FINAL

GROUNDWATER MONITORING REPORT

for the May 2003 Sampling Event at Air Force Plant 59

Prepared for:

Air Force Center for Environmental Excellence and Aeronautical Systems Center

Prepared by:

Earth Tech, Inc. 675 Washington Street, Suite 300 Alexandria, Virginia 22314

Contract No. F41624-01-D-9008 Task Order No. 2008

August 2003

FINAL

GROUNDWATER MONITORING REPORT

for the May 2003 Sampling Event at Air Force Plant 59

Prepared for:

Air Force Center for Environmental Excellence and Aeronautical Systems Center

Prepared by:

Earth Tech, Inc. 675 Washington Street, Suite 300 Alexandria, Virginia 22314

Contract No. F41624-01-D-9008 Task Order No. 2008

August 2003

DISCLAIMER

This Final Groundwater Monitoring Report for the May 2003 Sampling Event has been prepared for the United States Air Force (USAF) by Earth Tech for the purpose of satisfying the groundwater monitoring requirements defined in the April 27, 1999 letter to the New York State Department of Environmental Conservation (Earth Tech, 1999a) and the Record of Decision (Earth Tech, 1999b) for Air Force Plant 59. Acceptance of this report in performance of the contract under which it is prepared does not mean that the USAF adopts the conclusions, recommendations, or other views expressed herein, which are those of Earth Tech only and do not necessarily reflect the official position of the USAF.

Government agencies and their contractors registered with the Defense Technical Information Center should direct requests for copies of this report to Defense Technical Information Center, 8725 John J. Kingman Road, Suite 0944, Fort Belvoir, Virginia 22060-6218. Non-government agencies may purchase copies of this document from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161.

PREFACE

This Final Groundwater Monitoring Report for the May 2003 Sampling Event has been prepared by Earth Tech to describe field and laboratory operations conducted as part of the semiannual groundwater monitoring at Air Force Plant 59 (AFP 59), Johnson City, New York. Fieldwork followed guidelines set forth in the Final Work Plan for Groundwater Monitoring at AFP 59 (Earth Tech, 1998), the Air Force Center for Environmental Excellence (AFCEE) Model Work Plan (United States Air Force [USAF], 1996), and the AFCEE Model Field Sampling Plan, Version 1.1 (USAF, 1997). All work was completed under AFCEE Contract Number F41624-01-D-9008, Task Order 2008. The groundwater monitoring is being conducted to accomplish the following objective:

• To satisfy the groundwater monitoring requirements defined in the April 27, 1999 letter to the New York State Department of Environmental Conservation (Earth Tech, 1999a) and the *Record of Decision* (Earth Tech, 1999b) for Air Force Plant 59.

The AFCEE Restoration Team Chief is John McCown. The Air Force Aeronautical Systems Center Integrated Product Team Chief is John Doepker. The Earth Tech Project Manager is Dave Parse.

Approved:

Awid August for Brian J. Burgher

Vice President

Program Manager

Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other source of this collection of information including suggestions for reducing this burden to Washington Headquarters Services. Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302 and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 2. REPORT DATE 1. AGENCY USE ONLY (Leave Blank) 3. REPORT TYPE AND DATES COVERED August 2003 Final TITLE AND SUBTITLE **FUNDING NUMBERS** Final Groundwater Monitoring Report for the May 2003 Sampling Event at Air Contract No. F41624-01-D-9008; Force Plant 59 Task Order 2008 AUTHOR(S) Earth Tech 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) PERFORMING ORGANIZATION REPORT **NUMBER** 675 Washington Street, Suite 300 N/A Alexandria, VA 22314 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER AFCEE/ERD 3207 North Road N/A Brooks AFB, Texas 78235-5363 11. SUPPLEMENTARY NOTES None 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for Public Release; Distribution is Unlimited. 13.ABSTRACT (Maximum 200 words) This document is the Final Groundwater Monitoring Report for the May 2003 Sampling Event at Air Force Plant 59 (AFP 59), Johnson City, New York. It summarizes the fieldwork completed during the semiannual groundwater monitoring. The monitoring was conducted to accomplish the following objective: to satisfy the groundwater monitoring requirements defined in the April 27, 1999 letter to the New York State Department of Environmental Conservation and the Record of Decision for Air Force Plant 59. 14. SUBJECT TERMS 15. NUMBER OF PAGES 24 16. PRICE CODE IRP Groundwater Monitoring, Air Force Plant 59 SECURITY CLASSIFICATION OF 18. SECURITY CLASSIFICATION OF SECURITY 20. LIMITATION OF ABSTRACT THIS PAGE CLASSIFICATION UII. Unclassified Unclassified OF ABSTRACT Unclassified

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)

TABLE OF CONTENTS

Section		Page No		
1.0 Intro	duction	1-1		
2.0 Proje	ct Activities	2-1		
2.1 SA	MPLE ANALYSIS SUMMARY	2-1		
2.2 FtE	LD ACTIVITIES	2-3		
3.0 Inves	tigation Results	3-1		
3.1 SA	MPLING AND ANALYSIS RESULTS	3-1		
3.1.1	Review of Field and Laboratory Data	3-1		
3.1.2	Data Summary	3-4		
3.1.3	VOCs Detected in Groundwater Samples	3-4		
3.1.4	Trend Analysis	3-8		
4.0 Concl	usions			
Appendix A	References			
Appendix B	Field Data			
Appendix C Chain-of-Custody Forms				
Appendix D	Data Quality Review Summary and Groundwater Analytical Data			
	LIST OF FIGURES			
Figures		Page No.		
Figure 1-1	Regional Location Map	1-2		
Figure 1-2	Site Location Map			
Figure 2.1-1	AFP 59 Groundwater Sampling Locations, May 2003			
Figure 3.1-1	VOCs Detected in Groundwater, May 2003			
	LIST OF TABLES			
Tables		Page No.		
Table 2.1-1	Sample Analysis Summary	2-1		
Table 2.2-1	Field Activities Summary			
Table 3.1-1	Analytical Parameters, Method Detection Limits, and Reporting Limits for Kemron			
	Environmental Services.	3-2		
Table 3.1-2	Groundwater Data Summary for VOCs			
Table 3.1-3	VOCs Detected in Shallow Zone Groundwater Samples			
Table 3.1-4	Trend Analysis of VOCs in Groundwater			

LIST OF ACRONYMS AND ABBREVIATIONS

AFCEE Air Force Center for Environmental Excellence

AFP 59 Air Force Plant 59

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

1,1-DCA
1,1-Dichloroethane
1,1-DCE
1,1-Dichloroethene
cis-1,2-DCE
trans-1,2-DCE
trans-1,2-Dichloroethene

IRP Installation Restoration Program

μg/L Micrograms per Liter
MDL Method Detection Limit

N/A Not Applicable

NYSDEC New York State Department of Environmental Conservation

QAPP Quality Assurance Project Plan

RI/FS Remedial Investigation/Feasibility Study

RL Reporting Limit

1,1,1-TCA 1,1,1-Trichloroethane
TCE Trichloroethene

USAF United States Air Force

USEPA United States Environmental Protection Agency

VOC Volatile Organic Compound

1.0 INTRODUCTION

This Final Groundwater Monitoring Report for the May 2003 Sampling Event has been prepared by Earth Tech to describe field and laboratory operations during the May 2003 groundwater sampling event. The May 2003 sampling event was conducted as part of the semiannual groundwater monitoring at Air Force Plant 59 (AFP 59), Johnson City, New York. Earth Tech was contracted by the Air Force Center for Environmental Excellence (AFCEE) to perform two rounds of groundwater sampling (semiannual sampling) at AFP 59. Figure 1-1 shows the general location of AFP 59. Figure 1-2 shows the locations of buildings and monitoring wells at AFP 59. The groundwater monitoring is being conducted to accomplish the following objective:

• To satisfy the groundwater monitoring requirements defined in the April 27, 1999 letter to the New York State Department of Environmental Conservation (NYSDEC) (Earth Tech, 1999a) and the *Record of Decision* (Earth Tech, 1999b) for Air Force Plant 59.

All sampling activities followed protocols presented in the Final Work Plan for Groundwater Monitoring at AFP 59 (Earth Tech, 1998), the Final Sampling and Analysis Plan (Earth Tech, 1994), the AFCEE Model Work Plan (USAF, 1996), and the AFCEE Model Field Sampling Plan, Version 1.1 (USAF, 1997).

This report contains the following four sections: Section 1 provides the objectives of the semiannual sampling events, Section 2 provides a summary of the activities conducted during the May 2003 sampling event, Section 3 summarizes the analytical results, and Section 4 presents conclusions from the investigation.

2.0 PROJECT ACTIVITIES

This section summarizes activities conducted during the May 2003 sampling event. Section 2.1 summarizes the rationale for selecting the analyses performed on samples collected during the investigation. Section 2.2 outlines the groundwater sampling procedures.

2.1 SAMPLE ANALYSIS SUMMARY

On the basis of conclusions presented in the Final Remedial Investigation Report (Earth Tech, 1996) and recommendations made by the NYSDEC, it was determined that VOCs represent the only chemicals of potential concern in groundwater at AFP 59. As a result, the Record of Decision (Earth Tech, 1999b) for AFP 59 describes the remedial alternative (i.e., the upgrade of the Camden Street Well Field groundwater treatment system) chosen as most appropriate for treating the VOCs in groundwater at AFP 59. As part of the requirements defined in the Record of Decision (Earth Tech, 1999b), a long-term groundwater monitoring program was established for AFP 59. The monitoring program, which is defined in the April 27, 1999 letter to the NYSDEC (Earth Tech, 1999a), is being conducted on a semiannual basis and includes sampling the following monitoring wells: SW1, DW1, SW3, DW3, SW4, and SW7. Monitoring wells SW1 and DW1 represent upgradient (background) wells; monitoring wells SW3 and DW3 represent downgradient wells; monitoring wells SW4 and SW7 have historically had the highest concentrations of VOCs.

The groundwater samples collected during the May 2003 sampling event, which represents the seventh sampling event of the long-term groundwater monitoring program, were analyzed for VOCs by USEPA Method SW8260. Table 2.1-1 lists the total number of groundwater samples collected for each sample type (e.g., environmental sample, duplicate sample) during the May 2003 sampling event, and Figure 2.1-1 shows the locations of the on-site monitoring wells sampled during May 2003 sampling event.

Table 2.1-1
Sample Analysis Summary

Method	Matrix	# Samples	# Equipment Blanks	# Ambient Blanks	# Trip Blanks	# Field Duplicates	Total # Samples
SW8260B Volatile Organics	Groundwater	6	0(1)	1	1	1	9

⁽¹⁾ No equipment blanks were collected because disposable bailers were used during groundwater sampling.

2.2 FIELD ACTIVITIES

The primary field activity was sampling of the monitoring wells shown in Figure 2.1-1. A summary of the field activities is provided in Table 2.2-1.

Table 2.2-1 Field Activities Summary

Activity

Measure the groundwater level in all on-site monitoring wells.

Collect groundwater samples from six on-site monitoring wells.

Groundwater sampling methods followed protocols presented in the Final Work Plan for Groundwater Monitoring at AFP 59 (Earth Tech, 1998) and in the Final Sampling and Analysis Plan (Earth Tech, 1994) that was prepared for the remedial investigation conducted at AFP 59. The primary objective of the groundwater sampling event was to satisfy groundwater monitoring requirements defined in the April 27, 1999 letter to the NYSDEC (Earth Tech, 1999a) and the Record of Decision (Earth Tech, 1999b) for Air Force Plant 59.

Groundwater sampling procedures included:

- 1. Measuring groundwater levels in all on-site monitoring wells:
- 2. Purging select on-site monitoring wells prior to sampling;
- 3. Measuring field-derived parameters (including temperature, pH, specific conductance, and turbidity) during monitoring well purging; and
- 4. Collecting groundwater samples from the purged monitoring wells.

Refer to the Final Work Plan for Groundwater Monitoring at AFP 59 (Earth Tech, 1998) and the Final Sampling and Analysis Plan (Earth Tech, 1994) for a detailed description of all sampling activities and protocols.

Water level measurements were taken in all monitoring wells to determine the elevation of the water table (in the shallow zone of the aquifer) or piezometric surface (in the deep zone of the aquifer) once within a single 24-hour period. Any conditions that affected water levels were recorded in the field log. Water level measurements were taken with an electric sounder and were measured to the nearest 0.01-foot. All measuring equipment was decontaminated according to the specifications in the *Final Sampling and Analysis Plan* (Earth Tech, 1994).

Static water levels were measured each time a monitoring well was sampled and before any equipment entered the monitoring well. If the casing cap was airtight, the air pressure within the monitoring well was allowed to equilibrate after the cap was removed and prior to measurement of the water level.

3.0 INVESTIGATION RESULTS

The results of the May 2003 sampling event at AFP 59 are summarized in this section. Section 3.1 summarizes the analytical results, and Section 3.2 provides conclusions concerning the analytical and hydrogeological data. Field data are provided in Appendix B, chain-of-custody forms are provided in Appendix C, and analytical data are provided in Appendix D.

3.1 SAMPLING AND ANALYSIS RESULTS

This section summarizes the data collection activities completed during the May 2003 sampling event, presents the laboratory analytical results, and provides a trend analysis of identified VOCs.

3.1.1 REVIEW OF FIELD AND LABORATORY DATA

All field procedures, sample handling documentation, and laboratory procedures followed protocols presented in the Final Work Plan for Groundwater Monitoring at AFP 59 (Earth Tech, 1998) and the Final Sampling and Analysis Plan (Earth Tech, 1994). All analytical data generated as a result of the May 2003 sampling event were reported as AFCEE definitive data. Analytical protocols utilized in sample preparation, analysis, and reporting were in accordance with the specific analytical method and the guidelines given in the AFCEE Quality Assurance Project Plan (QAPP), Version 3.1 (USAF, 1998). Laboratory analyses were performed by Kemron Environmental Services, Marietta, Ohio. Analytical methods and Kemron's associated method detection limits (MDLs) and reporting limits (RLs) are listed in Table 3.1-1. Data validation was performed by Earth Tech.

Data flags were applied to the analytical data by the laboratory. During the data review process, Earth Tech reviewed the analytical data and associated data flags and assigned data qualifiers as per the guidelines given in the AFCEE *QAPP*, *Version 3.1* (USAF, 1998); the data quality review summary is provided in Appendix D. The following data qualifiers were assigned to the data as a result of the data review process and are defined below.

- R Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.
- B Not detected substantially above the level reported in the laboratory or field blanks.
- J This is an estimated value.
- UJ Not detected, quantitation limit may be inaccurate or imprecise.
- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the MDL.

Table 3.1-1
Analytical Parameters, Method Detection Limits, and
Reporting Limits for Kemron Environmental Services

Downwater (Mathed	A-aluta		Wa	ter	
Parameter/Method	Analyte	MDL	Unit	RL	Unit
VOCs	1,1,1,2-Tetrachloroethane	0.250	μg/L	0.5	μg/L
SW8260B	1,1,1-TCA	0.250	μg/L	0.8	μg/L
	1,1,2,2-Tetrachloroethane	0.125	μg/L	0.4	μg/L
	1,1,2-TCA	0.250	μg/L	1.0	μg/L
	1,1-DCA	0.125	μg/L	0.4	μg/L
	1,1-DCE	0.500	μg/L	1.2	μg/L
	1,1-Dichloropropene	0.250	μg/L	1.0	μg/L
	1,2,3-Trichlorobenzene	0.125	μg/L	0.3	μg/L
	1,2,3-Trichloropropane	0.750	μg/L	3.2	μg/L
	1,2,4-Trichlorobenzene	0.200	μg/L	0.4	μg/L
	1,2,4-Trimethylbenzene	0.250	μg/L	1.3	μg/L
	1,2-DCB	0.125	μg/L	0.3	μg/L
	1,2-DCA	0.250	μg/L	0.6	μg/L
-	trans-1,2-Dichloroethene	0.250	μg/L	0.6	μg/L
	1,2-Dichloropropane	0.125	μg/L	0.4	μg/L
	1,3,5-Trimethylbenzene	0.250	μg/L	0.5	μg/L
	1,3-DCB	0.250	μg/L	1.2	μg/L
	1,3-Dichloropropane	0.200	μ g/L	0.4	μg/L
	1,4-DCB	0.125	μg/L	0.3	μg/L
	1-Chlorohexane	0.125	μg/L	0.5	μg/L
	2,2-Dichloropropane	0.250	μg/L	3.5	μg/L
	2-Chlorotoluene	0.125	μ g/L	0.4	μg/L
	4-Chlorotoluene	0.250	μg/L	0.6	μg/L
	Benzene	0.125	μg/L	0.4	μg/L
	n-Butylbenzene	0.250	μg/L	1.1	μg/L
	sec-Butylbenzene	0.250	μg/L	1.3	μg/L
	tert-Butylbenzene	0.250	μg/L	1.4	µg/L
	Carbon tetrachloride	0.250	μg/L	2.1	μg/L
	Chlorobenzene	0.125	μg/L	0.4	μg/L
	Chloroethane	0.500	μg/L	0.1	μg/Ľ
	Chloroform	0.125	μg/L	0.3	μg/L
	Chloromethane	0.250	μ g/L	1.3	μg/L
	cis-1,2-DCE	0.250	μg/L	1.2	μ g/ L

Table 3.1-1
Analytical Parameters, Method Detection Limits, and
Reporting Limits for Kemron Environmental Services (Continued)

Parameter/Method	Analyte		Water				
rarameter/Method	Analyte	MDL	Unit	RL	Unit		
VOCs	cis-1,3-Dichloropropene	0.250	μg/L	1.0	μg/L		
SW8260B	Dichlorodifluoromethane	0.250	μg/L	1.0	μg/L		
	trans-1,3-Dichloropropene	0.500	μg/L	1.0	μg/L		
	Ethylbenzene	0.250	μg/L	0.6	μg/L		
	Hexachlorobutadiene	0.250	μg/L	1.1	µg/L		
	Isopropylbenzene	0.250	μg/L	0.5	μg/L		
	p-Isopropyltoluene	0.250	μg/L	1.2	μg/L		
	Methylene Chloride	0.250	μg/L	2.0	μg/L		
	Naphthalene	0.200	μg/L	0.4	μg/L		
	n-Propylbenzene	0.125	μg/L	0.4	μg/L		
	Styrene	0.125	μg/L	0.4	μg/L		
	Tetrachloroethene	0.250	μg/L	1.4	μg/L		
	Trichloroethene	0.250	μg/L	1.0	μg/L ·		
	Trichlorofluoromethane	0.250	μg/L	0.8	μg/L		
	Toluene	0.250	μg/L	1.1	μg/L		
	Vinyl Chloride	0.250	μg/L	1.1	μg/L		
	(m&p)-Xylene	0.500	μg/L	1.0	μg/L		
	o-Xylene	0.250	μg/L	1.1	μg/L		

3.1.2 DATA SUMMARY

The number and locations of groundwater samples are outlined below. Figure 2.1-1 shows the locations of the monitoring wells sampled during the May 2003 sampling event.

The following monitoring wells were sampled:

- Shallow monitoring wells SW1, SW3, SW4, and SW7; and
- Deep monitoring wells DW1 and DW3.

3.1.3 VOCs Detected in Groundwater Samples

This section discusses the VOCs that were detected in the groundwater samples, including those samples collected from both site and background monitoring wells. The analytical results for groundwater samples collected from monitoring wells installed in the shallow and deep zones of the aquifer are discussed separately below. The analytical results for all groundwater samples collected during the May 2003 sampling event are summarized in Table 3.1-2. Appendix D provides a complete listing of all groundwater analytical results.

Shallow Zone of the Aquifer. VOCs detected in groundwater samples are shown in Figure 3.1-1. Table 3.1-3 summarizes all VOCs detected in groundwater samples collected from monitoring wells screened in the shallow zone, the number of samples above the laboratory MDL, the minimum and maximum concentrations detected, and the location of the maximum concentration.

VOCs were detected in the groundwater samples collected from monitoring wells SW3, SW4, and SW7 (see Figure 3.1-1). Chlorinated hydrocarbons were the only detected VOCs in the samples collected from the shallow zone of the aquifer.

No VOCs were detected in the groundwater sample collected from monitoring well SW1. The following maximum concentrations were detected in the groundwater sample collected from monitoring well SW4: 1,1,1-trichloroethane at 3.05 J μ g/L; 1,1-dichloroethane (1,1-DCA) at 1.44 J μ g/L; cis-1,2-dichloroethene (cis-1,2-DCE) at 3.36 J μ g/L; tetrachloroethene (PCE) at 0.683 J μ g/L and trichloroethene (TCE) at 9.09 J μ g/L. The maximum concentration of chloroform in the shallow zone of the aquifer was detected in the sample from monitoring well SW3 at 0.155 J μ g/L.

Deep Zone of the Aquifer. No VOCs were detected in groundwater samples collected from the deep monitoring wells (see Figure 2.1-1, AFP 59 Groundwater Sampling Locations, May 2003).

Table 3.1-2 Groundwater Data Summary for VOCs

Parameters	Action Levels*	59SW1WG1	59DW1WG1	59SW3WG1	59DW3WG1
1,1,1-Trichloroethane	5			0.584 J	
Trichloroethene	5			0.893 J	
Chloroform	100 ¹	••		0.155 J	
Cis-1,2-Dichloroethene	5			1.37 J	
1,1-Dichloroethane	5			0.302 J	
Methylene chloride	5				
Tetrachloroethene	5				

Parameters	Action Levels*	59SW4WG1	59SW7WG1	59SW7WG9 (Duplicate Sample)
1,1,1-Trichloroethane	5	3.05 J	1.5 J	1.33 J
Trichloroethene	5	9.09 J	1.44 J	1.44 J
Chloroform	100 ¹	•		
Cis-1,2-Dichloroethene	5	3.36 J	1.08 J	1.43 J
1,1-Dichloroethane	5	1.44 J	0.409 J	0.409 J
Methylene chloride	5			
Tetrachloroethene	5	0.683 J	0.279 J	

Key: * = New York State Drinking Water Standard.

-- = Analyte was analyzed for but not detected.

Federal Drinking Water Standard

Qualifiers: J = The analyte was positively identified, but the quantitation is an estimation.

Note: Concentrations in bold font and shaded cells exceed the New York State Drinking Water Standard for the associated compound.

Table 3.1-3 VOCs Detected in Shallow Zone Groundwater Samples

	Number of	Range	Location of		
Analyte	Samples Above MDL	Minimum Detected	Maximum Detected	Maximum Detection	
1,1,1-Trichloroethane(1)	4 of 5	0.584 J	3.05 J	SW4	
Trichloroethene(1)	4 of 5	0.893 J	9.09 J	SW4	
Chloroform	1 of 5	0.155 J	0.155 J	SW3	
Cis-1,2-Dichloroethene(1)	4 of 5	1.08 J	3.36 J	SW4	
1,1-Dichloroethane(1)	4 of 5	0.302 J	1.44 3	SW4	
Tetrachloroethene	2 of 5	0.279 J	0.683 J	SW4	

Key:

μg/L =

Micrograms per liter

MDL

Method detection limit

Qualifiers:

L = J =

The analyte was positively identified, but the quantitation is an estimation.

Trichloroethene, 1,1,1-trichloroethane, cis-1,2-dichloroethene, and 1,1-Dichloroethane were only detected at monitoring wells SW3, SW4, and SW7 (normal and duplicate samples).

Note: Only analytes detected in one or more of the groundwater samples are included in this summary table.

3.1.4 TREND ANALYSIS

Table 3.1-4 presents concentrations of the most commonly detected chlorinated hydrocarbons in groundwater at AFP 59 over time. Only monitoring wells that were sampled as part of the groundwater monitoring program are included in the table.

In the groundwater samples collected from the shallow monitoring wells during the May 2003 sampling event, concentrations of the chlorinated hydrocarbons in monitoring well SW3 remained relatively constant compared to the previous sampling event. 1,1-DCA was detected (0.302 J) in SW3 and was non-detect in the previous sampling event. The concentration of TCE (21.63 μ g/L to 9.09 μ g/L), detected at monitoring well SW4 decreased compared to the May 2002 sampling event. In the groundwater sample collected from deep monitoring well DW3 during the May 2003 sampling event, the concentration of cis-1,2-DCE decreased (21.08 μ g/L to non-detect) relative to the previous sampling event. No VOCs were detected in the groundwater sample collected from deep monitoring well DW1. This is consistent with previous sampling events.

Table 3.1-4 Trend Analysis of VOCs in Groundwater

	Date	Concentration of Analyte in Groundwater (µg/L)							
Well ID	Sampled	TCA	TCE	VC	1,1-DCE	1,2-DCE	1.1-DCA		
SW1	Sept. 1986 ¹								
	Jan. 1992 ²	0.5							
	Dec. 1994 ³				T				
	Nov. 1999 ³								
	May 2000 ³				T				
	Nov. 2000 ³				T				
	May 2001 ³	•							
	Nov. 2001 ³	0.11 J							
	May 2002 ³								
	May 2003 ³				T				
DWI	Jan. 1992 ²	0.6							
	Dec. 1994 ³				T	1.8 (c)			
	Nov. 1999 ³				-				
	May 2000 ³				-				
	Nov. 2000 ³				T				
	May 2001 ³								
	Nov. 2001 ³		-						
	May 2002 ³		-						
	May 2003 ³								
SW3	Sept. 1986 ¹		6						
	Jan. 1992 ²	12	9				5		
	Dec. 1994 ³	0.50	1.8						
	Dec. 1995 ³	0.86	2.8			0.44 (c)			
	July 1997 ⁴		1						
	Nov. 1998 ³	0.22	0.81			0.10 (c)			
	Apr. 1999 ³	0.51	0.71			0.17 (c)			
	Nov. 1999 ³	0.29	0.9			0.39 (c)			
	May 2000 ³	0.69	1			1.29 (c)	0.55		
	Nov. 2000 ³	0.43	0.9		-	0.22 (c)			
•	May 2001 ³	0.46	0.8			1,29 (c)	0.32		

Table 3.1-4 Trend Analysis of VOCs in Groundwater (Continued)

Well ID	Date Sampled	Concentration of Analyte in Groundwater (µg/L)							
Well ID	Date Sampled	TCA	TCE	VC	1,1-DCE	1.2-DCE	1,1-DCA		
SW3	Nov. 2001 ³	0.32 J	0.5 J						
	May 2002 ³	0.42 J	0.8 J			0.46 J			
	May 2003 ³	0.584 J	0.893 J			1.37 J (c)	0.302 J		
DW3	Jan. 1992 ²	0.3			-		0.3		
1	Dec. 1994 ³			0.28		36 (c)	0.26		
	Dec. 1995 ³				-	5.2 (c)			
	April 1997 ⁴					41 (c)			
ı	July 1997 ⁴	1				49 (c)			
	Nov. 1998 ³	ş		0.35		66 (c)	0.34		
	Apr. 1999 ³	-		0.28	0.11	67.00 (c)	0.35		
	Nov 1999 ³	••					0.11		
	May 2000 ³	1				0.25 (t) 24.98 (c)	0.16		
	Nov. 2000 ³	4	-			16.85			
	May 2001 ³	1				13.29			
	Nov. 2001 ³					13.58			
	May 2002 ³					21.08	0.1 J		
	May 2003 ³					1			
SW4	Jan. 1992 ²	2	97		0.3		0.6		
	Dec. 1994 ³	20	370	<u></u>	2.1	19 (c)	8.5		
	Dec. 1995 ³	34	1200		4.9	2.1 (t) 34 (c)	6.9		
	April 1997 ⁴					71 (c)	7.1		
	July 1997 ⁴	23	290		- -	15 (c)			
	Nov. 1998 ³	8.0	46	0.42	0.82	10 (c)	9.0		
	Apr. 1999 ³	1.9	9.53			1.85 (c)	0.87		
	Nov. 1999 ³	2.13	9.5	••	0.18	7.15·(c)	7.7		
	May 2000 ³	2.88	8	0.11	0.21	0.49 (t) 4.3 (c)	1.67		

Table 3.1-4
Trend Analysis of VOCs in Groundwater (Continued)

Well ID	Date Sampled	Concentration of Analyte in Groundwater (µg/L)						
Well ID	Date Sampled	TCA	TCE	VC	1,1-DCE	1,2-DCE	1,1-DCA	
SW4	Nov. 2000 ³	1.14	15.2	1.49	0.29	11.18 (c)	15.25	
	May 2001 ³	3.35	34		0.36	0.38 (t) 3.19 (c)	1.3	
	Nov. 2001 ³	0.88	5.7	0.43 J	0.12 J	5.27 (c)	7.18	
	May 2002 ³	2.54	21.63		0.34 J	2.07 (c)	0.79 J	
	May 2003 ³	3.05 J	9.09 J		<u></u>	3.36 J (c)	1.44 J	
SW7	Jan. 1992 ²	0.2	0.4					
	Dec. 1994 ³	4.6	15	6.2	1	0.3(t) 150(c)	33	
	Dec. 1995 ³	2.2	7.9	6.8	0.80	130 (c)	20	
	July 1997 ⁴		4			2 (c)		
	Nov. 1998 ³	2.5	11	3.4	0.65	0.28 (t) 82 (c)	12	
	Apr. 1999 ³	1.23	3.95		<u>-</u>	5.25 (c)	1.46	
	Nov. 1999 ³	1.01	5.7	-	0.19	18.8·(c)	3.38	
	May 2000 ³	0.67	1.5			0.12 (t) 2.43 (c)	0.71	
	Nov. 2000 ³	0.91	3.8	0.52	0.15	16.06 (c)	3.48	
	May 2001 ³	1.18	1.9			1.46 (c)	0.47	
	Nov. 2001 ³	0.8 J	4.7	0.85 J	0.19 J	0.13 J (t) 25.89 (c)	3.02	
	May 2002 ³	0.87 J	1.65			2.79 (c)	0.47 J	
	May 2003 ³	1.5 J	1.44 J			1.43 J (c)	0.409 J	

Key:	μg/L	=	Micrograms per liter	VC	=	Vinyl chloride
	(c)	=	cis-1,2-Dichloroethene	11DCE	=	1,1-Dichloroethene
	(t)	=	trans-1,2-Dichloroethene	12DCE	==	1,2-Dichloroethene
	TCA	=	1,1,1-Trichloroethane	11DCA	=	1,1-Dichloroethane
	TCE	=	Trichloroethene	DPW	=	Deep production well
	(1)	=	Fred C. Hart Associates	(3)	=	Earth Tech
	(2)	=	Argonne National Laboratories	(4)	=	United States Geological Services

Notes: 1. At monitoring well locations where a duplicate groundwater sample was collected, the higher analytical value between the normal and duplicate samples is reported in this table.

- 2. For 1992 data, the maximum value of either round A or B of sampling was used.
- 3. A double dash (--) indicates the analyte was not detected during the sampling event.

4.0 CONCLUSIONS

This section provides conclusions from analytical data generated as a result of the May 2003 sampling event. As defined in Section 1.0, the objective of the groundwater sampling event was to satisfy groundwater monitoring requirements defined in the April 27, 1999 letter to the NYSDEC (Earth Tech, 1999a) and the *Record of Decision* (Earth Tech, 1999b) for Air Force Plant 59.

The VOCs detected in groundwater samples collected from monitoring wells screened in the shallow and deep zones of the aquifer during the May 2003 sampling event are similar to the VOCs that have been detected during previous investigations. Chlorinated hydrocarbons were the only VOCs detected in site groundwater, with TCE, 1,1,1-TCA, 1,1-DCA, tetrachloroethene, and cis-1,2-DCE being the most commonly detected. No VOCs were detected in background monitoring wells SW1 and DW1.

Historically, the highest concentrations of VOCs in the shallow zone of the aquifer at AFP 59 have been detected in groundwater samples collected from monitoring wells SW4 and SW7, which are located immediately downgradient of the Plating Room (the suspected source of VOCs in groundwater). In May 2003, the concentration of TCE detected at monitoring well SW4 decreased relative to the May 2002 sampling event, and the highest concentrations of VOCs were detected at SW4. There was only one VOC detection that exceeded New York State drinking water standards: TCE (9.09 μ g/L) in SW4. The New York State drinking water standard for TCE is 5 μ g/L.

Five VOCs were detected in the groundwater sample collected from monitoring well SW3, which was the only shallow monitoring well sampled along the western (downgradient) boundary of the site during this event. None of these detections exceeded New York State drinking water standards. Therefore, groundwater in the shallow zone of the aquifer that migrates off site toward the Camden Street Well Field complies with New York State drinking water standards.

There were no VOCs detected in the groundwater samples collected from deep monitoring wells DW1 and DW3.

A trend analysis of chlorinated hydrocarbon levels over time at AFP 59 is presented in Section 3.1.4. This sampling event was consistent with previous events and indicates that levels of chlorinated hydrocarbons have remained constant or decreased through time (see Table 3.1-5).

Appendix A. References

APPENDIX A. REFERENCES

Earth Tech, 1994. Installation Restoration Program Investigation - Final Sampling and Analysis Plan.

Earth Tech, 1996. Installation Restoration Program Remedial Investigation - Final Remedial Investigation Report.

Earth Tech, 1998. Final Work Plan for Groundwater Monitoring at Air Force Plant 59.

Earth Tech, 1999a. Letter to Jim Lister of the NYSDEC defining the groundwater monitoring and well abandonment programs at AFP 59.

Earth Tech, 1999b. Record of Decision, Air Force Plant 59.

United States Air Force (USAF), 1993. Handbook for the Installation Restoration Program (IRP), Remedial Investigations and Feasibility Studies (RI/FS).

United States Air Force (USAF), 1996. Model Work Plan.

United States Air Force (USAF), 1997. Model Field Sampling Plan, Version 1.1.

United States Air Force (USAF), 2001. Quality Assurance Project Plan, Version 3.1.

United States Environmental Protection Agency (USEPA), 1988. Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA, Interim Final, EPA/540/6-89/004. Office of Emergency and Remedial Response, Washington, D.C.

APPENDIX B. FIELD DATA

Date: 05/05/03

Project Name: AFP 59

Well Location:

Project Number: 660 14

EQUIPMENT

pH/Conductivity/Temperature Meter #: Horita U-10

Purging Equipment: Grandfe . Randy Flo

PID #: NA

Electric Sounder #:

Sampling Equipment Dispusable Bailer

WELL DATA

Elevation:

Water Column in Well:

Total Vol. Extr.:

Well Diameter: 2

Borchole Diameter: 4 //

Ambient PID:

Well Depth: 29,9

Water Column in Borehole:

Well Mouth PID:

Depth to Well Water: 16 . 7

Standing Water Vol.:

Ground Condition of Well:

Remarks:

		ACRES PURGING SERVICE AND ADMINISTRATION OF THE PROPERTY OF TH			- SAMPLIN		
1	1	2	3	4	1	2	
Time 1335	1338	1443					
Rate (gal/mir) Temperature (OC)	2.0	٠. ر	_				
Temperature (OC)	14.0	! 7					
рН	7,21						
Conductivity (Skn)	1,73						
Vol. Purged (991) Try (NTh)	6						
Tu(b (NTU)	226	,				<u> </u>	

	1	2	3	4	5	6
Sample Time	1630					
Analytical Param	VU(5(8260B)					
Volume Required	3 40 ml right					
Preservation .	HCL 4°C					
Field Filtered	No	•		<u> </u>		

Date:	Well ID: SW7	Sample Nu	mher:	Recorded By:		
Project Name:	Well Location:	Duplicate N	lumber:	Checked By:		
Project Number:						
_		EQUIPMENT				
pH/Conductivity/Temper	anire Meter #:	Purging Ed	lnibuseur:			
PID #:		Sampling I	Equipment:			
Electric Sounder #:						
		WELL DATA				
Elevation:	Water Column i	n Well:	Total Vol. Ext	tr.:		
Well Diameter.	Borchole Diame	ter.	Ambient PID:			
Well Depth:	. Water Column i	n Borehole:	Well Mouth PID:			
Depth to Well Water:	Standing Water	Vol.:				
Ground Condition of We Remarks:	и:					
	- <u> </u>	Purging	<u> </u>	SAM	PLING	
	1 2	3	4	11	2	
Time	1543	1548	1553	1278	1663	
Rate	2.5	2.6	2.0	2.0	2,0	
Тетрегалите	13.7		115	13.5	13.2	
		7 171		7 7	374	

		. grand Pur	CING	<u> </u>	PLING	
:	1	2	3	4	1	2
Time		1543	1548	1553	1228	1663
Rate		2.5	2.6	2.0	2.0	7.0
Тетрегалите		13.75	14.3	11.2	13.5	13,2
рН		7.15	7.14	74.215	7,21	7.25
Conductivity		1,73	1.74	1.87	1.71	1.84
Vol. Purged		16	26	36	40	26
Remarks		45	-3	-10	-10	-10

	i	2	3	4	5	6
iample Time						
unalytical Param		_				
olume Required						
reservation	<u> </u>			-		
ield Filtered						
· . Tîme			<u> </u>			

Date:	Well ID: SW7	Sample Number:	Recorded By:
Project Name:	Well Location:	Duplicate Number:	Checked By:
Project Number:			
	The state of the s	QUIPMENT	
			
pH/Conductivity/Temperan	ire Meter #:	Purging Equipment:	
PID #:		Sampling Equipment:	·
Electric Sounder #:			
	***	for Dist	
	<u> </u>	ELL DATA	
Elevation:	Water Column in 1	Well: Total Vo	l. Extr.:
Well Diameter:	Borchole Diameter	. Ambient	PID:
Well Depth:	. Water Column in I	Borehole: Well Mo	uth PID:
Depth to Well Water:	Standing Water Vo	il.:	
Ground Condition of Well: Remarks:		·	

		PURGING:			SAMPLING		
<u></u>	1	2	3	4	1	2	
Time	608	1673	1618	1623			
Rate	2.0	2,0	2,0	2,0			
Temperature	13.1	13.0	130	13.1			
рН	-61-7.2	2 7.21	7.23	7:10			
Conductivity	1.81	1.80	1,81	1.80			
Vol. Purged	66	76	86	96			
Remarks	-10	- 10	~1 _b	-10			

	1	2	3	4 _	5 _	6
Sample Time						
Analytical Param						
olume Required					-	
reservation .		-				
ield Filtered						
Time	 					

Date: 05/05/03

Well 10: 5475W4

Sample Number: 575W7WGI Recorded By:

Project Name: AFP 59

Well Location:

Duplicate Number:

Checked By:

Project Number: 66014

EQUIPMENT

pH/Conductivity/Temperature Meter #: Holiba U1-10

Purging Equipment: Grandfos Ready Flo

PID #:

Sampling Equipment: 0,5/05able Barler

Electric Sounder #:

WELL DATA

Elevation:

Water Column in Well: 15.99

Total Vol. Extr.: 125

Well Diameter: 7 11

Borebole Diameter:

Ambient PID: NA

Well Depth: 27,69

Water Column in Borehole: | 5,99

Well Mouth PID:NA

Depth to Well Water: 11,70

Standing Water Vol.: 41,6

Ground Condition of Well:

Remarks:

	Purging		SAMPLING			
,	1	2	3	4	1	2
Time 1715	21.5 172	5 1735	1745	1755	1805	1815
Race Gal/min)	1,5	1.5	1.5	1.5	1,5	1,5
Rate Gal/min) Temperatur(OC)	13,7	13,5	13.7	13.7	13,6	13.6
рН	6.60	7.04	6.98	6.99	6.98	6.97
Conductivity(n5/cm)	9.8	8.7	8.9	9.1	9.1	8.9
Vol. Purged (gql) Tu(L(NTU)	15	30	45	60	75	90
JULY (NJU)	390	134	70	28	25	24

	1	2	3	4	5	6
Sample Time	[425					
Analytical Param	VOCS/92608)					
Volume Required	3,40mLyighs					
Preservation	HCL 4°C					
Field Filtered	No]			
Time			<u> </u>	 		

*- farameter 5tabilized on 3 consective read

Date: 05/05/03

Well ID: SW 1

Sample Number: 595W1W61 Recorded By: BW PG

Project Name: AFP59

Well Location:

Duplicate Number:

Checked By:

Project Number: 66614

EQUIPMENT

pH/Conductivity/Temperature Meter #: Holiha U-10

Purging Equipment: Grand tos Ready Flo

PID #: NA

Sampling Equipment: Dispusable Raike

Electric Sounder #:

WELL DATA

Elevation:

Water Column in Well: /2.07

Total Vol. Extr.: 9490/

Well Diameter: 2"

Borchole Diameter: 8

Anabient PID: LA

Well Depth: 64120 28.38

Water Column in Borehole: /2.07

Well Mouth PID: NI

Depth to Well Water: 16.31 Standing Water Vol.: 31.44 gal

Ground Condition of Well:

Remarks:

	·	<u> १८६७ भ</u> ा	JRGING	SAM		MPLING	
	1	2	3	4	1	2	
Time	0920-0823	0830	0837	0844	0851	0859	
Rate(ya/hvin) Temperature(a)	2.1	2.0	2.0	1.9	2.1	2.0	
Temperature (C)	11.3	111	11.2	11.6	11.6	11.6	
рН	6.64	7.10	7.12	7.12	7.13	7.12	
Conductivity(n5/cm)	2,45	2.46	2.48	2.48	2.48	2,48	
Vol. Purged(cy) Tu/b. (NTU)	6 gallow	20	34	48	62	76	
Lu(b. (MU)	110	-10	-10	-10	-10	-10	

•	1	2	3	4	5	6
Sample Time	0920		-			
Analytical Param	VX5 (8460B)					
Volume Required	3,40, Lugs					
Preservation	HCL, 4°C		-			
Field Filtered	No					
Time .			-			

Date: 05/05/03	Well ID: 5 W	Sample Number: 59541461	Recorded By: BCL
Project Name: AFP 59 Project Number: 66014	Well Location:	Duplicate Number:	Checked By:

EQUIPMENT				
pH/Conductivity/Temperature Meter #:	Purging Equipment:			
PID #:	Sampling Equipment:			
Electric Sounder #:				

WELL DATA					
Elevation:	Water Column in Well:	Total Vol. Extr.:	·		
Well Diameter:	Borehole Diameter:	Ambient PID:			
Well Depth:	Water Column in Borchole:	Well Mouth PID:			
Depth to Well Water:	Standing Water Vol.:				
Ground Condition of Well: Remarks:	·				

	PURGING				SAMPLING	
	1	2	3	4	1	2
Time	0906	0908				
Rate(901/mln) Temperature(°C)	2.0	2.0		·		
Temperature(OC)	11.7	11.7				
рН	7.12	7.13			· · ·	
Conductivities 5(2)	2.48	2.48				
Vol. Purged(gal) Turk (MU)	90	94			,	
Just (MU)	-10	-10	_			

	1	2	3	4	5	6
Sample Time	0120					
Analytical Param	Vols (8260B)					- , - ,
Volume Required	3.40m2 viut				_	··
reservation	HCL 40C					
Field Filtered	No					
Time						

Date: 05/05/03

Well ID: DW

Sample Number: 59 DW/W61 Recorded By: BW, PG

Project Name: AFP59

Well Location:

Duplicate Number:

Checked By:

Project Number: 66014

EQUIPMENT

pH/Conductivity/Temperature Meter #: Horiba U-10

Purging Equipment: Grand fos Rendy Flo

PID #: NA

Sampling Equipment: Dispessible Bailer

Electric Sounder #:

WELL DATA

Elevation:

Water Column in Well: 47.81

Total Vol. Extr.: 210 941

Well Diameter: 4

Borchole Diameter:

Ambient PID:

Well Depth: 64.12

Water Column in Borehole: 47.81

Well Mouth PID: ♦

Depth to Well Water: [6:3]

Standing Water Vol.: 70,04 90

Ground Condition of Well:

Remarks:

	·	Purging the term			SAMPLING	
· ·	1	2	3	4	1	2
Time 0935	0438	0943	0958	1008	1018	1023
Race (gal/min)	3.0	3,0	3.0	3.0	3,0	3.0
Temperature(C)	[12.]	12,4	12.3	12,2	12,3	12.3
рН	7,21	7.27	7.21	7,32	7.20	7.21
Conductivity(m5/cr)	1.55	1,55	1.55	1.56	1.55	1.55
Vol. Purged (pal) Turb (NTU)	9	39	69	99	129	159
Luis (NIU)	261	10	-10	-10	-10	-10

	1	2	3	4	5	6
Sample Time	11.00					
Analytical Param	VOCS (8260B)					
Volume Required	340ml vials					
reservation	HCI_4°C	-				
ield Filtered	No					
Time						

Date:	Well ID:	DWI	Sample No	umher: 59DW/W6	Recorded By:	
Project Name:	Well Loc	ation:	Duplicate	Number:	Checked By:	
Project Number:					<u> </u>	
-		E	QUIPMENT		_ 	
pH/Conductivity/Temper	nure Meter #:		Purging E	equipment:		
PID #:			Sampling	Equipment:		
Electric Sounder #:						
			ELL DATA		<u></u>	
Elevation:	v	Vater Column in V	Vell:	Total Vol. Extr.	:	
Well Diameter:	E	lorchole Diameter	:	Ambient PID:		
Well Depth:	. v	Vater Column in E	Borchole:	Well Mouth PII):	
Depth to Well Water:	· <u>s</u>	tanding Water Vo	l.:			
Ground Condition of Wel Remarks:	l:		·			
	· .	. Aggir P u	RGING		··· SAMP	LING
i	1	2	3	4	I	
Time	1038	1041	1044	1047		
Rate (Jc.//m·n) Temperature 4	3.0	30	30	3,0		
Temperature 4	17 2	172	12.2	12 2		

					<u> </u>	
Time	1038	1041	1044	1047		
Rate (Jollmin) Temperature (4)	3.0	30	30	3,0		
Temperature ()	12,2	12.2	. 12,2	12,2		
pH	7.20	7.21	7,21	7.20		
Conductivity (TS (T)	1,56	1,55	1.56	1.56		
Conductivity (NS(1)) Vol. Purged (CO)	184	198	207	216		
Remarks	·- U	-10	-10	-10		

	_ I	2	3	4	5	6
Sample Time	11:00					
Analytical Param						
Volume Required						<u> </u>
reservation .						
ield Filtered						
· . Time						

Date: 05/05/03

Well ID: 5W 3

Project Name: AFP59

Well Location:

Project Number: 66014

EQUIPMENT

pH/Conductivity/Temperature Meter #: Horiba U-10

Purging Equipment: Grand 65 Ready Flo

PID #: NA

Sampling Equipment:

Electric Sounder #:

WELL DATA

Elevation:

Water Column in Well: 13 71 Total Vol. Extr.: 107

Well Diameter: 2/1

Borchole Diameter. 8

Ambient PID: NA

Well Depth: 29.62

Water Column in Borehole: 13.71 Well Mouth PID: NA

Depth to Well Water: 15.91

Standing Water Vol.: 35.71991.

Ground Condition of Well:

Remarks:

	•	२५ मार ट म	URGING ::		SA	MPLING
· · · · · · · · · · · · · · · · · · ·	1	2	3	4	1	2
Time 1222	1225	1237	1239	1246	1253	1300
Rate (ga l/min)	2.5	2.5	2.5	2.5	2.5	2.5
Temperature O	10.8	10.3	10,1	10.1	10.1	10.1
н	7.16	7.29	7.31	7.31	7.34	7.33
Conductivity (mSkin)	1.37	1.38	1.40	1.40	1.41	1,41
Vol. Purged (ga)) Turb, (NTU)	7.5	25	42.5	60	77.5	95
Just (Nih)	17	2.5	-10	-10	-10	710

	1	2 M 3	<u> </u>	4	5	6
Sample Time	1312	1314	1316			
Analytical Param	VOC5 (8260B)					
Volume Required	3,40 mL vight					<u> </u>
Preservation	HCL,406	<u> </u>				
Field Filtered	No					
Time	7,00					

Sample Number:

Duplicate Number:

Recorded By:

Checked By:

Well 10:595W3W61

Well Location:

		E0	UIPMENT			
pH/Conductivity/Temper	ature Meter #:		Purging E	iquipment:		
PID #:			Sampling	Equipment:		
Electric Sounder #:						
			LL DATA			
Elevation:	W	ater Column in W	ell:	Total Vol. Extr.:		
Well Diameter:	В	orchole Diameter:		Ambient PID:		
Well Depth:	. w	ater Column in Bo	rchole:	Well Mouth PID:		
Depth to Well Water:	St	anding Water Vol.	<u></u>			
Ground Condition of Wel Remarks:	J:					
		· Acti Pur	GINC		SAMPI	LING
	1	2	3	4	1	2
Time	1303	1306	<u></u>			
Rate (gal/inin) Temperature(C)	2.5	25				
Temperature (C)	10.1	[0,]				
рН	7.33	7.33				_
Conductivity (nS/lm)	1,40	1.4)			·	
Vol. Purged(gijl)	102,5	110				
luis,(NTV) Romarks	-10	-10				
		Coltec	TED SAMPLE	S		
2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 2 -	I	2	3	4	5	6
Sample Time						
Analytical Param						
Volume Required				 		
Preservation .				 		
Field Filtered				 		

Time

Date: 05/05/03

Project Name: AFP 59

Date: 05/05/03

Well ID: DW3

Sample Number: 590W3 WG1 Recorded By:

Project Name: AFP 59

Well Location:

Duplicate Number:

Checked By:

Project Number: 66014

EQUIPMENT

pH/Conductivity/Temperature Meter #: Hofiba U-10

Purging Equipment: Grandfas Ready Flo

PID #: MA

Sampling Equipment: Disposable Bailey

Electric Sounder #:

WELL DATA

Elevation:

Water Column in Well: 72.89

Total Vol. Extr.: 320

Well Diameter: 4

Borehole Diameter: /

Ambient PID: 1

Well Depth: 46.67

Water Column in Borehole: 72.59

Well Mouth PID: 1/4

Depth to Well Water: 13,78

Standing Water Vol.: 106.8 ga

Ground Condition of Well:

Remarks:

	nstant:	PUR	GING		SAM	PLING
:	1 nove	2 1952	3	4	1	2 ,
Time	1335	1340	1350	1400	1410	1420
Raid(gal/min) Temperaturd(C)	4.0	4.0	4,0	4.0	4.0	4.0
Tempersourd (C)	NA	12.8	13.0	13.1	13.0	13.0
pH	NA	7.31	7.34	7.35	7.34	7.34
Conductivity(m5/cm)	NA	1.31	1.30	1,31	1.31	1.31
Vol. Purged(ga)	0	20	60	100	140	180
Jub (Min)	NA	999	213	185	195	142

	1	2	3	4	5	6
Sample Time	1500					
Analytical Param	VUCS(8260B)					
Volume Required	3,40m2 vigls					
Preservation	· HCL, 4°C					
Field Filtered	No			·		
Time						<u> </u>

Date: 05/05/03

Well ID: DW3

Sample Number: 590W3W6/ Recorded By: BW, PG

Project Name: AFP 59

Well Location:

Duplicate Number:

Checked By:

Project Number: 660 14

EQUIPMENT

pH/Conductivity/Temperature Meter #: Horiba 4-10

Purging Equipment brundfos Roady Flo

PID #:

Sampling Equipment:

Electric Sounder #:

WELL DATA

Elevation:

Water Column in Well:

Total Vol. Extr.:

Well Diameter:

Borchole Diameter.

Ambient PID:

Well Depth:

Water Column in Borehole:

Well Mouth PID:

Depth to Well Water:

Standing Water Vol.:

Ground Condition of Well:

Remarks:

	·	- 2000 P U	RGING		··· SAMP	LING
	1	2	3	4	1	2
Time	1430	1446	1450	1500		
Rate(gal/min) Temperature(OC)	4.0	1.0	4.0	4.0		
Temperature(OC)	13.0	13.0	12.9	13.0		
н	7.33	7.33	7.34	7.33		
conductivity (mS/cm)	1.31	1.31	1,3/	1.3/	· -	
101. Purged (991) Tuit (NTU)	220	260	300	340	_	
Lemmes (N7U)	65	13	12	. 1/	•	

	1	2	3	4	5	6
Sample Time						
Analytical Param		_				
Volume Required						·
Preservation .						
Field Filtered			 	 		
Time -			 	 		

Final Groundwater Monitoring Report
AFP 59
Contract # F41624-01-D-9008/Task Order #2008
Version 1.0
August 2003

APPENDIX C. CHAIN-OF-CUSTODY FORMS

Earth Tech 1420 King Street, Suite 600 Alexandria, Virginia 22314 Phone No. (703) 549-8728; Fax No. (703) 549-9134

Chain of Custody

A R T H T T T T T T O H

Final Groundwater Monitoring Report AFP 59 Contract # F41624-01-D-9008/Task Order #2008 Version 1.0 August 2003

APPENDIX D. DATA QUALITY REVIEW SUMMARY AND GROUNDWATER ANALYTICAL DATA

Table DQR-4 Summary of Detected Chemicals at Former Air Force Plant 59 Ground Water Sampling - May 2003 Event

Location ID Date Sampled	DAVI 05/05/2003	D.W3 05/05/2003	SW1 05/05/2003	SW3 05/05/2003	SW4 05/05/2003	SW7 05/05/2003	SW7 (DUP) 05/05/2003
Analyte		Volatiles by	Volatiles by EPA SW-846 Method 8260 (ug/L)	nod 8260 (ug/L)			
1,1,1-Trichloroethane	0.8 R	0.8 R	0.8 R	0.584 J	3.05 J	1.5.1	1.11.1
1,1-Dichloroethane	0.4 R	0.4 R	0.4 R	0.302 J	1.44 J	0.409.8	0 400 1
Chloroform	0.3 R	0.3 R	0.3 R	0.155.5	0.3 R	0.3 R	2000
cis-1,2-Dichloroethene	1.2 R	1.2 R	1.2 R	1.37.1	1 31 1	2 80 -	4 6 7
Methylene chloride	2 R	2 R	2.8	0.276 B	2.8	1.00 J	1.43.1
Tetrachloroethene	1.4 R	1.4 R	1 4 R	1.4 R	L 189.0	0 779 1	0.28 B
Trichtoroethene	۱R	I.R	I R	0.893 J	f 60.6	1.44.1	1.44.1

Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.

The analyte was found in an associated blank, as well as in the sample.

Key:

J The analyte was positively identified, but the quantitation is an estimation.

(DUP) - Duplicate sample taken in the field.

Bolded values indicate the analyte was detected above the associated MDL.

Notes:

Data Quality Review

Air Force Plant 59, Johnson City, NY F41624-01-D-9008/2008

Volatile Organic Analysis by Method SW8260B - Aqueous Samples Data Package

This data quality review pertains to groundwater samples collected on May 5, 2003 at Air Force Plant 59 (AFP 59). The samples were analyzed following EPA Test Methods for Evaluating Solid Waste (SW-846) Method 8260B for volatile organic compounds at Kemron Environmental Services (Kemron), Marietta, Ohio. All samples were analyzed for the full list of volatile constituents included in the method.

Recommendations for quality control limits and data flagging criteria were taken from the Air Force Center for Environmental Excellence (AFCEE) Quality Assurance Project Plan, Version 3.1 (USAF, 2001)

DQR-1 provides a cross-reference list for field sample IDs and lab sample IDs from Kemron.

Table DQR-1
Field Sample ID/Lab Sample ID Cross Reference

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
59SW1WG1	L0305193-01	59SW7WG1	L0305193-08
59DW1WG1	L0305193-02	59SW7WG9	L0305193-09
59SW3WG1	L0305193-04	59SW4WG1	L0305193-10
59SW3WG1MS	L0305193-05	AB050503	L0305193-03
59SW3WG1MSD	L0305193-06	TB050503	L0305193-11
59DW3WG1	L0305193-07		

Note: Please note the cooler temperature was at 8° C. The lab followed AFCEE flagging criteria for out of temp samples in the result reporting and for this reason all the non detects were R flagged and all the detects were J flagged. Unless noted herein, the validator leaves these flags in place.

During the data quality review process, laboratory qualified and unqualified data are verified against all available supporting documentation. Based on this review, qualifier codes may be added, deleted, or modified by the validator. Final results are therefore either qualified or unqualified. A summary of the data quality review flags is presented in Table DQR-2, listed in order of most severe to least severe. The data quality review process includes a review of sample holding times, calibrations, blanks (preparation, ambient, and trip blanks), matrix spike/matrix spike duplicates, surrogate recoveries, and field duplicates. Changes to the data are reflected on the Form I's in Appendix A.

Table DQR-2 Data Qualifiers

Qualifier	Description
R	Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.
В	The analyte was found in an associated blank, as well as in the sample.
J	This is an estimated value.

Holding Times

All of the groundwater samples were analyzed for volatile organic compounds within the recommended holding time of 14 days. No qualification is necessary.

Calibration Criteria

The percent relative standard deviation (%RSD) associated with the initial calibration (IC) was less than 30% for the compounds. In addition, the percent recovery (%R) values associated with the Second Source calibration were within control limits.

Continuing calibration verifications were performed at the required frequency and reporting factors (RFs) for target analytes were within 20%. None of the samples required dilution for analysis.

Laboratory Control Samples

In laboratory control sample (LCS) WG140126-02, all constituent recoveries were within the corresponding control ranges, with the exception of 1,3,5-trimethylbenzene, which exhibited a recovery above the upper control limit. Since this constituent was not detected in any of the environmental samples, no qualification is necessary.

Blanks

No constituents were detected in the single Preparation Blank (PB) WG140126-01 associated with these samples.

One trip blank and one ambient blank were collected and analyzed for volatile organic compounds. Chloroform and methylene chloride were detected above the method detection limit (MDL) in the ambient blank. Detected concentrations were below associated reporting limits and no qualification of associated sample data was required. Methylene chloride was detected in the trip blank at a concentration of 2.83 μ g/L. The validator qualified B those positive values for methylene chloride which are less than or equal to 28.3 μ g/L.

Matrix Spike/Matrix Spike Duplicate

Sample 59SW3WG1 served as the MS/MSD sample for this sample delivery group. Constituent recoveries were within quality control limits, with the exception of dichlorodifluoromethane, which exhibited recoveries below the lower control limit in the MS and 1,3,5-trimethylbenzene, which exhibited recoveries from the MSD above the corresponding upper control limits. RPD values all were less than 20%. Since this constituent was not detected in any of the environmental samples, no qualification is necessary.

Surrogate Recovery

Four surrogates were used for the monitoring of volatiles in all samples. All surrogate recoveries met the corresponding QC criteria. No qualification is necessary.

Field Duplicates

Field duplicate was collected for sample 59SW7WG1. One of two criteria was followed when evaluating field duplicates, depending on the amount detected. If the amount detected was greater than five times the reporting limit (RL), then the relative percent difference (RPD) should have been less than 25 percent. If the amount detected was less than five times the RL, then the difference between the duplicate and the sample concentrations should have been less than the RL. No qualification was necessary. Field duplicate results (in μ g/L units) are summarized below.

Table DQR-3: Kemron Field Duplicate Comparison (ug/L)

Analyte	Reporting Limit (RL)	59SW7WG1	59SW7WG9	Relative Percent Difference (RPD)
1,1,1-Tichloroethane	0.8	1.5	1.33	12.0%
1.1-Dichloroethane	0.4	0.409	0.409	0.0%
cis 1.2-Dichloroethene	1.2	1.08	1.43	13.9%
Tetrachloroethene	1.4	0.279	Non Detect	Not calculated
Trichloroethene	1.0	1.44	1.44	0.0%

Summary

The data completeness is 6%. There was not 100% completeness as a result of rejected analytes due to the cooler temperature out-of-range. All other data points for the volatile analysis of groundwater samples are useable with the appropriate qualifiers. A summary of all detected compounds appears in Table DQR-4.

RESULTS

b Name : <u>Remron Environme</u> eld Sample ID: <u>59DW1WG1</u>					
Solids: NA			ation ID: HP		
e Received: <u>07-May-03</u>	- Dat	e EXTIRCTED:	08-MAY-03	Date Analyte	d: <u>08-MAY-03 19:2</u>
ncentration Units: <u>ng/L</u>	Fil	le ID: <u>8M3070</u>	IOA	_	
Analyte	MDL	RL	Concentration	Dilution	Qualifie
1,1,1,2-Tetrachloroethane	0.250	0.500	0.250	1	· E
1,1,1-Trichloroethane	0.250	0.800	0.250	1	' R
1,1,2,2-Tetrachloroethane	0.125	0.400	0.125	1	
1,1,2-Trichloroethane	0.250	1.00	0.250	1	R
l,1-Dichloroethane	0.125	0.400	0.125	1	R
1,1-Dichloroethene	0.500	1.20	0.500	1	
1.1-Dichloropropene	0.250	1.00	0.250	1	R
1.2.3-Trichlorobenzene	0.125	0.300	0.125	1	R
1.2.3-Trichloropropane	0.750	3.20	0.750	1	R
1,2,4-Trichlorobenzene	0.200	0.400	0.200	1	R
.2.4-Trimethylbenzene	0.250	1.30	0.250	1	R
,2-Dichlorobenzene	0.125	0.300	0.125	1	R
2-Dichloroethane	0.250	0.600	0.250	1	R
2-Dichloropropane	0.125	0.400	0.125	1	R
.3,5-Trimethylbenzene	0.250	0.500	0.250	1) R
,3-Dichlorobenzene	0.250	1.20	0.250	1	R
.3-Dichloropropane	0.200	0.400	0.200	1	R
.4-Dichlorobenzene	0.125	0.300	0.125	1	R
ments:		•			

Page 1 of 3

200 مار مارما_تي

RESULTS

nalytical Method : <u>82608</u>					AAS F : Mulaula
ab Name : <u>Kemron Environm</u> ield Sample ID: <u>59DW1WG1</u>					-
Solids: NA	In	itial Calibra	ation ID: HPMS	88 09-APR-03	
ste Received: <u>07-MAY-03</u>	Date	Extracted:	08-MAY-03	Date Analyze	ed: <u>08-MAY-03 19:24:</u> 0
oncentration Units: <u>ug/L</u>	Fil	e ID: <u>_ямзо</u> 70		-	
Analyte	MDL	RL	Concentration	Dilution	Qualifier
1-Chlorohexane	0.125	0.500	0.125	1	1 R
2,2-Dichloropropane	0.250	3.50	0.250		; R
2-Chlorotoluene	0.125	0.400	0.125	1	
4-Chlorotoluene	0.250	0.600	0.250	1	
Benzene	0.125	0.400	0.125	1	
Carbon tetrachloride	0.250	2.10	0.250	<u> </u>	R
Chlorobenzene	0.125	0.400	0.125	1	R
Chloroethane	0.500	1.00	0.500	1	R
Chloroform	0.125	0.300	0.125	1	
Chloromethane	0.250	1.30	0.250	1	R
cis-1,2-Dichloroethene	0.250	1.20	0.250	1	R
cis-1,3-Dichloropropene	0.250	1.00	0.250	1	R
Dichlorodifluoromethane	0.250	1.00	0.250	1	R
Ethvlbenzene	0.250	0.600	0.250	1	R
Hexachlorobutadiene	0.250	1.10	0.250	1	R
Isopropylbenzene	0.250	0.500	0.250	1	R
m-,p-Xylene	0.500	1.00	0.500	1	R
Methylene chloride	0.250	2.00	0.250	1	R
			<u> </u>		<u> </u>

Page 2 of 3

All results, MDLs, and RLs have been corrected to dry weight, where applicable.

مرا_{مای}

RESULTS

	il Method : <u>8260B</u>						
	: <u>Kemron_Environment</u>					_	
ield Sam	ple ID: _59DW1WG1						
Solids:	NA	In	itial Calibra	ation ID:	HPMS8_09-APR-03		
ate Rece:	ived: <u>07-MAY-03</u>	Date	e Extracted:	08-MAY-03	Date Analyz	ed: _08-MAY-03_	19:24:0
oncentra	tion Units: <u>ng/L</u>	Fil	e ID: <u>ам3070</u>	OR	<u> </u>		
	Analyte	MDL	ļ RL	Concentration	n Dilution	: Quali	fier
n-Butv	Lbenzene	0.250	1.10	0.250	1	. R	
n-Propy	/lbenzene	0.125	0.400	0.125		, R	
Naphtha	alene	0.200	0.400	0.200	1 1	P R	
o-Xvlen	ne	0.250	1.10	0.250	_ <u> </u>	R	
p-Isopr	copyltoluene	0.250	1.20	0.250	1		
sec-But	vlbenzene	0.250	1.30	0.250	1 1	R	
Styrene		0.125	0.400	0.125	1	R	
tert-Bu	tvlbenzene	0.250	1.40	0.250	1	R	
Tetrach	loroethene	0.250	. 1.40	0.250	1	R	· <u>-</u>
Toluene	<u> </u>	0.250	1.10	0.250	1		
trans-1	.2-Dichloroethene	0.250	0.600	0.250	1		
trans-1	,3-Dichloropropene	0.500	1.00	0.500		R	
Trichlo:	roethene	0.250	1.00	0.250	1	R	
Trichlo	rofluoromethane	0.250	0.800	0.250	1	R	
Vinvl cl	hloride	0.250	1.10	0.250	1	R	
				0.250	1	R	
	Surrogate	R	ecovery	Control Limits	Qualifier]
	1,2-Dichloroethane-d4	106		62 - 139			ĺ
	Dibromofluoromethane	102	-	75 - 125			1
	4-Bromofluorobenzene	99.	4	75 - 125	·		
I	Toluene-d8	103		75 - 125			
			Internal Std	Qualifie	er		
nments:							
			•				

ارار مین مرارم_{الت}ی

RESULTS

Name : <u>Remron Prvironme</u>			-		
eld Sample ID: <u>59DW1WG1</u>			ple ID: <u>L0305193-07</u>		
Solids: NA			ation ID: HPM:		
te Received: 07-MAY-03	_ Dat	e Extracted:	_08-MAY-03	Date Analyzed	: <u>08-MAY-03 19:53</u>
ncentration Units: <u>ug/L</u>	Fi	le ID: <u>RM3070</u>	09	_	
Analyte	MDL	RL	Concentration	Dilution	Qualifie
1,1,1,2-Tetrachloroethane	0.250	0.500	0.250	1	; R·
1.1.1-Trichloroethane	0.250	0.800	0.250	1	R
1,1,2,2-Tetrachloroethane	0.125	0.400	0.125	1	R
1,1,2-Trichloroethane	0.250	1.00	0.250	1	R
1,1-Dichloroethane	0.125	0.400	0.125	1	R
1,1-Dichloroethene	0.500	1.20	0.500	1	R
1,1-Dichloropropene	0.250	1.00	0.250	1	R
1,2,3-Trichlorobenzene	0.125	0.300	0.125	1	R
1,2,3-Trichloropropane	0.750	3.20	0.750	1	R
1,2,4-Trichlorobenzene	0.200	0.400	0.200	1	R
1,2,4-Trimethylbenzene	0.250	1.30	0.250	1	R
l,2-Dichlorobenzene	0.125	0.300	0.125	1	R
1,2-Dichloroethane	0.250	0.600	0.250	1	R
,2-Dichloropropane	0.125	0.400	0.125	1	R
.3.5-Trimethylbenzene	0.250	0.500.	0.250	1	R
,3-Dichlorobenzene	0.250	1.20	0.250	1	R
.3-Dichloropropane	0.200	0.400	0.200	1	R
.4-Dichlorobenzene	0.125	0.300	0.125	1	R
ments:			0.125	1	

Page 1 of 3

wiales

RESULTS

ab Name : <u>Remron Environm</u> ield Sample ID: <u>59DW1WG1</u>					
Solids: NA			ation ID:HPMS		
ite Received: <u>07-MAY-03</u>	Date	Extracted:	<u>08-MAY-03</u>	Date Analyzed:	08-MAY-03 19:53:
oncentration Units: <u>ug/L</u>	Fil	e ID: <u>RM3070</u>	109	_	
Analyte	MDL	RL	Concentration	Dilution	Qualifier
1-Chlorohexane	0.125	0.500	0.125	1	R
2.2-Dichloropropane	0.250	3.50	0.250	1	R
2-Chlorotoluene	0.125	0.400	0.125	1	R
4-Chlorotoluene	0.250	0.600	0.250	1	R
Benzene	0.125	0.400	0.125	1	R
Carbon tetrachloride	0.250	2.10	0.250	1	R
Chlorobenzene	0.125	0.400	0.125	1	R
Chloroethane	0.500	1.00	0.500	1	R
Chloroform	0.125	0.300	0.125	1	R
Chloromethane	0.250	1.30	0.250	1	R .
cis-1,2-Dichloroethene	0.250	1.20	0.250	1	R
cis-1.3-Dichloropropene	0.250	1.00	0.250	1	R
Dichlorodifluoromethane	0.250	1.00	0.250	1	R
Ethylbenzene	0.250	0.600	0.250	1	R
Hexachlorobutadiene	0.250	1.10	0.250	1	R
Isopropylbenzene	0.250	0.500	0.250	1	R
mp-Xylene	0.500	1.00	0.500	1	R
Methylene chloride	0.250	2.00	0.250	1	

Page 2 of 3

All results, MDLs, and RLs have been corrected to dry weight, where applicable.

المالي المالي

RESULTS

	al Method : <u>82608</u> : <u>Remron Environme</u> r					
	mple ID: <u>59DW3WG1</u>			ple ID: <u>L0305193-07</u>		Matrix: <u>Water</u>
Solids:	NA	1	nitial Calibr	ation ID: HPM	88_09-APR-03	_
te Rece	ived: <u>07-MAY-03</u>	Da	te Extracted:	08-MAY-03	Date Analyze	d: <u>08-MAY-03 19:53</u>
ncentra	ation Units: <u>ug/L</u>	F:	ile ID: <u>AM307</u> 0	109	_	
	Analyte	MDL	RL	Concentration	Dilution	Qualifier
n-Buty	lbenzene	0.250	1.10	0.250	1	¹ R
n-Prop	vlbenzene	0.125	0.400	0.125	1	Ŕ
Naphth	alene	0.200	0.400	0.200	1	l R
o-Xvle	ne	0.250	1.10	0.250	1	R
goal-g	ropyltoluene	0.250	1.20	0.250	1	R
sec-But	tylbenzene	0.250	1.30	0.250	1	R
Styrene	<u> </u>	0.125	0.400	0.125	1	R
tert-Bu	itylbenzene	0.250	1.40	0.250	1	R
Tetrach	nloroethene	0.250	1.40	0.250	1	
Toluene	•	0.250	1.10	0.250	1	R
trans-1	.2-Dichloroethene	0.250	0.600	0.250	1	R
trans-1	.,3-Dichloropropene	0.500	1.00	0.500	1	R
Trichlo	proethene	0.250	1.00	0.250	1	R
Trichlo	profluoromethane	0.250	0.800	0.250	1	R
Vinvl c	hloride	0.250	1.10	0.250	1	R
	Surrogate		Recovery	Control Limits	Qualifier	
	1,2-Dichloroethane-d	4 1	06	62 - 139	<u> </u>	
	Dibromofluoromethane	1	03	75 - 125		
	4-Bromofluorobenzene	9	8.9	75 ~ 125		

Surrogate	Recovery	Control Limits	Qualifier
1,2-Dichloroethane-d4	106	62 - 139	
Dibromofluoromethane	103	75 - 125	
4-Bromofluorobenzene	98.9	75 - 125	
Toluene-d8	102	75 - 125	

Internal	Std	Qualifier

Comments:

All results, MDLs, and RLs have been corrected to dry weight, where applicable.

RESULTS

alytical Method : <u>A260B</u>			= -		
b Name : Remron Environmental Services eld Sample ID: 595W1WG1			ple ID: <u>L0105193-01</u>		Marriy, Waran
•					
Solids: NA			ation ID: HPM:		
e Received: 07-May-03	Date	e Extracted:		Date Analyze	: <u> </u>
ncentration Units: <u>ng/L</u>	Fil	.e ID: <u>_8ж307</u>	007	_	
Analyte	MDL	RL	Concentration	Dilution	Qualifier
1,1.1.2-Tetrachloroethane	0.250	0.500	0.250	1	P.
1,1,1-Trichloroethane	0.250	0.600	0.250	1	, R
1,1,2.2-Tetrachloroethane	0.125	0.400	0.125	1	R
1,1,2-Trichloroethane	0.250	1.00	0.250	1	l R
1.1-Dichloroethane	0.125	0.400	0.125	1	R
1,1-Dichloroethene	0.500	1.20	0.500	1	R
1,1-Dichloropropene	0.250	1.00	0.250	1	R
1,2,3-Trichlorobenzene	0.125	0.300	0.125	1	R
1,2,3-Trichloropropane	0.750	3.20	0.750	1	R
1,2,4-Trichlorobenzene	0.200	0.400	0.200	1	R
1,2,4-Trimethylbenzene	0.250	1.30	0.250	1	R
1,2-Dichlorobenzene	0.125	0.300	0.125	1	R
1,2-Dichloroethane	0.250	0.600	0.250	1	R
1,2-Dichloropropane	0.125	0.400	0.125	1	R
1,3,5-Trimethylbenzene	0.250	0.500	0.250	1	R
.,3-Dichlorobenzene	0.250	1.20	0.250	1	R
.3-Dichloropropane	0.200	0.400	0.200	1	R
1,4-Dichlorobenzene	0.125	0.300	0.125	1	R

All results, MDLs, and RLs have been corrected to dry weight, where applicable.

Page 1 of 3

il^{ialo}b

RESULTS

-		Preparat	ory Method: <u>50308</u>	<i>;</i>	AB = : <u>WG140126.</u>
b Name : <u>Kemron Environme</u>	ental Services		Contract#:		
eld Sample ID: <u>599W1WG1</u>		Lab Samp	ple ID: <u>L0305193-01</u>		Matrix: Nate:
Solids: NA	Ir	itial Calibra	ation ID:HPMS	SS 09-APR-03	
te Received: <u>_07_MAY-03</u>	Dat	e Extracted:	_08-MAY-03	Date Analyze	d: <u>08-MAY-03 18:54:</u>
ncentration Units: <u>ug/L</u>	Fil	le ID: <u>8M3070</u>		~	
Analyte	MDL	RL	Concentration	Dilution	Qualifier
1-Chlorohexane	0.125	0.500	0.125	1	P
2,2-Dichloropropane	0.250	3.50	0.250	1	
2-Chlorotoluene	0.125	0.400	0.125	1	R
4-Chlorotoluene	0.250	0.600	0.250	1	R
Benzene	0.125	0.400	0.125	1	R
Carbon tetrachloride	0.250	2.10	0.250	1	R
Chlorobenzene	0.125	0.400	0.125	1	R
Chloroethane	0.500	1.00	0.500	<u> </u>	R
Chloroform	0.125	. 0.300	0.125		R
Chloromethane	0.250	1.30	0.250	1	R
cis-1,2-Dichloroethene	0.250	1.20	0.250	1	R
cis-1,3-Dichloropropene	0.250	1.00	0.250	1	R
Dichlorodifluoromethane	0.250	1.00	0.250	1	R
Ethvlbenzene	0.250	0.600	0.250	1	R
Hexachlorobutadiene	0.250	1.10	0.250	1	R
Isopropylbenzene	0.250	0.500	0.250	1	R
mp-Xylene	0.500	1.00	0.500	1	R
Methylene chloride	0.250	2.00	0.250	1	R

Page 2 of 3

All results, MDLs, and RLs have been corrected to dry weight, where applicable.

201 C3

RESULTS

alytica	al Method : <u>A260B</u>		P	Preparatory Method: 50108				ARE = : _KG145126_	
b Name	: Remron Environme	ntal Servic	269	-	Contra	ct#:		_	
eld Sam	ple ID: <u>595W1WG1</u>	-	-	Lab Sample ID: _L0305193-01				Matrix: Water	
Solids:	NA		Initial	Calibra	ation ID	:нр	(S8_09-APR-03		
te Rece	ived: <u>07-MAY-03</u>	ı	Date Exti	acted:	OR-MAY	Date Analyr	ed: <u>08-MAY-03 1</u>		
ncentra	tion Units: <u>ug/L</u>		File ID:	_8M3070	07				
	Analyte	MDL		RL	Conc	entration	Dilurian	Qualif	
<u> </u>			1		- i conc		Directon	Qualif	
n-Buty	lbenzene	0.250	ļ 1.	10	ļ (.250	1	R	
n-Prop	vlbenzene	0.125	0.	400	j o	.125	1	· R	
Naphtha	alene	0.200	0.	400	0	.200	1	R	
o-Xvle	nė	0.250	1.	10	0	.250	1	R	
p-Isopi	ropyltoluene	0.250	1.	20	0	.250	1	R	
sec-But	cvlbenzene	0.250	1.	30	0	. 250	1	R	
Styrene	:	0.125	0.	400	0	. 125	1	R	
tert-Bu	itvlbenzene	0.250	1.	40	0	. 250	1	R	
Tetrach	loroethene	0.250	1	40	0	. 250	1	R	
Toluene	: 	0.250	1.	10	0	. 250	1	R ·	
trans-1	.2-Dichloroethene	0.250	0.	500	0	. 250	1	R	
trans-1	.3-Dichloropropene	0.500	1.0	0	0	.500	1	R	
Trichlo	roethene	0.250	1.0	00	σ.	250	1	R	
Trichlo	rofluoromethane	0.250	0.8	00	0.	250	1	R	
Vinyl c	hloride	0.250	1.1	. 0 -	0.	250	1	R	
	Surrogate		Recove	ry	Contr	ol Limits	Qualifier		
	1,2-Dichloroethane-d	4	103		62	- 139			
	Dibromofluoromethane		101		75	- 125			
	4-Bromofluorobenzene		98.8		75	- 125			
	Toluene-d8		101		75	⁻ 125			
			Inter	nal Std		Qualifier	\neg		
					_	*			

Page 3 of 3

All results, MDLs, and RLs have been corrected to dry weight, where applicable.

1/1/1/20 Sp 1/2/20

RESULTS

nalytical Method : 8260R					WAR : WG140104
ab Name : <u>Remron Environm</u> ield Sample ID: <u>595W3WG1</u>		_			
			ple ID: <u>L0305193-04</u>		
Solids: NA			ation ID: <u>HPM</u>		
te Received: <u>07-MAY-03</u>	Dat	e Extracted:	08-MAY-03	Date Analyze	d: <u>08-MAY-03 16:56</u>
oncentration Units: <u>ug/L</u>	Fi	le ID: <u>8M3076</u>	203	_	
Analyte	MDL	RL	Concentration	Dilution	Qualifier
1.1,1.2-Tetrachloroethane	0.250	0.500	1 0.250 !	1	· R
1.1.1-Trichloroethane	0.250	0.800	0.584	1	1 3
1,1,2,2-Tetrachloroethane	0.125	0.400	0.125	1	i R
1.1.2-Trichloroethane	0.250	1.00	0.250	1	R
1.1-Dichloroethane	0.125	0.400	0.302	1	J
1.1-Dichloroethene	0.500	1.20	0.500	1	R
1.1-Dichloropropene	0.250	1.00	0.250	1	R
1.2.3-Trichlorobenzene	0.125	0.300	0.125	1	, R
1,2,3-Trichloropropane	0.750	3.20	0.750	1	R
1.2.4-Trichlorobenzene	0.200	0.400	0.200	1	R
1,2,4-Trimethylbenzene	0.250	1.30	0.250	1	R
1,2-Dichlorobenzene	0.125	0.300	0.125	1	R
1,2-Dichloroethane	0.250	0.600	0.250	1	R
1,2-Dichloropropane	0.125	0.400	0.125	1	R
1.3.5-Trimethylbenzene	0.250	0.500	0.250	1	R
1.3-Dichlorobenzene	0.250	1.20	0.250	1	R
1.3-Dichloropropane	0.200	0.400	0.200	1	R
1,4-Dichlorobenzene	0.125	0.300	0.125	1	
mments:			0.125	1	R

Page 1 of 3

All results, MDLs, and RLs have been corrected to dry weight, where applicable.

ساوران میران

RESULTS

ab Name : <u>Kemron Environm</u>					
eld Sample ID: <u>59SW3WG1</u>		Lab Sam	ple ID: <u>L0305193-04</u>		Matrix: Water
Solids: NA	I	nitial Calibr	ation ID:HPM	S8 09-APR-03	
te Received: <u>07-May-03</u>	_ Dat	e Extracted:	08-MAY-03	Date Analyzed	: _08-MAY-03 16:56
oncentration Units: <u>ng/L</u>	Fi	le ID: <u>מרסובא</u>	103	_	
Analyte	MDL	RL	Concentration	Dilution	Qualifier
1-Chlorohexane	0.125	0.500	0.125	1	R
2,2-Dichloropropane	0.250	3.50	0.250	1	R
2-Chlorotoluene	0.125	0.400	0.125	1	ļ R
4-Chlorotoluene	0.250	0.600	0.250	1	R
Benzene	0.125	0.400	0.125	1	R
Carbon tetrachloride	0.250	2.10	0.250	1	R
Chlorobenzene	0.125	0.400	0.125	1	R
Chloroethane	0.500	1.00	0.500	1	R
Chloroform	0.125	0.300	0.155	1	J
Chloromethane	0.250	1.30	0.250	1	R
cis-1,2-Dichloroethene	0.250	1.20	1.37	1) 3
cis-1,3-Dichloropropene	0.250	1.00	0.250	1	R
Dichlorodifluoromethane	0.250	1.00	0.250	1	R
Ethylbenzene	0.250	0.600	0.250	1	R
Hexachlorobutadiene	0.250	1.10	0.250	1	R
Isopropylbenzene	0.250	0.500	0.250	1	R
m-,p-Xylene	0.500	1.00	0.500	1	R
Methylene chloride	0.250	2.00	0.276	1	P P

Page 2 of 3

All results, MDLs, and RLs have been corrected to dry weight, where applicable.

ing Opings

RESULTS

ub Name	: <u>Remron Environmen</u>	tal_Servic	20.5		Contrac	t#:				
eld Sam	nple ID: <u>595W3WG1</u>		-	Lab Sample ID:					Matrix: Water	
Solids:	NA		Initial Calibration ID: HPMSR 09-APR-01						_	
te Rece	ived: <u>07-MAY-03</u>	D	ate E	extracted:	_08-MAY-	03	Date Analyze	ed: _08.	-MAY-03 16:56:0	
ncentra	tion Units: _ug/L	· :	File	ID: <u>8M307</u> 0	03	<u>. </u>	_			
	Analyte	MDL		RL	Conc	entration	Dilution		Qualifier	
n-Buty	lbenzene	0.250	-	1.10	1 0	. 250	1	R		
n-Prop	vlbenzene	0.125		0.400	 -	. 125	1	, R		
Naphth	alene	0.200		0.400	1 0	200	1	R		
o-Xyler	ne	0.250		1.10		250	1			
p-Isop:	ropyltoluene	0.250		1.20		250	1	R		
sec-But	tylbenzene	0.250		1.30	- 	250		R		
Styrene	· · · · · · · · · · · · · · · · · · ·	0.125		0.400	1	125		R		
tert-Bi	utylbenzene	0.250		1.40			1	R		
	loroethene	0.250		1.40		250	1	R	<u> </u>	
Toluene	-	0.250		1.10		250	1	R		
	2-Dichloroethene	0.250				250	<u> </u>	R		
		1	<u> </u>	0.600		250		R		
	3-Dichloropropene	0.500	-	1.00	0.	500	1	R		
	proethene	0.250		1.00	0.	893	1	J		
	rofluoromethane	0.250		0.800	0.	250	1	R		
Vinvl c	hloride	0.250	ŀ	1.10	0.	250	1	R		
	Surrogate		Rec	overy	Contr	ol Limits	Qualifier			
	1,2-Dichloroethane-d4		104		62	- 139				
	Dibromofluoromethane		101		75	- 125				
	4-Bromofluorobenzene		99.2			- 125				
	Toluene-d8		102		75	- 125				
			In	ternal Std		Qualifier				
		<u></u>		-						
ments:										
										

Page 3 of 3

RESULTS

Name : <u>Kemron Environme</u>						
eld Sample ID: _59SW4WG1		Lab Sam	ple ID: <u>L0305193-10</u>		Matrix	c: Water
olids: NA	I	nitial Calibr	ation ID: HPM	S8_09-APR-03		_
e Received: <u>07-MAY-03</u>	Dat	e Extracted:	08-MAY-03	Date Analyze	:d: _08_	-MAY-03 21:2
centration Units: <u>ng/L</u>				_		
Analyte	MDL	RL	Concentration	Dilution		Qualifie
1,1,1,2-Tetrachloroethane	0.250	0.500	0.250	1	' R	
.,1,1-Trichloroethane	0.250	0.800	3.05	1		
.,1,2,2-Tetrachloroethane	0.125	0.400	0.125	1	R	
.1.2-Trichloroethane	0.250	1.00	0.250	1		
,1-Dichloroethane	0.125	0.400	1.44	1]	
,1-Dichloroethene	0.500	1.20	0.500	1	i R	
,1-Dichloropropene	0.250	1.00	0.250	1	R	
,2,3-Trichlorobenzene	0.125	0.300	0.125	1	R	
.2,3-Trichloropropane	0.750	3.20	0.750	1	R	
.2.4-Trichlorobenzene	0.200	0.400	0.200	1	R	 _
2,4-Trimethylbenzene	0.250	1.30	0.250	1	R	
2-Dichlorobenzene	0.125	0.300	0.125	1	R	
2-Dichloroethane	0.250	0.600	0.250	1	R	
2-Dichloropropane	0.125	0.400	0.125	1		
3.5-Trimethvlbenzene	0.250	0.500	0.250	1		
3-Dichlorobenzene	0.250	1.20	0.250	1		
3-Dichloropropane	0.200	0.400	0.200	1	R	
4-Dichlorobenzene	0.125	0.300	0.125	1		
4-Dichlorobenzene	0.125	0.300	0.125	-	R	

Page 1 of 3

3/14/03

PRCIII.TC

nalytical Method : <u>82608</u>					AAB # : WG140126
ab Name : <u>Kemron Pnviron</u>					-
ield Sample ID: <u>598W4WG1</u>	 -	Lab Sam	ple ID: <u>L0305193-10</u>		Matrix: <u>Water</u>
Solids: NA	Ir	itial Calibr	ation ID: HPM	S8 09-APR-03	 -
ate Received: <u>07-MAY-03</u>	Dat	e Extracted:	_08-MAY-03	Date Analyze	ed: <u>08-May-03 21:22:0</u>
oncentration Units: <u>ng/L</u>	Fil	.e ID: <u>ям3070</u>		_	
Analyte	MDL	RL	Concentration	Dilution	Qualifier
1-Chlorohexane	0.125	0.500	0.125	1	R
2.2-Dichloropropane	0.250	3.50	0.250	1	R
2-Chlorotoluene	0.125	0.400	0.125	1	R
4-Chlorotoluene	0.250	0.600	0.250	1	l R
Benzene	0.125	0.400	0.125	1	. R
Carbon tetrachloride	0.250	2.10	0.250	1	R
Chlorobenzene	0.125	0.400	0.125	1	R
Chloroethane	0.500	1.00	0.500	1	R
Chloroform	0.125	0.300	0.125	1	R
Chloromethane	0.250	1.30	0.250	1	R ·
cis-1,2-Dichloroethene	0.250	1.20	3.36	1	J
cis-1,3-Dichloropropene	0.250	1.00	0.250	1	R
Dichlorodifluoromethane	0.250	1.00	0.250	1	R
Ethylbenzene	0.250	0.600	0.250	1	R
Hexachlorobutadiene	0.250	1.10 -	0.250	1	R
Isopropylbenzene	0.250	0.500	0.250	1	R
m-,p-Xvlene	0.500	1.00	0.500	1	R
Methylene chloride	0.250	2.00	0.250	1	R

All results, MDLs, a	RLs have been corrected to dry weight, where applicable.	

Page 2 of 3

RESULTS

Solids: NA	nor-may-03 nits: ng/L nlyte e ne	MDL 0.250 0.250 0.250 0.125 0.250 0.125 0.250	Init	ial Calibr	Concentration 0.250 0.25	Date Analyz	ed: <u>08-MAY-03 2</u>
n-Butvlbenzene n-Propvlbenzen Naphthalene o-Xvlene p-Isopropvltol sec-Butvlbenze Stvrene tert-Butvlbenz Toluene trans-1,2-Dich trans-1,3-Dich Trichloroethene	its: ug/L ilyte e ne tuene ene	MDL 0.250 0.250 0.250 0.125 0.250	ate !	RL 1.10 0.400 1.10 1.20 1.30	08-May-03 12 Concentration 0.250 0.125 0.200 0.250 0.250 0.250	Date Analyz Dilution 1 1 1 1 1 1	ed: _08-MAY-03 2 Qualif
n-Butvlbenzenden-Propylbenzenden-Propylbenzenden-Propylbenzenden-Propylbenzenden-Propylbenzenden-Propylbenzenden-Butylbenzenden-Butylbenzenden-Propylbenzenden	alyte e ne tuene ene	MDL 0.250 0.250 0.250 0.125 0.125 0.250		RL 1.10 0.400 1.10 1.20 1.30	Concentration 0.250 0.125 0.200 0.250 0.250	Dilution	Qualif
n-Butvlbenzenden-Propvlbenzenden-Propvlbenzenden-Propvlbenzenden-Propvltolden-Propv	e ne luene ene	MDL 0.250 0.250 0.250 0.125 0.125 0.250		RL 1.10 0.400 1.10 1.20 1.30	Concentration 0.250 0.125 0.200 0.250 0.250	Dilution	Qualif
n-Butvlbenzenden-Propvlbenzenden-Propvlbenzenden-Butvlbenzenden-Butvlbenzenden-Butvlbenzendendendendendendendendendendendendende	e ne luene ene	MDL 0.250 0.125 0.200 0.250 0.250 0.125 0.250		RL 1.10 0.400 1.10 1.20 1.30	0.250 0.125 0.200 0.250 0.250	Dilution 1 1 1 1 1 1 1 1 1 1	R R R
n-Butvlbenzene n-Propvlbenzer Naphthalene o-Xvlene p-Isopropvltol sec-Butvlbenze Stvrene tert-Butvlbenz Tetrachloroeth Toluene trans-1,2-Dich trans-1,3-Dich Trichloroethene	e ne ivene	0.250 0.125 0.200 0.250 0.250 0.250 0.125		1.10 0.400 0.400 1.10 1.20 1.30	0.250 0.125 0.200 0.250	1 1 1 1 1 1	R R R
n-Propylbenzer Naphthalene O-Xylene p-Isopropyltol sec-Butylbenze Styrene tert-Butylbenz Tetrachloroeth Toluene trans-1,2-Dich trans-1,3-Dich Trichloroethene	luene ene	0.125 0.200 0.250 0.250 0.250 0.125		0.400	0.125 0.200 0.250	1 1 1 1 1	R R R
Naphthalene o-Xylene p-Isopropyltol sec-Butylbenze Styrene tert-Butylbenz Tetrachloroeth Toluene trans-1,2-Dich trans-1,3-Dich Trichloroethene	luene ene	0.200 0.250 0.250 0.250 0.125		0.400	0.250	1 1 1	R R R
o-Xvlene p-Isopropyltol sec-Butylbenze Styrene tert-Butylbenz Tetrachloroeth Toluene trans-1,2-Dich trans-1,3-Dich Trichloroethene	ene	0.250 0.250 0.250 0.125 0.250		1.10	0.250	1	R R
p-Isopropyltol sec-Butylbenze Styrene tert-Butylbenz Tetrachloroeth Toluene trans-1,2-Dich trans-1,3-Dich Trichloroethen	ene	0.250 0.250 0.125 0.250		1.20	0.250	1	R
sec-Butvlbenze Stvrene tert-Butvlbenz Tetrachloroeth Toluene trans-1,2-Dich trans-1,3-Dich Trichloroethene	ene	0.250		1.30		-	
Stvrene tert-Butvlbenz Tetrachloroeth Toluene trans-1,2-Dich trans-1,3-Dich Trichloroethene	ene	0.125		1	0.250	1	
Tetrachloroeth Toluene trans-1,2-Dich trans-1,3-Dich Trichloroethene		0.250		0.400			l R
Tetrachloroeth Toluene trans-1,2-Dich trans-1,3-Dich Trichloroethene		1			0.125	1	R
Toluene trans-1,2-Dich trans-1,3-Dich Trichloroethen	ene	-		1.40	0.250	1	R
trans-1,2-Dich trans-1,3-Dich Trichloroethen		0.250	•	1.40	0.683	1 1	J
trans-1,3-Dich Trichloroethen		0.250		1.10	0.250	1	
Trichloroethen Trichlorofluor	loroethene	0.250		0.600	0.250	1	
Trichlorofluor	loropropene	0.500	_	1.00	0.500	1	R
	e	0.250		1.00	9.09	1 1	
Vinvl chloride	omethane	0.250		0.800	0.250	1 1	R
		0.250	<u></u>	1.10	0.250	1 1	
	Surrogate		- ·			<u>'</u>	
1 2-1	1.2-Dichloroethane-d4 Dibromofluoromethane 4-Bromofluorobenzene			covery	Control Limits	Qualifier	
			105	-	62 - 139	_	
			101		75 ⁻ 125 75 ⁻ 125	 	— — ——
Toluene-d8			104		75 - 125		
			_			<u>-</u>	
			In	ternal Std	Qualifie	r	
ments:							

RESULT	c

ab Name : <u>Kemron Environme</u>	ental Services	_	Contracts:		
ield Sample ID: 59SW7WG1			ple ID: <u>L0305193-08</u>		
Solids: NA			ation ID:HPM		
te Received: <u>07-May-03</u>			08-MAY-03		
	•				
oncentration Units: <u>ug/L</u>	F11	.e 10: <u></u>		_	
Analyte	. MDL	RL	Concentration	Dilution	Qualifie
1.1.1.2-Tetrachloroethane	0.250	0.500	1 0.250	1	R
1,1.1-Trichloroethane	0.250	0.800	1.50	1	i J
1,1,2,2-Tetrachloroethane	0.125	0.400	0.125	1	i R
1,1,2-Trichloroethane	0.250	1.00	0.250	1	R
1.1-Dichloroethane	0.125	0.400	0.409	1	J
1,1-Dichloroethene	0.500	1.20	0.500	1	R
1.1-Dichloropropene	0.250	1.00	0.250	1	R
1,2,3-Trichlorobenzene	0.125	0.300	0.125	1	R
1,2,3-Trichloropropane	0.750	3.20	0.750	1	R
1,2,4-Trichlorobenzene	0.200	0.400	0.200	1	R
1,2,4-Trimethylbenzene	0.250	1.30	0.250	1	R
1,2-Dichlorobenzene	0.125	0.300	0.125	1	R
1.2-Dichloroethane	0.250	0.600	0.250	1	R
1,2-Dichloropropane	0.125	0.400	0.125	1	R
1,3.5-Trimethvlbenzene	0.250	0.500	0.250	1	R
1.3-Dichlorobenzene	0.250	1.20	0.250	1	R
1,3-Dichloropropane	0.200	0.400	0.200	1	R
1,4-Dichlorobenzene	0.125	0.300	0.125	1	R

All results, MDLs, and RLs have been corrected to dry weight, where applicable.

Page 1 of 3

35 1037 51191037

RESULTS

nalytical Method : <u>#260B</u>					AB : _ NG140126
ab Name : <u>Remron Environ</u>					
ield Sample ID: <u>59SW7WG1</u>		Lab Sam	ple ID: <u>L0305193-08</u>		Matrix: Water
Solids: NA	Ir	itial Calibra	ation ID:	SR_09-APR-03	
ate Received: <u>07-MAY-03</u>	Dat	e Extracted:	_08-MAY-03	Date Analyze	d: <u>08-MAY-03 20:23:</u>
oncentration Units: <u>ug/L</u>	Fil	le ID: <u>RM3070</u>	10	_	
Analyte	MDL	RL	Concentration	Dilution	Qualifier
1-Chlorohexane	0.125	0.500	0.125	1	R
2.2-Dichloropropane	0.250	3.50	0.250	1	R
2-Chlorotoluene	0.125	0.400	0.125	1	R
4-Chlorotoluene	0.250	0.600	0.250	1	R
Benzene	0.125	0.400	0.125	1	R
Carbon tetrachloride	0.250	2.10	0.250	1	R
Chlorobenzene	0.125	0.400	0.125	1	R
Chloroethane	0.500	1.00	0.500	1	R
Chloroform	0.125	0.300	0.125	1	R
Chloromethane	0.250	1.30	0.250	1	R
cis-1,2-Dichloroethene	0.250	1.20	1.08	1	J
cis-1.3-Dichloropropene	0.250	1.00	0.250	1	R
Dichlorodifluoromethane	0.250	1.00	0.250	1	R
Ethvlbenzene	0.250	0.600	0.250	1	R
Hexachlorobutadiene	0.250	1.10	0.250	1	R
Isopropylbenzene	0.250	0.500	0.250	1	R
m-,p-Xylene	0.500	1.00	0.500	1	R
Methylene chloride	0.250	2.00	0.250	1	R

Page 2 of 3

All results, MDLs, and RLs have been corrected to dry weight, where applicable.

1/1/02

Andread Control of the Control of th

RESULTS

	: <u>Remron Environmen</u>				_			-		
eld Sample ID:				Lab Sample ID: <u>L0305193-08</u>				Matrix: Water		
Solids:	NA		Initi	al Calibr	ation ID		S8 09-APR-03			
te Rece	ived: 07-MAY-03	:	Date Ex	tracted:	OR-MAY-	03	Date Analyze	d: _08-	MAY-03 20:23:	
ncentra	tion Units: <u>vg/L</u>		File I	D: <u>RM3070</u>	210		-			
	Analyte	MDL		RL	Conc	entration	Dilution	1	Qualifier	
n-Butv	Lbenzene	0.250	<u> </u>	1.10	0	.250	1	' R		
n-Propy	lbenzene	0.125		0.400	0	.125	1	; R		
Naphtha	lene	0.200		0.400	0	.200	1	R		
o-Xyler	e	0.250	j	1.10	0	. 250	1	R		
p-Isopr	opyltoluene	0.250		1.20	0	. 250		R		
sec-But	vlbenzene	0.250		1.30	0	.250	1	R		
Styrene		0.125		1.40	0.125		1 1	R R J		
tert-Bu	tvlbenzene	0.250	i		0.250					
Tetrach	loroethene	0.250	1:		0.279					
Toluene		0.250		1.10	<u> </u>	250	1	R		
trans-1	, 2-Dichloroethene	0.250	10	0.600	0.	250	1	R		
trans-1	.3-Dichloropropene	0.500] :	1.00	0.	500	1	R		
Trichlo	roethene	0.250	1	00	1.	44		 	-	
Trichlo	rofluoromethane	0.250	1	.800	0.	250	1	R		
Vinyl cl	nloride	0.250	1	.10 -	0.	250	1	R	 -	
	Surrogate		Reco	very	Contr	ol Limits	Qualifier			
	1.2-Dichloroethane-de		106		62	- 139				
	Dibromofluoromethane	103			75 - 125					
i	4-Bromofluorobenzene Toluene-d8		98.2		75 - 125			<u> </u>	<u>.</u>	
	TOTUENE-GO		103		75	125				
	•		Int	ernal Std		Qualifier	7			
whents:										

Page 3 of 3

ار ارسان ک

RESULTS

Analytical Method : <u>82608</u>			or: Method: 50309		AND =MG140106		
ab Name : Kemron Environme							
Solids: NA	T		Lab Sample ID:L0305193-09				
							
te Received: <u>07-MAY-03</u>			_08_MAY-03	Date Analyze	d: <u>DR-MAY-03 20:52</u>		
oncentration Units: ug/L	Fil	le ID: <u>_8M3070</u>	111	_			
Analyte	MDL	RL	Concentration	Dilution	Qualifier		
1.1.1.2-Tetrachloroethane	0.250	0.500	0.250	1	R		
1.1.1-Trichloroethane	0.250	0.800	1.33	1			
1,1,2,2-Tetrachloroethane	0.125	0.400	0.125	1			
1.1.2-Trichloroethane	0.250	1.00	0.250	1	R		
1,1-Dichloroethane	0.125	0.400	0.409	1			
1.1-Dichloroethene	0.500	1.20	0.500	1	R		
1,1-Dichloropropene	0.250	1.00	0.250	1	R		
1,2,3-Trichlorobenzene	0.125	0.300	0.125		l R		
1,2,3-Trichloropropane	0.750	3.20	0.750	1	R		
1,2,4-Trichlorobenzene	0.200	0.400	0.200	1	R .		
1,2,4-Trimethylbenzene	0.250	1.30	0.250		R .		
1,2-Dichlorobenzene	0.125	0.300	0.125	1	R		
1.2-Dichloroethane	0.250	0.600	0.250	1	R		
1,2-Dichloropropane	0.125	0.400	0.125	1	R		
1,3,5-Trimethylbenzene	0.250	0.500,	0.250	1	R		
1,3-Dichlorobenzene	0.250	1.20	0.250	1	R		
1,3-Dichloropropane	0.200	0.400	0.200	1			
1,4-Dichlorobenzene	0.125	0.300	0.125	1	R		

All results, MDLs, and	RLs have been corrected to dry weight, where applicable.	

Page 1 of 3

0600

RESULTS

ab Name : <u>Remron Environm</u>	ental Services		Contracts:			
ield Sample ID: 595W7WG9	Lab Sam	ple ID: <u>L030519:</u>	. 25	Matrix: <u>Water</u>		
Solids: NA	Ir	itial Calibr	ation ID:	EPMSB 09-APR-1	03	
te Received: <u>07-MAY-03</u>	Dat	e Extracted:	_08-MAY-03	Date An	alyzed: <u>08-MAY-03 20:52:</u>	
oncentration Units: ug/L						
Analyte	MDL	RL	Concentration	n Dilut	ion Qualifier	
1-Chlorohexane	0.125	0.500	0.125	1	R	
2.2-Dichloropropane	0.250	3.50	0.250	. 1	l R	
2-Chlorotoluene	0.125	0.400	0.125	1	R	
4-Chlorotoluene	0.250	0.600	0.250	1	R	
Benzene	0.125	0.400	0.125	; 1	R	
Carbon tetrachloride	0.250	2.10	0.250	1	R	
Chlorobenzene	0.125	0.400	0.125	j 1	R	
Chloroethane	0.500	1.00	0.500	i ı	R	
Chloroform	0.125	0.300	0.125	1	R	
Chloromethane	0.250	1.30	0.250	1	R	
cis-1.2-Dichloroethene	0.250	1.20	1.43	1	J	
cis-1,3-Dichloropropene	0.250	1.00	0.250	1	R	
Dichlorodifluoromethane	0.250	1.00	0.250	1	R	
Ethvlbenzene	0.250	0.600	0.250	1	R	
Hexachlorobutadiene	0.250	1.10	0.250	1		
Isopropylbenzene	0.250	0.500	0.250] 1	R	
mp-Xvlene	0.500	1.00	0.500	ļ 1	R	
Methylene chloride	0.250	2.00	0.260	1	yβ	
				 -		

Page 2 of 3

All results, MDLs, and RLs have been corrected to dry weight, where applicable.

0/3/03

RESULTS

	ral Method : <u>82608</u>							WE = : -Bittal-75
								-
				Lab Sample ID: <u>L0305193-09</u>				
Solids	: NA		Initia	l Calibr	ration ID:	RJ	PMS8 09-APR-03	 _
ce Rece	eived: <u>07-MAY-03</u>	D	ate Ext	racted:	_08-MAY-0	<u></u>	Date Analys	ed: <u> </u>
ncentra	ation Units: <u>ug/L</u>							
				_				
<u></u>	Analyte	MDL		RL	Conce	ntration	Dilution	Qualifi
n - Russ	/lbenzene							
		0.250		.10	0.250		1	. R
	ovlbenzene	0.125	0.400		0.125		1	R
Naphth		0.200	200 0.400		0.200		1	R
o-Xvle	ne	0.250	_ 1	1.10	0.250		1	R R
p-Isop	ropyltoluene	0.250	1	. 20				
sec-Bu	tylbenzene	0.250	1	. 30				
Stvren	e	0.125	ο.	400	0.1	.25	1	R
tert-Bi	utylbenzene	0.250	1.	1.40	0.250		1	R
Tetrach	hloroethene	0.250	1.					R
Toluene	e	0.250	250 1.10		0.250		1	R
rana-1	1,2-Dichloroethene	0.250	0.	0.600	0.250		1	R
rans-1	1,3-Dichloropropene	0.500	1.					
richlo	proethene	0.250	11.	1.00				R
richlo	profluoromethane	0.250	_	800	0.250		1	
/invl c	chloride	0.250	11.		- 		1	R
		0.230			0.2	50	1	R
	Surrogate		Recove	ry	Contro	Limits	Qualifier	
	1.2-Dichloroethane-d4	1	.07		62 - 139			
Dibromofluorometha:		1	.03		75 - 125			
	4-Bromofluorobenzene	1	01		75 - 125			
	Toluene-d8	102				125		
			Inter	nternal Std Qualifie				
		<u> </u>				440111161		
ments:								
							<u></u> _	

2/14/03

111111

