

March 18, 2021

Ms. Brianna Scharf
New York State Department of Environmental Conservation
Division of Environmental Remediation, Bureau E, Section A
625 Broadway
Albany, New York 12233
Brianna.scharf@dec.ny.gov

RE: Response to Comments on the 2020 Periodic Review Report

South Hill Dump, Town of Cortlandville, New York

CHA Project No.: 34236 NYSDEC Site No.: 712009

Dear Ms. Scharf.

On behalf of the Town of Cortlandville, please find an enclosed copy of the revised 2020 Periodic Review Report for the South Hill Dump located in the Town of Cortlandville, New York. The document has been revised to reflect the comments provided in the New York State Department of Environmental Conservation's (NYSDEC's) comment letter dated March 10, 2021. The NYSDEC comments and CHA responses/report amendments are summarized below.

Comment 1: Table 2 – Groundwater Monitoring Well Results – "Detected Compounds Only" is presented in mg/l. TOGS is presented in ug/l. Please convert the table to ug/l.

Response 1: The table has been revised to display compounds in ug/l.

Comment 2: The PRR does not include any trend graphs for metals or volatile organic compounds (VOCs). Please include a set of trend graphs for VOCs and metals.

Response 2: CHA has included time series graphs for the compounds that were detected above TOGS 1.1.1 in Appendix C.

Comment 3: The PRR does not include a figure of groundwater analytical results that exceed Class GA ambient water quality standards (AWQS). Please provide a figure including chemical boxes with the groundwater analytical data that exceeds Class GA AWQS.

Response 3: Figure 5 has been included and displays the compounds that were detected which exceed the Class GA AWOS.

Comment 4: The PRR does not include any groundwater plume maps for Site related compounds of concern (COCs). Please provide a groundwater plume map with Total chlorinated VOCs.

Response 5: The purpose of a groundwater plume map is to understand how the groundwater contaminants are migrating through the environment. Typically, in order to create a groundwater plume map, a source area is identified, and concentrations downstream are used to delineate the

plume. The monitoring well network at the site consists of 11 wells, only two of which have detections of the contaminants of concern. The two wells are in relatively close proximity to one another and are not considered the source. Therefore, CHA has not prepared groundwater plume maps.

In addition to the items above, and the recommendations previously included in the PRR, CHA also requests the reduction in the requirement to submit a PRR from annual to bi-annual. While the site inspections will be performed annually, the report will be prepared the same year as the groundwater monitoring event and will summarize both annual inspections. If you have any questions, please do not hesitate to contact me at (315) 257-7154.

Sincerely,

Samantha J. Miller, P.E. Assistant Project Engineer III

SJM/cab

cc:

Sarah Saucier, Section Chief <u>Sarah.Saucier@dec.ny.gov</u>
Johnathan Robinson, NYSDOH Project Manager <u>Johnathan.Robinson@health.ny.gov</u>
Nate Kranes, TRC NKranes@trccompanies.com

2020 PERIODIC REVIEW REPORT

SOUTH HILL DUMP SOUTH HILL ROAD CORTLANDVILLE, NEW YORK

NYSDEC Site Number: 712009

CHA Project Number: 034236.000

Prepared for:

Town of Cortlandville Raymond G. Thorpe Municipal Building 3577 Terrace Road Cortland, New York 13045

Prepared by:

One Park Place 300 South State Street, Suite 600 Syracuse, New York 13202 Phone: (315) 471-3920 Fax: (315) 471-3569

> December 2020 Revised: March 2021

TABLE OF CONTENTS

1.0	SITE (Overvie	EW		1						
	1.1	Site B	ackground		1						
	1.2	Conta	minants of concern								
	1.3	Summ	mary of Site Remedy								
	1.4	Site Management Status									
2.0	Insti	TUTIONA	L/Enginee	ERING CONTROLS	5						
	2.1	Institu	5								
	2.2	Engin	geering Co	ontrols	5						
		2.2.1 Site-Wide Inspection									
			2.2.1.1	Landfill Cover System							
			2.2.1.2	Site Access Controls							
			2.2.1.3	Surface Water Drainage Conveyance Controls							
			2.2.1.4	Landfill Gas Vents							
		2.2.2	2.2.1.5	Groundwater Monitoring Wells							
		2.2.2	•	ents of the Monitoring Program							
		ng Completed During Reporting Period	8								
			2.2.3.1	Groundwater Elevation Monitoring	8						
			2.2.3.2	Groundwater Sampling							
			2.2.3.3	Surface Water Sampling							
			2.2.3.4	Seep Sampling							
			2.2.3.5	Sediment Sampling	9						
3.0	Mon										
	3.1			citon Results							
	3.2			Results							
		3.2.1	Groundw	rater Elevation Monitoring and Flow Direction	10						
		3.2.2	Groundw	ater Sampling	10						
		3.2.3	Sediment	Sampling	12						
4.0	SUMN	MARY. C	ONCLUSION	IS & RECOMMENDATIONS	14						
	4.1			C Theomata Difficial							
	4.2		•								
	4.3			ns							

LIST OF FIGURES

Figure 1 Figure 2 Figure 3 Figure 4	Site Location Map Site Layout Map Groundwater Potentiometric Map - Overburden Wells Only Groundwater Potentiometric Map - Bedrock Wells Only
Figure 5	2020 Analytical Data
	LIST OF TABLES
Table 1	Groundwater Elevation Data
Table 2	Groundwater Monitoring Well Results – Detects Only
Table 3	Sediment Results
	APPENDICES
Appendix A	Institutional & Engineering Controls Certification Forms
Appendix B	Landfill Inspection Forms
Appendix C	Groundwater Time Series Graphs
Appendix D	Laboratory Analytical Report

LIST OF ACRONYMS & ABBREVIATIONS

CHA CHA Consulting, Inc.

CVOC Chlorinated Volatile Organic Compound

DCE cis-1,2-Dichloroethylene
EC Engineering Controls
FER Final Engineering Report
IC Institutional Controls

MACTEC Engineering and Consulting, P.C.

NYS New York State

NYSDEC New York State Department of Environmental Conservation

PAH Polycyclic Aromatic Hydrocarbons

PCB Polychlorinated Biphenyls
PRR Periodic Review Report
RI Remedial Investigation
ROD Record of Decision
SMP Site Management Plan

SVOC Semi-Volatile Organic Compound

TCE Trichloroethene TMP Tax Map Parcel

TOGS Technical & Operational Guidance Series

USEPA Environmental Protection Agency VOC Volatile Organic Compound

1.0 SITE OVERVIEW

The South Hill Dump inactive hazardous waste disposal site (Site) was remediated in accordance with the Record of Decision (ROD) dated January 2008. A detailed description of the remedial actions completed at the Site is discussed in Section 1.3. On December 5th, 2016, the Town of Cortlandville (Town) entered an Order on Consent (Index No. R7-20150122-34) with the New York State Department of Environmental Conservation (NYSDEC) to implement the Site Management Plan (SMP), approved by NYSDEC in November 2015. This Periodic Review Report (PRR) is required as an element of the SMP developed for the Site and documents the groundwater monitoring event and site-wide inspections during the reporting year from January 1, 2020 to December 31, 2020.

The Site is a 10.4-acre parcel located off Sommerville Road in the Town of Cortlandville, Cortland County, New York and is identified as Tax Map Parcel (TMP) No. 109.00-01-02.000 on the Cortland County Tax Map. The Site is bounded by South Hill Road to the north and surrounded by forested land to the west, south, and east. Agricultural land is the primary land use along the north side of South Hill Road. A Site location map is included as Figure 1. An aerial image showing the boundaries and layout of the Site is provided as Figure 2.

1.1 SITE BACKGROUND

The Site was reportedly used as a local waste disposal location by residents as early at 1949 and officially operated as an unlined solid waste disposal facility, controlled by the Town of Cortlandville, from approximately 1960 to 1972. Industrial and municipal wastes were accepted from the Town of Cortlandville, Town of Solon, and the Village of McGraw; however, access to the Site was reportedly unrestricted during this time. Site operations included pushing the waste over the working face of the landfill with cover material spread one or more times per week; however, prior to remedial action, various types of waste could be observed protruding from the surface of the landfill.

In 1990, the NYSDEC conducted a site-wide inspection and observed the presence of multiple drum carcasses as well as leachate seeps emanating from the landfill. During this inspection soil and leachate samples were collected, revealing the presence of chlorinated solvents and pesticides. In February 1991, the Site was assigned a Class 2 Hazardous Waste Site designation (sites considered to be a significant threat to the public health or environment - action required) based on the results of the 1990 site-wide inspection and the fact that laboratory analysis identified the presence of

pesticides and chlorinated solvents. Based on findings from intermittent sampling events from 1991 through 1994, a Remedial Investigation (RI) was proposed. The RI was conducted by Parsons Engineering Science, Inc, under contract by the NYSDEC. RI field activities included:

- The excavation of test pits to determine the vertical extent of solid waste, collection of subsurface soil samples, and characterization of the shallow lithology;
- The collection of samples from leachate seeps and the intermittent stream on the southeastern most region of the Site; and
- The installation of soil borings and groundwater monitoring wells to facilitate the collection of subsurface soil samples (during the boring installation) and groundwater samples following the well installations.

A feasibility study and remedial action were recommended in the RI Report due to the shallow depth to fractured bedrock at the Site, overall condition of the landfill at the time of the investigation, and analytical results confirming the presence of soil, surface water, and groundwater contamination. Following development of a feasibility study to evaluate remedial alternatives for the Site, MACTEC Engineering and Consulting, P.C. (MACTEC) conducted remedial actions at the Site in 2011 and 2012. A more detailed discussion of the Site remedial actions is provided in the SMP (MACTEC, 2015) and are summarized in Section 1.3 of this document. After the remedial actions were performed, the Site was reclassified as a Class 4 Inactive Hazardous Waste Site (Site Code 712009) designation (a site properly closed but requiring continued management) by the NYSDEC.

1.2 CONTAMINANTS OF CONCERN

The following types of contaminants were identified on the Site during the RI and remedial actions:

- Volatile organic compounds (VOCs)
 - Trichloroethene
 - 1,2-dichloroethene
- Semivolatile organic compounds (SVOCs)
 - Polycyclic Aromatic Hydrocarbons (PAHs)
- Polychlorinated biphenyls (PCBs)
- Heavy metals
 - Copper
 - Mercury
 - Nickel
 - Zinc
 - Cadmium

1.3 SUMMARY OF SITE REMEDY

The selected remedy for the Site included the following major components:

- Consolidation of waste from outside the proposed landfill boundary to within the landfill boundary;
- Installation of a sedimentation basin for additional erosion and sediment control;
- Grading of the landfill within the new boundary;
- Removal of bulk waste uncovered during grading and excavation of down-drain trenches;
- Installation of sloped benches and down-drains to reduce the likelihood of scour;
- Installation of landfill cover system, gas vents, perimeter access road waterbars to convey water across the Site roadways, and stormwater controls; and
- Seeding and mulching of vegetated areas.

In addition to the closure of the landfill, the Site remedy required that an Environmental Easement be placed on the property to: (1) require compliance with the November 2015 SMP; (2) restrict the use of groundwater as a potable water source; (3) periodically certify the Institutional Controls/Engineering Controls (IC/ECs) are in place and unchanged, which is included in this PRR; and, (4) limit the use and development of the Site to closed and capped/covered landfill only. The Environmental Easement for the Site was executed by the NYSDEC on September 30, 2013, and recorded with the Cortland County Clerk on October 11, 2013, and included in Appendix C of the SMP. A Final Engineering Report (FER) was written and submitted to the NYSDEC by MACTEC in 2014.

1.4 SITE MANAGEMENT STATUS

An annual PRR is required by NYSDEC to document status of the controls established by the SMP. This PRR was prepared by CHA Consulting, Inc. (CHA) on behalf of the Town of Cortlandville to document the status of the controls, established by the SMP, during 2020. The SMP requirements include:

- An annual inspection of the ICs and ECs; and
- Long-term monitoring of:
 - o Groundwater;
 - Surface water; and
 - o Sediment.

In the 2018 PRR, CHA requested groundwater, surface water, and sediment monitoring frequency to be reduced from once every 15 months, as written in the SMP, to once every 24 months. This was approved by the NYSDEC with concurrent approval of the 2018 PRR. Per this reduced monitoring frequency, groundwater, surface water, and sediment sampling were completed in September 2020.

2.0 INSTITUTIONAL/ENGINEERING CONTROLS

ICs and ECs have been established to protect public health and the environment for future use of the Site. The IC/ECs are designed to:

- Prevent ingestion/direct contact with remaining contamination;
- Prevent inhalation of or exposure to contaminants volatilizing from remaining contamination:
- Prevent ingestion of groundwater with contaminant levels that exceed drinking water standards; and
- Prevent contact with or inhalation of volatiles from contaminated groundwater.

The IC and EC Certification Forms are included in Appendix A.

2.1 INSTITUTIONAL CONTROLS

ICs are required to implement, maintain and monitor the ECs, control disturbance of contamination to prevent future exposure, and limit the use of the Site to its current use as a capped/covered landfill. ICs must remain in place unless the Environmental Easement is amended or terminated. The ICs implemented under the SMP include:

- Compliance with the Environmental Easement;
- Operation and maintenance of the ECs as specified in Section 4.0 of the SMP;
- Inspection and certification of the ECs on a semi-annual basis (i.e. in the spring and the fall);
- Implementation of the long-term environmental monitoring as defined in Section 3.0 of the SMP;
- Protection and replacement, as necessary, of on-site environmental monitoring devices; and
- Preparation of an annual report to regulatory agencies, as defined by the SMP.

2.2 ENGINGEERING CONTROLS

2.2.1 Site-Wide Inspection

2.2.1.1 Landfill Cover System

The landfill cover prevents exposure to the remaining contamination at the Site. The cover consists of 18-inches of cover soil and 6-inches of vegetated topsoil for an overall cover thickness of 24-inches. In the event the landfill cover is penetrated, removed, or severely disturbed, an Excavation

Plan included in Section 2.4 of the SMP, should be referred to for requirements for restoration of the cover system.

The landfill cover system was inspected for the evidence of erosion, cracks, and settlement of the cover soils. The drainage systems were inspected for evidence of leachate seeps. Vegetation was inspected for height, evidence of disturbance, and evidence of woody growth. The cover system inspection included examining the landfill for the presence of any live or dead vectors, animal droppings, and burrows.

2.2.1.2 Site Access Controls

Site access is controlled by a chain-link fence along South Hill Road and a locked gate at the vehicle entrance. A stone road provides access around the perimeter of the landfill boundary. Site access controls were inspected for evidence of trespassing such as breaks in the fence, broken locks, or vehicle tracks.

2.2.1.3 Surface Water Drainage Conveyance Controls

The perimeter access roads include waterbars to adequately convey surface water and prevent erosion of the stone road. Stone drainage pathways (down-drains or interceptor trenches) on the landfill cover convey most surface water to a riprap-lined drainage swale along the near centerline of the landfill and ultimately to the stormwater detention basin on the southern side of the landfill. Surface water not managed by the stone drainage pathways is conveyed to riprap swales along the perimeter of the landfill that also discharge to the stormwater detention basin to the south. The stormwater detention basin outlet creates an intermittent flow of water that discharges to an unnamed stream which then discharges to Hoxie Gorge Creek located approximately 550 feet to the southeast of the landfill. The drainage system was inspected to identify any erosion, siltation, settlement, or restriction to the flow of water in the drainage channels and piping on top of and around the perimeter of the landfill.

2.2.1.4 Landfill Gas Vents

Seven passive landfill gas vents were installed to collect potential landfill gas for direct venting to the atmosphere. The gas venting system was inspected by checking the vents for damage or blockages and checking the cap adjacent to the vents for settlement and stressed vegetation. These gas vents reduce the potential for accumulation and migration of landfill gas in the subsurface. Items

such as stressed vegetation and bubbling of surface water could indicate a malfunction of the gas venting system that cannot readily be detected upon visual inspection of the venting system itself.

2.2.1.5 Groundwater Monitoring Wells

Eleven groundwater monitoring wells were installed at the Site. The wells are constructed of polyvinyl chloride and are protected by lockable steel casings. All monitoring well casings, covers, locks, and associated structures were visually inspected to verify they are properly secured and not damaged.

2.2.2 Components of the Monitoring Program

The NYSDEC approved a reduction in the groundwater, surface water, and sediment sampling frequency from once per 15 months to once per 24 months. Per this reduced monitoring frequency, groundwater, surface water, and sediment samples were collected or analyzed in September 2020.

Components of the monitoring plan include:

Semiannually

• Water level measurements from the 11 groundwater monitoring wells on Site. Monitoring wells are set in clusters with screens in the shallow overburden and bedrock.

Biennially

- Groundwater sampling;
- Surface water sampling;
- Seep sampling (if observed); and
- Sediment sampling.

Following sample collection, the samples were delivered by CHA to Alpha Analytical Inc.'s (Alpha) Service Center in Syracuse, New York, for subsequent transport by Alpha to its laboratory in Westborough, Massachusetts, in accordance with proper chain-of-custody protocol. Alpha is currently certified by the New York State Department of Health's (NYSDOH) Environmental Laboratory Approval Program (ELAP). The samples were analyzed for one or more of the parameters below, as detailed in Section 2.2.3:

- VOCs via United States Environmental Protection Agency (USEPA) Method 8260C;
- Metals via USEPA method 6020B and 7470A; and/or
- PCBs via USEPA method 8082.

2.2.3 Monitoring Completed During Reporting Period

Monitoring activities were performed September 23rd, 2020 and are summarized in the following sections.

2.2.3.1 Groundwater Elevation Monitoring

Groundwater water level measurements were collected in June and September 2020 from each of the 11 groundwater monitoring wells shown on Figure 2.

2.2.3.2 Groundwater Sampling

Groundwater samples were collected in accordance with the SMP using "no purge" passive collection bags from all on-site monitoring wells. Groundwater results were compared to the Technical and Operational Guidance Series (TOGS) 1.1.1 New York State (NYS) Class GA Ambient Water Quality Standards. The groundwater samples were placed directly into laboratory-supplied containers, which were labeled with the project name, sample identification, date, time, sampler's initials, and applicable laboratory analyses. Samples were submitted to Alpha Analytical for the following analyses:

- VOCs via EPA Method 8260C; and,
- Total Metals via EPA Methods 6020B and 7470A.

2.2.3.3 Surface Water Sampling

A surface water sample was not collected from the stormwater detention basin outfall during the September 2020 monitoring event due lack of standing water from the recent drought conditions. If conditions allow, a surface water sample will be collected during the next monitoring event in 2022.

2.2.3.4 Seep Sampling

Leachate seeps were observed on the surface of the landfill during the remedial action in 2012 and were addressed via excavating saturated soil and solid waste in the seep areas and replacing the materials with borrow material and a geosynthetic geogrid. During the 2013 landfill inspection,

minor groundwater seeps remained. Though the seeps were relatively minor in 2013, compared to 2012, a requirement to sample observed seeps, if any, was added to the SMP.

At the time of the 2020 fieldwork, there were no active seeps observed, and therefore, no leachate seep sample was collected.

2.2.3.5 Sediment Sampling

A sediment sample was collected from the stormwater detention basin outfall during the September 2020 monitoring event. The sediment sample was placed directly into laboratory-supplied containers, which were labeled with the project name, sample identification, date, time, sampler's initials, and applicable laboratory analyses. Samples were submitted to Alpha Analytical for the following analyses:

- VOCs via EPA Method 8260C;
- Total Metals via EPA Methods 6020B and 7470A; and,
- Total PCBs via EPA Method 8082A.

3.0 MONITORING RESULTS

3.1 SITE-WIDE INSPECITON RESULTS

In accordance with the SMP, CHA performed Site inspections on June 18th and September 23rd, 2020. The landfill inspection forms associated with each inspection are included in Appendix B. The results of the inspections indicate the following:

- Landfill cover was in good condition; there was no evidence of scour or erosion. The Town of Cortlandville maintained the vegetative cover at an appropriate height by mowing the landfill in June and September 2020 following CHA's recommendation to mow the landfill two times per year;
- No woody vegetation, animal burrows, or leachate seeps were observed during the site inspections; and,
- The drainage channels appeared to be in good condition with no evidence of scour or accumulation of silt.
- The Site access controls were observed to be in satisfactory condition and no evidence of trespassing was observed;
- Landfill gas vents were in good condition;
- Monitoring wells were in good condition;

The results from this inspection indicate that the landfill cap and infrastructure is in generally good condition, and no repairs are recommended as a result of the 2020 inspections.

3.2 SITE MONITORING RESULTS

3.2.1 Groundwater Elevation Monitoring and Flow Direction

Groundwater levels measured in June and September 2020 in most wells were generally lower compared to the previous year's monitoring events and are presented in Table 1. The groundwater flow direction for the overburden and bedrock wells are depicted on the Groundwater Potentiometric Maps included as Figures 3 and 4, respectively. Groundwater at the Site generally flows to the southeast across the Site for both the shallow overburden aquifer and the bedrock aquifer.

3.2.2 Groundwater Sampling

During the September 2020 monitoring event, HydraSleeves[™] were empty when removed from wells MW-1S, MW-2S, and MW-4S. CHA used a Solinst water level meter to determine the volume of water in each well and found that wells MW-1S and MW-2S had only approximately four

to six inches of water in the well riser for each. A 1.5-inch diameter bailer lowered down the well risers did not obtain any water, and therefore, CHA was unable to collect a groundwater sample from wells MW-1S and MW-2S. However, MW-4S contained sufficient water to collect a sample; therefore, CHA sampled well MW-4S with a disposable bailer rather than the HydraSleeveTM. The HydraSleeveTM may have been faulty or the water level may have decreased since the last sampling event in 2018 caused the HydraSleeveTM to be placed above the water table in well MW-4S. Table 1 indicates the groundwater elevation in well MW-4S has decreased by nearly six feet since 2018.

The laboratory analytical results from the groundwater sampling event are shown in table in Table 2 and are summarized below. Data that exceeds TOGS 1.1.1 are also shown on Figure 5.

VOCs:

- VOC detections are consistent with previous monitoring events.
- Overburden well results:
 - o No VOCs were detected in the upgradient monitoring well MW-1S.
 - No VOCs were detected in the downgradient overburden wells MW-2S, MW-2D or MW-4S.
 - TCE was detected at a concentration of 0.019 mg/L in MW-3SR, which exceeds the applicable groundwater standard.
 - o Benzene and trans-1,2-dichloroethene were detected in well MW-3SR2 at an estimated concentration below the applicable groundwater standards. Chlorinated VOCs (CVOC) trichloroethene (TCE), cis-1,2-Dichloroethene (DCE) and vinyl chloride were detected at concentrations of 0.014 mg/L, 0.028 mg/L, and 0.003 mg/L, respectively, which exceeds their applicable groundwater standards.
- Bedrock well results:
 - o No VOCs were detected in the upgradient monitoring well MW-1B.
 - No VOCs were detected in downgradient bedrock wells MW-3BR or MW-4B during the September 2020 monitoring event.
 - o Benzene was detected in well MW-2B at an estimated concentration below the groundwater standard.
 - TCE and DCE were detected at concentrations of 0.067 mg/L and 0.0097 mg/L, respectively, in MW-3BR2 which exceeds their appliable groundwater standards.
 Vinyl chloride was also detected, but at an estimated concentration that was below the groundwater standard.
- Monitoring wells MW-3SR2 and MW-3BR2 are the only wells that have had detectable concentrations that exceed applicable groundwater standards for the primary contaminants of concern, more specifically the chlorinated solvents trichloroethene and cis-1,2-

Dichloroethene. Appendix C contains two time series graphs for these parameters. As shown on the graphs, there appears to be a decrease in the detections of trichloroethene while there is an increase in cis-1,2-dichloroethene. This is consistent with the process of natural degradation of chlorinated solvents.

Metals:

- The metals results were generally consistent with historical groundwater results.
- Overburden well results:
 - Only iron was detected above the groundwater standard in upgradient well MW-1S (October 2018).
 - o Iron was detected above the groundwater standard in all downgradient overburden monitoring wells except for well MW-4S.
 - Several other metals were detected in the downgradient overburden monitoring wells; however, no other metals were detected above the applicable groundwater standards and guidance values.
- Bedrock well results:
 - Several metals were detected in the upgradient well MW-1B; however, only iron exceeded the groundwater during the 2020 sampling event. The detected concentration of 0.321 milligrams per liter (mg/L) was only slightly in excess of the groundwater standard of 0.3 mg/L.
 - Several metals were detected in all of the downgradient bedrock wells as well. However, only iron was detected in excess of the applicable groundwater standards and guidance values in wells MW-2B, MW-3BR2 and MW-4S.
 - Both iron and manganese were detected at concentrations in excess of the applicable groundwater stands in well MW-3BR.
- In addition to the time series graphs previously mentioned, Appendix C also includes graphs for total iron levels in both the overburden and the bedrock wells. As can be seen on these graphs, levels of iron appear to have increased in the year following completion of the remedy and have since decreased.

The complete laboratory analytical package is included in Appendix D.

3.2.3 Sediment Sampling

The laboratory analytical results from the sediment sample are provided in Table 3. The sediment sample was compared to NYSDEC Sediment Guidance Values from the Division of Fish, Wildlife and Marine Resources Technical Guidance for Screening Contaminated Sediments, updated January 25, 1999. Analytical results indicate VOCs and most metals were detected in the sediment sample at concentrations not exceeding their applicable standards. PCBs were not detected in the sample. The

metal manganese was detected at a concentration exceeding the applicable standard in the sediment sample with a concentration of 25,000 mg/kg. An exceedance of manganese was noted in the last sediment sample collected in March 2016. The complete laboratory analytical package is included in Appendix C.

4.0 SUMMARY, CONCLUSIONS & RECOMMENDATIONS

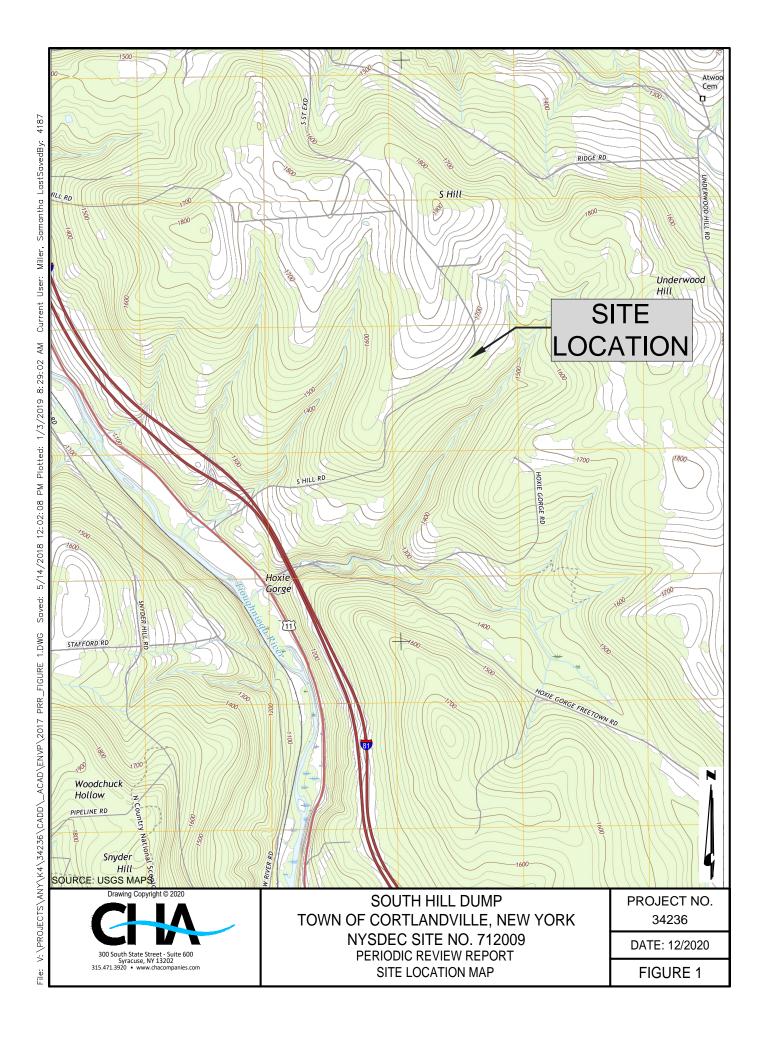
4.1 SUMMARY

The Site was observed to be in overall good condition at the time of the 2020 activities. In summary, specific observations include:

- Previously, it was recommended the Town of Cortlandville mow the landfill twice annually. Landfill mowing occurred before each site inspection.
- CHA did not observe evidence of erosion, scour, animal burrows, large saplings, or leachate seeps during the site inspections. The landfill appeared to be in relatively good condition.
- Groundwater level measurements were lower compared to the 2019 site inspections; however, groundwater flow direction in both, overburden and bedrock wells, remains consistent towards the southeast.
- No groundwater sample was collected from wells MW-1S or MW-2S due to insufficient water in the monitoring well.
- Groundwater results indicated slightly elevated concentrations of some VOCs and metals, which is consistent with previous monitoring events.
 - At least one of three CVOCs (TCE, DCE and vinyl chloride) were detected above applicable standards in three groundwater samples.
 - o Iron was detected above standard in most monitoring wells sampled.
 - o Manganese was detected in monitoring wells MW-3SR2 and MW-3BR.
- One sediment sample was collected from the catch basin outfall. Analytical results indicated low levels of metals detected in the sediment sample. Only manganese was detected at a concentration exceeding the applicable standard.
- The stormwater detention basin was dry at the time of the monitoring event, and therefore, no surface water samples was collected.
- No leachate seeps were identified; therefore, a leachate sample was not collected.

4.2 CONCLUSIONS

As previously indicated, the IC and EC Certification Forms are included in Appendix A. Provided that the ICs and ECs established for the Site remain in place, and are maintained, it is expected that the remedy will continue to be effective in protecting human health and the environment. The results of the sampling event summarized above indicate that the remedy continues to be effective.



4.3 **RECOMMENDATIONS**

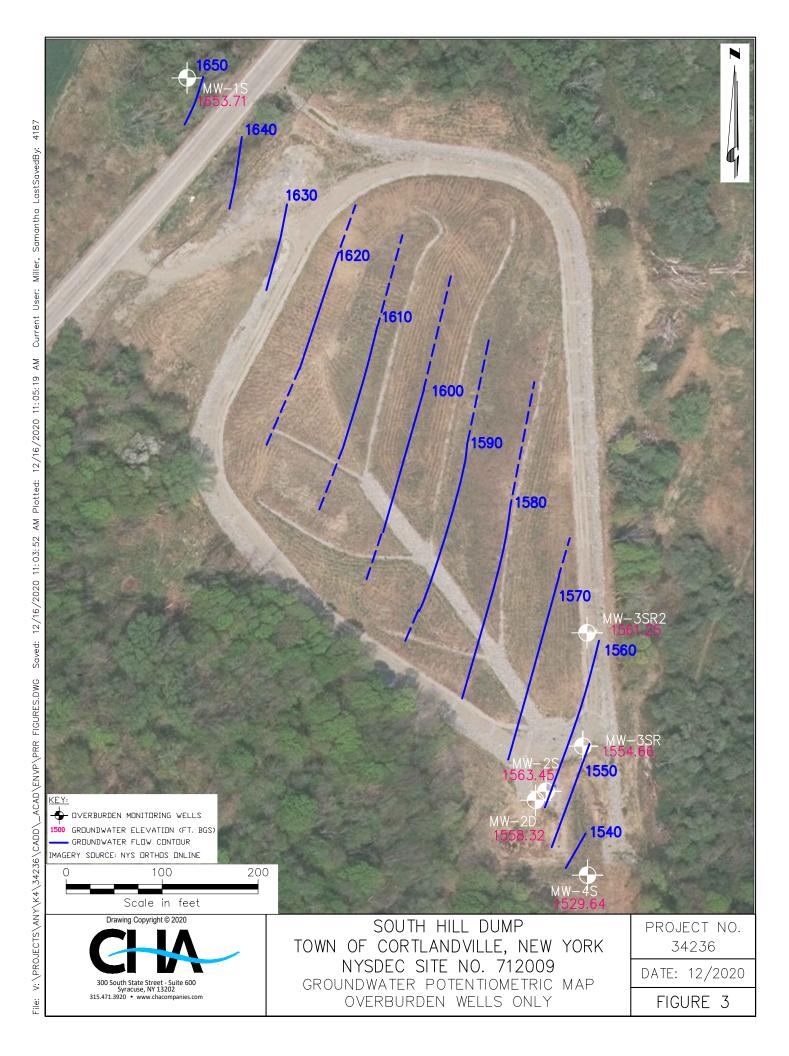
It is recommended that all current Site ICs and ECs remain in place, and the ECs continue to be inspected and monitored. The most recent round of monitoring did confirm some exceedances of standards in groundwater. Therefore, it is recommended that the Site monitoring program continue. No changes to the operation and maintenance plans are recommended at this time. However, given the change to bi-annual groundwater monitoring CHA recommends a reduction to annual landfill inspections. If approved by the NYSDEC, the next landfill inspection is anticipated to be in Fall 2021 and the next groundwater, surface water, and sediment sampling is anticipated to be in September 2022. Additionally, CHA recommends a reduction in the submission of the PRR to NYSDEC from annual to bi-annual, to be submitted in the year that the groundwater monitoring event is conducted.

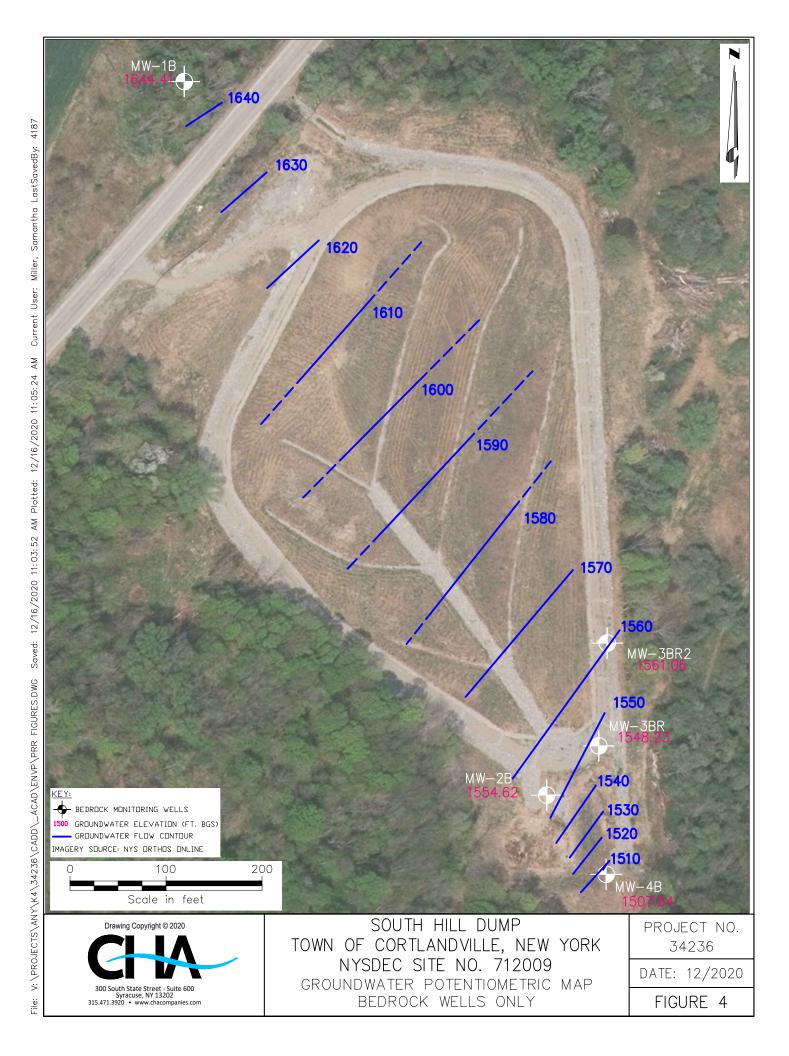
FIGURES

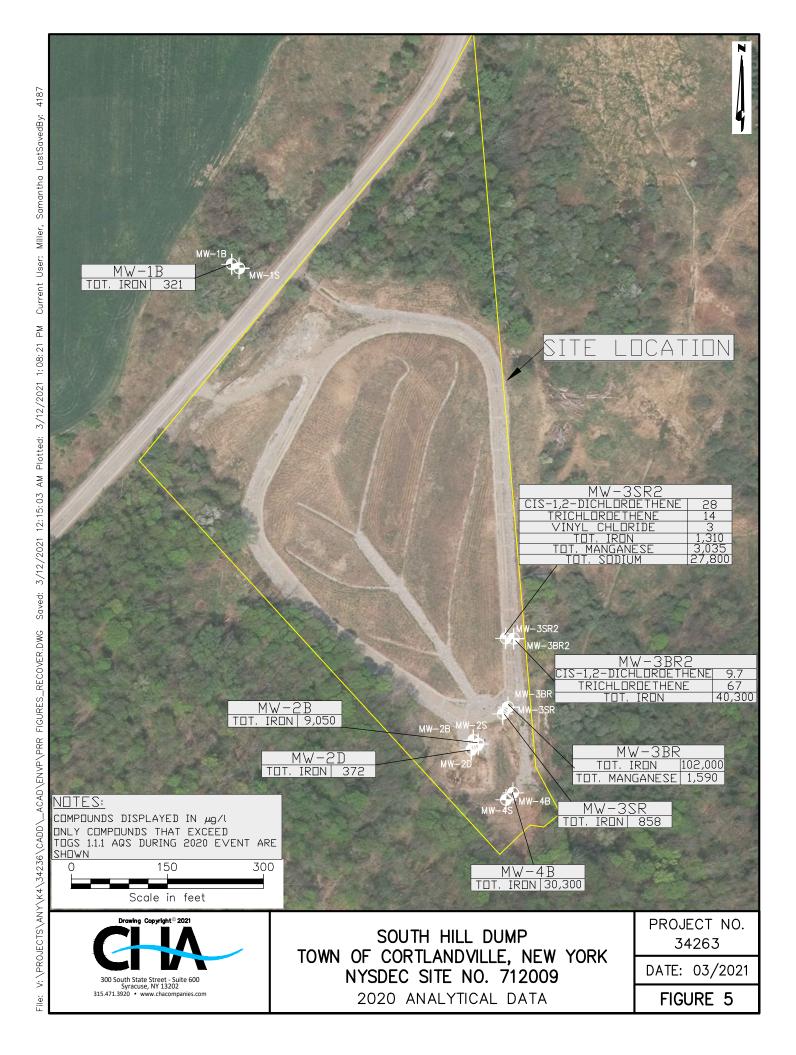
4187

Saved:

V: \PROJECTS\ANY\K4\34236\CADD_ACAD\ENVP\PRR FIGURES.DWG




SOUTH HILL DUMP TOWN OF CORTLANDVILLE, NEW YORK NYSDEC SITE NO. 712009 PERIODIC REVIEW REPORT SITE LAYOUT MAP


PROJECT NO. 34236

DATE: 12/2020

FIGURE 2

TABLES

Table 1. Groundwater Elevation Data South Hill Dump Town of Cortlandville, New York 2020 Periodic Review Report

Well ID	Casing Elevation (ft)	Riser Elevation (ft)	Ground Elevation (ft)	Measuring Point	Total depth of well (ft)	Comments	Screen (ft, bgs)	Groundwater Elevation (ft) 2017	Groundwater Elevation (ft) 2018	Groundwater Elevation (ft) July 2019	Groundwater Elevation (ft) October 2019	Groundwater Elevation (ft) June 2020	Groundwater Elevation (ft) September 2020
						2-inch							
MW-1S	1670.85	1670.95	1668.10	TOR	17.90	Overburden	5'-15'	1659.34	1659.06	1657.03	1655.55	1656.19	1653.71
MW-1B	1671.65	1671.35	1668.50	TOR	37.90	2-inch Bedrock	25'-35'	1648.40	1648.96	1648.60	1647.52	1647.04	1644.41
MW-2B	1574.85	No Riser	1573.40	TOC	44	3-inch Open Hole Bedrock	Open from 31.5'-41.5'	1565.18	1566.02	1562.98	1560.65	1562.01	1554.62
MW-2D	1576.30	1575.00	1572.00	TOR	27.00	2-inch Overburden	14'-24'	1566.64	1566.44	1565.12	1562.44	1563.81	1558.32
MW-2S	1575.40	1575.45	1572.60	TOR	12.90	2-inch Overburden	5'-10'	1567.83	1567.72	1567.23	1566.06	1565.88	1563.45
MW-3BR	1562.61	No Riser	1559.83	тос	43.90	3-inch Open Hole Bedrock	Open from 31'- 41'	1553.69	1553.57	1552.95	1551.19	1553.77	1548.23
MW-3SR	1563.68	1563.04	1561.35	TOR	25.30	2-inch Overburden	19'-24'	1558.71	1558.52	1558.08	1556.58	1558.49	1554.66
MW-3BR2	1565.25	No Riser	1565.61	TOR	24.49	4-inch Open Hole Bedrock	Open from 14'- 26'	1564.71	1565.25	Not Gauged	1562.55	1563.76	1561.06
MW-3SR2	Flush	1565.76	1566.02	TOR	11.04	2-inch Overburden	6'-11'	1564.47	1565.36	1564.12	1562.44	1563.58	1561.25
MW-4B	1545.45	No Riser	1541.90	тос	48.40	3-inch Open Hole Bedrock	Open from 36.6'-46.6'	1517.37	1517.34	1516.09	1512.00	1513.61	1507.64
MW-4S	1545.45	1545.40	1542.60	TOR	18.80	2-inch Overburden	6'-16'	1535.65	1535.54	1532.84	1533.66	1530.79	1529.64

Notes:

All casing, riser and ground elevation data taken from Field Activities Report Site Management Media Sampling and Landfill Inspection, MACTEC January 2018

	L	OCATION	N	AW-1S		MW-	1B			MW-2B				
	SAMPLI	NG DATE	7/5/2017	10/24/2018	7/5/2017	10/24/2018		9/23/2020	7/5/	2017	10/24/2018	9/23/2020		
	NY-AWQS	Units	Results	Results		Results		Results			Results	Results		
Volatile Organics by GC/MS									·					
Acetone	50	ug/l									2 J			
Benzene		ug/l										0.35 J		
cis-1,2-Dichloroethene	5	ug/l												
trans-1,2-Dichloroethene	5	ug/l												
Trichloroethene	5	ug/l												
Vinyl chloride	2	ug/l												
Total Metals		-							Ť					
Aluminum, Total		ug/l	4400	594	300	406		104			37.5	9.47 J		
Antimony, Total		ug/l		0.49 J		0.55	J		•	13 J		0.43 J		
Arsenic, Total		ug/l		0.42 J		0.37	J	0.17	J					
Barium, Total	1000	ug/l	50	40.37	17	23.31		26.86	1	20	149.1	109.4		
Cadmium, Total	5	ug/l									0.08 J			
Calcium, Total		ug/l	16100	33600	17600	21400		37900	32	300	38300	33900		
Chromium, Total	50	ug/l	4.4	1.42		0.84	J	0.64	J		3.01	0.44 J		
Cobalt, Total		ug/l	1.5 J	0.62		0.35	J	0.23	J		1.37			
Copper, Total		ug/l	3.1 J	1.1		0.94	J			20 J	11.01	1.1		
Iron, Total		ug/l	3900 J	1060	320 J			321		9000 J	370000	9050		
Lead, Total	25	ug/l	4.1 J	1.04		0.53	J			3.4 J	0.4 J			
Magnesium, Total	35000		4400	7720	4000	4850		8300	70	000	8560	7680		
Manganese, Total		ug/l	70 J	64.76	13	39.83		28.85)00 J	1590	181.4		
Nickel, Total	100	ug/l	3.8 J	1.39 J		0.88	J			5.5 J	8.27	0.9 J		
Potassium, Total		ug/l	1700	943	710	708		935		40	1320	967		
Sodium, Total	20000		6100	15800	6800	7420		16100	42	200	5650	5520		
Thallium, Total		ug/l	4.2 J									0.47 J		
Zinc, Total	2000	ug/l	11	10.06		10.91			1	.5 J	12.98	3.57 J		

Notes:
Samples were collected by CHA Consulting, Inc. September 2020
Samples were analyzed by Alpha Analytical
Samples were compared to the New York TOGS 1.1.1 Ambient
Water Quality Standards and Guidance Criteria, Class GA
Highlighted and bold parameters exceed TOGS 1.1.1 Blank cells indicate the parameter was not detected above the laboratory Method Detection Limit.

	L	OCATION	M	IW-2S		MW-2I	D					MW-4	В	
	SAMPLI	ING DATE	7/5/2017	10/24/2018	7/5/2017	10/24/2018		9/23/2020		7/5/2017		10/24/2018		9/23/2020
	NY-AWQS	Units		Results		Results		Results				Results		Results
Volatile Organics by GC/MS														
Acetone	50	ug/l								0.56	J			
Benzene	1	ug/l												
cis-1,2-Dichloroethene	5	ug/l												
trans-1,2-Dichloroethene	5	ug/l												
Trichloroethene		ug/l										1.8		
Vinyl chloride	2	ug/l												
Total Metals													-	
Aluminum, Total		ug/l	2600	7750	0.6	406		78.1		66	J	70.5		25
Antimony, Total	3	ug/l												
Arsenic, Total		ug/l		7.89		0.46	J	0.48	J			0.2	J	
Barium, Total	1000	ug/l	42	101.2	0.032	33.38		31.67		41		244.9		57.58
Cadmium, Total	5	ug/l		0.48		0.12	J	0.24				0.06	J	
Calcium, Total		ug/l	73800	69800	52.6	54700		61800		27600		55300		28300
Chromium, Total	50	ug/l	4.6	11.16	0.0018 J	1.97		0.99	J			1.75		0.65
Cobalt, Total		ug/l	0.69 J	6.21		0.26	J	0.24	J			0.82		
Copper, Total		ug/l	2.7 J	12.14		0.8	J					4.76		0.62
Iron, Total		ug/l	2400 J	17100	0.68 J	729		372		11700	J	144000		30300
Lead, Total		ug/l	3.5 J	11.04		0.65	J							
Magnesium, Total	35000		14200	14000	13.2	13500		14900		6900		10400		6890
Manganese, Total		ug/l	15 J	1677	0.03 J	33.86		192.8		110	J	425.5		245.2
Nickel, Total	100	ug/l	2.7 J	12.75		0.73	J	0.66	J	1.4	J	6.48		0.94
Potassium, Total		ug/l	1600	3100	1	958		998		520		916		347
Sodium, Total	20000	ug/l	24100	51200	3.6	3550		3950		3200		4380		3300
Thallium, Total		ug/l						0.25	J			0.19	J	0.16
Zinc, Total	2000	ug/l	20	110.4	0.005 J			27.07		1.7	J	14.84		12.01

Notes:
Samples were collected by CHA Consulting, Inc. September 2020
Samples were analyzed by Alpha Analytical
Samples were compared to the New York TOGS 1.1.1 Ambient
Water Quality Standards and Guidance Criteria, Class GA
Highlighted and bold parameters exceed TOGS 1.1.1 Blank cells indicate the parameter was not detected above the laboratory Method Detection Limit.

	LOCATION		MW-4S			MW-3SR				
	SAMPLING DATE	7/5/2017	10/24/2018	9/23/2020	7/5/2017	10/24/2018	9/23/2020	7/5/2017	10/24/2018	9/23/2020
	NY-AWQS Units		Results	Results	Results	Results	Results	Results	Results	Results
Volatile Organics by GC/MS										
Acetone	50 ug/l									
Benzene	1 ug/l									
cis-1,2-Dichloroethene	5 ug/l									
trans-1,2-Dichloroethene	5 ug/l									
Trichloroethene	5 ug/l					2.4	1.9			
Vinyl chloride	2 ug/l									
Total Metals	•								•	
Aluminum, Total	ug/l	360	26	11.4	1400	2280	419		11	20.9
Antimony, Total	3 ug/l							11 .	J	
Arsenic, Total	25 ug/l					1.81	0.52		1.76	1.11
Barium, Total	1000 ug/l	28	45.82	44.41	72	102	86.28	74	70.3	67.04
Cadmium, Total	5 ug/l									0.08
Calcium, Total	ug/l	58300	83400	104000	69800	76000	87000	10000	9440	6420
Chromium, Total	50 ug/l		0.66 J	2.04	1.6 J	5.09	1.64		0.39 J	0.57
Cobalt, Total	ug/l					2	0.55	1.3	J 1.62	2.15
Copper, Total	200 ug/l	2.7 J			2.1 J	3.35	1.09	2 .	J 1.47	3.01
Iron, Total	300 ug/l	440 J	110	35.1 J	1600 J	4590	858	124000	J 136000	102000
Lead, Total	25 ug/l				3 J	2.06	0.66 J			
Magnesium, Total	35000 ug/l	8700	12700	16800	15200	16600	18800	3100	2780	1180
Manganese, Total	300 ug/l	17 J	2.29	5.99	180 J	392.6	164.7	1500	J 1321	1590
Nickel, Total	100 ug/l				1.9 J	4.97	1.19 J	15	7.57	15.15
Potassium, Total	ug/l	610	534	840	3500	3200	2380	2300	1860	1060
Sodium, Total	20000 ug/l	2000	2370	2750	6200	6390	6520	14900	12800	10700
Thallium, Total	0.5 ug/l									
Zinc, Total	2000 ug/l	1.9 J	_	21.41	6.1 J	14.2	10.52	4.3	J	4.82

Notes:
Samples were collected by CHA Consulting, Inc. September 2020
Samples were analyzed by Alpha Analytical
Samples were compared to the New York TOGS 1.1.1 Ambient
Water Quality Standards and Guidance Criteria, Class GA
Highlighted and bold parameters exceed TOGS 1.1.1 Blank cells indicate the parameter was not detected above the laboratory Method Detection Limit.

	LOCATION			MW-3BR	2					MW-3SR	2		
	SAMPLING DATE	7/5/2017		10/24/2018		9/23/2020		7/5/2017		10/24/2018		9/23/2020	
	NY-AWQS Units	Results		Results		Results		Results		Results		Results	
Volatile Organics by GC/MS													
Acetone	50 ug/l					5	U						
Benzene	1 ug/l											0.17	
cis-1,2-Dichloroethene	5 ug/l	3.1		9.2		9.7		20		24		28	
trans-1,2-Dichloroethene	5 ug/l											1.4	
Trichloroethene	5 ug/l	6.5		83		67		170		160		14	
Vinyl chloride	2 ug/l					0.21	J					3	
Total Metals			-										
Aluminum, Total	ug/l	81	J	115		14.8		9900		871		174	
Antimony, Total	3 ug/l												
Arsenic, Total	25 ug/l			0.76		0.26	J	5.8	J	0.62		1.42	
Barium, Total	1000 ug/l	120		289.8		278		220		135.8		180.2	
Cadmium, Total	5 ug/l												
Calcium, Total	ug/l	29600		86100		62300		102000		98700		118000	
Chromium, Total	50 ug/l			1.24		0.41	J	12		1.82		0.61	
Cobalt, Total	ug/l			0.42	J	0.19	J	5.1		0.8		2.64	
Copper, Total	200 ug/l			1.45		0.72	J	9.5	٦	1.42		1.33	
Iron, Total	300 ug/l	27300	J	46000		40300		13000	ک	1650		1310	
Lead, Total	25 ug/l							7.9	J	0.79	J	0.47	
Magnesium, Total	35000 ug/l	12500		16100		15900		21400		18400		18500	
Manganese, Total	300 ug/l	290	J	359.7		220.3		350	J	169.2		3035	
Nickel, Total	100 ug/l	1.5	J	1.96	J	0.81	J	13		1.79	J	2.67	
Potassium, Total	ug/l	960		1000		926		3900		1620		3810	
Sodium, Total	20000 ug/l	12000		12300		14000		18200		17600		27800	
Thallium, Total	0.5 ug/l												
Zinc, Total	2000 ug/l							34		4.51	J	31.54	

Notes:
Samples were collected by CHA Consulting, Inc. September 2020
Samples were analyzed by Alpha Analytical
Samples were compared to the New York TOGS 1.1.1 Ambient
Water Quality Standards and Guidance Criteria, Class GA
Highlighted and bold parameters exceed TOGS 1.1.1 Blank cells indicate the parameter was not detected above the laboratory Method Detection Limit.

Table 3. Sediment Sample Results South Hill Dump 2020 Periodic Review Report

	LOCA	ATION	SED-	1	SED-00	1
	SAMPLING	DATE	3/2/201	6	9/23/202	20
	NYSDEC Sediment					
	Guidance Value	Units	Results	Qual	Results	Qual
General Chemistry		-				
Solids, Total		%	62.6		18	
Polychlorinated Biphe	nyls by GC	-				
PCBs, Total	0.0008	mg/kg			0.177	U
Total Metals						
Aluminum, Total		mg/kg	22,600		12,700	
Antimony, Total		mg/kg	2.4	J	21.5	U
Arsenic, Total	33	mg/kg	9.7		7.19	
Barium, Total		mg/kg	166		310	
Beryllium, Total		mg/kg	0.91		0.732	J
Cadmium, Total	9	mg/kg	0.33	J	1.16	J
Calcium, Total		mg/kg	4,480		15,900	
Chromium, Total	110	mg/kg	26.5		40.6	
Cobalt, Total		mg/kg	16.2		24.4	
Copper, Total	110	mg/kg	18.2		24	
Iron, Total	40,000	mg/kg	33,500		24,200	
Lead, Total	110	mg/kg	17.8		18.1	J
Magnesium, Total		mg/kg	5,240		6,680	
Manganese, Total	1,100	mg/kg	1,890		25,000	
Nickel, Total	50	mg/kg	34.3		43.2	
Potassium, Total		mg/kg	2,190		925	J
Selenium, Total		mg/kg			10.8	
Silver, Total	2.2	mg/kg			1.38	J
Sodium, Total		mg/kg	112	J	302	J
Thallium, Total		mg/kg			23	
Vanadium, Total		mg/kg	37.5		6.2	
Zinc, Total		mg/kg	89.2		93	
Volatile Organics by G	iC/MS					
Toluene		mg/kg			0.068	
Ethylbenzene		mg/kg			0.003	J
Acetone		mg/kg			0.76	
2-Butanone		mg/kg			0.21	

^{*} Comparison is not performed on parameters with non-numeric criteria.

NYDEC Sediment Guidance Values - Division of Fish, Wildlife and Marine Resources Technical Guidance for Screening Contaminated Sediment, updated January 25, 1999. PCB and VOC Sediment Guidance Values are based off the Human Health Bioaccumulation Level of Protection.

Exceedances of NYSDEC Sediment Guidance Values are highlighted in blue.

Blank cells indicate the parameter was not detected above the laboratory Method Detection Lin

Institutional and Engineering Controls Certification Forms

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site	Site Details No. 712009	Box 1								
Site	Name: South Hill Dump									
City/T Count										
Repo	rting Period: January 1, 2020 to December 31, 2020									
		YES	NO							
1.	Is the information above correct?	v								
	If NO, include handwritten above or on a separate sheet.									
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		V							
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		~							
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		V							
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.									
5.	Is the site currently undergoing development?		V							
		Box 2								
		YES	NO							
6.	Is the current site use consistent with the use(s) listed below?	V								
7.	Are all ICs/ECs in place and functioning as designed?	v								
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.									
A Cor	A Corrective Measures Work Plan must be submitted along with this form to address these issues.									
Sigi	nature of Owner, Remedial Party or Designated Representative Date									

SITE NO. Box 3

Description of Institutional Controls

A series of ICs are required to implement, maintain and monitor the ECs. The Environmental Easement (EE) requires compliance with the ICs. The EE for this site was recorded on 10/11/13 in Cortland County as instrument #2013-05304.

The EE ensures that:

- * All ECs must be operated and maintained as specified in the SMP
- * All ECs on the Site must be inspected and certified at a frequency and in a manner defined in the SMP
- * Environmental monitoring must be performed as defined in the SMP
- * Data and information pertinent to SM for the Controlled Property must be reported at the frequency and in a manner defined in the SMP
- * On-site environmental monitoring devices, including but not limited to groundwater monitoring wells, must be protected and replaced as necessary to ensure continued functioning in the manner specified in the SMP.

In addition, the Environmental Easement places the following restrictions on the property:

- * Required compliance with the approved SMP. Restrict the use of groundwater as a source of potable water, without necessary water quality treatment as determined by the New York State Department of Health (NYSDOH) and/or the NYSDEC
- * the owner of the Property shall provide information to the NYSDEC to assist in carrying out its obligation to provide a periodic certification, prepared and submitted by a professional engineer or environmental professional acceptable to the NYSDEC or Relevant Agency, which will certify that the IC/ECs put in place are unchanged from the previous certification, comply with the SMP, and have not been impaired
- * The owner of the Property shall continue in full force and effect any IC/ECs required for the Remedy and shall not, through any act or omission, interfere with the NYSDEC's maintenance and monitoring of such controls, unless the owner first obtains permission to discontinue such controls from the NYSDEC or Relevant Agency, in compliance with the approved SMP subject to modifications as approved by the NYSDEC or Relevant Agency * Limit the use and development of the property to the current use as a closed and capped/covered landfill only

Description of Engineering Controls

Box 4

Because remaining contamination is present at the Site, ECs and ICs have been implemented to protect public health and the environment for the applicable future use. The controlled Property has the following ECs:

- * A cover system placed over the landfilled waste
- * Site access controls
- * Surface water drainage conveyance
- * Landfill gas vents

	Box 5	
	DOX 3	
Periodic Review Report (PRR) Certification Statements		
I certify by checking "YES" below that:		
a) the Periodic Review report and all attachments were prepared under the direction reviewed by, the party making the certification;	on of, and	d
 b) to the best of my knowledge and belief, the work and conclusions described in are in accordance with the requirements of the site remedial program, and generally 		
	~	
 If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that following statements are true: 		tutional
(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchange Control was put in-place, or was last approved by the Department;	ed since t	he date that the
(b) nothing has occurred that would impair the ability of such Control, to protect public heal the environment;	th and	
(c) access to the site will continue to be provided to the Department, to evaluate the remedevaluate the continued maintenance of this Control;	y, includi	ng access to
(d) nothing has occurred that would constitute a violation or failure to comply with the Site I Control; and	Managem	nent Plan for this
(e) if a financial assurance mechanism is required by the oversight document for the site, the and sufficient for its intended purpose established in the document.	he mecha	anism remains valid
	YES	NO
	v	
IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and		
DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
A Corrective Measures Work Plan must be submitted along with this form to address these	e issues.	
Signature of Owner, Remedial Party or Designated Representative		

IC CERTIFICATIONS SITE NO.

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Tom Williams, Town Supervisor	at <u>3577 Terrace Road, Cortlandville, NY 13045</u> ,
print name	print business address
am certifying as	(Owner or Remedial Party)
for the Site named in the Site Details	Section of this form. $12/3/20$
Signature of Owner, Remedial Party, or E Rendering Certification	Designated Representative Date

IC/EC CERTIFICATIONS

Box 7

Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Scott. M. Smith 300 South State Street, Ste 600, Syracuse, NY 13202 print name print business address

am certifying as a Professional Engineer for the Owner

(Owner or Remedial Party)

Signature of Professional Engineer for the Owner or Remedial Party, Rendering Certification

(Required for PE)

03/18/21

Date

APPENDIX B

Landfill Inspection Forms

			No. 005	
			of 3	Time: 00:20
	LL	bate. 6/	18/2020	Time: 08:30
Inspector:			Project N	No. 34236
Karyn Ehmann			Weather	: Sunny, hot
People Accompanying Inspector:			_	
Anthony Russo		0000	Temp.:	Hi 80 °F Low 68 °F
SIGNAGE AND GAT				COMMENTO
ITEM/CONDITION Is a sign posted at entrance to the landfill stating that the area is a closed landfill?	YES	NO 🖂	NA 🗆	COMMENTS No sign present
Is a gate present at the entrance to the landfill?	\boxtimes			
Is the gate locked and secured?	\boxtimes			
SOIL COVER SYSTE	EM IN	SPECT	TION	
ITEM/CONDITION	YES	NO	NA	COMMENTS
Evidence of erosion of cover soils from surface of landfill (top/sideslopes)?		\boxtimes		
Evidence of cracks or depressions in cover soils?		\boxtimes		
Evidence of exposed or damaged geomembrane/clay		\boxtimes		
barrier?				
GAS VENTING SYST	EM II		TION	
	EM II		TION NA	COMMENTS
GAS VENTING SYST	1	NSPEC		COMMENTS
GAS VENTING SYST	YES	NSPEC		COMMENTS
GAS VENTING SYST ITEM/CONDITION Gas vent structures intact?	YES	NSPEC		COMMENTS
GAS VENTING SYST ITEM/CONDITION Gas vent structures intact? Screens on gas vents intact and unobstructed?	YES	NSPEC NO		COMMENTS
GAS VENTING SYST ITEM/CONDITION Gas vent structures intact? Screens on gas vents intact and unobstructed? Settlement of cover system soils in area of gas vents?	YES	NSPEC NO		COMMENTS
GAS VENTING SYST ITEM/CONDITION Gas vent structures intact? Screens on gas vents intact and unobstructed? Settlement of cover system soils in area of gas vents? Vapors or odors emanating from gas vents? Evidence of stressed vegetation in areas around gas	YES	NSPEC NO		COMMENTS
GAS VENTING SYST ITEM/CONDITION Gas vent structures intact? Screens on gas vents intact and unobstructed? Settlement of cover system soils in area of gas vents? Vapors or odors emanating from gas vents? Evidence of stressed vegetation in areas around gas vents or other areas of the landfill? Evidence of bubbling surface water on or in the area	YES	NSPEC NO D S S S	NA	
GAS VENTING SYST ITEM/CONDITION Gas vent structures intact? Screens on gas vents intact and unobstructed? Settlement of cover system soils in area of gas vents? Vapors or odors emanating from gas vents? Evidence of stressed vegetation in areas around gas vents or other areas of the landfill? Evidence of bubbling surface water on or in the area surrounding the landfill?	YES	NSPEC NO D S S S	NA	
GAS VENTING SYST ITEM/CONDITION Gas vent structures intact? Screens on gas vents intact and unobstructed? Settlement of cover system soils in area of gas vents? Vapors or odors emanating from gas vents? Evidence of stressed vegetation in areas around gas vents or other areas of the landfill? Evidence of bubbling surface water on or in the area surrounding the landfill? VEGETATIVE COVER SY	YES	NSPEC NO 	NA	
GAS VENTING SYST ITEM/CONDITION Gas vent structures intact? Screens on gas vents intact and unobstructed? Settlement of cover system soils in area of gas vents? Vapors or odors emanating from gas vents? Evidence of stressed vegetation in areas around gas vents or other areas of the landfill? Evidence of bubbling surface water on or in the area surrounding the landfill? VEGETATIVE COVER SY	YES	NSPEC NO 	NA	
GAS VENTING SYST ITEM/CONDITION Gas vent structures intact? Screens on gas vents intact and unobstructed? Settlement of cover system soils in area of gas vents? Vapors or odors emanating from gas vents? Evidence of stressed vegetation in areas around gas vents or other areas of the landfill? Evidence of bubbling surface water on or in the area surrounding the landfill? VEGETATIVE COVER SY ITEM/CONDITION Is vegetation well established over the entire landfill?	YES	NSPEC NO D S S M INSE	NA	

	Repo	ort No. (005		
	Page	2 of	3		
	Date	: 6/18/2	020 T	ime: 08:30	
ITEM/CONDITION	VEO	NO	NIA	COMMENTO	
ITEM/CONDITION	YES	NO	NA —	COMMENTS	
Evidence of exposed geotextile?		\boxtimes			
Presence of woody growth?		\boxtimes			
Evidence of ponded water?		\boxtimes			
Evidence of debris?		\boxtimes			
DRAINAGE SYST	TEM INS	PECTION	NC		
ITEM/CONDITION	YES	NO	NA	COMMENTS	
Evidence of erosion in drainage structures?					
Presence of siltation in drainage structures?					
Evidence of settlement in drainage structures?		\boxtimes			
Evidence of restrictions of water flow in drainage ditche and structures?	s 🗆	\boxtimes			
LEACHATE	INSPEC	TION			
ITEM/CONDITION	YES	NO	NA	COMMENTS	
Evidence of leachate seeps or staining around the perimeter of the landfill?		\boxtimes			
Evidence of leachate seeps or staining off the perimete of the landfill?	r 🗆	\boxtimes			
Evidence of leachate seeps or staining in the drainage ditches or structures of the landfill?		\boxtimes			
Evidence of leachate seeps or staining on the surface of the landfill?	of 🗆	\boxtimes			
MONITORING WI	ELL INS	PECTION	ON		
ITEM/CONDITION	YES	NO	NA	COMMENTS	
Are the monitoring wells in generally good condition?					
Are well caps installed on the wells?	\boxtimes				
Are locks present and secured?	\boxtimes				
VECTOR IN	ISPECT	ION			
ITEM/CONDITION	YES	NO	NA	COMMENTS	
Were any vectors observed?	\boxtimes			Deer, but no damage visik	ole.
Evidence of vector activity (tracks, droppings, dens, etc	.)	\boxtimes			
Evidence of damage due to vector activity?		\boxtimes			
SITE ACCESS RO	DAD INS	PECTI	ON		
ITEM/CONDITION	YES	NO	NA	COMMENTS	
Are site access roads passable?					
Presence of ruts or erosion?					
Are site access roads in generally good condition?	\boxtimes				

Report No. 005

Page 3 of 3

Date: 6/18/2020 Time: 08:30

ADDITIONAL NOTES & OBSERVATIONS

Landfill appeared to be in good condition. No evidence of compromise to the capping system or drainage infrastructure.

Front gate is locked but doesn't have a sign.

West side of the landfill, looking south.

South side of the landfill, looking north.

Well cluster MW-2B, MW-2S, and MW-2D

Signature:

Kary Jmann

Report No. 006

	F	Page 1	l of 3		
			23/2020	Time:	08:00
Inamastan			Dualast	N= 24020	
Inspector:				No. 34236	
Karyn Ehmann			vveatnei	r: Cool, Su	nny
People Accompanying Inspector:			Tomn .	⊔: 70 ∘г	Low EE ∘⊏
Anthony Russo SIGNAGE AND GAT	TE IN	SDECT	Temp.:	ПІІДЕ	Low 55 °F
ITEM/CONDITION	YES		NA	COM	IMENTS
Is a sign posted at entrance to the landfill stating that the area is a closed landfill?				No sign prese	
Is a gate present at the entrance to the landfill?					
Is the gate locked and secured?	\boxtimes				
SOIL COVER SYSTE	M IN	ISPEC [®]	TION		
ITEM/CONDITION	YES	NO	NA	COM	IMENTS
Evidence of erosion of cover soils from surface of landfill (top/sideslopes)?		\boxtimes			
Evidence of cracks or depressions in cover soils?		\boxtimes			
Evidence of exposed or damaged geomembrane/clay barrier?		\boxtimes			
GAS VENTING SYST	EM II	NSPEC	TION		
ITEM/CONDITION	YES	NO	NA	COM	IMENTS
Gas vent structures intact?	\boxtimes				
Screens on gas vents intact and unobstructed?	\boxtimes				
Settlement of cover system soils in area of gas vents?		\boxtimes			
Vapors or odors emanating from gas vents?		\boxtimes			
Evidence of stressed vegetation in areas around gas vents or other areas of the landfill?					
Evidence of bubbling surface water on or in the area surrounding the landfill?		\boxtimes			
VEGETATIVE COVER SY		M INS	PECTION	l	
ITEM/CONDITION	YES	NO	NA	CON	IMENTS
Is vegetation well established over the entire landfill?	\boxtimes				
Evidence of stressed vegetation?		\boxtimes			
Evidence of erosion or thin vegetative cover?		\boxtimes			
Does the landfill need to be mowed?		\boxtimes			

	Repo	ort No. ()06		
	Page	2 of	3		
	Date	9/23/2	020	Time: 08:00	
ITEM/CONDITION	YES	NO	NA	COMMENTS	
Evidence of exposed geotextile?		\boxtimes			
Presence of woody growth?		\boxtimes			
Evidence of ponded water?		\boxtimes			
Evidence of debris?		\boxtimes			
DRAINAGE SYS	TEM INS	PECTION	ON		
ITEM/CONDITION	YES	NO	NA	COMMENTS	
Evidence of erosion in drainage structures?		\boxtimes			
Presence of siltation in drainage structures?		\boxtimes			
Evidence of settlement in drainage structures?		\boxtimes			
Evidence of restrictions of water flow in drainage ditche and structures?	es 🗆	\boxtimes			
LEACHATE	INSPEC	TION			
ITEM/CONDITION	YES	NO	NA	COMMENTS	
Evidence of leachate seeps or staining around the perimeter of the landfill?		\boxtimes			
Evidence of leachate seeps or staining off the perimeter of the landfill?	er 🗆	\boxtimes			
Evidence of leachate seeps or staining in the drainage	+				
ditches or structures of the landfill?					
Evidence of leachate seeps or staining on the surface	of \square	\boxtimes			
the landfill?	ELL INC) NI		
MONITORING W	1			00445450	
ITEM/CONDITION	YES	NO	NA_	COMMENTS	
Are the monitoring wells in generally good condition?		<u> </u>	<u> </u>		
Are well caps installed on the wells?					
Are locks present and secured?	\boxtimes				
VECTOR II	NSPECT	ION			
ITEM/CONDITION	YES	NO	NA	COMMENTS	
Were any vectors observed?		\boxtimes			
Evidence of vector activity (tracks, droppings, dens, etc.	c.) 🗆	\boxtimes			
Evidence of damage due to vector activity?		\boxtimes			
SITE ACCESS R	OAD INS	PECTION	ON		
ITEM/CONDITION	YES	NO	NA	COMMENTS	
Are site access roads passable?					
Presence of ruts or erosion?					
Are site access roads in generally good condition?					

Report No. 006

Page 3 of 3

Date: 9/23/2020 Time: 08:00

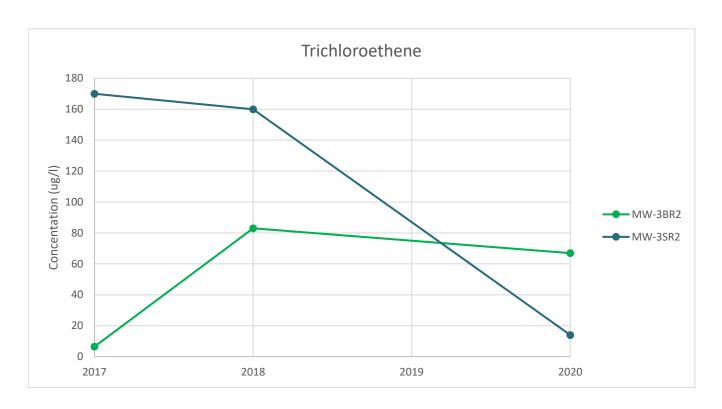
ADDITIONAL NOTES & OBSERVATIONS

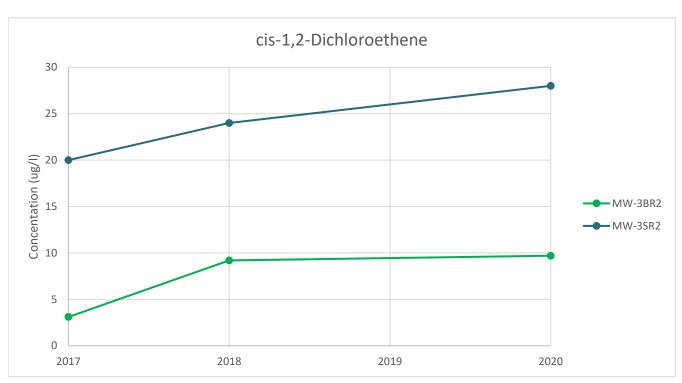
Landfill appeared to be in good condition. No evidence of compromise to the capping system or drainage infrastructure. Groundwater elevations in monitoring wells appear to be lower than previous inspections due to dry weather. Two hydrasleeves empty and monitoring wells dry (MW-2S and MW-1S). One hydrasleeve empty but monitoring well not dry – used bailer to collected sample (MW-4S).

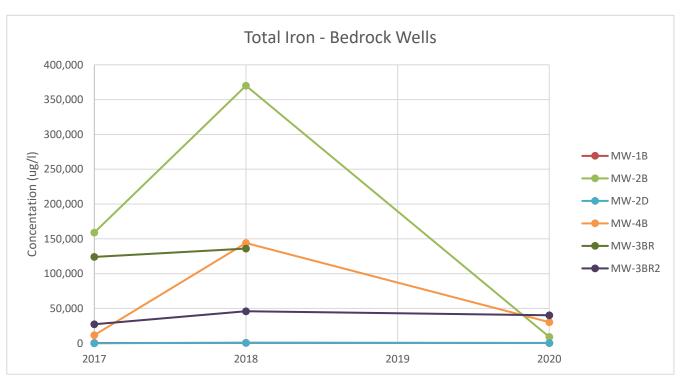
Front gate has a lock but no signage. Landfill appears to be recently mowed.

West side of the landfill, looking south.

South side of the landfill, looking north.


Well cluster MW-2B, MW-2S, and MW-2D


Signature:


APPENDIX C

Groundwater Time Series Graphs

APPENDIX D

Laboratory Analytical Report

ANALYTICAL REPORT

Lab Number: L2040189

Client: CHA Companies

One Park Place

300 South State St., Suite 600

Syracuse, NY 13202

ATTN: Karyn Ehmann Phone: (315) 471-3920

Project Name: SOUTH HILL DUMP

Project Number: 34236 Report Date: 09/30/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: SOUTH HILL DUMP

Project Number: 34236

24226

 Lab Number:
 L2040189

 Report Date:
 09/30/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2040189-01	MW-2B	WATER	CORTLANDVILLE, NY	09/23/20 09:45	09/23/20
L2040189-02	MW-2D	WATER	CORTLANDVILLE, NY	09/23/20 10:20	09/23/20
L2040189-03	MW-4B	WATER	CORTLANDVILLE, NY	09/23/20 10:40	09/23/20
L2040189-04	MW-4S	WATER	CORTLANDVILLE, NY	09/23/20 11:00	09/23/20
L2040189-05	CHA-001	WATER	CORTLANDVILLE, NY	09/23/20 10:00	09/23/20
L2040189-06	MW-3SR	WATER	CORTLANDVILLE, NY	09/23/20 12:00	09/23/20
L2040189-07	MW-3BR	WATER	CORTLANDVILLE, NY	09/23/20 11:45	09/23/20
L2040189-08	MW-3BR2	WATER	CORTLANDVILLE, NY	09/23/20 12:20	09/23/20
L2040189-09	MW-1B	WATER	CORTLANDVILLE, NY	09/23/20 13:00	09/23/20
L2040189-10	SED-001	SOIL	CORTLANDVILLE, NY	09/23/20 11:40	09/23/20
L2040189-11	TRIP BLANK	TRIP BLANK (AQUEOUS)	CORTLANDVILLE, NY	09/23/20 00:00	09/23/20
L2040189-12	MW-3SR2	WATER	CORTLANDVILLE, NY	09/23/20 12:30	09/23/20

L2040189

Lab Number:

Project Name: SOUTH HILL DUMP

Project Number: 34236 Report Date: 09/30/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: SOUTH HILL DUMP Lab Number: L2040189

Project Number: 34236 Report Date: 09/30/20

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2040189-08: The sample identified as "MW-3R2" on the chain of custody was identified as "MW-3BR2" on the container label. At the client's request, the sample is reported as "MW-3BR2".

L2040189-12: A sample identified as "MW-3SR2" was received, but not listed on the Chain of Custody. At the client's request, this sample was analyzed.

Volatile Organics

L2040189-02: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

L2040189-06: The pH of the sample was greater than two; however, the sample was analyzed within the method required holding time.

L2040189-10: Any reported concentrations that are below 200 ug/kg may be biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

Total Metals

L2040189-10: The sample has elevated detection limits for all elements, with the exception of mercury, due to the dilution required by matrix interferences encountered during analysis.

The WG1415491-3/-4 MS/MSD recoveries for iron (0%/0%), performed on L2040189-01, do not apply because the sample concentration is greater than four times the spike amount added.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Jennifer L Clements

Authorized Signature:

Title: Technical Director/Representative

Date: 09/30/20

ORGANICS

VOLATILES

Project Name: SOUTH HILL DUMP

Project Number: 34236

SAMPLE RESULTS

Lab Number: L2040189

Report Date: 09/30/20

Lab ID: L2040189-01

Client ID: MW-2B

Sample Location: CORTLANDVILLE, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/30/20 09:43

Analyst: PD

Date Collected:	09/23/20 09:45
Date Received:	09/23/20
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.35	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

L2040189

Dilution Factor

Lab Number:

RL

Project Name: SOUTH HILL DUMP

Units

Project Number: Report Date: 34236 09/30/20

SAMPLE RESULTS

Lab ID: Date Collected: 09/23/20 09:45 L2040189-01

Date Received: Client ID: 09/23/20 MW-2B Sample Location: CORTLANDVILLE, NY Field Prep: Not Specified

Qualifier

Result

Sample Depth:

Parameter

i didilictor					2	
Volatile Organics by GC/MS - Westb	orough Lab					
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	1	
p/m-Xylene	ND	ug/l	2.5	0.70	1	
o-Xylene	ND	ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1	
Styrene	ND	ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	1	
Acetone	ND	ug/l	5.0	1.5	1	
Carbon disulfide	ND	ug/l	5.0	1.0	1	
2-Butanone	ND	ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	1	
2-Hexanone	ND	ug/l	5.0	1.0	1	
Bromochloromethane	ND	ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	1	
Isopropylbenzene	ND	ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
Methyl Acetate	ND	ug/l	2.0	0.23	1	
Cyclohexane	ND	ug/l	10	0.27	1	
1,4-Dioxane	ND	ug/l	250	61.	1	
Freon-113	ND	ug/l	2.5	0.70	1	
Methyl cyclohexane	ND	ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	112	70-130	
Dibromofluoromethane	102	70-130	

09/23/20 10:20

Not Specified

09/23/20

Project Name: SOUTH HILL DUMP

Project Number: 34236

SAMPLE RESULTS

Lab Number: L2040189

Report Date: 09/30/20

Date Collected:

Date Received:

Field Prep:

Lab ID: L2040189-02 D

Client ID: MW-2D

Sample Location: CORTLANDVILLE, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/29/20 13:20

Analyst: TMS

Volatile Organics by GC/MS - Westborough Lab Methylene chloride ND ug/l 12 3.5 5 1,1-Dichloroethane ND ug/l 12 3.5 5 Chloroform ND ug/l 12 3.5 5 Chloroform ND ug/l 2.5 0.67 5 1,2-Dichlorogropane ND ug/l 5.0 0.68 5 Dibromochloromethane ND ug/l 2.5 0.74 5 Tichloroethane ND ug/l 2.5 0.74 5 Tichloroethane ND ug/l 2.5 0.90 5 Chlorobenzene ND ug/l 12 3.5 5 Trichloroethane ND ug/l 12 3.5 5 Trichloroethane ND ug/l 2.5 0.66 5 1,1,1-Trichloroethane ND ug/l 2.5 0.66 5 1,1,1-Trichloroethane ND ug/l	or	Dilution Factor	MDL	RL	Units	Qualifier	Result	Parameter
1,1-Dichloroethane ND ug/l 12 3.5 5 Chloroform ND ug/l 12 3.5 5 Carbon tetrachloride ND ug/l 2.5 0.67 5 1,2-Dichloropropane ND ug/l 5.0 0.68 5 Dibromochloromethane ND ug/l 2.5 0.74 5 1,1,2-Trichloroethane ND ug/l 7.5 2.5 5 Tetrachloroethene ND ug/l 1.2 3.5 5 Chlorobenzene ND ug/l 1.2 3.5 5 Tetrachloroethane ND ug/l 1.2 3.5 5 Chlorobenzene ND ug/l 1.2 3.5 5 Trichlorothane ND ug/l 1.2 3.5 5 Bromodichloromethane ND ug/l 1.2 3.5 5 Bromodichloropropene ND ug/l 2.5 0.82 5							orough Lab	Volatile Organics by GC/MS - Westb
Chloroform ND ug/l 12 3.5 5 Carbon tetrachloride ND ug/l 2.5 0.67 5 1,2-Dichloropropane ND ug/l 5.0 0.68 5 Dibromochloromethane ND ug/l 2.5 0.74 5 1,1,2-Trichloroethane ND ug/l 2.5 0.90 5 Tetrachloroethane ND ug/l 1.2 3.5 5 Chlorobenzene ND ug/l 1.2 3.5 5 Trichlorothane ND ug/l 1.2 3.5 5 1,1,1-Trichloroethane ND ug/l 2.5 0.66 5 1,1,1-Trichloroethane ND ug/l 2.5 0.66 5 1,1,1-Trichloroethane ND ug/l 2.5 0.66 5 1,1,2-Dichloropropene ND ug/l 2.5 0.96 5 trans-1,3-Dichloropropene ND ug/l 2.5 0.72		5	3.5	12	ug/l		ND	Methylene chloride
Carbon tetrachloride ND ug/l 2.5 0.67 5 1,2-Dichloropropane ND ug/l 5.0 0.68 5 Dibromochloromethane ND ug/l 2.5 0.74 5 1,1,2-Trichloroethane ND ug/l 7.5 2.5 5 Tetrachloroethane ND ug/l 2.5 0.90 5 Chlorobenzene ND ug/l 12 3.5 5 Trichloroethane ND ug/l 12 3.5 5 1,2-Dichloroethane ND ug/l 2.5 0.66 5 1,1,1-Trichloroethane ND ug/l 2.5 0.66 5 1,1,1-Trichloroethane ND ug/l 2.5 0.96 5 Bromodichloromethane ND ug/l 2.5 0.82 5 Bromodorm ND ug/l 2.5 0.84 5 Bromoform ND ug/l 2.5 0.80 5		5	3.5	12	ug/l		ND	1,1-Dichloroethane
1,2-Dichloropropane ND ug/l 5.0 0.68 5 Dibromochloromethane ND ug/l 2.5 0.74 5 1,1,2-Trichloroethane ND ug/l 7.5 2.5 5 Tetrachloroethene ND ug/l 2.5 0.90 5 Chlorobenzene ND ug/l 12 3.5 5 Trichlorofluoromethane ND ug/l 12 3.5 5 1,2-Dichloroethane ND ug/l 2.5 0.66 5 1,1,1-Trichloroethane ND ug/l 2.5 0.66 5 1,1,1-Trichloroethane ND ug/l 2.5 0.96 5 Bromodichloropropene ND ug/l 2.5 0.82 5 cis-1,3-Dichloropropene ND ug/l 2.5 0.82 5 Bromoform ND ug/l 2.5 0.84 5 Benzene ND ug/l 2.5 0.80 5<		5	3.5	12	ug/l		ND	Chloroform
Dibromochloromethane ND ug/l 2.5 0.74 5 1,1,2-Trichloroethane ND ug/l 7.5 2.5 5 Tetrachloroethene ND ug/l 2.5 0.90 5 Chlorobenzene ND ug/l 12 3.5 5 Trichlorofluoromethane ND ug/l 12 3.5 5 1,2-Dichloroethane ND ug/l 2.5 0.66 5 1,1,1-Trichloroethane ND ug/l 12 3.5 5 Bromodichloromethane ND ug/l 2.5 0.66 5 trans-1,3-Dichloropropene ND ug/l 2.5 0.96 5 trans-1,3-Dichloropropene ND ug/l 2.5 0.82 5 scis-1,3-Dichloropropene ND ug/l 2.5 0.84 5 Bromoform ND ug/l 2.5 0.84 5 Benzene ND ug/l 2.5 0.80		5	0.67	2.5	ug/l		ND	Carbon tetrachloride
1,1,2-Trichloroethane ND ug/l 7.5 2.5 5 Tetrachloroethane ND ug/l 2.5 0.90 5 Chlorobenzene ND ug/l 12 3.5 5 Trichlorofluoromethane ND ug/l 12 3.5 5 1,2-Dichloroethane ND ug/l 2.5 0.66 5 1,1,1-Trichloroethane ND ug/l 2.5 0.96 5 Bromodichloromethane ND ug/l 2.5 0.96 5 trans-1,3-Dichloropropene ND ug/l 2.5 0.96 5 trans-1,3-Dichloropropene ND ug/l 2.5 0.72 5 Bromoform ND ug/l 2.5 0.82 5 1,1,2,2-Tetrachloroethane ND ug/l 2.5 0.84 5 Benzene ND ug/l 2.5 0.80 5 Toluene ND ug/l 12 3.5 5 <td></td> <td>5</td> <td>0.68</td> <td>5.0</td> <td>ug/l</td> <td></td> <td>ND</td> <td>1,2-Dichloropropane</td>		5	0.68	5.0	ug/l		ND	1,2-Dichloropropane
Tetrachloroethene ND ug/l 2.5 0.90 5 Chlorobenzene ND ug/l 12 3.5 5 Trichlorofluoromethane ND ug/l 12 3.5 5 1,2-Dichloroethane ND ug/l 2.5 0.66 5 1,1,1-Trichloroethane ND ug/l 12 3.5 5 Bromodichloromethane ND ug/l 2.5 0.96 5 trans-1,3-Dichloropropene ND ug/l 2.5 0.82 5 cis-1,3-Dichloropropene ND ug/l 2.5 0.72 5 Bromoform ND ug/l 10 3.2 5 Bromoform ND ug/l 2.5 0.84 5 Benzene ND ug/l 2.5 0.80 5 Toluene ND ug/l 12 3.5 5 Ethylbenzene ND ug/l 12 3.5 5 <td< td=""><td></td><td>5</td><td>0.74</td><td>2.5</td><td>ug/l</td><td></td><td>ND</td><td>Dibromochloromethane</td></td<>		5	0.74	2.5	ug/l		ND	Dibromochloromethane
Chlorobenzene ND ug/l 12 3.5 5 Trichlorofluoromethane ND ug/l 12 3.5 5 1,2-Dichloroethane ND ug/l 2.5 0.66 5 1,1,1-Trichloroethane ND ug/l 12 3.5 5 Bromodichloromethane ND ug/l 2.5 0.96 5 trans-1,3-Dichloropropene ND ug/l 2.5 0.82 5 cis-1,3-Dichloropropene ND ug/l 2.5 0.72 5 Bromoform ND ug/l 10 3.2 5 1,1,2,2-Tetrachloroethane ND ug/l 2.5 0.84 5 Benzene ND ug/l 2.5 0.80 5 Toluene ND ug/l 12 3.5 5 Ethylbenzene ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5		5	2.5	7.5	ug/l		ND	1,1,2-Trichloroethane
Trichlorofluoromethane ND ug/l 12 3.5 5 1,2-Dichloroethane ND ug/l 2.5 0.66 5 1,1,1-Trichloroethane ND ug/l 12 3.5 5 Bromodichloromethane ND ug/l 2.5 0.96 5 trans-1,3-Dichloropropene ND ug/l 2.5 0.82 5 cis-1,3-Dichloropropene ND ug/l 2.5 0.72 5 Bromoform ND ug/l 10 3.2 5 1,1,2,2-Tetrachloroethane ND ug/l 2.5 0.84 5 Benzene ND ug/l 2.5 0.80 5 Toluene ND ug/l 12 3.5 5 Ethylbenzene ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Vinyl chloride ND ug/l 12 3.5 5		5	0.90	2.5	ug/l		ND	Tetrachloroethene
1,2-Dichloroethane ND ug/l 2.5 0.66 5 1,1,1-Trichloroethane ND ug/l 12 3.5 5 Bromodichloromethane ND ug/l 2.5 0.96 5 trans-1,3-Dichloropropene ND ug/l 2.5 0.82 5 cis-1,3-Dichloropropene ND ug/l 2.5 0.72 5 Bromoform ND ug/l 10 3.2 5 1,1,2,2-Tetrachloroethane ND ug/l 2.5 0.84 5 Benzene ND ug/l 2.5 0.80 5 Toluene ND ug/l 12 3.5 5 Ethylbenzene ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Sromomethane ND ug/l 5.0 0.36 5 Vinyl chloride ND ug/l 12 3.5 5 Chloroethane ND ug/l 12 3.5 5 1,1-D		5	3.5	12	ug/l		ND	Chlorobenzene
1,1,1-Trichloroethane ND ug/l 12 3.5 5 Bromodichloromethane ND ug/l 2.5 0.96 5 trans-1,3-Dichloropropene ND ug/l 2.5 0.82 5 cis-1,3-Dichloropropene ND ug/l 2.5 0.72 5 Bromoform ND ug/l 10 3.2 5 1,1,2,2-Tetrachloroethane ND ug/l 2.5 0.84 5 Benzene ND ug/l 2.5 0.80 5 Toluene ND ug/l 12 3.5 5 Ethylbenzene ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Bromomethane ND ug/l 12 3.5 5 Vinyl chloride ND ug/l 5.0 0.36 5 Chloroethane ND ug/l 12 3.5 5 1,1-Dichloroethene ND ug/l 2.5 0.84 5		5	3.5	12	ug/l		ND	Trichlorofluoromethane
Bromodichloromethane ND ug/l 2.5 0.96 5 trans-1,3-Dichloropropene ND ug/l 2.5 0.82 5 cis-1,3-Dichloropropene ND ug/l 2.5 0.72 5 Bromoform ND ug/l 10 3.2 5 1,1,2,2-Tetrachloroethane ND ug/l 2.5 0.84 5 Benzene ND ug/l 2.5 0.80 5 Toluene ND ug/l 12 3.5 5 Ethylbenzene ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Vinyl chloride ND ug/l 5.0 0.36 5 Chloroethane ND ug/l 12 3.5 5 Chloroethene ND ug/l 2.5 0.84 5		5	0.66	2.5	ug/l		ND	1,2-Dichloroethane
trans-1,3-Dichloropropene ND ug/l 2.5 0.82 5 cis-1,3-Dichloropropene ND ug/l 2.5 0.72 5 Bromoform ND ug/l 10 3.2 5 1,1,2,2-Tetrachloroethane ND ug/l 2.5 0.84 5 Benzene ND ug/l 2.5 0.80 5 Toluene ND ug/l 12 3.5 5 Ethylbenzene ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Chlorothane ND ug/l 12 3.5 5 I,1-Dichloroethane ND ug/l 12 3.5 5 I,1-Dichloroethane ND ug/l 5.0 0.36 5 Chloroethane ND ug/l 12 3.5 5		5	3.5	12	ug/l		ND	1,1,1-Trichloroethane
cis-1,3-Dichloropropene ND ug/l 2.5 0.72 5 Bromoform ND ug/l 10 3.2 5 1,1,2,2-Tetrachloroethane ND ug/l 2.5 0.84 5 Benzene ND ug/l 2.5 0.80 5 Toluene ND ug/l 12 3.5 5 Ethylbenzene ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Vinyl chloride ND ug/l 5.0 0.36 5 Chloroethane ND ug/l 12 3.5 5 1,1-Dichloroethene ND ug/l 12 3.5 5		5	0.96	2.5	ug/l		ND	Bromodichloromethane
Bromoform ND ug/l 10 3.2 5 1,1,2,2-Tetrachloroethane ND ug/l 2.5 0.84 5 Benzene ND ug/l 2.5 0.80 5 Toluene ND ug/l 12 3.5 5 Ethylbenzene ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Bromomethane ND ug/l 12 3.5 5 Vinyl chloride ND ug/l 5.0 0.36 5 Chloroethane ND ug/l 12 3.5 5 1,1-Dichloroethene ND ug/l 12 3.5 5		5	0.82	2.5	ug/l		ND	trans-1,3-Dichloropropene
1,1,2,2-Tetrachloroethane ND ug/l 2.5 0.84 5 Benzene ND ug/l 2.5 0.80 5 Toluene ND ug/l 12 3.5 5 Ethylbenzene ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Bromomethane ND ug/l 12 3.5 5 Vinyl chloride ND ug/l 5.0 0.36 5 Chloroethane ND ug/l 12 3.5 5 1,1-Dichloroethene ND ug/l 2.5 0.84 5		5	0.72	2.5	ug/l		ND	cis-1,3-Dichloropropene
Benzene ND ug/l 2.5 0.80 5 Toluene ND ug/l 12 3.5 5 Ethylbenzene ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Bromomethane ND ug/l 12 3.5 5 Vinyl chloride ND ug/l 5.0 0.36 5 Chloroethane ND ug/l 12 3.5 5 1,1-Dichloroethene ND ug/l 2.5 0.84 5		5	3.2	10	ug/l		ND	Bromoform
Toluene ND ug/l 12 3.5 5 Ethylbenzene ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Bromomethane ND ug/l 12 3.5 5 Vinyl chloride ND ug/l 5.0 0.36 5 Chloroethane ND ug/l 12 3.5 5 1,1-Dichloroethene ND ug/l 2.5 0.84 5		5	0.84	2.5	ug/l		ND	1,1,2,2-Tetrachloroethane
Ethylbenzene ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Bromomethane ND ug/l 12 3.5 5 Vinyl chloride ND ug/l 5.0 0.36 5 Chloroethane ND ug/l 12 3.5 5 1,1-Dichloroethene ND ug/l 2.5 0.84 5		5	0.80	2.5	ug/l		ND	Benzene
Chloromethane ND ug/l 12 3.5 5 Bromomethane ND ug/l 12 3.5 5 Vinyl chloride ND ug/l 5.0 0.36 5 Chloroethane ND ug/l 12 3.5 5 1,1-Dichloroethene ND ug/l 2.5 0.84 5		5	3.5	12	ug/l		ND	Toluene
Bromomethane ND ug/l 12 3.5 5 Vinyl chloride ND ug/l 5.0 0.36 5 Chloroethane ND ug/l 12 3.5 5 1,1-Dichloroethene ND ug/l 2.5 0.84 5		5	3.5	12	ug/l		ND	Ethylbenzene
Vinyl chloride ND ug/l 5.0 0.36 5 Chloroethane ND ug/l 12 3.5 5 1,1-Dichloroethene ND ug/l 2.5 0.84 5		5	3.5	12	ug/l		ND	Chloromethane
Chloroethane ND ug/l 12 3.5 5 1,1-Dichloroethene ND ug/l 2.5 0.84 5		5	3.5	12	ug/l		ND	Bromomethane
1,1-Dichloroethene ND ug/l 2.5 0.84 5		5	0.36	5.0	ug/l		ND	Vinyl chloride
		5	3.5	12	ug/l		ND	Chloroethane
trans-1,2-Dichloroethene ND ug/l 12 3.5 5		5	0.84	2.5	ug/l		ND	1,1-Dichloroethene
		5	3.5	12	ug/l		ND	trans-1,2-Dichloroethene
Trichloroethene ND ug/l 2.5 0.88 5		5	0.88	2.5	ug/l		ND	Trichloroethene
1,2-Dichlorobenzene ND ug/l 12 3.5 5		5	3.5	12	ug/l		ND	1,2-Dichlorobenzene

L2040189

Project Name: Lab Number: SOUTH HILL DUMP

Project Number: Report Date: 34236 09/30/20

SAMPLE RESULTS

Lab ID: D Date Collected: 09/23/20 10:20 L2040189-02

Date Received: Client ID: 09/23/20 MW-2D Sample Location: CORTLANDVILLE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	12	3.5	5
1,4-Dichlorobenzene	ND		ug/l	12	3.5	5
Methyl tert butyl ether	ND		ug/l	12	3.5	5
p/m-Xylene	ND		ug/l	12	3.5	5
o-Xylene	ND		ug/l	12	3.5	5
cis-1,2-Dichloroethene	ND		ug/l	12	3.5	5
Styrene	ND		ug/l	12	3.5	5
Dichlorodifluoromethane	ND		ug/l	25	5.0	5
Acetone	ND		ug/l	25	7.3	5
Carbon disulfide	ND		ug/l	25	5.0	5
2-Butanone	ND		ug/l	25	9.7	5
4-Methyl-2-pentanone	ND		ug/l	25	5.0	5
2-Hexanone	ND		ug/l	25	5.0	5
Bromochloromethane	ND		ug/l	12	3.5	5
1,2-Dibromoethane	ND		ug/l	10	3.2	5
1,2-Dibromo-3-chloropropane	ND		ug/l	12	3.5	5
Isopropylbenzene	ND		ug/l	12	3.5	5
1,2,3-Trichlorobenzene	ND		ug/l	12	3.5	5
1,2,4-Trichlorobenzene	ND		ug/l	12	3.5	5
Methyl Acetate	ND		ug/l	10	1.2	5
Cyclohexane	ND		ug/l	50	1.4	5
1,4-Dioxane	ND		ug/l	1200	300	5
Freon-113	ND		ug/l	12	3.5	5
Methyl cyclohexane	ND		ug/l	50	2.0	5

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	96	70-130	

09/23/20 10:40

Not Specified

09/23/20

Project Name: SOUTH HILL DUMP

Project Number: 34236

SAMPLE RESULTS

Lab Number: L2040189

Report Date: 09/30/20

Date Collected:

Date Received:

Field Prep:

SAMPLE RESUL

Lab ID: L2040189-03

Client ID: MW-4B

Sample Location: CORTLANDVILLE, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/29/20 13:44

Analyst: TMS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbook	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: SOUTH HILL DUMP L2040189

Project Number: Report Date: 34236 09/30/20

SAMPLE RESULTS

Lab ID: Date Collected: 09/23/20 10:40 L2040189-03

Date Received: Client ID: MW-4B 09/23/20 Sample Location: CORTLANDVILLE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	94	70-130	

L2040189

09/23/20 11:00

Project Name: SOUTH HILL DUMP

Project Number: 34236

SAMPLE RESULTS

Report Date: 09/30/20

Lab Number:

Date Collected:

Lab ID: L2040189-04

Client ID: MW-4S

Sample Location: CORTLANDVILLE, NY

Date Received: 09/23/20
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/29/20 14:07

Analyst: TMS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: SOUTH HILL DUMP L2040189

Project Number: Report Date: 34236 09/30/20

SAMPLE RESULTS

Lab ID: L2040189-04 Date Collected: 09/23/20 11:00

Date Received: Client ID: MW-4S 09/23/20 Sample Location: CORTLANDVILLE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	95		70-130	
Dibromofluoromethane	96		70-130	

Project Name: SOUTH HILL DUMP

Project Number: 34236

SAMPLE RESULTS

Lab Number: L2040189

Report Date: 09/30/20

Lab ID: L2040189-05

Client ID: CHA-001

Sample Location: CORTLANDVILLE, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/29/20 14:30

Analyst: **TMS** Date Collected: 09/23/20 10:00 Date Received: 09/23/20

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

L2040189

Lab Number:

Project Name: SOUTH HILL DUMP

Project Number: Report Date:

34236 09/30/20

SAMPLE RESULTS

Lab ID: Date Collected: 09/23/20 10:00 L2040189-05

Date Received: Client ID: 09/23/20 CHA-001 Sample Location: CORTLANDVILLE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	95		70-130	

Project Name: SOUTH HILL DUMP

Project Number: 34236

SAMPLE RESULTS

Lab Number: L2040189

Report Date: 09/30/20

Lab ID: L2040189-06 Client ID: MW-3SR

Sample Location:

CORTLANDVILLE, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/29/20 23:05

Analyst: NLK

Date Collected:	09/23/20 12:00
Date Received:	09/23/20
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	1.9		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

L2040189

Project Name: Lab Number: SOUTH HILL DUMP

Project Number: Report Date: 34236 09/30/20

SAMPLE RESULTS

Lab ID: Date Collected: 09/23/20 12:00 L2040189-06

Date Received: Client ID: 09/23/20 MW-3SR Sample Location: CORTLANDVILLE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	98	70-130	

09/23/20 11:45

Not Specified

09/23/20

Project Name: SOUTH HILL DUMP

Project Number: 34236

SAMPLE RESULTS

Lab Number: L2040189

Report Date: 09/30/20

Date Collected:

Date Received:

Field Prep:

Lab ID: L2040189-07

Client ID: MW-3BR

Sample Location: CORTLANDVILLE, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/29/20 23:30

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Project Name: Lab Number: SOUTH HILL DUMP L2040189

Project Number: Report Date: 34236 09/30/20

SAMPLE RESULTS

Lab ID: Date Collected: 09/23/20 11:45 L2040189-07

Date Received: Client ID: 09/23/20 MW-3BR Sample Location: Field Prep: CORTLANDVILLE, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	95	70-130	

Project Name: SOUTH HILL DUMP

Project Number: 34236

SAMPLE RESULTS

Lab Number: L2040189

Report Date: 09/30/20

Lab ID: L2040189-08 Date Collected: 09/23/20 12:20

Client ID: MW-3BR2 Date Received: 09/23/20 Sample Location: CORTLANDVILLE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/29/20 23:56

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westl	oorough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	0.21	J	ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	67		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

L2040189

Project Name: Lab Number: SOUTH HILL DUMP

Project Number: Report Date: 34236 09/30/20

SAMPLE RESULTS

Lab ID: L2040189-08 Date Collected: 09/23/20 12:20

Date Received: Client ID: 09/23/20 MW-3BR2 Sample Location: CORTLANDVILLE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	9.7		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	99	70-130	

09/23/20 13:00

Not Specified

09/23/20

Project Name: SOUTH HILL DUMP

Project Number: 34236

SAMPLE RESULTS

Lab Number: L2040189

Report Date: 09/30/20

Date Collected:

Date Received:

Field Prep:

Lab ID: L2040189-09

Client ID: MW-1B

Sample Location: CORTLANDVILLE, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/30/20 00:21

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: SOUTH HILL DUMP L2040189

Project Number: Report Date: 34236 09/30/20

SAMPLE RESULTS

Lab ID: Date Collected: 09/23/20 13:00 L2040189-09

Date Received: Client ID: MW-1B 09/23/20 Sample Location: CORTLANDVILLE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	110		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	98		70-130	

09/23/20 11:40

Project Name: SOUTH HILL DUMP

Project Number: 34236

SAMPLE RESULTS

Lab Number: L2040189

Report Date: 09/30/20

Lab ID: L2040189-10 Date Collected:

Client ID: Date Received: 09/23/20 SED-001

Field Prep: Sample Location: CORTLANDVILLE, NY Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 09/29/20 12:51

Analyst: **KJD** 18% Percent Solids:

Volatile Organics by GC/MS - Westborough Methylene chloride 1,1-Dichloroethane Chloroform	ND ND ND ND ND ND ND		ug/kg ug/kg ug/kg	27 5.4	12. 0.79	1
1,1-Dichloroethane Chloroform	ND ND ND		ug/kg			
Chloroform	ND ND			5.4	0.79	
	ND		110/10			1
			ug/kg	8.2	0.76	1
Carbon tetrachloride	ND		ug/kg	5.4	1.2	1
1,2-Dichloropropane	· · -		ug/kg	5.4	0.68	1
Dibromochloromethane	ND		ug/kg	5.4	0.76	1
1,1,2-Trichloroethane	ND		ug/kg	5.4	1.4	1
Tetrachloroethene	ND		ug/kg	2.7	1.1	1
Chlorobenzene	ND		ug/kg	2.7	0.69	1
Trichlorofluoromethane	ND		ug/kg	22	3.8	1
1,2-Dichloroethane	ND		ug/kg	5.4	1.4	1
1,1,1-Trichloroethane	ND		ug/kg	2.7	0.91	1
Bromodichloromethane	ND		ug/kg	2.7	0.59	1
trans-1,3-Dichloropropene	ND		ug/kg	5.4	1.5	1
cis-1,3-Dichloropropene	ND		ug/kg	2.7	0.86	1
Bromoform	ND		ug/kg	22	1.3	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	2.7	0.90	1
Benzene	ND		ug/kg	2.7	0.90	1
Toluene	68		ug/kg	5.4	3.0	1
Ethylbenzene	3.0	J	ug/kg	5.4	0.77	1
Chloromethane	ND		ug/kg	22	5.1	1
Bromomethane	ND		ug/kg	11	3.2	1
Vinyl chloride	ND		ug/kg	5.4	1.8	1
Chloroethane	ND		ug/kg	11	2.5	1
1,1-Dichloroethene	ND		ug/kg	5.4	1.3	1
trans-1,2-Dichloroethene	ND		ug/kg	8.2	0.75	1
Trichloroethene	ND		ug/kg	2.7	0.75	1
1,2-Dichlorobenzene	ND		ug/kg	11	0.78	1

Project Name: Lab Number: SOUTH HILL DUMP L2040189

Project Number: Report Date: 34236 09/30/20

SAMPLE RESULTS

Lab ID: Date Collected: 09/23/20 11:40 L2040189-10

Date Received: Client ID: 09/23/20 SED-001 Sample Location: CORTLANDVILLE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	11	0.81	1
1,4-Dichlorobenzene	ND		ug/kg	11	0.93	1
Methyl tert butyl ether	ND		ug/kg	11	1.1	1
p/m-Xylene	ND		ug/kg	11	3.0	1
o-Xylene	ND		ug/kg	5.4	1.6	1
cis-1,2-Dichloroethene	ND		ug/kg	5.4	0.95	1
Styrene	ND		ug/kg	5.4	1.1	1
Dichlorodifluoromethane	ND		ug/kg	54	5.0	1
Acetone	760		ug/kg	54	26.	1
Carbon disulfide	ND		ug/kg	54	25.	1
2-Butanone	210		ug/kg	54	12.	1
4-Methyl-2-pentanone	ND		ug/kg	54	7.0	1
2-Hexanone	ND		ug/kg	54	6.4	1
Bromochloromethane	ND		ug/kg	11	1.1	1
1,2-Dibromoethane	ND		ug/kg	5.4	1.5	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	16	5.4	1
Isopropylbenzene	ND		ug/kg	5.4	0.59	1
1,2,3-Trichlorobenzene	ND		ug/kg	11	1.8	1
1,2,4-Trichlorobenzene	ND		ug/kg	11	1.5	1
Methyl Acetate	ND		ug/kg	22	5.2	1
Cyclohexane	ND		ug/kg	54	3.0	1
1,4-Dioxane	ND		ug/kg	440	190	1
Freon-113	ND		ug/kg	22	3.8	1
Methyl cyclohexane	ND		ug/kg	22	3.3	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	89	70-130	
4-Bromofluorobenzene	90	70-130	
Dibromofluoromethane	99	70-130	

09/23/20 00:00

Not Specified

09/23/20

Project Name: SOUTH HILL DUMP

Project Number: 34236

SAMPLE RESULTS

Lab Number: L2040189

Report Date: 09/30/20

Date Collected:

Date Received:

Field Prep:

Lab ID: L2040189-11

Client ID: TRIP BLANK

Sample Location: CORTLANDVILLE, NY

Sample Depth:

Matrix: Trip Blank (Aqueous)

Analytical Method: 1,8260C

Analytical Date: 09/30/20 01:12

Analyst: NLK

Valatila Organica by CC/MS Wastharaug			RL		Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab				
Methylene chloride	ND	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND	ug/l	2.5	0.70	1
Chloroform	ND	ug/l	2.5	0.70	1
Carbon tetrachloride	ND	ug/l	0.50	0.13	1
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	ND	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
Trichloroethene	ND	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	1

Project Name: Lab Number: SOUTH HILL DUMP L2040189

Project Number: Report Date: 34236 09/30/20

SAMPLE RESULTS

Lab ID: L2040189-11 Date Collected: 09/23/20 00:00

Date Received: Client ID: TRIP BLANK 09/23/20 Sample Location: CORTLANDVILLE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.3	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	97	70-130	

09/23/20 12:30

Project Name: SOUTH HILL DUMP

Project Number: 34236

SAMPLE RESULTS

Lab Number: L2040189

Report Date: 09/30/20

Lab ID: L2040189-12 Date Collected:

Sample Location: CORTLANDVILLE, NY

MW-3SR2

Date Received: 09/23/20
Field Prep: Not Specified

Sample Depth:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/30/20 00:47

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.17	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	3.0		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	1.4	J	ug/l	2.5	0.70	1
Trichloroethene	14		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: SOUTH HILL DUMP

Project Number: 34236

SAMPLE RESULTS

Date Collected: 09/23/20 12:30

Report Date: 09/30/20

Lab ID: L2040189-12 Client ID: MW-3SR2

Sample Location:

Date Received: Field Prep:

Lab Number:

09/23/20

L2040189

CORTLANDVILLE, NY

Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1		
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1		
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1		
p/m-Xylene	ND		ug/l	2.5	0.70	1		
o-Xylene	ND		ug/l	2.5	0.70	1		
cis-1,2-Dichloroethene	28		ug/l	2.5	0.70	1		
Styrene	ND		ug/l	2.5	0.70	1		
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1		
Acetone	ND		ug/l	5.0	1.5	1		
Carbon disulfide	ND		ug/l	5.0	1.0	1		
2-Butanone	ND		ug/l	5.0	1.9	1		
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1		
2-Hexanone	ND		ug/l	5.0	1.0	1		
Bromochloromethane	ND		ug/l	2.5	0.70	1		
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1		
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1		
Isopropylbenzene	ND		ug/l	2.5	0.70	1		
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
Methyl Acetate	ND		ug/l	2.0	0.23	1		
Cyclohexane	ND		ug/l	10	0.27	1		
1,4-Dioxane	ND		ug/l	250	61.	1		
Freon-113	ND		ug/l	2.5	0.70	1		
Methyl cyclohexane	ND		ug/l	10	0.40	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	100	70-130	

Project Name: SOUTH HILL DUMP Lab Number: L2040189

Project Number: 34236 Report Date: 09/30/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/29/20 09:51

Analyst: NLK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	02-05 Batch:	WG1416038-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

L2040189

Lab Number:

Project Name: SOUTH HILL DUMP

Project Number: 34236 Report Date: 09/30/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/29/20 09:51

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	
olatile Organics by GC/MS - W	estborough Lab	for samp	le(s): 02-	05 Batch:	WG1416038-5	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	
p/m-Xylene	ND		ug/l	2.5	0.70	
o-Xylene	ND		ug/l	2.5	0.70	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	
Styrene	ND		ug/l	2.5	0.70	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	
Acetone	1.8	J	ug/l	5.0	1.5	
Carbon disulfide	ND		ug/l	5.0	1.0	
2-Butanone	ND		ug/l	5.0	1.9	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	
2-Hexanone	ND		ug/l	5.0	1.0	
Bromochloromethane	ND		ug/l	2.5	0.70	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	
Isopropylbenzene	ND		ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	
Methyl Acetate	ND		ug/l	2.0	0.23	
Cyclohexane	ND		ug/l	10	0.27	
1,4-Dioxane	ND		ug/l	250	61.	
Freon-113	ND		ug/l	2.5	0.70	
Methyl cyclohexane	ND		ug/l	10	0.40	

Project Name: SOUTH HILL DUMP Lab Number: L2040189

Project Number: 34236 Report Date: 09/30/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/29/20 09:51

Analyst: NLK

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 02-05 Batch: WG1416038-5

		Acceptance	
Surrogate	%Recovery Q	ualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	93	70-130	

Project Name: SOUTH HILL DUMP Lab Number: L2040189

Project Number: 34236 Report Date: 09/30/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/29/20 07:26

Analyst: MV

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	10 Batch:	WG1416099-5
Methylene chloride	ND	ug/kç	g 5.0	2.3
1,1-Dichloroethane	ND	ug/kç	g 1.0	0.14
Chloroform	ND	ug/kç	g 1.5	0.14
Carbon tetrachloride	ND	ug/kç	g 1.0	0.23
1,2-Dichloropropane	ND	ug/kç	g 1.0	0.12
Dibromochloromethane	ND	ug/kç	g 1.0	0.14
1,1,2-Trichloroethane	ND	ug/k	g 1.0	0.27
Tetrachloroethene	ND	ug/k	9 0.50	0.20
Chlorobenzene	ND	ug/kç	0.50	0.13
Trichlorofluoromethane	ND	ug/kç	9 4.0	0.70
1,2-Dichloroethane	ND	ug/kç	g 1.0	0.26
1,1,1-Trichloroethane	ND	ug/kç	0.50	0.17
Bromodichloromethane	ND	ug/kç	0.50	0.11
trans-1,3-Dichloropropene	ND	ug/k	g 1.0	0.27
cis-1,3-Dichloropropene	ND	ug/k	0.50	0.16
Bromoform	ND	ug/k	9 4.0	0.25
1,1,2,2-Tetrachloroethane	ND	ug/kç	0.50	0.17
Benzene	ND	ug/kç	0.50	0.17
Toluene	ND	ug/kç	g 1.0	0.54
Ethylbenzene	ND	ug/kç	g 1.0	0.14
Chloromethane	ND	ug/kç	9 4.0	0.93
Bromomethane	ND	ug/k	g 2.0	0.58
Vinyl chloride	ND	ug/k	g 1.0	0.34
Chloroethane	ND	ug/k	g 2.0	0.45
1,1-Dichloroethene	ND	ug/k	g 1.0	0.24
trans-1,2-Dichloroethene	ND	ug/k	g 1.5	0.14
Trichloroethene	ND	ug/k	9 0.50	0.14
1,2-Dichlorobenzene	ND	ug/ko	2.0	0.14
1,3-Dichlorobenzene	ND	ug/k	2.0	0.15

L2040189

Lab Number:

Project Name: SOUTH HILL DUMP

Project Number: Report Date: 34236 09/30/20

Method Blank Analysis Batch Quality Control

Analytical Date: 09/29/20 07:26

1,8260C

Analyst: MV

Analytical Method:

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - West	oorough Lab	for sample(s): 10	Batch:	WG1416099-5
1,4-Dichlorobenzene	ND	ug/kg	2.0	0.17
Methyl tert butyl ether	ND	ug/kg	2.0	0.20
p/m-Xylene	ND	ug/kg	2.0	0.56
o-Xylene	ND	ug/kg	1.0	0.29
cis-1,2-Dichloroethene	ND	ug/kg	1.0	0.18
Styrene	ND	ug/kg	1.0	0.20
Dichlorodifluoromethane	ND	ug/kg	10	0.92
Acetone	ND	ug/kg	10	4.8
Carbon disulfide	ND	ug/kg	10	4.6
2-Butanone	ND	ug/kg	10	2.2
4-Methyl-2-pentanone	ND	ug/kg	10	1.3
2-Hexanone	ND	ug/kg	10	1.2
Bromochloromethane	ND	ug/kg	2.0	0.20
1,2-Dibromoethane	ND	ug/kg	1.0	0.28
1,2-Dibromo-3-chloropropane	ND	ug/kg	3.0	1.0
Isopropylbenzene	ND	ug/kg	1.0	0.11
1,2,3-Trichlorobenzene	ND	ug/kg	2.0	0.32
1,2,4-Trichlorobenzene	ND	ug/kg	2.0	0.27
Methyl Acetate	ND	ug/kg	4.0	0.95
Cyclohexane	ND	ug/kg	10	0.54
1,4-Dioxane	ND	ug/kg	80	35.
Freon-113	ND	ug/kg	4.0	0.69
Methyl cyclohexane	ND	ug/kg	4.0	0.60

Project Name: SOUTH HILL DUMP Lab Number: L2040189

Project Number: 34236 Report Date: 09/30/20

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/29/20 07:26

Analyst: MV

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 10 Batch: WG1416099-5

		Acceptance		
Surrogate	%Recovery	Qualifier Criter	ia	
1,2-Dichloroethane-d4	93	70-130		
Toluene-d8	87	70-130		
4-Bromofluorobenzene	90	70-130		
Dibromofluoromethane	97	70-130		

Project Name: SOUTH HILL DUMP Lab Number: L2040189

Project Number: 34236 Report Date: 09/30/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/29/20 19:41

Analyst: TMS

arameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	06-09,11-12	Batch: WG1416366-	-5
Methylene chloride	ND	ug/l	2.5	0.70	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	
Chloroform	ND	ug/l	2.5	0.70	
Carbon tetrachloride	ND	ug/l	0.50	0.13	
1,2-Dichloropropane	ND	ug/l	1.0	0.14	
Dibromochloromethane	ND	ug/l	0.50	0.15	
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	
Tetrachloroethene	ND	ug/l	0.50	0.18	
Chlorobenzene	ND	ug/l	2.5	0.70	
Trichlorofluoromethane	ND	ug/l	2.5	0.70	
1,2-Dichloroethane	ND	ug/l	0.50	0.13	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	
Bromodichloromethane	ND	ug/l	0.50	0.19	
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	
Bromoform	ND	ug/l	2.0	0.65	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	
Benzene	ND	ug/l	0.50	0.16	
Toluene	ND	ug/l	2.5	0.70	
Ethylbenzene	ND	ug/l	2.5	0.70	
Chloromethane	ND	ug/l	2.5	0.70	
Bromomethane	ND	ug/l	2.5	0.70	
Vinyl chloride	ND	ug/l	1.0	0.07	
Chloroethane	ND	ug/l	2.5	0.70	
1,1-Dichloroethene	ND	ug/l	0.50	0.17	
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Trichloroethene	ND	ug/l	0.50	0.18	
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	

L2040189

Project Name: SOUTH HILL DUMP Lab Number:

Project Number: 34236 Report Date: 09/30/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/29/20 19:41

Analyst: TMS

-1-('I- O'I- OO/NAO NA				
olatile Organics by GC/MS - West	borough Lab	for sample(s):	06-09,11-12	Batch: WG1416366-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: SOUTH HILL DUMP Lab Number: L2040189

Project Number: 34236 Report Date: 09/30/20

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/29/20 19:41

Analyst: TMS

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 06-09,11-12 Batch: WG1416366-5

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	96		70-130	

L2040189

Project Name: SOUTH HILL DUMP Lab Number:

Project Number: 34236 Report Date: 09/30/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/30/20 09:12

Analyst: PD

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS - W	estborough Lab	for sample(s):	01 Batch:	WG1416424-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

L2040189

Lab Number:

Project Name: SOUTH HILL DUMP

Project Number: Report Date: 34236 09/30/20

Method Blank Analysis

Batch Quality Control

Analytical Date: 09/30/20 09:12 Analyst: PD

1,2,4-Trichlorobenzene

Methyl Acetate

Cyclohexane

1,4-Dioxane

Methyl cyclohexane

Freon-113

1,8260C

Analytical Method:

Qualifier RL MDL **Parameter** Result Units Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1416424-5 1,4-Dichlorobenzene ND ug/l 2.5 0.70 Methyl tert butyl ether ND ug/l 2.5 0.70 ND 0.70 p/m-Xylene ug/l 2.5 o-Xylene ND 2.5 0.70 ug/l cis-1,2-Dichloroethene ND 2.5 0.70 ug/l ND 0.70 Styrene ug/l 2.5 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND 5.0 1.0 ug/l 2-Butanone ND 5.0 1.9 ug/l 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1.2-Dibromoethane ND ug/l 2.0 0.65 ND 1,2-Dibromo-3-chloropropane ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 ND 2.5 0.70 1,2,3-Trichlorobenzene ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

2.5

2.0

10

250

2.5

10

0.70

0.23 0.27

61.

0.70

0.40

ND

ND

ND

ND

ND

ND

Project Name: SOUTH HILL DUMP Lab Number: L2040189

Project Number: 34236 Report Date: 09/30/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/30/20 09:12

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1416424-5

		Acceptance
Surrogate	%Recovery Qu	alifier Criteria
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	108	70-130
Dibromofluoromethane	103	70-130

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2040189

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	02-05 Batch:	WG1416038-3	WG1416038-4			
Methylene chloride	83		80		70-130	4	20	
1,1-Dichloroethane	84		81		70-130	4	20	
Chloroform	86		85		70-130	1	20	
Carbon tetrachloride	81		80		63-132	1	20	
1,2-Dichloropropane	86		85		70-130	1	20	
Dibromochloromethane	97		95		63-130	2	20	
1,1,2-Trichloroethane	94		89		70-130	5	20	
Tetrachloroethene	84		80		70-130	5	20	
Chlorobenzene	96		93		75-130	3	20	
Trichlorofluoromethane	84		81		62-150	4	20	
1,2-Dichloroethane	88		85		70-130	3	20	
1,1,1-Trichloroethane	82		80		67-130	2	20	
Bromodichloromethane	90		87		67-130	3	20	
trans-1,3-Dichloropropene	95		91		70-130	4	20	
cis-1,3-Dichloropropene	87		83		70-130	5	20	
Bromoform	97		94		54-136	3	20	
1,1,2,2-Tetrachloroethane	97		95		67-130	2	20	
Benzene	85		83		70-130	2	20	
Toluene	95		90		70-130	5	20	
Ethylbenzene	92		87		70-130	6	20	
Chloromethane	65		62	Q	64-130	5	20	
Bromomethane	48		47		39-139	2	20	
Vinyl chloride	77		74		55-140	4	20	

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2040189

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	02-05 Batch:	WG1416038-3	WG1416038-4				
Chloroethane	85		82		55-138	4		20	
1,1-Dichloroethene	76		72		61-145	5		20	
trans-1,2-Dichloroethene	83		80		70-130	4		20	
Trichloroethene	88		83		70-130	6		20	
1,2-Dichlorobenzene	110		100		70-130	10		20	
1,3-Dichlorobenzene	100		100		70-130	0		20	
1,4-Dichlorobenzene	110		100		70-130	10		20	
Methyl tert butyl ether	82		81		63-130	1		20	
p/m-Xylene	95		90		70-130	5		20	
o-Xylene	100		95		70-130	5		20	
cis-1,2-Dichloroethene	88		87		70-130	1		20	
Styrene	100		95		70-130	5		20	
Dichlorodifluoromethane	76		72		36-147	5		20	
Acetone	98		78		58-148	23	Q	20	
Carbon disulfide	80		75		51-130	6		20	
2-Butanone	83		79		63-138	5		20	
4-Methyl-2-pentanone	94		88		59-130	7		20	
2-Hexanone	90		87		57-130	3		20	
Bromochloromethane	100		95		70-130	5		20	
1,2-Dibromoethane	97		92		70-130	5		20	
1,2-Dibromo-3-chloropropane	90		92		41-144	2		20	
Isopropylbenzene	98		93		70-130	5		20	
1,2,3-Trichlorobenzene	95		95		70-130	0		20	

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number:

L2040189

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits
					WG1416038-4	IN D	Quui	Lilling
Volatile Organics by GC/MS - Westborough L	au Associateu	sample(s).	02-05 Balcii.	WG1410036-3	WG1410036-4			
1,2,4-Trichlorobenzene	98		95		70-130	3		20
Methyl Acetate	80		78		70-130	3		20
Cyclohexane	74		71		70-130	4		20
1,4-Dioxane	112		102		56-162	9		20
Freon-113	75		71		70-130	5		20
Methyl cyclohexane	67	Q	65	Q	70-130	3		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	97	97	70-130
Toluene-d8	99	99	70-130
4-Bromofluorobenzene	98	98	70-130
Dibromofluoromethane	93	96	70-130

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2040189

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 10	Batch: WG1	416099-3	WG1416099-4		
Methylene chloride	93		90		70-130	3	30
1,1-Dichloroethane	98		92		70-130	6	30
Chloroform	98		92		70-130	6	30
Carbon tetrachloride	111		103		70-130	7	30
1,2-Dichloropropane	99		96		70-130	3	30
Dibromochloromethane	90		88		70-130	2	30
1,1,2-Trichloroethane	83		82		70-130	1	30
Tetrachloroethene	99		89		70-130	11	30
Chlorobenzene	90		85		70-130	6	30
Trichlorofluoromethane	127		115		70-139	10	30
1,2-Dichloroethane	96		95		70-130	1	30
1,1,1-Trichloroethane	103		94		70-130	9	30
Bromodichloromethane	98		93		70-130	5	30
trans-1,3-Dichloropropene	79		77		70-130	3	30
cis-1,3-Dichloropropene	97		93		70-130	4	30
Bromoform	80		79		70-130	1	30
1,1,2,2-Tetrachloroethane	82		82		70-130	0	30
Benzene	105		98		70-130	7	30
Toluene	90		84		70-130	7	30
Ethylbenzene	90		83		70-130	8	30
Chloromethane	96		86		52-130	11	30
Bromomethane	127		110		57-147	14	30
Vinyl chloride	127		111		67-130	13	30

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2040189

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	l sample(s):	10 Batch: Wo	G1416099-3	WG1416099-4				
Chloroethane	138		124		50-151	11		30	
1,1-Dichloroethene	112		100		65-135	11		30	
trans-1,2-Dichloroethene	112		103		70-130	8		30	
Trichloroethene	105		96		70-130	9		30	
1,2-Dichlorobenzene	85		83		70-130	2		30	
1,3-Dichlorobenzene	86		84		70-130	2		30	
1,4-Dichlorobenzene	85		82		70-130	4		30	
Methyl tert butyl ether	96		94		66-130	2		30	
p/m-Xylene	91		85		70-130	7		30	
o-Xylene	88		82		70-130	7		30	
cis-1,2-Dichloroethene	97		92		70-130	5		30	
Styrene	87		82		70-130	6		30	
Dichlorodifluoromethane	93		82		30-146	13		30	
Acetone	97		96		54-140	1		30	
Carbon disulfide	94		84		59-130	11		30	
2-Butanone	92		91		70-130	1		30	
4-Methyl-2-pentanone	81		79		70-130	3		30	
2-Hexanone	73		72		70-130	1		30	
Bromochloromethane	104		100		70-130	4		30	
1,2-Dibromoethane	84		84		70-130	0		30	
1,2-Dibromo-3-chloropropane	79		75		68-130	5		30	
Isopropylbenzene	84		80		70-130	5		30	
1,2,3-Trichlorobenzene	90		87		70-130	3		30	

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number:

L2040189

09/30/20

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
raiametei	70Necovery	Quai	70NCCCVC1y	Quai	Lililits	KPD	Quai	Lillits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 10	Batch: WG	1416099-3	WG1416099-4			
1.2.4-Trichlorobenzene	90		84		70-130	7		30
, ,						,	1	
Methyl Acetate	92		92		51-146	0		30
Cyclohexane	112		102		59-142	9		30
1,4-Dioxane	130		139	Q	65-136	7		30
Freon-113	107		97		50-139	10		30
Methyl cyclohexane	108		96		70-130	12		30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	91	91	70-130
Toluene-d8	88	88	70-130
4-Bromofluorobenzene	90	89	70-130
Dibromofluoromethane	98	97	70-130

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2040189

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	06-09,11-12 Bat	ch: WG14	16366-3 WG1416	366-4		
Methylene chloride	100		100		70-130	0		20
1,1-Dichloroethane	110		110		70-130	0		20
Chloroform	110		110		70-130	0		20
Carbon tetrachloride	100		100		63-132	0		20
1,2-Dichloropropane	110		110		70-130	0		20
Dibromochloromethane	96		96		63-130	0		20
1,1,2-Trichloroethane	99		99		70-130	0		20
Tetrachloroethene	100		100		70-130	0		20
Chlorobenzene	100		100		75-130	0		20
Trichlorofluoromethane	100		100		62-150	0		20
1,2-Dichloroethane	120		120		70-130	0		20
1,1,1-Trichloroethane	110		110		67-130	0		20
Bromodichloromethane	100		110		67-130	10		20
trans-1,3-Dichloropropene	100		100		70-130	0		20
cis-1,3-Dichloropropene	110		110		70-130	0		20
Bromoform	90		89		54-136	1		20
1,1,2,2-Tetrachloroethane	93		94		67-130	1		20
Benzene	110		110		70-130	0		20
Toluene	100		100		70-130	0		20
Ethylbenzene	100		110		70-130	10		20
Chloromethane	88		96		64-130	9		20
Bromomethane	14	Q	23	Q	39-139	49	Q	20
Vinyl chloride	90		96		55-140	6		20

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2040189

Parameter	LCS %Recovery	Qual	LCSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	06-09,11-12 Bat	ch: WG1416366	6-3 WG1416	366-4		
Chloroethane	110		110		55-138	0		20
1,1-Dichloroethene	98		100		61-145	2		20
trans-1,2-Dichloroethene	100		100		70-130	0		20
Trichloroethene	100		110		70-130	10		20
1,2-Dichlorobenzene	110		100		70-130	10		20
1,3-Dichlorobenzene	99		100		70-130	1		20
1,4-Dichlorobenzene	100		100		70-130	0		20
Methyl tert butyl ether	110		110		63-130	0		20
p/m-Xylene	105		105		70-130	0		20
o-Xylene	100		105		70-130	5		20
cis-1,2-Dichloroethene	100		110		70-130	10		20
Styrene	100		105		70-130	5		20
Dichlorodifluoromethane	80		81		36-147	1		20
Acetone	140		120		58-148	15		20
Carbon disulfide	96		99		51-130	3		20
2-Butanone	130		130		63-138	0		20
4-Methyl-2-pentanone	100		100		59-130	0		20
2-Hexanone	120		110		57-130	9		20
Bromochloromethane	110		110		70-130	0		20
1,2-Dibromoethane	98		97		70-130	1		20
1,2-Dibromo-3-chloropropane	89		84		41-144	6		20
Isopropylbenzene	95		99		70-130	4		20
1,2,3-Trichlorobenzene	100		96		70-130	4		20

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number:

L2040189

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): (06-09,11-12 Bato	ch: WG14	16366-3 WG1416	366-4		
1,2,4-Trichlorobenzene	100		98		70-130	2		20
Methyl Acetate	120		120		70-130	0		20
Cyclohexane	110		110		70-130	0		20
1,4-Dioxane	120		122		56-162	2		20
Freon-113	100		100		70-130	0		20
Methyl cyclohexane	100		100		70-130	0		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	116	106	70-130
Toluene-d8	95	97	70-130
4-Bromofluorobenzene	97	96	70-130
Dibromofluoromethane	98	98	70-130

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2040189

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 01	Batch: WG1	416424-3	WG1416424-4		
Methylene chloride	100		98		70-130	2	20
1,1-Dichloroethane	100		97		70-130	3	20
Chloroform	100		100		70-130	0	20
Carbon tetrachloride	100		98		63-132	2	20
1,2-Dichloropropane	96		92		70-130	4	20
Dibromochloromethane	110		100		63-130	10	20
1,1,2-Trichloroethane	100		97		70-130	3	20
Tetrachloroethene	120		110		70-130	9	20
Chlorobenzene	100		100		75-130	0	20
Trichlorofluoromethane	110		100		62-150	10	20
1,2-Dichloroethane	100		100		70-130	0	20
1,1,1-Trichloroethane	100		100		67-130	0	20
Bromodichloromethane	100		97		67-130	3	20
trans-1,3-Dichloropropene	100		100		70-130	0	20
cis-1,3-Dichloropropene	100		96		70-130	4	20
Bromoform	100		98		54-136	2	20
1,1,2,2-Tetrachloroethane	96		92		67-130	4	20
Benzene	100		100		70-130	0	20
Toluene	100		100		70-130	0	20
Ethylbenzene	100		99		70-130	1	20
Chloromethane	83		80		64-130	4	20
Bromomethane	66		68		39-139	3	20
Vinyl chloride	100		99		55-140	1	20

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2040189

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): (01 Batch: WG	1416424-3	WG1416424-4				
Chloroethane	100		100		55-138	0		20	
1,1-Dichloroethene	100		98		61-145	2		20	
trans-1,2-Dichloroethene	100		99		70-130	1		20	
Trichloroethene	100		97		70-130	3		20	
1,2-Dichlorobenzene	100		100		70-130	0		20	
1,3-Dichlorobenzene	120		94		70-130	24	Q	20	
1,4-Dichlorobenzene	110		100		70-130	10		20	
Methyl tert butyl ether	98		93		63-130	5		20	
p/m-Xylene	105		100		70-130	5		20	
o-Xylene	105		100		70-130	5		20	
cis-1,2-Dichloroethene	100		98		70-130	2		20	
Styrene	100		95		70-130	5		20	
Dichlorodifluoromethane	99		94		36-147	5		20	
Acetone	100		100		58-148	0		20	
Carbon disulfide	110		100		51-130	10		20	
2-Butanone	100		98		63-138	2		20	
4-Methyl-2-pentanone	90		86		59-130	5		20	
2-Hexanone	86		82		57-130	5		20	
Bromochloromethane	110		100		70-130	10		20	
1,2-Dibromoethane	100		99		70-130	1		20	
1,2-Dibromo-3-chloropropane	98		93		41-144	5		20	
Isopropylbenzene	100		99		70-130	1		20	
1,2,3-Trichlorobenzene	100		100		70-130	0		20	

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number:

L2040189

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	PD mits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): 01	Batch: WG	1416424-3	WG1416424-4		
1,2,4-Trichlorobenzene	110		99		70-130	11	20
Methyl Acetate	90		90		70-130	0	20
Cyclohexane	93		89		70-130	4	20
1,4-Dioxane	102		98		56-162	4	20
Freon-113	100		99		70-130	1	20
Methyl cyclohexane	100		93		70-130	7	20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	102	102	70-130
Toluene-d8	99	100	70-130
4-Bromofluorobenzene	105	104	70-130
Dibromofluoromethane	100	100	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number:

L2040189

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD Qua	RPD al Limits
Volatile Organics by GC/MS - 2B	- Westborough	Lab Assoc	ciated sample(s): 01 QC Ba	tch ID: WG1416424	-6 WG141642	24-7 QC Sample: L	2040189-01	Client ID: MW-
Methylene chloride	ND	10	9.0	90	9.8	98	70-130	9	20
1,1-Dichloroethane	ND	10	9.2	92	10	100	70-130	8	20
Chloroform	ND	10	9.3	93	10	100	70-130	7	20
Carbon tetrachloride	ND	10	9.7	97	10	100	63-132	3	20
1,2-Dichloropropane	ND	10	8.6	86	9.5	95	70-130	10	20
Dibromochloromethane	ND	10	9.7	97	11	110	63-130	13	20
1,1,2-Trichloroethane	ND	10	9.3	93	10	100	70-130	7	20
Tetrachloroethene	ND	10	11	110	12	120	70-130	9	20
Chlorobenzene	ND	10	9.7	97	10	100	75-130	3	20
Trichlorofluoromethane	ND	10	10	100	11	110	62-150	10	20
1,2-Dichloroethane	ND	10	9.6	96	10	100	70-130	4	20
1,1,1-Trichloroethane	ND	10	10	100	11	110	67-130	10	20
Bromodichloromethane	ND	10	9.0	90	10	100	67-130	11	20
trans-1,3-Dichloropropene	ND	10	9.0	90	10	100	70-130	11	20
cis-1,3-Dichloropropene	ND	10	8.6	86	9.6	96	70-130	11	20
Bromoform	ND	10	9.3	93	10	100	54-136	7	20
1,1,2,2-Tetrachloroethane	ND	10	8.5	85	9.4	94	67-130	10	20
Benzene	0.35J	10	9.9	99	11	110	70-130	11	20
Toluene	ND	10	9.8	98	11	110	70-130	12	20
Ethylbenzene	ND	10	9.7	97	11	110	70-130	13	20
Chloromethane	ND	10	7.7	77	8.4	84	64-130	9	20
Bromomethane	ND	10	4.0	40	4.8	48	39-139	18	20
Vinyl chloride	ND	10	9.7	97	10	100	55-140	3	20

Matrix Spike Analysis Batch Quality Control

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number:

L2040189

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD Qu	RPD Ial Limits
Volatile Organics by GC/MS - 2B	- Westborough	Lab Asso	ociated sample(s): 01 QC Ba	tch ID: WG1416424-	6 WG141642	4-7 QC Sample: L	2040189-01	Client ID: MW-
Chloroethane	ND	10	9.2	92	9.9	99	55-138	7	20
1,1-Dichloroethene	ND	10	9.9	99	11	110	61-145	11	20
trans-1,2-Dichloroethene	ND	10	9.8	98	11	110	70-130	12	20
Trichloroethene	ND	10	9.6	96	11	110	70-130	14	20
1,2-Dichlorobenzene	ND	10	9.4	94	10	100	70-130	6	20
1,3-Dichlorobenzene	ND	10	9.0	90	11	110	70-130	20	20
1,4-Dichlorobenzene	ND	10	9.4	94	10	100	70-130	6	20
Methyl tert butyl ether	ND	10	8.9	89	9.8	98	63-130	10	20
o/m-Xylene	ND	20	20	100	22	110	70-130	10	20
o-Xylene	ND	20	19	95	21	105	70-130	10	20
cis-1,2-Dichloroethene	ND	10	9.4	94	10	100	70-130	6	20
Styrene	ND	20	19	95	20	100	70-130	5	20
Dichlorodifluoromethane	ND	10	9.2	92	9.8	98	36-147	6	20
Acetone	ND	10	8.3	83	8.8	88	58-148	6	20
Carbon disulfide	ND	10	10	100	11	110	51-130	10	20
2-Butanone	ND	10	8.1	81	8.1	81	63-138	0	20
4-Methyl-2-pentanone	ND	10	8.1	81	9.0	90	59-130	11	20
2-Hexanone	ND	10	7.4	74	8.5	85	57-130	14	20
Bromochloromethane	ND	10	9.7	97	11	110	70-130	13	20
1,2-Dibromoethane	ND	10	9.5	95	10	100	70-130	5	20
1,2-Dibromo-3-chloropropane	ND	10	8.8	88	9.6	96	41-144	9	20
sopropylbenzene	ND	10	9.8	98	11	110	70-130	12	20
1,2,3-Trichlorobenzene	ND	10	9.0	90	10	100	70-130	11	20

Matrix Spike Analysis Batch Quality Control

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number:

L2040189

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS 2B	- Westborough	Lab Assoc	ciated sample(s	s): 01 QC Ba	tch ID: WG141642	4-6 WG141642	24-7 QC Sample: L	.204018	9-01 Client ID: MW-
1,2,4-Trichlorobenzene	ND	10	9.4	94	10	100	70-130	6	20
Methyl Acetate	ND	10	7.7	77	8.5	85	70-130	10	20
Cyclohexane	ND	10	8.8J	88	9.8J	98	70-130	11	20
1,4-Dioxane	ND	500	390	78	500	100	56-162	25	Q 20
Freon-113	ND	10	9.9	99	11	110	70-130	11	20
Methyl cyclohexane	ND	10	9.2J	92	10	100	70-130	8	20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	100	101	70-130
4-Bromofluorobenzene	103	104	70-130
Dibromofluoromethane	98	99	70-130
Toluene-d8	99	99	70-130

PCBS

Project Name: SOUTH HILL DUMP Lab Number: L2040189

Project Number: 34236 Report Date: 09/30/20

SAMPLE RESULTS

Lab ID: L2040189-10 Date Collected: 09/23/20 11:40

Client ID: SED-001 Date Received: 09/23/20 Sample Location: CORTLANDVILLE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 09/29/20 22:14
Analytical Date: 09/30/20 08:33 Cleanup Method: EPA 3665A

Analyst: CW Cleanup Date: 09/30/20
Percent Solids: 18% Cleanup Date: 09/30/20
Cleanup Method: EPA 3660B
Cleanup Date: 09/30/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC	- Westborough Lab						
Aroclor 1016	ND		ug/kg	177	15.7	1	Α
Aroclor 1221	ND		ug/kg	177	17.8	1	A
Aroclor 1232	ND		ug/kg	177	37.6	1	Α
Aroclor 1242	ND		ug/kg	177	23.9	1	Α
Aroclor 1248	ND		ug/kg	177	26.6	1	Α
Aroclor 1254	ND		ug/kg	177	19.4	1	Α
Aroclor 1260	ND		ug/kg	177	32.8	1	Α
Aroclor 1262	ND		ug/kg	177	22.5	1	Α
Aroclor 1268	ND		ug/kg	177	18.4	1	Α
PCBs, Total	ND		ug/kg	177	15.7	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	72		30-150	A
Decachlorobiphenyl	78		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	92		30-150	В
Decachlorobiphenyl	100		30-150	В

L2040189

Lab Number:

Project Name: SOUTH HILL DUMP

Project Number: 34236 Report Date: 09/30/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 09/30/20 08:11

Analyst: CW

Extraction Method: EPA 3546
Extraction Date: 09/29/20 22:14
Cleanup Method: EPA 3665A
Cleanup Date: 09/30/20
Cleanup Method: EPA 3660B
Cleanup Date: 09/30/20

Parameter	Result	Qualifier	Units		RL	MDL	Column
Polychlorinated Biphenyls by GC -	Westborough	n Lab for s	ample(s):	10	Batch:	WG1416104-	·1
Aroclor 1016	ND		ug/kg	3	32.8	2.92	Α
Aroclor 1221	ND		ug/kg	3	32.8	3.29	Α
Aroclor 1232	ND		ug/kg	3	32.8	6.96	Α
Aroclor 1242	ND		ug/kg	3	32.8	4.43	Α
Aroclor 1248	ND		ug/kg	3	32.8	4.93	Α
Aroclor 1254	ND		ug/kg	3	32.8	3.59	Α
Aroclor 1260	ND		ug/kg	3	32.8	6.07	Α
Aroclor 1262	ND		ug/kg	3	32.8	4.17	А
Aroclor 1268	ND		ug/kg	3	32.8	3.40	Α
PCBs, Total	ND		ug/kg	3	32.8	2.92	Α

		Acceptance		
Surrogate	%Recovery Qualifie	r Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	75	30-150	Α	
Decachlorobiphenyl	81	30-150	Α	
2,4,5,6-Tetrachloro-m-xylene	94	30-150	В	
Decachlorobiphenyl	99	30-150	В	

Project Name: SOUTH HILL DUMP

Project Number: 34236 Lab Number:

L2040189

09/30/20

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recover	y Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by GC - Westbor	ough Lab Associa	ated sample(s):	10 Bato	h: WG1416104-	2 WG1416104-3	3			
Aroclor 1016	77		68		40-140	12		50	Α
Aroclor 1260	73		66		40-140	10		50	А

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	71	63	30-150 A
Decachlorobiphenyl	77	71	30-150 A
2,4,5,6-Tetrachloro-m-xylene	91	80	30-150 B
Decachlorobiphenyl	96	87	30-150 B

METALS

09/23/20 09:45

Date Collected:

Project Name:SOUTH HILL DUMPLab Number:L2040189

Project Number: 34236 Report Date: 09/30/20

SAMPLE RESULTS

Lab ID: L2040189-01

Client ID: MW-2B Date Received: 09/23/20 Sample Location: CORTLANDVILLE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Aluminum, Total	0.00947	J	mg/l	0.0100	0.00327	1	09/29/20 20:27	09/30/20 09:11	EPA 3005A	1,6020B	AM
Antimony, Total	0.00043	J	mg/l	0.00400	0.00042	1	09/29/20 20:27	09/30/20 09:11	EPA 3005A	1,6020B	AM
Arsenic, Total	ND		mg/l	0.00050	0.00016	1	09/29/20 20:27	09/30/20 09:11	EPA 3005A	1,6020B	AM
Barium, Total	0.1094		mg/l	0.00050	0.00017	1	09/29/20 20:27	09/30/20 09:11	EPA 3005A	1,6020B	AM
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	09/29/20 20:27	09/30/20 09:11	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	09/29/20 20:27	09/30/20 09:11	EPA 3005A	1,6020B	AM
Calcium, Total	33.9		mg/l	0.100	0.0394	1	09/29/20 20:27	09/30/20 09:11	EPA 3005A	1,6020B	AM
Chromium, Total	0.00044	J	mg/l	0.00100	0.00017	1	09/29/20 20:27	09/30/20 09:11	EPA 3005A	1,6020B	AM
Cobalt, Total	ND		mg/l	0.00050	0.00016	1	09/29/20 20:27	09/30/20 09:11	EPA 3005A	1,6020B	AM
Copper, Total	0.00110		mg/l	0.00100	0.00038	1	09/29/20 20:27	09/30/20 09:11	EPA 3005A	1,6020B	AM
Iron, Total	9.05		mg/l	0.0700	0.0191	1	09/29/20 20:27	09/30/20 09:11	EPA 3005A	1,6020B	AM
Lead, Total	ND		mg/l	0.00100	0.00034	1	09/29/20 20:27	09/30/20 09:11	EPA 3005A	1,6020B	AM
Magnesium, Total	7.68		mg/l	0.0700	0.0242	1	09/29/20 20:27	09/30/20 09:11	EPA 3005A	1,6020B	AM
Manganese, Total	0.1814		mg/l	0.00100	0.00044	1	09/29/20 20:27	09/30/20 09:11	EPA 3005A	1,6020B	AM
Mercury, Total	ND		mg/l	0.00020	0.00009	1	09/29/20 22:24	09/30/20 08:55	EPA 7470A	1,7470A	EW
Nickel, Total	0.00090	J	mg/l	0.00200	0.00055	1	09/29/20 20:27	09/30/20 09:11	EPA 3005A	1,6020B	AM
Potassium, Total	0.967		mg/l	0.100	0.0309	1	09/29/20 20:27	09/30/20 09:11	EPA 3005A	1,6020B	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	09/29/20 20:27	09/30/20 09:11	EPA 3005A	1,6020B	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	09/29/20 20:27	09/30/20 09:11	EPA 3005A	1,6020B	AM
Sodium, Total	5.52		mg/l	0.100	0.0293	1	09/29/20 20:27	09/30/20 09:11	EPA 3005A	1,6020B	AM
Thallium, Total	0.00047	J	mg/l	0.00100	0.00014	1	09/29/20 20:27	09/30/20 09:11	EPA 3005A	1,6020B	AM
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	09/29/20 20:27	09/30/20 09:11	EPA 3005A	1,6020B	AM
Zinc, Total	0.00357	J	mg/l	0.01000	0.00341	1	09/29/20 20:27	09/30/20 09:11	EPA 3005A	1,6020B	АМ

09/23/20 10:20

Date Collected:

Project Name:SOUTH HILL DUMPLab Number:L2040189

Project Number: 34236 Report Date: 09/30/20

SAMPLE RESULTS

Lab ID: L2040189-02

Client ID: MW-2D Date Received: 09/23/20

Sample Location: CORTLANDVILLE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Aluminum, Total	0.0781		mg/l	0.0100	0.00327	1	09/29/20 20:27	09/30/20 09:16	EPA 3005A	1,6020B	AM
Antimony, Total	ND		mg/l	0.00400	0.00042	1	09/29/20 20:27	09/30/20 09:16	EPA 3005A	1,6020B	AM
Arsenic, Total	0.00048	J	mg/l	0.00050	0.00016	1	09/29/20 20:27	09/30/20 09:16	EPA 3005A	1,6020B	AM
Barium, Total	0.03167		mg/l	0.00050	0.00017	1	09/29/20 20:27	09/30/20 09:16	EPA 3005A	1,6020B	AM
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	09/29/20 20:27	09/30/20 09:16	EPA 3005A	1,6020B	AM
Cadmium, Total	0.00024		mg/l	0.00020	0.00005	1	09/29/20 20:27	09/30/20 09:16	EPA 3005A	1,6020B	AM
Calcium, Total	61.8		mg/l	0.100	0.0394	1	09/29/20 20:27	09/30/20 09:16	EPA 3005A	1,6020B	AM
Chromium, Total	0.00099	J	mg/l	0.00100	0.00017	1	09/29/20 20:27	09/30/20 09:16	EPA 3005A	1,6020B	AM
Cobalt, Total	0.00024	J	mg/l	0.00050	0.00016	1	09/29/20 20:27	09/30/20 09:16	EPA 3005A	1,6020B	AM
Copper, Total	ND		mg/l	0.00100	0.00038	1	09/29/20 20:27	09/30/20 09:16	EPA 3005A	1,6020B	AM
Iron, Total	0.372		mg/l	0.0700	0.0191	1	09/29/20 20:27	09/30/20 09:16	EPA 3005A	1,6020B	AM
Lead, Total	ND		mg/l	0.00100	0.00034	1	09/29/20 20:27	09/30/20 09:16	EPA 3005A	1,6020B	AM
Magnesium, Total	14.9		mg/l	0.0700	0.0242	1	09/29/20 20:27	09/30/20 09:16	EPA 3005A	1,6020B	AM
Manganese, Total	0.1928		mg/l	0.00100	0.00044	1	09/29/20 20:27	09/30/20 09:16	EPA 3005A	1,6020B	AM
Mercury, Total	ND		mg/l	0.00020	0.00009	1	09/29/20 22:24	09/30/20 09:01	EPA 7470A	1,7470A	EW
Nickel, Total	0.00066	J	mg/l	0.00200	0.00055	1	09/29/20 20:27	09/30/20 09:16	EPA 3005A	1,6020B	AM
Potassium, Total	0.998		mg/l	0.100	0.0309	1	09/29/20 20:27	09/30/20 09:16	EPA 3005A	1,6020B	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	09/29/20 20:27	09/30/20 09:16	EPA 3005A	1,6020B	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	09/29/20 20:27	09/30/20 09:16	EPA 3005A	1,6020B	AM
Sodium, Total	3.95		mg/l	0.100	0.0293	1	09/29/20 20:27	09/30/20 09:16	EPA 3005A	1,6020B	AM
Thallium, Total	0.00025	J	mg/l	0.00100	0.00014	1	09/29/20 20:27	09/30/20 09:16	EPA 3005A	1,6020B	AM
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	09/29/20 20:27	09/30/20 09:16	EPA 3005A	1,6020B	AM
Zinc, Total	0.02707		mg/l	0.01000	0.00341	1	09/29/20 20:27	09/30/20 09:16	EPA 3005A	1,6020B	AM

09/23/20 10:40

Date Collected:

Project Name:SOUTH HILL DUMPLab Number:L2040189

Project Number: 34236 Report Date: 09/30/20

SAMPLE RESULTS

Lab ID: L2040189-03

Client ID: MW-4B Date Received: 09/23/20

Sample Location: CORTLANDVILLE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	0.0250		mg/l	0.0100	0.00327	1	09/29/20 20:27	09/30/20 09:20	EPA 3005A	1,6020B	AM
Antimony, Total	ND		mg/l	0.00400	0.00042	1	09/29/20 20:27	09/30/20 09:20	EPA 3005A	1,6020B	AM
Arsenic, Total	ND		mg/l	0.00050	0.00016	1	09/29/20 20:27	09/30/20 09:20	EPA 3005A	1,6020B	AM
Barium, Total	0.05758		mg/l	0.00050	0.00017	1	09/29/20 20:27	09/30/20 09:20	EPA 3005A	1,6020B	AM
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	09/29/20 20:27	09/30/20 09:20	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	09/29/20 20:27	09/30/20 09:20	EPA 3005A	1,6020B	AM
Calcium, Total	28.3		mg/l	0.100	0.0394	1	09/29/20 20:27	09/30/20 09:20	EPA 3005A	1,6020B	AM
Chromium, Total	0.00065	J	mg/l	0.00100	0.00017	1	09/29/20 20:27	09/30/20 09:20	EPA 3005A	1,6020B	AM
Cobalt, Total	ND		mg/l	0.00050	0.00016	1	09/29/20 20:27	09/30/20 09:20	EPA 3005A	1,6020B	AM
Copper, Total	0.00062	J	mg/l	0.00100	0.00038	1	09/29/20 20:27	09/30/20 09:20	EPA 3005A	1,6020B	AM
Iron, Total	30.3		mg/l	0.0700	0.0191	1	09/29/20 20:27	09/30/20 09:20	EPA 3005A	1,6020B	AM
Lead, Total	ND		mg/l	0.00100	0.00034	1	09/29/20 20:27	09/30/20 09:20	EPA 3005A	1,6020B	AM
Magnesium, Total	6.89		mg/l	0.0700	0.0242	1	09/29/20 20:27	09/30/20 09:20	EPA 3005A	1,6020B	AM
Manganese, Total	0.2452		mg/l	0.00100	0.00044	1	09/29/20 20:27	09/30/20 09:20	EPA 3005A	1,6020B	AM
Mercury, Total	ND		mg/l	0.00020	0.00009	1	09/29/20 22:24	09/30/20 09:03	EPA 7470A	1,7470A	EW
Nickel, Total	0.00094	J	mg/l	0.00200	0.00055	1	09/29/20 20:27	09/30/20 09:20	EPA 3005A	1,6020B	AM
Potassium, Total	0.347		mg/l	0.100	0.0309	1	09/29/20 20:27	09/30/20 09:20	EPA 3005A	1,6020B	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	09/29/20 20:27	09/30/20 09:20	EPA 3005A	1,6020B	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	09/29/20 20:27	09/30/20 09:20	EPA 3005A	1,6020B	AM
Sodium, Total	3.30		mg/l	0.100	0.0293	1	09/29/20 20:27	09/30/20 09:20	EPA 3005A	1,6020B	AM
Thallium, Total	0.00016	J	mg/l	0.00100	0.00014	1	09/29/20 20:27	09/30/20 09:20	EPA 3005A	1,6020B	AM
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	09/29/20 20:27	09/30/20 09:20	EPA 3005A	1,6020B	AM
Zinc, Total	0.01201		mg/l	0.01000	0.00341	1	09/29/20 20:27	09/30/20 09:20	EPA 3005A	1,6020B	AM

09/23/20 11:00

Date Collected:

Project Name: SOUTH HILL DUMP Lab Number: L2040189

Project Number: 34236 Report Date: 09/30/20

SAMPLE RESULTS

Lab ID: L2040189-04

Client ID: MW-4S Date Received: 09/23/20

Sample Location: CORTLANDVILLE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansf	ield Lab										
Aluminum, Total	0.0114		mg/l	0.0100	0.00327	1	09/29/20 20:27	09/30/20 09:55	EPA 3005A	1,6020B	AM
Antimony, Total	ND		mg/l	0.00400	0.00042	1	09/29/20 20:27	09/30/20 09:55	EPA 3005A	1,6020B	AM
Arsenic, Total	ND		mg/l	0.00050	0.00016	1	09/29/20 20:27	09/30/20 09:55	EPA 3005A	1,6020B	AM
Barium, Total	0.04441		mg/l	0.00050	0.00017	1	09/29/20 20:27	09/30/20 09:55	EPA 3005A	1,6020B	AM
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	09/29/20 20:27	09/30/20 09:55	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	09/29/20 20:27	09/30/20 09:55	EPA 3005A	1,6020B	AM
Calcium, Total	104.		mg/l	0.100	0.0394	1	09/29/20 20:27	09/30/20 09:55	EPA 3005A	1,6020B	AM
Chromium, Total	0.00204		mg/l	0.00100	0.00017	1	09/29/20 20:27	09/30/20 09:55	EPA 3005A	1,6020B	AM
Cobalt, Total	ND		mg/l	0.00050	0.00016	1	09/29/20 20:27	09/30/20 09:55	EPA 3005A	1,6020B	AM
Copper, Total	ND		mg/l	0.00100	0.00038	1	09/29/20 20:27	09/30/20 09:55	EPA 3005A	1,6020B	AM
Iron, Total	0.0351	J	mg/l	0.700	0.0191	1	09/29/20 20:27	09/30/20 09:55	EPA 3005A	1,6020B	AM
Lead, Total	ND		mg/l	0.00100	0.00034	1	09/29/20 20:27	09/30/20 09:55	EPA 3005A	1,6020B	AM
Magnesium, Total	16.8		mg/l	0.0700	0.0242	1	09/29/20 20:27	09/30/20 09:55	EPA 3005A	1,6020B	AM
Manganese, Total	0.00599		mg/l	0.00100	0.00044	1	09/29/20 20:27	09/30/20 09:55	EPA 3005A	1,6020B	AM
Mercury, Total	ND		mg/l	0.00020	0.00009	1	09/29/20 22:24	09/30/20 09:05	EPA 7470A	1,7470A	EW
Nickel, Total	ND		mg/l	0.00200	0.00055	1	09/29/20 20:27	09/30/20 09:55	EPA 3005A	1,6020B	AM
Potassium, Total	0.840		mg/l	0.100	0.0309	1	09/29/20 20:27	09/30/20 09:55	EPA 3005A	1,6020B	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	09/29/20 20:27	09/30/20 09:55	EPA 3005A	1,6020B	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	09/29/20 20:27	09/30/20 09:55	EPA 3005A	1,6020B	AM
Sodium, Total	2.75		mg/l	0.100	0.0293	1	09/29/20 20:27	09/30/20 09:55	EPA 3005A	1,6020B	AM
Thallium, Total	ND		mg/l	0.00100	0.00014	1	09/29/20 20:27	09/30/20 09:55	EPA 3005A	1,6020B	AM
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	09/29/20 20:27	09/30/20 09:55	EPA 3005A	1,6020B	AM
Zinc, Total	0.02141		mg/l	0.01000	0.00341	1	09/29/20 20:27	09/30/20 09:55	EPA 3005A	1,6020B	AM

09/23/20 10:00

Date Collected:

Project Name:SOUTH HILL DUMPLab Number:L2040189

Project Number: 34236 Report Date: 09/30/20

SAMPLE RESULTS

Lab ID: L2040189-05
Client ID: CHA-001

Client ID: CHA-001 Date Received: 09/23/20 Sample Location: CORTLANDVILLE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	0.00562	J	mg/l	0.0100	0.00327	1	09/29/20 20:27	09/30/20 10:00	EPA 3005A	1,6020B	AM
Antimony, Total	ND		mg/l	0.00400	0.00042	1	09/29/20 20:27	09/30/20 10:00	EPA 3005A	1,6020B	AM
Arsenic, Total	ND		mg/l	0.00050	0.00016	1	09/29/20 20:27	09/30/20 10:00	EPA 3005A	1,6020B	AM
Barium, Total	0.04725		mg/l	0.00050	0.00017	1	09/29/20 20:27	09/30/20 10:00	EPA 3005A	1,6020B	AM
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	09/29/20 20:27	09/30/20 10:00	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	09/29/20 20:27	09/30/20 10:00	EPA 3005A	1,6020B	AM
Calcium, Total	29.1		mg/l	0.100	0.0394	1	09/29/20 20:27	09/30/20 10:00	EPA 3005A	1,6020B	AM
Chromium, Total	0.00038	J	mg/l	0.00100	0.00017	1	09/29/20 20:27	09/30/20 10:00	EPA 3005A	1,6020B	AM
Cobalt, Total	ND		mg/l	0.00050	0.00016	1	09/29/20 20:27	09/30/20 10:00	EPA 3005A	1,6020B	AM
Copper, Total	0.00038	J	mg/l	0.00100	0.00038	1	09/29/20 20:27	09/30/20 10:00	EPA 3005A	1,6020B	AM
Iron, Total	25.4		mg/l	0.0700	0.0191	1	09/29/20 20:27	09/30/20 10:00	EPA 3005A	1,6020B	AM
Lead, Total	ND		mg/l	0.00100	0.00034	1	09/29/20 20:27	09/30/20 10:00	EPA 3005A	1,6020B	AM
Magnesium, Total	7.01		mg/l	0.0700	0.0242	1	09/29/20 20:27	09/30/20 10:00	EPA 3005A	1,6020B	AM
Manganese, Total	0.2259		mg/l	0.00100	0.00044	1	09/29/20 20:27	09/30/20 10:00	EPA 3005A	1,6020B	AM
Mercury, Total	ND		mg/l	0.00020	0.00009	1	09/29/20 22:24	09/30/20 09:07	EPA 7470A	1,7470A	EW
Nickel, Total	0.00066	J	mg/l	0.00200	0.00055	1	09/29/20 20:27	09/30/20 10:00	EPA 3005A	1,6020B	AM
Potassium, Total	0.354		mg/l	0.100	0.0309	1	09/29/20 20:27	09/30/20 10:00	EPA 3005A	1,6020B	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	09/29/20 20:27	09/30/20 10:00	EPA 3005A	1,6020B	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	09/29/20 20:27	09/30/20 10:00	EPA 3005A	1,6020B	AM
Sodium, Total	3.48		mg/l	0.100	0.0293	1	09/29/20 20:27	09/30/20 10:00	EPA 3005A	1,6020B	AM
Thallium, Total	ND		mg/l	0.00100	0.00014	1	09/29/20 20:27	09/30/20 10:00	EPA 3005A	1,6020B	AM
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	09/29/20 20:27	09/30/20 10:00	EPA 3005A	1,6020B	AM
Zinc, Total	0.00525	J	mg/l	0.01000	0.00341	1	09/29/20 20:27	09/30/20 10:00	EPA 3005A	1,6020B	AM

09/23/20 12:00

Date Collected:

Project Name: SOUTH HILL DUMP Lab Number: L2040189

Project Number: 34236 Report Date: 09/30/20

SAMPLE RESULTS

Lab ID: L2040189-06 Client ID: MW-3SR

Client ID: MW-3SR Date Received: 09/23/20 Sample Location: CORTLANDVILLE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	0.419		mg/l	0.0100	0.00327	1	09/29/20 20:27	09/30/20 10:05	EPA 3005A	1,6020B	AM
Antimony, Total	ND		mg/l	0.00400	0.00042	1	09/29/20 20:27	09/30/20 10:05	EPA 3005A	1,6020B	AM
Arsenic, Total	0.00052		mg/l	0.00050	0.00016	1	09/29/20 20:27	09/30/20 10:05	EPA 3005A	1,6020B	AM
Barium, Total	0.08628		mg/l	0.00050	0.00017	1	09/29/20 20:27	09/30/20 10:05	EPA 3005A	1,6020B	AM
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	09/29/20 20:27	09/30/20 10:05	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	09/29/20 20:27	09/30/20 10:05	EPA 3005A	1,6020B	AM
Calcium, Total	87.0		mg/l	0.100	0.0394	1	09/29/20 20:27	09/30/20 10:05	EPA 3005A	1,6020B	AM
Chromium, Total	0.00164		mg/l	0.00100	0.00017	1	09/29/20 20:27	09/30/20 10:05	EPA 3005A	1,6020B	AM
Cobalt, Total	0.00055		mg/l	0.00050	0.00016	1	09/29/20 20:27	09/30/20 10:05	EPA 3005A	1,6020B	AM
Copper, Total	0.00109		mg/l	0.00100	0.00038	1	09/29/20 20:27	09/30/20 10:05	EPA 3005A	1,6020B	AM
Iron, Total	0.858		mg/l	0.0700	0.0191	1	09/29/20 20:27	09/30/20 10:05	EPA 3005A	1,6020B	AM
Lead, Total	0.00066	J	mg/l	0.00100	0.00034	1	09/29/20 20:27	09/30/20 10:05	EPA 3005A	1,6020B	AM
Magnesium, Total	18.8		mg/l	0.0700	0.0242	1	09/29/20 20:27	09/30/20 10:05	EPA 3005A	1,6020B	AM
Manganese, Total	0.1647		mg/l	0.00100	0.00044	1	09/29/20 20:27	09/30/20 10:05	EPA 3005A	1,6020B	AM
Mercury, Total	ND		mg/l	0.00020	0.00009	1	09/29/20 22:24	09/30/20 09:13	EPA 7470A	1,7470A	EW
Nickel, Total	0.00119	J	mg/l	0.00200	0.00055	1	09/29/20 20:27	09/30/20 10:05	EPA 3005A	1,6020B	AM
Potassium, Total	2.38		mg/l	0.100	0.0309	1	09/29/20 20:27	09/30/20 10:05	EPA 3005A	1,6020B	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	09/29/20 20:27	09/30/20 10:05	EPA 3005A	1,6020B	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	09/29/20 20:27	09/30/20 10:05	EPA 3005A	1,6020B	AM
Sodium, Total	6.52		mg/l	0.100	0.0293	1	09/29/20 20:27	09/30/20 10:05	EPA 3005A	1,6020B	AM
Thallium, Total	ND		mg/l	0.00100	0.00014	1	09/29/20 20:27	09/30/20 10:05	EPA 3005A	1,6020B	АМ
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	09/29/20 20:27	09/30/20 10:05	EPA 3005A	1,6020B	AM
Zinc, Total	0.01052		mg/l	0.01000	0.00341	1	09/29/20 20:27	09/30/20 10:05	EPA 3005A	1,6020B	AM

09/23/20 11:45

Date Collected:

Project Name: SOUTH HILL DUMP Lab Number: L2040189

Project Number: 34236 Report Date: 09/30/20

SAMPLE RESULTS

Lab ID: L2040189-07 Client ID: MW-3BR

Client ID: MW-3BR Date Received: 09/23/20 Sample Location: CORTLANDVILLE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	0.0209		mg/l	0.0100	0.00327	1	09/29/20 20:27	09/30/20 10:10	EPA 3005A	1,6020B	AM
Antimony, Total	ND		mg/l	0.00400	0.00042	1	09/29/20 20:27	09/30/20 10:10	EPA 3005A	1,6020B	AM
Arsenic, Total	0.00111		mg/l	0.00050	0.00016	1	09/29/20 20:27	09/30/20 10:10	EPA 3005A	1,6020B	AM
Barium, Total	0.06704		mg/l	0.00050	0.00017	1	09/29/20 20:27	09/30/20 10:10	EPA 3005A	1,6020B	AM
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	09/29/20 20:27	09/30/20 10:10	EPA 3005A	1,6020B	AM
Cadmium, Total	0.00008	J	mg/l	0.00020	0.00005	1	09/29/20 20:27	09/30/20 10:10	EPA 3005A	1,6020B	AM
Calcium, Total	6.42		mg/l	0.100	0.0394	1	09/29/20 20:27	09/30/20 10:10	EPA 3005A	1,6020B	AM
Chromium, Total	0.00057	J	mg/l	0.00100	0.00017	1	09/29/20 20:27	09/30/20 10:10	EPA 3005A	1,6020B	AM
Cobalt, Total	0.00215		mg/l	0.00050	0.00016	1	09/29/20 20:27	09/30/20 10:10	EPA 3005A	1,6020B	AM
Copper, Total	0.00301		mg/l	0.00100	0.00038	1	09/29/20 20:27	09/30/20 10:10	EPA 3005A	1,6020B	AM
Iron, Total	102.		mg/l	0.0700	0.0191	1	09/29/20 20:27	09/30/20 10:10	EPA 3005A	1,6020B	AM
Lead, Total	ND		mg/l	0.00100	0.00034	1	09/29/20 20:27	09/30/20 10:10	EPA 3005A	1,6020B	AM
Magnesium, Total	1.18		mg/l	0.0700	0.0242	1	09/29/20 20:27	09/30/20 10:10	EPA 3005A	1,6020B	AM
Manganese, Total	1.590		mg/l	0.00100	0.00044	1	09/29/20 20:27	09/30/20 10:10	EPA 3005A	1,6020B	AM
Mercury, Total	ND		mg/l	0.00020	0.00009	1	09/29/20 22:24	09/30/20 09:15	EPA 7470A	1,7470A	EW
Nickel, Total	0.01515		mg/l	0.00200	0.00055	1	09/29/20 20:27	09/30/20 10:10	EPA 3005A	1,6020B	AM
Potassium, Total	1.06		mg/l	0.100	0.0309	1	09/29/20 20:27	09/30/20 10:10	EPA 3005A	1,6020B	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	09/29/20 20:27	09/30/20 10:10	EPA 3005A	1,6020B	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	09/29/20 20:27	09/30/20 10:10	EPA 3005A	1,6020B	AM
Sodium, Total	10.7		mg/l	0.100	0.0293	1	09/29/20 20:27	09/30/20 10:10	EPA 3005A	1,6020B	AM
Thallium, Total	ND		mg/l	0.00100	0.00014	1	09/29/20 20:27	09/30/20 10:10	EPA 3005A	1,6020B	AM
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	09/29/20 20:27	09/30/20 10:10	EPA 3005A	1,6020B	AM
Zinc, Total	0.00482	J	mg/l	0.01000	0.00341	1	09/29/20 20:27	09/30/20 10:10	EPA 3005A	1,6020B	AM

09/23/20 12:20

Date Collected:

Project Name: SOUTH HILL DUMP Lab Number: L2040189

Project Number: 34236 Report Date: 09/30/20

SAMPLE RESULTS

Lab ID: L2040189-08
Client ID: MW-3BR2

Client ID: MW-3BR2 Date Received: 09/23/20 Sample Location: CORTLANDVILLE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Aluminum, Total	0.0148		mg/l	0.0100	0.00327	1	09/29/20 20:27	09/30/20 10:15	EPA 3005A	1,6020B	AM
Antimony, Total	ND		mg/l	0.00400	0.00042	1	09/29/20 20:27	09/30/20 10:15	EPA 3005A	1,6020B	AM
Arsenic, Total	0.00026	J	mg/l	0.00050	0.00016	1	09/29/20 20:27	09/30/20 10:15	EPA 3005A	1,6020B	AM
Barium, Total	0.2780		mg/l	0.00050	0.00017	1	09/29/20 20:27	09/30/20 10:15	EPA 3005A	1,6020B	AM
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	09/29/20 20:27	09/30/20 10:15	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	09/29/20 20:27	09/30/20 10:15	EPA 3005A	1,6020B	AM
Calcium, Total	62.3		mg/l	0.100	0.0394	1	09/29/20 20:27	09/30/20 10:15	EPA 3005A	1,6020B	AM
Chromium, Total	0.00041	J	mg/l	0.00100	0.00017	1	09/29/20 20:27	09/30/20 10:15	EPA 3005A	1,6020B	AM
Cobalt, Total	0.00019	J	mg/l	0.00050	0.00016	1	09/29/20 20:27	09/30/20 10:15	EPA 3005A	1,6020B	AM
Copper, Total	0.00072	J	mg/l	0.00100	0.00038	1	09/29/20 20:27	09/30/20 10:15	EPA 3005A	1,6020B	AM
Iron, Total	40.3		mg/l	0.0700	0.0191	1	09/29/20 20:27	09/30/20 10:15	EPA 3005A	1,6020B	AM
Lead, Total	ND		mg/l	0.00100	0.00034	1	09/29/20 20:27	09/30/20 10:15	EPA 3005A	1,6020B	AM
Magnesium, Total	15.9		mg/l	0.0700	0.0242	1	09/29/20 20:27	09/30/20 10:15	EPA 3005A	1,6020B	AM
Manganese, Total	0.2203		mg/l	0.00100	0.00044	1	09/29/20 20:27	09/30/20 10:15	EPA 3005A	1,6020B	AM
Mercury, Total	ND		mg/l	0.00020	0.00009	1	09/29/20 22:24	09/30/20 09:17	EPA 7470A	1,7470A	EW
Nickel, Total	0.00081	J	mg/l	0.00200	0.00055	1	09/29/20 20:27	09/30/20 10:15	EPA 3005A	1,6020B	AM
Potassium, Total	0.926		mg/l	0.100	0.0309	1	09/29/20 20:27	09/30/20 10:15	EPA 3005A	1,6020B	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	09/29/20 20:27	09/30/20 10:15	EPA 3005A	1,6020B	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	09/29/20 20:27	09/30/20 10:15	EPA 3005A	1,6020B	AM
Sodium, Total	14.0		mg/l	0.100	0.0293	1	09/29/20 20:27	09/30/20 10:15	EPA 3005A	1,6020B	AM
Thallium, Total	ND		mg/l	0.00100	0.00014	1	09/29/20 20:27	09/30/20 10:15	EPA 3005A	1,6020B	AM
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	09/29/20 20:27	09/30/20 10:15	EPA 3005A	1,6020B	AM
Zinc, Total	ND		mg/l	0.01000	0.00341	1	09/29/20 20:27	09/30/20 10:15	EPA 3005A	1,6020B	AM

09/23/20 13:00

Date Collected:

Project Name: SOUTH HILL DUMP Lab Number: L2040189

Project Number: 34236 Report Date: 09/30/20

SAMPLE RESULTS

Lab ID: L2040189-09

Client ID: MW-1B Date Received: 09/23/20

Sample Location: CORTLANDVILLE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Aluminum, Total	0.104		mg/l	0.0100	0.00327	1	09/29/20 20:27	09/30/20 10:20	EPA 3005A	1,6020B	AM
Antimony, Total	ND		mg/l	0.00400	0.00042	1	09/29/20 20:27	09/30/20 10:20	EPA 3005A	1,6020B	AM
Arsenic, Total	0.00017	J	mg/l	0.00050	0.00016	1	09/29/20 20:27	09/30/20 10:20	EPA 3005A	1,6020B	AM
Barium, Total	0.02686		mg/l	0.00050	0.00017	1	09/29/20 20:27	09/30/20 10:20	EPA 3005A	1,6020B	AM
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	09/29/20 20:27	09/30/20 10:20	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	09/29/20 20:27	09/30/20 10:20	EPA 3005A	1,6020B	AM
Calcium, Total	37.9		mg/l	0.100	0.0394	1	09/29/20 20:27	09/30/20 10:20	EPA 3005A	1,6020B	AM
Chromium, Total	0.00064	J	mg/l	0.00100	0.00017	1	09/29/20 20:27	09/30/20 10:20	EPA 3005A	1,6020B	AM
Cobalt, Total	0.00023	J	mg/l	0.00050	0.00016	1	09/29/20 20:27	09/30/20 10:20	EPA 3005A	1,6020B	AM
Copper, Total	ND		mg/l	0.00100	0.00038	1	09/29/20 20:27	09/30/20 10:20	EPA 3005A	1,6020B	AM
Iron, Total	0.321		mg/l	0.0700	0.0191	1	09/29/20 20:27	09/30/20 10:20	EPA 3005A	1,6020B	AM
Lead, Total	ND		mg/l	0.00100	0.00034	1	09/29/20 20:27	09/30/20 10:20	EPA 3005A	1,6020B	AM
Magnesium, Total	8.30		mg/l	0.0700	0.0242	1	09/29/20 20:27	09/30/20 10:20	EPA 3005A	1,6020B	AM
Manganese, Total	0.02885		mg/l	0.00100	0.00044	1	09/29/20 20:27	09/30/20 10:20	EPA 3005A	1,6020B	AM
Mercury, Total	ND		mg/l	0.00020	0.00009	1	09/29/20 22:24	09/30/20 09:19	EPA 7470A	1,7470A	EW
Nickel, Total	ND		mg/l	0.00200	0.00055	1	09/29/20 20:27	09/30/20 10:20	EPA 3005A	1,6020B	AM
Potassium, Total	0.935		mg/l	0.100	0.0309	1	09/29/20 20:27	09/30/20 10:20	EPA 3005A	1,6020B	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	09/29/20 20:27	09/30/20 10:20	EPA 3005A	1,6020B	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	09/29/20 20:27	09/30/20 10:20	EPA 3005A	1,6020B	AM
Sodium, Total	16.1		mg/l	0.100	0.0293	1	09/29/20 20:27	09/30/20 10:20	EPA 3005A	1,6020B	AM
Thallium, Total	ND		mg/l	0.00100	0.00014	1	09/29/20 20:27	09/30/20 10:20	EPA 3005A	1,6020B	AM
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	09/29/20 20:27	09/30/20 10:20	EPA 3005A	1,6020B	AM
Zinc, Total	ND		mg/l	0.01000	0.00341	1	09/29/20 20:27	09/30/20 10:20	EPA 3005A	1,6020B	AM

09/23/20 11:40

Date Collected:

Project Name: SOUTH HILL DUMP Lab Number: L2040189

Project Number: 34236 Report Date: 09/30/20

SAMPLE RESULTS

Lab ID: L2040189-10
Client ID: SED-001

Client ID: SED-001 Date Received: 09/23/20
Sample Location: CORTLANDVILLE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 18%

Dilution Date Date Prep **Analytical** Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units MDL RL Analyst Total Metals - Mansfield Lab Aluminum, Total 12700 mg/kg 43.1 11.6 2 09/29/20 03:40 09/30/20 14:28 EPA 3050B 1,6010D GD ND 2 1,6010D Antimony, Total mg/kg 21.5 1.64 09/29/20 03:40 09/30/20 14:28 EPA 3050B GD Arsenic, Total 7.19 mg/kg 4.31 0.896 2 09/29/20 03:40 09/30/20 14:28 EPA 3050B 1,6010D GD 2 Barium, Total 310 4.31 0.749 09/29/20 03:40 09/30/20 14:28 EPA 3050B 1,6010D GD mg/kg J 2 1,6010D Beryllium, Total 0.732 mg/kg 2.15 0.142 09/29/20 03:40 09/30/20 14:28 EPA 3050B GD J 0.422 2 1,6010D GD Cadmium, Total 1.16 mg/kg 4.31 09/29/20 03:40 09/30/20 14:28 EPA 3050B Calcium, Total 15900 43.1 15.1 2 09/29/20 03:40 09/30/20 14:28 EPA 3050B 1,6010D mg/kg GD 2 1,6010D 40.6 4.31 0.413 09/29/20 03:40 09/30/20 14:28 EPA 3050B GD Chromium, Total mg/kg 2 1,6010D Cobalt, Total 24.4 mg/kg 8.61 0.715 09/29/20 03:40 09/30/20 14:28 EPA 3050B GD 2 Copper, Total 24.0 4.31 1.11 09/29/20 03:40 09/30/20 14:28 EPA 3050B 1,6010D GD mg/kg 2 1,6010D Iron, Total 24200 21.5 3.89 09/29/20 03:40 09/30/20 14:28 EPA 3050B GD mg/kg J 2 Lead, Total 18.1 mg/kg 21.5 1.15 09/29/20 03:40 09/30/20 14:28 EPA 3050B 1,6010D GD Magnesium, Total 6680 43.1 6.63 2 09/29/20 03:40 09/30/20 14:28 EPA 3050B 1,6010D GD mg/kg 4.31 0.685 2 09/29/20 03:40 09/30/20 14:28 EPA 3050B 1,6010D GD Manganese, Total 25000 mg/kg Mercury, Total ND mg/kg 0.350 0.228 1 09/29/20 05:00 09/29/20 08:27 EPA 7471B 1,7471B EW Nickel, Total 43.2 10.8 1.04 2 09/29/20 03:40 09/30/20 14:28 EPA 3050B 1,6010D GD mg/kg J 925 1080 62.0 2 1,6010D GD Potassium, Total mg/kg 09/29/20 03:40 09/30/20 14:28 EPA 3050B Selenium, Total 10.8 mg/kg 8.61 1.11 2 09/29/20 03:40 09/30/20 14:28 EPA 3050B 1,6010D GD Silver, Total 1.38 J mg/kg 4.31 1.22 2 09/29/20 03:40 09/30/20 14:28 EPA 3050B 1,6010D GD J Sodium, Total 302 mg/kg 861 13.6 2 09/29/20 03:40 09/30/20 14:28 EPA 3050B 1,6010D GD Thallium, Total 23.0 mg/kg 8.61 1.36 2 09/29/20 03:40 09/30/20 14:28 EPA 3050B 1,6010D GD Vanadium, Total 6.20 4.31 0.874 2 09/29/20 03:40 09/30/20 14:28 EPA 3050B 1,6010D mg/kg GD 2 1,6010D 93.0 21.5 1.26 GD Zinc, Total mg/kg 09/29/20 03:40 09/30/20 14:28 EPA 3050B

09/23/20 12:30

Date Collected:

Project Name: SOUTH HILL DUMP Lab Number: L2040189

Project Number: 34236 Report Date: 09/30/20

SAMPLE RESULTS

Lab ID: L2040189-12 Client ID: MW-3SR2

Client ID: MW-3SR2 Date Received: 09/23/20 Sample Location: CORTLANDVILLE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	0.174		mg/l	0.0100	0.00327	1	09/29/20 20:27	09/30/20 10:25	EPA 3005A	1,6020B	AM
Antimony, Total	ND		mg/l	0.00400	0.00042	1	09/29/20 20:27	09/30/20 10:25	EPA 3005A	1,6020B	AM
Arsenic, Total	0.00142		mg/l	0.00050	0.00016	1	09/29/20 20:27	09/30/20 10:25	EPA 3005A	1,6020B	AM
Barium, Total	0.1802		mg/l	0.00050	0.00017	1	09/29/20 20:27	09/30/20 10:25	EPA 3005A	1,6020B	AM
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	09/29/20 20:27	09/30/20 10:25	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	09/29/20 20:27	09/30/20 10:25	EPA 3005A	1,6020B	AM
Calcium, Total	118.		mg/l	0.100	0.0394	1	09/29/20 20:27	09/30/20 10:25	EPA 3005A	1,6020B	AM
Chromium, Total	0.00061	J	mg/l	0.00100	0.00017	1	09/29/20 20:27	09/30/20 10:25	EPA 3005A	1,6020B	AM
Cobalt, Total	0.00264		mg/l	0.00050	0.00016	1	09/29/20 20:27	09/30/20 10:25	EPA 3005A	1,6020B	AM
Copper, Total	0.00133		mg/l	0.00100	0.00038	1	09/29/20 20:27	09/30/20 10:25	EPA 3005A	1,6020B	AM
Iron, Total	1.31		mg/l	0.700	0.0191	1	09/29/20 20:27	09/30/20 10:25	EPA 3005A	1,6020B	AM
Lead, Total	0.00047	J	mg/l	0.00100	0.00034	1	09/29/20 20:27	09/30/20 10:25	EPA 3005A	1,6020B	AM
Magnesium, Total	18.5		mg/l	0.0700	0.0242	1	09/29/20 20:27	09/30/20 10:25	EPA 3005A	1,6020B	AM
Manganese, Total	3.035		mg/l	0.00100	0.00044	1	09/29/20 20:27	09/30/20 10:25	EPA 3005A	1,6020B	AM
Mercury, Total	ND		mg/l	0.00020	0.00009	1	09/29/20 22:24	09/30/20 09:21	EPA 7470A	1,7470A	EW
Nickel, Total	0.00267		mg/l	0.00200	0.00055	1	09/29/20 20:27	09/30/20 10:25	EPA 3005A	1,6020B	AM
Potassium, Total	3.81		mg/l	0.100	0.0309	1	09/29/20 20:27	09/30/20 10:25	EPA 3005A	1,6020B	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	09/29/20 20:27	09/30/20 10:25	EPA 3005A	1,6020B	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	09/29/20 20:27	09/30/20 10:25	EPA 3005A	1,6020B	AM
Sodium, Total	27.8		mg/l	0.100	0.0293	1	09/29/20 20:27	09/30/20 10:25	EPA 3005A	1,6020B	AM
Thallium, Total	ND		mg/l	0.00100	0.00014	1	09/29/20 20:27	09/30/20 10:25	EPA 3005A	1,6020B	AM
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	09/29/20 20:27	09/30/20 10:25	EPA 3005A	1,6020B	AM
Zinc, Total	0.03154		mg/l	0.01000	0.00341	1	09/29/20 20:27	09/30/20 10:25	EPA 3005A	1,6020B	AM

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number:

L2040189

Report Date: 09/30/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	alifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for san	nple(s):	01-09,12	Batch:	WG141	5491-1				
Aluminum, Total	ND		mg/l	0.0100	0.00327	1	09/29/20 20:27	09/30/20 08:41	1,6020B	AM
Antimony, Total	ND		mg/l	0.00400	0.00042	1	09/29/20 20:27	09/30/20 08:41	1,6020B	AM
Arsenic, Total	ND		mg/l	0.00050	0.00016	1	09/29/20 20:27	09/30/20 08:41	1,6020B	AM
Barium, Total	ND		mg/l	0.00050	0.00017	1	09/29/20 20:27	09/30/20 08:41	1,6020B	AM
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	09/29/20 20:27	09/30/20 08:41	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	09/29/20 20:27	09/30/20 08:41	1,6020B	AM
Calcium, Total	ND		mg/l	0.100	0.0394	1	09/29/20 20:27	09/30/20 08:41	1,6020B	AM
Chromium, Total	ND		mg/l	0.00100	0.00017	1	09/29/20 20:27	09/30/20 08:41	1,6020B	AM
Cobalt, Total	ND		mg/l	0.00050	0.00016	1	09/29/20 20:27	09/30/20 08:41	1,6020B	AM
Copper, Total	ND		mg/l	0.00100	0.00038	1	09/29/20 20:27	09/30/20 08:41	1,6020B	AM
Iron, Total	0.0222	J	mg/l	0.0700	0.0191	1	09/29/20 20:27	09/30/20 08:41	1,6020B	AM
Lead, Total	ND		mg/l	0.00100	0.00034	1	09/29/20 20:27	09/30/20 08:41	1,6020B	AM
Magnesium, Total	ND		mg/l	0.0700	0.0242	1	09/29/20 20:27	09/30/20 08:41	1,6020B	AM
Manganese, Total	0.00048	J	mg/l	0.00100	0.00044	1	09/29/20 20:27	09/30/20 08:41	1,6020B	AM
Nickel, Total	ND		mg/l	0.00200	0.00055	1	09/29/20 20:27	09/30/20 08:41	1,6020B	AM
Potassium, Total	ND		mg/l	0.100	0.0309	1	09/29/20 20:27	09/30/20 08:41	1,6020B	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	09/29/20 20:27	09/30/20 08:41	1,6020B	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	09/29/20 20:27	09/30/20 08:41	1,6020B	AM
Sodium, Total	ND		mg/l	0.100	0.0293	1	09/29/20 20:27	09/30/20 08:41	1,6020B	AM
Thallium, Total	0.00032	J	mg/l	0.00100	0.00014	1	09/29/20 20:27	09/30/20 08:41	1,6020B	AM
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	09/29/20 20:27	09/30/20 08:41	1,6020B	AM
Zinc, Total	ND		mg/l	0.01000	0.00341	1	09/29/20 20:27	09/30/20 08:41	1,6020B	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Ma	ansfield Lab for sample(s):	01-09,12	Batch:	WG141	5492-1				
Mercury, Total	ND	mg/l	0.00020	0.00009) 1	09/29/20 22:24	09/30/20 08:51	1,7470A	EW

L2040189

Lab Number:

Project Name: SOUTH HILL DUMP

Project Number: 34236 Report Date: 09/30/20

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7470A

Parameter	Result C	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sa	imple(s):	10 Batch	n: WG14	415551-	1				
Aluminum, Total	ND		mg/kg	4.00	1.08	1	09/29/20 03:40	09/30/20 11:21	1,6010D	GD
Antimony, Total	0.256	J	mg/kg	2.00	0.152	1	09/29/20 03:40	09/30/20 11:21	1,6010D	GD
Arsenic, Total	ND		mg/kg	0.400	0.083	1	09/29/20 03:40	09/30/20 11:21	1,6010D	GD
Barium, Total	ND		mg/kg	0.400	0.070	1	09/29/20 03:40	09/30/20 11:21	1,6010D	GD
Beryllium, Total	ND		mg/kg	0.200	0.013	1	09/29/20 03:40	09/30/20 11:21	1,6010D	GD
Cadmium, Total	ND		mg/kg	0.400	0.039	1	09/29/20 03:40	09/30/20 11:21	1,6010D	GD
Calcium, Total	ND		mg/kg	4.00	1.40	1	09/29/20 03:40	09/30/20 11:21	1,6010D	GD
Chromium, Total	ND		mg/kg	0.400	0.038	1	09/29/20 03:40	09/30/20 11:21	1,6010D	GD
Cobalt, Total	ND		mg/kg	0.800	0.066	1	09/29/20 03:40	09/30/20 11:21	1,6010D	GD
Copper, Total	ND		mg/kg	0.400	0.103	1	09/29/20 03:40	09/30/20 11:21	1,6010D	GD
Iron, Total	1.37	J	mg/kg	2.00	0.361	1	09/29/20 03:40	09/30/20 11:21	1,6010D	GD
Lead, Total	ND		mg/kg	2.00	0.107	1	09/29/20 03:40	09/30/20 11:21	1,6010D	GD
Magnesium, Total	ND		mg/kg	4.00	0.616	1	09/29/20 03:40	09/30/20 11:21	1,6010D	GD
Manganese, Total	0.128	J	mg/kg	0.400	0.064	1	09/29/20 03:40	09/30/20 11:21	1,6010D	GD
Nickel, Total	ND		mg/kg	1.00	0.097	1	09/29/20 03:40	09/30/20 11:21	1,6010D	GD
Potassium, Total	ND		mg/kg	100	5.76	1	09/29/20 03:40	09/30/20 11:21	1,6010D	GD
Selenium, Total	ND		mg/kg	0.800	0.103	1	09/29/20 03:40	09/30/20 11:21	1,6010D	GD
Silver, Total	ND		mg/kg	0.400	0.113	1	09/29/20 03:40	09/30/20 11:21	1,6010D	GD
Sodium, Total	ND		mg/kg	80.0	1.26	1	09/29/20 03:40	09/30/20 11:21	1,6010D	GD
Thallium, Total	ND		mg/kg	0.800	0.126	1	09/29/20 03:40	09/30/20 11:21	1,6010D	GD
Vanadium, Total	ND		mg/kg	0.400	0.081	1	09/29/20 03:40	09/30/20 11:21	1,6010D	GD
Zinc, Total	ND		mg/kg	2.00	0.117	1	09/29/20 03:40	09/30/20 11:21	1,6010D	GD

Prep Information

Digestion Method: EPA 3050B

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number:

L2040189

Report Date:

09/30/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	10 Batch	: WG14	415558-	1				
Mercury, Total	ND	mg/kg	0.083	0.054	1	09/29/20 05:00	09/29/20 07:34	1,7471B	EW

Prep Information

Digestion Method: EPA 7471B

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2040189

arameter	%Recovery	LCSD Qual %Recovery	Qual L	ecovery imits RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated samp	le(s): 01-09,12	Batch: WG1415491-2				
Aluminum, Total	109	-	80)-120 -		
Antimony, Total	89	-	80)-120 -		
Arsenic, Total	109	-	80)-120 -		
Barium, Total	103	-	80)-120 -		
Beryllium, Total	105	-	80)-120 -		
Cadmium, Total	108	-	80)-120 -		
Calcium, Total	113	-	80)-120 -		
Chromium, Total	105	-	80)-120 -		
Cobalt, Total	108	-	80)-120 -		
Copper, Total	105	-	80)-120 -		
Iron, Total	114	-	80)-120 -		
Lead, Total	109	-	80)-120 -		
Magnesium, Total	106	-	80)-120 -		
Manganese, Total	100	-	80)-120 -		
Nickel, Total	105	-	80)-120 -		
Potassium, Total	110	-	80)-120 -		
Selenium, Total	108	-	80)-120 -		
Silver, Total	107	-	80)-120 -		
Sodium, Total	112	-	80)-120 -		
Thallium, Total	108	-	80)-120 -		
Vanadium, Total	106	-	80)-120 -		

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number:

L2040189

Report Date:

09/30/20

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated s	ample(s): 01-09,12 Batch:	WG1415491-2			
Zinc, Total	110	-	80-120	-	
Total Metals - Mansfield Lab Associated s	ample(s): 01-09,12 Batch:	WG1415492-2			
Mercury, Total	102	-	80-120	-	

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2040189

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield Lab Associated sample	e(s): 10 Batch: WG	S1415551-2 SRM Lot Number:	D109-540		
Aluminum, Total	73	-	50-150	-	
Antimony, Total	143	-	19-250	-	
Arsenic, Total	104	-	70-130	-	
Barium, Total	100	-	75-125	-	
Beryllium, Total	106	-	75-125	-	
Cadmium, Total	106	-	75-125	-	
Calcium, Total	93	-	73-128	-	
Chromium, Total	99	-	70-130	-	
Cobalt, Total	105	-	75-125	-	
Copper, Total	103	-	75-125	-	
Iron, Total	91	-	35-165	-	
Lead, Total	98	-	72-128	-	
Magnesium, Total	88	-	62-138	-	
Manganese, Total	102	-	74-126	-	
Nickel, Total	105	-	70-130	-	
Potassium, Total	84	-	59-141	-	
Selenium, Total	102	-	68-132	-	
Silver, Total	98	-	68-131	-	
Sodium, Total	102	-	35-165	-	
Thallium, Total	104	-	68-131	-	
Vanadium, Total	99	-	59-141	-	

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2040189

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associate	d sample(s): 10 Batch: WG141	15551-2 SRM Lot Numbe	r: D109-540		
Zinc, Total	97	-	70-130	-	
Total Metals - Mansfield Lab Associate	d sample(s): 10 Batch: WG141	15558-2 SRM Lot Numbe	r: D109-540		
Mercury, Total	100	-	60-140	-	

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2040189

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	<u>RPD</u>	RPD Qual Limits
Total Metals - Mansfield Lab	Associated san	nple(s): 01-0	9,12 QC	Batch ID: WG1	415491-3 WG1415	5491-4 QC S	Sample: L2040189-01	CI	lient ID: MW-2B
Aluminum, Total	0.00947J	2	2.17	108	2.15	108	75-125	1	20
Antimony, Total	0.00043J	0.5	0.4990	100	0.5060	101	75-125	1	20
Arsenic, Total	ND	0.12	0.1072	89	0.1032	86	75-125	4	20
Barium, Total	0.1094	2	2.094	99	2.093	99	75-125	0	20
Beryllium, Total	ND	0.05	0.05365	107	0.05479	110	75-125	2	20
Cadmium, Total	ND	0.051	0.05440	107	0.05646	111	75-125	4	20
Calcium, Total	33.9	10	44.7	108	43.6	97	75-125	2	20
Chromium, Total	0.00044J	0.2	0.2014	101	0.2021	101	75-125	0	20
Cobalt, Total	ND	0.5	0.5102	102	0.5258	105	75-125	3	20
Copper, Total	0.00110	0.25	0.2614	104	0.2597	103	75-125	1	20
Iron, Total	9.05	1	7.10	0	Q 6.47	0	Q 75-125	9	20
Lead, Total	ND	0.51	0.5327	104	0.5417	106	75-125	2	20
Magnesium, Total	7.68	10	18.3	106	18.1	104	75-125	1	20
Manganese, Total	0.1814	0.5	0.6695	98	0.6639	96	75-125	1	20
Nickel, Total	0.00090J	0.5	0.5048	101	0.5120	102	75-125	1	20
Potassium, Total	0.967	10	11.7	107	11.4	104	75-125	3	20
Selenium, Total	ND	0.12	0.0923	77	0.0896	75	75-125	3	20
Silver, Total	ND	0.05	0.05227	104	0.05221	104	75-125	0	20
Sodium, Total	5.52	10	16.3	108	16.3	108	75-125	0	20
Thallium, Total	0.00047J	0.12	0.1326	110	0.1271	106	75-125	4	20
Vanadium, Total	ND	0.5	0.4971	99	0.4908	98	75-125	1	20

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number:

L2040189

Report Date:

09/30/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits R		RPD imits
Total Metals - Mansfield Lab Ass	sociated sam	ple(s): 01-0	9,12 QC	Batch ID: WG141549	1-3 WG141	5491-4 QC Samp	le: L2040189-01	Client ID: M	1W-2B
Zinc, Total	0.00357J	0.5	0.5450	109	0.5406	108	75-125	1	20
Total Metals - Mansfield Lab As	sociated sam	ple(s): 01-0	9,12 QC	Batch ID: WG141549	2-3 WG141	5492-4 QC Samp	le: L2040189-01	Client ID: M	1W-2B
Mercury, Total	ND	0.005	0.00401	80	0.00392	78	75-125	2	20

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2040189

arameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield Lab	Associated sar	nple(s): 10	QC Batch	ID: WG141555	1-3	QC Sample:	: L2040322-01	Client ID: MS Sa	ample	
Aluminum, Total	1620	161	2650	639	Q	-	-	75-125	-	20
Antimony, Total	0.203J	40.3	42.3	105		-	-	75-125	-	20
Arsenic, Total	1.02	9.66	11.8	112		-	-	75-125	-	20
Barium, Total	3.12	161	171	104		-	-	75-125	-	20
Beryllium, Total	0.068J	4.03	4.32	107		-	-	75-125	-	20
Cadmium, Total	0.076J	4.11	4.37	106		-	-	75-125	-	20
Calcium, Total	99.5	805	1020	114		-	-	75-125	-	20
Chromium, Total	3.08	16.1	20.4	108		-	-	75-125	-	20
Cobalt, Total	0.997	40.3	40.9	99		-	-	75-125	-	20
Copper, Total	1.46	20.1	22.3	104		-	-	75-125	-	20
Iron, Total	2950	80.5	3300	434	Q	-	-	75-125	-	20
Lead, Total	1.41J	41.1	43.8	107		-	-	75-125	-	20
Magnesium, Total	235	805	1130	111		-	-	75-125	-	20
Manganese, Total	52.6	40.3	101	120		-	-	75-125	-	20
Nickel, Total	1.54	40.3	40.1	96		-	-	75-125	-	20
Potassium, Total	88.2J	805	893	111		-	-	75-125	-	20
Selenium, Total	ND	9.66	9.86	102		-	-	75-125	-	20
Silver, Total	ND	24.2	23.8	98		-	-	75-125	-	20
Sodium, Total	5.74J	805	848	105		-	-	75-125	-	20
Thallium, Total	ND	9.66	9.36	97		-	-	75-125	-	20
Vanadium, Total	3.27	40.3	44.9	103		-	-	75-125	-	20

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number:

L2040189

Report Date:

09/30/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield L	ab Associated sam	ple(s): 10	QC Batch	ID: WG1415551-3	QC Sample	: L2040322-01	Client ID: MS Sa	ample	
Zinc, Total	4.48	40.3	46.5	104	-	-	75-125	-	20
Total Metals - Mansfield L	ab Associated sam	ple(s): 10	QC Batch	ID: WG1415558-3	QC Sample	: L2040322-01	Client ID: MS Sa	ample	
Mercury, Total	ND	0.13	0.134	103	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

ND

mg/kg

NC

Project Name: SOUTH HILL DUMP

Project Number: 34236 Lab Number: L2040189 09/30/20 Report Date:

Native Sample Duplicate Sample Units **RPD** Qual **RPD Limits Parameter** Total Metals - Mansfield Lab Associated sample(s): 10 QC Batch ID: WG1415551-4 QC Sample: L2040322-01 Client ID: DUP Sample Arsenic, Total 1.02 1.56 mg/kg 42 Q 20 Barium, Total 3.12 5.07 mg/kg 48 Q 20 Beryllium, Total NC 0.068J 0.138J mg/kg 20 Cadmium, Total 0.076J 0.117J mg/kg NC 20 Q Chromium, Total 3.08 4.72 mg/kg 42 20 Copper, Total 1.46 1.82 mg/kg 22 Q 20 Lead, Total 1.41J 2.29 mg/kg NC 20 Manganese, Total Q 52.6 72.4 mg/kg 32 20 Nickel, Total 1.54 1.56 mg/kg 20 Selenium, Total ND ND mg/kg NC 20 Silver, Total ND ND mg/kg NC 20 Zinc, Total 4.48 6.87 mg/kg 42 Q 20 Total Metals - Mansfield Lab Associated sample(s): 10 QC Batch ID: WG1415558-4 QC Sample: L2040322-01 Client ID: DUP Sample Mercury, Total

ND

20

INORGANICS & MISCELLANEOUS

Project Name: SOUTH HILL DUMP Lab Number: L2040189

Project Number: 34236 Report Date: 09/30/20

SAMPLE RESULTS

Lab ID: L2040189-10 Date Collected: 09/23/20 11:40

Client ID: SED-001 Date Received: 09/23/20 Sample Location: CORTLANDVILLE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	18.0		%	0.100	NA	1	-	09/29/20 08:17	121,2540G	RI

Lab Number:

Lab Duplicate Analysis Batch Quality Control

Project Name: SOUTH HILL DUMP

L2040189

09/30/20 **Project Number:** 34236 Report Date:

Parameter	Native Sample	Duplicate Sam	ple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 10 QC Batch ID	: WG1415715-1	QC Sample:	L2040930-01	Client ID:	DUP Sample
Solids, Total	83.3	84.3	%	1		20

Serial_No:09302016:53 *Lab Number:* L2040189

Project Name: SOUTH HILL DUMP

Project Number: 34236 Report Date: 09/30/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2040189-01A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-01A1	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-01A2	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-01B	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-01B1	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-01B2	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-01C	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-01C1	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-01C2	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-01D	Plastic 250ml HNO3 preserved	Α	<2	<2	3.5	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),BE-6020T(180),MN-6020T(180),AS-6020T(180),SB-6020T(180),V-6020T(180),AS-6020T(180),AL-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)
L2040189-01D1	Plastic 250ml HNO3 preserved	Α	<2	<2	3.5	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),BE-6020T(180),SB-6020T(180),V-6020T(180),AS-6020T(180),AL-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)

Lab Number: L2040189

Report Date: 09/30/20

Project Name: SOUTH HILL DUMP

Project Number: 34236

Container Info	Container Information		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2040189-01D2	Plastic 250ml HNO3 preserved	A	<2	<2	3.5	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),BE-6020T(180),MN-6020T(180),AS-6020T(180),SB-6020T(180),CD-6020T(180),AG-6020T(180),AL-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)
L2040189-02A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-02B	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-02C	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-02D	Plastic 250ml HNO3 preserved	A	<2	<2	3.5	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),BE-6020T(180),SB-6020T(180),V-6020T(180),AS-6020T(180),AL-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)
L2040189-03A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-03B	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-03C	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-03D	Plastic 250ml HNO3 preserved	A	<2	<2	3.5	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),BE-6020T(180),SB-6020T(180),V-6020T(180),AS-6020T(180),AL-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)
L2040189-04A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-04B	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-04C	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2040189

Report Date: 09/30/20

SOUTH HILL DUMP

Project Name:

Project Number: 34236

Container Info	Container Information		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2040189-04D	Plastic 250ml HNO3 preserved	А	<2	<2	3.5	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),BE-6020T(180),MN-6020T(180),AS-6020T(180),SB-6020T(180),V-6020T(180),AS-6020T(180),AL-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)
L2040189-05A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-05A1	Vial HCl preserved	Α	NA		3.5	Υ	Absent		-
L2040189-05A2	Vial HCI preserved	Α	NA		3.5	Υ	Absent		-
L2040189-05B	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-05B1	Vial HCl preserved	Α	NA		3.5	Υ	Absent		-
L2040189-05B2	Vial HCl preserved	Α	NA		3.5	Υ	Absent		-
L2040189-05C	Vial HCI preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-05C1	Vial HCI preserved	Α	NA		3.5	Υ	Absent		-
L2040189-05C2	Vial HCI preserved	Α	NA		3.5	Υ	Absent		-
L2040189-05D	Plastic 250ml HNO3 preserved	А	<2	<2	3.5	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),BE-6020T(180),SB-6020T(180),V-6020T(180),AS-6020T(180),AS-6020T(180),AL-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)
L2040189-05D1	Plastic 250ml HNO3 preserved	А	<2	<2	3.5	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),ZD-6020T(180),BE-6020T(180),MN-6020T(180),BE-6020T(180),MN-6020T(180),AS-6020T(180),SB-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)

Lab Number: L2040189

SOUTH HILL DUMP

Project Name:

Project Number: 34236 Report Date: 09/30/20

Container Info	Container Information		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2040189-05D2	Plastic 250ml HNO3 preserved	A	<2	<2	3.5	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),BE-6020T(180),MN-6020T(180),AS-6020T(180),SB-6020T(180),V-6020T(180),AG-6020T(180),AL-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)
L2040189-06A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-06B	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-06C	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-06D	Plastic 250ml HNO3 preserved	A	<2	<2	3.5	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),BE-6020T(180),MN-6020T(180),AS-6020T(180),SB-6020T(180),V-6020T(180),AS-6020T(180),AL-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)
L2040189-07A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-07B	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-07C	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-07D	Plastic 250ml HNO3 preserved	A	<2	<2	3.5	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),BE-6020T(180),SB-6020T(180),V-6020T(180),AS-6020T(180),AL-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)
L2040189-08A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-08B	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-08C	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2040189

Report Date: 09/30/20

Project Name: SOUTH HILL DUMP

Project Number: 34236

Container Info	Container Information		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2040189-08D	Plastic 250ml HNO3 preserved	Α	<2	<2	3.5	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CG-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),AS-6020T(180),MN-6020T(180),AS-6020T(180),SB-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)
L2040189-09A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-09B	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-09C	Vial HCI preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-09D	Plastic 250ml HNO3 preserved	A	<2	<2	3.5	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),BE-6020T(180),SB-6020T(180),V-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),CD-6020T(180),BS-6020T(180),CD-6020T(180),CO-6020T(180)
L2040189-10A	Plastic 2oz unpreserved for TS	Α	NA		3.5	Υ	Absent		TS(7)
L2040189-10B	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		3.5	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TL- TI(180),CU-TI(180),PB-TI(180),SB-TI(180),SE- TI(180),ZN-TI(180),CO-TI(180),V-TI(180),FE- TI(180),HG-T(28),MG-TI(180),MN-TI(180),CA- TI(180),CD-TI(180),K-TI(180),NA-TI(180)
L2040189-10C	Glass 60mL/2oz unpreserved	Α	NA		3.5	Υ	Absent		NYTCL-8082(14)
L2040189-10D	Vial Large Septa unpreserved (4oz)	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-10X	Vial MeOH preserved split	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-10Y	Vial Water preserved split	Α	NA		3.5	Υ	Absent	29-SEP-20 02:00	NYTCL-8260-R2(14)
L2040189-10Z	Vial Water preserved split	Α	NA		3.5	Υ	Absent	29-SEP-20 02:00	NYTCL-8260-R2(14)
L2040189-11A	Vial HCI preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-11B	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-12A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-12B	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2040189-12C	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2040189

Report Date: 09/30/20

Project Name: SOUTH HILL DUMP

Project Number: 34236

Container Information Initial Final Temp Frozen pН deg C Pres Seal Cooler pH Date/Time Container ID Container Type Analysis(*) L2040189-12D Plastic 250ml HNO3 preserved <2 <2 3.5 Absent

BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),BE-6020T(180),BE-6020T(180),BE-6020T(180),BE-6020T(180),BE-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AL-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)

Project Name: Lab Number: SOUTH HILL DUMP L2040189

Report Date: Project Number: 34236 09/30/20

GLOSSARY

Acronyms

LOQ

MS

RL

SRM

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA** Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

> than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples. STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:SOUTH HILL DUMPLab Number:L2040189Project Number:34236Report Date:09/30/20

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: DU Report with 'J' Qualifiers

Project Name:SOUTH HILL DUMPLab Number:L2040189Project Number:34236Report Date:09/30/20

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:SOUTH HILL DUMPLab Number:L2040189Project Number:34236Report Date:09/30/20

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:09302016:53

ID No.:17873 Revision 17

Published Date: 4/28/2020 9:42:21 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

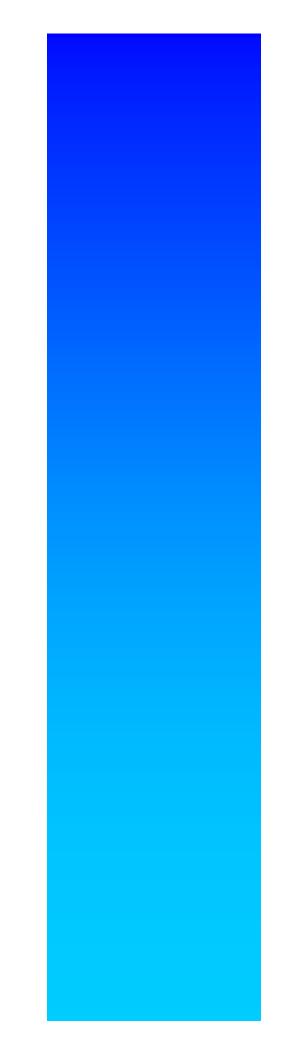
EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.


SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

ДІРНА	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	5	Page			Date Re in La	c'd	9/2	14/20		ALPHA JOB# 2040180	}		
Westborough, MA 01581	Mansfield, MA 02048	Project Information	100	Mary St.	STELL.	A SAME	Deliv	erables	Pale	100		200	Billing Information		
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	The second secon	thtill Du	InoO		-		ASP-A		V	ASP-B		Same as Client Info		
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: (1)	rttonavill	YING			17	EQuIS (1 File)		EQuIS (4 F	File)	PO#		
Client Information		Project # 3423	Sic	C, 197			1 1	Other		A		77.2	(1.50%) 		
Client: CHA		(Use Project name as P					Regu		ouireme	nt	Aut. 6		Disposal Site Information	77	
Address: 300 5	State St	Project Manager: Ne		17			-	latory Requirement NY TOGS			NY Part 375	5	Please identify below location	7.7	
Syracuse, NY		ALPHAQuote #:	M SON DEC	, ,			1 1	AWQ Sta		=	NY CP-51		applicable disposal facilities.	01	
	7 1250	Turn-Around Time		THE REAL PROPERTY.	VALUE OF THE PARTY	HE III	l	NY Restri		=	Other		Disposal Facility:		
Fax:	1 1230	Standar	1	Due Date:			H	NY Unres			·		□ NJ □ NY		
	alel a comin	Rush (only if pre approved		# of Days:			님	NYC Sew					Other:		
	The second secon	THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO PERSONS AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO PERSONS AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO PERSON NAMED	<i>-</i> /	# of Days:			ANIA	LYSIS	er Discria	ige		_		165	100
These samples have be Other project specific									_			_	Sample Filtration	- 0	0
Please specify Metals		ients.					Total tals						☐ Done ☐ Lab to do Preservation ☐ Lab to do	a I	t a I
)					毛	77		1 1			(Please Specify below)	9	•
ALPHA Lab ID	,		Colle	ction	Sample	Sampler's	-	1		1 1			i isass speciny acrony		
(Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Initials	Total	E		ΙI			Sample Specific Comments		
UN189 - 11	MW-2B		9/23/20	945	w	Ke	×	-	+	\vdash		-			4
40189 - 01 -01		D mal	9 123/20	945			X	X	_	\vdash	_	+		1	1
-01-05	GHA - MS		9/23/20		W	KE	x	X	_			\vdash		+	-
-02	MW - 2 9	001	9 / 13/20		w	_	x	X	+		-	+		-	H
-03	The state of the s				W	KE		X	+	\vdash		-		+	H
	MW-4B		9/23/20		W	KE	X		-		_	-		-H	H
-04	MW-45		9/13/20	1100	w	KE	X	X	_	\vdash		-		+	H
-65	C HA -001		9/23/20	1000	W	KE	X	X	_	\vdash		\vdash		+	F
-06	MW-35R		9/13/20		W	KE	X	X	_	\vdash		-		+	+
-07	MW-3BR		9/23/20		W	KE	X	X		\vdash		-			1
-08	MW-3R2 Container Code		9/23/20	1270	W	KE	X	X		\sqcup		_		`	Ψ
A = None B = HCl C = HNO ₃	P = Plastic A = Amber Glass V = Vial	Westboro: Certification N Mansfield: Certification N				tainer Type	P	V	_				Please print clearly, leg and completely. Sample not be logged in and	es ca	
TO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	G = Glass B = Bacteria Cup				F	reservative	6	B					turnaround time clock w		
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished By: Date/Tir				AAL M. F. F	KZ	iew	sk, 9			815	start until any ambiguiti resolved. BY EXECUTI THIS COC, THE CLIEN HAS READ AND AGRE TO BE BOUND BY ALF TERMS & CONDITION	ING NT EES PHA'S	
Form No: 01-25 HC (rev. 30 age 100 of 101	-Sept-2013)	1,00		651				<i>V</i>		102 1			(See reverse side.)	J.	

Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105			Page 2	Date Rec'd in Lab				9/24/20				ALPHA Job# L 2040189		
8 Walkup Dr.	320 Forbes Blvd	Project Information					Deliverables							Billing Information		
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: South Hill Dump					-	ASP-			ASP-B				Same as Client Info	
		Project Location: Cor-	Hondville	NY				EQuI:	S (1 F	ile)	X	EQui	S (4 Fil	e)	PO#	
Client Information				Other			150									
Client: C #A				Regulatory Requirement						Disposal Site Information						
Address: 300 5 5	take st	Project Manager: N	ct Manager: Melissa Deyo					NY TOGS NY Part 375							Please identify below location of	
Syracuse, N'	1 13 202	ALPHAQuote #:						AWQ Standards NY CP-51							applicable disposal facilities.	
Phone: 315 25	7 7250	Turn-Around Time						NY Restricted Use Other							Disposal Facility:	*********
Fax:		Due Date:				NY Unrestricted Use							□ NJ □ NY			
Email: Kehmann Deha Conpanies.cu Rush (only if pre approved) # of Days:							NYC Sewer Discharge								Other:	
These samples have been previously analyzed by Alpha							ANALYSIS								Sample Filtration	T
Other project specific requirements/comments:								BOOK OF THE PROPERTY OF THE PR								0
Please specify Metals	or TAL.						Hg TOK! ALK	0978 7	0450	200€8	8082A	00109			□ Done □ Lab to do Preservation □ Lab to do	a l B o
17 S. 17 T. 18 S.			T 0.11					NYTCL		PA	A	-			(Please Specify below)	1
ALPHA Lab ID Sample ID			Collection		Sample	Sampler's	Total	>	S	드	FPA	Total				
			Date	Time	Matrix	Initials	-	-		15	10000	-			Sample Specific Comments	8
40189 - 09	MW-IB		9/123/20	1300	V	KE	X	×								14
-10 SED-001					Solid	KE			X	×	×	X				14
-1)	Trip Blank		9.23.20	_	W			X								8
Preservative Code: A = None	Container Code P = Plastic	Westboro: Certification No: MA935 Mansfield: Certification No: MA015				ntainer Type	P	V	P	A	A	A	A		Please print clearly, legibly	
C = HNO ₃ D = H ₂ SO ₄	A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Mansheld: Certification N	Preservative		C	B	A		A	A	A		and completely. Samples car not be logged in and turnaround time clock will not start until any ambiguities are			
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished	/14·25	Repeived By:				Date/Time 18/19/24/20 01:30			30	resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES				

