

AECOM 7 1 John James Audubon Parkway Suite 210 Amherst, NY 14228 www.aecom.com

SUBMITTED VIA ELECTRONIC MAIL

Mr. Sal Priore, P.E. NYSDEC Division of Environmental Remediation Remedial Bureau C 625 Broadway, 11th Floor Albany, NY 12233-7014

RE: Pre-Design Investigation Summary Report NYSEG – Auburn Green St. Site, Auburn NY NYSDEC Site No. 7-06-009

Dear Mr. Priore,

On behalf of NYSEG, AECOM submits this pre-design investigation summary report for the completed investigation described in the *Remedial Design Work Plan* (RDWP) and accompanying *Pre-Design Investigation Work Plan* (PDIWP) dated July 2022 (final) for the above-referenced Auburn Green St. former manufactured gas plant (MGP) Site (Site).

The history of the Site is described in the PDIWP. Based upon investigations conducted to date, the primary contaminants of concern include arsenic in limited areas of surface soils, volatile organic compounds (VOC) (benzene, ethylbenzene, toluene, and xylene [BTEX]), semi-volatile organic compounds (SVOC), and arsenic in subsurface soils, with VOCs (BTEX), SVOCs, and cyanide in groundwater.

The PDI was completed to collect additional information required to complete the RD for the Site. The February 2020 Proposed Remedial Action Plan (PRAP) and July 2020 Record of Decision (ROD) identify targeted excavations of surface soil to address arsenic, and in-situ enhanced biodegradation as the preferred remedial technology to treat VOCs and SVOCs in groundwater within and outside of the subsurface former MGP gas holder. A PDI biosparging pilot study was performed to evaluate the ability of biosparging to distribute dissolved oxygen (DO) in groundwater in the shallow overburden unit. Results from the pilot study are used to estimate the radius of influence (ROI) of injected air at various air flow rates, which is a critical parameter for the remedial design.

This PDI summary report presents and evaluates data collected from the biosparging pilot study to evaluate technology feasibility, provide estimates of key design parameters such as the ROI for various air flow rates, and recommend a biosparging treatment system design for the Site. Included in the pilot study assessment is an evaluation of the ability of biosparging to create and sustain aerobic conditions in groundwater that will enhance aerobic biodegradation of contaminants.

An initial version of the RDWP/PDIWP was submitted to New York State Department of Environmental Conservation (NYSDEC) in August 2021. The initial version of the PDIWP was conditionally approved by NYSDEC on September 26, 2021.

The goals of the PDI are as follows:

- Confirm distribution of contaminants of concern and understand oxidation/reduction ("redox") conditions in groundwater to support delineation of the treatment area in the remedial design;
- Evaluate groundwater flow direction and velocity to support remedial design;
- Perform a field-scale biosparging pilot study to determine physical parameters for the remedial design and confirm feasibility of biosparging to meet remedial action objectives;

AECOM

- Refine horizontal delineation of surface soil impacts;
- Update the survey.

Results of the PDI will be used in the RD for the Site to address the treatment of areas to the extent feasible. **Figure 1** presents the Site plan with the planned PDI investigation locations.

The scope of work in the initial version of the PDIWP included borings for new well installations, groundwater sampling, slug testing, biosparging pilot study, surface soil evaluation for arsenic, and survey of new investigation features. Elements of the initial PDI included the following:

Completed August/ September/ October 2021 (per August 2021 PDIWP):

- Installed two new monitoring wells (MW-9 and MW-10) to approximately 20 feet below ground surface (ft bgs) in the vicinity of MW-4.
- Collected groundwater samples from eight existing wells (MW-1 to MW-8) and two new wells (MW-9 and MW-10) to confirm distribution of groundwater contaminants of concern and redox conditions. Prior to the PDI, the most recent groundwater monitoring event for MW-1 through MW-8 was May 2014.
- Performed slug testing at five wells in the vicinity of the biosparging pilot study area to estimate hydraulic conductivity. Hydraulic conductivity will be used to confirm feasibility of biosparging and estimate groundwater velocity in support of the design of the biosparging and oxygen-releasing compound (ORC) wells (if needed).
- Performed delineation sampling of the upper foot of surface soils in a limited area west of the substation fence to confirm excavation limits and the suitability of existing surface and near surface soil as a site cover.
- Confirmed the extent of the crushed stone fill inside the substation fence to ensure it is sufficient for a site cover.

During installation of MW-9 and MW-10, it was determined that the location of the former gas holder was slightly further south of the previously estimated location, and that MW-4, previously believed to be inside the footprint of the former gas holder, was actually just north of and outside the former gas holder. MW-9 was also installed outside the former gas holder. MW-10 was installed inside the former gas holder. Following initial data reduction of MW-9 and MW-10 installation data, a technical meeting was held with NYSDEC and New York State Department of Health (NYSDOH) representatives on November 1, 2021, to discuss the updated conceptual site model (CSM) (i.e., location of the former gas holder). Pursuant to that meeting, NYSDEC/NYSDOH requested two additional wells be installed and one additional round of groundwater sampling be performed: The two new wells included: MW-11, to be installed within the footprint of the former gas holder; and, MW-12, as an additional site characterization well to be installed downgradient of the former gas holder near the northeast property corner. The additional round of groundwater sampling was requested to provide additional data from existing and new wells to supplement and provide more current data for evaluation of groundwater characteristics.

Subsequent to the November 2021 meeting, the August 2021 RDWP and PDIWP were updated to reflect the update to the CSM, summarize fall 2021 PDI investigations, and outline the requested additional well installations and groundwater sampling. The revised RDWP/PDIWP was submitted to NYSDEC for review in May 2022. Following review and comment/response communications, the revised plans were approved in July 2022.

The additional PDI scope and the biosparge pilot study was completed August/ September/ October 2022, and included:

• Installed two additional new monitoring wells: MW-11 (20 ft bgs) within the former gas holder and MW-12 (18 ft bgs) downgradient of the former gas holder near the northeast property boundary.

- Collected an additional round of groundwater samples from all wells (MW-1 through MW-12) to assess potential seasonal variations in groundwater quality. Measured depth to water and calculate groundwater elevations during the groundwater sampling event to determine the direction and magnitude of hydraulic gradients in the shallow aquifer.
- Implemented a biosparging pilot-scale study to more clearly define design parameters for enhanced bioremediation.
- Collected a post-pilot study round of groundwater samples from nine wells in the vicinity of the biosparging pilot study area (MW-1, MW-2, MW-3, MW-4, MW-7, MW-9, MW-10, MW-11, and MW-12). Measured depth to water and calculated groundwater elevations during the groundwater sampling event to determine the direction and magnitude of hydraulic gradients in the shallow aquifer.

This PDI summary report has been prepared to transmit a summary and analysis of the investigation work described above.

INVESTIGATION ACTIVITIES

Utility Clearance

Prior to the start of work for each of the well installation events (August 30, 2021, and August 3, 2022), Dig Safely New York was contacted for public utility mark outs. Utility clearance was performed using ground penetrating radar (GPR) by subcontractor Ground Penetrating Radar Systems (2021) and by Matrix Environmental Technologies Inc. (Matrix) (2022). AECOM marked the proposed drilling locations with pin-flags prior to the utility mark out.

Soil Borings, Well Installation and Development

On August 30, 2021, two soil borings were completed using hollow stem auger (HSA) methods and were completed as a biosparge pilot air injection well/monitoring well (MW-9) and a biosparge pilot monitoring well (MW-10). Following initial data collection in fall 2021 and PDIWP revisions in winter and spring 2022, on August 3, 2022, two additional soil borings were completed using HSA methods and were completed as a biosparge pilot monitoring well (MW-11) and a downgradient monitoring well (MW-12).

MW-9 was completed as a biosparging air injection well. This location was originally believed to be inside the former gas holder along with existing well MW-4. Upon evaluation of boring information and GPR data, it was determined that the location of the former gas holder was several feet south of the previously estimated location and MW-4 was located just outside of the holder. MW-9 was also installed outside and several feet north of the former gas holder.

MW-10 and MW-11 were installed as observation wells for the biosparge pilot study and are located inside the former gas holder footprint.

MW-12 was installed downgradient of the former gas holder, north of MW-2 and east of MW-7, near the northeast property corner as a new monitoring well providing additional groundwater quality data near the downgradient property boundary.

Borings and well installations in 2021 and 2022 were performed by Matrix Environmental Technologies Inc., using a Geoprobe® Model 6620DT rig under the direction of an AECOM geologist.

Borings were advanced to the bedrock surface refusal (approximately 18-21 feet bgs).

Potential impacts were not observed (based on visual and olfactory characteristics) in any of the borings except for a slight odor in MW-9 at approximately 13.5 ft bgs. Photoionization detector (PID) readings at this depth were 4.9 parts per million (ppm). There were no other elevated PID readings above background associated with the soil.

Boring locations were hand-cleared using an air knife and hand auger to a depth of approximately 5 feet bgs, after which soil samples were collected for the purpose of performing soil descriptions continuously to the bottom of the boring using 5-foot long, 2-inch diameter MacroCore[™] samplers through HSAs. Soil samples were visually described and recorded by the field geologist. The descriptions were in accordance with the Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), American Society for Testing and Materials (ASTM) D2487-17. The field geologist recorded the soil descriptions and any other observations (e.g., visual and olfactory observations, soil staining, etc.) in the field logbook. Immediately after describing the soil core, the field geologist scanned the soil with a 10.2 eV PID for organic vapors and recorded results. Boring logs are provided in **Attachment 1**. Well construction logs are provided in **Attachment 1**. In accordance with the PDIWP, no soil samples were collected from the borings for laboratory analysis.

Following new well installation, wells were developed by AECOM in accordance with the PDIWP. See **Attachment 1** for well development logs.

Groundwater Well Sampling

Three separate rounds of groundwater sampling were performed during the PDI. For each event, groundwater sampling was performed using low-flow protocols with a peristaltic pump. Field parameters for purge water and well samples were collected using a YSI water quality meter (temperature, pH, conductivity, DO, oxidation-reduction potential (ORP), and turbidity). Field parameter data are presented in **Table 1**. Groundwater well sampling forms are presented in **Attachment 1**.

The three rounds of groundwater sampling took place as follows:

- September 30-October 4, 2021 following the installation and development of new wells MW-9 and MW-10. Samples were collected from existing wells (MW-1 through MW-10).
- August 2022 after the installation of MW-11 and MW-12 and prior to the start of the biosparge pilot study. Samples were collected from existing wells (MW-1 through MW-12);
- October 3-4, 2022 after completion of the biosparge pilot study. Samples were collected from select wells within and close to the biosparge pilot study area (MW-1 through MW-4, and MW-7, and MW-9 through MW-12).

For each event, the groundwater samples were delivered to Eurofins TestAmerica, Amherst, New York.

Monitoring well low-flow groundwater samples were collected for the following analyses:

- VOCs (BTEX, + acetone, and styrene) by USEPA Method SW846 8260C;
- Site Specific SVOCs (PAHs) by USEPA Method SW846 8270D (2-methylphenol, 2-methylnapthalene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, Benzo(k)fluoranthene, chrysene, dibenz[a,h]anthracene, ideno(1,2,3-CD)pyrene, naphthalene, and phenol);
- Cyanide by 9012B.

Groundwater samples for select monitoring wells were collected for the following additional monitored natural attenuation (MNA) analyses:

- Dissolved Iron by USEPA Method 6010C;
- Nitrate by USEPA Method 300.0/4500; and
- Sulfate by USEPA Method 300.0.

A summary of the groundwater sample results is provided below in the Investigation Results section.

A round of water levels from all existing groundwater wells at the times of sampling was collected concurrent with the sampling rounds. Depth to water and groundwater elevation data are presented in **Table 2. Figure 2 through Figure 4** presents the groundwater elevation contours for the three rounds of groundwater sampling.

Slug Tests

Aquifer testing (slug testing) was completed October 4, 2021, at five wells (MW-1, MW-2, MW-4, MW-7, and MW-10) to estimate hydraulic conductivity. Prior to the start of slug testing, the depth to water was measured.

Both rising and falling head tests were performed. Slug tests were performed in a similar manner as described in ASTM D-4044. The tests were performed using slugs of varying lengths, diameters, and materials. Slugs used included a PVC slug 2 foot long by 1.5 inches in diameter, a PVC slug 2 foot long by 1.25 inches in diameter, and a stainless-steel slug approximately 4 feet long by 1 inch in diameter. Prior to testing, a Level TROLL 700 data logger was placed in the well. A slug was inserted into the well, and the drop in water level (falling head) was monitored using a Rugged Reader connected to the Level TROLL. The slug was removed after water level returned to approximately 95% of the original, static water level. The water level recovery (rising head) was then monitored to approximately 95% of the original, static water level.

The equipment (slug, water level meter, transducer) used in the test was decontaminated prior to use at the next well. A new length of polypropylene cord was used at each well to suspend the slug.

The electronic transducer was set to collect water levels at appropriate intervals to provide adequate data to determine the hydraulic conductivity of the monitoring well. Data collected by the data logger was checked in the field immediately following each test. If the data were not adequate (incorrect timing, transducer cable moved or disturbed, etc.) from the judgement of the field geologist, the test was re-run so that adequate data were collected. Results of the slug tests are discussed in the Investigation Results section.

Surface Soil Delineation Sampling

On September 28, 2021 AECOM performed delineation sampling of the upper foot of surface soils in a limited area west of the substation fence to confirm excavation limits to address arsenic concentrations in excess of 6 NYCRR Part 375 Soil Cleanup Objectives (SCO) for Unrestricted Use. Delineation samples were collected from the 0-6 inch and 6- inch to 12-inch intervals at location SS-13 shown on **Figure 1**.

The surface soil samples were delivered to Eurofins TestAmerica, Amherst, New York.

Surface soil samples were analyzed for Total Metals (Total Arsenic) by USEPA Method 6010C.

Results of the surface soil analyses are discussed in the Investigation Results section.

Biosparge Pilot Test

The biosparge pilot test was conducted between September 20, 2022 and October 3, 2022. Following setup and connection of the biosparge air-supply system to MW-9 on September 19, 2022, air injection step tests started on September 20, 2022. Prior to Step 1, baseline redox conditions in groundwater were measured at the monitoring well network. Following completion of the third step test on September 22, 2022, an extended air injection test was performed from September 23 to October 3, 2022.

During the pilot study, the following data was collected to support evaluation of biosparging at the Site:

- Air injection flowrates and pressures during the step and extended tests,
- DO, ORP, groundwater elevation, and observation of bubbling in select monitoring wells before, during, and after the step and extended tests,
- Continuous monitoring of DO and ORP at MW-4 during the three (3) step tests, and
- VOCs concentrations via a PID in MW-4 when bubbling was observed during the step tests.

The pilot study data and evaluation of the data are discussed in the Pilot Study Results section.

INVESTIGATION RESULTS

Aquifer Data (Slug Test) Evaluation

The testing data were reduced following the Bouwer and Rice Slug Test method (Bouwer and Rice, 1976; Bouwer, 1989) using AQTESOLV Version 4.50 software. Outside the former gas holder in native soils, the results indicate hydraulic conductivities range from 1.05×10^{-4} centimeters per second (cm/sec) in well MW-4 to 4.85×10^{-3} cm/sec in well MW-2. Inside the former gas holder in backfilled material/soil, a hydraulic conductivity value of 1.72×10^{-1} cm/sec was calculated for well MW-10. Hydraulic conductivity testing results are provided in **Attachment 2**.

Groundwater Sampling Analytical Results

Table 3 and **Figure 5** present the historical groundwater sample results and the results from the PDI's new and existing Site wells from October 2021, August 2022, and October 2022. The concentrations of the detected compounds were compared against the criteria in *NYSDEC Technical and Operational Guidance Series TOGS (1,1,1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, April 2000.*

September-October 2021

Following installation of new monitoring wells MW-9 and MW-10, groundwater samples were collected from existing monitoring wells (MW-1 through MW-10).

Three VOCs were detected above the groundwater criteria as follows: benzene, toluene, and xylene (total and m&p), Well locations where criteria exceeded groundwater standards in 2021 included: MW-4, MW-9, and MW-10. All three VOCs were detected above standards in MW-4 and MW-9. Only benzene was detected slightly above the standard in MW-10.

Two SVOCs (PAHs) at one location (MW-9) were detected above groundwater criteria as follows: naphthalene and phenol. The PDI VOC and SVOCs groundwater data are consistent with the results of the last previous sampling (2014 Site Characterization [SC]) (i.e., the results were similar in variety and concentration to VOCs and SVOCs detected in the SC).

Cyanide was detected in 9 of 10 locations and ranged from non-detect at 0.0050U milligrams per liter (mg/L) to 0.55 mg/L; one location (MW-4) had cyanide detected above groundwater criteria (0.2 mg/L).

Select wells were sampled for MNA parameters. The analytical results and relevant MNA field parameter results from all Fall 2021 groundwater samples are included below:

- Sulfate ranged from 6.2J mg/L to 52.4 mg/L. In 7 of 10 well locations, sulfate concentrations were greater than 20 mg/L and indicates that sulfate is available as an alternative electron acceptor to support natural attenuation of dissolved hydrocarbons via anaerobic biodegradation.
- Nitrate-Nitrogen ranged from non-detect to 3.5 mg/L indicating that nitrate is not readily available to support natural attenuation of dissolved hydrocarbons.

- Iron ranged from non-detect to 15.9 mg/L.
- pH ranged from 6.83 to 9.85, two locations, MW-04 (9.85) and MW-10 (9.23) had pH above 8.50.
- ORP ranged from -137.6 milliVolts (mV) to +294.3 mV.
- DO ranged from 0.65 mg/L to 2.28 mg/L.

August 15-16, 2022

Following installation of new monitoring wells MW-11 and MW-12 and prior to the biosparging pilot test, groundwater samples were collected from all twelve existing Site monitoring wells (MW-1 through MW-12).

Four VOCs were detected above the groundwater criteria as follows: benzene, styrene, toluene, and xylene (total and m&p). All four VOCs were detected above standards in MW-4. Only benzene was detected above the standard in four other locations: MW-9, MW-10, MW-11, and MW-12.

The slightly more elevated detection of benzene at new monitoring well MW-12 was consistent with other Site wells where the initial groundwater sample returned a more elevated result than subsequent samples. It is believed this behavior may be related to near-term disturbance associated with well installation and development.

Three SVOCs (PAHs) were detected above groundwater criteria as follows: 2-Methylphenol (ocresol), naphthalene and phenol. Wells affected included: MW-4, MW-9 and MW-11. Naphthalene and phenol were above standard at location MW-4. Only phenol was above standard at MW-9. 2-Methylphenol (o-cresol) and naphthalene were above standard at MW-11. The PDI VOC and SVOCs groundwater data are consistent with the results of the SC and fall 2021 sampling event.

Cyanide was detected in 9 of 12 locations and ranged from 0.0054 J to 0.76 mg/L. Two locations (MW-4 and MW-11) had cyanide detected above groundwater criteria (0.2 mg/L)

Wells were sampled for MNA parameters. The analytical results and relevant MNA field parameter results from all August 2022 groundwater samples are included below:

• Sulfate ranged from 6.5 J mg/L to 81.2 mg/L. In 7 of 12 well locations, sulfate concentrations were greater than 20 mg/L and indicates that sulfate is available as an alternative electron acceptor to support natural attenuation of dissolved hydrocarbons via anaerobic biodegradation.

• Nitrate-Nitrogen ranged from non-detect to 1.5 mg/L indicating that nitrate is not readily available to support natural attenuation of dissolved hydrocarbons.

- Iron ranged from non-detect to 18.2 mg/L
- pH ranged from 6.75 to 9.97, Three locations MW-04 (9.97), MW-10 (8.89) and MW-11 (8.96) had pH above 8.50.

 ORP ranged from –215.5 milliVolts (mV) to +18.4 mV, all ORPs were negative except MW-02.

Dissolved oxygen ranged from 0.51 mg/L to 4.26 mg/L.

October 3-4, 2022

Following the biosparge pilot test, groundwater samples were collected from nine of the existing Site wells (MW-1, MW-2, MW-3, MW-4, MW-7, MW-9, MW-10, MW-11, and MW-12). The post-pilot study VOC and SVOC groundwater data show a decrease in VOC and SVOC concentrations when compared to the September 2021 and August 2022 data collected prior to the biosparge pilot study.

Three VOCs were detected above the groundwater criteria as follows: benzene, toluene, and xylene

(total and m&p). All three VOCs were detected above standards in MW-4. Only benzene was detected above the standard in four other locations: MW-9, MW-10, MW-11, and MW-12. Benzene was detected in MW-2 below criteria. Acetone and ethylbenzene were detected below criteria in MW-4. Acetone and toluene were detected below criteria in MW-9.

As observed in other Site wells with additional time since installation and development, the benzene concentration at MW-12 was much lower in October 2022 than the initial August 2022 sample. It is believed the declining trend in concentration will continue as additional time to reach equilibrium is provided.

One SVOC (PAH) was detected above groundwater criteria and only at one well location. Phenol was detected above criteria at MW-4. Phenol was also detected below criteria in MW-9.

Cyanide was detected in 4 of 9 locations and ranged from 0.023 mg/L to 0.36 mg/L. One location (MW-4) had cyanide detected above groundwater criteria (0.2 mg/L).

Wells were sampled for MNA parameters. The analytical results and relevant MNA field parameter results from October 2022 groundwater samples are included below:

- Sulfate ranged from 9.3 J mg/L to 239 mg/L. In 4 of 9 well locations, sulfate concentrations were greater that 20 mg/L and indicates that sulfate is available as an alternative electron acceptor to support natural attenuation of dissolved hydrocarbons via anaerobic biodegradation. Greater sulfate concentrations at MW-4 and MW-9 after the pilot study indicate that sulfide was oxidized to sulfate during the aerobic conditions when biosparging. This increase also indicates that sulfate was previously reduced to sulfide under anaerobic conditions prior to biosparging and supported natural attenuation of dissolved hydrocarbons.
- Nitrate-Nitrogen ranged from non-detect to 0.68 mg/L indicating that nitrate is not readily available to support natural attenuation of dissolved hydrocarbons.
- Iron ranged from non-detect to 15.3 mg/L
- pH ranged from 6.90 to 8.89, two locations MW-10 (8.56) and MW-11 (8.89) had pH above 8.50.
- ORP ranged from +33 milliVolts (mV) to +116.9 mV, all ORPs were positive.
- Dissolved oxygen ranged from 0.59 mg/L to 2.80 mg/L, with the highest value at the biosparge air injection location MW-9.

Soil Sampling Analytical Results

Table 4 and Figure 6 present the total arsenic results collected from location SS-13 in a limited area west of the substation fence at 0-6 in and 6-12 inch intervals. Arsenic was detected above the Part 375 Unrestricted Use SCO (13 ppm) and Protection of Groundwater and Commercial SCOs (16 ppm) in both intervals and the duplicate at the sampling location. Arsenic ranged from 21.2 mg/kg to 27 mg/kg.

Data Validation

A Data Usability Summary Report (DUSR) was prepared for the groundwater samples. The DUSR was prepared following the guidelines provided in NYSDEC Division of Environmental Remediation *DER-10 Technical Guidance for Site Investigation and Remediation, Appendix 2B-Guidance for Data Deliverables and the Development of Data Usability and Summary Reports*, May 2010. The DUSR is provided as **Attachment 3**. All sample analyses were found to be compliant with the method criteria, except where noted in the DUSR. Those results qualified 'J' or UJ are considered conditionally usable. Those results qualified "U" should be considered non-detect. All other sample results are usable as reported. AECOM does not recommend the recollection of any samples.

Community Air Monitoring Plan (CAMP) Results

Community air monitoring was performed during 2021 and 2022 drilling activities and during the 2022 biosparge pilot study to verify that contaminants from the site activity did not impact nearby residents or visitors during the PDI in accordance with the NYSDOH's Generic CAMP (NYSDOH, 2000). Monitoring was performed using perimeter air monitoring (PAM) stations equipped to monitor for VOCs and airborne particulates (PM-10).

A total of two temporary monitoring stations collected data on the upwind and downwind perimeter and nearest receptor during intrusive activities. VOCs and dust monitoring results did not exceed the levels identified in the PDIWP. CAMP data are stored in the project file and can be provided upon request.

PILOT STUDY RESULTS

Airflow Rates and Pressures

Three step tests with durations of approximately 6 hours each at different airflow rates provided information on breakthrough pressures and pressures required to maintain various airflow rates at the Site. The breakthrough pressures, injection pressures, and average airflow rate for each step test is summarized in the following table.

Test ID	Breakthrough Pressure (psi)	Injection Pressure (psi)	Average Airflow Rate (scfm)
Step Test 1	25	Range: 9 to 14 Average: 12	2.7
Step Test 2	17	Range: 14 to 21 Average: 17	7.5
Step Test 3	18	Range: 20 to 21 Average: 20	15.7

Breakthrough and air injection pressures were measured using instrumentation in the mobile injection system and includes back pressure from friction loss through valves, hoses and instrumentation. Thus, breakthrough pressures are greater than the estimated pressure (7 pound per square inch) required to displace the water column in the air injection well (MW-9). As expected, greater injection pressures were required to maintain greater airflow rates. In addition, injection pressures were greatest at the beginning of each test and decreased during each test as continuous air channels developed in the formation between the injection well screen and the vadose zone.

Step Tests

During each step test, DO and ORP were measured in monitoring wells to evaluate the lateral influence of the injected air. In addition, observation of bubbling in monitoring wells was recorded to indicate influence. During Step 1 with an average air injection rate of 2.7 scfm, DO concentration remained less than 1 mg/L indicated limited influence within the monitoring well network (**Figure 7**). At the nearest (10 feet) well to the injection well (MW-4), ORP remained highly negative indicating no changes to redox conditions during Step 1 (**Figure 8**). Note that the ORP at MW-1 (27 feet from the injection well) was positive before and during Test 1 indicating aerobic conditions are likely present in groundwater upgradient of the injection well.

During Step 2 with an average air injection rate of 7.5 scfm, DO concentration increased above 1 mg/L and bubbling was observed at MW-4 indicating DO influence at 10 feet from the injection well (**Figure 9**). At MW-1, DO concentrations increased during the test but remained less than 1 mg/L. DO concentrations remained less than 1 mg/L at other monitoring wells. At MW-4, ORP increased during the test but remained negative indicating high oxidant demand (**Figure 10**). At MW-1, ORP was positive and greater than Step 1 and light bubbling was observed in the well towards the end of the test indicating influence.

PID monitoring in MW-4 during Step 2 showed an increase in VOCs as air channels were established between the injection well and MW-4. The PID reading at MW-4 increased to a maximum of 270 ppm as VOCs partitioned to the air flowing through the formation and out of MW-4. By the end of Step 2, VOCs at MW-4 were less than 43 ppm. VOCs were not detected by the PID in the light bubbling in MW-1, where VOCs are non-detect in groundwater.

During Step 3 with an average air injection rate of 15.7 scfm, DO concentration increased at MW-4 to 9 mg/L and ORP increased to 13 millivolts (**Figures 11** and **12**). DO concentrations remained less than 1 mg/L at other monitoring wells. However, ORP also increased at MW-1, MW-10, and MW-11 indicating that biosparging was likely influencing these wells. In addition, bubbling was observed in MW-1 and MW-4. The maximum PID reading was 423 ppm in the air bubbling through MW-4.

Oxygen Utilization Rates

The data from continuous measurement of DO and ORP at MW-4 during and after the step tests are presented in **Figures 13, 14,** and **15**. Following the completion of Tests 2 and 3, DO concentrations decrease as oxygen is utilized by microbes and other oxidation-reduction reactions. In addition, ORP continued to increase after Steps 2 and 3 as oxygen was utilized. Oxygen utilization or consumption rates typically follow first-order decay and the decay rate constants are estimated by fitting exponential curves to the data. After Step 2, the estimated first-order oxygen utilization rate constant is 0.16 per hour (1/hr) (**Figure 16**). Following Step 3, the first-order rate constant decreased to 0.032/hr indicating that the oxygen utilization rate slowed during Step 3.

Extended Test

Based on the DO responses during the step tests, the air injection flowrate for the extended test was set at 6 scfm. In addition, air injection was set to cycle on and off every 4 hours, which was expected to maintain DO concentration greater than 1 mg/L at MW-4 during an off cycle based on estimates of oxygen utilization rates. During the 10-day test, DO and ORP measurements indicate that aerobic conditions were maintained in groundwater monitored by MW-1 and MW-4 (**Figures 17** and **18**). Downgradient groundwater near MW-7 remained anaerobic and groundwater within the footprint of the former gas holder at MW-10 and MW-11 also remained anaerobic.

Radius of Influence

Per the workplan, the radius of influence (ROI) is estimated by the distance from the injection well where DO concentrations exceed 1 mg/L and can create aerobic conditions. To estimate the radius of influence at different air injection rates, maximum DO concentrations observed during the step tests are plotted versus distance from the injection well (**Figure 19**). The estimated ROI was greatest (~25 feet) at an air injection rate of 15.7 scfm (Step 3) and slightly less (~23 feet) at an air injection rate of 7.5 scfm (Step 2). However, data from the extended test showed that cycled operation for a longer duration at an air injection rate of 6 scfm has an ROI of at least 27 feet, which is the distance between MW-1 and the injection well.

The estimated ROI of at least 27 feet is greater than the distances between the injection well (MW-9) and MW-10 (20 feet) and MW-11 (19 feet) where DO did not increase above 1 mg/L during the step

and extended tests. These results indicate that the subsurface structure of the former gas holder may be a barrier to migration of injected air and diffusion of DO in groundwater. Thus, a biosparge well within the footprint of the former gas holder would be required if groundwater treatment is needed.

CONCLUSIONS

The intent of the PDI was to confirm distribution of contaminants and gain better understanding of the redox conditions at the Site, evaluate groundwater flow and velocity to support the remedial design, determining the feasibility of biosparging to meet Site objectives, and refine the horizontal delineation of surface soil arsenic impacts.

New monitoring wells and recent groundwater monitoring results show that the location of the groundwater plume and its source is limited to the area outside of the former gas holder footprint near MW-4 and MW-9, which was the location of the biosparge pilot study. Within the footprint of the former gas holder at MW-10 and MW-11, contaminant concentrations are significantly less and near or below their criteria in groundwater.

The biosparge pilot study results show that biosparging can be feasibly implemented in the plume near MW-4 and MW-9. In addition, groundwater monitoring results show that biosparging significantly decreased the concentrations of contaminants at MW-4 and MW-9, which define the likely plume source. Thus, biosparging is the recommended remedial alternative to remove the plume source near MW-4 and MW-9 and achieve groundwater criteria at the Site. Recommended design parameters for biosparging are an air injection rate of at least 6 scfm and injection well spacing of 40 feet based on an ROI of at least 27 feet if additional injection wells are needed.

Groundwater elevation maps indicate groundwater flows from the area near MW-4 and MW-9 eastnortheast towards MW-2, MW-7, and MW-12. The area where groundwater exceeds criteria has significantly decreased since 2014 to a narrow zone that extends from the MW-4 and MW-9 area to MW-12 that is bounded by MW-2 and MW-7 where groundwater is below criteria. The recommended remedial approach of biosparging is expected to remove the plume source and cause attenuation of the downgradient concentrations near MW-12. Thus, the previously proposed design presented in the RDWP that includes a series of wells to deliver oxygen is not expected to be needed near the property boundary to treat groundwater near MW-12. However, if groundwater treatment is needed near the property boundary, additional biosparge wells are expected to be more effective than oxygen delivery wells.

To support development of the remedial design for biosparging, a groundwater monitoring event should be performed following the methods and procedures outlined in the PDI Work Plan at monitoring wells MW-1, MW-2, MW-4, MW-7, MW-9, MW-10, MW-11, and MW-12 to evaluate the following:

- Rebound in contaminant concentrations at MW-4 and MW-9 to evaluate if contaminant mass was significantly reduced by the pilot study;
- How changes in contaminant concentrations and mass near MW-4 and MW-9 affect contaminant concentrations in downgradient groundwater near the property boundary at MW-12;
- The need to treat groundwater with biosparging near the property boundary and MW-12; and
- The need to implement biosparging within the former gas holder footprint where contaminant concentrations at MW-10 and MW-11 are low and may continue to decrease to less than criteria.

Results from surface soil sample location SS-13 were consistent with historical results along the outside of the western property fence indicating the shallow surface soil excavation planned for that area be extended southward to an extension of the southern property line (see Figure 6). The remedial design will incorporate this extended area for excavation and backfill.

Mr. Sal Priore, P.E. April 28, 2023 Page 12

If you have any questions, please feel free to contact me.

Very truly yours,

James L. Kaugon

James L. Kaczor Project Manager james.kaczor@aecom.com

Tables Figures Attachment 1 – Field Forms Attachment 2 – Hydraulic Conductivity Calculations Attachment 3 - DUSR

cc: John Ruspantini, NYSEG, JJRuspantini@nyseg.com Kerry Maloney, NYSDEC, Kerry.maloney@dec.ny.gov Harolyn Hood, NYSDOH, Harolyn.hood@health.ny.gov Tables

TABLE 1

GROUNDWATER SAMPLING FIELD PARAMETER DATA Auburn Green Street MGP Site, Auburn, NY NYSDEC Site No. 7-06-009

Monitoring Well ID	Date	Temperature (deg C)	Specific Conductance (mS/cm)	Dissolved Oyxgen (mg/L)	pH (standard units)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
	9/30/2021	16.0	0.668	0.79	6.83	45.7	28.27
MW-01	8/16/2022	15.0	1.352	1.26	6.83	-60.0	11.0
	10/3/2022	16.2	1.260	0.89	6.90	108.5	40.0
	10/4/2021	16.3	0.973	1.21	6.77	294.3	3.01
MW-02	8/17/2022	15.4	0.839	4.26	6.75	18.4	2.44
	10/3/2022	16.3	0.840	1.93	6.92	98.00	2.77
	9/30/2021	15.8	3.59	0.68	6.99	-122.6	15.31
MW-03	8/15/2022	15.2	3.782	1.81	7.08	-215.5	18.2
	10/3/2022	15.5	3.490	0.60	7.10	89.1	6.60
	9/30/2021	15.3	0.387	0.75	9.85	-150.8	2.61
MW-04	8/15/2022	16.7	0.324	0.51	9.97	-108.2	9.49
	10/4/2022	14.8	1.397	2.08	7.76	110.4	65.0
	9/30/2021	15.8	1.132	2.28	6.98	147.3	347.34
MW-05	8/15/2022	20.7	1.231	1.23	7.14	-22.0	NM
NAVA 07	9/30/2021	18.1	1.529	0.80	7.06	-64.8	12.96
MW-06	8/15/2022	17.7	0.997	0.56	7.08	-32.0	53.22
	10/4/2021	15.4	1.134	0.65	7.04	-122.6	13.06
MW-07	8/16/2022	14.4	1.400	0.65	7.00	-103.1	44.66
	10/4/2022	14.7	1.380	0.65	7.03	89.0	21.00
N 414/ 00	10/4/2021	17.6	2.669	0.68	7.05	-137.6	4.14
MW-08	8/15/2022	17.5	3.110	0.53	7.08	-159.0	62.76
	10/4/2021	15.2	1.900	0.75	7.29	-77.3	85.30
MW-09	8/15/2022	15.4	2.610	1.20	7.37	-180.3	136
	10/4/2022	14.3	2.137	2.80	7.67	116.9	24.50
	10/4/2021	14.9	0.229	0.73	9.23	-44.0	11.09
MW-10	8/15/2022	14.4	0.319	1.29	8.89	-167.7	5.61
Ē	10/3/2022	14.9	0.270	0.66	8.56	49.7	4.29
N A) A / 11	8/15/2022	14.6	0.213	0.59	8.96	-35.2	18.37
MW-11	10/3/2022	14.5	0.218	0.61	8.89	40.5	4.67
N.W.4 40	8/16/2022	15.2	1.204	0.60	6.94	-87.0	95.96
MW-12	10/3/2022	15.2	1.394	0.59	6.98	33.2	13.24

Notes:

deg C - degrees CelciusmV - milliVoltsmS/cm - milliSiemens per centimeterNTU - nephelometric turbidity unitmg/L - milligrams per LiterNM - not measured

TABLE 2

GROUNDWATER ELEVATION DATA Auburn Green Street MGP Site, Auburn, NY NYSDEC Site No. 7-06-009

			Ground	Casing	Meas.point		10/4/	2021	8/15/22-	8/16/22	10/3/22-	10/4/22
Location ID		(Riser) Elev. (feet)	Geol. Zone	Depth to Water (feet)	Water Elev. (feet)	Depth to Water (feet)	Water Elev. (feet)	Depth to Water (feet)	Water Elev. (feet)			
MW-01	1068697.849	823538.421	666.54	666.54	666.13	OB	5.43	660.70	7.24	658.89	6.90	659.23
MW-02	1068710.462	823619.474	664.87	664.87	664.48	OB	6.50	657.98	7.95	656.53	7.45	657.03
MW-03	1068668.327	823618.748	666.75	666.75	666.35	OB	7.22	659.13	7.71	658.64	7.75	658.60
MW-04	1068693.101	823575.046	666.54	666.54	666.23	OB	8.14	658.09	8.51	657.72	9.32	656.91
MW-05	1068605.684	823497.747	668.12	668.12	667.77	OB	12.65	655.12	14.58	653.19	NM	NM
MW-06	1068632.896	823660.439	665.85	665.85	665.50	OB	5.45	660.05	6.28	659.22	NM	NM
MW-07	1068724.513	823575.102	665.5	665.5	665.0	OB	7.12	657.88	8.43	656.57	7.79	657.21
MW-08	1068616.910	823582.108	667.0	667.0	666.6	OB	4.64	661.96	5.62	660.98	NM	NM
MW-09	1068693.533	823558.675	666.85	666.85	666.23	OB	5.98	660.25	7.30	658.93	9.31	656.92
MW-10	1068683.478	823583.105	666.93	666.93	666.60	OB	4.81	661.79	5.20	661.40	5.12	661.48
MW-11	1068677.587	823574.298	667.14	667.14	666.67	OB	NA	NA	5.32	661.35	5.22	661.45
MW-12	1068735.580	823608.627	664.74	664.74	664.30	OB	NA	NA	8.00	656.30	7.39	656.91
Notes:	•				•	•	•	•			• •	

Geologic Zone: OB Shallow Unconfined Zone in Overburden NM - Not measured - MW-5, MW-6, and MW-8 not measured in October 2022.

Location ID			MW-01	MW-01	MW-01	MW-02	MW-02
Sample ID			MW-1	MW-01	MW-01	MW-2	MW-02
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		-	-	-	-	-
Date Sampled			09/30/21	08/16/22	10/03/22	10/04/21	08/16/22
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Acetone	UG/L	50	3.0 U				
Benzene	UG/L	1	0.41 U				
Ethylbenzene	UG/L	5	0.74 U				
Styrene	UG/L	5	0.73 U				
Toluene	UG/L	5	0.51 U				
Xylene (total)	UG/L	5	0.66 U				
Semivolatile Organic Compounds							
2-Methylphenol (o-cresol)	UG/L	1	0.40 U	0.43 U	0.42 U	0.40 U	0.40 U
Benzo(a)anthracene	UG/L	0.002	0.36 U	0.39 U	0.38 U	0.36 U	0.36 U
Benzo(a)pyrene	UG/L	ND	0.47 U	0.51 U	0.49 U	0.47 U	0.47 U
Benzo(b)fluoranthene	UG/L	0.002	0.34 U	0.37 U	0.35 U	0.34 U	0.34 U
Benzo(k)fluoranthene	UG/L	0.002	0.73 U	0.79 U	0.76 U	0.73 U	0.73 U
Chrysene	UG/L	0.002	0.33 U	0.36 U	0.34 U	0.33 U	0.33 U
Dibenz(a,h)anthracene	UG/L	-	0.42 U	0.46 U	0.44 U	0.42 U	0.42 U
Indeno(1,2,3-cd)pyrene	UG/L	0.002	0.47 U	0.51 U	0.49 U	0.47 U	0.47 U
Naphthalene	UG/L	10	0.76 U	0.83 U	0.79 U	0.76 U	0.76 U
Phenol	UG/L	1	0.39 U	0.42 U	0.41 U	0.39 U	0.39 U
Dissolved Metals							
Iron	MG/L	-	0.019 U	0.019 U	0.32	0.050 U	0.050 U
Miscellaneous Parameters							
Total Cyanide	MG/L	0.2	0.0073 J	0.0051 J	0.0041 U	0.053	0.11
Nitrate-Nitrogen	MG/L	10	2.6	0.15	0.24	1.7	1.5

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

Location ID			MW-01	MW-01	MW-01	MW-02	MW-02
Sample ID	Sample ID				MW-01	MW-2	MW-02
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)			-	-	-	-	-
Date Sampled			09/30/21	08/16/22	10/03/22	10/04/21	08/16/22
Parameter	Units	Criteria*					
Miscellaneous Parameters							
Nitrite-Nitrogen	MG/L	1	NA	0.020 U	NA	NA	0.020 U
Sulfate (as SO4)	MG/L	2.50E+05	39.3	15.5	17.9	32.1	31.6

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

Location ID			MW-02	MW-03	MW-03	MW-03	MW-04
Sample ID			MW-02	MW-3	MW-03	MW-03	MW-4
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		-	-	-	-	-
Date Sampled			10/03/22	09/30/21	08/15/22	10/03/22	09/30/21
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Acetone	UG/L	50	3.0 U	3.0 U	3.0 U	3.0 U	240 U
Benzene	UG/L	1	0.53 J	0.41 U	0.41 U	0.41 U	3,200
Ethylbenzene	UG/L	5	0.74 U	0.74 U	0.74 U	0.74 U	59 U
Styrene	UG/L	5	0.73 U	0.73 U	0.73 U	0.73 U	58 U
Toluene	UG/L	5	0.51 U	0.51 U	0.51 U	0.51 U	
Xylene (total)	UG/L	5	0.66 U	0.66 U	0.66 U	0.66 U	(120 J)
Semivolatile Organic Compounds							
2-Methylphenol (o-cresol)	UG/L	1	0.40 U	2.0 U	0.42 U	0.42 U	0.40 U
Benzo(a)anthracene	UG/L	0.002	0.36 U	1.8 U	0.38 U	0.38 U	0.36 U
Benzo(a)pyrene	UG/L	ND	0.47 U	2.4 U	0.49 U	0.49 U	0.47 U
Benzo(b)fluoranthene	UG/L	0.002	0.34 U	1.7 U	0.35 U	0.35 U	0.34 U
Benzo(k)fluoranthene	UG/L	0.002	0.73 U	3.7 U	0.76 U	0.76 U	0.73 U
Chrysene	UG/L	0.002	0.33 U	1.7 U	0.34 U	0.34 U	0.33 U
Dibenz(a,h)anthracene	UG/L	-	0.42 U	2.1 U	0.44 U	0.44 U	0.42 U
Indeno(1,2,3-cd)pyrene	UG/L	0.002	0.47 U	2.4 U	0.49 U	0.49 U	0.47 U
Naphthalene	UG/L	10	0.76 U	3.8 U	0.79 U	0.79 U	0.76 U
Phenol	UG/L	1	0.39 U	2.0 U	0.41 U	0.41 U	0.39 U
Dissolved Metals							
Iron	MG/L	-	0.068	15.9	16.5 J	15.3	0.22
Miscellaneous Parameters							
Total Cyanide	MG/L	0.2	0.046	0.0091 J	0.012 J	0.010 U	0.55
Nitrate-Nitrogen	MG/L	10	0.68	0.020 U	0.020 U	0.020 U	0.020 U

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

Location ID			MW-02	MW-03	MW-03	MW-03	MW-04
Sample ID		MW-02	MW-3	MW-03	MW-03	MW-4	
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)			-	-	-	-	-
Date Sampled			10/03/22	09/30/21	08/15/22	10/03/22	09/30/21
Parameter	Units	Criteria*					
Miscellaneous Parameters							
Nitrite-Nitrogen	MG/L	1	NA	NA	0.020 U	NA	NA
Sulfate (as SO4)	MG/L	2.50E+05	30.3	8.9 J	13.4 J	9.3 J	23.0

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

NA - Not analyzed.

Detection Limits shown are MDL

Location ID			MW-04	MW-04	MW-05	MW-05	MW-06
Sample ID			MW-04	MW-04	MW-5	MW-05	DUPLICATE
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		-	-	-	-	-
Date Sampled			08/15/22	10/04/22	09/30/21	08/15/22	09/30/21
Parameter	Units	Criteria*					Field Duplicate (1-1)
Volatile Organic Compounds							
Acetone	UG/L	50	120 U	17 J	3.0 U	3.0 U	3.0 U
Benzene	UG/L	1	1,200	88	0.41 U	0.41 U	0.41 U
Ethylbenzene	UG/L	5	30 U	2.0	0.74 U	0.74 U	0.74 U
Styrene	UG/L	5	29 J	1.5 U	0.73 U	0.73 U	0.73 U
Toluene	UG/L	5			0.51 U	0.51 U	0.51 U
Xylene (total)	UG/L	5		9.2	0.66 U	0.66 U	0.66 U
Semivolatile Organic Compounds							
2-Methylphenol (o-cresol)	UG/L	1	2.0 U	2.0 U	0.40 U	0.42 U	0.40 U
Benzo(a)anthracene	UG/L	0.002	1.8 U	1.8 U	0.36 U	0.38 U	0.36 U
Benzo(a)pyrene	UG/L	ND	2.4 U	2.4 U	0.47 U	0.49 U	0.47 U
Benzo(b)fluoranthene	UG/L	0.002	1.7 U	1.7 U	0.34 U	0.35 U	0.34 U
Benzo(k)fluoranthene	UG/L	0.002	3.7 U	3.7 U	0.73 U	0.76 U	0.73 U
Chrysene	UG/L	0.002	1.7 U	1.7 U	0.33 U	0.34 U	0.33 U
Dibenz(a,h)anthracene	UG/L	-	2.1 U	2.1 U	0.42 U	0.44 U	0.42 U
Indeno(1,2,3-cd)pyrene	UG/L	0.002	2.4 U	2.4 U	0.47 U	0.49 U	0.47 U
Naphthalene	UG/L	10		3.8 U	0.76 U	0.79 U	0.76 U
Phenol	UG/L	1	2.6 J	4.7 J	0.39 U	0.41 U	0.39 U
Dissolved Metals							
Iron	MG/L	-	0.21	0.45	0.019 U	0.050 U	0.97
Miscellaneous Parameters							
Total Cyanide	MG/L	0.2		0.36	0.0050 U	0.0050 U	0.0057 J
Nitrate-Nitrogen	MG/L	10	0.37	0.086	3.5	1.4	0.020 U

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

Location ID			MW-04	MW-04	MW-05	MW-05	MW-06
Sample ID			MW-04	MW-04	MW-5	MW-05	DUPLICATE
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)			-	-	-	-	-
Date Sampled			08/15/22	10/04/22	09/30/21	08/15/22	09/30/21
Parameter	Units Criteria*						Field Duplicate (1-1)
Miscellaneous Parameters							
Nitrite-Nitrogen	MG/L	1	0.046 J	NA	NA	0.042 J	NA
Sulfate (as SO4)	MG/L	2.50E+05	36.0	56.8	52.4	81.2	26.2

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

Location ID			MW-06	MW-06	MW-06	MW-07	MW-07
Sample ID			MW-6	DUPLICATE	MW-06	MW-7	MW-07
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		-	-	-	-	-
Date Sampled	Date Sampled		09/30/21	08/15/22	08/15/22	10/04/21	08/16/22
Parameter	Units	Criteria*		Field Duplicate (1-1)			
Volatile Organic Compounds							
Acetone	UG/L	50	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U
Benzene	UG/L	1	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U
Ethylbenzene	UG/L	5	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U
Styrene	UG/L	5	0.73 U	0.73 U	0.73 U	0.73 U	0.73 U
Toluene	UG/L	5	0.51 U	0.51 U	0.51 U	0.51 U	0.51 U
Xylene (total)	UG/L	5	0.66 U	0.66 U	0.66 U	0.66 U	0.66 U
Semivolatile Organic Compounds							
2-Methylphenol (o-cresol)	UG/L	1	0.40 U	0.42 U	0.40 U	0.40 U	0.40 U
Benzo(a)anthracene	UG/L	0.002	0.36 U	0.38 U	0.36 U	0.36 U	0.36 U
Benzo(a)pyrene	UG/L	ND	0.47 U	0.49 U	0.47 U	0.47 U	0.47 U
Benzo(b)fluoranthene	UG/L	0.002	0.34 U	0.35 U	0.34 U	0.34 U	0.34 U
Benzo(k)fluoranthene	UG/L	0.002	0.73 U	0.76 U	0.73 U	0.73 U	0.73 U
Chrysene	UG/L	0.002	0.33 U	0.34 U	0.33 U	0.33 U	0.33 U
Dibenz(a,h)anthracene	UG/L	-	0.42 U	0.44 U	0.42 U	0.42 U	0.42 U
Indeno(1,2,3-cd)pyrene	UG/L	0.002	0.47 U	0.49 U	0.47 U	0.47 U	0.47 U
Naphthalene	UG/L	10	0.76 U	0.79 U	0.76 U	0.76 U	0.76 U
Phenol	UG/L	1	0.39 U	0.41 U	0.39 U	0.39 U	0.39 U
Dissolved Metals							
Iron	MG/L	-	0.99	0.34	0.35	10	8.0
Miscellaneous Parameters							
Total Cyanide	MG/L	0.2	0.0063 J	0.0050 U	0.0050 U	0.0088 J	0.0062 J
Nitrate-Nitrogen	MG/L	10	0.020 U	0.076	0.065	0.020 U	0.040 J

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

Location	ID		MW-06	MW-06	MW-06	MW-07	MW-07
Sample		MW-6	DUPLICATE	MW-06	MW-7	MW-07	
Matrix Depth Interval (ft)			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
			-	-	-	-	-
Date Sampled			09/30/21	08/15/22	08/15/22	10/04/21	08/16/22
Parameter	Units	Criteria*		Field Duplicate (1-1)			
Miscellaneous Parameters							
Nitrite-Nitrogen	MG/L	1	NA	0.020 U	0.020 U	NA	0.020 U
Sulfate (as SO4)	MG/L	2.50E+05	26.4	27.9	28.0	6.2 J	14.7

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

Location ID			MW-07	MW-08	MW-08	MW-09	MW-09
Sample ID			MW-07	MW-8	MW-08	MW-09	MW-09
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		-	- 10/04/21	-	-	-
Date Sampled			10/04/22		08/16/22	10/04/21	08/15/22
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Acetone	UG/L	50	3.0 U	3.0 U	3.0 U	60 U	24 U
Benzene	UG/L	1	0.41 U	0.41 U	0.41 U	1,200	
Ethylbenzene	UG/L	5	0.74 U	0.74 U	0.74 U	15 U	5.9 U
Styrene	UG/L	5	0.73 U	0.73 U	0.73 U	15 U	5.8 U
Toluene	UG/L	5	0.51 U	0.51 U	0.51 U	\bigcirc 22 \bigcirc	4.1 U
Xylene (total)	UG/L	5	0.66 U	0.66 U	0.66 U	25 J	5.3 U
Semivolatile Organic Compounds							
2-Methylphenol (o-cresol)	UG/L	1	0.42 U	0.40 U	0.43 U	0.40 U	0.45 U
Benzo(a)anthracene	UG/L	0.002	0.38 U	0.36 U	0.39 U	0.36 U	0.41 U
Benzo(a)pyrene	UG/L	ND	0.49 U	0.47 U	0.51 U	0.47 U	0.53 U
Benzo(b)fluoranthene	UG/L	0.002	0.35 U	0.34 U	0.37 U	0.34 U	0.39 U
Benzo(k)fluoranthene	UG/L	0.002	0.76 U	0.73 U	0.79 U	0.73 U	0.83 U
Chrysene	UG/L	0.002	0.34 U	0.33 U	0.36 U	0.33 U	0.38 U
Dibenz(a,h)anthracene	UG/L	-	0.44 U	0.42 U	0.46 U	0.42 U	0.48 U
Indeno(1,2,3-cd)pyrene	UG/L	0.002	0.49 U	0.47 U	0.51 U	0.47 U	0.53 U
Naphthalene	UG/L	10	0.79 U	0.76 U	0.83 U		1.0 J
Phenol	UG/L	1	0.41 U	0.39 U	0.42 U	2.0 J	\bigcirc 2.8 J \bigcirc
Dissolved Metals							
Iron	MG/L	-	9.7	14.5	18.2	0.92 B	5.8
Miscellaneous Parameters							
Total Cyanide	MG/L	0.2	0.0041 U	0.0054 J	0.0050 U	0.088	0.017
Nitrate-Nitrogen	MG/L	10	0.020 U	0.37	0.027 J	0.036 J	0.11

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

Location ID	MW-07	MW-08	MW-08	MW-09	MW-09		
Sample ID Matrix Depth Interval (ft) Date Sampled			MW-07	MW-8	MW-08	MW-09 Groundwater	MW-09 Groundwater
			Groundwater	Groundwater	Groundwater		
			-	-	-	-	-
			10/04/22	10/04/21	08/16/22	10/04/21	08/15/22
Parameter	Units	Criteria*					
Miscellaneous Parameters							
Nitrite-Nitrogen	MG/L	1	NA	NA	0.020 U	NA	0.020 U
Sulfate (as SO4)	MG/L	2.50E+05	10.8	19.5 J	15.2 J	20.6	6.5 J

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

Location ID	MW-09	MW-10	MW-10	MW-10	MW-10			
Sample ID			MW-09	MW-10	MW-10	DUPLICATE	MW-10	
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
Depth Interval (ft) Date Sampled			-	-	-	-	-	
			10/04/22	10/04/21	08/15/22	10/03/22	10/03/22	
Parameter	Units	Criteria*				Field Duplicate (1-1)		
Volatile Organic Compounds								
Acetone	UG/L	50	7.7 J	3.0 U	3.0 U	3.0 U	3.0 U	
Benzene	UG/L	1	6.1	2.0		0.41 U	0.41 U	
Ethylbenzene	UG/L	5	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	
Styrene	UG/L	5	0.73 U	0.73 U	0.73 U	0.73 U	0.73 U	
Toluene	UG/L	5	0.70 J	0.51 U	0.51 U	0.51 U	0.51 U	
Xylene (total)	UG/L	5	0.66 U	0.66 U	0.66 U	0.66 U	0.66 U	
Semivolatile Organic Compounds								
2-Methylphenol (o-cresol)	UG/L	1	0.40 U	0.40 U	0.42 U	0.42 U	0.45 U	
Benzo(a)anthracene	UG/L	0.002	0.36 U	0.36 U	0.38 U	0.38 U	0.41 U	
Benzo(a)pyrene	UG/L	ND	0.47 U	0.47 U	0.49 U	0.49 U	0.53 U	
Benzo(b)fluoranthene	UG/L	0.002	0.34 U	0.34 U	0.35 U	0.35 U	0.39 U	
Benzo(k)fluoranthene	UG/L	0.002	0.73 U	0.73 U	0.76 U	0.76 U	0.83 U	
Chrysene	UG/L	0.002	0.33 U	0.33 U	0.34 U	0.34 U	0.38 U	
Dibenz(a,h)anthracene	UG/L	-	0.42 U	0.42 U	0.44 U	0.44 U	0.48 U	
Indeno(1,2,3-cd)pyrene	UG/L	0.002	0.47 U	0.47 U	0.49 U	0.49 U	0.53 U	
Naphthalene	UG/L	10	0.76 U	5.8	0.79 U	0.79 U	0.86 U	
Phenol	UG/L	1	0.74 J	0.39 U	0.41 U	0.41 U	0.44 U	
Dissolved Metals								
Iron	MG/L	-	0.019 U	0.11 B	0.085	0.11	0.067	
Miscellaneous Parameters								
Total Cyanide	MG/L	0.2	0.023	0.28	0.19	0.15	0.15	
Nitrate-Nitrogen	MG/L	10	0.020 U	0.029 J	0.020 U	0.020 U	0.020 U	

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

Location ID	MW-09	MW-10	MW-10	MW-10	MW-10		
Sample ID Matrix Depth Interval (ft) Date Sampled			MW-09	MW-10	MW-10	DUPLICATE	MW-10 Groundwater
			Groundwater	Groundwater	Groundwater	Groundwater	
			-	-	-	-	-
			10/04/22	10/04/21	08/15/22	10/03/22	10/03/22
Parameter	Units	Criteria*				Field Duplicate (1-1)	
Miscellaneous Parameters							
Nitrite-Nitrogen	MG/L	1	NA	NA	0.020 U	NA	NA
Sulfate (as SO4)	MG/L	2.50E+05	239	23.2	18.8	21.2	21.1

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

Location ID	MW-11	MW-11	MW-12	MW-12			
Sample ID			MW-11	MW-11	MW-12	MW-12	
Matrix			Groundwater	Groundwater	Groundwater	Groundwater -	
Depth Interval (ft)		- 08/15/22	-	-		
Date Sampled				10/03/22	08/16/22	10/03/22	
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Acetone	UG/L	50	6.0 U	6.0 U	3.0 U	3.0 U	
Benzene	UG/L	1	3.2	(1.9 J	25	7.3	
Ethylbenzene	UG/L	5	1.5 U	1.5 U	0.74 U	0.74 U	
Styrene	UG/L	5	1.5 U	1.5 U	0.73 U	0.73 U	
Toluene	UG/L	5	1.0 U	1.0 U	0.51 U	0.51 U	
Xylene (total)	UG/L	5	1.3 U	1.3 U	0.66 U	0.66 U	
Semivolatile Organic Compounds							
2-Methylphenol (o-cresol)	UG/L	1	7.8 J	4.2 U	0.42 U	0.40 U	
Benzo(a)anthracene	UG/L	0.002	3.8 U	3.8 U	0.38 U	0.36 U	
Benzo(a)pyrene	UG/L	ND	4.9 U	4.9 U	0.49 U	0.47 U	
Benzo(b)fluoranthene	UG/L	0.002	3.5 U	3.5 U	0.35 U	0.34 U	
Benzo(k)fluoranthene	UG/L	0.002	7.6 U	7.6 U	0.76 U	0.73 U	
Chrysene	UG/L	0.002	3.4 U	3.4 U	0.34 U	0.33 U	
Dibenz(a,h)anthracene	UG/L	-	4.4 U	4.4 U	0.44 U	0.42 U	
Indeno(1,2,3-cd)pyrene	UG/L	0.002	4.9 U	4.9 U	0.49 U	0.47 U	
Naphthalene	UG/L	10		7.9 U	0.79 U	0.76 U	
Phenol	UG/L	1	4.1 U	4.1 U	0.74 J	0.39 U	
Dissolved Metals							
Iron	MG/L	-	0.14	0.13	6.5	8.8	
Miscellaneous Parameters							
Total Cyanide	MG/L	0.2	0.31	0.010 U	0.0070 J	0.010 U	
Nitrate-Nitrogen	MG/L	10	0.020 U	0.020 U	0.020 U	0.020 U	

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

Location ID			MW-11	MW-11	MW-12	MW-12
Sample ID	MW-11	MW-11	MW-12	MW-12 Groundwater - 10/03/22		
Matrix Depth Interval (ft) Date Sampled			Groundwater		Groundwater	Groundwater
			-		-	-
			08/15/22		10/03/22	08/16/22
Parameter	Units	Criteria*				
Miscellaneous Parameters						
Nitrite-Nitrogen	MG/L	1	0.020 U	NA	0.020 U	NA
Sulfate (as SO4)	MG/L	2.50E+05	25.8	17.3	22.6	19.0

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

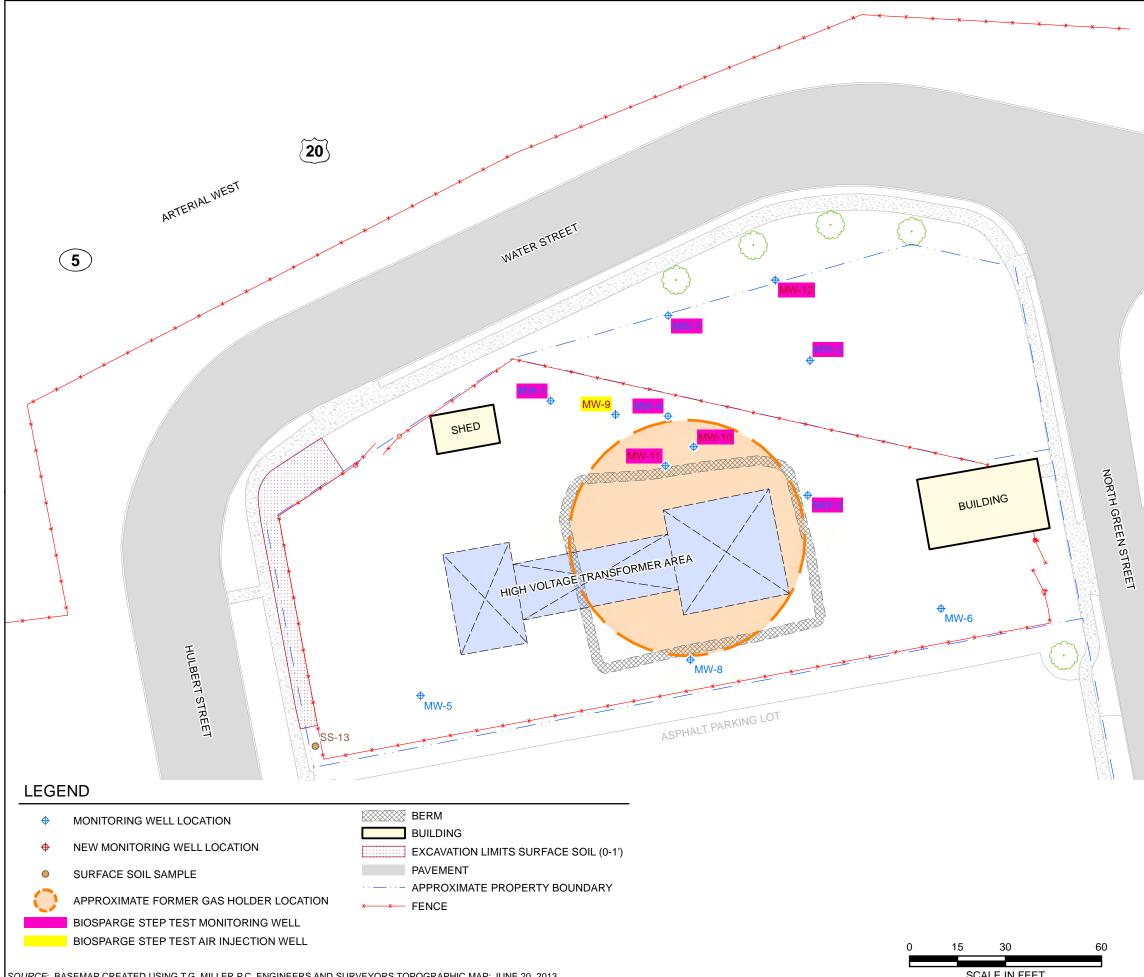
U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

L	ocation	ID		SS-13	SS-13	SS-13	
	Sample	ID		SS-13-0-6"	SS-13 6-12	SS-13-0-6"-12"	
	Matrix			Soil	Soil	Soil	
Dep	th Interv	/al (ft)		0.0-6.0	6.0-12.0	6.0-12.0	
Da	Date Sampled					09/28/22	09/28/22
Parameter	Units	Criteria (1)	Criteria (2)	Criteria (3)		Field Duplicate (1-1)	
Metals							
Arsenic	MG/KG	13	16	16	21.2		24.1

Criteria (1)- 6 NYCRR Part 375.6, Remedial Program Soil Cleanup Objectives, Effective 12/14/06. Unrestricted Use, including CP-51 Table 1, Effective 12/2/10. Criteria (2)- 6 NYCRR Part 375.6, Remedial Program Soil Cleanup Objectives, Effective 12/14/06. Restricted Use. Protection of Groundwater, including CP-51 Table 1, Effective 12/2/10. Criteria (3)- 6 NYCRR Part 375.6, Remedial Program Soil Cleanup Objectives, Effective 12/14/06. Protection of Public Health, Commercial, including CP-51 Table 1, Effective 12/2/10.

Flags assigned during chemistry validation are shown.



Concentration Exceeds Criteria (2)

Concentration Exceeds Criteria (3)

Concentration Exceeds Criteria 1

Figures

SOURCE: BASEMAP CREATED USING T.G. MILLER P.C. ENGINEERS AND SURVEYORS TOPOGRAPHIC MAP; JUNE 20, 2013.

SCALE IN FEET

1 John James Audubon Parkway, Suite 210 Amherst, NY 14228 P: 716.856.5636


Figure 1 Site Plan and Pre-Design Investigation Wells and Sampling Locations

NYSEG - Auburn Green St. MGP Site Green Street Auburn, Cayuga County, New York

March 2023

60652550

L:\DCS\Projects\60652550_AubumGrnR\900_CAD_GIS\920_GIS\Maps\Figure 1 Site Plan & PDI Wells & Sampling Locations.mxd 3/31/2023

LEGEND

- MONITORING WELL LOCATION
- [658.00] GROUNDWATER RESULT (feet NAVD 88)
- APPROXIMATE GROUNDWATER FLOW DIRECTION
 GROUNDWATER ELEVATION CONTOUR

APPROXIMATE FORMER GAS HOLDER LOCATION

NOTES

1. GROUNDWATER ELEVATIONS MEASURED ON OCTOBER 4, 2021.

2. MW-5 GROUNDWATER ELEVATION WAS NOT INCLUDED IN CONTOURING. THIS WELL ELEVATION IS BELIEVED TO REPRESENT A DIFFERENT WATER LAYER WITH A LOWER HYDRAULIC HEAD COMPARED TO OTHER SITE WELLS.

3. MW-9 AND MW-10 WERE NOT INCLUDED IN CONTOURING AS THEY HAVE NOT BEEN SURVEYED YET.

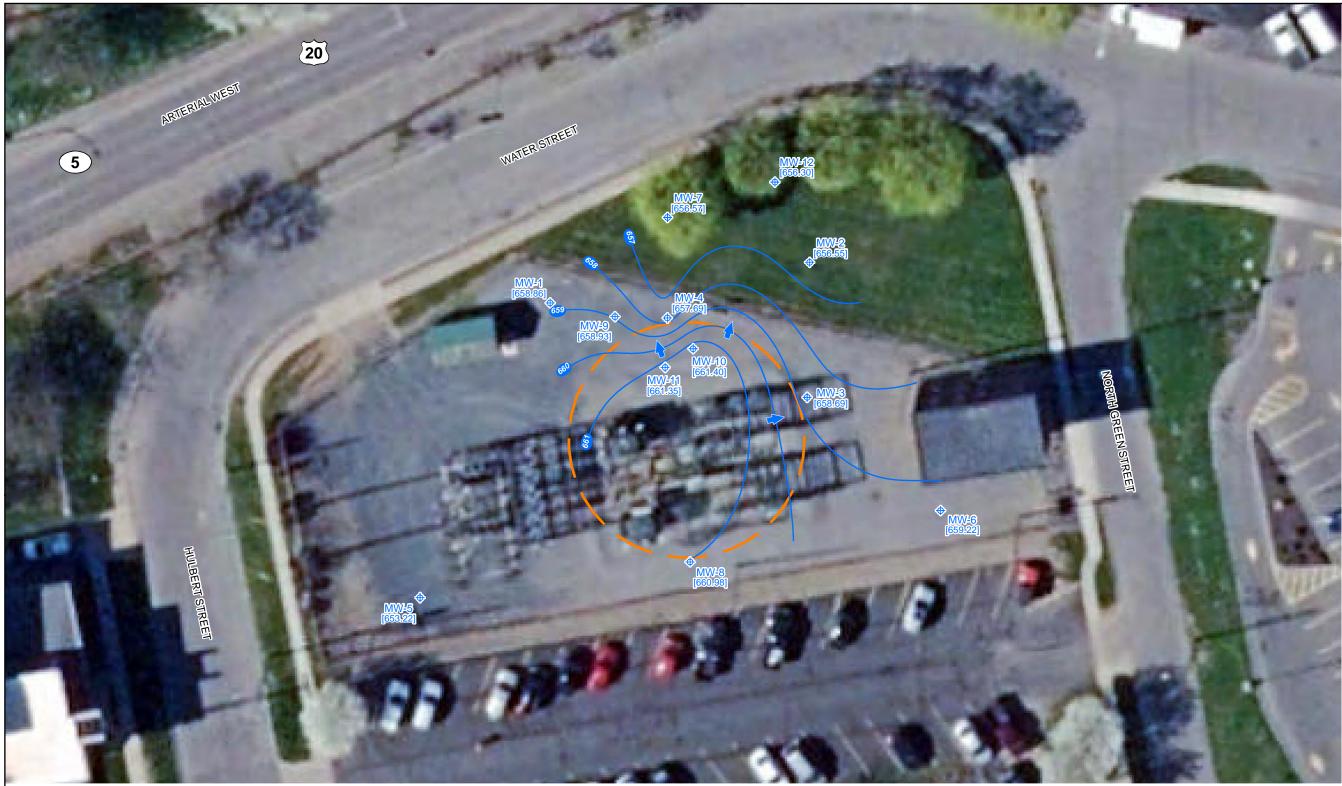

1 John James Audubon Parkway, Suite 210 Amherst, NY 14228 P: 716.856.5636

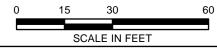
Figure 2 Groundwater Elevation Contours Map (October 4, 2021)

NYSEG - Auburn Green St. MGP Site Green Street Auburn, Cayuga County, New York

March 2023

60652550

LEGEND


- MONITORING WELL LOCATION
- [658.00] GROUNDWATER RESULT (feet NAVD 88)
- APPROXIMATE GROUNDWATER FLOW DIRECTION
 GROUNDWATER ELEVATION CONTOUR

APPROXIMATE FORMER GAS HOLDER LOCATION

NOTES

1. GROUNDWATER ELEVATIONS MEASURED ON AUGUST 15 & 16, 2022.

2. MW-5 GROUNDWATER ELEVATION WAS NOT INCLUDED IN CONTOURING. THIS WELL ELEVATION IS BELIEVED TO REPRESENT A DIFFERENT WATER LAYER WITH A LOWER HYDRAULIC HEAD COMPARED TO OTHER SITE WELLS.

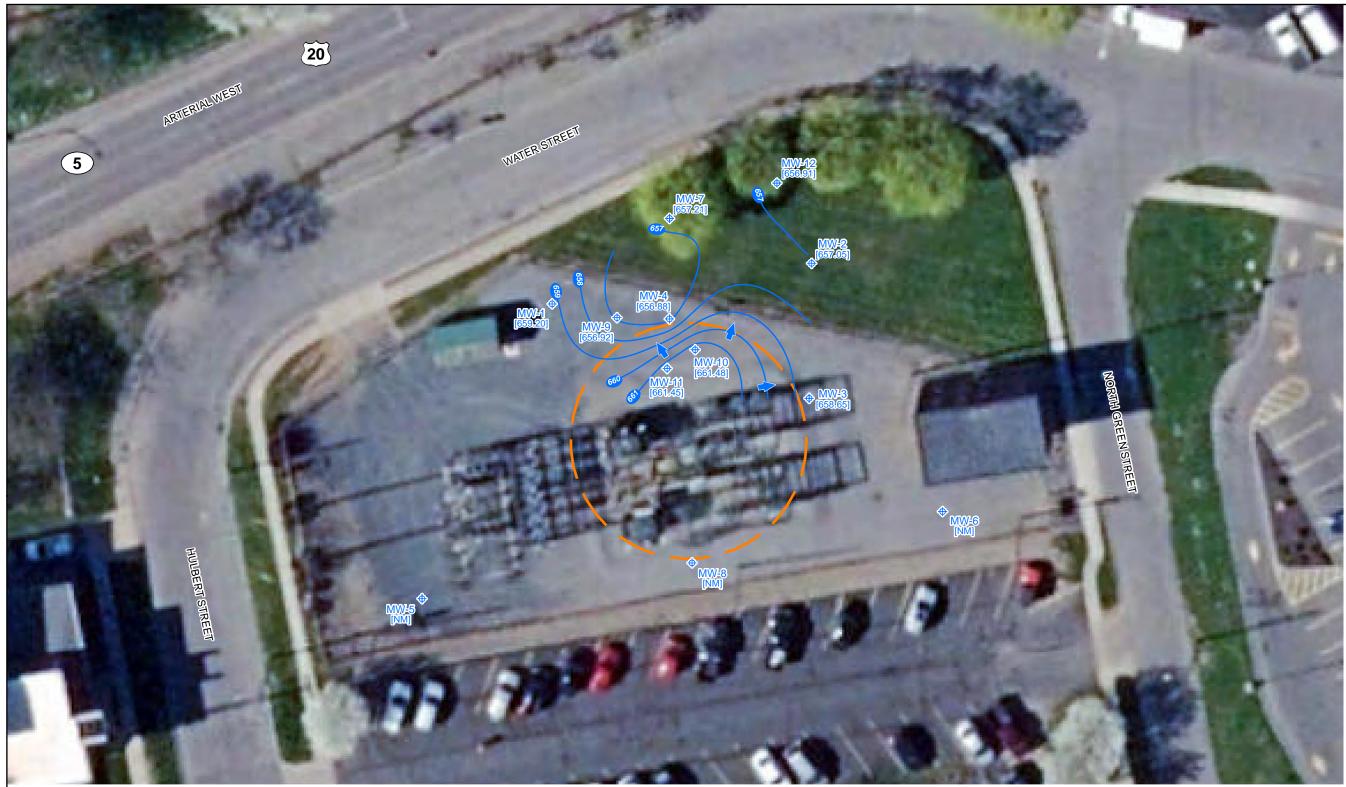

1 John James Audubon Parkway, Suite 210 Amherst, NY 14228 P: 716.856.5636

Figure 3 Groundwater Elevation Contours Map (August 15 & 16, 2022)

NYSEG - Auburn Green St. MGP Site Green Street Auburn, Cayuga County, New York

March 2023

60652550

LEGEND

- MONITORING WELL LOCATION
- [658.00] GROUNDWATER RESULT (feet NAVD 88)
- APPROXIMATE GROUNDWATER FLOW DIRECTION
 GROUNDWATER ELEVATION CONTOUR

APPROXIMATE FORMER GAS HOLDER LOCATION

NOTES

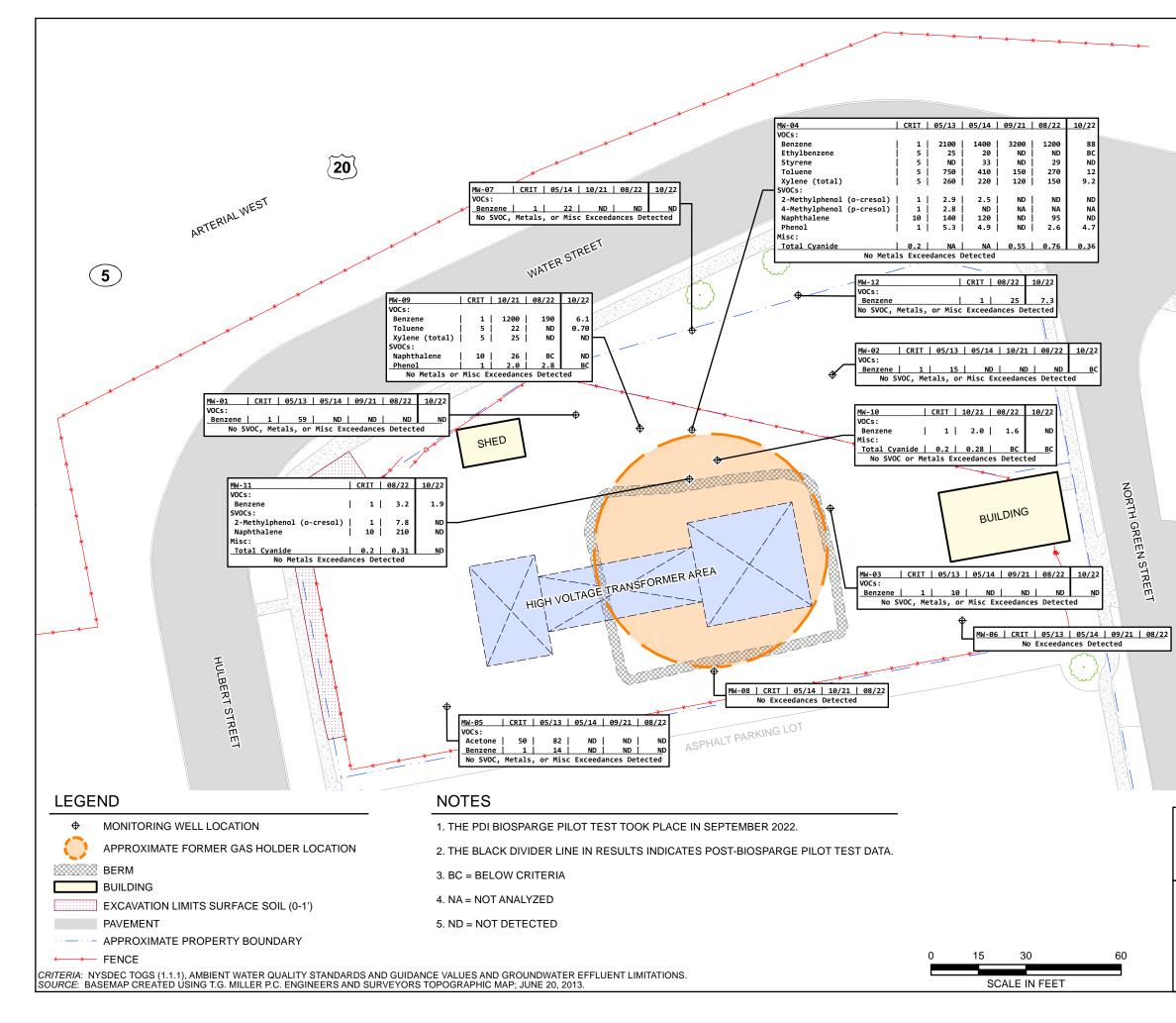
1. GROUNDWATER ELEVATIONS MEASURED ON OCTOBER 3, 2022.

2. MW-5 GROUNDWATER ELEVATION WAS NOT INCLUDED IN CONTOURING. THIS WELL ELEVATION IS BELIEVED TO REPRESENT A DIFFERENT WATER LAYER WITH A LOWER HYDRAULIC HEAD COMPARED TO OTHER SITE WELLS.

3. NM = NOT MEASURED

SCALE IN FEET

1 John James Audubon Parkway, Suite 210 Amherst, NY 14228 P: 716.856.5636

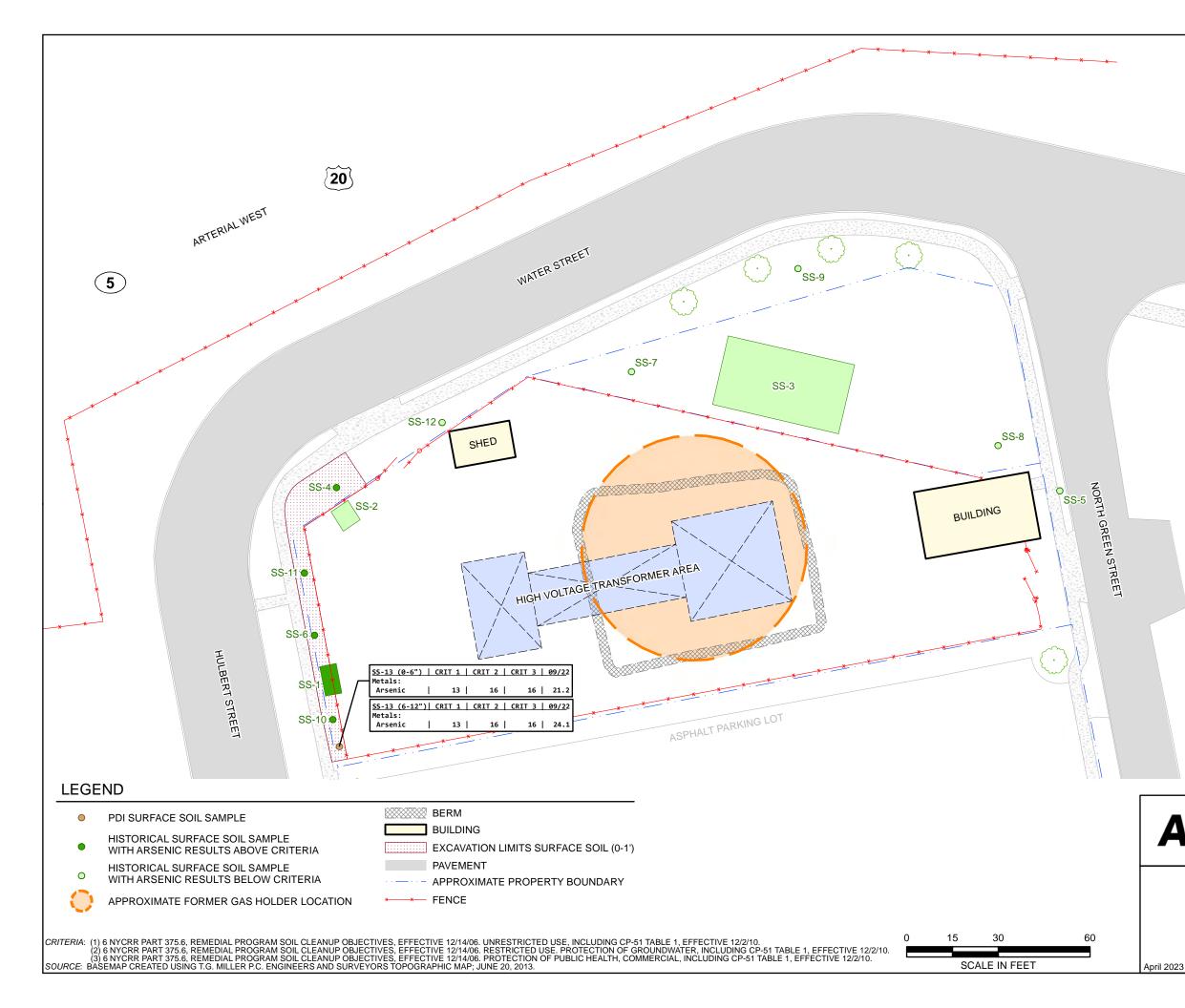

Figure 4 Groundwater Elevation Contours Map (October 3, 2022)

NYSEG - Auburn Green St. MGP Site Green Street Auburn, Cayuga County, New York

March 2023

60

60652550



1 John James Audubon Parkway, Suite 210 Amherst, NY 14228 P: 716.856.5636

Figure 5 Historical and Pre-Design Investigation Groundwater Exceedances

NYSEG - Auburn Green St. MGP Site Green Street Auburn, Cayuga County, New York

April 2023

1 John James Audubon Parkway, Suite 210 Amherst, NY 14228 P: 716.856.5636

Figure 6 Pre-Design Investigation Soil Exceedances

NYSEG - Auburn Green St. MGP Site Green Street Auburn, Cayuga County, New York

60652550

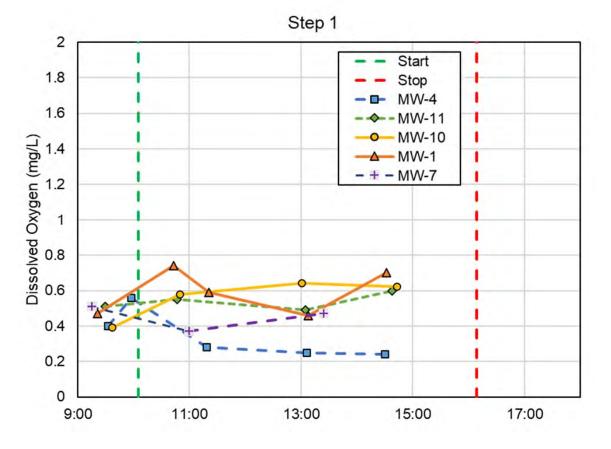


Figure 7. Dissolved oxygen concentrations in groundwater during Step 1 (2.7 scfm).

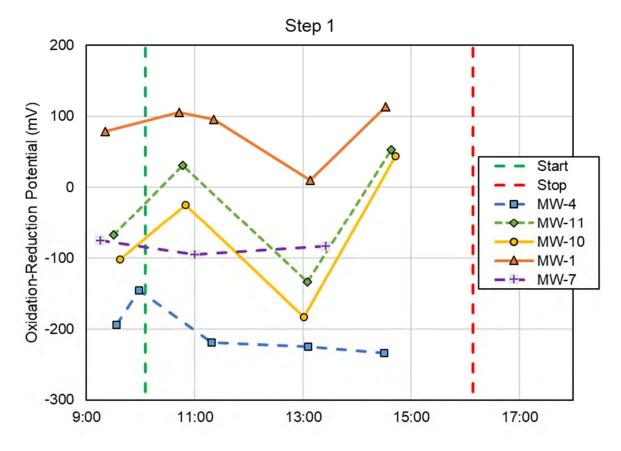


Figure 8. Oxidation-reduction potential in groundwater during Step 1 (2.7 scfm).

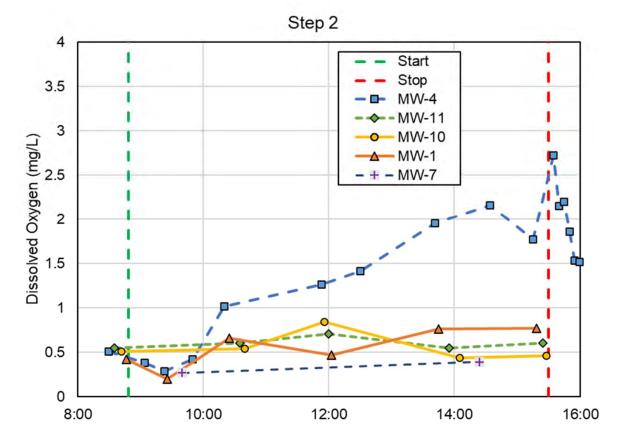


Figure 9. Dissolved oxygen concentrations in groundwater during Step 2 (7.5 scfm).

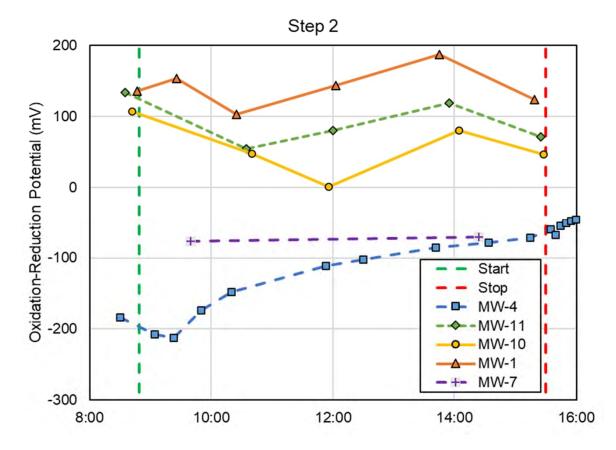


Figure 10. Oxidation-reduction potential in groundwater during Step 1 (7.5 scfm).

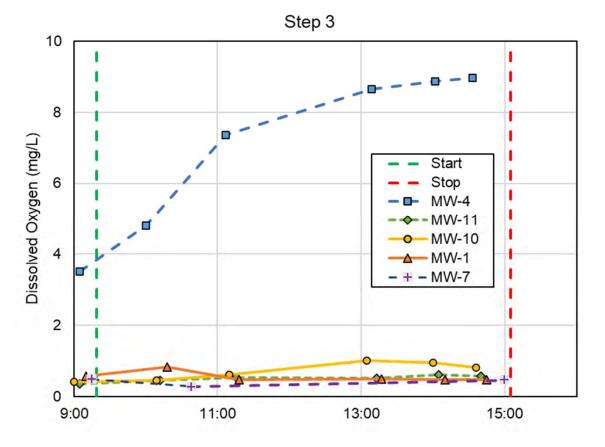


Figure 11. Dissolved oxygen concentrations in groundwater during Step 3 (15.7 scfm).

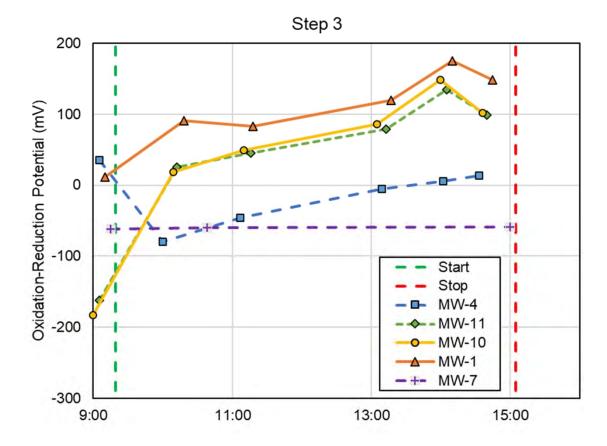


Figure 12. Oxidation-reduction potential in groundwater during Step 1 (15.7 scfm).

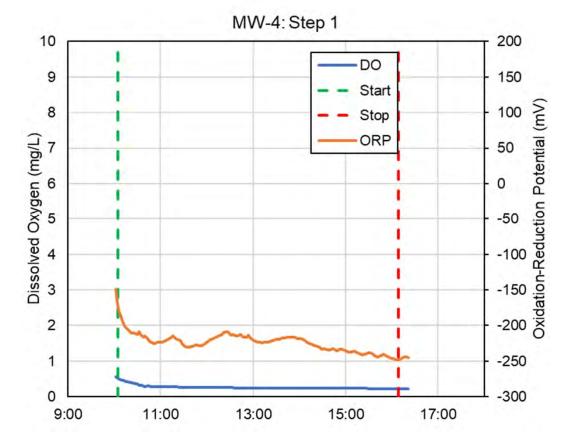


Figure 13. Dissolved oxygen concentrations and oxidation-reduction potential in groundwater at MW-4 during Step 1 (2.7 scfm).

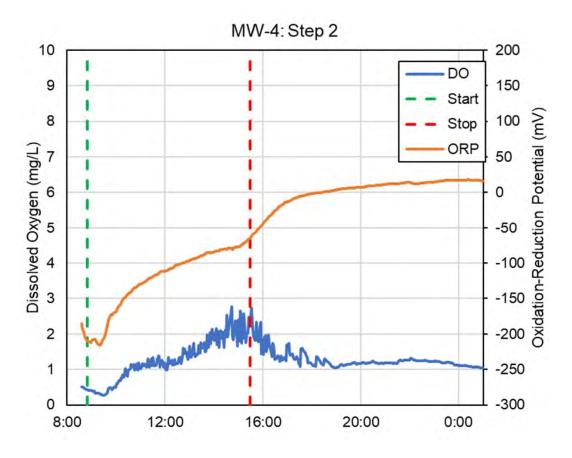


Figure 14. Dissolved oxygen concentrations and oxidation-reduction potential in groundwater at MW-4 during Step 2 (7.5 scfm).

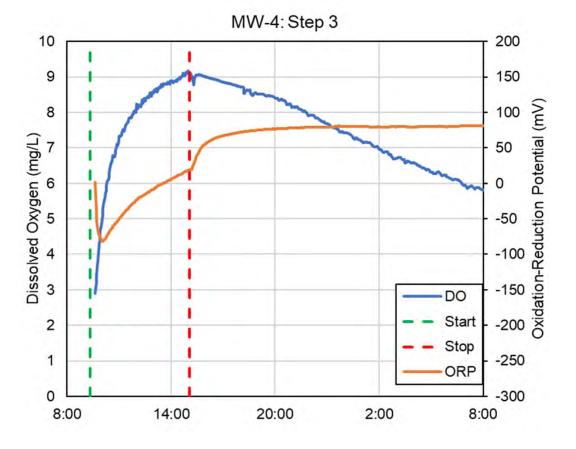


Figure 15. Dissolved oxygen concentrations and oxidation-reduction potential in groundwater at MW-4 during Step 3 (15.7 scfm).

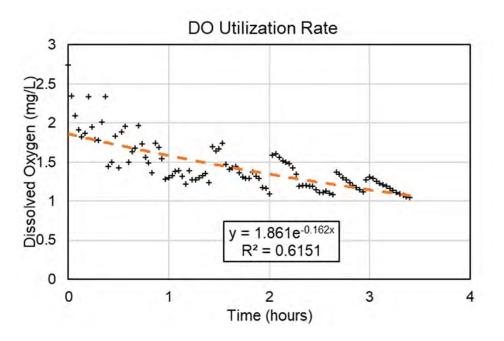


Figure 16. Dissolved oxygen utilization rate evaluation in groundwater at MW-4 after Step 2.

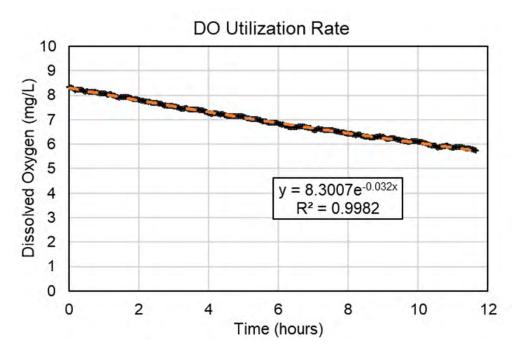


Figure 16. Dissolved oxygen utilization rate evaluation in groundwater at MW-4 after Step 3.

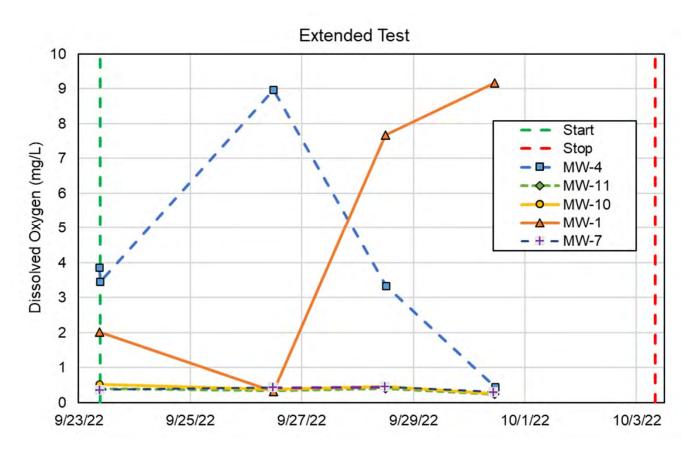


Figure 17. Dissolved oxygen concentrations in groundwater during the extended test (6.3 scfm).

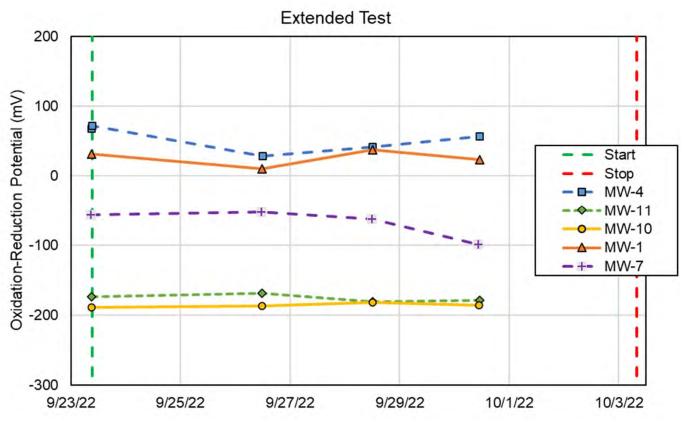


Figure 18. Oxidation-reduction potential in groundwater during the extended test (6.3 scfm).

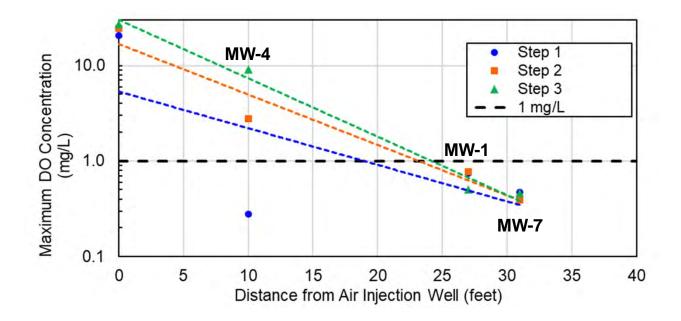
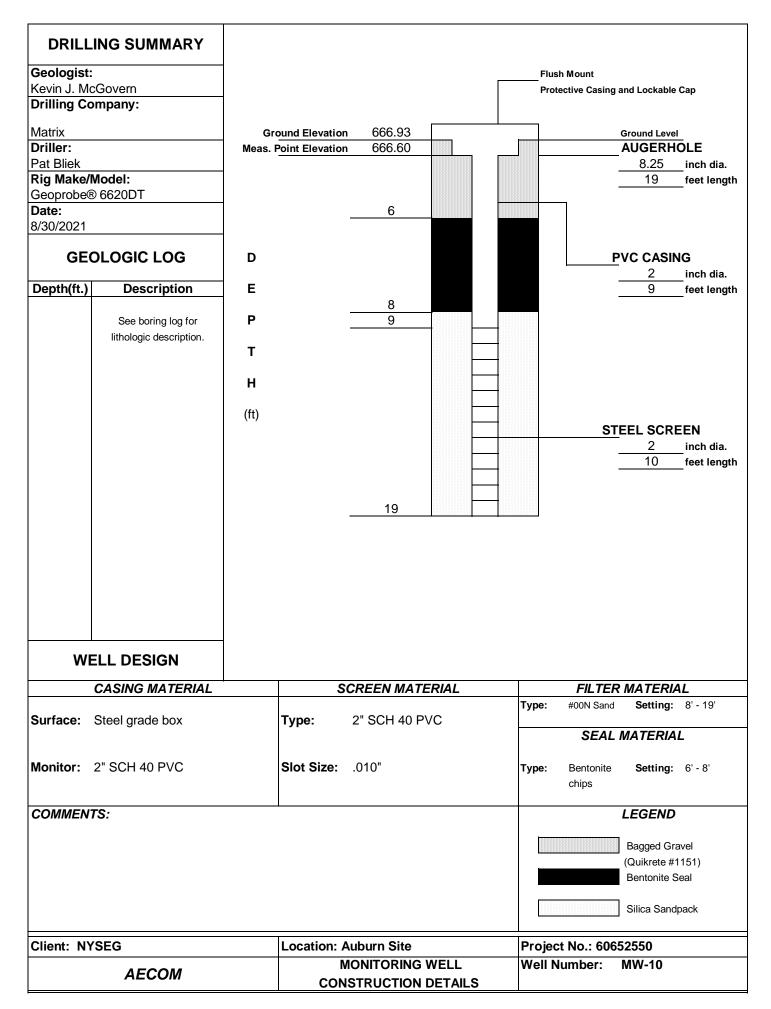


Figure 19. Estimated Radii of Influence (ROI) during Step Tests.

Attachment 1

Boring Logs

			AEC	ЮM											
					- 6140				BORING NO.: MW-09						
			ON: NTSE	G Auburi	1 Site				SHEET: 1 OF 1						
-	T: NYSEG								JOB NO. : 60652550						
	G CONTRA						1		NORTHING: 1068693			23558.675			
	NDWATER:	-	1		CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION						
DATE	TIME	LEVEL	TYPE	TYPE	·	Macrocore	ļ		DATE STARTED:	09/28/2					
	 			DIA.	_	2"		<u> </u>	DATE FINISHED:	09/28/2	2021				
				WT.	_				DRILLER:	Steve Marchetti					
				FALL					GEOLOGIST:	S. Con	nelly				
				*	POCKET P	PENETROMETE	R READIN	IG	REVIEWED BY:	J. Kacz	or				
		SAMP													
DEPTH FEET	STRATA	NO I	BLOW COUNT	REC%	COLOR	CONSISTENCY ROCK HARDNESS	-		MATERIAL ESCRIPTION	USCS	PID	REMARKS			
0 1 40 Dark Brown and Gray FILL: Silt with medium Gravel and Brick 0.0 Dry, No No Sta - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -															
					Brn&Bd		CLAY				_				
-5		2		10	Gray					ML	0.0	Moist			
							Fine Si	LI, trace	e Sand and Gravel						
-10		3		94	-						0.0	-			
				01							0.0				
										\neg	4.9				
					Rd Brn		/ Clayey	SILI			_	Dry and			
					Gray		Fine to	coarse C	GRAVEL and SAND	SW/GW		Slight Odor @ 13.4'			
-15	0	4		50	1		Fine SA	AND		SM/GW	0.0	Moist @ 13.7'			
-							\		GRAVEL and SAND						
					Reddish Brown		Clayey	SILT		ML	-				
							Refusa	al @ 19' b	lgs						
-20 — - - - -25 — - _ _															
	MENTS:	by Geopro	be® Model	6620DT											
									B	BORING NO.	.: MW-0	9			


			AEC	Ю	TEST BORING LOG										
PROJE			TION: NYSE		n Site				SHEET: 1 OF 1						
	: NYSEG	JI LOU.		-0 /10.00.					JOB NO. : 60652550						
	G CONTRA	CTOR: M	latrix						NORTHING: 1068683.47	R EAS	TING: 82	3583.105			
	NDWATER:				CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION:	666.93					
DATE	ТІМЕ	LEVEL	1	TYPE	_	Macrocore			DATE STARTED:	8/30/20					
				DIA.	+	2"			DATE FINISHED:	8/30/20					
				WT.	+	1			DRILLER:	Pat Blie	k				
				FALL	+	1			GEOLOGIST:	K. McG	overn				
				*	POCKET P	PENETROMETE		G	REVIEWED BY:	J. Kacz	or				
		SAN													
DEPTH FEET	STRATA	NO.	BLOW COUNT	REC%		CONSISTENCY ROCK HARDNESS	-		MATERIAL SCRIPTION	USCS	PID	REMARKS			
0 - -5 -10 -10 -15 - -20		1 2 3 4 5		20 20 20 26 28 28	Gray Red and Dark Gray		FILL: C to little	coarse-fir	d Brick fragments, some ne Sand and Silt		0.0	Dry, No Odor, No Staining Wet			
25															
	COMMENTS: Boring advanced by Geoprobe® Model 6620DT														
Borin	g advanced	by Geopr	robe® Model	6620DT											
									BOI	RING NO.	: MW-10)			

				AEC	:OM			RING LO	G							
		<u></u>				- 6140				BORING NO.: MW-11						
)N: NT30	EG Auburi	n Site				SHEET: 1 OF						
	T: NYSEG									JOB NO. : 606525						
	G CONTRA			ix					T	NORTHING: 10686		EASTING: 82	3574.298			
	NDWATER:	1				CAS.		CORE	TUBE	GROUND ELEVATION: 667.14						
DATE	TIME	LEVE	EL	TYPE			Macrocore		 	DATE STARTED:		3/2022				
'		──			DIA.		2"	 	 	DATE FINISHED:		3/2022				
'	 	──			WT.			 	 	DRILLER:		ch Reagan				
'	 			GEOLOGIST:		nily Au										
	<u> </u>			REVIEWED BY:	J. I	Kaczor										
DEPTH		S		.E	MATERIAL											
FEET												SCS PID	REMARKS			
0						0.0	Dry, No Odor,									
- /			1			Brown	1	<u> </u>	EL SUBB			0.0	No Staining			
- '			1			Tan to	1	FILL: F	ine to me	edium Sand and fine to vith Brick Fragments a	0 and	0.0	-			
- '	0.0	-														
	$\bigotimes \bigotimes$.]	1				0.0	4								
-5	\boxtimes		L				l									
	$\mathbb{K} \times \mathbb{K}$	1	1		34		l					0.0	Wet			
		.]	1				l					0.0				
יך ו	\boxtimes	.]	1				l					0.0	1			
1'	$\bigotimes \bigotimes$.]	1				1					0.0	1			
- "		.]	1			Dark	1		Andium to	o coarse Gravel, little		0.0	-			
-10 —	$\boxtimes \boxtimes$	2	<u> </u>		54	Gray	Medium	Brick F	ragment	s and Slag		0.0	4			
╽ ┤′	\bigotimes	.]	1				Dense		-			1.5	-			
'			1				l					0.8	-			
'	$\mathbb{K} \times \mathbb{K}$		1				l						_			
_ '			1									0.3				
			1									0.2				
-15	$\boxtimes \boxtimes$	3	1		34	1						0.0				
1'			1													
1 - 1 '	$\bigotimes \bigotimes$		1									0.0	-			
- '			1													
╽ ┤′			1									0.0	-			
-20 —	<u> </u>		_				 	_				0.0				
	1	.	1				l	Refusa	al @ 20' b	ogs						
1 _ '	1		1				l									
	1	.]	1				1									
] '	1	.]	1				1									
'	1	.]	1				1									
-25 —	1	.]	1				1									
- '			1													
- '			1				1									
			i				I									
CON	MENTS:						·					·				
	ng advanced	d by Gec	oprob	e® Mode	6620DT											
											BORING	NO.: MW-11	1			

	AECOM TEST BORING LOG BORING NO.: MW-12														
PPOIE			FION: NYSE		- Cito										
	CT/PROJEC	CILUCAI		:G Auburi	i Site				SHEET: 1 OF 1						
		272D. M.							JOB NO. : 6065255			0000 607			
	G CONTRA		itrix					TUDE			STING: 82	3608.627			
	NDWATER:	-			CAS.	SAMPLER Macrocore	CORE	TUBE	GROUND ELEVATIO						
DATE	TIME	LEVEL	TYPE	TYPE				 	DATE STARTED:	8/3/202					
[_]	 			DIA.		2"	!	<u> </u>	DATE FINISHED:	8/3/202					
	 			WT.			 '	 	DRILLER:	Rich R	-				
 '	 	<u> </u>		FALL			L'	L	GEOLOGIST: Emily Au						
!	ļ			* F	POCKET P	SOIL	R READIN	G	REVIEWED BY:	J. Kacz	20r	-			
DEPTH		SAM	PLE	MATERIAL											
FEET	STRATA	NO	BLOW COUNT	RQD%	COLOR	CONSISTENCY ROCK HARDNESS			ESCRIPTION	USCS	PID	REMARKS			
0 -5 -10 -10 -115		1		60	Brown/ Tan/ Gray Mottled	Medium Dense	Fine to d	coarse G	edium Sandy Loam, som iravel, trace to little Silt ck and Slag , trace angular Gravel angular GRAVEL, trace se Sand	GW	0.0 0.0	Dry, No Odor, No Staining Dry to Moist Wet/ Saturated			
-15 —		3		57	Red Brown	Very Stiff		race Clay		ML	0.0	Wet			
					Gray		Fine to GRAVE	coarse s EL.	sub angular Sandy	GW	0.0	-			
	IMENTS:	d by Geopri	obe® Model	1 6620DT											
										BORING NO.	.: MW-12	2			

Monitoring Well Construction Logs

	MARY						
Geologist:				г	Flus	sh Mount	
Sean P. Connelly Drilling Company:					Prot	ective Casing and Locka	ble Cap
Matrix		round Elevation				Ground Le	
Driller: Pat Bliek	Meas.	Point Elevation	666.23			AUGEF 8.25	
Rig Make/Model: Geoprobe® 6620DT Date:							
9/28/2021 GEOLOGIC	LOG D					PVC CAS	SING
Depth(ft.) Desc	ription E		13			<u>2</u> 16.6	inch dia. feet length
See bo	ring log for P		14.3				
lithologic	description.						
	н						
	(ft)		16.6	_			
						<u>PVC SCF</u> 2	LEN inch dia.
						2	feet lengtl
			18.6	_			
			19.6			PVC SU 2	MP inch dia.
			19.0			1	feet length
WELL DES	ICN						
_	MATERIAL	S	CREEN MAT	FRIAI		FILTER MATEI	RIAI
					Type:		g: 14.3' - 19.6
Surface: Steel grad	e box	Туре:	2" SCH 40 P	VC		SEAL MATER	IAL
Monitor: 2" SCH 40) PVC	Slot Size:	.010"		Type:	Bentonite Settin chips	g: 13' - 14.3
) PVC	Slot Size:	.010"		Туре:		
Monitor: 2" SCH 40) PVC	Slot Size:	.010"		Type:	chips	ID Gravel ∌ #1151)
) PVC	Slot Size:	.010"		Type:	chips LEGEN Bagged (Quikrete	ID Gravel 9 #1151) e Seal
) PVC	Location: A	uburn Site		Projec	chips LEGEN Bagged (Quikrete Bentonit Silica Sa ct No.: 60652550	ID Gravel 9 #1151) e Seal
COMMENTS:	о РVС СОМ	Location: A			Projec	chips LEGEN Bagged (Quikrete Bentonit Silica Sa	ID Gravel 9 #1151) e Seal

DRILL	ING SUMMARY								
Geologist Emily Au Drilling Co							h Mount ective Casing	and Lockable Ca	p
Matrix Driller: Rich Reag Rig Make/ Geoprobe	an Model:		ound Elevation Point Elevation	666.67					_E nch dia. eet length
Date: 8/3/2022				3.5					
GE	OLOGIC LOG	D					F	VC CASING	i nch dia.
Depth(ft.)	Description	Е		7					eet length
	See boring log for lithologic description.	Р Т Н		9.5					
		(ft)					Р		nch dia.
				19.5				<u>10</u> f	eet length
w	ELL DESIGN								
	CASING MATERIAL		S	CREEN MATI	ERIAL		FILTER	MATERIAL	
Surface:	Steel grade box		Туре:	2" SCH 40 P	VC	Туре:	#00N Sand	Setting: 7 MATERIAL	7.0'-19.5'
Monitor:	2" SCH 40 PVC		Slot Size:	.010"		Туре:	Bentonite chips	Setting: 3	8.5'-7.0'
COMMEN	COMMENTS:		<u> </u>					LEGEND	
isolate the that was us material in	Added 3 ft long 4-inch diameter PVC out isolate the bagged gravel (washed)) from that was used to fill in the void space in the material in the top of the drill hole.			ed by NYSEG d by collapsin	g holder			Bagged Grave (Quikrete #115 Bentonite Sea Silica Sandpad	51) I
	Bedrock refusal at 20'. Screen pushed to								
Client: N	(SEG		Location: A	uburn Site	Project No.: 60652550 Well Number: MW-11				
	AECOM	CONSTRUCTION DETAILS							

DRILL	ING SUMMARY									
Geologist Emily Au Drilling Co							h Mount ective Casing and Lockable Cap			
Matrix Driller: Rich Reag Rig Make/ Geoprobe Date:	Model:		ound Elevation Point Elevation	664.74 664.30 1			Ground Level AUGERHOLE 8.25 inch dia. 18 feet length			
8/3/2022 GE		D					PVC CASING			
Depth(ft.)	Description	Е		6			2 inch dia. 8 feet length			
	See boring log for lithologic description.	P T H (ft)		6 6.33 16.33			PVC SCREEN 2 inch dia. 10 feet length			
w	ELL DESIGN									
	CASING MATERIAL		SC	CREEN MAT	ERIAL		FILTER MATERIAL			
Surface:	Steel grade box		Туре:	2" SCH 40 P	VC	Туре:	#00N Sand Setting: 6.0'-16.33'			
Monitor:	Monitor: 2" SCH 40 PVC		Slot Size:	.010"		Туре:	SEAL MATERIAL Bentonite Setting: 1.0'-6.0' chips			
COMMEN	COMMENTS:		1				LEGEND			
bentonite o Bedrock re Hole collap	A little sand was added in the top 1' for dra pentonite chips from swelling into the flushr Bedrock refusal at 18'. Screen measured a Hole collapsed and screen didn't push all th petween bentonite and top of screen as a r			stallation com			Bentonite Seal Silica Sandpack			
Client: N	/SEG						Project No.: 60652550			
	AECOM					Well Number: MW-12				

Well Development Logs

WELL DEVELOPMENT LOG		AECOM	
PROJECT TITLE: NYSEG Auburn	WELL NO .:	MW-09	

.

.

PROJECT NO.: 60652550				
STAFF: 5. Connelly				
DATE(S): 2/29/21				
1. TOTAL CASING AND SCREEN LENGTH (FT.)	=	799 6	WELL ID.	VOL. (GAL/FT) 0.04
I. TOTAL CASING AND SCREEN LENGTH (FI.)	_)		
2. WATER LEVEL BELOW TOP OF CASING (FT.)	=	18.51 00	2"	0.17
3. NUMBER OF FEET STANDING WATER (#1 - #2)	=	6.18	3"	0.38
4. VOLUME OF WATER/FOOT OF CASING (GAL.)	=	0.17	4"	0.66
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4)	=	1.05	5"	1.04
6. VOLUME OF WATER TO REMOVE (GAL.)(#5 x 3)	=	3.15	6"	1.50
7. VOLUME OF WATER ACTUALLY REMOVED (GAL.)	=	15/	0.75"	0.02
		1 ret 10 10 10 10 1000	3 x (CASING DIAM	OR IETER) ²

							47 V				
			1.57	A	ACCUMUL				LONS)		
	In til	1	2	3	4	6	Fritte	7.0	8.0		
	1134	1137	1141	1154	RIZ	1252	1324	133 0	1340		
pН	7,50	7.41	7.50	7.39	7.41	7.47	7.52	7.52	7.50		
TEMPERATURE (°C)	22.8	19.5	19.9	15.8	16.1	15.8	17,7	15.6	15.7		
				1 .0		1 70	2 100	2 144	2.20	2	

WELL DEVELOPMENT LOG

Jun guns

AECOM

	200								
PROJECT TITLE: NYSEG Auburn				WELL NO	o <u>.: M</u>	w-10	2		
PROJECT NO.: 60652550									
STAFF: S. Connelly									
DATE(S): 9/22/21									
	2.1								
						WELL ID		VOL. (GAL/F	- Τ)
1. TOTAL CASING AND SCREEN LENGTH (FT.)		=	1	8.51	-	1"		0.04	
2. WATER LEVEL BELOW TOP OF CASING (FT.)	12220	=	6	,49	<	2"		0.17	>
3. NUMBER OF FEET STANDING WATER (#1 - #2)		=	12	32		3"		0.38	
4. VOLUME OF WATER/FOOT OF CASING (GAL.)		=	c	1.17		4"		0.66	
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4)		=	2-	09		5"		1.04	
6. VOLUME OF WATER TO REMOVE (GAL.)(#5 x 3)		=	6	.28		6"		1.50	
7. VOLUME OF WATER ACTUALLY REMOVED (GAL.)		=		0.0		0.75"		0.02	
		1				x (CASING	OR DIAMETER)2	
	I.		•	20	1-0.0100				
		ACCUMUL		UME PUR	0		12	14.0	16.0
	- · ·	14.0	6.0	10.02	8.0	10.0	12.0	14.0	1043
PARAMETERS TIME 1000 1005 100	8 1014	1018	IULA	1053	1025	1028	1057		
PH - 8.69 8.82 8.8	5 8.87	8:91	8.89	8.86	8.90	8.80	8.71	8.70	8.85
TEMPERATURE (°C) 14.6 14.8 14.	9 14.7	14.8	14.8	12.8	17.7	15.5	15.8	15.8	15.2
COND (mS/cm) 0.218 0.244 0.24	19 0.243	0.238	0.245	0.245	0.246	0.264	9.286	0.288	0.260

X	COND. (mS/cm)	0.218	0,199	0.299	0.445	0.250	0.015	0.273	0.290	0.001	9.004	-	0.0	F
har	DO (mg/l)	3.56	2.43	3.47	3.41	2.90	2.42	3.18	2.37.	4,39	3 83	3,19	2.17	2.13
2.sug		68.02	167.44	12589	95.21	77:18	70,78	23.48	58.95	67,51	416.71	259.08	79,72	40,50
X	ORP (mV)	167.1	15417	151.3	148.7	139,7	137.Z	81.3	133,6	130.2	130.2	121.7	115.9	110.2
Slight orlor No shing S	COMMENTS: Zniticl = clear w. I gall = clear w. Z gall = clear MW-4 WL = S.C 3 sall = clear 4 gall = clear MW-7 WL = S.C	4 . 12 a	Tubin Tubin Tubin	J / Ehi 2 Sall 3 Iches 3 Iches	ch v ch v ch v	dve alve Pve	C~ C~ e~	z - 3 z - 3' 4-5'	, sfr ofr s ofr b	of both of both	then of om of	will	·WL	
20 - Som es 18	Ssall = clea Ssall = clean 10 sall = dean 10 sall = dean MW - TW 2 : S 12 gall = Herri 14 sull = mark 14 sull = mark Llog U Libsers Sean.connelly AppData 18 Sall	J Local\Microso	in bing	JICh Iche NetCache Co	h va	elv i, i, iv lv ok\vjoyckc	C ~ C ~ C ~	- 5 · 6 - 7 8 5 · 6 Developmen	sff b	ofform	stu	~	az : 1	

Date:	8/8/22	Complia	ng Personnel:	4	1114		Component		
	F/4/22	Samplin	ig Personnei:		., 0, ,		Company:	AEC	
Purging/ Sampling Device:		Peristaltic		Tubing Type:	H	PE	Pump/Tubing Inlet Location:	Screen	midpoint
leasuring Point:	Below Top of Riser	Initial Depth to Water:	4.95	Depth to Well Bottom:		Well Diameter:	2"	Screen Length:	<u>(0 ft</u>
Casing Type:	P\	/C	4	Volume in 1 Well Casing (literation)	2,31		Estimated Purge Volume (liters): Su//on S	25	_
				Sample Time:		1	QA/QC:		
ample ID:				rano.					
Sample ID: Sampi					tone, stvrene:			·	
		VOCs (8260C Total PAHs/S)-Site Specific Lis VOCs (8270D) - S	st - BTEX, ace			97		
	le Parameters:	VOCs (8260C Total PAHs/S' Sulfate (300.0)-Site Specific Lis VOCs (8270D) - 3 _28D), Nitrate;	st - BTEX, ace Site Specific L	ist		9 5		
	le Parameters:	VOCs (8260C Total PAHs/S' Sulfate (300.0)-Site Specific Lis VOCs (8270D) - S	st - BTEX, ace Site Specific L	ist		425		
	le Parameters:	VOCs (8260C Total PAHs/S' Sulfate (300.0)-Site Specific Lis VOCs (8270D) - 3 28D), Nitrate; I (9012B); Dissol	st - BTEX, ace Site Specific L	ist) C - Field Filte		¥:		
	le Parameters:	VOCs (8260C Total PAHs/S' Sulfate (300.0)-Site Specific Lis VOCs (8270D) - 3 28D), Nitrate; I (9012B); Dissol	st - BTEX, ace Site Specific L ved Iron (6010	ist) C - Field Filte	red);	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)]
Sampl	pH	VOCs (8260C Total PAHs/S' Sulfate (300.0 Cyanide, Tota)-Site Specific Lis VOCs (8270D) - 3 28D), Nitrate; I (9012B); Dissol PURGE Sp. COND. (mS/cm) Ca 2 2 &	st - BTEX, ace Site Specific L ved Iron (6010 E PARAM DISS. O ₂ (mg/l)	IST C - Field Filter ETERS TURB. (NTU) SSS: 10	red); ORP (mV) インこ・ダ	FLOW RATE (ml/min.)	WATER (btor)	
Sampl	pH	VOCs (8260C Total PAHs/S' Sulfate (300.0 Cyanide, Tota TEMP (°C))-Site Specific Lis VOCs (8270D) - 3 28D), Nitrate; I (9012B); Dissof PURGE Sp. COND. (mS/cm) C, Z Z <u>S</u> (), 249	st - BTEX, ace Site Specific L ved Iron (6010 E PARAM DISS. O ₂ (mg/l) [(94] (J.S 6	ist C - Field Filter ETERS TURB. (NTU) 555. 10 332. 10	red); ORP (mV) ノンこ・ダ)0多・ダ	FLOW RATE (ml/min.)	WATER	
Sampl	pH Sygo Ki 17 SiSi	VOCs (8260C Total PAHs/S' Sulfate (300.0 Cyanide, Tota)-Site Specific Lis VOCs (8270D) - 3 28D), Nitrate; I (9012B); Dissol PURGE Sp. COND. (mS/cm) Ca 2 2 &	st - BTEX, ace Site Specific L ved Iron (6010 E PARAM DISS. O ₂ (mg/l)	IST C - Field Filter ETERS TURB. (NTU) SSS: 10	red); ORP (mV) インこ・ダ	FLOW RATE (ml/min.)	WATER (btor)	
Sampl	pH S 90 K 190 K 197 K 197	VOCs (8260C Total PAHs/S' Sulfate (300.0 Cyanide, Tota TEMP (°C) 19. 3 6. 15. 6 15. 6)-Site Specific Lis VOCs (8270D) - 3 28D), Nitrate; I (9012B); Dissol PURGE Sp. COND. (mS/cm) C, 228 (), 247 (), 247 (), 247 (), 247 (), 247 (), 247 (), 247 (), 247 (), 247 (), 247	st - BTEX, ace Site Specific L ved Iron (6010 PARAM DISS. O ₂ (mg/l) [(7) (.55 L.65 1,55 (.58	ist C - Field Filter ETERS TURB. (NTU) 555. [J] 332.]JJ 71.2. 62 [J.2. 67 1.70.52	red); ORP (mV) ノンこ・ダ)0多・ダ	FLOW RATE (ml/min.)	WATER (btor)	
Sampl TIME (138 (145 (145 (145 (145) (145) (155) (155)	pH Sygc Ky 47 Syscc Sysc Sysc Syscc Sysc Syscc Sysc Sysc Sysc Sysc Sysc Sysc	VOCs (8260C Total PAHs/S' Sulfate (300.0 Cyanide, Tota TEMP (°C) 19. '3 (6.6 15. (6 15. (6 15. (1)-Site Specific Lis VOCs (8270D) - 3 28D), Nitrate; I (9012B); Dissol PURGE Sp. COND. (mS/cm) C, 228 (), 247 (), 247 (), 247 (), 247 (), 247 (), 247 (), 247	st - BTEX, ace Site Specific L ved Iron (6010 PARAM DISS. O ₂ (mg/l) (/94 //56 L/65 1. 57 //58	ist C - Field Filter ETERS TURB. (NTU) 555. [J] 332. [J] 712. [2] 1/2. [2] 1/	ORP (mV) (02.8 105.8 93.4 \$7.4 76.1 66.2	FLOW RATE (ml/min.)	WATER (btor)	
Sampl TIME 1138 1145 1149 1145 1149 1155 1149 1155 1158 1201	pH & 90 & 90 & 190 & 100 & 1000 & 1000 & 1000 & 1000 & 1000 & 1000 & 1000	VOCs (8260C Total PAHs/S' Sulfate (300.0 Cyanide, Tota TEMP (°C) 19, 3 6 6 7 15, 6 15, 1 15, 1 15, 1 15, 1 15, 0)-Site Specific Lis VOCs (8270D) - 3 28D), Nitrate; I (9012B); Dissol PURGE Sp. COND. (mS/cm) C, 225 (), 247 (), 247 (), 247 (), 247 (), 247 (), 246	st - BTEX, ace Site Specific L ved Iron (6010 PARAM DISS. O ₂ (mg/l) (.94 1.55	ist C - Field Filte ETERS TURB. (NTU) 555. [J] 332.]J 712. 62 1/22.67 1/20.52 (26. 45	ORP (mV) 102.8 105.8 31.1 21.1 76.1 61.7	FLOW RATE (ml/min.)	WATER (btor)	
Sampl TIME 1138 1145 1145 1149 1155 1155	pH Sygc Ky 47 Syscc Sysc Sysc Syscc Sysc Syscc Sysc Sysc Sysc Sysc Sysc Sysc	VOCs (8260C Total PAHs/S' Sulfate (300.0 Cyanide, Tota TEMP (°C) 19. '3 (6.6 15. (6 15. (6 15. (1)-Site Specific Lis VOCs (8270D) - 1 28D), Nitrate; I (9012B); Dissol PURGE Sp. COND. (mS/cm) Cx Z 28 (). 24 C, 24	st - BTEX, ace Site Specific L ved Iron (6010 PARAM DISS. O ₂ (mg/l) (/94 //56 L/65 1. 57 //58	ist C - Field Filter ETERS TURB. (NTU) 5555. [J] 332. [J] 332. [J] 712. 62 122. 62 122. 52 122. 52 122. 52 125. 45 125. 45	ORP (mV) (02.8 105.8 93.4 \$7.4 76.1 66.2	FLOW RATE (ml/min.)	WATER (btor)	
Sampl TIME 1138 1145 1145 1144 1155 1144 1155 1264 1254 1254 1254 1254 1254 1254	pH Cr90 K147 K157 K177 K157 K157	VOCs (8260C Total PAHs/S' Sulfate (300.0 Cyanide, Tota TEMP (°C) 19. 3 (6 15. 6 15. 6 15. 7 16. 6 15. 7 16. 7 15. 7 16. 7 15. 7 16. 7 15. 7 16. 7 15. 7 16. 7 17 16. 7 16. 7 17 16. 7 16.)-Site Specific Lis VOCs (8270D) - 3 28D), Nitrate; I (9012B); Dissol PURGE Sp. COND. (mS/cm) C, ZZS (), 24 (), 24	st - BTEX, ace Site Specific Li ved Iron (6010 PARAM DISS. 02 (mg/l) (94 (35 1,5	ist C - Field Filte ETERS TURB. (NTU) 555. 10 332. 10 712. 62 167. 30 (26. 45 (26. 45 (26. 45 (27. 68 (2. 68	ORP (mV) 102.8 108.8 93.4 241.1 24.2	FLOW RATE (ml/min.)	WATER (btor)	
Sampl TIME 1138 1145 1145 1145 1145 1145 1145 1145 114	pH S190 K1-17 K157 K157 K157 K157 K155 K157 K155 K157 K155 K157 K155 K157 K177 K177 K177 K177 K177 K177 K177	VOCs (8260C Total PAHs/S' Sulfate (300.0 Cyanide, Tota TEMP (°C) 19, 3 (6, 6 15, 6 15, 6 15, 7 16, 6 15, 7 16, 7 15, 7 1)-Site Specific Lis VOCs (8270D) - 3 28D), Nitrate; I (9012B); Dissol PURGE Sp. COND. (mS/cm) C, ZZS (), 24 (), 24	st - BTEX, ace Site Specific L ved Iron (6010 PARAM DISS. O ₂ (mg/l) (94 1,56 1,56 1,56 1,56 1,56 1,57 1,57 1,75 1	ist C - Field Filte ETERS TURB. (NTU) 555: [J] 332: [J] 332: [J] 72: 32 [J] 167: 32 [J] (25: 45 (J] 232 []] 232 []] 23	ORP (mV) 102.8 108.8 93.4 21.1 76.1 61.7 12.3 64.6 55.4 18.3	FLOW RATE (ml/min.)	WATER (btor)	
Sampl TIME 1138 145 145 145 144 145 144 145 144 125 125 125 125 125 125 125 125 125 125	pH Sign	VOCs (8260C Total PAHs/S' Sulfate (300.0 Cyanide, Tota Cyanide, Tota TEMP (°C) 19, 3 (6, 6 15, 6 15, 7 15, 7)-Site Specific Lis VOCs (8270D) - 3 28D), Nitrate; 1 (9012B); Dissol PURGE Sp. COND. (mS/cm) 0,228 ().249 0,249 0,249 0,249 0,248 0,258	st - BTEX, ace Site Specific L ved Iron (6010 PARAM DISS. O ₂ (mg/l) (94 1,56 1,55 1	ist C - Field Filter ETERS TURB. (NTU) 555: [J] 332.] 332.] 2	ORP (mV) 102.8 108.8 93.4 24.4 76.1 64.2 64.2 64.2 64.2 55.4 18.3 52.7	FLOW RATE (ml/min.)	WATER (btor)	
Sampl TIME 1138 1145 1145 1145 1145 1145 1145 1145 114	pH S190 K1-17 K157 K157 K157 K157 K155 K157 K155 K157 K155 K157 K155 K157 K177 K177 K177 K177 K177 K177 K177	VOCs (8260C Total PAHs/S' Sulfate (300.0 Cyanide, Tota TEMP (°C) 19. 3 (6 15. 6 15. 6 15. 7 15. 6 15. 7 15. 7)-Site Specific Lis VOCs (8270D) - 3 28D), Nitrate; I (9012B); Dissol PURGE Sp. COND. (mS/cm) C, ZZS (), 24 (), 24	st - BTEX, ace Site Specific L ved Iron (6010 PARAM DISS. O ₂ (mg/l) (94 1,56 1,56 1,56 1,56 1,56 1,57 1,57 1,75 1	ist C - Field Filte ETERS TURB. (NTU) 555: [J] 332: [J] 332: [J] 72: 32 [J] 167: 32 [J] (25: 45 (J] 232 []] 232 []] 23	ORP (mV) 102.8 108.8 93.4 21.1 76.1 61.7 12.3 64.6 55.4 18.3	FLOW RATE (ml/min.)	WATER (btor)	

Tolerance:

0.1

Information: WATER VOLUMES--0.75 inch diameter weil = 87 ml/ft; 1 inch diameter weil = 154 ml/ft; 2 inch diameter weil = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol_{cvl} = $\pi r^2 h$)

3%

10%

10%

Т

+ or - 10

Remarks:

Started Development at 1138 Storted Development at 1138 Storted at 12005 resumed at 1206

cece

Project:	60652550	Site: Auburn Green St.	Well I.D.: _	MW-12
Date:	Sampling Personne	I: SC/CH	_ Company: _	AECOM
Purging/ Sampling Device:	Peristaltic	_ Tubing Type: LDPE	Pump/Tubing Inlet Location:	Screen midpoint
Measuring Point:	Below Top of Initial Depth Riser to Water: 8.67	Depth to Well Well Bottom: 16,16ft Diameter:	2"	Screen Length: <u>ft</u>
Casing Type:	PVC	Volume in 1 Well Casing (liters): Sellons	Estimated Purge Volume (jiters):	
Sample ID:		Sample Time:	QA/QC:	
Sample	e Parameters: VOCs (8260C)-Site Specific I Total PAHs/SVOCs (8270D) Sulfate (300.0_28D), Nitrate; Cyanide, Total (9012B); Disso	ist - BTEX, acetone, styrene; - Site Specific List Dived Iron (6010 C - Field Filtered);		

PURGE PARAMETERS

TIME	рН	TEMP (°C)	Sp. COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
		† +						
							106	
		·						
		t						
		łł						
		<u>├</u> ──						1. 1
		-						
		┞───┼						1. A.
		1						
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vol_{evt} = \pi r^2 h$) Remarks: Plevelop frent

initial - very turbid worker, Shierd Sample 1314 10 Sollons C 1340. WC: 7.81 20 gallons (° 1353. WC: 7.96

Groundwater Purge Logs

<u>5.Con</u>	melly	_ Company: _	AECOM
		Pump/Tubing	
Tubing Type: Depth to Well Bottom:	UD PE Well 18:75 Diameter:	Inlet Location:	Screen Length:
Volume in 1 Well Casing (liters):		Estimated Purge Volume (liters):	
Sample Time:	1547	QA/QC:	/
0 150	20		
	Depth to Well Bottom: Volume in 1 Well Casing (liters): Sample Time:	Depth to Well Well Bottom: 18.75 Volume in 1 Well Casing (liters): Sample Time:	Well Depth to Well Well Bottom: 18.75 Diameter: 2 ** Volume in 1 Purge Volume Well Casing Volume (liters): (liters): 1547 QA/QC:

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
TIME 1522	8.03	110.4	0.701	3.74	134.20	58.4	320	6.89
1527	2.24	15.8	01082	1.22	177.15	272	357	2.26
1532	6,95	16.1	0669	0.87	55.80	36.7	350	7.32
1537	6.91	16.1	0.665	0.83	42.07	43.4	350	743
1542	6,87	16.1	0.665	2179	28.27	45.7	350	743
1547	6.83	16.0	0.000	Que.			1	
					-		-	
	1.00							
	-				1			
			1		-			
					-			
							1	
				1	1		1	
		1			1			
	25.40						-	
	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/fL; 1 inch diameter well = 154 ml/fL; 2 inch diameter well = 617 ml/fL;

4 inch diameter well = 2470 ml/ft. (vol_{cyl} = $\pi r^2 h$)

Project:	60652550	Site: Personnel: A v	NYSEG Auburn	Well I.D.:	MW-2 AECOM
Purging/ Sampling Device: Measuring Point:	Top of Initial Depth	eofunf Depth to SD Well Bottom:	Dedicated. 4DPE 18.7 Diameter:	Pump/Tubing Inlet Location:	N 3 54 from Bolform Screen Length:
Casing Type:	PUC	Volume in 1 Well Casing (liters):	1.92	Estimated Purge Volume (liters):	NII liters.
Sample ID: Sampl	e Parameters: NOCS SUC	Sample Time: DCG, CYANIDE, Di C, Sic, -7 BIEX, Sty	In the party	_ QAVQC:	SulSate

PURGE PARAMETERS

TIME	pН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1	7.12	156	1.312	3.55	81,66	276.8	200	6.67
120	7.55	15.6	1.060	1.47	22.10	287.1	200	6.68
925	6.68	15.7	1.012	1,57	25.11	290.0	275	6.73
130	6.70	16D	0.982	1.65	9.20	29/16	275	6.73.
935	6.71	76.6	0.977	1.57	7.98	292.1	275	6.27
946	671	16.2	0.971	1.482	4133	2025	275	9:27
945	6.15	16.2	0.871	1.33	3.51	293,9	250	6.75
950	6.76	16.3	0.176	1.21	301	294,3	250	6.75
955	6.41	16.2	0.973	1.51	ect			6
							-	
_								
							1	
						+ or - 10		

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.;

4 inch diameter well = 2470 ml/ft. (vol_{cyi} = $\pi r^2 h$)

Remarks:

used dedicated HDRE tubing in well - added end piece ast silicon state of LRPE tubing. "rion - Sullo Sillad"

Project:	60652550	Site:	NYSEG Auburn	Well I.D.:	MW-3
Date: 9/4	Sampling Personnel:	5.0	andly	_ Company:	AECOM
Purging/ Sampling Device: Measuring Point:	Top of Initial Depth Casing to Water: 7.79	Tubing Type: Depth to Well Bottom:	LOPE 19.40 Diameter:	Pump/Tubing Inlet Location:	Screen Length:
Casing Type:	PVC	Volume in 1 Well Casing (liters):	1.89	Estimated Purge Volume (liters):	
Sample ID:	nur-3	Sample Time:	1211	QA/QC:	MS/MSD

PURGE PARAMETERS

TIME	pН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
112:1	10,960	15.0	3.499	1.77	16.21	-9517	350	-
11410	10.95	15.7	3,548	0.87	4268	-107.5	350	8.51
1151	6.96	15.8	3,559	0,79	63.12	-111.3	350	8.60
1156	6.96	16.0	3.501	0,73	52.00	-114.0	350	8.85
1201	6.97	16.0	3,514	2.71	29.73	-115.9	350	8.90
1206	10.99	15-9	3.584	0.68	16.29	122.5	350	8.93
124	6.99	15.8	3,590	01108	15.31	-122.0	320	8.96
1	A. C							
					1			1
		-						
					1			A
				1	11			
						100		
			1					
		1						-
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.;

4 inch diameter well = 2470 ml/ft. (vol_{cyt} = $\pi r^2 h$)

Project:		60652550		Site:	NYSEG A	Auburn	Well I.D.:	MW-4
Date:	9/30/21	Sampling	Personnel:	S. Con	nelly	_	Company:	AECOM
Purging/ Sampling Device:	Prin	Pump	T	ubing Type:	200		Pump/Tubing Inlet Location:	
Measuring Point:	Top of Casing	Initial Depth to Water:	\$.07 N	Depth to /ell Bottom:	-	Well Diameter:	2 ¹⁴	Screen Length:
Casing Type:				Volume in 1 Vell Casing (liters):			Estimated Purge Volume (liters):	
Sample ID	. Mu	w - 4		Sample Time:	14	40	QA/QC:	-
Sam	ple Parameters:	Typer mg	2 0 13	57		_		

PURGE PARAMETERS

TIME	pH	TEMP (°C)	COND. (mS/cm)	DISS, O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1400	9.87	15.7	0.450	3.45	10,59	-2.7	300	8.42
1405	10.10	15.2	0.357	1.46	14.67	-45.7	300	8.87
1410	10.18	1517	0.347	1.12	17.29	-83,6	300	2.69
1415	9,31	16:1	0,388	0,87	9.17	-64.3	300	10,49
1420	10.18	15.8	0.371	0.73	8.22	-126.9	300	10,87
1425	10.30	15.7	0365	0.76	5.61	-154.1	300	1151
1430	10.25	15.6	0.373	0.70	4.98	-155.0	3000	11,71
1435	10.00	15.5	0.379	0.75	2.56	-153.2	300	12.27
1440	9.85	15.3	0.387	0,75	2.61	-150.8	300	12.91
				-	-			
				1				
	-							
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 Inch diameter well = 87 ml/ft.; 1 Inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.;

4 inch diameter well = 2470 ml/ft. (vol_{cyl} = $\pi r^2 h$)

Company: AECOM
Pump/Tubing Inlet Location:
Well Diameter: Screen Length:
Estimated Purge Volume (liters):
/ QA/QC:

PURGE PARAMETERS

TIME	рH	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1630	7.00	15.8	1,129	3.17	327.59	16417	250	(
1635	16.93	15.4	1.129	2.24	347.68	161.2	220	-
1647	6.96	15,7	11135	2.26	378.74	150.0	250	
1691	6.98	15.8	11132	85.5	347.34	147.3	065	-
			17					
Tolerance:	0.1		3%	10%	10%	+ or - 10	-	

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. (vol_{eyl} = $\pi r^2 h$)

Remarks:

Dig C 16:38 Will bet we have the pump obj. Dig C 16:38 Will bet we have the pump obj. Dig C 16:38 Will bet we have the pump obj. Dig C 16:38 Will bet we have the pump obj.

C:\Users\sean.connelly\AppData\Local\Microsoft\Windows\NetCache\Content.Outlook\V.JOYCKC8\Biank MW Sampling Logs.xisx

MW-XXX

Project: _	1 1	52550 Sampling Personne		NYSEG Auburn	_ Well I.D.:	MW-6 AECOM
Purging/ Sampling Device: Measuring Point:	1	Depth Vater: 0.21	Tubing Type: Depth to Well Bottom:	LOPE 19,13 Diameter:	Pump/Tubing Inlet Location:	Screen Length:
Casing Type:	PVC		Volume in 1 Well Casing (liters):	2.11	Estimated Purge Volume (liters):	3 gallous
Sample ID:	MW- G	!	Sample Time:	1105	QA/QC:	Duplicate

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1040	7.91	16,7	1.641	3.01	11.107	179.4	450	6.61
1045	2.12	17.7	1,525	1.30	15.40	-48.4	400	208
1050	7.08	17.9	11482	1.18	18:09	-52.0	350	7.28
1055	7.06	18.0	1,483	0,98	20.13	-54.2	320	2.49
1100	7.06	18.0	1,505	0.88	15.10	-58.0	350	2.61
1105	7.26	18.1	1,529	0.80	12.96	-64,8	350	2.28
			-					
							+	
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 Inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. (vol_{cyt} = πr^2h)

Duplicate collected

Project:		60652550		Site:	NYSEG	Auburn	Well I.D.:	mw-	7
Date:	10/4/21	Sampling Pe	ersonnel: _	E.A	U		Company: _	AECOM	
Purging/ Sampling Device: Measuring Point:	Persto Top of Casing	Initial Depth to Water: 7	1.0	Tubing Type: _ Depth to Well Bottom: _	AD\$ 17.75	Well Diameter:	Pump/Tubing Inlet Location: 211	~2.ft ° Screen Length: _	ll Both
Casing Type:	PV	<u> </u>		Volume in 1 Well Casing (liters):	1.73		Estimated Purge Volume (liters):	~11 liter	Δ.
Sample ID:	mw	64-7		Sample Time:	1115	Γ	QA/QC:	-	
	purse ~	VOLS (site SVOLS (site Cyanide Dissoluted 1020	Tion,	N trat	The second se	te.			
TIME 1025 1030 1035 1046 1045 1050 1180 1105 1110	рН 6.95 6.92 6.92 6.92 6.92 6.92 6.92 6.92 6.92	TEMP (°C)	COND. (mS/cm) 7,197 1,139 7,125 7,125 1,125 1,125 1,128 1,128 1,128 1,128	DISS. 02 (mg/l) 2.66 0.75 0.75 0.72 0.61 0.66 0.66 0.66	TURB. (NTU) 135.27 99.39 138.50 108.37 31.21 19.89 14.35 18.00 13.06	Eh (mV) - 99.9 - 107.7 - 1065 - 113.2 - 117.7 - 121.1 - 121.5 - 122.6	FLOW RATE (ml/min.) 200 200 200 200 200 200 200 200 200 20	DEPTH TO WATER (btor) 7.35 7.35 7.40 7.40 7.40 7.40 7.40 7.40 7.40 7.40	
			3%	10%	10%	+ or - 10			
Tolerance: Information: Remarks:		MES-0.75 inch diamete 4 inch diameter we BAC. QS tub mg-	er well = 87 ml/ft ell = 2470 ml/ft.	: 1 inch diameter v (vol _{oy} = $\pi r^2 h$)	well = 154 ml/ft.; 2	2 inch diameter we		min to cell.	clear

- used dedicated HDPE Tubing That was already in well-added extra end piece of LDPE for sampling. MW-XX

MW-XXX

Project: Date:	60652550	Site:	NYSEG Auburn	_ Well I.D.: _ Company:	
Purging/ Sampling Device: Measuring Point:	Peristattic fung Top of Initial Depth Casing to Water: 4.64	Tubing Type: Depth to Well Bottom:	HOPE (Well 17.50 Well Diameter:	Pump/Tubing Inlet Location:	~ 2 Set off Bothon Screen Length:
Casing Type:	PUC	Volume in 1 Well Casing (liters):	2.09	Estimated Purge Volume (liters):	NZZ
Sample ID: Sampl	e Parameters: VOCS + SVOCS	Sample Time:	1300 Specific)	QA/QC:	-
	Cygnide Disolved Iron (Nitrath, Sulfate	THE AL	terral		

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)	
1150	6.80	16.5	5,271	2.54	11.13 9.66	-84.5	300	5.02	
200	7.11	16.9	2.913	0.76	28.75	-142.6	325	5.02	
205	7.09	35	2.096	0.74	45.11	= 134.4	325	5.22	
220	7.08	17.9	9,203	0.73	27.46	-135.9	325	5,26	
235	7.07	17.5	2.357	0.70	18,95	-137.0	325	5.26	. Yad
235	1.06	17.5	2.528	0.70	6.48	- 138.1 - 138.0	325	5.26	r Ygal.
245	7.05	17.6	2.666	0.69	4.02	-137.6	325	5.26	
255	7.05	17.6	2.669	8.68	4.14	-137.6	325	5,40	~5.59-
			1.	-					
olerance:	0.1		3%	10%	10%	+ or - 10			

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. (vol_{cyl} = $\pi r^2 h$)

s: Slight sheen on bucketwater USED DEDICATED HDRE Tubing already in well-

Remarks:

C:Users\sean.connelly\AppData\Loca\Microsoft\Windows\INetCache\Content.Outlook\VJOYCKC8\Biank MW Sampling Logs.xisx

Project:	60652550	Site:	NYSEG Auburn	Well I.D.:	mw-9
Date:	10421 Sampling Personne	1: E. AU		_ Company:	AECOM
Purging/ Sampling Device: Measuring Point:	Peristalfic Top of Initial Depth Casing to Water: 5.83	_ Tubing Type: Depth to Well Bottom: //	LDPE 8.55 Well Diameter:	Pump/Tubing Inlet Location:	Nast off Bottom
Casing Type:	PVC	Volume in 1 Well Casing (liters):	2.07	Purge Volume (liters):	
Sample ID:	mw-9	Sample Time:	1655	QA/QC:	Rinst Blank.
Sample	Parameters: VOCS + SUOCS Cyanite Dissolut d Iran C Nitrate, Sulson	शारावे रागस्तार्व)			

PURGE PARAMETERS

TIME	pН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1515	7.60	15.8	1.988	2.85	42.65	171.5	125	7.00
1520	7.33	16.9	2:022	3.03	12.14	81.0	125	7.45
1525	130	17.2	2.047	2.04	9,67	21.3	125	8.03
1530	7.29	17.2	3.062	1.92	8.36	~1.1	125	8.65
1535	7.28	7.3	2,065	1.93	9.92	-10.1	200	9,00
1540	7.28	16.0	2.034	1,87	16.79	-19.9	200	10.15
1545	7,27	16.2	2.052	1,89	10.27	+20.6	200	10.95
1550	7.27	16.1	2.052	1.85	27.47	- 2519	200	11.20
1555	7.29	16.5	71.958	2:40	49,95	-27.1	200	12.40
1600	7.30	16-2	1,961	2.29	20.00	- 22,3	200	12,95
1605	7128	15.4	1,491	1.69	25.85	-25.8	200	12.60
1610	7.25	15.7	2.033	1.21	375158	- 27.8	200	12.70
1615	7.27	15.5	81,157	0.98	535.24	-41.8	200	12,85
1620	7.28	15.5	1950	0.92	359,13	-53.3	200	13,00
1625	7.27	15.5	1.960	0.79	239,95	-61.5	200	15,10
1630	7.28	15.3	1,9444(2)	0.76	168.15	- 66.3	200	13,17
1635	7.28	15,3	1,739	0.77	129.46	- 69.8	200	13.25
1640	7.28	15.3	1,945	0.78	70,19	- 72.7	200	13.37
1645	7.28	15.3	1,952	0.78	81.34	- 72.1	200	13.45
1650	7.29	15.2	1,900	0.75	85.30	- ++.3	200	13,53
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. ($vol_{cyl} = \pi r^2 h$)

collected samples @ 1655 turbidity LOPE Tubing put down New well - pulled and disposed of tubing ast sampling.

Project:	60652550		Site:	NYSEG	Auburn	Well I.D.:	MW-10	
Date:	0421 Samplin	g Personnel:	E.A.			_ Company:	AECOM	
Purging/ Sampling Device: Measuring Point:	Peristallic Top of Initial Depth Casing to Water:	f-n1 4.81	Tubing Type: _ Depth to Well Bottom: _	LDP 18.80	Well Diameter:	Pump/Tubing Inlet Location: Z ^{if}	~ 3 St off Botton Screen Length: 10	C_
Casing Type:	PUC		Volume in 1 Well Casing (liters):	2.28		Estimated Purge Volume (liters):	16	
Sample ID:	MW-10 Parameters: VOCS	+ 500	Sample Time:	144 itc spe	10 cific	QA/QC:		
	Cygnid Sulfat Riss. J	R. N. MA	te filte	ud				

PURGE PARAMETERS

TIME	pН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor
1355	9.13	15.0	0-218	1.74	127.29	+129	300	483
1480	9.24	15.0	0.206	1.03	14.83	- 6.6	300	4.83
1405	9.28	15.0	0.204	0.87	14.18	- 19.9	300	4,83
410	9.29	15.1	0.206	0.80	18.93	-28.3	300	4.83
1915	927	15.1	0.214	6.771	79434-3	- 39,9	300	4.03
1420	9.27	15.0	0.220	0.75	1669	- 37.5	360	4.83
1425	9.26	15.0	0.222	0.75	13.97	- 40.0	300	9.85
430	9.24	15.0	0,225	0.14	12.90	-41,8	300	4.85
1435	9.23	14.9	0,229	0.73	11.09	- 44.0	300	(.)
		-						
				1		1		
				-				
		-						
				1				
				1				
	1.		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.;

Remarks:

New well- used LDPE Tubing The Remarks tubing.

Project:		60652550	· · · · · ·	Site:	NYSEG	Auburn	Well I.D.:	pun 1
Date:	8/16/2	Samplin	g Personnel:	1 cm			_ Company:	AECOM
Purging/ Sampling Device:	PP	и		Tubing Type:	1-1000	¢	Pump/Tubing Inlet Location:	
Measuring Point:	Top of Casing	Initial Depth to Water:	7.24	Depth to Well Bottom:	18.74	Well Diameter:	2"	Screen Length:
Casing Type:	ruo			Volume in 1 Well Casing (liters): _			Estimated Purge Volume (liters):	
Sample ID:	nen	-1		Sample Time:	08:50	,	QA/QC:	
Sample	e Parameters							

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
08:20	6.92	16.1	1.548	3.35	160	-53.1	200	7.02
08:25	6.79	14.9	1.556	1.41	68	-529	4	7.60
68:30	6.81	149	1.513	1.32	74.0	- 53.7	<i>t</i> ,	1.15
08:35	6.83	15.0	1.360	1.29	26.0	- ss. Y	•	7.82
08:40	6.83	15.1	1330	127	15.9	-57.1	e	7.89
68:45	6-52	19.8	1.382	1.26	13.5	-58.0	2	7.95
08:50	6.83	15.0	132	1.26	11.0	-60.0		7.97
Tolerance:	0.1	-	3%	10%	10%	+ or - 10	-	

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.;

4 inch diameter well = 2470 ml/ft. (vol_{cy} = $\pi r^2 h$)

Project:	_	60652550		Site:	NYSEG	Auburn	Well I.D.:	mm-2	
Date:	Sampling Personnel:		KM			_ Company:			
Purging/ Sampling Device:	Plan	ч		Tubing Type:	HUPG		Pump/Tubing Inlet Location:	2	
Measuring Point:	Top of Casing	Initial Depth to Water:	7.95	Depth to Well Bottom:	18.30	Well Diameter:	24	Screen Length:	
Casing Type:	Pr	c		Volume in 1 Well Casing (liters):			Estimated Purge Volume (liters):		
Sample ID:	MN	.ي		Sample Time:	0.0		QA/QC:		
Sample	e Parameters:								

PURGE PARAMETERS

TIME	pH	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
09:25	7.15	16-0	1.069	477	190.0	-52.2	200	8.05
09:30	6.90	14.5	0.946	2.40	690	-52.2	4	8.09
09:35	6.50	146	0.754	3.77	1/2-7	-22.8	4.	8.12
09:40	6.76	14.9	0.834	4.22	35.0	-2.6 5.9	1,	8.12
09:45	6.75	15.1	0.832	4.9	17.8		4	4
09:50	6.74	15.2	0.832	431	7.32	132	4	łı –
09:55	6.74	FF815.3	0.834	436	4.33	16.7	14	
10:00	6.75	15.4	0.839	2.20	2.44	18.4	5• t	
10.00				4.20				
		-					-	
				1				
		-						
		-						
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.;

4 inch diameter well = 2470 ml/ft. (vol_{ey} = $\pi r^2 h$)

Project: Date:	Sliga	60652550 Samplir	ng Personnel:	Site:	NYSEG	Auburn	_ Well I.D.:	AW.3 AECOM
Purging/ Sampling Device:	P	The case		Tubing Type:	HOPS		Pump/Tubing Inlet Location:	
Measuring Point:	Top of Casing	Initial Depth to Water:	7.71	Depth to Well Bottom:	19.41	Well Diameter:		Screen Length:
Casing Type:	p	c		Volume in 1 Well Casing (liters):			Estimated Purge Volume (liters):	
Sample ID:	m	nz		Sample Time:	12:15	Ξ.,	QA/QC:	ms/usD
Sample	Parameters							

PURGE PARAMETERS

TIME	pН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
11: 40	7.16	15.2	3.762	2,36	597	-218.8	20	~
11 45	7.03	145	3.861	2.18	121	-214.4	4	8.10
1150	7.06	14.6	3.847	213	521	-2758	v	8.48
1155	7.06	141	3.20	213	74.1	-216.7	4	81.8
12:00	7.06	149	3. 185	1.88	21.1	217.5	4.	8.71
12:05	7.07	150	3.791	1.87	1121	-2166	1.	8.79
12110	7.07	150	3.787	1.85	19.2	-212.0		8.85
2:15	7.00	152	3.782	1.71	18.2	-215.5	1.	8.98
				- 294		-		
folerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. ($vol_{evt} = \pi r^2h$)

107.9

	60652550		Site:	NYSEG Auburn		Well I.D.:	Mh	4
8/15	Sampling	Personnel:	Cl4			Company:	-	AECOM
Per; - Top of Casing	1	8,51	Denth to		Well Diameter:	Pump/Tubing Inlet Location:		Off Got 4. ength:
Prc			Volume in 1 Well Casing (liters): 54 (lans	1.76		Estimated Purge Volume (Hters): Sallows	2	
mw	4		Sample Time:	1515		QA/QC:		
	Peri Top of Casing PVC	8/15 Sampling <u>Peri-PumP</u> Top of Initial Depth Casing to Water: <u>PvC</u>	<u>Series</u> Sampling Personnel: <u>Peries Pump</u> Top of Initial Depth Casing to Water: <u>8,51</u> PUC	8115 Sampling Personnel: Cl4 Peri-PumP Tubing Type: Top of Initial Depth Depth to Casing to Water: 8,51 Prc Volume in 1 Well Casing (literes): Sample	8/15 Sampling Personnel: Cl4 Peri-PumP Tubing Type: HDPE Top of Initial Depth Casing to Water: 8,51 Depth to Well Bottom: 19.32 Prc Volume in 1 Well Casing (liters): Volume in 1 54 (lines): 1.76	8/15 Sampling Personnel: Cl4 Peri-PumP Tubing Type: HDPE Top of Casing to Water: 8,51 Well Bottom: 19.32 Well Diameter: Puc Volume in 1 Well Casing (literes): 1.76 Sample	8/15 Sampling Personnel: C/4 Company: Peri-PumP Tubing Type: HPPE Pump/Tubing Inlet Location: Top of Casing to Water: 8,51 Depth to Well Bottom: 19.32 Well Diameter: Zin Pwc Volume in 1 Well Casing (liters): 176 Estimated Purge Volume (Htters): Pwc Sample Sample Sample	8/15 Sampling Personnel: Cl4 Company: Peri-PumP Tubing Type: HPPE Pump/Tubing Inlet Top of Casing Initial Depth 8,51 Depth to Well Bottom: 19,32 Well Pump/Tubing Inlet Zin Screen L Volume in 1 Well Casing (literest: 176 Estimated Purge Volume (Hters): 2 Pump/Tubing Inlet Zin Screen L

PURGE PARAMETERS

TIME	pН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor
1995						2110	2.44	1.01
1450	10.12	16.7	0,320	2,40	48.22	-34,9	250	8,84
1455	10.14	16.1	0,316	0.66	21.35	-74,4	200	
1500	10,17	16.5	0.316	0157	14,72	-96.1	200	4,60
1505	9,59	16.6	0,322	0,54	9.09	-107,1	200	9.93
1510	999	16,5	0.320	0152	11.03	-108.5	200	10,26
515	9.97	16.7	0,324	0,51	9,49	-108,2	200	10,58
				1.1.1.1.1.1.1.1	- I all a ll a			() · · · · · · · · · · · · · · · · · · ·
								10000
				-				
1.1.1	-				11			1
				-		1		
	-		-				1	10
						-	1	2
			-		7			
							1	à
					1	1	1	1
-								
					400/	+ or 10		
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.;

4 Inch diameter well = 2470 ml/ft. (vol_{cyl} = $\pi r^2 h$)

Started purseat 1498

Project:		60652550		Site:	NYSEG	Auburn	Well I.D.:	MWS
Date:	Siste	Sampli	ng Personnel:	lasm	/CH		Company:	AECOM
Purging/ Sampling Device:	Por			Tubing Type:	Hors		Pump/Tubing Inlet Location:	MIN SUG
Measuring Point:	Top of Casing	Initial Depth to Water:	14.58	Depth to Well Bottom:		Well Diameter:	20	Screen Length:
Casing Type:	RO			Volume in 1 Well Casing (liters):			Estimated Purge Volume (liters):	
Sample ID:	ma	2		Sample Time:	10:55		QA/QC:	
						1		
Sampl	e Parameters:		No O In-			1		

PURGE PARAMETERS

TIME		TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor
TIME	рН		1.144	312	194	-227	25	く
10:16	7.11	180	1117	2.3-				4
10:35	7.14	20.7	1.231	1.032	625	-920	4	-
								2
2.000								<u></u>
	-							
							1	
-								
					C	-		
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. (vol_{cvl} = πr^2 h)

Remarks: Dry & 10117 your loi recreme I punt pris pring @ 10117 4 1 6 Y EDALPLE

Project:	-	60652550	_	Site:	NYSEG	Auburn	Well I.D.:	Mw-C
Date: -	8115	Samplir	ng Personnel:		6		_ Company:	AECOM
Purging/ Sampling Device: Measuring Point:	Per Top of Casing	initial Depth to Water:	6.28	Tubing Type: Depth to Well Bottom:	10 .	Well Diameter:	Pump/Tubing Inlet Location:	z Zffoff Gott-
Casing Type: _	PV	t		Volume in 1 Well Casing (l iters): Saylons	2,10	2	Estimated Purge Volume (litere):	2,5
Sample ID: _	Mm	6		Sample Time:	1245	0	QA/QC:	Dyp
Sample	Parameters:						-	

PURGE PARAMETERS

TIME	pН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1215	7.36	1811	1.042	0.81	322,24	22.6	7.00	6,62
1220	7.21	(71	1,033	0,65	63.08	-810	250	6,81
1225	716	17.3	1,023	0,60	229,08	-26.8	250	7,02
1230	7,15	17.6	1:020	0.58	54.19	-34.4	250	7,21
1235	7.13	17.7	1,008	0,56	55.63	- 36.9	250	7,33
1240	7,04	17.7	0,996	0,66	47,12	-3519 -32.0	250	7,48
1245	7.08	17.7	0,997	0156	53,22	- 52.0	250	2,62
Folerance:	0.1		3%	10%	10%	+ or - 10	-	

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/fL; 1 inch diameter well = 154 ml/fL; 2 inch diameter well = 617 ml/fL; 4 inch diameter well = 2470 ml/ft. (vol_{cyl} = $\pi r^2 h$)

Remarks: Storted Pursea + 1210

Project:	60652550	Site:	NYSEG Auburn	Well I.D.:	MW-7
Date:	<u>SII6</u> Sampling Persor	nnel: <u>CH</u>		_ Company:	AECOM
Purging/ Sampling Device:	Rec: - Pump	Tubing Type:	HOPE	Pump/Tubing Inlet Location:	2Rff off both,
Measuring Point: _	Top of Initial Depth Casing to Water: <u>8.43</u>	Depth to Well Bottom:	18,78 Well Diameter:	2:1	Screen Length:
Casing Type: _	PUC	Volume in 1 Well Casing (litere): Sections	1.69	Estimated Purge Volume (liters): Sc. IIII	2,5
Sample ID:	mw-7	Sample Time:	0910	QA/QC:	-
Sample	Parameters:				

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
0825			_					
0830	6.86	14,4	1.359	1,28	40:58	-14,1	225	8.64
0835	6,95	14.4	1.367	0.85	30.02	-70.5	225	\$166
0840	6.99	14,4	1.381	0.75	57.84	-87.1	225	8,67
0845	6.99	14,4	1,382	0.72	102.14	~93.3	225	3.74
0850	200	14.9	1.389	0.70	144,04	~97.2	225	8.76
0655	1,00	141,5	11400	0.68	14,78	-99,8	225	8.74
0900	7,00	14,41	1,403	0,65	43,02	-102,3	225	8:24
2705	7,00	14.4	1:398	0,65	43,71	-102.9	225	8,74
0910	7.00	14,4	1.400	0,65	44.66	-103.1	225	5,74
						1		
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.;

4 inch diameter well = 2470 ml/ft. (vol_{cyl} = $\pi r^2 h$)

Sturted Purse 97 0816 Frenbacteria skipped flow thoushant 10825

Project:		60652550		Site:	: NYSEG Auburn		Well I.D.:	mw-8
Date:	5/18	Samplin	ng Personnel:	_CI+_			_ Company:	AECOM
Purging/ Sampling Device: Measuring Point:	Fcr: Top of Casing	-PumP Initial Depth to Water:	5,62	Tubing Type: Depth to Well Bottom:	A CONTRACTOR OF A CONTRACTOR A CONT	Well Diameter:	Pump/Tubing Inlet Location: 2. în	Screen Length:
Casing Type:	Prc			Volume in 1 Well Casing (liters): Saluans	1,95		Estimated Purge Volume (jiters): Saliens	2,5
Sample ID:	m	w-8		Sample Time:	1130		QA/QC:	
Sampl	e Parameters	3:						
		100	<u>n</u>					

PURGE PARAMETERS

TIME	pH	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1025	7.01	16.8	5,940	2148	25147	-72.0	306	5.84
636	6.95	16.1	5,942	0,90	6.47	-111.8	200	5.92
135	6,97	16.7	5,909	0,69	4,20	-135.8	700	6.01
	699	17,0	5.742	0,62	9398	-146.3	200	6.10
1040	1.08	17.2	4)444	0,58	14,22	-155-18	200	6,18
050	7.13	17.2	3,297	0158	66.27	-159-7	200	6.27
235	7.13	173	7,798	0.58	118:35	-154.3	200	6.31
	7,13	17.3	2,717	0.58	149.55	-157.9	200	6.38
100	1.11	17.3	2,812	0.57	132,93	-1565	200	6,40
105	7.10	17.5	7,893	0.57	106.98	-156.3	200	6.46
110	1.10	17.4	3.012	0.56	81,42	-156.8	200	6.52
115	7,09	17.4	3.137	0,55	6.303	-15714	200	6,56
120	7.08	17.5	3.149	0,54	62,99	-158.3	200	8,60
125	7.08	17,5	3,110	0.53	62.76	~154.0	200	6.66
			3%	10%	10%	+ or - 10		

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. $(vol_{cy} = \pi r^2 h)$

Remarks: Storted Purseci + 1023

Project: -		60652550		Site:	NYSEG	Auburn	Well I.D.:	MW-9
Date:	Sampling Personnel:			100/0	NC		_ Company:	AECOM
Purging/ Sampling Device:	PE	·11		Tubing Type:	HDIG		Pump/Tubing Inlet Location:	
Measuring Point:	Top of Casing	Initial Depth to Water:	7.30	Depth to Well Bottom:		Well Diameter:	2/1	Screen Length:
Casing Type:	pre			Volume in 1 Well Casing (liters):			Estimated Purge Volume (liters):	
Sample ID:	ma	9		Sample Time:	15:52		QA/QC:	
Sample	Parameters:							
		SEAN	and puri	+ A 14.9	5			

PURGE PARAMETERS

TIME	pH	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
14:47	7.27	16.6	2.497	2.07	757	-1323	200	8.05
14:52	7.26	15.2	2640	1.37	485	-158.3	•	9.05
14.57	7.19	15.2	2290	1.32	192.2	-142.1	1	982
18:02	7.08	15.1	2.070	1.28	86.7	-131-	2/	1960
15:07	7.09	149	2:150	1.28	78.0	-133.7	41	11.10
15112	7.15	149	2.241	1.26	133.0	-142-6	4	11-60
19:17	7.18	14.9	2.312	1.26	1720	-147.0	11	11.75
15:22	1.23	15.0	2.378	1.24	70.2	-155.4		11.95
15:27	7.03	15.1	3342	1.25	109.1	-156.0	1	11.95
15,32	7.27	14.8	2.455	1.25	129.4	-162.0	21	Tu
15:37	7.50	15.0	2.545	1.24	137.0	-167.4	V	
15:42	7.33	15.6	2.518	1.21	135.0	-172.3	4	4
18047	7.34	15.7	2.505	120	1401	-175.7	4	11
15152	7.37	15.7	2.610	1.20	136	-180.3	и	
folerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.;

4 inch diameter well = 2470 ml/ft. (vol_{cvl} = $\pi r^2 h$)

Project:	60652550	Site: NYSEG Auburn	Well I.D.:	MW-10	
Date:	Sampling Pe	rsonnel: Jun/HC	_ Company:	AECOM	
Purging/ Sampling Device:	PGar	Tubing Type: // DCB	Pump/Tubing Inlet Location:		
Measuring Point:	Top of Initial Depth Casing to Water:	20 Depth to Well Well Bottom: /8.80' Diameter:	z'	Screen Length:	
Casing Type: _	Prc	Volume in 1 Well Casing (liters):	Estimated Purge Volume (liters): _		
Sample ID: _	MAN-10	Sample Time: 14:00	QA/QC:	-	
Sample	Parameters:				

PURGE PARAMETERS

TIME	pH	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
13:30	8.95	15.3	0.326	2.36	95.0	-151	250	5.25
1.3135	8.89	14.4	0.318	1.1/2	75.2	-148.2	4	4
13 40	8.94	14.5	0.215	1.76	326	-156.1	4.	4,
13 45	8.95	143	0 314	1.35	22.2	-162.4	+1	
13:50	8.94	143	0.345	1.32	14.5	-165.8	1	2
13115	8.72	143	0316	1.31	128	-168.3	1.	,
14:00	882	144	0,319	1.29	5.61	-167.0	4	5
16								
_								
	1							
folerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.;

4 inch diameter well = 2470 ml/ft. (vol_{cyl} = $\pi r^2 h$)

Project:	_	60652550		Site:	NYSEG	Auburn	Well I.D.:	MW-1)	
Date:	8/15	Sampli	ng Personnel:	CI+			_ Company:	AECOM	
Purging/ Sampling Device:	Peri	-Pump		Tubing Type:	HOPE		Pump/Tubing Inlet Location:	~ 2ft off bott .	
Measuring Point:	Top of Casing	Initial Depth to Water:	5.32	Depth to Well Bottom:	and the second se	Well Diameter:	2:1	Screen Length:	
Casing Type:	prC			Volume in 1 Well Casing (liters): Shilum S	2.25		Estimated Purge Volume (lit ers) : ל <i>חוו</i> אס	2,5	
Sample ID:	mw	-11		Sample Time:	1410		QAVQC:		
Sample	e Parameters:								
					2	11			

PURGE PARAMETERS

1345	PH 4.06 9.06 9.06 9.06 9.06 9.06 8.94 8.94 8.94 8.94	TEMP (°C) (4,4 14,4 14,4 14,7 14,6 14,7 14,5 (4,6	$\begin{array}{c} (mS/cm) \\ 0,224 \\ 0,216 \\ 0,215 \\ 0,214 \\ 0,213$	(mg/l) 0,972 6,66 0,66 0,61 0,60 0,60	38.50 26.18 26.44 21.00 18115 70.31 18137	Eh (mV) 36.5 15.1 -2.5 -18.1 -28.6 -36.5 -36.5 -35.2	25D 750 250 250 250 250 250	5:35 5:38 5:36 5:36 5:36 5:36 5:36 5:36
1345 1355 1355 1400 1405	9:06 9:06 9:06 8:99 8:99	14.4 14.7 14.6 14.7 14.7	0,216 0,215 0,214 0,213 0,213	0:72 6.66 0.63 0.61 0.61	25.18 26.44 21.00 18115 70.31	15.1 -2.5 -18.1 -28.6 -36.5 28.5	250 250 250 250 250	5,36
1355 4 1355 4 1400 4 1405	9.06 9.06 8.99 8.99	14.7	0,215 0,214 0,213	6.66 0.63 0.61 0.60	26.44 21.00 18115 70.31	-2.5 -18,1 -28,6 -36.5	250 250 250	5,36
1355 4	9.06	14.6 14.7 14.5	0.214 0.213	0.61	21,00 18115 70.31	-18,1 -28,6 -36.5	280	5:36
1400 1	8.99	14.7	0.213	0.61	18115	-36.5	250	5,36
1405	8.99	14.5	6.213	0,60	20.31	2 Bart	250	5,36
			0,213	0.57	18.37	-35,2	250	\$.34
	8.10		01	0.	-Catholic - A	6-35,2		
							-	
		1		2			-	
			1		-			
							1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				-			-	
		1		-				
		2						
E		2			-			
	_							
10 P								
			3%	10%	10%	+ or - 10		

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 Inch diameter well = 2470 ml/ft. (vol_{cyl} = $\pi r^2 h$)

Remarks: Storted Purge at 1335

Project:		60652550	<u></u>	Site:	NYSEG	Auburn	Well I.D.:	MW-12
Date:	8/16	Samplir	ng Personnel:	_CH			_ Company:	AECOM
Purging/ Sampling Device:	Pa	ri-Pump		Tubing Type:	HOPE		Pump/Tubing Inlet Location:	-2ftoff both
Measuring Point:	Top of Casing	Initial Depth to Water:	8:00	Depth to Well Bottom:	16,18	Well Diameter:	Zin	Screen Length:
Casing Type:	PV	ĩC		Volume in 1 Well Casing (liters):	1,33		Estimated Purge Volume (liters) : Sallons	2,5
Sample ID:	mu	v-12		Sample Time:	1010		QA/QC:	<u>14</u> 1
Sample	Parameters	: <u></u>						

PURGE PARAMETERS

TIME	pН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
0945	6.05	14.7	1.116	0,50	763.45	-52.2	225	8,10
0950	6,15	14.9	11722	0.69	122.72	-71,8	225	8.11
0965	6.44	150	1,163	0,64	112.38	-49.3	225	5112
1000	6,94	15.0	1:197	0,62	95,39	-83.1	225	4.12
DUS	6.94	15.1	1.208	0,62	4593.61	5,28-	225	8112
1010	6,94	19.2	1,204	0.60	95196	-87,0	225	5112
		-						
	-		2					
						11		
	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.;

4 inch diameter well = 2470 ml/ft. $(vol_{cy} = \pi r^2 h)$

Storted Purse at 6942

Project:		60652550			Site: NYSEG Auburn				Mu-1
Date:	10/3/2	Samplin	ng Pe	rsonnel:	_1Gn	~		_ Company:	AECOM
Purging/ Sampling Device:	PGM				Tubing Type:	HORG		Pump/Tubing Inlet Location:	
Measuring Point:	Top of Casing	Initial Depth to Water:	6	90	Depth to Well Bottom:	18.74'	Well Diameter:	2*	Screen Length:
Casing Type:	PVC	2			Volume in 1 Well Casing (liters):			Estimated Purge Volume (liters):	
Sample ID:	m	~/			Sample Time:	HA 13	2.4/0	QA/QC:	
Sampl	e Parameters:			_	-	75-7-73	. 90		

PURGE PARAMETERS

		TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
TIME	pH		1.2 m	2.83	190	104.4	025	7.00
13:00	7.02	16.1	1.27-	2:37	152	1044	17	7.10
1305	6.86	16.4	1.018	1.93	110	106.7	4	7.10
13 10	6.85	16.3	1.205	1.41	91	107.8	4	4
13 15	6.87	16.2	1.174	1.24	98	108.2	4	1
1320	6.88	16.2	1.197	1.12	94	108.5	1/	11
1325	6.88	162	1.248	0.94	740	109.3	V	()
1330	6.89		1.252	0.89	45.0	109.0	1.	
1335	6.90	16.1	1.260	0.89	40.0	108.5	ĸ	,
1346	6.90	16.2	7.00-					
		-				Det de la companya de		12
					1		1 S	
-					1		1	
		1000	N		1			
					1			
		1.4					1	
					21	-	1	
								-
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.;

4 inch-diameter well = 2470 ml/ft. (vol_{cyl} = π^2 h)

Project:		60652550		Site:	NYSEG	Auburn	Well I.D.:	MW-2
Date:	10/3/22	Samplir	ng Personnel:				_ Company:	AECOM
Purging/ Sampling Device:	PE	es Poni		_Tubing Type:	Horg	-	Pump/Tubing Inlet Location:	
Measuring Point:	Top of Casing	Initial Depth to Water:	7.45	Depth to Well Bottom:	18.30	Well Diameter:	2 "	Screen Length:
Casing Type:	PVC			Volume in 1 Well Casing (liters):	5		Estimated Purge Volume (liters):	
Sample ID:	. Mn	2		Sample Time:	15:39		QA/QC:	-
Samp	le Parameters:							
Samp	e Farameters: - -							

PURGE PARAMETERS

TIME	pН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
15:09	7.18	15.9	0.877	2.50	188.0	78.4	250	7.59
5:14	6.95	16.1	0.843	2.20	40.74	85.9	4	7.19
1519	6.93	16.3	0.841	2.30	10.19	82.7	u	
1524	6.92	163	0.840	2.33	6.78	12.3	7	5
1529	6.92	165	0.844	2.12	4.15	944	1.	
1534	6.92	16.4	0.845	1.29	3.15	96.5	4	4
11:39	6.92	163	0.840	1.93	271	28.0	16	•
		-						
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.;

4 inch diameter well = 2470 ml/ft. (vol_{cyl} = $\pi r^2 h$)

	60652550		Site:	NYSEG	Auburn	Well I.D.:	MW-3
NISIM	Samplin	g Personnel:	154	1		_ Company:	AECOM
R	e pe	int	Tubing Type:	Horo		Pump/Tubing Inlet Location:	
	nitial Depth to Water:	7.75	Depth to Well Bottom:	19.40	Well Diameter:	2*	Screen Length:
Puc			Volume in 1 Well Casing (liters):			Estimated Purge Volume (liters):	
Mar 3	10		Sample Time:	09:3 4		QA/QC:	MS/ASU
Parameters:							
	Top of Casing Puc Mar 3	Mar 3	Mar 3	Ms/m Sampling Personnel: Kok Max DEM Tubing Type: Top of Casing Initial Depth to Water: Depth to 7.75 Depth to Well Bottom: Muc Volume in 1 Well Casing (liters): Sample Time:	Ms/m Sampling Personnel: K5M Mail Dfml Tubing Type: Horo Top of Initial Depth Depth to Depth to Casing to Water: 7.75 Well Bottom: 19,40 Puc Volume in 1 Well Casing (liters): Sample Marc Sample D9:3.4	Ms/m Sampling Personnel: K5M Max DEM Tubing Type: HOPP Top of Casing Initial Depth to Water: Tubing Type: HOPP Well Casing Initial Depth to Water: 7.75 Depth to Well Bottom: Well Diameter: Puc Volume in 1 Well Casing (liters): Sample Time: 09:3 4	Ms/m Sampling Personnel: K=M Company: Mail DEM Tubing Type: Horor Pump/Tubing Inlet Location: Top of Casing Initial Depth to Water: 7.75 Depth to Well Bottom: 19.40 Well Diameter: 2 * Marc Volume in 1 Volume in 1 Well Casing (liters): Company: Estimated Purge Volume (liters): Marc Sample Time: 09:3 4 QA/QC:

PURGE PARAMETERS

TIME	pН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
08:54	6.46	13.9	3.470	2.20	56,0	31/2	200	7.85
2819	6.80	145	3.663	0.87	28.25	299,2	4	8.15
0004	6-97	149	3.648	0.73	29.45	251.0	tı	8.40
0902	6.99	15.0	3.636	0.70	37. 70	217.0	V	8.50
0214	2.03	15.2	3607	0.60	32.66	1666	3,	8.60
0919	7.03	15.3	3.548	0.64	19.60	126.5	N	8,20
0924	7.06	15.4	3.50	0.62	13.7	96.2	u	8.70
09:20	7.08	15.4	3.500	0.61	8.6	93.0	4	08:70
09:34	7-10	155	3.490	0.60	6.6	89.1		ч
			-					
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.;

4 inch diameter well = 2470 ml/ft. (vol_{cyl} = $\pi r^2 h$)

Project:	60652550	Site:	NYSEG A	uburn	Well I.D.:	mar-4
Date:	1 2/4/2 2 Sampling Personnel:	167	- Mg		Company:	AECOM
Purging/ Sampling Device:	PERI	_Tubing Type:	HOPG		Pump/Tubing Inlet Location:	
Measuring Point:	g Top of Initial Depth Casing to Water: <u>9</u> 33	Depth to Well Bottom:	19.31	Well Diameter:	2 11	Screen Length:
Casing Type:	PVC	Volume in 1 Well Casing (liters):			Estimated Purge Volume (liters):	
Sample II	mor 4	Sample Time:	09:55	a naga ika kenangg _{al} ak di karawan	QA/QC:	Canada a can
	ple Parameters:	-				
Can						

PURGE PARAMETERS

0930 0935 0940 0945 2945	рН 7.92 7.73 7.73 7.75 7.75 7.76 7.76 7.76 7.76	TEMP (°C) 13:8 14:2 14:4 14:4 14:4 14:5 14:7	1.360 1.382 1.382 1.327 1.418	5.47 3.38 3.17 2.76	103.0 95.4 83.0 74.1	109.1 111.9 111.9		9.67 9.91 10.95
0930 0935 0940 0945 2945	7 . 73 7. 73 7. 75 7. 76 7. 76	14.20 14.4 14.4 14.6	1.382 1.382 1.327 1.327	2.38 3.17 2.76	95.4 83.0	111.4		
0935 0940 0945 2945	7.7 <u>9</u> 7.75 7.76 7.76	14.4 14.4 14.6	1.38- 1.327 1.418	3.17 2.76	83.0		2	10.00
0940 1 0945 1 0950 1	<u>7.78</u> 7.7 <i>6</i> 7.76	14.4	1418	2.76			L. Č	1 month
2945 I	7.76 7.76	146	1418		100	112.20	61	1013 4
2980 7	276			2.22	63.0	112.2	4	10-6-20
6-6-	777		1.418	2.13	66.0	112,0	61	10.7~
1 103 5 1		148	1.397	2.08	65.0	110.4	ėį.	19.89
and the								
				<u> </u>	<u> </u>			
		l						
				<u> </u>				
			<u> </u>					
	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft;

4 inch diameter well = 2470 ml/ft. ($vol_{cyl} = \pi r^2 h$)

Project:		60652550		Site:	NYSEG	Auburn	Well I.D.:	MW-7
Date:	10/4/32	Sampling	Personnel:	1Gm			_ Company:	AECOM
Purging/ Sampling Device:	PLA	1		Tubing Type:	Kore	99 99 99 90 9	Pump/Tubing Inlet Location:	
Measuring Point:	Top of I Casing	nitial Depth	7.79	Depth to Well Bottom:	18,73	Well Diameter:	2 4	Screen Length:
Casing Type:	PVC			Volume in 1 Well Casing (liters):			Estimated Purge Volume (liters):	
Sample ID:	prac	7		Sample Time:	08:23		QA/QC:	annand
Sample	e Parameters:							

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
07:45	7.04	13.8	1:300	2.94	88.72	234,2	220	7. JØ
67 48	6.92	19 42-5	1.32 4	1.50	43.62	331.7	61	7,92-
17 83	6.96	147	1.307	0.83	28-37	208.8	11	l'
0-7 .5 7	6.29	14.8	1.233	3.77	12.50	1842	e e	ŝ.,
0803	7. 2	14.8	1.356	0.73	17.26	158.3	l7 .	1
0808	7.01	148	1.365	0.79	8.00	131.0	3.7	1
58:13	7. 020	1 CA STA	1.770	0.68	33,0	37.7	1 ₁	3
18:18	7. 82	14.3	1.38	Q 66	J AP3724.3	92. J	te	4
08123	7.63	14.7	1.3%	0.2	21.00	82.0	4	4.: ³
(ar			-					
							ļ	
					[]			
			49/	1.0.0/				
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.;

4 inch diameter well = 2470 ml/ft. (vol_{cyl} = $\pi r^2 h$)

23 10/4/22 08.5V

Project:	60652550	Site:NYSEG Aub	urn Well I.D.:	parr-J
Date:	10/4/2 Sampling Personn	el:	Company:	
Purging/ Sampling Device:	PGN	Tubing Type: HUPG	Pump/Tubing Inlet Location:	
Measuring Point:	Top of Initial Depth Casing to Water: <u>9-3/</u>		Well 2 ²¹ ameter:	Screen Length:
Casing Type:	PUC	Volume in 1 Well Casing (liters):	Estimated Purge Volume (liters):	
Sample ID:	Mur 9.	Sample Time: /0:1/8	QA/QC:	Concerner 2
Sample	e Parameters:			
				·······

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
10:18	6.20	14.5	1.5.9	678	460	1129	256	9.25
10 23	7.61	14.4	1.969	3.220	13.55	1200	20	10.5
10 28	7.63	14.4	300.5	2.90	20.86	118.0		10.40
10 33	7.64	14.9	2.065	2.85	30.00	117.6	27	## 01030
10 38	7.64	14.2	2.122	2.97	25.00	1126	5.0	10.60
1043	2.62	14:3	2.139	2.81	21.00	1169	66	10.70
1548	2.67	14:3	2.137	2.80	24.8	116.9	el	10.80
Tolerance:	0.1		3%	10%	10%	+ or - 10	91 (9 m	

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. (vol_{cyl} = $\pi r^2 h$)

Project:		60652550		Site:	NYSEG	Auburn	Well I.D.:	MW-10
Date:	10/s/2c	Sampli	ng Personnel:	/4	Jay	_	_ Company:	AECOM
Purging/ Sampling Device:		Pan		Tubing Type:	HOPE		Pump/Tubing Inlet Location:	
Measuring Point:	Top of I Casing	nitial Depth to Water:	5.12	Depth to Well Bottom:	78.80'	Well Diameter:	2 "	Screen Length:
Casing Type:	OVC			Volume in 1 Well Casing (liters):			Estimated Purge Volume (liters):	1
Sample ID:	The	to M	w-10	Sample Time:	11:02		QA/QC:	Dup
Sample	Parameters:							

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
10:32	8.64	149	0.377	2.67	22.81	8.25	250	512
10.72	8.61	14.6	0.276	0.90	1415	410	и	- l
10:42	8.57	14.7	0.271	0.73	8.85	41.3	1,	2,
10.47	8,56	148	0.270	0.71	837	48.5	V	Li
10:5c	8-56	149	0.270	068	8.56	19.1	**	1.
10:57	8.56	14.8	0.270	0.66	5.30	49.6		4
111 02	8.56	14.9	0.270	0.66	4.79	49.7		21
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.;

4 inch diameter well = 2470 ml/ft. (vol_{cyl} = $\pi r^2 h$)

449 LAST

Project:		60652550		Site:	NYSEG	Auburn	Well I.D.:	MW-11	
Date:	10/3/22 Samp		ng Personnel:	/Gm			_ Company:	AECOM	
Purging/ Sampling Device:	P	Fr 1		Tubing Type:	Hore		Pump/Tubing Inlet Location:		
Measuring Point:	Top of Casing	Initial Depth to Water:	5.22	Depth to Well Bottom:	19.08	Well Diameter:	Z 4	Screen Length:	
Casing Type:	PVC			Volume in 1 Well Casing (liters):			Estimated Purge Volume (liters):		
Sample ID:	Man	11		Sample Time:	12:10		QA/QC:		
Sample	e Parameters:								

PURGE PARAMETERS

TIME	pH	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
11:10	8.67	15.1	0.237	3.46	19.03	65.8	2.50	5.22
11 41	8.84	14.4	0.227	0.83	8.00	62. 1	11	4
1150	8.88	145	0.221	0.72	6.10	58.9	14	1
1155	8.89	14.5	0.217	0.67	5.03	54.8	11	λ.
12 00	8.90	14.5	0.217	0.64	5.16	42.7	4	- P
12 05	8.89	145	0.218	0.61	4.90	42.4.	1,)
1210	8.89	14.5	0.218	0.1/	4.67	40.5		1
		-						
								1
Tolerance:	0.1	_	3%	10%	10%	+ or - 10		

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft.; 1 inch diameter well = 154 ml/ft.; 2 inch diameter well = 617 ml/ft.; 4 inch diameter well = 2470 ml/ft. ($vol_{cvt} = \pi r^2h$)

Project:	60652550			Site:	NYSEG	Auburn	Well I.D.:	MW-12
Date:	10/3/22 Sampling		ng Personnel:	Kin		_ Company:	AECOM	
Purging/ Sampling Device:	PG	ч		Tubing Type:	HOPG	-	Pump/Tubing Inlet Location:	
Measuring Point:	Top of Casing	Initial Depth to Water:	7.39	Depth to Well Bottom:	16.18	Well Diameter:	2 "	Screen Length:
Casing Type:	Pro	c		Volume in 1 Well Casing (liters):			Estimated Purge Volume (liters):	
Sample ID:	mn-	12		Sample Time:	14.50		QA/QC:	~
Sample	e Parameters:			-				

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
4:20	7.01	15.1	1.243	1.61	203	136.3	250	7.45
1425	6.95	15.1	1.245	0.87	179	121.4	1/	11
14 30	6.96	15.2	1.289	0.69	57.0	97.6	4	Y
1435	6.97	15.3	1.334		22.00	71.8	ù	.1
14 40	6.97	15.2	1.360	0.62	13.72	41.6	4	y
14 45	6.97	152	1.321	0.6/	145	35.0	4	6
19:50	6.98	15.2	1.394	0.51	13.24	33.2	4	4
		-		-				
			1					
Tolerance:	0.1	1	3%	10%	10%	+ or - 10		

Information: WATER VOLUMES-0.75 Inch diameter well = 87 ml/ft.; 1 Inch diameter well = 154 ml/ft.; 2 Inch diameter well = 617 ml/ft.;

4 inch diameter well = 2470 ml/ft. (vol_{cyl} = $\pi r^2 h$)

Attachment 2

Calculation Cover Page Template

Outherman Name	
NYSEG	Environment
Client	Department/Discipline
Auburn Green Street PDI	60652550
Project	Job No.

Software Name

AQTESOLV for Windows Version 4.50

Calculation Rev. No.	Originator Self Check (name and signature)	Reviewer/Checker (name and signature)	Independent Peer Reviewer (if used/required) (name & signature)	Approver (name & signature)
Initial	Robert Murphy	Kevin Connare		Jim Kaczor
	Robert & Murphy	Im Com		James L. Kauzon
	0	/		Add rows as required

Calculation Objective:

Determine the hydraulic conductivity of five wells using data obtained from slug tests.

Calculation Methodology:

Data was normalized and entered into the AQTESOLV Version 4.50 program.

References / Inputs/ Field Data:

Attached

Assumptions: (Include comments on need to revise calculations after more data is collected/confirmed and/or after assumptions have been verified.)

Conclusions including confirmations to be obtained:

This calculation is complete and ready for Discipline Review:

Robert J. Murphy, PG	Robert & Murphy	10/7/22
Originator Name	Signature 0	Date

SECTION 1:

SUMMARY OF RESULTS, AQTESOLV INPUT DATA, AND FIELD DATA

Summary of Results Auburn Green Street Site Slug Tests

Well	Hydraulic Conductivity [cm/sec]									
ID	FH1	RH1	FH2	RH2	FH3	RH3	N(**)	Mean (***)		
MW-01	6.38E-04	1.05E-02	5.68E-04	5.42E-03	-	-	4	2.13E-03		
MW-02	2.95E-03	8.78E-03	2.67E-03	8.03E-03	-	-	4	4.85E-03		
MW-04	1.58E-05	7.01E-04	-	-	-	-	2	1.05E-04		
MW-07	1.42E-03	9.26E-03	2.13E-03	3.42E-03	-	-	4	3.13E-03		
MW-10	3.95E-01	1.36E-01	1.79E-01	1.38E-01	1.53E-01	1.28E-01	6	1.72E-01		

(**) - number of valid tests

(***) - geometric mean

FH - Falling Head test

RH - Rising Head test

Note:

-For all graphs, normalized head is defined as H(t)/Ho, where H(t) is the displacement measured at time t and Ho is the initial displacement at time t=0.

-While the geometric mean for both the falling and rising head tests are given, it is understood that the rising head tests more accurately describe the overall hydraulic characteristics of the aquifer.

(See attached reference, The Bouwer and Rice Slug Test - An Update)

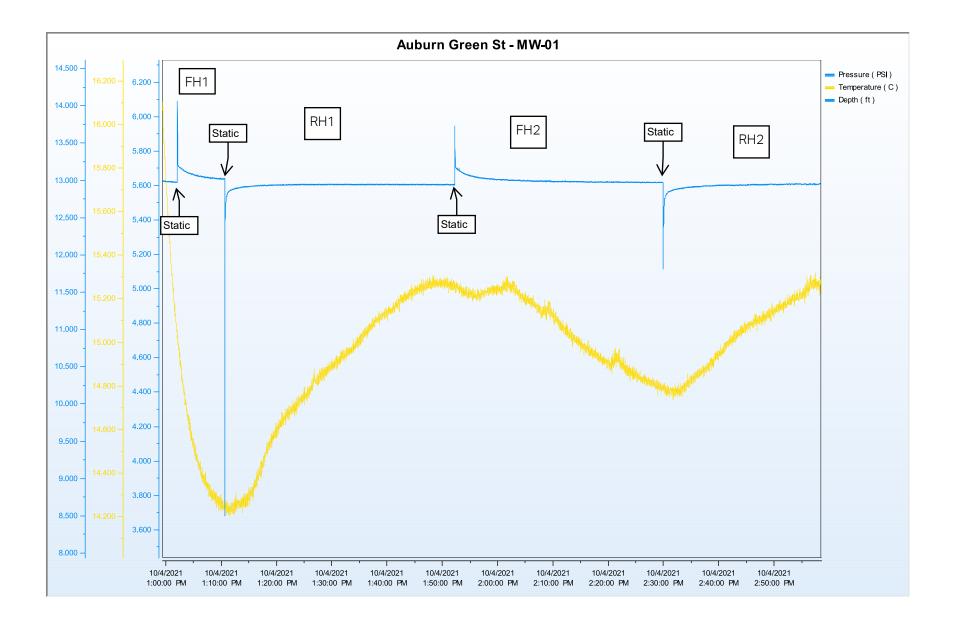
	Weil Oblisti detion Details											
Well	Formation	Scree	en Length		Radii	ii Aquife		Depth from Aquifer To				
ID		Total	Submerged	Screen (*)	Ca	sing	Thickness	to Top of	to Bottom			
					Actual	Equivalent		Screen	of Screen			
		L _e	L _{e-sub}	r _w	r _c	r _{c-eq} (**)	Н	d	L _w			
		[ft]	[ft]	[in]	[in]	[in]	[ft]	[ft]	[ft]			
MW-01	Overburden	15.0	12.65	4.13	1.00	2.41	13.75	-2.35	12.65			
MW-02	Overburden	10.0	9.05	4.13	1.00	2.41	11.55	-0.95	9.05			
MW-04	Overburden	15.0	10.63	4.13	1.00	2.41	11.63	-4.37	10.63			
MW-07	Overburden	10.0	8.39	4.13	1.00	2.41	10.39	-1.61	8.39			
MW-10	Overburden	10.0	10.00	4.13	1.00	1.00	15.86	3.86	13.86			

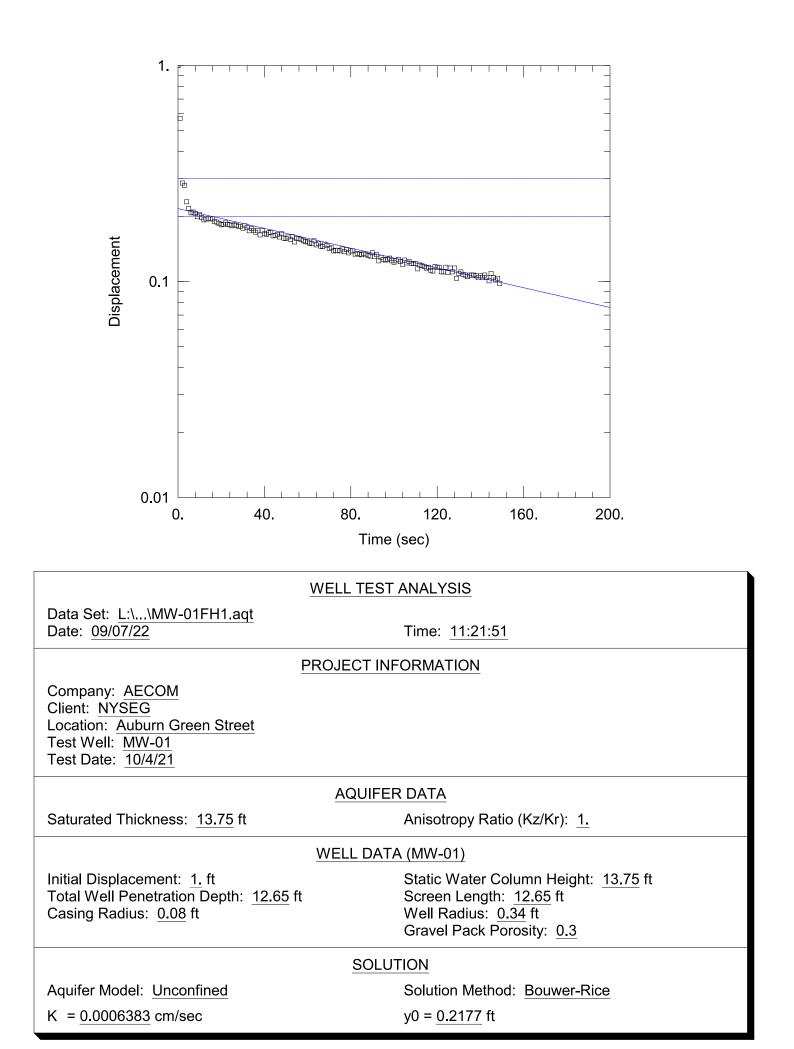
Auburn Green Street Site - Slug Tests Well Construction Details

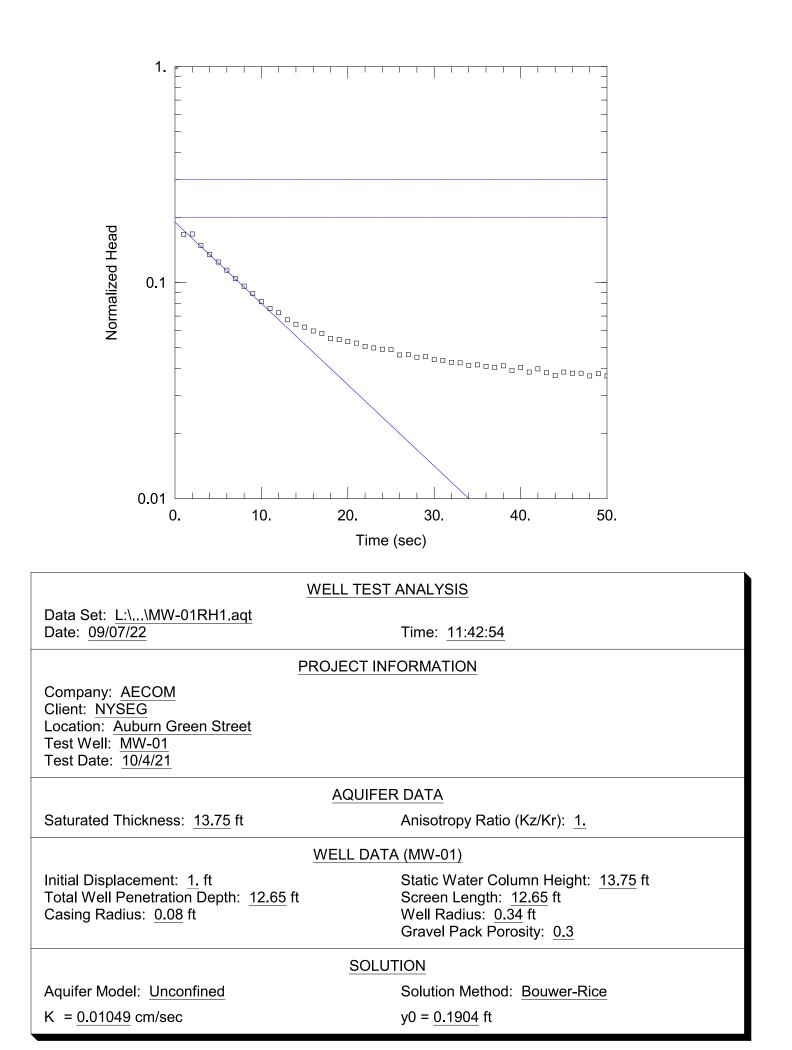
Notes:

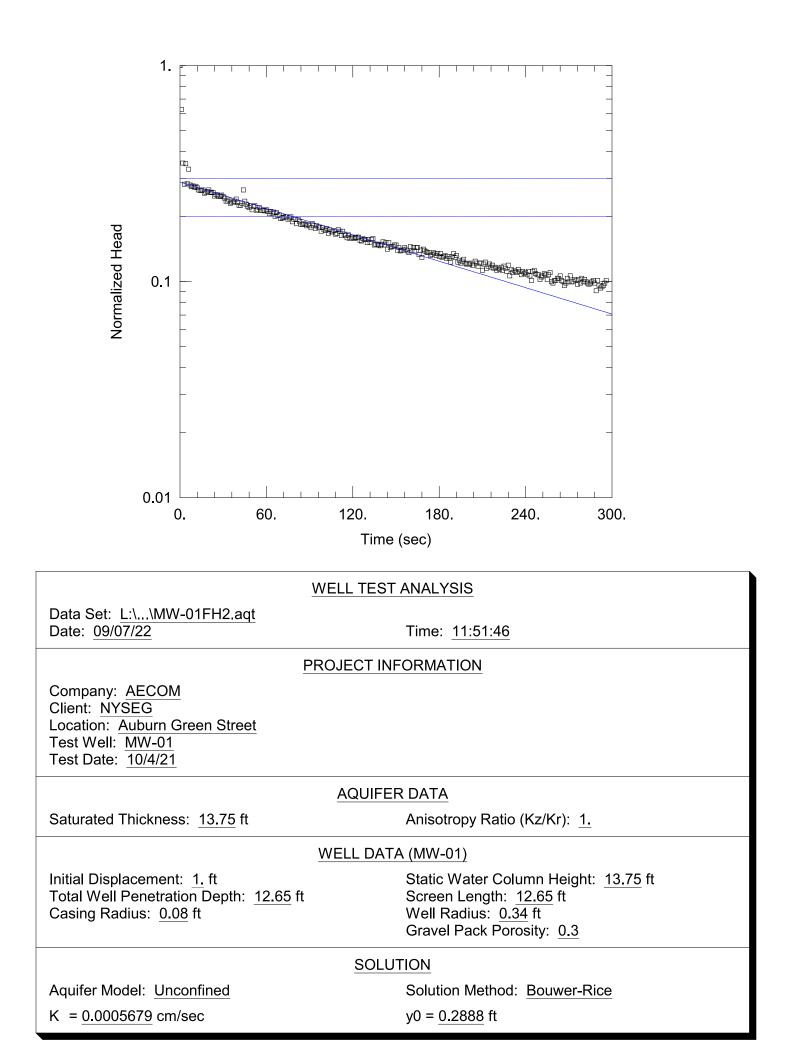
(*) - sand pack (overburden wells)

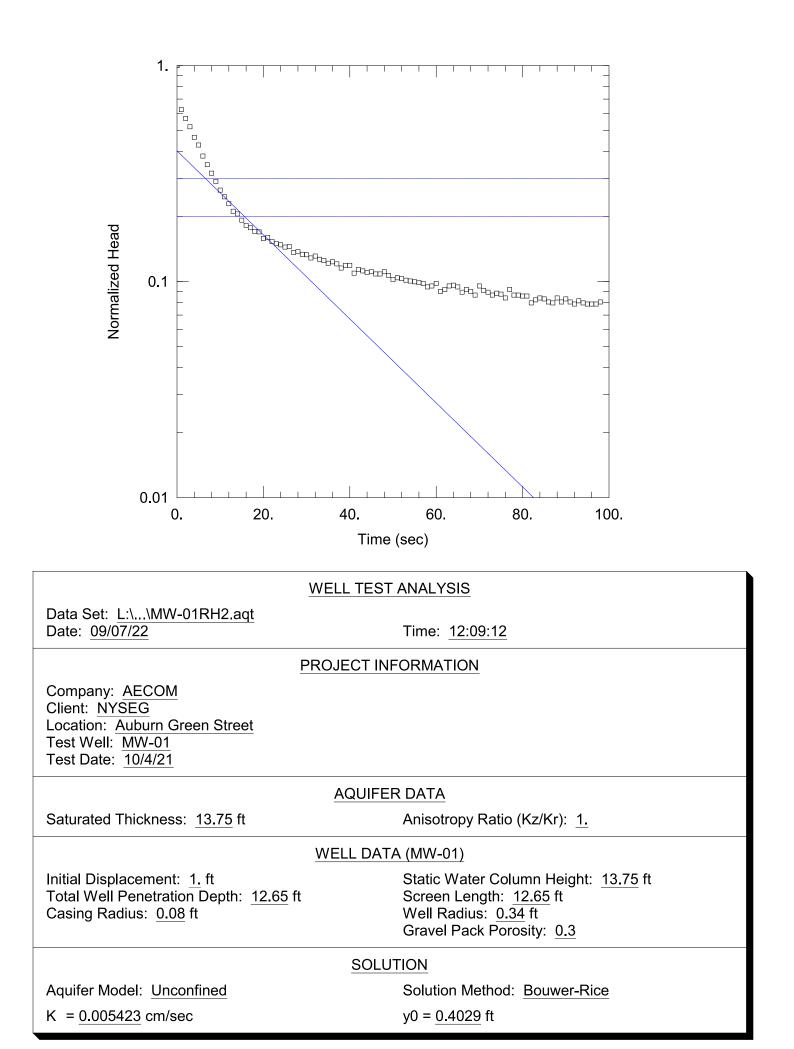
Assumptions:

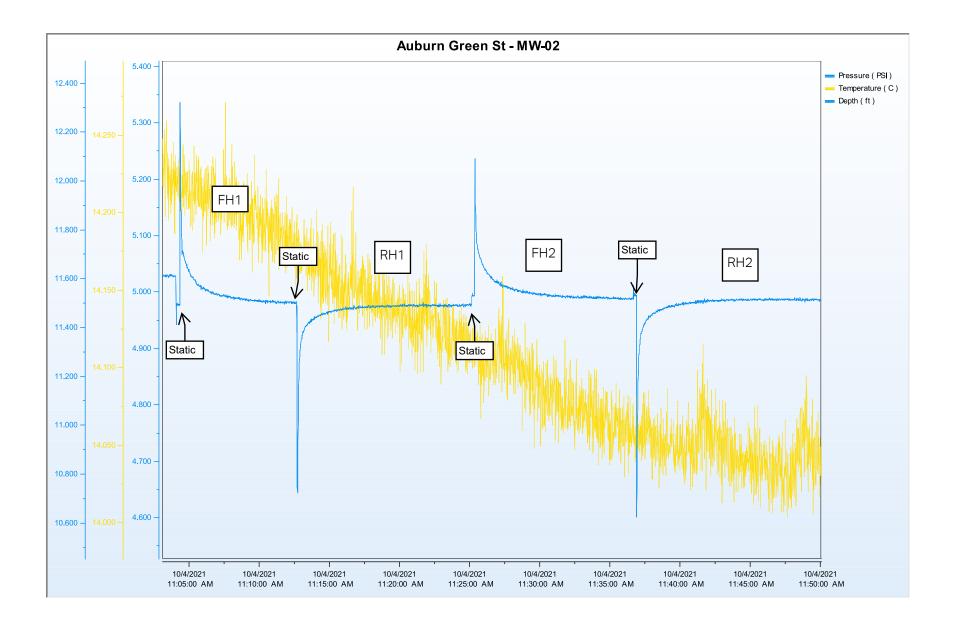

- (1) AQTESOLV ver. 4.50 was used for slug test analyses.
- (2) Sandpack porosity of 0.32 was used for wells that were not fully submerged during testing.
- (3) Bouwer and Rice (1976) solution was used for unconfined aquifers.
- (4) Formulas and parameters used for this slug test analysis can be found in:
- Bouwer, H., 1989. The Bouwer and Rice slug test--an update, Ground Water, vol. 27, no. 3, pp. 304-309.
- (5) Used depth to water to determine aquifer thickness.

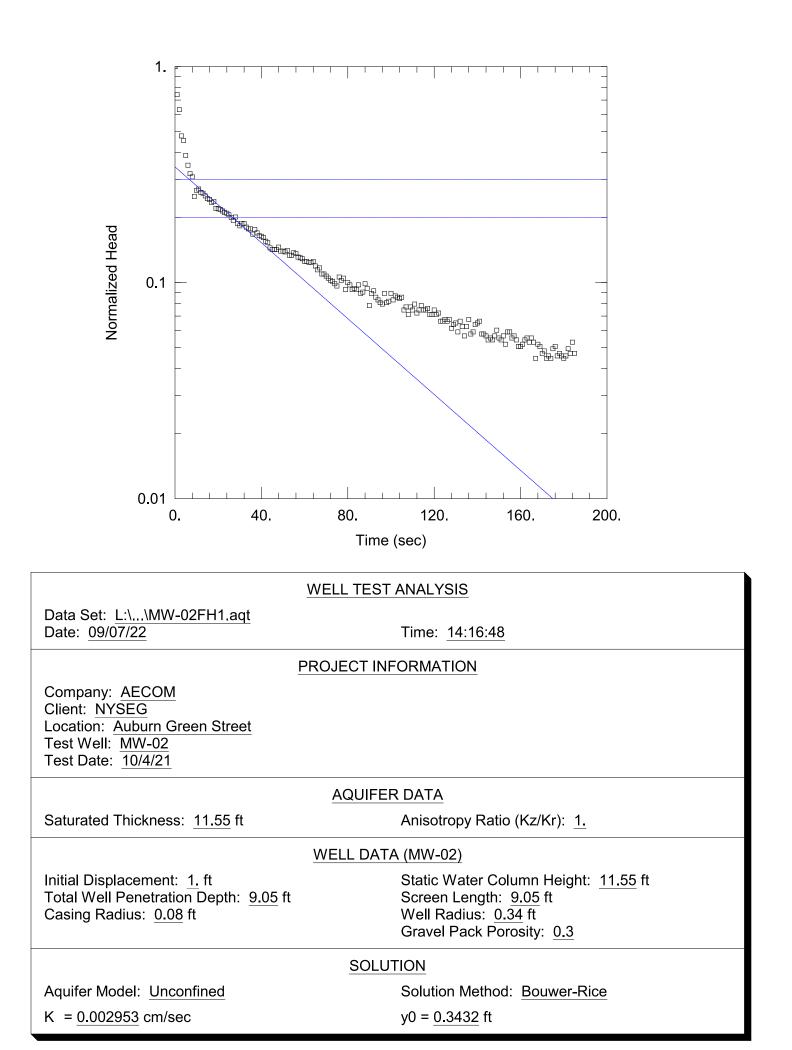

Well		Remarks										
ID	FH1	RH1	FH2	RH2	FH3	RH3						
MW-01	ОК	ОК	ОК	ОК	-	-						
MW-02	OK	OK	ОК	OK	-	-						
MW-04	OK	OK	-	-	-	-						
MW-07	OK	OK	ОК	OK	-	-						
MW-10	ОК	ОК	ОК	ОК	ОК	OK						

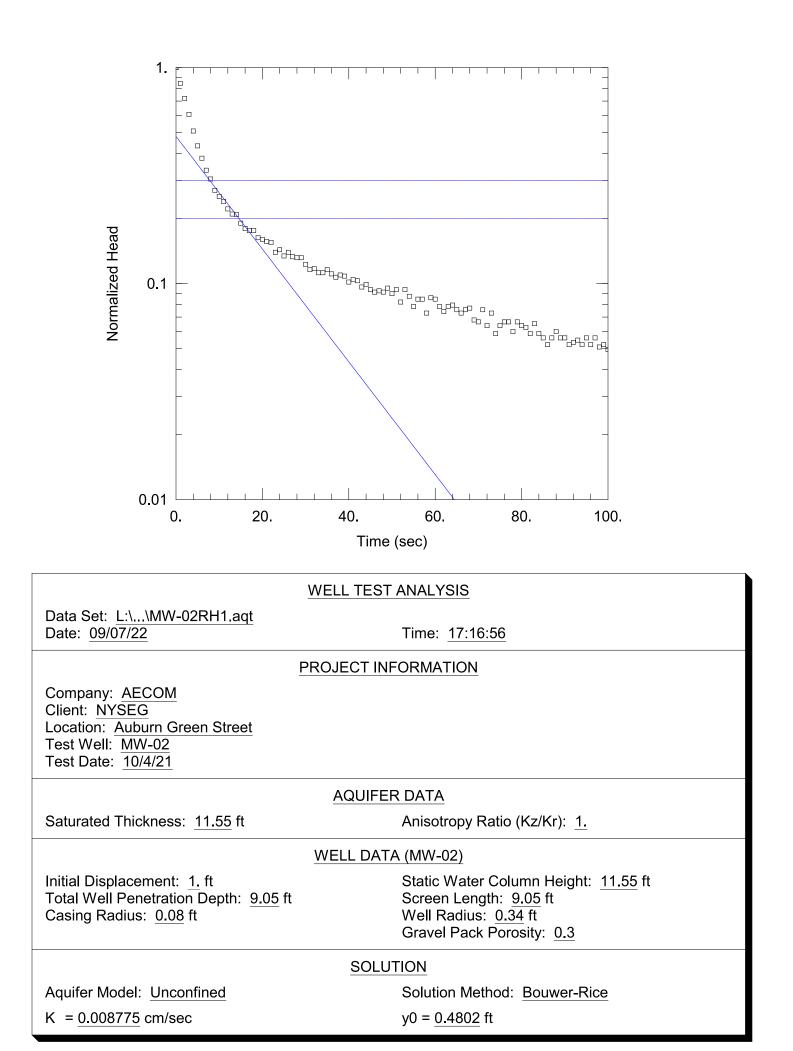

Auburn Green Street Site - Slug Tests Useability of Data

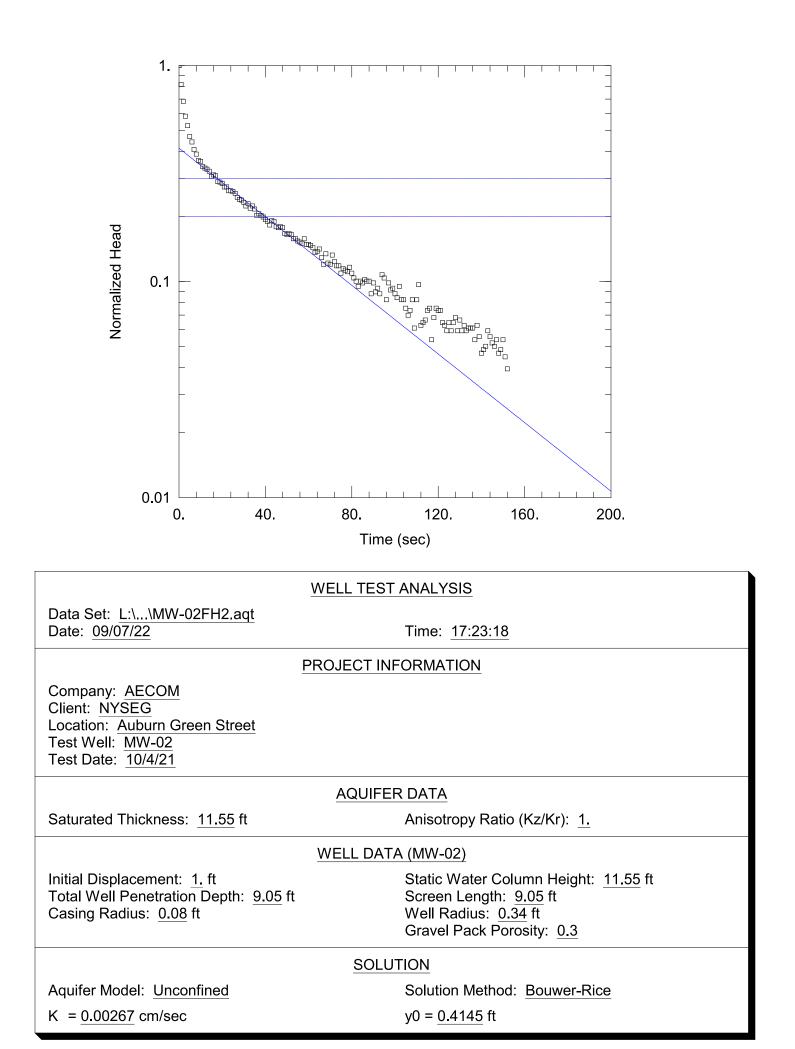

SECTION 2:

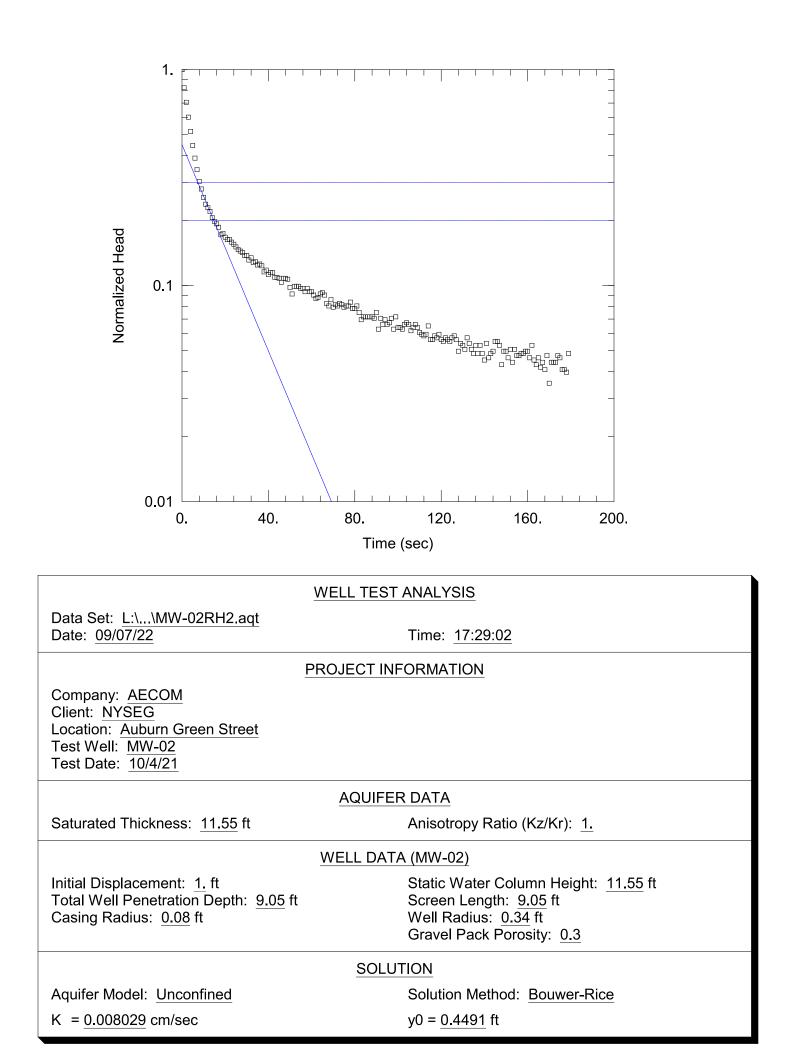

SLUG TEST DATA AND AQTESOLV CALCULATION REPORTS

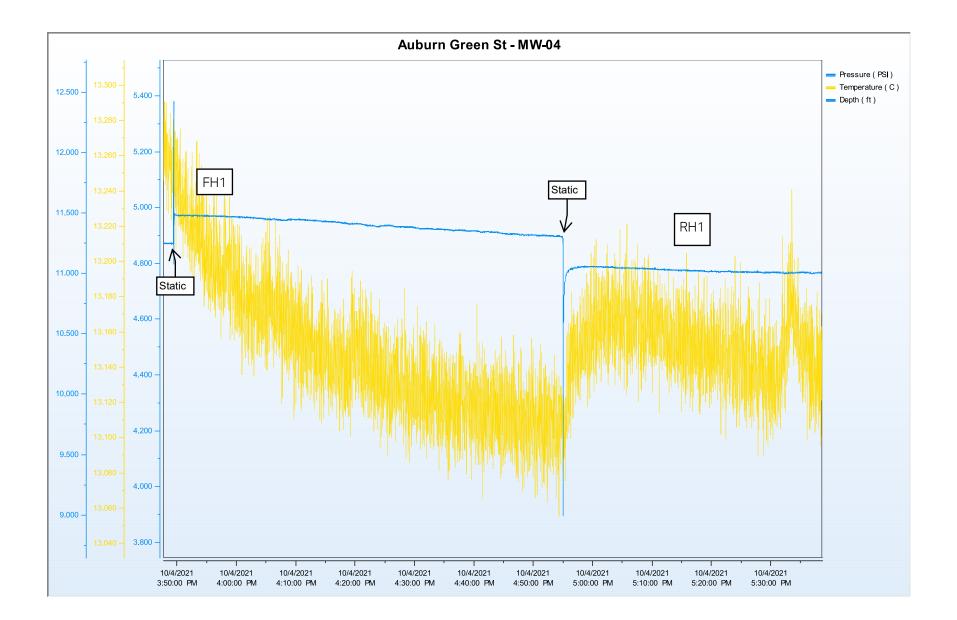


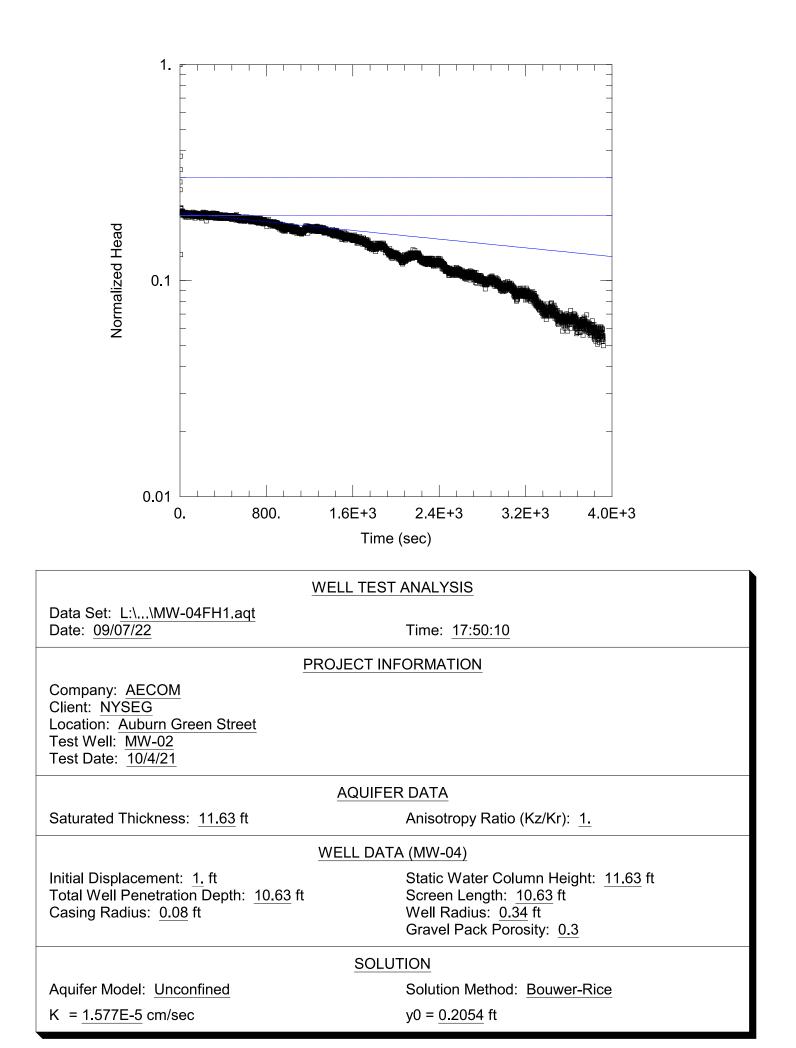


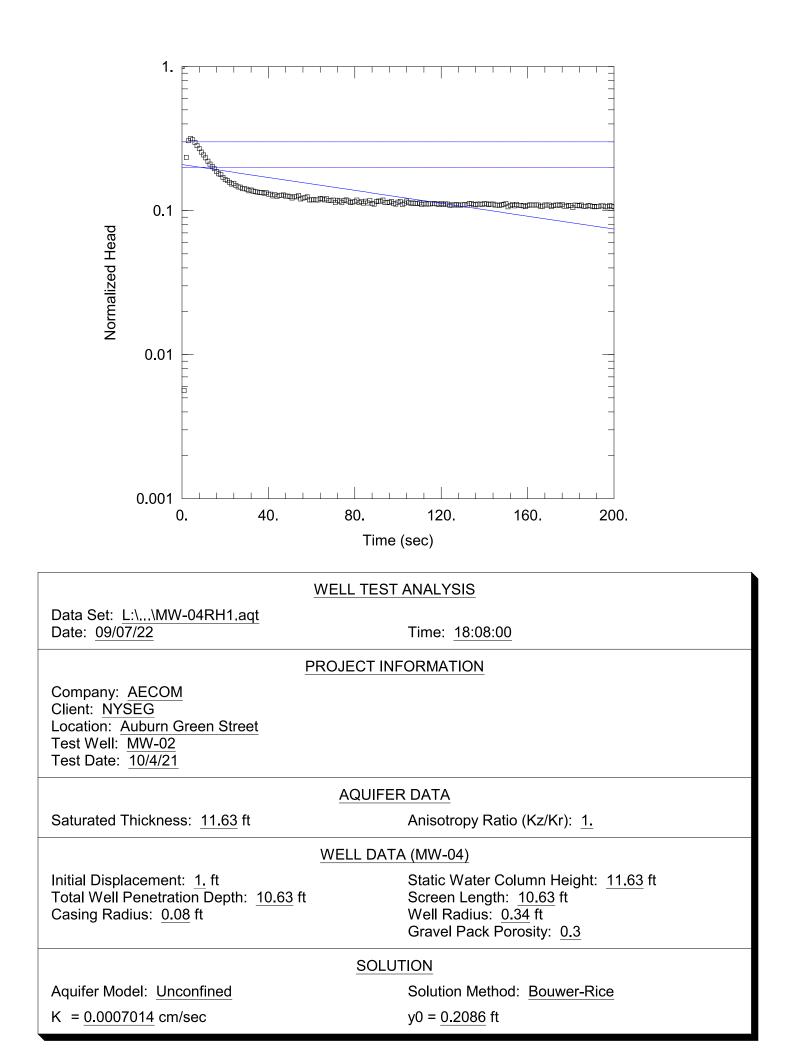


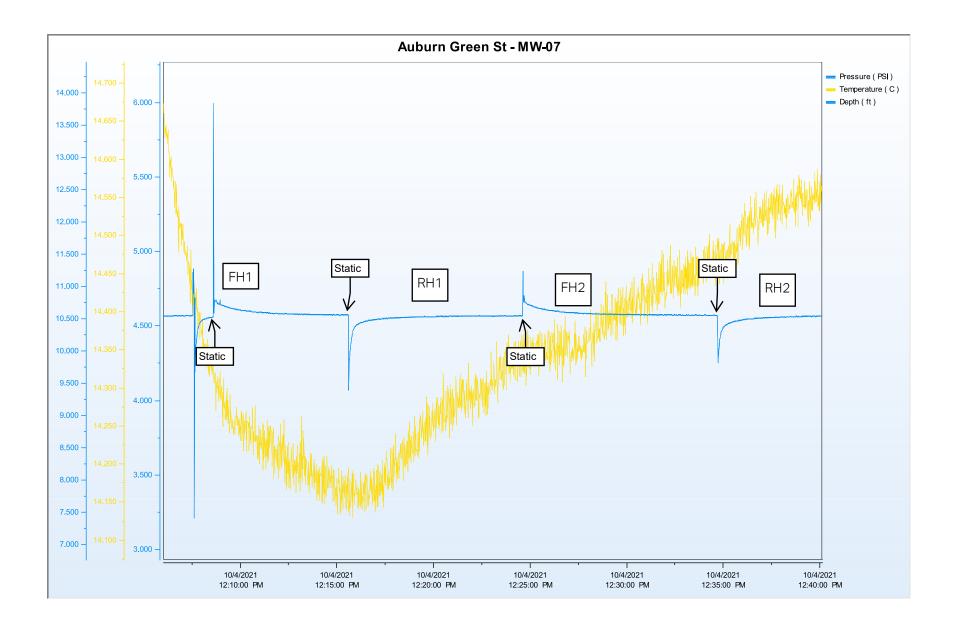


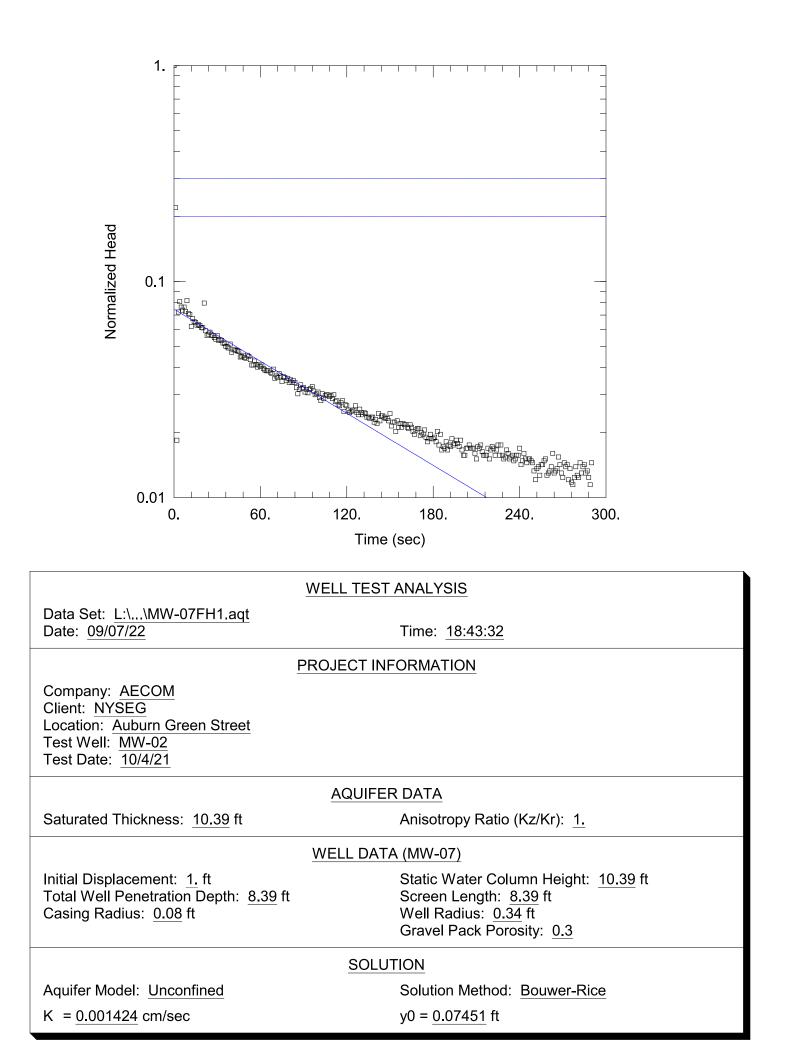


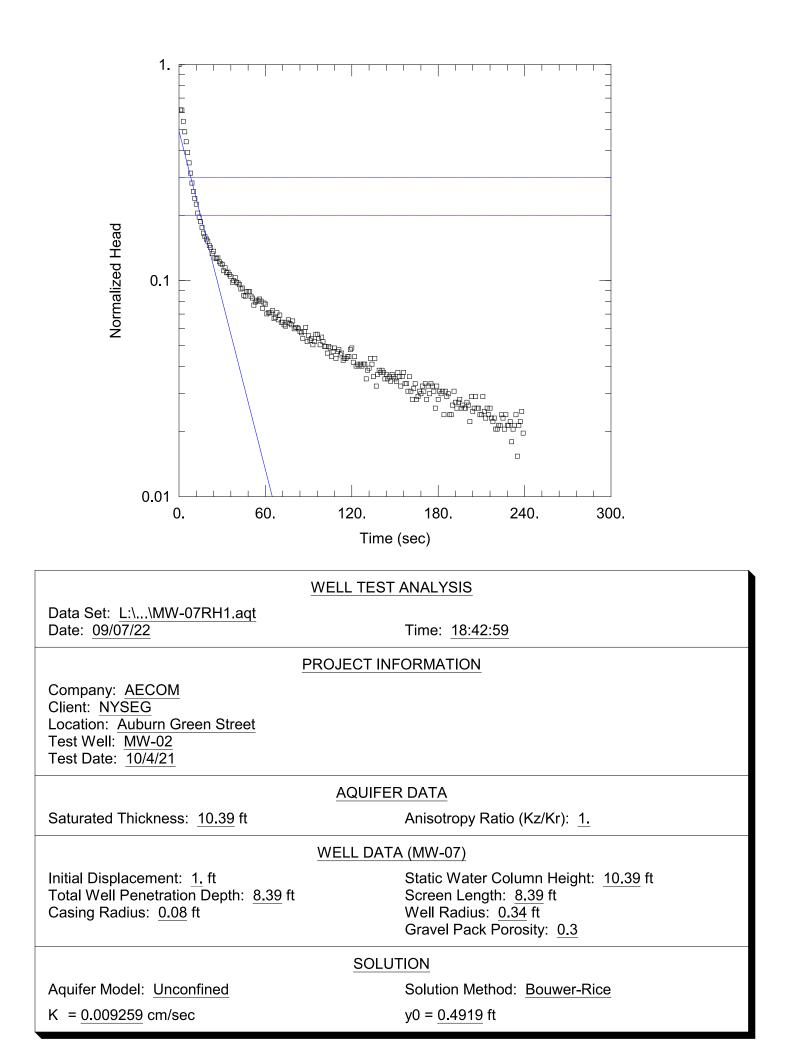


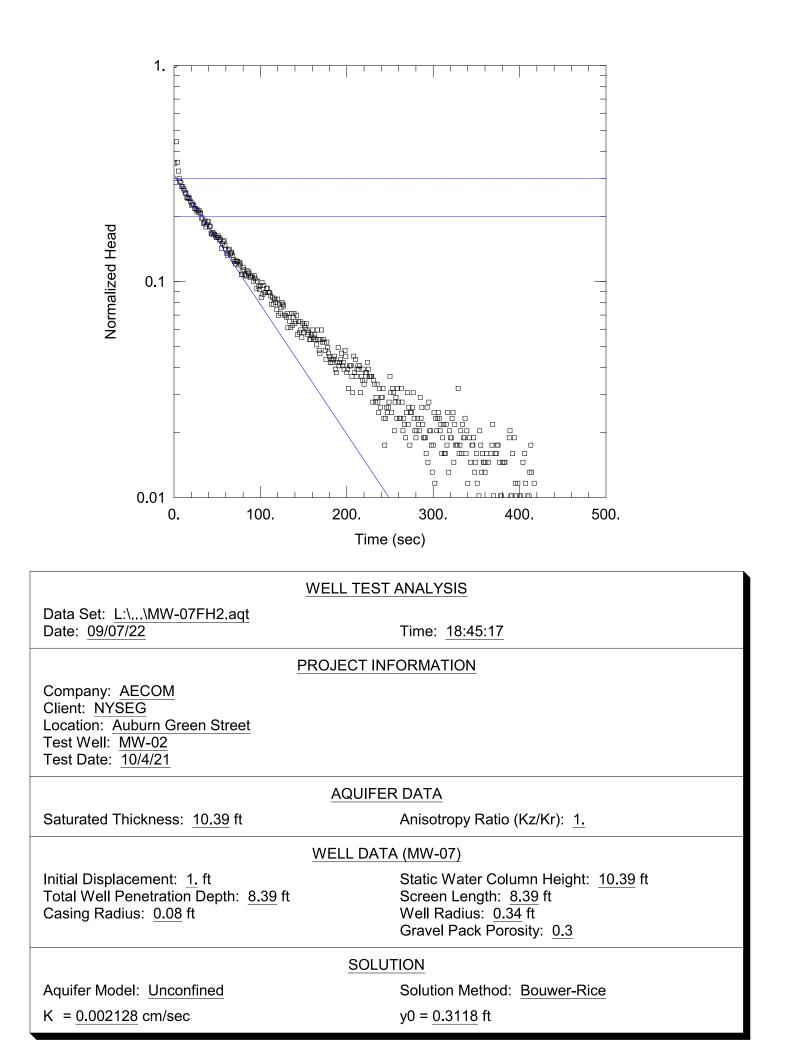


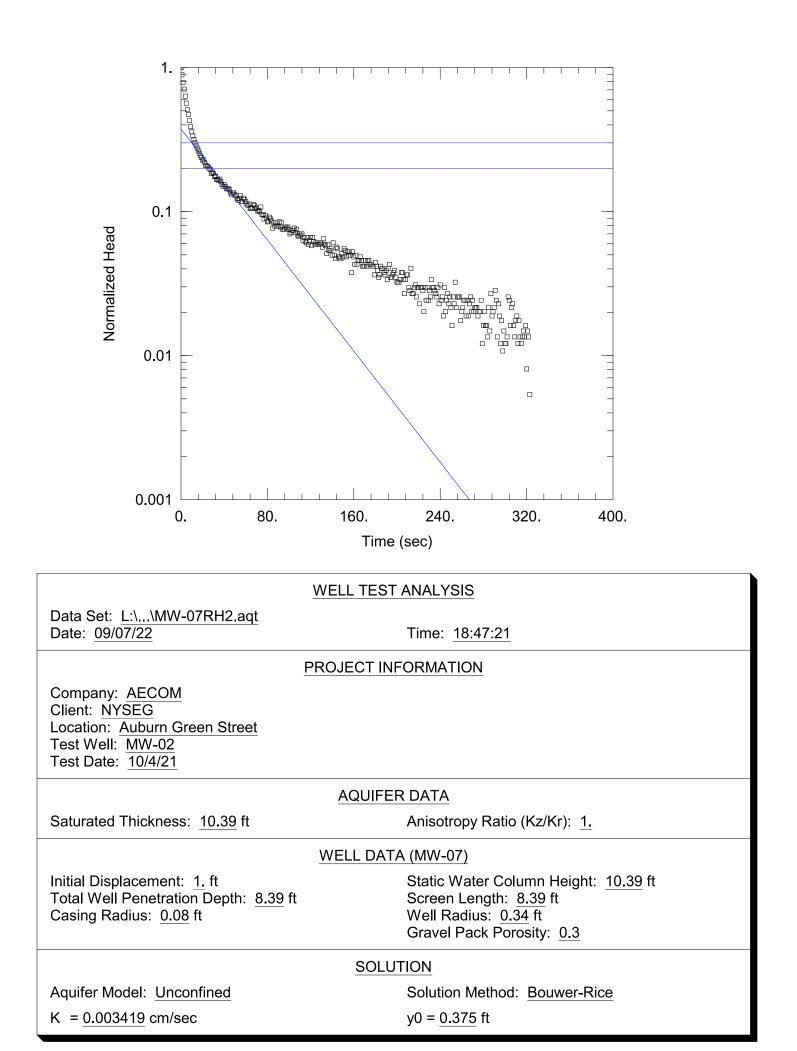


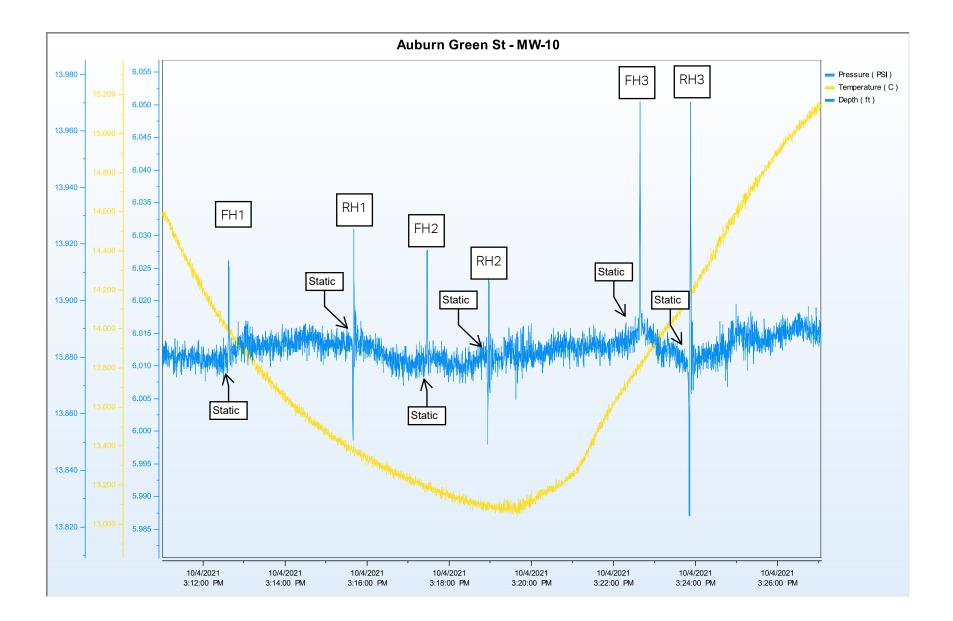


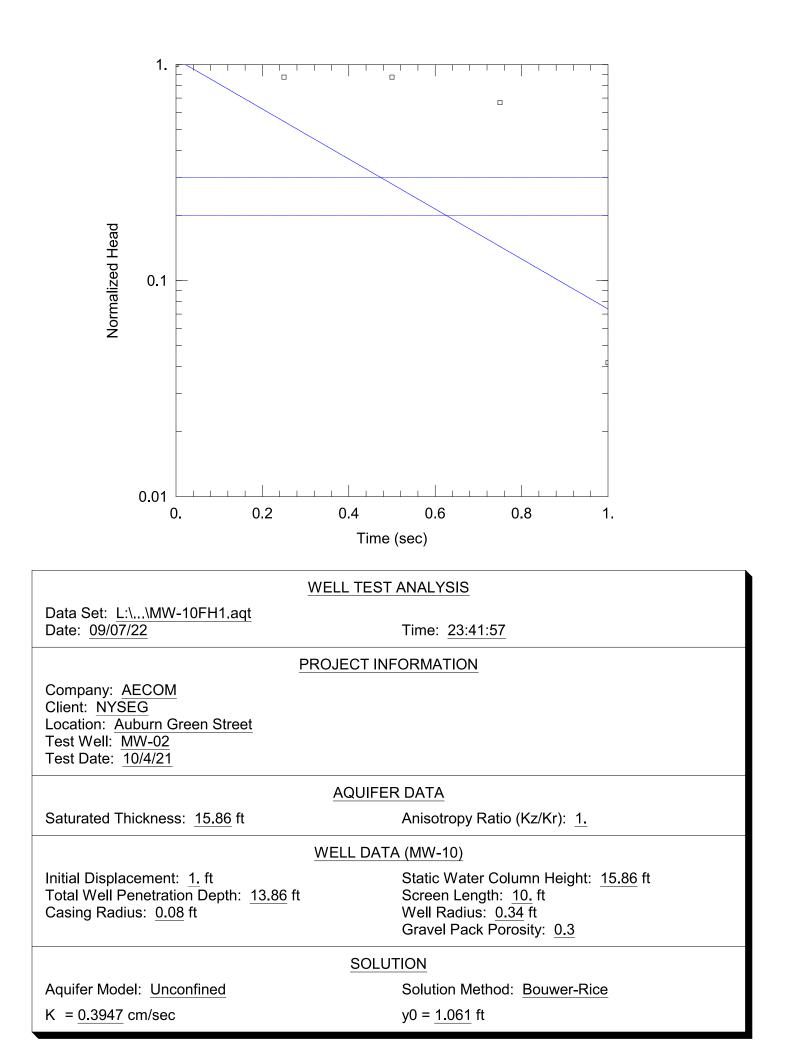


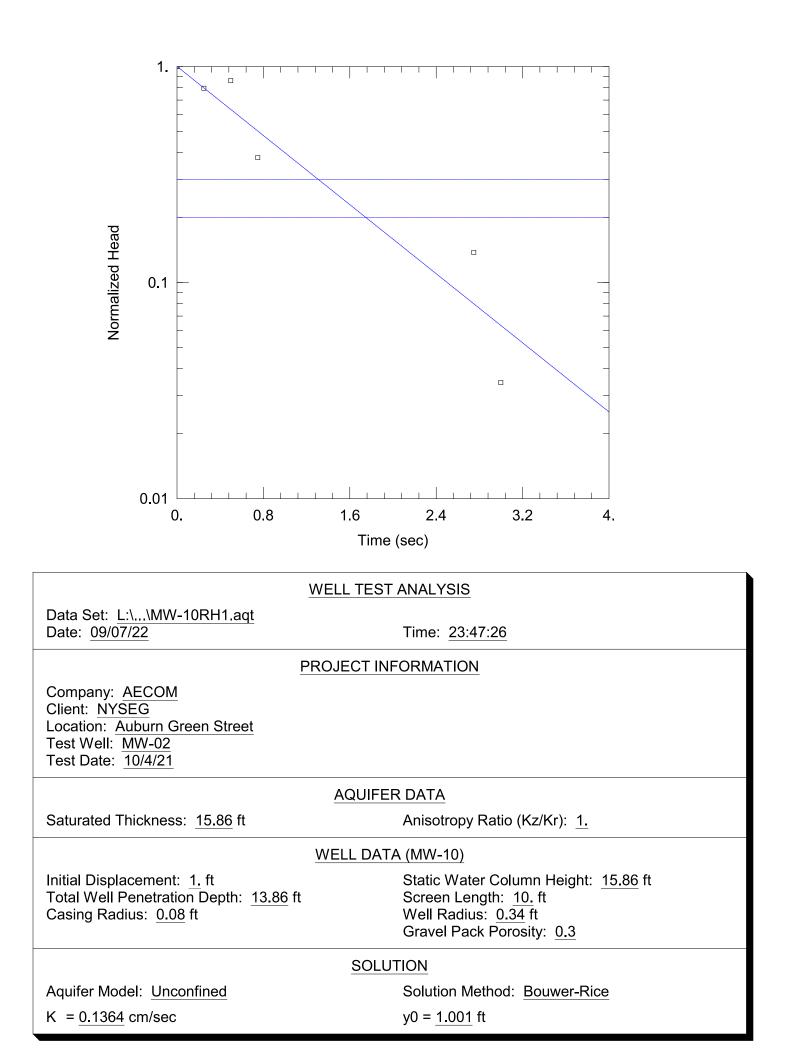


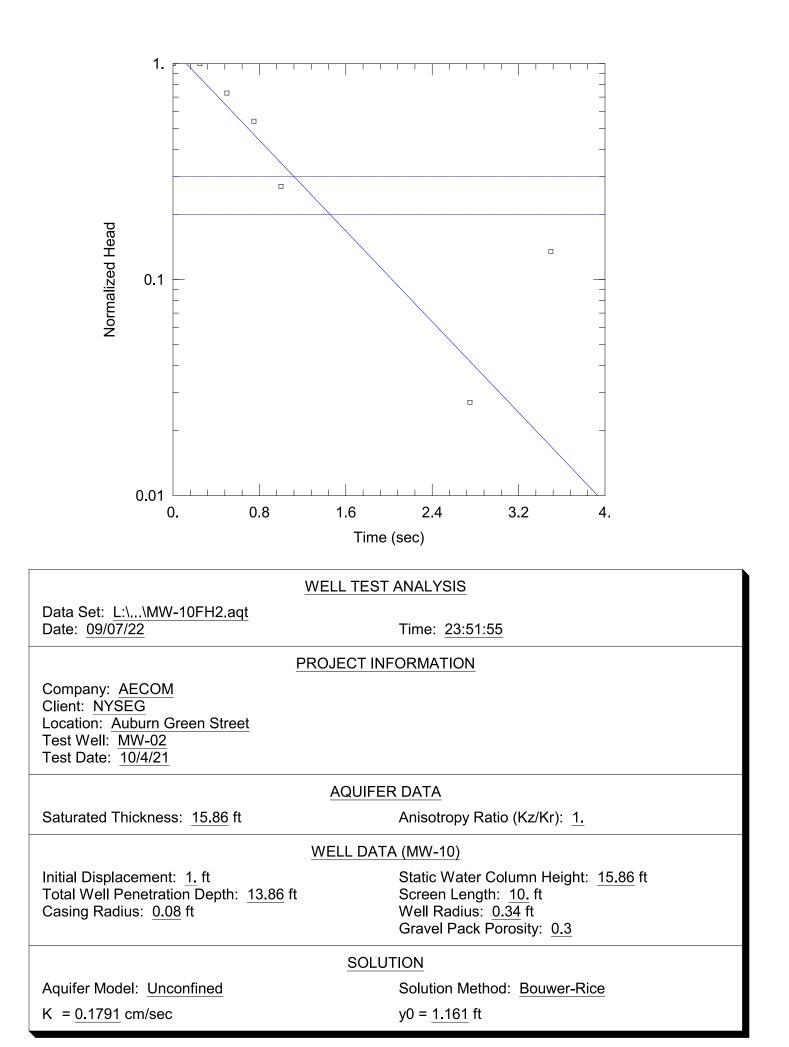


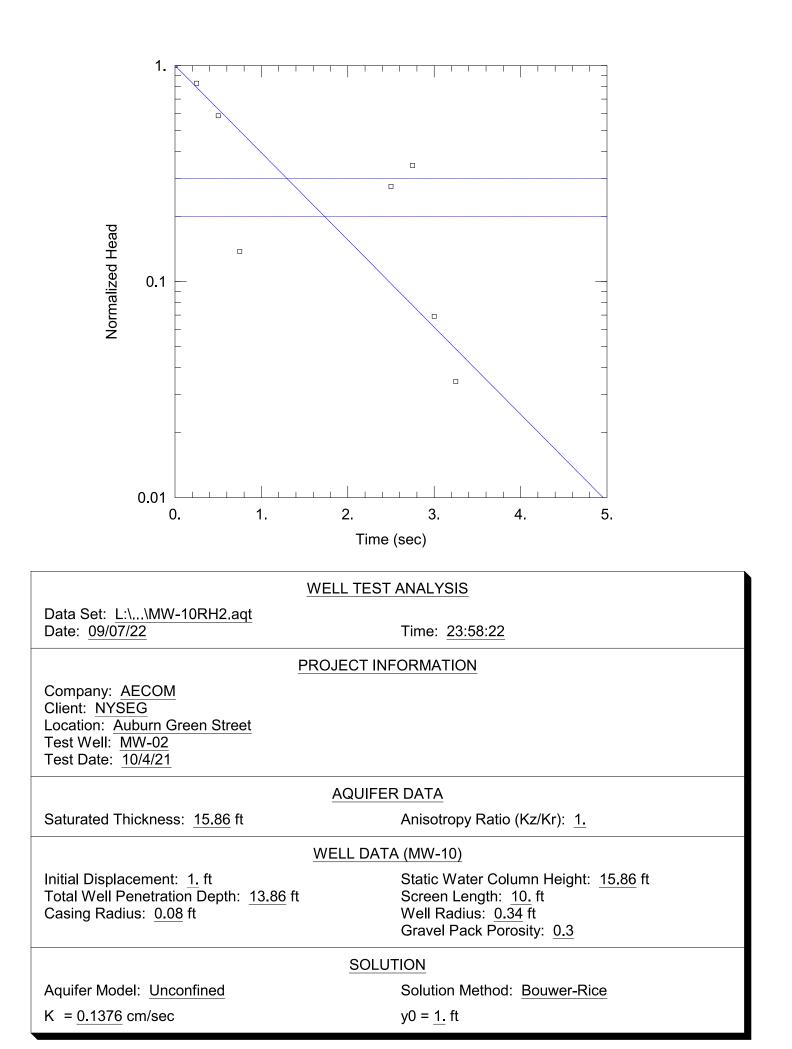


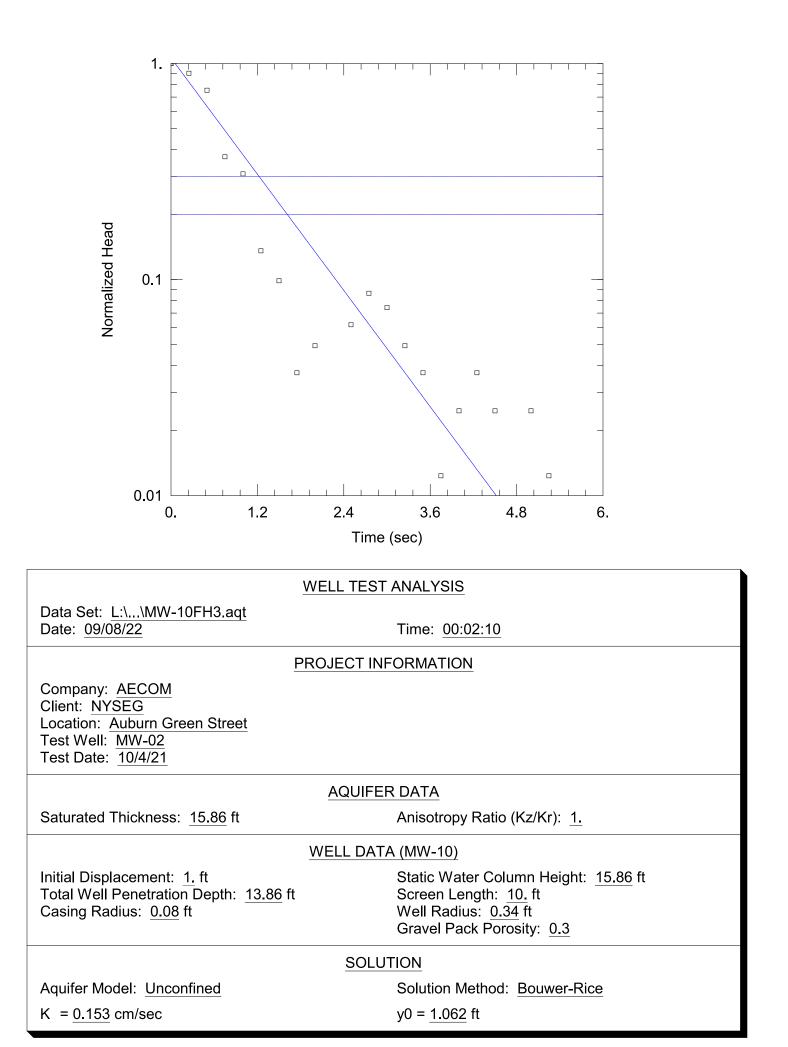


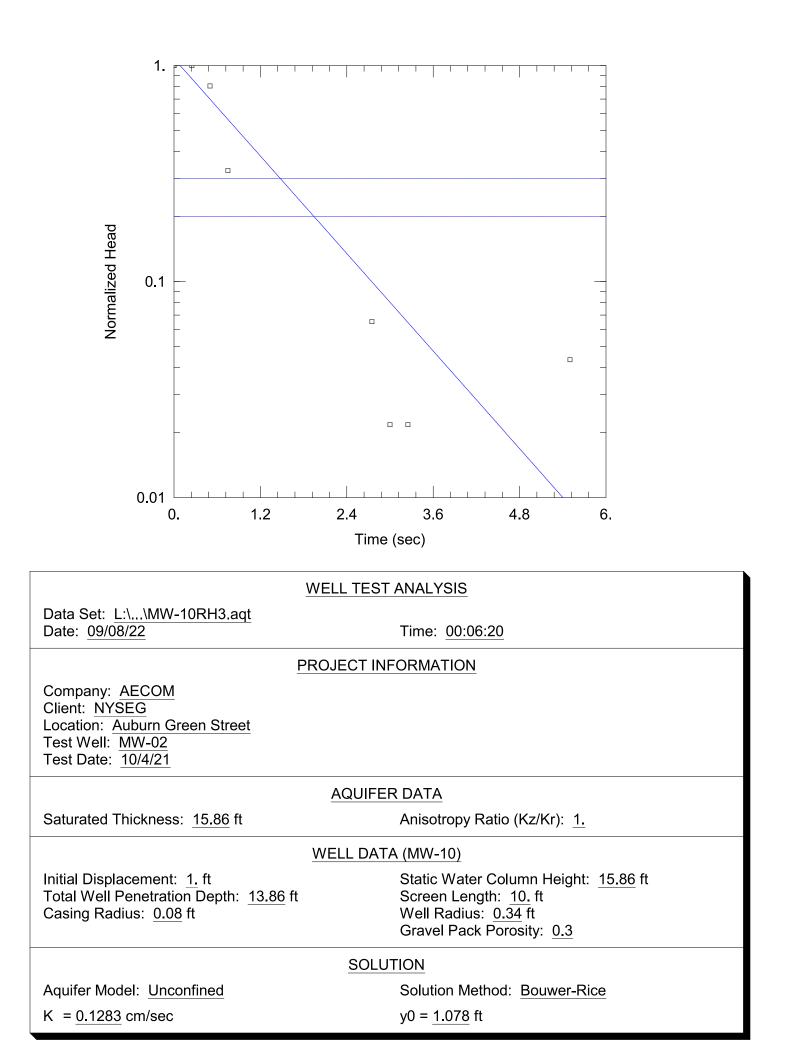




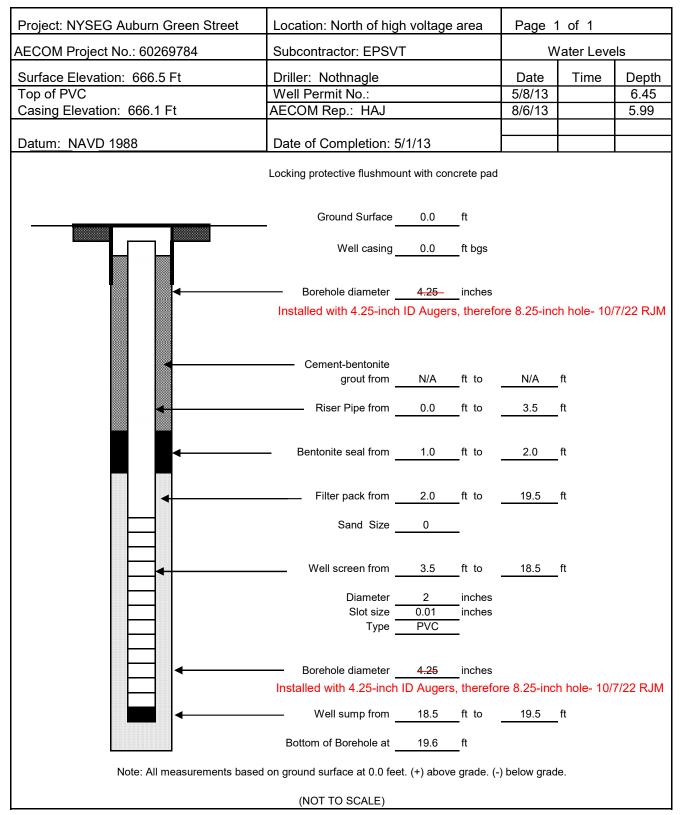








SECTION 3:

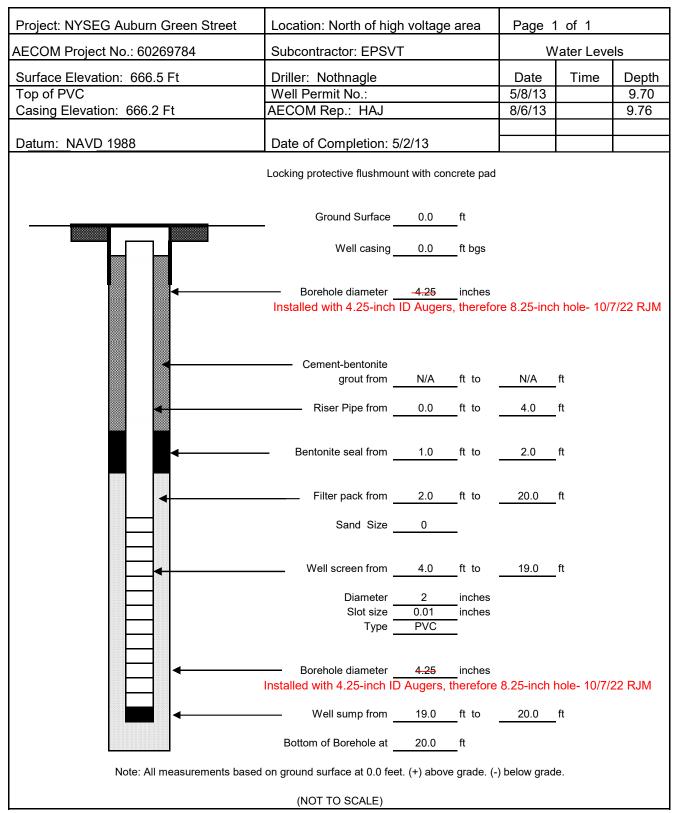

MONITORING WELL DETAILS AND FIELD NOTES

Boring No.: SB01/MW-1

	T: NYSEG	Auburn	Green St	reet Client: NYSEG PAGE 1 OF 1						
	CT No.: 60		oreen St		I: North of high voltage area	DATE: 5/1/13				
	E ELEVAT		5 ft	DATUM: N		EPSVT/Nothnagle	AECOM REP.: H	ΔΙ		
	ATER LE).5 IL	DATOM. N		RILLING AND SAMPL		AJ		
DATE		DEPTH ((ft has)		CASING SAMPLER CORE					
5/1/2013	TIME	5	it bgs)	TYPE	O/ On VO	macrocore		UBE		
5/8/2013		6.45		I.D.	4	2 inch				
8/6/2013		5.99		WT./Fall		N/A				
	Sample			PID			11			
Depth	Number	Blows	Rec.	Readings	SAMPLE DESCRIPT	TION, REMARKS, ANI	D STRATUM CHANGES			
(ft)	& Time	per/6"	(feet)	(ppb)						
			. ,		Precleared to 5 ft bgs - F	ILL: GRAVEL lave	er at surface followed	bv		
					brown fine to medium SA					
1—					fragments, loose, dry to n		5 ,			
					0 / / 1			-		
2—										
~								-		
3—								_		
1_								_		
4										
5-								_		
5_	SB01				Brown fine to medium silt	ty SAND, some fir	ne to medium angula	r gravel,		
6	(5-7)				loose, wet.					
0	@ 1210				Brown sandy (fine) SILT,	some fine to med	lium angular gravel,			
7—		NA	2.5	1.1	medium-firm, wet.			_		
		11/1	2.0	1.1				_		
8—										
								_		
9—										
_					Brown sandy (fine) SILT,	some fine to med	lium angular gravel,	_		
10—					medium-firm, moist.			_		
_								_		
11 —		NA	2.5	1.7				_		
_					Dark brown SILT, trace c	lay and fine grave	i, firm, moist.	_		
12—										
_								_		
13—					Dark brown SILT, trace c	lay and fina arous	l modium firm wat			
-					Brown fine to coarse ang			- d		
14 —					and silt, loose, wet.	uiai GIVAVEL, IIII		ю, <u> </u>		
-					Red-brown silty CLAY, ve	arv stiff dry		-		
15—		NA	3	2.1	TOU-DIOWIT SILLY OLAT, VE	ary sun, ury.		_		
-								-		
16—								_		
-								-		
17 —					Red-brown clayey SILT, s	some fine to medi	um rounded-subrour	nded		
					gravel, very stiff, dry.					
18—					g.s.toi, toi y oun, di y.			_		
		NA	2.5	3.3				-		
19—					Lens of rock at 19.4 ft bg	S.		_		
-					Refusal on rock at 19.6 ft			-		
						5		_		
				I						

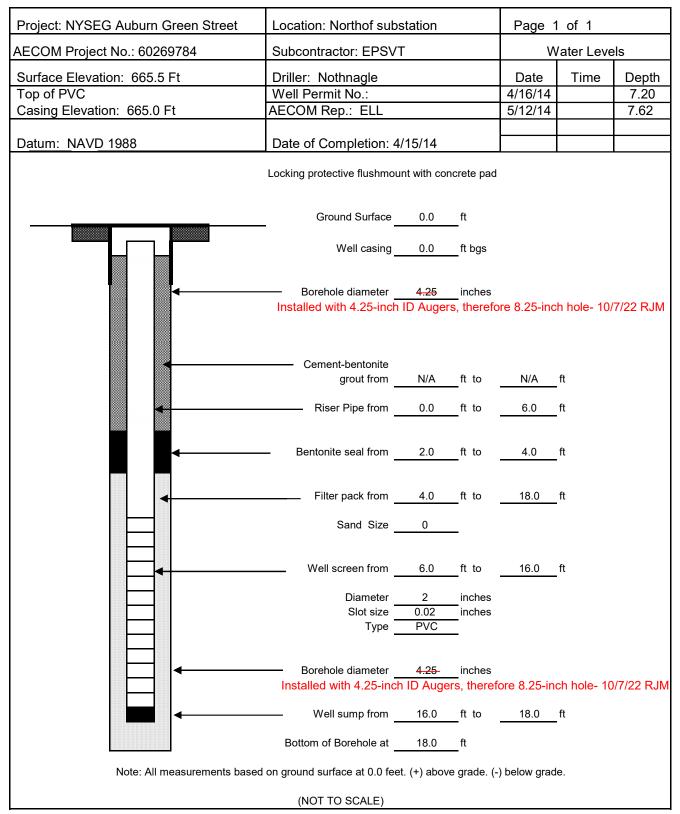
Boring No.: SB11/MW-2

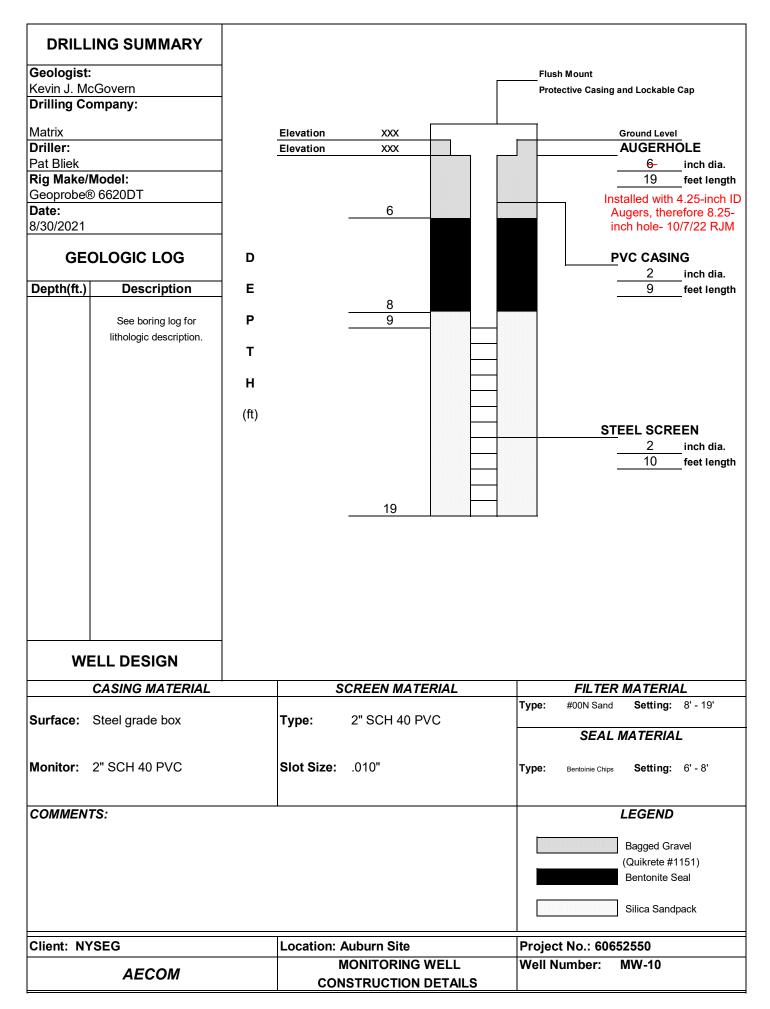
PROJECT: NYSEG Auburn Green S				reet	Client: NYSEG	PAGE 1 OF 1					
	CT No.: 60			1	I: Northeast of substation	DATE: 4/30/13					
	CE ELEVAT		1.9 ft	DATUM: N		EPSVT/Nothnagle	AECOM REP.: HAJ				
	VATER LE			DRILLING AND SAMPLING							
DATE	TIME	DEPTH	(ft bas)		CASING	CORE	TUBE				
4/30/2013		9	(3-)	TYPE							
5/8/2013		7.86		I.D.		macrocore 2 inch					
8/6/2013		7.52		WT./Fall		N/A					
	Sample	-		PID							
Depth	Number	Blows	Rec.	Readings	SAMPLE DESCRIP	TION, REMARKS, AN	D STRATUM CHAN	GES			
(ft)	& Time	per/6"	(feet)	(ppb)	0, <u></u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u>			020			
(11)		p01/0	(1001)	(PPD)	Precleared to 5 ft bos - F	II I · Brown fine to	medium SAND	some			
					Precleared to 5 ft bgs - FILL: Brown fine to medium SAND, some coal fragments, little fine to coarse subangular gravel, trace silt,						
1—					loose, moist.	to obtailed outbailing	ular gravel, ade				
-								•			
2—	1							-			
	1										
3—								-			
	1										
4—											
_											
5—					Brown fine to medium SAND, trace fine to medium angular gravel,						
_					trace silt, loose, moist. Brown SILT, some fine gravel, little clay, compact, moist.						
6—											
-											
7—		NA	2	0.6	Dark brown fine to mediu	ım SAND_trace fi	ne gravel little b	rick –			
-					fragments, loose, moist.		io gravol, naio s	iiiiii			
8—					Brown SILT, little fine to r	medium subround	led gravel and c	av trace			
-					fine to medium sand, cor		ioù gravor ana o	ay, adoo			
9—	SB11				Dark brown silty fine to m		me fine gravel li	ittle coal			
-	(9.1-13)				fragments, loose, wet.		ine ine gravel, i				
10—	@ 1210				inaginonia, iooso, wet.			-			
-											
11—		NA	2	0.3							
-	1										
12—								-			
	1				Dark red-brown silty CLA	Y. compact. drv					
13—				1	Red-brown silty CLAY, ve		n outside of core	9.			
	1					,,,,		•			
14 —	1							-			
	1										
15—	1	NA	1	0.3							
	1							•			
16—	1							-			
-											
17 —					Red-brown sandy SILT a	nd fine to coarse	subangular GRA	VFI			
	1	NA	3	0.2	some shale fragments, v						
18—	1	11/1	Ŭ	0.2	Refusal on rock at 18.5 fl			-			
-					Refusal off foot at 10.0 f	. 593.					
				1							


Project: NYSEG Auburn Green Street	Location: Northeast of	substatio	on	Page 1 of 1			
AECOM Project No.: 60269784	Subcontractor: EPSV1		Water Levels				
Surface Elevation: 664.9 Ft	Driller: Nothnagle			Date	Time	Depth	
Top of PVC	Well Permit No.:			5/8/13		7.86	
Casing Elevation: 664.5 Ft	AECOM Rep.: HAJ			8/6/13	7.52		
Datum: NAVD 1988	Date of Completion: 4	/30/13					
	Locking protective flushmou	nt with cond	crete pad				
	Ground Surface	0.0	ft				
	Well casing	0.0	ft bgs				
	Borehole diameter	4 <u>.25</u>	inches				
	Installed with 4.25-incl		-	ore 8.25-in	nch hole- 1	0/7/22 RJ	
	Cement-bentonite						
	grout from	N/A	ft to	N/A	ft		
	Riser Pipe from	0.0	ft to	6.0	ft		
<	Bentonite seal from	2.0	ft to	4.0	ft		
	Filter pack from	4.0	ft to	18.0	ft		
	Sand Size	0	-				
	Well screen from	6.0	ft to	16.0	ft		
	Diameter	2	inches				
	Slot size	0.01	inches				
	Туре	PVC	-				
	Borehole diameter	4 <u>.25</u>	inches				
	Installed with 4.25-inch	ID Augers	, therefo	re 8.25-inc	h hole- 10	7/22 RJN	
■	Well sump from	16.0	ft to	18.0	ft		
	Bottom of Borehole at	18.5	ft				
Note: All measurements base	ed on ground surface at 0.0 fee	t. (+) above	grade. (-)) below grad	le.		
	(NOT TO SCALE)						

Boring No.: SB04/MW- 4

PROJEC		Auburn	Green St	reet	Client: NYSEG	PAGE 1 OF 1						
	CT No.: 60		2.001101					DATE: 5/2/13				
			35ft	1	ATUM: NAVD88 DRILLER: EPSVT/Nothnagle AECOM REP.: HA							
	ATER LE		n	B/ (FOM). FC	DRILLING AND SAMPLING							
DATE	TIME	DEPTH ((ft has)		CASING	CORE	TUBE					
5/2/2013		9.2	(TYPE	0,10,110	00112	1022					
5/8/2013		9.7		I.D.		macrocore 2 inch						
8/6/2013		9.76		WT./Fall		N/A						
	Sample			PID								
Depth	Number	Blows	Rec.	Readings	SAMPLE DESCRIPT	TION, REMARKS, AN	D STRATUM CHAN	IGES				
(ft)	& Time	per/6"	(feet)	(ppb)								
()		F = \$	()	(FF7	Precleared to 5 ft bgs - F	ILL: GRAVEL lave	er at surface foll	owed by				
					brown fine to medium SA							
1—					fragments, loose, dry to n		J					
_												
2—								-				
_												
3—								-				
4—								-				
5—					Brown silty fine to mediur	n SAND, some fi	ne angular grav	el. moist.				
_					Brick fragments 6-6.2 ft bgs.							
6—					Brown SILT, little fine gravel and fine sand, moist.							
_			0.5	0.0								
7—		NA	2.5	2.2				_				
8—								_				
9—	SB04				Brown SILT, little fine gra	vel and fine sand	, moist.					
10	(9-11)				Brown silty fine to mediur			ngular				
10 —	@ 1015				gravel, loose, wet.							
11_	-	NA	2.5	7.7	-							
		NA	2.5	1.1	Brown sandy (fine to med	lium) SILT, some	fine to medium	angular				
12					gravel, medium-firm, wet.							
12												
13—												
15					Brown sandy (fine to med		fine to medium	angular				
14 -				7.8	gravel, medium-firm, wet.			_				
1-4								_				
15		NA	2.5		Red-brown clayey SILT, v	very stiff, moist to	dry.	_				
10		1.1/1	2.0					_				
16				3.7				_				
.0_								_				
17												
					Red-brown clayey SILT, \	very stiff, moist to	dry.					
18								_				
	SB04	NA	3.5	3.2								
19	(18-20)		0.0	0.2				_				
.0	@ 1025				Some fine to medium sub		9-20 ft bgs.	_				
20					Refusal on rock at 20 ft b	gs.						
20-												




Boring No.: MW-7

PROJEC	T: NYSEG	Auburn	Green St	reet	Client: NYSEG	PAGE 1 OF 1					
	CT No.: 60			1	I: North of Substation	DATE: 4/15/14					
	E ELEVAT		5.5 ft		DATUM: NAVD88 DRILLER: EPSVT/Nothnagle			AECOM REP.: ELL			
	ATER LE			DRILLING AND SAMPLING							
DATE	TIME	DEPTH ((ft has)		CASING						
4/15/2014		11	it bg3)	TYPE	UNCING	macrocore	OUNE	TUBE			
				I.D.							
4/16/2014		7.2		WT./Fall	-	2 inch N/A					
5/12/2014	. .	7.62				IN/A					
	Sample			PID							
Depth	Number	Blows	Rec.	Readings	SAMPLE DESCRIP	TION, REMARKS, AN	D STRATUM CHAN	IGES			
(ft)	& Time	per/6"	(feet)	(ppm)							
_					Precleared to 5 ft bgs - F						
1—				0.0	0-1 ft: Brown SILT, little f	ine to medium sa	nd, little fine to c	oarse grave	əl,_		
					no plasticity, loose, dry;						
2—				0.0	1-2 ft: Brown SIILT, some	e fine to coarse gr	avel, little fine to	o medium	_		
-					sand, no plasticity, loose	, dry					
3				0.0	2-5 ft: Same As Above B	rick fragments			-		
5					trace brick/slag						
4				0.0							
4 —											
				0.0							
5—					(0-11 in. of recovery): FIL	ome fine to coar	se sand,				
_					little fine to coarse gravel, brick fragments, little plasticity, loose,						
6—				0.0	moist.						
-											
7—		NA	1.9		(11-23 in. of recovery): Brown SILTy, some fine to medium sand, little						
-					fine to medium gravel, moist compact, little plasticity.						
8—				0.0	nite to modulin gravel, n	lolot compact, nu	o plaotiony.		-		
-											
9—	MW-7				(0.12 in of receivery): Se	ma Aa Abaya litti	o plasticity dry	aamnaat			
_	(9-11)				(0-13 in. of recovery): Same As Above, little plasticity, dry, compact						
10 —				0.0					-		
-	@ 1340										
11 —		NA	2.2		(10.00)						
_			2.2			(13-26 in of recovery): Medium to coarse GRAVEL, some silt, little					
12—				0.2	fine to coarse sand, loose, wet.						
_					Estimate water table at 1	1 ft bsg.					
13—											
.~					(0-6 in. of recovery): San	ne As Above, loos	se, wet.				
14 —				0.2					-		
1-4				0.2	(6-23 in. of recovery): NA	TIVE Red-Brown	SILT, little clay,				
16		NIA	10		little, plasticity, compact,		-				
15—		NA	1.9								
10				47							
16—				1.7					-		
-											
17 —	MW-7			46.1	NATIVE Red-Brown SIL	T. little fine to me	dium gravel, no	plasticitv			
	(17-18)	NA	1.1	40.1	compact, dry.	.,					
18—	@ 1415			ł	compact, dry. Bottom of Boring at 18' bsg.						
	(0) 1415					sa					

			AE			NG LO	G						
		CT 1 OC			n Sita				BORING NO.: MW-10				
			ATION: NYS	SEG AUDUr	SHEET: 1 OF 1								
	: NYSEG				JOB NO.: 60652550								
					NORTHING: XXXX EASTING: XXXX								
	GROUNDWATER: 6.5 ft bgs CAS. SAMPLER CORE TUBE DATE TIME LEVEL TYPE TYPE Macrocore								GROUND ELEVATIO		01		
DATE	TIME	LEVE	EL TYPE			2"			DATE STARTED:	8/30/20			
				DIA.		2			DATE FINISHED:	8/30/20			
				WT.					DRILLER:	Pat Blie			
				FALL					GEOLOGIST:	K. McG			
				*		ENETROMETE		G	REVIEWED BY:	J. Kacz	or		
DEPTH		SA	MPLE	REC%			,		MATERIAL				
FEET	STRATA	NO.	BLOW COUNT	RQD%	COLOR	ROCK			SCRIPTION	USCS	PID	REMARKS	
0		1		20	Gray Red		GRAV	EL SUBB	ASE		0.0	Dry, No Odor, No Staining	
_					and					/		No Stairing	
_					Dark Gray		to little	coarse-fi	d Brick fragments, som ne Sand and Silt	le			
-													
_													
-5		2		20	-						0.0	Wet	
_													
-													
_													
_													
-10					_							-	
_	$\times\!\!\times\!\!\times\!\!\times$	3		26							0.0		
	\times												
_													
-15	XXXX	4		28			т	race coa	rse to fine Sand, no Sil	t	0.0	-	
_									,				
-	\times												
_													
_													
-20		5		10	-						0.0	-	
	XXXX												
							Refusa	ıl @ 21' b	gs				
-25 —													
	MENTS:												
		by Geor	probe® Mod	el 6620DT									
		.,											
									Γ				
										BORING NO.	: 1/1//	,	

Location AUBURN-GREEN STREET Date 10/4/2021 131 130 Location _ AUBURN-GREEN STREET Date 10/4/2021 Project / Client AUBURN GREEN STREET - SLUGTESTS Project/Client AUBURN GREEN STREET - SLUG TESTS NYSEG MSEG 1456- DTW - 5.55 STOP TEST. 0930 - R. MURPHY ARRIVES DISITE. EMILY AU ALSO DISTE 1508 - MOBE TO MW-10 FOR GROWN WATER SAMPLING. DTW - 4.84 , DTB - 18.80 WEATHER: 62°F, Light Rain Set log to 0.25 second intervals SETUP FOR SLUG TESTS. Use stug (2' × 1.25") 1040 @ MW-02, DTW-6.55, DTB-18.30 WILL USE Z'Log x 1.5" PVC stug. 1515 - 5249 IN 1518 - Shung Out 1103 - START TEST - SLQ, N 1519- Slug IN 1114 - Static, pull slug@ 6.58 1521 - Slug out 1126 - Sug in 1525 - 5/ wg , N (4' × 1") 1139 - Sing out. statice 6.55 1153 - stop test @DTw@6.58 1526 - Slug out. 1532 MORE TO MW 24 1202 . MW-07, DTW-7.11, DTB 17.75 DTW - 8.07 DTB-19.49 1208 - Stug (2'x1.5") IN Nay in, switch to 2' 1.25" PVC steg. 1539 - LEVEL @ 8.02 after inserting datalogger 1548 - DIW @ 8.03, START TES 7 1551 - SLug IN (2'×1.25") 1217, DTw-7.10, pull slong 1602 - DTJ - 7.80' 1227, DTw - 7.11, Slugin. 1622 DTw -785 1236 DTw - 7.11, shy out. 1242 - PTW-7.11 slop test, mode to MW-01 1255 - MW-01, DTW - 5.45, DTB - 18.74 1634 DE 7-89 16B DTW 7.92 1655 DEN 7.96, Consider Dore, Pullshoy. 1304 - Slug (2'+1.25") 1714 PTW- 8.22, 1730 PTW = 8.23 13.12 - DTw-5.45, Pull slug out 739-DTW=8.26 - STOP TEST 1354 STATIC 5.53 Slig 10 1815 - CLOANUP - DEPART SITE. 1432 DTW-5.53 - Slig Out

SECTION 4:

REFERENCES

The Bouwer and Rice Slug Test - An Update^{*}

by Herman Bouwer^b

ABSTRACT

The Bouwer and Rice slug test was developed to measure aquifer hydraulic conductivity around boreholes (production, monitoring, or test wells). The wells can be partially penetrating and partially screened, perforated, or otherwise open. The slug test can be based on quickly withdrawing a volume of water from the well and measuring the subsequent rate of rise of the water level in the well, or by adding a slug of water and measuring the subsequent rate of fall of the water level in the well. While originally developed for unconfined aquifers, the method can also be used for confined or stratified aquifers if the top of the screen or perforated section is some distance below the upper confining layer. Anomalies ("double straight line effect") sometimes observed in the measured rate of rise of the water level in the well are attributed to drainage of a gravel pack or developed zone around the well following lowering of the water level. The effect of this drainage can be eliminated by ignoring the early data points and using the second straight line portion in the data plot for calculation of hydraulic conductivity. The method is applicable to any diameter and depth of the borehole, provided that the dimensions of the system are covered by the ranges for which the geometry factor Re has been worked out. The smaller the diameter of the hole, however, the more vulnerable the results will be to aquifer heterogeneities and to inaccuracies in estimating effective well diameters. Computer programs for rapid processing of the field data have been developed.

^aContribution of the U.S. Department of Agriculture, Agricultural Research Service.

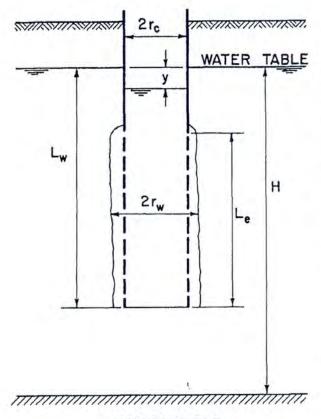
^bLaboratory Director, U.S. Water Conservation Laboratory, Phoenix, Arizona 85040.

Received December 1986, revised August 1988, accepted September 1988.

Discussion open until November 1, 1989.

INTRODUCTION

The slug test developed by Bouwer and Rice (1976) permits the measurement of saturated hydraulic conductivity (K) of aquifer materials with a single well. The method consists of quickly lowering or raising the water level in a well or borehole from equilibrium and measuring its subsequent rate of rise or fall, respectively. The method was designed to measure K of the aquifer around the screen or otherwise open portion of the well for fully or partially penetrating wells in unconfined aquifers. Because of its simplicity, the Bouwer and Rice slug test has become a frequently used tool in ground-water investigations. This paper addresses some of the experiences obtained with the method, including the validity of falling level tests, use of the method in confined aquifers, effect of draining gravel packs on the rise of the water level, effect of hole diameter, and computer processing of field data.


METHODOLOGY

Geometry and symbols of a slug-tested well are shown in Figure 1. The rate of flow of ground water into the well when the water level in the well is a distance y lower than the static ground-water table around the well is calculated with the Thiem equation as

$$Q = 2\pi K L_e \frac{y}{\ln(R_e/r_w)}$$
(1)

where Q = volume rate of flow into well; K = hydraulic conductivity of aquifer around well; L_e = length of screened, perforated, or otherwise open section of well; y = vertical difference between water level inside well and static water table outside

Vol. 27, No. 3-GROUND WATER-May-June 1989

IMPERMEABLE

Fig. 1. Geometry and symbols for slug test on partially penetrating, partially screened well in unconfined aquifer with gravel pack and/or developed zone around screen.

well; R_e = effective radial distance over which y is dissipated; and r_w = radial distance of undisturbed portion of aquifer from centerline.

Values of R_e were determined with an electrical resistance network analog for different values of r_w , L_e , L_w , and H (see Figure 1 for meaning of geometry symbols). The value of r_w is the radius of the screened or open section of the well plus the thickness of a sand or gravel pack and/or of the developed zone around the well. Thus, r_w is the radial distance from the center of the well to normal K of the aquifer. Because the thickness of the developed zone is almost never known, the tendency is to ignore it and take only gravel or sand packs into account.

The rate of rise dy/dt of the water level in the well after the water level has been quickly lowered some distance is

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -\frac{Q}{\pi r_c^2} \tag{2}$$

where r_c is the radius of the casing or other section of the well where the rise of the water level is measured. If the water level rises in the screened or open section of the well with a gravel pack around it, the thickness and porosity of the gravel envelope should be taken into account when calculating the equivalent value of r_c for the rising water level. This calculation is based on the total free-water surface area in the well and sand or gravel pack, calculated as $\pi r_c^2 + \pi (r_w^2 - r_c^2)n$, where n is the porosity, and $r_w - r_c$ is the thickness of the envelope. The equivalent radius of a circle giving this total area is then calculated as $[(1 - n)r_c^2 + nr_w^2]^{\frac{1}{2}}$. For example, if the radius of the screen or perforated casing is 20 cm and there is 8 cm gravel pack with a porosity of 30 percent, r_c should be taken as 25.9 cm, while r_w is 28 cm.

Solving equation (2) for Q, equating the resulting expression to equation (1), integrating, and solving for K yields

$$K = \frac{r_c^2 \ln(R_c/r_w)}{2L_c} \frac{1}{t} \ln \frac{y_0}{y_t}$$
(3)

where $y_0 = y$ at time zero; and $y_t = y$ at time t.

The results of the analog analyses to evaluate R_e for various system geometries were expressed in terms of the dimensionless ratio $\ln (R_e/r_w)$. The data could be fitted into two equations, one for the case where $L_w < H$, and one where $L_w = H$. The resulting equations were, respectively,

$$\ln \frac{R_{e}}{r_{w}} = \left[\frac{1.1}{\ln(L_{w}/r_{w})} + \frac{A + B\ln[\langle H - L_{w} \rangle/r_{w}]}{L_{e}/r_{w}} \right]^{-1} (4)$$

and
$$\ln \frac{R_{e}}{r_{w}} = \left[\frac{1.1}{\ln(L_{w}/r_{w})} + \frac{C}{L_{e}/r_{w}} \right]^{-1} (5)$$

where A, B, and C are dimensionless numbers plotted in Figure 2 as a function of L_e/r_w .

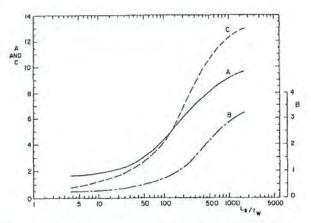


Fig. 2. Dimensionless parameters A, B, and C as a function of L_e/r_w for calculation of $\ln (R_e/r_w)$.

305

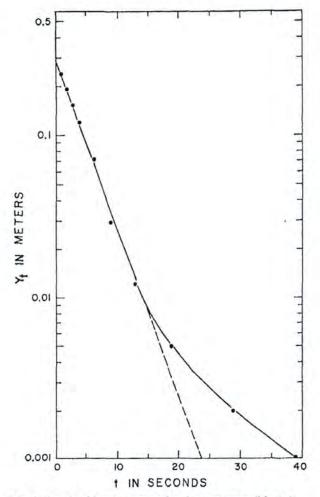


Fig. 3. Graph of log y_t versus t for slug test on well in Salt River Bed, 27th Avenue, Phoenix, Arizona.

Because y and t are the only variables in equation (3), a plot of $\ln y_t$ versus t must show a straight line. Thus, instead of calculating K on the basis of two measurements of y and t (y_0 at t = 0 and yt at t), a number of y and t measurements can be taken and $\left[\ln(y_0/y_t)\right]/t$ determined as the slope of the best-fitting line through the y versus t points on semilogarithmic paper (Figure 3). The straight line through the data points can also be used to select two values of y, namely, yo and yt, along with the time interval t between them for substitution into equation (3). Because drawdown of the ground-water table around the well becomes increasingly significant as the test progresses, the points as in Figure 3 begin to deviate from the straight line for large t and small y. Thus, only the straight line portion of the data points should be used to evaluate $[\ln(y_0/y_t)]/t$ for calculation of K with equation (3).

The slug test can be used on production wells, test wells, observation wells, and monitoring wells. Objectives for the measurements include characterization of aquifer hydraulic conductivity for modeling, ground-water recharge studies, and ground-water pollution studies. The method is particularly useful in ground-water contamination studies because the slug test can be carried out on the same wells used for ground-water quality monitoring. Also, combining the resulting values of hydraulic conductivity with the porosity of the aquifer and slopes of the ground-water table or piezometric surface permits the prediction of porewater velocities and, hence, the rate of movement of pollution plumes and transport of contaminants. The slug test can also be useful in determining vertical distribution of hydraulic conductivities in an aquifer system and other spatial variability of hydraulic conductivity in studies of macrodispersion and movement of contaminants.

Over the years, a number of questions and comments about the slug test have been received. These questions and comments are addressed in the following sections.

DOUBLE STRAIGHT LINE EFFECT

Users of the slug test have observed that when plotting log y_t versus t as in Figure 3, they sometimes get a double straight line as shown schematically in Figure 4. The first part (AB) is straight and steep, whereas the next part (BC) is straight and less steep. Then, at point C, the points begin their expected deviation from the straight line as

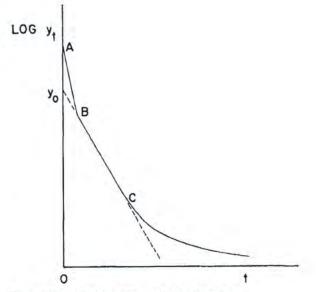


Fig. 4. Schematic of double straight line effect.

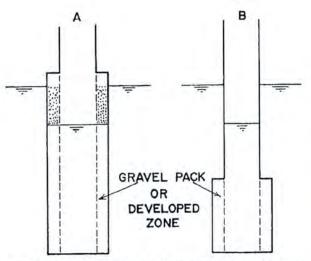


Fig. 5. Slug test for borehole with ground-water level below (A), and above (B) top of screen or perforated section.

the drawdown around the hole becomes significant relative to yt. The first straight line portion in Figure 4 is probably due to a highly permeable zone around the well (gravel pack or developed zone), which quickly sends water into the well immediately after the water level in the well has been lowered (Figure 5A). Then, when the water level in the permeable zone around the well has drained to the water level in the well itself, the flow into the well slows down and the points begin to form a second, less steep, straight line (BC in Figure 4). This second straight line is more indicative of the flow from the undisturbed aquifer into the well. Hence, segment BC should be used in calculating K of the aquifer with equation (3). In the original 1976 article, gravel envelopes or developed zones were assumed to drain at the same rate as the water level in the borehole when it is lowered for the slug test, i.e., essentially instantaneously. However, some gravel packs or developed zones apparently are not permeable enough to give such instantaneous drainage.

If the ground-water table is above the screened or open section of the borehole, and the water level in the hole is not lowered so far that it drops below the top of the open section (Figure 5B), the gravel envelope or developed zone around the open section cannot drain. The inflow into the hole then is immediately controlled by the aquifer, and the double straight line effect should not occur. If it still occurs, it could indicate leakage around the casing or grouting above the gravel pack.

Where the double straight line is due to a gravel pack around the well, the effective well

radius rw should be taken as the radial distance from the center of the well to the outer surface of the gravel pack. Where the double straight line is due to a naturally developed zone around the well, rw is harder to evaluate and an "intelligent" estimate must be made. It may also be possible to estimate rw from the value of y at point B in Figure 4. Considering the volume of water in the well between yA and yB in Figure 4 to be due to the drainage of the gravel pack or developed zone, and knowing or estimating the drainable porosity of the gravel pack or developed zone, the radial extent of this zone can be calculated for evaluation of rw. Capillary fringe effects do not have to be considered, since the capillary fringe was also present in the pack or in the developed zone before the water level was lowered. Because the rising water level in the hole during the slug test will also fill up the drained pore space of the gravel pack or developed zone, the value of rc in the equation for calculation of K should be adjusted to take this effect into account, as discussed earlier in this article.

Conceivably, a well could have a gravel pack surrounded by a less permeable developed zone before the original aquifer material is reached. This could lead to a triple straight line effect, with an intermediate straight line portion at point B, or a curved transition zone at B if the hydraulic conductivity of the developed zone gradually decreases until K of the original aquifer material is reached. By the same token, portion AB in Figure 4 could also be curved if the hydraulic conductivity of the gravel pack or developed zone immediately around the well decreases with radial distance from the well.

FALLING WATER LEVEL TEST

The slug test was developed for a rising water level in the borehole, as obtained by quick removal of a certain volume or slug of water. This can be achieved by bailing, (quick) pumping, or by immersing a section of pipe filled with sand or other ballast and closed with caps on both ends, or other submersible object, in the borehole, letting the water level in the borehole return to equilibrium, and quickly removing the submerged object. The question is often raised: can the method also be used when a volume of water is quickly added to the hole and the subsequent rate of fall of the water level in the hole is measured for calculation of K? The answer is yes, provided that the equilibrium water level is above the screened or open section of the borehole (Figures 1 and 5B). In this

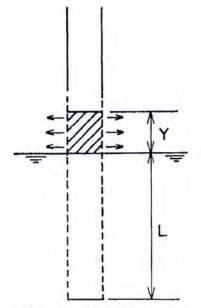


Fig. 6. Schematic of addition of water (hatched section) to borehole with equilibrium water level below top of screen or perforated section, with outflow of water into vadose zone (horizontal arrows).

case, the outflow from the well due to the falling water level occurs only through the screened or open section of the well, and the flow system in the aquifer is a true reverse of the flow system for the rising water level after a slug of water has been removed (ignoring, of course, eventual rises and drawdowns of the ground-water table immediately around the borehole if the aquifer is unconfined). Thus, equations (3), (4), and (5) are also applicable to the addition of a slug of water and measuring the subsequent rate of fall of the water level in the borehole for calculation of K of the aquifer around the hole.

If the equilibrium water level in the borehole is below the top of the screen or open section (Figure 6), and water is added (hatched section in Figure 6), the subsequent flow of water into the aquifer due to the falling water level not only takes place through the screen or perforations below the original water table, but also through the vadose zone above the original water table (arrows in Figure 6). This increases the rate of fall of the water level in the borehole beyond that caused by inflow into the aquifer and leads to an overestimation of K. The greater the ratio of y/L (Figure 6) in this case, the more the slug test will overestimate K if the measurement is based on adding water to the hole and measuring the subsequent rate of fall of the water level.

APPLICATION OF SLUG TEST TO CONFINED AQUIFERS

Theoretically, the slug test (Bouwer and Rice, 1976) applies to aquifers where the upper boundary is a plane source (rising water-level test) or sink (falling water-level test), as in an unconfined aquifer. However, because most of the head difference y between the static water table and the water level in the well is dissipated in the vicinity of the well around the screen or perforated section, the method should also be applicable to situations where the upper boundary of the aquifer is an impermeable or semipermeable plane, i.e., an impermeable or semipermeable upper confining layer. Thus the slug test should also give reasonable values for K in confined, semiconfined, or stratified aquifers. Theoretically, the larger the distance between the top of the screened or open section of the well and the upper confining layer (like Lw - Lc in Figure 1), the more accurate the resulting values of K will be. In actuality, however, source boundaries of ground water flowing into the well in response to lowering the water level are hard to define because of elastic deformation of aquifer material and confining and interbedded finetextured layers, and because of leakage through semiconfining layers.

EFFECT OF WELL DIAMETER

Theoretically, the Bouwer and Rice slug test applies to any diameter of the borehole. Practically, the hole dimensions should be selected so that the geometry parameters are covered by Figure 2. The larger rw and Le (Figure 1), the larger the portion of the aquifer on which K is determined. For layered aquifers, smaller values of Le may sometimes be preferable because they give more resolution and more information about the vertical distribution of K when the slug test is carried out at different depths. Very small hole diameters (for example 2 in. or 5 cm) should still give accurate values for K, but the values apply to only a small region around the well and, hence, are more sensitive to spatial variability. Also, inaccuracies in the estimates of the thickness of gravel envelopes and developed zones have a greater effect on the calculated values of K where rc is small than where rc is large.

PROCESSING OF y VERSUS t MEASUREMENTS

To calculate $1/t \ln (y_0/y_t)$ for the appropriate straight line portion of curves as in Figure 3 or 4, two values of y on the straight line and their

corresponding values of t are read from the graph. The natural logarithm of the ratio y_0/y_t is then taken and divided by the difference between the two values of t. For example, Figure 3 shows that at y is 0.28 m and 0.001 m, t is 0 and 24 seconds, respectively. This yields

 $1/t \ln (y_0/y_t) = 1/24 \ln (0.28/0.001) = 0.23 \text{ m/sec.}$ If $1/t \ln (y_0/y_t)$ is calculated from the slope of the curve, the number of log cycles on the vertical scale between the two points is divided by the time increment and multiplied by 2.3 to convert to natural logarithm. For example, Figure 3 shows that the straight line from $y_0 = 0.28 \text{ m to}$ $y_t = 0.001 \text{ m covers } 2.4 \log \text{ cycles.}$ The time increment between the two points is again 24 seconds, yielding $1/t \ln (y_0/y_t) = 2.3 \times 2.4/24 = 0.23 \text{ m/sec}$, which is the same as calculated earlier. Because of different coordinate scales in plots of log y versus t, the value of $1/t \ln (y_0/y_t)$ cannot be taken as the actual slope of the straight line portion!

ESTIMATING RATE OF RISE OR FALL OF WATER LEVEL IN WELL

If the water level in a slug-tested well rises or falls at a relatively slow rate, simple water-level measuring devices and a stop watch may be all that is needed to do the test. Fast-moving water levels, however, require the use of a pressure transducer and a fast-acting x-y plotter. To get some idea about the rate of water-level movement that can be expected in a slug-tested well and what equipment to use, equation (3) can be solved for t and $\ln(y_0/y_t)$ can be taken as $\ln 10$ to calculate the time $t_{90\%}$ required for the water level in the well to rise or fall 90% of the initial lowering or raising, respectively, of the water level in the well. This yields the equation

$$t_{90\%} = 1.15 \frac{r_c^2}{KL_e} \ln \frac{R_e}{r_w}$$
 (6)

where K must be taken as the estimated or expected value of K of the aquifer. Equation (6) yields values of t that are 22 times greater than the t values calculated by the $t_{90\%}$ equation in the original article (Bouwer and Rice, 1976), where $\ln(y_0/y_t)$ was erroneously taken as $\ln 0.9$, thus yielding the time required for only 10% of the water-level rise or fall to occur.

COMPUTER PROGRAMS

Where the Bouwer and Rice slug test is routinely used, time for calculating K with equation (3) is saved by developing a computer program in which values of L_e/r_w are stored for direct calculation of $\ln(R_e/r_w)$ and K from the field data. Such programs have been developed by several users (see, for example, Pandit and Miner, 1986; and Kemblowski and Klein, 1988). Also, a number of users have designed forms for easy and systematic recording of field data.

REFERENCES

Bouwer, H. and R. C. Rice. 1976. A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resources Research. v. 12, pp. 423-428.

Kemblowski, M. W. and C. L. Klein. 1988. An automated numerical evaluation of slug test data. Ground Water. v. 26, pp. 435-438.

Pandit, N. S. and R. F. Miner. 1986. Interpretation of slug test data. Ground Water. v. 24, pp. 743-749.

. . . .

Herman Bouwer received B.S. and M.S. degrees in 1949 and 1952 in Drainage, Reclamation, and Irrigation from the National Agricultural University at Wageningen, The Netherlands, and a Ph.D. degree in 1955 in Soil and Water Management from Cornell University, New York. He was associated with the Agricultural Engineering Department of Auburn University, Alabama, from 1955 to 1959, before joining the U.S. Water Conservation Laboratory in Phoenix, Arizona, where he became Director in 1972. In 1970, he also was appointed Adjunct Professor at Arizona State University in Tempe where he taught Ground-Water Hydrology in the Geology and Civil Engineering Departments. He is also an Adjunct Professor at the University of Arizona in Tucson.

Attachment 3

Data Usability Report

NYSEG/Auburn Green Street Former MPG Site Eurofins Environmental Laboratory Data, November 2022 - FINAL

NYSEG

Project number: 60652550

November 11, 2022

Delivering a better world

Quality information

Prepared by

derse

Verified by

Ann Marie Kropovitch, Chemist Peter R. Fairbanks, Senior Chemist

Prepared for:

NYSEG Binghamton, NY

Prepared by:

AECOM Amherst, NY

Table of Contents

Execu	tive SummaryES	3-1
1.	Volatile Organic Compounds	1
2.	Semivolatile Organic Compounds	2
3.	Metals	3
4.	Wet Chemistry	4
5.	Field Duplicate Precision	5
6.	Notes	6
Apper	idix A Glossary of Data Qualifier Codes	
Apper	dix B Data Qualification Summaries	
Apper	dix C Support Documentation	

Executive Summary

Overview

Data validation was performed by Ann Marie Kropovitch of AECOM-Amherst on data packages from Eurofins - Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298 for the analysis of groundwater and soil samples collected on September 28, 2021 thru October 4, 2022 at the NYSEG/Auburn Green Street Former Manufactured Gas Plant (MGP) site. The soil samples were analyzed for total arsenic only, the groundwater samples were analyzed for the remaining parameters.

The following analytical methods were requested on the chain-of-custody (CoC) records.

- Volatile Organic Compounds by USEPA SW-846 Method 8260C
- Semivolatile Organic Compounds by USEPA SW-846 Method 8270D
- Metals (Dissolved Iron, Total Arsenic) SW-846 Method 6010C
- Total Cyanide by USEPA SW-846 Method 9012B
- Sulfate by USEPA Method 300.0
- Nitrate by calculation by Standard Methods for the examination of Water and Wastewater Method 4500.

The data were evaluated for conformance to method specifications and qualifiers were applied using the USEPA Region 2 standard operating procedures (SOPs) and the validation criteria set forth in the following USEPA guidance documents as they apply to the analytical procedures.

- USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Organic Superfund Methods Data Review, EPA-540-R-2017-002, November 2020;
- USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Methods Data Review, EPA-540-R-2017-001, November 2020.
- Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B & 8260C, SOP HW-24, Revision 4, October 2014;
- Validating Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8270D, SOP HW-22, Revision 5, December 2010;
- ICP-AES Data Validation, SOP HW-3a, Revision 1, September 2016; and
- Mercury and Cyanide Data Validation, SOP HW-3c, Revision 1, September 2016.

Field duplicate relative percent difference (RPD) review and applicable control limits were taken from the USEPA Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, December 1996 and USEPA Region I Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses, June 1988.

The samples were processed, and the results were reported under sample delivery groups (SDG) 480-190294-1, 480-190335-1, 480-190335-2, 480-190421-1, 480-190421-2, 480-200734-1, and 480-202303-1. Table 1 provides a sample submittal list with the field IDs cross-referenced with the laboratory IDs.

Table 1 Sample Submittals – NYSEG/Auburn Green Street Former MGP Soil

Field ID	Laboratory ID	QC	Matrix	Date Sampled
SS-13-0-6	480-190294-1	MS/MSD	Soil	09/28/21 09:00
SS-13-6-12	480-190294-2		Soil	09/28/21 09:15

Field ID	Laboratory ID	QC	Matrix	Date Sampled
FD-20210928	480-190294-3	Field duplicate	Soil	09/28/21 00:00
EB-20210928	480-190294-4	Equipment Blank	Water	09/28/21 08:50
MW-1	480-190335-1		Water	09/30/21 15:47
MW-6	480-190335-2		Water	09/30/21 11:05
Duplicate	480-190335-3	Field duplicate	Water	09/30/21 00:00
MW-3	480-190335-4	MS/MSD	Water	09/30/21 12:11
MW-4	480-190335-5		Water	09/30/21 14:40
MW-5	480-190335-6		Water	09/30/21 16:51
Trip Blank	480-190335-7	Trip Blank	Water	09/30/21 00:00
MW-2	480-190421-1		Water	10/04/21 10:00
MW-7	480-190421-2		Water	10/04/21 11:15
MW-8	480-190421-3		Water	10/04/21 13:00
MW-9	480-190421-4		Water	10/04/21 16:55
MW-10	480-190421-5		Water	10/04/21 14:40
Rinse Blank	480-190421-6	Rinse Blank	Water	10/04/21 07:20
TB-100421	480-190421-7	Trip Blank	Water	10/04/21 00:00
MW-1	480-200734-1		Water	08/16/22 08:50
MW-2	480-200734-2		Water	08/16/22 10:00
MW-3	480-200734-3	MS/MSD	Water	08/16/22 12:15
MW-4	480-200734-4		Water	08/15/22 15:15
MW-5	480-200734-5		Water	08/15/22 10:55
MW-6	480-200734-6		Water	08/15/22 12:45
MW-8	480-200734-7		Water	08/16/22 11:30
MW-9	480-200734-8		Water	08/15/22 15:52
MW-10	480-200734-9		Water	08/15/22 14:00
MW-11	480-200734-10		Water	08/15/22 14:10
MW-12	480-200734-11		Water	08/16/22 10:00
Duplicate	480-200734-12	Field duplicate	Water	08/15/22 00:00
Rinse Blank	480-200734-13	Rinse Blank	Water	08/15/22 15:45
Trip Blank	480-200734-14	Trip Blank	Water	08/15/22 00:00
MW-7	480-200734-15		Water	08/16/22 09:10
MW-1	480-202303-1		Water	10/03/22 13:40
MW-2	480-202303-2		Water	10/03/22 15:39
MW-3	480-202303-3	MS/MSD	Water	10/03/22 09:34
MW-4	480-202303-4		Water	10/04/22 09:55
MW-7	480-202303-5		Water	10/04/22 08:23
MW-9	480-202303-6			10/04/22 10:48

Field ID	Laboratory ID	QC	Matrix	Date Sampled
MW-10	480-202303-7			10/03/22 11:02
MW-11	480-202303-8			10/03/22 12:10
MW-12	480-202303-9			10/03/22 14:15
Duplicate	480-202303-10	Field duplicate		10/03/22 00:00
Rinse Blank	480-202303-11	Rinse Blank		10/04/22 09:34
Trip Blank	480-202303-12	Trip Blank		10/04/22 00:00

Summary

Data quality for the organic analyses was evaluated by reviewing the following parameters: holding times, GC/MS tuning and performance standards, internal standards, initial and continuing calibrations, matrix spike/matrix spike duplicates (MS/MSD), surrogate recoveries, laboratory control standards (LCSs), laboratory blanks, laboratory and field duplicates, compound identification, and compound quantitation.

Inorganic data quality was evaluated by reviewing the following parameters: holding times, matrix spikes, initial calibrations, continuing calibration verification standard recoveries, contract required detection limit standard recoveries, laboratory control samples, ICP interference check sample recoveries, ICP serial dilution results, field and laboratory duplicates, laboratory blanks, and analyte quantitation.

All data have been determined to be useable for the purpose of assessing the presence/absence and quantitative concentrations of the compounds and analytes in the media tested (i.e., soil and groundwater) as reported by Eurofins-Buffalo. No data points were rejected. Completeness of 100% was achieved for this data set. This is within the goal of 90-100% and is acceptable.

A glossary of data qualifier definitions is included in Appendix A of this report. The data qualifier summaries are attached as Appendix B of this report.

Each noncompliance with specific data usability criteria that required data qualification is discussed below. Support documentation for data qualifications was included in Appendix C of this report.

1. Volatile Organic Compounds

Several samples were analyzed for VOCs utilizing dilutions due to high target compounds. Sample MW-11 (10/3/22) and MW-4 (10/4/22) were analyzed utilizing a 2x dilution due to the sample matrix issues. Both of these samples had low detections of VOCs. The reporting limits (RLs) for the non-detect compounds have been elevated due to the dilutions utilized in the analysis.

2. Semivolatile Organic Compounds

Several samples were analyzed for SVOCs utilizing dilutions due to high target compounds. Sample MW-11 (10/3/22) and MW-4 (10/4/22) were analyzed utilizing a 10x and 5X dilution, respectively, due to the sample matrix issues. Sample MW-4 had a low detection for SVOCs, sample MW-11 was non-detect. The RLs for the non-detect compounds have been elevated due to the dilutions utilized in the analysis.

3. Metals

Arsenic was detected in the method blank associated with the soil samples at a concentration below the RL. Since the results for As were greater than the RL in the samples, the 'B' qualifier applied by the laboratory has been removed.

Dissolved Iron (Fe) was detected in the metals method blanks and/or rinse blank at a concentration below the RL. Those associated samples that had concentrations of dissolved Fe greater than the RL had the 'B' qualifier applied by the lab removed. The results for dissolved Fe in the following samples have been qualified 'U' at the RL: MW-2 (10/4/21), MW-2 (8/16/22), and MW-5 (8/15/22).

The percent recovery (%R) of dissolved Fe in the matrix spike performed on sample MW-3 (8/16/22) was below the lower QC limit. The detected result for Fe in this sample has been qualified 'J'.

4. Wet Chemistry

The matrix spike/matrix spike duplicate performed on sample MW-3 (8/16/22) exhibited recoveries above the QC limit for cyanide (CN). The detected result for Cn in this sample was qualified 'J'.

The matrix spike performed on sample MW-7 (8/16/22) exhibited a %R above the QC limit for CN. The detected result for Cn in this sample was qualified 'J'.

The Rinse Blank (10/4/22) was detected for CN below the RL, The detected results for CN in associated samples MW-3 (10/3/22), MW-11 (10/3/22), and MW-12 (10/3/22) have been qualified 'U' at the RL.

Several samples were analyzed at dilutions due to the presence of elevated levels of target analytes.

5. Field Duplicate Precision

Field duplicate samples were collected at SS-13-6-12, MW-6 (9/30/21), MW-6 (8/15/22), and MW-10 (10/3/22). Field duplicate results were evaluated using the following criteria.

- Organics: The RPD must be \leq 30% for results greater than or equal to two times the reporting detection limit. If one of the results is non-detect or less than two times the reporting limit, and the duplicate is greater than two times the reporting detection limit, the difference between the parent and field duplicate results must be less than or equal to two times the reporting limit.
- Inorganics: The RPD must be \leq 30%, for results greater than or equal to five times the reporting limit. For results less than five times the reporting limit, the difference between the parent and field duplicate results must be less than or equal to two times the reporting limit.

Action applies only to the affected analyte in the duplicate sample pair.

Field sampling/laboratory precision and sample homogeneity were acceptable; no data qualification was required.

6. Notes

Matrix spike and matrix spike duplicates and laboratory duplicates that were performed on non-project samples were not evaluated because matrix similarity to project samples could not be assumed.

Positive results less than the reporting limit (RL), but greater than the method detection limit (MDL) were qualified "J," as estimated concentrations, due to increased uncertainty near the detection limit. These "J" qualifiers were maintained in the data validation. Sample results reported between the MDL and RL are usable as estimated values with an unknown directional bias.

Sample Custody: Sample identifications, sample dates, and sample times on the chain of custody matched those found in the laboratory data package. The chain-of-custody was signed and dated, and proper chain of command was followed from field to laboratory.

Some metals samples were received unpreserved and were properly preserved at the laboratory upon receipt.

Appendix A Glossary of Data Qualifier Codes

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The analyte was positively identified. The associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximated and may be inaccurate or imprecise.
- J+ The result is an estimated quantity but may be biased high.
- J- The result is an estimated quantity but may be biased low.
- R The data are unusable. The sample results are rejected due to serious deficiencies in the ability to meet quality control criteria. The presence or absence of the analyte cannot be verified.
- N (Organics) The analysis indicates the presence of an analyte for which there is presumptive evidence to make a tentative identification.
- NJ (Organics) The analysis indicates the presence of an analyte that has been tentatively identified and the associated numerical value represents its approximate concentration.

Appendix B Data Qualification Summaries

Client: AECOM

Project/Site: NYSEG Auburn Green Street

Job ID: 480-190294-1

Client Sample ID: SS-13-0-6" Lab Sample ID: 480-190294-1 Date Collected: 09/28/21 09:00 Matrix: Solid Date Received: 09/30/21 10:00 Percent Solids: 70.7 Method: 6010C - Metals (ICP) Analyte RL MDL Unit D **Result Qualifier** Prepared Analyzed **Dil Fac** 2.7 0.54 mg/Kg ₽ 10/04/21 16:28 10/05/21 21:27 Arsenic 21.2 1 Client Sample ID: SS-13-0-6"-12" Lab Sample ID: 480-190294-2 Date Collected: 09/28/21 09:15 Matrix: Solid Date Received: 09/30/21 10:00 Percent Solids: 66.3 Method: 6010C - Metals (ICP) D Analyte **Result Qualifier** RL MDL Unit Prepared Analyzed Dil Fac ₽ 10/04/21 16:28 10/05/21 21:46 Arsenic 24.1 3.1 0.62 mg/Kg 1 Client Sample ID: FD-20210928 Lab Sample ID: 480-190294-3 FD of SS-13-6-12 Date Collected: 09/28/21 00:00 Matrix: Solid Date Received: 09/30/21 10:00 Percent Solids: 73.1 Method: 6010C - Metals (ICP) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 27 0.55 mg/Kg 27.0 ÷Ċ 10/04/21 16:28 10/05/21 21:50 1 Arsenic Client Sample ID: EB-20210928 Lab Sample ID: 480-190294-4 Date Collected: 09/28/21 08:50 Matrix: Water Date Received: 09/30/21 10:00 Method: 6010C - Metals (ICP) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 0.015 10/01/21 09:30 10/02/21 01:39 Arsenic ND 0.0056 mg/L 1

Client: AECOM

Project/Site: NYSEG Auburn Green Street

Client Sample ID: MW-1 Date Collected: 09/30/21 15:47 Date Received: 10/01/21 10:20						La	b Sample	ID: 480-190 Matrix	
Method: 6010C - Metals (ICP)	- Dissolved								
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Iron, Dissolved	ND		0.050	0.019	mg/L		10/08/21 09:22	10/08/21 18:39	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Sulfate	39.3		4.0	0.70	mg/L			10/06/21 01:41	
Cyanide, Total	0.0073	J	0.010	0.0050	mg/L		10/05/21 12:26	10/05/21 14:15	
Nitrate as N	2.6		0.050	0.020	mg/L			10/01/21 18:42	
Client Sample ID: MW-6						La	b Sample	ID: 480-190	335-2
Date Collected: 09/30/21 11:05								Matrix	: Wate
Date Received: 10/01/21 10:20									
Method: 8260C - Volatile Orga									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Acetone	ND		10	3.0	ug/L			10/08/21 03:42	
Benzene	ND		1.0	0.41	ug/L			10/08/21 03:42	
Ethylbenzene	ND		1.0	0.74	ug/L			10/08/21 03:42	
m-Xylene & p-Xylene	ND		2.0	0.66	ug/L			10/08/21 03:42	
o-Xylene	ND		1.0	0.76	ug/L			10/08/21 03:42	
Styrene	ND		1.0	0.73	ug/L			10/08/21 03:42	
Toluene	ND		1.0	0.51	ug/L			10/08/21 03:42	
Xylenes, Total	ND		2.0	0.66	ug/L			10/08/21 03:42	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	105		77 - 120					10/08/21 03:42	
4-Bromofluorobenzene (Surr)	99		73 - 120					10/08/21 03:42	
Dibromofluoromethane (Surr)	100		75 - 123					10/08/21 03:42	
Toluene-d8 (Surr)	100		80 - 120					10/08/21 03:42	
Method: 8270D - Semivolatile	Organic Co	mpounds	(GC/MS)						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2-Methylphenol	ND		5.0	0.40	ug/L		10/01/21 14:09	10/06/21 01:53	
Benzo[a]anthracene	ND		5.0	0.36	ug/L		10/01/21 14:09	10/06/21 01:53	
Benzo[a]pyrene	ND		5.0	0.47	ug/L		10/01/21 14:09	10/06/21 01:53	
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		10/01/21 14:09	10/06/21 01:53	
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		10/01/21 14:09	10/06/21 01:53	
Chrysene	ND		5.0	0.33	ug/L		10/01/21 14:09	10/06/21 01:53	
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		10/01/21 14:09	10/06/21 01:53	
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		10/01/21 14:09	10/06/21 01:53	
Naphthalene	ND		5.0	0.76	ug/L		10/01/21 14:09	10/06/21 01:53	
Phenol	ND		5.0	0.39	ug/L		10/01/21 14:09	10/06/21 01:53	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	57		48 - 120				10/01/21 14:09	10/06/21 01:53	
Nitrobenzene-d5 (Surr)	61		46 - 120				10/01/21 14:09	10/06/21 01:53	
p-Terphenyl-d14 (Surr)	75		60 - 148				10/01/21 14:09	10/06/21 01:53	
2,4,6-Tribromophenol (Surr)	72		41 - 120				10/01/21 14:09	10/06/21 01:53	
			05 400				10/01/21 11:00	10/06/21 01:53	
2-Fluorophenol (Surr)	38		35 - 120				10/01/21 14.09	10/00/21 01.55	

Page 10 of 1256

Client: AECOM

Project/Site: NYSEG Auburn Green Street

Client Sample ID: MW-6 Date Collected: 09/30/21 11:05 Date Received: 10/01/21 10:20						La	b Sample	ID: 480-190 Matrix	
Method: 6010C - Metals (ICP)									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Iron, Dissolved	0.99		0.050	0.019	mg/L		10/08/21 09:22	10/08/21 18:54	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Sulfate	26.4		10.0	1.7	mg/L			10/06/21 02:00	
Cyanide, Total	0.0063	J	0.010	0.0050	0		10/05/21 12:26	10/05/21 14:16	
Nitrate as N	ND		0.050	0.020	mg/L			10/01/21 18:45	
Client Sample ID: DUPLIC	ATE					La	b Sample	ID: 480-190)335-:
Date Collected: 09/30/21 00:00 Date Received: 10/01/21 10:20		F	D of MW-6					Matrix	: Wate
_ Method: 8260C - Volatile Orga	nic Compo	unds by G	C/MS						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	ND		10	3.0	ug/L			10/08/21 04:05	
Benzene	ND		1.0	0.41	ug/L			10/08/21 04:05	
Ethylbenzene	ND		1.0	0.74	ug/L			10/08/21 04:05	
m-Xylene & p-Xylene	ND		2.0	0.66	ug/L			10/08/21 04:05	
o-Xylene	ND		1.0	0.76	-			10/08/21 04:05	
Styrene	ND		1.0		ug/L			10/08/21 04:05	
Toluene	ND		1.0	0.51				10/08/21 04:05	
Xylenes, Total	ND		2.0		ug/L			10/08/21 04:05	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	98		77 - 120					10/08/21 04:05	
4-Bromofluorobenzene (Surr)	95		73 - 120					10/08/21 04:05	
Dibromofluoromethane (Surr)	102		75 - 123					10/08/21 04:05	
Toluene-d8 (Surr)	96		80 - 120					10/08/21 04:05	
Method: 8270D - Semivolatile	Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2-Methylphenol	ND		5.0	0.40	ug/L		10/01/21 14:09	10/06/21 16:27	
Benzo[a]anthracene	ND		5.0	0.36	ug/L		10/01/21 14:09	10/06/21 16:27	
Benzo[a]pyrene	ND		5.0	0.47	ug/L		10/01/21 14:09	10/06/21 16:27	
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		10/01/21 14:09	10/06/21 16:27	
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		10/01/21 14:09	10/06/21 16:27	
Chrysene	ND		5.0	0.33	ug/L		10/01/21 14:09	10/06/21 16:27	
Dibenz(a,h)anthracene	ND		5.0		ug/L		10/01/21 14:09	10/06/21 16:27	
Indeno[1,2,3-cd]pyrene	ND		5.0		ug/L		10/01/21 14:09	10/06/21 16:27	
Naphthalene	ND		5.0		ug/L			10/06/21 16:27	
Phenol	ND		5.0		ug/L		10/01/21 14:09	10/06/21 16:27	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
	67		48 - 120				10/01/21 14:09	10/06/21 16:27	
2-Fluorobiphenyl			46 - 120				10/01/21 14:09	10/06/21 16:27	
2-Fluorobiphenyl Nitrobenzene-d5 (Surr)	72								
	72 83		60 - 148				10/01/21 14:09	10/06/21 16:27	
Nitrobenzene-d5 (Surr)			60 - 148 41 - 120					10/06/21 16:27 10/06/21 16:27	
Nitrobenzene-d5 (Surr) p-Terphenyl-d14 (Surr)	83						10/01/21 14:09		

Page 11 of 1256

Client: AECOM

2-Fluorophenol (Surr)

Phenol-d5 (Surr)

Job ID: 480-190335-1

Project/Site: NYSEG Auburn C	Green Street								
Client Sample ID: DUPL Date Collected: 09/30/21 00:0 Date Received: 10/01/21 10:2	00	-	FD of MW-6			La	ib Sample	ID: 480-190 Matrix)335-3 : Water
Method: 6010C - Metals (IC	P) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	0.97		0.050	0.019	mg/L		10/08/21 09:22	10/08/21 18:58	1
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	26.2		10.0	1.7	mg/L			10/06/21 02:18	5
Cyanide, Total	0.0057	J	0.010	0.0050	mg/L		10/05/21 12:26	10/05/21 14:18	1
Nitrate as N	ND		0.050	0.020	mg/L			10/01/21 18:46	1
Client Sample ID: MW-3 Date Collected: 09/30/21 12: Date Received: 10/01/21 10:2	11					La	ib Sample	ID: 480-190 Matrix)335-4 : Water
Method: 8260C - Volatile Or	rganic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10	3.0	ug/L			10/08/21 04:28	1
Benzene	ND		1.0	0.41	ug/L			10/08/21 04:28	1
Ethylbenzene	ND		1.0	0.74	ug/L			10/08/21 04:28	1
m-Xylene & p-Xylene	ND		2.0	0.66	ug/L			10/08/21 04:28	1
o-Xylene	ND		1.0	0.76	ug/L			10/08/21 04:28	1
Styrene	ND		1.0	0.73	ug/L			10/08/21 04:28	1
Toluene	ND		1.0	0.51	ug/L			10/08/21 04:28	1
Xylenes, Total	ND		2.0		ug/L			10/08/21 04:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		77 - 120					10/08/21 04:28	1
4-Bromofluorobenzene (Surr)	99		73 - 120					10/08/21 04:28	1
Dibromofluoromethane (Surr)	101		75 - 123					10/08/21 04:28	1
Toluene-d8 (Surr)	100		80 - 120					10/08/21 04:28	1
	-	mpounds Qualifier	(GC/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND		25	2.0	ug/L		10/01/21 14:09	10/05/21 19:21	1
Benzo[a]anthracene	ND		25	1.8	ug/L		10/01/21 14:09	10/05/21 19:21	1
Benzo[a]pyrene	ND		25	2.4	ug/L		10/01/21 14:09	10/05/21 19:21	1
Benzo[b]fluoranthene	ND		25	1.7	ug/L		10/01/21 14:09	10/05/21 19:21	1
Benzo[k]fluoranthene	ND		25		ug/L		10/01/21 14:09	10/05/21 19:21	1
Chrysene	ND		25		ug/L			10/05/21 19:21	1
Dibenz(a,h)anthracene	ND		25		ug/L		10/01/21 14:09	10/05/21 19:21	1
Indeno[1,2,3-cd]pyrene	ND		25		ug/L				1
Naphthalene	ND		25		ug/L			10/05/21 19:21	1
Phenol	ND		25		ug/L			10/05/21 19:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	64		48 - 120				10/01/21 14:09	10/05/21 19:21	1
Nitrobenzene-d5 (Surr)	62		46 - 120				10/01/21 14:09	10/05/21 19:21	1
p-Terphenyl-d14 (Surr)	73		60 - 148				10/01/21 14:09	10/05/21 19:21	1
2,4,6-Tribromophenol (Surr)	69		41 - 120					10/05/21 19:21	
	20		25 100				10/01/01 14:00	10/05/01 10:01	

1

1

10/01/21 14:09 10/05/21 19:21

10/01/21 14:09 10/05/21 19:21

Page 12 of 1256

35 - 120

22 - 120

38

28

Client: AECOM

Job ID: 480-190335-1

lient Sample ID: MW-3						La	b Sample	ID: 480-190	
ate Collected: 09/30/21 12:11 ate Received: 10/01/21 10:20								Matrix	Wate
Method: 6010C - Metals (ICP						_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Iron, Dissolved	15.9		0.050	0.019	mg/L		10/08/21 09:22	10/08/21 19:02	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Sulfate	8.9	J	20.0	3.5	mg/L			10/05/21 22:18	
Cyanide, Total	0.0091	J	0.010	0.0050	mg/L		10/05/21 12:26	10/05/21 14:11	
Nitrate as N	ND		0.050	0.020	mg/L			10/01/21 18:53	
lient Sample ID: MW-4 ate Collected: 09/30/21 14:40 ate Received: 10/01/21 10:20						La	b Sample	ID: 480-190 Matrix:	
Method: 6010C - Metals (ICP									
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
ron, Dissolved	0.22		0.050	0.019	mg/L		10/08/21 09:22	10/08/21 19:21	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
	23.0		2.0		mg/L		Tropured	10/06/21 06:01	0111
			2.0	0.00	-				
			0 020	0.010	ma/l		10/05/21 12.26	10/05/21 14.42	
Cyanide, Total Nitrate as N Iient Sample ID: MW-5 ate Collected: 09/30/21 16:51	0.55 ND		0.020 0.050	0.010 0.020	0	La		10/05/21 14:42 10/01/21 18:47 ID: 480-190 Matrix:	
Cyanide, Total Nitrate as N Ilient Sample ID: MW-5 ate Collected: 09/30/21 16:51 ate Received: 10/01/21 10:20	0.55 ND	undo by C	0.050		0	La		10/01/21 18:47	
Cyanide, Total Nitrate as N Ilent Sample ID: MW-5 ate Collected: 09/30/21 16:51 ate Received: 10/01/21 10:20 Method: 8260C - Volatile Org	0.55 ND	unds by G Qualifier	0.050		mg/L	La		10/01/21 18:47	Wat
Cyanide, Total Nitrate as N lient Sample ID: MW-5 ate Collected: 09/30/21 16:57 ate Received: 10/01/21 10:20 Method: 8260C - Volatile Org Analyte	0.55 ND		0.050 C/MS	0.020	mg/L		b Sample	10/01/21 18:47 ID: 480-190 Matrix:	Wat
Cyanide, Total Nitrate as N lient Sample ID: MW-5 ate Collected: 09/30/21 16:57 ate Received: 10/01/21 10:20 Method: 8260C - Volatile Org Analyte Acetone	0.55 ND Janic Compo Result		0.050 C/MS RL	0.020	Unit ug/L		b Sample	10/01/21 18:47 ID: 480-190 Matrix: Analyzed	Wat
Cyanide, Total Nitrate as N lient Sample ID: MW-5 ate Collected: 09/30/21 16:57 ate Received: 10/01/21 10:20 Method: 8260C - Volatile Org Analyte Acetone Benzene	0.55 ND ganic Compo Result ND		0.050 C/MS <u>RL</u> 10	0.020 MDL 3.0	Mg/L Unit ug/L ug/L		b Sample	10/01/21 18:47 ID: 480-190 Matrix: <u>Analyzed</u> 10/08/21 05:14	Wat
Cyanide, Total Nitrate as N lient Sample ID: MW-5 ate Collected: 09/30/21 16:57 ate Received: 10/01/21 10:20 Method: 8260C - Volatile Org Analyte Acetone Benzene Ethylbenzene	0.55 ND ganic Compo Result ND ND		0.050 C/MS <u>RL</u> 10 1.0	0.020 MDL 3.0 0.41 0.74	Unit ug/L ug/L ug/L		b Sample	10/01/21 18:47 ID: 480-190 Matrix: Matrix: 10/08/21 05:14	Wat
Cyanide, Total Nitrate as N Iient Sample ID: MW-5 ate Collected: 09/30/21 16:57 ate Received: 10/01/21 10:20 Method: 8260C - Volatile Org Analyte Acetone Benzene Ethylbenzene n-Xylene & p-Xylene	0.55 ND Janic Compo Result ND ND ND		0.050 C/MS <u>RL</u> 10 1.0 1.0	0.020 MDL 3.0 0.41	Unit ug/L ug/L ug/L ug/L		b Sample	10/01/21 18:47 ID: 480-190 Matrix: Matrix: 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14	Wat
Cyanide, Total Nitrate as N lient Sample ID: MW-5 ate Collected: 09/30/21 16:57 ate Received: 10/01/21 10:20 Method: 8260C - Volatile Org Analyte Acetone Benzene Ethylbenzene m-Xylene & p-Xylene o-Xylene	0.55 ND Janic Compo Result ND ND ND ND		0.050 C/MS <u>RL</u> 10 1.0 1.0 2.0	0.020 MDL 3.0 0.41 0.74 0.66	Mg/L Unit ug/L ug/L ug/L ug/L ug/L		b Sample	10/01/21 18:47 ID: 480-190 Matrix: Matrix: 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14	Wat
Cyanide, Total Nitrate as N Iient Sample ID: MW-5 ate Collected: 09/30/21 16:57 ate Received: 10/01/21 10:20 Method: 8260C - Volatile Org Analyte Acetone Benzene Ethylbenzene m-Xylene & p-Xylene D-Xylene Styrene	0.55 ND anic Compo Result ND ND ND ND ND		0.050 C/MS <u>RL</u> 10 1.0 2.0 1.0	0.020 MDL 3.0 0.41 0.74 0.66 0.76 0.73	Mg/L Unit ug/L ug/L ug/L ug/L ug/L		b Sample	10/01/21 18:47 ID: 480-190 Matrix: Matrix: 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14	Wat
Cyanide, Total Nitrate as N Iient Sample ID: MW-5 ate Collected: 09/30/21 16:57 ate Received: 10/01/21 10:20 Method: 8260C - Volatile Org Analyte Acetone Benzene Ethylbenzene m-Xylene & p-Xylene o-Xylene Styrene Foluene	0.55 ND Janic Compo Result ND ND ND ND ND ND		0.050 C/MS RL 10 1.0 2.0 1.0 1.0 1.0	0.020 MDL 3.0 0.41 0.74 0.66 0.76 0.73	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		b Sample	10/01/21 18:47 ID: 480-190 Matrix: Matrix: 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14	Wat
Cyanide, Total Nitrate as N Ilient Sample ID: MW-5 ate Collected: 09/30/21 16:57 ate Received: 10/01/21 10:20 Method: 8260C - Volatile Org Analyte Acetone Benzene Ethylbenzene m-Xylene & p-Xylene o-Xylene Styrene Toluene Xylenes, Total	0.55 ND ganic Compo Result ND ND ND ND ND ND ND ND ND ND	Qualifier	0.050 C/MS RL 10 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0	0.020 MDL 3.0 0.41 0.74 0.66 0.76 0.73 0.51	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		b Sample	10/01/21 18:47 ID: 480-190 Matrix: Matrix: 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14	Dil F
Cyanide, Total Nitrate as N Ilient Sample ID: MW-5 ate Collected: 09/30/21 16:57 ate Received: 10/01/21 10:20 Method: 8260C - Volatile Org Analyte Acetone Benzene Ethylbenzene m-Xylene & p-Xylene o-Xylene Styrene Toluene Xylenes, Total Surrogate	0.55 ND ganic Compo Result ND ND ND ND ND ND ND ND ND ND ND	Qualifier	0.050 C/MS RL 10 1.0 2.0 1.0 1.0 1.0 2.0 2.0	0.020 MDL 3.0 0.41 0.74 0.66 0.76 0.73 0.51	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		b Sample Prepared	10/01/21 18:47 ID: 480-190 Matrix: Matrix: 0/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14	Dil F
Cyanide, Total Nitrate as N lient Sample ID: MW-5 ate Collected: 09/30/21 16:57 ate Received: 10/01/21 10:20 Method: 8260C - Volatile Org Analyte Acetone Benzene Ethylbenzene m-Xylene & p-Xylene b-Xylene Styrene Styrene Toluene Xylenes, Total Surrogate 1,2-Dichloroethane-d4 (Surr)	0.55 ND ganic Compo Result ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier	0.050 C/MS RL 10 1.0 2.0 1.0 1.0 2.0 1.0 2.0 Limits	0.020 MDL 3.0 0.41 0.74 0.66 0.76 0.73 0.51	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		b Sample Prepared	10/01/21 18:47 ID: 480-190 Matrix: Matrix: Matrix: 0/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14	Dil F
Cyanide, Total Nitrate as N lient Sample ID: MW-5 ate Collected: 09/30/21 16:57 ate Received: 10/01/21 10:20 Method: 8260C - Volatile Org Analyte Acetone Benzene Ethylbenzene m-Xylene & p-Xylene o-Xylene Styrene Toluene Xylenes, Total Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr)	0.55 ND ganic Compo Result ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier	0.050 C/MS RL 10 1.0 1.0 2.0 1.0 1.0 2.0 Limits 77 - 120	0.020 MDL 3.0 0.41 0.74 0.66 0.76 0.73 0.51	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		b Sample Prepared	10/01/21 18:47 ID: 480-190 Matrix: Matrix: Matrix: Matrix: 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14	Dil F
Cyanide, Total Nitrate as N lient Sample ID: MW-5 ate Collected: 09/30/21 16:57 ate Received: 10/01/21 10:20 Method: 8260C - Volatile Org Analyte Acetone Benzene Ethylbenzene m-Xylene & p-Xylene o-Xylene Styrene Toluene Xylenes, Total Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr)	0.55 ND anic Compo Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier	0.050 C/MS RL 10 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 7.120 73 - 120	0.020 MDL 3.0 0.41 0.74 0.66 0.76 0.73 0.51	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		b Sample Prepared	10/01/21 18:47 ID: 480-190 Matrix: Matrix: Matrix: 10 /08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 Malyzed 10 /08/21 05:14 10/08/21 05:14	Dil F
Cyanide, Total Nitrate as N lient Sample ID: MW-5 ate Collected: 09/30/21 16:57 ate Received: 10/01/21 10:20 Method: 8260C - Volatile Org Analyte Acetone Benzene Ethylbenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene Styrene Toluene Xylenes, Total Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr)	0.55 ND anic Compo Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	0.050 C/MS RL 10 1.0 1.0 2.0 1.0 1.0 2.0 2.0 1.0 2.0 2.0 1.0 2.0 2.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	0.020 MDL 3.0 0.41 0.74 0.66 0.76 0.73 0.51	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		b Sample Prepared	10/01/21 18:47 ID: 480-190 Matrix: Matrix: Matrix: Matrix: 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14	Dil F
Cyanide, Total Nitrate as N lient Sample ID: MW-5 ate Collected: 09/30/21 16:57 ate Received: 10/01/21 10:20 Method: 8260C - Volatile Org Analyte Acetone Benzene Ethylbenzene m-Xylene & p-Xylene Sylene Styrene Toluene Xylenes, Total Surrogate 1,2-Dichloroethane-d4 (Surr) A-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: 8270D - Semivolatile	0.55 ND anic Comport Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	0.050 C/MS RL 10 1.0 1.0 2.0 1.0 1.0 2.0 2.0 1.0 2.0 2.0 1.0 2.0 2.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	0.020 MDL 3.0 0.41 0.74 0.66 0.76 0.73 0.51	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		b Sample Prepared	10/01/21 18:47 ID: 480-190 Matrix: Matrix: Matrix: Matrix: 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14	Dil F
Cyanide, Total Nitrate as N lient Sample ID: MW-5 ate Collected: 09/30/21 16:57 ate Received: 10/01/21 10:20 Method: 8260C - Volatile Org Analyte Acetone Benzene Ethylbenzene m-Xylene & p-Xylene Styrene Toluene Kylenes, Total Surrogate 1,2-Dichloroethane-d4 (Surr) A-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: 8270D - Semivolatile Analyte	0.55 ND anic Comport Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	0.050 C/MS RL 10 1.0 1.0 2.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0 2.0 2.0 1.0 2.0 2.0 2.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	0.020 MDL 3.0 0.41 0.74 0.66 0.73 0.51 0.66	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	b Sample Prepared Prepared	10/01/21 18:47 ID: 480-190 Matrix: Matrix: Matrix: Matrix: Matrix: 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14 10/08/21 05:14	Dil F
Cyanide, Total Nitrate as N lient Sample ID: MW-5 ate Collected: 09/30/21 16:57 ate Received: 10/01/21 10:20 Method: 8260C - Volatile Org Analyte Acetone Benzene Ethylbenzene m-Xylene & p-Xylene b-Xylene Styr	0.55 ND anic Comport Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	0.050 C/MS RL 10 1.0 2.0 2.0 1.0 2.0 1.0 2.0 2.0 1.0 2.0 2.0 1.0 2.0 2.0 1.0 2.0 1.0 2.0 2.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	0.020 MDL 3.0 0.41 0.74 0.66 0.73 0.51 0.66 MDL	Mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	b Sample Prepared Prepared Prepared	10/01/21 18:47 ID: 480-190 Matrix: Matrix: Matrix: Matrix: Matrix: 10/08/21 05:14 10/08/21 05:14 10/0	Dil F
Cyanide, Total Nitrate as N lient Sample ID: MW-5 ate Collected: 09/30/21 16:57 ate Received: 10/01/21 10:20 Method: 8260C - Volatile Org Analyte Acetone Benzene Ethylbenzene m-Xylene & p-Xylene b-Xylene Styrene Toluene Xylenes, Total Surrogate 1,2-Dichloroethane-d4 (Surr) A-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: 8270D - Semivolatile Analyte 2-Methylphenol Benzo[a]anthracene	0.55 ND anic Compo Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	0.050 C/MS RL 10 1.0 1.0 2.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	0.020 MDL 3.0 0.41 0.74 0.66 0.73 0.51 0.66 MDL 0.40	Mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared Prepared Prepared 10/01/21 10/01/21 10/01/21	10/01/21 18:47 ID: 480-190 Matrix: M	Dil F
Sulfate Cyanide, Total Nitrate as N Client Sample ID: MW-5 ate Collected: 09/30/21 16:57 ate Received: 10/01/21 10:20 Method: 8260C - Volatile Org Analyte Acetone Benzene Ethylbenzene m-Xylene & p-Xylene o-Xylene Styrene Toluene Xylenes, Total Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: 8270D - Semivolatile Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene	0.55 ND anic Compor Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	0.050 C/MS RL 10 1.0 2.0 1.0 2.0 1.0 2.0 Limits 77 - 120 73 - 120 73 - 120 75 - 123 80 - 120 (GC/MS) RL 5.0 5.0	0.020 MDL 3.0 0.41 0.74 0.66 0.73 0.51 0.66 MDL 0.40 0.40 0.36	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared Prepared Prepared 10/01/21 10/01/21 10/01/21 10/01/21 10/01/21 10/01/21	10/01/21 18:47 ID: 480-190 Matrix: M	Dil F
Cyanide, Total Nitrate as N Client Sample ID: MW-5 ate Collected: 09/30/21 16:57 ate Received: 10/01/21 10:20 Method: 8260C - Volatile Org Analyte Acetone Benzene Ethylbenzene m-Xylene & p-Xylene o-Xylene Styrene Toluene Xylenes, Total Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: 8270D - Semivolatile Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene	0.55 ND anic Compor Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	0.050 C/MS RL 10 10 1.0 2.0 1.0 2.0 1.0 2.0 Limits 77 - 120 73 - 120 73 - 120 75 - 123 80 - 120 (GC/MS) RL 5.0 5.0 5.0	0.020 MDL 3.0 0.41 0.74 0.66 0.73 0.51 0.66 MDL 0.40 0.36 0.47	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared Prepared 10/01/21 10/01/21 10/01/21 10/01/21 10/01/21 10/01/21 10/01/21 10/01/21	10/01/21 18:47 ID: 480-190 Matrix: M	

Eurofins TestAmerica, Buffalo

Client Sample ID: MW-5 Date Collected: 09/30/21 16:51

Lab Sample ID: 480-190335-6 Matrix: Water

Date Received: 10/01/21 10:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		10/01/21 14:09	10/06/21 17:19	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		10/01/21 14:09	10/06/21 17:19	1
Naphthalene	ND		5.0	0.76	ug/L		10/01/21 14:09	10/06/21 17:19	1
Phenol	ND		5.0	0.39	ug/L		10/01/21 14:09	10/06/21 17:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	87		48 - 120				10/01/21 14:09	10/06/21 17:19	1
Nitrobenzene-d5 (Surr)	89		46 - 120				10/01/21 14:09	10/06/21 17:19	1
p-Terphenyl-d14 (Surr)	100		60 - 148				10/01/21 14:09	10/06/21 17:19	1
2,4,6-Tribromophenol (Surr)	90		41 - 120				10/01/21 14:09	10/06/21 17:19	1
2-Fluorophenol (Surr)	59		35 - 120				10/01/21 14:09	10/06/21 17:19	1
Phenol-d5 (Surr)	44		22 - 120				10/01/21 14:09	10/06/21 17:19	1
Method: 6010C - Metals (IC	P) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	ND		0.050	0.019	mg/L		10/08/21 09:22	10/08/21 19:25	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	52.4		10.0	1.7	mg/L			10/06/21 06:19	5
Cyanide, Total	ND		0.010	0.0050	mg/L		10/05/21 12:26	10/05/21 14:24	1
Nitrate as N	3.5		0.050	0.020	mg/L			10/01/21 19:18	1

Client Sample ID: TRIP BLANK Date Collected: 09/30/21 00:00 Date Received: 10/01/21 10:20

Lab Sample ID: 480-190335-7

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10	3.0	ug/L			10/08/21 05:36	1
Benzene	ND		1.0	0.41	ug/L			10/08/21 05:36	1
Ethylbenzene	ND		1.0	0.74	ug/L			10/08/21 05:36	1
Styrene	ND		1.0	0.73	ug/L			10/08/21 05:36	1
Toluene	ND		1.0	0.51	ug/L			10/08/21 05:36	1
Xylenes, Total	ND		2.0	0.66	ug/L			10/08/21 05:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		77 - 120					10/08/21 05:36	1
4-Bromofluorobenzene (Surr)	99		73 - 120					10/08/21 05:36	1
Dibromofluoromethane (Surr)	105		75 - 123					10/08/21 05:36	1
Toluene-d8 (Surr)	100		80 - 120					10/08/21 05:36	1

5

6

Client Sample ID: MW-1 Date Collected: 09/30/21 15:47 Date Received: 10/01/21 10:20

Lab	Sample	ID:	480-190	335-1
			Matrix:	Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10	3.0	ug/L			10/08/21 03:19	1
Benzene	ND		1.0	0.41	ug/L			10/08/21 03:19	1
Ethylbenzene	ND		1.0	0.74	ug/L			10/08/21 03:19	1
m-Xylene & p-Xylene	ND		2.0	0.66	ug/L			10/08/21 03:19	1
o-Xylene	ND		1.0	0.76	ug/L			10/08/21 03:19	1
Styrene	ND		1.0	0.73	ug/L			10/08/21 03:19	1
Toluene	ND		1.0	0.51	ug/L			10/08/21 03:19	1
Xylenes, Total	ND		2.0	0.66	ug/L			10/08/21 03:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		77 - 120					10/08/21 03:19	1
4-Bromofluorobenzene (Surr)	92		73 - 120					10/08/21 03:19	1
Dibromofluoromethane (Surr)	102		75 - 123					10/08/21 03:19	1
Toluene-d8 (Surr)	97		80 - 120					10/08/21 03:19	1
Method: 8270D - Semivolat	ile Organic Co	mpounds	(GC/MS)						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol			5.0	0.40	ua/l		10/01/21 14.00	10/06/21 01.27	1

4-Bromofluorobenzene (Surr)	92		73 - 120					10/08/21 03:19	1	
Dibromofluoromethane (Surr)	102		75 - 123					10/08/21 03:19	1	
Toluene-d8 (Surr)	97		80 - 120					10/08/21 03:19	1	
Mathedu 2270D Samiyala	tilo Organio Co	manaunda								
Method: 8270D - Semivolat	-					_				
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac	1
2-Methylphenol	ND		5.0	0.40	ug/L		10/01/21 14:09	10/06/21 01:27	1	
Benzo[a]anthracene	ND		5.0	0.36	ug/L		10/01/21 14:09	10/06/21 01:27	1	
Benzo[a]pyrene	ND		5.0	0.47	ug/L		10/01/21 14:09	10/06/21 01:27	1	
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		10/01/21 14:09	10/06/21 01:27	1	
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		10/01/21 14:09	10/06/21 01:27	1	
Chrysene	ND		5.0	0.33	ug/L		10/01/21 14:09	10/06/21 01:27	1	
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		10/01/21 14:09	10/06/21 01:27	1	
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		10/01/21 14:09	10/06/21 01:27	1	
Naphthalene	ND		5.0	0.76	ug/L		10/01/21 14:09	10/06/21 01:27	1	
Phenol	ND		5.0	0.39	ug/L		10/01/21 14:09	10/06/21 01:27	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
2-Fluorobiphenyl	79		48 - 120				10/01/21 14:09	10/06/21 01:27	1	
Nitrobenzene-d5 (Surr)	76		46 - 120				10/01/21 14:09	10/06/21 01:27	1	
p-Terphenyl-d14 (Surr)	91		60 - 148				10/01/21 14:09	10/06/21 01:27	1	
2,4,6-Tribromophenol (Surr)	89		41 - 120				10/01/21 14:09	10/06/21 01:27	1	
2-Fluorophenol (Surr)	45		35 - 120				10/01/21 14:09	10/06/21 01:27	1	
Phenol-d5 (Surr)	34		22 - 120				10/01/21 14:09	10/06/21 01:27	1	

Client: AECOM Project/Site: NYSEG Auburn Green Street Job ID: 480-190335-2

Client Sample ID: MW-4 Date Collected: 09/30/21 14:40 Date Received: 10/01/21 10:20

Lab	Sample	ID:	480-190335-5
			Matular Mater

Matrix: Water

5

6

7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		800	240	ug/L			10/08/21 04:51	80
Benzene	3200		80	33	ug/L			10/08/21 04:51	80
Ethylbenzene	ND		80	59	ug/L			10/08/21 04:51	80
m-Xylene & p-Xylene	120	J	160	53	ug/L			10/08/21 04:51	80
o-Xylene	ND		80	61	ug/L			10/08/21 04:51	80
Styrene	ND		80	58	ug/L			10/08/21 04:51	80
Toluene	150		80	41	ug/L			10/08/21 04:51	80
Xylenes, Total	120	J	160	53	ug/L			10/08/21 04:51	80
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		77 - 120					10/08/21 04:51	80
4-Bromofluorobenzene (Surr)	94		73 - 120					10/08/21 04:51	80
Dibromofluoromethane (Surr)	97		75 - 123					10/08/21 04:51	80
Toluene-d8 (Surr)	101		80 - 120					10/08/21 04:51	80
Method: 8270D - Semivola	tile Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	ŔL	MDL		D	Prepared	Analyzed	
Analyte 2-Methylphenol	Result ND	1 State 1 Stat	RL 5.0	0.40	ug/L	<u>D</u>	10/01/21 14:09	10/06/21 16:53	1
Analyte 2-Methylphenol Benzo[a]anthracene	Result ND ND	1 State 1 Stat	RL 5.0 5.0	0.40 0.36	ug/L ug/L	<u>D</u>	10/01/21 14:09 10/01/21 14:09	10/06/21 16:53 10/06/21 16:53	1
Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene	Result ND ND ND ND	1 State 1 Stat	RL 5.0 5.0 5.0 5.0	0.40 0.36 0.47	ug/L ug/L ug/L	<u> </u>	10/01/21 14:09 10/01/21 14:09 10/01/21 14:09	10/06/21 16:53 10/06/21 16:53 10/06/21 16:53	1
Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene	Result ND ND ND ND ND ND	1 State 1 Stat	RL 5.0 5.0 5.0 5.0 5.0	0.40 0.36 0.47 0.34	ug/L ug/L ug/L ug/L	<u>D</u>	10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09	10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53	1 1 1 1
Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene	Result ND ND ND ND ND ND ND ND ND	1 State 1 Stat	RL 5.0 5.0 5.0 5.0 5.0 5.0	0.40 0.36 0.47 0.34 0.73	ug/L ug/L ug/L ug/L ug/L	<u> </u>	10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09	10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53	1 1 1 1 1
Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Chrysene	Result ND	1 State 1 Stat	RL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.40 0.36 0.47 0.34 0.73 0.33	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09	10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53	1 1 1 1 1 1 1
Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Chrysene Dibenz(a,h)anthracene	Result ND	1 State 1 Stat	RL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.40 0.36 0.47 0.34 0.73 0.33 0.42	ug/L ug/L ug/L ug/L ug/L ug/L	<u> </u>	10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09	10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53	1 1 1 1 1 1 1
Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Chrysene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene	Result ND ND ND ND ND ND ND ND ND	1 State 1 Stat	RL 5.0	0.40 0.36 0.47 0.34 0.73 0.33 0.42 0.47	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09	10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53	1 1 1 1 1 1 1 1 1
Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Chrysene Dibenz(a,h)anthracene	Result ND	1 State 1 Stat	RL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.40 0.36 0.47 0.34 0.73 0.33 0.42 0.47 0.76	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09	10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1
Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Chrysene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Naphthalene Phenol	Result ND ND ND ND ND ND ND ND ND	Qualifier	RL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.40 0.36 0.47 0.34 0.73 0.33 0.42 0.47 0.76	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09	10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53	1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Chrysene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Naphthalene	Result ND ND ND ND ND ND ND ND ND ND	Qualifier	RL 5.0	0.40 0.36 0.47 0.34 0.73 0.33 0.42 0.47 0.76	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09	10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Chrysene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Naphthalene Phenol Surrogate 2-Fluorobiphenyl	Result ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier	RL 5.0	0.40 0.36 0.47 0.34 0.73 0.33 0.42 0.47 0.76	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/01/21 14:09 10/01/21 14:09	10/06/21 16:53 10/06/21 16:53	Dil Fa
Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Chrysene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Naphthalene Phenol Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr)	Result ND 80	Qualifier	RL 5.0 48 - 120	0.40 0.36 0.47 0.34 0.73 0.33 0.42 0.47 0.76	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09 10/01/21 14:09	10/06/21 16:53 10/06/21 16:53	Dil Fa
Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Chrysene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Naphthalene Phenol Surrogate	Result ND ND	Qualifier	RL 5.0 48 - 120 46 - 120	0.40 0.36 0.47 0.34 0.73 0.33 0.42 0.47 0.76	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/01/21 14:09 10/01/21 14:09	10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53 10/06/21 16:53	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Chrysene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Naphthalene Phenol Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 (Surr)	Result ND ND	Qualifier	RL 5.0 60 - 148	0.40 0.36 0.47 0.34 0.73 0.33 0.42 0.47 0.76	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/01/21 14:09 10/01/21 14:09	10/06/21 16:53 10/06/21 16:53	1 1 1 1 1 1 1 1 1 1 1

Client Sample ID: MW-2 Date Collected: 10/04/21 10:00 Date Received: 10/05/21 08:55

Lab Sample ID: 480-190421-1 Matrix: Water

Method: 8270D - Semivolatile Organic Compounds (GC/MS) **Result Qualifier** MDL Unit D Dil Fac Analyte RL Prepared Analyzed 5.0 10/06/21 14:15 10/08/21 17:46 2-Methylphenol ND 0.40 ug/L 1 ND 5.0 Benzo[a]anthracene 0.36 ug/L 10/06/21 14:15 10/08/21 17:46 1 Benzo[a]pyrene ND 5.0 0.47 ug/L 10/06/21 14:15 10/08/21 17:46 1 Benzo[b]fluoranthene ND 5.0 0.34 ug/L 10/06/21 14:15 10/08/21 17:46 1 Benzo[k]fluoranthene ND 5.0 0.73 ug/L 10/06/21 14:15 10/08/21 17:46 1 Chrysene ND 5.0 0.33 ug/L 10/06/21 14:15 10/08/21 17:46 1 ND 5.0 0.42 ug/L Dibenz(a,h)anthracene 10/06/21 14:15 10/08/21 17:46 1 0.47 ug/L 5.0 10/06/21 14:15 10/08/21 17:46 Indeno[1,2,3-cd]pyrene ND 1 Naphthalene ND 5.0 0.76 ug/L 10/06/21 14:15 10/08/21 17:46 1 ND Phenol 5.0 0.39 ug/L 10/06/21 14:15 10/08/21 17:46 1 Dil Fac Surrogate %Recovery Qualifier I imits Prepared Analyzed 2-Fluorobiphenyl 104 48 - 120 10/06/21 14:15 10/08/21 17:46 1 Nitrobenzene-d5 (Surr) 103 46 - 120 10/06/21 14:15 10/08/21 17:46 1 10/06/21 14:15 10/08/21 17:46 p-Terphenyl-d14 (Surr) 103 60 - 148 1 2,4,6-Tribromophenol (Surr) 114 41 - 120 10/06/21 14:15 10/08/21 17:46 1 35 - 120 2-Fluorophenol (Surr) 68 10/06/21 14:15 10/08/21 17:46 1 10/06/21 14:15 10/08/21 17:46 Phenol-d5 (Surr) 52 22 - 120 1 Method: 6010C - Metals (ICP) - Dissolved Analyte Result Qualifier RL MDL Unit D Prepared Analyzed **Dil Fac** Iron, Dissolved 0.050 U 0.050 0.019 mg/L 10/08/21 09:22 10/08/21 19:40 1 **General Chemistry** MDL Unit Analyte Result Qualifier RL D Prepared Analyzed Dil Fac 10.0 5 Sulfate 32.1 1.7 mg/L 10/07/21 23:49 0.010 0.0050 mg/L 10/08/21 10:26 10/08/21 12:27 Cyanide, Total 0.053 1 0.050 10/05/21 19:11 Nitrate as N 0.020 mg/L 1.7 1 Client Sample ID: MW-7 Lab Sample ID: 480-190421-2 Date Collected: 10/04/21 11:15 Matrix: Water

Date Received: 10/05/21 08:55

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND ND	5.0	0.40	ug/L		10/06/21 14:15	10/08/21 18:12	1
Benzo[a]anthracene	ND	5.0	0.36	ug/L		10/06/21 14:15	10/08/21 18:12	1
Benzo[a]pyrene	ND	5.0	0.47	ug/L		10/06/21 14:15	10/08/21 18:12	1
Benzo[b]fluoranthene	ND	5.0	0.34	ug/L		10/06/21 14:15	10/08/21 18:12	1
Benzo[k]fluoranthene	ND	5.0	0.73	ug/L		10/06/21 14:15	10/08/21 18:12	1
Chrysene	ND	5.0	0.33	ug/L		10/06/21 14:15	10/08/21 18:12	1
Dibenz(a,h)anthracene	ND	5.0	0.42	ug/L		10/06/21 14:15	10/08/21 18:12	1
Indeno[1,2,3-cd]pyrene	ND	5.0	0.47	ug/L		10/06/21 14:15	10/08/21 18:12	1
Naphthalene	ND	5.0	0.76	ug/L		10/06/21 14:15	10/08/21 18:12	1
Phenol	ND	5.0	0.39	ug/L		10/06/21 14:15	10/08/21 18:12	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	107	48 - 120				10/06/21 14:15	10/08/21 18:12	1
Nitrobenzene-d5 (Surr)	105	46 - 120				10/06/21 14:15	10/08/21 18:12	1
p-Terphenyl-d14 (Surr)	101	60 - 148				10/06/21 14:15	10/08/21 18:12	1
2,4,6-Tribromophenol (Surr)	115	41 - 120				10/06/21 14:15	10/08/21 18:12	1

Client Sample ID: MW-7 Date Collected: 10/04/21 11:15 Date Received: 10/05/21 08:55

Lab Sample ID: 480-190421-2 Matrix: Water

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorophenol (Surr)	70		35 - 120				10/06/21 14:15	10/08/21 18:12	1
Phenol-d5 (Surr)	54		22 - 120				10/06/21 14:15	10/08/21 18:12	1
) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	10		0.050	0.019	mg/L		10/08/21 09:22	10/08/21 19:44	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	6.2	J	10.0	1.7	mg/L			10/08/21 00:08	5
Cyanide, Total	0.0088	J	0.010	0.0050	mg/L		10/08/21 10:26	10/08/21 12:29	1
Nitrate as N	ND		0.050	0.020	ma/L			10/05/21 19:12	1

Client Sample ID: MW-8

Date Collected: 10/04/21 13:00 Date Received: 10/05/21 08:55

Lab Sample ID: 480-190421-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND		5.0	0.40	ug/L		10/06/21 14:15	10/08/21 17:20	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		10/06/21 14:15	10/08/21 17:20	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		10/06/21 14:15	10/08/21 17:20	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		10/06/21 14:15	10/08/21 17:20	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		10/06/21 14:15	10/08/21 17:20	1
Chrysene	ND		5.0	0.33	ug/L		10/06/21 14:15	10/08/21 17:20	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		10/06/21 14:15	10/08/21 17:20	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		10/06/21 14:15	10/08/21 17:20	1
Naphthalene	ND		5.0	0.76	ug/L		10/06/21 14:15	10/08/21 17:20	1
Phenol	ND		5.0	0.39	ug/L		10/06/21 14:15	10/08/21 17:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	100		48 - 120				10/06/21 14:15	10/08/21 17:20	1
Nitrobenzene-d5 (Surr)	97		46 - 120				10/06/21 14:15	10/08/21 17:20	1
p-Terphenyl-d14 (Surr)	98		60 - 148				10/06/21 14:15	10/08/21 17:20	1
2,4,6-Tribromophenol (Surr)	104		41 - 120				10/06/21 14:15	10/08/21 17:20	1
2-Fluorophenol (Surr)	67		35 - 120				10/06/21 14:15	10/08/21 17:20	1
Phenol-d5 (Surr)	51		22 - 120				10/06/21 14:15	10/08/21 17:20	1
Method: 6010C - Metals (IC	CP) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	14.5		0.050	0.019	mg/L		10/08/21 09:22	10/08/21 19:48	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	19.5	J	20.0	3.5	mg/L			10/08/21 00:26	10
Cyanide, Total	0.0054	J	0.010	0.0050	mg/L		10/08/21 10:26	10/08/21 12:30	1
Nitrate as N	0.37		0.050	0.020	ma/l			10/05/21 19:23	1

Client: AECOM

Job ID: 480-190421-1

Client Sample ID: MW-9 ate Collected: 10/04/21 16:55						La	b Sample	ID: 480-190 Matrix:	
ate Received: 10/05/21 08:55									
Method: 6010C - Metals (ICP) Analyte		Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	0.92	Quaimer	0.050	0.019			<u> </u>	10/08/21 19:52	
	0.02		0.000	0.010					
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Sulfate	20.6		10.0		mg/L			10/08/21 00:45	Ę
Cyanide, Total	0.088		0.010	0.0050	0		10/08/21 10:26	10/08/21 12:32	
Nitrate as N	0.036	J	0.050	0.020	mg/L			10/05/21 19:24	
lient Sample ID: MW-10						La	b Sample	ID: 480-190	421-
ate Collected: 10/04/21 14:40 ate Received: 10/05/21 08:55							-	Matrix	: Wate
Method: 6010C - Metals (ICP)	- Dissolved								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
ron, Dissolved	0.11		0.050	0.019	mg/L		10/08/21 09:22	10/08/21 19:55	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Sulfate	23.2		2.0	0.35	mg/L			10/08/21 01:03	
			0.010	0.0050	ma/L		10/08/21 10:26	10/08/21 12:33	
Cyanide, Total	0.28		0.010	0.0000					
	0.28	J	0.050	0.020	0			10/05/21 19:26	1
Nitrate as N	0.029		0.050		0		h Sampla		
Nitrate as N lient Sample ID: RISE BL	0.029	J RINSE E	0.050		0	La	b Sample	ID: 480-190	421-6
Cyanide, Total Nitrate as N Client Sample ID: RISE BL ate Collected: 10/04/21 17:20 ate Received: 10/05/21 08:55	0.029		0.050		0	La	b Sample		421-6
Nitrate as N lient Sample ID: RISE BL ate Collected: 10/04/21 17:20 ate Received: 10/05/21 08:55	0.029 ANK	RINSE E	0.050 BLANK		0	La	b Sample	ID: 480-190	421-6
Nitrate as N lient Sample ID: RISE BL ate Collected: 10/04/21 17:20 ate Received: 10/05/21 08:55 Method: 8270D - Semivolatile	0.029 ANK Organic Co	RINSE E	0.050 BLANK (GC/MS)	0.020	mg/L			ID: 480-190 Matrix	9421-6 : Water
Nitrate as N Client Sample ID: RISE BL ate Collected: 10/04/21 17:20 ate Received: 10/05/21 08:55 Method: 8270D - Semivolatile Analyte	0.029 ANK Organic Co Result	RINSE E	0.050 BLANK (GC/MS) RL	0.020	mg/L	La	Prepared	ID: 480-190 Matrix	0421-6 : Water Dil Fac
Nitrate as N lient Sample ID: RISE BL ate Collected: 10/04/21 17:20 ate Received: 10/05/21 08:55 Method: 8270D - Semivolatile Analyte 2-Methylphenol	0.029 ANK Organic Co Result ND	RINSE E	0.050 BLANK (GC/MS) <u>RL</u> 5.0	0.020 MDL 0.40	Unit ug/L		Prepared 10/06/21 14:15	ID: 480-190 Matrix Analyzed 10/08/21 18:38	0421-6 : Water Dil Fac
Nitrate as N lient Sample ID: RISE BL ate Collected: 10/04/21 17:20 ate Received: 10/05/21 08:55 Method: 8270D - Semivolatile Analyte 2-Methylphenol Benzo[a]anthracene	0.029 ANK Organic Co Result ND ND	RINSE E	0.050 BLANK (GC/MS) <u>RL</u> 5.0 5.0	0.020 MDL 0.40 0.36	Unit ug/L ug/L		Prepared 10/06/21 14:15 10/06/21 14:15	Analyzed 10/08/21 18:38 10/08/21 18:38	Dil Fac
Nitrate as N lient Sample ID: RISE BL ate Collected: 10/04/21 17:20 ate Received: 10/05/21 08:55 Method: 8270D - Semivolatile Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene	0.029 ANK Organic Co Result ND ND ND	RINSE E	0.050 BLANK (GC/MS) <u>RL</u> 5.0 5.0 5.0	0.020 MDL 0.40 0.36 0.47	mg/L Unit ug/L ug/L ug/L		Prepared 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15	Analyzed 10/08/21 18:38 10/08/21 18:38	Dil Fac
Nitrate as N lient Sample ID: RISE BL ate Collected: 10/04/21 17:20 ate Received: 10/05/21 08:55 Method: 8270D - Semivolatile Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene	0.029 ANK Organic Co Result ND ND ND ND	RINSE E	0.050 BLANK (GC/MS) <u>RL</u> 5.0 5.0 5.0 5.0	0.020 MDL 0.40 0.36 0.47 0.34	mg/L Unit ug/L ug/L ug/L ug/L		Prepared 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15	Analyzed 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38	Dil Fac
Nitrate as N lient Sample ID: RISE BL ate Collected: 10/04/21 17:20 ate Received: 10/05/21 08:55 Method: 8270D - Semivolatile Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene	0.029 ANK Organic Co Result ND ND ND ND ND	RINSE E	0.050 BLANK (GC/MS) <u>RL</u> 5.0 5.0 5.0 5.0 5.0 5.0	0.020 MDL 0.40 0.36 0.47 0.34 0.73	mg/L Unit ug/L ug/L ug/L ug/L ug/L		Prepared 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15	Analyzed 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38	Dil Fac
Nitrate as N lient Sample ID: RISE BL ate Collected: 10/04/21 17:20 ate Received: 10/05/21 08:55 Method: 8270D - Semivolatile Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Chrysene	0.029 ANK Organic Co Result ND ND ND ND ND ND	RINSE E	0.050 BLANK (GC/MS) RL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.020 MDL 0.40 0.36 0.47 0.34 0.73 0.33	mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15	Analyzed Analyzed 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38	Dil Fac
Nitrate as N lient Sample ID: RISE BL ate Collected: 10/04/21 17:20 ate Received: 10/05/21 08:55 Method: 8270D - Semivolatile Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Chrysene Dibenz(a,h)anthracene	0.029 ANK Organic Co Result ND ND ND ND ND ND ND	RINSE E	0.050 BLANK (GC/MS) RL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.020 MDL 0.40 0.36 0.47 0.34 0.73 0.33 0.42	Mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15	Analyzed 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38	Dil Fa
Nitrate as N lient Sample ID: RISE BL ate Collected: 10/04/21 17:20 ate Received: 10/05/21 08:55 Method: 8270D - Semivolatile Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Chrysene Dibenz(a,h)anthracene indeno[1,2,3-cd]pyrene	0.029 ANK Organic Co Result ND ND ND ND ND ND ND ND ND	RINSE E	0.050 BLANK (GC/MS) RL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.020 MDL 0.40 0.36 0.47 0.34 0.73 0.33 0.42 0.47	mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15	Analyzed 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38	Dil Fa
Nitrate as N lient Sample ID: RISE BL ate Collected: 10/04/21 17:20 ate Received: 10/05/21 08:55 Method: 8270D - Semivolatile Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[b]fluoranthene Chrysene Dibenz(a,h)anthracene ndeno[1,2,3-cd]pyrene Naphthalene	0.029 ANK Organic Co Result ND ND ND ND ND ND ND	RINSE E	0.050 BLANK (GC/MS) RL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.020 MDL 0.40 0.36 0.47 0.34 0.73 0.33 0.42 0.47 0.76	mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15	Analyzed 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38	Dil Fac
Nitrate as N lient Sample ID: RISE BL ate Collected: 10/04/21 17:20 ate Received: 10/05/21 08:55 Method: 8270D - Semivolatile Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Chrysene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Naphthalene Phenol	0.029 ANK Organic Co Result ND ND ND ND ND ND ND ND ND	RINSE E	0.050 BLANK (GC/MS) RL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.020 MDL 0.40 0.36 0.47 0.34 0.73 0.33 0.42 0.47 0.76	mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15	Analyzed 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38	Dil Fac
Nitrate as N lient Sample ID: RISE BL ate Collected: 10/04/21 17:20 ate Received: 10/05/21 08:55 Method: 8270D - Semivolatile Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Chrysene Dibenz(a,h)anthracene ndeno[1,2,3-cd]pyrene Naphthalene Phenol Surrogate	0.029 ANK Organic Co Result ND ND ND ND ND ND ND ND ND ND ND	RINSE E	0.050 BLANK (GC/MS) RL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.020 MDL 0.40 0.36 0.47 0.34 0.73 0.33 0.42 0.47 0.76	mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 10/06/21 14:15 10/06/21 14:15	Analyzed 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38 10/08/21 18:38	Dil Fac
Nitrate as N lient Sample ID: RISE BL ate Collected: 10/04/21 17:20 ate Received: 10/05/21 08:55 Method: 8270D - Semivolatile Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[b]fluoranthene Chrysene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Naphthalene Phenol Surrogate 2-Fluorobiphenyl	0.029 ANK Organic Co Result ND ND ND ND ND ND ND ND ND ND ND ND	RINSE E	0.050 BLANK (GC/MS) RL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.020 MDL 0.40 0.36 0.47 0.34 0.73 0.33 0.42 0.47 0.76	mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 Prepared 10/06/21 14:15	Analyzed 10/08/21 18:38 10/08/21 18:38	Dil Fac
Nitrate as N lient Sample ID: RISE BL ate Collected: 10/04/21 17:20 ate Received: 10/05/21 08:55 Method: 8270D - Semivolatile Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[a]pyrene Benzo[b]fluoranthene Chrysene Dibenz(a,h)anthracene ndeno[1,2,3-cd]pyrene Naphthalene Phenol Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr)	0.029 ANK Organic Co Result ND ND ND ND ND ND ND ND ND ND ND ND ND	RINSE E	0.050 BLANK (GC/MS) RL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.020 MDL 0.40 0.36 0.47 0.34 0.73 0.33 0.42 0.47 0.76	mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 10/06/21 14:15 Prepared 10/06/21 14:15 10/06/21 14:15	Analyzed Analyzed 10/08/21 18:38 10/08/21 18:38	Dil Fac
Nitrate as N Iient Sample ID: RISE BL ate Collected: 10/04/21 17:20 ate Received: 10/05/21 08:55 Method: 8270D - Semivolatile Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Chrysene Dibenz(a,h)anthracene ndeno[1,2,3-cd]pyrene Naphthalene Phenol Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr) D-Terphenyl-d14 (Surr)	0.029 ANK Organic Co Result ND ND ND ND ND ND ND ND ND ND ND ND ND	RINSE E	0.050 BLANK (GC/MS) RL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.020 MDL 0.40 0.36 0.47 0.34 0.73 0.33 0.42 0.47 0.76	mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 10/06/21 14:15 10/06/21 14:15	Analyzed Analyzed 10/08/21 18:38 10/08/21 18:38	Dil Fac
Nitrate as N lient Sample ID: RISE BL ate Collected: 10/04/21 17:20 ate Received: 10/05/21 08:55 Method: 8270D - Semivolatile Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[k]fluoranthene Benzo[k]fluoranthene Dibenz(a,h)anthracene Indeno[1,2,3-cd]pyrene Naphthalene Phenol Surrogate 2-Fluorobiphenyl Vitrobenzene-d5 (Surr) p-Terphenyl-d14 (Surr) 2,4,6-Tribromophenol (Surr)	0.029 ANK Organic Co Result ND ND ND ND ND ND ND ND ND ND ND ND ND	RINSE E	0.050 BLANK (GC/MS) RL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.020 MDL 0.40 0.36 0.47 0.34 0.73 0.33 0.42 0.47 0.76	mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 10/06/21 14:15 10/06/21 14:15	ID: 480-190 Matrix:	Dil Fa
Nitrate as N lient Sample ID: RISE BL ate Collected: 10/04/21 17:20 ate Received: 10/05/21 08:55 Method: 8270D - Semivolatile Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[b]fluoranthene Chrysene Dibenz(a,h)anthracene ndeno[1,2,3-cd]pyrene Naphthalene Phenol Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 (Surr) p-Terphenyl-d14 (Surr) 2-Fluorophenol (Surr)	0.029 ANK Organic Co Result ND ND ND ND ND ND ND ND ND ND ND ND ND	RINSE E	0.050 BLANK (GC/MS) RL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.020 MDL 0.40 0.36 0.47 0.34 0.73 0.33 0.42 0.47 0.76	mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 10/06/21 14:15 10/06/21 14:15	Analyzed 10/08/21 18:38 10/08/21 18:38	Dil Fa
Nitrate as N Iterate Support to the second structure of the second structu	0.029 ANK Organic Co Result ND ND ND ND ND ND ND ND ND ND ND ND ND	RINSE E	0.050 BLANK (GC/MS) RL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.020 MDL 0.40 0.36 0.47 0.34 0.73 0.33 0.42 0.47 0.76	mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 10/06/21 14:15 10/06/21 14:15	Analyzed 10/08/21 18:38 10/08/21 18:38	Dil Fac
Nitrate as N Client Sample ID: RISE BL	0.029 ANK Organic Co Result ND ND ND ND ND ND ND ND ND ND	RINSE E	0.050 BLANK (GC/MS) RL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.020 MDL 0.40 0.36 0.47 0.34 0.73 0.33 0.42 0.47 0.76	mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 10/06/21 14:15 10/06/21 14:15	Analyzed 10/08/21 18:38 10/08/21 18:38	

10/19/2021

Client: AECOM Project/Site: NYSEG Auburn Green Street Job ID: 480-190421-1

Client Sample ID: RISE BLANK Date Collected: 10/04/21 17:20 Date Received: 10/05/21 08:55		RINSE BLANK				Lab Sample ID: 480-190421-6 Matrix: Water				
General Chemistry	_					_	_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Sulfate	ND		2.0	0.35	mg/L			10/08/21 01:22	1	
Cyanide, Total	ND		0.010	0.0050	mg/L		10/08/21 10:26	10/08/21 12:34	1	
Nitrate as N	ND		0.050	0.020	mg/L			10/05/21 19:27	1	

Client Sample ID: MW-2 Date Collected: 10/04/21 10:00 Date Received: 10/05/21 08:55

Lab Sample ID: 480-190421-1 Matrix: Water

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10	3.0	ug/L			10/07/21 17:19	1
Benzene	ND		1.0	0.41	ug/L			10/07/21 17:19	1
Ethylbenzene	ND		1.0	0.74	ug/L			10/07/21 17:19	1
m-Xylene & p-Xylene	ND		2.0	0.66	ug/L			10/07/21 17:19	1
o-Xylene	ND		1.0	0.76	ug/L			10/07/21 17:19	1
Styrene	ND		1.0	0.73	ug/L			10/07/21 17:19	1
Toluene	ND		1.0	0.51	ug/L			10/07/21 17:19	1
Xylenes, Total	ND		2.0	0.66	ug/L			10/07/21 17:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		77 - 120					10/07/21 17:19	1
4-Bromofluorobenzene (Surr)	97		73 - 120					10/07/21 17:19	1

75 - 123

80 - 120

100

98

Client Sample ID: MW-7

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Date Collected: 10/04/21 11:15 Date Received: 10/05/21 08:55

Lab Sample ID: 480-190421-2

10/07/21 17:19

10/07/21 17:19

Matrix: Water

1

1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	10	3.0	ug/L			10/07/21 17:42	1
Benzene	ND	1.0	0.41	ug/L			10/07/21 17:42	1
Ethylbenzene	ND	1.0	0.74	ug/L			10/07/21 17:42	1
m-Xylene & p-Xylene	ND	2.0	0.66	ug/L			10/07/21 17:42	1
o-Xylene	ND	1.0	0.76	ug/L			10/07/21 17:42	1
Styrene	ND	1.0	0.73	ug/L			10/07/21 17:42	1
Toluene	ND	1.0	0.51	ug/L			10/07/21 17:42	1
Xylenes, Total	ND	2.0	0.66	ug/L			10/07/21 17:42	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		77 - 120		10/07/21 17:42	1
4-Bromofluorobenzene (Surr)	98		73 - 120		10/07/21 17:42	1
Dibromofluoromethane (Surr)	105		75 - 123		10/07/21 17:42	1
Toluene-d8 (Surr)	99		80 - 120		10/07/21 17:42	1

Client Sample ID: MW-8 Date Collected: 10/04/21 13:00 Date Received: 10/05/21 08:55

Method: 8260C - Volatile Organic Compounds by GC/MS

	ngunio compoundo by con							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	10	3.0	ug/L			10/07/21 18:05	1
Benzene	ND	1.0	0.41	ug/L			10/07/21 18:05	1
Ethylbenzene	ND	1.0	0.74	ug/L			10/07/21 18:05	1
m-Xylene & p-Xylene	ND	2.0	0.66	ug/L			10/07/21 18:05	1
o-Xylene	ND	1.0	0.76	ug/L			10/07/21 18:05	1
Styrene	ND	1.0	0.73	ug/L			10/07/21 18:05	1
Toluene	ND	1.0	0.51	ug/L			10/07/21 18:05	1
Xylenes, Total	ND	2.0	0.66	ug/L			10/07/21 18:05	1

Eurofins TestAmerica, Buffalo

Lab Sample ID: 480-190421-3

Matrix: Water

Lab Sample ID: 480-190421-3 Matrix: Water

Client Sample ID: MW-8 Date Collected: 10/04/21 13:00 Date Received: 10/05/21 08:55

Surrogate	%Recovery Qualifier	Limits	Prepared Analyze	ed Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	77 - 120	10/07/21 1	8:05 1
4-Bromofluorobenzene (Surr)	101	73 - 120	10/07/21 1	8:05 1
Dibromofluoromethane (Surr)	103	75 - 123	10/07/21 1	8:05 1
Toluene-d8 (Surr)	100	80 - 120	10/07/21 1	8:05 1

Client Sample ID: MW-9

Date Collected: 10/04/21 16:55 Date Received: 10/05/21 08:55

Toluene-d8 (Surr)

2-Fluorophenol (Surr)

Phenol-d5 (Surr)

Lab Sample ID: 480-190421-4 Matrix: Water

10/07/21 18:28

20

1

1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		200	60	ug/L			10/07/21 18:28	20
Benzene	1200		20	8.2	ug/L			10/07/21 18:28	20
Ethylbenzene	ND		20	15	ug/L			10/07/21 18:28	20
m-Xylene & p-Xylene	25	J	40	13	ug/L			10/07/21 18:28	20
o-Xylene	ND		20	15	ug/L			10/07/21 18:28	20
Styrene	ND		20	15	ug/L			10/07/21 18:28	20
Toluene	22		20	10	ug/L			10/07/21 18:28	20
Xylenes, Total	25	J	40	13	ug/L			10/07/21 18:28	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		77 - 120			-		10/07/21 18:28	20
4-Bromofluorobenzene (Surr)	98		73 - 120					10/07/21 18:28	20
Dibromofluoromethane (Surr)	98		75 - 123					10/07/21 18:28	20

80 - 120

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

101

61

49

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND		5.0	0.40	ug/L		10/06/21 14:15	10/08/21 16:26	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		10/06/21 14:15	10/08/21 16:26	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		10/06/21 14:15	10/08/21 16:26	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		10/06/21 14:15	10/08/21 16:26	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		10/06/21 14:15	10/08/21 16:26	1
Chrysene	ND		5.0	0.33	ug/L		10/06/21 14:15	10/08/21 16:26	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		10/06/21 14:15	10/08/21 16:26	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		10/06/21 14:15	10/08/21 16:26	1
Naphthalene	26		5.0	0.76	ug/L		10/06/21 14:15	10/08/21 16:26	1
Phenol	2.0	J	5.0	0.39	ug/L		10/06/21 14:15	10/08/21 16:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	96		48 - 120				10/06/21 14:15	10/08/21 16:26	1
Nitrobenzene-d5 (Surr)	92		46 - 120				10/06/21 14:15	10/08/21 16:26	1
p-Terphenyl-d14 (Surr)	100		60 - 148				10/06/21 14:15	10/08/21 16:26	1
2,4,6-Tribromophenol (Surr)	106		41 - 120				10/06/21 14:15	10/08/21 16:26	1

35 - 120

22 - 120

10/06/21 14:15 10/08/21 16:26

10/06/21 14:15 10/08/21 16:26

Client Sample ID: MW-10 Date Collected: 10/04/21 14:40 Date Received: 10/05/21 08:55

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Lab Sample ID: 480-190421-5 Matrix: Water

10/07/21 18:51

10/07/21 18:51

1

1

Method: 8260C - Volatile Organic Compounds by GC/MS **Result Qualifier** RL MDL Unit Analyte D Prepared Analyzed **Dil Fac** Acetone ND 10 10/07/21 18:51 3.0 ug/L 1 Benzene 2.0 1.0 0.41 ug/L 10/07/21 18:51 1 Ethylbenzene ND 1.0 0.74 ug/L 10/07/21 18:51 1 m-Xylene & p-Xylene ND 2.0 0.66 ug/L 10/07/21 18:51 1 o-Xylene ND 1.0 0.76 ug/L 10/07/21 18:51 1 Styrene ND 1.0 0.73 ug/L 10/07/21 18:51 1 ND 1.0 Toluene 0.51 ug/L 10/07/21 18:51 1 0.66 ug/L ND 2.0 Xylenes, Total 10/07/21 18:51 1 %Recovery Surrogate Qualifier Limits Prepared Dil Fac Analyzed 99 1,2-Dichloroethane-d4 (Surr) 77 - 120 10/07/21 18:51 1 4-Bromofluorobenzene (Surr) 94 73 - 120 10/07/21 18:51 1

75 - 123

80 - 120

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

96

97

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND		5.0	0.40	ug/L		10/06/21 14:15	10/08/21 16:53	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		10/06/21 14:15	10/08/21 16:53	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		10/06/21 14:15	10/08/21 16:53	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		10/06/21 14:15	10/08/21 16:53	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		10/06/21 14:15	10/08/21 16:53	1
Chrysene	ND		5.0	0.33	ug/L		10/06/21 14:15	10/08/21 16:53	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		10/06/21 14:15	10/08/21 16:53	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		10/06/21 14:15	10/08/21 16:53	1
Naphthalene	5.8		5.0	0.76	ug/L		10/06/21 14:15	10/08/21 16:53	1
Phenol	ND		5.0	0.39	ug/L		10/06/21 14:15	10/08/21 16:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	90		48 - 120				10/06/21 14:15	10/08/21 16:53	1
Nitrobenzene-d5 (Surr)	91		46 - 120				10/06/21 14:15	10/08/21 16:53	1
p-Terphenyl-d14 (Surr)	85		60 - 148				10/06/21 14:15	10/08/21 16:53	1
2,4,6-Tribromophenol (Surr)	101		41 - 120				10/06/21 14:15	10/08/21 16:53	1
2-Fluorophenol (Surr)	63		35 - 120				10/06/21 14:15	10/08/21 16:53	1
Phenol-d5 (Surr)	46		22 - 120				10/06/21 14:15	10/08/21 16:53	1

Client Sample ID: RISE BLANK Date Collected: 10/04/21 17:20 Date Received: 10/05/21 08:55

Method: 8260C - Volatile Organic Compounds by GC/MS **Result Qualifier** Analyte RL **MDL** Unit D Prepared Analyzed **Dil Fac** 10 Acetone ND 3.0 ug/L 10/07/21 19:14 1 Benzene ND 1.0 0.41 ug/L 10/07/21 19:14 1 Ethylbenzene ND 1.0 0.74 ug/L 10/07/21 19:14 1 m-Xylene & p-Xylene ND 2.0 1 0.66 ug/L 10/07/21 19:14 o-Xylene ND 1.0 0.76 ug/L 10/07/21 19:14 1 ND Styrene 1.0 0.73 ug/L 10/07/21 19:14 1 Toluene ND 1.0 0.51 ug/L 10/07/21 19:14 1 ND Xylenes, Total 2.0 0.66 ug/L 10/07/21 19:14 1

Eurofins TestAmerica, Buffalo

Lab Sample ID: 480-190421-6

Matrix: Water

Client Sample ID: RISE BLANK Date Collected: 10/04/21 17:20 Date Received: 10/05/21 08:55

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	77 - 120	1	0/07/21 19:14	1
4-Bromofluorobenzene (Surr)	102	73 - 120	1	0/07/21 19:14	1
Dibromofluoromethane (Surr)	102	75 - 123	1	0/07/21 19:14	1
Toluene-d8 (Surr)	100	80 - 120	1	0/07/21 19:14	1

Client Sample ID: TB-100421 Date Collected: 10/04/21 00:00 Date Received: 10/05/21 08:55

Lab Sample ID: 480-190421-7

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS Analyte Result Qualifier RL

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10	3.0	ug/L			10/07/21 19:37	1
Benzene	ND		1.0	0.41	ug/L			10/07/21 19:37	1
Ethylbenzene	ND		1.0	0.74	ug/L			10/07/21 19:37	1
m-Xylene & p-Xylene	ND		2.0	0.66	ug/L			10/07/21 19:37	1
o-Xylene	ND		1.0	0.76	ug/L			10/07/21 19:37	1
Styrene	ND		1.0	0.73	ug/L			10/07/21 19:37	1
Toluene	ND		1.0	0.51	ug/L			10/07/21 19:37	1
Xylenes, Total	ND		2.0	0.66	ug/L			10/07/21 19:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		77 - 120			-		10/07/21 19:37	1
4-Bromofluorobenzene (Surr)	102		73 - 120					10/07/21 19:37	1
Dibromofluoromethane (Surr)	95		75 - 123					10/07/21 19:37	1
Toluene-d8 (Surr)	101		80 - 120					10/07/21 19:37	1

Lab Sample ID: 480-190421-6 Matrix: Water

08/17/22 02:22

08/17/22 02:22

1

1

Matrix: Water

Lab Sample ID: 480-200734-1

Client Sample ID: MW-1 Date Collected: 08/16/22 08:50 Date Received: 08/16/22 13:30

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Method: 8260C - Volatile Or	rganic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10	3.0	ug/L			08/17/22 02:22	1
Benzene	ND		1.0	0.41	ug/L			08/17/22 02:22	1
Ethylbenzene	ND		1.0	0.74	ug/L			08/17/22 02:22	1
Styrene	ND		1.0	0.73	ug/L			08/17/22 02:22	1
Toluene	ND		1.0	0.51	ug/L			08/17/22 02:22	1
Xylenes, Total	ND		2.0	0.66	ug/L			08/17/22 02:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		77 - 120			-		08/17/22 02:22	1
4-Bromofluorobenzene (Surr)	101		73 - 120					08/17/22 02:22	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

104

103

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND	5.4	0.43	ug/L		08/20/22 08:36	08/22/22 16:47	1
Benzo[a]anthracene	ND	5.4	0.39	ug/L		08/20/22 08:36	08/22/22 16:47	1
Benzo[a]pyrene	ND	5.4	0.51	ug/L		08/20/22 08:36	08/22/22 16:47	1
Benzo[b]fluoranthene	ND	5.4	0.37	ug/L		08/20/22 08:36	08/22/22 16:47	1
Benzo[k]fluoranthene	ND	5.4	0.79	ug/L		08/20/22 08:36	08/22/22 16:47	1
Chrysene	ND	5.4	0.36	ug/L		08/20/22 08:36	08/22/22 16:47	1
Dibenz(a,h)anthracene	ND	5.4	0.46	ug/L		08/20/22 08:36	08/22/22 16:47	1
Indeno[1,2,3-cd]pyrene	ND	5.4	0.51	ug/L		08/20/22 08:36	08/22/22 16:47	1
Naphthalene	ND	5.4	0.83	ug/L		08/20/22 08:36	08/22/22 16:47	1
Phenol	ND	5.4	0.42	ug/L		08/20/22 08:36	08/22/22 16:47	1

75 - 123

80 - 120

Surrogate	%Recovery Q	ualifier Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	79	41 - 120	08/20/22 08:36	08/22/22 16:47	1
2-Fluorobiphenyl (Surr)	83	48 - 120	08/20/22 08:36	08/22/22 16:47	1
2-Fluorophenol (Surr)	56	35 - 120	08/20/22 08:36	08/22/22 16:47	1
Nitrobenzene-d5 (Surr)	72	46 - 120	08/20/22 08:36	08/22/22 16:47	1
Phenol-d5 (Surr)	43	22 - 120	08/20/22 08:36	08/22/22 16:47	1
p-Terphenyl-d14 (Surr)	87	60 - 148	08/20/22 08:36	08/22/22 16:47	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	ND		0.050	0.019	mg/L		08/18/22 09:46	08/22/22 20:16	1
Conoral Chamistry									
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	15.5		10.0	1.7	mg/L			08/24/22 18:30	5
Nitrite as N	ND		0.050	0.020	mg/L			08/16/22 17:09	1
Cyanide, Total	0.0051	J	0.010	0.0050	mg/L		08/17/22 14:14	08/17/22 14:58	1
Nitrate as N	0.15		0.050	0.020	mg/L			08/16/22 16:13	1

08/17/22 02:44

1

Matrix: Water

Lab Sample ID: 480-200734-2

Client Sample ID: MW-2 Date Collected: 08/16/22 10:00 Date Received: 08/16/22 13:30

Toluene-d8 (Surr)

Method: 8260C - Volatile O	rganic Compounds by	GC/MS						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	10	3.0	ug/L			08/17/22 02:44	1
Benzene	ND	1.0	0.41	ug/L			08/17/22 02:44	1
Ethylbenzene	ND	1.0	0.74	ug/L			08/17/22 02:44	1
Styrene	ND	1.0	0.73	ug/L			08/17/22 02:44	1
Toluene	ND	1.0	0.51	ug/L			08/17/22 02:44	1
Xylenes, Total	ND	2.0	0.66	ug/L			08/17/22 02:44	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102	77 - 120					08/17/22 02:44	1
4-Bromofluorobenzene (Surr)	96	73 - 120					08/17/22 02:44	1
Dibromofluoromethane (Surr)	98	75 - 123					08/17/22 02:44	1

80 - 120

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

103

Analyte	Result Qualifier	ŔL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND	5.0	0.40	ug/L		08/20/22 08:36	08/22/22 17:15	1
Benzo[a]anthracene	ND	5.0	0.36	ug/L		08/20/22 08:36	08/22/22 17:15	1
Benzo[a]pyrene	ND	5.0	0.47	ug/L		08/20/22 08:36	08/22/22 17:15	1
Benzo[b]fluoranthene	ND	5.0	0.34	ug/L		08/20/22 08:36	08/22/22 17:15	1
Benzo[k]fluoranthene	ND	5.0	0.73	ug/L		08/20/22 08:36	08/22/22 17:15	1
Chrysene	ND	5.0	0.33	ug/L		08/20/22 08:36	08/22/22 17:15	1
Dibenz(a,h)anthracene	ND	5.0	0.42	ug/L		08/20/22 08:36	08/22/22 17:15	1
Indeno[1,2,3-cd]pyrene	ND	5.0	0.47	ug/L		08/20/22 08:36	08/22/22 17:15	1
Naphthalene	ND	5.0	0.76	ug/L		08/20/22 08:36	08/22/22 17:15	1
Phenol	ND	5.0	0.39	ug/L		08/20/22 08:36	08/22/22 17:15	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	77		41 - 120	08/20/22 08:36	08/22/22 17:15	1
2-Fluorobiphenyl (Surr)	62		48 - 120	08/20/22 08:36	08/22/22 17:15	1
2-Fluorophenol (Surr)	39		35 - 120	08/20/22 08:36	08/22/22 17:15	1
Nitrobenzene-d5 (Surr)	55		46 - 120	08/20/22 08:36	08/22/22 17:15	1
Phenol-d5 (Surr)	32		22 - 120	08/20/22 08:36	08/22/22 17:15	1
p-Terphenyl-d14 (Surr)	71		60 - 148	08/20/22 08:36	08/22/22 17:15	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	0.050 U	0.050	0.019	mg/L		08/18/22 09:46	08/22/22 20:20	1
General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	31.6	4.0	0.70	mg/L			08/24/22 18:44	2
Nitrite as N	ND	0.050	0.020	mg/L			08/16/22 17:11	1
Cyanide, Total	0.11	0.010	0.0050	mg/L		08/17/22 14:14	08/17/22 15:00	1
Nitrate as N	1.5	0.050	0.020	mg/L			08/16/22 16:14	1

Matrix: Water

Lab Sample ID: 480-200734-3

08/17/22 03:06

1

Client Sample ID: MW-3 Date Collected: 08/15/22 12:15 Date Received: 08/16/22 13:30

Toluene-d8 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10	3.0	ug/L			08/17/22 03:06	1
Benzene	ND		1.0	0.41	ug/L			08/17/22 03:06	1
Ethylbenzene	ND		1.0	0.74	ug/L			08/17/22 03:06	1
Styrene	ND		1.0	0.73	ug/L			08/17/22 03:06	1
Toluene	ND		1.0	0.51	ug/L			08/17/22 03:06	1
Xylenes, Total	ND		2.0	0.66	ug/L			08/17/22 03:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		77 - 120					08/17/22 03:06	1
4-Bromofluorobenzene (Surr)	98		73 - 120					08/17/22 03:06	1
Dibromofluoromethane (Surr)	101		75 - 123					08/17/22 03:06	1

80 - 120

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

102

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND	5.2	0.42	ug/L		08/20/22 08:36	08/22/22 16:19	1
Benzo[a]anthracene	ND	5.2	0.38	ug/L		08/20/22 08:36	08/22/22 16:19	1
Benzo[a]pyrene	ND	5.2	0.49	ug/L		08/20/22 08:36	08/22/22 16:19	1
Benzo[b]fluoranthene	ND	5.2	0.35	ug/L		08/20/22 08:36	08/22/22 16:19	1
Benzo[k]fluoranthene	ND	5.2	0.76	ug/L		08/20/22 08:36	08/22/22 16:19	1
Chrysene	ND	5.2	0.34	ug/L		08/20/22 08:36	08/22/22 16:19	1
Dibenz(a,h)anthracene	ND	5.2	0.44	ug/L		08/20/22 08:36	08/22/22 16:19	1
Indeno[1,2,3-cd]pyrene	ND	5.2	0.49	ug/L		08/20/22 08:36	08/22/22 16:19	1
Naphthalene	ND	5.2	0.79	ug/L		08/20/22 08:36	08/22/22 16:19	1
Phenol	ND	5.2	0.41	ug/L		08/20/22 08:36	08/22/22 16:19	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	96		41 - 120	08/20/22 08:36 0	8/22/22 16:19	1
2-Fluorobiphenyl (Surr)	91		48 - 120	08/20/22 08:36 0	8/22/22 16:19	1
2-Fluorophenol (Surr)	67		35 - 120	08/20/22 08:36 0	8/22/22 16:19	1
Nitrobenzene-d5 (Surr)	81		46 - 120	08/20/22 08:36 0	8/22/22 16:19	1
Phenol-d5 (Surr)	51		22 - 120	08/20/22 08:36 0	8/22/22 16:19	1
p-Terphenyl-d14 (Surr)	91		60 - 148	08/20/22 08:36 0	8/22/22 16:19	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	16.5	J	0.050	0.019	mg/L		08/18/22 09:46	08/22/22 20:24	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	13.4	J	20.0	3.5	mg/L			08/24/22 14:01	10
Nitrite as N	ND		0.050	0.020	mg/L			08/16/22 17:19	1
Cyanide, Total	0.012	J	0.010	0.0050	mg/L		08/17/22 14:14	08/17/22 14:51	1
Nitrate as N	ND		0.050	0.020	mg/L			08/16/22 16:16	1

Matrix: Water

Lab Sample ID: 480-200734-4

Client Sample ID: MW-4 Date Collected: 08/15/22 15:15 Date Received: 08/16/22 13:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		400	120	ug/L			08/17/22 14:38	40
Benzene	1200		40	16	ug/L			08/17/22 14:38	40
Ethylbenzene	ND		40	30	ug/L			08/17/22 14:38	40
Styrene	29	J	40	29	ug/L			08/17/22 14:38	40
Toluene	270		40	20	ug/L			08/17/22 14:38	40
Xylenes, Total	150		80	26	ug/L			08/17/22 14:38	40
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		77 - 120					08/17/22 14:38	40
4-Bromofluorobenzene (Surr)	96		73 - 120					08/17/22 14:38	40
Dibromofluoromethane (Surr)	101		75 - 123					08/17/22 14:38	40
Toluene-d8 (Surr)	99		80 - 120					08/17/22 14:38	40

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND	25	2.0	ug/L		08/20/22 08:36	08/22/22 17:43	5
Benzo[a]anthracene	ND	25	1.8	ug/L		08/20/22 08:36	08/22/22 17:43	5
Benzo[a]pyrene	ND	25	2.4	ug/L		08/20/22 08:36	08/22/22 17:43	5
Benzo[b]fluoranthene	ND	25	1.7	ug/L		08/20/22 08:36	08/22/22 17:43	5
Benzo[k]fluoranthene	ND	25	3.7	ug/L		08/20/22 08:36	08/22/22 17:43	5
Chrysene	ND	25	1.7	ug/L		08/20/22 08:36	08/22/22 17:43	5
Dibenz(a,h)anthracene	ND	25	2.1	ug/L		08/20/22 08:36	08/22/22 17:43	5
Indeno[1,2,3-cd]pyrene	ND	25	2.4	ug/L		08/20/22 08:36	08/22/22 17:43	5
Naphthalene	95	25	3.8	ug/L		08/20/22 08:36	08/22/22 17:43	5
Phenol	2.6 J	25	2.0	ug/L		08/20/22 08:36	08/22/22 17:43	5

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	90	41 - 120	08/20/22 08:36	08/22/22 17:43	5
2-Fluorobiphenyl (Surr)	82	48 - 120	08/20/22 08:36	08/22/22 17:43	5
2-Fluorophenol (Surr)	54	35 - 120	08/20/22 08:36	08/22/22 17:43	5
Nitrobenzene-d5 (Surr)	71	46 - 120	08/20/22 08:36	08/22/22 17:43	5
Phenol-d5 (Surr)	40	22 - 120	08/20/22 08:36	08/22/22 17:43	5
p-Terphenyl-d14 (Surr)	94	60 - 148	08/20/22 08:36	08/22/22 17:43	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	0.21		0.050	0.019	mg/L		08/18/22 09:46	08/22/22 20:47	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	36.0		2.0	0.35	mg/L			08/24/22 18:58	1
Nitrite as N	0.046	J	0.050	0.020	mg/L			08/16/22 17:12	1
Cyanide, Total	0.76		0.050	0.025	mg/L		08/17/22 14:14	08/17/22 15:15	5
Nitrate as N	0.37		0.050	0.020	mg/L			08/16/22 16:20	1

Matrix: Water

Lab Sample ID: 480-200734-5

08/17/22 03:51

1

Client Sample ID: MW-5 Date Collected: 08/15/22 10:55 Date Received: 08/16/22 13:30

Toluene-d8 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10	3.0	ug/L			08/17/22 03:51	1
Benzene	ND		1.0	0.41	ug/L			08/17/22 03:51	1
Ethylbenzene	ND		1.0	0.74	ug/L			08/17/22 03:51	1
Styrene	ND		1.0	0.73	ug/L			08/17/22 03:51	1
Toluene	ND		1.0	0.51	ug/L			08/17/22 03:51	1
Xylenes, Total	ND		2.0	0.66	ug/L			08/17/22 03:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		77 - 120					08/17/22 03:51	1
4-Bromofluorobenzene (Surr)	99		73 - 120					08/17/22 03:51	1
Dibromofluoromethane (Surr)	102		75 - 123					08/17/22 03:51	1

80 - 120

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

100

Analyte	Result Qualifier	ŔL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND	5.2	0.42	ug/L		08/20/22 08:36	08/22/22 18:10	1
Benzo[a]anthracene	ND	5.2	0.38	ug/L		08/20/22 08:36	08/22/22 18:10	1
Benzo[a]pyrene	ND	5.2	0.49	ug/L		08/20/22 08:36	08/22/22 18:10	1
Benzo[b]fluoranthene	ND	5.2	0.35	ug/L		08/20/22 08:36	08/22/22 18:10	1
Benzo[k]fluoranthene	ND	5.2	0.76	ug/L		08/20/22 08:36	08/22/22 18:10	1
Chrysene	ND	5.2	0.34	ug/L		08/20/22 08:36	08/22/22 18:10	1
Dibenz(a,h)anthracene	ND	5.2	0.44	ug/L		08/20/22 08:36	08/22/22 18:10	1
Indeno[1,2,3-cd]pyrene	ND	5.2	0.49	ug/L		08/20/22 08:36	08/22/22 18:10	1
Naphthalene	ND	5.2	0.79	ug/L		08/20/22 08:36	08/22/22 18:10	1
Phenol	ND	5.2	0.41	ug/L		08/20/22 08:36	08/22/22 18:10	1

Surrogate	%Recovery G	Qualifier Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	85	41 - 12	0 08/20/22 08:36	08/22/22 18:10	1
2-Fluorobiphenyl (Surr)	82	48 - 12	0 08/20/22 08:36	08/22/22 18:10	1
2-Fluorophenol (Surr)	57	35 - 12	0 08/20/22 08:36	08/22/22 18:10	1
Nitrobenzene-d5 (Surr)	72	46 - 12	0 08/20/22 08:36	08/22/22 18:10	1
Phenol-d5 (Surr)	44	22 - 12	0 08/20/22 08:36	08/22/22 18:10	1
p-Terphenyl-d14 (Surr)	93	60 - 14	8 08/20/22 08:36	08/22/22 18:10	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	0.050 U	0.050	0.019	mg/L		08/18/22 09:46	08/22/22 20:51	1
General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	81.2	10.0	1.7	mg/L			08/24/22 19:12	5
Nitrite as N	0.042 J	0.050	0.020	mg/L			08/16/22 17:13	1
Cyanide, Total	ND	0.010	0.0050	mg/L		08/17/22 14:14	08/17/22 15:05	1
Nitrate as N	1.4	0.050	0.020	mg/L			08/16/22 16:21	1

Client Sample ID: MW-6 Date Collected: 08/15/22 12:45 Date Received: 08/16/22 13:30

Lab Sample ID: 480-200734-6 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10	3.0	ug/L			08/17/22 04:13	
Benzene	ND		1.0	0.41	ug/L			08/17/22 04:13	
Ethylbenzene	ND		1.0	0.74	ug/L			08/17/22 04:13	
Styrene	ND		1.0	0.73	ug/L			08/17/22 04:13	
Toluene	ND		1.0	0.51	ug/L			08/17/22 04:13	
Xylenes, Total	ND		2.0	0.66	ug/L			08/17/22 04:13	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	104		77 - 120					08/17/22 04:13	
4-Bromofluorobenzene (Surr)	97		73 - 120					08/17/22 04:13	
Dibromofluoromethane (Surr)	102		75 - 123					08/17/22 04:13	
Toluene-d8 (Surr)	102		80 - 120					08/17/22 04:13	
Method: 8270D - Semivola			· · · · · · · · · · · · · · · · · · ·			_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND		5.0	0.40	ug/L		08/20/22 08:36	08/22/22 18:38	1
Benzo[a]anthracene	ND		5.0		ug/L		08/20/22 08:36		
Benzo[a]pyrene	ND		5.0	0.47			08/20/22 08:36	08/22/22 18:38	
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		08/20/22 08:36	08/22/22 18:38	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		08/20/22 08:36	08/22/22 18:38	1
Chrysene	ND		5.0	0.33	ug/L		08/20/22 08:36	08/22/22 18:38	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		08/20/22 08:36	08/22/22 18:38	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		08/20/22 08:36	08/22/22 18:38	1
Naphthalene	ND		5.0	0.76	ug/L		08/20/22 08:36	08/22/22 18:38	1
Phenol	ND		5.0	0.39	ug/L		08/20/22 08:36	08/22/22 18:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	82		41 - 120				08/20/22 08:36	08/22/22 18:38	1
2-Fluorobiphenyl (Surr)	78		48 - 120				08/20/22 08:36	08/22/22 18:38	1
2-Fluorophenol (Surr)	51		35 - 120				08/20/22 08:36	08/22/22 18:38	1
Nitrobenzene-d5 (Surr)	67		46 - 120				08/20/22 08:36	08/22/22 18:38	1
Phenol-d5 (Surr)	39		22 - 120				08/20/22 08:36	08/22/22 18:38	1
p-Terphenyl-d14 (Surr)	86		60 - 148				08/20/22 08:36	08/22/22 18:38	1
Method: 6010C - Metals (IC	P) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	0.35		0.050	0.019	mg/L		08/18/22 09:46	08/22/22 20:55	1
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	28.0		10.0		mg/L	_		08/24/22 19:26	Ę
Nitrite as N	ND		0.050	0.020	mg/L			08/16/22 17:15	1
Cyanide, Total	ND		0.010	0.0050	mg/L		08/17/22 14:14	08/17/22 15:07	1
Nitrate as N	0.065		0.050	0.020				08/16/22 16:25	1

Client Sample ID: MW-8 Date Collected: 08/16/22 11:30 Date Received: 08/16/22 13:30

Lab Sample ID: 480-200734-7 Matrix: Water

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Acetone	ND		10	3.0	ug/L			08/17/22 04:36	
Benzene	ND		1.0	0.41	ug/L			08/17/22 04:36	
Ethylbenzene	ND		1.0	0.74	ug/L			08/17/22 04:36	
Styrene	ND		1.0	0.73	ug/L			08/17/22 04:36	
Toluene	ND		1.0	0.51	ug/L			08/17/22 04:36	
Xylenes, Total	ND		2.0	0.66	ug/L			08/17/22 04:36	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	103		77 - 120					08/17/22 04:36	
4-Bromofluorobenzene (Surr)	97		73 - 120					08/17/22 04:36	
Dibromofluoromethane (Surr)	104		75 - 123					08/17/22 04:36	
Toluene-d8 (Surr)	99		80 - 120					08/17/22 04:36	
Method: 8270D - Semivola	tile Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2-Methylphenol	ND		5.4	0.43	ug/L		08/20/22 08:36	08/22/22 19:05	
Benzo[a]anthracene	ND		5.4	0.39	ug/L		08/20/22 08:36	08/22/22 19:05	
Benzo[a]pyrene	ND		5.4	0.51	ug/L		08/20/22 08:36	08/22/22 19:05	
Benzo[b]fluoranthene	ND		5.4	0.37	ug/L		08/20/22 08:36	08/22/22 19:05	
Benzo[k]fluoranthene	ND		5.4	0.79	ug/L		08/20/22 08:36	08/22/22 19:05	
Chrysene	ND		5.4	0.36	ug/L		08/20/22 08:36	08/22/22 19:05	
Dibenz(a,h)anthracene	ND		5.4	0.46	ug/L		08/20/22 08:36	08/22/22 19:05	
Indeno[1,2,3-cd]pyrene	ND		5.4	0.51	ug/L		08/20/22 08:36	08/22/22 19:05	
Naphthalene	ND		5.4	0.83	ug/L		08/20/22 08:36	08/22/22 19:05	
Phenol	ND		5.4	0.42	ug/L		08/20/22 08:36	08/22/22 19:05	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol (Surr)	82		41 - 120				08/20/22 08:36	08/22/22 19:05	
2-Fluorobiphenyl (Surr)	66		48 - 120				08/20/22 08:36	08/22/22 19:05	
2-Fluorophenol (Surr)	46		35 - 120				08/20/22 08:36	08/22/22 19:05	
Nitrobenzene-d5 (Surr)	57		46 - 120				08/20/22 08:36	08/22/22 19:05	
Phenol-d5 (Surr)	37		22 - 120				08/20/22 08:36	08/22/22 19:05	
p-Terphenyl-d14 (Surr)	88		60 - 148				08/20/22 08:36	08/22/22 19:05	
Method: 6010C - Metals (IC	CP) - Dissolved								
Analyte	1	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Iron, Dissolved	18.2		0.050	0.019	mg/L		08/18/22 09:46	08/22/22 20:59	
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Sulfate	15.2	J	20.0	3.5	mg/L			08/24/22 21:05	1
Nitrite as N	ND		0.050	0.020	mg/L			08/16/22 16:28	
Cyanide, Total	ND		0.010	0.0050	mg/L		08/17/22 14:14	08/17/22 15:08	
Nitrate as N	0.027		0.050	0 020	mg/L			08/16/22 16:28	

Client Sample ID: MW-9 Date Collected: 08/15/22 15:52 Date Received: 08/16/22 13:30

Lab Sample ID: 480-200734-8 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	ND		80	24	ug/L			08/17/22 15:01	
Benzene	190		8.0	3.3	ug/L			08/17/22 15:01	
Ethylbenzene	ND		8.0	5.9	ug/L			08/17/22 15:01	
Styrene	ND		8.0	5.8	ug/L			08/17/22 15:01	
Toluene	ND		8.0	4.1	ug/L			08/17/22 15:01	
Xylenes, Total	ND		16	5.3	ug/L			08/17/22 15:01	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	105		77 - 120					08/17/22 15:01	
4-Bromofluorobenzene (Surr)	96		73 - 120					08/17/22 15:01	
Dibromofluoromethane (Surr)	106		75 - 123					08/17/22 15:01	
Toluene-d8 (Surr)	100		80 - 120					08/17/22 15:01	
Method: 8270D - Semivola			(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2-Methylphenol	ND		5.7	0.45	ug/L		08/20/22 08:36	08/22/22 19:32	
Benzo[a]anthracene	ND		5.7	0.41	ug/L		08/20/22 08:36	08/22/22 19:32	
Benzo[a]pyrene	ND		5.7	0.53	ug/L		08/20/22 08:36	08/22/22 19:32	
Benzo[b]fluoranthene	ND		5.7	0.39	ug/L		08/20/22 08:36	08/22/22 19:32	
Benzo[k]fluoranthene	ND		5.7	0.83	ug/L		08/20/22 08:36	08/22/22 19:32	
Chrysene	ND		5.7	0.38	ug/L		08/20/22 08:36	08/22/22 19:32	
Dibenz(a,h)anthracene	ND		5.7	0.48	ug/L		08/20/22 08:36	08/22/22 19:32	
Indeno[1,2,3-cd]pyrene	ND		5.7		ug/L		08/20/22 08:36	08/22/22 19:32	
Naphthalene	1.0	J	5.7		ug/L		08/20/22 08:36	08/22/22 19:32	
Phenol	2.8		5.7		ug/L		08/20/22 08:36	08/22/22 19:32	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol (Surr)	76		41 - 120				08/20/22 08:36	08/22/22 19:32	
2-Fluorobiphenyl (Surr)	69		48 - 120				08/20/22 08:36	08/22/22 19:32	
2-Fluorophenol (Surr)	44		35 - 120				08/20/22 08:36	08/22/22 19:32	
Nitrobenzene-d5 (Surr)	60		46 - 120				08/20/22 08:36	08/22/22 19:32	
Phenol-d5 (Surr)	38		22 - 120				08/20/22 08:36	08/22/22 19:32	
p-Terphenyl-d14 (Surr)	71		60 - 148				08/20/22 08:36	08/22/22 19:32	
Method: 6010C - Metals (IC	P) - Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Iron, Dissolved	5.8		0.050	0.019	mg/L		08/18/22 09:47	08/23/22 20:16	
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Sulfate	6.5	J	20.0	3.5	mg/L			08/24/22 21:19	1
Nitrite as N	ND		0.050	0.020	mg/L			08/16/22 17:23	
Cyanide, Total	0.017		0.010	0.0050	mg/L		08/17/22 14:14	08/17/22 15:10	
Nitrate as N	0.11		0.050	0.020	mg/L			08/16/22 16:31	

Lab Sample ID: 480-200734-9

08/17/22 05:20

08/17/22 05:20

1

1

1

1

1

1

1

Client Sample ID: MW-10 Date Collected: 08/15/22 14:00 Date Received: 08/16/22 13:30

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Method: 8260C - Volatile O Analyte	Result Qualif	ier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	10	3.0	ug/L			08/17/22 05:20	1
Benzene	1.6	1.0	0.41	ug/L			08/17/22 05:20	1
Ethylbenzene	ND	1.0	0.74	ug/L			08/17/22 05:20	1
Styrene	ND	1.0	0.73	ug/L			08/17/22 05:20	1
Toluene	ND	1.0	0.51	ug/L			08/17/22 05:20	1
Xylenes, Total	ND	2.0	0.66	ug/L			08/17/22 05:20	1
Surrogate	%Recovery Qualif	ier Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	77 - 120					08/17/22 05:20	1
4-Bromofluorobenzene (Surr)	95	73 - 120					08/17/22 05:20	1

75 - 123

80 - 120

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

101

99

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND	;;	5.2	0.42	ug/L		08/20/22 08:36	08/22/22 20:00	1
Benzo[a]anthracene	ND		5.2	0.38	ug/L		08/20/22 08:36	08/22/22 20:00	1
Benzo[a]pyrene	ND		5.2	0.49	ug/L		08/20/22 08:36	08/22/22 20:00	1
Benzo[b]fluoranthene	ND		5.2	0.35	ug/L		08/20/22 08:36	08/22/22 20:00	1
Benzo[k]fluoranthene	ND		5.2	0.76	ug/L		08/20/22 08:36	08/22/22 20:00	1
Chrysene	ND		5.2	0.34	ug/L		08/20/22 08:36	08/22/22 20:00	1
Dibenz(a,h)anthracene	ND		5.2	0.44	ug/L		08/20/22 08:36	08/22/22 20:00	1
Indeno[1,2,3-cd]pyrene	ND		5.2	0.49	ug/L		08/20/22 08:36	08/22/22 20:00	1
Naphthalene	ND		5.2	0.79	ug/L		08/20/22 08:36	08/22/22 20:00	1
Phenol	ND		5.2	0.41	ug/L		08/20/22 08:36	08/22/22 20:00	1

Surrogate	%Recovery Quali	ifier Limits	Prepared Analyzo	ed Dil Fac
2,4,6-Tribromophenol (Surr)	79	41 - 120	08/20/22 08:36 08/22/22 2	20:00 1
2-Fluorobiphenyl (Surr)	60	48 - 120	08/20/22 08:36 08/22/22 2	20:00 1
2-Fluorophenol (Surr)	37	35 - 120	08/20/22 08:36 08/22/22 2	20:00 1
Nitrobenzene-d5 (Surr)	52	46 - 120	08/20/22 08:36 08/22/22 2	20:00 1
Phenol-d5 (Surr)	32	22 - 120	08/20/22 08:36 08/22/22 2	20:00 1
p-Terphenyl-d14 (Surr)	71	60 - 148	08/20/22 08:36 08/22/22 2	20:00 1

Method: 6010C - Metals (ICP) - Dissolved Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 08/18/22 09:47 08/23/22 20:20 Iron, Dissolved 0.050 0.019 mg/L 0.085 **General Chemistry** Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 0.35 mg/L Sulfate 18.8 2.0 08/24/22 21:33 Nitrite as N ND 0.050 08/16/22 16:32 0.020 mg/L Cyanide, Total 0.19 0.010 0.0050 mg/L 08/23/22 12:18 08/23/22 14:08 Nitrate as N ND 0.050 0.020 mg/L 08/16/22 16:32

Lab Sample ID: 480-200734-10

Client Sample ID: MW-11 Date Collected: 08/15/22 14:00 Date Received: 08/16/22 13:30

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		20	6.0	ug/L			08/19/22 15:00	2
Benzene	3.2		2.0	0.82	ug/L			08/19/22 15:00	2
Ethylbenzene	ND		2.0	1.5	ug/L			08/19/22 15:00	2
Styrene	ND		2.0	1.5	ug/L			08/19/22 15:00	2
Toluene	ND		2.0	1.0	ug/L			08/19/22 15:00	2
Xylenes, Total	ND		4.0	1.3	ug/L			08/19/22 15:00	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113		77 - 120					08/19/22 15:00	2
4-Bromofluorobenzene (Surr)	93		73 - 120					08/19/22 15:00	2

102 Dibromofluoromethane (Surr) 75 - 123 08/19/22 15:00 2 100 Toluene-d8 (Surr) 80 - 120 08/19/22 15:00 2

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	7.8	J	52	4.2	ug/L		08/20/22 08:36	08/22/22 20:28	10
Benzo[a]anthracene	ND		52	3.8	ug/L		08/20/22 08:36	08/22/22 20:28	10
Benzo[a]pyrene	ND		52	4.9	ug/L		08/20/22 08:36	08/22/22 20:28	10
Benzo[b]fluoranthene	ND		52	3.5	ug/L		08/20/22 08:36	08/22/22 20:28	10
Benzo[k]fluoranthene	ND		52	7.6	ug/L		08/20/22 08:36	08/22/22 20:28	10
Chrysene	ND		52	3.4	ug/L		08/20/22 08:36	08/22/22 20:28	10
Dibenz(a,h)anthracene	ND		52	4.4	ug/L		08/20/22 08:36	08/22/22 20:28	10
Indeno[1,2,3-cd]pyrene	ND		52	4.9	ug/L		08/20/22 08:36	08/22/22 20:28	10
Naphthalene	210		52	7.9	ug/L		08/20/22 08:36	08/22/22 20:28	10
Phenol	ND		52	4.1	ug/L		08/20/22 08:36	08/22/22 20:28	10

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	82		41 - 120	08/20/22 08:36	08/22/22 20:28	10
2-Fluorobiphenyl (Surr)	85		48 - 120	08/20/22 08:36	08/22/22 20:28	10
2-Fluorophenol (Surr)	47		35 - 120	08/20/22 08:36	08/22/22 20:28	10
Nitrobenzene-d5 (Surr)	67		46 - 120	08/20/22 08:36	08/22/22 20:28	10
Phenol-d5 (Surr)	46		22 - 120	08/20/22 08:36	08/22/22 20:28	10
p-Terphenyl-d14 (Surr)	68		60 - 148	08/20/22 08:36	08/22/22 20:28	10

Method: 6010C - Metals (ICP) - Dissolved Analyte **Result Qualifier** RL MDL Unit D Prepared 0.050 08/18/22 09:47 08/23/22 20:24 Iron, Dissolved 0.14 0.019 mg/L **General Chemistry** Analyte **Result Qualifier** RL MDL Unit D Prepared Sulfate 25.8 20 0.35 mg/l Ν

Sulfate	25.8	2.0	0.35 mg/L	08/24/22 21:48	1
Nitrite as N	ND	0.050	0.020 mg/L	08/16/22 16:33	1
Cyanide, Total	0.31	0.010	0.0050 mg/L	08/23/22 12:18 08/23/22 14:10	1
Nitrate as N	ND	0.050	0.020 mg/L	08/16/22 16:33	1

Analyzed

Analyzed

Dil Fac

Dil Fac

1

Lab Sample ID: 480-200734-11

Client Sample ID: MW-12 Date Collected: 08/16/22 10:00 Date Received: 08/16/22 13:30

Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	10	3.0	ug/L			08/19/22 15:27	1
Benzene	25	1.0	0.41	ug/L			08/19/22 15:27	1
Ethylbenzene	ND	1.0	0.74	ug/L			08/19/22 15:27	1
Styrene	ND	1.0	0.73	ug/L			08/19/22 15:27	1
Toluene	ND	1.0	0.51	ug/L			08/19/22 15:27	1
Xylenes, Total	ND	2.0	0.66	ug/L			08/19/22 15:27	1
Surrogate	%Recovery Qua	alifier Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113	77 - 120			-		08/19/22 15:27	1

Toluene-d8 (Surr)	101	80 - 120	08/19/22 15:27 1	
Dibromofluoromethane (Surr)	103	75 - 123	08/19/22 15:27 1	
4-Bromofluorobenzene (Surr)	93	73 - 120	08/19/22 15:27 1	
	110	11 = 120	00,10,22,10.21	

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result Qualifier	ŔL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND	5.2	0.42	ug/L		08/20/22 08:36	08/22/22 20:56	1
Benzo[a]anthracene	ND	5.2	0.38	ug/L		08/20/22 08:36	08/22/22 20:56	1
Benzo[a]pyrene	ND	5.2	0.49	ug/L		08/20/22 08:36	08/22/22 20:56	1
Benzo[b]fluoranthene	ND	5.2	0.35	ug/L		08/20/22 08:36	08/22/22 20:56	1
Benzo[k]fluoranthene	ND	5.2	0.76	ug/L		08/20/22 08:36	08/22/22 20:56	1
Chrysene	ND	5.2	0.34	ug/L		08/20/22 08:36	08/22/22 20:56	1
Dibenz(a,h)anthracene	ND	5.2	0.44	ug/L		08/20/22 08:36	08/22/22 20:56	1
Indeno[1,2,3-cd]pyrene	ND	5.2	0.49	ug/L		08/20/22 08:36	08/22/22 20:56	1
Naphthalene	ND	5.2	0.79	ug/L		08/20/22 08:36	08/22/22 20:56	1
Phenol	0.74 J	5.2	0.41	ug/L		08/20/22 08:36	08/22/22 20:56	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	88		41 - 120	08/20/22 08:36	08/22/22 20:56	1
2-Fluorobiphenyl (Surr)	75		48 - 120	08/20/22 08:36 0	08/22/22 20:56	1
2-Fluorophenol (Surr)	49		35 - 120	08/20/22 08:36 0	08/22/22 20:56	1
Nitrobenzene-d5 (Surr)	65		46 - 120	08/20/22 08:36 0	08/22/22 20:56	1
Phenol-d5 (Surr)	41		22 - 120	08/20/22 08:36 0	08/22/22 20:56	1
p-Terphenyl-d14 (Surr)	80		60 - 148	08/20/22 08:36 0	08/22/22 20:56	1

Method: 6010C - Metals (IC Analyte Iron, Dissolved		Qualifier	RL 0.050	MDL 0.019		<u>D</u>	Prepared 08/18/22 09:47	Analyzed	Dil Fac
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	22.6		10.0	1.7	mg/L			08/24/22 22:02	5
Sulfate Nitrite as N	22.6 ND		10.0 0.050	1.7 0.020	0			08/24/22 22:02 08/16/22 16:35	5 1
		J			mg/L		08/24/22 13:02	08/16/22 16:35	5 1 1

Client Sample Results

Phenol

Client Sample ID: DUPLICATE F Date Collected: 08/15/22 00:00 Date Received: 08/16/22 13:30

E	FD of MW-6	Lab Sample ID: 480-200734-12
		Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10	3.0	ug/L			08/19/22 15:51	1
Benzene	ND		1.0	0.41	ug/L			08/19/22 15:51	1
Ethylbenzene	ND		1.0	0.74	ug/L			08/19/22 15:51	1
Styrene	ND		1.0	0.73	ug/L			08/19/22 15:51	1
Toluene	ND		1.0	0.51	ug/L			08/19/22 15:51	1
Xylenes, Total	ND		2.0	0.66	ug/L			08/19/22 15:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113		77 - 120					08/19/22 15:51	1
4-Bromofluorobenzene (Surr)	91		73 - 120					08/19/22 15:51	1
Dibromofluoromethane (Surr)	104		75 - 123					08/19/22 15:51	1
Toluene-d8 (Surr)	99		80 - 120					08/19/22 15:51	1
		mpounds						08/19/22 15:51	1
Toluene-d8 (Surr) Method: 8270D - Semivolat Analyte	tile Organic Co	mpounds Qualifier		MDL	Unit	D	Prepared	08/19/22 15:51 Analyzed	1 Dil Fac
Method: 8270D - Semivolat Analyte	tile Organic Co		(GC/MS)		Unit ug/L	D	Prepared 08/20/22 08:36		1 Dil Fac
Method: 8270D - Semivolat Analyte 2-Methylphenol	tile Organic Co Result		(GC/MS) RL	0.42		<u>D</u>		Analyzed	1 Dil Fac 1 1
Method: 8270D - Semivolat Analyte 2-Methylphenol Benzo[a]anthracene	tile Organic Co Result ND		(GC/MS) <u>RL</u> 5.2	0.42 0.38	ug/L	D	08/20/22 08:36 08/20/22 08:36	Analyzed	1 Dil Fac 1 1 1
Method: 8270D - Semivolat Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene	tile Organic Co Result ND ND		(GC/MS) <u>RL</u> 5.2 5.2	0.42 0.38 0.49	ug/L ug/L	D	08/20/22 08:36 08/20/22 08:36 08/20/22 08:36	Analyzed 08/22/22 21:24 08/22/22 21:24	1 1 1
Method: 8270D - Semivolat Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene	tile Organic Co Result ND ND ND		(GC/MS) <u>RL</u> 5.2 5.2 5.2 5.2	0.42 0.38 0.49 0.35	ug/L ug/L ug/L	<u>D</u>	08/20/22 08:36 08/20/22 08:36 08/20/22 08:36	Analyzed 08/22/22 21:24 08/22/22 21:24 08/22/22 21:24	1 1 1
Method: 8270D - Semivolat Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene	tile Organic Co Result ND ND ND ND		(GC/MS) RL 5.2 5.2 5.2 5.2 5.2 5.2	0.42 0.38 0.49 0.35 0.76	ug/L ug/L ug/L ug/L	<u>D</u>	08/20/22 08:36 08/20/22 08:36 08/20/22 08:36 08/20/22 08:36 08/20/22 08:36	Analyzed 08/22/22 21:24 08/22/22 21:24 08/22/22 21:24 08/22/22 21:24	1 1 1
Method: 8270D - Semivolat Analyte 2-Methylphenol Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Chrysene	tile Organic Co Result ND ND ND ND ND		(GC/MS) RL 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	0.42 0.38 0.49 0.35 0.76 0.34	ug/L ug/L ug/L ug/L ug/L	<u>D</u>	08/20/22 08:36 08/20/22 08:36 08/20/22 08:36 08/20/22 08:36 08/20/22 08:36 08/20/22 08:36	Analyzed 08/22/22 21:24 08/22/22 21:24 08/22/22 21:24 08/22/22 21:24 08/22/22 21:24	1 1 1
Method: 8270D - Semivolat	tile Organic Co Result ND ND ND ND ND ND		(GC/MS) RL 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	0.42 0.38 0.49 0.35 0.76 0.34 0.44	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	08/20/22 08:36 08/20/22 08:36 08/20/22 08:36 08/20/22 08:36 08/20/22 08:36 08/20/22 08:36	Analyzed 08/22/22 21:24 08/22/22 21:24 08/22/22 21:24 08/22/22 21:24 08/22/22 21:24	1 Dil Fac 1 1 1 1 1 1 1 1 1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	71	41 - 120	08/20/22 08:36	08/22/22 21:24	1
2-Fluorobiphenyl (Surr)	65	48 - 120	08/20/22 08:36	08/22/22 21:24	1
2-Fluorophenol (Surr)	43	35 - 120	08/20/22 08:36	08/22/22 21:24	1
Nitrobenzene-d5 (Surr)	56	46 - 120	08/20/22 08:36	08/22/22 21:24	1
Phenol-d5 (Surr)	35	22 - 120	08/20/22 08:36	08/22/22 21:24	1
p-Terphenyl-d14 (Surr)	77	60 - 148	08/20/22 08:36	08/22/22 21:24	1

5.2

0.41 ug/L

ND

Method: 6010C - Metals (IC Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	0.34		0.050	0.019	mg/L		08/18/22 09:47	08/23/22 20:32	1
General Chemistry	Decult	Qualifier	DI	MD	11:54	_	Due a e un d	Anaburad	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	27.9	Quaimer	10.0		mg/L	D	Prepared	08/24/22 22:16	5
		Quaimer			mg/L	<u>D</u>	Prepared		
Sulfate	27.9	Quaimer	10.0	1.7	mg/L mg/L	U		08/24/22 22:16	

08/20/22 08:36 08/22/22 21:24

1

08/17/22 05:43

08/17/22 05:43

Analyzed

Analyzed

08/16/22 16:38

Dil Fac

Dil Fac

1

1

1

1

1

1

1

Matrix: Water

Lab Sample ID: 480-200734-13

Client Sample ID: RINSE BLANK Date Collected: 08/15/22 15:45 Date Received: 08/16/22 13:30

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Nitrate as N

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10	3.0	ug/L			08/17/22 05:43	1
Benzene	ND		1.0	0.41	ug/L			08/17/22 05:43	1
Ethylbenzene	ND		1.0	0.74	ug/L			08/17/22 05:43	1
Styrene	ND		1.0	0.73	ug/L			08/17/22 05:43	1
Toluene	ND		1.0	0.51	ug/L			08/17/22 05:43	1
Xylenes, Total	ND		2.0	0.66	ug/L			08/17/22 05:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		77 - 120					08/17/22 05:43	1
4-Bromofluorobenzene (Surr)	100		73 - 120					08/17/22 05:43	1

75 - 123

80 - 120

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

99

103

Analyte	Result	Qualifier	ŔL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND		5.2	0.42	ug/L		08/20/22 08:36	08/22/22 21:51	1
Benzo[a]anthracene	ND		5.2	0.38	ug/L		08/20/22 08:36	08/22/22 21:51	1
Benzo[a]pyrene	ND		5.2	0.49	ug/L		08/20/22 08:36	08/22/22 21:51	1
Benzo[b]fluoranthene	ND		5.2	0.35	ug/L		08/20/22 08:36	08/22/22 21:51	1
Benzo[k]fluoranthene	ND		5.2	0.76	ug/L		08/20/22 08:36	08/22/22 21:51	1
Chrysene	ND		5.2	0.34	ug/L		08/20/22 08:36	08/22/22 21:51	1
Dibenz(a,h)anthracene	ND		5.2	0.44	ug/L		08/20/22 08:36	08/22/22 21:51	1
Indeno[1,2,3-cd]pyrene	ND		5.2	0.49	ug/L		08/20/22 08:36	08/22/22 21:51	1
Naphthalene	ND		5.2	0.79	ug/L		08/20/22 08:36	08/22/22 21:51	1
Phenol	ND		5.2	0.41	ug/L		08/20/22 08:36	08/22/22 21:51	1

Surrogate	%Recovery	Qualifier L	imits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	68	4	1 - 120	08/20/22 08:36	08/22/22 21:51	1
2-Fluorobiphenyl (Surr)	66	4	8 - 120	08/20/22 08:36	08/22/22 21:51	1
2-Fluorophenol (Surr)	43	3	5_120	08/20/22 08:36	08/22/22 21:51	1
Nitrobenzene-d5 (Surr)	57	4	6 - 120	08/20/22 08:36	08/22/22 21:51	1
Phenol-d5 (Surr)	36	2.	2 - 120	08/20/22 08:36	08/22/22 21:51	1
p-Terphenyl-d14 (Surr)	98	6	0_148	08/20/22 08:36	08/22/22 21:51	1

Method: 6010C - Metals (ICP) - Dissolved Analyte **Result Qualifier** RL MDL Unit D Prepared 08/18/22 09:47 08/23/22 20:35 Iron, Dissolved 0.037 J 0.050 0.019 mg/L **General Chemistry** Analyte Result Qualifier RL **MDL** Unit D Prepared Sulfate ND 2.0 0.35 mg/L 08/24/22 22:30 Nitrite as N ND 0.050 08/16/22 16:38 0.020 mg/L Cyanide, Total ND 0.010 0.0050 mg/L 08/24/22 13:02 08/24/22 14:15

ND

0.050

0.020 mg/L

Method: 8260C - Volatile Organic Compounds by GC/MS

Client Sample ID: TRIP BLANK Date Collected: 08/15/22 00:00 Date Received: 08/16/22 13:30

	a la	Commente	ID.	400	0

Lab Sample ID: 480-200734-14 Matrix: Water

Lab Sample ID: 480-200734-15

Matrix: Water

Job ID: 480-200734-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10	3.0	ug/L			08/17/22 06:05	1
Benzene	ND		1.0	0.41	ug/L			08/17/22 06:05	1
Ethylbenzene	ND		1.0	0.74	ug/L			08/17/22 06:05	1
Styrene	ND		1.0	0.73	ug/L			08/17/22 06:05	1
Toluene	ND		1.0	0.51	ug/L			08/17/22 06:05	1
Xylenes, Total	ND		2.0	0.66	ug/L			08/17/22 06:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		77 - 120			-		08/17/22 06:05	1
4-Bromofluorobenzene (Surr)	99		73 - 120					08/17/22 06:05	1
Dibromofluoromethane (Surr)	104		75 - 123					08/17/22 06:05	1
Toluene-d8 (Surr)	104		80 - 120					08/17/22 06:05	1

Client Sample ID: MW-7

Phenol-d5 (Surr)

Date Collected: 08/16/22 09:10 Date Received: 08/16/22 13:30

Method: 8260C - Volatile Or	rganic Compoi	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10	3.0	ug/L			08/17/22 06:28	1
Benzene	ND		1.0	0.41	ug/L			08/17/22 06:28	1
Ethylbenzene	ND		1.0	0.74	ug/L			08/17/22 06:28	1
Styrene	ND		1.0	0.73	ug/L			08/17/22 06:28	1
Toluene	ND		1.0	0.51	ug/L			08/17/22 06:28	1
Xylenes, Total	ND		2.0	0.66	ug/L			08/17/22 06:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		77 - 120			-		08/17/22 06:28	1
4-Bromofluorobenzene (Surr)	95		73 - 120					08/17/22 06:28	1
Dibromofluoromethane (Surr)	104		75 - 123					08/17/22 06:28	1
Toluene-d8 (Surr)	101		80 - 120					08/17/22 06:28	1

Method: 8270D - Semivola	tile Organic Compo	unds (GC/MS)						
Analyte	Result Quali	ifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND	5.0	0.40	ug/L		08/20/22 08:36	08/22/22 22:18	1
Benzo[a]anthracene	ND	5.0	0.36	ug/L		08/20/22 08:36	08/22/22 22:18	1
Benzo[a]pyrene	ND	5.0	0.47	ug/L		08/20/22 08:36	08/22/22 22:18	1
Benzo[b]fluoranthene	ND	5.0	0.34	ug/L		08/20/22 08:36	08/22/22 22:18	1
Benzo[k]fluoranthene	ND	5.0	0.73	ug/L		08/20/22 08:36	08/22/22 22:18	1
Chrysene	ND	5.0	0.33	ug/L		08/20/22 08:36	08/22/22 22:18	1
Dibenz(a,h)anthracene	ND	5.0	0.42	ug/L		08/20/22 08:36	08/22/22 22:18	1
Indeno[1,2,3-cd]pyrene	ND	5.0	0.47	ug/L		08/20/22 08:36	08/22/22 22:18	1
Naphthalene	ND	5.0	0.76	ug/L		08/20/22 08:36	08/22/22 22:18	1
Phenol	ND	5.0	0.39	ug/L		08/20/22 08:36	08/22/22 22:18	1
Surrogate	%Recovery Quali	ifier Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	91	41 - 120				08/20/22 08:36	08/22/22 22:18	1
2-Fluorobiphenyl (Surr)	87	48 - 120				08/20/22 08:36	08/22/22 22:18	1
2-Fluorophenol (Surr)	59	35 - 120				08/20/22 08:36	08/22/22 22:18	1
Nitrobenzene-d5 (Surr)	76	46 - 120				08/20/22 08:36	08/22/22 22:18	1

Eurofins Buffalo

1

22 - 120

45

08/20/22 08:36 08/22/22 22:18

Client Sample ID: MW-7 Date Collected: 08/16/22 09:10 Date Received: 08/16/22 13:30

Lab Sample ID: 480-200734-15 Matrix: Water

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl-d14 (Surr)	74		60 - 148				08/20/22 08:36	08/22/22 22:18	1
Method: 6010C - Metals (ICP) -	Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	8.0		0.050	0.019	mg/L		08/18/22 09:47	08/23/22 20:39	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	14.7		10.0	1.7	mg/L			08/24/22 22:44	5
Nitrite as N	ND		0.050	0.020	mg/L			08/16/22 16:44	1
Cyanide, Total	0.0062	J	0.010	0.0050	mg/L		08/24/22 13:02	08/24/22 14:16	1
		J	0.050		mg/L			08/16/22 16:44	

Client Sample ID: MW-1 Date Collected: 10/03/22 13:40 Date Received: 10/04/22 14:10

Lab Sample ID: 480-202303-1 Matrix: Water

Method: SW846 8260C - Vo	latile Organic	Compound	ds by GC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10	3.0	ug/L			10/08/22 14:43	1
Benzene	ND		1.0	0.41	ug/L			10/08/22 14:43	1
Ethylbenzene	ND		1.0	0.74	ug/L			10/08/22 14:43	1
Styrene	ND		1.0	0.73	ug/L			10/08/22 14:43	1
Toluene	ND		1.0	0.51	ug/L			10/08/22 14:43	1
Xylenes, Total	ND		2.0	0.66	ug/L			10/08/22 14:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		77 - 120					10/08/22 14:43	1
4-Bromofluorobenzene (Surr)	101		73 - 120					10/08/22 14:43	1
Dibromofluoromethane (Surr)	100		75-123					10/08/22 14:43	1
Toluene-d8 (Surr)	101		80 - 120					10/08/22 14:43	1

Method: SW846 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND		5.2	0.42	ug/L		10/06/22 08:28	10/07/22 14:31	1
Benzo[a]anthracene	ND		5.2	0.38	ug/L		10/06/22 08:28	10/07/22 14:31	1
Benzo[a]pyrene	ND		5.2	0.49	ug/L		10/06/22 08:28	10/07/22 14:31	1
Benzo[b]fluoranthene	ND		5.2	0.35	ug/L		10/06/22 08:28	10/07/22 14:31	1
Benzo[k]fluoranthene	ND		5.2	0.76	ug/L		10/06/22 08:28	10/07/22 14:31	1
Chrysene	ND		5.2	0.34	ug/L		10/06/22 08:28	10/07/22 14:31	1
Dibenz(a,h)anthracene	ND		5.2	0.44	ug/L		10/06/22 08:28	10/07/22 14:31	1
Indeno[1,2,3-cd]pyrene	ND		5.2	0.49	ug/L		10/06/22 08:28	10/07/22 14:31	1
Naphthalene	ND		5.2	0.79	ug/L		10/06/22 08:28	10/07/22 14:31	1
Phenol	ND		5.2	0.41	ug/L		10/06/22 08:28	10/07/22 14:31	1

Surrogate	%Recovery G	Qualifier Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	73	41 - 120	10/06/22 08:28	10/07/22 14:31	1
2-Fluorobiphenyl	97	48 - 120	10/06/22 08:28	10/07/22 14:31	1
2-Fluorophenol (Surr)	72	35 - 120	10/06/22 08:28	10/07/22 14:31	1
Nitrobenzene-d5 (Surr)	86	46 - 120	10/06/22 08:28	10/07/22 14:31	1
Phenol-d5 (Surr)	56	22 - 120	10/06/22 08:28	10/07/22 14:31	1
p-Terphenyl-d14 (Surr)	87	60 - 148	10/06/22 08:28	10/07/22 14:31	1

Method: SW846 6010C - Metals (ICP) - Dissolved

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	0.32		0.050	0.019	mg/L		10/06/22 16:20	10/08/22 01:21	1
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate (MCAWW 300.0)	17.9		10.0	1.7	mg/L			10/07/22 06:20	5
Cyanide, Total (SW846 9012B)	ND		0.010	0.0041	mg/L			10/05/22 20:31	1
Nitrate as N (SM Nitrate by calc)	0.24		0.050	0.020	mg/L			10/04/22 21:34	1

Client Sample ID: MW-2

Date Collected: 10/03/22 15:39

Date Received: 10/04/22 14:10

Method: SW846 8260C - Volatile Organic Compounds by GC/MS											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Acetone	ND		10	3.0	ug/L			10/08/22 15:06	1		

Matrix: Water

Lab Sample ID: 480-202303-2

Client Sample ID: MW-2 Date Collected: 10/03/22 15:39 Date Received: 10/04/22 14:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	0.53	J	1.0	0.41	ug/L			10/08/22 15:06	
Ethylbenzene	ND		1.0	0.74	ug/L			10/08/22 15:06	
Styrene	ND		1.0	0.73	ug/L			10/08/22 15:06	
Toluene	ND		1.0	0.51	ug/L			10/08/22 15:06	
Xylenes, Total	ND		2.0	0.66	ug/L			10/08/22 15:06	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	100		77 - 120					10/08/22 15:06	
4-Bromofluorobenzene (Surr)	102		73 - 120					10/08/22 15:06	
Dibromofluoromethane (Surr)	101		75 - 123					10/08/22 15:06	
Toluene-d8 (Surr)	102		80 - 120					10/08/22 15:06	
Method: SW846 8270D - Semiv				MS)					
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
2-Methylphenol	ND		5.0	0.40	ug/L		10/06/22 08:28	10/07/22 14:59	
Benzo[a]anthracene	ND		5.0		ug/L		10/06/22 08:28		
Benzo[a]pyrene	ND		5.0		ug/L			10/07/22 14:59	
Benzo[b]fluoranthene	ND		5.0		ug/L			10/07/22 14:59	
Benzo[k]fluoranthene	ND		5.0		ug/L			10/07/22 14:59	
Chrysene	ND		5.0		ug/L		10/06/22 08:28	10/07/22 14:59	
Dibenz(a,h)anthracene	ND		5.0		ug/L		10/06/22 08:28	10/07/22 14:59	
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		10/06/22 08:28	10/07/22 14:59	
Naphthalene	ND		5.0	0.76	ug/L		10/06/22 08:28	10/07/22 14:59	
Phenol	ND		5.0	0.39	ug/L		10/06/22 08:28	10/07/22 14:59	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol (Surr)	71		41 - 120				10/06/22 08:28	10/07/22 14:59	
2-Fluorobiphenyl	81		48 - 120				10/06/22 08:28	10/07/22 14:59	
2-Fluorophenol (Surr)	57		35 - 120				10/06/22 08:28	10/07/22 14:59	
Nitrobenzene-d5 (Surr)	70		46 - 120				10/06/22 08:28	10/07/22 14:59	
Phenol-d5 (Surr)	45		22 - 120				10/06/22 08:28	10/07/22 14:59	
p-Terphenyl-d14 (Surr)	80		60 - 148				10/06/22 08:28	10/07/22 14:59	
Method: SW846 6010C - Metal									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Iron, Dissolved	0.068		0.050	0.019	mg/L		10/06/22 16:20	10/08/22 01:36	
General Chemistry		0 117				_	. .		
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Sulfate (MCAWW 300.0)	30.3		10.0		mg/L			10/07/22 06:40	
Cyanide, Total (SW846 9012B)	0.046		0.010	0.0041	-			10/09/22 14:09	
Nitrate as N (SM Nitrate by calc)	0.68		0.050	0.020	mg/L			10/04/22 21:35	
Client Sample ID: MW-3						La	b Sample	ID: 480-202	
Date Collected: 10/03/22 09:34 Date Received: 10/04/22 14:10								Matrix	: Wate
Method: SW846 8260C - Volati	le Organic	Compound	ds by GC/MS						_
		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa

Dil Fac Analyte Qualifier MDL Unit Prepared Analyzed Result RL D ND 10 3.0 ug/L 10/08/22 15:27 1 Acetone 1.0 Benzene ND 0.41 ug/L 10/08/22 15:27 1

Eurofins Buffalo

Client Sample ID: MW-3 Date Collected: 10/03/22 09:34 Date Received: 10/04/22 14:10

Lab Sample ID: 480-202303-3 Matrix: Water

Method: SW846 8260C - Vola	atile Organic (Compound	ds by GC/MS	(Contin	ued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND		1.0	0.74	ug/L			10/08/22 15:27	1
Styrene	ND		1.0	0.73	ug/L			10/08/22 15:27	1
Toluene	ND		1.0	0.51	ug/L			10/08/22 15:27	1
Xylenes, Total	ND		2.0	0.66	ug/L			10/08/22 15:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		77 - 120					10/08/22 15:27	1
4-Bromofluorobenzene (Surr)	102		73 - 120					10/08/22 15:27	1
Dibromofluoromethane (Surr)	101		75 - 123					10/08/22 15:27	1
Toluene-d8 (Surr)	100		80 - 120					10/08/22 15:27	1

Method: SW846 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND			5.2	0.42	ug/L		10/06/22 08:28	10/07/22 13:35	1
Benzo[a]anthracene	ND			5.2	0.38	ug/L		10/06/22 08:28	10/07/22 13:35	1
Benzo[a]pyrene	ND			5.2	0.49	ug/L		10/06/22 08:28	10/07/22 13:35	1
Benzo[b]fluoranthene	ND			5.2	0.35	ug/L		10/06/22 08:28	10/07/22 13:35	1
Benzo[k]fluoranthene	ND			5.2	0.76	ug/L		10/06/22 08:28	10/07/22 13:35	1
Chrysene	ND			5.2	0.34	ug/L		10/06/22 08:28	10/07/22 13:35	1
Dibenz(a,h)anthracene	ND			5.2	0.44	ug/L		10/06/22 08:28	10/07/22 13:35	1
Indeno[1,2,3-cd]pyrene	ND			5.2	0.49	ug/L		10/06/22 08:28	10/07/22 13:35	1
Naphthalene	ND			5.2	0.79	ug/L		10/06/22 08:28	10/07/22 13:35	1
Phenol	ND			5.2	0.41	ug/L		10/06/22 08:28	10/07/22 13:35	1
Surrogate	%Recovery	Qualifier	Limi	ts				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	58		41 - 1	120				10/06/22 08:28	10/07/22 13:35	1
2-Fluorobiphenyl	78		48 - 1	20				10/06/22 08:28	10/07/22 13:35	1
2-Fluorophenol (Surr)	53		35 - 1	20				10/06/22 08:28	10/07/22 13:35	1
Nitrobenzene-d5 (Surr)	65		46 - 1	20				10/06/22 08:28	10/07/22 13:35	1
Phenol-d5 (Surr)	44		22 - 1	20				10/06/22 08:28	10/07/22 13:35	1
p-Terphenyl-d14 (Surr)	71		60 - 1	148				10/06/22 08:28	10/07/22 13:35	1

Method: SW846 6010C - Metals (ICP) - Dissolved

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	15.3		0.050	0.019	mg/L		10/06/22 16:20	10/08/22 01:40	1
General Chemistry									

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate (MCAWW 300.0)	9.3 J	20.0	3.5	mg/L			10/07/22 02:25	10
Cyanide, Total (SW846 9012B)	0.010 U	0.010	0.0041	mg/L			10/09/22 13:56	1
Nitrate as N (SM Nitrate by calc)	ND	0.050	0.020	mg/L			10/04/22 21:46	1

Client Sample ID: MW-4 Date Collected: 10/04/22 09:55 Date Received: 10/04/22 14:10

Lab Sample ID: 480-202303-4 Matrix: Water

Method: SW846 8260C - Volatile Organic Compounds by GC/MS Analyte Result Qualifier RL MDL Unit Analyzed Dil Fac D Prepared 20 17 J 2 Acetone 6.0 ug/L 10/10/22 01:16 10/10/22 01:16 2.0 Benzene 88 0.82 ug/L 2 Ethylbenzene 2.0 2.0 1.5 ug/L 10/10/22 01:16 2

Eurofins Buffalo

Dil Fac

Dil Fac

2

2

2

2

2

2

2

Client Sample ID: MW-4 Date Collected: 10/04/22 09:55 Date Received: 10/04/22 14:10

Toluene-d8 (Surr)

Lab Sample ID: 480-202303-4 Matrix: Water

10/10/22 01:16

Method: SW846 8260C - Volatile Organic Compounds by GC/MS (Continued) **Result Qualifier** RL MDL Unit D Prepared Analyte Analyzed Styrene ND 2.0 1.5 ug/L 10/10/22 01:16 Toluene 2.0 1.0 ug/L 12 10/10/22 01:16 Xylenes, Total 9.2 4.0 1.3 ug/L 10/10/22 01:16 Surrogate %Recovery Qualifier Limits Prepared Analyzed 1,2-Dichloroethane-d4 (Surr) 100 77 - 120 10/10/22 01:16 4-Bromofluorobenzene (Surr) 101 73 - 120 10/10/22 01:16 Dibromofluoromethane (Surr) 102 75 - 123 10/10/22 01:16

80 - 120

Method: SW846 8270D - Semivolatile Organic Compounds (GC/MS)

101

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND		25	2.0	ug/L		10/06/22 08:28	10/07/22 15:26	5
Benzo[a]anthracene	ND		25	1.8	ug/L		10/06/22 08:28	10/07/22 15:26	5
Benzo[a]pyrene	ND		25	2.4	ug/L		10/06/22 08:28	10/07/22 15:26	5
Benzo[b]fluoranthene	ND		25	1.7	ug/L		10/06/22 08:28	10/07/22 15:26	5
Benzo[k]fluoranthene	ND		25	3.7	ug/L		10/06/22 08:28	10/07/22 15:26	5
Chrysene	ND		25	1.7	ug/L		10/06/22 08:28	10/07/22 15:26	5
Dibenz(a,h)anthracene	ND		25	2.1	ug/L		10/06/22 08:28	10/07/22 15:26	5
Indeno[1,2,3-cd]pyrene	ND		25	2.4	ug/L		10/06/22 08:28	10/07/22 15:26	5
Naphthalene	ND		25	3.8	ug/L		10/06/22 08:28	10/07/22 15:26	5
Phenol	4.7 J	J	25	2.0	ug/L		10/06/22 08:28	10/07/22 15:26	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	74		41 - 120				10/06/22 08:28	10/07/22 15:26	5
2-Fluorobiphenyl	94		48 - 120				10/06/22 08:28	10/07/22 15:26	5
2-Fluorophenol (Surr)	55		35 - 120				10/06/22 08:28	10/07/22 15:26	5
Nitrobenzene-d5 (Surr)	79		46 - 120				10/06/22 08:28	10/07/22 15:26	5
Phenol-d5 (Surr)	42		22 - 120				10/06/22 08:28	10/07/22 15:26	5
p-Terphenyl-d14 (Surr)	87		60 - 148				10/06/22 08:28	10/07/22 15:26	5
Method: SW846 6010C - Me	tals (ICP) - Diss	solved							
Analyte	Result (RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Iron, Dissolved	0.45		0.050	0.019	mg/L		10/06/22 16:20	10/08/22 02:00	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate (MCAWW 300.0)	56.8		10.0	1.7	mg/L			10/07/22 22:40	5
Cyanide, Total (SW846 9012B)	0.36		0.010	0.0041	mg/L			10/09/22 14:12	1
Nitrate as N (SM Nitrate by calc)	0.086		0.050	0.020	mg/L			10/04/22 21:37	1

Client Sample ID: MW-7 Date Collected: 10/04/22 08:23 Date Received: 10/04/22 14:10

Matrix: Water

Lab Sample ID: 480-202303-5

Method: SW846 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	10	3.0	ug/L			10/07/22 18:55	1
Benzene	ND	1.0	0.41	ug/L			10/07/22 18:55	1
Ethylbenzene	ND	1.0	0.74	ug/L			10/07/22 18:55	1
Styrene	ND	1.0	0.73	ug/L			10/07/22 18:55	1

Eurofins Buffalo

Method: SW846 8260C - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: MW-7 Date Collected: 10/04/22 08:23 Date Received: 10/04/22 14:10

Lab Sample ID: 480-202303-5 **Matrix: Water**

Analyte	-	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Toluene	ND		1.0	0.51	ug/L			10/07/22 18:55	1
Xylenes, Total	ND		2.0	0.66	ug/L			10/07/22 18:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		77 - 120					10/07/22 18:55	1
4-Bromofluorobenzene (Surr)	91		73 - 120					10/07/22 18:55	1
Dibromofluoromethane (Surr)	95		75 - 123					10/07/22 18:55	1
Toluene-d8 (Surr)	92		80 - 120					10/07/22 18:55	1
	nivolatile Org	anic Com	oounds (GC/	MS)					
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND		5.2	0.42	ug/L		10/06/22 08:28	10/07/22 15:54	1
Benzo[a]anthracene	ND		5.2	0.38	ug/L		10/06/22 08:28	10/07/22 15:54	1
Benzo[a]pyrene	ND		5.2	0.49	ug/L		10/06/22 08:28	10/07/22 15:54	1
Benzo[b]fluoranthene	ND		5.2	0.35	ug/L		10/06/22 08:28	10/07/22 15:54	1
Benzo[k]fluoranthene	ND		5.2	0.76	ug/L		10/06/22 08:28	10/07/22 15:54	1
Chrysene	ND		5.2	0.34	ug/L		10/06/22 08:28	10/07/22 15:54	1
Dibenz(a,h)anthracene	ND		5.2	0.44	ug/L		10/06/22 08:28	10/07/22 15:54	1
Indeno[1,2,3-cd]pyrene	ND		5.2	0.49	ug/L		10/06/22 08:28	10/07/22 15:54	1
Naphthalene	ND		5.2	0.79	ug/L		10/06/22 08:28	10/07/22 15:54	1
Phenol	ND		5.2	0.41	ug/L		10/06/22 08:28	10/07/22 15:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	84		41 - 120				10/06/22 08:28	10/07/22 15:54	1
2-Fluorobiphenyl	102		48 - 120				10/06/22 08:28	10/07/22 15:54	1
2-Fluorophenol (Surr)	72		35 - 120				10/06/22 08:28	10/07/22 15:54	1
Nitrobenzene-d5 (Surr)	88		46 - 120				10/06/22 08:28	10/07/22 15:54	1
Phenol-d5 (Surr)	57		22 - 120				10/06/22 08:28	10/07/22 15:54	1
p-Terphenyl-d14 (Surr)	101		60 - 148				10/06/22 08:28	10/07/22 15:54	1
Method: SW846 6010C - Met	als (ICP) - Dis	solved							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	9.7		0.050	0.019	mg/L		10/06/22 16:20	10/08/22 02:04	1
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Sulfate (MCAWW 300.0)	10.8		10.0	1.7				10/07/22 22:59	5
Cyanide, Total (SW846 9012B)	ND		0.010	0.0041	-			10/05/22 20:38	1
Nitrate as N (SM Nitrate by calc)	ND		0.050	0.020	mg/L			10/04/22 21:38	1

Client Sample ID: MW-9 Date Collected: 10/04/22 10:48 Date Received: 10/04/22 14:10

Method: SW846 8260C - \	/olatile Organic	Compounds	by GC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	7.7	J	10	3.0	ug/L			10/10/22 01:38	1
Benzene	6.1		1.0	0.41	ug/L			10/10/22 01:38	1
Ethylbenzene	ND		1.0	0.74	ug/L			10/10/22 01:38	1
Styrene	ND		1.0	0.73	ug/L			10/10/22 01:38	1
Toluene	0.70	J	1.0	0.51	ug/L			10/10/22 01:38	1

Eurofins Buffalo

Matrix: Water

Client Sample ID: MW-9 Date Collected: 10/04/22 10:48 Date Received: 10/04/22 14:10

Lab Sample ID: 480-202303-6 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		2.0	0.66	ug/L			10/10/22 01:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		77 - 120					10/10/22 01:38	1
4-Bromofluorobenzene (Surr)	99		73 - 120					10/10/22 01:38	1
Dibromofluoromethane (Surr)	101		75 - 123					10/10/22 01:38	1
Toluene-d8 (Surr)	101		80 - 120					10/10/22 01:38	1
Method: SW846 8270D - Sen	nivolatile Org	anic Com	oounds (GC/	MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND		5.0	0.40	ug/L		10/06/22 08:28	10/07/22 16:22	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		10/06/22 08:28	10/07/22 16:22	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		10/06/22 08:28	10/07/22 16:22	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		10/06/22 08:28	10/07/22 16:22	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		10/06/22 08:28	10/07/22 16:22	1
Chrysene	ND		5.0	0.33	ug/L		10/06/22 08:28	10/07/22 16:22	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		10/06/22 08:28	10/07/22 16:22	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		10/06/22 08:28	10/07/22 16:22	1
Naphthalene	ND		5.0	0.76	ug/L		10/06/22 08:28	10/07/22 16:22	1
Phenol	0.74	J	5.0	0.39	ug/L		10/06/22 08:28	10/07/22 16:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	72		41 - 120				10/06/22 08:28	10/07/22 16:22	1
2-Fluorobiphenyl	88		48 - 120				10/06/22 08:28	10/07/22 16:22	1
2-Fluorophenol (Surr)	57		35 - 120				10/06/22 08:28	10/07/22 16:22	1
Nitrobenzene-d5 (Surr)	74		46 - 120				10/06/22 08:28	10/07/22 16:22	1
Phenol-d5 (Surr)	44		22 - 120				10/06/22 08:28	10/07/22 16:22	1
p-Terphenyl-d14 (Surr)	79		60 - 148				10/06/22 08:28	10/07/22 16:22	1
Method: SW846 6010C - Met	als (ICP) - Dis	ssolved							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	ND		0.050	0.019	mg/L		10/06/22 16:20	10/08/22 02:08	1
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Sulfate (MCAWW 300.0)	239		20.0	3.5	mg/L			10/07/22 23:19	10
Cyanide, Total (SW846 9012B)	0.023		0.010	0.0041	mg/L			10/09/22 14:14	1
Nitrate as N (SM Nitrate by calc)	ND		0.050	0.020	mg/L			10/04/22 21:39	1

Client Sample ID: MW-10 Date Collected: 10/03/22 11:02 Date Received: 10/04/22 14:10

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	10	3.0	ug/L			10/08/22 15:49	1
Benzene	ND	1.0	0.41	ug/L			10/08/22 15:49	1
Ethylbenzene	ND	1.0	0.74	ug/L			10/08/22 15:49	1
Styrene	ND	1.0	0.73	ug/L			10/08/22 15:49	1
Toluene	ND	1.0	0.51	ug/L			10/08/22 15:49	1
Xylenes, Total	ND	2.0	0.66	ug/L			10/08/22 15:49	1

Eurofins Buffalo

Matrix: Water

Lab Sample ID: 480-202303-7

Client Sample ID: MW-10 Date Collected: 10/03/22 11:02 Date Received: 10/04/22 14:10

10/03/22 11:02

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	77 - 120		10/08/22 15:49	1
4-Bromofluorobenzene (Surr)	103	73 - 120		10/08/22 15:49	1
Dibromofluoromethane (Surr)	101	75 - 123		10/08/22 15:49	1
Toluene-d8 (Surr)	102	80 - 120		10/08/22 15:49	1

Method: SW846 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND	5.7	0.45	ug/L		10/06/22 08:28	10/07/22 16:50	1
Benzo[a]anthracene	ND	5.7	0.41	ug/L		10/06/22 08:28	10/07/22 16:50	1
Benzo[a]pyrene	ND	5.7	0.53	ug/L		10/06/22 08:28	10/07/22 16:50	1
Benzo[b]fluoranthene	ND	5.7	0.39	ug/L		10/06/22 08:28	10/07/22 16:50	1
Benzo[k]fluoranthene	ND	5.7	0.83	ug/L		10/06/22 08:28	10/07/22 16:50	1
Chrysene	ND	5.7	0.38	ug/L		10/06/22 08:28	10/07/22 16:50	1
Dibenz(a,h)anthracene	ND	5.7	0.48	ug/L		10/06/22 08:28	10/07/22 16:50	1
Indeno[1,2,3-cd]pyrene	ND	5.7	0.53	ug/L		10/06/22 08:28	10/07/22 16:50	1
Naphthalene	ND	5.7	0.86	ug/L		10/06/22 08:28	10/07/22 16:50	1
Phenol	ND	5.7	0.44	ug/L		10/06/22 08:28	10/07/22 16:50	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	77		41 - 120	10/06/22 08:28	10/07/22 16:50	1
2-Fluorobiphenyl	81		48 - 120	10/06/22 08:28	10/07/22 16:50	1
2-Fluorophenol (Surr)	60		35 - 120	10/06/22 08:28	10/07/22 16:50	1
Nitrobenzene-d5 (Surr)	70		46 - 120	10/06/22 08:28	10/07/22 16:50	1
Phenol-d5 (Surr)	50		22 - 120	10/06/22 08:28	10/07/22 16:50	1
p-Terphenyl-d14 (Surr)	84		60 - 148	10/06/22 08:28	10/07/22 16:50	1

Method: SW846 6010C - Metals (ICP) - Dissolved

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	0.067		0.050	0.019	mg/L		10/06/22 16:20	10/08/22 02:23	1
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac
Sulfate (MCAWW 300.0)	21.1		2.0		mg/L			10/07/22 23:38	1
Cyanide, Total (SW846 9012B)	0.15		0.010	0.0041	mg/L			10/09/22 14:29	1
Nitrate as N (SM Nitrate by calc)	ND		0.050	0.020	mg/L			10/04/22 21:50	1

Client Sample ID: MW-11

Date Collected: 10/03/22 12:10 Date Received: 10/04/22 14:10

Method: SW846 8260C	Volatile	Organic Compounds by GC/M	IS
	Volatile	organic compounds by Com	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		20	6.0	ug/L			10/08/22 16:11	2
Benzene	1.9	J	2.0	0.82	ug/L			10/08/22 16:11	2
Ethylbenzene	ND		2.0	1.5	ug/L			10/08/22 16:11	2
Styrene	ND		2.0	1.5	ug/L			10/08/22 16:11	2
Toluene	ND		2.0	1.0	ug/L			10/08/22 16:11	2
Xylenes, Total	ND		4.0	1.3	ug/L			10/08/22 16:11	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		77 - 120			-		10/08/22 16:11	2
4-Bromofluorobenzene (Surr)	101		73 - 120					10/08/22 16:11	2

Eurofins Buffalo

Matrix: Water

Client Sample ID: MW-11 Date Collected: 10/03/22 12:10 Date Received: 10/04/22 14:10

Client: AECOM

Lab Sample ID: 480-202303-8 Matrix: Water

Method: SW846 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	102		75 - 123		10/08/22 16:11	2
Toluene-d8 (Surr)	101		80 - 120		10/08/22 16:11	2

Method: SW846 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND	52	4.2	ug/L		10/06/22 08:28	10/07/22 17:19	10
Benzo[a]anthracene	ND	52	3.8	ug/L		10/06/22 08:28	10/07/22 17:19	10
Benzo[a]pyrene	ND	52	4.9	ug/L		10/06/22 08:28	10/07/22 17:19	10
Benzo[b]fluoranthene	ND	52	3.5	ug/L		10/06/22 08:28	10/07/22 17:19	10
Benzo[k]fluoranthene	ND	52	7.6	ug/L		10/06/22 08:28	10/07/22 17:19	10
Chrysene	ND	52	3.4	ug/L		10/06/22 08:28	10/07/22 17:19	10
Dibenz(a,h)anthracene	ND	52	4.4	ug/L		10/06/22 08:28	10/07/22 17:19	10
Indeno[1,2,3-cd]pyrene	ND	52	4.9	ug/L		10/06/22 08:28	10/07/22 17:19	10
Naphthalene	ND	52	7.9	ug/L		10/06/22 08:28	10/07/22 17:19	10
Phenol	ND	52	4.1	ug/L		10/06/22 08:28	10/07/22 17:19	10
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac

ourrogute	<i>/////////////////////////////////////</i>	quanner	Linito	i reputed	Analyzeu	Dirruc
2,4,6-Tribromophenol (Surr)	63		41 - 120	10/06/22 08:28	10/07/22 17:19	10
2-Fluorobiphenyl	77		48 - 120	10/06/22 08:28	10/07/22 17:19	10
2-Fluorophenol (Surr)	40		35 - 120	10/06/22 08:28	10/07/22 17:19	10
Nitrobenzene-d5 (Surr)	61		46 - 120	10/06/22 08:28	10/07/22 17:19	10
Phenol-d5 (Surr)	27		22 - 120	10/06/22 08:28	10/07/22 17:19	10
p-Terphenyl-d14 (Surr)	65		60 - 148	10/06/22 08:28	10/07/22 17:19	10

Method: SW846 6010C - Metals (ICP) - Dissolved

	- (,								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	0.13		0.050	0.019	mg/L		10/06/22 16:20	10/08/22 02:27	1
General Chemistry	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac
Sulfate (MCAWW 300.0)	17.3		2.0	0.35	mg/L		· · ·	10/08/22 01:36	1
Cyanide, Total (SW846 9012B)	0.010	U	0.010	0.0041	mg/L			10/05/22 21:12	1
Nitrate as N (SM Nitrate by calc)	ND		0.050	0.020	mg/L			10/04/22 21:52	1

Client Sample ID: MW-12 Date Collected: 10/03/22 14:50

Date Received: 10/04/22 14:10

Method: SW846 8260C - Vo	latile Organic C	Compound	ds by GC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10	3.0	ug/L			10/08/22 16:33	1
Benzene	7.3		1.0	0.41	ug/L			10/08/22 16:33	1
Ethylbenzene	ND		1.0	0.74	ug/L			10/08/22 16:33	1
Styrene	ND		1.0	0.73	ug/L			10/08/22 16:33	1
Toluene	ND		1.0	0.51	ug/L			10/08/22 16:33	1
Xylenes, Total	ND		2.0	0.66	ug/L			10/08/22 16:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		77 - 120			-		10/08/22 16:33	1
4-Bromofluorobenzene (Surr)	104		73 - 120					10/08/22 16:33	1
Dibromofluoromethane (Surr)	99		75 - 123					10/08/22 16:33	1

Eurofins Buffalo

Matrix: Water

Dil Fac

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

5

1

1

Dil Fac

Dil Fac

Dil Fac

1

1

1

1

1

1

1

1

1

1

Dil Fac

Dil Fac

Client: AECOM Project/Site: NYSEG Auburn Green Street

Client Sample ID: MW-12 Date Collected: 10/03/22 14:50 Date Received: 10/04/22 14:10

Lab Sample ID: 480-202303-9 Matrix: Water

Method: SW846 8260C - Volatile Organic Compounds by GC/MS (Continued) Surrogate Limits %Recovery Qualifier Prepared Analyzed Toluene-d8 (Surr) 99 80 - 120 10/08/22 16:33 Method: SW846 8270D - Semivolatile Organic Compounds (GC/MS) **Result Qualifier** MDL Unit Prepared Analyte RL D Analyzed 2-Methylphenol ND 50 0.40 ug/L 10/06/22 08:28 10/07/22 17:46 ND 5.0 Benzo[a]anthracene 0.36 ug/L 10/06/22 08:28 10/07/22 17:46 10/07/22 17:46 Benzo[a]pyrene ND 50 0.47 ug/L 10/06/22 08:28 Benzo[b]fluoranthene ND 5.0 0.34 ug/L 10/06/22 08:28 10/07/22 17:46 Benzo[k]fluoranthene ND 5.0 0.73 ug/L 10/06/22 08:28 10/07/22 17:46 Chrysene ND 5.0 0.33 ug/L 10/06/22 08:28 10/07/22 17:46 Dibenz(a,h)anthracene ND 5.0 0.42 ug/L 10/06/22 08:28 10/07/22 17:46 ND Indeno[1,2,3-cd]pyrene 50 0.47 ug/L 10/06/22 08:28 10/07/22 17:46 Naphthalene ND 5.0 0.76 ug/L 10/06/22 08:28 10/07/22 17:46 ND 10/06/22 08:28 10/07/22 17:46 Phenol 5.0 0.39 ug/L Qualifier Surrogate %Recovery Limits Prepared Analyzed 2,4,6-Tribromophenol (Surr) 78 41 - 120 10/06/22 08:28 10/07/22 17:46 10/06/22 08:28 10/07/22 17:46 2-Fluorobiphenyl 95 48 - 120 2-Fluorophenol (Surr) 65 35 - 120 10/06/22 08:28 10/07/22 17:46 82 Nitrobenzene-d5 (Surr) 46 - 120 10/06/22 08:28 10/07/22 17:46 Phenol-d5 (Surr) 22 - 120 50 10/06/22 08:28 10/07/22 17:46 60 - 148 10/06/22 08:28 10/07/22 17:46 p-Terphenyl-d14 (Surr) 81 Method: SW846 6010C - Metals (ICP) - Dissolved Analyte Result Qualifier D RI MDI Unit Prepared Analyzed Iron, Dissolved 0.050 10/06/22 16:20 10/08/22 02:31 8.8 0.019 mg/L **General Chemistry** MDL Unit Analyte RL D **Result Qualifier** Prepared Analyzed Sulfate (MCAWW 300.0) 1.7 10.0 mg/L 10/08/22 01:56 19.0 Cyanide, Total (SW846 9012B) 0.010 10/05/22 21:14 0.010 U 0.0041 mg/L Nitrate as N (SM Nitrate by calc) ND 0.050 0.020 mg/L 10/04/22 21:53 Lab Sample ID: 480-202303-10 Client Sample ID: DUPLICATE FD of MW-10 Date Collected: 10/03/22 00:00 Matrix: Water Date Received: 10/04/22 14:10 Method: SW846 8260C - Volatile Organic Compounds by GC/MS Qualifier Analyte Result RL MDL Unit D Prepared Analyzed Acetone ND 10 3.0 ug/L 10/08/22 16:55 Benzene ND 1.0 0.41 ug/L 10/08/22 16:55 ND 1.0 10/08/22 16:55 Ethylbenzene 0.74 ug/L Styrene ND 1.0 0.73 ug/L 10/08/22 16:55 Toluene ND 1.0 0.51 ug/L 10/08/22 16:55 Xylenes, Total ND 2.0 10/08/22 16:55 0.66 ug/L Qualifier Limits Prepared Surrogate %Recovery Analyzed 101 1,2-Dichloroethane-d4 (Surr) 77 - 120 10/08/22 16:55 4-Bromofluorobenzene (Surr) 102 73 - 120 10/08/22 16:55 103 Dibromofluoromethane (Surr) 75 - 123 10/08/22 16:55

Toluene-d8 (Surr)

Eurofins Buffalo

10/08/22 16:55

80 - 120

101

Client Sample Results

RL

MDL Unit

D

Prepared

Client: AECOM	
Project/Site: NYSEG Auburn Green Street	

Client Sample ID: DUPLICATE FD of MW-10 Date Collected: 10/03/22 00:00 Date Received: 10/04/22 14:10

Analyte

Method: SW846 8270D - Semivolatile Organic Compounds (GC/MS)

Result Qualifier

Analyte	Result	Quaimer			Unit	U	Flepaleu	Analyzeu	DirFac
2-Methylphenol	ND		5.2	0.42	ug/L		10/06/22 08:28	10/07/22 18:14	1
Benzo[a]anthracene	ND		5.2	0.38	ug/L		10/06/22 08:28	10/07/22 18:14	1
Benzo[a]pyrene	ND		5.2	0.49	ug/L		10/06/22 08:28	10/07/22 18:14	1
Benzo[b]fluoranthene	ND		5.2	0.35	ug/L		10/06/22 08:28	10/07/22 18:14	1
Benzo[k]fluoranthene	ND		5.2	0.76	ug/L		10/06/22 08:28	10/07/22 18:14	1
Chrysene	ND		5.2	0.34	ug/L		10/06/22 08:28	10/07/22 18:14	1
Dibenz(a,h)anthracene	ND		5.2	0.44	ug/L		10/06/22 08:28	10/07/22 18:14	1
Indeno[1,2,3-cd]pyrene	ND		5.2	0.49	ug/L		10/06/22 08:28	10/07/22 18:14	1
Naphthalene	ND		5.2	0.79	ug/L		10/06/22 08:28	10/07/22 18:14	1
Phenol	ND		5.2	0.41	ug/L		10/06/22 08:28	10/07/22 18:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	85		41 - 120				10/06/22 08:28	10/07/22 18:14	1
2-Fluorobiphenyl	102		48 - 120				10/06/22 08:28	10/07/22 18:14	1
2-Fluorophenol (Surr)	72		35 - 120				10/06/22 08:28	10/07/22 18:14	1
Nitrobenzene-d5 (Surr)	89		46 - 120				10/06/22 08:28	10/07/22 18:14	1
Phenol-d5 (Surr)	59		22 - 120				10/06/22 08:28	10/07/22 18:14	1
p-Terphenyl-d14 (Surr)	87		60 - 148				10/06/22 08:28	10/07/22 18:14	1
Method: SW846 6010C - Metal	s (ICP) - Dis	ssolved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	0.11		0.050	0.019	mg/L		10/06/22 16:20	10/08/22 02:35	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate (MCAWW 300.0)	21.2		2.0	0.35	mg/L		<u>·</u>	10/08/22 02:16	1
Cyanide, Total (SW846 9012B)	0.15		0.010	0.0041	mg/L			10/09/22 14:33	1
Nitrate as N (SM Nitrate by calc)	ND		0.050	0.020	mg/L			10/04/22 21:55	1

Client Sample ID: RINSE BLANK Date Collected: 10/04/22 09:34

Lab Sample ID: 480-202303-11 Matrix: Water

Date Received: 10/04/22 14:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10	3.0	ug/L			10/07/22 19:40	1
Benzene	ND		1.0	0.41	ug/L			10/07/22 19:40	1
Ethylbenzene	ND		1.0	0.74	ug/L			10/07/22 19:40	1
Styrene	ND		1.0	0.73	ug/L			10/07/22 19:40	1
Toluene	ND		1.0	0.51	ug/L			10/07/22 19:40	1
Xylenes, Total	ND		2.0	0.66	ug/L			10/07/22 19:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		77 - 120			-		10/07/22 19:40	1
4-Bromofluorobenzene (Surr)	94		73 - 120					10/07/22 19:40	1
Dibromofluoromethane (Surr)	90		75 - 123					10/07/22 19:40	1
Toluene-d8 (Surr)	86		80 - 120					10/07/22 19:40	1
Method: SW846 8270D - Se	emivolatile Org	anic Com	oounds (GC/I	NS)					
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

10/06/22 08:28 10/07/22 18:41 2-Methylphenol ND 5.0 0.40 ug/L 1

Analyzed

Dil Fac

Lab Sample ID: 480-202303-10 Matrix: Water

Client Sample ID: RINSE BLANK Date Collected: 10/04/22 09:34 Date Received: 10/04/22 14:10

Lab Sample ID: 480-202303-11 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	ND		5.0	0.36	ug/L		10/06/22 08:28	10/07/22 18:41	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		10/06/22 08:28	10/07/22 18:41	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		10/06/22 08:28	10/07/22 18:41	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		10/06/22 08:28	10/07/22 18:41	1
Chrysene	ND		5.0	0.33	ug/L		10/06/22 08:28	10/07/22 18:41	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		10/06/22 08:28	10/07/22 18:41	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		10/06/22 08:28	10/07/22 18:41	1
Naphthalene	ND		5.0	0.76	ug/L		10/06/22 08:28	10/07/22 18:41	1
Phenol	ND		5.0	0.39	ug/L		10/06/22 08:28	10/07/22 18:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	61		41 - 120				10/06/22 08:28	10/07/22 18:41	1
2-Fluorobiphenyl	87		48 - 120				10/06/22 08:28	10/07/22 18:41	1
2-Fluorophenol (Surr)	62		35 - 120				10/06/22 08:28	10/07/22 18:41	1
Nitrobenzene-d5 (Surr)	78		46 - 120				10/06/22 08:28	10/07/22 18:41	1
Phenol-d5 (Surr)	49		22 - 120				10/06/22 08:28	10/07/22 18:41	1
p-Terphenyl-d14 (Surr)	105		60 - 148				10/06/22 08:28	10/07/22 18:41	1
Method: SW846 6010C - Met	als (ICP) - Dis	ssolved							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	ND		0.050	0.019	mg/L		10/06/22 16:20	10/08/22 02:39	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate (MCAWW 300.0)	ND		2.0	0.35	mg/L			10/08/22 02:35	1
Cyanide, Total (SW846 9012B)	0.00	088 J	0.010	0.0041	mg/L			10/05/22 21:19	1
Nitrate as N (SM Nitrate by calc)	ND		0.050	0.020	mg/L			10/04/22 21:56	1

Date Collected: 10/04/22 00:00 Date Received: 10/04/22 14:10

Lab Sample ID: 480-202303-12 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10	3.0	ug/L			10/07/22 20:03	1
Benzene	ND		1.0	0.41	ug/L			10/07/22 20:03	1
Ethylbenzene	ND		1.0	0.74	ug/L			10/07/22 20:03	1
Styrene	ND		1.0	0.73	ug/L			10/07/22 20:03	1
Toluene	ND		1.0	0.51	ug/L			10/07/22 20:03	1
Xylenes, Total	ND		2.0	0.66	ug/L			10/07/22 20:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	88		77 - 120					10/07/22 20:03	1
4-Bromofluorobenzene (Surr)	84		73 - 120					10/07/22 20:03	1
Dibromofluoromethane (Surr)	92		75 - 123					10/07/22 20:03	1
Toluene-d8 (Surr)	90		80 - 120					10/07/22 20:03	1

Appendix C Support Documentation

Eurofins TestAmerica, Buffalo				
10 Hazelwood Drive Amherst, NY 14228-2298 Phone 716-691-2600 Fax 716-691-7991	Chain of Custody Record	ody Record		Environment Texton
Client Information	Sampler Conselly	Lab PM Schove, John R	Carrier Tracking No(s) COC No 480-165719-36301	3301 1
Client Contact Tami Raby	Phone 240,392-0870	E-Mail John. Schove@Eurofinset.com	State of Origin Page 1 of 1	
Company AECOM		nalysis		
Address One John James Audubon Parkway Suite 210	Due Date Requested:			des:
Cuty Amherst	TAT Requested (days):		A HCL B - NaOH C - Zh Acetale	Σzo
State, 2/p NY, 14/228	bliance Project:		D - Nitre Acid E = NaHSO4	
Phone	Po # Purchase Order Requested	(c	F - MeOH G - Amchlor H - Ascorbic Acid	R - Na2S203 S - H2SO4 T - TSP Dodershvirtate
Email tamara raby@aecom.com	#OM			2>
Project Name NYSEG Auburn Green Street	Project # 48020888	ic Me OL I		W - pH 4-5 Z - other (specify)
Site	SSOW#	N DS	of con	
	Sample Type Sample (C≂comp,	Matrix Manatrix Summater Summater Manatrix Manatrix Matrix	Tedmuk Is:	
Sample Identification		Z 904		Special Instructions/Note:
"""""""	a 125/21 2000 12	1 2 17		
-12 - 0	1 09.00			
5 - 13 - 6	0900 6			
1	J 5150 T	Solid XX ·		
F0-20210928	9/25/21 - 6	Solid X 1		
EB - 20210925	9/25/21 0850 G	Water www		
	-			
			Tool 30234 Chain of Custody	istody
Possible Hazard Identification		Sample Disposal (A fee may be a	ples are re	1 month)
V. Other (specify)		Special Instructions/QC Requirements	Disposal by Lab Archive For neuts	Months
Empty Kit Relinquished by	Date	Time M	Method of Shipment	
Relinquistreader R. Commercial	Date Time 29/21/21/21203	wo	000 1 10/02/1/20	Company
			Date/Lime	Сотралу
	DaterTime	Company Received by	Date/Time	Company
Custody Seals Intact: Custody Seal No Δ Yes Δ No		Cooler Temperature(s) °C and Other Remarks	HI 29	
				Ver: 06/08/2021

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive

Comments

No additional comments.

Receipt

The samples were received on 9/30/2021 10:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.9° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3-IN METHOD BLANK METALS

Lab Name: E	urofins TestAmerica, Buffal	Job No.	: 480-	190294-1	
SDG No.:					
Concentrati	on Units: mg/Kg	Lab Sam	ple ID	: <u>MB 480-598</u>	949/1-A
Instrument	Code: ICAP1	Batch N	o.: _5	99215	
CAS No.	Analyte	Concentration	С	Q	Method

J

6010C

0.575

7440-38-2

Arsenic

Buffalo	
Eurofins TestAmerica,	10 Hazelwood Drive

1

Client Information	Sampa C	P. U.Y	1	Schov	Lab PM Schove John R			Camer Tri	Carrier Tracking No(s)	COC No		
Client Contact: Tami Rahv	Phone 71		(10	E-Mail:				State of Origin	ngin	480-1657 Page	480-165718-36300.1 Page	
Company	(a/x)	7	1100	John	Schove@	John.Schove@Eurofinset.com	mo			Page 1 of 2	12	
AECOM)		PWSID.				Analvsis	Analvsis Requested		Job #		
orgeness One John James Audubon Parkway Suite 210	Due Date Requested:	:p								Preservat	Preservation Codes:	
City Amherst	TAT Requested (days):	iys):			1158 H 1 X Z					A - HCL	:	
State, Zip: NV 11778		- 1										
Phone.	Compliance Project:	t: ΔYes ΔNo	No		(Jan)							
	Purchase Order Requested	Requested										
⊑mail. tamara.raby@aecom.com	WO#				(6					Const Chain of Custody	ustody	
Project Name NYSEG Auburn Green Street	Project # (QU0 2: 1	SIL2024		NHO		d - Iroi		480-1	90335 CIIdin -		w - pH 4-5
Site:	#MOSS				D (Vei	9)	9161				5	(indexed) and
			Sample	T	s pered s MS/MS	ellu2 - O 8 - soo	,95nide, alc - Viti Istals, D				the te falls	2 FIL-
Sample Identification	Sample Date	Sample Time	C=comp, (C=comp, G=grab)	(Wewater, Sesolid, Oewaste/oil, RTETiseus Amair)	mohe	182_0.00	D_etertil			5	1 101 6	for MW. 4
	X	N	Preservation Code:		X	8 d	NN	and and and			Special Instructions/Note:	tions/Note:
MWV-1	9/30/21	1543	5	Water	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	M	-				Canadi	
MW2- MIW - (2	9 130 (21	1/05	3	Water	2	-					VOCs:	BIEX + acetone and styrene
MW3 M3 M3 Jacks Duplicale	9/30/21	1	5	Water	2	-					Site Specific SVOCs:	2-methylphenol, 2-
MWA NW-3 NS/MSD	9130121	1211	5	Water	\succ	in	33					benzo(a)anthracene,
MW-5 MILS - 4	9130121	0441	Z	Water	Y N Z	M -	-			0		penzo(a)pyrene, benzo(b)fluoranthene.
MW-6 JW-5	9/30/21	1591	5	Water	522	-	-			- 5		benzo(k)fluoranthene,
MW-I Toip Blank	7/30/21	1	3	Water	No	2				- 1		dibenz[a,h]anthracene,
WW 8				Water			+			5		ideno(1,2,3-CD)pyrene,
- B-MM				Water						Metals	tals:	Dissolved Iron Only
01-WWW				Water			-			C- 30		
WW 11				Water			+					
Possible Hazard Identification					Samplu	e Disposal	(A fee ma)	beassessed	l if samples a	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	than 1 mon	th)
V, Othe			Kadiological		Special	Return To C	Special Instructions/OC Requirements	Disposal By Lab	By Lab	Archive For	×	Months
Empty Kit Relinguished by:		Date						- 1				
Relinquisped by 7 / /	Date/Time	Dale		Company			-	Mei	Method of Shipment	. r.		
Relinnished by	121	C 1020	0	Aco m		Veceived by	MM UM	Kow C'IViel		1/12/1/0/	622 Company	t thread
	Uate/1 ime		<u> </u>	Company	Rec	Received by			Date/Time		Company	pany
- r	Date/Time			Company	Rec	Received by			Date/Time		Company	pany
Custody Seals Intact: Custody Seal No.:					Coo	ler Temperatu.	Cooler Temperature(s) °C and Other Remarks	her Remarks:	26	11.1 11		

Comments

No additional comments.

Receipt

The samples were received on 10/1/2021 10:20 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 3.6° C and 4.1° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted due to the abundance of non-target analytes: MW-1 (480-190335-1), MW-6 (480-190335-2), DUPLICATE (480-190335-3) and MW-3 (480-190335-4). Elevated reporting limits (RLs) are provided.

Method 300.0: The following sample was diluted due to the nature of the sample matrix: MW-5 (480-190335-6). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method 3005A: The following samples for metals were received unpreserved and were preserved upon receipt to the laboratory: MW-1 (480-190335-1), MW-6 (480-190335-2), DUPLICATE (480-190335-3), MW-3 (480-190335-4), MW-3 (480-190335-4[MS]), MW-3 (480-190335-4[MSD]), MW-4 (480-190335-5) and MW-5 (480-190335-6). Regulatory documents require a 24-hour waiting period from the time of the addition of the acid preservative to the time of digestion. Preserved 10/6/21 at 1325. Second check 10/7/21 at 1630.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3510C: Due to the matrix, the initial volume(s) used for the following samples deviated from the standard procedure: MW-3 (480-190335-4), MW-3 (480-190335-4[MS]) and MW-3 (480-190335-4[MSD]). The reporting limits (RLs) have been adjusted proportionately.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

12-IN PREPARATION LOG METALS

Lab Name: Eurofins TestAmerica, Buffalo Job No.: <u>480-190335-1</u>

SDG No.:

Prep Method: 3005A

Lab Sample ID	Preparation Date	Prep Batch	Initial Weight	Initial Volume (mL)	Final Volume (mL)
					(1111)
MB 480-599519/1-A	10/08/2021 09:22	599519		50	50
LCS 480-599519/2-A	10/08/2021 09:22	599519		50	50
480-190335-1	10/08/2021 09:22	599519		50	50
480-190335-2	10/08/2021 09:22	599519		50	50
480-190335-3	10/08/2021 09:22	599519		50	50
480-190335-4	10/08/2021 09:22	599519		50	50
480-190335-4 MS	10/08/2021 09:22	599519		50	50
480-190335-4 MSD	10/08/2021 09:22	599519		50	50
480-190335-5	10/08/2021 09:22	599519		50	50
480-190335-6	10/08/2021 09:22	599519		50	50

3-IN METHOD BLANK METALS - TOTAL RECOVERABLE

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-190335-1
SDG No.:	
Concentration Units: mg/L	Lab Sample ID: MB 480-599519/1-A
Instrument Code: ICAP1	Batch No.: 599838

CAS No.	Analyte	Concentration	С	Q	Method
7439-89-6	Iron, Dissolved	0.0190	J		6010C

Eurofins TestAmerica, Buffalo 10 Hazelwood Drve Amherst, NY 14228-2298 Phone: 716-691-2600 Fax 715-691-7991	Chain of	Custod	Custody Record		🔆 eurofins 👘	Envronment Tusting America
Client Information	Samply O. P. Ily		Lab PM Schove Joho P	Carner Tracking No(s)	COC No	Γ
Client Contact Tami Raby	m	(42 pa.	E-Mail	State of Ongin	480-165718-36300.1 Page	
Company AECOM				Andhoio Boursets J	Job #.	T
Address One John James Audubon Parkway Suite 210	Due Date Requested:			Indexeduation and a second	Preservation Codes:	
City Amherst	TAT Requested (days):		11.19 × 2× 2		A - HCL	
State. Zip NY, 14228	Compliance Project: Δ Yes Δ N	No				
Phone.	Po # 137 633 Purchase Order Requested		I			
Email. tamara.raby@aecom.com			(0)		Coose Chain of Custody	*
Project Name NYSEG Auburn Green Street	Project # QUD 4: 4	1811-2021	ovime2			** - PH 4-5 Z - other (specify)
Site	SSOW#		вр (Ya - Рен S - Рен S - ste + X = T B - total		Other:	
Sample Identification	Sample Date Time	Type (we complete the second s	1128 - Cyanida 2700 - SVOCa - I 2800 - VOCa - I 2800 - VOCa - I	Ifrato_Calc - Ni 010C - Metals, I	Xtr. t. f. la Xtr. t. f. la z Dag rat to	- 42(2 41/2-) Tor tor 2010 - 2
	1	- 6		+	E Special Instructions/Note:	tions/Note:
1-1MM	9/30/21 1547	S N		2 -	Cito Canifi.	
MMZ MUN - LR	9130121 1/05	N N N	2 2 .		T	BIEX + acetone and styrene
MAN3 105 for 50 Duplicate	9/30/21 -	N N	1 2 7 1		Site Specific	2-methylphenol, 2-
MWA MW-3 MS/MSD	9/30/21 1211	2 N	Y 6 3 9 3	3 3		benzo(a)anthracene,
MW-5 MIN - 4	0 441 12/08/6	N L)	N 2 1 3 1	-	5 0	benzo(a)pyrene, benzo(b)fluoranthene
MWE JW-5	9/30/21 1651	6- W	~ 2131		- 5	benzo(k)fluoranthene,
MULT Top Black	7/30/21 -	N N	2 10	+	- 1	dibenz[a,h]anthracene,
WW.B.		Ň	Water		2	ideno(1,2,3-CD)pyrene, napthalene, and nhenol
- BANA		Ň	Water		Metals:	Dissolved Iron Only
OF WWW		Š	Water			
-11 -		Ň	Water		 (初	
	Poison R Intervent		Sample Disposal (A fe	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	ained longer than 1 mon	(H)
ested 1, 11, 111, IV, Other (specify)		autorogical	Special Instructions/QC Requirements	Requirements:	Archive For M	Months
Empty Kit Relinquished by.	Date.		Time	Method of Shipment		T
Reinquished by 7 Computed M	Date/Time 10/1/21 C 102	0	ź	Wow Cluck	(121/220 Compage	F Land
Relinensched hv		huedwon		Date/Time	Company	bany
•	Date/Time	Company	Received by	Date/Time	Company	bany
A Yes Δ No			Cooler Temperature(s) °C and Other Remarks	C and Other Remarks 3, 6 4.1	<u>F</u>	
					Ver	Ver: 06/08/2021
			12 13 14 14	7 8 9 10	4 5 6	1 2 3
			2 3 4	0		

Job ID: 480-190335-2

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-190335-2

Comments

No additional comments.

Receipt

The samples were received on 10/1/2021 10:20 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 3.6° C and 4.1° C.

GC/MS VOA

Method 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-4 (480-190335-5). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

	curonns restamerica, Buffalo									1
	10 Hazelwood Drive Amherst, NY 14228-2298 Phone: 716-691-2600 Fax 716-691-7991	Cha	Chain of Cus	Custody Record	cord			🔆 eurofins	Ére-ronment Testing America	
	Client Information	Sample AU		Lab PM Schoue John D		Carrier Tracking No(s)	ing No(s):	COC No		
	Client Contact Tami Raby	े ५	1-231	E-Mail:		State of Origin	c	480-165718-36300.1 Page	-	
	Company AECOM		Md	John.Sc	John.Schove@Eurofinset.com	-		Page 1 of 2		
	Address. One John James Audubon Parkway Suite 210	Due Date Requested:		5	Analy	Analysis Requested		Preservation Codes:		
	City Amherst	100		L VOLS		الجاد			- Hexane	
	Slate, Zp. NY, 14228	Compliance Project:	2 t mw-9/10	VI D	ЭлС	1 11		D - Nitric Acid P	N - None O - AsNaO2 P - Na204S	
	Phone	5	ested		2[3)	0/2.1-			1 - Na2SO3 1 - Na2S2O3	
	Email: tamara.raby@aecom.com	# OM			selite				cahydrate	
	Project Name NYSEG Auburn Green Street		Quete: 450.		ovime	1001 - Jroi				
	Sile	SSOW#		elqmsi	2 HA9 91e + X3Ti 1610T				(4)	
			Sample	2 beret	Vanide, VC5s - B VC5s - C	1	480-190421 Chain of Custody	of Custody		
	Sample Identification	Sample Date Time	Ple (C=comp, De G=grah)	W=water, S=solid, O=wasterioil,	0128 - C 260C - V 00.0_281 00.0_281 270D - 2	M - 2010				1
		4	17	tion Code:	206 m 28 Z 206 Z 206 Z 207 Z	⁰⁹ z	•1>		Special Instructions/Note:	
	-MM-	10/4/21 1000	ۍ ٥	Water y	2131			Site Specific	BTEX + acetone and	
-	-nu-	5111 12/1/01	0	Water	V 3 1 3 1 1			1	styrene	
3 of	- MK -	0061 15/4/21	SO (e	Water y	-	-		SVOCs:	2-methylphenol, 2- methylnapthalene,	2 5
		10/4/21 169	655 G	Water y	N21311				benzo(a)anthracene, benzo(a)pvrene	
		appy (2/4/01	30	Water y	N 2 1 3 1 1				benzo(b)fluoranthene,	ne,
	18-100	- 12/1/01	TRIP	Wate	XX CXX V	×			penzo(k)tiuoranthene, chrysene,	le,
b (KINSE BLANK	02E1 (2/h/01	ঙ	Water y	N31211	-	1		dibenz[a,h]anthracene, ideno(1.2.3-CD)nvrene	ne,
3				Water					napthalene, and phenol	enol
				Water				INIELGIS:	UISSOIVEd Iron Only	
D Q				Water						
Ð				Water						
	Non-Hazard Plammable Skin Irritant Poison B	son B	Radiological		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client	may be assessed if sam	samples are retain	ed longer than 1 m	onth)	
	I, III, IV, Other (specify)	contract.			Special Instructions/QC Requirements:	equirements:		AICHIVE FOR	Months	
	Empty Kit Relinquished by: Relinnuished by:	Date		Time:	e l	Method	Method of Shipment			
	Relinduished by Bring du B	Date/Times/21	855	AFCOM		d/o// N	Date/Time 10/ S	-121 BSS company	A Traduc	
10/1	Reinnuschad hu	Date/ I ime		Company	Received by		Date/Time		Company	
9/20	remember of Cliffordy Saala Intract: Curtedia Cast M	Date/Time		Company	Received by		Date/Time	0	Company	
)21					Cooler Temperature(s) °C and Other Remarks	nd Other Remarks:	35#1			

Page 933 of 934

10/19/2021

Ver: 06/08/2021

Comments

No additional comments.

Receipt

The samples were received on 10/5/2021 8:55 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.5° C.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted due to the abundance of non-target analytes: MW-2 (480-190421-1), MW-7 (480-190421-2), MW-8 (480-190421-3) and MW-9 (480-190421-4). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method 3005A: The following samples for metals were received unpreserved and were preserved upon receipt to the laboratory: MW-2 (480-190421-1), MW-7 (480-190421-2), MW-8 (480-190421-3), MW-9 (480-190421-4), MW-10 (480-190421-5) and RISE BLANK (480-190421-6). Regulatory documents require a 24-hour waiting period from the time of the addition of the acid preservative to the time of digestion. Preserved 10/6/21 at 1325. Second check 10/7/21 at 1630.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method 353.2: The continuing calibration verification (CCV) associated with batch 480-599163 recovered above the upper control limit for Nitrite. The samples associated with this CCV did not have any detections above the reporting limit for the affected analyte; therefore, the data have been reported. The associated samples are impacted: MW-2 (480-190421-1), MW-8 (480-190421-3) and MW-10 (480-190421-5).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

12-IN PREPARATION LOG METALS

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-190421-1

SDG No.:

Prep Method: 3005A

Lab Sample ID	Preparation Date	Prep Batch	Initial Weight	Initial Volume (mL)	Final Volume (mL)
MB 480-599519/1-A	10/08/2021 09:22	599519		50	50
LCS 480-599519/2-A	10/08/2021 09:22	599519		50	50
480-190421-1	10/08/2021 09:22	599519		50	50
480-190421-2	10/08/2021 09:22	599519		50	50
480-190421-3	10/08/2021 09:22	599519		50	50
480-190421-4	10/08/2021 09:22	599519		50	50
480-190421-5	10/08/2021 09:22	599519		50	50
480-190421-6	10/08/2021 09:22	599519		50	50

3-IN METHOD BLANK METALS - TOTAL RECOVERABLE

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-190421-1
SDG No.:	
Concentration Units: mg/L	Lab Sample ID: MB 480-599519/1-A
Instrument Code: ICAP1	Batch No.: 599838

CAS No.	Analyte	Concentration	С	Q	Method
7439-89-6	Iron, Dissolved	0.0190	J		6010C

	curonns restAmerica, Buffalo								9			1
	10 Hazelwood Drive Amherst, NY 14228-2298 Phone: 716-691-2600 Fax 716-691-7991	Chain of	-	Custody Record	cord				🔆 eurofins		Etwarment Testing America	
	Client Information	Sample nil AU		Lab PM. Schowe Joho D	0 040		Carrier Tra	Carrier Tracking No(s):	COC No		ſ	
	Client Contact Tami Raby	15	5182-	E-Mail:			State of Origin	rigin	480-165718-36300.1 Page	36300.1		
	Company AECOM				Julin. Schove@Eurotinset.com	Iset.com			Page 1 of 2			
	Address: One John James Audubon Parkway Suite 210	Due Date Requested:		5		Anar	Analysis kequested		Preservation Codes	Codes:		
	city. Amherst	TAT Requested (days) D	1-1	Vocs			nal l		A - HCL B - NaOH		ę	
	State, Zip: NY, 14228	Compliance Project: A Ves D-No	00	Svors		310	ЧP		C - Zn Acetate D - Nitric Acid	0 - AsNa02 P - Na204S	02 4S	
	Phone.	Po # 37655	ted			13.2	12.1-1		E - NaHSO4 F - MeOH G - Amchlor		203	
	Email: tamara.raby@aecom.com	#0X		OL NO)		V- - - 9	·) •				cahydrate	
	Project Name NYSEG Auburn Green Street	Project # Quc +C. 14	81h2.02h : 21		N -1919	tyren.	d - Iro					
	Site	#MOSS			ev) de	letoT	eviossi				6	
			Sample Type	Matrix (w=water.	sw/sw m	- VOCs - B - Cyanide, - Calc - Niti	D ,sisteM	480-190421 Chain of Custody	nain of Custody			
	Sample Identification	Sample Date Time	(C=comp, G=grab)	S=solid, O=wasta/oil, BT=Tissue, A=Air)	101101	- 82106	- 2010		N Isto			1
		X	Preservat		z	3 00	e z			Special Instructions/Note:	1s/Note:	
		10/4/21 1000	G	Water	12N	311			Site Specific		BTEX + acetone and	
-	P.S.	5111 12/1/01	ې	Water	181	311			VOCS:		styrene	
2 ¢ 1 of	R.	10/1/20 1/200	6	Water y	1 KN	311	-		SVOCs:		z-metnyipnenol, 2- methylnapthalene,	
		10/4/21 165	s G	Water	N 2 1	311				ben	benzo(a)anthracene, benzo(a)pvrene	
		appy (2/4/01	3	Water Y	N 3 1	311	-			ben	benzo(b)fluoranthene,	ē,
20	18-100	- 12/1/01	F	Wate	XXX	XX c	X			chr	uenizu(k)riuorantnene, chrysene,	e,
) @	KINJE BLANK	12/12/12/02/02/02/02/02/02/02/02/02/02/02/02/02	3	Water y	- RN	2111	-		2.4	dib	dibenz[a,h]anthracene, ideno(1,2,3-CD)pvrene.	ne, Je.
\$)@				Water					Metals:	nap	napthalene, and phenol	lou
				Water								
e al				Water		_						
D	Possible Hazard Identification			water	Samole Disn	ncal / A fee	may he accord					
	Non-Hazard	ison B Unknown	Radiological		Return	To Client	Disposal L	ll samples are re By Lab	Return To Client Disposal By Lab Archive For Mon	n 1 month) Months	sq	
	Emoty Kit Deliverished to:	contract.			Special Instructions/QC Requirements	ctions/QC R	equirements:					
	0 0	Date		Time	e l		A Meth	Method of Shipment				
,	Relinquished by Cart Un &	10/5/21	855	AFCOM		MM USON	W ('IVI') N		5121	852 Company	4-	
10/1	Reinquished by			Company	Received by	>		Date/Time		Company	-	
1/20	Cirtradu Saais Intras: Custadu Saal M.	Date/ I ime	<u> </u>	Company	Received by			Date/Time		Company		
)21					Cooler Tem	erature(s) °C a	Cooler Temperature(s) °C and Other Remarks.	3.5 #	-			
										Ver: 06/08/2021	08/2021	

Page 511 of 512

10/11/2021

Comments

No additional comments.

Receipt

The samples were received on 10/5/2021 8:55 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.5° C.

GC/MS VOA

Method 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-9 (480-190421-4). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

falo	
ins But	C Press
Eurofi	

Chain of Custody Record

Controlins Environment Tusting America

Phone: 716-691-2600 Fax: 716-691-7991												
Client Information	Sampler.	2	Houre	Lab PM Schove,	۸ ve, John R	~			Carrier Tracking No(s)	No(s)	COC No 480-176317-36300	6300.1
Client Contact	Phone 711-923	01-2 20		E-Mail	Cohordo	al our of the	and an ac		State of Ongin		Page. Dare 1 of 2	
Tami Raby	110		DWSID	uuor		ioina lai	IISUS.COIL				Job #	
AECOM							Ana	Analysis Re	Requested		- 1	
Address One John James Audubon Parkway Suite 210	Due Date Requested:	ted:									Preservation C	Codes: M - Hexane
City Amherst	TAT Requested (days):	lays):									B - NaOH C - Zn Acetate	N - None O - AsNaO2 P - Ma2O4S
State: Zp NY, 14228	Compliance Project:	A Yes	A No		191 557		-				D - Nithe Acid E - NaHSO4	
Phone	PO# 146783				1.12				_			drate
Email tamara rabv@aecom.com	WO # 60652550				(9)			uo				
Project Name NYSEG Auburn Green Street	Project # 48020888				E.C.			ıl - bey			Custody	
Site	SSOW				A) ds	01e	latoT ,		_	480-200734	480-200734 Chain of C	
	C C C C C C C C C C C C C C C C C C C	Sample		Matrix (www. swoid. Owweekid.	5100 - 200C* W/GIE W/01 W/GIE W/01 W/GIE W/01 W/01 W/01 W/01 W/01 W/01 W/01 W/01	560C - VOC# - I	orse Cance Vanide	010C - Metals,			ndmuN lato	
Sample Identification	aumbie Date		Preservation Code:	tion Code:	X	c z	6 00	-				
MVV-1	20/12/8	05:50	9	Water	7 2 1	~	1				6	
MW-2	د.	10:20	1	Water	202	- 2	1	1			-	
MW-3	8/15/22	12:15	Y	Water	Y Y 2	1 3	1	1			9	
MW-4		5:51	1	Water	VN 2	/	31	11				
MW-5		10:55		Water	2 X	~	1 8	11				
MW-6	2	12:45	2	Water	272	~	2 /	-			2	
2-MM	8/16/20	01:60		Water								
MW-8	8/12/20	05:11	5	Water	YN Z	1.	3 1 1	1			6	
6-MW	1	15:52	1	Water	Y I I			11				
MW-10		14:20		Water	ЧШ							
MW-11	Δ	14:10	2	Water	A N K	101	10	11			N	
Possible Hazard Identification	Poison B Unk	Unknown	Radiological		Sampl	le Disposal (A 1 Return To Client	sal (A fe	e may be	Sample Disposal (A fee may be assessed if samples	mples are reta	are retained longer than 1 month, Archive For Mor	1 month) Months
Deliverable Requested: I, II, III, IV, Other (specify)					Specia	i Instruct	ions/QC	Special Instructions/QC Requirements	ents:			
Empty Kit Relinquished by:		Date:			Time:				Method of Shipment	Shipment:		
Retinquished by fille	19	12.5/ 22	6	Corporate	Rec	Received by				Date/Time		Company
Relinquished by	Date/Time		Ō	Company	Rec	Received by				Date/Time		Company
Relinquished by	Date/Time		Ū	Company	Rec	Received by	0			Date/Tuple	rCE1 1	Company
Custody Seals Intact I Custody Seal No					2	Tampa	Jo la marter	Cooler Temperaturale) ^o C and Other Bemadee				

08/30/2022

0	
ffal	g
Bul	Drive
ins l	
fin	o have
5	booming the
Щ	0

🐝 eurofins Envronment Testing

Phone: 716-691-2600 Fax: 716-691-7991												
tient Information	Sampler NC GOVE	ve 10.	Her	Lab PM Schove,	M ve, John R			<u> </u>	Carrier Tracking No(s)		COC No 480-176317-36300	6300 2
Client Contact	Phone. 01	-		E-Mail					State of Origin.		Page:	
Tami Raby	216-21			John	John Schove@et.eurofinsus.com	t.eurofins	us.com				Page 2 of 2	
Company AECOM			PWSID				Analys	Analysis Requested	lested		# qor	
Address One John James Audubon Parkway Suite 210	Due Date Requested:	÷			1000 M						Preservation Codes	odes: M - Hexane
City Amherst	TAT Requested (days):	ys):			10.64				_		A - HCL B - NaOH C - Zn Acetate	N - None 0 - AsNaO2
State, Zip NY, 14228	Compliance Project:	A Yes	A No								D - Nitric Acid E - NaHSO4	
Phone	,PO# 146783					_					F - MeOH G - Amchior H - Ascorbic Acid	
Email tamara raby@aecom.com	wo # 60652550					eu		uo				V - ACETONE V - MCAA W - DH 4-5
Project Name NYSEG Auburn Green Street	Project # 48020888				E.C.	e Styre		4 - pex			K - EDIA L - EDA	Y - Trizma Z - other (specify)
Site	SSOW#:				NGE		_	lossiQ			of cor	
	Samnla Data	Sample	Sample Type (C=comp,	Matrix (www.ak. aroku.	15100 - 200C*	1560C - VOCs -	orizB - Cyanide	alateM - 2010;			Fotal Number	Snorial Instructions (Note
	X	X	Preserva	Preservation Code:	Ń	-	z	z				
MW-12	8/10/2	CA: OI	3	Water	202	~ `	1				6	
DUPLICATE	20/51/8	1	Ŀ	Water	YNZ	13	11	1			6	
SW Sma	/	51:21	(Water	XX	1 1	1 1	1.			6	
as w 2 may	د	sie!	2	Water	ン ス	2 1	VIV	Λ			5	
				Water								
				Water								
RINSE BLANK	8/15/20	SIUSI	S	Water	YN 2	13	11	~			6	
TRIP BLANK		١	l	Water	3	2					2	
TRIP BLANK		1	1	Water	2	N		_			2	
	_							_				
Possible Hazard Identification					Sample	Disposa	I (A fee n	nay be as	sessed if sampl	es are reta	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month,	1 month)
Deliverable Requested: I, II, III, IV, Other (specify)	Poison B Unknown		Radiological		Special	Return To Client al Instructions/QC	Return to Client Uist Special Instructions/QC Requirements	quirement	Disposal By Lab ents:	A	Archive For	Months
Empty Kit Relinquished by		Date			Time.				Method of Shipment	nent.		
Relinquished by	Date/free /2 2	13:32		Company		Received by			Date	Date/Time		Company
Retinquished by	Date/Fime			Company	Rece	Received by			Date	Date/Time		Company
Relinquished by:	Date/Time			Company	Rece	Received by	$\langle \rangle$		Date	Date/Tinde	2 KN 2	& Company
Custody Seals Intact: Custody Seal No.:					Cook	r Temperat	Conter Temperature(s) °C and Other Remarks	4 Other Rem				

Ver: 06/08/2021

Comments

No additional comments.

Receipt

The samples were received on 8/16/2022 1:30 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 2.5° C, 2.7° C, 3.0° C and 3.2° C.

GC/MS VOA

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-4 (480-200734-4) and MW-9 (480-200734-8). Elevated reporting limits (RLs) are provided.

Method 8260C: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: MW-11 (480-200734-10). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-4 (480-200734-4) and MW-11 (480-200734-10). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following sample was diluted due to the nature of the sample matrix: MW-2 (480-200734-2). Elevated reporting limits (RLs) are provided.

Method 300.0: The following samples were diluted due to the abundance of non-target analytes: MW-1 (480-200734-1), MW-3 (480-200734-3), MW-5 (480-200734-5), MW-6 (480-200734-6), MW-8 (480-200734-7) and MW-9 (480-200734-8). Elevated reporting limits (RLs) are provided.

Method 300.0: The following samples were reported with elevated reporting limits for all analytes: MW-12 (480-200734-11), DUPLICATE (480-200734-12) and MW-7 (480-200734-15). The sample was analyzed at a dilution based on screening results.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

5A-IN MATRIX SPIKE SAMPLE RECOVERY METALS - DISSOLVED

Client ID: MW-3 MS MS

Lab ID: <u>480-200734-3 MS</u>

Lab Name: Eurofins Buffalo

Job No.: 480-200734-1

SDG No.:

Matrix: Water

Concentration Units: mg/L

% Solids:

Analyte	SSR	Sample Result (SR) C	Spike Added (SA)	%R	Control Limit %R	Q	Method
Iron, Dissolved	23.35	16.5	10.0	68	75-125	F1	6010C

SSR = Spiked Sample Result

Calculations are performed before rounding to avoid round-off errors in calculated results.

5-IN MATRIX SPIKE SAMPLE RECOVERY GENERAL CHEMISTRY

Lab Name:Eurofins BuffaloJob No.:480-200734-1

SDG No.:

Matrix: Water

Method Lab Sample ID Analyte	Result C Unit	Spike Amount	Pct. Rec.	Limits	RPD RPD Limit	Q
Batch ID: 638702 Date: 08/24/2022 14:15						
300.0 480-200734-3 Sulfate	13.4 J mg/L					
300.0 480-200734-3 Sulfate MS	524.8 mg/L	500	102	80-120		
Batch ID: 638702 Date: 08/24/2022 22:58						
300.0 480-200734-15 Sulfate	14.7 mg/L					
300.0 480-200734-15 Sulfate MS	272.2 mg/L	250	103	80-120		
Batch ID: 637728 Date: 08/16/2022 17:20						
353.2 480-200734-3 Nitrite as N	ND mg/L					F1
353.2 480-200734-3 Nitrite as N MS	1.11 mg/L	1.00	111	90-110		F1
Batch ID: 637893 Date: 08/17/2022 14:52	Prep Batch: 637871	Date: 0	8/17/2	022 14:14		
9012B 480-200734-3 Cyanide, Total	0.012 mg/L					F1
9012B 480-200734-3 Cyanide, Total MS	0.0212 mg/L	0.00500	182	90-110		F1
Batch ID: 638927 Date: 08/24/2022 14:21	Prep Batch: 638906	Date: 0	8/24/2	022 13:02		
9012B 480-200734-15 Cyanide, Total	0.0062 J mg/L					F1
9012B 480-200734-15 Cyanide, Total MS	0.0134 mg/L	0.00500	143	90-110		F1

Calculations are performed before rounding to avoid round-off errors in calculated results.

5-IN MATRIX SPIKE DUPLICATE SAMPLE RECOVERY GENERAL CHEMISTRY

Lab Name:Eurofins BuffaloJob No.:480-200734-1

SDG No.:

Matrix: Water

Method Lab Sample ID Analyte	Result C Unit	Spike Amount	Pct. Rec.	Limits	RPD	RPD Limit	Q
Batch ID: 638702 Date: 08/24/2022 14:29							
300.0 480-200734-3 Sulfate MSD	527.2 mg/L	500	103	80-120	0	15	
Batch ID: 637728 Date: 08/16/2022 17:22							
353.2 480-200734-3 Nitrite as N MSD	1.01 mg/L	1.00	101	90-110	9	20	
Batch ID: 637893 Date: 08/17/2022 14:54	Prep Batch: 637871	Date: 0	8/17/2	022 14:14			
9012B 480-200734-3 Cyanide, Total MSD	0.0192 mg/L	0.00500	142	90-110	10	15	F1

Calculations are performed before rounding to avoid round-off errors in calculated results.

is Buffalo) Hazelwood Drive	NY 14228-2298
Eurofins	10 Hazelw	Amherst,

Chain of Custody Record

🐝 eurofins Environment Testing

Client Information	Sampler,	J. He	He Conera	Schove,	ve. John I	nR				<u>5</u>	irner Trac	Carrier Tracking No(s)		COC No 480-177075-37993	93.1	
Client Contact Tami Raby	Phone 716-323-10	3-10		John.	E-Mail John.Schove@et.eurofinsus.com	:@et.e	urofins	us.con	-	Š	State of Origin	U		Page 1 of 2		
Company: AECOM			PWSID:					Ana	Analysis	Requested	ested			Job #		
Address. One John James Audubon Parkway Suite 210	Due Date Requested:	ted:			10231	-								Preservation Codes	les: M - Hexane	
Clty: Amherst	TAT Requested (days):	lays):			22.5						_			A - HCL B - NaOH C - Zn Acetate	N - None O - AsNaO2	
State. Zip. NY, 14228	Compliance Project:	A Yes	A No			_										
Phone	PO# 146783				(0	_	eroteo		_							ate
Email tamara.raby@aecom.com	wo # 60652550					sio	A + en		uo							
Project Name NYSEG Auburn Green Street	Project # 48020888					ueud -	Styre		4 - pə.			480-20	2303 Cha	480-202303 Chain of Custody		
Site	#MOSS							_				_	00 10	Other:		
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (w=water_ S=solid. O=wasterioli, BT=Tissue, Amair)	Field Filtered S	300.0_28D - SUOCs -	8560C - VOCs - E	9012B - Cyanide	Nitrate_Calc - Ni 6010C - Metals, I				nedmu∦ lstoT	Special In	Special Instructions/Note	ie ie
	X	1		Preservation Code:	X	-		1-2-	-						V	
MW-1	10/3/22	13.10	S	Water	2	1.0.1	3						0			
MW-2	-	68:51	_	Water	0		-	-	-							
MW-3	1	03:34	~	Water	X	1	1	1	>							
MW-4	10/4/22	55:60	3	Water	2	2	5	1 1	1				8			
MW-7	1	62:80	1	Water		-			-							
6-MW	2	94:01		Water	2	1	4	>					A			
MW-10	10/3/22	-0:11	3	Water	2	1 2	Μ	1	~				9			
MW-11	/	01.721		Water	-	-		-	-							
MW-12	2	asiti		Water												
DUPLICATE	19/3/20	١	2	Water	5											
SW S-MW	13/3/20	45.00	S	Water	~	2	4	5	1				>			
Possible Hazard Identification			Indiadailad		Sam		le Disposal (A l	I (A fe	e may	be ass	assessed if san	ples	are retained I	are retained longer than 1 month,	month)	
ssted: I, II, III, IV, Other			in the second seco		Spec	cial Ins	tructio	Is/QC	Requir	Special Instructions/QC Requirements		Lab		in the	SINOM	
Empty Kit Relinquished by		Date:			Time:						Metho	Method of Shipment				
Reinquished by	1	12/1/20	2	Company ~		Received by	d by:					Date/Time	ω.		Company	
Relinquished by	Date/Time			Company		Received by	1 by	4		$ \rangle$	6	Date/Time	a la		Company	
Reinquished by	Date/Time:			Company		Received by	A		11	X	\int		1-22	OIHI	Company	A
Custody Seals Intact Custody Seal No					ľ	E	Conlar Tamparatura(c)	Do (Sjan	°C and Oil	Other Remark	k					

Page 1864 of 1866

10/14/2022

			2
ns Buffalo	10 Hazelwood Drive	NY 14228-2298	
Eurofins	10 Hazel	Amherst,	

Chain of Custody Record

Control Environment Testing America

Phone: /16-691-2600 Fax: /16-691-/991																. r
Client Information	Sampler	6	Ac Colour	Schov	Lab PM Schove, John R	R				Carrier Tracking No(s)	(s)on bu		480-177075-37993.	37993.2		
Client Contact Tami Raby	Phone 710 2	223-1101	10	E-Mail John.	E-Mail: John. Schove@et. eurofinsus.com	@et.et	Irofinsu	S.com		State of Origin			Page 2 of 2			
Company			DISMO													
AECOM								Analy	Analysis Requested	lested						1
Address One John James Audubon Parkway Suite 210	Due Date Requested:	:pa			133							25,18	Preservation Codes: A - HCI M	des: M	exane	
City Amherst	TAT Requested (days):	ays):				-							B - NaOH C - Zn Acetate	zoo	N - None 0 - AsNaO2 P - N2204S	
State, Zip NY 14228	Compliance Project:	∆ Yes	Δ No										D - Nitric Acid E - NaHSO4		Q - Na2SO3 R - Na2S2O3	
Phone	P0# 146783				(0		enoteo						F - MeOH G - Amchlor H - Ascorbic Acid		S - H2SO4 T - TSP Dodecahydrate	
Email Jamara rahv@aecom com	WO # 60652550				(0)	sic	A + 9r		uo				I - Ice J - DI Water		U - Acetone V - MCAA W - nH 4-5	
Project Name NYSEG Auburn Green Street	Project # 48020888				110 84		Styrei		ni - bev			ienistr	K - EDTA L - EDA	Y - Trizma Z - other (s	Y - Trizma Z - other (specify)	
Site	#MOSS				N as	_	• X3T8		vioseiQ			of con	Other:			
Complet Manufification	Samula Data	Sample	Sample Type (C=comp, G=orab)			100.0_28D - SVOCs -	3560C - VOCs - I	N - SlaD_esterio	, elsteM - Octos			TedmuN Isto	Snecia	al Instruct	Special Instructions/Mote	1
	and and				X	-	1	-	Z			X				
MW-3 MSD	10/3/20	45.00	4	Water	2	1	0		-			6				1
RINSE BLANK	10/4/20	08:50	6	Water	2	12	~	-				a				
TRIP BLANK	1	l	1	Water	2	-	~	+								
TRIP BLANK	1	1	1	Water	11	+	-	+								1
						-		-								T
					1			-								
						-		+								
					1	-		+								-
						-		+								T
Identification					Sam	ple Di	sposal	(Afee	may be as	sessed if	samples ar	e retaine	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month	in 1 mont	h)	
Non-Hazard Hammable Skin Imfant Deliverable Requested: I, II, III, IV, Other (specify)	Poison B Unknown		Kadiological		Spec	cial Inst	Return to Cilent al Instructions/QC	s/QC R	Return 10 Client UIS Special Instructions/QC Requirements	UISPOSAI BY LAD ents.	Lab	Arcn	Archive For	W	Months	1
					-					Г	Mathod of Shinmont					
Empty Kit Relinquished by:		Uate:			ime:					Method						T
Relinquished by	1	1-14	5	Company		Received by	þ				Date/Time			Company	yne	
Relinquished by	Date/Time			Company		Received by	py.			(Date/Time			Company	any	
Relinquished by	Date/Time			Company		Received by	ha	N	K		Date/Time	2.15	z 1410	Company	8HAL AUE	1
Custody Seals Intact: Custody Seal No.: A Yes A No						Cooler Te	mperatu	Cooler Temperature(s) C and	nd Other Remark	Star						1
					1									Ver:	Ver: 06/08/2021	1

Comments

No additional comments.

Receipt

The samples were received on 10/4/2022 2:10 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 3 coolers at receipt time were 2.4° C, 2.7° C and 3.1° C.

GC/MS VOA

Method 8260C: The following sample was diluted due to the abundance of non-target analytes: MW-11 (480-202303-8). Elevated reporting limits (RLs) are provided.

Method 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-4 (480-202303-4). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The continuing calibration verification (CCV) analyzed in batch 480-644396 was outside the method criteria for the following analyte(s): 2,4,6-Tribromophenol (Surr). A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method 8270D: The following samples were diluted due to the nature of the sample matrix: MW-4 (480-202303-4) and MW-11 (480-202303-8). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted due to the abundance of non-target analytes: MW-1 (480-202303-1) and MW-2 (480-202303-2). Elevated reporting limits (RLs) are provided.

Method 300.0: The following samples were reported with elevated reporting limits for all analytes: MW-4 (480-202303-4), MW-7 (480-202303-5), MW-9 (480-202303-6) and MW-12 (480-202303-9). The sample was analyzed at a dilution based on screening results.

Method 300.0: The following sample was diluted due to the abundance of non-target analytes: MW-3 (480-202303-3). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Methods 335.4, 9012B: The continuing calibration verification (CCV) and the high laboratory control sample (HLCS) and the laboratory control sample (LCS) associated with batch 480-644220 recovered above the upper control limit for Cyanide. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.