN								
Unknown (RT 26.42 min)			29 JN				250 JN				
Unknown (RT 27.42 min)							16 JN				
Unknown C9H12 (RT 27.63	min)		29 JN			46 JN	95 JN				
Unknown (RT 28.39 min)							25 JN				
Unknown (RT 28.71 min)						47 JN	54 JN				
Unknown (RT 28.95 min)											18 JN
Unknown (RT 29.75 min)						19 JN	19 JN	4			
Unknown C10H14 (RT 30.0	9)					32 JN	14 JN				22 JN
Unknown (RT 30.27 min)						41 JN	21 JN				42 JN
Unknown C10H14 (RT 30.6	,					21 JN					27 JN
Unknown C10H14 (RT 30.9						72 JN	26 JN				45 JN
Unknown C10H14 (RT 31.0	6)					83 JN	30 JN				52 JN
Unknown (RT 31.22 min) Unknown (RT 31.31 min)						17 JN					25 JI
· · · · · · · · · · · · · · · · · · ·			L (b .4*	1		1 /5.4*	1 /6.4*				ł
Level (low or medium)			L/M*	L	L	L/M*	L/M*	L 1	L 1	L 1	L 1
Dilution Factor			1	1	1	1	1	1	I	I	I

Notes:

U = Not detected. Sample quantitation limits are shown as (<_U). JN = Presumptive identification, estimated value (TICs). B = Analyte present in corresponding method blank.

* = Xylene data from medium level analysis Zones: SZ = Saturated zone, VZ = Vadose zone

мсила (12.20) (21.20	TABLE 8 (cont)										p	2 of 2
Acetone (<12U),j	Dep Zoi	SB-10 th 4-6 ft ne SZ	SB-11 6-8 ft SZ	SB-12 4-6 ft SZ	SB-13 2-4 ft SZ	SB-14 0-2 ft VZ#	SB-15 6-8 ft SZ	SB-16 8-10 ft SZ	FB-01 	TB-01	TB-02 	FB-02
Acetone (<12U)J	TCL Analytes											
t, 1-Dichloroethane (<12U) (<12U) (<12U) (<13U) (<13U) (<12U) (<67U) (<13U) (<13U) (<13U) (<10U) (<	•	(<12U)J	(<12U)J	(<16U)J	(<13U)J	40 J	140 BJ	20 BJ	(<10U)	(<10U)	(<10U)	(<10U)
L2-Dichloroethene (total) (<12U) (<12U) (<16U) (<13U) (<12U) (<67U) (<13U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) 2.Butanone (<12U) (<12U) (<12U) (<16U) (<13U) (<12U) 5.J (31U) (<10U) (<10U (<10U) (<10U) (<10U) (<10U (UNROWIN (RT 126.4 min) UNROWIN (RT 26.3 min) UNROWIN (RT 26.35 min) UNROWIN (RT 26.25 min) UNROWIN (RT 26.25 min) UNROWIN (RT 30.27 min) UNROWIN (RT 30.264) UNROWIN (RT 31.20 min) UNRO		· · ·	· ·	```		(<12U)	(<67U)	(<13U)	1 J	(<10U)	(<10U)	(<10
2:Butanone (<12U),1				. ,	. ,	•	(<67U)	(<13U)	(<10U)	(<10U)	(<10U)	(<10
Banzene (<12U)		• •	. ,	· · · ·	· ·		59 J	13 J	(<10U)J	(<10U)J	(<10U)J	(<10L
Tetrachloroethene (<12U)J				. ,		• •	5 J	(<13U)	(<10U)	(<10U)	(<10U)	(<10
Toluene (<12U) 1 J (<16U) (<13U) (<12U) (<67U) 2 J (<10U)						(<12U)J	(<67U)	(<13U)	(<10U)	· (<10U)	(<10U)	(<10
xylenes (total) (<12U)	Toluene		1 J	(<16U)	(<13U)	(<12U)	(<67U)	2 J	(<10U)	(<10U)J	(<10U)	(<10
Unknown (RT 10.69 min) 30BJ 29BJ 30BJ Unknown (RT 25.4 min) Unknown (RT 26.42 min) Unknown (RT 27.42 min) Unknown (RT 27.42 min) Unknown (RT 27.42 min) Unknown (RT 28.39 min) Unknown (RT 28.39 min) Unknown (RT 28.39 min) Unknown (RT 28.95 min) Unknown (RT 28.95 min) Unknown (RT 30.27 min) Unknown (RT 30.27 min) Unknown (RT 30.27 min) Unknown C10H14 (RT 30.64) Unknown C10H14 (RT 30.64) Unknown C10H14 (RT 31.06) Unknown (RT 31.22 min) 2 J Unknown (RT 31.31 min) L L L L L L L L L L L L L L L L L L L			(<12U)	(<16U)	(<13U)	(<12U)	1,300	6 J	25 J	(<10U)J	(<10U)	(<10
Unknown (RT 12.54 min) Unknown (RT 26.42 min) Unknown (RT 26.42 min) Unknown (RT 27.42 min) Unknown (RT 28.39 min) Unknown (RT 28.39 min) Unknown (RT 28.75 min) Unknown (RT 29.75 min) Unknown (RT 30.27 min) Unknown C10H14 (RT 30.64) Unknown C10H14 (RT 30.64) Unknown C10H14 (RT 31.06) Unknown (RT 31.22 min) 2 J Unknown (RT 31.31 min) L L L L L L L L L L L L L L L L L L L	TICs											
Jnknown (RT 12.54 min) Jnknown (RT 26.13 min) Jnknown (RT 26.42 min) Jnknown (RT 27.42 min) Jnknown (RT 27.43 min) Jnknown (RT 28.39 min) Unknown (RT 28.39 min) Unknown (RT 28.71 min) Unknown (RT 28.95 min) Unknown (RT 28.95 min) Unknown (RT 29.75 min) Unknown (RT 30.09) Unknown (RT 30.09) Unknown (RT 30.27 min) Unknown C10H14 (RT 30.09) Unknown C10H14 (RT 30.64) Unknown (RT 31.22 min) 2 J Unknown (RT 31.31 min) Level (low or medium) L L L L									30BJ	29BJ	30BJ	
Unknown (RT 26.42 min) Unknown (RT 27.42 min) Unknown (RT 28.39 min) Unknown (RT 28.39 min) Unknown (RT 28.71 min) Unknown (RT 28.55 min) Unknown (RT 29.75 min) Unknown C10H14 (RT 30.09) Unknown C10H14 (RT 30.09) Unknown C10H14 (RT 30.64) Unknown C10H14 (RT 30.90) Unknown C10H14 (RT 31.06) Unknown (RT 31.22 min) 2 J Unknown (RT 31.31 min) L L L L L L L L L L L L L L L L L L	Jnknown (RT 12.54 min)											
Unknown (RT 27.42 min) Unknown C9H12 (RT 27.63 min) Unknown (RT 28.39 min) Unknown (RT 28.71 min) Unknown (RT 28.95 min) Unknown (RT 29.75 min) Unknown C10H14 (RT 30.09) Unknown C10H14 (RT 30.09) Unknown C10H14 (RT 30.64) Unknown C10H14 (RT 30.64) Unknown C10H14 (RT 31.06) Unknown (RT 31.22 min) 2 J Unknown (RT 31.31 min) L L L L L L L L L L L L L L L L L L L	Unknown (RT 26.13 min)											
Unknown C9H12 (RT 27.63 min) Unknown (RT 28.39 min) Unknown (RT 28.95 min) Unknown (RT 28.95 min) Unknown (RT 29.75 min) Unknown C10H14 (RT 30.09) Unknown C10H14 (RT 30.64) Unknown C10H14 (RT 30.90) Unknown C10H14 (RT 31.06) Unknown (RT 31.22 min) 2 J Unknown (RT 31.31 min) Level (low or medium) LLLLLLLLLLLLLL	Unknown (RT 26.42 min)											
Unknown (RT 28.39 min) Unknown (RT 28.71 min) Unknown (RT 28.95 min) Unknown (RT 29.75 min) Unknown C10H14 (RT 30.09) Unknown (RT 30.27 min) Unknown C10H14 (RT 30.64) Unknown C10H14 (RT 31.06) Unknown (RT 31.22 min) 2 J Unknown (RT 31.31 min) L L L L L L L L L L L L L L L L L	Unknown (RT 27.42 min)											
Unknown (RT 28.71 min) Unknown (RT 28.95 min) Unknown (RT 29.75 min) Unknown C10H14 (RT 30.09) Unknown (RT 30.27 min) Unknown C10H14 (RT 30.64) Unknown C10H14 (RT 31.06) Unknown (RT 31.22 min) 2 J Unknown (RT 31.31 min) Level (low or medium) L L L L L L L L L L L L L L L L L	Unknown C9H12 (RT 27.63 mi	n)										
Unknown (RT 28.95 min) Unknown (RT 29.75 min) Unknown C10H14 (RT 30.09) Unknown (RT 30.27 min) Unknown C10H14 (RT 30.64) Unknown C10H14 (RT 31.06) Unknown (RT 31.22 min) 2 J Unknown (RT 31.31 min) Level (low or medium) L L L L L L L L L L L	Unknown (RT 28.39 min)											
Unknown (RT 29.75 min) Unknown C10H14 (RT 30.09) Unknown (RT 30.27 min) Unknown C10H14 (RT 30.64) Unknown C10H14 (RT 31.06) Unknown (RT 31.22 min) 2 J Unknown (RT 31.31 min) Level (low or medium) LLLLLLLLLLLLLLLLLLLL	Unknown (RT 28.71 min)											
Unknown C10H14 (RT 30.09) Unknown (RT 30.27 min) Unknown C10H14 (RT 30.64) Unknown C10H14 (RT 30.90) Unknown C10H14 (RT 31.06) Unknown (RT 31.22 min) 2 J Unknown (RT 31.31 min) Level (low or medium) L L L L L L L L L	Unknown (RT 28.95 min)											
Unknown (RT 30.27 min) Unknown C10H14 (RT 30.64) Unknown C10H14 (RT 30.90) Unknown C10H14 (RT 31.06) Unknown (RT 31.22 min) 2 J Unknown (RT 31.31 min) Level (low or medium) L L L L L L L L	Unknown (RT 29.75 min)											
Unknown C10H14 (RT 30.64) Unknown C10H14 (RT 30.90) Unknown C10H14 (RT 31.06) Unknown (RT 31.22 min) 2 J Unknown (RT 31.31 min) Level (low or medium) L L L L L L L L	Unknown C10H14 (RT 30.09)											
Unknown C10H14 (RT 30.90) Unknown C10H14 (RT 31.06) Unknown (RT 31.22 min) 2 J Unknown (RT 31.31 min) Level (low or medium) L L L L L L L L L	Unknown (RT 30.27 min)											
Unknown C10H14 (RT 31.06) Unknown (RT 31.22 min) 2 J Unknown (RT 31.31 min) Level (low or medium) L L L L L L L L L L L	Unknown C10H14 (RT 30.64)											
Unknown (RT 31.22 min) 2 J Unknown (RT 31.31 min) Level (low or medium) L L L L L L L L L L	Unknown C10H14 (RT 30.90)											
Unknown (RT 31.31 min) Level (low or medium) LLLLLLLLLL	Unknown C10H14 (RT 31.06)											
Level (low or medium) LLLLLLL	Unknown (RT 31.22 min)	2 J										
	Unknown (RT 31.31 min)											
Dilution Factor 1 1 1 1 1 1 1 1 1 1 1 1	Level (low or medium)	L	L.	L								
	Dilution Factor	1	1	1	1	1			1	1	1	1

and and and the second that we have a second the second the second second second second second second second s

int illing state i

•

21 11

I.

.

TABLE 9A. SEMI-VOLATILI	E ORGANIC AN	ALYTES MEASU	RED IN SOIL B	ORING SAMPLE	S FROM FORM	IER ORGANICS	PLANT AREA	P		
Analytes	MW5- MWB-01	MW5- SB-01	MW5- SB-02	MW5- SB-03	MW5- SB-04	MW5- SB-05	MW5- SB-06	MW5- SB-07	MW5- SB-08	MW5- SB-09
Depth	3-5 ft	4.5-6.5 ft	2-4 ft	0.5-2.5 ft	4-6 ft	4.5-6.5 ft	10-12 ft	0.5-2.5 ft	10-12 ft	4.5-6.5 ft
Zone	VZ	SZ	VZ	VZ	SZ	SZ	SZ	VZ	SZ	SZ
Units	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
.4 Dichlorobenzene	(<600U)	(<600U)	(<380U)	220 J	(<390U)	(<12,000U)	(<450U)	(<410U)	(<480U)	(<15,000l
henol	(<0000) 270 J	(<600U)	(<380U)	(<380U)	(<390U)	(<12,000U)	(<450U)	(<410U)	(<480U)	(<15,000
P-Methylphenol	280 J	(<600U)	(<380U)	(<380U)	(<390U)	1,400 Ĵ	(<450U)	(<410U)	(<480U)	(<15,000
-Methylphenol	(<2,000U)	(<0000) 66 J	(<380U)	(<380U)	(<390U)	2,400 J	(<450U)	(<410U)	(<480U)	(<15,000
	3,700 J	210 J	(<380U)	(<380U)	(<390U)	2,900 J	(<450U)	(<410U)	(<480U)	(<15,000
2,4-Dimethylphenol	(<2,000U)	160 J	(<380U)	(<3000) 21 J	1,200	590 J	(<450U)	160 J	(<480U)	2,100
Naphthalene	(<2,0000) (<2,000U)	68 J	(<380U) (<380U)	30 J	120 J	(<12,000U)	(<450U)	270 J	(<480U)	1,400
2-Methylnaphthalene	(<2,000U) (<2,000U)	70 J	(<3800) 26 J	(<380U)	(<390U)	(<12,000U)	(<450U)	(<410U)	(<480U)	770
Acenaphthylene		70 J 64 J	20 J	(<380U) (<380U)	(<390U)	(<12,000U)	(<450U)	29 J	(<480U)	(<15,000
cenaphthene	(<2,000U)		(<380U)	(<380U)	(<390U)	(<12,000U)	(<450U)	75 J	(<480U)	(<15,000
Dibenzofuran	(<2,000U)	49 J		(<380U) (<380U)	(<390U) (<390U)	4,100 J	(<450U)	29 J	(<480U)	(<15,000
luorene	(<2,000U)	430 J	23 J	(<3800) 100 J	(<3900) 32 J	(<12,000U)	(<450U)	340 J	(<480U)	1,30
henanthrene	230 J	750	290 J		(<390U)	(<12,000U) (<12,000U)	(<450U) (<450U)	43 J	(<480U)	(<15,000
nthracene	(<2,000U)	140 J	83 J	27 J	(<3900) (<390U)	(<12,000U) (<12,000U)	(<450U) (<450U)	31 J	(<480U)	(<15,000
Carbazole	(<2,000U)	130 J	37 J	20 J		(<12,000U) (<12,000U)	(<4500) (<450U)	28 J	(<480U)	(<15,000
)i-n-butylphthalate	(<2,000U)	45 J	· 90 J	(<380U)	(<390U)		(<4500) 28 J	200 J	(<480U) (<480U)	7,80
luoranthene	(<2,000U)	1,000	430	150 J	29 J	600 J	28 J 30 J	180 J	(<4800) (<480U)	7,80
yrene	(<2,000U)	910	390	190 J	26 J	(<12,000U)			· · · ·	6,70
Benzo(a)anthracene	(<2,000U)	450 J	250 J	99 J	(<390U)	(<12,000U)	(<450U)	(<410U)	(<480U)	-,
is(2-Ethylhexyl)phthalate	(<2,000U)	(<600U)	(<380U)	(<380U)	(<390U)	(<12,000U)	(<450U)	(<410U)	(<480U)	(<15,000
Chrysene	(<2,000U)	510 J	340 J	150 J	(<390U)	(<12,000U)	(<450U)	170 J	(<480U)	6,60
Di-n-octyl phthalate	(<2,000U)	(<600U)	(<380U)	(<380U)	(<390U)	(<12,000U)	(<450U)	37 J	(<480U)	(<15,000
Benzo(b)fluoranthene	(<2,000U)	410 J	410	160 J	(<390U)	(<12,000U)	(<450U)	110 J	(<480U)	5,60
Benzo(k)fluoranthene	(<2,000U)	400 J	. 390	120 J	(<390U)	(<12,000U)	(<450U)	100 J	(<480U)	6,10
Benzo(a)pyrene	(<2,000U)	460 J	480	220 J	(<390U)	(<12,000U)	(<450U)	110 J	(<480U)	7,90
ndeno(123-cd)pyrene	(<2,000U)	300 J	410	180 J	(<390U)	(<12,000U)	(<450U),	68 J	(<480U)	3,80
)ibenzo(a,h)anthracene	(<2,000U)	(<600U)	170 J	(<380U)	(<390U)	(<12,000U)	(<450U)	(<410U)	(<480U)	(<15,000
Benzo(ghi)perylene	(<2,000U)	330 J	520	270 J	(<390U)	(<12,000U)	(<450U)	(<410U)	(<480U)	3,80
n-Toluic Acid	11,000	810 J	(<2,000U)J	(<2,000U)	(<2,000U)	`46,000 Ĵ	(<2,300U)Ĵ	(<2,100U)	(<2,500U)	(<75,000
p-Toluic Acid	14,000	(<3100U)	(<2,000U)	(<2,000U)	(<2,000U)	(<60,000U)	(<2,300U)	(<2,100U)	(<2,500U)	(<75,000
	19,000	1,300 J	(<2,000U)	(<2,000U)	(<2,000U)	(<60,000U)	(<2,300U)	(<2,100U)	(<2,500U)	(<75,000
o-Toluic Acid	19,000	1,300 J	(<2,0000)	(<2,0000)	(~2,0000)	((00,000))	(12,000)			,
Level (low or medium)	L	L	L j	L	Ľ	L	L	L	L	M
Dilution Factor	5	1	1	1	1	20	1	1	1	1
Pest/PCB										
Aroclor 1248	ND	ND	ND	ND	ND	ND	ND	ND	ND	1

Notes:

U = Not detected. Sample quantitation limits are shown as (<_U). B = Analyte present in corresponding method blank.

Zones: SZ = Saturated zone, VZ = Vadose zone

1

J = Estimated value

TABLE 9A. (cont)

Page 2 of 2

TABLE 9A. (cont)									age z or z	
		MW5-	MW5-	MW5-	MW5-	MW5-	MW5-	MW5-	MW5-	MW5-
Analytes		SB-10	SB-11	SB-12	SB-13	SB-14	SB-15	SB-16	FB-01	FB-02
	Depth	4-6 ft	6-8 ft	4-6 ft	2-4 ft	0-2 ft	6-8 ft	8-10 ft		
	Zone	SZ	SZ .	SZ	SZ	VZ	SZ	SZ		•••
	Units	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/L)	(ug/L)
1,4 Dichlorobenzene		(<390U)	(<390U)	(<520U)	(<430U)J	(<410U)J	(<440U)	(<430U)	(<10U)	(<10U)
Phenol		(<390U)	(<390U)	(<520U)	(<430U)	((<440U)	(<430U)	(<10U)	(<10U)
2-Methylphenol		(<390U)	(<390U)	(<520U)	(<430U)	(<410U)	(<440U)	(<430U)	(<10U)	(<10U)
4-Methylphenol		(<390U)	(<390U)	(<520U)	(<430U)	(<410U)	(<440U)	(<430U)	(<10U)	(<10U)
2,4-Dimethylphenol		(<390U)	(<390U)	(<520U)	(<430U)	(<410U)	(<440U)	(<430U)	(<10U)	(<10U)
Naphthalene		(<390U)	(<390U)	(<520U)	(<430U)J	(<410U)J	46 J	(<430U)	(<10U)	(<10U)
2-Methylnaphthalene		(<390U)	53 J	(<520U)	(<430U)J	(<410U)J	(<440U)	(<430U)	(<10U)	(<10U)
Acenaphthylene		(<390U)	41 J	(<520U)	(<430U)J	(<410U)J	(<440U)	(<430U)	(<10U)	(<10U)
Acenaphthene		(<390U)	35 J	(<520U)	(<430U)J	(<410U)J	(<440U)	(<430U)	(<10U)	(<10U)
Dibenzofuran		(<390U)	30 J	(<520U)	(<430U)J	(<410U)J	(<440U)	(<430U)	(<10U)	(<10U)
Fluorene		(<390U)	55 J	(<520U)	(<430U)J	(<410U)J	28 J	(<430U)	(<10U)	(<10U)
Phenanthrene		(<390U)	270 J	(<520U)	(<430U)J	(<410U)J	560	(<430U)	(<10U)	(<10U)
Anthracene		(<390U)	78 J	(<520U)	(<430U)J	(<410U)J	80 J	(<430U)	(<10U)	(<10U)
Carbazole		(<390U)	21 J	(<520U)	(<430U)J	(<410U)J	(<440U)	(<430U)	(<10U)	(<10U)
Di-n-butylphthalate		(<390U)	(<390U)	(<520U)	(<430U)J	(<410U)J	(<440U)	(<430U)	(<10U)	(<10U)
Fluoranthene		(<390U)	570	(<520U)	(<430U)J	(<410U)J	1,700	(<430U)	(<10U)	(<10U)
Pyrene		(<390U)	530	(<520U)	(<430U)J	(<410U)J	1,300	(<430U)	(<10U)	(<10U)
Benzo(a)anthracene		(<390U)	340 J	(<520U)	(<430U)J	(<410U)J	1,100	(<430U)	(<10U)	(<10U)
bis(2-Ethylhexyl)phthala	ate	(<390U)	(<340U)	(<520U)	(<430U)J	(<410U)J	(<440U)	(<430U)	1 J	(<10U)
Chrysene		(<390U)	` 290 Ĵ	(<520U)	(<430U)J	(<410U)J	880	(<430U)	(<10U)	(<10U)
Di-n-octyl phthalate		(<390U)	(<390U)	(<520U)	(<430U)́J	(<410U)J	(<440U)	(<430U)	1 J	(<10U)
Benzo(b)fluoranthene		(<390U)	4 20	(<520U)	(<430U)J	(<410U)J	1,000	(<430U)	(<10U)	(<10U)
Benzo(k)fluoranthene		(<390U)	220 J	(<520U)	(<430U)J	(<410U)J	530	(<430U)	(<10U)	(<10U)
Benzo(a)pyrene		(<390U)	310 J	(<520U)	(<430U)́J	(<410U)J	700	(<430U)	(<10U)	(<10U)
Indeno(123-cd)pyrene		(<390U)	120 J	(<520U)	(<430U)J	(<410U)J	330 J	(<430U)	(<10U)	(<10U)
Dibenzo(a,h)anthracen	5	(<390U)	45 J	(<520U)	(<430U)J	(<410U)J	100	(<430U)	(<10U)	(<10U)
Benzo(ghi)perylene		(<390U)	110 J	(<520U)	(<430U)J	(<410U)J	330 J	(<430U)	(<10U)	(<10U)
m-Toluic Acid		(<2,000U)	(<2,000U)	100 J	(<2,200U)	(<2100Ú)	(<2,300U)	(<2,200U)	(<50U)Ĵ	(<50U)
p-Toluic Acid		(<2,000U)	(<2,000U)	(<2,700U)	(<2,200U)	(<2100U)	(<2,300U)	(<2,200U)	`(<50Ú)	(<50U)
o-Toluic Acid		(<2,000U) (<2,000U)	(<2,000U) (<2,000U)	380 J	(<2,2000) (<2,200U)	(<2100U)	(<2,300U)	(<2,200U)	(<50U)	(<50U)
Level (low or medium)		L	L	L	L	L	L	L	L	L
Dilution Factor		1.	1	. 1	1	1	1	1	1	1
		ND	ND	ND	ND	ND	59	ND	ND	ND

Analytes Sampling depth Units	MW5- MWB-01 3-5ft (ug/kg)	MW5- SB-01 4.5-6.5 ft (ug/kg)	MW5- SB-02 2-4 ft (ug/kg)	MW5- SB-03 0.5-2.5 ft (ug/kg)	MW5- SB-04 4-6 ft (ug/kg)	MW5- SB-05 4.5-6.5 ft (ug/kg)	MW5- SB-06 10-12 ft (ug/kg)	MW5- SB-07 0.5-2.5 ft (ug/kg)	MW5- SB-08 10-12 ft (ug/kg)	MW5- SB-09 4.5-6.5 ft (ug/kg)
Jnknown (RT 3.92 min) Jnknown (RT 5.36 min) Jnknown Hydrocarbon (RT 5.37 min) Jnknown (RT 6.65 min)		970 JN					460 JN 230 JN		190 JN	6100 JN
Jnknown (RT 7.25 min) Jnknown (RT 7.16 min) Occupations (RT 9.12 min)					1,000 JN				·	
2-Cyclohexen-1-one (RT 8.12 min) Unknown C10H14 isomer,8.71 min Unknown C10H14 isomer,8.79 min Unknown C10H14 isomer, 9.02 min					690 JN 490 JN					8400 JN 5300 JN 5300 JN
Unknown C10H14 isomer,9.20 min Unknown C10H14 isomer,9.32 min Unknown (RT 9.71 min)				190 JN	1,400 JN 1,600 JN 490 JN					16000 JN 21000 JN 7600 JN
Unknown (RT 9.84 min) Unknown C10H14 isomer,9.92 min Unknown C10H12 isomer, 10.27 min					880 JN 1200JN 670JN					13000 JN 9900 JI
Bicyclo[2.2.1]heptan-2-one,10.4 min Unknown (RT 10,41 min) Unknown C10H12 isomer, 10.47 min			310 JN	3,300 JN			,			3800 Ji 14000 Ji
Unknown C10H14 isomer,10.48min Unknown (RT 10.55 min) Ethanone,1 phenyl(RT 10.60 min)					1200 JN					5300 J
Unknown (RT 10.67 min) Unknown C10H14 isomer, 10,79 min Unknown C11H16 isomer (RT 11.16 min Unknown C11H16 isomer, 11.36 min Unknown Alkylbenzene (11.52 min) Unknown (RT 11.77 min))				270 JN					6800 JI 4600 JI 3800 JI
Unknown (RT 11.90 min) Unknown (RT 12.12 min) Unknown (RT 12.52 min)			170 JN	·		5300 JN		190 JN 210 JN		
1(3H)-Isobenzofuranone (9CI),13.67 min Unknown HC (RT 13.95 min)		730 JN		140 JN		2300 114	•	230 JN		
Unknown C12H10O isomer,14.31 Unknown C12H12 isomer, 14.64 min Unknown Hydrocarbon (RT 14.81 min)								330 JN 230 JN		
Level (low or medium)		L 1	L 1	L 1	L 1	L 20	L 1	L 1	L 1	L 1

1

Notes:

JN = Presumptive identification, estimated value (TICs).J = Estimated value

Analytes Sampling depth Units	MW5- MWB-01 3-5ft (ug/kg)	MW5- SB-01 4.5-6.5 ft (ug/kg)	MW5- SB-02 2-4 ft (ug/kg)	MW5- SB-03 0.5-2.5 ft (ug/kg)	MW5- SB-04 4-6 ft (ug/kg)	MW5- SB-05 4.5-6.5 ft (ug/kg)	MW5- SB-06 10-12 ft (ug/kg)	MW5- SB-07 0.5-2.5 ft (ug/kg)	MW5- SB-08 10-12 ft (ug/kg)	MW5- SB-09 4.5-6.5 ft (ug/kg)
								250 JN		
Unknown Hydrocarbon (RT 15.32 min)		000 101				12000 JN		200 011		
Unknown C15H16 isomer,15.95	1 COO IN	880 JN				12000 514				
1(3H) Isobenzofuranone(15.96)	1,600 JN			100 101				450 JN		
Unknown (RT 16.58 min)		1 0 0 0 10		160 JN			160 JN	430 314		
Unknown C12H17NO isomer,16.68		4,200 JN					100 314			
Unknown C14H22O isomer, 16.96 min					570 JN					
Benzene,1,1-oxybis(16.81)										
Unknown (RT 17.10 min)				310 JN		F000				
Unknown C15H16 isomer,17.30 min						5300 J				
Stannane, chlorotris(2-methyl), 17.31 mi	n	2,400 JN	970 JN	370 JNN				100 (1)		2000
Unknown (RT 17.85 min)				160 JN		4,100 J		490 JN		3000
Unknown (RT 18.27 min)		610 JN								5300
Unknown (RT 18.37 min)		880 JN							100 11	
Unknown C16H18 isomer,18.58		1,100 JN			200 JN	29000 JN			120 JN	
Unknown (RT 18.67 min)										0000
Unknown (RT 18.79 min)						11000 JN				3000 、
Unknown (RT 18.94 min)				97 JN		3500 JN		430 JN		
Unknown (RT 19.04 min)			77 JN							
Unknown (RT 19.77 min)		790 JN				16000 JN				
Unknown (20.25 min)						3500 JN				
Unknown (20.58 min)										
Unknown C15H12, 20.69 min			77 JN			N		230 JN		
Unknown (RT 20.9 min)		2,100 JN		÷	1,800 JN	270000 JN			410 JN	
Unknown HC (RT 21.08 min)			140 JN	170 JN				270 JN		
Unknown (RT 21.20 min)		2,700 JN				110000 JN				,
Unknown (RT 21.28 min)		-,				15000 JN				
Unknown (RT 21.44 min)					· · ·	4100 JN				
Unknown HC (RT 22.07 min)			190 JN	160 JN				390 JN		
Benzene,1,1-(1,2-ethanediyl)(22.19)										
Unknown (RT 22.62 min)		1.000 JN		190 JN		6400 JN				
Unknown (RT 23.83 min)		1,200 JN					-			
Unknown (RT 23.93 min)		1,200 014	1,900 JN	270 JN	470 JN			470 JN		
Unknown (RT 24.10 min)			1,000 011	2,001						
Unknown Hydrocarbon (RT 24.81 min)			1,200 JN	450 JN	550 JN			350 JN	170 JN	
Unknown Hydrocarbon (RT 25.68 min)		1,200 JN	1,800 JN	720 JN	570 JN			290 JN		
Unknown (RT 25.85 min)		1,200 314	1,000 014	720011	0/0001					
Level (low or medium)		L	L	L	L	L	L	L	L	L
Dilution factor		1	1	1	1	20	1	1	1	1

Unknown (RT 25.95 min) 760 JN 1,500 JN 780 JN 290 JN Unknown Hydrocarbon (RT 26.48 min) 760 JN 1,200 JN 830 JN 310 JN Unknown Hydrocarbon (RT 28.13 min) 1,800 JN 1,200 JN 830 JN 230 JN Unknown (RT 28.13 min) 91 JN 360 JN 91 JN 360 JN Unknown (RT 28.23 min) 1,100 JN 470 JN 7000 JN 140 JN 230 JN Unknown (RT 28.33 min) 1,100 JN 470 JN 7000 JN 140 JN 900 JN Unknown (RT 28.33 min) 1,100 JN 470 JN 7000 JN 140 JN 900 JN Unknown (RT 29.33 min) 1,100 JN 560 JN 470 JN 700 JN 170 JN 9000 JN Unknown (RT 30.52 min) 2,100 JN 910 JN 930 JN 490 JN 3500 JN 170 JN 9000 JN Unknown (RT 30.52 min) 2,100 JN 100 JN 680 JN 660 JN 660 JN 10000 JN Unknown (RT 30.52 min) 2,500 JN 1,000 JN 680 JN 660 JN 140 JN 10000 JN <	Analytes Sampling depth Units	MW5- MWB-01 3-5ft (ug/kg)	MW5- SB-01 4.5-6.5 ft (ug/kg)	MW5- SB-02 2-4 ft (ug/kg)	MW5- SB-03 0.5-2.5 ft (ug/kg)	MW5- SB-04 4-6 ft (ug/kg)	MW5- SB-05 4.5-6.5 ft (ug/kg)	MW5- SB-06 10-12 ft (ug/kg)	MW5- SB-07 0.5-2.5 ft (ug/kg)	MW5- SB-08 10-12 ft (ug/kg)	MW5- SB-09 4.5-6.5 ft (ug/kg)
Unknown Hydrocarbon (RT 26.48 min) 760 JN 1.500 JN 780 JN 200 JN 830 JN 310 JN Unknown Hydrocarbon (RT 27.25 min) 1.800 JN 1.200 JN 830 JN 200 JN 310 JN 360 JN 310 JN Unknown (RT 28.13 min) 550 JN 890 JN 880 JN 200 JN 4140 JN 220 JN 91 JN 360 JN 4140 JN 350 JN 91 JN 360 JN 470 JN 7000 JN 140 JN 91 JN 360 JN 470 JN 7000 JN 140 JN 91 JN 930 JN 470 JN 7000 JN 140 JN 9000 JN Unknown (RT 28.33 min) 550 JN 910 JN 930 JN 490 JN 3500 JN 270 JN 780 JN 170 JN 9000 JN Unknown (RT 28.33 min) 550 JN 560 JN	Unknown (RT 25.95 min)										
Unknown Hydrocarbon (RT 27.25 min) 1,800 JN 1,200 JN 830 JN 200 JN 310 JN 200 J			760 JN	1,500 JN	780 JN				290 JN		
Unknown Hydrocarbon (RT 28.00 min) 550 JN 890 JN 680 JN 200 JN 140 JN 230 JN Unknown (RT 28.13 min) 91 JN 360 JN Unknown (RT 28.23 min) 91 JN 360 JN Unknown (RT 28.37 min) 1,100 JN 470 JN 7000 JN 140 JN 230 JN Unknown (RT 28.37 min) 1,100 JN 470 JN 7000 JN 140 JN 9000 JN Unknown (RT 28.37 min) 2,100 JN 910 JN 930 JN 490 JN 3500 JN 270 JN 780 JN 170 JN 9000 JN Unknown (RT 28.37 min) 2,100 JN 910 JN 930 JN 490 JN 3500 JN 270 JN 780 JN 170 JN 9000 JN Unknown (RT 28.52 min) 2,500 JN 560 JN 180 JN 140 JN 10000 JN Unknown (RT 30.52 min) 2,500 JN 1,000 JN 680 JN 660 JN 140 JN 10000 JN Unknown (RT 31.53 min) 2,500 JN 1,000 JN 680 JN 4100 JN 140 JN 10000 JN Unknown (RT 31.36 min) 2,500 JN 1,000 JN 680 JN 4100 JN 140 JN 140 JN 140 JN 140 JN			1,800 JN	1,200 JN	. 830 JN				310 JN		
Unknown (RT 28.13 min) 91 JN 360 JN Unknown (RT 28.23 min) 1,100 JN 470 JN 7000 JN 140 JN Unknown (RT 28.37 min) 1,100 JN 930 JN 490 JN 3500 JN 270 JN 780 JN 170 JN 9000 JN Unknown (RT 28.33 min) 1 100 JN 930 JN 490 JN 3500 JN 270 JN 780 JN 170 JN 9000 JN Unknown (RT 28.33 min) 1 100 JN 930 JN 490 JN 3500 JN 270 JN 780 JN 170 JN 9000 JN Unknown (RT 28.37 min) 560 JN 560 JN 10000 JN 10000 JN 10000 JN 10000 JN 10000 JN 140 JN 10000 JN 140 JN 140 JN 140 JN 140 JN 1400 JN					680 JN	200 JN		140 JN	230 JN		
Unknown (RT 28.23 min) Unknown (RT 28.63 min) Unknown (RT 28.63 min) Unknown (RT 28.63 min) Unknown (RT 28.63 min) Unknown (RT 28.77 min) Unknown (RT 28.77 min) Unknown (RT 29.33 min) Unknown (RT 30.12 min) Unknown (RT 30.12 min) Unknown (RT 30.45 min) Unknown (RT 30.55 min) Unknown (RT 30.55 min) Unknown (RT 30.55 min) Unknown (RT 30.50 min) Unknown (RT 30.80 min) Unknown (RT 31.25 min) Unknown (RT 31.25 min) Unknown (RT 31.25 min) Unknown (RT 31.36 min) Unknown (RT 31.57 min) Unknown Hydrocarbon (RT 33.17 min) Unknown Hydrocarbon (RT 33.155 min) Unknown Hydrocarbon (RT 33.17 min) Unknown Hydrocarbon (RT 33.17 min) Unknown Hydrocarbon (RT 33.17 min) Unknown Hydrocarbon (RT 33.155 min) Unknown Hydrocarbon (RT 33.155 min) Unknown Hydrocarbon (RT 33.17 min) Unknown Hydrocarbon (RT 33.155 min) Unknown Hydrocarbon (RT 33.555 min) Unknown Hydrocarbon (RT 33.555 min) Unknown Hydrocarbon (RT 34.555 min) Unknown Hydrocarbon (RT 34.555 min) Unknown Hydrocarbon (RT 34								91 JN		360 JN	
Unknown (RT 28.37 min) 1,100 JN 470 JN 7000 JN 140 JN Unknown (RT 28.63 min) Unknown (RT 28.37 min) 2,100 JN 910 JN 930 JN 490 JN 3500 JN 270 JN 780 JN 170 JN 9000 JN Unknown (RT 29.33 min) Unknown (RT 29.72 min) 560 JN 560 JN 560 JN 180 JN 140 JN 10000 JN Unknown (RT 30.45 min) Unknown (RT 30.55 min) 2,500 JN 1,000 JN 680 JN 660 JN 660 JN 10000 JN Unknown (RT 30.45 min) 2,500 JN 1,000 JN 680 JN 660 JN 660 JN 10000 JN Unknown (RT 30.85 min) 2,500 JN 1,000 JN 680 JN 660 JN										1. s. s.	
Unknown (RT 28.63 min) Unknown (RT 29.33 min) Unknown (RT 29.33 min) Unknown (RT 30.52 min) Unknown (RT 30.52 min) Unknown (RT 30.55 min) Unknown (RT 30.55 min) Unknown (RT 30.55 min) 2,500 JN 1,000 JN 680 JN Unknown (RT 30.55 min) 2,500 JN 1,000 JN 680 JN Unknown (RT 30.55 min) 2,500 JN 1,000 JN 680 JN 660 JN 660 JN 660 JN 660 JN 1000 JN 660 JN 4100 JN 680 JN 660 JN 4100 JN 680 JN 680 JN 660 JN 660 JN 660 JN 660 JN 1000 JN 1000 JN 1000 JN 1000 JN 1000 JN 1000 JN 1000 JN 1000 JN 1000 JN 140 JN 1000 JN 140 JN 14			1,100 JN			470 JN	7000 JN	140 JN			
Unknown Hydrocarbon (RT 28.77 min) 2,100 JN 910 JN 930 JN 490 JN 3500 JN 270 JN 780 JN 170 JN 9000 JN Unknown (RT 29.33 min) 560 JN Unknown (RT 30.12 min) 560 JN Unknown (RT 30.12 min) 140 JN 10000 JN 680 JN 680 JN 660 JN Unknown (RT 30.55 min) 2,500 JN 1,000 JN 680 JN 660 JN 660 JN Unknown Hydrocarbon (RT 30.55 min) 2,500 JN 1,000 JN 680 JN 660 JN Unknown Hydrocarbon (RT 30.98 min) Unknown Hydrocarbon (RT 31.18 min) Unknown (RT 31.55 min) 410 JN 1000 JN 680 JN 680 JN 660 JN Unknown (RT 31.56 min) 4100 JN Unknown (RT 31.56 min) 4100 JN Benzo [E] Pyrene (RT 31.48 min) Unknown (RT 31.53 min) 4100 JN Benzo [E] Pyrene (RT 31.48 min) Unknown (RT 31.53 min) 430 JN 460 JN Unknown (RT 32.37 min) 430 JN 460 JN Unknown Hydrocarbon (RT 32.91 min) 330 JN Unknown Hydrocarbon (RT 33.17 min) 140 JN Unknown Hydrocarbon (RT 33.73 min) 140 JN											
Unknown C20H12 (RT 29.72 min) 560 JN Unknown (RT 30.12 min) Unknown (RT 30.45 min) Unknown (RT 30.52 min) 180 JN 140 JN 10000 JN Unknown Hydrocarbon (RT 30.55 min) 2,500 JN 1,000 JN 680 JN 660 JN Unknown Hydrocarbon (RT 30.98 min) 2,500 JN 1,000 JN 680 JN 660 JN Unknown Hydrocarbon (RT 30.98 min) Unknown (RT 31.25 min) 2,500 JN 1,000 JN 680 JN 660 JN Unknown RT 31.25 min) Unknown (RT 31.25 min) 4100 JN 560 JN 560 JN 560 JN Unknown (RT 31.25 min) Unknown (RT 31.36 min) 4100 JN 560			2,100 JN	910 JN	930 JN	490 JN	3500 JN	270 JN	780 JN	170 JN	9000 JN
Unknown (RT 30.12 min) Unknown (RT 30.52 min) 180 JN 140 JN 10000 JN Unknown Hydrocarbon (RT 30.55 min) 2,500 JN 1,000 JN 680 JN 660 JN Unknown Hydrocarbon (RT 30.55 min) 2,500 JN 1,000 JN 680 JN 660 JN Unknown Hydrocarbon (RT 30.98 min) Unknown Hydrocarbon (RT 31.98 min) Unknown Hydrocarbon (RT 31.18 min) Unknown (RT 31.25 min) 4100 JN Benzo [E] Pyrene (RT 31.48 min) Unknown (RT 31.57 min) Unknown (RT 31.77 min) Unknown (RT 32.37 min) 430 JN 460 JN Unknown Hydrocarbon (RT 32.91 min) 330 JN Unknown Hydrocarbon (RT 33.17 min) Unknown Hydrocarbon (RT 33.73 min) 140 JN Unknown Hydrocarbon (RT 34.55 min) Unknown Hydrocarbon (RT 34.55 min) Unknown Hydrocarbon (RT 34.55 min) Unknown Hydrocarbon (RT 34.55 min) Unknown (RT 34.78 min)	Unknown (RT 29.33 min)										
Unknown (RT 30.45 min) 180 JN 140 JN 10000 JN Unknown (RT 30.52 min) 2,500 JN 1,000 JN 680 JN 660 JN Unknown (Hydrocarbon (RT 30.55 min) 2,500 JN 1,000 JN 680 JN 660 JN Unknown (Hydrocarbon (RT 30.98 min) Unknown (Hydrocarbon (RT 31.98 min) 660 JN 660 JN Unknown Hydrocarbon (RT 31.18 min) 4100 JN 680 JN 660 JN Unknown (RT 31.36 min) 4100 JN 4100 JN 680 JN 660 JN Unknown (RT 31.36 min) 4100 JN 4100 JN 680 JN 660 JN 680 JN	Unknown C20H12 (RT 29.72 min)			560 JN							
Unknown (RT 30.52 min) 140 JN 140 JN 10000 JN Unknown Hydrocarbon (RT 30.55 min) 2,500 JN 1,000 JN 680 JN 660 JN Unknown Hydrocarbon (RT 30.98 min) Unknown Hydrocarbon (RT 31.18 min) 1000 JN 680 JN 660 JN Unknown Hydrocarbon (RT 31.18 min) Unknown (RT 31.25 min) 4100 JN 4100 JN Unknown (RT 31.36 min) 4100 JN 4100 JN 4100 JN Benzo [E] Pyrene (RT 31.48 min) 430 JN 460 JN 4100 JN Unknown (RT 32.37 min) 430 JN 460 JN 4100 JN Unknown (RT 32.37 min) 430 JN 460 JN 4100 JN Unknown Hydrocarbon (RT 32.91 min) 330 JN 460 JN 400 JN Unknown Hydrocarbon (RT 33.73 min) 140 JN 400 JN 400 JN Unknown Hydrocarbon (RT 33.73 min) 140 JN 400 JN 400 JN 400 JN Unknown Hydrocarbon (RT 33.73 min) 140 JN 400 JN <td>Unknown (RT 30.12 min)</td> <td></td>	Unknown (RT 30.12 min)										
Unknown Hydrocarbon (RT 30.55 min) Unknown Hydrocarbon (RT 30.55 min) Unknown Hydrocarbon (RT 30.98 min) Unknown Hydrocarbon (RT 31.18 min) Unknown (RT 31.25 min) Unknown (RT 31.36 min) Benzo [E] Pyrene (RT 31.48 min) Unknown (RT 31.53 min) Unknown (RT 31.53 min) Unknown (RT 31.77 min) Unknown (RT 32.37 min) Unknown Hydrocarbon (RT 32.91 min) Unknown Hydrocarbon (RT 33.17 min) Unknown Hydrocarbon (RT 33.73 min) Unknown Hydrocarbon (RT 33.73 min) Unknown Hydrocarbon (RT 34.55 min) Unknown (RT 34.78 min)	Unknown (RT 30.45 min)										
Unknown (RT 30.80 min) Unknown Hydrocarbon (RT 30.98 min) Unknown Hydrocarbon (RT 31.18 min) Unknown (RT 31.25 min) Unknown (RT 31.36 min) Benzo [E] Pyrene (RT 31.48 min) Unknown (RT 31.53 min) Unknown (RT 31.53 min) Unknown (RT 31.77 min) Unknown (RT 32.37 min) Unknown Hydrocarbon (RT 32.91 min) Unknown Hydrocarbon (RT 33.17 min) Unknown Hydrocarbon (RT 33.73 min) Unknown Hydrocarbon (RT 33.73 min) Unknown Hydrocarbon (RT 33.73 min) Unknown Hydrocarbon (RT 34.55 min) Unknown (RT 34.78 min)								180 JN		140 JN	10000 JN
Unknown Hydrocarbon (RT 30.98 min) Unknown (RT 31.25 min) Unknown (RT 31.25 min) Unknown (RT 31.36 min) Benzo [E] Pyrene (RT 31.48 min) Unknown (RT 31.53 min) Unknown (RT 31.53 min) Unknown (RT 31.77 min) Unknown (RT 32.37 min) Unknown Hydrocarbon (RT 32.91 min) Unknown Hydrocarbon (RT 33.17 min) Unknown Hydrocarbon (RT 33.73 min) Unknown Hydrocarbon (RT 34.55 min) Unknown (RT 34.78 min)	Unknown Hydrocarbon (RT 30.55 min)		2,500 JN	1,000 JN	680 JN				660 JN		
Unknown Hydrocarbon (RT 31.18 min) Unknown (RT 31.25 min) Unknown (RT 31.36 min) Benzo [E] Pyrene (RT 31.48 min) Unknown (RT 31.53 min) Unknown (RT 31.77 min) Unknown (RT 32.37 min) Unknown Hydrocarbon (RT 32.91 min) Unknown Hydrocarbon (RT 33.17 min) Unknown Hydrocarbon (RT 33.73 min) Unknown Hydrocarbon (RT 34.55 min) Unknown (RT 34.78 min)											
Unknown (RT 31.25 min) 4100 JN Unknown (RT 31.36 min) 4100 JN Benzo [E] Pyrene (RT 31.48 min) 100 JN Unknown (RT 31.53 min) 100 JN Unknown (RT 31.53 min) 100 JN Unknown (RT 31.77 min) 430 JN Unknown (RT 32.37 min) 430 JN Unknown Hydrocarbon (RT 32.91 min) 330 JN Unknown Hydrocarbon (RT 33.17 min) 140 JN Unknown Hydrocarbon (RT 33.73 min) 140 JN Unknown Hydrocarbon (RT 34.55 min) 140 JN											
Unknown (RT 31.36 min) 4100 JN Benzo [E] Pyrene (RT 31.48 min) Unknown (RT 31.53 min) Unknown (RT 31.53 min) Unknown (RT 31.77 min) Unknown (RT 32.37 min) 430 JN Unknown (RT 32.37 min) 430 JN Unknown Hydrocarbon (RT 32.91 min) 330 JN Unknown Hydrocarbon (RT 33.17 min) 140 JN Unknown Hydrocarbon (RT 33.73 min) 140 JN Unknown Hydrocarbon (RT 34.55 min) 140 JN											
Benzo [E] Pyrene (RT 31.48 min) Unknown (RT 31.53 min) Unknown (RT 31.77 min) Unknown (RT 32.37 min) Unknown Hydrocarbon (RT 32.91 min) Unknown Hydrocarbon (RT 33.17 min) Unknown Hydrocarbon (RT 33.73 min) Unknown Hydrocarbon (RT 34.55 min) Unknown (RT 34.78 min)											
Unknown (RT 31.53 min) Unknown (RT 31.77 min) Unknown (RT 32.37 min) Unknown Hydrocarbon (RT 32.91 min) Unknown Hydrocarbon (RT 33.17 min) Unknown Hydrocarbon (RT 33.73 min) Unknown Hydrocarbon (RT 34.55 min) Unknown (RT 34.78 min)							4100 JN				
Unknown (RT 31.77 min)430 JN460 JNUnknown (RT 32.37 min)330 JN330 JNUnknown Hydrocarbon (RT 32.91 min)330 JNUnknown Hydrocarbon (RT 33.17 min)140 JNUnknown Hydrocarbon (RT 33.73 min)140 JNUnknown Hydrocarbon (RT 34.55 min)140 JN											
Unknown (RT 32.37 min)430 JN460 JNUnknown Hydrocarbon (RT 32.91 min)330 JNUnknown Hydrocarbon (RT 33.17 min)140 JNUnknown Hydrocarbon (RT 33.73 min)140 JNUnknown Hydrocarbon (RT 34.55 min)140 JN											
Unknown Hydrocarbon (RT 32.91 min)330 JNUnknown Hydrocarbon (RT 33.17 min)140 JNUnknown Hydrocarbon (RT 33.73 min)140 JNUnknown Hydrocarbon (RT 34.55 min)140 JNUnknown (RT 34.78 min)140 JN											
Unknown Hydrocarbon (RT 33.17 min) Unknown Hydrocarbon (RT 33.73 min) Unknown Hydrocarbon (RT 34.55 min) Unknown (RT 34.78 min)					460 JN				,		
Unknown Hydrocarbon (RT 33.73 min) 140 JN Unknown Hydrocarbon (RT 34.55 min) Unknown (RT 34.78 min)				330 JN							
Unknown Hydrocarbon (RT 34.55 min) Unknown (RT 34.78 min)											
Unknown (RT 34.78 min)				140 JN							
Lloknown (BT 34 87 min)											
	Unknown (RT 34.87 min)										
	Level (low or medium)		L	L 1	L 1	L	L 20	L 1	L 1	L 1	L 1

TABLE 9B. (Cont)

p 1	(EXT)	of 3	
-----	-------	------	--

t

ABLE 9B. (Cont)							p I (EXI) 013
Analytes Sampling depth Units	MW5- SB-10 4-6 ft (ug/kg)	MW5- SB-11 6-8 ft (ug/kg)	MW5- SB-12 4-6 ft (ug/kg)	MW5- SB-13 2-4 ft (ug/kg)	MW5- SB-14 0-2 ft (ug/kg)	MW5- SB-15 6-8 ft (ug/kg)	MW5- SB-16 8-10 ft (ug/kg)
Jnknown (RT 3.92 min)							
Jnknown (RT 5.36 min)							
Jnknown Hydrocarbon (RT 5.37 min)							
Jnknown (RT 6.65 min)	320 JN	230 JN	270 JN	280 JN	330 JN		
Jnknown (RT 7.25 min)	95 JN	150 JN					
Jnknown (RT 7.16 min)					99 JN		
2-Cyclohexen-1-one (RT 8.12 min)	100 JN	140 JN		100 JN	120 JN		
Jnknown C10H14 isomer,8.71 min							
Jnknown C10H14 isomer,8.79 min							
Jnknown C10H14 isomer, 9.02 min Jnknown C10H14 isomer,9.20 min							
Jnknown C10H14 isomer,9.32 min							
Jnknown (RT 9.71 min)							
Unknown (RT 9.84 min)							
Unknown C10H14 isomer,9.92 min							
Unknown C10H12 isomer, 10.27 min							
Bicyclo[2.2.1]heptan-2-one,10.4 min							
Unknown (RT 10,41 min)							
Unknown C10H12 isomer, 10.47 min							
Unknown C10H14 isomer,10.48min							
Unknown (RT 10.55 min)							
Ethanone,1 phenyl(RT 10.60 min)		160 JN	610 JN				
Unknown (RT 10.67 min)			400 JN				
Unknown C10H14 isomer, 10,79 min							
Unknown C11H16 isomer (RT 11.16 min)			•				1
Unknown C11H16 isomer, 11.36 min							
Unknown Alkylbenzene (11.52 min)		60 JN					
Unknown (RT 11.77 min)			120 JN				
Unknown (RT 11.90 min)			860 JN				
Unknown (RT 12.12 min)							
Unknown (RT 12.52 min)							
1(3H)-Isobenzofuranone (9CI),13.67 min							
Unknown HC (RT 13.95 min)							
Unknown C12H10O isomer,14.31							
Unknown C12H12 isomer, 14.64 min							
Unknown Hydrocarbon (RT 14.81 min)							
Level (low or medium)	Ĺ	L	L	L	L	L	L
			1	1		1	1

() R

<u>____</u>

· • •

	MW5-	MW5-	MW5-	MW5-	MW5-	MW5-	MW5-
Analytes	SB-10	SB-11	SB-12	SB-13	SB-14	SB-15	SB-16
Sampling depth	4-6 ft	6-8 ft	4-6 ft	2-4 ft	0-2 ft	6-8 ft	8-10 ft
Units	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Inknown Hydrocarbon (RT 15.32 min)							
Jnknown C15H16 isomer, 15.95							
(3H) Isobenzofuranone(15.96)							
Jnknown (RT 16.58 min)							
Jnknown C12H17NO isomer,16.68							
Jnknown C14H22O isomer,16.96 min							
Benzene,1,1-oxybis(16.81)		·					
Jnknown (RT 17.10 min)							
Jnknown C15H16 isomer, 17.30 min							
Stannane, chlorotris(2-methyl), 17.31 mir	า						
Jnknown (RT 17.85 min)			N.				
Jnknown (RT 18.27 min)			``````````````````````````````````````				
Unknown (RT 18.37 min)							
Jnknown C16H18 isomer, 18.58							
Unknown (RT 18.67 min)							
Unknown (RT 18.79 min)							
Unknown (RT 18.94 min)							
Unknown (RT 19.04 min)							
Unknown (RT 19.77 min)							
Unknown (20.25 min)			220 JN				
Unknown (20.58 min)			150 JN				
Unknown C15H12, 20.69 min							
Unknown (RT 20.9 min)			120 JN				
Unknown HC (RT 21.08 min)							,
Unknown (RT 21.20 min)							
Unknown (RT 21.28 min)							
Unknown (RT 21.44 min)				÷			
Unknown HC (RT 22.07 min)							
Benzene,1,1-(1,2-ethanediyl)(22.19)							
Unknown (RT 22.62 min)		160 JN					
Jnknown (RT 23.83 min)							
Jnknown (RT 23.93 min)							
Jnknown (RT 24.10 min)			290 JN				
Unknown Hydrocarbon (RT 24.81 min)							
Unknown Hydrocarbon (RT 25.68 min)		210 JN					
Unknown (RT 25.85 min)		140 JN					
_evel (low or medium)	L	L	Ĺ	L	L	L	L
Dilution factor	1`	1	1	1	1	- 1	1

TABLE 9B. (Cont)							p 3 (EXT) of 3
Analytes Sampling depth Units	MW5- SB-10 4-6 ft (ug/kg)	MW5- SB-11 6-8 ft (ug/kg)	MW5- SB-12 4-6 ft (ug/kg)	MW5- SB-13 2-4 ft (ug/kg)	MW5- SB-14 0-2 ft (ug/kg)	MW5- SB-15 6-8 ft (ug/kg)	MW5- SB-16 8-10 ft (ug/kg)
Jnknown (RT 25.95 min)		97 JN					
Jnknown Hydrocarbon (RT 26.48 min)							
Jnknown Hydrocarbon (RT 27.25 min)			160 JN				
Jnknown Hydrocarbon (RT 28.00 min)							
Jnknown (RT 28.13 min)							
Jnknown (RT 28.23 min)		80 JN					
Jnknown (RT 28.37 min)							
Jnknown (RT 28.63 min)			580 JN				
Unknown Hydrocarbon (RT 28.77 min)							•
Unknown (RT 29.33 min)		97 JN					
Jnknown C20H12 (RT 29.72 min)							
Jnknown (RT 30.12 min)			440 JN				
Jnknown (RT 30.45 min)		140 JN	390 JN				
Unknown (RT 30.52 min)			830 JN				
Unknown Hydrocarbon (RT 30.55 min)							
Unknown (RT 30.80 min)			770 JN				
Unknown Hydrocarbon (RT 30.98 min)		240 JN					
Unknown Hydrocarbon (RT 31.18 min)		270 JN		•			
Unknown (RT 31.25 min)			690 JN				
Unknown (RT 31.36 min)							
Benzo [E] Pyrene (RT 31.48 min)		280 JN					
Unknown (RT 31.53 min)			440 JN				
Unknown (RT 31.77 min)			920 JN				·
Unknown (RT 32.37 min)							
Unknown Hydrocarbon (RT 32.91 min)							
Unknown Hydrocarbon (RT 33.17 min)		270 JN					
Unknown Hydrocarbon (RT 33.73 min)							
Unknown Hydrocarbon (RT 34.55 min)		85 JN					
Unknown (RT 34.78 min)		85 JN					
Unknown (RT 34.87 min)			630 JN				
Level (low or medium)	L	L ,	L	L	L	L	L
Dilution factor	1	1	, 1	1	1	1	1

Analytes	MW5	MW5	MW5	MW5	MW5	MW5	MW5	MW5	MW5	MW5
	MWB-1	SB-01	SB-2B	SB-03	SB-04	SB-05	SB-06	SB-07	SB-08	SB-09
Depth (ft)	3-5 ft	4.5-6.5	2-4	0.2-2.5	4-6	4.5-6.5	10-12	2.5-4.5	10-12	4.5-6.5
Zone	VZ	SZ ·	VZ	VZ	SZ	SZ	SZ	VZ	SZ	SZ
Units	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aluminum	8,390 J	7,370	11,400	3,270	6,360	16,500	4,570	3,060	6,160	2,150
Antimony	1.9 J	11.8 J	11.0 J	30.2 J	(<6.7U)J	(<8.7U)J	(<6.7U)J	10.4 J	(<8.1U)J	18,2
Arsenic	8.2 J	24.7 J	11.6 J	11.6 J	2.9 J	8.3 J	5.0 J	7.2 J	11.5 J	8.7
Barium	138 J	⁻ 1,130 J	155 J	645 J	26.0 J	269 J	78.4 J	108 J	120 J	270
Beryllium	0.54 J	0.46 B	0.61	0.31 B	0.33 B	0.95	0.39 B	0.44	0.43 B	0.26
Cadmium	3.6 J	5.9 J	9.0 J	39.6 J	1.1 J	5.8 J	1.9 J	6.3 J	3.8 J	3.3
Calcium	45,000 J	48,200	11,900	79,700	161,000	6,940	98,900	2,080	12,500	7,50
Chromium	26.4 J	162 J	18.5 J	42.7 J	9.7 J	77.3 J	20.8 J	12.8 J	11.2 J	74.5
Cobalt	10.7 J	30.3 J	11.0	16.8	5.7	22.5J	17.9 J	6.3	14.0	4.2
Copper	318 J	547	1,000	22,300	15.2	165	40.2	3,140	29.9	23
ron	24,700 J	20,300	36,400	134,000	12,500	32,300	11,400	33,600	24,100	13,00
Lead	63.2 J	1,580 J	1,290 J	2,870 J	5.6 S	302 J	206 J	445 J	35.4 J	339
Magnesium	8,560 J	9,920	5,830	5,300	18,800	6,890	8,610	1,240	3,950	2,28
Manganese	344 J	280	802	631	357	270	422	221	482	76.
Mercury	0.67 R	25.2 J	6.2 J	7.3 J	(<0.11U)J	5.0 J	0.63 J	0.79 J	(<0.13U)J	2.0
Nickel	32.7 J	34.8	45.6	97.5 J	16.0 J	43.3 J	22.5 J	30.4 J	29.6 J	13.5
Potassium	926 J	965	1,210	336 B	1,350	3,080	1,060	374 B	985	252
Selenium	0.25 J	(<0.16U)J	(<0.11U)J	(<0.10U)J	(<0.07U)J	0.17 J	(<0.10U)BJ	(<0.11U)J	(<0.14U)J	0.33 B
Silver	(<0.37U)J	(<1.2U)	(<0.92U)	(<0.76U)	(<1.0U)	(<0.13U)	(<1.0U)	(<0.80U)	(<1.2U)	(<0.94L
Sodium	913 J	1,210 J	411 B	144 B	135 B	1,570 J	311 B	136 B	258 B	336
Thallium	0.43 J	(<0.48U)	(<0.32U)	(<0.30U)	(<0.22U)	(<0.51U)	(<0.30U)	(<0.32U)	(<0.43U)	(<0.44L
Vanadium	14.8 J	14.8 J	17.6 J	5.6	10.8 J	26.3 J	11.0 J	9.0	13.2 J	6.
Zinc	421 J	1,160	2,470	15,600	22.5	310	126	1,320	85.2	78
Cyanide	(<0.11U)	0.24 J	0.15 J	0.39 J	(<0.11U)J	(<0.18U)J	(<0.14U)J	(<0.12U)J	(<0.15U)J	0.48
Organic Carbon		NR	NR	20,200 J	8,050 J	NR	NR	NR	NR	26,600

.

Notes:

U = Not detected. Sample quantitation limits are shown as (<_U).

B = Reported value is below CRQL.

NR = Analysis not required Zones: SZ = Saturated zone, VZ ≈ Vadose zone

1

J = Estimated value

ABLE 10. (Conti	nued)							·	p 2 of 2
Analytes	MW5	MW5	MW5	MW5	MW5	· MW5	MW5	MW5	MW5
	SB-10	SB-11	SB-12	SB-13	SB-14	SB-15	SB-16	FB-01	FB-02
Depth (ft)	4-6	6-8	4-6	2-4	0-2	6-8 ft	8-10 ft		
Zone	SZ	SZ	SZ	SZ	VZ	SZ	SZ		
Units	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/L)	(ug/L)
luminum	14,400	9,320	9,980	14,400	16,000	6,170	4,820	34.1 B	(<16U)
ntimony	(<1.9U)J	(<1.6U)J	(<2.6U)J	(<1.9U)J	(<1.5U)J	11.8	1.3	(<17U)	(<17U)
rsenic	5.6 J	8.3 [°] J	7.1 J	7.5 J	15.6 J	33.1	6.7	(<2U)	(<2U)
arium	87.7	134	102	157	120	1,380	45.2	(<89U)	(<89U)
eryllium	0.54 B	0.45 B	0.47 B	0.59	0.75	0.54	0.45	(<1U)	(<1U)
admium	3.5 J	2.5 J	3.5 J	4.1 J	4.4 J	9.1 J	1.4 J	(<3U)	(<3U)
alcium	2,860	57,400	40,400	11,600	4,100	18,700	95,700	136 B	201 B
hromium	19	25.2	60.1	43.4	21.9	99.8	9.0	(<7U)	(<7U)
obalt	7.5	6.9	31.1	10.6	11.0	12.8	12.1	(<13U)	(<13U)
opper	18.1 J	43.5 J	297 J	75.4 J	18.9 J	1,210 J	30.4 J	5.5 B	(<3U)J
on	25,900	19,000	21,400	28,700	33,600	58,100	17,500	151	246 J
ead	7.8 J	96.3	220	256	16.6	3,030 J	.14.4 J	(<1U)	(<1U)
lagnesium	6,940	12,000	13,400	8,990	6,960	2,740 J	8,910 J	95 B	55.9 B
langanese	729	668	740	245	1,320	6,130	924	3.6 B	3.6 B
1ercury	(<1.0U)	0.21	2.1	3.4	(<1.0U)	0.86 J	0.12 J	(<0.2U)	(<0.2U)
lickel	25.7 J	18.6 J	28.2 J	33.8 J	38.6 J	166 J	30.7 J	(<26U)	(<26U)J
otassium	1,820	1,560	1,640	1,330	2,530	890	958	(<96U)	(<96U)
Selenium	(<0.1U)J	0.22 J	(<0.63U)J	0.13 J	(<0.1U)J	0.49 J	(<0.07U) J	(<1U)	(<1U)
Silver	(<0.34U)J	(<0.28U)J	2 .6 J	(<0.34U)J	(<0.26U)J	(<0.26U) J	(<0.16 U)J	' З В	(<2U)J
Sodium	73.4 J	` 160 J	136 BJ	121 J	97.1 J	366 J	251	129 B	299 B
hallium	(<0.1U)	(<0.11U)	0.13 B	0.22 B	0.15 B	0.25	0.21	(<1U)	(<1U)
anadium	20.9	17.5	18.7	23.6	26.6	12.1	11.2	(<4U)	(<4U)
linc	39.5	122	253	184	64.4	4,590	552	11 B	22.5 J
Cyanide	(<0.121U)J	(<0.110U)J	(<0.164U)J	(<0.133U)J	(<0.123U)J				
Organic Carbon	NR (NR (NR	NR	NR	NR	NR	NR	NR

/

VOLATILES Acetone Methylene chloride 1,2-Dichloroethene (total) Trichloroethene Tetrachloroethene Toluene Xylenes TICs - Known TICs - Unknown Level (low or medium) Dilition factor SEMI-VOLATILES Phenol o-Methylphenol m+p-Methylphenol (coelutes) 2,4-Dimethylphenol Bis(2-ethyl hexyl)phthalate	(<10U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) L 1 (<10U) (<10U) (<10U) (<10U) 1 J	49 (<5U) 33 10 3 J 8 150 L 1 (<10U) 11 4 J (<10U)	(<50U) [9U] 670 260 100 53 570 L 5 81 16 J 11 J (<10U)	(<50U) [6U] 80 72 560 20 570 L 5 47 10 J 8 J	(<17U) [9U] 84 54 34 13 200 L 1 (<570U) (<570U) (<570U)	(<10U (<5U (<5U (<5U (<5U (<5U 1 1 NA NA
Methylene chloride 1,2-Dichloroethene (total) Trichloroethene Tetrachloroethene Toluene Xylenes TICs - Known TICs - Unknown Level (low or medium) Dilition factor SEMI-VOLATILES Phenol o-Methylphenol m+p-Methylphenol (coelutes) 2,4-Dimethylphenol Bis(2-ethyl hexyl)phthalate	(<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) L 1 (<10U) (<10U) (<10U) (<10U)	(<5U) 33 10 3 J 8 150 L 1 (<10U) 11 4 J (<10U)	[9U] 670 260 100 53 570 L 5 81 16 J 11 J	[6U] 80 72 560 20 570 L 5 47 10 J	[9U] 84 54 34 13 200 L 1 (<570U) (<570U)	(<5L (<5L (<5L (<5L (<5L 1 1 NA NA
Methylene chloride 1,2-Dichloroethene (total) Trichloroethene Tetrachloroethene Toluene Xylenes TICs - Known TICs - Unknown Level (low or medium) Dilition factor SEMI-VOLATILES Phenol o-Methylphenol m+p-Methylphenol (coelutes) 2,4-Dimethylphenol Bis(2-ethyl hexyl)phthalate	(<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) L 1 (<10U) (<10U) (<10U) (<10U)	33 10 3 J 8 150 L 1 (<10U) 11 4 J (<10U)	[9U] 670 260 100 53 570 L 5 81 16 J 11 J	80 72 560 20 570 L 5 47 10 J	84 54 34 13 200 L 1 (<570U) (<570U)	(<5L (<5L (<5L (<5L (<5L 1 NA NA
I,2-Dichloroethene (total) Trichloroethene Tetrachloroethene Toluene Kylenes TICs - Known TICs - Unknown Level (low or medium) Dilition factor SEMI-VOLATILES Phenol p-Methylphenol m+p-Methylphenol (coelutes) 2,4-Dimethylphenol Bis(2-ethyl hexyl)phthalate	(<5U) (<5U) (<5U) (<5U) (<5U) (<5U) L 1 (<10U) (<10U) (<10U) (<10U)	33 10 3 J 8 150 L 1 (<10U) 11 4 J (<10U)	260 100 53 570 L 5 81 16 J 11 J	20 560 20 570 L 5 47 10 J	54 34 13 200 L 1 (<570U) (<570U)	(<5L (<5L (<5L (<5L 1 NA NA
Trichloroethene Tetrachloroethene Toluene Xylenes TICs - Known TICs - Unknown Level (low or medium) Dilition factor SEMI-VOLATILES Phenol o-Methylphenol m+p-Methylphenol (coelutes) 2,4-Dimethylphenol Bis(2-ethyl hexyl)phthalate	(<5U) (<5U) (<5U) L 1 (<10U) (<10U) (<10U) (<10U)	3 J 8 150 L 1 (<10U) 11 4 J (<10U)	100 53 570 L 5 81 16 J 11 J	560 20 570 L 5 47 10 J	34 13 200 L 1 (<570U) (<570U)	(<5L (<5L (<5L 1 1 NA NA
Toluene Xylenes TICs - Known TICs - Unknown Level (low or medium) Dilition factor SEMI-VOLATILES Phenol o-Methylphenol m+p-Methylphenol (coelutes) 2,4-Dimethylphenol Bis(2-ethyl hexyl)phthalate	(<5U) (<5U) L 1 (<10U) (<10U) (<10U) (<10U)	8 150 L 1 (<10U) 11 4 J (<10U)	53 570 L 5 81 16 J 11 J	20 570 L 5 47 10 J	13 200 L 1 (<570U) (<570U)	(<5L (<5L - L 1 NA NA
Xylenes TICs - Known TICs - Unknown Level (low or medium) Dilition factor SEMI-VOLATILES Phenol o-Methylphenol m+p-Methylphenol (coelutes) 2,4-Dimethylphenol Bis(2-ethyl hexyl)phthalate	(<5U) L 1 (<10U) (<10U) (<10U) (<10U)	150 L 1 (<10U) 11 4 J (<10U)	570 L 5 81 16 J 11 J	570 L 5 47 10 J	200 L 1 (<570U) (<570U)	(<5L - - 1 NA NA
TICs - Known TICs - Unknown Level (low or medium) Dilition factor SEMI-VOLATILES Phenol o-Methylphenol m+p-Methylphenol (coelutes) 2,4-Dimethylphenol Bis(2-ethyl hexyl)phthalate	 L 1 (<10U) (<10U) (<10U) (<10U)	 L 1 (<10U) 11 4 J (<10U)	 L 5 81 16 J 11 J	 5 47 10 J	 L 1 (<570U) (<570U)	L 1 NA NA
TICs - Unknown Level (low or medium) Dilition factor SEMI-VOLATILES Phenol o-Methylphenol m+p-Methylphenol (coelutes) 2,4-Dimethylphenol Bis(2-ethyl hexyl)phthalate	L 1 (<10U) (<10U) (<10U) (<10U)	L 1 (<10U) 11 4 J (<10U)	L 5 81 16 J 11 J	L 5 47 10 J	L 1 (<570U) (<570U)	L 1 NA NA
Level (low or medium) Dilition factor SEMI-VOLATILES Phenol o-Methylphenol m+p-Methylphenol (coelutes) 2,4-Dimethylphenol Bis(2-ethyl hexyl)phthalate	1 (<10U) (<10U) (<10U) (<10U)	L 1 (<10U) 11 4 J (<10U)	L 5 81 16 J 11 J	L 5 47 10 J	L 1 (<570U) (<570U)	L 1 NA NA
Dilition factor SEMI-VOLATILES Phenol o-Methylphenol m+p-Methylphenol (coelutes) 2,4-Dimethylphenol Bis(2-ethyl hexyl)phthalate	1 (<10U) (<10U) (<10U) (<10U)	1 (<10U) 11 4 J (<10U)	5 81 16 J 11 J	5 47 10 J	1 (<570U) (<570U)	1 NA NA
Dilition factor SEMI-VOLATILES Phenol o-Methylphenol m+p-Methylphenol (coelutes) 2,4-Dimethylphenol Bis(2-ethyl hexyl)phthalate	(<10U) (<10U) (<10U) (<10U)	(<10U) 11 4 J (<10U)	81 16 J 11 J	47 10 J	(<570U) (<570U)	NA NA
Phenol o-Methylphenol m+p-Methylphenol (coelutes) 2,4-Dimethylphenol Bis(2-ethyl hexyl)phthalate	(<10U) (<10U) (<10U)	11 4 J (<10U)	16 J 11 J	10 J	(<570U)	NA
o-Methylphenol m+p-Methylphenol (coelutes) 2,4-Dimethylphenol Bis(2-ethyl hexyl)phthalate	(<10U) (<10U) (<10U)	11 4 J (<10U)	16 J 11 J	10 J	(<570U)	NA
o-Methylphenoi m+p-Methylphenol (coelutes) 2,4-Dimethylphenol Bis(2-ethyl hexyl)phthalate	(<10U) (<10U) (<10U)	11 4 J (<10U)	11 J		(<570U)	
m+p-Methylphenol (coelutes) 2,4-Dimethylphenol Bis(2-ethyl hexyl)phthalate	(<10U) (<10U)	(<10U)		8 J	(~570LI)	
2,4-Dimethylphenol Bis(2-ethyl hexyl)phthalate	(<10U)	· · · ·	(~10LI)		(~0,00)	NA
Bis(2-ethyl hexyl)phthalate	11		(<100)	(<10U)	190 J	NA
	10	(<10U)	2 J	2 J	(<570U)	NA
Napthalene	(<10U)	(<10U)	(<10U)	2 J	(<570U)	NA
Phenanthrene	(<10U)	(<10U)	(<10U)	15	(<570U)	NA
Anthracene	(<10U)	(<10U)	1 J	3 J	(<570U)	NA
Fluorene	(<10U)	(<10U)	(<10U)J	2 J	(<570U)	NA
Fluoranthene	(<10U)	(<10U)	(<10U)	28	(<570U)	NA
Pyrene	(<10U)	(<10U)	(<10U)J	18	(<570U)	NA
Benzo(a)anthracene	(<10U)	(<10U)	(<10U)J	10 J	(<570U)	NA
Chrysene	(<10U)	(<10U)	(<10U)	11	(<570U)	NA
Benzo(b)fluoranthene	(<10U)	(<10U)	(<10U)	-19	(<570U)	NA NA
Benzo(k)fluoranthene	(<10U)	(<10U)	(<10U)	19 8 J	(<570U) (<570U)	NA
Benzo(a)pyrene	(<10U)	(<10U) 86,000 D	(<10U) 94,000 D	29,000 D	3,400	NA
m-Toluic acid	(<10U) (<10U)	63,000 D	53,000 D	37,000 D	2,200	NA
p-Toluic acid	(<10U) (<10U)	1,600 J	5,800 JD	830 JD	420 J [.]	NA
o-Toluic acid TICs - known	(<100)	1,0000	3,000 3D	000 00	4200	1973
Benzamine,N,N-diethyl-3-methyl		310 JN	760 JN	83 JN		NA
•		810 JN	1,500 JN			NA
Benzenemethanol, 2-methyl Phenol, 4-(tetramethylbutyl)			1,900 JN	250 JN		NA
1 (3H)-Isobenzofuranone				420 JN		NA
TICs - unknown		604 J;15	9,414 J;15	2,357 J;13	47,000 J;1	NA
Lovel (low or modium)	L	L	L	L	L	L
Level (low or medium) Dilition factor	1	1/500 *	1/500 *	1/200 *	1/500 *	1
PESTICIDES/PCBs						
None detected		UJ	UJ	UJ		

[-U] = Reported value was false positive following data validation JN = Presumptive identification, estimated value D = Sample value from diluted analysis * = Dilution factor for toluic acid results

Values shown for unknown TICs are the total concentration and total number of unknowns Data validatiion results provided in data report 920461

Analyte Units	CS01 (ug/l)	CS02 (ug/l)	CS03 (ug/l)	CS04 (ug/l)	SS03 (mg/kg)
Aluminum	1,710	6,160	29,300	6,850	8,610
Antimony	114 J	99.3 J	269	150 J	(<3.4U)J
Arsenic	5.7 B	95.4	170	29.2	2.2
Barium	164 BJ	144 B	491	70.8 B	119 J
Beryllium	(<1U)	(<1U)	1.8 B	- (<1U)	0.49 B
Cadmium	(<5U)	(<5U)J	8.7 J	(<5U)J	2.2 J
Calcium	72,200	27,600	51,500	63,400	11,600
Chromium	8.0 B	36.6	92.4	35.3	18.0
Cobalt	(<8U)	(<8U)	28.3 B	11.4 B	8.1 B
Copper	29.1 J	97.8 J	158 J	135 J	29.8 J
Iron	8,840	10,000	34,600	9,320	16,000
Lead	87.8	117	194	112	24.0
Magnesium	12,500	5,550	16,300	14,100	7,680
Manganese	785	271	778	369	185
Mercury	1.1 J	0.80 J	1.3 J	0.53 J	0.14
Nickel	(<8U)	81.8	238	58	18.8 J
Potassium	2,450 B	6,500	13,000	22,700	926
Selenium	(<2U)	(<20U)	(<40U)	(<20U)	0.25 BJ
Sodium	31,300	1,300,000	2,670,000	1,020,000	4,810
Thallium	(<1U)	(<1U)	1.3 B	1.0 B	0.23 B
Vanadium	(<4U)	75.3 J	172 J	45.1 BJ	13.1
Zinc	51.4 J	90.6 J	244 J	131 J	52.2 J
Cyanide	(<10U)	(<10U)	(<10U)	(<10U)	2.2 J

TABLE 12. INORGANIC ANALYTES MEASURED IN STREAM BANK SEEPS AND SEEP SEDIMEN

Notes:

U=Not detected; Sample quantitation limits are shown as (<_U) B=Reported value is below the CRQL

J = Reported concentration is an estimated value.

Data Validation results provided in data report 920461

Analytes	Units	SW01 -01A (ug/l)	SW01 Dup (ug/l)	SW02 -01A (ug/l)	SW03 -01 A (ug/l)	SW04 -02A (ug/l)	SWFB01 -01 A (ug/l)	TB1 (ug/l)
VOLATILES								
Acetone		(<10U)	(<10U)	(<10U)	(<10U)	(<10U)	(<10U)	13
TICs - Known TICs - unknown								
Level (low or medium) Dilution factor		L 1	L 1	L 1	۰ <u>۲</u> ۱	L 1	L 1	L 1
SEMI-VOLATILES								
Bis(2-ethyl hexyl)phthalate		(<10U)	(<10U)	210 DJ	(<10U)	(<10Ú)J	(<10U)	NA
TICs - Known TICs - unknown (total;n)		 10 J;1	 172 J;2	 34 J;1	· ,		 * 	N/
Level (low or medium) Dilution factor		L 1	L 1	L 1/2 *	L 1	L 1	L 1	L 1
PESTICIDES/PCB	5							
None detected							:	
Level (low or medium) Dilution factor		L 1	L 1	L 1	L 1	L 1	L 1	L 1

TABLE 13. ORGANIC ANALYTES MEASURED IN STREAM SURFACE WATER

U = Not detected. Sample quantitation limits are shown as (<__U).

D = Reported result from diluted analysis.

* = Bis(2-ethyl hexyl)phthalate result from diluted analysis

--- = No detectable TICs. NA = Not applicable. J = Reported value is an estimate

p 1 of 1

Values shown for unknown TICs are the total concentration and total number of unknowns Data validation results provided in data report 920386

TABLE 14. INORGA	NIC ANALYTES	MEASURED IN SU	RFACE WATER SA	AMPLES		p 1 of 1
Analytes Units	SW-1 (ug/l)	SW-1 DUP (ug/l)	SW-2 (ug/l)	SW-3 (ug/l)	SW-4 (ug/l)	SW-FB (ug/l)
Aluminum	81.0 B	104 B	121 B	102 B	164 B	(<11U)
Antimony	81.5 J	87.6 J	83.2 J	76.8 J	90.8 J	(<52U)
Arsenic	(<1.0U)	(<1.0U)	1.2 B	(<1.0U)	(<1.0U)	(<1U)
Barium	81.1 BJ	66.1 BJ	80.9 BJ	102 BJ	75.2 BJ	36.8 B
Calcium	60,300	56,700	55,900	52,800	58,100	461 B
Copper	19.4 BR	32.4 R	16.4 BR	16.5 BR	21.7 BR	14.5 BR
Iron	91.2 B	94.6 BJ	187	113	278	(<6U)
Lead	(<2.0U)	(<2.0U)	(<2.0U)	(<2.0U)	3.4	(<2U)
Magnesium	12,900	12,100	12,100	11,400	12,400	(<78U)
Manganese	15.6	14.5 B	18.5	14.1 B	24.6	(<2U)
Potassium	1,660 B	1,390 B	1,540 B	1,530 B	1,440 B	(<389U)
Sodium	29,600	28,300	30,200	28,300	30,400	701 B
Zinc	(<3.0U)	5.6 BJ	7.8 BJ	9.9 BJ	6.8 BJ	(<3U)

 \dot{t}

Notes:

U=Not detected; Sample quantitaion limits are shown as (<_U). B=Reported value is below the CRQL. R = Data is unusable following data validation review J = result was positivly identified but is an estimated value

Analyte	SW-1	SW-1 DUP	SW-2	SW-3	SW-4	SW-FB
Units	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
Chloride	53.6	55.6	57.0	53.9	53.8	(<1U)
Fluoride	(<0.2U)	(<0.2U)	(<0.2U)	(<0.2U)	(<0.2U)	(<0.2U)
Ammonia	(<0.1U)	(<0.1U)	(<0.1U)	(<0.1U)	(<0.1U)	(<0.1U)
Nitrate	1.1	1.1	1.1	1.2	1.2	(<0.2U)
Sulfate	19.2	14.1	20.3	20.9	19.8	(< 5U)
Alkalinity	139	165	161	154	135	1.08
Hardness	203.7	191.4	189.4	178.8	196.1	1.2
Total suspended solids	(<4U)	(<4U)	(<4U)	(<4U)	(<4U)	(<4U
Dissolved organic carbon	52.5	37.9	13.8	28.8	28.4	(<0.5U

.

.

TABLE 15. WATER QUALITY PARAMETERS MEASURED IN SURFACE WATER

p1of1

Note:

U=Not detected; Sample quantitation limits are shown as (<_U)

A.4

TABLE 16. ORGANIC ANALYTES MEASURED IN STREAM SEDIMENTS

Analytes	SD01 -01 A its (ug/kg)	SD01 DUP (ug/kg)	SD02 -01 A (ug/kg)	SD03 -01A (ug/kg)	SD04 -01A (ug/kg)	SDFB01 -01 A (ug/l)
VOLATILES						
Acetone Tetrachloroethene Xylenes (total)	[14U] (<7U) (<7U)	(<13U) (<6U) (<6U)	[12U] (<6U) (<6U)	(<12U) 16 2 J	[75U] (<8U)J (<8U)J	16 (<5U) (<5U)
TICs - known TICs - unknown;n		 6 J;1			 11 J;1	
Level (low or medium) Dilution factor	L 1	L 1	L 1	L 1	L 1	L 1
SEMI-VOLATILES						
Naphthalene 2-methyl naphthlalene Acenaphthene Dibenzofuran Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	(<4,400U) (<4,400U) (<4,400U) (<4,400U) 2,100 J 560 J 2,100 J 1,800 J 1,000 J 1,000 J 440 J 540 J 620 J (<4,400U) (<4,400U)	(<850U) (<850U) (<850U) (<850U) (<850U) (<850U) 250 J 450 J 140 J 160 J 110 J 140 J 96 J (<850U) (<850U) (<850U)	(<4,100U) (<4,100U) (<4,100U) (<4,100U) (<4,100U) (<4,100U) (<4,100U) (<4,100U) (<4,100U) (<4,100U) (<4,100U) (<4,100U) (<4,100U) (<4,100U) (<4,100U) (<4,100U)	1,100 700 J 1,900 2,500 2,400 11,000 3,600 10,000 15,000 D 4,700 4,500 3,800 3,500 4,600 3,000 1,600 3,200	<pre>(<1,000U) (<1,000U) (<1,000U) (<1,000U) (<1,000U) (<1,000U) (<1,000U) (<1,000U) (<1,000U) (<1,000U) (<1,000U) (<1,000U) (<1,000U) (<1,000U) (<1,000U) (<1,000U) (<1,000U)</pre>	(<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U)
TICs - known					t	
Dibenzofuran, 4-methyl 9,10-Phenanthrenedione Dibezothiophene 9H-Fluoren-9-imine 5H-Indeno[1,2-b]pyridine 9,10-Anthracenedione	 			23,000 J 31,000 J 53,000 J 25,000 J 140,000 J 45,000 J	 	
TICs - unknown;n			580,000 J;1	798,000 J;11	334,000 J;2	
Level (low or medium) Dilution factor	L 5	L 5	L 1	L 1/2 *	L 1	L 1

PESTICIDES/PCBs

None detected

Notes:

U = Not detected. Sample quantitation limits are shown as $(<_U)$. [-U] = Value was false positive following data validation review --- = No detectable TICs. J = Reported value is an estimate * = Pyrene data from diluted result

Values shown for unknown TICs are the total concentrations and total number of unknowns. Data validation results provided in data report 920391

TABLE 17.	INORGANIC ANALY	TES MEASURED IN	STREAM SEDIMENTS

Analyte Units	SD01 (mg/kg)	SD01DUP (mg/kg)	SD02 (mg/kg)	SD03 (mg/kg)	SD04 (mg/kg)	SD-FB (ug/l)
Aluminum	3,270	3,730	3,510	4,480	6,690	(<11U)
Antimony	81.1 J	71.5 J	60.5 J	91.7 J	60.4 J	(<52U)
Arsenic	2.4	3.2	2.7	3.1	1.2 B	(<1U)
Barium	36.9 J	60.7 J	97.1 J	- 68.4 J	71.8 J	59.1 B
Beryllium	0.20 B	0.24 B	0.25 B	0.28 B	0. 37 B	(<1U)
Cadmium	1.8 J	1.9 J	1.8 J	1.6 J	1.3 J	(<5U)
Calcium	88,400	40,500	27,700	82,500	3,950	1, 1 70 B
Chromium	7.4 J	10.4 J	6.9 J	11.0 J	12.0 J	(<4U)
Cobalt	4.1 B	9.0	4.3 B	4.1 B	4.4 B	(<11U)
Copper	41.8 J	56.8 J	53.7 J	21.2 J	16.7 J	16.1 B
Iron	11,300	11,600	12,100	12,400	11,500	15.1 B
Lead	181	55.8	293	63.2	12.8	(<2U)
Magnesium	7,130	10,900	7,500	32,200	3,310	205 B
Manganese	233	239	195	227	98.1	26.2
Nickel	16.1 J	23.6 J	16.0 J	15.8 J	16.2 J	(<8U)
Potassium	368 B	387 B	408 B	510 B	604 B	(<389U)
Silver	3.4 J	2.2 J	2.3 J	3.2 J	(<1.3U)J	
Sodium	136 B	90.0 B	109 B	334 B	110 B	3,960 B
Vanadium	6.1 B	5.0 B	6.7	8.3	9.5	(<4U)
Zinc	97.4 J	155 J	102 J	79.7 J	44.1 J	6.8B
Cyanide	0.13 J	0,13 J	0.12 J	0.11 J	0.12 J	
Total organic carbon	16,400	4,300	11,000	9,600	16,000	

Notes:

U=Not detected; Sample quantitation limits are shown as (<_U).

B=Reported value is below the CRQL.

J = Reported value is an estimate

Data validation results provided in data report 920391

p 1 of 1

Analyte	Units	BS01 (ug/l)	BS01 DUP (ug/l)	BS-FB (ug/l)	
VOLATILES	Onits	(ug/i)	(Ug/I)	(09/1/	<u> </u>
Methylene chloride		(<5U)	(<5U)	1 J	
Acetone		16	(<10U)	(<10U)	
1,1-Dichloroethane		9	8	- (<5U)	
1,2-Dichloroethene (total)		2 J	2 J	(<5U)	
1,1,1-Trichloroethane		3 J	3 J	(<5U)	
Trichloroethene		2 J	2 J	(<5U)	
Fetrachloroethene		4 J	5	(<5U)	
Kylenes (total)		240	220	(<5U)	
TICs-known					
TICs-unknown					
_evel (low or medium)		L	L	L	
Dilution factor		1	1	1	
SEMI-VOLATILES					
2,4-Dimethyl phenol		9 J	15	(<10U)	
Pentachlorophenol		2 J	5 J	(<50U)	
m-Toluic acid		23 J	4,100 DJ	(<50U)	
p-Toluic acid		(<150U)	(<50U)	(<50U)	
o-Toluic acid		350 DJ	1,600 DJ	(<50U)	
TICs-known					
Benzene, acetic acid		20 J			
1(3H)-Isobenzofuran		48 J	82 J		
Phenol, 4-nonyl			40 J		
Phenol, nonyl-			28 J		
TIC-unknown;n		434 J;9	1,084 J;16	~	
Level (low or medium)		L	L .	L	
Dilution factor		1/3 *	1/25 *	1	

TABLE 18. ORGANIC ANALYTES MEASURED IN BASEMENT SEEP

PESTICIDES/PCB

None Detected

Notes:

J=Reported concentration is an estimated value.

U=Not detected; Sample quantitation limits are shown as (<_U).

D = Reported result from diluted analysis

* = Tolic acid results from diluted analysis

Values shown for unknown TICs are the total concentration and total number of unknowns --- = No detectable TICs

Data validation results provided in data report 920398

A h	SMC-	SMC- BS01 DUP	SMC- BS-FB
Analyte	BS01		
Units	(ug/l)	(ug/l)	(ug/l)
Aluminum Arsenic	129 B 39.8	125 B 40.7	(<87 U) (<2U)
Barium	56.0 B	67.0 B	30.1 B
Calcium	31,500	32,200	156 B
Chromium	18.1	16.7	(<4U)
Copper	111	102	(<6U)R
Iron	2,540	2,420	(<11U)
Lead	122	106	(<2U)
Magnesium	6,950	7,150	(<78U)
Manganese	103	101	(<5U)R
Mercury	0.34 R	1.3	(<0.2U)
Nickel	17.3 BR	(<8.0U)R	(<8U)R
Potassium	31,600	28,300	(<203U)
Sodium	1,130,000 R	1,070,000 R	480 R
Vanadium	37.9 BR	32.7 BR	(<6U)R
Zinc	60.3 J	51.6 J	(<16Ú)J

,

TABLE 19. INORGANIC ANALYTES MEASURED IN BASEMENT SEEP

Notes:

U=Not detected; Sample quantitaion limits are shown as $(<_U)$. B=Reported value is below the CRQL.

R = Unusable data

Data validation results provided in data report 920398

يمر بر

Parameter Units	BS01 (mg/l)	BS01 DUP (mg/l)	BS-FB (mg/l)
Chloride	142	121	(<1U)
Fluoride	1.3	1.3	(<0.2U)
Ammonia	1.4	1.5	(<0.1U)
Nitrate	0.4	0.4	(<0.2U)
Sulfate	(<500U)	(<500U)	(<5U)
Alkalinity	1,650	1,770	1.1
Hardness	107	110	0.39
Total suspended solids	34	43	(<4U)
Dissolved organic carbon	40.3	114	0.53

TABLE 20. WATER QULAITY PARAMETERS MEASURED IN BASEMENT SEEP

Note:

U=Not detected; Sample quantitation limits reported as (<_U).

Data validation results provided in data report 920398

TABLE 21.	ORGANIC ANALY	TES MEASURED	IN PIEZOMET	TER WIPE SAMPLE

Analytes	Units	WP-28D -01 A (ng/wipe)	WPFB-01 -01A (ng/wipe)
SEMI-VOLATILES			
Di-n-butyl phthalate Bis(2-ethylhexyl)phthalate Di-n-octyl phthalate		[41,000U] (<330U) (<330U)	55,000 B 1,600 1,200
TICs - known 3-penten-2-one, 4-methyl			30,000 JN
TICs - unknown;n		311,000 J;4 520,000 R;5	55,900 J;6 97,000 JN;2

PCBs

None detected

Notes:

U = Not detected. Sample quantitation limits are shown as $(<_U)$.

B = Analyte detected in corresponding method blank.

R = Data is unusable

JN = Presumptive identification, estimated concentration.

--- = No detectable TIC.

Values shown for unknown TICs are the total concentration and total number of unknowns [-U] = Data was false psitive following data validation review

44. 14.

TABLE 22. ORGANIC ANALYTES							p 1 of 2
Analytes		GW01S	GW02S	GW04S	GW06S	GW07S	GW08S
		-01 A	-01A	-01A	-01A	-01A	-01A
	Units	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
VOLATILES							
/inyl Chloride		(<10U)	(<10U)	(<10U)	(<10U)J	5 J	(<10U)
Acetone		(<10U)	19	(<10U)	(<10U)J	(<10U)	(<10U)
,2-Dichloroethene (Total)		(<5U)	(<5U)	(<5U)	(<5U)J	18	(<5U) (<5U)
richloroethene		(<5U)	(<5U)	(<5U)	(<5U)J	2 J (<5U)	(<5U) (<5U)
etrachloroethene		(<5U)	(<5U)	2 J	(<5U)J	(<50) 2 J	(<5U) (<5U)
oluene		(<5U)	(<5U)	(<5U)	(<5U)J	· 19	(<5U) (<5U)
(ylenes (Total)		(<5U)	4 J	4 J	(<5U)J	15	(<00)
TICs - Known							
TICs - Unknown						•••	
SEMI - VOLATILES							
-Methylphenol		(<10U)	(<20U)J	(<10U)	(<10U)	15	(<10U)
-Methylphenol		(<10U)	(<20U)J	(<10U)	(<10U)	11	(<10U)
Senzoic Acid		(<50U)	(<100U)J	(<50U)	(<50U)	4 J	(<50U)
Dimethylphthalate		(<10U)	21J	(<10U)	(<10U)	(<10U)	(<10U
henanthrene		(<10U)	(<20U)J	(<10U)	. 2 J	(<10U)**	(<10U
luoranthene		(<10U)	(<20U)J	(<10U)	4 J	(<10U)	(<10U
pyrene		(<10U)	(<20U)J	(<10U)	3 J	(<10U)	(<10U) (<10U)
Benzo(a)Anthracene		(<10U)	(<20U)J	(<10U)	2 J	(<10U)	(<100 (<10U
bis(2-Ethylhexyl)phthalate		(<10U)	(<20U)J	(<10U)	3 J	2 J	(<100 (<10U
Chrysene		(<10U)	(<20U)J	(<10U)	2 J	(<10U) (<10U)	(<100 (<10U
Benzo(b)Fluoranthene	,	(<10U)	(<20U)J	(<10U)	1 J	(<100) (<10U)	(<100 (<10U
Benzo(k)Fluoranthene		(<10U)	(<20U)J	(<10U)J	1 J	(<100) (<10U)	(<100 (<100
Benzo(a)Pyrene		(<10U)	(<20U)J	(<10U)J	2 J	(<100) (<2,500U)	(<100 (<50U
-Toluic Acid		(<50U)	(<100U)J	(<50U)	(<50U)	(<2,500U) (<2,500U)	(<50U (<50U
n-Toluic Acid		(<50U)	(<100U)J	(<50U)	(<50U)	(<2.5000) 11.000 D	(<50U (<50U
o-Toluic Acid		(<50U)	(<100U)J	(<50U)	(<50U)	11.000 D	(<500
TICs - Known							
Benzamide, N,N-diethyl-3-methyl				10 J			16.
2,4-pentanediol,2 methyl							9.
3enzomethane, Alpha.Alpha.							8.
1(3H)-Isobenzofuranone			 . *				110.
TICs - Unknown;n				1000 J;1	24 J;2	26 J;1	·
PESTICIDES							

n 1 of 2

None Detected

Notes:

U = Not detected. Sample quantitation limits are shown as (<__U).

J = Reported concentration is an estimated value.

NA = Not applicable.

D = Data reported from diluted analysis.

Values shown for unknown TICs are the total concentration and total number of unknowns.

TABLE 22 (Cont)

، ۲۵۰ نشیط

Ning Onlonge (<10U)	Analytes Units	GW FB-1 (ug/l)	GW FB-2 (ug/l)	TB-3 (ug/l)	TB-4 (ug/l)	TB-5 (ug/l)
Acetone (<10U)	VOLATILES					
TiCs - Unknown	Acetone 1,2-Dichloroethene (Total) Trichloroethene Tetrachloroethene Toluene	(<10U) (<5U) (<5U) (<5U) (<5U)	(<10U) (<5U) (<5U) (<5U) (<5U)	(<10U) (<5U) (<5U) (<5U) (<5U)	(<10U) (<5U) (<5U) (<5U) (<5U)	(<10U) (<10U) (<5U) (<5U) (<5U) (<5U) (<5U)
SEMI - VOLATILES 2-Methylphenol (<10U)						
2-Methylphenol (<100)						
Benzamide, N,N-diethyl-3-methylNANANA2,4-pentanediol,2 methylNANANABenzomethane, Alpha.AlphaNANANA	4-Methylphenol Benzoic Acid Dimethylphthalate Phenanthrene Fluoranthene Pyrene Benzo(a)Anthracene bis(2-Ethylhexyl)phthalate Chrysene Benzo(b)Fluoranthene Benzo(k)Fluoranthene Benzo(a)Pyrene p-Toluic Acid m-Toluic Acid	(<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<50U) (<50U)	(<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<10U) (<50U) (<50U)	NA N	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA
TICs - Unknown NA NA NA	Benzamide, N,N-diethyl-3-methyl 2,4-pentanediol,2 methyl Benzomethane, Alpha Alpha. 1(3H)-lsobenzofuranone	 	· · · · ·	NA . NA NA	NA NA NA	NA NA NA NA

p 2 of 2

ι,

None Detected

Analyte Units	GW01S (ug/l)	GW02S (ug/l)	GW04S (ug/l)	GW06S (ug/l)	GW07S (ug/l)	GW08S (ug/l)	GWFB01 (ug/l)	GWFB02 (ug/l)
Juminum	19,300	7,720 J	885 J	1,690	6,040	933	(<11U)	(<87U).
Antimony	(<20.0U)R	(<20.0U)R	(<20.0U)R	22.2 B	(<20.0U)	20.8 B	(<20U)	(<18U)NF
Arsenic	(<2.0U)J	21.8 J	`2.9 ́BJ	8.9 R	44.0 Ŕ	7.3 R	(<2.0U)	39.2
Barium	385J	163 J	63.6 J	146 B	266	50.2 B	(<6U)	80.6 BN
Beryllium	1.3 BR	(<1.0U) J	(<1.0U) J	(<1.0U)	0.58	(<1.0U)	(<1.0U)	(<1.0U)
Calcium	504,000	78,400	43,400	20,600	155,000	121,000	369 B	93.2
Chromium	43.2 J	17.3 J	5.6 BJ	27.0	17.7	2,550	(<3U)	(<4U)N
Cobalt	27.3 B	11.7 B	(<11.0 U)	(<11.0 U)	12.6	20.7 B	(<11.0 U)	(<11.0 L
Copper	80.2 J	44.7 J	15.0 BJ	458	47.7 J	52.4 J	11.0 BJ	9.6 B
ron	69,800 J	13,600 J	1,970 J	5,740	16,800	23,200	30.2 B	21.8 E
_ead	26.7	13.7 R	6.9 R	390	15.1	(<2.0U)J	(<2.0U)J	(<2.0U)
Magnesium	119,000	17,200	10,200	4,360 B	35,100	20,800	108 B	(<78U)
Vanganese	1,460 J	334 J	578 J	15 9	430	437	3.0 B	(<5U)N
Vickel	, 50.7 J	53.7 J	20.3 BJ	20.9 B	46.9	923	(<5U)	(<8U)N
Potassium	4,890 B	4,390 B	4,270 B	71,100	5,350	2,910 B	(<203U)	(<203ા
Sodium	71,400 R	438,000 R	246,000 R	276,000 J	529,000 J	268,000 J	846 BJ	206
/anadium	32.3 R	31.9 J	(<6.0U)J	12.4 B	30.6	5.7 B	(<4U)	(<6U)
Zinc	163	92.7	26.1	643	68.4	217	(<16U)	(<16U
Cyanide	(<10U)	13	(<10U)	(<10U)J	(<10U)J	(<10U)J	18 J	(<10U

Notes:

U=Not detected; Sample quantitaion limits are shown as (<_U). B=Reported value is below the CRQL. J = Reported concentration is an estimated value.

۰.

R = Unusable data

TABLE 24. WATER QUALITY P	ARAMETERS	S MEASURE	<u>D IN OVERBU</u>	RDEN GROUI	NDWATER	· · · · · · · · · · · · · · · · · · ·	p 1 of 1
Analyte	Units	GW01S (mg/l)	GW02S (mg/l)	GW04S (mg/l)	GW06S (mg/l)	GW07S (mg/l)	GW08S (mg/l)
Chloride		4.8	26.0	9.8	54.9	98.7	344
Fluoride		(<0.2U)	1.4	1.4	0.59	2.2	(<0.2U)
Ammonia		(<0.1U)	1.8	0.5	0.6	8	(<0.1U)
Nitrate		0.3	(<0.2U)	(<0.2U)	(<0.2U)	(<0.2U)	3.9
Sulfate		(<125U)	(<500U)	22.8	(<1,000U)	(<500U)	(<50U)
Alkalinity		395	516	4,770	710	1,300	410
Hardness		1,750	267	150	69.4	531.6	387.8
Total suspended solids		651	309	57	269	742	218
Dissolved organic carbon		69.1	35.9	25.8	41.6	149	29.9

.

ŗ

.

Note: U = Not detected; Sample quantitation limits are shown as $(<_U)$

Methylene Chloride Acetone 1,1-Dichloroethene 1,2-Dichloroethene Benzene 4-Methyl-2-Pentanone (MIBK) Tetrachloroethene Toluene Xylenes (Total) VOA TICs - Unknown;n Level (low or medium) Dilution factor SEMI - VOLATILES Benzyi alcohol Bis(2-chloroethoxy)methane Phenol 2-Methylphenol 4-Methylphenol 4-Methylphenol 8enzoic Acid Naphthalene Pentachlorophenol Phenanthrene Benzo(a)anttracene bis(2-Ethylhexyl)phthalate Di-noctylphtalate 2,4-Dimethylphenol Phenanthrene Benzo(a)anttracene bis(2-Ethylhexyl)phthalate Di-noctylphtalate 2,4-Dinitrotoluene Dimethyl phthalate m-Toluic Acid 11 BNA TICs- Known Butanoic acid Benzamide,N,N-diethyl-methyl Benzamide,N,N-diethyl-methyl Hexanoic acid 9-Octadecanoic acid 14-Hexanol,2-ethyl Benzoic acid 9-Hexadecanoic acid 10-Octadecanoic acid 11 0-Ctadecanoic acid 9-Hexadecanoic acid 10-Octadecanoic acid 11 0-Ctadecanoic acid 9-Hexadecanoic acid 10-Octadecanoic acid 11 13 14 14 13 14 14 14 14 14 15 15 15 15 16 17 17 16 17 17 17 17 17 17 18 19 19 10 10 10 10 10 10 10 10 10 10	1 A	-01A (ug/l)	-01A (ug/l)	-01 A (ug/l)	-01A (ug/l)	-01A (ug/l)	-01A (ug/l)
VOLATILES Chlorothene /inyl Chloride Aethylene Chloride Acetone ,1-Dichloroethene 3.2-Dichloroethene Senzene 4-Methyl-2-Pentanone (MIBK) Tetrachloroethene Senzene 4-Methyl-2-Pentanone (MIBK) Tetrachloroethene Soluene Xylenes (Total) VOA TICs - Known VOA TICs - Unknown:n Level (low or medium) Dilution factor SEMI - VOLATILES Benzyl alcohol Bis(2-chloroethoxy)methane Phenol 2-Methylphenol Benzot Acid Naphthalene Pentaol Pentachlorophenol Phenol Benzo(a)anttracene bis(2-Ethylhexyl)phthalate Di-noctylphtalate 2.4-Dimethylphenol Benzor(a)anttracene Dimethyl phthalate m-Toluic Acid 10- Dinethyl phthalate m-Toluic Acid Benzanide, N.N-diethyl-methyl Benza	(<5U) (<10U)	<u> </u>	(ug/i)	(ug/i)	(ug/i)		
inyl Chloride lethylene Chloride cetone ,1-Dichloroethene (2-Dichloroethene (Total) richtoroethene enzene -Methyl-2-Pentanone (MIBK) etrachloroethene oluene ylenes (Total) VOA TICS - Known VOA TICS - Unknown;n evel (low or medium) illution factor SEMI - VOLATILES Benzyl alcohol illitochenzene A-Dimethylphenol -Methylphenol -Methylphenol -Methylphenol -Methylphenol -Methylphenol Benzoic Acid Japhthalene Pentachlorophenol Phenanthrene Benzo(a)anthracene bis(2-Ethylhexyl)phthalate Dimethyl phthalate Dimethyl phthalate Dimethyl phthalate Dimethyl phthalate Dimethyl phthalate Dimethyl phthalate -Toluic Acid -Toluic Acid BNA TICs- Known Butanoic acid Benzanica,N,N-diethyl-methyl Propanoic acid, 2-methyl Benzanica, 2-methyl Benzanica, 2-methyl Benzanica, 2-methyl Benzoic acid -Octadecanoic acid -Hexanoic acid Benzoic acid -Hexadecanoic acid -Hexanoic acid -Hexadecanoic acid -Hexade	(<10U)						
inyl Chloride lethylene Chloride cetone 1.1-Dichloroethene 2.Dichloroethene enzene Methyl-2-Pentanone (MIBK) etrachloroethene oluene ylenes (Total) VOA TICS - Known VOA TICS - Unknown:n evel (low or medium) illution factor SEMI - VOLATILES is(2-chloroethoxy)methane henol -Methylphenol -M		(<5U)	(<5U)	(<5U)	(<5U)	31	(<5U)
cetone 1-Dichloroethene 2-Dichloroethene (Total) richtoroethene enzene -Methyl-2-Pentanone (MIBK) etrachloroethene oluene ylenes (Total) VOA TICS - Known VOA TICS - Unknown:n evel (low or medium) bilution factor SEMI - VOLATILES tenzyi alcohol tis(2-chloroethoxy)methane Phenol -Methylphen	(<5U)	(<10U)	(<200U)	(<200U)	(<50U)	3 J	(<10U
1-Dichloroethene 2-Dichloroethene (Total) richloroethene enzene -Methyl-2-Pentanone (MIBK) etrachloroethene oluene ylenes (Total) VOA TICS - Known VOA TICS - Unknown:n evel (low or medium) illution factor SEMI - VOLATILES Benzyt alcohol bis(2-chloroethoxy)methane Phenol -Methylphenol -Toluic Acid -Toluic Ac		(<5U)	[100U]	[100U]	(<25U)	(<5U)	(<5U)
2-Dichloroethene (Total) richloroethene enzene -Methyl-2-Pentanone (MIBK) etrachloroethene oluene ylenes (Total) VOA TICS - Known VOA TICS - Unknown:n evel (low or medium) illution factor SEMI - VOLATILES tenzyi alcohol iis(2-chloroethoxy)methane henol -Methylphenol -Methylphenol -Methylphenol illirobenzene 4-Dimethylphenol tenzoic Acid laphthalene Pentachlorophenol Phenanthrene Benzo(a)anthracene is(2-Ethylexyl)phthalate 3-n-ocylphtalate 1-Toluic Acid 10-Toluic Acid 2-Toluic Acid BNA TICS- Known Butanoic acid Pentanoic acid Pentanoic acid Pentanoic acid Pentanoic acid Pentanoic acid Potouc Acid 11 BNA TICS- Known Butanoic acid Potoacic acid Poto	(<10U)	130	(<200U)	(<200U)	(<50U)	(<10U) 10	(<10U) (<5U)
richloroethene enzene -Methyl-2-Pentanone (MIBK) etrachloroethene oluene ylenes (Total) VOA TICs - Known VOA TICs - Unknown;n evel (low or medium) illution factor SEMI - VOLATILES ienzył alcohol iis(2-chloroethoxy)methane henol -Methylphenol illtrobenzene -A-Dimethylphenol illtrobenzene -A-Dimethylphenol ienzoic Acid laphthalene ienzo(a)anthracene iis(2-Ethylhexyl)phthalate Din-octylphtalate -Toluic Acid Dimethyl phthalate n-Toluic Acid BNA TICs- Known Butanoic acid Pentanoic acid -Pentanoic acid BNA TICs- Known Butanoic acid -Denoic acid 2-methyl -Toluic Acid -Detaecanoic acid -Octadecanoic acid -Detaecanoic acid -Hexadecanoic acid	(<5U)	(<5U) 8	(<100U) 160	(<100U) 140	(<25U) 160	9	(<50)
enzene Methyl-2-Pentanone (MIBK) etrachloroethene plenes (Total) VOA TICs - Known VOA TICs - Unknown:n evel (low or medium) ilution factor SEMI - VOLATILES enzyt alcohol is(2-chloroethoxy)methane henol Methylphenol itrobenzene A-Dimethylphenol enzoic Acid aphthalene entachlorophenol henanthrene enzo(a)anthracene is(2-Ethylhexyl)phthalate i-n-octylphtalate -Toluic Acid Toluic Acid imethyl phthalate -Toluic Acid BNA TICs- Known iutanoic acid lenzenemethanol,4-methyl lexanoic acid lexanedioc acid lexanedioc acid lexanedioc acid -Detadecanoic acid lexanedioc acid -Detadecanoic acid -Detadecanoic acid -Detadecanoic acid -Detadecanoic acid -Hexadecanoic acid -Hexa	13 1 J	2 J	190	180	32	(<5U)	(<5U
Methyl-2-Pentanone (MIBK) trachloroethene bluene ylenes (Total) VOA TICS - Known VOA TICS - Unknown:n avel (low or medium) ilution factor SEMI - VOLATILES enzyl alcohol is(2-chloroethoxy)methane henol Methylphenol Methylphenol itrobenzene 4-Dimethylphenol enzoic Acid aphthalene entachlorophenol henanthrene enzo(a)anthracene is(2-Chylhexyl)phthalate i-n-octylphthalate i-n-octylphthalate i-Toluic Acid Toluic Acid BNA TICS- Known utanoic acid ienzenemethanol, 4-methyl ienzamide, N.N-diethyl-methyl ivopanoic acid ienzenemethanol, 4-methyl ienzamide, 2-methyl ienzonic acid ienzenemethanol, 2-methyl ienzonic acid -Hexadecanoic a	(<5U)	1 J	(<100U)	(<100U)	(<25U)	(<5U)	(<5U
etrachloroethene bluene ylenes (Total) VOA TICs - Unknown:n evel (low or medium) ilution factor SEMI - VOLATILES enzyl alcohol is(2-chloroethoxy)methane henol Methylphenol Methylphenol Methylphenol itrobenzene 4-Dimethylphenol enzoic Acid aphthalene entachlorophenol henanthrene enzo(a)anthracene is(2-Ethylhexyl)phthalate i-n-octylphtalate 4-Dimitrotoluene imethyl phthalate n-Toluic Acid 11 BNA TICs- Known iutanoic acid fenzanemethanol,4-methyl tenzamide,N,N-diethyl-methyl ropanoic acid,2-methyl tenzanci acid -Dectadecanoic acid -Hexadecanoic acid	(<10U)	(<10U)	(<200U)	(<200U)	71	(<10U)	(<10L
Venes (Total) VOA TICs - Known VOA TICs - Unknown:n evel (low or medium) ilution factor SEMI - VOLATILES enzyl alcohol is(2-chloroethoxy)methane henol Methylphenol Methylphenol itrobenzene 4-Dimethylphenol entachlorophenol henanthrene entachlorophenol henanthrene entachlorophenol henanthrene entachlorophenol henanthrene entachlorophenol henanthrene is(2-Ethylhexyl)phthalate i-n-octylphtalate -Toluic Acid Toluic Acid BNA TICs- Known utanoic acid ienzenemethanol,4-methyl ienzamide,N,N-diethyl-methyl ienzamide,N,N-diethyl-methyl ienzamide, 2-methyl iexanoic acid iexanecioc acid iexanecioc acid iexanecioc acid -Hexadecanoic acid -Hexadecanoic acid, 2-methyl ienzomica, 2-methyl ienzomethanol, alpha. iicyclo[2,2,1]heptan-1-ol :thanol, 2-phenoxy- ,4-pentanediol, 2-methyl iexanoic acid, 2-	ЗĴ	(<5U)	2,300	2,300	110	(<5U)	(<5L
VOA TICS - Known VOA TICS - Unknown:n evel (low or medium) ilution factor SEMI - VOLATILES enzyl alcohol is(2-chloroethoxy)methane henol Methylphenol Methylphenol itrobenzene 4-Dimethylphenol enzoic Acid aphthalene entachlorophenol henanthrene enzo(a)anthracene sig(2-Ethylhexyl)phthalate i-n-octylphtalate 4-Dimitrotoluene imethyl phthalate i-n-octylphtalate 4-Dimitrotoluene imethyl phthalate i-Toluic Acid 11 Toluic Acid BNA TICS- Known utanoic acid enzenemethanol, 4-methyl ienzamide, N.N-diethyl-methyl ropanoic acid, 2-methyl iexanoc acid lexanedioc acid -Octadecanoic acid -Hexanol, 2-ethyl vecanoic acid -Hexadecanoic acid -Hexadeca	(<5U)	19	68	66	60	(<5U)	(<5L
VOA TICs - Unknown:n evel (low or medium) lution factor SEMI - VOLATILES enzyl alcohol s(2-chloroethoxy)methane henol Methylphenol Methylphenol itrobenzene 4-Dimethylphenol enzoic Acid aphthalene entachlorophenol henanthrene enzo(a)anthracene s(2-Ethylhexyl)phthalate i-n-octylphtalate 4-Dinitrotoluene imethyl phthalate - Toluic Acid It BNA TICs- Known utanoic acid enzenemethanol, 4-methyl enzanic acid exanedioic acid - Hexanoic acid - Hexanoic acid - Hexadecanoic acid - Hexadecanoi	8	580	2,100	2,100	2,100	110	(<5L -
evel (low or medium) ilution factor SEMI - VOLATILES enzyl alcohol is(2-chloroethoxy)methane henol Methylphenol Methylphenol Methylphenol itrobenzene 4-Dimethylphenol enzoic Acid aphthalene entachlorophenol henanthrene enzo(a)anthracene is(2-Ethylhexyl)phthalate i-n-octylphtalate 4-Dimitrotoluene imethyl phthalate h-Toluic Acid Toluic Acid BNA TICs- Known iutanoic acid lenzenemethanol, 4-methyl lenzamide, N,N-diethyl-methyl lenzamide, 2-methyl lenzanoic acid lexanecioc acid -Hexanol, 2-ethyl lenzonic acid -Hexadecanoic acid -Hex						12J;1	-
ilution factor SEMI - VOLATILES enzyl alcohol is(2-chloroethoxy)methane henol Methylphenol Methylphenol itrobenzene 4-Dimethylphenol enzoic Acid aphthalene entachlorophenol henanthrene enzo(a)anthracene s(2-Ethylhexyl)phthalate i-n-octylphtalate 4-Dinitrotoluene imethyl phthalate -Toluic Acid Toluic Acid BNA TICs- Known utanoic acid enzenemethanol, 4-methyl enzamide, N.N-diethyl-methyl ropanoic acid, 2-methyl lexanoic acid exadecanoic acid exadecanoic acid -Hexanol, 2-ethyl enzoic acid, 2-methyl enzoic acid, 2-methyl enzoic acid, 2-methyl enzoic acid, 2-methyl enzoic acid, 2-methyl enzoic acid, 2-methyl lexanoi, 2-ethyl enzoic acid, 2-methyl lexanoi, 2-ethyl enzoic acid, 2-methyl lexanoi, 2-ethyl enzoic acid, 2-methyl lexanoi, 2-ethyl lexanoi, 2-ethyl				_			I
enzyi alcohol is(2-chloroethoxy)methane henol Methylphenol Methylphenol itrobenzene 4-Dimethylphenol enzoic Acid aphthalene entachlorophenol henanthrene enzo(a)anthracene is(2-Ethylhexyl)phthalate i-n-octylphtalate 4-Dinitrotoluene imethyl phthalate -Toluic Acid Toluic Acid ENA TICs- Known utanoic acid lenzaemethanol, 4-methyl lenzamide, N,N-diethyl-methyl lenzamide, 2-methyl lexanoic acid lexanedioic acid -Octadecanoic acid -Hexadecanoic acid -Hexadecano	L 1	L 1	L 20	L 20	L 5	L 1	L 1
is(2-chloroethoxy)methane henol Methylphenol Methylphenol itrobenzene 4-Dimethylphenol enzoic Acid aphthalene entachlorophenol henanthrene enzo(a)anthracene sig(2-Ethylnexyl)phthalate i-n-octylphtalate 4-Dinitrotoluene imethyl phthalate 1-Toluic Acid 11 BNA TICs- Known utanoic acid enzenemethanol, 4-methyl lenzanice, N.N-diethyl-methyl lenzanice, acid lexanedioc acid elexanedioc acid elexanedioc acid elexanoic acid -Octadecanoic acid -Hexadecanoic							
henol Methylphenol Methylphenol Methylphenol Methylphenol Methylphenol enzoic Acid aphthalene enzola anthracene enzola) anthracene enzola) anthracene enzola) anthracene enzola) anthracene enzola) anthracene is(2-Ethylhexyl) phthalate i-n-octylphtalate A-Dinitrotoluene imethyl phthalate n-Toluic Acid Toluic Acid Toluic Acid NA TICS- Known Mutanoic acid enzenemethanol, 4-methyl lenzamide, N, N-diethyl-methyl ropanoic acid enzenemethanol, 4-methyl lenzamide, N, N-diethyl-methyl ropanoic acid lexanecanoic acid texanecioc acid -Octadecanoic acid -Dectadecanoic acid -Hexadecanoic acid -Hexad	(<50U)	26 J (<50U)	14 J (<50U)J	26 J 150	(<50U) (<50U)	(<50U) (<50U)	(<50L (<50L
Methylphenol Methylphenol Methylphenol itrobenzene 4-Dimethylphenol enzoic Acid aphthalene entachlorophenol henanthrene enzo(a)anthracene is(2-Ethylhexyl)phthalate i-n-octylphtalate 4-Dinitrotoluene imethyl phthalate -Toluic Acid -Toluic Acid Toluic Acid BNA TICs- Known utanoic acid lenzanemethanol, 4-methyl lenzamide, N, N- diethyl-methyl lenzamide, N, N- diethyl-methyl lenzamide, N, N- diethyl-methyl lenzanoic acid lexanedioic acid -Octadecanoic acid -Hexanol, 2-ethyl lenzoic acid -Hexadecanoic acid -Hexadecan	(<50U) 60	(<500)	(<500)J 34 J	62	(<300) 51	(<10U)	2
Methylphenol trobenzene 4-Dimethylphenol enzoic Acid aphthalene entachlorophenol henanthrene entociajanthracene s(2-Ethylhexyl)phthalate i-n-octylphtalate 4-Dinitrotoluene imethyl phthalate -Toluic Acid Toluic Acid 11 BNA TICs- Known utanoic acid entanoic acid enzenemethanol, 4-methyl ropanoic acid, 2-methyl exanoic acid exadecanoic acid -Detadecanoic acid -Hexanol, 2-ethyl enzoic acid -Hexadecanoic acid -Hexadecanoi	3 J	(<50U)	(<50U)J	10 J	11 J	(<10U)	2
Itrobenzene 4-Dimethylphenol enzoic Acid aphthalene entachlorophenol henanthrene enzo(a)anthracene s(2-Ethylhexyl)phthalate i-n-octylphtalate 4-Dinitrotoluene imethyl phthalate - Toluic Acid Toluic Acid BNA TICs- Known utanoic acid enzenemethanol.4-methyl ropanoic acid.2-methyl exanoic acid exadecanoic acid exadecanoic acid -Hexanol.2-ethyl enzoic acid -Hexadecanoic acid Hexadecanoic acid -Hexadecanoic acid -Hexadecan	4 J	29 J	(<50U)J	19 J	25 J	`з j	
4-Dimethylphenol anzoic Acid aphthalene antachlorophenol henanthrene anzo(a)anthracene s(2-E thylhexyl)phthalate i-n-octylphtalate 4-Dinitrotoluene imethyl phthalate - Toluic Acid Toluic Acid BNA TICs- Known utanoic acid enzenemethanol, 4-methyl enzamide, N. N-diethyl-methyl ropanoic acid enzenemethanol, 4-methyl enzamide, N. N-diethyl-methyl ropanoic acid exanecianic acid exanecianic acid exanecianic acid exanedioic acid -Hexanol, 2-ethyl enzoic acid -Hexadecanoic acid -Hex	зJ	(<50U)	11 J	18 J	(<10U)	(<10U)	(<10
aphthalene entachlorophenol henanthrene entachlorophenol henanthrene s(2-Ethylhexyl)phthalate i-n-octylphtalate 4-Dinitrotoluene imethyl phthalate -Toluic Acid 11 Toluic Acid 11 BNA TICs- Known utanoic acid entanoic acid entanoic acid entanoic acid, 4-methyl enzamide, N,N-diethyl-methyl ropanoic acid, 2-methyl exanoic acid exadecanoic acid -Octadecanoic acid -Hexanol, 2-ethyl enzoic acid, 2-methyl enzoic acid -Hexadecanoic acid -Hexade	14	(<50U)	(<50U)J	320 J	14 J	(<10U)	
antachlorophenol henanthrene anzo(a)anthracene s(2-Ethylhexyl)phthalate -n-octylphtalate 4-Dinitrotoluene methyl phthalate Toluic Acid 11 Toluic Acid BNA TICs- Known utanoic acid entanoic acid enzenemethanol,4-methyl enzamide,N.N-diethyl-methyl enzamide,N.N-diethyl-methyl ropanoic acid,2-methyl exanoic acid exadecanoic acid Hexadecanoic acid Hexadecano	70	(<50U)	(<50U)J	11 J	330	(<10U)	5
enanthrene nzo(a)anthracene s(2-Ethylhexyl)phthalate in-octylphtalate +Dinitrotoluene methyl phthalate Toluic Acid Toluic Acid BNA TICS- Known utanoic acid entanoic acid entanoic acid entanoic acid entanoic acid entanoic acid entanoic acid entanoic acid exanedioic acid exanedioic acid exanedioic acid exanedioic acid exanedioic acid Hexanol, 2-ethyl ecanoic acid, 2-methyl exanoic acid exanedioic acid exanedioic acid Hexanol, 2-ethyl ecanoic acid, 2-methyl ecanoic acid Hexanoic acid Hexadecanoic acid Hexadecan	(<10U)	(<50U) 8 J	(<50U)J (<250U)J	(<40U)J (<200U)J	(<10U) (<50U)	(<10U) (<50U)	(<50
enzo(a)anthracene s(2-Ethylhexyl)phthalate -n-octylphtalate 4-Dinitrotoluene methyl phthalate -Toluic Acid 11 Toluic Acid 11 BNA TICs- Known utanoic acid enzenemethanol,4-methyl enzamide,N.N-diethyl-methyl ropanoic acid 2-methyl exanoic acid exadecanoic acid exadecanoic acid exadecanoic acid Octadecanoic acid Hexanol,2-ethyl enzoic acid Hexadecanoic acid -Dectadecanoic acid Hexadecanoic acid -Dectadecanoic acid Hexadecanoic acid -Dectadecanoic acid Hexadecanoic acid -Dectadecanoic acid -Dectadecanoic acid Hexadecanoic acid -Dectadecanoic ac	(<50U) (<10U)	(<50U)	(<2000)J	(<2000)J (<40U)J	(<10U)	(<10U)	1
s(2-Ethylhexyl)phthalate -n-octylphtalate 4-Dinitrotoluene imethyl phthalate -Toluic Acid Toluic Acid 11 Toluic Acid 11 BNA TICs- Known utanoic acid entanoic acid entanoic acid entanoic acid enzenemethanol,4-methyl enzamide,N,N-diethyl-methyl ropanoic acid,2-methyl exandecanoic acid Octadecanoic acid Octadecanoic acid Octadecanoic acid Octadecanoic acid Hexanol,2-ethyl enzoic acid Hexadecanoic acid Hexa	(<10U)	(<50U)J	(<10U)J	(<10U)J	(<10U)	(<10U)	(<10
n-noctylphtalate 4-Dinitrotoluene methyl phthalate -Toluic Acid 1 Toluic Acid 1 Toluic Acid 1 BNA TICs- Known utanoic acid enzenemethanol.4-methyl enzamide, N.N-diethyl-methyl ropanoic acid.2-methyl exanociacid exadecanoic acid Octadecanoic acid Octadecanoic acid Hexanol,2-ethyl enzoic acid,2-methyl enzoic acid Hexadecanoic acid S-Detadecanoic acid,methyl S-Detataeciol,2-methyl exanoic acid,2-methyl exanoic acid,2-methyl S-Furandione,3,4-diethyl	(<10U)	(<50U)J	(<50U)J	(<40Ú)	(<10U)	2 J	
4-Dinitrotoluene methyl phthalate -Toluic Acid 1: Toluic Acid 1: BNA TICs- Known Utanoic acid enzenemethanol.4-methyl enzamide, N.N-diethyl-methyl enzamide, N.N-diethyl-methyl enzanica, acid exadecanoic acid exadecanoic acid Octadecanoic acid Hexanol.2-ethyl enzoic acid.2-methyl enzoic acid.2-methyl enzoic acid.2-methyl enzoic acid.2-methyl enzoic acid.2-methyl enzoic acid.2-methyl enzoic acid.2-methyl enzoic acid.2-methyl SH)-Isobenzofuranone enzomethanol.alpha. icyclo[2.2.1]heptan-1-ol thanol.2-phenoxy- 4-pentanediol,2-methyl 5-Furandione,3,4-diethyl	(<10U)	(<50U)J	(<50U)J	(<40U)	(<10U)	(<10U)	
methyl phthalate Toluic Acid 1 Toluic Acid 1 Toluic Acid 1 BNA TICs- Known Utanoic acid enzenemethanol,4-methyl enzenemethanol,4-methyl enzenemethanol,4-methyl enzenemethanol,4-methyl enzenemethanol,2-methyl exanoic acid exadecanoic acid exadecanoic acid exadecanoic acid Hexanol,2-ethyl ecanoic acid,2-methyl ecanoic acid Hexadecanoic acid S-Furandione,3,4-diethyl	(<50U)	`(<50Ú)	(<50Ú)	(<50U)	(<50U)	(<50U)	(<50
Toluic Acid 1. Toluic Acid 11 BNA TICs- Known utanoic acid anzenemethanol, 4-methyl anzamide, N, N-diethyl-methyl opanoic acid, 2-methyl exanoic acid exadecanoic acid exadecanoic acid Octadecanoic acid Hexanol, 2-ethyl eanoic acid Hexadecanoic aci	(<50U)	(<50U)	(<50U)J	24 J	(<50U)	(<50U)	(<50
Toluic Acid 11 BNA TICs- Known utanoic acid enzenemethanol.4-methyl enzenemethanol.4-methyl enzenemethanol.4-methyl enzenemethanol.4-methyl enzenemethanol.4-methyl enzencic acid exanecia.2-methyl exanoic acid exadecanoic acid Hexanol.2-ethyl ecanoic acid Hexadecanoic acid Hexadecano	1,000 D	30,000 DJ	1,800 DJ	50,000 D	19,000 J	840 J 100	2,100 160
BNA TICs- Known Janoic acid entanoic acid enzenemethanol,4-methyl enzamide,N,N-diethyl-methyl ropanoic acid,2-methyl exanoic acid exanoic acid exanociacid exanedioic acid exanedioic acid exanedioic acid Octadecanoic acid Hexanol,2-ethyl enzoic acid,2-methyl ecanoic acid Hexadecanoic acid Hexadecanoi	,200 DJ 6,000 D	720 DJ 87,000 DJ	3,000 DJ	5,400 DJ 78,000 D	(<250U) 32,000 J	1,900 DJ	3,300
entanoic acid enzenemethanol.4-methyl enzamide, N,N-diethyl-methyl ropanoic acid.2-methyl exanoic acid exadecanoic acid exadecanoic acid Hexanol,2-ethyl enzoic acid.2-methyl ecanoic acid Hexadecanoic acid Hexadecanoic acid Hexadecanoic acid D-Octadecanoic acid Hexadecanoic acid Hexadecanoic acid B-Octadecanoic acid D-Octadecanoic acid D-Octadecanoic acid Hexadecanoic ac							
entanoic acid enzenemethanol,4-methyl enzamide,N,N-diethyl-methyl ropanoic acid,2-methyl exanoic acid exadecanoic acid exadecanoic acid Octadecanoic acid Hexanol,2-ethyl enzoic acid,2-methyl ecanoic acid Hexadecanoic acid Hexadecanoic acid O-Octadecanoic acid Hexadecanoic acid D-Octadecanoic acid, Hexadecanoic acid B)-lsobenzofuranone enzomethanol.alpha. icyclo[2,2,1]heptan-1-ol thanol,2-phenoxy- 4-pentanediol,2-methyl exanoic acid,2-methyl 5-Furandione,3,4-diethyl	26 J	240 J		140 J			
enzenemethanol,4-methyl enzamide,N,N-diethyl-methyl ropanoic acid,2-methyl exanoic acid exanecanoic acid exadecanoic acid Octadecanoic acid Hexanol,2-ethyl enzoic acid,2-methyl ecanoic acid Hexadecanoic acid,methyl (3H)-lsobenzofuranone enzomethanol.alpha. icyclo[2.2.1]heptan-1-ol thanol,2-phenoxy- 4-pentanediol,2-methyl exanoic acid,2-methyl 5-Furandione,3,4-diethyl	150 J						
ropanoic acid.2-methyl exanoic acid exadecanoic acid exadecanoic acid Octadecanoic acid Hexanol.2-ethyl enzoic acid.2-methyl ecanoic acid Hexadecanoic acid,methyl 3H)-Isobenzofuranone enzomethanol.alpha. Icyclo[2.2.1]heptan-1-ol thanol.2-phenoxy- 4-pentanediol.2-methyl exanoic acid,2-methyl 5-Furandione,3,4-diethyl	20 J						
exanoic acid exadecanoic acid exadecanoic acid Octadecanoic acid Hexanoi.2-ethyl enzoic acid,2-methyl ecanoic acid O-Octadecanoic acid O-Octadecanoic acid O-Octadecanoic acid,methyl 3H)-Isobenzofuranone enzomethanol.alpha. cyclo[2.2.1]heptan-1-ol hanol,2-phenoxy- 4-pentanediol,2-methyl exanoic acid,2-methyl 5-Furandione,3,4-diethyl	18 J	40 J	30 J	56 J	100 J		
exadecanoic acid exanedioic acid Octadecanoic acid Hexanol,2-ethyl enzoic acid,2-methyl ecanoic acid Hexadecanoic acid -Octadecanoic acid,0- Octadecanoic acid,0- enzomethanol.alpha. cyclo[2.2.1]heptan-1-ol hanol,2-phenoxy- 4-pentanediol,2-methyl exanoic acid,2-methyl 5-Furandione,3,4-diethyl		270 J	90 J 65 J	 140 J			
exanedioic acid Octadecanoic acid Hexanol,2-ethyl eranoic acid,2-methyl ecanoic acid Hexadecanoic acid Hexadecanoic acid,methyl 3H)-Isobenzofuranone enzomethanol.alpha. cyclo[2.2.1]heptan-1-ol hanol,2-phenoxy- 4-pentanediol,2-methyl exanoic acid,2-methyl 5-Furandione,3,4-diethyl		110 J	65 J	140 J			
Octadecanoic acid Hexanol,2-ethyl enzoic acid,2-methyl ecanoic acid Hexadecanoic acid -Octadecanoic acid,methyl 3H)-Isobenzofuranone enzomethanol,alpha. cyclo[2.2.1]heptan-1-ol hanol,2-phenoxy- 4-pentanediol,2-methyl exanoic acid,2-methyl 5-Furandione,3,4-diethyl		90 J					
Hexanol,2-ethyl enzoic acid,2-methyl ecanoic acid Hexadecanoic acid -Octadecanoic acid,methyl 3H)-Isobenzofuranone enzomethanol.alpha. cyclo[2.2.1]heptan-1-ol hanol,2-phenoxy- 4-pentanediol,2-methyl exanoic acid,2-methyl 5-Furandione,3,4-diethyl		900 J					
enzoic acid,2-methyl ecanoic acid Hexadecanoic acid I-Octadecanoic acid,methyl 3H)-Isobenzofuranone enzomethanol.alpha. cyclo[2.2.1]heptan-1-ol hanol,2-phenoxy- 4-pentanediol,2-methyl exanoic acid,2-methyl 5-Furandione,3,4-diethyl			20 J				
ecanoic acid Hexadecanoic acid D-Octadecanoic acid,methyl 3H-Isobenzofuranone enzomethanol.alpha. cyclo[2.2.1]heptan-1-ol hanol,2-phenoxy- 4-pentanediol,2-methyl exanoic acid,2-methyl 5-Furandione,3,4-diethyl			40 J				
-Octadecanoic acid,methyl 3H}-Isobenzofuranone enzomethanol.alpha. cyclo[2.2.1]heptan-1-ol hanol,2-phenoxy- 4-pentanediol,2-methyl exanoic acid,2-methyl 5-Furandione,3,4-diethyl			25 J				
3H)-Isobenzofuranone enzomethanol.alpha. cyclo[2.2.1]heptan-1-ol hanol,2-phenoXy- 4-pentanediol,2-methyl exanoic acid,2-methyl 5-Furandione,3,4-diethyl			95 J				
nzomethanol.alpha. cyclo[2.2.1]heptan-1-ol hanol,2-phenoxy- 4-pentanediol,2-methyl exanoic acid,2-methyl 5-Furandione,3,4-diethyl			290 J		520 J		
cyclo[2.2.1]heptan-1-ol hanol,2-phenoxy- 4-pentanediol,2-methyl exanoic acid,2-methyl 5-Furandione,3,4-diethyl				48 J	5205	·	
hanol,2-phenoxy- 4-pentanediol,2-methyl exanoic acid,2-methyl 5-Furandione,3,4-diethyl				32 J			
4-pentanediol,2-methyl exanoic acid,2-methyl 5-Furandione,3,4-diethyl				32 J			
exanoic acid,2-methyl 5-Furandione,3,4-diethyl				•			
5-Furandione, 3, 4-diethyl							
exanoic acid,2-ethyl							
utanamide.N-(oxypropyl) henol.4,4'-Butylidenebis[2-							
BNA TICs - Unknown:n	136 J;4	3,035 J;11	6,408 J;7	4,256 J;11	2,600 J;8	582 J;15	188
evel (low or medium)	L	L	L	L	L	L	L 1/20 *

PESTICIDES

None Detected

Notes:

U = Not detected. Sample quantitation limits are shown as (<_U). J = Reported concentration is an estimated value [-U] = Value was false positive following data validation review

NA = Not applicable. D = Reported result from diluted analysis. • = Dilution factors for Totuic acid labeled "D"

Values shown for unknown TICs are the total concentation and total number of unknowns. Data validation results provided in data reports 920398(MW1I-MW4I), 920396(MW5I-MW11I)

Analytes	GW071	GW071	GW08I	GW091	GW010	GW011I
	-01A	DUP	-01A	-01A	-01 A	-01 A (ug/i)
Units VOLATILES	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	
	(<5U)	(<5U)	(<5U)	(<5U)	(<5U)	(<5U)
hiorothene Invi Chloride	(<10U)	3 J	(<10U)	(<10U)	(<10U)	(<10U)
lethylene Chloride	(<5U)	(<5U)	(<5U)	(<5U)	(<5U) (<10U)	(<5U) (<10U)
cetone	23 (<5U)	22 (<5U)	(<10U) (<5U)	(<10U) (<5U)	(<100) (<5U)	(<100) (<5U)
,1-Dichloroethene ,2-Dichloroethene (Total)	(<50) 93	100	(<50) (<5U)	(<5U)	(<5U)	(<5U)
richloroethene	37	36	(<5U)	(<5U)	(<5U)	(<5U) (<5U)
Benzene	(<5U)	(<5U) (<10U)	(<5U) (<10U)	(<5U) (<10U)	(<5U) (<10U)	(<10U) (<10U)
I-Methyl-2-Pentanone (MIBK) Fetrachloroethene	(<10U) 26	27	(<100) (<5U)	(<5U)	`(<5U)	(<5U)
foluene	16	16	(<5U)	(<5U)	(<5U)	(<5U) (<5U)
(ylenes (Total)	280	280	(<5U)	(<5U)	(<5U)	(<50)
VOA TICs - Known VOA TICs - Unknown;n						
_evel (low or medium)	L	L	L	L	L	Ĺ
Dilution factor	1	1	1	1	1	1
SEMI - VOLATILES				((5011)	(<50U)
Benzyi alcohol Bis(2-chloroethoxy)methane	(<50U) (<50U)	(<50U) (<50U)	(<50U) (<50U)	(<50U) (<50U)	(<50U) (<50U)	(<50U)
Phenoi	ùе ́	20	(<10U)R	(<10U)	(<10U)	(<10U) (<10U)
2-Methylphenol	18	19 31	(10U>) (<10U)R	(<10U)J (<10U)J	(<10U) (<10U)	(<100
4-Methylphenol Nitrobenzene	28 (<10U)	(<10U)	(<100)A (<10U)	(<100,0	(<10U)	(<100
2,4-Dimethylphenol	(<10U)	(<10U)	(<10U)R	(<10U)J	(<10U)	(<10U (<50U
Benzoic Acid	190 E	32 J	(<50U)R	(<50U)J (<10U)J	(<50U) (<10U)	(<300 (<10U
Naphthalene	(<10U) (<50U)	(<10U) 20 J	(<10U) (<50U)R	(<100)5 (<50U)J	(<50U)	(<50U
Pentachlorophenol Phenanthrene	(<10U)	(<10U)	(<10U)	(<10U)	(<10U)	(<10U
Benzo(a)anthracene	(<10U)	(<10U)	5 J	(<10U)	(10U>) 7 J	(<10U) 160
bis(2-Ethylhexyl)phthalate	5 J	4 J	5 J	4 J (<10U)	(<10U)	ु- 3 -
Di-n-octylphtalate 2,4-Dinitrotoluene	(<10U) (<50U)	(<10U) (<50U)	(<10U) (<50U)	(<100) (<50U)	(<50U)	(300
Dimethyl phthalate	(<50U)	(<50U)	(<50U)	(<50U)	(<50U)	(<50U
m-Toluic Acid	960 DJ	8,200 D	(<50U)R	(<50U) (<50U)	(<50U) (<50U)	(<50U (<50U
p-Toluic Acid o-Toluic Acid	(<10,000U) 24,000 D	1,300 DJ 28,000 D	(<50U)R (<50U)R	(<50U)	(<50U)	(<50U
BNA TICs- Known						
Butanoic acid	10 0 J	110 J				
Pentanoic acid						
Benzenemethanol,4-methyl Benzamide,N,N-diethyl-methyl	· 97 J	81 J				
Propanoic acid.2-methyl						
Hexanoic acid						
Hexadecanoic acid Hexanedioic acid						
9-Octadecanoic acid						
1-Hexanol,2-ethyl		26 J				
Benzoic acid,2-methyl Decanoic acid						-
9-Hexadecanoic acid						
10-Octadecanoic acid, methyl			×			
1(3H)-Isobenzofuranone Benzomethanol.alpha.	 26 J					
Bicyclo(2.2.1)heptan-1-ol		15 J				
Ethanol,2-phenoxy-	39 J					-
2,4-pentanediol.2-methyl	44 J	44 J 				-
Hexanoic acid.2-methyl 2,5-Furandione,3,4-diethyl		17 J				
Hexanoic acid,2-ethyl		37 J				-
Butanamide,N-(oxypropyl) Phenol,4,4'-Butylidenebis[2-		10 J 				11
BNA TICs - Unknown:n	62 6 J;13	330 J;11	26 J;1	9 J:1	23 J;2	178 J;1
				L	L	L

PESTICIDES

None Detected

TABLE 25 (Cont)

TABLE 25 (Cont)						p 3 of 3
Analytes	GWFB01	GWFB02	GWTB-2	GWTB-3	GWTB-4	GWTB-5
Units	(ug/l)	(ug/l)	(ug/l)	(ug/i)	(ug/l)	(ug/l)
VOLATILES						
Chlorothene	(<5U)	(<5U)	(<5U)	(<5U)	(<5U)	(<5U) (<10U)
Vinyl Chloride	(<10U) (<5U)	(<10U) (<5U)	(<10U) (<5U)	(10U) 2 J	(<10U) (<5U)	(<100) (<5U)
Methylene Chloride Acetone	(<10U)	(<10U)	31	(<10U)	(<10U)	(<10U)
1,1-Dichloroethene	(<5U)	`(<5U)	(<5U)	(<5U)	(<5U)	(<5U)
1,2-Dichloroethene (Total)	(<5U)	(<5U)	(<5U) (<5U)	(<5U) (<5U)	(<5U) (<5U)	(<5U) (<5U)
Trichloroethene Benzene	(<5U) (<5U)	(<5U) (<5U)	(<5U) (<5U)	(<5U) (<5U)	(<5U)	(<5U)
4-Methyl-2-Pentanone (MIBK)	(<10U)	(<10U)	(<10U)	(<10U)	(<10U)	(<10U)
Tetrachloroethene	(<5U)	2 J	(<5U)	(<5U) (<5U)	(<5U) (<5U)	(<5U) (<5U)
Toluene Xylenes (Total)	(<5U) (<5U)	(<5U) 5 J	(<5U) (<5U)	(<5U) (<5U)	(<5U) (<5U)	(<5U)
VOA TICs - Known	((30)					
VOA TICs - Unknown;n						
Level (low or medium) Dilution factor	1	L 1	L 1 -	L 1	L 1	L 1
SEMI - VOLATILES						
Benzyl alcohol	(<50U)	(<50U)	NA	NA	NA	NA
Bis(2-chloroethoxy)methane	(<50U)	(<50U)	NA	NA NA	NA NA	NA NA
Phenol 2-Methylphenol	(<10U)J (<10U)	(<10U) (<10U)	NA NA	NA	NA	NA
4-Methylphenol	(<10U)J	(<10U)	NA	NA	NA	NA
Nitrobenzene	(<10U)	(<10U)	NA	NA	NA	NA NA
2,4-Dimethylphenol	(<10U)J	(<10U) (<50U)	NA NA	NA NA	NA NA	NA
Benzoic Acid Naphthalene	(<50U)J (<10U)	(<10U) (<10U)	NA	NA	NA	NA
Pentachiorophenol	(<50U)Ĵ	(<50U)	NA	NA	NA	NA
Phenanthrene	(<10U)	(<10U)	NA NA	NA NA	NA NA	NA NA
Benzo(a)anthracene bis(2-Ethylhexyl)phthalate	(<10U) (<10U)	(<10U) (<10U)	NA	NA	NA	NA
Di-n-octylphtalate	(<10U)	(<10U)	NA	NA	NA	NA
2,4-Dinitrotoluene	(<50U)	(<50U)	NA	NA	NA	ŇA
Dimethyl phthalate	(<50U)	(<50U)	NA	NA	NA NA	NA NA
m-Toluic Acid	(<50U) (<50U)	(<50U) (<50U)	NA NA	NA NA	NA	NA
p-Toluic Acid o-Toluic Acid	(<50U) (<50U)	(<50U) (<50U)	NA	NA	NA	NA
BNA TICs- Known						
Butanoic acid	•		NA	NA	NA - NA	NA NA
Pentanoic acid	·		NA NA	NA NA	NA	NA
Benzenemethanol,4-methyl Benzamide,N,N-diethyl-methyl			NA	NA	NA	NA 🕂
Propanoic acid,2-methyl			NA	NA	NA	NA S
Hexanoic acid			NA NA	NA NA	NA NA	NA NA
Hexadecanoic acid Hexanedioic acid			NA	NA	NA	NA
9-Octadecanoic acid			NA	NA	NA	NA
1-Hexanol,2-ethyl			NA	NA	NA NA	NA NA
Benzoic acid,2-methyl Decanoic acid			NA NA	NA NA	NA	NA
9-Hexadecanoic acid			NA	NA	NA	NA
10-Octadecanoic acid, methyl			NA.	NA	NA	NA
1(3H)-Isobenzofuranone			NA	NA	NA NA	NA NA
Benzomethanol.alpha.			NA NA	NA NA	NA	ŇĂ
Bicyclo[2.2.1]heptan-1-ol Ethanol.2-phenoxy-			NA	NA	NA	NA
2,4-pentanediol,2-methyl			NA	NA	NA	NA NA
Hexanoic acid,2-methyl			NA NA	NA NA	NA NA	NA
2,5-Furandione,3,4-diethyl Hexanoic acid,2-ethyl			NA	NA	NA	NA
Butanamide,N-(oxypropyl)			NA	NA	NA ·	NA NA
Phenol, 4, 4'-Butylidenebis[2-			NA	NA	NA .	
BNA TICs - Unknown;n		1000 J;1	NA	NA	NA	N A L
Level (low or medium) Dilution factor	L 1	L 1	L 1	L 1	L 1	1
PESTICIDES						
None Detected			NA	NA	NA	NA

TABLE 26. INC	ORGANIC ANA	LYTES MEAS	SURED IN INT	ERMIDIATE BI	ERDROCK GRO	DUNDWATER					p 1 of 2
Analyte Units	SMC- GW01I (ug/l)	SMC- GW021 (ug/l)	SMC- GW03I (ug/I)	SMC- GW03I DUP (ug/l)	SMC- GW04I (ug/I)	SMC- GW05I (ug/l)	SMC- GW06I (ug/I)	SMC- GW07I (ug/I)	SMC- GW07I DUP (ug/l)	SMC- GW08I (ug/l)	SMC- GW09I (ug/I)
Aluminum	10,700 J	1,760 J	156 J	138 BJ	2,460 J	259	261	947	1,230	107 B	167 B
Arsenic	60.7 J	910 J	46.7 J	37.3 BJ	44.1 J	22.6 R	12.8 R	98.6 R	125 R	(<2.0U)	1 6.5
Barium	142 BJ	284 J	41.0 BJ	34.9 BJ	163 BJ	326	87.8 B	129 B	139 B	44.2 B	254
Beryllium	1.2 R	(<1.0U) J	(<1.0U) J	(<1.0U) J	(<1.0U) J	(<1.0U)	(<1.0U)	(<1.0U)	(<1.0U)	(<1.0U)	(<1.0U)
Calcium	126,000 B	9,160	6,270	6,550	72,200	34,900	6,180	26,400	29,900	71,100	142,000
Chromium	33.1 J	53.2 J	41.3 J	38.1 J	44.6 J	17.1	34.2	22.8	26.0	(<3.0U)	(<3.0U)
Cobalt	42.4 B	19.0 B	17.3 B	13.8 B	35.6 B	(<11.0U)	(<11.0U)	(<11.0U)	11.1 B	(<11.0U)	12.9 B
Copper	63.3 R	42.1 J	63.4 J	69.8 J	87.2 J	27.7 Ĵ	84.0 J	62.1 J.	69.7 J	15.2 BJ	10.6 B
Iron	17,600 J	3,750 J	1,900 J	3,980 J	5,700 J	24,100	1,670	13,500	20,200	6,590	10,700 J
Lead	20.5 BR	(<20.0U) R	62.7 R	57.1 R	84.1 R	41.0 S	122	(<2.0U)J	31.1	(<2.0U)J	(<2.0U)
Magnesium	18,000	201 B	904 B	886 B	5,160	8,720	542 B	3,230 B	3,600 B	14,600	25,800
Manganese	491 J	23.1 J	122 J	134 J	690 J	175	45.9	113	149	58.4	637
Mercury	0.26 R	0.53 J	0.24 R	0.28 R	0.55 J	(<0.20U)	0.65	0.35 R	0.34 R	(<0.20U)	(<0.20U)
Nickel	222 J	254 J	65.4 J	82.1 J	122 J	38.5 B	20.7 B	71.2	76.2	6.0 B	8.6 B
Potassium	5,530	17,300	48,100	46,700	26,500	16,500	54,900	29,800	30,400	2,860 B	3,570 B
Selenium	(<10U) R	(<10U) R	(<10U) R	(<10U) R	(<10U) R	(<20U)J	(<2U) J	(<20U) J	(<20U) J	2.0 BJ	(<2U)
Sodium	1,230,000 R	7,950,000 R	2,130,000 R	2,240,000 R	1,260,000 R	361,000	527,000	1,170,000	1,190,000	396,000	188,000
Thallium	(<1.0U)J	1.1 BJ	(<1.0U)J	(<1.0U)J	(<1.0U)J	(<1.0U)J	(<1.0U)J	(<1.0U)J	(<1.0U)J	· (<1.0U)J	(<1.0U)
Vanadium	62.6 R	343 J	` 78.7 J	82.6 J	89.7 J	11.4 B	44.5 B	106	112	(<4.0U)	(<4.0U)
Zinc	49.3J	27.3	22.6	43.5	58.0	23.5	28.8	22.7	34.9	(<16.0U)	25.6
Cyanide	(<10U)	20	12	(<10U)	(<10U)	(<10U)	10 J	72 J	79 J	(<10U)J	(<10U)J

Notes: U=Not detected; Sample quantitaion limits are shown as (<_U) B=Reported value is below the CRQL

R = Unusable data J = Estimated value 1

Data validation results provided in data reports 920398(MW1I-MW4I), 920396(MW5I-MW11I)

TA	BLE	26	(Cont)

p 2 of 2

t

ı.

Parameter Units	SMC- GW010I (ug/l)	SMC- GW011I (ug/l)	SMC- GW_FB1 (ug/l)	SMC- GW_FB2 (ug/l)
Aluminum	212	233	(<11U)	(<87U) J
Arsenic	(<1.0U)	1.1 B	(<2U) N	39.2 J
Barium	39.1 B	55.4 B	(<6U)	80.6 J
Beryllium	(<1.0U)	(<1.0U)	(<1U)	(<1.0U) R
Calcium	96,200	87,100	369 B	93.2 B
Chromium	(<3.0U)	6.5 B	(<3U)	(<4U) J
Cobalt	14.8 B	(<11U)	(<11U)	(<11 U)
Copper	19.0 B	53.9	11 BJ	9.6 R
Iron	3,560 J	4,970 J	30.2 B	21.8 J
Lead	2.5 B	4.0 W	(<2U)J	(<2U) J
Magnesium	23,900	21,100	108 B	(<78 U)
Manganese	34.3	48.2	3 B	(<5U) R
Mercury	(<0.20U) N	(<0.20U)	(<0.20U)	(<0.20U) R
Nickel	. (<5.0U)	15.9 B	(<5 U)	(<8U) R
Potassium	802 B	1,190 B	(<203U)	(<203U)
Selenium	(<2U)	(<2U)	(<2U) NJ	(<1U) R
Sodium	7,670	19,500	846 B	206 B
Thallium	(<4.0U)	(<1.0U)	(<1.0U)J	(<1.0U)J
Vanadium	(<4.0U)	(<4.0U)	(<4 U)	(<6U) R
Zinc	(<16.0U)	25.6	(<16 U)	(<16 U)J
Cyanide	(<10U)J	(<10U)J	(<10U)J	(<10U)J

TABLE 27. WATER QUA	TABLE 27. WATER QUALITY PARAMETERS MEASURED IN IMTERMEDIATE BEDROCK GROUNDWATER												
Analyte Units	GW01I (mg/l)	GW02I (mg/l)	GW031 (mg/l)	GW03I DUP (mg/l)	GW04I (mg/l)	GW051 (mg/l)	GW06I (mg/l)	GW07I (mg/l)	GW07I DUP (mg/l)				
				1. F.									
Chloride	74.1	291.0	60.0	6 0 .7	46.0	78.9	99.5	91.4	96.9				
Fluoride	5.1	32.9	21.6	26.0	11.8	0.31	1.1	8.9	8.4				
Ammonia	0.6	1.3	11.0	11.0	4	8.8	3.7	15	15				
Nitrate	(<0.2U)	(<0.2U)	0.6	0.6	(<0.2U)	(<0.2U)	(<0.2U)	(<0.2U)	(<0.2U)				
Sulfate	(<500U)	(<500U)	(<500U)	(<500U)	(<500U)	(<1,000U)	(<1,000U)	(<125U)	(<1000U)				
Alkalinity	1,740	15,800	4,770	4,990	4,340	864	132	2,170	1,980				
Hardness	704	23.7	19.4	20.0	202	123.1	69.4	79.2	89.5				
Total suspended solids	362	27	19	25.0	184	57	40	63	59				
Dissolved organic carbo	191	726	368	193	77.9	112	84.2	171	266				

Analyte Units	GW08I (mg/l)	GW09I (mg/l)	GW010I (mg/l)	GW011I (mg/l)	GW-FB1 (mg/l)	GW-FB2 (mg/l)	GW-FB3 (mg/l)
· · · · · · · · · · · · · · · · · · ·	······································						
Chloride	340	317	12.9	28.5	(<1.0U)	(<1.0U)	(<1.0U)
Fluoride	0.28	0.29	(<0.2U)	(<0.2U)	(<0.2U)	(<0.2U)	(<0.2U)
Ammonia	(<0.1U)	0.6	(<0.1U)	(<0.1U)	(<1.0U)	(<0.1U)	(<1.0U)
Nitrate	1.8	(<0.2U)	1.6	4.4	(<0.2U)	(<0.2U)	(<0.2U)
Sulfate	42.5	(<25U)	18.9	20.9	(<5U)	(<5U)	(<5U)
Alkalinity	486	295	415	263	1	1.1	. 1
Hardness	237.7	460.8	338.6	304.4	1.4	0.23	1
Total suspended solids	67	33	49	62	(<4U)	(<4U)	(<4U)
Dissolved organic carbo	33.0	75.8	55.7	35.9	2.3	(<0.5U)	2.3

Note:

U=Not detected; Sample quantitation limits reported as (<_U)

TABLE 28. ORGANIC ANALYTI	ES MEASURI	ED IN DEEP	BEDROCK	GROUNDWA	ATER								p 1 of 1
Analytes	GW01D -01A	GW02D -01A	GW03D -01A	GW04D -01A	GW05D -01A	GW06D -01A	GW09D -01A	GW010D -01A	GW011D -01A	GWFB03	GWTB-7	GWTB-8	GWTB-9
Units	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
VOLATILES													
Methylene chloride Acetone Chloroform 1,1-Dichloroethane 1,2-Dichloroethane t,2-Dichloroethene Benzene 4-Methyl-2-Pentanone (MIBK) Tetrachloroethene Toluene Ethyl benzene Xylenes (total) VOA TICs-known VOA TICs-unknown	(<5U) 15 (<5U) (<5U) 94 (<5U) 3 J 2 J 4 J 23 3 J 520	(<5U) 20 (<5U) 2 J 2 J 4 J 2 J (<10U) 9 6 2 J 150 	(<5U) (<10U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U)	(<5U) (<10U) (<5U) 2 J (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U)	(<5U) (<10U) (<5U) 2 J (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U)	(<5U) (<10U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U)	(<5U) (<10U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U)	(<5U) (<10U) (<5U) (<5U) (<5U) (<5U) (<5U) (<10U) (<5U) (<5U) (<5U) (<5U)	(<5U) (<10U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U)	1 J (<10U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U)	(<5U) 31 (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U)	2 J (<10U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U)	1 J (<10U) 1 J (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U) (<5U)
Level (low or medium) Dilution factor	L 1	L 1	L 1	L 1	L 1	L 1	L 1	L 1	L 1	L 1	L 1	L 1	L 1
SEMI - VOLATILES													
Phenol 2-Methylphenol 4-Methylphenol 2,4-Dimethylphenol Benzoic Acid Pentachlorophenol bis(2-Ethylhexyl)phthalate m-Toluic Acid p-Toluic Acid o-Toluic Acid	22 7 J 9 J (<10U) (<50U) (<50U) (<10U) 9,000 D 1,100 DJ 20,000 D	(<10U) (<10U) (<10U) 29 76 5 J (<10U) 3,600 D 400 D 5,400 D	(<10U) (<10U) (<10U) (<50U) (<50U) (<50U) 14 (<50U) (<50U) (<50U)	(<20U) (<20U) (<20U) (<100U) (<100U) (<100U) (<20U) (<100U) (<100U) (<100U) 610	(<10U) (<10U) (<10U) (<50U) (<50U) (<50U) (<50U) (<50U) (<50U) (<50U)	(<10U) (<10U) (<10U) (<50U) (<50U) (<10U) (<50U) (<50U) (<50U) (<50U)	(<10U) (<10U) (<10U) (<50U) (<50U) (<10U) (<50U) (<50U) (<50U) (<50U)	(<10U) (<10U) (<10U) (<50U) (<50U) (<10U) (<50U) (<50U) (<50U) (<50U)	(<10U) (<10U) (<10U) (<50U) (<50U) (<50U) (<50U) (<50U) (<50U) (<50U)	(<10U) (<10U) (<10U) (<10U) (<50U) (<50U) (<10U) (<50U) (<50U) (<50U) (<50U)	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA
BNA TICs-known BNA TICs - Unknown n	494 J;14	156 J;9			 13 J;1						NA NA	NA NA	NA NA
Level (low or medium) Dilution factor	L 1/100 *	L 1/25 *	L 1	L 1	L 1	L 1	L 1	L 1	L 1	L 1	L 1	L 1	L 1
PESTICIDES None Detected	IJ	UJ		UJ	UJ								
Level (low or medium) Dilution factor	L 1	L 1	L 1	L 1	L 1	L 1	L 1	.L 1	L 1	L 1	L 1	L 1	L 1

<u>Notes:</u> U=Not detected. Sample quantitation limits are shown as (<_U). UJ Not Detected,Estimated value

Values shown for unknown TICs are the total concentration and total number of unknowns. J=Reported concentration is an estimated value.

Data validation results provided in data reports 920508 and 920562

D=Reported result from diluted analysis. NA = Not applicable. --- = No detectable TICs.

1

* = Dilution factor for Toluic acid results

TABLE 28 (Cont)				p 2 of 2
Analytes		GWTB-7	GWTB-8	GWTB-9
/ mary to 5	Units	(ug/l)	(ug/l)	(ug/l)
VOLATILES				
Methylene chloride		(<5U)	2 J	1 J
Acetone		31	(<10U)	(<10U)
Chloroform		(<5U)	(<5U)	1.5
1,1-Dichloroethane		(<5U)	(<5U)	(<5U)
1,2-Dichloroethene (total)		(<5U)	(<5U)	(<5U
Trichloroethene		(<5U)	(<5U)	(<5U)
Benzene		(<5U)	(<5U)	(<5U)
4-Methyl-2-Pentanone (MIB	IK)	(<10U)	(<10U)	(<10U)
Tetrachloroethene		(<5U)	(<5U)	(<5U)
Toluene		(<5U)	(<5U)	(<5U
Ethyl benzene		(<5U)	(<5U)	(<5U) (<5U)
Xylenes (total) VOA TICs-known VOA TICs-unknown		(<5U)	(<5U) 	(<30)
Level (low or medium)		L	L	L
Dilution factor		1	1	1
SEMI - VOLATILES				
Phenol		NA	NA	NA
2-Methylphenol		NA	NA	NA
4-Methylphenol		NA	NA	NA
2,4-Dimethylphenol		NA	NA	NA
Benzoic Acid		NA	NA	NA
Pentachlorophenol		NA	NA	NA
bis(2-Ethylhexyl)phthalate		NA	NA	NA
m-Toluic Acid		NA	NA	NA
p-Toluic Acid		NA	NA	NA
o-Toluic Acid		NA	NA	NA
BNA TICs-known BNA TICs - Unknown	;n	NA NA	NA NA	NA NA
Level (low or medium)		L	L	L
Dilution factor		1	1	1
PESTICIDES None Detected				

L 1

Level (low or medium) Dilution factor L 1 L 1 1

, te , te .

TABLE 29. INORGANIC ANALYTES MEASURED IN DEEP BEDROCK GROUNDWATER											
Analyte Units	GW01D (ug/l)	GW02D (ug/l)	GW03D (ug/l)	GW04D (ug/l)	GW05D (ug/l)	GW06D (ug/l)	GW09D (ug/l)	GW010D (ug/l)	GW011D (ug/l)	GW-FB3 (ug/l)	
Aluminum	114 B	281	126 B	145 B	123 R	(<87.0U)	220	87.2 R	186 R	(<87U)	
Antimony	(<52.0U)	55.6 B	(<52.0U)	(<52.0U)							
Arsenic	90.5 B	73.3	(<2.0U)	3.8 B	(<1.0U)	(<2.0U)	(<2.0U)	(<1.0U)	(<1.0U)	(<2U)	
Barium	55.4 B	46.2 B	106 B	123 B	544 R	96.0 B	36.7 B	80.0 R	204 R	(<8.0U)	
Calcium	4,700 B	27,600	76,800	72,800	73,100	73,300	63,200	52,500	86,100	115 B	
Chromium	18.6	(<5.0U)	(<5.0U)	(<5.0U)	(<4.0U)	(<5.0U)	(<4.0U)	(<4.0U)	(<4.0U)	(<5U)	
Cobalt	16.1 B	(<11.0U)	(<11.0U)	(<11.0U)	(<8.0U)	(<11.0U)	(<8.0U)	(<8.0U)	(<8.0U)	(<11 U)	
Copper	35.5 R	35.6 R	23.4 R	18.6 R	11.1 B	12.2 R	9.8 B	12.3 B	18.0 B	18.3 B	
Iron	1,600	960	588	668	355	223	678	427	422	28.0 B	
Lead	5.8 J	2.1 J	(<2.0U)	4.7J	(<2.0U)	(<2.0U)	(<1.0U)J	(<2.0U)	(<2.0U)	(<2U)	
Magnesium	517 BJ	10,300 J	24,600 J	22,800 J	20,200	23,900 J	14,300	11,400	20,300	167 B	
Manganese	139 J	31.2 J	33.4 J	22:7 J	6.1 B	6.9 BJ	8.0 B	4.0 B	6.6 B	(<5U)	
Mercury	0.21 R	1.2	(<2.0U)	(<2.0U)	(<2.0U)	(<0.20U)	0.66 J	(<0.20U)	(<0.20U)	(<0.20U)	
Nickel	134	27.1 B	17.2 B	15.7 B	(<8.0U)	14.8 B	(<8.0U)	(<8.0U)	8.9 B	(<11U)	
Potassium	2,700 R	2,740 R	2,570 R	3,200 R	1,250 R	2,790 R	2,360 B	2,270 R	2,430 R	587	
Sodium	1,530,000	1,070,000	56,600	77,400	36,000 J	72,300	31,100	20,000 J	26,600 J	1,160 B	
Thallium	1.2 B	1.3 B	(<1.0U)	(<1.0U)	(<1.0U)J	(<1.0U)	(<1.0U)	(<1.0U)J	(<1.0U)J	(<1.0U)	
Vanadium	58.5	21.4 B	(<6.0U)	(<6.0U)	(<6.0U)	(<6.0U)	(<6.0U)	(<6.0U)	(<6.0U)	(<6U)	
Zinc	(<16.0U)	(<16.0U)	31.8	(<16.0U)	(<16.0U)	(<16.0U)	20.4	(<16.0U)	(<16.0U)	(<16 U)	

Notes:

.

U=Not detected; Sample quantitaion limits are shown as (<_U). J = Reported value is an estimate. B=Reported value is below the CRQL. R=Data is unusable.

Data validation results provided in data reports 920508 and 920582

TABLE 30. WATER QU	ALITY PARA	METERS ME	ASURED IN				<u> </u>		p 1 of 1
Analyte Units	GW01D (mg/l)	GW02D (mg/l)	GW03D (mg/l)	GW04D (mg/l)	GW05D (mg/l)	GW06D (mg/l)	GW09D (mg/l)	GW010D (mg/l)	GW011D (mg/l)
Chloride	92.5	60.2	27	28.2	41.6	33.2	47.5	28.6	37.2
Fluoride	10	2.2	0.33	0.58	(<0.2U)	0.27	(<0.2U)	0.22	(<0.2U)
Ammonia	3.8	1.1	(<0.1U)	(<0.1U)	(<0.1U)	(<0.1U)	0.2	(<0.1U)	0.2
Nitrate	(<0.2U)	2.1	2.9	2.6	1.1	3.4	1.3	1.2	2.4
Sulfate	(<50U)	62.9	40.8	59.9	26.8	34.8	21.1	19.7	21.4
Alkalinity	`316 0	2930	305	365	213	299	178	70.2	205
Hardness	13.9	111	293	276	265.7	282	217	178	298.6
Total suspended solids	22	114	48	89	21	11	99	7	30
Dissolved organic carbo	677	458	88.6	112	17.1	39.5	57.6	19.6	23

.

Analyte	GW-FB1	GW-FB2	GW-FB3	
Units	(mg/l)	(mg/l)	(mg/l)	
Chloride	(<1.0U)	(<1.0U)	(<1.0U)	
Fluoride	(<0.2U)	(<0.2U)	(<0.2U)	
Ammonia	(<1.0U)	(<0.1U)	(<1.0U)	
Nitrate	(<0.2U)	(<0.2U)	(<0.2U)	
Sulfate	(<5U)	(<5U)	(<5U)	
Alkalinity	1	1.1	1	
Hardness	1.4	0.23	1	
Total suspended solids	(<4U)	(<4U)	(<4U)	
Dissolved organic carbo	2.3	(<0.5U)	2.3	

.

.

Note: U=Not detected; Sample quantitation limits reported as (<_U)

DATA VALIDATION REPORTS

Stauffer Management Company RI/FS Data Package 911652

This data report covers data package 911652 submitted by EA Laboratories concerning analysis of 16 soil samples and 3 field blanks collected at Stauffer Management Company Facility at Skaneateles Falls.

SMC-FB-01A collected 10/16/91 SMC-FB-02A collected 10/17/91 SMC-FB-03A collected 10/18/91 SMC-SB02-01A collected 10/16/91 SMC-SB03-01A collected 10/16/91 SMC-SB04-01A collected 10/16/91 SMC-SB05-01A collected 10/16/91 SMC-SBU-01A collected 10/16/91 SMC-SB06-01A collected 10/16/91 SMC-SB07-01A collected 10/16/91 SMC-SB08-01A collected 10/16/91 SMC-SB09-01A collected 10/17/91 SMC-SB10-01A collected 10/17/91 SMC-SB11-01A collected 10/17/91 SMC-SB12-01A collected 10/17/91 SMC-SB13-01A collected 10/18/91 SMC-SB14-01A collected 10/18/91 SMC-SB15-01A collected 10/18/91 SMC-SB16-01A collected 10/18/91

Organic Validation

Sixteen soil samples and three field blank samples analyzed for Target Compound List (TCL) organics were validated following the United States Environmental Protection Agency (USEPA) Region II procedures for samples analyzed using the Contract Laboratory Program (CLP) Statement of Work (SOW) February, 1988 (as stated in table 1 Analytical Methods attached to the case narrative). These samples were to have been analyzed by the NYSDEC Analytical Services Protocol 1990. The laboratory control samples were analyzed as required by the NYSDEC ASP but the 1990 CLP was not followed. The following information was used to validate the analytical results:

- Sample hold time
- Instrument tune
- Initial and continuing calibration
- Surrogate recoveries
- MS/MSD analysis
- Internal Standards
- · Analysis sequence
- Method blank contamination
- · Field and trip blank contamination
- Ion spectra match
- Chromatogram quality
- Calculations
- Laboratory Control Sample

Bath Toxicology Group, Inc.

1

The New York State Department of Environmental Conservation's (NYSDEC) required summary table is attached.

Sample Hold Time

All VOA, BNA and Pesticide/PCB samples were analyzed and extracted within prescribed holding times.

Instrument Tune

The GC/MS's were tuned with BFB (VOA) and DFTPP (BNA). All QC criteria were compliant. No tune is required for pesticide/PCB analyses since they are not performed using a mass spectrometer.

Initial and Continuing Calibration

In the initial calibration of VOAs and BNAs, the relative response factors (RRFs) and relative standard deviations (RSDs) of each analyte is assessed. In the continuing calibration of VOAs and BNAs, the RRF and Percent Difference of the RRFs (%D) of each analyte is assessed. For the pesticide/PCB analyses, the RSDs of the calibration factors (CFs) of the initial calibration and %D of the CFs for the continuing calibration are assessed.

RRF < 0.05:	pentachlorophenol	(0.04)		
%RSD >30%:	benzoic acid (34.2%)			
٠	1,4-dichlorobenzene (32.1%)			
	benzyi alcohol (31.7%)			
	1,2-dichlorobenzene (67.5%)			
	4-chlorophenyl-phenylether (37.5%)			
	fluorene (31.6%)			
	benzo(k)fluoroanthene (35.1%)			
	anthracene (30.7%, 30).9%)		
%D >25%:	chloromethane (46.6%, 50.3%)			
	bromomethane (34%, 28.5%			
4	acetone (27%)			
	2-hexanone (26.7%)			
	m-toluic acid (46,8%)			

ACTION: Pentachlorophenol rejected in SMC-FB-01A and SMC-FB-02A. AFFECTED COMPOUNDS FLAGGED "J" estimated. SMC-SB04-01A:

p-toluic acid (57.6%) o-toluic acid (50.8%)

benzo(k)fluor	10 00J	
anthracene	390 J	
SMC-SBU-01A		
acetone	58J	
SMC-SB08-01A		
acetone	26J	
SMC-SDOT-OIA.		

Several compounds had CF %Ds > 15% for the pesticide fraction but no analyses required quantitation so the CFs were not used.

Bath Toxicology Group, Inc.

-

Surrogate Recovery

The surrogate recoveries for all analyses were within acceptance criteria except in the semivolatile analysis of SMC-SB13-01A, SMC-SB14-01A, SMC-SB15-01A and SMC-SB16-01A one acid and one base surrogate had high recovery. No action is required.

MS/MSD Analyses

MS/MSD analyses for volatile and semivolatile analyses were acceptable The MS/MSD reported with the pesticides had several spiked analytes out of compliance:

	analyte	recovery	
aqueous:	aldrin	low	
-	heptachlor and aldrin high RPD		
soil:	endrin	low	
	lindane and DDT	high RPD	

No action taken.

Internal Standard Response

The internal standard response was within acceptable limits for all samples with the following exceptions:

Volatile			
SAMPLE	internal standard	recovery	
SMC-SB08-01A	chlorobenzene	low	المين ميد

ACTION:

Affected analytes (non-detects except as noted) flagged "J" estimated in sample SMC-SB08-01A (potential high bias of analytes quantitated)

2-hexanone 4-methyl-2-pentanone tetrachloroethene 1,1,2,2-tetrachloroethane toluene chlorobenzene ethylbenzene styrene xylene 7J

Analysis Sequence

The VOA and BNA analyses were run within 12 hours of instrument tune. The CLP contractual 72-hour sequence for pesticide/PCB analysis was used as required.

Method Blank Contamination

The Pesticide/PCB method blank contained no identifiable compounds. The volatile method blank associated with SMC-SB02-01A, SMC-SB03-01A, SMC-SB04-01A, SMC-SB06-01A, SMC-SB09-01A and SMC-SB08-01A contained 2-butanone (5ug/Kg).

ACTION:

2-butanone flagged "U" non-detect in these samples. Any 2-butanone found in other samples should be

Bath Toxicology Group, Inc.

considered suspect as possible lab contamination.

The semivolatile method blank contained:di-n-butylphthalate160bis(2-ethylhexyl)phthalate20di-n-octylphthalate8and some TIC's.8

ACTION:

di-n-butylphthalate and bis(2-ethylhexyl)phthalate flagged "U" non-detect in affected samples (SMC-SB02 through SB12-01A). Concentrations of these analytes in other samples should be considered suspect and possibly attributable to lab contamination.

Field and Trip Blank Contamination

The field blanks contained analytes attributable to the method blanks. No action taken.

Ion Spectra Match

All ion spectra correctly matched the standard spectrum.

Chromatogram Quality

The chromatograms were of acceptable quality.

Calculations

All checked calculations were correct within rounding errors.

Laboratory Control Sample

Laboratory control samples were analyzed with each fraction as specified by the NYSDEC ASP. The results were within the specified criteria.

Prepared By: Jamel Heerlan 13 June 1993 Date:

نبدنيد

Inorganic Validation

Three aqueous and sixteen soil samples analyzed for Target Analyte List inorganics were validated according to current USEPA Region II protocols. The following information was used to validate the analytical results:

- Sample hold time
- Instrument calibration
- Initial calibration verification (ICV) and continuing calibration verification (CCV)
- · CRDL standards for AA (CRA) and ICP (CRI)
- Initial calibration blank (ICB), continuing calibration blank (CCB) and preparation blank (PB) analyses
- Spike Sample Analysis
- Duplicate sample analysis
- Laboratory Control Sample (LCS) Analysis
- Standard Addition results
- ICP Serial Dilution Analysis
- Instrument Detection Limit (IDL) Analysis
- Interelement corrections for ICP
- Linear Range Analysis
- Furnace QA/QC Analyses
- Calculations

Attached is the New York State Department of Environmental Conservation's (NYSDEC) required summary table.

Sample hold time

All metals and mercury analyses were extracted within holding times.

Instrument Calibration

All instruments were calibrated daily with dates and times clearly shown on the raw data. The proper sequence of instrument blanks and standards were used. A 2-point calibration for ICP, 5-point for mercury and 4-point calibration for furnace AA were used, as required.

ICV and CCV

The percent recovery for all analytes with the exception of cyanide were within the prescribed windows and analyzed at the correct frequency in the injection sequence. The recovery for cyanide in the initial calibration verification standard was 77% (limit 85-115%).

ACTION:

SMC-SB02-01A flagged "J" estimated for cyanide. (potential low bias)

CRDL Standards

The CRDL standards were run at the correct frequency and appropriate concentration for each analyte. Several analytes had non-compliant CRDL (<80->120%) recoveries:

Bath Toxicology Group, Inc.

ب العد

AQUEOUS

thallium	-1.5%
cobalt	122.7%, 124%
zinc	138.6%, OK

ACTION:

SAMPLE SMC-FB-01A R SMC-FB-02A R SMC-FB-03A R

SOIL

cadmium lead zinc

130.3%,125.5% OK, 136.7%, OK, 343.3%, 126.7%, 143.3% 154.8%, 150.3%

Thallium

Thallium

Thallium

ACTION: Sample

.

Ar
م
م <u>ب</u>

Bath Toxicology Group, Inc.

SMC-SB16-01A	R	zinc	
	J	cadmium	high

Laboratory Blanks (ICB, CCB, PB)

All laboratory blanks were analyzed at the correct frequency during the injection sequence. Calcium, copper, iron, lead, manganese, potassium, selenium, silver, sodium and zinc were found in the aqueous calibration blanks. Aluminum, calcium, copper, iron, manganese, silver and zinc were found in the aqueous prep blank. No action required.

Aqueous Blank Concentrations

			nn
	ICB	CCB	PB
aluminum			23.1
calcium	27.6	21.3, 38.3	87.4
copper		2.3	3.1
iron	3.1	3.3	28.5
manganese			1
potassium	225.2	-73.8,-78.9	
selenium	1		
silver	-2.5	-2.5,2.9	-2.6
sodium	-209.8	-182.7,-152.7,-147.4	
zinc	11.3	12, 14.1	13.7

SOIL

Aluminum, calcium, copper, magnesium, selenium, and zinc were found in the calibration blanks. Aluminum, calcium, copper, magnesium, vanadium and zinc were found in the preparation blank. All concentrations were below the CRDL. No action was warranted.

	Blank	Concen	trations
--	-------	--------	----------

	ICB	CCB	PB
aluminum	134.9, -28.6	-20.1, 12.4, -20.4, -12.1, -14.4	-1.9
calcium	44.7	52.6	4.1
copper	5.1	3.5,2.9	0.4
magnesium	46.9		4.9
selenium	1, 1.4,-1		
vanadium			0.3
zinc	12.4		1.1

ICP Interference Check Sample (ICS)

The ICS percent recoveries were all within the acceptance window (80-120%).

Spiked Sample Analysis

The soil spike sample recovery was performed on a true sample (SMC-SB02-01A). The data were acceptable except:

	%Recovery
antimony	25
arsenic	43
cadmium	73
lead	. 37
selenium	45

silver	47		
ACTION:			
Sample	FLAG	Analyte	bias
SMC-SB02-01A	J	antimony	low
SMC-5002-01A	1	arsenic	low
	J	cadmium	
	l	selenium	low
	1 1	silver	low
SMC-SB03-01A	1		low
SMC-3803-01A	- *	antimony arsenic	low low
	1	lead	
	1	selenium	low
	1		low
SMC-SB04-01A	-	silver	low
SMC-SB04-01A	J	antimony	low
	J	arsenic	low
	J	selenium	low
	1	silver	low
SMC-SB05-01A	J	antimony	low
	l	arsenic	low
	J	selenium	low
	l	silver	low
SMC-SBU-01A	1	antimony	low
	J	arsenic	low
	1	lead	low
	1	selenium	low
	J	silver	low
SMC-SB06-01A	J	antimony	low
	J	arsenic	low
	J	lead	low
	J	selenium	low
	1	silver	low
SMC-SB07-01A	J	arsenic	low
	J	selenium	low
	J	silver	low
SMC-SB08-01A	l	antimony	low
	l	arsenic	low
	1	lead	low
	J	selenium	low
	J	silver	low
SMC-SB09-01A	J	antimony	low
	J	arsenic	low
	J	lead	low
	J	selenium	low
	1	silver	low
SMC-SB10-01A	J	antimony	low
	1	arsenic	low
	J	lead	low
	J	selenium	low
	J	silver	low
SMC-SB11-01A	J	antimony	low

Bath Toxicology Group, Inc.

8

نبد

	J	arsenic	low
	J	lead	low
	J	selenium	low
	J	silver	low
SMC-SB12-01A	J	antimony	low
	J	lead	low
	J	selenium	low
	J	silver	low
	J	arsenic	low
SMC-SB13-01A	J	antimony	low
	J	selenium	low
	J	arsenic	low
	J	silver	low
SMC-SB14-01A	J	antimony	low
	J	arsenic	low
	J	selenium	low
	J	silver	low
SMC-SB15-01A	J	antimony	low
	J	arsenic	low
	J	selenium	low
	J	silver	low
SMC-SB16-01A	J	antimony	low
	J	arsenic	low
	J	lead	low
	J	selenium	low
	J	silver	low

The samples and analytes not flagged were previously flagged.

The aqueous spike sample was performed on SMC-FB-01. Recoveries were acceptable except silver and cyanide were low. Silver and cyanide were flagged "J" estimated in aqueous samples.

Duplicate Sample Analysis (D)

The laboratory soil duplicate analysis was performed on a true sample (SMC-SB08-01A). Several analytes had %RPD > 20%:

	%RPD
calcium	27
manganese	30
potassium	31
cyanide	200 but less than CRDL and S-S not > CRDL

No action required since none >100%. The aqueous duplicate was performed on SMC-FB-01. All data was less than CRQL.

Laboratory Control Sample (LCS) Analysis

The LCS was prepared and analyzed at the correct frequency. All percent recoveries were within the acceptance range (80-120%).

Standard Addition Results

نبد

Interelement Corrections for ICP

No interelement corrections were applied by the laboratory. The correction analysis was performed on 10/30/90. It is required annually. This was non-compliant. No action taken.

Linear Range Analysis

The linear range for the ICP analyses was supplied by the laboratory. None of the concentrations of the samples in this group approached these upper limits. The linear range is required to be performed quarterly. It was performed 2/11/91. No action taken.

Furnace AA OC Analyses

Samples were run in duplicate. The acceptance window for the RSD (20%) was exceeded in many cases but all concentrations were less than the CRDL.

Calculations

All checked calcolations were within rounding errors.

Prepared By: Hamela Talslas _____ Date: 13 June 1993____

نيدنيد

General Chemistry

Sixteen soil samples analyzed for TOC validated using the following information:

- Sample hold time
- Instrument calibration
- Initial calibration verification (ICV) and continuing calibration verification (CCV)
- Method blank
- Spike and spike duplicate Sample Analysis
- Duplicate sample analysis
- Laboratory Control Sample (LCS) Analysis
- Calculations

Sample hold time

All samples were prepared within holding times.

Instrument Calibration

The instrument was calibrated daily with dates and times clearly shown on the raw data. The proper sequence of instrument blanks and standards were used.

ICV and CCV

The percent recovery for the analyte was within the prescribed window and analyzed at the correct frequency in the injection sequence.

Method Blank

The laboratory blank was analyzed at the correct frequency with concentration of analyte at or below the detection limit.

Spike and Spike Duplicate Sample Analysis

The spike sample recovery was performed on a sample not from this group. Recoveries were 59% and 45%.

Duplicate Sample Analysis (D)

Two laboratory duplicate analyses were performed on true samples SMC-SBU-01A and a sample not from this group. The duplicates were acceptable.

Laboratory Control Sample (LCS) Analysis

The LCS was prepared and analyzed at the correct frequency. The percent recoveries were within the acceptance range (80-120%).

. مد م **Calculations**

All checked calculations were within rounding errors.

Prepared By: Kender Date: 15 June 1993

12

Stauffer Management Company RI/FS Data Package 911664

This data report covers data package 911664 submitted by EA Laboratories concerning analysis of 7 soil samples and 1 field blank collected at Stauffer Management Company Facility at Skaneateles Falls.

SMC-FB-04A collected 10/21/91 SMC-SB16-01A collected 10/21/91 SMC-SB17-02A collected 10/21/91 SMC-SB18-01A collected 10/22/91 SMC-SB18-02A collected 10/22/91 SMC-SB18-03A collected 10/22/91 SMC-SB20-01A collected 10/22/91 SMC-SB21-01A collected 10/22/91

Organic Validation

Seven soil samples and one field blank sample analyzed for Target Compound List (TCL) organics were validated following the United States Environmental Protection Agency (USEPA) Region II procedures for samples analyzed using the Contract Laboratory Program (CLP) Statement of Work (SOW) February, 1988 (as stated in table 1 Analytical Methods attached to the case narrative). These samples were to have been analyzed by the NYSDEC Analytical Services Protocol 1990. The laboratory control samples were analyzed as required by the NYSDEC ASP but the 1990 CLP was not followed. The following information was used to validate the analytical results:

- Sample hold time
- Instrument tune
- Initial and continuing calibration
- Surrogate recoveries
- MS/MSD analysis
- Internal Standards
- Analysis sequence
- Method blank contamination
- Field and trip blank contamination
- Ion spectra match
- Chromatogram quality
- Calculations
- Laboratory Control Sample

The New York State Department of Environmental Conservation's (NYSDEC) required summary table is attached.

Sample Hold Time

All VOA, BNA and Pesticide/PCB samples were analyzed and extracted within prescribed holding times except for the volatile analysis

SAMPLE	DATE COLLECTED	DATE EXTRACTED	DATE ANALYZED
SMC-SB18-03A	10/22/91		11/04/91
SMC-SB20-01A	10/22/91		11/04/91

Bath Toxicology Group, Inc.

ACTION:

SMC-SB18-03A AND SMC-SB20-01A flagged "J" ("UJ" except for methylene chloride, trichlorethene, benzene, xylenes and toluene) estimated for all volatile compounds. (potential low bias)

Instrument Tune

The GC/MS's were tuned with BFB (VOA) and DFTPP (BNA). All QC criteria were compliant. No tune is required for pesticide/PCB analyses since they are not performed using a mass spectrometer.

Initial and Continuing Calibration

In the initial calibration of VOAs and BNAs, the relative response factors (RRFs) and relative standard deviations (RSDs) of each analyte is assessed. In the continuing calibration of VOAs and BNAs, the RRF and Percent Difference of the RRFs (%D) of each analyte is alsossed. For the pesticide/PCB analyses, the RSDs of the calibration factors (CFs) of the initial calibration and %D of the CFs for the continuing calibration are assessed.

RRF < 0.05: all compliant

ACTION: AFFECTED volatile COMPOUNDS FLAGGED "J" estimated.

SMC-SB16-02A:2

acetone 25J AMC-SB21-01A: acetone 43J

Other affected compounds previously flagged.

Several compounds had CF %Ds > 15% for the pesticide fraction but no analyses required quantitation so the CFs were not used.

Surrogate Recovery

The surrogate recoveries for all analyses were within acceptance criteria except SMC-SB18-03A volatile one surrogate high (previously flagged "J" holding time), SMC-SB20-01A volatile all surrogates diluted out. The recovery for fluorophenol in the analysis of SMC-SB20-01A was less than 10% (1%).

ACTION: All non-detected acid compounds flagged "R" rejected semivolatiles in sample SMC-SB20-01A.

مين أسير

MS/MSD Analyses

. . . .

MS/MSD analyses not reported with this SDG for volatile and semivolatile analyses. The MS/MSD reported with the pesticides had no recovery for any of the spiked analytes due to required dilution of the sample. No action taken.

Internal Standard Response

The internal standard response was within acceptable limits for all samples with the following exceptions:

Semivolatile				
SAMPLE	internal standards	recover	ý	
SMC-SB16-02A	chrysene	low		
	perylene	low		
SMC-SB17-01A	chrysene	low		
	perylene	low		
SMC-SB18-03A	phenanthrene	low		
	chrysene	low		
	perylene	low		
SMC-SB20-01A	phenanthrene	low		
	chrysene	low		
	perylene	low		
SMC-SB20-01ADL	perylene	low	DO NOT USE	
SMC-SB18-03ADL	chrysene	low	DO NOT USE	<u>م</u> ية المية
	perylene	low		
SMC-SB16-02RE	dichlorobenzene	high	DO NOT USE	
	perylene	low		
SMC-SB17-01ARE	perylene	low	DO NOT USE	

ACTION:

Affected analytes flagged "J" estimated in samples SMC-SB16-02A, SMC-SB17-01A, SMC-SB18-01A, SMC-SB20-01A (potential high bias of analytes quantitated)

pyrene butylbenzylphthalate 3,3'-dichlorobenzidine benzo(a)anthracene bis(2-ethylhexyl)phthalate chrysene di-n-octylphthalate benzo(b)fluoranthene benzo(k)fluoranthene benzo(a)pyrene indeno(1,2,3-cd)pyrene dibenz(a,h)anthracene benzo(g,h,i)perylene.

SMC-SB18-03A AND SMC-SB20-01A: 4,6-dinitro-2-methylphenol N-nitrosodiphenylamine 1,2-diphenylhydrazine 4-bromophenylether hexachlorobenzene pentachlorophenol phenanthrene anthracene di-n-butylphthalate fluoranthene

Analysis Sequence

The VOA and BNA analyses were run within 12 hours of instrument tune. The CLP contractual 72-hour sequence for pesticide/PCB analysis was used as required.

Method Blank Contamination

The Pesticide/PCB method blank contained no identifiable compounds. The volatile method blank associated with SMC-SB18-03A and SMC-SB20-01A contained 2-butanone (6ug/L) and chloroform (1ug/L).

ACTION:

2-butanone flagged "U" non-detect in SMC-SB20-01A. Chloroform flagged "U" non-detect in SMC-SB18-03A and SMC-SB20-01A.

The semivolatile method blank contained: di-n-butylphthalate 620 and some TIC's.

ACTION:

di-n-butylphthalate and flagged "U" non-detect in SMC-SB16-02A SMC-SB17-01A SMC-SB18-01A SMC-SB18-02A SMC-SB18-03A SMC-SB20-01A SMC-SB21-01A

Field and Trip Blank Contamination

The field blank SMC-FB-04A contained methylene chloride at 2 ppb.

ACTION: Methylene chloride flagged "U" non-deetect in SMC-SB18-03A and SMC-SB21-01A.

Ion Spectra Match

All ion spectra correctly matched the standard spectrum.

Chromatogram Quality

The chromatograms were of acceptable quality. Benzo (b) and (k) fluoranthene could not be separated in the analysis of SMC-SB16-02A. No actiontaken already noted and flagged "J".

Bath Toxicology Group, Inc.

4

بتبدليه

Calculations

All checked calculations were correct within rounding errors.

Laboratory Control Sample

Laboratory control samples were analyzed with each fraction as specified by the NYSDEC ASP. The results were within the specified criteria.

Prepared By: Landa Heerlan Date: 6 June 1993

نبد

Inorganic Validation

One aqueous and seven soil samples analyzed for Target Analyte List inorganics were validated according to current USEPA Region II protocols. The following information was used to validate the analytical results:

- Sample hold time
- Instrument calibration
- Initial calibration verification (ICV) and continuing calibration verification (CCV)
- · CRDL standards for AA (CRA) and ICP (CRI)
- Initial calibration blank (ICB), continuing calibration blank (CCB) and preparation blank (PB) analyses
- Spike Sample Analysis
- · Duplicate sample analysis
- Laboratory Control Sample (LCS) Analysis
- · Standard Addition results
- ICP Serial Dilution Analysis
- · Instrument Detection Limit (IDL) Analysis
- Interelement corrections for ICP
- Linear Range Analysis
- Furnace QA/QC Analyses
- Calculations

Attached is the New York State Department of Environmental Conservation's (NYSDEC) required summary table.

Sample hold time

All metals and mercury analyses were extracted within holding times.

Instrument Calibration

All instruments were calibrated daily with dates and times clearly shown on the raw data. The proper sequence of instrument blanks and standards were used. A 2-point calibration for ICP, 5-point for mercury and 4-point calibration for furnace AA were used, as required.

ICV and CCV

The percent recovery for all analytes were within the prescribed windows and analyzed at the correct frequency in the injection sequence.

CRDL Standards

The CRDL standards were run at the correct frequency and appropriate concentration for each analyte. Several analytes had non-compliant CRDL (<80->120%) recoveries:

antimony	aqueous OK, 72.5%
cadmium	123.6%, OK
copper	124.5%, OK
manganese	OK,OK,123.3,OK
nickel	126.3%, OK

Bath Toxicology Group, Inc.

silver	140.6%, 77.5%
thallium	34.8%, OK
zinc	OK, OK, 123.9%

ACTION:

Antimony flagged "J" estimated in SMC-FB-04A.

Cadmium, copper, nickel, and silver flagged "J" estimated in samples:

SMC-SB16-02A, SMC-SB17-01A, SMC-SB18-01A, SMC-SB18-02A, SMC-SB18-03A, SMC-SB20-01A, and SMC-SB21-01A (potential high bias).

Manganese flagged "J" estimated in SMC-SB20-01A (potential high bias).

Thallium flagged "J" estimated (potential low bias) in:

SMC-SB16-02A, SMC-SB17-01A, SMC-SB18-01A, SMC-SB18-02A, and SMC-SB18-03A.

Zinc flagged "J" estimated (potential high bias) in samples SMC-SB16-02A, SMC-SB17-01A, SMC-SB18-01A, SMC-SB18-02A, SMC-SB18-03A and SMC-SB21-01A.

Laboratory Blanks (ICB, CCB, PB)

All laboratory blanks were analyzed at the correct frequency during the injection sequence. Antimony, barium, calcium, copper, magnesium, potassium, silver and sodium were found in the aqueous calibration blanks. Antimony, calcium, potassium, silver, sodium and zinc were found in the aqueous prep blank. Aqueous Blank Concentrations

Aqueous Diank	Concentrations		
-	ICB	CCB	PB
antimony	-48.8	-37.3	-39.6
barium		5	
calcium		20.8, 19	38.7
copper		3.3, 3.2	
magnesium		32.9, 40.1	
potassium		-106.3 -276.7,-234.5,-133.9	-315.6
silver		4.2, 4.7	2.5
sodium		229.9, 195.4, 314.3	197.1
zinc			5.7

Arsenic, calcium, copper, lead, magnesium, potassium, sulver, sodium, and zinc were found in the calibration blanks. Copper, potassium, selenium, silver and zinc were found in the preparation blank. All concentrations were below the CRDL. No action was warranted.

ations		
ICB	CCB	PB
	2.6	
	-25.1, 21, 20.3	
3.1	-5.1, -2.2	2
	-2	
46.7	-56.8, 64, 46.7	
	-146.8 -217.2	-10.8
4	-6.4,-2,5	3
175.5	165.2, 313.7	
	8.1	0.8
	3.1 46.7 4	ICB CCB 2.6 -25.1, 21, 20.3 3.1 -5.1, -2.2 46.7 -56.8, 64, 46.7 -146.8 -217.2 4 -6.4, -2.5 175.5 165.2, 313.7

ICP Interference Check Sample (ICS)

The ICS percent recoveries were all within the acceptance window (80-120%).

بيانيه أنيه

Spiked Sample Analysis

The spike sample recovery was performed on a true samples (SMC-SB16-02A and SMC-SB18-03A). The data were acceptable except:

	% Recovery
lead	20%
arsenic	-22 %
cobalt	64%
selenium	58%
silver	58%
zinc	128%
cyanide	55%

ACTION:

Arsenic rejected in samples SMC-SB18-03A, SMC-SB20-01A and SMC-SB21-01A. The other samples were determined by method of standard addition.

Antimony, cobalt, selenium and cyanide flagged "J" estimated (potential low bias) in samples SMC-SB16-02A, SMC-SB17-01A, SMC-SB18-01A, SMC-SB18-02A, SMC-SB18-03A, SMC-SB20-01A, and SMC-SB21-01A.

Duplicate Sample Analysis (D)

The laboratory duplicate analysis was performed on a true sample (SMC-SB16-02A). Several analytes had %RPD > 20%:

	%RPD
aluminum	. 47
arsenic	8
barium	31
cadmium	30
calcium	9
chromium	23
cobalt	73
copper	26
iron	26
lead	23
manganese	45
nickel	22
potassium	29
vanadium	40
zinc	40
No action required	i since none $> 100\%$.

Laboratory Control Sample (LCS) Analysis

The LCS was prepared and analyzed at the correct frequency. All percent recoveries were within the acceptance range (80-120%).

Standard Addition Results

Method of standard addition analysis was correctly performed on samples SMC-SB-16-02A, SMC-SB17-01A, SMC-SB18-01A and SMC-SB18-02A for arsenic and SMC-SB16-02A, SMC-SB18-01A, SMC-SB18-03A, SMC-SB20-01A and SMC-SB21-01A for lead. The correlation coefficients were acceptable.

ICP Serial Dilution Analysis

The ICP aqueous serial dilution was performed on sample (SMC-SB21-01A). The analyses were acceptable except manganese (10.4%D) and zinc (12.9%D).

ACTION: Manganese flagged "J" estimated in samples SMC-SB16-02A, SMC-SB17-01A, SMC-SB18-01A, SMC-SB18-02A, SMC-SB18-03A, and SMC-SB21-01A. Zinc flagged "J" estimated in SMC-SB20-01A.

Instrument Detection Limit (IDL) Analysis

The IDLs were all lower than the CRDL and were generated on several days by the laboratory. They are required to be generated quarterly but for the furnace used for the determination of lead by MSA the IDLs were generated on 11/27/90. The ICAP, CVAA and CN instruments had IDLs determined on 7/23/91. These are non-compliant. No action taken.

Interelement Corrections for ICP

No interelement corrections were applied by the laboratory. The correction analysis was performed on 10/30/90. It is required annually. This was non-compliant. No action taken.

Linear Range Analysis

The linear range for the ICP analyses was supplied by the laboratory. None of the concentrations of the samples in this group approached these upper limits. The linear range is required to be performed quarterly. It was performed 2/11/91. No action taken.

Furnace AA QC Analyses

Samples were run in duplicate. The acceptance window for the RSD (20%) was exceeded in many cases but all concentrations were less than the CRDL.

Calculations

All checked calculations were within rounding errors.

Prepared By: Jamela hearla Date: <u>12</u> June 1993

General Chemistry

Seven soil samples analyzed for TOC validated using the following information:

- Sample hold time
- Instrument calibration
- Initial calibration verification (ICV) and continuing calibration verification (CCV)
- · Method blank
- · Spike and spike duplicate Sample Analysis
- Duplicate sample analysis
- · Laboratory Control Sample (LCS) Analysis
- Calculations

Sample hold time

All samples were prepared within holding times.

Instrument Calibration

The instrument was calibrated daily with dates and times clearly shown on the raw data. The proper sequence of instrument blanks and standards were used.

ICV and CCV

The percent recovery for the analyte was within the prescribed window and analyzed at the correct frequency in the injection sequence.

Method Blank

The laboratory blank was analyzed at the correct frequency with concentration of analyte at or below the detection limit.

Spike and Spike Duplicate Sample Analysis

No spike sample recovery was performed with this analysis.

Duplicate Sample Analysis (D)

The laboratory duplicate analysis was performed on a true sample but not from this group. The duplicates showed no agreement (sample 24360/duplicate 3757). No action taken.

Laboratory Control Sample (LCS) Analysis

The LCS was prepared and analyzed at the correct frequency. The percent recoveries were within the acceptance range (80-120%).

Calculations

All checked calculations were within rounding errors.

Prepared By: Kimela / peerla Date: 12 June 1993

ا جا جا جا

Stauffer Management Company RI/FS Data Package 911691

This data report covers data package 911691 submitted by EA Laboratories concerning analysis of 10 soil samples collected at Stauffer Management Company Facility at Skaneateles Falls.

SMC-SBU-02A collected 10/23/91 SMC-SB23-01A collected 10/23/91 SMC-SB23-02A collected 10/23/91 SMC-SB24-01A collected 10/23/91 SMC-SB25-01A collected 10/23/91 SMC-SB26-01A collected 10/23/91 SMC-SB27-01A collected 10/23/91 SMC-SB27-02A collected 10/23/91 SMC-SB27-04A collected 10/23/91

Organic Validation

Ten soil samples sample analyzed for Target Compound List (TCL) organics were validated following the United States Environmental Protection Agency (USEPA) Region II procedures for samples analyzed using the Contract Laboratory Program (CLP) Statement of Work (SOW) February, 1988 (as stated in table 1 Analytical Methods attached to the case narrative). These samples were to have been analyzed by the NYSDEC Analytical Services Protocol 1990. The laboratory control samples were analyzed as required by the NYSDEC ASP but the 1990 CLP was not followed. The following information was used to validate the analytical results:

- Sample hold time
- Instrument tune
- Initial and continuing calibration
- Surrogate recoveries
- MS/MSD analysis
- Internal Standards
- Analysis sequence
- Method blank contamination
- Field and trip blank contamination
- · Ion spectra match
- Chromatogram quality
- Calculations
- · Laboratory Control Sample

The New York State Department of Environmental Conservation's (NYSDEC) required summary table is attached.

Samples SMC-SB26-01A(72%), SMC-SB27-01A(52%) and SMC-SB27-03A(61%) all contained >50% moisture. All analyses for these samples flagged "J" estimated.

Sample Hold Time

All VOA, BNA and Pesticide/PCB samples were analyzed and extracted within prescribed holding times except

Bath Toxicology Group, Inc.

SAMPLE	DATE COLLECTED	DATE EXTRACTED	DATE ANALYZED
SMC-SB26-01A	10/23/91		11/04/91
SMC-SB27-01A	10/23/91		11/04/91
SMC-SB27-04A	10/23/91	10/28/91	12/08/91
SMC-SB25-01A	10/23/91	10/28/91	1/21/92

ACTION:

SMC-SB26-01A AND SMC-SB27-01A flagged "J" ("UJ" except for xylenes and toluene) estimated for all volatile compounds. (previously flagged for moisture) SMC-SB27-04A and SMC-SB25-01A flagged "J" ("UJ" except for toluic acid) estimated for all semivolatile compounds.

Instrument Tune

The GC/MS's were tuned with BFB (VOA) and DFTPP (BNA). All QC criteria were compliant. Sample SMC-SB25-01A, semivolatiles, was analyzed outside the required 12 hour tune time according to editted form 5B. This is not supported by the raw data but raw data indicates DFTPP and SSTD 50 being analyzed at the same time. An error in the time recording of the mass spectrometer appears to have occurred. It was reanalyzed outside holding time but within tune, use the reanalysis. No tune is required for pesticide/PCB analyses since they are not performed using a mass spectrometer.

Initial and Continuing Calibration

In the initial calibration of VOAs and BNAs, the relative response factors (RRFs) and relative standard deviations (RSDs) of each analyte is assessed. In the continuing calibration of VOAs and BNAs, the RRF and Percent Difference of the RRFs (%D) of each analyte is alsoessed. For the pesticide/PCB analyses, the RSDs of the calibration factors (CFs) of the initial calibration and %D of the CFs for the continuing calibration are assessed.

RRF < 0.05: all compliant

%D > 25%: chloroethane (36.4%, 41.3%, 46.6%) acetone (48.4%, 37.4%, 26%) 2-butanone (55.5%, 46.2%, 47%) vinyl acetate (49.6%, 46.9%) 1,2 dichloroethane (40.5%, 42.3%) trichloroethane (27.9%, 35%) 2-hexanone (51.6%, 52.9%, 45.5%) 4-methyl-2-pentanone (45.5%, 47.9%, 51.7%) tetrachloroethene (41.3%, 51.5%) m,p-xylene (45%) 1,1,2,2-tetrachloroethane (27.1%)

ACTION:

AFFECTED COMPOUNDS FLAGGED "J" estimated. SMC-SBU-02A: 2-butanone 7000J AMC-SB23-01A: acetone 14J SMC-SB23-02A: acetone 17J

Bath Toxicology Group, Inc.

SMC-SB24-01A: acetone 55J SMC-SB25-01A: 2-butanone 7100J

Several compounds had CF %Ds > 15% for the pesticide fraction but no analyses required quantitation so the CFs were not used.

Surrogate Recovery

The surrogate recoveries for all VOA and pesticide/PCB analyses were within acceptance criteria except SMC-SB26-01A pesticide/PCb which was effected by a coelution. The surrogate recoveries for many of the semivolatile analyses were diluted out. The recovery for fluorophenol in the reanalysis of SMC-SB25-01A was less than 10% (7%).

ACTION:

All non-detected acid compounds flagged "R" rejected semivolatiles in sample SMC-SB25-01A.

MS/MSD Analyses

True samples were used for MS/MSD analyses. Recoveries and RPDs were compliant except for the semivolatile MS/MSD:

Analyte	recovery	limits	RPD
phenol	96	26-90	
	100		
4-chloro-3-methylphenol	108	26-103	
	116		
pentachlorophenol	10	17-109	
	41		122
No action taken.			

Internal Standard Response

The internal standard response was within acceptable limits for all samples with the following exceptions:

Semivolatile SMC-SB26-01A internal standards chrysene and perylene low.

ACTION: Affected analytes flagged "J" estimated: pyrene butylbenzylphthalate 3,3'-dichlorobenzidine benzo(a)anthracene bis(2-ethylhexyl)phthalate chrysene di-n-octylphthalate benzo(b)fluoranthene benzo(a)pfluoranthene benzo(a)pyrene indeno(1,2,3-cd)pyrene dibenz(a,h)anthracene

Bath Toxicology Group, Inc.

3

Analysis Sequence

The VOA and BNA analyses were run within 12 hours of instrument tune. The CLP contractual 72-hour sequence for pesticide/PCB analysis was used as required.

Method Blank Contamination

The Pesticide/PCB method blank contained no identifiable compounds. The volatile method blank associated with SMC-SB23-01A, SMC-SB23-02A and SMC-SB24-01A contained 2-butanone (8ug/L). The volatile method blank associated with SMC-SB26-01A and SMC-SB27-01A contained 2-butanone (6 ug/L) and chloroform (1ug/L).

ACTION:

2-butanone flagged "U" non-detect in SMC-SB24-01A. Any 2-butanone or chloroform found in other samples should be considered suspect as possible lab contamination. Chloroform flagged "U" nonidetect in SMC-SB26-01ADL and SMC-SB27-01ADL.

The semivolatile method blank contained:di-n-butylphthalate540bis(2-ethylhexyl)phthalate82 Jand some TIC's.

ACTION:

di-n-butylphthalate and bis(2-ethylhexyl)phthalate flagged "U" non-detect and TIC's rejected in affected samples (SMC-SB02 through SB12-01A). Concentrations of these analytes in other samples should be considered suspect and possibly attributable to lab contamination.

SMC-SBU-02A SMC-SB23-01A SMC-SB23-02A SMC-SB24-01A SMC-SB25-01A

Field and Trip Blank Contamination

None reported with this group.

Ion Spectra Match

All ion spectra correctly matched the standard spectrum.

Chromatogram Quality

The chromatograms were of acceptable quality.

<u>Calculations</u>

All checked calculations were correct within rounding errors. The total xylenes were calculated from isomers beyond the range of the instrument calibration in samples SMC-SB24-01A, SMC-SB25-01A, SMC-SB27-01ADL and SMC-SB27-02A.

ACTION: Xylenes flagged "J" estimated in these samples.

Laboratory Control Sample

Laboratory control samples were analyzed with each fraction as specified by the NYSDEC ASP. The results were within the specified criteria.

famela Greenlans Date: _ 5 June 1993 Prepared By:

5

Inorganic Validation

Eight soil samples analyzed for Target Analyte List inorganics were validated according to current USEPA Region II protocols. The following information was used to validate the analytical results:

- Sample hold time
- Instrument calibration
- Initial calibration verification (ICV) and continuing calibration verification (CCV)
- · CRDL standards for AA (CRA) and ICP (CRI)
- Initial calibration blank (ICB), continuing calibration blank (CCB) and preparation blank (PB) analyses
- Spike Sample Analysis
- Duplicate sample analysis
- · Laboratory Control Sample (LCS) Analysis
- Standard Addition results
- ICP Serial Dilution Analysis
- Instrument Detection Limit (IDL) Analysis
- Interelement corrections for ICP
- Linear Range Analysis
- Furnace QA/QC Analyses
- Calculations

Attached is the New York State Department of Environmental Conservation's (NYSDEC) required summary table.

Sample SB24-01A was mislabeled SB25-01A. The Form I was corrected.

Sample hold time

All metals and mercury analyses were extracted within holding times.

Instrument Calibration

All instruments were calibrated daily with dates and times clearly shown on the raw data. The proper sequence of instrument blanks and standards were used. A 2-point calibration for ICP, 5-point for mercury and 4-point calibration for furnace AA were used, as required.

ICV and CCV

The percent recovery for all analytes with the exception of cyanide were within the prescribed windows and analyzed at the correct frequency in the injection sequence.

CRDL Standards

The CRDL standards were run at the correct frequency and appropriate concentration for each analyte. Lead and selenium had non-compliant CRDL (<80->120%) recoveries:

lead	OK, OK, 126.7%, 60%, 133.3%, OK
selenium	OK, OK, 130.2%, 130.2%

ACTION: SMC-SB23-01A: Lead flagged "J" estimated due to high CRDL recovery. (potential high bias.)

SMC-SB26-01A flagged "UJ estimated due to high CRDL recovery. (potential high bias)

Laboratory Blanks (ICB, CCB, PB)

All laboratory blanks were analyzed at the correct frequency during the injection sequence. Aluminum, arsenic, calcium, copper, iron, lead, magnesium, potassium, silver and sodium were found in the calibration blanks. Aluminum, potassium and sodium were found in the preparation blank. All concentrations were below the CRDL. No action was warranted.

Blank Concen	trations		
	ICB	CCB	PB
aluminum	-16.8	-22,-20.3,-15.3	-1.4
arsenic		-2	
calcium	-23.2	29.8, 33.9, -23.3	
copper	3, 3.9	3.3, 6.9	
iron	4.2	3,4.5,4.3	
lead	-2.6	-2.1,-2.8	
magnesium	43.6, 47.4	53.3, 89.7	
potassium		-217,-129, 3330.4, 472	-14.2
silver	4.3	211	16.6
sodium	,	238.9, 352.1	

ICP Interference Check Sample (ICS)

The ICS percent recoveries were all within the acceptance window (80-120%).

Spiked Sample Analysis

The spike sample recovery was performed on a true sample (SMC-SB23-01A). The data were acceptable except low recovery for:

antimony	26.5%
arsenic	53.2%
selenium	59.8%
silver	52.1%
thallium	73.3%

ACTION: All samples flagged "J" estimated for these analytes.

Duplicate Sample Analysis (D)

The laboratory duplicate analysis was performed on a true sample (SMC-SB23-01A). The only non-compliant analyses are for iron and manganese. The other analytes are incorrectly flagged *. No action required.

Laboratory Control Sample (LCS) Analysis

The LCS was prepared and analyzed at the correct frequency. All percent recoveries were within the acceptance range (80-120%).

Standard Addition Results

Method of standard addition analysis was correctly performed for arsenic in SMC-SB25-01A and SMC-SB26-01

نبد

01A and lead in SMC-SB23-01A, SMC-SB25-01A and SMC--SB26-01A. The correlation coefficient was <0.995 for lead in SMC-SB23-01A and SMC-SB26-01A.

ACTION: Lead flagged "J" estimated in SMC-SB23-01A and SMC-SB26-01A.

ICP Serial Dilution Analysis

The ICP aqueous serial dilution was performed on sample (SMC-SB27-04A). All analyses were acceptable.

Instrument Detection Limit (IDL) Analysis

The IDLs were all lower than the CRDL and were generated on 3 March 1992 by the laboratory.

Interelement Corrections for ICP

No interelement corrections were applied by the laboratory. The forms were not dated.

Linear Range Analysis

The linear range for the ICP analyses was supplied by the laboratory. None of the concentrations of the samples in this group approached these upper limits.

Furnace AA OC Analyses

Samples were run in duplicate. The acceptance window for the RSD (20%) was exceeded in many cases but all concentrations were less than the CRDL.

Calculations

All checked calculations were within rounding errors.

1 teen ar Date: <u>6 June</u> 1993 Prepared By: Lamely

نبو نيد

General Chemistry

Eight soil samples analyzed for TOC and two samples analyzed fir corrosivity, reactivity and ignitability were validated using the following information:

- · Sample hold time
- Instrument calibration
- · Initial calibration verification (ICV) and continuing calibration verification (CCV)
- · Method blank
- Duplicate sample analysis
- Laboratory Control Sample (LCS) Analysis
- Calculations

Sample hold time

All samples were prepared within holding times.

Instrument Calibration

All instruments were calibrated daily with dates and times clearly shown on the raw data. The proper sequence of instrument blanks and standards were used.

ICV and CCV

The percent recovery for all analytes were within the prescribed windows and analyzed at the correct frequency in the injection sequence.

Method Blank

All laboratory blanks were analyzed at the correct frequency with concentrations of analytes at or below the detection limit.

Duplicate Sample Analysis (D)

The laboratory duplicate analysis was performed on true sample and was acceptable for all parameters.

Laboratory Control Sample (LCS) Analysis

The LCS was prepared and analyzed at the correct frequency. All percent recoveries were within the acceptance range (80-120%).

Calculations

All checked calculations were within rounding errors.

mule Freenav Date: 6 June 1993 Prepared By: 1

Bath Toxicology Group, Inc.

أجعيد تعد

Stauffer Management Company RI/FS Data Package 920386

This data report covers data package 920386 submitted by EA Laboratories concerning analysis of 7 aqueous samples and one trip blank collected at Stauffer Management Company Facility at Skaneateles Falls.

SMC-SW01-01A collected 3/17/92 SMC-SW02-01A collected 3/17/92 SMC-SW03-01A collected 3/17/92 SMC-SW04-01A collected 3/17/92 SMC-SWU-01A collected 3/17/92 SMC-SWFB01-01A collected 3/17/92 SMC-SDFB01-01A collected 3/17/92 Trip blank collected 3/17/92

Organic Validation

Eight aqueous samples sample analyzed for Target Compound List (TCL) organics were validated following the United States Environmental Protection Agency (USEPA) Region II procedures for samples analyzed using the Contract Laboratory Program (CLP) Statement of Work (SOW) February, 1988 (as stated in table 1 Analytical Methods attached to the case narrative). These samples were to have been analyzed by the NYSDEC Analytical Services Protocol 1990. The laboratory control samples were analyzed as required by the NYSDEC ASP but the 1990 CLP was not followed. The following information was used to validate the analytical results:

- Sample hold time
- Instrument tune
- Initial and continuing calibration
- Surrogate recoveries
- MS/MSD analysis
- Internal Standards
- Analysis sequence
- Method blank contamination
- Field and trip blank contamination
- · Ion spectra match
- · Chromatogram quality
- Calculations
- Laboratory Control Sample

The New York State Department of Environmental Conservation's (NYSDEC) required summary table is attached.

Sample Hold Time

All VOA, BNA and Pesticide/PCB samples were originally extracted and analyzed within the prescribed hold times. Several samples required reextraction outside the holding time due to failed QC. These samples were flagged "J" estimated as required.

ACTION: SMC-SW02-01ARE DL flagged "J" estimated. SMC-SDFB01-01ARE flagged "UJ" for the acid analytes which should be used. SMC-SW02-01ARE and SWURE flagged "UJ". Use these analyses not the originals.

Instrument Tune

The GC/MS's were tuned with BFB (VOA) and DFTPP (BNA). All QC criteria were compliant. No tune is required for pesticide/PCB analyses since they are not performed using a mass spectrometer.

Initial and Continuing Calibration

In the initial calibration of VOAs and BNAs, the relative response factors (RRFs) and relative standard deviations (RSDs) of each analyte is assessed. In the continuing calibration of VOAs and BNAs, the RRF and Percent Difference of the RRFs (%D) of each analyte is assessed. For the pesticide/PCB analyses, the RSDs of the calibration factors (CFs) of the initial calibration and %D of the CFs for the continuing calibration are assessed.

RRF < 0.05: all compliant

%D >25%: trans-1,3-dichloropropene (28.9%) 2-butanone (29.3%) 4-nitrophenol (26.1%)

RSD > 30%: 2,4-dinitrophenol (33.5%)

No action required since analyses for these compounds were all non-detect.

Several compounds had CF %Ds > 15% for the pesticide fraction but no analyses required quantitation so the CFs were not used.

Surrogate Recovery

The surrogate recoveries for all VOA and pesticide/PCB analyses were within acceptance criteria. The surrogate recoveries for many of the semivolatile analyses were outside acceptance criteria. Most of these samples were reextracted with acceptable surrogate recoveries. The result which should be used for bis(2-ethylhexyl)phthalate in sample SMC-SW02-01A is from the analysis designated RE DL which was analyzed outside holding times. SMC-SW04-01A was not reextracted since the MS and MSD analyses of this sample also had surrogate recoveries outside the limits.

ACTION: All compounds flagged "UJ" estimated semivolatiles in sample SMC-SW04-01A.(potential high bias) Sample SMC-SDFB01-01A use the original analysis for the base neutral compounds and the reextraction for the acid compounds. The phthalate in the reextraction appears to be a lab contaminant.

MS/MSD Analyses

True samples were used for MS/MSD analyses. Recoveries and RPDs were compliant except for the pesticide MS/MSD:

Pesticide/PCB - The recovery was low for 1 of the 12 spiked analytes (lindane slightly low in the MSD and the RPD high). No action taken.

Internal Standard Response

The internal standard response was within acceptable limits for all samples with the following exceptions:

Analysis Sequence

The VOA and BNA analyses were run within 12 hours of instrument tune. The CLP contractual 72-hour sequence for pesticide/PCB analysis was used as required.

Method Blank Contamination

The Volatile, Semivolatile and Pesticide/PCB method blanks contained no identifiable compounds.

Field and Trip Blank Contamination

The trip blank contained acetone at 13 ppb. The field blank SMC-SDFB01-01A contained acetone at 16 ppb. The reanalysis of SMC-SDFB01-01A semivolatiles contained bis(2-ethylhexyl)phthalate.

ACTION: None required for acetone since all samples were non-detect for these analytes. Any acetone found in any samples may be false positives. Bis(2-ethylhexyl)phthalate rejected in the reanaalysis of SMC-SW02-01A.

Ion Spectra Match

All ion spectra correctly matched the standard spectrum.

Chromatogram Quality

The chromatograms were of acceptable quality.

Calculations

All checked calculations were correct within rounding errors.

Laboratory Control Sample

Laboratory control samples were analyzed with each fraction as specified by the NYSDEC ASP. The results were within the specified criteria.

Prepared By: Janua Reenlas Date: 2 June 1993

نيسر بيد نميد

Inorganic Validation

Seven aqueous samples analyzed for Target Analyte List inorganics were validated according to current USEPA Region II protocols. The following information was used to validate the analytical results:

- · Sample hold time
- Instrument calibration
- Initial calibration verification (ICV) and continuing calibration verification (CCV)
- · CRDL standards for AA (CRA) and ICP (CRI)
- Initial calibration blank (ICB), continuing calibration blank (CCB) and preparation blank (PB) analyses
- Spike Sample Analysis
- Duplicate sample analysis
- · Laboratory Control Sample (LCS) Analysis
- Standard Addition results
- ICP Serial Dilution Analysis
- · Instrument Detection Limit (IDL) Analysis
- Interelement corrections for ICP
- Linear Range Analysis
- Furnace QA/QC Analyses
- Calculations

Attached is the New York State Department of Environmental Conservation's (NYSDEC) required summary table.

Sample hold time

All metals and mercury analyses were extracted within holding times.

Instrument Calibration

All instruments were calibrated daily with dates and times clearly shown on the raw data. The proper sequence of instrument blanks and standards were used. A 2-point calibration for ICP, 5-point for mercury and 4-point calibration for furnace AA were used, as required.

ICV and CCV

The percent recovery for all analytes were within the prescribed windows and analyzed at the correct frequency in the injection sequence.

CRDL Standards

The CRDL standards were run at the correct frequency and appropriate concentration for each analyte. Several analytes had non-compliant CRDL (<80->120%) recoveries:

antimony	OK, 146.9%
barium	
cadmium	OK, 131.5%
chromium	OK, 126.1%
copper 129.3%	, 152%
mercury	160%

Bath Toxicology Group, Inc.

nickel	OK,	124.7%	
silver	OK.	135.2%	
zinc		OK,	123%

ACTION: SMC-SWU-01A: antimony, chromium, copper, nickel, and zinc estimated (J) due to high CRDL recovery. (potential high bias) Mercury rejected "R" in all samples. Copper flagged "J" in all samples.(potential high bias) Antimony flagged "J" in SW-1, SW-2, SW-3 and SW-4. The positive values for barium and zinc were flagged "J" in these samples.

Laboratory Blanks (ICB, CCB, PB)

All laboratory blanks were analyzed at the correct frequency during the injection sequence. Aluminum, arsenic, barium, chromium, copper, iron, thallium, and zinc were found in the calibration blanks. Arsenic, calcium, copper and zinc were found in the preparation blank. All concentrations were below the CRDL. No action was warranted.

Blank Concer	ntrations		
	ICB	CCB	PB
Aluminum		33.7,-13.5	
arsenic		1.1	1.96
barium	23.7	19.7, 36.3, 30.5, 48.7	
calcium			73.98
chromium		5.5	
copper		6.7, 9.6, 8.1, 7.4	11.18
iron	-7.5	-6.2, -7.6, -8, 8.3	
thallium		-1	
zinc		6.6, -6.3	-4.11

ICP Interference Check Sample (ICS)

The ICS percent recoveries were all within the acceptance window (80-120 %).

Spiked Sample Analysis

The spike sample recovery was performed on a true sample (SMC-SW04-01A). All data were acceptable.

Duplicate Sample Analysis (D)

The laboratory duplicate analysis was performed on a true sample (SMC-SW04-01A). Mercury (0.2U and 0.26) was outside the acceptance window if 0 is used for the non-detect value but if the IDL is used, it is acceptable. No action required.

Laboratory Control Sample (LCS) Analysis

The LCS was prepared and analyzed at the correct frequency. All percent recoveries were within the acceptance range (80-120%).

Standard Addition Results

Method of standard addition analysis was not required.

مر

ICP Serial Dilution Analysis

The ICP aqueous serial dilution was performed on sample (SMC-SWU-01A). All analyses were acceptable except copper which was 32.43 in initial analysis and 103.5 diluted.

ACTION: Copper rejected in all samples.

Instrument Detection Limit (IDL) Analysis

The IDLs were all lower than the CRDL and were generated on 3 March 1992 by the laboratory.

Interelement Corrections for ICP

No interelement corrections were applied by the laboratory. The forms were not dated.

Linear Range Analysis

The linear range for the ICP analyses was supplied by the laboratory. None of the concentrations of the samples in this group approached these upper limits.

Furnace AA OC Analyses

Samples were run in duplicate. The acceptance window for the RSD (20%) was exceeded in many cases but all concentrations were less than the CRDL.

Calculations

All checked calculations were within rounding errors.

Prepared By: famely Beenlar Date: 3 June 1993

General Chemistry

Seven aqueous samples analyzed for alkalinity, chloride, cyanide, DOC, fluoride, sulfate and TSS (hardness was reported with the inorganic analysis since it was determined using the calculated method) were validated using the following information:

- Sample hold time
- Instrument calibration
- Initial calibration verification (ICV) and continuing calibration verification (CCV)
- · Method blank
- · Spike and spike duplicate Sample Analysis
- · Duplicate sample analysis
- Laboratory Control Sample (LCS) Analysis
- · Calculations

Sample hold time

All samples were prepared within holding times.

Instrument Calibration

All instruments were calibrated daily with dates and times clearly shown on the raw data. The proper sequence of instrument blanks and standards were used.

ICV and CCV

The percent recovery for all analytes were within the prescribed windows and analyzed at the correct frequency in the injection sequence.

Method Blank

All laboratory blanks were analyzed at the correct frequency with concentrations of analytes at or below the detection limit except alkalinity which was 1.1 mg/L in the method blank.

ACTION: Values for alkalinity in the field blanks should be considered below the detection limit.

Spike and Spike Duplicate Sample Analysis

The spike sample recovery was performed on a true sample and was compliant except for DOC which was recovered at 127.8% in the matrix spike but compliant in the duplicate. No action taken.

Duplicate Sample Analysis (D)

The laboratory duplicate analysis was performed on true sample and was acceptable for all parameters.

Laboratory Control Sample (LCS) Analysis

The LCS was prepared and analyzed at the correct frequency. All percent recoveries were within the acceptance range (80-120%).

Calculations

All checked calculations were within rounding errors.

Prepared By: Janua Greenlan Date: 3 June 1993

Bath Toxicology Group, Inc.

DATA REPORT 920386

8

مينو مو

Stauffer Management Company RI/FS Data Package 920391

This data report covers data package 920386 submitted by EA Laboratories concerning analysis of 5 soil samples collected at Stauffer Management Company Facility at Skaneateles Falls.

SMC-SD01-01A collected 3/17/92 SMC-SD02-01A collected 3/17/92 SMC-SD03-01A collected 3/17/92 SMC-SD04-01A collected 3/17/92 SMC-SDU-01A collected 3/17/92

Organic Validation

Five sediment samples analyzed for Target Compound List (TCL) organics were validated following the United States Environmental Protection Agency (USEPA) Region II procedures for samples analyzed using the Contract Laboratory Program (CLP) Statement of Work (SOW) February, 1988 (as stated in table 1 Analytical Methods attached to the case narrative). These samples were to have been analyzed by the NYSDEC Analytical Services Protocol 1990. The laboratory control samples were analyzed as required by the NYSDEC ASP but the 1990 CLP was not followed. The following information was used to validate the analytical results:

- Sample hold time
- Instrument tune
- Initial and continuing calibration
- Surrogate recoveries
- MS/MSD analysis
- Internal Standards
- Analysis sequence
- Method blank contamination
- · Field and trip blank contamination
- Ion spectra match
- Chromatogram quality
- Calculations
- Laboratory Control Sample

The New York State Department of Environmental Conservation's (NYSDEC) required summary table is attached.

Sample Hold Time

All VOA and BNA samples were originally extracted and analyzed within the prescribed hold times. The pesticide/PCB samples were extracted one day beyond holding time.

SAMPLE	DATE COL	LECTED	DATE EXTRACTED
SMC-SD01-01A	3/17/92	3/25/92	
SMC-SD02-01A	3/17/92	3/25/92	
SMC-SD02-011A	3/17/92	3/25/92	
SMC-SD04-01A	3/17/92	3/25/92	
SMC-SDU-01A	3/17/92	3/25/92	
SINC-SDO-VIA			

ACTION: All samples flagged "UJ" for pesticide/PCBs. (potential low bias)

Bath Toxicology Group, Inc.

1

تيونيه أيد

Instrument Tune

The GC/MS's were tuned with BFB (VOA) and DFTPP (BNA). All QC criteria were compliant. No tune is required for pesticide/PCB analyses since they are not performed using a mass spectrometer.

Initial and Continuing Calibration

In the initial calibration of VOAs and BNAs, the relative response factors (RRFs) and relative standard deviations (RSDs) of each analyte is assessed. In the continuing calibration of VOAs and BNAs, the RRF and Percent Difference of the RRFs (%D) of each analyte is assessed. For the pesticide/PCB analyses, the RSDs of the calibration factors (CFs) of the initial calibration and %D of the CFs for the continuing calibration are assessed.

RRF < 0.05:	all compliant
%D >25%:	bromoform (29.9%) 4-nitrophenol (26.1%)
RSD > 30%:	indeno(1,2,3-cd)pyrene (33.5%) dibenzo(a,h)anthracene (32.9%) benzo(g,h,i)perylene (33.2%)

No action required since analyses associated with these calibrations for these compounds were all non-detect.

Several compounds had CF %Ds > 15% for the pesticide fraction but no analyses required quantitation so the CFs were not used.

Surrogate Recovery

The surrogate recoveries for all VOA, semivolatile and pesticide/PCB analyses were within acceptance criteria except the pesticide/PCB surrogate for sample SMC-SD04-01A (9.2%).

ACTION: No action taken since sample previously flagged "J" for holding time.

MS/MSD Analyses

True samples were used for MS/MSD analyses. Recoveries and RPDs were compliant except for:

volatile MS/MSD recoveries high for benzene (163%, 169% / 142%), toluene (165%, 163% / 139%) and chlorobenzene (162%, 167% / 133%) and trichloroethene (192%, 142% / 137%), toluene (143%, 143% / 139%) and chlorobenzene (151%, 158% / 133%) in the reanalysis. No action taken since potential high bias and all not detected.

semivolatile MSD recovery slightly high for 2,4-dinitrotoluene (90% limit 89%) No action taken.

Pesticide/PCB - The RPD for heptachlor was high (45% limit 31%) No action taken.

Internal Standard Response

The internal standard response was within acceptable limits for all samples with the following exceptions:

بسنسه المد

volatile SMC-SD04-01A internal standards low for both original and reanalysis ACTION: All compounds flagged "J" estimated for volatile analysis of SMC-SD04-01A.(potential high bias if used for quantitation but all "UJ" except acetone)

semivolatile SMC-SD04-O1A perviene high

ACTION:

Compounds which use perylene for quantitation flagged "UJ" (potential low bias if used for quantitation)

Analysis Sequence

The VOA and BNA analyses were run within 12 hours of instrument tune. The CLP contractual 72-hour sequence for pesticide/PCB analysis was used as required.

Method Blank Contamination

The Volatile and Pesticide/PCB method blanks used for these samples contained no identifiable compounds. The volatile method blank associated with the reanalysis of SD04 which was not used contained acetone. The semivolatile method blank contained di-n-butyl phthalate at 940 ug/kg.

ACTION: Di-n-butyl phthalate flagged "U" in SMC-SD03-01A, SMC-SD04-01A and SMC-SDU-01A.

Field and Trip Blank Contamination

The trip blank contained acetone at 13 ppb. The field blank SMC-SDFB01-01A contained acetone at 16 ppb. The reanalysis of SMC-SDFB01-01A semivolatiles contained bis(2-ethylhexyl)phthalate. These analyses were reported with data report 920386.

ACTION: Acetone was flagged "U" non-detect for all samples. Any acetone found in any samples may be false positives. Bis(2-ethylhexyl)phthalate was not found in any samples.

Ion Spectra Match

All ion spectra correctly matched the standard spectrum.

Chromatogram Quality

The chromatograms were of acceptable quality.

Calculations

All checked calculations were correct within rounding errors.

Laboratory Control Sample

Laboratory control samples were analyzed with each fraction as specified by the NYSDEC ASP. The results were within the specified criteria.

Prepared By: Family Frees an Date: 5 June 1993

Bath Toxicology Group, Inc.

3

ج نبيه تعد

Inorganic Validation

Five sediment samples analyzed for Target Analyte List inorganics were validated according to current USEPA Region II protocols. The following information was used to validate the analytical results:

- · Sample hold time
- Instrument calibration
- · Initial calibration verification (ICV) and continuing calibration verification (CCV)
- · CRDL standards for AA (CRA) and ICP (CRI)
- Initial calibration blank (ICB), continuing calibration blank (CCB) and preparation blank (PB) analyses
- Spike Sample Analysis
- Duplicate sample analysis
- Laboratory Control Sample (LCS) Analysis
- · Standard Addition results
- ICP Serial Dilution Analysis
- · Instrument Detection Limit (IDL) Analysis
- Interelement corrections for ICP
- Linear Range Analysis
- Furnace QA/QC Analyses
- · Calculations

Attached is the New York State Department of Environmental Conservation's (NYSDEC) required summary table.

Sample hold time

All metals and mercury analyses were extracted within holding times.

Instrument Calibration

All instruments were calibrated daily with dates and times clearly shown on the raw data. The proper sequence of instrument blanks and standards were used. A 2-point calibration for ICP, 5-point for mercury and 4-point calibration for furnace AA were used, as required.

ICV and CCV

The percent recovery for all analytes were within the prescribed windows and analyzed at the correct frequency in the injection sequence.

CRDL Standards

The CRDL standards were run at the correct frequency and appropriate concentration for each analyte. Several analytes had non-compliant CRDL (<80->120%) recoveries:

antimony	OK, 146.9%
cadmium	OK, 131.5%
chromium	OK, 126.1%
copper	129.3%, 152%
lead	OK, 154%, 60%, OK
nickel	OK, 124.7%

Bath Toxicology Group, Inc.

DATA REPORT 920391

silver	OK.	135.2%
zinc	OK,	123%

ACTION: SMC-SD01-01A, SMC-SD02-01A, SMC-SD03-01A, SMC-SD04-01A AND SMC-SDU-01Any autimized J copper J nickel J silver J zinc J estimated due to high CRDL recovery. (potential high bias) No action for lead since the analyses with non-compliant CRDL were not used for reporting.

Laboratory Blanks (ICB, CCB, PB)

Blank Concentrations

All laboratory blanks were analyzed at the correct frequency during the injection sequence. Aluminum, arsenic, barium, chromium, copper, iron, lead, thallium, and zinc were found in the calibration blanks. Aluminum, calcium, copper, magnesium and zinc were found in the preparation blank. All concentrations were below the CRDL. No action was warranted.

Blank Concea	ranons			
	ICB	CCB	PB	
Aluminum		33.7,-12,-13.5	2.9	
arsenic		1		
barium	23.7	19.7, 36.3, 30.5, 48.7		
calcium			12.9	
chromium		5.5		
copper	•	6.7, 9.6, 8.1, 7.4	1.7	
iron	-17.1	-35.3,-31.6,-28.9		
lead		2		
magnesium		_	13.9	
thallium		-1		
		6.6, -6.3	0.6	
ZINC		0.0, 0.2		

ICP Interference Check Sample (ICS)

The ICS percent recoveries were all within the acceptance window (80-120 %).

Spiked Sample Analysis

The spike sample recovery was performed on a true sample (SMC-SD04-01A). Spike data were acceptable except antimony, lead and silver.

ACTION: No action taken, samples already flagged for antimony and silver and none required for lead since values in samples greater than 4x spike added.

Duplicate Sample Analysis (D)

The laboratory duplicate analysis was performed on a true sample (SMC-SD04-01A). The data were acceptable and properly flagged (*) by laboratory. No action required.

5

Laboratory Control Sample (LCS) Analysis

The LCS was prepared and analyzed at the correct frequency. All percent recoveries were within the acceptance range (80-120%).

Standard Addition Results

Method of standard addition analysis was used for determination of lead in samples SMC-SD02-01A, SMC-SD03-01A, SMC-SD04-01A AND SMC-SDU-01A. The correlation coefficient was >0.995 for all analyses.

ICP Serial Dilution Analysis

The ICP aqueous serial dilution was performed on sample (SMC-SDU-01A). All analyses were acceptable except barium which was 487 in initial analysis and 700B diluted.

ACTION: Barium flagged "J" estimated in all samples.

Instrument Detection Limit (IDL) Analysis

The IDLs were all lower than the CRDL and were generated on 3 March 1992 by the laboratory.

Interelement Corrections for ICP

No interelement corrections were applied by the laboratory. The forms were not dated.

Linear Range Analysis

The linear range for the ICP analyses was supplied by the laboratory. None of the concentrations of the samples in this group approached these upper limits.

Furnace AA OC Analyses

Samples were run in duplicate. The acceptance window for the RSD (20%) was exceeded in many cases but all concentrations were less than the CRDL.

Calculations

All checked calculations were within rounding errors.

Prepared By: James Meen ar Date: 5 June 1993

General Chemistry

Five sediment samples analyzed for cyanide and TOC were validated using the following information:

- Sample hold time
- Instrument calibration
- Initial calibration verification (ICV) and continuing calibration verification (CCV)
- Method blank
- · Spike and spike duplicate Sample Analysis
- Duplicate sample analysis
- · Laboratory Control Sample (LCS) Analysis
- Calculations

Sample hold time

All samples were prepared within holding times.

Instrument Calibration

All instruments were calibrated daily with dates and times clearly shown on the raw data. The proper sequence of instrument blanks and standards were used.

ICV and CCV

The percent recovery for all analytes were within the prescribed windows and analyzed at the correct frequency in the injection sequence.

Method Blank

All laboratory blanks were analyzed at the correct frequency with concentrations of analytes at or below the detection limit.

Spike and Spike Duplicate Sample Analysis

The spike sample recovery was performed on a true sample (SMC-SD04-01A). The recoveries for cyanide were low (61% and 44%) and inconsistent for TOC (74% and 125%).

ACTION: Cyanide flagged "J" estimated in all samples. (potential low bias) No action taken for TOC.

Duplicate Sample Analysis (D)

The laboratory duplicate analysis was performed on true sample and was acceptable for all parameters.

Laboratory Control Sample (LCS) Analysis

The LCS was prepared and analyzed at the correct frequency. All percent recoveries for analyses used were within the acceptance range (80-120%).

أينيوا أتيور

Calculations

All checked calculations were within rounding errors.

Prepared By: famila / free las Date: 5 June 1993

Bath Toxicology Group, Inc.

8

Stauffer Management Company RI/FS Data Package 920396

This data report covers data package 920396 submitted by EA Laboratories concerning analysis of 12 aqueous samples and two trip blanks collected at Stauffer Management Company Facility at Skaneateles Falls.

SMC-GW11I-01A collected 3/18/92 SMC-GW09I-01A collected 3/18/92 SMC-GW09I-01A collected 3/18/92 SMC-GW08I-01A collected 3/19/92 SMC-GW08S-01A collected 3/19/92 SMC-GW07I-01A collected 3/19/92 SMC-GW06I-01A collected 3/19/92 SMC-GW06S-01A collected 3/19/92 SMC-GW06S-01A collected 3/19/92 SMC-GW05I-01A collected 3/19/92 SMC-GWFB01-01A collected 3/19/92 SMC-GWFB01-01A collected 3/19/92 Trip blank collected 3/18/92 Trip blank collected 3/19/92

Organic Validation

Fourteen aqueous samples analyzed for Target Compound List (TCL) organics were validated following the United States Environmental Protection Agency (USEPA) Region II procedures for samples analyzed using the Contract Laboratory Program (CLP) Statement of Work (SOW) February, 1988 (as stated in table 1 Analytical Methods attached to the case narrative). These samples were to have been analyzed by the NYSDEC Analytical Services Protocol 1990. The laboratory control samples were analyzed as required by the NYSDEC ASP but the 1990 CLP was not followed. The following information was used to validate the analytical results:

- Sample hold time
- Instrument tune
- Initial and continuing calibration
- Surrogate recoveries
- MS/MSD analysis
- Internal Standards
- Analysis sequence
- Method blank contamination
- ⁹ Field and trip blank contamination
- Ion spectra match
- Chromatogram quality
- Calculations
- Laboratory Control Sample

The New York State Department of Environmental Conservation's (NYSDEC) required summary table is attached.

Sample Hold Time

All VOA, BNA and Pesticide/PCB samples were originally analyzed within the prescribed hold times. In some cases reextraction was required due to other criteria outside requirements. If these analyses are used the samples will require flagging due to holding time exceedance. (sample SMC-GW06S-01A-see surrogates)

Instrument Tune

The GC/MS's were tuned with BFB (VOA) and DFTPP (BNA). All QC criteria were compliant. No tune is required for pesticide/PCB analyses since they are not performed using a mass spectrometer.

Initial and Continuing Calibration

In the initial calibration of VOAs and BNAs, the relative response factors (RRFs) and relative standard deviations (RSDs) of each analyte is assessed. In the continuing calibration of VOAs and BNAs, the RRF and Percent Difference of the RRFs (%D) of each analyte is assessed. For the pesticide/PCB analyses, the RSDs of the calibration factors (CFs) of the initial calibration and %D of the CFs for the continuing calibration are assessed.

RRF < 0.05: all compliant

%D >25%: hexachlorocyclopentadiene (42.88%) 4-nitrophenol (26.06%)

No action required since analyses for these compounds were all non-detect.

Several compounds had CFs >15% for the pesticide fraction but no analyses required quantitation so the CFs were not used.

Surrogate Recovery

The surrogate recoveries for all VOA analyses were within acceptance criteria. The BNA surrogate recoveries were acceptable except:

SMC-GW09I-01A: Two acid surrogates had recovery below the acceptable range, the reanalysis of this sample had one base-neutral surrogate above the acceptable range which upon dilution was acceptable. The reextraction was performed outside of holding time regulations.

ACTION: Acid analytes flagged "J" in original analysis (potential low bias).

SMC-GW06S-01A: This sample also required reextraction (performed outside holding time) due to poor acid surrogate recoveries in the original analysis. There were no acid analytes detected in either the original or reanalysis.

ACTION: Use the reanalysis. All analytes flagged "J" (potential low bias) for holding time.

SMC-GW08I-01A: One acid surrogate has recovery less than 10% for this sample. Surrogate recovery forms indicate reanalysis with all surrogate recoveries in range but no supporting data was submitted.

ACTION: Acid analytes flagged "R" in this sample.

SMC-GW07I-01A: One base neutral surrogate had recovery less than 10% for sample due to interference from a high amount of toluic acid. The sample was reanalyzed at a dilution with all surrogates diluted out. The low surrogate recovery should have no effect on the data.

SMC-GW07S-01A: One base neutral surrogate had low recovery. No action required.

SMC-GW05I-01A: One base neutral surrogate had low recovery. No action required.

SMC-GWU-01A: Two base neutral surrogates had low recovery for sample due to interference from a high amount of toluic acid. One of these surrogates was acceptable in the dilution analysis, the other diluted out. No action required.

تيد تيد

SMC-GWFB01-01A: One acid surrogate from the field blank had recovery less than 10%. The same but outside holding time. The reanalysis also seems to have been contaminated. Use the original analysis.

ACTION: All acid analytes flagged "J" estimated (potential low bias).

The surrogate recoveries for the pesticide/PCB analyses were acceptable (24-154%) except for low recoveries for samples:

SMC-GW08S-01A 20.6% SMC-GW07I-01A 0 SMC-GW06I-01A 0 SMC-GW06S-01A 9.1% SMC-GW05I-01A 8% SMC-GW05I-01A 3.6%

ACTION: All pesticide/PCB compounds flagged "J" estimated in these samples (potential low bias).

MS/MSD Analyses

True samples were used for MS/MSD analyses. Recoveries and RPDs were compliant except for the pesticide/PCB MS/MSD:

The recoveries were low for 6 of the 12 spiked analytes and the surrogate.

ACTION: The pesticide/PCB sample used for matrix spike was already flagged "J" for surrogate recovery, so no further action taken.

Internal Standard Response

The internal standard area counts and retention times for both volatile and semivolatile analyses were within acceptable limits with the following exceptions for semivolatile analyses:

SMC-GW09IRE-01A: The internal standard chrysene had area below the lower limit.

SMC-GWFB01RE-01: The internal standard perylene for sample had area above the upper limit.

ACTION: None since these analyses were not used.

Analysis Sequence

The VOA and BNA analyses were run within 12 hours of instrument tune. The CLP contractual 72-hour sequence for pesticide/PCB analysis was used as required.

Method Blank Contamination

The volatile and pesticide/PCB method blanks contained no identifiable compounds. The semivolatile method blank contained a TIC identified as dimethyl ester carbonic acid.

Field and Trip Blank Contamination

The field and trip blanks contained no identifiable compounds.

Ion Spectra Match

All ion spectra correctly matched the standard spectrum.

نبد أنيه

Chromatogram Quality

The chromatograms were of acceptable quality although large amounts of toluic acid obscured one portions of the undiluted semivolatile analysis of SMC-GWU-01A. The diluted analysis of this sample should be used for the toluic acid isomers. The o-toluic acid not found in the diluted analyses should be used from the original analyses with an "NJ" qualifier (presumptive evidence.

ACTION: Compound detection limits were elevated to those of the diluted analysis:

4-chloro-3-methylphenol 2-methylnaphthalene

Calculations

All checked calculations were correct within rounding errors. A "J" qualifier should be added to the benzoic acis and phenol results in sample SMC-GW09I-01A.

Laboratory Control Sample

Laboratory control samples were analyzed with each fraction as specified by the NYSDEC ASP. The results were within the specified criteria.

Prepared By: fameli Milerlar Date: 22 April 1993

Inorganic Validation

Twelve aqueous samples analyzed for Target Analyte List inorganics were validated according to current USEPA Region II protocols. The following information was used to validate the analytical results:

- Sample hold time
- Instrument calibration

• Initial calibration verification (ICV) and continuing calibration verification (CCV)

· CRDL standards for AA (CRA) and ICP (CRI)

• Initial calibration blank (ICB), continuing calibration blank (CCB) and preparation blank (PB) analyses

- Spike Sample Analysis
- Duplicate sample analysis
- Laboratory Control Sample (LCS) Analysis
- Standard Addition results
- ICP Serial Dilution Analysis
- · Instrument Detection Limit (IDL) Analysis
- Interelement corrections for ICP
- Linear Range Analysis
- Furnace QA/QC Analyses
- Calculations

Attached is the New York State Department of Environmental Conservation's (NYSDEC) required summary table.

Sample hold time

All metals and mercury analyses were extracted within holding times.

Instrument Calibration

All instruments were calibrated daily with dates and times clearly shown on the raw data. The proper sequence of instrument blanks and standards were used. A 2-point calibration for ICP, 5-point for mercury and 4-point calibration for furnace AA were used, as required.

ICV and CCV

The percent recovery for all analytes were within the prescribed windows and analyzed at the correct frequency in the injection sequence.

CRDL Standards

The CRDL standards were run at the correct frequency and appropriate concentration for each analyte. Several analytes had non-compliant CRDL (<80->120%) recoveries:

mercury	160%, 160%
lead	OK, 155.3%, 136.7%, 133.3%
selenium	OK, 122%
copper	OK, 129.4%

ACTION: Lead, selenium and copper were flagged "J" estimated (potential high bias) in samples as required. Mercury was flagged "R" as required. SMC-GW08I-01A lead selenium

copper

SMC-GW08S-01A SMC-GW07I-01A	lead selenium copper mercury- rejected lead selenium
	copper
SMC-GW07S-01A	selenium
	copper
SMC-GW06I-01A	selenium
	copper
SMC-GW06S-01A	selenium
SMC-GW05I-01A	selenium
	copper
SMC-GWU-01A	mercury- rejected
	selenium
	copper
SMC-GWFB01-01A	lead
	selenium
	copper

Laboratory Blanks (ICB, CCB, PB)

All laboratory blanks were analyzed at the correct frequency during the injection sequence. Antimony, arsenic cadmium, copper, magnesium, manganese, potassium and sodium were found in the calibration blanks. Arsenic, copper, iron, manganese, and potassium were found in the aqueous preparation blank. All concentrations were below the CRDL. No action was warranted.

Blank Concentr	rations		
	ICB	CCB	PB
antimony		21.1	
arsenic			2.2, 1.1
cadmium		4.2	
copper		7.1	7.7
iron			11.1
magnesium		81.7, 105.3	
manganese	2.7	2.8, 2.6, 2.7	2.8
potassium	-524.8	-651.7,-661.2,-781.7	-635.6,-736.4
	232.1	266.6, 322.7	•
sodium		283.8, 311.1	
	-641.1	-742.5,-789.4	

ICP Interference Check Sample (ICS)

The ICS percent recoveries were all within the acceptance window (80-120 %).

Spiked Sample Analysis

The spike sample recovery was performed on true samples (SMC-GW11I-01A and SMC-GW06S-01A). The data were acceptable except for the following outside the acceptance window (75%-125%)

mercury	143%
silver	63.6%
arsenic	199.8%
selenium	68.7%
thallium	72%

ACTION: SMC-GW11I-01A, SMC-GW10I-01A and SMC-GW09I-01A flagged "J" estimated for silver. Arsenic rejected in SMC-GW08S-01A, SNC-GW07I-01A, SMC-GW07S-01A, SMC-GW06I-01A, SMC-GWU-01A, SMC-GW06S-01A and SMC-GW05I-01A. Selenium and thallium flagged "J" in samples SMC-GW08I-01A, SMC-GW08S-01A, SNC-GW07I-01A, SMC-GW07S-01A, SMC-GW06I-01A, SMC-GW06S-01A, SMC-GW08I-01A, SMC-GW08S-01A, SMC-GW07I-01A, SMC-GW07S-01A, SMC-GW06I-01A, SMC-GW06S-01A, SMC-GW06S-01A, SMC-GW05I-01A, SMC-GW05I-01A, SMC-GW05I-01A, SMC-GW05I-01A, SMC-GW05I-01A, SMC-GW06S-01A, SMC-GW06S-01A, SMC-GW05I-01A, SMC-GW05I-01A, SMC-GW05I-01A, SMC-GW05I-01A, SMC-GW06S-01A, SMC-GW06S-01A, SMC-GW05I-01A, SMC-GW05I-01A, SMC-GW05I-01A, SMC-GW05I-01A, SMC-GW06S-01A, SMC-GW06S-01A, SMC-GW05I-01A, SMC-GW05I-01A

Duplicate Sample Analysis (D)

The laboratory duplicate analyses were performed on a true samples (SMC-GW11I-01A and SMC-GW06S-01A). The duplicate analyses were all acceptable.

Laboratory Control Sample (LCS) Analysis

The LCS was prepared and analyzed at the correct frequency. All percent recoveries were within the acceptance range (80-120%).

Standard Addition Results

Method of standard addition analyses were correctly performed on samples SMC-GWU-01A for As and SMC--GW07I-01A, SMC-GW07S-01A, SMC-GW05I-01A AND SMC-GWU-01A for lead. The correctation coefficient was acceptable for all analyses.

ICP Serial Dilution Analysis

The ICP serial dilution was performed on a true samples. All analyses were compliant except iron (11.8% D limit 10%).

ACTION: Iron flagged "J" estimated in samples SMC-GW09I-01A, SMC-GW10I-01A and SMC-GW11I-01A. (potential low bias)

Instrument Detection Limit (IDL) Analysis

The IDLs were all lower than the CRDL and were generated on 9 March 1992 by the laboratory.

Interelement Corrections for ICP

No interelement corrections were applied by the laboratory. The forms were not dated.

Linear Range Analysis

The linear range for the ICP analyses was supplied by the laboratory. None of the concentrations of the samples in this group approached these upper limits.

Furnace AA OC Analyses

Samples were run in duplicate. The acceptance window for the RSD (20%) was exceeded in many cases but all concentrations were less than the CRDL.

Calculations

All checked calculations were within rounding errors.

Prepared By: tamela heerlan _ Date: 22 February 1993_

General Chemistry

Twelve aqueous samples analyzed for hardness (reported with inorganic data) alkalinity, chloride, cyanide, DOC, fluoride, sulfate and TSS were validated using the following information:

- Sample hold time
- Instrument calibration
- Initial calibration verification (ICV) and continuing calibration verification (CCV)
- Method blank
- Spike and spike duplicate Sample Analysis
- Duplicate sample analysis
- Laboratory Control Sample (LCS) Analysis
- Calculations

Sample hold time

All samples were extracted within holding times.

Instrument Calibration

All instruments were calibrated daily with dates and times clearly shown on the raw data. The proper sequence of instrument blanks and standards were used.

ICV and CCV

The percent recovery for all analytes were within the prescribed windows and analyzed at the correct frequency in the injection sequence.

Method Blank

All laboratory blanks were analyzed at the correct frequency during the injection sequence. The method blank for alkalinity was slightly above the detection limit (1.1 limit 1.0 mg/L). This should have little effect on the data since the alkalinity concentration for all samples was > 250 (except for the field blank which was the same concentration as the method blank.

Spike and Spike Duplicate Sample Analysis

The spike sample recovery was performed on a true sample (SMC-GW06S-01A). The % recovery for cyanide was non-compliant (67.8% and 70% recovery). The spike duplicate (39.3%) and %RPD (72.3%) were non-compliant for alkalinity.

ACTION: Cyanide was qualified "J" in samples SMC-GW07I-01A, SMC-GW07S-01A, SMC-GW06I-01A, SMC-GWU-01A and SMC-GWFB01-01A. Cyanide was qualified "UJ" in all other samples. (potential low bias)

Duplicate Sample Analysis (D)

The laboratory duplicate analysis was performed on a true sample (SMC-GW06S-01A). The analyses were compliant.

Laboratory Control Sample (LCS) Analysis

The LCS was prepared and analyzed at the correct frequency. All percent recoveries were within the acceptance range (80-120%).

Calculations

All checked calculations were within rounding errors.

Prepared By: famile Selector Date: 22 April 1993

Bath Toxicology Group, Inc.

Stauffer Management Company RI/FS Data Package 920398

This data report covers data package 920398 submitted by EA Laboratories concerning analysis of 12 aqueous samples and two trip blanks collected at Stauffer Management Company Facility at Skaneateles Falls.

SMC-GW02I-01A collected 3/20/92 SMC-GW02S-01A collected 3/20/92 SMC-GW03I-01A collected 3/20/92 SMC-GW04S-01A collected 3/20/92 SMC-GW04I-01A collected 3/20/92 SMC-GWU-02A collected 3/20/92 SMC-GW07S-01A collected 3/20/92 SMC-GWFB02-01A collected 3/20/92 SMC-GW01S-01A collected 3/21/92 SMC-GW01I-01A collected 3/21/92 SMC-BSU1-01A collected 3/21/92 SMC-BSFB01-01A collected 3/21/92 SMC-BSFB01-01A collected 3/21/92 Trip blank collected 3/21/92

Organic Validation

Fourteen aqueous samples analyzed for Target Compound List (TCL) organics were validated following the United States Environmental Protection Agency (USEPA) Region II procedures for samples analyzed using the Contract Laboratory Program (CLP) Statement of Work (SOW) February, 1988 (as stated in table 1 Analytical Methods attached to the case narrative). These samples were to have been analyzed by the NYSDEC Analytical Services Protocol 1990. The laboratory control samples were analyzed as required by the NYSDEC ASP but the 1990 CLP was not followed. The following information was used to validate the analytical results:

- Sample hold time
- Instrument tune
- Initial and continuing calibration
- Surrogate recoveries
- MS/MSD analysis
- Internal Standards
- Analysis sequence
- Method blank contamination
- Field and trip blank contamination
- · Ion spectra match
- Chromatogram quality
- Calculations
- Laboratory Control Sample

The New York State Department of Environmental Conservation's (NYSDEC) required summary table is attached.

Sample Hold Time

All VOA, BNA and Pesticide/PCB samples were extracted and analyzed originally within the prescribed hold times. SMC-GW02S-01A, semivolatiles, was reextracted outside holding times.

ACTION: All semivolatile compounds flagged "J" estimated for SMC-GW02S-01A.

Instrument Tune

The GC/MS's were tuned with BFB (VOA) and DFTPP (BNA). All QC criteria were compliant. No tune is required for pesticide/PCB analyses since they are not performed using a mass spectrometer.

Initial and Continuing Calibration

In the initial calibration of VOAs and BNAs, the relative response factors (RRFs) and relative standard deviations (RSDs) of each analyte is assessed. In the continuing calibration of VOAs and BNAs, the RRF and Percent Difference of the RRFs (%D) of each analyte is assessed. For the pesticide/PCB analyses, the RSDs of the calibration factors (CFs) of the initial calibration and %D of the CFs for the continuing calibration are assessed.

2

RRF < 0.05: all compliant

%D >25%: 2-hexanone (27.7%, 30.6%) trans-1,3-dichloropropene (34.8%) chloroethane (28.6%)

No action required since analyses for these compounds were all non-detect.

Several compounds had CFs >15% for the pesticide fraction but no analyses required quantitation so the CFs were not used.

Surrogate Recovery

The surrogate recoveries for all VOA analyses were within acceptance criteria. The BNA surrogate recoveries were acceptable except:

SMC-GW02SI-01A: Two base-neutral surrogates had recovery below the acceptable range (0% and 23%), the reanalysis of this sample was acceptable. The reextraction was performed outside of holding time regulations. Use the reanalysis.

SMC-GW03I-01A: This sample had two base-neutral surrogates with recoveries below the acceptable range (24% and 23%). It was rerun at a dilution with the surrogates diluted out. One of the low surrogates elutes in the same region as toluic acid which is present at high levels in this sample.

ACTION: All base neutral SMC-GW03I-01A compounds flagged "UJ" (potential low bias).

The surrogate recoveries for the pesticide/PCB analyses were acceptable (24-154%) except for low recoveries for samples:

SMC-GW02I-01A	5.1%
SMC-GW02S-01A	17.5%
SMC-GW04I-01A	10.5%
SMC-GWU-02A	6%
SMC-GW01I-01A	9.3%
SMC-BS01-01A	7.3%
SMC-BSU-01A	9.4%

ACTION: All pesticide/PCB compounds flagged "UJ" estimated in these samples (potential low bias).

MS/MSD Analyses

True samples were used for MS/MSD analyses. Recoveries and RPDs were compliant except for the pesticide/PCB and the semivolatile on SMC-GW02S-01A MS/MSD:

تبد نيه

The pesticide recoveries were low for 6 of the 12 spiked analytes and the surrogate. The semivolatile was low for 12 of 22 spiked analytes.

ACTION: The pesticide/PCB sample used for matrix spike was already flagged "J" for surrogate recovery, so no further action taken. The semivolatile required no action since all recoveries were greater than 10%.

Internal Standard Response

The internal standard area counts and retention times for both volatile and semivolatile analyses were within acceptable limits with the following exceptions for semivolatile analyses:

SMC-GW03I-01A: The internal standards except acenapthene had areas outside the limits.

SMC-GW02I-01A: The internal standards chrysene and perylene had areas outside the limits.

SMC-GWU-01A: The internal standard perylene for sample had area outside the limit.

SMC-GW04S-01A: The internal standard perylene for sample had area outside the limit.

ACTION: Affected on	manuale ware flagged "I" or "III" estimated (potential high high)
	mpounds were flagged "J" or "UJ" estimated (potential high bias)
SMC-GW03I-01A:	compounds not previously flagged for surrogate recovery:
	phenol
	2-chlorophenol
	benzyl alcohol
	2-methylphenol
	4-methylphenol
	2-nitrophenol
	2,4-dimethylphenol
	benzoic acid
	o-toluic acid
	m-toluic acid
	p-toluic acid
	2,4-dichlorophenol
	4-chloro-3-methylphenol
	4,6-dinitro-2-methylphenol
	pentachlorophenol
	реналногорненог
SMC-GW02I-01A:	pyrene
	butylbenzylphthalate
	3,3'-dichlorobenzidine
	benzo(a)-anthracene
	bis(2-ethylhexyl)phthalate
	chrysene
	di-n-octylphthalate
	benzo(k)fluoranthene
	benzo(a)pyrene
	indeno(1,2,3-cd)pyrene
	dibenz(a,h)anthracene
	benzo(g,h,i)perylene

SMC-GWU-01A and SMC-GW04S-01A:

di-n-octylphthalate benzo(k)fluoranthene benzo(a)pyrene indeno(1,2,3-cd)pyrene

dibenz(a,h)anthracene benzo(g,h,i)perylene

Analysis Sequence

The VOA and BNA analyses were run within 12 hours of instrument tune. The contractural 72-hour sequence for pesticide/PCB analysis was used as required.

Method Blank Contamination

One volatile method blank contained methylene chloride. The other volatile and pesticide/PCB method blanks contained no identifiable compounds. The semivolatile method blank contained a TIC identified as dimethyl ester carbonic acid.

ACTION:

GW03I and GWU-02A flagged "U" non-detect for methylene chloride (false positive).

Field and Trip Blank Contamination

The trip blank contained no identifiable compounds. The field blank contained tetrachloroethene and xylenes. No action required.

Ion Spectra Match

All ion spectra correctly matched the standard spectrum.

Chromatogram Quality

The chromatograms were of acceptable quality although large amounts of toluic acid obscured one portions of the undiluted semivolatile analysis of several samples. The diluted analysis of this sample should be used for the toluic acid isomers although the o-toluic acid not found in the diluted samples should be used from the original analyses with an "NJ" presumptive evidence qualifier.

ACTION: Compound detection limits were elevated to those of the diluted analysis in samples SMC-GWU-02A, SMC-GW03I-01A, SMC-GW02I-01A AND SMC-GW01I-01A:

4-chloro-3-methylphenol 2-methylnaphthalene

Calculations

All checked calculations were correct within rounding errors. Quantitation of the toluic acid was difficult for several samples due to large amounts requiring dilution. In samples SMC-GW03I-01A, SMC-GWU-02A, SMC-GW03I-01A and SMC-GW01IA use amounts of the toluic acid isomers calculated from the diluted analysis. Sample SMC-GW04I-01A has toluic acid identified and quantified as the TIC's 2 and 3-methylbenzoic acid (o and m toluic acid). Quantities were transferred to Form I and flagged "NJ" since library not actual instrument response were used to identify and quantitate the toluic acid.

Laboratory Control Sample

Laboratory control samples were analyzed with each fraction as specified by the NYSDEC ASP. The results were within the specified criteria.

Prepared By: tamela deer la Date: 24 May 1993

نيو.

Inorganic Validation

Twelve aqueous samples analyzed for Target Analyte List inorganics were validated according to current USEPA Region II protocols. The following information was used to validate the analytical results:

- Sample hold time
- Instrument calibration
- Initial calibration verification (ICV) and continuing calibration verification (CCV)
- · CRDL standards for AA (CRA) and ICP (CRI)

• Initial calibration blank (ICB), continuing calibration blank (CCB) and preparation blank (PB) analyses

- Spike Sample Analysis
- Duplicate sample analysis
- · Laboratory Control Sample (LCS) Analysis
- Standard Addition results
- ICP Serial Dilution Analysis
- Instrument Detection Limit (IDL) Analysis
- Interelement corrections for ICP
- Linear Range Analysis
- Furnace QA/QC Analyses
- Calculations

Attached is the New York State Department of Environmental Conservation's (NYSDEC) required summary table.

Sample hold time

All metals and mercury analyses were extracted within holding times.

Instrument Calibration

All instruments were calibrated daily with dates and times clearly shown on the raw data. The proper sequence of instrument blanks and standards were used. A 2-point calibration for ICP, 5-point for mercury and 4-point calibration for furnace AA were used, as required.

ICV and CCV

The percent recovery for all analytes were within the prescribed windows and analyzed at the correct frequency in the injection sequence.

CRDL Standards

The CRDL standards were run at the correct frequency and appropriate concentration for each analyte. Several analytes had non-compliant CRDL (<80->120%) recoveries:

aluminum	OK, 18.5%
barium	OK, 27.2%
beryllium	OK, 1.2%
mercury	160%, 160%
lead	OK, 130.7%, OK, 122%
selenium	OK, 122%
copper	OK, 28.7%
iron	OK, 26.1%
manganese	OK, 19.7%
nickel	OK, 39.2%

vanadium	OK, 11%
zinc	127.5%, 58%, OK, 130.2%

ACTION: Aluminum, barium, and iron have no criteria. Selenium was not detected. Beryllium, mercury, lead, copper, manganese, mercury, nickel, vanadium and zinc were flagged as required.

SMC-GWFB02-01A	beryllium copper manganese nickel vanadium zinc mercury	R R R R J (potential low bias) R
SMC-GW01S-01A	beryllium vanadium mercury	R R R
SMC-GW01I-01A	beryllium copper vanadium zinc	R R R J (potential low bias)
SMC-BS01-01A	mercury beryllium nickel vanadium	R R R R
SMC-BSU-01A	zinc mercury beryllium	J (potential low bias) R R
	nickel vanadium zinc	R R J (potential low bias)
SMC-BSFB01-01A	beryllium copper manganese nickel vanadium	R R R R
	zinc mercury	J (potential low bias) R
SMC-GW02S-01A SMC-GW03I-01A SMC-GW04S-01A	mercury mercury mercury	R R R
SMC-GWU-02A	mercury	R

Laboratory Blanks (ICB, CCB, PB)

All laboratory blanks were analyzed at the correct frequency during the injection sequence. Arsenic, barium, nickel, selenium, and sodium were found in the calibration blanks. Barium and iron were found in the aqueous preparation blank. All concentrations were below the CRDL. No action was warranted.

Blank Conc	entrations		
	ICB	CCB	PB
arsenic	3.1	2.8, 3.2	
barium	125.7	26, 18.5, 81.3, 70.4	-23.2
nickel		15.8, 11.2, 11.2	
iron			11.1
selenium		-1	

•

	ICB	CCB	
sodium	241.5	326.8, 470, 327.2	
thallium	2.3	2.4	

ICP Interference Check Sample (ICS)

The ICS percent recoveries were all within the acceptance window (80-120 %).

Spiked Sample Analysis

The spike sample recoveries were performed on true samples (SMC-BS01-01A and SMC-GW02I-01A). The BS01 data were acceptable except for the following outside the acceptance window (75%-125%) selenium 0%

PB

silver 48.1%

The BS samples were incorrectly flagged "N" by the lab for the non-compliant GW spike sample recoveries.

The GW02I data were unacceptable except arsenic, cobalt, copper and zinc.

ACTION:

The GW samples were all flagged as follows if not previously flagged: (potential low bias)

• •	· -
aluminum	J
antimony	R
barium	J
beryllium	J
cadmium	J
chromium	J
iron	J
lead	R
manganese	J
mercury	J
nickel	J
selenium	R
silver	J
thallium	J
vanadium	J

The BS samples were flagged: selenium R Silver J

Duplicate Sample Analysis (D)

The laboratory duplicate analyses were performed on a true samples (SMC-GW02I-01A and SMC-BS01-01A). The duplicate analyses were all acceptableexcept arsenic and copper in SMC-GW02I-01A.

ACTION:

Copper and arsenic flagged "J" estimated in all GW samples if not previously flagged.

Laboratory Control Sample (LCS) Analysis

The LCS was prepared and analyzed at the correct frequency. All percent recoveries were within the acceptance range (80-120%).

Standard Addition Results

Method of standard addition analyses were correctly performed on samples SMC-GW02I-01A, SMC-GW02S-

الجدر

01A, SMC-GW03I-01A, SMC-GW04I-01A and SMC-GW01I-01A for As and SMC-GW02S-01A, SMC-GW01S-01A, SMC-BS01-01A and SMC-BSU-01A for lead. The correlation coefficient was acceptable for all analyses.

ICP Serial Dilution Analysis

The ICP serial dilution was performed on a true samples. All analyses were compliant except sodium.

ACTION: Sodium flagged "J" estimated in samples SMC-GW06S-01A, SMC-GW07S-01A, SMC-GW08S-01A and SMC-FB01-01A. Sodium flagged "R" rejected in samples SMC-GW01S-01A, SMC-GW01D-01A, SMC-GW02S-01A, SMC-GW02D-01A, SMC-GW03I-01A, SMC-GWU-02A, SMC-BS01-01A, SMC-BSU-01A, SMC-BSFB.

Instrument Detection Limit (IDL) Analysis

The IDLs were all lower than the CRDL and were generated on 9 March 1992 by the laboratory.

Interelement Corrections for ICP

No interelement corrections were applied by the laboratory. The forms were not dated.

Linear Range Analysis

The linear range for the ICP analyses was supplied by the laboratory. None of the concentrations of the samples in this group approached these upper limits.

Furnace AA OC Analyses

Samples were run in duplicate. The acceptance window for the RSD (20%) was exceeded in many cases but all concentrations were less than the CRDL.

Calculations

All checked calculations were within rounding errors.

Prepared By: Kamela Meerlan Date: 24 May 1993

General Chemistry

Twelve aqueous samples analyzed for hardness (reported with inorganic data) alkalinity, chloride, cyanide, DOC, fluoride, sulfate and TSS were validated using the following information:

- Sample hold time
- Instrument calibration
- Initial calibration verification (ICV) and continuing calibration verification (CCV)
- Method blank
- Spike and spike duplicate Sample Analysis
- Duplicate sample analysis
- Laboratory Control Sample (LCS) Analysis
- Calculations

Sample hold time

All samples were extracted within holding times.

Instrument Calibration

All instruments were calibrated daily with dates and times clearly shown on the raw data. The proper sequence of instrument blanks and standards were used.

ICV and CCV

The percent recovery for all analytes were within the prescribed windows and analyzed at the correct frequency in the injection sequence.

Method Blank

All laboratory blanks were analyzed at the correct frequency during the injection sequence. The method blank for alkalinity was slightly above the detection limit (1.1 limit 1.0 mg/L). This should have little effect on the data since the alkalinity concentration for all samples was >250 (except for the field blank which was the same concentration as the method blank.

Spike and Spike Duplicate Sample Analysis

The spike sample recovery was performed on true sampless (SMC-GW02I-01A and SMC-BS01-01A). The % recovery for alkalinity was low (7.9% and 13.1% GW and 69.7% BS) and DOC (70.8% and 90.8 GW). The RPD for cyanide was high (31.9%) and recovery low (76.7% and 55.6%) in the BS MS/MSD.

ACTION:

All samples flagged "J" estimated for alkalinity (GW samples not flagged R since alkalinity very high in spiked sample). No action was taken for DOC. Cyanide flagged "J" estimated in the BS samples. (all potential low bias)

Duplicate Sample Analysis (D)

The laboratory duplicate analysis was performed on true samples (SMC-GW02I-01A and GW-BS01-01A). The analyses were compliant.

Laboratory Control Sample (LCS) Analysis

The LCS was prepared and analyzed at the correct frequency. All percent recoveries were within the

acceptance range (80-120%).

Calculations

All checked calculations were within rounding errors.

Prepared By: Jamela Beenlan Date: 24 May 1993

¢

Stauffer Management Company RI/FS Data Package 920461

This data report covers data package 920461 submitted by EA Laboratories concerning analysis of 4 aqueous samples, one trip blank and one soil sample collected at Stauffer Management Company Facility at Skaneateles Falls.

SMC-CS01-01A collected 4/7/92 SMC-CS02-01A collected 4/7/92 SMC-CS03-01A collected 4/7/92 SMC-CS04-01A collected 4/7/92 SMC-SS03-01A collected 4/7/92 Trip blank collected 4/7/92

Organic Validation

Five aqueous samples and one soil sample analyzed for Target Compound List (TCL) organics were validated following the United States Environmental Protection Agency (USEPA) Region II procedures for samples analyzed using the Contract Laboratory Program (CLP) Statement of Work (SOW) February, 1988 (as stated in table 1 Analytical Methods attached to the case narrative). These samples were to have been analyzed by the NYSDEC Analytical Services Protocol 1990. The laboratory control samples were analyzed as required by the NYSDEC ASP but the 1990 CLP was not followed. The following information was used to validate the analytical results:

- Sample hold time
- Instrument tune
- Initial and continuing calibration
- Surrogate recoveries
- MS/MSD analysis
- Internal Standards
- Analysis sequence
- Method blank contamination
- Field and trip blank contamination
- · Ion spectra match
- Chromatogram quality
- Calculations
- Laboratory Control Sample

The New York State Department of Environmental Conservation's (NYSDEC) required summary table is attached.

Sample Hold Time

All VOA, BNA and Pesticide/PCB samples were analyzed within the prescribed hold times.

Instrument Tune

The GC/MS's were tuned with BFB (VOA) and DFTPP (BNA). All QC criteria were compliant. No tune is required for pesticide/PCB analyses since they are not performed using a mass spectrometer.

Initial and Continuing Calibration

In the initial calibration of VOAs and BNAs, the relative response factors (RRFs) and relative standard deviations (RSDs) of each analyte is assessed. In the continuing calibration of VOAs and BNAs, the RRF and Percent Difference of the RRFs (%D) of each analyte is assessed. For the pesticide/PCB analyses, the RSDs of the calibration factors (CFs) of the initial calibration and %D of the CFs for the continuing calibration are assessed.

RRF < 0.05: all compliant

%D >25%: 4-methyl-2-pentanone (31.1%) 2-hexanone (29.8%) trans-1,3-dichloropropene (27.6%)

> chloroethane (26.3%) 2-hexanone (27%)

acetone (32.3%) 2-butanone (28.7%) 1,2-dichloroethane (33.2%) 4-methyl-2-pentanone (34.8%) 2-hexanone (30.1%) trans-1,3-dichloropropene (32%)

RSD > 30% trans-1,3-dichloropropene (35.4%)

No action required since analyses for these compounds were all non-detect.

Several compounds had CFs > 15% for the pesticide fraction but no analyses required quantitation so the CFs were not used.

Surrogate Recovery

The surrogate recoveries for all VOA, BNA, and pesticide/PCB analyses were within acceptance criteria, except:

SMC-CS03-01A: semivolatile - one acid and two base surrogates had recoveries outside the QC limits but one base surrogate was out due to interference from toluic acid which was present in high levels requiring a dilution analysis of this sample. No action taken.

SMC-CS02-01A, SMC-CS03-01A, and SMC-CS04-01A: pesticide/PCB - surrogate recoveries very low.

SMC-CS02-01A: 6.4% SMC-CS03-01A: 5.3% SMC-CS04-01A: 11.5%

ACTION: All compounds flagged "UJ" estimated for pesticide/PCBs in samples SMC-CS02- 01A, SMC-CS03-01A, and SMC-CS04-01A. (potential low bias)

MS/MSD Analyses

True samples were used for MS/MSD analyses. Recoveries and RPDs were compliant except for the soil MS/MSD:

. مەر Volatile - All of the internal standard areas were low and the recovery for one spiked compound was high.

Pesticide/PCB - The recoveries were low for 10 of the 12 spiked analytes.

ACTION: No action taken for the volatile fraction since the sample internal standard areas were acceptable and the high recovery was based on low internal standards. The pesticide/PCB sample used for matrix spike was already flagged "J" for surrogate recovery, so no further action taken.

Internal Standard Response

The internal standard area counts and retention times for both volatile and semivolatile analyses were within acceptable limits with the following exception:

SMC-CS03-01A: semivolatile - The areas for Acenapthene-d10 (low) and chrysene-d12 (high) were outside the required areas. The diluted analysis of the same sample was compliant.

ACTION: The following analytes were flagged "UJ" estimated:

4-nitroaniline dimethylphthalate acenaphthylene 3-nitroaniline acenapthene 2,4-dintrophenol 4-nitrophenol dibenzofuran 2,4-dinitrotoluene 2,6-dinitrotoluene diethylphthalate 4-chlorophenyl phenylether fluorene

(potential low bias)

(potential high bias

but all non-detect)

pyrene butylbenzylphthalate 3.3'-dichlorobenzidine benzo(a)anthracene

Analysis Sequence

The VOA and BNA analyses were run within 12 hours of instrument tune. The CLP contractual 72-hour sequence for pesticide/PCB analysis was used as required.

Method Blank Contamination

The Semivolatile and Pesticide/PCB method blanks contained no identifiable compounds. The volatile method blanks contained methylene chloride less than the CRQL. The chromatogram for the pesticide/PCB soil method blank was not included in the package.

3

All ion spectra correctly matched the standard spectrum.

Chromatogram Quality

The chromatograms were of acceptable quality although large amounts of toluic acid obscured some portions of the undiluted semivolatile chromatograms. The o-toluic acid found in sample SMC-CS02-01A should be flagged "NJ" presumptive evidence since the high amounts of toluic acid inhibited separation of the toluic acid isomers. The values of the other toluic acid isomers should be used from the diluted sample analysis.

ACTION: Several compound detection limits were elevated to those of the diluted analysis in samples SMC-CS02-01A, SMC-CS03-01A and SMC-CS04-01A:

4-chloro-3-methylphenol 2-methylnaphthalene hexachlorocyclopentadiene 2,4,6-trichlorophenol 2,4,5-trichlorophenol 2-nitroaniline

Calculations

All checked calculations were correct within rounding errors.

Laboratory Control Sample

Laboratory control samples were analyzed with each fraction as specified by the NYSDEC ASP. The results were within the specified criteria.

Prepared By: Pamelo Pheular Date: <u>22 February 1993</u>

4

ئيد

Inorganic Validation

Four aqueous and one soil samples analyzed for Target Analyte List inorganics were validated according to current USEPA Region II protocols. The following information was used to validate the analytical results:

- Sample hold time
- Instrument calibration
- Initial calibration verification (ICV) and continuing calibration verification (CCV)
- · CRDL standards for AA (CRA) and ICP (CRI)
- · Initial calibration blank (ICB), continuing calibration blank (CCB) and preparation blank
- (PB) analyses
 - Spike Sample Analysis
 - Duplicate sample analysis
 - · Laboratory Control Sample (LCS) Analysis
 - Standard Addition results
 - ICP Serial Dilution Analysis
 - Instrument Detection Limit (IDL) Analysis
 - Interelement corrections for ICP
 - Linear Range Analysis
 - Furnace QA/QC Analyses
 - · Calculations

Attached is the New York State Department of Environmental Conservation's (NYSDEC) required summary table.

Sample hold time

All metals and mercury analyses were extracted within holding times.

Instrument Calibration

All instruments were calibrated daily with dates and times clearly shown on the raw data. The proper sequence of instrument blanks and standards were used. A 2-point calibration for ICP, 5-point for mercury and 4-point calibration for furnace AA were used, as required.

ICV and CCV

The percent recovery for all analytes were within the prescribed windows and analyzed at the correct frequency in the injection sequence.

CRDL Standards

The CRDL standards were run at the correct frequency and appropriate concentration for each analyte. Several analytes had non-compliant CRDL (<80->120%) recoveries:

Aqueous

lead	137.3%, 40%
antimony	148.2%, 143.6%
barium	125.4%, 97.6%
cadmium	119.3%, 78.6%
copper	130%, 122.9%

ACTION: Lead did not require flagging since all the samples were outside the affected ranges. Antimony, barium, cadmium and copper were flagged "J" estimated in samples as required:

SMC-CS01-01A	antimony barium copper
SMC-CS02-01A	antimony cadmium
SMC-CS03-01A	cadmium
SMC-CS04-01A	antimony cadmium
Soil cadmium	71.6%, 125.3

71.6%, 125.3%
124%, 128.8%
89.4%, 44.4%
99%, 129.7%

ACTION: These analytes were flagged "J" estimated in the sample SMC-SS03-01A.

Laboratory Blanks (ICB, CCB, PB)

All laboratory blanks were analyzed at the correct frequency during the injection sequence. Aluminum, barium, calcium, chromium, copper, iron, lead, sodium, and zinc were found in the aqueous calibration blanks. Aluminum, barium, cadmium, chromium, copper, iron, magnesium, nickel, selenium, sodium, thallium and zinc were found in the soil calibration blanks. Aluminum, calcium, copper, iron, magnesium, sodium and zinc were found in the aqueous preparation blank. Aluminum, barium, calcium, chromium, copper, iron, magnesium, nickel, selenium, sodium, and zinc were found in the soil preparation blank. All concentrations were below the CRDL. No action was warranted.

Blank Concentrations

Dialik Concentia	auous		
	ICB	CCB	PB
aluminum	-15.2	-13.9	14.6 aqueous
	-53.2	-50.5,-33.2	-2.3 soil
barium	29.8	-68.1, 55.3, 23.4	aqueous
	-53.4	-91.5,-18.5	2.6 soil
cadmium		4.6, 4.1	soil
calcium		49.3	126.1 aqueous
			8.1 soil
chromium		-4.2	aqueous
	-6.5		-0.9 soil
copper	8.2	6.3, 6.6, 9.4	9.7 aqueous
	6.5	9.9, 10.6	2.0 soil
iron		-9.1	-8.4 aqueous
	-30.9	-28.9,-12.3	-1.1 soil
lead	-3.3	-2.9,-2.8	aqueous
magnesium			81.2 aqueous
	127.1	146.6, 127.1	16.2 soil
nickel	-24.7	-19.8,-25	-3.7 soil
selenium		-1.2,-1.2,-1.2	-0.1 soil
sodium	367.8	2633.8, 344.6, 486.3	401.4 aqueous
	313.6	546.1, 364	49.4 soil
thallium		-1	soil
zinc	7.5	4.8, 4.7, 6.8	8.7 aqueous
	-3.9	-4.9	-1.1 soil

e i

ICP Interference Check Sample (ICS)

The ICS percent recoveries were all within the acceptance window (80-120 %).

Spiked Sample Analysis

The aqueous spike sample recovery was performed on a true sample (SMC-CS01-01A). All data were acceptable except silver. The soil spike was outside the acceptance window (75%-125%) for antimony (18.1%), cadmium (71.6%), selenium (59.4%), and silver (43.8%).

ACTION: Antimony, cadmium, selenium and silver were flagged "J" estimated (potential low bias) in sample SMC-SS03-01A. Silver flagged "UJ" in samples SMC-CS01-01A, SMC-CS02-01A, SMC-CS03-01A and SMC-CS04-01A..

Duplicate Sample Analysis (D)

The aqueous laboratory duplicate analysis was performed on a true sample (SMC-CS01-01A). Mercury (0.56 and 1.06 control limit +0.2) was outside the acceptance window. The soil duplicate analyses were all acceptable.

ACTION: Mercury was qualified with a "J" in all aqueous samples.

Laboratory Control Sample (LCS) Analysis

The LCS was prepared and analyzed at the correct frequency. All percent recoveries were within the acceptance range (80-120%).

Standard Addition Results

Method of standard addition analyses were correctly performed on samples CS04-01A for arsenic and CS01-01A for lead. The correctation coefficient was acceptable for both analyses.

ICP Serial Dilution Analysis

The ICP aqueous serial dilution was performed on a true sample (SMC-CS04-01A). All analyses were compliant except copper, vanadium and zinc. The soil serial dilution was non-compliant for barium (88.3% D limit 10%).

ACTION: Barium flagged "J" estimated in sample SMC-SS03-01A. (potential high bias) Copper and vanadium were flagged "J" in samples SMC-CS02-01A, SMC-CS03-01A AND SMC-CS04-01A. Zinc was flagged "J" in samples SMC-CS01-01A, SMC-CS03-01A AND SMC-CS04-01A.

Instrument Detection Limit (IDL) Analysis

The IDLs were all lower than the CRDL and were generated on 3 March 1992 by the laboratory.

Interelement Corrections for ICP

No interelement corrections were applied by the laboratory. The forms were not dated.

Linear Range Analysis

The linear range for the ICP analyses was supplied by the laboratory. None of the concentrations of the samples in this group approached these upper limits.

Furnace AA OC Analyses

Samples were run in duplicate. The acceptance window for the RSD (20%) was exceeded in many cases but all concentrations were less than the CRDL.

Calculations

All checked calculations were within rounding errors.

Prepared By: Mellar Date: 22 February 1993

, ,

General Chemistry

Four aqueous and one soil samples analyzed for cyanide were validated using the following information:

- Sample hold time
- Instrument calibration
- Initial calibration verification (ICV) and continuing calibration verification (CCV)
- Method blank
- Spike and spike duplicate Sample Analysis
- Duplicate sample analysis
- Laboratory Control Sample (LCS) Analysis
- Calculations

Sample hold time

All samples were extracted within holding times.

Instrument Calibration

All instruments were calibrated daily with dates and times clearly shown on the raw data. The proper sequence of instrument blanks and standards were used.

ICV and CCV

The percent recovery for all analytes were within the prescribed windows and analyzed at the correct frequency in the injection sequence.

Method Blank

All laboratory blanks were analyzed at the correct frequency during the injection sequence.

Spike and Spike Duplicate Sample Analysis

The spike sample recovery was performed on a true samples (SMC-CS01-01A and SS03-01A). The % recovery for cyanide in the soil spike was non-compliant (-53.3% recovery).

ACTION: Cyanide was qualified "J" in SMC-SS03-01A. (potential low bias)

Duplicate Sample Analysis (D)

The laboratory duplicate analysis was performed on a true samples (CS01-01A and SS03-01A). The soil duplicate for cyanide was non-compliant (165.5% RPD 2.2 and 0.21).

ACTION: Cyanide estimated in the soil sample (SMC-SS03-01A) but previously qualified. (potential high bias)

Laboratory Control Sample (LCS) Analysis

The LCS was prepared and analyzed at the correct frequency. All percent recoveries were within the acceptance range (80-120%).

Calculations

All checked calculations were within rounding errors.

Prepared By: Janula Meerlas Date: 22 February 1993

Bath Toxicology Group, Inc.

10

ا میر میں

Stauffer Management Company RI/FS Data Package 920508

ς,

This data report covers data package 920508 submitted by EA Laboratories concerning analysis of 7 aqueous samples and two trip blanks collected at Stauffer Management Company Facility at Skaneateles Falls.

SMC-GW09D-01A collected 4/27/92 SMC-GW06D-01A collected 4/28/92 SMC-GW03D-01A collected 4/28/92 SMC-GW04D-01A collected 4/28/92 SMC-GW01D-01A collected 4/28/92 SMC-GW02D-01A collected 4/29/92 SMC-FB03-01A collected 4/29/92 Trip blank collected 4/29/92 Trip blank collected 4/27/92

Organic Validation

Nine aqueous samples sample analyzed for Target Compound List (TCL) organics were validated following the United States Environmental Protection Agency (USEPA) Region II procedures for samples analyzed using the Contract Laboratory Program (CLP) Statement of Work (SOW) February, 1988 (as stated in table 1 Analytical Methods attached to the case narrative). These samples were to have been analyzed by the NYSDEC Analytical Services Protocol 1990. The laboratory control samples were analyzed as required by the NYSDEC ASP but the 1990 CLP was not followed. The following information was used to validate the analytical results:

- Sample hold time
- Instrument tune
- Initial and continuing calibration
- Surrogate recoveries
- MS/MSD analysis
- Internal Standards
- Analysis sequence
- Method blank contamination
- · Field and trip blank contamination
- · Ion spectra match
- · Chromatogram quality
- Calculations
- Laboratory Control Sample

The New York State Department of Environmental Conservation's (NYSDEC) required summary table is attached.

Sample Hold Time

All VOA, BNA and Pesticide/PCB samples were analyzed within the prescribed hold times.

Instrument Tune

The GC/MS's were tuned with BFB (VOA) and DFTPP (BNA). All QC criteria were compliant. No tune is required for pesticide/PCB analyses since they are not performed using a mass spectrometer.

Bath Toxicology Group, Inc.

Initial and Continuing Calibration

In the initial calibration of VOAs and BNAs, the relative response factors (RRFs) and relative standard deviations (RSDs) of each analyte is assessed. In the continuing calibration of VOAs and BNAs, the RRF and Percent Difference of the RRFs (%D) of each analyte is assessed. For the pesticide/PCB analyses, the RSDs of the calibration factors (CFs) of the initial calibration and %D of the CFs for the continuing calibration are assessed.

RRF < 0.05: all compliant

%D >25%: bromoform (30.47%, 34.70%) 2-butanone (30.96%)

RSD > 30% hexachlorocyclopentadiene (32.4%)

No action required since analyses for these compounds were all non-detect.

Several compounds had CF %Ds >15% for the pesticide fraction but no analyses required quantitation so the CFs were not used.

Surrogate Recovery

The surrogate recoveries for all VOA and semivolatile analyses were within acceptance criteria. The pesticide/PCB surrogate recoveries were also within acceptable limits except:

SMC-GW01D-01A, SMC-GW04D-01A, and SMC-GW02D-01A: pesticide/PCB - surrogate recoveries very low.

SMC-GW01D-01A: 7.8% SMC-GW04D-01A: 9.8% SMC-GW02D-01A: 3.4%

ACTION: All compounds flagged "UJ" estimated for pesticide/PCBs in samples SMC-GW01D-01A, SMC-GW02D-01A, and SMC-GW04D-01A. (potential low bias)

MS/MSD Analyses

True samples were used for MS/MSD analyses. Recoveries and RPDs were compliant in the VOA.

Semivolatile - The recoveries were low for 4-nitrophenol, 2,4,dinitrotoluene and pentachlorophenol; the RPD was non-compliant for 1,2-dichlorobenzene.

Pesticide/PCB - The recoveries were low for 4 of the 12 spiked analytes (DDT and lindane in both MS and MSD).

ACTION: The pesticide/PCB sample, SMC-GW06D-01A, used for matrix spike was flagged "UJ" for DDT and lindane. (potential low bias)

Internal Standard Response

The internal standard response was within acceptable limits for all samples.

Analysis Sequence

The VOA and BNA analyses were run within 12 hours of instrument tune. The CLP contractual 72-hour sequence for pesticide/PCB analysis was used as required.

Method Blank Contamination

The Volatile, Semivolatile and Pesticide/PCB method blanks contained no identifiable compounds.

Field and Trip Blank Contamination

The trip blank shipped 4/27/92 contained acetone at 31 ppb. The trip blank shipped 4/29/92 and the field blank contained methylene chloride less than the CRQL.

ACTION: None required since all samples were non-detect for these analytes. Any acetone found in any samples may be false positives.

Ion Spectra Match

All ion spectra correctly matched the standard spectrum.

Chromatogram Quality

The chromatograms were of acceptable quality.

Calculations

All checked calculations were correct within rounding errors. Use the diluted results for the toluic acid isomers in samples GW01D and GW02D. Γ_c

Laboratory Control Sample

Laboratory control samples were analyzed with each fraction as specified by the NYSDEC ASP. The results were within the specified criteria.

Prepared By: Lamela Helenan Date: 15 March 1993

Inorganic Validation

Seven aqueous and samples analyzed for Target Analyte List inorganics were validated according to current USEPA Region II protocols. The following information was used to validate the analytical results:

- Sample hold time
- Instrument calibration
- Initial calibration verification (ICV) and continuing calibration verification (CCV)
- · CRDL standards for AA (CRA) and ICP (CRI)
- Initial calibration blank (ICB), continuing calibration blank (CCB) and preparation blank (PB) analyses
- Spike Sample Analysis
- Duplicate sample analysis
- Laboratory Control Sample (LCS) Analysis
- Standard Addition results
- ICP Serial Dilution Analysis
- · Instrument Detection Limit (IDL) Analysis
- Interelement corrections for ICP
- Linear Range Analysis
- Furnace QA/QC Analyses
- Calculations

Attached is the New York State Department of Environmental Conservation's (NYSDEC) required summary table.

Sample hold time

All metals and mercury analyses were extracted within holding times.

Instrument Calibration

All instruments were calibrated daily with dates and times clearly shown on the raw data. The proper sequence of instrument blanks and standards were used. A 2-point calibration for ICP, 5-point for mercury and 4-point calibration for furnace AA were used, as required.

ICV and CCV

The percent recovery for all analytes were within the prescribed windows and analyzed at the correct frequency in the injection sequence.

CRDL Standards

The CRDL standards were run at the correct frequency and appropriate concentration for each analyte. Several analytes had non-compliant CRDL (<80->120%) recoveries:

lead	129.3%, 40%
mercury	4530.0%,1335.0%
cadmium	73%,73%
silver	76.4%, 79.4%

ACTION: SMC-GW01D-01A: mercury rejected (R) due to high CRDL recovery.

Silver flagged "J" in all samples.(potential low bias) Lead flagged "J" in SMC-GW01D-01A, SMC-GW09D-01A, SMC-GW02D-01A and SMC-GW04D-01A.(potential high bias) Cadmium flagged "J" in all samples.(potential low bias)

Laboratory Blanks (ICB, CCB, PB)

Diale Constant at a

All laboratory blanks were analyzed at the correct frequency during the injection sequence. Copper, aluminum, barium, calcium, chromium, cobalt, copper, iron, magnesium, nickel, potassium, sodium, and vanadium were found in the calibration blanks. Barium, cobalt, copper, iron, nickel, and vanadium were found in the preparation blank for SMC-GW09D-01A. Chromium, copper, magnesium, potassium, and sodium were found in the aqueous preparation blank for the remaining samples. All concentrations were below the CRDL. No action was warranted.

Blank Concent	trations		
	ICB	CCB	PB
Aluminum	-31.8	37.3,-37.9	
barium	-33.7	14.44	90.2
calcium		-57.7,-98.9	
chromium		-4.6,-6.3	-5
cobalt	-14.3	23.5, 18.4	8
copper	10.6, 11.2	8.8, 9.3, 14.9, 13.6	15.9, 14.4
iron	-39.6	-35.3,-36.1	-22.9
magnesium	100.2	-253.9, 134.4, 137.2	136.3
nickel	-23	39.3	11.3
potassium		451	-652.9
sodium	582.9	577.7, 1078.2, 937.2, -1752.7	928.7
vanadium	7.2		-6.1

ICP Interference Check Sample (ICS)

The ICS percent recoveries were all within the acceptance window (80-120 %).

Spiked Sample Analysis

The spike sample recoveries were performed on true samples (SMC-GW06D-01A and SMC-GW09-01A). All data were acceptable except silver (42.8% SMC-GW06D-01A), mercury (55% SMC-GW09-01A) and silver (48.1% SMC-GW09D-01A).

ACTION: Silver flagged "J" in samples SMC-GW06D-01A and SMC-GW09D-01A. Mercury flagged "J" in SMC-GW09D-01A. (potential low bias)

Duplicate Sample Analysis (D)

The first laboratory duplicate analysis was performed on a true sample (SMC-GW09D-01A). Mercury (0.2U and 0.66 control limit +0.2) was outside the acceptance window. The other duplicate analysis was acceptable.

ACTION: Mercury was qualified with a "J" in SMC-GW09D-01A.

Laboratory Control Sample (LCS) Analysis

The LCS was prepared and analyzed at the correct frequency. All percent recoveries were within the acceptance

نبيه نيس

range (80-120%).

Standard Addition Results

Method of standard addition analysis was correctly performed on sample SMC-GW02D-01A for arsenic. The correlation coefficient was acceptable.

ICP Serial Dilution Analysis

The ICP aqueous serial dilutions were performed on samples (SMC-GW09D-01A and SMC-GW06D-01A). All analyses were compliant except magnesium, manganese, potassium, and copper.

ACTION: Copper and potassium flagged "R" rejected in samples GW01D, GW02D, GW03D, GW04D AND GW06D.

Magnesium and manganese were flagged "J" estimated in samples GW01D, GW02D, GW03D, GW04D AND GW06D.

Instrument Detection Limit (IDL) Analysis

The IDLs were all lower than the CRDL and were generated on 3 March 1992 by the laboratory.

Interelement Corrections for ICP

No interelement corrections were applied by the laboratory. The forms were not dated.

Linear Range Analysis

The linear range for the ICP analyses was supplied by the laboratory. None of the concentrations of the samples in this group approached these upper limits.

Furnace AA OC Analyses

Samples were run in duplicate. The acceptance window for the RSD (20%) was exceeded in many cases but all concentrations were less than the CRDL.

Calculations

All checked calculations were within rounding errors.

Prepared By: Lanela Greenlan Date: 15 March 1993

أجيره

General Chemistry

Seven aqueous samples analyzed for alkalinity, chloride, cyanide, DOC, fluoride, sulfate and TSS were validated using the following information:

- Sample hold time
- Instrument calibration
- Initial calibration verification (ICV) and continuing calibration verification (CCV)
- · Method blank
- Spike and spike duplicate Sample Analysis
- Duplicate sample analysis
- · Laboratory Control Sample (LCS) Analysis
- Calculations

Sample hold time

All samples were prepared within holding times.

Instrument Calibration

All instruments were calibrated daily with dates and times clearly shown on the raw data. The proper sequence of instrument blanks and standards were used.

ICV and CCV

The percent recovery for all analytes were within the prescribed windows and analyzed at the correct frequency in the injection sequence.

Method Blank

All laboratory blanks were analyzed at the correct frequency with concentrations of analytes at or below the detection limit during the injection sequence.

Spike and Spike Duplicate Sample Analysis

The spike sample recovery was performed on a true sample and was compliant.

Duplicate Sample Analysis (D)

The laboratory duplicate analysis was performed on true sample and was acceptable for all parameters.

Laboratory Control Sample (LCS) Analysis

The LCS was prepared and analyzed at the correct frequency. All percent recoveries were within the acceptance range (80-120%).

Calculations

All checked calculations were within rounding errors.

Prepared By: Lanuly Greenlaw Date: 15 March 1993

Bath Toxicology Group, Inc.

نبيه نعيه

Stauffer Management Company RI/FS Data Package 920523

ŧ

This data report covers data package 920523 submitted by EA Laboratories concerning analysis of one soil sample collected at Stauffer Management Company Facility at Skaneateles Falls.

SMC-MW05-01A collected 4/22/92

Organic Validation

One soil sample analyzed for Target Compound List (TCL) organics and total petroleum hydrocarbons (TPH)was validated following the United States Environmental Protection Agency (USEPA) Region II procedures for samples analyzed using the Contract Laboratory Program (CLP) Statement of Work (SOW) February, 1988 (as stated in table 1 Analytical Methods attached to the case narrative). These samples were to have been analyzed by the NYSDEC Analytical Services Protocol 1990. The laboratory control samples were analyzed as required by the NYSDEC ASP but the 1990 CLP was not followed. The following information was used to validate the analytical results:

- Sample hold time
- Instrument tune
- Initial and continuing calibration
- Surrogate recoveries
- MS/MSD analysis
- Internal Standards
- Analysis sequence
- Method blank contamination
- Field and trip blank contamination
- Ion spectra match
- Chromatogram quality
- Calculations
- Laboratory Control Sample

The New York State Department of Environmental Conservation's (NYSDEC) required summary table is attached.

Sample Hold Time

The BNA, TPH and Pesticide/PCB analyses were performed within the prescribed hold times. The volatile analysis was performed on 5/5/92 with collection on 4/22/92, 13 days after collection. The Region 2 recommended holding time is ten days.

ACTION: All VOA analytes except xylenes flagged "UJ" estimated. Xylenes flagged "J" estimated. All potential low bias.

Instrument Tune

The GC/MS's were tuned with BFB (VOA) and DFTPP (BNA). All QC criteria were compliant. No tune is required for TPH or pesticide/PCB analyses since they are not performed using a mass spectrometer.

Bath Toxicology Group, Inc.

1

Initial and Continuing Calibration

In the initial calibration of VOAs and BNAs, the relative response factors (RRFs) and relative standard deviations (RSDs) of each analyte is assessed. In the continuing calibration of VOAs and BNAs, the RRF and Percent Difference of the RRFs (%D) of each analyte is assessed. For the pesticide/PCB and TPH analyses, the RSDs of the calibration factors (CFs) of the initial calibration and %D of the CFs for the continuing calibration are assessed.

RRF < 0.05:	all compliant
%D >25%:	bromoform (31.80%)
RSD >30%	4-methylphenol (31.02%) N-nitroso-di-n-propylamine (33.23%) isophorone (31.53%)

No action required since analyses for these compounds were all non-detect.

Several compounds had CF %Ds > 15% for the pesticide fraction but no analyses required quantitation so the CFs were not used. The TPH calibrations weree within control limits.

Surrogate Recovery

The surrogate recoveries for all VOA, TPH and semivolatile analyses were within acceptance criteria. The pesticide/PCB surrogate recoveries was above the acceptable limit. (178% limit 150%)

ACTION: All compounds flagged "J" estimated for pesticide/PCBs in sample. (all non-detect potential high bias)

MS/MSD Analyses

A true sample was used for MS/MSD analyses. Recoveries and RPDs were compliant except for the soil MS/MSD:

Semivolatile: very low recovery of 2,4-dinitrotoluene due to large interfering unknown peak, slightly high RPD for 4-nitrophenol.

ACTION: 2,4-dinitrotoluene rejected "R"

Pesticide/PCB - The recovery was high for endrin due to coelution. No action since endrin was not detected in sample.

Internal Standard Response

The internal standard response was within acceptable limits for all samples.

Analysis Sequence

The VOA and BNA analyses were run within 12 hours of instrument tune. The CLP contractual 72-hour sequence for pesticide/PCB analysis was used as required.

Bath Toxicology Group, Inc.

Method Blank Contamination

The Volatile, Semivolatile, TPH and Pesticide/PCB method blanks contained no identifiable compounds.

Field and Trip Blank Contamination

There were no field or trip blanks analyzed with this sample delivery group.

Ion Spectra Match

All target compound ion spectra correctly matched the standard spectrum. Three TIC's were rejected in the semivolatile fraction because they are on the volatile target compound list.

Chromatogram Quality

The chromatograms were of acceptable quality.

Calculations

All checked calculations were correct within rounding errors.

Laboratory Control Sample

Laboratory control samples were analyzed with each fraction as specified by the NYSDEC ASP. The results were within the specified criteria.

Prepared By: Landa Kelenlan Date: 15 March 1993

Inorganic Validation

One soil sample analyzed for Target Analyte List inorganics was validated according to current USEPA Region II protocols. The following information was used to validate the analytical results:

- Sample hold time
- Instrument calibration
- Initial calibration verification (ICV) and continuing calibration verification (CCV)
- · CRDL standards for AA (CRA) and ICP (CRI)
- Initial calibration blank (ICB), continuing calibration blank (CCB) and preparation blank (PB) analyses
- Spike Sample Analysis
- Duplicate sample analysis
- Laboratory Control Sample (LCS) Analysis
- Standard Addition results
- ICP Serial Dilution Analysis
- · Instrument Detection Limit (IDL) Analysis
- Interelement corrections for ICP
- Linear Range Analysis
- Furnace QA/QC Analyses
- Calculations

Attached is the New York State Department of Environmental Conservation's (NYSDEC) required summary table.

Sample hold time

All metals and mercury analyses were extracted within holding times.

Instrument Calibration

No raw data included, so calibration not verified.

ICV and CCV

The percent recovery for all analytes were within the prescribed windows and analyzed at the correct frequency in the injection sequence.

CRDL Standards

The CRDL standards were run at the correct frequency and appropriate concentration for each analyte, all recoveries were compliant.

Laboratory Blanks (ICB, CCB, PB)

All laboratory blanks were analyzed at the correct frequency during the injection sequence. Aluminum, antimony, barium, calcium, cobalt, iron, magnesium, nickel, sodium, thallium, and vanadium were found in the calibration blanks. Antimony, barium, calcium, chromium, cobalt, iron, magnesium, nickel, potassium, sodium and vanadium were found in the preparation blank. All concentrations were below the CRDL. No action was warranted.

rations		
ICB	CCB	PB
-159,-38.9	-118.3,-18.1,-98.7,-126.6	
	-25	-3.3
113.5	-61.4,-50.1	-6.9
67.4	77.9, 66	8.4
		-0.6
-10.1	-9.8	-2.2
-19.9	-17.5,-19.6, 6.1	-2.1
218	295.6, 247.8	33.3
-16.8	-8.4	-2
		32.7
1412	2065.6, 1900	250
	1.2	
-11.2		-2
	ICB -159,-38.9 113.5 67.4 -10.1 -19.9 218 -16.8 1412	ICB CCB -159,-38.9 -118.3,-18.1,-98.7,-126.6 -25 113.5 -61.4,-50.1 67.4 77.9, 66 -10.1 -9.8 -19.9 -17.5,-19.6, 6.1 218 295.6, 247.8 -16.8 -8.4 1412 2065.6, 1900 1.2 1.2

ICP Interference Check Sample (ICS)

The ICS percent recoveries were all within the acceptance window (80-120 %).

Spiked Sample Analysis

The spike sample recoveries were performed on the sample. The data were acceptable except antimony (14.1%), cadmium (62.6%), chromium (68%), mercury (296.3%), selenium (70.7%) and silver (50.6%).

ACTION: Antimony, cadmium, chromium, selenium and silver flagged "J" in sample. (potential low bias) Mercury rejected in the sample.

Duplicate Sample Analysis (D)

The laboratory duplicate analysis was performed on the sample. Calcium, chromium, copper, lead, magnesium, mercury and zinc had RPDs > 20% but less than 100%. No action required, analytes correctly flagged *.

Laboratory Control Sample (LCS) Analysis

An LCS was prepared and analyzed at the correct frequency, however, an aqueous LCS was used rather than a solid LCS as required. The percent recovery for silver was only 36.1%. All other recoveries were within the acceptance range (80-120%).

ACTION: All analytes not previously qualified, flagged "J" estimated.

Standard Addition Results

Method of standard addition analysis was not required.

ICP Serial Dilution Analysis

The ICP aqueous serial dilution was performed on the sample as required. Barium (18.6%) and chromium (14.7%) were correctly flagged E (%D > 10%). No action taken since all analytes flagged "J".

Instrument Detection Limit (IDL) Analysis

The IDLs were all lower than the CRDL and were generated on 3 March 1992 by the laboratory.

Interelement Corrections for ICP

No interelement corrections were applied by the laboratory. The forms were not dated.

Linear Range Analysis

The linear range for the ICP analyses was supplied by the laboratory. None of the concentrations of the samples in this group approached these upper limits.

Furnace AA OC Analyses

Samples were run in duplicate. The raw data was not supplied so RSDs could not be checked. Selenium was flagged "W".

Calculations

Raw data not supplied so calculations not checked.

Prepared By: Lamel heerla Date: 15 March 1993

6

تبد البد

General Chemistry

One soil sample analyzed for cyanide was validated using the following information:

- Sample hold time
- Instrument calibration
- Initial calibration verification (ICV) and continuing calibration verification (CCV)
- Method blank
- · Spike and spike duplicate Sample Analysis
- Duplicate sample analysis
- Laboratory Control Sample (LCS) Analysis
- Calculations

Sample hold time

The sample was extracted within holding times.

Instrument Calibration

The instrument was calibrated daily with dates and times clearly shown on the raw data. The proper sequence of instrument blanks and standards were used.

ICV and CCV

The percent recovery for all analytes were within the prescribed windows and analyzed at the correct frequency in the injection sequence.

Method Blank

All laboratory blanks were analyzed at the correct frequency with concentrations of analytes at or below the detection limit during the injection sequence.

Spike and Spike Duplicate Sample Analysis

The spike sample recovery was performed on a true sample and was compliant.

Duplicate Sample Analysis (D)

The laboratory duplicate analysis was performed on true sample and was acceptable for all parameters.

Laboratory Control Sample (LCS) Analysis

The LCS was prepared and analyzed at the correct frequency. All percent recoveries were within the acceptance range (80-120%).

Calculations

All checked calculations were within rounding errors.

Prepared By: Kanula / Sulerlan Date: 15 March 1993

Bath Toxicology Group, Inc.

7

. مدنيد

Stauffer Management Company RI/FS Data Package 920562

This data report covers data package 920562 submitted by EA Laboratories concerning analysis of 3 water samples and one trip blank collected at Stauffer Management Company Facility at Skaneateles Falls.

SMC-GW05D-01A collected 5/14/92 SMC-GW10D-01A collected 5/14/92 SMC-GW11D-01A collected 5/14/92 Trip blank collected 5/14/92

Organic Validation

Four aqueous samples analyzed for Target Compound List (TCL) organics using the New York Analytical Services Protocol 1990 were validated following the United States Environmental Protection Agency (USEPA) Region II SOP HW-6 revision 7 for samples analyzed using methods from the Contract Laboratory Program (CLP) Statement of Work (SOW) February, 1988 (as stated in table 1 Analytical Methods attached to the case narrative). These samples were to have been analyzed by the NYSDEC Analytical Services Protocol 1990. The laboratory control samples were analyzed as required by the NYSDEC ASP but the 1990 CLP was not followed. The following information was used to validate the analytical results:

- Sample holding time
- Instrument tune
- Initial and continuing calibration
- Surrogate recoveries
- MS/MSD analysis
- Internal Standards
- Analysis sequence
- Method blank contamination
- Field and trip blank contamination
- · Ion spectra match
- · Chromatogram quality
- Calculations
- Laboratory Control Sample (LCS)

The summary of qualified data is attached.

Sample Holding Time

All VOA, BNA and Pesticide/PCB samples were analyzed within the prescribed hold times except GW05D-01A pesticide/PCB (5 days prescribed holding time) which required reextraction due to interference in the original analysis. The MS/MSD were also performed on this sample and were non-detect for all target compounds.

Table of holding time violations:

sample	matrix	preserved	date sampled	date received	date extracted
GW05D-01A	aqueous	ice only	5/14/92	5/15/92	6/1/92

ACTION: All analytes in the GW05D-01A pesticide/PCB analysis were flagged "UJ" estimated. (potential low bias)

1

-

Instrument Tune

The GC/MS's were tuned with BFB (VOA) and DFTPP (BNA). All QC criteria were compliant. No tune is required for pesticide/PCB analyses.

Initial and Continuing Calibration

In the initial calibration of VOAs and BNAs, the relative response factors (RRFs) and relative standard deviations (RSDs) of each analyte is assessed. In the continuing calibration of VOAs and BNAs, the RRF and Percent Difference of the RRFs (%D) of each analyte is assessed. For the pesticide/PCB analyses, the RSDs of the calibration factors (CFs) of the initial calibration and %D of the CFs for the continuing calibration are assessed.

RRF <0.05: none RSD >30%: none %D >25%: chloromethane (29.9) bromomethane (26.2) methylene chloride (30.5) carbon disulfide (27.4) 1,1,1-trichloroethane (33.5) carbon tetrachloride (31.6) bromodichloromethane (30.6) 4-methyl-2-pentanone (32.5) trans-1,3-dichloropropene (32)

ACTION: No action is required since these compounds were not detected in the samples.

Surrogate Recovery

The surrogate recoveries for all VOA, BNA, and pesticide/PCB analyses were within acceptance criteria.

MS/MSD Analyses

A true sample (GW05D-01A) was used for MS/MSD analyses. All recoveries and RPDs were compliant.

Internal Standards

Internal standards are required for VOA and BNA analysis only. The internal standard areas and retention times were within the specified criteria.

Analysis Sequence

The VOA and BNA analyses were run within 12 hours of instrument tune. The CLP contractual 72-hour sequence for pesticide/PCB analysis was used as required.

Method Blank Contamination

The method blanks contained no identifiable compounds.

2

- -

Field and Trip Blank Contamination

The trip blank contained no identifiable compounds. There were no field blanks with this package.

Ion Spectra Match

All ion spectra correctly matched the standard spectrum.

Chromatogram Quality

All chromatograms were of acceptable quality except for the original analysis of sample GW05D-01A which according to the case narrative had a large group of peaks in the middle of the chromatogram. The MS and MSD of the same sample did not contain these peaks so the sample was reextracted. The reextracted sample did not contain the extra peaks but was extracted 13 days outside of holding time.

Calculations

All checked calculations were correct within rounding errors.

Laboratory Control Sample

Laboratory control samples were analyzed along with each fraction as required by the NYSDEC ASP. The results were all within the specified criteria.

Prepared By: Hamela Beenlaw Date: 25 January 1993

نيه مير

Inorganics

Three aqueous samples analyzed for Target Analyte List (TAL) inorganics were validated according to current USEPA Region II protocols. The following information was used to validate the analytical results:

- Sample holding time
- · Instrument calibration
- Initial calibration verification (ICV) and continuing calibration verification (CCV)
- · CRDL standards for AA (CRA) and ICP (CRI)
- Initial calibration blank (ICB), continuing calibration blank (CCB) and preparation blank
- (PB) analyses
 - Spike Sample Analysis
 - Duplicate sample analysis
 - Laboratory Control Sample (LCS) Analysis
 - ICP Serial Dilution Analysis
 - Instrument Detection Limit (IDL) Analysis
 - · Interelement corrections for ICP
 - Linear Range Analysis
 - Furnace QA/QC Analyses
 - Calculations

The validated data are attached (Attachment A). Attachment B is the New York State Department of Environmental Conservation's (NYSDEC) required summary table.

Sample holding time

All metals and mercury analyses were extracted within holding times.

Instrument Calibration

All instruments were calibrated daily with dates and times clearly shown on the raw data. The proper sequence of instrument blanks and standards were used. A 2-point calibration for ICP, 5-point for mercury and 4-point calibration for furnace AA were used, as required.

ICV and CCV

The percent recovery for all analytes were within the prescribed windows and analyzed at the correct frequency in the injection sequence.

CRDL Standards

The CRDL standards were run at the correct frequency and appropriate concentration for each analyte. Silver had non-compliant CRDL recovery (73.6%) for the final CRDL standard.

ACTION: Silver was flagged "J" estimated in samples GW10D-01A and GW11D-01A. (potential low bias.)

Laboratory Blanks (ICB, CCB, PB)

All laboratory blanks were analyzed at the correct frequency during the injection sequence.

	ICB	CCB	PB
aluminum	-30.4	46.5, 13.7	31.1
antimony			-55.5
barium	31.8	65.0, 129.7, 42.5	121.5
calcium			88.5
chromium		-4.5	5.0
cobalt	-14.0	-8.8, -9.8	
copper	15.2	18.9, 14.7, 8.0	22.4
iron			36.3
magnesium	115.2	156.9, 105.8	162.8
potassium	-1057.8	-631.2, -597.8	-856.3
selenium	-1.3	-1.1, -1.3	-1.1
sodium	1098.6	1379.6, 959.6, 635.7	1479.1

All concentrations were below the CRDL. No action was warranted.

ICP Interference Check Sample (ICS)

The ICS percent recoveries were all within the acceptance window (80-120 %).

Spiked Sample Analysis

The spike sample recovery was performed on a true sample (GW05D-01A). Silver (65.2%) and thallium (70.8%) were outside the acceptance window (75-125%).

ACTION: Silver and thallium were qualified with a "J" in all samples. (potential low bias)

Duplicate Sample Analysis (D)

The laboratory duplicate analysis was performed on a true sample (GW-05D-01A). Barium was outside the acceptance window of + CRDL. (543.5 and 271.6 - CRDL 200)

ACTION: Barium was qualified "J" estimated in all samples.

Laboratory Control Sample (LCS) Analysis

The LCS was prepared and analyzed at the correct frequency. All percent recoveries were within the acceptance range (80-120%).

ICP Serial Dilution Analysis

The ICP serial dilution was performed on a true sample (GW11D-01A). Aluminum (119.3%), barium (100%), copper (252.4%), manganese (100%), nickel (100%), potassium (100%) and sodium(17.3%) exceeded the acceptance criteria for percent difference (10%). Samples which had concentrations above 10x IDL not previously flagged were qualified.

Bath Toxicology Group, Inc.

5

نيو. نيد

ACTION: Aluminum, barium and potassium were qualified "R" (rejected) in GW05D-01A, GW05D-01A and GW11D-01A.

Sodium was qualified "J" in all samples.

Instrument Detection Limit (IDL) Analysis

The IDLs were all lower than the CRDL and were generated on 3 March 1992 by the laboratory.

Interelement Corrections for ICP

No interelement corrections were applied by the laboratory. The forms were no dated.

Linear Range Analysis

The linear range for the ICP analyses was supplied by the laboratory. None of the concentrations of the samples in this group approached these upper limits.

Furnace AA QC Analyses

Samples were run in duplicate. The acceptance window for the RSD (20%) was exceeded in many cases but all concentrations were less than the CRDL. Post digestion spike samples were also analyzed and correctly flagged "W" when out of the control limits:

selenium: GW05D-01A and GW10D-01A thallium: GW05-01A, GW10D-01A, and GW11D-01A

Calculations

All checked calculations were within rounding errors.

Prepared By: Lanele Treeslaw Date: 25 January 1993

General Chemistry

Three aqueous samples analyzed for alkalinity, chloride, cyanide, DOC, fluoride, sulfate and TSS were validated using the following information:

- Sample holding time
- Instrument calibration
- Initial calibration verification (ICV) and continuing calibration verification (CCV)
- · Method blank
- Spike and spike duplicate Sample Analysis
- Duplicate sample analysis
- Laboratory Control Sample (LCS) Analysis
- Calculations

Sample hold time

All samples for general chemistry and cyanide analyses were extracted within specified holding times.

Instrument Calibration

All instruments were calibrated daily with dates and times clearly shown on the raw data. The proper sequence of instrument blanks and standards were used.

ICV and CCV

The percent recovery for all analytes were within the prescribed windows and analyzed at the correct frequency in the injection sequence.

Method Blank

All laboratory blanks were analyzed at the correct frequency during the injection sequence. The method blank for alkalinity measured 1.0 (the detection limit). No action taken since the samples were much greater than the detection limit.

Spike and Spike Duplicate Sample Analysis

The spike sample recovery was performed on a true sample (GW05D-01A). Alkalinity had low recoveries for both spike and spike duplicate were low (36.6% and 41.9%) Recovery for sulfate and DOC were slightly low for one analysis (74.2% and 70.0%).

ACTION: Alkalinity was qualified "J" in all samples. (potential low bias)

Duplicate Sample Analysis (D)

The laboratory duplicate analysis was performed on a true sample (GW-05D-01A). All Relative percent differences were within acceptable ranges.

Bath Toxicology Group, Inc.

Laboratory Control Sample (LCS) Analysis

The LCS was prepared and analyzed at the correct frequency. All percent recoveries were within the acceptance range (80-120%).

Calculations

All checked calculations were within rounding errors.

Prepared By: Handa Allenlan Date: 25 January 1993

نيد مير

ORGANIC DATA LIMITATION AND VALIDATION REPORT

Project Site: ICI Skaneateles Falls, NY
Sample Type: Water(4) and soils(9)
Analysis Type: CLP volatiles Organics
Laboratory: EA Laboratories Inc.
SDG No.: MW5-SB01

A. INTRODUCTION

Four aqueous samples (1 field blank, two trip blanks, and open pit) and nine soil samples analyzed by CLP Volatile Organics were validated following the procedures outlined in the EPA Region 2 Standard Operating Procedure No. HW-6 (Revision No. 8 January 1992). The following information was used to validate the analytical results:

- Sample holding time before analysis
- Instrument tune
- Initial and continuing calibration
- Surrogate recoveries
- Internal standard areas
- MS/MSD analyses
- Laboratory control samples
- Analysis Sequence
- Method blank contamination

1

• Compound identification and Ion spectra match

منبو ما

- Chromatogram quality
- Calculations
- Other QC

The holding time tables are attached to this report.

B. CONTRACT AND TECHNICAL REVIEW

Site:ICI Skaneateles Falls, NYType:CLP Volatiles OrganicsLaboratory:EA Laboratories Inc.SDG No.:MW5-SB01Sample Identification:

Lab ID Field ID 9684 MW5-SB06 9685 MW5-SB01 9686 MW5-SB2B MW5-SB03 9687 9688 FB (11/20/92) 9689 TB (11/20/92) MW5-SB07 9927 9928 MW5-SB04 MW5-SB09 9929 MW5-SB08 9930 9931 MW5-SB05 9932 TB (11/22/92) 9944 OPEN PIT

Contract and Technical Review (CTR) Comments

1. <u>Sample Hold Time Before Analysis</u>: All VOA analyses were performed within NYSDEC ASP contractual and EPA technical holding times except field blank(9688) and trip blank(9689).

مين ميد

Action(s):

- a. Aromatic analytes in field blank(9688) and trip blank(9689) were estimated "J" due to holding time.
- 2. <u>Instrument Tune</u>: The GC/MS was tuned with BFB (VOA). All QC criteria were compliant and all samples were analyzed within 12 hours of the tune.

- 3. <u>Initial and Continuing Calibrations</u>: In the initial calibration of VOAs, the relative response factors (RRFs) and relative standard deviations (RSDs) of each analyte in the multi-concentration calibration is assessed. In the continuing calibration, the RRF and percent difference of the RRFs (%D) of each analyte is assessed. The following non-compliance were noted in one or more calibrations.
 - RSD>30% chloromethane (37.1), and 2-butanone(38.8).

%D>25% chloromethane (25.94,54.01), chloroethane (25.94), acetone (78.52,88.59,27.48), 2hexanone (35.67,45.61,39.56,), vinyl chloride (29.40), 1,2-dichloroethane(total) (30.11), 4-methyl-2-pentanone (28.32), and 2butanone (49.04).

Action(s):

- a. Chloromethane was estimated "J" in nine soil samples MW5-SB06, MW5-SB01, MW5-SB2B MW5-SB03, MW5-SB07, MW5-SB04, MW5-SB09, MW5-SB08, and MW5-SB05 due to RSD>30%.
- b. Chloromethane was estimated "J" in three diluted soil sample MW5-SB01DL, MW5-SB04DL, and MW5-SB05DL due to RSD>30%.
- c. 2-butanone was estimated "J" in two samples TB (9932) and OPEN PIT (9944) due to RSD>30%
- d. Acetone and 2-hexanone were estimated "J" in eight soil samples MW5-SB06, MW5-SB01, MW5-SB2B MW5-SB03, MW5-SB07, MW5-SB04, MW5-SB08, and MW5-SB05 due to %D>25%.
- e. Acetone, vinyl chloride, 1,2-dichloroethane(total), and 2-hexanone were estimated "J" in one soil sample MW5-SB09 due to %D>25%.
- f. 2-hexanone and 4-methyl-2-pentanone were estimated "J" in two samples TB (9932) and OPEN PIT (9944) due to %D>25%.
- g. Acetone was estimated "J" in three diluted soil sample MW5-SB01DL, MW5-SB04DL, and MW5-SB05DL due to %D>25%.
- h. No actions were taken for 2-butanone, 2-hexanone, and 4-methyl-2-pentanone in the field blank(9688) and trip blanks(9689,9932) since they were already qualified for other criteria.

- 4. <u>Surrogate Recovery</u>: Surrogates measures the ability of the laboratory to extract the targeted analytes by evaluating the recovery of three indicator compounds which are structurally similar to some targeted analytes as indicators for all the analytes. The surrogate recoveries for the VOA analyses were within acceptable limits.
- 5. <u>Internal Standards</u>:GC/MS analytes concentrations are calculated based on the analytes detector response normalized to a standard(s) injected with the sample. Quantification was based upon three internal standards (bromochloromethane, 1,4-difluorobenzene, and chlorobenzene). All internal standards areas were compliant except 1,4-difluorobenzene in sample MW5-SB09.

Action(s):

- a. 2-hexanone, 4-methyl-2-pentanone, tetrachloroethane, 1,1,2,2-tetrachloroethane, toluene, chlorobenzene, ethylbenzene, styrene, and xylene(total) in sample MW5-SB09 were estimated "J" due to low internal standard area.
- 6. <u>Matrix Spike/Matrix Spike Duplicate</u>: The MS/MSD recovery measures the potential for matrix interferences in the recovery of selected spiking compounds. The MS/MSD recoveries in the VOA analyses were within acceptable limits.
- 7. <u>LCS Recoveries</u>: The LCS (or matrix spike blank) measures the ability to recover selected analytes in water sample and is used to confirm that the laboratory can comply with the sample extraction analysis requirements. The LCS recoveries in the VOA analyses were within acceptable limits.
- 8. <u>Analysis Sequence</u>:VOA sample analyses are required to be run within 12 hours of GC/MS tune. The VOA analyses complied with the analysis sequences.

9. <u>Method Blank Contamination</u>: A method blank measures the potential for false-positive results introduced by internal laboratory contamination. A total of 3 VOA method blanks were analyzed. The three blanks were not contaminated with any target analyte. However, all the three blanks contained TICs.

Action(s):

- a. One TIC (RT 10.71 min) in nine samples MW5-SB06, MW5-SB01, MW5-SB2B MW5-SB03, MW5-SB07, MW5-SB04, MW5-SB08, and MW5-SB05, MW5-SB09, and one TIC (RT 18.53 min) in four samples MW5-SB01DL, MW5-SB04DL, MW5-SB05DL, and OPEN PIT (9944) were qualified with an "R" due to method blank contamination.
- Field and Trip Blank Contamination: Field and Trip Blank 10. Contamination : The field blank (FB) measures the potential for false-positive results introduced by improper field decontamination procedures of sampling equipment. The trip blank (TB) measures the potential for false-positive results introduced during sample holding in the shipping containers. A total of 2 trip blanks and 1 field blank were analyzed. The trip blanks (9689 and 9932) contained TICs (RT 18.52 min and 18.49 min). A FB (9688) contained TIC (RT 18.52 min), 1,1-dichloroethene, and total xylene. 1,1-dichloroethene was not found in any associated samples, hence no qualification was required. Futhermore no qualificatons were required for the TICs since associated samples were already qualified due to method blank contamination. Total xylene in sample MW5-SB06 was qualified with a "U" due to field blank contamination.
- 11. <u>Compound Identification and Spectra Match</u>:Verification of identification of an analyte is based upon the match between the relative ratios of the molecular fragments to the corresponding standard fragments in the GC/MS analysis of VOA compounds. All VOA ion spectra for the targeted analytes correctly matched the standard spectra.
- 12. <u>Chromatogram Quality</u>: The quality of the VOA chromatograms are evaluated to determine whether there are any interfering unknowns present which prevent the identification of the targeted analytes. All chromatograms were of acceptable guality.
- 13. <u>Calculations</u>: The reported analyte concentrations and any internal QC calculations are verified for their accuracy. All checked calculations were correct within rounding errors.

14. Other QC:Xylene exceeded calibration range in three samples MW5-SB01, MW5-SB04, and MW5-SB05. The laboratory correctly qualified the values with a "E". The reviewer transferred xylene values from diluted samples to undiluted samples. The Form 1 of the original samples should be used.

C. DATA LIMITATION OVERVIEW:

The VOA analyses of three water and nine soil samples from the ICI Skaneateles Falls, NY showed compliance with the QC requirements of EPA Region 2 SOP with the following EPA usability actions:

In field blank(9688) and trip blank(9689) aromatic analytes were estimated "J" due to holding time.

In nine soil samples MW5-SB06, MW5-SB01, MW5-SB2B MW5-SB03, MW5-SB07, MW5-SB04, MW5-SB09, MW5-SB08, and MW5-SB05 chloromethane was estimated "J" due to RSD>30%.

In three diluted soil samples MW5-SB01DL, MW5-SB04DL, and MW5-SB05DL chloromethane was estimated "J"due to RSD>30%.

In two water samples TB (9932) and OPEN PIT (9944) 2-butanone was estimated "J" due to RSD>30%.

In eight soil samples MW5-SB06, MW5-SB01, MW5-SB2B MW5-SB03, MW5-SB07, MW5-SB04, MW5-SB08, and MW5-SB05 acetone, chloroethane and 2-hexanone were estimated "J" due to %D>25%.

In one soil sample MW5-SB09 due to %D>25%. acetone, vinyl chloride, 1,2-dichloroethane(total), and 2-hexanone were estimated "J"

In three diluted soil sample MW5-SB01DL, MW5-SB04DL, and MW5-SB05DL acetone was estimated "J" due to %D>25%.

In two water samples TP (9932) and OPEN PIT (9944) 2-hexanone and 4-methyl-2-pentanone were estimated "J" due to %D>25.

In one sample MW5-SB09 2-hexanone, 4-methyl-2-pentanone, tetrachloroethane, 1,1,2,2-tetrachloroethane, toluene, chlorobenzene, ethylbenzene, stryrene, and xylene(total) were estimated "J" due to low internal standard area. In nine samples MW5-SB06, MW5-SB01, MW5-SB2B MW5-SB03, MW5-SB07, MW5-SB04, MW5-SB08, MW5-SB05, and MW5-SB09 one TIC (RT 10.71 min) and in four samples MW5-SB01DL, MW5-SB04DL, MW5-SB05DL, and OPEN PIT (9944) one TIC (RT 18.53 min) were qualified with an "R" due to method blank contamination.

In sample MW5-SB06 total xylene was qualified with a "U" due to field blank contamination.

No data qualifiers were applied to internal laboraatory QC samples (e.g. MS/MSD, method blanks). No qualifiers were applied since these analyses are not provided to the data user.

Prepared by: Inmanuel MUM Date:10 January 1993 Emmanuel AV Nyako

ORGANIC DATA LIMITATION AND VALIDATION REPORT

Project Site: ICI Skaneateles Falls, NY
Sample Type: Air(4)
Analysis Type: EPA Method TO-2 Organics
Laboratory: CTM Analytical Laboratories Ltd.
SDG No.: SMC-01

A. INTRODUCTION

Four air samples analyzed by EPA Method TO-2 Volatile Organics were validated following the procedures outlined in the EPA Region 2 Standard Operating Procedure No. HW-6 (Revision No. 8 January 1992). The following information was used to validate the analytical results:

- Sample holding time before analysis
- Instrument tune
- Initial and continuing calibration
- Surrogate recoveries

تيد تيد

- Internal standard areas
- MS/MSD analyses
- Laboratory control samples
- Analysis Sequence
- Method blank contamination
- Compound identification and Ion spectra match
- Chromatogram quality
- Calculations
- Other QC

The holding time tables are attached to this report.

B. CONTRACT AND TECHNICAL REVIEW

Site:ICI Skaneateles Falls, NYType:EPA Method TO-2 OrganicsLaboratory:CTM Analytical Laboratories Ltd.SDG No.:SMC-01

Sample Identification:

Field ID	<u>Lab ID</u>
SMCAS-1	921105N-01
SMCAS-2	921105N-02
SMCAS-3	921105N-03
SMCAS-4	921105N-04

Contract and Technical Review (CTR) Comments

- 1. <u>Sample Hold Time Before Analysis</u>: All TO-2 analyses were performed within NYSDEC ASP contractual and EPA technical holding times.
- 2. <u>Instrument Tune</u>: The GC/MS was tuned with BFB (VOA) All QC criteria were compliant and all samples were analyzed within 12 hours of the tune.
- 3. <u>Initial and Continuing Calibrations</u>: In the initial calibration of VOAs, the relative response factors (RRFs) and relative standard deviations (RSDs) of each analyte in the multi-concentration calibration is assessed. In the continuing calibration, the RRF and percent difference of the RRFs (%D) of each analyte is assessed. The following non-compliance were noted in one or more calibrations.

RRF<0.050 2-chloroethylvinylether (.0427)

RSD>30% 2-chloroethylvinylether (34.991), trichlorofluoromethane (46.818), and vinyl acetate (52.151).

%D>25% vinyl acetate (69.58), 2chloroethylvinylether(356.53), and bromomethane(27.68), Action(s):

- a. Trichlorofluoromethane and vinyl acetate were estimated "J" in four air samples SMCAS-1, SMCAS-2, SMCAS-3, and SMCAS-4 due to RSD>30%.
- b. Bromomethane was estimated "J" in four air samples SMCAS-1, SMCAS-2, SMCAS-3, and SMCAS-4 due to %D>25%.
- 4. <u>Surrogate Recovery</u>: Surrogates measures the ability of the laboratory to extract the targeted analytes by evaluating the recovery of three indicator compounds which are structurally similar to some targeted analytes as indicators for all the analytes. The surrogate recoveries for the VOA analyses were within acceptable limits.
- 5. <u>Internal Standards</u>:GC/MS analytes concentrations are calculated based on the analytes detector response normalized to a standard(s) injected with the sample. Quantification was based upon three internal standards (bromochloromethane, 1,4-difluorobenzene, and chlorobenzene). All internal standards areas were compliant.
- 6. <u>Matrix Spike/Matrix Spike Duplicate</u>: The MS/MSD recovery measures the potential for matrix interferences in the recovery of selected spiking compounds. The MS/MSD recoveries in the VOA analyses were within acceptable limits.
- 7. <u>LCS Recoveries</u>: The LCS (or matrix spike blank) measures the ability to recover selected analytes in water sample and is used to confirm that the laboratory can comply with the sample extraction analysis requirements. The LCS recoveries in the VOA analyses were within acceptable limits.
- 8. <u>Analysis Sequence</u>:VOA sample analyses are required to be run within 12 hours of GC/MS tune. The VOA analyses complied with the analysis sequences.
- 9. <u>Method Blank Contamination</u>: A method blank measures the potential for false-positive results introduced by internal laboratory contamination. One method blank was analyzed. The one blank was not contaminated with any target analyte.
- 10. <u>Field and Trip Blank Contamination</u>: Field and Trip Blank Contamination : The field blank (FB) measures the potential for false-positive results introduced by improper field decontamination procedures of sampling equipment. The trip blank (TB) measures the potential for false-positive results introduced during sample holding in the shipping containers. No trip blank or field blank was not provided for this SDG.

- 11. <u>Compound Identification and Spectra Match</u>:Verification of identification of an analyte is based upon the match between the relative ratios of the molecular fragments to the corresponding standard fragments in the GC/MS analysis of VOA compounds. All VOA ion spectra for the targeted analytes correctly matched the standard spectra.
- 12. <u>Chromatogram Quality</u>: The quality of the VOA chromatograms are evaluated to determine whether there are any interfering unknowns present which prevent the identification of the targeted analytes. All chromatograms were of acceptable quality.
- 13. <u>Calculations</u>: The reported analyte concentrations and any internal QC calculations are verified for their accuracy. All checked calculations were correct within rounding errors.
- 14. <u>Other QC</u>: 2-chloroethylvinylether was not part of the target analytes, hence it was not necessary to apply any qualification. All TIC's were qualified with "JN".

C. DATA LIMITATION OVERVIEW:

The VOA analyses of four air samples from the ICI Skaneateles Falls, NY showed compliance with the QC requirements of EPA Region 2 SOP with the following EPA usability actions:

- a. In four air samples SMCAS-1, SMCAS-2, SMCAS-3, and SMCAS-4 trichlorofluoromethane and vinyl acetate were estimated "J" due to RSD>30%.
- b. In four air samples SMCAS-1, SMCAS-2, SMCAS-3, and SMCAS-4 to bromomethane was estimated "J" due to %D>25%.

No data qualifiers were applied to internal laboraatory QC samples (e.g. MS/MSD, method blanks). No qualifiers were applied since these analyses are not provided to the data user.

Prepared by: Connanuel a Myakofmum Date: 10 January 1993 Emmanuel A. Nyako

.

•