

December 19, 2005

Stephen J. DeNardis, P.E. Resident Engineer West Point Area Office New York District U.S. Army Corps of Engineers Building 667A 3rd Floor West Point, New York 10996

Attention:

Mr. Raymond Schembri, P.E./Mr. Lawrence Danner, P.E.

RE:

Quarterly Progress Report No. 9 Contract # DACW41-01-D-001-0006

Vestal Wellfield 1-1, Area 4, Vestal, New York

Sirs:

Enclosed is Quarterly Progress Report No. 9 for the referenced contract. This report covers system operations during August (16 days only), September, October, and November 2005. O&M activities for the period as well as sampling activities are summarized in this report. Copies of the analytical data are included. Note also that the Quarterly sampling was performed in December for this report as noted in our last conference call. This was pushed back to allow the system and site soils to stabilize for two weeks after system configuration.

Please email me at <u>cmarshall@sevensonphilly.com</u> or call at 610-388-0721 if you've any questions.

Sincerely,

Project Manager

Sevenson Environmental Services, Inc.

Sanandia Man hall Eassandra T. Marshall

CTM/1

cc:

A. LaGreca (Sevenson)

J. Singer (Sevenson)

D. Callahan (Envirogen)

B. Buckrucker (USACE)

F. Bales (USACE)

S. Trocher (USEPA)

M. Dunham (NYSDEC)

TR	ANSMITTAL OF SHOP DRAWINGS, EC MANUFACTURER'S CERT (Read Instructions on the rever	FIFICATES OF	FCOMPLIANCE	ES, OF	— ■ . R	DATE 12/19	//05	X New Submittal ☐ Resubmittal	-
Section 1	REQUEST FOR A	PPROVAL OI	F THE FOLLOWING ITE	MS (Th	is secti	ion will be initiate	ed by the contra	ctor)	
-	Vest Point Area Office		■ · · · · · · · · · · · · · · · · · · ·			TRACT NO. DA T.O.# 0006	CW-41-01-D-	TRANSMITTAL NO. 47	
	R District 167A 3rd Floor nt, New York 10996	2749 Lockpo Niagara Fall	ort Rd. s, N.Y. 14302					PREVIOUS TRANS. NO. (If Any)	
SPECIFIC transmittal)	CATION SEC. NO. (Cover only one section w	ith each	PROJECT TITLE AND System, Broome Count			Vestal Well 1-1 S	uperfund Site,	Area 2 Soil Vapor E	extraction
ITEM NO.	DESCRIPTION OF ITEMS SUBMITED (Type, size, model number, etc.)	TTED	MFG. OR CONTR. CAT., CURVE	NO. (CONTRACT P		VARIATIONS (See instruction No.	FOR C E USE
			DRAWING OR BROCHURE NO. (See instruction No. 8)			SPEC. PARA. NO.	DRAWING SHEET NO.	,	CODE
a	<u>b.</u>	_	С.	<u>d.</u>		е	<u>f.</u>	<i>g.</i>	<u>h.</u>
1.	Quarterly Report No. 9			1			_		
				<u> </u>					
							_		
2 copies to 1 copy to U 1 copy to N 1 copy to N	ederal Express: D CENWK JSEPA Region II N.Patsis					are correct a specifications	nd in strict conformat s except as otherwise Mary D SIGNATURE	tems have been reviewed ince with the contract drawing stated. CONTRACTOR	ngs and
Section II			APPROVAL ACTION						
			O SIGNATURE OF APPRO	VING A	UTHOR	RITY 		DATE	

SHEET ____ OF ___

C:\Documents and Settings\marshall\My Documents\Vestal\Reports\9th Quarterly\Transmittal to DeNardis 9th Quarterly.wpd

(Proponent: CEEC-CE)

Jan 21 2005

QUARTERLY PROGRESS REPORT NO. 9 (August 15 through December 7, 2005)

FULL SCALE IN-SITU SOIL VAPOR
EXTRACTION SYSTEM
VESTAL AREA 4,
VESTAL, NEW YORK

Prepared by:

Envirogen/Shaw, Inc. 103 College Ave SE Grand Rapids, MI 49503

Sevenson Environmental Services, Inc. 2749 Lockport Road Niagara Falls, New York 14305

December 19, 2005

TABLE OF CONTENTS

1.0	INTR	ODUCI	ΓΙΟΝ	. 1
2.0			OF ACTIVITIES CONDUCTED DURING THE REPORTING	. 2
3.0	SVE	SYSTEN	M MONITORING AND ADJUSTMENTS	. 3
2.0	3.1		ure/Vacuum Readings	
		3.1.1	Vacuum Blowers	
		3.1.2	Carbon Units	
		3.1.3	Well Field	
	3.2	Tempe	eratures	. 4
	3.3		ss Air Flows	
		3.3.1	Total System Process Air Flow	
		3.3.2	SVE Well Process Air Flow	. 5
	3.4	Proces	ss Air VOC Concentrations	. 5
		3.4.1	SVE Withdrawal Wells	. 6
		3.4.2	Carbon Process Air Control Samples	. 6
		3.4.3	QA/QC Process Air Samples	. 6
4.0	VOC	YIELD		. 7
	4.1		Withdrawal Well VOC Yields	
	4.2	Total	System VOC Yield	. 8
5.0	OUA	RTERL	Y REPORT No. 9 ANALYSIS OF MONITORING DATA	. 9
	5.1		System	
6.0			ENCOUNTERED DURING THE REPORTING PERIOD AND E CORRECTIVE MEASURES	. 9
7.0	ANT	ICIPATI	ED ACTIVITIES	10
8 U	A Í IT	UI GUU	SENTIELCATION	11

LIST OF FIGURES

1	SVE	System	Lavout
1	~ ~ ~	O A DICTIL	1Ju y Out

- 2 Total Target VOC Concentration, December 6 & 7, 2005
- 3 1,1,1--TCA Concentration (ppm), December 6 & 7, 2005
- 4 TCE Concentration (ppm), December 6 & 7, 2005
- 5 Carbon System Sampling Diagram
- 6 Concentration (ppmv) And Yield Rate (lbs/day) Of Total Target VOCs Vs. Time, Total System Sample, Vestal Area 4
- 7 Total Target VOC Yield (lbs/day), December 6 & 7, 2005
- 8 1,1,1--TCA Yield (lbs/day), December 6 & 7, 2005
- 9 TCE Yield (lbs/day), December 6 & 7, 2005
- Total Target Contaminant Yield Start-Up to Date (lbs.) Vs. Time, Total System Sample, Vestal Area 4

LIST OF TABLES

Table 1	SVE Well Status, Vestal Area 4, August 31, September 28, October 6, and November 9, 2005
Table 2	Analytical Results of Concentrations Of Target Compounds, Vestal Area 4
Table 3	Contaminant Concentrations and Yields, December 6 & 7, 2005, Vestal Area 4
Table 4	Target Contaminant Yield, Vestal Area 4
Table 5	Total Target Contaminant Yield To Date, Vestal Area 4
Table 6	SVE Well Proposed Changes, Vestal Area 4

LIST OF APPENDICES

- Appendix A Operation and Maintenance Data (Including Daily O&M Records, Routine Maintenance and Inspection Forms, and Field Notes)
- Appendix B Sampling and Analytical Data Process Air Data (Including Laboratory Data Summary Sheets, Chain-of-Custody Forms, and Field Sample Log Book Notes)
- Appendix C Summary of Operation Data/Contaminant Yield Calculation

1.0 INTRODUCTION

Sevenson Environmental Services, Inc. and their subcontractor (Shaw Environmental and Infrastructure (SHAW), formerly Envirogen, Inc. of Lansing, Michigan), has prepared this Quarterly Report No. 9 for the Full Scale Soil Vapor Extraction System (SVE System or System) at the Vestal Area 4 Site in Vestal, NY (Site). This report was prepared on behalf of the United States Environmental Protection Agency (USEPA) and the United States Army Corps of Engineers (USACE) who are conducting the Remedial Action for the Vestal Area 4 Site. This report was prepared under contract DACW41-01-D-0001-0006. Sevenson's remedial action work is under supervision of the USEPA and USACE. The ninth Quarterly Progress Report is provided and prepared in accordance with the approved Workplan. This report discusses the System operation based on data collected during August, September, October, November, and December 2005, and also discusses System operation and maintenance during these months.

Two notes about the data collection for this report: one, we included the 16 days in August following startup in order to keep the reporting period from the 1st to the last day of the reporting quarter. Second, we did perform the Quarterly sampling in early December. The system was reconfigured in accordance with our Interim Sampling Report No. 2 and conference call on 21 November 2005. As we agreed in the call, we would give the soils air flow 2 weeks to destabilize before taking the Quarterly samples. That timeframe pushed the sampling to early December. This report covers system operation and performance from restart on 15 August 2005 until 30 November 2005.

Figure 1 (shown at the end of this report) is a Site plan showing the SVE System treatment area, cell distribution buildings, and the main SVE treatment building. Construction of the SVE System began in mid-April 2003 and was completed on June 23, 2003. The remedial action began on June 27, 2003, after completion of a successful start-up sequence. The SVE System is operated in accordance with the approved Workplan, O&M Manual and the Final Design documents.

Figure 1 depicts System and SVE well polarity (withdrawal, active injection or temporarily off-line) following the System installation.

Section 2.0 of this report summarizes general activities conducted during the reporting period. Section 3.0 summarizes System monitoring and adjustments. Section 4.0 discusses volatile organic compound (VOC) contaminant yields based on process air analytical data. Section 5.0 discusses analysis of data specific to the Quarterly Report period between August and November 2005. Section 6.0 discusses problems encountered during the reporting period and their respective corrective measures. Section 7.0 lists anticipated future activities.

2.0 SUMMARY OF ACTIVITIES CONDUCTED DURING THE REPORTING PERIOD

The O&M inspections/site visits were performed on August 31, September 28, October 6, November 9 and December 6 & 7, 2005. Air flow and Photo Ionic Detector (PID) readings were measured throughout the System on August 31, September 28, October 6, November 9 and December 6 & 7, 2005. A full round of process air samples was collected from withdrawal wells on December 6 & 7, 2005.

Samples of process air through the carbon treatment system were collected on August 31, September 28, October 6, November 9 and December 7, 2005.

The SVE System at the Vestal Area 4 Site ran approximately 16 days without incident during the period 8/15/05 to 8/31/05. The August data is included in this quarterly report because it was a 'short' month. The System was re-started on August 15, 2005.

The SVE System at the Vestal Area 4 Site ran approximately 30 days without incident during the period 9/1/05 to 9/30/05.

Shaw personnel and Sevenson oversight were on-site during the week of September 5, 2005, to investigate the collapsed "mystery well" and to conduct Interim Soil Sampling Event #2 -- collecting soil samples from ISB-5, ISB-6, ISB-7, and ISB-8. Once it was opened, the "mystery well" was discovered to be an old pressure monitoring point. This was closed and the road was repaired. Extensive well closure was not needed. The soil samples were collected to a depth of 20 feet. Deeper samples were not possible due to a gravel layer that collapsed as it was encountered. A temporary well was successfully installed, as planned, at ISB-5. The deeper samples were collected in October when the drill rig could be scheduled.

Shaw personnel were on-site on September 21, 2005 to collect a water sample from the TMW-1, from the temporary monitoring well installed during the week of September 5, 2005, at the ISB-5 location.

The SVE System at the Vestal Area 4 Site ran approximately 31 days without incident during the period 10/1/05 to 10/31/05.

Shaw and Sevenson personnel – along with a drill rig -- were on-site on October 11, 2005, to collect the deep soil samples from ISB-6 and ISB-8. Samples were successfully collected and sent for analysis. The temporary monitoring well (TMA-1) was decommissioned at that time and filled with grout. An Interim Soil and Groundwater Sampling Report was completed, submitted and approved detailing the sampling activities and results as well as system optimization recommendations.

The SVE System at the Vestal Area 4 Site ran approximately 30 days without incident during the period 11/1/05 to 11/30/05. The System was reconfigured, per the Interim Soil

Geoprobe Sampling Summary Report 2, dated November 3, 2005, on November 23. SVE wells D3 and E2 were converted from injection to vacuum and wells C3 and E1 were converted from vacuum to injection. Quarterly sampling took place on Monday December 5. Quarterly sampling was delayed two weeks after reconfiguration to allow air flow patterns to stabilize.

Physical monitoring of the System parameters, such as PID readings, temperature, and air flow measurements, along with routine maintenance of the System, was conducted during the August through November reporting period in accordance with the O&M Manual. These O&M measurements and activities were recorded on daily O&M logs, which are provided in Appendix A.

The System operated for 16 days in August, 30 days in September, 31 days in October, and 30 days during November 2005 bringing the total operational time to approximately 706 days since the June 23, 2003, start-up.

Health and Safety (H&S) monitoring was conducted as outlined in the Site-Specific Safety & Health Plan (SSSHP). No significant events were observed during this monitoring period.

3.0 SVE SYSTEM MONITORING AND ADJUSTMENTS

This section summarizes monitoring of and adjustments made to the SVE System during the reporting period. Monitoring of the System included pressure/vacuum readings, PID and temperature measurements, air flow measurements, and process air sampling and associated VOC analysis. The locations of the SVE wells are illustrated in Figure 1. System parameters were recorded on O&M daily log sheets, which are provided in Appendix A. The chain-of-custody forms and laboratory data summary sheets are provided in Appendix B. Monitoring and adjustments were performed in accordance with the O&M Manual.

3.1 Pressure/Vacuum Readings

Pressure/vacuum measurements were taken across the air blowers and carbon units, and recorded on the daily log sheets (Appendix A). These measurements were collected on August 31, September 28, October 6, November 9 and December 6 & 7, 2005.

3.1.1 Vacuum Blowers

Pressure drops were measured across the vacuum blowers and filter during System operation. The pressure across the vacuum blower and filter ranged between 5 and 22 inches of water (H₂O).

3.1.2 Carbon Units

The total pressure drop across the two carbon units averaged 15 inches of H_2O during the reporting period. This pressure drop includes the carbon units and the connecting piping and fittings.

3.1.3 Well Field

Vacuum flow rate and PID reading for the individual SVE wells on August 31, September 28, October 6, November 9 and December 6 & 7, 2005, are listed in Table 1. On August 31 vacuum flow rates at the cell distribution buildings ranged from less than 5 to 20 standard cubic feet per minute (scfm) for Cell 1 and less than 5 to 10 scfm for Cell 2. Injection flow rates ranged from 6 to 10 scfm for Cell 1 from 5 to 6 in Cell 2.

On September 28, 2005 vacuum flow rates at the cell distribution buildings ranged from less than 5 to 18 scfm for Cell 1 and 5 to 11 scfm for Cell 2. Injection flow rates ranged from 4 to 10 scfm for Cell 1 and ranged from 5 to 6 scfm in Cell 2.

On October 6 vacuum flow rates at the cell distribution buildings ranged from less than 5 to 22 standard cubic feet per minute (scfm) for Cell 1 and less than 5 to 13 scfm for Cell 2. Injection flow rates ranged from 5 to 13 scfm for Cell 1 from 5 to 6 in Cell 2.

On November 9 vacuum flow rates at the cell distribution buildings ranged from less than 5 to 20 standard cubic feet per minute (scfm) for Cell 1 and less than 5 to 10 scfm for Cell 2. Injection flow rates ranged from 7 to 13 scfm for Cell 1 from 6 to 7 in Cell 2.

On December 7, 2005 (the quarterly monitoring event) vacuum pressures at the cell distribution buildings manifolds measured 70 inches of H_2O for Cell 1 and Cell 2. Injection pressure measured 78 inches of H_2O for Cell 1 and Cell 2.

3.2 Temperatures

Process air stream temperatures, measured at the discharge of the air blowers and across the carbon treatment system, were recorded on the O&M daily log sheets (Appendix A).

Temperature measurements at the vacuum air blowers did not exceed 190°F, which was below the design settings of 220°F. The temperature at the discharge of the vacuum blower was measured at an average of 180°F, and the temperature at the discharge of the injection blower was measured at an average of 175°F. Temperature at the vacuum header within the Cell distribution buildings ranged from 56°F to 72°F, and ranged between 54°F and 74°F at the

injection header. The carbon treatment system influent air stream temperatures ranged from 98°F to 120°F.

3.3 Process Air Flows

This section discusses process air flow measurements and balancing throughout the entire System and for the individual SVE wells. Individual SVE withdrawal and injection well process airflow measurements are provided in Table 1 for August 31, September 28, October 6, November 9 and December 6 & 7, 2005.

3.3.1 Total System Process Air Flow

During the reporting period, air flow throughout the entire System was measured as outlined in the O&M Manual. The air flow through the System was calculated by measuring the pressure drop across the blowers, and using this value to obtain the air flow from the blower curve computer model supplied by the manufacturer. Calculated air flow rates are contained in Table 2. Based on this data, the calculated airflow through the entire System between August and December 2005 averaged 512 scfm. The bypass airflow for August 31, September 28, October 6, November 9 and December 6 & 7, 2005 was 210 scfm (Table 1). The entire system flow is a culmination of the bypass flow and the individual flow rates. Estimated wellfield airflow was 524 scfm.

3.3.2 SVE Well Process Air Flow

Individual SVE withdrawal and injection well process airflow measurements were recorded on August 31, September 28, October 6, November 9 and December 6 & 7, 2005. This data is contained in Table 1.

Total SVE well air flow on the withdrawal side of the System was 512 scfm August 31, September 28, October 6, November 9 and December 6 & 7, 2005.

3.4 Process Air VOC Concentrations

Process air samples were collected during the reporting period on August 31, September 28, October 6, November 9 and December 7, 2005. Samples were collected and analyzed in accordance with the O&M Manual. The withdrawal well process air analytical results and the carbon treatment system process air analytical results are contained in Table 2. Quality Assurance/Quality Control (QA/QC) analytical results are also presented in Table 2. The laboratory data summary sheets, chain-of-custody forms, and field sample log book notes are provided in Appendix B.

3.4.1 SVE Withdrawal Wells

Quarterly sampling of the SVE withdrawal wells occurred on December 6 & 7, 2005. Concentrations of total targeted VOCs at individual wells ranged from non-measurable in wells A3; B3; C2; D1 and D4; E2; G1 and G2; H1; I1, I3, and I5; J2, J3, J5, and J6; K2, K4, and K5, to 14.12 ppm_v in well J4 (Table 3). Trichloroethene (TCE) and 1,1,1-trichloroethane (1,1,1-TCA) show the highest concentrations.

The total targeted VOC concentration contours using the December analytical data are illustrated in Figure 2. Figures 3 and 4 show individual contaminant concentrations of 1,1,1-TCA and TCE, respectively. The highest VOC concentrations were located in the area of cell 2 at well J4.

3.4.2 Carbon Process Air Control Samples

Carbon treatment system process air control samples were collected from three (3) sample ports identified and illustrated on Figure 5.

Total System VOC samples are collected prior to the combined process air stream entering the carbon treatment system. System samples were labeled "INFLUENT", "MID", and "EFFLUENT".

Total System samples were collected on August 31, September 28, October 6, November 9 and December 6 & 7, 2005. The total targeted influent VOC concentration averaged 8.20 ppm_v over the reporting period (Table 2). TCE and 1,1,1-TCA constitute the majority of the VOC mass in the process air stream. Concentrations of target VOCs in the total System samples collected since the initial startup of the System in June 2003 are shown in Figure 6.

Between carbon bed ("MID") and after carbon bed ("EFFLUENT") samples were also collected on the same days as the total System sample to evaluate VOC breakthrough and to determine when carbon change-outs should be performed.

3.4.3 QA/QC Process Air Samples

QA/QC process air samples, including duplicates, sample pump blanks, trip blanks, and instrument blanks, were collected during the sampling events. Duplicates of withdrawal well samples E4 and K3 were collected and analyzed for the targeted VOCs. The results of the analysis are show on Table 3. The sample pump blank concentrations of total targeted compounds were below the detection limit (0.05 ppm_v). The trip and instrument blanks concentrations were also below the detection limit for total targeted compounds.

4.0 VOC YIELD

This section details the System VOC yield distribution based on the individual SVE withdrawal well samples collected during the December 6 and 7, 2005 sampling event. Also discussed in this section is the total System VOC yield based on the air flow through the blowers and the composite/total System VOC analytical results.

4.1 SVE Withdrawal Well VOC Yields

The VOC yield rate for each SVE withdrawal well was calculated using the Ideal Gas Law, the average molecular weight of the targeted compounds, the flow rate for each individual withdrawal well, and the total targeted VOC concentration for each well. Table 3 summarizes the yield rate in pounds per day (lbs/day) for each SVE withdrawal well as measured during the December sampling event.

The VOC yield rates varied from non-measurable to 0.04 lbs/day (well J4). Wells A3, C2, and D1 had a non-measurable yield because of only low VOC concentration (PID reading less than 10 ppm), and wells G1, G2, H1, J6, and K4 had a non-measurable yield due to only very low air flow (5 scfm or lower). Wells B3; I1, I3, and I5; J2, J3, and J5; and K2 and K5 had a non-measurable yield due to a low VOC concentration and low flow. The table below (see below) summarizes the wells with non-measurable VOC yield rates.

At this time, some wells located in areas with high contaminant concentrations (as shown in the Pre-Remediation Geoprobe Sampling Summary Report, Vestal Well 1-1, Operable Unit 2, Area 4, March 21, 2002), currently show low VOC yield rates. Air flow rates and VOC contaminant levels with this off-gas data may be limited by subsurface geologic conditions (silt lenses), preferential air flow patterns, and soil moisture content. These conditions are unpredictable and change with varying Site conditions.

Figure 7 illustrates SVE withdrawal well total targeted VOC yield rate contours for the December sampling event. Figures 8 and 9 show individual contaminant yield rates of 1,1,1-TCA and TCE, respectively. All of the withdrawal wells in the treatment area indicate a yield of 0.00 lbs/day total targeted VOC, except well J4, which has a yield rate of 0.04 lbs/day.

			SUMMARY	OF WELLS	WITH LOW YIE	LD RATES	
SVE WELL #	FLOW RATE	PID READINGS	LOW FLOW	LOW PID (<10ppm)	Soil Concentrations	Proposed Actions to improve	Notes/Action List
A3	6	7.0		Х	Low	None	See paragraph below.
B3	5	5.0	Х	х	Low	None	See paragraph below.
C2	9	9.0		Х	Medium	None	See paragraph below.
D1	6	2.0		Х	Low	None	See paragraph below.
G1	5	11.5	X		Low	None	See paragraph below.
G2	5	12.4	Х		Low	None	See paragraph below.
H1	5	10.2	х		Low	None	See paragraph below.
l1	5	6.5	Х	Х	Low	None	See paragraph below.
13	5	5.2	Х	Х	Medium	None	See paragraph below.
15	5	8.5	х	x	High	None	See paragraph below.
J2	5	4.6	x	Х	Medium	None	See paragraph below.
J3	5	9.4	X	Х	High	None	See paragraph below.
J5	5	8.1	X	X	High	None	See paragraph below.
J6	5	15.3	Х		High	None	See paragraph below.
K2	5	4.9	х	Х	Low	None	See paragraph below.
K4	5	16.3	Х		Medium	None	See paragraph below.
K5	5	9.2	Х	X	High	None	See paragraph below.
L2	5	13.1	Х		High	None	See paragraph below.
M2	5	1.1	Х	Х	Low	None	See paragraph below.
M3	5	4.8	Х	Х	Low	None	See paragraph below.

There are no proposed actions to improve the System (Table 6). The new configuration (as of November 23, 2005) of the System focuses on Cell 1. There have been elevated sustained contaminant concentrations and yields for the majority of 'hot spots' in Cell 1. We will continue to monitor the individual wells and recommend action if the concentrations and yields drop substantially for an extended period of time.

4.2 Total System VOC Yield

The total System VOC yield (Table 4) was calculated using the total System air flow rate (Section 3.3.1) and the influent System sample ("INFLUENT") analytical results. Based on these calculations, the System has yielded approximately 2,289 pounds of VOCs through the

Sevenson Environmental Services, Inc. DACW41-D-01-0001-0006

19 December 2005

December 7, 2005 sampling event (Table 5). Therefore, the average yield rate of the System between June 23, 2003 and December 7, 2005, is 3.24 lbs/day. TCE constitutes approximately 42 percent and 1,1,1-TCA approximately 58 percent of the total VOC yield since the beginning of the SVE System operation. The increasing mass of total targeted VOCs removed from the treatment area is illustrated in Figure 10.

5.0 QUARTERLY REPORT No. 9 ANALYSIS OF MONITORING DATA

This section provides additional analysis of operational data collected between August and December 7, 2005. Total System data was evaluated for this time period. The following evaluations were performed: analyses of total targeted VOC concentrations and yield rates vs. time and Total Targeted Contaminant Yield start-up to December 7, 2005.

5.1 Total System

Table 2 summarizes the total System VOC concentrations and Table 4 summarizes the total contaminant yield per day of each VOC within the process air stream. Figure 6 illustrates concentration and daily yield rates of targeted contaminant vs. time, and Figure 10 illustrates total targeted contaminant yield from start-up to December 7, 2005. As expected, the yield rate and concentration trends closely match.

There is a decrease of the average contaminant yield rate from quarter 8 through quarter 9 (0.00 lbs/day and 2.09 lbs/day, respectively).

After reconfiguration of the SVE well polarity and subsequent reduction of flow rates/vacuum pressure to treatment area number 2 the yield ratio of TCE to 1-,1-,1,--TCA from individual wells has significantly increased (Figures 8 and 9). This is due to the ability of 1,-1,--TCA to be released from inter-soil pore spaces at a faster rate than TCE.

The total System air flow continues at a stable rate (512 scfm), which was within 2 to 3 percent of the target air flow rate of 500 scfm.

6.0 PROBLEMS ENCOUNTERED DURING THE REPORTING PERIOD AND RESPECTIVE CORRECTIVE MEASURES

With the exceptions of problems discussed in Section 2.0 and in this section the System operated well throughout the seventh quarter.

During this reporting period, some wells were recorded with limited flow. These problems are related to the presence of condensate water in the process piping. Maintenance activities have been performed to remove (increased vacuum to selected wells) and control the amount of water being drawn into the treatment System (closing of selected wells). Should the

Sevenson Environmental Services, Inc. DACW41-D-01-0001-0006

19 December 2005

9

site soils begin producing substantial quantities of condensate, the pump-out time will be increased in wells constructed with condensate drop legs.

7.0 ANTICIPATED ACTIVITIES

The following activities are anticipated for the next reporting period.

- Review of all system specific data regarding flow rates, contaminant concentrations and weather conditions at the site, make adjustments as deemed necessary;
- Continue operations and maintenance of the SVE system;
- The next quarterly sampling event is scheduled for February 2006; and
- A carbon change out is anticipated during the next quarter.

8.0 AUTHOR IDENTIFICATION

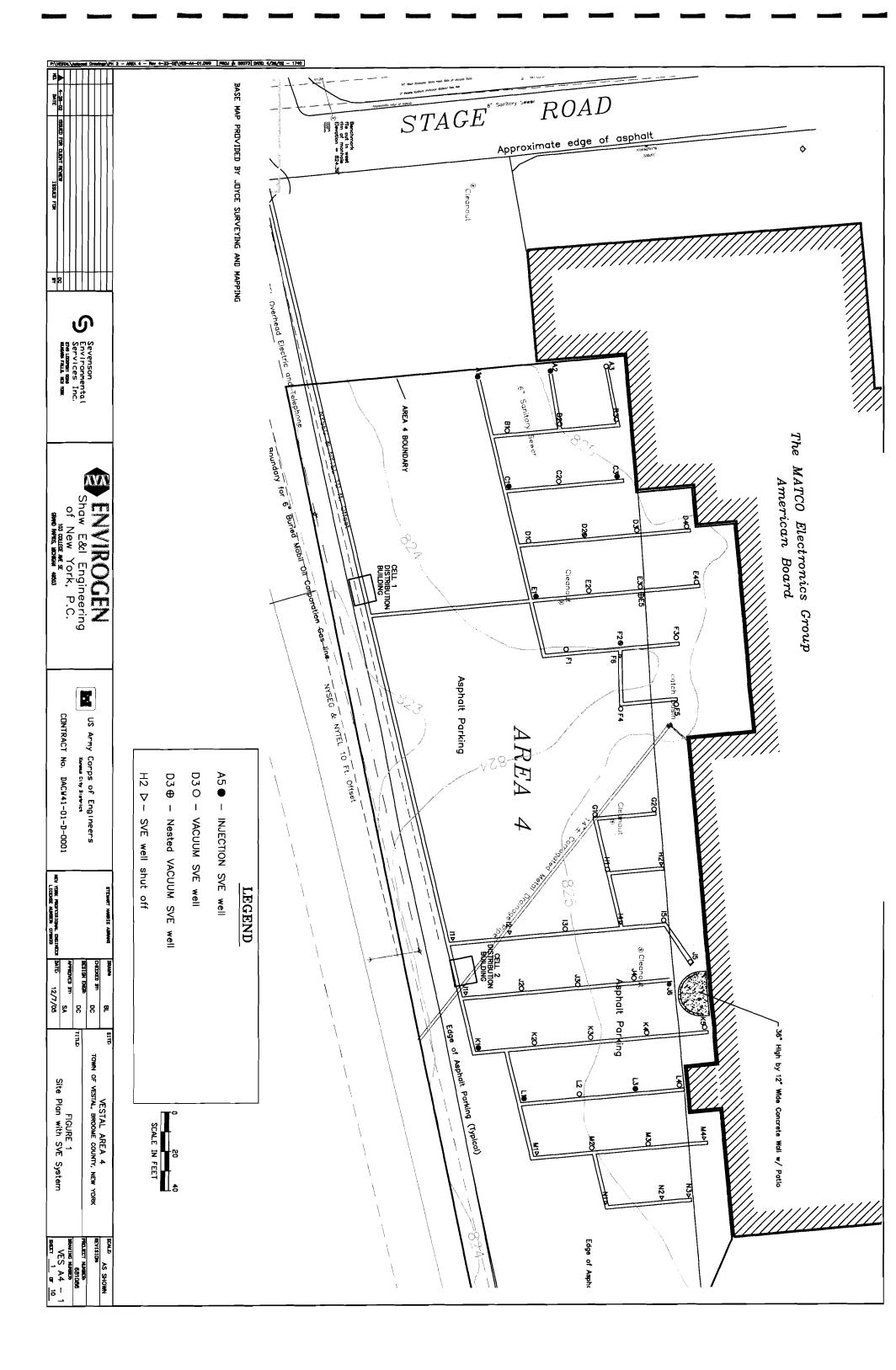
This report was prepared and checked by:

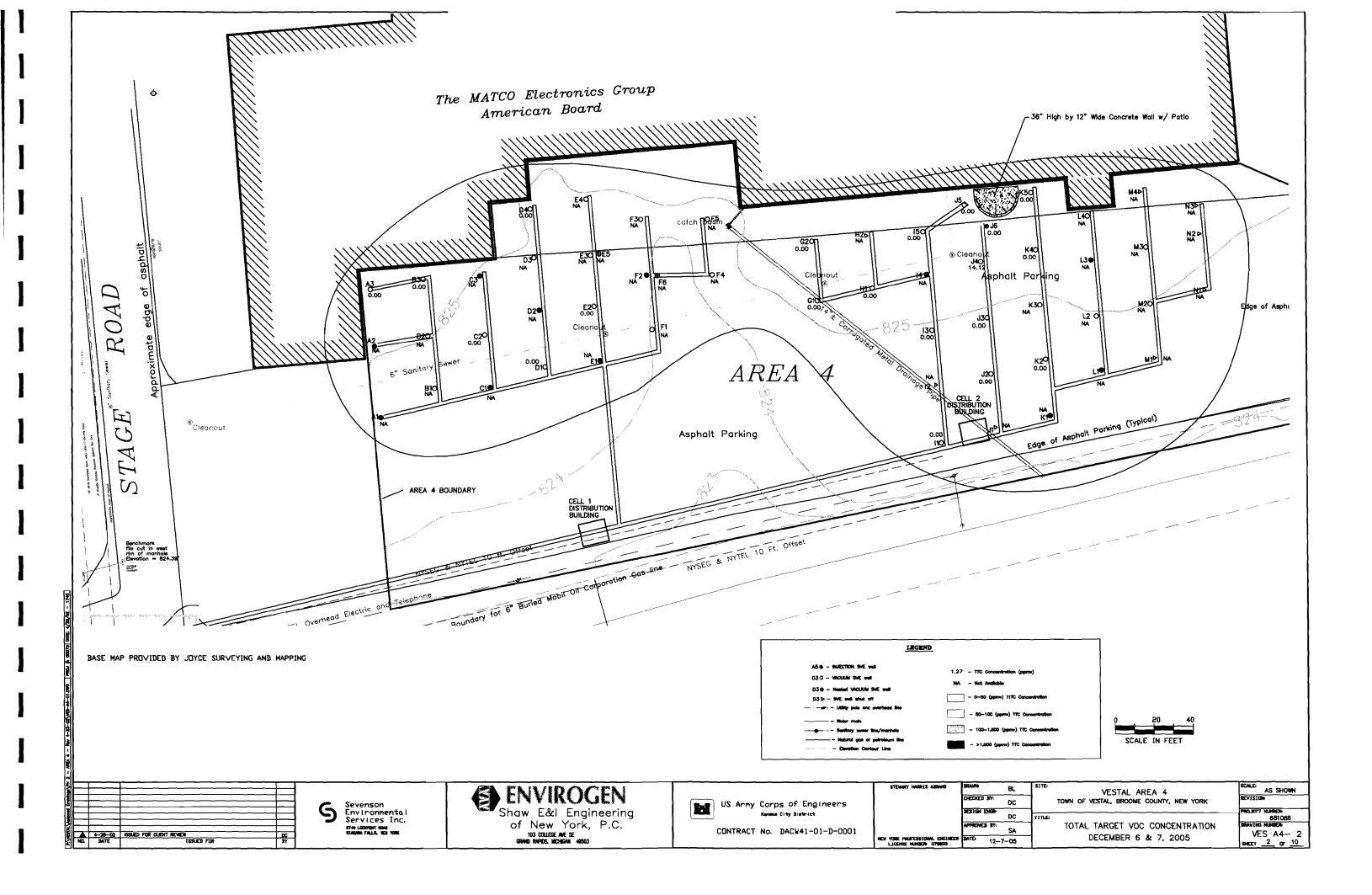
buglas (Callalan

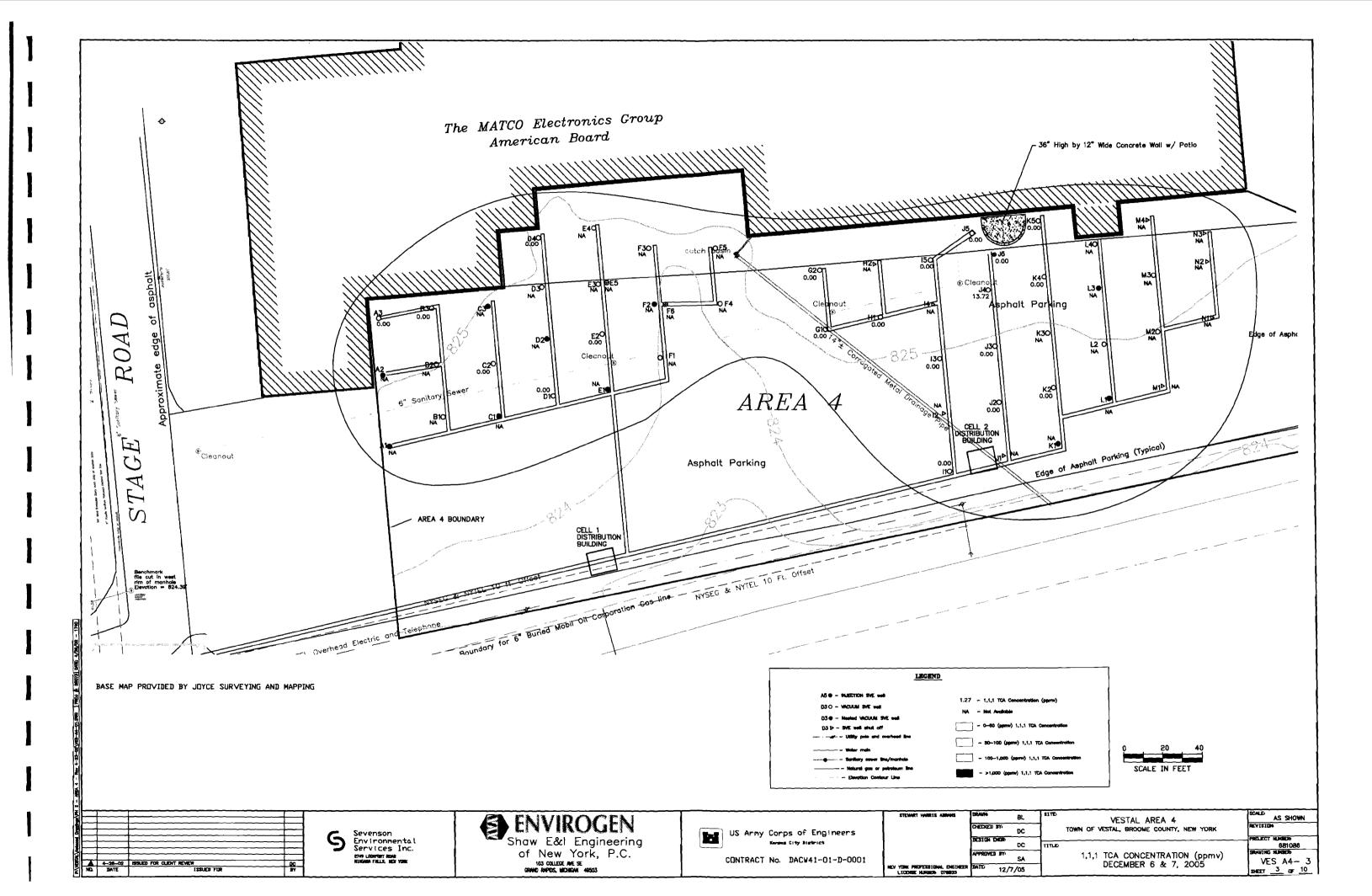
Douglas C. Callahan

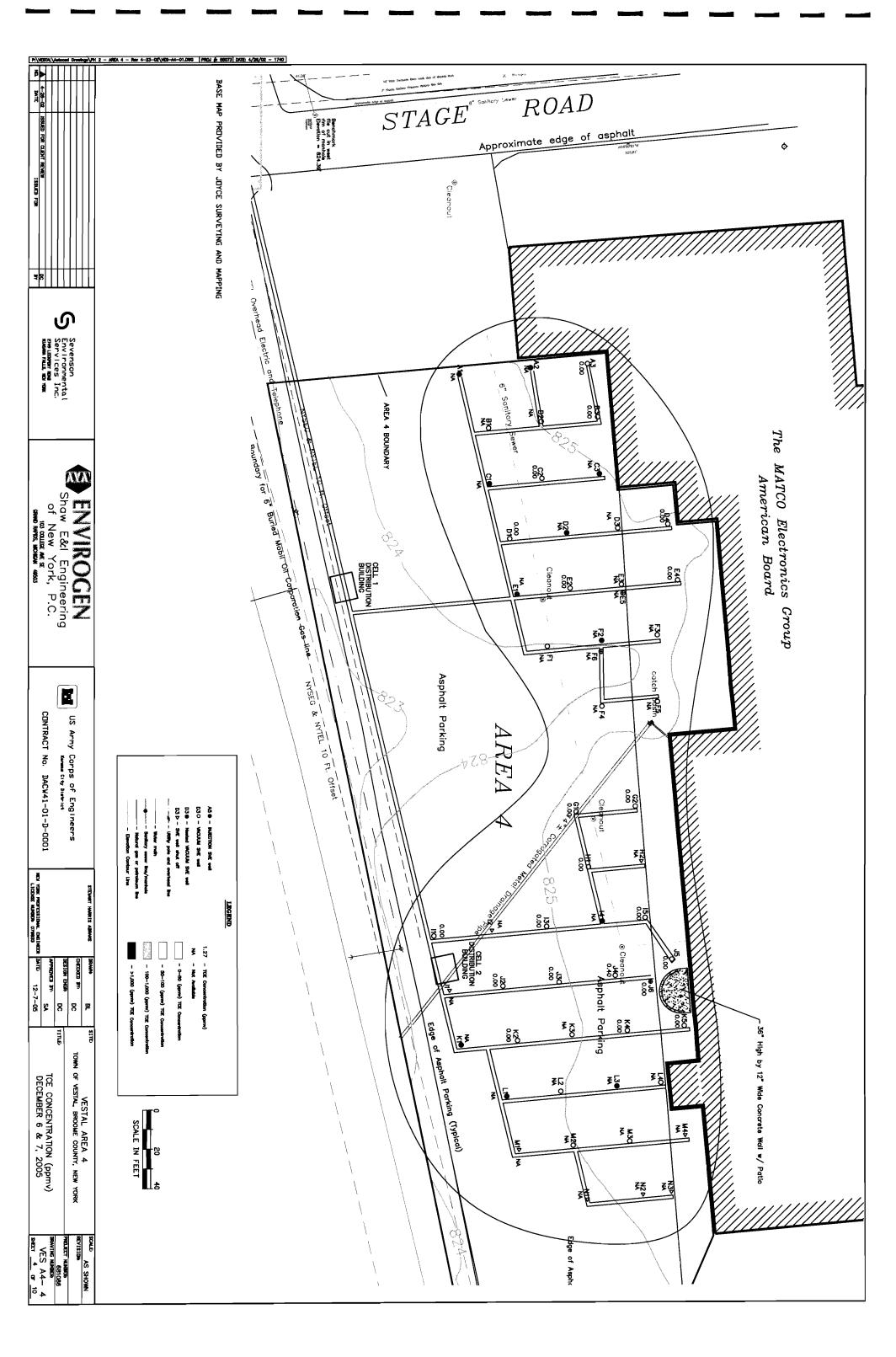
Project Manager

Shaw E&I/Envirogen


Cassandra T. Marshall


Project Manager


Sevenson Environmental Services, Inc.


Januardia 1 Markall

FIGURES

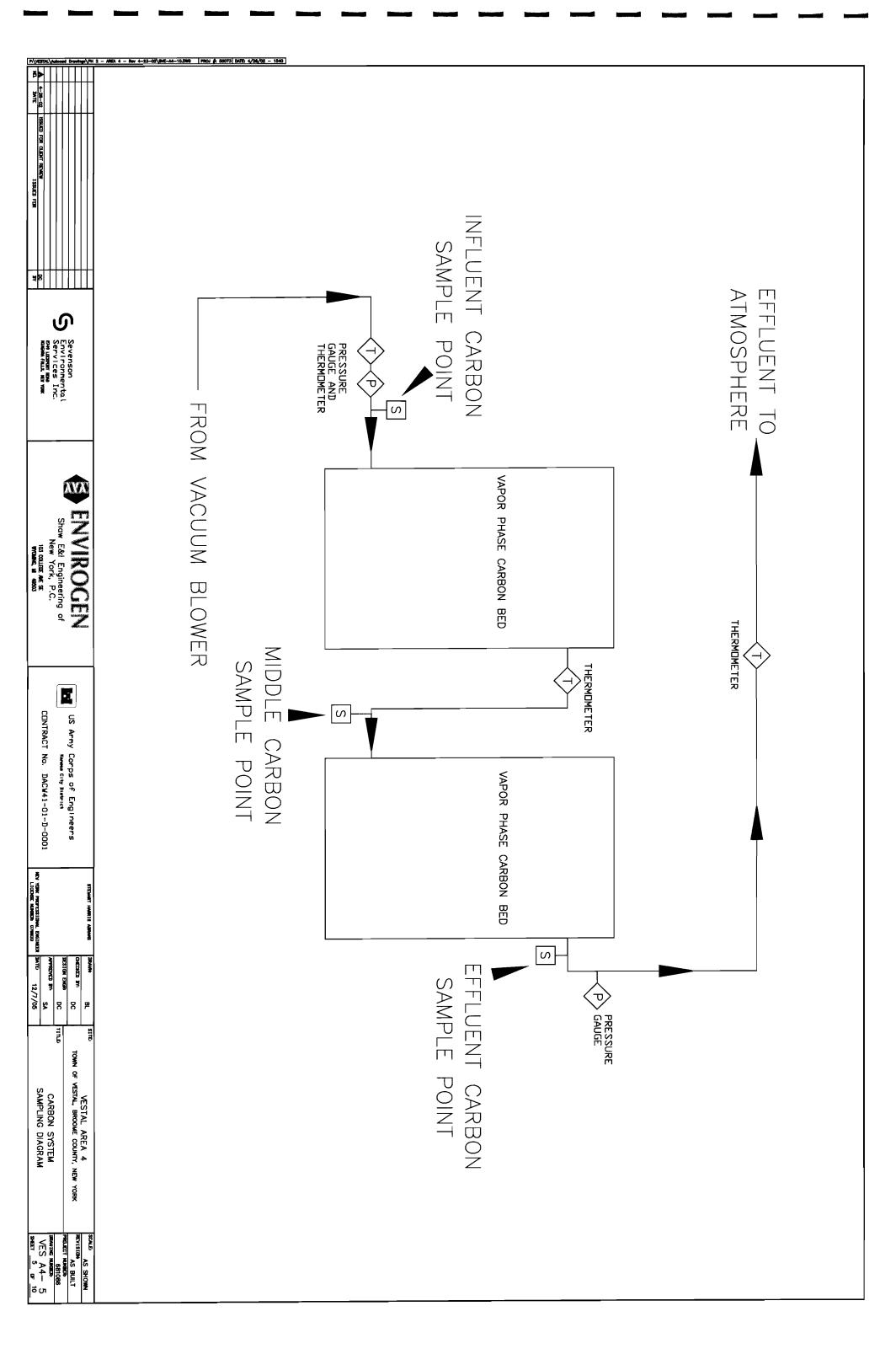
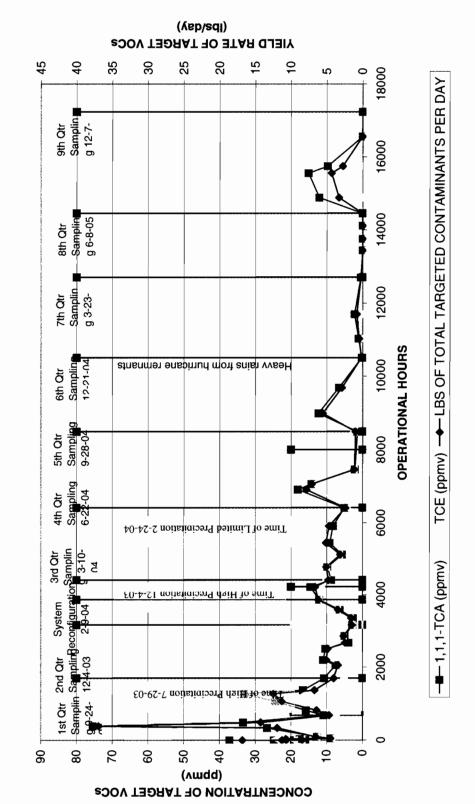
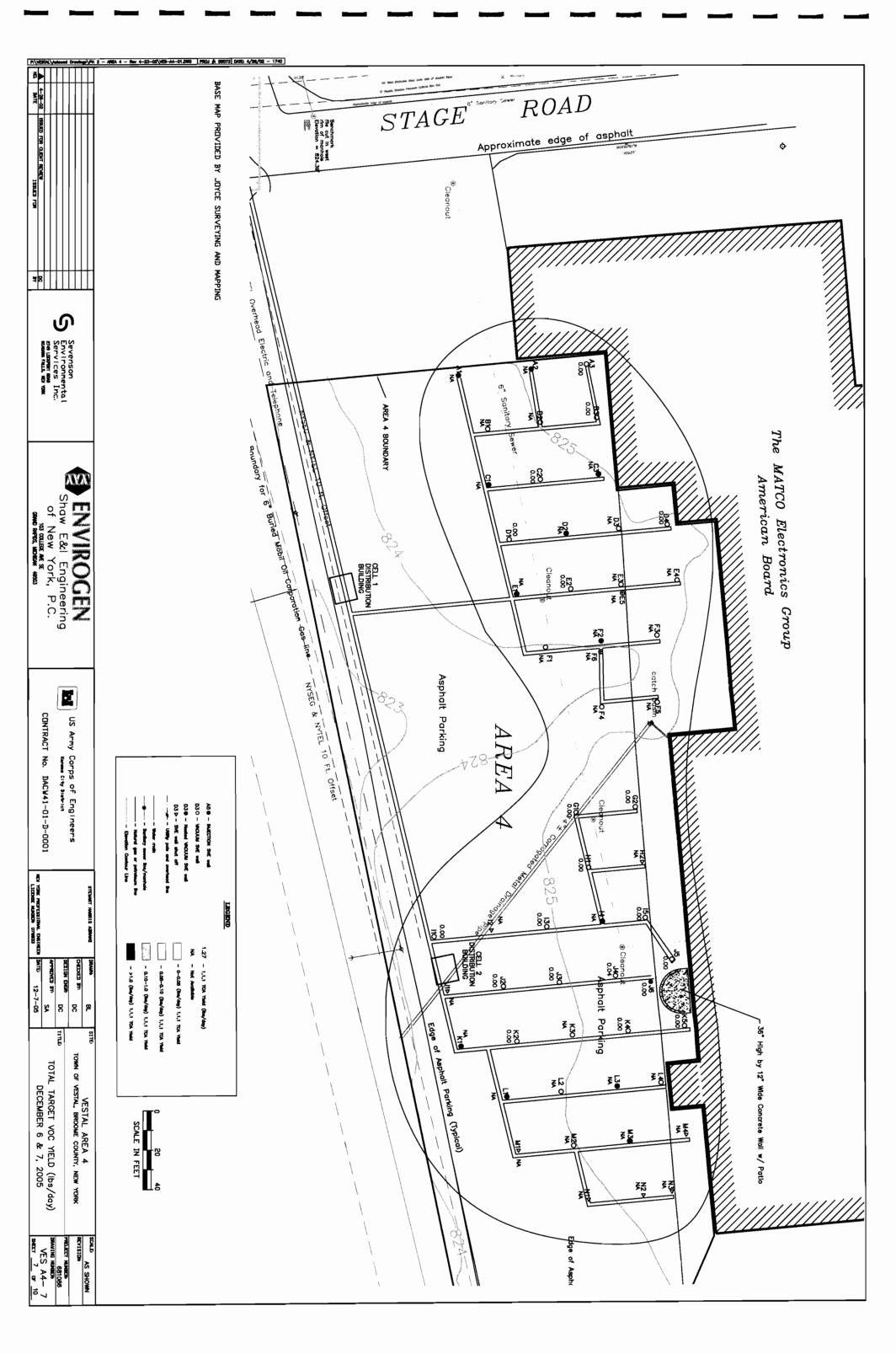




FIGURE 6
CONCENTRATION (ppmv) AND YIELD RATE (Ibs/day)
OF TOTAL TARGET VOCS VS. TIME
TOTAL SYSTEM SAMPLE
VESTAL AREA 4

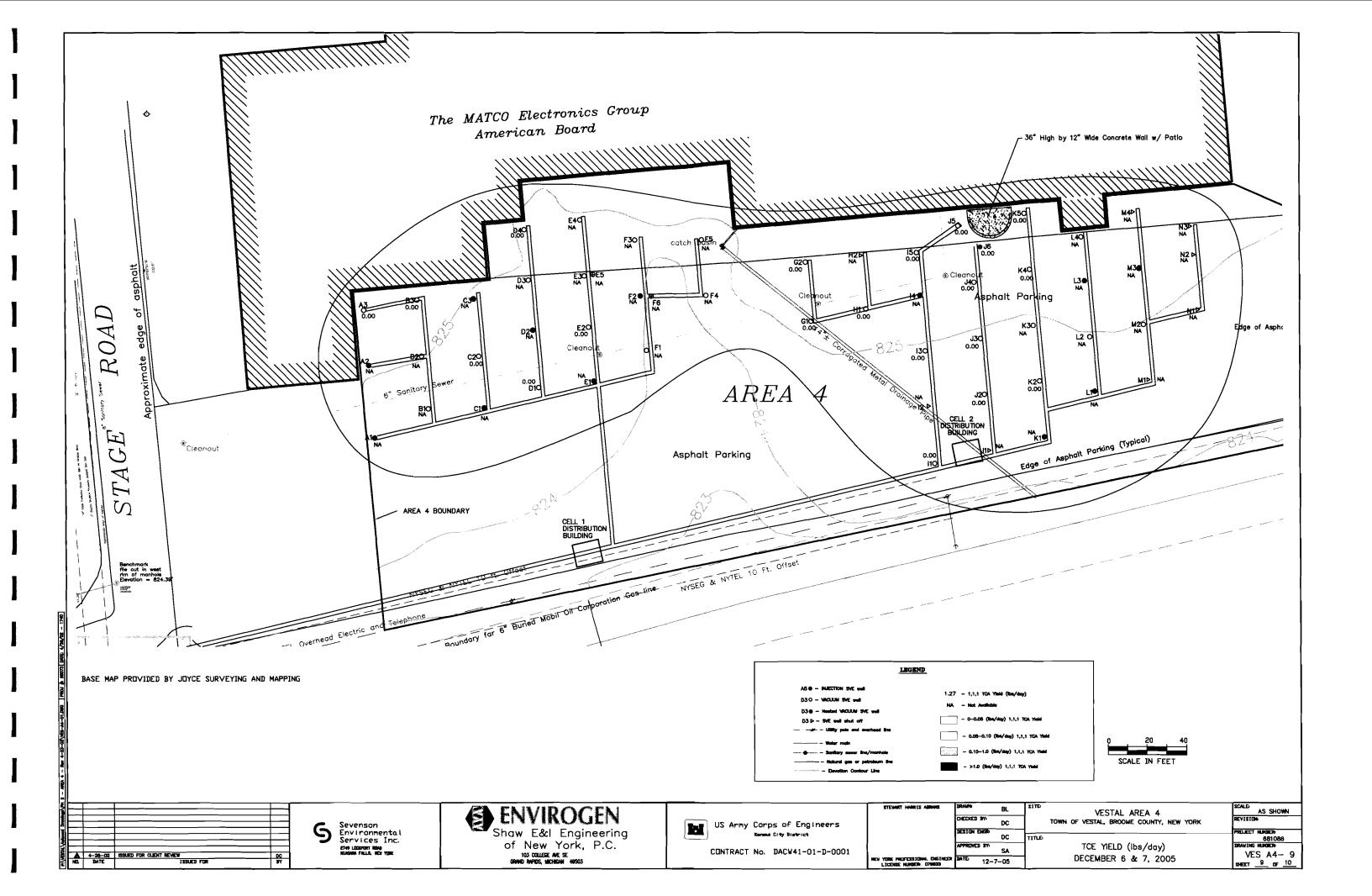
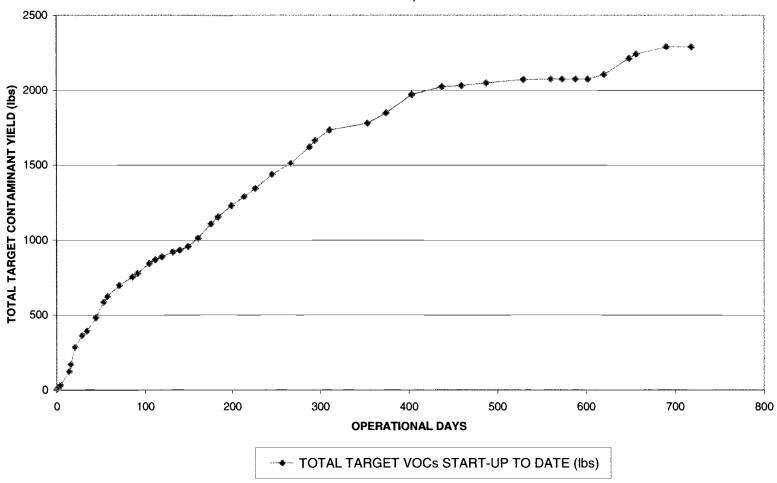



FIGURE 10
TOTAL TARGET CONTAMINANT YIELD START-UP TO DATE (lbs) Vs. TIME
TOTAL SYSTEM SAMPLE
VESTAL, AREA 4

TABLES

TABLE 1 SVE WELL STATUS VESTAL AREA 4 August 31, 2005

SVE WELL #	VAC WELL	INJ WELL	FLOW RATE	STATUS	PID READINGS	SOIL CONCENTRATION
Bypass Flow Ra	<u></u>		210	0		
INFLUENT			512		4.3	
MIDDLE			512		1.5	
EFFLUENT			512		0.6	
A1		X	8	OPEN	NA	LOW
A2		X	8	OPEN	NA	LOW
A3	X		6_	OPEN	4.5	LOW
B1	x		NA	WATER	NA	LOW
B2	X		6	OPEN	4.3	LOW
B3	X		5	OPEN	8.8	LOW
C1	_	X	8	OPEN	NA	LOW
C2	X	 	5	OPEN	3.6	MEDIUM
СЗ	X	 	6	OPEN	4.4	MEDIUM
C3 D1	X	 	5	OPEN	9.1	LOW
D2		<u> </u>	7	OPEN	NA NA	MEDIUM
D3		$\frac{\hat{x}}{x}$	9	OPEN	NA	HIGH
D4		 	NA NA	WATER	NA NA	HIGH
E1	$\frac{x}{x}$	+	20	OPEN	1.8	LOW
E2		<u> </u>	10	OPEN	NA	MEDIUM
E3	X	 ^ 	5	OPEN	10.8	HIGH
E4	<u> </u>	+ +	20	OPEN	5.5	HIGH
E5 -	- X	 	NA	WATER	NA	HIGH
F1	X	 - 	7	OPEN	4.4	LOW
F2	^_	$+$ \times	6	OPEN	NA NA	MEDIUM
F3	Х	 ^ 		OPEN	6.3	MEDIUM
F4	<u> </u>	1		OPEN	3.9	LOW
F5	$\frac{\hat{x}}{x}$	+ +	<u>-5</u> <5	OPEN	3	LOW
F6	^	+ +	16	OPEN	6.8	LOW
G1	X	 +	10	OPEN	7.5	LOW
G2	<u> </u>	 	6	OPEN	10.4	LOW
H1 +	<u> </u>	 	5	OPEN	6.5	LOW
H2	^	 	NA	OFF	NA -	LOW
112	X	+	5	OPEN	6.0	LOW
11 I2	^	+	NA NA	OFF	 NA	LOW
13	X	+	5	OPEN	4.2	MEDIUM
14		+	<u>5</u>	OFF	4.2 NA	MEDIUM
15	X		5	OPEN	12.6	HIGH
J1	^	+ +	NA	OFF	NA	LOW
	_ 	+				MEDIUM
J2	X	 	5	OPEN	3.5	
J3 J4	X	 	5	OPEN	8.6	HIGH
J4	X		5	OPEN	10.2	HIGH

TABLE 1 SVE WELL STATUS VESTAL AREA 4 August 31, 2005

SVE WELL #	VAC WELL	INJ WELL	FLOW RATE	STATUS	PID READINGS	SOIL CONCENTRATION
J5	X		6	OPEN	4.4	HIGH
J6	<u> </u>		NA	WATER	NA _	HIGH
K1		Х	6	OPEN	NA _	LOW
K2	Х		6	OPEN	8.0	LOW
K3	X		5	OPEN	16.4	MEDIUM
K4	Х		5	OPEN	11.1	MEDIUM
K5	X		5	OPEN	13.5	HIGH
L1_		X	5	OPEN	NA	LOW
L2 _	X		5	OPEN	12.8	HIGH
L3		X	5	OPEN	NA	LOW
L4	X		5	OPEN	3.1	LOW
M1			NA	OFF	NA	LOW
M2	X		5	OPEN	2.2	LOW
M3	x		5	OPEN	4.1	LOW
M4			NA	OFF	NA _	LOW
N1			NA_	OFF	NA _	LOW
N2			NA	OFF	NA	LOW
N3			NA	OFF	NA	LOW

NOTE: Total System Flow calculated by Roots Blower program with climate variables of the day of sampling.

LF= limited airflow

TABLE 1 SVE WELL STATUS VESTAL AREA 4 September 28, 2005

SVE WELL #	VAC WELL	INJ WELL	FLOW RATE	STATUS	PID READINGS	SOIL CONCENTRATION
Bypass Flow Ra	ite		210			
INFLUENT			512		5.1	
MIDDLE			512		1.3	
EFFLUENT			512	_	1.0	
A1		X	7	OPEN	NA	LOW
A2		X	5	OPEN	NA	LOW
A3	<u> </u>		5	OPEN	3.8	LOW
B1	X		NA NA	WATER	NA	LOW
B2	X		8	OPEN	10.3	LOW
B3	X		6	OPEN	8.4	LOW
C1		X	5	OPEN	NA	LOW
C2			10	OPEN	2.8	MEDIUM
C3	X	1	5	OPEN	4.6	MEDIUM
D1	$\frac{\overline{x}}{x}$	†	 7	OPEN	7.7	LOW
D2		X	9	OPEN	NA	MEDIUM
<u>52</u>		$\frac{\hat{\mathbf{x}}}{\hat{\mathbf{x}}}$	9	OPEN	NA	HIGH
D4	X		15	OPEN	4.3	HIGH
E1	$\frac{x}{x}$	 	15	OPEN	2.0	LOW
E2	<u> </u>	X	10	OPEN	NA NA	MEDIUM
E3	X	 ^ 	6	OPEN	13.5	HIGH
E4	X	 	18	OPEN	5.4	HIGH
E5	- <u>x</u>	 	15	OPEN	6.2	HIGH
F1		 	5	OPEN	1.8	LOW
F2	 ^	$\frac{1}{x}$	4	OPEN	NA NA	MEDIUM
F3	X	 ^	9	OPEN	4.6	MEDIUM
F4	$\frac{\hat{x}}{\hat{x}}$	 		OPEN	6.5	LOW
F5	^	 	<u>5</u>	OPEN	2.6	LOW
F6	X	+	12	OPEN	5.5	LOW
G1 -		 	11	OPEN	7.5	LOW
G2 -	- 	 	8	OPEN	15.6	LOW
H1	$\frac{\lambda}{X}$	-	6	OPEN	11.2	LOW
H2	^	 	NA	OFF	NA NA	LOW
11		-	5	OPEN	6.5	LOW
I2		+	NA	OFF	NA	LOW
13	X	+ +	6	OPEN	5.4	MEDIUM
14	^	+	NA NA	OFF		MEDIUM
15 14 15	X	 	6	OPEN	3.2	HIGH
J1	^_	-	NA NA	OFF	<u>3.2</u> NA	LOW
		 	<u>INA</u>	OPEN	2.6	MEDIUM
J2	X	++				HIGH
J3 [X		6	OPEN OPEN	6.5 4.3	HIGH

TABLE 1 SVE WELL STATUS VESTAL AREA 4 September 28, 2005

SVE WELL #	VAC WELL	INJ WELL	FLOW RATE	STATUS	PID READINGS	SOIL CONCENTRATION
J5	X		5	OPEN	12.6	HIGH
J6	Х		6	OPEN	9.4	HIGH
K1		X	5	OPEN	NA	LOW
K2	Х		5	OPEN	2.6	LOW
K3	Х		6	OPEN	16.4	MEDIUM
K4	Х		6	OPEN	15.3	MEDIUM
K5	Х		6	OPEN	10.3	HIGH
L1	_	X	6	OPEN	NA	LOW
L2	Х		6	OPEN	9.4	HIGH
L3		X	5	OPEN	NA	LOW
L4	Х		5	OPEN	5.9	LOW
M1			NA _	OFF	NA	LOW
M2	Х		5	OPEN	4.3	LOW
M3	Х		5	OPEN	3.5	LOW
M4			NA	OFF	NA _	LOW
N1			NA	OFF	NA	LOW
N2			NA	OFF	NĀ	LOW
N3			NA	OFF	NA	LOW

NOTE: Total System Flow calculated by Roots Blower program with climate variables of the day of sampling.

LF= limited airflow

TABLE 1 SVE WELL STATUS VESTAL AREA 4 October 6, 2005

	<u> </u>	 _				
SVE WELL #	VAC WELL	INJ WELL	FLOW RATE	STATUS	PID READINGS	SOIL CONCENTRATION
Bypass Flow R	ate		210			
INFLUENT			512		5.1	
MIDDLE			512		1.3	
EFFLUENT_			512		1.0	
A1		X	8	OPEN	NA	LOW
A2		_X	5	OPEN	NA	LOW
A3	X		6	OPEN	4.0	LOW
B1	X		ΝĀ	WATER	NA	LOW
B2	X		7	OPEN	6.2	LOW
B3	X		5	OPEN	7.6	LOW
C1		Х	6	OPEN	NA	LOW
C2	X		9	OPEN	3.0	MEDIUM
C3	X		<5	OPEN	5.2	MEDIUM
D1	X		6	OPEN	8.6	LOW
D2		X	8	OPEN_	NA	MEDIUM
D3		X	10	OPEN	NA	HIGH
D4	Х		12	OPEN	4.3	HIGH
E1			15	OPEN	2.0	LOW
E2		X	13	OPEN	NA	MEDIUM
E3	Х		6	OPEN	12.6	HIGH
E4	X		22	OPEN	6.3	HIGH
E5	X		NA	WATER	NA	HIGH
F1	X		6	OPEN	2.2	LOW
F2		X	8	OPEN	NA	MEDIUM
F3	Х		5	OPEN	6.1	MEDIUM
F4	X		5	OPEN	4.1	LOW
F5	Х		5	OPEN	1.5	LOW
F6	Х		15	OPEN	4.9	LOW
G1	X		13	OPEN	7.4	LOW
G2	X		9	OPEN	14.6	LOW
H1	Х		6	OPEN	10.2	LOW
H2			NA	OFF	NA	LOW
<u> 1</u>	X		6	OPEN	6.5	LOW
12			NA	OFF	NA	LOW
13	Х		5	OPEN	6.7	MEDIUM
14			NA	OFF	NA	MEDIUM
15	X		5	OPEN	13.5	HIGH
J1			NA	OFF	NA	LOW
J2	Х		6	OPEN	4.6	MEDIUM
J3	Х		5	OPEN_	8.4	HIGH
J4	X		6	OPEN	7.6	HIGH

TABLE 1 SVE WELL STATUS VESTAL AREA 4 October 6, 2005

SVE WELL #	VAC WELL	iNJ WELL	FLOW RATE	STATUS	PID READINGS	SOIL CONCENTRATION
J5	X		5	OPEN	8.1	HIGH
J6	X		7	OPEN	10.2	HIGH
K1		X	6	OPEN	NA	LOW
K2	X		_7	OPEN	4.9	LOW
K3	X		5	OPEN	11.5	MEDIUM
K4	X		6	OPEN	13.4	MEDIUM
K5	X		5	OPEN	9.2	HIGH
L1		X	_6	OPEN	NA	LOW
L2	X		5	OPEN	11.1	HIGH
L3		X	5	OPEN	NA	LOW
L4	X		5	OPEN	6.7	LOW
M1			ΝA	OFF_	NA	LOW
M2	X		<5	OPEN	3.5	LOW
M3	X		5	OPEN	2.8	LOW
M4			NA	OFF	NA	LOW
N1			NA	OFF	_ NA	LOW
N2			NA	OFF	NA_	LOW
N3			NA	OFF	NA.	LOW

NOTE: Total System Flow calculated by Roots Blower program with climate variables of the day of sampling.

LF= limited airflow

TABLE 1 SVE WELL STATUS VESTAL AREA 4 November 9, 2005

SVE WELL #	VAC WELL	INJ WELL	FLOW RATE	STATUS	PID READINGS	SOIL CONCENTRATION
Bypass Flow R	ate		210			
INFLUENT			512		3.6	
MIDDLE			512		1.0	
EFF <u>LUENT</u>			512		0.6	
A1		X	9	OPEN	NA	LOW
A2		X	8	OPEN	NA NA	LOW
A3	X		7	OPEN	3.7	LOW
B1	X		NA	WATER	NA	LOW
B2	X		6	OPEN	5.9	LOW
B3	X		5	OPEN	9.5	LOW
C1	···	X	7	OPEN	NA	LÓW
C2	X		9	OPEN	3.0	MEDIUM
C3	X	Ţ	5	OPEN	6.1	MEDIUM
D1	Х		<5	OPEN	8.6	LOW
D2		X	9	OPEN	NA	MEDIUM
D3		X	11	OPEN	NA	HIGH
D4	X	 	12	OPEN	7.4	HIGH
<u>= : </u>	X		15	OPEN	1.5	LOW
E2		X	13	OPEN	NA NA	MEDIUM
E3	X	 ^	6	OPEN	9.5	HIGH
E4	<u> </u>	 	20	OPEN	6.3	HIGH
E5	<u> </u>	 	NA	WATER	NA NA	HIGH
F1	<u> </u>	·	5	OPEN	2.2	LOW
F2		 x 		OPEN	NA NA	MEDIUM
F3	X	 ^ 	 5	OPEN	5.3	MEDIUM
F4	X	+	6	OPEN	4.9	LOW
F5	$\frac{\hat{\mathbf{x}}}{\mathbf{x}}$	+-	- 	OPEN	1.5	LOW
F6	<u>x</u>	 	13	OPEN	4.9	LOW
G1	$\frac{\hat{x}}{x}$	 	10	OPEN	11.5	Low
G2	$\frac{\hat{x}}{\hat{x}}$	+	9	OPEN	12.4	LOW
H1	$\frac{\lambda}{X}$		6	OPEN	10.2	LOW
		 	NA NA	OFF	NA	LOW
H2 I1	X	 	5	OPEN	6.5	LOW
		 	NA NA	OFF	NA	LOW
2	 -	+			5.2	MEDIUM
13	<u> </u>	 	<u>5</u> _	OPEN		MEDIUM
		 -	NA_	OFF	NA 0.5	HIGH
15	X	 	5	OPEN	8.5	
J1		 	<u>NA</u>	OFF	NA NA	LOW
J2	X		6	OPEN	4.6	MEDIUM
J3	X	ļļ	5	OPEN	9.4	HIGH
J4	Х	<u> </u>	6	OPEN	13.7_	HIGH

TABLE 1 SVE WELL STATUS VESTAL AREA 4 November 9, 2005

SVE W	ÆLL#	VAC WELL	INJ WELL	FLOW RATE	STATUS	PID READINGS	SOIL CONCENTRATION
J5		X		5	OPEN	8.1	HIGH
J6		X		7	OPEN	15.3	HIGH
K	1		X	7	OPEN	NA	LOW
K2		Х		7	OPEN	4.9	LOW
КЗ		X		6	OPEN	11.4	MEDIUM
K4		X		6	OPEN	16.3	MEDIUM
K5		X		5	OPEN	9.2	HIGH
L.	1		X	6	OPEN	NA	LOW
L2		X		5	OPEN	11.1	HIGH
L	3	-	X	6	OPEN	NA	LOW
L4		X		5	OPEN	6.7	LOW
	M1			NA	OFF	NA	LOW
M2		X		<5	OPEN	3.5	LOW
М3		X		5	OPEN	4.2	LOW
	M4			NA	OFF	NA	LOW
	N1			NA	OFF	NA	LOW
	N2			ŅĀ	OFF	NA	LOW
	N3			NA	OFF	NA	LOW

NOTE: Total System Flow calculated by Roots Blower program with climate variables of the day of sampling.

LF= limited airflow

TABLE 2
ANALYTICAL RESULTS OF CONCENTRATIONS OF TARGET COMPOUNDS
VESTAL AREA 4

SAMPLE DATE	SAMPLE NUMBER	WELL NUMBER	FLOW RATE (SCFM)	PID READINGS (ppm)	1,1,1 TCA (ppmv)	TCE (ppmv)	TOTAL TARGET VOCs (ppmv)
8/31/05	VS-SVE-INF-083105-0621	INF	512	4.3	12.13	0.85	12.98
8/31/05	VS-SVE-MID-083105-0622	MID	512	1.5	0.25	0.00	0.25
8/31/05	VS-SVE-EFF-083105-0623	EFF	512	0.6	0.00	0.00	0.00
8/31/05	VS-SVE-TB-083105-0625	ТВ	NA	0.6	0.00	0.00	0.00
9/28/05	VS-SVE-INF-092805-0626	INF	512	5.1	15.13	1.90	17.03
9/28/05	VS-SVE-MID-092805-0627	MID	512	1.3	1.71	0.00	1.71
9/28/05	VS-SVE-EFF-092805-0628	EFF	512	1.0	0.62	0.00	0.62
9/28/05	VS-SVE-TB-092805-0630	ТВ	NA	0.6	0.00	0.00	0.00
10/6/05	VS-SVE-INF-100605-0631	INF	512	5.1	9.76	1.18	10.94
10/6/05	VS-SVE-MID-100605-0632	MID	512	1.3	15.16	0.00	15.16
10/6/05	VS-SVE-EFF-100605-0633	EFF	512	1.0	2.36	0.00	2.36
10/6/05	VS-SVE-TB-100605-0635	TB	NA	0.6	0.00	0.00	0.00
11/9/05	VS-SVE-INF-110905-0636	INF	512	3.6	0.00	0.09	0.09
11/9/05	VS-SVE-MID-110905-0637	MID	512	1.0	1.27	0.08	1.35
11/9/05	VS-SVE-EFF-110905-0638	EFF	512	0.6	6.00	0.00	6.00
11/9/05	VS-SVE-TB-110905-0640	ТВ	NA	0.6	0.00	0.00	0.00
12/7/05	VS-SVE-INF-120705-0684	INF	512	2.0	0.00	0.00	0.00
12/7/05	VS-SVE-MID-120705-0685	MID	512	2.5	0.64	0.00	0.64
12/7/05	VS-SVE-EFF-120705-0686	EFF	512	2.9	1.57	0.00	1.57
12/7/05	VS-SVE-TB-6-120705-0688	TB	NA	1.0	0.00	0.00	0.00

NOTE 1:

1,1,1 TCA= 1,1,1-Trichloroethane

TCE= Trichloroethene

NA = Not Applicable

NOTE 2:

INF= Influent

MID= Middle Carbon

EFF= Effluent
TB= Trip Blank

Quarterly Report No. 9 Vestal Wells 1-1 Superfund Site Area 4

TABLE 3 CONTAMINANT CONCENTRATIONS AND YIELDS DECEMBER 6 & 7, 2005 VESTAL, AREA 4

SAMPLE DATE	SAMPLE ID	FLOW (CFM)	PID READING	1,1,1-TCA (ppmv)	TCE (ppmv)	TOTAL TARGETED CONTAMINANTS (ppmv)	LBS OF 1,1,1-TCA	LBS OF TCE	LBS OF TOTAL TARGETED CONTAMINANTS PER DAY
12/6/05	C2	9	9.0	0.00	0.00	0.00	0.00	0.00	0.00
12/6/05	D4	12	12.0	0.00	0.00	0.00	0.00	0.00	0.00
12/6/05	TB-1	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
12/6/05	D1	6	2.0	0.00	0.00	0.00	0.00	0.00	0.00
12/6/05	TB-2	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
12/6/05	E2	13	13.0	0.00	0.00	0.00	0.00	0.00	0.00
12/6/05	B3	5	5.0	0.00	0.00	0.00	0.00	0.00	0.00
12/6/05	A3	6	7.0	0.00	0.00	0.00	0.00	0.00	0.00
12/6/05	RB-3	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
12/6/05	PB-1	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
12/7/05	J4	5	13.7	13.72	0.40	14.12	0.03	0.00	0.04
12/7/05	J2	5	4.6	0.00	0.00	0.00	0.00	0.00	0.00
12/7/05	K 5	5	9.2	0.00	0.00	0.00	0.00	0.00	0.00
12/7/05	K4	5	16.3	0.00	0.00	0.00	0.00	0.00	0.00
12/7/05	K2	5	4.9	0.00	0.00	0.00	0.00	0.00	0.00
12/7/05	TB-4	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
12/7/05	J6	5	15.3	0.00	0.00	0.00	0.00	0.00	0.00
12/7/05	J3	5	9.4	0.00	0.00	0.00	0.00	0.00	0.00
12/7/05	G1	5	11.5	0.00	0.00	0.00	0.00	0.00	0.00
12/7/05	15	5	8.5	0.00_	0.00	0.00	0.00	0.00	0.00
12/7/05	G2	5	12.4	0.00	0.00	0.00	0.00	0.00	0.00
12/7/05	13	5	5.2	0.00	0.00	0.00	0.00	0.00	0.00
12/7/05	H1	5	10.2	0.00	0.00_	0.00	0.00	0.00	0.00

Quarterly Report No. 9 Vestal Wells 1-1 Superfund Site Area 4

SAMPLE DATE	SAMPLE ID	FLOW (CFM)	PID READING	1,1,1-TCA (ppmv)	TCE (ppmv)	TOTAL TARGETED CONTAMINANTS (ppmv)	LBS OF 1,1,1-TCA	LBS OF TCE	LBS OF TOTAL TARGETED CONTAMINANTS PER DAY
12/7/05	TB-5	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
12/7/05	J5	5	8.1	0.00	0.00	0.00	0.00	0.00	0.00
12/7/05	11	5	6.5	0.00	0.00	0.00	0.00	0.00	0.00
12/7/05	INF	512	2.0	0.00	0.00	0.00	0.00	0.00	0.00
12/7/05	MID	512	2.5	0.64	0.00	0.64	0.16	0.00	0.16
12/7/05	EFF	512	2.9	1.57	0.00	1.57	0.40	0.00	0.40
12/7/05	PB-2	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
12/7/05	TB-6	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00

Note: Flows of less than 5 CFM were recorded as 2.

SAMPLE DATE	SAMPLE NUMBER	WELL NUMBER	1,1,1 TCA (lbs/day)	TCE (Ibs/day)	TOTAL TARGET VOCs (lbs/day)
6/23/2003	VS-SS-INFL-062303-0	INF	9.58	7.18	16.76
6/23/2003	VS-SS-INFL-062303-1	INF	6.37	4.85	11.22
	INFLUENT AVG PER DAY FO		7.98	6.02	13.99
	TOTAL YIELD (lbs) FOR PER	0.56			
6/23/2003		INF	6.37	4.85	11.22
6/23/2003	VS-SS-INFL-062303-4	INF	5.23	5.42	10.66
	INFLUENT AVG PER DAY FO		5.80	5.14	10.94
	TOTAL YIELD (lbs) FOR PER				1.42
6/23/2003	VS-SS-INFL-062303-4	INF	5.23	5.42	10.66
6/23/2003	VS-SS-INFL-062303-8	INF	4.10	4.33	8.43
	INFLUENT AVG PER DAY FO		4.67	4.88	9.55
	TOTAL YIELD (lbs) FOR PER	RIOD (6/23-6/2	3)		1.62
6/23/2003	VS-SS-INFL-062303-8	INF	4.10	4.33	8.43
6/24/2003	VS-SS-INF-062403	INF	4.52	6.18	10.70
	INFLUENT AVG PER DAY FO		4.31	5.26	9.57
	TOTAL YIELD (Ibs) FOR PER	IOD (6/23-6/24	l)		11.19
6/24/2003	VS-SS-INF-062403	INF	4.52	6.18	10.70
6/25/2003	VS-SS-INF-062503	INF	2.28	2.21	4.48
	INFLUENT AVG PER DAY FO	OR PERIOD	3.40	4.20	7.59
	TOTAL YIELD (lbs) FOR PER	IOD (6/24-6/25	5)		4.40
6/25/2003	VS-SS-INF-062503	INF	2.28	2.21	4.48
6/27/2003	VS-SVE-INF-062703	INF	3.28	3.26	6.53
	INFLUENT AVG PER DAY FO	OR PERIOD	2.78	2.74	5.51
	TOTAL YIELD (lbs) FOR PER	IOD (6/25-6/27	<u>')</u>		10.79
6/27/2003	VS-SVE-INF-062703	INF	3.28	3.26	6.53
7/7/2003	VS-SVE-INF-070703-0001	INF	6.87	5.04	11.91
	INFLUENT AVG PER DAY FO	OR PERIOD	5.08	4.15	9.22
	TOTAL YIELD (lbs) FOR PER	RIOD (7/27-7/7)		92.57
7/7/2003	VS-SVE-INF-070703-0001	INF	6.87	5.04	11.91
7/9/2003	VS-SVE-INF-070903-0006	INF	19.45	17.96	36.92
	INFLUENT AVG PER DAY FO	R PERIOD	13.16	11.50	24.42
	TOTAL YIELD (lbs) FOR PER	IOD (7/7-7/9)			47.85
7/9/2003	VS-SVE-INF-070903-0006	INF	19.45	17.96	36.92
7/17/2003	VS-SVE-INF-071703-0011	INF	8.60	5.65	14.25
	INFLUENT AVG PER DAY FO		14.03	11.81	25.59
	TOTAL YIELD (lbs) FOR PER				114.11
7/17/2003	VS-SVE-INF-071703-0011	INF	8.60	5.65	14.25
7/29/2003	VS-SVE-INF-072903-0016	INF	2.70	1.88	4.67
	INFLUENT AVG PER DAY FO	9.46			
	TOTAL YIELD (lbs) FOR PER	76.91			

SAMPLE DATE	SAMPLE NUMBER	WELL NUMBER	1,1,1 TCA (lbs/day)	TCE (lbs/day)	TOTAL TARGET VOCs (lbs/day)
7/29/2003	VS-SVE-INF-072903-0016	INF	2.70	1.88	4.67
8/12/2003	VS-SVE-INF-081203-0026	INF	4.07	2.34	6.40
	INFLUENT AVG. PER DAY FO		3.39	2.11	5.54
	TOTAL YIELD (lbs) FOR PER	IOD (7/29-8/12	2)		30.33
8/12/2003	VS-SVE-INF-081203-0026	INF	4.07	2.34	6.40
8/25/2003	VS-SVE-INF-082503-0031	INF	6.23	5.06	11.28
	INFLUENT AVG. PER DAY FO	OR PERIOD	5.15	3.70	8.84
	TOTAL YIELD (lbs) FOR PER	IOD (8/12-8/25	5)		90.08
8/25/2003	VS-SVE-INF-082503-0031	INF	6.23	5.06	11.28
9/3/2003	VS-SVE-INF-090303-0036	INF	8.45	4.01	12.46
_	INFLUENT AVG. PER DAY FO	OR PERIOD	7.34	4.54	11.87
	TOTAL YIELD (lbs) FOR PER	IOD (8/25-9/3)			103.74
9/3/2003	VS-SVE-INF-090303-0036	INF	8.45	4.01	12.46
9/8/2003	VS-SVE-INF-090803-0041	INF	4.23	2.46	6.70
	INFLUENT AVG. PER DAY FO	OR PERIOD	6.34	3.24	9.58
_	TOTAL YIELD (lbs) FOR PER	IOD (9/3-9/8)			38.51
9/8/2003	VS-SVE-INF-090803-0041	INF	4.23	2.46	6.70
9/24/2003	VS-SVE-INF-092403-0099	INF	2.74	1.30	4.04
	INFLUENT AVG. PER DAY FO	OR PERIOD	3.48	1.88	5.37
	TOTAL YIELD (lbs) FOR PER	IOD (9/8-9/24)			72.89
9/24/2003	VS-SVE-INF-092403-0099	INF	2.74	1.30	4.04
10/9/2003	VS-SVE-INF-100903-0109	INF	1.91	1.51	3.42
	INFLUENT AVG. PER DAY FO	OR PERIOD	2.32	1.40	3.73
	TOTAL YIELD (lbs) FOR PER	IOD (9/24-10/9	9)	h	55.77
10/9/2003	VS-SVE-INF-100903-0109	INF	1.91	1.51	3.42
10/15/2003	VS-SVE-INF-101503-0114	INF	2.82	2.26	5.08
	INFLUENT AVG. PER DAY FO	OR PERIOD	2.37	1.89	4.25
	TOTAL YIELD (lbs) FOR PER		5)		25.50
10/15/2003	VS-SVE-INF-101503-0114	INF	2.82	2.26	5.08
10/28/2003	VS-SVE-INF-102803-0119	INF	2.65	2.21	4.86
	INFLUENT AVG. PER DAY FO	OR PERIOD	2.74	2.24	4.97
	TOTAL YIELD (lbs) FOR PER	IOD (10/15-10)	/28)		64.91
10/28/2003	VS-SVE-INF-102803-0119	INF	2.65	2.21	4.86
11/11/2003	VS-SVE-INF-111103-0124	INF	0.99	1.46	2.45
	INFLUENT AVG. PER DAY FO		1.82	1.84	3.66
	TOTAL YIELD (lbs) FOR PER		/11)	-1	25.11
11/11/2003	VS-SVE-INF-111103-0124	INF	0.99	1.46	2.45
11/19/2003	VS-SVE-INF-111903-0129	INF	1.27	1.39	2.65
	INFLUENT AVG. PER DAY FO		1.13	1.43	2.55
	TOTAL YIELD (Ibs) FOR PERI				19.74

SAMPLE DATE	SAMPLE NUMBER	WELL NUMBER	1,1,1 TCA (lbs/day)	TCE (lbs/day)	TOTAL TARGET VOCs (lbs/day)
11/19/2003		INF	1.27	1.39	2.65
12/4/2003	VS-SVE-INF-111903-0129	INF_	0.74	0.76	1.50
	INFLUENT AVG. PER DAY FO		1.01	1.08	2.08
	TOTAL YIELD (lbs) FOR PER	IOD (11/19-12	/4)		32.56
12/4/2003	VS-SVE-INF-111903-0129	INF	0.74	0.76	1.50
1/14/2004	VS-SVE-INF-011404-0197	INF	0.69	0.90	1.59
	INFLUENT AVG. PER DAY FO	OR PERIOD	0.72	0.83	1.55
	TOTAL YIELD (lbs) FOR PER	IOD (12/4-1/14	1)		12.13
1/14/2004	VS-SVE-INF-011404-0197	INF	0.69	0.90	1.59
1/26/2004	VS-SVE-INF-012604-0202	INF	1.63	1.79	3.42
	INFLUENT AVG. PER DAY FO	OR PERIOD	1.16	1.35	2.51
	TOTAL YIELD (lbs) FOR PER	IOD (1/14-1/26	5)		24.17
1/26/2004	VS-SVE-INF-012604-0202	INF	1,63	1.79	3.42
2/9/2004	VS-SVE-INF-020904-0207	INF	3.09	3.10	6.20
	INFLUENT AVG. PER DAY FO	OR PERIOD	2.36	2.45	4.81
	TOTAL YIELD (lbs) FOR PERI	IOD (1/26-2/9)			55.27
2/9/2004	VS-SVE-INF-020904-0207	INF	3.09	3.10	6.20
2/24/2004	VS-SVE-INF-022404-0212	INF	3.72	2.91	6.63
	INFLUENT AVG. PER DAY FO	OR PERIOD	3.41	3.01	6.42
	TOTAL YIELD (lbs) FOR PERI				95.58
2/24/2004	VS-SVE-INF-022404-0212	INF	3.72	2.91	6.63
3/10/2004	VS-SVE-INF-031004-0262	INF	2.23	2.54	4.78
	INFLUENT AVG. PER DAY FO		2.98	2.73	5.71
	TOTAL YIELD (lbs) FOR PERI				45.58
3/10/2004	VS-SVE-INF-031004-0262	INF	2.23	2.54	4.78
	VS-SVE-INF-040504-0267	INF	2.51	2.56	5.07
	INFLUENT AVG. PER DAY FO		2.37	2.55	4.93
	TOTAL YIELD (Ibs) FOR PERI				75.11
	VS-SVE-INF-040504-0267	INF	2.51	2.56	5.07
	VS-SVE-INF-042704-0272	INF	1.47	1.64	3.11
	INFLUENT AVG. PER DAY FO		1.99	2.10	4.09
	TOTAL YIELD (Ibs) FOR PERI		1.00	2.,0	60.45
	VS-SVE-INF-042704-0272	INF	1.47	1.64	3.11
	VS-SVE-INF-051104-0277	INF	2.35	2.77	5.12
	INFLUENT AVG. PER DAY FO		1.91	2.21	4.12
	TOTAL YIELD (lbs) FOR PERI				54.36
	VS-SVE-INF-051104-0277	INF	2.35	2.77	5.12
	VS-SVE-INF-060104-0282	INF	2.10	2.59	4.69
	INFLUENT AVG. PER DAY FO		2.23	2.68	4.91
	TOTAL YIELD (lbs) FOR PERI			2.00	94.18

SAMPLE DATE	SAMPLE NUMBER	WELL NUMBER	1,1,1 TCA (lbs/day)	TCE (lbs/day)	TOTAL TARGET VOCs (lbs/day)
	VS-SVE-INF-060104-0282	INF	2.10	2.59	4.69
6/22/2004	VS-SVE-INF-062204-0332	INF	1.30	1,11	2.40
	INFLUENT AVG. PER DAY FO		1.70	1.85	3.55
	TOTAL YIELD (lbs) FOR PER		73.91		
6/22/2004	VS-SVE-INF-062204-0332	INF	1.30	1.11	2.40
7/13/2004	VS-SVE-INF-071304-0337	INF_	4.61	3,23	7.84
	INFLUENT AVG. PER DAY FO		2.96	2.17	5.12
	TOTAL YIELD (lbs) FOR PER	IOD (6/22-7/13	3)		107.37
7/13/2004	VS-SVE-INF-071304-0337	INF	4.61	3.23	7.84
7/22/2004	VS-SVE-INF-072204-0342	INF	3.63	3.46	7.09
	INFLUENT AVG. PER DAY FO	OR PERIOD	4.12	3.35	7.47
	TOTAL YIELD (lbs) FOR PER	IOD (7/13-7/22	2)		46.95
7/22/2004	VS-SVE-INF-072204-0342	INF	3.63	3.46	7.09
8/16/2004	VS-SVE-INF-081604-0347	INF	0.54	0.63	1.17
	INFLUENT AVG. PER DAY FO	OR PERIOD	2.09	2.05	4.13
]	TOTAL YIELD (lbs) FOR PER	IOD (7/22-8/16	6)		68.02
8/16/2004	VS-SVE-INF-081604-0347	INF	0.54	0.63	1.17
9/28/2004	VS-SVE-INF-092804-0423	INF	0.37	0.62	0.98
	INFLUENT AVG. PER DAY FO	OR PERIOD	0.46	0.63	1.08
	TOTAL YIELD (lbs) FOR PER	IOD (8/16-9/28	3)		46.06
9/28/2004	VS-SVE-INF-092804-0423	INF	0.37	0.62	0.98
10/19/2004	VS-SVE-INF-101904-0428	INF	3.15	2.40	5.56
	INFLUENT AVG. PER DAY FO		1.76	1.51	3.27
	TOTAL YIELD (lbs) FOR PER	IOD (9/28-10/	19)		68.67
	VS-SVE-INF-101904-0428	INF	3.15	2.40	5.56
11/17/2004	VS-SVE-INF-111704-0433	INF	1.69	1.20	2.89
	INFLUENT AVG. PER DAY F	OR PERIOD	2.42	1.80	4.23
	TOTAL YIELD (lbs) FOR PER	IOD (10/19-11	/17)		122.53
11/17/2004	VS-SVE-INF-111704-0433	INF	1.69	1.20	2.89
12/21/2004	VS-SVE-INF-122104-0493	INF	0.07	0.12	0.19
	INFLUENT AVG. PER DAY F		0.88	0.66	1.54
	TOTAL YIELD (lbs) FOR PER	IOD (11/17-12			52.22
12/21/2004	VS-SVE-INF-122104-0493	INF	0.07	0.12	0.19
1/12/2005	VS-SVE-INF-011205-0498	INF	0.29	0.20	0.49
	INFLUENT AVG. PER DAY F		0.18	0.16	0.34
	TOTAL YIELD (lbs) FOR PER	IOD (12/21-1/	12)	<u> </u>	7.49
1/12/2005	VS-SVE-INF-011205-0498	INF	0.29	0.20	0.49
2/9/2005	VS-SVE-INF-020905-0503	INF	0.58	0.24	0.82
	INFLUENT AVG. PER DAY F		0.44	0.22	0.66
	TOTAL YIELD (Ibs) FOR PER	IOD (1/12-2/9)	<u> </u>		18.29

SAMPLE DATE	SAMPLE NUMBER	WELL NUMBER	1,1,1 TCA (lbs/day)	TCE (lbs/day)	TOTAL TARGET VOCs (lbs/day)					
	VS-SVE-INF-020905-0503	INF	0.58	0.24	0.82					
	VS-SVE-INF-032305-0551	INF	0.14	0.12 0.18	0.25					
	INFLUENT AVG. PER DAY FO	0.54 22.46								
	TOTAL YIELD (lbs) FOR PERIOD (2/9-3/23)									
3/23/2005	VS-SVE-INF-032305-0551	INF	0.14	0.12	0.25					
4/27/2005	VS-SVE-INF-042705-0556	INF	0.00	0.00	0.00					
	INFLUENT AVG. PER DAY FO		0.07	0.06	0.13					
	TOTAL YIELD (lbs) FOR PER	IOD (3/23-4/27			3.86					
4/27/2005	VS-SVE-INF-042705-0556	INF	0.00	0.00	0.00					
+	VS-SVE-INF-051005-0563	INF	0.00	0.00	0.00					
	INFLUENT AVG. PER DAY FO	OR PERIOD	0.00	0.00	0.00					
	TOTAL YIELD (lbs) FOR PER	IOD (4/27-5/10			0.00					
5/10/2005	VS-SVE-INF-051005-0563	INF	0.00	0.00	0.00					
5/25/2005	VS-SVE-INF-052505-0568	INF	0.00	0.00	0.00					
	INFLUENT AVG. PER DAY FO		0.00	0.00	0.00					
	TOTAL YIELD (lbs) FOR PER	IOD (5/10-5/25	5)		0.00_					
5/25/2005	VS-SVE-INF-052505-0568	INF	0.00	0.00	0.00					
6/8/2005	VS-SVE-INF-060805-0616	INF	0.00	0.00	0.00					
	INFLUENT AVG. PER DAY FO	OR PERIOD	0.00	0.00	0.00					
	TOTAL YIELD (lbs) FOR PER	IOD (5/25-6/8)			0.00					
6/8/2005	VS-SVE-INF-060805-0616	INF	0.00	0.00	0.00					
8/31/2005	VS-SVE-INF-083105-0621	INF	3.10	0.21	3.31					
	INFLUENT AVG. PER DAY FO	OR PERIOD	1.55	0.11	1.66					
	TOTAL YIELD (lbs) FOR PER	IOD (6/8-8/31)			29.79					
8/31/2005	VS-SVE-INF-083105-0621	INF	3.10	0.21	3.31					
9/28/2005	VS-SVE-INF-092805-0626	INF	3.87	0.48	4.34					
	INFLUENT AVG. PER DAY FO	OR PERIOD	3.49	0.35	3.83					
	TOTAL YIELD (lbs) FOR PER	IOD (8/31-9/28	3)		107.21					
9/28/2005	VS-SVE-INF-092805-0626	INF	3.87	0.48	4.34					
10/6/2005	VS-SVE-INF-100605-0631	INF	2.49	0.30	2.79					
	INFLUENT AVG. PER DAY FO	OR PERIOD	3.18	0.39	3.57					
	TOTAL YIELD (lbs) FOR PER	IOD (9/28-10/6	5)		28.52					
10/6/2005	VS-SVE-INF-100605-0631	INF	2.49	0.30	2.79					
11/9/2005	VS-SVE-INF-110905-0636	INF	0.00	0.02	0.02					
	INFLUENT AVG. PER DAY FO	OR PERIOD	1.25	0.16	1.41					
	TOTAL YIELD (lbs) FOR PER		9)		47.70					
11/9/2005	VS-SVE-INF-110905-0636	INF	0.00	0.02	0.02					
12/7/2005	VS-SVE-INF-120705-0684	INF	0.00	0.00	0.00					
	INFLUENT AVG. PER DAY FO	OR PERIOD	0.00	0.01	0.01					
	TOTAL YIELD (lbs) FOR PER	IOD (11/9-12/7	")		0.28					
	TOTAL YIELD TO P	EPORTED DA	ATE		2288.74					

Note 1: Beginning and ending period influent yields are averaged and then multiplied by the number of operational days during the reporting period.

Note 2: 1,1,1 TCA= 1,1,1-Trichloroethane

TCE= Trichloroethene

Note 3: INF= Influent

TABLE 5 TOTAL TARGET CONTAMINANT YIELD TO DATE VESTAL AREA 4

SAMPLE DATE	1,1,1 TCA (lbs) TCE (lbs)		TOTAL TARGET VOC (lbs)		
6/23/2003	0.00	0.00	0.00		
6/23/2003	0.33	0.25	0.58		
6/23/2003	1.06	0.89	1.95		
6/23/2003	1.84	1.71	3.54		
6/24/2003	6.87	7.83	14.70		
6/25/2003	8.85	10.28	19.13		
6/27/2003	14.28	15.63	29.92		
7/7/2003	65.21	57.31	122.52		
7/9/2003	90.98	79.35	170.33		
7/17/2003	153 <u>.5</u> 1	130.86	284.38		
7/29/2003	199.85	161.45	361.30		
8/12/2003	218.64	172.99	391.63		
8/25/2003	271.09	210.67	481.76		
9/3/2003	335.21	250.27	585.48		
9/8/2003	360.71	263.28	623.99		
9/24/2003	408.05	288.83	696.88		
10/9/2003	442.85	309.83	752.68		
10/15/2003	457.04	321.14	778.18		
10/28/2003	492.69	350.33	843.02		
11/11/2003	505.20	362.94	868.14		
11/19/2003	513.95	373.96	887.91		
12/4/2003	529.68	390.80	920.48		
1/14/2004	535.30	397.32	932.62		
1/26/2004	546.51	410.29	956.80		
2/9/2004	573.66	438.42	1012.08		
2/24/2004	624.45	483.19	1107.65		
3/10/2004	648.24	504.97	1153.22		
4/5/2004	684.38	543.87	1228.25		
4/27/2004	713.77	574.92	1288.69		
5/11/2004	739.02	604.07	1343.09		
6/1/2004	781.81	655.48	1437.29		
6/22/2004	817.27	693.97	1511.24		
7/13/2004	879.24	739.47	1618.71		
7/22/2004	905.17	760.52	1665.69		
8/16/2004	939.55	794.17	1733.72		
9/28/2004	959.14	820.79	1779.93		
10/19/2004	996.13	852.47	1848.60		
11/17/2004	1066.51	904.73	1971.24		
12/21/2004	1096.44	927.00	2023.44		
1/12/2005	1100.43	930.44	2030.87		
2/9/2005	1112.63	936.50 943.89	2049.13 2071.71		

SAMPLE DATE	DATE 1,1,1 TCA (lbs) TCE (lbs)		TOTAL TARGET VOCs
4/27/2005	1129.95	945.69	2075.64
5/10/2005	1129.95	945.69	2075.64
5/25/2005	1129.95	945.69	2075.64
6/8/2005	1129.95	945.69	2075.64
8/31/2005	1157.80	947.60	2105.40
9/28/05	1255.41	957.29	2212.71
10/6/05	1280.85	960.39	2241.24
11/9/05	1323.19	965.81	2289.00
12/7/05	1323.19	966.13	2289.32

NOTE 1:

1,1,1 TCA= 1,1,1-Trichloroethane

TCE= Trichloroethene

TABLE 6 SVE WELL PROPOSED CHANGES VESTAL AREA 4

	CURR	ENT STATUS			PROPOSED CHANGES		
SVE WELL#	VAC WELL	INJ WELL	OFF	FLOW STATUS	PROPOSED FLOW CHANGES	REASON	
INFLUENT							
MIDDLE							
EFFLUENT	-						
A1		х		OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
A2		х		OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
A3	х			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
B1	x			WATER	None	Leave in the current configuration to focus on the area in Cell 1.	
B2	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
В3	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
C1		x		OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
C2	х			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
C3		х		OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
D1	х			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
D2		х		OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
D3	х	_		OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
D4	х			WATER	None	Leave in the current configuration to focus on the area in Cell 1.	
E1		х		OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
E2	х			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
E3	х			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
E4	х			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
E5	х			WATER	None	Leave in the current configuration to focus on the area in Cell 1.	

TABLE 6 SVE WELL PROPOSED CHANGES VESTAL AREA 4

	CURR	ENT STATUS	 _		PROPOSED CHANGES		
SVE WELL#	VAC WELL	INJ WELL	OFF	FLOW STATUS	PROPOSED FLOW CHANGES	REASON	
F1	х			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
F2		x		OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
F3	х			WATER	None	Leave in the current configuration to focus on the area in Cell 1.	
F4	х			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
F5	х			LF	None	Leave in the current configuration to focus on the area in Cell 1.	
F6	х			WATER	None	Leave in the current configuration to focus on the area in Cell 1.	
G1	х		_	OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
G2	х			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
H1	х			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
H2			х	OFF	None	Leave in the current configuration to focus on the area in Cell 1.	
l1	х			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
12		-	х	OFF	None	Leave in the current configuration to focus on the area in Cell 1.	
13	х			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
14	_		х	OFF	None	Leave in the current configuration to focus on the area in Cell 1.	
15	х			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
J1			Х	OFF	None	Leave in the current configuration to focus on the area in Cell 1.	
J2	х			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
J3	х			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
J4	х			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
J5	х			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	

TABLE 6 SVE WELL PROPOSED CHANGES VESTAL AREA 4

	CURR	ENT STATUS			F	PROPOSED CHANGES		
SVE WELL #	VAC WELL	INJ WELL	OFF	FLOW STATUS	PROPOSED FLOW CHANGES	REASON		
J6	х	10		WATER	None	Leave in the current configuration to focus on the area in Cell 1.		
K1		х		OPEN	None	Leave in the current configuration to focus on the area in Cell 1.		
K2	х		1	OPEN	None	Leave in the current configuration to focus on the area in Cell 1.		
K3	х	_		OPEN	None	Leave in the current configuration to focus on the area in Cell 1.		
K4	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.		
K5	х			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.		
L1	_	х		OPEN	None	Leave in the current configuration to focus on the area in Cell 1.		
L2	х			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.		
L3		х		OPEN	None	Leave in the current configuration to focus on the area in Cell 1.		
L4	х			WATER	None	Leave in the current configuration to focus on the area in Cell 1.		
M1		_	Х	OFF	None	Leave in the current configuration to focus on the area in Cell 1.		
M2	х			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.		
МЗ	х			WATER	None	Leave in the current configuration to focus on the area in Cell 1.		
M4			Х	OFF	None	Leave in the current configuration to focus on the area in Cell 1.		
N1			х	OFF	None	Leave in the current configuration to focus on the area in Cell 1.		
N2			Х	OFF	None	Leave in the current configuration to focus on the area in Cell 1.		
N3			Х	OFF	None	Leave in the current configuration to focus on the area in Cell 1.		

APPENDIX A Operation and Maintenance Data

(Including Daily O&M Records, Routine Maintenance and Inspection Forms, and Field Notes)

VESTAL AREA 4 SITE INSPECTION AND OPERATION/MAINTANCE LOG
DATE: BISTOS ARRIVAL TIME: 0845 FAULT LIGHTS ON (list): "Norte"
REASON FOR VISIT: MONTHLY QUARTERLY OTHER OTHER (define): LE-Stant ISJES YEAR PARD - COMPHAN
TASK PERFORMED: ISUE SITEM HAS BEEN SHUT DOWN SINCE JUNE 10, '05 LULLIS WERE SET UP BUT WE MONOGED TO FREETHEN UP AND PERFORM THE SISTEM OF APPROXI 1030408.
MAIN EQUIPMENT BUILDING
MAIN CONTROL PANEL CONTROL BOX LOCKED CONTROL DOOR LOCKED HOUR METER: SVE UNIT 4504.748.
SVE PUMPING UNIT
INJECTION BLOWER TEMP: INJECTION BLOWER TEMP SETTING: PRESSURE AFTER INJECTION BLOWER 160° F 150° F 9" "H20° H6
VACUUM BLOWER TEMP: VACUUM BLOWER TEMP SETTING: VACUUMAFTER FILTER PRESSURE AFTER VACUUM BLOWER: 160° F 230° F UH20 H6
GREASE SEALS CHECKED: DATE OF LAST GREASE: 6-10-125
OIL LEVEL CHECKED: DATE OF LAST OIL CHANGE: 5-10-05
BELTS CHECKED FOR WEAR: BELT GUARD IN PLACE:

	DATE; <u>81/51 65</u>	PAGE 2
-	CARBON BED SYSTEM CHECK ALL ABOVE-GROUND PIP[ING, VALVES, FITTINGS OR LEAKS; CHECK CARBON BEDS CONNECTIONS AND A	
	PRESSURE BEFORE GAC UNIT 1 TEMPERATURE BEFORE GAC 1	<u> </u>
	PRESSURE BETWEEN GAC UNIT 1 AND 2	
-	PRESSURE AFTER GAC UNIT 2 TEMPERATURE AFTER GAC 2	7 "H20 50" F
_	WATER STORAGE UNIT CHECK ALL ABOVE-GROUND PIP(ING, VALVES, FITTINGS OR LEAKS; CHECK CARBON BEDS CONNECTIONS AND A	
-	VOLUME OF WATER IN STORAGE TANK: WATER IN CONTAINMENT VESSEL: YES	GALLONS NO AMOUNT: INCHES
· ·		

PAGE 3

CELL 1 DISTRIBUTION CENTER CHECK ALL ABOVE-GROUND PIPING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS AND ADIQUCY OF SEALS.
CONTROL BOX DISCONNECT ON: 240-VOLT DISCONNECT ON
SELECTOR SWITCH: MANUAL OFF AUTO
VACUUM STATUS LIGHT: ON OFF
CONTROL BOX LOCKED
ELECTRICAL HEAT BREAKER: ON OFF
ELECTRICAL HEATER THERMOSTAT SETTING: 50 F
PRESSURE AT INJECTION MANIFOLD: 88 "H2O"
TEMP AT INJECTION MANIFOLD: 74° F
VACUUM AT VACUUM MANIFOLD: 60 "H20
TEMP AT VACUUM MANIFOLD: 76°F
VACUUM AT KNOCKOUT TANK: W/W "Hg
WATER PUMP PRESSURE RELIEF SETTING: VA psi

PAGE 4

CELL 2 DISTI	RIBUTION	CENTER
---------------------	----------	--------

CHECK ALL ABOVE-GROUND PIPING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS AND ADIQUCY OF SEALS.
CONTROL BOX DISCONNECT ON: 240-VOLT DISCONNECT ON
SELECTOR SWITCH: MANUAL OFF AUTO
VACUUM STATUS LIGHT: ON OFF
CONTROL BOX LOCKED
ELECTRICAL HEAT BREAKER: ON OFF
ELECTRICAL HEATER THERMOSTAT SETTING: 50°F
PRESSURE AT INJECTION MANIFOLD: 80 "H20
TEMP AT INJECTION MANIFOLD: 70°F
VACUUM AT VACUUM MANIFOLD:
TEMP AT VACUUM MANIFOLD:
VACUUM AT KNOCKOUT TANK: Neg "Hg
WATER PUMP PRESSURE RELIEF SETTING:psi

GENERAL SITE OBSERVATIONS	PAGE 5
CHECK AND NOTE CONDITION OF SITE: STE LOOKS GOD.	
FIELD ACTIVITY CHECKLIST	
SVE WELLHEAD AIR FLOWS MEASURED:YESNO SVE WELLS SAMPLED:YESNO CARBON CHANGEOUT PERFORMED: WATER REMOVAL PERFORMED: EXTERIOR OF MAIN AND CELL BUILDINGS INSPECTED: INSPECT MAIN POWER AND TELEPHONE LINE:	
SUMMERY OF PROCESS AIR SAMPLING:	
SUMMARY OF OTHER ACTIVITIES:	
COMMENTS: CELL & J- PATRYCK HUS HOVE BACKED WITE OR RUBBER THE DOORS OF GENC 1. DOORS EXER PUSHED IN AND THE COCK LID MOJOR DAMAGE THOUSH.	o up Agan Hosp ISEN
SIGNATURE OF OPERATIONS TECHNICIAN(S): M.P. MEHLLE	
	<u></u>

APPENDIX B Sampling and Analytical Data — Process Air Data

(Including QC Data, Laboratory Data Summary Sheets, Chain of Custody Forms, Field Sample Log Book Notes)

QA/QC Report for Vestal Samples (Sample Date: 8/31/05)

1. Sample Receipt

The samples arrived at the lab were carefully packed in coolers. All of the sample bags in the coolers arrived intact and the labels on the bags were found to be complete. The information on the sample labels agreed with the information on the chain-of-custody forms placed inside the shipping coolers.

2. Sample Holding Times

The required holding times were met according to the lab SOP.

3. Instrument Blank Analysis

The instrument blank analysis indicated the instruments did not contain any target compounds.

4. Lab Duplicate Analysis

Vestal Duplicate Sample RPD Report						
	Sample ID: VS-SVE-MID-083105-0622					
Sample Date	Sample Date Analytes Data1 Data2 RPD (%) RPD Acceptable?					
8/31/2005 1,1,1-TCA 0.344 0.36 4.5 YES						

5. GC Calibrations

The instruments performed target compound standards calibration check each analysis day, or re-run the standards. The results met the requirement in the lab SOP.

6. Lab Authentication Statement

I certify, to the best of my knowledge, that the information in this QA/QC report is true, accurate and complete.

Yixin Li Chemist Shaw E & I

14155 Farmington Rd.

QA/QC Report for Vestal Samples (Sample Date: 10/6/05)

1. Sample Receipt

The samples arrived at the lab were carefully packed in coolers. All of the sample bags in the coolers arrived intact and the labels on the bags were found to be complete. The information on the sample labels agreed with the information on the chain-of-custody forms placed inside the shipping coolers.

2. Sample Holding Times

The samples were four days old before analyzing.

3. Instrument Blank Analysis

The instrument blank analysis indicated the instruments did not contain any target compounds.

4. Lab Duplicate Analysis

Vestal Duplicate Sample RPD Report							
	Sample ID: VS-SVE-MID-100605-0632						
	RPD						
Sample Date	Sample Date Analytes Data1 Data2 (%) RPD Acceptable?						
10/6/2005 1,1,1-TCA 21.049 19.845 5.9 YES							

5. GC Calibrations

The instruments performed target compound standards calibration check each analysis day, or re-run the standards. The results met the requirement in the lab SOP.

6. Lab Authentication Statement

I certify, to the best of my knowledge, that the information in this QA/QC report is true, accurate and complete.

Yixin Li Chemist Shaw E & J

14155 Farmington Rd.

QA/QC Report for Vestal Samples (Sample Date: 9/28/05)

1. Sample Receipt

The samples arrived at the lab were carefully packed in coolers. All of the sample bags in the coolers arrived intact and the labels on the bags were found to be complete. The information on the sample labels agreed with the information on the chain-of-custody forms placed inside the shipping coolers.

2. Sample Holding Times

The required holding times were met according to the lab SOP.

3. Instrument Blank Analysis

The instrument blank analysis indicated the instruments did not contain any target compounds.

4. Lab Duplicate Analysis

Vestal Duplicate Sample RPD Report						
Sample ID: VS-SVE-MID-092805-0627						
Sample Date	Sample Date Analytes Data1 Data2 RPD (%) RPD Acceptable?					
9/28/2005 1,1,1-TCA 2.374 2.246 5.5 YES						

5. GC Calibrations

The instruments performed target compound standards calibration check each analysis day, or re-run the standards. The results met the requirement in the lab SOP.

6. Lab Authentication Statement

I certify, to the best of my knowledge, that the information in this QA/QC report is true, accurate and complete.

Yixin Li Chemist Shaw E & !

14155 Farmington Rd.

QA/QC Report for Vestal Samples (Sample Date: 11/9/05)

1. Sample Receipt

The samples arrived at the lab were carefully packed in coolers. All of the sample bags in the coolers arrived intact and the labels on the bags were found to be complete. The information on the sample labels agreed with the information on the chain-of-custody forms placed inside the shipping coolers.

2. Sample Holding Times

The required holding times were met according to the lab SOP.

3. Instrument Blank Analysis

The instrument blank analysis indicated the instruments did not contain any target compounds.

4. Lab Duplicate Analysis

Vestal Duplicate Sample RPD Report						
	Sample ID: VS-SVE-EFF-110905-0638					
Sample Date	Sample Date Analytes Data1 Data2 RPD (%) RPD Acceptable?					
11/9/2005 1,1,1-TCA 8.333 8.131 2.5 YES						

5. GC Calibrations

The instruments performed target compound standards calibration check each analysis day, or re-run the standards. The results met the requirement in the lab SOP.

6. Lab Authentication Statement

I certify, to the best of my knowledge, that the information in this QA/QC report is true, accurate and complete.

Yixin Li Chemist

Shaw E & I

14155 Farmington Rd.

SAMPLE DATE	SAMPLE ID	1,1,1-TCA (ppm)	TCE (ppm)	Detection Limits (ppm)
8/31/05	INSTRUMENT BLANK	0.00	0.00	0.05
8/31/05	VS-SVE-TB-083105-0625	0.00	0.00	0.05
9/28/05	INSTRUMENT BLANK	0.00	0.00	0.05
9/28/05	VS-SVE-TB-092805-0630	0.00	0.00	0.05
10/6/05	INSTRUMENT BLANK	0.00	0.00	0.05
10/6/05	VS-SVE-TB-100605-0635	0.00	0.00	0.05
11/9/05	INSTRUMENT BLANK	0.00	0.00	0.05
11/9/05	VS-SVE-TB-110905-0640	0.00	0.00	0.05
12/6/05	VS-SVE-TB-1-120605-0646	0.00	0.00	0.05
12/6/05	VS-SVE-TB-2-120605-0654	0.00	0.00	0.05
12/6/05	VS-SVE-TB-3-120605-0661	0.00	0.00	0.05
12/6/05	INSTRUMENT BLANK	0.00	0.00	0.05
12/7/05	VS-SVE-TB-4-120705-0671	0.00	0.00	0.05
12/7/05	VS-SVE-TB-5-120705-0680	0.00	0.00	0.05
12/7/05	INSTRUMENT BLANK	0.00	0.00	0.05_
12/7/05	VS-SVE-TB-6-120705-0688	0.00	0.00	0.05

Notes: 0.00 indicates below detection limit.

Shaw E & I Lab Analytical Results

Client: Sevenson/USACE Analysis Date: 9/1/2005 Detection Limit: See below

Analyst: YL

Client Code: 681086 Sample Date: 8/31/2005

Units: ppmv

Project Manager: D. Callahan

SAMPLE ID	1,1,1-TCA	TCE	DL
VS-SVE-INF-083105-0621	12.13	0.85	0.05
VS-SVE-MID-083105-0622	0.25	0.00	0.05
VS-SVE-EFF-083105-0623	0.00	0.00	0.05
VS-SVE-SP-083105-0624	0.00	0.00	0.05
VS-SVE-TB-083105-0625	0.00	0.00	0.05

Notes:

Page 1 of 1

^[1] TVOC: estimated value. TVOC was calculated by the average response factor of the known contaminants.

^{[2] 0.00} indicates BELOW DETECTION LIMIT. (For TVOC, the Detection Limit is 1.0 ppmv.)

^[3] DL = Detection Limit.

CHAIN - OF - CUSTODY for AIR SAMPLES

Hour Meter:	14999.	0 428-		Client: Sevensia	JUSACE Clien	it Code: <u>#68/086</u>
Flow Meter- Type	: R	ange (cfm):		Site Address: 2/8	STAGE RD	VESTAL, NY
Withdrawl blower	- Vacuum :	Pressure:		Project Manager:		
Injection blower -	Vacuum:	Pressure: _	er	System Status :	"OPERATION	16"
Sample ID.	Date	Time	Indicated Flow (cfm)	Carbon Dioxide (ppm)	Analysis Requested	Notes
1 US-SIE-0621	8-31-105	1015			1014.A	INFLUENT
2 USSIE-0622		1026			Y	mid CARBON
3 VSSVE-0623		1042				EFFLUENT
4 USSVE-8624		1005				SAMPLE PUMP
5 US-SVE-0625	<u> </u>				1	TRIP BLANK
6						
7						<u> </u>
8						
101						
11					<u>-</u>	
12						
	CASURDO /A	1º6 wine	Date: 8-31-05	Time:	Enviroger	t, Inc.
Delivered By:			_ Date:	Time:	_	ALPON MENTAC ardous Waste Problems
Received By:	12		Date: 9/1/05	Time: 9230	123 GLLEGE 5126 West Grand Ray	or, Laneing, Michigan, 48906
Remarks:			· · · · · · · · · · · · · · · · · · ·		6 ROND KAP Phone # : (517) 886-5 616-774 -	105, MT 49503 600 Fax #. (517) 886-5700. 3577.

Shaw E & I Lab Analytical Results

Client: Sevenson/USACE Analysis Date: 9/29/2005

Detection Limit: See below

Analyst: YL

Client Code: 681086 Sample Date: 9/28/2005

Units: ppmv

Project Manager: D. Callahan

SAMPLE ID	1,1,1-TCA	TCE	DL
VS-SVE-INF-092805-0626	15.13	1.90	0.05
VS-SVE-MID-092805-0627	1.71	0.00	0.05
VS-SVE-EFF-092805-0628	0.62	0.00	0.05
VS-SVE-SP-092805-0629	0.00	0.00	0.05
VS-SVE-TB-092805-0630	0.00	0.00	0.05

Notes:

^[1] TVOC: estimated value. TVOC was calculated by the average response factor of the known contaminants.

^{[2] 0.00} indicates BELOW DETECTION LIMIT. (For TVOC, the Detection Limit is 1.0 ppmv.)

^[3] DL = Detection Limit.

CHAIN - OF - CUSTODY for AIR SAMPLES

Hour Meter:	<u> 15560</u>	<u> =8 kKs ·</u>	_			Code: #681086
Flow Meter- Type	: F	Range (cfm):		Site Address: 210	STAGE B., U.	ESTAC, NY
Withdrawl blower	r - Vacuum :	Pressure:		Project Manager:	D. CALLAHAN	<u> </u>
Injection blower -	Vacuum:	Pressure: _		System Status :	" Ofers To	<u>56"</u>
Sample ID.	Date	Time	Indicated Flow (cfm)	Carbon Dioxide (ppm)	Analysis Requested	Notes
US-5UE-0626	9:28-05	1055			TO14, A	INFLUENT
US-SUE-0621		1/15				MID CARBON
USSVE-0628		1140				EFFLUENT
V5-5NE-0629		1030				SAMPLE PUMP
US-SVE-0630	<u> </u>	TRIP BLANK			<u> </u>	TRIP BLANK
						ļ
						
						· · · · · · · · · · · · · · · · · · ·
				<u> </u>	- !	
			 			
	7		<u> </u>			<u> </u>
Collected By:	LASURDO /MS	= 6 yire	_ Date: <u>9 38-05</u>	Time: /038	Envirogen	, Inc.
Delivered By:			_ Date:	_ Time:	New Solutions to Hazar	rdous Waste Problems
Received By:	ip _		Date: 9/29/0	Time: <u>9</u> ≥ 45	5126 West Grand River	r, Lansing, Michigan. 48906
Remarks:				, , , , , , , , , , , , , , , , , , ,	Phone #: (517) 886-56	500 Fax #: (517) 886-5700

Shaw E & I Lab Analytical Results

Client: Sevenson/USACE
Analysis Date: 10/10/2005
Detection Limits See below

Detection Limit: See below

Analyst: YL

Client Code: 681086 Sample Date: 10/6/2005

Units: ppmv

Project Manager: D. Callahan

SAMPLE ID	1,1,1-TCA	TCE	DL
VS-SVE-INF-100605-0631	9.76	1.18	0.05
VS-SVE-MID-100605-0632	15.16	0.00	0.05
VS-SVE-EFF-100605-0633	2.36	0.00	0.05
VS-SVE-SP-100605-0634	0.00	0.00	0.05
VS-SVE-TB-100605-0635	0.00	0.00	0.05

Notes:

^[1] TVOC: estimated value. TVOC was calculated by the average response factor of the known contaminants.

^{[2] 0.00} indicates BELOW DETECTION LIMIT. (For TVOC, the Detection Limit is 1.0 ppmv.)

^[3] DL = Detection Limit.

^[4] Samples were four days old.

CHAIN - OF - CUSTODY for AIR SAMPLES

Hour Meter:	15759.84MS	Buns .		Client: Saleuxan	JUSACE Clien	Client: Salan San/45ACE Client Code: Educal
Flow Meter- Type:		Range (cfm):		Site Address: 210 SHSE B. VESTAL. N.	SHEB. 1	LEBOL NY.
Withdrawl blower - Vacuum:	r - Vacuum:	Pressure:		Project Manager:) - Causana	, CAR
Injection blower - Vacuum:	- Vacuum:	Pressure:		System Status:	"ODERATIVE"	16.3
Sample ID.	Date	Time	Indicated Flow (cfm)	Carbon Dioxide (ppm)	Analysis Requested	Notes
155VE. 0631	20-6-01	0611			A Blot	InFluent
2 USSUE-0632		1136				Mid-Cappon
x5/6-0633		1151				EFFLEST
4 WSK-0634		5011				Sample AUND
5 45-5/18-0635	->	The Blank			~	This Black
9						
7						
80						
6						
10						
111						
12						
Collected By:	200 JA	HSbuile	Date: 16-6-105 Time:	Time: 1030	Envirogen, Inc.	ı, Inc.
Delivered By:			Date:	Time:	New Solutions to Haz	New Solutions to Hazardous Waste Problems
Received By:	(p)		Date: 10/10/05 Time:	Time: 9,25	5126 West Grand Rive	5126 West Grand River, Lansing, Michigan. 48906
Remarks:					Phone #: (517) 886-5	Phone #: (517) 886-5600 Fax #: (517) 886-5700
						ı

White copy = Laboratory Yellow copy = Technical Analyst Pink copy = Operation Technicians

Shaw E & I Lab Analytical Results

Client: Sevenson/USACE Analysis Date: 11/10/2005 Detection Limit: See below

Analyst: YL

Client Code: 681086 Sample Date: 11/9/2005

Units: ppmv

Project Manager: D. Callahan

SAMPLE ID	1,1,1-TCA	TCE	DL
VS-SVE-INF-110905-0636	0.00	0.09	0.05
VS-SVE-MID-110905-0637	1.27	0.08	0.05
VS-SVE-EFF-110905-0638	6.00	0.00	0.05
VS-SVE-SP-110905-0639	0.00	0.00	0.05
VS-SVE-TB-110905-0640	0.00	0.00	0.05

Notes:

^[1] TVOC: estimated value. TVOC was calculated by the average response factor of the known contaminants.

^{[2] 0.00} indicates BELOW DETECTION LIMIT. (For TVOC, the Detection Limit is 1.0 ppmv.)

^[3] DL = Detection Limit.

CHAIN - OF - CUSTODY for AIR SAMPLES

	Hour Meter:	16567.7	4p8		Client: EVENSON/	USACE Client	Code: <u>#681086</u>
	Flow Meter- Type	: R	lange (cfm):		Site Address: 218	STAGEB V	ESTAL NY
	Withdrawl blower	- Vacuum :	Pressure:		Project Manager:		
_	Injection blower -	Vacuum:	Pressure:		System Status :	"OPELATIO	J8 '
	Sample ID.	Date	Time	Indicated Flow (cfm)	Carbon Dioxide (ppm)	Analysis Requested	Notes
1	USSVE-0636	11-9-05	1035			1614,A	INFLUENT
2	VCSVE-0637		1042				MID CARBON
3	VS=51E-0638		1053				EFFLUENT
4	USUE-0639		1000				SAMPLETUMP
5	US-5VE-0646	<u> </u>	Thip BLANK			.4	THEIR BLANK
6							· · · · · · · · · · · · · · · · · · ·
7	<u> </u>						
8						_	
9							
10							
11							
12		110.00	200	- 46/45	Time: _/000	E	Track
	Collected By: Ca	CASURDO / P	1-64IRE	Date: 11-9-05	Time:	THEN FOR	CON/CUT, INC.
	Delivered By:			Date:		NEW SOLUCIOUS TO LIAZA	rdous Waste Problems
	Received By:			Date: 11/10/05	Time: 9230	5126 West Grand River	r, Lansing, Michigan, 48906
	Remarks:						12, WI 279503 00 Eax #: (517) 886-5700 4-3572

Shaw E & I Lab Analytical Results

Client: Sevenson/USACE Analysis Date: 12/7/2005 Detection Limit: See below

Analyst: YL

Client Code: 681086 Sample Date: 12/6/2005

Units: ppmv

Project Manager: D. Callahan

SAMPLE ID	1,1,1-TCA	TCE	DL
VS-SVE-C2-120605-0642	0.00	0.00	0.05
VS-SVE-D4-120605-0645	0.00	0.00	0.05
VS-SVE-TB-1-120605-0646	0.00	0.00	0.05
VS-SVE-D1-120605-0647	0.00	0.00	0.05
VS-SVE-TB-2-120605-0654	0.00	0.00	0.05
VS-SVE-E2-120605-0655	0.00	0.00	0.05
VS-SVE-B3-120605-0656	0.00	0.00	0.05
VS-SVE-A3-120605-0657	0.00	0.00	0.05
VS-SVE-TB-3-120605-0661	0.00	0.00	0.05
VS-SVE-PB-1-120605-0662	0.00	0.00	0.05

Notes:

^[1] TVOC: estimated value. TVOC was calculated by the average response factor of the known contaminants.

^{[2] 0.00} indicates BELOW DETECTION LIMIT. (For TVOC, the Detection Limit is 1.0 ppmv.)

^[3] DL = Detection Limit.

Shaw E & I Lab Analytical Results

Client: Sevenson/USACE
Analysis Date: 12/8/2005
Detection Limit: See heloy

Detection Limit: See below

Analyst: YL

Client Code: 681086
Sample Date: 12/7/2005

Units: ppmv

Project Manager: D. Callahan

SAMPLE ID	1,1,1-TCA	TCE	DL
VS-SVE-J4-120705-0663	13.72	0.40	0.05
VS-SVE-J2-120705-0664	0.00	0.00	0.05
VS-SVE-K5-120705-0666	0.00	0.00	0.05
VS-SVE-K4-120705-0667	0.00	0.00	0.05
VS-SVE-K2-120705-0668	0.00	0.00	0.05
VS-SVE-TB-4-120705-0671	0.00	0.00	0.05
VS-SVE-J6-120705-0673	0.00	0.00	0.05
VS-SVE-J3-120705-0674	0.00	0.00	0.05
VS-SVE-G1-120705-0675	0.00	0.00	0.05
VS-SVE-I5-120705-0676	0.00	0.00	0.05
VS-SVE-G2-120705-0677	0.00	0.00	0.05
VS-SVE-I3-120705-0678	0.00	0.00	0.05
VS-SVE-H1-120705-0679	0.00	0.00	0.05
VS-SVE-TB-5-120705-0680	0.00	0.00	0.05
VS-SVE-J5-120705-0681	0.00	0.00	0.05
VS-SVE-I1-120705-0682	0.00	0.00	0.05
VS-SVE-INF-120705-0684	0.00	0.00	0.05
VS-SVE-MID-120705-0685	0.64	0.00	0.05
VS-SVE-EFF-120705-0686	1.57	0.00	0.05
VS-SVE-PB-2-120705-0687	0.00	0.00	0.05
VS-SVE-TB-6-120705-0688	0.00	0.00	0.05

Notes:

^[1] TVOC: estimated value. TVOC was calculated by the average response factor of the known contaminants.

^{[2] 0.00} indicates BELOW DETECTION LIMIT. (For TVOC, the Detection Limit is 1.0 ppmv.)

^[3] DL = Detection Limit.

Kemarks:

Received By:

Delivered By:

77

Н

Date: 18 6-05 Time: 9690-315-51 128-4690-315511 2690-31551 4-0 20-8890-915-511 z 4 HOL (SO-0E-1!) 50-9-61 1690-315-51 (ufo) (wdd) Requested SOLON Sample ID. əwiL Date sisylpnA. Carbon Dioxide Indicated Flow System Status: Pressure: Injection blower - Vacuum: Project Manager: D. United Mana Pressure: Withdrawl blower - Vacuum: Site Address: 210 Stack Ra, VESTRA, NY Range (cfm): Flow Meter- Type: Client Serism / USACE Client Code: #681086 Hour Meter: CHVIN - OF - CUSTODY for AIR, SAMPLES

PH.

97/1

Time:

White copy = Laboratory Yellow copy = Technical Analyst Pink copy = Operation Technicians

Date:

Coden #2

	- 00[†]C- 088 († 1 C) : # X P -1 00	474-919 95-988 (£15) : # anould				·	Kemarks:				
	-Lansing, Michigan 18906.	New Solutions to Hazar SAC West Offend River	Lime: 9>30	Date: 12/7/05	\mathcal{M}						
	TONE TONE.	_	Гіпле: <i>ОСРО</i>	Date: Date:	EGUISE	N/ 900 1180	Collected By:				
						*					
					· · · · · · · · · · · · · · · · · · ·						
			· · · · · · · · · · · · · · · · · · ·								
	C#21-		·		204	1	6590 F155				
74	5-1			5/	OTH.		4590-3155				
> /	7-2			5-	mH		1590 7155				
	(-1-7						0590-3/155				
	5-7 5-7			MH 50	OLH	50-9-11	6690-3155 8690-3155				
#	1-9	4,4151		01H 5-	oppo	50-9-11	4690-315-56				
	sətoN	sisylnnA bsissupsA	Carbon Dioxide (mqq)	Mol's Colin Flow (cfm)	əmiT	Date	Sample ID.				
		יי פיניינונו	: sutata mətaya	3	Pressure:	/acuum:	7 - 19wold noitoejn				
		J. Courses	roject Manager:		Pressure:		Vithdrawl blower				
	P. W. SARRES		Site Address:		nge (cfm):	IsA	iow Meter- Type:				
	Code: 281086	.,			SOHL	·91621	our Meter:				

White copy = Laboratory Yellow copy = Technical Analyst Pink copy = Operation Technicians

Cooler #3

CHAIN - OF - CUSTODY for AIR SAMPLES

Hour Meter:	1/0/0/	143.		Client: SUGUSON /	USAGE Clien	t Code: <u>68/086</u>
Flow Meter- Type	: Ra	ange (cfm):		Site Address: 21	O STAGE R	B. VESTAL, NY
Withdrawl blower	- Vacuum :	Pressure:		Project Manager:		
Injection blower -	Vacuum:	Pressure:		System Status:	"OPERATIO	16"
Sample ID.	Date	Time	Indicated Flow (cfm)	Carbon Dioxide (ppm)	Analysis Requested	Notes
US-SKE-6655	125.05	1036	0/5		10AA	E (NEW MIL.)
VSSVE-0656		1092	-5		Y	B-3
USSVE-0657		1047	15			A-3
4 USSVE-0658		420	-5	,	/	B-1
155VE-0659		1)20	15			E-5
6 155KE-0660		H20	/5		+	F-3
1551E-0661					1	13-3
SSE-0662						Symplet 449
0					-	
1						
12	, /					
Collected By	LASURDO/LI	Suile	Date: /15/05	Time: 0900	Enviroget	110 TUC
Delivered By:			Date:	Time:	New Solutions to Haz	WEWT, INC. ardous Waste Problems SEAUE, E
Received By:	M		Date: 12/7/05	Time: 9:30	6106337 0 101	v 1 34111. 10004 li
Remarks:					Phone # : (3 L/) 880 3	600 Fax #: (517) 886-3700

Tales #4

CHAIN - OF - CUSTODY for AIR SAMPLES

Code: #691996	#8TOL NY		, 9	-	Notes	2-0	4-7	13 M20		14	200	73	X-3-D	J#St-					dous Waste Problems	Lansing Michigan 1996	18/14/025	1-3532
USACE Client	SAKE PO. 1	Colmun	"Openetials	Analysis	Requested	40101								7				Emiros	New Solutions to Hazardous	103 6/E/C	Phone # : (517) 886-20	616-774
Client: Kully / USACE Client Code; #691086	Site Address: 216 STACE 10. 14874	Project Manager:	System Status:	Carbon Dioxide	(mdd)													Time: 0930	Time:	Time: /0 > 00		
				Indicated Flow	(cfm)	7.7	7	φ	7	5	4	7	1					Date: 12.7-05	Date:	Date: 12/8/05 Time:		
. 8m	Range (cfm):	Pressure:	Pressure:	i	Ime	1000	700/	art S/V	DOL	0/0/0	180%	SHE					,	Ebuile				
17340.0 445		Vacuum :	Vacuum:	£	Date	12-8-05								•	· ·	·3*		Lagueoo/k		M	•	
Hour Meter:	Flow Meter- Type:	Withdrawl blower - Vacuum :	Injection blower - Vacuum:		Sample ID.	1155/4-06/3	155/4-0664	W.5.4-465	1554-0666	15-516-067	15516-068	15514419	15-51F 0570	15-548-0671				Collected By:	Delivered By:	Received By:	Remarks	

White copy = Laboratory Yellow copy = Technical Analyst Pink copy = Operation Technicians

Colep #5

CHAIN - OF - CUSTODY for AIR SAMPLES

Hour Meter:	Has-	-	Client: Sety Sou/	USOGE Client C	ode: 64/086	
Flow Meter- Type:	Range (cfm):		Site Address: 2/6	STAGE PO. LA	STAL, NY	
Withdrawl blower - Vacuum :	Pressure:		Project Manager:	D. Coupusa		
Injection blower - Vacuum:	Pressure:		System Status :	"OPERATING	5"	
Sample ID. Date	Time	Indicated Flow (cfm)	Carbon Dioxide (ppm)	Analysis Requested	Notes	
1 VSSVE-0672 1276-05	N/S HO	-5		-1,014,A	H-Z HO	11
2 VI SVE-0673	1035	15		1	J-6	HZC
3 USSUE-0674	1040	-5			J-3	_
4 WSVE 0675	1046	-5			6-1	1120
5 0516 0676	1050	-5			<u> </u>	_
1 USSE 0677	1055	-5			6-2	4
8 US CUT 1/29	1059	-5			<u>J-3</u>	-
, VSSVE 0680 +	7101	->			-18#5	
10					2/8-5	1
11						
12						
Collected By: LASUEDE / L	196WRE	Date: 27-05	Time: 0934	Little gent,	They True	7
Delivered By:		Date:	Time:	New Solutions to Hazard	ous Waste Problems	
Received By:	/	Date: 12/8/05	Time: 10:00	103 Callege 5126 Woot Grand River,	Lamine Michigan 18906	,
Remarks:				Phone #: (517)-286 5600	105 MIAGO 17-3502	

Cooler #6

CHAIN - OF - CUSTODY for AIR SAMPLES

17240.	O HRS-		Client: SvanSon/	USAGE Client	Code: <u>#8/896</u>
: F	Range (cfm):		Site Address: 210	STAGE RO. U	LESTAL, NY
			Project Manager:	> Courses	<i>,</i>)
Vacuum:	Pressure:		System Status :	"Operation	<u>6" </u>
Date	Time	Indicated Flow (cfm)	Carbon Dioxide (ppm)	Analysis Requested	Notes
4-7-05	11/2	-5		10AA	ひら
	1125	-5		\ \'\	I-1
	N/5-120	-5			M-3 Hos
	1135				- JNFLUEST
	147				MIDCORBEN
	1155				EFFLIGHT
					Samplerump
				1	18#6
			· · · · · · · · · · · · · · · · · · ·		
					· · · · · · · · · · · · · · · · · · ·
·					
CASULDO /0	196WRE	Date: 42-18-01	Time: 0930	Envirogen	, Inc.
· · · · · · · · · · · · · · · · · · ·				New Solutions to Haza	rdous Waste Problems
1/B		Date: 12/8/01	Time: 10:00	103 College	Lancing Michigan 48006
		Daio 7 - 1 - G	A MILO.	Gesno Rapil	S MI 49503
:		· · · · · · · · · · · · · · · · · · ·		Phone #: (\$17) 886-56	
	: F - Vacuum : Vacuum: Date **CASULDO / ** **CASULDO / ** ** ** ** ** ** ** ** ** *	- Vacuum : Pressure :	Range (cfm):	Range (cfm): Site Address: \$\frac{10}{200}\$ Vacuum: Pressure: Project Manager: Nacuum: Pressure: System Status:	Range (cfm): Vacuum: Pressure: Project Manager: Vacuum: Pressure: System Status: "Opconting Indicated Flow (cfm) (ppm) Project Manager: National Indicated Flow (cfm) (ppm) Project Manager: National Indicated Flow (ppm) National Indicated Flow (ppm)

APPENDIX C Summary of Operation Data/Contaminant Yield Calculation

Appendix C

Summary of Operation Data

Vestal, Area 4

Vestai, Alea 4												
SAMPLE DATE	SAMPLE ID	REPORT SAMPLE ID	FLOW (CFM)	1,1,1-TCA (ppmv)	TCE (ppmv)	TOTAL TARGETED CONTAMINANTS (ppmv)	LBS OF 1,1,1-TCA per day	LBS OF TCE per day	LBS OF TOTAL TARGETED CONTAMINANTS PER DAY	OPERATION DAYS	STATION HOUR METER	NUMBER OF DAYS IN PERIOD
6/27/03	INF	VS-SVE-INF-062703	517	12.70	12.83	25.53	3.28	3.26	6.53	4.04	97.0	1.96
7/7/2003	INF	VS-SVE-INF-070703-0001	517	26.62	19.87	46.49	6.87	5.04	11.91	14.08	338	10.04
7/9/2003	INF	VS-SVE-INF-070903-0006	517	75.42	68.79	144.21	19.45	17.46	36.92	16.04	385	1.96
7/17/2003	INF	VS-SVE-INF-071703-0011	517	33.34	22.24	55.58	8.60	5.65	14.25	20.50	492	4.46
7/29/2003	INF	VS-SVE-INF-072903-0016	517	10.83	7.39	18.22	2.79	1.88	4.67	28.63	687.2	8.13
8/12/2003	INF	VS-SVE-INF-081203-0026	517	15.77	9.20	24.97	4.07	2.34	6.40	34.11	818.7	5.48
8/25/2003	INF	VS-SVE-INF-082503-0031	512	24.37	20.12	44.49	6.23	5.06	11.28	44.30	1063.3	10.19
9/3/2003	INF	VS-SVE-INF-090303-0036	512	33.08	15.94	49.02	8.45	4.01	12.46	53.0	1273	8.74
9/8/2003	INF	VS-SVE-INF-090803-0041	512	16.57	9.80	26.37	4.23	2.46	6.70	57.1	1369.5	4.02
9/24/2003	INF	VS-SVE-INF-092403-0099	512	10.72	5.16	15.88	2.74	1.30	4.04	70.6	1695.5	13.58
10/15/2003	INF	VS-SVE-INF-101503-0114	512	11.02	8.98	20.00	2.82	2.26	5.07	91.6	2,198.6	20.96
10/15/2003	INF	VS-SVE-INF-101503-0114	512	11.02	8.98	20.00	2.82	2.26	5.07	91.6	2198.6	0.00
10/28/2003	INF	VS-SVE-INF-102803-0119	512	10.36	8.80	19.16	2.65	2.21	4.86	104.7	2512.0	13.06
11/11/2003	INF	VS-SVE-INF-111103-0124	512	3.89	5.81	9.70	0.99	1.46	2.45	111.5	2,676.9	6.87
11/19/2003	INF	VS-SVE-INF-111903-0129	512	4.96	5.51	10.47	1.27	1.39	2.65	119.3	2,862.7	7.74
12/4/2003	INF	VS-SVE-INF-120403-0187	512	2.89	3.03	5.92	0.74	0.76	1.50	132.0	3167.2	15.69
1/14/2004	INF	VS-SVE-INF-011404-0197	512	2.71	3.57	6.28	0.69	0.90	1.59	139.8	3,355.7	7.85
1/26/2004	INF	VS-SVE-INF-012604-0202	512	6.39	7.13	13.52	1.63	1.79	3.42	149.5	3,587.2	9.65
2/9/2004	INF	VS-SVE-INF-020904-0207	512	12.11	12.34	24.45	3.09	3.10	6.20	161.0	3,863.0	11.49
2/24/2004	INF	VS-SVE-INF-022404-0212	512	14.57	11.56	26.13	3.72	2.91	6.63	175.9	4,220.7	14.90
3/10/2004	INF	VS-SVE-INF-031004-0262	512	8.74	10.12	18.86	2.23	2.54	4.78	183.9	4,412.5	7.99
4/5/2004	INF	VS-SVE-INF-040504-0267	512	9.82	10.18	19.99	2.51	2.56	5.07	199.1	4778.4	15.25
4/27/2004	INF	VS-SVE-INF-042704-0272	512	5.76	6.54	12.30	1.47	1.64	3.11	213.9	5133	14.78
5/11/2004	INF	VS-SVE-INF-051104-0277	512	9.21	11.02	20.23	2.35	2.77	5.12	227.1	5,450.0	13.21
6/1/2004	INF	VS-SVE-INF-060104-0282	512	8.24	10.29	18.53	2.10	2.59	4.69	246.3	5,910.7	19.20
6/22/2004	INF	VS-SVE-INF-062204-0332	512	5.08	4.40	9.48	1.30	1.11	2.40	267.1	6,411.0	20.85
7/13/2004	INF	VS-SVE-INF-071304-0337	512	18.05	12.86	30.91	4.61	3.23	7.84	288.1	6,914.3	20.97
7/22/2004	INF	VS-SVE-INF-072204-0342	512	14.22	13.76	27.98	3.63	3.46	7.09	294.4	7,065.3	6.29
8/16/2004	INF	VS-SVE-INF-081604-0347	512	2.13	2.49	4.63	0.54	0.63	1.17	310.9	7,460.5	16.47
9/28/2004	INF	VS-SVE-INF-092804-0423	512	1.45	2.45	3.89	0.37	0.62	0.98	353.7	8,489.0	42.85
10/19/2004	INF	VS-SVE-INF-101904-0428	512	12.35	9.55	21.90	3.15	2.40	5.56	374.7	8,993.0	21.00
11/17/2004	INF	VS-SVE-INF-111704-0433	512	6.63	4.76	11.39	1.69	1.20	2.89	403.8	9,690.0	29.04
12/21/2004	INF	VS-SVE-INF-122104-0493	512	0.29	0.46	0.74	0.07	0.12	0.19	437.7	10,503.8	33.91

Summary of Operation Data

Vestal, Area 4

SAMPLE DATE	SAMPLE ID	REPORT SAMPLE ID	FLOW (CFM)	1,1,1-TCA (ppmv)	TCE (ppmv)	TOTAL TARGETED CONTAMINANTS (ppmv)	LBS OF 1,1,1-TCA per day	LBS OF TCE per day	LBS OF TOTAL TARGETED CONTAMINANTS PER DAY	OPERATION DAYS	STATION HOUR METER	NUMBER OF DAYS IN PERIOD
1/12/2005	INF	VS-SVE-INF-011205-0498	512	1.13	0.79	1.92	0.29	0.20	0.49	459.7	11,032.5	22.03
2/9/2005	INF	VS-SVE-INF-020905-0503	512	2.29	0.94	3.23	0.58	0.24	0.82	487.6	11,702.8	27.93
3/23/2005	INF	VS-SVE-INF-032305-0551	512	0.54	0.46	1.00	0.14	0.12	0.25	529.6	12,710.4	41.98
4/27/2005	INF	VS-SVE-INF-042705-0556	512	0.00	0.00	0.00	0.00	0.00	0.00	560.50	13,452.1	30.90
5/10/2005	INF	VS-SVE-INF-051005-0563	512	0.00	0.00	0.00	0.00	0.00	0.00	573.43	13,762.3	12.93
5/25/2005	INF	VS-SVE-INF-052505-0568	512	0.00	0.00	0.00	0.00	0.00	0.00	588.39	14,121.3	14.96
6/8/2005	INF	VS-SVE-INF-060805-0616	512	0.00	0.00	0.00	0.00	0.00	0.00	602.36	14,456.6	13.97
8/31/05	INF	VS-SVE-INF-083105-0621	512	12.13	0.85	12.98	3.10	0.21	3.31	620.33	14,888.0	17.98
9/28/05	INF	VS-SVE-INF-092805-0626	512	15.13	1.90	17.03	3.87	0.48	4.34	648.37	15,560.8	28.03
10/6/05	INF	VS-SVE-INF-100605-0631	512	9.76	1.18	10.94	2.49	0.30	2.79	656.37	15,752.8	8.00
11/9/05	INF	VS-SVE-INF-110905-0636	512	0.00	0.09	0.09	0.00	0.02	0.02	690.32	16,567.7	33.95
12/7/05	INF	VS-SVE-INF-120705-0684	512	0.00	0.00	0.00	0.00	0.00	0.00	718.33	_17,240.0	28.01

Appendix C

Example Calculations

Vestal, Area 4

Example: 8/25/03

1,1,1 TCA (ppm) to 1,1,1 TCA (lbs/day)

0.00000374(conversion constant)* 24.37(ppm)* 512(flow)* 133.4(molecular weight) = 6.23 lbs

Example: 8/12/03 to 8/25/03 'Total Target VOCs'

[6.40 (8/12) + 11.28 (8/25)] / 2 = 8.84 avg. lbs per day for the period 8.84 (lbs per day) * 10.19 (days) = 90.08 pounds per reporting period

Calculated Flow Rate:

Vacuum Pressure (inches Hg) = 6

Blower Speed (RPM) = 2000

Temperature (degrees F) = 72

Elevation = 1200 feet

Based on proprietary Roots, Inc flow rate software for Roots 68 blower, the

CFM for these parameters is 512 on 8/25/03

Appendix C

Influent Sample Parameters

Vestal, Area 4

SAMPLE DATE	SAMPLE ID	VACUUM PRESURE (inches Hg)	RPM	TEMPERATURE (degrees F)	FLOW (cfm)	PID	OPERATION DAYS	STATION HOUR METER
6/27/03	VS-SVE-INF-062703	6	2000	68	517	34.0	4.0	97.0
7/7/2003	VS-SVE-INF-070703-0001	6	2000	72	517	153.4	14.1	338
7/9/2003	VS-SVE-INF-070903-0006	6	2000	75	517	87.0	16.0	385
7/17/2003	VS-SVE-INF-071703-0011	6	2000	80	517	79.5	20.5	492
7/29/2003	VS-SVE-INF-072903-0016	6	2000	75	517	20.3	28.6	687.2
8/12/2003	VS-SVE-INF-081203-0026	6	2000	73	517	45.6	34.1	818.7
8/25/2003	VS-SVE-INF-082503-0031	6	2000	72	512	27.5	44.3	1063.3
9/3/2003	VS-SVE-INF-090303-0036	6	2000	70	512	21.3	53.0	1273.0
9/8/2003	VS-SVE-INF-090803-0041	6	2000	70	512	22.8	57.1	1369.5
9/24/2003	VS-SVE-INF-092403-0099	6	2000	70	512	12.6	70.6	1695.5
10/15/2003	VS-SVE-INF-101503-0114	6	2000	62	512	14.2	91.6	2,198.6
10/15/2003	VS-SVE-INF-101503-0114	6	2000	68	512	13.7	91.6	2198.6
10/28/2003	VS-SVE-INF-102803-0119	6	2000	65	512	16.4	104,7	2512.0
11/11/2003	VS-SVE-INF-111103-0124	6	2000	54	512	7.9	111.5	2676.9
11/19/2003	VS-SVE-INF-111903-0129	6	2000	50	512	12.1	119.3	2862.7
12/4/2003	VS-SVE-INF-120403-0187	6	2000	48	512	7.7	132.0	3167.2
1/14/2004	VS-SVE-INF-011404-0197	6	2000	50	512	7.7	139.8	3,355.7
1/26/2004	VS-SVE-INF-012604-0202	6	2000	50	512	12.9	149.5	3,587.2
2/9/2004	VS-SVE-INF-020904-0207	6	2000	40	512	21.3	161.0	3,863.0
2/24/2004	VS-SVE-INF-022404-0212	6	2000	45	512	19.5	175.9	4,220.7
3/10/2004	VS-SVE-INF-031004-0262	6	2000	48	512	10.3	183.9	4,412.5
4/5/2004	VS-SVE-INF-040504-0267	6	2000	66	512	11.9	199.1	4778.4
4/27/2004	VS-SVE-INF-042704-0272	6	2000	68	512	5.0	213.9	5133
5/11/2004	VS-SVE-INF-051104-0277	6	2000	64	512	13.4	227.1	5,450.0
6/1/2004	VS-SVE-INF-060104-0282	6	2000	62	512	14.8	246.3	5,910.7
6/22/2004	VS-SVE-INF-062204-0332	6	2000	68	512	7.7	267.1	6,411.0
7/13/2004	VS-SVE-INF-071304-0337	6	2000	76	512	15.4	288.1	6,914.3
7/22/2004	VS-SVE-INF-072204-0342	6	2000	80	512	16.1	294.4	7,065.3
8/16/2004	VS-SVE-INF-081604-0347	6	2000	75	512	5.4	310.9	7,460.5
9/28/2004	VS-SVE-INF-092804-0423	6	2000	60	512	17.4	353.7	8,489.0
10/19/2004	VS-SVE-INF-101904-0428	6	2000	50	512	66.9	374.7	8,993.0
11/17/2004	VS-SVE-INF-111704-0433	6	2000	51	512	47.9	403.75	9,690.0
12/21/2004	VS-SVE-INF-122104-0493	6	2000	54	512	9.9	437.7	10,503.8

Influent Sample Parameters

Vestal, Area 4

SAMPLE DATE	SAMPLE ID	VACUUM PRESURE (inches Hg)	RPM	TEMPERATURE (degrees F)	FLOW (cfm)	PID	OPERATION DAYS	STATION HOUR METER
1/12/2005	VS-SVE-INF-011205-0498	6	2000	50	512	10.9	459.7	11,032.5
2/9/2005	VS-SVE-INF-020905-0503	6	2000	52	512	12.3	487.6	11,702.8
3/23/2005	VS-SVE-INF-032305-0551	6	2000	60	512	9.6	529.6	12,710.4
4/27/2005	VS-SVE-INF-042705-0556	6	2000	62	512	2.6	560.50	13,452.1
5/10/2005	VS-SVE-INF-051005-0563	6	2000	65	512	1.5	573.43	13,762.3
5/25/2005	VS-SVE-INF-052505-0568	6	2000	70	512	1.0	588.39	14,121.3
6/8/2005	VS-SVE-INF-060805-0616	6	2000	75	512	1.1	602.36	14,456.6
8/31/2005	VS-SVE-INF-083105-0621	6	2000	74	512	4.3	620.33	14,888.0
9/28/05	VS-SVE-INF-092805-0626	6	2000	65	512	3.3	648.37	15,560.8
10/6/05	VS-SVE-INF-100605-0631	6	2000	60	512	5.1	656.37	15,752.8
11/9/05	VS-SVE-INF-110905-0636	6	2000	50	512	3.6	690.32	16,567.7
12/7/05	VS-SVE-INF-120705-0684	6	2000	47	512	2.0	718.33	17,240.0